-
Notifications
You must be signed in to change notification settings - Fork 1
/
mikolov-tech-report.html
1432 lines (1171 loc) · 42.1 KB
/
mikolov-tech-report.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>mikolov-tech-report</title>
<style type="text/css">
body {
font-family: Helvetica, arial, sans-serif;
font-size: 14px;
line-height: 1.6;
padding-top: 10px;
padding-bottom: 10px;
background-color: white;
padding: 30px; }
body > *:first-child {
margin-top: 0 !important; }
body > *:last-child {
margin-bottom: 0 !important; }
a {
color: #4183C4; }
a.absent {
color: #cc0000; }
a.anchor {
display: block;
padding-left: 30px;
margin-left: -30px;
cursor: pointer;
position: absolute;
top: 0;
left: 0;
bottom: 0; }
h1, h2, h3, h4, h5, h6 {
margin: 20px 0 10px;
padding: 0;
font-weight: bold;
-webkit-font-smoothing: antialiased;
cursor: text;
position: relative; }
h1:hover a.anchor, h2:hover a.anchor, h3:hover a.anchor, h4:hover a.anchor, h5:hover a.anchor, h6:hover a.anchor {
background: url() no-repeat 10px center;
text-decoration: none; }
h1 tt, h1 code {
font-size: inherit; }
h2 tt, h2 code {
font-size: inherit; }
h3 tt, h3 code {
font-size: inherit; }
h4 tt, h4 code {
font-size: inherit; }
h5 tt, h5 code {
font-size: inherit; }
h6 tt, h6 code {
font-size: inherit; }
h1 {
font-size: 28px;
color: black; }
h2 {
font-size: 24px;
border-bottom: 1px solid #cccccc;
color: black; }
h3 {
font-size: 18px; }
h4 {
font-size: 16px; }
h5 {
font-size: 14px; }
h6 {
color: #777777;
font-size: 14px; }
p, blockquote, ul, ol, dl, li, table, pre {
margin: 15px 0; }
hr {
background: transparent url() repeat-x 0 0;
border: 0 none;
color: #cccccc;
height: 4px;
padding: 0;
}
body > h2:first-child {
margin-top: 0;
padding-top: 0; }
body > h1:first-child {
margin-top: 0;
padding-top: 0; }
body > h1:first-child + h2 {
margin-top: 0;
padding-top: 0; }
body > h3:first-child, body > h4:first-child, body > h5:first-child, body > h6:first-child {
margin-top: 0;
padding-top: 0; }
a:first-child h1, a:first-child h2, a:first-child h3, a:first-child h4, a:first-child h5, a:first-child h6 {
margin-top: 0;
padding-top: 0; }
h1 p, h2 p, h3 p, h4 p, h5 p, h6 p {
margin-top: 0; }
li p.first {
display: inline-block; }
li {
margin: 0; }
ul, ol {
padding-left: 30px; }
ul :first-child, ol :first-child {
margin-top: 0; }
dl {
padding: 0; }
dl dt {
font-size: 14px;
font-weight: bold;
font-style: italic;
padding: 0;
margin: 15px 0 5px; }
dl dt:first-child {
padding: 0; }
dl dt > :first-child {
margin-top: 0; }
dl dt > :last-child {
margin-bottom: 0; }
dl dd {
margin: 0 0 15px;
padding: 0 15px; }
dl dd > :first-child {
margin-top: 0; }
dl dd > :last-child {
margin-bottom: 0; }
blockquote {
border-left: 4px solid #dddddd;
padding: 0 15px;
color: #777777; }
blockquote > :first-child {
margin-top: 0; }
blockquote > :last-child {
margin-bottom: 0; }
table {
padding: 0;border-collapse: collapse; }
table tr {
border-top: 1px solid #cccccc;
background-color: white;
margin: 0;
padding: 0; }
table tr:nth-child(2n) {
background-color: #f8f8f8; }
table tr th {
font-weight: bold;
border: 1px solid #cccccc;
margin: 0;
padding: 6px 13px; }
table tr td {
border: 1px solid #cccccc;
margin: 0;
padding: 6px 13px; }
table tr th :first-child, table tr td :first-child {
margin-top: 0; }
table tr th :last-child, table tr td :last-child {
margin-bottom: 0; }
img {
max-width: 100%; }
span.frame {
display: block;
