-
Notifications
You must be signed in to change notification settings - Fork 0
/
saved_model_cli.py
827 lines (698 loc) · 31.9 KB
/
saved_model_cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Command-line interface to inspect and execute a graph in a SavedModel.
For detailed usages and examples, please refer to:
https://www.tensorflow.org/guide/saved_model#cli_to_inspect_and_execute_savedmodel
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import re
import sys
import warnings
import numpy as np
from six import integer_types
from tensorflow.contrib.saved_model.python.saved_model import reader
from tensorflow.core.example import example_pb2
from tensorflow.core.framework import types_pb2
from tensorflow.python.client import session
from tensorflow.python.debug.wrappers import local_cli_wrapper
from tensorflow.python.framework import meta_graph as meta_graph_lib
from tensorflow.python.framework import ops as ops_lib
from tensorflow.python.lib.io import file_io
from tensorflow.python.platform import app # pylint: disable=unused-import
from tensorflow.python.saved_model import loader
from tensorflow.python.tools import saved_model_utils
# Set of ops to blacklist.
_OP_BLACKLIST = set(['WriteFile', 'ReadFile'])
def _show_tag_sets(saved_model_dir):
"""Prints the tag-sets stored in SavedModel directory.
Prints all the tag-sets for MetaGraphs stored in SavedModel directory.
Args:
saved_model_dir: Directory containing the SavedModel to inspect.
"""
tag_sets = reader.get_saved_model_tag_sets(saved_model_dir)
print('The given SavedModel contains the following tag-sets:')
for tag_set in sorted(tag_sets):
print(', '.join(sorted(tag_set)))
def _show_signature_def_map_keys(saved_model_dir, tag_set):
"""Prints the keys for each SignatureDef in the SignatureDef map.
Prints the list of SignatureDef keys from the SignatureDef map specified by
the given tag-set and SavedModel directory.
Args:
saved_model_dir: Directory containing the SavedModel to inspect.
tag_set: Group of tag(s) of the MetaGraphDef to get SignatureDef map from,
in string format, separated by ','. For tag-set contains multiple tags,
all tags must be passed in.
"""
signature_def_map = get_signature_def_map(saved_model_dir, tag_set)
print('The given SavedModel MetaGraphDef contains SignatureDefs with the '
'following keys:')
for signature_def_key in sorted(signature_def_map.keys()):
print('SignatureDef key: \"%s\"' % signature_def_key)
def _get_inputs_tensor_info_from_meta_graph_def(meta_graph_def,
signature_def_key):
"""Gets TensorInfo for all inputs of the SignatureDef.
Returns a dictionary that maps each input key to its TensorInfo for the given
signature_def_key in the meta_graph_def
Args:
meta_graph_def: MetaGraphDef protocol buffer with the SignatureDef map to
look up SignatureDef key.
signature_def_key: A SignatureDef key string.
Returns:
A dictionary that maps input tensor keys to TensorInfos.
"""
return meta_graph_def.signature_def[signature_def_key].inputs
def _get_outputs_tensor_info_from_meta_graph_def(meta_graph_def,
signature_def_key):
"""Gets TensorInfos for all outputs of the SignatureDef.
Returns a dictionary that maps each output key to its TensorInfo for the given
signature_def_key in the meta_graph_def.
Args:
meta_graph_def: MetaGraphDef protocol buffer with the SignatureDefmap to
look up signature_def_key.
signature_def_key: A SignatureDef key string.
Returns:
A dictionary that maps output tensor keys to TensorInfos.
"""
return meta_graph_def.signature_def[signature_def_key].outputs
def _show_inputs_outputs(saved_model_dir, tag_set, signature_def_key, indent=0):
"""Prints input and output TensorInfos.
Prints the details of input and output TensorInfos for the SignatureDef mapped
by the given signature_def_key.
Args:
saved_model_dir: Directory containing the SavedModel to inspect.
tag_set: Group of tag(s) of the MetaGraphDef, in string format, separated by
','. For tag-set contains multiple tags, all tags must be passed in.
signature_def_key: A SignatureDef key string.
indent: How far (in increments of 2 spaces) to indent each line of output.
