When you add an input, it automatically gets predictions from the general model. You can search for those predictions.
app.inputs.search([
{
concept: {
name: 'cat'
}
},
{
concept: {
name: 'dog'
}
}
]).then(
function(response) {
// do something with response
},
function(err) {
// there was an error
}
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_CLARIFAI_KEY')
# search by single concept name
app.inputs.search_by_predicted_concepts(concept='cat')
# search by single concept id
app.inputs.search_by_predicted_concepts(concept_id='ai_mFqxrph2')
# search by multiple concepts with name
app.inputs.search_by_predicted_concepts(concepts=['cat', 'cute'])
# search by multiple concepts with ids
app.inputs.search_by_predicted_concepts(concept_ids=['ai_mFqxrph2', 'ai_4CRlSvbV'])
# search by multiple concepts with not logic
app.inputs.search_by_predicted_concepts(concepts=['cat', 'dog'], values=[True, False])
// Search concept by name
client.searchInputs(SearchClause.matchConcept(Concept.forName("cat")))
.getPage(1)
.executeSync();
// Search concept by ID
client.searchInputs(SearchClause.matchConcept(Concept.forID("ai_mFqxrph2")))
.getPage(1)
.executeSync();
// Search multiple concepts
client.searchInputs(SearchClause.matchConcept(Concept.forID("cat")))
.and(SearchClause.matchConcept(Concept.forID("cute")))
.getPage(1)
.executeSync();
// Search NOT by concept
client.searchInputs(SearchClause.matchConcept(Concept.forID("cat").withValue(false)))
.getPage(1)
.executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Searches;
namespace YourNamespace
{
public class YourClassName
{
public static async Task Main()
{
var client = new ClarifaiClient("YOUR_API_KEY");
// Search concept by name
await client.SearchInputs(SearchBy.ConceptName("cat"))
.Page(1)
.ExecuteAsync();
// Search concept by ID
await client.SearchInputs(SearchBy.ConceptID("cat"))
.Page(1)
.ExecuteAsync();
// Search multiple concepts
await client.SearchInputs(
SearchBy.ConceptID("cat"),
SearchBy.ConceptID("cute"))
.Page(1)
.ExecuteAsync();
}
}
}
// First create a search term with a concept you want to search.
ClarifaiConcept *conceptFromGeneralModel = [[ClarifaiConcept alloc] initWithConceptName:@"fast"];
ClarifaiSearchTerm *searchTerm = [ClarifaiSearchTerm searchByPredictedConcept:conceptFromGeneralModel];
[app search:@[searchTerm] page:@1 perPage:@20 completion:^(NSArray<ClarifaiSearchResult *> *results, NSError *error) {
// Print output of first search result.
NSLog(@"inputID: %@", results[0].inputID);
NSLog(@"URL: %@", results[0].mediaURL);
NSLog(@"probability of input matching search query: %@", results[0].score);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Searches\SearchBy;
use Clarifai\DTOs\Searches\SearchInputsResult;
$client = new ClarifaiClient('YOUR_API_KEY');
// Search concept by name
$response = $client->searchInputs(SearchBy::conceptName('cat'))
->executeSync();
/*
// Search concept by ID
$response = $client->searchInputs(SearchBy::conceptID('cat'))
->executeSync();
*/
/*
// Search multiple concepts
$response = $client->searchInputs([SearchBy::conceptID('cat'), SearchBy::conceptID('cute')])
->executeSync();
*/
if ($response->isSuccessful()) {
echo "Response is successful.\n";
/** @var SearchInputsResult $result */
$result = $response->get();
foreach ($result->searchHits() as $searchHit) {
echo $searchHit->input()->id() . ' ' . $searchHit->score() . "\n";
}
} else {
echo "Response is not successful. Reason: \n";
echo $response->status()->description() . "\n";
echo $response->status()->errorDetails() . "\n";
echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
-H "Authorization: Key YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '
{
"query": {
"ands": [
{
"output": {
"data": {
"concepts": [
{
"name":"dog"
}
]
}
}
}
]
}
}'\
https://api.clarifai.com/v2/searches
After you have added inputs with concepts, you can search by those concepts.