overflow: hidden; }
span.frame > span {
border: 1px solid #dddddd;
display: block;
float: left;
overflow: hidden;
margin: 13px 0 0;
padding: 7px;
width: auto; }
span.frame span img {
display: block;
float: left; }
span.frame span span {
clear: both;
color: #333333;
display: block;
padding: 5px 0 0; }
span.align-center {
display: block;
overflow: hidden;
clear: both; }
span.align-center > span {
display: block;
overflow: hidden;
margin: 13px auto 0;
text-align: center; }
span.align-center span img {
margin: 0 auto;
text-align: center; }
span.align-right {
display: block;
overflow: hidden;
clear: both; }
span.align-right > span {
display: block;
overflow: hidden;
margin: 13px 0 0;
text-align: right; }
span.align-right span img {
margin: 0;
text-align: right; }
span.float-left {
display: block;
margin-right: 13px;
overflow: hidden;
float: left; }
span.float-left span {
margin: 13px 0 0; }
span.float-right {
display: block;
margin-left: 13px;
overflow: hidden;
float: right; }
span.float-right > span {
display: block;
overflow: hidden;
margin: 13px auto 0;
text-align: right; }
code, tt {
margin: 0 2px;
padding: 0 5px;
white-space: nowrap;
border: 1px solid #eaeaea;
background-color: #f8f8f8;
border-radius: 3px; }
pre code {
margin: 0;
padding: 0;
white-space: pre;
border: none;
background: transparent; }
.highlight pre {
background-color: #f8f8f8;
border: 1px solid #cccccc;
font-size: 13px;
line-height: 19px;
overflow: auto;
padding: 6px 10px;
border-radius: 3px; }
pre {
background-color: #f8f8f8;
border: 1px solid #cccccc;
font-size: 13px;
line-height: 19px;
overflow: auto;
padding: 6px 10px;
border-radius: 3px; }
pre code, pre tt {
background-color: transparent;
border: none; }
sup {
font-size: 0.83em;
vertical-align: super;
line-height: 0;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb
}
* {
-webkit-print-color-adjust: exact;
}
@media screen and (min-width: 914px) {
body {
width: 854px;
margin:0 auto;
}
}
@media print {
table, pre {
page-break-inside: avoid;
}
pre {
word-wrap: break-word;
}
}
</style>
</head>
<body>
<!-- get style -->
<p><link rel="stylesheet" type="text/css" href="style.css" /></p>
<h1 id="toc_0"><font style="text-align:right;font-size:35px"> Replication of</font><br/> <b><i>Subword Language Modeling</b><br/> with Neural Networks</i> <font style="text-align:right;font-size:30px">(Mikolov, et al., 2012)</font></h1>
<p><br/></p>
<h4 id="toc_1"><div style="text-align: right; font-size:15px">Yejin Cho ([email protected]; 2015021077 영어영문학과) <br/> Sunghah Hwang ([email protected]; 2013021209 영어영문학과) <br/> Hyungwon Yang ([email protected]; 2014021089 영어영문학과)</div></h4>
<div>
<h2>Table of Contents</h2>
<ul id="markdown-toc">
<li>
<a href="#prerequisites">I. Prerequisites</a>
</li>
<ul>
<li>
<a href="#srilm">SRILM > 1.7.1</a>
</li>
<li>
<a href="#liblbfgs">libLBFGS</a>
</li>
<li>
<a href="#nplm">NPLM</a>
</li>
<li>
<a href="#rnnlm">rnnlm-0.3e</a>
</li>
<li>
<a href="#subword">subword-mikolov</a>
</li>
<li>
<a href="#ptb">Penn Treebank Corpus</a>
</li>
<li>
<a href="#text8">Text8 Corpus</a>
</li>
</ul>
<li>
<a href="#ptb-corpus-experiments">II. Penn Treebank Corpus Experiments (5.8M characters)</a>
</li>
<ul>
<li>
<a href="#word-level-models-ptb">Word-level-models</a>
</li>
<li>
<a href="#character-level-models-ptb">Character-level models</a>
</li>
<li>
<a href="#subword-level-models-ptb">Subword-level models</a>
</li>
</ul>
<li>
