-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.m
515 lines (427 loc) · 15.1 KB
/
run.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
function f = run()
% Spencer Powers
% Nonlinear Control and Planning in Robotics, Spring 2022
% Final Project
% Ideal trajectories generated via modified form of ddp_car_obst.m by
% Dr. Kobilarov
clc; clear variables; close all;
%%%%%%%%%%%%%%%%%%%%%% Optimal Trajectory Generation %%%%%%%%%%%%%%%%%%%%%%
% discretization parameters
tf = 15; % time horizon [sec]
S.N = 120; % number of control segments
S.h = tf/S.N; % time step
% car parameters
S.l = 1; % distance between axles
S.circ_r = 0.5; %radius of circle centered on each axle for collision model
% generally: ||added noise|| <= S.k_tot*|velocity|
% first noise coefficient: realistically adding noise to tan(u1). So, since
% I'm limiting u1 to +- pi/4, the worst case difference in tan(u1) if you
% have a 5 deg drift while moving at 60 mph at the max steering angle of 45
% deg is tan(45) - tan(42) = 0.099 because of the increasingly steep nature
% of the tangent function...but to actually get the coefficient you'd
% divide 0.099 by (26.8224*(1+tan(45)/l) s.t. it provides an upper bound on
% injected noise. If you're moving slower and at a lower steering angle
% then the difference will be smaller, so this is an upper bound.
% Second noise coefficient: adding noise directly to u2, so if you are
% moving at 60 mph at a steering angle of 45 deg and wind drops your
% acceleration by 1 m/s^2, then you'd divide 1 by ...
% (26.8224*(1+tan(45)/l) to again get an upper bound.
max_drift_deg = 5; % max noise in u1 (in degrees) at 60 mph or 26.8224 m/s
max_drift_acc = 1; % max noise in u2 at 60 mph or 26.8224 m/s
k_noise_u1 = (tand(45) - tand(45-max_drift_deg)) / ...
(26.8224*(1+tand(45)/S.l));
k_noise_u2 = max_drift_acc / (26.8224*(1+tand(45)/S.l));
S.k_noise = [k_noise_u1; k_noise_u2];
S.k_tot = norm(S.k_noise);
% cost function parameters
S.Q = .0*diag([5, 5, 1, 1]); % no accrued cost from states over trajectory
S.R = 4*diag([1, 1]); % penalties on controls over the trajectory
S.Qf = 10*diag([5, 5, 5, 5]); % terminal cost on final state errors
S.f = @car_f; % car dynamics
S.L = @car_L; % car cost
S.Lf = @car_Lf; % car terminal cost
S.mu = 0;
% initial state
% x = [p_x p_y theta v]
x0 = [-6; -4; 0; 0];
% desired state
xd = [5; -1; 0; 0];
S.xd = xd;
% define obstacles
S.os(1).p = [1.5;-2.5];
S.os(1).r = 1;
% define boundary lines of exclusion zones
% takes the form [x, y, 1]*[coeffs] {sign} 0
S.ez(1).coeffs = [-0.3; 1; 5.5];
S.ez(1).sign = ">=";
S.ko = 1e4; % coeff on cost associated with obstacle collision
% add control bounds
% u = [steering angle; forward acceleration]
S.umin = [-pi/4, -1];
S.umax = [pi/4, 1];
% initial control sequence
us = zeros(2,S.N);
% resulting trajectory from this initial control sequence
xs = ddp_traj(x0, us, S);
% resulting total trajectory cost from this initial control sequence
J_init = ddp_cost(xs, us, S)
subplot(2,1,1)
p1 = plot(xs(1,:), xs(2,:), '-b');
hold on
% just drawing circular obstacles
if isfield(S, 'os')
da = .1;
a = -da:da:2*pi;
for i=1:length(S.os)
% draw obstacle
plot(S.os(i).p(1) + cos(a)*S.os(i).r, S.os(i).p(2) + sin(a)*S.os(i).r, ...
'-r','LineWidth',2);
end
axis equal
end
S.a = 1;
% calling 50 iterations of DDP to optimize the trajectory
for i=1:50
[dus, V, Vn, dV, a] = ddp(x0, us, S);
% update controls
us = us + dus;
S.a = a; % reuse step-size for efficiency
% update trajectory
xs = ddp_traj(x0, us, S);
plot(xs(1,:), xs(2,:), '-b');
end
p2 = plot(xs(1,:), xs(2,:), '-g'); % plot final trajectory
% plot exclusion zone boundary
if isfield(S, 'ez')
for i=1:length(S.ez)
plot([xs(1,1), xs(1,end)+S.l],[ -[S.ez(i).coeffs(1), ...
S.ez(i).coeffs(3)]*[xs(1,1);1], -[S.ez(i).coeffs(1), ...