app.inputs.search([
{
concept: {
type: 'input',
name: 'cat'
}
},
{
concept: {
type: 'input',
name: 'dog'
}
}
]).then(
function(response) {
// do something with response
},
function(err) {
// there was an error
}
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_CLARIFAI_KEY')
# search by single concept name
app.inputs.search_by_annotated_concepts(concept='cat')
# search by single concept id
app.inputs.search_by_annotated_concepts(concept_id='ai_mFqxrph2')
# search by multiple concepts with name
app.inputs.search_by_annotated_concepts(concepts=['cat', 'cute'])
# search by multiple concepts with ids
app.inputs.search_by_annotated_concepts(concept_ids=['ai_mFqxrph2', 'ai_4CRlSvbV'])
# search by multiple concepts with not logic
app.inputs.search_by_annotated_concepts(concepts=['cat', 'dog'], values=[True, False])
// Search concept by name
client.searchInputs(SearchClause.matchUserTaggedConcept(Concept.forName("cat")))
.getPage(1)
.executeSync();
// Search concept by ID
client.searchInputs(SearchClause.matchUserTaggedConcept(Concept.forID("ai_mFqxrph2")))
.getPage(1)
.executeSync();
// Search multiple concepts
client.searchInputs(SearchClause.matchUserTaggedConcept(Concept.forID("cat")))
.and(SearchClause.matchUserTaggedConcept(Concept.forID("cute")))
.getPage(1)
.executeSync();
// Search NOT by concept
client.searchInputs(SearchClause.matchUserTaggedConcept(Concept.forID("cat").withValue(false)))
.getPage(1)
.executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Searches;
namespace YourNamespace
{
public class YourClassName
{
public static async Task Main()
{
var client = new ClarifaiClient("YOUR_API_KEY");
// Search concept by name
await client.SearchInputs(SearchBy.UserTaggedConceptName("cat")
)
.Page(1)
.ExecuteAsync();
// Search concept by ID
await client.SearchInputs(SearchBy.UserTaggedConceptID("ai_mFqxrph2")
)
.Page(1)
.ExecuteAsync();
// Search multiple concepts
await client.SearchInputs(
SearchBy.UserTaggedConceptID("cat"),
SearchBy.UserTaggedConceptID("cute"))
.Page(1)
.ExecuteAsync();
}
}
}
// If you have previously added inputs tagged with "dog", you can search for them by the same tag.
ClarifaiConcept *concept = [[ClarifaiConcept alloc] initWithConceptName:@"dog"];
ClarifaiSearchTerm *term = [ClarifaiSearchTerm searchInputsByConcept:concept];
[app search:@[term] page:@1 perPage:@20 completion:^(NSArray<ClarifaiSearchResult *> *results, NSError *error) {
// Print output of first search result.
NSLog(@"inputID: %@", results[0].inputID);
NSLog(@"URL: %@", results[0].mediaURL);
NSLog(@"probability of input matching search query: %@", results[0].score);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Searches\SearchBy;
use Clarifai\DTOs\Searches\SearchInputsResult;
$client = new ClarifaiClient('YOUR_API_KEY');
// Search concept by name
$response = $client->searchInputs(SearchBy::userTaggedConceptName('cat'))
->executeSync();
/*
// Search concept by ID
$response = $client->searchInputs(SearchBy::userTaggedConceptID('cat'))
->executeSync();
*/
/*
// Search multiple concepts
$response = $client->searchInputs([SearchBy::userTaggedConceptName('cat'),
SearchBy::userTaggedConceptID('dog')])
->executeSync();
*/
if ($response->isSuccessful()) {
echo "Response is successful.\n";
/** @var SearchInputsResult $result */
$result = $response->get();
foreach ($result->searchHits() as $searchHit) {
echo $searchHit->input()->id() . ' ' . $searchHit->score() . "\n";
}
} else {
echo "Response is not successful. Reason: \n";
echo $response->status()->description() . "\n";
echo $response->status()->errorDetails() . "\n";
echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
-H "Authorization: Key YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '
{
"query": {
"ands": [
{
"input": {
"data": {
"concepts": [
{
"name":"dog"
}
]
}
}
}
]
}
}'\
https://api.clarifai.com/v2/searches
You can use images to search through your collection. The API will return ranked results based on how similar the results are to the image you provided in your query.