<a href="#text8-corpus-experiments">III. Text8 Corpus Experiments (100M characters)</a>
</li>
<ul>
<li>
<a href="#word-level-models-text8">Word-level-models</a>
</li>
<li>
<a href="#character-level-models-text8">Character-level models</a>
</li>
<li>
<a href="#subword-level-models-text8">Subword-level models</a>
</li>
</ul>
<li>
<a href="#exps-left">IV. Experiments left unreplicated</a>
</li>
<li>
<a href="#references">References</a>
</li>
</ul>
</ul>
</div>
<p><br/>
<br/></p>
<h2 id="toc_2"><a name="prerequisites"></a> I. Prerequisites</h2>
<h3 id="toc_3"><code style="background-color:#DCDCDC;color:#0047ab;border:none;"><b>SRILM</b></code> <a name="srilm"></a></h3>
<ul>
<li><strong>SRILM</strong> is a toolkit for building and applying statistical language models (LMs), primarily for use in speech recognition, statistical tagging and segmentation, and machine translation. It has been under development in the <em>SRI Speech Technology and Research Laboratory</em> since 1995.</li>
<li>For more information, check out its <a href="http://www.speech.sri.com/projects/srilm/">official website</a>.</li>
<li>Download <a href="http://www.speech.sri.com/projects/srilm/download.html">SRILM</a> (1.7.1 or newer) and unpack.</li>
</ul>
<div class="terminal-box">
<command>tar -xvzf srilm-1.7.2.tar.gz</command>
</div>
<h2 id="toc_4"><br/></h2>
<h3 id="toc_5"><a name="liblbfgs"></a><code style="background-color:#DCDCDC;color:#0047ab;border:none;"><b>libLBFGS</b></code></h3>
<ul>
<li>To add the functionality to train and test <strong>maximum entropy (MaxEnt) language models</strong> to the SRILM toolkit, you need to install libLBFGS against the toolkit. Download libLBFGS from <a href="https://github.com/chokkan/liblbfgs">here</a> and in the directory, run the following commands:</li>
</ul>
<div class="terminal-box">
<comment>~/liblbfgs-1.10/</comment>
<br/>
<command>make clean</command>
<br/>
<command>./configure</command>
<br/>
<command>make</command>
<br/>
<command>make install</command>
</div>
<ul>
<li>libLBFGS defaults to double precision (64 bit) for floating point values. This is highly recommended to achieve even better precision at the cost of longer training time with more RAM usage. However, in cases where the corpus to train is large or RAM is limited, you will have to use single precision instead of double. To do this, before configuring and compiling libLBFGS, open the file <code><span style="background-color:#DCDCDC;color:#DC143C">include/lbfgs.h</span></code> and change line 40:</li>
</ul>
<div class="terminal-box">
#define LBFGS_FLOAT 64
</div>
<p style="padding-left:30px">to</p>
<div class="terminal-box">
#define LBFGS_FLOAT 32
</div>
<ul>
<li>Change into the SRILM main directory and open Makefile in <code><span style="background-color:#DCDCDC;color:#DC143C">common</code></span> directory which corresponds to your machine type (e.g., <code><span style="background-color:#DCDCDC;color:#DC143C">common/Makefile.machine.i686-m64</code></span> if you use 64-bit Linux or macbook) and add the following flag:</li>
</ul>
<div class="terminal-box">
HAVE_LIBLBFGS = 1
</div>
<ul>
<li><p>Configure and compile SRILM. </p></li>
<li><p>Note that when compiling under x86-64 system (also known as amd64), SRILM tends to produce 32-bit binaries by default, and cannot link with a 64-bit libLBFGS. To fix this, set the following in line 8 in the main SRILM Makefile:</p></li>