S.ez(i).coeffs(3)]*[xs(1,end)+S.l;1] ], '--r');
end
end
% show axle circles at start and end
X = [xs(1,1);
xs(1,1) + S.l*cos(xs(3,1));
xs(1,end);
xs(1,end) + S.l*cos(xs(3,end))];
Y = [xs(2,1);
xs(2,1) + S.l*sin(xs(3,1));
xs(2,end);
xs(2,end) + S.l*sin(xs(3,end))];
R = S.circ_r*ones(4,1);
viscircles([X Y], R, 'Color', 'k', 'LineStyle', '--');
xlabel('x')
ylabel('y')
title('Trajectory Generation')
legend([p1 p2], "Candidate Traj", "Optimal Traj", "Location", ...
"southeast");
Jf = ddp_cost(xs, us, S) % final minimized cost
xd_error = abs(xs(:,end) - xd) % final error
% plot controls
subplot(2,1,2)
plot(0:S.h:tf-S.h, us(1,:),0:S.h:tf-S.h, us(2,:));
xlabel('t')
ylabel('u')
legend('u_1','u_2')
title('Ideal Controls')
%%%%%%%%%%%%%%%%%%%%%%%% Tracking via Backstepping %%%%%%%%%%%%%%%%%%%%%%%%
% say you're starting at some offset from the ideal x0
x0_noisy = x0 + [0.1; 0.1; 0.1; 0.1];
% can't just use ideal controls, as those assume you're starting from x0
% but you can use the ideal trajectory for reference (to compute errors)
S.xs = xs;
S.us = us;
% trajectory could still be discretized into N segments, still have same
% number of controls to compute, they'll just be slightly different than
% the ideal ones
x_actual = zeros(size(xs));
u_actual = zeros(size(us));
x_actual(:,1) = x0_noisy; % start at noisy initial state
% first find the nearest state in the reference trajectory (probably
% won't be the first anymore) and make sure that it's ahead of the noisy
% initial state so we don't start by going backwards. Can do this by
% having the noisy initial state have some nonzero velocity vaguely pointed
% in the right direction and checking the dot product of this velocity
% vector and the vector from the noisy position to the reference trajectory
% state. This dot product must be > 0 (roughly aligned)
start_index = S.N;
start_dist = norm(x0_noisy(1:2) - S.xs(1:2,S.N));
x0_vel = x0_noisy(4)*[cos(x0_noisy(3)); sin(x0_noisy(3))];
for i=1:S.N-1
tmp_dist = norm(x0_noisy(1:2) - S.xs(1:2,i));
vec_to_state = [S.xs(1,i) - x0_noisy(1); S.xs(2,i) - x0_noisy(2)];
tmp_check = dot(x0_vel, vec_to_state);
if tmp_dist < start_dist && tmp_check > 0
start_index = i;
start_dist = tmp_dist;
end
end
x_actual(:,start_index) = x0_noisy; % hasn't moved until start_index
% now actually simulate the perturbed system starting at the starting
% index found above
for i=start_index:S.N
u = car_ctrl(x_actual(:,i), S, i); % compute tracking control
% add noise proportional to the car's velocity
% such that ||delta|| <= S.k_tot*abs(velocity)
% NOTE: u_noise = [tan(u1_noise); u2_noise]...not directly adding to u1
% general form: |v(1+K)|*(random uniform number in [-k_i, k_i])
u_noise = abs(x_actual(4,i)*(1+tan(x_actual(3,i)))) * ...
([-S.k_noise(1); -S.k_noise(2)] + ...
2*[S.k_noise(1), 0; 0, S.k_noise(2)] * rand(2,1));
u_noise = [atan(u_noise(1)); u_noise(2)]; % switch back to [u1;u2]
u = u + u_noise;
% update storage matrices
u_actual(:,i) = u;
x_actual(:, i+1) = S.f(i, x_actual(:,i), u, S); % compute next state
end
% compute tracking error and dist to nearest obstacle over time
% for performance plots
num_slots = size(x_actual,2) - start_index;
tracking_error = zeros(1, num_slots);
dist_to_obs = zeros(1, num_slots);
for i=0:(num_slots-1)
% positional error computation
dist = norm(x_actual(1:2,i+start_index) - S.xs(1:2,i+start_index));
tracking_error(i+1) = dist;
% nearest dist to obstacle computation
% right now only working with one obstacle
% check both circles centered at the axles
dist = 1e6; % arbitrarily large starting dist, will be replaced in loop
x = x_actual(1:3, i+start_index);
if isfield(S, 'os')
for k=1:length(S.os) % for each obstacle
for j=0:1
circ_center = [x(1) + j*S.l*cos(x(3)); x(2) + j*S.l*sin(x(3))];
g = circ_center - S.os(k).p;
c = norm(g) - (S.os(k).r + S.circ_r);
if (c < dist)
dist = c; % update closest computed distance to obstacle
end
end
end
end
dist_to_obs(i+1) = dist;
end
% compare the ideal and actual trajectories
figure;
plot(xs(1,:), xs(2,:), '--g'); % plot final trajectory
hold on;
% plot final trajectory
plot(x_actual(1,start_index:end), x_actual(2,start_index:end), '-k');
% show axle circles at start and end
X = [x_actual(1,start_index);
x_actual(1,start_index) + S.l*cos(x_actual(3,start_index));
x_actual(1, end);
x_actual(1,end) + S.l*cos(x_actual(3,end))];
Y = [x_actual(2,start_index);
x_actual(2,start_index) + S.l*sin(x_actual(3,start_index));
x_actual(2, end);
x_actual(2,end) + S.l*sin(x_actual(3,end))];
R = S.circ_r*ones(4,1);
viscircles([X Y], R, 'Color', 'k', 'LineStyle', '--');
% just drawing circular obstacles
if isfield(S, 'os')
da = .1;
a = -da:da:2*pi;
for i=1:length(S.os)
% draw obstacle
plot(S.os(i).p(1) + cos(a)*S.os(i).r, S.os(i).p(2) + sin(a)*S.os(i).r, ...