app.inputs.search(
{
input: {
url: 'https://samples.clarifai.com/puppy.jpg'
}
}
).then(
function(response) {
// do something with response
},
function(err) {
// there was an error
}
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_CLARIFAI_KEY')
# search by image url
app.inputs.search_by_image(url="https://samples.clarifai.com/metro-north.jpg")
# search by existing input id
input_id = "some_existing_input_id"
app.inputs.search_by_image(image_id=input_id)
# search by raw bytes
data = "image_raw_bytes"
app.inputs.search_by_image(imgbytes=data)
# search by base64 bytes
base64_data = "image_bytes_encoded_in_base64"
app.inputs.search_by_image(base64bytes=base64_data)
# search by local filename
filename="filename_on_local_disk.jpg"
app.inputs.search_by_image(filename=filename)
# search from fileio
fio = open("filename_on_local_disk.jpg", 'rb')
app.inputs.search_by_image(fileobj=fio)
// Search by image URL (String or java.net.URL)
client.searchInputs(SearchClause.matchImageVisually(ClarifaiImage.of("https://samples.clarifai.com/metro-north.jpg")))
.getPage(1)
.executeSync();
// Search by local image (java.io.File or byte[])
client.searchInputs(SearchClause.matchImageVisually(ClarifaiImage.of(new File("image.png"))))
.getPage(1)
.executeSync();
using System.IO;
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Searches;
namespace YourNamespace
{
public class YourClassName
{
public static async Task Main()
{
var client = new ClarifaiClient("YOUR_API_KEY");
// Search by image URL
await client.SearchInputs(
SearchBy.ImageVisually("https://samples.clarifai.com/metro-north.jpg"))
.Page(1)
.ExecuteAsync();
// Search by local image
await client.SearchInputs(
SearchBy.ImageVisually(File.ReadAllBytes("image.png")))
.Page(1)
.ExecuteAsync();
}
}
}
ClarifaiSearchTerm *searchTerm = [ClarifaiSearchTerm searchVisuallyWithImageURL:@"https://samples.clarifai.com/metro-north.jpg"];
[app search:@[searchTerm] page:@1 perPage:@20 completion:^(NSArray<ClarifaiSearchResult *> *results, NSError *error) {
// Print output of first search result.
NSLog(@"inputID: %@", results[0].inputID);
NSLog(@"URL: %@", results[0].mediaURL);
NSLog(@"probability of input matching search query: %@", results[0].score);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Searches\SearchBy;
use Clarifai\DTOs\Searches\SearchInputsResult;
$client = new ClarifaiClient('YOUR_API_KEY');
$response = $client->searchInputs(
SearchBy::urlImageVisually('https://samples.clarifai.com/metro-north.jpg'))
->executeSync();
if ($response->isSuccessful()) {
echo "Response is successful.\n";
/** @var SearchInputsResult $result */
$result = $response->get();
foreach ($result->searchHits() as $searchHit) {
echo $searchHit->input()->id() . ' ' . $searchHit->score() . "\n";
}
} else {
echo "Response is not successful. Reason: \n";
echo $response->status()->description() . "\n";
echo $response->status()->errorDetails() . "\n";
echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
-H "Authorization: Key YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '
{
"query": {
"ands": [
{
"output":{
"input":{
"data": {
"image": {
"url": "https://samples.clarifai.com/metro-north.jpg"
}
}
}
}
}
]
}
}'\
https://api.clarifai.com/v2/searches
You can search using a crop of an image through your collection. The API will still return ranked results based upon on how similar the results are to the crop of the image you provide in your query.
app.inputs.search(
{
input: {
url: 'https://samples.clarifai.com/puppy.jpg',
crop: [0.1, 0.1, 0.9, 0.9]
}
}
).then(
function(response) {
// do something with response
},
function(err) {
// there was an error
}
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')
search = app.inputs.search_by_image(url='https://samples.clarifai.com/puppy.jpg', crop=[0.1, 0.1, 0.9, 0.9])
print search
client.searchInputs(SearchClause.matchImageVisually(ClarifaiImage.of("https://samples.clarifai.com/puppy.jpg")
.withCrop(Crop.create()
.top(0.1F)
.left(0.1F)
.bottom(0.9F)
.right(0.9F)
)
))
.getPage(1)
.executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs;
using Clarifai.DTOs.Searches;
namespace YourNamespace
{
public class YourClassName
{
public static async Task Main()
{
var client = new ClarifaiClient("YOUR_API_KEY");
await client.SearchInputs(SearchBy.ImageVisually(
"https://samples.clarifai.com/metro-north.jpg",
crop: new Crop(0.1M, 0.1M, 0.9M, 0.9M)))
.Page(1)
.ExecuteAsync();
}
}
}
// Coming Soon
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Crop;
use Clarifai\DTOs\Searches\SearchBy;
use Clarifai\DTOs\Searches\SearchInputsResult;
$client = new ClarifaiClient('YOUR_API_KEY');
$response = $client->searchInputs(
SearchBy::urlImageVisually('https://samples.clarifai.com/metro-north.jpg')
->withCrop(new Crop(0.1, 0.1, 0.9, 0.9)))
->executeSync();
if ($response->isSuccessful()) {
echo "Response is successful.\n";
/** @var SearchInputsResult $result */
$result = $response->get();
foreach ($result->searchHits() as $searchHit) {
echo $searchHit->input()->id() . ' ' . $searchHit->score() . "\n";
}
} else {
echo "Response is not successful. Reason: \n";
echo $response->status()->description() . "\n";
echo $response->status()->errorDetails() . "\n";
echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
-H 'authorization: Key YOUR_API_KEY' \
-H 'content-type: application/json' \
-d '{
"query": {
"ands": [
{
"output": {
"input": {
"data": {
"image": {
"url": "https://samples.clarifai.com/puppy.jpg",
"crop": [0.1,0.1,0.9,0.9]
}
}
}
}
}
]
}
}'\
https://api.clarifai.com/v2/searches
You can combine a search to find inputs that have concepts you have supplied as well as predictions from your model.
