-
Notifications
You must be signed in to change notification settings - Fork 108
/
TypHeapSimple.thy
814 lines (741 loc) · 30.9 KB
/
TypHeapSimple.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
(*
* This file contains theorems for dealing with a "simply" lifted
* heap, where each byte of memory can be accessed as one (and only)
* type.
*
* This is a simpler model of Tuch's "lift_t" model, where nested
* struct fields cannot be directly accessed as pointers.
*)
theory TypHeapSimple
imports
"CParser.TypHeapLib"
begin
(*
* Each address in the heap can contain one of three things:
*
* - A type tag, which inidicates that this address is the first
* byte of an object;
*
* - A footprint, which indicates that this address is a latter byte
* of an object;
*
* - Nothing, which indicates that this address does not fall inside
* an object.
*)
datatype heap_typ_contents =
HeapType typ_uinfo
| HeapFootprint
| HeapEmpty
(*
* Given a Tuch-style heap representation (where each memory location
* contains a set of different types, representing nested field types)
* calculate a single top-level type of the heap.
*
* We just want to commit to a single type for this heap location,
* and nothing more.
*)
definition
heap_type_tag :: "heap_typ_desc \<Rightarrow> addr \<Rightarrow> heap_typ_contents"
where
"heap_type_tag d a \<equiv>
(if fst (d a) = False \<or> (\<forall>x. (snd (d a)) x = None) \<or> (\<forall>x. (snd (d a)) x \<noteq> None) then
HeapEmpty
else
case (snd (d a)) (GREATEST x. snd (d a) x \<noteq> None) of
Some (_, False) \<Rightarrow> HeapFootprint
| Some (x, True) \<Rightarrow> HeapType x
| None \<Rightarrow> HeapEmpty)"
(*
* Determine if the heap has a valid footprint for the given type at
* the given address.
*
* A valid footprint means that the user has committed that the given
* memory location will only be used for the given type.
*
* A "simple" footprint differs from the Tuch-style because we only
* commit to a single type, and have no support for accessing nested
* structures.
*)
definition
valid_simple_footprint :: "heap_typ_desc \<Rightarrow> addr \<Rightarrow> typ_uinfo \<Rightarrow> bool"
where
"valid_simple_footprint d x t \<equiv>
heap_type_tag d x = HeapType t \<and>
(\<forall>y. y \<in> {x + 1..+ (size_td t)- Suc 0} \<longrightarrow> heap_type_tag d y = HeapFootprint)"
lemma valid_simple_footprintI:
"\<lbrakk> heap_type_tag d x = HeapType t; \<And>y. y \<in> {x + 1..+(size_td t) - Suc 0} \<Longrightarrow> heap_type_tag d y = HeapFootprint \<rbrakk>
\<Longrightarrow> valid_simple_footprint d x t"
by (clarsimp simp: valid_simple_footprint_def)
lemma valid_simple_footprintD:
"valid_simple_footprint d x t \<Longrightarrow> heap_type_tag d x = HeapType t"
by (simp add: valid_simple_footprint_def)
lemma valid_simple_footprintD2:
"\<lbrakk> valid_simple_footprint d x t; y \<in> {x + 1..+(size_td t) - Suc 0} \<rbrakk> \<Longrightarrow> heap_type_tag d y = HeapFootprint"
by (simp add: valid_simple_footprint_def)
lemma typ_slices_not_empty:
"typ_slices (x::('a::{mem_type} itself)) \<noteq> []"
apply (clarsimp simp: typ_slices_def)
done
lemma last_typ_slice_t:
"(last (typ_slice_t t 0)) = (t, True)"
apply (case_tac t)
apply clarsimp
done
lemma if_eqI:
"\<lbrakk> a \<Longrightarrow> x = z; \<not> a \<Longrightarrow> y = z \<rbrakk> \<Longrightarrow> (if a then x else y) = z"
by simp
lemma heap_type_tag_ptr_retyp:
"snd (s (ptr_val t)) = Map.empty \<Longrightarrow>
heap_type_tag (ptr_retyp (t :: 'a::mem_type ptr) s) (ptr_val t) = HeapType (typ_uinfo_t TYPE('a))"