'-r','LineWidth',2);
end
end
% plot exclusion zone boundary
if isfield(S, 'ez')
for i=1:length(S.ez)
plot([xs(1,1), xs(1,end)+S.l],[ -[S.ez(i).coeffs(1), ...
S.ez(i).coeffs(3)]*[xs(1,1);1], -[S.ez(i).coeffs(1), ...
S.ez(i).coeffs(3)]*[xs(1,end)+S.l;1] ], '--r');
end
end
xlabel('x')
ylabel('y')
legend('Ideal Trajectory', 'Actual Trajectory', 'Location', 'northwest');
title('Ideal vs. Actual Trajectory')
axis equal
% compare the ideal and actual controls
figure;
plot(0:S.h:tf-S.h, us(1,:), '--b');
hold on;
plot(0:S.h:tf-S.h, us(2,:), '--r');
t_vec = 0:S.h:tf-S.h;
plot(t_vec(start_index:end), u_actual(1,start_index:end), '-b');
plot(t_vec(start_index:end), u_actual(2,start_index:end), '-r');
legend('u_{1,d}', 'u_{2,d}', 'u_{1,a}', 'u_{2,a}');
xlabel('t')
ylabel('u')
title('Ideal vs. Actual Controls')
% plot tracking error over time
figure;
plot(t_vec(start_index:end), tracking_error);
xlabel('t')
ylabel('e')
title('Tracking Error over Time')
% plot nearest distance to obstacle over time
figure;
plot(t_vec(start_index:end), dist_to_obs);
xlabel('t')
ylabel('|d_{obs}|')
title('Distance to Nearest Obstacle over Time')
end
% feedback control law derived via backstepping
function u = car_ctrl(x, S, i)
%%%%%%%%%%% compute nominal (noiseless) control (psi in notes) %%%%%%%%%%%
k1 = 1;
k2 = 2;
% get info about the reference trajectory at this particular spot
x_ref = S.xs(:,i);
u_ref = S.us(:,i);
yd = x_ref(1:2); % get yd at this spot
theta_ref = x_ref(3);
v_ref = x_ref(4);
dyd = v_ref*[cos(theta_ref); sin(theta_ref)]; % from dynamics
d2yd = [-v_ref^2*sin(theta_ref)/S.l, cos(theta_ref);
v_ref^2*cos(theta_ref)/S.l, sin(theta_ref)]*[tan(u_ref(1)); u_ref(2)];
% get info about the current real state
y = x(1:2);
theta = x(3);
v = x(4);
% current velocity
dy = v*[cos(theta); sin(theta)]; % from dynamics
% error states
e = y - yd;
z = -dyd + k1*e + dy;
e_dot = dy - dyd;
% augmented inputs u_aug =(tan(u1), u2)
R = [-v^2*sin(theta)/S.l, cos(theta);
v^2*cos(theta)/S.l, sin(theta)];
u_aug = inv(R)*(-k2*z - e + d2yd - k1*e_dot);
%%%%%%%%%%% computing disturbance rejection term v %%%%%%%%%%%
w1 = v/S.l * ( (k1*(x(1)-x_ref(1)) - v_ref*cos(theta_ref) + ...
v*cos(theta))*(-v*sin(theta)) + (k1*(x(2)-x_ref(2)) - ...
v_ref*sin(theta_ref) + v*sin(theta))*(v*cos(theta)) );
w2 = (k1*(x(1)-x_ref(1)) - v_ref*cos(theta_ref) + ...
v*cos(theta))*(cos(theta)) + (k1*(x(2)-x_ref(2)) - ...