app.inputs.search([
// this is the public concept
{
concept: {
name: 'cat'
}
},
// this is the user-supplied concept
{
concept: {
type: 'input',
name: 'dog'
}
}
]).then(
function(response) {
// do something with response
},
function(err) {
// there was an error
}
);
from clarifai.rest import ClarifaiApp, InputSearchTerm, OutputSearchTerm, SearchQueryBuilder
app = ClarifaiApp(api_key='YOUR_API_KEY')
term1 = InputSearchTerm(concept='cat')
term2 = OutputSearchTerm(concept='dog', value=False)
query = SearchQueryBuilder()
query.add_term(term1)
query.add_term(term2)
app.inputs.search(query)
client.searchInputs()
// Matches images we tagged as "cat", and that the API tagged as not having "dog"
.ands(
SearchClause.matchUserTaggedConcept(Concept.forName("cat")),
SearchClause.matchConcept(Concept.forName("dog").withValue(false))
)
.getPage(1)
.executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Searches;
namespace YourNamespace
{
public class YourClassName
{
public static async Task Main()
{
var client = new ClarifaiClient("YOUR_API_KEY");
await client.SearchInputs(
SearchBy.UserTaggedConceptName("cat"),
SearchBy.ConceptID("dog"))
.Page(1)
.ExecuteAsync();
}
}
}
ClarifaiConcept *conceptFromGeneralModel = [[ClarifaiConcept alloc] initWithConceptName:@"fast"];
ClarifaiConcept *conceptFromTrainedCustomModel = [[ClarifaiConcept alloc] initWithConceptName:@"dog"];
ClarifaiSearchTerm *term1 = [ClarifaiSearchTerm searchByPredictedConcept:conceptFromGeneralModel];
ClarifaiSearchTerm *term2 = [ClarifaiSearchTerm searchByPredictedConcept:conceptFromTrainedCustomModel];
[_app search:@[term1, term2] page:@1 perPage:@20 completion:^(NSArray<ClarifaiSearchResult *> *results, NSError *error) {
// Print output of first search result.
NSLog(@"inputID: %@", results[0].inputID);
NSLog(@"URL: %@", results[0].mediaURL);
NSLog(@"probability of input matching search query: %@", results[0].score);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Searches\SearchBy;
use Clarifai\DTOs\Searches\SearchInputsResult;
$client = new ClarifaiClient('YOUR_API_KEY');
$response = $client->searchInputs([SearchBy::userTaggedConceptName('cat'),
SearchBy::conceptID('dog')])
->executeSync();
if ($response->isSuccessful()) {
echo "Response is successful.\n";
/** @var SearchInputsResult $result */
$result = $response->get();
foreach ($result->searchHits() as $searchHit) {
echo $searchHit->input()->id() . ' ' . $searchHit->score() . "\n";
}
} else {
echo "Response is not successful. Reason: \n";
echo $response->status()->description() . "\n";
echo $response->status()->errorDetails() . "\n";
echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
-H "Authorization: Key YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '
{
"query": {
"ands": [
{
"output": {
"data": {
"concepts": [
{
"name": "fast"
}
]
}
}
},
{
"input": {
"data": {
"concepts": [
{
"name": "ferrari23",
"value": true
}
]
}
}
}
]
}
}'\
https://api.clarifai.com/v2/searches
After you have added inputs with custom metadata, you can search by that metadata.