"""
meta_graph_def = saved_model_utils.get_meta_graph_def(saved_model_dir,
tag_set)
inputs_tensor_info = _get_inputs_tensor_info_from_meta_graph_def(
meta_graph_def, signature_def_key)
outputs_tensor_info = _get_outputs_tensor_info_from_meta_graph_def(
meta_graph_def, signature_def_key)
indent_str = ' ' * indent
def in_print(s):
print(indent_str + s)
in_print('The given SavedModel SignatureDef contains the following input(s):')
for input_key, input_tensor in sorted(inputs_tensor_info.items()):
in_print(' inputs[\'%s\'] tensor_info:' % input_key)
_print_tensor_info(input_tensor, indent+1)
in_print('The given SavedModel SignatureDef contains the following '
'output(s):')
for output_key, output_tensor in sorted(outputs_tensor_info.items()):
in_print(' outputs[\'%s\'] tensor_info:' % output_key)
_print_tensor_info(output_tensor, indent+1)
in_print('Method name is: %s' %
meta_graph_def.signature_def[signature_def_key].method_name)
def _print_tensor_info(tensor_info, indent=0):
"""Prints details of the given tensor_info.
Args:
tensor_info: TensorInfo object to be printed.
indent: How far (in increments of 2 spaces) to indent each line output
"""
indent_str = ' ' * indent
def in_print(s):
print(indent_str + s)
in_print(' dtype: ' +
{value: key
for (key, value) in types_pb2.DataType.items()}[tensor_info.dtype])
# Display shape as tuple.
if tensor_info.tensor_shape.unknown_rank:
shape = 'unknown_rank'
else:
dims = [str(dim.size) for dim in tensor_info.tensor_shape.dim]
shape = ', '.join(dims)
shape = '(' + shape + ')'
in_print(' shape: ' + shape)
in_print(' name: ' + tensor_info.name)
def _show_all(saved_model_dir):
"""Prints tag-set, SignatureDef and Inputs/Outputs information in SavedModel.
Prints all tag-set, SignatureDef and Inputs/Outputs information stored in
SavedModel directory.
Args:
saved_model_dir: Directory containing the SavedModel to inspect.
"""
tag_sets = reader.get_saved_model_tag_sets(saved_model_dir)
for tag_set in sorted(tag_sets):
print("\nMetaGraphDef with tag-set: '%s' "
"contains the following SignatureDefs:" % ', '.join(tag_set))
tag_set = ','.join(tag_set)
signature_def_map = get_signature_def_map(saved_model_dir, tag_set)
for signature_def_key in sorted(signature_def_map.keys()):
print('\nsignature_def[\'' + signature_def_key + '\']:')
_show_inputs_outputs(saved_model_dir, tag_set, signature_def_key,
indent=1)
def get_meta_graph_def(saved_model_dir, tag_set):
"""DEPRECATED: Use saved_model_utils.get_meta_graph_def instead.
Gets MetaGraphDef from SavedModel. Returns the MetaGraphDef for the given
tag-set and SavedModel directory.
Args:
saved_model_dir: Directory containing the SavedModel to inspect or execute.
tag_set: Group of tag(s) of the MetaGraphDef to load, in string format,
separated by ','. For tag-set contains multiple tags, all tags must be
passed in.
Raises:
RuntimeError: An error when the given tag-set does not exist in the
SavedModel.
Returns:
A MetaGraphDef corresponding to the tag-set.
"""
return saved_model_utils.get_meta_graph_def(saved_model_dir, tag_set)
def get_signature_def_map(saved_model_dir, tag_set):
"""Gets SignatureDef map from a MetaGraphDef in a SavedModel.
Returns the SignatureDef map for the given tag-set in the SavedModel
directory.
Args:
saved_model_dir: Directory containing the SavedModel to inspect or execute.
tag_set: Group of tag(s) of the MetaGraphDef with the SignatureDef map, in
string format, separated by ','. For tag-set contains multiple tags, all
tags must be passed in.
Returns:
A SignatureDef map that maps from string keys to SignatureDefs.
"""
meta_graph = saved_model_utils.get_meta_graph_def(saved_model_dir, tag_set)
return meta_graph.signature_def
def scan_meta_graph_def(meta_graph_def):
"""Scans meta_graph_def and reports if there are ops on blacklist.