apply (unfold ptr_retyp_def heap_type_tag_def)
apply (subst htd_update_list_index, fastforce, fastforce)+
apply (rule if_eqI)
apply clarsimp
apply (erule disjE)
apply (erule_tac x=0 in allE)
apply clarsimp
apply (erule_tac x="length (typ_slice_t (typ_uinfo_t TYPE('a)) 0)" in allE)
apply (clarsimp simp: list_map_eq)
apply (clarsimp simp: list_map_eq last_conv_nth [simplified, symmetric] last_typ_slice_t
split: option.splits if_split_asm prod.splits)
done
lemma not_snd_last_typ_slice_t:
"k \<noteq> 0 \<Longrightarrow> \<not> snd (last (typ_slice_t z k))"
by (case_tac z, clarsimp)
lemma heap_type_tag_ptr_retyp_rest:
"\<lbrakk> snd (s (ptr_val t + k)) = Map.empty; 0 < k; unat k < size_td (typ_uinfo_t TYPE('a)) \<rbrakk> \<Longrightarrow>
heap_type_tag (ptr_retyp (t :: 'a::mem_type ptr) s) (ptr_val t + k) = HeapFootprint"
apply (unfold ptr_retyp_def heap_type_tag_def)
apply (subst htd_update_list_index, simp, clarsimp,
metis intvlI size_of_def word_unat.Rep_inverse)+
apply (rule if_eqI)
apply clarsimp
apply (erule disjE)
apply (erule_tac x=0 in allE)
apply (clarsimp simp: size_of_def)
apply (erule_tac x="length (typ_slice_t (typ_uinfo_t TYPE('a)) (unat k))" in allE)
apply (clarsimp simp: size_of_def list_map_eq)
apply (clarsimp simp: list_map_eq last_conv_nth [simplified, symmetric] size_of_def
split: option.splits if_split_asm prod.splits bool.splits)
apply (metis surj_pair)
apply (subst (asm) (2) surjective_pairing)
apply (subst (asm) not_snd_last_typ_slice_t)
apply clarsimp
apply unat_arith
apply simp
done
lemma typ_slices_addr_card [simp]:
"length (typ_slices (x::('a::{mem_type} itself))) < addr_card"
apply (clarsimp simp: typ_slices_def)
done
lemma htd_update_list_same':
"\<lbrakk>0 < unat k; unat k \<le> addr_card - length v\<rbrakk> \<Longrightarrow> htd_update_list (p + k) v h p = h p"
apply (insert htd_update_list_same [where v=v and p=p and h=h and k="unat k"])
apply clarsimp
done
lemma unat_less_impl_less:
"unat a < unat b \<Longrightarrow> a < b"
by unat_arith
lemma valid_simple_footprint_ptr_retyp:
"\<lbrakk> \<forall>k < size_td (typ_uinfo_t TYPE('a)). snd (s (ptr_val t + of_nat k)) = Map.empty;
1 \<le> size_td (typ_uinfo_t TYPE('a));
size_td (typ_uinfo_t TYPE('a)) < addr_card \<rbrakk>
\<Longrightarrow> valid_simple_footprint (ptr_retyp (t :: 'a::mem_type ptr) s) (ptr_val t) (typ_uinfo_t TYPE('a))"
apply (clarsimp simp: valid_simple_footprint_def)
apply (rule conjI)
apply (subst heap_type_tag_ptr_retyp)
apply (erule allE [where x="0"])
apply clarsimp
apply clarsimp
apply (clarsimp simp: intvl_def)
apply (erule_tac x="k + 1" in allE)
apply (erule impE)
apply (metis One_nat_def less_diff_conv)
apply (subst add.assoc, subst heap_type_tag_ptr_retyp_rest)
apply clarsimp
apply (case_tac "1 + of_nat k = (0 :: addr)")
apply (metis add.left_neutral intvlI intvl_Suc_nmem size_of_def)
apply unat_arith
apply clarsimp
apply (metis lt_size_of_unat_simps size_of_def Suc_eq_plus1 One_nat_def less_diff_conv of_nat_Suc)
apply simp
done
(* Determine if the given pointer is valid in the given heap. *)
definition
heap_ptr_valid :: "heap_typ_desc \<Rightarrow> 'a::c_type ptr \<Rightarrow> bool"
where
"heap_ptr_valid d p \<equiv>
valid_simple_footprint d (ptr_val (p::'a ptr)) (typ_uinfo_t TYPE('a))
\<and> c_guard p"
(*
* Lift a heap from raw bytes and a heap description into
* higher-level objects.
*
* This differs from Tuch's "lift_t" because we only support
* simple lifting; that is, each byte in the heap may only
* be accessed as a single type. Accessing struct fields by
* their pointers is not supported.