</ul>
<div class="terminal-box">
MACHINE_TYPE := <code style="background-color:#000; color:#00FF00; border:none;padding:0; margin:0;">$</code>(shell <code style="background-color:#000; color:#00FF00; border:none;padding:0; margin:0;">$</code>(SRILM)/sbin/machine-type)
</div>
<p style="padding-left:30px">to</p>
<div class="terminal-box">
MACHINE_TYPE := i686-m64
</div>
<ul>
<li>if you have installed libLBFGS under <code><span style="background-color:#DCDCDC;color:#DC143C">/usr/local</span></code>, SRILM should find the libLBFGS include and library files automatically. However, if you do not have root privileges, and you have installed libLBFGS under your home directory (e.g. by using <code>./configure --prefix=$HOME</code>), you might have to modify the SRILM Makefiles to let SRILM know where it can find libLBFGS. For example, if you are compiling under <code><span style="background-color:#DCDCDC;color:#DC143C">i686-m64</span></code>, open <code><span style="background-color:#DCDCDC;color:#DC143C">common/Makefile.machine.i686-m64</span></code> and change the lines 39~43:</li>
</ul>
<div class="terminal-box">
<comment>Other useful include directories.</comment>
<br/>
ADDITIONAL_INCLUDES =
<br/><br/>
<comment>Other useful linking flags.</comment>
<br/>
ADDITIONAL_LDFLAGS =
</div>
<p style="padding-left:30px">to</p>
<div class="terminal-box">
<comment>Other useful include directories.</comment>
<br/>
ADDITIONAL_INCLUDES = -I$(HOME)/include
<br/><br/>
<comment>Other useful linking flags.</comment>
<br/>
ADDITIONAL_LDFLAGS = -L$(HOME)/lib
</div>
<h2 id="toc_6"><br/></h2>
<h3 id="toc_7"><a name="nplm"></a><code style="background-color:#DCDCDC;color:#0047ab;border:none;"><b>NPLM</b></code></h3>
<ul>
<li><p>1) <strong>Install NPLM Toolkit</strong> (by Ashish Vaswan et al)</p>
<ul>
<li><em>Neural Probabilistic Language Model (NPLM) Toolkit</em> is for training and using feedforward neural language models (Bengio, 2003).</li>
<li>Download the latest version of <em>NPLM Toolkit</em> (<strong>nplm-0.3.tar.gz</strong>) <a href="https://nlg.isi.edu/software/nplm/nplm-0.3.tar.gz">here</a> and <em>boost c++ Libraries</em> (<strong>boost<em>1</em>64_0.tar.bz2</strong>) <a href="https://dl.bintray.com/boostorg/release/1.64.0/source/boost_1_64_0.tar.bz2">here</a>, then unzip them.</li>
<li>Run the following commands:</li>
</ul>
<div class="terminal-box">
<comment>Install boost </comment><br/>
<comment>./boost_1_64_0/</comment>
<br/>
<command>./bootstrap.sh</command>
<br/>
<command>./b2 install</command><br/><br/>
<comment>Compile NPLM </comment><br/>
<comment>./NEURAL_LANGAUGE_MODEL/src </comment><br/>
<command>make install</command>
</div>
<ul>
<li>Before compiling NPLM, edit the Makefile to reflect the locations of the Boost and compiler. </li>
</ul></li>
<li><p>2) <strong>Run Example code</strong></p>
<ul>
<li>Navigate to an example directory and run a Makefile, then prerequisites for training and testing will be automatically generated. After generating the files such as train.ngram, Makefile will train the data to generate models and then it will test the models.</li>
</ul>
<div class="terminal-box">
<comment>./NEURAL_LANGUAGE_MODEL/example/</comment>
<br/>
<command>make</command>
<br/>
</div>
<ul>
<li>In order to train a new corpus, run 'prepareNeuralLM', 'trainNeuralNetwork', and 'testNeuralNetwork' codes respectively in ./NEURAL_LANGUAGE_MODEL/src/ directory.</li>
