diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..052c273 --- /dev/null +++ b/.gitignore @@ -0,0 +1,2 @@ +.idea/* +05_coeqtl_mapping/launch_sbatch_files.sh diff --git a/01_association_metrics/.ipynb_checkpoints/GRNBoost2-checkpoint.ipynb b/01_association_metrics/.ipynb_checkpoints/GRNBoost2-checkpoint.ipynb new file mode 100644 index 0000000..b1b9528 --- /dev/null +++ b/01_association_metrics/.ipynb_checkpoints/GRNBoost2-checkpoint.ipynb @@ -0,0 +1,349 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib as mpl\n", + "mpl.rcParams['pdf.fonttype'] = 42\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from pathlib import Path\n", + "import seaborn as sns\n", + "%matplotlib inline\n", + "%run dataset.ipynb\n", + "\n", + "def select_gene_nonzeroratio(df, ratio):\n", + " nonzerocounts = np.count_nonzero(df.values, axis=0) / df.shape[0]\n", + " selected_genes = df.columns[nonzerocounts > ratio]\n", + " return selected_genes" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "datasetname = 'onemillionv2'\n", + "dataset = DATASET(datasetname)\n", + "dataset.load_dataset()\n", + "data_sc = dataset.data_sc" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "395\n" + ] + } + ], + "source": [ + "monocyte_ut = data_sc[(data_sc.obs['time']=='UT') & (data_sc.obs['cell_type_lowerres']=='monocyte')]\n", + "monocyte_ut_df = pd.DataFrame(data=monocyte_ut.X.toarray(),\n", + " index=monocyte_ut.obs.index,\n", + " columns=monocyte_ut.var.index)\n", + "mono_genes = select_gene_nonzeroratio(df=monocyte_ut_df, ratio=0.50)\n", + "print(len(mono_genes))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(11482, 379) (194, 379)\n" + ] + } + ], + "source": [ + "bp_df = pd.read_csv('mono_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.1PCAsOverSamplesRemoved.txt.gz',\n", + " compression='gzip',\n", + " sep='\\t', index_col=0)\n", + "name_mapping_dic = pd.read_csv('features_v3_reformated_names.tsv',\n", + " sep ='\\t',\n", + " names=['geneid', 'genename']).set_index(['geneid'])['genename'].T.to_dict()\n", + "\n", + "bp_df['geneid'] = [item.split('.')[0] for item in bp_df.index]\n", + "bp_df['genename'] = [name_mapping_dic.get(geneid) for geneid in bp_df['geneid']]\n", + "bp_df = bp_df.dropna(subset=['genename'])\n", + "bp_df = bp_df.drop('geneid', axis=1)\n", + "bp_df = bp_df.set_index('genename')\n", + "print(bp_df.shape)\n", + "\n", + "bp_trans_df = bp_df.T\n", + "common_genes = list(set(mono_genes) & set(bp_trans_df.columns))\n", + "selected_mono_df = monocyte_ut_df[common_genes]\n", + "selected_bp_df = bp_trans_df[common_genes]\n", + "print(selected_mono_df.shape, selected_bp_df.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "selected_mono_df.T.to_csv('sc_Expression.csv', sep=',')\n", + "selected_bp_df.T.to_csv('bp_Expression.csv', sep=',')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# create this fake pseudo time ordering because it's required to run the Beeline tool, but not used by GRNBoost2\n", + "fake_timepoint_bp = pd.DataFrame(index=selected_bp_df.index)\n", + "fake_timepoint_bp['time'] = np.arange(selected_bp_df.shape[0])\n", + "fake_timepoint_bp.to_csv('bp_timepoint.fake.csv',\n", + " sep=',')\n", + "fake_timepoint_sc = pd.DataFrame(index=selected_mono_df.index)\n", + "fake_timepoint_sc['time'] = np.arange(selected_mono_df.shape[0])\n", + "fake_timepoint_sc.to_csv('sc_timepoint.fake.csv',\n", + " sep=',')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# perform GRNBoost2 with BEELINE, see the yaml files in the same directory\n", + "# python BLRunner.py --config config-files/config_bp_mono.yaml\n", + "# python BLRunner.py --config config-files/config_sc_mono.yaml" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Gene1_scGene2_scEdgeWeight_scGene1_bpGene2_bpEdgeWeight_bp
sorted_genepairs
CCL3;CCL4CCL3CCL4554.503642CCL3CCL455.157748
CCL4;CCL3CCL4CCL3480.484753CCL4CCL377.414467
S100A9;S100A8S100A9S100A8341.726427S100A9S100A8104.542395
S100A8;S100A9S100A8S100A9284.321568S100A8S100A965.915233
S100A9;LYZS100A9LYZ221.872616S100A9LYZ0.149064
\n", + "
" + ], + "text/plain": [ + " Gene1_sc Gene2_sc EdgeWeight_sc Gene1_bp Gene2_bp \\\n", + "sorted_genepairs \n", + "CCL3;CCL4 CCL3 CCL4 554.503642 CCL3 CCL4 \n", + "CCL4;CCL3 CCL4 CCL3 480.484753 CCL4 CCL3 \n", + "S100A9;S100A8 S100A9 S100A8 341.726427 S100A9 S100A8 \n", + "S100A8;S100A9 S100A8 S100A9 284.321568 S100A8 S100A9 \n", + "S100A9;LYZ S100A9 LYZ 221.872616 S100A9 LYZ \n", + "\n", + " EdgeWeight_bp \n", + "sorted_genepairs \n", + "CCL3;CCL4 55.157748 \n", + "CCL4;CCL3 77.414467 \n", + "S100A9;S100A8 104.542395 \n", + "S100A8;S100A9 65.915233 \n", + "S100A9;LYZ 0.149064 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sc_edges = pd.read_csv('sc_edges.csv', sep='\\t')\n", + "sc_edges['sorted_genepairs'] = [';'.join(item) for item in sc_edges[['Gene1', 'Gene2']].values]\n", + "bp_edges = pd.read_csv('bp_edges.csv', sep='\\t')\n", + "bp_edges['sorted_genepairs'] = [';'.join(item) for item in bp_edges[['Gene1', 'Gene2']].values]\n", + "\n", + "sc_edges = sc_edges.set_index('sorted_genepairs')\n", + "bp_edges = bp_edges.set_index('sorted_genepairs')\n", + "concated_edges = pd.concat([sc_edges.add_suffix('_sc'), bp_edges.add_suffix('_bp')], axis=1)\n", + "\n", + "concated_edges.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SpearmanrResult(correlation=0.16937964029402044, pvalue=0.0)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "concated_edges = concated_edges.dropna()\n", + "spearmanr(concated_edges['EdgeWeight_sc'], concated_edges['EdgeWeight_bp'])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Spearman r = 0.17')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU0AAAFNCAYAAACE8D3EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABDJElEQVR4nO3deXzU9Z348dc7d8h9AQlHwiUgiIgoWqyFStXSWm3toWu3uj3c7dpr3W5Xt/vbtdvt1nat23Pbdbuu7rZra6tttbUeKEhFqwIqECGEQMKREHKRgxyTTN6/P77fiZMwM5lJZiYz8H4+HmPm+/3OzPc9Ad987o+oKsYYY8KTMtUBGGNMMrGkaYwxEbCkaYwxEbCkaYwxEbCkaYwxEbCkaYwxEbCkaYwxEbCkaQAQkctE5EUR6RSRdhHZJiIXTXVcZwpxfENE2tzHN0VEgrw2Q0R+KSL1IqIism7M9d+LSI/fwyMiu+PxPYwlTQOISD7wW+B7QDEwC/gKMBDnONLieb/xRDmeW4HrgPOBFcB7gT8P8foXgI8Cx8deUNV3q2qu7wG8CPwiirGaECxpGoBzAFT1IVX1qmqfqj6tqrsAROQWt+T5Pbckuk9ErvC9WUQKROS/RKRJRI6JyD+LSKp7bYGIPOeWrlpF5KciUuj33noR+VsR2QWcEpGFbunqz0TkiIh0iMhfiMhFIrJLRE6KyPf93h/O53/RfW+niPxcRLIC/RL8vue/iUg7cFcUf8c3A99S1aOqegz4FnBLoBeqqkdVv62qLwDeUB8qIlXA24H/jWKsJgRLmgZgP+AVkQdF5N0iUhTgNWuAg0Ap8I/AoyJS7F57EBgCFgIXAFcCn3SvCfB1oAJYCszh9GR0I/AeoND9HN/9FgEfAb4NfBnYACwDPiwi74jg8z8MXA3Mwynl3RLid+H7ntOBr429KCJ/4ibuYI+5QT53GfCG3/Eb7rnJ+hjwB1U9FIXPMuFQVXvYA5yE8wBwFCdxPQbMcK/dAjQC4vf6V4A/BWbgVOOz/a7dCGwOcp/rgNf8juuBj/sdVwEKzPI71wZ8xO/4EeALEXz+R/2Ovwn8KMh7bwEOx+j36wWW+B0vcr+njPO+o8C6ENcPALdM9d+fs+mRUG1IZuqo6l7cEpiILAF+glPCu9F9yTF1/y91NeCU7iqBdKDJr18jBTjiftZ04Ls4Vcg891rHmNsfCRBSs9/zvgDHuRF8vn+7YK8bdzCBYomGHiDf7zgf6BnzO42IiFwGzAR+OcnYTASsem5Oo6r7cEqdy/1OzxrT2zsXp/R5BKekWaqqhe4jX1V9Vc+v45SoVqhqPk7nxthe48kstRXO50ciZCwictOYnuuxj2DV82qcTiCf891zk3Ez8Kiq9kzyc0wELGkaRGSJiPy1iMx2j+fglDD/6Pey6cDnRCRdRD6EU51/QlWbgKeBb4lIvoikuJ0zvjbHPJxS1kkRmQX8TZTDj/Xnj6KqP1W/nusAj8NB3vo/wO0iMktEKoC/xvmHKSARyfTrsMoQkSz/f7REJBv4UKjPMLFhSdMAdON0gLwsIqdwkuUenP+xfV7GaYdrxekg+aCqtrnXPgZkAG/iVI1/CZS7174CrAI6gd8Bj0Y59lh/frT8B/A4sBvnd/s79xwAIlItIjf5vb4GpxliFvCU+7zS7/p1ON95c0yjNqeRSTSpmLOEiNwCfFJVL5vqWIyZalbSNMaYCFjSNMaYCFj13BhjImAlTWOMiYAlTWOMiUBSzwgqLS3VqqqqqQ7DGHOG2bFjR6uqlgW6ltRJs6qqiu3bt091GMaYM4yINAS7ZtVzY4yJgCVNY4yJgCVNY4yJgCVNY4yJgCVNY4yJgCVNY4yJgCVNY4yJgCVNY4yJgCVNY4yJgCVNY2Kkz+Nle307fZ6QW5ebJGNJ05gYqW7s5Idb6qhu7JzqUEwUWdI0JkaWVRTw6XULWFZRMNWhmChK6gU7jElk2RmprK4qnuowTJRZSdMYYyJgSdMYYyJgSdMYYyJgSdMYYyIQs6QpIveLyAkR2eN3rlhEnhGRWvdnkd+1O0XkgIjUiMhVsYrLGGMmI5YlzQeAq8ecuwN4VlUXAc+6x4jIucANwDL3Pf8uIqkxjM0YYyYkZklTVbcC7WNOXws86D5/ELjO7/zPVHVAVQ8BB4CLYxWbMcZMVLzbNGeoahOA+3O6e34WcMTvdUfdc8YYk1ASpSNIApzTgC8UuVVEtovI9paWlhiHZYwxo8U7aTaLSDmA+/OEe/4oMMfvdbOBxkAfoKr3qepqVV1dVhZwW2JjjImZeCfNx4Cb3ec3A7/xO3+DiGSKyDxgEfBKnGMzxphxxWzuuYg8BKwDSkXkKPCPwN3AwyLyCeAw8CEAVa0WkYeBN4Eh4DZVtfW0jDEJJ2ZJU1VvDHLpiiCv/xrwtVjFY4wx0ZAoHUHGGJMULGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wEgiZNEZkbz0CMMSYZhCpp/jpeQRhjTLIIlTQlblEYY0ySSAtxbZaIfDfYRVX9XAziMcaYhBYqafYBO2JxUxH5K+CTgAK7gT8DpgE/B6qAeuDDqtoRi/sbY8xEhUqabar6YLRvKCKzgM8B56pqn4g8DNwAnAs8q6p3i8gdwB3A30b7/sYYMxmh2jQ9MbxvGpAtImk4JcxG4FrAl6QfBK6L4f2NMWZCQpU0Pxxq2JGqHp7IDVX1mIjcAxzGaQJ4WlWfFpEZqtrkvqZJRKYHer+I3ArcCjB3ro2KMsbEV6ik+TucNkf/XnQFyoDpQOpEbigiRTilynnASeAXIvLRcN+vqvcB9wGsXr1aJxKDMcZMVNCkqarn+R+LSBVOG+MG4F8mcc8NwCFVbXE/91HgbUCziJS7pcxy4MQk7mGMMTEx7jRKEVkkIg8Av8fpTT9XVb83iXseBi4RkWkiIsAVwF7gMeBm9zU3A7+ZxD2MMSYmgpY0RWQ58GVgGfBN4BOq6p3sDVX1ZRH5JbATGAJew6lu5wIPi8gncBLrhyZ7L2OMiTZRDdwsKCJe4AhO2+ZpyTIRBrevXr1at2/fPtVhGGMC6PN4qW7sZFlFAdkZE+oCmTIiskNVVwe6Fqoj6BM4HT/GGBOx6sZOfriljk+vW8DqquKpDidqQnUEPRDHOIwxZ5hlFQV8et0CllUUTHUoURWqTfNxQpQ0VfV9MYnIGHNGyM5IPaNKmD6hquf3xC0KY4xJEqGq588HuyYia2MTjjHGJLZQ1fNU4MPALOBJVd0jIu8F/g7IBi6IT4jGGJM4QlXP/wuYA7wCfFdEGoBLgTtU9ddxiM0YYxJOqKS5GlihqsMikgW0AgtV9Xh8QjPGmMQTcmk4VR0GUNV+YL8lTGPM2S5USXOJiOxynwuwwD0WQFV1RcyjM8aYBBMqaS6NWxTGGJMkglbPVbUBp4f8Q8ASVW3wf8Qtwijq83jZXt9On2fS644kpDP9+xmTCIImTRH5d+CvgBLgqyLy/+IWVYz45sJWN3bG7B5Tmbji8f2MOduF6gi6HHinqt4JrOMM2LMnHnNhpzJxnalzfY1JJOP1nnsBVLWX0dteJCXfXNhYLlM1lYkrOyOVZRUFVDd2WhXdmBgJlTSXiMgu97Hb73i3X6+6GSOcxBzLKrxV0Y2JLes9nwKxXGfQqujGxFaopJmtqvsARCRTVQd8F0TkEiApe9ATQSwT25m6HJcxiSJU9fz//J6/NObav8cglrOGtT0ak7xCJU0J8jzQsYmQtT0ak5xCJU0N8jzQsYmQtT0ak5xCtWnOFpHv4pQqfc9xj2fFPLIznLU9GpOcQiXNv/F7PnafXNs31xhzVgq13cWD8QxkKiTzvszGmKkRyW6UirMQ8WZV/UmsA4uHM3Vf5lixf2SMiXw3ymLgoyKyXFXviFFMcZOsnTFTlbzsHxljQFQj6wh3N1zboaorYxJRBFavXq3bt59ZzavhJMTt9e1TkryspGnOFiKyQ1VXB7oWashRQL5FPJJRMqw3Gc74zakqIQebV58Mv1d/yRavSSyh1tMsDvBYICJfAarjGGPUJMOA8nASYjxWa4pEMvxe/SVbvCaxBK2ei8ghnM4f3+wfX0fQFuCrqtodjwBDibR6btXL2Ei232uyxWviL1T1PNSQo3khPvDnwEeiEFtc2YDy2Ei232uyxWsSS8Rtmq5LoxpFnFhbljFmsiaaNJOStWUZYyYr1OD2VcEuAemxCSe2xnayTLRty9rEjDl7hRrc/q0Q1/ZFO5CpMNHB2sk8yNsSvjGTE6ojaH08A4mHscku0vGOvoQzvzQ3KWcSQXInfGMSQcg2TRGpFJFS9/klIvJFEbkuLpHFwNgkGel4R1/COdjak1DjJCORrFNHjUkUocZp/gNwM874zJ8BG3DGaK4B3lDVL8QnxODiPY3SqrbGnB0mNE4TuAFnR8ppwGFgpqr2ikga8PokAyoEfgwsx0nKHwdqgJ8DVUA98GFV7ZjMfaLNxvcZY0JVz/tV1aOqJ4E6Ve0FUNUhwDPJ+34HeFJVlwDnA3uBO4BnVXUR8Kx7bIKwMafGTI1QSbNQRD4gItcD+e5z3/GEG8REJB+4HPgvAL/EfC3gW/j4QeC6id7jbGBjTo2ZGqGq588D17jPt/o99x1P1HygBfhvETkf2AF8Hpihqk0AqtokItMncY+AzqQ2yYl26JxJvwNjpkKoIUd/FsN7rgI+q6ovi8h3iKAqLiK3ArcCzJ07N6IbT+Vwm2gnq4m2r4b6HVhCNWZ8UzGN8ihwVFVfdo9/iZNEm0WkHMD9eSLQm1X1PlVdraqry8rKIrrxVA63SZTqdKjfQaLEaEwii3vSVNXjwBERWeyeugJ4E3gMZ4gT7s/fRPveU7kOZaKMjwz1O0iUGI1JZKHaNGPps8BPRSQDOAj8GU4Cf1hEPoEzxOlDUxRbTCTDcKVkiNGYqTZu0nT3BHoPzvjJkder6r0Tvamqvg4EGjh6xUQ/0xhj4iGckubjQD+wGxiObTjGGJPYwkmas1V1RcwjMUnHetvN2SicjqDfi8iVMY/EJB3rbTdno3CS5h+BX4lIn4h0iUi3iHTFOrB4OlOnJMb6e1lvuzkbhZM0v4WzJ9A0Vc1X1TxVzY9xXHE1XokpWZNqrEuCibaVsDHxEE7SrAX2aLA15M4A45WYkrUaaiVBY6Jf6AknaTYBW0TkThG53feIyt0TxHglpmgmn1B/gNH+w7WSoDHRL/SEkzQP4SzVlgHk+T3OCH0eL9tqW9lW2xI0WUUz+YT6A0zWEq0xiSzaNa6gK7ef9kKRPEBVtScqd46CaKzcvr2+na//fi8o3LlxacxnxIQaphPJEB4b7mNM7IRauX3ckqaILBeR14A9QLWI7BCRZdEOcqosqyjg9g2Luf1d58Sl7S9UqTWSEq2VSo2ZGuEMbr8PuF1VNwOIyDrgP4G3xS6s+MnOSGXtotKpDiNi1sljzNQIp00zx5cwAVR1C5ATs4hiKFmHDgVinTzGTI1wkuZBEfl/IlLlPv4ep3Mo6ViV1hgzWeEkzY8DZcCj7qMUZym3pFNekM380hzKC7KnOhRjTJIK2abpLgv3C1XdEKd4YmrzvmYefe0YlSXTuP7COVQ3djK/NJeDrT1nXS+09b4bMzEhS5qq6gV6ReSM6G1Yv2QGH7hgFuuXzBipqj+xu/GsrLJbU4UxExNO73k/sFtEngFO+U6q6udiFlWMNHX2cbD1FE2dfSO9z/NLc1lSnh+yF/pMLJVZ77sxExNO0vyd+0h680tzWb+4jPmluaO2dijODTyg3ZcsBwa93L+tfkp2sYwV29rCmIkJWj0XkWfdp+eq6oNjH3GKL6oOtvawuaaFg62nT2oKNBzJV4UFmXSpLBGHOyViTMYkulBtmuUi8g7gfSJygYis8n/EK8BoWlZRwE1rKtnR0MFze48HTJD+bXy+KuyqyqJJj4lMxDbERIzJmEQXdO65iHwQ+ARwGTB2greq6jtjHNu4JjL3/Ccv1fOvT9UwsyCLr73/vJEqaqzbLRNxXvmZ2FZrTDSEmns+7oIdIvL/VPWrMYlskiJNmn0eLy/VtVF7optF03O4dEFZQiaL7fXt/HBL3RnVhmpMMpnUgh2JmjAnorqxk5++3MCFlUVcuqCM6sZO+jzehGvbs55tYxJXODOCzhj+vef+7XnB2vYmk0wn816bV25M4jqrkqZ/7/myigI+vnYeXX2DdPUN8vG1VaeV7CbTUeJ7786GjoQqxRpjJiec9TT/N5xzycC/2pudkUpmego/2HKAH2w+QGZ66mklO19iHRj0Rpz0fPcCteRpzBkknMHtoxYcduejXxibcGJvYHCYnQ3trKosHlmAGDRg+6Evsf5wSx2Z6U6V2dfjPN6cdV8Vu8/jJTM9lYFBr3XuGHMGCJo0ReRO4O+AbL99zgXw4CxMnHR2NrTzT799k2npqXz5veeyuqp43AWIx3bK+Krd6xeXsbmmZdwkODZ5WueOMcktaNJU1a8DXxeRr6vqnXGMKWYGhpRhhSuWTh9V5Q41VnHsdMNI5qyH+hxjTHIat3quqneKyCyg0v/1qro1loHFQnf/ICd7PTS09rC94SSfSXeSZCTV5nDmrBtjzlzjJk0RuRu4AXgT8PViKJB0SfOlAy209HjYWtfGZ9cvYn5pLnubugL2nBtjTCDhdAS9H1isqgOxDibWZhRkk5EqXL6wdGQR4vu3HeLT6xbEbUykTV00JrmFtUcQkB7rQOJhSXk+M/OzuGzR9JEe8LEzb0INSo/GzKFEWyQj0WZDGZPoQi0N9z0R+S7QC7wuIv8hIt/1PeIXYvTkZ6VRlpfJ8a4+vv7EXvY2dZ4286a6sZPvbz7AIzuOnJZIQl0Ll39HUiySVaRJMNGSuDGJLlRJczuwA3gM+CrwonvseySdVZXF3LZ+EUfa+xjyDuOMoBptWUUBG5ZMZ9PeE6clklDXwuXrSDrY2hOTZBVpErR57sZEZtxVjhLZRFY5uvfpGn658wgfXDWH269cHLBdMVS7Y7TaJGPRttnn8bKzoQNQVlXGZu66tcmas8GkVjkSkd0ismvM4w8i8m8iUhL9cGNnZ0M7fzzYxiXzS7ll7TwAntt7gvv/cJD2Hs/I68ZbMMM3q2iqq9Zj+Tq2Ak0JjRarzpuzXTgdQb/H2SPoJvfxOPAH4DjwQMwiiwmhf8jLgeZu6lt7qG7s5Ou/38s9z+znu8/tD7hM3NjjnQ0d/NNvq7nn6f2TShyBks9kE1I8qtpWnTdnu3CS5lpVvVNVd7uPLwPvUNVvAFUTvbGIpIrIayLyW/e4WESeEZFa92fRRD87mKrSHBZOzyMjNYWa5m7ml+bywQtnUTQtndfqOwIuE3d6IlOmZaRxzYryCSUOXxIO1HM/2YQUjyXlbNk6c7YLJ2nmisga34GIXAzkuodDk7j354G9fsd3AM+q6iLgWfc4qjbva+blQ23MLpnGQ68c5uVDbSyvKOSr1y7nS+9ewrKKgtMS19jjVZXFfPk9S7lxTeVI4oikWu1Lwgdbe05LPmMTku9z23s8NizImAQRTtL8JPBjETkkIvXAj4FPiUgO8PWJ3FREZgPvcT/L51rAt8vlg8B1E/nsUC5dUMraBaUsKJ1Gc9cA2w60cM/TNdS3nhrpOBmbuMY7hsiGIvkn4fGSrS/BPrG7MWS13cZaGhM/4Wx38aqqngesBFaq6gpVfUVVT6nqwxO877eBLwHDfudmqGqTe88mYPoEPzuo3+9u5Kk3j9PU2ccXrljE2oWl9AwM8X8vH+ahVxrCatP06fN42VbbyrbaFuaX5o4MRRpv3Uz/pDteG6YvwW48ryJktd06Z4yJn1BLw31UVX8iIrePOQ+Aqt47kRuKyHuBE6q6Q0TWTeD9twK3AsydOzei9x472c/gkLJ1fyvXnD8HgDXzinjpYBu/ea2RjNQU5pXmcP+2+pEFPHwJyXfsG3IzMOjl3k37QeHOjUvZeF4FAANDQ9y/7UhYC4CM14YZzuIgfR4vA4PDNn/emDgJVdLMcX/mBXlM1FqcvdTrgZ8B7xSRnwDNIlIO4P48EejNqnqfqq5W1dVlZWUR3fiS+SUUZKeRl5lGfWsPP9hSS3VjNzetqeLalRVs2nsCkFGJzH9fIXirVAfC7RsWc/u7zmFZRcHIVhqZaWlx7V2OxzAjY8xbpnRwu1vS/KKqvldE/hVoU9W7ReQOoFhVvxTq/ZEObt9W28I3n6rh3PI8ZhVNY07RNNp6Brjugtkj1eWxg7bHbqcbbHD3RAZ9R2OrXhtsbkz0TXZw+zki8qyI7HGPV4jI30c7SOBu4F0iUgu8yz2OqqrSXGYWZPLUnia+/1wtT+5pYmttKwdbe8jOcFZV923r6zN2rrjv3NjXTWQoznjV83A6eGwIkDHxFU7v+X8CdwKDAKq6C2d9zUlT1S2q+l73eZuqXqGqi9yf7dG4h79fvXaUZ/ee4GSfl7QU4XBbLxuWTh9JWjsbOvj67/fyUl3bSLIKNFc8Wh0v4yU86+AxJvGEkzSnqeorY85NZnzmlNl19CRDw1CSk0pxbgYr5hRQUZjl9woFhfoAi2n4lwpjMSsmUKnSZt8Yk3jCWYS4VUScvWgBEfkg0BTTqGKkruUUACd7vWSmZ/B8bQvb6zu4632prF1UxqrKYu7cuJT5pbmsmFPI/NJcttW20tU/SNPJvpG2TyDq+/2M7aUH21fImEQUTtK8DWf3ySUicgw4hDMHPelcvrCUQy2neMc5JcwsnMa2ujaGgZrmblZVvpWcfMlqe307926qoblzgI5eD4jw8cuchT6i0QHj/xlWqjQmOYQzuP2gqm4AyoAlqnqZqjbEPrToWzm3iJK8DNLT03iupoX3rajgpovnsnV/60hbpf/MHt++6DdcPJuKwiyqSrJHPitYe+NEplRWN3aG3aFjs3+MmVrh9J7XichPgT8F5sQ+pNg50tHLyVMenqlupvFkP81dTpX78nPK6OrzUF6QzaKyXJ6qbh5JZKsqi7hgTjF3XbOMSxe8NS402HTISDpvJlK6jGbnkCVgYyIXTkfQucB/ACXAPSJyUER+FduwYmNwyIt3GIbcoal5WRk8sbuRx984xg821/FUdROv1LezsCxn1GD2QIPHg02HjCQRxmKYUiSsd96YyIWTNL04w428OHPFmwkyWyfRdfcNjUx2F6BnYJBHdh7jiiUzeM955ZQXZNHrGeKFA63sbXISSXlBNvNLcygvyA76uf6JLFbjJn2lQiBqn2/tqMZELpyk2YWzwMYh4GZVvVRV/zymUcXI9sMnAcjLSOFz71zAJfNL6PUMkZ4qbKtrIz8rgxsvriQ3Kw3f/kGb9zXzyGtHeWDboVHVWP+qbTwGmMeiWg7RS8DGnC3CSZo3AluBvwR+JiJfEZErYhtWbMwqynJ/ZnP+nELystLJzUpjbkkO6xeXsbQ8nxsvnssXr1wCKH0eLxvPq+D6C2az73h3VFdZD4d/YrZquTGJIZze89+o6t8Afw48AdwC/DbGccXEnMJpCLCv+RR//+tqak/0cPuGc8jPSmNzTcvIdEpQ7n1mPzsb2inOzeD2Kxfz+Q2LorrKejgm0rseDquWGzNx4fSePyIidcB3cFY++hgQ9a0o4qH2RDe+5UmG1cvvdjdxqPUUS8tH94TXNPcwrApIwPGYoRbtiGZvdKySm81XN2biwqme3w2co6pXqeo/q+rzqtof68Bi4bXDb01nL8+fxpVLnYWD/beeqG7sZGttC9evms3S8nwe2XGE7z93YGSBju317exsaA9YvfUvGUYjgVpyMybxhLty+xkxkK94WubI892Nnew61sXHLp07aqzl/NJcPrN+IRvPq+CJ3Y089WbzyKIe/mtpBioB+pcMk7nd0MZvGhNcOCXNM8b0QidpFmSmkJ0mbK1ppr6tD2CkROkrdR5s7WHTvhNcde4Mrr9wzsjScZ9et4BVlUUBS4D+JcNkbjdM5oRvTKydVUnzvIpCUoCUFPAiZGekUl6QSXVjJ5v2nRi1TJxv35+N51WE3FQtmGSuWidzwjcm1sZdsEOcTYFuAuar6j+JyFxgZoDl4hLeyd4BhoFUgV7PMDm5GeRnZbCsooDPrF84kiS217czMOhlc00LS8rzg+7Pc6ay1ZWMCS6ckua/A5fijNcE6AZ+ELOIYuiZvc0AtPYOc1FlEV+6ajHuincjW1nc+3QN39lUS7B2Sxjd5hfsuTHmzBRO0lyjqrcB/QCq2gFkxDSqGMlIfauq3NXvYWttKz96/uBI290Tuxt55LWjLJmZF7TdEka3+QV7PlHRTryWyI2JrnCS5qCIOCO+AREpY/R+5UljePitsLv7h3hyTxMz8zMYGPTS3uOhJDeTjcvLWT4rn50NbyWaYx193PVYNb/f3Xja7JxwV3QPdz/1aHfCWKeOMdEVTtL8LvArYLqIfA14AfiXmEYVI4U5bw05aukcYHAYGrv6uHfTfv7v5Xq+9rs32bSvmW8+VcM9T+8fSTQPbDvET16q51+e2Hfa7Jxgz8cam7yCJbNod8JM9POshGpMYON2BKnqT0VkB3AFzioW16nq3phHFgPFORnQ0gu4u8QBJ3sGOdk/RH1rD+2nPKSnCiU5mVyzonwk0dyydh6Dw8qaeUWjko9vZtD80lwOtvaMXAs0W2hs8gqWzAJ1wkxmlfiJduoE2n7DGBNe73kxzlJwD/mdS1fVweDvSkx7m7pGHednptB6aoDOPi+zinK4/sJZvHCgjY9cNIcb11QCsK22FVD+9uolo6ZR7mzooOZ4F1trW9mwdDqba1r4+Np5HGrtYdPeE3zmnQtHJZvJ9EhPRQKzYUfGBBbOHkE7cVZs78ApaRYCTSJyAviUqu6IXXjRNT0vne6BAcD5IlctKweG2Xmkk/PnFJCZlsabTd0srygkOyN1ZI8gFO7cuHQkYVU3dnLvphqGh+H6VbPYeF4F80pz2dPYyRO7mrj2gopxk024ibDP42VgcJib1sxlYNA7shRdrNmwI2MCCydpPgn8SlWfAhCRK4GrgYdxhiOtiV140dXc6Rl5rsCmNxupKMzlnYtnUFmSy/P7W7ht3QKWluePTKm8fYMzLGl+aS7b69tHOnxuW7eI+tYeNp5XQXFuBpnpKTy5p4n+IS+LZ+SNm9jml+ayfnHZyArxwfhWjl+/uIzNNS1kpk88mUVjMzhjznbhJM3VqvoXvgNVfVpE/kVVbxeRzFBvTDR9gzrquKNfye0fYkdDB282dfFmYyefveIcGk86c879p1Bur3cW6fj42nlkpqeQmeYsXLxiTiHFucUsqygYWYfTf2dLCJysDrb2hDV43ldNnl+ay5Ly/IBtquEmQWunNGbywuk9bxeRvxWRSvfxJaDDHYaUVEOPCnNOTyxHTvYx6B2murGTxTPzaTp5iu8/V8up/iGe2H18pHfbl7xA+eGWOgaGdFRJMTsjlbWLSlm7qOy0BBaop9w/GW6rbWVbbUvAnmpfNbk4N+O0nvlIhxNZO6UxkxdO0vwTYDbwa+A3wFz3XCrw4ZhFFgOpKaNLmgIsnpHDDRfN5f0rZ9HnGeJXrzdxvNvDG0dPcs7M3JEE40teqyqL3eQ5zK9eOzayl1Ao/gly7BYZB1t7uHdTDfc+sz/isZSRJsFkng9vTKIIZ2m4VlX9rKpeoKorVfUzqtqiqh5VPRCPIKOld+CtgnEKcOm8IoaGlV/uOMLbz5nOtRfM5v0rK8jPSqU0L4PLF5UCjBqv6Es8mWlpIDAwpOOOZ/RPkIFKnLdvWMzt7zpnJPmFO0bSkqAx8Rc0aYrI4yLyWLBHPIOMlp63+oEYBrr6h8hKTWX57AJqm7vYur+F8sJs5pXmsnFZOSvnFI9UgXc2dIxKZKsqi7jz3UvJTJOAVeRAiS9QyTBQtT7e+w8ZY8IXqqR5D/AtnF0o+4D/dB89wJ7YhxZ7e5q6mVsyjT3HOnmy2lls+Kpl5VxcVUzNiR5+/foxuvoG+fjaKnxtmb5E5lszE2TUcCCfQKu4AyMdMKESVrz3HzLGhC9o77mqPg8gIl9V1cv9Lj0uIltjHlkcpAIdpzwsKM1hzfxSuvsH2XW0g+0NHaycXcDjbxwjRYQ7Ny5lWUUBmempIx03vtWR7t9WP2o4kG/V9vmluaet4u7rtR6vF3vsGMlYDBWKRWK2IU3mbBDOkKMyEZmvqgcBRGQeUBbbsOLDC/yxvoO0wx10DXh5+WAb71tZTkoKrJxbhIqMTJ30JTL/Ae+3v2sxn163gPKCbMAZexkoIYY7hTKYWAwVisXgdRvSZM4G4STNvwK2iMhB97gKZzvfM0JGqjMnfenMPA61nmJGfjZXLytnT2MXj+48infYS35WOqsqnQ6X+aW5vOe8CqpKsllVWTQyhtM35jJYu6UviUykNBYsySZayc6GNJmzQTi9508Ci4DPu4/FvtlBySZ3zCqguenwycvm8Y/XLCc9LYWVs/N4ZOdR9jR2Mrc4m4LsdF6saxs1HOhgaw/bDrSSn50xkqj8k8V4PdoTaUsM9pmJ1i5pvfnmbBCq9/xLfofvU9U33MeAiCTl0nD+vefgLBVXMC2TVw62cd/zdWze38bRjj4efLGezLQ07v7ACr545RKuXDaTrj7PyFqaH187b1THTzjJwn+3S/891ifTg20lO2PiL1RJ8wa/53eOuXZ1DGKJu4GhYR577RjP17ZwyYJS3r+ygoKsNBQFhlm7qJT8rDQe3XmU7z17gJ0NHVQ3djIw5OXeTfvZ2dAx8lnjJUBfqXDsHuuTKSlayc6Y+AuVNCXI80DHSamlZ5Dp+Rl09w9ypO0UR0/2kZedTm5mujN4HQBhWkYa16ysYGBoiK/+9k1+9uphhgaH8fWgw/hV5UClwniUFG08pjHRFSppapDngY6TUmYq5Gan0+MZxovyh/0tXLawlLuuWcbS8ny21bbS1T/INSvKuW7lbDLT0ug45eGlA23MLc1haflbyW68VYsClQrjUVJMtHZPY5JdqN7z80WkC6dUme0+xz3OmugNRWQO8D/ATJyJOfep6nfcxY5/jtM7Xw982N3ELSZSAK8X6k/0kpOewoBnmKKcTNYvns7aRWVsq23ln35bjderpKYK5YXZNHX289dXLubV+nZ2Hz3J3qYu1rpTLcNdtcinvcfDE7sbR5aWC0c0e96NMRMTtKSpqqmqmq+qeaqa5j73HadP4p5DwF+r6lLgEuA2ETkXuAN4VlUXAc+6xzGT4gZS3dSFApcuKOEr7zuXSxc4SXBgaIhhhQvm5jOsyou1LXx/cy17jnWydmEJvYPD7Dl2kvYez2kdPDB+tfiJ3Y3826ZantjdGHbMgUqN493H2j2Nia5wxmlGlao2AU3u824R2QvMAq4F1rkvexDYAvxtrOIYcn9OyxBUlS37T5CeKlSW5PJSXSt5We6/C+L8u7J6XglZGWnsO95NeWE2KQJPVjeTnpbC73Y1cfu7zmHtorfG/Aca6O1fUtx4XgXAyM9wBCo12oByY+Ir7knTn4hUARcALwMz3ISKqjaJyPR4xLCgNI/mnn5auj38YsdRTvYN8WJdG9ecX06KwM7DHaRICm09A3x63UJeP3KSN5s6ueb8ChaU5XC4vY9hVcb2jYWT4D56adWk47fqtzHxNWVJU0RygUeAL6hql0h4HfIicitwK8DcuXMnHceRzj6uWFLGK4c6mJ6XxS1vq2L5rAIGvcN8YcMiMtNSqW89xeb9LWSkpeAZGuY/tx5kZkEWf3pJJS8dbOP6VbNZVVkUcHfKsTtS+o/xjLTKHKhU6Vs4JJFmBiXaTCVjoimcRYijTkTScRLmT1X1Ufd0s4iUu9fLcXbAPI2q3qeqq1V1dVnZ5KbA56RDT+8glSU5XHnuTA60dPPknuOkpwj/va2eth4P71w6g6uWl1OYnc7ju5oYHFb+cv1C/vbqxaxfMoMNS6az8byKkXGX3998gB9uOcD3nztwWo91dkYqmekp3L+tfkK92cFKlYnWQ55o8RgTTXFPmuIUKf8L2Kuq9/pdegy42X1+M84q8TF1atBpsuz1DHHOjDwWluXyYq2zpuZt6xdSUZhFe4+HB7Yd4oXaFtJShOf3t5CTkcqlC8po6uxjc00LB1t7ACepbVgynX3N3WxYOj1glTnQKu6TXXQ40aroiRaPMdEkqvEdcikilwF/AHbz1h5Df4fTrvkwznYah4EPqWp7qM9avXq1bt++Pex7V93xu4DnS3LSyUxPpa17gNzsdG59+zzmFufw7U37+cCqWWw70EZBdjot3QOU5WVysneQz29YFLBa7F81BYJW130btTlbZ2CdOcYkEBHZoaqrA12bit7zFwg+o+iKeMbiI+plXnEe3X0ehr1enth1nAvmFtLY2ceR9j7+/PL5LC0v4Ind7i6Vy2aMJMCxidNXGuzzeHlkxxE27T3BhqXT2VzTMpIUfXuZf3xt1UhytZKZMclhSnvPE0W3RznY1oNnSEnPTKE0L5NlFQUMDQ/zxuGTzC/NYVVlMddfOId5pbkEmj45tpRY3djJpn1Owtx4XsWo7Xd9e5l/et2CkZKnlTCNSQ5T0hGUaHLS4cOr5/Kh1bPJSEvhhdoWfrS1jrTUVE4NDnH/tkO8VNcCQE1zN/c8XTOyWIevR7yrb3DUNrzzS3NHOonGbr873pRLY0zisqQJdPYrh9tPsXZhKR+9pIqZBVmkp6Sw68hJSvMyaO3u52evHOGluhZ+8/oxWns8DAwNjbz/UGsP33uu9rR1N/07ifwFuxatxTVskQ5jYseSJuBVeOy1Jr69qZZzywuYUZDFvuZu+jxDdPYOIpLCC7UnqG/rY+N55WSlp4xs3buzoZ1N+05wzfmzRm3DG6oHeew1X5Lb2dAelaE6wXbQNMZMniVNV2l+BlcsKWNgaIij7X2kCrT3DjAtPY2h4WHetrCMq5bNJD1VyM1Io+lkHz/cUgcIn1m/kBsvnjtqG17/TqKxSWvs0CFfkgOJSoeQLymP3UHTGDN51hHkau7y8PCOYxxoOUVBVhqzCotoPdVPc3c/KSkpLJtVwH/+oY5XD7Zz8bxirlpezuKZ+QwMefHvGPIfchTuvPCxJc9Qw5jCmWHj34Pv2yHTGBMdVtJ0zS+ZxoBnkK01J5hTkkPPwBCluVl86rIF/MlFcwDl4VePcKyzl1cbOti8rxlQfrDlwKi2TP/ZMIGq6IHaG/1LnoFm00x0hk2gwfDW3mnM5FjSdPUMDNDtUdJThZxMofFkHzvqO3iloY1dxzpBISczjcLsDC6qLGLT3hOAcPuGxUHbMgMlrfHaGwO1dw4MDnPTmrmj9iWaKJviaMzkWPXcdaLHSUa9HuXFujYKp6Vxzow8ZhdlUXO8mz2N3czMy+L9F87iupWzAy7IAePvJ+5LigOD3rCq7r4xnesXl7G5poXM9NCfP15V3qY4GjM5ljTH8AKosHhmAXUt3Tz7ZgvtvYOc6Grl7edMp6pk2riJMZTx2hvHtoP6z1X3HyAfzHjtqJOJ3RhjSRNw5nSWF2TQ2Ons8Xve7ELqWrrxDCmIMi1TWDy9iNePdNDY3ktmWhqZ6SmUF2SzeV9zyC0rAs1FDzYFE04vCfonuXC20bCSpDGxZW2aOH3fvoQ5pyibOYWZ9Hq8qA5zpL2f3oFhZhXlcGrAywVVRfiG8jyw7dC4W1b4tyGObU8M1L44th000o4b297CmNiykqYrIwVQONHZx2O7jtPZN8iM/CwumVfM9atmkZGWSnqK8Mm3O6sSzS/N4boLZlFZMo31S2awvb49YDui/5TJ7IzUkVJgoEU7ArHtLIxJLFbSxKme52elkpmRyuqqIpZVFJCWIly+qITPvnMhFYXZ/M8f69l1rJP61lM8sO0Qj+w8ymuHO7j+wjls3tfMd56t5ZEdR04rEfpPmRw7tOj+bYfITE8NWSr0r277lzpt6JAxU8OSpqtwWibdA15ere/gRNcAN1xcyfT8LO56vJrWHg/vOa+C29Y7s2xqmru5ftVsLl1Qyr1P1/DEnuMsmZHHpr0nThvKE6yNMZy2x7E94aGq+saY+LCkidOm2dDWC4BnGIaGh1kzr4jf7TrOkfY+tje0se1AK/nZGayqLOZzVyzi9isX81JdK4+8dpRzZuRx6YISPvX2eaclwWADzMOZ4TM2MfonWuvwMWZqWNJ0DfotYF/feooHX2xg/eJSinMyyMtKZ+2CEsoLsqlu7KS8IJuHXjlMXlY6n1m3kDXzivjecweoOd4d1r3CLSUG60m3Th5jpo51BLlSgOJpqXT1eZlVnMUrh9rp6PUwMDjEIzuPkp+VDgLbDrQxvzSHh7cfYWZBFv/w3mXUNHfTMzDI47uaWDGncFSHTaBSZbilxFBjKq2DyJipYUnTNQzkZWXQ2tvHgrI8egeHqWnuIQVIT4Ws9BSqSnJYPCOf1p4BTvZ6SBPo6vewtbaFGy+uZPGM3HEHq0N0Bphb9dyYqWFJ009Dex8AzSf7ONHlGTk/4IVzywu4dEEp1Y2dPPDiIY6d7KPXM0RmZjqfumweqyoDV5vH2+t8onuE28weY6aGtWn68W2NOaRKuvubyclI5fKFJRRmptF4so+uviGWzMwlMy2FOUXT2NvYFXLY0Hh7nVsvuDHJxUqaAextPkVRdipVeVmkiuDxKg/vPMbhk/30eobo7h+iu99LxykPN15cNmpFImfvIB0peY43iH2y1eyJllSNMRNjJc0guvq9tPUOMLMgk8bOXlbMLuBIxykWTs9ldWUhswqyuO6C2ayqLOSlulae29vMQy83cM/T+05bX/P+bYcAGVnF3X9geqge8XAGsFtJ1Zj4spJmEF6Ftp4hXm3owDsMM/KyaO32sO1AKzmZ6Vy7soK27gF+tKWO3kEv/YPDFE/LYOOKctJTZGSnyUBLwQFhLws39nVjS5bWIWRMfFlJM4DsdBl5npuZxiXzSjjc3ssFcwpZOD2PoWEvzZ19/PqNRjIzUjl/VgGFWelce0EFyyvy2VbXNrLTpC+xgYxU0cNNdP7LwvlKnGNLljZ205j4sqQ5RjrQN6hMz0nliiVlLKsoJDcrhRPdHl6ub2dbbSsej7PR2mULS9l7rJM3jnXx/gtns3hGHkvLT98Hfew8c/+e72DV7/YeD4/sOML80lwOtvaE3ELDGBM/Vj0fY9D9eeKUl5fqWukbVMoLM0kTGHS718vysvAMebl8URl9g16WledRXpDJN5+qYdWcQt5+Tik/2FIHCnduXBpwC4vqxk4GBr3cv61+pPrtX/V+Yncj927aT0NbL59et/C0LTSMMVPDkmYIXq8iQOPJATJShfRhJTUFqps6+caTNQx6h+nqG6Sh7RQF0zLpOOXhlzuPMqckh9s3LAY0YInQV8W+aU3lyLJx/uc/vW4BG8+roKGtl33HuznY2mOJ0pgEYUkzhIFhZ9m4nHThlDs5PTNVKMrOYM28IrbWtlKYk84HL5zNdStnUVWSQ31rD9etnDWyknufx8tDrzTw+OuNfPaKReRnpzO/NJdPr1tAV5+HX712jHmlOaxdVHbapmy3X7l41KrvxpipZ22aYTg1qKTgJND01FTOm1XI3JJpDHqVdy8r52OXziM7I5X87DRuXFM5auuL6sZOfvN6I62nPNSe6OaHW+pGSo6ZaWnOhzr/Oa1TZ+xxe4+Hn7xUT3uPB2PM1LCkGUSK+/AVxQW4cG4hKQJ/2H+CE10eblu/kDXzi9nZ0M7OhvaA4yWXVRRw7coKSnMyWDQ9b9SUylWVRdz57qWsqiwKK6YndjeOu72GMSa2rHoehG9KpQDT0qAsP4u0VCEtVZiWkcor9W1UlU7j3mf2M6zw4dVzuGnNXFq6B/iP5+tYND2HlXOKOdjaw3UrZ7NiduHIRmo/3FI3shVvJG2VG8+rGPXTGBN/ljTH4QUGhqChvZ+G9n5KcjJ455IyXqhr46W6dgaGnM6gx99o5AOrZnH/C/W0dPczu3gab19UxhtHOvjilUtYu6gUmNy0yeLcDD56aVV0v6AxJiJWPQ+DF+cXlZMOl59TAiit3QP8sa6FvMw0Br1eVs4pZNCrZKQJJXmZvG1eMTvq22nt8TAwNDTq8wYGh9nZMPH9fcLdH8j2ETIm+ixphmkY8AzBK/XtvHiwg6KcDMrys+gfHOLyc2ZwUVURT+45zkcumss/X7uc9UtncNXymWSlpzAwpKNm9Ny7qYZvPlXDvU/XhNWpMzb5hTvf3OalGxN9Vj2PwKBCCoIIpKQJRzr6yUoThoehNDcDUJZXFJCZnsL3Nx+gLCeDjl4Pz+09zvFuD1edO4P1S2bwnvMqOHSim1/uPALA7VcuDmuvIN8g+EinYUZryJKtqGSMlTQjkp+dSr9nkI5eD8c6BkgB+oeUxpN9bNnXzJKZ+bx2pIOW7n4uX1jKi3WttPcMsq2ufWS3yqeqj/O73Y2snlfCZQvLeP3IyYAlTv/SZaCFjMOZbx7teelWcjXGkmZEuvq8tJzyMjQ0zDBv9bAPDENL9wCba47zvedq+epv3+Rg6yk+edkCLqws4rZ1C7h0QQkfu7SSQa+XYa/S1jNA98AQMwuyeGTn0dOGEfknKCfpKfc8vZ+HXm6YsjZKm/dujFXPJ6QvQM7q90JF/jS6+7rp6R3goVcOs7w8j0NtvdS25PPMvhOU52fxfG0Lf3LRHK5aXk5GWgoXzC2iJDeTvKw0ttW2sLS8gIOtPZQXZI+aYglCr2co4OZt8WLz3o1JwKQpIlcD3wFSgR+r6t1THFLY3jzeSf8QlOWk0zU4yP6WHoqmZVKam0l5QTY/3lpH66lBqpu6Ofd4J7967RieoWF2HzvJtgOtpAh85KI5bDvQxvrFZWyuaWFJeT7ZGQUMDA3zgVWzWTQ957SFP/zbGMNpd7S2SWMmLqGq5yKSCvwAeDdwLnCjiJw7tVGFr38IUgWqSqaRky5kpyp9nkGe3NXEH+taGfIOc+6MXHY2tPP73ccZ8iqDw8Pctm4hH7xwFtPSU6kqyeHT6xawfsmMkZLmzoZ2vvHkXp7Y1UTjyf6R+/lX4X1toMFmJvmztkljJi7RSpoXAwdU9SCAiPwMuBZ4c0qjioBX4dXDTjI6NQjgpaOvG453A3CyvwcFfr3zGJWl03h0x1FWzC4ElCuWTmdGfhYPbDtEbXM3fYNe6k70sHJuId5hpTQvg1+8eoSS3EzaegZYv2TGSBvjzoYO7nm6hquXzwi6H5HP2MWNfWt2TkXJ00q9JtkkWtKcBRzxOz4KrPF/gYjcCtwKMHfu3PhFFiXq/hwEDrT2kpeRysHWY3iHYVZRNjXNPfx2VxMKZKel0Nh5FBUhNUVoaO0lNVV4+WAbj+9qAvCbIaT0eoZ4cvdxLgyynbCPr21ye71TKvU1BYy3/UYsBNrSw5hElmhJUwKc01EHqvcB9wGsXr1aA7w+oZTkQP+AMzA+XSBnmgApLJtVRGlOBmvml3K0o5fmrn7esbiMc2bkk5WWQkuPh3ctncHAkJerlpePPM9MS6GqNJeF03NHzUFfVVnMP7x3GcHW8AzEv8S5pDx/SnrFrUfeJBtRTZy8IyKXAnep6lXu8Z0Aqvr1QK9fvXq1bt++PY4RGmPOBiKyQ1VXB7qWUB1BwKvAIhGZJyIZwA3AY1MckzHGjEio6rmqDonIZ4CncIYc3a+q1VMcljHGjEiopAmgqk8AT0x1HMYYE0iiVc+NMSahWdI0xpgIWNI0xpgIWNI0xpgIWNI0xpgIWNI0xpgIWNI0xpgIJNQ0ykiJSAvQEOHbSoHWGIQTa8kYdzLGDBZ3vCVi3JWqWhboQlInzYkQke3B5pQmsmSMOxljBos73pItbqueG2NMBCxpGmNMBM7GpHnfVAcwQckYdzLGDBZ3vCVV3Gddm6YxxkzG2VjSNMaYCTtrkqaIXC0iNSJyQETumOp4/InI/SJyQkT2+J0rFpFnRKTW/Vnkd+1O93vUiMhVUxM1iMgcEdksIntFpFpEPp/osYtIloi8IiJvuDF/JdFj9iciqSLymoj81j1O+LhFpF5EdovI6yKyPVniDkpVz/gHzoLGdcB8IAN4Azh3quPyi+9yYBWwx+/cN4E73Od3AN9wn5/rxp8JzHO/V+oUxV0OrHKf5wH73fgSNnacfahy3efpwMvAJYkc85j4bwf+D/htEv09qQdKx5xL+LiDPc6WkubI1sCq6gF8WwMnBFXdCrSPOX0t8KD7/EHgOr/zP1PVAVU9BBzA+X5xp6pNqrrTfd4N7MXZUTRhY1dHj3uY7j6UBI7ZR0RmA+8Bfux3OuHjDiJZ4z5rkmagrYFnTVEs4Zqhqk3gJCdguns+Ib+LiFQBF+CU3BI6dreK+zpwAnhGVRM+Zte3gS8Bw37nkiFuBZ4WkR3uFtyQHHEHlHDbXcTIuFsDJ5GE+y4ikgs8AnxBVbtEAoXovDTAubjHrqpeYKWIFAK/EpHlIV6eEDGLyHuBE6q6Q0TWhfOWAOem6u/JWlVtFJHpwDMisi/EaxMp7oDOlpLmUWCO3/FsoHGKYglXs4iUA7g/T7jnE+q7iEg6TsL8qao+6p5OithV9SSwBbiaxI95LfA+EanHaV56p4j8hMSPG1VtdH+eAH6FU91O+LiDOVuSZjJuDfwYcLP7/GbgN37nbxCRTBGZBywCXpmC+BCnSPlfwF5VvdfvUsLGLiJlbgkTEckGNgD7EjlmAFW9U1Vnq2oVzt/f51T1oyR43CKSIyJ5vufAlcAeEjzukKa6JypeD2AjTu9uHfDlqY5nTGwPAU3AIM6/tJ8ASoBngVr3Z7Hf67/sfo8a4N1TGPdlOFWnXcDr7mNjIscOrABec2PeA/yDez5hYw7wHdbxVu95QseNM2LlDfdR7ft/L9HjDvWwGUHGGBOBs6V6bowxUWFJ0xhjImBJ0xhjImBJ0xhjImBJ0xhjImBJ8wwkIl53RRnf47RVnURknW+lnKkiIn8hIh8b5zW3iMj3g1z7uxDv+5C7+tLmycYZLX6r/ewSkedFpNLvmorIt/yOvygid415/xsi8lAcQzYBWNI8M/Wp6kq/x91THVAgqvojVf2fSXxE0KSJM9b1L1V1vf9JEZnqqcPrVXUFzkykv/c7PwB8QERKA71JRJbi/P96uTtI3EwRS5pnEXHWFN0nIi8AH/A7X+auabhTRP5DRBp8//OKyEfFWX/ydfda6pjPvFhEHnWfXysifSKSIc66lQfd8wtE5El3wYY/iMgS9/xdIvJF9/lFbgnsJRH5V/FbWxSocN9fKyLfdF9/N5DtxvXTMTH9A87A+x+5n3WLiPxCRB7HWTiiWER+7d7vjyKywi+eB0XkabdU+AER+aZbOnzSnTI69nf6ORF50/2sn7nnckXkv/1KldcH+ON4idELUQzhbPvwV0H++P4E+F/gaeB949w/R5w1Wl8VZ+3Na93z2SLyM/e1PxeRl0UkaXaBTBhTPbreHtF/AF7emqHzOvARIAtn9ZhFOIsiPMxbs0q+D9zpPr8aZ5ZPKbAUeBxId6/9O/CxMfdKAw65z+/BmbK6FngH8JB7/llgkft8Dc4UQIC7gC+6z/cAb3Of3427tihwC3AQKHC/QwMwx73WE+J3sAVY7fcZR3FnnQDfA/7Rff5O4HW/eF7AWS7ufKAXd0YKzpzp6wLcpxHIdJ8Xuj+/AXzb7zVF7s963HUlcVYsutXvNT1AvvuaAuCLwF1+1/cDlTjTEB8b5/7/AnzUd859bw7OWpz3u+dX4CTq1VP99zXZHlNdVTGx0aeqK/1PiMhKnORW6x7/BPAt03UZ8H4AVX1SRDrc81cAFwKvirNyUTZvLayA+/ohcVbZXoqzEMO9OIsqpwJ/EGcFpLcBv5C3Vj/KHBNbIZCnqi+6p/4PeK/fS55V1U73tW/iJA//5cPC8Yyq+tYsvQy43o3/OREpEZEC99rvVXVQRHa73+FJ9/xuoCrA5+4CfioivwZ+7Z7bgDM/HPceHX6v3ywiM3B+j/7Vc9RZIep/gM8Bfb7zInIR0KKqDSJyFLhfRIrczw10/ytxFvf4onucBczF+XP5rnuvXSKyK8jvyoRg1fOzS7A5s8HWchPgQX2rbXSxqt4V4HV/AN6NM3d+E05SugzYivN37KSObmNdGub9fQb8nnuZ2JKGp8a5n+93MwCgqsPAoLrFMpw1LAPd9z3AD3D+cdnhtpkKwX/X63GSfjXwTwGufxunPda/3fJGYIk4KxzV4ZRIfVX+YPe/3u/3PVdV9475nmaCLGmePfYB80RkgXt8o9+1F4APA4jIlYBvv5ZngQ+Ksw6ib1+XSk63FfgC8JKqtuAsxrAEqFbVLuCQiHzI/QwRkfP93+yWmLpF5BL31A2EZzBQO2MYtgI3ufGsA1rdOCMiIik4TQWbcRYHLgRycdodP+P3uiL/96lqH87v62MiUjzmWjtO08kn/O7xIWCFqlaps8rRtcCNIe7/FPBZcYv2InJBgO+9HKeKbiJkSfPM5Osg8T3uVtV+nOr478TpCGrwe/1XgCtFZCdOibEJ6FbVN3GqkE+7VblncPYFGutlYAbO/5TgVBl3+ZXSbgI+ISK+lW4CbTXyCeA+EXkJp6TUGcb3vA/YNbYjKAx3Aavd73Q3by1RFqlU4CduVf414N/UWaPzn4EiEdnjfuf1Y9+ozmrlDwG3Bfjcb+G0KYNTpT6mqsf8rm/F2UtnVpD7fxWnXXaX26H2Vfd9PwRy3e/9JRJtybUkYascGUQkE/C67ZOXAj8c2yYahxhy1d27R5xxpeWq+vl4xnC2EZEtOB1x26c6lmRiHUEGnE6Ch93qngf41BTE8B4RuRPn72QDTo+3MQnHSprGGBMBa9M0xpgIWNI0xpgIWNI0xpgIWNI0xpgIWNI0xpgIWNI0xpgI/H/zV4rDA7ANLQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "coef, p = spearmanr(concated_edges['EdgeWeight_sc'], concated_edges['EdgeWeight_bp'])\n", + "plt.figure(figsize=(5, 5))\n", + "plt.scatter(concated_edges['EdgeWeight_sc'], concated_edges['EdgeWeight_bp'], s=1, alpha=0.5)\n", + "plt.xlabel('Edge weight from scRNAseq')\n", + "plt.ylabel('Edge weight from BLUEPRINT')\n", + "plt.title(f'Spearman r = {coef:.2f}')\n", + "# plt.savefig('grnboost2_sc_bp_comparison.png')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/01_association_metrics/.ipynb_checkpoints/compare_cell_classification-checkpoint.ipynb b/01_association_metrics/.ipynb_checkpoints/compare_cell_classification-checkpoint.ipynb new file mode 100644 index 0000000..75b0224 --- /dev/null +++ b/01_association_metrics/.ipynb_checkpoints/compare_cell_classification-checkpoint.ipynb @@ -0,0 +1,1164 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from scipy import stats\n", + "import pandas as pd\n", + "import matplotlib as mpl\n", + "mpl.rcParams['pdf.fonttype'] = 42\n", + "import numpy as np\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%run dataset.ipynb" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "onemillionv2 = DATASET('onemillionv2')\n", + "onemillionv2.load_dataset()\n", + "\n", + "onemillionv3 = DATASET('onemillionv3')\n", + "onemillionv3.load_dataset()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "data_sc = onemillionv2.data_sc[onemillionv2.data_sc.obs['time']=='UT']\n", + "data_obs = data_sc.obs" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
orig.identnCount_RNAnFeature_RNAbatchlanechemexp.idtimepointpercent.mtnCount_SCTnFeature_SCTcell_typecell_type_lowerresassignmentbare_barcode_lanetime
index
AAACCTGAGAGTACAT_180925_lane11M_cells5190.01518180925_lane1180925_lane1V22UT1.5606943297.01438mono 2monocyteLLDeep_1370AAACCTGAGAGTACAT_180925_lane1UT
AAACCTGAGTGTCTCA_180925_lane11M_cells5597.01652180925_lane1180925_lane1V212UT3.3946763353.01507th1 CD4TCD4TLLDeep_0434AAACCTGAGTGTCTCA_180925_lane1UT
AAACCTGCAGTCGATT_180925_lane11M_cells3039.0849180925_lane1180925_lane1V211UT3.6854232786.0849naive CD8TCD8TLLDeep_1319AAACCTGCAGTCGATT_180925_lane1UT
AAACCTGCATTCGACA_180925_lane11M_cells3876.01048180925_lane1180925_lane1V22UT3.7667702996.01047mono 1monocyteLLDeep_1370AAACCTGCATTCGACA_180925_lane1UT
AAACCTGGTAATAGCA_180925_lane11M_cells4272.01141180925_lane1180925_lane1V212UT4.5646073076.01131mono 1monocyteLLDeep_0434AAACCTGGTAATAGCA_180925_lane1UT
\n", + "
" + ], + "text/plain": [ + " orig.ident nCount_RNA nFeature_RNA \\\n", + "index \n", + "AAACCTGAGAGTACAT_180925_lane1 1M_cells 5190.0 1518 \n", + "AAACCTGAGTGTCTCA_180925_lane1 1M_cells 5597.0 1652 \n", + "AAACCTGCAGTCGATT_180925_lane1 1M_cells 3039.0 849 \n", + "AAACCTGCATTCGACA_180925_lane1 1M_cells 3876.0 1048 \n", + "AAACCTGGTAATAGCA_180925_lane1 1M_cells 4272.0 1141 \n", + "\n", + " batch lane chem exp.id \\\n", + "index \n", + "AAACCTGAGAGTACAT_180925_lane1 180925_lane1 180925_lane1 V2 2 \n", + "AAACCTGAGTGTCTCA_180925_lane1 180925_lane1 180925_lane1 V2 12 \n", + "AAACCTGCAGTCGATT_180925_lane1 180925_lane1 180925_lane1 V2 11 \n", + "AAACCTGCATTCGACA_180925_lane1 180925_lane1 180925_lane1 V2 2 \n", + "AAACCTGGTAATAGCA_180925_lane1 180925_lane1 180925_lane1 V2 12 \n", + "\n", + " timepoint percent.mt nCount_SCT nFeature_SCT \\\n", + "index \n", + "AAACCTGAGAGTACAT_180925_lane1 UT 1.560694 3297.0 1438 \n", + "AAACCTGAGTGTCTCA_180925_lane1 UT 3.394676 3353.0 1507 \n", + "AAACCTGCAGTCGATT_180925_lane1 UT 3.685423 2786.0 849 \n", + "AAACCTGCATTCGACA_180925_lane1 UT 3.766770 2996.0 1047 \n", + "AAACCTGGTAATAGCA_180925_lane1 UT 4.564607 3076.0 1131 \n", + "\n", + " cell_type cell_type_lowerres assignment \\\n", + "index \n", + "AAACCTGAGAGTACAT_180925_lane1 mono 2 monocyte LLDeep_1370 \n", + "AAACCTGAGTGTCTCA_180925_lane1 th1 CD4T CD4T LLDeep_0434 \n", + "AAACCTGCAGTCGATT_180925_lane1 naive CD8T CD8T LLDeep_1319 \n", + "AAACCTGCATTCGACA_180925_lane1 mono 1 monocyte LLDeep_1370 \n", + "AAACCTGGTAATAGCA_180925_lane1 mono 1 monocyte LLDeep_0434 \n", + "\n", + " bare_barcode_lane time \n", + "index \n", + "AAACCTGAGAGTACAT_180925_lane1 AAACCTGAGAGTACAT_180925_lane1 UT \n", + "AAACCTGAGTGTCTCA_180925_lane1 AAACCTGAGTGTCTCA_180925_lane1 UT \n", + "AAACCTGCAGTCGATT_180925_lane1 AAACCTGCAGTCGATT_180925_lane1 UT \n", + "AAACCTGCATTCGACA_180925_lane1 AAACCTGCATTCGACA_180925_lane1 UT \n", + "AAACCTGGTAATAGCA_180925_lane1 AAACCTGGTAATAGCA_180925_lane1 UT " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_obs.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAU2UlEQVR4nO3df5Cd1X3f8ffHwsoPFdtjs8auBJViK2XUFBy8QFxoXNyaIDOtoHZqEdc4/lENUxQP9XhqTTOT0HEzgZZ0XNvYGg2DHTKmmsRGjFpkMHUmJo1No5XBgAhyFKGWjewgsCe2G4IQfPvHfdRclivts9JerTh6v2Z29j7nx3PPkXY/e+65z703VYUkqV0vW+gBSJLGy6CXpMYZ9JLUOINekhpn0EtS4wx6SWpcr6BPcmmSXUl2J9lwhHbnJXkuybvm2leSNB6zBn2SRcBNwGpgFXBlklWHaXcDcPdc+0qSxqfPiv58YHdV7amqA8BmYM2Idr8CfAl44ij6SpLG5JQebZYCjw8dTwMXDDdIshS4AngbcN5c+g6dYx2wDmDJkiVvPuuss3oMTZIEsGPHjieramJUXZ+gz4iyme+b8AngY1X1XPKC5n36DgqrNgGbACYnJ2tqaqrH0CRJAEn+9+Hq+gT9NHDG0PEyYN+MNpPA5i7kTwPekeRgz76SpDHqE/TbgZVJVgB/DqwFfmm4QVWtOHQ7yeeB/15VdyQ5Zba+kqTxmjXoq+pgkvUMrqZZBNxSVTuTXN3Vb5xr3/kZuiSpj5yIb1PsHr0kzU2SHVU1OarOV8ZKUuMMeklqnEEvSY0z6CWpcX0ur3xJWb7hzoUeQi97r79soYcg6SThil6SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxvYI+yaVJdiXZnWTDiPo1SR5M8kCSqSQXDdXtTfLQobr5HLwkaXazvk1xkkXATcDbgWlge5KtVfXIULOvAlurqpKcDfwucNZQ/cVV9eQ8jluS1FOfFf35wO6q2lNVB4DNwJrhBlX1o/qbTxlfApx4nzguSSepPkG/FHh86Hi6K3uBJFckeRS4E/jAUFUBX0myI8m6YxmsJGnu+gR9RpS9aMVeVVuq6izgcuDjQ1UXVtW5wGrgmiQ/P/JOknXd/v7U/v37ewxLktRHn6CfBs4YOl4G7Dtc46q6F3hDktO6433d9yeALQy2gkb121RVk1U1OTEx0XP4kqTZ9An67cDKJCuSLAbWAluHGyR5Y5J0t88FFgNPJVmS5NSufAlwCfDwfE5AknRks151U1UHk6wH7gYWAbdU1c4kV3f1G4F3AlcleRZ4Gnh3dwXO6cCW7m/AKcBtVXXXmOYiSRph1qAHqKptwLYZZRuHbt8A3DCi3x7gnGMcoyTpGPjKWElqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxvYI+yaVJdiXZnWTDiPo1SR5M8kCSqSQX9e0rSRqvWYM+ySLgJmA1sAq4MsmqGc2+CpxTVW8CPgDcPIe+kqQx6rOiPx/YXVV7quoAsBlYM9ygqn5UVdUdLgGqb19J0nj1CfqlwONDx9Nd2QskuSLJo8CdDFb1vft2/dd12z5T+/fv7zN2SVIPfYI+I8rqRQVVW6rqLOBy4ONz6dv131RVk1U1OTEx0WNYkqQ++gT9NHDG0PEyYN/hGlfVvcAbkpw2176SpPnXJ+i3AyuTrEiyGFgLbB1ukOSNSdLdPhdYDDzVp68kabxOma1BVR1Msh64G1gE3FJVO5Nc3dVvBN4JXJXkWeBp4N3dk7Mj+45pLpKkEWYNeoCq2gZsm1G2cej2DcANfftKko4fXxkrSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxvYI+yaVJdiXZnWTDiPr3JHmw+/p6knOG6vYmeSjJA0mm5nPwkqTZzfqZsUkWATcBbwemge1JtlbVI0PNHgPeWlXfT7Ia2ARcMFR/cVU9OY/jliT11GdFfz6wu6r2VNUBYDOwZrhBVX29qr7fHd4HLJvfYUqSjlafoF8KPD50PN2VHc4HgS8PHRfwlSQ7kqw7XKck65JMJZnav39/j2FJkvqYdesGyIiyGtkwuZhB0F80VHxhVe1L8lrgniSPVtW9Lzph1SYGWz5MTk6OPP/JaPmGOxd6CL3svf6yhR6CpMPos6KfBs4YOl4G7JvZKMnZwM3Amqp66lB5Ve3rvj8BbGGwFSRJOk76BP12YGWSFUkWA2uBrcMNkpwJ3A68t6q+PVS+JMmph24DlwAPz9fgJUmzm3XrpqoOJlkP3A0sAm6pqp1Jru7qNwK/BrwG+EwSgINVNQmcDmzpyk4Bbququ8YyE0nSSH326KmqbcC2GWUbh25/CPjQiH57gHNmlkuSjh9fGStJjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXG9gj7JpUl2JdmdZMOI+vckebD7+nqSc/r2lSSN16xBn2QRcBOwGlgFXJlk1YxmjwFvraqzgY8Dm+bQV5I0Rn1W9OcDu6tqT1UdADYDa4YbVNXXq+r73eF9wLK+fSVJ49Un6JcCjw8dT3dlh/NB4Mtz7ZtkXZKpJFP79+/vMSxJUh99gj4jympkw+RiBkH/sbn2rapNVTVZVZMTExM9hiVJ6uOUHm2mgTOGjpcB+2Y2SnI2cDOwuqqemktfSdL49FnRbwdWJlmRZDGwFtg63CDJmcDtwHur6ttz6StJGq9ZV/RVdTDJeuBuYBFwS1XtTHJ1V78R+DXgNcBnkgAc7LZhRvYd01wkSSP02bqhqrYB22aUbRy6/SHgQ337SpKOH18ZK0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcb0+SjDJpcB/YfC5rzdX1fUz6s8CPgecC/xqVd04VLcX+CHwHN1nyc7P0KUTw/INdy70EHrZe/1lCz0ELZBZgz7JIuAm4O3ANLA9ydaqemSo2feADwOXH+Y0F1fVk8c4VknSUeizdXM+sLuq9lTVAWAzsGa4QVU9UVXbgWfHMEZJ0jHoE/RLgceHjqe7sr4K+EqSHUnWHa5RknVJppJM7d+/fw6nlyQdSZ+gz4iymsN9XFhV5wKrgWuS/PyoRlW1qaomq2pyYmJiDqeXJB1Jnydjp4Ezho6XAfv63kFV7eu+P5FkC4OtoHvnMki1xScvpeOrz4p+O7AyyYoki4G1wNY+J0+yJMmph24DlwAPH+1gJUlzN+uKvqoOJlkP3M3g8spbqmpnkqu7+o1JXgdMAa8Ank9yLbAKOA3YkuTQfd1WVXeNZSaSpJF6XUdfVduAbTPKNg7d/i6DLZ2ZfgCccywDlCQdG18ZK0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcb2CPsmlSXYl2Z1kw4j6s5J8I8kzST46l76SpPGaNeiTLAJuAlYz+MDvK5OsmtHse8CHgRuPoq8kaYz6rOjPB3ZX1Z6qOgBsBtYMN6iqJ6pqO/DsXPtKksarT9AvBR4fOp7uyvro3TfJuiRTSab279/f8/SSpNn0CfqMKKue5+/dt6o2VdVkVU1OTEz0PL0kaTZ9gn4aOGPoeBmwr+f5j6WvJGke9An67cDKJCuSLAbWAlt7nv9Y+kqS5sEpszWoqoNJ1gN3A4uAW6pqZ5Kru/qNSV4HTAGvAJ5Pci2wqqp+MKrvmOYiSRph1qAHqKptwLYZZRuHbn+XwbZMr76SpOPHV8ZKUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWpcr6BPcmmSXUl2J9kwoj5JPtnVP5jk3KG6vUkeSvJAkqn5HLwkaXazfmZskkXATcDbgWlge5KtVfXIULPVwMru6wLgs933Qy6uqifnbdSSpN76rOjPB3ZX1Z6qOgBsBtbMaLMGuLUG7gNeleT18zxWSdJR6BP0S4HHh46nu7K+bQr4SpIdSdYd7UAlSUdn1q0bICPKag5tLqyqfUleC9yT5NGquvdFdzL4I7AO4Mwzz+wxLElSH31W9NPAGUPHy4B9fdtU1aHvTwBbGGwFvUhVbaqqyaqanJiY6Dd6SdKs+gT9dmBlkhVJFgNrga0z2mwFruquvvk54C+r6jtJliQ5FSDJEuAS4OF5HL8kaRazbt1U1cEk64G7gUXALVW1M8nVXf1GYBvwDmA38FfA+7vupwNbkhy6r9uq6q55n4Uk6bD67NFTVdsYhPlw2cah2wVcM6LfHuCcYxyjJOkY+MpYSWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqXK9Xxko6uSzfcOdCD6GXvddfttBDeElwRS9JjXNFL6l5J/sjFFf0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1rlfQJ7k0ya4ku5NsGFGfJJ/s6h9Mcm7fvpKk8Zo16JMsAm4CVgOrgCuTrJrRbDWwsvtaB3x2Dn0lSWPUZ0V/PrC7qvZU1QFgM7BmRps1wK01cB/wqiSv79lXkjRGfd4CYSnw+NDxNHBBjzZLe/YFIMk6Bo8GAH6UZFePsR0vpwFPzucJc8N8nm3OWpsPtDen1uYD7c3pRJvP3zlcRZ+gz4iy6tmmT99BYdUmYFOP8Rx3SaaqanKhxzFfWpsPtDen1uYD7c3ppTSfPkE/DZwxdLwM2NezzeIefSVJY9Rnj347sDLJiiSLgbXA1hlttgJXdVff/Bzwl1X1nZ59JUljNOuKvqoOJlkP3A0sAm6pqp1Jru7qNwLbgHcAu4G/At5/pL5jmcl4nZBbSsegtflAe3NqbT7Q3pxeMvNJ1cgtc0lSI3xlrCQ1zqCXpMadlEGf5HVJNif5sySPJNmW5KeTPJ3k/iR/kuSPk7xvRN/zkjyX5F1JXpPkge7ru0n+fOh48Yk8nySvTPLfknwryc4k7z9R5nO8JfnlJH97ge67kvzW0PFHk1zX3b4uyUe72z+e5J4kv74Q4+yr+914oPuZ+laSjyR52VD9+Unu7d4W5dEkNyf5yYUc81wNzfFbSb6Z5B8s9Jhmc9J9ZmySAFuA366qtV3Zm4DTgT+rqp/tyn4KuD3Jy6rqc13ZIuAGBk8uU1VPAW/q6q4DflRVN75E5nMN8EhV/dMkE8Au4AtVtaDzWSC/DDzMwlz6+wzwz5P8ZlWNfPFN90f2S8COqvr3x3V0c/f00M/Qa4HbgFcCv57kdOD3gLVV9Y3uZ/edwKkMLuJ4qRie4y8Avwm8dUFHNIuTcUV/MfBsd7UQAFX1AC98BS9VtQf4CPDhoeJfYfAL98T4h9nb0c6ngFO7X7a/BXwPODiuQSZZPrSCezjJF5L8kyR/lORPu5Xeq5PckcEb492X5Oyu73VJbknyB0n2JPnw0Hk/0p3v4STXDpVf1Z3nW0l+J8mpSR5L8vKu/hVJ9ib5RWAS+EK3SvuJJG9O8rUkO5LcncHbeYzLQQZXb/ybw9SfwuCtQ/60ql5SbwpYVU8weLX7+u7n7BoGC5JvdPVVVV+sqr9YyHEeo1cA31/oQczmpFvRAz8D7OjZ9pvAWQBJlgJXAG8DzhvP0I7KUc0H+DSD1zTsY7CiendVPT//w3uBNwK/yOCXfzvwS8BFwD8D/h2DP073V9XlSd4G3Er3iKkb98XdWHcl+SxwNoNLeS9g8Crs/5Xka8AB4FeBC6vqySSvrqofJvkD4DLgDgav6fhSVf1ekmuAj1bVVPeH4FPAmqran+TdwG8AHxjjv8tNwINJ/uOIun8L/I+qunaM9z82VbWn27p5LYOf1d9e4CHNh59I8gDw48DrGWTCCe1kDPq5GH4Lh08AH6uq5waLk5ek4YH/AvAAgx/SNwD3JPnDqvrBGO//sap6CCDJTuCrVVVJHgKWM3ivjncCVNXvd88ZvLLre2dVPQM8k+QJBltTFwFbqur/due8HfiHDB6tfPHQVkhVfa87x80MgvMOBn8g/tWIMf5dBoF0T/f/vAj4zrz9C4xQVT9IciuDR1tPz6j+n8Bbkvx0VX17nOMYo5fsL8xhDG/dvAW4NcnP1Al8rfrJuHWzE3hzz7Y/C/xJd3sS2JxkL/Au4DNJLp/30c3d0c7n/cDt3cPn3cBj/M1qf1yeGbr9/NDx8wwWHUd6b6Thvs8doT1d+Yt+6arqj4DlSd4KLKqqhw/Td2dVvan7+vtVdcnhJjSPPgF8EFgyo/xe4Frgywv1hPGx6J4beo7BdudcflZfErptqNOAiYUey5GcjEH/+8CPJfn/q7kk5zHjnd+SLAduZPAwnqpaUVXLq2o58EXgX1fVHcdpzEdyVPMB/g/wj7u60xmsZPcch/Eeyb3AewCS/CPgyVkeYdwLXJ7kJ5MsYbC19ofAV4F/keQ13blePdTnVuC/Ap8bKvshgy0hGDwpPdGt1Ejy8iR/7xjnNavuUcfvMgj7mXVfAv4TcFeSV417LPOle5J/I/DpbrX7aeB9SS4YavMvk7xuocZ4rJKcxeBR31MLPZYjOem2brqtgiuAT2TwiVd/DexlsGp6Q5L7Gey9/RD41KErbk5UxzCfjwOf77ZNwmBbal7fcvUoXAd8LsmDDK7CeNHlrcOq6ptJPg/8cVd0c1XdD5DkN4CvJXkOuJ/BlTUAXwD+A4OwP+TzwMYkTwNvYfCI7ZPdttEpDFbbx+OtO34LWD+qoqo2doG4NcklVfXXx2E8R+PQ/vXLGTzR/DvAfwaoqr9Isha4sbsi53kGf6xvX6CxHq1Dc4TB7877quq5BRzPrHwLBJ1UkryLwROt713osUjHy0m3otfJK8mnGHys5TsWeizS8eSKXpIadzI+GStJJxWDXpIaZ9BLUuMMeklqnEEvSY37f/cjzCi39pQ6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "celltypes = ['CD4T', 'CD8T', 'monocyte', 'NK', 'DC', 'B']\n", + "plot_df = data_obs['cell_type_lowerres'].value_counts(normalize=True).loc[celltypes]\n", + "plt.bar(x=plot_df.index, height=plot_df.values)\n", + "plt.ylim([0, 0.40])\n", + "plt.savefig('cell_abundance_oelenv2.pdf')\n", + "plt.savefig('cell_abundance_oelenv2.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predicted.celltype.l1predicted.celltype.l1.scorepredicted.celltype.l2predicted.celltype.l2.score
barcode
AAACCTGAGAAACCAT_180920_lane1CD8 T0.755924CD8 TEM0.755924
AAACCTGAGTAGCCGA_180920_lane1Mono1.000000CD16 Mono1.000000
AAACCTGCAATCTACG_180920_lane1NK1.000000NK1.000000
AAACCTGCACATCCAA_180920_lane1other0.546320ILC0.546320
AAACCTGCAGCTCGAC_180920_lane1NK0.733094NK0.733094
\n", + "
" + ], + "text/plain": [ + " predicted.celltype.l1 \\\n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 CD8 T \n", + "AAACCTGAGTAGCCGA_180920_lane1 Mono \n", + "AAACCTGCAATCTACG_180920_lane1 NK \n", + "AAACCTGCACATCCAA_180920_lane1 other \n", + "AAACCTGCAGCTCGAC_180920_lane1 NK \n", + "\n", + " predicted.celltype.l1.score \\\n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 0.755924 \n", + "AAACCTGAGTAGCCGA_180920_lane1 1.000000 \n", + "AAACCTGCAATCTACG_180920_lane1 1.000000 \n", + "AAACCTGCACATCCAA_180920_lane1 0.546320 \n", + "AAACCTGCAGCTCGAC_180920_lane1 0.733094 \n", + "\n", + " predicted.celltype.l2 \\\n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 CD8 TEM \n", + "AAACCTGAGTAGCCGA_180920_lane1 CD16 Mono \n", + "AAACCTGCAATCTACG_180920_lane1 NK \n", + "AAACCTGCACATCCAA_180920_lane1 ILC \n", + "AAACCTGCAGCTCGAC_180920_lane1 NK \n", + "\n", + " predicted.celltype.l2.score \n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 0.755924 \n", + "AAACCTGAGTAGCCGA_180920_lane1 1.000000 \n", + "AAACCTGCAATCTACG_180920_lane1 1.000000 \n", + "AAACCTGCACATCCAA_180920_lane1 0.546320 \n", + "AAACCTGCAGCTCGAC_180920_lane1 0.733094 " + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "azimuith_df = pd.read_csv(\n", + " '1M_v2_20201029_azimuth.tsv',\n", + " sep='\\t', index_col=0\n", + ")\n", + "azimuith_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['monocyte', 'CD4T', 'CD8T', 'NK', 'megakaryocyte', 'B', 'DC', 'plasma B', 'unknown', 'hemapoietic stem']\n", + "Categories (10, object): ['B', 'hemapoietic stem', 'megakaryocyte', 'NK', ..., 'CD4T', 'CD8T', 'monocyte', 'DC']" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_obs['cell_type_lowerres'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['CD8 T', 'Mono', 'NK', 'other', 'CD4 T', 'DC', 'B', 'other T'],\n", + " dtype=object)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "azimuith_df['predicted.celltype.l1'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predicted.celltype.l1predicted.celltype.l1.scorepredicted.celltype.l2predicted.celltype.l2.scorecell_type_mapped
barcode
AAACCTGAGAAACCAT_180920_lane1CD8 T0.755924CD8 TEM0.755924CD8T
AAACCTGAGTAGCCGA_180920_lane1Mono1.000000CD16 Mono1.000000monocyte
AAACCTGCAATCTACG_180920_lane1NK1.000000NK1.000000NK
AAACCTGCACATCCAA_180920_lane1other0.546320ILC0.546320None
AAACCTGCAGCTCGAC_180920_lane1NK0.733094NK0.733094NK
\n", + "
" + ], + "text/plain": [ + " predicted.celltype.l1 \\\n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 CD8 T \n", + "AAACCTGAGTAGCCGA_180920_lane1 Mono \n", + "AAACCTGCAATCTACG_180920_lane1 NK \n", + "AAACCTGCACATCCAA_180920_lane1 other \n", + "AAACCTGCAGCTCGAC_180920_lane1 NK \n", + "\n", + " predicted.celltype.l1.score \\\n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 0.755924 \n", + "AAACCTGAGTAGCCGA_180920_lane1 1.000000 \n", + "AAACCTGCAATCTACG_180920_lane1 1.000000 \n", + "AAACCTGCACATCCAA_180920_lane1 0.546320 \n", + "AAACCTGCAGCTCGAC_180920_lane1 0.733094 \n", + "\n", + " predicted.celltype.l2 \\\n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 CD8 TEM \n", + "AAACCTGAGTAGCCGA_180920_lane1 CD16 Mono \n", + "AAACCTGCAATCTACG_180920_lane1 NK \n", + "AAACCTGCACATCCAA_180920_lane1 ILC \n", + "AAACCTGCAGCTCGAC_180920_lane1 NK \n", + "\n", + " predicted.celltype.l2.score cell_type_mapped \n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 0.755924 CD8T \n", + "AAACCTGAGTAGCCGA_180920_lane1 1.000000 monocyte \n", + "AAACCTGCAATCTACG_180920_lane1 1.000000 NK \n", + "AAACCTGCACATCCAA_180920_lane1 0.546320 None \n", + "AAACCTGCAGCTCGAC_180920_lane1 0.733094 NK " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mapping_names = {'CD8 T': 'CD8T', \n", + " 'CD4 T': 'CD4T',\n", + " 'Mono': 'monocyte',\n", + " 'NK': 'NK',\n", + " 'B': 'B',\n", + " 'DC': 'DC'}\n", + "azimuith_df['cell_type_mapped'] = [mapping_names.get(name) for name in \n", + " azimuith_df['predicted.celltype.l1']]\n", + "azimuith_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cell_type_lowerrescell_type_mapped
AAACCTGAGAGTACAT_180925_lane1monocytemonocyte
AAACCTGAGTGTCTCA_180925_lane1CD4TCD4T
AAACCTGCAGTCGATT_180925_lane1CD8TCD8T
AAACCTGCATTCGACA_180925_lane1monocytemonocyte
AAACCTGGTAATAGCA_180925_lane1monocytemonocyte
\n", + "
" + ], + "text/plain": [ + " cell_type_lowerres cell_type_mapped\n", + "AAACCTGAGAGTACAT_180925_lane1 monocyte monocyte\n", + "AAACCTGAGTGTCTCA_180925_lane1 CD4T CD4T\n", + "AAACCTGCAGTCGATT_180925_lane1 CD8T CD8T\n", + "AAACCTGCATTCGACA_180925_lane1 monocyte monocyte\n", + "AAACCTGGTAATAGCA_180925_lane1 monocyte monocyte" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merged_classification_df = pd.concat([data_obs[['cell_type_lowerres']],\n", + " azimuith_df[['cell_type_mapped']]],\n", + " axis=1).dropna()\n", + "merged_classification_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']\n", + "accuracy_df = pd.DataFrame(\n", + " data=np.zeros((6, 6)),\n", + " index=celltypes,\n", + " columns=celltypes\n", + ")\n", + "for celltype_onemillionv2 in celltypes:\n", + " for celltype_azimuth in celltypes:\n", + " common_classification_num = merged_classification_df[\n", + " (merged_classification_df['cell_type_lowerres']==celltype_onemillionv2) & \n", + " (merged_classification_df['cell_type_mapped']==celltype_azimuth)\n", + " ].shape[0]\n", + " onemillion_classification_num = merged_classification_df[\n", + " (merged_classification_df['cell_type_lowerres']==celltype_onemillionv2)\n", + " ].shape[0]\n", + " azimuth_classification_num = merged_classification_df[\n", + " (merged_classification_df['cell_type_mapped']==celltype_azimuth)\n", + " ].shape[0]\n", + " accuracy_df[celltype_onemillionv2].loc[celltype_azimuth] = common_classification_num/onemillion_classification_num" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFBCAYAAABXWEVsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABI20lEQVR4nO3deXwURdrA8d+TEATkkkASblTwRlARPFAkGhARQUGFXV8VxXgguovrenMKul6r7qqAeKyuK96IBBUXhKAuyCGHKEJELiEJp0EUSCbP+0d3wkyYTGYCndDh+frpT9LdVdVPhrGmprq6SlQVY4wx/hFX2QEYY4yJjVXcxhjjM1ZxG2OMz1jFbYwxPmMVtzHG+IxV3MYY4zNWcRtjjEdE5GURyRWRb0s5LyLyrIhkichSETk9mnKt4jbGGO+8Clwc4XwPoI27pQMvRFOoVdzGGOMRVc0EtkVI0ht4TR1zgfoi0riscq3iNsaYytMUWB+0v8E9FlE1z8I5QPVb3+K7Z/Hf+Lx3ZYcQk0uaH1PZIcRMkMoOIWaFWlDZIcREJL6yQ4iZcPwBvzFqthgQc52ze/2km3G6OIpMUNUJMRQRLu4y4zhkK25jjKlIIrF3QLiVdCwVdUkbgOZB+82AjWVlsq4SY4wBhLiYt4NgCnCtO7rkLOAXVd1UViZrcRtjDOVrcZddprwJXAA0FJENwHAgAUBVxwHTgEuALOA3YGA05VrFbYwxeFNxq+qAMs4rMDjWcq3iNsYYQMQ/N76t4jbGGMBPt/ys4jbGGLzpKvGKVdzGGIO/Km7/RGqMMQbwqMUtItVUffa4mDHmsHaQxmVXCK8i/dqjco0xxhMicTFvlcWrPm7/jKsxxhj81cftVcXdSESGlnZSVZ/y6LrGGFMuVnFDPFAba3kbY3zCTzNPelVxb1LVUR6VbYwxB521uK2lbYzxGT9V3F5FemHJAyJymUfXMsaYA2ajSuCCEhO2CPCciFQDUNX3vbjoheefxKMPXkV8fByvvf0lT4//NOR8vbq1eO7Razm6RUN27yng9ntf4/tVG2l9dDKvPDOoOF3LFg155OmPeOHVmV6EGeL7r79n8vPvU1ionNXjLC4ccFHI+YUzFjBz0gwAjqh5BH3vvJKmxzorG81+dxZzP56LCDQ+ujH97/4DCdUTPI13TuZCxoyZSGFhgH5XdiM9vV/IeVVlzJgXyZy9gBo1juCRR//EyScfG1Ver2RmLmTMmBcpLCzkyivTSE+/MkzME5g9eyE1ahzBo4/eycknt44qr1fmzFnE2DEvUVhYSL9+F3FTet/9Yh475iUyM52Yxz4ypPh1fuD+fzBr1gIaJNbjo4+erZh4D+B9cf99zzBr1gISE+vx0dR/Vki84VmL+23gBuBSoJf788ig3w+6uDjhiRED6HfjP+l08Uj6XXomx7cOXXPzrlsvZtn36zn30oe55e5XePShqwDI+imH8y4bw3mXjaFLn7H8/vtepk5f7EWYIQoDhbz/j3dJH3sz97x0L4s+X0T22uyQNA1SEhn81BDufvEe0q7pxjt/fwuAHVt2MGdyJn9+fih/nXgvhQHlm88XeRpvIBBg1KjxvDhxOFMzniNjaiZZWetC0mRmLmTtmo18On08o0YPZuSIF6LO613M45g4cQQZGc8xtZSY16zZyPTp4xk9ejAjQmKOnNermEePmsCEFx/io6nPkpHxBVlZ60PSZGYuYu3ajXzy6fOMHHUro0aOLz7X5/JUJrw4zPM4g+Mt7/sC4PIrLuTFiSMqLN7S+KnF7dWVzwZqAvOBG1R1ILBFVQeq6g1eXPCMdq1YvTaXteu3kJ8f4L2M+Vxy0akhaY5v3ZjZX60AYNXqHFo0S6RRYp2QNF3OOYGf1m1h/cZICzMfHOt+WEvDJg1JbNKQagnVOO2C0/j2y2UhaY4++Whq1akFQMsTW7Fj8y/F5woDheTvyScQCJC/Zy/1Eut5Gu/Spato0bIxzZunUL16Apf0PI8ZM+aFpJkxYx69+3RFRGjf/gTy8naRm7stqrxexdwy6Lo9e54fJua59OmTGjbmsvJ6FXOLFkGv1SWdmTkj9Jm2mTO+pnfvotf5+OKYAc4882Tq16sTrmjv4i3n+8KJ9xTq1atdYfGW5rCvuFV1PpAGVAdmikhHolgA80A0Tj6KnzdtL97fmL2DxslHhaT5dsUGenU/DYDTT21F8yYNaJISmqZvzw68N3W+l6EW+2XLL9RP2nf9+o3q88vWX0pNP+/juZzY8UQnbcP6XHBlV0b/YSQjrhpGjSNrcnyHEzyNNydnK41TGhbvpyQ3JCdna5g0jfalSUkkJ2drVHm9ijkl6LrJyYlhYw5OExxzWXm9kJuzjZTGQddNKSXmxokhMefmeN/YCOdA3heHkkpauqxcPLuyqhaq6jPANcBfvLpOkbBzoGvoZ8XT4z+lft1azJnyADdfewFLv1tPIBAoPp+QEE+PC9sxedpCj6MNGx5Q+ljSVYtXMe+TuVw6qBcAv+38jW+/+pYH/z2MEW+NYu/uPSz47wIvww0b8H6Tz4f7m0Siy+sBjeK6Yf8dRKLK6wUN8yLuF3OYfJW2EMCBvC8OIX5qcXs+rauq/gxcFU1aEUnHXeq+ZqPzqF73pKivszF7O00b72u9Nkmpz6bcHSFpdv66m8H3vla8v3TWGNZu2Pepn9blFJZ8t47NW3dGfd0DUb9RPXbk7vuWsGPzDuom1t0v3cbVG3n7yUnc9MjNHFnvSABWLlpJg5QG1K7vfMVs2/lU1iz/iQ4XdfAs3uSUhmzK3lK8n52zhaSkBiXSJLIpe/O+NNlbSUpqQH5+QZl5vZCS0pDsoOvm5Gzd77opKYkhaYJjLiuvF5KTE8neFHTd7DAxJyeSvWnfezc7eyuNkkK/PVaUA3lfHEoOtQ+SSDz7yBCR60RkkYjscrcFInJtpDyqOkFVO6hqh1gqbYBFS9dybMskWjZLJCEhnr49z+TjGUtD0tSrU5OEhHgArr26M1/NX8XOX3cXn+97aQfe+6hiukkAmh/fgs0/b2Hrpq0U5BfwzaxvOOWcU0LSbM/ZzisjXuYP915DUrOk4uNHJdVn7fdr2bt7L6rKqm9Wkdwi2dN427Ztw9o1G9mwPpu9e/OZljGH1NROIWlSUzvy4eTPUVUWL15BnTq1SEpqEFVer2Jes2Yj693rZmRkkprasUTMnZg8eWbYmMvK61XMa9duYsOGHOe1mvYFXVPPDEnTNfVMPvyw6HX+oTjmynAg74tDyWHf4nYr6D8BQ4FFOMMBTwced7+CvhYhe7kEAoXcPfIt3nvlDuLj4/j3O1+xYtUmBg44D4BX3pzDca1TGPf4QAKBQn7I2sTt971enL9mjQS6nnsif37wjYMdWqni4+O5YkhfJtw7jsLCQjpe3ImUVo356qMvATin17lM//en/Ja3i/eefQeAuPh4hj5/Fy1PbEW789vx1K1PEBcfR9PWzTi75zmexlutWjwPDbuZGweNoDBQSN++F9GmTQsmvfkxAP0H9KBLlw5kzl5It7SbqVHzCMaOvSNiXq9VqxbPsGG3MGjQcALF123Jm27MA9yYZ89eQFpaOjVrHsHYsXdGzFsRMT/40E0MunEkhYWFXNH3Qud1nvQJAP37X0yXLmeQmbmQ7t1udYYDjh1SnP+uoU/y9fzl7NiexwVdBnH7kP7063dRaZc7KPGW930BMHTo48z/+lu2b8+jy/kDGTJkAP2u7OZZvKXx07SuEq4f74ALFZkL9FfVNSWOtwImqepZZZVRv/Utnt7M9MIbn/eu7BBicknzYyo7hJj5aT6JIoU+m5peJL6yQ4iZcPwBvzFathsbc52zdsn9lfKG9KqPu27JShtAVdeIyP6duMYYU8n89Mi7VxX37+U8Z4wxlcIqbjhRRJaGOS6A/76fG2OqPD/1cXtVcbcDkoH1JY63BDZ6dE1jjCk/H7W4vYr070Ceqq4N3oDf3HPGGHNIOeyHAwKtVHW/rhJVXeCOLDHGmEOKnx7A8arirhHhXE2PrmmMMeXmpz5uryKdLyI3lTwoIjcCFTMRiDHGxMC6SpynJj8QkT+yr6LugDNb4OUeXdMYY8rvcO8qUdUc4BwR6QoUTb6RoareLyljjDHl4Z+eEm9nB1TVz4HPvbyGMcYcFId7i9sYY3zHKm5jjPEZ6yoxxhh/UWtxG2OMz/in3raK2xhjAIjzT83to14dY4wxYC1uY4xxWB/3gdu88pbKDiFmbR7y14y1a8b4543qb/5ahc+Py8MdFD76sw/ZitsYYyqUj/q4reI2xhiwrhJjjPEd/9TbVnEbYwxgXSXGGOM7/qm3bRy3McaA88h7rFs0RORiEflBRLJE5N4w5+uJyEciskRElovIwLLKtBa3McaAJ10lIhIPPAekARtwVgeboqrfBSUbDHynqr1EpBHwg4i8oap7Sw31oEdqjDF+JOXYytYRyFLV1W5FPAnoXSKNAnXEWa24NrANKIhUqFXcxhgDznDAGDcRSReRBUFbeolSmwLrg/Y3uMeC/RM4EdgILAPuVNXCSKFaV4kxxkC5ukpUdQIwIUKScIWWfJS2O7AYSAWOBT4TkTmqmldaoZ60uEXEPhCMMf7iTVfJBqB50H4znJZ1sIHA++rIAn4CTohUqFddJV97VK4xxnijHF0lUZgPtBGRo0WkOtAfmFIizTrgQicESQaOB1ZHKtSrlrGPRkQaYwyePPKuqgUicjvwKRAPvKyqy0XkFvf8OGA08KqILMOpO+9R1S2RyvWq4m4kIkNLO6mqT3l0XWOMKR+P+h9UdRowrcSxcUG/bwS6xVJmmRW3iHQAHgBauunFuZaeGiFbPM6wFmt5G2PMQRZNi/sN4G6cYSoRh6gE2aSqo8odlTHGVLQqNjvgZlUt2ZleFv+8AsYYA76qtaKpuIeLyERgBrCn6KCqvh8hz4UiUk1VCwBEpDbO8JbVqrrtQAKO5Is5i3l07KsECgvp2y+VQTf1CTmvqjwy9lXmZH5DjRpHMGbsrZx08jHs2bOX6/5vBHv35hMoKCSteyduH3KVV2GG6NKmIcN6nkR8nPDWgvW8kLn/zeSzjm7AsJ4nUS1O2P7bXq6eOA+AG89pxdUdmqPAD9k7ufv9pewpiPZLUflkZi5kzJgXKSws5Mor00hPvzLkvKoyZswEZs9eSI0aR/Doo3dy8smto8prMe8zZ84ixo55mcLCQvr1u4ib0q/YL+axY14iM3MRNWocwdhHbufkk49l06Yt3HvPs2zZsh2Ji+Oqq9K49tpLPY/Xj69xSeqj2QGj6Y4fCLQHLgZ6uVtZ74ReQI6IrBSRHsBS4G/AEhEZUP5wSxcIFPLw6Jd5YcJ9TPnoKaZlfMmPWRtC0szJXMy6tdlM++QZRoy8idGjXgKgevUEXn5lGO9Pfpx3P/gbX36xhCWLV3oRZog4gVG9Tub6f80n7ZlMLju1Ca0b1Q5JU7dGNUZfdjKDXl9At2fncNub3wCQXPcIrj+7Fb2e/5Luz84hLk7o1baxp/EGAgFGjRrHxIkjyMh4jqlTM8nKWheSJjNzIWvWbGT69PGMHj2YESNeiDqvxbwv5tGjXmTCiw/y0dRnyMiYQ1bW+pA0mZmLWLt2E598+hwjR93CqJHOMyDx8XH89Z7ryJj2D96a9Cj/eePj/fJ6Ea/fXuOwvBkO6IloKu52qtpBVa9T1YHudkMZef6CMxaxO/AWkKaqFwIdgPsOLOTwli3NokWLZJo3TyahejV6XHIOM2fOD0nz+cz5XNb7fESEdu2PY2feLjbnbkdEqHVkDQAKCgIU5BcgFfCP0r5ZfdZu+431238nP6B8tHQT3U5MDklzWbsmfLI8h42/7AZg6659887Exwk1EuKJjxNqJsSTs3MPXlq6dBUtWzamefMUqldPoGfP85kxY15Imhkz5tKnTyoiQvv2J5CXt4vc3G1R5bWYi2LOokWLfde95JLOzJwR+mjEzBlf07v3BW7MxxfHnJTUgJNPPhaAI2vX5Nhjm5GTs9XjeP33GoflzQM4noim4p4rIifFWG5AVbeo6k/Ar6r6I4Cq5sQcYZRyc7eRkpJYvJ+cnEhuzvaQNDk520PTpCSSk+v03AQChfS9/K+c3/kmzj7nVE5t18arUPddv26N4goZYFPe7yTXOyIkzTGJR1KvZgKTbuzER7edyxXtnWkOcvL28OIXP/HV3V35+t5Udu7OZ05WxKGfBywnZyspKQ33xZ+cuF+lUDJNSoqTJpq8FrMjN2crKY1LvE9zQnsYc3K2kdI4NObcEml+3pDL99//RLt2x3karx9f47DiJPatkkTTx90ZuE5EfsLp445mOOA6EXkEqAOsEJEngfeBi4BNBxhzWKr7r6RdstEcPo2TKD4+jvc+eIy8vF3cOeQJVq1cR5vjWngRaqnxOTGG7sfHC22b1OUPL39NjYQ43r/5HL5Zv4Otu/aQdmIS5z0xi7zd+Tw/4DT6tGvC5CXerTQf6fUrLf6iNNHk9YIvYw5zbL/3cphUwbHt2vU7d9zxGPfedwO1a9c6yBGWiMWHr3FYPhpVEk2L+2KgDc4A8aL+7V5l5LkGyMN5Tv8y4H84XSTJwPWlZQqeaWvihPeiCG2f5OREsrP3fVLn5GylUdJRIWlSUhqEpsneSlKj0DR16x7JmR1P4osvlsR0/fLI/mU3TerVKN5vXLcmuXl79ksze9UWfs8PsP23fL5es40TG9ehc+uGrN/+O9t+20tBofLJ8hzOaHlUyUscVCkpDcnO3teqz8nZSlJSgxJpEkPSZGc7aaLJazE7kpMTyd5U4n1aMubkRLI3hcZc9H7Pzy/gzjsep1ev8+nW7SzP4/XjaxxWVeoqUdW1OBVwPk5joGiLlCdPVR9R1UdV9VdVfVdVL1XV21S11Ba3qk5w+9M7DErvG9MfckrbY1m3NpsNG3LJ31vAx9O+omvXDiFpLujagSkfZqKqLFm8ktp1atEo6Si2bcsjL28XALt372Xu/77l6KObxHT98ljy8y+0SjySZkfVJCFe6HVqYz5bEdqbNP37HM5sdZTbnx1H++b1ycr9lY07fue05vWpkeD8E557bCJZub96Gm/btm1Ys2Yj69dns3dvPhkZmaSmdgxJk5raicmTZ6KqLF68gjp1apGU1CCqvBZzUcytWbt2Exs25LB3bz7Tpn1B19QzQ9J0TT2TDz+c5cb8Q3HMqsqDDz7HMcc25fqBl3keqxOv/17jsKpSV4mIDAGGAznsewBHgUhdJYjIdcCdODcpAb4HnlXV18odbQTVqsVz/4M3cPOgsQQKC7n8igto3aY5b036DICr+6dxfpfTmJP5DT2630nNGtUZPfZWADZv3s4D9z1PIFCIFhbS/eKzuaDrGV6EGSJQqAz7aDmvXd+ReIG3F21gVe6v/LGj00Xzxtfr+HHzLmav3MwnQzpTqPDWgvWsdCvoj5dnkzG4MwWFyvKNebw539vRA9WqxTNs2C0MGjTcuSfQ9yLatGnJm29+DMCAAT3o0qUDs2cvIC0tnZo1j2Ds2Dsj5vWaX2N+8KFBDLpxFIWFhVzR90LatGnBpEmfAtC/f3e6dDmDzMxFdO92mzMccOztACxatIIpH87muONacnkfZ9aJP/35j3Tp4t372Y+vcVg+Gg4o4fqYQhKIZAGdVDXqOwYici3wZ2AosAjnS8XpwOPAM9FU3vmFiyMHdghq85B3/cteWDOmdWWHcFgo1PzKDiEmcZJQ2SGUw3EHXOseM+idmOuc1ROvrJTaPpqbk+uBX2Is9zbgclVdE3Rspoj0xVm6x5NWtzHGlJuPWtylVtxBs/utBmaJSAahT05GmuGvbolKuyjPGhGpW85YjTHGOz4aVRKpxV3H/bnO3aq7G5RxcxL4vZznjDGmclSFFreqjgQQkStV9Z3gcyJS1mQCJ4rI0jDHBTgm5iiNMcZrPlo6PZo+7vuAd6I4FqwdzpjtksMcWrL/emvGGFP5qkJXiTs51CVAUxF5NuhUXaCgjHL/DtzvjgEPLrORe66sB3iMMcaUIlKLeyOwAOfJx4VBx3fiDPWLpJWq7tdVoqoLRKRVrEEaY4znqkgf9xKcaVjfKJpXOwY1IpyrGWNZxhjjOa0iXSVvq+pVwDcist8okjImmZovIjep6oslyryR0Na7McYcGqrIzck73Z/lWT7jT8AHIvJH9lXUHXCGE15ejvKMMcZbVaSrZJOIxAMvqepFsRTqzrt9joh0BU5xD2eo6szyh2qMMR6qCl0lAKoaEJHfRKSeqsb62Duq+jnwebmjM8aYilIVWtxBdgPLROQzYFfRQVW9w7OojDGmovmn3o6q4s5wN2OMqbL8tMp7mRW3qv5LRKoDRQvX/aDqs3kqjTGmLFWp4haRC4B/AWtwvkw0F5HrVDXT08iMMaYiVZWbk64ngW6q+gOAiBwHvAl4v0SMMcZUlCoyjrtIQlGlDaCqK0V8uUSGMcaUroq1uBeIyEvA6+5+8EM1xhhTNVSlPm7gVmAwcAdOH3cm8Hw0hYtIMjAWaKKqPUTkJOBsVX2prLwJcbWiucQhxW9rONZuNaayQ4hZ9qqBlR1CzGonNKnsEEw0qlLFrap7gKfcLVavAq8AD7j7K4G3gDIrbmOMqUhVYpKpIiKyjP2XKvsFZ8rXh8tY/b2hqr4tIvcBqGqBiATKHa0xxnilit2c/BgIAP9x9/vjdJn8gtOijrQowi4RScSt+EXkLGJfMd4YY7xXlVrcwLmqem7Q/jIR+VJVzxWRa8rIOxSYAhwrIl8CjYCy1qs0xhgTQTQVd20R6aSq8wBEpCNQ2z1X1gILy4EuwPE4rfQf8NUXEmPMYaMq3ZwEBgEvi0htnMo3DxgkIkcCj5SR93+qejpOBQ6AiCwCTi9nvMYY442qVHGr6nygrYjUA0RVdwSdfjtcHhFJAZoCNUXkNPbNu1UX8N84P2NM1eefejvi0mVDSzkOgKpGGh7YHbgeaEboMMI84P5YgzTGGK9VldkB60Q4t98alCEnVf8F/EtE+qrqe+WKzBhjKlJVGFWiqiNLOyciZ0ZZ/hPuEMCXVfX7WIMzxpgK46MWd9QjPETkJBEZJSKrgBeizHYqztOSL4nIXBFJF5G65QnUGGM8JeXYKknEm5Mi0hIY4G4FQEugg6quiaZwVd0JvAi8KCLn40wH+3cReRcYrapZBxC7McYcNHE+Gqhcaqgi8hUwDUgA+qnqGcDOaCttt4x4EblMRD4AnsGZ2/sY4CO3bGOMOSSIxL5VlkifMZtxblAm4zzxCGXclAxjFdAbeFxVT1PVp1Q1R1XfBT6JOVpjjPGIVxW3iFwsIj+ISJaI3FtKmgtEZLGILBeR2WWVGenmZG937HZfYKSItAbqi0hHVf06upA5VVV/LaV8WyXeGHPIEA+a0CISDzwHpAEbgPkiMkVVvwtKUx9nquyLVXWdiCSVVW7EXh1V/UVVX1bVNKATMAx4WkTWRxn3c25QRQEeJSIvR5nXGGMqjEct7o5AlqquVtW9wCScXohgfwDeV9V1AKqaW1ahUXfHq2quqv5DVc8BOkeZ7dTgJy1VdTtwWrTXjFVm5kK6d7+FtLR0Jkx4Z7/zqsrDD48nLS2dXr2GsHx5VtR5LWbHRV3asmjGoyyZ9RhDb+253/n6dWvx5vg7mPvxw8yaPJyTjmtafO62gWl8/ekY5k8fy203dKuQeAG++uJbrrh0GL17PMgrE/fvoVNVHhs7id49HuTqy0fx/Xfris+98dp/ubL3CK7qM5L7757Inj35FRKz394Xfos3HI8q7qZAcEN3g3ss2HHAUSIyS0QWisi1ZRVarvuoqro2yqRxInJU0Y6INCC6+VFiFggEGDVqHBMnjiAj4zmmTs0kK2tdSJrMzIWsWbOR6dPHM3r0YEaMeCHqvBYzxMUJT426liuuf5IOafdx5WVncULr0NVd/jK4F0u/W8dZPR4k/a4JPDb8jwCcdFxTru9/AV16j+SsHg/SI7U9x7ZK9jRegECgkEcffpNnXxjCu1NG8Om0+az+cWNImi/nfMv6dblMnjaaB0dcwyOj3wAgN2c7k96Yyetv3c/bk4cTKCzk04/nV0DM/npf+C3e0khcOTZniPOCoC29ZLFhLlXyXmE1nMXXe+I8df6Quyh7qbweAPMk8JWIjBaR0cBXwGNeXGjp0lW0bNmY5s1TqF49gZ49z2fGjHkhaWbMmEufPqmICO3bn0Be3i5yc7dFlddihg7tj2H12hzWrN9Mfn6Adz+aR89uofOFndCmCbO+dOYUW/njJlo0a0RSw7oc37oJX3/zI7/v3ksgUMgX81bQq/sZnsYLsHzZTzRvkUSz5o1ISKhGtx4dmDVzSUia2Z8voedlZyEitG13DL/u/J3Nm51p4wMFhezZk09BQYDdv++lUaP6nsfst/eF3+ItTXla3Ko6QVU7BG0TShS7AWgetN8M2BgmzSequktVt+AsD9kuUqyeVtyq+hrOzc0cd7tCVV+PnKt8cnK2kpLSsHg/OTmRnJytEdOkpDhposlrMUOT5KPYsHFb8f7Pm7bRJPmokDTLvl/PZRd3AOCMdsfQomkiTVIa8N0PGzi34/E0qH8kNWtUp1vXdjRr3MDTeAFyc3eQnLIvxuTko9icuyM0Tc4OklP2xZKUXJ/NOdtJSj6Ka65Po+dF99G961+pXacmZ597kucx++194bd4SxMnsW9RmA+0EZGjRaQ6zkI0U0qk+RA4T0SqiUgtnPuJEZ80j2bpskbATUCr4PSqekNUYTvjwAXn60FClHliprr/SMWSd4nDJEFEosrrBb/FHK78knE89cJUHht+DV9NG8XyFRtYsnwtBYEAP/y4ib+Py2DKv//Krl17+Pb7dRQECj2N14lv/2Ml/4zSXsu8X3Yx+/MlfPTpGGrXqcU9d41n2kdzuaTXWR5FGzme0DT756us94Xf4q1I7nKNtwOfAvE4038sF5Fb3PPjVPV7EfkEWAoUAhNV9dtI5UbT3/whMAf4L84SZlETkTtxKv33cCrvf4vIBFX9Rynp04F0gPHjR5GefnXU10pJaUh29pbi/ZycrSQlNSiRJjEkTXa2kyY/v6DMvF7wW8w/Z2+jWZN912jauAGbSrRed/66m1vvnli8v/yLJ1i7fjMAr72dyWtvZwIw/O5+bNy0Da8lJ9cnJ3t78X5OznYalujuSE45ipzsfbHk5uygYVJ95s1dQdOmDTmqgTPfWuqFp7Fk8WrPK26/vS/8Fm9pvPq8UNVplHjgUFXHldh/HHg82jKj6Sqppar3qOrbqvpe0RZl+TcCnVR1uKoOA87CqcjDCu4viqXSBmjbtg1r1mxk/fps9u7NJyMjk9TUjiFpUlM7MXnyTFSVxYtXUKdOLZKSGkSV1wt+i3nhkp84tlUyLZs1JCEhnn69OjHts29C0tSrW4uEhHgAru/fhS/nrWTnr7sBaJToVIDNmjSg98Vn8M6UuZ7GC3DSKa1Yvy6XnzdsIT+/gOkfL6BL19Duw/MvaEfGlLmoKsuWrKZ27Zo0alSPlMYNWLZ0Nb//vhdV5et5Kzj6mBTPY/bb+8Jv8ZbGT09ORtPinioil7ifGrESQlvpATyamqVatXiGDbuFQYOGEwgU0rfvRbRp05I33/wYgAEDetClSwdmz15AWlo6NWsewdixd0bM6zW/xRwIFHLXsNeZ/NrdxMfH8frbmXy/6mdu/GNXAF5643OOb92YCU+mU1hYyIpVG7ntry8V53/jhSE0OKo2+QUBhj70OjvyfvM0XnBep7/e35/bb36GQKCQ3pefy7Gtm/DuW87Daf2u7kLn80/hyznL6N3jQWrUrM6I0dcB0PbUo7kw7XT+eNXDVIuP5/gTmnPFledVSMx+el/4Ld7S+KmLRsL1MQGIyE6cfmkBjgT2APnuvqpqmbP8uYsxXAd84B7qA7yqqk+XHdrKWB+vNzGq3WpMZYcQs+xVAys7hJjVTmhSdiJzgI474Fq37WtzYq5zll17XqXU9pEeeY+0kEJUVPUp97n7c3Eq/IGq+k0Z2YwxpsL5qMEd1aiSGap6YVnHIlgMbCq6loi0KHq00xhjDhVVouIWkRo4XSQN3acfi/6sukBU3/1EZAgwHGcMd1H/tuIssGCMMYeMKlFxAzcDf8KppBcFHc/Dme0qGncCx6tq5YyoN8aYKPlo5bKIfdzPAM+IyJDSxl1HYT3wSznzGmNMhakqLe4iv4Sbrcp9nL0sq4FZIpKBMyqlKO9T0YdojDHeq2oVd/CK7jWAC3G6TqKpuNe5W3V3M8aYQ5L4qK+kzIpbVYcE77ur4kQ1UZSqjnTz1HF2w6+GY4wxlc1PLe7yzA74G9AmmoQicoqIfAN8Cyx3Jwk/uRzXNMYYT1WpR95F5CP2TfwdB5wEvB1l+ROAoar6uVvWBcCLwDmxBmqMMV7yU4s7mj7uJ4J+LwDWquqGKMs/sqjSBlDVWSJyZCwBGmNMRfBRF3dUfdyzAUSkLvuefmygqtHMyblaRB5iX5/4NcBP5YzVGGM846cWd5l93O6aajk4k3wvABa6P6NxA9AIZz7u94GGwPXlitQYYwwQXVfJ3cDJ7lposToWZ721OPdaFwKp2CPvxphDjHi9Au9BFE3F/SPOSJLyeAP4C86oEu/XqTLGmHLyU1dJNBX3fTgrtc8j9OnHO6LIu1lVPypvcMYYU1H8tJBCNBX3eGAmsIzYW83DRWQiMIPQSv/9GMsxxhhP+ajejqriLlDVoeUsfyBwAs7q7kWVvuLcqDTGmENGVau4P3dXX/+I0FZzNMMB26lq2/IGZ4wxFaWqVdx/cH/eF3RMgWOiyDtXRE5S1e9ijsx4buea+ys7hJg1bzupskOI2YZlAyo7hJgo/lvu9WDUuVXtAZyjD6D8zsB1IvITTmu9aKFhGw5ojDmkVImKW0RSVXWmiFwR7nyUNxgvLndkxhhTgeLEP980IrW4u+CMJukV5lxUNxhVdW054zLGmApVJVrcqjrc/Tmw4sIxxpjK4aMHJ6OaqyQgIo9K0Oh0EVkUKY8xxvhNnGjMW6XFGkWa5W666SLSwD3moy8VxhhTtjiJfau0WKNIU6Cqf8VZAGGOiJwBPhwvZIwxEcSVY6ss0YzjFgBVfVtElgNvAi08jcoYYypYlbg5GWRQ0S+qulxEOgO9vQvJGGMqnvhoOGCZrX1VXQggjlTgKUKXMzPGGFOBohlV0klEngHWAlOAOTgTRxljTJVRJW5OisgYEVkFjMWZ0vU0nPm1/6Wq2ysqQGOMqQhV5eZkOvAD8AIwVVV3i586gYwxJgZV5ZH3FKAbMAB4WkQ+B2qKSDVVLaiQ6IwxpoJUiVElqhoAPgY+FpEawKVALeBnEZmhqn8oLa8xxviNnx55j2Y4IKq6G3gXeFdE6gKXexqVMcZUsCrR4i6NquYB/4qUxm2h11HVzSWOJwF57geBMcYcMvzUx+3Vt4NngfPCHE8D/u7RNcnMXEj37reQlpbOhAnv7HdeVXn44fGkpaXTq9cQli/PijqvxeyYk7mQi7vfSre0dCZMeLeUeCfQLS2dy3oNYfnyH4vP3X/fM5xz9v/R69LbKyTWIheceyyzpwzmi4whDL7x3P3O16tbg4lPX8Vn793C1P8M4vjWjYrPPTHqMhbP+gv/ff/Wigz5sHpflJW3olSJ4YAHqHO4hRZU9Q3gfC8uGAgEGDVqHBMnjiAj4zmmTs0kK2tdSJrMzIWsWbOR6dPHM3r0YEaMeCHqvBZz0TXH8+LE4UzNeI6MUuJdu2Yjn04fz6jRgxnpxgtw+RUX8uLEEZ7GWFJcnPDwA5fwf7e9Qdfez9G7xym0OaZhSJohg85j+Yoc0vqO484HPmDkPfvW/3jnw8Vcc+u/KzTmw+l9EU3eiuKn4YDRPICzQEQGi8hRMZQb6bPIk7936dJVtGzZmObNU6hePYGePc9nxox5IWlmzJhLnz6piAjt259AXt4ucnO3RZXXYnbibRF0zUt6nhcm3nn07tN1v3gBzjzzFOrVq+1pjCW1b9uUNeu2sW7DDvILCvnw4+V06xr6/FibYxvyxbzVAPz401aaNa1Pw8QjAZi3cB07fvm9QmM+nN4X0eStKFVtWtf+QBNgvohMEpHuwXNzlyJXRDqWPCgiZwKbw6Q/YDk5W0lJ2deSSk5OJCdna8Q0KSlOmmjyWsxOLI2DY0luGDbexin7uhqK4q0sjZPqsCk7r3g/OyePxsl1QtJ890MOPS46EYD2pzShWeP6NE6uW6FxBjuc3hfR5K0ofuoqiWax4CzgARF5CGdI4MtAoYi8DDyjqtvCZLsbeFtEXgUWusc6ANfifBAcdKr7f/qV/HwJkwQRiSqvF3wXczTXLCXeShPm2iX/jOde+oKR917Mp+/czIpVOXy7YhMFBYUVFOD+Dqv3RSX9vxeOn0aVRNVtISKnAk8CjwPvAf2APJw1Kfejql8DnXC6TK53NwE6qWqp34NEJN3tmlkwYcJb0f8VQEpKQ7KztxTv5+RsJSmpQYk0iSFpsrOdNNHk9YLfYk5Oacim4Fhytux3zeSURDZl7/tSVRRvZdmUk0fjlH2t55TkumTn7gxJ8+uuvdz10BS6XzmeO++fTOJRR7L+58qb1eFwel9Ek7eieNXHLSIXi8gPIpIlIvdGSHemu+JYv2hiLeuiC3FGgswHTlXVO1R1nqo+CawuLZ+q5rjrVt4C3KKqw1Q1N9K1VHWCqnZQ1Q7p6VeXFVqItm3bsGbNRtavz2bv3nwyMjJJTQ3trUlN7cTkyTNRVRYvXkGdOrVISmoQVV4v+C3mtm3bsHbNRja415yWMYfU1E4l4u3Ih5M/3y/eyrLk2585umUizZvWJ6FaHL17nMxns34ISVO3zhEkVHP+V/hD39OZt3Atv+7aWxnhAofX+yKavBXFiz5uEYkHngN6ACcBA0TkpFLS/Q34NJpYoxnHfaWqhq2gVfWKUoIVYDgwGOfDQUQkAPxDVUdFE1isqlWLZ9iwWxg0aDiBQCF9+15EmzYtefPNjwEYMKAHXbp0YPbsBaSlpVOz5hGMHXtnxLxe81vM1arF89Cwm7lx0AgKi6/ZgkluvP3deDNnL6Rb2s3UqHkEY8feUZx/6NDHmf/1t2zfnkeX8wcyZMgA+l3ZzdOYAwHlobHTeGPcNcTFC299sJiVP27mmivPAODf7yyk9TGNeGZMHwKFyqofN/OX4VOK8//zb1dw9pmtaFC/FvP/+2eefG4Wkz74xtOYD6f3RWl5K4NHXSUdgayiOlREJuGsZ/BdiXRDcHozzoymUAnXJxaSQCQRpxLujNNT9QUwSlVLvYMgIn8GLgHSVfUn99gxOBNWfaKqUYzlXumf0fA+pT5cga5520mVHULMNiwbUNkhxMSP7wvh+AOudv8yb2bMf/gTnVIjXtft9rhYVQe5+/+H02V8e1CapsB/gFTgJZxJ/SIOaI+mm2YSzkiQvjh925uBsjqgrwUGFFXaAO4nzjXuOWOM8b3g+3Lull4ySZhsJT8gngbuceeHiko0XSUNVHV00P7DItKnjDwJqrql5EFV3SwiCdEGZ4wxFaU8XSWqOgGYECHJBqB50H4zYGOJNB2ASe5omobAJSJSoKqTSys0mor7cxHpD7zt7vcDMsrIE+nOTuXd9THGmFJ4tNzAfKCNiBwN/IwzHDpkZlVVPXpfDPIqTlfJ5EiFllpxi8hOnCa9AEOB191T8cCvOP3epWknInlhjgtQI1JAxhhTGby4OamqBSJyO85okXjgZXfR9Vvc8+PKU26k+bjrlHauLKoaX968xhhTGbyae0RVpwHTShwLW2Gr6vXRlBnztK7GGFMV+WlaV6u4jTEGfz3ybhW3Mcbgr4o72rlKOovIQPf3Ru4dUmOMqTLiy7FVljJb3CIyHGec4fHAK0AC8G9g/6VEjDHGp6paH/flwGnAIgBV3Sgi5R5xYowxhyI/dZVEU3HvVVUVd3S6iBzpcUzGGFPhqlrF/baIjAfqi8hNwA3Ai96GZYwxFSu+KlXcqvqEiKThLJxwHDBMVT/zPDJjjKlAVa3FDbAMqInzCPwy78IxxpjK4aebk9GsgDMI+Bq4AmeCqbkicoPXgRljTEWqUosF4yz8e1rRwgnuwgpf4SwabIwxVYKfJliKpuLeAASvrroTWO9NOMYYUzmqWh/3z8A8EfkQp4+7N/C1iAwFUNWnPIzPV/ILf6vsEGKSEFerskOImd+WAQOo39pf/4vsyBpa2SGYMkRTcf/obkU+dH/aQzjGmCrDTzcno6m431PVbz2PxBhjKlGVGscNjBOR6sCrwH9UdYenERljTCXwUx93mcMBVbUzzurszYEFIvIfEenmeWTGGFOBqtpwQFR1pYg8CCwAngVOE2dJ4vtV9X0vAzTGmIrgpxZ3NNO6ngoMBHoCnwG9VHWRiDQB/gdYxW2M8b34KnZz8p84k0rdr6q/Fx10p3d90LPIjDGmAnm1WLAXoon1fVV9PbjSFpE7AVT1dc8iM8aYCuSnPu5oKu5rwxy7/iDHYYwxlcpPFXepXSUiMgD4A3C0iEwJOlUH2Op1YMYYU5GqSh/3V8AmoCHwZNDxncBSL4MyxpiKViVGlajqWmAtcHbFhWOMMZWjSlTcxhhzOLGK2xhjfKaqzVVijDFVXpWYHVBEluHMv73fKUBV9VTPojLGmArmpwdwIrW4L/XigiJSXVX3elG2McYcDkr9kFHVtZG2SIWKyEOlHK8HTD/AmEuVmbmQ7t1vIS0tnQkT3tnvvKry8MPjSUtLp1evISxfnhV1Xq98MWcxl/b4Ez2638HEFyeHjXnsmFfo0f0OLu99N98tXw3Anj176X/V/VzR5256X3oX//zH2xUSrx9fYz/GfOH5JzF/+ggWzRjFn27uvt/5enVr8e/nb+HLqQ8y4717ObFNEwBaH53MnCkPFG/rFv+dW69P9TxeP77GJfnpAZxSK24R2Skiee62M2h/p4jklVHueSIypkR5KUAmMPMgxL2fQCDAqFHjmDhxBBkZzzF1aiZZWetC0mRmLmTNmo1Mnz6e0aMHM2LEC1Hn9SbmQh4e/TIvTLiPKR89xbSML/kxa0NImjmZi1m3NptpnzzDiJE3MXrUSwBUr57Ay68M4/3Jj/PuB3/jyy+WsGTxSo/j9eNr7L+Y4+KEJ0YMoN+N/6TTxSPpd+mZHN+6cUiau269mGXfr+fcSx/mlrtf4dGHrgIg66cczrtsDOddNoYufcby++97mTp9safx+vE1DideYt8qS6QWdx1VretudYL266hq3TLKvQxoJyJPAYhIG+AL4HlVHXXwwt9n6dJVtGzZmObNU6hePYGePc9nxox5IWlmzJhLnz6piAjt259AXt4ucnO3RZXXC8uWZtGiRTLNmyeTUL0aPS45h5kz54ek+XzmfC7rfT4iQrv2x7Ezbxebc7cjItQ6sgYABQUBCvILcGba9Y4fX2M/xnxGu1asXpvL2vVbyM8P8F7GfC65KPSW0vGtGzP7qxUArFqdQ4tmiTRKDF1NsMs5J/DTui2s37jN03j9+BqHEyca81ZZouqPF5HOIjLQ/b2hiBwdKb2q7gYuB1qKyCTgv8Ddqjr+QAMuTU7OVlJSGhbvJycnkpOzNWKalBQnTTR5vZCbu42UlMSQ6+bmbC8R8/bQNCmJ5OQ6/yMGAoX0vfyvnN/5Js4+51RObdfG03j9+Br7MebGyUfx86Z974ON2TtonHxUSJpvV2ygV/fTADj91FY0b9KAJimhafr27MB7U0MbAl7w42scTpXoKikiIsOBe4D73EPVgX+XkWcoMAT4GkgDvsGZ82Ro0erwB5vq/p9+JVugYZIgIlHl9UL460aTxkkUHx/Hex88xozPX2DZsixWrfT2K2bVeY0P7ZjDXqJELE+P/5T6dWsxZ8oD3HztBSz9bj2BQKD4fEJCPD0ubMfkaQs9jtafr3E4fqq4oxnHfTlwGrAIiufhLmuF9+Dzz4Y5FpaIpAPpAOPHjyI9/eoownOkpDQkO3tL8X5OzlaSkhqUSJMYkiY720mTn19QZl4vJCcnkp29r3WRk7OVRkmhraaUlAahabK3ktQoNE3dukdyZseT+OKLJbQ5roVn8frxNfZjzBuzt9O08b5/4yYp9dmUuyMkzc5fdzP43teK95fOGsPaDfveJ2ldTmHJd+vYvHWn5/H68TUOx0/DAaOJda86H4sKICJHlpVBVUdG2iLkm6CqHVS1QyyVNkDbtm1Ys2Yj69dns3dvPhkZmaSmdgxJk5raicmTZ6KqLF68gjp1apGU1CCqvF44pe2xrFubzYYNueTvLeDjaV/RtWuHkDQXdO3AlA8zUVWWLF5J7Tq1aJR0FNu25ZGXtwuA3bv3Mvd/33L00U08jdePr7EfY160dC3HtkyiZbNEEhLi6dvzTD6eETqvW706NUlIiAfg2qs789X8Vez8dXfx+b6XduC9j7zvJgF/vsbhiMS+VZZoWtxvi8h4oL6I3ATcgLMiTqlEZFiE06qqo2OIMSrVqsUzbNgtDBo03On77XsRbdq05M03PwZgwIAedOnSgdmzF5CWlk7NmkcwduydEfN6rVq1eO5/8AZuHjSWQGEhl19xAa3bNOetSZ8BcHX/NM7vchpzMr+hR/c7qVmjOqPH3grA5s3beeC+5wkECtHCQrpffDYXdD3D83j9+Br7LeZAoJC7R77Fe6/cQXx8HP9+5ytWrNrEwAHnAfDKm3M4rnUK4x4fSCBQyA9Zm7j9vn1rmtSskUDXc0/kzw++4Xms4M/XOBwfPfGOhOtj2i+RSBrQDedv+1RVPysj/V1hDh8J3AgkqmrtskNb6Z/nT135hb9VdggxSYirVdkhHBbqt36qskOIyY4sT25Deey4A653F2zJiLnO6dCwZ6XU95EeeW8NJKvql25F/Zl7/HwROVZVfywtr6o+GVROHeBOnAWHJxE6t7cxxhwSqkof99M4iyaU9Jt7LiIRaSAiD+MsulANOF1V71HV3HLEaYwxnhLRmLfKEqmPu5Wq7rfSjaouEJFWkQoVkceBK4AJQFtV/fWAojTGGI/5qY87Uou7RoRzNcso9y6gCfAgsLHEo/NlPS5vjDEVrqqMKpkvIjepasgIEhG5EYg4ql9V/dRdZIwxvmpxR6q4/wR8ICJ/ZF9F3QHnycnLPY7LGGMqlJ+WLos0yVSOqp4DjATWuNtIVT1bVbMrJjxjjKkYUo4tqnJFLhaRH0QkS0TuDXP+jyKy1N2+EpF2ZZVZ5gM4qvo58HmUMRpjjHGJSDzwHM6cTRtwuqCnqOp3Qcl+Arqo6nYR6YEzqKNTpHJtzUljjMGzm40dgSxVXe1cQyYBvYHiiltVvwpKPxdoVlahdhPRGGMoX1eJiKSLyIKgLb1EsU2B9UH7G9xjpbkR+LisWK3FbYwxlG9UiapOwOnaiKXYsE/uiEhXnIq7c1nXtYrbGGPwbFTJBqB50H4zYGPJRCJyKjAR6KGqZa4kYV0lxhiDZ6NK5gNtRORoEakO9AemhFxXpAXwPvB/qhrVwrHW4jbGGPBk7hFVLRCR24FPgXjgZVVdLiK3uOfHAcOAROB5d/WfAlXtUFqZYBW3McYA3j05qarTgGkljo0L+n0QMCiWMq3iNsYYKnfukVhZxW2MMfjrhp9V3MYYg7W4jTHGd3xUb1vFfTDZGo4mHL+t4Vi71ZjKDiFmv6751wGXYS1uY4zxGR/V21ZxG2MM+Gs+bqu4jTEGa3EbY4zvVOaq7bHy09BFY4wxWIvbGGMA6yoxxhjfseGAxhjjMz6qt63iNsYY8NcNP6u4jTEG6yoxxhgf8k/NbRW3McYAYhW3Mcb4i4h/ermt4jbGGMC6Sowxxmesq8QYY3zHPxW3fzp1opCZuZDu3W8hLS2dCRPe2e+8qvLww+NJS0unV68hLF+eFXVei9mf8VrMFRPzRV3asmjGoyyZ9RhDb+253/n6dWvx5vg7mPvxw8yaPJyTjmtafO62gWl8/ekY5k8fy203dKuQeMMRiYt5qyxVpuIOBAKMGjWOiRNHkJHxHFOnZpKVtS4kTWbmQtas2cj06eMZPXowI0a8EHVei9l/8VrMFRNzXJzw1KhrueL6J+mQdh9XXnYWJ7RuEpLmL4N7sfS7dZzV40HS75rAY8P/CMBJxzXl+v4X0KX3SM7q8SA9UttzbKtkT+MtnZRjqxxVpuJeunQVLVs2pnnzFKpXT6Bnz/OZMWNeSJoZM+bSp08qIkL79ieQl7eL3NxtUeW1mP0Xr8VcMTF3aH8Mq9fmsGb9ZvLzA7z70Tx6djs9JM0JbZow68vlAKz8cRMtmjUiqWFdjm/dhK+/+ZHfd+8lECjki3kr6NX9DE/jLY2U47/KUmUq7pycraSkNCzeT05OJCdna8Q0KSlOmmjyWsz+i9dirpiYmyQfxYaN24r3f960jSbJR4WkWfb9ei67uAMAZ7Q7hhZNE2mS0oDvftjAuR2Pp0H9I6lZozrdurajWeMGnsZbGj9V3BV2c1JEGgJbVdWT2crDFSslnmENd2URiSqvF/wWs9/ideKxmL2OOVz5JeN46oWpPDb8Gr6aNorlKzawZPlaCgIBfvhxE38fl8GUf/+VXbv28O336ygIFHoab+n80471pOIWkbOAR4FtwGjgdaAhECci16rqJ6XkSwfSAcaPH0V6+tVRXzMlpSHZ2VuK93NytpKU1KBEmsSQNNnZTpr8/IIy83rBbzH7LV6LuWJi/jl7G82a7LtG08YN2JS7IyTNzl93c+vdE4v3l3/xBGvXbwbgtbczee3tTACG392PjZu2YSLz6iPmn8BY4E1gJjBIVVOA84FHSsukqhNUtYOqdoil0gZo27YNa9ZsZP36bPbuzScjI5PU1I4haVJTOzF58kxUlcWLV1CnTi2SkhpEldcLfovZb/FazBUT88IlP3Fsq2RaNmtIQkI8/Xp1Ytpn34SkqVe3FgkJ8QBc378LX85byc5fdwPQKLEOAM2aNKD3xWfwzpS5nsZbGhGJeassXnWVVFPV6QAiMkpV5wKo6gqv/thq1eIZNuwWBg0aTiBQSN++F9GmTUvefPNjAAYM6EGXLh2YPXsBaWnp1Kx5BGPH3hkxr9f8FrPf4rWYKybmQKCQu4a9zuTX7iY+Po7X387k+1U/c+MfuwLw0hufc3zrxkx4Mp3CwkJWrNrIbX99qTj/Gy8MocFRtckvCDD0odfZkfebp/GWzj/juMWLLmcRWaSqp5f8Pdx+6Vb6Z+VOY6qQ2q3GVHYIMft1zb8OuNb9rWBOzHVOrWrnVUpt71WLu52I5OF8hNV0f8fdr+HRNY0x5gAc5jcnVTXei3KNMcYrNleJMcb4TGXebIyVVdzGGAP46eakVdzGGAPI4d7HbYwx/mMtbmOM8RXr4zbGGN+xitsYY3zF+riNMcZ3rMVtjDG+Yg/gGGOMz9jNSWOM8R3r4zbGGF/xU1eJfz5ijDHGAFZxG2OMS8qxRVGqyMUi8oOIZInIvWHOi4g8655fKiJlrldgXSXGGIM3NydFJB54DkgDNgDzRWSKqn4XlKwH0MbdOgEvuD9LZS1uY4wBnOow1q1MHYEsVV2tqnuBSUDvEml6A6+pYy5QX0QalxWpMcYc9qQc/0WhKbA+aH+DeyzWNCEO4a6S4zy7xSsi6ao6wavyDza/xQv+i9lv8YJ3Mf+65l8Hu8hih/brHHudIyLpQHrQoQkl/r5wZZZc2zKaNCEO1xZ3etlJDil+ixf8F7Pf4gWLudKp6gRV7RC0lfxQ2gA0D9pvBmwsR5oQh2vFbYwxFWE+0EZEjhaR6kB/YEqJNFOAa93RJWcBv6jqpkiFHsJdJcYY42+qWiAitwOfAvHAy6q6XERucc+PA6YBlwBZwG/AwLLKPVwr7kO0j61UfosX/Bez3+IFi9kXVHUaTuUcfGxc0O8KDI6lTHHyGGOM8Qvr4zbGGJ+pEhW3iKSIyCQR+VFEvhORaSJynIj8LiLfiMj3IvK1iFwXJu+ZIhIQkX4ikigii90tW0R+DtqvXpnxikg9EflIRJaIyHIRGVhR8VY0EbleRJp4VHbAfX2Wu6/lUBGJCzrfUUQy3UeUV4jIRBGp5UUsMcSsIvJk0P5fRGSE+/sIEfmL+3sNEflMRIZXUqhhBb3mS0RkkYicU9kx+Z3v+7jFeU71A+BfqtrfPdYeSAZ+VNXT3GPHAO+LSJyqvuIeiwf+hnPjAFXdCrR3z40AflXVJw6ReAcD36lqLxFpBPwAvKGqnsZbSa4HvqWMIVHl9HvQa5YE/AeoBwwXkWTgHaC/qv7P/bfqC9TBuWlUWfYAV4jII6q6JVwC94P6PWChqo6s0OjKFvyadwceAbpUakQ+VxVa3F2B/BKd/YsJfRIJVV0NDAXuCDo8BOfNnut9mMXKG68CddzKpDawDSgobxAi0iqoRfmtiLwhIheJyJcisspteTYQkcniTHwzV0ROdfOOEJGXRWSWiKwWkTuCyh3qlvetiPwp6Pi1bjlLROR1EakjIj+JSIJ7vq6IrBGRK4EOwBtuK62miJwhIrNFZKGIfCplPA4cLVXNxRlXfLv7ug7G+UD9n3teVfVdVc05GNc7AAU4N/X+XMr5ajiPUq9S1f0mMTrE1AW2V3YQfuf7FjdwCrAwyrSLgBMARKQpcDmQCpzpTWhhlSte4J844z034rQAr1bVwgOMpTVwJU7lNR/4A9AZuAy4H+fD5BtV7SMiqcBruN9I3Li6urH8ICIvAKfiDGXqhPM02DwRmQ3sBR4AzlXVLSLSQFV3isgsoCcwGWd863uq+o6IDAb+oqoL3Ir9H0BvVd0sIlcDY4AbDvBvB5wPSLerJAnn38a7xwYPzHPAUhF5LMy5vwL/VdU/VWxIUaspIouBGkBjnP/nzAGoChV3LIIfLX0auEdVA3LoLlkUHFh3YDHOm/5Y4DMRmaOqeQdQ/k+qugxARJYDM1RVRWQZ0ApoidNVgKrOdPvU67l5M1R1D7BHRHJxuno6Ax+o6i63zPeB83C+Lbxb9DVfVbe5ZUzEqXQm41T4N4WJ8XicCvUz998pHoj4cEI5HLJvgCKqmicir+F8A/u9xOkvgLNF5DhVXVnx0ZUpuKvkbOA1ETlFbUhbuVWFrpLlwBlRpj0N+N79vQMwSUTWAP2A50Wkz0GPbn/ljXcg8L779T0L+Il9rfHy2hP0e2HQfiHOh3qkORSC8wYipMc9vt//pKr6JdBKRLoA8ar6bSl5l6tqe3drq6rdSvuDYuXeSwjgdJfF8m9TGZ4GbgSOLHE8E/gT8LFXN3UPFrcbqiHQqLJj8bOqUHHPBI4QkeLWmoicidNaJOhYK+AJnK/dqOrRqtpKVVsB7wK3qerkQzVeYB1woXsuGaclutrjWDOBP7rXvADYUkYLPxPoIyK1RORInK6oOcAM4CoRSXTLahCU5zXgTeCVoGM7cbpgwLkJ28htqSEiCSJy8gH+XbhlNQLGAf90W3//BK4TkU5Baa4RkZSDcb0D5X5TeRun8i557j3gceATEalfwaFFTUROwPnWtLWyY/Ez33eVuF/tLweeFmd1id3AGpwWyLEi8g1O39pO4B9FI0oqywHEOxp41e3GEJxunrAjDA6iEcArIrIUZ1TFfsMpg6nqIhF5FfjaPTRRVb8BEJExwGwRCQDf4IwcAXgDeBin8i7yKjBORH4Hzsb5RvSs201TDaflubycf1NRf2sCzk2/14Gn3PhzRKQ/8IQ74qQQ58Po/XJeywtPAreHO6Gq49wPmSki0k1Vd1dsaKUqes3Bee9ep6qBSozH9+zJSVOpRKQfzo3H/6vsWIzxC9+3uI1/icg/cJZtuqSyYzHGT6zFbYwxPlMVbk4aY8xhxSpuY4zxGau4jTHGZ6ziPgxIKbMRlpHnV/dnKxHZ78EY9/gfvIo56DrTYh2XLCLp4szDskKcWRY7R5HnVXeEiydEJM2da2WZ+9Me+zblZqNKqjh38qTSZiM8kMejW+HMbfKfAwwxIlWNacSJiFwK3Ax0dudFOR2YLCIdVTXbkyCjswXopaobReQUnBkpm1ZiPMbHrMVd9YWdjVBV5wCIyN0iMt+duS+W6UAfBc5zZ/D7s4jMcT8QcMv9UkROFWcmwddFZKY4sw4GPzFa5rXFmTGwodvC/15EXhRnLu3pIlIzTJZ7gLuD5kVZhDNx1GC3vDJnGiwtjTizIf7NbcWvFJHzwuR9S0QuCdp/VUT6quo3qlo0Te1yoIaIHFHWi2xMOFZxV32lzkYoIt2ANkBHnFn/zhCR86Ms915gjjt/yN9xJoy63i33OOAIVV3qpj0VZxbAs4FhItKknNduAzynqicDO3AnwCrhZPb/excAJ8u+mQb7qeoZwMs4Mw0WiyJNNVXtiPOka7gFCyYBV7tlVceZpmBaiTR9cWZd3IMx5WBdJYe3bu72jbtfG6dyzCxHWe8AD4nI3ThTrr4adO5DVf0d+F1EPseprDuX49o/uXOXg1M5t4oytqJJrqKZabCsNEWPv5d2/Y9xHs8/ArgYyHT/dicQZ56Vv+H87caUi1XcVd9ynLk+whHgEVUdf6AXUdXfROQzoDdwFc7si8WnSyYv57VLzkgYrqvkO5wZ/mYGHTvdPV400+DZEa5RVpqiGIpmRAyhqrvFmWe8O07Lu3gOFhFphnO/4VpV/TFCDMZEZF0lVV/Y2QjFmUr1U+AGEantHm/qTq4UjeAZ/IpMBJ4F5gfNuQ3QW5z1EBOBC3AWbTiQa0fyGPA32TcTYXucLpzniW6mwYMxG+EknGl4z8NdFs8dGZMB3OdOZ2tMuVmLu4qLNBuhqq4SkROB/7ndAr8C1xDdUm5LgQIRWQK8qqp/V9WFIpJH6BSt4MwWmAG0AEa7N+k2HsC1I/29U8RZ3egrEVGcD5hrVHUTFE9qVepMg6q6t6w0UZiOM13tFFXd6x67HWfFoYdE5CH3WDd3+TRjYmJzlZiDRpxJ/GcBJxQtqyZVaxFjYw4J1lViDgoRuRaYBzxwENbCNMZEYC1uY4zxGWtxG2OMz1jFbYwxPmMVtzHG+IxV3MYY4zNWcRtjjM9YxW2MMT7z/78aAhiV+JzyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(6, 5))\n", + "sns.heatmap(accuracy_df, vmin=0, vmax=1,\n", + " cmap=\"YlGnBu\", \n", + " annot=True, annot_kws={\"size\": 10},\n", + " fmt='.2f')\n", + "plt.xlabel('Cell type in Oelen v2')\n", + "plt.ylabel('Cell type by Azimuth Algorithm')\n", + "plt.savefig('marker_gene_azimuth_classification.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predicted.celltype.l1predicted.celltype.l1.scorepredicted.celltype.l2predicted.celltype.l2.score
barcode
AAACCCAAGATACCAA_190109_lane1CD8 T0.981818CD8 Naive0.955707
AAACCCAAGTCCCTAA_190109_lane1CD4 T0.379819CD4 CTL0.327444
AAACCCACAAGAGTGC_190109_lane1CD4 T0.740111CD4 Naive0.723822
AAACCCACAATCCAGT_190109_lane1CD4 T0.916869CD4 TCM0.468549
AAACCCACACTATCCC_190109_lane1Mono1.000000CD14 Mono1.000000
\n", + "
" + ], + "text/plain": [ + " predicted.celltype.l1 \\\n", + "barcode \n", + "AAACCCAAGATACCAA_190109_lane1 CD8 T \n", + "AAACCCAAGTCCCTAA_190109_lane1 CD4 T \n", + "AAACCCACAAGAGTGC_190109_lane1 CD4 T \n", + "AAACCCACAATCCAGT_190109_lane1 CD4 T \n", + "AAACCCACACTATCCC_190109_lane1 Mono \n", + "\n", + " predicted.celltype.l1.score \\\n", + "barcode \n", + "AAACCCAAGATACCAA_190109_lane1 0.981818 \n", + "AAACCCAAGTCCCTAA_190109_lane1 0.379819 \n", + "AAACCCACAAGAGTGC_190109_lane1 0.740111 \n", + "AAACCCACAATCCAGT_190109_lane1 0.916869 \n", + "AAACCCACACTATCCC_190109_lane1 1.000000 \n", + "\n", + " predicted.celltype.l2 \\\n", + "barcode \n", + "AAACCCAAGATACCAA_190109_lane1 CD8 Naive \n", + "AAACCCAAGTCCCTAA_190109_lane1 CD4 CTL \n", + "AAACCCACAAGAGTGC_190109_lane1 CD4 Naive \n", + "AAACCCACAATCCAGT_190109_lane1 CD4 TCM \n", + "AAACCCACACTATCCC_190109_lane1 CD14 Mono \n", + "\n", + " predicted.celltype.l2.score \n", + "barcode \n", + "AAACCCAAGATACCAA_190109_lane1 0.955707 \n", + "AAACCCAAGTCCCTAA_190109_lane1 0.327444 \n", + "AAACCCACAAGAGTGC_190109_lane1 0.723822 \n", + "AAACCCACAATCCAGT_190109_lane1 0.468549 \n", + "AAACCCACACTATCCC_190109_lane1 1.000000 " + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "azimuith_df_v3 = pd.read_csv(\n", + " '1M_v3_20201106_azimuth.tsv',\n", + " sep='\\t', index_col=0\n", + ")\n", + "azimuith_df_v3.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "mapping_names = {'CD8 T': 'CD8T', \n", + " 'CD4 T': 'CD4T',\n", + " 'Mono': 'monocyte',\n", + " 'NK': 'NK',\n", + " 'B': 'B',\n", + " 'DC': 'DC'}\n", + "azimuith_df_v3['cell_type_mapped'] = [mapping_names.get(name) for name in \n", + " azimuith_df_v3['predicted.celltype.l1']]" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "data_scv3 = onemillionv3.data_sc[onemillionv3.data_sc.obs['time']=='UT']\n", + "data_obsv3 = data_scv3.obs" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cell_type_lowerrescell_type_mapped
AAACCCAAGATACCAA_190109_lane1CD4TCD8T
AAACCCACAAGAGTGC_190109_lane1CD4TCD4T
AAACCCACAATCCAGT_190109_lane1CD4TCD4T
AAACCCACAGGTACGA_190109_lane1CD4TCD4T
AAACCCAGTCTACGTA_190109_lane1CD4TCD4T
\n", + "
" + ], + "text/plain": [ + " cell_type_lowerres cell_type_mapped\n", + "AAACCCAAGATACCAA_190109_lane1 CD4T CD8T\n", + "AAACCCACAAGAGTGC_190109_lane1 CD4T CD4T\n", + "AAACCCACAATCCAGT_190109_lane1 CD4T CD4T\n", + "AAACCCACAGGTACGA_190109_lane1 CD4T CD4T\n", + "AAACCCAGTCTACGTA_190109_lane1 CD4T CD4T" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merged_classification_df_v3 = pd.concat([data_obsv3[['cell_type_lowerres']],\n", + " azimuith_df_v3[['cell_type_mapped']]],\n", + " axis=1).dropna()\n", + "merged_classification_df_v3.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']\n", + "accuracy_df_v3 = pd.DataFrame(\n", + " data=np.zeros((6, 6)),\n", + " index=celltypes,\n", + " columns=celltypes\n", + ")\n", + "for celltype_onemillionv2 in celltypes:\n", + " for celltype_azimuth in celltypes:\n", + " common_classification_num = merged_classification_df_v3[\n", + " (merged_classification_df_v3['cell_type_lowerres']==celltype_onemillionv2) & \n", + " (merged_classification_df_v3['cell_type_mapped']==celltype_azimuth)\n", + " ].shape[0]\n", + " onemillion_classification_num = merged_classification_df_v3[\n", + " (merged_classification_df_v3['cell_type_lowerres']==celltype_onemillionv2)\n", + " ].shape[0]\n", + " azimuth_classification_num = merged_classification_df_v3[\n", + " (merged_classification_df_v3['cell_type_mapped']==celltype_azimuth)\n", + " ].shape[0]\n", + " accuracy_df_v3[celltype_onemillionv2].loc[celltype_azimuth] = common_classification_num/onemillion_classification_num" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CD4TCD8TmonocyteDCNKB
CD4T0.9522220.1572130.0036710.0018450.0164030.001099
CD8T0.0469230.7874280.0016060.0000000.0146660.000000
monocyte0.0005130.0004090.9933460.1771220.0003860.000000
DC0.0000850.0000000.0005740.8210330.0001930.001099
NK0.0002560.0549500.0006880.0000000.9683520.000000
B0.0000000.0000000.0001150.0000000.0000000.997802
\n", + "
" + ], + "text/plain": [ + " CD4T CD8T monocyte DC NK B\n", + "CD4T 0.952222 0.157213 0.003671 0.001845 0.016403 0.001099\n", + "CD8T 0.046923 0.787428 0.001606 0.000000 0.014666 0.000000\n", + "monocyte 0.000513 0.000409 0.993346 0.177122 0.000386 0.000000\n", + "DC 0.000085 0.000000 0.000574 0.821033 0.000193 0.001099\n", + "NK 0.000256 0.054950 0.000688 0.000000 0.968352 0.000000\n", + "B 0.000000 0.000000 0.000115 0.000000 0.000000 0.997802" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "accuracy_df_v3" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFBCAYAAABXWEVsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABF0ElEQVR4nO3deXgUVdbA4d/JgoBsJpCEHZWoI6OgIrggaDAsIoKCC6OjopjBz30b12FV3B11dARERR0HBBeURcUBJbggm4CgKBHDnoRFZVVC53x/VBG6Q6fTHaiEiuf1qYd01b1Vhyaevn3r1r2iqhhjjPGPuMoOwBhjTGwscRtjjM9Y4jbGGJ+xxG2MMT5jidsYY3zGErcxxviMJW5jjPGIiLwsIgUisrSU4yIiz4pIjogsEZGTozmvJW5jjPHOWKBbhOPdgXR3ywJeiOaklriNMcYjqpoNbIlQpBfwmjrmAPVEpGFZ57XEbYwxlacxsCbo9Vp3X0QJnoVzgOofe6vvnsVftLBzZYcQkyaHH1vZIfwhFGlhZYcQkzhJrOwQyuEYOdAz1GjWL+ac89ua8X/D6eLYa7Sqjo7hFOHiLjOOQzZxG2NMRRKJvQPCTdKxJOqS1gJNg143AdaXVcm6SowxBhDiYt4OgveBK93RJacBv6rqhrIqWYvbGGMoX4u77HPKOOBsoL6IrAUGA4kAqjoSmAacB+QAO4H+0ZzXErcxxuBN4lbVfmUcV+CGWM9ridsYYwCRA76/WWEscRtjDOCnW36WuI0xBm+6SrxiidsYY/BX4vZPpMYYYwCPWtwikqCqe7w4tzHGeOEgjcuuEF5FOtej8xpjjCdE4mLeKotXfdz+GVdjjDH4q4/bq8TdQERuL+2gqj7l0XWNMaZcLHFDPFALa3kbY3xCfJSuvErcG1R1mEfnNsaYg85a3NbSNsb4jJ8St1eR7reigIhc4NG1jDHmgNmoEji7xIQtAjwvIgkAqvqOFxfNOOs4Rtx/EXFxwn8mzuHZF2eEHK9bpwbPjuhHi2b1+f33Qm6+bxzLV+QBsHDGILbv+I1AkRIIBDi3T8XcP537+XKef+I9igJFnHdhe/r1zwg5vvqnAh4b8iY5y9dyzQ3dueTKs4uPbd+2iyeGTSD3xzwE4c7Bl9CqdQtP483OXsBDD71IUVERF1+cSVbWxSHHVZWHHhrNrFkLqF79MB555BZatWoZVV2LeZ/Zsxcy4qGXKSoqom/fc7ku66L9Yh7x0EtkZy+kevXDGPHwjbRqdTQbNmzinrufZdOmn5G4OC65JJMrrzzf83j9+B7vzz8tbq8S9wTgQ6CAfd0mhwM9cZblOeiJOy5OeHRQX/r2f4H1+b/w8Vu38+HMpfzwY35xmdsGZrL0u3VcdePLtDwqhccG9eWiq/9dfLz3Vc+z5ecdBzu0UgUCRTz76Ls89u8sGqTW5f+ueIbTOx1Pi6PSisvUrluDG//ei88/WbZf/ecen8SpZxzHkMevorBwD7//5u0SWYFAgGHDRvLKK8NJTU2mb9/bychoT8uWzYrLZGcvIDd3PdOnj2Lx4u8ZMuQFJk58Mqq6FvO+mIcPe5GXXh5Mamoyl1z8d87JOJWWLfctlJKdvZBVqzbw4UfPs3jxDwwbOpo3JzxKfHwcf7/7Klq1Opod23fRp8+dnHFG65C6XsTrt/c4HOsqgdOBGsA84BpV7Q9sUtX+qnqNFxc8+cTm/LRqE6vWbqawMMC7U7+me+cTQsoce3Qq2XN+ACBnZQFNGyfRILmWF+FEZfnS1TRukkyjJskkJiZwTtc2fPFpaII+Iqk2x7VqRkJC6D/Vju2/8c3ClZzXux0AiYkJ1Kpdw9N4lyxZQfPmDWnaNI1q1RLp0aMjM2Z8FVJmxow59O6dgYjQps1xbN26g4KCLVHVtZj3xpxDs2b7rnveeR2YOSP0mbaZM+bSq9fZbszHFseckpJEq1ZHA3B4rRocfXQT8vM3exyv/97jcPzUVeLJlVV1HpAJVANmikg7olgA80A0TK3L+ryfi1+vz/+Fhql1Q8osXb6e8zNbA3DSCc1o2ugIGqXVc2JGeeulgcx4+w6uvOR0L0MttmnjrzRwrw/QIKUemwp+jaruhnWbqXtELR4b8iZ/6/cUTwybwK5dv3sUqSM/fzNpafWLX6emJu+XFEqWSUtzykRT12J2FORvJq1h8r7rpiWTn7+lRMxbSGsYGnNBiTLr1hbw3Xc/0br1MZ7G68f3OJxKWrqsXDy7sqoWqeozwBXAnV5dZ69wc6A7i0vs88zo/1G3Tg0+mXQX1/31LL75bh179hQB0KPfM2Rc9CSXXjeKay7vwOltj/I65LAfZdFO5h4IFLFi+Tou6Hs6o8bdTvUa1Rj/yicHOcBQJd9P2D/eMEUQkajqesGXMYfZV/KyGqZUcGw7duzi5psf4557r6FWrZoHOcISsfjwPQ7HTy1uz6d1VdV1wCXRlBWRLNyl7g9PyaB6vRPKqLHP+rxfaZR2RPHrRqn1yCvYGlJm+47fufm+ccWvF84YxKq1zqf73rKbtmxn2sffcPKJzfly/sqor18e9VPqsjHvl+LXGwt+IblBnajqNkipS4OUuvzphOYAdOx8IuPHzvQizGJpafXJy9tU/Do/fzMpKUklyiSHlMnLc8oUFu4ps67F7EhNTSZvw75WZ35emJhTk8nbEBpzgxTn97+wcA+33Pw4PXt2pEuX0zyP14/vcTh+WgHHs48MEblKRBaKyA53my8iV0aqo6qjVbWtqraNJWkDfP3Nao5qUZ9mTZJITIznwh4n8eHMpSFl6tSuQWJiPAB/vfg0vpz/I9t3/E7NGtWodfhhANSsUY2zzzyW71aUudDyATuuVVPWrdnEhnWbKSzcwycfLeKMTq2iqptUvw4NUuuxJrcAgK/nrqD5kalehssJJ6STm7ueNWvy2L27kKlTs8nIaBdSJiOjPZMmzURVWbRoObVr1yQlJSmquhbz3phbsmrVBtauzWf37kKmTfuMczJODSlzTsapvPfep27M3xfHrKo88MDzHHV0Y67uXzEjcP34Hofzh29xuwn6VuB2YCHOyJKTgcfdr0evHexrBgJF3DPsbSaOGUhcfBz/ffsrvs/J4+rLzgBg7PgvOOboVP796OUEior4PiePW+4fD0CD5Nq8+rxzzzQhPo63pyxk5uzlBzvE/cQnxHPT3Rdy9w0vUlSkdL/gVFocncbkt74AoGffM9iyaSvXX/EMO3f8hojw9n9n8/Jbd3F4rercdHdvRtz/XwoLAzRsksTfh1zqabwJCfEMGjSQAQMGEwgU0afPuaSnN2fcuA8A6NevO506tWXWrPlkZmZRo8ZhjBhxS8S6XvNrzA/8YwADrh1GUVERF/XpTHp6M8aP/wiAyy7rSqdOp5CdvZCuXf7PGQ444kYAFi5czvvvzeKYY5pzYW9nuqBbb7ucTp1O8TRev73H4fhpWlcJ18d0wCcVmQNcpqq5Jfa3AMarapnf3+ofe6unNzO9sGjhfs8dHdKaHH5sZYfwh1Ck3g7TPNjiJLGyQyiHYw64n6N56xEx55xVi++rlP4Vr/q465RM2gCqmisi0XXiGmNMBfLTOG6vEveuch4zxphKYYkb/iQiS8LsF6ACxtkZY0xs/NTH7VXibg2kAmtK7G8OrPfomsYYU34+anF7Fek/ga2quip4A3a6x4wx5pDyhx8OCLRQ1f26SlR1vjuyxBhjDil+egDHq8RdPcIxb2dCMsaYcvBTH7dXkc4TketK7hSRa4EFHl3TGGPKzbpKnKcm3xWRy9mXqNvizBZ4oUfXNMaY8vujd5Woaj5whoicA/zZ3T1VVb2dBckYY8rLPz0l3s4OqKqfAN7ONWqMMQfDH73FbYwxvmOJ2xhjfMa6Sowxxl/UWtzGGOMz/snblriNMQaAOP9kbh/16hhjjAFrcRtjjMP6uA/cum8vr+wQYtbqYu/XqTyYct6p7Aj+KPyTEP7QfPTPdMgmbmOMqVA+6uO2xG2MMWBdJcYY4zv+yduWuI0xBrCuEmOM8R3/5G0bx22MMeA88h7rFg0R6SYi34tIjojcE+Z4XRGZLCKLRWSZiPQv65zW4jbGGPCkq0RE4oHngUxgLc7qYO+r6rdBxW4AvlXVniLSAPheRN5Q1d2lhnrQIzXGGD+ScmxlawfkqOpKNxGPB3qVKKNAbXFWK64FbAH2RDqpJW5jjAFnOGCMm4hkicj8oC2rxFkbA2uCXq919wV7DvgTsB74BrhFVYsihWpdJcYYA+XqKlHV0cDoCEXCnVRLvO4KLAIygKOBj0VktqpuLe2knrS4RcQ+EIwx/uJNV8laoGnQ6yY4Letg/YF31JED/AQcF+mkXnWVzPXovMYY441ydJVEYR6QLiJHikg14DLg/RJlVgOdnRAkFTgWWBnppF61jH00ItIYY/DkkXdV3SMiNwIfAfHAy6q6TEQGusdHAsOBsSLyDU7uvFtVN0U6r1eJu4GI3F7aQVV9yqPrGmNM+XjU/6Cq04BpJfaNDPp5PdAllnOWmbhFpC1wP9DcLS/OtfTECNXicYa1WMvbGGMOsmha3G8Ad+EMU4k4RCXIBlUdVu6ojDGmolWx2QE3qmrJzvSy+OcdMMYY8FXWiiZxDxaRMcAM4Pe9O1U10vopnUUkQVX3AIhILZzhLStVdcuBBBzJZ7MX8+jDr1MUKOKivmdz7XUXhBxXVR4d8TqzsxdRvcZhDB+RxfHHHwlAt3Nvpebh1YmPiyM+IZ7xE4d7FWaIjic14oFr2hIfJ0z4Xw6j3l0WcnxAr+O5oKMTY0J8HEc3rkO7/hP5dfturupxHJdmpiPAm/9bwdgp3q/Ak529gIceepGioiIuvjiTrKyLQ46rKg89NJpZsxZQvfphPPLILbRq1TKquhbzPrNnL2TEQy9RVFRE377ncl1Wn/1iHvHQS2RnOzGPePgmWrU6GoD77/sXn346n6Tkukye/GyFxOvH97gk9dHsgNF0x/cH2gDdgJ7udn4ZdXoC+SLyg4h0B5YAjwKLRaRf+cMtXSBQxIgHX+WFUX9n0uTH+GDaHH7MWRdS5rPsxaxalceUD59k0NBreXDo2JDjL429n4nvjqiwpB0XJwy5rh3XPjiTbrdM5vyzWtCySd2QMmPe+5YL7pjKBXdM5Yn/fM3cbwv4dftu0pvV49LMdC76+zTOv30K55zShOYNa3sabyAQYNiwkYwZM4SpU59nypRscnJWh5TJzl5Abu56pk8fxfDhNzBkyAtR17WY98U8fNhoRr/4DyZPeZapUz8jJ2dNSJns7IWsWrWeDz/6N0OHXc+woaOKj/W+MIPRLw7yPM7geP32HoflzXBAT0STuFuraltVvUpV+7vbNWXUuRNnLGJX4E0gU1U7A22Bew8s5PCWfvMjzZql0qRpConVEujW/TQ+mbkgpMwnMxfQs1cHRITWrVuybdsONm782YtwotK6ZTKrNmxjTf52CvcUMfWzVZzbrmmp5c/v0IIps38CoGXjOiz6YSO/7Q4QKFLmfptPl/al1z0YlixZQfPmDWnaNI1q1RLp0aMjM2Z8FVJmxow59O6dgYjQps1xbN26g4KCLVHVtZj3xdys2b7rnndeB2bOCH00YuaMufTqdY4b87HFMQOcemor6tX19kO8ZLx+e4/D8uYBHE9Ek7jniMjxMZ43oKqbVPUnYLuq/gigqvkxRxil/PyfSU1LKn6dmpZEQUFoUi4o+Jm0tOR9ZVKTKMh3y4jwtwGPcGnfB3hrwkyvwgyRmlyTDZt3FL/O27yD1KQaYctWrxZPx5Ma8eEcpzXyw+pfOPX4VOrVqkb1avGcfXJjGtY/3NN48/M3k5ZWf1/8qcnk52+OWCYtzSkTTV2L2VGQv4W0hkHXTSsl5ob7fpfT0pIpyPesFzIiP77HYcVJ7FsliaaPuwNwlYj8hNPHHc1wwNUi8jBQG1guIk8C7wDnAhsOMObwtOTj//t/IGq4Mu7XndfeGERKyhFs3vwrfxvwKC2OakTbthGfOj1g0UxisFfGqU1YuHwjv253Znr8cd1WRr+7jFeHnMuOXXv4LvdnAoHSah8ckd6/fWX2ryciUdX1gi9jDvNbsF/MYepVRGzh+PE9DquKjSrpVo7zXoEzx+yvwD3uOe7FebTz6tIquTNrZQE898K9DLjuwqgvmJqWRH7evhZHft4WGqQcEVomNYm8vH2f5vn5W2iQUg+AFLdscnJdMjqfwtIlP3qeuPM276Rh8r5Wclry4RRs2RW27PkdWjD5s59C9k2ckcPEGTkA3HF5G/I27/QuWCAtrT55efse6MrP30xKSlKJMskhZfLynDKFhXvKrGsxO1JTk8nbEHTdvDAxpyaTt2Hf73Je3ub9ft8rih/f47D8k7fL7ipR1VU4E6UU4nzQ790i1dmqqg+r6iOqul1V31LV81X1/1S11Ba3qo52+9PbxpK0AVr9+ShWrcpj7doCCnfv4cMP5nD2OSeHlDk742Qmv/cZqsrixTnUrl2TBg2OYOfO39ixw0mYO3f+xpdfLKVlepOYrl8eS3I207xhbZqk1CIxIY4eHZozY96a/crVqplIu+NT+d/ctSH7k+pWB6Bh/Zp0ad+MybNzPY33hBPSyc1dz5o1eezeXcjUqdlkZLQLKZOR0Z5Jk2aiqixatJzatWuSkpIUVV2LeV/Mq1ZtYO3afHbvLmTatM84J+PUkDLnZJzKe+994sb8fXHMlcGP73FYVamrRERuAgYD+ex7AEeBSF0liMhVwC04NykBvgOeVdXXyh1tBAkJ8dx3/1Vcf91jBIqK6H1hJ1qmN2HC+BkAXHJZZ87q2IbZ2Yvp0e0OqlevxvCHnKlzt2zeyq03Pw1AYE+A7j3OoMNZrb0IM0SgSBk6Zi6vDOpMfJwwcUYOK9b8Sr8u6QCMm74CgC7tm/LZ4g3s+j10bvXn7+rIEbUPozBQxJAX57J1R6kLZhwUCQnxDBo0kAEDBhMIFNGnz7mkpzdn3LgPAOjXrzudOrVl1qz5ZGZmUaPGYYwYcUvEul7za8wP/OM6Blw7lKKiIi7q05n09GaMH/8hAJdd1o1OnU4hO3sBXbtc7wwHHHFTcf07bn+SufOW8cvPWzm70wBuvOky+vY919N4/fYeh+Wj4YASro8ppIBIDtBeVaO+YyAiVwK3AbcDC3G+hJwMPA48E03y/j0wz9sOWw+0utj7cdQHU8477Ss7hD+EIo24mMkhJ86XszIfc8BZ96gBE2POOSvHXFwp2T6af6E1OH3Vsfg/4EJVzQ3aN1NE+uAs3eNJq9sYY8rNRy3uUhN30Ox+K4FPRWQqoU9ORprhr06JpL23Tq6I1ClnrMYY450qMqpk7wj+1e5Wzd2gjJuTQPihEWUfM8aYylEVWtyqOhRARC5W1YnBx0SkrMkE/iQiS8LsF+ComKM0xhiv+Wjp9Gj6uO8FJkaxL1hrIJXQ1Y3BmdO75HprxhhT+apCV4k7OdR5QGMRCZ5irA5Q1m3yfwL3uWPAg8/ZwD3Ws3zhGmOMidTiXg/MBy4Agmdr2oYz1C+SFqq6X1eJqs4XkRaxBmmMMZ6rIn3ci3GmYX1j77zaMage4Vj4WZSMMaYSaRXpKpmgqpcAX4vIfqNIyphkap6IXKeqL5Y457WEtt6NMebQUEVuTt7i/lnWognh3Aq8KyKXsy9Rt8UZThjbJCTGGFMRqkhXyQYRiQdeUtWYJjpw590+Q0TOAf7s7p6qqhUz0bUxxsSqKnSVAKhqQER2ikhdVY31sXdU9RPgk3JHZ4wxFaUqtLiD/AZ8IyIfA8XLtajqzZ5FZYwxFc0/eTuqxD3V3Ywxpsry0yrvZSZuVX1VRKoBx7i7vlfVQm/DMsaYClaVEreInA28CuTifJloKiJXqWq2p5EZY0xFqio3J11PAl1U9XsAETkGGAec4mVgxhhToarIOO69EvcmbQBV/UFEEj2MyRhjKl4Va3HPF5GXgNfd18EP1RhjTNVQlfq4geuBG4Cbcfq4s4F/R3NyEUkFRgCNVLW7iBwPnK6qL5VV97D4utFc4pDitzUcazYfWtkhxGzp0ssqO4SYHVX72LILmcpXlRK3qv4OPOVusRoLvALc777+AXgTKDNxG2NMRaoSk0ztJSLfsP9SZb/iTPn6YBmrv9dX1Qkici+Aqu4RkUC5ozXGGK9UsZuTHwAB4L/u68twukx+xWlRR1oUYYeIJOMmfhE5jdhXjDfGGO9VpRY3cKaqnhn0+hsR+VxVzxSRK8qoezvwPnC0iHwONADKWq/SGGNMBNEk7loi0l5VvwIQkXZALfdYWQssLAM6AcfitNK/x1dfSIwxfxhV6eYkMAB4WURq4STfrcAAETkceLiMul+q6sk4CRwAEVkInFzOeI0xxhtVKXGr6jzgBBGpC4iq/hJ0eEK4OiKSBjQGaojISeybd6sOUPOAIjbGGC/4J29HXLrs9lL2A6CqkYYHdgWuBpoQOoxwK3BfrEEaY4zXqsrsgLUjHNtvDcqQg6qvAq+KSB9VfbtckRljTEWqCqNKVLXUx+pE5NQoz/+EOwTwZVX9LtbgjDGmwvioxR31CA8ROV5EhonICuCFKKudiPO05EsiMkdEskSkTnkCNcYYT0k5tkoS8eakiDQH+rnbHqA50FZVc6M5uapuA14EXhSRjjjTwf5TRN4ChqtqzgHEbowxB02cjwYqlxqqiHwBTAMSgb6qegqwLdqk7Z4jXkQuEJF3gWdw5vY+CpjsntsYYw4JIrFvlSXSZ8xGnBuUqThPPEIZNyXDWAH0Ah5X1ZNU9SlVzVfVt4APY47WGGM84lXiFpFuIvK9iOSIyD2llDlbRBaJyDIRmVXWOSPdnOzljt3uAwwVkZZAPRFpp6pzowuZE1V1eynnt1XijTGHDPGgCS0i8cDzQCawFpgnIu+r6rdBZerhTJXdTVVXi0hKWeeN2Kujqr+q6suqmgm0BwYBT4vImijjft4Nam+AR4jIy1HWNcaYCuNRi7sdkKOqK1V1NzAepxci2F+Ad1R1NYCqFpR10qi741W1QFX/papnAB2irHZi8JOWqvozcFK014xVdvYCunYdSGZmFqNHT9zvuKry4IOjyMzMomfPm1i2LCfquhazI7PTiSya+TjfzHqSO67ff2LIenVqMn7UrXz14cNkvzeM449pUnzs//p3Zd70R5j/8aPccE23CokXYP4Xyxlw0aNc0/thJoydud/xNbkF3Nb/X/Q8/W7eev3TkGPvvpHN3y55nIGXPM4j9/2H3b8XVkjMfvu98Fu84XiUuBsDwQ3dte6+YMcAR4jIpyKyQESuLOuk5bqPqqqroiwaJyJH7H0hIklENz9KzAKBAMOGjWTMmCFMnfo8U6Zkk5OzOqRMdvYCcnPXM336KIYPv4EhQ16Iuq7FDHFxwj+HX03vqx7j5HP/zsUXnM5x6aG/g3fd2Isl366mfbd7GXD7Czw+5K8AHH9ME/r3O4eOFwyifbd76d75JI5ukeppvACBQBHPP/ouw58dwKiJd/HpR1+zamVeSJnadWow8M5e9Lni7JD9mwp+5b03Z/Psa7cycsJdFBUVMWv6ogqI2V+/F36LtzQSV47NGeI8P2jLKnnaMJcqea8wAWfx9R44T53/w12UvVReD4B5EvhCRIaLyHDgC+AxLy60ZMkKmjdvSNOmaVSrlkiPHh2ZMeOrkDIzZsyhd+8MRIQ2bY5j69YdFBRsiaquxQxt2xzNj7n55K7ZSGFhgLcmz+H8zFNCyvwpvTGffL4UgB9+3EDzJg1IqV+HY1s2Yt7XOez6bTeBQBGfffUdF3SN9jmu8vth2WoaNU2mYZNkEhMT6NSlDXNmLQspUy+pNse2akZCwv7/OwQCRez+vZDAngC//1ZIUgPvH0Pw2++F3+ItTXla3Ko6WlXbBm2jS5x2LdA06HUTYH2YMh+q6g5V3YSzPGTrSLF6mrhV9TWcm5v57naRqr4euVb55OdvJi2tfvHr1NRk8vM3RyyTluaUiaauxQyN0pJYt2HfNdZt2EKjtCNCynzz7Wp6dXcSctvWR9GscX0apyXx7Q9rObPdcSTVq0WN6tXoek4bmjRK8jRecFrNDVLrFb+un1KPzQXRreVRP6Uufa44myvPf5C/dBtGzVrVOeU079eP9Nvvhd/iLU2cxL5FYR6QLiJHikg1nIVo3i9R5j3gLBFJEJGaOPcTIz5pHs3SZQ2A64AWweVV9ZqownbGgQvO14PEKOvETHX/kYol7xKHKYKIRFXXC36LOex3vhJxPPHCZJ4Y/FfmTBvB0u/XsHhZLnsCRXyfs56nRk5myhv3sH3H73zz7Wr27CnyNN5SRfk+bdu6kzmzlvLK+/dRq3YNRtz9GjOnLSDjvFPKrnwA/PZ74bd4K5K7XOONwEdAPM70H8tEZKB7fKSqficiHwJLgCJgjKoujXTeaPqb3wNmA//DWcIsaiJyC07Sfxvn//v/iMhoVf1XKeWzgCyAUaOGkZV1adTXSkurT17epuLX+fmbSUlJKlEmOaRMXp5TprBwT5l1veC3mNflbaFxw+Ti140bJrEh/5eQMtu27+Jvd+37tvjdZ0+Tu2YjAK++OYtX33SGqA696xLW5W3xNF5wWs0bg2LcVPALyVF2dyyau4LURsnUO8JZN+SMc07g2yW5niduv/1e+C3e0nj1eaGq0yjxwKGqjizx+nHg8WjPGU1XSU1VvVtVJ6jq23u3KM9/LdBeVQer6iDgNJxEHlZwf1EsSRvghBPSyc1dz5o1eezeXcjUqdlkZLQLKZOR0Z5Jk2aiqixatJzatWuSkpIUVV0v+C3mBYtX0vLINJo3bUBiYjx9e57G1I8XhJSpW6cmiYnxAPS/7Bw+m7ucbdt3AdAg2UmYTRolc0G3U5nw3heexgtwzPFNWb9mE3nrNlNYuIdZ0xdxWsdWUdVtkFaP5UtX8dtvu533f94KmlbADVW//V74Ld7S+OnJyWha3FNE5Dz3UyNWQmgrPYBHU7MkJMQzaNBABgwYTCBQRJ8+55Ke3pxx4z4AoF+/7nTq1JZZs+aTmZlFjRqHMWLELRHres1vMQcCRdw+aCzvv3Y38fFxvDZhFt+tWMeAyzsDMOaNGRzbshFjnrqeQKCI5TnruD6o9f3fkbeQdERtCgv3cNugsfyydaen8QLEJ8Rz/V0X8sBNLxIIKF0uOJXmR6cx9S3nQ6NH3zPYsmkrN1/5DDt3/EacCJPGzWbUhLs47s/N6dD5RG66/J/Ex8dx9LGN6X7RaZ7H7LffC7/FWxo/ddFIuD4mABHZhtMvLcDhwO9AoftaVbXM75vuYgxXAe+6u3oDY1X16bJD+yHWx+tNjGo2H1rZIcRs6dLLKjuEmB1V2/sbmuaYA866J7w2O+ac882VZ1VKto/0yHukhRSioqpPuc/dn4mT8Pur6tcHel5jjDnYfNTgjmpUyQxV7VzWvggWARv2XktEmu19tNMYYw4VVSJxi0h1nC6S+u7Tj3v/WnWARtGcXERuAgbjjOHe27+tOAssGGPMIaNKJG7gb8CtOEl6YdD+rTizXUXjFuBYVa2cEfXGGBMlH61cFrGP+xngGRG5qbRx11FYA0T3mJoxxlSiqtLi3uvXcLNVuY+zl2Ul8KmITMUZlbK37lPRh2iMMd6raok7eCag6kBnnK6TaBL3aner5m7GGHNIEh/1lZSZuFX1puDX7qo4UU0UpapD3Tq1nZfhV8MxxpjK5qcWd3lmB9wJpEdTUET+LCJfA0uBZe4k4dE9b2yMMRWoSj3yLiKT2TfxdxxwPDAhyvOPBm5X1U/cc50NvAicEWugxhjjJT+1uKPp434i6Oc9wCpVXRvl+Q/fm7QBVPVTETk8lgCNMaYi+KiLO6o+7lkAIlKHfU8/JqlqNHNyrhSRf7CvT/wK4KdyxmqMMZ7xU4u7zD5ud021fJxJvucDC9w/o3EN0ABnPu53gPrA1eWK1BhjDBBdV8ldQCt3LbRYHY2z3lqce63OQAb2yLsx5hAjXq/AexBFk7h/xBlJUh5vAHfijCqppHWqjDGmbH7qKokmcd+Ls1L7V4Q+/XhzFHU3qurk8gZnjDEVxU8LKUSTuEcBM4FviL3VPFhExgAzCE3678R4HmOM8ZSP8nZUiXuPqt5ezvP3B47DWd19b9JXnBuVxhhzyKhqifsTd/X1yYS2mqMZDthaVU8ob3DGGFNRqlri/ov7571B+xQ4Koq6c0TkeFX9NubIjOd2rhpc2SHELL3L7MoOIWYrptuak35Q1R7AOfIAzt8BuEpEfsJpre9daNiGAxpjDilVInGLSIaqzhSRi8Idj/IGY7dyR2aMMRUoTmJe5L3SRGpxd8IZTdIzzLGobjCq6qpyxmWMMRWqSrS4VXWw+2f/igvHGGMqh48enIxqrpKAiDwiQaPTRWRhpDrGGOM3caIxb5UWaxRllrnlpotIkrvPR18qjDGmbHES+1ZpsUZRZo+q/h1nAYTZInIK+xZWMMaYKiGuHFtliWYctwCo6gQRWQaMA5p5GpUxxlSwKnFzMsiAvT+o6jIR6QD08i4kY4ypeOKj4YBltvZVdQGAODKApwhdzswYY0wFimZUSXsReQZYBbwPzMaZOMoYY6qMKnFzUkQeEpEVwAicKV1Pwplf+1VV/bmiAjTGmIpQVW5OZgHfAy8AU1T1N/FTJ5AxxsSgqjzyngZ0AfoBT4vIJ0ANEUlQ1T0VEp0xxlSQKjGqRFUDwAfAByJSHTgfqAmsE5EZqvqX0uoaY4zf+OmR92iGA6KqvwFvAW+JSB3gQk+jMsaYClYlWtylUdWtwKuRyrgt9NqqurHE/hRgq/tBYIwxhww/9XF79e3gWeCsMPszgX96dE2ysxfQtetAMjOzGD164n7HVZUHHxxFZmYWPXvexLJlOVHXtZj9GS/AWW0b89FLffjfKxeTden+a3jUqpnIqGGZvP9Cb6aNvog+XdIBSGtwOK8/1p0Px/Rh2uiLuKp3qwqL2W/vs9/iDadKDAc8QB3CLbSgqm8AHb24YCAQYNiwkYwZM4SpU59nypRscnJWh5TJzl5Abu56pk8fxfDhNzBkyAtR17WY/RcvQFycMOTGMxhw/3S6X/c25599FC2b1Qspc8UFx5Oz6hcuuH4SV9w1jXuy2pOYEEcgUMTDo+fSbcDbXHzLZC6/4E/71fWC395nv8VbGj8NB4zmAZz5InKDiBwRw3kjfRZ58vddsmQFzZs3pGnTNKpVS6RHj47MmPFVSJkZM+bQu3cGIkKbNsexdesOCgq2RFXXYvZfvAAnHtuAVeu3siZvG4V7ipg6ayWdzwidakdRDq+ZCEDNGgn8uu139gSK2LhlF9/mbAZgx65Cflz9C6n1a3oes9/eZ7/FW5qqNq3rZUAjYJ6IjBeRrsFzc5eiQETaldwpIqcCG8OUP2D5+ZtJS6tf/Do1NZn8/M0Ry6SlOWWiqWsx+y9egLT6NdmwcUfx67yNO0lNPjykzH/e+46jm9bl83H9mDLqIh58YQ5a4v/Jxqm1OL5lMouXe/LrG8Jv77Pf4i2Nn7pKolksOAe4X0T+gTMk8GWgSEReBp5R1S1hqt0FTBCRscACd19b4EqcD4KDTkv+nwaU/HwJUwQRiaquF/wWs9/iLU3JWM5q25jvVm7hr3//gGaNajP2ke7MH5jH9p2FANSsnsBzgzrz0AtzivdVZHxwaL/Pfou3NH4aVRJVt4WInAg8CTwOvA30BbbirEm5H1WdC7TH6TK52t0EaK+qpX4PEpEst2tm/ujRb0b/twDS0uqTl7ep+HV+/mZSUpJKlEkOKZOX55SJpq4X/Baz3+IFyNu0k4YN9rWw0xrUpGDLzpAyfbocw/TPcgFYvX4ba/O2cVTTugAkxAvPDerM+zN/ZPrnFbOEqt/eZ7/FWxqv+rhFpJuIfC8iOSJyT4Ryp7orjvWNJtayLroAZyTIPOBEVb1ZVb9S1SeBlaXVU9V8d93KgcBAVR2kqgWRrqWqo1W1raq2zcq6tKzQQpxwQjq5uetZsyaP3bsLmTo1m4yM0N6ajIz2TJo0E1Vl0aLl1K5dk5SUpKjqesFvMfstXoBvvt9Ii8Z1aJJWi8SEOHp0OooZX4be/FpfsJ3TT2oEQHK96hzZpC5rNmwDYMTtZ/Hj6l945e2lnse6l9/eZ7/FWxov+rhFJB54HugOHA/0E5HjSyn3KPBRNLFGM477YlUNm6BV9aJSghVgMHADzoeDiEgA+JeqDosmsFglJMQzaNBABgwYTCBQRJ8+55Ke3pxx4z4AoF+/7nTq1JZZs+aTmZlFjRqHMWLELRHres1vMfstXoBAkTL0uS95eUQ34uOEtz76gZxVv9CvhzPB5bipy3n+jUU8eldHpoy6EBHh8Zfm8fPW3zmlVSoXZqazfOUW3n+hNwBPvjyfWfPWehqz395nv8VbGo+6StoBOXtzqIiMx1nP4NsS5W7C6c04NZqTSrg+ppACIsk4SbgDzpJlnwHDVLXUOwgichtwHpClqj+5+47CmbDqQ1WNYiz3D/4ZDW8qTHqX2ZUdQsxWTA/3SIM5uI454LR751czY845T7TPiHhdt9ujm6oOcF//FafL+MagMo2B/wIZwEs4k/q9Fem80XTTjMcZCdIHp297I1BWB/SVQL+9SRvA/cS5wj1mjDG+F3xfzt2yShYJU63kB8TTwN3u/FBRiaarJElVhwe9flBEepdRJ1FVN5XcqaobRSQx2uCMMaailKerRFVHA6MjFFkLNA163QRYX6JMW2C8O5qmPnCeiOxR1UmlnTSaxP2JiFwGTHBf9wWmllFndzmPGWNMpfBouYF5QLqIHAmswxkOHTKzqqoeuS8GGYvTVTIp0klLTdwisg2nSS/A7cDr7qF4YDtOv3dpWovI1nCnBapHCsgYYyqDFzcnVXWPiNyIM1okHnjZXXR9oHt8ZHnOG2k+7trlitSpG1/eusYYUxm8mntEVacB00rsC5uwVfXqaM4Z87SuxhhTFflpWldL3MYYg78eebfEbYwx+CtxRztXSQcR6e/+3MC9Q2qMMVVGfDm2ylJmi1tEBuOMMzwWeAVIBP4DnOltaMYYU3GqWh/3hcBJwEIAVV0vIuUecWKMMYciP3WVRJO4d6uqijs6XUQOL6uCMcb4TVVL3BNEZBRQT0SuA64BXvQ2LGOMqVjxVSlxq+oTIpKJs3DCMcAgVf3Y88iMMaYCVbUWN8A3QA2cR+C/8S4cY4ypHH66ORnNCjgDgLnARTgTTM0RkWu8DswYYypSlVosGGfh35P2LpzgLqzwBc6iwcYYUyX4aYKlaBL3WmBb0OttwBpvwjHGmMpR1fq41wFfich7OH3cvYC5InI7gKo+5WF8vvJbYEtlhxCT6vGVs5r2gfDjMmD1Wvrrf5Ffcm6v7BBMGaJJ3D+6217vuX/aQzjGmCrDTzcno0ncb6vqUs8jMcaYSlSlxnEDI0WkGjAW+K+q/uJpRMYYUwn81Mdd5nBAVe2Aszp7U2C+iPxXRLp4HpkxxlSgqjYcEFX9QUQeAOYDzwInibMk8X2q+o6XARpjTEXwU4s7mmldTwT6Az2Aj4GeqrpQRBoBXwKWuI0xvhdfxW5OPoczqdR9qrpr7053etcHPIvMGGMqkFeLBXshmljfUdXXg5O2iNwCoKqvexaZMcZUID/1cUeTuK8Ms+/qgxyHMcZUKj8l7lK7SkSkH/AX4EgReT/oUG1gs9eBGWNMRaoqfdxfABuA+sCTQfu3AUu8DMoYYypalRhVoqqrgFXA6RUXjjHGVI4qkbiNMeaPxBK3Mcb4TFWbq8QYY6q8KjE7oIh8gzP/9n6HAFXVEz2LyhhjKpifHsCJ1OI+34sLikg1Vd3txbmNMeaPoNQPGVVdFWmLdFIR+Ucp++sC0w8w5lJlZy+ga9eBZGZmMXr0xP2OqyoPPjiKzMwseva8iWXLcqKu65XPZy/hgvPu5vyud/HSi1PCxvzIQ//h/K530bf3/Xz3bW7xse7n3kGfXvdzyYX/oN/FgyskXj++x36MuXPH45k3fQgLZwzj1r913e943To1+c+/B/L5lAeY8fY9/Cm9EQAtj0xl9vv3F2+rF/2T66/O8DxeP77HJfnpAZxSE7eIbBORre62Lej1NhHZWsZ5zxKRh0qcLw3IBmYehLj3EwgEGDZsJGPGDGHq1OeZMiWbnJzVIWWysxeQm7ue6dNHMXz4DQwZ8kLUdb2JuYgRD77Gv0fdwbuTH+bDaXP4MWddSJnPspewelUekz98jEFD+/Pg0FdDjo8Zew8T3h3OuIlDKyBeP77H/os5Lk54Ykg/+l77HO27DaXv+adybMuGIWXuuL4b33y3hjPPf5CBd73CI/+4BICcn/I564KHOOuCh+jUewS7du1myvRFnsbrx/c4nHiJfasskVrctVW1jrvVDnpdW1XrlHHeC4DWIvIUgIikA58B/1bVYQcv/H2WLFlB8+YNado0jWrVEunRoyMzZnwVUmbGjDn07p2BiNCmzXFs3bqDgoItUdX1wtJvVtK0WSpNmqaQWC2Bbt3b8+nMhSFlPpm5kJ69zkREOLF1S7Zt28nGjb94Hls4fnyP/RjzKa1bsHJVAavWbKKwMMDbU+dx3rmht5SObdmQWV8sB2DFynyaNUmmQXLoaoKdzjiOn1ZvYs16b9dC9eN7HE6caMxbZYmqP15EOohIf/fn+iJyZKTyqvobcCHQXETGA/8D7lLVUQcacGny8zeTlla/+HVqajL5+ZsjlklLc8pEU9cLBfk/k5a2b8HelLQk8gt+Di1T8DOpaclBsSVRkO+WERg44HEu6zuItyZ84nm8fnyP/Rhzw9QjWLdh3+/B+rxfaJh6REiZpcvX0rPrSQCcfGILmjZKolFaaJk+Pdry9pR5nsfrx/c4HD91lUQzH/dgoC1wLPAKUA34D3BmhDp7l4meC/wdmI0z54lnK8Or7v/p56z1EFxm/3oiElVdL4S9LiWuGzZm589X33iAlJQj2Lx5KwMHPMaRRzXklLbHeRCpG0pVeY8P8ZjDXqJELE+P+ohHHriE2e/fz7c/rGPJt2sIBALFxxMT4+neuTVDn5jkbbD48z0Op6o9gHMhcBKwEIrn4S5rhffg48+G2ReWiGQBWQCjRg0jK+vSKMJzpKXVJy9vU/Hr/PzNpKQklSiTHFImL88pU1i4p8y6XkhNSyIvb9/X2IK8LaSk1Aspk5J6BPl5+1og+flbaJDitKxS3D+Tk+uQ0fkUli5Z6Wni9uN77MeY1+f9TOOG+1rPjdLqsaHgl5Ay27b/xg33vFb8esmnD7Fq7b7fk8xOf2bxt6vZuHmb5/H68T0Ox0/DAaOJdbc6H4sKICKHl1VBVYdG2iLUG62qbVW1bSxJG+CEE9LJzV3PmjV57N5dyNSp2WRktAspk5HRnkmTZqKqLFq0nNq1a5KSkhRVXS+0+vORrF6Vz9q1GyncvYcPP/iKTuecFFLm7IyTmPze56gqSxbnUKt2DRo0qMfOnb+zY4czRfrOnb/z5RdLaZnexNN4/fge+zHmhUtWcXTzFJo3SSYxMZ4+PU7lgxmh87rVrV2DxMR4AK68tANfzFvBtu2/FR/vc35b3p7sfTcJ+PM9Dkck9q2yRNPiniAio4B6InIdcA3OijilEpFBEQ6rqg6PIcaoJCTEM2jQQAYMGEwgUESfPueSnt6cceM+AKBfv+506tSWWbPmk5mZRY0ahzFixC0R63otISGee+//K9df9zhFRUX0vrAjLdObMGG8M/DmkssyOKtjaz7LXsL53e6ievXDGPbQAAC2bP6V2252vszs2RPgvB6nc+ZZ3j4T5df32G8xBwJF3DX0Td5+5Wbi4+P4z8QvWL5iA/37nQXAK+Nmc0zLNEY+3p9AoIjvczZw47371jSpUT2Rc878E7c98IbnsYI/3+NwfNRTgoTrY9qvkEgm0AXn7/aRqn5cRvk7wuw+HLgWSFbVWmWH9oN/nj91/Rbw9u79wVY9vnK+kv7R1Gt50G/peOqXnNvLLnTIOeaA8+78TVNjzjlt6/eolHwf6ZH3lkCqqn7uJuqP3f0dReRoVf2xtLqq+mTQeWoDt+AsODye0Lm9jTHmkFBV+rifxlk0oaSd7rGIRCRJRB7EWXQhAThZVe9W1YJyxGmMMZ4S0Zi3yhKpj7uFqu630o2qzheRFpFOKiKPAxcBo4ETVHX7AUVpjDEe81Mfd6QWd/UIx2qUcd47gEbAA8D6Eo/Ol/W4vDHGVLiqMqpknohcp6ohI0hE5FpgQaSTqqqfuouMMcZXLe5IiftW4F0RuZx9ibotzpOTF3oclzHGVCg/PTkZaZKpfFU9AxgK5LrbUFU9XVXzKiY8Y4ypGFKOLarzinQTke9FJEdE7glz/HIRWeJuX4hI67LOWeYDOKr6CeD9DEbGGFPFiEg88DyQCazF6YJ+X1W/DSr2E9BJVX8Wke44gzraRzqvrTlpjDF4drOxHZCjqiuda8h4oBdQnLhV9Yug8nOAMueusJuIxhhD+bpKRCRLROYHbVklTtsYWBP0eq27rzTXAh+UFau1uI0xhvKNKlHV0ThdG7GcNuyTOyJyDk7i7lDWdS1xG2MMno0qWQs0DXrdBFhfspCInAiMAbqrapkrSVhXiTHG4NmoknlAuogcKSLVgMuA90OuK9IMeAf4q6r+EM1JrcVtjDHgydwjqrpHRG4EPgLigZdVdZmIDHSPjwQGAcnAv93Vf/aoattI57XEbYwxePfkpKpOA6aV2Dcy6OcBwIBYzmmJ2xhjqNy5R2JlidsYY/DXDT9L3MYYg7W4jTHGd3yUty1xH0y2hqMJx29rONZoNriyQ4jZrtXjDvgc1uI2xhif8VHetsRtjDHgr/m4LXEbYwzW4jbGGN+pzFXbY+WnoYvGGGOwFrcxxgDWVWKMMb5jwwGNMcZnfJS3LXEbYwz464afJW5jjMG6Sowxxof8k7ktcRtjDCCWuI0xxl9E/NPLbYnbGGMA6yoxxhifsa4SY4zxHf8kbv906kQhO3sBXbsOJDMzi9GjJ+53XFV58MFRZGZm0bPnTSxblhN1XYvZn/FazBUT88jH/8aqhSOZ//FjpZZ5cuhVLM3+J3M/epQ2f25RvD+zU2sWf/IkS7P/yZ3/d0EFRBueSFzMW2WpMok7EAgwbNhIxowZwtSpzzNlSjY5OatDymRnLyA3dz3Tp49i+PAbGDLkhajrWsz+i9dirriYX584i15XPlLq8a7ntOHoFmn8ueNt3HjPizz70LUAxMUJTz/Yn15XPcpJne/k4gvO4Lj0xp7HG56UY6scVSZxL1mygubNG9K0aRrVqiXSo0dHZsz4KqTMjBlz6N07AxGhTZvj2Lp1BwUFW6KqazH7L16LueJi/nzucrb8sr3U4+d3OYX/vj0bgLlf51C3Tk3SUupxapuW/JibR+7qAgoLA0yc/CXnd2nrebzhSDn+qyxVJnHn528mLa1+8evU1GTy8zdHLJOW5pSJpq7F7L94LeaKi7ksjdKSWLthXxzr8rbQKC2JRmlHsHZ90P4Nm2mcekRlhOirxF1hNydFpD6wWVU9ma083GmlxDOs4a4sIlHV9YLfYvZbvE48FnNFxFyWcElOVcPG5k2GiIZ/2rGeRCoip4nIpyLyjoicJCJLgaVAvoh0i1AvS0Tmi8j80aPfjOmaaWn1ycvbVPw6P38zKSlJJcokh5TJy3PKRFPXC36L2W/xWswVF3NZ1uVtpknD5OLXjdOS2JD/M+s2bKFJo6D9DZNZX/BzZYToK159xDwHjADGATOBAaqaBnQEHi6tkqqOVtW2qto2K+vSmC54wgnp5OauZ82aPHbvLmTq1GwyMtqFlMnIaM+kSTNRVRYtWk7t2jVJSUmKqq4X/Baz3+K1mCsu5rJM/Xghf+lzFgDtTmrJ1m07ySv4hfmLf6TlkWk0b9qAxMR4Lu55OlM/XlApMYpIzFtl8aqrJEFVpwOIyDBVnQOgqsu9+ssmJMQzaNBABgwYTCBQRJ8+55Ke3pxx4z4AoF+/7nTq1JZZs+aTmZlFjRqHMWLELRHres1vMfstXou54mJ+9V83cdbpf6L+EbXJ+eo5hj/1FomJTnoZ85//8eHMr+l6ThuWzX6anbt+5293jgIgECjitn+MZfLr9xIfH8erb37Kdz+s9Tze8Cq/Syla4kWXs4gsVNWTS/4c7nXpfvDPyp3GVCE1mg2u7BBitmv1uAPOujv3zI4559RMOKtSsr1XLe7WIrIV5yOshvsz7uvqHl3TGGMOgH9uTnqSuFU13ovzGmOMV2yuEmOM8ZlDYdhktCxxG2MM4Kebk5a4jTEGkD96H7cxxviPtbiNMcZXrI/bGGN8xxK3Mcb4ivVxG2OM71iL2xhjfMUewDHGGJ+xm5PGGOM71sdtjDG+4qeuEv98xBhjjAEscRtjjEvKsUVxVpFuIvK9iOSIyD1hjouIPOseXyIiZa5XYF0lxhiDNzcnRSQeeB7IBNYC80TkfVX9NqhYdyDd3doDL7h/lspa3MYYAzjpMNatTO2AHFVdqaq7gfFArxJlegGvqWMOUE9EGpYVqTHG/OFJOf6LQmNgTdDrte6+WMuEOIS7So7x7BaviGSp6mivzn+w+S1e8F/MfosXvIt51+pxB/uUxQ7t9zn2nCMiWUBW0K7RJf5+4c5Zcm3LaMqE+KO2uLPKLnJI8Vu84L+Y/RYvWMyVTlVHq2rboK3kh9JaoGnQ6ybA+nKUCfFHTdzGGFMR5gHpInKkiFQDLgPeL1HmfeBKd3TJacCvqroh0kkP4a4SY4zxN1XdIyI3Ah8B8cDLqrpMRAa6x0cC04DzgBxgJ9C/rPP+URP3IdrHViq/xQv+i9lv8YLF7AuqOg0nOQfvGxn0swI3xHJOceoYY4zxC+vjNsYYn6kSiVtE0kRkvIj8KCLfisg0ETlGRHaJyNci8p2IzBWRq8LUPVVEAiLSV0SSRWSRu+WJyLqg19UqM14RqSsik0VksYgsE5H+FRVvRRORq0WkkUfnDrjvzzL3vbxdROKCjrcTkWz3EeXlIjJGRGp6EUsMMauIPBn0+k4RGeL+PERE7nR/ri4iH4vI4EoKNayg93yxiCwUkTMqOya/830ftzjPqb4LvKqql7n72gCpwI+qepK77yjgHRGJU9VX3H3xwKM4Nw5Q1c1AG/fYEGC7qj5xiMR7A/CtqvYUkQbA98AbquppvJXkamApZQyJKqddQe9ZCvBfoC4wWERSgYnAZar6pftv1QeojXPTqLL8DlwkIg+r6qZwBdwP6reBBao6tEKjK1vwe94VeBjoVKkR+VxVaHGfAxSW6OxfROiTSKjqSuB24Oag3Tfh/LIXeB9msfLGq0BtN5nUArYAe8obhIi0CGpRLhWRN0TkXBH5XERWuC3PJBGZJM7EN3NE5ES37hAReVlEPhWRlSJyc9B5b3fPt1REbg3af6V7nsUi8rqI1BaRn0Qk0T1eR0RyReRioC3whttKqyEip4jILBFZICIfSRmPA0dLVQtwxhXf6L6vN+B8oH7pHldVfUtV8w/G9Q7AHpybereVcjwB51HqFaq63yRGh5g6wM+VHYTf+b7FDfwZWBBl2YXAcQAi0hi4EMgATvUmtLDKFS/wHM54z/U4LcBLVbXoAGNpCVyMk7zmAX8BOgAXAPfhfJh8raq9RSQDeA33G4kb1zluLN+LyAvAiThDmdrjPA32lYjMAnYD9wNnquomEUlS1W0i8inQA5iEM771bVWdKCI3AHeq6nw3sf8L6KWqG0XkUuAh4JoD/LsDzgek21WSgvNv8+rBOK8HngeWiMhjYY79Hfifqt5asSFFrYaILAKqAw1x/p8zB6AqJO5YBD9a+jRwt6oG5NBdsig4sK7AIpxf+qOBj0VktqpuPYDz/6Sq3wCIyDJghqqqiHwDtACa43QVoKoz3T71um7dqar6O/C7iBTgdPV0AN5V1R3uOd8BzsL5tvDW3q/5qrrFPccYnKQzCSfhXxcmxmNxEurH7r9TPBDx4YRyOGR/AfZS1a0i8hrON7BdJQ5/BpwuIseo6g8VH12ZgrtKTgdeE5E/qw1pK7eq0FWyDDglyrInAd+5P7cFxotILtAX+LeI9D7o0e2vvPH2B95xv77nAD+xrzVeXr8H/VwU9LoI50M90hwKwXUDEcrj7t/vf1JV/RxoISKdgHhVXVpK3WWq2sbdTlDVLqX9hWLl3ksI4HSXxfJvUxmeBq4FDi+xPxu4FfjAq5u6B4vbDVUfaFDZsfhZVUjcM4HDRKS4tSYip+K0Fgna1wJ4AudrN6p6pKq2UNUWwFvA/6nqpEM1XmA10Nk9lorTEl3pcazZwOXuNc8GNpXRws8GeotITRE5HKcrajYwA7hERJLdcyUF1XkNGAe8ErRvG04XDDg3YRu4LTVEJFFEWh3g3wv3XA2AkcBzbuvvOeAqEWkfVOYKEUk7GNc7UO43lQk4ybvksbeBx4EPRaReBYcWNRE5Dudb0+bKjsXPfN9V4n61vxB4WpzVJX4DcnFaIEeLyNc4fWvbgH/tHVFSWQ4g3uHAWLcbQ3C6ecKOMDiIhgCviMgSnFEV+w2nDKaqC0VkLDDX3TVGVb8GEJGHgFkiEgC+xhk5AvAG8CBO8t5rLDBSRHYBp+N8I3rW7aZJwGl5Livn32lvf2sizk2/14Gn3PjzReQy4Al3xEkRzofRO+W8lheeBG4Md0BVR7ofMu+LSBdV/a1iQyvV3vccnN/dq1Q1UInx+J49OWkqlYj0xbnx+NfKjsUYv/B9i9v4l4j8C2fZpvMqOxZj/MRa3MYY4zNV4eakMcb8oVjiNsYYn7HEbYwxPmOJ+w9ASpmNsIw6290/W4jIfg/GuPv/4lXMQdeZFuu4ZBHJEmceluXizLLYIYo6Y90RLp4QZ+6XvTM3LnaHhBpTLjaqpIpzJ08qbTbCA3k8ugXO3Cb/PcAQI1LVmEaciMj5wN+ADu68KCcDk0SknarmeRJkdJYCbd2lrBoCi0VksqqWe6Iw88dlLe6qL+xshKo6G0BE7hKReeLM3BfLdKCPAGe5LcjbRGS2+4GAe97PReREcWYSfF1EZooz62DwE6NlXlucGQPruy3870TkRXHm0p4uIjXCVLkbuCtoXpSFOBNH3eCer8yZBksrI85siI+6rfgfROSsMHXfFJHzgl6PFZE+qrozKElXJ8wUAMZEyxJ31VfqbIQi0gVIB9rhzPp3ioh0jPK89wCz3flD/okzYdTV7nmPAQ5T1SVu2RNxZgE8HRgkIo3Kee104HlVbQX8gjsBVgmt2P/vOx9oJftmGuyrqqcAL+PMNFgsijIJqtoO50nXcAsWjAcudc9VDWeagmnu6/biTOb1DTDQWtumvKyr5I+ti7t97b6uhZMcs8txronAP0TkLpwpV8cGHXtPVXcBu0TkE5xk3aEc1/7JnbscnOTcIsrY9k5yFc1Mg2WV2fv4e2nX/wDn8fzDgG5Atvt3R1W/wvkA+RPwqoh8cAg9lm58xBJ31bcMZ66PcAR4WFVHHehFVHWniHwM9AIuwZl9sfhwyeLlvHbJGQnDdZV8izPD38ygfSe7+/fONHh6hGuUVWZvDHtnRAyhqr+JM894V5yW97gwZb4TkR04HxDzI8RiTFjWVVL1hZ2NUJypVD8CrhGRWu7+xu7kStEInsFvrzHAs8C8oDm3AXqJsx5iMnA2zqINB3LtSB4DHpV9MxG2wenC+TfRzTR4MGYjHI8zDe9ZuMviiciRIpLg/twcp2WfG+tfzhiwFneVF2k2QlVd4X5t/9LtFtgOXEF0S7ktAfaIyGJgrKr+U1UXiMhWQqdoBWe2wKlAM2C4qq4H1h/AtSP9fd8XZ3WjL0REcT5grlDVDVA8qVWpMw2q6u6yykRhOs50te+r6m53XwfgHhEpxJl18P8qYHZHU0XZXCXmoBFnEv9PgeP2LqsmVWsRY2MOCdZVYg4KEbkS+Aq4/yCshWmMicBa3MYY4zPW4jbGGJ+xxG2MMT5jidsYY3zGErcxxviMJW5jjPEZS9zGGOMz/w8D+boEeyiTxgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(6, 5))\n", + "sns.heatmap(accuracy_df_v3, vmin=0, vmax=1,\n", + " cmap=\"YlGnBu\", \n", + " annot=True, annot_kws={\"size\": 10},\n", + " fmt='.2f')\n", + "plt.xlabel('Cell type in Oelen v3')\n", + "plt.ylabel('Cell type by Azimuth Algorithm')\n", + "plt.savefig('marker_gene_azimuth_classification_oelenv3.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/01_association_metrics/GRNBoost2.ipynb b/01_association_metrics/GRNBoost2.ipynb new file mode 100644 index 0000000..b1b9528 --- /dev/null +++ b/01_association_metrics/GRNBoost2.ipynb @@ -0,0 +1,349 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib as mpl\n", + "mpl.rcParams['pdf.fonttype'] = 42\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from pathlib import Path\n", + "import seaborn as sns\n", + "%matplotlib inline\n", + "%run dataset.ipynb\n", + "\n", + "def select_gene_nonzeroratio(df, ratio):\n", + " nonzerocounts = np.count_nonzero(df.values, axis=0) / df.shape[0]\n", + " selected_genes = df.columns[nonzerocounts > ratio]\n", + " return selected_genes" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "datasetname = 'onemillionv2'\n", + "dataset = DATASET(datasetname)\n", + "dataset.load_dataset()\n", + "data_sc = dataset.data_sc" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "395\n" + ] + } + ], + "source": [ + "monocyte_ut = data_sc[(data_sc.obs['time']=='UT') & (data_sc.obs['cell_type_lowerres']=='monocyte')]\n", + "monocyte_ut_df = pd.DataFrame(data=monocyte_ut.X.toarray(),\n", + " index=monocyte_ut.obs.index,\n", + " columns=monocyte_ut.var.index)\n", + "mono_genes = select_gene_nonzeroratio(df=monocyte_ut_df, ratio=0.50)\n", + "print(len(mono_genes))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(11482, 379) (194, 379)\n" + ] + } + ], + "source": [ + "bp_df = pd.read_csv('mono_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.1PCAsOverSamplesRemoved.txt.gz',\n", + " compression='gzip',\n", + " sep='\\t', index_col=0)\n", + "name_mapping_dic = pd.read_csv('features_v3_reformated_names.tsv',\n", + " sep ='\\t',\n", + " names=['geneid', 'genename']).set_index(['geneid'])['genename'].T.to_dict()\n", + "\n", + "bp_df['geneid'] = [item.split('.')[0] for item in bp_df.index]\n", + "bp_df['genename'] = [name_mapping_dic.get(geneid) for geneid in bp_df['geneid']]\n", + "bp_df = bp_df.dropna(subset=['genename'])\n", + "bp_df = bp_df.drop('geneid', axis=1)\n", + "bp_df = bp_df.set_index('genename')\n", + "print(bp_df.shape)\n", + "\n", + "bp_trans_df = bp_df.T\n", + "common_genes = list(set(mono_genes) & set(bp_trans_df.columns))\n", + "selected_mono_df = monocyte_ut_df[common_genes]\n", + "selected_bp_df = bp_trans_df[common_genes]\n", + "print(selected_mono_df.shape, selected_bp_df.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "selected_mono_df.T.to_csv('sc_Expression.csv', sep=',')\n", + "selected_bp_df.T.to_csv('bp_Expression.csv', sep=',')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# create this fake pseudo time ordering because it's required to run the Beeline tool, but not used by GRNBoost2\n", + "fake_timepoint_bp = pd.DataFrame(index=selected_bp_df.index)\n", + "fake_timepoint_bp['time'] = np.arange(selected_bp_df.shape[0])\n", + "fake_timepoint_bp.to_csv('bp_timepoint.fake.csv',\n", + " sep=',')\n", + "fake_timepoint_sc = pd.DataFrame(index=selected_mono_df.index)\n", + "fake_timepoint_sc['time'] = np.arange(selected_mono_df.shape[0])\n", + "fake_timepoint_sc.to_csv('sc_timepoint.fake.csv',\n", + " sep=',')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# perform GRNBoost2 with BEELINE, see the yaml files in the same directory\n", + "# python BLRunner.py --config config-files/config_bp_mono.yaml\n", + "# python BLRunner.py --config config-files/config_sc_mono.yaml" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Gene1_scGene2_scEdgeWeight_scGene1_bpGene2_bpEdgeWeight_bp