*)
definition
simple_lift :: "heap_raw_state \<Rightarrow> ('a::c_type) ptr \<Rightarrow> 'a option"
where
"simple_lift s p = (
if (heap_ptr_valid (hrs_htd s) p) then
(Some (h_val (hrs_mem s) p))
else
None)"
lemma simple_lift_heap_ptr_valid:
"simple_lift s p = Some x \<Longrightarrow> heap_ptr_valid (hrs_htd s) p"
apply (clarsimp simp: simple_lift_def split: if_split_asm)
done
lemma simple_lift_c_guard:
"simple_lift s p = Some x \<Longrightarrow> c_guard p"
apply (clarsimp simp: simple_lift_def heap_ptr_valid_def split: if_split_asm)
done
(* Two valid footprints will either overlap completely or not at all. *)
lemma valid_simple_footprint_neq:
assumes valid_p: "valid_simple_footprint d p s"
and valid_q: "valid_simple_footprint d q t"
and neq: "p \<noteq> q"
shows "p \<notin> {q..+ (size_td t)}"
proof -
have heap_type_p: "heap_type_tag d p = HeapType s"
apply (metis valid_p valid_simple_footprint_def)
done
have heap_type_q: "heap_type_tag d q = HeapType t"
apply (metis valid_q valid_simple_footprint_def)
done
have heap_type_q_footprint:
"\<And>x. x \<in> {(q + 1)..+(size_td t - Suc 0)} \<Longrightarrow> heap_type_tag d x = HeapFootprint"
apply (insert valid_q)
apply (simp add: valid_simple_footprint_def)
done
show ?thesis
using heap_type_q_footprint heap_type_p neq
intvl_neq_start heap_type_q
by (metis heap_typ_contents.simps(2))
qed
(* Two valid footprints with different types will never overlap. *)
lemma valid_simple_footprint_type_neq:
"\<lbrakk> valid_simple_footprint d p s;
valid_simple_footprint d q t;
s \<noteq> t \<rbrakk> \<Longrightarrow>
p \<notin> {q..+ (size_td t)}"
apply (subgoal_tac "p \<noteq> q")
apply (rule valid_simple_footprint_neq, simp_all)[1]
apply (clarsimp simp: valid_simple_footprint_def)
done
lemma valid_simple_footprint_neq_disjoint:
"\<lbrakk> valid_simple_footprint d p s; valid_simple_footprint d q t; p \<noteq> q \<rbrakk> \<Longrightarrow>
{p..+(size_td s)} \<inter> {q..+ (size_td t)} = {}"
apply (rule ccontr)
apply (fastforce simp: valid_simple_footprint_neq dest!: intvl_inter)
done
lemma valid_simple_footprint_type_neq_disjoint:
"\<lbrakk> valid_simple_footprint d p s;
valid_simple_footprint d q t;
s \<noteq> t \<rbrakk> \<Longrightarrow>
{p..+(size_td s)} \<inter> {q..+ (size_td t)} = {}"
apply (subgoal_tac "p \<noteq> q")
apply (rule valid_simple_footprint_neq_disjoint, simp_all)[1]
apply (clarsimp simp: valid_simple_footprint_def)
done
lemma heap_ptr_valid_neq_disjoint:
"\<lbrakk> heap_ptr_valid d (p::'a::c_type ptr);
heap_ptr_valid d (q::'b::c_type ptr);
ptr_val p \<noteq> ptr_val q \<rbrakk> \<Longrightarrow>
{ptr_val p..+size_of TYPE('a)} \<inter>
{ptr_val q..+size_of TYPE('b)} = {}"
apply (clarsimp simp only: size_of_tag [symmetric])
apply (rule valid_simple_footprint_neq_disjoint [where d="d"])
apply (clarsimp simp: heap_ptr_valid_def)
apply (clarsimp simp: heap_ptr_valid_def)
apply simp
done
lemma heap_ptr_valid_type_neq_disjoint:
"\<lbrakk> heap_ptr_valid d (p::'a::c_type ptr);
heap_ptr_valid d (q::'b::c_type ptr);
typ_uinfo_t TYPE('a) \<noteq> typ_uinfo_t TYPE('b) \<rbrakk> \<Longrightarrow>
{ptr_val p..+size_of TYPE('a)} \<inter>
{ptr_val q..+size_of TYPE('b)} = {}"
apply (subgoal_tac "ptr_val p \<noteq> ptr_val q")
apply (rule heap_ptr_valid_neq_disjoint, auto)[1]
apply (clarsimp simp: heap_ptr_valid_def valid_simple_footprint_def)
done
(* If we update one pointer in the heap, other valid pointers will be unaffected. *)
lemma heap_ptr_valid_heap_update_other:
assumes val_p: "heap_ptr_valid d (p::'a::mem_type ptr)"
and val_q: "heap_ptr_valid d (q::'b::c_type ptr)"
and neq: "ptr_val p \<noteq> ptr_val q"
shows "h_val (heap_update p v h) q = h_val h q"
apply (clarsimp simp: h_val_def heap_update_def)