Print ops if they are on black list, or print success if no blacklisted ops
found.
Args:
meta_graph_def: MetaGraphDef protocol buffer.
"""
all_ops_set = set(
meta_graph_lib.ops_used_by_graph_def(meta_graph_def.graph_def))
blacklisted_ops = _OP_BLACKLIST & all_ops_set
if blacklisted_ops:
# TODO(yifeif): print more warnings
print('MetaGraph with tag set %s contains the following blacklisted ops:' %
meta_graph_def.meta_info_def.tags, blacklisted_ops)
else:
print('MetaGraph with tag set %s does not contain blacklisted ops.' %
meta_graph_def.meta_info_def.tags)
def run_saved_model_with_feed_dict(saved_model_dir, tag_set, signature_def_key,
input_tensor_key_feed_dict, outdir,
overwrite_flag, worker=None, init_tpu=False,
tf_debug=False):
"""Runs SavedModel and fetch all outputs.
Runs the input dictionary through the MetaGraphDef within a SavedModel
specified by the given tag_set and SignatureDef. Also save the outputs to file
if outdir is not None.
Args:
saved_model_dir: Directory containing the SavedModel to execute.
tag_set: Group of tag(s) of the MetaGraphDef with the SignatureDef map, in
string format, separated by ','. For tag-set contains multiple tags, all
tags must be passed in.
signature_def_key: A SignatureDef key string.
input_tensor_key_feed_dict: A dictionary maps input keys to numpy ndarrays.
outdir: A directory to save the outputs to. If the directory doesn't exist,
it will be created.
overwrite_flag: A boolean flag to allow overwrite output file if file with
the same name exists.
worker: If provided, the session will be run on the worker. Valid worker
specification is a bns or gRPC path.
init_tpu: If true, the TPU system will be initialized after the session
is created.
tf_debug: A boolean flag to use TensorFlow Debugger (TFDBG) to observe the
intermediate Tensor values and runtime GraphDefs while running the
SavedModel.
Raises:
ValueError: When any of the input tensor keys is not valid.
RuntimeError: An error when output file already exists and overwrite is not
enabled.
"""
# Get a list of output tensor names.
meta_graph_def = saved_model_utils.get_meta_graph_def(saved_model_dir,
tag_set)
# Re-create feed_dict based on input tensor name instead of key as session.run
# uses tensor name.
inputs_tensor_info = _get_inputs_tensor_info_from_meta_graph_def(
meta_graph_def, signature_def_key)
# Check if input tensor keys are valid.
for input_key_name in input_tensor_key_feed_dict.keys():
if input_key_name not in inputs_tensor_info:
raise ValueError(
'"%s" is not a valid input key. Please choose from %s, or use '
'--show option.' %
(input_key_name, '"' + '", "'.join(inputs_tensor_info.keys()) + '"'))
inputs_feed_dict = {
inputs_tensor_info[key].name: tensor
for key, tensor in input_tensor_key_feed_dict.items()
}
# Get outputs
outputs_tensor_info = _get_outputs_tensor_info_from_meta_graph_def(
meta_graph_def, signature_def_key)
# Sort to preserve order because we need to go from value to key later.
output_tensor_keys_sorted = sorted(outputs_tensor_info.keys())
output_tensor_names_sorted = [
outputs_tensor_info[tensor_key].name
for tensor_key in output_tensor_keys_sorted
]
with session.Session(worker, graph=ops_lib.Graph()) as sess:
if init_tpu:
print('Initializing TPU System ...')
# This is needed for freshly started worker, or if the job
# restarts after a preemption.
sess.run(tf.contrib.tpu.initialize_system())
loader.load(sess, tag_set.split(','), saved_model_dir)
if tf_debug:
sess = local_cli_wrapper.LocalCLIDebugWrapperSession(sess)
outputs = sess.run(output_tensor_names_sorted, feed_dict=inputs_feed_dict)
for i, output in enumerate(outputs):
output_tensor_key = output_tensor_keys_sorted[i]
print('Result for output key %s:\n%s' % (output_tensor_key, output))
# Only save if outdir is specified.
if outdir:
# Create directory if outdir does not exist
if not os.path.isdir(outdir):
os.makedirs(outdir)
output_full_path = os.path.join(outdir, output_tensor_key + '.npy')
# If overwrite not enabled and file already exist, error out
if not overwrite_flag and os.path.exists(output_full_path):
raise RuntimeError(
'Output file %s already exists. Add \"--overwrite\" to overwrite'
' the existing output files.' % output_full_path)
np.save(output_full_path, output)
print('Output %s is saved to %s' % (output_tensor_key,
output_full_path))
def preprocess_inputs_arg_string(inputs_str):
"""Parses input arg into dictionary that maps input to file/variable tuple.