sorted_genepairs
CCL3;CCL4CCL3CCL4554.503642CCL3CCL455.157748
CCL4;CCL3CCL4CCL3480.484753CCL4CCL377.414467
S100A9;S100A8S100A9S100A8341.726427S100A9S100A8104.542395
S100A8;S100A9S100A8S100A9284.321568S100A8S100A965.915233
S100A9;LYZS100A9LYZ221.872616S100A9LYZ0.149064
\n", + "
" + ], + "text/plain": [ + " Gene1_sc Gene2_sc EdgeWeight_sc Gene1_bp Gene2_bp \\\n", + "sorted_genepairs \n", + "CCL3;CCL4 CCL3 CCL4 554.503642 CCL3 CCL4 \n", + "CCL4;CCL3 CCL4 CCL3 480.484753 CCL4 CCL3 \n", + "S100A9;S100A8 S100A9 S100A8 341.726427 S100A9 S100A8 \n", + "S100A8;S100A9 S100A8 S100A9 284.321568 S100A8 S100A9 \n", + "S100A9;LYZ S100A9 LYZ 221.872616 S100A9 LYZ \n", + "\n", + " EdgeWeight_bp \n", + "sorted_genepairs \n", + "CCL3;CCL4 55.157748 \n", + "CCL4;CCL3 77.414467 \n", + "S100A9;S100A8 104.542395 \n", + "S100A8;S100A9 65.915233 \n", + "S100A9;LYZ 0.149064 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sc_edges = pd.read_csv('sc_edges.csv', sep='\\t')\n", + "sc_edges['sorted_genepairs'] = [';'.join(item) for item in sc_edges[['Gene1', 'Gene2']].values]\n", + "bp_edges = pd.read_csv('bp_edges.csv', sep='\\t')\n", + "bp_edges['sorted_genepairs'] = [';'.join(item) for item in bp_edges[['Gene1', 'Gene2']].values]\n", + "\n", + "sc_edges = sc_edges.set_index('sorted_genepairs')\n", + "bp_edges = bp_edges.set_index('sorted_genepairs')\n", + "concated_edges = pd.concat([sc_edges.add_suffix('_sc'), bp_edges.add_suffix('_bp')], axis=1)\n", + "\n", + "concated_edges.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SpearmanrResult(correlation=0.16937964029402044, pvalue=0.0)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "concated_edges = concated_edges.dropna()\n", + "spearmanr(concated_edges['EdgeWeight_sc'], concated_edges['EdgeWeight_bp'])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Spearman r = 0.17')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU0AAAFNCAYAAACE8D3EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABDJElEQVR4nO3deXzU9Z348dc7d8h9AQlHwiUgiIgoWqyFStXSWm3toWu3uj3c7dpr3W5Xt/vbtdvt1nat23Pbdbuu7rZra6tttbUeKEhFqwIqECGEQMKREHKRgxyTTN6/P77fiZMwM5lJZiYz8H4+HmPm+/3OzPc9Ad987o+oKsYYY8KTMtUBGGNMMrGkaYwxEbCkaYwxEbCkaYwxEbCkaYwxEbCkaYwxEbCkaYwxEbCkaQAQkctE5EUR6RSRdhHZJiIXTXVcZwpxfENE2tzHN0VEgrw2Q0R+KSL1IqIism7M9d+LSI/fwyMiu+PxPYwlTQOISD7wW+B7QDEwC/gKMBDnONLieb/xRDmeW4HrgPOBFcB7gT8P8foXgI8Cx8deUNV3q2qu7wG8CPwiirGaECxpGoBzAFT1IVX1qmqfqj6tqrsAROQWt+T5Pbckuk9ErvC9WUQKROS/RKRJRI6JyD+LSKp7bYGIPOeWrlpF5KciUuj33noR+VsR2QWcEpGFbunqz0TkiIh0iMhfiMhFIrJLRE6KyPf93h/O53/RfW+niPxcRLIC/RL8vue/iUg7cFcUf8c3A99S1aOqegz4FnBLoBeqqkdVv62qLwDeUB8qIlXA24H/jWKsJgRLmgZgP+AVkQdF5N0iUhTgNWuAg0Ap8I/AoyJS7F57EBgCFgIXAFcCn3SvCfB1oAJYCszh9GR0I/AeoND9HN/9FgEfAb4NfBnYACwDPiwi74jg8z8MXA3Mwynl3RLid+H7ntOBr429KCJ/4ibuYI+5QT53GfCG3/Eb7rnJ+hjwB1U9FIXPMuFQVXvYA5yE8wBwFCdxPQbMcK/dAjQC4vf6V4A/BWbgVOOz/a7dCGwOcp/rgNf8juuBj/sdVwEKzPI71wZ8xO/4EeALEXz+R/2Ovwn8KMh7bwEOx+j36wWW+B0vcr+njPO+o8C6ENcPALdM9d+fs+mRUG1IZuqo6l7cEpiILAF+glPCu9F9yTF1/y91NeCU7iqBdKDJr18jBTjiftZ04Ls4Vcg891rHmNsfCRBSs9/zvgDHuRF8vn+7YK8bdzCBYomGHiDf7zgf6BnzO42IiFwGzAR+OcnYTASsem5Oo6r7cEqdy/1OzxrT2zsXp/R5BKekWaqqhe4jX1V9Vc+v45SoVqhqPk7nxthe48kstRXO50ciZCwictOYnuuxj2DV82qcTiCf891zk3Ez8Kiq9kzyc0wELGkaRGSJiPy1iMx2j+fglDD/6Pey6cDnRCRdRD6EU51/QlWbgKeBb4lIvoikuJ0zvjbHPJxS1kkRmQX8TZTDj/Xnj6KqP1W/nusAj8NB3vo/wO0iMktEKoC/xvmHKSARyfTrsMoQkSz/f7REJBv4UKjPMLFhSdMAdON0gLwsIqdwkuUenP+xfV7GaYdrxekg+aCqtrnXPgZkAG/iVI1/CZS7174CrAI6gd8Bj0Y59lh/frT8B/A4sBvnd/s79xwAIlItIjf5vb4GpxliFvCU+7zS7/p1ON95c0yjNqeRSTSpmLOEiNwCfFJVL5vqWIyZalbSNMaYCFjSNMaYCFj13BhjImAlTWOMiYAlTWOMiUBSzwgqLS3VqqqqqQ7DGHOG2bFjR6uqlgW6ltRJs6qqiu3bt091GMaYM4yINAS7ZtVzY4yJgCVNY4yJgCVNY4yJgCVNY4yJgCVNY4yJgCVNY4yJgCVNY4yJgCVNY4yJgCVNY4yJgCVNY2Kkz+Nle307fZ6QW5ebJGNJ05gYqW7s5Idb6qhu7JzqUEwUWdI0JkaWVRTw6XULWFZRMNWhmChK6gU7jElk2RmprK4qnuowTJRZSdMYYyJgSdMYYyJgSdMYYyJgSdMYYyIQs6QpIveLyAkR2eN3rlhEnhGRWvdnkd+1O0XkgIjUiMhVsYrLGGMmI5YlzQeAq8ecuwN4VlUXAc+6x4jIucANwDL3Pf8uIqkxjM0YYyYkZklTVbcC7WNOXws86D5/ELjO7/zPVHVAVQ8BB4CLYxWbMcZMVLzbNGeoahOA+3O6e34WcMTvdUfdc8YYk1ASpSNIApzTgC8UuVVEtovI9paWlhiHZYwxo8U7aTaLSDmA+/OEe/4oMMfvdbOBxkAfoKr3qepqVV1dVhZwW2JjjImZeCfNx4Cb3ec3A7/xO3+DiGSKyDxgEfBKnGMzxphxxWzuuYg8BKwDSkXkKPCPwN3AwyLyCeAw8CEAVa0WkYeBN4Eh4DZVtfW0jDEJJ2ZJU1VvDHLpiiCv/xrwtVjFY4wx0ZAoHUHGGJMULGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wELGkaY0wEgiZNEZkbz0CMMSYZhCpp/jpeQRhjTLIIlTQlblEYY0ySSAtxbZaIfDfYRVX9XAziMcaYhBYqafYBO2JxUxH5K+CTgAK7gT8DpgE/B6qAeuDDqtoRi/sbY8xEhUqabar6YLRvKCKzgM8B56pqn4g8DNwAnAs8q6p3i8gdwB3A30b7/sYYMxmh2jQ9MbxvGpAtImk4JcxG4FrAl6QfBK6L4f2NMWZCQpU0Pxxq2JGqHp7IDVX1mIjcAxzGaQJ4WlWfFpEZqtrkvqZJRKYHer+I3ArcCjB3ro2KMsbEV6ik+TucNkf/XnQFyoDpQOpEbigiRTilynnASeAXIvLRcN+vqvcB9wGsXr1aJxKDMcZMVNCkqarn+R+LSBVOG+MG4F8mcc8NwCFVbXE/91HgbUCziJS7pcxy4MQk7mGMMTEx7jRKEVkkIg8Av8fpTT9XVb83iXseBi4RkWkiIsAVwF7gMeBm9zU3A7+ZxD2MMSYmgpY0RWQ58GVgGfBN4BOq6p3sDVX1ZRH5JbATGAJew6lu5wIPi8gncBLrhyZ7L2OMiTZRDdwsKCJe4AhO2+ZpyTIRBrevXr1at2/fPtVhGGMC6PN4qW7sZFlFAdkZE+oCmTIiskNVVwe6Fqoj6BM4HT/GGBOx6sZOfriljk+vW8DqquKpDidqQnUEPRDHOIwxZ5hlFQV8et0CllUUTHUoURWqTfNxQpQ0VfV9MYnIGHNGyM5IPaNKmD6hquf3xC0KY4xJEqGq588HuyYia2MTjjHGJLZQ1fNU4MPALOBJVd0jIu8F/g7IBi6IT4jGGJM4QlXP/wuYA7wCfFdEGoBLgTtU9ddxiM0YYxJOqKS5GlihqsMikgW0AgtV9Xh8QjPGmMQTcmk4VR0GUNV+YL8lTGPM2S5USXOJiOxynwuwwD0WQFV1RcyjM8aYBBMqaS6NWxTGGJMkglbPVbUBp4f8Q8ASVW3wf8Qtwijq83jZXt9On2fS644kpDP9+xmTCIImTRH5d+CvgBLgqyLy/+IWVYz45sJWN3bG7B5Tmbji8f2MOduF6gi6HHinqt4JrOMM2LMnHnNhpzJxnalzfY1JJOP1nnsBVLWX0dteJCXfXNhYLlM1lYkrOyOVZRUFVDd2WhXdmBgJlTSXiMgu97Hb73i3X6+6GSOcxBzLKrxV0Y2JLes9nwKxXGfQqujGxFaopJmtqvsARCRTVQd8F0TkEiApe9ATQSwT25m6HJcxiSJU9fz//J6/NObav8cglrOGtT0ak7xCJU0J8jzQsYmQtT0ak5xCJU0N8jzQsYmQtT0ak5xCtWnOFpHv4pQqfc9xj2fFPLIznLU9GpOcQiXNv/F7PnafXNs31xhzVgq13cWD8QxkKiTzvszGmKkRyW6UirMQ8WZV/UmsA4uHM3Vf5lixf2SMiXw3ymLgoyKyXFXviFFMcZOsnTFTlbzsHxljQFQj6wh3N1zboaorYxJRBFavXq3bt59ZzavhJMTt9e1TkryspGnOFiKyQ1VXB7oWashRQL5FPJJRMqw3Gc74zakqIQebV58Mv1d/yRavSSyh1tMsDvBYICJfAarjGGPUJMOA8nASYjxWa4pEMvxe/SVbvCaxBK2ei8ghnM4f3+wfX0fQFuCrqtodjwBDibR6btXL2Ei232uyxWviL1T1PNSQo3khPvDnwEeiEFtc2YDy2Ei232uyxWsSS8Rtmq5LoxpFnFhbljFmsiaaNJOStWUZYyYr1OD2VcEuAemxCSe2xnayTLRty9rEjDl7hRrc/q0Q1/ZFO5CpMNHB2sk8yNsSvjGTE6ojaH08A4mHscku0vGOvoQzvzQ3KWcSQXInfGMSQcg2TRGpFJFS9/klIvJFEbkuLpHFwNgkGel4R1/COdjak1DjJCORrFNHjUkUocZp/gNwM874zJ8BG3DGaK4B3lDVL8QnxODiPY3SqrbGnB0mNE4TuAFnR8ppwGFgpqr2ikga8PokAyoEfgwsx0nKHwdqgJ8DVUA98GFV7ZjMfaLNxvcZY0JVz/tV1aOqJ4E6Ve0FUNUhwDPJ+34HeFJVlwDnA3uBO4BnVXUR8Kx7bIKwMafGTI1QSbNQRD4gItcD+e5z3/GEG8REJB+4HPgvAL/EfC3gW/j4QeC6id7jbGBjTo2ZGqGq588D17jPt/o99x1P1HygBfhvETkf2AF8Hpihqk0AqtokItMncY+AzqQ2yYl26JxJvwNjpkKoIUd/FsN7rgI+q6ovi8h3iKAqLiK3ArcCzJ07N6IbT+Vwm2gnq4m2r4b6HVhCNWZ8UzGN8ihwVFVfdo9/iZNEm0WkHMD9eSLQm1X1PlVdraqry8rKIrrxVA63SZTqdKjfQaLEaEwii3vSVNXjwBERWeyeugJ4E3gMZ4gT7s/fRPveU7kOZaKMjwz1O0iUGI1JZKHaNGPps8BPRSQDOAj8GU4Cf1hEPoEzxOlDUxRbTCTDcKVkiNGYqTZu0nT3BHoPzvjJkder6r0Tvamqvg4EGjh6xUQ/0xhj4iGckubjQD+wGxiObTjGGJPYwkmas1V1RcwjMUnHetvN2SicjqDfi8iVMY/EJB3rbTdno3CS5h+BX4lIn4h0iUi3iHTFOrB4OlOnJMb6e1lvuzkbhZM0v4WzJ9A0Vc1X1TxVzY9xXHE1XokpWZNqrEuCibaVsDHxEE7SrAX2aLA15M4A45WYkrUaaiVBY6Jf6AknaTYBW0TkThG53feIyt0TxHglpmgmn1B/gNH+w7WSoDHRL/SEkzQP4SzVlgHk+T3OCH0eL9tqW9lW2xI0WUUz+YT6A0zWEq0xiSzaNa6gK7ef9kKRPEBVtScqd46CaKzcvr2+na//fi8o3LlxacxnxIQaphPJEB4b7mNM7IRauX3ckqaILBeR14A9QLWI7BCRZdEOcqosqyjg9g2Luf1d58Sl7S9UqTWSEq2VSo2ZGuEMbr8PuF1VNwOIyDrgP4G3xS6s+MnOSGXtotKpDiNi1sljzNQIp00zx5cwAVR1C5ATs4hiKFmHDgVinTzGTI1wkuZBEfl/IlLlPv4ep3Mo6ViV1hgzWeEkzY8DZcCj7qMUZym3pFNekM380hzKC7KnOhRjTJIK2abpLgv3C1XdEKd4YmrzvmYefe0YlSXTuP7COVQ3djK/NJeDrT1nXS+09b4bMzEhS5qq6gV6ReSM6G1Yv2QGH7hgFuuXzBipqj+xu/GsrLJbU4UxExNO73k/sFtEngFO+U6q6udiFlWMNHX2cbD1FE2dfSO9z/NLc1lSnh+yF/pMLJVZ77sxExNO0vyd+0h680tzWb+4jPmluaO2dijODTyg3ZcsBwa93L+tfkp2sYwV29rCmIkJWj0XkWfdp+eq6oNjH3GKL6oOtvawuaaFg62nT2oKNBzJV4UFmXSpLBGHOyViTMYkulBtmuUi8g7gfSJygYis8n/EK8BoWlZRwE1rKtnR0MFze48HTJD+bXy+KuyqyqJJj4lMxDbERIzJmEQXdO65iHwQ+ARwGTB2greq6jtjHNu4JjL3/Ccv1fOvT9UwsyCLr73/vJEqaqzbLRNxXvmZ2FZrTDSEmns+7oIdIvL/VPWrMYlskiJNmn0eLy/VtVF7optF03O4dEFZQiaL7fXt/HBL3RnVhmpMMpnUgh2JmjAnorqxk5++3MCFlUVcuqCM6sZO+jzehGvbs55tYxJXODOCzhj+vef+7XnB2vYmk0wn816bV25M4jqrkqZ/7/myigI+vnYeXX2DdPUN8vG1VaeV7CbTUeJ7786GjoQqxRpjJiec9TT/N5xzycC/2pudkUpmego/2HKAH2w+QGZ66mklO19iHRj0Rpz0fPcCteRpzBkknMHtoxYcduejXxibcGJvYHCYnQ3trKosHlmAGDRg+6Evsf5wSx2Z6U6V2dfjPN6cdV8Vu8/jJTM9lYFBr3XuGHMGCJo0ReRO4O+AbL99zgXw4CxMnHR2NrTzT799k2npqXz5veeyuqp43AWIx3bK+Krd6xeXsbmmZdwkODZ5WueOMcktaNJU1a8DXxeRr6vqnXGMKWYGhpRhhSuWTh9V5Q41VnHsdMNI5qyH+hxjTHIat3quqneKyCyg0v/1qro1loHFQnf/ICd7PTS09rC94SSfSXeSZCTV5nDmrBtjzlzjJk0RuRu4AXgT8PViKJB0SfOlAy209HjYWtfGZ9cvYn5pLnubugL2nBtjTCDhdAS9H1isqgOxDibWZhRkk5EqXL6wdGQR4vu3HeLT6xbEbUykTV00JrmFtUcQkB7rQOJhSXk+M/OzuGzR9JEe8LEzb0INSo/GzKFEWyQj0WZDGZPoQi0N9z0R+S7QC7wuIv8hIt/1PeIXYvTkZ6VRlpfJ8a4+vv7EXvY2dZ4286a6sZPvbz7AIzuOnJZIQl0Ll39HUiySVaRJMNGSuDGJLlRJczuwA3gM+CrwonvseySdVZXF3LZ+EUfa+xjyDuOMoBptWUUBG5ZMZ9PeE6clklDXwuXrSDrY2hOTZBVpErR57sZEZtxVjhLZRFY5uvfpGn658wgfXDWH269cHLBdMVS7Y7TaJGPRttnn8bKzoQNQVlXGZu66tcmas8GkVjkSkd0ismvM4w8i8m8iUhL9cGNnZ0M7fzzYxiXzS7ll7TwAntt7gvv/cJD2Hs/I68ZbMMM3q2iqq9Zj+Tq2Ak0JjRarzpuzXTgdQb/H2SPoJvfxOPAH4DjwQMwiiwmhf8jLgeZu6lt7qG7s5Ou/38s9z+znu8/tD7hM3NjjnQ0d/NNvq7nn6f2TShyBks9kE1I8qtpWnTdnu3CS5lpVvVNVd7uPLwPvUNVvAFUTvbGIpIrIayLyW/e4WESeEZFa92fRRD87mKrSHBZOzyMjNYWa5m7ml+bywQtnUTQtndfqOwIuE3d6IlOmZaRxzYryCSUOXxIO1HM/2YQUjyXlbNk6c7YLJ2nmisga34GIXAzkuodDk7j354G9fsd3AM+q6iLgWfc4qjbva+blQ23MLpnGQ68c5uVDbSyvKOSr1y7nS+9ewrKKgtMS19jjVZXFfPk9S7lxTeVI4oikWu1Lwgdbe05LPmMTku9z23s8NizImAQRTtL8JPBjETkkIvXAj4FPiUgO8PWJ3FREZgPvcT/L51rAt8vlg8B1E/nsUC5dUMraBaUsKJ1Gc9cA2w60cM/TNdS3nhrpOBmbuMY7hsiGIvkn4fGSrS/BPrG7MWS13cZaGhM/4Wx38aqqngesBFaq6gpVfUVVT6nqwxO877eBLwHDfudmqGqTe88mYPoEPzuo3+9u5Kk3j9PU2ccXrljE2oWl9AwM8X8vH+ahVxrCatP06fN42VbbyrbaFuaX5o4MRRpv3Uz/pDteG6YvwW48ryJktd06Z4yJn1BLw31UVX8iIrePOQ+Aqt47kRuKyHuBE6q6Q0TWTeD9twK3AsydOzei9x472c/gkLJ1fyvXnD8HgDXzinjpYBu/ea2RjNQU5pXmcP+2+pEFPHwJyXfsG3IzMOjl3k37QeHOjUvZeF4FAANDQ9y/7UhYC4CM14YZzuIgfR4vA4PDNn/emDgJVdLMcX/mBXlM1FqcvdTrgZ8B7xSRnwDNIlIO4P48EejNqnqfqq5W1dVlZWUR3fiS+SUUZKeRl5lGfWsPP9hSS3VjNzetqeLalRVs2nsCkFGJzH9fIXirVAfC7RsWc/u7zmFZRcHIVhqZaWlx7V2OxzAjY8xbpnRwu1vS/KKqvldE/hVoU9W7ReQOoFhVvxTq/ZEObt9W28I3n6rh3PI8ZhVNY07RNNp6Brjugtkj1eWxg7bHbqcbbHD3RAZ9R2OrXhtsbkz0TXZw+zki8qyI7HGPV4jI30c7SOBu4F0iUgu8yz2OqqrSXGYWZPLUnia+/1wtT+5pYmttKwdbe8jOcFZV923r6zN2rrjv3NjXTWQoznjV83A6eGwIkDHxFU7v+X8CdwKDAKq6C2d9zUlT1S2q+l73eZuqXqGqi9yf7dG4h79fvXaUZ/ee4GSfl7QU4XBbLxuWTh9JWjsbOvj67/fyUl3bSLIKNFc8Wh0v4yU86+AxJvGEkzSnqeorY85NZnzmlNl19CRDw1CSk0pxbgYr5hRQUZjl9woFhfoAi2n4lwpjMSsmUKnSZt8Yk3jCWYS4VUScvWgBEfkg0BTTqGKkruUUACd7vWSmZ/B8bQvb6zu4632prF1UxqrKYu7cuJT5pbmsmFPI/NJcttW20tU/SNPJvpG2TyDq+/2M7aUH21fImEQUTtK8DWf3ySUicgw4hDMHPelcvrCUQy2neMc5JcwsnMa2ujaGgZrmblZVvpWcfMlqe307926qoblzgI5eD4jw8cuchT6i0QHj/xlWqjQmOYQzuP2gqm4AyoAlqnqZqjbEPrToWzm3iJK8DNLT03iupoX3rajgpovnsnV/60hbpf/MHt++6DdcPJuKwiyqSrJHPitYe+NEplRWN3aG3aFjs3+MmVrh9J7XichPgT8F5sQ+pNg50tHLyVMenqlupvFkP81dTpX78nPK6OrzUF6QzaKyXJ6qbh5JZKsqi7hgTjF3XbOMSxe8NS402HTISDpvJlK6jGbnkCVgYyIXTkfQucB/ACXAPSJyUER+FduwYmNwyIt3GIbcoal5WRk8sbuRx984xg821/FUdROv1LezsCxn1GD2QIPHg02HjCQRxmKYUiSsd96YyIWTNL04w428OHPFmwkyWyfRdfcNjUx2F6BnYJBHdh7jiiUzeM955ZQXZNHrGeKFA63sbXISSXlBNvNLcygvyA76uf6JLFbjJn2lQiBqn2/tqMZELpyk2YWzwMYh4GZVvVRV/zymUcXI9sMnAcjLSOFz71zAJfNL6PUMkZ4qbKtrIz8rgxsvriQ3Kw3f/kGb9zXzyGtHeWDboVHVWP+qbTwGmMeiWg7RS8DGnC3CSZo3AluBvwR+JiJfEZErYhtWbMwqynJ/ZnP+nELystLJzUpjbkkO6xeXsbQ8nxsvnssXr1wCKH0eLxvPq+D6C2az73h3VFdZD4d/YrZquTGJIZze89+o6t8Afw48AdwC/DbGccXEnMJpCLCv+RR//+tqak/0cPuGc8jPSmNzTcvIdEpQ7n1mPzsb2inOzeD2Kxfz+Q2LorrKejgm0rseDquWGzNx4fSePyIidcB3cFY++hgQ9a0o4qH2RDe+5UmG1cvvdjdxqPUUS8tH94TXNPcwrApIwPGYoRbtiGZvdKySm81XN2biwqme3w2co6pXqeo/q+rzqtof68Bi4bXDb01nL8+fxpVLnYWD/beeqG7sZGttC9evms3S8nwe2XGE7z93YGSBju317exsaA9YvfUvGUYjgVpyMybxhLty+xkxkK94WubI892Nnew61sXHLp07aqzl/NJcPrN+IRvPq+CJ3Y089WbzyKIe/mtpBioB+pcMk7nd0MZvGhNcOCXNM8b0QidpFmSmkJ0mbK1ppr6tD2CkROkrdR5s7WHTvhNcde4Mrr9wzsjScZ9et4BVlUUBS4D+JcNkbjdM5oRvTKydVUnzvIpCUoCUFPAiZGekUl6QSXVjJ5v2nRi1TJxv35+N51WE3FQtmGSuWidzwjcm1sZdsEOcTYFuAuar6j+JyFxgZoDl4hLeyd4BhoFUgV7PMDm5GeRnZbCsooDPrF84kiS217czMOhlc00LS8rzg+7Pc6ay1ZWMCS6ckua/A5fijNcE6AZ+ELOIYuiZvc0AtPYOc1FlEV+6ajHuincjW1nc+3QN39lUS7B2Sxjd5hfsuTHmzBRO0lyjqrcB/QCq2gFkxDSqGMlIfauq3NXvYWttKz96/uBI290Tuxt55LWjLJmZF7TdEka3+QV7PlHRTryWyI2JrnCS5qCIOCO+AREpY/R+5UljePitsLv7h3hyTxMz8zMYGPTS3uOhJDeTjcvLWT4rn50NbyWaYx193PVYNb/f3Xja7JxwV3QPdz/1aHfCWKeOMdEVTtL8LvArYLqIfA14AfiXmEYVI4U5bw05aukcYHAYGrv6uHfTfv7v5Xq+9rs32bSvmW8+VcM9T+8fSTQPbDvET16q51+e2Hfa7Jxgz8cam7yCJbNod8JM9POshGpMYON2BKnqT0VkB3AFzioW16nq3phHFgPFORnQ0gu4u8QBJ3sGOdk/RH1rD+2nPKSnCiU5mVyzonwk0dyydh6Dw8qaeUWjko9vZtD80lwOtvaMXAs0W2hs8gqWzAJ1wkxmlfiJduoE2n7DGBNe73kxzlJwD/mdS1fVweDvSkx7m7pGHednptB6aoDOPi+zinK4/sJZvHCgjY9cNIcb11QCsK22FVD+9uolo6ZR7mzooOZ4F1trW9mwdDqba1r4+Np5HGrtYdPeE3zmnQtHJZvJ9EhPRQKzYUfGBBbOHkE7cVZs78ApaRYCTSJyAviUqu6IXXjRNT0vne6BAcD5IlctKweG2Xmkk/PnFJCZlsabTd0srygkOyN1ZI8gFO7cuHQkYVU3dnLvphqGh+H6VbPYeF4F80pz2dPYyRO7mrj2gopxk024ibDP42VgcJib1sxlYNA7shRdrNmwI2MCCydpPgn8SlWfAhCRK4GrgYdxhiOtiV140dXc6Rl5rsCmNxupKMzlnYtnUFmSy/P7W7ht3QKWluePTKm8fYMzLGl+aS7b69tHOnxuW7eI+tYeNp5XQXFuBpnpKTy5p4n+IS+LZ+SNm9jml+ayfnHZyArxwfhWjl+/uIzNNS1kpk88mUVjMzhjznbhJM3VqvoXvgNVfVpE/kVVbxeRzFBvTDR9gzrquKNfye0fYkdDB282dfFmYyefveIcGk86c879p1Bur3cW6fj42nlkpqeQmeYsXLxiTiHFucUsqygYWYfTf2dLCJysDrb2hDV43ldNnl+ay5Ly/IBtquEmQWunNGbywuk9bxeRvxWRSvfxJaDDHYaUVEOPCnNOTyxHTvYx6B2murGTxTPzaTp5iu8/V8up/iGe2H18pHfbl7xA+eGWOgaGdFRJMTsjlbWLSlm7qOy0BBaop9w/GW6rbWVbbUvAnmpfNbk4N+O0nvlIhxNZO6UxkxdO0vwTYDbwa+A3wFz3XCrw4ZhFFgOpKaNLmgIsnpHDDRfN5f0rZ9HnGeJXrzdxvNvDG0dPcs7M3JEE40teqyqL3eQ5zK9eOzayl1Ao/gly7BYZB1t7uHdTDfc+sz/isZSRJsFkng9vTKIIZ2m4VlX9rKpeoKorVfUzqtqiqh5VPRCPIKOld+CtgnEKcOm8IoaGlV/uOMLbz5nOtRfM5v0rK8jPSqU0L4PLF5UCjBqv6Es8mWlpIDAwpOOOZ/RPkIFKnLdvWMzt7zpnJPmFO0bSkqAx8Rc0aYrI4yLyWLBHPIOMlp63+oEYBrr6h8hKTWX57AJqm7vYur+F8sJs5pXmsnFZOSvnFI9UgXc2dIxKZKsqi7jz3UvJTJOAVeRAiS9QyTBQtT7e+w8ZY8IXqqR5D/AtnF0o+4D/dB89wJ7YhxZ7e5q6mVsyjT3HOnmy2lls+Kpl5VxcVUzNiR5+/foxuvoG+fjaKnxtmb5E5lszE2TUcCCfQKu4AyMdMKESVrz3HzLGhC9o77mqPg8gIl9V1cv9Lj0uIltjHlkcpAIdpzwsKM1hzfxSuvsH2XW0g+0NHaycXcDjbxwjRYQ7Ny5lWUUBmempIx03vtWR7t9WP2o4kG/V9vmluaet4u7rtR6vF3vsGMlYDBWKRWK2IU3mbBDOkKMyEZmvqgcBRGQeUBbbsOLDC/yxvoO0wx10DXh5+WAb71tZTkoKrJxbhIqMTJ30JTL/Ae+3v2sxn163gPKCbMAZexkoIYY7hTKYWAwVisXgdRvSZM4G4STNvwK2iMhB97gKZzvfM0JGqjMnfenMPA61nmJGfjZXLytnT2MXj+48infYS35WOqsqnQ6X+aW5vOe8CqpKsllVWTQyhtM35jJYu6UviUykNBYsySZayc6GNJmzQTi9508Ci4DPu4/FvtlBySZ3zCqguenwycvm8Y/XLCc9LYWVs/N4ZOdR9jR2Mrc4m4LsdF6saxs1HOhgaw/bDrSSn50xkqj8k8V4PdoTaUsM9pmJ1i5pvfnmbBCq9/xLfofvU9U33MeAiCTl0nD+vefgLBVXMC2TVw62cd/zdWze38bRjj4efLGezLQ07v7ACr545RKuXDaTrj7PyFqaH187b1THTzjJwn+3S/891ifTg20lO2PiL1RJ8wa/53eOuXZ1DGKJu4GhYR577RjP17ZwyYJS3r+ygoKsNBQFhlm7qJT8rDQe3XmU7z17gJ0NHVQ3djIw5OXeTfvZ2dAx8lnjJUBfqXDsHuuTKSlayc6Y+AuVNCXI80DHSamlZ5Dp+Rl09w9ypO0UR0/2kZedTm5mujN4HQBhWkYa16ysYGBoiK/+9k1+9uphhgaH8fWgw/hV5UClwniUFG08pjHRFSppapDngY6TUmYq5Gan0+MZxovyh/0tXLawlLuuWcbS8ny21bbS1T/INSvKuW7lbDLT0ug45eGlA23MLc1haflbyW68VYsClQrjUVJMtHZPY5JdqN7z80WkC6dUme0+xz3OmugNRWQO8D/ATJyJOfep6nfcxY5/jtM7Xw982N3ELSZSAK8X6k/0kpOewoBnmKKcTNYvns7aRWVsq23ln35bjderpKYK5YXZNHX289dXLubV+nZ2Hz3J3qYu1rpTLcNdtcinvcfDE7sbR5aWC0c0e96NMRMTtKSpqqmqmq+qeaqa5j73HadP4p5DwF+r6lLgEuA2ETkXuAN4VlUXAc+6xzGT4gZS3dSFApcuKOEr7zuXSxc4SXBgaIhhhQvm5jOsyou1LXx/cy17jnWydmEJvYPD7Dl2kvYez2kdPDB+tfiJ3Y3826ZantjdGHbMgUqN493H2j2Nia5wxmlGlao2AU3u824R2QvMAq4F1rkvexDYAvxtrOIYcn9OyxBUlS37T5CeKlSW5PJSXSt5We6/C+L8u7J6XglZGWnsO95NeWE2KQJPVjeTnpbC73Y1cfu7zmHtorfG/Aca6O1fUtx4XgXAyM9wBCo12oByY+Ir7knTn4hUARcALwMz3ISKqjaJyPR4xLCgNI/mnn5auj38YsdRTvYN8WJdG9ecX06KwM7DHaRICm09A3x63UJeP3KSN5s6ueb8ChaU5XC4vY9hVcb2jYWT4D56adWk47fqtzHxNWVJU0RygUeAL6hql0h4HfIicitwK8DcuXMnHceRzj6uWFLGK4c6mJ6XxS1vq2L5rAIGvcN8YcMiMtNSqW89xeb9LWSkpeAZGuY/tx5kZkEWf3pJJS8dbOP6VbNZVVkUcHfKsTtS+o/xjLTKHKhU6Vs4JJFmBiXaTCVjoimcRYijTkTScRLmT1X1Ufd0s4iUu9fLcXbAPI2q3qeqq1V1dVnZ5KbA56RDT+8glSU5XHnuTA60dPPknuOkpwj/va2eth4P71w6g6uWl1OYnc7ju5oYHFb+cv1C/vbqxaxfMoMNS6az8byKkXGX3998gB9uOcD3nztwWo91dkYqmekp3L+tfkK92cFKlYnWQ55o8RgTTXFPmuIUKf8L2Kuq9/pdegy42X1+M84q8TF1atBpsuz1DHHOjDwWluXyYq2zpuZt6xdSUZhFe4+HB7Yd4oXaFtJShOf3t5CTkcqlC8po6uxjc00LB1t7ACepbVgynX3N3WxYOj1glTnQKu6TXXQ40aroiRaPMdEkqvEdcikilwF/AHbz1h5Df4fTrvkwznYah4EPqWp7qM9avXq1bt++Pex7V93xu4DnS3LSyUxPpa17gNzsdG59+zzmFufw7U37+cCqWWw70EZBdjot3QOU5WVysneQz29YFLBa7F81BYJW130btTlbZ2CdOcYkEBHZoaqrA12bit7zFwg+o+iKeMbiI+plXnEe3X0ehr1enth1nAvmFtLY2ceR9j7+/PL5LC0v4Ind7i6Vy2aMJMCxidNXGuzzeHlkxxE27T3BhqXT2VzTMpIUfXuZf3xt1UhytZKZMclhSnvPE0W3RznY1oNnSEnPTKE0L5NlFQUMDQ/zxuGTzC/NYVVlMddfOId5pbkEmj45tpRY3djJpn1Owtx4XsWo7Xd9e5l/et2CkZKnlTCNSQ5T0hGUaHLS4cOr5/Kh1bPJSEvhhdoWfrS1jrTUVE4NDnH/tkO8VNcCQE1zN/c8XTOyWIevR7yrb3DUNrzzS3NHOonGbr873pRLY0zisqQJdPYrh9tPsXZhKR+9pIqZBVmkp6Sw68hJSvMyaO3u52evHOGluhZ+8/oxWns8DAwNjbz/UGsP33uu9rR1N/07ifwFuxatxTVskQ5jYseSJuBVeOy1Jr69qZZzywuYUZDFvuZu+jxDdPYOIpLCC7UnqG/rY+N55WSlp4xs3buzoZ1N+05wzfmzRm3DG6oHeew1X5Lb2dAelaE6wXbQNMZMniVNV2l+BlcsKWNgaIij7X2kCrT3DjAtPY2h4WHetrCMq5bNJD1VyM1Io+lkHz/cUgcIn1m/kBsvnjtqG17/TqKxSWvs0CFfkgOJSoeQLymP3UHTGDN51hHkau7y8PCOYxxoOUVBVhqzCotoPdVPc3c/KSkpLJtVwH/+oY5XD7Zz8bxirlpezuKZ+QwMefHvGPIfchTuvPCxJc9Qw5jCmWHj34Pv2yHTGBMdVtJ0zS+ZxoBnkK01J5hTkkPPwBCluVl86rIF/MlFcwDl4VePcKyzl1cbOti8rxlQfrDlwKi2TP/ZMIGq6IHaG/1LnoFm00x0hk2gwfDW3mnM5FjSdPUMDNDtUdJThZxMofFkHzvqO3iloY1dxzpBISczjcLsDC6qLGLT3hOAcPuGxUHbMgMlrfHaGwO1dw4MDnPTmrmj9iWaKJviaMzkWPXcdaLHSUa9HuXFujYKp6Vxzow8ZhdlUXO8mz2N3czMy+L9F87iupWzAy7IAePvJ+5LigOD3rCq7r4xnesXl7G5poXM9NCfP15V3qY4GjM5ljTH8AKosHhmAXUt3Tz7ZgvtvYOc6Grl7edMp6pk2riJMZTx2hvHtoP6z1X3HyAfzHjtqJOJ3RhjSRNw5nSWF2TQ2Ons8Xve7ELqWrrxDCmIMi1TWDy9iNePdNDY3ktmWhqZ6SmUF2SzeV9zyC0rAs1FDzYFE04vCfonuXC20bCSpDGxZW2aOH3fvoQ5pyibOYWZ9Hq8qA5zpL2f3oFhZhXlcGrAywVVRfiG8jyw7dC4W1b4tyGObU8M1L44th000o4b297CmNiykqYrIwVQONHZx2O7jtPZN8iM/CwumVfM9atmkZGWSnqK8Mm3O6sSzS/N4boLZlFZMo31S2awvb49YDui/5TJ7IzUkVJgoEU7ArHtLIxJLFbSxKme52elkpmRyuqqIpZVFJCWIly+qITPvnMhFYXZ/M8f69l1rJP61lM8sO0Qj+w8ymuHO7j+wjls3tfMd56t5ZEdR04rEfpPmRw7tOj+bYfITE8NWSr0r277lzpt6JAxU8OSpqtwWibdA15ere/gRNcAN1xcyfT8LO56vJrWHg/vOa+C29Y7s2xqmru5ftVsLl1Qyr1P1/DEnuMsmZHHpr0nThvKE6yNMZy2x7E94aGq+saY+LCkidOm2dDWC4BnGIaGh1kzr4jf7TrOkfY+tje0se1AK/nZGayqLOZzVyzi9isX81JdK4+8dpRzZuRx6YISPvX2eaclwWADzMOZ4TM2MfonWuvwMWZqWNJ0DfotYF/feooHX2xg/eJSinMyyMtKZ+2CEsoLsqlu7KS8IJuHXjlMXlY6n1m3kDXzivjecweoOd4d1r3CLSUG60m3Th5jpo51BLlSgOJpqXT1eZlVnMUrh9rp6PUwMDjEIzuPkp+VDgLbDrQxvzSHh7cfYWZBFv/w3mXUNHfTMzDI47uaWDGncFSHTaBSZbilxFBjKq2DyJipYUnTNQzkZWXQ2tvHgrI8egeHqWnuIQVIT4Ws9BSqSnJYPCOf1p4BTvZ6SBPo6vewtbaFGy+uZPGM3HEHq0N0Bphb9dyYqWFJ009Dex8AzSf7ONHlGTk/4IVzywu4dEEp1Y2dPPDiIY6d7KPXM0RmZjqfumweqyoDV5vH2+t8onuE28weY6aGtWn68W2NOaRKuvubyclI5fKFJRRmptF4so+uviGWzMwlMy2FOUXT2NvYFXLY0Hh7nVsvuDHJxUqaAextPkVRdipVeVmkiuDxKg/vPMbhk/30eobo7h+iu99LxykPN15cNmpFImfvIB0peY43iH2y1eyJllSNMRNjJc0guvq9tPUOMLMgk8bOXlbMLuBIxykWTs9ldWUhswqyuO6C2ayqLOSlulae29vMQy83cM/T+05bX/P+bYcAGVnF3X9geqge8XAGsFtJ1Zj4spJmEF6Ftp4hXm3owDsMM/KyaO32sO1AKzmZ6Vy7soK27gF+tKWO3kEv/YPDFE/LYOOKctJTZGSnyUBLwQFhLws39nVjS5bWIWRMfFlJM4DsdBl5npuZxiXzSjjc3ssFcwpZOD2PoWEvzZ19/PqNRjIzUjl/VgGFWelce0EFyyvy2VbXNrLTpC+xgYxU0cNNdP7LwvlKnGNLljZ205j4sqQ5RjrQN6hMz0nliiVlLKsoJDcrhRPdHl6ub2dbbSsej7PR2mULS9l7rJM3jnXx/gtns3hGHkvLT98Hfew8c/+e72DV7/YeD4/sOML80lwOtvaE3ELDGBM/Vj0fY9D9eeKUl5fqWukbVMoLM0kTGHS718vysvAMebl8URl9g16WledRXpDJN5+qYdWcQt5+Tik/2FIHCnduXBpwC4vqxk4GBr3cv61+pPrtX/V+Yncj927aT0NbL59et/C0LTSMMVPDkmYIXq8iQOPJATJShfRhJTUFqps6+caTNQx6h+nqG6Sh7RQF0zLpOOXhlzuPMqckh9s3LAY0YInQV8W+aU3lyLJx/uc/vW4BG8+roKGtl33HuznY2mOJ0pgEYUkzhIFhZ9m4nHThlDs5PTNVKMrOYM28IrbWtlKYk84HL5zNdStnUVWSQ31rD9etnDWyknufx8tDrzTw+OuNfPaKReRnpzO/NJdPr1tAV5+HX712jHmlOaxdVHbapmy3X7l41KrvxpipZ22aYTg1qKTgJND01FTOm1XI3JJpDHqVdy8r52OXziM7I5X87DRuXFM5auuL6sZOfvN6I62nPNSe6OaHW+pGSo6ZaWnOhzr/Oa1TZ+xxe4+Hn7xUT3uPB2PM1LCkGUSK+/AVxQW4cG4hKQJ/2H+CE10eblu/kDXzi9nZ0M7OhvaA4yWXVRRw7coKSnMyWDQ9b9SUylWVRdz57qWsqiwKK6YndjeOu72GMSa2rHoehG9KpQDT0qAsP4u0VCEtVZiWkcor9W1UlU7j3mf2M6zw4dVzuGnNXFq6B/iP5+tYND2HlXOKOdjaw3UrZ7NiduHIRmo/3FI3shVvJG2VG8+rGPXTGBN/ljTH4QUGhqChvZ+G9n5KcjJ455IyXqhr46W6dgaGnM6gx99o5AOrZnH/C/W0dPczu3gab19UxhtHOvjilUtYu6gUmNy0yeLcDD56aVV0v6AxJiJWPQ+DF+cXlZMOl59TAiit3QP8sa6FvMw0Br1eVs4pZNCrZKQJJXmZvG1eMTvq22nt8TAwNDTq8wYGh9nZMPH9fcLdH8j2ETIm+ixphmkY8AzBK/XtvHiwg6KcDMrys+gfHOLyc2ZwUVURT+45zkcumss/X7uc9UtncNXymWSlpzAwpKNm9Ny7qYZvPlXDvU/XhNWpMzb5hTvf3OalGxN9Vj2PwKBCCoIIpKQJRzr6yUoThoehNDcDUJZXFJCZnsL3Nx+gLCeDjl4Pz+09zvFuD1edO4P1S2bwnvMqOHSim1/uPALA7VcuDmuvIN8g+EinYUZryJKtqGSMlTQjkp+dSr9nkI5eD8c6BkgB+oeUxpN9bNnXzJKZ+bx2pIOW7n4uX1jKi3WttPcMsq2ufWS3yqeqj/O73Y2snlfCZQvLeP3IyYAlTv/SZaCFjMOZbx7teelWcjXGkmZEuvq8tJzyMjQ0zDBv9bAPDENL9wCba47zvedq+epv3+Rg6yk+edkCLqws4rZ1C7h0QQkfu7SSQa+XYa/S1jNA98AQMwuyeGTn0dOGEfknKCfpKfc8vZ+HXm6YsjZKm/dujFXPJ6QvQM7q90JF/jS6+7rp6R3goVcOs7w8j0NtvdS25PPMvhOU52fxfG0Lf3LRHK5aXk5GWgoXzC2iJDeTvKw0ttW2sLS8gIOtPZQXZI+aYglCr2co4OZt8WLz3o1JwKQpIlcD3wFSgR+r6t1THFLY3jzeSf8QlOWk0zU4yP6WHoqmZVKam0l5QTY/3lpH66lBqpu6Ofd4J7967RieoWF2HzvJtgOtpAh85KI5bDvQxvrFZWyuaWFJeT7ZGQUMDA3zgVWzWTQ957SFP/zbGMNpd7S2SWMmLqGq5yKSCvwAeDdwLnCjiJw7tVGFr38IUgWqSqaRky5kpyp9nkGe3NXEH+taGfIOc+6MXHY2tPP73ccZ8iqDw8Pctm4hH7xwFtPSU6kqyeHT6xawfsmMkZLmzoZ2vvHkXp7Y1UTjyf6R+/lX4X1toMFmJvmztkljJi7RSpoXAwdU9SCAiPwMuBZ4c0qjioBX4dXDTjI6NQjgpaOvG453A3CyvwcFfr3zGJWl03h0x1FWzC4ElCuWTmdGfhYPbDtEbXM3fYNe6k70sHJuId5hpTQvg1+8eoSS3EzaegZYv2TGSBvjzoYO7nm6hquXzwi6H5HP2MWNfWt2TkXJ00q9JtkkWtKcBRzxOz4KrPF/gYjcCtwKMHfu3PhFFiXq/hwEDrT2kpeRysHWY3iHYVZRNjXNPfx2VxMKZKel0Nh5FBUhNUVoaO0lNVV4+WAbj+9qAvCbIaT0eoZ4cvdxLgyynbCPr21ye71TKvU1BYy3/UYsBNrSw5hElmhJUwKc01EHqvcB9wGsXr1aA7w+oZTkQP+AMzA+XSBnmgApLJtVRGlOBmvml3K0o5fmrn7esbiMc2bkk5WWQkuPh3ctncHAkJerlpePPM9MS6GqNJeF03NHzUFfVVnMP7x3GcHW8AzEv8S5pDx/SnrFrUfeJBtRTZy8IyKXAnep6lXu8Z0Aqvr1QK9fvXq1bt++PY4RGmPOBiKyQ1VXB7qWUB1BwKvAIhGZJyIZwA3AY1MckzHGjEio6rmqDonIZ4CncIYc3a+q1VMcljHGjEiopAmgqk8AT0x1HMYYE0iiVc+NMSahWdI0xpgIWNI0xpgIWNI0xpgIWNI0xpgIWNI0xpgIWNI0xpgIJNQ0ykiJSAvQEOHbSoHWGIQTa8kYdzLGDBZ3vCVi3JWqWhboQlInzYkQke3B5pQmsmSMOxljBos73pItbqueG2NMBCxpGmNMBM7GpHnfVAcwQckYdzLGDBZ3vCVV3Gddm6YxxkzG2VjSNMaYCTtrkqaIXC0iNSJyQETumOp4/InI/SJyQkT2+J0rFpFnRKTW/Vnkd+1O93vUiMhVUxM1iMgcEdksIntFpFpEPp/osYtIloi8IiJvuDF/JdFj9iciqSLymoj81j1O+LhFpF5EdovI6yKyPVniDkpVz/gHzoLGdcB8IAN4Azh3quPyi+9yYBWwx+/cN4E73Od3AN9wn5/rxp8JzHO/V+oUxV0OrHKf5wH73fgSNnacfahy3efpwMvAJYkc85j4bwf+D/htEv09qQdKx5xL+LiDPc6WkubI1sCq6gF8WwMnBFXdCrSPOX0t8KD7/EHgOr/zP1PVAVU9BBzA+X5xp6pNqrrTfd4N7MXZUTRhY1dHj3uY7j6UBI7ZR0RmA+8Bfux3OuHjDiJZ4z5rkmagrYFnTVEs4Zqhqk3gJCdguns+Ib+LiFQBF+CU3BI6dreK+zpwAnhGVRM+Zte3gS8Bw37nkiFuBZ4WkR3uFtyQHHEHlHDbXcTIuFsDJ5GE+y4ikgs8AnxBVbtEAoXovDTAubjHrqpeYKWIFAK/EpHlIV6eEDGLyHuBE6q6Q0TWhfOWAOem6u/JWlVtFJHpwDMisi/EaxMp7oDOlpLmUWCO3/FsoHGKYglXs4iUA7g/T7jnE+q7iEg6TsL8qao+6p5OithV9SSwBbiaxI95LfA+EanHaV56p4j8hMSPG1VtdH+eAH6FU91O+LiDOVuSZjJuDfwYcLP7/GbgN37nbxCRTBGZBywCXpmC+BCnSPlfwF5VvdfvUsLGLiJlbgkTEckGNgD7EjlmAFW9U1Vnq2oVzt/f51T1oyR43CKSIyJ5vufAlcAeEjzukKa6JypeD2AjTu9uHfDlqY5nTGwPAU3AIM6/tJ8ASoBngVr3Z7Hf67/sfo8a4N1TGPdlOFWnXcDr7mNjIscOrABec2PeA/yDez5hYw7wHdbxVu95QseNM2LlDfdR7ft/L9HjDvWwGUHGGBOBs6V6bowxUWFJ0xhjImBJ0xhjImBJ0xhjImBJ0xhjImBJ8wwkIl53RRnf47RVnURknW+lnKkiIn8hIh8b5zW3iMj3g1z7uxDv+5C7+tLmycYZLX6r/ewSkedFpNLvmorIt/yOvygid415/xsi8lAcQzYBWNI8M/Wp6kq/x91THVAgqvojVf2fSXxE0KSJM9b1L1V1vf9JEZnqqcPrVXUFzkykv/c7PwB8QERKA71JRJbi/P96uTtI3EwRS5pnEXHWFN0nIi8AH/A7X+auabhTRP5DRBp8//OKyEfFWX/ydfda6pjPvFhEHnWfXysifSKSIc66lQfd8wtE5El3wYY/iMgS9/xdIvJF9/lFbgnsJRH5V/FbWxSocN9fKyLfdF9/N5DtxvXTMTH9A87A+x+5n3WLiPxCRB7HWTiiWER+7d7vjyKywi+eB0XkabdU+AER+aZbOnzSnTI69nf6ORF50/2sn7nnckXkv/1KldcH+ON4idELUQzhbPvwV0H++P4E+F/gaeB949w/R5w1Wl8VZ+3Na93z2SLyM/e1PxeRl0UkaXaBTBhTPbreHtF/AF7emqHzOvARIAtn9ZhFOIsiPMxbs0q+D9zpPr8aZ5ZPKbAUeBxId6/9O/CxMfdKAw65z+/BmbK6FngH8JB7/llgkft8Dc4UQIC7gC+6z/cAb3Of3427tihwC3AQKHC/QwMwx73WE+J3sAVY7fcZR3FnnQDfA/7Rff5O4HW/eF7AWS7ufKAXd0YKzpzp6wLcpxHIdJ8Xuj+/AXzb7zVF7s963HUlcVYsutXvNT1AvvuaAuCLwF1+1/cDlTjTEB8b5/7/AnzUd859bw7OWpz3u+dX4CTq1VP99zXZHlNdVTGx0aeqK/1PiMhKnORW6x7/BPAt03UZ8H4AVX1SRDrc81cAFwKvirNyUTZvLayA+/ohcVbZXoqzEMO9OIsqpwJ/EGcFpLcBv5C3Vj/KHBNbIZCnqi+6p/4PeK/fS55V1U73tW/iJA//5cPC8Yyq+tYsvQy43o3/OREpEZEC99rvVXVQRHa73+FJ9/xuoCrA5+4CfioivwZ+7Z7bgDM/HPceHX6v3ywiM3B+j/7Vc9RZIep/gM8Bfb7zInIR0KKqDSJyFLhfRIrczw10/ytxFvf4onucBczF+XP5rnuvXSKyK8jvyoRg1fOzS7A5s8HWchPgQX2rbXSxqt4V4HV/AN6NM3d+E05SugzYivN37KSObmNdGub9fQb8nnuZ2JKGp8a5n+93MwCgqsPAoLrFMpw1LAPd9z3AD3D+cdnhtpkKwX/X63GSfjXwTwGufxunPda/3fJGYIk4KxzV4ZRIfVX+YPe/3u/3PVdV9475nmaCLGmePfYB80RkgXt8o9+1F4APA4jIlYBvv5ZngQ+Ksw6ib1+XSk63FfgC8JKqtuAsxrAEqFbVLuCQiHzI/QwRkfP93+yWmLpF5BL31A2EZzBQO2MYtgI3ufGsA1rdOCMiIik4TQWbcRYHLgRycdodP+P3uiL/96lqH87v62MiUjzmWjtO08kn/O7xIWCFqlaps8rRtcCNIe7/FPBZcYv2InJBgO+9HKeKbiJkSfPM5Osg8T3uVtV+nOr478TpCGrwe/1XgCtFZCdOibEJ6FbVN3GqkE+7VblncPYFGutlYAbO/5TgVBl3+ZXSbgI+ISK+lW4CbTXyCeA+EXkJp6TUGcb3vA/YNbYjKAx3Aavd73Q3by1RFqlU4CduVf414N/UWaPzn4EiEdnjfuf1Y9+ozmrlDwG3Bfjcb+G0KYNTpT6mqsf8rm/F2UtnVpD7fxWnXXaX26H2Vfd9PwRy3e/9JRJtybUkYascGUQkE/C67ZOXAj8c2yYahxhy1d27R5xxpeWq+vl4xnC2EZEtOB1x26c6lmRiHUEGnE6Ch93qngf41BTE8B4RuRPn72QDTo+3MQnHSprGGBMBa9M0xpgIWNI0xpgIWNI0xpgIWNI0xpgIWNI0xpgIWNI0xpgI/H/zV4rDA7ANLQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "coef, p = spearmanr(concated_edges['EdgeWeight_sc'], concated_edges['EdgeWeight_bp'])\n", + "plt.figure(figsize=(5, 5))\n", + "plt.scatter(concated_edges['EdgeWeight_sc'], concated_edges['EdgeWeight_bp'], s=1, alpha=0.5)\n", + "plt.xlabel('Edge weight from scRNAseq')\n", + "plt.ylabel('Edge weight from BLUEPRINT')\n", + "plt.title(f'Spearman r = {coef:.2f}')\n", + "# plt.savefig('grnboost2_sc_bp_comparison.png')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/01_association_metrics/README.md b/01_association_metrics/README.md new file mode 100644 index 0000000..cf61992 --- /dev/null +++ b/01_association_metrics/README.md @@ -0,0 +1,31 @@ +# 01_association_metrics + + +In *setting_files_for_grnboost2* there are setting files for running GRNBoost2 on scRNAseq and BIOS data + +*GRNBoost2.ipynb*: Prepare the input files for BEELINE, and examine the GRNBoost2 results for scRNAseq and for BIOS data + +*rho_comparison_lowlyexpressed.R*: explores the differences between Spearman correlation and Rho propensity specially for very lowly expressed genes + +*scorpius_and_slingshot_clean.R*: calculates the pseudotime ordering for Oelen v2 classical monocytes, using SCORPIUS and Slingshot algorithms + +*scvelo_analysis_dm.py*: runs RNA velocity analysis on Oelen v3 dataset classical monocytes after creating loom files using [velocyto](http://velocyto.org/velocyto.py/tutorial/cli.html) to get both spliced and unspliced gene count matrices + +*compare_cell_classification.ipynb*: compares the aximuth cell type classification with the marker gene cell type classification in Oelen v2 and v3 dataset for untreated cells + +Metacell calculation and evaluation files are all in the directory *metacell*: + +*metacell_per_sample_original_algorithm.R*: calculates metacells based on original algorithm (implemented in the metacell R package) + +*metacells_from_leiden.R*: calculates metacells based on grouping from leiden clustering + +*create_genesets.R*: split all genes expressed in Oelen v3 dataset, Monocytes, into different expression bins for treshold-dependent evaluation with BLUEPRINT + +*metacell_general_correlation_tp.R*: calculates correlation from metacells (original or leiden) for different expression tresholds from *create_genesets.R* for comparison with BLUEPRINT + +*single_cell_correlation_tp.R*: calculates correlation from single cell dataset for different expression tresholds from *create_genesets.R* for comparison with BLUEPRINT + +*eval_blueprint_genesets.R*: compares correlation from BLUEPRINT with correlation from metacells/single cell for different expression tresholds, using correlation vlaues from *metacell_general_correlation_tp.R* and *single_cell_correlation_tp.R* + +*plot_overview_metacell.R*: visualize outputs from metacell evaluation in one plot + diff --git a/01_association_metrics/compare_cell_classification.ipynb b/01_association_metrics/compare_cell_classification.ipynb new file mode 100644 index 0000000..75b0224 --- /dev/null +++ b/01_association_metrics/compare_cell_classification.ipynb @@ -0,0 +1,1164 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from scipy import stats\n", + "import pandas as pd\n", + "import matplotlib as mpl\n", + "mpl.rcParams['pdf.fonttype'] = 42\n", + "import numpy as np\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%run dataset.ipynb" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "onemillionv2 = DATASET('onemillionv2')\n", + "onemillionv2.load_dataset()\n", + "\n", + "onemillionv3 = DATASET('onemillionv3')\n", + "onemillionv3.load_dataset()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "data_sc = onemillionv2.data_sc[onemillionv2.data_sc.obs['time']=='UT']\n", + "data_obs = data_sc.obs" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
orig.identnCount_RNAnFeature_RNAbatchlanechemexp.idtimepointpercent.mtnCount_SCTnFeature_SCTcell_typecell_type_lowerresassignmentbare_barcode_lanetime
index
AAACCTGAGAGTACAT_180925_lane11M_cells5190.01518180925_lane1180925_lane1V22UT1.5606943297.01438mono 2monocyteLLDeep_1370AAACCTGAGAGTACAT_180925_lane1UT
AAACCTGAGTGTCTCA_180925_lane11M_cells5597.01652180925_lane1180925_lane1V212UT3.3946763353.01507th1 CD4TCD4TLLDeep_0434AAACCTGAGTGTCTCA_180925_lane1UT
AAACCTGCAGTCGATT_180925_lane11M_cells3039.0849180925_lane1180925_lane1V211UT3.6854232786.0849naive CD8TCD8TLLDeep_1319AAACCTGCAGTCGATT_180925_lane1UT
AAACCTGCATTCGACA_180925_lane11M_cells3876.01048180925_lane1180925_lane1V22UT3.7667702996.01047mono 1monocyteLLDeep_1370AAACCTGCATTCGACA_180925_lane1UT
AAACCTGGTAATAGCA_180925_lane11M_cells4272.01141180925_lane1180925_lane1V212UT4.5646073076.01131mono 1monocyteLLDeep_0434AAACCTGGTAATAGCA_180925_lane1UT
\n", + "
" + ], + "text/plain": [ + " orig.ident nCount_RNA nFeature_RNA \\\n", + "index \n", + "AAACCTGAGAGTACAT_180925_lane1 1M_cells 5190.0 1518 \n", + "AAACCTGAGTGTCTCA_180925_lane1 1M_cells 5597.0 1652 \n", + "AAACCTGCAGTCGATT_180925_lane1 1M_cells 3039.0 849 \n", + "AAACCTGCATTCGACA_180925_lane1 1M_cells 3876.0 1048 \n", + "AAACCTGGTAATAGCA_180925_lane1 1M_cells 4272.0 1141 \n", + "\n", + " batch lane chem exp.id \\\n", + "index \n", + "AAACCTGAGAGTACAT_180925_lane1 180925_lane1 180925_lane1 V2 2 \n", + "AAACCTGAGTGTCTCA_180925_lane1 180925_lane1 180925_lane1 V2 12 \n", + "AAACCTGCAGTCGATT_180925_lane1 180925_lane1 180925_lane1 V2 11 \n", + "AAACCTGCATTCGACA_180925_lane1 180925_lane1 180925_lane1 V2 2 \n", + "AAACCTGGTAATAGCA_180925_lane1 180925_lane1 180925_lane1 V2 12 \n", + "\n", + " timepoint percent.mt nCount_SCT nFeature_SCT \\\n", + "index \n", + "AAACCTGAGAGTACAT_180925_lane1 UT 1.560694 3297.0 1438 \n", + "AAACCTGAGTGTCTCA_180925_lane1 UT 3.394676 3353.0 1507 \n", + "AAACCTGCAGTCGATT_180925_lane1 UT 3.685423 2786.0 849 \n", + "AAACCTGCATTCGACA_180925_lane1 UT 3.766770 2996.0 1047 \n", + "AAACCTGGTAATAGCA_180925_lane1 UT 4.564607 3076.0 1131 \n", + "\n", + " cell_type cell_type_lowerres assignment \\\n", + "index \n", + "AAACCTGAGAGTACAT_180925_lane1 mono 2 monocyte LLDeep_1370 \n", + "AAACCTGAGTGTCTCA_180925_lane1 th1 CD4T CD4T LLDeep_0434 \n", + "AAACCTGCAGTCGATT_180925_lane1 naive CD8T CD8T LLDeep_1319 \n", + "AAACCTGCATTCGACA_180925_lane1 mono 1 monocyte LLDeep_1370 \n", + "AAACCTGGTAATAGCA_180925_lane1 mono 1 monocyte LLDeep_0434 \n", + "\n", + " bare_barcode_lane time \n", + "index \n", + "AAACCTGAGAGTACAT_180925_lane1 AAACCTGAGAGTACAT_180925_lane1 UT \n", + "AAACCTGAGTGTCTCA_180925_lane1 AAACCTGAGTGTCTCA_180925_lane1 UT \n", + "AAACCTGCAGTCGATT_180925_lane1 AAACCTGCAGTCGATT_180925_lane1 UT \n", + "AAACCTGCATTCGACA_180925_lane1 AAACCTGCATTCGACA_180925_lane1 UT \n", + "AAACCTGGTAATAGCA_180925_lane1 AAACCTGGTAATAGCA_180925_lane1 UT " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_obs.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAU2UlEQVR4nO3df5Cd1X3f8ffHwsoPFdtjs8auBJViK2XUFBy8QFxoXNyaIDOtoHZqEdc4/lENUxQP9XhqTTOT0HEzgZZ0XNvYGg2DHTKmmsRGjFpkMHUmJo1No5XBgAhyFKGWjewgsCe2G4IQfPvHfdRclivts9JerTh6v2Z29j7nx3PPkXY/e+65z703VYUkqV0vW+gBSJLGy6CXpMYZ9JLUOINekhpn0EtS4wx6SWpcr6BPcmmSXUl2J9lwhHbnJXkuybvm2leSNB6zBn2SRcBNwGpgFXBlklWHaXcDcPdc+0qSxqfPiv58YHdV7amqA8BmYM2Idr8CfAl44ij6SpLG5JQebZYCjw8dTwMXDDdIshS4AngbcN5c+g6dYx2wDmDJkiVvPuuss3oMTZIEsGPHjieramJUXZ+gz4iyme+b8AngY1X1XPKC5n36DgqrNgGbACYnJ2tqaqrH0CRJAEn+9+Hq+gT9NHDG0PEyYN+MNpPA5i7kTwPekeRgz76SpDHqE/TbgZVJVgB/DqwFfmm4QVWtOHQ7yeeB/15VdyQ5Zba+kqTxmjXoq+pgkvUMrqZZBNxSVTuTXN3Vb5xr3/kZuiSpj5yIb1PsHr0kzU2SHVU1OarOV8ZKUuMMeklqnEEvSY0z6CWpcX0ur3xJWb7hzoUeQi97r79soYcg6SThil6SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxvYI+yaVJdiXZnWTDiPo1SR5M8kCSqSQXDdXtTfLQobr5HLwkaXazvk1xkkXATcDbgWlge5KtVfXIULOvAlurqpKcDfwucNZQ/cVV9eQ8jluS1FOfFf35wO6q2lNVB4DNwJrhBlX1o/qbTxlfApx4nzguSSepPkG/FHh86Hi6K3uBJFckeRS4E/jAUFUBX0myI8m6YxmsJGnu+gR9RpS9aMVeVVuq6izgcuDjQ1UXVtW5wGrgmiQ/P/JOknXd/v7U/v37ewxLktRHn6CfBs4YOl4G7Dtc46q6F3hDktO6433d9yeALQy2gkb121RVk1U1OTEx0XP4kqTZ9An67cDKJCuSLAbWAluHGyR5Y5J0t88FFgNPJVmS5NSufAlwCfDwfE5AknRks151U1UHk6wH7gYWAbdU1c4kV3f1G4F3AlcleRZ4Gnh3dwXO6cCW7m/AKcBtVXXXmOYiSRph1qAHqKptwLYZZRuHbt8A3DCi3x7gnGMcoyTpGPjKWElqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxvYI+yaVJdiXZnWTDiPo1SR5M8kCSqSQX9e0rSRqvWYM+ySLgJmA1sAq4MsmqGc2+CpxTVW8CPgDcPIe+kqQx6rOiPx/YXVV7quoAsBlYM9ygqn5UVdUdLgGqb19J0nj1CfqlwONDx9Nd2QskuSLJo8CdDFb1vft2/dd12z5T+/fv7zN2SVIPfYI+I8rqRQVVW6rqLOBy4ONz6dv131RVk1U1OTEx0WNYkqQ++gT9NHDG0PEyYN/hGlfVvcAbkpw2176SpPnXJ+i3AyuTrEiyGFgLbB1ukOSNSdLdPhdYDDzVp68kabxOma1BVR1Msh64G1gE3FJVO5Nc3dVvBN4JXJXkWeBp4N3dk7Mj+45pLpKkEWYNeoCq2gZsm1G2cej2DcANfftKko4fXxkrSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxvYI+yaVJdiXZnWTDiPr3JHmw+/p6knOG6vYmeSjJA0mm5nPwkqTZzfqZsUkWATcBbwemge1JtlbVI0PNHgPeWlXfT7Ia2ARcMFR/cVU9OY/jliT11GdFfz6wu6r2VNUBYDOwZrhBVX29qr7fHd4HLJvfYUqSjlafoF8KPD50PN2VHc4HgS8PHRfwlSQ7kqw7XKck65JMJZnav39/j2FJkvqYdesGyIiyGtkwuZhB0F80VHxhVe1L8lrgniSPVtW9Lzph1SYGWz5MTk6OPP/JaPmGOxd6CL3svf6yhR6CpMPos6KfBs4YOl4G7JvZKMnZwM3Amqp66lB5Ve3rvj8BbGGwFSRJOk76BP12YGWSFUkWA2uBrcMNkpwJ3A68t6q+PVS+JMmph24DlwAPz9fgJUmzm3XrpqoOJlkP3A0sAm6pqp1Jru7qNwK/BrwG+EwSgINVNQmcDmzpyk4Bbququ8YyE0nSSH326KmqbcC2GWUbh25/CPjQiH57gHNmlkuSjh9fGStJjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXG9gj7JpUl2JdmdZMOI+vckebD7+nqSc/r2lSSN16xBn2QRcBOwGlgFXJlk1YxmjwFvraqzgY8Dm+bQV5I0Rn1W9OcDu6tqT1UdADYDa4YbVNXXq+r73eF9wLK+fSVJ49Un6JcCjw8dT3dlh/NB4Mtz7ZtkXZKpJFP79+/vMSxJUh99gj4jympkw+RiBkH/sbn2rapNVTVZVZMTExM9hiVJ6uOUHm2mgTOGjpcB+2Y2SnI2cDOwuqqemktfSdL49FnRbwdWJlmRZDGwFtg63CDJmcDtwHur6ttz6StJGq9ZV/RVdTDJeuBuYBFwS1XtTHJ1V78R+DXgNcBnkgAc7LZhRvYd01wkSSP02bqhqrYB22aUbRy6/SHgQ337SpKOH18ZK0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcb0+SjDJpcB/YfC5rzdX1fUz6s8CPgecC/xqVd04VLcX+CHwHN1nyc7P0KUTw/INdy70EHrZe/1lCz0ELZBZgz7JIuAm4O3ANLA9ydaqemSo2feADwOXH+Y0F1fVk8c4VknSUeizdXM+sLuq9lTVAWAzsGa4QVU9UVXbgWfHMEZJ0jHoE/RLgceHjqe7sr4K+EqSHUnWHa5RknVJppJM7d+/fw6nlyQdSZ+gz4iymsN9XFhV5wKrgWuS/PyoRlW1qaomq2pyYmJiDqeXJB1Jnydjp4Ezho6XAfv63kFV7eu+P5FkC4OtoHvnMki1xScvpeOrz4p+O7AyyYoki4G1wNY+J0+yJMmph24DlwAPH+1gJUlzN+uKvqoOJlkP3M3g8spbqmpnkqu7+o1JXgdMAa8Ank9yLbAKOA3YkuTQfd1WVXeNZSaSpJF6XUdfVduAbTPKNg7d/i6DLZ2ZfgCccywDlCQdG18ZK0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcb2CPsmlSXYl2Z1kw4j6s5J8I8kzST46l76SpPGaNeiTLAJuAlYz+MDvK5OsmtHse8CHgRuPoq8kaYz6rOjPB3ZX1Z6qOgBsBtYMN6iqJ6pqO/DsXPtKksarT9AvBR4fOp7uyvro3TfJuiRTSab279/f8/SSpNn0CfqMKKue5+/dt6o2VdVkVU1OTEz0PL0kaTZ9gn4aOGPoeBmwr+f5j6WvJGke9An67cDKJCuSLAbWAlt7nv9Y+kqS5sEpszWoqoNJ1gN3A4uAW6pqZ5Kru/qNSV4HTAGvAJ5Pci2wqqp+MKrvmOYiSRph1qAHqKptwLYZZRuHbn+XwbZMr76SpOPHV8ZKUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWpcr6BPcmmSXUl2J9kwoj5JPtnVP5jk3KG6vUkeSvJAkqn5HLwkaXazfmZskkXATcDbgWlge5KtVfXIULPVwMru6wLgs933Qy6uqifnbdSSpN76rOjPB3ZX1Z6qOgBsBtbMaLMGuLUG7gNeleT18zxWSdJR6BP0S4HHh46nu7K+bQr4SpIdSdYd7UAlSUdn1q0bICPKag5tLqyqfUleC9yT5NGquvdFdzL4I7AO4Mwzz+wxLElSH31W9NPAGUPHy4B9fdtU1aHvTwBbGGwFvUhVbaqqyaqanJiY6Dd6SdKs+gT9dmBlkhVJFgNrga0z2mwFruquvvk54C+r6jtJliQ5FSDJEuAS4OF5HL8kaRazbt1U1cEk64G7gUXALVW1M8nVXf1GYBvwDmA38FfA+7vupwNbkhy6r9uq6q55n4Uk6bD67NFTVdsYhPlw2cah2wVcM6LfHuCcYxyjJOkY+MpYSWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqXK9Xxko6uSzfcOdCD6GXvddfttBDeElwRS9JjXNFL6l5J/sjFFf0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1rlfQJ7k0ya4ku5NsGFGfJJ/s6h9Mcm7fvpKk8Zo16JMsAm4CVgOrgCuTrJrRbDWwsvtaB3x2Dn0lSWPUZ0V/PrC7qvZU1QFgM7BmRps1wK01cB/wqiSv79lXkjRGfd4CYSnw+NDxNHBBjzZLe/YFIMk6Bo8GAH6UZFePsR0vpwFPzucJc8N8nm3OWpsPtDen1uYD7c3pRJvP3zlcRZ+gz4iy6tmmT99BYdUmYFOP8Rx3SaaqanKhxzFfWpsPtDen1uYD7c3ppTSfPkE/DZwxdLwM2NezzeIefSVJY9Rnj347sDLJiiSLgbXA1hlttgJXdVff/Bzwl1X1nZ59JUljNOuKvqoOJlkP3A0sAm6pqp1Jru7qNwLbgHcAu4G/At5/pL5jmcl4nZBbSsegtflAe3NqbT7Q3pxeMvNJ1cgtc0lSI3xlrCQ1zqCXpMadlEGf5HVJNif5sySPJNmW5KeTPJ3k/iR/kuSPk7xvRN/zkjyX5F1JXpPkge7ru0n+fOh48Yk8nySvTPLfknwryc4k7z9R5nO8JfnlJH97ge67kvzW0PFHk1zX3b4uyUe72z+e5J4kv74Q4+yr+914oPuZ+laSjyR52VD9+Unu7d4W5dEkNyf5yYUc81wNzfFbSb6Z5B8s9Jhmc9J9ZmySAFuA366qtV3Zm4DTgT+rqp/tyn4KuD3Jy6rqc13ZIuAGBk8uU1VPAW/q6q4DflRVN75E5nMN8EhV/dMkE8Au4AtVtaDzWSC/DDzMwlz6+wzwz5P8ZlWNfPFN90f2S8COqvr3x3V0c/f00M/Qa4HbgFcCv57kdOD3gLVV9Y3uZ/edwKkMLuJ4qRie4y8Avwm8dUFHNIuTcUV/MfBsd7UQAFX1AC98BS9VtQf4CPDhoeJfYfAL98T4h9nb0c6ngFO7X7a/BXwPODiuQSZZPrSCezjJF5L8kyR/lORPu5Xeq5PckcEb492X5Oyu73VJbknyB0n2JPnw0Hk/0p3v4STXDpVf1Z3nW0l+J8mpSR5L8vKu/hVJ9ib5RWAS+EK3SvuJJG9O8rUkO5LcncHbeYzLQQZXb/ybw9SfwuCtQ/60ql5SbwpYVU8weLX7+u7n7BoGC5JvdPVVVV+sqr9YyHEeo1cA31/oQczmpFvRAz8D7OjZ9pvAWQBJlgJXAG8DzhvP0I7KUc0H+DSD1zTsY7CiendVPT//w3uBNwK/yOCXfzvwS8BFwD8D/h2DP073V9XlSd4G3Er3iKkb98XdWHcl+SxwNoNLeS9g8Crs/5Xka8AB4FeBC6vqySSvrqofJvkD4DLgDgav6fhSVf1ekmuAj1bVVPeH4FPAmqran+TdwG8AHxjjv8tNwINJ/uOIun8L/I+qunaM9z82VbWn27p5LYOf1d9e4CHNh59I8gDw48DrGWTCCe1kDPq5GH4Lh08AH6uq5waLk5ek4YH/AvAAgx/SNwD3JPnDqvrBGO//sap6CCDJTuCrVVVJHgKWM3ivjncCVNXvd88ZvLLre2dVPQM8k+QJBltTFwFbqur/due8HfiHDB6tfPHQVkhVfa87x80MgvMOBn8g/tWIMf5dBoF0T/f/vAj4zrz9C4xQVT9IciuDR1tPz6j+n8Bbkvx0VX17nOMYo5fsL8xhDG/dvAW4NcnP1Al8rfrJuHWzE3hzz7Y/C/xJd3sS2JxkL/Au4DNJLp/30c3d0c7n/cDt3cPn3cBj/M1qf1yeGbr9/NDx8wwWHUd6b6Thvs8doT1d+Yt+6arqj4DlSd4KLKqqhw/Td2dVvan7+vtVdcnhJjSPPgF8EFgyo/xe4Frgywv1hPGx6J4beo7BdudcflZfErptqNOAiYUey5GcjEH/+8CPJfn/q7kk5zHjnd+SLAduZPAwnqpaUVXLq2o58EXgX1fVHcdpzEdyVPMB/g/wj7u60xmsZPcch/Eeyb3AewCS/CPgyVkeYdwLXJ7kJ5MsYbC19ofAV4F/keQ13blePdTnVuC/Ap8bKvshgy0hGDwpPdGt1Ejy8iR/7xjnNavuUcfvMgj7mXVfAv4TcFeSV417LPOle5J/I/DpbrX7aeB9SS4YavMvk7xuocZ4rJKcxeBR31MLPZYjOem2brqtgiuAT2TwiVd/DexlsGp6Q5L7Gey9/RD41KErbk5UxzCfjwOf77ZNwmBbal7fcvUoXAd8LsmDDK7CeNHlrcOq6ptJPg/8cVd0c1XdD5DkN4CvJXkOuJ/BlTUAXwD+A4OwP+TzwMYkTwNvYfCI7ZPdttEpDFbbx+OtO34LWD+qoqo2doG4NcklVfXXx2E8R+PQ/vXLGTzR/DvAfwaoqr9Isha4sbsi53kGf6xvX6CxHq1Dc4TB7877quq5BRzPrHwLBJ1UkryLwROt713osUjHy0m3otfJK8mnGHys5TsWeizS8eSKXpIadzI+GStJJxWDXpIaZ9BLUuMMeklqnEEvSY37f/cjzCi39pQ6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "celltypes = ['CD4T', 'CD8T', 'monocyte', 'NK', 'DC', 'B']\n", + "plot_df = data_obs['cell_type_lowerres'].value_counts(normalize=True).loc[celltypes]\n", + "plt.bar(x=plot_df.index, height=plot_df.values)\n", + "plt.ylim([0, 0.40])\n", + "plt.savefig('cell_abundance_oelenv2.pdf')\n", + "plt.savefig('cell_abundance_oelenv2.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predicted.celltype.l1predicted.celltype.l1.scorepredicted.celltype.l2predicted.celltype.l2.score
barcode
AAACCTGAGAAACCAT_180920_lane1CD8 T0.755924CD8 TEM0.755924
AAACCTGAGTAGCCGA_180920_lane1Mono1.000000CD16 Mono1.000000
AAACCTGCAATCTACG_180920_lane1NK1.000000NK1.000000
AAACCTGCACATCCAA_180920_lane1other0.546320ILC0.546320
AAACCTGCAGCTCGAC_180920_lane1NK0.733094NK0.733094
\n", + "
" + ], + "text/plain": [ + " predicted.celltype.l1 \\\n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 CD8 T \n", + "AAACCTGAGTAGCCGA_180920_lane1 Mono \n", + "AAACCTGCAATCTACG_180920_lane1 NK \n", + "AAACCTGCACATCCAA_180920_lane1 other \n", + "AAACCTGCAGCTCGAC_180920_lane1 NK \n", + "\n", + " predicted.celltype.l1.score \\\n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 0.755924 \n", + "AAACCTGAGTAGCCGA_180920_lane1 1.000000 \n", + "AAACCTGCAATCTACG_180920_lane1 1.000000 \n", + "AAACCTGCACATCCAA_180920_lane1 0.546320 \n", + "AAACCTGCAGCTCGAC_180920_lane1 0.733094 \n", + "\n", + " predicted.celltype.l2 \\\n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 CD8 TEM \n", + "AAACCTGAGTAGCCGA_180920_lane1 CD16 Mono \n", + "AAACCTGCAATCTACG_180920_lane1 NK \n", + "AAACCTGCACATCCAA_180920_lane1 ILC \n", + "AAACCTGCAGCTCGAC_180920_lane1 NK \n", + "\n", + " predicted.celltype.l2.score \n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 0.755924 \n", + "AAACCTGAGTAGCCGA_180920_lane1 1.000000 \n", + "AAACCTGCAATCTACG_180920_lane1 1.000000 \n", + "AAACCTGCACATCCAA_180920_lane1 0.546320 \n", + "AAACCTGCAGCTCGAC_180920_lane1 0.733094 " + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "azimuith_df = pd.read_csv(\n", + " '1M_v2_20201029_azimuth.tsv',\n", + " sep='\\t', index_col=0\n", + ")\n", + "azimuith_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['monocyte', 'CD4T', 'CD8T', 'NK', 'megakaryocyte', 'B', 'DC', 'plasma B', 'unknown', 'hemapoietic stem']\n", + "Categories (10, object): ['B', 'hemapoietic stem', 'megakaryocyte', 'NK', ..., 'CD4T', 'CD8T', 'monocyte', 'DC']" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_obs['cell_type_lowerres'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['CD8 T', 'Mono', 'NK', 'other', 'CD4 T', 'DC', 'B', 'other T'],\n", + " dtype=object)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "azimuith_df['predicted.celltype.l1'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predicted.celltype.l1predicted.celltype.l1.scorepredicted.celltype.l2predicted.celltype.l2.scorecell_type_mapped
barcode
AAACCTGAGAAACCAT_180920_lane1CD8 T0.755924CD8 TEM0.755924CD8T
AAACCTGAGTAGCCGA_180920_lane1Mono1.000000CD16 Mono1.000000monocyte
AAACCTGCAATCTACG_180920_lane1NK1.000000NK1.000000NK
AAACCTGCACATCCAA_180920_lane1other0.546320ILC0.546320None
AAACCTGCAGCTCGAC_180920_lane1NK0.733094NK0.733094NK
\n", + "
" + ], + "text/plain": [ + " predicted.celltype.l1 \\\n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 CD8 T \n", + "AAACCTGAGTAGCCGA_180920_lane1 Mono \n", + "AAACCTGCAATCTACG_180920_lane1 NK \n", + "AAACCTGCACATCCAA_180920_lane1 other \n", + "AAACCTGCAGCTCGAC_180920_lane1 NK \n", + "\n", + " predicted.celltype.l1.score \\\n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 0.755924 \n", + "AAACCTGAGTAGCCGA_180920_lane1 1.000000 \n", + "AAACCTGCAATCTACG_180920_lane1 1.000000 \n", + "AAACCTGCACATCCAA_180920_lane1 0.546320 \n", + "AAACCTGCAGCTCGAC_180920_lane1 0.733094 \n", + "\n", + " predicted.celltype.l2 \\\n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 CD8 TEM \n", + "AAACCTGAGTAGCCGA_180920_lane1 CD16 Mono \n", + "AAACCTGCAATCTACG_180920_lane1 NK \n", + "AAACCTGCACATCCAA_180920_lane1 ILC \n", + "AAACCTGCAGCTCGAC_180920_lane1 NK \n", + "\n", + " predicted.celltype.l2.score cell_type_mapped \n", + "barcode \n", + "AAACCTGAGAAACCAT_180920_lane1 0.755924 CD8T \n", + "AAACCTGAGTAGCCGA_180920_lane1 1.000000 monocyte \n", + "AAACCTGCAATCTACG_180920_lane1 1.000000 NK \n", + "AAACCTGCACATCCAA_180920_lane1 0.546320 None \n", + "AAACCTGCAGCTCGAC_180920_lane1 0.733094 NK " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mapping_names = {'CD8 T': 'CD8T', \n", + " 'CD4 T': 'CD4T',\n", + " 'Mono': 'monocyte',\n", + " 'NK': 'NK',\n", + " 'B': 'B',\n", + " 'DC': 'DC'}\n", + "azimuith_df['cell_type_mapped'] = [mapping_names.get(name) for name in \n", + " azimuith_df['predicted.celltype.l1']]\n", + "azimuith_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cell_type_lowerrescell_type_mapped
AAACCTGAGAGTACAT_180925_lane1monocytemonocyte
AAACCTGAGTGTCTCA_180925_lane1CD4TCD4T
AAACCTGCAGTCGATT_180925_lane1CD8TCD8T
AAACCTGCATTCGACA_180925_lane1monocytemonocyte
AAACCTGGTAATAGCA_180925_lane1monocytemonocyte
\n", + "
" + ], + "text/plain": [ + " cell_type_lowerres cell_type_mapped\n", + "AAACCTGAGAGTACAT_180925_lane1 monocyte monocyte\n", + "AAACCTGAGTGTCTCA_180925_lane1 CD4T CD4T\n", + "AAACCTGCAGTCGATT_180925_lane1 CD8T CD8T\n", + "AAACCTGCATTCGACA_180925_lane1 monocyte monocyte\n", + "AAACCTGGTAATAGCA_180925_lane1 monocyte monocyte" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merged_classification_df = pd.concat([data_obs[['cell_type_lowerres']],\n", + " azimuith_df[['cell_type_mapped']]],\n", + " axis=1).dropna()\n", + "merged_classification_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']\n", + "accuracy_df = pd.DataFrame(\n", + " data=np.zeros((6, 6)),\n", + " index=celltypes,\n", + " columns=celltypes\n", + ")\n", + "for celltype_onemillionv2 in celltypes:\n", + " for celltype_azimuth in celltypes:\n", + " common_classification_num = merged_classification_df[\n", + " (merged_classification_df['cell_type_lowerres']==celltype_onemillionv2) & \n", + " (merged_classification_df['cell_type_mapped']==celltype_azimuth)\n", + " ].shape[0]\n", + " onemillion_classification_num = merged_classification_df[\n", + " (merged_classification_df['cell_type_lowerres']==celltype_onemillionv2)\n", + " ].shape[0]\n", + " azimuth_classification_num = merged_classification_df[\n", + " (merged_classification_df['cell_type_mapped']==celltype_azimuth)\n", + " ].shape[0]\n", + " accuracy_df[celltype_onemillionv2].loc[celltype_azimuth] = common_classification_num/onemillion_classification_num" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFBCAYAAABXWEVsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABI20lEQVR4nO3deXwURdrA8d+TEATkkkASblTwRlARPFAkGhARQUGFXV8VxXgguovrenMKul6r7qqAeKyuK96IBBUXhKAuyCGHKEJELiEJp0EUSCbP+0d3wkyYTGYCndDh+frpT9LdVdVPhrGmprq6SlQVY4wx/hFX2QEYY4yJjVXcxhjjM1ZxG2OMz1jFbYwxPmMVtzHG+IxV3MYY4zNWcRtjjEdE5GURyRWRb0s5LyLyrIhkichSETk9mnKt4jbGGO+8Clwc4XwPoI27pQMvRFOoVdzGGOMRVc0EtkVI0ht4TR1zgfoi0riscq3iNsaYytMUWB+0v8E9FlE1z8I5QPVb3+K7Z/Hf+Lx3ZYcQk0uaH1PZIcRMkMoOIWaFWlDZIcREJL6yQ4iZcPwBvzFqthgQc52ze/2km3G6OIpMUNUJMRQRLu4y4zhkK25jjKlIIrF3QLiVdCwVdUkbgOZB+82AjWVlsq4SY4wBhLiYt4NgCnCtO7rkLOAXVd1UViZrcRtjDOVrcZddprwJXAA0FJENwHAgAUBVxwHTgEuALOA3YGA05VrFbYwxeFNxq+qAMs4rMDjWcq3iNsYYQMQ/N76t4jbGGMBPt/ys4jbGGLzpKvGKVdzGGIO/Km7/RGqMMQbwqMUtItVUffa4mDHmsHaQxmVXCK8i/dqjco0xxhMicTFvlcWrPm7/jKsxxhj81cftVcXdSESGlnZSVZ/y6LrGGFMuVnFDPFAba3kbY3zCTzNPelVxb1LVUR6VbYwxB521uK2lbYzxGT9V3F5FemHJAyJymUfXMsaYA2ajSuCCEhO2CPCciFQDUNX3vbjoheefxKMPXkV8fByvvf0lT4//NOR8vbq1eO7Razm6RUN27yng9ntf4/tVG2l9dDKvPDOoOF3LFg155OmPeOHVmV6EGeL7r79n8vPvU1ionNXjLC4ccFHI+YUzFjBz0gwAjqh5BH3vvJKmxzorG81+dxZzP56LCDQ+ujH97/4DCdUTPI13TuZCxoyZSGFhgH5XdiM9vV/IeVVlzJgXyZy9gBo1juCRR//EyScfG1Ver2RmLmTMmBcpLCzkyivTSE+/MkzME5g9eyE1ahzBo4/eycknt44qr1fmzFnE2DEvUVhYSL9+F3FTet/9Yh475iUyM52Yxz4ypPh1fuD+fzBr1gIaJNbjo4+erZh4D+B9cf99zzBr1gISE+vx0dR/Vki84VmL+23gBuBSoJf788ig3w+6uDjhiRED6HfjP+l08Uj6XXomx7cOXXPzrlsvZtn36zn30oe55e5XePShqwDI+imH8y4bw3mXjaFLn7H8/vtepk5f7EWYIQoDhbz/j3dJH3sz97x0L4s+X0T22uyQNA1SEhn81BDufvEe0q7pxjt/fwuAHVt2MGdyJn9+fih/nXgvhQHlm88XeRpvIBBg1KjxvDhxOFMzniNjaiZZWetC0mRmLmTtmo18On08o0YPZuSIF6LO613M45g4cQQZGc8xtZSY16zZyPTp4xk9ejAjQmKOnNermEePmsCEFx/io6nPkpHxBVlZ60PSZGYuYu3ajXzy6fOMHHUro0aOLz7X5/JUJrw4zPM4g+Mt7/sC4PIrLuTFiSMqLN7S+KnF7dWVzwZqAvOBG1R1ILBFVQeq6g1eXPCMdq1YvTaXteu3kJ8f4L2M+Vxy0akhaY5v3ZjZX60AYNXqHFo0S6RRYp2QNF3OOYGf1m1h/cZICzMfHOt+WEvDJg1JbNKQagnVOO2C0/j2y2UhaY4++Whq1akFQMsTW7Fj8y/F5woDheTvyScQCJC/Zy/1Eut5Gu/Spato0bIxzZunUL16Apf0PI8ZM+aFpJkxYx69+3RFRGjf/gTy8naRm7stqrxexdwy6Lo9e54fJua59OmTGjbmsvJ6FXOLFkGv1SWdmTkj9Jm2mTO+pnfvotf5+OKYAc4882Tq16sTrmjv4i3n+8KJ9xTq1atdYfGW5rCvuFV1PpAGVAdmikhHolgA80A0Tj6KnzdtL97fmL2DxslHhaT5dsUGenU/DYDTT21F8yYNaJISmqZvzw68N3W+l6EW+2XLL9RP2nf9+o3q88vWX0pNP+/juZzY8UQnbcP6XHBlV0b/YSQjrhpGjSNrcnyHEzyNNydnK41TGhbvpyQ3JCdna5g0jfalSUkkJ2drVHm9ijkl6LrJyYlhYw5OExxzWXm9kJuzjZTGQddNKSXmxokhMefmeN/YCOdA3heHkkpauqxcPLuyqhaq6jPANcBfvLpOkbBzoGvoZ8XT4z+lft1azJnyADdfewFLv1tPIBAoPp+QEE+PC9sxedpCj6MNGx5Q+ljSVYtXMe+TuVw6qBcAv+38jW+/+pYH/z2MEW+NYu/uPSz47wIvww0b8H6Tz4f7m0Siy+sBjeK6Yf8dRKLK6wUN8yLuF3OYfJW2EMCBvC8OIX5qcXs+rauq/gxcFU1aEUnHXeq+ZqPzqF73pKivszF7O00b72u9Nkmpz6bcHSFpdv66m8H3vla8v3TWGNZu2Pepn9blFJZ8t47NW3dGfd0DUb9RPXbk7vuWsGPzDuom1t0v3cbVG3n7yUnc9MjNHFnvSABWLlpJg5QG1K7vfMVs2/lU1iz/iQ4XdfAs3uSUhmzK3lK8n52zhaSkBiXSJLIpe/O+NNlbSUpqQH5+QZl5vZCS0pDsoOvm5Gzd77opKYkhaYJjLiuvF5KTE8neFHTd7DAxJyeSvWnfezc7eyuNkkK/PVaUA3lfHEoOtQ+SSDz7yBCR60RkkYjscrcFInJtpDyqOkFVO6hqh1gqbYBFS9dybMskWjZLJCEhnr49z+TjGUtD0tSrU5OEhHgArr26M1/NX8XOX3cXn+97aQfe+6hiukkAmh/fgs0/b2Hrpq0U5BfwzaxvOOWcU0LSbM/ZzisjXuYP915DUrOk4uNHJdVn7fdr2bt7L6rKqm9Wkdwi2dN427Ztw9o1G9mwPpu9e/OZljGH1NROIWlSUzvy4eTPUVUWL15BnTq1SEpqEFVer2Jes2Yj693rZmRkkprasUTMnZg8eWbYmMvK61XMa9duYsOGHOe1mvYFXVPPDEnTNfVMPvyw6HX+oTjmynAg74tDyWHf4nYr6D8BQ4FFOMMBTwced7+CvhYhe7kEAoXcPfIt3nvlDuLj4/j3O1+xYtUmBg44D4BX3pzDca1TGPf4QAKBQn7I2sTt971enL9mjQS6nnsif37wjYMdWqni4+O5YkhfJtw7jsLCQjpe3ImUVo356qMvATin17lM//en/Ja3i/eefQeAuPh4hj5/Fy1PbEW789vx1K1PEBcfR9PWzTi75zmexlutWjwPDbuZGweNoDBQSN++F9GmTQsmvfkxAP0H9KBLlw5kzl5It7SbqVHzCMaOvSNiXq9VqxbPsGG3MGjQcALF123Jm27MA9yYZ89eQFpaOjVrHsHYsXdGzFsRMT/40E0MunEkhYWFXNH3Qud1nvQJAP37X0yXLmeQmbmQ7t1udYYDjh1SnP+uoU/y9fzl7NiexwVdBnH7kP7063dRaZc7KPGW930BMHTo48z/+lu2b8+jy/kDGTJkAP2u7OZZvKXx07SuEq4f74ALFZkL9FfVNSWOtwImqepZZZVRv/Utnt7M9MIbn/eu7BBicknzYyo7hJj5aT6JIoU+m5peJL6yQ4iZcPwBvzFathsbc52zdsn9lfKG9KqPu27JShtAVdeIyP6duMYYU8n89Mi7VxX37+U8Z4wxlcIqbjhRRJaGOS6A/76fG2OqPD/1cXtVcbcDkoH1JY63BDZ6dE1jjCk/H7W4vYr070Ceqq4N3oDf3HPGGHNIOeyHAwKtVHW/rhJVXeCOLDHGmEOKnx7A8arirhHhXE2PrmmMMeXmpz5uryKdLyI3lTwoIjcCFTMRiDHGxMC6SpynJj8QkT+yr6LugDNb4OUeXdMYY8rvcO8qUdUc4BwR6QoUTb6RoareLyljjDHl4Z+eEm9nB1TVz4HPvbyGMcYcFId7i9sYY3zHKm5jjPEZ6yoxxhh/UWtxG2OMz/in3raK2xhjAIjzT83to14dY4wxYC1uY4xxWB/3gdu88pbKDiFmbR7y14y1a8b4543qb/5ahc+Py8MdFD76sw/ZitsYYyqUj/q4reI2xhiwrhJjjPEd/9TbVnEbYwxgXSXGGOM7/qm3bRy3McaA88h7rFs0RORiEflBRLJE5N4w5+uJyEciskRElovIwLLKtBa3McaAJ10lIhIPPAekARtwVgeboqrfBSUbDHynqr1EpBHwg4i8oap7Sw31oEdqjDF+JOXYytYRyFLV1W5FPAnoXSKNAnXEWa24NrANKIhUqFXcxhgDznDAGDcRSReRBUFbeolSmwLrg/Y3uMeC/RM4EdgILAPuVNXCSKFaV4kxxkC5ukpUdQIwIUKScIWWfJS2O7AYSAWOBT4TkTmqmldaoZ60uEXEPhCMMf7iTVfJBqB50H4znJZ1sIHA++rIAn4CTohUqFddJV97VK4xxnijHF0lUZgPtBGRo0WkOtAfmFIizTrgQicESQaOB1ZHKtSrlrGPRkQaYwyePPKuqgUicjvwKRAPvKyqy0XkFvf8OGA08KqILMOpO+9R1S2RyvWq4m4kIkNLO6mqT3l0XWOMKR+P+h9UdRowrcSxcUG/bwS6xVJmmRW3iHQAHgBauunFuZaeGiFbPM6wFmt5G2PMQRZNi/sN4G6cYSoRh6gE2aSqo8odlTHGVLQqNjvgZlUt2ZleFv+8AsYYA76qtaKpuIeLyERgBrCn6KCqvh8hz4UiUk1VCwBEpDbO8JbVqrrtQAKO5Is5i3l07KsECgvp2y+VQTf1CTmvqjwy9lXmZH5DjRpHMGbsrZx08jHs2bOX6/5vBHv35hMoKCSteyduH3KVV2GG6NKmIcN6nkR8nPDWgvW8kLn/zeSzjm7AsJ4nUS1O2P7bXq6eOA+AG89pxdUdmqPAD9k7ufv9pewpiPZLUflkZi5kzJgXKSws5Mor00hPvzLkvKoyZswEZs9eSI0aR/Doo3dy8smto8prMe8zZ84ixo55mcLCQvr1u4ib0q/YL+axY14iM3MRNWocwdhHbufkk49l06Yt3HvPs2zZsh2Ji+Oqq9K49tpLPY/Xj69xSeqj2QGj6Y4fCLQHLgZ6uVtZ74ReQI6IrBSRHsBS4G/AEhEZUP5wSxcIFPLw6Jd5YcJ9TPnoKaZlfMmPWRtC0szJXMy6tdlM++QZRoy8idGjXgKgevUEXn5lGO9Pfpx3P/gbX36xhCWLV3oRZog4gVG9Tub6f80n7ZlMLju1Ca0b1Q5JU7dGNUZfdjKDXl9At2fncNub3wCQXPcIrj+7Fb2e/5Luz84hLk7o1baxp/EGAgFGjRrHxIkjyMh4jqlTM8nKWheSJjNzIWvWbGT69PGMHj2YESNeiDqvxbwv5tGjXmTCiw/y0dRnyMiYQ1bW+pA0mZmLWLt2E598+hwjR93CqJHOMyDx8XH89Z7ryJj2D96a9Cj/eePj/fJ6Ea/fXuOwvBkO6IloKu52qtpBVa9T1YHudkMZef6CMxaxO/AWkKaqFwIdgPsOLOTwli3NokWLZJo3TyahejV6XHIOM2fOD0nz+cz5XNb7fESEdu2PY2feLjbnbkdEqHVkDQAKCgIU5BcgFfCP0r5ZfdZu+431238nP6B8tHQT3U5MDklzWbsmfLI8h42/7AZg6659887Exwk1EuKJjxNqJsSTs3MPXlq6dBUtWzamefMUqldPoGfP85kxY15Imhkz5tKnTyoiQvv2J5CXt4vc3G1R5bWYi2LOokWLfde95JLOzJwR+mjEzBlf07v3BW7MxxfHnJTUgJNPPhaAI2vX5Nhjm5GTs9XjeP33GoflzQM4noim4p4rIifFWG5AVbeo6k/Ar6r6I4Cq5sQcYZRyc7eRkpJYvJ+cnEhuzvaQNDk520PTpCSSk+v03AQChfS9/K+c3/kmzj7nVE5t18arUPddv26N4goZYFPe7yTXOyIkzTGJR1KvZgKTbuzER7edyxXtnWkOcvL28OIXP/HV3V35+t5Udu7OZ05WxKGfBywnZyspKQ33xZ+cuF+lUDJNSoqTJpq8FrMjN2crKY1LvE9zQnsYc3K2kdI4NObcEml+3pDL99//RLt2x3karx9f47DiJPatkkTTx90ZuE5EfsLp445mOOA6EXkEqAOsEJEngfeBi4BNBxhzWKr7r6RdstEcPo2TKD4+jvc+eIy8vF3cOeQJVq1cR5vjWngRaqnxOTGG7sfHC22b1OUPL39NjYQ43r/5HL5Zv4Otu/aQdmIS5z0xi7zd+Tw/4DT6tGvC5CXerTQf6fUrLf6iNNHk9YIvYw5zbL/3cphUwbHt2vU7d9zxGPfedwO1a9c6yBGWiMWHr3FYPhpVEk2L+2KgDc4A8aL+7V5l5LkGyMN5Tv8y4H84XSTJwPWlZQqeaWvihPeiCG2f5OREsrP3fVLn5GylUdJRIWlSUhqEpsneSlKj0DR16x7JmR1P4osvlsR0/fLI/mU3TerVKN5vXLcmuXl79ksze9UWfs8PsP23fL5es40TG9ehc+uGrN/+O9t+20tBofLJ8hzOaHlUyUscVCkpDcnO3teqz8nZSlJSgxJpEkPSZGc7aaLJazE7kpMTyd5U4n1aMubkRLI3hcZc9H7Pzy/gzjsep1ev8+nW7SzP4/XjaxxWVeoqUdW1OBVwPk5joGiLlCdPVR9R1UdV9VdVfVdVL1XV21S11Ba3qk5w+9M7DErvG9MfckrbY1m3NpsNG3LJ31vAx9O+omvXDiFpLujagSkfZqKqLFm8ktp1atEo6Si2bcsjL28XALt372Xu/77l6KObxHT98ljy8y+0SjySZkfVJCFe6HVqYz5bEdqbNP37HM5sdZTbnx1H++b1ycr9lY07fue05vWpkeD8E557bCJZub96Gm/btm1Ys2Yj69dns3dvPhkZmaSmdgxJk5raicmTZ6KqLF68gjp1apGU1CCqvBZzUcytWbt2Exs25LB3bz7Tpn1B19QzQ9J0TT2TDz+c5cb8Q3HMqsqDDz7HMcc25fqBl3keqxOv/17jsKpSV4mIDAGGAznsewBHgUhdJYjIdcCdODcpAb4HnlXV18odbQTVqsVz/4M3cPOgsQQKC7n8igto3aY5b036DICr+6dxfpfTmJP5DT2630nNGtUZPfZWADZv3s4D9z1PIFCIFhbS/eKzuaDrGV6EGSJQqAz7aDmvXd+ReIG3F21gVe6v/LGj00Xzxtfr+HHzLmav3MwnQzpTqPDWgvWsdCvoj5dnkzG4MwWFyvKNebw539vRA9WqxTNs2C0MGjTcuSfQ9yLatGnJm29+DMCAAT3o0qUDs2cvIC0tnZo1j2Ds2Dsj5vWaX2N+8KFBDLpxFIWFhVzR90LatGnBpEmfAtC/f3e6dDmDzMxFdO92mzMccOztACxatIIpH87muONacnkfZ9aJP/35j3Tp4t372Y+vcVg+Gg4o4fqYQhKIZAGdVDXqOwYici3wZ2AosAjnS8XpwOPAM9FU3vmFiyMHdghq85B3/cteWDOmdWWHcFgo1PzKDiEmcZJQ2SGUw3EHXOseM+idmOuc1ROvrJTaPpqbk+uBX2Is9zbgclVdE3Rspoj0xVm6x5NWtzHGlJuPWtylVtxBs/utBmaJSAahT05GmuGvbolKuyjPGhGpW85YjTHGOz4aVRKpxV3H/bnO3aq7G5RxcxL4vZznjDGmclSFFreqjgQQkStV9Z3gcyJS1mQCJ4rI0jDHBTgm5iiNMcZrPlo6PZo+7vuAd6I4FqwdzpjtksMcWrL/emvGGFP5qkJXiTs51CVAUxF5NuhUXaCgjHL/DtzvjgEPLrORe66sB3iMMcaUIlKLeyOwAOfJx4VBx3fiDPWLpJWq7tdVoqoLRKRVrEEaY4znqkgf9xKcaVjfKJpXOwY1IpyrGWNZxhjjOa0iXSVvq+pVwDcist8okjImmZovIjep6oslyryR0Na7McYcGqrIzck73Z/lWT7jT8AHIvJH9lXUHXCGE15ejvKMMcZbVaSrZJOIxAMvqepFsRTqzrt9joh0BU5xD2eo6szyh2qMMR6qCl0lAKoaEJHfRKSeqsb62Duq+jnwebmjM8aYilIVWtxBdgPLROQzYFfRQVW9w7OojDGmovmn3o6q4s5wN2OMqbL8tMp7mRW3qv5LRKoDRQvX/aDqs3kqjTGmLFWp4haRC4B/AWtwvkw0F5HrVDXT08iMMaYiVZWbk64ngW6q+gOAiBwHvAl4v0SMMcZUlCoyjrtIQlGlDaCqK0V8uUSGMcaUroq1uBeIyEvA6+5+8EM1xhhTNVSlPm7gVmAwcAdOH3cm8Hw0hYtIMjAWaKKqPUTkJOBsVX2prLwJcbWiucQhxW9rONZuNaayQ4hZ9qqBlR1CzGonNKnsEEw0qlLFrap7gKfcLVavAq8AD7j7K4G3gDIrbmOMqUhVYpKpIiKyjP2XKvsFZ8rXh8tY/b2hqr4tIvcBqGqBiATKHa0xxnilit2c/BgIAP9x9/vjdJn8gtOijrQowi4RScSt+EXkLGJfMd4YY7xXlVrcwLmqem7Q/jIR+VJVzxWRa8rIOxSYAhwrIl8CjYCy1qs0xhgTQTQVd20R6aSq8wBEpCNQ2z1X1gILy4EuwPE4rfQf8NUXEmPMYaMq3ZwEBgEvi0htnMo3DxgkIkcCj5SR93+qejpOBQ6AiCwCTi9nvMYY442qVHGr6nygrYjUA0RVdwSdfjtcHhFJAZoCNUXkNPbNu1UX8N84P2NM1eefejvi0mVDSzkOgKpGGh7YHbgeaEboMMI84P5YgzTGGK9VldkB60Q4t98alCEnVf8F/EtE+qrqe+WKzBhjKlJVGFWiqiNLOyciZ0ZZ/hPuEMCXVfX7WIMzxpgK46MWd9QjPETkJBEZJSKrgBeizHYqztOSL4nIXBFJF5G65QnUGGM8JeXYKknEm5Mi0hIY4G4FQEugg6quiaZwVd0JvAi8KCLn40wH+3cReRcYrapZBxC7McYcNHE+Gqhcaqgi8hUwDUgA+qnqGcDOaCttt4x4EblMRD4AnsGZ2/sY4CO3bGOMOSSIxL5VlkifMZtxblAm4zzxCGXclAxjFdAbeFxVT1PVp1Q1R1XfBT6JOVpjjPGIVxW3iFwsIj+ISJaI3FtKmgtEZLGILBeR2WWVGenmZG937HZfYKSItAbqi0hHVf06upA5VVV/LaV8WyXeGHPIEA+a0CISDzwHpAEbgPkiMkVVvwtKUx9nquyLVXWdiCSVVW7EXh1V/UVVX1bVNKATMAx4WkTWRxn3c25QRQEeJSIvR5nXGGMqjEct7o5AlqquVtW9wCScXohgfwDeV9V1AKqaW1ahUXfHq2quqv5DVc8BOkeZ7dTgJy1VdTtwWrTXjFVm5kK6d7+FtLR0Jkx4Z7/zqsrDD48nLS2dXr2GsHx5VtR5LWbHRV3asmjGoyyZ9RhDb+253/n6dWvx5vg7mPvxw8yaPJyTjmtafO62gWl8/ekY5k8fy203dKuQeAG++uJbrrh0GL17PMgrE/fvoVNVHhs7id49HuTqy0fx/Xfris+98dp/ubL3CK7qM5L7757Inj35FRKz394Xfos3HI8q7qZAcEN3g3ss2HHAUSIyS0QWisi1ZRVarvuoqro2yqRxInJU0Y6INCC6+VFiFggEGDVqHBMnjiAj4zmmTs0kK2tdSJrMzIWsWbOR6dPHM3r0YEaMeCHqvBYzxMUJT426liuuf5IOafdx5WVncULr0NVd/jK4F0u/W8dZPR4k/a4JPDb8jwCcdFxTru9/AV16j+SsHg/SI7U9x7ZK9jRegECgkEcffpNnXxjCu1NG8Om0+az+cWNImi/nfMv6dblMnjaaB0dcwyOj3wAgN2c7k96Yyetv3c/bk4cTKCzk04/nV0DM/npf+C3e0khcOTZniPOCoC29ZLFhLlXyXmE1nMXXe+I8df6Quyh7qbweAPMk8JWIjBaR0cBXwGNeXGjp0lW0bNmY5s1TqF49gZ49z2fGjHkhaWbMmEufPqmICO3bn0Be3i5yc7dFlddihg7tj2H12hzWrN9Mfn6Adz+aR89uofOFndCmCbO+dOYUW/njJlo0a0RSw7oc37oJX3/zI7/v3ksgUMgX81bQq/sZnsYLsHzZTzRvkUSz5o1ISKhGtx4dmDVzSUia2Z8voedlZyEitG13DL/u/J3Nm51p4wMFhezZk09BQYDdv++lUaP6nsfst/eF3+ItTXla3Ko6QVU7BG0TShS7AWgetN8M2BgmzSequktVt+AsD9kuUqyeVtyq+hrOzc0cd7tCVV+PnKt8cnK2kpLSsHg/OTmRnJytEdOkpDhposlrMUOT5KPYsHFb8f7Pm7bRJPmokDTLvl/PZRd3AOCMdsfQomkiTVIa8N0PGzi34/E0qH8kNWtUp1vXdjRr3MDTeAFyc3eQnLIvxuTko9icuyM0Tc4OklP2xZKUXJ/NOdtJSj6Ka65Po+dF99G961+pXacmZ597kucx++194bd4SxMnsW9RmA+0EZGjRaQ6zkI0U0qk+RA4T0SqiUgtnPuJEZ80j2bpskbATUCr4PSqekNUYTvjwAXn60FClHliprr/SMWSd4nDJEFEosrrBb/FHK78knE89cJUHht+DV9NG8XyFRtYsnwtBYEAP/y4ib+Py2DKv//Krl17+Pb7dRQECj2N14lv/2Ml/4zSXsu8X3Yx+/MlfPTpGGrXqcU9d41n2kdzuaTXWR5FGzme0DT756us94Xf4q1I7nKNtwOfAvE4038sF5Fb3PPjVPV7EfkEWAoUAhNV9dtI5UbT3/whMAf4L84SZlETkTtxKv33cCrvf4vIBFX9Rynp04F0gPHjR5GefnXU10pJaUh29pbi/ZycrSQlNSiRJjEkTXa2kyY/v6DMvF7wW8w/Z2+jWZN912jauAGbSrRed/66m1vvnli8v/yLJ1i7fjMAr72dyWtvZwIw/O5+bNy0Da8lJ9cnJ3t78X5OznYalujuSE45ipzsfbHk5uygYVJ95s1dQdOmDTmqgTPfWuqFp7Fk8WrPK26/vS/8Fm9pvPq8UNVplHjgUFXHldh/HHg82jKj6Sqppar3qOrbqvpe0RZl+TcCnVR1uKoOA87CqcjDCu4viqXSBmjbtg1r1mxk/fps9u7NJyMjk9TUjiFpUlM7MXnyTFSVxYtXUKdOLZKSGkSV1wt+i3nhkp84tlUyLZs1JCEhnn69OjHts29C0tSrW4uEhHgAru/fhS/nrWTnr7sBaJToVIDNmjSg98Vn8M6UuZ7GC3DSKa1Yvy6XnzdsIT+/gOkfL6BL19Duw/MvaEfGlLmoKsuWrKZ27Zo0alSPlMYNWLZ0Nb//vhdV5et5Kzj6mBTPY/bb+8Jv8ZbGT09ORtPinioil7ifGrESQlvpATyamqVatXiGDbuFQYOGEwgU0rfvRbRp05I33/wYgAEDetClSwdmz15AWlo6NWsewdixd0bM6zW/xRwIFHLXsNeZ/NrdxMfH8frbmXy/6mdu/GNXAF5643OOb92YCU+mU1hYyIpVG7ntry8V53/jhSE0OKo2+QUBhj70OjvyfvM0XnBep7/e35/bb36GQKCQ3pefy7Gtm/DuW87Daf2u7kLn80/hyznL6N3jQWrUrM6I0dcB0PbUo7kw7XT+eNXDVIuP5/gTmnPFledVSMx+el/4Ld7S+KmLRsL1MQGIyE6cfmkBjgT2APnuvqpqmbP8uYsxXAd84B7qA7yqqk+XHdrKWB+vNzGq3WpMZYcQs+xVAys7hJjVTmhSdiJzgI474Fq37WtzYq5zll17XqXU9pEeeY+0kEJUVPUp97n7c3Eq/IGq+k0Z2YwxpsL5qMEd1aiSGap6YVnHIlgMbCq6loi0KHq00xhjDhVVouIWkRo4XSQN3acfi/6sukBU3/1EZAgwHGcMd1H/tuIssGCMMYeMKlFxAzcDf8KppBcFHc/Dme0qGncCx6tq5YyoN8aYKPlo5bKIfdzPAM+IyJDSxl1HYT3wSznzGmNMhakqLe4iv4Sbrcp9nL0sq4FZIpKBMyqlKO9T0YdojDHeq2oVd/CK7jWAC3G6TqKpuNe5W3V3M8aYQ5L4qK+kzIpbVYcE77ur4kQ1UZSqjnTz1HF2w6+GY4wxlc1PLe7yzA74G9AmmoQicoqIfAN8Cyx3Jwk/uRzXNMYYT1WpR95F5CP2TfwdB5wEvB1l+ROAoar6uVvWBcCLwDmxBmqMMV7yU4s7mj7uJ4J+LwDWquqGKMs/sqjSBlDVWSJyZCwBGmNMRfBRF3dUfdyzAUSkLvuefmygqtHMyblaRB5iX5/4NcBP5YzVGGM846cWd5l93O6aajk4k3wvABa6P6NxA9AIZz7u94GGwPXlitQYYwwQXVfJ3cDJ7lposToWZ721OPdaFwKp2CPvxphDjHi9Au9BFE3F/SPOSJLyeAP4C86oEu/XqTLGmHLyU1dJNBX3fTgrtc8j9OnHO6LIu1lVPypvcMYYU1H8tJBCNBX3eGAmsIzYW83DRWQiMIPQSv/9GMsxxhhP+ajejqriLlDVoeUsfyBwAs7q7kWVvuLcqDTGmENGVau4P3dXX/+I0FZzNMMB26lq2/IGZ4wxFaWqVdx/cH/eF3RMgWOiyDtXRE5S1e9ijsx4buea+ys7hJg1bzupskOI2YZlAyo7hJgo/lvu9WDUuVXtAZyjD6D8zsB1IvITTmu9aKFhGw5ojDmkVImKW0RSVXWmiFwR7nyUNxgvLndkxhhTgeLEP980IrW4u+CMJukV5lxUNxhVdW054zLGmApVJVrcqjrc/Tmw4sIxxpjK4aMHJ6OaqyQgIo9K0Oh0EVkUKY8xxvhNnGjMW6XFGkWa5W666SLSwD3moy8VxhhTtjiJfau0WKNIU6Cqf8VZAGGOiJwBPhwvZIwxEcSVY6ss0YzjFgBVfVtElgNvAi08jcoYYypYlbg5GWRQ0S+qulxEOgO9vQvJGGMqnvhoOGCZrX1VXQggjlTgKUKXMzPGGFOBohlV0klEngHWAlOAOTgTRxljTJVRJW5OisgYEVkFjMWZ0vU0nPm1/6Wq2ysqQGOMqQhV5eZkOvAD8AIwVVV3i586gYwxJgZV5ZH3FKAbMAB4WkQ+B2qKSDVVLaiQ6IwxpoJUiVElqhoAPgY+FpEawKVALeBnEZmhqn8oLa8xxviNnx55j2Y4IKq6G3gXeFdE6gKXexqVMcZUsCrR4i6NquYB/4qUxm2h11HVzSWOJwF57geBMcYcMvzUx+3Vt4NngfPCHE8D/u7RNcnMXEj37reQlpbOhAnv7HdeVXn44fGkpaXTq9cQli/PijqvxeyYk7mQi7vfSre0dCZMeLeUeCfQLS2dy3oNYfnyH4vP3X/fM5xz9v/R69LbKyTWIheceyyzpwzmi4whDL7x3P3O16tbg4lPX8Vn793C1P8M4vjWjYrPPTHqMhbP+gv/ff/Wigz5sHpflJW3olSJ4YAHqHO4hRZU9Q3gfC8uGAgEGDVqHBMnjiAj4zmmTs0kK2tdSJrMzIWsWbOR6dPHM3r0YEaMeCHqvBZz0TXH8+LE4UzNeI6MUuJdu2Yjn04fz6jRgxnpxgtw+RUX8uLEEZ7GWFJcnPDwA5fwf7e9Qdfez9G7xym0OaZhSJohg85j+Yoc0vqO484HPmDkPfvW/3jnw8Vcc+u/KzTmw+l9EU3eiuKn4YDRPICzQEQGi8hRMZQb6bPIk7936dJVtGzZmObNU6hePYGePc9nxox5IWlmzJhLnz6piAjt259AXt4ucnO3RZXXYnbibRF0zUt6nhcm3nn07tN1v3gBzjzzFOrVq+1pjCW1b9uUNeu2sW7DDvILCvnw4+V06xr6/FibYxvyxbzVAPz401aaNa1Pw8QjAZi3cB07fvm9QmM+nN4X0eStKFVtWtf+QBNgvohMEpHuwXNzlyJXRDqWPCgiZwKbw6Q/YDk5W0lJ2deSSk5OJCdna8Q0KSlOmmjyWsxOLI2DY0luGDbexin7uhqK4q0sjZPqsCk7r3g/OyePxsl1QtJ890MOPS46EYD2pzShWeP6NE6uW6FxBjuc3hfR5K0ofuoqiWax4CzgARF5CGdI4MtAoYi8DDyjqtvCZLsbeFtEXgUWusc6ANfifBAcdKr7f/qV/HwJkwQRiSqvF3wXczTXLCXeShPm2iX/jOde+oKR917Mp+/czIpVOXy7YhMFBYUVFOD+Dqv3RSX9vxeOn0aVRNVtISKnAk8CjwPvAf2APJw1Kfejql8DnXC6TK53NwE6qWqp34NEJN3tmlkwYcJb0f8VQEpKQ7KztxTv5+RsJSmpQYk0iSFpsrOdNNHk9YLfYk5Oacim4Fhytux3zeSURDZl7/tSVRRvZdmUk0fjlH2t55TkumTn7gxJ8+uuvdz10BS6XzmeO++fTOJRR7L+58qb1eFwel9Ek7eieNXHLSIXi8gPIpIlIvdGSHemu+JYv2hiLeuiC3FGgswHTlXVO1R1nqo+CawuLZ+q5rjrVt4C3KKqw1Q1N9K1VHWCqnZQ1Q7p6VeXFVqItm3bsGbNRtavz2bv3nwyMjJJTQ3trUlN7cTkyTNRVRYvXkGdOrVISmoQVV4v+C3mtm3bsHbNRja415yWMYfU1E4l4u3Ih5M/3y/eyrLk2585umUizZvWJ6FaHL17nMxns34ISVO3zhEkVHP+V/hD39OZt3Atv+7aWxnhAofX+yKavBXFiz5uEYkHngN6ACcBA0TkpFLS/Q34NJpYoxnHfaWqhq2gVfWKUoIVYDgwGOfDQUQkAPxDVUdFE1isqlWLZ9iwWxg0aDiBQCF9+15EmzYtefPNjwEYMKAHXbp0YPbsBaSlpVOz5hGMHXtnxLxe81vM1arF89Cwm7lx0AgKi6/ZgkluvP3deDNnL6Rb2s3UqHkEY8feUZx/6NDHmf/1t2zfnkeX8wcyZMgA+l3ZzdOYAwHlobHTeGPcNcTFC299sJiVP27mmivPAODf7yyk9TGNeGZMHwKFyqofN/OX4VOK8//zb1dw9pmtaFC/FvP/+2eefG4Wkz74xtOYD6f3RWl5K4NHXSUdgayiOlREJuGsZ/BdiXRDcHozzoymUAnXJxaSQCQRpxLujNNT9QUwSlVLvYMgIn8GLgHSVfUn99gxOBNWfaKqUYzlXumf0fA+pT5cga5520mVHULMNiwbUNkhxMSP7wvh+AOudv8yb2bMf/gTnVIjXtft9rhYVQe5+/+H02V8e1CapsB/gFTgJZxJ/SIOaI+mm2YSzkiQvjh925uBsjqgrwUGFFXaAO4nzjXuOWOM8b3g+3Lull4ySZhsJT8gngbuceeHiko0XSUNVHV00P7DItKnjDwJqrql5EFV3SwiCdEGZ4wxFaU8XSWqOgGYECHJBqB50H4zYGOJNB2ASe5omobAJSJSoKqTSys0mor7cxHpD7zt7vcDMsrIE+nOTuXd9THGmFJ4tNzAfKCNiBwN/IwzHDpkZlVVPXpfDPIqTlfJ5EiFllpxi8hOnCa9AEOB191T8cCvOP3epWknInlhjgtQI1JAxhhTGby4OamqBSJyO85okXjgZXfR9Vvc8+PKU26k+bjrlHauLKoaX968xhhTGbyae0RVpwHTShwLW2Gr6vXRlBnztK7GGFMV+WlaV6u4jTEGfz3ybhW3Mcbgr4o72rlKOovIQPf3Ru4dUmOMqTLiy7FVljJb3CIyHGec4fHAK0AC8G9g/6VEjDHGp6paH/flwGnAIgBV3Sgi5R5xYowxhyI/dZVEU3HvVVUVd3S6iBzpcUzGGFPhqlrF/baIjAfqi8hNwA3Ai96GZYwxFSu+KlXcqvqEiKThLJxwHDBMVT/zPDJjjKlAVa3FDbAMqInzCPwy78IxxpjK4aebk9GsgDMI+Bq4AmeCqbkicoPXgRljTEWqUosF4yz8e1rRwgnuwgpf4SwabIwxVYKfJliKpuLeAASvrroTWO9NOMYYUzmqWh/3z8A8EfkQp4+7N/C1iAwFUNWnPIzPV/ILf6vsEGKSEFerskOImd+WAQOo39pf/4vsyBpa2SGYMkRTcf/obkU+dH/aQzjGmCrDTzcno6m431PVbz2PxBhjKlGVGscNjBOR6sCrwH9UdYenERljTCXwUx93mcMBVbUzzurszYEFIvIfEenmeWTGGFOBqtpwQFR1pYg8CCwAngVOE2dJ4vtV9X0vAzTGmIrgpxZ3NNO6ngoMBHoCnwG9VHWRiDQB/gdYxW2M8b34KnZz8p84k0rdr6q/Fx10p3d90LPIjDGmAnm1WLAXoon1fVV9PbjSFpE7AVT1dc8iM8aYCuSnPu5oKu5rwxy7/iDHYYwxlcpPFXepXSUiMgD4A3C0iEwJOlUH2Op1YMYYU5GqSh/3V8AmoCHwZNDxncBSL4MyxpiKViVGlajqWmAtcHbFhWOMMZWjSlTcxhhzOLGK2xhjfKaqzVVijDFVXpWYHVBEluHMv73fKUBV9VTPojLGmArmpwdwIrW4L/XigiJSXVX3elG2McYcDkr9kFHVtZG2SIWKyEOlHK8HTD/AmEuVmbmQ7t1vIS0tnQkT3tnvvKry8MPjSUtLp1evISxfnhV1Xq98MWcxl/b4Ez2638HEFyeHjXnsmFfo0f0OLu99N98tXw3Anj176X/V/VzR5256X3oX//zH2xUSrx9fYz/GfOH5JzF/+ggWzRjFn27uvt/5enVr8e/nb+HLqQ8y4717ObFNEwBaH53MnCkPFG/rFv+dW69P9TxeP77GJfnpAZxSK24R2Skiee62M2h/p4jklVHueSIypkR5KUAmMPMgxL2fQCDAqFHjmDhxBBkZzzF1aiZZWetC0mRmLmTNmo1Mnz6e0aMHM2LEC1Hn9SbmQh4e/TIvTLiPKR89xbSML/kxa0NImjmZi1m3NptpnzzDiJE3MXrUSwBUr57Ay68M4/3Jj/PuB3/jyy+WsGTxSo/j9eNr7L+Y4+KEJ0YMoN+N/6TTxSPpd+mZHN+6cUiau269mGXfr+fcSx/mlrtf4dGHrgIg66cczrtsDOddNoYufcby++97mTp9safx+vE1DideYt8qS6QWdx1VretudYL266hq3TLKvQxoJyJPAYhIG+AL4HlVHXXwwt9n6dJVtGzZmObNU6hePYGePc9nxox5IWlmzJhLnz6piAjt259AXt4ucnO3RZXXC8uWZtGiRTLNmyeTUL0aPS45h5kz54ek+XzmfC7rfT4iQrv2x7Ezbxebc7cjItQ6sgYABQUBCvILcGba9Y4fX2M/xnxGu1asXpvL2vVbyM8P8F7GfC65KPSW0vGtGzP7qxUArFqdQ4tmiTRKDF1NsMs5J/DTui2s37jN03j9+BqHEyca81ZZouqPF5HOIjLQ/b2hiBwdKb2q7gYuB1qKyCTgv8Ddqjr+QAMuTU7OVlJSGhbvJycnkpOzNWKalBQnTTR5vZCbu42UlMSQ6+bmbC8R8/bQNCmJ5OQ6/yMGAoX0vfyvnN/5Js4+51RObdfG03j9+Br7MebGyUfx86Z974ON2TtonHxUSJpvV2ygV/fTADj91FY0b9KAJimhafr27MB7U0MbAl7w42scTpXoKikiIsOBe4D73EPVgX+XkWcoMAT4GkgDvsGZ82Ro0erwB5vq/p9+JVugYZIgIlHl9UL460aTxkkUHx/Hex88xozPX2DZsixWrfT2K2bVeY0P7ZjDXqJELE+P/5T6dWsxZ8oD3HztBSz9bj2BQKD4fEJCPD0ubMfkaQs9jtafr3E4fqq4oxnHfTlwGrAIiufhLmuF9+Dzz4Y5FpaIpAPpAOPHjyI9/eoownOkpDQkO3tL8X5OzlaSkhqUSJMYkiY720mTn19QZl4vJCcnkp29r3WRk7OVRkmhraaUlAahabK3ktQoNE3dukdyZseT+OKLJbQ5roVn8frxNfZjzBuzt9O08b5/4yYp9dmUuyMkzc5fdzP43teK95fOGsPaDfveJ2ldTmHJd+vYvHWn5/H68TUOx0/DAaOJda86H4sKICJHlpVBVUdG2iLkm6CqHVS1QyyVNkDbtm1Ys2Yj69dns3dvPhkZmaSmdgxJk5raicmTZ6KqLF68gjp1apGU1CCqvF44pe2xrFubzYYNueTvLeDjaV/RtWuHkDQXdO3AlA8zUVWWLF5J7Tq1aJR0FNu25ZGXtwuA3bv3Mvd/33L00U08jdePr7EfY160dC3HtkyiZbNEEhLi6dvzTD6eETqvW706NUlIiAfg2qs789X8Vez8dXfx+b6XduC9j7zvJgF/vsbhiMS+VZZoWtxvi8h4oL6I3ATcgLMiTqlEZFiE06qqo2OIMSrVqsUzbNgtDBo03On77XsRbdq05M03PwZgwIAedOnSgdmzF5CWlk7NmkcwduydEfN6rVq1eO5/8AZuHjSWQGEhl19xAa3bNOetSZ8BcHX/NM7vchpzMr+hR/c7qVmjOqPH3grA5s3beeC+5wkECtHCQrpffDYXdD3D83j9+Br7LeZAoJC7R77Fe6/cQXx8HP9+5ytWrNrEwAHnAfDKm3M4rnUK4x4fSCBQyA9Zm7j9vn1rmtSskUDXc0/kzw++4Xms4M/XOBwfPfGOhOtj2i+RSBrQDedv+1RVPysj/V1hDh8J3AgkqmrtskNb6Z/nT135hb9VdggxSYirVdkhHBbqt36qskOIyY4sT25Deey4A653F2zJiLnO6dCwZ6XU95EeeW8NJKvql25F/Zl7/HwROVZVfywtr6o+GVROHeBOnAWHJxE6t7cxxhwSqkof99M4iyaU9Jt7LiIRaSAiD+MsulANOF1V71HV3HLEaYwxnhLRmLfKEqmPu5Wq7rfSjaouEJFWkQoVkceBK4AJQFtV/fWAojTGGI/5qY87Uou7RoRzNcso9y6gCfAgsLHEo/NlPS5vjDEVrqqMKpkvIjepasgIEhG5EYg4ql9V/dRdZIwxvmpxR6q4/wR8ICJ/ZF9F3QHnycnLPY7LGGMqlJ+WLos0yVSOqp4DjATWuNtIVT1bVbMrJjxjjKkYUo4tqnJFLhaRH0QkS0TuDXP+jyKy1N2+EpF2ZZVZ5gM4qvo58HmUMRpjjHGJSDzwHM6cTRtwuqCnqOp3Qcl+Arqo6nYR6YEzqKNTpHJtzUljjMGzm40dgSxVXe1cQyYBvYHiiltVvwpKPxdoVlahdhPRGGMoX1eJiKSLyIKgLb1EsU2B9UH7G9xjpbkR+LisWK3FbYwxlG9UiapOwOnaiKXYsE/uiEhXnIq7c1nXtYrbGGPwbFTJBqB50H4zYGPJRCJyKjAR6KGqZa4kYV0lxhiDZ6NK5gNtRORoEakO9AemhFxXpAXwPvB/qhrVwrHW4jbGGPBk7hFVLRCR24FPgXjgZVVdLiK3uOfHAcOAROB5d/WfAlXtUFqZYBW3McYA3j05qarTgGkljo0L+n0QMCiWMq3iNsYYKnfukVhZxW2MMfjrhp9V3MYYg7W4jTHGd3xUb1vFfTDZGo4mHL+t4Vi71ZjKDiFmv6751wGXYS1uY4zxGR/V21ZxG2MM+Gs+bqu4jTEGa3EbY4zvVOaq7bHy09BFY4wxWIvbGGMA6yoxxhjfseGAxhjjMz6qt63iNsYY8NcNP6u4jTEG6yoxxhgf8k/NbRW3McYAYhW3Mcb4i4h/ermt4jbGGMC6Sowxxmesq8QYY3zHPxW3fzp1opCZuZDu3W8hLS2dCRPe2e+8qvLww+NJS0unV68hLF+eFXVei9mf8VrMFRPzRV3asmjGoyyZ9RhDb+253/n6dWvx5vg7mPvxw8yaPJyTjmtafO62gWl8/ekY5k8fy203dKuQeMMRiYt5qyxVpuIOBAKMGjWOiRNHkJHxHFOnZpKVtS4kTWbmQtas2cj06eMZPXowI0a8EHVei9l/8VrMFRNzXJzw1KhrueL6J+mQdh9XXnYWJ7RuEpLmL4N7sfS7dZzV40HS75rAY8P/CMBJxzXl+v4X0KX3SM7q8SA9UttzbKtkT+MtnZRjqxxVpuJeunQVLVs2pnnzFKpXT6Bnz/OZMWNeSJoZM+bSp08qIkL79ieQl7eL3NxtUeW1mP0Xr8VcMTF3aH8Mq9fmsGb9ZvLzA7z70Tx6djs9JM0JbZow68vlAKz8cRMtmjUiqWFdjm/dhK+/+ZHfd+8lECjki3kr6NX9DE/jLY2U47/KUmUq7pycraSkNCzeT05OJCdna8Q0KSlOmmjyWsz+i9dirpiYmyQfxYaN24r3f960jSbJR4WkWfb9ei67uAMAZ7Q7hhZNE2mS0oDvftjAuR2Pp0H9I6lZozrdurajWeMGnsZbGj9V3BV2c1JEGgJbVdWT2crDFSslnmENd2URiSqvF/wWs9/ideKxmL2OOVz5JeN46oWpPDb8Gr6aNorlKzawZPlaCgIBfvhxE38fl8GUf/+VXbv28O336ygIFHoab+n80471pOIWkbOAR4FtwGjgdaAhECci16rqJ6XkSwfSAcaPH0V6+tVRXzMlpSHZ2VuK93NytpKU1KBEmsSQNNnZTpr8/IIy83rBbzH7LV6LuWJi/jl7G82a7LtG08YN2JS7IyTNzl93c+vdE4v3l3/xBGvXbwbgtbczee3tTACG392PjZu2YSLz6iPmn8BY4E1gJjBIVVOA84FHSsukqhNUtYOqdoil0gZo27YNa9ZsZP36bPbuzScjI5PU1I4haVJTOzF58kxUlcWLV1CnTi2SkhpEldcLfovZb/FazBUT88IlP3Fsq2RaNmtIQkI8/Xp1Ytpn34SkqVe3FgkJ8QBc378LX85byc5fdwPQKLEOAM2aNKD3xWfwzpS5nsZbGhGJeassXnWVVFPV6QAiMkpV5wKo6gqv/thq1eIZNuwWBg0aTiBQSN++F9GmTUvefPNjAAYM6EGXLh2YPXsBaWnp1Kx5BGPH3hkxr9f8FrPf4rWYKybmQKCQu4a9zuTX7iY+Po7X387k+1U/c+MfuwLw0hufc3zrxkx4Mp3CwkJWrNrIbX99qTj/Gy8MocFRtckvCDD0odfZkfebp/GWzj/juMWLLmcRWaSqp5f8Pdx+6Vb6Z+VOY6qQ2q3GVHYIMft1zb8OuNb9rWBOzHVOrWrnVUpt71WLu52I5OF8hNV0f8fdr+HRNY0x5gAc5jcnVTXei3KNMcYrNleJMcb4TGXebIyVVdzGGAP46eakVdzGGAPI4d7HbYwx/mMtbmOM8RXr4zbGGN+xitsYY3zF+riNMcZ3rMVtjDG+Yg/gGGOMz9jNSWOM8R3r4zbGGF/xU1eJfz5ijDHGAFZxG2OMS8qxRVGqyMUi8oOIZInIvWHOi4g8655fKiJlrldgXSXGGIM3NydFJB54DkgDNgDzRWSKqn4XlKwH0MbdOgEvuD9LZS1uY4wBnOow1q1MHYEsVV2tqnuBSUDvEml6A6+pYy5QX0QalxWpMcYc9qQc/0WhKbA+aH+DeyzWNCEO4a6S4zy7xSsi6ao6wavyDza/xQv+i9lv8YJ3Mf+65l8Hu8hih/brHHudIyLpQHrQoQkl/r5wZZZc2zKaNCEO1xZ3etlJDil+ixf8F7Pf4gWLudKp6gRV7RC0lfxQ2gA0D9pvBmwsR5oQh2vFbYwxFWE+0EZEjhaR6kB/YEqJNFOAa93RJWcBv6jqpkiFHsJdJcYY42+qWiAitwOfAvHAy6q6XERucc+PA6YBlwBZwG/AwLLKPVwr7kO0j61UfosX/Bez3+IFi9kXVHUaTuUcfGxc0O8KDI6lTHHyGGOM8Qvr4zbGGJ+pEhW3iKSIyCQR+VFEvhORaSJynIj8LiLfiMj3IvK1iFwXJu+ZIhIQkX4ikigii90tW0R+DtqvXpnxikg9EflIRJaIyHIRGVhR8VY0EbleRJp4VHbAfX2Wu6/lUBGJCzrfUUQy3UeUV4jIRBGp5UUsMcSsIvJk0P5fRGSE+/sIEfmL+3sNEflMRIZXUqhhBb3mS0RkkYicU9kx+Z3v+7jFeU71A+BfqtrfPdYeSAZ+VNXT3GPHAO+LSJyqvuIeiwf+hnPjAFXdCrR3z40AflXVJw6ReAcD36lqLxFpBPwAvKGqnsZbSa4HvqWMIVHl9HvQa5YE/AeoBwwXkWTgHaC/qv7P/bfqC9TBuWlUWfYAV4jII6q6JVwC94P6PWChqo6s0OjKFvyadwceAbpUakQ+VxVa3F2B/BKd/YsJfRIJVV0NDAXuCDo8BOfNnut9mMXKG68CddzKpDawDSgobxAi0iqoRfmtiLwhIheJyJcisspteTYQkcniTHwzV0ROdfOOEJGXRWSWiKwWkTuCyh3qlvetiPwp6Pi1bjlLROR1EakjIj+JSIJ7vq6IrBGRK4EOwBtuK62miJwhIrNFZKGIfCplPA4cLVXNxRlXfLv7ug7G+UD9n3teVfVdVc05GNc7AAU4N/X+XMr5ajiPUq9S1f0mMTrE1AW2V3YQfuf7FjdwCrAwyrSLgBMARKQpcDmQCpzpTWhhlSte4J844z034rQAr1bVwgOMpTVwJU7lNR/4A9AZuAy4H+fD5BtV7SMiqcBruN9I3Li6urH8ICIvAKfiDGXqhPM02DwRmQ3sBR4AzlXVLSLSQFV3isgsoCcwGWd863uq+o6IDAb+oqoL3Ir9H0BvVd0sIlcDY4AbDvBvB5wPSLerJAnn38a7xwYPzHPAUhF5LMy5vwL/VdU/VWxIUaspIouBGkBjnP/nzAGoChV3LIIfLX0auEdVA3LoLlkUHFh3YDHOm/5Y4DMRmaOqeQdQ/k+qugxARJYDM1RVRWQZ0ApoidNVgKrOdPvU67l5M1R1D7BHRHJxuno6Ax+o6i63zPeB83C+Lbxb9DVfVbe5ZUzEqXQm41T4N4WJ8XicCvUz998pHoj4cEI5HLJvgCKqmicir+F8A/u9xOkvgLNF5DhVXVnx0ZUpuKvkbOA1ETlFbUhbuVWFrpLlwBlRpj0N+N79vQMwSUTWAP2A50Wkz0GPbn/ljXcg8L779T0L+Il9rfHy2hP0e2HQfiHOh3qkORSC8wYipMc9vt//pKr6JdBKRLoA8ar6bSl5l6tqe3drq6rdSvuDYuXeSwjgdJfF8m9TGZ4GbgSOLHE8E/gT8LFXN3UPFrcbqiHQqLJj8bOqUHHPBI4QkeLWmoicidNaJOhYK+AJnK/dqOrRqtpKVVsB7wK3qerkQzVeYB1woXsuGaclutrjWDOBP7rXvADYUkYLPxPoIyK1RORInK6oOcAM4CoRSXTLahCU5zXgTeCVoGM7cbpgwLkJ28htqSEiCSJy8gH+XbhlNQLGAf90W3//BK4TkU5Baa4RkZSDcb0D5X5TeRun8i557j3gceATEalfwaFFTUROwPnWtLWyY/Ez33eVuF/tLweeFmd1id3AGpwWyLEi8g1O39pO4B9FI0oqywHEOxp41e3GEJxunrAjDA6iEcArIrIUZ1TFfsMpg6nqIhF5FfjaPTRRVb8BEJExwGwRCQDf4IwcAXgDeBin8i7yKjBORH4Hzsb5RvSs201TDaflubycf1NRf2sCzk2/14Gn3PhzRKQ/8IQ74qQQ58Po/XJeywtPAreHO6Gq49wPmSki0k1Vd1dsaKUqes3Bee9ep6qBSozH9+zJSVOpRKQfzo3H/6vsWIzxC9+3uI1/icg/cJZtuqSyYzHGT6zFbYwxPlMVbk4aY8xhxSpuY4zxGau4jTHGZ6ziPgxIKbMRlpHnV/dnKxHZ78EY9/gfvIo56DrTYh2XLCLp4szDskKcWRY7R5HnVXeEiydEJM2da2WZ+9Me+zblZqNKqjh38qTSZiM8kMejW+HMbfKfAwwxIlWNacSJiFwK3Ax0dudFOR2YLCIdVTXbkyCjswXopaobReQUnBkpm1ZiPMbHrMVd9YWdjVBV5wCIyN0iMt+duS+W6UAfBc5zZ/D7s4jMcT8QcMv9UkROFWcmwddFZKY4sw4GPzFa5rXFmTGwodvC/15EXhRnLu3pIlIzTJZ7gLuD5kVZhDNx1GC3vDJnGiwtjTizIf7NbcWvFJHzwuR9S0QuCdp/VUT6quo3qlo0Te1yoIaIHFHWi2xMOFZxV32lzkYoIt2ANkBHnFn/zhCR86Ms915gjjt/yN9xJoy63i33OOAIVV3qpj0VZxbAs4FhItKknNduAzynqicDO3AnwCrhZPb/excAJ8u+mQb7qeoZwMs4Mw0WiyJNNVXtiPOka7gFCyYBV7tlVceZpmBaiTR9cWZd3IMx5WBdJYe3bu72jbtfG6dyzCxHWe8AD4nI3ThTrr4adO5DVf0d+F1EPseprDuX49o/uXOXg1M5t4oytqJJrqKZabCsNEWPv5d2/Y9xHs8/ArgYyHT/dicQZ56Vv+H87caUi1XcVd9ynLk+whHgEVUdf6AXUdXfROQzoDdwFc7si8WnSyYv57VLzkgYrqvkO5wZ/mYGHTvdPV400+DZEa5RVpqiGIpmRAyhqrvFmWe8O07Lu3gOFhFphnO/4VpV/TFCDMZEZF0lVV/Y2QjFmUr1U+AGEantHm/qTq4UjeAZ/IpMBJ4F5gfNuQ3QW5z1EBOBC3AWbTiQa0fyGPA32TcTYXucLpzniW6mwYMxG+EknGl4z8NdFs8dGZMB3OdOZ2tMuVmLu4qLNBuhqq4SkROB/7ndAr8C1xDdUm5LgQIRWQK8qqp/V9WFIpJH6BSt4MwWmAG0AEa7N+k2HsC1I/29U8RZ3egrEVGcD5hrVHUTFE9qVepMg6q6t6w0UZiOM13tFFXd6x67HWfFoYdE5CH3WDd3+TRjYmJzlZiDRpxJ/GcBJxQtqyZVaxFjYw4J1lViDgoRuRaYBzxwENbCNMZEYC1uY4zxGWtxG2OMz1jFbYwxPmMVtzHG+IxV3MYY4zNWcRtjjM9YxW2MMT7z/78aAhiV+JzyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(6, 5))\n", + "sns.heatmap(accuracy_df, vmin=0, vmax=1,\n", + " cmap=\"YlGnBu\", \n", + " annot=True, annot_kws={\"size\": 10},\n", + " fmt='.2f')\n", + "plt.xlabel('Cell type in Oelen v2')\n", + "plt.ylabel('Cell type by Azimuth Algorithm')\n", + "plt.savefig('marker_gene_azimuth_classification.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predicted.celltype.l1predicted.celltype.l1.scorepredicted.celltype.l2predicted.celltype.l2.score
barcode
AAACCCAAGATACCAA_190109_lane1CD8 T0.981818CD8 Naive0.955707
AAACCCAAGTCCCTAA_190109_lane1CD4 T0.379819CD4 CTL0.327444
AAACCCACAAGAGTGC_190109_lane1CD4 T0.740111CD4 Naive0.723822
AAACCCACAATCCAGT_190109_lane1CD4 T0.916869CD4 TCM0.468549
AAACCCACACTATCCC_190109_lane1Mono1.000000CD14 Mono1.000000
\n", + "
" + ], + "text/plain": [ + " predicted.celltype.l1 \\\n", + "barcode \n", + "AAACCCAAGATACCAA_190109_lane1 CD8 T \n", + "AAACCCAAGTCCCTAA_190109_lane1 CD4 T \n", + "AAACCCACAAGAGTGC_190109_lane1 CD4 T \n", + "AAACCCACAATCCAGT_190109_lane1 CD4 T \n", + "AAACCCACACTATCCC_190109_lane1 Mono \n", + "\n", + " predicted.celltype.l1.score \\\n", + "barcode \n", + "AAACCCAAGATACCAA_190109_lane1 0.981818 \n", + "AAACCCAAGTCCCTAA_190109_lane1 0.379819 \n", + "AAACCCACAAGAGTGC_190109_lane1 0.740111 \n", + "AAACCCACAATCCAGT_190109_lane1 0.916869 \n", + "AAACCCACACTATCCC_190109_lane1 1.000000 \n", + "\n", + " predicted.celltype.l2 \\\n", + "barcode \n", + "AAACCCAAGATACCAA_190109_lane1 CD8 Naive \n", + "AAACCCAAGTCCCTAA_190109_lane1 CD4 CTL \n", + "AAACCCACAAGAGTGC_190109_lane1 CD4 Naive \n", + "AAACCCACAATCCAGT_190109_lane1 CD4 TCM \n", + "AAACCCACACTATCCC_190109_lane1 CD14 Mono \n", + "\n", + " predicted.celltype.l2.score \n", + "barcode \n", + "AAACCCAAGATACCAA_190109_lane1 0.955707 \n", + "AAACCCAAGTCCCTAA_190109_lane1 0.327444 \n", + "AAACCCACAAGAGTGC_190109_lane1 0.723822 \n", + "AAACCCACAATCCAGT_190109_lane1 0.468549 \n", + "AAACCCACACTATCCC_190109_lane1 1.000000 " + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "azimuith_df_v3 = pd.read_csv(\n", + " '1M_v3_20201106_azimuth.tsv',\n", + " sep='\\t', index_col=0\n", + ")\n", + "azimuith_df_v3.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "mapping_names = {'CD8 T': 'CD8T', \n", + " 'CD4 T': 'CD4T',\n", + " 'Mono': 'monocyte',\n", + " 'NK': 'NK',\n", + " 'B': 'B',\n", + " 'DC': 'DC'}\n", + "azimuith_df_v3['cell_type_mapped'] = [mapping_names.get(name) for name in \n", + " azimuith_df_v3['predicted.celltype.l1']]" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "data_scv3 = onemillionv3.data_sc[onemillionv3.data_sc.obs['time']=='UT']\n", + "data_obsv3 = data_scv3.obs" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cell_type_lowerrescell_type_mapped
AAACCCAAGATACCAA_190109_lane1CD4TCD8T
AAACCCACAAGAGTGC_190109_lane1CD4TCD4T
AAACCCACAATCCAGT_190109_lane1CD4TCD4T
AAACCCACAGGTACGA_190109_lane1CD4TCD4T
AAACCCAGTCTACGTA_190109_lane1CD4TCD4T
\n", + "
" + ], + "text/plain": [ + " cell_type_lowerres cell_type_mapped\n", + "AAACCCAAGATACCAA_190109_lane1 CD4T CD8T\n", + "AAACCCACAAGAGTGC_190109_lane1 CD4T CD4T\n", + "AAACCCACAATCCAGT_190109_lane1 CD4T CD4T\n", + "AAACCCACAGGTACGA_190109_lane1 CD4T CD4T\n", + "AAACCCAGTCTACGTA_190109_lane1 CD4T CD4T" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merged_classification_df_v3 = pd.concat([data_obsv3[['cell_type_lowerres']],\n", + " azimuith_df_v3[['cell_type_mapped']]],\n", + " axis=1).dropna()\n", + "merged_classification_df_v3.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']\n", + "accuracy_df_v3 = pd.DataFrame(\n", + " data=np.zeros((6, 6)),\n", + " index=celltypes,\n", + " columns=celltypes\n", + ")\n", + "for celltype_onemillionv2 in celltypes:\n", + " for celltype_azimuth in celltypes:\n", + " common_classification_num = merged_classification_df_v3[\n", + " (merged_classification_df_v3['cell_type_lowerres']==celltype_onemillionv2) & \n", + " (merged_classification_df_v3['cell_type_mapped']==celltype_azimuth)\n", + " ].shape[0]\n", + " onemillion_classification_num = merged_classification_df_v3[\n", + " (merged_classification_df_v3['cell_type_lowerres']==celltype_onemillionv2)\n", + " ].shape[0]\n", + " azimuth_classification_num = merged_classification_df_v3[\n", + " (merged_classification_df_v3['cell_type_mapped']==celltype_azimuth)\n", + " ].shape[0]\n", + " accuracy_df_v3[celltype_onemillionv2].loc[celltype_azimuth] = common_classification_num/onemillion_classification_num" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CD4TCD8TmonocyteDCNKB
CD4T0.9522220.1572130.0036710.0018450.0164030.001099
CD8T0.0469230.7874280.0016060.0000000.0146660.000000
monocyte0.0005130.0004090.9933460.1771220.0003860.000000
DC0.0000850.0000000.0005740.8210330.0001930.001099
NK0.0002560.0549500.0006880.0000000.9683520.000000
B0.0000000.0000000.0001150.0000000.0000000.997802
\n", + "
" + ], + "text/plain": [ + " CD4T CD8T monocyte DC NK B\n", + "CD4T 0.952222 0.157213 0.003671 0.001845 0.016403 0.001099\n", + "CD8T 0.046923 0.787428 0.001606 0.000000 0.014666 0.000000\n", + "monocyte 0.000513 0.000409 0.993346 0.177122 0.000386 0.000000\n", + "DC 0.000085 0.000000 0.000574 0.821033 0.000193 0.001099\n", + "NK 0.000256 0.054950 0.000688 0.000000 0.968352 0.000000\n", + "B 0.000000 0.000000 0.000115 0.000000 0.000000 0.997802" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "accuracy_df_v3" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFBCAYAAABXWEVsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABF0ElEQVR4nO3deXgUVdbA4d/JgoBsJpCEHZWoI6OgIrggaDAsIoKCC6OjopjBz30b12FV3B11dARERR0HBBeURcUBJbggm4CgKBHDnoRFZVVC53x/VBG6Q6fTHaiEiuf1qYd01b1Vhyaevn3r1r2iqhhjjPGPuMoOwBhjTGwscRtjjM9Y4jbGGJ+xxG2MMT5jidsYY3zGErcxxviMJW5jjPGIiLwsIgUisrSU4yIiz4pIjogsEZGTozmvJW5jjPHOWKBbhOPdgXR3ywJeiOaklriNMcYjqpoNbIlQpBfwmjrmAPVEpGFZ57XEbYwxlacxsCbo9Vp3X0QJnoVzgOofe6vvnsVftLBzZYcQkyaHH1vZIfwhFGlhZYcQkzhJrOwQyuEYOdAz1GjWL+ac89ua8X/D6eLYa7Sqjo7hFOHiLjOOQzZxG2NMRRKJvQPCTdKxJOqS1gJNg143AdaXVcm6SowxBhDiYt4OgveBK93RJacBv6rqhrIqWYvbGGMoX4u77HPKOOBsoL6IrAUGA4kAqjoSmAacB+QAO4H+0ZzXErcxxuBN4lbVfmUcV+CGWM9ridsYYwCRA76/WWEscRtjDOCnW36WuI0xBm+6SrxiidsYY/BX4vZPpMYYYwCPWtwikqCqe7w4tzHGeOEgjcuuEF5FOtej8xpjjCdE4mLeKotXfdz+GVdjjDH4q4/bq8TdQERuL+2gqj7l0XWNMaZcLHFDPFALa3kbY3xCfJSuvErcG1R1mEfnNsaYg85a3NbSNsb4jJ8St1eR7reigIhc4NG1jDHmgNmoEji7xIQtAjwvIgkAqvqOFxfNOOs4Rtx/EXFxwn8mzuHZF2eEHK9bpwbPjuhHi2b1+f33Qm6+bxzLV+QBsHDGILbv+I1AkRIIBDi3T8XcP537+XKef+I9igJFnHdhe/r1zwg5vvqnAh4b8iY5y9dyzQ3dueTKs4uPbd+2iyeGTSD3xzwE4c7Bl9CqdQtP483OXsBDD71IUVERF1+cSVbWxSHHVZWHHhrNrFkLqF79MB555BZatWoZVV2LeZ/Zsxcy4qGXKSoqom/fc7ku66L9Yh7x0EtkZy+kevXDGPHwjbRqdTQbNmzinrufZdOmn5G4OC65JJMrrzzf83j9+B7vzz8tbq8S9wTgQ6CAfd0mhwM9cZblOeiJOy5OeHRQX/r2f4H1+b/w8Vu38+HMpfzwY35xmdsGZrL0u3VcdePLtDwqhccG9eWiq/9dfLz3Vc+z5ecdBzu0UgUCRTz76Ls89u8sGqTW5f+ueIbTOx1Pi6PSisvUrluDG//ei88/WbZf/ecen8SpZxzHkMevorBwD7//5u0SWYFAgGHDRvLKK8NJTU2mb9/bychoT8uWzYrLZGcvIDd3PdOnj2Lx4u8ZMuQFJk58Mqq6FvO+mIcPe5GXXh5Mamoyl1z8d87JOJWWLfctlJKdvZBVqzbw4UfPs3jxDwwbOpo3JzxKfHwcf7/7Klq1Opod23fRp8+dnHFG65C6XsTrt/c4HOsqgdOBGsA84BpV7Q9sUtX+qnqNFxc8+cTm/LRqE6vWbqawMMC7U7+me+cTQsoce3Qq2XN+ACBnZQFNGyfRILmWF+FEZfnS1TRukkyjJskkJiZwTtc2fPFpaII+Iqk2x7VqRkJC6D/Vju2/8c3ClZzXux0AiYkJ1Kpdw9N4lyxZQfPmDWnaNI1q1RLp0aMjM2Z8FVJmxow59O6dgYjQps1xbN26g4KCLVHVtZj3xpxDs2b7rnveeR2YOSP0mbaZM+bSq9fZbszHFseckpJEq1ZHA3B4rRocfXQT8vM3exyv/97jcPzUVeLJlVV1HpAJVANmikg7olgA80A0TK3L+ryfi1+vz/+Fhql1Q8osXb6e8zNbA3DSCc1o2ugIGqXVc2JGeeulgcx4+w6uvOR0L0MttmnjrzRwrw/QIKUemwp+jaruhnWbqXtELR4b8iZ/6/cUTwybwK5dv3sUqSM/fzNpafWLX6emJu+XFEqWSUtzykRT12J2FORvJq1h8r7rpiWTn7+lRMxbSGsYGnNBiTLr1hbw3Xc/0br1MZ7G68f3OJxKWrqsXDy7sqoWqeozwBXAnV5dZ69wc6A7i0vs88zo/1G3Tg0+mXQX1/31LL75bh179hQB0KPfM2Rc9CSXXjeKay7vwOltj/I65LAfZdFO5h4IFLFi+Tou6Hs6o8bdTvUa1Rj/yicHOcBQJd9P2D/eMEUQkajqesGXMYfZV/KyGqZUcGw7duzi5psf4557r6FWrZoHOcISsfjwPQ7HTy1uz6d1VdV1wCXRlBWRLNyl7g9PyaB6vRPKqLHP+rxfaZR2RPHrRqn1yCvYGlJm+47fufm+ccWvF84YxKq1zqf73rKbtmxn2sffcPKJzfly/sqor18e9VPqsjHvl+LXGwt+IblBnajqNkipS4OUuvzphOYAdOx8IuPHzvQizGJpafXJy9tU/Do/fzMpKUklyiSHlMnLc8oUFu4ps67F7EhNTSZvw75WZ35emJhTk8nbEBpzgxTn97+wcA+33Pw4PXt2pEuX0zyP14/vcTh+WgHHs48MEblKRBaKyA53my8iV0aqo6qjVbWtqraNJWkDfP3Nao5qUZ9mTZJITIznwh4n8eHMpSFl6tSuQWJiPAB/vfg0vpz/I9t3/E7NGtWodfhhANSsUY2zzzyW71aUudDyATuuVVPWrdnEhnWbKSzcwycfLeKMTq2iqptUvw4NUuuxJrcAgK/nrqD5kalehssJJ6STm7ueNWvy2L27kKlTs8nIaBdSJiOjPZMmzURVWbRoObVr1yQlJSmquhbz3phbsmrVBtauzWf37kKmTfuMczJODSlzTsapvPfep27M3xfHrKo88MDzHHV0Y67uXzEjcP34Hofzh29xuwn6VuB2YCHOyJKTgcfdr0evHexrBgJF3DPsbSaOGUhcfBz/ffsrvs/J4+rLzgBg7PgvOOboVP796OUEior4PiePW+4fD0CD5Nq8+rxzzzQhPo63pyxk5uzlBzvE/cQnxHPT3Rdy9w0vUlSkdL/gVFocncbkt74AoGffM9iyaSvXX/EMO3f8hojw9n9n8/Jbd3F4rercdHdvRtz/XwoLAzRsksTfh1zqabwJCfEMGjSQAQMGEwgU0afPuaSnN2fcuA8A6NevO506tWXWrPlkZmZRo8ZhjBhxS8S6XvNrzA/8YwADrh1GUVERF/XpTHp6M8aP/wiAyy7rSqdOp5CdvZCuXf7PGQ444kYAFi5czvvvzeKYY5pzYW9nuqBbb7ucTp1O8TRev73H4fhpWlcJ18d0wCcVmQNcpqq5Jfa3AMarapnf3+ofe6unNzO9sGjhfs8dHdKaHH5sZYfwh1Ck3g7TPNjiJLGyQyiHYw64n6N56xEx55xVi++rlP4Vr/q465RM2gCqmisi0XXiGmNMBfLTOG6vEveuch4zxphKYYkb/iQiS8LsF6ACxtkZY0xs/NTH7VXibg2kAmtK7G8OrPfomsYYU34+anF7Fek/ga2quip4A3a6x4wx5pDyhx8OCLRQ1f26SlR1vjuyxBhjDil+egDHq8RdPcIxb2dCMsaYcvBTH7dXkc4TketK7hSRa4EFHl3TGGPKzbpKnKcm3xWRy9mXqNvizBZ4oUfXNMaY8vujd5Woaj5whoicA/zZ3T1VVb2dBckYY8rLPz0l3s4OqKqfAN7ONWqMMQfDH73FbYwxvmOJ2xhjfMa6Sowxxl/UWtzGGOMz/snblriNMQaAOP9kbh/16hhjjAFrcRtjjMP6uA/cum8vr+wQYtbqYu/XqTyYct6p7Aj+KPyTEP7QfPTPdMgmbmOMqVA+6uO2xG2MMWBdJcYY4zv+yduWuI0xBrCuEmOM8R3/5G0bx22MMeA88h7rFg0R6SYi34tIjojcE+Z4XRGZLCKLRWSZiPQv65zW4jbGGPCkq0RE4oHngUxgLc7qYO+r6rdBxW4AvlXVniLSAPheRN5Q1d2lhnrQIzXGGD+ScmxlawfkqOpKNxGPB3qVKKNAbXFWK64FbAH2RDqpJW5jjAFnOGCMm4hkicj8oC2rxFkbA2uCXq919wV7DvgTsB74BrhFVYsihWpdJcYYA+XqKlHV0cDoCEXCnVRLvO4KLAIygKOBj0VktqpuLe2knrS4RcQ+EIwx/uJNV8laoGnQ6yY4Letg/YF31JED/AQcF+mkXnWVzPXovMYY441ydJVEYR6QLiJHikg14DLg/RJlVgOdnRAkFTgWWBnppF61jH00ItIYY/DkkXdV3SMiNwIfAfHAy6q6TEQGusdHAsOBsSLyDU7uvFtVN0U6r1eJu4GI3F7aQVV9yqPrGmNM+XjU/6Cq04BpJfaNDPp5PdAllnOWmbhFpC1wP9DcLS/OtfTECNXicYa1WMvbGGMOsmha3G8Ad+EMU4k4RCXIBlUdVu6ojDGmolWx2QE3qmrJzvSy+OcdMMYY8FXWiiZxDxaRMcAM4Pe9O1U10vopnUUkQVX3AIhILZzhLStVdcuBBBzJZ7MX8+jDr1MUKOKivmdz7XUXhBxXVR4d8TqzsxdRvcZhDB+RxfHHHwlAt3Nvpebh1YmPiyM+IZ7xE4d7FWaIjic14oFr2hIfJ0z4Xw6j3l0WcnxAr+O5oKMTY0J8HEc3rkO7/hP5dfturupxHJdmpiPAm/9bwdgp3q/Ak529gIceepGioiIuvjiTrKyLQ46rKg89NJpZsxZQvfphPPLILbRq1TKquhbzPrNnL2TEQy9RVFRE377ncl1Wn/1iHvHQS2RnOzGPePgmWrU6GoD77/sXn346n6Tkukye/GyFxOvH97gk9dHsgNF0x/cH2gDdgJ7udn4ZdXoC+SLyg4h0B5YAjwKLRaRf+cMtXSBQxIgHX+WFUX9n0uTH+GDaHH7MWRdS5rPsxaxalceUD59k0NBreXDo2JDjL429n4nvjqiwpB0XJwy5rh3XPjiTbrdM5vyzWtCySd2QMmPe+5YL7pjKBXdM5Yn/fM3cbwv4dftu0pvV49LMdC76+zTOv30K55zShOYNa3sabyAQYNiwkYwZM4SpU59nypRscnJWh5TJzl5Abu56pk8fxfDhNzBkyAtR17WY98U8fNhoRr/4DyZPeZapUz8jJ2dNSJns7IWsWrWeDz/6N0OHXc+woaOKj/W+MIPRLw7yPM7geP32HoflzXBAT0STuFuraltVvUpV+7vbNWXUuRNnLGJX4E0gU1U7A22Bew8s5PCWfvMjzZql0qRpConVEujW/TQ+mbkgpMwnMxfQs1cHRITWrVuybdsONm782YtwotK6ZTKrNmxjTf52CvcUMfWzVZzbrmmp5c/v0IIps38CoGXjOiz6YSO/7Q4QKFLmfptPl/al1z0YlixZQfPmDWnaNI1q1RLp0aMjM2Z8FVJmxow59O6dgYjQps1xbN26g4KCLVHVtZj3xdys2b7rnndeB2bOCH00YuaMufTqdY4b87HFMQOcemor6tX19kO8ZLx+e4/D8uYBHE9Ek7jniMjxMZ43oKqbVPUnYLuq/gigqvkxRxil/PyfSU1LKn6dmpZEQUFoUi4o+Jm0tOR9ZVKTKMh3y4jwtwGPcGnfB3hrwkyvwgyRmlyTDZt3FL/O27yD1KQaYctWrxZPx5Ma8eEcpzXyw+pfOPX4VOrVqkb1avGcfXJjGtY/3NN48/M3k5ZWf1/8qcnk52+OWCYtzSkTTV2L2VGQv4W0hkHXTSsl5ob7fpfT0pIpyPesFzIiP77HYcVJ7FsliaaPuwNwlYj8hNPHHc1wwNUi8jBQG1guIk8C7wDnAhsOMObwtOTj//t/IGq4Mu7XndfeGERKyhFs3vwrfxvwKC2OakTbthGfOj1g0UxisFfGqU1YuHwjv253Znr8cd1WRr+7jFeHnMuOXXv4LvdnAoHSah8ckd6/fWX2ryciUdX1gi9jDvNbsF/MYepVRGzh+PE9DquKjSrpVo7zXoEzx+yvwD3uOe7FebTz6tIquTNrZQE898K9DLjuwqgvmJqWRH7evhZHft4WGqQcEVomNYm8vH2f5vn5W2iQUg+AFLdscnJdMjqfwtIlP3qeuPM276Rh8r5Wclry4RRs2RW27PkdWjD5s59C9k2ckcPEGTkA3HF5G/I27/QuWCAtrT55efse6MrP30xKSlKJMskhZfLynDKFhXvKrGsxO1JTk8nbEHTdvDAxpyaTt2Hf73Je3ub9ft8rih/f47D8k7fL7ipR1VU4E6UU4nzQ790i1dmqqg+r6iOqul1V31LV81X1/1S11Ba3qo52+9PbxpK0AVr9+ShWrcpj7doCCnfv4cMP5nD2OSeHlDk742Qmv/cZqsrixTnUrl2TBg2OYOfO39ixw0mYO3f+xpdfLKVlepOYrl8eS3I207xhbZqk1CIxIY4eHZozY96a/crVqplIu+NT+d/ctSH7k+pWB6Bh/Zp0ad+MybNzPY33hBPSyc1dz5o1eezeXcjUqdlkZLQLKZOR0Z5Jk2aiqixatJzatWuSkpIUVV2LeV/Mq1ZtYO3afHbvLmTatM84J+PUkDLnZJzKe+994sb8fXHMlcGP73FYVamrRERuAgYD+ex7AEeBSF0liMhVwC04NykBvgOeVdXXyh1tBAkJ8dx3/1Vcf91jBIqK6H1hJ1qmN2HC+BkAXHJZZ87q2IbZ2Yvp0e0OqlevxvCHnKlzt2zeyq03Pw1AYE+A7j3OoMNZrb0IM0SgSBk6Zi6vDOpMfJwwcUYOK9b8Sr8u6QCMm74CgC7tm/LZ4g3s+j10bvXn7+rIEbUPozBQxJAX57J1R6kLZhwUCQnxDBo0kAEDBhMIFNGnz7mkpzdn3LgPAOjXrzudOrVl1qz5ZGZmUaPGYYwYcUvEul7za8wP/OM6Blw7lKKiIi7q05n09GaMH/8hAJdd1o1OnU4hO3sBXbtc7wwHHHFTcf07bn+SufOW8cvPWzm70wBuvOky+vY919N4/fYeh+Wj4YASro8ppIBIDtBeVaO+YyAiVwK3AbcDC3G+hJwMPA48E03y/j0wz9sOWw+0utj7cdQHU8477Ss7hD+EIo24mMkhJ86XszIfc8BZ96gBE2POOSvHXFwp2T6af6E1OH3Vsfg/4EJVzQ3aN1NE+uAs3eNJq9sYY8rNRy3uUhN30Ox+K4FPRWQqoU9ORprhr06JpL23Tq6I1ClnrMYY450qMqpk7wj+1e5Wzd2gjJuTQPihEWUfM8aYylEVWtyqOhRARC5W1YnBx0SkrMkE/iQiS8LsF+ComKM0xhiv+Wjp9Gj6uO8FJkaxL1hrIJXQ1Y3BmdO75HprxhhT+apCV4k7OdR5QGMRCZ5irA5Q1m3yfwL3uWPAg8/ZwD3Ws3zhGmOMidTiXg/MBy4Agmdr2oYz1C+SFqq6X1eJqs4XkRaxBmmMMZ6rIn3ci3GmYX1j77zaMage4Vj4WZSMMaYSaRXpKpmgqpcAX4vIfqNIyphkap6IXKeqL5Y457WEtt6NMebQUEVuTt7i/lnWognh3Aq8KyKXsy9Rt8UZThjbJCTGGFMRqkhXyQYRiQdeUtWYJjpw590+Q0TOAf7s7p6qqhUz0bUxxsSqKnSVAKhqQER2ikhdVY31sXdU9RPgk3JHZ4wxFaUqtLiD/AZ8IyIfA8XLtajqzZ5FZYwxFc0/eTuqxD3V3Ywxpsry0yrvZSZuVX1VRKoBx7i7vlfVQm/DMsaYClaVEreInA28CuTifJloKiJXqWq2p5EZY0xFqio3J11PAl1U9XsAETkGGAec4mVgxhhToarIOO69EvcmbQBV/UFEEj2MyRhjKl4Va3HPF5GXgNfd18EP1RhjTNVQlfq4geuBG4Cbcfq4s4F/R3NyEUkFRgCNVLW7iBwPnK6qL5VV97D4utFc4pDitzUcazYfWtkhxGzp0ssqO4SYHVX72LILmcpXlRK3qv4OPOVusRoLvALc777+AXgTKDNxG2NMRaoSk0ztJSLfsP9SZb/iTPn6YBmrv9dX1Qkici+Aqu4RkUC5ozXGGK9UsZuTHwAB4L/u68twukx+xWlRR1oUYYeIJOMmfhE5jdhXjDfGGO9VpRY3cKaqnhn0+hsR+VxVzxSRK8qoezvwPnC0iHwONADKWq/SGGNMBNEk7loi0l5VvwIQkXZALfdYWQssLAM6AcfitNK/x1dfSIwxfxhV6eYkMAB4WURq4STfrcAAETkceLiMul+q6sk4CRwAEVkInFzOeI0xxhtVKXGr6jzgBBGpC4iq/hJ0eEK4OiKSBjQGaojISeybd6sOUPOAIjbGGC/4J29HXLrs9lL2A6CqkYYHdgWuBpoQOoxwK3BfrEEaY4zXqsrsgLUjHNtvDcqQg6qvAq+KSB9VfbtckRljTEWqCqNKVLXUx+pE5NQoz/+EOwTwZVX9LtbgjDGmwvioxR31CA8ROV5EhonICuCFKKudiPO05EsiMkdEskSkTnkCNcYYT0k5tkoS8eakiDQH+rnbHqA50FZVc6M5uapuA14EXhSRjjjTwf5TRN4ChqtqzgHEbowxB02cjwYqlxqqiHwBTAMSgb6qegqwLdqk7Z4jXkQuEJF3gWdw5vY+CpjsntsYYw4JIrFvlSXSZ8xGnBuUqThPPEIZNyXDWAH0Ah5X1ZNU9SlVzVfVt4APY47WGGM84lXiFpFuIvK9iOSIyD2llDlbRBaJyDIRmVXWOSPdnOzljt3uAwwVkZZAPRFpp6pzowuZE1V1eynnt1XijTGHDPGgCS0i8cDzQCawFpgnIu+r6rdBZerhTJXdTVVXi0hKWeeN2Kujqr+q6suqmgm0BwYBT4vImijjft4Nam+AR4jIy1HWNcaYCuNRi7sdkKOqK1V1NzAepxci2F+Ad1R1NYCqFpR10qi741W1QFX/papnAB2irHZi8JOWqvozcFK014xVdvYCunYdSGZmFqNHT9zvuKry4IOjyMzMomfPm1i2LCfquhazI7PTiSya+TjfzHqSO67ff2LIenVqMn7UrXz14cNkvzeM449pUnzs//p3Zd70R5j/8aPccE23CokXYP4Xyxlw0aNc0/thJoydud/xNbkF3Nb/X/Q8/W7eev3TkGPvvpHN3y55nIGXPM4j9/2H3b8XVkjMfvu98Fu84XiUuBsDwQ3dte6+YMcAR4jIpyKyQESuLOuk5bqPqqqroiwaJyJH7H0hIklENz9KzAKBAMOGjWTMmCFMnfo8U6Zkk5OzOqRMdvYCcnPXM336KIYPv4EhQ16Iuq7FDHFxwj+HX03vqx7j5HP/zsUXnM5x6aG/g3fd2Isl366mfbd7GXD7Czw+5K8AHH9ME/r3O4eOFwyifbd76d75JI5ukeppvACBQBHPP/ouw58dwKiJd/HpR1+zamVeSJnadWow8M5e9Lni7JD9mwp+5b03Z/Psa7cycsJdFBUVMWv6ogqI2V+/F36LtzQSV47NGeI8P2jLKnnaMJcqea8wAWfx9R44T53/w12UvVReD4B5EvhCRIaLyHDgC+AxLy60ZMkKmjdvSNOmaVSrlkiPHh2ZMeOrkDIzZsyhd+8MRIQ2bY5j69YdFBRsiaquxQxt2xzNj7n55K7ZSGFhgLcmz+H8zFNCyvwpvTGffL4UgB9+3EDzJg1IqV+HY1s2Yt7XOez6bTeBQBGfffUdF3SN9jmu8vth2WoaNU2mYZNkEhMT6NSlDXNmLQspUy+pNse2akZCwv7/OwQCRez+vZDAngC//1ZIUgPvH0Pw2++F3+ItTXla3Ko6WlXbBm2jS5x2LdA06HUTYH2YMh+q6g5V3YSzPGTrSLF6mrhV9TWcm5v57naRqr4euVb55OdvJi2tfvHr1NRk8vM3RyyTluaUiaauxQyN0pJYt2HfNdZt2EKjtCNCynzz7Wp6dXcSctvWR9GscX0apyXx7Q9rObPdcSTVq0WN6tXoek4bmjRK8jRecFrNDVLrFb+un1KPzQXRreVRP6Uufa44myvPf5C/dBtGzVrVOeU079eP9Nvvhd/iLU2cxL5FYR6QLiJHikg1nIVo3i9R5j3gLBFJEJGaOPcTIz5pHs3SZQ2A64AWweVV9ZqownbGgQvO14PEKOvETHX/kYol7xKHKYKIRFXXC36LOex3vhJxPPHCZJ4Y/FfmTBvB0u/XsHhZLnsCRXyfs56nRk5myhv3sH3H73zz7Wr27CnyNN5SRfk+bdu6kzmzlvLK+/dRq3YNRtz9GjOnLSDjvFPKrnwA/PZ74bd4K5K7XOONwEdAPM70H8tEZKB7fKSqficiHwJLgCJgjKoujXTeaPqb3wNmA//DWcIsaiJyC07Sfxvn//v/iMhoVf1XKeWzgCyAUaOGkZV1adTXSkurT17epuLX+fmbSUlJKlEmOaRMXp5TprBwT5l1veC3mNflbaFxw+Ti140bJrEh/5eQMtu27+Jvd+37tvjdZ0+Tu2YjAK++OYtX33SGqA696xLW5W3xNF5wWs0bg2LcVPALyVF2dyyau4LURsnUO8JZN+SMc07g2yW5niduv/1e+C3e0nj1eaGq0yjxwKGqjizx+nHg8WjPGU1XSU1VvVtVJ6jq23u3KM9/LdBeVQer6iDgNJxEHlZwf1EsSRvghBPSyc1dz5o1eezeXcjUqdlkZLQLKZOR0Z5Jk2aiqixatJzatWuSkpIUVV0v+C3mBYtX0vLINJo3bUBiYjx9e57G1I8XhJSpW6cmiYnxAPS/7Bw+m7ucbdt3AdAg2UmYTRolc0G3U5nw3heexgtwzPFNWb9mE3nrNlNYuIdZ0xdxWsdWUdVtkFaP5UtX8dtvu533f94KmlbADVW//V74Ld7S+OnJyWha3FNE5Dz3UyNWQmgrPYBHU7MkJMQzaNBABgwYTCBQRJ8+55Ke3pxx4z4AoF+/7nTq1JZZs+aTmZlFjRqHMWLELRHres1vMQcCRdw+aCzvv3Y38fFxvDZhFt+tWMeAyzsDMOaNGRzbshFjnrqeQKCI5TnruD6o9f3fkbeQdERtCgv3cNugsfyydaen8QLEJ8Rz/V0X8sBNLxIIKF0uOJXmR6cx9S3nQ6NH3zPYsmkrN1/5DDt3/EacCJPGzWbUhLs47s/N6dD5RG66/J/Ex8dx9LGN6X7RaZ7H7LffC7/FWxo/ddFIuD4mABHZhtMvLcDhwO9AoftaVbXM75vuYgxXAe+6u3oDY1X16bJD+yHWx+tNjGo2H1rZIcRs6dLLKjuEmB1V2/sbmuaYA866J7w2O+ac882VZ1VKto/0yHukhRSioqpPuc/dn4mT8Pur6tcHel5jjDnYfNTgjmpUyQxV7VzWvggWARv2XktEmu19tNMYYw4VVSJxi0h1nC6S+u7Tj3v/WnWARtGcXERuAgbjjOHe27+tOAssGGPMIaNKJG7gb8CtOEl6YdD+rTizXUXjFuBYVa2cEfXGGBMlH61cFrGP+xngGRG5qbRx11FYA0T3mJoxxlSiqtLi3uvXcLNVuY+zl2Ul8KmITMUZlbK37lPRh2iMMd6raok7eCag6kBnnK6TaBL3aner5m7GGHNIEh/1lZSZuFX1puDX7qo4UU0UpapD3Tq1nZfhV8MxxpjK5qcWd3lmB9wJpEdTUET+LCJfA0uBZe4k4dE9b2yMMRWoSj3yLiKT2TfxdxxwPDAhyvOPBm5X1U/cc50NvAicEWugxhjjJT+1uKPp434i6Oc9wCpVXRvl+Q/fm7QBVPVTETk8lgCNMaYi+KiLO6o+7lkAIlKHfU8/JqlqNHNyrhSRf7CvT/wK4KdyxmqMMZ7xU4u7zD5ud021fJxJvucDC9w/o3EN0ABnPu53gPrA1eWK1BhjDBBdV8ldQCt3LbRYHY2z3lqce63OQAb2yLsx5hAjXq/AexBFk7h/xBlJUh5vAHfijCqppHWqjDGmbH7qKokmcd+Ls1L7V4Q+/XhzFHU3qurk8gZnjDEVxU8LKUSTuEcBM4FviL3VPFhExgAzCE3678R4HmOM8ZSP8nZUiXuPqt5ezvP3B47DWd19b9JXnBuVxhhzyKhqifsTd/X1yYS2mqMZDthaVU8ob3DGGFNRqlri/ov7571B+xQ4Koq6c0TkeFX9NubIjOd2rhpc2SHELL3L7MoOIWYrptuak35Q1R7AOfIAzt8BuEpEfsJpre9daNiGAxpjDilVInGLSIaqzhSRi8Idj/IGY7dyR2aMMRUoTmJe5L3SRGpxd8IZTdIzzLGobjCq6qpyxmWMMRWqSrS4VXWw+2f/igvHGGMqh48enIxqrpKAiDwiQaPTRWRhpDrGGOM3caIxb5UWaxRllrnlpotIkrvPR18qjDGmbHES+1ZpsUZRZo+q/h1nAYTZInIK+xZWMMaYKiGuHFtliWYctwCo6gQRWQaMA5p5GpUxxlSwKnFzMsiAvT+o6jIR6QD08i4kY4ypeOKj4YBltvZVdQGAODKApwhdzswYY0wFimZUSXsReQZYBbwPzMaZOMoYY6qMKnFzUkQeEpEVwAicKV1Pwplf+1VV/bmiAjTGmIpQVW5OZgHfAy8AU1T1N/FTJ5AxxsSgqjzyngZ0AfoBT4vIJ0ANEUlQ1T0VEp0xxlSQKjGqRFUDwAfAByJSHTgfqAmsE5EZqvqX0uoaY4zf+OmR92iGA6KqvwFvAW+JSB3gQk+jMsaYClYlWtylUdWtwKuRyrgt9NqqurHE/hRgq/tBYIwxhww/9XF79e3gWeCsMPszgX96dE2ysxfQtetAMjOzGD164n7HVZUHHxxFZmYWPXvexLJlOVHXtZj9GS/AWW0b89FLffjfKxeTden+a3jUqpnIqGGZvP9Cb6aNvog+XdIBSGtwOK8/1p0Px/Rh2uiLuKp3qwqL2W/vs9/iDadKDAc8QB3CLbSgqm8AHb24YCAQYNiwkYwZM4SpU59nypRscnJWh5TJzl5Abu56pk8fxfDhNzBkyAtR17WY/RcvQFycMOTGMxhw/3S6X/c25599FC2b1Qspc8UFx5Oz6hcuuH4SV9w1jXuy2pOYEEcgUMTDo+fSbcDbXHzLZC6/4E/71fWC395nv8VbGj8NB4zmAZz5InKDiBwRw3kjfRZ58vddsmQFzZs3pGnTNKpVS6RHj47MmPFVSJkZM+bQu3cGIkKbNsexdesOCgq2RFXXYvZfvAAnHtuAVeu3siZvG4V7ipg6ayWdzwidakdRDq+ZCEDNGgn8uu139gSK2LhlF9/mbAZgx65Cflz9C6n1a3oes9/eZ7/FW5qqNq3rZUAjYJ6IjBeRrsFzc5eiQETaldwpIqcCG8OUP2D5+ZtJS6tf/Do1NZn8/M0Ry6SlOWWiqWsx+y9egLT6NdmwcUfx67yNO0lNPjykzH/e+46jm9bl83H9mDLqIh58YQ5a4v/Jxqm1OL5lMouXe/LrG8Jv77Pf4i2Nn7pKolksOAe4X0T+gTMk8GWgSEReBp5R1S1hqt0FTBCRscACd19b4EqcD4KDTkv+nwaU/HwJUwQRiaquF/wWs9/iLU3JWM5q25jvVm7hr3//gGaNajP2ke7MH5jH9p2FANSsnsBzgzrz0AtzivdVZHxwaL/Pfou3NH4aVRJVt4WInAg8CTwOvA30BbbirEm5H1WdC7TH6TK52t0EaK+qpX4PEpEst2tm/ujRb0b/twDS0uqTl7ep+HV+/mZSUpJKlEkOKZOX55SJpq4X/Baz3+IFyNu0k4YN9rWw0xrUpGDLzpAyfbocw/TPcgFYvX4ba/O2cVTTugAkxAvPDerM+zN/ZPrnFbOEqt/eZ7/FWxqv+rhFpJuIfC8iOSJyT4Ryp7orjvWNJtayLroAZyTIPOBEVb1ZVb9S1SeBlaXVU9V8d93KgcBAVR2kqgWRrqWqo1W1raq2zcq6tKzQQpxwQjq5uetZsyaP3bsLmTo1m4yM0N6ajIz2TJo0E1Vl0aLl1K5dk5SUpKjqesFvMfstXoBvvt9Ii8Z1aJJWi8SEOHp0OooZX4be/FpfsJ3TT2oEQHK96hzZpC5rNmwDYMTtZ/Hj6l945e2lnse6l9/eZ7/FWxov+rhFJB54HugOHA/0E5HjSyn3KPBRNLFGM477YlUNm6BV9aJSghVgMHADzoeDiEgA+JeqDosmsFglJMQzaNBABgwYTCBQRJ8+55Ke3pxx4z4AoF+/7nTq1JZZs+aTmZlFjRqHMWLELRHres1vMfstXoBAkTL0uS95eUQ34uOEtz76gZxVv9CvhzPB5bipy3n+jUU8eldHpoy6EBHh8Zfm8fPW3zmlVSoXZqazfOUW3n+hNwBPvjyfWfPWehqz395nv8VbGo+6StoBOXtzqIiMx1nP4NsS5W7C6c04NZqTSrg+ppACIsk4SbgDzpJlnwHDVLXUOwgichtwHpClqj+5+47CmbDqQ1WNYiz3D/4ZDW8qTHqX2ZUdQsxWTA/3SIM5uI454LR751czY845T7TPiHhdt9ujm6oOcF//FafL+MagMo2B/wIZwEs4k/q9Fem80XTTjMcZCdIHp297I1BWB/SVQL+9SRvA/cS5wj1mjDG+F3xfzt2yShYJU63kB8TTwN3u/FBRiaarJElVhwe9flBEepdRJ1FVN5XcqaobRSQx2uCMMaailKerRFVHA6MjFFkLNA163QRYX6JMW2C8O5qmPnCeiOxR1UmlnTSaxP2JiFwGTHBf9wWmllFndzmPGWNMpfBouYF5QLqIHAmswxkOHTKzqqoeuS8GGYvTVTIp0klLTdwisg2nSS/A7cDr7qF4YDtOv3dpWovI1nCnBapHCsgYYyqDFzcnVXWPiNyIM1okHnjZXXR9oHt8ZHnOG2k+7trlitSpG1/eusYYUxm8mntEVacB00rsC5uwVfXqaM4Z87SuxhhTFflpWldL3MYYg78eebfEbYwx+CtxRztXSQcR6e/+3MC9Q2qMMVVGfDm2ylJmi1tEBuOMMzwWeAVIBP4DnOltaMYYU3GqWh/3hcBJwEIAVV0vIuUecWKMMYciP3WVRJO4d6uqijs6XUQOL6uCMcb4TVVL3BNEZBRQT0SuA64BXvQ2LGOMqVjxVSlxq+oTIpKJs3DCMcAgVf3Y88iMMaYCVbUWN8A3QA2cR+C/8S4cY4ypHH66ORnNCjgDgLnARTgTTM0RkWu8DswYYypSlVosGGfh35P2LpzgLqzwBc6iwcYYUyX4aYKlaBL3WmBb0OttwBpvwjHGmMpR1fq41wFfich7OH3cvYC5InI7gKo+5WF8vvJbYEtlhxCT6vGVs5r2gfDjMmD1Wvrrf5Ffcm6v7BBMGaJJ3D+6217vuX/aQzjGmCrDTzcno0ncb6vqUs8jMcaYSlSlxnEDI0WkGjAW+K+q/uJpRMYYUwn81Mdd5nBAVe2Aszp7U2C+iPxXRLp4HpkxxlSgqjYcEFX9QUQeAOYDzwInibMk8X2q+o6XARpjTEXwU4s7mmldTwT6Az2Aj4GeqrpQRBoBXwKWuI0xvhdfxW5OPoczqdR9qrpr7053etcHPIvMGGMqkFeLBXshmljfUdXXg5O2iNwCoKqvexaZMcZUID/1cUeTuK8Ms+/qgxyHMcZUKj8l7lK7SkSkH/AX4EgReT/oUG1gs9eBGWNMRaoqfdxfABuA+sCTQfu3AUu8DMoYYypalRhVoqqrgFXA6RUXjjHGVI4qkbiNMeaPxBK3Mcb4TFWbq8QYY6q8KjE7oIh8gzP/9n6HAFXVEz2LyhhjKpifHsCJ1OI+34sLikg1Vd3txbmNMeaPoNQPGVVdFWmLdFIR+Ucp++sC0w8w5lJlZy+ga9eBZGZmMXr0xP2OqyoPPjiKzMwseva8iWXLcqKu65XPZy/hgvPu5vyud/HSi1PCxvzIQ//h/K530bf3/Xz3bW7xse7n3kGfXvdzyYX/oN/FgyskXj++x36MuXPH45k3fQgLZwzj1r913e943To1+c+/B/L5lAeY8fY9/Cm9EQAtj0xl9vv3F2+rF/2T66/O8DxeP77HJfnpAZxSE7eIbBORre62Lej1NhHZWsZ5zxKRh0qcLw3IBmYehLj3EwgEGDZsJGPGDGHq1OeZMiWbnJzVIWWysxeQm7ue6dNHMXz4DQwZ8kLUdb2JuYgRD77Gv0fdwbuTH+bDaXP4MWddSJnPspewelUekz98jEFD+/Pg0FdDjo8Zew8T3h3OuIlDKyBeP77H/os5Lk54Ykg/+l77HO27DaXv+adybMuGIWXuuL4b33y3hjPPf5CBd73CI/+4BICcn/I564KHOOuCh+jUewS7du1myvRFnsbrx/c4nHiJfasskVrctVW1jrvVDnpdW1XrlHHeC4DWIvIUgIikA58B/1bVYQcv/H2WLFlB8+YNado0jWrVEunRoyMzZnwVUmbGjDn07p2BiNCmzXFs3bqDgoItUdX1wtJvVtK0WSpNmqaQWC2Bbt3b8+nMhSFlPpm5kJ69zkREOLF1S7Zt28nGjb94Hls4fnyP/RjzKa1bsHJVAavWbKKwMMDbU+dx3rmht5SObdmQWV8sB2DFynyaNUmmQXLoaoKdzjiOn1ZvYs16b9dC9eN7HE6caMxbZYmqP15EOohIf/fn+iJyZKTyqvobcCHQXETGA/8D7lLVUQcacGny8zeTlla/+HVqajL5+ZsjlklLc8pEU9cLBfk/k5a2b8HelLQk8gt+Di1T8DOpaclBsSVRkO+WERg44HEu6zuItyZ84nm8fnyP/Rhzw9QjWLdh3+/B+rxfaJh6REiZpcvX0rPrSQCcfGILmjZKolFaaJk+Pdry9pR5nsfrx/c4HD91lUQzH/dgoC1wLPAKUA34D3BmhDp7l4meC/wdmI0z54lnK8Or7v/p56z1EFxm/3oiElVdL4S9LiWuGzZm589X33iAlJQj2Lx5KwMHPMaRRzXklLbHeRCpG0pVeY8P8ZjDXqJELE+P+ohHHriE2e/fz7c/rGPJt2sIBALFxxMT4+neuTVDn5jkbbD48z0Op6o9gHMhcBKwEIrn4S5rhffg48+G2ReWiGQBWQCjRg0jK+vSKMJzpKXVJy9vU/Hr/PzNpKQklSiTHFImL88pU1i4p8y6XkhNSyIvb9/X2IK8LaSk1Aspk5J6BPl5+1og+flbaJDitKxS3D+Tk+uQ0fkUli5Z6Wni9uN77MeY1+f9TOOG+1rPjdLqsaHgl5Ay27b/xg33vFb8esmnD7Fq7b7fk8xOf2bxt6vZuHmb5/H68T0Ox0/DAaOJdbc6H4sKICKHl1VBVYdG2iLUG62qbVW1bSxJG+CEE9LJzV3PmjV57N5dyNSp2WRktAspk5HRnkmTZqKqLFq0nNq1a5KSkhRVXS+0+vORrF6Vz9q1GyncvYcPP/iKTuecFFLm7IyTmPze56gqSxbnUKt2DRo0qMfOnb+zY4czRfrOnb/z5RdLaZnexNN4/fge+zHmhUtWcXTzFJo3SSYxMZ4+PU7lgxmh87rVrV2DxMR4AK68tANfzFvBtu2/FR/vc35b3p7sfTcJ+PM9Dkck9q2yRNPiniAio4B6InIdcA3OijilEpFBEQ6rqg6PIcaoJCTEM2jQQAYMGEwgUESfPueSnt6cceM+AKBfv+506tSWWbPmk5mZRY0ahzFixC0R63otISGee+//K9df9zhFRUX0vrAjLdObMGG8M/DmkssyOKtjaz7LXsL53e6ievXDGPbQAAC2bP6V2252vszs2RPgvB6nc+ZZ3j4T5df32G8xBwJF3DX0Td5+5Wbi4+P4z8QvWL5iA/37nQXAK+Nmc0zLNEY+3p9AoIjvczZw47371jSpUT2Rc878E7c98IbnsYI/3+NwfNRTgoTrY9qvkEgm0AXn7/aRqn5cRvk7wuw+HLgWSFbVWmWH9oN/nj91/Rbw9u79wVY9vnK+kv7R1Gt50G/peOqXnNvLLnTIOeaA8+78TVNjzjlt6/eolHwf6ZH3lkCqqn7uJuqP3f0dReRoVf2xtLqq+mTQeWoDt+AsODye0Lm9jTHmkFBV+rifxlk0oaSd7rGIRCRJRB7EWXQhAThZVe9W1YJyxGmMMZ4S0Zi3yhKpj7uFqu630o2qzheRFpFOKiKPAxcBo4ETVHX7AUVpjDEe81Mfd6QWd/UIx2qUcd47gEbAA8D6Eo/Ol/W4vDHGVLiqMqpknohcp6ohI0hE5FpgQaSTqqqfuouMMcZXLe5IiftW4F0RuZx9ibotzpOTF3oclzHGVCg/PTkZaZKpfFU9AxgK5LrbUFU9XVXzKiY8Y4ypGFKOLarzinQTke9FJEdE7glz/HIRWeJuX4hI67LOWeYDOKr6CeD9DEbGGFPFiEg88DyQCazF6YJ+X1W/DSr2E9BJVX8Wke44gzraRzqvrTlpjDF4drOxHZCjqiuda8h4oBdQnLhV9Yug8nOAMueusJuIxhhD+bpKRCRLROYHbVklTtsYWBP0eq27rzTXAh+UFau1uI0xhvKNKlHV0ThdG7GcNuyTOyJyDk7i7lDWdS1xG2MMno0qWQs0DXrdBFhfspCInAiMAbqrapkrSVhXiTHG4NmoknlAuogcKSLVgMuA90OuK9IMeAf4q6r+EM1JrcVtjDHgydwjqrpHRG4EPgLigZdVdZmIDHSPjwQGAcnAv93Vf/aoattI57XEbYwxePfkpKpOA6aV2Dcy6OcBwIBYzmmJ2xhjqNy5R2JlidsYY/DXDT9L3MYYg7W4jTHGd3yUty1xH0y2hqMJx29rONZoNriyQ4jZrtXjDvgc1uI2xhif8VHetsRtjDHgr/m4LXEbYwzW4jbGGN+pzFXbY+WnoYvGGGOwFrcxxgDWVWKMMb5jwwGNMcZnfJS3LXEbYwz464afJW5jjMG6Sowxxof8k7ktcRtjDCCWuI0xxl9E/NPLbYnbGGMA6yoxxhifsa4SY4zxHf8kbv906kQhO3sBXbsOJDMzi9GjJ+53XFV58MFRZGZm0bPnTSxblhN1XYvZn/FazBUT88jH/8aqhSOZ//FjpZZ5cuhVLM3+J3M/epQ2f25RvD+zU2sWf/IkS7P/yZ3/d0EFRBueSFzMW2WpMok7EAgwbNhIxowZwtSpzzNlSjY5OatDymRnLyA3dz3Tp49i+PAbGDLkhajrWsz+i9dirriYX584i15XPlLq8a7ntOHoFmn8ueNt3HjPizz70LUAxMUJTz/Yn15XPcpJne/k4gvO4Lj0xp7HG56UY6scVSZxL1mygubNG9K0aRrVqiXSo0dHZsz4KqTMjBlz6N07AxGhTZvj2Lp1BwUFW6KqazH7L16LueJi/nzucrb8sr3U4+d3OYX/vj0bgLlf51C3Tk3SUupxapuW/JibR+7qAgoLA0yc/CXnd2nrebzhSDn+qyxVJnHn528mLa1+8evU1GTy8zdHLJOW5pSJpq7F7L94LeaKi7ksjdKSWLthXxzr8rbQKC2JRmlHsHZ90P4Nm2mcekRlhOirxF1hNydFpD6wWVU9ma083GmlxDOs4a4sIlHV9YLfYvZbvE48FnNFxFyWcElOVcPG5k2GiIZ/2rGeRCoip4nIpyLyjoicJCJLgaVAvoh0i1AvS0Tmi8j80aPfjOmaaWn1ycvbVPw6P38zKSlJJcokh5TJy3PKRFPXC36L2W/xWswVF3NZ1uVtpknD5OLXjdOS2JD/M+s2bKFJo6D9DZNZX/BzZYToK159xDwHjADGATOBAaqaBnQEHi6tkqqOVtW2qto2K+vSmC54wgnp5OauZ82aPHbvLmTq1GwyMtqFlMnIaM+kSTNRVRYtWk7t2jVJSUmKqq4X/Baz3+K1mCsu5rJM/Xghf+lzFgDtTmrJ1m07ySv4hfmLf6TlkWk0b9qAxMR4Lu55OlM/XlApMYpIzFtl8aqrJEFVpwOIyDBVnQOgqsu9+ssmJMQzaNBABgwYTCBQRJ8+55Ke3pxx4z4AoF+/7nTq1JZZs+aTmZlFjRqHMWLELRHres1vMfstXou54mJ+9V83cdbpf6L+EbXJ+eo5hj/1FomJTnoZ85//8eHMr+l6ThuWzX6anbt+5293jgIgECjitn+MZfLr9xIfH8erb37Kdz+s9Tze8Cq/Syla4kWXs4gsVNWTS/4c7nXpfvDPyp3GVCE1mg2u7BBitmv1uAPOujv3zI4559RMOKtSsr1XLe7WIrIV5yOshvsz7uvqHl3TGGMOgH9uTnqSuFU13ovzGmOMV2yuEmOM8ZlDYdhktCxxG2MM4Kebk5a4jTEGkD96H7cxxviPtbiNMcZXrI/bGGN8xxK3Mcb4ivVxG2OM71iL2xhjfMUewDHGGJ+xm5PGGOM71sdtjDG+4qeuEv98xBhjjAEscRtjjEvKsUVxVpFuIvK9iOSIyD1hjouIPOseXyIiZa5XYF0lxhiDNzcnRSQeeB7IBNYC80TkfVX9NqhYdyDd3doDL7h/lspa3MYYAzjpMNatTO2AHFVdqaq7gfFArxJlegGvqWMOUE9EGpYVqTHG/OFJOf6LQmNgTdDrte6+WMuEOIS7So7x7BaviGSp6mivzn+w+S1e8F/MfosXvIt51+pxB/uUxQ7t9zn2nCMiWUBW0K7RJf5+4c5Zcm3LaMqE+KO2uLPKLnJI8Vu84L+Y/RYvWMyVTlVHq2rboK3kh9JaoGnQ6ybA+nKUCfFHTdzGGFMR5gHpInKkiFQDLgPeL1HmfeBKd3TJacCvqroh0kkP4a4SY4zxN1XdIyI3Ah8B8cDLqrpMRAa6x0cC04DzgBxgJ9C/rPP+URP3IdrHViq/xQv+i9lv8YLF7AuqOg0nOQfvGxn0swI3xHJOceoYY4zxC+vjNsYYn6kSiVtE0kRkvIj8KCLfisg0ETlGRHaJyNci8p2IzBWRq8LUPVVEAiLSV0SSRWSRu+WJyLqg19UqM14RqSsik0VksYgsE5H+FRVvRRORq0WkkUfnDrjvzzL3vbxdROKCjrcTkWz3EeXlIjJGRGp6EUsMMauIPBn0+k4RGeL+PERE7nR/ri4iH4vI4EoKNayg93yxiCwUkTMqOya/830ftzjPqb4LvKqql7n72gCpwI+qepK77yjgHRGJU9VX3H3xwKM4Nw5Q1c1AG/fYEGC7qj5xiMR7A/CtqvYUkQbA98AbquppvJXkamApZQyJKqddQe9ZCvBfoC4wWERSgYnAZar6pftv1QeojXPTqLL8DlwkIg+r6qZwBdwP6reBBao6tEKjK1vwe94VeBjoVKkR+VxVaHGfAxSW6OxfROiTSKjqSuB24Oag3Tfh/LIXeB9msfLGq0BtN5nUArYAe8obhIi0CGpRLhWRN0TkXBH5XERWuC3PJBGZJM7EN3NE5ES37hAReVlEPhWRlSJyc9B5b3fPt1REbg3af6V7nsUi8rqI1BaRn0Qk0T1eR0RyReRioC3whttKqyEip4jILBFZICIfSRmPA0dLVQtwxhXf6L6vN+B8oH7pHldVfUtV8w/G9Q7AHpybereVcjwB51HqFaq63yRGh5g6wM+VHYTf+b7FDfwZWBBl2YXAcQAi0hi4EMgATvUmtLDKFS/wHM54z/U4LcBLVbXoAGNpCVyMk7zmAX8BOgAXAPfhfJh8raq9RSQDeA33G4kb1zluLN+LyAvAiThDmdrjPA32lYjMAnYD9wNnquomEUlS1W0i8inQA5iEM771bVWdKCI3AHeq6nw3sf8L6KWqG0XkUuAh4JoD/LsDzgek21WSgvNv8+rBOK8HngeWiMhjYY79Hfifqt5asSFFrYaILAKqAw1x/p8zB6AqJO5YBD9a+jRwt6oG5NBdsig4sK7AIpxf+qOBj0VktqpuPYDz/6Sq3wCIyDJghqqqiHwDtACa43QVoKoz3T71um7dqar6O/C7iBTgdPV0AN5V1R3uOd8BzsL5tvDW3q/5qrrFPccYnKQzCSfhXxcmxmNxEurH7r9TPBDx4YRyOGR/AfZS1a0i8hrON7BdJQ5/BpwuIseo6g8VH12ZgrtKTgdeE5E/qw1pK7eq0FWyDDglyrInAd+5P7cFxotILtAX+LeI9D7o0e2vvPH2B95xv77nAD+xrzVeXr8H/VwU9LoI50M90hwKwXUDEcrj7t/vf1JV/RxoISKdgHhVXVpK3WWq2sbdTlDVLqX9hWLl3ksI4HSXxfJvUxmeBq4FDi+xPxu4FfjAq5u6B4vbDVUfaFDZsfhZVUjcM4HDRKS4tSYip+K0Fgna1wJ4AudrN6p6pKq2UNUWwFvA/6nqpEM1XmA10Nk9lorTEl3pcazZwOXuNc8GNpXRws8GeotITRE5HKcrajYwA7hERJLdcyUF1XkNGAe8ErRvG04XDDg3YRu4LTVEJFFEWh3g3wv3XA2AkcBzbuvvOeAqEWkfVOYKEUk7GNc7UO43lQk4ybvksbeBx4EPRaReBYcWNRE5Dudb0+bKjsXPfN9V4n61vxB4WpzVJX4DcnFaIEeLyNc4fWvbgH/tHVFSWQ4g3uHAWLcbQ3C6ecKOMDiIhgCviMgSnFEV+w2nDKaqC0VkLDDX3TVGVb8GEJGHgFkiEgC+xhk5AvAG8CBO8t5rLDBSRHYBp+N8I3rW7aZJwGl5Livn32lvf2sizk2/14Gn3PjzReQy4Al3xEkRzofRO+W8lheeBG4Md0BVR7ofMu+LSBdV/a1iQyvV3vccnN/dq1Q1UInx+J49OWkqlYj0xbnx+NfKjsUYv/B9i9v4l4j8C2fZpvMqOxZj/MRa3MYY4zNV4eakMcb8oVjiNsYYn7HEbYwxPmOJ+w9ASpmNsIw6290/W4jIfg/GuPv/4lXMQdeZFuu4ZBHJEmceluXizLLYIYo6Y90RLp4QZ+6XvTM3LnaHhBpTLjaqpIpzJ08qbTbCA3k8ugXO3Cb/PcAQI1LVmEaciMj5wN+ADu68KCcDk0SknarmeRJkdJYCbd2lrBoCi0VksqqWe6Iw88dlLe6qL+xshKo6G0BE7hKReeLM3BfLdKCPAGe5LcjbRGS2+4GAe97PReREcWYSfF1EZooz62DwE6NlXlucGQPruy3870TkRXHm0p4uIjXCVLkbuCtoXpSFOBNH3eCer8yZBksrI85siI+6rfgfROSsMHXfFJHzgl6PFZE+qrozKElXJ8wUAMZEyxJ31VfqbIQi0gVIB9rhzPp3ioh0jPK89wCz3flD/okzYdTV7nmPAQ5T1SVu2RNxZgE8HRgkIo3Kee104HlVbQX8gjsBVgmt2P/vOx9oJftmGuyrqqcAL+PMNFgsijIJqtoO50nXcAsWjAcudc9VDWeagmnu6/biTOb1DTDQWtumvKyr5I+ti7t97b6uhZMcs8txronAP0TkLpwpV8cGHXtPVXcBu0TkE5xk3aEc1/7JnbscnOTcIsrY9k5yFc1Mg2WV2fv4e2nX/wDn8fzDgG5Atvt3R1W/wvkA+RPwqoh8cAg9lm58xBJ31bcMZ66PcAR4WFVHHehFVHWniHwM9AIuwZl9sfhwyeLlvHbJGQnDdZV8izPD38ygfSe7+/fONHh6hGuUVWZvDHtnRAyhqr+JM894V5yW97gwZb4TkR04HxDzI8RiTFjWVVL1hZ2NUJypVD8CrhGRWu7+xu7kStEInsFvrzHAs8C8oDm3AXqJsx5iMnA2zqINB3LtSB4DHpV9MxG2wenC+TfRzTR4MGYjHI8zDe9ZuMviiciRIpLg/twcp2WfG+tfzhiwFneVF2k2QlVd4X5t/9LtFtgOXEF0S7ktAfaIyGJgrKr+U1UXiMhWQqdoBWe2wKlAM2C4qq4H1h/AtSP9fd8XZ3WjL0REcT5grlDVDVA8qVWpMw2q6u6yykRhOs50te+r6m53XwfgHhEpxJl18P8qYHZHU0XZXCXmoBFnEv9PgeP2LqsmVWsRY2MOCdZVYg4KEbkS+Aq4/yCshWmMicBa3MYY4zPW4jbGGJ+xxG2MMT5jidsYY3zGErcxxviMJW5jjPEZS9zGGOMz/w8D+boEeyiTxgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(6, 5))\n", + "sns.heatmap(accuracy_df_v3, vmin=0, vmax=1,\n", + " cmap=\"YlGnBu\", \n", + " annot=True, annot_kws={\"size\": 10},\n", + " fmt='.2f')\n", + "plt.xlabel('Cell type in Oelen v3')\n", + "plt.ylabel('Cell type by Azimuth Algorithm')\n", + "plt.savefig('marker_gene_azimuth_classification_oelenv3.