diff --git a/R/scregclust.R b/R/scregclust.R index 991b835..f318136 100644 --- a/R/scregclust.R +++ b/R/scregclust.R @@ -966,23 +966,23 @@ scregclust <- function(expression, # Scale first data split for regression preprocessing # No scaling of the target genes. Their scale is implicitly dealt with below. - z1_target_scaled <- scale(z1_target, scale = FALSE) + z1_target_centered <- scale(z1_target, scale = FALSE) z1_target_sds <- apply(z1_target, 2, sd) z1_reg_scaled <- scale(z1_reg) # Scale second data split as first one since it will be used as a # test set in Step 2 - z2_target_scaled <- scale( + z2_target_centered <- scale( z2_target, colMeans(z1_target), scale = FALSE ) z2_reg_scaled <- scale( z2_reg, colMeans(z1_reg), apply(z1_reg, 2, sd) ) - n_target <- ncol(z1_target_scaled) # number of targets + n_target <- ncol(z1_target_centered) # number of targets n_reg <- ncol(z1_reg_scaled) # number of predictors - n1 <- nrow(z1_target_scaled) # cells in first split - n2 <- nrow(z2_target_scaled) # cells in second split + n1 <- nrow(z1_target_centered) # cells in first split + n2 <- nrow(z2_target_centered) # cells in second split # Remove unnecessary variables to save memory z1_reg <- NULL @@ -1021,7 +1021,7 @@ scregclust <- function(expression, # Default case: Enough cells to perform OLS # Pre-compute target gene standard deviation - beta_init <- coef_ols(z1_target_scaled, z1_reg_scaled) + beta_init <- coef_ols(z1_target_centered, z1_reg_scaled) init_df <- n_reg } else { # High-dimensional case. More regulators than cells in the first data split @@ -1044,17 +1044,17 @@ scregclust <- function(expression, # # Estimate residual standard deviation for each response # # Complex correlation case - # z1_target_scaled_res_sds <- sqrt( - # (1 + n_reg * m1^2 / ((n1 + 1) * m2)) / n1 * colSums(z1_target_scaled^2) + # z1_target_centered_res_sds <- sqrt( + # (1 + n_reg * m1^2 / ((n1 + 1) * m2)) / n1 * colSums(z1_target_centered^2) # - m1 / (n1 * (n1 + 1) * m2) - # * colSums(crossprod(z1_reg_scaled, z1_target_scaled)^2) + # * colSums(crossprod(z1_reg_scaled, z1_target_centered)^2) # ) # # Orthogonal predictors case - # z1_target_scaled_res_sds <- sqrt( - # (n_reg + n1 + 1) / (n1 * (n1 + 1)) * colSums(z1_target_scaled^2) + # z1_target_centered_res_sds <- sqrt( + # (n_reg + n1 + 1) / (n1 * (n1 + 1)) * colSums(z1_target_centered^2) # - 1 / (n1 * (n1 + 1)) - # * colSums(crossprod(z1_reg_scaled, z1_target_scaled)^2) + # * colSums(crossprod(z1_reg_scaled, z1_target_centered)^2) # ) ztz <- crossprod(z1_reg_scaled) @@ -1068,24 +1068,24 @@ scregclust <- function(expression, init_df <- sum(es / (es + lambda_minimal)) } - beta_init <- coef_ridge(z1_target_scaled, z1_reg_scaled, lambda_minimal) + beta_init <- coef_ridge(z1_target_centered, z1_reg_scaled, lambda_minimal) } # Estimate residual standard deviation for each response - z1_target_scaled_res_sds <- sqrt( - colSums((z1_target_scaled - z1_reg_scaled %*% beta_init)^2) + z1_target_centered_res_sds <- sqrt( + colSums((z1_target_centered - z1_reg_scaled %*% beta_init)^2) / (n1 - init_df) ) beta_adapt_sq <- ( beta_init %*% diag( - 1 / z1_target_scaled_res_sds, nrow = n_target, ncol = n_target + 1 / z1_target_centered_res_sds, nrow = n_target, ncol = n_target ) )^2 # Pre-compute cross-correlation matrices - cross_corr1 <- fast_cor(z1_target_scaled, z1_reg_scaled) - # cross_corr2 <- fast_cor(z2_target_scaled, z2_reg_scaled) + cross_corr1 <- fast_cor(z1_target_centered, z1_reg_scaled) + # cross_corr2 <- fast_cor(z2_target_centered, z2_reg_scaled) # Initial module allocation if (is.null(initial_target_modules)) { @@ -1138,7 +1138,7 @@ scregclust <- function(expression, if (allocate_per_obs) { # Pre-allocate large SSQ array to speed up computations below - sq_residuals_test <- alloc_array(z2_target_scaled^2, n_modules) + sq_residuals_test <- alloc_array(z2_target_centered^2, n_modules) attr(sq_residuals_test, "dim") <- c( n_modules, n2, n_target ) @@ -1296,9 +1296,9 @@ scregclust <- function(expression, ) } - z1_target_scaled_cl <- z1_target_scaled[, k == j, drop = FALSE] + z1_target_centered_cl <- z1_target_centered[, k == j, drop = FALSE] - n_target_cl <- ncol(z1_target_scaled_cl) # number of genes in module + n_target_cl <- ncol(z1_target_centered_cl) # number of genes in module if (n_target_cl > 0) { # Compute weights based on initial (OLS or ridge) coefficient @@ -1311,13 +1311,13 @@ scregclust <- function(expression, admm_fit <- coop_lasso( ( ( - z1_target_scaled_cl + z1_target_centered_cl %*% diag( - 1 / z1_target_scaled_res_sds[k == j], + 1 / z1_target_centered_res_sds[k == j], nrow = n_target_cl, ncol = n_target_cl ) - ) / sqrt(nrow(z1_target_scaled_cl)) + ) / sqrt(nrow(z1_target_centered_cl)) ), z1_reg_scaled / sqrt(nrow(z1_reg_scaled)), penalization[l], ws, @@ -1329,7 +1329,7 @@ scregclust <- function(expression, beta <- ( admm_fit$beta %*% diag( - z1_target_scaled_res_sds[k == j], + z1_target_centered_res_sds[k == j], nrow = n_target_cl, ncol = n_target_cl ) @@ -1395,20 +1395,20 @@ scregclust <- function(expression, # is constant zero, since there is no intercept. The sum-of-squares # for each gene is then just the squared response. sum_squares_train <- matrix( - rep.int(colSums(z1_target_scaled^2), n_modules), + rep.int(colSums(z1_target_centered^2), n_modules), nrow = n_target, ncol = n_modules ) sum_squares_test <- matrix( - rep.int(colSums(z2_target_scaled^2), n_modules), + rep.int(colSums(z2_target_centered^2), n_modules), nrow = n_target, ncol = n_modules ) if (allocate_per_obs && !last_cycle) { # Reset values in SSQ array - reset_array(sq_residuals_test, z2_target_scaled^2) + reset_array(sq_residuals_test, z2_target_centered^2) } if (verbose) { @@ -1468,7 +1468,7 @@ scregclust <- function(expression, beta_hat_nnls <- coef_nnls( z1_reg_scaled_cl_sign_corrected, - z1_target_scaled %*% diag( + z1_target_centered %*% diag( 1 / z1_target_sds, nrow = n_target, ncol = n_target @@ -1477,10 +1477,10 @@ scregclust <- function(expression, )$beta * signs_cl * z1_target_sds residuals_train_nnls <- ( - z1_target_scaled - z1_reg_scaled_cl %*% beta_hat_nnls + z1_target_centered - z1_reg_scaled_cl %*% beta_hat_nnls ) residuals_test_nnls <- ( - z2_target_scaled - z2_reg_scaled_cl %*% beta_hat_nnls + z2_target_centered - z2_reg_scaled_cl %*% beta_hat_nnls ) # NNLS squared residuals, SSQ and R-square @@ -1509,7 +1509,7 @@ scregclust <- function(expression, r2_test <- 1 - ( sum_squares_test / colSums( - scale(z2_target_scaled, center = TRUE, scale = FALSE)^2 + scale(z2_target_centered, center = TRUE, scale = FALSE)^2 ) ) best_r2[[cycle]] <- apply(r2_test, 1, max) @@ -1626,7 +1626,9 @@ scregclust <- function(expression, ) )) - target_counts <- sapply(c(-1, seq_len(n_modules)), function(s) sum(k == s)) + target_counts <- sapply( + c(-1, seq_len(n_modules)), function(s) sum(k == s) + ) reg_counts <- c(NA_integer_, colSums(models)) cat(count_table( @@ -1739,7 +1741,7 @@ scregclust <- function(expression, beta_hat_nnls <- coef_nnls( z1_reg_scaled_cl_sign_corrected, - z1_target_scaled[, target_cl, drop = FALSE] %*% diag( + z1_target_centered[, target_cl, drop = FALSE] %*% diag( 1 / z1_target_sds[target_cl], nrow = length(target_cl), ncol = length(target_cl) @@ -1748,7 +1750,7 @@ scregclust <- function(expression, )$beta * signs_cl * z1_target_sds[target_cl] ssq[, r] <- colSums(( - z2_target_scaled[, target_cl, drop = FALSE] + z2_target_centered[, target_cl, drop = FALSE] - z2_reg_scaled_cl %*% beta_hat_nnls )^2) } @@ -1756,7 +1758,7 @@ scregclust <- function(expression, # Compute R2 r2_removed_vec <- 1 - ( colSums(ssq) / sum(scale( - z2_target_scaled[, target_cl, drop = FALSE], + z2_target_centered[, target_cl, drop = FALSE], center = TRUE, scale = FALSE )^2) @@ -1764,7 +1766,7 @@ scregclust <- function(expression, r2_removed[[m]][[j]] <- 1 - t( t(ssq) / colSums(scale( - z2_target_scaled[, target_cl, drop = FALSE], + z2_target_centered[, target_cl, drop = FALSE], center = TRUE, scale = FALSE )^2) @@ -1789,53 +1791,53 @@ scregclust <- function(expression, if (compute_silhouette) { # Compute cross-module R2 sum_squares_test <- matrix( - rep.int(colSums(z2_target_scaled^2), n_modules), + rep.int(colSums(z2_target_centered^2), n_modules), nrow = n_target, ncol = n_modules ) for (j in seq_len(n_modules)) { # Get regulators used in model for module j - reg_cl <- which(models[, j] == TRUE) + reg_cl <- which(models_final[[m]][, j] == TRUE) if (length(reg_cl) > 0L) { - z1_reg_scaled_cl <- z1_reg_scaled[, reg_cl, drop = FALSE] + # z1_reg_scaled_cl <- z1_reg_scaled[, reg_cl, drop = FALSE] z2_reg_scaled_cl <- z2_reg_scaled[, reg_cl, drop = FALSE] - signs_cl <- signs[reg_cl, j] - # Adjust the sign of the predicting regulators and estimate - # coefficients using non-negative least squares for - # sign-consistent estimates (following Meinshausen, 2013) - z1_reg_scaled_cl_sign_corrected <- ( - z1_reg_scaled_cl - %*% diag( - signs_cl, - nrow = length(signs_cl), - ncol = length(signs_cl) - ) - ) - - beta_hat_nnls <- coef_nnls( - z1_reg_scaled_cl_sign_corrected, - z1_target_scaled %*% diag( - 1 / z1_target_sds, - nrow = n_target, - ncol = n_target - ), - eps = tol_nnls, max_iter = max_optim_iter - )$beta * signs_cl * z1_target_sds + # signs_cl <- signs[reg_cl, j] + # # Adjust the sign of the predicting regulators and estimate + # # coefficients using non-negative least squares for + # # sign-consistent estimates (following Meinshausen, 2013) + # z1_reg_scaled_cl_sign_corrected <- ( + # z1_reg_scaled_cl + # %*% diag( + # signs_cl, + # nrow = length(signs_cl), + # ncol = length(signs_cl) + # ) + # ) + + # beta_hat_nnls <- coef_nnls( + # z1_reg_scaled_cl_sign_corrected, + # z1_target_centered %*% diag( + # 1 / z1_target_sds, + # nrow = n_target, + # ncol = n_target + # ), + # eps = tol_nnls, max_iter = max_optim_iter + # )$beta * signs_cl * z1_target_sds + + sum_squares_test[, j] <- colSums(( + z2_target_centered - ( + z2_reg_scaled_cl %*% coeffs_final[[m]][[j]] + # z2_reg_scaled_cl %*% beta_hat_nnls + )^2 + )) - sum_squares_test[, j] <- colSums( - (z2_target_scaled - z2_reg_scaled_cl %*% beta_hat_nnls)^2 - ) } } r2_cross_module_per_target[[m]] <- ( - 1 - sum_squares_test / colSums(scale( - z2_target_scaled, - center = TRUE, - scale = FALSE - )^2) + 1 - sum_squares_test / colSums(z2_target_centered^2) ) silhouette[[m]] <- sapply(seq_along(k), function(i) {