Below is an example of searching over custom metadata. You can exact match any key
: value
pair no matter
how nested it is. For example, if the metadata on an input is:
{
"keyname": "value1",
"somelist": [1,2,3],
"somenesting": {
"keyname2":"value2",
"list2":[4,5]
}
}
Then the following searches will find this:
{
"keyname": "value1"
}
{
"somelist": [1,2,3]
}
{
"somelist": [1,2]
}
{
"somenesting": {"keyname2":"value2"}
}
{
"somenesting": {"list2":[5]}
}
How to perform searches:
// Search with only metadata
app.inputs.search({
input: {
metadata: {
key: 'value'
}
}
}).then(
function(response) {
// do something with response
},
function(err) {
// there was an error
}
);
// Search with nested metadata
app.inputs.search({
input: {
metadata: {
parent: {
key: 'value'
}
}
}
}).then(
function(response) {
// do something with response
},
function(err) {
// there was an error
}
);
// Search with metadata and concepts or input source
app.inputs.search([
{
input: { metadata: { key: 'value' } }
},
{
concept: { name: 'cat' }
},
{
concept: { type: 'output', name: 'group', value: false }
}
]).then(
function(response) {
// do something with response
},
function(err) {
// there was an error
}
);
from clarifai.rest import ClarifaiApp, InputSearchTerm, OutputSearchTerm, SearchQueryBuilder
app = ClarifaiApp(api_key='YOUR_API_KEY')
# search with simple metadata only
app.inputs.search_by_metadata(metadata={'name':'bla'})
# search with nested metadata only
app.inputs.search_by_metadata(metadata={'my_class1': { 'name' : 'bla' }})
# search with metadata combined with others
query = SearchQueryBuilder()
query.add_term(InputSearchTerm(concept='cat'))
query.add_term(InputSearchTerm(metadata={'name':'value'}))
query.add_term(OutputSearchTerm(concept='group', value=False))
app.inputs.search(query)
JsonObject metadata = new JsonObject();
metadata.addProperty("isPuppy", true);
List<SearchHit> hits = client
.searchInputs(SearchClause.matchMetadata(metadata))
.executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Searches;
using Newtonsoft.Json.Linq;
namespace YourNamespace
{
public class YourClassName
{
public static async Task Main()
{
var client = new ClarifaiClient("YOUR_API_KEY");
var metadata = new JObject();
metadata.Add("isPuppy", true);
await client.SearchInputs(
SearchBy.Metadata(metadata))
.Page(1)
.ExecuteAsync();
}
}
}
// Search by metadata only.
[_app searchByMetadata:@{@"my_key": @[@"my", @"values"]} page:@1 perPage:@20 completion:^(NSArray<ClarifaiSearchResult *> *results, NSError *error) {
// Print output of first search result.
NSLog(@"inputID: %@", results[0].inputID);
NSLog(@"URL: %@", results[0].mediaURL);
NSLog(@"probability of input matching search query: %@", results[0].score);
}];
// Search metadata in conjunction with other ClarifaiSearchTerms. For example, the
// following will search for inputs with predicted tag "fast" and matching metadata.
ClarifaiConcept *conceptFromGeneralModel = [[ClarifaiConcept alloc] initWithConceptName:@"fast"];
ClarifaiSearchTerm *searchTerm1 = [ClarifaiSearchTerm searchByPredictedConcept:conceptFromGeneralModel];
ClarifaiSearchTerm *searchTerm2 = [ClarifaiSearchTerm searchInputsWithMetadata:@{@"my_key": @[@"my", @"values"]}];
[app search:@[searchTerm1, searchTerm2] page:@1 perPage:@20 completion:^(NSArray<ClarifaiSearchResult *> *results, NSError *error) {
// Print output of first search result.
NSLog(@"inputID: %@", results[0].inputID);
NSLog(@"URL: %@", results[0].mediaURL);
NSLog(@"probability of input matching search query: %@", results[0].score);
}];
// Coming soon
curl -X POST \
-H "Authorization: Key {api-key}" \
-H "Content-Type: application/json" \
-d '
{
"query": {
"ands": [
{
"input":{
"data": {
"metadata": {
"key": "value"
}
}
}
}
]
}
}'\
https://api.clarifai.com/v2/searches
You can also search for an input by URL.
app.inputs.search(
{
input: {
type: 'input',
url: 'https://samples.clarifai.com/puppy.jpg'
}
}
).then(
function(response) {
// do something with response
},
function(err) {
// there was an error
}
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')
meta = {"url":"https://samples.clarifai.com/metro-north.jpg"}
app.inputs.search_by_metadata(meta)
// Lookup images with this URL
client.searchInputs(SearchClause.matchImageURL(ClarifaiImage.of("https://samples.clarifai.com/puppy.jpg")))
.getPage(1)
.executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Searches;
namespace YourNamespace
{
public class YourClassName
{
public static async Task Main()
{
var client = new ClarifaiClient("YOUR_API_KEY");
await client.SearchInputs(
SearchBy.ImageURL("https://samples.clarifai.com/metro-north.jpg"))
.Page(1)
.ExecuteAsync();
}
}
}
// Lookup images with this URL
ClarifaiSearchTerm *term = [ClarifaiSearchTerm searchInputsWithImageURL:@"https://samples.clarifai.com/metro-north.jpg"];
[app search:@[term] page:@1 perPage:@20 completion:^(NSArray<ClarifaiSearchResult *> *results, NSError *error) {
// Print output of first search result.