apply (subst heap_list_update_disjoint_same)
apply simp
apply (rule heap_ptr_valid_neq_disjoint [OF val_p val_q neq])
apply simp
done
(* If we update one type in the heap, other types will be unaffected. *)
lemma heap_ptr_valid_heap_update_other_typ:
assumes val_p: "heap_ptr_valid d (p::'a::mem_type ptr)"
and val_q: "heap_ptr_valid d (q::'b::c_type ptr)"
and neq: "typ_uinfo_t TYPE('a) \<noteq> typ_uinfo_t TYPE('b)"
shows "h_val (heap_update p v h) q = h_val h q"
apply (clarsimp simp: h_val_def heap_update_def)
apply (subst heap_list_update_disjoint_same)
apply simp
apply (rule heap_ptr_valid_type_neq_disjoint [OF val_p val_q neq])
apply simp
done
(* Updating the raw heap is equivalent to updating the lifted heap. *)
lemma simple_lift_heap_update:
"\<lbrakk> heap_ptr_valid (hrs_htd h) p \<rbrakk> \<Longrightarrow>
simple_lift (hrs_mem_update (heap_update p v) h)
= (simple_lift h)(p := Some (v::'a::mem_type))"
apply (rule ext)
apply (clarsimp simp: simple_lift_def hrs_mem_update h_val_heap_update)
apply (fastforce simp: heap_ptr_valid_heap_update_other)
done
(* Updating the raw heap of one type doesn't affect the lifted heap of other types. *)
lemma simple_lift_heap_update_other:
"\<lbrakk> heap_ptr_valid (hrs_htd d) (p::'b::mem_type ptr);
typ_uinfo_t TYPE('a) \<noteq> typ_uinfo_t TYPE('b) \<rbrakk> \<Longrightarrow>
simple_lift (hrs_mem_update (heap_update p v) d) = ((simple_lift d)::'a::c_type typ_heap)"
apply (rule ext)+
apply (clarsimp simp: simple_lift_def h_val_heap_update hrs_mem_update)
apply (auto intro: heap_ptr_valid_heap_update_other_typ)
done
lemma h_val_simple_lift:
"simple_lift h p = Some v \<Longrightarrow> h_val (hrs_mem h) p = v"
apply (clarsimp simp: simple_lift_def split: if_split_asm)
done
lemma h_val_field_simple_lift:
"\<lbrakk> simple_lift h (pa :: 'a ptr) = Some (v::'a::mem_type);
\<exists>t. field_ti TYPE('a) f = Some t;
export_uinfo (the (field_ti TYPE('a) f)) = export_uinfo (typ_info_t TYPE('b :: mem_type)) \<rbrakk> \<Longrightarrow>
h_val (hrs_mem h) (Ptr &(pa\<rightarrow>f) :: 'b :: mem_type ptr) = from_bytes (access_ti\<^sub>0 (the (field_ti TYPE('a) f)) v)"
apply (clarsimp simp: simple_lift_def split: if_split_asm)
apply (clarsimp simp: h_val_field_from_bytes)
done
lemma simple_lift_heap_update':
"simple_lift h p = Some v' \<Longrightarrow>
simple_lift (hrs_mem_update (heap_update (p::('a::{mem_type}) ptr) v) h)
= (simple_lift h)(p := Some v)"
apply (rule simple_lift_heap_update)
apply (erule simple_lift_heap_ptr_valid)
done
lemma simple_lift_hrs_mem_update_None [simp]:
"(simple_lift (hrs_mem_update a hp) x = None) = (simple_lift hp x = None)"
apply (clarsimp simp: simple_lift_def)
done
lemma simple_lift_data_eq:
"\<lbrakk> h_val (hrs_mem h) p = h_val (hrs_mem h') p';
heap_ptr_valid (hrs_htd h) p = heap_ptr_valid (hrs_htd h') p' \<rbrakk> \<Longrightarrow>
simple_lift h p = simple_lift h' p'"
apply (clarsimp simp: simple_lift_def)
done
lemma h_val_heap_update_disjoint:
"\<lbrakk> {ptr_val p ..+ size_of TYPE('a::c_type)}
\<inter> {ptr_val q ..+ size_of TYPE('b::mem_type)} = {} \<rbrakk> \<Longrightarrow>
h_val (heap_update (q :: 'b ptr) r h) (p :: 'a ptr) = h_val h p"
apply (clarsimp simp: h_val_def)
apply (clarsimp simp: heap_update_def)
apply (subst heap_list_update_disjoint_same)
apply clarsimp
apply blast
apply clarsimp
done
lemma update_ti_t_valid_size:
"size_of TYPE('b) = size_td t \<Longrightarrow>
update_ti_t t (to_bytes_p (val::'b::mem_type)) obj = update_ti t (to_bytes_p val) obj"
apply (clarsimp simp: update_ti_t_def to_bytes_p_def)
done
lemma h_val_field_from_bytes':
"\<lbrakk> field_ti TYPE('a::{mem_type}) f = Some t;
export_uinfo t = export_uinfo (typ_info_t TYPE('b::{mem_type})) \<rbrakk> \<Longrightarrow>