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/01_association_metrics/metacell/create_genesets.R b/01_association_metrics/metacell/create_genesets.R new file mode 100644 index 0000000..d0fe688 --- /dev/null +++ b/01_association_metrics/metacell/create_genesets.R @@ -0,0 +1,39 @@ +# ------------------------------------------------------------------------------ +# Gene selections for metacell evaluation: generate files for different +# gene subsets (expressed in x% until (x+20)% of the cells with x between 20-80) +# for Oelen v3 dataset, Monocytes +# This allows threshold dependent evaluation for BLUEPRINT comparison. +# See details downstream scripts metacell_general_correlation_tp.R, +# single_cell_correlation_tp.R, eval_blueprint_genesets.R +# ------------------------------------------------------------------------------ + +library(Seurat) + +#Load complete seurat object +seurat<-readRDS("seurat_objects/1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.rds") +DefaultAssay(seurat)<-"RNA" + +#Filter for monocytes +seurat<-seurat[,seurat$cell_type_lowerres=="monocyte"] + +#Selected cutoffs +cutoffs<-c(1,0.8,0.6,0.4,0.2) + +#Split into lists dependent on expression cutoff +exprGenes.singleCell<-rowSums(as.matrix(seurat@assays$RNA@counts)>0)/ncol(seurat) + +print(paste("Number of genes expressed in at least 50% of cells:", + sum(exprGenes.singleCell>=0.5))) + +for(i in 1:(length(cutoffs)-1)){ + gene.subset<-rownames(seurat)[exprGenes.singleCell<=cutoffs[i] & + exprGenes.singleCell>cutoffs[i+1]] + print(paste("Number of genes with expression cutoff", + cutoffs[i+1],":",length(gene.subset))) + + write.table(gene.subset, + file=paste0("metacell_general/eval_allmethods/gene_lists/", + "mono_expr_genes_cut_",cutoffs[i+1],".txt"), + row.names = FALSE,col.names = FALSE,quote=FALSE) +} + diff --git a/01_association_metrics/metacell/eval_blueprint_genesets.R b/01_association_metrics/metacell/eval_blueprint_genesets.R new file mode 100644 index 0000000..2320fb4 --- /dev/null +++ b/01_association_metrics/metacell/eval_blueprint_genesets.R @@ -0,0 +1,127 @@ +# ------------------------------------------------------------------------------ +# Compare correlation from BLUEPRINT with correlation from metacells/single cell +# for different expression tresholds +# Here: shown for leiden metacells, calculation done the same way for original +# metacells and single cell +# ------------------------------------------------------------------------------ + +library(reticulate) # to read the single cell data (numpy) +library(data.table) +library(ggplot2) # only required if plotting=TRUE + +np <- import("numpy") + +#Iterate over the list of different gene sets +corr_files<-c("metacell_general/leiden_metacells/correlation_r_leiden_SCT_cutoff08.tsv", + "metacell_general/leiden_metacells/correlation_r_leiden_SCT_cutoff06.tsv", + "metacell_general/leiden_metacells/correlation_r_leiden_SCT_cutoff04.tsv", + "metacell_general/leiden_metacells/correlation_r_leiden_SCT_cutoff02.tsv") + +res_file<-"metacell_general/eval_allmethods/sc_leiden_SCT_eval.tsv" + +plotting<-TRUE + +#Write column headers +write.table(data.frame("Condition","Num_pairs","Corr_corr","Test","File"), + file=res_file,quote=FALSE,sep="\t", + row.names=FALSE, col.names = FALSE) + +#Load the large blueprint data set +path<-"blueprint/allGenePairs_BlueprintScMonocytes_GeneGeneCorrelationComparison.pairwiseSpearman." +corr.blue.vals <- np$load(paste0(path,"npy")) +corr.blue.vals<-corr.blue.vals[,1] + +corr.blue<-fread(paste0(path,"genePairs.txt"),header=FALSE) + +#Split into gene1 and gene2 +corr.blue$gene1<-sapply(corr.blue$V1,function(s) strsplit(s,"/")[[1]][1]) +corr.blue$gene2<-sapply(corr.blue$V1,function(s) strsplit(s,"/")[[1]][2]) +corr.blue$V1<-NULL +corr.blue$corr.blue<-corr.blue.vals +rm(corr.blue.vals) + +for(cfile in corr_files){ + + print(paste("Processing:",cfile)) + + #Load corr.mc.r + corr.mc.r<-read.table(cfile) + + #Filter Blueprint matrix + corr.genes<-unique(c(corr.mc.r$Gene1,corr.mc.r$Gene2)) + corr.blue.subset<-corr.blue[gene1 %in% corr.genes & + gene2 %in% corr.genes] + + #Order correctly so that gene1 smaller than gene2 + corr.blue.subset$swap<-ifelse(corr.blue.subset$gene1 < corr.blue.subset$gene2, + corr.blue.subset$gene1,corr.blue.subset$gene2) + corr.blue.subset$gene2<-ifelse(corr.blue.subset$gene1 < corr.blue.subset$gene2, + corr.blue.subset$gene2,corr.blue.subset$gene1) + corr.blue.subset$gene1<-corr.blue.subset$swap + corr.blue.subset$swap<-NULL + colnames(corr.blue.subset)<-c("Gene1","Gene2","Correlation.blue") + + #Merge everything + corr.mc.r<-merge(corr.mc.r,corr.blue.subset,by=c("Gene1","Gene2")) + corr.mc.r<-reshape2::melt(corr.mc.r,id.vars=c("Gene1","Gene2","Correlation.blue")) + colnames(corr.mc.r)[4:5]<-c("Condition","Correlation") + + #Correlation for all genes + corr.corr<-sapply(unique(corr.mc.r$Condition), function(tp) + cor(corr.mc.r$Correlation.blue[corr.mc.r$Condition==tp], + corr.mc.r$Correlation[corr.mc.r$Condition==tp], + method="pearson",use = "pairwise.complete.obs")) + + res<-data.frame(condition=unique(corr.mc.r$Condition), + num.pairs=as.vector(table(corr.mc.r$Condition)), + corr.corr, + test="allGenes", + file=cfile) + + write.table(res, file=res_file,quote=FALSE,sep="\t", + append=TRUE,row.names=FALSE, col.names = FALSE) + + corr.mc.r<-corr.mc.r[! is.na(corr.mc.r$Correlation.blue),] + if(plotting){ + corr.mc.r$class<-ifelse(corr.mc.r$Correlation.blue>0, + "positive","negative") + + g<-ggplot(corr.mc.r,aes(x=Correlation.blue,y=Correlation,color=class))+ + geom_point()+facet_wrap(~Condition,ncol=3)+ + xlab("Correlation Blueprint")+ylab("Correlation MC") + ggsave(g,file=paste0("metacell_general/eval_allmethods/plots/", + "comp_corr_blue_",strsplit(cfile,"/")[[1]][2],".png")) + } + + #Correlation for genes with positive correlation + corr.mc.r.pos<-corr.mc.r[corr.mc.r$Correlation.blue>0,] + corr.corr<-sapply(unique(corr.mc.r.pos$Condition), function(tp) + cor(corr.mc.r.pos$Correlation.blue[corr.mc.r.pos$Condition==tp], + corr.mc.r.pos$Correlation[corr.mc.r.pos$Condition==tp], + method="pearson",use = "pairwise.complete.obs")) + + res<-data.frame(condition=unique(corr.mc.r.pos$Condition), + num.pairs=as.vector(table(corr.mc.r.pos$Condition)), + corr.corr, + test="posGenes", + file=cfile) + + write.table(res, file=res_file,quote=FALSE,sep="\t", + append=TRUE,row.names=FALSE, col.names = FALSE) + + #Correlation for genes with negative correlation + corr.mc.r.neg<-corr.mc.r[corr.mc.r$Correlation.blue<0,] + corr.corr<-sapply(unique(corr.mc.r.neg$Condition), function(tp) + cor(corr.mc.r.neg$Correlation.blue[corr.mc.r.neg$Condition==tp], + corr.mc.r.neg$Correlation[corr.mc.r.neg$Condition==tp], + method="pearson",use = "pairwise.complete.obs")) + + res<-data.frame(condition=unique(corr.mc.r.neg$Condition), + num.pairs=as.vector(table(corr.mc.r.neg$Condition)), + corr.corr, + test="negGenes", + file=cfile) + + write.table(res, file=res_file,quote=FALSE,sep="\t", + append=TRUE,row.names=FALSE, col.names = FALSE) +} diff --git a/01_association_metrics/metacell/metacell_general_correlation_tp.R b/01_association_metrics/metacell/metacell_general_correlation_tp.R new file mode 100644 index 0000000..028644e --- /dev/null +++ b/01_association_metrics/metacell/metacell_general_correlation_tp.R @@ -0,0 +1,188 @@ +# ------------------------------------------------------------------------------ +# Calculate correlation per timepoint (and sample if stated) from the +# metacells (original or leiden) for different +# gene sets (split dependent on gene expression cutoff) for comparison with +# metacells (see corresponding files create_genesets.R, +# metacell_general_correlation_tp.R and eval_blueprint_genesets.R) +# Input: Seurat object, file with selected genes +# Output: files with correlation values (r-values and p-values) +# ------------------------------------------------------------------------------ + +library(Hmisc) +library(optparse) + +#Parse arguments +option_list = list( + make_option(c("-g","--selectedGenes"), + default="../../benchmark/celltypes/gene_expressed_over_hald_cells.txt", + help="path to list with selected genes"), + make_option(c("-m","--method"), + default="metacell", + help="method for metacell grouping (leiden[_SCT] or metacell)"), + make_option(c("-s","--perSample"),action="store_true", + default=FALSE, + help="Shall the evaluation be done for each sample separatly"), + make_option(c("-o","--outputFile"), + default="timepoint_monocytes", + help="Suffix of the output files") +) + +opt_parser = OptionParser(option_list=option_list) +opt = parse_args(opt_parser) + +pathSelectedGenes<-opt$selectedGenes +type<-opt$method +perSample<-opt$perSample +outputSuffix<-opt$outputFile + +print(paste("Evaluating",type,"for gene set:")) +print(pathSelectedGenes) + +print(paste("Evaluating each sample individually:", perSample)) + +#For leiden clustering +if(type=="leiden") { + setwd("leiden_metacells/") + pseudobulkFile<-"metacell_leiden.RDS" + annotationFile<-"annotations_mc_leiden_tp.tsv" + + #Read pseudobulk data frame + metacell.allsamples<-readRDS(pseudobulkFile) + + #For leiden clustering based on SCT counts +} else if(type=="leiden_SCT") { + setwd("leiden_metacells/") + pseudobulkFile<-"metacell_leiden_SCT.RDS" + annotationFile<-"annotations_mc_leiden_SCT_tp.tsv" + + #Read pseudobulk data frame + metacell.allsamples<-readRDS(pseudobulkFile) + +} else if(type=="metacell"){ + setwd("metacell_general/metacell") + + metacellDir<-"metacells_K20_minCells10" + setwd(metacellDir) + + pseudobulkFile<-"pseudobulk_metacell.RDS" + annotationFile<-"annotations_metacell.tsv" + + metacell.allsamples<-readRDS(pseudobulkFile) +} else { + stop("Metacell method type not known!") +} + +########################## + +#Read annotation data frame +annotations.allsamples<-read.table(annotationFile) +colnames(annotations.allsamples)[2]<-"timepoint" + +#Select which genes shall be chosen for correlation (same as for single cell) +selected.genes<-read.table(pathSelectedGenes, + header=FALSE) +metacell.allsamples<-metacell.allsamples[selected.genes$V1,] + +#Result data frame (correlation and pvalues) +corr.df<-NULL +pval.df<-NULL + +correlationRes<-function(meta_counts,colName){ + + #Be carefull: rcorr does not work with less than 5 samples + corr.mc<-rcorr(t(meta_counts), type="spearman") + + #Create a pairwise data frame for the correlation + corr.pairs.mc<-as.data.frame(as.table(corr.mc$r), + stringsAsFactors = FALSE) + corr.pairs.mc<-corr.pairs.mc[corr.pairs.mc$Var14){ + + print(paste("Calculate correlation for timepoint",timepoint)) + + meta_counts<-metacell.allsamples[,mc.ids.timepoint] + tmp<-correlationRes(meta_counts,colName = paste0(timepoint,"-",sample)) + corr.pairs.mc<-tmp[[1]] + corr.pairs.pval<-tmp[[2]] + + #Concatinate the sample - timepoint pairs + if(is.null(corr.df)){ + corr.df<-corr.pairs.mc + pval.df<-corr.pairs.pval + } else { + corr.df<-merge(corr.df,corr.pairs.mc,by=c("Gene1","Gene2"), + all=TRUE) + pval.df<-merge(pval.df,corr.pairs.pval,by=c("Gene1","Gene2"), + all=TRUE) + } + + } else { + print(paste("Skip timepoint",timepoint,"(too less metacells)")) + } + } + } + +} else { + + annot.sample<-annotations.allsamples + for(timepoint in unique(annot.sample$timepoint)){ + + #Run the analysis only if at least 5 meta-cells exists + #Probably increase the threshold again to more later ... + mc.ids.timepoint<-annot.sample$metacell[annot.sample$timepoint==timepoint] + if(length(mc.ids.timepoint)>4){ + + print(paste("Calculate correlation for timepoint",timepoint)) + + meta_counts<-metacell.allsamples[,mc.ids.timepoint] + tmp<-correlationRes(meta_counts,colName = timepoint) + corr.pairs.mc<-tmp[[1]] + corr.pairs.pval<-tmp[[2]] + + #Concatinate the sample - timepoint pairs + if(is.null(corr.df)){ + corr.df<-corr.pairs.mc + pval.df<-corr.pairs.pval + } else { + corr.df<-merge(corr.df,corr.pairs.mc,by=c("Gene1","Gene2"), + all=TRUE) + pval.df<-merge(pval.df,corr.pairs.pval,by=c("Gene1","Gene2"), + all=TRUE) + } + + } else { + print(paste("Skip timepoint",timepoint,"(too less metacells)")) + } + } +} + +write.table(corr.df, + file=paste0("correlation_r_",outputSuffix,".tsv"), + sep="\t",quote=FALSE) +write.table(pval.df, + file=paste0("correlation_pval_",outputSuffix,".tsv"), + sep="\t",quote=FALSE) \ No newline at end of file diff --git a/01_association_metrics/metacell/metacell_per_sample_original_algorithm.R b/01_association_metrics/metacell/metacell_per_sample_original_algorithm.R new file mode 100644 index 0000000..e3d1b52 --- /dev/null +++ b/01_association_metrics/metacell/metacell_per_sample_original_algorithm.R @@ -0,0 +1,274 @@ +# ------------------------------------------------------------------------------ +# Metacell algorithm (original) run for each sample separately +# with Oelen v3 dataset (Monocytes) +# Take all 200 variable genes +# (but removing for each sample the ones with too low coverage) +# +# Remarks: +# * metacells uses a "data base", the processed files are not loaded +# directly in the workspace +# * in the function mcell_mc_from_coclust_balanced the parameters +# K and min_mc_size can be used to change the "size" of meta cells, +# but too small is not recommended +# +# ------------------------------------------------------------------------------ + +library(metacell) +library(SingleCellExperiment) +library(ggplot2) +library(optparse) + +#Parse arguments +option_list = list( + make_option(c("-K","--coclustK"), default="20", + help="Parameter K of mcell_mc_from_coclust_balanced", + type="integer"), + make_option(c("-m","--coclustMinMcSize"), default="10", + help="Parameter min_mc_size of mcell_mc_from_coclust_balanced", + type="integer") +) + +opt_parser = OptionParser(option_list=option_list) +opt = parse_args(opt_parser) + +#Parameters to change the granularity of the samples +mc_coclustK<-opt$coclustK +mc_coclustMin_size<-opt$coclustMinMcSize + +print(paste("Running meta cells with following parameters (changing granularity):", + "K",mc_coclustK,"min_mc_size",mc_coclustMin_size)) + +#Create directories to save the meta cells and the correlation results +mainDir<-paste0("metacells_K",mc_coclustK,"_minCells",mc_coclustMin_size) +if(!dir.exists(mainDir)) + dir.create(mainDir) + +setwd(mainDir) + +########################################################################## +# Important note: a lot of the parameter are manged over tgconfig +# see: https://github.com/tanaylab/tgconfig + +# To check all set parameters +#tgconfig::get_package_params('metacell') + +#Set number of cores (otherwise I get issues for very small data sets) +tgconfig::set_param('mc_cores', 8, 'metacell') + +#Issues with downsampling matrix => set parameter for downsampling lower +#(probably problem as matrix is too sparse) +#tgconfig::set_param("scm_n_downsamp_gstat",300,'metacell') + +######################################################################## + +#Option to create additional plots for visualization +allPlots<-FALSE +fileType<-"seurat" + +#Load the h5ad object and convert it to a single cell object +if(fileType=="h5ad"){ + + library(reticulate) # to load h5ad object + library(zellkonverter) # to convert h5ad object to single cell object + + sc<-import("scanpy") + adata<-sc$read("../../seurat_objects/1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad") + #Filter for monocytes + adata<-adata[adata$obs$cell_type_lowerres=="monocyte"]$copy() + sce<-AnnData2SCE(adata) + rm(adata) + + #Convert assay name to counts (before called X) + assayNames(sce)<-c("counts") + + #Alternatively read a seurat object +} else if (fileType=="seurat"){ + + library(Seurat) + + seurat<-readRDS("../../seurat_objects/1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.rds") + + #Filter for monocytes + seurat<-seurat[,seurat$cell_type_lowerres=="monocyte"] + + #Convert into a single cell object + sce <- as.SingleCellExperiment(seurat,assay="RNA") + rm(seurat) + +} else { + stop("File type not known!") +} + +#Select all remaining samples +samples<-as.character(unique(sce@colData$assignment)) + +#Save the results +metacell.allsamples<-NULL +annotations.allsamples<-NULL +annotations.percell<-NULL +#Calculate meta-cell algorithm for each sample separatly +#Also option to calculate correlation, but currently not done +for(sample in samples){ + + print(paste("Processing sample:",sample)) + sce.sample.full<-sce[,sce@colData$assignment == sample] + + #Create data base directory + if(!dir.exists("database")){ + dir.create("database/") + } else { + do.call(file.remove, list(list.files("database/", full.names = TRUE))) + } + scdb_init("database/", force_reinit=T) + + #Upload SCE object + #Filter for genes with at least 4 counts (preliminary before the real filtering downstream + #to reduce the calculation burden) + mat<-scm_import_sce_to_mat(sce.sample.full[rowSums(counts(sce.sample.full))>3,]) + scdb_add_mat(sample, mat) + + #Create a directory for figures + if(!dir.exists("figs")) dir.create("figs/") + scfigs_init("figs/") + + #Create a gset for generating the knn graph + mcell_add_gene_stat(gstat_id="stat", mat_id=sample) + mcell_gset_filter_varmean(gset_id="sample_feat", gstat_id="stat", T_vm=0.08, force_new=T) + #Sampled coverage of at least T_tot and threshold for the third highest UMI count > T_top3 + mcell_gset_filter_cov(gset_id = "sample_feat", gstat_id="stat", T_tot=100, T_top3=2) + #Check generated gene set + gset<-scdb_gset("sample_feat") + print(paste("Number of selected genes:",length(gset@gene_set))) + + #Create the knn graph based on correlation + mcell_add_cgraph_from_mat_bknn(mat_id=sample, + gset_id = "sample_feat", + graph_id="sample_graph", + K=50, + dsamp=T) + + #Resample cells from the graph to robustly define groups + mcell_coclust_from_graph_resamp( + coc_id="sample_coc500", + graph_id="sample_graph", + min_mc_size=20, + p_resamp=0.75, + n_resamp=500) + + #Remark the size of the meta cells can be influenced by the paramters + #K and min_mc_size (for both is true: the smaller, the more cells ...) + mcell_mc_from_coclust_balanced( + coc_id="sample_coc500", + mat_id= sample, + mc_id= paste0(sample,"_mc"), + K=mc_coclustK, + min_mc_size=mc_coclustMin_size, + alpha=2) + + #Plotting outlier (only possible for small groups) + if(allPlots){ + mcell_plot_outlier_heatmap(mc_id=paste0(sample,"_mc"), + mat_id = sample, T_lfc=3) + } + + #Split and filter metacells using dbscan and outlier gene detection + mcell_mc_split_filt(new_mc_id=paste0(sample,"_mc_f"), + mc_id=paste0(sample,"_mc"), + mat_id=sample, + T_lfc=3, plot_mats=F) + + ##Selecting marker genes automatically + mcell_gset_from_mc_markers(gset_id="sample_markers", mc_id=paste0(sample,"_mc_f")) + mc_colorize_default(paste0(sample,"_mc_f")) + + #Creating a heatmap of genes and metacells + #(also not really well visible with too many cells) + if(allPlots){ + mcell_mc_plot_marks(mc_id=paste0(sample,"_mc_f"), gset_id="sample_markers", + mat_id=sample) + } + + #Create graph layout + mcell_mc2d_force_knn(mc2d_id=paste0(sample,"_2dproj"), + mc_id=paste0(sample,"_mc_f"), graph_id="sample_graph") + #Plotting also not really interesting for two large + mcell_mc2d_plot(mc2d_id=paste0(sample,"_2dproj")) + + #Save it again as a h5ad object to compare the results + #So far no direct exporting function found, therefore processing the object myself + #See https://tanaylab.github.io/metacell/reference/tgMCCov-class.html + sce_meta<-scdb_mc(paste0(sample,"_mc_f")) + + #Meta cell annotations + mc.annot<-data.frame(metaCell=sce_meta@mc) + mc.annot$cell<-rownames(mc.annot) + rownames(mc.annot)<-NULL + mc.annot<-rbind(mc.annot, + data.frame(metaCell=0, + cell=sce_meta@outliers)) + + annotations.percell<-rbind(annotations.percell, + mc.annot) + + #Check distributions between cell types and stimulation results + annotations<-sce.sample.full@colData + #annotations$cell<-rownames(annotations) + annotations<-merge(mc.annot,annotations,by.x="cell",by.y="bare_barcode_lane") + + perMetacell<-as.data.frame(table(annotations$metaCell)) + + #Plot only timepoint for now + freqs<-as.data.frame(table(annotations$metaCell, + annotations$timepoint)) + freqs<-merge(freqs,perMetacell,by="Var1",suffixes=c(".spc",".mc")) + freqs$Fraction<-freqs$Freq.spc/freqs$Freq.mc + + g<-ggplot(freqs,aes(x=as.factor(Var1),y=Fraction,fill=Var2))+ + geom_bar(stat="identity")+ + xlab("Meta cell (0=Outlier)")+ + scale_fill_discrete(name = "Time point")+ + ggtitle(paste("Cell number in total:",sum(freqs$Freq.spc))) + ggsave(g,filename=paste0("figs/barplot_time_ct_",sample,".png")) + + #Create a pseudobulk object with the meta-cell annotation (without outliers) + mc.annot<-mc.annot[mc.annot$metaCell>0,] + sc.counts<-counts(sce.sample.full)[,mc.annot$cell] + all(colnames(sc.counts)==mc.annot$cell) + + mc.annot$metaCell<-as.factor(paste0(sample,"_mc_",mc.annot$metaCell)) + mc.pseudobulk<- t(apply(sc.counts, 1, tapply, mc.annot$metaCell, + sum, na.rm=T)) + + #Normalize to 10,000 per metacell + libSize<-colSums(mc.pseudobulk) + mc.pseudobulk<-t(t(mc.pseudobulk)/libSize*10000) + + metacell.allsamples<-cbind(metacell.allsamples,mc.pseudobulk) + + #Create a majority annotation for each metacell + annotations$metaCell<-paste0(sample,"_mc_",annotations$metaCell) + timepoint.mc<-sapply(colnames(mc.pseudobulk), + function(id) names(which.max(table( + annotations$timepoint[ + annotations$metaCell==id])))) + + annot.mc<-data.frame(metacell=names(timepoint.mc), + timepoint=timepoint.mc, + sample=sample) + + #Add how many cells where part of the meta-cell + perMetacell$Var1<-paste0(sample,"_mc_",perMetacell$Var1) + colnames(perMetacell)<-c("metacell","cell.count") + annot.mc<-merge(annot.mc,perMetacell,by="metacell") + annotations.allsamples<-rbind(annotations.allsamples,annot.mc) + +} + +#Save results +write.table(annotations.allsamples,file="annotations_metacell.tsv",sep="\t") +write.table(annotations.percell,file="annotations_singlecell_metacell.tsv",sep="\t") +saveRDS(metacell.allsamples,file="pseudobulk_metacell.RDS") + +#Delete the database directory +unlink("database",recursive = TRUE) + diff --git a/01_association_metrics/metacell/metacells_from_leiden.R b/01_association_metrics/metacell/metacells_from_leiden.R new file mode 100644 index 0000000..bd9a811 --- /dev/null +++ b/01_association_metrics/metacell/metacells_from_leiden.R @@ -0,0 +1,117 @@ +# ------------------------------------------------------------------------------ +# Implement own method to generate metacells based on leiden clustering +# Run leiden clustering separatley for each donor (run on Oelen v3, Monocytes) +# and use group cells that are part of the same cluster +# ------------------------------------------------------------------------------ + +library(Seurat) + +#Load complete seurat object +seurat<-readRDS("../../seurat_objects/1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.rds") +DefaultAssay(seurat)<-"SCT" #3000 most variable genes already identified + +#Filter for monocytes +seurat<-seurat[,seurat$cell_type_lowerres=="monocyte"] + +#Resolution for leiden clusters +leidenRes<-100 +print(paste("Leiden resolution:",leidenRes)) + +type<-"SCT" #choose RNA or SCT +print(paste("Normalization:",type)) + +#Files with overall annotation and metacell matrix +annot_mc_all<-NULL +annot_mc_major_all<-NULL +metacellBulk_all<-NULL + +#Iterate over all samples +samples<-levels(seurat$assignment) +for(donor in samples){ + + print(paste("Processing donor:",donor)) + + #Filter for the donor + seurat_donor<-seurat[,seurat$assignment==donor] + + #Calculate PCA + seurat_donor<-RunPCA(seurat_donor, verbose=FALSE) + + #Generate kNN graph and leidern clustering + seurat_donor <- FindNeighbors(seurat_donor, dims = 1:20) + seurat_donor <- FindClusters(seurat_donor, resolution = leidenRes, + algorithm = 4, #4=Leiden + group.singletons=FALSE) + #don't assign all singletons to the nearest cluster + + #Save metacell - cell annotation + annot_mc<-data.frame(cluster=Idents(seurat_donor), + metacell=paste0("mc_",Idents(seurat_donor),"_",donor), + sample=donor, + cell=names(Idents(seurat_donor)), + row.names=NULL) + annot_mc_all<-rbind(annot_mc_all,annot_mc) + + #Create pseudobulk + #all(colnames(seurat_donor)==annot_mc$cell) + if(type=="RNA"){ + metacellBulk <- t(apply(as.matrix(seurat_donor@assays$RNA@counts), 1, tapply, + as.factor(annot_mc$cluster), + mean, na.rm=T)) + } else if (type=="SCT"){ + metacellBulk <- t(apply(as.matrix(seurat_donor@assays$SCT@counts), 1, tapply, + as.factor(annot_mc$cluster), + mean, na.rm=T)) + } else { + stop(paste("Matrix type",type,"not known! Only RNA or SCT!")) + } + + + colnames(metacellBulk)<-paste0("mc_",1:ncol(metacellBulk),"_",donor) + metacellBulk_all<-cbind(metacellBulk_all,metacellBulk) + + #Get majority annotation + meta.data<-seurat_donor@meta.data + meta.data$cell<-rownames(meta.data) + meta.data<-merge(meta.data,annot_mc, + by.x="cell",by.y="cell") + + # Annotate each meta-cell to the most frequent condition + timepoint.mc<-sapply(colnames(metacellBulk), + function(id) names(which.max(table( + meta.data$timepoint[ + meta.data$metacell==id])))) + + #Save majority annotation + annot_mc_major<-data.frame(metacell=names(timepoint.mc), + condition=unlist(timepoint.mc), + sample=donor, + row.names=NULL) + + annot_mc_major_all<-rbind(annot_mc_major_all,annot_mc_major) + +} + + + +if(type=="RNA"){ + #Save per cell annotation + write.table(annot_mc_all,file="annotations_metacell_leiden_perCell.tsv",sep="\t") + write.table(annot_mc_major_all,file="annotations_mc_leiden_tp.tsv",sep="\t") + + #Save peudobulk counts + saveRDS(metacellBulk_all, file="metacell_leiden.RDS") +} else if(type=="SCT"){ + write.table(annot_mc_all,file=paste0("annotations_metacell_leiden_SCT_perCell_", + leidenRes,".tsv"), + sep="\t") + write.table(annot_mc_major_all,file=paste0("annotations_mc_leiden_SCT_tp_", + leidenRes,".tsv"), + sep="\t") + + #Save peudobulk counts + saveRDS(metacellBulk_all, file=paste0("metacell_leiden_SCT_", + leidenRes,".RDS")) +} + + diff --git a/01_association_metrics/metacell/plot_overview_metacell.R b/01_association_metrics/metacell/plot_overview_metacell.R new file mode 100644 index 0000000..00c9ea1 --- /dev/null +++ b/01_association_metrics/metacell/plot_overview_metacell.R @@ -0,0 +1,180 @@ +# ------------------------------------------------------------------------------ +# Supplementary figure to show MetaCell overview +# * Expression distribution of genes in a cell +# * number of (meta)cells per sample +# * comparison with Blueprint +# ------------------------------------------------------------------------------ + +library(Seurat) +library(dplyr) +library(ggplot2) +library(ggpubr) + +theme_set(theme_bw()) + +# ------------------------------------------------------------------------------ +# Expression distribution of genes in a cell +# ------------------------------------------------------------------------------ + +#Load the single cell object and get expressed genes +seurat<-readRDS("seurat_objects/1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.rds") + +#Filter for monocytes +seurat<-seurat[,seurat$cell_type_lowerres=="monocyte" & + seurat$timepoint=="UT"] + +exprGenes.singleCell<-rowSums(as.matrix(seurat@assays$SCT@counts)>0)/ncol(seurat) + +print(paste("Number of genes expressed in at least 50% of cells:", + sum(exprGenes.singleCell>=0.5))) + +exprGene.df<-data.frame(expr.perc=sort(exprGenes.singleCell), + position=1:length(exprGenes.singleCell), + Type="SingleCell", + stringsAsFactors = FALSE) + +#Metacell +metacell.allsamples<-readRDS("metacell_general/metacell/metacells_K20_minCells10/pseudobulk_metacell.RDS") +#Keep only UT metacells +meta_annot<-read.table("metacell_general/metacell/metacells_K20_minCells10/annotations_metacell.tsv") +#all(meta_annot$metacell == colnames(metacell.allsamples)) +metacell.allsamples<-metacell.allsamples[,meta_annot$timepoint == "UT"] +exprGenes.metacell<-rowSums(metacell.allsamples>0)/ncol(metacell.allsamples) + +print(paste("Number of genes expressed in at least 50% of cells:", + sum(exprGenes.metacell>=0.5))) + +exprGene.df<-rbind(exprGene.df, + data.frame(expr.perc=sort(exprGenes.metacell), + position=1:length(exprGenes.metacell), + Type="MetaCell", + stringsAsFactors = FALSE)) + +#Leiden +metacell.allsamples<-readRDS("metacell_general/leiden_metacells/metacell_leiden_SCT.RDS") +#Keep only UT metacells +meta_annot<-read.table("metacell_general/leiden_metacells/annotations_mc_leiden_SCT_tp.tsv") +#all(meta_annot$metacell == colnames(metacell.allsamples)) +metacell.allsamples<-metacell.allsamples[,meta_annot$condition == "UT"] +exprGenes.metacell<-rowSums(metacell.allsamples>0)/ncol(metacell.allsamples) + +print(paste("Number of genes expressed in at least 50% of cells:", + sum(exprGenes.metacell>=0.5))) + +exprGene.df<-rbind(exprGene.df, + data.frame(expr.perc=sort(exprGenes.metacell), + position=1:length(exprGenes.metacell), + Type="Leiden", + stringsAsFactors = FALSE)) + + +g.1<-ggplot(exprGene.df,aes(x=position,y=expr.perc,color=Type))+geom_point()+ + xlab("Gene index")+ylab("Expressed in x% of the cells")+ + scale_color_discrete("Method")+ + theme(axis.title = element_text(size=14), + axis.text=element_text(size=13), + legend.position = "none") + +# ------------------------------------------------------------------------------ +# Number of (meta)cells per sample +# ------------------------------------------------------------------------------ + +counts_all_mc<-NULL + +#Load metacell annotation leiden +mc_method<-read.table("metacell_general/leiden_metacells/annotations_mc_leiden_SCT_tp.tsv", + stringsAsFactors = FALSE) + +mc_method<-mc_method%>% + group_by(sample,condition)%>% + summarize(counts=n()) + +mc_method$method<-"Leiden" +counts_all_mc<-rbind(counts_all_mc,mc_method) + +#Load metacell annotation +mc_method<-read.table("metacell_general/metacell/metacells_K20_minCells10/annotations_metacell.tsv", + stringsAsFactors=FALSE) +mc_method<-mc_method%>% + group_by(sample,timepoint)%>% + summarize(counts=n()) + +mc_method$method<-"MetaCell" +colnames(mc_method)<-colnames(counts_all_mc) +counts_all_mc<-rbind(counts_all_mc,mc_method) + +#Get number of single cells per sample and condition +sc_annot<-seurat@meta.data +sc_annot<-sc_annot%>% + group_by(assignment,timepoint)%>% + summarize(counts=n()) +sc_annot$method<-"SingleCell" +colnames(sc_annot)<-colnames(counts_all_mc) +counts_all_mc<-rbind(counts_all_mc,sc_annot) + +#Filter to show only UT cells +counts_all_mc<-counts_all_mc[counts_all_mc$condition=="UT",] + +#Create plot +g.2<-ggplot(counts_all_mc,aes(x=method,y=counts,fill=method))+ + geom_boxplot()+ + ylab("Number of (meta)cells per sample")+ + xlab("Method")+ + scale_y_log10()+ + scale_fill_discrete("Method")+ + theme(legend.position = "none", + axis.title = element_text(size=14), + axis.text = element_text(size=13), + legend.title = element_text(size=13), + legend.text= element_text(size=13)) + +# ------------------------------------------------------------------------------ +# BLUEPRINT comparison +# ------------------------------------------------------------------------------ + +res<-read.table("metacell_general/eval_allmethods/perCondition_eval.tsv",header=TRUE) +res2<-read.table("metacell_general/eval_allmethods/singleCell_eval.tsv",header=TRUE) +res3<-read.table("metacell_general/eval_allmethods/sc_leiden_SCT_eval.tsv",header=TRUE) +#Parse method +res$method<-ifelse(grepl("leiden",res$File),"leiden", + ifelse(grepl("MetaCellar",res$File),"MetaCellaR","metacell")) +res2$method<-"singleCell" +res3$method<-ifelse(grepl("leiden",res3$File),"leiden_SCT","singleCell_SCT") + +res<-rbind(res,res2,res3) +rm(res2,res3) + +#Parse cutoff +res$cutoff<-as.numeric(stringi::stri_match(res$File,regex="cutoff(.*?)(_|\\.)")[,2]) +res$cutoff<-paste0(as.character(res$cutoff*10),"%") + +#Filter it to show only UT results and allGenes +res<-res[res$Condition=="UT" & res$Test == "allGenes",] + +#Show only SCT results (also used later and noMetaCellaR) +res<-res[res$method %in% c("leiden_SCT","metacell","singleCell_SCT"),] +rename_methods<-setNames(c("Leiden","MetaCell","SingleCell"), + c("leiden_SCT","metacell","singleCell_SCT")) +res$method<-rename_methods[res$method] + +g.3<-ggplot(res,aes(x=cutoff,y=Corr_corr,fill=method))+ + geom_bar(stat="identity",position="dodge")+ + ylab("Correlation with BLUEPRINT")+ + xlab("Genes stratified by x% expression in single cell")+ + scale_fill_discrete("Method")+ + theme(legend.position = "bottom", + axis.title = element_text(size=14), + axis.text = element_text(size=13), + legend.title = element_text(size=13), + legend.text= element_text(size=13)) + +g.bottom<-ggarrange(g.2,g.3,ncol=2,widths=c(0.4,0.6), + common.legend = TRUE,legend="bottom", + labels=c("b)","c)")) +g<-ggarrange(g.1,g.bottom,ncol=1, + labels=c("a)","")) +ggsave(g,file="metacell_general/plots/metacell_overview_suppfigure.pdf", + width=9,height=9) +ggsave(g,file="metacell_general/plots/metacell_overview_suppfigure.png", + width=9,height=9) + diff --git a/01_association_metrics/metacell/single_cell_correlation_tp.R b/01_association_metrics/metacell/single_cell_correlation_tp.R new file mode 100644 index 0000000..6d40e2c --- /dev/null +++ b/01_association_metrics/metacell/single_cell_correlation_tp.R @@ -0,0 +1,157 @@ +# ------------------------------------------------------------------------------ +# Calculate correlation per timepoint (and sample if stated) from the +# original single cell dataset (Oelen v3 dataset, Monocytes) for different +# gene sets (split dependent on gene expression cutoff) for comparison with +# metacells (see corresponding files create_genesets.R, +# metacell_general_correlation_tp.R and eval_blueprint_genesets.R) +# Input: Seurat object, file with selected genes +# Output: files with correlation values (r-values and p-values) +# ------------------------------------------------------------------------------ + +library(Seurat) +library(Hmisc) #for fast calculation of correlation +library(optparse) + +#Parse arguments +option_list = list( + make_option(c("-g","--selectedGenes"), + default="benchmark/celltypes/gene_expressed_over_hald_cells.txt", + help="path to list with selected genes"), + make_option(c("-s","--perSample"),action="store_true", + default=FALSE, + help="Shall the evaluation be done for each sample separatly"), + make_option(c("-t","--type"), + default="RNA", + help="Use either RNA count matrix (RNA) or SCT count matrix (SCT)."), + make_option(c("-o","--outputFile"), + default="timepoint_monocytes", + help="Suffix of the output files") +) + +opt_parser = OptionParser(option_list=option_list) +opt = parse_args(opt_parser) + +pathSelectedGenes<-opt$selectedGenes +perSample<-opt$perSample +matrixType<-opt$type +outputSuffix<-opt$outputFile + +print(paste("Evaluating single cell data for gene set:")) +print(pathSelectedGenes) + +print(paste("Evaluating each sample individually:", perSample)) + +#Load complete seurat object +seurat<-readRDS("seurat_objects/1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.rds") + +#Filter for monocytes +seurat<-seurat[,seurat$cell_type_lowerres=="monocyte"] + +#Select which genes shall be chosen for correlation (same as for single cell) +selected.genes<-read.table(pathSelectedGenes, + header=FALSE) +seurat<-seurat[selected.genes$V1,] + +#Result data frame (correlation and pvalues) +corr.df<-NULL +pval.df<-NULL + +correlationRes<-function(meta_counts,colName){ + + #Be carefull: rcorr does not work with less than 5 samples + corr.mc<-rcorr(t(meta_counts), type="spearman") + #corr.mc<-cor(t(meta_counts), method="spearman") + + #Create a pairwise data frame for the correlation + corr.pairs.mc<-as.data.frame(as.table(corr.mc$r), + stringsAsFactors = FALSE) + corr.pairs.mc<-corr.pairs.mc[corr.pairs.mc$Var10% and <5% of cells) +# and 50 very highly expressed genes (expressed in >95% of the cells) +# Input: Seurat object of Oelen v3 dataset (UT monocytes) +# Output: scatterplot for comparison +# ------------------------------------------------------------------------------ + +library(Seurat) +library(propr) +library(Matrix) +library(ggplot2) + +theme_set(theme_bw()) + +#Load complete seurat object +seurat<-readRDS("seurat_objects/1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.rds") + +#Filter for monocytes and UT timepoint +seurat<-seurat[,seurat$cell_type_lowerres == "monocyte"] +seurat<-seurat[,seurat$timepoint == "UT"] + +# Get non-zero-ratio of each gene +nozeroratio<-rowMeans(seurat$RNA@data>0) + +full_count_matrix<-t(as.matrix(seurat$RNA@data)) + +#Select 50 very lowly expressed genes and 50 very highly expressed genes +set.seed(1) +low_genes<-sample(names(nozeroratio)[nozeroratio > 0 & nozeroratio < 0.05],50) +high_genes<-sample(names(nozeroratio)[nozeroratio > 0.9],50) + +#Calculate rho values +res<-propr::perb(full_count_matrix, + select=c(low_genes,high_genes))@matrix + +propr<-reshape2::melt(res) +propr$Var1<-as.character(propr$Var1) +propr$Var2<-as.character(propr$Var2) +propr<-propr[propr$Var1 < propr$Var2,] + +#Compare with spearman values +spearman<-cor(full_count_matrix[,c(low_genes,high_genes)],method="spearman") +spearman<-reshape2::melt(spearman) +spearman$Var1<-as.character(spearman$Var1) +spearman$Var2<-as.character(spearman$Var2) +spearman<-spearman[spearman$Var1 < spearman$Var2,] + +#Combine both into one plot +all(propr$Var1 == spearman$Var1) +all(propr$Var2 == spearman$Var2) + +propr$corr<-spearman$value + +propr$type<-ifelse(propr$Var1 %in% low_genes, + ifelse(propr$Var2 %in% high_genes,"mixed","both_low"), + ifelse(propr$Var2 %in% high_genes,"both_high","mixed")) + +g<-ggplot(propr,aes(x=corr,y=value,color=type))+ + geom_point(alpha=0.5)+ + xlab("Spearman correlation")+ + ylab("Rho proportionality")+ + xlim(-0.2,1)+ylim(-0.2,1)+ + scale_color_discrete("Expression gene pair")+ + geom_abline() +ggsave(g,file="test_rho.pdf") diff --git a/01_association_metrics/scorpius_and_slingshot_clean.R b/01_association_metrics/scorpius_and_slingshot_clean.R new file mode 100644 index 0000000..6ca2390 --- /dev/null +++ b/01_association_metrics/scorpius_and_slingshot_clean.R @@ -0,0 +1,143 @@ +require(Seurat) +require(slingshot) +library(tradeSeq) +library(RColorBrewer) +library(SingleCellExperiment) + +all <- readRDS('1M_v3_mediumQC_sct_celltyped_minimized_rnascaled.rds') +degenes <- read.table('degenes_monocyteUTX3hCA.txt')$V1 +mono1 <- subset(x = all, subset = cell_type == 'mono 1') +mono1Ca <- subset(mono1, subset = (timepoint == 'UT') | (timepoint == 'X3hCA') | (timepoint == 'X24hCA')) +library(Matrix) +writeMM(GetAssayData(mono1Ca, assay='SCT', slot='data'), + "mono1Ca_allgenes.mtx") +write.table(as.matrix(mono1Ca[[]]), 'mono1Ca_allgenes.meta.csv', sep=",") +write.table(as.matrix(rownames(mono1Ca)), 'mono1Ca_allgenes.genes.txt') +mono1Ca_de3h <- subset(mono1, subset = (timepoint == 'UT') | (timepoint == 'X3hCA') | (timepoint == 'X24hCA'), + features = degenes) +# also select DE genes + +# plot +pdf("pca_umap_sling_mono1CA_degenesUTX3h.pdf") +mono1Ca_de3h <- RunPCA(mono1Ca_de3h, npcs=10) +mono1Ca_de3h <- FindNeighbors(mono1Ca_de3h, verbose = FALSE, dims = 1:10) +mono1Ca_de3h <- FindClusters(mono1Ca_de3h, pc=1:10, algorithm = 2, random.seed = 256, resolution = 0.8) +mono1Ca_de3h <- RunUMAP(mono1Ca_de3h, dims = 1:10, reduction = "pca") + +DimPlot(mono1Ca_de3h, reduction = "pca", + group.by = "timepoint", pt.size = 0.5, label = TRUE, repel = TRUE) +ElbowPlot(mono1Ca_de3h, ndims=10) +DimPlot(mono1Ca_de3h, reduction = 'umap', + group.by = "lane", pt.size = 0.5, label = TRUE, repel = TRUE) +DimPlot(mono1Ca_de3h, pt.size = 0.5, reduction = "umap", + group.by = "timepoint", label = TRUE) +DimPlot(mono1Ca_de3h, pt.size = 0.5, reduction = "umap", + group.by = "SCT_snn_res.0.8", label = TRUE) + +# slingshot +mono1sling <- slingshot(Embeddings(mono1Ca_de3h, "umap"), clusterLabels = mono1Ca_de3h$SCT_snn_res.0.8, + start.clus = 0, stretch = 0) +saveRDS(mono1Ca_de3h, 'mono1Ca_degenes.Rda') +saveRDS(mono1sling, 'mono1sling_degenes.Rda') +# load the expression data +mono1Ca_degenes <- readRDS('mono1Ca_degenes.Rda') +# load the slingshot +mono1sling <- readRDS('mono1sling_degenes.Rda') +pdf("evaluateK_chooseKnots.pdf") +mono1ca_matrix <- as.matrix(GetAssayData(mono1Ca_de3h, slot='data')) +icMat <- evaluateK(counts = mono1ca_matrix, + sds = mono1sling, k = 3:10, + nGenes = 200, verbose = T) +pdf("slingshot_pseudotime.pdf") +pseudotime <- slingPseudotime(mono1sling) + +nc <- 2 +nms <- colnames(pseudotime) +nr <- ceiling(length(nms)/nc) +par(mfrow = c(nr, nc)) +for (i in nms) { + ggplot(data.frame(pseudotime), aes(x=i, color=timepoint)) + + geom_histogram(fill="white", alpha=0.5, position="identity") +} + +ggplot_frame = data.frame(pseudotime) +ggplot_frame$timepoint <- mono1Ca_degenes[[]]$timepoint +ggplot(ggplot_frame, aes(x=curve1, color=timepoint)) + + geom_histogram(fill="white", alpha=0.5, position="identity") +ggplot(ggplot_frame, aes(x=curve2, color=timepoint)) + + geom_histogram(fill="white", alpha=0.5, position="identity") +ggplot(ggplot_frame, aes(x=curve3, color=timepoint)) + + geom_histogram(fill="white", alpha=0.5, position="identity") +ggplot(ggplot_frame, aes(x=curve4, color=timepoint)) + + geom_histogram(fill="white", alpha=0.5, position="identity") +dev.off() + +#cellWeights <- slingCurveWeights(mono1sling) +#sce <- fitGAM(counts = GetAssayData(mono1Ca, slot='data'), +# pseudotime = pseudotime, cellWeights = cellWeights, +library(viridis) +pdf('slingshot_cells_in_different_linearges.pdf') +nc <- 2 +nms <- colnames(pseudotime) +nr <- ceiling(length(nms)/nc) +pal <- viridis(100, end = 0.95) +par(mfrow = c(nr, nc)) +for (i in nms) { + colors <- pal[cut(pseudotime[,i], breaks = 100)] + plot(reducedDim(mono1sling), col = colors, pch = 16, cex = 0.5, main = i) + lines(mono1sling, lwd = 2, col = 'black', type = 'lineages') +} + +dev.off() + + +library(SCORPIUS) +mono1Ca_degenes <- readRDS('mono1Ca_degenes.Rda') +#pdf('SCORPIUS_plots.pdf') +expression <- t(as.matrix(GetAssayData(mono1Ca_degenes, slot='data'))) +group_name <- factor(as.character(mono1Ca_degenes[[]]$timepoint)) +# try with PCA +#pdf('scorpius_pca.pdf') +#pearson_space <- reduce_dimensionality(expression, "pearson") +#pearson_traj <- infer_trajectory(pearson_space) +#draw_trajectory_plot(pearson_space, group_name, pearson_traj$path, contour = TRUE) +#dev.off() + +space <- reduce_dimensionality(expression, "spearman") +traj <- infer_trajectory(space) +saveRDS(space, 'scorpius_space.rds') +saveRDS(traj, 'scorpius_traj.rds') +# save traj#time in tsv +write.table(as.matrix(traj$time), file='scorpius_trajtime.tsv', sep = '\t') +write.table(as.matrix(traj$path), file='scorpius_trajpath.tsv', sep = '\t') + +# load scorpius results +space <- readRDS('scorpius_space.rds') +traj <- readRDS('scorpius_traj.rds') +draw_trajectory_plot(space, group_name, traj$path, contour = TRUE) +histogram_data <- data.frame("time" = matrix(unlist(traj$time), nrow=length(traj$time), byrow=T), + row.names=names(traj$time)) +histogram_data$timepoint <- mono1Ca_degenes[[]]$timepoint + +ggplot(histogram_data, aes(x=time, color=timepoint)) + + geom_histogram(fill="white", alpha=0.5, position="identity") + +# draw_trajectory_heatmap(space, traj$time, progression_group=group_name) +pdf('scorpius_heatmap.pdf') +gimp <- gene_importances( + expression, + traj$time, + num_permutations = 10, + num_threads = 8, + ntree = 10000, + ntree_perm = 1000 +) +saveRDS(gimp, 'scorpius_gimp.rds') +gimp$qvalue <- p.adjust(gimp$pvalue, "BH", length(gimp$pvalue)) +gene_sel <- gimp$gene[gimp$qvalue < .05] +expr_sel <- scale_quantile(expression[,gene_sel]) + +modules <- extract_modules(scale_quantile(expr_sel), traj$time, verbose = T) # needs more RAM than 50G +draw_trajectory_heatmap(expr_sel, traj$time, group_name, modules) +dev.off() + diff --git a/01_association_metrics/scvelo_analysis_dm.py b/01_association_metrics/scvelo_analysis_dm.py new file mode 100644 index 0000000..4cddacd --- /dev/null +++ b/01_association_metrics/scvelo_analysis_dm.py @@ -0,0 +1,100 @@ +""" +RNA velocity analysis using the dynamic model +run on all samples of Oelen v3 dataset for classical monocytes (mon1, mono2) +and filtered for the 2000 most variable genes + +Input: loom files generated from velocyto +Output: hd5ad object with RNA velocity estimates +""" + +import scvelo as scv +import pandas as pd +import os + +scv.logging.print_version() +scv.settings.verbosity = 3 # show errors(0), warnings(1), info(2), hints(3) +scv.settings.set_figure_params('scvelo') # for beautified visualization + +#Load annotation file with UMAP coordinates +fpath="annotations/umap_monocytes.tsv" +umap_coords=pd.read_csv(fpath, sep='\t') + +#Load data for each processed lane +lanes=os.listdir("velocyto") +ldata_array=[] +for lane in lanes: + + print(lane) + + #Get loom file for each lane (file name unfortnuately not always the same) + files=os.listdir("velocyto/"+lane) + file=[f for f in files if f.endswith(".loom")] + lfile="velocyto/"+lane+"/"+file[0] + + #Read file + ldata = scv.read(lfile, cache=True) + + #Filter monocytes from file + filteredNames=[barcodeName.split(":")[1] for barcodeName in ldata.obs.index] + filteredNames=[barcodeName.replace("x","")+"_"+lane for barcodeName in filteredNames] + ldata.obs.index=filteredNames + umap_coords_filtered=umap_coords[umap_coords["Unnamed: 0"].isin(filteredNames)] + + #Filter for monocyotes (barcode in umap file) + ldata=ldata[umap_coords_filtered["Unnamed: 0"],:].copy() + + #Make variable names unique + ldata.var_names_make_unique() + #Add ldata object + ldata_array.append(ldata) + +ldata_filtered=ldata_array[0].concatenate(ldata_array[1:], batch_key='lane', + batch_categories=lanes,index_unique=None) + +#Delete variables which are not required anymore +del ldata +del ldata_array + +#Add information about cell types and time points (more annotations are available) +annotations=pd.read_csv("seurat_object_meta.tsv", sep='\t') +annotations=annotations.loc[ldata_filtered.obs.index.tolist(),:] +ldata_filtered.obs["timepoint"]=annotations["timepoint"] +ldata_filtered.obs["celltype"]=annotations["cell_type"] + +#Filter for only monocytes 1 and 2 +ldata_filtered=ldata_filtered[ldata_filtered.obs.celltype.isin(["mono 1","mono 2"])].copy() + +#RNA velocity analysis +scv.utils.show_proportions(ldata_filtered) +#Filter genes with less than 20 counts (spliced + unspliced) and +#reduce to the top 2000 highly variable genes +scv.pp.filter_and_normalize(ldata_filtered, min_shared_counts=20, n_top_genes=2000) +scv.pp.moments(ldata_filtered) + +#Run dynamic model +scv.tl.recover_dynamics(ldata_filtered) +scv.tl.velocity(ldata_filtered, mode='dynamical') +scv.tl.velocity_graph(ldata_filtered) + +#Add UMAP coordinates +umap_coords.index=umap_coords["Unnamed: 0"] +umap_coords=umap_coords.loc[ldata_filtered.obs.index.tolist(),:] +ldata_filtered.obsm["X_umap"]=umap_coords[["umap_1","umap_2"]].to_numpy() + +#Save file +ldata_filtered.write("h5ad_objects/scveloAnalysis_dynamic_velocity_womono34.h5ad") + +#Create plot with embedding +scv.pl.velocity_embedding_stream(ldata_filtered, basis='umap', color=['timepoint', 'celltype'], + show=False,save="embedding_dynamic_monocytes_womono34.png") + +scv.pl.velocity_graph(ldata_filtered,color="timepoint", + show=False,save="velocityGraph_dynamic_monocytes_womono34.png") + +#Calculate pseudotime +scv.tl.latent_time(ldata_filtered) +scv.pl.scatter(ldata_filtered, color='latent_time', cmap='gnuplot', + show=False,save="latenttime_dynamic_monocytes_womono34.png") + +#Save file +ldata_filtered.write("h5ad_objects/scveloAnalysis_dynamic_velocity_latenttime_womono34.h5ad") diff --git a/01_association_metrics/setting_files_for_grnboost2/config_bp_mono.yaml b/01_association_metrics/setting_files_for_grnboost2/config_bp_mono.yaml new file mode 100644 index 0000000..1fcae52 --- /dev/null +++ b/01_association_metrics/setting_files_for_grnboost2/config_bp_mono.yaml @@ -0,0 +1,45 @@ +# Input Settings: initialize base input folder names, +# dataset collections, and algorithms to run over +input_settings: + + # Base input directory + input_dir : "inputs" + + # Subdirectory of inputs that datasets are placed in + dataset_dir: "example" + + # Denotes a list of datasets, each with the following parameters: + # name: Name of the dataset. May be used in logging or other + # messages written during execution + # + # exprData: scRNA-Seq expression data file. Cells are along the + # columns and genes are along the rows. + # cellData: a file containing pseudotime ordering, or any other + # information about cells. + # trueEdges: Name of the refrence network file in the + # edge list format. Needed for evaluation. + datasets: + - name: "compare_grnboost2_bp_mono" + exprData: "bp_Expression.csv" + cellData: "bp_timepoint.fake.csv" + trueEdges: "selected_mono1data.string.csv" + + # Denotes a list of algorithms to run. Each has the following parameters: + # name: Name of the algorithm. Must be recognized by the pipeline, see + # code for acceptable values + # + # should_run: whether or not to run the algorithm + # + # params: any additional, algorithm-specific parameters + # should be specified in the params map for a given algorithm + # + algorithms: + - name: "GRNBOOST2" + params: + should_run: [True] +# Output Settings: initialize base output folder names +output_settings: + + # Base output directory + output_dir: "outputs" + output_prefix: "compare_grnboost2_bp_mono" diff --git a/01_association_metrics/setting_files_for_grnboost2/config_sc_mono.yaml b/01_association_metrics/setting_files_for_grnboost2/config_sc_mono.yaml new file mode 100644 index 0000000..a3f61cf --- /dev/null +++ b/01_association_metrics/setting_files_for_grnboost2/config_sc_mono.yaml @@ -0,0 +1,45 @@ +# Input Settings: initialize base input folder names, +# dataset collections, and algorithms to run over +input_settings: + + # Base input directory + input_dir : "inputs" + + # Subdirectory of inputs that datasets are placed in + dataset_dir: "example" + + # Denotes a list of datasets, each with the following parameters: + # name: Name of the dataset. May be used in logging or other + # messages written during execution + # + # exprData: scRNA-Seq expression data file. Cells are along the + # columns and genes are along the rows. + # cellData: a file containing pseudotime ordering, or any other + # information about cells. + # trueEdges: Name of the refrence network file in the + # edge list format. Needed for evaluation. + datasets: + - name: "compare_grnboost2_sc_mono" + exprData: "sc_Expression.csv" + cellData: "sc_timepoint.fake.csv" + trueEdges: "selected_mono1data.string.csv" + + # Denotes a list of algorithms to run. Each has the following parameters: + # name: Name of the algorithm. Must be recognized by the pipeline, see + # code for acceptable values + # + # should_run: whether or not to run the algorithm + # + # params: any additional, algorithm-specific parameters + # should be specified in the params map for a given algorithm + # + algorithms: + - name: "GRNBOOST2" + params: + should_run: [True] +# Output Settings: initialize base output folder names +output_settings: + + # Base output directory + output_dir: "outputs" + output_prefix: "compare_grnboost2_sc_mono" diff --git a/02_correlation_evaluation/README.md b/02_correlation_evaluation/README.md new file mode 100644 index 0000000..b4706fb --- /dev/null +++ b/02_correlation_evaluation/README.md @@ -0,0 +1,35 @@ +# 02_correlation_evaluation + +*blueprint_normalize.sh* normalize BLUEPRINT dataset, as well as regress out the first PC + +*blueprint_correlation.py*: calculate the co-expression for gene pairs in BLUEPRINT data + +*compare_blueprint_cutoffs_CD4T.py* : Compare correlation between Blueprint and single cell (Oelen v3 dataset) for different expression thresholds (number of cells expressing the gene), implemented for UT and CD4+ T cells here + +*compare_immunexut_cutoffs_CD4T.py*: Same approach as in *compare_blueprint_cutoffs_CD4T.py*, but comparing correlation between ImmuNexUT and Oelen v3 dataset instead + +*correlation_between_datasets.R*: check Pearson correlation between data sets (for CD4+ T cells) for single cell vs single cell dataset comparison, single cell vs bulk dataset comparison and bulk vs bulk dataset comparison, afterwards combines all results in one large heatmap + +*correlation_between_datasets_extended.R*: check if the correlation values between matched cell types for single cell and bulk (ImmuNexUT) are higher than for not-matched cell types + +*correlation_between_datasets_othercts.R*: extension of *correlation_between_datasets.R* that includes all cell types (not only CD4+ T cells) + +*correlation_timepoint_combined_indivs_1mio.py*: calculate the co-expression for genes that are expressed in more than 50% cells in Oelen v2 and v3 dataset + +*correlation_timepoint_combined_indivs_ng.py*: calculate the co-expression for genes that are expressed in more than 50% cells in van der Wijst dataset + +*correlation_timepoint_combined_indivs_stemiv2.py*: calculate the co-expression for genes that are expressed in more than 50% cells in van Blokland v2 dataset + +*correlation_timepoint_combined_indivs_stemiv3.py*: calculate the co-expression for genes that are expressed in more than 50% cells in van Blokland v3 dataset + +*figure2_barplot_cutoffs.R*: create barplots from the results of *compare_blueprint_cutoffs_CD4T.py* and *compare_immunexut_cutoffs_CD4T.py* + +*figure2_scatterplots.R*: creates inset plots for Main Figure 2 (a,b,d), showing scatterplots of gene pair-wise Spearman correlation values between two data sets for a) Oelen v3 dataset vs van Blokland v2 dataset (both CD4+ T cells), b) ImmuNexUT - van Blokland v2 (naive CD4+ T cells and CD4+ T cells) and c) Blueprint - ImmuNexUT (both naive CD4+ T cells) + +*normalize_ImmuNexUT.R*: preprocessingImmuNexUT data (separately for each cell type with a matching single-cell cell type) following the description in the corresponding publication (filtering lowly expressed genes, TMM normalization and batch correction) followed by correlation calculation for all genes expressed in 50% of the cells of the Oelen v3 dataset (for comparison with single cell data) + +*wilcoxon_test_crispr.R*: Benchmark our correlation results from single cell (Oelen v3, CD4+ T cells) and bulk (ImmuNexUT, naive CD4+ T cells) with a public CRISPR perturbation dataset using Wilcoxon Rank Sum Test + +*wilcoxon_test_string.R*: Compare if correlated pairs from single cell (Oelen v3, CD4+ T cells) and bulk (ImmuNexUT, naive CD4+ T cells) are enriched in STRING database (Using the same strategy as in CRISPR validation with Wilcoxon Rank Sum Test) + + diff --git a/02_correlation_evaluation/blueprint_correlation.py b/02_correlation_evaluation/blueprint_correlation.py new file mode 100644 index 0000000..9e8c5e4 --- /dev/null +++ b/02_correlation_evaluation/blueprint_correlation.py @@ -0,0 +1,48 @@ +import pandas as pd +import numpy as np +from sklearn.decomposition import PCA +from sklearn.preprocessing import StandardScaler +from scipy.stats import spearmanr, pearsonr +import scanpy as sc +import seaborn as sns +import matplotlib.pyplot as plt +from tqdm import tqdm +# %matplotlib inline + +# %%bash +# export HDF5_USE_FILE_LOCKING='FALSE' + +def read_numpy(fileprefix, rowname='rows', colname='cols'): + data = np.load(fileprefix+'.npy') + rows = [item.strip() for item in open(fileprefix+f'.{rowname}.txt', 'r').readlines()] + cols = [item.strip() for item in open(fileprefix+f'.{colname}.txt', 'r').readlines()] + return pd.DataFrame(data=data, + index=rows, + columns=cols) + +def get_pairwise_correlations(corr_df): + corrmatrix = corr_df.corr() + triuindices = np.triu_indices(corrmatrix.shape[0], k=1) + return corrmatrix.values[triuindices] + +blueprint_mappings = pd.read_csv('../blueprint/blueprint_mappings.txt', + sep='\t', index_col=0)['Gene name'].T.to_dict() +data = pd.read_csv('../blueprint/mono_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.1PCAsOverSamplesRemoved.txt.gz', + sep='\t', index_col=0, compression='gzip') + +data.index = [item.split('.')[0] for item in data.index] +data['genename'] = [blueprint_mappings.get(ids) for ids in data.index] +print(data.shape) +data = data.dropna(subset=['genename']).drop_duplicates(subset=['genename']) +data = data.set_index('genename') + +data.head() +coefs, ps = spearmanr(data, axis=1) +print(coefs.shape) +np.save('mono_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.1PCAsOverSamplesRemoved.spearmanr.npy', + coefs) +np.save('mono_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.1PCAsOverSamplesRemoved.spearmanrPvalues.npy', + ps) +with open('mono_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.1PCAsOverSamplesRemoved.spearmanr.genes.txt', + 'w') as f: + f.write('\n'.join(data.index.values)) \ No newline at end of file diff --git a/02_correlation_evaluation/blueprint_normalize.sh b/02_correlation_evaluation/blueprint_normalize.sh new file mode 100644 index 0000000..1c295e2 --- /dev/null +++ b/02_correlation_evaluation/blueprint_normalize.sh @@ -0,0 +1,35 @@ +#!/usr/bin/env bash +#SBATCH --time=7:00:00 +#SBATCH --cpus-per-task=10 +#SBATCH --mem=30gb +#SBATCH --nodes=1 +#SBATCH --open-mode=append +#SBATCH --export=NONE +#SBATCH --get-user-env=L + +module purge +module load Java + +jar_file=eqtl-mapping-pipeline-1.4.9-SNAPSHOT/eqtl-mapping-pipeline.jar +traitfile=./blueprint/tcel_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.txt.gz +outdir=./blueprint +logFile=./blueprint/blueprint_cd4t_adjustPCA.log +java -Xmx30g -Xms30g -jar ${jar_file} \ +--mode normalize \ +--in ${traitfile} \ +--out ${outdir} \ +--adjustPCA \ +--maxnrpcaremoved 3 \ +--stepsizepcaremoval 1 | tee ${logFile} + +jar_file=eqtl-mapping-pipeline-1.4.9-SNAPSHOT/eqtl-mapping-pipeline.jar +traitfile=./blueprint/mono_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.txt.gz +outdir=./blueprint +logFile=./blueprint/blueprint_normalize.log +java -Xmx30g -Xms30g -jar ${jar_file} \ +--mode normalize \ +--in ${traitfile} \ +--out ${outdir} \ +--adjustPCA \ +--maxnrpcaremoved 3 \ +--stepsizepcaremoval 1 | tee ${logFile} \ No newline at end of file diff --git a/02_correlation_evaluation/compare_blueprint_cutoffs_CD4T.py b/02_correlation_evaluation/compare_blueprint_cutoffs_CD4T.py new file mode 100644 index 0000000..381d0dd --- /dev/null +++ b/02_correlation_evaluation/compare_blueprint_cutoffs_CD4T.py @@ -0,0 +1,108 @@ +# --------------------------------------------------------------------------------------- +# Compare correlation between Blueprint and single cell (Oelen v3 dataset) +# for different thresholds (number of cells expressing the gene), +# implemented for UT and CD4T cells here +# Input: seurat objects with Oelen v3 dataset and precalculated Blueprint correlation +# for all possible gene pairs +# Output: csv file with the correlation between Blueprint and Oelen v3 for each threshold +# --------------------------------------------------------------------------------------- + +from scipy.stats import spearmanr, pearsonr +import scanpy as sc +import numpy as np +import pandas as pd +from pathlib import Path +from time import time +import os +import re + +# load scanpy object (Oelen v3 dataset) +alldata = sc.read_h5ad('seurat_objects/1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad') + +# filter for CD4+ T cells and UT cells +alldata = alldata[alldata.obs.cell_type_lowerres=='CD4T'] +alldata = alldata[alldata.obs.timepoint=='UT'].copy() #copy to not create only a view object + +celltype_data = pd.DataFrame(data=alldata.X.toarray(), + index=alldata.obs.index, + columns=alldata.var.index) + +# load Blueprint object +bp_corr = np.load('blueprint_data/tcel_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.spearmanR.npy',mmap_mode="r") + +bp_corr_genes = [] +f= open('blueprint_data/tcel_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.spearmanR.cols.txt','r') +for line in f.readlines(): + bp_corr_genes.append(line.rstrip()) + +# method to select genes above a certain nonzero ratio +def select_gene_nonzeroratio(df, ratio): + nonzerocounts = np.count_nonzero(df.values, axis=0)/df.shape[0] + selected_genes = df.columns[nonzerocounts>ratio] + return selected_genes + +# generate a set of thresholds that should be tested (start with stricter thresholds) +thresholds = [i/10 for i in range(1,10)] +thresholds.reverse() + +f_out = open("co-expression_indivs_combined/blueprint_cutoff_eval_CD4T.txt", "w") +f_out.write("threshold,ngenes,corr_pearson\n") + +# iterate over all thresholds +for th in thresholds: + + #select all genes within the threshold + selected_genes = select_gene_nonzeroratio(celltype_data, th) + + # filter genes that are not in Blueprint + selected_genes = list(set(selected_genes) & set(bp_corr_genes)) + + print(f"Number of selected genes for {th}: {len(selected_genes)}") + + gene_pairs = [] + for i,gene1 in enumerate(selected_genes): + for j in range(i+1, len(selected_genes)): + if gene1 < selected_genes[j]: + gene_pairs.append(';'.join([gene1, selected_genes[j]])) + else: + gene_pairs.append(';'.join([selected_genes[j],gene1])) + + # calculate correlation single cell + input_df = celltype_data[selected_genes] + input_data = spearmanr(input_df, axis=0)[0] + input_data_uppertria = input_data[np.triu_indices_from(input_data, 1)] + + corrs_df = pd.DataFrame({'UT': input_data_uppertria}, + index=gene_pairs) + + # filter blueprint and order it the same way as the single cell object + filter_bp_genes = [gene in selected_genes for gene in bp_corr_genes] + bp_corr_filtered = bp_corr[filter_bp_genes][:,filter_bp_genes] + bp_uppertria = bp_corr_filtered[np.triu_indices_from(bp_corr_filtered, 1)] + + # get genes from the blueprint object + bp_corr_genes_filtered = [gene for gene in bp_corr_genes if gene in selected_genes] + gene_pairs_bp=[] + for i,gene1 in enumerate(bp_corr_genes_filtered): + for j in range(i+1, len(bp_corr_genes_filtered)): + if gene1 < bp_corr_genes_filtered[j]: + gene_pairs_bp.append(';'.join([gene1, bp_corr_genes_filtered[j]])) + else: + gene_pairs_bp.append(';'.join([bp_corr_genes_filtered[j],gene1])) + + corrs_df_bp = pd.DataFrame({'BP': bp_uppertria}, + index=gene_pairs_bp) + + # sort both and combine them + corrs_df = corrs_df.sort_index() + corrs_df_bp = corrs_df_bp.sort_index() + #all(corrs_df.index == corrs_df_bp.index) + + # calculate correlation between datasets and save results + corr_data = pearsonr(corrs_df.UT, corrs_df_bp.BP)[0] + + # save results + f_out.write(f"{th},{len(selected_genes)},{corr_data}\n") + +# close file +f.close() diff --git a/02_correlation_evaluation/compare_immunexut_cutoffs_CD4T.py b/02_correlation_evaluation/compare_immunexut_cutoffs_CD4T.py new file mode 100644 index 0000000..6ffde6b --- /dev/null +++ b/02_correlation_evaluation/compare_immunexut_cutoffs_CD4T.py @@ -0,0 +1,93 @@ +# --------------------------------------------------------------------------------------- +# Compare correlation between ImmuNexUT and single cell (Oelen v3 dataset) +# for different thresholds (number of cells expressing the gene), +# implemented for UT and CD4T cells here +# Input: seurat objects with Oelen v3 dataset and normalized ImmuNexUT counts +# Output: csv file with the correlation between ImmuNexUT and Oelen v3 for each threshold +# --------------------------------------------------------------------------------------- + +from scipy.stats import spearmanr, pearsonr +import scanpy as sc +import numpy as np +import pandas as pd +from pathlib import Path +from time import time +import os +import re + +# load scanpy object (Oelen v3 dataset) +alldata = sc.read_h5ad('seurat_objects/1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad') + +# filter for CD4+ T cells and UT cells +alldata = alldata[alldata.obs.cell_type_lowerres=='CD4T'] +alldata = alldata[alldata.obs.timepoint=='UT'].copy() #copy to not create only a view object + +celltype_data = pd.DataFrame(data=alldata.X.toarray(), + index=alldata.obs.index, + columns=alldata.var.index) + +# load ImmuNexuT object +counts = pd.read_csv('imd_paper_rna_data/norm_count/Naive_CD4_norm_count.txt',sep="\t") +immunexut_genes = counts.index.values +counts = counts.transpose() + +# method to select genes above a certain nonzero ratio +def select_gene_nonzeroratio(df, ratio): + nonzerocounts = np.count_nonzero(df.values, axis=0)/df.shape[0] + selected_genes = df.columns[nonzerocounts>ratio] + return selected_genes + +# generate a set of thresholds that should be tested (start with stricter thresholds) +thresholds = [i/10 for i in range(1,10)] +thresholds.reverse() + +f_out = open("co-expression_indivs_combined/immunexut_cutoff_eval_CD4T.txt", "w") +f_out.write("threshold,ngenes,corr_pearson\n") + +# iterate over all thresholds +for th in thresholds: + + #select all genes within the threshold + selected_genes = select_gene_nonzeroratio(celltype_data, th) + + # filter genes that are not in ImmuNexUT + selected_genes = list(set(selected_genes) & set(immunexut_genes)) + + print(f"Number of selected genes for {th}: {len(selected_genes)}") + + gene_pairs = [] + for i,gene1 in enumerate(selected_genes): + for j in range(i+1, len(selected_genes)): + if gene1 < selected_genes[j]: + gene_pairs.append(';'.join([gene1, selected_genes[j]])) + else: + gene_pairs.append(';'.join([selected_genes[j],gene1])) + + # calculate correlation single cell + input_df = celltype_data[selected_genes] + input_data = spearmanr(input_df, axis=0)[0] + input_data_uppertria = input_data[np.triu_indices_from(input_data, 1)] + + corrs_df = pd.DataFrame({'UT': input_data_uppertria}, + index=gene_pairs) + + #c alculate correlation ImmuNexUT + input_df_ImmuNexUT = counts[selected_genes] + input_data = spearmanr(input_df_ImmuNexUT, axis=0)[0] + input_data_uppertria = input_data[np.triu_indices_from(input_data, 1)] + + corrs_df_ImmuNexUT = pd.DataFrame({'BULK': input_data_uppertria}, + index=gene_pairs) + + # sorting both is not necessary here + #all(corrs_df.index == corrs_df_ImmuNexUT.index) + + # calculate correlation between datasets and save results + corr_data = pearsonr(corrs_df.UT, corrs_df_ImmuNexUT.BULK)[0] + + # save results + f_out.write(f"{th},{len(selected_genes)},{corr_data}\n") + +# close file +f_out.close() + diff --git a/02_correlation_evaluation/correlation_between_datasets.R b/02_correlation_evaluation/correlation_between_datasets.R new file mode 100644 index 0000000..72ecdfd --- /dev/null +++ b/02_correlation_evaluation/correlation_between_datasets.R @@ -0,0 +1,341 @@ +# ------------------------------------------------------------------------------ +# Check Pearson correlation between data sets (for CD4+ T cells) +# * for single cell vs single cell data set +# * for single cell vs bulk data set +# * for bulk vs bulk data set +# Combine all results in one large heatmap +# ----------------------------------------------------------------------------- + +library(data.table) +library(reticulate) # to read the single cell data (numpy) +library(ggplot2) +library(viridis) +library(ggpubr) + +np <- import("numpy") + +theme_set(theme_bw()) + +cell_type<-"CD4T" + +#Path to different single cell dataset +datasets<-c(mio_v3="co-expression_indivs_combined/", + mio_v2="co-expression_indivs_combined/one_million_version2/", + stemi_v2="co-expression_indivs_combined/stemi/version2/", + stemi_v3="co-expression_indivs_combined/stemi/version3/", + pilot="co-expression_indivs_combined/ng_updated_version/") + +#File endings for different single cell datasets +file_suffixes<-c(mio_v3="_UT_correlation.csv", + mio_v2="_UT_correlation.csv", + stemi_v2="_t8w_correlation.csv", + stemi_v3="_t8w_correlation.csv", + pilot="_correlation.csv") + +#Name on plots for different single cell datasets +dataset_names<-c(mio_v3="Oelen (v3)", + mio_v2="Oelen (v2)", + stemi_v2="van Blokland (v2)", + stemi_v3="van Blokland (v3)", + pilot="van der Wijst") + +bulk_datasets<-c("Blueprint","BIOS","ImmuNexUT") + +resort<-function(corr){ + #Split into two genes + corr$gene1<-gsub(";.*","",corr$V1) + corr$gene2<-gsub(".*;","",corr$V1) + + #Order them alphabetically + corr$V1<-ifelse(corr$gene1 < corr$gene2,corr$V1, + paste0(corr$gene2,";",corr$gene1)) + corr$gene1<-NULL + corr$gene2<-NULL + + return(corr) +} + +################################################################################ +# Compare single cell with each other +################################################################################ + +corr_comp<-NULL +for(c1 in 1:(length(datasets)-1)){ + + #Read correlation file one + dataset_name1<-dataset_names[c1] + corr_c1<-fread(paste0(datasets[c1],cell_type, + "/",cell_type,file_suffixes[c1])) + corr_c1<-resort(corr_c1) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr_c1$V1), + gsub(".*;","",corr_c1$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(c1=dataset_name1, + c2=dataset_name1, + gene_pairs=nrow(corr_c1), + genes_unique=num_genes, + corr=1)) + + for(c2 in (c1+1):length(datasets)){ + + #Read correlation file two + dataset_name2<-dataset_names[c2] + corr_c2<-fread(paste0(datasets[c2],cell_type,"/", + cell_type,file_suffixes[c2])) + corr_c2<-resort(corr_c2) + + corr<-merge(corr_c1,corr_c2,by=c("V1")) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr$V1), + gsub(".*;","",corr$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(c1=dataset_name1, + c2=dataset_name2, + gene_pairs=nrow(corr), + genes_unique=num_genes, + corr=cor(corr[[2]],corr[[3]],method="pearson"))) + } +} + +#Read correlation file one +c1<-length(datasets) +dataset_name1<-dataset_names[c1] +corr_c1<-fread(paste0(datasets[c1],cell_type, + "/",cell_type,file_suffixes[c1])) + +#Unique genes +num_genes<-length(union(gsub(";.*","",corr_c1$V1), + gsub(".*;","",corr_c1$V1))) + +corr_comp<-rbind(corr_comp, + data.frame(c1=dataset_name1, + c2=dataset_name1, + genes_unique=num_genes, + gene_pairs=nrow(corr_c1), + corr=1)) + +corr_comp$c1<-factor(corr_comp$c1,levels=dataset_names) +corr_comp$c2<-factor(corr_comp$c2,levels=dataset_names) + +# Save correlations +write.table(corr_comp, + file="co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_datasets.tsv", + sep="\t",row.names = FALSE,quote=FALSE) + +################################################################################ +# Compare single cell with bulk +################################################################################ + + +#Special function to read bulk data as they are not all saved in the same file type +read_bulk_data<-function(dataset_name){ + + if(dataset_name=="Blueprint"){ + path<-"blueprint_data/tcel_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.spearmanR." + rowname_suffix<-"rows.txt" + colname_suffix<-"cols.txt" + + corr_c1 <- np$load(paste0(path,"npy"), mmap_mode="r") + row_names<-fread(paste0(path,rowname_suffix),header=FALSE) + rownames(corr_c1)<-row_names$V1 + col_names<-fread(paste0(path,colname_suffix),header=FALSE) + colnames(corr_c1)<-col_names$V1 + rm(row_names,col_names) + + #Filter for single cell data + ct_single_cell<-"CD4T" + corr_sc<-fread(paste0("co-expression_indivs_combined/",ct_single_cell,"/", + ct_single_cell,"_UT_correlation.csv")) + corr_sc$gene1<-gsub(";.*","",corr_sc$V1) + corr_sc$gene2<-gsub(".*;","",corr_sc$V1) + sc_genes<-union(corr_sc$gene1,corr_sc$gene2) + sc_genes<-sc_genes[sc_genes %in% colnames(corr_c1)] + + corr_c1<-corr_c1[sc_genes,sc_genes] + corr_c1<-reshape2::melt(corr_c1) + corr_c1$Var1<-as.character(corr_c1$Var1) + corr_c1$Var2<-as.character(corr_c1$Var2) + colnames(corr_c1)[1:3]<-c("gene1","gene2","corr") + + #Order so that gene1 is always the one first in alphabet + corr_c1<-corr_c1[corr_c1$gene1!=corr_c1$gene2,] + corr_c1$V1<-paste0(corr_c1$gene1,";",corr_c1$gene2) + corr_c1$gene1<-NULL + corr_c1$gene2<-NULL + + corr_c1<-corr_c1[,c("V1","corr")] + + } else if (dataset_name=="BIOS"){ + corr_c1<-fread("bios/bios_correlation_tcellfiltered.tsv") + #all(corr_c1$gene1 < corr_c1$gene2) + corr_c1$V1<-paste0(corr_c1$gene1,";",corr_c1$gene2) + corr_c1$gene1<-NULL + corr_c1$gene2<-NULL + } else { #ImmuNexUT + corr_c1<-fread("imd_paper_rna_data/correlation/Naive_CD4_correlation.txt") + #all(corr_c1$gene1 < corr_c1$gene2) + corr_c1$V1<-paste0(corr_c1$gene1,";",corr_c1$gene2) + corr_c1$gene1<-NULL + corr_c1$gene2<-NULL + } + + return(corr_c1) +} + +corr_comp<-NULL +for(c1 in 1:length(bulk_datasets)){ + + dataset_name1<-bulk_datasets[c1] + corr_c1<-read_bulk_data(dataset_name1) + + for(c2 in 1:length(datasets)){ + + #Read correlation file two + dataset_name2<-dataset_names[c2] + corr_c2<-fread(paste0(datasets[c2],cell_type,"/", + cell_type,file_suffixes[c2])) + corr_c2<-resort(corr_c2) + + corr<-merge(corr_c1,corr_c2,by=c("V1")) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr$V1), + gsub(".*;","",corr$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(c1=dataset_name1, + c2=dataset_name2, + gene_pairs=nrow(corr), + genes_unique=num_genes, + corr=cor(corr[[2]],corr[[3]],method="pearson"))) + } +} + +# Save correlations +write.table(corr_comp, + file="co-expression_indivs_combined/dataset_comp_summary/correlation_singlevsbulk_datasets.tsv", + sep="\t",row.names = FALSE,quote=FALSE) + +################################################################################ +# Compare bulk with bulk +################################################################################ + +corr_comp<-NULL +for(c1 in 1:(length(bulk_datasets)-1)){ + + #Read correlation file one + dataset_name1<-bulk_datasets[c1] + corr_c1<-read_bulk_data(dataset_name1) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr_c1$V1), + gsub(".*;","",corr_c1$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(c1=dataset_name1, + c2=dataset_name1, + gene_pairs=nrow(corr_c1), + genes_unique=num_genes, + corr=1)) + + for(c2 in (c1+1):length(bulk_datasets)){ + + #Read correlation file two + dataset_name2<-bulk_datasets[c2] + corr_c2<-read_bulk_data(dataset_name2) + + corr<-merge(corr_c1,corr_c2,by=c("V1")) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr$V1), + gsub(".*;","",corr$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(c1=dataset_name1, + c2=dataset_name2, + gene_pairs=nrow(corr), + genes_unique=num_genes, + corr=cor(corr[[2]],corr[[3]],method="pearson"))) + } +} + +#Read correlation file one +c1<-length(bulk_datasets) +dataset_name1<-bulk_datasets[c1] +corr_c1<-read_bulk_data(dataset_name1) + +#Unique genes +num_genes<-length(union(gsub(";.*","",corr_c1$V1), + gsub(".*;","",corr_c1$V1))) + +corr_comp<-rbind(corr_comp, + data.frame(c1=dataset_name1, + c2=dataset_name1, + gene_pairs=nrow(corr_c1), + genes_unique=num_genes, + corr=1)) + +# Save correlations +write.table(corr_comp, + file="co-expression_indivs_combined/dataset_comp_summary/correlation_bulk_datasets.tsv", + sep="\t",row.names = FALSE,quote=FALSE) + + +################################################################################ +# Combine all results in one large plot +################################################################################ + +corr_comp<-fread("co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_datasets.tsv") +corr_comp$c1<-factor(corr_comp$c1,levels=dataset_names) +corr_comp$c2<-factor(corr_comp$c2,levels=dataset_names) +g.1<-ggplot(corr_comp,aes(x=c1,y=c2,fill=corr))+ + geom_tile()+ + geom_text(aes(label=paste0(round(corr,3),"\n(",genes_unique,")")),size=3)+ + xlab("Single cell data set")+ + ylab("Single cell data set")+ + scale_fill_viridis("Correlation",limits=c(0,1))+ + scale_y_discrete(labels=c("Oelen (v3)","Oelen (v2)","van Blokland\n(v2)", + "van Blokland\n(v3)","van der Wijst"))+ + scale_x_discrete(labels=c("Oelen\n(v3)","Oelen\n(v2)","van\nBlokland\n(v2)", + "van\nBlokland\n(v3)","van der\nWijst")) + +corr_comp<-fread("co-expression_indivs_combined/dataset_comp_summary/correlation_singlevsbulk_datasets.tsv") +corr_comp$c1[corr_comp$c1=="Blueprint"]<-"BLUEPRINT" +corr_comp$c2<-factor(corr_comp$c2,levels=bulk_datasets) +corr_comp$c1<-factor(corr_comp$c1,levels=dataset_names) +g.2<-ggplot(corr_comp,aes(x=c2,y=c1,fill=corr))+ + geom_tile()+ + geom_text(aes(label=paste0(round(corr,3),"\n(",genes_unique,")")),size=3, + color="white")+ + xlab("Bulk data set")+ + ylab("Single cell data set")+ + scale_fill_viridis("Correlation",limits=c(0,1))+ + scale_y_discrete(labels=c("Oelen (v3)","Oelen (v2)","van Blokland\n(v2)", + "van Blokland\n(v3)","van der Wijst")) + +corr_comp<-fread("co-expression_indivs_combined/dataset_comp_summary/correlation_bulk_datasets.tsv") +corr_comp$c1[corr_comp$c1=="Blueprint"]<-"BLUEPRINT" +corr_comp$c2[corr_comp$c2=="Blueprint"]<-"BLUEPRINT" +corr_comp$c1<-factor(corr_comp$c1,levels=bulk_datasets) +corr_comp$c2<-factor(corr_comp$c2,levels=bulk_datasets) +g.3<-ggplot(corr_comp,aes(x=c1,y=c2,fill=corr))+ + geom_tile()+ + geom_text(aes(label=paste0(round(corr,3),"\n(",genes_unique,")"), + color=ifelse(corr<0.6,'white','black')),size=3)+ + scale_color_manual(values=c("black","white"))+ + xlab("Bulk data set")+ + ylab("Bulk data set")+ + scale_fill_viridis("Correlation",limits=c(0,1))+ + coord_flip() + + +g_empty<-ggplot()+theme_void() +g<-ggarrange(g.1,g.2,g_empty,g.3,ncol=2,nrow=2,widths=c(4,3),heights=c(4,3), + common.legend = TRUE,legend="bottom",align="hv") +ggsave(g,file=paste0("co-expression_indivs_combined/plots/corr_datasets_combined.pdf"), + width=6.5,height=6.5) diff --git a/02_correlation_evaluation/correlation_between_datasets_extended.R b/02_correlation_evaluation/correlation_between_datasets_extended.R new file mode 100644 index 0000000..fd52dd6 --- /dev/null +++ b/02_correlation_evaluation/correlation_between_datasets_extended.R @@ -0,0 +1,188 @@ +############################################################################### +# In order to better interpret the correlation levels: +# check if correlation between single cell and bulk (ImmuNexUT) is higher for matched +# cell types compared to not matched cell types +############################################################################### + +library(data.table) +library(reticulate) # to read the single cell data (numpy) +library(ggplot2) +library(viridis) +library(dplyr) + +theme_set(theme_bw()) + +#Rename cell types +ct_fullname<-setNames(c("CD8+ T cells","monocytes","NK cells","B cells","DC"), + c("CD8T","monocyte","NK","B","DC")) + +#Path to different single cell dataset +datasets<-c(mio_v3="co-expression_indivs_combined/", + mio_v2="co-expression_indivs_combined/one_million_version2/", + stemi_v2="co-expression_indivs_combined/stemi/version2/", + stemi_v3="co-expression_indivs_combined/stemi/version3/", + pilot="co-expression_indivs_combined/ng_updated_version/") + +#File endings for different single cell datasets +file_suffixes<-c(mio_v3="_UT_correlation.csv", + mio_v2="_UT_correlation.csv", + stemi_v2="_t8w_correlation.csv", + stemi_v3="_t8w_correlation.csv", + pilot="_correlation.csv") + +#Name on plots for different single cell datasets +dataset_names<-c(mio_v3="Oelen (v3)", + mio_v2="Oelen (v2)", + stemi_v2="van Blokland (v2)", + stemi_v3="van Blokland (v3)", + pilot="van der Wijst") + +#Different bulk datasets +bulk_datasets<-c("BLUEPRINT","BIOS","ImmuNexUT") + +resort<-function(corr){ + #Split into two genes + corr$gene1<-gsub(";.*","",corr$V1) + corr$gene2<-gsub(".*;","",corr$V1) + + #Order them alphabetically + corr$V1<-ifelse(corr$gene1 < corr$gene2,corr$V1, + paste0(corr$gene2,";",corr$gene1)) + corr$gene1<-NULL + corr$gene2<-NULL + + return(corr) +} + +################################################################################ +# Compare single cell vs ImmuNexUT - all cell types against all cell types +################################################################################ + +# Cell type matching +ct_mapping<-data.frame(sc_ct=c("CD4T","CD8T","B","monocyte","NK","DC"), + imn_ct=c("Naive_CD4","Naive_CD8","Naive_B","CL_Mono","NK","mDC")) + +corr_comp<-NULL +for(i in 1:nrow(ct_mapping)){ + + ct <- ct_mapping$imn_ct[i] + #cell_type<- "CD4T" + + #Load ImmuNexUT data + combat_tmm<-fread(paste0("imd_paper_rna_data/norm_count/",ct,"_norm_count.txt")) + + #Load the different single cell data sets + for(c1 in 1:length(datasets)){ + + #Load for each single cell dataset all cell types + for(cell_type in ct_mapping$sc_ct){ + + #Load single cell data set + corr_c2<-fread(paste0(datasets[c1],cell_type, + "/",cell_type,file_suffixes[c1])) + corr_c2<-resort(corr_c2) + + #Filter the ImmuNexUT data set + expressed_genes<-union(gsub(";.*","",corr_c2$V1), + gsub(".*;","",corr_c2$V1)) + expressed_genes<-intersect(expressed_genes,combat_tmm$V1) + + combat_tmm_filtered<-combat_tmm[combat_tmm$V1 %in% expressed_genes,] + combat_tmm_filtered<-as.data.frame(combat_tmm_filtered) + rownames(combat_tmm_filtered)<-combat_tmm_filtered$V1 + combat_tmm_filtered$V1<-NULL + + #Calculation correlation + cor_matrix<-cor(t(combat_tmm_filtered),method="spearman") + cor_matrix<-reshape2::melt(cor_matrix) + cor_matrix$Var1<-as.character(cor_matrix$Var1) + cor_matrix$Var2<-as.character(cor_matrix$Var2) + cor_matrix<-cor_matrix[cor_matrix$Var1 < cor_matrix$Var2,] + cor_matrix$V1<-paste0(cor_matrix$Var1,";",cor_matrix$Var2) + cor_matrix$Var1<-NULL + cor_matrix$Var2<-NULL + + #Compare BIOS with single cell + corr<-merge(corr_c2,cor_matrix,by=c("V1")) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr$V1), + gsub(".*;","",corr$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(sc_ct=cell_type, + bulk_ct=ct, + c1=dataset_names[c1], + c2="ImmuNexUT", + gene_pairs=nrow(corr), + genes_unique=num_genes, + corr=cor(corr[[2]],corr[[3]],method="pearson"))) + } + } +} + +# Save correlations +write.table(corr_comp, + file="co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_immunexut_mixedcts.tsv", + sep="\t",row.names = FALSE,quote=FALSE) + + +################################################################################ +# Plot the results +################################################################################ + +corr_comp<-fread("co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_immunexut_mixedcts.tsv") + +ct_mapping<-data.frame(sc_ct=c("CD4T","CD8T","B","monocyte","NK","DC"), + imn_ct=c("Naive_CD4","Naive_CD8","Naive_B","CL_Mono","NK","mDC")) + +#Order single cell and bulk the same way +corr_comp$sc_ct<-factor(corr_comp$sc_ct,levels=ct_mapping$sc_ct) +corr_comp$bulk_ct<-factor(corr_comp$bulk_ct,levels=ct_mapping$imn_ct) + +g<-ggplot(corr_comp,aes(x=sc_ct,y=bulk_ct,fill=corr))+ + geom_tile()+ + geom_text(aes(label=paste0(round(corr,3),"\n(",genes_unique,")"), + color=ifelse(corr<0.6,'white','black')),size=3)+ + scale_color_manual(values=c("black","white"))+ + facet_wrap(~c1)+ + xlab("Cell type - single cell")+ + ylab("Cell type - bulk")+ + scale_fill_viridis("Correlation",limits=c(0,1))+ + theme(legend.position = "bottom")+ + guides(color="none") + + +print(g) + +ggsave(g,file="correlation_mixed_cts.png",height=7,width=9) + +################################################################################ +# Normalize the columns to always by the diagonal (matched cell types) +################################################################################ + +ct_mapping_list<-setNames(c("CD4T","CD8T","B","monocyte","NK","DC"), + c("Naive_CD4","Naive_CD8","Naive_B","CL_Mono","NK","mDC")) +corr_comp$bulk_matched_ct<-ct_mapping_list[corr_comp$bulk_ct] +corr_diagonal<-corr_comp[corr_comp$sc_ct==corr_comp$bulk_matched_ct,c("sc_ct","c1","corr")] +colnames(corr_diagonal)<-c("sc_ct","c1","diag_corr") + +corr_comp<-merge(corr_comp,corr_diagonal,by=c("sc_ct","c1")) +corr_comp$rel_corr<-corr_comp$corr/corr_comp$diag_corr + +g<-ggplot(corr_comp,aes(x=sc_ct,y=bulk_ct,fill=rel_corr))+ + geom_tile()+ + geom_text(aes(label=paste0(round(rel_corr,3),"\n(",round(corr,3),")"), + color=ifelse(rel_corr<1,'white','black')),size=3)+ + scale_color_manual(values=c("black","white"))+ + facet_wrap(~c1)+ + xlab("Cell type - single cell")+ + ylab("Cell type - bulk")+ + scale_fill_viridis("Relative corr")+ + theme(legend.position = "bottom")+ + guides(color="none") + + +print(g) + +ggsave(g,file="correlation_mixed_cts_normalized.png",height=7,width=9) diff --git a/02_correlation_evaluation/correlation_between_datasets_othercts.R b/02_correlation_evaluation/correlation_between_datasets_othercts.R new file mode 100644 index 0000000..35a45b1 --- /dev/null +++ b/02_correlation_evaluation/correlation_between_datasets_othercts.R @@ -0,0 +1,616 @@ +# ------------------------------------------------------------------------------ +# Extension of correlation_between_datasets.R (which looks only at CD4+ T cells) +# for other cell types: get Pearson correlation between data sets +# * for single cell vs single cell data set +# * for single cell vs bulk data set +# * for bulk vs bulk data set (here only monocytes) +# Plot one heatmap for each comparison +# ------------------------------------------------------------------------------ + +library(data.table) +library(reticulate) # to read the single cell data (numpy) +library(ggplot2) +library(viridis) +library(dplyr) + +theme_set(theme_bw()) + +#Rename cell types +ct_fullname<-setNames(c("CD8+ T cells","monocytes","NK cells","B cells","DC"), + c("CD8T","monocyte","NK","B","DC")) + +#Path to different single cell dataset +datasets<-c(mio_v3="co-expression_indivs_combined/", + mio_v2="co-expression_indivs_combined/one_million_version2/", + stemi_v2="co-expression_indivs_combined/stemi/version2/", + stemi_v3="co-expression_indivs_combined/stemi/version3/", + pilot="co-expression_indivs_combined/ng_updated_version/") + +#File endings for different single cell datasets +file_suffixes<-c(mio_v3="_UT_correlation.csv", + mio_v2="_UT_correlation.csv", + stemi_v2="_t8w_correlation.csv", + stemi_v3="_t8w_correlation.csv", + pilot="_correlation.csv") + +#Name on plots for different single cell datasets +dataset_names<-c(mio_v3="Oelen (v3)", + mio_v2="Oelen (v2)", + stemi_v2="van Blokland (v2)", + stemi_v3="van Blokland (v3)", + pilot="van der Wijst") + +#Different bulk datasets +bulk_datasets<-c("BLUEPRINT","BIOS","ImmuNexUT") + +resort<-function(corr){ + #Split into two genes + corr$gene1<-gsub(";.*","",corr$V1) + corr$gene2<-gsub(".*;","",corr$V1) + + #Order them alphabetically + corr$V1<-ifelse(corr$gene1 < corr$gene2,corr$V1, + paste0(corr$gene2,";",corr$gene1)) + corr$gene1<-NULL + corr$gene2<-NULL + + return(corr) +} + + +################################################################################ +# 1) Compare single cell with each other +################################################################################ + +corr_comp<-NULL +for(cell_type in c("CD8T","monocyte","NK","B","DC")){ + + for(c1 in 1:(length(datasets)-1)){ + + #Read correlation file one + dataset_name1<-dataset_names[c1] + corr_c1<-fread(paste0(datasets[c1],cell_type, + "/",cell_type,file_suffixes[c1])) + corr_c1<-resort(corr_c1) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr_c1$V1), + gsub(".*;","",corr_c1$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(cell_type, + c1=dataset_name1, + c2=dataset_name1, + gene_pairs=nrow(corr_c1), + genes_unique=num_genes, + corr=1)) + + for(c2 in (c1+1):length(datasets)){ + + #Read correlation file two + dataset_name2<-dataset_names[c2] + corr_c2<-fread(paste0(datasets[c2],cell_type,"/", + cell_type,file_suffixes[c2])) + corr_c2<-resort(corr_c2) + + corr<-merge(corr_c1,corr_c2,by=c("V1")) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr$V1), + gsub(".*;","",corr$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(cell_type, + c1=dataset_name1, + c2=dataset_name2, + gene_pairs=nrow(corr), + genes_unique=num_genes, + corr=cor(corr[[2]],corr[[3]],method="pearson"))) + } + } + + + #Read correlation file one + c1<-length(datasets) + dataset_name1<-dataset_names[c1] + corr_c1<-fread(paste0(datasets[c1],cell_type, + "/",cell_type,file_suffixes[c1])) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr_c1$V1), + gsub(".*;","",corr_c1$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(cell_type, + c1=dataset_name1, + c2=dataset_name1, + genes_unique=num_genes, + gene_pairs=nrow(corr_c1), + corr=1)) +} + +# Save correlations +write.table(corr_comp, + file="co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_datasets_othercts.tsv", + sep="\t",row.names = FALSE,quote=FALSE) + +################################################################################ +# Plot comparison of single cell vs single cell (Supplementary Figure) +################################################################################ + +corr_comp<-fread("co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_datasets_othercts.tsv") +corr_comp$c1<-factor(corr_comp$c1,levels=dataset_names) +corr_comp$c2<-factor(corr_comp$c2,levels=dataset_names) +corr_comp$cell_type<-ct_fullname[corr_comp$cell_type] + +g<-ggplot(corr_comp,aes(x=c1,y=c2,fill=corr))+ + geom_tile()+ + geom_text(aes(label=paste0(round(corr,3),"\n(",genes_unique,")"), + color=ifelse(corr<0.6,'white','black')),size=3)+ + scale_color_manual(values=c("black","white"))+ + xlab("Single cell data set")+ + ylab("Single cell data set")+ + scale_fill_viridis("Correlation",limits=c(0,1))+ + facet_wrap(~cell_type)+ + scale_y_discrete(labels=c("Oelen (v3)","Oelen (v2)","van Blokland\n(v2)", + "van Blokland\n(v3)","van der Wijst"))+ + scale_x_discrete(labels=c("Oelen\n(v3)","Oelen\n(v2)","van\nBlokland\n(v2)", + "van\nBlokland\n(v3)","van der\nWijst"))+ + theme(legend.position=c(0.9,0.1))+ + guides(color=FALSE) +print(g) + +ggsave(g,file=paste0("co-expression_indivs_combined/plots/corr_single_cell_othercts.png"), + width=8.5,height=6.5) + +#Get also CD4 T cell results +corr_comp_ct<-fread("co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_datasets.tsv") +corr_comp_ct$cell_type<-"CD4T" +corr_comp_ct<-corr_comp_ct[,colnames(corr_comp),with=FALSE] +corr_comp<-rbind(corr_comp_ct,corr_comp) + +#Get median correlation +corr_comp%>% + group_by(cell_type)%>% + summarise(mean(corr),median(corr),min(corr),max(corr)) + +#Overall distribution across all cell types +summary(corr_comp$corr) + +################################################################################ +# 2) Compare single cell with bulk +################################################################################ + +################################################################################ +# For Blueprint - Monocytes +################################################################################ + +#Blueprint Monocyte correlation +path<-"blueprint_data/mono_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.1PCAsOverSamplesRemoved.spearmanr." +rowname_suffix<-"genes.txt" + +corr_c1 <- np$load(paste0(path,"npy"), mmap_mode="r") +row_names<-fread(paste0(path,rowname_suffix),header=FALSE) +rownames(corr_c1)<-row_names$V1 +colnames(corr_c1)<-row_names$V1 +rm(row_names) + +corr_comp<-NULL +cell_type<-"monocyte" +for(c1 in 1:length(datasets)){ + + #Load single cell data set + corr_c2<-fread(paste0(datasets[c1],cell_type, + "/",cell_type,file_suffixes[c1])) + corr_c2<-resort(corr_c2) + + #Filter the Blueprint data set + expressed_genes<-union(gsub(";.