NSLog(@"inputID: %@", results[0].inputID);
NSLog(@"URL: %@", results[0].mediaURL);
NSLog(@"probability of input matching search query: %@", results[0].score);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Searches\SearchBy;
use Clarifai\DTOs\Searches\SearchInputsResult;
$client = new ClarifaiClient('YOUR_API_KEY');
$response = $client->searchInputs(
SearchBy::imageURL('https://samples.clarifai.com/metro-north.jpg'))
->executeSync();
if ($response->isSuccessful()) {
echo "Response is successful.\n";
/** @var SearchInputsResult $result */
$result = $response->get();
foreach ($result->searchHits() as $searchHit) {
echo $searchHit->input()->id() . ' ' . $searchHit->score() . "\n";
}
} else {
echo "Response is not successful. Reason: \n";
echo $response->status()->description() . "\n";
echo $response->status()->errorDetails() . "\n";
echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
-H "Authorization: Key YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '
{
"query": {
"ands": [
{
"input":{
"data": {
"image": {
"url": "https://samples.clarifai.com/metro-north.jpg"
}
}
}
}
]
}
}'\
https://api.clarifai.com/v2/searches
Search by geo location allows you to restrict your search results to a bounding box based on longitude and latitude points. There are two ways you can provide longitude/latitude points. You can provide one point and a radius or you can provide two points.
It is important to note that a search by geo location acts as a filter and returns results ranked by any other provided search criteria, whether that is a visual search, concept search or something else. If no other criteria is provided, results will return in the order the inputs were created, NOT by their distance to center of the search area.
If you are providing one point and a radius, the radius can be in "mile", "kilometer", "degree", or "radian",
marked by keywords withinMiles
, withinKilometers
, withinDegrees
, withinRadians
.
If you are providing two points, a box will be drawn from the uppermost point to the lowermost point and the leftmost point to the rightmost point.
Before you perform a search by geo location, make sure you have added inputs with longitude and latitude points.
Provide a geo point to an input. The geo point is a JSON object consisting of a longitude and a latitude in GPS coordinate system (SRID 4326). There can be at most one single geo point associated with each input.
app.inputs.create({
url: "https://samples.clarifai.com/puppy.jpg",
geo: { longitude: 116.2317, latitude: 39.5427},
}).then(
function(response) {
// do something with response
},
function(err) {
// there was an error
}
);
from clarifai.rest import ClarifaiApp, Geo, GeoPoint
app = ClarifaiApp(api_key='YOUR_API_KEY')
geo_p1 = Geo(geo_point=GeoPoint(116.2317,39.5427))
app.inputs.create_image_from_url(url="https://samples.clarifai.com/puppy.jpg", geo=geo_p1)
client.addInputs().plus(ClarifaiInput.forImage("https://samples.clarifai.com/puppy.jpg")
.withGeo(PointF.at(116.2317F, 39.5427F))).executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs;
using Clarifai.DTOs.Inputs;
namespace YourNamespace
{
public class YourClassName
{
public static async Task Main()
{
var client = new ClarifaiClient("YOUR_API_KEY");
await client.AddInputs(
new ClarifaiURLImage(
"https://samples.clarifai.com/puppy.jpg",
geo: new GeoPoint(116.2317M, 39.5427M)))
.ExecuteAsync();
}
}
}
ClarifaiImage *image = [[ClarifaiImage alloc] initWithURL:@"https://samples.clarifai.com/metro-north.jpg"];
image.location = [[ClarifaiLocation alloc] initWithLatitude:116.2317 longitude:39.5427];
[_app addInputs:@[image] completion:^(NSArray<ClarifaiInput *> *inputs, NSError *error) {
NSLog(@"%@",inputs);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\GeoPoint;
use Clarifai\DTOs\Inputs\ClarifaiURLImage;
$client = new ClarifaiClient('YOUR_API_KEY');
$response = $client->addInputs(
(new ClarifaiURLImage('https://samples.clarifai.com/puppy.jpeg'))
->withGeo(new GeoPoint(116.2317, 39.5427)))
->executeSync();
if ($response->isSuccessful()) {
echo "Response is successful.\n";
} else {
echo "Response is not successful. Reason: \n";
echo $response->status()->description() . "\n";
echo $response->status()->errorDetails() . "\n";
echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
-H "Authorization: Key YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '
{
"inputs": [
{
"data": {
"image": {
"url": "https://samples.clarifai.com/dog.tiff",
"allow_duplicate_url": true
},
"geo": {
"geo_point": {
"longitude": -30,
"latitude": 40
}
}
}
}
]
}'\
https://api.clarifai.com/v2/inputs
app.inputs.search({
input: {
geo: {
longitude: 116.2317,
latitude: 39.5427,
type: 'withinKilometers',
value: 1
}
}
}).then(
function(response) {
// do something with response
},
function(err) {
// there was an error
}
);
from clarifai.rest import ClarifaiApp, GeoPoint, GeoLimit
app = ClarifaiApp(api_key='YOUR_API_KEY')
geo_p = GeoPoint(116.2317, 39.5427)
