中文 | English
Llama3-Chinese是以Meta-Llama-3-8B为底座,使用 DORA + LORA+ 的训练方法,在50w高质量中文多轮SFT数据 + 10w英文多轮SFT数据 + 2000单轮自我认知数据训练而来的大模型。
Github: https://github.com/seanzhang-zhichen/llama3-chinese
Model | Download |
---|---|
Meta-Llama-3-8B | 🤗 HuggingFace 🤖 ModelScope |
Llama3-Chinese-Lora | 🤗 HuggingFace 🤖 ModelScope |
Llama3-Chinese (合并好的模型) | 🤗 HuggingFace 🤖 ModelScope |
1、下载 Meta-Llama-3-8B
git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B.git
From ModelScope
git lfs install
git clone https://www.modelscope.cn/seanzhang/Llama3-Chinese-Lora.git
From HuggingFace
git lfs install
git clone https://huggingface.co/zhichen/Llama3-Chinese-Lora
3、合并模型
python merge_lora.py \
--base_model path/to/Meta-Llama-3-8B \
--lora_model path/to/lora/Llama3-Chinese-Lora \
--output_dir ./Llama3-Chinese
From ModelScope
git lfs install
git clone https://www.modelscope.cn/seanzhang/Llama3-Chinese.git
From HuggingFace
git lfs install
git clone https://huggingface.co/zhichen/Llama3-Chinese
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "zhichen/Llama3-Chinese"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "你好"},
]
input_ids = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=2048,
do_sample=True,
temperature=0.7,
top_p=0.95,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
python cli_demo.py --model_path zhichen/Llama3-Chinese
python web_demo.py --model_path zhichen/Llama3-Chinese
1、使用vllm部署模型
python -m vllm.entrypoints.openai.api_server --served-model-name Llama3-Chinese --model ./Llama3-Chinese(换成你自己的合并后的模型路径)
2、在命令行执行
python vllm_web_demo.py --model Llama3-Chinese
本项目仅可应用于研究目的,项目开发者不承担任何因使用本项目(包含但不限于数据、模型、代码等)导致的危害或损失。详细请参考免责声明。
Llama3-Chinese项目代码的授权协议为 The Apache License 2.0,代码可免费用做商业用途,模型权重和数据只能用于研究目的。请在产品说明中附加Llama3-Chinese的链接和授权协议。
如果你在研究中使用了Llama3-Chinese,请按如下格式引用:
@misc{Llama3-Chinese,
title={Llama3-Chinese},
author={Zhichen Zhang, Xin LU, Long Chen},
year={2024},
howpublished={\url{https://github.com/seanzhang-zhichen/llama3-chinese}},
}