*","",corr_c2$V1), + gsub(".*;","",corr_c2$V1)) + expressed_genes<-intersect(expressed_genes,colnames(corr_c1)) + + corr_c1_filtered<-corr_c1[expressed_genes,expressed_genes] + corr_c1_filtered<-reshape2::melt(corr_c1_filtered) + corr_c1_filtered$Var1<-as.character(corr_c1_filtered$Var1) + corr_c1_filtered$Var2<-as.character(corr_c1_filtered$Var2) + corr_c1_filtered<-corr_c1_filtered[corr_c1_filtered$Var1 < corr_c1_filtered$Var2,] + corr_c1_filtered$V1<-paste0(corr_c1_filtered$Var1,";",corr_c1_filtered$Var2) + corr_c1_filtered$Var1<-NULL + corr_c1_filtered$Var2<-NULL + + corr<-merge(corr_c1_filtered,corr_c2,by=c("V1")) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr$V1), + gsub(".*;","",corr$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(cell_type, + c1=dataset_names[c1], + c2="BLUEPRINT", + gene_pairs=nrow(corr), + genes_unique=num_genes, + corr=cor(corr[[2]],corr[[3]],method="pearson"))) +} + +# Save correlations +write.table(corr_comp, + file="co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_blueprint_mono.tsv", + sep="\t",row.names = FALSE,quote=FALSE) + +################################################################################ +# For Blueprint - CD4T +################################################################################ + +#Blueprint CD4T correlation +path<-"blueprint_data/tcel_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.spearmanR." +rowname_suffix<-"rows.txt" + +corr_c1 <- np$load(paste0(path,"npy"), mmap_mode="r") +row_names<-fread(paste0(path,rowname_suffix),header=FALSE) +rownames(corr_c1)<-row_names$V1 +colnames(corr_c1)<-row_names$V1 +rm(row_names) + +corr_comp<-NULL +cell_type<-"CD4T" +for(c1 in 1:length(datasets)){ + + #Load single cell data set + corr_c2<-fread(paste0(datasets[c1],cell_type, + "/",cell_type,file_suffixes[c1])) + corr_c2<-resort(corr_c2) + + #Filter the Blueprint data set + expressed_genes<-union(gsub(";.*","",corr_c2$V1), + gsub(".*;","",corr_c2$V1)) + expressed_genes<-intersect(expressed_genes,colnames(corr_c1)) + + corr_c1_filtered<-corr_c1[expressed_genes,expressed_genes] + corr_c1_filtered<-reshape2::melt(corr_c1_filtered) + corr_c1_filtered$Var1<-as.character(corr_c1_filtered$Var1) + corr_c1_filtered$Var2<-as.character(corr_c1_filtered$Var2) + corr_c1_filtered<-corr_c1_filtered[corr_c1_filtered$Var1 < corr_c1_filtered$Var2,] + corr_c1_filtered$V1<-paste0(corr_c1_filtered$Var1,";",corr_c1_filtered$Var2) + corr_c1_filtered$Var1<-NULL + corr_c1_filtered$Var2<-NULL + + corr<-merge(corr_c1_filtered,corr_c2,by=c("V1")) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr$V1), + gsub(".*;","",corr$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(cell_type, + c1=dataset_names[c1], + c2="BLUEPRINT", + gene_pairs=nrow(corr), + genes_unique=num_genes, + corr=cor(corr[[2]],corr[[3]],method="pearson"))) +} + +# Save correlations +write.table(corr_comp, + file="co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_blueprint_cd4t.tsv", + sep="\t",row.names = FALSE,quote=FALSE) + +################################################################################ +# For ImmuNexUT - all cell types +################################################################################ + +# Cell type matching +ct_mapping<-data.frame(sc_ct=c("CD4T","CD8T","B","monocyte","NK","DC"), + imn_ct=c("Naive_CD4","Naive_CD8","Naive_B","CL_Mono","NK","mDC")) + +corr_comp<-NULL +for(i in 1:nrow(ct_mapping)){ + + ct <- ct_mapping$imn_ct[i] + cell_type<- ct_mapping$sc_ct[i] + + #Load ImmuNexUT data + combat_tmm<-fread(paste0("imd_paper_rna_data/norm_count/",ct,"_norm_count.txt")) + + #Load the different single cell data sets + for(c1 in 1:length(datasets)){ + #Load single cell data set + corr_c2<-fread(paste0(datasets[c1],cell_type, + "/",cell_type,file_suffixes[c1])) + corr_c2<-resort(corr_c2) + + #Filter the ImmuNexUT data set + expressed_genes<-union(gsub(";.*","",corr_c2$V1), + gsub(".*;","",corr_c2$V1)) + expressed_genes<-intersect(expressed_genes,combat_tmm$V1) + + combat_tmm_filtered<-combat_tmm[combat_tmm$V1 %in% expressed_genes,] + combat_tmm_filtered<-as.data.frame(combat_tmm_filtered) + rownames(combat_tmm_filtered)<-combat_tmm_filtered$V1 + combat_tmm_filtered$V1<-NULL + + #Calculation correlation + cor_matrix<-cor(t(combat_tmm_filtered),method="spearman") + cor_matrix<-reshape2::melt(cor_matrix) + cor_matrix$Var1<-as.character(cor_matrix$Var1) + cor_matrix$Var2<-as.character(cor_matrix$Var2) + cor_matrix<-cor_matrix[cor_matrix$Var1 < cor_matrix$Var2,] + cor_matrix$V1<-paste0(cor_matrix$Var1,";",cor_matrix$Var2) + cor_matrix$Var1<-NULL + cor_matrix$Var2<-NULL + + #Compare BIOS with single cell + corr<-merge(corr_c2,cor_matrix,by=c("V1")) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr$V1), + gsub(".*;","",corr$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(cell_type, + c1=dataset_names[c1], + c2="ImmuNexUT", + gene_pairs=nrow(corr), + genes_unique=num_genes, + corr=cor(corr[[2]],corr[[3]],method="pearson"))) + } +} + +# Save correlations +write.table(corr_comp, + file="co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_immunexut_allcts.tsv", + sep="\t",row.names = FALSE,quote=FALSE) + +################################################################################ +# For BIOS - all cell types +################################################################################ + +#Load the bios expression matrix +bios_data<-fread("bios/gene_read_counts_BIOS_and_LLD_passQC.tsv.SampleSelection.ProbesWithZeroVarianceRemoved.TMM.SampleSelection.ProbesWithZeroVarianceRemoved.Log2Transformed.ProbesCentered.SamplesZTransformed.CovariatesRemovedOLS.noLLDeep.scGeneOnly.txt.gz") + +corr_comp<-NULL +for(cell_type in c("CD4T","CD8T","monocyte","NK","B","DC")){ + for(c1 in 1:length(datasets)){ + + corr_c1<-fread(paste0(datasets[c1],cell_type, + "/",cell_type,file_suffixes[c1])) + corr_c1<-resort(corr_c1) + expressed_genes<-union(gsub(";.*","",corr_c1$V1), + gsub(".*;","",corr_c1$V1)) + + #Filter BIOS for the genes expressed in the respective data set + bios_data_filtered<-bios_data[bios_data$genename %in% expressed_genes,] + bios_data_filtered<-as.data.frame(bios_data_filtered) + rownames(bios_data_filtered)<-bios_data_filtered$genename + bios_data_filtered$genename<-NULL + + #Calculate correlation for BIOS + cor_matrix<-cor(t(bios_data_filtered),method="spearman") + cor_matrix<-reshape2::melt(cor_matrix) + cor_matrix$Var1<-as.character(cor_matrix$Var1) + cor_matrix$Var2<-as.character(cor_matrix$Var2) + cor_matrix<-cor_matrix[cor_matrix$Var1 < cor_matrix$Var2,] + cor_matrix$V1<-paste0(cor_matrix$Var1,";",cor_matrix$Var2) + cor_matrix$Var1<-NULL + cor_matrix$Var2<-NULL + + #Compare BIOS with single cell + corr<-merge(corr_c1,cor_matrix,by=c("V1")) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr$V1), + gsub(".*;","",corr$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(cell_type, + c1=dataset_names[c1], + c2="BIOS", + gene_pairs=nrow(corr), + genes_unique=num_genes, + corr=cor(corr[[2]],corr[[3]],method="pearson"))) + + } +} + +# Save correlations +write.table(corr_comp, + file="co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_bios_allcts.tsv", + sep="\t",row.names = FALSE,quote=FALSE) + +################################################################################ +# Plot comparison of single cell vs bulk (Supplementary Figure) +################################################################################ + +#Load the different data sets +corr_comp<-rbind(fread("co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_bios_allcts.tsv"), + fread("co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_immunexut_allcts.tsv"), + fread("co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_blueprint_mono.tsv"), + fread("co-expression_indivs_combined/dataset_comp_summary/correlation_singlecell_blueprint_cd4t.tsv")) + +corr_comp%>% + group_by(cell_type,c2)%>% + summarise(mean(corr),median(corr),min(corr),max(corr)) + +#Remove CD4T cells (already shown in the main figure) +corr_comp<-corr_comp[corr_comp$cell_type != "CD4T",] + +corr_comp$c1<-factor(corr_comp$c1,levels=dataset_names) + +corr_comp$cell_type<-ct_fullname[corr_comp$cell_type] + +g<-ggplot(corr_comp,aes(x=c2,y=c1,fill=corr))+ + geom_tile()+ + geom_text(aes(label=paste0(round(corr,3),"\n(",genes_unique,")"), + color=ifelse(corr<0.6,'white','black')),size=3)+ + scale_color_manual(values=c("black","white"))+ + xlab("Bulk cell data set")+ + ylab("Single cell data set")+ + scale_fill_viridis("Correlation",limits=c(0,1))+ + facet_wrap(~cell_type)+ + scale_y_discrete(labels=c("Oelen (v3)","Oelen (v2)","van Blokland\n(v2)", + "van Blokland\n(v3)","van der Wijst"))+ + theme(legend.position=c(0.9,0.1))+ + guides(color=FALSE) +print(g) + +ggsave(g,file=paste0("co-expression_indivs_combined/plots/corr_singlevsbulk_othercts.png"), + width=8.5,height=6.5) + +################################################################################ +# 3) Compare bulk vs bulk for Monocytes +################################################################################ + +#Special function to read bulk data as they are not all saved in the same file type +read_bulk_data<-function(dataset_name){ + + if(dataset_name=="BLUEPRINT"){ + #Blueprint Monocyte correlation + path<-"blueprint_data/mono_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.1PCAsOverSamplesRemoved.spearmanr." + rowname_suffix<-"genes.txt" + + corr_c1 <- np$load(paste0(path,"npy"), mmap_mode="r") + row_names<-fread(paste0(path,rowname_suffix),header=FALSE) + rownames(corr_c1)<-row_names$V1 + colnames(corr_c1)<-row_names$V1 + rm(row_names) + + #Filter for single cell data + ct_single_cell<-"monocyte" + corr_sc<-fread(paste0("co-expression_indivs_combined/",ct_single_cell,"/", + ct_single_cell,"_UT_correlation.csv")) + corr_sc$gene1<-gsub(";.*","",corr_sc$V1) + corr_sc$gene2<-gsub(".*;","",corr_sc$V1) + sc_genes<-union(corr_sc$gene1,corr_sc$gene2) + sc_genes<-sc_genes[sc_genes %in% colnames(corr_c1)] + + corr_c1<-corr_c1[sc_genes,sc_genes] + corr_c1<-reshape2::melt(corr_c1) + corr_c1$Var1<-as.character(corr_c1$Var1) + corr_c1$Var2<-as.character(corr_c1$Var2) + colnames(corr_c1)[1:3]<-c("gene1","gene2","corr") + + #Order so that gene1 is always the one first in alphabet + corr_c1<-corr_c1[corr_c1$gene1!=corr_c1$gene2,] + corr_c1$V1<-paste0(corr_c1$gene1,";",corr_c1$gene2) + corr_c1$gene1<-NULL + corr_c1$gene2<-NULL + + corr_c1<-corr_c1[,c("V1","corr")] + + } else if (dataset_name=="BIOS"){ + + #Load the bios expression matrix + bios_data<-fread("bios/gene_read_counts_BIOS_and_LLD_passQC.tsv.SampleSelection.ProbesWithZeroVarianceRemoved.TMM.SampleSelection.ProbesWithZeroVarianceRemoved.Log2Transformed.ProbesCentered.SamplesZTransformed.CovariatesRemovedOLS.noLLDeep.scGeneOnly.txt.gz") + + # Read single cell data to filter for the expressed genes + cell_type <- "monocyte" + corr_sc<-fread(paste0("co-expression_indivs_combined/",cell_type, + "/",cell_type,"_UT_correlation.csv")) + corr_sc<-resort(corr_sc) + expressed_genes<-union(gsub(";.*","",corr_sc$V1), + gsub(".*;","",corr_sc$V1)) + + #Filter BIOS for the genes expressed in the respective data set + bios_data_filtered<-bios_data[bios_data$genename %in% expressed_genes,] + bios_data_filtered<-as.data.frame(bios_data_filtered) + rownames(bios_data_filtered)<-bios_data_filtered$genename + bios_data_filtered$genename<-NULL + + #Calculate correlation for BIOS + corr_c1<-cor(t(bios_data_filtered),method="spearman") + corr_c1<-reshape2::melt(corr_c1) + corr_c1$Var1<-as.character(corr_c1$Var1) + corr_c1$Var2<-as.character(corr_c1$Var2) + corr_c1<-corr_c1[corr_c1$Var1 < corr_c1$Var2,] + corr_c1$V1<-paste0(corr_c1$Var1,";",corr_c1$Var2) + corr_c1$Var1<-NULL + corr_c1$Var2<-NULL + + } else { #ImmuNexUT + corr_c1<-fread("imd_paper_rna_data/correlation/CL_Mono_correlation.txt") + #all(corr_c1$gene1 < corr_c1$gene2) + corr_c1$V1<-paste0(corr_c1$gene1,";",corr_c1$gene2) + corr_c1$gene1<-NULL + corr_c1$gene2<-NULL + } + + return(corr_c1) +} + +#Compare each bulk dataset against all other +corr_comp<-NULL +for(c1 in 1:(length(bulk_datasets)-1)){ + + #Read correlation file one + dataset_name1<-bulk_datasets[c1] + corr_c1<-read_bulk_data(dataset_name1) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr_c1$V1), + gsub(".*;","",corr_c1$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(c1=dataset_name1, + c2=dataset_name1, + gene_pairs=nrow(corr_c1), + genes_unique=num_genes, + corr=1)) + + for(c2 in (c1+1):length(bulk_datasets)){ + + #Read correlation file two + dataset_name2<-bulk_datasets[c2] + corr_c2<-read_bulk_data(dataset_name2) + + corr<-merge(corr_c1,corr_c2,by=c("V1")) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr$V1), + gsub(".*;","",corr$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(c1=dataset_name1, + c2=dataset_name2, + gene_pairs=nrow(corr), + genes_unique=num_genes, + corr=cor(corr[[2]],corr[[3]],method="pearson"))) + } +} + +#Read correlation file one +c1<-length(bulk_datasets) +dataset_name1<-bulk_datasets[c1] +corr_c1<-read_bulk_data(dataset_name1) + +#Unique genes +num_genes<-length(union(gsub(";.*","",corr_c1$V1), + gsub(".*;","",corr_c1$V1))) + +corr_comp<-rbind(corr_comp, + data.frame(c1=dataset_name1, + c2=dataset_name1, + gene_pairs=nrow(corr_c1), + genes_unique=num_genes, + corr=1)) + +# Save correlations +write.table(corr_comp, + file="co-expression_indivs_combined/dataset_comp_summary/correlation_bulk_datasets_monocytes.tsv", + sep="\t",row.names = FALSE,quote=FALSE) + +# Save plot +corr_comp$c1<-factor(corr_comp$c1,levels=bulk_datasets) +corr_comp$c2<-factor(corr_comp$c2,levels=bulk_datasets) + +g<-ggplot(corr_comp,aes(x=c1,y=c2,fill=corr))+ + geom_tile()+ + geom_text(aes(label=paste0(round(corr,3),"\n(",genes_unique,")"), + color=ifelse(corr<0.6,'white','black')),size=3)+ + scale_color_manual(values=c("black","white"))+ + xlab("Bulk data set")+ + ylab("Bulk data set")+ + scale_fill_viridis("Correlation",limits=c(0,1))+ + guides(color=FALSE) + +ggsave(g,file="co-expression_indivs_combined/plots/corr_bulk_mono.png", + width=5,height=3) \ No newline at end of file diff --git a/02_correlation_evaluation/correlation_timepoint_combined_indivs_1mio.py b/02_correlation_evaluation/correlation_timepoint_combined_indivs_1mio.py new file mode 100644 index 0000000..15f0bdb --- /dev/null +++ b/02_correlation_evaluation/correlation_timepoint_combined_indivs_1mio.py @@ -0,0 +1,97 @@ +########################################################################################### +# Calculate correlation for each cell type, selecting always one timepoint (UT) +# merging all individuals for Oelen v2 and v3 dataset +########################################################################################### + +#from scipy.stats import t, norm +from scipy.stats import spearmanr +import scanpy as sc +import numpy as np +import pandas as pd +from pathlib import Path +from time import time +import os +import re + +# specify if Oelen v3 or v2 dataset should be used +version2 = True + +# load scanpy object +lif version2: + prefix_results = Path('co-expression_indivs_combined/one_million_version2/') +else: + prefix_results = Path('co-expression_indivs_combined/') + +if version2: + alldata = sc.read_h5ad('seurat_objects/1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.sct.h5ad') +else: + alldata = sc.read_h5ad('seurat_objects/1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad') + +def select_gene_nonzeroratio(df, ratio): + nonzerocounts = np.count_nonzero(df.values, axis=0)/df.shape[0] + selected_genes = df.columns[nonzerocounts>ratio] + return selected_genes + +# extract timepoint from timepoint - stimulation annotation +def get_time(x): + if x == 'UT': + return x + else: + pattern = re.compile(r'\d+h') + return re.findall(pattern, x)[0] + + +# extract timepoint from timepoint - stimulation annotation +observations = alldata.obs.copy() +observations['time_merged'] = [get_time(item) for item in observations['timepoint']] +observations['timepoint_id_celltype'] = [f'{item[0]}_{item[1]}' for item + in observations[['time_merged', 'cell_type_lowerres']].values] + +celltypes = ['B', 'CD4T', 'CD8T', 'monocyte', 'DC', 'NK'] +for celltype in celltypes: + if not os.path.isdir(prefix_results/celltype): + os.mkdir(prefix_results/celltype) + starttime = time() + print(celltype) + specific = alldata[alldata.obs.cell_type_lowerres==celltype] + celltype_data = pd.DataFrame(data=specific.X.toarray(), + index=specific.obs.index, + columns=specific.var.index) + + # get the set of gene pairs + specific_obs = observations[observations['cell_type_lowerres']==celltype] + + for condition in ['UT', '3h', '24h']: + + # filter for the condition + celltype_condition_data = celltype_data[specific_obs.time_merged==condition] + + # take either tsv file with selected genes or filter genes after a nonzero rate + if gene_selection_file: + selected_genes = pd.read_csv('co-expression_indivs_combined/coexp_tp_union/genelists_tp_union/expressed_gene_'+celltype+'.tsv') + selected_genes =selected_genes["genes"].tolist() + else: + selected_genes = select_gene_nonzeroratio(celltype_condition_data, 0.5) + + print(f"Number of selected genes for {celltype} {condition}: {len(selected_genes)}") + + gene_pairs = [] + for i,gene1 in enumerate(selected_genes): + for j in range(i+1, len(selected_genes)): + gene_pairs.append(';'.join([gene1, selected_genes[j]])) + + input_df = celltype_condition_data[selected_genes] + input_data = spearmanr(input_df, axis=0)[0] + input_data_uppertria = input_data[np.triu_indices_from(input_data, 1)] + + corrs_df = pd.DataFrame(data=input_data_uppertria, + columns=[f'{condition}'], + index=gene_pairs) + + corrs_df.to_csv(prefix_results/celltype/f'{celltype}_{condition}_correlation.csv') + + #Filter for 0.3 correlation cutoff + corrs_df = corrs_df[corrs_df[condition]>0.3] + corrs_df.to_csv(prefix_results/celltype/f'{celltype}_{condition}_correlation_03filtered.csv') + + print(f"Finished {celltype} with time {time() - starttime}") diff --git a/02_correlation_evaluation/correlation_timepoint_combined_indivs_ng.py b/02_correlation_evaluation/correlation_timepoint_combined_indivs_ng.py new file mode 100644 index 0000000..616a978 --- /dev/null +++ b/02_correlation_evaluation/correlation_timepoint_combined_indivs_ng.py @@ -0,0 +1,88 @@ +###################################################################### +# Calculate correlation for each cell type for van der Wijst dataset, +# merging all individuals +###################################################################### + +from scipy.stats import spearmanr +import numpy as np +import pandas as pd +from pathlib import Path +from time import time +import scanpy as sc +import os + + +def select_gene_nonzeroratio(df, ratio): + nonzerocounts = np.count_nonzero(df.values, axis=0)/df.shape[0] + selected_genes = df.columns[nonzerocounts>ratio] + return selected_genes + + +def select_gene_variances(df, ratio): + variances = np.var(df.values, axis=0)/df.shape[0] + var_thres = np.percentile(variances, ratio) + # var_thres = np.nanmedian(variances) + selected_genes = df.columns[variances>var_thres] + print(selected_genes[:5]) + return selected_genes + + +def get_genename(df, mapping): + df['genename'] = [mapping.get(geneid) for geneid in df.index] + df = df.dropna(subset=['genename']).drop_duplicates(subset=['genename']) + df = df.set_index('genename') + return df + + +# set working directory (to shorten path length) +os.chdir('./') +gene_selection_file = False + +# load scanpy object +prefix_results = Path('co-expression_indivs_combined/ng_updated_version') +# test stemi v2 +# alldata = sc.read_h5ad('seurat_objects/pilot3_subsetted_celltypes_final_ensemble_converted_samples.h5ad') +alldata = sc.read_h5ad('seurat_objects/pilot3_seurat3_200420_sct_azimuth.h5ad') + +# extract timepoint from timepoint - stimulation annotation +celltype_maping = {'CD4 T': 'CD4T', 'CD8 T': 'CD8T', 'Mono': 'monocyte', 'DC': 'DC', 'NK':'NK', 'other T': 'otherT', 'other': 'other', 'B':'B'} +alldata.obs['cell_type_mapped_to_onemillion'] = [celltype_maping.get(name) for name in alldata.obs['predicted.celltype.l1']] +observations = alldata.obs.copy() +celltypes = [item for item in observations['cell_type_mapped_to_onemillion'].unique() if not pd.isnull(item)] +print(celltypes) +for celltype in celltypes: + if not os.path.isdir(prefix_results / celltype): + os.mkdir(prefix_results / celltype) + starttime = time() + print(celltype) + specific = alldata[alldata.obs['cell_type_mapped_to_onemillion'] == celltype] + celltype_data = pd.DataFrame(data=specific.X.toarray(), + index=specific.obs.index, + columns=specific.var.index) + print(celltype_data.shape) + # get the set of gene pairs + specific_obs = observations[observations['cell_type_mapped_to_onemillion'] == celltype] + # filter for the condition + celltype_condition_data = celltype_data + # take either tsv file with selected genes or filter genes after a nonzero rate + if gene_selection_file: + selected_genes = pd.read_csv(' /genelists_tp_union/expressed_gene_' + celltype + '.tsv') + selected_genes = selected_genes["genes"].tolist() + else: + selected_genes = select_gene_nonzeroratio(celltype_condition_data, 0.5) + print(f"Number of selected genes for {celltype} : {len(selected_genes)}") + gene_pairs = [] + for i, gene1 in enumerate(selected_genes): + for j in range(i + 1, len(selected_genes)): + gene_pairs.append(';'.join([gene1, selected_genes[j]])) + input_df = celltype_condition_data[selected_genes] + input_data = spearmanr(input_df, axis=0)[0] + input_data_uppertria = input_data[np.triu_indices_from(input_data, 1)] + corrs_df = pd.DataFrame(data=input_data_uppertria, + columns=[f'UT'], + index=gene_pairs) + corrs_df.to_csv(prefix_results / celltype / f'{celltype}_correlation.csv') + # Filter for 0.3 correlation cutoff + corrs_df = corrs_df[corrs_df['UT'] > 0.3] + corrs_df.to_csv(prefix_results / celltype / f'{celltype}_correlation_03filtered.csv') + print(f"Finished {celltype} with time {time() - starttime}") diff --git a/02_correlation_evaluation/correlation_timepoint_combined_indivs_stemiv2.py b/02_correlation_evaluation/correlation_timepoint_combined_indivs_stemiv2.py new file mode 100644 index 0000000..8312a5f --- /dev/null +++ b/02_correlation_evaluation/correlation_timepoint_combined_indivs_stemiv2.py @@ -0,0 +1,50 @@ +############################################################################## +# Calculate correlation for each cell type for the van Blokland v2 dataset, +# timpeoint 6-8 weeks after admission, merging all individuals +############################################################################## + +from scipy.stats import spearmanr +import numpy as np +import pandas as pd +from pathlib import Path +from time import time +import os + + +def select_gene_nonzeroratio(df, ratio): + nonzerocounts = np.count_nonzero(df.values, axis=0)/df.shape[0] + selected_genes = df.columns[nonzerocounts>ratio] + return selected_genes + +# set working directory (to shorten path length) +os.chdir('./') + +# load scanpy object +prefix_results = Path('co-expression_indivs_combined/stemi/') +stemi_data = pd.read_csv('seurat_objects/stemi_v2_monocyte.csv.gz', compression='gzip', sep=' ', index_col=0).T +stemi_meta = pd.read_csv('seurat_objects/stemi_v2_monocyte.meta.csv', sep=' ', index_col=0) + +for condition in stemi_meta['timepoint.final'].unique(): + starttime = time() + # filter for the condition + celltype_condition_data = stemi_data[stemi_meta['timepoint.final']==condition] + # take either tsv file with selected genes or filter genes after a nonzero rate + selected_genes = select_gene_nonzeroratio(celltype_condition_data, 0.5) + print(f"Number of selected genes for stemi {condition}: {len(selected_genes)}") + # get gene pair names + gene_pairs = [] + for i,gene1 in enumerate(selected_genes): + for j in range(i+1, len(selected_genes)): + gene_pairs.append(';'.join([gene1, selected_genes[j]])) + # get gene-gene correlations + input_df = celltype_condition_data[selected_genes] + input_data = spearmanr(input_df, axis=0)[0] + input_data_uppertria = input_data[np.triu_indices_from(input_data, 1)] + corrs_df = pd.DataFrame(data=input_data_uppertria, + columns=[f'{condition}'], + index=gene_pairs) + corrs_df.to_csv(prefix_results/f'monocyte_{condition}_correlation.csv') + #Filter for 0.3 correlation cutoff + corrs_df = corrs_df[corrs_df[condition]>0.3] + corrs_df.to_csv(prefix_results/f'monocyte_{condition}_correlation_03filtered.csv') + print(f"Finished {condition} with time {time() - starttime}") diff --git a/02_correlation_evaluation/correlation_timepoint_combined_indivs_stemiv3.py b/02_correlation_evaluation/correlation_timepoint_combined_indivs_stemiv3.py new file mode 100644 index 0000000..6892bc5 --- /dev/null +++ b/02_correlation_evaluation/correlation_timepoint_combined_indivs_stemiv3.py @@ -0,0 +1,91 @@ +############################################################################## +# Calculate correlation for each cell type for the van Blokland v3 dataset, +# timpeoint 6-8 weeks after admission, merging all individuals +############################################################################## + +#from scipy.stats import t, norm +from scipy.stats import spearmanr +import scanpy as sc +import numpy as np +import pandas as pd +from pathlib import Path +from time import time +import os +import re + +# specify if the gene selection was done before and is passed in a file +gene_selection_file = False + +# set working directory (to shorten path length) +os.chdir('./') + +# load scanpy object +prefix_results = Path('co-expression_indivs_combined/stemi/version3') +# test stemi v2 +alldata = sc.read_h5ad('seurat_objects/cardio.integrated.20210301.stemiv3.h5ad') + +def select_gene_nonzeroratio(df, ratio): + nonzerocounts = np.count_nonzero(df.values, axis=0)/df.shape[0] + selected_genes = df.columns[nonzerocounts>ratio] + return selected_genes + +# extract timepoint from timepoint - stimulation annotation +def get_time(x): + if x == 'UT': + return x + else: + pattern = re.compile(r'\d+h') + return re.findall(pattern, x)[0] + + +# extract timepoint from timepoint - stimulation annotation +observations = alldata.obs.copy() +observations['timepoint_id_celltype'] = [f'{item[0]}_{item[1]}' for item + in observations[['timepoint.final', 'cell_type_lowerres']].values] + +celltypes = ['B', 'CD4T', 'CD8T', 'monocyte', 'DC', 'NK'] +for celltype in celltypes: + if not os.path.isdir(prefix_results/celltype): + os.mkdir(prefix_results/celltype) + starttime = time() + print(celltype) + specific = alldata[alldata.obs.cell_type_lowerres==celltype] + celltype_data = pd.DataFrame(data=specific.X.toarray(), + index=specific.obs.index, + columns=specific.var.index) + + # get the set of gene pairs + specific_obs = observations[observations['cell_type_lowerres']==celltype] + for condition in observations['timepoint.final'].unique(): + # filter for the condition + celltype_condition_data = celltype_data[specific_obs['timepoint.final']==condition] + + # take either tsv file with selected genes or filter genes after a nonzero rate + if gene_selection_file: + selected_genes = pd.read_csv(' /genelists_tp_union/expressed_gene_'+celltype+'.tsv') + selected_genes =selected_genes["genes"].tolist() + else: + selected_genes = select_gene_nonzeroratio(celltype_condition_data, 0.5) + + print(f"Number of selected genes for {celltype} {condition}: {len(selected_genes)}") + + gene_pairs = [] + for i,gene1 in enumerate(selected_genes): + for j in range(i+1, len(selected_genes)): + gene_pairs.append(';'.join([gene1, selected_genes[j]])) + + input_df = celltype_condition_data[selected_genes] + input_data = spearmanr(input_df, axis=0)[0] + input_data_uppertria = input_data[np.triu_indices_from(input_data, 1)] + + corrs_df = pd.DataFrame(data=input_data_uppertria, + columns=[f'{condition}'], + index=gene_pairs) + + corrs_df.to_csv(prefix_results/celltype/f'{celltype}_{condition}_correlation.csv') + + #Filter for 0.3 correlation cutoff + corrs_df = corrs_df[corrs_df[condition]>0.3] + corrs_df.to_csv(prefix_results/celltype/f'{celltype}_{condition}_correlation_03filtered.csv') + + print(f"Finished {celltype} with time {time() - starttime}") diff --git a/02_correlation_evaluation/figure2_barplot_cutoffs.R b/02_correlation_evaluation/figure2_barplot_cutoffs.R new file mode 100644 index 0000000..df79e75 --- /dev/null +++ b/02_correlation_evaluation/figure2_barplot_cutoffs.R @@ -0,0 +1,72 @@ +# ------------------------------------------------------------------------------ +# Create barplot of correlation dependency on expression cutoff +# for Oelen v3 and ImmuNexUT / Blueprint +# (only plotting in R, calculation done with python script) +# Input: correlation comparison between Blueprint and Oelen v3 dataset +# (precalculated in compare_blueprint_cutoffs_CD4T.py) and between +# ImmuNexUT and Oelen v3 dataset (precalculated in +# compare_immunexut_cutoffs_CD4T.py) +# Output: two barplots, one for Blueprint comparsion and one for +# ImmuNexUT comparison +# ------------------------------------------------------------------------------ + +library(ggplot2) +library(RColorBrewer) + +theme_set(theme_bw()) + +################################################################################ +# Plot for ImmuNexUT (main Figure 2c) +################################################################################ + +vals<-read.table("co-expression_indivs_combined/immunexut_cutoff_eval_CD4T.txt", + sep=",",header=TRUE) + +vals$threshold<-as.factor(vals$threshold) +g<-ggplot(vals,aes(x=threshold,y=corr_pearson,fill=ngenes))+ + geom_bar(stat="identity")+ + geom_text(aes(x = threshold, y = corr_pearson / 2, label = ngenes, + color=ifelse(ngenes<1000,'white','black')),size=5)+ + scale_color_manual(values=c("black","white"))+ + xlab("Expression cutoff")+ + ylab("Correlation between Oelen (v3)\nand ImmuNexUT")+ylim(0,1)+ + scale_fill_distiller("Number of\ngenes",palette="YlOrBr")+ + theme(legend.position = "bottom", + legend.key.width = unit(1, "cm"), + axis.title = element_text(size=16), + axis.text = element_text(size=14), + legend.title=element_text(size=13), + legend.text=element_text(size=12))+ + guides(color=FALSE) +print(g) +ggsave(g,file="co-expression_indivs_combined/plots/eval_immunexut_cutoff.pdf", + width=6,height=5) + + +################################################################################ +# Plot for Blueprint (Supplement) +################################################################################ + +vals<-read.table("co-expression_indivs_combined/blueprint_cutoff_eval_CD4T.txt", + sep=",",header=TRUE) + +vals$threshold<-as.factor(vals$threshold) +g<-ggplot(vals,aes(x=threshold,y=corr_pearson,fill=ngenes))+ + geom_bar(stat="identity")+ + geom_text(aes(x = threshold, y = corr_pearson / 2, label = ngenes, + color=ifelse(ngenes<1000,'white','black')),size=5)+ + scale_color_manual(values=c("black","white"))+ + xlab("Expression cutoff")+ + ylab("Correlation between Oelen (v3)\nand BLUEPRINT")+ylim(0,1)+ + scale_fill_distiller("Number of\ngenes",palette="YlOrBr")+ + theme(legend.position = "bottom", + legend.key.width = unit(1, "cm"), + axis.title = element_text(size=16), + axis.text = element_text(size=14), + legend.title=element_text(size=13), + legend.text=element_text(size=12))+ + guides(color=FALSE) +print(g) +ggsave(g,file="co-expression_indivs_combined/plots/eval_blueprint_cutoff.png", + width=6,height=5) + diff --git a/02_correlation_evaluation/figure2_scatterplots.R b/02_correlation_evaluation/figure2_scatterplots.R new file mode 100644 index 0000000..15925d6 --- /dev/null +++ b/02_correlation_evaluation/figure2_scatterplots.R @@ -0,0 +1,162 @@ +# ------------------------------------------------------------------------------ +# Create inset plots for Main Figure 2 (a,b,d), showing scatterplots of +# gene pair-wise Spearman correlation values between two data sets for +# a) Oelen v3 dataset vs van Blokland v2 dataset (both CD4+ T cells) +# b) ImmuNexUT - van Blokland v2 (naive CD4+ T cells and CD4+ T cells) +# c) Blueprint - ImmuNexUT (both naive CD4+ T cells) +# ------------------------------------------------------------------------------ + +library(data.table) +library(reticulate) # to read the single cell data (numpy) +library(reshape2) +library(ggplot2) +library(viridis) +library(ggpubr) + +np <- import("numpy") + +theme_set(theme_bw()) + +#Load single cell +load_sc_corr_data<-function(path){ + + # Load single cell data + corr_ct<-fread(path) + corr_ct$gene1<-sapply(corr_ct$V1,function(s) strsplit(s,";")[[1]][1]) + corr_ct$gene2<-sapply(corr_ct$V1,function(s) strsplit(s,";")[[1]][2]) + corr_ct$V1<-NULL + + #Order so that gene1 is always the one first in alphabet + corr_ct$swap<-ifelse(corr_ct$gene1 > corr_ct$gene2,corr_ct$gene1,corr_ct$gene2) + corr_ct$gene1<-ifelse(corr_ct$gene1 > corr_ct$gene2,corr_ct$gene2,corr_ct$gene1) + corr_ct$gene2<-corr_ct$swap + corr_ct$swap<-NULL + + return(corr_ct) +} + +#Load data saved in numpy format +load_numpy_data<-function(path,rowname_suffix,colname_suffix,corr_sc){ + corr_bios <- np$load(paste0(path,"npy"), mmap_mode="r") + row_names<-fread(paste0(path,rowname_suffix),header=FALSE) + rownames(corr_bios)<-row_names$V1 + col_names<-fread(paste0(path,colname_suffix),header=FALSE) + colnames(corr_bios)<-col_names$V1 + rm(row_names,col_names) + + #Filter for single cell data + sc_genes<-sort(union(corr_sc$gene1,corr_sc$gene2)) + sc_genes<-sc_genes[sc_genes %in% colnames(corr_bios)] + corr_bios<-corr_bios[sc_genes,sc_genes] + corr_bios<-reshape2::melt(corr_bios) + corr_bios$Var1<-as.character(corr_bios$Var1) + corr_bios$Var2<-as.character(corr_bios$Var2) + colnames(corr_bios)[1:2]<-c("gene1","gene2") + + + #Order so that gene1 is always the one first in alphabet + corr_bios$swap<-ifelse(corr_bios$gene1 > corr_bios$gene2,corr_bios$gene1,corr_bios$gene2) + corr_bios$gene1<-ifelse(corr_bios$gene1 > corr_bios$gene2,corr_bios$gene2,corr_bios$gene1) + corr_bios$gene2<-corr_bios$swap + corr_bios$swap<-NULL + corr_bios<-corr_bios[corr_bios$gene1!=corr_bios$gene2,] + + return(corr_bios) +} + +#Create ggplot 2d histogram based on two correlation data frames +create_corr_plot<-function(corr_d1,corr_d2, + xlab_text,ylab_text, + annot_text_size=9,annot_text_digits=3){ + + #Merge both + corrs<-merge(corr_d1,corr_d2,by=c("gene1","gene2")) + + print(paste("Overlapping genes:",length(union(corrs$gene1, + corrs$gene2)))) + + corr_corr<-cor(corrs$corr1,corrs$corr2, + method="pearson") + + #Plot + g<-ggplot(corrs,aes(corr1,corr2))+ + geom_bin2d(bins=50)+ + xlab(xlab_text)+ + ylab(ylab_text)+ + xlim(-1,1)+ylim(-1,1)+ + scale_fill_distiller("Density",palette="BuPu",trans="log10", + breaks = c(2, 600), + labels = c("Low", "High"))+ + annotate(geom="text", x=-0.95, y=0.95,size=annot_text_size, + hjust = 0,vjust=1, + label=paste0("r = ",format(corr_corr,digits=annot_text_digits)))+ + ggtitle("Pairwise gene correlation")+ + geom_smooth(method="lm",color="black")+ + theme(legend.position="none", + plot.title=element_text(size=25), + axis.title=element_text(size=25), + axis.text=element_text(size=20)) + + return(g) +} + + +################################################################################ +# For 2a: Oelen v3 - van Blokland v2 +################################################################################ + +main_celltype<-"CD4T" + +corr_oelen<-load_sc_corr_data(paste0("co-expression_indivs_combined/", + main_celltype,"/",main_celltype, + "_UT_correlation.csv")) + +corr_stemi<-load_sc_corr_data(paste0("co-expression_indivs_combined/stemi/version2/", + main_celltype,"/",main_celltype, + "_t8w_correlation.csv")) + +colnames(corr_oelen)<-c("corr1","gene1","gene2") +colnames(corr_stemi)<-c("corr2","gene1","gene2") + +#Create gggplot +g<-create_corr_plot(corr_oelen,corr_stemi, + xlab_text="Oelen (v3)", ylab_text="van Blokland (v2)") + +g_leg<-get_legend(g+theme(legend.position = "bottom")) +g_leg<-as_ggplot(g_leg) +ggsave(g_leg,file="bios/plots/figure2_legend_inset.pdf",width=3,height=1) + + +ggsave(g,file="bios/plots/figure2a_exampleplot.pdf",width=5,height=5) + +################################################################################ +# For 2b: ImmuNexUT - van Blokland v2 +################################################################################ + +corr_immu<-fread("imd_paper_rna_data/correlation/Naive_CD4_correlation.txt") +corr_immu$V1<-NULL + +colnames(corr_immu)<-c("gene1","gene2","corr1") + +#Create gggplot +g<-create_corr_plot(corr_immu,corr_stemi, + xlab_text="ImmuNexUT",ylab_text="van Blokland (v2)") + +ggsave(g,file="bios/plots/figure2b_exampleplot.pdf",width=5,height=5) + +################################################################################ +# For 2c: Blueprint - ImmuNexUT +################################################################################ + +#Load Blueprint data +corr_bp<-load_numpy_data(path="blueprint_data/tcel_gene_nor_combat_20151109.ProbesWithZeroVarianceRemoved.ProbesCentered.SamplesZTransformed.spearmanR.", + rowname_suffix="rows.txt", + colname_suffix="cols.txt", + corr_immu) + +colnames(corr_bp)<-c("gene1","gene2","corr2") + +#Create gggplot +g<-create_corr_plot(corr_immu,corr_bp, + xlab_text="ImmuNexUT",ylab_text="BLUEPRINT") +ggsave(g,file="bios/plots/figure2c_exampleplot.pdf",width=5,height=5) diff --git a/02_correlation_evaluation/normalize_ImmuNexUT.R b/02_correlation_evaluation/normalize_ImmuNexUT.R new file mode 100644 index 0000000..80e04ea --- /dev/null +++ b/02_correlation_evaluation/normalize_ImmuNexUT.R @@ -0,0 +1,142 @@ +# ------------------------------------------------------------------------------ +# Normalize ImmuNexUT data (separately for each cell type with a matching +# single-cell cell type) following the description in the corresponding +# publication (filtering lowly expressed genes, TMM normalization and +# batch correction) +# followed by correlation calculation for all genes expressed in 50% of the cells +# of the Oelen v3 dataset (for comparison with single cell data) +# Input: Count matrices downloaded from +# https://humandbs.biosciencedbc.jp/en/hum0214-v5#E-GEAD-397, +# correlation estimates from Oelen v3 to identify the expressed genes +# for downstream comparisons +# Output: normalized count matrices (one per cell type), orrelation matrices +# for all genes expressed in 50% of the cells of the Oelen v3 dataset and +# plots for comparison between ImmuNexUT and Oelen v3 dataset +# ------------------------------------------------------------------------------ + +library(data.table) +library(edgeR) #for normalization +library(sva) # for batch correction with combat +library(corrplot) # to plot sample correlations +library(ggplot2) +library(viridis) + +theme_set(theme_bw()) + +# Cell type matching +ct_mapping<-data.frame(sc_ct=c("CD4T","CD8T","B","monocyte","NK","DC"), + imn_ct=c("Naive_CD4","Naive_CD8","Naive_B","CL_Mono","NK","mDC")) + + +for(i in 1:nrow(ct_mapping)){ + + ct <- ct_mapping$imn_ct[i] + ct_single_cell<- ct_mapping$sc_ct[i] + + # Try to prevent redoing the whole normalization when the correlation + # is already calculated + corr_file_name<-paste0("imd_paper_rna_data/correlation/",ct,"_correlation.txt") + if(! file.exists(corr_file_name)){ + + counts<-fread(paste0("imd_paper_rna_data/count/",ct,"_count.txt")) + + #Format to matrix + gene_id<-counts$Gene_id + gene_name<-counts$Gene_name + counts$Gene_name<-NULL + counts$Gene_id<-NULL + counts<-as.matrix(counts) + rownames(counts)<-gene_name + + #Filter lowly expressed genes (at least 10 in > 90% of samples) + counts<-counts[!(rowSums(counts<10) > 0.9 * ncol(counts)),] + + #Normalize using edgeR (TMM plus log-transformed CPM) + dge <- DGEList(counts=counts) + dge <- calcNormFactors(dge, method = "TMM") + tmm <- cpm(dge) #in publication it says log-transformed CPM, but log-transformation + #is not working in combination with combat ... + + #Remove batch data using combat + batch_data<-fread("imd_paper_rna_data/clinical_diagnosis_age_sex_v2.txt") + + #Filter batch data for samples in the matrix + batch_data<-batch_data[batch_data$id %in% colnames(tmm),] + print(paste("Sorted the batch data correctly:",all(batch_data$id == colnames(tmm)))) + + modcombat = model.matrix(~1, data=batch_data) + combat_tmm = ComBat(dat=tmm, batch=batch_data$Phase,mod=modcombat, prior.plots = FALSE) + + #Check that correlation between samples is high + cor_matrix<-cor(combat_tmm) + + #Filter samples with a correlation coefficient less than 0.9 + cor_coef_mean<-rowMeans(cor_matrix) + combat_tmm<-combat_tmm[,names(cor_coef_mean)[cor_coef_mean>=0.9]] + + # #Plot remaining samples + # cor_matrix<-cor(combat_tmm) + # png("imd_paper_rna_data/plots/sample_correlation.png") + # corrplot(cor_matrix,method="color",order="hclust",tl.col="black",tl.cex=0.2) + # dev.off() + + #Combine genes that appear multiple times in the matrix + combat_tmm<- apply(combat_tmm, 2, tapply, rownames(combat_tmm), + mean, na.rm=T) + + #Save normalized matrix + write.table(combat_tmm, file=paste0("imd_paper_rna_data/norm_count/",ct,"_norm_count.txt"), + quote=FALSE,sep="\t") + + #Read single cell correlation + corr_ct<-fread(paste0("co-expression_indivs_combined/",ct_single_cell,"/", + ct_single_cell,"_UT_correlation.csv")) + corr_ct$gene1<-gsub(";.*","",corr_ct$V1) + corr_ct$gene2<-gsub(".*;","",corr_ct$V1) + + #Order so that gene1 is always the one first in alphabet + corr_ct$swap<-ifelse(corr_ct$gene1 > corr_ct$gene2,corr_ct$gene1,corr_ct$gene2) + corr_ct$gene1<-ifelse(corr_ct$gene1 > corr_ct$gene2,corr_ct$gene2,corr_ct$gene1) + corr_ct$gene2<-corr_ct$swap + corr_ct$swap<-NULL + corr_ct$V1<-NULL + + #Filter for correlation values in CD4 T cells + expressed_genes<-union(corr_ct$gene1,corr_ct$gene2) + combat_tmm<-combat_tmm[rownames(combat_tmm) %in% expressed_genes,] + + #Calculation correlation + cor_matrix<-cor(t(combat_tmm),method="spearman") + cor_matrix<-reshape2::melt(cor_matrix) + cor_matrix$Var1<-as.character(cor_matrix$Var1) + cor_matrix$Var2<-as.character(cor_matrix$Var2) + cor_matrix<-cor_matrix[cor_matrix$Var1 < cor_matrix$Var2,] + colnames(cor_matrix)<-c("gene1","gene2","corr") + + #Save correlation + write.table(cor_matrix, file=corr_file_name, + quote=FALSE,sep="\t") + } + + #Compare with single cell correlation + cor_matrix<-merge(cor_matrix,corr_ct,by=c("gene1","gene2")) + + ylab_text<-paste("Correlation ImmuNexUT -",ct) + plot_path<-paste0("imd_paper_rna_data/plots/correlation_",ct,".png") + corr_corr<-cor(cor_matrix$UT,cor_matrix$corr) + + g<-ggplot(cor_matrix,aes(UT,corr))+ + geom_bin2d(bins=50)+ + xlab("Correlation single cell")+ + ylab(ylab_text)+ + xlim(-1,1)+ylim(-1,1)+ + scale_fill_viridis(trans="log10")+ + annotate(geom="text", x=-0.95, y=0.95,size=8, + hjust = 0,vjust=1, + label=paste0("r = ",format(corr_corr,digits=2)))+ + theme(axis.title=element_text(size=16), + axis.text=element_text(size=14), + legend.position="none") + + ggsave(g,file=plot_path) +} \ No newline at end of file diff --git a/02_correlation_evaluation/wilcoxon_test_crispr.R b/02_correlation_evaluation/wilcoxon_test_crispr.R new file mode 100644 index 0000000..bf85c42 --- /dev/null +++ b/02_correlation_evaluation/wilcoxon_test_crispr.R @@ -0,0 +1,212 @@ +# ------------------------------------------------------------------------------ +# Benchmark our correlation results from single cell (Oelen v3, CD4+ T cells) +# and bulk (ImmuNexUT, naive CD4+ T cells) +# with a public CRISPR perturbation dataset using Wilcoxon Rank Sum Test +# ------------------------------------------------------------------------------ + +library(data.table) +library(ggplot2) +library(ggpubr) +library(RColorBrewer) +library(gtools) +library(dplyr) + +theme_set(theme_bw()) + +#Get colors +cols_brewer <- c(brewer.pal(n = 3, "Set2")[2],"grey78") + +#Set MT correction for KO gene identification +MTcorrection<-"FDR" #alternatives: "Bonf","FDR" +print(paste("MT correction:",MTcorrection)) + +# Load single cell data +ct<-"CD4T" #alternative "CD8T" +cond<-"UT" + +corr_sc<-fread(paste0("co-expression_indivs_combined/",ct,"/",ct,"_",cond, + "_correlation.csv")) +corr_sc$gene1<-gsub(";.*","",corr_sc$V1) +corr_sc$gene2<-gsub(".*;","",corr_sc$V1) + +corr_sc$swap<-ifelse(corr_sc$gene1 > corr_sc$gene2,corr_sc$gene1,corr_sc$gene2) +corr_sc$gene1<-ifelse(corr_sc$gene1 > corr_sc$gene2,corr_sc$gene2,corr_sc$gene1) +corr_sc$gene2<-corr_sc$swap +corr_sc$swap<-NULL + +# Load ImmuNexUT data (already preprocessed correctly) +ct<-"Naive_CD4" +corr_imn<-fread(paste0("imd_paper_rna_data/correlation/", + ct,"_correlation_extended.txt")) +corr_imn$V1<-NULL +colnames(corr_imn)[3]<-"UT" + +# Filter for genes that are expressed in both data sets +expressed_genes_sc<-union(corr_sc$gene1,corr_sc$gene2) +expressed_genes_bulk<-union(corr_imn$gene1,corr_imn$gene2) +expressed_genes<-intersect(expressed_genes_sc,expressed_genes_bulk) + +print(paste("Number of genes expressed in both data sets:",length(expressed_genes))) + +# Load perturbation data +path<-"perturbation_dataset/perturbation_data/CD4T_GATE2019_MAST_DE/WT_KO/" +path_negControl <- "perturbation_dataset/perturbation_data/CD4T_GATE2019_MAST_DE/WT_NP/" + +# Get a list with all DE genes +files<-list.files(path) + +# Use the setting without artifical cells +files<-files[!startsWith(files,"artificialCells_")] +genes<-unique(sapply(files,function(fl) strsplit(fl,"\\.")[[1]][1])) +print(paste0("Unique genes:",length(genes))) + +genes<-genes[genes %in% expressed_genes] +print(paste0("Unique genes expressed in 50% of cells:",length(genes))) + +# Iterate over both data sets and all KO genes to perform Wilcoxon test +p_vals<-NULL +all_comps<-NULL +for(data_type in c("ImmuNexUT","sc")){ + + if(data_type == "sc"){ + corr_ct<-corr_sc + expressed_genes<-expressed_genes_sc + + } else if (data_type == "ImmuNexUT"){ + corr_ct<-corr_imn + expressed_genes<-expressed_genes_bulk + } + + #Bonferroni cutoff corrected for the number of expressed genes + if(MTcorrection == "Bonf"){ + cutoff<-0.05/length(expressed_genes) + } else { + cutoff<-0.05 + } + + # Go over each gene + plot_list<-list() + for(gene in genes){ + + corr_ct_ko<-corr_ct[corr_ct$gene1==gene,c("gene2","UT")] + colnames(corr_ct_ko)[1]<-"gene1" + corr_ct_ko<-rbind(corr_ct_ko,corr_ct[corr_ct$gene2==gene,c("gene1","UT")]) + + #Use absolute correlation + corr_ct_ko$UT<-abs(corr_ct_ko$UT) + + #Get all knock_out genes + all_measured_ko_genes<-NULL + ko_genes_combined<-NULL + for(fl in files[startsWith(files,gene)]){ + ko_genes<-read.table(paste0(path,fl)) + all_measured_ko_genes<-union(all_measured_ko_genes,rownames(ko_genes)) + + if(MTcorrection=="FDR"){ + ko_genes<-ko_genes[rownames(ko_genes) %in% expressed_genes,] + ko_genes$p_val<-p.adjust(ko_genes$p_val,method="BH") + } + + #Filter for expressed genes and significant threshold + ko_genes<-ko_genes[rownames(ko_genes) %in% expressed_genes & + ko_genes$p_val% + group_by(ko_gene,data_type)%>% + summarize(max_UT=max(UT)) + +p_vals<-merge(p_vals,max_corr,by=c("ko_gene","data_type")) +p_vals$max_UT<-p_vals$max_UT*1.1 +p_vals$is_ko<-1.5 + +g_sc<-ggplot()+ + geom_violin(data=all_comps[all_comps$data_type=="single cell",], + aes(x=is_ko,y=UT,fill=is_ko))+ + geom_boxplot(data=all_comps[all_comps$data_type=="single cell",], + aes(x=is_ko,y=UT,fill=is_ko), + width = 0.15, outlier.shape = NA)+ + geom_text(data=p_vals[p_vals$data_type=="single cell",], + aes(x=is_ko,y=max_UT,label=pvaltext), + size=6)+ + facet_wrap(~ko_gene,scales ="free",nrow=1)+ + xlab("")+ + ylab("Absolute correlation (single cell)")+ + scale_fill_manual("DE gene\nafter KO",values=cols_brewer)+ + theme(legend.position="none", + axis.title=element_text(size=15), + axis.text=element_text(size=14), + strip.text=element_text(size=15)) + +g_bulk<-ggplot()+ + geom_violin(data=all_comps[all_comps$data_type=="ImmuNexUT",], + aes(x=is_ko,y=UT,fill=is_ko))+ + geom_boxplot(data=all_comps[all_comps$data_type=="ImmuNexUT",], + aes(x=is_ko,y=UT,fill=is_ko), + width = 0.15, outlier.shape = NA)+ + geom_text(data=p_vals[p_vals$data_type=="ImmuNexUT",], + aes(x=is_ko,y=max_UT,label=pvaltext), + size=6)+ + facet_wrap(~ko_gene,scales ="free",nrow=1)+ + xlab("")+ + ylab("Absolute correlation (ImmuNexUT)")+ + scale_fill_manual("DE gene\nafter KO",values=cols_brewer)+ + theme(legend.position="none", + axis.title=element_text(size=15), + axis.text=element_text(size=14), + strip.text=element_text(size=15)) + +g<-ggarrange(g_sc,g_bulk,ncol=1,align="hv") + +ggsave(g,file="perturbation_dataset/plots/wilcoxon_all_combined.pdf", + width=15,height=8) + \ No newline at end of file diff --git a/02_correlation_evaluation/wilcoxon_test_string.R b/02_correlation_evaluation/wilcoxon_test_string.R new file mode 100644 index 0000000..996825d --- /dev/null +++ b/02_correlation_evaluation/wilcoxon_test_string.R @@ -0,0 +1,96 @@ +# ------------------------------------------------------------------------------ +# Compare if correlated pairs from single cell (Oelen v3, CD4+ T cells) +# and bulk (ImmuNexUT, naive CD4+ T cells) are enriched in STRING database +# (Using the same strategy as in CRISPR validation with +# Wilcoxon Rank Sum Test) +# ------------------------------------------------------------------------------ + +library(data.table) +library(ggplot2) +library(RColorBrewer) + +theme_set(theme_bw()) + +#Get colors +cols_brewer <- c("grey78",brewer.pal(n = 3, "Set2")[2]) + +cond<-"UT" + +plot_list<-NULL +for(data_type in c("sc","ImmuNexUT")){ + + print(data_type) + + # Load single cell correlation (cell type specific) + if(data_type == "sc"){ + + ct<-"CD4T" #alternative "CD8T" + + corr_ct<-fread(paste0("co-expression_indivs_combined/",ct,"/",ct,"_",cond, + "_correlation.csv")) + corr_ct$gene1<-gsub(";.*","",corr_ct$V1) + corr_ct$gene2<-gsub(".*;","",corr_ct$V1) + + corr_ct$swap<-ifelse(corr_ct$gene1 > corr_ct$gene2,corr_ct$gene1,corr_ct$gene2) + corr_ct$gene1<-ifelse(corr_ct$gene1 > corr_ct$gene2,corr_ct$gene2,corr_ct$gene1) + corr_ct$gene2<-corr_ct$swap + corr_ct$swap<-NULL + } else if (data_type == "ImmuNexUT"){ + + ct<-"Naive_CD4" + + #Read ImmuNexUT data (already preprocessed correctly) + corr_ct<-fread(paste0("imd_paper_rna_data/correlation/", + ct,"_correlation.txt")) + corr_ct$V1<-NULL + colnames(corr_ct)[3]<-"UT" + } + + expressed_genes<-union(corr_ct$gene1,corr_ct$gene2) + + corr_ct$UT<-abs(corr_ct$UT) + + #Read STRING data base + string<-fread("additional_files/STRING-network.csv") + string<-string[string$Gene1 %in% expressed_genes & + string$Gene2 %in% expressed_genes,] + + string$swap<-ifelse(string$Gene1 > string$Gene2,string$Gene1,string$Gene2) + string$Gene1<-ifelse(string$Gene1 > string$Gene2,string$Gene2,string$Gene1) + string$Gene2<-string$swap + string$swap<-NULL + + #Combine with correlation values + string$is_string<-TRUE + corr_ct<-merge(corr_ct,string,by.x=c("gene1","gene2"), + by.y=c("Gene1","Gene2"),all.x=TRUE) + corr_ct$is_string[is.na(corr_ct$is_string)]<-FALSE + + wt<-wilcox.test(corr_ct$UT[corr_ct$is_string],corr_ct$UT[!corr_ct$is_string], + paired=FALSE,alternative="greater") + print(wt$p.value) + + if(data_type=="sc"){ + data_type<-"Oelen (v3)" + } + + g<-ggplot(corr_ct,aes(x=is_string,y=UT, fill=is_string))+ + geom_violin()+ + geom_boxplot(width = 0.15, outlier.shape = NA)+ + xlab("Gene pair in STRING network")+ + ylab("Absolute correlation")+ + ylim(c(0,1))+ + ggtitle(paste(data_type,"dataset"))+ + annotate("text",x=1.5,y=0.9,label=paste0("p =", + format(wt$p.value,digits=2)),size=4.5)+ + scale_fill_manual(values=cols_brewer)+ + theme(legend.position = "none", + plot.title=element_text(size=15), + axis.title=element_text(size=14), + axis.text=element_text(size=12)) + plot_list<-c(plot_list,list(g)) +} + +g<-ggarrange(plotlist=plot_list,ncol=2,labels=c("a","b")) +ggsave(g,file=paste0("compare_with_string/plots/string_wilcoxon_combined.pdf"), + width=7,height=4) \ No newline at end of file diff --git a/03_celltype_individual_comparison/README.md b/03_celltype_individual_comparison/README.md new file mode 100644 index 0000000..e9df023 --- /dev/null +++ b/03_celltype_individual_comparison/README.md @@ -0,0 +1,15 @@ +# 03_celltype_individual_comparison + +*compare_individuals_variance.R* : explores for all genes expressed in at least 50% of the cells the variance across individuals + +*correlation_between_celltypes.R* : calculates the Pearson correlation of gene pairwise Spearman correlation for all pairwise combinations of cell types within each dataset (for Oelen v2 and v3 dataset, input from *correlation_celltype.py*), taking only genes expressed in 50% of the cells in both cell types; plots results in heatmap afterwards + +*correlation_celltype.py* : calculates Spearman correlation for each genepair expressed in 50% of the cells for Oelen dataset (V2) and (V3), separately per cell type, but combing all individuals; provides so the input csv files for *correlation_between_celltypes.R* + +*correlation_correlation_distribution_celltypes_and_individuals.R* : combines two basic overview plots: the correlation distribution in each cell type (input from *correlation_celltype.py*) and the concordance of donor-specific correlation (calculates Pearson correlation of gene pairwise Spearman correlation for each combination of individuals within each cell type) + +*correlation_subsampling.py* : calculates per donor correlation for each cell type and different numbers of cells for the sample (randomly subsampling to this number of cells), followed by comparison between donors for within the cell type and the subsampling step, taking genepairs expressed in 50% of the cells, using again Oelen v2 and v3 dataset separately + +*fit_logcurve_indiv_subsampling_effect.R* : tkes the results from *correlation_subsampling.py* and fitting logarithmic curves for the relationship between number of cells and concordance between individuals, one per celltype, to better describe this relationship + +*plot_indiv_subsampling_effect.R* : plots results from *correlation_subsampling.py* to show relationship between number of cells and concordance between individuals diff --git a/03_celltype_individual_comparison/compare_individuals_variance.R b/03_celltype_individual_comparison/compare_individuals_variance.R new file mode 100644 index 0000000..ffb661c --- /dev/null +++ b/03_celltype_individual_comparison/compare_individuals_variance.R @@ -0,0 +1,81 @@ +# ------------------------------------------------------------------------------ +# Combine gene pair variance across individuals +# for Oelen (v2) and (v3) in one plot (taking Z scores) +# Input: correlation matrices per individual and cell type +# (for comparison of individuals) +# Output: plot and summary as output text +# ------------------------------------------------------------------------------ + +library(data.table) +library(dplyr) +library(ggplot2) +library(ggpubr) + +theme_set(theme_bw()) + +path<-"coeqtl_mapping/input/individual_networks/UT/" + +cell_types<-c("B","CD4T","CD8T","DC","monocyte","NK") + +#Full cell type names as reported in the paper +cell_types_corrected<-setNames(c("CD4+ T","CD8+ T","Monocyte","NK","DC","B"), + c("CD4T","CD8T","monocyte","NK","DC","B")) + +g_list<-NULL +#Evaluate both Oelen v2 and v3 dataset +for(dataset in c("onemillionv2","onemillionv3")){ + corr_summary<-NULL + for(ct in cell_types){ + + #Correlation values + if(dataset=="onemillionv2"){ + corr<-fread(paste0(path,dataset,"/UT_",ct,".genesnonzero0.5.zscores.tsv.gz")) + } else { + corr<-fread(paste0(path,dataset,"/UT_",ct,".genesnonzero0.5.zscores.gz")) + } + + gene_pairs<-corr$V1 + corr$V1<-NULL + + #Set Inf values to NA to remove them afterwards + corr<-as.matrix(corr) + corr[is.infinite(corr)]<-NA + + #Get mean and variance for each gene pair (drop NA and Inf values from calculation) + corr_summary<-rbind(corr_summary, + data.frame(ct, + gene_pairs, + var=apply(corr,1,var,na.rm=TRUE), + mean=apply(corr,1,mean,na.rm=TRUE))) + } + + #Check frequency of "highly variable" genes + print(paste("Frequency of highly variable genes for",dataset)) + tmp<-corr_summary%>% + group_by(ct)%>% + summarise(freq_high_var=mean(var>2,na.rm=TRUE)) + print(tmp) + print(median(tmp$freq_high_var)) + + #Replace cell type names + corr_summary$ct<-cell_types_corrected[corr_summary$ct] + + g<-ggplot(corr_summary,aes(x=var,color=ct))+ + geom_density()+ + xlab("Correlation variance across individuals")+ + ylab("Density")+ + ylim(0,2)+ + xlim(0,15)+ + scale_color_discrete("Cell type")+ + theme(axis.title=element_text(size=10), + axis.text=element_text(size=9), + legend.title=element_text(size=10), + legend.text=element_text(size=10)) + + g_list<-c(g_list,list(g)) +} + +g<-ggarrange(plotlist=g_list,ncol=2,common.legend = TRUE, + legend="bottom",labels=c("a","b")) +ggsave(g,file="co-expression_indivs_combined/plots/per_indivual_var_zscores_combined.pdf", + width=8,height=4) \ No newline at end of file diff --git a/03_celltype_individual_comparison/correlation_between_celltypes.R b/03_celltype_individual_comparison/correlation_between_celltypes.R new file mode 100644 index 0000000..d61c2c1 --- /dev/null +++ b/03_celltype_individual_comparison/correlation_between_celltypes.R @@ -0,0 +1,110 @@ +# ------------------------------------------------------------------------------ +# Check Pearson correlation between cell types for Oelen v2 and v3 dataset +# Input: correlation matrices generated with correlation_timepoint_combined_indivs.py +# Output: heatmap plot and summary as output text +# ----------------------------------------------------------------------------- + +library(data.table) +library(ggplot2) +library(viridis) + +theme_set(theme_bw()) + +cell_types<-c("CD4T","CD8T","monocyte","NK","DC","B") + +#Full cell type names as reported in the paper +cell_types_corrected<-setNames(c("CD4+ T","CD8+ T","Monocyte","NK","DC","B"), + c("CD4T","CD8T","monocyte","NK","DC","B")) + +#Check for both Oelen v3 and v2 datasets (paths set dependent on that) +path_v3<-"co-expression_indivs_combined/" +path_v2<-"co-expression_indivs_combined/one_million_version2/" + +for(version in c("v2","v3")){ + + if(version=="v2"){ + path<-path_v2 + } else { + path<-path_v3 + } + + #Iterate over each cell type combination to do all pairwise comparisons + corr_comp<-NULL + for(c1 in 1:c(length(cell_types)-1)){ + + #Read correlation file one + cell_type1<-cell_types[c1] + corr_c1<-fread(paste0(path,cell_type1,"/",cell_type1,"_UT_correlation.csv")) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr_c1$V1), + gsub(".*;","",corr_c1$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(c1=cell_type1, + c2=cell_type1, + gene_pairs=nrow(corr_c1), + genes_unique=num_genes, + corr=1)) + + for(c2 in (c1+1):length(cell_types)){ + + #Read correlation file two + cell_type2<-cell_types[c2] + corr_c2<-fread(paste0(path,cell_type2,"/",cell_type2,"_UT_correlation.csv")) + + corr<-merge(corr_c1,corr_c2,by=c("V1")) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr$V1), + gsub(".*;","",corr$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(c1=cell_type1, + c2=cell_type2, + gene_pairs=nrow(corr), + genes_unique=num_genes, + corr=cor(corr$UT.x,corr$UT.y,method="pearson"))) + } + } + + #Add last diagonal entry + cell_type1<-cell_types[length(cell_types)] + corr_c1<-fread(paste0(path,cell_type1,"/",cell_type1,"_UT_correlation.csv")) + + #Unique genes + num_genes<-length(union(gsub(";.*","",corr_c1$V1), + gsub(".*;","",corr_c1$V1))) + + corr_comp<-rbind(corr_comp, + data.frame(c1=cell_type1, + c2=cell_type1, + gene_pairs=nrow(corr_c1), + genes_unique=num_genes, + corr=1)) + + #Rename cell types to make it coherent with other part of the manuscript + corr_comp$c1<-cell_types_corrected[corr_comp$c1] + corr_comp$c2<-cell_types_corrected[corr_comp$c2] + corr_comp$c1<-factor(corr_comp$c1,levels=cell_types_corrected) + corr_comp$c2<-factor(corr_comp$c2,levels=cell_types_corrected) + + #Create heatmap + g<-ggplot(corr_comp,aes(x=c1,y=c2,fill=corr))+ + geom_tile()+ + geom_text(aes(label=paste0(round(corr,3),"\n(",genes_unique,")")),size=4)+ + xlab("Cell type")+ + ylab("Cell type")+ + #scale_fill_gradient2("Correlation",limits = c(-1,1),low="darkblue",mid="white",high="darkred") + scale_fill_viridis("Correlation",limits=c(0,1))+ + theme(axis.title = element_text(size=14), + axis.text = element_text(size=12), + legend.title = element_text(size=14), + legend.text = element_text(size=12)) + ggsave(g,file=paste0("co-expression_indivs_combined/plots/corr_celltypes_",version,".pdf"), + width=7,height=5) + + #Check correlation distribution across cell types + summary(corr_comp$corr[corr_comp$c1 != corr_comp$c2]) + +} \ No newline at end of file diff --git a/03_celltype_individual_comparison/correlation_celltype.py b/03_celltype_individual_comparison/correlation_celltype.py new file mode 100644 index 0000000..86b3e78 --- /dev/null +++ b/03_celltype_individual_comparison/correlation_celltype.py @@ -0,0 +1,96 @@ +############################################################################################# +# Calculate correlation for each pairwise gene combiation in each cell type and the UT timepoint, +# where both genes are expressed in at least 50% of the cells +# merging all individuals for Oelen v2 and v3 dataset (specified in parameter version2) +# Input: seurat objects with Oelen v2 and v3 dataset +# Output: correlation values as csv files (one per cell type) +############################################################################################ + +#from scipy.stats import t, norm +from scipy.stats import spearmanr +import scanpy as sc +import numpy as np +import pandas as pd +from pathlib import Path +from time import time +import os +import re + +# specify if Oelen v2 (version2=True) or v3 (version2=False) dataset is used +version2 = True + +# set result path +if version2: + prefix_results = Path('co-expression_indivs_combined/one_million_version2/') +else: + prefix_results = Path('co-expression_indivs_combined/') + +# load scanpy object +if version2: + alldata = sc.read_h5ad('seurat_objects/1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.sct.h5ad') +else: + alldata = sc.read_h5ad('seurat_objects/1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad') + +def select_gene_nonzeroratio(df, ratio): + nonzerocounts = np.count_nonzero(df.values, axis=0)/df.shape[0] + selected_genes = df.columns[nonzerocounts>ratio] + return selected_genes + +# extract timepoint from timepoint - stimulation annotation +def get_time(x): + if x == 'UT': + return x + else: + pattern = re.compile(r'\d+h') + return re.findall(pattern, x)[0] + + +# extract timepoint from timepoint - stimulation annotation +observations = alldata.obs.copy() +observations['time_merged'] = [get_time(item) for item in observations['timepoint']] +observations['timepoint_id_celltype'] = [f'{item[0]}_{item[1]}' for item + in observations[['time_merged', 'cell_type_lowerres']].values] + +# iterate over each cell type +celltypes = ['B', 'CD4T', 'CD8T', 'monocyte', 'DC', 'NK'] +for celltype in celltypes: + if not os.path.isdir(prefix_results/celltype): + os.mkdir(prefix_results/celltype) + starttime = time() + print(celltype) + specific = alldata[alldata.obs.cell_type_lowerres==celltype] + celltype_data = pd.DataFrame(data=specific.X.toarray(), + index=specific.obs.index, + columns=specific.var.index) + + # get the set of gene pairs + specific_obs = observations[observations['cell_type_lowerres']==celltype] + + # select only UT cells + for condition in ['UT']: + + # filter for the condition + celltype_condition_data = celltype_data[specific_obs.time_merged==condition] + + #filter genes after a nonzero rate of at least 0.5 + selected_genes = select_gene_nonzeroratio(celltype_condition_data, 0.5) + + print(f"Number of selected genes for {celltype} {condition}: {len(selected_genes)}") + + gene_pairs = [] + for i,gene1 in enumerate(selected_genes): + for j in range(i+1, len(selected_genes)): + gene_pairs.append(';'.join([gene1, selected_genes[j]])) + + input_df = celltype_condition_data[selected_genes] + input_data = spearmanr(input_df, axis=0)[0] + input_data_uppertria = input_data[np.triu_indices_from(input_data, 1)] + + corrs_df = pd.DataFrame(data=input_data_uppertria, + columns=[f'{condition}'], + index=gene_pairs) + + corrs_df.to_csv(prefix_results/celltype/f'{celltype}_{condition}_correlation.csv') + + + print(f"Finished {celltype} with time {time() - starttime}") diff --git a/03_celltype_individual_comparison/correlation_distribution_celltypes_and_individuals.R b/03_celltype_individual_comparison/correlation_distribution_celltypes_and_individuals.R new file mode 100644 index 0000000..1400f3d --- /dev/null +++ b/03_celltype_individual_comparison/correlation_distribution_celltypes_and_individuals.R @@ -0,0 +1,167 @@ +# ------------------------------------------------------------------------------ +# Check Pearson correlation between individuals (per cell type) +# and combine it with correlation levels in the cell type +# (as both are below each other in the final figure) +# Input: +# 1) correlation matrices per cell type generated with +# correlation_timepoint_combined_indivs.py +# (for correlation levels in each cell type) +# 2) correlation matrices per individual and cell type +# (for comparison of individuals) +# Output: plot and summary as output text +# ----------------------------------------------------------------------------- + +library(data.table) +library(ggplot2) +library(ggpubr) +library(RColorBrewer) +library(dplyr) + +theme_set(theme_bw()) + +path<-"coeqtl_mapping/input/individual_networks/UT/" + +cell_types<-c("B","CD4T","CD8T","DC","monocyte","NK") + +#Full cell type names as reported in the paper +cell_types_corrected<-setNames(c("CD4+ T","CD8+ T","Monocyte","NK","DC","B"), + c("CD4T","CD8T","monocyte","NK","DC","B")) + +#Get standard color scale +gg_color_hue <- function(n) { + hues = seq(15, 375, length = n + 1) + hcl(h = hues, l = 65, c = 100)[1:n] +} + +#Evaluate both Oelen v2 and v3 dataset +for(dataset in c("onemillionv2","onemillionv3")){ + + #Evaluate correlation distribution in the cell type + all_corrs<-NULL + tp<-"UT" + for(ct in cell_types){ + + #Load correlation values + if(dataset=="onemillionv3"){ + corr_ct<-fread(paste0("co-expression_indivs_combined/",ct,"/", + ct,"_",tp,"_correlation.csv")) + } else { + corr_ct<-fread(paste0("co-expression_indivs_combined/one_million_version2/", + ct,"/",ct,"_",tp,"_correlation.csv")) + } + colnames(corr_ct)[2]<-"corr" + + #Get absolute correlation + corr_ct$corr<-abs(corr_ct$corr) + all_corrs<-rbind(all_corrs, + data.frame(level=c("<0.05",">0.05",">0.1",">0.2",">0.3"), + values=c(sum(abs(corr_ct$corr<0.05)), + sum(abs(corr_ct$corr)>0.05 & + abs(corr_ct$corr)<0.1), + sum(abs(corr_ct$corr)>0.1 & + abs(corr_ct$corr)<0.2), + sum(abs(corr_ct$corr)>0.2 & + abs(corr_ct$corr)<0.3), + sum(abs(corr_ct$corr)>0.3)), + freq=c(mean(abs(corr_ct$corr<0.05)), + mean(abs(corr_ct$corr)>0.05 & + abs(corr_ct$corr)<0.1), + mean(abs(corr_ct$corr)>0.1 & + abs(corr_ct$corr)<0.2), + mean(abs(corr_ct$corr)>0.2 & + abs(corr_ct$corr)<0.3), + mean(abs(corr_ct$corr)>0.3)), + ct,tp)) + } + + #Check general distribution of "highly correlated genes" + high_corr<-all_corrs[all_corrs$level %in% c(">0.3",">0.2",">0.1"),] + high_corr<-high_corr%>%group_by(ct)%>% + summarize(high_freq=sum(freq))%>% + as.data.frame() + median(high_corr$high_freq) + + #Get comparison between cell types + summary<-NULL + for(ct in cell_types){ + #Load file with all correlation values per individual and cell type + #each individual one column + if(dataset=="onemillionv3"){ + corr<-fread(paste0(path,dataset,"/UT_",ct,".genesnonzero0.5.coefs.gz")) + } else { + corr<-fread(paste0(path,dataset,"/UT_",ct,".genesnonzero0.5.coefs.tsv.gz")) + } + + #Get Pearson correlation between individual-specific correlations + gene_pairs<-corr$V1 + corr$V1<-NULL + indiv_corr<-cor(corr,method="pearson") + + #Melt the upper triangle + tmp<-reshape2::melt(indiv_corr) + tmp$Var1<-as.character(tmp$Var1) + tmp$Var2<-as.character(tmp$Var2) + tmp<-tmp[tmp$Var1 < tmp$Var2,] + + tmp$ct<-ct + + summary<-rbind(summary,tmp) + } + + #Replace cell type names + all_corrs$ct<-cell_types_corrected[all_corrs$ct] + summary$ct<-cell_types_corrected[summary$ct] + + #Sort cell types according to their highly correlated genes + sorting<-all_corrs[all_corrs$level==">0.3",] + + #Sort cell type colors + colors_cts<-gg_color_hue(6) + colors_cts<-colors_cts[order(sorting$freq)] + + sorting<-sorting[order(sorting$freq),] + + #Barplot showing the general correlation distribution in the cell type + all_corrs$level<-factor(all_corrs$level,levels=c("<0.05",">0.05",">0.1",">0.2",">0.3")) + all_corrs$ct<-factor(all_corrs$ct,levels=sorting$ct) + colors_bars<-brewer.pal(n = 6, "YlGnBu") + g.1<-ggplot(all_corrs,aes(x=ct,y=freq,fill=level))+ + geom_bar(stat="identity")+ + xlab("Cell type")+ylab("Fraction correlated genes")+ + scale_fill_manual("Absolute\ncorrelation",values=colors_bars[2:6])+ + theme(legend.position="bottom", + axis.title.y = element_text(size=13.5), + axis.title.x = element_blank(), + axis.text = element_text(size=12), + legend.title=element_text(size=11), + legend.text=element_text(size=10.5)) + + #Violin plot showing differences between individuals in the cell type + summary$ct<-factor(summary$ct,levels=sorting$ct) + g.2<-ggplot(summary,aes(x=ct,fill=ct,y=value))+ + geom_violin()+ + geom_boxplot(width = 0.15, outlier.shape = NA)+ + ylim(0,1)+ + xlab("Cell type")+ + ylab("Correlation between individuals")+ + scale_fill_manual(values=colors_cts)+ + theme(legend.position = "none", + axis.title.y = element_text(size=13.5), + axis.title.x = element_blank(), + axis.text = element_text(size=12)) + + + g<-ggarrange(g.1,g.2,ncol=1,align="hv") + ggsave(g,file=paste0("co-expression_indivs_combined/plots/corr_ct_indiv_", + dataset,".pdf"), + width=5,height=6) + + #Get median correlation in each cell type + med_corr<-summary%>% + group_by(ct)%>% + summarise(median(value,na.rm=TRUE)) + + print(dataset) + print(med_corr) + +} diff --git a/03_celltype_individual_comparison/correlation_subsampling.py b/03_celltype_individual_comparison/correlation_subsampling.py new file mode 100644 index 0000000..bfd1845 --- /dev/null +++ b/03_celltype_individual_comparison/correlation_subsampling.py @@ -0,0 +1,121 @@ +#################################################################################### +# Calculate per sample correlation with subsampled number of cells per donor +# to explore the relationship between number of cells and +# and concordance between donors +# Individuals with a total number of cells below the respective subsampled value +# are not tested, sampling range from 25 cells to the 75% quantile for the cell type +# (so that at least 25% of the individuals can be included each time) +# Selecting again genes expressed in at least 50% of the cells +# Input: seurat objects with Oelen v2 and v3 dataset +# Output: Csv file with Pearson correlation values for all individual comparison +# per celltype and subsampled number of cells +#################################################################################### + +import scanpy as sc +import numpy as np +import pandas as pd +from tqdm import tqdm +from scipy.stats import pearsonr, spearmanr + +def select_gene_nonzeroratio(df, ratio): + ''' + Select genes with non-zero ratio across all cells > specified ratio + ''' + nonzerocounts = np.count_nonzero(df.values, axis=0)/df.shape[0] + selected_genes = df.columns[nonzerocounts>ratio] + return selected_genes + +def calculate_individual_network(individual_df, n_cells=0, random_state=8): + ''' + Randomly select the n_cells from individual_df to calculate the gene-gene spearman network; + if n_cell not set, then use all cells from the individual + Return: A list of correlation coefficients + ''' + if n_cells > 0: + specific_individual_network = individual_df.sample(n_cells, random_state=random_state).corr(method='spearman') + else: + specific_individual_network = individual_df.corr(method='spearman') + indices = np.tril_indices_from(np.zeros((specific_individual_network.shape[0], + specific_individual_network.shape[0])), + k=1) + return specific_individual_network.values[indices].flatten() + +def calculate_correlation(celltype_df, celltype_obs, selected_genes, select_individuals, n_cells=100): + ''' + Calculate all inidividual networks for certain n_cells, and selected_indidviauls + Input: celltype_df: gene index in columns, cell index in rows, cell index will be used to match the index of + celltype_df; it needs at least one column named 'assignment', storing the individual index for + each cell + selected_genes: a list of gene index + select_individuals: a list of individual index + n_cells: number of cells to select from each individual, it should be smaller than the max number of cells + in all individuals + Output: all_individuals_correlation: a dataframe, each column of values is all the gene-gene spearman + correlation coefficients + correlation_of_individual_correlations: spearman correlation between all pairs of individuals' networks + ''' + all_individuals_correlation = pd.DataFrame() + if select_individuals is not None: + for assignment in select_individuals: + allcells_individual = celltype_obs[celltype_obs.assignment==assignment].index.values + specific_individual_df = celltype_df[selected_genes].loc[allcells_individual] + all_individuals_correlation[assignment] = calculate_individual_network(specific_individual_df, n_cells) + correlation_of_individual_correlations = all_individuals_correlation.corr(method='pearson') + individual_indices = np.triu_indices_from(correlation_of_individual_correlations.values, k=1) + return all_individuals_correlation, correlation_of_individual_correlations.values[individual_indices] + +# define path (run for Oelen v2 and v3 dataset separately) +version2 = False +if version2: + input_path = 'seurat_objects/1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.sct.h5ad' + output_path ='co-expression_indivs_subsampled/correlation_individuals_subsampled_1M_v2.csv' +else: + input_path = 'seurat_objects/1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad' + output_path ='co-expression_indivs_subsampled/correlation_individuals_subsampled_1M_v3.csv' + +# load single cell data +alldata = sc.read_h5ad(input_path) + +# filter to look only at UT cells +alldata = alldata[alldata.obs.timepoint == "UT"].copy() + +# select common individual per celltype +celltypes = ['CD4T','NK','monocyte','CD8T','B','DC'] +selected_individuals = {} +selected_individuals_cell_number = {} +for celltype in celltypes: + celltype_data = alldata[alldata.obs.cell_type_lowerres == celltype] + selected_individuals_cell_number[f'{celltype}'] = celltype_data.obs.assignment.value_counts().values + selected_individuals[f'{celltype}'] = celltype_data.obs.assignment.value_counts().index + #Check distribution of cells per individual + print(celltype_data.obs.assignment.value_counts().describe()) + +# calculate for each celltype +all_celltype_res = pd.DataFrame() +for celltype in tqdm(celltypes): + celltype_data = alldata[alldata.obs.cell_type_lowerres == celltype] + celltype_df = pd.DataFrame(data=celltype_data.X.toarray(), + columns=celltype_data.var.index, # genes + index=celltype_data.obs.index) # cells + + # select only genes expressed in at least 50% of the cells + selected_genes = select_gene_nonzeroratio(celltype_df, ratio=0.5) + + # Run each cell type for different number of cells so that at least 25% of individuals have that many cells + for cell_num in range(25, int(np.quantile(selected_individuals_cell_number[f'{celltype}'],0.75)),25): + + print(cell_num) + + # Select all individuals that have enough cells + indivs = selected_individuals[f'{celltype}'][selected_individuals_cell_number[f'{celltype}']>=cell_num] + # Get all pairwise correlation for these pairs + celltype_correlations = pd.DataFrame(data=calculate_correlation(celltype_df, celltype_data.obs, + selected_genes=selected_genes, + n_cells=cell_num, + select_individuals=indivs)[1], + columns=['corr']) + celltype_correlations['celltype'] = celltype + celltype_correlations['cell_num'] = cell_num + all_celltype_res = pd.concat([all_celltype_res, celltype_correlations], axis=0) + +all_celltype_res.to_csv(output_path) diff --git a/03_celltype_individual_comparison/fit_logcurve_indiv_subsampling_effect.R b/03_celltype_individual_comparison/fit_logcurve_indiv_subsampling_effect.R new file mode 100644 index 0000000..09903ea --- /dev/null +++ b/03_celltype_individual_comparison/fit_logcurve_indiv_subsampling_effect.R @@ -0,0 +1,102 @@ +# ------------------------------------------------------------------------------ +# Fit logarithmic curve describing mean correlation between individuals dependent +# on the number of cells per individual and cell type, fit down separately +# for each cell type +# Input: pairwise comparison of all individuals (Pearson correlation) per cell type +# and for different numbers of cells +# (subsampling and calculation done in correlation_subsampling.py) +# Output: logarithmic fit per cell type and curve visualizing the fit +# ------------------------------------------------------------------------------ + +library(ggplot2) +library(dplyr) + +theme_set(theme_bw()) + +suffix<-"v3" +#suffix<-"v2" + +color_coding <- list() +color_coding[["CD4+ T"]] <- "#2E9D33" +color_coding[["CD8+ T"]] <- "#126725" +color_coding[["Monocyte"]] <- "#EDBA1B" +color_coding[["NK"]] <- "#E64B50" +color_coding[["B"]] <- "#009DDB" +color_coding[["DC"]] <- "#965EC8" + +#Full cell type names as reported in the paper +cell_types_corrected<-setNames(c("CD4+ T","CD8+ T","Monocyte","NK","DC","B"), + c("CD4T","CD8T","monocyte","NK","DC","B")) + +#Load results +res<-read.csv(paste0("co-expression_indivs_subsampled/", + "correlation_individuals_subsampled_1M_",suffix,".csv"), + stringsAsFactors = FALSE) +res$X<-NULL + +res$celltype<-cell_types_corrected[res$celltype] + +res_summary<-res%>% + group_by(celltype,cell_num)%>% + summarise(mean_corr=mean(corr), + quantile_25=quantile(corr,0.25), + quantile_75=quantile(corr,0.75))%>% + as.data.frame() + +#Filter out B cells and DCs because no line can be drawn for them +res_summary<-res_summary[! res_summary$celltype %in% c("B","DC"),] + +#Fit one log function for each cell type +log_parameters<-NULL +for(cell_type in unique(res_summary$celltype)){ + + #Fit the linear model + res_ct<-res[res$celltype == cell_type,] + model_lm<-lm(corr~log(cell_num),data=res_ct) + + #Save model summary + summary_model<-summary(model_lm) + print(summary_model) + + log_parameters<-rbind(log_parameters, + data.frame(cell_type, + intercept=summary_model$coefficients[1,1], + log_beta=summary_model$coefficients[2,1], + adj_r_squared=summary_model$adj.r.squared, + stringsAsFactors = FALSE)) + res_summary<-rbind(res_summary, + data.frame(celltype=cell_type, + cell_num=seq(max(res_ct$cell_num)+25,1500,by=25), + mean_corr=NA, + quantile_25=NA, + quantile_75=NA)) +} + + + +res_summary$fitted_corr<-sapply(1:nrow(res_summary),function(i) + log_parameters$intercept[log_parameters$cell_type == res_summary$celltype[i]] + + log_parameters$log_beta[log_parameters$cell_type == res_summary$celltype[i]] * + log(res_summary$cell_num[i])) + +res_summary_melt<-reshape2::melt(res_summary[,c("celltype","cell_num","mean_corr","fitted_corr")], + id.vars=c("celltype","cell_num")) + +g<-ggplot()+ + geom_line(data=res_summary_melt,aes(x=cell_num,y=value,color=celltype, + linetype=variable))+ + geom_point(data=res_summary,aes(x=cell_num,y=mean_corr,color=celltype))+ + # annotate("text",x=850,y=0.2,hjust=0, + # label=paste0("y ~ -0.56 + 0.21 * log(x), R^2 = 0.98 (CD4+ T)\n", + # "y ~ -0.48 + 0.20 * log(x), R^2 = 0.86 (CD8+ T)\n", + # "y ~ -0.53 + 0.20 * log(x), R^2 = 0.94 (Monocyte)\n", + # "y ~ -0.41 + 0.15 * log(x), R^2 = 0.93 (NK)\n"))+ + scale_color_manual("Cell type",values=unlist(color_coding))+ + scale_linetype_discrete("",labels=c("Observed","Predicted"))+ + xlab("Subsampled number of cells per individual")+ + ylab("Correlation between individuals") +print(g) + +ggsave(g,file=paste0("co-expression_indivs_subsampled/plots/subsampling_1M_", + suffix,"_fitted_lines.pdf"), + width=10,height=4) diff --git a/03_celltype_individual_comparison/individual_networks_for_selected_genepairs.py b/03_celltype_individual_comparison/individual_networks_for_selected_genepairs.py new file mode 100644 index 0000000..3f72781 --- /dev/null +++ b/03_celltype_individual_comparison/individual_networks_for_selected_genepairs.py @@ -0,0 +1,268 @@ +import argparse +import os +import re +from collections import namedtuple +from pathlib import Path + +import numpy as np +import pandas as pd +import scanpy as sc +from scipy.stats import rankdata +from scipy.stats import t, norm +from tqdm import tqdm + + +def get_time(x): + if x == 'UT': + return x + else: + pattern = re.compile(r'\d+h') + return re.findall(pattern, x)[0] + + +class DATASET: + def __init__(self, datasetname): + self.name = datasetname + self.path_prefix = Path("./") + self.information = self.get_information() + + def get_information(self): + if self.name == 'onemillionv2': + self.path = '1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.sct.h5ad' + self.individual_id_col = 'assignment' + self.timepoint_id_col = 'time' + self.celltype_id = 'cell_type_lowerres' + self.chosen_condition = {'UT': 'UT', + 'stimulated': '3h'} + elif self.name == 'onemillionv3': + self.path = '1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad' + self.individual_id_col = 'assignment' + self.timepoint_id_col = 'time' + self.celltype_id = 'cell_type_lowerres' + self.chosen_condition = {'UT': 'UT', + 'stimulated': '3h'} + elif self.name == 'stemiv2': + self.path = 'cardio.integrated.20210301.stemiv2.h5ad' + self.individual_id_col = 'assignment.final' + self.timepoint_id_col = 'timepoint.final' + self.celltype_id = 'cell_type_lowerres' + self.chosen_condition = {'UT': 't8w', + 'stimulated': 'Baseline'} + elif self.name == 'ng': + self.path = 'pilot3_seurat3_200420_sct_azimuth.h5ad' + self.individual_id_col = 'snumber' + self.celltype_id = 'cell_type_mapped_to_onemillion' + else: + raise IOError("Dataset name not understood.") + + def load_dataset(self): + self.get_information() + print(f'Loading dataset {self.name} from {self.path_prefix} {self.path}') + self.data_sc = sc.read_h5ad(self.path_prefix / self.path) + if self.name.startswith('onemillion'): + self.data_sc.obs['time'] = [get_time(item) for item in self.data_sc.obs['timepoint']] + elif self.name == 'ng': + celltype_maping = {'CD4 T': 'CD4T', 'CD8 T': 'CD8T', 'Mono': 'monocyte', 'DC': 'DC', 'NK': 'NK', + 'other T': 'otherT', 'other': 'other', 'B': 'B'} + self.data_sc.obs['cell_type_mapped_to_onemillion'] = [celltype_maping.get(name) for name in + self.data_sc.obs['predicted.celltype.l1']] + + +def select_gene_nonzeroratio(df, ratio): + nonzerocounts = np.count_nonzero(df.values, axis=0) / df.shape[0] + selected_genes = df.columns[nonzerocounts > ratio] + return selected_genes + + +def corr_to_z(coef, num): + t_statistic = coef * np.sqrt((num - 2) / (1 - coef ** 2)) + prob = t.cdf(t_statistic, num - 2) + z_score = norm.ppf(prob) + positive_coef_probs = 1 - prob + positive_coef_probs[coef < 0] = 0 + negative_coef_probs = prob + negative_coef_probs[coef > 0] = 0 + probs = negative_coef_probs + positive_coef_probs + return z_score, probs + + +def get_om_name(filename): + pattern = re.compile(r'LLDeep_\d\d\d\d') + return re.findall(pattern, filename)[0] + + +def get_stemi_name(filename): + pattern = re.compile(r'TEST_\d.') + return re.findall(pattern, filename)[0] + + +def save_numpy(data_df, prefix): + np.save(f'{prefix}.npy', data_df.values) + with open(f'{prefix}.cols.txt', 'w') as f: + f.write('\n'.join(data_df.columns)) + with open(f'{prefix}.rows.txt', 'w') as f: + f.write('\n'.join(data_df.index)) + return None + + +def _contains_nan(a, nan_policy='propagate'): + policies = ['propagate', 'raise', 'omit'] + if nan_policy not in policies: + raise ValueError("nan_policy must be one of {%s}" % + ', '.join("'%s'" % s for s in policies)) + try: + with np.errstate(invalid='ignore'): + contains_nan = np.isnan(np.sum(a)) + except TypeError: + try: + contains_nan = np.nan in set(a.ravel()) + except TypeError: + contains_nan = False + nan_policy = 'omit' + if contains_nan and nan_policy == 'raise': + raise ValueError("The input contains nan values") + return contains_nan, nan_policy + + +def _chk_asarray(a, axis): + if axis is None: + a = np.ravel(a) + outaxis = 0 + else: + a = np.asarray(a) + outaxis = axis + if a.ndim == 0: + a = np.atleast_1d(a) + return a, outaxis + + +def spearmanr_withnan(a, axis=0, nan_policy='propagate'): + SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue')) + if axis is not None and axis > 1: + raise ValueError("spearmanr only handles 1-D or 2-D arrays, supplied axis argument {}, " + "please use only values 0, 1 or None for axis".format(axis)) + a, axisout = _chk_asarray(a, axis) + if a.ndim > 2: + raise ValueError("spearmanr only handles 1-D or 2-D arrays") + n_vars = a.shape[1 - axisout] + n_obs = a.shape[axisout] + if n_obs <= 1: + # Handle empty arrays or single observations. + return SpearmanrResult(np.nan, np.nan) + a_contains_nan, nan_policy = _contains_nan(a, nan_policy) + variable_has_nan = np.zeros(n_vars, dtype=bool) + if a_contains_nan: + if nan_policy == 'propagate': + if a.ndim == 1 or n_vars <= 2: + return SpearmanrResult(np.nan, np.nan) + else: + variable_has_nan = np.isnan(a).sum(axis=axisout) + a_ranked = np.apply_along_axis(rankdata, axisout, a) + rs = np.corrcoef(a_ranked, rowvar=axisout) + dof = n_obs - 2 # degrees of freedom + # rs can have elements equal to 1, so avoid zero division warnings + with np.errstate(divide='ignore'): + t_ = rs * np.sqrt((dof / ((rs + 1.0) * (1.0 - rs))).clip(0)) + prob = 2 * t.sf(np.abs(t_), dof) + # For backwards compatibility, return scalars when comparing 2 columns + if rs.shape == (2, 2): + return SpearmanrResult(rs[1, 0], prob[1, 0]) + else: + rs[variable_has_nan, :] = np.nan + rs[:, variable_has_nan] = np.nan + return SpearmanrResult(rs, prob) + + +def get_individual_networks_halfratioGenes(data_sc, individual_colname, selected_genes=None): + data_df = pd.DataFrame(data=data_sc.X.toarray(), + index=data_sc.obs.index, + columns=data_sc.var.index) + selected_genes = select_gene_nonzeroratio(data_df, ratio=0.5) + print(f"Selected {len(selected_genes)} genes.") + from itertools import combinations + selected_genes_sorted_genepairs = [';'.join(sorted(item)) for item in combinations(selected_genes, 2)] + coef_df = pd.DataFrame(index=selected_genes_sorted_genepairs) + coef_p_df = pd.DataFrame(index=selected_genes_sorted_genepairs) + zscore_df = pd.DataFrame(index=selected_genes_sorted_genepairs) + zscore_p_df = pd.DataFrame(index=selected_genes_sorted_genepairs) + data_selected_df = data_df[selected_genes] + print(f"Begin calculating networks for {len(data_sc.obs[individual_colname].unique())} individuals.") + for ind_id in tqdm(data_sc.obs[individual_colname].unique()): + cell_num = data_sc.obs[data_sc.obs[individual_colname] == ind_id].shape[0] + if cell_num > 10: + individual_df = data_selected_df.loc[data_sc.obs[individual_colname] == ind_id] + individual_coefs, individual_coef_ps = spearmanr_withnan(individual_df.values, axis=0) + individual_coefs_flatten = pd.DataFrame(data=individual_coefs[np.triu_indices_from(individual_coefs, 1)], + index=selected_genes_sorted_genepairs).loc[ + selected_genes_sorted_genepairs] + individual_coef_ps_flatten = \ + pd.DataFrame(data=individual_coef_ps[np.triu_indices_from(individual_coefs, 1)], + index=selected_genes_sorted_genepairs).loc[selected_genes_sorted_genepairs] + coef_df[ind_id] = individual_coefs_flatten + coef_p_df[ind_id] = individual_coef_ps_flatten + try: + individual_zscores_flatten, individual_zscore_ps_flatten = corr_to_z(individual_coefs_flatten.values, + cell_num) + zscore_df[ind_id] = individual_zscores_flatten + zscore_p_df[ind_id] = individual_zscore_ps_flatten + except: + continue + else: + print("Deleted this individual because of low cell number", cell_num) + return coef_df, coef_p_df, zscore_df, zscore_p_df + + +def get_individual_networks_given_celltype_condition_datasetname_for_6major_celltypes(datasetname, condition='UT', + genelist=None): + # load the data and data information + celltypes = ['CD4T', 'CD8T', 'monocyte', 'NK', 'B', 'DC'] + dataset = DATASET(datasetname) + dataset.load_dataset() + print(f"{datasetname} loaded.") + # calculate the individual network for specific condition and celltype + for celltype in celltypes: + print(datasetname, celltype, condition) + if datasetname == 'ng': + data_selected = dataset.data_sc[(dataset.data_sc.obs[dataset.celltype_id] == celltype)] + else: + data_selected = dataset.data_sc[(dataset.data_sc.obs[dataset.celltype_id] == celltype) & + (dataset.data_sc.obs[dataset.timepoint_id_col] == dataset.chosen_condition[ + condition])] + individual_coefs_df, individual_coefs_p_df, individual_zscores_df, individual_zscores_p_df = \ + get_individual_networks_halfratioGenes( + data_selected, + dataset.individual_id_col, + genelist + ) + print(individual_coefs_df.head()) + save_prefix = Path( + 'coeqtl_mapping/input') + if not os.path.exists(save_prefix / 'individual_networks' / condition / datasetname): + os.mkdir(save_prefix / 'individual_networks' / condition / datasetname) + individual_coefs_df.to_csv( + save_prefix / 'individual_networks' / condition / datasetname / f'{condition}_{celltype}.genesnonzero0.5.coefs.gz', + sep='\t', compression='gzip') + individual_zscores_df.to_csv( + save_prefix / 'individual_networks' / condition / datasetname / f'{condition}_{celltype}.genesnonzero0.5.zscores.gz', + sep='\t', compression='gzip') + print("Saved ") + return None + + +def argumentsparser(): + parser = argparse.ArgumentParser() + parser.add_argument('--datasetname', type=str, dest='datasetname') + parser.add_argument('--condition', type=str, dest='condition') + return parser + + +def run_get_individual_networks_given_celltype_condition_datasetname(): + args = argumentsparser().parse_args() + print(f"Starting to calculate individual network for {args.datasetname}, {args.celltype}, {args.condition}.") + get_individual_networks_given_celltype_condition_datasetname_for_6major_celltypes(condition=args.condition, + datasetname=args.datasetname) + return None + + +if __name__ == '__main__': + run_get_individual_networks_given_celltype_condition_datasetname() diff --git a/03_celltype_individual_comparison/plot_indiv_subsampling_effect.R b/03_celltype_individual_comparison/plot_indiv_subsampling_effect.R new file mode 100644 index 0000000..103007e --- /dev/null +++ b/03_celltype_individual_comparison/plot_indiv_subsampling_effect.R @@ -0,0 +1,55 @@ +# ------------------------------------------------------------------------------ +# Plot effect of number of cells on correlation between individuals +# Input: pairwise comparison of all individuals (Pearson correlation) per cell type +# and for different numbers of cells +# (subsampling and calculation done in correlation_subsampling.py) +# Output: violin plot showing trend +# ------------------------------------------------------------------------------ + +library(ggplot2) + +theme_set(theme_bw()) + +suffix<-"v3" +#suffix<-"v2" + +color_coding <- list() +color_coding[["CD4+ T"]] <- "#2E9D33" +color_coding[["CD8+ T"]] <- "#126725" +color_coding[["Monocyte"]] <- "#EDBA1B" +color_coding[["NK"]] <- "#E64B50" +color_coding[["B"]] <- "#009DDB" +color_coding[["DC"]] <- "#965EC8" + +#Full cell type names as reported in the paper +cell_types_corrected<-setNames(c("CD4+ T","CD8+ T","Monocyte","NK","DC","B"), + c("CD4T","CD8T","monocyte","NK","DC","B")) + +#Load results +res<-read.csv(paste0("co-expression_indivs_subsampled/", + "correlation_individuals_subsampled_1M_",suffix,".csv")) +res$X<-NULL + +res$celltype<-cell_types_corrected[res$celltype] + +#Filter out some values to make it more visible +res<-res[res$cell_num %in% seq(25,500,50),] + +res$cell_num<-as.factor(res$cell_num) + +g<-ggplot(res,aes(x=cell_num,y=corr,fill=celltype))+ + geom_violin(position = position_dodge(0.9)) + + xlab("Subsampled number of cells per individual")+ + ylab("Correlation between individuals")+ + ylim(0,1)+ + scale_fill_manual("Cell type",values=color_coding)+ + theme(axis.title = element_text(size=16), + axis.text = element_text(size=14), + legend.title = element_text(size=13), + legend.text = element_text(size=13), + legend.position=c(0.9,0.2))+ + guides(fill=guide_legend(nrow=3,byrow=FALSE)) +print(g) +ggsave(g,file=paste0("co-expression_indivs_subsampled/plots/subsampling_1M_", + suffix,"_filtered.pdf"), + width=14,height=4) diff --git a/04_coeqtl_mapping/.ipynb_checkpoints/examine_bios_replication-checkpoint.ipynb b/04_coeqtl_mapping/.ipynb_checkpoints/examine_bios_replication-checkpoint.ipynb new file mode 100644 index 0000000..8c5b906 --- /dev/null +++ b/04_coeqtl_mapping/.ipynb_checkpoints/examine_bios_replication-checkpoint.ipynb @@ -0,0 +1,1013 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy.stats import spearmanr\n", + "from pathlib import Path\n", + "from scipy.stats import t, norm\n", + "import seaborn as sns\n", + "%matplotlib inline\n", + "\n", + "def flip_zscore(zscore, coeqtlallele, altaf, altallele):\n", + " if not pd.isnull(zscore):\n", + " if coeqtlallele == altallele:\n", + " coeqtlaf = altaf\n", + " else:\n", + " coeqtlaf = 1 - altaf\n", + " if coeqtlaf > 0.5:\n", + " return -zscore\n", + " else:\n", + " return zscore\n", + " else:\n", + " return np.nan\n", + " \n", + "def flip_allele(altaf, altallele, refallele):\n", + " if altaf > 0.5:\n", + " return refallele\n", + " else:\n", + " return altallele" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_withbios_prefix = Path(\n", + " \"./coeqtl_mapping/output\"\n", + ")\n", + "filter_type = 'filtered_results'\n", + "\n", + "def flip_direction(allele1, allele2, zscore2):\n", + " if allele1 == allele2:\n", + " return zscore2\n", + " else:\n", + " return -1*zscore2\n", + "\n", + "\n", + "def get_z_score(t_statistic, num):\n", + " prob = t.cdf(t_statistic, num - 2)\n", + " z_score = norm.ppf(prob)\n", + " return z_score" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.patches as mpatches" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "color_dict = {'CD4T': '#2E9D33',\n", + " 'CD8T': 'darkgreen',\n", + " 'monocyte': '#EDBA1B',\n", + " 'NK': '#E64B50',\n", + " 'DC': '#965EC8',\n", + " 'B': '#009DDB',\n", + " 'cMono': 'peru',\n", + " 'ncMono': 'y',\n", + " 'CD4T_individual_100': '#2E9D33',\n", + " 'CD4T_individual_50': '#2E9D33',\n", + " 'CD4T_50': '#2E9D33',\n", + " 'CD4T_150': '#2E9D33',\n", + " 'CD4T_250': '#2E9D33'}" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "workdir = Path(\"./coeqtl_mapping/\")\n", + "bios_replication_filtered_df = pd.read_csv(\n", + " workdir/'bios/onlyRNAAlignMetrics_rmLLD/filtered_results/replication_summary.csv', \n", + " index_col=0\n", + ").set_index('celltype')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "celltype = 'CD4T'\n", + "eqtldf = pd.read_csv(\n", + " workdir/f'input/snp_selection/eqtl/UT_{celltype}_eQTLProbesFDR0.05-ProbeLevel_withAF.tsv',\n", + " sep='\\t'\n", + " )\n", + "eqtldf['snp_eqtlgene'] = ['_'.join(item) for item in eqtldf[['SNPName', 'genename']].values]\n", + "eqtl_allele_af_df = eqtldf.drop_duplicates(subset=['snp_eqtlgene', 'AlleleAssessed', 'AF'])\n", + "eqtl_allele_af_dict = eqtl_allele_af_df.set_index('snp_eqtlgene')[['AlleleAssessed', 'AF', 'alt_allele', 'ref_allele']].T.to_dict()" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "biostype = 'onlyRNAAlignMetrics_rmLLD'\n", + "celltype = 'CD4T'\n", + "filter_type = 'filtered_results'\n", + "\n", + "coeqtl_df = pd.read_csv(\n", + " coeqtl_withbios_prefix/filter_type/f'UT_{celltype}/coeqtls_fullresults_fixed.sig.withbios{biostype}.tsv.gz',\n", + " compression='gzip', \n", + " index_col=0, \n", + " sep='\\t')\n", + "coeqtl_df = coeqtl_df.dropna(subset=['t_bios'])\n", + "coeqtl_df['zscore_bios'] = [get_z_score(item[0], item[1]) for item in \n", + " coeqtl_df[['t_bios', \n", + " 'num_individuals_bios']].values]\n", + "coeqtl_df['flipped_zscore_bios'] = [flip_direction(item[0], item[1], item[2]) for item in \n", + " coeqtl_df[['SNPEffectAllele', \n", + " 'assessed_allele_bios',\n", + " 'zscore_bios']].values]\n", + "\n", + "isConcordant = lambda x:True if x[0]*x[1] > 0 else False\n", + "coeqtl_df['is_concordant'] = [isConcordant(item) for item in \n", + " coeqtl_df[['MetaPZ', 'flipped_zscore_bios']].values]\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
snp_genepairGeneGeneChrGenePosGeneStrandGeneSymbolSNPSNPChrSNPPosSNPAlleles...gene1_biosgene2_biosassessed_allele_biosnum_individuals_biosisinteractionterm_biossnp_genepair_bioscorrected_p_bioszscore_biosflipped_zscore_biosis_concordant
snp_gene1_gene2
rs7605824_SH3YL1_NPM1rs7605824_NPM1;SH3YL1NPM1;SH3YL12217730NaNNPM1;SH3YL1rs76058242280819G/A...SH3YL1NPM1A2491.0Truers7605824_NPM1;SH3YL10.000000-3.617874-3.617874True
rs7605824_SH3YL1_CD48rs7605824_CD48;SH3YL1CD48;SH3YL12217730NaNCD48;SH3YL1rs76058242280819G/A...SH3YL1CD48A2491.0Truers7605824_CD48;SH3YL10.784422-0.446946-0.446946True
rs7605824_SH3YL1_RPS13rs7605824_RPS13;SH3YL1RPS13;SH3YL12217730NaNRPS13;SH3YL1rs76058242280819G/A...SH3YL1RPS13A2491.0Truers7605824_RPS13;SH3YL10.000000-3.489377-3.489377True
rs7605824_SH3YL1_RPL31rs7605824_RPL31;SH3YL1RPL31;SH3YL12217730NaNRPL31;SH3YL1rs76058242280819G/A...SH3YL1RPL31A2491.0Truers7605824_RPL31;SH3YL10.349601-1.325633-1.325633True
rs7605824_SH3YL1_RPL3rs7605824_RPL3;SH3YL1RPL3;SH3YL12217730NaNRPL3;SH3YL1rs76058242280819G/A...SH3YL1RPL3A2491.0Truers7605824_RPL3;SH3YL10.000000-3.854851-3.854851True
..................................................................