geo_l = GeoLimit(limit_type='kilometer', limit_range=1)
imgs = app.inputs.search_by_geo(geo_point=geo_p, geo_limit=geo_l)
client.searchInputs(SearchClause.matchGeo(PointF.at(59F, 29.75F), Radius.of(500, Radius.Unit.KILOMETER)))
.getPage(1)
.executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs;
using Clarifai.DTOs.Searches;
namespace YourNamespace
{
public class YourClassName
{
public static async Task Main()
{
var client = new ClarifaiClient("YOUR_API_KEY");
await client.SearchInputs(
SearchBy.Geo(
new GeoPoint(59M, 29.75M),
new GeoRadius(500, GeoRadius.RadiusUnit.WithinKilometers)))
.Page(1)
.ExecuteAsync();
}
}
}
ClarifaiLocation *loc = [[ClarifaiLocation alloc] initWithLatitude:116.2317 longitude:39.5427];
ClarifaiGeo *geoFilterKilos = [[ClarifaiGeo alloc] initWithLocation:loc radius:50.0 andRadiusUnit:ClarifaiRadiusUnitKilometers];
ClarifaiSearchTerm *term = [ClarifaiSearchTerm searchInputsWithGeoFilter:geoFilterKilos];
[_app search:@[term] page:@1 perPage:@20 completion:^(NSArray<ClarifaiSearchResult *> *results, NSError *error) {
NSLog(@"inputID: %@", results[0].inputID);
NSLog(@"URL: %@", results[0].mediaURL);
NSLog(@"probability of predicted concept: %@", results[0].score);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\GeoPoint;
use Clarifai\DTOs\GeoRadius;
use Clarifai\DTOs\GeoRadiusUnit;
use Clarifai\DTOs\Searches\SearchBy;
use Clarifai\DTOs\Searches\SearchInputsResult;
$client = new ClarifaiClient('YOUR_API_KEY');
$response = $client->searchInputs(
SearchBy::geoCircle(
new GeoPoint(3, 0),
new GeoRadius(500, GeoRadiusUnit::withinKilometers())))
->executeSync();
if ($response->isSuccessful()) {
echo "Response is successful.\n";
/** @var SearchInputsResult $result */
$result = $response->get();
foreach ($result->searchHits() as $searchHit) {
echo $searchHit->input()->id() . ' ' . $searchHit->score() . "\n";
}
} else {
echo "Response is not successful. Reason: \n";
echo $response->status()->description() . "\n";
echo $response->status()->errorDetails() . "\n";
echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
-H "Authorization: Key YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '
{
"query": {
"ands": [
{
"input": {
"data": {
"geo": {
"geo_point": {
"longitude": 59,
"latitude": 29.75
},
"geo_limit": {
"type": "withinKilometers",
"value": 1
}
}
}
}
}
]
}
}'\
https://api.clarifai.com/v2/searches
app.inputs.search({
input: {
geo: [{
latitude: 116.2316,
longitude: 39.5426
}, {
latitude: 116.2318,
longitude: 39.5428
}]
}
}).then(
function(response) {
// do something with response
},
function(err) {
// there was an error
}
);
from clarifai.rest import ClarifaiApp, GeoBox, GeoPoint
app = ClarifaiApp(api_key='YOUR_API_KEY')
p1 = GeoPoint(116.2316, 39.5426)
p2 = GeoPoint(116.2318, 39.5428)
box1 = GeoBox(point1=p1, point2=p2)
imgs = app.inputs.search_by_geo(geo_box=box1)
client.searchInputs(SearchClause.matchGeo(PointF.at(3F, 0F), PointF.at(70, 30F)))
.getPage(1)
.executeSync()
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs;
using Clarifai.DTOs.Searches;
namespace YourNamespace
{
public class YourClassName
{
public static async Task Main()
{
var client = new ClarifaiClient("YOUR_API_KEY");
await client.SearchInputs(
SearchBy.Geo(
new GeoPoint(3M, 0M),
new GeoPoint(70M, 30M)))
.Page(1)
.ExecuteAsync();
}
}
}
ClarifaiLocation *startLoc = [[ClarifaiLocation alloc] initWithLatitude:50 longitude:58];
ClarifaiLocation *endLoc = [[ClarifaiLocation alloc] initWithLatitude:32 longitude:-30];
ClarifaiGeo *geoBox = [[ClarifaiGeo alloc] initWithGeoBoxFromStartLocation:startLoc toEndLocation:endLoc];
[_app search:@[term] page:@1 perPage:@20 completion:^(NSArray<ClarifaiSearchResult *> *results, NSError *error) {
NSLog(@"inputID: %@", results[0].inputID);
NSLog(@"URL: %@", results[0].mediaURL);
NSLog(@"probability of predicted concept: %@", results[0].score);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\GeoPoint;
use Clarifai\DTOs\Searches\SearchBy;
use Clarifai\DTOs\Searches\SearchInputsResult;
$client = new ClarifaiClient('YOUR_API_KEY');
$response = $client->searchInputs(
SearchBy::geoRectangle(new GeoPoint(3, 0), new GeoPoint(70, 30)))
->executeSync();
if ($response->isSuccessful()) {
echo "Response is successful.\n";
/** @var SearchInputsResult $result */
$result = $response->get();
foreach ($result->searchHits() as $searchHit) {
echo $searchHit->input()->id() . ' ' . $searchHit->score() . "\n";
}
} else {
echo "Response is not successful. Reason: \n";
echo $response->status()->description() . "\n";
echo $response->status()->errorDetails() . "\n";
echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
-H "Authorization: Key YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '
{
"query": {
"ands": [
{
"input": {
"data": {
"geo": {
"geo_box": [
{
"geo_point": {
"latitude": 35,
"longitude": -30
}
},
{
"geo_point": {
"latitude": 50,
"longitude": -35
}
}
]
}
}
}
}
]
}
}'\
https://api.clarifai.com/v2/searches
You can also combine searches using AND.