Parses input string in the format of, for example,
"input1=filename1[variable_name1],input2=filename2" into a
dictionary looks like
{'input_key1': (filename1, variable_name1),
'input_key2': (file2, None)}
, which maps input keys to a tuple of file name and variable name(None if
empty).
Args:
inputs_str: A string that specified where to load inputs. Inputs are
separated by semicolons.
* For each input key:
'<input_key>=<filename>' or
'<input_key>=<filename>[<variable_name>]'
* The optional 'variable_name' key will be set to None if not specified.
Returns:
A dictionary that maps input keys to a tuple of file name and variable name.
Raises:
RuntimeError: An error when the given input string is in a bad format.
"""
input_dict = {}
inputs_raw = inputs_str.split(';')
for input_raw in filter(bool, inputs_raw): # skip empty strings
# Format of input=filename[variable_name]'
match = re.match(r'([^=]+)=([^\[\]]+)\[([^\[\]]+)\]$', input_raw)
if match:
input_dict[match.group(1)] = match.group(2), match.group(3)
else:
# Format of input=filename'
match = re.match(r'([^=]+)=([^\[\]]+)$', input_raw)
if match:
input_dict[match.group(1)] = match.group(2), None
else:
raise RuntimeError(
'--inputs "%s" format is incorrect. Please follow'
'"<input_key>=<filename>", or'
'"<input_key>=<filename>[<variable_name>]"' % input_raw)
return input_dict
def preprocess_input_exprs_arg_string(input_exprs_str):
"""Parses input arg into dictionary that maps input key to python expression.
Parses input string in the format of 'input_key=<python expression>' into a
dictionary that maps each input_key to its python expression.
Args:
input_exprs_str: A string that specifies python expression for input keys.
Each input is separated by semicolon. For each input key:
'input_key=<python expression>'
Returns:
A dictionary that maps input keys to their values.
Raises:
RuntimeError: An error when the given input string is in a bad format.
"""
input_dict = {}
for input_raw in filter(bool, input_exprs_str.split(';')):
if '=' not in input_exprs_str:
raise RuntimeError('--input_exprs "%s" format is incorrect. Please follow'
'"<input_key>=<python expression>"' % input_exprs_str)
input_key, expr = input_raw.split('=', 1)
# ast.literal_eval does not work with numpy expressions
input_dict[input_key] = eval(expr) # pylint: disable=eval-used
return input_dict
def preprocess_input_examples_arg_string(input_examples_str):
"""Parses input into dict that maps input keys to lists of tf.Example.
Parses input string in the format of 'input_key1=[{feature_name:
feature_list}];input_key2=[{feature_name:feature_list}];' into a dictionary
that maps each input_key to its list of serialized tf.Example.
Args:
input_examples_str: A string that specifies a list of dictionaries of
feature_names and their feature_lists for each input.
Each input is separated by semicolon. For each input key:
'input=[{feature_name1: feature_list1, feature_name2:feature_list2}]'
items in feature_list can be the type of float, int, long or str.
Returns:
A dictionary that maps input keys to lists of serialized tf.Example.
Raises:
ValueError: An error when the given tf.Example is not a list.