h_val h (Ptr &(pa\<rightarrow>f) :: 'b ptr) = from_bytes (access_ti\<^sub>0 t (h_val h pa))"
apply (insert h_val_field_from_bytes[where f=f and pa=pa and t=t and h="(h,x)"
and 'a='a and 'b='b for x])
apply (clarsimp simp: hrs_mem_def)
done
lemma simple_lift_super_field_update_lookup:
fixes dummy :: "'b :: mem_type"
assumes "field_lookup (typ_info_t TYPE('b::mem_type)) f 0 = Some (s,n)"
and "typ_uinfo_t TYPE('a) = export_uinfo s"
and "simple_lift h p = Some v'"
shows "(super_field_update_t (Ptr (&(p\<rightarrow>f))) (v::'a::mem_type) ((simple_lift h)::'b ptr \<Rightarrow> 'b option)) =
((simple_lift h)(p \<mapsto> field_update (field_desc s) (to_bytes_p v) v'))"
proof -
from assms have [simp]: "unat (of_nat n :: addr) = n"
apply (subst unat_of_nat)
apply (subst mod_less)
apply (drule td_set_field_lookupD)+
apply (drule td_set_offset_size)+
apply (subst len_of_addr_card)
apply (subst (asm) size_of_def [symmetric, where t="TYPE('b)"])+
apply (subgoal_tac "size_of TYPE('b) < addr_card")
apply arith
apply simp
apply simp
done
from assms show ?thesis
apply (clarsimp simp: super_field_update_t_def)
apply (rule ext)
apply (clarsimp simp: field_lvalue_def split: option.splits)
apply (safe, simp_all)
apply (frule_tac v=v and v'=v' in update_field_update)
apply (clarsimp simp: field_of_t_def field_of_def typ_uinfo_t_def)
apply (frule_tac m=0 in field_names_SomeD2)
apply simp
apply clarsimp
apply (simp add: field_typ_def field_typ_untyped_def)
apply (frule field_lookup_export_uinfo_Some)
apply (frule_tac s=k in field_lookup_export_uinfo_Some)
apply simp
apply (drule (1) field_lookup_inject)
apply (subst typ_uinfo_t_def [symmetric, where t="TYPE('b)"])
apply simp
apply simp
apply (drule field_of_t_mem)+
apply (case_tac h)
apply (clarsimp simp: simple_lift_def split: if_split_asm)
apply (drule (1) heap_ptr_valid_neq_disjoint)
apply simp
apply fast
apply (clarsimp simp: field_of_t_def field_of_def)
apply (subst (asm) td_set_field_lookup)
apply simp
apply simp
apply (frule field_lookup_export_uinfo_Some)
apply (simp add: typ_uinfo_t_def)
apply (clarsimp simp: field_of_t_def field_of_def)
apply (subst (asm) td_set_field_lookup)
apply simp
apply simp
apply (frule field_lookup_export_uinfo_Some)
apply (simp add: typ_uinfo_t_def)
done
qed
lemma field_offset_addr_card:
"\<exists>x. field_lookup (typ_info_t TYPE('a::mem_type)) f 0 = Some x
\<Longrightarrow> field_offset TYPE('a) f < addr_card"
apply (clarsimp simp: field_offset_def field_offset_untyped_def typ_uinfo_t_def)
apply (subst field_lookup_export_uinfo_Some)
apply assumption
apply (frule td_set_field_lookupD)
apply (drule td_set_offset_size)
apply (insert max_size [where ?'a="'a"])
apply (clarsimp simp: size_of_def)
done
lemma unat_of_nat_field_offset:
"\<exists>x. field_lookup (typ_info_t TYPE('a::mem_type)) f 0 = Some x \<Longrightarrow>
unat (of_nat (field_offset TYPE('a) f) :: addr) = field_offset TYPE('a) f"
apply (subst word_unat.Abs_inverse)
apply (clarsimp simp: unats_def)
apply (insert field_offset_addr_card [where f=f and ?'a="'a"])[1]
apply (fastforce simp: addr_card)
apply simp
done
lemma field_of_t_field_lookup:
assumes a: "field_lookup (typ_info_t TYPE('a::mem_type)) f 0 = Some (s, n)"
assumes b: "export_uinfo s = typ_uinfo_t TYPE('b::mem_type)"
assumes n: "n = field_offset TYPE('a) f"
shows "field_of_t (Ptr &(ptr\<rightarrow>f) :: ('b ptr)) (ptr :: 'a ptr)"
apply (clarsimp simp del: field_lookup_offset_eq
simp: field_of_t_def field_of_def)
apply (subst td_set_field_lookup)
apply (rule wf_desc_typ_tag)
apply (rule exI [where x=f])
using a[simplified n] b
apply (clarsimp simp: typ_uinfo_t_def)
apply (subst field_lookup_export_uinfo_Some)
apply assumption
apply (clarsimp simp del: field_lookup_offset_eq