app.inputs.search([
{ input: { url: 'https://samples.clarifai.com/puppy.jpg' } },
{ concept: { name: 'cat', type: 'input' } },
{ concept: { name: 'dog' } }
]).then(
function(response) {
// do something with response
},
function(err) {
// there was an error
}
);
from clarifai.rest import ClarifaiApp, InputSearchTerm, OutputSearchTerm, SearchQueryBuilder
app = ClarifaiApp(api_key='YOUR_API_KEY')
term1 = InputSearchTerm(concept='cat')
term2 = OutputSearchTerm(concept='dog', value=False)
term3 = OutputSearchTerm(url="https://samples.clarifai.com/metro-north.jpg")
query = SearchQueryBuilder()
query.add_term(term1)
query.add_term(term2)
query.add_term(term3)
app.inputs.search(query)
client.searchInputs()
.ands(
SearchClause.matchUserTaggedConcept(Concept.forName("cat")),
SearchClause.matchConcept(Concept.forName("dog").withValue(false)),
SearchClause.matchImageVisually(ClarifaiImage.of("https://samples.clarifai.com/metro-north.jpg"))
)
.getPage(1)
.executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Searches;
namespace YourNamespace
{
public class YourClassName
{
public static async Task Main()
{
var client = new ClarifaiClient("YOUR_API_KEY");
await client.SearchInputs(
SearchBy.UserTaggedConceptName("cat"),
SearchBy.ConceptName("dog"),
SearchBy.ImageURL("https://samples.clarifai.com/metro-north.jpg"))
.Page(1)
.ExecuteAsync();
}
}
}
//Search for inputs that are predicted as "fast" and visually similar to the given image.
ClarifaiConcept *conceptFromGeneralModel = [[ClarifaiConcept alloc] initWithConceptName:@"fast"];
ClarifaiSearchTerm *term1 = [ClarifaiSearchTerm searchByPredictedConcept:conceptFromGeneralModel];
ClarifaiSearchTerm *term2 = [ClarifaiSearchTerm searchVisuallyWithImageURL:@"https://samples.clarifai.com/metro-north.jpg"];
[_app search:@[term1, term2] page:@1 perPage:@20 completion:^(NSArray<ClarifaiSearchResult *> *results, NSError *error) {
// Print output of first search result.
NSLog(@"inputID: %@", results[0].inputID);
NSLog(@"URL: %@", results[0].mediaURL);
NSLog(@"probability of input matching search query: %@", results[0].score);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Searches\SearchBy;
use Clarifai\DTOs\Searches\SearchInputsResult;
$client = new ClarifaiClient('YOUR_API_KEY');
$response = $client->searchInputs([
SearchBy::userTaggedConceptName('cat'),
SearchBy::conceptName('dog'),
SearchBy::imageURL('https://samples.clarifai.com/metro-north.jpg')
])
->executeSync();
if ($response->isSuccessful()) {
echo "Response is successful.\n";
/** @var SearchInputsResult $result */
$result = $response->get();
foreach ($result->searchHits() as $searchHit) {
echo $searchHit->input()->id() . ' ' . $searchHit->score() . "\n";
}
} else {
echo "Response is not successful. Reason: \n";
echo $response->status()->description() . "\n";
echo $response->status()->errorDetails() . "\n";
echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
-H "Authorization: Key {api-key}" \
-H "Content-Type: application/json" \
-d '
{
"query": {
"ands": [
{
"output": {
"input":{
"data": {
"image": {
"url": "http://i.imgur.com/HEoT5xR.png"
}
}
}
}
},
{
"output": {
"data": {
"concepts": [
{"name":"fast", "value":true}
]
}
}
}
]
}
}'\
https://api.clarifai.com/v2/searches