-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
80 lines (67 loc) · 2.55 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import pandas as pd
from dataset import load_dataset
from transformers import (AutoTokenizer, Seq2SeqTrainer,
Seq2SeqTrainingArguments, VisionEncoderDecoderModel,
ViTFeatureExtractor, default_data_collator)
captions_path = "./Flickr8k-Hindi.txt"
root_dir = "../input/flickr8k/Images"
encoder_checkpoint = "google/vit-base-patch16-224"
decoder_checkpoint = "surajp/gpt2-hindi"
output_dir = "./image_captioning_checkpoint"
# load feature extractor and tokenizer
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
with open(captions_path) as f:
data = []
for i in f.readlines():
sp = i.split(" ")
data.append([sp[0] + ".jpg", " ".join(sp[1:])])
hindi = pd.DataFrame(data, columns=["images", "text"])
# image file is not present in dir
hindi = hindi[hindi["images"] != "2258277193_586949ec62.jpg"]
train_dataset, val_dataset = load_dataset(hindi, root_dir, tokenizer, feature_extractor)
# initialize a vit-bert from a pretrained ViT and a pretrained GPT2 model
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_checkpoint, decoder_checkpoint
)
# set special tokens used for creating the decoder_input_ids from the labels
model.config.decoder_start_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
# make sure vocab size is set correctly
model.config.vocab_size = model.config.decoder.vocab_size
# set beam search parameters
model.config.eos_token_id = tokenizer.sep_token_id
model.config.max_length = 512
model.config.early_stopping = True
model.config.no_repeat_ngram_size = 3
model.config.length_penalty = 2.0
model.config.num_beams = 4
model.decoder.resize_token_embeddings(len(tokenizer))
# freeze the encoder
for param in model.encoder.parameters():
param.requires_grad = False
training_args = Seq2SeqTrainingArguments(
predict_with_generate=True,
evaluation_strategy="steps",
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
overwrite_output_dir=True,
fp16=True,
run_name="first_run",
load_best_model_at_end=True,
output_dir=output_dir,
logging_steps=2000,
save_steps=2000,
eval_steps=2000,
)
if __name__ == "__main__":
# instantiate trainer
trainer = Seq2SeqTrainer(
model=model,
tokenizer=feature_extractor,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=default_data_collator,
)
trainer.train()