</ul></li>
</ul>
<h2 id="toc_8"><br/></h2>
<h3 id="toc_9"><a name="rnnlm"></a><code style="background-color:#DCDCDC;color:#0047ab;border:none;"><b>rnnlm-0.3e</b></code></h3>
<ul>
<li><p>1) <strong>RNNLM Toolkit</strong> (by T. Mikolov)</p>
<ul>
<li><em>RNNLM Toolkit</em> is an open source and freely available toolkit for training statistical language models based or recurrent neural networks.</li>
<li>Download latest version of <em>RNNLM Toolkit</em> (<strong>rnnlm-0.3e</strong>) along with <strong>Basic examples</strong> <a href="http://www.fit.vutbr.cz/%7Eimikolov/rnnlm/">here</a>, and run the following commands:</li>
</ul>
<div class="terminal-box">
<comment>~/rnnlm-0.3e/</comment>
<br/>
<command>make clean</command>
<br/>
<command>make</command>
</div>
<ul>
<li>To check whether rnnlm-0.3e and all its dependencies including SRILM are installed without problem, run <strong>rnnlm-0.3e/example.sh</strong>.</li>
<li>Detailed guide on options available can be found in <strong>rnnlm-0.3e/FAQ.txt</strong> and </li>
</ul></li>
<li><p>2) <strong>Basic examples</strong></p>
<ul>
<li>This includes a set of useful sample scripts for running experiments on nine different settings using rnnlm-0.2b.</li>
<li>Simply replace <strong>rnnlm-0.2b</strong> with its newer version, <strong>rnnlm-0.3e</strong>:</li>
</ul>
<div class="terminal-box">
<comment>~/simple-examples/</comment>
<br/>
<command>rm -rf rnnlm-0.2b</command>
<br/>
<command>mv rnnlm-0.3e .</command>
</div>
<ul>
<li>Note that <strong>Penn Treebank</strong> corpus in <em>simple-examples/data/</em> is already pre-processed and split into subsets (train / validation / test set) for you.</li>
</ul></li>
</ul>
<h2 id="toc_10"><br/></h2>
<h3 id="toc_11"><a name="subword"></a><code style="background-color:#DCDCDC;color:#0047ab;border:none;"><b>subword-mikolov</b></code></h3>
<ul>
<li><strong><em>subword-mikolov</em></strong> is our own implementation of English subword segmentation proposed in Mikolov, et al (2012). You can download the code <a href="https://github.com/scarletcho/subword-mikolov">here</a>.</li>
<li><p>Usage of <em>subword-mikolov</em>/<strong>subword.py</strong>:
<div class="terminal-box">
<comment>~/subword-mikolov/</comment>
<br/>
<command>python subword.py <corpus-filename> <W-parameter> <S-parameter> </command>
</div> </p></li>
<li><p>To apply on text8 with suggested parameters (W=1000, S=2000) in Mikolov, et al (2012):
<div class="terminal-box">
<comment>~/subword-mikolov/</comment>
<br/>
<command>python subword.py text8.char.txt 1000 2000 </command>
</div> </p></li>
<li><p>Example (Mikolov, et al., 2012):
<div class="output-box">
<output>
INPUT: new company dreamworks interactive
</output><br/>
<output>
OUTPUT: new company dre+ am+ wo+ rks: in+ te+ ra+ cti+ ve:
</output>
</div></p></li>
</ul>
<h2 id="toc_12"><br/></h2>
<h3 id="toc_13"><a name="ptb"></a><code style="background-color:#DCDCDC;color:#0047ab;border:none;"><b>Penn Treebank Corpus</b></code></h3>
<ul>
<li><p>The Penn Treebank (PTB) project selected 2,499 stories from a three year Wall Street Journal (WSJ) collection of 98,732 stories for syntactic annotation. These 2,499 stories have been distributed in both Treebank-2 (LDC1999T42) and Treebank-3 (LDC1999T42) releases of PTB. Treebank-2 includes the raw text for each story. Three "map" files are available in a compressed file (pennTB_tipster_wsj_map.tar.gz) as an additional download for users who have licensed Treebank-2 and provide the relation between the 2,499 PTB filenames and the corresponding WSJ DOCNO strings in TIPSTER.</p></li>