"""
input_dict = preprocess_input_exprs_arg_string(input_examples_str)
for input_key, example_list in input_dict.items():
if not isinstance(example_list, list):
raise ValueError(
'tf.Example input must be a list of dictionaries, but "%s" is %s' %
(example_list, type(example_list)))
input_dict[input_key] = [
_create_example_string(example) for example in example_list
]
return input_dict
def _create_example_string(example_dict):
"""Create a serialized tf.example from feature dictionary."""
example = example_pb2.Example()
for feature_name, feature_list in example_dict.items():
if not isinstance(feature_list, list):
raise ValueError('feature value must be a list, but %s: "%s" is %s' %
(feature_name, feature_list, type(feature_list)))
if isinstance(feature_list[0], float):
example.features.feature[feature_name].float_list.value.extend(
feature_list)
elif isinstance(feature_list[0], str):
example.features.feature[feature_name].bytes_list.value.extend(
feature_list)
elif isinstance(feature_list[0], integer_types):
example.features.feature[feature_name].int64_list.value.extend(
feature_list)
else:
raise ValueError(
'Type %s for value %s is not supported for tf.train.Feature.' %
(type(feature_list[0]), feature_list[0]))
return example.SerializeToString()
def load_inputs_from_input_arg_string(inputs_str, input_exprs_str,
input_examples_str):
"""Parses input arg strings and create inputs feed_dict.
Parses '--inputs' string for inputs to be loaded from file, and parses
'--input_exprs' string for inputs to be evaluated from python expression.
'--input_examples' string for inputs to be created from tf.example feature
dictionary list.
Args:
inputs_str: A string that specified where to load inputs. Each input is
separated by semicolon.
* For each input key:
'<input_key>=<filename>' or
'<input_key>=<filename>[<variable_name>]'
* The optional 'variable_name' key will be set to None if not specified.
* File specified by 'filename' will be loaded using numpy.load. Inputs
can be loaded from only .npy, .npz or pickle files.
* The "[variable_name]" key is optional depending on the input file type
as descripted in more details below.
When loading from a npy file, which always contains a numpy ndarray, the
content will be directly assigned to the specified input tensor. If a
variable_name is specified, it will be ignored and a warning will be
issued.
When loading from a npz zip file, user can specify which variable within
the zip file to load for the input tensor inside the square brackets. If
nothing is specified, this function will check that only one file is
included in the zip and load it for the specified input tensor.
When loading from a pickle file, if no variable_name is specified in the
square brackets, whatever that is inside the pickle file will be passed
to the specified input tensor, else SavedModel CLI will assume a
dictionary is stored in the pickle file and the value corresponding to
the variable_name will be used.
input_exprs_str: A string that specifies python expressions for inputs.
* In the format of: '<input_key>=<python expression>'.
* numpy module is available as np.
input_examples_str: A string that specifies tf.Example with dictionary.
* In the format of: '<input_key>=<[{feature:value list}]>'
Returns:
A dictionary that maps input tensor keys to numpy ndarrays.
Raises:
RuntimeError: An error when a key is specified, but the input file contains
multiple numpy ndarrays, none of which matches the given key.
RuntimeError: An error when no key is specified, but the input file contains
more than one numpy ndarrays.
"""
tensor_key_feed_dict = {}
inputs = preprocess_inputs_arg_string(inputs_str)
input_exprs = preprocess_input_exprs_arg_string(input_exprs_str)
input_examples = preprocess_input_examples_arg_string(input_examples_str)
for input_tensor_key, (filename, variable_name) in inputs.items():
data = np.load(file_io.FileIO(filename, mode='rb'))
# When a variable_name key is specified for the input file
if variable_name:
# if file contains a single ndarray, ignore the input name
if isinstance(data, np.ndarray):
warnings.warn(
'Input file %s contains a single ndarray. Name key \"%s\" ignored.'
% (filename, variable_name))
tensor_key_feed_dict[input_tensor_key] = data
else:
if variable_name in data:
tensor_key_feed_dict[input_tensor_key] = data[variable_name]
else:
raise RuntimeError(
'Input file %s does not contain variable with name \"%s\".' %
(filename, variable_name))
# When no key is specified for the input file.
else:
# Check if npz file only contains a single numpy ndarray.
if isinstance(data, np.lib.npyio.NpzFile):
variable_name_list = data.files
if len(variable_name_list) != 1:
raise RuntimeError(
'Input file %s contains more than one ndarrays. Please specify '
'the name of ndarray to use.' % filename)
tensor_key_feed_dict[input_tensor_key] = data[variable_name_list[0]]
else:
tensor_key_feed_dict[input_tensor_key] = data
# When input is a python expression:
for input_tensor_key, py_expr_evaluated in input_exprs.items():
if input_tensor_key in tensor_key_feed_dict:
warnings.warn(
'input_key %s has been specified with both --inputs and --input_exprs'
' options. Value in --input_exprs will be used.' % input_tensor_key)
tensor_key_feed_dict[input_tensor_key] = py_expr_evaluated
# When input is a tf.Example:
for input_tensor_key, example in input_examples.items():
if input_tensor_key in tensor_key_feed_dict:
warnings.warn(
'input_key %s has been specified in multiple options. Value in '
'--input_examples will be used.' % input_tensor_key)
tensor_key_feed_dict[input_tensor_key] = example
return tensor_key_feed_dict
def show(args):
"""Function triggered by show command.
Args:
args: A namespace parsed from command line.
"""
# If all tag is specified, display all information.
if args.all:
_show_all(args.dir)
else:
# If no tag is specified, display all tag_set, if no signaure_def key is
# specified, display all SignatureDef keys, else show input output tensor
# information corresponding to the given SignatureDef key
if args.tag_set is None:
_show_tag_sets(args.dir)
else:
if args.signature_def is None:
_show_signature_def_map_keys(args.dir, args.tag_set)
else:
_show_inputs_outputs(args.dir, args.tag_set, args.signature_def)
def run(args):
"""Function triggered by run command.
Args:
args: A namespace parsed from command line.
Raises:
AttributeError: An error when neither --inputs nor --input_exprs is passed
to run command.
"""
if not args.inputs and not args.input_exprs and not args.input_examples:
raise AttributeError(
'At least one of --inputs, --input_exprs or --input_examples must be '
'required')
tensor_key_feed_dict = load_inputs_from_input_arg_string(
args.inputs, args.input_exprs, args.input_examples)
run_saved_model_with_feed_dict(args.dir, args.tag_set, args.signature_def,
tensor_key_feed_dict, args.outdir,
args.overwrite, worker=args.worker,
init_tpu=args.init_tpu, tf_debug=args.tf_debug)
def scan(args):
"""Function triggered by scan command.
Args:
args: A namespace parsed from command line.
"""
if args.tag_set:
scan_meta_graph_def(
saved_model_utils.get_meta_graph_def(args.dir, args.tag_set))
else:
saved_model = reader.read_saved_model(args.dir)
for meta_graph_def in saved_model.meta_graphs:
scan_meta_graph_def(meta_graph_def)
def create_parser():
"""Creates a parser that parse the command line arguments.
Returns:
A namespace parsed from command line arguments.
"""
parser = argparse.ArgumentParser(
description='saved_model_cli: Command-line interface for SavedModel')
parser.add_argument('-v', '--version', action='version', version='0.1.0')
subparsers = parser.add_subparsers(
title='commands', description='valid commands', help='additional help')
# show command
show_msg = (
'Usage examples:\n'
'To show all tag-sets in a SavedModel:\n'
'$saved_model_cli show --dir /tmp/saved_model\n\n'
'To show all available SignatureDef keys in a '
'MetaGraphDef specified by its tag-set:\n'
'$saved_model_cli show --dir /tmp/saved_model --tag_set serve\n\n'
'For a MetaGraphDef with multiple tags in the tag-set, all tags must be '
'passed in, separated by \';\':\n'
'$saved_model_cli show --dir /tmp/saved_model --tag_set serve,gpu\n\n'
'To show all inputs and outputs TensorInfo for a specific'
' SignatureDef specified by the SignatureDef key in a'
' MetaGraph.\n'
'$saved_model_cli show --dir /tmp/saved_model --tag_set serve'
' --signature_def serving_default\n\n'
'To show all available information in the SavedModel:\n'
'$saved_model_cli show --dir /tmp/saved_model --all')
parser_show = subparsers.add_parser(
'show',
description=show_msg,
formatter_class=argparse.RawTextHelpFormatter)
parser_show.add_argument(
'--dir',
type=str,