simp: field_lvalue_def unat_of_nat_field_offset)
done
lemma simple_lift_field_update':
fixes val :: "'b :: mem_type" and ptr :: "'a :: mem_type ptr"
assumes fl: "field_lookup (typ_info_t TYPE('a)) f 0 =
Some (adjust_ti (typ_info_t TYPE('b)) xf xfu, n)"
and xf_xfu: "fg_cons xf xfu"
and cl: "simple_lift hp ptr = Some z"
shows "(simple_lift (hrs_mem_update (heap_update (Ptr &(ptr\<rightarrow>f)) val) hp)) =
(simple_lift hp)(ptr \<mapsto> xfu val z)"
(is "?LHS = ?RHS")
proof (rule ext)
fix p
have eui: "typ_uinfo_t TYPE('b) =
export_uinfo (adjust_ti (typ_info_t TYPE('b)) xf xfu)"
using xf_xfu
apply (subst export_tag_adjust_ti2 [OF _ wf_lf wf_desc])
apply (simp add: fg_cons_def )
apply (rule meta_eq_to_obj_eq [OF typ_uinfo_t_def])
done
have n_is_field_offset: "n = field_offset TYPE('a) f"
apply (insert field_lookup_offset_eq [OF fl])
apply (clarsimp)
done
have equal_case: "?LHS ptr = ?RHS ptr"
apply (insert cl)
apply (clarsimp simp: simple_lift_def split: if_split_asm)
apply (clarsimp simp: hrs_mem_update)
apply (subst h_val_super_update_bs)
apply (rule field_of_t_field_lookup [OF fl])
apply (clarsimp simp: eui)
apply (clarsimp simp: n_is_field_offset)
apply clarsimp
apply (unfold from_bytes_def)
apply (subst fi_fu_consistentD [where f=f and s="adjust_ti (typ_info_t TYPE('b)) xf xfu"])
apply (clarsimp simp: fl)
apply (clarsimp simp: n_is_field_offset field_lvalue_def)
apply (metis unat_of_nat_field_offset fl)
apply clarsimp
apply (clarsimp simp: size_of_def)
apply (clarsimp simp: size_of_def)
apply clarsimp
apply (subst update_ti_s_from_bytes)
apply clarsimp
apply (subst update_ti_adjust_ti)
apply (rule xf_xfu)
apply (subst update_ti_s_from_bytes)
apply clarsimp
apply clarsimp
apply (clarsimp simp: h_val_def)
done
show "?LHS p = ?RHS p"
apply (case_tac "p = ptr")
apply (erule ssubst)
apply (rule equal_case)
apply (insert cl)
apply (clarsimp simp: simple_lift_def hrs_mem_update split: if_split_asm)
apply (rule h_val_heap_update_disjoint)
apply (insert field_tag_sub [OF fl, where p=ptr])
apply (clarsimp simp: size_of_def)
apply (clarsimp simp: heap_ptr_valid_def)
apply (frule (1) valid_simple_footprint_neq_disjoint, fastforce)
apply clarsimp
apply blast
done
qed
lemma simple_lift_field_update:
fixes val :: "'b :: mem_type" and ptr :: "'a :: mem_type ptr"
assumes fl: "field_ti TYPE('a) f =
Some (adjust_ti (typ_info_t TYPE('b)) xf (xfu o (\<lambda>x _. x)))"
and xf_xfu: "fg_cons xf (xfu o (\<lambda>x _. x))"
and cl: "simple_lift hp ptr = Some z"
shows "(simple_lift (hrs_mem_update (heap_update (Ptr &(ptr\<rightarrow>f)) val) hp)) =
(simple_lift hp)(ptr \<mapsto> xfu (\<lambda>_. val) z)"
(is "?LHS = ?RHS")
apply (insert fl [unfolded field_ti_def])
apply (clarsimp split: option.splits)
apply (subst simple_lift_field_update' [where xf=xf and xfu="xfu o (\<lambda>x _. x)" and z=z])
apply (clarsimp simp: o_def split: option.splits)
apply (rule refl)
apply (rule xf_xfu)
apply (rule cl)
apply clarsimp
done
lemma simple_heap_diff_types_impl_diff_ptrs:
"\<lbrakk> heap_ptr_valid h (p::('a::c_type) ptr);
heap_ptr_valid h (q::('b::c_type) ptr);
typ_uinfo_t TYPE('a) \<noteq> typ_uinfo_t TYPE('b) \<rbrakk> \<Longrightarrow>
ptr_val p \<noteq> ptr_val q"
apply (clarsimp simp: heap_ptr_valid_def)
apply (clarsimp simp: valid_simple_footprint_def)
done
lemma h_val_update_regions_disjoint:
"\<lbrakk> { ptr_val p ..+ size_of TYPE('a) } \<inter> { ptr_val x ..+ size_of TYPE('b)} = {} \<rbrakk> \<Longrightarrow>
h_val (heap_update p (v::('a::mem_type)) h) x = h_val h (x::('b::c_type) ptr)"
apply (clarsimp simp: heap_update_def)
apply (clarsimp simp: h_val_def)
apply (subst heap_list_update_disjoint_same)
apply clarsimp
apply clarsimp
done