<li><p>Available at purchase at Linguistics Data Consortium (LDC): <a href="https://catalog.ldc.upenn.edu/ldc99t42">hyperlink</a></p></li>
<li><p>However, <strong>Penn Treebank</strong> corpus in <em>simple-examples/data/</em> which is a part of Mikolov's RNNLM Toolkit is already pre-processed and split into subsets (train / validation / test set) for you.</p>
<ul>
<li> <a href="http://www.fit.vutbr.cz/%7Eimikolov/rnnlm/simple-examples.tgz">Quick download link</a></li>
</ul></li>
</ul>
<h2 id="toc_14"><br/></h2>
<h3 id="toc_15"><a name="text8"></a><code style="background-color:#DCDCDC;color:#0047ab;border:none;"><b>Text8 Corpus</b></code></h3>
<ul>
<li><p>The test data for the Large Text Compression Benchmark is the first 109 bytes of the English Wikipedia dump on Mar. 3, 2006. http://download.wikipedia.org/enwiki/20060303/enwiki-20060303-pages-articles.xml.bz2 (1.1 GB or 4.8 GB after decompressing with bzip2 - link no longer works). Results are also given for the first 108 bytes, which is also used for the Hutter Prize. These files have the following sizes and checksums:</p></li>
<li><p>Available at Matt Mahoney's website: <a href="http://mattmahoney.net/dc/textdata">hyperlink</a></p>
<ul>
<li><a href="http://mattmahoney.net/dc/text8.zip">Quick download link</a></li>
</ul></li>
</ul>
<p><br/></p>
<p><br/></p>
<h2 id="toc_16"><a name="ptb-corpus-experiments"></a>II. Penn Treebank <font style="font-size:20px">(PTB)</font> Corpus Experiments <font style="font-size:20px">(5.8M characters)</font></h2>
<h3 id="toc_17"><a name="word-level-models-ptb"></a>Word-level Models</h3>
<h3 id="toc_18"><code style="background-color:#DCDCDC;color:#0047ab;border:none;"><b>PTB - word N-gram</b></code></h3>
<ul>
<li>5 gram with modified Kneser-Ney smoothing (no count cutoffs): <font style="color:red"><b>1.34 BPC</b></font> (1.32 in paper)
<ul>
<li>N-gram: 5</li>
<li>Smoothing algorithm: Modified Kneser-Ney</li>
</ul></li>
</ul>
<div class="terminal-box">
<comment>
train
</comment><br/>
<command>
ngram-count -order 5 -text ptb.train.txt -kndiscount -lm 5gram_kn.lm -debug 2
</command><br/>
<br/><comment>
test
</comment><br/>
<command>
ngram -lm 5gram_kn.lm -ppl ptb.test.txt -debug 2
</command>
</div>
<p><br/></p>
<div class="output-box">
<output>
file ../data/ptb.test.txt: 3761 sentences, 78669 words, 4794 OOVs
</output><br/>
<output>
0 zeroprobs, logprob= -179065.1 ppl= 202.5212 ppl1= 265.3955
</output><br/>
<p style="font-size:10px; text-align:center; margin:5px 0px 0px">
NumChars = 449945 <small>(including whitespaces)</small><br/>
NumChars = 367515 <small>(excluding whitespaces)</small><br/>
AvgCharPerWord = 449945 / 78669 = 5.719470185206371</p>
</div>
<p><br/></p>
<p align="center">
<strong>BPC</strong> = log<sub>2</sub>( PPL ) / AvgCharPerWord ≈ <font style="color:red"><b>1.34</b></font>
<br/>
<font size="-3">log<sub>2</sub>(202.5212) / (449945/78669) = 1.339622181681668</font>
</p>
<h2 id="toc_19"><br/></h2>
<h3 id="toc_20"><a name="character-level-models-ptb"></a>Character-level Models</h3>
<h3 id="toc_21"><code style="background-color:#DCDCDC;color:#0047ab;border:none;"><b>PTB - character N-gram</b></code></h3>
<ul>