rs4147638_SMDT1_ACTBrs4147638_ACTB;SMDT1ACTB;SMDT12242475695NaNACTB;SMDT1rs41476382242487900G/A...SMDT1ACTBG2491.0Truers4147638_ACTB;SMDT10.000000-3.7483263.748326True
rs4147638_SMDT1_RPS25rs4147638_RPS25;SMDT1RPS25;SMDT12242475695NaNRPS25;SMDT1rs41476382242487900G/A...SMDT1RPS25G2491.0Truers4147638_RPS25;SMDT10.0000005.773036-5.773036True
rs4147638_SMDT1_RPS3Ars4147638_RPS3A;SMDT1RPS3A;SMDT12242475695NaNRPS3A;SMDT1rs41476382242487900G/A...SMDT1RPS3AG2491.0Truers4147638_RPS3A;SMDT10.0000004.434777-4.434777True
rs4147638_SMDT1_RPS18rs4147638_RPS18;SMDT1RPS18;SMDT12242475695NaNRPS18;SMDT1rs41476382242487900G/A...SMDT1RPS18G2491.0Truers4147638_RPS18;SMDT10.0000007.128733-7.128733True
rs4147638_SMDT1_RPL11rs4147638_RPL11;SMDT1RPL11;SMDT12242475695NaNRPL11;SMDT1rs41476382242487900G/A...SMDT1RPL11G2491.0Truers4147638_RPL11;SMDT10.0000005.896748-5.896748True
\n", + "

497 rows × 55 columns

\n", + "
" + ], + "text/plain": [ + " snp_genepair Gene GeneChr \\\n", + "snp_gene1_gene2 \n", + "rs7605824_SH3YL1_NPM1 rs7605824_NPM1;SH3YL1 NPM1;SH3YL1 2 \n", + "rs7605824_SH3YL1_CD48 rs7605824_CD48;SH3YL1 CD48;SH3YL1 2 \n", + "rs7605824_SH3YL1_RPS13 rs7605824_RPS13;SH3YL1 RPS13;SH3YL1 2 \n", + "rs7605824_SH3YL1_RPL31 rs7605824_RPL31;SH3YL1 RPL31;SH3YL1 2 \n", + "rs7605824_SH3YL1_RPL3 rs7605824_RPL3;SH3YL1 RPL3;SH3YL1 2 \n", + "... ... ... ... \n", + "rs4147638_SMDT1_ACTB rs4147638_ACTB;SMDT1 ACTB;SMDT1 22 \n", + "rs4147638_SMDT1_RPS25 rs4147638_RPS25;SMDT1 RPS25;SMDT1 22 \n", + "rs4147638_SMDT1_RPS3A rs4147638_RPS3A;SMDT1 RPS3A;SMDT1 22 \n", + "rs4147638_SMDT1_RPS18 rs4147638_RPS18;SMDT1 RPS18;SMDT1 22 \n", + "rs4147638_SMDT1_RPL11 rs4147638_RPL11;SMDT1 RPL11;SMDT1 22 \n", + "\n", + " GenePos GeneStrand GeneSymbol SNP SNPChr \\\n", + "snp_gene1_gene2 \n", + "rs7605824_SH3YL1_NPM1 217730 NaN NPM1;SH3YL1 rs7605824 2 \n", + "rs7605824_SH3YL1_CD48 217730 NaN CD48;SH3YL1 rs7605824 2 \n", + "rs7605824_SH3YL1_RPS13 217730 NaN RPS13;SH3YL1 rs7605824 2 \n", + "rs7605824_SH3YL1_RPL31 217730 NaN RPL31;SH3YL1 rs7605824 2 \n", + "rs7605824_SH3YL1_RPL3 217730 NaN RPL3;SH3YL1 rs7605824 2 \n", + "... ... ... ... ... ... \n", + "rs4147638_SMDT1_ACTB 42475695 NaN ACTB;SMDT1 rs4147638 22 \n", + "rs4147638_SMDT1_RPS25 42475695 NaN RPS25;SMDT1 rs4147638 22 \n", + "rs4147638_SMDT1_RPS3A 42475695 NaN RPS3A;SMDT1 rs4147638 22 \n", + "rs4147638_SMDT1_RPS18 42475695 NaN RPS18;SMDT1 rs4147638 22 \n", + "rs4147638_SMDT1_RPL11 42475695 NaN RPL11;SMDT1 rs4147638 22 \n", + "\n", + " SNPPos SNPAlleles ... gene1_bios gene2_bios \\\n", + "snp_gene1_gene2 ... \n", + "rs7605824_SH3YL1_NPM1 280819 G/A ... SH3YL1 NPM1 \n", + "rs7605824_SH3YL1_CD48 280819 G/A ... SH3YL1 CD48 \n", + "rs7605824_SH3YL1_RPS13 280819 G/A ... SH3YL1 RPS13 \n", + "rs7605824_SH3YL1_RPL31 280819 G/A ... SH3YL1 RPL31 \n", + "rs7605824_SH3YL1_RPL3 280819 G/A ... SH3YL1 RPL3 \n", + "... ... ... ... ... ... \n", + "rs4147638_SMDT1_ACTB 42487900 G/A ... SMDT1 ACTB \n", + "rs4147638_SMDT1_RPS25 42487900 G/A ... SMDT1 RPS25 \n", + "rs4147638_SMDT1_RPS3A 42487900 G/A ... SMDT1 RPS3A \n", + "rs4147638_SMDT1_RPS18 42487900 G/A ... SMDT1 RPS18 \n", + "rs4147638_SMDT1_RPL11 42487900 G/A ... SMDT1 RPL11 \n", + "\n", + " assessed_allele_bios num_individuals_bios \\\n", + "snp_gene1_gene2 \n", + "rs7605824_SH3YL1_NPM1 A 2491.0 \n", + "rs7605824_SH3YL1_CD48 A 2491.0 \n", + "rs7605824_SH3YL1_RPS13 A 2491.0 \n", + "rs7605824_SH3YL1_RPL31 A 2491.0 \n", + "rs7605824_SH3YL1_RPL3 A 2491.0 \n", + "... ... ... \n", + "rs4147638_SMDT1_ACTB G 2491.0 \n", + "rs4147638_SMDT1_RPS25 G 2491.0 \n", + "rs4147638_SMDT1_RPS3A G 2491.0 \n", + "rs4147638_SMDT1_RPS18 G 2491.0 \n", + "rs4147638_SMDT1_RPL11 G 2491.0 \n", + "\n", + " isinteractionterm_bios snp_genepair_bios \\\n", + "snp_gene1_gene2 \n", + "rs7605824_SH3YL1_NPM1 True rs7605824_NPM1;SH3YL1 \n", + "rs7605824_SH3YL1_CD48 True rs7605824_CD48;SH3YL1 \n", + "rs7605824_SH3YL1_RPS13 True rs7605824_RPS13;SH3YL1 \n", + "rs7605824_SH3YL1_RPL31 True rs7605824_RPL31;SH3YL1 \n", + "rs7605824_SH3YL1_RPL3 True rs7605824_RPL3;SH3YL1 \n", + "... ... ... \n", + "rs4147638_SMDT1_ACTB True rs4147638_ACTB;SMDT1 \n", + "rs4147638_SMDT1_RPS25 True rs4147638_RPS25;SMDT1 \n", + "rs4147638_SMDT1_RPS3A True rs4147638_RPS3A;SMDT1 \n", + "rs4147638_SMDT1_RPS18 True rs4147638_RPS18;SMDT1 \n", + "rs4147638_SMDT1_RPL11 True rs4147638_RPL11;SMDT1 \n", + "\n", + " corrected_p_bios zscore_bios flipped_zscore_bios \\\n", + "snp_gene1_gene2 \n", + "rs7605824_SH3YL1_NPM1 0.000000 -3.617874 -3.617874 \n", + "rs7605824_SH3YL1_CD48 0.784422 -0.446946 -0.446946 \n", + "rs7605824_SH3YL1_RPS13 0.000000 -3.489377 -3.489377 \n", + "rs7605824_SH3YL1_RPL31 0.349601 -1.325633 -1.325633 \n", + "rs7605824_SH3YL1_RPL3 0.000000 -3.854851 -3.854851 \n", + "... ... ... ... \n", + "rs4147638_SMDT1_ACTB 0.000000 -3.748326 3.748326 \n", + "rs4147638_SMDT1_RPS25 0.000000 5.773036 -5.773036 \n", + "rs4147638_SMDT1_RPS3A 0.000000 4.434777 -4.434777 \n", + "rs4147638_SMDT1_RPS18 0.000000 7.128733 -7.128733 \n", + "rs4147638_SMDT1_RPL11 0.000000 5.896748 -5.896748 \n", + "\n", + " is_concordant \n", + "snp_gene1_gene2 \n", + "rs7605824_SH3YL1_NPM1 True \n", + "rs7605824_SH3YL1_CD48 True \n", + "rs7605824_SH3YL1_RPS13 True \n", + "rs7605824_SH3YL1_RPL31 True \n", + "rs7605824_SH3YL1_RPL3 True \n", + "... ... \n", + "rs4147638_SMDT1_ACTB True \n", + "rs4147638_SMDT1_RPS25 True \n", + "rs4147638_SMDT1_RPS3A True \n", + "rs4147638_SMDT1_RPS18 True \n", + "rs4147638_SMDT1_RPL11 True \n", + "\n", + "[497 rows x 55 columns]" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "coeqtl_df" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "# flip direction according to AF\n", + "coeqtl_df['eqtl_effect_allele'] = [eqtl_allele_af_dict.get(eqtl)['AlleleAssessed'] for eqtl in \n", + " coeqtl_df['snp_eqtlgene']]\n", + "coeqtl_df['eqtl_alt_af'] = [eqtl_allele_af_dict.get(eqtl)['AF'] for eqtl in coeqtl_df['snp_eqtlgene']]\n", + "coeqtl_df['eqtl_alt_allele'] = [eqtl_allele_af_dict.get(eqtl)['alt_allele'] for eqtl in \n", + " coeqtl_df['snp_eqtlgene']]\n", + "coeqtl_df['eqtl_ref_allele'] = [eqtl_allele_af_dict.get(eqtl)['ref_allele'] for eqtl in \n", + " coeqtl_df['snp_eqtlgene']]\n", + "coeqtl_df[f'MetaPZ_flippedforAF'] = [flip_zscore(zscore, coeqtlallele, altaf, altallele)\n", + " for zscore, coeqtlallele, altaf, altallele in\n", + " coeqtl_df[[f'MetaPZ',\n", + " f'SNPEffectAllele',\n", + " 'eqtl_alt_af',\n", + " 'eqtl_alt_allele']].values]\n", + "coeqtl_df[f'flipped_zscore_bios_flippedforAF'] = [flip_zscore(zscore, coeqtlallele, altaf, altallele)\n", + " for zscore, coeqtlallele, altaf, altallele in\n", + " coeqtl_df[[f'flipped_zscore_bios',\n", + " f'SNPEffectAllele',\n", + " 'eqtl_alt_af',\n", + " 'eqtl_alt_allele']].values]" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.9637681159420289\n" + ] + }, + { + "data": { + "text/plain": [ + "Text(3, -5, 'Concordance = 0.96\\nrb = 0.61')" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATsAAAEvCAYAAAA6m2ZKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABYiklEQVR4nO29eXwUVb73/zmdpLvJHkhYAyQgstkJW3JBCUGQJSwhBBS8uA13xgWHuc9vrs44g4PiyB0d/enoDLnzOMuD+qgkkpUlKBiIwY1EWVpiFDGZAAImkK0D6U53n+ePUGUvVdXV3dVbct6vly9Jd1fV6arT3/M935VQSsFgMBj9HVWgB8BgMBj+gAk7BoMxIGDCjsFgDAiYsGMwGAMCJuwYDMaAgAk7BoMxIAgPxEUTExNpSkpKIC7NYDD6MZ9//nkrpTRJ6L2ACLuUlBTU1dUF4tIMBqMfQwj5l9h7bBvLYDAGBEzYMRiMAQETdgwGY0DAhB2DwRgQMGHHYDAGBEzYMRiMAQETdgwGY0AQkDg7BoPhHvvOVuLPdTtwqfsyhkcNw+ZZj2L5+JxADyukYMKOwQhy9p2txDNHt6PH0gMAuNh9Cc8c3Q4ATOC5AdvGMhhBzp/rdvCCjqPH0oM/1+0I0IhCEybsGIwg51L3ZbdeZwjDhB2DEeQMjxrm1usMYZiwYzCCnM2zHoU2TGv3mjZMi82zHg3QiEIT5qBgMIIczgnBvLHewYQdgxECLB+fw4Sbl7BtLIPBGBAwYcdgMAYETNgxGIwBARN2DAZjQMCEHYPBGBAwb+wAgCWR9w/Yc/QOJuz6OSyJvH/AnqP3KLKNJYTEE0J2E0IaCCFfEULmKHFehvewJPL+gdznuO9sJZYWrsC0f2ZgaeEK7Dtb6c9hBjVKaXavADhAKV1LCFEDiFTovAwvYUnk/QM5z5Fpf9J4rdkRQmIBzAPwDwCglJoope3enpehDCyJvH8g5zkyLV4aJbax4wC0APg/hJDjhJC/E0KiFDgvQwFYEnn/QM5zZFq8NEoIu3AAMwD8D6V0OoBuAE84fogQ8iAhpI4QUtfS0qLAZRlyWD4+B1vnbsGIqOEgIBgRNRxb525h25oQQ85zZFq8NIRS6t0JCBkO4FNKacqNv7MAPEEpXS52zKxZs2hdXZ1X12UwGPY42uyAPu1vIC1uhJDPKaWzhN7z2kFBKb1ECDlHCJlIKf0awEIA9d6el8FguAcrBSWNUt7YzQDeuuGJ/Q7ATxQ6L4PRb/FFkDArBSWOIsKOUnoCgKDqyGAwnNl3thJbP9wGMzUD6AsT2frhNgCBCRMZCNkZLDeWwQgAz3/yAi/oOMzUjOc/ecHvY+FsfRe7L4GC8vF5SgUkB0ugMxN2DEYA6DB1ir7ub2Hgy/g8XwtSd2DCjsEIMvwtDHwZnxdMgc5M2DEYASBeEyf6nr+FgS/j84Ip0JkJOwYjAPxq9mOIUEWIvu9PYeDLLJtgCnRmwo7BCADLx+dgW9ZWqIjwT9CfwsCXWTbBlK7I6tkxGAGCEyZCWQ/+Fga+is8LpkBnJuwYjAASTMLAVwRLoDMTdgxGgAkWYdDfYTY7BoMxIGCaHYPhA/p7+lUofj8m7BgMhenv5dF98f38ITzZNpbBUBh3sgYClTfqzXWVzorwV0oZE3YMhsLIzRoIVN6ot9dVOivCXyllTNgxGAojN2sgUHmj3l5X6ayIi92X3HrdU5iwYzAURm7WQKDyRr29rtJZEWJZJAAU1XKZg4LBUBi5gcLDo4YJai/epIrJMfR7e12lA6Gt1Cr6npKOHa8b7ngCa7jDYCjfIEfu+YKtMc/SwhWSW9YRUcNxYN1eWeeSarjDtrEMRgDgNLAeSw+/jfM2AV+uLc5Xif+eeniFtsW2KLWtZ9tYBsPPOGpWVmrlbV7eCBxXtjhfxrJ5GntnK/TFUKoCDNPsGAw/4ysvrJSX1NdhLp58J9sxiaFkBRgm7BgMP+MrL6yUl9TXYS5iY7/YfclOoNpudZ/88ClBjU5FVIrX1QPYNpbB8Du+8MIC0l7SLdVbBY9xR8BKbYPFvhPwo0eV+zcn4MSco1ZqxYio4YqnjDFhx2D4mc2zHvW6YKeY4BErF+WtgHVlkxP6Thw9lh48+eFTiImIlrTN2eKLfGK2jWUw/Iy33lBP7G/eBgK72gZz30kMK7WKto8UQ+lsEqbZMRgBwJuCnVKCR+qcmjA1f1y8Jg6LUhfhz3U7sKV6q0vvrBw74/LxOfhz3Q6307xURCUaWKxkNgnT7BiMEMNdBwenCdpqVgZTN8q+KZetHcrNh3UVM+eINkyLZ+dtw4io4W5d1xMUE3aEkDBCyHFCiLxQZwaD4RHuJuILaYJmakavtdfuNalto9xtMLedlcp35YhTx/Lbd390IVNSs/tPAF8peD4GY0AjlpHgrmBwZyso9llXdkbbsf65bgfWTMx3qeFFRkTyx/uynSOHIjY7QkgygOUAtgP4pRLnZDAGMnIyEoS8sUJeWqmwEEekto1idkahse45sxcrJ6zA0XNHRa/tKFh93XhIKQfFnwD8CkCM2AcIIQ8CeBAAxowZo9BlGQOV7777DgAwbty4AI/EN7hyQggJBjEBuXLCCuw5s1dW2Mfc0XMVG+vRc0dxYN1e0UR/fzYCBxTYxhJCVgD4gVL6udTnKKWvUUpnUUpnJSUleXtZBqNf40mWhZTQ4baIrthzZq/bKWSuxiq27Z47eq5fS9IrodndBiCXELIMgBZALCHk/1JK71Hg3AyGIMnJyYEegtd4kpEgpQ1JCR1OE5z2zwxQiJd1kxPC4vgdCCGC2RDcWLlz/fHTF9Fu7AAAEBCUfl0GMzUDsN+mA75pGu61Zkcp/Q2lNJlSmgJgPYAqJugYvkatVkOtVgd6GB7jKjDYE++kmCCkoLzmJGfrKNehwX0HoRg5obH2mI38v69brvOCjn/f0oPnP3nBZwULWJwdA0Dgulx5SkdHBzo6OgI9DI+Rm5Eg1zu572wlrpuvi16PExpzR8916SWN08R6/B2AviBhx7G6KuPE0WHq9FnBAkUzKCilRwAcUfKcDN8Tin1Or1y5AgCIi4sL8EjkY7ttFdtKOmYkyLn/QpWHhbC130llOhhM3dh3ttLltcU0QEqp07HeZkIokUnBNDtGwLpcDSQct61ieOKhlKs1AT/a7w6s24uTG+sQp3bW4szULOvZuxPcLOd7hZNwxGuEFy8lPLdM2DEC1uVqICFHIHmaMeDOc4pV20eHdZq6PD6nWGrYxe5LTqaQzbMeRTiR3khGq6Pwq9mP+SyTghUCYPisvhqjj31nKyWDegmIV15Hd4KGr5mv221RvXn2tsHNjufgTCHHL5+UDCy2pcPYqXjnMluYsGMoUl+NIQy3fRXDnc5ZYkjVknOk19prF1riy2ffY+nBuw27ZX/eNlTFF7ZiJuwYPl1NfUWoZOFIbV+VEircc3ryw6cke7ByODpBuHG6++zlOkbkEE7Cfb64sr6xDIYPkQri/e/s3yu6oLgKGOZQQpsEXPd7dYd4TRyqN3zg9XlY31hGv6OtrQ1tbW2BHoZLxGxfI6KGK645y7GzKWmeUNKB1WH8sdaer2I+mbBjhCShIuz8UadN6loRqgjEqWN9UjZJSQcWdy5ftnxkNjsGw4e4sokp2bja37ZXdxwjUtgK/+c/ecGjkvNyYDY7RkgSKiWepISZkIFfG6blG9coLbSUFKxi53TV8NpRkBEQUFDEqWPRazXjmvma4LEEBCc21rocj5TNjml2DIaPcJWGJ5a58vwnL8BoMUmm77kruHyVEugYJiLmtOD6wHJjjlXH4Jr5Ol8a3lXnMZZBwWAEMa7S8MQM/K6S4T2xa7kai1JOASkbJZemdmJjLSIjIp16YLg6r7cwYccISVJSUpCSkhLoYUjiKg3PXW2FO86TXGapsSjpFJBbrcUdTy4BYRkUjIGLShX867SrVCyx7AVtuIYvcil0nJxcZsdtbqw6RnCrODxqmKjw/G317/Db6t8hXhOHX81+TLbAcdzaclqjp30x5MQOyiH4ZwyDIcCVK1f4Mk/BiquwEzEtyFUyvKtqI0Ka2jXzdcFE/Ovm6y6FTruxA0/VPOORpic0lt9W/w7tPR2IUEXIOoeccvJyYJrdAMYX3jl/wRXuHDJkSIBHIg53L5//5AVeq9KGa5w+I3bPxZ6Nq3xWIU2t19qLeE0cKKV2Gp6QBimEY06tXMTS5a5brvMlnaTGoGRMIhN2A5RQLNgZqhgtJv7f7cYOWfdZSgi6iqcTdXwYOzE8aphLz6cYnH3PnQVSyjZnpmYMCh8kKeyUDIJmcXYDFKkQASXyJn1NqMTZucof5UIylFxgpJ6tVJXkEVHDJccap461C4kBfowLFBu/q+9PQEAIESxgoCIqHP/JMdFjBc/HcmMZjshtXMzwDlf3U8l0KA4pW6FUru6BdXvx39m/F7TthZEwEELc9gKLFfjkGB41TLRSi5wKLu7AhN0AROqHxQp2Kouc+6l0CXyp8A85TpPVE/OczklARLebUgKdG4tQ+XfuumIOCKUcExzMZjcAEf1hUSBvaK5/B+Mhwb595ZCbP6q0Ri1m85OTP3v03FGn48zUDBVRCWpbrgQ6NxYpe58/iscyYTcAEf1hEaD7iy5s+3AbkpKSkJWVBZ1O59/B9TO4H/Nvq38n+Tl/atSuKgGLzQ8rtTrlt7ojlLwRwErAhF0/Ra/Xo6amBq2trUhMTLQTXGIBnSOihiP/9nxUVlYiJycHZWVlABCUAq+1tRUAkJiYGOCRCON4/6OiotBt6Rb8rDZMi7yhuSgoKBB8Xv5Gan7Y5rfKEUpS89AWX5Vit4UJu36IXq9HVVUVcnNzMWbMGDQ3N6OiogJAn+CSitMaM2YMWltbkZqairy8PBQVFfHHBROdnX3hE8Eo7Bzvf3V1NdJOTcWn0bWgKntPaJw6Fv8+aj2Mp66LPi9/IzY/8obm4l/vNeLW1sw+wZWRBd148fG5mof+hgm7foLtCqrRaHDXXXchNTUVAJCamorc3FxUVlZCp9PxK+h/H34O3aprdit0Y2MjL0DGjBkDo9GIqqoqAMEn8IKVmpoa5ObmIjU1FXq9Hnq9Hr9e9Ti+NNfjlWN/RktPK4ZohuC/5vwvLB+fg5deegnh4eF48803ee3H9nn5G6FtZd7QXLcFsu19AJznob9hwq4f4LiCbt++3akhDaexcSwfn4Mx15L7jru977jGxkZUVFRgwYIFAIDm5mYkJiYiJycnYBM0FGltbeXvv+0PPhWpWDlhORobG1FUVIQx15Kh1+thtVqxcuVKXojs3r0bERER6OjoQEFBQUC2tI7byoKCAtmCi1t4W1paXM5DudtcJfBa2BFCRgN4A8BwAFYAr1FKX/H2vAz5OK6giYmJaG5u5v8GfhRctnCTqrKyEi0tLdBoNAgPD0dpaSkOHz4Mo9GIpUuXOk1QhjS2999W8HE4asxr1qzhn5XBYEBERARWrVrFC7/i4mIcPHgQkyZNQlNTk6Bg8LXQEPsejvPCduGtrKyUnIf+3uYqodmZAfwXpfQLQkgMgM8JIQcppfUKnJshA8eJmJWVhYqKCqdJxGlstuh0Ouh0Ouzfvx/19fVYs2YNfwznoBASlIEmGKue2AqcoqIiZGRkSC48OTk5eOONN+yeXU1NDdLS0lBZWckLrhkzZuDLL7/EV199henTpyM7O9tOMACQFBpKCEK5C6jtwutqHvp7m+u1sKOUXgRw8ca/uwghXwEYBYAJOz/hOBF1Oh1aWlpQVFQEo9GIxMRELFiwQHICNTU12WkYnINiz549oJQKCspAEmy17IS0lJKSEhgMBpSUlCA/P9/pBz9mzBio1Wq7Z9fS0oLe3l4nAdHe3o777rsPRUVFOHr0KBITE6HT6VBTUwMAokIDkBaEcpG7gNouvI47h6SkJLt5KFdbVApFbXaEkBQA0wF8puR5GT8itEoLTUS9Xo9ly5bJntBiE6+trQ35+fnMXucCIS0lP78vjCcrK0tw4WlsbIRGo7F7dlqtVlBwFRUV8dvfLVu22AlBQoio0BDTnkpLS93S9mwFF3fMhAkTUFNTg9LSUv4c3MJrMBj488fHxyMmJgabNm2yO6dcbVEpFBN2hJBoAMUA/hel1KmsAiHkQQAPAqHTzT3YELNxLFiwAAsWLLCbiK40OUfEJl5SUlJQCroffvgBADB06NAAj6QPKS2Fu39VVVXIycmxcwYtWrQIwI9ChFIqauPjBEFYWJidEIyJiREVGkLj6uzshNVq5cciV9vjTB6A+FycMGEC72CxtTuWlZVBr9fbnd8dc4sSKCLsCCER6BN0b1FKS4Q+Qyl9DcBrQF/VEyWuO9CQsnFs2rTJK6Hk74nnLQaDAUDwCDuhxaK6uhoajQbPPPMMrwmJLUjc/1955RVBwRUfH+/0PDghuGzZMtFnV1NTIzguR5OFu7YyqbmoVqud3svLy3M6v5C26O4i7Q5KeGMJgH8A+IpS+pL3Q2KI4Usbh78nXn/DcbGorq7G8ePHcddddzkJILF7qtfrYTKZUF5e7uSNNRqNmDNnjt2xnPbm6tk5CsK2tjav55HUXBTTToU8t/4KOwGU0exuA3AvAD0h5MSN135LKd2vwLkZNvjSxuHvidcfsVgs2LVrF0wmE7RarWRgtxA1NTVYu3YtDAYDL7g0Gg16enqg0WhQV1eH1NRUdHZ2orq6Gm1tbYiPj+e3h7ae19LSUlRVVcFisaCrq8vOZhgfH+/VPNLr9dBoNILn0Gg0GDRokMvzC22Dy8rKcPDgQRgMBp/MQSW8sUcBEAXGwnCBr7aawZbWE2pw92/16tX8/XMMKQFca0+cthQWFgbA2YtaXFyMN954A1FRUXYhQlIhKOXl5cjLy0NsbCwqKiqQlZUFwFnbc2ce1dTUICMjw+kcxcXFyMjIQFJSksvzC22DOe+/rQMGUG4OsgyKEMJXW81gS+uRQ3h48ExdofuXkJAgqN1ERESIZkXYau5C51yzZg2KiopE7W2AcwjKqlWreJuurX0XAO/NVavVUKlUqKqqsvOsij371tZWZGdnIykpyW4udnd3Izs7mxfW3HsRERFYsWKF3fnEtsHt7e12Dhgl52DwzBiGLGw9Yo54uhX1d7yTEgSTR1/o/mVnZ6O4uNhOAysvL8eyZct4LQuAqHdS7Jn09PRIPitX77W2tvKaaHt7OxISEjB+/HicOXNGtmbPCWXbucilwHHCmnuvsbFRUGDJMckoPQeZsOsn6PV6HDp0CHl5ebyBfN++fbJWan/HO/U3hO5fbGwsLBYLioqK0NPTA61WC51Oh/T0dAAQ1FpsHQoRERGCz0Sr1Qq+HhcXh56eHsnn2NzcjOjoaKetbmFhIdatWydbsxczp+h0OtnbY6FzlJeXY+HChYJjVwIm7EIMMe2tqqoKeXl5dpU21q1b53Kl1uv16O3txRtvvIGEhARkZ2fzmkewhp0AwKVLffXWhg9XtnS3Jwj9cHfv3g21Ws0vPtwz4JwJYloLlxWRmpoqmHkhJlAsFougHa2kpAR33HEHH9cXFhbmtNU1mUxuafZS5hS9Xi/LzOJ4jri4OPT29iI6OhoWi8UnoU9M2AUAT7ebUo6E9vZ2wUobgPhKLXS+4uJimEwmmM1mPhUpGO12165dC/QQeIR+/EKxZrbPgNOyhAp2tra24qGHHsJ7773Ha4YajQaZmZnIzs6GVqt1ysgoLS0VtKMZDAaUlZVBrVZDo9HAYDA4CTZPNHsxc4qUmcXVZ+UKSk9hws7PeOP5dBXI6arShuNKLWYE37NnDx599FHmlXUD7v5wixgXa2a7sEVHR8NoNGLbtm1Qq9WwWq28o8VsNuPAgQM4d+4cNBoNtm/fjsTERD7lr6qqCrW1tXxerGMqIBc8LGRHs431s7WrcUyaNEk0f9e2XJNWq+UFrJwFWq/X4+DBgzAajTCZTIiMjIRarUZHR4fgOdwRlJ7AhJ2f8cbzKSXEoqOj+WBUsZXaUZMQqzfmS49Yf8VxEduxYweqq6uh1+uRm5uLzs5OVFVVYf369XZBx7Z17MrLy3HixAncfffddkKnpaXFZa5zVlYWdu/eDY1Gg/b2dsTHx+PatWvIzMy0m2sZGRlOgk2v12Py5Ml2sX3Lli0D0BfKotPpBIsTAOKLoF6vx4EDBxAREYH169ejs7MThw8fDmh4U/DVyenneOP55ISYLdx2Y9GiRbh+/TqKiorQ0tKCwsJCPqi0sbERu3fvBiEEOTk52LJlC3JychAdHY3q6mqn88XFxbk9toGO7SIWFhaGm266CceOHeNf++ijj3ibalhYGBoaGpCfn8//zYWJEELsXsvNzUVtba2sLV14eDhWrlyJLVu2YOXKlQgPD8eQIUPsPpOdnc0HLW/fvh1FRUXQ6XRYsmQJcnJyEBcXxwtV7js1NDTYfTduXJyZQ+x+aDQarFq1iv/+3L9tz8HV9PMHTLPzM3LsI2I2PVdBxVqt1s4gXlJSgpqaGiQlJQnakPLz8/H222/jxIkT6OrqglqtBqUUlFJs29bXYWzSpElB6ZWNiIgI9BDssF3E9Ho9zpw5Y2f4d1zkxBY9k8nk9JrRaJRl4uCEKWBvkuA8wMCPxR24WDturnHbY6ESTJ4s0I6hMFJxdY4FAnwFE3Z+xpXAkmPTEzLiFhQUOE12rsTQpk2b8MwzzwhWv9BoNHaR/+Xl5TCZTBg0aBBycnJQUlKCyZMn+/EOyWP06NGBHoIdjgHBOp0OtbW1fLkjWzucbSkkx0UvJibG7rxywy+kSnQ1NjaKhoJI2cm4MXriwEhMTITZbOaPEztHQkICf798DRN2fsZVFoQrm57Y5HS1+opV5XCMxl+1ahX27NmD7u5uO4HJkMZ2EeMKcGZkZGDXrl1QqVS8YX/SpEmoqqrCsGHDnGxnJSUlsFqtksJJDDFhEh8fLxoi4ioigPtO7sTP2R574MAB3o582223ORU4qKiowPz581FeXu75jXcDJuwCgNRq6u6WgZu0YkGo3OorpFGKVb9ob28HpdTltQPJxYsXAQAjRowI8Ej6sF3ENBoNcnNzYTAYoFarBWPljh07BovFgj179vAOBavViqlTp3oUfpGSkiIoPCdPnsw7GzjkRgTYLsDt7e1uVb7m3jt48CBfHIHrb8Il+i9YsADR0dF+M5MwYRdkuLNlsJ20nZ2dgisnt/oKaZRi0fjx8fHo7e2VvHaguX79eqCH4AS3iHEmg//9v/8374QA7LV0o9GI++67z+7ec6lVjhV95dDU1ITp06fbPd/p06ejoaHB6bPuRAR4Ew4iFEdXVVWFe++9NyA1E5mwCzLcqWziOGlVKhX27NmDtrY2JCUlCZbNtv0hbdu2zUkb4Gx24eHhTq0VGfJITExEdXW1ZCtBtVqtaD4yl5xv+6wsFguOHj3K/20bM8eVi+eEkT80+EDXTGTCLsiQMyHE+nLqdDpMmTIF27dvR1ZWlsutSlJSElpaWlBeXo6Ojg4+yn7JkiUoKytDZWUlK+DpASkpKTh+/Lho5RONRoOwsDDR9/R6PQC4lWXjakcgtXUFgMOHD4NS6nGfWrlZQb4OHJaCCbsgxFVlEzl9OeVsVbKysrBv3z4+/omDawSTkpLCBJ0HnDlzBvn5+TAYDIK5qjqdDqNHjxY0O2RkZODQoUMwm81Yu3atrABcOfnNUo13VCqV0zjEriWEJ1lBgSgWy4RdiCG3L2dpaanLbZJO19cv1rEUUUVFBTIzM1FbW4vRo0cHpcDTaDSBHoIoXJ6ybV03rpXg4sWL+ftptVqxa9cu9Pb22mnwqamp2LNnjyybmlh+s0qlwqJFi5xi5mzhYvjWr1/vs34UYsI5EMVimbALMeT25RRqtCLkbFi2bBlKSkqcts1TpkzB0aNH/RYD5S6jRo0K9BBEsc1T5rT0V199FTk5OU5loABgy5YtvGAEfvSI2yJkU9Pr9di/f79T+fc1a9Y4CRqxba67FU+EcDeCIFDFYpmwCzJcqfdCDbGjo6OdvHgpKSl2oQKTJk2CXq93cjZwSeaOP8TGxka+FR/DPSwWC79Fte0XUVhYyFcu4bQZjUaD6upqNDQ08M980qRJiI+PtzunUJZNVVUVjEajLEEjtgvwth8F4H7VFDHh2NLSwndi88W2lgm7IEKOei/HW8ulK9lWu+Birrjz2Do5NBoN3njjDT56n4v4Hzt2rJ/vgHwuXLgAIPg0PL1eD4vFgttvvx2lpaWwWq12JoLi4mLU1NQgISEB8+fPx1dffYXjx487xceZTCbJ4GJOO5Ky29oi5vgCvOtHAbjfG0Uqm8KX1XaYsAsi5Kj3cry1Ut3pAWD//v3Q6/Xo6elBdHS0U+jJqlWrcOXKFRw7dgwmk8ljD50vMRqNgR6CIDU1NYiJiUFsbCzCwsKwevVqpy1maWkpwsPDUV5eDrVa7VQlOD8/HxUVFZLPmNOO3BE0Uo4vb8JB3A0pkapS7MtqO0zYBRFybR+u3PdS59Hr9fjqq69w1113obKy0m77yqWLlZaWIiwsTFalY4Y9ra2tWLVqFd59911cv35d8DkYDAb88pe/BADBnOUxY8ago6MDW7duFb2ObR8I4EdBw5VncldYeftcuXPYtnI8ePAgwsLCnOrXOY45IiLCacy+iPtjwi6IEFPv4+LiBCvaunuexMREVFVV8VH9vvTQDVQSExNx5coVWK1W0Tg72y2mp/0/bLWjKVOmIDo62mUTbl/jmNEjVb/OVugVFBTwzhoOX2TuMGEXRAip92VlZTCbzU6T5ty5c2hqahIUgEJ5ktwPoaSkhBdwvvTQDVS4gGKj0Qi1Wi3YYcy2qYxUlWApAp2NIISt+aSgoMAuflNqwfRVP2RHmLALIoQmMKUUa9eutZs0Op3OyahtGw1/5swZuzxJjUbDr6Tl5eXYsWMH2tvbER0djbKyMrsaeO+++65ot/dgypEdNGhQoIcgSFNTE0aNGoXz589j9erV6Ozs5FP4IiMjAcCuqYxer8fQoUPtek0YjUbs37/fZWc4udtPfwXw2u4U3AlH8ZfgZsIuyHCcwJxNx3bCajQap9gqoUbJSUlJ/DFcCtKgQYPsSoG/++67fFWKmJgYWK1WZGZmCkb+L1682P83RIRgqXbiSGtrKzo7O+2cDunp6WhsbOTvMyfYuPxlIc/59OnT7UJUAM/spf4M4LXdKbi7PfdHGpkiZdkJIUsJIV8TQr4lhDyhxDkZfXBJ5Vws3JYtWyRjq7gVlZvk3DF33XUX9Hq9UynwO++8E4QQEEJw7do1GI1GPqGcK91dWVkJg8HA7HUySExMFH0+JpMJEydOhFarRX5+PjZt2oSmpiankuf5+floaGiQXQJdCsdy8d6eTwpuO9rY2MjXr2tsbORbA1RUVCArK0vx68rFa82OEBIGYAeARQDOA6glhFRQSuu9PTejbwI5Rsm7WjWbm5sFw0+kfoSrVq3C4cOHoVKpeC8fJ9y4LlX+Kp8th3PnzgEIvorFWVlZ2Lt3r2gc2fnz5zFs2DCXaVy22z1vq6H4y/7quB3lnCacNzbQNkUltrGZAL6llH4HAISQXQBWAWDCTgF0Op1Tnqur7AhugjlOcikhyTVEEUpeLy4uRkZGBt8cJRgEHldvL9jgqvoKZVDEx8djxowZqK2t5T8vp1qJNxVJPPX2ekogq5q4gnAVaT0+ASFrASyllP70xt/3Avg3SunPxY6ZNWsWraurc+s63333ndNrcXFxGDJkCKxWK5qampzeT0hIQEJCAl8L35EhQ4YgLi4OJpMJ58+fd3o/MTERsbGxMBqNfMS+LUOHDkV0dDSuX7/OV861Zfjw4YiMjMS1a9f4Dva2jBgxAoMGDYLBYMAPP/xg9153dzfq6upw7tw5jB49Gunp6YiPj0d3dzfa29sxZMgQjBs3DhcvXsTHH3+MiRMnYvDgwfyxV69exejRozFu3Di0tbWhra0N7e3tfJVYrVYLANizZw8WLFiA1tZWPmOiu7sbHR0dqKqqQkREBG6++WZMnz4dPT09uHr1KkaOHAmVSoWUlBQAwA8//ACDwWA3/vDwcF7YXrp0yampdUREBK+VXbx40akYp0aj4bMjLly44BREbDKZoFarMW7cOJw7d85J+EVGRmL48OEA+n7cZrPZ7v3o6GgMHToUQJ9TwWq12r0fGxvLCwR3597Vq1fR0NCApqYmxMTEYNGiRdBqtejp6cGVK1dgNptBCEF9fT0MBgNmz57NP5Oenh60trZCpVIhJiYGn332GebOnWt3fHx8PFJTU2XNPb1ez88X23P09PTgzJkzIIRAp9MhLi4OUVFR/PGjRo2CRqNBZ2enoBaYnJzM94C9cuWK0/tjxoxBeHg4P/e6u7v94iQhhHxOKZ0l9J4Smh0ReM1JghJCHgTwIAAnjYNhDyfQ5s2bh5SUFHz33Xf8hL527Ro/cVUqFVJTU2E2m3H58mX+eG7SHjhwADk5OYiNjUVPTw+6u7sRGRnJ/+Dq6uowc+ZMjBw5Eh0dHejp6YFWq0VUVBSioqJw7733oqioCDfffDOAvu5lwapRBQvd3d3o6emB2WxGeHg40tLS+IVFq9ViyJAhaGlpwfnz55GTk4MRI0agvr4eLS0tsFqtIKTv59TQ0ICrV69izpw5TsdfvXpV9njGjx9vd36VSsUXKsjJycGQIUNw/vx5XmDZCjyl6O7uDkiVE0eU0OzmAHiaUrrkxt+/AQBK6R/EjvFEsxtIFBQUCCbmFxYWwmg04sknn7SrkmGxWLB9+3aniHuxkIOCggJ+69ve3o6EhASMHz8ep0+fhlartWuyHBcXB0opWltbER8fD7PZzEf/BxJO2xo3blyAR/IjYp5PW1uVxWLBs88+K1iS/Z133sGgQYPsQoGEjhd61u6MqaioyM4GzF3f05LwUtfm8q8TEhJw++2329mBlb4e4HvNrhbABEJIKoALANYD+HcFzttvcRX3JJXZIFX99qWXXuK3qY6pOdx1CwoK0NLSguvXr9vF6RUWFvJNlm1tda2trbjnnnvsgpyDwVHBxawFE3Jym5ubm0VLshNCnNphCh3vjr3NHUeVq6ZOcragjiFSGRkZeOihh5y0ObGSVb7c6not7CilZkLIzwG8ByAMwD8ppae9Hlk/RU7ck5hRWa1WIzs7WzDaPCMjA6dOncKqVav4KrW253SscOyYExsZGYmVK1c6Ja0XFhbavZaXlxcUaWOcPS6YkPJ8ckHEXFkndzNXuHRBLkDcmzF52tTJ1RZU7LNJSUnQ6XR2glusZJUvt7qKBBVTSvcD2K/EuUIRd1YksdWfa7EHiKfPUEoRGxuLBQsW8N7YuLg4vrFKfHw8PvjgAyxatAiEEJSUlKCqqgoWi8Uu31XoB8BV17WF0yYdX2NpY8KICRGNRoNnn30WCQkJuOmmm/D11187lVAvLS1FTEyM6CKXk5Njp103NDQ4afFCxMXFOZ3TnRQ1dwptuvosN3caGxudmq/7o6Any6Bwga3dQavV8uEe3ARzd0USW/3b29v57aFY+sy5c+f4SWo0GrFq1SocOXIEq1evttt6HjhwwK5/QXl5OXp7eyVzYsWKODqWPw+WtDHOux5Mzi6xRYrr23rw4EF89dVXTvXtAMBsNsNkMjkJoeLiYmRmZjpp13v27MGWLVtczjfbQqLcOU+dOgWz2SwrPctxvtr+HhxDYVzF9DU3NyMiIgKVlZUYNWoU9Ho96urqkJiYKNmJTSmYsJOAE2Q6nQ69vb38JK6uruZzFzm7hNwVSapwoW0JdKF4Je7voqIiREREoLq62mk1XLNmjVP/glWrVqGoqIi/rtCPsqenxylPtri4GL29vR51qPc1jqEkwYDQIsW1s+TaJzoKLq6Eek5ODgoLC516v3Z3dyM7O9vuOtziKKf2m8FgwKpVq+zOefvtt6O8vBy//vWvXX4n2/nqamGX2h5zGRQrVqwAAFRVVTmlyFVXV9vNLaUXVibsJLCtBssJFb1eD71eb/egbO0SgPOKZLvNjY6OFmxwM3/+fJSVlTmVpRbaIi9btgx6vd6uggkH90OwLQl12223oaenh9capkyZgpaWFhQWFsJkMvH1xFQqldMPTaPRuNUJfqBju0i5smEBP84VzmTg2Pu1oKDApX1NSgPiYkVtvZ5cyX052C6MrraaQotoSUkJDAYDH8/JRQMIFZctKipCamqqUyC2Ug4xJuwk4CahrXou1+Mm1a/znXfewZ49e9De3s4LkOjoaLuy1GVlZdi/fz/CwsKcBCOHmKFbo9HY2XjKy8sRERGBUaNG4Z133gEhBCaTCYMGDcKgQYOgVqsRGxvLV1QBfgx1ycnJQXl5uexQB8aPuDNXuOfW3NwMg8HAL3CRkZF8YQCuT4Wjk0JKA/K2fJKttupqqymk2XLFI6qqqvhqL1LRBkKl7JVyVDBhJwE3CW3Vc7keN6l+nbNnz8bx48dx7733OtU547YmeXl5KCoqwpo1a5x+LFwlYaHqJFxql+M2dteuXWhqakJkZKSd/aa0tBQGg8HJYF5SUoK0tDS7TAKGfPR6vaRwsJ0rOp0OJSUlGDx4MHbv3o2IiAi7Z/TOO+84lfQqLy/HqFGjnPrDOqJE+SROW5WjZcop/e6qhJhjpIBSjgom7CTgVkUu3zE3N1fS47Z9+3anySQkHLOzs1FTUyNYltp22xoREYHOzk6nrey1a9ewYcMGvowTt83UaDTo6emxs/FwxwIQDC9ZvXo19uzZw2uUxcXFMBqNMJvN0Ov1OHnyJG9nCSaio6MDPQRR9Ho9Dhw4AK1WK+pdffbZZ/nadbW1tRg5ciS6urr45ti2zyg6Ohq33HKLncBKS0vD/v37ERcX51J4KZWv6o2W6Li996bfsacwYScB93BqamrQ3t7OZzAIue3F6v6LCcekpCRkZWXxnq3q6mpcuHABZ86csZsE7777LiIiIpwcB52dnfwYuSKPOTk5dt2mbLfQb775pmh4ia2xm3NwcMKvpKQE586dCzo7HZfXGowcPHgQERERSEtLE9S8w8PDYbVasXz5cqf7KtSToq2tDXq93kk4mEwmtLa28ouZr5+RUkU2pc4jt9+xJzBh5wJbFZ5Tr/V6vWiDE0ctLCUlRXAVmzBhgpMtj7PN2K7qWq1WMNh3z549SE9PBwC+v+uYMWNEDcqJiYl8QQRXxm5b4Zefn4/CwkI0NTUFXYexYMU2pjEpKclurixduhSxsbF8yIkjQoujVqsVtP0VFRXhscce82uuqVJaoth5fFminQk7mdhuR7kHxeUpuvK+TZgwwWkVk2p3aPtgOW3Mtv0hV72CCwmZNGkSjh07huZm+25TtjajrKwsHDhwwCnmyrEngpDwMxqNyMnJCaoOY1ylEa7ySjBhmwnhOFe4BYoLOXG8l2JhQWIGfV+2HgwEvizRzoSdCzhNjVKKHTt22CUzOwoGKe+bY8KzXNtEfHw83n33XVy4cMEpLsk2JGTUqFF2oSXR0dF2sXXcmN977z2+PLharUZYWJhdTwQh4afVaoPuB+VYkilY0Ov1snp4iNmhhH7sYgHfcsNPQg1f1cRjwk4CIU2tvLwcVqtV0AvmTlVYKUeHbRCv0WhEU1OTYCPloqIiu5AQ2+11YmIiRo4caWdf5Iz6FosFYWFhUKlUsFqt2LVrF3p7exEXF4fe3l474VdcXMy3uetPPyhfwM2XzMxMpwBtVxq0LUIFHMSaSss5X7DjuGvR6XR81omSMGHngKvGNlwYh5AXzJ0EazHbhE6nsxNYS5cuFQ0e7unpsXuN+5FwP7rvvvsOUVFRKC8vR2dnJ9RqNSil2LBhA3/Nt99+G+Hh4bj33nud7JFqtRopKSm4cOEC9Ho9oqOjQ/YH5Q84zd5gMMBkMvEOLY1GA0qp0yKyZMkSWXnVjtqe0KLkuPAqWUHEl9VI9u/fzzdtt921AFBc4DFhZ4OjJrd9+3YnIcN5QYW8YO4YV92xTezfv19UC3SMLhezG65evRrR0dFOqWQWiwUrVqxwarhcXFyM5ORkXL16Ffn5+dizZw8opUGRKhascJ3F3n//fWg0GjvbaElJCR/TGB8fD5Wqr9eV3LxqIW1PbO4oWUHE19VIuGwkoV0LE3Y+xNHm5qipcf0A1q9fL/jg3TWuyrVNcEGntuEuJSUlSElJceoLIWU3fOihh9De3m53bi6diOsmxhXpBIDLly/zDpK2tjbk5+cHhb0OgFMH+WCA6wSn0WicPOj5+fkoLy/Hvffei927d0OtVqOkpAQJCQkwGAxuOxqk5o6cyjpysT0Xp+F1dHRg//79/Di8Qcz54rhrUQIm7GxwtLk5amqHDx922eVcjgBzd1vArXDctkir1WLkyJG4evWq08QTsxu2tLRgx44dTo1bBg8ezOfIJiYmYu7cudDr9ViyZImdk4OzpQQLwbidzsrKQklJCQghgs+go6MDpaWlCA8PF9WUlLCLCs2Bzs5OXLt2zSn3Wu65fKXhiQVec6XolYQJOxscNTmdToeWlhbe60kp9Tq629NJs2zZMtTV1eHJJ59EfX296Dmio6OxY8cOPu82JSUF9fX1iIqKcqpCXFJSgqioKKxbt46v5nLs2DGYTCbU1NTgtttug9FoREVFhU9W2v6GTqdDVVUVCCGimRNarVYyHUoJR4O7OxI55/JVvTmxXQvzxvoYIZubXq/ng4bl5Aa6wnHSGAwGvtBmTU2N5IrrauKVlpaCEMILterqahw/fhxqtRorV67EV199xXej5xr2AMCbb76J6OhoEEJ4wcd5/MLDw6HT6dDQ0ODpbfUJwdiDAgAWLFiAffv2OcUzlpWVQaPRSHrsuTJI3tpFs7Ky7CrryNmRSJ1LrDWnEloot2uxnZfMG+sHXNnclIjutp3s7mp5riaebeQ+0NehKj8/H2+++Sbq6+vR0NBg5/UqLCzk68L19vYKFhAoLS2160nLcA2lFNeuXePjGWNiYmA2m5GTkyOaDsUVtVQigFan0+HgwYN8ZR1vdiQ6nQ7nzp3DqVOnfJbGtWzZMp8IN0eYsHNAyuamRHS37RbD3a0B95qYd9axhwEnWBMTE/Hll1/aeb0MBgO0Wq2d9iFUa62rqwvx8fEoLS11qXky+jT39evX25VpCg//8WfW09MjWM9wxYoVit7XRYsWoaqqCvfee69dvjSHO4KqqalJsMJOSUkJX8IpFGDCzk28je621Q5tjb+2DouWlhbJ6wMQ1DAdI/c5wcoZzm0FYU1NjcutDRfeEuh+n6EE90zDwsL4e8S1T6yqqsLq1avR2dmJPXv28MUpfVEQ1TFtUG7PCbHvlJ2dbZfnm5iYCIPBEFLzgAk7P8NNjtLSUqjValRXVztVtCgpKZGsziqmYZaUlNgJQa6xyvTp050EoZy6fCUlJU5lxIMpZSwYEQssd0zmT09PR2NjI68xc5VrXGnO7njyHcsqeboj4b6T7fm4vq+hBBN2CuLOROSKb9bW1goGVboSKEIaZk1NDSZNmmQ3qUeNGoVjx44hJSXFbnUXy7dUq9V8XT6DwSDY/yAYUsbi4uICPQRBxOy6XK9W2zkSGxsLk8lk1zBJSnP2JvzDmx2JLyuR+BMm7BTCnYloa6s7evSo28ZjMaGalZUlOAaTyYQ777wT7733Hu/1ioiIELQdGY1GPPXUUwCAV1991WdGaW8ZMmRIoIcgiJjWXVNTI6jFl5eXyw4q9ke7QXe+k2NGhy8bXCsBE3YK4c5EtN1CupNPC4gL1XPnzqGpqQkdHR12bvyMjAw0NDSgubnZzuvV2NiI4uJiuwms0+nw5Zdf8ttYo9HolNAeLCs6V/WEC58JJsS0qP379wvmWtvOEamFzp1CE0ojpRn6o8G1EjBhpxCeVjxxd4sgJFR1Op1gj4Kbb74ZDQ0NggbqsrIyUEqdmi9zxvT4+HgsXboUgG9qi3kLV88u2OLsxNDpdLLKekktdO4ujP4iUBqnuzBhpxCeVjzh2hrKbVcoJFS5eDohjYGro3fy5Em7tLA77rgDAHivINcPIT4+HjExMejo6OBDTRxr8TE8Q2yOxMfHi1YvsUWqVaFjw2p/EkiN0x28EnaEkBcArARgAnAWwE8ope0KjCtgyLE9CH3G24onYj0sHBH6wciZbLGxsbBarYiJibHT5qxWK/Ly8hAbG4vS0lJ0d3fDbDYjMTERkyZNcio0wPAcoTnCadhCzZoccZw3XIP27OzsgG4dg1XjdMRbze4ggN9QSs2EkOcB/AaA6zbjQYoc24PYZxYsWGBXOUSpiieOCP1gxCrjchpDdXU1amtr0dvbi7CwMLzxxhtQq9WIiIjAlClT8NFHH/HVTtRqNX7961/b1derqalhwk4BhBa5O+64w617y80b254oQGC3jqHirfVK2FFK37f581MAa70bTmCRY3twVXrd1xPNNqi4vb0darUaKpXKyZHAbW/+8Ic/YNCgQXZpYhUVFRg2bBiamppQW1uLhIQErFq1im8EU19fD51Ox3+vYNuOhDLeBqVzBNPWUYnMIn+gpM1uI4BCBc/nd+RMIDmf8Zcb/r777uMF2O7du/m8WdvtzSuvvILVq1cLOjRsk/65ldi2EQz3vYJtOwIACQkJgR5CQBHbOsbFxaGgoMDvISBKCXFf4lLYEUIOARgu8NYWSmn5jc9sAWAG8JbEeR4E8CAAJ2ERLMixPbj6jD/c8AcPHkR4eDjefPNNfkLPnDkTtbW1oJRi0KBBSEpKQn19Pbq6upzu96lTp5wcGrYFPjnBzW2Rs7KyFBm3kgx0YSdm/zObzUEfAhIoXAo7SukdUu8TQu4HsALAQkoplTjPawBeA4BZs2aJfi6QCE0grqosV/RQrA8sZ5/wtRter9fDarXa1abjJrnjVtVisSAhIcGptplUuZ7m5mbExsaisbGRrysWjD8UrlqLbZL9QEJo60gpxdq1a4PCjheMeOuNXYo+h0Q2pfSaMkMKHI4TKDo6WrCqrFAfWO5YJW0p3Ha4paUFWq2Wb97iGJial5fn1FsiNzcXu3btwsKFC52qLTsKQOBHh0ZJSQm6u7tRWFiItLQ0v5Te8YTm5mYAoRNn5wscF6JnnnkmaOx4wYi3y+JfAGgAHCSEAMCnlNKHvR5VALGdQFIeL7HYM6Xc8Nx2WKfTobe3V7IJ0JgxY5x6S3CNgcrLyxEXF8c3e6GUIi8vz0k7LS4uhkqlwvTp0/HZZ59h3bp1qKiokCxIwJDG3ylUoRICEii89cbepNRAghFPtDSl3PDcdriystJuW+xYdj0rKwvR0dF8kxxAvAz33LlzUVtbK9hgR6VS4Ze//CUsFgtqampgMBjYFsgLApFCFSohIIFiYBo8ZNI2tANLdi1Hq/EKhkcNw+ZZj2KKapLgSmm7ikdHR/OeUU/d8JygdaxsbFt2nUsLM5lMIITwzbXFynAXFRUBAF8A4KGHHuJ/EIsWLQLQpwnExMSgpqbGzlnBcI9ApFCFSghIoGDCToR9ZytxVPsJTEYTAOBi9yVsq/k9Zndn4Gfzfmr3Walera4m2r6zlfhz3Q5c6r7MC9Tl43P4LYljZeO8vDyntDBu9eYmuVgZbqPRiHvvvRdvvfUWni9/ASci9bgedh0J8fEYp70J0Y3RKCsrw8KFC1FeXs62QF4QqDi4YHUoBQNM2Inw57odMFlNdq8ZrSZ8GdcgWbIJkL+K7ztbiWeObkePpa9z18XuS3jm6HYAP25JdDqdU2VjW8aMGQO96TQq6w/ikvYyhk8chptbx6O5uRn11gZekEaHR8M40ojiqgpEj45Gj7UHZtrn0WyztOOp6meQbZ6LidMm4r++/DVaRrXiwAcf4L7JG7y7kT4iWEs8cTD7WfDBhJ0Il7ovC75+1XTV6TVPV/E/1+3gBR1Hj6UHf67bgQPr9gLoE6Tt7e0oKipCRESE0w/ozWNv4fjgkzB3WwD0CcwrUVdx+b3folH7LxhvCOwucxdwoxqSwWJwGotFZcHn0cfx0b8+6TuGAN2kG/+n+Q2MPjsay8fnSH4XfxOsxTs5mP0s+GDCToThUcNwsfuS4Osc3Bb04qhL+HDXx/j/Zv8nLxTkrOJiAvVi9yXsO1uJ5bocpwKJjj+g107/A2aVxe54k9WEb9Rn+ZpvcukwdgLE/jVO+AabsDOZ+oS4Wq0O8EiEYfaz4IMJOxE2z3rUbosJANowLTbPehSAwxaUAC3GVmyr+T2sVituCZ8iuorb2ugIIRCLw+a2s7ZCRugH1K3tFjzeCvcEHQAnQcchJpQDyfnz5wEEd5wds58FF0zYQdxJAEDydcctqNFqwvbDz+E+892Cq7ijjU4i4YTXqITGYBvjV1G4X1ADdRdtmBbacA3ajR1O79lqswxGqDLghZ2Uk2D5+BzR7ZuYttMT3oNNDwoHHAsJSCm4sYiNDRDWQOUSp45Fp6kLw6OGYe7ouTjYeNDpM7baLIMRygRfAX8/I+UkkEJM25HSgtzVwFRE5XJsy8fnYOvcLRgRNRwEBCOihGo2CGMr6Pac2euk1cWpY7F17pags9cxGJ4w4IWdmIbmyk61edaj0IZp7V6T0oL2nRXvsTkobJDTa9owLaxU2O7mOLbl43NwYN1enNhYiwPr9soWeBQUF7sv4d2G3YKaYWREJBN0jH7DgBd2nmhogLBGJaUFSWmKvdZep9dWTlghKrRcjU1IEHtCMDomOBITE1nMGsMtBrzNzpXXVQopm54jUoKDC+615ei5ox6PzdG5EquOASEEHcZOUMivrhXMjonY2NhAD4FHysHFCB4GvLBz5XVVCrG4PTEudV/2amxCgnjf2Ur8tvp3sq4f7I4Jo9EIANBoNAEdhysHFyN4IFLhD75i1qxZtK6uzu/X9RZvVnDHHwXQJ1A0YWp0mDqdPj8iajifRaHU2F15beM1cegwdoaEdvLdd98BCHyc3dLCFYKLmNLPjyEPQsjnlNJZQu8NeM1OLt6u4GJaGgCPt9HuICfsZVD4IFRv+EDR6/Z3PHVwMfwPE3YykQpRkasBSdn4fL2NlvPjYz9Q95GTVsgIDpiwk4kvV3B3HB2eIsdmyH6g7uONg4vhXwZ86IlcPA1RCRY2z3oUEaoI0ffZD9Qz3A1BYgQO5qCQiZiDIZQm9rz/u0DQGaIiKjw7b1vIfA8AMBj6ylRFR0cHeCSMYII5KBTAXyEqrvDGIywk6ADASq0hJegAJuQY7sOEnRv4w7Ymxb6zldj64TY+CPli9yVs/XAbPzZXqIhKMAVNRULPmnH9+nUAwKBBzql2DIYQoTfLBzDPf/KCU7aFmZrx/CcvyDpeLNfWSq1YWrgC0/6ZgaWFKyTzeIOFixcv4uLFi4EeBiOEYJpdCCG2DRV73RZXAozz1LIMAEZ/hWl2AwRXJatskVPiisEINZiwCyGESkFJvW6Lu/GALMCY0d9gwi6E0IQLN5cRe90Wd+MBQyV+kMGQCxN2IUSHUcRmJ/K6Le7WuJs7eq7szwaC4cOHY/hw+VWZGQxFhB0h5DFCCCWEsGqKPsSbLA4u0j9eI6/f6tFzR90am7+JjIxEZGRkoIfBCCG8FnaEkNEAFgFo9n44DCncLQXvyPLxOaje8AH+O/v3Lu18XO/aYOXatWu4du1aoIfBCCGU0OxeBvArwI0SuAyPUCoPc/n4HHx6fw1ObqyT7FfxVM0zQSvwLl26hEuXvG8h6e41169fj/Hjx2PKlClYtmwZvvnmG7+OQYj58+cjFNIvX3/9dUyYMAETJkzA66+/LviZf/3rX1i4cCHS0tIwf/58vj8w0Nd4fvHixZg8eTKmTJmCpqYmt67vVZwdISQXwAVK6UlCRDos//jZBwE8CABjxozx5rIDGqWzOKRaMfZae/HHT19k8Xbo6/G7evVq3H///di1axcA4MSJE7h8+TJuvvlmv43DbDYjPDz0wmOvXr2Kbdu2oa6uDoQQzJw5E7m5uUhISLD73GOPPYb77rsP999/P6qqqvCb3/wGb775JgDgvvvuw5YtW7Bo0SIYDAaoVO7pai4/TQg5RAj5UuC/VQC2ANgq50KU0tcopbMopbOSkpLcGiTDdywfn4OVE1aIvi/UNHsgcvjwYURERODhhx/mX5s2bRqysrJAKcXjjz+OW265BTqdDoWFhQCAI0eOYP78+Vi7di0mTZqEDRs28I3Ra2trceuttyI9PR2ZmZno6upCT08PfvKTn0Cn02H69Ok4fPgwAGDnzp248847sXLlSixevBjXr1/H+vXrkZaWhnXr1vGpcwDwyCOPYNasWZg6dSqeeuop/vWUlBQ89dRTmDFjBnQ6HRoaGgD0FVTgrpmWlobi4mIAwPvvv485c+ZgxowZuPPOO/nCC57y3nvvYdGiRRg8eDASEhKwaNEiHDhwwOlz9fX1WLhwIQDg9ttvR3l5Of+62WzGokWLAPTlRrtrs3W5RFBK7xB6nRCiA5AKgNPqkgF8QQjJpJT6d3/B8Jh9Zyux5wwrH+6KL7/8EjNnzhR8r6SkBCdOnMDJkyfR2tqKjIwMzJs3DwBw/PhxnD59GiNHjsRtt92Gjz76CJmZmVi3bh0KCwuRkZGBzs5ODBo0CK+88goAQK/Xo6GhAYsXL+a3yZ988glOnTqFwYMH46WXXkJkZCROnTqFU6dOYcaMGfxYtm/fjsGDB8NisWDhwoU4deoU0tLSAPR1ZPviiy9QUFCAF198EX//+9/x+9//HnFxcdDr9QCAtrY2tLa24tlnn8WhQ4cQFRWF559/Hi+99BK2brXXa1544QW89dZbTvdj3rx5ePXVV+1eu3DhAkaPHs3/nZycjAsXLjgdm56ejuLiYvznf/4nSktL0dXVhStXruCbb75BfHw88vPz0djYiDvuuAPPPfccwsLCpB+cDR7rw5RSPYCh3N+EkCYAsyilrZ6ek+F/XJVrj1MHTxevYOXo0aO4++67ERYWhmHDhiE7Oxu1tbWIjY1FZmYmkpOTAfRpgk1NTYiLi8OIESOQkZEB4MdOaUePHsXmzZsBAJMmTcLYsWN5YcdpRQDw4Ycf4he/+AUAIC0tjRdmAFBUVITXXnsNZrMZFy9eRH19Pf9+fn4+AGDmzJkoKSkBABw6dIjflgNAQkIC9u7di/r6etx2220AAJPJhDlz5jh978cffxyPP/64rHskVEpOyPT14osv4uc//zl27tyJefPmYdSoUQgPD4fZbEZNTQ2OHz+OMWPGYN26ddi5cyf+4z/+Q9b1AZYbO6DZd7ZSsnpxOAnHr+fIm8z+ZsSIEX693tSpU7F7927B96RqQtp2PwsLC4PZbAalVPCHLnWeqKgou7+Fjm9sbMSLL76I2tpaJCQk4IEHHkBPz48LGTcWbhzcNR3PRSnFokWL8M4774iOB3BPs0tOTsaRI0f4v8+fP4/58+c7HTty5EheEBsMBhQXFyMuLg7JycmYPn0632ApLy8Pn376qVvCTrGgYkppCtPqQgeuGKkYKqLCM/OeClrnxKBBg/xa3mnBggUwGo3429/+xr9WW1uL6upqzJs3D4WFhbBYLGhpacGHH36IzMxM0XNNmjQJ33//PWprawEAXV1dMJvNmDdvHi88vvnmGzQ3N2PixIlOx9t+7ssvv8SpU6cAAJ2dnYiKikJcXBwuX76MykrXnvTFixfjL3/5C/93W1sbZs+ejY8++gjffvstgL4wHyGv8+OPP44TJ044/eco6ABgyZIleP/999HW1oa2tja8//77WLJkidPnWltbYbX2Vef5wx/+gI0bNwIAMjIy0NbWhpaWFgBAVVUVpkyZ4vL72cIyKAYoUttXFYK/crHBYPDaaO4OhBCUlpbi4MGDGD9+PKZOnYqnn34aI0eOxOrVq5GWlob09HQsWLAAf/zjHyWzO9RqNQoLC7F582akp6dj0aJF6OnpwaZNm2CxWKDT6fhtmlBf3EceeQQGgwFpaWn44x//yAvW9PR0TJ8+HVOnTsXGjRv5bagUTz75JNra2nDLLbcgPT0dhw8fRlJSEnbu3Im7774baWlpmD17Nu/Q8JTBgwfjd7/7HTIyMpCRkYGtW7fy2/KtW7eioqICQJ9TZ+LEibj55ptx+fJlbNmyBUCfNvriiy9i4cKF0Ol0oJTiZz/7mVtjYGXZByjT/pkBKhIaSUBwYmOtn0fkHsHSN5YRXEiVZWea3QBFKsWMggZtMDGD4SlM2A1QXKWYPXN0OxN4jH4FE3YDlOXjc5A5QtyIzgp4usYXTX8OHDiAiRMn4qabbsJzzz0n+rkjR45g2rRpmDp1KrKzs/nXN27ciKFDh+KWW25RfGyhDhN2A5i/5RTgzklrRd9nBTyFoZTyHkMlsVgsePTRR1FZWYn6+nq88847qK+vd/pce3s7Nm3ahIqKCpw+fRrvvvsu/94DDzwgmJnAYMJuwPPkrU+IFgMI5gKeo0aNwqhRo/x2vaamJkyePBmbNm3CjBkzcO7cOQDAf/3Xf2HGjBlYuHAhHxbhKceOHcNNN92EcePGQa1WY/369Xy6lC1vv/028vPz+RzzoUP52H7MmzeP93Iy7GHCjuF16ahAoNFoBMMyfMnXX3+N++67D8ePH8fYsWPR3d2NGTNm4IsvvkB2dja2bdvmdMxbb72FadOmOf23dq2zRi03peqbb75BW1sb5s+fj5kzZ+KNN95Q9ov2U1gGBSNoGoC7Q2dnX3VmLtXKH4wdOxazZ8/m/1apVFi3bh0A4J577uHTsWzZsGEDNmzYIOv8clOqzGYzPv/8c3zwwQe4fv065syZg9mzZ/u1+koowoQdA0DgG4C7S2trX7KOP4WdY8qWI0KC6a233sILLzj39b3pppuc0s+Sk5P57THQl1I1cuRIp2OTk5ORmJiIqKgoREVFYd68eTh58iQTdi5g21gGw0OsVisvsN5++23Mnevct2PDhg2CKVVCebYZGRk4c+YMGhsbYTKZsGvXLuTm5jp9btWqVaipqYHZbMa1a9fw2WefYfLkycp/wX4G0+wYDA+JiorC6dOnMXPmTMTFxfF17DwlPDwcf/nLX7BkyRJYLBZs3LgRU6dOBQD89a9/BQA8/PDDmDx5MpYuXYq0tDSoVCr89Kc/5UNN7r77bhw5cgStra1ITk7Gtm3b3EqW78+wdDFGSMLSxRhCsHQxBoMx4GHbWEZIwhXEZDDkwoTdAGff2cqQCjnhUKvVgR4CI8Rgwm4AwxXw5OraXey+xBf0DHaB19HR1wgoLk5e028Gg9nsBjBCBTxDpQDAlStXcOXKlUAPgxFCMM2uHyJ3ayqW6M8KADD6I0yz62dwW9OL3ZdAQfmtqVBtOrFE/2AuAMBgeAoTdv0Md7amoVgAgMHwFLaN7We4szUNxQIADIanMGHXzxgeNUywF6zY1jTUCgBwcLXcGAy5sG1sP8Pdrem+s5VYWrgC0/6ZgaWFK0Km70R4eDjCw9lazZAPmy39DHe2pqEcZ9fW1gYASEhICMj1e3t7cf78efT0CPfeZfgWrVaL5ORkREREyD6GFQIYoOw7W4knP3wKVurcS2FE1HAcWLc3AKOST6ALATQ2NiImJgZDhgwRrGPH8B2UUly5cgVdXV1ITU21e8+nhQAIIZsJIV8TQk4TQv7o7fkYvofT6IQEHcDi7OTQ09PDBF2AIIRgyJAhbmvVXm1jCSG3A1gFII1SaiSEDHV1DCPwCIWn2MLi7OTBBF3g8OTee6vZPQLgOUqpEQAopT94eT6GHxDy1nKwOLvQwdO+tX/961+9atKzbNkytLe3AwBeffVVTJ48GRs2bEBFRYVkr1tPKCsrE2wn6QneOihuBpBFCNkOoAfAY5TSWu+HxfAlBAQUwrZa2wDkYHdSMDzj4Ycf9ur4/fv38/8uKChAZWUlbzsTKiPvDWVlZVixYgWmTJni9blcanaEkEOEkC8F/luFPmGZAGA2gMcBFBER/ZIQ8iAhpI4QUudtf02Gd4gJOg6pFLNgISUlBSkpKYEehmz0ej0KCgrwzDPPoKCgAHq9XrFzHzlyBPPnz8fatWsxadIkbNiwge9U9sQTT2DKlClIS0vDY489BgB4+umn8eKLLwIAamtrkZaWhjlz5uDxxx/ny7vv3LkT+fn5WLp0KSZMmIBf/epX/PVSUlLQ2tqKhx9+GN999x1yc3Px8ssvY+fOnfj5z38OALh8+TJWr16N9PR0pKen4+OPPwYA5OXlYebMmZg6dSpee+01/pzR0dHYsmUL0tPTMXv2bFy+fBkff/wxKioq8Pjjj2PatGk4e/asV/fJpWZHKb1D7D1CyCMASmjfnT1GCLECSATgJM0opa8BeA3o88Z6PGKGX+A0vGDV7lSq0AkR1ev1qKqqQm5uLsaMGYPm5mZUVFQAAHQ6nSLXOH78OE6fPo2RI0fitttuw0cffYQpU6agtLQUDQ0NIITwW09bfvKTn+C1117DrbfeiieeeMLuvRMnTuD48ePQaDSYOHEiNm/ebNfX9q9//SsOHDiAw4cPIzExETt37uTf+8UvfoHs7GyUlpbCYrHAYDAAAP75z39i8ODBuH79OjIyMrBmzRoMGTIE3d3dmD17NrZv345f/epX+Nvf/oYnn3wSubm5WLFihWCfXXfxdsaUAVgAAISQmwGoAbR6eU6GwjgGDg9yCDoWI5i9sqFU4qmmpga5ublITU1FWFgYUlNTkZubi5qaGsWukZmZieTkZKhUKkybNg1NTU2IjY2FVqvFT3/6U5SUlCAyMtLumPb2dnR1deHWW28FAPz7v/+73fsLFy5EXFwctFotpkyZgn/961+yx1NVVYVHHnkEABAWFsbXHXz11Vd57e3cuXM4c+YMgL5irCtWrAAAzJw5E01NTR7dBym8FXb/BDCOEPIlgF0A7qeBCNxjiCJUBcVMLSBw7c0KZq9sR0cHX8Az2GltbXVKbxszZgzf+1YJNBoN/++wsDCYzWaEh4fj2LFjWLNmDcrKyrB06VK7Y1z9VIXO6Q1HjhzBoUOH8Mknn+DkyZOYPn06Hz4SERHBe1iVuJYQXgk7SqmJUnoPpfQWSukMSmmVUgNjKINQmEmvtRdxmliMiBoOAoI4dSwiVPaR6MwrqxyJiYlobm62e625uRmJiYk+va7BYEBHRweWLVuGP/3pTzhx4oTd+wkJCYiJicGnn34KANi1a5di1164cCH+53/+BwBgsVjQ2dmJjo4OJCQkIDIyEg0NDfx1pYiJiUFXV5ciYwodwwfDI8S2oh3GThxYtxcnNtbiw3uqsC1rKy/8RkQNx9a5W4LWXhdqZGVloaKiAo2NjbBYLGhsbERFRQWysrJ8et2uri6sWLECaWlpyM7Oxssvv+z0mX/84x948MEHMWfOHFBKFStz/8orr+Dw4cPQ6XSYOXMmTp8+jaVLl8JsNiMtLQ2/+93vMHv2bJfnWb9+PV544QVMnz7dawcFSxfr5ywtXCEYVxcKKWFSBDpd7KuvvsLkyZNlf16v16Ompgatra1ITExEVlaWYs4JbzAYDHy83nPPPYeLFy/ilVdeCfCo5CH0DKTSxVghgH7O5lmP2iX7A2yLGgh0Ol1QCDdH9u3bhz/84Q8wm80YO3asnUe1v8GEXT+nvxboDJRG199Yt24d1q1bF+hh+AUm7AYAoVqgk8FQEuagYDAYAwIm7BgMxoCACTsGgzEgYMKOwQhRtm/fjqlTpyItLQ3Tpk3DZ599hp/+9Kcel0T6/vvv7XJQ7777bqSlpeHll1/G1q1bcejQIaWGDgD405/+hGvXril6TimYg4LBCEE++eQT7N27F1988QU0Gg1aW1thMpnw97//3eNzjhw5Ert37wYAXLp0CR9//LFb+bDu8qc//Qn33HOPU86ur2CaHYPhB5Tu4nbx4kUkJiby+auJiYkYOXIk5s+fDy5g/x//+AduvvlmzJ8/Hz/72c/48ksPPPAAfvGLX+DWW2/FuHHjeAHX1NTEl3havHgxfvjhB0ybNg01NTV44IEH+M/V1tbi1ltvRXp6OjIzM9HV1YWmpiZkZWVhxowZmDFjBl/SSaz81Kuvvorvv/8et99+O26//Xav7oVsKKV+/2/mzJmUEVzs/XY/XbJrOU3/xyy6ZNdyuvfb/YEeUlBTX18v+7N7v91PM3feRtP+MZP/L3PnbV7d466uLpqenk4nTJhAH3nkEXrkyBFKKaXZ2dm0traWXrhwgY4dO5ZeuXKFmkwmOnfuXProo49SSim9//776dq1a6nFYqGnT5+m48ePp5RS2tjYSKdOner0b+6Yd999lxqNRpqamkqPHTtGKaW0o6OD9vb20u7ubnr9+nVKKaXffPMN5X7jhw8fprGxsfTcuXPUYrHQ2bNn05qaGkoppWPHjqUtLS0e3wOhZwCgjorIHabZMQQrowR78c5QQqgYg21FaE+Ijo7G559/jtdeew1JSUlYt26dXfbDsWPHkJ2djcGDByMiIgJ33nmn3fF5eXlQqVSYMmUKLl+WX8rr66+/xogRI5CRkQEAiI2NRXh4OHp7e/Gzn/0MOp0Od955p53dUKj8VCBgNjuG5I+RBSN7j1gxBm/rBYaFhWH+/PmYP38+dDodXn/9df496kb5JleftYVSKtjs5uWXX8awYcNw8uRJWK1WaLU/1kxUulSUpzDNjuGzHyOjD7G6gN7UC/z666/5wpdAX1XhsWPH8n9nZmaiuroabW1tMJvNKC4u9vhatkyaNAnff/89amv7Ws10dXXBbDajo6MDI0aMgEqlwptvvgmLxeLyXEqWb5IDE3YMn/wYGT+yedaj0DpUh/a2GIPBYMD999/P95eor6/H008/zb8/atQo/Pa3v8W//du/4Y477sCUKVMUKd+kVqtRWFiIzZs3Iz09HYsWLUJPTw82bdqE119/HbNnz8Y333yDqKgol+d68MEHkZOT4zcHBSvxxOBtdo6VUVhNO3HcLfG072yl34sxcOWbzGYzVq9ejY0bN2L16tU+vaY/YSWeGG7TXyujBBOBKMbw9NNP49ChQ+jp6cHixYuRl5fn1+sHG0zYMQCwyij9Ea5dIqMPZrNjMBgDAibsGAwPCYS9m9GHJ/eeCTsGwwO0Wi2uXLnCBF4AoJTiypUrdrF8cmA2OwbDA5KTk3H+/Hm0tLQEeigDEq1Wi+TkZLeOYcKOwfCAiIgIpKamBnoYDDdg21gGgzEgYMKOwWAMCJiwYzAYA4KApIsRQloAuFsCNRFAqw+G4ytCbbxA6I051MYLhN6YQ228YymlSUJvBETYeQIhpE4s5y0YCbXxAqE35lAbLxB6Yw618UrBtrEMBmNAwIQdg8EYEISSsHst0ANwk1AbLxB6Yw618QKhN+ZQG68oIWOzYzAYDG8IJc2OwWAwPCaohR0h5E5CyGlCiJUQMsvm9RRCyHVCyIkb//01kOO0RWzMN977DSHkW0LI14SQJYEaoxiEkKcJIRds7uuyQI9JDELI0hv38VtCyBOBHo8rCCFNhBD9jfsalGW6CSH/JIT8QAj50ua1wYSQg4SQMzf+nxDIMXpDUAs7AF8CyAfwocB7Zyml027897CfxyWF4JgJIVMArAcwFcBSAAWEkDD/D88lL9vc1/2BHowQN+7bDgA5AKYAuPvG/Q12br9xX4M1lGMn+uamLU8A+IBSOgHABzf+DkmCWthRSr+ilH4d6HG4g8SYVwHYRSk1UkobAXwLINO/o+s3ZAL4llL6HaXUBGAX+u4vwwsopR8CuOrw8ioAXI/G1wHk+XNMShLUws4FqYSQ44SQakJIVqAHI4NRAM7Z/H3+xmvBxs8JIadubGmCdcsSKvfSFgrgfULI54SQBwM9GDcYRim9CAA3/j80wOPxmICXeCKEHAIwXOCtLZTScpHDLgIYQym9QgiZCaCMEDKVUtrps4Ha4OGYnTsL9/0A/IrU2AH8D4Dfo29cvwfw/wPY6L/RySYo7qWb3EYp/Z4QMhTAQUJIww1NiuEnAi7sKKV3eHCMEYDxxr8/J4ScBXAzAL8Yfj0ZM/q0j9E2fycD+F6ZEclH7tgJIX8DsNfHw/GUoLiX7kAp/f7G/38ghJSibyseCsLuMiFkBKX0IiFkBIAfAj0gTwnJbSwhJIkz7hNCxgGYAOC7wI7KJRUA1hNCNISQVPSN+ViAx2THjcnMsRp9zpZgpBbABEJIKiFEjT7HT0WAxyQKISSKEBLD/RvAYgTvvXWkAsD9N/59PwCxnUvwQykN2v/Q94M7jz4t7jKA9268vgbAaQAnAXwBYGWgx+pqzDfe2wLgLICvAeQEeqwCY38TgB7AKfRN8hGBHpPEWJcB+ObG/dwS6PG4GOu4G3P15I15G5TjBfAO+kxEvTfm8H8AGII+L+yZG/8fHOhxevofy6BgMBgDgpDcxjIYDIa7MGHHYDAGBEzYMRiMAQETdgwGY0DAhB2DwRgQMGHHYDAGBEzYMRiMAQETdgwGY0Dw/wDCOqoT17PBEwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "coeqtl_sig = coeqtl_df[coeqtl_df['corrected_p_bios']<=0.05]\n", + "coeqtl_nonsig = coeqtl_df[coeqtl_df['corrected_p_bios']>0.05]\n", + "plt.figure(figsize=(5, 5))\n", + "plt.scatter(coeqtl_nonsig['MetaPZ_flippedforAF'], \n", + " coeqtl_nonsig['flipped_zscore_bios_flippedforAF'], \n", + " label='Insignificant',\n", + " edgecolor='gray',\n", + " facecolor='white', alpha=1)\n", + "plt.scatter(coeqtl_sig['MetaPZ_flippedforAF'],\n", + " coeqtl_sig['flipped_zscore_bios_flippedforAF'], \n", + " label='Significant',\n", + " edgecolor=color_dict[celltype],\n", + " facecolor=color_dict[celltype], alpha=1)\n", + "plt.plot([-15, 12], [0, 0], linestyle='--', color='lightgray')\n", + "plt.plot([0, 0], [-6.5, 4], linestyle='--', color='lightgray')\n", + "plt.legend()\n", + "\n", + "concordance_rate = coeqtl_sig[coeqtl_sig['is_concordant']].shape[0] / coeqtl_sig.shape[0]\n", + "print(concordance_rate)\n", + "\n", + "celltype_rb = bios_replication_filtered_df.loc[celltype]['r']\n", + "plt.text(3, -5, f'Concordance = {concordance_rate:.2f}\\nrb = {celltype_rb:.2f}')\n", + "\n", + "# plt.savefig('bios_replication.cd4t.filtered_results.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATsAAAEvCAYAAAA6m2ZKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwSklEQVR4nO2df5Ac5Znfv8+ORmJW9mmFWZ+PNUJy4pPKOg7W7NlKVJdExEG2MbAGG0wg5bpLFUkqvgoctzkRU0bEvkJ3KoKvkstVkZyTS5lgAcJr2XJZtk9yrsKVsFde6WQZqQI2khhxsVywXCwN0uzumz9me9Xb875vv9399sz09PdTpYKdHz1vT7/z9PP7EaUUCCGk3xno9gIIIaQTUNgRQkoBhR0hpBRQ2BFCSgGFHSGkFFDYEUJKwbJufOgVV1yh1q5d242PJoT0MYcOHfq5UmpY91xXhN3atWsxNTXVjY8mhPQxInLS9BzNWEJIKaCwI4SUAgo7QkgpoLAjhJQCCjtCSCmgsCOElAIKO0JIKehKnh0hRM/kdB07953AmZkGrhyqYWLreoyPjnR7WX0BhR0hPcLkdB0PPncUjeYcAKA+08CDzx0FAAo8D9CMJaRH2LnvxKKgC2g057Bz34kurai/oLAjpEc4M9NI9DhJBoUdIT3ClUO1RI+TZFDYEdIjTGxdj1q1suSxWrWCia3ru7Si/oIBCkJ6hCAIwWhsPlDYEdJDjI+OULjlBM1YQkgpoLAjhJQCCjtCSCmgsCOElAIKO0JIKWA0tkdhQXg54XXPDwq7HoQF4eWE1z1fvJixIjIkIs+KyHEReVFE/p6P45YVFoSXkyTXfXK6js079mPdtr3YvGM/JqfrnVpmYfGl2f0xgG8ppT4hIssBDHo6bilhQXg5cb3u1ADTkVmzE5FfAvAPAPwZACilLiqlZrIet8ywILycuF53av7p8GHGvgfAWQD/TUSmReS/ishKD8ctLSwILyeu152afzp8CLtlAN4P4E+VUqMAzgHYFn2RiNwrIlMiMnX27FkPH9u/jI+O4NHbrsHIUA0CYGSohkdvu4YmSp/jet2p+adDlFLZDiDyLgAHlVJrF/7+TQDblFI3md4zNjampqamMn0uIWUl6rMDWhogb4iAiBxSSo3pnsus2Sml/gbAaREJdO1/DODHWY9LCNFDzT8dvqKxvwPgyYVI7E8A/Jan4xJSWPJMEGYrqOR4EXZKqcMAtKojIWVkcrqOiWeOoDnfchPVZxqYeOYIgO6nh5S1SoMVFITkwPY9xxYFXUBzXmH7nmNdFSydztHrJcHKRgCE5MBMo2l8vJvVDp3M0QsEa32mAYVLgrVb509hR0iH6eYPvpM5er2W/ExhR0gOrB6sGp/r5g++kzl6vZb8TGFHSA48fPNGVCtifL5bP/hOVuf0WvIzhR0hOTA+OoKdn7gWFdELvG794DuZo9drZY+MxhKSE4EA0VU7dLPOuVM5er02B5fCjpAc6bUffKfppeRnCjtCcqaXfvBlhj47QkgpoGZHSEJ6qSqg0xT53CnsCElAmVui53nunRCiFHaEJMBWFaD7cfaKJuRjHUnPPcnaOnEDoc+OkAQkqQroldpQX+vIqyKiU2VlFHaEJCBJVUCv1Ib6WkdeFRF1g7A0PZ4WCjtCEpCkKqBXakN9rSOvighTlYm52C4dFHaEJCBJuVWetaFJhmT7WkdepWZzhjk4CvBq8jNAQUhCXJOEJ7auz6VULKlD3+c68kiQHhmqGU3WrMGPMNTsCMmBIPrZaM4tmmm+NKGkPri8i/+TaJk6bELXp8lPzY4Qz0Q1rzmlFjUpHwLGxQenSzV5ftsNmT87Spa0kfAaRQCdNeuzOww1O0I8k3cUNs4H18mUl7TnGl2jTtD57g5DYUeIZ/KOwsZFRTuZ8mI6p/pMo024hs3dB54+0rZGoBWZzavPHs1YQjxzpcHh7sski2sb5VPYxlVemM4VwBJzVmfa65hTynvKSQCFHSGe8Rn9NAkbW1TUl7B18cfpzjWg0ZzDfbsOY+e+Ezh3YVb7Gh1h0zv8WVmhGUuIZ3xFP9P63nwl/7qYw8G52qjPNIyjJW34Nr2p2RGSAz7y0bIU3q9YNrD43tWDVTx880YAwOYd+52bAbiaw+OjI9i570Sq8q6KCOaVgt6o9Zt6Qs2OkB4lje8t0AbDmtRbzXlMnXw9sZaYpPJCp03GUatW8Ngd1+KnO27CSAcmkXkTdiJSEZFpEfmGr2MSUmbSlHmZtMGnXjidOEKbxBwOm+4uDNWqS0z7Tkwi86nZ/RsAL3o8HiF9j636II0AMGl9puinTUuM8z1G1w4Az2+7AV+887pYLW/limVLTOhOjHj04rMTkXcDuAnAHwD4XR/HJKTfiYt22lJMTFFaWyqIjjgz0eR7dInU2vx4OiGb92AiUQaJn+ggIs8CeBTA2wH8nlLqY5rX3AvgXgBYs2bN9SdPnsz8uYQUmc079muFwchQzVraFRU0QEvjC6KiplSQKALg7k1r8IVxezQ1y9rTnmNaROSQUmpM91xmM1ZEPgbgZ0qpQ7bXKaWeUEqNKaXGhoeHs34sIYUnbfJvXJQ2bA6aesUBrXy23YfqqcrIXNduMsW3bBjO1DwgDT7M2M0AbhGRjwK4DMAviciXlVL3eDg2IYXGVoGQNvk3TtCEzcF12/Zaj5V2hsTQYBVvnG/PnYuuPTjuI18/tvh6gcKu759Gc75lVUZN4LzmdmTW7JRSDyql3q2UWgvgUwD2U9AREp8UnDYCaRKGAyJtmpJL6kbSXLbJ6Tp+8dZs2+PVihjX/lZzfvH/zzfnFwVdQCB082xiwDy7ApO1jxjJl7gKhDQRyMnpOs5fbBc0QCviGhUQLvlvSXPZdu470SasAGDl8mXateu+Bx1nZhq5NjHwWkGhlPoegO/5PCbRU+b5pb2IzvRy8WsliUDqAhNAK9AQFT2BgAiCALbI6JYNyXzopvN601AS5qo5XjlUy7VjDDW7gtIrk6uI2VwdGqxqX5+2KsCkIcWVWo2PjuD5bTcYE34PHD+baB1Jk51dzrc60DKB85zbQWFXUHplchUx33iUgteqgKTXdlVtqbDNc8qYoCXkde6Uia3rUR2wN25622UtEzjPSgo2AigoefdMI+6YzMM3G008fud13iKLSROGz12cxeR0PXP0N0o0aThsRofdKeHXxDGzEKmN69WXBQq7gpLX5CqSjMnputZnBrSEiM+qAFvvOB3NObUkrSSvPaPzF27fcwwXZued1xoWuHlVUlDYFZQ874DEnZ37TmgFncA+NSsNLmVYUaLBkOD9WfaMKVASJkn/usBflzcUdgUm71pCEo/J36WQT1Q8uObrtu01BibC6JJ88+izl4XAX5c3FHaEZMDkB3NtdeT7c8Pk5daIC2iYzHoTM5FKjJ6toCCkzHSiD5vr51YrgqFaNbcWSQG2gEZSQRc9Xp4VFNTsCMmAix8sD02lmz5bU6DjsuqAtl7WRvTGsH3PsdSt6OOgsCMkA3GCzFbpAmQTVnH+t7zMQZOgvX/XYeN7atVKmxAbkEuCbOrk69j7168ZAxs+8ke99LNLytjYmJqamur45xLiE1tfuUAgmPq5DdWqbakZ0fdmEVYua/ONrXfdxNb1i+eyqlbFuYuzaM65yx7X/ne59rMjpKy4lOyZNJKZRtP63qy+q7i15dFEwua/DErWfrrjJqxcsSyRoAuOnRUKO0JS4lJ+lbQ6IXhv1tpn29ryCgK4dnFJapIOiJ80HvrsCEmJS/lVUmd+8N4kdaw6c9e2NpMgvW/XYdy36zAqIrjrg1elatce9iMG67p/1+FMczI03aRSQc2OkJS4pJ2YtJ2Hb95ofa9r9w+TlrZlw7C2WH/LhuFYzWpOKXz54Ck8NHnU+jobunXdv+sw1m7bi3MXZlGt2BsDhPGVs0jNrmDkFWEjyRkfHcHUydfx1AunMacUKiK4/fr2CKktamq6lq51rCYt7cDxs7j9+hE8efDUYt5bMHNiVa3qVM711AunU2l3pnUF65hpNFEdEKw2tHYP4zNnkcKuQLBhZ28xOV3H7kP1xZmsc0ph96E6xq6+3Ol62ISgax6dzdw9cPystkj/suqANhUkSnBeaW6wcdpjc15hcPkyq7Ab8XwzZ+pJgej0WDpix3Q9AoZqVWy/ZWOuNyLbnjizYEJGEWBJ6ymTBKiI4LE7rk2VwhL33QTrGBDRDvCuiODlRz9qfb/2mEw96Q+SDBwm+RP3vc80mph45kius0FsfkOb3y+cCnLPpjXa1931watSR4VdZ1/oBB0A4+NZoLArCEHfNB1s2NkdXL735rzKtVW+Ld3DtW537OrL2wTBwMLjabsbh9cFoG3vBuswBR/yaKRAn11BMPVNA5IPTCF+cG2mmbfmbfL9ufr9du47gfnIe+cXHs/S3ViXhqJbR6ea0FLYFQTbD2bXD07jG0dew5uNJiO0HcS1mWY3NW+X/nU27e3xO6/zIoyyCmQfUNj1CHERL1siZnNOLaYS1GcamHj2CABGaPNCd6227zlmTOeY2Lq+p1OGbNpbWmGU5Hw71YSWPrsewKV8x8XhG9CcU/jsV9MnhBIzums18cwRXJzVm7KB8z+vHm0+sPn20gjpPHvSZYGaXReIbqDzF2dje3gF/33g6SNOkapzF+eWTJYiftBFJ5vzCs1ITdPqwSoevrmVdnLdI9/OrUebD0zaG4BUeZ22CG43z5fCrsPoEoNNRH0pJoeuiW5vrn7ENdjwt41ZAK3rbTJvgzmrvWDS6kzJzTv2JxZak9N15xSpTpv2mYWdiFwF4H8AeBdaQZwnlFJ/nPW4/UqSYSU6x3b0LgwBTIoe8+/841rEPqcUHnzuKC6r2j1FQc3ofbsOY2Sohi0bhnHg+FmrAOiUkEiadhLcyE3o2q93shrIh2Y3C+ABpdQPReTtAA6JyHeUUj/2cOy+w1UA2SJe4bvwQ5NH8eWDp7SvY/6dPwIBEx0KbaPRnHO6sYUHTIevpU4AxAkJn4IwadqJ7UYe3c/dMHUzByiUUq8ppX648P//D8CLAGg7GTBtlKFaNbYPmI4Dx89qH89jbmlZCTvcgZZwCpJkh2rVRB08khKtVrAJCd+BgaTDhGw38uh+TpusnAWvPjsRWQtgFMALPo9bVHR3WVM3i7Q1lJ2eW1pGTB08gprkyem6MXCka7+elLB2ZRMScaVdSTU+W+Bi8479bceyjZWMflaWZOW0eEs9EZG3AdgN4D6l1N9qnr9XRKZEZOrsWb020k+Y7rIAnLq5umLaHHnPLS0TcVrI+OgIHrvjWq0WtP2WjUuu91CtmvjzK3JJc7TVu5rWGey9NBpfuIY2aDZhOpapkkf3eDdGUHrpeiIiVQDfALBPKfUf4l5fhq4nnepQ0o3BKmXDdC0rIphXaonG46I9bfzct3DuYjJN75UdNwGwX29TJUfF0FkkzV607WtAn11g+pw8Ai22ric+orEC4M8AvOgi6MpCp3wS3ZwfWhZMNbCBAAm0m0dvuyZWeExO13FxNlqJaiespcddb50gNJnQafaiLa3EpDa5tpLPe8/68NltBvDPABwVkcMLj/07pdQ3PRy7sHTCJxHdMI/feR2FXE6sWDawKDQGpH0ugmskcee+E20JyDYE7fl4UYEXzF09cPwsGs25RU0uPMLQx14MOu/oVj80WMXM+ab2OVMr+XBEeeLZI9i+51iu9d2ZhZ1S6n+jvYNL6XFtq50Wdi3uDDqz0SSrXDSlpNpUOC0lnMMWvfbhlJU5pZaMMIy+Hki3F02ddwStXE/Tcy6t5KP13XnsZdbG5oTrWLm0ZB21R9xIkgQ+IBI7hzWLZh9cX5c1hffC+OgIbr9+ZDHQURHB+9esws59JxLNjbVF/t80VInosgJcBH4ee5nlYjkS180hi9+iG3lKZSTJ9xn14QHtP3TXHni29bgawcHaH5o8umTwzpxSeP7l1xdf56pJ2VJLguOYnnM5jmn9vqBm1yUmp+uYePbIkhD+fQuj5lzutK6j9kg2TN9nrTqwJCUkikkzCTT+1YPJU1CAlm/M1Wd05VANk9P1JYLORNpW64E5nCSVxLWDj++9TGGXM5PTdWzesb/NXHjk68fQnNNvwbg8qMnpOs5fnG17PO88pTKi+2FWBwSz8yq2+4xJMxkfHcHg8uRGVa1aMfrGdK8NghNJNUETNtdMErdN9LWrB6uoDiwV4XnsZU4Xs5A1PG7Libpv1+HY9+vyk3THbB13AJdVK5g5z27FvtG15Iqbdwq0EohXrlim3T/rtu11EkJB9DOIrN6/67DxfeE5rMFkM9vro3RzSp2vVJRc8+z6FR/RzqxBBN2d1uScfqs5j0ZzPvVaiTsugg5oTRdb0kH6mSOLKSImAWQTkIC5BfzqwSreal7K35tpNPHgc0cx5DCIGliqSU1O15d0Xg735nMh3DQhSIMZqlUhAuPNuBPdiinsDPjoymALIgw5TGUPfC7hO57Jsasbhsx+dtnR3fRcu55Eac4rY4cawK1GemLrekw8c2RJrl51QKAUtPt1xbL4gdgVkUWTc3K63nb8N843nVv9R7+vwNQP7/Vu3YzpszPgI9ppCyJsv2Wj9cuvVSvYsmG4rQ4xSUIjI7PZMTUB8E2i1KToJhAYb5xvNpqxIw0fu+PaJYnKuqTn5pzbSEjXVJ1upElRszPgUgER52eISyyuVATzmiBFOPM9yw+NkdnsdOKGIYCzr2znvhNtga3mnDLWvwZDc1xGGgL28/WdNO2SfuITCjsDcYLKxadnq2PcvGO/NhobdhLf7xDEsMF5stlxzQnL+hmumIRJUDURVyUR5xuzna/LOpN8X7bUnTygGWsgLpTuGnyItsgJ3u9iJmfVzEyNPYk7Saa6xTEgyJxiYWvpZduvphSoKBNb17etEQCqFXFaZ5Lvy2VwlE+o2Vmw3QXT+vQCM8J0mcOb2Ue2PclGVDt3/XmKZjZIRQR3fuCq2BkTNrZsGNYGObZsGDbu1ySZBcHfaaOx0cHhJvMa6HzPRQq7lKTpamLKkQuI3uV1ZvBrbzaMhehJ1kLcCQuRtdv2Or3nylXt+6M5r3Dg+NlMuWwmbd2mxSfNLMiaBhJ9vynftNMJ8BR2KUnT1cQWqQomS+3cdwL37zq85K4f3jiuPzZWU+TDiKNPynWcYFJcLYpwICJJn7k86JWeixR2KXG9gC6bLmiD42JquPzYRrq0mcrA2ndkC1goYLE3HZBcALhmCbi4PwZEMg9Sd6186ETScBwUdhlw6WrisumuHKo5mxoTW9dbS80El/w3xC+T03X8VahbSFqCZpVQWMxpc0m0da2Jds11C2bb2j7TRpYqo250KmY0NkdcNl2wUV3Nk/HREdQsg5cVgCcPnko9Po+YSVJUH0dzTrUl79oSbQPBEi39GqpVnccU6siS3Ju2HNL3yEdXKOxyxLbpoukBSVo2PXrbr2vTAwIUwCaeOdAJH5dpXsMDTx/R3jhXrlimHVOY9TOzvC/ueN1qPEthlxKXvCVbTlQ0727LhmFtKY8uyDA+OoKdn7zWmpTJtBP/dCK6bZrXYErf0F1nU285Uw+9tOeVtqeibeRjks7JSaGwS4GrGu7a0HByuo7dh+pLTCQBcPv17SH8zTv2Y+22vcahzAFMO/GPz4oU1wTjOFeI7jqbEuIfvnmj11mtaWe/2vZmnmYtAxQpcA0muEZsTTWw4dwpXWttG9GJVCQ7PitSVtVaibpxe8OmodsEiy145iswkDalxCVZPo+uPRR2KUjiq3AJuccdb3K6bm0NZIJ97fzi0zUwc77ptDdMqSbhtkxJ8J0CEhwviK7ev+swdu47gS0bho2VIq5VKZxB0QPYfBWuNYiuxwNaLdzTwolj/vDpGnA9lslUDLdl6jY6t86XD56yunnCNeOmsjHOoOgBTBtQ13/uweeO4qHJo1YBGBeccO2Ma4LBCj+k8dkJWkX0YZL4yfIeyemDpKMdo6T1/SWFZmwKTL4Kky8v7GuLmpauwYksMFjhh6Q+u2DeyNTJ1/HUC6cX/ayN5hy27zmGR75+zGlmSBLTsxvJuq43U9sAIiD/cjIKu5ToNqCp/5ytZbopOPHlg6dw4PjZWG0irkW4biI7SUcSDTko2QOA3YfqbQGlPNqU+5ibkgbXHna2m24nysm8mLEi8mEROSEiL4nINh/HLCJpmjDafkD1mQaejAlMRE2kKLqJ7CQdLte3OiD44p3XLeZQdrJNebeSdV162PVCY4rMwk5EKgD+BMBHALwPwF0i8r6sxy0iE1vXJxpgHP6vibjypIuG2bMBlYVib5Idlx/rfOTvJNpgpzqi+EbnV7xn05qe8zP6MGM/AOAlpdRPAEBEvgLgVgA/9nDsQjE+OuI0DzZ8l8vaoDOOrMXe5BLjoyOxc1jn5tWS/LAkbcrDHVHSXKs0PRZ90QtdTeLwIexGAJwO/f0qgA96OG4hiDqE40YkRoMP0c6upvdkKUDnWEV/3L1pTWzOY5DQfWamgVW1KqoV0c4bMb037c3J1GNxy4bhxfV0o5dcN4ImOnz47HSWW9uVFZF7RWRKRKbOnu2P2Qi6/KJzF2dji/SjUb0g5+iLd16nDcHfvWmNsa7RFaafZGdyuu4ckQ32xEyjuUTQBVvDNmsmrZ9tfHQEt18/slgzXRHB+9eswu5D9Y53GAnoVocTHT40u1cBXBX6+90AzkRfpJR6AsATADA2NtbZSRs5oXMIN+cUVg9WcXF2Hucu6k3TNCH4A8fPZsq3W1XLJizLjmtvwjgqIqgMIFbTS3NzCtKYgsjvnFL4q5df7/gA9bAmN6CZQdEtS8OHsPsBgPeKyDoAdQCfAvBPPRy3q7io3qYNOXO+iQHLrVsBGP3334ZSrSHG0RbsuuL/rOP8zl2czdyVtsy4RlXj0A2g1pHGz5ZkzrDrYChX0zN4fTDIPa6G29TKKk9zN7MZq5SaBfAZAPsAvAjgaaVU+vqmHsBV9baVecUV6r9xvomZRtN6/PA6suI60Z3o6aQbIOg2nZQka3QZDOVqekb3qYs4N7WyytPc9ZJUrJT6JoBv+jhWHiS9Y5jylR54+giAS+ambehOXAumKI3mHO6LFFH7Hs5Mv116TJHOlcsrOH9xzlsHY6AlLHYfav3Ik4xdHBqsOrk60gyGspmeabTeqDBP+plpKHQFRVh1DuZTRofNpMkqt01dD7/X5mObOvl66k4lad7nAsvG0mO6sf3Bx68BAK0Jl4W4MkMdpntrrTqAy1eucBaatuaautSYNDfRp144jScPnlpcTydyBAsr7KJCLNCi6jMNTDxzZLHuMI2D1JYbFX2vKb/oC+OtH0G4JrKb9EIGe5Ex3diCx5KYcK4kDSy8aUh5eqs5n2hWrW3/64RuklzCgPDv9cHnjmKVIWXL5w26sF1PbKpzc17hjfMtf5irgzTcmunchVlrGZapfXS0vdPY1Zfj5Uc/ild23JT8BGOIm6Zeqw70XAZ70Qm3JQqEhy+fqis2TSdtm/QoceVf0dQY3euDX49tdED4eCLQfub5hcCaDwqr2WVVb21zNmcaTVQHBAMCmIJnYSfq1MnX8Y0jrxmLuwEsmtk+qA4IJrauxyNfP2b00SS9m5Pk+IrQJsEmuNIMbtfhkuge/v3Z3DmuKTsz55t4/M7rsH3PsSW/ozfON71VABVW2KVRnQNc5mw25xWGalVcmJ2PbR8d9q1En9u+5xguzM57NWWb8yq2bIn+ufwI+4qTMID22tkkxAkun62SAveMKe0pur9M7pzomnRupeB4QeOEqDnrK1BRWGGXtKa0IoJ5pbQbwKQlvtlo3W3i2kfbhI6tdCwLcaLT53AYconJ6TomnjninC8HtPbeXR+8CmNXX55YSNr2rQ7fNao+tMXwmnSaXvh4eQYqCivsoqq2iC0aVbH6rFwLqH2aonmz6wenMXb15fTTeWb7nmNOgs6058ZHR7Bu217nQEaQYXBmprHoJ+vkNfXdWDPueHk2MxDVhR/v2NiYmpqa8npMk7pdEVnSr1+XcwdAe7e5/foR7D5Uz+SXsfn98iapVkDiWbttr9Pr7tm0ZjEiHyVLRUzcjbvomDQ/13MWkUNKqTHdc4WNxkYxqbnzSrWp0NEsbQDaPv8Hjp/VCjqXCNOlz2+fD9op5pTqevF1WbE1DHBpdmmi3wco5Tlzo7BmLBBfcAwsVX9tWdpBZ9kwpjbr8wumhevdeU61gh1BHeyWDcNt0VsgeysnG2zzlI1gr7li2xs6U+78xVnnRg/9XgmTV2+8wgo7U1JxmKgjNanz0+Y/SBIgmVfAyhXLcPjhGxcf+8L4NW0m9dp31LRdKpae0wAuzM6nMo37/UeSF2k6nsRp/7qGD9HPMN38+i3S/tDk0cXk+yCYY3IBZKFQws5Fk7P5qZI6P22RKN3d2XY3tw3Qnpyu45GvH8PzL7++5HkB8Pf/zuX44ak3F9fQaM6jOtA6x6T024+kU6TJpwv2pmtdtm4/bdkw3OYz1kVCfXcL6WSzzYcmjy4pj5xTavFv3wKvMMLORZMLHjdFr5KG0eMiR9G7s83xPLAwCyK6aWxagwJw8CdvtJ1rkrSHAJaLpSeNRjyyMDA9SV22znwL0lVMgsf3RLFOTyh76oXTxsd9C7vCRGNdI1hR1T8aycnzrjU5XcfEs0eMjRl1USUfveriiDZHIMlIeo2qA4K3XbbM6IMbGap5q24xrS3tZ9jONY99ZItupymztEVjC6PZudxddT4O18L9KGmEYvC8qYwr3MYpOF5aP1qtOoBGMz4fvyLCsrGMuPpnBa2O0Odigg0+fae2gv112/YmvqHHjfb0reWZcleTZDy4UpjUE5O/qSKyGKJO25U1SpZGguOjI5j+3I3WkYrh46Vtl+4i6ACzuU/cCdIh4n6AP91xE1auWBbbct2n79S2pjRpR3Fr8536ctcHr0r0eBYKI+x0uUm1agWP3XHtYhcKUyeQpJvL1rxT1+0kzWcGdbPnLs4mWltS4rqjEDfGR0fw2B3XGp8fWrhpxd1YfftOXW5mSQSUSw6gT830C+PX4J5Na5YMCbIlZGehMGasS9mKr64PtuadgJs672L65FU3G8CghH90xfwDAmy/ZSMAe4OKPHxervmergIqaDxram4B+I/qf2H8mlyEW5TCCDsg3t/mq47PpaNKXJKuS5ucvLn9+lYXift3HWbJmAd27juh7VryS5dVF1OIzl1o19TzLPFy9ScmEVAHjp81Croi30ALJexc8JF97bqB4oRYOI9Op3G+NTtnbF6QldWD1SU5WnmnEJQBW3ccUwrR6sEqHr55Y27fefQGHwRIwn7DpALKpgUWuS63MD67ThKuz7MhgHPQQlfvl2fsQCkYS+NIOmydgE2Jx0q1BJGrrxdo73gd955wB+XDD9+InZ+4NlNtqek8RxZ6zhWVwuTZ+SDNLMw4DS9LzlSeOXamUiNBK2pIkmPryBHXTDX6etO+y9r1wwe9sIa0lKLrSRxp0klcyoRcHL+mO3WW7hc2RoZq3uYRkEvYOnK4phDFade2ZhWdIknnkaRaaDfpO5+diTRzKV0EWZzwMJXfTJ18fbGFlM+ed2H/jI/INFmKySecJAfWtq86MVLQBRffd6dLy7JSGs0uzSaKE2QuwsMkZJ88eGrRhPUl6FYPVhfvwHn2BSPtzDi2ZwLs+6pIGnkvaKFJKI2wS7OJbCPiXIWHSZj69JSODNVwz6Y1GFy+DPfvOrxoTkRH/1HQ5YdpH0UVvrgbpG7PVSuCcxdme85U7BUt1JVMZqyI7ARwM4CLAF4G8FtKqRkP62ojSXBB99o0Ccc+8vayTEEbGarh3IVZa/JxrVrB2nfUEk+PJ34x7a/brx/BgeNnnfdPdM8NDVbxi7cu7YFeurZ5zovIg0zRWBG5EcB+pdSsiPwhACilfj/ufUmjsUmiQ7bXAv4Gh2RZu0tH4rjOGS747K5B4smjo47vriY+6cWobW5dT5RS3w79eRDAJ7Icz0SS4ELS1ut5E5TfhDuxbnrP6iUNOaPUqgOYnVeZBB3Qu+ZEv5JHO/FeNhV9Tx7LG5/R2N8GsMvj8RZJcsFdXtvJTqyT03XsPlRfrKudUwo/PPXmonlTn2m0aXquHU3i6FVzgrhjMhWHBqvYvGN/14VMXvMi8iA2QCEi3xWRH2n+3Rp6zWcBzAJ40nKce0VkSkSmzp41T17SkSS4EPfaLO2b0rB9zzGtpvnUC6dxZqaBikguQ3YEYJpJH2AKWPzirdmO7eF+IVbYKaU+pJT6Nc2/rwGAiHwawMcA3K0sDkCl1BNKqTGl1NjwcLJp9ab2Tls2DLclNJpeG/zwOxkun5yuG4MLwZjDPPrNCYC7N60pzB2XmNGlEK1cvqytNX8vp3z0ClmjsR8G8PsA/qFS6ryfJbXjMowkuLs9ets1ePS2a4xmah4+kMAsri9oasEcjPM596rTked0JtIdoqbiOkMr817w4/UyWX12/wnACgDfkVYK+UGl1L/MvCoNuuE2aQIRvsPlpkFA3WrrNKcUdh+qY+zqy6nZ5Ugn/b5Ripby0StkSipWSv1dpdRVSqnrFv7lIuh0pNXQ4szcpKQZs5c3NGnypdN+3yi+93BZKGwFxdCgvvDadncL7saN5txiG+isZVRJTYcBaeXQ5Q1NmvzodpkUSwHTUchGAJPTdfzirXZ/WLUixrubztyMDry2fZ7JZElaIbGq1mrmGM2Qt82CDfyAInDugUeTJj96IfetSCkfvUIhNbud+05ohcPK5cuMGyDt3TjOZEnapumN880lgvPhmzdi5yevtU6JmlMKqwerWObYWkMAbNmQLOJN3ClSsT65RCGFna09dtL3xN2N44RktKtxeEqSDgHaBCcAPHbHtahWzMLsjfNNq/YXRgHYfajOvKucoM+smBTSjHWNRoXNzwHDMN64u7FJGNZnGti8Y/+iSetSo2sb4v38thuwfc8xbxPH4nr1kfQUrUyKtCiksHPpYGJKCQljuhu7CEnA3oFC94Mw+fbOzDSsCcg2RoZqOLOgKeqOS/KBPrPi0fPCzhYcsN1ZTSkhFRHMK2W8G7sIyTBhk1a3nmhuoKnOMRCaSQiEtWlcI31IhFyip4VdXNtn253VpNXMK2UdOGMTknEaXlx7apNGqpsEpqNaEaxcvgxvNpqLAhWAtlKDPiRCltLTAYos+UxpI2YmU3N+oQRMR0XEaZ2m/ChbYCWMTtA9+NzRtlZQQ7Uq864IidDTml2WfKY0nYknp+vGxppDg1XjtHeTVqZbp04jNZmhUcLdaieeOYK3XbZM+9krV5hTcAgpKz2t2WXJZ0qTZb5z3wlju6Vwa+yAYMCNSeNz9ZmlGanYtDT3ZGCCkHZ6WrNLo52FSRoxswkJXY7bYCiJOes6gUsBjlW1KkRaE6vSzLBgYMIP3Sz2J/7paWHX6XympIIlEI4+1mnK1YvzT0bNaAYm/FC0magknkwDd9KSdOCOCz7uwqYBIiuWDWhz4PIceqJbi457Nq1JNL2KuNHLg26ImdwG7vQKvu7CJg0NyGampsG1ddSB42f548uBXij2J37pC2GXZPpYHDY/Xyf9N64/Kv748oENMvuPvhB2nbgLd7o8yNV/yB9fPmQNjpHeo6dTT1zpx5Y7E1vXW7ugAPzx5QkbZPYffaHZ9eNdeHx0xNoFZYTBiNxhsX9/0RfCrhdb7viIDtvKyLp9foQUjb5JPeklTL3s7t60JtGIQ1P6A8AUCEJ02FJP+sJn12voosMKwJMHTyXqHmxrrV5f6IEXHRJOCNFDYZcDpiiwApwnUE1O17H7kF14/e7Th7s2zo+QokFhlwO2KLBrOoxLUnG0XJfzYgkxQ2GXA7Yo8Kqaft5tlLQ5gkwyJkQPhV0OjI+OYOVyfcsmx2mIqXMEi5xbSEieUNjlxPmLehN0xtCDLkqaHne2IeGElB0vwk5Efk9ElIhc4eN4/UDWqo7oPFoXbEPCCSk7mYWdiFwF4J8AOJV9Of2Dj0HK46MjeH7bDXhlx0344p3XYbBqv1wzjSajsYQY8KHZPQ7g30I/uqG0+K6tHB8dwY8//xG8suMmq7Z3/67DeGgy+VhGQvqdTOViInILgLpS6ojEeN5F5F4A9wLAmjVrsnxsYcirtlJXCxwQJC+PXX05TVpCQsRqdiLyXRH5kebfrQA+C+BzLh+klHpCKTWmlBobHjZXBpB4xkdHcPv1ZkGWJHmZkLIQq9kppT6ke1xErgGwDkCg1b0bwA9F5ANKqb/xukqyBJfqCubbEbKU1GasUuoogHcGf4vIKwDGlFI/97AuYsGluoL5doQshXl2BSSug3HRe/kRkgfe+tkppdb6OhYxE5dawqaehOjpi+adZWL7nmPG5+5J2C+PkDJBM7ZgmNq0A62xioQQPRR2fYTLNDJCygqFXcFYPWhuESWI9+kRUlYo7ArGwzdvxIChWIXJxISYYYCiYARR1vt2HdY+z2RiQvRQsysg46MjxmYATCYmRA+FXUHx0UKKkDJBM7ag9OJgcEJ6GQq7ApNXCylC+hGasYSQUkBhRwgpBRR2hJBSQGFHCCkFFHaEkFLAaGwBmZyuM+WEkIRQ2BWMyen6ksli9ZkGHnyuNTqRAo8QMzRjC4Zu/kSjOccGAITEQM2uB0hilpoK/dkAgBA71Oy6TGCW1mcaULhklpr60pkK/dkAgBA7FHZdJqlZygYAhKSDZmyXSWqWsgEAIemgsOsyVw7VtLMjbGYpGwAQkhyasV0mjVk6OV3H5h37sW7bXmzesZ9zJwhxgJpdl0lqljLPjpB0UNj1AK5m6eR0HQ88fQRzSi15PAhoUNgRYiazGSsivyMiJ0TkmIj8kY9FkXYCjS4q6AKYZ0eInUyanYhsAXArgF9XSl0QkXf6WRaJoktRCcM8O0LsZNXs/hWAHUqpCwCglPpZ9iURHbqIbQDz7AiJJ6uw+1UAvykiL4jI/xKR3/CxKNKOaTA2AKxYNoD7dx1mZJYQC7FmrIh8F8C7NE99duH9qwFsAvAbAJ4Wkfco1e5YEpF7AdwLAGvWrMmy5lIyr3fVAQBmGk0AjMwSYiNWs1NKfUgp9Wuaf18D8CqA51SL7wOYB3CF4ThPKKXGlFJjw8PDfs+CLMIOKIToyZp6MgngBgDfE5FfBbAcwM+zLoq0d0KpVQfQaM47vZeRWULaySrsvgTgSyLyIwAXAXxaZ8KSZOgSh6sVwQBaqnMcjMwS0k4mYaeUugjgHk9rIQvo0kyacwqrB6sYXL5sUdvbsmEYuw/Vl7yWkVlC9LCCogcxmaEz55uY/tyNSx4bu/pydkAhxAEKux4kSScUdkAhxA12PelB2KCTEP9Qs+tB2KCTEP9Q2PUoNE8J8QvNWEJIKaCwI4SUAgo7QkgpoLAjhJQCCjtCSCmgsCOElAKmnhScaHcU5uMRoofCrsBwrCIh7tCMLTC67ihs3kmIHgq7AmPqjsLmnYS0Q2FXYExNOtm8k5B2KOwKDLujEOIOAxQFht1RCHGHwq7gsDsKIW7QjCWElAIKO0JIKaCwI4SUAgo7QkgpoLAjhJQCCjtCSCmgsCOElAIKO0JIKRClVOc/VOQsgJMd/+ClXAHg511egw94Hr1DP5wDUOzzuFopNax7oivCrhcQkSml1Fi315EVnkfv0A/nAPTPeUShGUsIKQUUdoSQUlBmYfdEtxfgCZ5H79AP5wD0z3ksobQ+O0JIuSizZkcIKRGlE3Yi8kkROSYi8yIyFnnuQRF5SUROiMjWbq0xKSKyXUTqInJ44d9Hu70mV0Tkwwvf90sisq3b60mLiLwiIkcXvv+pbq/HBRH5koj8TER+FHrschH5joj8n4X/ru7mGn1SOmEH4EcAbgPwl+EHReR9AD4FYCOADwP4zyJSaX97z/K4Uuq6hX/f7PZiXFj4fv8EwEcAvA/AXQvXoahsWfj+i5K28d/R2uthtgH4C6XUewH8xcLffUHphJ1S6kWllG7W4K0AvqKUuqCU+imAlwB8oLOrKx0fAPCSUuonSqmLAL6C1nUgHUAp9ZcAXo88fCuAP1/4/z8HMN7JNeVJ6YSdhREAp0N/v7rwWFH4jIj89YJpUhTTo+jfeRgF4NsickhE7u32YjLwy0qp1wBg4b/v7PJ6vNGXMyhE5LsA3qV56rNKqa+Z3qZ5rGdC1bZzAvCnAD6P1no/D+AxAL/dudWlpqe/84RsVkqdEZF3AviOiBxf0JxIj9CXwk4p9aEUb3sVwFWhv98N4IyfFWXH9ZxE5L8A+EbOy/FFT3/nSVBKnVn4789E5KtomehFFHb/V0R+RSn1moj8CoCfdXtBvqAZe4k9AD4lIitEZB2A9wL4fpfX5MTCpgz4OFpBmCLwAwDvFZF1IrIcrQDRni6vKTEislJE3h78P4AbUZxrEGUPgE8v/P+nAZgsocLRl5qdDRH5OID/CGAYwF4ROayU2qqUOiYiTwP4MYBZAP9aKTXXzbUm4I9E5Dq0TMBXAPyLrq7GEaXUrIh8BsA+ABUAX1JKHevystLwywC+KiJA6zf1P5VS3+rukuIRkacA/CMAV4jIqwAeBrADwNMi8s8BnALwye6t0C+soCCElAKasYSQUkBhRwgpBRR2hJBSQGFHCCkFFHaEkFJAYUcIKQUUdoSQUkBhRwgpBf8fDoL+9B6HBAIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def plot_ci_manual(t, s_err, n, x, x2, y2, ax=None):\n", + " \"\"\"Return an axes of confidence bands using a simple approach.\n", + " \n", + " Notes\n", + " -----\n", + " .. math:: \\left| \\: \\hat{\\mu}_{y|x0} - \\mu_{y|x0} \\: \\right| \\; \\leq \\; T_{n-2}^{.975} \\; \\hat{\\sigma} \\; \\sqrt{\\frac{1}{n}+\\frac{(x_0-\\bar{x})^2}{\\sum_{i=1}^n{(x_i-\\bar{x})^2}}}\n", + " .. math:: \\hat{\\sigma} = \\sqrt{\\sum_{i=1}^n{\\frac{(y_i-\\hat{y})^2}{n-2}}}\n", + " \n", + " References\n", + " ----------\n", + " .. [1] M. Duarte. \"Curve fitting,\" Jupyter Notebook.\n", + " http://nbviewer.ipython.org/github/demotu/BMC/blob/master/notebooks/CurveFitting.ipynb\n", + " \n", + " \"\"\"\n", + " if ax is None:\n", + " ax = plt.gca()\n", + " \n", + " ci = t * s_err * np.sqrt(1/n + (x2 - np.mean(x))**2 / np.sum((x - np.mean(x))**2))\n", + " ax.fill_between(x2, y2 + ci, y2 - ci, alpha=0.1, color='gray')\n", + " return ax\n", + "\n", + "from scipy import stats\n", + "def equation(a, b):\n", + " \"\"\"Return a 1D polynomial.\"\"\"\n", + " return np.polyval(a, b) \n", + "\n", + "x=coeqtl_df['MetaPZ_flippedforAF']\n", + "y=coeqtl_df['flipped_zscore_bios_flippedforAF']\n", + "\n", + "p, cov = np.polyfit(x, y, 1, cov=True) # parameters and covariance from of the fit of 1-D polynom.\n", + "y_model = equation(p, x) \n", + "# Statistics\n", + "n = y.size # number of observations\n", + "m = p.size # number of parameters\n", + "dof = n - m # degrees of freedom\n", + "t = stats.t.ppf(0.975, n - m) # used for CI and PI bands\n", + "# Estimates of Error in Data/Model\n", + "resid = y - y_model \n", + "chi2 = np.sum((resid / y_model)**2) # chi-squared; estimates error in data\n", + "chi2_red = chi2 / dof # reduced chi-squared; measures goodness of fit\n", + "s_err = np.sqrt(np.sum(resid**2) / dof) # standard deviation of the error\n", + "\n", + "# Plotting --------------------------------------------------------------------\n", + "fig, ax = plt.subplots(figsize=(5, 5))\n", + "# Data\n", + "ax.scatter(\n", + " x, y\n", + ")\n", + "\n", + "\n", + "# Fit\n", + "ax.plot(x, y_model, \"-\", color=\"0.1\", linewidth=1.5, alpha=0.5, label=\"Fit\") \n", + "\n", + "x2 = np.linspace(np.min(x), np.max(x), 100)\n", + "y2 = equation(p, x2)\n", + "\n", + "# Confidence Interval (select one)\n", + "plot_ci_manual(t, s_err, n, x, x2, y2, ax=ax)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":19: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " coeqtl_sig['celltype'] = celltype\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAJcCAYAAABaL11XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZxk2XXXi373GeLEHDkPNU9d3VVd7pZa3WqVpitbg9vIso3BmPuwMGAQxvfqgkCYh++7+AIfjK+fQYDAgB4ChMRkgWwkZLXUkixLLZVarR6quqqyq7rmqpzHmM+JM+z3x46IjIyMnKqyKrOy9vfz6c7KyIjIkxE71l5r7bV+S0gp0Wg0Go1Go9FoNBrN/Y2x1Reg0Wg0Go1Go9FoNJo7Rwd3Go1Go9FoNBqNRrMD0MGdRqPRaDQajUaj0ewAdHCn0Wg0Go1Go9FoNDsAHdxpNBqNRqPRaDQazQ5AB3cajUaj0Wg0Go1GswPQwZ1Go9FoNBqNRqPR7AB0cKe5qwgh/l9CiB8KIUpCiHEhxFeEEO8UQvzfQghfCFGs/3dRCPHPhRDDKzzPrwshpBDiffXvv1J/zlL9eWot3/+re/tXajSa+5E7tU9CiD8lhBip3+e8EOJn6rdr+6TRaO5LhBB/Tgjx/FZfh+b20cGd5q4hhPjrwD8BfgMYBPYBvwP8dP0u/1VKmQF6gD8ODAEvdXCgDgN/Ehhv3Cal/AkpZVpKmQb+I/Bbje+llL98d/8yjUZzv3On9kkIsRv4HPDXgSzwN4H/JIQY0PZJo9FoNFuFDu40dwUhRA74e8D/JqX8gpSyLKX0pZRfklL+zdb71m8/B/w8MA38jban++fA3wJq9+LaNRrNzmaT7NMeYEFK+RWp+DJQBg7fwz9Fo9FsU4QQ14QQf1MIcUYIURZCfFoIMVg/2S8KIb4uhOiu3/enhBDnhBALQohvCSGOtT3Px+vPkxdC/FchRLzl539JCHFJCDEnhPiiEGJXy88eFUI8V//ZpBDi14QQQ0KIihCit+V+bxFCTAshfgT4V8DJeqXBQv3njhDit4UQN+rP86+EEIl78DJqbgMd3GnuFieBOPB7632AlDIE/gfwrsZtQoifA2pSyj/Y9CvUaDQPKpthn34IjNSdMrNekukBZzb5WjUazf3LnwDeDxwFPgR8Bfg1oA/lg/8fQoijwH8G/hrQD/wB8CUhRKzlef4U8AxwEHgM+HMAQogfA/5h/efDwHXgv9R/lgG+DjwL7AKOAN+QUk4A36o/psEvAP9FSvka8MvAqXqlQVf95/9P/W94U/15dgN/545eGc1dw9rqC9DsWHqBGSllsMHHjaHKoBBCpFElUx/Y5GvTaDQPNndsn6SUoRDiPwD/CRUo1oCfk1KWN/VKNRrN/cwnpZSTAEKI7wBTUspX6t//HvBeIAK+LKV8rn77bwN/FXg7KggD+GdSyrH6z7+ECrIA/gzwb6WUL9d/9reBeSHEAVQSa0JK+Y/q93WBF+r//gzwfwD/UghhAv8r8FOd/gAhhAD+EvCYlHKufttvoGzf377dF0Zz99And5q7xSzQJ4TYaAJhNzBX//ffBT4rpby6qVem0WgedO7YPtXFnX4LeA8QA/4X4N8IId60eZep0WjucyZb/l3t8H0adap2vXGjlDICbqLsTYOJln9X6o+jw2NLKPu2G9gLXF7huv4HcFwIcQh1spiXUv5ghfv2A0lUz/FCvVTz2frtmm2IDu40d4tTqCzRz6z3AUIIA1W28J36Te9FlSxMCCEmUIbqd4UQf2uTr1Wj0TxYbIZ9ehPwbSnlD6WUkZTyRVRW/H2be6kajWaHMwbsb3xTPynbC4zexmNTqMqEUVSA2LEHWErpAr+LOvn7MPDZ1h+33X0GFYg+KqXsqv+XqwtGabYhOrjT3BWklHlUPfa/EEL8jBAiKYSwhRA/IYT4rdb71m8/hqo5HwL+cf1H7wVOoJyoN6GM2F8G/sW9+Ss0Gs1OZJPs04vAuxondUKIN6P68XTPnUaj2Qi/C3xQCPFeIYSNEm3ygO+t47H/CfjzQog3CSEcVCvLC1LKa8D/BIaEEH+tLoiSEUI83fLY/4Dq3fsplPJvg0lgT6Pnr36S+P8DPiGEGAClFiyE+PHb/5M1dxMd3GnuGlLKf4ySCf//oFTmbgL/O/D79bv8vBCiBCwAX0SVErylUVcupZyVUk40/gNCYL5edqDRaDS3zSbYpz8C/m/gvwkhisB/B35DSvm1e/dXaDSa+x0p5QWUoMknUadkHwI+JKVcUyFcSvkN4P9C2Z9x1Endn67/rIgqufwQqqzzDeBHWx77XVS/38v1YLDBN4FzwIQQYqZ+298CLgHfF0IUUEItD9/eX6y52wgp209fNRqNRqPRaDQazU5GCPFN4D9JKf/NVl+LZvPQwZ1Go9FoNBqNRvMAIYR4CngO2Fs/5dPsEHRZpkaj0Wg0Go1G84AghPgMqrTyr+nAbuehT+40Go1Go9FoNBqNZgegT+40Go1Go9FoNBqNZgew0QGuW0pfX588cODAVl+GRqPZRF566aUZKeV9PQxV2yaNZmei7ZNGo9mOrGab7qvg7sCBA/zwhz/c6svQaDSbiBDi+lZfw52ibZNGszPR9kmj0WxHVrNNuixTo9FoNBqNRqPRaHYAOrjTaDQajUaj0Wg0mh2ADu40Go1Go9FoNBqNZgeggzuNRqPRaDQajUaj2QHo4E6j0Wg0Go1Go9FodgA6uNNoNBqNRqPRaDSaHYAO7jQajUaj0Wg0Go1mB6CDO41Go9FoNBqNRqPZAejgTqPRaDQajUaj0Wh2ADq402g0Go1Go9FoNJodwJYGd0KILiHEfxNCvC6EGBFCnNzK69FoNBqNRqPRaDSa+xVri3//PwWelVL+SSFEDEhu8fVoNBqNRqPRaDQazX3JlgV3Qogs8G7gzwFIKWtAbauuR6PRaDSaHc/EWRj5EuRvQm4vHPsQDJ3Y6qvSaDQazSaxlWWZh4Bp4N8JIV4RQvwbIUSq/U5CiI8IIX4ohPjh9PT0vb9KjUaj6YC2TZr7jomz8L1PQnUBsrvV1+99Ut2u2VFo+6TRPLhsZXBnAU8A/1JK+WagDPy/2+8kpfyUlPJJKeWT/f399/oaNRqNpiPaNmnuO0a+BPEuSHSBMNTXeJe6XbOj0PZJo3lw2crg7hZwS0r5Qv37/4YK9jQajUaj0Ww2+ZsQzy69LZ5Vt2s0Go1mR7BlwZ2UcgK4KYR4uH7Te4HzW3U9Go1Go9HsaHJ7wS0svc0tqNs1Go1GsyPY6jl3HwX+oxDiDPAm4De29nI0Go1Go9mhHPsQuAuq105G6qu7oG7XaDQazY5gS0chSClfBZ7cymvQaDQajeaBYOgEvP2jS9Uyn/iwVsvUaDSaHcRWz7nTaDQajUZzrxg6oYM5jUaj2cFsdVmmRqPRaDQajUaj0Wg2AR3caTQajUaj0Wg0Gs0OQAd3Go1Go9FoNBqNRrMD0MGdRqPRaDQajUaj0ewAtKCKRqPRaDQPChNnl6plHvuQFljRaDSaHYQ+udNoNBqN5kFg4ix875Nqvl12t/r6vU+q2zUajUazI9DBnUaj0Wg0DwIjX4J4FyS6QBjqa7xL3a7RaDSaHYEO7jQajUajeRDI34R4dult8ay6XaPRaDQ7Ah3caTQajUbzIJDbC25h6W1uQd2u0Wg0mh2BDu40Go1Go3kQOPYhcBdUr52M1Fd3Qd2u0Wg0mh2BDu40Go1Go3kQGDoBb/+o6rUrjKqvb/+oVsvUaDSaHYQehaDRaDQazYPC0AkdzGk0Gs0ORp/caTQajUaj0Wg0Gs0OQAd3Go1Go9FoNBqNRrMD0GWZGo1Go9HsRCbOqhl2+ZtKEfPYh3RJpkaj0exw9MmdRqPRaDQ7jYmz8L1PKkXM7G719XufVLdrNBqNZseiT+40Go1Go9lpjHwJohAmX1Oz7OJZyOxSt+vTO41Go9mx6OBOo9FoNJqdxsQZmLsGdgKcDPguTJ4Dv7zVV6bRaDSau4guy9RoNBqNZqfh5kEYYMdBiPpXQ92u0Wg0mh2LDu40Go1Go9lpODkgUid2UqqvRPXbNRqNRrNT0cGdRqPRaDQ7jeHHoP+4OrErT0N5CrwyeHktqqLRaDQ7GB3caTQajUaz0zj2ITAtJaJi2OrEzklBelirZmo0Gs0OZssFVYQQJvBDYFRK+ZNbfT0ajUaj0dz3DJ2At38UvvKrIENIdkPfw5AeUGMRRr6k7qfn4Gk0Gs2OYsuDO+CvAiNAdqsvRKPRaDSaHcPQCeg+APvfocRUGsSzMH4G5q9BvGvpHLy3f1QHeBqNRnMfs6VlmUKIPcAHgX+zldeh0Wg0Gs2OJLdXzblrZe6qmn839or6Wp6BRJcK9BonehqNRqO5L9nqnrt/AvwqEK10ByHER4QQPxRC/HB6evqeXZhGo9GshrZNmvuCYx8Cd0GdzMkIZi/DrRfVSV6iR6lo3nwBSlPqRC9/c6uvWLMJaPt0F5g4C3/4D+H3f0V91X2rmm3KlgV3QoifBKaklC+tdj8p5aeklE9KKZ/s7++/R1en0dwl9OawY9C2SXNf0Oi9S3RBYRSKY7D7SXVKN39NBXOVORh9SZ3w5fZu8QVrNgNtnzaZibOqbLm6sLSMWe/hmm3IVvbcvQP4KSHEHwPiQFYI8Tkp5S9s4TVpNHePxuZwuz0uE2e1+IFGo9k4QycWbcXv/4pSz6yVIPTAiAES5q+CnYSBY+o+2sZoNIuMfEnt3Yku9X3j68iX9GdkM9F+zqawZcGdlPJvA38bQAjxHuDjOrDbAvQHafNZ6TW9k83hTgNDjUbzYNJuj0wHxk8rW+JkoDILtYoK8spTYD4OqT5tYzSaVvI31d7bii5j3ly0n7NpbHXPnWYr0WUGm89qr2n+ptoMWlnv5tAaGApDix9oNJq16WSPCmNQGlcBXXmmHtgZkOwBw9I2RqOB5S0UprNcmEiXMW8u2s/ZNLbDKASklN8CvrXFl/HgocsMNp/VXtPcXuVcNW6D9W8OE2cgPwrFcfV9dhcMv0lnDTUazcp0tEcHVAlmaVLNvyOCyFD9d90Hlz5en0xoHkQ6nSAVxgAJHFSfC7eghIqe+PCWXuqOQp+Obhr65O5B5k5OkjSdWe01bVetqy6o7499aPXnnDgL0xeU8yUM9d/CDbj8TZVN1Gg0mk6sZI+iEJw0GCZYKbATIIRKHpWmFu+rTyY0DyKdTpC6D6jAoyFMlOjS5YKbTaexLdoG3RY6uHuQ0R+kzWe117RdtW69m8PIl1Q/jGEqB8ywQJhKEEGj0WhWYiV7ZCeU/TEdIALThtw+EKh+vI0knzSancZKSZHQgx/92/Azv6O+6sBuc7ndBLhmGduiLFOzRRz7kCo9AF1msFms9Zq2qtatl/xNFdhl94A7D4EHlqP+C71NvXyNRrODWMke7XkKrn8Xeg6qhBGoeXd2AsKaSj7l9i7arT/8h1p0S/PgcCctFJrbp5EAbxWAeuLD2t7cBjq4e5DRH6TN5268prm9MPW6+nfXPvXVdxd/ptFoNCthJ1UgB9BzCJK9UJpQs+2iANKDKmEUuDBwHHoPq1MJ0Op1mgcTnfjeOm4nAa5Zhg7uHnT0B2nz2ezX9NiHYOxVmLsMUqrSKa+oHDVdrqDRaDrRGpg9/BMwdxVuvagGmA+egMCHWz+AMIDcbmVPDHOpTdGiW5oHEZ341tzn6OBOo7mX3M5cwaET8N7/C178tHLOAA68C576pXu72eiZiBrN/UN7YFYcg1hajUHoOwJ73gLxnPq++0Dnz/S9Uq/TtkWz3VhvklavXc02RAd3Gs3dpmH8J84o1cuGOMrU6+pE7r3/1/oCvA994p5cbkd0eZZGc3/RHpi5BTW0vFVgpfcQ2I4SiOjEveg90rZFc7+i165mm6LVMjWau0nrEOH8qBoaXJ5U8sqgSi1f/PSWXuK60MNFNZr7i3alzHhWlXO3qgCuFajdC/U6bVs024X2weUTZ1e/v167mm2KPrnTaO4mrca/OL44T8qdV+IoUi6WWm4Wd6NMRA8X1WjuL9pFITK7VN9drQQ//DREkSrLfO+vr/wcq/UebZad0bZFsx24nVM4vXY3n/XaFV0Ouyo6uNNo7ib5m2DYcO074BXUfDo7pYYIgxJH2UxW26Dg9o2hlobWaO4v2gMzJwPJPijcAglYMWWHTv8n1YO3ki3o1Hu0Xkd4PQ6Yti2a7cDtiAfptbu5TJyFb/w9VeEUevXWlVfgvX9nuV3R5bCrossyNZrNpL2swyspGXLfBScLkQ9eXjlXvqvKpPY8tXm/f6UykRc/vVge2moM1yo7aaCHi2o09x9DJxaHLqcH1LDy1CA4KfU5Dmswf2PjZWTrKUdrLUlfzeZo26LZDqw0uLz9FK51jy9Nwfw1vXY3ixc/DXNX1L+d+nsxd2V564ouh10TfXKn0WwWnbJJk2ch9MEBMsNqllStqgK8+VCVaVZm1UaxkdO0lTLiK5WJnP2CKsEKa+r7vocXjeF6ft96paF1qYRGsz3J31Q2ycurIM+MqTl3hZvw2n/b2Gd2PeVoq52ENL42fufRn4Dpkc62RdsUzd2idW3NXwPfU6fYDdpP4dr3eLcASLWvFkb1yIQ75daLqsLAjqvv7TjQoXVFl8OuiQ7uNJrNopMzY1hKftyOq40gMwzFSSCC3B6ozsPUedj/jvWXFqxWkmA6cOkbS4M4t6DKHOJZZTh9V8232v3kxozhWtLQulRCo9m+5PaC/01AKLsEasZdWINaefEz+42/D9ldqizqTkopV3LAxs8oR7rVTlz8Smc7oW2K5m7RvraC2mIQ0Xuo8+DyjgmLg+rrj/7te3jxOxi5xvegy2HXgS7L1Gg2i05lHaledVp34F3wyAch1aeCuqEfAScNqX5VfjD7xvpLC1YrvSyMqd4+wwa/qnr9xl6G7DAglJiLHVdB4MRrqxtDrRym0ewcjn0IDEMldypzUJ5Wwk7CUrZIGCrQm7sM46dXL6XsPwbXn4dzvwdXvw2zl5eXo7WrdYL63suv305om6K5W7Svrd7DqkWiNK5O4RJdy5MI6y3d1Nwee56CWlHZKCnV11qH1hVdyr0mOrjTaDaDibMqG33+f6iAqjSlbk/vUiVQDSO0cAvKE+r0bvK82hTyN2DmDfWYxkaxWmC10gZz60U1jPjAuyCWqJeDZpVDt/dpFWQ2jKaUUJ1b2Riut1+mFb3xaTTbl6ETsPspIFK2IPABqRI+sZS6z8wFiGVUkFeegcnXlKDBV3518bM/cVadtPU9opJXlVlVfXD0J5Y6wis5YPHc+u2EtimazaR1X339y+pz0ErPQbWH/szvqJO4TifWnRIW+sRoc3jql6DnsPp343XuOaxub6XRJpLoWjkQf8DRZZkPGrp/YfNpBELpYVVmWc3Dje/D4KNgWvCuv6n6SSbOQFCBWA7sJASj4JfBzoAdU6WSfY8o52W1UqSVShJAPVYYSjwBlFN14StgxVWAN3NB3deMwaEfXfm918phGs0ORKr/TEf120U++BVYuAFTIyrJFAXq5P/qH9VtQI8K9Bo2qNU2NPqTqgvKxvEzi79qpT7dkS+t305om6LZLNrLMKdeV2JnB961uF821tZKflL7eJFOpZua22JkPM+zZ2OE4Z/iHeYpHknn6R4+tLKPulabyAOODu4eJHT/wt2h1dmJZ1UAVZ6B4hg89ZFFoQA3D0NvUreXp9VIhFoRgjJ07VGy5NMjKghbLbBaaYPZ85T6d6JLnQI2rsNOqFPF7gOqt69x/7ZsmDKuk4wuVPlz02cZ3HOI/tY7tGbMO21+euPTbDYTZ1W5caMXZs9Tat1qe3V7TJ0HTCAAGapTOxmpz+qVb9Es3Y5Clahy6qd4qb7FcsiNiBm0OmANmzFxBuavq9LO1t6mfSfVqYq2KZq7QVvCci73CPLa8xTPfY/xvndwtCui16iqdbian/T2jzL14ueZev08o7KPyV0/xVNyL8e28E+73xkZz/Opb18ll7DJDJ3gq+4j/G7V5yOPHOTYUG6Jb7K7K8EzJwY5Npzb6sve1uiyzAcJ3b9wd2gtHUoPqEzg8Z9W5UcXv7JY2lieUSUEvQ8tOlbxLnWKJyP1HN37lZBBWynSdBDj7MhZPv7503zitRhXjv755SUJT/2ScnxmL6uTw2oeDBN6jrBE0atDCUPDuOarPsO5ONPGAOevjjJdailbac1qdirZBF0qodk8GjOPrn1HlTY35kV+4++vf4SHZiluHmxHvZ52Qok9mY6yRwj1s2QPINXrXZxUpWt9Dy8GcLdTmtZqMwZPwMBxmHld3Z7oUiWdrbZS2xTNZtOyT0+XXH4wbXMl8TgJERKvjPPihFT76vTIin7SyHie//N7EX9y5D38n9Ff4Q+H/gJXzAN86ttXGRnPb+Efd3/z7NlJcgmbWhDywtU5fnB1jivTJT576voy3yRf9fXrvQ70yd2DxAoZ1/nxK/z75y7qrMjtslLpkJuH3L7F21N9KuCqTEPfQ+C7VPyQWc9gJHqMPr/Knv5hBtLxJc83XXI5f3WUyBloGrdPnovzkXf/yvL36e0fVf0xMoRkt3LK0gOLz7eColfDuOYSNgA3B9/HYzf/AzfHxul/aP/SjPlqJZud+hQ0mtth5EsqIeJkF6WxhVCn3usd4fEg0+l03cmqXtvQB2ECkXpNDRsGjkGtpE5HLz0HXlmVle99etGGNJ5no6dp7Taj9zAkexdt0h/+Q21TNHeXln360lSZuGVQC2J823wr/1b+aWIYnLiY5B8YK/tJn5q6ypXpEl0J5Tq/ejPPE/u6yCVsnj07qf2m22R0oYplqNfTsQzSjonnhzx/aRZgiW/S+Kpf79XRJ3cPEh0yrrNz0/zRpMO3LkxxbjTPty5M8VvPXtBZkY1w7EMszE/z8sWrfO3cGC9fvMrC/DQ4bcIBfQ8DkXJYex+iUJhjZmaaV8p9+KV5gvI8/372Ma70/+gSIYKbY+PkRJmbg+/DEAI/DLkyXeJX/uPL/Kl/fYq/+JkX+cRzF9V7NnRClV8e/+mlvQRriBCMLlTJxBdzPbPphzi958NMB4nlGXMtcqC5F+RvQuhRjkxuzle5PF3iZjGiWq3otbYWK5yu33IOMeFalAKJ69fwwwiMmEoEeUX1OU4PwJH3K7GU3F5I9TE7O8n5qzf49TcO8ZO/O88vvfE2Pncmzw9fe42pML72adpaNkPbFM3dpkXgp1j1sPw81fws3zFPknEspJR859IsU2Z/x5Pp16s5dboURsRtk7ht4lgGl6bLZOIWowvVLfmzdgK7uxKMjBdxLIO4bSKEKg/vTtq8cnNhiW8C6Nd7HeiTuweJDhnX67fG+ELlGW6GFSq1AAk4psEnv/4Gv/PhJ7f0cu8XRuRevuR/kKfk8wyLKWbkAJ/y38lPx39I+Y3rzAQJMnGbIwNZ+vuPQ2mc+VKF592HwYKE8Lnmxfi31XdSpI/8xST/oEWIYDpIMLHnp5hLP8RMyeWl6wtEUcRsqYZjmRQqPknb5FPfrvCRdx/k2G2IEOzuSpCv+s2sGMBV6yBzR/83fvz9R5fcd8rs59aSvytFv+lqkQPN5pLbS2X0LNOFAlhxYqaBCDwma5Kk2c/AVl/fdqbD6fqVmRKnJwVDxj6G5BS90Sy10CLu5EgPPqzGsfQ/okrEzRiF5D6u1HKUXj7NVb+H17s+xHfzA0wXy1wMB/mB9TOYNYOjo2n+7pNr9BytZZPuUDhF9+Ro1qRF4GeXcYvXillOJf8Ek8kjCEDUg4lng7fyZ/0vqse0nEx/1/4AmbhFNm7j+mEzuCu5AUU3YHdXYkv/vPuZo4Mp/v33ygggGbPIxC2EELx5X47TNwsU3WCJb6Jf77XRwd2DRAf1sn/u/QSveMP4UYhpCCTg+iHfvjTDyHheb5Dr4Nmzk1R6HuHVxI80bzt3Y46XLszxF8wRqkaaqXyCW2NjHM4EdL3v7/A/xnv48vg4cVswnvewTAGmRFZqfOP1KWAAL/xj7O5K8EauwOiYSy2cIF/1Sccs8lWfhG2SS6iNZqLocXw4q0oVfmTjZVPPnBjkU9++CqisWNENyFd9fv6pPUvuNzKe50uzj/EB73V6Y1CswfkrN3m8D7q0yIFmMzn2IcZPP0+WBXwMRAQxWWba2cO3g7fyZ7f6+rYz+ZtMG71cujJL0fXJxG2uTfn0WAH/PfMXeNr7Lvtrl3GCEl6Y5q173gJv/oWm+NOU2c+/N/8Mld2PcH4sT8ENmJ7x8MMaQSSbe4UlBBcnS3zu1HX+wc8+tvL1rFXKeQfCKa1iDK09OR9590G9f2mWUhf4MR/J8y8/+zLdloUjJV4Q4QURb9qb40yQgXctV3k1X4uRr/ocGUjx0vUF9XxSYpui416pWR8j43m+PjLNYCbOQrVG1Q/xgoinD3bjWBZv3psjX/WZK3lMFFzmyj6WIfjoew9v9aVva3Rwtw25q1nINvnYM999Dj/yMQ0DQ6jbIkMQhFLXNK+T0YUqw7l48/vposvZsSJeuId/ywd5h3eK3UySdwb517V3cP3rNRYqNwgjya15HxDYpiBum7h+iGkYnB0r8O6j/VydLvHS9Xls06Q3ZVPxAipeiB+GHOhVs6ka2cNmqcLQ450lyFcom2qst5LnM7pQJRu3eHRXjp9/as+y978RyJ7J/VkemvtD+rxxpp0Bvph8H39W98Vo7oDldm8vX+75C7yv9CWGS2cBwc3cWzg9+Cd4LdCO1GpMmf2MXLlJRaQpeQETeZeommc83sfN2CFuxg4BEEURU6Uaf/SjP1p/5M8A8B+fu0ilR53kF72AbNxisuBS9gIcy8AwBGEkiVmC0Je8cnP1Mv4RuZcXxU8xePVr7Ba3GNh7hIHWUs6Vxiasw6a09wvrnhzNWhwbzvHOI72cGytQ8kLScYtHd2WJWSphytDRZWvvGamSCFEUYQq4MVchkvCOQz06kXAHND6/Tx7o5uUbCziWgZSS0QUXx7Z437F+vnx6nO9emcMQsCsX58hAmq+PTHOoP61f9xXQwd02415nITNxi3ylhmFIJAIpJRKIW4auaV4n7SWNl6bLeIHKPr0c7OIH0Z9Qd/TBMgS7uwLCSFL2ArxAErOgFkjKXggCcnFBwfUxhODqbJkwAjfwUe+MwDQEtmlimapl1gsi0vXTtmapwjpnwLSut0eGss0Tu5USCo1AdlY8xGz6IQAiKRnPu8vuq9Gsl5XsXiL9EL/f9TeXlOTkqz67M/Yqz6Z5NngrDwfnmfNqeDKB7ZeIyTKfKv0vTAUFdncnSTkWRS9kMBtf9vjWhFWjDC1hm+QrPgiQUtmyMJLETFG3TZ1ZfG8PMP3Qr3DKDchXfD7SLh9/m3Or2pNroHtyHnTWkyD/8Mn9i/L79f3z+myZXbk4H//86WWPOzac433H+vnkNy4TRJKHBtIMZeOYppauuBMan19D2Dyxr4tL02WKVR+E5H3H+vn6yDSjeZcDPQkQounv2KapEzirsGXBnRBiL/AfgCEgAj4lpfynW3U924V7nYU8eaiXLxU9gkgSRBGmIYiZBgNZR9c0r4OR8TwzRZfvXJqlO2lzbDjDXKmG5ytp8SBSTk/D9fEjyehClSAC0xAIwA8kqugfDKFq/wvVgDcmC9yYqxAzBbZh0Jd2iJk+kZREUpXPekEEEvb3JG+rNGQ96611o7wxV8EPQg70pZvPUXQDHFPwCa24qrlNVlqHfhCSr/rA6uXCmqWcCfZw2v5pHq1+m5w3wU3Zy7Phu7gg9yOqAaEs05tyCCLJR39seXlTa8KqUYYWM1WFgR9ECCFIOxZeKEnbJgd6kit+/u/GnrYem6T3rweT9SbIjw3n+Mi7DzbXUcwUGEJgWyY9aavj4y5Olnnb4d5lySYdZNw+rbamPxOnPxNvfn9xskwYRowuVJFS4tgm6ZjFpakybz3YoxM4q7CVJ3cB8DeklC8LITLAS0KI56SU57fwmrace52F/PDJ/VycLHJpqowQYNcDiX09KZ45MXhXfudOoXUTeXQ4zUs3FrgwUUAIQRiBEIuBnWAxwAtVPIaBxDChFkLMUBnykhcSSRjMxHj1Vp64ZarsuK1UpADcWkguFSOXsMhXVcnUwf70bQVUa6239o2y5oe8fGMBgH29KYpuwM25CpGU2Jape140t8VK63A8HyxxwHZ3JTqWC2uWsrsrwX+/vIs/8P44fhAt+ZkAKl5IJD1O7M5xcbLMobb+6tYe3J6Uw8ODaS5MlnhoIM3N+aqyX0LQm7LrCoJy2Ryqxud/s/e09dgknQB4cNlIMuHYcK552yeeu7hYltn2uMbX3391lMGMw5GBNP0Ztab1KfGdsVq//z/62kVuzVUxhUAKCEPJbLmGH0U6gbMGWxbcSSnHgfH6v4tCiBFgN/BAB3edVAuvz5SZKHodSwXulGPDOf7+z5zgs6eu88rNBQSCN+/N8Qsn92sHag0am4gfhlydrdaHcEpkvUEbuRjQtRYtRagTOtM0MIQAQmKWSSghEzdJOzZxy2A87zOYcZgs1uhJxZBSgpRUg4h/8lPHN+X96bTeWo1m+0Z5sF9lx8cLHrZlsrsrQS3rrLgp6jWkWQ+rrcNWB0yzNiPjeaaLLlNFFz+U9WoA9TPHFBiAbRn0Z+I8daBnWTC2Ug/uL7/n8JKfN4LtmaKLvcrnfy0bs1HWY5N0AuDB5XaTCSs97txYnhtzFXIJm8GMQ8EN+N7lWVKOhZQqIf7oruwKz6pZi/YT1NbPb8ENQEB/xmE872IZyr8qezqBsxbboudOCHEAeDPwQoeffQT4CMC+ffvu7YVtAe1ZjOszZV65ucAT+7ru2qnIseEcv7Ga0pmmI43N4AdXCziWwUzJJ2YJIilIozJQqxFGkkBKFSBGksFsnIO9SW7OV7kxX8UPJQjBOw73MlvxKbkBtil455HeTXvv11LJ7LTh7e9LEbNNfvvnHgfg458/TW/6wZtD86DZprvJetVaNavTeqrVl3aYyLuEEkwgVhcqCCWkTJO+tIMhxLITirV6cNuD7Y9//jQ9q3z+N/u9XY9N0jy49ul2kwkrPa7gBuzpTpJL2Dw0mOa7l2aZK9Wo1gIGs3GKbsBkwdPq4rdBe6Lol955AFC26NPPX2Om6FKtBURSEEYRrh8hJQwm47oyaA22PLgTQqSB/w78NSllof3nUspPAZ8CePLJJ1fu2r4LbMXsnPYsxkTR44l9Xc1+An0qsn1obAYF1yfjWHhBhIFyogYzDhcnSyAkfqjuL1oea9b76xL1x3lBRNnzGZkoErdNBjIOw7k4l6fLVGoBSEktiIgiwTuO9G7a37Ba1qz1b1xto9zszPz9wlbZpp0402utdahZH62nWnt6ktimYDzvUgslgaoVJ4yUfPuRgVTzcY1g7Nmzk0RRxMh4gYLrk43bDGWdVfebtT7/m/3ePqj2ZqNspe90L2m3h0cHU3x9ZBrYWDJhpSRELmE1h2j3peNkHCVCt1ANCKXLcC5OKqbFPTZKe3n1qzfm+Mz3ruIFEdm4zZv25jANwUI1IGmbmIbAsZSQyslDm5fg3qlsaXAnhLBRgd1/lFJ+YSuvpZ2tnJ3Tmhn9+OdPb3oPXsMYnh/PN3u2Ht2V2xFO4r2ksRnETEONMKgrOQ1kY5iGIOmoIadz5RqmIfBDiayXaiZjFn4YkYyZxK0YRwZSvHozT9nzONiX4rG9XfSl1fv+2miBrqRNbyrGcC6+6RLAjfXWWBeffv5aM2hYT9Zdn7rcO3byTK+Vyi93YjB7t2g91TrSn6JQ9RnMqhM8Ua/NbCSivnZukloYkXIsjg6keXxvN+fH89yYrRC3TTKOheuHvD5RpNLIULXRKAF9vi4odXxXBseyln3+N7O0VtsbTYNO9vDrI9O871g/FyfLG0omrJSEePbs5JJkQqkWIBF0JWz29ybxgoiLk6UVPyOazrQmoi5OFHjlZh4vCDFQVU2nrsyRdUxsw8AyjeZrXXSDJYlyTWe2Ui1TAJ8GRqSU/3irrmMltsvsnPYs5XTR5dxYAT+UfOK5i2s6OitltaIo4sZsRSkzVnyStsmnvl3ZEU7ivaKxGXzu1HW+c2mWbMLCDyVBJPHDiKFsHD+UZByLiYKLHywKhhfqJZapmMWTB7rpz8S5Oe8ymHVIxKxmYFephXQnY3zwseHm792IOtd6HePVgoa1su761OXesV3s0nporL1z9SHYuYTF8eGNJZHa1+W1mRIf+68T7OlO6IRUB9qV5w72Jvn2G9MIIejLOLxpT45C1efUlTksU9CTtKl4IT+4NsfJwz3kqwFCiKZ4U9w28YKIfHV5iXnre3NsKM2rN/NcmipxqC/FL7/n0F17X7S90TRYyR5enCzzsfcfvaPnnim6fPbUdaaKHrfmqzw8mGZfb4qyFxBJSX/GaX5WvCBS/WGaddOaiDo9mm8myb1Q4gY1JMpP2p1z8EJZn7epEkheuPQgWicAl7OVJ3fvAD4MvCaEeLV+269JKf9g6y5pke0yO6c1S+n6AS9enUcCTx/qXjNr38lh/+Q3LvPwUJqJgkfcNpuDsyeKHseHs9vSSdzOHBvO8Q9+9rGOjmx/2uHSVInz43nKtaWKdQ0dTUMs5qDScQuvFlBw/eZts+UavanYkseutQ5bT2ZvzlY5Ophmf19q1fWyWtDwsfcfXVfWU6+bu892sUtr0bA9YRhxa64KAvKV2oaTSK3rcqbkcmGyBECh6u+oU8vNon2/uDhZQiLIxk2qtZAXrs5TC0IMAX4oybshqZhJV8LhG6/PkI1bFCo+rh/iWEZTGCobX+4qNN6bWhByfa7KUC5OxfOZKnr8P89e5MtnxulKxqiF8q4Igen3XHOn9rA1KHBMwVjeZX9vCtuEU1fmEMBTB7tJ2iYXJtTpXMqxSNgS0xBN8TQpJbnElnc53Ve0JqLKXoiQEbW2oA1gPO9xqD/FB44PASq5PdAy53QnV7PcCVs2fVFK+byUUkgpH5NSvqn+37YI7EAtvHZBjK2o629kKXMJm9O38qTjFicP9zCQSTSdnkYjfDutjlGjcT6I1MDpguvjWOrtdyyDkhtsSyfxfuHYcI6Pvf8of+MDRzl5SPXEnb6V5/J0mZK3XIrcQI1AGM9X+dr5SU5dmaU3qUYhxEyDSCppcds0GGobMrzaOmwYunzVbw4cvjhVYrbkrbpeRheqzb6CBno9bD+2i11ai4btmSh6OLZBLmETt00mCt6qNqud1nV5aaqMlJJCtcaFySIj4wWiKFr3cz0ItO8Xam6pGqKZsE3CKKLohQgByZhBxjGJJCRjJpMFl0d35Tg6mMaxTUpeiGObHB1M8+iu5U5S4725NF3GsQzCSDJXCaiFEY4p+N7lOV64Modl0HS4Rsbz9/5F0exY7sQetu6Vw7k4Z8cK3JitMJmv8u2LM8xXapS8gNdGCxzsT/O2w70cH87x9kO9OJbJ6EKVKzNlokjyyFCG4w9wIHE7PHNiUPkpVZ+YKci7nctaJTBfrhFJybWZEt+/Msu5sTyfeO5iMzhv+DazJY/z4wVeu5Xn1794/oG2NzrVsALbqa6/kaVsZKlaT3tWc8A7ZbV6Ujaz5Rp9aQfXD5slBem4xY3ZMuOFuzNy4UGgsVnMlz3O3MpT8gJEh+Lw1txU1Q8xDMF8yeXiRBFDSJIxk9cnChwfzvHRHzvM10emyVf9da3DVkOnyhhUf82l6TL9mfiK60WLFNwfbCe7tBoN21NyA9KOKvFzLEOJD20gadC6LqeLLvmqj0CVM6/VD/ag0rpf3Jgt4/oh0yWPoicJ65nxIIKcbWKZBhAxWawxlIszU3R59Vae7qTNY3uyxG2rqZYJ8OUzo3zm1A0mCy5+GPFQf6r5Ho8uVBGoQLFcUwFkOm5xZabSTHjpyhDNZnIn9rC9WqUWRhhC8oNr80RSErcMQim5NlPmf54eJe8GlF0f0xBECDKOSTZuUa6FlLxQzwXeIK3l1baxchedIVSf44vX5lgo+8sqkUqezyNDWaaLLi/fWMCxDLqTFrMl74E+wduyk7vtTmsGdDzvkkvYyxbJyLjKHnz886ebWYS7yUazVJ3uP5SN10+DVHCXr/p4fkTSErx8Y4GhukqjzrRunIbS3GujapC5EBB0KDOAxQAvCCWuHzKad7EMwa5cgrcc6CHt2DxzYpAPPrZ7zXXYSiObPlNSjvAbUyWmii4zRRdYeb20ZtEap4atTp1me7Aeu7QdcEzBty9OM1V0uT6rFF8bKmgbSRq0rsuqHxKqKkF6UjHitokQomM/mEbZ/7F8lXItJGGpmZpB3fBEUpVl1gK1B8yVa8yXPUpewDuO9ADwvctz1IKwub6+fGaU3/zKBQpVn4F0DMcyePH6PCXXx/NDKrWQSEp6UjGqfkjCNptVIaCc7/P3eM/U7GzuxB62V6tk4zZ5V/XTJWPqRDsIVf/8zbkq+UqNaiCp1CKiMKTqR9yYqzJdcJkouHfzz9yxNCqe3v5Q/4plrZGEVMxioaICu4P96WYlWi5hk68GFN2gWUEQt01qoaQv7WyoSmSnoU/uVmG1uv7NqPPdaBPoRrNUne5vmgYf/bHDXJwsU/HDplrmeN4lYZtcmlYD04/0p5ofjO3mOG5XRheqjOddIikxhVJ8kmsIUEdA3DIIIglIbi5USY4XGMo4TaO0kTWyuyvBtZkSFyZLShXPDym5AQsVn//+0k3ScZuP/tjhZY/TIgX3D9u136i11/ONySJBIOlOWEyXfK7NVOhN2RzY27Whk8bWdQkC0xD0pGySMdUrvFI/mEbZ/899/3pz9EHkK7skBJhCUPVDip4kZhrkEibZRIwLkyXesr+L9zw80Dwxbay1z5y6QcqxmicdAxlVFTJTcJksetSCCEOAF4QEkSSKJG9MlUjGTGZKLiU34OZsld1dSd0bo7kjNkNAo71a5chAinNjBZK2QXfS5ta8S9UPm7MhG+0UhqFaKqSIyMRtYpbA9UO9lu+A3V0J0o5NLYio+Mv1CeK2ScnzmSi4HOxPN3+WiVtk46q6YK5UozupKjq8IOLE7uwD3Vqid8Xb5LOnrnNluoQfStJxa8PB0O2owG3UAW+/f8wUJG2DP7www+6uBH+9LpQxMp7nL3/2ZboTFo5t4vkhL99Y4E17c5Q8nRVfL7u7ErxwZQY/jMjXQqJ1ThZy/ZAICCJJd9LG80MuTpaYLLjcmKtsKIHwzIlBPvZfJwAliuL6IeOuOhWMJBwdSK84SmG7Bg2a9XEnDs+dOkut9ixf8YnbFi4hMduiO6lUXw1DcKAvveHnbl2XV6dLTBQ9VQoYt9jfk1yy2WsWOTac46GBFG9MlShUA8L6HJYIcCxV2hpJ6Ms41IJwsYR7qqzmebU5RpMFl4H0UnEnISUVP2Iw6zBd9AgiqNQiLAHlKCBhmyRtm1OX54ik5LHduftC6VWzffnymVE++Y3LBJGkJ2VT88PbUvpuT37bpkl/OoZtGoQS9nYnuDlfIV+NMA0wDYMoilBpWKgFESV88AQPpRydDL8DnjkxyBdfHcUPo2U/swz1/hRcn7myv+RnRTdgIOMAsFCtMVv22NOV4C371SipfNV/YFtLdHB3G4yM59Vcn4RF2rm9YOh2VeA26oC3zjBrOF89aWvJ73j27CSOJZgoeIRS4lgGyZjJyHiR9zw8sP4X5gHn6GCKfEWVdaw3sAPwQqmCL6A37TT7IG8uVDm2a2PO0LHhHHu6ExSqPiVPZdD39ybpTsYoeSEH+9MbGqUAWmb4fuBOKgk2owqhU6+nYxk4tsn7jg0SSSXktF558k5rTjljFY4PZ5dULujS4ZV5+lAfcdvke5dnsQwDyxbISNmnih8St0ye2NfFpekyXl0hs+D6zJRczo4WqIVRc+TOYDZOoeqTSyx2c4wXPGKWAULQk3KIZMR8xUeiytwMA2zLImkK8tUa+/tSS66vEUBqG6NZDyPjeT75zcsglH6AF0RcnCpxdCC94cCqU7L84z9+lK+PTJNL2GTiFt++OM3IeIF0zMSPJJ5U82ob1AIJQnJjvsKe7jglL7bKb9SsxLHhHLtyca7PVZb9LIxUVVTMENQCyZfPjNOTshnKxil6AYYQ7O1J8r5jA7x4dZ5yvTy8Uc6/3frR7xU6uLsNnj07SXdSOdqtM4E2Egy1ip1cmlKKS0XPZzzvghDNsrw73eAam+bXzk8QMw1O7M5iCHtJoHBuLE/ZC5gte0SyXraDIB03teO0TkbG83zm1A3itsFcZXHIpkSVc1gG+BFLhm8K1GsdSZBSSSuPL7iYhiBuGyBp9gTMlFwuTZXJV2sYwljV+Xl0V65ZbvK18xPNocXp+nNtVCp6LcdfO2Zbz53Mv1smLBCEXJku8Td+9wzvPz64rvez1Z5l43ZTSr/Rb7WRPrs7mbmoWcozJwb56rkJFWjVSzKDSCllzpZrhFJyabpMb9Lm6qyPF0SYAk5dXpSBb7z+732kj899/yYAGcek6IXUQsn+7jiFusqvJUwsI0ACRwbSlLyQ9x9Xwf03RqYousEy0aaYKZpjMyYKLq/eWOCrZyf46HsP88HHdm/NC6e5K9zpXvHs2Un8MKI3FVvie00UXGL1f2/093dKODVEgzKORTZuUgsAKZcEdqBOwWNCneJ94/UpHh7MMjKe1zbpNhjNV7GEwJdyieicBKpeiGcIHhpwWKgGTBZcLk+XOTaY5shQtrl/PX1IcG6swOmbBd5/fPCB3h92fHDXqu41mI3ziyf33fGGMbpQ5fiuDK/cyOP6IUU3oFJTG9rRwdSaj4el9d5TRZdCVQUEqZjZLMu7UxW4VieJegDx0vWF5pF1w8mfyLsslP26CqckisBnuSHTdKbxOs+WPPb3Jqn6oeoHQmAaSrggZhr49ZIOaAR8AtsUuEFEKMGQEX4UYRomYSTpTcUougF+GPLSdaUC5ZgqS77aycqSchPHag5XfXRXFtiYo71W0KBnzGw9I+N5njs/SSQjLMPA9QMWqosiFms5UK2BWVNxzBREMlr3+9lqz44MpHjp+kJdQMValkFdy8G705mLmkUaJ/l+EHJrwSWKIoSAhSpEEYRhxJWpElNxi/09CSYLNapBSCZu8+iuLP31vrq5ksc3Xp9hd3eCG3MVFio19vWmONibxDINYqFS4rRMgRACU7AkoVR0A968VyWdYGnPeNI2CEN1AuNYBj0pm4Ib8MlvXu5YPq65P9loOWWrnYiZAgE8f3kWP4iYFzV6Uqocz7EM5so+Jw+vvqetN1H59ZFpjg9nefpgD0U34PyYyc35CjPFgE4eUS0CoggDVXml97+NMzKeZ6akkk2dXuMIyDgGk0WfPd0JVZ3kBpwZL7CnN9ncI/ozcd591NlQlchOZUerZbarexWqPr/5lQt8+czoHT3v7q4EjmVxqC/JTKlG1Q+JWQaDmThfH5lelwJYqwqc64dKfINFFTgETaf8dml1kjIJGyEEjmVwaaoMLDr5lZrqx1AzkQzMuiytF0R87tT1O7qGB4HG69yXdqiF9eGmQCglYaQcnkCqTIoh6kGdoQI/N4hwLEHSNsk4MUwh6EraOJbJnm7lMJ8dLdRnVakSzkd3ZVdVgWpVEMslVWB/dCBNb9rZsArmSvPvGqp3f+N3z3BlulQfjLyoYPWgKlTdaxoOi20KwjDi2myZ67NVorqgxXzZ57e/uroqYauqbkNxDCHIJWLrfj9b7VlPyuHhQdUHl60/vuHstM+W6qTK21hz00WXU1dmee78JOfH8pwb08qKt4PqSREMZGJYpoEfqlIn24B4zKIWhIzOVzh9K89b9ndxqD/Nu4/2NwO76aLLxUk1K/OpAz184PgQJw/38Xd/6jg/9+RuxuarFCo+8xWP6YJLLYiIIslsqcahvmRzXfzCyf0dlQ29UDJRcJtKd0IIsnELP+w8w/Beq1Rr7pyVyinDVd7jhp2wDHjhyhynrsyRiZk4tsFkwWOu7Km5l26AZYg197ROc3/bbVvjPrUg5IWrc/zg6hxeEHG4N4VlGur0e4Xnt02Yr/p69uZt8LlT11d8XQGVBPeVum/cNqn6IYWqj1sL+cPXp5kuLqqV6hFOih19cteu7tXoFfjMqRt3dHrXOBkZXXDZ3RVHCIEXRDyxr4uYZa6rFKq13lvUT3haVeCklCtKw66X1oz8kf5UMyOfr9bIV31uzlWoZR1myzUkEEURfqSU1BxLICV859KsLjNYg8br3Juy+daFBap+1CzHFHXVzJ6kzfuODzJfrnF6NE+xGiCRvPNgF9MlH4FkoepTqYWUvIB3PdRHEMEvvfMAf/13T6sSzYRFOmbyrYvTlL0A2zQ4OpjquJZbezPbT0o2UqrQaf7djdlyU/UukhFIg5dvLPDEvq5VZ+lpNp+GM/LorixfPTdJGElMUyVm4rbJYCbGTMlb1Sa1nvQWqz62KaiFkhO71Unvet7P9v6VA31pfvk9h5f9zvWUj+7uSnB1utQ8yUk7JgU3oOAG2hbdBgvlGlNFpfwXyZZScdNQqpmRUv0zDIFtmdyar5K0zaZQzaXpMgjoSztNpxiUQ1bxI57Yl+PceJFqOVQJyqRFTypOLQiZLdc4PrzU5rS/f7u7Erx6Y4Ge1KKN8QJVete+7nSlwP3JRsspW+3E+fFC8wQ4jCSOZdKbjlH2QiJZwzYNPvre5bamnU5zf9tt2+hCFcuAV2/mm7ZnvuzxxlQJyxCE9eOQWoeiKsc2Sdgm43kX21q7RFSzyCs38wxl49yYrxAFS0/vbEOJzamyWOpChhGmYTTnDL5wZY6nDnY353I+qH12rezo4K6TulfGMZm8w5kkDUem1elulLBEUq7bsW11wK/NlJgoeBRcn2zc5kBvkgN9d6YC1+qY92fiPLGvi3NjBQxh4AchRddnpqSyX0Fdtt+xlNx4EEHKMelOagWolWgETefG8py5uYAfRup1rP9cohyoxm39mTj9mThHh7JEUvLF02M8trebF67O4fkhe7qTSCkpegFx22rKkH/g+BD5qs9kvsp3L88SMw1ipgq+f/MrFwBWTVasR4RnpVK5TuM0LkyWODqYrm++sXp/lWgOSteZs3tHw2FRfbQWlVpQV0SU7OqKk7BNCq6/qk1aMm5AqD7it+zP0ZdWjtB638/1rLP1OFjPnBjkY/9lAoQqucpXfWZKNRIxg1//4nn+7k8d1/ZonXz5zCh/dGkGrxYSSJb0AodS4gUhUoJlKjXdXMLm4cE0p28ucGGyyGy5RqHqE7cMDvX1NZ83E7f4xsgcbz3Yw76eJNVAsqtLebyObXLyUG9z71mrPOqZE4N89ewEBTdoKnZ6QcSB3uSydXcnvaWarWN0oUpvKtZMOsHq5ZStdqLkBqQd9ZiiF/CW/V28MVlisujxk4/tWnffXqdEZbtt292V4FsXpnAsgzBSvtxsqYYQai+vCYOgg6IjqITE3p4Ys+UaJw/3dbyPpjNVP6DsBUrzAZYEd5Zp4NfHI9gCyl5AEEmSMTWOxbHVDM/Tt/J84PjQA91n18qOLssczMYpektTLEUvZDAbX+ER66fhdD99qJeTh3qbJSy349g+c2IQwzA4NpzlfccGOTacxTCMJWUGt1OK0j6YOmaZHOpP84/+1GPMl2tcnCxxY66CY5lYoiHvq4K8mCHIJmyODWf0KUwHWstGHt+TY6rkMZF38UOpTuxQH65aGJG0Ddy22S1FN1Dr0w040p/CCyLceq9ezDSWlE423seXbywQM1XwHUnBcFeclGPxmVM3VrzG9ayZ1UrlOg2J3dOdaKreHRlQ1y6lpFhfa1rB8N7RWlLZl4mTjdukHZueVIxkTDnKjmWuaZMaw2T/8Z96nEP9aWzTvCvD7Fuvt0G7zTw2nGNvb4Js3GKm5DFTqtGbijGcjTNXqi0r49R0ZmQ8zye/cZkwirBMA9tQZeGNTd8PJFU/wg8j1V5QC/jmyCSv3VpgPO9ybVYpaFqmIJRwfrzITEklRouuqjxolGwXXF/1BLcNLV/P3nFsOMdH36tmb86WaziWwcOD6WV7IKxcJq73qO3N7q4Ew7l4c59bq5yy1U6kWwL+bNymLx3n+K4cP/Om3RvqwW33hzrZtmdODDJf8anUxe08PyKSEQnboBZJErYak9AJP5RM5j3CSOr9bwOMjOeRkcT1I2xzsThTAGZdrMYS4JiLyXLTAEMIDEPwI7tzvPtoP4/uyume7BZ2dHD3iyf3UfZU03YUKXGAshfwiyf3bcrzr8dYrIdODnR7k28n5/vLZ0ZXdd5Xel6A716ZwzQgYas6ctsyEajGVQkMZB3efriXuG3pU5gOtGaQB7MJuhM2EYszcKh/DSJYcEPKtYBXb8wtWSfvfaSP71+e5QdX5zENmCt7XJutUHSVyECDxvvoBlF9zIIaRjyed8lXatyaqywL5L58ZnTN3qZOf0unXoTGCd7urgSjC1UKbsCNWdW32ZeO85b9XQihmhHa167m7tJqgw71JbENgRuEpGIm1VpA0Q3oSzvrtklr2aLNvN7VbObx4RzHd+Xoz8TZ052gOxWjFkp60jHd07lOnj07SRBJHNNQCsj1XupW+yQlakCzVMHe+bEC1+aqSCRpxyZmmfQkYwRRxNhClW++PsW1mRL5qs+b93Y1HfBs3G464K0iKuvdOz742G4+8fOP85OP7WJfb4q0Y5GwDT79/LUle9t6kgOa7Ucjgf3wYBrHUkqtwIrllO12reQqW3aoP3nX/KwGubjFzXmXkucjBKRiFlU/Iggiqh1E7gxUEAKqfLAxd02zPj536joxyyQIVa8u9QSURCVuTEOQckzS8RjvOdpPX8YhblsYhmi2gmgbsJwdXZbZKFVrVcv86I9tnrzyRoeKr/VcKz2uUynKXMnj//vVi+QSNl4Q8sZkkVOXZzgykKYWyiWlde3P+4nnLjaFPYRQqnhBpLImUkr296ZAqnII04x0/XIH2svL/CCkdcRhe3LPEtQbtGeJENiGwQ+uWDw0mKFSCxnLVylUA57Ym2O4O8HZsQJ/+bMvc2I4Q1fdsU05JkiJF6i5eDFDUHR9amHEn/t3LzKUjXN8V4Z81eeT37jMw0PpdZUvrVUq197nUqvPdQTY15vCNtWJsA7q7j2tNqjkBbz74X4WyjWuzlUIIjh5qIdfOLn/toeG383rbbWZoOxS47ajgym+PjLNTMmjJ2mzUKkxU6qRiavPQC5pr/GbNKMLVXpSthKeCEL8UDZPHQwgZgksQ+D6EZGEWmM4p1Q9RZWaT8w0ma0FJG0TN4gouSEXJkr88SeGuTGrgr3upM1wzuHipIcAjg1nbmvGVKeZrL1tM1k7lYnrHpvtT+vn3rZMTh7uW7Wcst2uPX2oB4ESFBvI2HfFz2qsu4N9KW7MVTANgRcosbsgjDAESCmImYIwkuTq/V5+KOstGIK9PQmGsnFdJrxORsbzfP31KaSUxCwDP4wwQolpCoSAREwphwvD4K0Hujk6lKU7FeOFK3Ok49YSkThtA5ayI4O79v6hu9mjcTcdoQadnO/LMyVmih65hE02bpOv+lyeKrFQ8fnxE0OrNpqPLlTZlYsztuACqjSnUee8vzdVH6zuMVH0dH/LCrTW71+cKDBZ9Fa8r0Blx2uBcp6SMUHVDynXQrwg4q0He7hVD6TOTxS5Nlshl4wRtwTfuzJHbyrGUwe7eag/xfcuzxG3DYRlsFAJlDqnAD9QZZ+nLs+RcVRglndrpONWs3dqpYHBMVN0nD/VyIS1JxcaQgvjBQ+7XvKn69y3B/2ZOB/eYDB3r2m3mZ1EMr4+Ms37jvUzulBlfKFKpRbSk7LpTsaUuEpVi6usRcwUTOTd5lDxdhpD5v3Ih0iNwGnFCySurzJWQkDCNtnVlcAPI37nD69woC/F8eE043mP8+OlJYmoXGJlB7zd/hwdTHFxstz8fqborjoKQ886vD9Zy1da7wy6u0XrPndlpsxU0aXkqnqchG1SqYVYhvrcVP2Qih/hR5IISNsmB/qSGEJsyhirB4XPnrqOF0RYQpCMmYSRgW1JMo5JNhEjkuq1j6TENg0iKSl7AWEUUXB9vjEyxZv35nRiuQM7LrjbiWpanRqBxxZckjGz2Zxc8gJilsFcpbZE0axTBml3l5p7VK6FVOuZJ4HKkjx9qIe+tBKGGc+79+1rdrdpzSCfvpVHCIElVGa81ZESKJEaL1i8tVJb9KJmyz7PX5pVpQcxg/l6wJaO25S8ACFUz8GVmQonD/UyMl6k6AW4bgBSko4Z1EJJyVMNyfmKT7UWkomblLxwyVzDohvg1AcGt34+JgseUf3Etj0bPjKe52vnJ+rCQTZH+lP0Z+Ls70sRs01+++cev0evuKYTO8HerSSS8d1LszzUn+LCRAHLMIiZBl49iXF0MK2z46swMp6vy8XXsAxobfkVgG0JhDCYK9cQQNw2Kdf70xvl+VGLIQtCSTn0mS8b+JFE1MvQrs1WmyrR6xFPaV+v12ZKfOHlW7x5bxf7+1JcnS7xrYvT9KZj9GfiTXvTWklwLxKqmnvLdrBjjSR6o6+05AUE9RaIRMykFkqserdEImaRckwm8x6GgK6kzXzFV/ZJsqR3TLMyr9xcoD8dY67sE0ZgGgZWFDJddDENNZarL+2QjJlcnCoxVXRZqAQ8tkfZi4avolnOjgvuVlPTanxdaXjuellrCO9m06kUJYwk/S1KoF4QNRXPGqzUaK6er8Lje3KqaXiyBMDbD/dsWCHvQaW1bCTv+sRMgRO3iCLJQnVx2KlRVx9sFfdtVYOSQLUWMJCN4/lqwHDMFMxXalT9iIRtLhEpONCX4o2pEvt6kvXhrgb5ao1IKlnpVMwklJKsYzcDyjcmS9imSb7qk7CN5Z+PniR+EJJL2MtK5T717avETAMpJZ4f8r3Ls6Qci0LVJ5SSv/iZF3l0V+6ufwY0nfncqetqzmCoxAaODKSaPWl3+n7cKzvXqTLB9QO+dXGarGNTdtXnqVD12duT4G2HeulNO1pEYxWePTvJ3p4kL12fI8IgrJdeNvACSRAphwpA+uESm9QY4yLrN+YSFpFUPUV+KEnGLDVvqhbyrYvT5OI2CNZcI+3780TBI+VYTBQ90nGLi1MlYqZB2Q3IxsPmiJXYOkSBNPcvretipuRyaarMTMnbVHXctezZ7q4E12ZKXJhUI1hSMQvXr6nPiISBTIyxBZdIKiXxxkzgMJKM5V26Eja2qcZiTZc8XVmwDgSChG3SnVTq9rUwIgwlgYTR+QqOrXrxEjGLhwfTjBc83na4l1zCZrrocmm6zFypplWUO7DjBFVWG7q8XoGJ1VjPEN7NphFI+EHIN0ameOHqLP3pGJXaovKUKcD1I7oSFt+/MsuXTo/yX1+8wUvX5/jEcxf513/0Bh/6Z9/h0b/zLD/7O9/j+TemuDJdJpe0+WM/MsRb9nczkE3cFYW8nUpDYfDRXTn60mpQsBCimdUGVY4ZtXpVLO/H8yPIV9TsQSklfhBSqamh4CnHXCJSMJSNE0o18yVmCqUkZZrYpqGGB9fXglmvUc/GLSbr5bsfefdBaqHs+PnwQsnH3n+UX3rnAQA+/fw1fv2L54miiBO7s9RCSbUWslDxGZ2vsFCp4ZgGt+aqXJ0uaQXDLWBkPM93Ls0ipSTjWLi+Oqn1guCOA597aec6iWS8cmOBcjVguugRsw3suijIXF2IQSefVqexD1qmQdxSolkNmkFcRFPZt34giikWk09Zx2Rvd4KeVIxdXUkEynE1hCDtWJS9gJmSR7UWYpuCmGmsuUba9+eC62MguTJd4mvnJ5kv18gmVH8fgGMKzo0V9H60w2msi5mSy0vXF3D9kJ6kvWnquOuxZ8+cGORCPdHtWEqVMR0zSTmq76vshfVkreqxvzlfpXU3L9eCuhhdnMF6351mdd68N8dcuVYfdaMS2Y0ipzAC1w8ZXahSrQWM510mCy6ZuMXFiQJfPTfJG5NFyp7P2EJF+yBt7LiTu5VmmeSrAbu7kktOLObLKjO0rye57sz0Zs/Z2Uh2vOKr/qxM3OL6TJnnL01TnVOlA1Y9oqjWIubLqhwnkpC0Jc9fnOTsRAkhI6RUu/d8xQchGMiqHp3G33BuLE/BDcglrCVqiZqV+cWT+/jNr1wgZsJsOaAtlsNbSTu5hYofsSvnUK1FLFR9UjHoyTqM5z0so8bTB7vJV31M0+Adh3oZy7vEbRMvCBjIxECq7GHVlxzsS/Aju5XS4NXpEgjB6EKVZ89Ortpf114a8+qNBfKVGk8e6OYt+7v4wwvTgMQLJXu7lIKh64dMFD2OD2d1mdw95tmzkyRsg8mCSyipD921OD9W5D0PD9zxc69m5zbzVK9TZcJEwcUyBTHLwDIFJS/AQCWwzo0VONSf1g30q9DYB4dzcS5OFpWabVtaKQISlqAWSZK2SRBFhJHEEgaOAZZpknQs9vUkuDpboVD1sSzBE7uzzJR8pouqJM00VGn4W/bnsE1zVTvQvj+bQnBjvkrcVnPFpIC5SkB/OkbcNslXaxjCuK/KjDXLWc+pWb7qc2mqjGMZxG1TBXgt6rh38v6vx287NpxjT3eCQtWn5IUkYibpmINtCq7MlInbJrZlkBBKkRhU6XIEICFpK8VxwxB6hNQ6+YWT+/nu5VksQ9mesrvYqxgBJipBPlV0sUyDwWyc6zNlfnBtXrUS2Sr5TSiJokj7IC3suOCu1VHwgoDzY0XmKz6mAK8/CagP9UzJ5fWJImEETx/sWVLjDSuXb7aXEM2U3OZAzcbvX+/i2kidebtxSsctkraFH0kGUjFilsFUwSXpmMxVfBzLpD/jYBqCC1MlkJIwEsQsgSEEgZBUvJCZktdsVAe4MVdhT3eSTNy6L/t3toIPPrabW/MV/snXL1FrCeQapU0AacfEq4V4HeafCpRyaSShL+NQqQVU/YipgodlCMIo4tTVOd5xSPB/vO8hgOa6aV3j736on1oo2duj3r+r0yVeubnA4b4kN2bLvHpjgTCK6E3HOLG7a1l/Xfsa60nHKNQ33LcdUqUQ/akYo3mXrrpaYaNkVM+aureMjOf50ulRxheqRAhSMRM/iJj0XOIxc8VTjrXELBr2azUF1c3uj+mkoNmTirFQ9jENgSUEaSzKtYAgVGWB2iatTmMfPNib4sp0admcTaiX7QhBzFDvbbkWsa8ngZRQcn3mqwFDWYfxvEvMMojHVInU2dEij+5Kq6RCFLEvl+Dxvblmr/ZqdqA9kPfr8uddiRglL2j2LCUdi7e1DELX7/X9y3rsxTMnBvntr17k4mRRjRYwBcmYxdt3ZTvuLRtNLq2lCN1gMOMwXfSQSHqSMcpegGGYJGMme7oS5N2AqYKLH6pT7kguyvaXayGmaSzpQdWszrHhHEcG0s2Aer7iYyyK9gLKP6r6koWKT386xncvz+L6Adm4TVjPpPelY4znXWzL3JK/Yzuy44K7hqPwuVPX+e6lObqTNm8/3MPIeJEXrsxz8rCgLx3n0lQZIQQ9aTXbqxaEXJku8SufexnHNnl4MM2+3tQyQ9SaeWyUEIAyCht1cjZyCthunC5Nl+lNx6hFkg8cHwLgf54ZozsZwzINMo6ler2kxAsiTCCSEoGKNkwh8KMILwibBu5zp65zfjTPbEWVPg1l4xzuT+lsyBqMjOd57vxUU7Gygaz/zwCqtXDJ8NNGHl0A6ZiBFIKCG+AFSh3KjySWYdQVTBMEEVydqQDtznDAex4eaG5urZveRNHjcF+SiaIaDNyTsim4AbOlGrUgZDwfLFGb+/Tz15assSP9KV6+vsBMSQmuxEwVyA1l1TDauL1YMqrL5O4dDWep7IUkHQsZSap+iGOZmIZBb8pZMiOzsR5ipmCy4LG3J9lRzKLVfq1UAbG7K7Hp1QuwXCRjuujyB2cnqAVRPSFFve8qxvuP6/7OtWjdBy3TQNYiTKF6gBtxnkQNAs6lYmTjNnt6bE4e6gUgX/WpBSGXpstUaqpMfDDrEDMNJgoeZ0eL9GcchIBQSi5NqbmXtrl6b1x7IG8aBu96qJe5SlDfjyIGMjGCcLE9QJ/Q3t+sZC8+d+o6fZl40zYVXZ+YaVALIywWGz7b95bbSS612rPWXq2edKzZGzcynmcs7zJb9PCjiFqoRiBkHNVfOlHwlKKjlGosAmr8QSpmUq6FCAGH+lLELFOv2w3w6K5c8725NlsmCOq+kgQQRPV18CO7MvzI3m5GF6pUakrwJm6bmAJmSh5TRY+HBtJb+adsK3ZccAdqA+nLxPmxRwaahsQQgheuzHF2tMC7jzrMlDxsw+BIf4rposvLNxZwTEHB9em3TS5MlpbIyDccl9bM4xv1+myAIwPpDTs558byzYxFOm5xpD+1olBAu7NVcgMsQw2PbdCbUg2/EslEXqlpJut1zH6oeiUaAUUoVfDg1BvVR8bzfPPCNBUvwLENBDA6X6Xo+lrWdw0+e+o6r48XaRHEbCKBENXfkktYhBIK9f6iuKU6XkzTZDDrUPQC+tMON+YqRDIiVpfmmq/4xC2D0QWXP/2p7/PwUJZfPLmvozJdq5P88c+f5sbsYpkLQDZuMRtG9Gfiyx7fvsb6M3GODqaZKHqM511O7MoylnfJxi1enyg2s+z7e5J6M7uHNJylRMyg6EpsS2CZBgjoSTrNAL3dCfr2xWmKbsBQzsEQ9hIxi4P9S+3XavPE2pMAjfvcTnZ9pft8+OR+Lk4WuTRVJvQltilI2Sb7elK692oDVPyI9xzt5/lLM0q+vRYtSSy5tZBjw2kmCzWODqSJpOTMzXnOjhVxLOVoZx2TPd2Jpg057FiM512CMMI0DGK2oFoLOHV5joN9KX7+x1dXzGy1UZ947iL5qs/RocWKmrOjBWphtOo4Bc39Q6dTMy8I+O6lOX7skYEltukt+7u4MlPBsQyQsmMJ9u0klxr2bK7kcXGyBAJMA4azTjMwfPbsJBnHwrIMajU1186xTBBqb5wp1Ug7JiIvEEgQyu45lpLqdwM1f1Ov243ROLV9peQhZURDTFwAgVRSdH0pm8f39QCwqyuJZRjMV2r4odIeaNi0sbyrhWzq7MjgDpYblP5MnKcOdnP6Vp7xvEtv2iFhCS5Nl7kyXVJytokYQgiycQsviLg0VaYvvVyGuWEIJosegxmHIwNp+jNLZ4l1otWRcUzBpcki8Zilfl99MPTRgXRzjlgr7c6WXe+d2tOd4PtXZim4PhU3YL7iMZCNU60FlL2QYjVgb5fDlTkXiKj6Sqs/AhwTbs6X+cbIJF88PUq+WiNmKvEChWoizleDZdejWeR7l2dw1wqA65m+TNwiFTNYqAZqAwPSjtU0UkiJIVTprFlXQShUfab8ENMwsA2DQtXnN79yAYBD/ekVHejdXQlevbFAT2oxAeAFEb2p2CoqqksdetM0lqhQNdZwxVfrIhu3ONif1mqZ95CGbRvMJrBNj0p9XiISBrNqDtzHP3+aG3MVhjJO0/nxQ0naMZt2reD6ZByzqcQ6XXS5NLVYYv6+Y/1LSjYbDstqp3oN1pNdHxnP81vPXmCuXKMWRLwxWeTMrQV+9ZmHOTac48+/4wD/8ltXuDlfIZKCx/fk+Oj7HtLrbJ20OsF+GPH1EdVDLVG9LAiwLIP5ss+JXVnemC7xw2tz5N2AgaxDXyrG1ZkK1+er7Afitnp/vUD1xzgxi7ce7ObSdLlZmj2YdTb0/izf10wO9ad12e0OopO9OD9WpDtpL7NNs2Wft+zv4tJUudlv+b5j/Tx7dpJPP3+N3V0Jzo/neWQou+R3rNUW0PDbfv2L5/GjiL60w5GBFH1pZZsae+jlmRKVWkAtiAgiiWUICqUA149I2AZTRZcgkkQSEraBIQSz5RpSRuzrSfHX339Ur9vbIJIS1w8RqMC5cXBnSDVWIu0osZ2+dJwjAykWKkpTIm4L/FD5TCcPdjOYS+hKszo7NrjrZFDitsUHjg/xsfcf5ctnRvnNr1wg5VhQl3ieKLgMZBy8IMKxDAqump/R7ri0Zh7XcnIadMqiBxG4NeXkO5aa4XRxssRf+dHDyx7fXs7y6K4sl6ZKvD5RIu2YxAzBuBuQcixSMUtlZQOVfcok4/yZI3184eVxSq5PJNTmbgiDuGUSRJLZUg0ZSSphiGkIHMtAIusS6zt2mWwKJS9ELtcrWELGsZQSVL1nqDcVozftUAsj3ry3CwG8cjMPQvDWA9384No8tfr7V/ZCECCkxAtCLEOQcix+51tXODqYWdGBfubEIF89O0HBDZoJCy+IONCb7LhGO/U+tWcg9Yypradh244MpHjpuk9f2gIpqfghV2YqPLGvi+FcnFduzFOo+KTjFv2ZOOm4hVcLmnYtG7fJV32y9VKll28sAIsl5l8fme7oZK92qtdgPdn1z566zo3ZCum4pRRbg4gbsxU+e+o6Hz65n6+PTPPkgR5+9JEBPc/oNmhNcEq5qIgJkE1Y9KRizFd8bsxXScdtHt+T42tnJ/CDiIWKTy2I6EpaFFyf8YJHXybetCGGgJ6UTX8m3kxsNmajboT12BzN/U0nezFf8Xn74Z7mfVptU1863gy6/CDk6yPTS/a4m7NVkrbJgb7FJPh62gKODefY15Pk6YM9GC2S1o3AMGYKbsxWsQyo1EIiKQlVzox81SeILOKWiQH4UUSlFlGt1YjZgt6Uw/HhrNYouA0aJ6YlL8CxTVXtFElMQ5CN20RSEo9ZzaRkXzrOI0MZZss1elPOkvm7a/X8PkhsqdcuhHgG+KeoWOPfSCl/c7Oeey0H5OJkmSf2dTFR8OolmoL+jINdH5TrBSqoWa3ufz1OToN2Z6cWRvSmbCLUANmC65ONW+SSKzePtzvWv/aFM3hBQWW94hY9KZu0Y5GIWbz3mCpdamy4mbjDz7x5N7mEzfevzCqVw7yrGu2F38xUxS0lqS+EwBSCwazDo7u0oVqJkfE8QSiJOgilNIgZsLcnyXjexTLqUsqhXJahbk0APLlf8sLVebz6/CnbUP0ytmkwnncZzMS4NV/lqQM9KzrQx4ZzfPS9h/nkNy/XDWGMA71JDMNYsbRNB2/bn4bdySVs3rwvpwR16qeox4ezTaenL62CtEvT5eZA6BeuzJGOW0RSMpR1GFuocnQgzaWpxRLzhwZXLzFfj0O+HgGDV24ukHbMZrlf3DZBSjXYNhNfFhzejrrxg0wjCTCZr/Ldy7NKyQ8QhnKG1cy6qDkP6Y8uTDFfDTCEElQRUuL6BgNpm/FCjTcmS5imoCcZwzIEQ9ml7+/t9t1qm7Oz6WQv3nmkl1iL+EW7bWr4Up3msh4dTHNhskR3ylnT72pntaqDmaKLaQjKNZ9GIU4jXxtKqAUBmXgciaRSDTENsAyDXNwmZhpkEtaaarGa5Zwby3NpsshsqYYQNJPajmWyvzfJVNEFSbP3v+gGGIbBB44PLhOu0b3/i2xZcCeEMIF/AbwfuAW8KIT4opTy/GY8/1oOyOhClX29KQ70pTncn2r23HlhxNGBDBcnS2vWT28k69ju7GTjNtVaQBjB21qa2DeisFQLJe8+2t/MQp26MrskMw+Li73196tyLAsvCOsKZSFhFNXnikQkYga7c3FKXsie7qTucVmBRjA2kHGoeAG19hkIdYQQTBVduhIWRS/ADyWZ+PJyk2dODDbXU8mL8cd+ZIjXbuW5OFVszpYCqNQCLs/4GIaBFwQ0FGBhuQP9wcd2r1q6qbn/WElQZ5kgzkCKH16bZ65UU4I4lsm+3iS7cnHG8y4H+tJ84NFBLk6WOT2aZzDj8NBgutlnvFqp01oO+XpKN+udK0uQ9ds7qRKvpG6s13JnGkmAl28sEDMFvmXg+hExwyCIIqq1ECEEXUmlOjdXCZrvRyShGkQkLCh6kInb7OtN4gVKuKcraVP0lFO9UQdb8+DRbi8aeycoO9Numxq+1Kefv0Zveqmbur8vRcUPySXsDZ/2rtVL/LZD3Tx7bgoA0fZYN2gIDUVNlUwhYCDrYAjBpakybz3Yo0+ONsh43mWu4mOqNksMoYJpz1ftBoPZBIMZp9n733i/gXUfrjyIbOXJ3VuBS1LKKwBCiP8C/DSwKcEdrO6AtDof/Zk4T+zr4txYAUMYHOxP81d+9PC6jMV6s47tzs6RgRSnLs+RactUbWRhtj9nX8rme5NFBHDq8gzDuTiGYTRl7hv3zcZt3PoHJ4ygFkhC1YpHIKFSiyh4AScP9fLhk/u187QCjdPYJw90M1tyma0s7010LKFmSAURt6pVErbVVCFtLzdpOKutQicf//xp9nTH+e7lOWpBRC1U/S6RhKFsbIkCLHTOXOnM+M6j03u6zB7Uy1fGC4ubYqOfrZUP1r+ut8R8PaynquHNe3OcujKHEKJZll7yQk4e6qEvE19yPe3qxpuh0LnTaSQBvvn6FKZQPU1q5IqkFipHKhc36U7GmK/UAIltKMeqMay54keEUvKOw708vre7+dyNkrnbcbA1mk6J8U62aaUk0aO7ch0FxW7n9y7tJbZwLEEQSoQQavZiy+PVHqz64w2h+k/PjxXUTE7TYL5cwzQFn3juok6irpNKLUDWfRrXj5qvdzWQXJ0u8cT+7mW9/w10SffKbGVwtxu42fL9LeDp9jsJIT4CfARg3759m/bL252PmHV3G7k7NY73pWNUaiFfPD3GYDbOL57cd9vN6F4QqP4728SJGbwxVeLcWJ6hbJx//JzPQNphLO+yvzfFof4kL1yZx6trYoeRpLWqUKCUNwUsOVXSH5qlNE4XDGEz3JWk6BWbc1ccyyBmGdiGoOKH2JZJxlGB/FTRYzRfZVcuzlsP9mAIe0Vn1TEFb+Q9MnGLqaKHjCQx22BXLsFbD/YsUYDVmat7y92yTbdLp4DKMDpviut57J2spfVUNfzCyf3NsviCq2ZzHuxL8Qsn9wNLs7Kt6sYN9GzFtTk2nOPhoQyFuoNc9gKmii5Vv4YhVOmuH0ZUaqEalWAaOIYgipQMvCEMBjIOP7Kna8nzZuIW4/ngthxszb1hu9mndtaTdNxsu7Ta7238LscyicIAiVxWWRBGUikzRhKfxTl3tUBSC0JuzVd410N9urJgAyi5AomUctntgZRcmynzc0+uXD2nX9/ObGVw137qDR0kKaSUnwI+BfDkk0+uIlmxMe51I3f774uZgkzc5viuXNNofX1kmkP96XVfQ+tzPndenQLuHkpzZaZCX1owXayRrwbcmK2QtM3mPD8/hJOHehhdqOAHSwM7UAbr9Yki+arPMyeGtaFagdasYiRVP0DJU6d3EqXyFESQcpTAjReoUqj9vSmmix75qs9L1xc41Jdktuw31cFaZ9aN5V1KbkBfSg1UBUEqpkYbvHJzgbithH9ayxX0e3RvuFu26Xa5E5t2N+zhWhvvseEcH//xoyuWDLdeT2/aYSjjNMU7QPdXrIeR8TwxA96YKhJFixusAXSn1ExUPwzqg5gFMctgKKv6HQtuABKe2N9F0Q10b8t9xnazT7fDvfTTGr/rtVsLXPGCZQ6qWb+hUTZomsqBDiWEEcRMQdwymK8GPDKsKwvWSzJmYQgD05CYhmp2jCJwbIOHBjKA0sj44GpPolnGVgZ3t4C9Ld/vAcbu5QW0Oh8NifdPP38Nx1S9ILVQbuqpVft8n9Zm0NstM2o8Z+MU6QdX53Asg5mST8wSdblYNYDz2HCWXMJuZlv/8PUppkreMjGQCJSRqvi6BGoVWrOKhpCU3IAwUuI2rh+yUPFJOarZWkn9RlimgWMbxGOq/yWKlHDKnu4EjqnUVlrn7uzvTTGci3NpuoxlGgRhRNEL6csIkpZJwQ1wTJNfeucB/d5omvag1Z5t55P31QLAdvv8qW9f1T1e62RkPM/nTl3nq+cnKVR8wjYbb5vKGQ3CiIIbEEnJYDbOgd4klVrIbLmGbRp89L2HOdSf1r0tmk1hPbMv27lbpzMrXctbD/bg+hG1MGS2VAPAFIJcUrnLBTfEDyOiCAxT4Jiqh7UnGcOPZHO0jK4sWB9DuTglL2A8XyWM1PxB2xSYAqaKLpVayNfOT2zbPWy7Yqx9l0WEELYQ4s1CiIFN+N0vAg8JIQ4KIWLAnwa+uAnPu2FaHQfbhFNX5njhyhyWQfPUamQ8v6m/c3ShSqZtxMCdGIPdXQmKblAvbzKac69i9TELBddf9vxJx0J2UHls9Fts1rXtVBqZPlXuFOLETHrSNrUwpBaqPkYT2RweHEmJYwnGFlxippqRs1CtEdajay+UPLpLBeCNTSdTl7E/eaiXH390EEMIhGDxPQaODirBFM3ms8k2757Qas9a+zlXs2G385h7SetnbTzvkkvYupJgBRrv5YvX5ilUfUIpm0qZoEpmIgkz5RqjC1X6Uja7cgke251jIu+RS9r85GO7+MTPP84HH9utX/ttzP1kn7aTjVntWmqh5J0P9XKgL00iZhKzDFKOiR/KekI2whJgWwIpwTIEubiNH0pMIUjX/Tp9ur0+Ht2VY39PAts0EEIJapn13l8/kKrFxTS21X50P7DqyZ0Q4l8Bn5RSnhNC5IBTQAj0CCE+LqX8z7f7i6WUgRDifwe+ihqF8G+llOdu9/nuhNYxBd+/UmgGXVdmKpysK1lu9qnVetTkNkLjFClmGrh+iCkEFS8gDrwxVSIRM7kxWybtWHziuYuMLlSZKdWIWQIvVM2srbi+5EDf4rVoQ9WZ1pPT0bkyr97KE0ayPrpAMO8GxEwlYgDg+iExC0oevPVAN9+/MgfAdMnDMQ0uTZc51Jek5AUdBTKSjkkUqdl66bjFo7uy9KYdzo3lm+/rdj6p2e7cTZt3r1jPjLnNeMy94HYy/Q86jfdyrqKkxYVQ4imiPotTooI7GSnRiPGCR8I2lbCNbdCfdpb10unelu3B/WyftpONWe1aGvvuyUO9CGChUmOhUmvOi+1JxSjXAqr1QM80oCtpM5Z36YrbHOpLrjpCS7OUo4MpvvDyLfpSMeaNGhUvpOpDKiYIpKTLtjixO6vHTGyQtcoy3yWl/OX6v/88cFFK+TNCiCHgK8AdGRIp5R8Af3Anz7Ea63UMOo0JAO7q8frdEjD43KnrfOfSLDFLUPLUPDVDqOzH85dmiZmQdGx6UzFCGREhaetjJZIQRBG9Sfu2lTwfNGKmYGSyRCpm4YcBRS9qBsxuIEnFDGzToFILCf2Q3qTBYC5BLmERRNCbjqnTOD/kxavzPH2op+MaSTs2RwfSHOxfHOB6dbrErfkqe7qTHYeZazbEXbV5d4tWW3duLM/je3JLEkdr2bD1zKW717TOfdTremXa97nvX55BohJyYSSbw8tbE3iNygxBRLUGQagqC0xDMFlwGRnP69d4e3Jf2ifYHBuzWcme1a7ll955oLnvKvE5j7Rjk7BNbNNgrqISrkNZC9cPmC75mKbBu4/00ZWKUQvlqiO0NEtpnTmNAMcMma/6hBIOdCV4fG+OvrQeUL5R1irLrLX8+/3A7wNIKSfu1gVtFhspAWiUNIKaP9cYYn43j9c3UuoyMq5OZT7++dN84rmLKx5NHxvO8Q9+9jH+9YefYLgrSXfSJuWYdCVjpB0Lzw+phUoJ0wsiwlBSC1QZZqxlJVgG9KVjTBRqvD5R0GU460AAQRARRtGSwK6BF0TELIOjgxnSjk0tUtnC47uyxKylH0NZf75Oa+SjP3YY0zTIV30iKclXfS5Olni4Pni60SPZKO3UbJj7zua127qYafDi1Xmmi27zPmvZsFYbuN7H3E1GxvP8+hfP89qtPOfHC1yaLPLDa3N868IUH/70D/i1L5zRJTosf++vzZQYmSgyVXDJ1k/5OxFE6jSvFqivkVRDgxuzTj936vq9/UM06+W+s08N7tTGbGZZ52rX0rrvNsTnnj7UgzAE06UafekYfWkH0xBEUvCOwz184PgQybgaq/VL7zzAx95/VPtL66Qxc/pth3r56Tft4X99ej9HB9JKtVTCG1Nlpouurh7bIGud3C0IIX4SGAXeAfwSgBDCArb1q7yREoDWE5LGmADlXGfu6vH6ekpdvnxmlE9+4zJBJOlJ2dT8kE99u7JqsHVsOMe+niRPH+xpDjj/xsgkfhTheyr70Z2MkYiZVOrjECIElqEiku5kjHTc5umDvUsEWDQrM1XysEzBQjVYLvmKcqCKbsBwTtCfdtjTk+Bj7z/Kxz9/mqcPdXNlukLB9cnGbY7vyuCF6lk6rZH2oeR7exPs600tuc9Wn7rcx9x3Nq/d1p3YneXU5TnOja1/RMbdkBxvZ71Z94YTN1vy6EnazJc9zo3mMYBEzKAWRrxwZY7xvNtxNtaDRPt7P1Hw6E3HKFQD+tIOsxW/gwa1Iu2YlGphPbiTuL4aaj6QifHKTR04b1PuO/vU4E5tzGaUdTZs0PnxPDdnqxwdTLO/L7XsWjrtu7/2hTO8cGWOSEpuzVep+iFBKKnWfAayCV1dcJu0t59MF13yVRV4WwZ4tYAXrsyxrzfJrz7z8FZe6n3FWsHdXwb+GTAM/LWW7NB7gS/fzQu7Uzodu7t+wAtXZ5c5F0vldgNOHuppqmXe6fH6nZQRjIzn+eQ3L4OAnpQ6Ubw4VeLoQHpNg7a7K8G1mRITBY/JQpXxBZdIqlkiMyWPuXINU4BtgGkY+GGEEALbUKdM2bitA4R1MjKe543JIn67JF0bkZQ4tsn+nmSzrLJh2N5W7+0EJeIzkFksqeu0hloD7k88d3FT+zcfcLa9zWtfD+fH8zwylG3+vC8d5+lD3Zy+WVj3iIy7LTneWmJpm/CtC1P83iujvPNIL+840svFyXLz904X1Sl1X9rB9UNVyiwjEAZCGKQcJVowV6498D0Y7ftcwfXpq88o7UrGMERDIEvQnbQpuwHVIEJKiMdMil6oxFaEwA8jDvSl1Nyu9tIDzXZh29unlVivjVnJZ7rTss5WG/TIUJakbXJhskTFD3l0V25Fe/flM6N85tQNXruVJ4zCuqJjXfQjkri+YDJfJZfIbpte5fuJ9qD/3FiBmGXw9j09zJZ9poouZS/g2my5WY2kX9u1WTW4k1JeBJ7pcPtXUUIo25ZO2YAXr86TjlsdMyydMjV3Kie+Ws8IsGbQ9+zZSfwwUgPFhSBumwBMFFxi9X+3X2vj+ZIxwcs3Fkg5FrUgQkrVe2EKJesbRBHVsFGXuzjMPIigGgR4fqADhHXy7NlJ7Lr65UoukQSO9Kc5Ppytzw8cBNbOZq6n7+henLo8KGx3m9dpPdycrZK0TQ70LfZhOpbF+48PbujUfaXRMHfS29J4nq+dnyBmGuzuinNlpkIYRXh+wP88M87/PDPOE3tzDHcn+NaFKS5NlTjQm2R/b5IrMz6VWggRhEISRJKBrINjGRTd4IFPPrXvc9m4Tb7q05eJ87ZDvdycr1DxQlKO2i/ScZtapYaUsl6KqcbldCVtwkhiCEHJDXj6UM9W/lmaFdju9mkt1qpWWm2/u1MRumfPThJFESPjhWaVzMODaQ70pVe0k18+M8pvfuUClimIooiaGsNGFCpfyQAsC35wbZ7uVIz+TFwnxTfIseEc7zvWz2dO3WCyoAK5J/d30ZWMcXO+yly5hmMZyEjqk9ENsOYoBCHETwgh/kgIMSOEmK7/+4/di4u7E545MdgsqYyk5NxYAYkqWVpPX9Jm1He3lhG0/s7Pnbq+ruceXag2++MaOJbBXNlfYtA6XevvvTzO4b4k2YRNuRapTJMAyzSQgN8wUoAfKdnZRmBiAefGipwfyzeDEM3KjC5UsQw1cqITRv2EdFd3Ykn/YsPxLbo+58cLHfsbV1pDretWS5VvLtvZ5nVaD0cH01yYLC3pw2xNIGyUzeptaX0eJEipZjpWawFzZV9VRwQhhhC8eqvAqUuzgLJxV2bKPH9pliCMsAxBhMqW7+qKk4xZzR7WBz351L7PDWUdyl7AUMYhkpKjA2lqYUgURcyWvProFUnOsaAupuWHas0E9dO6fb1JPnxy/9b+YZoV2c726U5Zbb9rX+sbtXPnx/O8PlHE9UMyjppF+/pEkfOr2LXPnLrRTJC37u+NvvhQQsxQatiXpsuArprZKCPjeb4+Ms3x4Sw/9fgudnclOHurwPcuzzJVcHFMgyiCohdSC0KtJ7BO1hqF8JdQZQC/CvywfvOTwG8KIfZIKT91l6/vtmkvAfBDydOHuulLLx7rr5Zh2Yz67pXKCL4xMsdbD/as+dy7uxL4QciFyRJAfV5dgGWIJQat07UGkaTiR5w83AfAG5NF0oaS0AdVy1wfhbcEywDbNAgjSaUW6gBhHezuSvDGZJFQQipmUAui5msrAMcU/OwTe/gHP/tY8zGtGcpjw9nmaVvjhKQR+P3+q6MMZhyODKTpz6i11GndaqnyzWG727xONmV/X4qKrza9zSip3CzJ8tbnySRsPD8kkpLZco1UzAQEQgiSMYPZenY2IyVBGBFGkpgpGVuoIqUK7JKOiQDcWkDJC9nXm3zgk0/t+9yBvjQfeHRwSZnrQ/1pXp8o4oeSmCXqfYw+Rr20zDYgiiS2YfDoriwfPrlf25Jtyna3T3fKaqWXrWv9/HiefFWNJlhvqV6+GiypgIrbJl4QNfu7OjFZcBlIx5gpeSrBJFRAB2p/l0CpFtEVNyjWg01dNbMxOvWMf/nMBFYQIZFYhpon2JuKcWm6zNMHe/TJ6DpYq+fuY8A7pZRzLbd9UwjxE8DzwLY2JK0Ob6MvqZXVMiybIdvbWkYwU3K5NFVmpuSRr/p4QQCsLFU+Mp5nuujyys08ccsgDCNmvQDbNPjoew8vMWSdrrUnZTNbVsJaR/pTXJgoUnAD6qOOmsGHQaMos45UpT2GgKK3stHTLPLMiUHO3Frg+mwFJIQtr61RH8a5r3fpOlvNgQaagd9gxqHgBrx8Y4En9nXRn4nrzODdZVvbvJVKkx7dlds04aM7sX0rjWQ40p/i5RsL2Kag7EUkbZNQSqXiG8h6FlwyV64Rs0wMQyhF30jSlbCJ2yamISh5AY5t8vShHh2E1OmU2PkgiwkkhOCRoQxVP2Ki4CIByxSEkUQi6ErF6Eooga3+TFy/ptubbW2f7pS1Si8ba/PGXIXdXUkycWvdpXrZuEWh4uP6oRo7VHeCsvGV3eDBbJxC1cexDEr1mbXVQEV3AhXsCQEFL8CbK5NJ2PziyX36M7QB2vebvnSc7pRNoeojhAAEwzmHZMyk5Op2ofWyVlmmaDMiAEgpZ+/S9dw1NnqkvxnS4I3feW2mxA+vzZOv+tiGQXfS5oUr88yUOkuVNzblmGXy9sM9JGImBS/kbQd7+MTPP84HH9u95rUOZePYLZL5jimIIoiZyklqnNg15h01CCRMFz2CKGIwu9TB03Tm2HCOX33mYU4e6sGXsmn0TQMsw6AvHeP3Xh5fUtY2ulAl07apNBzo1sDvocHFPqpLU6U7LrnTrMm2tnl3Wpq0Hm7X9q02kqE/E+eJfV10JWIIoaT3h+obdtH1VaWAF1CoqnJN2xQ4loFlCIpewGTRI2YanDzUy1f+6rv5jZ99TDtQa9CwI36ohJy6UzGGsnEqtbAZ4B0dzHCwL01X0sYLQp0R3/5sa/t0p6zHvq2nVaETj+7KcXQwjWOblLwQxzY5Opjm0V3LtRYao6f6UkqtV40rkoRSBXWNJLlpgECQtC0O9KU4Ppzl6yPTekzLBui032TjNnu6k/z4o4N0p2KYhsDzQ2xTaP9nnawV3BWEEI+331i/rXh3Lunu0N6X5AchCdvg089f6zg7bjOcqMbvHC94hBFkEzZP7O/iqQM9CODsaKHjc7car8Fsgvc8PMCPPTJA3wpZ1U7XapoGH/2xw+QSNqdv5RnuSvD+4wMc25VdErR1EkWLgJmSz4ld6eU/1KzI0aEsfSlHNV9LdToaRBFFN2Cy4PLZltlRqznQrYFfXzrOW/Z3kY1bTBa9jv10652DqFkX29rmrdVfuRlrYT22r9PvaXe6TuzOIoFzY8rOxSyTR3fn+Ovvf4i+jEOh6lN0A/rSMZKOpeauhZKkbeAFkpIbENRroExDCUl984J2nNbL6EIV1w9YqNZ4Y6rEzfkKtiVIORaZuE02YZOMKTvjBRGOZS7r5dZ2Zduxre3TnbKe/vHGuj51ZZbnzk9y6sosrr+2uNIzJwYxTYPjw1nee2yA48NZTNNYZtdaE1QD2QT7e1MkYxZpx8I0BDFL0Juy6U7YCAQZx2RvTwIp9YzZ26HTftOTUrMEbdPkzfvUez9fDXh0V1brCayTtcoy/wbwRSHEvwNeQiUrngJ+EfiFu3xtm06jfKW136k33flYf7OkwTvNnAN46mA3p2/lO0qVnxvLU6j6lLyQdNziSH+K3rSzovFa7Vo/yOKxtyEED9Uf82+fv0zRi1ZUdzSBs2OlDf2tDyqt6ylhG3ihOr0DNd+u5IVkHHj+0iwj43mODec6Klxeny2zKxfn/FiBNyaLPLorS38mTl86jm2anOwwc3A9apqaDbHtbd5K/ZWbtRbWsn0r/Z6S5697JMO7jw7w6188z1ypRk86xpF+NafxpevzTORdwijCMFSvHUAqpoK/KJJaZnydxEzBC1fmSMVMPD+i5keMzlXJJW1cP8Q2TdyamstZ8kIO9qWajq62K9uWbW+f7pS1+scb6zodt0g7Jp4f8uLV+TUVXtfj03Vqlzi+K9ec9zsynudXP3+GWwtVTEMQj5ns6k7gh5KS5/O18xNkHItc0l7pMjRttKtlDmbj/OLJfS3zfAPe8/DAbSs2P6isNQrheSHE08CvAH8OdRp9Dnhby3yV+472D3AtCLkyXeJ/+48v05eJk41bPLort2yeWDsj43k+d+o6r9zMI5G8eW9Xxz6QTnXkcdviA8eHOjrrt+ZVEJeNW3h+yMs3Fjg6kG7ORuvEagYxZgq+fXEaP5TNYLEr6RCEbrN+vBUBBMBrt1TmVn+oVqd1PRXcAKNedqbmR9GcmdidVEqpfZk4owtVkrZBLQgZz6tafkMIbMvk8b1ZXrgyzwtX5njqYDdx21qxSXuzxC80ivvZ5nVaC/Nlj7/5+TOEUiIQvHlvjl9YR6/aavZkpTX3xmSRazNl5iuqt3k4F+dgb6rjSIaVkl4feHSI1ycKnBvNM1HwCMIIAeSjGqZh0J3QMuPrpVE6loxZxEyDmVINN1AlT7/6zMN899Isr9xcQCA4eahnybrQdmV7cj/bp5XY6CzgxrpupSFettpzwtrjp9bTb9yXcajUQtKOyXje5epMGVBKvhnHouAGFKpBM5GrWZ2R8TxfeHkMz1fVdJ4f8oWXx/j4jx/dtD7yB5G1Tu6oG4y/cw+u5Z6hpOvh/HiBmaJLvhqQjBksVHxilkmh4pO0TT717cqKmcqR8Ty//dWLXJ0pk3ZMBCqbNJ53+dVnHl7ymNXmkLUboZmiy8N1aXOvLr/rBREXJ0v8lR89vK6/r/U5Y6bgzK0Fbs27gCRmGVyaLFLyFkue2mncahrojO06aN0QamFENm6xUFUZcYQgVh92uivn8J1Ls/zYIwMM5+LNddDIJsYss+5E2Zw8LDg7WuD0rTwfOD604qnxejajjW6eDzrb2eat9l62r4WZksurNxeYK/sc6ksigVNX5pgoeHz8x4/e9hrotOZcP2BsoUItlMQtAyHg2kyFsQWXuZLHH/un31mWAFtJPMEWAi9Qs1kaYk9hCGYUUXBDHLOtUVjTEa+uEH1lukKhPqD8UH8SP4QPPrZ7We92K7crqqNtzd1nO9unjXI7J8RL1nV9Xt3xXRmmSh6feO4i58ZUgvzhwTT7elPkqz6//dWLRFKyvze16u9ZS9Dl2bOTzee4NF0mHbfIuwFxS9CdXBxbdXQwrRMh6+Rzp65zdaZMJm6Rjdt4QcTVmTKfO3V9icK4ZmOs2nMnhHhNCHGmw3+vCSHO3KuL3GxipuDFq/N4fkjVDxHAVLGGbaiaacc2mKj3N61UO/3s2UlmSh6ZuEUiZhGPWaTjFnPl2rLHrFRHDiybJ/WdS7MkHZO37O8ibpsUPSX3u7c3sS5D0V4z/sNr81ybqZBLWCRjFmUvYK7iE4ZyqUpmG6aArGPpGvJ10No/l3IsTMMgbqm5glJKaqHENgVXpit0Jzs3grcLrPSl47z7aH9TBXGl934t8YvNmln2oLCdbd5a72X7Wrg0VabshSRjJvGYslOZuMVMybujz3OnNTcyXsQ2TXblEsRsE4nqTanWAs6OF7EMNQ/qhStz/NazFxgZz3fstbg+W+b8RFEN1277vaGEWhAxV1cB1qzO7q4EjmXxtkO9fOD4EG871ItjWesSBbsdUR1ta+4+29k+3Q63I47SaV1XvJCbs1XyVZ9CXRX9wmSJubJXVyv3mCvX1vw9a/UbN/bp/kyck4d6+dDjuxnOqj77hkjLE/u62N+X0hUG6+SVm3nSjkncNpujKtKOySs3td24E9Y6ufvJe3IV95jWY30/kBgGRFGEaaqXoyF7u1qmcnShiheEZOOLGR7HMii6yxt7V8pmfuK5i8tKX7qTNufHirzn4YHmTL72TNJqtJfTzFVqxCyDIJLs7UmycEs5RqsFdgB9aZs9vaoPZqMjIB40Wk9mH9+d5TtvzCKEQCAx6l+7kjY3F6q8+6HeJY/1goDnzs8hkbx2cwHbMgilJBu3Gco6HOhTpbgrraHVToVBl1fdBtvW5q31XravhZmSRy2M2JtddMjVrEz/jj7PRwdTfPKbl/HDiN5UjOFcnPmKT9Ix6UradKdiANycq1ByA4SARF24AyGaCbCPvf/osh6YXbk4N+YqgFg+pgUAyeuT971uxD2hk224OVehlnX4+OdPr3qytpZd6YS2NfeEbWufbofbOSHutDYvTJY4Opgml7ApeaFqaQkiLk2V6UvH8YIQwdIT/9bf07q/JmyDqUKVb19U46PSjslnTxl8+OT+jid7uWSMXDLGex4eaN6Wr/parn8djIznmSq6hJEkGTPpTsZIOVbdR19JEUKzHtbqubvefpsQog+YlVLet69867E+QknZdtUHf4NSDkvXjcZKH9DG4GoviJpDMb0gImYZyxTHGmUHlgHfujDF770yyruO9DJZ9Dg2nF3yvMeGM3zrwjTfujCFF4Q4lklf2uHnf3x9tcedjKVlima5QNVXXzu9eY2gVwBBJJoiB3quyOq0NmqXvBjvPtrHD67NUa6/mJZhqHK1+undw0PK0ZkpubxwZZ5M3GI4F+ePLs4QRqqsbdoyuTZb5gOPDq5ZurJak/hmzGt8kNjONm+t97J9LfSmHQwBlrlYoNFJFXEjfPnMKJ/8xmXKtYAwkoz5LoVqwIldGUYX3CX2sOj5BJHE9UNuzVfoTsbqow+CJdfc6vh//POn6U3FeKNcatooJUIOlgEIlp0oaTrTvh4cUzRVS1cSElvpsesRFNO25u6zne3T7dAeLE0XXc6NFfBDuWK/f6e1uac7QdIxOXVllqmiy0wJ+jMOBVf5O45lLvvdDb+mfX+9MVvm5RsLmEKwKxdHQLPl5m2Huvniq1MsVH0MAT2pGN3JGJm4Tb7qrzsRoln0jXuSMaYKLp4fMZ536UnZRBFrCuRoVmfV4E4I8TbgN4E54O8DnwX6AEMI8WellM/e/UvcfBoG5W2HejkykOKl6wt4QUihfgSPhP09yVU/oM+cGOTsaJ6rM2VkfbZZyQvZ15vkmRODzUzQc+cnsU0llzsyUSKSEtsQ/PDaPMIQJG1ziVBKxQuJW8oZa2SaonXY7MbvOzeW543JIid2Z+lLxxnMxrk5V8E2BDfnyovz7Vg9wENKLk2V+MHVeSxD8NH3rq/f70Glk5NqGfDqzTyOZeBYBvNlj1sLVa7NlNjXm+LsaAEBPLory5lbeSwhwAA/goQhsIXgu5dmuThZXjUjvpr4xVo9BJqlbGebt573snUtjIzn+a1nL3BjtgJSLlNF3Gh/1Mh4nk9+8zIIJZbiBRFeEHF0IE06blH1o+bvqvohbi3EEAJLwEKlxkypRipm0puOrZo084OQy9Plpi1q9t1JtWG1z4fUrEzrevjEcxexm329a5+sraVa2I62NXef7WyfbofWUzjXD3jx6jwSVR3QmghvF4FqX5u/9oUzTQXNwYzDaN7l2kyZhG3yP8+MEUaSgYzTMQBrP3FWQk4SaSxWHLhBxOkb8/zg2hwGYBmCSAqmS6rU82ef2MXFyfIdKas/aDRe96cOdvPdS7NUayG1IKJQDTi+K8uHT+7f6ku8r1lrzt0/B34D+M/AN4G/KKUcAt4N/MO7fG13jda66p6Uw8ODaRzL5KGBNNmEzZ6eBAf706s29R4bzvHxHz/KyUM9BBHUIsnTh3r41WceBhZ76SIZUa0F/ODaPEEYkbBNEDBecBnKOlycLC2p7744WeLxvV285+EBPvDoEO95eID9vallteGtM4j+zy+c4beevUC+6vP4nhwlN+DU5TmmilUO96WwDCX0UfWj5hveKbBzLDVgPR0zqfghs+UaPSmbh4fSejDnBlEZwSKOZTRryZOOze6uOOMFj/G8Sy2MeOpgN/2ZOBMFl6Rj0p20STkmB/pS9KZjvHJzYdWB52txL4Ze7zC2rc3b6Ht5bDjHrz7zME8f6qEWSYIITh7q4eP1KoCN9kc9e3YSvy4Y1OiNcCyDiYJLLZRLftdcxWdXV4Jc3MQNZF2tU1LyAgpuwNHB1Ip/o2EY/MiuDEa7booEIQTHBjO39fo9yIyM53nu/CTfvzLD96/MMlNygc09WdO25p6wbe3T7dCqR3D6Vp503OKRoTTXZtWa7EpYnB0rrGmbWpPVKcci45jUAtXv3puK8djuHCnHwg/CZfPz2vfXgqv8trCeVK/UAqaLHhU/IggjYpZJJFVFlABuzlX57qVZPvb+o/z2zz2+ao+8ZpHG696XjvOOI70c6EsxmHPoTTvLRAk1G2etFKglpfwagBDi70kpvw8gpXxdiPadd/uxUma6/Vj/QF+aX37P4duaYddJzae1ly6XiHFtpgxAKCNEvQw0YZtUaiF7exPkEraabecGFFyfS1MlrsyUCSNIxy0O9SUpeUHz7zk/nufmbJWjg2n296X46tkJxvJVXrkxj2UadCVsDAGnbxZ4//FB/DBiLO/i14U9poqdBQmCMCKSJqYpSFkGfWmHgusjCh5DWUf3TmyAZ04M8nuvjNKVsJBSNk85njzQjR/Cb//c43ziuYvqpLiORKlqOvWTW1XVKe4oI75Z8xofILatzVvP/LlO9u431rBRsL7+qNGFKr2p2JLSS8cymCv7nDysBJ/ecaSX127lyVd9yl6AJQSJmIkfRiAgaRu87WAPFyfLfHCFv7Ex88g2BUEgMQWoQ22BbRm6E2OdtO8XoYxI2iauH/LS9QXesr8L27z9Et12tK25J2xb+3S7NHyyhor5t9+YoVoLScRUsjOKZFP8ZL0KmpGE4ZxDxY8o/f/Zu/P4uqs68f+vc5fce5Ob3KxN032j+0ZpgYJAZRNkQHBEcFxgXBhlhNFx+bl8Z0TUr6Myg44zDoMyyjB+BVFUlhEEZRXQsrWUpi2le5u9zU1ucvd7fn+ce29u0rtmuzc37+fj0Ueau3zuyXLfOcv7vE8wSnt/kJnVDhqrnSeV1x/597XGaaerL4g1/v08PhBKHteSON4oEIkRjsXwOO0EIrFhZ9iK/MyudXGg20d7XzBZ9XRZczULGt3yfRwHuQZ3qfvZR07vlfTf2HT7lL796G5meZwEozprGlKmTlK+aUypew+WzKiita0PmwUiUYhENZGYZqbHQc9AiM2LG7lkdTOHjg8yp66SgUCYwyf8WJRiTp0zeUDn0mZ38uvxDoZBwZ5OUw1qX7ePaMwcXVDtsNHtC1FbaWd+gwlkn71/G+c2V2NRiq7+APe9dBil42exxc9kA/PDnlvvorPPDAQD4SjVDhuBcJRd7f0MhqMT+SMrKytaPJyzpIEdx/riFU/trJ5dg91qZUa1+SOSmpIys9rBweN+rFZFo9scMuwLRtm8qH5UxQ1GtkWCZd5KKualiznpzv4ptKR4IkZ1+wLs7RygLxCm2mHDYlHc/vietDEukTK5u8MHJIqzRLBZFJesbuaR7Uf52sOtDASjWNCEIhq/BpuCBY2VVDnsOO1W5jVkriTX2ublidYuVrbU0OcPMRiM0N4XxGGzUO20U1Vh4Y22fulI5ZD6+5D4exGOaLyRMJ7KCiqs5qiVRU3ucd0bJLFmwpVUfBqtdHEtcTi5PxTFqsA7GKKrP0ity04wEuFob+a9tqlbbQAefO0oJwbDOGwqedD5ng5f2j7MyL+vLrsFfzhKJBbj9SNhguEYNpvCblFU2GwMhqJYLWYyvC8QJhqDCquFe144mHYiTaS3tLmKB145klxp9frDHOv1c/EqWekfD7nSMtcppfqUUv3A2vj/E5+vmYT2jdrIEruhSJRDPYPsONaXNQ0pUznnR7YfzTuNKbWMdKPbybz6SuxWKxpTAWhmjYNoDOxWC5esbh7WVqXMYdZWi+L4gFnV0cCRE/7kYxLHI2iteflQLxA/LFvDQChKIBzlWK+fnW19tLZ5h7WnqdpJXaUdq9WCs8JKfVUFLruFivi+MItSBMIxPC77sNK0Sim8filkUIgPbJ7PoiY3Zyxs4PSF9dit1mFpSqkpKS11LhrdFTS5K5LpIAsbq5J7DdIdpSGdqAlRMjGvkNLyhZYUn13r4lDPAC8f7E1O4nT5guw81sf+Ll/a10ukTJo0dgs98SMJbrrAZD3c/cIhIvHsANTQn5aIhsMnAngHQyyZUZV11Tn16/C4KghGTOXYGpedufWVVDpMRWE5miW71O9j4u+Fx2XH7bTjsFsJRzWhaEziyNRTMvFptDLFtd7BEBrTl+kPRohpsChFNKb5074TWc+3HJkSPBiKmn12Nc5kHwYFfWmKMaX+fd3V3ke7N8jymSbGRWIarcCqFNVOGzaLwh+KMhiKEY6ao1kqrAqPy5ZcvRP52dMxwKlza6lx2RkIxahx2Tl1bi17OgaK3bSykKta5sklhqaIkZW79naZw8ZD0Viy8wPD05Ba27x85cGdHPeFqHdXsKSpiqZqc40fPLUPm0URjmrcThtLmqoypgqMnAla3GQO0lzittPWF+LQcT8VNgs3nLuAFS0e7nruQLKtMQ2za01p8YFQhLn2SlbOqub5t44n88JrnGZlpz8QJhrTWC0WwhGT8hmNaaJoLPGAdOcz+7lwRRNPtHYl27OqpYatB0/QXOPAZbMwGIoQi8ZoqHYAZgVQA4FwNHmIOhpqpJBBQfJJUxpZACPTyrDMiE+OUop5hZSWz1WpcOTv1tLmKh57ox2AaCzGwR4/vYNhnHYr+3sGWNjkTlu4J/H7bLdZ2by4kaXNVezpGODJ+7ex85iXUDhKDJO+ZLcqiGqi2pz36HbakhMcmVaLjvb6sVvhxX19dPUHODEYoqrCQjBi4pF3MITbaePXrx0FkEOyM0j9fUj8vXDYLPFsgIZkGpp876aWUopPo5Uprv25vZ8zFtXx+M4OtDbzQ9UVVqI6cwG4hJF/a6scVlx2M1md2BahtcbjsmXdrvPlB7bT2Rfk4HE/LruNefUOQpEYPQMhHDYrxwfD2G2KYMQUqIpqsFpNGd+6SptsXSnA0V4/8xurhhUUjGkt1XXHSdn21kfmUfsCEWwWhp1LN7Lzc+cz++nxBamvtBMMR3nlUC8b5tUS05oD3QMsaapKLvG/cqiX9XM9+IKZZ4JS9/StnFXNr15tw1VhZU6dixaPk13tA8mVtURb3U4bwXCUpmoHc+2VnBn/Q9xc46Q/EMHjstNQZedP+330+c3MucJs7o1pTaKwZo3TTkut2c+3p2NgWHvWz6vnrCUN/H5XN7vb+6hy2DhvaR2nNJtjGZ7a3clgKILDbsUXiOB22phfXznsTSjyU8igLNtjC61sKKa+QkrLZ9uXmS5l84nWLmpdNnzBCIdP+HHazCGyFTbFoeODdPsCNLqdJ73eyMmI1GNewlFNOBbfH6cgEtNY41Vf66rs9AejeFz2rPuwHFbFC/uOxzfaO/AOhukPRnBVmBl8pRSRGDTHK99lSz2dzlJ/H4YqQptiOIkVjkwDbIk1YiJlimsajcNmDghvroZef5jB+N67TQvrCEWzZ52OrAw7cj/XgoZKqhy2jOnrAM/u7Unuk0fBoeOD8QnuKMFIlGg0xpxaFwePm/2BJtMpytFePzNrHDLpVACprjuxynZwN3L1zG5V9AcirJkz9IZL/UVKzCY1uh0EwtFkwYC9XQMEw1GqHFZQamiJH2ht6x92cGWqkR312x/fw5mLGob9Inv9Yf7nBXNszbN7e6irNAdX7+0PooGVs6qTf4iv2zyPJ1q7ODEQ5K2uAWqcNgZDEdCacFRTYbcQigwd+xjVmoZKe7Jzlm7g8DfnncJn799Gi8eZ3DBM/HX/uPc4K1tqhu3xkqpnxVHofipRHgr545dtX2ammfKjvQqrxcKChiqcdiuHTwwSCsdw2izJw3/zTaHc2dbHzBoHR3v9xI/UNOdlak1zdQWnL6hnQaM77X7BVMcHQhwfDHFiMITTbjGTXfEKnccHQviCEexWC4saK+WQ7CxSfx8SFaF3d/ioif+8Mg2wJdaIiZYprp06txavP0yF1YLWmka3g2AkxoZ5tVSkHOGRD/P7P8iKEX0YBRmzIQDqKs3nTrsVfzBCMBIjFI1SV1nBQDCKw2HHWWGjxmkjEImitVltslnMtpVF8Swtec/kNtZaAiK7XHvuJoRS6jtKqV1Kqe1KqV8ppWrH+zVG7lNaNauGhY1V2K3WtGWaE2VZl8yoIhiJEQhHqbAqjvtCnBgMc9q82uTtWmu01pwYzH/Ak66cfTAS4dm9PdhtVs5eYg5sbG33sbTZzfKZbrYd7uNP+3tw2S0sih/N0NYXZDAUJRSNUV9pp9JhZ0aNA7tFEdNm312N08aMaif7ewY52D2QsXPW2ubl0PFB/vf1tmHlsR02G+csaZA9XiWi0P1UojwUUlo+277MTEdp1DhtdPQHaPP62dvZTyAUxR+OUuO04vWHcpayT72uLxChucbJ/HoX9vhfFQ24bIrTF9ZjsVhyxsrWNi9vtPXTVGXHZbcSCMfoHQxTaVe0e4N0+4JUWBWN7gr2dZvVRTkkO72Rvw8LGt3cfs06fnTdpqyl2iXWiImWKa59cPN8bjh3Iatn1dAb39+/fq6HCptJ5V7aXJU8/un2x/dk3d+WKR4GozptLNwZPyrEOxjiyAk/NotiMBwDNLEYVDvs2K0Walw2OvoCtHicuOw2qirMPrwKm4VwTLNkhlveM3lK/IzCkSi/b+1M9nVh+FFfuX7WIr1irdw9DnxRax1RSn0L+CLw/433i4xcrRqZbpI6e5mYTWp0Ozltfi17Owfo9gVpcDs4pakKu81KvduRrCxXYbVwzpKGvAc86Wardh7rp64yMYtkZ8Yy85hQJIo/HOP0hfXJGY3ETJDHZcM7aE2eMeX1h+nqDxKKampddvxhM/Dr7A9gs1gIhqN84u0nH0CemKGdWe2gb9AE15cOnGD5zGosFosM5kZhotKZCknPE+Wj0NLymdJ6M82UN1c72Gu10B+JopTCZlE4bAqLxYJFWXKmUKZLJ3c7K9gw38XipireONZHOKpZ0OjO673w6I6O5Mx5vdvKQDDCkV4//cEodVV2FIpgJEZFvPDT3s4BVrSMXyn/cjOafboSa8REyxXXvvHutcP+lnpcdjYtqOWJ1q6CVpTT/f6ni4WHegY43OPHYTcxzx4/3sViUaDBbrdQV1XBkhlVvNU1QDRmVurqq+wcHwgnY+dMjzNZo0HeM/kbTOnrHuwe4BP/8zLBiDl0fkVLtayEjlJRBneJc1riXgTeM9GvmavjnVgiPjFgDpjuGQhht1q4bvM8FjUNHUNw+sL65PLxBzbPz/v10y1BnxgMc9bi+mGPq3baeKK1hzMWNqRNHfD6I8NSQ2srKwiGowyEojRUVdDZHyQUjTEYiuK0abr6o/zz7/awapZn2NecOkPrdtrY2zXAcV+Itr4gX71ipbyJCjSe6Uwjf1cr4inFkptefnLFpfEopHPJ6mZue2wPr/qCBCNRHDYrjW4HzTUO1s6pZU+nD0e8Wm6imtw/v3dtztdNjWmLGivZuv9EMp28wmZNZhvk2/6jvX5Wzqrm1UNmlvb4QAhrfO/ejGoHoDjS66ezL8C8+kq6fUFJ4xlnsg9GjFYhk5u54lq6bS2FnsuZTrp+2O4Oky3ldtp45VAvlRU2XHYrHX1Bqhw2Ni+up9FtBm12q4VoTLP/+CBWpZjtcRKKaqIxzboMW35EZo/u6CAajbGzrY+uvgB9gQiRaCx51u9rh71smFeb85xDcbKipGWO8GHgt5nuVErdoJR6SSn1UldX16heIJ+S4onDc3e3+zg+EKahqoKlM9zJKpMjl/gvXNHEozs68l42Tpcm8LYlDTjtw8fX/YEICpU2deBor99UrNQk00MD4Sj9wSgVNoU3YKrd1VdV4HaYvSoOu5V2r5+ndnfyN/e8wpce2E5rm5ejvX4C4Qgv7OvhtcOm7RsX1DKvvlLeQKMwXulM6X5XO/qCHOwZyCs9T0yescamQo46GKtYvNKSQiU/7+wPMr+xig3zak3xpGCUGqeNOXWuvGJAakyLxOCMRfVsXlRPty/EzrY++gNhHt3RkffXM7vWhcNm47T5tTjtVgZCEXR8lvxor6mc2VBpI6rhxGCEBrdDZnPHWSGpwKK0jUffKV8THcsypZYXujqWrh82p87F/EZTGT0RC8NRjdVi4uTTe7r4+UuHeOCVw2w74qW+qoINczy47FYOHvfT0R/AabdQYUu/5Udk9sYxL3s6fATDUYKRGArTtw1GY8nstL1dA7ISOgoTtnKnlHoCmJnmri9rrX8Tf8yXgQjw00zX0VrfCdwJsHHjxlEd0plPSfHWNq85pymmhx2D4PWbDkrqPoXRrtKkSxNNt6H01LmejCs1s2tdVNqttPcHk5UsKyuszHQ6ONIbwGEz++4GQxFzEHkozJudEebXV1LnsvHGsT7ufGY/gVCEPR0+3E4bCs2Bbh+tx7zMa6iSA4JHYbTpTCNnO7v6Ayf/rtZXEo6YSoP5pOeJyTHW2FTIUQf5Sjd7/uiODuY3VLF2Tm3ycV5/OD4Ai9BUPZRONHLVJpdMMW12bSXV8cqM3350N7M8ToJRnXVGPzGr7nHZWdhYyd7OfnoHw1RVmE5TMBzDF4gxs8bJytkeGdjlodBU8UJTgUXpGo++U74mIpalyrWiPJZVw9sf35O8diIW7u/ysafTR5VdsbPdRySmsQA2i6KjP0CFxUJzjZM5dS76AhEGQhHCkSht3oi8ZwrQF4iAMgVsQtEYFTaFxaIIR01VLofNgi8QkZXQUZiwwZ3W+sJs9yulrgP+ArhAaz2hgSefM6AyHYPQ4Hac1EEfr0CW6Q8pkLWK0J3PDA6rZNk3GGbJDDcoRXd/EH84RiiqsVtAK4UF6BkIMbPGgY63d29HP4FIlBPHQwwEI1gsCptSRKIxyW8ehdGkM6WbJHhubw9nLa4fdp1qp402byRnpUExtYz3/qZMk06+YJjlM2tOeh2Pywy+Ep8XXK2sfQe0PgTew+CZCysu59EdFcNiYygS5VDPIMcHQpy7tCn9RFj8Oiu8h/liZRM/61uH5a2neDD2CDUVPvqUm5/G3sG96kpiGuw22ROcj/GahBQil4neq5mtsuJYt0Sku/aeDh8zayp4/Vg/VRU2lDITX/5IDLtFEdLm7LsKm4Uap41IVNNY7ZS/0QUyNSRC8QKGlvih8BYi8aw0tMZuVZJ+PwrFqpZ5CaaAyhVa68GJfr3ZtS76A8PPo8t0DEIoqoctB6froI9XigCYP6Sfvmgpt129Lrk6mK3yXbr7brpgMRaLhcWNVdRVVmCNb/B12m1Eo5qqCis2i6LLF8TttFHttNE9EMJuUQQiUYifS2WxQDgak0pPozAynWl/l48X3+phZ7zqU7r0lHSpnHWVdlrb+oc9TmatylOuuFSoTKnBXn8k7euszBJncmrfAc9/H/y9UDPbfHz++0TbXh8WG/d2DeB2mFnZtOnKI64zwxrgmiP/xA36XqoIElIO6unj0+pn/Hvsa3z4FB/LW2pk8JEHqXwpJst4x7KRsvWJxvp7nu7acxtcDIZjxLSmwmbOsrNZTVJ7OH7ens2iOD4YIhiJUV9ll7TBUVjZ4mH5zOrkGasaqHdXsKC+EoAT/girZtUUvA1KFK9a5r8BDuBxZc5Xe1Fr/fGJerFc52kkZp0Sh70CyWMQ0s0YZFqlWWs7Ak/+77CZbGauHlWbs82eprtvUZObR3d0MBiO0j0QTJ4RU6XMQZsaTTCiWdJUhev4Lj4SeZi5uocD1nqerdjMftsCguEYgUhM8ptHIXUV9o1jXo6c8LNsppt5DZnPvUk325k4Y9DrD8vZL2VuvM/5yTR7nji4euTrfGhRP4t2/ZIVA4ehMRGv8hw0tT4Ezlpw1ZrP4x/PPvECjwWWJ2OjLxDBZoEa5/CV6GR8SXMdT+AQSmtiykaVHsBGBAsxTmc7a/d9im73KfDkRWOKr9OBVL4Uk2UyzizL1Cca+Xve7QvwZoePjv5gsm25JoPSpWo+sr0Nl91KNBYzaZnK9AuD8cGdRYE/ZPaKza+vlAnYUUg9j/D0hfUc7B5gT4ePWXUuVrZ4kvsW5ezNwhWrWuaSyXy9XPsIsh2DkO4XKF0gqzy+iyvsj4CjadhMNmfdNCkdkNTglMghD0WivH7UnGVns1g4293GlUf+hyXePxKLaQZjDmbpSlZE9nGHfh+7WYDDapGVolFK/Axuf3wPc+qGDlnOlLabbpIg9YxB2fNS3sZ7f1OmSadEpdzU1/nQon4W7fmxGViNJl55D5vnpXLWsNx1gJ+nDCTt8UqvazJVkktzHbsOE8VKJQFshLGg0ZhD0e2xQWb790LPokmNr1ORVL4Uk6WYezVTf8+7fYHkBH1ztWPUA4FLVjfz2I52U6k6viAZiWd1WS0aq0UxGI5SVWFj6Qw3VmvuczzFyVaow3yx8ld0Ht7LUd1I06yL+cS1b5uQSqnTTbFW7iZdtpWw1MFafZWDFS3m0MxMAWHkL2THrIu5pGE7tdamk2ayaX1o0jsfqYUJtiybwaGeAYJHX+cDsQdZ4N9HjS1CIGqhIjpAVNmp0m28O/oY/1n9t1Q67LJSNEb5zphnmu2UGanpYzz3N2WbPT/pdZ78JsSi0PE6BPrAWQPVs/KPV565ZkCYiHMAgT7qWhZxw/KhTt6qWTV09AWxW01RlJNm9NNdx+aASBibDmEBNAqTsANWWwVWHYL+Y9C8pijxdaqYjNUUIRKKtVcz9ff8zQ5f8vYlM9wsih5g7okniP6qE1asznu1f0WLh5suWMz3//BWfNXOxkDInAd69pJ6nHYruzt8zKlzsbApv3M8xQjxlPwZzlpmLF/J6kAfBB4ENR/InuEkGQi5lf/gLs2m/5Fv7oJmnTL9Qvb3nRw0nDXmdSfZyK9nQaOb97v3McO6BN7YDlYnFXYrgQEfM1U3UYuN86NbeTh0gFkLT+ODm+dLoBqD1JnEBt+bnHL8SZwDRwlUzYZ2a/L3RCrTibzkEcOg0Di2HY4fALsLHNUQDkDHGxAeyK9NKy43K2dg4lygDwK9sOGDrJh5cgXNk9qkDsOTP4C27eA9BE0roH4hBPqwNSxGde2GWAwztDMsANGQ+aS/A+afXZT4OlVIfBFTXoH9t47+IM3VDpbMcLNcHWbjsf/Bb63mWKye1QVmJ1y2dnZyu8vRXj8Oq5liCsWr/n58y2J5L41FhtT+kRN2koEwOuU9uEts1s8j9SjvWadMv5Dew6aDM2ImG8/cMX8Zo3HS1/PrLqiKpz9pqCCC1RIiGo0StDhwWKN8d96z1J61Kf99NyKtxEzijMG9nNZ9L/1U0aEa2eSJnPT7J5XpRFYFxDAo4Pcp4AVlAXt8RtTuhEjQ3D7y9dN1rmauNm1IvW/DB/NrU+rXNHM12Cuhc6cZWM5cC1f9B9a9f4Cn/2n4YFNZQcfAaoegF3r2QeOkZvhPORJfxJQ1yv5bYiBwyqEnCdiq6ddVVLushWdTte9gxa6HRuxJliyBcZMhtX/khJ1kIIxOeQ/uWh/KnHqUuL99u+nQODzQsjb3GzjTL6TTAyf2w/5DMNhtZp2dHrjgK8Mfm6mzlOfs/Kgl0p9qZkHvIYiEsCqw2iuosAG1C6GuSdKcxkFiJrH3f/+H4zEXtqpaTptRRYPbaX4G8j0W+Ro5mdTfBof/DLsfMbd75sPCt+UXL1JjTH8H6KhJgbQ5zMCOmImDqY/P1rlK/Etc98Uf5Be7Rn5NjUugqnFoVe7Jb5iYPOtUOHEAfJ3m8E5iYLHGVxs90NUK53y60O+oEGIiFdKXydYf+u3nYaDbxIbGZeCeYZ6T+vdzxPPf1fJ2vv+GmbByB9rosTQSiMZYNTt+FEy+2VQFTqqJUciQ2j9yQUQyEEanvAd3mVKP+ttMpyEWNfcrC/hPmBnkXG/gTL+Q7pnQtQt8HaABW4W5/rb/ZzoviYCVLmAsvRT2/HZiA0kijap+CQT7wXvEdJicVWYQOmtD0dJIy9GKFg80DMLCxeb3K0G+x6IQqZNJna2w7ynAAuEgqAEzcWVzmniWLV6MjD1ODwx0QSwCwZD5vaxbOHwlLJ+0mdF0gtJNkEUCsP9pmL1xKCZH/GCxATGzamdzQUU8llfNMO2RjpYQpaOQeJCrPzTQDa560287/CeYe4YZ6CX+fqZ5/qI9P+amVX/Nb9oqOUYjTRY/q+a00OSOZyjkm02VZ8qgGIMsqf0nPVQyEApWlHPuJk1q6pFS8Y8W6D1o3rj9x8zAz+UxHQdfm7k9sbKXzorLzS+gv9ekCPl7zedgZr/rFkLzCmhYbAaLbdvhVx83BQy23jUUMJTFfHTWwtY709+erR2FmrnaBE1fm+lI2RxQ1QBNy2DheWZWrIhppGXJM9d8T1PJ91gUIvV36NgrYK0AHTYfHVXmY8/u3PEitbOiLNCyzsQAiw2WXWqKk1htJr4leA+bP7qpIgHY9Qj8+sbsMS1bW9K9L9rjg9TDL5oJssEu8HWZmOrwmBU7iwWqW2DBuSZ9c+baPL+JQohJMTLOZIsHmR6b6A8lVvPtThMbuncP//uZ4fmLup7k0xct5R1/+TE2NCmarIHhfbXUGJdJutgnE7PjK5Ha76o1A/WO1yHYF8+o21Hs1k155Tm4a99hOh4nDoCvHQaPm1WqcACImTd6YqbA5jDPsTmGUjezvYFTfyH7jpqPZ90E0aDpiCSuF/SZDko0aF7b3wv7njSdo1TOGrOSmE8gSXxdiY5V6hsg232J+/f81nTi1r8fllwMVodJU61qLCzwifxkmgiQ77HIV+rvULDfdGKiYagwh7xirTCxZuSga+T7f2RnxT3DFCSJhobHsdRZ6ZGDMF8nHPyjec3ETHummJYthq643MTmNx+H1ofNR+8hEz9Dg2bCLThgYmd4wKwuxiJmINrXDgeeNc+X95EQpSWfQVGir/L6z012la9z+GMT/aHGZfEYEDAxZ6B7+N/PXK+Vqa+WbzXgbBOzufpbIj8z4xVMnTWmb9q8emgFV76nY1J+aZmpS/WVDWZ/2fF9ZiBjdw2t3vXsM79Q4cBQMYHEgC/Xykpir0kqz1zo3GWuY3eC/zigzOu6PCawuOrNDLWyDM1CWSvAUZO7GEu2dAfInQqRbp8LQM+bJp0UYM6mQr7TIpcCik4IkVbq75C1wsQXi80M9CIBwAJ2hxl0OWrAYjeDpe33waK3w6aPmGukPXLACcsvg7d/Mf1rj0ybadtm/t+ybmimPBHTqmcOPS9bDG3fYVb72rebSS+L1aSv+70QjZivMRbFpGJaTHx2ekxbrXYIDYBjttk7LO8jIUpLrn1Uqf2Y6png7xtKuUxkDzlqYO/vzcSTspq9wf7jZhI6tU8z8rV8nSZGRUNmwJVa/KlQ2VIGZT/e+JIU2AlRfit3iSIqh16A4/tNB8hij6+sxTtDjcvh6Etgq4Sw33QsIn5wt4x+ZWXF5VDVZJaVQ37TCYlFzAx74zLzmJlrzErigWfNY6x283iby8xEZ1vhyZbukE8qRLpZLofbpK7OP9ukZlkrZMYkH4XM2s1cbTrPV/7AfJRgJQqV+B3afBPEwqbDE42YFbugFwI+MwjyzIUjW81zXHWmo5N4P49mFXnkzHc0ZGJForABmJjmP57fdROdorZtZo+ys9YMUl21YHWaGBz2xweuITOQjYVMjIyFTFyvnQdLLjDxXAhRWnLFmdaHTOzqeN2kXQ90mNjVtcs89sQB0y8L9pl+m8Vq+lJ1C+DSbw//+5n6Wv3xflWwD2afNvbVn2yrfqmF+nb/1nyMRcd3G810IimwE6IMV+7iRVT8J6CiygSSQK/Zc1dRaVbR5pxm3qz9x6B+wVC1zMYl5rylQiq/JcxcDRf8g5mVPrLVzK5XNsC8zUOdIZsTKhvNfdF4EYOW9WZQFQ2ZNmVa4clVNjZXSdl0M2rtr5uZd5kxyZ/M2oliCQ/AvLNMjIsMmkGetcJ0omwVplqvzWkyB7Q2M9ndb5o9v8svM3tuu1oLW0VOnfl+8pvm9z2VzWlWCLPFroTEJFQ0ZIqiDHaZ9od84KoZymQI9ZmJr0gQUPHz7izxtE2fHIEgRKnKla3Sth16D5gJ7aom0xca7ILeACw8F6KzzEAuGhrKbnLUmL+1I2NK6mvtesQ8zjPXZCMlYsnWu+Dy20f/taSLY2M9I1QMl2fVTFGY8hvc9R0zVeBC/Wbmp6LSzP5YK0yxk2C/eVz9QtMhuvIHQ88da8d95uqhQJK4VqLzlVjWTwSp1AqKOmZmhzKlR0HuN0CuN0e6NAP/cVNMJZXMmGQnKQSiWLyHYfapZmAXnmMGcUGf6cwM9Ji9Kg2nmMcOnjCres6aoT2/e347tkmITKlK+V4zMUGVSIePBIdSTSsbzUdlhQq3idXH34KYhqjfrNTVLzYz5HIEghClK1sqZNALWEyqpfewec9rZQZ6b/+iyYapajT9o8SkeKJ/lO21vIdNf+/IVjPhlBh07XvS9MXG829zvmeEivwUUDVT5K+80jLbd8TPRIqaTkIsYlIuIV5aOzi0/Ht8v0kBSE2tK6TSUy6ZlvVb1o6ugmK2dId8Uq7StWfR200gLLQt05mkEIhiSWzyTxSCCg1A72GTxpTYu9Z7yBSQ8nebARPKZCtEQ0OreKMtADCWAgWp7W9cZlLkldUM2pTVZFbMP9uknVqspsNU1QQzV5lsCnvlUCGsuvkykSLEVOT0QHjQxKlo2PSzYhEY6DQxKREjfJ0mzXLXI2b/ndWR/bqeuUMVdxPV0ZUymUnjnS7p8AAxM3hMLdTnkFL9ozLWvysirfJauWt9yJTKDg2aValAr+k4WGymwxDsMzPHOx801dk8c81Md2KFLtB38i/UWDrumWawRjNLkSvdIdt9Iw8KPfPG4efuFdqW6UxSCESxJGY4rRWmQ+HrAAV4ZpvBm98W30PcazoaNpdJTw/ZTdqQzWlS1ceSSjzaAgWp7XfWmuJNh/4EfYfA02Q+tzmhpsXsiW5cYjp34YCJ342nwIJzTn7vCSGmjplrzcS61WEm4W0Osz/YXmn6KCsuh9/faorgKavpj4QHzccdv4bVV6a/7orLTREpV50ZcEWCZuJo9sbxnXht32FWH4MDJgvM5jQrjCPPCBWFGcvfFZFWeQ3uvIfNBv+jL4FnDribzYxQyGfORkLH96sEoGaOCShHXzLpPt4j5vm+DlMNLpESEOgzgejJbw4NjvLdh5dOrkHayIFY6mtlewNkzA/PUWXTXmkq7YHpYMmMSXaSQiCKJRE7tt4Fbz5m3svWChPj7JUw90zTcfIeMh2nWGRoUsvqNCt7wb74ft/a3KnE2WLRWNqfuOaqd5lVucQ+QNdMOOdzsO3/mYqfgd743mk3LD5/KCNB3mtCTE2JQVhNixkYJQZhM9fE+2+rze2Dx+ODpwpzXJO1Ap79jhlApYtBM1ebTKS2beZ5zhrTB2x//eTqmaOV6EtVzzJp78oCxEwhvpFnhApRZOU1uEusqsw53WzGjYbMgKZlndkL9+Q3zcrewT+aN+ZAp8mT7nkLauebDbnBPjNj3LQS+o6YKkx2J8zaYPbpjUcBjdSBWKID9eIPzCCy75jZUDxexToy7RHbepeZEXPWmkqZiUGKyE6ONxClIHGMAIDGdJLaXzeDvOaV4J4Fex83qY3hgImFsQhUVJvD0E+5OPuM9kQVDko7CXXl8NdFmf/bXFBVYSplDnSaWX95rwkxdSUGYYdeMBPqYPpkQZ8ZuLXvMBPwVjtU1gMKAifMgCoSyD4htekjQzErEhiatJ5/tunj/epvwDPPbI3Jd6CXOsF14oAZyDUuMXv6unebs/d8bSdX8hSiyMprcJea9jP/7KEBy6aPmPsTG/otVpPzbXWYSmw6ZjoPtfPMIO7Qi3DgabOiV9VgHtO507yhEyt641FAY2QHau/v46mjs4b2/I31tRJfs68zpfpUtfl6F18ohUFGQ1IIRDEk4kX3m+aMKKfHTAa56kwaeiQYP3pluYlTR7eaeBKOV9Z0egCL6aQc3w8NizO/VrEKB7U+ZCa3Zq0fui2Ripmt4JQQYmpYeB689QeommH6IsF+k0G14nLz/nfVQ+CAqUapFEQx/Zf6hdknpNJVz2xZZ+7r3AkoCPbmP1E1sn925CWTSeCsMfHVPWOo2Iv0B0SJKa/BXa5VFavDDKBOHDRnKiU281ri3watzRvWVWvSmk65yAQJZ43pOHXvNvePVwGNkR2oaMjMrCdeB8b+Wp65Ztaqc+dQFalAn1mRPPTCUJGCxmWmSpUUBhFicuWb/jjyKAG7y9we6jd77WwVJmshETs8s6FzN9QvgsFuM8BDm6pyXa3wtk9lblOuo1cmysjX9XVC9y4Tr2DsqVVCiOLqajVbQPqPmb6IywMzUtKzZ64xk++RoNmTh45vpZmde4tMavXMmtmmj3fgWdP3sTkg0J//RNXI/llVoynQl9o/k/32okSV1+AOsu896ztqZrKVih+U6YufEVVlAoGOmccO9pgVOxgq221zDFW5LOQNna3jNrIj46wxnbTE6/g6TQ75WHLGV1wOP/+QuWYsYqrRxaJDlfVmrDBf3+E/wYyV2WfzhRDjq5D0x5FHCdidZtXOYjOz4KFB0/E4stU8xlpp3ud2l0lrGuiEUADq5pk9x9liSa7CQeO9Hy9xzRMHzAy53WWKFvjazddgrYCdv4HX7zcTUYWkVgkhSof3sFmFS+1r6NhQLPH3wvyz4NDzpj9kscdTN/vj+4crcsfK1PiVyFZKrZburDHpn9kGiiP7Z43LTFbXQPfw461kD7AoQeV1FEI2rQ+ZikYLzjEV45QyHaO6BSbFScfAWR0vUmA3e1bAvKEDvSYVqr/dbPQ/cSC/zbOJjpu/d3gwSpQhT5T9BTOQC/qgZ6+ZZe9oNTNOwT6YfdrJzy1E2G++vpDPlE+P+M0+lsAJs4ppcwDKzJzJpmAhJk8hx6+kHiUQDZqiAz37TGqmr8McBuz3mgIkfi8c3wst6wFl3v/1i2D1u81B6C1rs7cr2/EqueLaaKQWKwj6TKbB8bfMqmQ0ZGJX125z274/wLZ74YEbTAU9IcTUkdrvSUhMHCXiTnULLLvM9M8qXDBvs9muUrcwv1iZuE7PWyaVsmOnKTRV2WjuP77f9H2yxbCR7XTPgOZVZgVPSvaLEld+K3eQflY5dZl+yUWw/2kID5hOUc2seKrTPPOGPedz5sDfRMcmEjJpmq76+Avo/NqRa99KYo/gYI8pVa4sUNlgUggOPG06OvPOHEoBSH1uvhLHQ5w4aNJOR7a9v83sQaydA45aCVRCTKZ80h8T8ax9u3kfN60AVwMc+ZNZ1XLVm9U7e6Wp2hbyDaU6OaqHCieN19ErT34z//14o0k5DQ+CsgFhc5+OMixuRQImNlts2SvoCSGKLxED2rbHDzFXZsDVtAIaFg2PSSPjzikXDcWMxAHnqTKlis9cDUsvhWe+bfo3VhtU1JhJemuFmchuWpE9hqWrjG2xSvEUMSWU3+AuU5qTvdLM1vQfg/4OM6BCmX0q9kpTTOX8Lw+9aRuXDG3Mdc8YfjyCvze/QVaujlsikP3286YDU1kHc+N7Zt74lQk4qQO70ex5SeSwd+yId5IUQx0lBcTiM2VnSEqmEJMtn/THRDxrXg32KlPt0tdp9ufWzDKDnO49Jn0pEjBnwiX20PYdHX1110wp7vnux0u0PRY17TjyEux62EyejTyvKnHNRCXjynqTKaEjI148XkkzFjFfq8UqRaCEKFWJGBCNQO8BwGImzGtmm7204UGTRZAakzLFnUT9gMRePWeNmQDP1G/pajWZWq7aoYJyA93Q86ZJa+/aZSpdNi5LX0tBKmOLKaz8BneZVsv626HtNZOyFAlggkwU5p0NM5afPGBLtzE3Id9BlmcudO81ASQx6xMOmlmk1D10dQtMdc/Ea/g6zapi+zGTPpoIPqPZvJvoPFZUgT/E8JW7+P/DfrNPZ/lfFHZtIcTY5Do3cWQ8a1hsDvj195pBnFIm1ToWjheHcp+8h3Y01V2zrbjlGpAmtD5kBnaJYk42p0khffjvTObEpo+cfM1An0nDikZNenxkxKodAFYgZuJW7TwpAiVEqUrEr47XzdEmdqeJT5FBmP+2wqrgNq0w6dgVbpOR4PeC92jmfkvqJFSiumV/u4k9rnpAD8XKuWeYFb2RMWxk7GzfMX5nHgsxgcpvz5338NCm2QRnjdmrMXujSVcKDZiS4TWzzD6VxGPSzTyfOGA28h941gy6IP9BVtMKU+LXH09FOL7fnJ1Xt3B4jvfIvXdH/gwWh9kL5/eaTbw9bw3teRkpEXB+faP5mJo3nsg9dzebNmCJf4z/UxZTvGD2RjPTJYSYPInZYVdt+n0c6eJZNGjet5Gg+XywxxSF0lEzcRQNmziy93HzsdC9cLn21GXbj5d4/pPfhNd/PlSRV0fNjLuymra3bUt/TWsF2N3ma7TaMQO5VBpsdjPes1hM+6RanRClKRG/An3xvf0MFacrNBOpqxUaTjGpnV27zMeGUzL3W9Lt7Wt/3QzsWtaZFHAwFTjbtmXuXyWfOwF7jYWYIEUd3CmlPquU0kqpxtyPzlOmzbpg8rsXnBM/5LfZFFTJVAEzdYO/sppB1uEXzUpcriCQkCj56/KYqm/2SvDMAX/P8M3AqZ2l7l2m42J3mtU8l2eoY5Ru826ugJPoPM7bbIKpAtDma7LYTGCrbjGvu+sRCVRCTLaZq83s9ZU/MB9T3+Pp4pnVYVIuI4H4LHgALMrEl4rq+BmeVrMvz1pReAckV5GXbAPS1HhUUQ0DXWalsfvN+MHr8XZGQ+mv2bLODOzczfFiVzNMuqnVCfYasFSYFUprBcxcb7IhpAiUEKUpEb8Sx0nBUNXKQjOR2rebeFM1w+wnrpphPm/fnv7x6Sah/MfNNhX3DHNsjN1pistFQ7mLoxRS/EqIIitaWqZSai5wEXBoXC+cKc1pzqb4mSq1Js3xyJ/Nmz0aNPvbLDY49/ND10l9Izuqh/K1fW35b6hNLfmbKMcLQ521xMxVam53fzu4Z0LT8qH9dtkOysznsOGZq+Hy200a1NPfNjP6sajZv1NRaQKVr9ukdv3qb9LviRFCTL508ayq0ZQF958wA7lQvxnsLHq7qbSbiDN25+gOH8+2p25kuuaZNw6/bmphlGA/Zv4wZgahsYiJN1UzzfXS7XG5/PaTX6NphUmlOrLVpGI63CbrYqYchyBESUvEL3cLdO00A7tE5d5CjxEIeOOZRk7zud1pruc9mj5VMt2euUVvN7EShlI1EynmY62hIEQJKeaeu9uBzwO/GderZtoEC0OdpKpG08Ho3Wre1JUN5k2757dDldfS5WtnG2Slk7o3xWI1aZnRkOng+DpNR83XZtIpE0EJ8tvPklBIwJm5Gq7576HZ9e43TYqqr2OovbGoqTAlFeiEKL508WzeX8G2/2c6NtXNEGsyAz2L3XSALBVm0soz16ST+71mb16+A6FMe+qsjuHFqnreMpNBnnlD586lFkZJnMHnPRzPArcAFpNO2bhsKK6l2983ch+OTDYJMfWkxq/woEmldHrMhHehEzMOj4lziXOHI0FTmyASGspcSheTUmNJou8DhVUPhvz3GgtRAooyuFNKXQEc1VpvU0rleuwNwA0A8+bNy+8FMhUQSO0kRf1wysVDlZYSB4b/6uOw/DLTkUms9CUU+kZOPeog0GeCm8VqVsz2PmH2xix42/B0yqWXmkEm5Bd8RhNwEmWC3/qD6fhZ7eCZbWbEtTbtlQp0QmQ1qtg0GiPj2ZPfNPt2Z506dFuiihzKDOQaTjFV4WxOUxEYlfnA31TtO0ws3Pek2Zsyc425RqDXpFMmsgR8naZQCgqCvcOrEgf6hjIV7E4T8waPxwtZYbIorBXmmvM2Dx8wdu8159fVzZeVOSHGYNLiUy6jKeiUKnXyJ6bNNpVgv+kfhZ0mTmWLSakxbywVMHMVvxKihEzY4E4p9QQwM81dXwa+BFycz3W01ncCdwJs3LgxzwPmMkgNMr++cWjFy9dpKiZZHYA2QaHvKGa6ecHo38ipRx1Y7SZFU2uzAhgMm5ntxOAyMTjras288pgu9WA0Aad9hxlAeuaaEsW2CpOLbneZvXhVDZJqIEQO4xqbCpFutb5+oXkfn3nj0Kq8NV7AIBoy+0usFdknbVKPXVh4nik+sP9pk8p01k3w4g+Gzpnq3h0fODog0D8Uv6KhocIo4YAZaFqsZsIskakQC4NrphnYbb3TpLvbXRAcMHv0rHaz4ueZl9+AVAhxkqLFp/GUGpNmn2YyAkIRU4/A5oQ3HzOVLiFzTBoZ80Y72JSjEcQUMmGDO631heluV0qtARYCiVW7OcArSqnTtdbt49aAbKW8E1Uwj7xkOiuhARMUwHQqOl4f6nDUzDIDvZFv5HwP50131AFA68PJI5uSUvfgjSy/m+7svkSnp9CAk9gX07IOvIdMKqaymvTMygazKiCpBkKUjtR4c+IA9HeacuLpznuyV5rqwFa7iRdzTh9KK882aZM4uqDj9aHr1m80z525eniWQGJlLlEcAczHxLl6W+8aWv2bvdEM9qy2of3KiZg20G0GoScOmf10FS4zGOw9aDpziYIF0oESYnpp32EmxlMnfwa7TQZA64Ow8sqhPXS+zqGiTVZbvDo4478nbqyrkEJMkklPy9Ravw4kT+ZWSh0ANmqtu8ftRbINhmBog6//RPyslMOmYmQsHG+U1XRK/MdNKuXImeNcg62R0qVOJsoCp8qUTpmraEqhAad9u2lPsB+cdTDQCSoKWKFxuQmOUoFOiNIwMt70dcCh503MqmoaOu9p5tqhx81YaeJJLOUQ8Fzp2u3b4fgB05FyVJuVt443zL4WGJ4l4Kg211OYSaLU66crjOKaOXzSKRHTqhqhZ5/ZhxcLQSBsUjltTnNYu73SVBpOvL50rIQofyMnf3r2mUGdww2OGtMv6zsG694H235mJrOwABEz4RToMwO+dGfXCTENlN8h5pB9MARD9zlrzFJ+f5spROCeYVbuEgdtVjWmnznOp0JlqrQV75pIpoDmSqcczypN7TvgxEHz9Qa9ZjMyCirrzapd4xLpRAlRSkbGm6jfVNSNBiHkM8elNC2HNx+F5jXmcU3LTaq5VuaYk8Qet2zp2pmq0QW85vPEXt2td5oqndGgOY6gqnHorLvU62ebdErEtMZl0Lbd7D9GAdoMSEMDZmBpdZjPn7sdnv1nk1Xw9i9LgRUhytnIyR8dM5POsYiJCRVuk8Ld1Wqyqwbi5xUHeqGy2UxQtW2DxlNkT5yYloo+uNNaLxj3i44cDPk6zaGXvnZTzGT2aeb2RBXMhlPM3pJIwKzYhQNmVU/XwMHngBGV5godbKWtePc+85oH/2geM2dTYSt/BZ8RE59F3/WIKW4w0Gmq61nsZp/MQBec8Ql42835X1MIMfFGxptAn4lbIZ/Zy5aIb+3bAW1W390zzF6Url3meJUF5+ZO13Z4zGM728zMOJgMA2et+X9ir27zGpNm3rPPdK467GbVMNP106WwJ2Kae4ZZnYv1x9PWY2BxmOMd0EMHoKNMrOo9CI9+wVxXBnhCTF3ZtrakTv50vAE6AspmJoGsETOgiwSH+lwz15gCUlpD2GeysOwu2a8rpq2iHmI+YVIP/k0USwn0QfVMM4N98I/m9gSb0+RuVzWaVMxYxBQCUFZTVnzkQcCZDkrPVaEycVDxistNJ8laAcsuNR2lRGcqnXSHceZ7kDoMP1hYawj1kfzRRwNADFDwxi/zu54QYvKMjDfOmqFqcanxzVkL/j5zhqevM75Xbi2see/Jh6OnUz0TAj4IDQIasJiCS762oY5Y6iG+jUtgwTnmNTJdPzX2pKawN60YimkOtxlEOtxQuzA+mNPxwZ4ynTpLfB5SKROft945xm+qEKJoMsWFkX0s9wxTs0DZzIAtUdnbYjMxwzPXrOQd/KOZlHfPMIebK2UmzGVgJ6ap8hzcpQ6GunZhOgiYGe3E/pC2bcMHSps+Yjb7zzrVBA6nxzwuGjTPSaRnjrz+aAZbIztJrtrh12/fYSpj/vpG8xHMDJSr1hQscNUWNiOV+nouj+mwWSxmNszmNMHRYoOevUPBVQhRGkbGG3eLWbWrnjU8vs0+DbPahUnFLDQuAej4njeLHYiZGKFjQzPsieIpCbnSwzPFukRVYFetWbmrbjEdNbvTnAPqqjeTXzpmOmoo83+L3Vy3vy3/r0kIUVpy9YFSY17LerNtxFphYh4WCMa3tkhtACHSKs/BXWJvSMfrJlUp2Av1i4fSMOefbVIRRw6UEumT0ZDZi2Z3mtQm94zhnZjE40Y72MrWSco0owVDK3/5zMJner3GZSaYRiPxYxkwH20OqKgeCq5CiNIwMt40LoELv2qqY/rawVVjKmLOWGHilbJAx04zm22vzP91okGoqDLp6bFIfP9xlUnjbt8+uoyFfAaEnrnmtaMhE4uU1czQ2xzma0kcH6MYKkRV3ZL/1yWEKC254kJqzIuFYcmFsPh8ExdiYVMwqmaWOZ7lyFaTCWB3mowGuzPexwtO+pclRKko+p67CZG6N0Rr0wE5/pYpGOKeYVarll9mBkkjzVxt7su1x20sJXGz7aErtFhLoa/nngFzzoQDT5liC2A6TDpm0hjkfDshSk/aeHOl+TAylkT8ZjJryQUmruR7Vlzi3MsK91BRlWjEDLAC3tGdqZkp1lkdQ5U93TPMmXr+E2bFzllrij01LofON+L77xTYa8yeG3slbLoh+9cihChd+dQRyNTHSkyAWyvMVprOXSYTYME5JpZA/NrpjlkWYnooz5W7xAApGoqXzD0C/R1w9OX8UpXGmnaZS7brjyb1qdDXm7HMrAq66s1MmMMNi7aYmTApGyzE1DHyvX3oRRjsMYOxg380MTA13SnXtZQye96iYYiEh86xc3hGl7GQKdbB0CRWz5vxvTULoboZVr0L5p0FVqvpsDUuA1cdWJTZf3PJP0kxFSGmosSWk7btplhdz1uF97FGpnRm2mojKZtiGivPlTvvYbM348hWs0pXO98M7o6/Zfal5OqQjOZg8HykVoeyVw6lhqZefzwqY6Z7zWCfeV2HB1rWwsXfMKubztr8Z+GFEKUlNVa1b4f+Y+aYhMp41d/DfypsRd49Y+hMKZsT6uZB/RKTCpp4vULiYKZY+uIPzKw7mNgcCcTTqJQZzDUsArvDpKHD8NjZ1QrtS6RYghBTSep5nTNXmz5Q505zjma2arsjjawenNhqc/Tlk/tT+bQpU8VOIaaw8hzceebCm4+blMyBTjP7bLGCZ168glweb96xpF2mM/Ig4sRgauRAczSpT/m8ZvPqoWslAljjkvEfwAohJlciVj30abC5zLEm4QGThm5zmpTHUy7Kfo1ErKhfYiadsJhZ8IZTTOwcyyx4uliamMSKhkwKpiZenViZap+Ny4cGlCNjZ2IfspQ5F2LqGLnlpHGJmeBx1abfIpNJugnw0MDJGU+5SFwRZaw8B3crLodX7zElva3xTfmRIIT98bOgRmksszz57qUbz1XDXK+Z2ulKfG0v/kBmsISYatp3wL4nTZXfwW6zauc9ApWNZkVs5OBsZCzzdQ7FCmcNdO+GgW6zEnjpt8cnFqS+ptVhZtkHusHVYCbhdBSq50Isalbnzvm0ed5E7EMWQkyufM8HztXPGjkBfny/ydKavbGwQZrEFVHGynPP3czVplNjsQGx+Nkoc00luIB3dNfMdS5LLoXspUs9E6/Qypijec2xfm1CiOJqfcjsoa2oMu9huzNeTMprzvBMjSHp3u/7njSpkWCyGxacAyvfZfa4jdfALvU1rRWAMoPKwR7zGKt9aAa+bv7wA43Hex+yEGJy5VNtN5++yMi9v/3HzMCucUn6YxUykbgiylh5Du7ABAZ3kwkcnrlDAz2HZ3TXy3UuSy6jKSM+Vvm+5li/NiFEcXkPw8w1ZoBmsZn3eO18M8jb9JHhj033fnfVm/TNVOMZn9K9ZoUbogFwN0PTcqiZA2gYPAG9h03hhfYdxYmdQojxlU+hunz7IqkT4HULzB7dVPkM0iSuiDJWvoO7lrXQtHL42SdNK83tozHWWZ6JrsA5lteUGSwhpjbPXLO/bu4ZQzFPqZNX7SD9+33mGvAfn7j4lO41fcfAVglokzYfi5g0zYEOU/gqMWvftGLyY6cQYnzlU213NH2R0Q7SitEnE2KSlO/gbsXlYLWZs+6WXWo+Wm2jf+OOdZZnrAefj0a+rykzWEJMbYmOirXCVI6bfzY0nnLyqh2kf7/bnGYgOFHxKd1rDvSAZ/bQgLS/zRSEqWyA6plDs/ZdrZMfO4UQ4y/XlpPR9EVGO0grRp9MiElSngVVYPyPMxiPKpbjXYFztK85csNy0wpzLALIsQhCTEWFxLtMsWwiOzbpXtNii6fPzzD/An1m353dNfS8xKx9MWKnEGJyjaafNZa+nsQVUabKd3AH4/vGnaiz7yZbuvK/e34LSy81M+RT+WsTYjrLN94VI5ale81zP29ij7/XdOSsFeY8zpb1Q8+TDAIhpo/RxiYZpAkxTHkP7sZbOQSQTOV/u1oLO2tGCDF1lUoWQepZmy3rTHqUtcKkV0kGgRDTTzn0s4QoMhnclZN06Zapq3ErLs//rBkhxPQylnM8x2rwhDnMHAUdr5uqxi1rJYNACCGEKJAM7iayQzOZnaWR6ZY9b8G2e835Lw43vPk4bL/PHHIcCUHD4qHnSuqTEOUnEX/atpuBk9MDM9emj0Pp0rUTBwHDxMSxxGtGI+bQ9EAfRENQMwsqqid3cCmEKI5iTioJUabKt1pmPiby8O7JPhh85Pkw/cfMOVLH98LRl8xjnHUQDsKRrWbwJ+V/hShPifjTvRd6D4DfC8cPmPd9ujiU6XyprXdNXBxLvObxvWblzmIzxVT8vXD8LfPaQojyNdn9JCGmiek9uJvIw7sn+2DwkefDBPrAUQ19xyAWhYFO8xh/DzScYgZ/Uv5XiPKUiD+++PECLo8ZOPUfSx+HMp0vdWRr5kHfk9+EX984dNh4oRKv2XfM7LOz2swAT0fNyt2RraP5yoUQU8Vk95OEmCam9+BuIg/vnuyDwUeeD+OsMQcZxyLg6zKpTxYrKKsZ1KHMc7yHTSCVmTIhykci/gT6wOYwt9kc5vN0cSjT+VJwchyLBGDfk2OfbU+8ZjQMoX4Y7DHXQkF4EHwdYxs8CiFK22T3k4SYJqb34G4iD++e7IPBRx7kWT0LQj5AgYo/RkehuhkiQbPHRVIhhChPifjjrDHvdzAfEwO+kXEo00HAczadHMfaXwdX/dhn21dcbvYDhgbMYC4SNHvugv3gPWQOM7fYzX7h+z4AD31aYpQQ5WSy+0lCTBPTe3CXqUMzHvvPJvLa6STOh3HVmpW5hsVw4VfBVWdmxhVmwBcOmtSs0KCpSjfQLakQQpSbRPxxt0DEb/bchf0mBqSLQyPjRyJde9NHTo5j/uMwc83w5+c7296+Yyidc+tdZhBXUWXSMVGANq+jbNC4bCg101UHbdtkEkqIcjLZ/SQhponpXS1zIg/zLdZBwSOv39Vqiir42qC/w1TNs9jAUQPhABz5M8w5HaoaJRVCiHKRGn/Cg0PVMhsWZ65Gl+l8qZFxbNHbzR65VPnMto+syLnzIbMX2F4FlfWgMWnkET+4m2CwC2xOsDtBa7Oil5iEkj3CQkx9xegnCTENFG1wp5S6CfgkEAEe0Vp/vigNmcgDM0vhMM4Vl5sOVfMaTO9JQ3DApGwOdJqKmt27TWdNUiGEKB/jFX9GXicxSIOhNM98DhtPLZ7g64T+NrMHOOyHWNhkGDg9JhXTWTtUFAqGUkplP44Q5aUU+klClJmiDO6UUm8H3gWs1VoHlVIzitGOkjWe576kzoydOARBH1jtpijCQNh0oML+oRkzIYTIFoNGO9vuPWxW7HydsPdxiAYgFjMDO2UxA71An/mYKAITDoBSEA1CyzrZjyOEEELkUKyVu08A/6S1DgJorTuL1I7Sk+0w4bEM8Gauhj2PmtQme6XpPIUGzQpeLGI6TYk9dzKLJsT0lU8MGs1su2cuHH4JOrYNDeJiAZJFn3Q8s2D+WVAbH8Dte9IUb5m90WQX5LNCKIQQQkxjxSqoshQ4Ryn1J6XU00qpTZkeqJS6QSn1klLqpa6urklsYpHke+5LamGCfEuFB33x4xAwHSWb03SwlNV01KRq5uQYzc9OlJyyjU0TdfZU0wo4uhWiUZN6qWOAMv8H8zp1CyA8APufAvcMuOAWOOUis7onZ3IKkbeyjU9CiJwmbHCnlHpCKbUjzb93YVYM64Azgc8BP1dKqXTX0VrfqbXeqLXe2NTUNFHNLR35nPuSmFkv9CgDuwuqZpiCKtEQxELmNrtTDhCdLKP92YmSU7axaaLOnupqNTGmotKkhlss8cPL7eagdWU1RZ86d5r41L0X9vzWpIRe+QN4+xdlYCdEnso2PgkhcpqwtEyt9YWZ7lNKfQJ4QGutgT8rpWJAIyDTS565psPvqh26beQ+k9SZdRj6OLKK3Mh9M/WLTMepaoZJy+zabWbPa2YNPUcKFkysfH92QhRLPjFoNLyHze++r9MM6KwVQweY21wmZVxZzaCvohq6d0HjcnlvCCGEEAUoVlrmr4HzAZRSS4EKoLtIbSkt+Zz7MtrVvUgQKhvN/cE+07lyVMOsDUPPk4IFE2uiVkWEGC8TdfaU1QH+E6Y4irKYQik6Cu5m8Mw2r+WoBM8cczSC1QG+Y/LeEEIIIQpQrIIq/wX8l1JqBxACrouv4ol8KtGNenVvgUl3cs8w17Y6oO+YGeTpWP4lzcXoTdSqiBDjZSLPnrI5zKHlwX5TpddihdmngcNtbo8ETYGn3kOmom8sZlbvhBBCCJGXogzutNYh4APFeO0pIVclusTZdZD5nKlE2fFUzhroO2r2riSMTN2UA0QnVj4/OyGKbSLOnooGYf7Z0POm2fdbNx8aTjHFUjxzob8TOnaaQ9etdlNoRVnMBFT7DolLQgghRB6Kdoi5GIPxWt1LXEs6TZNnIldFhChliZi04Jyh2/y94JppKmluu9ekalrtZvUuFoF5Z5kKmrLvTgghhMiLDO6mqvFY3RPFIQNqMR1li0mtD8GcTbD/abOqZ3eaoiqxkOxJFUIIIQpQrIIqYqIlVohctSYVU86IEkIUU7aY5D0M9Quh8RSonWf+uWrjA0DZkyqEEELkS1buypmsEAkhSkmmmJRI2WxcBkf+bPbdDZ4w+/EOPgfnfG7SmyqEEEJMRbJyJ4QQorgSxy9YK6BuEfg6IDJojkVoXG4OM2/fUexWCiGEECVPVu6mqpFVLldcLqt0QojiGW1MSjwv2Gee298BdQuhZZ05tgXMqp4UVRFCCCFykpW7qSjdAeXPf19mtoUQxTHamJT6vObV0LzGHGxeMxu6d8OuR+DAs+bMOymqIoQQQuQkg7upKPWAcmUxH5215vYS941vfINVq1axdu1a1q9fz5/+9CcAPvrRj7Jz585RXfPYsWO85z3vSX7+vve9j7Vr13L77bfzj//4jzzxxBPj0vaE7373uwwODo7pGr/+9a+Hfb1jaafWmptvvpklS5awdu1aXnnllbSPe//738+yZctYvXo1H/7whwmHwwB4vV4uv/xy1q1bx6pVq/jxj388qnaIaWy0MSnd82xOs88uHABHtfl48I9gdUzolyCxyShGbEq46aabcLvdyc9/85vfJH8eGzdu5LnnnhtVO4SYyiQ2GaXUbyr52KS1njL/TjvtNC201r/6hNa//7rWf/i/Q/9+/3Vzewl7/vnn9ZlnnqkDgYDWWuuuri599OjRcX2NtrY2PW/evHG95kjz58/XXV1dOR8XiUQy3nfdddfp+++/f1za88gjj+hLLrlEx2Ix/cILL+jTTz894+NisZiOxWL62muv1T/4wQ+01lp/4xvf0J///Oe11lp3dnbquro6HQwGx6Vt+QBe0iUQX8byb9rHptHGpHTP+49ztP6/c7T+z7drfdcl5uO/nqb1g5+asOZLbBpSjNiktdZbt27VH/jAB3RVVVXytv7+fh2LxbTWWm/btk0vW7ZsXNpVCIlPopgkNg0ppX5TqccmWbmbijxzTXnwVKMtF96+A578Jvz6RvNxAlM729raaGxsxOEwM/CNjY3MmjULgC1btvDSSy8BcNddd7F06VK2bNnCxz72MT75yU8CcP3113PzzTdz1llnsWjRIn7xi18AcODAAVavNntxLr74Yjo7O1m/fj3PPvss119/ffJxW7du5ayzzmLdunWcfvrp9Pf3c+DAAc455xw2bNjAhg0beP755wF46qmn2LJlC+95z3tYvnw573//+9Fa86//+q8cO3aMt7/97bz97W8/6WtcsGABt956K29729u4//77+eEPf8imTZtYt24df/mXf8ng4CDPP/88Dz74IJ/73OdYv349b7311rB2/v73v+fUU09lzZo1fPjDHyYYDGb9vv7mN7/hQx/6EEopzjzzTHp7e2lrazvpce985ztRSqGU4vTTT+fIkSMAKKXo7+9Ha43P56O+vh6bTbbjigLkG5NGxhur4+TnRQJmz53dCcF+83H+2RDN/j4YC4lNxY1N0WiUz33uc3z7298edrvb7UYpBcDAwEDy/0JMFxKbSrPfVOqxSQZ3U1Gispy/F3TMfAz0mtsLMcl79y6++GIOHz7M0qVLufHGG3n66adPesyxY8f42te+xosvvsjjjz/Orl27ht3f1tbGc889x8MPP8wXvvCFk57/4IMPsnjxYl577TXOOeec5O2hUIhrrrmG733ve2zbto0nnngCl8vFjBkzePzxx3nllVe47777uPnmm5PPefXVV/nud7/Lzp072bdvH3/84x+5+eabmTVrFk8++SRPPvlk2q/T6XTy3HPPce211/Lud7+brVu3sm3bNlasWMFdd93FWWedxRVXXMF3vvMdXnvtNRYvXpx8biAQ4Prrr+e+++7j9ddfJxKJ8B//8R+ASUF48MEHT3q9o0ePMnfuUCd6zpw5HD16NNOPgXA4zD333MMll1wCwCc/+UlaW1uZNWsWa9as4Xvf+x4Wi4QGUYB8YlK6eNN3FE4cGP48qx0aToEF58Dyy8xHm3NCz7qT2FTc2PRv//ZvXHHFFbS0tJx0369+9SuWL1/OZZddxn/913+l/bqEKFcSm0qz3wSlHZukBzcVjdcB5ZO8d8/tdvPyyy9z55130tTUxDXXXMNPfvKTYY/585//zHnnnUd9fT12u52rr7562P1XXnklFouFlStX0tHRkfdr7969m5aWFjZt2gRATU0NNpuNcDjMxz72MdasWcPVV189LJ/79NNPZ86cOVgsFtavX8+BAwfyeq1rrrkm+f8dO3ZwzjnnsGbNGn7605/yxhtv5GznwoULWbp0KQDXXXcdzzzzDAC33norV1xxxUnPMavzw2WbRbrxxhs599xzk0H8scceY/369Rw7dozXXnuNT37yk/T19WV8vhAnyScmpYs3dQuhZtbw553zOQj1w5uPw66HzccT+wufvCqAxKbixaZjx45x//33c9NNN6V93auuuopdu3bx61//mn/4h3/I/gUKMZEmMdMpQWJTafaboLRjk+ReTVXjcUC597CZQU/lrJnQqnRWq5UtW7awZcsW1qxZw913383111+fvD/dGy5VIjUhn8em0lqnfePefvvtNDc3s23bNmKxGE6nM+1rWa1WIpFIXq9VVVWV/P/111/Pr3/9a9atW8dPfvITnnrqqZztLNScOXM4fHjoZ3bkyJFk2sZIX/3qV+nq6uI///M/k7f9+Mc/5gtf+AJKKZYsWcLChQvZtWsXp59+esFtEdNYrpiUKd70HYW3f3HotvYdQPy9mnw7THzKi8Smp3K2s1D5xKZXX32VvXv3smTJEgAGBwdZsmQJe/fuHfa4c889l7feeovu7m4aGxsLbosQY5LIPHDWDs90Gs3EeoEkNj2Vs52FGmu/KVUpxiZZuZvOxnPvXh52797Nm2++mfz8tddeY/78+cMec/rpp/P0009z4sQJIpEIv/zlL8fltZcvX86xY8fYunUrAP39/UQiEbxeLy0tLVgsFu655x6i0WjOa1VXV9Pf35/X6/b399PS0kI4HOanP/1pzmssX76cAwcOJDs299xzD+edd17W17jiiiv47//+b7TWvPjii3g8nrTpTT/60Y947LHH+NnPfjYs7XLevHn8/ve/B6Cjo4Pdu3ezaNGivL4+IfKWb7xpfQjqFsApF8GKvzAf6xZMaDVgiU3Fi02XXXYZ7e3tHDhwgAMHDlBZWZl8jb179yY7bq+88gqhUIiGhoa8vj4hxlWRqpRLbCrNflOpxyYZ3E1n47V3L08+n4/rrruOlStXsnbtWnbu3Mktt9wy7DGzZ8/mS1/6EmeccQYXXnghK1euxOPxjPm1KyoquO+++7jppptYt24dF110EYFAgBtvvJG7776bM888kz179gybPcrkhhtu4NJLL027MXikr33ta5xxxhlcdNFFLF++PHn7tddey3e+8x1OPfVU3nrrreTtTqeTH//4x1x99dWsWbMGi8XCxz/+cSBz7vg73/lOFi1axJIlS/jYxz7GD37wg2H3HTt2DICPf/zjdHR0sHnzZtavX8+tt94KwD/8wz/w/PPPs2bNGi644AK+9a1vlczskygj+cYb72GzopdqgjMKJDYVNzZl8stf/pLVq1ezfv16/vZv/5b77ruv5AoXiGmiCHEJJDYVOzZl6jeVemxSo1nOLJaNGzfqRGUgMU7ad5iZJ+9hM4O+4vIJTzHIxefz4Xa7iUQiXHXVVXz4wx/mqquuKmqbxMRRSr2std5Y7HaMhcSmPKWLNzD8Nl8nWCvMzHiCv9d8npq+WQQSm6YfiU8CMHvsEnEooUTiEkhsmo6yxSbZczfdjcfevXF2yy238MQTTxAIBLj44ou58sori90kIcR4GBlv0u1j6TuG2Wy30MyMB/rMCt+GDxalyakkNgkxTa243MQqKLm4BBKbxHAyuBMl57bbbit2E4QQkyF1H4uvE7p3w0A32F1msNd31KzmbfhgSUxCSWwSYppKVAROzTIokbgEEpvEcDK4E0IIURyJCpq+TjjyZ3Oouase/MchPDgpleiEECIvJZjpJEQ6UlBFTKr29nauvfZaFi9ezMqVK3nnO9/Jnj17it0stmzZQinvSXjqqad4/vnnk5/fcccd/Pd///eor/fNb36TJUuWsGzZMh577LG0j9m2bRubN29mzZo1XH755cPOvtu+fTubN29m1apVrFmzhkAgMOq2iGkm9ayoEwfg+H6zYmd1gN0J0RBUNU5KJbphzZLYNCqlFJtCoRB//dd/zZo1a1i3bl3OEupCTAUSm0anGLHptdde48wzz2T9+vVs3LiRP//5zwAcOHAAl8vF+vXrWb9+fbLgy0SRlTsxabTWXHXVVVx33XXce++9gHkjdHR0JA+fnAyRSASbrfR+9bO166mnnsLtdnPWWWcBjCkw7Ny5k3vvvZc33niDY8eOceGFF7Jnzx6sVuuwx330ox/ltttu47zzzuO//uu/+M53vsPXvvY1IpEIH/jAB7jnnntYt24dPT092O32UbdHTCMj99iFg3DElNmmugXCAYgEoGXdpFSiS5DYlN1UiU0//OEPAXj99dfp7Ozk0ksvZevWrcNKmAsxlUhsyq7UYtPnP/95vvKVr3DppZfyv//7v3z+859PTjItXryY1157bdRtKIREPDFpnnzySex2+7A32Pr16znnnHPQWvO5z32O1atXs2bNGu677z7AvDm3bNnCe97zHpYvX8773//+5NkiW7du5ayzzmLdunWcfvrp9Pf3EwgEkjO3p556Kk8++SQAP/nJT7j66qu5/PLLufjii/H7/Vx77bWsXbuWa665Br/fn2zTJz7xCTZu3MiqVav4yle+krx9wYIFfOUrX2HDhg2sWbOGXbt2AaZKVeI1165dmzxj5ne/+x2bN29mw4YNXH311fh8vpO+J1u2bOFLX/oS5513Ht/73vd46KGHOOOMMzj11FO58MIL6ejo4MCBA9xxxx3cfvvtrF+/nmeffZZbbrklmWOfmClau3YtV111FSdOnMj6c/jNb37Dtddei8PhYOHChSxZsiQ5u5Rq9+7dnHvuuQBcdNFFw76utWvXsm7dOgAaGhpOCnBCpDXyrKjGJTB7I+ioScW0O2HuGeCeMaFnbo4ksak8YtPOnTu54IILAJgxYwa1tbUlvbIgRC4Sm6ZWbFJKJTMJvF5vxoPRJ1rpDcNF2dqxYwennXZa2vseeOABXnvtNbZt20Z3dzebNm1K/vF+9dVXeeONN5g1axZnn302f/zjHzn99NO55ppruO+++9i0aRN9fX24XC6+973vAWbmdteuXVx88cXJ9IUXXniB7du3U19fz7/8y79QWVnJ9u3b2b59Oxs2bEi25Rvf+Ab19fVEo1EuuOACtm/fztq1awFobGzklVde4Qc/+AG33XYbP/rRj/ja176Gx+Ph9ddfB+DEiRN0d3fz9a9/nSeeeIKqqiq+9a1v8S//8i/84z/+40lfe29vL08//XTyuS+++CJKKX70ox/x7W9/m3/+53/m4x//OG63m89+9rMAyUPHAT70oQ/x/e9/n/POO49//Md/5Ktf/Srf/e53ueOOO4CTZ6uOHj3KmWeemfx8zpw5HD169KR2rV69mgcffJB3vetd3H///Rw+bFZR9uzZg1KKd7zjHXR1dXHttdfy+c9/Pv0PXYhUiT12qRoWmf11zhoz8HPWDJ2BN0mV6CQ2lUdsWrduXbITdvjwYV5++WUOHz7M6aefnv4HL0SJk9g0tWLTd7/7Xd7xjnfw2c9+llgsNiwtdP/+/Zx66qnU1NTw9a9/nXPOOSftz3U8FGVwp5RaD9wBOIEIcKPW+uQhsJg2nnvuOd73vvdhtVppbm7mvPPOY+vWrdTU1HD66aczZ84cwMxYHThwAI/HQ0tLC5s2bQKgpqYmeZ2bbroJgOXLlzN//vxkkLrooouor68H4JlnnuHmm28GYO3atckgBPDzn/+cO++8k0gkQltbGzt37kze/+53vxuA0047jQceeACAJ554IpkuAVBXV8fDDz/Mzp07OfvsswGzF2Tz5s1pv/Zrrrkm+f8jR45wzTXX0NbWRigUYuHChVm/b16vl97eXs477zwArrvuOq6++mogcwpCurMt0x2++V//9V/cfPPN3HrrrVxxxRVUVFQAJg3iueeeY+vWrVRWVnLBBRdw2mmnJWfMhcjIM/fks6ICfdCy1pQaL8FKdBKbjKkQmz784Q/T2trKxo0bmT9/PmeddVZJppIJMR4kNhmlFJv+4z/+g9tvv52//Mu/5Oc//zkf+chHeOKJJ2hpaeHQoUM0NDTw8ssvc+WVV/LGG28kfwbjrVhR79vAV7XWv1VKvTP++ZYitUVMklWrVvGLX/wi7X3p3jgJDocj+X+r1UokEkFrnfaNle06VVVVwz5P9/z9+/dz2223sXXrVurq6rj++uuHFQtJtCXRjsRrjryW1pqLLrqIn/3sZxnbk65dN910E3//93/PFVdcwVNPPcUtt9yS8/mFmjNnTnKmG0xgTJc6sHz5cn73u98BZrXukUceST7/vPPOo7GxEYB3vvOdvPLKKzK4E7llOyuqiJXoJDblbtdUiE02m43bb789+bizzjqLU045ZdzbKcRkkdiUu12lFJvuvvvu5Ero1VdfzUc/+lHAfA8S34fTTjuNxYsXs2fPHjZuTHsG+ZgVa8+dBhLDVQ9wrEjtEJPo/PPPJxgMJje9g8n/fvrppzn33HO57777iEajdHV18cwzz2RNpVm+fDnHjh1j61ZTjKG/v59IJMK5557LT3/6U8D80T906BDLli076fmpj9uxYwfbt28HoK+vj6qqKjweDx0dHfz2t7/N+XVdfPHF/Nu//Vvy8xMnTnDmmWfyxz/+kb179wIwODiYV3Urr9fL7Nkmbe3uu+9O3l5dXU1/f/9Jj/d4PNTV1fHss88CcM899yRnozK54ooruPfeewkGg+zfv58333wz7fe6s7MTgFgsxte//vXkjNY73vEOtm/fzuDgIJFIhKeffpqVK1fm/NqESJ4V5ao1Z9i5akviuAOJTeURmwYHBxkYGADg8ccfx2azSWwSU5rEpqkVm2bNmpVMF/3DH/6QnFzq6uoiGo0CsG/fPt58800WLVqU82sbrWIN7j4FfEcpdRi4DfhipgcqpW5QSr2klHqpq6trstonJoBSil/96lc8/vjjLF68mFWrVnHLLbcwa9YsrrrqqmSRjvPPP59vf/vbzJw5M+O1KioquO+++7jppptYt24dF110EYFAgBtvvJFoNMqaNWu45ppr+MlPfjJsBivhE5/4BD6fj7Vr1/Ltb387+SZdt24dp556KqtWreLDH/5wMj0gm//zf/4PJ06cYPXq1axbt44nn3ySpqYmfvKTn/C+972PtWvXcuaZZyY3Emdzyy23cPXVV3POOeckV8YALr/8cn71q18lNwanuvvuu/nc5z7H2rVree2115L56XfccUcyfzzVqlWreO9738vKlSu55JJL+Pd///dkQZSPfvSjyQIEP/vZz1i6dCnLly9n1qxZ/PVf/zVg0if+/u//nk2bNrF+/Xo2bNjAZZddlvNrKzcSm0Zp5mp4+xfhyh+YjyWQeimxqTxiU2dnJxs2bGDFihV861vf4p577sn5dZUriU/lQWLT1IpNP/zhD/nMZz7DunXr+NKXvsSdd94JmJTWxM/qPe95D3fccUcy3XUiqGzLsWO6sFJPAOl+y74MXAA8rbX+pVLqvcANWusLc11z48aNWipfCVFelFIva60nJjdhkkhsEqI8SXwSQpSibLFpwvbcZRusKaX+G/i7+Kf3Az+aqHYIIYQQQgghxHRQrLTMY0AiwfV84M0itUMIIYQQQgghykKxqmV+DPieUsoGBIAbitQOIYQQQgghhCgLRRncaa2fA9KfyiiEEEIIIYQQomDFSssUQgghhBBCCDGOJqxa5kRQSnUBB4vdjjw0At3FbkSeplJbQdo70YrR3vla66ZJfs1xJbFpwkh7J85UaisUr70SnyaH/D5OLGnvxCm52DSlBndThVLqpalSOnkqtRWkvRNtqrVXFGaq/XylvRNnKrUVpl57RWGm2s9X2juxplJ7S7GtkpYphBBCCCGEEGVABndCCCGEEEIIUQZkcDcx7ix2AwowldoK0t6JNtXaKwoz1X6+0t6JM5XaClOvvaIwU+3nK+2dWFOpvSXXVtlzJ8aNUupHwL9orXeO4rkLgIe11qvHvWHm+tcDG7XWn1RK3QL4tNa3TcRrCSFKi8QmIUSpkvgkxluxDjEXZUhr/dFit0EIIUaS2CSEKFUSn8R4k7RMUTClVJVS6hGl1Dal1A6l1DXx259SSm2M/9+nlPpG/DEvKqWa47cvjn++VSl1q1LKl+b6VqXUd+KP2a6U+psM7fhQ/P5tSql74rc1KaV+GX/uVqXU2RP3nRBClBKJTUKIUiXxSUwWGdyJ0bgEOKa1XhdPBXg0zWOqgBe11uuAZ4CPxW//HvA9rfUm4FiG638E8MYfswn4mFJqYeoDlFKrgC8D58df4+9Srn97/Ll/CfxotF+kEGLKkdgkhChVEp/EpJDBnRiN14ELlVLfUkqdo7X2pnlMCHg4/v+XgQXx/28G7o////9luP7FwIeUUq8BfwIagFNGPOZ84Bda624ArfXx+O0XAv8Wf+6DQI1Sqjr/L00IMYVJbBJClCqJT2JSyJ47UTCt9R6l1GnAO4FvKqV+p7W+dcTDwnqoWk+Uwn7XFHCT1vqxHI9JVw3IAmzWWvuHPVipAl5eCDEVSWwSQpQqiU9issjKnSiYUmoWMKi1/h/gNmBDAU9/EbPkD3Bthsc8BnxCKWWPv95SpVTViMf8HnivUqoh/pj6+O2/Az6Z0tb1BbRNCDGFSWwSQpQqiU9issjKnRiNNcB3lFIxIAx8ooDnfgr4H6XUZ4BHgHRpCT/CpCK8osy0URdwZeoDtNZvKKW+ATytlIoCrwLXAzcD/66U2o75/X4G+HgB7RNCTF0Sm4QQpUrik5gUcs6dmFRKqUrAr7XWSqlrgfdprd9V7HYJIaY3iU1CiFIl8UkUQlbuxGQ7DbNpVwG9wIeL2xwhhAAkNgkhSpfEJ5E3WbkTQgghhBBCiDIgBVWEEEIIIYQQogzI4E4IIYQQQgghyoAM7oQQQgghhBCiDMjgTgghhBBCCCHKgAzuhBBCCCGEEKIMyOBOCCGEEEIIIcqADO6EEEIIIYQQogzI4E4IIYQQQgghyoAM7oQQQgghhBCiDMjgTgghhBBCCCHKgAzuhBBCCCGEEKIMyOBOCCGEEEIIIcqADO6EEEIIIYQQogzI4E4IIYQQQgghyoAM7oQQQgghhBCiDMjgTgghhBBCCCHKgAzuhBBCCCGEEKIMyOBOCCGEEEIIIcqADO6EEEIIIYQQogzI4E4IIYQQQgghyoAM7kTRKKUOKKU6lFJVKbd9VCn1VPz/Wim1JOW+zyql2pRSq4rQXCHENBWPVX6llE8pdUIp9YhSam6x2yWEmF5SYlG/UqpXKfW8UurjSilLymNOV0r9b/z+40qpPyul/rqY7RaTSwZ3othswN/lepBS6v8AnwLO01q/MdGNEkKIES7XWruBFqAD+H6R2yOEmJ4u11pXA/OBfwL+P+AuAKXUZuAPwNPAEqAB+ARwaXGaKopBBnei2L4DfFYpVZvpAUqprwMfBc7VWu+ZrIYJIcRIWusA8AtgZbHbIoSYvrTWXq31g8A1wHVKqdWYPtXdWutvaa27tfGy1vq9xW2tmEwyuBPF9hLwFPDZDPf/EyZwnau13jdZjRJCiHSUUpWYmPRisdsihBBa6z8DR4DzgM2YyScxjdmK3QAhgH8E/qiU+l6a+y7GzEIdmuQ2CSFEql8rpSKAG+gE3lHk9gghRMIxoBazaNNW3KaIYpOVO1F0WusdwMPAF9LcfS3wHqXUVye3VUIIMcyVWutawAF8EnhaKTWzuE0SQggAZgO9QAyzL1hMYzK4E6XiK8DHMAEq1R7gQuBGpVS6wZ8QQkwarXVUa/0AEAXeVuz2CCGmN6XUJkzf6RngBeAvi9siUWwyuBMlQWu9F7gPuDnNfW9gBnifU0p9apKbJoQQScp4F1AHtBa7PUKI6UkpVaOU+gvgXuB/tNavA58HrldKfU4p1RB/3Dql1L3FbKuYXLLnTpSSW4EPprtDa71NKfUO4HGlVEBrfcfkNk0IMc09pJSKAho4CFwnx7IIIYrgofj+3xiwE/gX4A4ArfXzSqnzga8C/yces94E/r1YjRWTT2mti90GIYQQQgghhBBjJGmZQgghhBBCCFEGZHAnhBBCCCGEEGVABndCCCGEEEIIUQZkcCeEEEIIIYQQZWBKVctsbGzUCxYsKHYzhBDj6OWXX+7WWjcVux1jIbFJiPIk8UkIUYqyxaYpNbhbsGABL730UrGbIYQYR0qpg8Vuw1hJbBKiPEl8EkKUomyxSdIyhRBCCCGEEKIMyOBOCCGEEEIIIcqADO6EEEIIIYQQogxMqT13QgghhBBibMLhMEeOHCEQCBS7KSXL6XQyZ84c7HZ7sZsiREFkcCeEEEIIMY0cOXKE6upqFixYgFKq2M0pOVprenp6OHLkCAsXLix2c4QoiKRlCiGEEEJMI4FAgIaGBhnYZaCUoqGhQVY2xZQkK3dCFKJ9B7Q+BN7D4JkLKy6HmauL3SohhBCiIDKwy06+P2KqkpU7IfLVvgOe/z74e6Fmtvn4/PfN7UIIIYQQQhSZDO6EyFfrQ+CsBVctKIv56Kw1twshhBAib0opPvOZzyQ/v+2227jlllsm7PVeeuklbr755gm7vhClQtIyhciX97BZsUvlrDG3CyGEEGWqtc3Lozs6ONrrZ3ati0tWN7OixTOmazocDh544AG++MUv0tjYOE4tzWzjxo1s3Lhxwl9HiGIr6sqdUqpWKfULpdQupVSrUmpzMdsjRFaeuRDoG35boM/cLoQQQpSh1jYvdz6zH68/TIvHidcf5s5n9tPa5h3TdW02GzfccAO33377SfcdPHiQCy64gLVr13LBBRdw6NAhAK6//npuvvlmzjrrLBYtWsQvfvGLtNe+//77Wb16NevWrePcc88F4KmnnuIv/uIvAOjq6uKiiy5iw4YN/M3f/A3z58+nu7t7TF+PEKWi2GmZ3wMe1VovB9YBrUVujxCZrbgcAr1mr11/O7z5OLz5GPg6Zd+dEEKIsvTojg48Ljselx2LUsn/P7qjY8zX/tu//Vt++tOf4vUOHyh+8pOf5EMf+hDbt2/n/e9//7B0yra2Np577jkefvhhvvCFL6S97q233spjjz3Gtm3bePDBB0+6/6tf/Srnn38+r7zyCldddVVy8ChEOSja4E4pVQOcC9wFoLUOaa17i9UeIXKauRrOugmiIdj/tLlt4XlgrZDCKkIIIcrS0V4/1c7hu3iqnTaO9vrHfO2amho+9KEP8a//+q/Dbn/hhRf4q7/6KwA++MEP8txzzyXvu/LKK7FYLKxcuZKOjvQDzLPPPpvrr7+eH/7wh0Sj0ZPuf+6557j22msBuOSSS6irqxvz1yJEqSjmyt0ioAv4sVLqVaXUj5RSVSMfpJS6QSn1klLqpa6urslvpRCpZq4G9ww45R1wykVQPVMKq0xTEpuEEKVqPOPT7FoX/YHIsNv6AxFm17rGdN2ET33qU9x1110MDAxkfEzqsQQOhyP5f601AF/+8pdZv34969evB+COO+7g61//OocPH2b9+vX09PQMu17ieUKUo2IO7mzABuA/tNanAgPASevrWus7tdYbtdYbm5qaJruNQpzMe9gUUkklhVWmHYlNQohSNZ7x6ZLVzXj9Ybz+MDGtk/+/ZHXzuLS1vr6e9773vdx1113J28466yzuvfdeAH7605/ytre9Les1vvGNb/Daa6/x2muvAfDWW29xxhlncOutt9LY2Mjhw8P/Pr/tbW/j5z//OQC/+93vOHHixLh8LUKUgmIO7o4AR7TWf4p//gvMYE+I0iaFVYQQQkwTK1o83HDuQjwuO23eAB6XnRvOXTjmapmpPvOZzwwraPKv//qv/PjHP2bt2rXcc889fO973yvoep/73OdYs2YNq1ev5txzz2XdunXD7v/KV77C7373OzZs2MBvf/tbWlpaqK6uHpevRYhiK9pRCFrrdqXUYaXUMq31buACYGex2iNE3lZcbvbYgVmxC/SZQisbPljUZgkhhBATYUWLZ1wHcwA+ny/5/+bmZgYHB5OfL1iwgD/84Q8nPecnP/lJxmukeuCBB066bcuWLWzZsgUAj8fDY489hs1m44UXXuDJJ58clu4pxFRW7HPubgJ+qpSqAPYBf13k9giRW6KwSutDJhXTM9cM7GauLnbLhBBCCJHDoUOHeO9730ssFqOiooIf/vCHxW6SEOOmqIM7rfVrgJwoKaaematlMCeEEEJMQaeccgqvvvpqsZshxIQo9sqdEEIIIYQQoly17xie7bTicpkgn0DFPsRcCCGEEEIIUY7ad5g6Bf5eqJltPsrZwBNKBndCCCGEEEKI8df6kDkL2FULyiJnA08CGdwJIYQQQgghxp+cDTzpZHAnhBBCCCEm1Te+8Q1WrVrF2rVrWb9+PX/605/46Ec/ys6dcipWWZGzgSedFFQRQgghhBCZjXNBjBdeeIGHH36YV155BYfDQXd3N6FQiB/96Efj2GhREuRs4EknK3dCCCGEECK9CSiI0dbWRmNjY/Lg8MbGRmbNmsWWLVt46aWXALjrrrtYunQpW7Zs4WMf+xif/OQnx+GLEZMucTawqxb6jpqPZ90k1TInkKzcCSGEEEKI9FILYsDQx9aHRt1Bv/jii7n11ltZunQpF154Iddccw3nnXde8v5jx47xta99jVdeeYXq6mrOP/981q1bN6YvQxSRnA08qWTlTgghhBBCpDcBBTHcbjcvv/wyd955J01NTVxzzTX85Cc/Sd7/5z//mfPOO4/6+nrsdjtXX331qF9LiOlGVu6EEEIIIUR6nrkmFTOxYgfjUhDDarWyZcsWtmzZwpo1a7j77ruT92mtx3RtIaYzWbkTQgghhBDprbjcFMDw94KOmY+BXnP7KO3evZs333wz+flrr73G/Pnzk5+ffvrpPP3005w4cYJIJMIvf/nLUb+WENONrNwJIYQQQoj0EgUxUqtlbvjgmPZQ+Xw+brrpJnp7e7HZbCxZsoQ777yT97znPQDMnj2bL33pS5xxxhnMmjWLlStX4vF4xusrEqKsyeBOCCGEEEJkNs4FMU477TSef/75k25/6qmnkv//q7/6K2644QYikQhXXXUVF1988bi9vhDlTNIyhRBCCCFESbnllltYv349q1evZuHChVx55ZXFbpIQU4Ks3AkhhBBCiJJy2223FbsJQkxJsnInhBBCCDHNSEXK7OT7I6YqGdwJIYQQQkwjTqeTnp4eGcBkoLWmp6cHp9NZ7KYIUTBJyxRCCCGEmEbmzJnDkSNH6OrqKnZTSpbT6WTOnDnFboYQBZPBnRBCCCHENGK321m4cGGxmyGEmACSlimEEEIIIYQQZUAGd0IIIYQQQghRBmRwJ4QQQgghhBBlQAZ3QgghhBBCCFEGij64U0pZlVKvKqUeLnZbhBBCCCGEEGKqKvrgDvg7oLXYjRBCCCGEEEKIqayogzul1BzgMuBHxWyHEEIIIYQQQkx1xV65+y7weSCW6QFKqRuUUi8ppV6SwzaFEKVCYpMQolRJfBJi+ira4E4p9RdAp9b65WyP01rfqbXeqLXe2NTUNEmtE0KI7CQ2CSFKlcQnIaavYq7cnQ1coZQ6ANwLnK+U+p8itkcIIYQQQgghpqyiDe601l/UWs/RWi8ArgX+oLX+QLHaI4QQQgghhBBTWbH33AkhhBBCCCGEGAe2YjcAQGv9FPBUkZshhBBCCCGEEFOWrNwJIYQQQgghRBmQwZ0QQgghhBBClAEZ3AkhhBBCCCFEGZDBnRBCCCGEEEKUARncCSGEEEIIIUQZkMGdEEIIIYQQQpQBGdwJIYQQQgghRBmQwZ0QQgghhBBClIGSOMRcCCGEEEIIMU2074DWh8B7GDxzYcXlMHN1sVtVFmTlTgghhBBCCDE52nfA898Hfy/UzDYfn/++uV2MmazcCTHVyGyXEEIIIaaq1ofAWQuuWvN54mPrQ9KfGQeycifEVCKzXUIIIYSYyryHwVkz/DZnjbldjJms3AkxGsVaPZPZLiGEEEJMZZ65ZnI60YcBCPSZ28WYycqdEIUq5uqZzHYJIfLRvgOe/Cb8+kbzUVb3hRClYsXlEOg1/ScdMx8DveZ2MWYyuBOiUKmrZ8piPjprze0TzTPXzG6lktkuIUQqSd8WQpSwVj2X/1ZX8Nj+ADt27aQz6oSzbpIMpHEiaZlCFMp72HSYUk3W6tmKy00nLfGagT4z27XhgxP/2kKIqUHSt4UQJaq1zcudz+zH41pA1yk38kIggncwzA16LiuK3bgyISt3QhSqmKtnM1eb2S1XLfQdNR9ltksIkUrSt4UQJerRHR14XHY8LjsWpZL/f3RHR7GbVjZk5U6IQhV79WzmahnMCSEyk2IFQogSdbTXT4vHOey2aqeNo73+IrWo/MjgTohCJVbPUqtlbvigDLiEEKWh2BNQQgiRorXNy6M7Ojja6+fQ8UFC4SgLm9zJ+/sDEWbXuorYwvIig7sylPomml3r4pLVzaxo8RS7WeVFVs+EEKVKJqCEECViaI+dnRaPk3AkyiuHegGY31hFfyCC1x/mmk1zitvQMiKDuzIz8k3k9Ye585n93HDuQhngCSHEdCETUEKIEpC6xw5gQaNZsWvrC1JhtzK71sU1m+ZIH3UcyeCuzIx8EyU+PrqjQ944QgghhBBi0qTbYzevoQq7zcptV68rUqvKm1TLLDNHe/1UO4eP2WWjqhBCCCGEmGyza130ByLDbpM9dhOraIM7pdRcpdSTSqlWpdQbSqm/K1ZbykVrm5dDxwf57evtvLCvh67+ACBvIiGEEEIIMfkuWd2M1x/G6w8T0zr5/0tWNxe7aWWrmCt3EeAzWusVwJnA3yqlVhaxPVNaYq9dS40DqwX6/GFeOdjL/i6fvImEEEIIIcSkW9Hi4YZzFxKORPl9ayd/2t+Dyy6JgxOpaN9drXWb1vqV+P/7gVZgdrHaM9Ul9totaHSzcUEdHpedcCxGe39QiqkIIYQQQoiiGQzHOH1hPReuaKbCZuXOZ/bT2uYtdrPKUkkUVFFKLQBOBf6U5r4bgBsA5s2bN7kNm0JSN6w2up00up3EtKbNG8g4sJMjE4QYPYlNQohSJfFJlJLUYn9d/QH2dg1w3BfiKw/u5KtXrJS+5zgr+rqoUsoN/BL4lNa6b+T9Wus7tdYbtdYbm5qaJr+BI7S2ebn98T189v5t3P74npKZdSh0w2oijdPrDw87MqFUvh4hSl2pxaZyUaoxVoipROKTKCWJYn9d/QFeOdRLMBylrtJGjy8ofc8JUNTBnVLKjhnY/VRr/UAx25KPUh4QFbphNXUWxaJU8v+P7uiY5JYLIYRRyjFWCCHE6CQWIPZ2DeCwWXDarYSimka3Q/qeE6CY1TIVcBfQqrX+l2K1oxClPCBKbFj1uOy0eQN4XPase+3kyAQhRKkp5RgrhBBidBILEMd9ISqsikA4SjASY8mMKul7ToBi7rk7G/gg8LpS6rX4bV/SWv9v8ZqUXbqDGEvpl3JFiyfvvOXZtS68/nDykHOQIxOEEMVV6jFWCCFE4Va0eLhwRRN/2t9DR3uAGpeNdXM8NLpNhkai7ym1IMZHMatlPqe1VlrrtVrr9fF/JTuwg/I6iFHOHRFClJpyirFCCCGM1jYvT7R2sWl+HbNqnVQ77ezrGhx2XJek5Y+fohdUmUrKaUBUaBqnKJwUhhCiMOUUY4UQQhj5HNclafnjpySOQpgqEgOi1CXjazbNmbIDokLSOEVhEjNQHpd92AyUDKCFyKzcYqwQQoj8juuStPzxI4O7AsmASOQjdQaq2xdgb+cA3b6gnOkiRA4SY4UQorzkU+dBakGMH0nLnAYkPXDyJaqRdvsCvHywl0A4Sn2lneO+kOSQCyGEEGLayCflXtLyx48M7iZJsQZYskG1OJJnunQOP9Ol3l0hOeRCCCGEmDbyqfMgtSDGj6RlToJc+68msvRranogkPz46I4OecOMs9SfY4VV0dEXpNsXpL7SnjzTZdWsGskhF0IIIcS0ki7lPl3/99MXLS1SC8uHDO4mQaYB1j0vHEQBz+7toa7SzoqW6pyFNwodCMoG1ckxcgDfH4gQ0xqX3cqJwQj17gpWzaqhqXr4mS4jryHnuwghhBClT/5mj02hhefk+50/GdxNgnQDrEA4wvNvHaeu0o7Tpmj3+tnfM8C8ukoWN1WlXVkbTQVG2aA6OdIN4Oc3VDHL46Q9voL3yqETOGxWGt0ONm2Yxe2P70kGqaXNVTzR2iXVNUXZkz/QQoipTipij10hmWXy/S6M7LmbBOkO5m1t66eu0k5/IEzPQAhQOG0WuvqD7GrvZ2eaPXGjOQMk1wZVKbYyPna2edl5zMvvdrbz4r4eun0Bqp02On1BYloDoFAAeP0hHnjl2LB9kN///VvEYjE530WUNdkDLIQoB3Im29glCs+lypRZlvr97vEF2dnWx+tHvHzlwZ3y9yMNGdxNgnQDrBODYVbOqiYQiQEKm1VhsyiiWqOUwuuPnHSdQt4ICZk2qAJ8+YHt/M09r/DU7k5sFqSjNUqtbV4O9/jpC0SodtgIhKO8fLCXQz0DeP0R5jdUsWXZDC5eNZMty2YQjmq6fcFhfxQiMXPeSypJnxXlRjpEQohyMJr+mBgusfDR7Qvw4r4efreznWf2dOGwqpMem/h+d/UHeOVQL8FwlLpKGz2+oPRb05C0zEmQ7mDec5Y0YLdZcdgsBMMxIlGNRmNVCjTUOE/+0Yw2xXLkJtbE7Pm+Lh+1LvM6rx32smFebbKjJcvcmY1MK+vuD7C02c2eTh/BSMz8TCMxdnf4mFPnOukPQCgSQ6OH3VZfZY+v4A6R9FlRbmQPsBCiHOTqj0n6eW5Lm6u47bE9dPlCVFZY8DhthMIxjnkDtLZ5h32/Et/vvV1DFcgD4SiNbof0W9OQwd0kyTTAqnHasSmFNxAmGNHMqXOyuLGKhU3uk65xyepm7nxmP2A6RP2BCF5/mGs2zSmoLYnZ81A0RrXDhlJmlmRv1wBnLKyXjlYW6fK+n93bw9lL6tkwr5a9XQP4AhFqnDZqXHZWzfKc9AegwmZhMBThhX09+AIR3E4bLrsFu9WC1x8e089WiFIme4CFEOUgW39M9ofl1trm5RcvH8XrDxOJxujzxwiEY5y9uIFmj4t7XjhIU7XzpLoEx30h6iptyQrkq2dLBfJ0JC2zSBKreatn1RCMalo8Li5d3cymBfVYrZa0hzaO1xkgieXtGqedE4MhjpwY5Givn31dPg52D0hHK4t0aWV1lXZ2HuunqdrJ5kUNXLSymZWzPKya5Umbkmu3KvoDEfr8YaoqLPT5w+zrHuSqU1vkfBdR1uSQWiFEOUj0x0KRKE+0dvDn/ceptJsutaSfZ5ao8/C3P32FVw/1Eo7GqKu043HZsFgUh074CYQjPLe3Z9je7Cdau7hwRRP17gqOD4Zx2q2cNr+WRrdTJgjTkJW7IlrR4uEb7147bPne47JzzaY5GTv16c4JKVRi9ryhyk5rWx8VVgsWpYlpxauHe3mHdLQySpdWtqKlmuffOp521S01JfeNY176AhF6BkLUOO3YLQpfKIrHZWdZs5vBkJbzXURZS5eini3eCSFEKfOHY5yxsCH5t//OZ/bjC4ZZPrNm2ONkdWl45pPXH8ZmgWBEEwxHcTlsaGJ09AWwWVR8wDdURfPEQJC7XziEx2WjbzBMc7WD+ipHcoJQHsyCzwAARg5JREFUspyGk8HdJMuUhz2ZnZtEOsHR3gAzaxx4/RH84Rjz6l0sbqpiT8cAl01aa6aWdGllTruNty1pwOOyJwdwHpctOUuX+NkeOj7InLpK/hRfvQtFdXLmKab1tA/8YnpIxLtELLzruQOyJ0UIMeVkKuV/tNdPfyAi6ecjpH6/lFJYFNitFvqCEQbDMZTS2K1WTgyGOXtJffJ53b4Au9r7icbgjIX1VNqt7O7wMRiOsmqWRyYI05DB3SSa7DzsbAPJG85dyGd+vh2LRbGgsYolM6pkkJGHTHn2iQqkiQFctdM27OebGtSqXXaC4SgOm2Jv54CkFYhpZzSxUAoUCCFKSaYCUTXxv/+Jz2UPvZH6/WqpcXKgZ4BgJIZFKSwWCEc0FVZYPasah21oeLK3cwClFPVuk+a6oNFNXZUppCLZTunJnrtRGO3ZcJOZh53PeVJup41IFDQQP4pNBhk5ZNv3mO3nm1o2eUlTFcFIDLTG6w/JviNRFgqJi4XGQjkfTwhRatKdYdwfiLBq1vjURyg3qd+vtXM9WCwKpSBx8EGFzcqMGgdaM2xvdrcvCNr0nRIkzTU7WbkrULYZZyDrzPJklgHPlC6Q6Dzd+cx+WmoceAdD9PnDvHKwl6XNbqxWy7SfXcolUxpttp9vajpnU7WTDfNqeeNYHxZlybnPUohSV+hKXKGxMFs8k/eNEKIYslXMnOztNlNB6vervsqB02ZhMBglHNOoqMaqoLs/SH8wwj9ctoI9HQMc7fXT4HYws9pBU/XQ3wxZiMhOVu4KlGnG+Z4XDuacWc40yzMRv6DZDthMfA0LGt1sXFCHx2UnHIvR3h+U2aUxyPbzHVklsMJmZVGTm39+71o+fdFS+Z6LKa3QlbhCY6EcGCyEKDXjVcF8ukj9fu1q7yMQjhGLaRRgMUc84wtG8fkjPL+3h09ftJTbrl7HV69YiTV+VJRUWc6PrNxlkW6PR6YZ5ydaezhjYUPWmeWRszwHuwfY0+FjboOL2x/fk1zpG4+9JdnOk0r9GhrdThrdTjr7/Ww73CfFDcYg1yyeVAkU5eqNY176/GF8wShup40lTVU0uB0ZB1/p3isHewaY5XHy2fu3nRSD5Hw8IUQpGdlP+8jbFsjf8zwkVjRvf3wPh3oGeTPgwxLPy4xpiGpNNBTl4dfb+MDm+cPqREj/KX+ycpdBpj0eFfEzylL1ByIoVM6Z5dRZi9a2PvZ0+lg2083ymTXJ6//n02/y6Xu38cj2Ng71DLC/yzeqvSXZzpMaOWve7Qvwp30nsFuV7GcZg1yzeCtaPMmZKFmtE+Witc3LkRN++gIR3A4rwXCUVw71Zj0zc+R7JRSJYlEKu82aNgbJ+XhCiFIhe4DH7mivH4tS2Kym5kNUm5U7gBgwEIjw7Ud3J7+n0n8qjKzcZZBpj0c4Ek1bBenUuZ68St+mzlpUVVhp7wuyp9NHjdOOy27hzme6aKp2UF9lJxiJsafTx9IZ7oL3luSa6UidNd9xtA8FrJpVk0ypSnwP5A1UGMmzF9PNozs6WNbsZneHj2AkhsNmMbGrw8cn3r444/NS3yu3P76HCps1a+ZDpd3Cn/cfR6M5dW6tpD8JIYpC9gCP3exaF2929ON22OkdDJ90fwx4q9Mn39NRksFdBpnSL9u8kbSDJiBjSl46O9u8HOoZxGm3Uu2wEQhHebOjn0AkRo3ThlIKp90KQHtfgIr4/0fKlsKZaaAxcuAXisZYMqOKvV0DvHbYi9tpY1FjJb5g5KTnCiFEqqO9fuY1VOF22tjbOUBfIEyN04an0p73H+VsBVZSi7VcsGJGMrYKIUQxJOJVV3+AvV0D+OJZCzUpk/siu0tWN7P9SC89vlDawZ3W0OYN8MYxWQ0djaIO7pRSlwDfA6zAj7TW/1TM9qTKtscj06CpkJxgrz8ybADntFuJxDQWpQlGYsnbHTYLxwfCbF58cnrTWM7NS/0avvTAdv607zhupy2ZVrV1/wnOWFSf9RpCCJGIlYn9u8BJsTPfa6SLtzJLLoQoJbNrXezv8rGn04fDZsHtsNIXiNAXiNDa5pW4lIcVLR4+f8ky7nnhID/fepiYHrpPYVI0wzFNuzdQrCZOaUXbc6eUsgL/DlwKrATep5RaWaz2jDSaPR6F5ATXOG2gIRCOorUmEI5it1qorLASjMSSt/cFItgsKu3rjte5eYk3UirN0NkjQgiRyXjsh8t2DamUKYQoJZesbmZPhw8gmYYOsKzZPSHnFperFS0e/u+717KspSbZ3xzZ7xwMSQbZaBSzoMrpwF6t9T6tdQi4F3hXEdszzESXuF01y8PSZjcOuxVfMIrDbmX1rGrqq5wsa3bjsFnoGQgBcNMFizOeFTUenZ5gVHPGojqcdivdviBdviAxHePVw17ZIFyA0R5uL8RUNh6xMts1JvMIGSGEyGVFi4e5DS5qnDb6gxGcdiunza9lXkOVTDqNwqxaJ1Y1fEBiAaoqLDgybEkS2RUzLXM2cDjl8yPAGSMfpJS6AbgBYN68eZPTsriJLI5hSoEPsrKlZtgevfdumsuejgHsNiubFzdmPZJgvMqDJ66zZEYVXn+YaqfdJDwrlXea53Q3lhRZMTUVMzaVmvGIlZmuke2IESFEehKfJtbKFs9J/S+vPyyTTqOwssXD7rZ+OvqDgMZmUdgsFpRFcerc2mI3b0oq5uAuXdbfyOxAtNZ3AncCbNy48aT7p6ps1Swvy/Ma49XpSVxnX5ePCqv5sQSjmg3zPFTYrLK3JQ//88JB9nX5CEVj1DjtLJlRlUyRle9deSrX2FRq5IwjIQon8WliZet/jcdZxdNB4vu0s82L1aKocVhRFkUgHCMQiVFVYUHFHyffv8IUc3B3BJib8vkc4FiR2jLu8nlzFzLbnel6hXR6Ml0jcZ2///k20FDtsrFqVg1N1U5iWkuaQQ6tbV6e3dtDrcuWrHz68sFeTp3n4Wiv5IsLMVpyULAQohRl6n8BksWTh9Rsp+Uza6i0W9l+xEsoEiUAzKt3sXFBHXabVb5/o1DQ4E4pZQdWA0e11p1jfO2twClKqYXAUeBa4K/GeM2SMN4permul88187nGxStnjkua53Tz6I4O6irN9yy1AurOY/1sWTajmE0TYzTOMU8UQFKdhchO4lNxpet/3f74Hqnum4eRVZAXNLqpq3Kws62PlS01J1Vblu9fYbIWVFFK3aGUWhX/vwfYBvw38KpS6n1jeWGtdQT4JPAY0Ar8XGv9xliuWSrGq4rleF4vn2uMR9W76ehor58VLdXDqpyiNScGM3/vpPhKaZrImCcKM95xVIipTuJT6Tva6ycQjvDCvh4e39nBC/t6CIQjkgE1QqaCgB19AamOPA5yrdydo7X+ePz/fw3s0VpfqZSaCfwW+NlYXlxr/b/A/47lGsWWLtUx24G8ozEe18v3GpV2C3/efxyN5tS5tTJLnodEQZoN82qTB5rarYq3LWlI+72TFYmSNqExbzordB/KeMdRIcqAxKcSkSmeVViVnBucQer37NDxQcKRKAsa3cn7Xz/SS48vyE/+eIAal411czyc0lwjGWSjkGtwF0r5/0XA/QBa63al5BS0TJ10l91CfyAybumN41EVM9c1Ur+WC1bMSG4OFrklNlZ7XHbOWFif/N59cPP8tI+XQ5lLmsS8CTCaCY3xqgYsRBmR+FQCssUzOTc4vcT3LBaL0eYNcKzXz44jvTRV91JZYaPXH6LTG8RuA1D0+TXPvdnNYDBCndsp1ZELlOucu16l1F8opU4FzgYeBVBK2YBp/xc2U9qQgnFNb5zoQ4KzfS2SApVboed8yaHMJU1i3gQYTXyRNHEhTiLxqQRki2ep5wYnzsA7Y1Edwej0Llj66I4OYrEYuzt8BCMx01dW0N4XwOsP0dkXBAVuh53KChuRmCamYU/XgGQ1jUKulbu/Af4VaAE+pbVuj99+AfDIRDZsKsiUNtTmjeRVxTLfNKXxKAWe6xqSAjU2hVQ+lRWJkiYxbwLkE1/SxUM5AkGIYSQ+lYBs8Szx9/3MRQ3J+7z+MDOq7SMvM60c7fXT5g3gsFlw2q0c8QWpctgIR82ZylaLwmZRBCMxalx27FYLkWiUgWCEu547IEdKFCjr4E5rvQe4JM3tj2EKoUxr2TrpuTr7haYpjbxeoiBHIeeopF4j0ZFKvGkqrGpcU0lFZnIoc+mSmDcxUmNlV3+AvV0DHPeFqHdXJIsJZYqHn75oaZFbL0RpkPhUGrL1/eTve3qza128eugEDVUVAAQjMSyAy25lIBihwmYhEo2BNgms0ViMvkCUuiqpTTAaudIyUUpdqpR6WinVrZTqiv//nZPRuFI3lrShsaRBJgaGXn942C99vhUX0z2/oy/IwZ4BSYGaBIWmcYrJJTFv/CVi5f4uH68c7KXPH8ZqgZYaB3c+s5//eeGgpIULkQeJT8WXre8nf9/Tu2R1M3arhb5ABK01VqUIRTVuh40qh42GqgqiMY3WmlhM0x+MApqN8+vkb8IoZF25U0p9DJMG8HngpfjNG4F/UkrN0VrfOcHtK2ljSZccSxrkWAtypH1+fSXhSBSPyy4pUJOgkDROMXkk5k2MRKz8yoM7CcdiNLodLJlRRaPbTC79ef9xLlgx/ExISQsXYjiJT6UhV99P/r6fbEWLh5vOX8z3f/8WxwfCNLor8PojRGKadbNr2N0xQH18gOcLRgE4fWEdpzTXJK8hfxPyl2vP3aeBt2mtj6fc9gel1KXAc8C0DySjfROPZd/VWPfHZdsr+OmLlp6Usil5zmIakZg3QVa0eJhXX8kZC+uxpFT2q3ba0GhJCxciN4lPJUIGcIW7bO1sFjW5k4PiCqtCAcGoZvMiBxoIRTWza1109wew26zJNP7EEVOrZtXkehlB7sGdGhFEANBa90jZ3bEZS172WAtyZHu+nMEmpjmJeRMoU+w5dW5t8ugV2aciREYSn8SUlu+guLXNy7cf3c2hnkHcDis2i/lb0dEXpLXNK/3RHHLtuetTSq0beWP8tv6JadL0MJa87LGWCM/2fDkSQUxzEvMmUKbY88HN82WfihC5SXwS00ZXf5DjgyGOegNoDZsX1zO3vlL6o3nItXL3GeBBpdSPgZcxZzFuAq4DPjDBbZuyCjniYDSdl7EejZD6/J1tXrz+CDVOW/Lz5TOHL3tLnnN2+f68xZQgMW+cZHpf5NqrIoTISOKTKHuJDLJAOMaSpiq8/gjHvAEGQhEa3Q48ldP7WIl85DoK4Tml1BnAjcD1gALeAM5MOV9FpJistMax5nsnnnvo+CCzaysJhCM8tbuT/d0DHOoeZOPCOhrdZl+e7H3JTNJYy4vEvPGR630h7w0hCifxSUwHiQyyencFvQMhegZCAATCMfoCEfr8EUnNzCHXyh3xgPGPk9CWKa+1zctXHtxJjy+YrAanNezr8vGZn2/nopXNOVd10s12AxOyMpR4A4UiUV477MVhs9BcXUGHL8hTu7uoc9nxR2LYrRZuOn/xmF+vHI21cqkoPRLzxm4074tcK+CyQi6ExCdR/hJF/5Y0VfFYpw8F2K0KfzhKjcvO0ma39LFyyHUUwuuYZf+T7gK01nrthLRqCkrMVB/3haivtBMIR/njm90opahx2ojpWM5VnXSz3bc9toeY1sxvqBq3laFEJ+nXrx2ludqBPxzFYbPgtFtx2Cz4ghEGglEGQ1FOmeFmZo2TJ1q7WNTkljfTCGOtXCpKi8S88VHo+yLXSp+skAsh8UlMD4nCW03VTmqcNoKRGP5wlMoKKxvm1dLgdkgfK4dcK3d/MSmtKAOpy8jBcBSn3Up7OAZoalx2PK6KnLPX6Wa7X/UFAVg7pzZ5W7Zr5JLaSWqudtAXiNDm9TO3zgVYCUZiWCwW5tdXEIppNi9uBMDrD8tMSRpjrVwqSo7EvHFQ6Psi10qfrJALAUh8KimSTTA+Rn4flzZX8URrFwBN8X5qjcvOafNrk2ejSh8ru6zVMrXWB0f+AwaAQ/H/i7ijvX6qnTaWNFURjMQIhKNEY5pgJEYwEmPJjCog++x14hqpgpEooUhs2G35rgy1tnm5/fE9fPb+bdz++J7kGyjRSVoyww2AzWKhsz9IIBwlGInhsFnQQI1zqGMmq1HpjbVyqSgtEvPGR6Hvi3SxLzXm5LpfiOlA4lPpSEyUe/3hYdkErW3eYjdtSkn3fXyitYsLVzThcdmpiU/kLWt2U1/lkD5WnrIO7pRSZyqlnlJKPaCUOlUptQPYAXQopS6ZnCZODbNrXfQHIjRVO9kwrxaH3Uo0pqmwWThtfi1awwv7evjt6+0cOj6YNgAkrpHKYbNSYRv+Y8pnZWjkG2Z/l49P37uNn790mJ3HvHT1B5JtnVnjYCAYBeDUeR6qnXZ8wWhyQJrva05HYznSQpQeiXnjo9D3RbrYlxpzct0vxHQg8al0yLFR4yPT93FPxwCfvmgpP7puE7dfs44FjW7pYxUgV1rmvwFfAjzAH4BLtdYvKqWWAz8DHp3g9k0ZqYeSN7gdVNisVFVYsShFvz/Cng4fKLBaoKXGkXa/SLqDzRvdjuTMdyGH+6a+Ybr6A+zpNK8Pmr5AhFcO9bJhXi1N1U42LWxg3Vzz/6O9flbNqqGjL4jdaiWmtRwonEOu6n+SujGlSMwbJ4VUxUwX+1JjTq77hZgmJD5Nomx/u2W//fjI5/soFZYLl+sQc5vW+nda6/uBdq31iwBa610T37SpJd1M9ecvWca7N8zipUMnONo7SF8gzOKmKhY0utPO8KS7xmffsZTPX7Ks4JWh1DSmvV0DOGwWapw2XHZr8jF7O33DDhH+9EVLue3qdfzfd6/ls+9YKqtR40BSN6YciXlFkGulT1bIhQAkPk2aXH+7JZtgfOTzfUy3xUhkl2vlLnWz18jpiHQVm6aVdLM6n75o6bD7n2jtotJuY7bHSSiq2dc9CEC3L0RHvymWkjoblGmGotBOzOxaF/u7fLT3B9nd3k9VhZUqh5WmaidLZlTxZoePjv4gm132tAegy0zJ+JBCEFOOxLwSJTFJCIlPkyXX327JJhgfub6PUil5dHKt3K1TSvUppfqBtfH/Jz5fMwntK1n5rMikVtAMRTVOu5VYTPOn/SfoC0RornZM2ErO0uYqXj3cS58/TKXdwmAoSkdfkIYqO41uJytnebhy/Ww+fdFSeYNMICkEMeVIzCsCWeEWIi8SnyZJrr/dkk0wPnJ9H2Vv4+hkXbnTWluz3T+d5bMik3oQ4yuHegHoD4QJR83k25IZ7glbydnTMcCGebW09wVNxc2ops5lp9sXYkZNWGaYJokclTC1SMwrDlnhFiI3iU+TJ5+/3ZJNMD6yfR9lb+Po5ErLFBnk8wuXehDjhnm17O0awBeMUu20JYuZpHteoR7ZfpS7XzhER1+A5hon122ex9FeP/MazP4+gG5fIGcqphh/krohRG7yB1wIUUrkb3dpkAny0cmVlikyyGcTaOpZTw1uBytbaphd62LTgrrkwC7d8wrxyPaj/NNvd9PnDzPDXUGfP8w//XY3g8HwsPalS8WUTaoTT1I3hMhNihMIIUqJ/O0uDXKW8OgUZeVOKfUd4HIgBLwF/LXWurcYbRmtfGZ1EsEhtejKTRcs5onWroKPNsjk7hcOUeWwpaQzmfH6weN+HHZbxval26T67Ud3M8vjJBjVUrJ/HEnqhhDZySy5EKLUyN/u4kvXj5bMs9yKlZb5OPBFrXVEKfUt4IvA/1ektoxKvr9w6YLDoiZ3wb+omc5b6egLMMNdMeyx1Q4rnb5Q1vaN3OMSikQ51DPI8YEQ5y5tkopEQohJI3/AhRBCpCOD7MIVZXCntf5dyqcvAu8pRjuyyefg6dH+wo18XiI9MtNrZSsF21zjpM8fTq7YAfQHozTXOAvapLq3awC3w0ooGktWJAIpaCCEmByp8SoRf+967sCwmJhPXBZCCCGms1LYc/dh4LeZ7lRK3aCUekkp9VJXV9ekNGgyy3IXcqRCulKw122ex0DQpDDFYjG8/jADwQjXbZ6X9XVH7nHxBSJooMY5tGlVChoIkVkxYtN0kCkmPrL9qByXIESeJD4JMX1N2OBOKfWEUmpHmn/vSnnMl4EI8NNM19Fa36m13qi13tjU1DRRzR1mMs/VSPda0WiMrzy4M1noZGebN+N5K5etnc0XLl1GjctOpy9EjcvOFy5dxmVrZ2d93ZGbVO1WhS8YZcmMquRjpKCBEJkVIzZNB5ni790vHJLzjoTIk8QnIaavCUvL1FpfmO1+pdR1wF8AF2it9US1YzQmsyz3yNfq6g+wp8NHOBbjjIX1eP1hDvf4qbRbk8cawPCB12VrZ+cczI00co/Lqlk1dPQFsVutxLSWggZCiKLIFH87+gKcsbD+pNslu0AIIYQYUqxqmZdgCqicp7UeLEYbspnMczVGvtbergFQ0Oh2JGenlza72d3ho67KMa6V5NLt/ZOCBkKIYsoUf5trnPQHInLekRCiZMm+YFEKirXn7t+AauBxpdRrSqk7itSOtCbzXI2Rr3XcF0JrPSw9cn5jFXPqXBN+3sqKFg+fvmgpt139/7d359FR1/f+x58fAgTZIhhWg4iCAiELCBFQBAWsywGllQKnVlDQX1Gxra0ca6/K1etFxV6q1bqVAuXaqrR1r3UrIOpVIhaQRRZrKpgge0ggC4H3749vZjIJk2QSZg2vxzk5M/Od73znPZPkfb7v72fL8q+FJyISTbXl36nDztB6RyISt6I5X4NIXWI1W2bvWLxvqKI5LXfN9+rYtiXd2ieT2rb6Iufp3b3CK2Q718Om16BwO6T0gH7joOuAsMcvIhJOdeXfxiwjIyISDTWXmNKs4xIrsVrnLu5Fc12NmlOA+678NKoL5s71kLsA/rUMTukIXTOg5AB89BsYPksFXiSpoBYJi9ryr9Y7EpF4Fc35GkTqEg9LITQdO9fDsrnw8s3e7c71DT6E76p1o7pg7lzvFXEFa+GUDt62HblwtBxaneoVHhIZvu++5AC0P72qoG7E34CIiIgklppLTIHGBUtsqOUuXHwn961OrX5y34jWskZfnd70mvf+R8shuR04523fsxl6XuC1KElk+L77U071HvtuN72m1jsREZEm7rIBXXjm/a8Awjr5nUhDqbhriLq63QWe3Bfv8gqqQ3vgzdlw+cPROcEv3O4Vlq3aw5FSaNEKmidD6UHvJ6VH9c+Su8Br2QNIGwJDpqsQaSzfdx+oVXsV1CK1UTdmEWlCojlfg0hdVNyFqr6WOd/JffEu+GoFlB+GYxVegffefTD6nvCeuAQ7MUrp4cWVei7sWOXtZwZJLaH0AAz6YdVr37sP9v3La+EzIG8lHMyH0XfrBKsxfN+9r8UOji+oRZqixhRpYezpICISVXXkPI0LlnigMXehCmyZc82828BxbCk9vJP5b1ZDyX5wgEuC5i29Iip3QfhiqW18V6d+XhGX1BJOH+ztW7ofumVVP2na9JpXdCa3hxanQMtTvPuHdmtcXmP1G+d99yUHwI55t6UHvO0iTVVjx5rWl09FROKRxtdLAlBxF6rC7V43u0CB3e58J/eFO7ziygA7Cm27eK1jvu6P4VDbidHuTV4Rd8qpcOwI9BkLk/4Xxs2vfjW8cDscLfO6bPo0T4aKMnUjbKyuA6q++4PfeLdqhZCmrrFFWn35VEQkHunClCQAdcsMVX3d7nwn91/+AyrKIbkNtOsCLdvAob1Qss+bRTOpsqA6WtawcSaB3QAK1sHp51V/3ndi1HVA/cdL6QG7vvCKuRaV0/ZWVBZ76kbYeKF89yJNSWPHmqb0gB2rYc8XUFYMyW0htS+kVeY1jccTkXik8fWSANRyF6r6ut35TkZ8V6NbtoUWreHwPq8lp3UqNGvhjW3LW+ndD7U5v2Y3gKSW8O8PvfF9Pg0Z39VvHLRJhbKDcKQEyku8+206qRuhiITO1x09UCi5qEUb+PojKDvk5cmyQ97jFm2qxgRvfcdb1mXrO95jdXsSkVhrbM4TiSIVd6Gqq9tdYPHV80KvG2bxt1D0rVcAntIRzhgKe7d6Y9uS23v3Q23Or9kNoFuWt71gbePGd3Ud4E3wcuYIOHrE68J55ghNpiIiDdPYsaZb/w7tuno9HI4dqezp0NXbnrvAG6cMXq6E8I9bFhFpDI2vlwSgbpkNUVu3u5prnHXPhu2rvK6YSS3g9Cxo29kbd5fcztvHd+UnlOb8neu8BFJW5O2feq63bt03q71CM6WHNxNmQwqzrgO8sXgiIo3lu+gV2IUylFxUVABtukCzgOuLx45520sPennS12W8RSvAwjtuWUSkMRqb80SiSMVdOAT2wS7eBfu+hPbdvLF3zZO9iU7apFatPwdV3Tfra87fuR72/xtwVa/f/gl07g99r4SLfxHRjyYiUqfGjDVt1w1KCuGUgCnDy4q87aUHvQmpAtV8LCISKxpfL3FO3TLDIbAP9p7NlZOmOO/EJbAL5Wl9vLFtZQe9+6E05296zVviwOFNenKswisgt77j3WociogkmiE3QXmxV+AdO+bdlhd729OGQHmRdyHLzLstL/K2i4iISJ3UchcO/cZ5Y+4ASguhWUtvNsxuld0xfV0ofWPbwHv+lK71N+f7umQeKfXWoSs/7M3A2aq9N7GKb+Ff0OxyIpIYBlzt3eY+43XFbNcNLrrD257aGw7me/mu9KDX+6Hj2TBkeiwjFhERSQgq7upT25TcNbefc7nX/RIHzkGP873CDqB5q8Z1oQzsktm2M+w75I3hO6UDtO5YNcYvdwEcOeyN+wtcVDNwwhcVfiISTwZcXVXkBeo6ALKmeIVf6X6vB0TWFOUsERGREKhbZl1qLkHgK5rWv3z89i1vekXThKcgtU/lQuYnOJNSsC6Zrhkc3uNNqgJeC96O3NoX1aztM6g7p4jEo53rvXzaJQMGXOPdbnlTOUtERCQEKu7qUnMJAl/RlPtM7cVUXUsmNFThdjjtLEjL8WaMcw6aNYfklKpWwcBZNwP5ZuGs7TPUt/yCiEgsKGeJiIg0mrpl1sU3C2bxLm+iFN8U3Qe+9sbRBQpc0iBcMyml9PBa2tp29n5Sz/UWQE9u77UKlh70WgXThnj3fd00oWoWzsCZPIPFKiIST5SzREREGk3FXV1SesDeL2HXRm/cXHI7r2iqKINv/gkVh73HrdpDu+5w2tnhff/AiVp8E6h0PMs78Qlc3w6q7+cr+gb90LvaXXIgeOEnIhJvfBe1astZGkMsIiJSKxV3dek3Dl76f4DzZmyrKPPGv3U8G3as8k4sktt503gXfgNdM2HZ3NBOOkI5QQm6WOY9wY9Z16KatRV+IiLR0JCCrOZFrcCc5RtDXNvkUSIiIic5FXd16ToAUs6AsgNQWuSdaHTLgt1fVI4JSansDpkCbbvC5y9Azwurn3T4ZtEMPKmB+k9Qap4MDb257pOX2rqCBi0Q61l+QUQkXOoryIIVfrXlrGVzq8bjQdWtb7yziEg0qSeBxCEVd/Xplnl8F6F/fwinnl61Zh1A3vtw9Ej1k45De2DlvOMLvhat6z5BCffV6XCNARQRaajACVKger6D2nNdsKVjNB5PROKFehJInNJsmfXpN87rElRyoGppg6QW0LZ79f0O7YXWp1XfVpxfVfAFzvq2I7f22S1Bs8WJSNNRuD18s/mm9KiaIdhHY4hFJBZ0riZxKqYtd865nwPzgE5mtieWsdQqWLfGEXd46y6VHKgaE9Ks+fFXlIMVfL6TnNpmt4Tgs3S2agfJpyIiklDqmiClvpa4ml2eOvXzcq9vP40hFpFYUU+CE6durRERs5Y751wPYCzwdaxiCFnXAV4Xoat/690OuPr4tewumg3Nkqq38AUr+EoPVi5dcKD6voELnaf0gL3/8iZtOVJaOWnLQSj8Wgv5ikhiCdb7wZfv6mqJ83V5KjlQ1eVpy5veOOZwrCMqInIi1JPgxATL8R/9Rue5YRDLlrv5wGzglRjG0HjBxrGl9q5+BeKi2ce38JUe8E5GIPiEATvXey12X74LzVpAu26VBzfo1P/4iQN01UNE4ll9kzrVNjNm7gLYsxWOlnvPpZ7rdXnavSn4eDwRkWiqa2ZfqV9d47F1HntCYlLcOefGA9+Y2VrnXH373gTcBHDGGWdEIboTEErBF3hSU3PfwMG5rU+D8kPegukdekKP86FNavXmfg3mFYmZhMpNsdbQ2XwB/rUMWnXwei4cKYXtn3i9HtTlSaReyk9RoNnIT4y6tUZMxIo759y7QNcgT/0SuAu4NJTjmNkzwDMAgwcPtrAFGC0Nmaky8CpGcjsoP1zZ1XOf93zN5n5d9RCJmYTPTfEiWI5cNhdO6ejddw5atPLu7/wc+oyNbnwiCUj5KUo0G3nj1TUeW05IxIo7MxsTbLtzLgPoBfha7dKAz5xzOWa2M1LxJITAiVTKiuBomdc1s/wQbHvXm6Uz9VzvxKffuOBXPSpK4Ys31E1TRBJX4XbomgHffOo9bp4MGJTsrxqbLCIiiUvdWiMm6t0yzexzoLPvsXMuDxgct7NlQvjHtdV2PN9VjD2bvRa55HZQ/C0cA8qLoU0Xb7/A9fICZ90s3uWtwZfcXt00RSRx+XJhWk7VjMFJLeGsi2tf+Fw5TkQkcahba8Ronbv6hHs2n7qO55tV7tAe70TGJXlj71J6wKlnQlLz6mupQPVZ6ArWetu6ZWnNFRFJXL5cmNQSel7g/aT2gSHTNcOaiEhTUXM2ehV2YRHz4s7MzozrVrtwLVK5c73XnfKlH1XNAFfzeL6rGG1SvXF2LVp5V67tGDiqLwTcqr3XbTNwSYaj5d5JUNvO1ffT4FQRiXe+HPnyzV4+rG3JAy0cLCIiUquYLmKeEMIxm0/grJZmgHlr2KXleIVY4PG6DoDLH67av1V77+p12UHoll11TN+g08DBvMvmelexA2lwqojEu2Az/255M3iXcs2wJiIiUquYt9zFvXAsUhl4pfmUFMBBUrI3liTY8XwteL6r1t2yoONZXpEXbNFzn7oWCxYRiVcNaY3TwsEiIiK1UnFXn3AUTIXbq7pUpp7rzWhpBqWFwY9Xc7KAIdNh9D3BuygFqlkU1rafiEg8CcyRPrW1xukiloiISK3ULbM+4ZjNJ3Atj7advQXJC9YCztsWeLy6Fia/+BehxatiTkQSSUPWO9IMayIiIrVScReKEy2Yaq7lkdTSm/ktWKta7oKqCVdatfda+gInXBERaWpqW+/ojGHeWOKaSx7oIpaIiEhQ6pYZDaF2l9y5Hv61zOuymdwOjpTC9k+8bpzRmiwgcMa6ZXM1vbiIRF6wHHnO5d6kKlryQEREJGRquYuWwCvNvjF1H/+2+tXoTa/BKR29fZzzlkIA2Pk59Bkb+Rjr6hKqq+QiEkk1W+OWzfVy0dFy+PeHVQuZ5y6AcfNjFqaIiEg8U8tdtNW1AG/hduia4a1fd6S0atmEkn1eARjpVjWtHyUi8aJwu9drYfsnXj5MbuflxH8tU+udiIhILVTcRVtdBVRKD2heuXB5i1ZQVgQ4OOti77W1FYXh0pAZ60REIimlh9droXkrLx865/2c0lEXnERERGqh4i7a6iqgfFN8J7WEnhd4P6l9vKUQotGqpvWjRCRe9Bvn9VrAvBa7I6Ver4auGbrgJCIiUgsVd9FWVwFV18Qr0WhV0/pRIhIvug6o7LXgvF4MLSp7NTRvpQtOIiIitdCEKtFW25Tfg37obattiu+GrAPVWFo/SkTiyZDpVZM8BcuXIiIiUo2Ku2hrbAFVX1EYzvhUzIlIPNAFJxERkQZRcRcLjSmgdJIjIicjXXASEREJmYq7RKKTHBERERERqYUmVBEREREREWkC1HIXDTvXV+9O2W+cWuBERERERCSs1HIXaTvXR37xcREREREROempuIu0aCw+LiIiIiIiJz0Vd5EWjcXHRURERETkpKfiLtJSenhr0gUK9+LjIiIiIiJy0lNxF2n9xnmLjZccADvm3ZYe8LaLiIiIiIiEiYq7SPMtPn7KqXDwG+92+CzNlikiIiIiImEVs6UQnHOzgFuBCuANM5sdq1giTouPi4iIiIhIhMWkuHPOXQxcBWSaWZlzrnMs4hAREREREWkqYtUtcybwoJmVAZjZrhjFISIiIiIi0iTEqrg7BxjhnPvEObfCOTekth2dczc55z51zn26e/fuKIYoIlI75SYRiVfKTyInr4gVd865d51z64P8XIXXHbQDMBS4A3jROeeCHcfMnjGzwWY2uFOnTpEKV0SkQZSbRCReKT+JnLwiNubOzMbU9pxzbibwVzMzYJVz7hiQCujykoiIiIiISCPEqlvmy8AlAM65c4CWwJ4YxSIiIiIiIpLwYrUUwu+B3zvn1gPlwNTKVjwRERERERFphJgUd2ZWDlwbi/cWERERERFpimLVLVNERERERETCSMWdiIiIiIhIE6DiTkREREREpAlQcSciIiIiItIEqLgTERERERFpAlTciYiIiIiINAEq7kRERERERJoAFXciIiIiIiJNgIo7iaoHHniA9PR0MjMzyc7O5pNPPgFgxowZbNy4sVHHzM/P55prrvE/njJlCpmZmcyfP5977rmHd999Nyyx+/z617/m8OHDJ3SMl19+udrnPZE4zYzbbruN3r17k5mZyWeffRZ0v+nTp5OVlUVmZibXXHMNxcXFABQWFjJu3DiysrJIT09n4cKFjYpDJJEpN3likZt8Zs2aRdu2bf2P9+/fz4QJE8jMzCQnJ4f169c3Kg6RRKbc5IlFbnr88cfp3bs3zjn27Nnj3/7cc8+RmZlJZmYmw4cPZ+3atY2KI2LMLGF+zjvvPJPE9dFHH9nQoUOttLTUzMx2795t33zzTVjfo6CgwM4444ywHrOmnj172u7du+vdr6Kiotbnpk6dakuXLg1LPG+88YZddtllduzYMfu///s/y8nJCbpfYWGh//5Pf/pTmzt3rpmZPfDAAzZ79mwzM9u1a5d16NDBysrKwhJbKIBPLQ7yy4n8KDclNuWmKrHITWZmubm5du2111qbNm38237+85/bnDlzzMxs06ZNdskll4QlroZQfpJYUm6qEovc9Nlnn9lXX311XPwffvih7du3z8zM/va3v9WZ2yKlrtykljuJmoKCAlJTU0lOTgYgNTWV7t27AzBq1Cg+/fRTABYsWMA555zDqFGjuPHGG7n11lsBmDZtGrfddhvDhw/nrLPO4s9//jMAeXl5DBgwAIBLL72UXbt2kZ2dzcqVK5k2bZp/v9zcXIYPH05WVhY5OTkUFRWRl5fHiBEjGDRoEIMGDeKjjz4CYPny5YwaNYprrrmGvn378oMf/AAz47HHHiM/P5+LL76Yiy+++LjPeOaZZ3Lfffdx4YUXsnTpUp599lmGDBlCVlYW3/ve9zh8+DAfffQRr776KnfccQfZ2dl8+eWX1eJ87733GDhwIBkZGdxwww2UlZXV+b2+8sorXHfddTjnGDp0KAcOHKCgoOC4/dq3bw94F3RKSkpwzgHgnKOoqAgzo7i4mI4dO9K8efNQf60iCU+5Kba56ejRo9xxxx08/PDD1bZv3LiR0aNHA9C3b1/y8vL49ttv6/t1ijQZyk2xzU0DBw7kzDPPPG778OHD6dChAwBDhw5lx44ddb5f1NVW9cXjj64+JbaioiLLysqyPn362MyZM2358uX+50aOHGm5ubn2zTffWM+ePW3v3r1WXl5uF154od1yyy1m5l21ueaaa+zo0aO2YcMGO/vss83M7KuvvrL09PTj7vtes3TpUisrK7NevXrZqlWrzMxrxTpy5IgdOnTISkpKzMxsy5Yt5vsbW7ZsmbVv3962b99uR48etaFDh9rKlSvNrO4rUD179rSHHnrI/3jPnj3++7/85S/tscceqxZXzThLSkosLS3NNm/ebGZmP/zhD23+/PlmZnb33XfbK6+8ctx7Xnnllf7YzMwuueQSy83NDRrftGnTrHPnzjZq1Cg7dOiQmZkdPHjQRo0aZV27drU2bdrY66+/HvS1kYKujEuMKTfFNjf9+te/tv/5n/8xM6vWcveLX/zCfvrTn5qZ2SeffGJJSUn26aefBv18kaL8JLGk3BT786b64p83b55Nnz691tdGSl25SS13EjVt27Zl9erVPPPMM3Tq1IlJkyaxaNGiavusWrWKkSNH0rFjR1q0aMHEiROrPX/11VfTrFkz+vfv36AruJs3b6Zbt24MGTIE8FqxmjdvzpEjR7jxxhvJyMhg4sSJ1fpz5+TkkJaWRrNmzcjOziYvLy+k95o0aZL//vr16xkxYgQZGRk899xzbNiwod44e/XqxTnnnAPA1KlTef/99wG47777GD9+/HGv8f7Hq/O1ytW0cOFC8vPz6devHy+88AIAb731FtnZ2eTn57NmzRpuvfVWDh48GNJnFWkKlJtil5vy8/NZunQps2bNOm7fO++8k/3795Odnc1vfvMbBg4cqF4FclJRbor9eVNdli1bxoIFC3jooYca/NpIUpaUqEpKSmLUqFGMGjWKjIwMFi9ezLRp0/zPB/uHC+TrmhDKvoHMLOg/7vz58+nSpQtr167l2LFjtGrVKuh7JSUlUVFREdJ7tWnTxn9/2rRpvPzyy2RlZbFo0SKWL19eb5wNlZaWxvbt2/2Pd+zY4e+2EUxSUhKTJk1i3rx5XH/99SxcuJA777wT5xy9e/emV69efPHFF+Tk5DQ4FpFEpdy0vN44GyqU3PTPf/6Tbdu20bt3bwAOHz5M79692bZtG+3bt/dP8GRm9OrVi169ejU4DpFEpty0vN44G6qh503BrFu3jhkzZvDmm29y2mmnNTiGSFLLnUTN5s2b2bp1q//xmjVr6NmzZ7V9cnJyWLFiBfv376eiooK//OUvYXnvvn37kp+fT25uLgBFRUVUVFRQWFhIt27daNasGUuWLOHo0aP1Hqtdu3YUFRWF9L5FRUV069aNI0eO8Nxzz9V7DN+4km3btgGwZMkSRo4cWed7jB8/nj/84Q+YGR9//DEpKSl069at2j5m5j+mmfHaa6/Rt29fAM444wzee+89AL799ls2b97MWWedFdLnE2kKlJtil5uuvPJKdu7cSV5eHnl5ebRu3dr/HgcOHKC8vByA3/3ud1x00UX+scMiJwPlptjlprp8/fXXfPe732XJkiX+FsN4ouJOoqa4uJipU6fSv39/MjMz2bhxI3PmzKm2z+mnn85dd93F+eefz5gxY+jfvz8pKSkn/N4tW7bkhRdeYNasWWRlZTF27FhKS0u5+eabWbx4MUOHDmXLli3Vrh7V5qabbuLyyy8POjC4pvvvv5/zzz+fsWPH+ospgMmTJzNv3jwGDhzIl19+6d/eqlUrFi5cyMSJE8nIyKBZs2b86Ec/Arxpf1999dXj3uOKK67grLPOonfv3tx444389re/rfZcfn4+ZsbUqVPJyMggIyODgoIC7rnnHgDuvvtuPvroIzIyMhg9ejQPPfQQqamp9X42kaZCuSl2uakumzZtIj09nb59+/Lmm2/y6KOP1vu5RJoS5abY5qbHHnuMtLQ0duzYQWZmJjNmzAC87p579+7l5ptvJjs7m8GDB9f7uaLJNaY5M1YGDx5svpmBpOkqLi6mbdu2VFRUMGHCBG644QYmTJgQ67AkQpxzq80svjJjAyk3nRyUm04+yk+SCJSbTj515Sa13EncmTNnDtnZ2QwYMIBevXpx9dVXxzokERHlJhGJS8pNEkgTqkjceeSRR2IdgojIcZSbRCQeKTdJILXcSVTt3LmTyZMnc/bZZ9O/f3+uuOIKtmzZEuuwqi0GGo+WL1/uXygU4KmnnuIPf/hDo483d+5cevfuzbnnnstbb70VdJ+1a9cybNgwMjIyGDdunH95hCNHjvjH7/Xr14+5c+c2Og6ReKHc1DjhzE179+7l4osvpm3btv5FmIPZt28fY8eOpU+fPowdO5b9+/f7nwslt4kkEuWmxonFedOaNWsYOnSofxzeqlWr/M+tW7eOYcOGkZ6eTkZGBqWlpY2OpT4q7iRqzIwJEyYwatQovvzySzZu3Mh///d/N2jdlXAIdWreaKsrrppJ6kc/+hHXXXddo95n48aNPP/882zYsIG///3v3HzzzUFnu5oxYwYPPvggn3/+ORMmTGDevHkALF26lLKyMj7//HNWr17N008/HfJaNiLxSLmpbtHKTa1ateL++++vtxXiwQcfZPTo0WzdupXRo0fz4IMPAqHnNpFEodxUt3g7b5o9ezb33nsva9as4b777mP27Nn+OK+99lqeeuopNmzYwPLly2nRokWjYgmFijuJmmXLltGiRQv/LEYA2dnZjBgxAjPjjjvuYMCAAWRkZPgX2F6+fDmjRo3immuuoW/fvvzgBz/wr2mSm5vL8OHDycrKIicnh6KiIkpLS7n++uvJyMhg4MCBLFu2DIBFixYxceJExo0bx6WXXkpJSQmTJ08mMzOTSZMmUVJS4o9p5syZDB48mPT0dO69917/9jPPPJN7772XQYMGkZGRwRdffAF4A5l975mZmemfhvjtt99m2LBhDBo0iIkTJ1JcXHzcdzJq1CjuuusuRo4cyaOPPsprr73G+eefz8CBAxkzZgzffvsteXl5PPXUU8yfP5/s7GxWrlzJnDlz/CdAvitFmZmZTJgwodpV7GBeeeUVJk+eTHJyMr169aJ3797Vri75bN68mYsuugiAsWPH+j+Xc45Dhw5RUVFBSUkJLVu21PTkktCUm+IjN7Vp04YLL7yw2rpZwbzyyitMnToV8BYsfvnll/3bQ8ltIolCuSk+clOoucU55+/lVFhY6F877+233yYzM5OsrCwATjvtNJKSkup8zxNiZgnzc95555kkrkcffdR+8pOfBH3uz3/+s40ZM8YqKips586d1qNHD8vPz7dly5ZZ+/btbfv27Xb06FEbOnSorVy50srKyqxXr162atUqMzMrLCy0I0eO2COPPGLTpk0zM7NNmzZZjx49rKSkxBYuXGinn3667d2718zMfvWrX9n1119vZmZr1661pKQky83NNTPz71NRUWEjR460tWvXmplZz5497bHHHjMzsyeeeMKmT59uZmazZ8+2H//4x/7Psm/fPtu9e7eNGDHCiouLzczswQcftP/8z/887nOPHDnSZs6cWe21x44dMzOzZ5991m6//XYzM7v33ntt3rx5/v0CH2dkZNjy5cvNzOzuu+/2x/Lkk0/ak08+edx73nLLLbZkyRL/4xtuuMGWLl163H7Dhg2zl19+2f99tW3b1szMysvLbdKkSZaammqtW7e2p59++rjXNgTwqcVBfjmRH+WmxKbcFB+5yWfhwoV2yy231Pp8SkpKtcennnqqmYWe2xpC+UliSbkpPnJTqLll48aN1qNHD0tLS7Pu3btbXl6emZnNnz/frr32Wrv00ktt4MCB9tBDDx332oaqKzfFZEIV51w28BTQCqgAbjYzXV47iX3wwQdMmTKFpKQkunTpwsiRI8nNzaV9+/bk5OSQlpYGeFes8vLy/AtODhkyBMDfcvTBBx8wa9YswFvYsmfPnv6+6WPHjqVjx44AvP/++9x2220AZGZmkpmZ6Y/lxRdf5JlnnqGiooKCggI2btzof/673/0uAOeddx5//etfAXj33Xd5/vnn/a/v0KEDr7/+Ohs3buSCCy4AoLy8nGHDhgX97JMmTfLf37FjB5MmTaKgoIDy8nJ69epV5/dWWFjIgQMH/At2Tp06lYkTJwJUu9IXyMsJ1Tnnjtv2+9//nttuu4377ruP8ePH07JlSwBWrVpFUlIS+fn57N+/nxEjRjBmzBgtfC5NknKTJxq56USFmttEmgLlJk88nTc9+eSTzJ8/n+9973u8+OKLTJ8+nXfffZeKigo++OADcnNzad26NaNHj+a8885j9OjRdcbaWLHqlvkw8J9mlg3cU/lYmrj09HRWr14d9Llg/zg+ycnJ/vtJSUlUVFRgZkH/seo6Ts2FNoO9/quvvuKRRx7hvffeY926dVx55ZXVBr36YvHF4XvPmscyM8aOHcuaNWtYs2YNGzduZMGCBfXGNWvWLG699VY+//xznn766YgMuE1LS2P79u3+xzt27PB3HQjUt29f3n77bVavXs2UKVM4++yzAfjjH//IZZddRosWLejcuTMXXHBBXA+qFqmPclN85KZQdenShYKCAgAKCgro3LkzEHpuE0kUyk3xkZtCzS2LFy/2F7MTJ070d91MS0tj5MiRpKam0rp1a6644go+++yzsMfpE6vizgDfIJ0UID9GcUgUXXLJJZSVlfHss8/6t+Xm5rJixQouuugiXnjhBY4ePcru3bt5//33ycnJqfVYffv2JT8/n9zcXACKioqoqKjgoosu4rnnngNgy5YtfP3115x77rnHvT5wv/Xr17Nu3ToADh48SJs2bUhJSeHbb7/lzTffrPdzXXrppTz++OP+x/v372fo0KF8+OGHbNu2DYDDhw+HNLtVYWEhp59+OuAlCZ927dpRVFR03P4pKSl06NCBlStXArBkyRL/1ajajB8/nueff56ysjK++uortm7dGvS73rVrFwDHjh3jv/7rv/xXtM444wz+8Y9/YGYcOnSIjz/+mL59+9b72UTilXJTfOSmUI0fP94fw+LFi7nqqqv820PJbSKJQrkpPnJTqLmle/furFixAoB//OMf9OnTB4DvfOc7rFu3jsOHD1NRUcGKFSvo379/vZ+tsWJV3P0EmOec2w48Avyith2dczc55z51zn26e/fuaMUnEeCc46WXXuKdd97h7LPPJj09nTlz5tC9e3cmTJjgH2x6ySWX8PDDD9O1a9daj9WyZUteeOEFZs2aRVZWFmPHjqW0tNQ/g1FGRgaTJk1i0aJF1a5g+cycOZPi4mIyMzN5+OGH/f+kWVlZDBw4kPT0dG644QZ/94C6/Md//Af79+9nwIABZGVlsWzZMjp16sSiRYuYMmUKmZmZDB061D+QuC5z5sxh4sSJjBgxgtTUVP/2cePG8dJLL/kHBgdavHgxd9xxB5mZmaxZs4Z77rkH8Kb9feqpp457j/T0dL7//e/Tv39/LrvsMp544gn/wN4ZM2b4W+H+9Kc/cc4559C3b1+6d+/O9ddfD8Att9xCcXExAwYMYMiQIVx//fXVumecLJSbmg7lpvjITeBNwHD77bezaNEi0tLS2LhxI1A9N915552888479OnTh3feeYc777wTqDu3nWyUn5oG5ab4yE2hnjc9++yz/OxnPyMrK4u77rqLZ555BvC6nd5+++0MGTKE7OxsBg0axJVXXlnvZ2ssV1dz7Akd2Ll3gWB/Zb8ERgMrzOwvzrnvAzeZ2Zj6jjl48GBT9y+RpsU5t9rMBsc6jhOh3CTSNCk/iUg8qis3RWxClbqKNefcH4AfVz5cCvwuUnGIiIiIiIicDGLVLTMf8HVwvQTYGqM4REREREREmoSYLIUA3Ag86pxrDpQCN8UoDhERERERkSYhJsWdmX0AnBeL9xYREREREWmKYtUtU0RERERERMJIxZ2IiIiIiEgTELGlECLBObcb+Hes4whBKrAn1kGEKJFiBcUbabGIt6eZdYrye4aVclPEKN7ISaRYIXbxKj9Fh/4eI0vxRk7c5aaEKu4ShXPu00RZFyeRYgXFG2mJFq80TKL9fhVv5CRSrJB48UrDJNrvV/FGViLFG4+xqlumiIiIiIhIE6DiTkREREREpAlQcRcZz8Q6gAZIpFhB8UZaosUrDZNov1/FGzmJFCskXrzSMIn2+1W8kZVI8cZdrBpzJyIiIiIi0gSo5U5ERERERKQJUHEnIiIiIiLSBKi4CxPn3ETn3Abn3DHn3OAaz/3CObfNObfZOfedWMVYG+fcHOfcN865NZU/V8Q6pmCcc5dVfofbnHN3xjqeujjn8pxzn1d+n5/GOp6anHO/d87tcs6tD9jW0Tn3jnNua+Vth1jGKOGj/BRZiZSbQPlJ4odyU2QpN4VXouQmFXfhsx74LvB+4EbnXH9gMpAOXAb81jmXFP3w6jXfzLIrf/4W62BqqvzOngAuB/oDUyq/23h2ceX3GVfrn1RahPf3GOhO4D0z6wO8V/lYmgblpwhJ0NwEyk8SH5SbIkS5KSIWkQC5ScVdmJjZJjPbHOSpq4DnzazMzL4CtgE50Y2uScgBtpnZv8ysHHge77uVRjCz94F9NTZfBSyuvL8YuDqaMUnkKD9FlHJTmCk/nTyUmyJKuSnMEiU3qbiLvNOB7QGPd1Ruize3OufWVTY5x7xJOYhE+R59DHjbObfaOXdTrIMJURczKwCovO0c43gk8hLl/yqe81OifIeBlJ8k3iXK/5VyU3gpN4VB81gHkEicc+8CXYM89Usze6W2lwXZFvX1J+qKHXgSuB8vrvuBXwE3RC+6kMTF99gAF5hZvnOuM/COc+6Lyis+IhGh/BQzcfEdNpDyk0SNclPMxMV32EDKTWGg4q4BzGxMI162A+gR8DgNyA9PRKELNXbn3LPA6xEOpzHi4nsMlZnlV97ucs69hNc9It4T1LfOuW5mVuCc6wbsinVAEjrlp5iJi++wIZSfJJqUm2ImLr7DhlBuCg91y4y8V4HJzrlk51wvoA+wKsYxVVP5x+gzAW+Ac7zJBfo453o551riDbR+NcYxBeWca+Oca+e7D1xKfH6nNb0KTK28PxWo7YqqNB3KTycuYXITKD9JwlBuOnHKTdERd7lJLXdh4pybAPwG6AS84ZxbY2bfMbMNzrkXgY1ABXCLmR2NZaxBPOycy8Zrrs8D/l9MownCzCqcc7cCbwFJwO/NbEOMw6pNF+Al5xx4/2N/NLO/xzak6pxzfwJGAanOuR3AvcCDwIvOuenA18DE2EUo4aT8FDkJlptA+UniiHJT5Cg3hV+i5CZnFu/db0VERERERKQ+6pYpIiIiIiLSBKi4ExERERERaQJU3ImIiIiIiDQBKu5ERERERESaABV3IiIiIiIiTYCKOwkb59zvnHP9G/naM51zEVvPxDk3zTn3eOX9Oc65n0fqvUQkvig3iUi8Un6ScNM6dxI2ZjYj1jGIiNSk3CQi8Ur5ScJNLXfSYM65Ns65N5xza51z651zkyq3L3fODa68X+yce6Byn4+dc10qt59d+TjXOXefc644yPGTnHPzKvdZ55wLujCoc+66yufXOueWVG7r5Jz7S+Vrc51zF0TumxCReKLcJCLxSvlJokXFnTTGZUC+mWWZ2QDg70H2aQN8bGZZwPvAjZXbHwUeNbMhQH4tx58OFFbuMwS40TnXK3AH51w68Evgksr3+HHA8edXvvZ7wO8a+yFFJOEoN4lIvFJ+kqhQcSeN8Tkwxjn3kHNuhJkVBtmnHHi98v5q4MzK+8OApZX3/1jL8S8FrnPOrQE+AU4D+tTY5xLgz2a2B8DM9lVuHwM8XvnaV4H2zrl2oX80EUlgyk0iEq+UnyQqNOZOGszMtjjnzgOuAOY65942s/tq7HbEzKzy/lEa9rfmgFlm9lY9+1iQ7c2AYWZWUm1n5xrw9iKSiJSbRCReKT9JtKjlThrMOdcdOGxm/ws8AgxqwMs/xmvyB5hcyz5vATOdcy0q3+8c51ybGvu8B3zfOXda5T4dK7e/DdwaEGt2A2ITkQSm3CQi8Ur5SaJFLXfSGBnAPOfcMeAIMLMBr/0J8L/OuZ8BbwDBuiX8Dq8rwmfOu2y0G7g6cAcz2+CcewBY4Zw7CvwTmAbcBjzhnFuH9/f9PvCjBsQnIolLuUlE4pXyk0SFq2r9FYk851xroMTMzDk3GZhiZlfFOi4RObkpN4lIvFJ+koZQy51E23l4g3YdcAC4IbbhiIgAyk0iEr+UnyRkarkTERERERFpAjShioiIiIiISBOg4k5ERERERKQJUHEnIiIiIiLSBKi4ExERERERaQJU3ImIiIiIiDQB/x+5QJNdT/2OBQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# withbiostechnicalandcelltypePICs\n", + "sig_df = pd.DataFrame()\n", + "fig, axes = plt.subplots(2, 3, figsize=(15, 10), sharex=True, sharey=True)\n", + "celltypes = ['CD4T', 'CD8T', 'monocyte', 'NK', 'B', 'DC']\n", + "for i in range(2):\n", + " for j in range(3):\n", + " celltype = celltypes[i*3+j]\n", + " coeqtl_df = pd.read_csv(\n", + " coeqtl_withbios_prefix/filter_type/f'UT_{celltype}/coeqtls_fullresults_fixed.sig.withbiosonlyRNAAlignMetrics_rmLLD.tsv.gz',\n", + " compression='gzip', index_col=0, sep='\\t')\n", + " coeqtl_df['zscore_bios'] = [get_z_score(item[0], item[1]) for item in \n", + " coeqtl_df[['t_bios', \n", + " 'num_individuals_bios']].values]\n", + " coeqtl_df['flipped_zscore_bios'] = [flip_direction(item[0], item[1], item[2]) for item in \n", + " coeqtl_df[['SNPEffectAllele', \n", + " 'assessed_allele_bios',\n", + " 'zscore_bios']].values]\n", + " # flip the direction according to AF\n", + " coeqtl_df['eqtl_effect_allele'] = [eqtl_allele_af_dict.get(eqtl)['AlleleAssessed'] for eqtl in \n", + " coeqtl_df['snp_eqtlgene']]\n", + " coeqtl_df['eqtl_alt_af'] = [eqtl_allele_af_dict.get(eqtl)['AF'] for eqtl in coeqtl_df['snp_eqtlgene']]\n", + " coeqtl_df['eqtl_alt_allele'] = [eqtl_allele_af_dict.get(eqtl)['alt_allele'] for eqtl in \n", + " coeqtl_df['snp_eqtlgene']]\n", + " coeqtl_df['eqtl_ref_allele'] = [eqtl_allele_af_dict.get(eqtl)['ref_allele'] for eqtl in \n", + " coeqtl_df['snp_eqtlgene']]\n", + " coeqtl_df[f'MetaPZ_flippedforAF'] = [flip_zscore(zscore, coeqtlallele, altaf, altallele)\n", + " for zscore, coeqtlallele, altaf, altallele in\n", + " coeqtl_df[[f'MetaPZ',\n", + " f'SNPEffectAllele',\n", + " 'eqtl_alt_af',\n", + " 'eqtl_alt_allele']].values]\n", + " coeqtl_df[f'flipped_zscore_bios_flippedforAF'] = [flip_zscore(zscore, coeqtlallele, altaf, altallele)\n", + " for zscore, coeqtlallele, altaf, altallele in\n", + " coeqtl_df[[f'flipped_zscore_bios',\n", + " f'SNPEffectAllele',\n", + " 'eqtl_alt_af',\n", + " 'eqtl_alt_allele']].values]\n", + " ## end flip\n", + " coeqtl_sig = coeqtl_df[coeqtl_df['corrected_p_bios']<=0.05]\n", + " coeqtl_sig['celltype'] = celltype\n", + " sig_df = pd.concat([coeqtl_sig, sig_df], axis=0)\n", + " significant_ratio = coeqtl_sig.shape[0] / coeqtl_df.shape[0]\n", + " coeqtl_sig_samedirection = coeqtl_sig[((coeqtl_sig['MetaPZ']>0) & (coeqtl_sig['flipped_zscore_bios']>0)) | \n", + " ((coeqtl_sig['MetaPZ']<0) & (coeqtl_sig['flipped_zscore_bios']<0))]\n", + " consistent_ratio = coeqtl_sig_samedirection.shape[0] / coeqtl_sig.shape[0]\n", + " # draw\n", + " ax = axes[i][j]\n", + " ax.scatter(coeqtl_df['MetaPZ'][coeqtl_df['corrected_p_bios']>0.05], \n", + " coeqtl_df['flipped_zscore_bios'][coeqtl_df['corrected_p_bios']>0.05], alpha=0.5,\n", + " label='Non-sig')\n", + " ax.scatter(coeqtl_df['MetaPZ'][coeqtl_df['corrected_p_bios']<=0.05],\n", + " coeqtl_df['flipped_zscore_bios'][coeqtl_df['corrected_p_bios']<=0.05], alpha=0.5,\n", + " label='Sig')\n", + " ax.set_xlabel('single cell')\n", + " ax.set_ylabel('BIOS')\n", + " ax.set_title(celltype)\n", + " ax.text(-2, -8, \n", + " f'Significant ratio: {significant_ratio:.2f}\\nConcordance ratio: {consistent_ratio:.2f}')\n", + "ax.legend(loc='upper left')\n", + " \n", + "# plt.savefig('bios_replication.filtered_results.scatterplots.pdf')\n", + "# plt.savefig('bios_replication.filtered_results.scatterplots.