lemma simple_lift_field_update_t:
fixes val :: "'b :: mem_type" and ptr :: "'a :: mem_type ptr"
assumes fl: "field_ti TYPE('a) f = Some t"
and diff: "typ_uinfo_t TYPE('a) \<noteq> typ_uinfo_t TYPE('c :: c_type)"
and eu: "export_uinfo t = export_uinfo (typ_info_t TYPE('b))"
and cl: "simple_lift hp ptr = Some z"
shows "((simple_lift (hrs_mem_update (heap_update (Ptr &(ptr\<rightarrow>f)) val) hp)) :: 'c ptr \<Rightarrow> 'c option) =
simple_lift hp"
apply (rule ext)
apply (case_tac "simple_lift hp x")
apply clarsimp
apply (case_tac "ptr_val x = ptr_val ptr")
apply clarsimp
apply (clarsimp simp: simple_lift_def hrs_mem_update split: if_split_asm)
apply (cut_tac simple_lift_heap_ptr_valid [OF cl])
apply (drule (1) simple_heap_diff_types_impl_diff_ptrs [OF _ _ diff])
apply simp
apply (clarsimp simp: simple_lift_def hrs_mem_update split: if_split_asm)
apply (rule field_ti_field_lookupE [OF fl])
apply (frule_tac p=ptr in field_tag_sub)
apply (clarsimp simp: h_val_def heap_update_def)
apply (subst heap_list_update_disjoint_same)
apply clarsimp
apply (cut_tac simple_lift_heap_ptr_valid [OF cl])
apply (drule (2) heap_ptr_valid_neq_disjoint)
apply (clarsimp simp: export_size_of [unfolded typ_uinfo_t_def, OF eu])
apply blast
apply simp
done
lemma simple_lift_heap_update_other':
"\<lbrakk> simple_lift h (p::'b::mem_type ptr) = Some v';
typ_uinfo_t TYPE('a) \<noteq> typ_uinfo_t TYPE('b) \<rbrakk> \<Longrightarrow>
simple_lift (hrs_mem_update (heap_update p v) h) = ((simple_lift h)::'a::c_type typ_heap)"
apply (rule simple_lift_heap_update_other)
apply (erule simple_lift_heap_ptr_valid)
apply simp
done
(* If you update bytes inside an object of one type, it won't affect
* heaps of other types. *)
lemma simple_lift_heap_update_bytes_in_other:
"\<lbrakk> simple_lift h (p::'b::mem_type ptr) = Some v';
typ_uinfo_t TYPE('b) \<noteq> typ_uinfo_t TYPE('c);
{ ptr_val q ..+ size_of TYPE('a)} \<subseteq> {ptr_val p ..+ size_of TYPE('b) } \<rbrakk> \<Longrightarrow>
simple_lift (hrs_mem_update (heap_update (q::'a::mem_type ptr) v) h) = ((simple_lift h)::'c::mem_type typ_heap)"
apply (rule ext)
apply (clarsimp simp: simple_lift_def split: if_split_asm)
apply (drule (1) heap_ptr_valid_type_neq_disjoint, simp)
apply (clarsimp simp: hrs_mem_update)
apply (rule h_val_heap_update_disjoint)
apply blast
done
lemma typ_name_neq:
"typ_name (export_uinfo (typ_info_t TYPE('a::c_type)))
\<noteq> typ_name (export_uinfo (typ_info_t TYPE('b::c_type)))
\<Longrightarrow> typ_uinfo_t TYPE('a) \<noteq> typ_uinfo_t TYPE('b)"
apply (metis typ_uinfo_t_def)
done
lemma of_nat_mod_div_decomp:
"of_nat k
= of_nat (k div size_of TYPE('b)) * of_nat (size_of TYPE('b::mem_type)) +
of_nat (k mod size_of TYPE('b))"
by (metis mod_div_decomp of_nat_add of_nat_mult)
lemma c_guard_array_c_guard:
"\<lbrakk> \<And>x. x < CARD('a) \<Longrightarrow> c_guard (ptr_coerce p +\<^sub>p int x :: 'b ptr) \<rbrakk> \<Longrightarrow> c_guard ( p :: ('b :: mem_type, 'a :: finite) array ptr)"
apply atomize
apply (clarsimp simp: c_guard_def)
apply (rule conjI)
apply (drule_tac x=0 in spec)
apply (clarsimp simp: ptr_aligned_def align_of_def align_td_array)
apply (simp add: c_null_guard_def)
apply (clarsimp simp: intvl_def)
apply (drule_tac x="k div size_of TYPE('b)" in spec)
apply (erule impE)
apply (metis (full_types) less_nat_zero_code mult_is_0 neq0_conv td_gal_lt)
apply clarsimp
apply (drule_tac x="k mod size_of TYPE('b)" in spec)
apply (clarsimp simp: CTypesDefs.ptr_add_def)
apply (subst (asm) add.assoc)
apply (subst (asm) of_nat_mod_div_decomp [symmetric])
apply clarsimp
done
lemma heap_list_update_list':
"\<lbrakk> n + x \<le> length v; length v < addr_card; q = (p + of_nat x) \<rbrakk> \<Longrightarrow>