<li>8-gram LM with Ristad's discounting and count cutoffs: <font style="color:red"><b>1.48 BPC</b></font> (1.48 in paper)
<ul>
<li>N-gram: 8</li>
<li>Smoothing algorithm: Ristad's disconting</li>
<li>Count cut-offs:
<ul>
<li>3-gram: 1 (gt3min)</li>
<li>4-gram: 1 (gt4min)</li>
<li>5-gram: 1 (gt5min)</li>
<li>6-gram: 2 (gt6min)</li>
<li>7-gram: 3 (gt7min)</li>
<li>8-gram: 6 (gt8min)</li>
</ul></li>
</ul></li>
</ul>
<div class="terminal-box">
<comment>
train
</comment><br/>
<command>
ngram-count -text ptb.char.train.txt -order 8 -lm 8gram_ristad.lm -ndiscount -gt3min 1 -gt4min 1 -gt5min 1 -gt6min 2 -gt7min 3 -gt8min 6 -debug 2
</command><br/>
<br/><comment>
test
</comment><br/>
<command>
ngram -lm 8gram_ristad.lm -order 8 -ppl ptb.char.test.txt -debug 2
</command>
</div>
<p><br/></p>
<div class="output-box">
<output>
file ptb.char.test.txt: 3761 sentences, 438662 words, 0 OOVs
</output><br/>
<output>
0 zeroprobs, logprob= -196799.1 ppl= 2.784974 ppl1= 2.809538
</output><br/>
</div>
<p><br/></p>
<p align="center">
<strong>BPC</strong> = log<sub>2</sub>( PPL ) ≈ <font style="color:red"><b>1.48</b></font>
<br/>
<font size="-3">log<sub>2</sub>(2.784974) = 1.4776638588952331 </font>
</p>
<h2 id="toc_22"><br/></h2>
<h3 id="toc_23"><code style="background-color:#DCDCDC;color:#0047ab;border:none;"><b>PTB - character MaxEnt</b></code></h3>
<ul>
<li>Hash-based maximum entropy model with 15 n-gram features: <font style="color:red"><b>1.35 BPC</b></font> (1.37 in paper)
<ul>
<li>N-gram: 15</li>
<li>No start-of-sentence (sos)</li>
<li>No end-of-sentence (eos)</li>
</ul></li>
</ul>
<div class="terminal-box">
<comment>
train
</comment><br/>
<command>
ngram-count -order 15 -text ptb.char.train.txt -maxent -lm 15maxent_no-sos-eos.gz -no-eos -no-sos -debug 3
</command><br/>
<comment>
test
</comment><br/>
<br/><command>
ngram -maxent -lm 15maxent_no-sos-eos.gz -ppl ptb.char.test.txt -no-eos -no-sos
</command>
</div>
<p><br/></p>
<div class="output-box">
<output>
file ptb.char.test.txt: 0 sentences, 438662 words, 0 OOVs
</output><br/>
<output>
0 zeroprobs, logprob= -178769.1 ppl= 2.555834 ppl1= 2.555834
</output><br/>
</div>
<p><br/></p>
<p align="center">
<strong>BPC</strong> = log<sub>2</sub>( PPL ) ≈ <font style="color:red"><b>1.35</b></font>
<br/>
<font size="-3">log<sub>2</sub>(2.555834) = 1.3537941370854139 </font>
</p>
<h2 id="toc_24"><br/></h2>
<h3 id="toc_25"><code style="background-color:#DCDCDC;color:#0047ab;border:none;"><b>PTB - character NNLM</b></code></h3>
<ul>
<li>NNLM: <font style="color:red"><b>4.78 BPC</b></font> (1.57 in paper)<br>
<ul>
<li>N-gram: 30</li>
<li>Hidden units: 1000</li>
<li>Learning rate: 1</li>
<li>Number of epochs: 15</li>
<li>Minibatch size: 100</li>
</ul></li>
</ul>
<div class="terminal-box">
<comment>
prepare training data
</comment><br/>
<command>
prepareNeuralLM --train_text char_ptb3_train --ngram_size 30 --vocab_size 50 --write_words_file train_words --train_file train.ngrams --validation_file char_ptb3_train_valid
</command><br/>
<comment>
train
</comment><br/>
<command>
trainNeuralNetwork --train_file train.ngrams --validation_file valid.ngrams --num_epochs 15 --words_file train_words --num_hidden 1000 --model_prefix model --learning_rate 1 --minibatch_size 100
</command><br/>
<comment>
test
</comment><br/>
<command>
testNeuralNetwork --test_file test.ngrams --model_file model.1
</command>
</div>
<p><br/></p>
<div class="output-box">
<output>
Testing the trained model.