v_ref*sin(theta_ref) + v*sin(theta))*(sin(theta));
w = [w1; w2];
% k_eta must be at least k_noise, could be greater
k_eta = 1*S.k_tot;
eta = k_eta*abs(v*(1+tan(theta)));
% piecewise form of u_v to prevent chattering
eps = 1e-3;
if eta*norm(w) >= eps
u_v = (-eta/norm(w)) * w;
else
u_v = -(eta)^2/eps * w;
end
u_aug = u_aug + u_v; % add disturbance rejection term
% convert from u_aug to u
u = [atan(u_aug(1)); u_aug(2)];
% restrict controls to limits
for i=1:2
if u(i) > S.umax(i)
u(i) = S.umax(i);
elseif u(i) < S.umin(i)
u(i) = S.umin(i);
else
end
end
end
function [L, Lx, Lxx, Lu, Luu] = car_L(k, x, u, S)
% car cost (just standard quadratic cost)
if (k == S.N+1) % if you're at the end of the trajectory, get terminal cost
if isfield(S, 'xd') % if a desired final state is specified, use error
xfError = x - S.xd;
else
xfError = x; % else, the origin is the implied final desired state
end
L = xfError'*S.Qf*xfError/2; % standard quadratic error
Lx = S.Qf*xfError;
Lxx = S.Qf;
Lu = [];
Luu = [];
else
L = S.h/2*(x'*S.Q*x + u'*S.R*u); % else, accumulate running cost
Lx = S.h*S.Q*x;
Lxx = S.h*S.Q;
Lu = S.h*S.R*u;
Luu = S.h*S.R;
end
% quadratic penalty term for collisions
if isfield(S, 'os')
for i=1:length(S.os) % for each obstacle
for j = 0:1 % for each collision checking circle (on each axle)
circ_center = [x(1) + j*S.l*cos(x(3)); x(2) + j*S.l*sin(x(3))];
g = circ_center - S.os(i).p;
c = (S.os(i).r + S.circ_r) - norm(g);
if c < 0
continue
end
L = L + S.ko/2*c^2;
v = g/norm(g);
Lx(1:2) = Lx(1:2) - S.ko*c*v;
Lxx(1:2,1:2) = Lxx(1:2,1:2) + S.ko*v*v'; % Gauss-Newton appox
end
end
end
% quadratic penalty term for exclusion zone violations
if isfield(S, 'ez')
for i=1:length(S.ez) % for each obstacle
for j = 0:1 % for each collision checking circle (on each axle)
circ_center = [x(1) + j*S.l*cos(x(3)); x(2) + j*S.l*sin(x(3))];
satisfied = true;
if S.ez(i).sign == ">=" % saying car must be above this line
theta_tmp = atan2(-S.ez(i).coeffs(1), S.ez(i).coeffs(2));
alpha_tmp = pi/2 - theta_tmp;
delta_y = circ_center(2) - (-S.ez(i).coeffs(1)*circ_center(1) - ...
S.ez(i).coeffs(3));
dist = delta_y*sin(alpha_tmp);
c = dist - S.circ_r;
% need a g vec for error computation (from boundary to circ)
g = dist*S.ez(i).coeffs(1:2); % normal dist * gradient of boundary
if c < 0 % not enough clearance
satisfied = false;
end
else % saying car must be below this line
theta_tmp = atan2(-S.ez(i).coeffs(1), S.ez(i).coeffs(2));
alpha_tmp = pi/2 - theta_tmp;
delta_y = (-S.ez(i).coeffs(1)*circ_center(1) - ...
S.ez(i).coeffs(3)) - circ_center(2);
dist = delta_y*sin(alpha_tmp);
c = dist - S.circ_r;
% need a g vec for error computation (from boundary to circ)
g = -dist*S.ez(i).coeffs(1:2); % -normal dist * gradient of boundary
if c < 0 % not enough clearance
satisfied = false;
end
end
if satisfied == true
continue
end
% converting back to positive value
c = -c;
L = L + S.ko/2*c^2;
v = g/norm(g);
Lx(1:2) = Lx(1:2) - S.ko*c*v;
Lxx(1:2,1:2) = Lxx(1:2,1:2) + S.ko*v*v'; % Gauss-Newton appox
end
end
end
end
function [x, A, B] = car_f(k, x, u, S)
% car dynamics and jacobians
dt = S.h;
theta = x(3);
v = x(4);
A = [1 0 -dt*v*sin(theta) dt*cos(theta);
0 1 dt*v*cos(theta) dt*sin(theta);
0 0 1 dt*tan(u(1))/S.l;
0 0 0 1];
B = [0 0;
0 0;
dt*v*sec(u(1))^2/S.l 0;
0 dt];
x = [x(1) + dt*v*cos(theta);
x(2) + dt*v*sin(theta);
x(3) + dt*v*tan(u(1))/S.l;
x(4) + dt*u(2)];
end