forked from MSREnable/GazeCapture
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathITrackerModel.py
207 lines (177 loc) · 6.18 KB
/
ITrackerModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
from torchvision import models
import os
'''
Pytorch model for the iTracker.
Author: Petr Kellnhofer ( pkel_lnho (at) gmai_l.com // remove underscores and spaces), 2018.
Website: http://gazecapture.csail.mit.edu/
Cite:
Eye Tracking for Everyone
K.Krafka*, A. Khosla*, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Matusik and A. Torralba
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016
@inproceedings{cvpr2016_gazecapture,
Author = {Kyle Krafka and Aditya Khosla and Petr Kellnhofer and Harini Kannan and Suchendra Bhandarkar and Wojciech Matusik and Antonio Torralba},
Title = {Eye Tracking for Everyone},
Year = {2016},
Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}
}
'''
class ItrackerImageModel(nn.Module):
# Used for both eyes (with shared weights) and the face (with unique weights)
# output = (input-k+2p)/s + 1
# ZeroPad = (k-1)/2
def __init__(self, color_space, model_type):
super(ItrackerImageModel, self).__init__()
if model_type == "mobileNet":
self.model = models.mobilenet_v2(pretrained=True)
self.conv = self.model.features
self.conv[18][0] = nn.Conv2d(320, 512, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=False)
self.conv[18][1] = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# elif model_type == "faceNet":
# from facenet_pytorch import InceptionResnetV1
# # For a model pretrained on VGGFace2
# self.model = InceptionResnetV1(pretrained='vggface2')
else: # resNet
self.model = models.resnet18(pretrained=True)
# ToDo For L-channel (greyscale) only model
if color_space == 'L':
self.model.conv1 = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
self.conv = nn.Sequential(*list(self.model.children())[:-2])
# TODO Try fine tuning using RGB color space rather than YCbCr
# Fine tuning might be more successful in the same color space
# A large error from color space issues is a reasonable outcome
# # Freeze the parameters
# for param in self.conv.parameters():
# param.requires_grad = False
def forward(self, x):
x = self.conv(x)
x = x.view(x.size(0), -1)
# 25088 (512×7×7)
return x
class FaceImageModel(nn.Module):
def __init__(self, color_space, model_type):
super(FaceImageModel, self).__init__()
self.conv = ItrackerImageModel(color_space, model_type)
self.fc = nn.Sequential(
# FC-F1
# 25088
nn.Dropout(0.4),
nn.Linear(25088, 128),
# 128
nn.ReLU(inplace=True),
# FC-F2
nn.Dropout(0.4),
nn.Linear(128, 64),
# 64
nn.ReLU(inplace=True),
# 64
)
def forward(self, x):
# 3C x 224H x 224W
x = self.conv(x)
# 25088
x = self.fc(x)
# 64
return x
class FaceGridRCModel(nn.Module):
def __init__(self, color_space, model_type):
super(FaceGridRCModel, self).__init__()
self.conv = ItrackerImageModel(color_space, model_type)
self.fc = nn.Sequential(
# FC-F1
# 25088
nn.Dropout(0.4),
nn.Linear(25088, 256),
# 256
nn.ReLU(inplace=True),
# FC-F2
nn.Dropout(0.4),
nn.Linear(256, 128),
# 128
nn.ReLU(inplace=True),
# 128
)
def forward(self, x):
# 3C x 224H x 224W
x = self.conv(x)
# 25088
x = self.fc(x)
# 128
return x
class FaceGridModel(nn.Module):
# Model for the face grid pathway
def __init__(self, gridSize=25):
super(FaceGridModel, self).__init__()
self.fc = nn.Sequential(
# FC-FG1
# 625 (25x25)
nn.Linear(gridSize * gridSize, 256),
# 256
nn.ReLU(inplace=True),
# 256
# FC-FG2
# 256
nn.Dropout(0.4),
nn.Linear(256, 128),
# 128
nn.ReLU(inplace=True),
)
def forward(self, x):
# 25x25
x = x.view(x.size(0), -1)
# 128
x = self.fc(x)
# 128
return x
class ITrackerModel(nn.Module):
def __init__(self, color_space, model_type):
super(ITrackerModel, self).__init__()
# 1C/3Cx224Hx224W --> 25088
self.eyeModel = ItrackerImageModel(color_space, model_type)
# 1C/3Cx224Hx224W --> 64
self.faceModel = FaceImageModel(color_space, model_type)
# 1Cx25Hx25W --> 128
self.gridModel = FaceGridRCModel(color_space, model_type)
# Joining both eyes
self.eyesFC = nn.Sequential(
# FC-E1
nn.Dropout(0.4),
# 50176
nn.Linear(2 * 25088, 128),
# 128
nn.ReLU(inplace=True),
# 128
)
# Joining everything
self.fc = nn.Sequential(
# FC1
nn.Dropout(0.4),
# 384 FC-E1 (128) + FC-F2(64) + FC-FG2(128)
nn.Linear(128 + 64 + 128, 128),
# 128
nn.ReLU(inplace=True),
# 128
# FC2
# 128
nn.Dropout(0.4),
nn.Linear(128, 2),
# 2
)
def forward(self, faces, eyesLeft, eyesRight, faceGrids):
# Eye nets
xEyeL = self.eyeModel(eyesLeft) # CONV-E1 -> ... -> CONV-E4
xEyeR = self.eyeModel(eyesRight) # CONV-E1 -> ... -> CONV-E4
# Cat Eyes and FC
xEyes = torch.cat((xEyeL, xEyeR), 1)
xEyes = self.eyesFC(xEyes) # FC-E1
# Face net
xFace = self.faceModel(faces) # CONV-F1 -> ... -> CONV-E4 -> FC-F1 -> FC-F2
xGrid = self.gridModel(faceGrids) # FC-FG1 -> FC-FG2
# Cat all
x = torch.cat((xEyes, xFace, xGrid), 1)
x = self.fc(x) # FC1 -> FC2
return x