required=True,
help='directory containing the SavedModel to inspect')
parser_show.add_argument(
'--all',
action='store_true',
help='if set, will output all information in given SavedModel')
parser_show.add_argument(
'--tag_set',
type=str,
default=None,
help='tag-set of graph in SavedModel to show, separated by \',\'')
parser_show.add_argument(
'--signature_def',
type=str,
default=None,
metavar='SIGNATURE_DEF_KEY',
help='key of SignatureDef to display input(s) and output(s) for')
parser_show.set_defaults(func=show)
# run command
run_msg = ('Usage example:\n'
'To run input tensors from files through a MetaGraphDef and save'
' the output tensors to files:\n'
'$saved_model_cli show --dir /tmp/saved_model --tag_set serve \\\n'
' --signature_def serving_default \\\n'
' --inputs input1_key=/tmp/124.npz[x],input2_key=/tmp/123.npy '
'\\\n'
' --input_exprs \'input3_key=np.ones(2)\' \\\n'
' --input_examples '
'\'input4_key=[{"id":[26],"weights":[0.5, 0.5]}]\' \\\n'
' --outdir=/out\n\n'
'For more information about input file format, please see:\n'
'https://www.tensorflow.org/guide/saved_model_cli\n')
parser_run = subparsers.add_parser(
'run', description=run_msg, formatter_class=argparse.RawTextHelpFormatter)
parser_run.add_argument(
'--dir',
type=str,
required=True,
help='directory containing the SavedModel to execute')
parser_run.add_argument(
'--tag_set',
type=str,
required=True,
help='tag-set of graph in SavedModel to load, separated by \',\'')
parser_run.add_argument(
'--signature_def',
type=str,
required=True,
metavar='SIGNATURE_DEF_KEY',
help='key of SignatureDef to run')
msg = ('Loading inputs from files, in the format of \'<input_key>=<filename>,'
' or \'<input_key>=<filename>[<variable_name>]\', separated by \';\'.'
' The file format can only be from .npy, .npz or pickle.')
parser_run.add_argument('--inputs', type=str, default='', help=msg)
msg = ('Specifying inputs by python expressions, in the format of'
' "<input_key>=\'<python expression>\'", separated by \';\'. '
'numpy module is available as \'np\'. '
'Will override duplicate input keys from --inputs option.')
parser_run.add_argument('--input_exprs', type=str, default='', help=msg)
msg = (
'Specifying tf.Example inputs as list of dictionaries. For example: '
'<input_key>=[{feature0:value_list,feature1:value_list}]. Use ";" to '
'separate input keys. Will override duplicate input keys from --inputs '
'and --input_exprs option.')
parser_run.add_argument('--input_examples', type=str, default='', help=msg)
parser_run.add_argument(
'--outdir',
type=str,
default=None,
help='if specified, output tensor(s) will be saved to given directory')
parser_run.add_argument(
'--overwrite',
action='store_true',
help='if set, output file will be overwritten if it already exists.')
parser_run.add_argument(
'--tf_debug',
action='store_true',
help='if set, will use TensorFlow Debugger (tfdbg) to watch the '
'intermediate Tensors and runtime GraphDefs while running the '
'SavedModel.')
parser_run.add_argument(
'--worker',
type=str,
default=None,
help='if specified, a Session will be run on the worker. '
'Valid worker specification is a bns or gRPC path.')
parser_run.add_argument(
'--init_tpu',
action='store_true',
default=None,
help='if specified, tpu.initialize_system will be called on the Session. '
'This option should be only used if the worker is a TPU job.')
parser_run.set_defaults(func=run)
# scan command
scan_msg = ('Usage example:\n'
'To scan for blacklisted ops in SavedModel:\n'
'$saved_model_cli scan --dir /tmp/saved_model\n'
'To scan a specific MetaGraph, pass in --tag_set\n')
parser_scan = subparsers.add_parser(
'scan',
description=scan_msg,
formatter_class=argparse.RawTextHelpFormatter)
parser_scan.add_argument(
'--dir',
type=str,
required=True,
help='directory containing the SavedModel to execute')
parser_scan.add_argument(
'--tag_set',
type=str,
help='tag-set of graph in SavedModel to scan, separated by \',\'')
parser_scan.set_defaults(func=scan)
return parser
def main():
parser = create_parser()
args = parser.parse_args()
if not hasattr(args, 'func'):
parser.error('too few arguments')
args.func(args)
if __name__ == '__main__':
sys.exit(main())