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":19: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " coeqtl_sig['celltype'] = celltype\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAJcCAYAAABaL11XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eXik11nnjX/Os9SiKlVpbUm9b+62Oh07duzEdhKTxDHpEBwyGdaZ5AWGazy8DB4whMyE+Q288F7AO7x5MUyGWTwYBkKASUI2T4iNnc1x4jjtJba7W+59VWuXat+e5fz+OFXqUnVpL1WppfO5Ll2Sqp6qOqV6dJ5zn/t7f28hpUSj0Wg0Go1Go9FoNDc2RqsHoNFoNBqNRqPRaDSa1aODO41Go9FoNBqNRqPZAOjgTqPRaDQajUaj0Wg2ADq402g0Go1Go9FoNJoNgA7uNBqNRqPRaDQajWYDoIM7jUaj0Wg0Go1Go9kA6OBOo9FoNBqNRqPRaDYAOrjTrClCiH8mhHhBCJERQowIIb4qhHi7EOL/EkI4Qoh0+euUEOI/CyEG5nme3xZCSCHEe8q/f7X8nJny85Sqfv9vzX2XGo3mRmS185MQ4ieFEEPlY04IIT5Yvl3PTxqN5oZECPFzQohnWz0OzcrRwZ1mzRBC/Brwx8DvA33ATuC/AD9WPuR/SSnbgS7gnwD9wIt1FlD7gB8HRiq3SSnfJ6WMSimjwKeBP6z8LqX8xbV9ZxqN5kZntfOTEGIb8NfArwEx4DeAvxFCbNHzk0aj0WhahQ7uNGuCECIO/C7wr6WUn5dSZqWUjpTycSnlb1QfW779OPBTwATw6zVP95+BfwuUmjF2jUazsWnQ/LQdSEgpvyoVXwGywL4mvhWNRrNOEUJcEEL8hhDiVSFEVgjxmBCir5zZTwshnhZCdJaP/YAQ4rgQIiGE+KYQYrDmeT5afp6kEOJ/CSFCVff/SyHEGSHEtBDiy0KIrVX3vUEI8VT5vjEhxG8KIfqFEDkhRHfVcW8WQkwIId4I/Dfg7rLSIFG+PyiE+IQQ4lL5ef6bECLchD+jZgXo4E6zVtwNhIAvLPUBUkoP+BLwjsptQoifAEpSyn9o+Ag1Gs1mpRHz0wvAUHlRZpYlmUXg1QaPVaPR3Lj8U+B+4ADwAPBV4DeBHtQa/N8IIQ4Afwv8KtAL/APwuBAiUPU8PwkcAfYAtwA/ByCEeDfwB+X7B4CLwN+V72sHngaeALYC+4GvSSlHgW+WH1Phw8DfSSlfA34ReK6sNOgo3/8fy+/hTeXn2Qb81qr+Mpo1w2r1ADQblm5gUkrpLvNxV1EyKIQQUZRk6ocbPDaNRrO5WfX8JKX0hBB/BfwNKlAsAT8hpcw2dKQajeZG5pNSyjEAIcS3gXEp5cvl378A3Af4wFeklE+Vb/8E8CvAPaggDOA/SSmvlu9/HBVkAfxz4M+llC+V7/s4MCOE2I3axBqVUv5/5WMLwPPln/8S+DfAfxVCmMDPAB+o9waEEAL4l8AtUsrp8m2/j5r7Pr7SP4xm7dCZO81aMQX0CCGWu4GwDZgu//w7wKeklOcbOjKNRrPZWfX8VDZ3+kPgnUAA+CHgz4QQb2rcMDUazQ3OWNXP+Tq/R1FZtYuVG6WUPnAZNd9UGK36OVd+HHUem0HNb9uAHcDZecb1JeCQEGIvKrOYlFJ+f55je4E2VM1xoizVfKJ8u2YdooM7zVrxHGqX6INLfYAQwkDJFr5dvuk+lGRhVAgxipqoPiOE+LcNHqtGo9lcNGJ+ehPwjJTyBSmlL6U8itoVf09jh6rRaDY4V4FdlV/KmbIdwPAKHhtBKROGUQFi3RpgKWUB+Awq8/cR4FPVd9ccPokKRN8gpewof8XLhlGadYgO7jRrgpQyidJj/6kQ4oNCiDYhhC2EeJ8Q4g+rjy3fPojSnPcDf1S+6z7gMGoR9SbUJPavgD9tzrvQaDQbkQbNT0eBd1QydUKI21D1eLrmTqPRLIfPAO8XQtwnhLBRpk1F4LtLeOzfAD8vhHiTECKIKmV5Xkp5AfjfQL8Q4lfLhijtQoi3Vj32r1C1ex9AOf9WGAO2V2r+ypnE/wE8IoTYAsotWAjx3pW/Zc1aooM7zZohpfwjlE34/w/lMncZ+GXgi+VDfkoIkQESwJdRUoI3V3TlUsopKeVo5QvwgJmy7ECj0WhWTAPmp28B/xfwOSFEGvh74PellP/YvHeh0WhudKSUJ1GGJp9EZckeAB6QUi7qEC6l/BrwH1DzzwgqU/fT5fvSKMnlAyhZ52ngXVWP/Q6q3u+lcjBY4evAcWBUCDFZvu3fAmeA7wkhUiijloMre8eatUZIWZt91Wg0Go1Go9FoNBsZIcTXgb+RUv5Zq8eiaRw6uNNoNBqNRqPRaDYRQog7gaeAHeUsn2aDoGWZGo1Go9FoNBrNJkEI8ZcoaeWv6sBu46EzdxqNRqPRaDQajUazAdCZO41Go9FoNBqNRqPZACy3gWtL6enpkbt37271MDQaTQN58cUXJ6WUN3QzVD03aTQbEz0/aTSa9chCc9MNFdzt3r2bF154odXD0Gg0DUQIcbHVY1gtem7SaDYmen7SaDTrkYXmJi3L1Gg0Go1Go9FoNJoNgA7uNBqNRqPRaDQajWYDoIM7jUaj0Wg0Go1Go9kA6OBOo9FoNBqNRqPRaDYALQ3uhBAPCyGOCyGOCSH+VggRauV4NBqNRqPRaDQajeZGpWXBnRBiG/BvgDuklIcBE/jpVo1Ho9FoNBqNRqPRaG5kWt0KwQLCQggHaAOutng864/RYzD0OCQvQ3wHDD4A/YdbPSqNRqPRbDb09Uij0Wjmsg7nxZZl7qSUw8AngEvACJCUUv5j7XFCiAeFEC8IIV6YmJho9jBby+gx+O4nIZ+A2Db1/bufVLdrNBqNRtMs9PVIo9Fo5rJO58VWyjI7gR8D9gBbgYgQ4sO1x0kpH5VS3iGlvKO3t24j9vXH6DH4xh/AF39JfV/phzz0OIQ6INwBwlDfQx3qdo1Go9FomoW+Hmk0Gs1c1um82EpDlfcA56WUE1JKB/g8cE8Lx9MYGhnFJy9DKDb3tlBM3a7RaDQaTbPQ1yONRqOZyzqdF1sZ3F0C7hJCtAkhBHAfMNTC8TSGRkbx8R1QSM29rZBSt2s0Go1G0yz09Uij0Wjmsk7nxVbW3D0PfA54CXitPJZHWzWehtHIKL53EC58G45/AS48A5NnoJBQxZoajUaj0TSLwQfU9SefAOmr7/p61DKEEKYQ4mUhxP9u9Vg0mk1L9byYHoXTT8HpJyEz3tK6u5b2uZNS/raU8mYp5WEp5UeklMVWjqchNCqKHz0Gp74KWw5BWzdkp2DydTjwvpa78Gg0Go1mk9F/GO55SKlRUsPq+z0P6etR6/gVNoLaSaO5kanMi14Jzn9L3bbnh8AMtNRYpdWtEDYegw+oDxRUxq6QUlH97R9Z3vNUyzu796nb8gmYGAI+2KjRajQajUazNPoP62BuHSCE2A68H/g94NdaPBzNOrTC1zSR/sMQ3QI3vVet2asZerwl50JLM3cbkkbtbq7TIk2NRqPRaDQt5Y+BjwH+fAds6jZSzWSdWuFrmsw6W7PrzN1a0IjdzfgONUlU7wKsgyJNjUaj0Wg0rUEI8aPAuJTyRSHEO+c7Tkr5KGUfgzvuuEM2Z3SbkGqVFVz73qKMjaZFrLM1uw7umsmxL8LRRyE9Au0DcOeDcPiD9Y9tlLxTo9FoNBrNRuFtwAeEED8ChICYEOKvpZTX9QnWNIHkZZWxq0arrDY+tVLc3kHlkwHrYs2ug7tmceyL8PRvQyAKkT7IJ9XviUvgZK/XalfkndUnz+0f0TtBGo1mY6LrVjSaRZFSfhz4OEA5c/dRHdi1kHWWsdE0gYoUN9RxTYp76qvK8HBiaF2s2XVw1yyOPqoCu3Bc/R6Og1uA7/4nOPxP52q1KzV6unhdo9FsBupdLKvnQo1Go1mPaJXV5mM+Ke7EELzr4y0a1Fx0cNcs0iMqY1dNZRI4/nn1e2wrdO3XWm2NRrO50HUrGs2ykVJ+E/hmi4exOZhPWaBVVpuPG0CKq4O7ZtE+oKSYlcxdKQv5KfWzMEACM5egmAYn17JhajQaTdO5AS6WGo1mk7KYskCrrDYXN4AUVwd3a0G9HZ47H1Q1dgDBdkgOg5RgtYFpq9uFUCdIMdm6sWs0Gk2zuQEulhqNZpMyn7Lg6GOqv5muE95c3ABSXN3nrtHM1/OkZz+853dU5i47pgK5th4IhMBzVaCHhFIOMmPwxV+Cb/yB7pWi0Wg2Pr2DcPFZOP4FOP8MTJ1VF8vBB1o9Mo1Gs9mp18PMLcC5b+j+dpuRRvWzXkN05q7R1NvhyU7CVz8Gnbth9zvUgmXocTj9lJJgljLgFsH3wDQhGNemAhpNixFCdAB/BhxGCaf/hZTyuZYOaiMyekw5jfXcDJmrkJ2CQhLu/Zie9zQaTeuppywYfQ3CXbpOeLOyzqW4OrhrNLW1I5lxmDihArddb7sWsB14H1x9GabPQaRXLR0TF1RgOHCrqsPTk4VG00r+BHhCSvnjQogA0NbqAW1IqjfEevar2/IJ5TzGB1s2rE2Pbk2h0SjqyfDy07Dnh+Yep+uENesELctsNPEd6h+/wuRJwIBIz7WALdShFi73/ZbK5HkO+A60dcO+dysNdwU9WWg0TUcIEQPuBR4DkFKWpJSJlg5qo1JP8qTnvdYyX3mBlpxpNiP1ZHh73wVWaO5xuk5Ys07QmbtGU7vDk50EYULPwWvHVC9coltg4BY1IWTGwQzMfT49WWg0rWAvMAH8hRDiVuBF4FeklNnKAUKIB4EHAXbu3NmSQW4I6kmeps5BZkTVHuusUfPRrSk0mrnUyvAqGyCwbk01NJsXnblrFKPHlAHK9/4L2G3gldQOT6QH+t4wNxtXSIEZvH5nNHUVZs6rn6Wvvs9cUEGfNljRaJqJBdwO/Fcp5W1AFvh31QdIKR+VUt4hpbyjt7e3FWPcGAw+oBZFlXlv8gwMvwDtW3XWqFXobKpGszD9h1V5zdhrcOxz6vuB9+nND826QGfuGkFtD5TKDs49D6n7K0Fc9e6O3abq8MZeU7eFYqotQm4Cps+q26wgGDYEotC9VxusaDTN4wpwRUr5fPn3z1ET3GkaRG0T4MwIbL8Tuvep+3XWqPno1hQazcJUjKD63qj8FAqpsjHUfj1PaVqOztw1gmoJS3VdXWUxUs8yNTMKY8fBKai+d7lpuPy8ytIZAYhsAScPCJh8Xck7q59Xo9GsGVLKUeCyEKKip74PONHCIW1s+g/Duz4OH/wvylW4a8/c+3XWqLnUZlPzCd2aQrP5qCiy6imnKus+rwQXv6O+Jk+r3ncaTYvRmbtGUOuQCXMXI/UsUwtJFQja5YLcUgYMS31vH1C3p0fAK4LZoYxZolv0IkejaR4PAZ8uO2WeA36+xePZHFSyRl5JzXuFlKpFHri11SPbPNRmU+M7VC2RzkhoNgu1iqxa5VTyslJWDb+gymyC7dd6340e0/8rmpaig7tGsBIJSzAO+RmVubOCqnm5YUDRUU3MvVL5y4GOndccOLU0RqNpClLKHwB3tHocm47BB+Br/7eSpwfawbShmFLKB71oah7rvI+TRtMw6rX9WMxUKL5D9So2g9c26RGq952WkG98VtoqpkktZrQssxGsRMIycAv0HlKTQjENgTYwQ2AI1dDcDKhMnleE9BiE2rU0RqPRbHz6D0NsKwRjqkWMHVYtYzr3aEl6M1hIiqbRbDTmbfvx6sKmQoMPqF53Uqovp6Ayd/1v1Oqqjc7oMfja76rgfuQV9f1rv7v4XNnEFjM6uGsE89XVLRSNDz4ApqWKcQ++D7a/FUppCHcDUgV4hqlq70opCHYs7Xk1Go3mRscrwv77lLEKwJWjarE1+mprx7XR0f3tNJuN+TwTCsm5PYthrnKq/7DqdSeE2qC3Q7Djrar3nVZXbWyOPgbT59TPwfIGwPS5xestF/LnaDBaltkoliNhqaRliykYH4JSVu1Oh2IQ6gQ3WM7eBVWdXbgDfuZv13T4Go1Gs26I74CpszB+Qi2Wgu1lp+GklmauJbq/nWazMZ9nQjCulFKV3ytO5zvvVhnt5GW1Rov0KhOoUEz155wYgs5d6hjdn3NjcuWouiZJT50HblEFaxeeWfhxi/lzNBCduWs21TujkS3g5NTOz7Y3q9/dPOy+F970z+GNPw79t6gvjUaj2SwMPqAWSQhVk+wWQQC9g1qauZbo/naazUZ8hwrKLnwbXv+K+j51TpXO1CqyDrxPtTuoZLbNACCVP8LoMeVsvuUQ9B3WWe+NTikPyWHwXHUeeK5ytV/o847vWDgb3EBaGtwJITqEEJ8TQrwuhBgSQtzdyvE0heqd0anTKqUbjKmfK25wI69UNTE/r5uYazSazUX/YYjvVCZTU2fKznQWBKM60FhLqhcfmXG10D3xJZi5oK89mo1J76ByvMwnVU/hfFL93js4t0XLuz6uNpxqZXWde5TCqr1fZfImXldtEbySbl21Udl+J2TH1M+GqXpW4yun+4U+7ya2mGm1LPNPgCeklD9ethtva/F41p7qtGwhpVK7lZ+jW5TJyuXn4NjnlFOclGo3wCvC+Otw9WW477d0ql+j0Wwsal3ETFv1+ozvuJa9u/gdZa6iaTyjx1RAd+4bytzLL4EVBmFC+9a5NvAazUZhYkgt1tNX1TosHIctg2XlwAfnHjufrG7kVXW8EQQnA6mrMHFKSThL6Wa9E02zuPMX4NSTgFcuobIg3KlqLhfafGxii5mWBXdCiBhwL/BzAFLKElBq1XiaRnXbhFBMOSw5OdXf7tjnIDsN7X0qkj/xOKSuQHy7OnHc4rWizQceafU70Wg0msZQr6fU2DFwS9cK1jVrR/Xff88PqYVLKQPd+2Dr7WrjMZ/QtXeaG56hkSRPHBtjOJFnW0eYn5s4R2f/HnWuV5B+/UX6fG2vikm1IZIdUxtRdri8GfUsHPrgGr8jTdPpPwwH3qtUdl5JreV7Dip5Zrh/8cc2YQ5tZeZuLzAB/IUQ4lbgReBXpJTZ6oOEEA8CDwLs3Lmz6YNcMfP1shh8QF1EAbpvgrNfV/3uYtuhMKMKNL2Sytblp8o98DLQ1lXupSJVMadGo9FsFOoZeRgWtEXVvFdIqQto/xuVikHTWGr//pEeJTEKhFVgB7r2TnPDMzSS5NFnzhMP2wzEQyTzDs9Pt3FnYILu7r5rB9bUQVUCQm/kAD+S/hx9fUW6u3qvmayE4lDMqIMlqj7YMKFUaObb0zSTO3/h2oZYteHO7R9p9ciA1tbcWcDtwH+VUt4GZIF/V3uQlPJRKeUdUso7ent7mz3GxanXE2ghO+nqtgm+ozJy8R0qrSt96NgFRgDOPKXcNJ3ctUkD1MSh0Wg0G4mKkUelzuv1r6hNr5kL1wK7noPaZnytqDVSCcXUArW6+H+NCv81mmbxxLEx4mGbeNjGEIJ42OZcz7sZGxubtw6qEhAm8w6i/zDf7P5pjo5KZkYvVLWnukX1uKus5bwSIKBrr96M2qispAVaE2ll5u4KcEVK+Xz5989RJ7hb19STEn33k2C3LWwnPXlGLWDSIypw23GX2ik985RazEgXDFvJkSoTTjGjdrJLaV1zotFoNha1rQ+EAaWcWiR5jnImu/Bt6NoHt/+HVo9241ErN+s5qP7ewZi6/qyzXWmNZiUMJ/IMxEOzv0+kC5xJ9HI0/cM8OHKcm8MX6BzYO6cOqjogBCh2D/K9tv0MhW0efteBa08+9Lgy1ojvUJJMtwA9B/SGyEamjsSyVvZ75HAfgwPxpg+tZZk7KeUocFkIcbB8033AiVaNZ0XM15DwytH57aSPfRGe/m3lyBTpU4YpZ7+mahwCUZXN81y1qLEjKrUvpTJTSV9VPVXu/IWmv1WNRqNZM2pbH2THwQooIw8nq+bFYAxiW9fNzuiGotbFzQyorMPAretyV1qjWQnbOsKkCy6gAruXLiVIFVyyHQd5svfn+V3zXzN08y/NOc+HE3naQ3PzIO0hi+FE/toN/Ye5fMsvM54pMDo6zOW0T7L9JrV+WwMnRM36pDrLW5H9PvrMeYZGkk0fS6vdMh8CPl12yjwH/HyLx7M86jknuQXIjCn76EiP2gGNbrkmaTn6qAriwuVIPr5N7Vbnp1Xjy9RVoKQurk4O2rrBd9Xztm+95q6p0Wg0G4VK64NiAgpptQMe265aHxTTcPP7VdCRGm71SDcmdV3ctCuzZmNx5HAfjz5zHoAz49fKXXqiAYZGUkxmivz2l0/wOx84NJtt2dYRJpl3ZjN3AOmCy7aO8OzvQyNJHh0+xE07f4s3ZZ4hnLvK8WQHB277Gfbq/6FNQ22Wt/L9iWNjTc/etTS4k1L+ALijlWNYFbVSlsy4suoOd4MhVHbu0veg7w1qB+f2j8Brn1EZuwqBCFht4OXVIiYUKwd/nTA+pDKCnqOCuoFbVdCnHcs0Gs1GY+CWa/PphW8rJ2G3eE0FoWu+1pYmubhpNK1icCDOg/fu4YljY4yli/S1B+mJBjg3mSNoGXS12UxnSjz6zHkevHcPgwPxOQFhe8giXXBJ5h1+6s7tgArsfuOzrzKcyPNto42B2Ae5ZUcc2zQZGrF5WP9LbRpqZb9QJ8vbJFraxPyGp1bKMvKKun3X3aqOLhxXkqLL31MLk6HHlbSomIZSFhKXYPK06idkt6vd6f33q0AwPaYyd74DCBXwXfm+yuBpxzKNRrPRqJ5Pu29ShlLFlPp5DZu9ajSazcPgQJyH7z/AB9+0jUNb40xlHYKWQcg2KXmSrmiAeNjmiWNjs8c/eO8e4mGbkWSBeNjmwXv3APDvP/8qP/8XRzk1lgbpYwi4PJPnu2emKLpuSxb1mtZRLfutUJvlbRY6uFsNtW45Xgl2vU3JMKNblCQzEFEGK/2H1QLFaoPMKEyfh2JOBXpuURmmXH6hLOW8WS1qrKAyVunYrlohmEEYfU3vXms0mo1HrZPw7neoL9/RNV8ajaahHDncRzLvMJkpEjAFBcej6Prs741cl22pBISf+Ilbefh+ZaLy6DPnOXY1he9LTEOQc3ykhKBlkCt5nLiabsmiXtM6KudUMu/gSzn785HDfYs/uMG0uubuxqdayvKNP1ABXIXJk4ABkc5rhisDt0BuEnLTUEqptgedewEJY68oE4GBW8DNQWSLMmcRZVMVKVUvPL17rdFoNiJaGqjRaJpAJSP3218+wXSmRFc0wBu2xuhtV0YYCwVmldqqkudT8nyQEseTzORKdIRtXF8yk2vNol7TOqplv8evJkkVXOJha04WuFno4K6RVDcoD8VUI3JhqgxehVBMyS0rDckDbRAsZ/cME9rL3e0Tl5U0s/smyE0oWacZgL3v0osfjUaj0TSe0WNzTVUGH9DXG82GZXAgzu984NBsY/P2kDWbbanU1IGqq/vUcxd5+XICgSDvuLx1TxclxyNVcBGAkOBLSORdLEPQ0SZbsqjXtI5KG4TjV5NcmclzsC/Kzu7IrGtmpY6zGejgrpHUOo5FepTDZXTLtWOmzysZpucoJzjPheSwOlYCxz8P0b6yHfiEMmlp61KST+nDnh9q2dvTaDSaNUEHFa1nvr6tWg6r2cBUZ1sqvckqgd0jT53ixEiS02NpXFfSHQ0ggZmsw9eHxsk7HqYA11fLNwDflwQtwV17u1uyqNe0hkobhHjYJpV3ADg5liEasuiJKpOVZrpm6uCu0VTLiioXy3xCZewKKdXLqf9WJcF0iyCEuj03BUhVV2eWa+2kr2rvnBz0HlQX3FNfhZ79+mKr0Wg2BjqoWB9U922Fa9+1O/O6QgixA/groB/wgUellH/S2lGtD1baQHpwID7nuOqFejLnkCl4uFLSISEStNjSHuTCZBbXl5jGtcCuQtH1SeUd+mJK2tkKK3xNc3ni2Bie53NiJMXJsQxtAYP2oM2Z8Sw90VDTXTN1cFePhXaRl7PDXMnkHX0MTn5V3eYUlEFKMALnv6UCOySz04NXhKlTENuhjvU9Va8nhGqHoFshaJaKzoZobgR0ULE+qNe3NRTT7szrDxf4dSnlS0KIduBFIcRTUsoTrR5YK6kOyKobSK8ka1bdryxdVO6HAVMwkysRCVrYlsCTas3mSzCF+l4J8lwf/vHEGKmCw207u7Rr5ibg+NUkV6bzBG2DSMCk5PpMuSUc3wea75qpg7taFtpFhrn3TZ2FL/wr1Xx34Jb5F89OTrlohmJw5mvqK9INvs+cwA7Uz64DyUvXAru2ThXoXX4ett+pL7aaxdHZEM2Ngg4q1ge1fVuhfm9BvWnUUqSUI8BI+ee0EGII2AZs6uCukQ2kq/uVmUKQdzxcz8cwDTrbXCbTJSxD4EuJ41//+Eqw9/3zM1iGwa07Olf35jTrnlTBBQEh26QrEmAkWcDzJQXHq1vHudboVgi1VO8iVxwuQx3q9ur7spMwfkLFZcXEtcXz6LGFny++XfVrSg6rujtE+UADhFX+3QffBSQYBrT1KAMWK6RbIWiWxkLnsUaznojvKCsYqtANy5tPdZ/B9CicfgpOP6nqvivXtepSg+pNo9rrnqYpCCF2A7cBz9e570EhxAtCiBcmJiaaPrZmM5zI0x6am69YqRSu0q9sMlMgW3QxRHkLXkouTGaZzBQpevUDOwBPqpWclJLXhlPaNXMTEA9bSKmCubaASVfExjRAIGZ7I2q3zFay2C5y5b7JkyrYsoJQSF8vJarsbr72GYj2Q+/NylglcVHV1BXTqn+TEEBZtC09ZrN40gOEqr1zi8pNEwl53QpBswR0NmTVCCFM4AVgWEr5o60ez4al1mW4kFJBxs67VXsZnSFqDtVlBOe/BeEuZeBlBq5l/bWEdt0ghIgCfw/8qpQyVXu/lPJR4FGAO+64o7YsbMOxrSNMMu/MZuxg5VK4I4f7ePSZ85ybyNAesghYBqOpIp7nUfJ8JOXgbYHn8CUELAPbFLrebgNSW9+5JRrEcTxOT2TJFF2iQYs3bo1x686u2d6IzUQHd7UsJk2p3FdIqRo4t6gWJHBt8VwtiWvvh9SYyvJ5DjjZ8pMKZrN0800TwZhy28xOqkxeMKZbIWiWxlIlVpqF+BVgCIi1eiAbmlqX4fgOFdi98rfKMdgtwvjrcPUHcN9/0PPfWlHZkLxyVAV2A7fOdXqufD5606jlCCFsVGD3aSnl51s9nmYyn2lKJSADlbFLF9wVS+EqDpq/9OmXSBdUzd32zjACMAScGEnho1oPzxfkCaGkcTu7Iyt9q5p1Sr36zpNjaa7M5OloC7A1HiJd9Dg7meMn7mzNmkvLMmuplqZIX30vJNTt1fcF29Vi2SuqPnaZcVVLN/IqfPVjqsVBuAPaeiE7prJ7s4EdqOnAr/q5CmGrL99TffDiO1Rg13MT3PkLa/0X0GwEFjqPNYsihNgOvB/4s1aPZdOQGVfz57HPwZceUvPp+AkV4Dl5mD6rskqaxjN6DL72u0qKmbysygbOf0t9JnAtgNMS2pYjhBDAY8CQlPKPWj2eZlJZVCfzzhzTlKGR5GxAFg/bjCQLDZHCBS2TnmiQvT0RLENwaSZHvuRimwYBUyyYvTOAgutz3809K359zfqkur7TEEp26XiSWEjdlil5xMM2t+/s4NRYdvEnXAN05q6WervIt3/k2m5x5b5wBxSS0DOoFs8Xv6Pu3/U2uPSckk+GYpCbBEyuBXLzYSoHTbdwrRWCkKrWrpAEhDbD0Cydxc5jzWL8MfAxoH2+A4QQDwIPAuzcubM5o9qIjB6Dr/3fKngTFqTHwEmr+1xHzYmljDKuunK0tWPdqBx9DKbPqb+/74Ezo2rJLzwLhz8EU+cgM6KuazMXoXcQuvdek9De/pFWv4PNxNuAjwCvCSF+UL7tN6WU/9C6ITWHxUxTalsarPa1DvZFOTmWoej6BC0DIeHSTAFTQN5dWOkqhJKK5kobXhG76RhO5LEMlcHNFFyiIYtUwSFoGdy1t3v2OF/Kljml6uCuHtW96ha6ryJjef0rKrNWkbFEeiCfVHV5hRT4JRZVaIfjsGUQEpdU1g+pgsbd77gmr9MLc81yWOg81syLEOJHgXEp5YtCiHfOd9xmq2lZM4YeV7XIxQwUk0qGWYuThfRV6NBB9Jpw5SgIE/KTanPRd9X1J3ERLr8A02eUU3PXHrAjql+rk1Mu0XrTqKlIKZ/lmhPbpqLaxbLCWvUPG07kaQuauJ7PxaksrucjJRiGmHclZwGRkInjSxxP0h6yOH412fCxaVpLwBQ8f26aaMgiGjQpOh4zWYct7cE5xy1W87nSvoxLQQd3q6GyeK7UIYiyyrXnIJz9hrrdL4G7wMQjTGbnaacAZghSF5ShihWAE19SC5rbf2ut341Go1G8DfiAEOJHgBAQE0L8tZTywy0e18bkwrOqrYxhlIMKr/5xpbQKMDRrQ3ZClRlI/9q1zPdg6iTsuAu696nbuvdBW7facHzXx1s2XM3mo5GmKbXULrRzBYdXh5Nkih7tIYtM0cVxfXxfIoXAElCdvBOoBoSpgochVNDp+nBlJj8rG9VsDOqlaiIBE8fzSeadJdV8NrIvYz10zV0jqFeHUEwqKZHrLPxYK6hMV3oOQikHqauqShfUhXXmPKRG1mbcGo3mOqSUH5dSbpdS7gZ+Gvi6DuzWiNFjSuEgDLXRNW/+U4AUuuZ4rejap65ZnleWZebUpqTvQnYKAjWmENpERdMCjhzum+0Z5ks5+/NqWw3Uq+U7MZomkXeQUpIuOORKPo5fCegkfs1cJau+S6Dk+RQdj4N9UZ44Nraq8WnWF0VP8ta9nYRsk3TRxfMlnRGbvONxYiTF66Mp4mGb9wz28sSxMT762Vd45KlTDI1cy+LW1u2VXI9zExl+/TOvXnfsStDBXSOoNa+4+JySGAVjKnCz6rglCUPdHu2HH/49OPgjkB4GNwt4qPYIftkp7hj8zU8pW3DdT0ij0WwUhh4Hq03VFnvOPFm78rIppHe+14y2LiW39B2VvZtdqvoqyDv51WvmKqBNVDQtYS1MU6C+QYZpCGS5CXXRUf8PlQWz4y/uolByfUxDsLM70rK6K83asK0jTNCyuGtvN7ft6MD1Ja4PO7vaODQQIxq0OdAX4emhibrmPzC3L+NEusBLlxIgJb70rzt2JejgrhFUzCvCHZAahvyU6oEXKF8shQQjABjKKMUMqhYHN70H9r4Tvv8/4NufKGfsKgnfijypXHuXGVPSJd0wVqNpGlLKb+oed2tI8rKaN4WpskTzpu4k2GFlvKLnv8bjFVVPuzlL1kpZl6GMVEZe0c67mpYzOBDn4fsP8ImfuJWH7z/QEAlbvQbo3ZEAXrnGLhwwaLMN1ZZ4CfhSfV2aznJpKtsQ2ahm/VCdQX7lcoKJdJGRZJ6841FylVPmXz536boNg3jYns3ibusIz7bZODORJWgZIATxcOC6Y1eCDu4aRf9hVX9w1y+p372SuggWM4BRlh0JZbay5Q2qlcLIK2oHNHlBLW7c6h3TGqRUhgKhDrXbrdFoNDc6ZlAFDshyndc8lyQjqGruxk/odghrQXwHxLaCUVnglvuwCkuVDoC6po0dg7HX1HVr6HEdaGs2BNUL7QoD8RCWKXDKRipCgGks3cdGSHB9eOlSggN9utfdRqKSQR5P5jk1liFTdLANQcn1eelSgoLjMpYqXLdhUG3+Ux0gpsvy36Lrs39L5LpjV4I2VFkKFVfMiqX84AP13cEqlt6+r3ahK/IWUZZYClN9T15W7m/tW5W9dDELdlu55cE8SF9dUHWtg0aj2UhYQaVyyCeYV+wkUMFFKavbIawFgw+oPndeZYFbrhySAqQLhqnMbFLDyvirkISZC/DaZ1W9+MAt818XNZpVsJaOghXqNUA3DIN7b+rh+XPTpIsuvpSYhiBkCYquXMj7HFAzWcA0uG2H6nX2/oaOWNMqKufj985O8upwEpCYhoEEJjMleqIBhkbS9MVCpAvuvOY/lQDxiWNjah9NCN68K05PNHTdsStBZ+4WY/SYkkLmE8oRM5+YXxp59DHVqynSqyREFVmLLC9YpKcujIapMnH5GUhcVrdnxlG1dvNRDu50rYNGo9koeEXVG7StS7kDz3ucozbHSq1pCLspKKS5XnfmqaA60A65KdULD9RnkR6F7CSkrix8XdRoVshXXh3m4b97ha+8OsKlqSznJzKrrkWqx3y1fA/ddxP7tkQJmMZsg2rTNBYN7ACiQZObtkTZ1aNr7jYKFeOd8xMZzkxk8cquOq4nyRQ9pJTMZEvM5Bx+9u6dC5r/VG9a3Lajg55oENs0G2YUpDN3izH0uJJChjvU75XvQ49fv0t55ai6CAbCkJ9W2Tu3iNrDKTcyL6bAyYNpq+a8Tg4ifVBaQjYueVHtlt7+Hxr05jQajaaFxHeowGD3O1Tz8ukz8xzoq00y6et2CGvB0OMq0A53lo3ByvXeoKSZfW+AS8+pzJ5bUAGfFVTHpEcXvi42gqWqZzQbhqGRJJ/8+lkQ0BWxKbo+p8YzHNgSnW1a3kjma4C+f0uURM5hOlfCl7C7O8L5yQz5kr9gkNcesrhle7xhrRo0radivHNiJIUvJQFLUHJR7TGQpAo+Ydvk/kN97O2N0nZmiu+fn0YiuW1Hx6z5T20bhHRBZYYd12Mkqc6Xn7pz+6rOcR3cLUalh101C0kjZzc+papfsFBZOt+75gQnTDADStpiBCG+FdIj8/d3qmbq7ArfiEaj0awzBh9QGR9Q0vSF8H2IbtHtENaC5GV1PSqkUZuRVctWK6h63fme2pT0XBUAhjqY00t7rUoGKuqZUMdc9cw9D+kAr8WspWTyiWNjOJ5PdySAEIKQbQIwmioQKP/cDMbTRTrabCzTIBqy2N8bASk5PZbBMiHnXB/i2QZIKckUXEzTn7fXmebGYjiRZyAeIlNwCdsmnufj+qom0zTA86Ho+gRtMRu83Te4ZbbnXYVqd1aAeNhmV3eEeNjm4fsPNGSsLQ/uhBAm8AIwvC5d6So7y5WdSZgrjTz2RTj6qArOSll1XYx0QTFdbl4u1MXRtJXqUgigKtDDg8kzqAdaqDaYCzB9Hr71h/BTf9XAN6nRaDQtoP8wHHgfPPtHC2TtykR7VdsYvaBvPGYQsuPgl7jO1MvJKllsWzcUZlA9B30VDAbaoGOnOm6tSgaWo57RNI3VNmGuFxgCs7cdv5okZBkUXX82sAtaBtNZh7v3rTwTtpyAdGgkyZUZJak0BVyYzHByNE1H2MIyJPl52hgLIZjKOLxwaYZ//yM36wbmG4RtHWGSeYdoyMLxPGZypdnp0pdgCOiJBPjSD0Z5+/5uSq7H8+dTZAoutin41HMX+f0P3TIbJFazWgOVWtZDzd2vAEOtHsS81Pawq7aBPvZFePq3IZ9U0spAOxQTMHVubmG67yvJi6y0RBDl+8ttDgozqnXCop1TAOEreYxGsxxGj6k+iV/8Jd0vUbN+GD0Gp76qVA6RPqVqqIcwoWs/HP5gU4e3qfCqpJi1SB8yE+pzEAbqGlZUCpSBN13fHqGR803yssoKVqONxVrOp567yLmJDN8/P83z56dnLeCXYt9er2n4Hz5xkk88eWr2toBpkMy7JHMlCo6qZ0oVXCxDrLgWqd7rLlTD98SxMfrbA4wk85wez5Atukjpk8y7mKbJfOaZridpC5qEbZOnhyYaXiOoaQ0Vh8v+9iCO6+N6/qzOQUqIhWw6IwFKrs+Z8QwvXUpQdDyiQeWz8eyZKYZGknXdWRst321pcCeE2A68H/izVo5jQap72I2WbaCLZRvo7zwCgSiE42AY0N6nLna+ozJ0ld52vqsujlZQOY95rjrGsNTvvlM2ClhCcIdQu6gazVIZPaac8E4/pdpvnH5K/a4DPE2rGXocslPKYj9xfgFpugkTJ5o6tE3F5KlyfXgdKi7Ppqmud8GoMgUzAmpFkxlX18eKTHI5JmRLCQLjO1RWsBptLNZShkaSPHtmCqQkGjQpOt6sBfxSsg/1moZPZ0tMZoqztx3eFiNgGQRtk6BlMJUtAfDQfftWnAmr97oLBaTHryYZTZWwhEAgyTs+2aKH53uUPA9vvr0QwPF8eqLBVfcr06wfKsY7juczkS3hlpfsBhAw1TkynCwQsg2GEwWClkHINhFCUHB9Co7Lr33mFSbTBS5OZec1W2kErc7c/THwMRaIaoQQDwohXhBCvDAxMdG0gc2h/7DakQzFoO+N0HdYXbCmzpR3McuUsuoCKVAyEsNQAZwdQgV5pXK/u3JrBL86SFtKYId6XHRLw96aZhPwrT9UZj8zF9R56+SU653uF6ZpNReehcvPldvGLIAslXuGahrO6DG4+gPmLwkQzBraODm1uWiHofegCupCsbkGJ9UySmGUj+m4vj/rUoPAhdQzmpbwxLExOttsEGK2Hi5oGQyNpJeUfajXNLzk+hTda5s7PdEQb93biWkY7OyO8KO3bOWRn7qV99+yrfbplkzt606kC5y4muSLPxjmkadOXZdhSxVcEOBKiWEYhG0D2xQUXZ/iIhU0UsL+LZGGy+00ref8ZI4dnW30RAMqeytUPqfo+VCuv8s7HhenslyezjGazCsX1pANEmzLxBCCkuvNcWdtpHy3ZTV3QogfBcallC8KId4533FSykeBRwHuuOOOpTjQrg31dP+BdlVrZxjKJjo3pYrOhQFuTvUIQpatpMPQ1qOkJEsxTqmLUJnB3psb8pY0m4DRY3D+W2Vzn5A6P7OTqn7m/DNqt3zkVSgmIRSHft2vSrNGVNcntw/AnQ/C1GkoLXHh45bU+azPzcZy9LFy1q58vapFuoBVTkfkwOyE+DY1p4TarwVulc9lqSZk89XSHX1MbWBWO2Pe89Bct8zbPzL3PNBumk1lOJHn0NZ2Xr6kgqGgZSClJJF3l5R9qNQuVfcAC1jX5xqClsX9h/oaZjJR/boT6QIvXUoA0NcerFszGA9bJHMlXM9HIvF8KHkSf5GVqAD29kbpiSrpp3bL3Dg8cWwM15d0RWyVaQ5ZpAouJVcStA1iIZPJrEN/LEje8cg7HjM5jy3tQdqCFkHbVOd9V1tDDVRqaWXm7m3AB4QQF4C/A94thPjrFo5nYerp/nsOql51o8eVtMh1VKAnhcrieQWVnfPdcr2dqS6QlZqFZSHACsNN71WyGI1mKQw9Xq6TsdTWkmmpRVlmXAV5k2cgcUHVjU5fUG6sul+VptHU1ifnk/Dkx9W8WaNakHW+AFVvrLPNjefKUTxh4GBe9zeXgINFXtjkpUVOBpguGYxkXAqFnLoG1gZuS5VR1rumugU4943rs3kA7/o4fPC/qO+1gd1SZaCahrCtI0zQsnjzrg5Ctkm66CKE4B37u5eUfajULlXL0roiAXqiwTWVqlW/7pnxa0qAm/qidSWahwbi3NzfTsA0cRyJ48l5y1LnIGBHZ2hN3oOmtQwn8rOtOQKWQcAy6YoEsC1BJGhScH22d4R52/4euiJBdna1EbQM8o5H0fWV2yqNN1CppWXBnZTy41LK7VLK3cBPA1+XUn64VeNZlNoLVmYc0sNgR1TzXemBkBDugc7tXLtECrWwNssNek0b9WdfRhJSmBCMQWyr+tK1BprFqNSyvPzXasGUm4TcDDhFQEIpA7EByIyoTYNwXEmt0lfrS6g0mtVw9NG59cnheLkxuaByGZoNKq6L6so/mkElL9Y0lLzrkfGDGLjXzAGovoJJikaEEbpJESEksxSkzYveTUwQuy5wO9f7Lk6cv8S3XzvNc2cnmJoaqy+jrBcEjr4G4a7FJZ3VLFUGqmkYlSDJNk3esqeLt+7pZm9vlA/fvWtJj6/XNPxjRw7y0fceuK6ReCOlatWvO5YuEgupALUnqpwLqxfcQyNJJtIFXr6cxBBgGkJ1tUI5Z5oL7M8bAo6PZHBcr+HvQdNatnWE6Y+FKLo+0YCF4/k4niQatLlnbzch2+L2XR30toe4fWcHQdvEMg1KruT2nep2aLyBSi0tb4Vww1DdjykUU8YUoOy5o1vUIiU3rbIhpTwYdrm2TqqAzslBIqt+9pdpiCI9JZtzcup13/+Jxr43zcaispPteyqwEyYg1fnj5NS5aVqw460w/CIE29XjrKBabGknOk0DqLYc/82xiwTjA1ByGUsWyRRdtntF2oRJQPiIioS9ds+rvD/mIzAX64OnWRGvyP3sYIKonP1zA2oRWxI2phAMi35CZo7XzX3s9i9xNbSfy1mLidfOciDuEfqhf8Jeym6Ex0Pc1P3TvCnzDKHcVY4WtnDgnT/P3lqZZO01tZCC/DTs+aG5xy02Hy23F61m1VSCpOqWAsttujxf0/C1DoSqX7dWGlpZcFe3eTg0EOXZ01M4vlSmGQI8X+LMY5NgArZp8O6btxAP2zqw22AcOdzHo8/kOLAlymiqQLLgkMo7RAImo+kibxhoJ2Sr0Kq3PURve4j+9iCnxjMELBNfytm+d2vZ/3BdBHdSym8C32zxMBam4pp59DE4+dWytn+nMgKYPq8W0b6r6uv8cpsDUb5MSl8tsP1S2SFzhWPwHVWjMnlG1xNo5ufoYzB5umpxIwFDJUhEufI33KWkw6EYOAVl+uMWry2ydHZYswqu64Fl9mBMT5IhiuP5ahccQUKGydLNABOEZGlO1dfsxriEHAHyRYsRbiIwktQLpgbyP/Lv5p95l+kwkgQoIVHBdIYQYelQxMR18mSFQU7Cfxf/lEOZYQaYYET08M3uH+H08RAPdidn3QiL4UGe7x4E1AJ6aMTm4dpLVuWaWl0rt/dd11QuFRabjxbrRatZE+YLzm4U1CL9PKAydtUL7sp5XHI9XhtOYVsGQV9FcyHbJFN056tQxQM8XzkjZhZzXdHccFRvbOQcj7BtEjINMiWX02NprtgmWzNFDm/rmD2vTNPgoXfv49RYdsWbIctlXQR364rFCrOdHOx6G4y9CulxSA2rYM6v6hFkWEqKKX2VdXNdZutKiqvsd+IWVAsG3e9JU4/RY6pmJdQJSHUuehlV7ylQpj52GPpvhYkh6LlZWcy7RXW+du1VEqrbP9LiN6K5kam2HAd4betPcefZP8byfaQRIezlcDC5Qh9jdFP0DXaLUQI4OJhYeFQqkz0puEIvSaOflzo/yOllNErWLM4rznbG/J/k/+QL3CtepYSJED4+JiXpMyljxEnzfXErfy/fy6vOdl6M3Es4YBKyTe7q7iaed2azOMtqztt/ePb6OjSS5Oj3nmXwzF9itnWwY6CPXqs0Ox/N23y6XgZQz2HrhuU0DW8mC2UfH3v2ApYBP7icJFfyMAVIJEUXfOlSNkWcF9eH//3KCO+4qadp70fTPCobG7/0qRcYS+YpehIhwDYEhZKHQHKgr52RpMoE37m7Y05g14z/AR3cVVORs4U65hZmV/r3VGv7e26G8SEV1Pl+WYLpMutoKb3F7b1XgusoG3uNph5Dj6usHCh3TM8tZ5ClOi+dvPo9GFWZ5579asOi4pbZvU87zWlWTe0i/+yW9/DKlQTvzX+Z7SLBiOzgUfEhhs2t3Fn4DhZ5TOGxQ4zjY5ATAWUZjeQ1uYeXOMSz/t3c1T04G0ishwXiRqA9aPF6dhe/7P0qP2x8j58z/5EdchwpBCf9HRyVgzzh38lJuYuAZWAKSORKGEaQw9uUIUolgKvngriU2pJrmd7dyF3/BzvHv4Zz9jRy/0G23PMQQ3LH3EzwHGfDOhnAWjdNTUu4LoNfx5GylcyXfdzWEeabJ8cJWgaWIVTD6bJ0vLREs/NsyePoedW0ej28V01jGRpJ8q3TkyqwQ1luOJ7ENFQLjd72EA/ff6Bl/wM6uKtmPmvmis1ztbY/ukVt3Zi2CuTssJJNSlR2LdShvjca3yvLPjWaOiQvQ/8bYfgFZWCRnVAZOa8EZkgFdnYULn4Hdr9DOc9pNA2m3iL/hci9PO7eyUA8zIWpLJ4vcR3Js+6Pzx7z3nJw0SdnGKOT/+n9ME/6dyGAuGVxF2vvMrbZuGdfN3+fzOO6kif9u3jSv2v2vor0TMx+KcfAvOPNMaKoBHALSd0WojrTO80BptsPqPMnZPNw/wGeeOrUnExw5ftskF+VAdSsH2oz+Nd9bk1kORnEI4f7+MLLw4QsQbboUnT9ZVXTCMAyBcmCx6eeu8jvf+iWhrwHzfrhiWNjOK6PL8tzoyh3BPUlri9nr1Gt+h/QwV01ixVm12r7TVvJ3QwTAhFVw1TKMZu9m1eVvRpcsLsb/JyaDUPlHN3+Fpg8qTYCSllV82mHIdKrzttiatGn0mhWSmWRP50pMpoqMJ11cH2P3miQqzM5MgUXWWdqrA0uKkggW3SZzBSwTVP3jWogO7vDlNz616nKraYAUe7WK8sfnG2ajKfznLiaZibnsKMjxNeHxpjKlpQVfEeYu/b1LKm2ZDE557LlnnVYr/LAjUy9z63oujx1Yrqpn8NysyeDA3EOb23nu2encX1J2DYolBfyS8UQKtn38uVE496IZl3wlVeH+fNnz1MqnxAVl+eKx06bacxeo2r/BybSBc6MZxhLK2XfWp3/rexzt/5YrD/P4ANKy59PqGxIW3fZhKJL2Xp7vpJmSldZzDc8sAMwIT6wBs+r2RBUzlEzoGpD990H7f1w8P3QvVdJMLPjysX1ylHdC0qzJgwOxHnPYC+nxjNMZUt0RWxu3d5BJGiRdzyMsluKvZCfeA2OD0fPz+i+UQ1kaCTJF14awTbFgp1X3bLkCCSGISg4Hs+enuDLPxhhNFmgI2TyynCSc5MZSq5HpuAyNJqmLSCWtHDZ1hFW0rcqquWci92/lPf56DPnSeadOYv7oZFV1sBrFqT2c5vMFHj+3Ay2KZr6OVRnTwwhZn/+1HMXeeSpU3z0s6/wyFOn5oyjoy1AdyRAZ5tNNGgRtpe+XPbK/y+RgMnC/1maG43//q3TfOxzr5KuMcupNgLrjgRmr1GV/4GJdIGnh8b4ymujnJvIEg2Ya3r+6+CumtrgLZ+Y25+n4u4V7lBGKjvvhr43QqQbpAFubu3HGGiD9q1r/zqaG5PaczTcoRzoYgOq4bAdgsgW1TfRDOhmv5o149RYlrv2dvOjt2zl7n097O6JUnR9bMvktp2dvGFbjFh4eeKR8XRh3dTrbASeODaG60tsa/GlgABKrsQSIIQgVXDY1xuhPx7i9EQWIdX+Zt7xiQYtDCF49JkLiy5chkaSTKYLfP31cb55cpyxVP665s/1ml4vJ8ifb3Ff3bBaszSGRpLzBkS11H5ux4ZTCOANW2NN/RyGE3naQ3PnmoLj8uyZqXkD/pInuXNPJ1tiIYqeT9Ayl/WaUoJlGty2Q89VGwW1SXQBd4EUbsASfPS9B2avUUcO93FxKsvz56aZTBewDHB9Sa7k4Xjemp3/WpZZTT1r5trC7Fpt/+ixsvX8qWt97a6JWVDGuI3EhAGt39YsQL1z9LufVO0RKjbjXlH1uTMD12pKF3OK1WiWQT1JVipfouB4nB7PAMomfznklupmoFkSw4k8XRGbq8kctsmCZhGVK1vOlRjAZKaElNAXC5X7fvkEbQNfKue4sG2QKXoL1pZUy+Xetr+LE1fTfPfsNG/f3z0niF9tX7VGyDo1K5M3PnjvHv76uYt8bWia4USO7TXZ1mZ8DvVqgIdG0nS2zV8Lta0jzIXJDG0Bi+5IgILrQ27p85Vlqk2Qe/brMpqNwhPHxii5PgKVGattdWgZsH9LO3t7ozzy1KnZuSpsGURDFpPZIpGASXc0iCEEZ8azvGVP15qc/5svuFtsAbvcwuzKsbKqFcIsVVdKYYNcZvPyejipa5lEjWY+as/zA++DseNKlumVwAzC1ZfUZkQpDZlxSF1VDc1Tw3DlBXj9f8M7fmNTtt0QQuwA/groR83hj0op/6S1o7qxqF1QTWYKzORcTAHpgoM7TxPghSh5UjtlNpBtHWFKjsfxqymWUyOurOFVcO54ElOAU26CbpU1t44naQ9ZHL+anLPQqa4xmWs2YLPl4LVzpvYzXm5fteoau0vTORzXY3dPdPb+5cg6NYqVmkPkHJ+37OnixFWTVMHlpUsJbt/ZQW97aMluqqupl6xn9DOTc3jb/q45x1UHmgf6Inz+pStYpiCVK5EuqvVcwFCtDhabvnZ2RTg0EOPUWJb3L3mkmvVMJQM8k/MBOSu4VfMexMMBogHzug2QYyNp7tnXRdA2KToevpRMpItkSy4Fx+Pw1ljDx7q5ZJmVDEY+MbfVwWplaRe+rVwsxQIXRyGub866Euq5EGg01Yweg6/9Lpx+CkZeUd9f+RsI90B+Rpn+FNMwdQ5mLkCgXR03fkIFfG5R1ZNK4Jk/3KyyTRf4dSnlIHAX8K+FEIdaPKYbinqSrKAlcH25osCugs62NI4jh/swTYPuSICSt/Rriw+0lyWORddTNXsCHNcnaBkUHZ+S5zMQC3BlJj+v9K2eXK4RmZzaGrv+9iAvXUpwYTKzIlmnRrHY51VPslkdEN7Udy24PjOeWdLn0Ih6yUoGMR62GRpJcWIkhWXAiatpJtLXXM2rA81TY1n29bQxlVGBnWUKLKFqf8MBY8FKuoht0BUNsqsnouerDcS2jjAHtkQANQdW6/RClsEbt7Yjq+TGFelxZ5vN0Eia/b0RUnmHy9N5Co5H0DLIFFyuJgsNr7vbXMFddasDYajvoQ51+2ooJMEKq8bldRHq9Tr3oKSaq0Gsfryajc3Rx671QgyWd4TGh2D4qNqEMGwoZZQ0s7JZ4JXALanAzy63TAjFlNvmJjzfpJQjUsqXyj+ngSFg28KP0lRTvaAaSRYoeT6RgMlqjaaCyzBh0SxM5TPy/OVF254Ez5dEQya+L/Gk4I1bY0SCFkVXErBUrVG2JDnYF5231m21RinzUVtjt6c3ym07OhhJFRlJFoiHbV27uQIW+rzmC8JOjCRnA8KeaIg37+ogFrIYSxeJh23eM9jLE8fG5q3ha1S95OBAnCOH+2gP2RwaiPHWvV2kCy7Pn5uuW+c5nMiTc3zCtkk0aGEKgVmee0qLtEYIBwwm0wWdHd5gqM0wk2jQnCN7NAUc7G+nMxoiHrau2wA5tLWdmZxDwDJpC5iYhsCTki3tId66t4td3ZGG191tLlnmYq0Oaqkj4RySO66XBwRjuO4kjrQJUrhuR0cKCwMfb+YSAm9R76TqVO/19/kw8uri71WzeblyVMkrbVVjkpUWXi5HyClwydxFh5sm7jsYpoVpWJAeUY8rpFS7hApuUZkFzff/sUkQQuwGbgOer7n9QeBBgJ07dzZ/YDcA1VK6//NTL/D00DjLSBDVZTpbasDINBUGB+Jkl1nLaKAa9ZoCgrbBDx3o4b98+I7r5HMnRpLs7I7MeWx1pmelffEWo16N3a6eCAHb5BM/ceuqnnszs9DnNZ9kcziRJ11wZ3/viYawTZO7w/bs8y1Uw9fIeslaGfDd+wTHhlO8ciXJDx/qn1PHua0jzPfOTpLIl3Bc1cys4qPhLLIXUvIk01mHy9M5fuq9B5Y9Ts36ZHAgTl8sSEdbgJKngjpDqM/79HiWvliI4ZkC46kib9gao7ddnbdBy+Id+7uJh20yJY99vRH2b4nO3u9L2fAM7+YK7so9wCa8EGfGs6QLDj1Wnu1bB9hSe2xFwhnqmJVwJr72RzzuvJ9c181zJqJfib2ZaPKbtMsEUE7VSpCibIIrHRwZQvjFOU1h50PW+0Vc+1UUtX2zZn7yrkci45FyVfNV1/fZKwu4mDjS5KrYgjAEtlegzcuQt+IkRAf9fgKzlMUoZsCwKBSynCt2czlnc+KpU5uyL5QQIgr8PfCrUso5fVKklI8CjwLccccda6qXvpF7dA2NJPlPT5/m6aFxnOU0iqqDAIZGdY/GRpMpLi+4q6xtpYSutiB5x2doJHldXdwjT526zsiiOpuxWqOU+ahnoKGzKKtnoc/rsWcv1A3CYiFr1jhpqQFhdQ1fIz/L2kCxJxri3gNBRpIFHr5/bhB2oC9CquDieHJ2TbdUUgWPvnaDvljwhpmnNUuj5Ek62wK0BSxCtkm26DKazJPIO7xwcYY37+zg5Jhyx7xzTychW53/1RsWzZibNpcsc/ABEjMTnDh3mWLJodvMYxST/M+pW67Xu9aRcJ7LWNxZeBbH8/j++WmePz/FuYkMn5h+O5OR/SAlDkIFdkBBWvjlosucL3ClQQlViT5rqrnYV4U54l49WWjqMzSS5EV3P34hRamYo+C6GF4RT8Ko3wFeAeEVmPIjBGUOV0qGnXbyvkHK6CAvbZyZS2R9k2PONkrSYHTg/k3ZF0oIYaMCu09LKT/fqnHcyD26hkaS/OETJ3nu3DRCQGCVqnTJ8gMRzeL4Kw26Bdx7oKeurGhoJMlEVYuD8fT10jdQAcPD9x/gEz9xKw/ff6Ahi+HVtk5Y7wghjgghTgohzggh/l0zX3u+z2s+yeYbts6VZ1dLYpdSc9nIz3I5MuBTY1lu39mBwcqE5PmS5GzZFVizcdjWEWY66xC0DLJFl5FkgWzJI2AaOJ7k/FSem/ujREMWr1xJXicBb9bctLkyd/2H+XLbP2VH8Gl6/XHSgQFO9/0YOXP39W5PVRLOiUyBM+NZTk74bDMu8p30FPGwTXvQouB4fCOxhf0Hf4H/I3Uc6bsgIEAJC4mUBmkZ4Aq9xMgSokScjLqPhTN49XCAQL9uhaCpzxPHxijEP4CbHKZDJojILEVpc0puJyPDZAjTL6YIihxFTMZEJ4bhk3AMXpRvJGAIbvfOMlXsJh0Z4HLfe5iO3kS86vk3w06kEEIAjwFDUso/auVYVupQ10oqmcYv/2CY8XSBgitXHkDUEFpCTzbN0hkaSa64ClJK6G0PXScrqrbMH+yP8oPLSc6MZ9jbE+EX37l3zc/btcoIrgeEECbwp8D9wBXgqBDiy1LKE60c10KSzfmcTpeSlWvkZ7kcGfBwIs9AR4hIyCKZd6+7fzGKnse5yeyyH6dZ3xw53MeTx0ZJFVxS5Yy0LyESMAgFTIKWwVTW4d4DvXUzws2amzZXcAe86m5nYu8vYohrYVV7Pb1rlYTzxYsJQpZBr13iXKGLpOMQDVoIIRBCEA1afGOmj23cyW0cJy1DlLAJ4LCTccZkBynaMIRPSDqkRRthChj42OWeQEsJ8iQw5nezQ7dC0MzDcCLPUKaP7zg/wRHzKH3+BFdkD0/4dwJwxDiKg8X3/DfQTQJX2GT9KBKJQBDzsnzDegv/s/gz3LO9i75omIl0gTMTWdJ5BwQ3lCRwFbwN+AjwmhDiB+XbflNK+Q/NHsiN1qOrsrD3PJ+pbJGS4+PJ5RjtL0zIXq0plaaaJ46NrfizkcBEukDAMucsyCsbEiXX4+J0nv54iFzRYTxd5D8+cYqvvDpSrluRayYzXm7rhBuItwBnpJTnAIQQfwf8GNDS4G4li9alBluN+iznGyNwXbuObR1hvnlyvCwrXX5wJ6UkU3Rn5cqajcHgQJyH7tvHJ79+lnRBxQLRoInnQ1dbgKBlkCo4C0otmzE3bbrgbsn67cEH4Luf5PKEJGSGiYkssWCBP8+/HdOEqWwR0xAk8w6WkJy4muLP5bv5NXOSbpEiSp4iNqfYRka2kSFMXGRJEiYm8yRkDEt4DPtd9IoZ+kUSEAiuD/Yqeu8ZGeH3vH/Of9ONpTXzsK0jzNeGxigYu/iv7CHrzpWwnfR2zf58UFzkQfMfMIA0bbSTJUaOz4sfnrXuNYTgpUsJgpZRtjsXCzat3ShIKZ9l+Yn1NeFGqx+qLOxPjKQI2yb5ko9oYAsXd5nOjpqFOX515Zk7U8Dxqyn29ka5c3fH7AL5+NUkt26Pc24yR9Ay8HzJdM7Fl5JYyOK7Z6fpjgS4c0/noo2wNdexDah2uboCvLX2oFYYPi130dqKDGvtGOdrzP6ewV6+8LJDaQV9WwygLWARtMx1rbDQrIz336JUfb/3D6+TzruEbEEoYGAagoKjJJqNMIZaDZsuuFtop6jWtODHDvw8EyN/S7c7xhmni2+KH+WS1Y/vSXIlH8+XFB2XbMknbBucLO7iE95PcsQ4yjYxyXBNxqTNLxITWc7KbZyQu3nCv5OTUi2232t8j58z/5HtjAOCjAzSIXK0UaRAgOe9A/yp/yFOyl16J0gzL0cO9/EX3zlPwDTJOwvvNp6Uu3jU+5E55+v/ku8kaeyi0/M5N5nl9HgaUwjaAhZtAZN79ndjm/qC1UzWylFwrahkGjMFl972INNZp2FZO4C2gL34QZolkyq4CLGyFqoC1ZD+PYO9fO7FYaazJUquz3S2xLOnJgnYBj3RIMOJPAJoC5hkSx5CQDRkcW4yx917uwFma/ZuVOOgJlJv0+m6T6+Zhk+rodUZ1vlk76fGsrx9fzf/+9WRZT2fBdi2Qbbk0R0NcPzq+q+N1iyPoZEkTw9NcMfOTk6NZUBAvtyQPO/4vGN/N/fs7+aJY2M89uyFlsxlmy64WygtX7t788njIYqxj3ByLEM0ZBG0DLoMp7x4CdIWMBnxQPrX6udOyl1zsiMV6t1WzZP+XTzp37Wk96AX1pr5GByI8/Z93Xz3/PSSFmv1ztd40SNoqd2nvOOR93yKrk/BMZnJlti3pX3dSgI3Ijda/VDQFDxzaoLxdAGzvIjPFV1cX666DQJAV2TTXbbWlHjYwqyyeV8q2+NBouEAsbDNd85McWkqRzSkejxVavCMvCRbdJnJORgCOtramMqWCNvmbANfUJsWJ0aSXJrOLWiLrwFUpm5H1e/bgastGssNz0Ky9194+26ePD5G0BJ4vmSxJF5lE8sQsLMzjG2aXJnJ6w35DUb1hkA0ZHFmIovrSeJtAf74A4eA6+OJZs9lm/IqWW+n6JGnTtXdvXlhLD1nSyxkm3SEbYKWyVi6iBBgmpB3ZMN2phdD7wRpFuKh99zE5JeO88LFmWU9brZNh1C7+fGwTcnzEQJs08AyDZ4/P4NtGuzuia7J2DX1afXu9mJUVA8nRpKcHkvjupLOsMVExsHxPExDELJNPF9ScDzcVUyWM7nl179o5ufQQJzvnp5YdpsKx4dCyWV7Z5iXLyeIBs3ZesiOtgD5ksvVZIGC5+CWo/oLU1kMIQjZBhensngSvnduiv5YkGTeZVtH2w1lHNQijgI3CSH2AMPATwP/rBUDuZFbtFSobEaVPJ9YyGb/lgi2qWpIBwfi3LQlwtBomtQidXcBA4QhiAZt9vVGKLpqU/RgX1SfwxuM6g2B3vYQiVyJ8xMZLk5n+chj3ycesji8Ld7SuWxTBnf1mG/3Jl10uWdfF+cmckykC6QKDo4nSRc9dnaGCZiCS9MO0Lzg7qTu86RZgMGBOD2RwJJ24itNOB1ffQewDIP2kEXB9bAFZD2J43pIqfLTJ8cy/OI7963pe9AsTiMWVo16jsouZTLnELItCngEbItIwCOR95BAyfMxDYiFbRI5h5VWzmWKOrhrJOlCkayz/KuX6/u4vsGW9iBXE4Xrrn+ZoocBDMRDjCTzOB54PlgWjKeKhGyTXV2qnvRqIs/WeGhRW3wNSCldIcQvA08CJvDnUsrjzR7HfLVqN1KmdWgkydVkgUzBJRo0yZdcnjs7zZ6eCHfevlX1aSy4bGkP4vuSbMmb97pa8kH4khmvxGvDLlvjIe7a101XJKjP4Q1GdR38ixemeP78DI4vMYXa8JrKlLgyk+NAX4xbdsTpiYaaPpfp4K7MfKYFfbEQQcti/5YIY8k8rg+2ITCEYDpXouD4eJ6SGzUruBtLFZv0SpoblaMXp5d0nC9VVi5kCwbiYSYzyihoJlcimXdnizsMAa4PhpDEQ9YNc/HeqDRiYVX7HOcnMjz8d6Ps6A5zaCC+5ECvWqKSLrrEyhJ2X0rawwG6o0FSeYe84zOVLWEZEsOAlfqi2Ma68LnZMDxxfHzZNZEGUHB8Qrbq43rbjni5l6EgaBkUXZ9M0SUStHB8SWdbEF/6ZIseRU8SDVrYlgBhEAtZHNgSZTRdJF1WDFSoGAdthAxRIym79jbdubeaG7FFSy1PHBtjV3eEgXiIMxNZMgWX9pBFwBQ8PTRBPGyzqyvM987PqM1OAxyPeTemJCoTGAlYTGRKTGdKs1lAzcahUgc/nSny4qUEni8xBJiGIOf4CNR6aTxd5MWLCd68q6Pp54EO7srMZ1rws3fv5OmhCc5NZMg5HpYQSNTuc7rgUnDcVUmMVkKpEYUrmg3L7z7+GhMZZ0nHKidWn4F4hFzJAyS+9HFdX92HWsgZhiBsG3S2BZDlNiJ6wdU6/vq5i5ybyKhsmBAUHJepjMO3T0/w3kN9fPjuXYt+FtWLs4l0gVPjqjA8mXOWFSxWqx5iIZuC4xG0DM5NZtnWESZXckkXPbojARK5Eom8y2ris0JJZ+4ayUzWWfbGpGWA50tsQzCeKfJr9x9gNFVkMlMkVXAIWia2KehpDzKTcwiYBpYwEULg5R0O9EXJlnzuP6Qa9/pSknc9kuW+UdXX4Dt3d8y21hhNFfjBpQRPHhvlofv2zbrWaZrPjdaipR6V92AIm9529V58KXl6aIy37unG8TwuTOXpjQYwUOUKi2m0iq7ENDwsQzlN37PfWrfmV5qVUamD/+0vn8DxlMN90DJwfZXlkaiN82TeIRYyOTasHIWbeR7obrBlKh9WPGwzkizMdpV//y3bePDePZTKphK2Jehss5nJOTieT8n19U6yZt0wNJLkr567tKzHuD6YpkG8zebt+3vpj4WJhGwqvaKFAMtU2eqAZRAPW7NZn2TemZM5GhrR9aBrzdBIkm+fmUJKiYGqY7o4lUcIiev5PHdumk88eWrRz2I4kZ+VwZ2ZyBK0VBYlXXRng76Kg+FCbOsIky4bY+zfompNUgUX1/MZSea5MJkjU3QYTxcwhFoYraaf+Ux+aRsXmqUhVqA56YwE6Y4GANUK4bFnL9AfC/KGrTEOb+vgnQe38KbtHUxkSqQLDtPZIlOZIomcgwFMZktEqySY6YLLoXmuwafGsniez6nxDEXXpytig4BPfv2snm9aSPX/fYVGtWgZGknyyFOn+OhnX+GRpxafy1bKfO9BIGgPWZwZV/NiVyTI/i1RdnaF2dG58PuTQN7xSBVc0kX3hpKpapbO4ECcnV1tdIQthFBJl5In8bm2KW4aMJYukcyXmn4etCxzJ4TYAfwV0I/Kcj8qpfyTVo0H6vc/qfTtaQ/ZbGn3aQtYTGSKWIYgU/SwTAMhBHKVJgHLRbsvaerxyadPL+roVcEyIGQZSCH46q/cy0c/+woD8RCvDicwDaFMVAy1T9lmWyDg5v52dvdEN4Qk50bliWNjdLapv3ciX0JKiWUKiq6ko82mPWQxmSku+llUS9ErNSdFV5kKwNJ34atVD12RIAf7orx6JYnj+ri+jyclrgsl122IdH0Fbac0CxC0BLllxsvJfImONpt03ifWZjEQD81m2h68dw8Ax4aTRGwT3/dJFzwEELIEHZEAY6kCuzrD+FLOae1RzzjosWcvMJoqELSMWcOWWMhiKlua9xzXqoK1Z61atDSzlm++93Dbjjjpgkuq4NAeVMvkouvT0x5ib08b4y9fobCAgKDiVO15erLayGQLDnnHK1+T5l7d2gIme3ojOJ4kFrabPv+0MnPnAr8upRwE7gL+tRDiUAvHM4fazMRALEiq4DKVLpIvevjSp+R6GIKy0UTzMARL2lHXbD6eOT2x5GNdH3Iln4AheOSpU5y4muLJY6NMZ1Xj1kjAmL1IdbbZbOsIYxgGRw73zcn6VLjRJDk3KsOJPIMD7RRdn1y5wF8gcTyfrkigXPPkLfpZHDncRzKvJJjRoEmq4FJ0ffZviQBL34WvVT3s7oly975u7tzdSdGRyLJMpVGzZMDUSolGMTSSXJHMv+RJRlMlHN+jMxzAEGJOtveJY2Ps6GrjnTf3Eg3ZRIMWoYBBwDbZ3hXhzl2d5Fw5J0M33+JnW0eY6axD0Lq2XCm6Pt2RQN1zXKsKmsN8aqfVLmKrNw5rz6tGM997uGd/N987N8VossCFySwz2ZI659psjp6fIRYOLCgtr8x3Uko+9dzFho9b03qGRpK8PprGEAaxkEn1Zck2YHdPG4YQSCmJh5ufR2tZ5k5KOQKMlH9OCyGGgG3AiVaNqZrazETF+v3sRJaCV6DgeBiG2i0XyKZm7WwDvYjW1CVbWt5OoQ8k8i5ffPkKhwbaee7cDJ6UlDwP2zQJ2mozYTxd5Ef3dM025jx+VVneH94WoyeqahUaJcnRLEwl43b7zg6+eWqCfMkDIYiHLdoCVrnmbfHi7er+ebGwTargcrAvSlckOBv0LXUXvjbj8tHPvsJERmUVGz011m4qaFbOE8fGMFdSViArpiqSyWyRyUzhOke4Si1TPGyzvXwuZooed+/txpcqsPvET9y66EsdOdzHk8dGSRWUWU/FYn53d1vdc1yrCprHclu0LCWjuta1fPXG8PD9B+bc//TQBAe2RLEMuDCVp5Qu8tY9nVxNKlfYA31RxtOLm5ZFQzYvX040ZNya9YWaOw12dYcZTxVxPEnJ9TEERIM2noSIbbK7u60lraPWRc2dEGI3cBvwfJ37HhRCvCCEeGFiYulZidUynMhTdF2+d26KL/3gCp978TKvDifxpORfvmM3beVUvetLnCZn3n2JXkRr6rKShbQELk7nee7cNJGgSdA0ylkhZXyxrSPMW/Z28eG7d/H00ATJvMOt2+NkCso2ejydnw0Gjhzua/Rb0tRQybgFLJN7b+qhJxLANFQtcL7kki649ESDS/osBgfiPHz/Af7sZ+/kkZ+6ld090Ybswm/rCDOcKBCwDewGX2UMoTN3jeLESJKC4y37cT7XHANnsg7fODnBZKYwu8FTXcsUC9mzAVmlzm45G0GDA3Eeuk+1XpnKlghaBv2xICfHMhy/mryuJkurCtYnS82ornUt3yeePMU3T45zbDjBN0+OX1efXNkc2NMb5b7Bfn7sTQPs6m7j0kwex5Mc7ItwZXpp55Ljegj0fLURGU7k6YrYOGW3/FhIlUS4vmrXYwL9seCs2qnZtHwLVAgRBf4e+FUp5XUN3KSUjwKPAtxxxx1rmh+r3tF5fSRFIlciHDBn6wUyBZf+WIi//O4l0nmHUrNtMsv4Er2I1jScRN5VBkGmQVvA4qYtUYquT7rgsiUanLMjHg/bvHWv4PjVFK9cTnH/ob7ZmhnN2lKdccsUXe492EsiW+L8dA7Xh7vLgfhyP4tGNko/criP//nd81hCUGzwNJnWfe4aRjLvsoLYbhYlP5PkinP7g333zBTfPjNFZ5vNQDzIqbEiAhgcaF92Vhjg/bdsY2+vqvU9MZLk8lSeA31RdvVErqvJmq+tkd4QbS1LzaiuVS0fKJfh85NZ2kPW7KbD+cksf/3cRX7vQ7cAatFum/C9cylSBYdYyObQ1nYcTwWe3zw5Tmqhgrsqco7P7i593m1EtnWEKTkeZyeyuJ5PruhRcJVzZsgSDCcLuD48dN++lqyLWhrcCSFsVGD3aSnl51s5ltoi3lcuz5DIq2JJKSHverieZDxdIF30MIT6EJtcbgdAJGjqRbRmTcg5PgFf9aGqUOmBVSuX6W0Pce+BICPJwhxZi2ZtuRHMIgYH4rxtXzffPTuNEF7zmoBqlkWsERJXCTnHI5/IM5EucG4iwxu3xXnb/i5OXE1zYiTD4YF2OiIBSp4kHrbn3QiqPbcP9EU4NZadc64DbOtomzdIWMvgQLNyliq3rN68qnzujdo4fPlykmjQnDXmCdkmUkpevnwtcxc0Bc+dm6Y9ZNEeVDL3b5+apKNNtXI5P5WlUPIwmL/fXYWAKeiMBFY9bs3648jhPn77S5PMZEuz54EAogET2zJpD5ncta+bU2NZ3t+C8bXSLVMAjwFDUso/atU4KtTuKtmmyUAsyKWZAlL62KZJLGSSKXp4vkR1BGsNvtRumZq1o+RJMgWHyUyRcEAZIXzn7BTtQYtXLs9gmybRkMX+3giBJdR2aRpHM53kVstD991E0T3FSxenyRQ9nNX0P6iiRy+WGsYbtsb55snxVTmQFj1JJGAQCVokcw6TmRKvDSe5e1837zy4ZTaLttgGUO25fWEyw+dfusJtOzpmM3R/+MRJLkxlCVkm7WGb/b0Retvn1vqtZXCgWTnLyahWqwgqAf9jz15Y9WaWRF4nkxTl268dw5wjCo5HIu8QDpgMDsS4OJXl7ER2SWLLnmiQou5LvCE5N5Hh4lQWwwDpXzPRKXo+Qggcz2ipHLyVmbu3AR8BXhNC/KB8229KKf+hmYOoTBxf/MEwfe2ql0lve4hoyKJYUmYSkWCAoG1QcDwcz2/5JrRtGOt2QafZGJR8mMkUCHQo58RowCw3oHYYiAUpluD5c9Ps7G7jY0cOtni0m4cnjo3h+z5DI9ckQ/2xYEPNIlaSGaz3GFA1Bz5qB7tRwV3t7r9m5Rw53Mdjz54jU1y5NtMQqqG5QGAYgnDAIFdyefVKkrZglnTeAcGi51HtButoqkgkaHF2MstoushkusB01kEg2dHVRtHxeOlSgtt3dly3ydRIibGmMawko9rozazbdnTw/LlpEKLsKuyTKXq8dW/X7DElT3Lnnk7OTebIFFwyRZeBWBDbNDGE4C17uhhJFMg5HgFD1HWbNQVYhmAm7xLU7r4bisq17tPPXwQJAcskX/JmFU4lV+L77uw53qrN71a6ZT4Lra00rZ44+tpVq4PZi4UBr4yppqkFp4Rg8RR8s7AMOWsNrC9gmrVipuBjZQp0R0MYQtAdDRIJWmSKLpYliYYstsZD+hxsIidGkpweTZN3VA+56UyJsWSe3GoKp6pYymKqnnTu6aGJOY/5xJOn8KVkV3eEg33tnBxN0yjnqeFkoSHPo1FB0J6eCK8NX1fuvmR8CQVX4maLBEwD15O4vs/lmRy7uyPYpkAIseiivFa2lyo4GEiuzBTY3d1G3vGwDMi7klTeId4WIGiqut+9vVEtu1znrCSj2mjn04/cvYuRZIHpbIl0wSVgGezsbuMjd++aPaaSYbx7bzcA/3hilIAhCAbUcrknGuLtN3Xz1IlxpJQYQv0PVGMagnDARDWp0WwUqq+PjucTMAUl18M21Dngltv+tAUsHE+2VA7eckOVVlI9cdzUF+XFiwkAnj83yVi6hEDO6qrX0z9oMu9p9y/NdaxFH6fJjMPB/namsg7tlknQMjANg/sP9c3amWuax2iiwFTWoS1gErRMPF+qzybRmM9hscVUveDvk18/y4Et0TmPeTlTpOB45Eoek5nikg0IlkKtk55mdTQooYrrg4FPyvMxhaCjTZ0PJU/y5l1xbNNccFFeK9uLhWzOjGcIWoKQbeJ4EsMQRANKkhmyTZL5EoYwtIrlBmG5GdVGt0UYHIjzsSMHF1Qm1GYYA6bBVLpIRwSeOjFGNGQRtgRdkQCpgoOJwDYF2XLPUVDnvF90OTTQvqI+kpr1SfX1MRK0KDk+AvCAkG1guD6eVFJe1/cJN9oqehls6uCueuLoiYZ4864OTo9leOVKlpBl4ABCgJDrK7gr+VK7f2muYy2avErg+HCKA/2xWcv0ldiZa1ZHJVt2blI5c9mmwDQMQGIagswCDpLzSSbrLXAWW0zVC/4cz2c0VWBP77VePql8iamsQ8g2CZfNCxqF7nPXWBK5UsOeq9Jm00OSLjh4Evpj6nxabFFeu6jujwV5bTjJtngIKSWmEBRdn+2dITwf7trbPRsM6sBuY7IWzqeLBZjXZRjjIUZTBVxf0h40mUgVGEsXGOyLcnpCtToout6suZ4ATAMiAYtzkzm2d7SteKya9UX19fHWbXG+c3YK0xRIV+JLlQgK2wY90SBbYiECltmyEqoNd5VcTr1I7cTREw1hmybHryZBSJyyrakhwKv6x5VV31uFdv/S1DKcyK/JeTmTdxmezqqdDgnxiM1XXh3BMsRs/ynN2lGdLQvZBq4BeUftEkeCJrGQgWWZc46vzIEBUzCWKrKjq62uZLJWernYYqpe8NcdCTCddebclsg5OJ6v+oWW5XSeD9SRMC2Xwb721T2BZg4LbQwsBUsoORKo66JtqCDPMk362oOYhuDFiwkO9kUXbOZbu6je3RPlnQd8hhMF0kWX3vYg2aKL60MsZK6opYLmxuJAX4RPfu0sri/pitj0x0KYprHmn3l1APjIU6ewLYPRVJFUwaHo+fTFQpiWxZZokMuJAtUrQklZouerCe/SjFZYbRSqr48H+mOk8g4vXU7gIQkK6GsP0B4OAnBTX3TVMuLVsKGCu+UW385X4NsWsJTe3wCBQAjwvGv/uNXfW0Ur072a9cm2jvCabTqMpIt0hm2ClkHB8emOBBiIh3h6aIK9vVG9c76GVGfLBuJhriTyREyBbQl6okGmMiXituCjn32FoCm4mizMBm7PnJogXXDpjwcxhD0rmQS4ZXsHMFd6uZjpQb3gbyAeIpVXx7WHLC5OZsm7PrYQGEDJ89U8iqQRCqUO7ZbZMIZGkhRXWa/pSrUBahnKpMLzJQiJIQSTmRK7utsouj4nxzL84jsX3gyqzapUX9PbQxaXprKcHMsQK/8/aBfMjcvQSJKnhyY42B9lJFlgKlsiVXB56N3N7Rs2nMizszsyuzHxjydGiQZMJtMF0gVXZZXLy7FZEwmpfjMFTGcblxnXtJbq62PBcRlNFRmIhznYF+FqssiZ8QwdbfCmnR30RJemWFgrlhXclfvSHQaGpZTjazOklbPc4tv5CnxHknmOnp/GMgSuf02TuZS+Js2ilelezfrkQF9kTc5PgdrkcH3oDtoceePA7H3JvLNujH3W+/y0UuZIQXbEyRQccuV6tnzJw/E89vd2zAZzmYLLQDyEIWwcTxINmpwZz85ebIquN8cOfCJd4Mx4hrG0CvreM9g7p7dY9QK6XvBnGAYP3bdv9jGj6SI7O5UUKVNSWSHXlw07N8fL49Ssnk89d7EhrmYqGyuxTYOC49LRZrOlPchYukim6BELWcRWIJ+sl837xXe2pinwatioc9NCrLYfZ/V6rhJYJfPOon3D5nvdlY6nXi3oeLpAKu/iS0ksZJEquHM2VVX2rtx2QZtlbhiq56Pnz08RDVkc3hajJxriQD/kSi6TmRIvX0oSDWVb2i5qweBOCPHfgE9KKY8LIeLAc6jawS4hxEellH/bjEEulZUU39bTX791TzcjiTyTmRJ+eUliInF9sMuNy90Wp+5KrqcdMzVzODWWrevctVokanGeLjik8g7pFy8Tsgx620Ps7W1jONEag4u1np+EEEeAPwFM4M+klP/Pqge9AqoXFz3REG+7qYdjwylKnk97yGZwoH128VPyfBXMTWSrWrq4pArXZJPBKgnnRLrAS5cSAPS1B0nmHZ4emph302ghx7v3oxZWv/6ZV3E8j1TBwzbBb2BgBzTUnGWz892zk1imAe7q3VYdT20cBC1BZ1sAyzTY2xvl7qrauJVwI7Y1uNHWTo2mES0MlrqeW0yG/ugz53nPYO91jr5LHU+9WtChkRRdbTYlzydbvFZvV03B8TEE7A7rmruNRGU+qpyfhlDR+0S6gONJskWXvliQYsltabuoxbR975BSHi///PPAKSnlG4E3Ax9b05GtgG0d4euc1FZSfHvkcB99sRC2aRAJmLQHLUzDoCcSIBK0EOtgJ+bMRFY7ZmrmMJzI173INAqvXDCcLUv1ErkSz5+baWUfnzWbn4QQJvCnwPuAQ8DPCCEOreY5V8qRw32z9UW+lNimyd7eKH/0k7eys6uNnd2R2WNjIRsJZMrz4P7eCJmiR8A08KWyZu6JBumKBEjmHc6MZ2YfW6kRqGwazcfgQJyH7z/AJ37iVh6+/8CcFgmPPnMe2xTEQjbRoMl4urSqBtn1yJd0cNcoMkVvdnGyUgxxbSERtlWGLlt0yRRc9va0zZ67FSOfTcINtXZqNNVZN0OIJc0rtSxlPVeZc5J5h4F4iONXU5yfzOJ43pzX/cvnLq14PJUNrXjYZiRZYHdPlMH+drbEQoRsU8nORf0Lb5tt0hZa2aaGZn1Te36emcgSsk329EQIByxKfmvbRS0W3FWLhe8HvgggpRxdqwGthtpFUL2LytBIkkeeOsVHP/sKjzx1al77+EjQoi8WxDINciUP0xC8eVcnB/pjdEYCWC0ueavovbVboabCto7wmteCClShuCkEiVyp1cZCazk/vQU4I6U8J6UsAX8H/FgDnnfZ1C4u4mF7dse59gKzf4sK5mxT4EtJwDLZ2d3G4a2x2cd+9L0H+NiRg8TDNmPpIrGQxZt3rb5GoLKg29YR4kqiwFiqCLLxqqTL07k1afuxGQlZBtlVGKoIVMPmjjabeNhi35Yo4YBFVyTAW/d24frMOV83ETfU2qnRDCfy17naLndeWcp6rjaIrJahV7/uWKqw5PHUWyMODsQ5criPoCl46sQYZyezJHIOd+/rZiAeQlRtkKgG5up/w5OSeHhDWVtoytSen9OZElJKbtkR56693fzwoX7uPdBLsUWtMBY76xJCiB8FhoG3Ab8AIISwgHUXVSzWJHOpUoEnjo2xqzsyazhQaWI5lXPY3xvhwkRGOb+1kGzR005hmjkc6IssftAqkUC25FN0HUK24F03b2llH5+1nJ+2AZerfr8CvLX6ACHEg8CDADt37lzlyy3MfNK0WsmQbaqdw75YkJFkgW0dYT525OC8EkugYVbjw4k8tgnnJnN0RWxyJSX1a/RUWXQ8LUdvEB1tAWZyDm5pZbJMQ0A0aOFL2NHZxl17u2f7X/7+h25p8GhvKG6otVOjqWe8dHEyy2i6yEc/+8qSat6W0vT8+NUkqbxDpugRDVkY5RK3ahl6uuDSFwuRLriLznPzrRHfM9jL51+6yvnJLNGgSWfY4spMjpFEHmGAU67TEeWyiIqCxpeSLdHgav6UmnVK7fnZFQ0wEAvObpJCa9tFLRbc/SvgPwEDwK9W7TrdB3xlLQe2UhbS5y/VcKVW6x0L2eRLSmYiBBRcH9sQuFI2vL5pqbQFzM24G6pZgFNj2cUPagCmACkluZLkubNTvG1/T1Netw5rOT/VSzjN+W+XUj4KPApwxx13tGQmqLsAeu+BJc8Li7ljLpWhkSSXpnOcHksTMA1624N0RWyyRUGu5OF4smEZ3qIrtRy9QfTHQ0xni2SXEdxVG4v5Un11RWxu2aHOOa0oAW7AtVMjqZ1XLk5meflygtt3diyr5m2h9dzQSJIr5TYDsZBF0fHIFBxl/BUN4Es5O5/97N07eXpoYnY8881z860R//K5SxQdj/aQRcg2kYAh1BoQ15/9f6guizDKx1xNFmazf5qNy/7eCGOp4qxr9EqvpY1iweBOSnkKOFLn9ieBJ9dqUGvFUgt0a3ed9m+J8NzZadpDFqfHMgihutF7EnIlryWytLv3devJQjOHE02SqlUSdQZwtSy/a8XFa43npyvAjqrftwNXV/mca0JlAVQxFnjs2QtLdoMbHIjznsFe/vK5S4ylCvTFQvzs3TuX9Vl+5dVhPvn1s2SKDpmiQ5ttMZIs0BYw1MK/zWYs3Tg7cB8ItK7Oc0OxpT3I68sUzvqohYNhqsWslLCru42uSFD3niuz0dZOy6V202k0XeT2nR3XjJ9cj3MTGX79M69y/6G+ZTtpggrEDvZFOTmWoej6BC2DUMCiUHLZ1hHia0PjSCS37ehgb2+UB3ujC2YBYf414liqQNg2iJXr56azJdoCJrmSS86t3/fYR819u7ojWmmwAanN8qYLyj3VcT1Gku6851izWLRyTAjxPiHEt4QQk0KIifLPP9KMwTWapRqu1DMw2NMTYWs8xMmxNCVXUvIknt+awA60u67mepL55hpNyPJXJGAuq1C+kazh/HQUuEkIsUcIEQB+GvhyA553Tag1FqjsjC9Wm1bpJXVoIMYHbt3KoYEYTw9NLLmmbWgkySe/dhaArfEw7UGbgutTcj08CW/cGiORLzV8ntTzX2NYac2sC9imwbbOMO882EvO8RlJFnBcj7Bt8NizFxasad8MbKS100qoNl6qNn6adeiVEl/6S56raqn0n3vzrg5Ctkm66BILWfTHQwRti7fs6eI9g32zbaOAukZQ1cy3RuyLhZA+XJzKcXYiw3S2RMH1yDk+lPs8ViNQt6WLHgXH1UqDDUg906Bd3RF62kMLnmPNYrFWCP8SJS/4GPBC+eY7gP9HCLG9LEu6YViOBClsG3zr1Djpgkt7yOLmvnZKnmR3d4TpTJHhZKFlkkygZUWamvVLLNScwm2zUlcAgOTcZIaAbS7yqMazlvOTlNIVQvwyapfdBP68yv1uXVBtAX5pOkd/e3DJPT4rLLc3aL3Hu76kK2IjhGBbZ5jL08qSPB6yuZLIswq/jrrYhp7/GkXRk4QDK3MHyzvKWGlXT4SAbfILb989u5PdHbVWZH+/Udhoa6fVsq0jzPmJDKPpIucmMhgCOsIBOiOBZc851c+p3H9Ds3VOybzD0QvT5CcyylwlZLG/N7LktlHzrRHvu7mHP//ORfIlj5AtkFKSLqhWBwFLUKjpjSWBgCEwDMHQSJp3HtyyjL+W5kZgJa3Xmslis/rDwA9LKb8upUyVv76Osgd/eO2H11gWcp2rUNkBzxZdAqZBTzRI0DQ5O5Hl/GQWgWQsXVxTy/mloGsaNLW8YWtzFlCevLbbH7YMLkzlW9UOYU3nJynlP0gpD0gp90kpf2/Vo20gtZm6qUyRU2MZJtKF2WOWcqFZravdcCJP0BZcmMpydiLDVLZEd9TG8ZVN5nimhGUIGnl6mIbQ81+D2NYR5mqisPiBdZBSZTUq6pdG2N9vIDbU2mkxFnMhP9AX4eXLCVJ5B9fzSeUdzk1mmcoUmcwUVrQoruemeXEqy1S2CFK5ZhYdj5cuJZacPatdI1Yy0f/r6BUKJY9cyWUi41BwVQ1xZV6rtxx0PKVZnsltujYgm4JGtV5bKxYL7oSUcrr2Rinl1BqNZ82Zr0dThcoFajRVJGSbxMM2QdtgOlfCFHByLENbwCRgtVYY1BbQwiTNXJrhllmNJSBoW1iGaJU8ecPNT0uldiHdEw2CUL12KizlQrPaC1TAFCSzDiVPYghwXZ+JVIl42OaPfvJWAqbAtkRDN8OkRC+WGsSRw30UnJX5mUpU9q5iT98I+/sNxKaZm5YiCT81luX2nR3YhjJYEkIQK2fGXryY4NJUdtmL4nqb9VvjIfraQyAEQghCtknQMhgaSS/5+StrxF94+25yjk+26DKaLJAruXhStTkIWgILKPlcl7WbRYAQgnfs1/4IG5GltOpoJYvpuFJCiFullK9U3yiEuBVIr92wWkcl1ZoqOBjAuUSOTNGj6PqzTkyRgCg3fm1d+u4LL49w74EtetLQzPKdM81dN7gSHF9y157OVrVD2BTzU7X8smKUUisJ2b8lwgsXZpjOlOa4xC1mbLFat0wBBGyT3qBJtuiRdzwMQ3Cov53BgTjbO9s4O55uaDuEroit570GMTgQxzDAX+EH1B625vRcbFRbjQ3AppibYGnS7kp93GiqyK7uNqazDqaheqaC2jT/xXfuW/Zr17ppfvSzr3BoazsvX1KBZdAykFKSyLvLXnT/9XMXOTeRYTiRp+T5+FJl6gQCyxBggu/L2TKF6kugJaAtYBEN2Xz47l3Lfl+a9U+1adDxq0lGkwUSuRLfPj1BNGhyz74ePnL3rpZdqxYL7n4d+LIQ4i+AF1HRzJ3AzwIfXuOxtYTKBcoUSmrkeD4CtVtT2aGZzDotL+h3PF87MGnm8PLlRFNfL2QZbO8MM9DRNmdB10Q2/Pw0X9+lNtuY07epJxri5v52RlLF2f52S3HqqnW1C5iCtrIhxlIcN4ue5K17Ozk3kcMyHXaE2tjb24ZTdtb/pXfu5df+7geN+nMA8K6b18fO6EYhGrRIrMCMSQD//kdunj0/GtVWY4Ow4eemCkupPaqsq1IFh862AEHLZCJdRAhVKx4LN2bDpvI6b97VwZnxLKmCQ8A0rsue1dswq73/22em6AhbSClV24OKyYIou8SigkfP95G+WiNahsD1JJ4E29RZu41O5bM9NpwkkSuRLrhYpiCRc3nm5AQjycK8fWbXmgVlmVLKZ1GNew3g54B/Uf75rvJ9G45KqtXxfJxyp3IhBGF7bhzc6nL+7khgs8pdNPMgmrjlYBnQ2WZTrJJlNZvNMD/NV8ck4TpJiGEY/M4HDi3bqatahpR3fGzLXLLj5raOMEHL4q693fzwoX7u2ttN0LLY1hFmaCTJqbEsotZKbpXs6t6UmaA145693St6XG/U5v23bJv9fSk17ZuFzTA3VViKtLuyrgqYBgXHwzQEnZEAP3yoj0Nb4w2rF6+8jm2avGVPF2/d083e3uic7NlSZKRPHBujs82elXbapoEhrpmIedLHEEpubgiDgKUCvko/T8tQAa7O2m1shkaS/PaXT/DSpRlmcg6mUZECCxxfMp0ttazmeFGbLCnlqJTyt6SU/1RK+SEp5X+oasi54ahcoEzDwDYNLEMQtAxKnt9QU4DVMhAPbVa5i2YebtvRnEWUQG14mKagKxpo6QJuo89P89UxlTzZ8IX0Sgwx5qs7ONAXmV1ACdFYQ5Uvv7JhPt51wa07l3/OWAbcsavrutsXq2nfTGz0uanCUmqPKuuqw1tjs1niN+2IE7DMhm4OLmWDYSnz3HAiz+BAO0XXJxq0sIxri+WAKfB9gWlAJGDgeD5FV8kyKy7StmnQFwtt6vN/o1PZJJjOlBBIXN8n73iUXB/TEHhSUnL9liVhFmuF8Br1k1QCkFLKW9ZkVC2gNk3/ph1x7PKKJFt0OTeRbWjdyGrJFL11U7ipWR/cs7+bT3//8pq/TtAy2NXdxqGtqgH2chtnN4rNMD8tVMdUW2+yWlZi7Vxbd5AquMTDFn/53KXZ1gxBy6C4QtOOelyZyTXsuTY7X3l1mEefubCsxxiVcvN1tNm53liruUkI8f8CDwAl4Czw81LKxErH2Qhqpd3zScIHB+L83odumbPWiofthjd6XmxeXGyeGxpJcmk6x1SmSNg2EULQHQ1iGQ7Fcv/OkC3oi4XwfEm25FNyfYRQ18at8RC2ZSKF/gfZyFQ2CbqiAdKFEpYh8aWk4HgYwsQUgoBltCwJs1jN3Y82ZRQtZmgkyR8+cZLpbImS63N6LE3QMrBNwWiyyESmsK4CO4C+WFDvCmnmcGosu/hBDcD1fCzT4Ob+CE8PTVxXD9bETN6Gn5+aWce0UkOMymd9aTrH9s422kMW//DaCKmcQzRksb2zjeP5VMPG2Uz58UbnL5+7RCpfWtZjBOpcPHY1zdBIUl+H6rNWc9NTwMfLfTj/I/Bx4N+u0WstmeVsNC127GL1cKtloXmuko3pbw+Syjm4vkRKyRu3xTEMgwfv3cNjz15gIB7i++enKTgeM7kSld2O9pBFpujRYRrEw83pO6tpDZVNgv29ESZSBXIlD8f18XyBaRhEAwZdkUDLkjALnn1Syou1twkheoApKVvd6a1xfOq5i1yaymGZgnTBIe/4SODwQDvxNpuR5PqrbTs3kWn1EDTrjGal/w0DkrkSjz5zgTdui7Gzqw1YfgPs1bIZ5qel7oo3gqUGkvUWX7WOeT3RIMm8w5mJLLfuiPP6aArPb0ytck800IBn0QCMpQosN6kqgVjYJlN0+Mhj36e3PchtOzpa6gy33liruUlK+Y9Vv34P+PGVPlctax1ULXUM9QykGrlhuNA8Vz2PRUMWZyayTGdKjKSK/M4HDs1xhZ1IFyg4SornuBKEJJErlWvwDJJ5V29+bGAq50Fve4i793Xz2nCSi1M5HM+no81quVvmgjV3Qoi7hBDfFEJ8XghxmxDiGHAMGBNCHFntiwshjgghTgohzggh/t1qn2+lvHw5gWnAZKaE50PYNjEFvDqcoj1ksR6z65dm1l/AqWktzUr/e76qLXB9n1evJJnMLK9xdqNY6/lpvbBYHdNiDYSX8zqL1avMZ0ZwYiQ5pzawO2IzniowdDXF6bEMvZEA5qIV3ktjd09z+zluZPpiocUPqkWqa2XJ8XE9n4AheP7cNH/4xMkVn3sbjSbNTf8C+OoCY3hQCPGCEOKFiYmJBZ9oKSYjzWAldb/LZaF5rrrGubc9xN17u3nfG/vZ2dU2xxX28nSO6axDtuggfWWiIlTP8tn2CAOxYEv+hprmUF1r2h0N8uZdXdw32Mfnf+kevvkb7+b3P3RLSwP7xfLG/xn4TSAOfB14n5Tye0KIm4G/BZ5Y6QsLIUzgT4H7gSvAUSHEl6WUJ1b6nCseC4JEzsEyBFa5zs4UAgfJ6bHMinsArSUbIy+haSRHDvfxJ187veav40nIlTwiAYtM0eXMeJaeqFokNrmv1ZrNTzcKjd7pnk8yVdnV/8cTowRMg8PbYhjiWqbu9Fia8VSRkudjCUG6qNo0FF2f6axDKGBxIBLg7ESGore699woZz0N/OzdO3nhwjT+Mq4nEnA8D9MwCFsmoYAFQsw6w+lMBbCKuUkI8TTQX+eufy+l/FL5mH8PuMCn53seKeWjwKMAd9xxx4Kf8FJ61TWDldT9roT55rnFJJuVzOb5yQxSStJFD0NAxBbkXdUCoSNkYpkGo6kik5kiv/3lE7NZP83GoZmqmpWwWHBnVWQAQojflVJ+D0BK+bpYfTrrLcAZKeW58vP/HfBjQNODu9t2xPnSD7JEgiZSCjxfUvIkQcugta3K52dHWQqn0VRo5qTi+T6RYICi6zOZKS6rcXYDWcv5ad2wkFyq3qJsJlvkNz77Kp6UCAS37Yjz4VXIQ6oDSCRIKXnxYoI37+qgJxqi4LhMZIrYQuD4Psm8i+9LYmGTeDhAIl/C8yRO0GzI30MbSTWO99+yjf/xzDl+cGXpNZEGakPUl1B0fHIll7Btki64uj3PNVY8N0kp37PQ/UKIn0XV9N3XKPl5s4KqxVhq3e9aSUjnk2wOxAM8/HevlGvwfC5N5RBC/S8YqMBOopqcd0YDjKeLRIIWXW0205lSs2vRNU2i0aZmjWQxoUx1zqr2v3y1k8o2oNra70r5tjksR1qwUj589y562oMUHJ/pbJFEvoQECiWHdHH5zV2bwc/evbPVQ9BsckzD4PDWdrqjwVb1tVrL+WldsJhcqrZVwmSmwA8uJ7g4lSNgCCwDnjs3zSeeXLlcszqAbA+r3k9By+DMeLY8xjSxkIVlGUjAlz4ImMm5jKWKGIBtCcbTRbx1qILY7PS0hxbviVSFh2peL6WSn01nSxRdf1FnuEbJh28Q1mRuKks6/y3wASllw2xjl9Krrhkspa3CWkpI60k23zPYyxdeHgEBQUtwJZHHR6mnPAklXyKlMhqyTIMrMwWscr+zkifpigYaLi3VaBZjsczdrUKIFOq8DZd/pvz7CsT6c6i3fXXdpLccacFKGRyI8zNv2c6ffuMcQdskEjCRUjKalwQtMA1w19mipLp5rEbTbIKWwYEtUUzTaOWO5FrOT+uCxeRStTvdZ8azZIsebYGyXA7Vk3AyU1yxxKqyqz+ZKZArulyayRGyDCIB1aNqJucQC5m0BVRvpyszOWayJVxPIpHYloHrSYRoTMStpX+NZTS5MjfokifJFF1Knk/IMtnZ3TZvVrUZRhnrjLWam/4zEASeKmcAvyel/MVVjZTmuvIuxFKkbmstIa3Nxjzy1Ckcz6c7EuBKIo9AYBmSUpW83AeQIAR4ro8hTAqOR9H1ecPWWEuyoJrWsR7MiRZzy2yMjqY+V4AdVb9vB66u4estSK4kedfBXkZTRVIFh1TeIWAJCq5c1q6mRrMZyBZdoiGrpW5Qazw/rQsWk0vVLsomM6rubUfs2o570DJIFZwVLy62dYS5MJnhlcsJ8o6PgdrVzxZcHNfjHfu7ef78DF0RNVN2RQKMpVTAkCv55EuFWcnScmq75uP41Q2d8Wk6udLy1SmVpvSuD6aEt+7tWnAuWC81Xc1ireYmKeX+tXje9VQ/tNo+dY1mOJGnO6JKEEquj2UKcsVr91dKdwKGIBIwiQQsCo5P0DZ5w9YYve1qM6NV/c40zWW9bGS1shHHUeAmIcQeYBj4aeCftWoww4k84YCJBIqOx0zOoeiqlcg6S9oBaItdTUuRCPINbEytqc9iNSi1i7LuaBBDKHlQhaLrE7TM2ccsd1fxyOE+/sVfXGQq6yCEMpuyhCDeFkACH7l7Fy9eTJAquMRClmroW17ySNTCx0DJmBqRuUsV1qdU/kYlaC8/DjGEwDQEtim4a183v/+hhXtyr5eaLs38rOf6oWrmmxODpuCRp041PFuyrSOM43qcHMtgCoEhrq0JTaHmNSFgS3uAgicJ2wa+hP72IN3lljCtyIJqWsN62chqWVJKSukCvww8CQwBn5FSHm/VeAKm4Oj5GZK5Eomcw3pvk6X125pWUnR9zk1k+NRz17Vz0jSQxWpQagO1n717J9s728gUXAoll3zJJV1w6YkGOXK4b8X1KqmCi2GoRT0CDFMQDhi8fDnB4ECch+7bB8BUtkSq4NDbHsAoZ3cs5cDBKk0yZ9HNgRvL7mWac6mPVWIagq3xMIeWsGBZLzVdmhufenPi5ekcV5OFNanDO3K4D8MwONgXpScaoOD4CMA2wDTUfBg0YTxTQkqIBGzeuLWdU+MZhkZSrahF17SQ2jp4aM1GVkuvklLKfwD+oZmvOd+udSW1nsg5WKYgLA3y5X/ihcK8Vrlp6h1PTS3NNCiQAFLy7JkpnUVeQxaSS9WTfzw9NMGPv3kb3zkzxcuXEwgEd+/tmnXLfOSpU3V3Ff/6uYv0tIfmdeQMWCa2IbAttR/oepJkzqGnXWVj3n/LNl68OM3ffv/KnHkzaCrTgUbIMSssJZjQLJ2uyPKawksgaJnE22y2d81fZ1fNeqnp0tz41JsTS7EgAcucnc9Krse5iQy//plXuf9Q36qyeNWvZ1smOcdDIJnKOoQsk0jAYDRdxHcl/fEQt26P09seYnc5u/jw/Qca+fY165ylOr6uNZtqC3QhLWzRk7x1bydPnRgHCaGgRbvvky36CwZvAcug2AK3Fb3jqaml2dncvOPT2WZv2LqZVjDf5lO9v+988o9TY9l5ZXLV5ihnxrOkCg4mMJktceTwQN0aATWWEFdmCgihMjYSSa7kcdsONa7//q3TfPr7V/A9VZNXmRGLHrQHTTJFr2GbYLoVQmMpekv/ZKwqU5xbt8d56L6blvS/v55qujTrjNFjMPQ4JC9DfAcMPgD9hxd8SO2c+NHPvkJ3VC1nJ9IFXrqUIGgKfOk3pOap+vUeeeoUybxDyfU4M5ElU3AJmi57ukO8Z/Da3KRlx5uT9bKRtamCu4W0sJVoe19vlILjEbJNpgMmo8kC6QW67nru4tm9tUAvcDS1NPNCYgCXZ3L0xYI8dWKsJW5QG43lFmKvpI6pYo5ycixD0DJoD1qcm8ji+pKS681pTF7tyFlyPLJFj1zJpViuqettD/Lhu3cB8JfPXQKpAj9fSkRVfd1C8+dyMWhuP8fNwLaOMLYBSymhjYZsfuSN/bNZkuV8FjdKTZemiYweg+9+EkIdENsG+YT6/Z6HFg3wqqnOlpyZyBIsKwzi4UDDa54qi/d42Ob9vVPsHP8aJesivrGdicx7mYreBGjZ8WZlvWxkbargbqHF0C+8fTePPnOe/liQ10fTFF0fx/WxKoUj8+DTGlnmuYmMvlBq5tDMC4kPuL4kX/KwTWM2CAFabgF8o7LcQuylyD9qM4EH+iI8eXwUUI3oL07lSeYdokGT14aTvPtmNT9e78iZ443b4oymCkxnHSxD8E9uH+CJY2M89uwFxlOF2R52ApTpQI2BSiM2wRaZjjUr4MjhPv76exeZyZYWNQ9L5h2+/MpVYiGbHZ1h0JIzTT2Wmo0belwFduEO9Xvl+9DjywruqrMl6byDbQpKnuTwthjQwCza6DEGX3+c3/LOcXHYxcqMUIrtJLr3JkbGJ7jl8l/xyvaPcN7ao2XHm5j1sJG1qVz+FyrqrkTbu3ui7OxuIxa2KXk+UgjC9vwrilb5Bf7u4yf4yqvDLXp1zXqk2dlcgaToShxP4nk+n3ru4po1l90MLLcQeylmK7Wfx9NDE3SELSwDLs/kAUE8bCGE4NJ0jslMAajvyLmnN8rO7gjvv2WAh+7bx+ujWZJ5B8u4FshVvvxyU1/bEAzEg4Qsg1ho9XuJvmxubelmQH2+u5e8GJBSSXKHRtP6GqS5nko2Lp+Ym40bPTb3mG/8Abz2GRh9FTLj1+4LxVRQON9zf+MP4Iu/pL6Xn7O6+ThC9fZ8864OeqJqs6ohWbSq99XZv5s3mRc5bF7hdk5yIPEd7ghdISB8+kee0iYqmpazqYK7xRZDFeLhAHfv7SZom+zqDAOCgCnqdl1vFa5flkJpNGUqxkDNwjQMtneGiYdtRlMFXr6cmM08GULM/nyjObsKIf5fIcTrQohXxf+fvT+Pj/uqD/3/13s+s0ojjazFkrzbSZzIURISHEJYQiAJmCUQ2rKUWwottylQaMttoKV8Syn99tsWuDc/mraXuqUb0FIokBKWhCQsgWYhe6JEiePEcWxZkiXZGm2zf87vjzMjjeQZrbNK7+fjYUuaGc2ckUZnzvss77fIt0SkpRKPu9KMgvkDmsFo/IwBRf5KYP7vw0VwPB52tTWyq72RrkgI14DX4+GZ4amC/WJPd4SPXLOXz73tIj5yzV4ODU/P3t9zozNsbvLPvvZmAzxsZstzO5toCnqZSWbW/Pp0sclfVOnJMpZFBci4NktgW9iv70HrVZEgalnyV+PEYz8GW+zlufvOBX9NXRCfgGP3zQV48Qm72leoTYsEjbk+6v+8/SL2dITxOc6i47wVW/i84lFITcPUMASaaJQ0+5zjvG7TST5yzV4N7FRVbajgbrHBUP4st9cDP376JMdPxzh2agbXGJtB01c7P6606zI8Ea92M1SNqeQW4caAl8aAl4DXw6npFILURArgErgd6DXGXAgcAj5eiQdd7uRTvoVBV/6AothKYHPQy/BknMFojMMnJxmZjNPo99DVHGB4MrGsWef8+56Kp9nR2sjWlsC84M3BBgEPH4uSSKcJ+dde11mAh4/pyl2pffGnz5NeRkpTF7tiv6UlSHu2WL1aZ5az8raY6DG7+pYvfzUuP0hqPy9bW0Ng5Cn7WPFxu41zoaWCxqylJr1WbeHzyiRsO9yMLXRnMjA1AgMPrDwgVqrENtSZOyi+FzY3y51MZ3jkWNQmG/A7TCVtMoBkyp3dglmt8gf5kmmXzubg0jdUG0alt6u5GRdjDBPxNGk3Q0g8fO/xQdrDAc7e3Eh7OFiXh8qNMT/I+/Je4JdKdd+LFRAv9UHsgCPcdWiEZMalOejj7M2N+ByHzqYAhx0Pk+kMIgIIPsfD2ZvD7GoPLyt1d/55v3DQSyKVoS0cZOumRtoafdz97ClcY2zAYAweceho8tPW6OfUdJKJeHrVfaipeu+7vvQPRhmZSi77pxr0eWnwe4nGUvoetB6t9RxcZLsN0nLfB/NX46LHbNAIEN4M214Co0/B5BCEroBL3l34cfK/L6fIFs6ynHla+Ly8QUhMgddnP0aP2YrmDW2rTgyjVKlsuOCumFyylfuOTBDwegj6HLpbQjw/No3P8RCNpcnWq6yJoUUq4/Key3dUuxmqhlR6+6OLLVqdcQ2bm4J0NQc5lN3W98DzpzmvqwmPx1Pvh8p/HfiPQleIyPXA9QA7diz9t7icbJilGpT0D0Y5EY0zFU8TDjjEkmnuefYUu9sb6WwOcOG2Fg6dtBkzA14PE/E0Tw9P8f4rz1rW/ecnMNjT3sD9R05jgC2RAA8cPU3adQn6PLQ2BDg1k8QjMJPM0B4OkHZdJhZsP10uA7TlJZBRa/ele46u6D0tns4QjaWYTqT58GuW93pRdWQFQRRwZvKUjh449P2574tP2NW4S95tL1sYJIU3g+OHXVfAqxfZJLFU0FhuPdfagA3s8wo0QzoBDa0wcQKcgG1bQ+uqE8MoVSoa3GXlZqJzg6HpRJrRqSRex0OD30ss5dIc9HJ6Okm6BqK77kiQN164dekbqg3jiROVW7kTIJUxvHR3KwZmU6OHg14Oj0xzairJ4ESCP3nzvpo8eyAidwBdBa76hDHmv7K3+QSQBr5S6D6MMQeBgwD79+9fsldYaTbM5Sq0Gnhr3zA72xrpjgRnazE1Bb10NgdIZgw72xtnf1dT8TTNQS/NK0htn7/KOJVIc9meVsZnkvSdmCSVNuzYFGJwIsHQRJxUxsUYu3OpJeQjlnJp8HuYTq4uHdX4KgNDVdg9z40ta9LSaxd5SWUME/EU21tCHBqeZs9gtCb/xtUqrSSIKlTK4ND3Ye/rYaR/LuDLX43r6IG7PgNuGhrbILwFHO9c8FfMwuBq7Dn7GJt22m2Qy6iPtyZdvXYlLhfIdl9kg7pAE0QHwE3AzCi0751rY7GAWKky0+AuKzcT7XOE0zNJRiftNpXtm0KkXZiIp4gnS1evaa3cZZyPUBvLaldDVsPnwNmbw7Q3BRkYj80WkO1oCtLRFMQ1hsFovGYHfcaYqxe7XkTeA7wJuMoYU5I/ttXUpVtKsdXAqUSK87qa8YiPjib7mLnfSW4iK/e7As4oqbCcxy0UUG5uDvHk4ASJVAavB6YTmdmyCI4IA+NxMq6L1/EguKvaBTGZ0OCulCbjaXwOLPX2ljbQmp0EuPK8TpqC3pIUiFY1ZmEQtXDlLV//LZBJw/Dj9nbBZgh326Cr0CrcUJ8N/jbvg4kBmB6z3/fKjy4dmOUHV4OPQfQFez+tuyu3DbKrd/79991sA1Xj2tXH4CY49azdmun4K7eqqNQCtZMhpMpyM9Hnb2lmeDKB4xG2bQrieDwkUhkyGZdExqVWUmYmMhrcqfkiocrN1QhCT3fT7OB+JVkea52IHAB+H3izMWamVPdbjp9TsYyY0Vi66GOtJnFLvkIlFg7edYQnTkRpCno5u6ORRNrFzj8ZXAMhv0PI55DOuHg9HgLO6t969JxXaTUFvaSXOW+ZMXDhtpa6z4irFpELokItNgALtRQPmgYfg5EnIRW3K1ipuP168LHC9507z9d2Fuy+As5/K+x8hQ0Gl9u2V38cui+039d21qLJVcpupB92vRL2vcUGdP4GG9QNPlo8MYxSFbBhV+4KzTyDXXlo9HsR4PR0EiPCdCKNCzhiSFersN0CpagZpdaXfd0Rbn/y5NI3LIHmoEPQ5yUS8s07f9UU9DIZT9d7Ade/BgLA7TbhCPcaY96/1jstx8+p2Gpgc3ZVpdBjrTVxS7HtpQPjMSbjaTqaglyyo4UfPDlMwOtggNZGP5ubgrQ2ePnZ4VNMJ1efUOWq89pX+Z2qkK2RIEdGl57DaPR7aAh42dneOO/yOs2IqxazcIWqmEQU8IAvCMlpmBmD+CQkJu0q3cL7WOl5vmIW3s/USZttc2rIfl3uLZoL2yEe2H4ZjD4Nsajdg67JVFQVbcgIodBWps/c+jQeEba3NrB9U4iRyQQnJ+M4wFQqNwtdO87raqp2E1SN2dvZuPSNSsDvgZQrHDs1wzteZ9PvX93Twb/c8wLDE3E6m4O85/IddbtNyxhzdjnut9TZMGF+1sqcyXia87dEZrdK5j8WwI23H5q97H2v2LXixy8WUEZCcwFlWzgwu1J5+VmttIeDjE7F+cnTI8RSaWQN/ekLYxpIlNLp2NLbXD0Cl+5qZSblMhlPn/F6q9dVerVGwQjMnLb/pk8CAh7HBjuFtkmWKilK/v1MnbR18hBbN6+SmSrz2xHebP/lvtbATlXRhgzuCs08n5pOAtC7NcI5nWGeHpoknrJnQmotsAObcVepnP7BKP/54EBFHivpQlc2OUeuRuQd/SPs627mst2tTMbT3NE/wp6OcN0GeOVS6hTdi60GLnys/sEon7vtEKNTCRLpDM8MT9I3EOWG162s4G6xgHJf94KAMhLkydgk9z53irZGP9GZ1Gzwt5Zd5Xc/O7b6b1ZnmEqk8QqLJgoLeG3h+/dcvo07+keAdbNKr9ai60LwNcKxe+2gxB8Cf9hmjMxtk8wPcnLn+aZHYeqEPXPn8cIVH1vZ4+afCxx5CsimMm8/r7KZKnuuhTs/DcdHbd07JwCN7XDJJ8v7uEotYUOeuStU3DeZdklkDx60h4NI9mydMdksYTXm+VMlOwqk1oFb+4Z5bmSqIo/l9diBXTI7Qi927kvP4axe/2CUG28/xA1ff5Qbbz9UtIbhSgr2fvmeoxwZnQagOWgDsyOj03z5nqMrattiZ/ZyRdXf94pdBPxeLtwayda2SzE4YZOpNPgc1rK7XROqlFZzwLtoYCeA1+NhMp5iT0e4PAWiVX3qudau1PkabJbIxs326/ZzC2+37Oq1mTRHn7KBnROwg6w7PwW3fGT5hb/zzwVODUGo2dbLC2+211c0U6VAagYmh+H08zB2GEYPV+ixlSpsQ67cFZp59nvnx7lex4OTTfPm93pIp2rksF2W1EpmF1UTBsZjnJxMlv1xHLF/K8dOx2gM+rjh64/yxIkoF22LzPt70nM4q7dw23hgrJ+j3/gbulpn2NS954zzJMtdDXz4WJRwwCHocwAI+hyMMTx8rEDguLB2Vd5j5m8vzQw+zutS93BeKMqmp/aA2NvlB/y7O8IA/PjpkzxxIkrGuAVT758rRznguZ+tMsqAaedW91KeNjvn3caDnjcutW2bQjx+YmL264W/h/sCLyPW2kMi7XJr3zAfuWZlK71qHcsFWd//mF2Na2y3JQJy2xMLbbcc6bfJUDJJOP5z8IVsQfDBR1e2nTL/XODCrZ5jz8HUINz8wTP6r5Lqv8Umkskk7QqkSdttpj/8NLSfrVszVdVsyHfJQluZAl4PJycTfOexE7Q1+mn0O0RnUjgeSGZqK7ADuHi7vrmqOVtbQmQq8Do1xs7kx1IZupsDdEeCPDM8yf1HTnPZHplNra/ncFYvPzA66+QdvHTgi5BOkZgJwunH4bH/gD2vhkvft/TgIS9Ie1fM5ef+lzHsP2f2ahtkmTO/Z2HtqgWDrp7uCD1yDCZ/YG8X3DXvdgPjmTPO5fV0N/HkiQlc1+CRua2Z58pRfsvzTV7pPEEGD5OEuIopPuDczDQN3O3u468zb+Vps5NwwOHyPW1r+OmqhVKuweuBtGt/F9c73yNKA4O0sckzzW94v8dDyTG6Ekc494koeC+qXMIKVfu6euH1n7HbE6dHbcC22PbEwccgMW5XtzwOhDvtyl9isvBWzqUUqn838ABsu3Su/7rzT6F5i906WcpgL3oMRg9B7LR9zk7AloaYHoH7vwjX3rj2x1BqFTbktszczHMqneHO/pP85NBJTk7E2dUamt1ClMoYGvyCa6iZDJn5fuXynUvfSG0YB3o7Cfqdsj+ORyDtGrZEguxqD+MRoXdrMwZ44sTEqlLrq/ly28bbpp7hpce/CAiuN0Q4PghTw3YAkZvlXmwbUy5Ii41D81Z2N6Z44/Q36Zw5jDGGeCrDVCLDxdtb5n9fLl15qGUuzbibsbPzN3/QFgzOBY0Lb5cdnBUq+xD02XOaDX4Hj9g3n3PlKDc4X+PlTj8pcQhKgp0ywiaJ4ROXiExxjfMgn/H+HefJUVrDAe37SmwinmZzUwC/I7zRez9RGpigEYPg+iP4xOWXpv6dCDNkwlvmgvjlbqFTG0TuLMuCr/MN9dn6dLEJe0PX2HILsdM2MFvNdsqFpRumBm1glyuTkEna2nODj86frFrt63eoz/aBN3/QbsM8dcSWP3C8NkumR2ywevz+1d2/UiWwIYO7nJmUy0t2t9IRDhD0exmaTHJOZ5jL9mwi6HPY3Bzi3M4m/E7tbYHUbTEqX093hF968ZayP454hE0Nfi4/a271pD0cZG9nIwPjMb796AmeHJzg6p4OfY2uUi4wOufUj/CQJuGECaROY3Izw8kpO2BZqq7TguBr765tSEOEy5N3zwZeO9oaePfCYCl6zA6ycqZOwvATdlZ+3uDosfm3g9nBWbFzea/a28GV527mkp2t7GgLca3vATZ7J0GEoGRolBSSzY3gyf4TDOd4Bvhw0084e7Mm6Sm1SMhLU9BuAd7uGWNabNZdR4SQ32FTegTcNCYY4ezOpurVFFO1q/8W2LQLzrkGet5kP27adeZrpP8W6OgBDIiX2f3Z06P2nN5qMmfCXP276/7WPm7r7rnrRp8Gf3br5Fpr4i2YMCPcDemYre9nDLhp+y/QsvL7VqqENuS2TJi/9WkqkaE56CWRdjl80iYcCAcc0i5cva+Ti7bHueXRQTKZDDOLnTyvkArWqlZ1on8wyumZZVYiXoOMa7hkewtB39yLcGQyzjPD02xtCXHF3g7NlrlGuW3jwekBUvhpjh0jlJnA4/WD22AHKZt2QjoOT33XBlnxKAQitrhvbsvRglpQHeEgF5+zg+Hjz3F+R2S2vucZv6OF6cpHn7aDooZNc4MjsPcfnyiY1rxY2QeAW267g+vMz2hvOElD7Am8bgLH46XRTM7dT958mheDB8PFzrMc2qKvp1Lb1x2hwecwNJFg2t3CHs8MIVK0J16gITlNW2aM6UAXLzu7jY5wdqttRRNWqJq33Pp10WM28Ao0wcCDcPqorZHnb7SrX/FxuOTdi575XdLC/is+AY5v/kTUal+/+RNmYM/VNW+1SV1Sjj0/GGqxZ++2vWzl969UiWzYMCG/VlM46CWRyhDwepiI21Tdfo8Qzh7c72gK0tHk4/mxpVNGV0KN5XZRNSA3WVEoUUWpOAINfoeWRv+8AtlPnJjAAL1bm2ezZebapMHdyuUCo+TNQXyTE/hMEsfjxckkIT1jA6zpUTj9AgTCcOp5e1nstN0OlDsfV6CmVIc3SUdPL5979UWLNGDBGZbp0bkMeDnBZhtMxsfnvo5PzA3OKJDoZagP7v8ie07dyZgb5nlnN+2OodUdwWvSBbeR2BjPAAZPKqZbfcvATibM0NPdTKbjTZz1/N/QEj9O86ZNNPg2wXiUTf44MAFTEzbYzyXPKFSoWm08y61fl7tdeDOc+3q7K2DwUTthFWqZ7TuWOvO7qIX9l+OHxAR0v6hw21YSSBYKYvdcCYdvh3AXpBPgDUBjhz0TrVSVbNhtmflnQs7uaCSRdpmIp2kKePE7HqYSGdoafNzz3Bi3PznM+EwaDDiOhwafp6rlEdIufPexytQ0U/Uhd05rYdbXUvI7ws7WBpIZMy8deipjuGzPJtrDQUYm49zz3Bj3PTfGD54cKprCXy2upzvCRdtaaG9uoqF1K44vaLf7GAP+Zpg5ZQMpN5OdLY6AN2TPm+S2HPVca28TGwfj2o/xcXv5YhaeYWlsh459c2nGwQ6Oui+cf7tQS/EBWG470+CjBBrb2NIc5GVOP93+GD4yyIK0LrLgc4cMbd6ETeKiSiq/nMbjme3EQ100RzbR4Li2btmuV9oB6wv3wAv3QiyaTYTRrWfvlLXcvmbh7Rw/tJ8Db/2C3VbZ1bvoWd5lWdh/dV8ErXvsYy1s28Jtlkudx4tst31fPm8Qznmd3Yq65SL78ao/0kkPVVUbduUuP2NmWzhAZ5OfvhOTTMRStDX6CXiFQ8NThAMOXo/NDmiARI1kV/mXe17gjRduXfqGakPIlffAlOb16fPMXyH2AF2REGdtDrO1JTRvVebG2w8RjaUYmYzz0AvjBLwefI4gIhy864jWwVqtTAJ2vhzGnoGZMVsYWDxzZzzECxPHoS2b/dIbsLWWMDA5ZC/b+3qbejw3K33Ju1eeZjx/ALRwhS7/drnb/ujPz5wFzw3YMkm7JUsEJmYgNY0n1AqxU9k7mHvRLQzwPJlp+Mln4B3/upqfplrEvFXWf4vDBPa1NDUMTVP2nNSxeyG0yW7PbT93Lt19JYpFq9pQbJUrF1DlX1eor1nO7Za7xXMxufvLPU7zVtv3TAzMf8wf/fn8bZZLFUBfuCqY6wuXu6qoVIVUJbgTkc8C1wJJ4Fng14wx45VsQ/6ZkCdORBmeTHLBliZmUi6nplOMTtkCrUnXgyOC1yNl2+62GsMT8Wo3QdWQ3GRFokTH7hZu/Q34POxsDeHxeM7YGpd77OdGpghkkw8lM4YX74zgcxzdnrlauS1Mu15pBxGBJrv1cnoUfF4byCcm7OClZQekEpCI2pnkcJf93kPfX/vAY7kDt8VKKOQGWMFmG5j6gvZcSjoF/jCEO+yWptw2z0I8Prt6pMrnZ38Fh+8AN1sz0+O3ZztnTkGgGfa9xU4w5OjZu41j4d/36GH45vX2/G9X9qzvqz++9P0snBBaKNfvZZJ2C3B8wq66dS+ylXypti4MwnKTUI9/zfaVHectrwD6cvtCpaqsWit3twMfN8akReQvgY8Dv1/pRuRmK2+8/RANPodDJ6cIeD20NvoYmYozGU/zinPaOXxyGp/jQcjUTIDX2Rxc+kZqw+jpjnB1Twfferh023Xzz+8ZYzg0Ms0nLt1+RqCWmyj5va89hmtcIiE/vVubaQ8HcY3RYuarlT9LHGiyA5SZUWhoB18Axl8AXyOYDEQHAAPBiP3YcZ6dhZ4ZsyUMNu1aW32npQZkcGaygfxZ8NyAraEDXvhvcF0bNAh2ENeyAyYHF7//dGJ+YKFKq+9muOsvwU1lLxAb5CWzMz2Ne4om0FEbQP7f99RJGH0KEPt3vdJzcYvpudbWpTv1rM1y6fjsJNbEwPLPeC7WF8Fc4NfUZcsyHLsPtl9mA7ylXtOF+sK1JIBRqgyqEtwZY36Q9+W9wC+V43H6B6PzsrUVzAyHPa80NBEn4PUQ9NlaYY1+L1OJNIdPTjMRt+m5fQ4ky5+QcFnec/mOajdB1ZhDw9Mlvb9cYCdAOODFA9x057Pc/MgJ9nVH5v099XRHuGafTX+fS6gCWsx8TfJniUMtNiOmt8F+nkna5CmZlF2xyySyK2Cd9jD/6NPw/E9h5rTNRLfz5csfgK12oLLYdqqXfnBuwBZqs0WMUzF7dsvxAx77XBaTidtVAlUe9x/M/g48dtssbjaXTdq+3qZH4ejP7BbN1t1nJNBR61z+3/fo07Ysizdgi48vtZ1xJbp6bcHx6ZFsyZdmmwzF8S///hfri/IDv/bzbNF1IzDy1PyMncu12I4FDfA2rioH/LUwDfrrwPeLXSki14vIAyLywMjIyLLvtH8wysG7jhCNpeiOBInGUhy860jBBA9bW0Kcmk4RyEtG0Rhw8DkeRqcSNAW8CAIIZcxXsSJ63k4tVK4VMgFOTaeYSmRAIDqTKvj3VKy2mWY4LAEDeLyQnITRQ7bWneOHyDabkKCjxwZ1vkYbQKXiNhhMTtk03YduW15tvJUmGMhXKNlAbhY8N2ALNNuZ+Naz4KJ3wt432NlzN2Wfn2eJiYBw99LtUCs31AfDT2aDu+xKnccLYic7cQ1s2mEHwyefhOG+xRPoqPUn/+87PmEDu3RirsRAKbfoTg3Z+8+3kvtfrC/Kr+MZ3gzbXgKhZvuYq3lNrzUBjFp/1vI+WiJlC1VE5A4R6Svw7y15t/kEkAa+Uux+jDEHjTH7jTH7Ozo6lv34+XXscunZIyEft/YNn3HbA72deD3CRDyNMYZ4KkMq7eJz4MR4jCcHJ0ik0zgCGXf+QX+lasXWllBZ/qBFsrGFQHPQy2QiPfv39KV7jnLj7Ye44euPcmvfMFf3dMxm0YyEfJpMZS1ybxCjh2H8eZsZM9hiV+KmR+x5KLBBW/dFNsAbesT+sty0fUMR7Ire1Em79SgdX3yAtJaBymIZ84b64Pj9doUx2DyXkKNtD3SeDx/4Gbz7W9CyhaJvS74wxMaW8YNTK5J7nXmDNqBDsqt1GfsRbNbM9vPs784bhHE9Z1dNInKDiBgRaa/Yg+b/fQez28TT8bkSKaXaojvUZ+vf5c4Zp+K27zp1ZPn3v1hftDDwC2+GzgvhgrfPZexcifxgMUfPom5sNRDwly24M8ZcbYzpLfDvvwBE5D3Am4D/YYwp+VG2XGr4fE1Bb8HVjZ7uCB++6iwAxqaTpDMuM8kMU4kM2zeF2NPeSHPQT8DnZCsuWX6nemGepphXCx3o7SS7q7ikRMDxCCI2W2xz0G67jKfS/Ozw2LzV8Tv6RzjQ28nn3nYRH7lmrwZ2heQO89/8Qfux2Gxe7g1iatCWOQhFstkKWwGB+JhNTLLtJXOBkhOwA4vJQbuy5wvbUgkmYwflQ48vPkBay0BlYQry3Cw42ODB8duANBW3W6GmTs4fEHb12oFiqMhrJpO0WzlVaeVeZ+3nkp0ZyF6RdwYhk4HnfwZHfmJvY0xVZqMViMh24BrghYo+cP7fd6DFThxt3mdLpSy3zMpy9N9iJ6qEubpxiM36u9z7L9YXdfWuvkRMMU4ADt8JT33XboVf2K+pjacGAv5qZcs8gE2g8ipjzEw5HiOXGn6553/2dIS5ZEcLDx8bZ3gygXENW1tCtDTY2fGGQIbpVIbmgMNMMkPGQCpTnfQqHtAU8+oMNkFQM48cn1j6xivgFfB4BEFIpF16t9pOq39wkk0Nvtm/MS1evgwrOZ+ROzeSm8GGuTMuHefaZCnt59rzL8fvt8FTY7vNXJeYtDOGkyfyBkjGZttcbBCznGLEi50lKJRsIJduvPsiOwPvDdq2Dj5qt5Re8u7ZAuccy9ZRK8RN2eeihbNLK3rMZiKNjdrX29RJuyIzuz3TZz8/fcROMjh+O8FQynNWaiVuBD4G/FfFH3lhiZRyZI2MHrMTVcHmuWyZoWYbUOYyXeY/bkfP/HIv+eUZCrWnlBkvh/pg4oRN+OJvspNPz//U1tW75JNr/lGoOrWc99Eyq1a2zL8GAsDtIgJwrzHm/aV8gPw6dk1BL5PxNNFYindcuu2M2+bO50VCPq7u6eRbDw1wcjJOxhimEmk2NfiZTmTAGNqbArgGJmaSnI6lS9nk5RNmt5jqIFrlS2QMHvKrha1dPANkXDySpqupidbGANFYitMzKV5+duu82xZbHVdZi2VxWzi4yL1B5JcPiI3bc3eJCRsEHb7DBnSebEa5hg44/Xy2YK+xmTVnRm1AhcCeVy8+iClWxymXYGClyQOG+uyMdi6TZ9vZtj2xqF0Szq3sfesDMPI0uInibfMGIRDWYKLUItvhmduzq76OXeWdHM5mzXTs6ygdt5cnjU2ssuNy+726/ayiROTNwIAx5tHs2Gmx214PXA+wY0cZErAtJ4PuauT6vfDmufIEuYHywv5n7Fl49Kuwdb8NCJebzKRUbe+/xWYibt4yF4gGmm3btI/amIb67ATZcz+CUCt0XWDfuyqcfKpa2TLPLvdj5Nexy2XLfMel2woGQ1++5yjPjUyRzLgkUxlOTsRJuoZkLM1kPM3oVBLHI4T9Dh1NQc7e3Mjhk9Pcf+QUIvaseSV5RAfRqjApw4lQAQJeDy0NAZ4fm8HrdTh/S4RXnt2Gzzt/H6hmx1zCcgr05mamhx6zZ0/C3XZ2+NS4TZDib7Tn6MAWK09M2iySu15pg7pM0g42cm8u575x7s3l0vct3r6lZrVXEpzmBmK5QDMVt8letr3EXhZqsd/zH79qM9W5S0yWBZpsgg8NJkqr51p47D/AE7Crd0j2d2GAtN1Ka4wN7kjbVeDcoFu3n5WciNwBdBW46hPAHwKvXc79GGMOAgcB9u/fXytVnArLX41zAra/Y9eZE0wL+5/JE9kzxYPQfnblV5Nz/bl45v4mjGu3gqqNJ3/yYfer7DGIIz+xk6oVTj5VrZW7isjVsVtM/2CUnx4eoyVkU70fOxUjmRetZQxk0m42HbzD2ZsbaQ8HMQYeOXYaY0zFyyN40EG0Kuzi7RGeGizdtkyPQMARXKAtbLcon78lwkeu2Tu74g1Lr46rrKW2a+S/OXT22uyXJx6CxLRdSfGGbNKL+DjgsWfwJK+MQLDZDiyu+9v5A6ZQV2m2TS0nOM3pv8UmgTEZu5roDdnVu/ztmJBXmHyJ9ebc9lINJkqrq9cOPp7+vg3i/CHw+u3PO3fC3BeCtNeWo3AzdgCrpRDKwhhzdaHLReQCYDeQW7XbBjwkIi8xxgxVsImlVajgOMZOUk0MzJ9guvdv5/c/uS3r+QlSKrmaXAPb71QNWTj50NQ19/qo8EpujST2r55b+4bZ1OBDRBiPpXAxs2sfwlxmTEds7Tuf4+Aaw4NHTyNUp+6da9AU86qgX7l8Jw2BlWdVESDota92R+w/sK+1WNrgeOzqXTLtzq4Y51bHNTvmCix1mH9hlq22s+zXLdth0277BuEL2UBJyKYyzSZLyW0Lyk9Q8uqP20BvuVnglkrhvFiK8YX30/cNeOYHdotfIGJXGMcO27Nbe18/155Myv4sllp1ziRsuYdSJG1Q8136Prvtt2Wn/V36sivDiA3m3Azg2smGQPjMJBWq7IwxjxtjNhtjdhljdgHHgUvqOrCDM/u8XE3F4/efeaY31/9MncwmLxm2fYon7z2vksFVqZOzqPpWA4lUctb1yt1yipgPjMfo6W7ikWNRZpIZ8vN2BrxiV+5cg9cROpsDREI+nhyMMhSN43OEeLryux3EIzqIVgX1dEfY1dpA3+Dkir7Pky3zEfJCPD2XETbHuLZuXdDnzFsxXs7qeL0SkRuAzwIdxpjRktzpUtseC62MZRL2FxKK2K2N6UR2q2O2uLQ3YAOk08/b7Ux7Xr36pCNLbbtczpm8+79ot4ROj4B4bdtip+wMuy9ozwce+r7dRtXVa7eUDj6eDVSL9Kcerw3srvojDSbKoavXJuI59nN7vs7xg69hLvA2rv16637Y9mI7WaDUWuR2Fjz+NbvCkTsvfPoo+IPgbTzzDF3PtXDnn9rt3f4mu+18YgCmx+wW9UqfbSplchZV/2poJXfdBnf5SVLyi5gvDIpyWTUv2dHCjw+NMBlPzY4v4mkzOzke8DqMz6Q50NvJ6GScoM9hZHLxMyLnylEOeO5nq4wyYNq51b2Up83OVd8up9HvrNsBtVq7hqDvjMuWeo05HiGdMXhEMGeEdnb17sjoNC/a3rIhVozLmm58scP8hd4cnGwx3/ZzbbZJcWzA5wTtKp7Ha+vg+RvtPn/Hv7ykAoUU23Y5+JjNehk9lh30F9gyNVuX7xnb5nQS3Bk7Gy+ODRq8QdvOXM2frl54+Ufg278Fqdw2wAWvv/ZzbeDRdpYOmsplqM9OGgTC0NRtF1HHB0CmoaHNviaat9oVEl2VqAnZ1bv6lL8VM9xlV/eHnrB9mS9oS2+4E7afye8runrteeLpEXtdY5vNHBw9DgMPwnlvrHxwVa7EMqr+LDX5WUHrNrjLL2IOxdO057JqRkI+rjinnR89dZLhyeTs9QYQY8/b7e0M8+V7jvLTw2Nc6D3G+d672ELhwfK5cpQbvF+jjSjNMs0reIx3OXcyaDYxbFp50uziVvdSAD7l/Wd2yjCNJBBc3uXcwW2Z/fy36eU8OX7GgNzvbPjdtKqQ7Ezob08+zIPeRr6Xsa+X13nu5WPOfxCRaQTIILzd82MeNGcjwB4ZxuPAQ56z+VL6ag6xExF73hTsOM8jYIyhMbBuu4yFqpNuvNCbQ2O73dI4+KgNkNwUJKehZRfsuMwe2sbYhCoAw4/bbU3f/xi8/jMrG3gUCi7HnoPoC9CyY+5MTHz8zOAxt+qXmICZ0zbIhGzWRQOu2Nl5X8Ami5kamnvOV/w+/PR/Q2raDvCMgNeXLQHhgYEH7OdaBqE8CmX9a9kGkW2wuadw2QulVit/h0DHeXZCSBxIz4AnOz5r6LCvxZ0vn7+tLZOAs6+yk0Y5HefaySZdUVbVVEMruet2pDYwHqM7Epx3WaEMk/lZNacSadqbggR9DgPjMYwBr+Oh0e+wqTHAzvZG7uw/yYt8x7ku/m0GvQEG021EZJrrne9xMPOG2QDv3c4d7JJh0niIEMMvSRqJ0ypRzjcv8HL6+HXn+zikCEl63vm+MAl+2ftDftn8iAmCjLKJF5nDvM7zAH8nv8B/84oK/ARVXRnqgzs/DdOj9KROcp5vml+SH/OM6eZiz7OESGIEHNzs2ohwQH6OKw4nTBsTJszlTj/dcorPZd7BU5kds6/J9ia/HZsDO9sa130JjuWmGy9LqvFCbw473gWP/ptdWfGF7KDICcDm8+xAJ5O0AyCYqyMXarUB3kpX8AoFlyP9tlhx/lbNmTEbPG7aNTfoz636pePZ7Q6Nto6Gce2Kj3jBTUIiCZn03GHzOz9tvy/cATOOvb1kX30zY/a8197XrW1FUi1usax/OmBWy7VYDcx8+TsEwpvtlvNkLBvcCYS32h0C8Ykzt7VFttsSCJMn7HXBZmjaYlf2laq2GlnJXbfB3UqKmOefG7rh64/SHQly35FTdM0c5pWZe2jPnGRgpp2JU6/HsIlrAw8QjTWS8TfiJ40vnWK3nOB/e7/A7e6L+ZFcyiXOYaZMkHaiIIZGEjhkNx2JSwPZ1UFzZhoBIfuLEUMLMcIkeB67Fe4Dnm8y6dtV4p+Wqnv3fxFOPQfipVlmSJo4Lc4M3eYUMP81ZgDEzH7cIaOcIsm0J0K3Z5rrnAf5bGIHrgGvky1ennHZtim0bkpwlCLdeNlSjS98c/jRn9tkKlsunrsst7r26o/b62PjdsXOG7TbmlJxu+KXv6VpMfmDsoXbLjfthNbdc7edOgnDT9hELjtfPncuxtdgV/kSU5CaAceXLYCNTa0vHpu23M3YF2RDhy1afuo5m24/FbfBn8cDkR22nh/GbuNsyvtVaZ270quhsyKqTq2kBubC11u409a+DHdk+wrH9geO/8xtbR09tradP2xX82NRiA7AeW+qyNNUqh6s2/19B3o7icZSRGMpXGNmP1/qvNDWlhCT8TQvDw/y5plvEEhNMmxaaTbT7D/xZQ60j9KePklzpJWQ36HbmeBS5zBhJ0G3M86bnPv4rPcLNMsUjkdoJEELUzhiozgROzGVWxVZog4pHsCPy9kySLtEaSLOu5oeLdWPSa0Xx++3b3SpKXxumhBxPNjXl8y+2OxNZ7PB5r32GogTccdpc2a4pGWKbZsa8HkFDBgMLQ0+LtwWWTclOIwxVxtjehf+A55jLt3488ylGy8UCFbGUhm4Onrg6M/subipIZg5ZVf02s9dXqauoT6bpOCZ2+HEo3b758QJeOkHs1k2L5yfIXP0aRuoNbbbj6EWO6CbGbPbJz1em1XRdSEdswO5Xa+C7gtswBZqhtazbFKEqWG7opeYgExu0sBjz9Ck49nseXmFzbVodnlo1j+1VguzXub6hf5bzrztwtdb0xZbw7P1bJu0ByB+GrovOjM4HOm3twlF7PeEIvbrkf5yP0Ol6sa6XblbSRHzfLkzeK+a/Cm+5lZGZgLEUxk6Wts4azPsCjzKQ6c302KmCbVE6DYn8SY8RDLjGMePT0I0pk7S5E7T4pkm4EnhLZCgYtm1prPf6hGIMEOSDC8JaYFMVYDBbt1Lz+DxeMB1z3zlib2dSPY8KZDBgxdIe4SAiZNs3MoFHfbvJJbK0NkcpKe7Cb/XWfd17IwxjwObc19nA7z9JcuWuVz5K2mnn4fJk3bL0sJtSEN92cyT59mBUnLKrrrteJnd7hQbX3r15f4v2kAr0GzvO52wX9//Rbj2xjO3ak6P2m2W7efO3UewGY7+N2y7FMaesW0ORuw/fyOE2+e2m+ZWGZ2AXcXLZLN/utntmmQLZufq+oU2zT2OriaVRw2dFVF1aiU1MBe+3trOsitvI/3263OuWXxLZ9sem203x7g66aNUnnUb3MEK07RnB1M90WN8vKGD6NAzHHF2s6s9wNmbG+kIB20HMtTHSzpakefuYSbqZVPmFAGSIIYJT5iO9DBeTxofhiBxwJ5VKrT1Es5MOZ9/Hdi8AjleMni8Bh/Ty3tOauPYdqmt+yNOtiaVfeFkY7n5cjXsAA8Gx+PB4zh4BabxcLf/ZezuCPOBV9szDLkJkkjIt6wJErVGC7c3TQzDC3fbLIaNHfO3IeXPlgeb7Zk7BGZGINa9vExdx++3acV92TPKvqAtSXD8fvt1biB2/xdtoevYaQi1zb+P3Mpe6247UJs6aVf4YlEbbObPvt99kw0QQ63ZzJ8pm6UxHgdcW1wRY/vbZBqirn3cdNyuCl7xsRL8kNUZauSsiKpTK93aW/D1dt2Zt1t4js8J2PvVLcRKFbWug7tlWzCY2hyfYLP/NOe0d0L7lrnbZbPGte7cAbsvYdPRn0EmmzzAH2ZTcgw7OMkWfM1abO/rUgt4+dc7jg/HTc6P+JQCW4R44oStETQ1RP7rr9irxetvttdm4uAN4A13EtlxOTdc+4vzbrdkMLfcQ/R1qCrpxhfWmsvEbLrwTGJuG1JTN9x/ECYH7Xm09vPsSt32y2DkKVvzadcVy1t9SccgMWJX7EzGBlCO355pyZeasWfs0nG7Svf8T+3XudpS2y6dG3SFN9t/ucQH9/7t3GvjZR+2yVimR6Gp0z6n5HS2kDmcMR2RnraFitvOhva982vkqdJZx3/HqgLKkQa+0Dm+iRPYPmJ31dPNK1Wr1u2ZuxUptFe8o8duERg9DM/fBU98C478BMLd9vrYmE1y0HZ2to6Txx4EdlPkD6xLys3YgZRUvnC6qnFdvbbA8/lvgYbNgMeeZSrIA41d9rVExia98Abs9rdL37eyx829+cbG5x+iH+pb09PZ0BaesYtP2EAp2GLrOLVn035Pj9qgLzYBx39uV8vCm+0ZuQvenj0vt4xEKq4L8UlIxewqWmLaBluYud9jfh/Z1GXLLgSabW2pUIsN2C593/xzNGPP2tW/cPf81wbYEg1bLobtL7WBqnEp3G9m+zrjzhVCL3aOR62e/h2r1Rjqswmdbv6g/Zvc+3rbH0wMzPULa5kgKDQ227TLvkZL+ThKrTO6cgeF94q37raz4qNP2QFPQ5udsZ4cgKntdsAVaLKD4kSbnVU3mVU8uIdlB4Mmbduy7AN7akPJbXOJHoP4lM1EODOStyKCzUrYcR5c8Da7muLNJkfJpOHUETuZsZI3yYWrTLmPmtFw9RZubwo22+2NoewKai6hScOmucLmRmxfVSi73GL6b4Etl8Azt+UVEc/2L1sumfs9Luwjw5ttramFqfLzz9FMnrCJDnJnY/JfG6/++NxtUzP2XF58EijUh+a2aM7Y57rtUj1fU2pL/R3rqp5aqNCq2qHvlzbQKnaOr9QlOvT1rdYZXbkD+8ecnw0Osl8b2PkKOP+tsPsKW9AVj52tjo/DyNN2QNzQBuddawfOK+VZYXwtYrcxKVVMZDs0d9tBdfu5Ns20N2RT1bedBdv2wzO32tdtx965fw1tdqvfSiyVyVGt3MJMcuFu+zfftMV+PT0KuNnfbXYrpnhg+Em7XdLXsPzHih6z593AnmXxZv/lShDkfo/F+siF51y6eu2g67q/tTPsbXvmX597beQPpkTsmT+vj6KMC/4Gu9o89Lierym1xf6OdVVPFbKS7JirVazfcQJzK4Y/+vO1vRb19a3WIQ3uoHga6GBk/hte+7l2u9LpIzbVt3HtrHNyynY4LdttgoBl/1jFbuVciUzK1pFSqpjc6zk6YLfqua4dqLfsBMSeyTv9vL3N6DMw/oJ9TQWa7Gr1Six30K+WL5fAJLftqP1suPpPbGA+MWBLEHTsmys2PTMGE8dt3xNogsTk8gcnke02WPKHbYmChja73dLfND+IWk2q/MUGZvmDqUzKnhE0eauGCxlsAhaM3Z6pKfpLa7G/40oM4lX9qcTEXqF+5/Tzth8sVTCmr2+1DmlwB2cOpmb3cC+o7xTeDL6QHSg7vrnivh4vTA3Caz5pz484y12NM6z4fJ7J2O2hShWTez2bTLZgtMemrp8Zg+kRGOyzGQ+nTtpzVqmY3UI3ddK+fldC62OVR/4K2Ks/Dr3XzX39+s/YPiY2boOi539qf8+RbTYpyskn7dfLGZz0XGuD/XTC1sebHrOvh2BkfhBVtI9cZOtSsdcGzB9MOT67suzx2q/nvS2Jva6hNbu9WGDPq3XLVKkt9nesq/OqkNVM7OWf0VvOiluhfqd5i813UKpgTF/fah3SM3c5xdJAL8z+lI7BOa+zSQVyjGs7nt7r7Nc/+IT9umChg5yCSeqXJ5Na3fepjaOrFzovsEmB4lF7FguB1CTMjNokKiZjB/Vu2n6dHoWrPrnyx9H6WJWV/zPv+4YNxpyADcYa2uzWxYkB8C5zm7g3COmknbjKpO3rQjxnBlErTZVf7LVx79/a1cccY8CkbD/qa4TkBHMFGT02UO3ogc3n2YBjpUl/1NIW+zteaYp7tTGsNDtmoTN6d9+09CTRwn7n5g/O7z9yj7/aYExf32od0uBuMYXe8Pa8OjtQzpPfEfReZ7NqPv19m8zCzVA8iJPsv5Ws3jl2pluppXRfaLcQe+PZFTyxEwPisa9hj2O3GbvGrpp0XTg3QbESWh+r8nI/78f+w66ygQ3MJgbs2byZKXtOeKGFiQOmTkL3xdlkLNnzdvEJ2y2VIojKvTZyj3vv39ptVamE3W46ddImo/L4AGMLmXt89jXp9dltppkkDD1iz+9pVrzyKfZ33NEDd33GTgI1tkF4i1051tTzG9tKJ/ZKlXyr1MFYOUo4KFVlGtwtZeEbXm72CQp3BEN9Nv13Oma3E3kDdkZ8asQOYnKBnnht9suVbsv0+e12UKWW0nMtPPwlO1A2xp4PxdjAzk2CJ2gnCjxee55p1yuq3WK1Ev232N+bMwOxUft7NI6tA9XUeebW2EIz58/9CHa/Cra9xGbhjE/Ys3eBltIFUQsfN52cK5A+dcKe8UuPQvM2OyGWmAKPgY5z7RZ4Y+yW4vBmDewqbajPZkDcvC9bfmPMvkZe+VH9XaiVTewVy3y50hW3UgdjuvtErUMa3C2mWHrcYh1B383w08/CxGB266THJjfI5JKm5FbwJHt+ZBXbMlMzcM6Bkjw9tQF4g5DOrsS4GWbPM7lp+08cuzUzPm5n6FX9iB6DrgtsoBRqh+QkuDO2byk0+C40cx5qtYlTzrlmLkHLwlnxtVr4uG1n2Y+TJ+D0UUDs6mNyEpJxG/w52TOiJruq3NimZ2DKqdh7Xf7vLvd7i43b7d5cV7XmqjpUqhW3cgRjuvtErTMa3BVTaJb7zk9ns7slbIfy0g/OdQhDfXbrCmITG4w+A5lpG79lEtksmrlMcIa5ek6rOHs38MCan57aAPpvmb/lbmrYvpmmpsBpyG7TzA6kt71EB2z1JjdY2n6ZXXVzvLbsRfdFhbfXFpo577rAbiOPjZdvS1KxOqLJaQhtst1fsNkm+Ymdtq9LcewEWfSYvc2mi/UMTLksdhaqVKstSpVyxU2DMaUWpdkyi8nNWGaStnbUs3faGfLDP7TnmJ74Fnzzertal7u9m7adlojdjmnyC5QbwJs9r+dkL3PyHnC5hckFXrhnzU9PbQDRY/ac0raXgC9otwd7/bYeY0PEvhYDzXD262DrxTpgqze5DIeOH3a+3P5rP6f4WblC2e28QXuOeCVZMFeqWFa9RDS7Wmzs6vHUsE0Ok0v0k5i0r1fHbwNXzcBaHvmrc9OjMPw4nHgYvv8xOymkpU5UKawm465SalV05a6Y6DF7sH/gAfsGl4rZemGTA3aQ3NBm3+R++lmbGCB6zG4dSiXsdiLx2PNxqYzNAOembKCYgblALrs1U7zgbbCZDJdcxRPNlqmWJ7eyE948t+Vu9DAcv88Wut60a64QdmxcB2z1ZqXbk4rNnJd7gFXscYMRu4IXaLITaLHT2P4vm/AnkwS8dlumDgLLJ7c6N3USjv/cvt+FWm2g52/C/k52a7IJtXa64qZURVQ1uBORG4DPAh3GmNFqtuUMke3wzO32jc4XtAMNN2UTUKSmQFrtm93MmB1cRbbbwG7wYfummEnZ8yLisbPjGckmVAH7Zpm3HVM8NhW4rwnSM3bmuliQJx5NqKKWp1iWu2v+X5skIdiS3Q43rgO2erWSwVK1EgcUe9z+W+YmH+LjzG4k8Tg2oHMNZOJw3ht1QFhOuUmg0afn3u9ScZtuftMu+94XatFkE0opVSeqFtyJyHbgGuCFarVhUT3XZtOMb8oGaY4N7gItdssQ2I8N2YP+L/2gPZOXSdnEFSabRMWIHbicsesyP7lKxi7iSS7JyiKrd44PXv6R0j1PtT4tluWu9zq72qzZwTaeas2cL1VHdGbcBnUmYz+K2Ims2LhdUbr5g/MTfajSya2sTo/a4G7ihM32vGkXpOP2fe/VH692K5VSSi1TNVfubgQ+BvxXFduwuGAExo/awUZok32jS8cBAyefsoOP7hfZQUdXr93aMvS4TTM/y9hAr2C8Jnbrp8eZW+lbyjmvW10tMrWx5J8ZFcmeW/Lb5Bm91+n2GDWnWKbEcstf0cPNZsZ0spNj7lyf6fjtKtJyix6rlcn9Hv7rt2DsWfCHoWWnndA8+t+w65XVbqFSSqkVqEpwJyJvBgaMMY+KLJ5IRESuB64H2LFjRwVax1z2sNazs+c+PHawEdluMwp6AhDIJqgYewYu/hX7fVNDdvYTD4VX4HJbMbOz0rnbeHw2/fdsBs1CPPZ7XvXREj9ZtS7lzowev99uCw402a1Wz/3Ivr51cLw+5QK1wcdswpJgxBanLxawLZYpsVKvkamT2Z0RcdsFSq6guYGW7WsveqyW1tULWy6xGUwDzTYhWG6HilKrUa1JI6VU+YI7EbkD6Cpw1SeAPwReu5z7McYcBA4C7N+/fxWF4VYhP3tYsNmeRZgehfgk7L7SnouLT9jrmrbMpZCPR+dqh3myaebzeXx2VlrIZs3MBrbJ5SRScaGho5TPUq1nuTOj3qA9QwN2BS/UqoPj9SoXqGXSMP484IGZ0zahU7GArVDtu9zluY/lGpzl2jv4mN1u7qbttkyTtpmGPV7Y86r536Np+Msnk7AZV8eemXt/67og76y4UstUC5NGSm1gZQvujDFXF7pcRC4AdgO5VbttwEMi8hJjzFC52rMi+bV9cpkGjQt9/2lTxkteBQnjzg02AhE7gDYZMF7OWMHzONntRpm57Z0e//LaJA7svkIH5mp5cmdGQ9kzo+mEHaRt3a+D4/UqF6gNPw7e0FxijMkT0HlB4b6jWB2zocfg9PNnDs72vt5OZpUi4Mu1d2bUBqD+BrtylElnt2em7DZ38cxle9U0/OWTS6ySvw0zNg6hQnO0Si1isUkjHb8oVXYVr3NnjHncGLPZGLPLGLMLOA5cUjOBHRSvy9TUvXjNn+4LIZx9IzQZ8OT/eD3ZgM61h9ZzAZ/jY+lVu2xR39bdOjBXy9PVa+uXIbZemC9o6915gzo4Xq+ix+bS1XsD9jJvYG4VplDfUayvi0fnBmfisR/djM2+GhufH/AN9a2tvZmU3b2QmLQTEW7abnn3BGxN0b7/hKe/b8t4xMe13l255OomxsbtJGQui67+vNVK5f628+mqu1IVo0XMCyn2Jnfp9Yu/+XX02EG0N2AHRG72PJ2v0c6ke4PZBCqeudW/dGwZDTJ2YHXqiA7M1fJd+j5b1DpX4NrxFx+sDfXBj/7cZiX80Z+vfsCuqicXqAWb52f0zQV8hfqOYn1dIHLm4GxiwAZe+QFfsGVuC+dq2jvwMKRm7L900tYTxUByBhwHwp22Bmj0OIw+ZVcOdea/PLTItCqVYpNGOn5RqiKqXsQ8u3pXXYUO/harB1UshXwu9fyWS2y2sehxG5DteRWc/wtw56fsFjlv0A64TvZBOmUHVOKdK51QVAYO3w7nvakSPxG1Hiy3rpmej1gfcintw90w8qTtZ4wLrXuK1zFcqgZdbjsV2JqejW3zv3+ls/H5fW1iCo7dY3cyGJOt7+mC+O3nTd3Q0Gr7zcSknaDInW9W5aFZdFUp5PoimJtc0lqqSlVM1YO7qltsYFuotk+xN7/8PeZtZ9nLxp61510O/8BmIEvF7BYk8djVvPQpeztjlg7wxLG3O/R9G2DqG7BajvzXa25gfe/fzj8vpecj1of8QC01M5cts+2sxc/GLVWDLjc4c3wQ3jL/NiuZjV/Y1z55y9wKo3GzN8ruavD6bVAHc6uPuq1Lqfqw3IlFpVRZaHBXqoHtwsQEUydh+Ak7A73z5XbL0fH7bXmF8SN21W5WxhY79/jttifchfdu7yeTsMkGdNCtVmqxSYxiSTU28EBaRD4MfAhIA981xnysyk1anlKtvBQanL3yo3ZyKTa+utn4/L526iRMDgIeWxdUHGyCKa/NMuwPZ88oi/3YfZFu61KqnugqsFJVo8FdqQa2uUxjueBw9Gk7A92wyX7MreYduQuSU3bLprcxe+bOBQQa2mH6ZLaYeYEkK64Lg9kzKkqtxGKTGAtfu7ChB9Ii8mrgLcCFxpiEiGyudpsqZqnaVMW2pS/H4GP2LNfkoO0DTfYs8WxfJ/Zrj2MTqsRO29Id2y6dOy+q27rUBle3E09KqYrR4K5UA9uFe8ynR+0gpf3cudu07obDd4C/yZZMcLw29XdsHHBhZsQmEMik7OfzAjyxA574hN1updRKLDaJ8dIP6vmI+T4A/IUxJgFgjDlZ5fZUxnLOXq52Nn6ob65eqDdkt2G6LnZ8ip0AMy6IgaatEGyCt35hLpAMdem2LrXhbeiJJ6XUsmm2zFKlf87PNDbclz3zMm0HNFPZsWHu3EomaWeoZ07Zx8oP4hJThTNoOgF7Ji+TtOdolFqJxbKXaZa8hfYCrxSR+0TkJyJyaaEbicj1IvKAiDwwMjJS4SaWQf7qbimyYea7/4u2vEIqZlftxJnLGCxeO9HlC0Jwk92GGT1uH7fnWrjub+355437elQqZ2NOPCmlVkRX7kp58Df3Paefh+0vtWfuYlE4di907LMDmB2Xw7M/glS2WO/s+Tqx5+3SsWxCgQbIxLODIGz5BNeFTVug68LSPHe1cSyVvWyDnY8QkTuAQtWZP4HtFzcBLwUuBb4mInuMMfP2ShtjDgIHAfbv379UscraV66zl0N98NyP7Lljj9cGbyZjP/d47URXOgW4kIzZy1p2aNZWpc6Um3j6MyAO3GCMub/QDUXkeuB6gB07dlSuhUqpqtPgDko7sM2f/Q40zW1FmhqE13/G3mbgQXu2LnfWDrGXe3z2UzcNwbBNoGLSEGi11xsXWnZqUVm1cpq9bB5jzNXFrhORDwDfzAZzPxcRF2gH1sHy3CLKdfay/xZbAsZNAh67vdzNZDMHSzaZipsthZDdro6b3aXQogmk1IZSioknWIeTT0qpZdPgrtTyZ7/Dm+0/49rtbrkBSveFEB2w2zfBDnwyaVu01wnZM3WJSXtmLwO42UHQ7ivhVR/VgY5anQ22OrcGNwOvAX4sInsBPzBa1RZVQrlqU0WP2e3ojt8GbEZsf2Yy4AtDUxckJ2HmtO3znIAtYv7Ud2wCl0DLWp+ZUnVDJ56UUmulZ+5KbbGzTTldF9rtmV0X2PNzgWbwem32uEzKJhNo22PPn4Qi0LId3vR5eMe/6OBcqfL7R2CPiPQBXwXeU2hmfN0p19nLyHZbq65lFwQigLETXh4vhDvAG4BNu+c+T01nb2MgNgHRF+zWTqXUzdiJJzbUxJNSakV05a7Ulpr9HuqDk/3w3E+AbCpw1wCS3ZYp0NgJvgZo9MD2y+yM90g/cF1VnpJSG4kxJgn8SrXbURXlWN3tudZurTSuLQmTTmTP3bm2n/MFIRW3WTQnTtj8UrHTtm+Mj9sJsJ981k5uKbWx/SPwj9mJpyQbZeJJKbUiunJXaovNfg/1wZ2fhpNP2q1IvhBgbPrvrhfBBb9kt3F6spnjtl9mv97gBaWVUnWsqxeu+Jg9TzwzZlfnNu+z54cb2yHcDbFTMDWcPYMn2fPGri0bY4Bn74C+m6v8RJSqLmNM0hjzK8aYXmPMJcaYH1a7TUqp2qMrd+VQbPa7/xabXCXQbIO3xjY7Yw2w+xU23feP/lwLSiul1pfe684sgJ5LDNV/Cww+Av4GmxU4MQWeoE2sYtLga7QB3/0H7f0opZRSqigN7iopeszOSAea5y7zBmzwlluZ6+iBH37aBngeDzR02DN3l3yyKk1WSqmSKDbp1dU7l4hqehQe/pJd5UslbNIVN20Lm08OVrzJSimlVL3R4G4pQ31nzjav9kxKZDucfMqeOfEF7WXphA3wItvtYz36bzapitcHqSRMDs1fxVNKqfUmV4YhvNluxUyMY88he+1ZvOmTsGlXdduolFJK1QEN7hYz1GeTowRb7Kxyrqju3tfbBCcLA76lAsGea+HEw3DqOWw2OGwK8Naz5pIOTI+CvxGSBhzX1oCKndZaT0qp2