heap_list (heap_update_list p v h) n q = take n (drop x v)"
by (metis heap_list_update_list)
lemma outside_intvl_range:
"p \<notin> {a ..+ b} \<Longrightarrow> p < a \<or> p \<ge> a + of_nat b"
apply (clarsimp simp: intvl_def not_le not_less)
apply (drule_tac x="unat (p-a)" in spec)
apply clarsimp
apply (metis add_diff_cancel2 le_less_linear le_unat_uoi
mpl_lem not_add_less2 unat_mono word_less_minus_mono_left)
done
lemma first_in_intvl:
"b \<noteq> 0 \<Longrightarrow> a \<in> {a ..+ b}"
by (force simp: intvl_def)
lemma zero_not_in_intvl_no_overflow:
"0 \<notin> {a :: 'a::len word ..+ b} \<Longrightarrow> unat a + b \<le> 2 ^ len_of TYPE('a)"
apply (rule ccontr)
apply (simp add: intvl_def not_le)
apply (drule_tac x="2 ^ len_of TYPE('a) - unat a" in spec)
apply (clarsimp simp: not_less)
apply (erule disjE)
apply (metis (erased) diff_add_inverse less_imp_add_positive of_nat_2p of_nat_add
unat_lt2p word_neq_0_conv word_unat.Rep_inverse)
apply (metis le_add_diff_inverse le_antisym le_diff_conv le_refl
less_imp_le_nat add.commute not_add_less1 unat_lt2p)
done
lemma intvl_split:
"\<lbrakk> n \<ge> a \<rbrakk> \<Longrightarrow> { p :: ('a :: len) word ..+ n } = { p ..+ a } \<union> { p + of_nat a ..+ (n - a)}"
apply (rule set_eqI, rule iffI)
apply (clarsimp simp: intvl_def not_less)
apply (rule_tac x=k in exI)
apply clarsimp
apply (rule classical)
apply (drule_tac x="k - a" in spec)
apply (clarsimp simp: not_less)
apply (metis diff_less_mono not_less)
apply (clarsimp simp: intvl_def not_less)
apply (rule_tac x="unat (x - p)" in exI)
apply clarsimp
apply (erule disjE)
apply clarsimp
apply (metis le_unat_uoi less_or_eq_imp_le not_less order_trans)
apply clarsimp
apply (metis le_def le_eq_less_or_eq le_unat_uoi less_diff_conv
add.commute of_nat_add)
done
lemma heap_ptr_valid_range_not_NULL:
"heap_ptr_valid htd (p :: ('a :: c_type) ptr)
\<Longrightarrow> 0 \<notin> {ptr_val p ..+ size_of TYPE('a)}"
apply (clarsimp simp: heap_ptr_valid_def)
apply (metis c_guard_def c_null_guard_def)
done
lemma heap_ptr_valid_last_byte_no_overflow:
"heap_ptr_valid htd (p :: ('a :: c_type) ptr)
\<Longrightarrow> unat (ptr_val p) + size_of TYPE('a) \<le> 2 ^ len_of TYPE(addr_bitsize)"
by (metis c_guard_def c_null_guard_def heap_ptr_valid_def
zero_not_in_intvl_no_overflow)
lemma heap_ptr_valid_intersect_array:
"\<lbrakk> \<forall>j < n. heap_ptr_valid htd (p +\<^sub>p int j);
heap_ptr_valid htd (q :: ('a :: c_type) ptr) \<rbrakk>
\<Longrightarrow> (\<exists>m < n. q = (p +\<^sub>p int m))
\<or> ({ptr_val p ..+ size_of TYPE ('a) * n} \<inter> {ptr_val q ..+ size_of TYPE ('a :: c_type)} = {})"
apply (induct n)
apply clarsimp
apply atomize
apply simp
apply (case_tac "n = 0")
apply clarsimp
apply (metis heap_ptr_valid_neq_disjoint ptr_val_inj)
apply (erule disjE)
apply (metis less_Suc_eq)
apply (case_tac "q = p +\<^sub>p int n")
apply force
apply (frule_tac x=n in spec)
apply (erule impE, simp)
apply (drule (1) heap_ptr_valid_neq_disjoint)
apply simp
apply (simp add: CTypesDefs.ptr_add_def)
apply (rule disjI2)
apply (cut_tac a=" of_nat n * of_nat (size_of TYPE('a))"
and p="ptr_val p" and n="n * size_of TYPE('a) + size_of TYPE('a)" in intvl_split)
apply clarsimp
apply (clarsimp simp: field_simps Int_Un_distrib2)
apply (metis IntI emptyE intvl_empty intvl_inter intvl_self neq0_conv)
done
(* Simplification rules for dealing with "lift_simple". *)
lemmas simple_lift_simps =
typ_name_neq
simple_lift_c_guard
h_val_simple_lift
simple_lift_heap_update'
simple_lift_heap_update_other'
c_guard_field
h_val_field_simple_lift
simple_lift_field_update
simple_lift_field_update_t
c_guard_array_field
nat_to_bin_string_simps
(* Old name for the above simpset. *)
lemmas typ_simple_heap_simps = simple_lift_simps
end