forked from yiheinchai/neuroai_learning_rules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeedback_alignment.py
58 lines (39 loc) · 1.5 KB
/
feedback_alignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
class FeedbackAlignment(torch.autograd.Function):
"""
Errors are propagated through random feedback weights.
"""
@staticmethod
def forward(context, input, weight):
"""
Forward pass method for the layer. Computes the output of the layer and
stores variables needed for the backward pass.
Arguments:
- context (torch context): context in which variables can be stored for
the backward pass.
- input (torch tensor): input to the layer.
- weight (torch tensor): layer weights.
Returns:
- output (torch tensor): layer output.
"""
# compute the output for the layer (linear layer)
output = input.mm(weight.t())
# store variables in the context for the backward pass
context.save_for_backward(input, weight, output)
return output
@staticmethod
def backward(context):
input, weight, output = context.saved_tensors
output: torch.Tensor = output
RANDOM_WEIGHTS_MEAN = 1
RANDOM_WEIGHTS_STD = 1
# TODO: Not sure what the best mean and std for feedback alignment is
rand_weights = torch.normal(
mean=RANDOM_WEIGHTS_MEAN, std=RANDOM_WEIGHTS_STD, size=weight.shape
)
grad_input = output.mm(rand_weights)
return grad_input
class FeedbackAlignmentNetwork(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
def forward(self):
pass