</output><br/>
<output>
(required) Model file. Value: ./model.1
</output><br/>
<output>
(required) Test file (one numberized example per line). Value: test.ngrams
</output><br/>
<output>
Number of test instances: 442424
</output><br/>
<output>
Test log-likelihood: -1466220
</output><br/>
<output>
Perplexity: 27.496555
</output><br/>
</div>
<p><br/></p>
<p align="center">
<strong>BPC</strong> = log<sub>2</sub>( PPL ) ≈ <font style="color:red"><b>4.78</b></font>
<br/>
<font size="-3">log<sub>2</sub>(27.496555) = 4.781178965996908 </font>
</p>
<p><br/></p>
<h2 id="toc_26"><br/></h2>
<h3 id="toc_27"><code style="background-color:#DCDCDC;color:#0047ab;border:none;"><b>PTB - character BPTT-RNN</b></code></h3>
<ul>
<li>BPTT-RNN LM: <font style="color:red"><b>1.42 BPC</b></font> (1.42 in paper)
<ul>
<li>Hidden units: 1000</li>
<li>BPTT steps: 10</li>
<li>BPTT blocks: 20</li>
</ul></li>
</ul>
<div class="terminal-box">
<comment>
train
</comment><br/>
<command>
rnnlm-0.3e/rnnlm -train ptb.char.train.txt -valid ptb.char.valid.txt -rnnlm ptb.char.model.hidden1000.txt -hidden 1000 -rand-seed 1 -debug 2 -class 1 -bptt 10 -bptt-block 20
</command><br/>
<br/><comment>
test
</comment><br/>
<command>
rnnlm-0.3e/rnnlm -rnnlm ptb.char.model.hidden1000.txt -test ptb.char.test.txt
</command>
</div>
<p><br/></p>
<div class="output-box">
<output>
test file: ../data/ptb.char.test.txt
</output><br/>
<output>
rnnlm file: ../models/ptb.char.model.hidden1000.txt
</output><br/>
<output>
test log probability: -189364.304607
</output><br/>
<output>
PPL net: 2.679270
</output><br/>
</div>
<p><br/></p>
<p align="center">
<strong>BPC</strong> = log<sub>2</sub>( PPL ) ≈ <font style="color:red"><b>1.42</b></font>
<br/>
<font size="-3">log<sub>2</sub>(2.679270) = 1.4218399742498347 </font>
</p>
<p><br/></p>
<p><br/></p>
<h2 id="toc_28"><a name="text8-corpus-experiments"></a>III. Text8 Corpus Experiments <font style="font-size:20px">(100M characters)</font></h2>
<h3 id="toc_29"><a name="word-level-models-text8"></a>Word-level Models</h3>
<h3 id="toc_30"><code style="background-color:#DCDCDC;color:#0047ab;border:none;"><b>text8 - word N-gram</b></code></h3>
<ul>
<li>5 gram with unmodified Kneser-Ney smoothing: <font style="color:red"><b>1.42 BPC</b></font> (1.43 in paper)
<ul>
<li>N-gram: 5</li>
<li>Smoothing algorithm: Unmodified Kneser-Ney</li>
</ul></li>
</ul>
<div class="terminal-box">
<comment>
train
</comment><br/>
<command>
ngram-count -text text8_word_train -order 5 -lm model/5gram_ukn.lm -ukndiscount -debug 2
</command><br/>
<br/><comment>
test
</comment><br/>
<command>
ngram -lm model/5gram_ukn.lm -order 5 -ppl text8_word_test -debug 2
</command>
</div>
<p><br/></p>
<div class="output-box">
<output>
file text8_word_test: 37611 sentences, 853696 words, 10327 OOVs
</output><br/>
<output>