rWWSbChPpg6aQudh1rBH86WgvHMz665aXdZn4JSSim1HmhClcXkFyQXj/3oZuCuz9hALz/g67vZflx4eX4K765euOqTsOuVdnXOTdnPr/qjua1J8ShMj2Tr3vkBYzPIDT1W8aevlFJLyk2CLdb3LfW9jh92v8peFj8FDW12Yisxbreyb3kxBBrL+CSUUkqp9UFX7haTX5A8Z2LAngHJbZXMfbz/IHRecObl+StuudntTALOe+OZs9uR7ZD8ISA2mQBkP/fboE8ppWpN/iQYFO77lvu9TV2QmrGZMzf32C3r6QRMDtjan0oppZRalK7cLaZQQfKZMZvlMl+w2R72DzafeXkuUcpyZrd7rrVZ4UzGruylU3ZgE2zObk9SSqkaEz22eN+30u91/HYCTSmllFIrpsHdYnqutUV0Y+P2zEdsHBwfhLfMv118Apq6zwwE80sYFNriGWyxl+d09cLeA7aIuXEBFzbtgO6LofvC8jxHpZRai0KTYIXKtwz12VIvN3/QfhzqK/y96bg9X+cL2kQq0yfBdeH4/cvb6qmUUkptYBrcLaZQQfJXftRumcwP+OLjcOn1ZwaC8fG5Wk7Lnd2+9H2w5SLYdYWtC5WK2eQtHT1lfapKKbUqhSbB8vs+KL5zoaOn8ARa2znQfi44AWjcDKGIXdFb7lk+pZRSaoPSM3dLKVSbaWEx3kvebW9T7HKYS/W9VHHyrl6bjfOnn7VbMxva7GDo0Pft/WvGTKVULclNghXr+6D4ubyR/jO/95UftSVhjv63PZ/sBGyB892vsgGeZg5WSimlitLgbjUWK8ZbbNDRc62ddQa7YhefsDPWl7zbXpafSvz089B+ng3mcmLjOqhRStWmxfo+KJycKrdzYeH3DvUBApmk3cIuBb5HKaWUUgVVbVumiHxYRJ4WkSdE5DPVakfFFNri+bIPz9XHy9+yND0KI0/a2k85OqhRStWr5Z7LAzuJtWkXbD4PWnZC6x676jf6dPHvUUoppRRQpZU7EXk18BbgQmNMQkQ2V6MdFVdsdju3ZSmTtFuRYqfBGDjxkE2wAjqoUUrVr8V2LiwsgD74WHab+7lw7D77PY7fTnrl73ZQSiml1BmqtXL3AeAvjDEJAGPMySVuv75Fj9kMcUd+AmPP2bN2iQkYfQYmhwonKFBKqXpRbOcCnJloJfqC7QfDm2H7ZTZrZuwUNLbP7XZQSimlVEHVOnO3F3iliPwZEAduMMbcX+iGInI9cD3Ajh07KtfCSopshyf/y67YOQHwN4IBMjG7ktf7i2cmKFBKqXpSaOfCj/58LtHK1Em79TIxZSe6wBYud/x2cksDO6WUUmpJZQvuROQOoKvAVZ/IPu4m4KXApcDXRGSPMcYsvLEx5iBwEGD//v1nXL8u9FwL937BlljwOLaIudcL4V3g9cGrP17tFiqlVOnlEq1MnYTjP7eTW03dMHkCRp+C1Iyt8amTW0oppdSylC24M8ZcXew6EfkA8M1sMPdzEXGBdmCkXO2pCQvPlvRcOzeb3dgOySl77s6bre3kcewWTaWUWi8WZgZOJ20w5wTsFsxUHCLboPMCu6Knk1tKqVpWbGynVJVU68zdzcBrAERkL+AHRqvUlsooVsQ3V5B39xUQaLIdQ2Q7eLyQmIRtl1az1UopVToL+8FwNxy/H6IDdvtlKm7PH7efqxmClVK1b6mxnVJVUK3g7h+BPSLSB3wVeE+hLZnrSn4RX/HYj8EWeznApe+zKb/BJlMB+/Wl76t8W5VSqhwW9oPtZ8PW/XYreuyUXbnbfplNpqIZgpVStW6psZ1SVVCVhCrGmCTwK9V47KpZrIgv2CX8qz6pS/tKqfWrUD/YtseerQs220FRsHkuQ7CWPVBK1bKlxnZKVUG1smVuPJHtdsASapm7bOHMdLE6eEqpihGRFwFfAIJAGvigMebnVW3UelGsH+y+0E5m5U9uaRIVpVStW87YTqkK0+CuUhYr4quUqiWfAf7EGPN9EXlD9usrq9ukdWKxflAnt5RS9UbHdqoGVevM3cZTrIivDmaUqjUGaM5+HgFOVLEt64v2g0qp9UT7NFWDdOWuknRmWql68LvAbSLyOewE2MsK3UhErgeuB9ixY0fFGlf3tB9USq0n2qepGqPBnVJqwxGRO4CuAld9ArgK+Igx5hsi8nbgi8AZdTuNMQeBgwD79+9f39l+lVJKKVUXNLhTSm04xpgzgrUcEflX4HeyX34d+IeKNEoppZRSao30zJ1SSs13AnhV9vPXAM9UsS1KKaWUUsumK3dKKTXfbwCfFxEvECd7rk4ppZRSqtZpcKeUUnmMMT8DXlztdiillFJKrZRuy1RKKaWUUkqpdUCMqZ8kbyIyAhytwEO1A6MVeJzlqqX21FJbQNuzlFpqT7G27DTGdFS6MaVUwb5pNWrpNbBS9dr2em031G/by9Vu7Z/Wrl5fU6u10Z4v6HOuhqJ9U10Fd5UiIg8YY/ZXux05tdSeWmoLaHuWUkvtqaW2bCT1/HOv17bXa7uhftter+3eCDba72ajPV/Q51xrdFumUkoppZRSSq0DGtwppZRSSiml1DqgwV1hB6vdgAVqqT211BbQ9iylltpTS23ZSOr5516vba/XdkP9tr1e270RbLTfzUZ7vqDPuabomTullFJKKaWUWgd05U4ppZRSSiml1gEN7pRSSimllFJqHdDgDhCR/xCRR7L/nheRR4rc7nkReTx7uwfK2J5PichAXpveUOR2B0TkaRE5LCJ/UKa2fFZEnhKRx0TkWyLSUuR2Zf3ZLPVcxfqr7PWPicglpW5D3mNtF5EfiUi/iDwhIr9T4DZXikg073f4yXK1J/t4i/78K/XzEZFz857zIyIyISK/u+A2Ff3ZbFQi8rbs69MVkf0Lrvt49rXwtIi8rlptXI7l9oe1ohL9crlU6j1urUTkH0XkpIj05V3WKiK3i8gz2Y+bqtnGjW699D+rVW/91lrUc5+3WjXfVxpj9F/eP+B/A58sct3zQHsF2vAp4IYlbuMAzwJ7AD/wKLCvDG15LeDNfv6XwF9W+meznOcKvAH4PiDAS4H7yvj76QYuyX7eBBwq0J4rge+U+7Wy3J9/JX8+C35vQ9hCm1X72WzUf0APcC7wY2B/3uX7sn9DAWB39m/LqXZ7F3keS/aHtfKvUv1yGdtfkfe4ErTzCuASoC/vss8Af5D9/A+KvVfpv4r9jtZF/7OG5183/dYan2dd93lreN413Vfqyl0eERHg7cC/V7sty/AS4LAx5jljTBL4KvCWUj+IMeYHxph09st7gW2lfoxlWM5zfQvwr8a6F2gRke5yNMYYM2iMeSj7+STQD2wtx2OVUMV+PnmuAp41xhwt8+OoAowx/caYpwtc9Rbgq8aYhDHmCHAY+zem1q4i/fJGZ4y5Czi14OK3AP+S/fxfgOsq2SY1n/Y/G4b2eTVIg7v5XgkMG2OeKXK9AX4gIg+KyPVlbsuHstvn/rHI9pKtwLG8r49T/gDj17GrP4WU82eznOdajZ8HIrILuBi4r8DVl4vIoyLyfRE5v8xNWernX42fzzspPlFSyZ+Nmq8qfytrtFR/WCvq8Webr5LvcaXWaYwZBDsBB2yucntUYfX+N7IS9dJvrcVG+n3mq+m+0lvtBlSKiNwBdBW46hPGmP/Kfv7LLL5q93JjzAkR2QzcLiJPZWcQS9oe4P8Cf4p98fwpdqvory+8iwLfu6q6Fsv52YjIJ4A08JUid1Oyn02hJha4bOFzLdnPY7lEJAx8A/hdY8zEgqsfwm5HnMrutb8ZOKeMzVnq51/Rn4+I+IE3Ax8vcHWlfzbr1jL7tTO+rcBlVa2JU4L+sFbU3M92hcrZj6t1Zr30P6u1jvqttVg3v88Vqum+csMEd8aYqxe7XkS8wC8AL17kPk5kP54UkW9hl6NX9ctcqj157fp74DsFrjoObM/7ehtwohxtEZH3AG8CrjLZzcYF7qNkP5sClvNcS/bzWA4R8WEDu68YY7658Pr8YM8Y8z0R+VsRaTfGjJajPcv4+Vf05wO8HnjIGDNcoK0V/dmsZ8vtRxao9GthSSXoD2tFzf1sV6LM/Xi5DYtItzFmMLvl/GS1G7TerZf+Z7XWUb+1Fuvm97kStd5X6rbMOVcDTxljjhe6UkQaRaQp9zk20Uhfoduu1YKzUG8t8jj3A+eIyO7sKsk7gW+XoS0HgN8H3myMmSlym3L/bJbzXL8N/KpYLwWiuS06pZY9m/lFoN8Y83+K3KYreztE5CXYv7WxMrVnOT//iv18soquglfyZ6MK+jbwThEJiMhu7Krpz6vcpqKW2R/Wior0y+VQyfe4Mvk28J7s5+8Biq0cqeqqq/5nteqs31qLuu3zVqse+soNs3K3DGecDxKRLcA/GGPeAHQC38qOSb3Avxljbi1TWz4jIi/CLm0/D/zmwvYYY9Ii8iHgNmy2on80xjxRhrb8NTar1e3Z536vMeb9lfzZFHuuIvL+7PVfAL6HzQh5GJgBfq1Uj1/Ay4F3A4/LXNmMPwR25LXnl4APiEgaiAHvLLbqWQIFf/7V+vmISANwDdnXbfay/LZU8mezYYnIW4GbgA7guyLyiDHmddm/na8BT2K3Wv+WMSZTzbYuoWB/WIsq2C+XQyXf49ZERP4dm3W3XUSOA38M/AXwNRF5H/AC8LbqtVCto/5nteqm31qLOu/zVqvm+0rRMZVSSimllFJK1T/dlqmUUkoppZRS64AGd0oppZRSSim1Dmhwp5RSSimllFLrgAZ3SimllFJKKbUOaHCnlFJKKaWUUuuABneqZETkH0Rk3yq/d5eIlK1OiIi8V0T+Ovv5p0TkhnI9llKqtmjfpJSqVdo/qVLTOneqZIwx/7PabVBKqYW0b1JK1Srtn1Sp6cqdWjERaRSR74rIoyLSJyLvyF7+YxHZn/18SkT+LHube0WkM3v5Wdmv7xeRT4vIVIH7d0Tks9nbPCYiBYt/isivZq9/VES+lL2sQ0S+kf3e+0Xk5eX7SSilaon2TUqpWqX9k6oUDe7UahwAThhjLjLG9AK3FrhNI3CvMeYi4C7gN7KXfx74vDHmUuBEkft/HxDN3uZS4DdEZHf+DUTkfOATwGuyj/E7efd/Y/Z7fxH4h9U+SaVU3dG+SSlVq7R/UhWhwZ1ajceBq0XkL0XklcaYaIHbJIHvZD9/ENiV/fxy4OvZz/+tyP2/FvhVEXkEuA9oA85ZcJvXAP9pjBkFMMacyl5+NfDX2e/9NtAsIk3Lf2pKqTqmfZNSqlZp/6QqQs/cqRUzxhwSkRcDbwD+XER+YIz59IKbpYwxJvt5hpW91gT4sDHmtiVuYwpc7gEuN8bE5t1YZAUPr5SqR9o3KaVqlfZPqlJ05U6tmIhsAWaMMV8GPgdcsoJvvxe75A/wziK3uQ34gIj4so+3V0QaF9zmTuDtItKWvU1r9vIfAB/Ka+uLVtA2pVQd075JKVWrtH9SlaIrd2o1LgA+KyIukAI+sILv/V3gyyLye8B3gULbEv4BuxXhIbHTRiPAdfk3MMY8ISJ/BvxERDLAw8B7gd8G/kZEHsO+vu8C3r+C9iml6pf2TUqpWqX9k6oImVv9Var8RKQBiBljjIi8E/hlY8xbqt0updTGpn2TUqpWaf+kVkJX7lSlvRh7aFeAceDXq9scpZQCtG9SStUu7Z/UsunKnVJKKaWUUkqtA5pQRSmllFJKKaXWAQ3ulFJKKaWUUmod0OBOKaWUUkoppdYBDe5U1YjI8yIynF+HRUT+p4j8OPu5EZGz8667QUQGReT8KjRXKbVBZfuqmIhMichpEfmuiGyvdruUUhtLXl80KSLjInK3iLxfRDx5t3mJiHwve/0pEfm5iPxaNdutKkuDO1VtXuB3lrqRiPw/2DovrzLGPFHuRiml1ALXGmPCQDcwDNxU5fYopTama40xTcBO4C+A3we+CCAilwM/BH4CnA20Yevpvb46TVXVoMGdqrbPAjeISEuxG4jI/wv8T+AKY8yhSjVMKaUWMsbEgf8E9lW7LUqpjcsYEzXGfBt4B/AeEenFjqn+xRjzl8aYUWM9aIx5e3VbqypJgztVbQ8APwZuKHL9X2A7riuMMc9VqlFKKVVItpjwO4B7q90WpZQyxvwcOA68CrgcO/mkNjAtYq5qwSeB/xaRzxe47rXYWagXKtwmpZTKd7OIpIEwcBJ4XZXbo5RSOSeAFuyizWB1m6KqTVfuVNUZY/qA7wB/UODqdwK/JCJ/UtlWKaXUPNcZY1qAAPAh4Cci0lXdJimlFABbgXHAxZ4LVhuYBneqVvwx8BvYDirfIeBq4IMiUij4U0qpijHGZIwx3wQywCuq3R6l1MYmIpdix053AfcAv1jdFqlq0+BO1QRjzGHgP4DfLnDdE9gA76Mi8rsVbppSSs0S6y3AJqC/2u1RSm1MItIsIm8Cvgp82RjzOPAx4L0i8lERacve7iIR+Wo126oqS8/cqVryaeDdha4wxjwqIq8DbheRuDHmC5VtmlJqg7tFRDKAAY4C79GyLEqpKrgle/7XBZ4E/g/wBQBjzN0i8hrgT4D/J9tnPQP8TbUaqypPjDHVboNSSimllFJKqTXSbZlKKaWUUkoptQ5ocKeUUkoppZRS64AGd0oppZRSSim1Dmhwp5RSSimllFLrQF1ly2xvbze7du2qdjOUUiX04IMPjhpjOqrdjrXQvkmp9Un7J6VULVqsb6qr4G7Xrl088MAD1W6GUqqERORotduwVto3KbU+af+klKpFi/VNui1TKaWUUkoppdYBDe6UUkoppZRSah2oanAnIi0i8p8i8pSI9IvI5dVsj1JKKaWUUkrVq2qfufs8cKsx5pdExA80VLk9SimllFLrWiqV4vjx48Tj8Wo3pWYFg0G2bduGz+erdlOUWpGqBXci0gxcAbwXwBiTBJLVao9SSiml1EZw/Phxmpqa2LVrFyJS7ebUHGMMY2NjHD9+nN27d1e7OUqtSDW3Ze4BRoB/EpGHReQfRKRx4Y1E5HoReUBEHhgZGal8K5VSSiml1pF4PE5bW5sGdkWICG1tbbqyqepSNbdleoFLgA8bY+4Tkc8DfwD8Uf6NjDEHgYMA+/fvNxVv5Xo01Af9t0D0GES2Q8+10NVb7VYppZRahf7BKLf2DTMwHmNrS4gDvZ30dEeq3SxV4zSwW5z+fFS5lLvPrubK3XHguDHmvuzX/4kN9lQ5DfXB3TdBbByat9qPd99kL1dKASAi/ygiJ0VE/zBUTesfjHLwriNEYym6I0GisRQH7zpC/2C02k1TSim1QCX67KoFd8aYIeCYiJybvegq4MlqtWfD6L8Fgi0QagHx2I/BFnu5Uirnn4ED1W6EUku5tW+YSMhHJOTDIzL7+a19w9VumlKLEhF+7/d+b/brz33uc3zqU58q2+M98MAD/PZv/3bZ7l+p5ahEn13tbJkfBr6SzZT5HPBrVW7P+hc9Zlfs8gWb7eVKKQCMMXeJyK5qt0OppQyMx+iOBOdd1hT0MjAeq1KL1HpUjm1kgUCAb37zm3z84x+nvb29RC0tbv/+/ezfv7/sj6PUYirRZ1e1zp0x5hFjzH5jzIXGmOuMMaer2Z4NIbId4hPzL4tP2MuVUsumyZ5ULdjaEmIynp532WQ8zdaWUJVapNabcm0j83q9XH/99dx4441nXHf06FGuuuoqLrzwQq666ipeeOEFAN773vfy27/927zsZS9jz549/Od//mfB+/76179Ob28vF110EVdccQUAP/7xj3nTm94EwMjICNdccw2XXHIJv/mbv8nOnTsZHR1d0/NRajkq0WdXNbhTVdBzLcTH7Vk749qP8XF7uVJq2YwxB7OTU/s7Ojqq3Ry1QR3o7SQaSxGNpXCNmf38QG9ntZum1olybiP7rd/6Lb7yla8Qjc4PFD/0oQ/xq7/6qzz22GP8j//xP+ZtpxwcHORnP/sZ3/nOd/iDP/iDgvf76U9/mttuu41HH32Ub3/722dc/yd/8ie85jWv4aGHHuKtb33rbPCoVLlVos/W4G6j6eqFl33YnrWbGLAfX/ZhzZaplFJ1qKc7wvVX7CYS8jEYjRMJ+bj+it2aLbMOLZXISay/EpHDIvKYiFQkCd3AeIym4PxTPKXaRtbc3Myv/uqv8ld/9VfzLr/nnnt417veBcC73/1ufvazn81ed9111+HxeNi3bx/Dw4UDzJe//OW8973v5e///u/JZDJnXP+zn/2Md77znQAcOHCATZs2rfm5KLUcleizq33mTlVDV68Gc0optU70dEc0mFsf/hn4a+Bfi1z/euCc7L/LgP+b/VhWW1tCRGMpIiHf7GWl3Eb2u7/7u1xyySX82q8VT7uQX5YgEAjMfm6MrZD1iU98gu9+97sAPPLII3zhC1/gvvvu47vf/S4vetGLeOSRR+bdX+77lKqGcvfZunKnlFILiMi/A/cA54rIcRF5X7XbpJRa34wxdwGnFrnJW4B/Nda9QIuIdJe7XeXeRtba2srb3/52vvjFL85e9rKXvYyvfvWrAHzlK1/hFa94xaL38Wd/9mc88sgjs0Hcs88+y2WXXcanP/1p2tvbOXZsftK4V7ziFXzta18D4Ac/+AGnT2vKB7V+aHCnlFILGGN+2RjTbYzxGWO2GWO+uPR3KaVUWW0F8qOU49nLzlDKhE+V2Eb2e7/3e/MSmvzVX/0V//RP/8SFF17Il770JT7/+c+v6P4++tGPcsEFF9Db28sVV1zBRRddNO/6P/7jP+YHP/gBl1xyCd///vfp7u6mqampJM9FqZXqH4xy4+2HuOHrj3Lj7YfWnqyoRO1SStWSoT5buzB6zGZC7blWt+IqpVR9kwKXFdxfaIw5CBwE2L9//5r3IJZjG9nU1NTs552dnczMzMx+vWvXLn74wx+e8T3//M//XPQ+8n3zm98847Irr7ySK6+8EoBIJMJtt92G1+vlnnvu4Uc/+tG87Z5KVUouG20k5JuXjXYtEyga3Cm13gz1wd032eL0zVttRtS7b9LEOUopVd+OA/l1i7YBJ6rUlrr2wgsv8Pa3vx3XdfH7/fz93/99tZukNqj8bLTA7Mdb+4Y1uFNKZfXfYgO7UIv9Ovex/xYN7pRSqn59G/iQiHwVm0glaowZrHKb6tI555zDww8/XO1mKFWWouYa3Cm13kSP2RW7fMFme7lSSqmalE3kdCXQLiLHgT8GfADGmC8A3wPeABwGZoDi6SWVUnWhHNloNbhTar2JbLdbMXMrdgDxCXu5UkqpmmSM+eUlrjfAb1WoOUqpCjjQ28nBu44AdsVuMp4mGkvxjku3rfo+NVumUutNz7UQH7cBnnHtx/i4vVwppZRSStWEcmSj1ZU7pdabrl6bPCU/W+Yl79bzdkoppZRSNabU2Wg1uFNqPerq1WBOKaVUzfqzP/sz/u3f/g3HcfB4PPzd3/0df//3f8//+l//i3379lW7eUrVLQ3ulFJKKbWk/sEot/YNMzAeY2tLiAO9nSWvfaZqVIlrp95zzz185zvf4aGHHiIQCDA6OkoymeQf/uEfSthopTYmPXOnbKf9oz+Hmz9oPw71VbtFSimlakiu0G40lppXaLd/MFrtpqlyy9VOjY3Pr526hrHC4OAg7e3ts4XD29vb2bJlC1deeSUPPPAAAF/84hfZu3cvV155Jb/xG7/Bhz70oRI8GaXWPw3uNroydNpKKaXWl/xCux6R2c9v7RuudtNUueXXThWP/RhssZev0mtf+1qOHTvG3r17+eAHP8hPfvKTedefOHGCP/3TP+Xee+/l9ttv56mnnlrLM1BqQ9HgbqMrQ6etlFJqfRkYj9EUnH+SY62FdlWdiB6ztVLzrbF2ajgc5sEHH+TgwYN0dHTwjne8g3/+53+evf7nP/85r3rVq2htbcXn8/G2t71t1Y+l1EajZ+42Oi14rZRSagnlKLSr6kSZaqc6jsOVV17JlVdeyQUXXMC//Mu/zF5nS/oppVZDV+42ush220nn04LXStW1/sEoN95+iBu+/ig33n5Iz0WpNTvQ20k0liIaS+EaM/v5gd7OajdNlVsZaqc+/fTTPPPMM7NfP/LII+zcuXP265e85CX85Cc/4fTp06TTab7xjW+s+rGU2mg0uNvotOC1UuuKJr5Q5VCOQruqTuRqp4ZaYGLAfnzZh9eULXNqaor3vOc97Nu3jwsvvJAnn3yST33qU7PXb926lT/8wz/ksssu4+qrr2bfvn1EIvpaU2o5dFvmRqcFr5VaV/ITXwCzH2/tG9aBuFqTUhfaVXWkxLVTX/ziF3P33XefcfmPf/zj2c/f9a53cf3115NOp3nrW9/Ka1/72pI9vlLrmQZ3SgteK7WODIzH6I4E512miS+UUvXmU5/6FHfccQfxeJzXvva1XHfdddVuklJ1QYM7pZRaRzTxhVJqPfjc5z5X7SYoVZc0uNuohvrmb8XMnbFbeJmu6ClVVw70dnLwriOAXbGbjKeJxlK849JtVW6ZUqqWGGMQkWo3o2Zpxk5VrzShykZUqHD5nX8Kd35ai5krVec08YVSainBYJCxsTENYIowxjA2NkYwGFz6xkrVGF2524jyC5eD/Xh8xH6+5eK5y3K31dU7peqKJr5QSi1m27ZtHD9+nJGRkWo3pWYFg0G2bdMdD6r+aHC3ERUqXJ5OwMLdGVrMXKmq6B+McmvfMAPjMba2hDjQ26nBmlLLpH8/S/P5fOzevbvazVBKlYFuy9yIChUu9wbACcy/TIuZK1VxWqdOqdXTvx+l1Eanwd1GVKhweWMHNLZrMXOlqiy/Tp1HZPbzW/uGq900pWqe/v0opTa6qgd3IuKIyMMi8p1qt2XDyBUuD7XAxID9eNUfwVWfnH/Zyz6s5+2UqrCB8RhNwfk75rVOnVLLo38/SqmNrhbO3P0O0A80V7shG0qxwuUazClVVVqnTqnV078fpdRGV9WVOxHZBrwR+IdqtkMppWrFgd5OorEU0VgK15jZzw/0dla7aUrVPP37UUrVqv7BKDfefogbvv4oN95+qGxngau9LfP/B3wMcIvdQESuF5EHROQBTdmrlFrvtE6dUqunfz9KqVpUyWRPVduWKSJvAk4aYx4UkSuL3c4YcxA4CLB//36ttqmUWve0Tp1Sq6d/P0qpWpOf7AmY/Xhr33DJ+6tqnrl7OfBmEXkDEASaReTLxphfqWKblFofhvpsAfroMVvOoudaPU+plFJKKVUFA+MxuiPBeZeVK9lT1bZlGmM+bozZZozZBbwT+KEGdkqVwFAf3H2TLWfRvNV+vPsme7lSSimllKqorS0hJuPpeZeVK9lTtc/cKaVKrf8WCLbYchbisR+DLfZypZRSSilVUZVM9lQTwZ0x5sfGmDdVux1KrQvRYxBcUFkk2GwvV8smIgdE5GkROSwif1Dt9iillFKqPlUy2VMt1LlTSpVSZLvdihlqmbssPmEvV8siIg7wN8A1wHHgfhH5tjHmyeq2TCmllFL1qFLJnmpi5U4pVUI910J83AZ4xrUf4+P2crVcLwEOG2OeM8Ykga8Cb6lym5RSSimlFqUrdxudZlVcf7p64WUfnv97veTd+ntdma1A/j7W48Bl+TcQkeuB6wF27NhRuZYppZRSShWhwd1GNtQHd/4pTI9AOgEnn4ITj8BVf6SBQL3r6tXf4dpIgcvm1dnUGpxKKaWUqjW6LXMju/+LcOpZ+3kuAcepZ+3lSm1sx4H8Q4rbgBNVaotSSiml1LJocLeRHb8f/E3gC4KI/ehvspcrtbHdD5wjIrtFxI+txfntKrdJKbWOLZWhV0SuFJGoiDyS/ffJarRTKVXbdFvmRrdw81mhzWhKbTDGmLSIfAi4DXCAfzTGPFHlZiml1qkVZOj9qZaOUkotRoO7jax1Dzz/U0DAF4JAE7hp2PXKardMqaozxnwP+F6126GU2hBmM/QCiEguQ6+WX1FKrYgGdxtNLjvm0GMw8rRNEZGJQ3ISZkahbS9c+r5qt1IppZTaSJbM0Jt1uYg8ij0DfEOxHQWazVepjUvP3G0kQ31w90227llsHBBwk+ANQiBiz9ulpqvcSKWUUmrDWTJDL/AQsNMYcxFwE3BzsTszxhw0xuw3xuzv6OgoXSuVUjVPV+7Wq0L16/pvgWALhFpg6iRMDUMmBeKBTbvB3wgzY/Z2mkZfKaWUqpQlM/QaYybyPv+eiPytiLQbY0Yr1EalVB3Qlbv1KH+Frnmr/Xj3TXYrZrDZBnaJKGSS4PHZj5MnYOY0NLbZgFAppZRSlbJkhl4R6RIRyX7+EuwYbqziLVVK1TRduVuP8lfoYO5j9BjEJ2D0aWhoh+S0TaDi+Ozmj9godJ5vV/qUUkopVRHFMvSKyPuz138B+CXgAyKSBmLAO40xC7duKqU2OA3u1qPoMWjeyshUnMeORRmaiINxeZEftvpHaJkehVArhBO40eMk0oZYBsTrQ5KGlp5rq/0MVJ3qH4xya98wA+MxtraEONDbSU93pNrNUkqpmlcoQ282qMt9/tfAX1e6XUqp+qLB3XoU2c7Y2DB3H0szPpPC7xUazQwPxLfz1clX8zvmKIwMMmaaGZJL2eKbooUoU04LX0+9kWvNdnqq/RzUqlUrwOofjHLwriNEQj66I0GisRQH7zrC9Vfs1gBPKaWUUqoCNLhbJ/IH9Bd6L2Tv8/9EbNpHzITwJGdAprnNuZKBic0cz/wP3s0tDCeCTNLACDH2NHXRt/M9zDi7uLVvWAfjdaqaAdatfcNEQj4iIR/A7Ed9PSmllFJKVYYGd3UqP5jzO8LwRILtrQ10R4I8MNrNNyau4Rruo9uMMkAb/+ZeweFkN5npGIOeTrwtb+aCzE/p5iTH0+18NXMle3dspy3oZWA8Vu2np1apmgHWwHiM7khw3mVN+npSSimllKoYDe7q0MLVmbsOjTAZT9MVCeARH0OTCQZ8e/h8bBseETLG2IQpAi6QcuGe6W5+mP5F3OxVpOHQY4NcvD3Ci3a0VvcJqlUrFmA9ORjlxtsPlXWr5taWENFYajagBJiMp9naEirp4yillFJKqcK0FEIdyl+d8YiQyhjCAYfDJ20B8ql4ms5mPwYh7ZrZKqi5nFoGmEpkMMyvkJpIuzx8LMrezsYKPhtVSltbQkzG0/Mue2FsmmNjMaKx1Lytmv2D0ZI+9oHeTqKxFNFYCteY2c8P9HaW9HGUUkoppVRhGtzVoYHxGE3BuUXXcNCLABPx1OzXGSO0NvhwPALZ1TmfI/jyfuP5CZQ9gEfsNr5Dw9MVeR6q9AoFWI8ej5IxLj8/cor7jpwimc4QCfm4tW+4pI/d0x3h+it2Ewn5GIzGiYR8mkxFbSj92RXyG77+KDfefqjkEyhKKaXUUnRbZh1auP3t7I5G7nvuFOGgF9cYupoCDI7H2LelmceOR3ENOB7BuC4p12BSGdLu/FU7BFxjyLiGJ07ogKRe5QKs3HnMgCPEUhkiwQABn0MileGhF8Z50fYIU4n00ne4isfXYE5tRJotVimlVC3Q4K4OHejt5OBdRwB7nsrvddjR1sCWSJDBaJzdHWFe19vJoeFp4mmX/hMTJFIuKdel0e/FEUM07s4L7lwDybTdqHn8dIz+wagOSOpUfoB14+2H6GoOEktmGJlOkky7eAQeOjrO6y/ornJLlVo/NFusUkqpWqDBXR1auDqztSXExw6ce8YA4o3Y2eTP3XaI0akEx0/PIAhJIwXv1wDTiQyX7grrgGSdGBiPsSUS4L+fPYXP8RDwCvGUy/HxmJ6tVKqENFusUkqpWqDBXZ1a7va3L99zlNGpBMmMy5ZIiMlEmujp5PwtmXlSGZcdbY06IFkntraE+PHTk3RHgkwl0iTSLj5H6GgKcWh4mjdWu4FKrROaLVYppVQt0OCuzuXq3T05GCUaS9Mc9HL+lshshsKfHh6jJeSlKeAlGktxeiZJyi1+f7GUywtj0+xqD1foGahyOtDbybceHmBTyEskFCKRdkmkXV60PaIBvFIltHC7/GQ8TTSW4h2Xbqtyy5RSSm0kGtzVsdwBftd1eWFsBhFhYiZFg8/h4F0zNPg8bGqws8ixVIbRqSRez+IJUg3w2PEo77/yrAo8A1VOucDf64GhiQQNfoeO5iDnb2nG73XmrTAopdam0Hb5d1y6Tbe3K6WUqigN7upY7gB//+AEQZ9D0OcQT2UYmkywr7uZuw6dJORzODYeI51xCXo9QOHzdjm50E8HJPUtP3PfZXtaue+50yTTLtPxFD8/chqvR/jwVRrAK1VKmi1WKaVUtWlwV8dyB/gn4imaAvZXGfB6mIqniafSjE4l2dISYntLiGdHpplOZnDdYqft5kwm0pots87Nz9zn47yuFHc/e4qpRJq9nWG6I0Hu6B9hT0dYf89KqXUvt5Mht6p6oLdT+z6l1LqkRczr2NaWEJPxNM1BH4m0PUiXSLuEg14efmEc47o8NzrFsyPTiNhf9mLn7QC8HmFTg4+Ddx3RArx1bGGh+7HpFDtaQ2xpCXH5We3sag+XpZC5UkrVmtxOhmgsNa8Gob7HKaXWo6oFdyKyXUR+JCL9IvKEiPxOtdpSrw70dnLs1Azj00meG5ni2ZNTRGMpGrzC82PTIIJPbMAXS7nE0kuv2mVcw9kdOvCvd7nAP2cinkKAcF7Ap2nalVp/+gej3Hj7IW74+qPcePshDWCYv5PBIzL7ub7HKaXWo2qu3KWB3zPG9AAvBX5LRPZVsT1157mRKZ4dmeTkVALHI7iuSyyVYWQ6RaPfizGGWNrgeMC7+FG7WR4P9A9OEE+ldeBfh3IDuydORLn3uTGeH53CNQa/42EqkeHsjrnadpqmXan1RVeoClu4kwF0cksptX5VLbgzxgwaYx7Kfj4J9ANbq9WeetM/GOWmHz5L0OflnM1hdrY1sjkS4rJdrbjGEGnwEUu5CCAiyDKDO4CJeJr+wUkd+NeZ/IFdT3czezeHeXpoiqeGJujd0syOtgb8XgfXGKKxFNFYarZkhlKq/ukKVWELdzKATm4ppdavmkioIiK7gIuB+wpcdz1wPcCOHTsq27AadmvfMKmMS1ujHxEh6HOIJTM8cPQ008kMjkAmuwszk1l6O2ZOyoXTMykyZpq9nY1Lf4OqGfOTqMDujjCt4QCRkI+PXLP3jIQCmqZdqfUll2Qrn65QaQ1CpdTGUvXgTkTCwDeA3zXGTCy83hhzEDgIsH///uVHKevcwHiMtkY/ibRL0OcwnUgzOpUgYwztDT6OnV79m7kBOps0m2K9WWpgp2nalVrftraEiMZS82pY6gqV1iBUSm0sVQ3uRMSHDey+Yoz5ZiUec72kQ97aEiKVzvD08BQAp6aTuAa8Hg8NQR9NoTSnp1MskRyzqLM6Gme389Tjz2cj0oGdUhubrlAVp5NbSqmNoprZMgX4ItBvjPk/lXjM9XTY/EBvJx6Ph3M7wwS8HibjKRyPcNnuTWRcSLuGgNeWLF/BcTsAmvwexmZSup2nzuztbOTHTw3zr3c/z1fuO8r3Hx+kb2Cc0cm4Zs5TagPIrVBFQj4Go3EiIR/XX7FbgxqllNpAqrly93Lg3cDjIvJI9rI/NMZ8r1wPuPBMUu5jPa5O5W8z8XkdEKGrKcDujjBHT8WIJTOkMnaL5UqDu4DPYXQyrqs+daR/MMp/PjhALJUhlkqTiBlGp5IEHCHsd7hg+6bZyQwd7Cm1fukKlVJKbWxVC+6MMT9j5XHHmqy3w+a5N/H+wSg33fEMPz40wo8PjRBPpknm7cdc6UHFZMbl1HSKY6dmeMfr9pa0zao8bu0bZuB0jJlkBoMQ8gnJjEsiY7jnyCkOj0zPBvoD4zH+5M37dAColFJKKbXOVLPOXcWtx3TI/YNRPnPr0zw9PMWmBi/xVIakOz9qXmkEPZ3I0NHkp7M5oAFAnRgYj3FqJknGdfF6JFv30F6XTBtGpxIkUi6TiRT9J6L85pce4hPffEy3aSqllFJKrSMbKrg70Ns5W99rvdT6urVvmFPTScJBL2kXNjX4cQQ82X+OrG559MU7N5FcQQkFVV1bW0JkMoaMARFIpjOzyXQMkM4YRCCWdHGNoSXkpe/ERN2eOVVKKaWUUmfaUMHdejxsPjAeI5l2CXg9JNIujkfwewXX2OBOYMUZMzMGLWJeZw70dhIJecHATCJDIjP/+rSB8ZkkAD7HIehzSGZcLXBcgIi8TUSeEBFXRPZXuz1KKaWUUstV9Tp3lbbeDptvbQnxzPAkiWyAl84YGvxe0pkUjsdDMmNDO2FlZ++GJuJ1vaK50fR0R/jogXP5w288RqLIimvKBQdDLJXh6NgMHU2Buj5zWkZ9wC8Af1fthiillFJKrcSGWrlbjw70dtLa6GcqnqbR7xBPZUilDR1NAba3hvB7PQQcwbvC33QylVn6Rqqm7OkII57Ff9FGIJNxmUmmmU6kOTo6rSu0Cxhj+o0xT1e7HUoppZRSK6XBXZ3r6Y7wsQPnctmeVhzHQ1vYz462BvZtifCGC7awf2cLfsez4oyZGYOex6ozt/YNM5lIL3obj4DP6yHocwj4HA4NT+kK7SqJyPUi8oCIPDAyMlLt5iillFJKbbxtmaXUPxi1KejHY2xtCXGgt7MqWz57uiP8f79wYcH2ff3+F4inXdIrPHjnEWbPY62nbazr2cB4bDZDZiEC7GprZCaZYTqZpjnoJdLg25C/XxG5A+gqcNUnjDH/tZz7MMYcBA4C7N+/X7MPlUCt9KlKKaVUvdLgbpX6B6McvOsIkZCP7kiwJgtEf/meo0zE06y80h24BhLpNAPji68EqdrQPxjlhVMzi94m6BVOz6RoD/vZ3tpAT3czkZBv9vs30qDaGHN1tdug5quHPlUppZSqdRrcrdKtfcNEQr7ZwXHu48KVrkoNmgs9zsPHojT4HWKpzIoTqoR8Hp48McmV524ueVtVaeUGxSGvEPJ5mEmduXznAGkXorEkk/Eku9vCs0XqCw2qP3fbITqbAyQzZkMEe6r6ltunKqWUUqo4De5WaWA8RnckOO+y/MyD/YNRvnzPUX749Aiuawj5PDzT4KdvIMoNr9u75GBlJUHhdx8b4KY7nyXtGlobfSRTGQ7eNUMslSbS4GNsOrni5zeZSBOYqe8agBvFrX3DZDIuw5NJ2sJ+0tE4ybz4zpstdJhyDQL4fB6CfgfXGJ4bmeJf7nmBsakE7eEAZ29uBODI6DSjUwmu2Nux4VZQROStwE1AB/BdEXnEGPO6Kjdr3VuqT1VqvRORA8DnsfNx/2CM+YsF10v2+jcAM8B7jTEPVbyhSqmapglVVmlrS4jJ+Pwti5PxNFtbQrMrIQ88f5qZRJqMa5hMZJhJpjkyOs2X7zm66H3nvj8aS83bnlQouUn/YJSbfvgsCLQ2+kikXQ6dnOLUoy5meQAARYNJREFUVJzT00mOjs7gmpVvzEymDa84u21DDObr3cB4jKGJOBnXZSbpEg76cPIq1xtsghywBc79Xg+9W5tpDnq56c5nOTWVpLXBRzyV4cGj4zx2LEo44JDKGDwis6spG6UenjHmW8aYbcaYgDGmUwO7ylisT1VqvRMRB/gb4PXAPuCXRWTfgpu9Hjgn++964P9WtJFKqbqgwd0qHejtJBpLEY2lcI2Z/fxAb+fs9qKxmSQBn4eAz4PXAzPJDOGAw8PHFs9Amb89aanB9a19w6QyLs1BLyJC0Ofguob7nz/NVCJN2phVnLizyTfeffnOVXynqrStLSFOTaeYTmQwxtaxc/N+6Zm84N4YcF3DY8eiDEbjdrU37CeZMTaDptfD4EQcAcLBuYV9XUFR5bZYn6rUBvAS4LAx5jljTBL4KvCWBbd5C/CvxroXaBGR7ko3VClV2zS4W6We7gjXX7GbSMjHYDROJOSb3bY2MB6jKTswzi2gOB4hkXazZ98WD7fyvz+n2OB6YDxGW6OfRF46zLHpOPG0i0dk3iB/JUQ0+V+9ONDbidcjTCfTJNK2PmGh354AjgdCfofBiThj00laG32c3dFIIu0ST2XwO0LGNUwlMpzd0Tj7vbqCosptsT5VqeXqH4xy4+2HuOHrj3Lj7YfqqZzPVuBY3tfHs5et9DaAlmpRaiPTM3dr0NMdKTjw2NoSIhpL0dUcZOB0DBvOGRwRphIZLtvTuuj95r4/l1AAig+ut7aEGJ2M8+zINK4xhHwOE7EMGPB6hGRm5UGaAI1+LYNQL3q6I3z4qrP45H89yUwijUek6G0DXg8YQ8YFn+OhqzlIR1OQS3a0cHhkmlNTSba2hOhoCuD32nN5k/E00ViKd1y6rYLPSm1ExfpUpZajzjOuFuq4F76BL+c29kIt1aLUhqUrd2WQ2150VkcjzSEvGdcQT7k0h7zsaGtYcrvjSrYn7e1s5NmRaZqDXoJeD1OJNBljE7ikV7ls5/UIW1qCug2vjrzxwq18+i37aAj4igb0JvtfLGUzYH74NWfhOB6isRRt4QD7upu5YFuEz77tQj524FxdQVFK1ZWVHGmoQceB7XlfbwNOrOI2SqkNTlfuyiC3vejWvmFmUhmiMVsw+vwtkWWllM///ly2zHdcuq3g9x0anubi7S0MTSYYnYwjHiGdcUlmXDIrLFye0x72cVZHWLfh1Zk3XriV7z46yK1PDmOKxPUp12VLU4CuSJBDw9Oc19XInU+NMjwRp7M5yHsu3zH7OtNgTilVT+o84+r9wDkishsYAN4JvGvBbb4NfEhEvgpcBkSNMYOVbaZSqtZpcFcma91etNzvHxiPsbO9kXDQy0QsRVPQR0vQy7Oj06RWuXK3JRLEcTyayKAOnYqlFj1nmcxALJVh4HSMo2PTTMTTvHR3K5ftbmUynuaO/hH2dIQ1sFNK1Z2VHGmoNcaYtIh8CLgNWwrhH40xT4jI+7PXfwH4HrYMwmFsKYRfq1Z7lVK1S7dl1rlc+vDDI9MEvB6CPgef16Ep6CXk8+B3ip+/KubBYxOc19WoA/w6tJzkAeOxNB6BiViaWCLDsyPT9biFSSml5qn3jKvGmO8ZY/YaY84yxvxZ9rIvZAM7slkyfyt7/QXGmAeq22KlVC3S4K4EqpmdK/dmdmoqid8R4qkMibRLU9DH7rYGQn5vwRPYS6mzLGMqayaRWfR6vwfAMB5LkTGGoE8YmojPXl9HW5iUUmoezbiqlFIa3K3ZSgqOl0Puzaw17OfUTIqgz2FPewOJtMvx8Th+B3yrWL2Lp6no81AlskimTLBJVXzZshwBr4eFuVfqZQuTUkoV0tMd4SPX7OVzb7uIj1yzVwM7pdSGs2HP3PUPRuclLFlOopNC8rNzAbMfK1lGoKc7wp+8eR8H7zqC67o8NTRJMpVmKp5mkiJ5kpcht0VP3xzrR9DxkMoUX71LueA1Br/jocHvEI2l2BoJackDpZRSSql1YEOu3JVytW0lBcfLKbeCNziRYHwmSTSWQQDPavZkZukWvfoT9C/9J51MG/yO0OD3sq+7mf27NukWJqWUUkqpdWBDrtwttdq2klW9WsvONRlPMRHPkDEGAUSEonnxF7E57NMtenWmfzBKMgMhnxBLnfk7F+wWXZ/jYf/utjWtWCullFJKqdqzIYO7xWrh5Fb1IiHfvFW9YisaB3o7OXjXkdn7WO7WtlJtC82/v4N3HcHveEimMrjYwfyiefEX8dI97bpFr87c2jdMV1OAZ0dTRW/jeITzt0b43NsuqmDLlFJKKaVUJazbbZmLZbDMlQ/Il1ulyl/VW056+ELZua7u6eDWvuGi2TPLkYQl1+6tLUFytcsNqz9v1xT06ha9OtI/GOWWRwc4Pj5DukjxegPE0y5Xndde0bYppZRSSqnKWFFwJyI+EblYRDaXq0GlsFTwtFgtnNWcocvPznWgt5M7+keKPnb/YJQ//vaTPH48ypODE4xNJUpSX2xgPEYinebJExNLJUxclplUkQhB1Zz+wSifufVpTk2nSBaL7LKMgc/d9gwX/cltfOBLD6yrbKj10j8ppdYH7XOUUrVo0W2ZIvIF4CZjzBMiEgHuATJAq4jcYIz590o0cqWWOlOXW23L3xb5jku30dMdWfMZutxjpzIZfn5kgol4Cr/j4cv3HOVXLt/JwbuOMDaVoLXBRyKV4aEXxrlkRwtt4cCKkpcs3NYZcISfP3+KU9PJVdW1WyiTcTVTZp24tW+YU9NJmoIO47HiWzJzHA8k0y4/OTTCI8dO07uthX3dkbo7f1ev/ZNSqj5pn6OUqgdLnbl7pTHm/dnPfw04ZIy5TkS6gO8DNdmRLXamLicX5C202jN0+Y/tc+DhF6IEvB6aAl7iqQw/PTwG2ECzPRwgnsoQ9DkAHB6Zxu91lhVA9g9G+fI9R/np4TE2Nfjo6W4iGktxIhrnRDRGxjX4HCGTXu2GTGtoIo4/2z5V2wbGYyTTLvFlrrYK9iimMYbxWJroTGrJs6U1qi77J6VU3dI+RylV85balpnM+/wa4GYAY8xQuRpUCoudqVtKoTN0Kxnwbm0J8eSJSQJeD0Gfg4ggImxq8PHwsShNQS9nb24kkXaJpzL4HeHUVHJ2W+hicttN+05M0BKycfkjx6Ik0xmaAl7SGZvmPr3KJCr5BqNxzZRZJ7a2hMi4dnvxcsTShmTaxTWGVMZlMpEuydbgKqjL/kkpVbe0z1FK1bylgrtxEXmTiFwMvBy4FUBEvMCaR/4ickBEnhaRwyLyB2u9v5zFztQtR/4Zuo9cs3dFKxkHejs5PZMCYzDGEE9lSKRderqbMNhC0e3hIC/e2ULQ53BqJkVr2L+sADK35TOZcQn6HII+h4DXw6PHoxwansLrAQxkSnBcbjK+/J+Xqq4DvZ0k08ULlxdisK8TY8DJHtKsw7qGZe2flFJqAe1zlFI1b6ltmb8J/BXQDfxu3uzUVcB31/LAIuIAf4Od/ToO3C8i3zbGPLmW+wUWPVNXbj3dEV5xdhtPnJhgKpEhHPRy/pZm/F6Hi7e3zK6utDYG6Ol2iMZSy14ZzG03bQ76Zrd1BrweBkanaQp48Xo8+BxDIrP2lbtGv1NP2/M2tJ7uCOd0NZFKZzgxkVx2hlQDeB2IpzLc89wYp6aStIb99A9G6+V3X7b+SSlV30pdbihL+xylVM1bNLgzxhwCDhS4/DbgtjU+9kuAw8aY5wBE5KvAW4A1B3dQ/ExdJbw7mzglEvLNO7d3/RW7AVYddOaSvZy9uZEHj47bC42Z3ZLX0uBjMJrBEVhrfKfn7erL5nCAx4zQ4PcwnVze0q1XIOA4jEwm8DoeHA90Nwfq5uxdmfsnpVSdWmm92uXSPkcpVQ+WLIUgIq8XkZ+IyKiIjGQ/f0MJHnsrcCzv6+PZyxY+/vUi8oCIPDAyMlKChy2/xc7trXXLZzSWwuc4XLzDft/pmD1L2BhwSGUMHhFCfmfNBQxTqZVt81PV0z8Y5UQ0zmQiTXIZSVV8jtC7pZlzu5tIZFwkW89x/65N7GoP19XZuzL2T0qpOrXSerUroX2OUqrWLVUK4Tew2xA+BjyQvXg/8Bciss0Yc3ANj10oY/8Z603ZxzgIsH///rXvN6yQcqwczt9umubKczdzoLeT50am+OR/PclELJktXC6IB1jD2bvhySTffWyAN154RrytasytfcPsbGukbyDKWHLpoDzo9dDgd5iIpwn6vBzo7aSzee64SL2cvStz/6SUqlPLyZi9GtrnKKXqwVJn7j4CvMIYcyrvsh+KyOuBn5ENulbpOLA97+ttwIk13N+GsDBo7B+Mckf/CL1bmvj586dJZQzJtFnzyp0xhpvufJY9HeGa35630eUGMo0Bh7FpCkyRzBf0OZyaTuH1CC/f00rQN78bWEldxyorZ/+klKpTa61Xuwjtc5RSNW+p4E4WdGIAGGPGRNZcKvt+4BwR2Q0MAO8E3rXWOy2HMh3MLsnj5baf7GhtoMHv5e5nx5hKpBFhTSt3GQOnphNayLwO5AYync0hBk7HWKwShgANAS9vvLB7Nhtqfl3HF8ameXp4im2bQtx4+6FaL2xezv5JKVWn1lqvdhHa5yilat5SCzwTInLRwguzl02u5YGNMWngQ9hDyP3A14wxT6zlPsshdzA7GkvNO5jdPxiticcbGI/RFLQx+t6uZra3NtAW9mczaa7+zcYAk4l0XWzP2+hyZzFDy/h9+73CdS/aOnveM/986FNDEzw9NMXezWF6upvL/lovgbL1T0qp0usfjHLj7Ye44euPcuPth8rWt6y1Xu0itM9RStW8pVbufg/4toj8E/Agdsx/KfAe4FfW+uDGmO8B31vr/ZRT/sFsYPZjuVa0Vvp4C7efuAZaQj4yLniMIbHsxPhnSmZMvWzP29B6uiNc3dPBTT98Fr/XQ2qRbJl+x0ODX7jx9kM8ORglGkvTHPRy/pYIHeEAW1saKvZaL4Gy9k9KqdIpVwbLYsqUMVv7HKVUzVuqFMLPROQy4IPAe7G7up4AXppX36XuLbYNslwHs4tZ6ePt7WzkpjufJe0aWht9pDIZRiaTbG4KcOx0ek1tcV2jhczrxKHhaV66p41kOsPA6VjBWocBr7B3cyNfvvcYZ3U0MhiNIyJMzKRo8Dk8cjzKy85qnXdOpZaTq2yU/kmp9aDSE6XloH2OUqoeLLVyR7bD+mQF2lIVS80mlvFgdkErebxcMpVzu8IMRuOMTSfJuAaPGIxxSWXWcOgOCHqpmzfdjS43KTAZT+Ma8Ajzzt75PfCLl2zj8Mg0jQHDoZNTdIQDBH0O8VSGockEmxp89A9OzsucWevJVdZ7/6TUelHpidJy0T5HKVXrliqF8DiFc+8JYIwxF5alVRW01GxiGQ9mF7SSx8tv+672MADRWIqfHjrJyHSqYK2J5RKgu6VhDfegKik3KRBLZUgXyKji93roaAryyLEoTQGHwWiMbdmgLeD1MBVPc9H2Zv778CmisVRFXutrtRH6J6XWi0pPlJaD9jlKqXqw1MrdmyrSiipaajZxfm05u23zHZduK9uK1koer1jbXWyh6rUUBQx4hcv3tK3hHlQl5SYFkunCde5mki63PznMeCxJLOmhMeAlkXYJ+hwSaZdw0EvA6+WVZ7cRCfkq8lovgXXfPym1XlR6orRMtM9RStW8pc7cHV14mYi0A2PGmLopKL6Y5cwmruZg9lrKJyz38Yq1XYBkKoPP8ZB2V7c10+t4+JXLd67qe1Xl5SYFvvf4CXITyx6AvO2ZjX4Pp6ddjk8kaA55OXZqhkiDj4DjsLO1gWgsVbbkBuVQrv5JRD4LXAskgWeBXzPGjK/2/pRSlZ8oLYeNMCZSStW/RUshiMhLReTHIvJNEblYRPqAPmBYRA5UponllUsjH42lcI2Z/XwtiURKXT6hWProYm1v8HsxCOGAd1np8QvpaArU1ZuusoOnSNA3u2JrmAvsvI4wMpUgmYGOJj8Br0NjwMtELE1Lg5fdHeG6CuygrP3T7UBvdovVIeDjpWivUhtdT3eEj1yzl8+97aLZciz1ZCOMiZRS9W+pOnd/Dfx/wL8DPwT+pzGmC7gC+PMyt60iylEPJ/8snEdk9vNb+4ZXfF9LBYohn4f7joxxZ/9JUukM11+xm65IEBF7/i5VIGvicpzX2bSq71PV0z8YJZlx8Qo4HptUBcDBniXd3Bxi26YQ2zY14PcK3S0hNjX4cZFaL1ZeTFn6J2PMD7J1OAHuBepq35hSqmzW/ZhIKVX/ljpz5zXG/ABARD5tjLkXwBjzlMha0nXUllLXwyllVrBiCV++fM9RZlIukZCPq3s6Z88vAJy/JcKhoUliiQzpVW4UaW30r+4bVdXc2jdMOODFAOmMS8Y1kDE4Yldxp+JpwgGH0zNJJuMZIqEMmxq8jE0lylpvqowq0T/9OvAfha4QkeuB6wF27NhRqsdTStWuDTEmUkrVt6VW7vIPbC2MTHR/eRFbW0JMxufXmFttVrCB8RhNwfkxeFPQy8PHogVXB798z1FGJm1ZBLOGX9HwZGLV36uqY2A8xpaWEJubArQ0+AkHfbQ2+nE8QnPIRzjgMBFPc2o6RXvYT9DnkMwY2sOBVa8sV9mq+ycRuUNE+gr8e0vebT4BpIGvFLoPY8xBY8x+Y8z+jo6O1T4HpVT90DGRUqrmLbVyd5GITGDT/Iayn5P9Olj82za2UmYFK5Y0xWDOCPoS6TT/ffgUrzlvM7vaGugfmlz1cxiOxlf9vao6traESKUzTMTThAOCMWmmEmkCPg9bIkFSrmEinqbB79Ac9BJPZUikXXq3NtdlvSnW0D8ZY65e7HoReQ82M95VmihBKZWlYyKlVM1bdOXOGOMYY5qNMU3GGG/289zXvsW+dyMr5Tm+YklTLt7ecsbq4JMnJgl4hScHJ4jGUqxlSHpqWlfu6s2B3k48Hg9dzQFGJhNMJdL4HA8XbYsQ9Hv5vdfu5cZ3XER3S4hTMymCPocX72yhPRysu3pTUL7+KZsY4feBNxtjZkrXYqVUPdMxkVKqHiy1cqdWqVTn+IqljwbOWB0cmogT8jmMTyeZSWZwsHvKViN3fk/Vj9xr5Y+//SStjQFaw37O7miko8km4vnSPUfpaAoSCXmZmEnR2RSgtTEwO2FQZ/WmyumvgQBwe/Yczb3GmPdXt0lKKaWUUkvT4G4Ra6lVV0rFAsVc0PfEiSgT8TSJVIZMxiACGIPjCOlVZstMra48nqqynu4IzUEvGMNUPM3hkWkAXGO4+1m7Zfe8rmYafA5PD08xk8pw/pZI3dWbKidjzNnVboNSSiml1GpocFdErgRBJOSbV4Kg1jIKjk7GOTQ8xaYGHw1+h4lYipmkC7J0tpzFeDTxV13qH4xy/LQ9O9cc9JJIZXjohXFc17CpYS7r6q72MJsabSKVj1yzt5pNVkoppZRSJaLBXRFfvucoz438/9u79+g27/vO8+8vQJCAeAEtiSJ1teTrSpbtRJHduJlm6sZxFad20nRy6W5Tt82M2mTi7XSbk6njszPd9nSTNp315qTNbrVJ5vRM0ulk2tqJ61iJnXHjXmLXduILbdqOLUuWKFKiLgRFESBx+e4fDyCBNEiCJO78vM7hAfngwYPfw+cB8Hzx/f1+30lmsjl6ohGu2NB5YUbBlQR3C2UDl5IpLASfh8Ym6Y0Fh/H8TDD9vYUgu8LMW2dHeGUbkLo4OHiCge52nj9+jhP5brrgnD6fZmO8g8cPneaKDZ2s74o26yQqIiItx8zWEpRd2Q4cBj7k7mdLrHcYOAdkgYy7761dK0WkGawkudOyhkYS/P2rp3F3ujuCWQWfPjLOdCbDC8cT3PvwK3zqvz/LvQ+/cqGYeLnbna8g+WLFyucq1L+byeaIRsJEI2HCBjmMeDRCiJXNy3z5+q4VPFrq5YXjCUYnZljf1U4sEuJcKs2pyRnaQhCPRi6cy6cmU005iYqISIv6HeB77n4l8L383/O52d3fosBOREpRcFfCwcETXLImgplhZkQjYTraQjx1+CzHzibLDsBKbbdUbbqDgycWvK+UQv27nmiE6UyQpjODSNiYzmSBlQV3b798/QoeLfUykcqAQe+adrau7aQnFmFNexux9jDT+fGX7WFjcDiYUXXf7v46t1hERID3AX+e//3PgffXryki0swU3JUwPJ5k58ZupjM5Uuks7g7unJiY5ur+rrIDsFLbLVWQfHg8ueB9pRQKpV+xobOonTCTzhEJh4nHVtbjdk27Bt01o3isDXe/cN5OzWQJGfREI+zZ1ktHJEw668xkcw03flREZBXrd/cRgPzthnnWc+C7Zva0me2fb2Nmtt/MnjKzp8bGxqrQXBFpVAruStjcGyMaabtwMTw5nQUz1ne1s21d56x1lzJuqRCQFSt0jVvovlIK9e8i4TBv3RZcoE9nsrRHQrSF4WxyuUUQAvf9aGRJXU6lMezaGGdjTwenJqd5+cS5oFB5Oihs/urYea7o6+QnLlvHrbsGFNiJiNSQmT1iZoMlft63hM28w933AO8B/q2ZvbPUSu5+wN33uvvevr6+irRfRJqDgrsSCoFTe1uYn9ixlht3rOWyvi5uumzdkgKw+bY7tyD5vt39C95XSnGh9HQWfvrqDdx0+Xqu39zDqcmV16g7M5kqOyMpjeOq/k5eOzVFdzTClt4ojjOVznE+NcPhU5M89sopjpw+r+6YIiI15u63uPvuEj/fBE6Y2UaA/O3JebZxPH97ErgPuLFW7ReR5qDgroTiwGkkkSIei7D/nTv4pZsunRWAvT42yeOvnebFkURZk6vMt91CHbv57ltoe7/17qv42L/YDsDx8RQ/OpagEh0qz01neeG4MnfNZGgkwZ//4A0AzqXSHDk9hbvR1R4mHA66Y05OZ4hFQsraiYg0lm8Bd+Z/vxP45twVzKzTzLoLvwO3AoM1a6GINAWVQphHOYXDj51NcvVAF9vWdZZdB2++7S5233yK6/Fdv7WHV0YnlvT4hUykVta1U2qncB6cnpxmoKeDmaxz6tw0a9rDhEPGVDpHOGSEDIZGztW7uSIiMtvngG+Y2ceAN4APApjZJuDL7n4b0A/cZ2YQXL/9hbsfrFN7RaRBKbhbpuHxJB1tIbqibRcmVwFWXAdvqYpn2YQIl3S2c/r8DL6SqTKBdCanQuZNpHAerO/qIJXOEo2EwSCZzuJAW8jAnYnpDGfPp/nM3zzHR2+6VBk8EZEG4O6ngXeVWH4cuC3/+yHg+ho3TUSazKoP7pZTODwei4CDu/P0kXHedmkvAD8+McmJc9MAC26nkobHk2yMRzk1meLVk+dpD4dWVgMhLxoJkavAdqQ2CufBFRs6efrIOADdHW2cmUoTCRmRcIhz08GMqt3RNl44PvGmTPNSXgsiIiIi0nhW9Zi75RYOj8cidMeCOngdbSGePZrg6SPjTKQy9Hd3LLn+3Ups7o3xxunzPH1knFQ6S29nhPa2IOVm+Z/lyDr0RFd97N80CrOtru+K8rZLe4Oi9iEDh5wHY+3cc8QiYTb1RklnfVYZj6W+FkRERESk8azq4G65hcMBrugL6svhzkjiYimEKzZ0Lbn+3Urs293PyycmAehoCzF2bppoexvdHWE2xjvY1Btd1kFOZ3L0d3dUtrFSNcWzra7t7CAWCZFM5+hoM9rCQYgfDoXo624nHAq6ExeX8Vjqa0FEREREGs+qDu6WWzgcoK87yp5tvWBGJhdkufZs66WvO7rodirhweeG+dCf/YDf+NoPGUkkSWeyTE5nyTlsjkfpjkZIpnNMZ4IL/CXzivTulBopnm31pdEJnh+eoKs9TFc0Qjb4DoKwwblUlulMjiv6OmeV8Vjqa0FEREREGs+qDu6WWzi8UAqhvS3MZX1d/Ny1A+zaFL8Q2C22nZV68LlhPvfQy0wk02zoaicSCnF8PMlMJgvAqckZwiEImRE2o70ttOTJUaIdYWayCu+aSaE0xq6NcSJh48zUDOdSGYwguJucyXF2aoZL18ZobwvPqqO41NeCiIiIiDSeVR3craRw+EL17xbbzkr9+Q/eoLOjLehCFwrRu6aNdC7Ivmzobic5k+XsVJqr+zvpiQX39Xe109le/uEOmenCvkm9OJIgkUzjQMggk3OcYPxlzp1/eO0Uj71yknOpNAcHTzA0kljya0FEREREGk9dZswws88DtwMzwGvAr7r7eK3bUQjWimcI/PANW5ZVp26p21mJExMpNnS1X/g7mc7REw1zfiaHY2xbt4Z0JsfZZIbbrt3Emnbjey+d4tiZKcKWZmI6u+D2wwaZbE4X9k0qkczkM7VGOpvDi7rYRttCGCHOTKW5sat9Vn3GWp7DIiIiIlJ59ZoO8WHgbnfPmNkfAncD/74eDVlO4fBqbqec6ej7e6JMJNPEY0EmbjqTA4x1Xe3s2dbLqyfPk8jNYBhX9XfyyNAYuzb2cHnfGp44dBYnxeR0dt4xdeEQDMSjurBvUj3RNsKhEOl0hnTu4vIgcwddHSHSWefQqSluumwdEEyo8lvvvkrHXERERKSJ1SW4c/fvFv35OPCvKrXtRqrVtdS2FNfRK56OvrgWGcCdN23jcw+9DEB3Rxh3mMnk2LWpm6ePjNPRFqIjHAIzPn/wZToiYdLZHGP5Gny5fDe9+Rn/00B3Bf4DUmtDIwlGEilS6SwzJRK0M9kcmawTjYSYzI+xm85kePjFMw3xmhERERGR5WuEMXe/Bjw0351mtt/MnjKzp8bGxhbcUCPV6lpOW8qdjv69123md95zNT2xCCcnZxiIR9m1qYdzqSzt+Wnvp7POpniU0+dnGBlPcnw8xfmZLMl0lvPF6ZxSPJiURTXOmkvhnDszmSJdYjKcSAgi4RDnZ7J0d0ToirZxajLFE4fOEglb3V8zIiIiIrIyVcvcmdkjwECJu+5x92/m17kHyABfn2877n4AOACwd+/eBRNOxcERcOH24OCJmmciltOW4fEkG+PRWcvmm47+vddt5r3Xbb7w99BIgv/tG8+CQ3esjWs29fDq2HnaQkYilaGjLUTYgm55i+mPd3Bqcoav/eAIf/CB68rdZamzg4MnyGZznJnKEAlDOntxrJ1BULIjFub8TJZszrls/RoGhycw4JpNPRe+UChsS9k7ERERkeZSteDO3W9Z6H4zuxP4OeBd7l6ROfeXEhxV20Jtma+75ubeGIlk+sIFNpQ/Hf3OjXFu3TUw6/HPHE1gGDiYBVmbVGbhrF0kZMRj7YQMfnRU2ZtmMjyeZHQihQHhcAhwcu64Q1sYQhaid00HA/EQ122JM5N1ZrI5bthxyawyHqpvJyIiItKc6tIt08z2EUygcoe7T1Vqu41Uq2u+trSHbd7umiudjn7u4yNhYybn9MTaMAyHYCzegpwT+QBhsZF50lg298Y4cz5NV0eYbM4JhSCXj+U9Z2y5JMa1W+J8/oPX8X9+4Dr++IPXc+uuAaKR2d/xqL6diLzJ6CA8+lm4/xPB7ehgvVskIiIl1GvM3Z8A3cDDZvaMmf2/ldhoI9Xqmq8tBvOOq5uvjl653ePmPv6aTT30dbVzSWc70UiISDgEFpQ6mE/IjEQyzenJGd66tbci/wupjX27+2kLGV0dbXS0hTGMcNhoCxltbcYN29e+6XxqpNfMqqALZGlGo4PwT1+E5Dj0bA5u/+mLOn9FRBpQvWbLvKIa211O3bpqma8tX/mHw6ztmv1vL+4Gt9KSCsWPHxpJcPb8DP946DTpdJacQ1vYiISNnkiIRCr7pjF47k44HKKtzfjoTZcuux1Sezs3xrnrXZfzxf/xGj05J+cQDhmd7W3c9a7LZ43RLH5Mo7xmWl7hAjnaO/sC+SfvgoHd9W6dyPyGHgjO21hv8HfhdugBnbsiIg2mXnXuqqZS9eYqoVRbVjKurhyF8XwvjiQ4ejrJVf1d3LZ7gEdfGuP8dIYd6zvZujbGE6+fpTMC59NZwsaFemjpHGzojnBlf3fD/B+lfO+9bjOX9XUtqQRHI71mWpoukKVZJY4GX0gUi/YEy0VEpKG0XHDX6Pbt7ufAY68DQcbuXCpDIpnmwzdsWfG2i+vkJabSYPDKyUn2bOtlXVcH/T0dxNrbuLK/h5dGz5EMG1PpLOkchPLdNd1hPJkhElqg76Y0NAVrDUoXyNKs4luDTHPhCwmA1ESwXEREGoqCuxqrVje4oZEE//FbL3J6cpr1XR2MTU7T19XBdCbH88MJEskZzk8HE7xMTWeYSGWCWTTzj3eHjEM4BKGQceSMZksUqShdIEuz2nl70IUYgi8kUhOQGoc9H61rs0RE5M0U3JUwX6mCSql0ZuVi8eoZ1q6JkEpnmUhmiIRCtLcZR88m2dDdwUQyzXQmxxtnpuhd08ZoYppMfsxdYehdLgdd7SEmpzPzPp+ILIMukKVZDewOxoYOPRBkmuNbg/NW3YlFRBqOgrs5irs2FpcqWMqslbVWKJi+tqud6XSWaCTM+q52Tk3OBDXPgIlkhqnpLBhMpbPMnMuRzs6eTSUSCiZcOZvMcO26rrrsi0jL0gWyNLOB3TpXRUSawKoK7srJyBUCpcKEJzOZLIfGJvntbzzHu3f1VzyLVwmFgulX9HXywzfGAeiJtjE1k+HM+Rky2RyWzpKzoPZFLuuksm+uYpfOQTbnWAjuvGlbrXdDpPXpAlma0ejg7C8ldt6u81hEpEGtmuCu3IxcIVACGDuX4p9ePUUynSWVyfF3L5/kuWPjfHrf1TUN8BYLSgszcPZ1R9mzrZdXx85zZnKGjb1riIRDnJqcIZvLEc5n6rIwb3nyHLA13lFy2nxpDsUzpiaSGXqibVyzKd6QX0yISINTCQ8RkaZSryLmNVeckZtbPLzY5t4Y51LBeLNnjyUYT2XI5qCzPQzAG6en+C8/OFKzdheC0kQyPSsoHRpJXFinuBD1uq4Odm3s4dotcf6PO3YxnckxnclyfiZHNj9pynyBHQQTrOzepACgWRXOl8OnJnnj9BQTyTTHziR5fWzyTeeNlGZmv29mz5nZM2b2XTPbVO82idTN0AOQzcCJ5+Hlh4LbbCZYLiIiDWfVBHfD40m6o/MXDy8oDpROJFJBeQBgXVcH0UiYro4wPzo6XrN2lxOUFmbgjMcijCRSxGMR9r9zBwCT0xnaLAjaFgrqCuKxNjqjkcVXlIZUOF9GJ6aJRsLEYxE6IiFGz02X/DJDSvq8u1/n7m8B/hb4D3Vuj0j9jDwHYy9COgUd3cHt2IvBchERaTirpltmucXDi0sVpHM5OsIh+uNR1rQH/yoHdmQOw6P/WJPxB8XdRAtKBaWlZuC89+FXGOiJcvj0FJEw5Nxxh+J5VIygxt1VHGFf+EneGpskMnEpjIbV5aYJFc6XiVSa7o7gnO1oCzGZypQ8b+TN3H2i6M9OyvteRKQ1TSeAEETyn0ORKGSm88tFRKTRrJrgbinFwwuB0qlzKX5w6AwhM9yd6UyOvqlX+dcdD0Fyx8XxB9/7veD37PTKg705A9eva7uOQ6ntiwalpQyPJ3nrtl6Gx5Pkck42Z2RxzKGrI0Q668xknavsCL/e9m3SkR6mYgPcEM9oTEWTKnyJ0RMNSmJEI2GmMzm68ud8OeeNgJn9AfDLQAK4eZ519gP7AbZt0wRE0qKicZg6G2Ts2jqCwM5zwXIREXmTapdUW8yq6ZY5X9fFWf/s0UF49LNw/yfg0c/ysaum2LG+E4CJVBqAO9qf5tItm4JCxBaC7AycOQQjz84ebD46uPRGFgauJ8cvbOuOqb9mzZmXSCTT5NwvdBndt7t/0c1t7o0RjbSxfV0nXdEI3bEI6zo7uLyvk77uGFcP9PChvVv45fjzpCM9rF23gbdtX8u6df3B4HmNqWg6hW7FAz0dpNLZYKxm8jV+Zfq/8p7Xfp//JfX15Z2bLcbMHjGzwRI/7wNw93vcfSvwdeCTpbbh7gfcfa+77+3r66tl80VqZ+A66L8myNhNnwtu+68JlouIyCzlzJVRbasmcweLFA8vMSPYZa/8Z+7Z+6t8c2TDhej7nWPTXLJ248XHnXo5GIeQnQmCvVhvsHzogaVnvYYeCJ6/sI1YL73Ar2Sf4+vRay+04cM3bCnrG4B9u/t54DuP8Am+T5hjnAxv4B/a3k5003VMTmfp7+lgJutc2z1B/5bL6etec/HB0Z4geyhNpbhb8VQ6S0/iFX4h/S2iHevYuvFK+sIpZWUBd7+lzFX/AngQ+I9VbI5I49p5e/Ce0X9t8LmQmoDUeLBcRERmmVtSrXB7cPBEzbJ3qyq4W1CJwArgstf/G7/VtQEiR6FtK3R3BR9uhfVSExCKBB96BcsNjEafC7J20+eCbay/GjrXs2FimN9691VL3txOO8rGyIMc6mjjWHaAtelJ7rQHeDXaxw0//S/YaUeD/T51BEZHwK6Hrg0X9yu+den7IHU360uMRx+B5BUXz1fyAfxyvnxYJczsSnf/cf7PO4CX6tkekboa2B18GVRc527PR/X+ISJSQrlzZVSTgruCxNEgY1csk4LXvw9X/uzFLpcTx8lPqxIEYOF2mJ6ATW+5+LjlBEajg3D2CGDBdtMpOPoEbNgF6y5f3j4NPUDvJX3s2dTLnsKy5Dg/GXsO7NKLmcrNb4Mj/wiH/x4ufQe0RYNvZvd8dHnPK42j1HmtrOxiPmdmVxOUfTwC/Ead2yNSXwO7FcyJiJSh3Akcq2nVjLlbVHxrEJQVG30eYmsvjq+L9cIl24OL5VgvTAzDxuth7eVBkOe5IABcTpeVoQegb2cwfWVm+uLA9df/Lphy+tHPLn2sVOLo7IwiXLywf/IrcOrHQVB3+sew4Rro6IHhp4N9W+Xd9lpGqfNaWdkFufsvuPvufDmE2919uN5tEhERkcZXXFJtqXNlVIoydwWFcQVwcVxB8gzs+Jez14v2BEHdzXdfXDZnhstldVlJHIV1lwXbP/UyTJ4MAsX2zmBbhYlaioOuuc87d5bO+NbgcRe65BHsV7gDDj0K0UuCoPX0ITjxAvReCr1bZ++bNJ/i8yLckc82b589XkZZWREREZGKKp77YKlzZVSKgruCUuMKLrs5yMgVK5X1WGmXldFBOHsYjj0FneuDsXYQXJjH4qUnaikxAcybgr9SAWtqHCJrgoxkegrOjUA2A54JMnkzk8G2lbVrTnPPi9QE4MGEPxPDF798gCAbXINajSIiIiKrxYITONZAawd3C2W25ruv+AK3cKEM1ct6FJ6jayMkz0IyAW88DunzQdauEOgV2lAYKzXPBDCzJsooBKxPfgVefihYtuUGmByFgWvhxfuDAC8UAQtDNg2ZmWD92++t3D5K7ZQ8L3YEt4WMbDlfDIiISM2Y2QeB3wV2Aje6+1PzrLcP+AIQBr7s7p+rWSNFpCm07pi7EjXjLtSfW+i+YoXgqDC+rhpj0QoX4+uvgK1vDzJ1ng3G7/Xtujh7JczOGi40nm6u9FQwUcrV7wkykWePwMx5yGbBPZg4JjsDHV3Q1QfHnqzc/kltlXNeFAeAhayw6hqKiNTTIPAB4LH5VjCzMPCnwHuAXcAvmtmu2jRPRJpF62buFspsweJZr4JqzxJWPJth14bgx3NBoBluCwLPUlnD+cbTze0yWvx/mDwZjOebnoRXH4ZsKsjYhdvzAaXDzBSEI0iTKue80AyaIiINxd2HAMxsodVuBF5190P5df8SeB/wYtUbKCJNo3Uzd4UMxuTJYIr/lx4M6siNPre0rFe1zTeb4cbrFs4a7rw9CPaS4wvP0ln8fzj6RFBioWcT5HKAQS4b3Hb0QKgtWG/LDdXdZ6mecs4LzaApItKMNgPFFyrH8svexMz2m9lTZvbU2NhYTRonIo2hdTN38a1w+jU4+WJQt62jO5/9SkDXQPB7dibIZKUmguzVxutr3875Jj0pzLg5X9aw3MKyhUzOqZeD/0MkGgR4kSh0b4KpE8HybAZCYWhrhxs+Vs09lmoq57xY6JwTEZGqMLNHgIESd93j7t8sZxMllnmpFd39AHAAYO/evSXXEZHW1LrB3c7b4b5fB+xizTgD1u8M7j97GM68Bu3dQTfE6YkgQ1brmSLLDdLme+xi6xUu5M+fys+QmYLsdJC9sxD4Oujunx3galKN5rbYebGSc05ERJbF3W9Z4SaOAcVdLLYAx1e4TRFpMa0b3A3shvg2mB6H1LkgQ7Hx+qDUwMRwENycHwuyd9Ee2PiWILgpjMlbqH7cQharPbfU9VaqcCH/0KeDAK9z/cUM5eG/h2g8mGylkL1R1m51qPZYUhERqbQngSvNbAcwDHwE+J/r2yQRaTStG9xBMG5t7uQSyfEgmEochSveFWSvCjwHI88FWb35polfrLxCOVPM13oq+oHd8J4/uvicha54ay8Lnr+4/pku+EVERGrKzH4e+CLQBzxoZs+4+8+a2SaCkge3uXvGzD4JfIegFMJX3f2FOjZbRBpQawd3C40tGnqg9KyC0wno3Tb/LJsLBWXl1J4r/F3ubJ2VUrIr3n9QMCciIlJn7n4fcF+J5ceB24r+/jbw7Ro2TUSWaGgkwcHBEwyPJ9ncG2Pf7v6aFjVv7eBusbFFpQK/aHz+mTQXC8rKnWK+XlPRqyueiIiIiEhVDI0kOPDY68RjETbGoySSaQ489jr737mjZgFeawd3MH9AM1/gN19Gr9CVc6GgrNzac8XrFWrPFcbD1XpCFxERERERWbGDgyeIxyLEY0HN6MLtwcETNQvu6lrnzsw+ZWZuZuvr0oCB3XDz3fD+LwW3A7sXrhO2WH2wcmvPFdY79SocfRySiaCYePemIJs4OljV3RYRERERkcoaHk/SHZ2dO+uOtjE8nqxZG+oW3JnZVuDdwBv1akNJhYxeqeLhiwVvCz22oDAhy/QEHHsCps9DLA7b3g7rLg+6fRbG94mIiIiISFPY3BvjXCoDwKnJFI8fOs23nx/hjTNTDI0katKGenbLvBf4NFBO4c7aWmpXzuJ1FxrXVjxLZv/uoMh6KAzrr4auDcE6i429q1UJBRERkeXQ55SIrFL7dvdz4LHXOXt+mpdGz2FmREIhBro7ajb2ri6ZOzO7Axh292fLWHe/mT1lZk+NjY3VoHWLKNWVs1zFE7JYKBhjRygYc1dQaoxeQSE4TI7Pnq1T3ThFRKQR6HNKRFaxnRvj7H/nDkYmpsnmoCcWYc+lvezo6yIei3Bw8ETV21C1zJ2ZPQIMlLjrHuAzwK3lbMfdDwAHAPbu3esVa2A9zJ2QZU0fjL0MiTfAPbgvFA6ygaVUu4SCvm0VEZGVqEepHxGRBrJzY5xta9fwEzvWEjK7sLxWY++qlrlz91vcfffcH+AQsAN41swOA1uAH5pZqUCwtRRPyDJ5Ek7/+GLphanTcPJFuOo9838AJo7OX6ZhpfRtq4iIrFQ1P6dERJpE8di7gnOpDJt7Y1V/7pqPuXP354ENhb/zAd5edz9VlSesZTZqsecqLqo+9hJgEInBjn8ZjLlLjsPYEIxeUXo7C5VaWOl+6ttWERFZqXJLAomItLDC2DsIMnbnUhkSyTQfvmFL1Z+7rqUQqq6W2ahynqt4Ns3JUYj1wJYbZ0+mMvrc/NuZb7bOvp0r309929p6Rgfh0c/C/Z8IbpWFFZFqK7ckkIhICyuMvYvHIowkUsRjkZoVMq97EXN33161jdcyG1XucxXPplnq281UAuLbSm/n5rvnL7y+1P2cm+kLdwTPr29bW0PxzKzFAf/c0hwiIpVUzqzSIiKrwM6N8ZoVLi9W9+CuquZOYAKVHaNW/OE18tybP7wWeq7iLprRnnxgNw4d8YUzaKVKLTz+paXtZ6kL/4njgAM7ZrdnvsldpLGpm61I9WjyqYUtVBJIRESqqrWDu2r1/S8VHCXegMgaWH9Fec8137ebQw+U1+bii4uzhyEzExRBL+e5S174b4fsTPC7vm1tftX8YkNkNVNWvPIULIuIVExrB3fzZcdWmo0qFRz17Qxmu+xcX/5zzfft5mJtnntxkZ6GY08G963dsfhzz3fhPzEcdP2U5qdJDUSqQ1nxylKwLCJSUa09oUrxBCYTw8FtJT4wSk0+snYHXHLpyp+rnDbPLYa+/grYvBfOHS/vuYtLMhTowr+1aFIDkerQ5FOVNffzLNYb/D30QH3bJSLSpFo7cwfV6fs/X1Zk4LryM18LdUNZrM2lMm/rLoNIB7z/S4s/d7UymtI4SnX73XZT8PfjX1LXJ5HlUla8stSFXESkolo7c1ctK82KrLREw0ozb9XKaEpjGdgdfNnw/i8F5+YrD6lIvchKKSteWepJIiJSUQrulmMlwdHoIDz0aTj+IzjxPJw/tfRuKJUILjV4fXVR1yeRytCXY5WlYFlEpKJav1tmtSynu2chY3f+FMTWQjoFR5+ArT8RTMRSbjeUldQR0uD11Uldn0QqR1P9V47q4omIVJSCu1oqZE861weBXSQaLD/1MoTbl9YNZbkXF5rpbXXSOCERaVQKlkVEKkbdMitpdBAe/Szc/4ngdu54psIsa+uvhux0EOCF24NMXq26oWimt9VJXZ+WzMw+ZWZuZuvr3RYRERGRcii4q5RyJkkpDBzv2gBbbgwyd8kzQSavuFvkYkHiSmjw+uqkcUJLYmZbgXcDb9S7LSIiIiLlUrfMSimnu2NxCYLO9UHWLjX+5sCummPiVAZh9VLXp6W4F/g08M16N0RERESkXMrcVUo53R2XU6C80rMaKoMjsiAzuwMYdvdnF1lvv5k9ZWZPjY2N1ah1IiIiIvNT5q5Syp2wYjkFyis9Jk4ZHFnlzOwRYKDEXfcAnwFuXWwb7n4AOACwd+9er2gDRURERJZBwV2lVKq7o2Y1FKk6d7+l1HIzuxbYATxrZgBbgB+a2Y3uPlrDJoqIiIgsmbplVkqlujtqVkORunH35919g7tvd/ftwDFgjwI7ERERaQbK3FVSJbo7qqCriIiIiIgsg4K7RqQxcSINIZ+9ExEREWkK6pYpIiIiIiLSAhTciYiIiIiItAAFdyIiIiIiIi1AY+6Wa3Rw9qQnO2/XODkREREREakbZe6WY3QwqGmXHA8KjifHg79HB+vdMhEREWkyZvZBM3vBzHJmtneB9Q6b2fNm9oyZPVXLNopIc1DmbjmGHoBo78VC44XboQeUvRMREZGlGgQ+APxZGeve7O6nqtweEWlSCu6WI3E0yNgVi/YEy0VERESWwN2HAMys3k0RkSan4G454luDrpiFjB1AaiJYLtJoND5URKRVOPBdM3Pgz9z9QKmVzGw/sB9g27ZtNWyeiNSbgrvl2Hl7MMYOgoxdagJS47Dno3VtlsibFMaHRntnjw/9ybsU4ImI1JCZPQIMlLjrHnf/ZpmbeYe7HzezDcDDZvaSuz82d6V80HcAYO/evb7YRodGEhwcPMHweJLNvTH27e5n58Z4mU0SkUaiCVWWY2B3cHEc64WJ4eBWF8vSiIrHh1oouI32BstFRKRm3P0Wd99d4qfcwA53P56/PQncB9y40nYNjSQ48NjrJJJpNsajJJJpDjz2OkMjiZVuWkTqQJm75RrYrWBOGp/Gh4qItAQz6wRC7n4u//utwO+tdLsHB08Qj0WIxyIAF24PDp5Q9k6kCdUtc2dmd5nZy/mpf/+oXu0QaWnxrUG34WIaHyoi0lDM7OfN7BhwE/CgmX0nv3yTmX07v1o/8A9m9izwz8CD7n5wpc89PJ6kOzr7u/7uaBvD48mVblpE6qAumTszuxl4H3Cdu0/n+46LSCUUT6AS7gi6DrND40NFpLU18eRR7n4fQTfLucuPA7flfz8EXF/p597cGyORTF/I2AGcS2XY3Bur9FOJrCr1Gstar8zdx4HPufs0XOg7LiIrVZhAJTkedMcMtwMG2RmNDxWR1jX3va8wedToYL1b1vD27e4nkUyTSKbJuV/4fd/u/no3TaRp1XMsa72Cu6uAnzKzJ8zs+2Z2w3wrmtl+M3vKzJ4aGxurYRNFmlCpCVQu2Q5dG+D9X4Kb71ZgJyKtR5NHLdvOjXH2v3MH8ViEkUSKeCzC/nfu0Hg7kRUoHssaMrvw+8HBE1V/7qp1y1xoyt/8814CvB24AfiGmV3m7m+arnep0/mKrGqaQEVEViO9963Izo1xBXMiFTQ8nmRjPDprWa3GslYtuHP3W+a7z8w+DvxNPpj7ZzPLAesBpeZEViK+NeiOFOu9uEwTqIhIq9N7n4g0kHqOZa1Xt8z7gZ8BMLOrgHbgVJ3aItI6dt4eTJiSHAfPBbep8WC5iEir0nufiDSQeo5lrVdw91XgMjMbBP4SuLNUl0wRWaKB3cGEKbFeTaAiIquH3vtEpIHUcyxrXUohuPsM8Ev1eG6RljewWxc0IrL66L1PRBpIvcay1q2IuYiIiIiIiFSOgjsREREREZEWoOBORERERESkBSi4ExERERERaQEK7kRERERERFqAgjsREREREZEWYM1UXs7MxoAjNXzK9ayO4uqrZT9B+9qILnX3vno3YiWK3pua5X++FNqn5qB9qo5Wen+CxvifltKo7YLGbVujtgsat22t1K5535uaKrirNTN7yt331rsd1bZa9hO0r1Jdrfg/1z41B+2TlKNR/6eN2i5o3LY1arugcdu2WtqlbpkiIiIiIiItQMGdiIiIiIhIC1Bwt7AD9W5AjayW/QTtq1RXK/7PtU/NQfsk5WjU/2mjtgsat22N2i5o3LatinZpzJ2IiIiIiEgLUOZORERERESkBSi4ExERERERaQEK7uYwsw+a2QtmljOzvXPuu9vMXjWzl83sZ+vVxmows981s2Ezeyb/c1u921RJZrYvf9xeNbPfqXd7qsnMDpvZ8/nj+FS929PKzOy/Fb1mDpvZM/Os1zTHZAn71FSvKTO7K9/eF8zsj+ZZp2mOE5S9T01znMr9HGq249SIyjl36sXMPmVmbmbr692WAjP7vJm9ZGbPmdl9ZtZb5/Y03OvazLaa2aNmNpQ/r36z3m0qZmZhM/uRmf1tvdtSzMx6zeyv8ufXkJndtNJttlWiYS1mEPgA8GfFC81sF/AR4BpgE/CImV3l7tnaN7Fq7nX3P653IyrNzMLAnwLvBo4BT5rZt9z9xfq2rKpudvdGLNTZUtz9w4Xfzew/AYkFVm+KY1LOPjXba8rMbgbeB1zn7tNmtmGB1ZviOJWzT812nPLK/RxqiuPUiJb4eqgpM9tKcL6+Ue+2zPEwcLe7Z8zsD4G7gX9fj4Y08Os6A/y2u//QzLqBp83s4QZoV8FvAkNAT70bMscXgIPu/q/MrB1Ys9INKnM3h7sPufvLJe56H/CX7j7t7q8DrwI31rZ1skw3Aq+6+yF3nwH+kuB4ilSEmRnwIeC/1rstlbLIPjXba+rjwOfcfRrA3U/WuT2VUM4+Ndtxktpo5NfDvcCngYaa7c/dv+vumfyfjwNb6tichnxdu/uIu/8w//s5gkBqc31bFTCzLcB7gS/Xuy3FzKwHeCfwFQB3n3H38ZVuV8Fd+TYDR4v+PkaDnLQV9Ml8l4Ovmtkl9W5MBa2GY1fMge+a2dNmtr/ejVklfgo44e4/nuf+ZjwmC+1Ts72mrgJ+ysyeMLPvm9kN86zXTMepnH1qtuME5X0ONdNxakTlvh5qyszuAIbd/dl6t2URvwY8VMfnb/jXtZltB94KPFHnphT83wRfGuTq3I65LgPGgP+c7zL6ZTPrXOlGV2W3TDN7BBgocdc97v7N+R5WYllDfbO0mIX2G/h/gN8n2KffB/4TwRtYK2j6Y7dE73D34/muNg+b2Uvu/li9G9Wsyny/+EUWzto11DGpwD413Gtqkfe3NuAS4O3ADcA3zOwyf3MtoKY5TpS3T812nMr9HGqo49SIKvR6qHW7PgPcWu02zKec90Uzu4eg++HXa9m2ORrudV3MzLqAvwb+nbtPNEB7fg446e5Pm9lP17k5c7UBe4C73P0JM/sC8DvA/77Sja467n7LMh52DNha9PcW4HhlWlQb5e63mf1/QEMNOF2hpj92S+Hux/O3J83sPoIuHLrwWabFXjdm1kYwTvdtC2yjoY5JBfap4V5TC+2TmX0c+Jv8xes/m1kOWE/wjWnxNprmOJW5T011nIot9DnUaMepEVXi9VDLdpnZtcAO4NmgRzhbgB+a2Y3uPlrtdi3UtgIzuxP4OeBdtQiEF9Bwr+sCM4sQBHZfd/e/qXd78t4B3GHBBE1RoMfMvubuv1TndkFwLI+5eyHD+VcEwd2KqFtm+b4FfMTMOsxsB3Al8M91blPFmNnGoj9/nmBimVbxJHClme3ID1b9CMHxbDlm1pkfyEw+tX8rrXUsG9EtwEvufqzUnU16TBbcJ5rvNXU/8DMAZnYV0A7MmoyjCY/T/SyyTzTZcSrnc6gJj1Mjup/Fz52acvfn3X2Du2939+0EF717ahXYLcbM9hFMoHKHu0/VuTkN+brOj9P+CjDk7v9XvdtT4O53u/uW/Hn1EeB/NEhgR/78PmpmV+cXvQtY8QQ0qzJztxAz+3ngi0Af8KCZPePuP+vuL5jZNwj+6Rng37bYTJl/ZGZvIUjtHwZ+va6tqaD87FafBL4DhIGvuvsLdW5WtfQD9+W/+WwD/sLdD9a3SS3vI8zpvmhmm4Avu/ttNOcxWXCfmvA19VXgq2Y2CMwAd7q7N/lxWnSfmvA4lfwcavLj1IhKnjt1blOj+xOgg6AbMMDj7v4b9WhIA7+u3wF8FHjeLpbQ+Yy7f7t+TWoKdwFfzwfqh4BfXekGTa9nERERERGR5qdumSIiIiIiIi1AwZ2IiIiIiEgLUHAnIiIiIiLSAhTciYiIiIiItAAFdyIiIiIiIi1AwZ1UjJl92cx2LfOx2/PTMleFmf2Kmf1J/vffNbNPVeu5RKSx6L1JRBqV3p+k0lTnTirG3f91vdsgIjKX3ptEpFHp/UkqTZk7WTIz6zSzB83sWTMbNLMP55f/nZntzf8+aWZ/kF/ncTPrzy+/PP/3k2b2e2Y2WWL7YTP7fH6d58ysZEF1M/vl/P3Pmtl/yS/rM7O/zj/2STN7R/X+EyLSSPTeJCKNSu9PUisK7mQ59gHH3f16d98NHCyxTifwuLtfDzwG/Jv88i8AX3D3G4Dj82z/Y0Aiv84NwL8xsx3FK5jZNcA9wM/kn+M3i7Z/b/6xvwB8ebk7KSJNR+9NItKo9P4kNaHgTpbjeeAWM/tDM/spd0+UWGcG+Nv8708D2/O/3wT89/zvfzHP9m8FftnMngGeANYBV85Z52eAv3L3UwDufia//BbgT/KP/RbQY2bd5e+aiDQxvTeJSKPS+5PUhMbcyZK5+ytm9jbgNuCzZvZdd/+9Oaul3d3zv2dZ2rlmwF3u/p1F1vESy0PATe6enLWy2RKeXkSakd6bRKRR6f1JakWZO1kyM9sETLn714A/BvYs4eGPE6T8AT4yzzrfAT5uZpH8811lZp1z1vke8CEzW5dfZ21++XeBTxa19S1LaJuINDG9N4lIo9L7k9SKMneyHNcCnzezHJAGPr6Ex/474Gtm9tvAg0CpbglfJuiK8EMLvjYaA95fvIK7v2BmfwB838yywI+AXwH+V+BPzew5gvP7MeA3ltA+EWleem8SkUal9yepCbuY/RWpPjNbAyTd3c3sI8Avuvv76t0uEVnd9N4kIo1K70+yFMrcSa29jWDQrgHjwK/VtzkiIoDem0Skcen9ScqmzJ2IiIiIiEgL0IQqIiIiIiIiLUDBnYiIiIiISAtQcCciIiIiItICFNyJiIiIiIi0AAV3IiIiIiIiLeD/B74SWiYlNzACAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# unfiltered results \n", + "# withbiosonlyRNAAlignMetrics_rmLLD\n", + "sig_df = pd.DataFrame()\n", + "fig, axes = plt.subplots(2, 3, figsize=(15, 10), sharex=True, sharey=True)\n", + "celltypes = ['CD4T', 'CD8T', 'monocyte', 'NK', 'B', 'DC']\n", + "for i in range(2):\n", + " for j in range(3):\n", + " celltype = celltypes[i*3+j]\n", + " coeqtl_df = pd.read_csv(\n", + " coeqtl_withbios_prefix/'unfiltered_results'/f'UT_{celltype}/coeqtls_fullresults_fixed.sig.withbiosonlyRNAAlignMetrics_rmLLD.tsv.gz',\n", + " compression='gzip', index_col=0, sep='\\t')\n", + " coeqtl_df['zscore_bios'] = [get_z_score(item[0], item[1]) for item in \n", + " coeqtl_df[['t_bios', \n", + " 'num_individuals_bios']].values]\n", + " coeqtl_df['flipped_zscore_bios'] = [flip_direction(item[0], item[1], item[2]) for item in \n", + " coeqtl_df[['SNPEffectAllele', \n", + " 'assessed_allele_bios',\n", + " 'zscore_bios']].values]\n", + " coeqtl_sig = coeqtl_df[coeqtl_df['corrected_p_bios']<=0.05]\n", + " coeqtl_sig['celltype'] = celltype\n", + " sig_df = pd.concat([coeqtl_sig, sig_df], axis=0)\n", + " # draw\n", + " ax = axes[i][j]\n", + " ax.scatter(coeqtl_df['MetaPZ'][coeqtl_df['corrected_p_bios']>0.05], \n", + " coeqtl_df['flipped_zscore_bios'][coeqtl_df['corrected_p_bios']>0.05], alpha=0.5,\n", + " label='Non-sig')\n", + " ax.scatter(coeqtl_df['MetaPZ'][coeqtl_df['corrected_p_bios']<=0.05],\n", + " coeqtl_df['flipped_zscore_bios'][coeqtl_df['corrected_p_bios']<=0.05], alpha=0.5,\n", + " label='Sig')\n", + " ax.set_xlabel('single cell')\n", + " ax.set_ylabel('BIOS')\n", + " ax.set_title(celltype)\n", + "ax.legend(loc='upper left')\n", + "# plt.savefig('bios_replication.unfiltered_results.scatterplots.pdf')\n", + "# plt.savefig('bios_replication.unfiltered_results.scatterplots.png', dpi=300)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/04_coeqtl_mapping/.ipynb_checkpoints/plot_example_imputed_zero-checkpoint.ipynb b/04_coeqtl_mapping/.ipynb_checkpoints/plot_example_imputed_zero-checkpoint.ipynb new file mode 100644 index 0000000..fc28e77 --- /dev/null +++ b/04_coeqtl_mapping/.ipynb_checkpoints/plot_example_imputed_zero-checkpoint.ipynb @@ -0,0 +1,571 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import os\n", + "import re\n", + "from pathlib import Path\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import scanpy as sc\n", + "from scipy.stats import spearmanr, pearsonr\n", + "from scipy.stats import t, norm\n", + "from tqdm import tqdm\n", + "\n", + "\n", + "def get_time(x):\n", + " if x == 'UT':\n", + " return x\n", + " else:\n", + " pattern = re.compile(r'\\d+h')\n", + " return re.findall(pattern, x)[0]\n", + "\n", + "\n", + "class DATASET:\n", + " def __init__(self, datasetname):\n", + " self.name = datasetname\n", + " self.path_prefix = Path(\"./seurat_objects\")\n", + " self.information = self.get_information()\n", + " def get_information(self):\n", + " if self.name == 'onemillionv2':\n", + " self.path = '1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.sct.h5ad'\n", + " self.individual_id_col = 'assignment'\n", + " self.timepoint_id_col = 'time'\n", + " self.celltype_id = 'cell_type_lowerres'\n", + " self.chosen_condition = {'UT': 'UT',\n", + " 'stimulated': '3h'}\n", + " elif self.name == 'onemillionv3':\n", + " self.path = '1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad'\n", + " self.individual_id_col = 'assignment'\n", + " self.timepoint_id_col = 'time'\n", + " self.celltype_id = 'cell_type_lowerres'\n", + " self.chosen_condition = {'UT': 'UT',\n", + " 'stimulated': '3h'}\n", + " elif self.name == 'stemiv2':\n", + " self.path = 'cardio.integrated.20210301.stemiv2.h5ad'\n", + " self.individual_id_col = 'assignment.final'\n", + " self.timepoint_id_col = 'timepoint.final'\n", + " self.celltype_id = 'cell_type_lowerres'\n", + " self.chosen_condition = {'UT': 't8w',\n", + " 'stimulated': 'Baseline'}\n", + " elif self.name == 'ng':\n", + " self.path = 'pilot3_seurat3_200420_sct_azimuth.h5ad'\n", + " self.individual_id_col = 'snumber'\n", + " self.celltype_id = 'cell_type_mapped_to_onemillion'\n", + " else:\n", + " raise IOError(\"Dataset name not understood.\")\n", + " def load_dataset(self):\n", + " self.get_information()\n", + " print(f'Loading dataset {self.name} from {self.path_prefix} {self.path}')\n", + " self.data_sc = sc.read_h5ad(self.path_prefix / self.path)\n", + " if self.name.startswith('onemillion'):\n", + " self.data_sc.obs['time'] = [get_time(item) for item in self.data_sc.obs['timepoint']]\n", + " elif self.name == 'ng':\n", + " celltype_maping = {'CD4 T': 'CD4T', 'CD8 T': 'CD8T', 'Mono': 'monocyte', 'DC': 'DC', 'NK': 'NK',\n", + " 'other T': 'otherT', 'other': 'other', 'B': 'B'}\n", + " self.data_sc.obs['cell_type_mapped_to_onemillion'] = [celltype_maping.get(name) for name in\n", + " self.data_sc.obs['predicted.celltype.l1']]\n", + " def get_cMono_ncMono(self):\n", + " def tell_cmono_foronemillion(x):\n", + " if x == 'mono 1' or x == 'mono 3' or x == 'mono 4':\n", + " return 'cMono'\n", + " elif x == 'mono 2':\n", + " return 'ncMono'\n", + " if self.name.startswith('onemillion'):\n", + " self.data_sc.obs['sub_monocytes'] = [tell_cmono_foronemillion(x) for x in\n", + " self.data_sc.obs['cell_type']]\n", + " self.cmono = self.data_sc[self.data_sc.obs['sub_monocytes'] == 'cMono']\n", + " self.ncmono = self.data_sc[self.data_sc.obs['sub_monocytes'] == 'ncMono']\n", + " elif self.name.startswith('stemi'):\n", + " self.cmono = self.data_sc[self.data_sc.obs['cell_type'] == 'cMono']\n", + " self.ncmono = self.data_sc[self.data_sc.obs['cell_type'] == 'ncMono']\n", + " elif self.name == 'ng':\n", + " self.cmono = self.data_sc[self.data_sc.obs['predicted.celltype.l2'] == 'CD14 Mono']\n", + " self.ncmono = self.data_sc[self.data_sc.obs['predicted.celltype.l2'] == 'CD16 Mono']\n", + " else:\n", + " raise IOError(\"Dataset name not understood.\")\n", + "\n", + "example_savedir = Path(\n", + " \"/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/examples\"\n", + ")\n", + "\n", + "import subprocess\n", + "bashfile_path = '/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/bios/select_snps_from_vcf.sh'\n", + "def get_snps_from_vcffile(bashfile_path, vcf_path, snps_path, savepath):\n", + " response = subprocess.run([bashfile_path, vcf_path, snps_path, savepath])\n", + " print(response)\n", + " return None\n", + "\n", + "# sample id mapping\n", + "gtefile = pd.read_csv(\n", + " '/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/summary/gte-fix.tsv',\n", + " sep='\\t'\n", + ")\n", + "gte_dict = gtefile.set_index(\"expressionsampleID\")[\"genotypesampleID\"].T.to_dict()\n", + "\n", + "\n", + "def corr_to_z(coef, num):\n", + " t_statistic = coef * np.sqrt((num - 2) / (1 - coef ** 2))\n", + " prob = t.cdf(t_statistic, num - 2)\n", + " z_score = norm.ppf(prob)\n", + " positive_coef_probs = 1 - prob\n", + " positive_coef_probs[coef < 0] = 0\n", + " negative_coef_probs = prob\n", + " negative_coef_probs[coef > 0] = 0\n", + " probs = negative_coef_probs + positive_coef_probs\n", + " return z_score, probs\n", + "\n", + "\n", + "def get_individual_networks_selected_genepairs(data_df, data_sc, individual_colname, genepair, fillna=False):\n", + "# data_df = pd.DataFrame(data=data_sc.X.toarray(),\n", + "# index=data_sc.obs.index,\n", + "# columns=data_sc.var.index)\n", + " gene1, gene2 = genepair.split(';')\n", + " sorted_genepair = [';'.join(sorted([gene1, gene2]))]\n", + " coef_df = pd.DataFrame(index=sorted_genepair)\n", + " coef_p_df = pd.DataFrame(index=sorted_genepair)\n", + " zscore_df = pd.DataFrame(index=sorted_genepair)\n", + " zscore_p_df = pd.DataFrame(index=sorted_genepair)\n", + " data_selected_df = data_df[[gene1, gene2]]\n", + " print(\n", + " f\"Calculating networks for {len(data_sc.obs[individual_colname].unique())} individuals and;\\n{genepair}\"\n", + " )\n", + " for ind_id in tqdm(data_sc.obs[individual_colname].unique()):\n", + " cell_num = data_sc.obs[data_sc.obs[individual_colname] == ind_id].shape[0]\n", + " if cell_num > 10:\n", + " individual_df = data_selected_df.loc[data_sc.obs[individual_colname] == ind_id]\n", + " individual_coefs, individual_coef_ps = spearmanr(individual_df.values, axis=0)\n", + " if data_selected_df.shape[1] == 2:\n", + " individual_coefs_flatten = pd.DataFrame(data = [individual_coefs],\n", + " index = sorted_genepair)\n", + " individual_coef_ps_flatten = \\\n", + " pd.DataFrame(data=[individual_coef_ps],\n", + " index=sorted_genepair)\n", + " else:\n", + " individual_coefs_flatten = pd.DataFrame(\n", + " data=individual_coefs[np.triu_indices_from(individual_coefs, 1)],\n", + " index=sorted_genepair).loc[sorted_genepair]\n", + " individual_coef_ps_flatten = \\\n", + " pd.DataFrame(data=individual_coef_ps[np.triu_indices_from(individual_coefs, 1)],\n", + " index=sorted_genepair).loc[sorted_genepair]\n", + " coef_df[ind_id] = individual_coefs_flatten\n", + " coef_p_df[ind_id] = individual_coef_ps_flatten\n", + " try:\n", + " individual_zscores_flatten, individual_zscore_ps_flatten = corr_to_z(\n", + " individual_coefs_flatten.values,\n", + " cell_num\n", + " )\n", + " zscore_df[ind_id] = individual_zscores_flatten\n", + " zscore_p_df[ind_id] = individual_zscore_ps_flatten\n", + " except:\n", + " continue\n", + " else:\n", + " print(\"Deleted this individual because of low cell number\", cell_num)\n", + " if fillna:\n", + " zscore_df = zscore_df.fillna(0)\n", + " return data_selected_df, zscore_df, zscore_p_df" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading dataset onemillionv2 from /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/seurat_objects 1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.sct.h5ad\n" + ] + } + ], + "source": [ + "datasetname = 'onemillionv2'\n", + "dataset = DATASET(datasetname)\n", + "dataset.load_dataset()\n", + "data_sc = dataset.data_sc" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CompletedProcess(args=['/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/bios/select_snps_from_vcf.sh', '/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/genotypevcfs/chr1/GenotypeData.vcf.gz', PosixPath('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/examples/snplist.rs221045'), PosixPath('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/examples/rs221045.vcf')], returncode=0)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
#CHROMPOSIDREFALTQUALFILTERINFOFORMAT1_LLDeep_1191...s21s43s24s23s45s26s25s28s27s29
0116530049rs221045TC...GT:DS0/0:0.03...0/1:1.00/0:0.0100000000000000090/1:1.00/0:0.00/0:0.01/1:2.00/0:0.00/1:1.00/0:0.00/1:1.0
\n", + "

1 rows × 182 columns

\n", + "
" + ], + "text/plain": [ + " #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT 1_LLDeep_1191 \\\n", + "0 1 16530049 rs221045 T C . . . GT:DS 0/0:0.03 \n", + "\n", + " ... s21 s43 s24 s23 s45 s26 \\\n", + "0 ... 0/1:1.0 0/0:0.010000000000000009 0/1:1.0 0/0:0.0 0/0:0.0 1/1:2.0 \n", + "\n", + " s25 s28 s27 s29 \n", + "0 0/0:0.0 0/1:1.0 0/0:0.0 0/1:1.0 \n", + "\n", + "[1 rows x 182 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "celltype = 'monocyte'\n", + "snp_id = 'rs221045'\n", + "chromosome = '1'\n", + "snp_vcf_path = example_savedir/f'{snp_id}.vcf'\n", + "with open(example_savedir/f'snplist.{snp_id}', 'w') as f:\n", + " f.write(f'{snp_id}\\n')\n", + "vcf_path = f'/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/genotypevcfs/chr{chromosome}/GenotypeData.vcf.gz'\n", + "get_snps_from_vcffile(bashfile_path, vcf_path, example_savedir/f'snplist.{snp_id}', snp_vcf_path)\n", + "gt = pd.read_csv(snp_vcf_path, sep='\\t', skiprows=6)\n", + "gt" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculating networks for 72 individuals and;\n", + "AC005076.5;ARHGEF19\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/72 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# genepair = 'RP1-29C18.10;ZNF501'\n", + "# genepair = 'CCDC15;UNC5B'\n", + "# genepair = 'GSTM3;RP1-29C18.10'\n", + "# genepair = 'MMEL1;SARS2'\n", + "genepair = 'AC005076.5;ARHGEF19'\n", + "gene1, gene2 = genepair.split(';')\n", + "\n", + "if datasetname == 'ng':\n", + " ut_celltype = data_sc[data_sc.obs[dataset.celltype_id]==celltype]\n", + "else:\n", + " ut_celltype = data_sc[(data_sc.obs[dataset.celltype_id]==celltype) &\n", + " (data_sc.obs[dataset.timepoint_id_col]==dataset.chosen_condition['UT'])]\n", + "\n", + "ut_celltype_df = pd.DataFrame(data=ut_celltype.X.toarray(),\n", + " columns=ut_celltype.var.index,\n", + " index=ut_celltype.obs.index)\n", + "selected_expression_df, ut_zscore_df, ut_zscore_p_df = get_individual_networks_selected_genepairs(\n", + " data_df = ut_celltype_df,\n", + " data_sc = ut_celltype,\n", + " individual_colname = dataset.individual_id_col,\n", + " genepair = genepair,\n", + " fillna=False\n", + ")\n", + "\n", + "ut_t = ut_zscore_df.T\n", + "ut_t['gt_sampleid'] = [gte_dict.get(name) for name in ut_t.index]\n", + "ut_t = ut_t.set_index('gt_sampleid')\n", + "common_individuals = list(set(gt.columns) & set(ut_t.index))\n", + "gt_t = gt[common_individuals].T\n", + "gt_t['genotype'] = [item.split(':')[0].count('1') for item in gt_t[0]]\n", + "concat_df = pd.concat([gt_t, ut_t], axis=1).replace([np.inf, -np.inf], np.nan).dropna()\n", + "print('Not Imputed', spearmanr(concat_df['genotype'], concat_df[genepair]))\n", + "\n", + "ut_t_imputed = ut_zscore_df.fillna(0).T\n", + "ut_t_imputed['gt_sampleid'] = [gte_dict.get(name) for name in ut_t_imputed.index]\n", + "ut_t_imputed = ut_t_imputed.set_index('gt_sampleid')\n", + "common_individuals_imputed = list(set(gt.columns) & set(ut_t_imputed.index))\n", + "gt_t_imputed = gt[common_individuals_imputed].T\n", + "gt_t_imputed['genotype'] = [item.split(':')[0].count('1') for item in gt_t_imputed[0]]\n", + "concat_imputed_df = pd.concat([gt_t_imputed, ut_t_imputed], axis=1).replace([np.inf, -np.inf], np.nan).dropna()\n", + "print('Imputed', spearmanr(concat_imputed_df['genotype'], concat_imputed_df[genepair]))\n", + "\n", + "# dosage_dict = gt_t['genotype'].T.to_dict()\n", + "# selected_expression_df_withsample = pd.concat([selected_expression_df,\n", + "# ut_celltype.obs[[dataset.individual_id_col]]],\n", + "# axis=1)\n", + "# selected_expression_df_withsample['gt_sampleid'] = [gte_dict.get(name) for name in\n", + "# selected_expression_df_withsample[dataset.individual_id_col]]\n", + "# selected_expression_df_withsample['genotype'] = [dosage_dict.get(gt_sampleid) for gt_sampleid in\n", + "# selected_expression_df_withsample['gt_sampleid']]\n", + "\n", + "sns.set_style('white')\n", + "refallele = gt['REF'].values[0]\n", + "altallele = gt['ALT'].values[0]\n", + "snp_name = f'{snp_id}_{altallele}'\n", + "\n", + "_, axes = plt.subplots(1, 2, figsize=(10, 5), sharey=True)\n", + "ax1, ax2 = axes\n", + "\n", + "im_coef, im_p = spearmanr(concat_imputed_df['genotype'], concat_imputed_df[genepair])\n", + "sns.violinplot(x=concat_imputed_df['genotype'], \n", + " y=concat_imputed_df[genepair], \n", + " ax=ax1,\n", + " inner=None)\n", + "sns.swarmplot(x=concat_imputed_df['genotype'], \n", + " y=concat_imputed_df[genepair], \n", + " ax=ax1,\n", + " color='black')\n", + "ax1.set_title(f'Imputed r={im_coef:.2f}; pvalue {im_p:.4f}')\n", + "# ax1.set_xticklabels([f'{refallele}{refallele}', \n", + "# f'{refallele}{altallele}',\n", + "# f'{altallele}{altallele}'])\n", + "ax1.set_xlabel(snp_id)\n", + "\n", + "coef, p = spearmanr(concat_df['genotype'], concat_df[genepair])\n", + "sns.violinplot(x=concat_df['genotype'], \n", + " y=concat_df[genepair], \n", + " ax=ax2,\n", + " inner=None)\n", + "sns.swarmplot(x=concat_df['genotype'], \n", + " y=concat_df[genepair], \n", + " ax=ax2,\n", + " color='black')\n", + "ax2.set_xlabel('')\n", + "ax2.set_title(f'Not Imputed r={coef:.2f}; pvalue {p:.4f}')\n", + "# ax2.set_xticklabels([f'{refallele}{refallele}', \n", + "# f'{refallele}{altallele}',\n", + "# f'{altallele}{altallele}'])\n", + "ax2.set_xlabel(snp_id)\n", + "plt.savefig(example_savedir/f'{snp_name}_ref{refallele}_alt{altallele}_{gene1}_{gene2}.{celltype}_{datasetname}.full.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/tools/Beeline/miniconda/envs/scpy3.8/lib/python3.8/site-packages/seaborn/categorical.py:1296: UserWarning: 42.5% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", + " warnings.warn(msg, UserWarning)\n", + "/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/tools/Beeline/miniconda/envs/scpy3.8/lib/python3.8/site-packages/seaborn/categorical.py:1296: UserWarning: 7.1% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAFNCAYAAACAH1JNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABur0lEQVR4nO3dd1zV9ffA8dcdXLaAIA5wY2ruvbUwNQc5UtNsqBmapqmVXyuzMrMsy/qaZVjatBwpZurXnXvk+pkzcaSiguzNXZ/fH1duXhmiApd7Oc/HA+Uz77kX7ptz31OlKIqCEEIIIYRwGGp7ByCEEEIIIe6OJHBCCCGEEA5GEjghhBBCCAcjCZwQQgghhIORBE4IIYQQwsFIAieEEEII4WAkgRN3VLduXf755x97h+EUpk6dyty5c+0dhhAiH/v376dz5872DsNphIaGsmfPHnuH4ZQkgSsh9volXrlyJUOHDi3xx71Xa9as4eGHH6Zp06aMHTuWpKSkPM+Lj49n8uTJdOzYkRYtWjBkyBD+7//+z3p8//791KtXj2bNmlm/Vq1aVULPwj4K+9oBXLlyhaeffpomTZrw6KOP2vxu7tu3j7CwMFq2bEmbNm0YN24cMTEx1uNJSUlMnDiRNm3a0KZNG15++WXS0tIASEhIYMiQIbRp04aWLVvyxBNPcOjQoWJ7zuLehIaG0r59ezIyMqz7li9fztNPP12o659++mmWL1+e7/ErV65Qt25djEbjfcd6txzpQ5KiKHz00UfW99KHH35IQVOz7t27l0cffZQmTZrw9NNPEx0dbT327bff0rVrV5o3b07Hjh2ZNWuWXV7/knK3r926devo2bMnzZo1o1evXmzevNl6LCUlhf/85z+0a9eOdu3aMW/evDzvceDAAerWrWvz+/XHH38wdOhQWrZsSYcOHZg2bZq1PCxuksCJIqMoCmaz+Z6vP3v2LNOnT+fDDz9k9+7duLu788477+R5bkZGBo0aNWLlypUcOHCA/v37Ex4eTnp6uvWcwMBAjhw5Yv3q37//PcdW2t3Nawfw8ssv8+CDD7J//34mTZrEhAkTSEhIACAkJISvv/6agwcPsnPnTqpXr85bb71lvfbTTz8lJSWFLVu2sHnzZuLj460FnqenJ7NmzWLv3r38+eefPP/887zwwgtO/YfEUZlMJr7//nt7h+HQ7vf3eunSpWzevJnVq1fz22+/8ccff/DLL7/keW5CQgIvvvgiL730EgcOHKBhw4ZMmjTJejw0NJRVq1Zx+PBhfv/9d06fPs0PP/xwX/GVZnfz2sXExDBlyhSmTp3K4cOHmTJlCi+//DLx8fEAvP/++2RmZrJ161aWL1/O6tWr+fXXX23uYTAYeO+992jSpInN/tTUVF544QV27tzJunXruH79Oh9++GHxPOnbSAJnBytXrmTIkCHMmjWLli1b0rVrVw4fPszKlSvp0qUL7dq1s6ktmjp1KtOnT2fEiBE0a9aMp556yvrJK69Pujmfjs+dO8dbb73F0aNHadasGS1btgRAr9cze/ZsHnroIdq3b8/06dPJysqyXv/111/TsWNHOnbsyIoVKwp8Lk8//TRz585lyJAhNGnShMuXL9/z67JmzRpCQ0Np1aoVnp6evPTSS2zatCnPTzNVq1ZlxIgRBAYGotFoeOKJJzAYDFy4cKFQjxUREcHo0aPzPR4aGspXX31Fr169aNWqFa+99hrZ2dkA9OzZk23btlnPNRqNtGnThhMnTgAwYcIEOnToQIsWLRg2bBhnz57N8zHyqh29tbn6Tj+nW93Na3fhwgVOnDjB+PHjcXNzo0ePHjzwwANs2LABgICAACpWrGg9X6PRcOnSJev2lStX6Nq1K15eXnh7e9OtWzeioqIAcHV1pVatWqjVahRFQa1Wk5ycTHJycr6vtbCP5557jkWLFpGSkpLn8cOHD/P444/TokULHn/8cQ4fPgzA3LlzOXjwIDNmzKBZs2bMmDHjjo81depU3n77bUaNGkWzZs0YMmQIN27c4L333qNVq1Y8+uijnDx50np+Qe+/gt43S5cuZc2aNXzzzTc0a9aMMWPGAJY/4OPHj6dt27aEhobaJK5ZWVlMnTqVVq1a0atXL/76668Cn0vdunX56aef6N69O927d7/jcy9IZGQkI0eOpFKlSlSsWJERI0bk21KwadMm6tSpQ8+ePXF1dWX8+PGcPn2ac+fOAVCtWjXKlSsHYH3v3dr1ZfTo0UREROR575y/I0uXLrWW/YsWLQIsr13jxo1tavRPnjxJmzZtMBgMXLp0iWeeecamRj6/36nba0dvb64u6Od0P6/d9evX8fb2pkuXLqhUKh566CHc3d2t5drWrVsZNWoU7u7uBAcHM3DgwFwJ3OLFi+nQoQO1atWy2R8WFkbnzp1xd3fHx8eHwYMHc+TIkXzjLkqSwNnJsWPHqFu3Lvv376dPnz5MnjyZv/76i02bNvHRRx8xY8YMm9qkNWvWMHbsWGvT4CuvvHLHx6hduzbvvPMOTZs25ciRIxw8eBCAjz76iAsXLhAZGcnGjRuJjY1l/vz5AOzYsYNFixaxaNEiNm7cyN69e+/4OKtXr+bdd9/l8OHDVKlShbfffpuWLVvm+RUWFpbvfc6ePUvdunWt29WqVcPFxYWLFy/eMYZTp05hMBioXr26dV9CQgLt27cnNDSUWbNm2TQXhYeH89VXXxV4z5w/BJs2beLChQt88cUXAPTu3Zvff//det6uXbvw8/OjQYMGAHTu3JkNGzawd+9eHnzwwUL9rPJS0M/pdnfz2kVFRVG1alW8vLys++rVq2dNwgCuXr1Ky5Ytady4MYsWLWLUqFHWY8OGDeOPP/6wJmYbNmygU6dONo8RFhZG48aNeeGFFxg0aBD+/v739BqI4tOwYUNat27NN998k+tYUlISo0eP5umnn2b//v2MGDGC0aNHk5iYyKRJk2jZsiXTp0/nyJEjTJ8+vVCPt379eiZOnMi+ffvQ6XQ88cQTNGjQgH379tGjRw/ef/99m/Pze/8V5IknniAsLIznnnuOI0eOsGDBAsxmMy+88AJ169Zlx44dfPfdd3z33Xfs3LkTgM8//5xLly6xadMmvvnmGyIjI+/4OJs3b2bZsmWsW7cOwNrlIK+vt99+O9/7nD17lnr16lm369Wrl+8Hvtvf4x4eHlSrVs3mfbtmzRqaN29O27ZtOX36NEOGDLEe++qrrwgPDy/wee3fv5+NGzfyzTffEBERwZ49e6hYsSJNmzZl48aNNo/To0cPXFxcUBSF0aNHs3PnTtavX8/169fzbYIsyJ1+Tnm9HoV97Ro2bEjt2rXZsmULJpOJzZs3o9PpbF7PWymKYnOv6Ohofv31V8aNG3fH5/Hnn38SEhJyx/OKgiRwdhIcHMzjjz+ORqOhV69eXLt2jXHjxqHT6ejYsSM6nc6m1uOhhx6iVatW6HQ6Jk2axNGjR7l27dpdP66iKCxfvpzXX38dX19fvLy8GD16NGvXrgUsheyAAQN44IEH8PDw4MUXX7zjPfv370+dOnXQarW4uLjw9ttvc/DgwTy/1qxZk+99MjIy8Pb2ttnn5eVlk8jmJS0tjSlTpvDiiy9ar69VqxaRkZHs2rWL7777jhMnTvDBBx/c8bncatiwYVSuXBlfX19eeOEF62sUFhbG1q1byczMBCyFWZ8+fazXDRw4EC8vL3Q6nfVTcmpq6l099p1+Tre7m9cuPT0917ne3t4251apUoWDBw+yb98+XnrpJZtPnQ8++CAGg8H6iVuj0fDkk0/a3G/NmjUcOnSIjz/+mBYtWtzVcxclZ8KECfz444/W5vMcf/zxB9WrV6dfv35otVr69OlDrVq1bGqe71a3bt1o2LAhrq6udOvWDVdXV/r162ctA0+dOmVzfn7vv7v1119/WZsfdTodVatWZfDgwdbka/369YwZMwZfX18qV65cqH6A4eHh+Pr64ubmBlh+3/Mr8wpK4DIyMmw+SHl7e5ORkZFnX67CvMfDwsI4fPgwGzZsYMiQIXf9wWncuHF4eHhQt25dBgwYYP2gGhYWZv1eURTWrVtn/TBevXp1OnTogE6no3z58owYMYI///zzrh4X7vxzut3dvHYajYa+ffvyyiuv0KhRI15++WVmzJiBh4cHAJ06dSIiIoK0tDT++ecffv31V2v5DjBz5kxeeuklPD09C3wOu3fvJjIykgkTJtz1878X2hJ5FJHLrW+snEIgICDAus/V1dXmjVmpUiXr956envj4+BAbG3vXb9CEhAQyMzMZMGCAdd+tfddiY2Np2LCh9VhQUNAd71m5cuW7igHg4MGDPP/884AlWVi7di0eHh65mvzS0tIKfNNkZWUxZswYmjRpYtMkWqFCBSpUqABYmltfffVVRo8eXajmnhy3Pq8qVaoQGxsLWAqs2rVrs23bNh5++GG2bt1q/dRuMpmYO3cu//vf/0hISECttnxGSkxMzFX4FuROP6fb3c1r5+npWehzfX196d+/P3379mXHjh1otVpeeukl6tWrxxdffIGiKMyePZtXX32Vzz77zOZaV1dX+vTpQ8+ePalfv77Np2VROjzwwAM89NBDREREULt2bev+2NhYqlSpYnNulSpVbAaz3K3by7xbyzs3NzebGnLI//13t6Kjo4mNjbV2IQHL+zRnOzY2Ntdj3cm9lHkLFiyw1vqHhYVZE4hby/m0tDQ8PDxQqVS5rs/rPZ6enp7n+7ZGjRrUqVOHd955h88//7zQMd76vIKCgvj7778B6NGjB++++y4xMTH8888/qFQq6+sXHx/PzJkzOXjwIOnp6SiKYm3KvRt3+jnd7m5euz179jBnzhy+//57GjRowPHjxxk7diwLFy6kfv36TJs2jXfffZcePXrg6+tL7969rR8Ytm7dSnp6Or169Sow/qNHj/Lyyy/z3//+l5o1a971878XksA5iOvXr1u/T09PJzk5mcDAQFxdXQFLIpPzaeTGjRvWc2//Zfbz88PNzY21a9fa9HPKERgYaFOzd/Xq1TvGdvtjTJ8+Pd+atpxkrWXLlrn6CdSpU4fTp09bty9fvozBYKBGjRp53kuv1zNu3DgqVqx4x8RMpVIVOEIpL7e/DoGBgdbtPn368Pvvv2M2mwkJCbE23a5Zs4YtW7awePFigoODSU1NpVWrVnk+tru7u02ftlt/bnf6Od3ubl67kJAQLl++TFpamvV35vTp0za1iLcymUzEx8eTlpaGr68vZ86c4e2337Z+eh06dGiuGrhbGY1GLl++LAlcKTVhwgT69+/PyJEjrfsCAwNzvfevXbuWq6m8OOX3/ivofQO5y6PKlSsTHBxs0wR4qwoVKnDt2jXq1KmT63Hzc/tj9O7dO9+yMidZGzNmjLVPXo6c923jxo0By/swJ47b1alTx6aPV0ZGBpcuXcq3uc5oNNq04hTGtWvXrIn8ra95uXLl6NChA+vXr+f8+fP07t3b+hp8/PHHqFQqfvvtN/z8/Ni8eXO+5fHtP7u4uDjr93f6Od3ubl67U6dO0bJlSxo1agRA48aNady4MXv27KF+/fr4+vry8ccfW8//5JNPrPfdu3cvx48fp0OHDoBl0IJGo+Hvv//myy+/BCx9Al944QVmzZpFu3btChV/UZAmVAexfft2Dh48iF6v57PPPqNJkyZUrlyZ8uXLU7FiRVavXo3JZGLFihU2Awn8/f2JiYlBr9cDoFarGTRoELNmzbKOwImJibH2M3j00UdZtWoVUVFRZGZm3tWntxwzZsywGf1561dBzSBhYWFs27aNgwcPkpGRwWeffUa3bt1sqslzGAwGJkyYgKurK7Nnz7bWdOXYv38/V69eRVEUrl27xpw5c+jatav1+Lx58+7YVLJkyRKuX79OUlKStUN1jl69erF7925+/vlnm8QnPT0dnU6Hn58fmZmZfPLJJ/neP6fPxqlTp8jOzrbpN3Knn9P9vHY1a9akfv36zJ8/n+zsbDZt2sSZM2fo0aMHABs3buT8+fOYzWYSEhJ4//33efDBB/H19QUs/UmWL19OVlYWWVlZLF261NqX5OjRo9bf06ysLCIiIoiLi7MWhqL0qV69Or169bIZsdilSxcuXrzImjVrMBqNrFu3jqioKB566CHA0lpwPwOWCiO/919B7xuwlHlXrlyxbjdu3BgvLy8iIiLIysrCZDLx999/c+zYMcAyKCkiIoLk5GSuX79+TyM3165dm2+ZV9CHy759+7J48WJiYmKIiYlh8eLF+Y6W79atG2fPnmXDhg1kZ2czf/586tata024li9fbi0roqKiiIiIsEkmnn766Tv2Tfviiy/IzMzk7NmzrFy50qbMCwsLY/Xq1WzYsMGmL3N6ejoeHh6UK1eOmJgYvv7663zvX79+fbZv305SUhI3btzgu+++sx6708/pfl67Ro0acfDgQWsz/cmTJzl06JC13Lp06RKJiYmYTCa2b9/O0qVLeeGFFwB46aWX2LBhA5GRkURGRhIaGsqgQYOsfTb//vtvRo0axZtvvkloaGiBr29RkwTOQfTp04f58+dbRzt+9NFH1mPvvvsu33zzDW3atCEqKopmzZpZj7Vt25aQkBA6duxImzZtAHj11VepXr06gwcPpnnz5gwfPtw6erNLly48++yzPPvss3Tr1o22bduW2HPMqfJ/5ZVXaN++Penp6TbTV0yfPt3aYfrIkSNs27aN3bt306pVK+tcbzkDNU6ePMkTTzxB06ZNGTJkCA888ABvvPGG9V7Xrl2jefPmBcbTp08fRo4cySOPPELVqlWtb2iw1FDkDA65tZDr168fVapUoVOnTvTu3ZumTZvme/+aNWsybtw4hg8fTvfu3XP1FSvo53Q/rx1YPmEeP36cVq1aMWfOHP773/9Svnx5wJIojho1iubNmxMWFoZarbZJ5GfNmkV0dDRdunShc+fOXL582dq/UK/XM2PGDNq0aUPnzp3ZsWMHERERhapFFPYzbtw4myZMPz8/FixYwOLFi2nTpg1ff/01CxYssP6OPPPMM2zYsIFWrVoxc+bMYokpv/ffnd43AwcOJCoqipYtWzJ27Fg0Gg1ffvklp0+fpmvXrrRt29Zmrq4XX3yRKlWq0LVrV0aOHEnfvn2L5fnkZciQITz88MOEhYURFhZGly5dbAYe9O7dm99++w2A8uXLM2/ePObOnUurVq04duyYzQfEw4cPExYWRtOmTQkPD6dz585MnjzZerwwZV7r1q3p1q0bw4cPZ+TIkXTs2NF6LDQ0lIsXLxIQEGBTm/7iiy9y8uRJWrZsSXh4eIEjc/v27Uu9evUIDQ1l5MiRNmXnnX5O9/PatW7dmvHjxzNhwgSaNWvG+PHjGT16tPX5HT9+nLCwMJo3b84nn3zCnDlzrLV5Xl5e1i45FSpUwM3NDXd3d+sH2sWLF5OQkMAbb7xh/TvUu3fvAl/noqJS7rZdSZS4qVOnUrFiRZs5f8T96du3L99++y1+fn55Hg8NDWXmzJm0b9++hCMTQsj7r2hdv36dl156iaVLl+Z5PGdqoBMnTqDVSs8qRyE/KVEmrV692t4hCCFEiahUqVK+yZtwXNKEKoQQQgjhYKQJVQghhBDCwUgNnBBCCCGEg5EETgghhBDCwZSpQQxt2rQp1MoCQgjnER0dzf79++0dxn2T8kuIsqeg8qtMJXBBQUGsXLnS3mEIIUrQrcuROTIpv4Qoewoqv6QJVQghhBDCwUgCJ4QQQgjhYCSBE0IIIYRwMJLACSGEEEI4GEnghBBCCCEcjCRwQgghhBAORhI4IYQQQggHY9cEbseOHfTo0YNu3boRERGR67iiKMycOZNu3boRFhbGiRMnCn3t3frzzz/p1asXmZmZXL58mYyMDJvjN27cID4+3mZfWloaV65csdlnNBq5cOECJpPJZr+j3XPOnDlMnz6d+xEbG0tCQgIZGRlcvnzZ5pjJZOLChQsYjUab/VeuXCEtLc1mX3x8PHFxcTb7HO2eiqJw8eJF9Ho9ji4zM5NLly7ZOwwhhCjbFDsxGo1K165dlUuXLinZ2dlKWFiYcvbsWZtz/vjjD+W5555TzGazcuTIEWXgwIGFvjYv/fv3z3O/l5eXAth8eXt7K4sWLVKMRqMyfPhwRa1WKxqNRhk7dqxiNpuVefPmKR4eHgqgdO7cWYmPj1d27typVKlSRQGUGjVqKAcPHlSuXbumtG7d2qHuefvXhQsX7upnazAYlGHDhikqlUrRaDSKi4uLAiht27ZVYmJilD///FOpVq2aAihBQUHK7t27lfj4eKVTp04KoHh6eirz589XzGazMmbMGEWj0ShqtVoZMWKEYjQalW+++Ubx9vZ2qHu6ubkpgBIYGKhs2LDhrl7P0mTJkiWKj4+PAijNmzdXLl++bO+Q7ii/972jcZbnIYQovILe93ZL4A4fPqyMHDnSur1gwQJlwYIFNue8+eabypo1a6zb3bt3V2JiYgp1bV7yeiGuXLmSZ9KS80d34cKFufZ///33ikajsdk3ZcoUpW7dujb7WrdurYwePdoh73nrl6ur6139bL///vt87zV27FilRYsWNvsefPBB5eWXX7bZp9Vqle+++y7X9d98843i6urqkPfM+QoODlaMRuNdvaalQUpKSq4PO88++6y9w7ojZ0l8nOV5CCEKr6D3vd2W0oqJiaFSpUrW7YoVK3Ls2LECz6lUqRIxMTGFurawvvnmm3yPZWVl5bkG2Z49e3I1PZ44cYK///7bZt/Jkydxc3MrkXseOHCgSO95q+zs7HyP5eXkyZP5Hjt16hSnTp2y2Xf69GmqV69us89oNLJ3795c1+/fvz9XPCV5zxo1atzzPXNcuXKF1NRUfH198zxeWl2+fDlXs3FBP2shhBDFx2594BRFybVPpVIV6pzCXFtYBfXzqlq1KsOHD7e5t0aj4bnnniMgIMDm3LCwMB599FGbfX369KF3794lcs9nn322SO95q9sToTsp6F69e/fOdbxXr1706dPHZl+FChV47rnnUKv//RVVqVSMGDEi14LeJXnP2/fdzT1zdOjQweGSN4B69epRu3Ztm323v8ZCCCFKSElVA96utDShKoqiPPnkkzbNQkFBQcpjjz2mHD9+XFEURVm6dKnSpk0bpUOHDsrq1asVRVGUQ4cOKT179lQaN26szJ49WzGbzcqNGzeU4cOHK/Xr11dGjx6tJCUlKUajUXnnnXeURo0aOcw91Wr1PTef5vjpp5+U1q1bK82bN1dat26tNGrUSHn33XcVk8mkJCYmKuHh4Ur9+vWVESNGKHFxcYrZbFbef/99pXHjxkqvXr2UI0eOKIqiKJGRkUr79u2Vtm3bKsuWLVMURVH++usvJSwszGHu2aBBA6Vt27bKgw8+qDz55JNKdHT0Pb2mpcGZM2eU/v37Kw0aNFCmTZumGAwGe4d0R87S9Ogsz0MIUXilsg+cwWBQQkNDbQYi/P333zbnbNu2zWYQw+OPP17oa/MiBaAQZY+zvO+d5XkIIQqvVPaB02q1TJ8+nVGjRmEymXj88cepU6cOP//8MwBDhw6lS5cubN++nW7duuHu7s6sWbMKvFYIIYQQoiywWwIH0KVLF7p06WKzb+jQodbvVSoVb731VqGvFUIIIYQoC2QlBiGEEEIIByMJnBBCCCGEg5EETgghhBDCwUgCJ4QQQgjhYCSBE0IIIYRwMJLACSGEEEI4GEnghBBCCCEcjCRwQgghhBAORhI4IYQQQggHIwmcEEIIIYSDkQSuFMrSm4hPy8ZkVuwdihBCCCFKIbuuhSrypqCQkmkgPduIj7sL3m4uqNUqe4clhBBCiFJCauBKMaNZIT5dz7XkTDL1RnuHI4QQQohSQhI4B5BtNHM9OYu4tGzM0qwqhBBClHnShOogFCAl00Cm3oinqxYPFy1uOo29wxJCCCGEHUgC52AMJoWkDAPJGHDRqCnnrsXLVfrICSGEEGWJJHAOSgH0JjNxaXqSMgx4umrx1GlxdVGjUkkyJ4QQQjgzSeCcgNGskJxpICXTgEatwtNVi5ebFletNLEKIYQQzkgSOCeicEsyl2WgnJsLfh46aV4VQgghnIwkcE5KUSA500CG3oivhw4vV600rQohhBBOQhI4J2cwKdxIzSYpQ28ZvarT4uYiTatCCCGEI5MEroywjl7NMKDTqnHXaXDTanB10aCRJlYhhBDCoUgCV8YoWCYGzjaaUWFApQIXjRpXFw0eLhrcdRppahVCCCFKOUngyjAFS1+5nIQuNdMyt5yPh4v0mRNCCCFKMUnghFXO3HI3UrNJTNfj4arFVaNGq1Hh5iI1c0IIIURpIQmcyJPRrJCSaQBABWjUKjx0WrQaFTqNGjcXjUxPIoQQQtiJJHClzMrDV9h44jp1K3nTvnYAFbxd7R2SdX65lKx/EzpL3zkNri5qXDVqXDRqdFq1JHVCCCFECZAErpRZtPsCx6NT+N+JGD7bEkW9St50DAmgY0gA1fw97B0ecGvfORPZRhNgm9S5uVhq6Fy1arQatV1jFUIIIZyRJHClzCeDm/L51ii2nYklNcvI6eupnL6eyte7LlDVz52OdSzJXN1K3qhLUZ+025O65EwDahWoVZb+c+6uGty1GknohBBCiCIgCVwp80BFb2Y/3ogrCRn8X3Qyu87GsTsqnhtp2VxOzOTnA5f5+cBl/L10dKgdQMcQf5pU9cWlFCZGZgXMikJatpG0bCPq25tdtWp0Gml2FUIIIe6WJHCllFajpnk1P5pX82N8aAhnYlLZHRXPrqg4/onPID5Nz2//d5Xf/u8qnq4a2tXyp2NIAK1qlMddVzpXWjAX0OzqoVPjerOGzkWjkhGvQgghRAEkgXMAKpWKepXKUa9SOZ7rWJPLCRnsjopjV1QcJ6+lkp5tYvOpWDafisVFo6JFdT86hQTQrrY/vh46e4efr9x96SwTC6uwTC6s1ajRqlWWr5sDJSS5E0IIISSBc0hVy3swpHU1hrSuRlxaNnvPWWrmjlxKwmBS2Hc+gX3nE1CroGGQDx1CAugUEkAlHzd7h35HimK7WsStVDf71OUkdJqcbA/rf6hu2VarVKg1KlxUluZaWTJMCCGEs5AEzsEFeLkS1qQKYU2qkJZtZP/5eHZFxXPgQgKZBhPHriRz7EoyX/5xjpAKXnQI8adjnQBqBXg6XE2WooBJUTCZlVzJXUFymmq1astUJy4aNVqtChWWZBGz5b7KzT57Of9bvkC5+b1apUKtVuGiVqNWY0kgb4/xtnhv3avcdq5apUKjUaG9ed+c829NVO39M1Juvt5Gk4LBbAYFFBTUahVeri52jU0IIcoySeCciJerlq71K9K1fkX0RjOHLyWyKyqOPVHxJGUaiLqRRtSNNL7b+w+VfdzoGBJAhxB/GlTxceraqZymWr3JjN5U+MQv7ztBJqYiiStHnq+86t9aRI3akuBp1ap/t1X/JohqlQqVGtSoLM8VBbPZkniZzJZk1FJZefOmOYkq/yasys2bqVSWe6tUKgxGM0az2fKsFdsE1M1FIwmcEELYkSRwTkqnVdO2lj9ta/ljekTh5NUUdt3sN3ctOYtryVksP3SF5Yeu4OfhQrvalkEQzav5odOWvhGtzuz2mrmcnTkJltGc5xlCCCHKMEngygCNWkWjYB8aBfswpkstzselW6cnibqRRmKGgXV/XWfdX9dxd9HQumZ5Oob406aWP16u8isihBBClDby17mMUalU1K7gRe0KXjzbvgbXkjPZFRXP7qg4jkcnk2kwsf3vG2z/+wZatYqmVX3pWCeA9rX9CfCy/7JeQgghhJAErsyr7OPOoBbBDGoRTFKG/uaI1ngO/pOAwaRw8J9EDv6TyKebz/JgZW863FzWq2r50rGslxBCCFEW2SWBS0pKYtKkSURHRxMUFMSnn36Kj49PrvN27NjBe++9h9lsZtCgQYSHhwMwb948li1bRvny5QGYPHkyXbp0KdHn4Ix8PXT0bFSZno0qk6k3ceBiAruj4th3PoG0bCMnr6Vy8loqC3deoLq/h3WN1gcqetl9tKQQQghRltglgYuIiKBdu3aEh4cTERFBREQEr776qs05JpOJGTNmsHjxYipWrMjAgQMJDQ0lJCQEgOHDh/Pcc8/ZI/wywV2nocsDFejyQAWMJjNHLydZVoI4F0d8mp5/4jP4J/4SP+2/RAUvV+v0JI2DfGS9UyGEEKKY2SWB27JlCz/88AMA/fr14+mnn86VwB07dozq1atTtWpVAHr37s2WLVusCZwoOVqNmpY1ytOyRnnGdw3hzPVUy4jWs3FcTszkRlo2kUevEnn0Kt5uWtrV8qdDSAAta/jh7lI6l/USQgghHJldErj4+HgCAwMBCAwMJCEhIdc5MTExVKpUybpdsWJFjh07Zt3+6aefiIyMpGHDhkydOjXPJlhR9NQqFfUrl6N+5XI836kWl+IzrNOTnL6eSmqWkY0nY9h4MgZXrZqW1f3oWCeAtrX88XGXecOEEEKIolBsCdzw4cOJi4vLtX/ixImFul5Rcs99ldPPaujQoYwdOxaVSsVnn33GBx98wPvvv39f8Yp7U83fgyf9q/Fkm2rcSM1md1Qcu6PiOHolmWyjmd3n4tl9Lh61ChoH+9AxJID2IQFUKlf6l/USQgghSqtiS+C+/fbbfI/5+/sTGxtLYGAgsbGx1sEIt6pUqRLXr1+3bsfExFhr7QICAqz7Bw0axJgxY4oucHHPKni70q9ZEP2aBZGaZWDfecsgiAMXEsgymjl6OZmjl5P5fNs5QgK96BQSQMc6AdTw95BBEEIIIcRdsEsTamhoKJGRkYSHhxMZGUnXrl1zndOoUSMuXrzI5cuXqVixImvXruXjjz8GsCZ/AJs3b6ZOnTolGr+4M283F7o9WJFuD1Yk22Di4D+J7I6KZ8+5OFKyjETFphEVm8biPRcJ8nW3DIIICeDBKuVQSzInhBBCFMguCVx4eDgTJ05kxYoVVK5cmc8++wyw1LJNmzaNhQsXotVqmT59OqNGjcJkMvH4449bE7WPPvqI06dPAxAUFMSMGTPs8TREIbm6aOgQEkCHkABM5gc4Hp1s7TcXk5JNdFImyw5eYdlBy7JeOXPNNa3qK8t6CSGEEHlQKXl1NnNSAwYMYOXKlfYO444y9UauJ2flvUamE1EUhajYtJvJXDwX4tJtjnvoNLSpWZ6OIQG0rlkeT1nWq9Rwc9FQxdfd3mEUiqO87+/EWZ6HEKLwCnrfy19EYTcqlYo6Fb2pU9GbER1qEp2Uye6b05OcuJpCht7EtjM32HbmBi4aFc2q+dExxJ/2tQMo76mzd/hCCCGE3UgCJ0qNIF93BresyuCWVUlI17PnnGWN1sOXEjGYFA5cSODAhQTmbjrLg1XKWVaCqBNAkIPUBAkhhBBFRRK4UkilUuGu02JWFMxmBbOioPDv1CrKzX+cuYm1vKeOPo0r06dxZTL0Rg5cSGDn2Tj2X0ggQ2/ixNUUTlxN4asd56kZ4EnHEMvkwXUCZVkvIYQQzk8SuFLIzUVDJZ/cKxgoioJZAdPNpM5kVjCYzGQbzRhNZoxmBUVRyOnV6CwJnodOy0N1A3mobiB6481lvc7FsTsqnoR0PRfi0rkQl84P+y4R6O1qrZlrFOSDRi3JnBBCCOcjCZwDUalUaFQUmJSYzApGsxmzWcGoKJhMCtlGM9kGk6Umz8GTO51WTeua5WldszwvdVU4dS2FXWfj2H0uniuJmcSmZrPySDQrj0RTzk1Lu9qW6UlaVvfDVZb1EkII4SQkgXMyGrUKjTrvRCUnuTOZFFKyjGTqjQ6byIFlWa8GVXxoUMWH8M61uBifYRkEERXH3zFppGQZ2XAihg0nYnDTqmlVszwdQgJoV6s83m6yrJcQQgjHJQlcGWJN7rTg4aolPdtIapaRLIORWyeTccSkTqVSUTPAk5oBnjzVtjoxKVnsjopnV1Qcx64kkWU0s/NsHDvPxqFRq2hyc1mvDiEBVPB2tXf4QgghxF2RBK4M83TV4umqtfSfM+UMkLjZ5HqzX53BZMbsgBldxXJuDGgexIDmQSRnGth33pLMHbyYSLbRzOFLSRy+lMR/t0ZRt5I3HW+uBFHd39PeoQshhBB3JAmcQKtRo72l1dX9linWjCYzmXoT6XoTWQajQyZzPu4u9GhQiR4NKpFlMHHwYiK7z8Wx51w8qVlGzlxP5cz1VL7ZdZFgP3fLIIiQAOpV9pZlvYQQQpRKksCJAmk1arzd1Xi7u1iSOYOJbIMZvclSQ2e+OTLWUbi5aOhYxzJK1Wgycyw6mV1nLclcbGo2VxIz+eXPy/zy52X8PXW0v1kz17SqLy4aWdZLCCFE6SAJnCg0rUaNt0aNt9u/+0xmhSyDiQy9iQy9EZMDZXNajZrm1fxoXs2P8aEhnI1NY+fZOHZHxXExPoP4dD1r/u8aa/7vGp6uGtrWtMw116Zmedx1MqJVCCGE/UgCJ+6LRq2y9qUzmXWkZxtIyTSiN5ntHdpdUalUPFDRmwcqevNcx5pcScxgV1Q8u87GcfJaCunZJracjmXL6VhcNCpaVPejY0gA7Wv74+shy3oJIYQoWZLAiSKjUaso567D282FNL2RlAwjepPJZoSrowj282BIKw+GtKpKfFo2e85ZBkEcuZSEwaSw73wC+84noFZBwyAfOoQE0DHEn8o+sqyXEEKI4ldgArdv3z42btzItWvX0Gq1VK9enUGDBlG9evWSik84IJVKhberC96uLuhvTiKcefPLkZpYc/h7uRLWpAphTaqQlm1k//kEdkXFceBCApkGE8euJHPsSjJf/nGO2hU86RASQKeQAGpV8JRlvUQuUq4KIYpCvgncnDlziI+Pp23btsTFxREUFES1atV46aWXGD16ND179izJOIWD0mnV6LSWQRAms0JGtpHUbCPZRsesmfNy1dK1fiBd61uW9Tp8KZFdUXHsiYonKdPAuRvpnLuRzvd7/6Gyjxsdbg6CaFBFlvUSUq4KIYpOvgnc9u3bWbNmDQC9e/fmqaee4j//+Q89evRg2LBhUtCIu6ZRq/B2d8Hb3QWDyYzBaCbLaCJTb0JvMt93QmcwGDgfdZbqNWri5l78TZk6rZq2tfxpW8sf0yMKJ6+msOvmShDXkrO4lpzFikPRrDgUja+7C+1rWwZBtKjuh04rI1rLIilXRUHOnz+Pm5sbVapUsXcowgHkm8CpVCqSkpLw9fUlNjYWs9nSKd3HxwfFEatORKniolHjolHj4aoFT9AbzWTojSRnGu6pmfXYkUOMfmYIsTHX8fH145Mvv+ahrt05dGAfa1evpFLlKgx9ZgTe5XyK4dlYktNGwT40CvZhTJdaXIhLv5nMxRMVm0ZSpoF1x6+z7vh13Fws67l2DAmgbU1/vNykK2pZIeWqyEtWVhaPP/4469atQ61WM3r0aL744gtiY2OJiIggKSmJZ555hsaNG9s7VFGK5PuXY8yYMfTv35+aNWty/vx53n77bQASEhKoV69eScUnyghLU6sOL1ctSRkGUrMNd1UjN+ONKcTGXAcgOSmRN1+dyKyP5zFy6ADrH8l1v61i1YY/ir1fmkqlolYFL2pV8OKZdjW4npzFrijL9CR/RSeTZTCz4+84dvxtWdarWVVfOoQE0CHEnwAvWdbLmUm5KvKyePFi1q1bB4DZbObLL7+kf//+jBkzhvPnzwPw+eefs3fvXpo1a2bPUEUpkm8C16tXL9q3b8/ly5epXr065cqVA6B8+fJ8/PHHJRagKFu0GjUB3q54uWlJyTSQrjcWKpH758I5m+1r0Vf46duvrckbwF9HD3PsyCGaNG9Z1GEXqJKPGwNbBDOwRTBJGXr2nk9g19k4Dv6TgMGkcPCfRA7+k8hnW85Sv7K3dY3WauU9SjROUfykXBV5OXv2bK59q1evtiZvANnZ2SxatIh58+aVZGiiFCuwI46vry+NGjWyFjI5zp07l88VQhQNNxcNgeXcqOzjTjl3lzsOAOjWK8xmu3NoN7y8vXOd5+HpVaRx3i1fDx09G1bivf4NiRzbgbfDHuSR+oF4uVo+S526lsrCnRcYvvhPhi/+k693nuf09RRpXnMiUq6K2/Xr18+mZcDd3Z0OHTrkOs/Ly77llyhd7qnzzXPPPccff/xRxKEIkZubiwY3Fw3l3FxIytCTnm0kr1Rm+swP8fX1Y++uHTRq0ozJr71JzPXrbNmwnpTkJAAeGzCYOnVLTzOVu05D5wcq0PmBChhNZv7vimVZr13n4ohP03MpIYMlBzJYcuAyAV66m3PNBdAk2AetLOvldKRcLbs6d+7MsmXLmD9/Ph4eHrz22mu0b9+er7/+mq1btwJQpUoVxo4da+dIRWmSbwI3c+bMPPcrikJKSkqxBSQsr7HMH2ZLp1UTWM6NLL2JlKzcTatu7u5MeXOGzTW+fuXZuv8of2zeSKUqQbTt0KmEoy48rUZNi+p+tKjux/iuIZy5nnqz31w8lxIyiEvTs/roVVYfvYq3m5a2tfzpEOJPqxrlcXeRZb0cRVkoV6X8ujcDBw5k4MCBNvs2btzIxo0bSUpKok+fPnjn0aogyq58E7hff/2VqVOnotPlXibo999/L9agyqpVq1YxceJErl27xtChQ/nqq69wc3O784VliJtOg5tOg8FkJjXLQEqmgYIGrfqV96f/4KElF2ARUKtU1K9cjvqVy/F8p1pcis+wTk9y+noqqVlGNp2MYdPJGHRaNS1vLuvVrpY/Ph4u9g5fFMCZy9WrV6/yzDPPsHXrVho3bszixYulw/190mg0MrWMyFe+CVyjRo2oU6cOzZs3z3VMOlEWvfj4eJ588kmysrIA+P777wkJCeHNN9+0c2Slk4tGTXlPV7xcXUhI15OhN9o7pGJTzd+DJ/2r8WSbatxIzWbPuTh2nY3j6JVk9EYze87Fs+dcPGoVNA72uTmiNYBK5ST5L22cuVwdP348W7ZsAeD//u//GDp0KKdOnZLaOFGqZOqNpGebKOfu4vDzceabwP33v//F1TXvKQ1y2uRF0Tl69Kg1ecuxf/9+O0XjOHRaNRXLuZKSqSY1y4jBZEYBkhIT0Lq44OXlXE0OFbxd6ds0iL5Ng0jLMrLvQrx1Wa8sg5mjl5M5ejmZ+dvOERLoRaeQADrWCaCGv4f8IS0FnLlc3bdvn832mTNnSEpKws/Pz04ROa7s7GwSExOpVKmSvUNxCkaTZZ7R1CwjeqMZVODt7vjzb+abfmZkZOBeArPZC4vmzZvj4WE7bUSnTqW3z1ZpolKp8PHQEVzegwqeLkydMJpW9WvSql4N5sx6x97hFRsvNy2P1K/I22ENWPVCe2b2a8CjDSrh425pRo2KTWPxnos8991Bnl50gC//OMfx6GSHXI/WWThzuXp7edWgQQNJ3u7Bzz//TOXKlalcuTIdO3YkNjbW3iE5rCy9iRup2UQnZRKXpifbaPmAn+dIOAeUbwI3btw46/fjx48vkWDKMj8/P1asWEH9+vUpV64cL7zwApMmTbJ3WA5n+dIlLP9lCWazGb1ez5efzuHQgX13vtDBubpoaF87gCmP1mXFmHbMHdyEgS2CrM2oV5OyWH7oChN+Ocrgr/by8ca/2Xc+3vJpVJQYZy5X582bx2OPPYaHhwft27dn6dKl9g7J4SQnJzNq1CgSExMB2L17N2+99Zado3IsJrNCaqaB6MRMriVnkpp1b6v7OIJ86xBvnXfq8uXLJRJMWdezZ0/psHqf/vrrr1z7zv99ihat29ohGvvQqFU0qepLk6q+vNClNudupFunJzl/I53EDANr/7rG2r+u4aHT0KZmeTqEBNC6ZnnrfHSieDhzuVqhQgVWr15t7zAc2vnz58nIyLDZl1eZJnLLMphIyzKSrjc6bcJ2uwLXQs3reyFKs549ezJ37lzrtlar5fGwnvh76ki6x3VWHZlKpSIk0IuQQC+Gd6jB1aRMdt8c0Xo8OoUMvYltZ26w7cwNtGoVzav50rFOAO1rB1DeM/dISXF/pFwVBWnYsCHBwcFcuXLFuk8+1OfPbFZI1xtJzTSSbTQ5S8tooeWbwJ0+fZrmzZujKArZ2dnWUVM5c/wcPny4xIIsSy5evMjVq1dp06YNGo3M73W3unXrxsKFC/n8889xc3OjatWqhIaGEhwczKz3P6BB8zak3eU6q86kiq87g1pWZVDLqiRm6Nl7zjII4tA/iRhMCgcuJnLgYiJzN53lwSrl6BASQKeQAIL8nLPfVklz9nI1PT2dQ4cOUb9+fSpUqGDvcByOi4sL69atY8qUKZw/f56mTZuyYsUKvvnmG8LDw5k6daq9QywVzGbFMo1UlgGDqYwW5oBKKUNr9AwYMICVK1faO4x8vfbaa8yePRtFUQgJCWHr1q1UrVrV3mE5rE8++YSXX37Zuu3r68vly5dxcXMnLctIalbBc8iVJRl6IwcuJLIrKo795+NJ15tsjtcM8KRDiD8dQwKoE+iFu05LFV/HSOpK+/u+sEr789izZw99+vQhMTERV1dXvv76a5566il7h+WwoqOjqVWrFnq93rrv559/ZsiQIXaMyr6yDCYy9EbSsowY76PwVgFV/Nxx1Zb+SpKC3vf5DmLYu3ev9fvb+2ps3LixiEITOc6dO2dN3gCioqKYPXu2naNybJs3b7bZTkpK4tChQ7hqNfh7uVLF1wNvNxfusMxqmeCh0/JQ3QpM612flWPbM/vxRoQ1rmxtRr0Ql86P+y4x5sfDDF24n/nbosgymO5wV3E7Zy5Xp0yZYu18n52dzcSJEzEYDHaOynHt2LHDJnmD3GVaWZBlMJGQns2VhAyuJWWSlGG4r+TNmeSbwH344YfW7ydMmGBz7Msvvyy+iMqo6OjoXAuW39oPQty922eB1+l0PPjgg/9ua9VU8P43kZM8zsJFo6ZVjfJM6vYAy0a3Zd7QpgxpVZXgm82osanZ/LT/EhtOXLdzpI7HmcvV2xPShIQEMjMz7RSN42vatGmufWVlZYucJtJrSZaRpEkZBvQ35/gU/8o3gbs1mbg9sShDra4lpl27dtSoUcNm35NPPmmfYJzE1KlTCQsLQ6VSERAQwKJFi/Lsl5OTyFX2cYwq9ZKkVqloUMWH8M61+G5EKxYNb8nIDjUY1CKY0HqB9g7P4ThzuXp7edW7d2/KlStnp2gcX/369fn0008pV64cGo2GZ555hvDwcHuHVayyDCbi07K5nJjBjdRsMg2mMttfuTDuaRSqjJ4qei4uLmzbto0PPviA6Ohohg0bxuDBg+0dlkPz9vbmt99+IzU1FXd3d7TagqfIcNNpqOLiRlKGnuQ7rLFaFqlUKmr4e1LD3xM3Fw3ebrLu6t1y5nJ15syZBAQEsHnzZpo2bcprr71m75Ac3ksvvcQLL7yAwWDA09PT3uEUm4xsIylZRjL1Rqlluwv5/kW7fPkyY8aMyfU9SNNecalRowYLFiywdxhO5caNG6xdu5bg4GC6du16xz+SKpUKP09XPFy1JKYbpEARRcqZy1WNRsPLL79sM3BI3B+TycTGjRtJSkoiLCwMHx8fe4dUpPRGM0kZetKzpZy9F/kmcF988YX1+5EjR9ocu31biNLor7/+omPHjqSkpADwxBNP8MsvvxTqWlethko+GtKzjSRlGMg2Sod9cf+kXBWFZTabeeSRR/jjjz8AqFSpEvv376datWr2DawIKIpCSqahTM7NWZTyTeBat25dknEIUeTmzJljTd4Ali5dyvTp020GMtyJp6sWD52G1CyDjH4S903KVVFYW7dutSZvANevX+fLL7/k/ffft19QRSDLYCIhTU+WfCi+b/kOYti8eTM//fSTdXvQoEF07dqVrl278r///a9EghPifqSnpxdq352oVCrKueuo4utOORmtKu6DlKuisIqq/CoNTGaF1GwDMclZXEvOlOStiOSbwH399deEhoZat/V6PStWrOCHH37g559/LpHghLgfY8aMQa3+91e8devWtGzZ8p7vp9WoCfB2pWI5N1w0ksaJuyflqiisHj16EBISYt12c3Pjueees2NEd8dsVkjLNhCbksWVxAxupGSTrjfKqNIilG8TqsFgoHLlytbtFi1a4Ofnh5+f333P7ZOUlMSkSZOIjo4mKCiITz/9NM/Oma+99hp//PEH/v7+/P7773d9vSjbHnnkEfbs2cOyZcsIDg5m1KhRRTLSz8NVi06rJi5NT4beWASRirKiOMtV4Vzc3NzYu3cvCxcuJCkpiaeffpqGDRvaO6w7ytKbSM02klGGFpW3l3xr4G7tOwQwffp06/cJCQn39aARERG0a9eOjRs30q5dOyIiIvI8b8CAAXz99df3fL0Qbdq04eOPP2bSpEl4e3sX2X21GjWVfNyo4OWKVpZyEIVUnOWqcD4BAQHWJRZLe/KWZTBx/WYTaWqWDE4oCfkmcI0bN2bZsmW59v/yyy80btz4vh50y5Yt9OvXD4B+/frluzxIq1at8qxZK+z1jiYjI4OIiAjeeustjh8/bu9wRCF4u7tY+sa5u+Dg03iJElCc5WppsG3bNl5//XWWL1+O2Wy2dziiBJjNCgnp2VxLziRDpl0qUfk2ob7++uuMGzeONWvW0KBBAwBOnDiBXq9n/vz59/Wg8fHxBAZaZnEPDAy860+e93t9adWjRw927doFwPvvv8/WrVvp2LGjnaMSd6LVqAnwcsVLpyU+XS9Tjoh8FWe5am9fffWVzbx2L774IvPmzbNjRKI46Y1mMvVGUrIMGEySttlDvgmcv78/v/zyC3v37iUqKgqALl260K5du0LdePjw4cTFxeXaP3HixHuL1Mn9+eef1uQNLH1l5s+fLwmcA3HTaaisdSMhQ09qpkE+iYpc7rdcLc3mzp1rs/3VV18xe/ZsPDw87BSRKA7ZRhMpmUbSsg0yIMHO8k3gkpKSAMt6bPXr18+139fXt8Abf/vtt/ke8/f3JzY2lsDAQGJjYylfvnyhAy6K60sjF5fcyxLltU+Ubmq1igAvVzx1GhLTDTJcXti433K1NLu9vNJqtTajwIVj0xvNpGQaSJXErdTIN4EbMGAAKpUKRVG4ceOGtclSURRUKhVbtmy55wcNDQ0lMjKS8PBwIiMj6dq1a4leXxo1bdqU3r17s3btWgA8PT2ZNGmSnaMS98pdp8VdpyUt20ByhlGaVQVQvOWqvb3++usMGzYM5eZf95dffhk3Nzc7RyXul95oJjXLQGqWrA9d2uSbwG3dutX6fb9+/YiMjCyyBw0PD2fixImsWLGCypUr89lnnwEQExPDtGnTWLhwIQCTJ0/mwIEDJCYm0rlzZ8aPH8+gQYPyvd7RRUZGsmbNGq5evUrfvn0JDg62d0jiPnm5uuCp05KWbSQpQy99Rcq44ixX7W3o0KE0bNiQLVu20KxZM7p06WLvkMQ9UhSFDL2JjGwTaXqpcSut8k3gblUUc2fdys/Pj++++y7X/ooVK1qTN4BPPvnkrq53dFqtlv79+9s7DFHEVCoV3m6WRC4xQ09KlhSIoujL1dKgUaNGNGrUiNQsA1kGE65atVM+T2djMivojSayjWYyDSb0RjNmsyL9eEu5QiVwQoj7p1ar8PdyxVNGqwonl5RhwGgyo1arcNGo0WnVuGrU1u/VMnei3WUZTGTojWQZzOiNJhQFSdgcTL4J3OLFi63fx8fH22wDjBgxoviiEsKJuek0VHFxIylDT1Km1MaVJWWnXLXU3pjMCiaziSyD5cOKClCpuJnIaXDVWhI8F40arUYGPBQnvdGM3mTCYDSTZTSTpTdJwubg8k3gbl00d/DgwQ67iK4QpZFKpcLP0xV3nZaENL2MVi0jynq5qgCKAtlGM9lGM6lYkjpUoFGp0N5M5tx0alw1GnRaSeruldFkJstoIttgJlNvwmA2y4dFJ5NvAvfiiy/me1FGRkaxBCNEWePmoqGyrxspmQaSMmX5GWcn5Wpuys1/jIqC8WZtXWqWpaZOq1bhqtXg5qKWmrpCMJkVUrMMpGcb0ZskYXN2Bb4TYmJi+Ouvv9Dr9YClyv+TTz6he/fuJRKcEGWBSqXCx0NHZR93vFy1SO8g5yblauEoChhMCmnZRuLS9FxPzuJKYgbRiRnEpmSRkJ5tGSyhN2E0lb1lu8xmxZLsZhtITM8mJsXy+iSk68k2SvJWFuRbA/ftt9+yYMECqlevjl6v55lnnuGDDz6gb9++rFy5siRjFKLQ/u///o+EhAQ6deqEVutYY3R0WjWB5dwsBXKaHqPUxjkdKVfv3e3Nrzly+tWpVSpctGq0ajUataX2Tq1WoVWr0WkcY+DEjRs3OHjwIC1atLDOEZhDbzSTbbI0iWYbTBhu1rBJKVF25fsXbtmyZfzvf//D19eXq1ev0r17d3788UeaNm1aguEJUXhPP/00P/74IwB169Zlx44duQpBR+Dt6oKbVkNiup70bFkc2plIuVr0chI7s6Jg1JsA2/6ktw6ccNVqcNWWztGwv/32G0888QRZWVnodDqWLFlC3379Sc40kKE3YjQrUqsmbOTbhOrq6mpd1qVKlSrUqFFDCpkSsG/fPn799VdSU1PtHYpD2bdvnzV5Azhz5oxDL6TtorHUxgWUc0Vbiv7IiPvj7OXq1atX+eWXX4j6+4y9Q7FSAPPNmruULAM30rK5lpzJpYR0ohMzuJGaTXKGnky9EaPJbF1JolhjUizNnzlfadkGJk2eTFZWFgB6vZ6JkyYTnZRJcqZlsXhJ3sTt8q2Bu379OjNnzrRux8fH22xPmzateCMrg0aMGGFdQ7ZChQrs3LmTunXr2jcoB3H9+vVc+65evcqrr77KkiVLCA4OZs6cOXTq1MkO0d07b1cX3LWWdVXTsg1SG+fgnLlcXb9+Pf369bP27Zs2czYjwsfaOaq85dUcmzMaVoWlOVatUqHTWmrqNCoVKjWoUKFRq9CqLf/faZLinAlyDSYzBpOCyaxgVhT0RrPNgCUFiLkeY3NtbGwMG9evZe4HM0lJSeaJp4YzbtKrRfo6CMeWbwI3ZcoUm+0GDRoUezBl2cmTJ63JG1j6QsyZM8dmZQqRv27dulG5cmWuXbsGgFqtxtXVlTlz5gCWZC4sLIwrV67g5eVlz1DvmlajpkI5V9yz1SSmy3JcjsyZy9U333zTmrwBfDr7PYYNH4VOp7NjVIWXMxrWUmOnAAp6kxmybc+7PdHTqNWo1bccu3kvk0nBaC58P7X+g4fy4+J/y/sevR9j3MinMBgMAHzy/gyqVq/BYwMG3fuTFE4l3wQuvyWdsrOzbdbzE0UjKSkp177ExMSSD8RBeXp6smvXLj755BMSEhIYOXJkrqXYkpOTOXjwIA899JB9grxPXta+cVIb56icuVy9vbzKzEjHoNc7TAJXWLcnekZz0czhOG3mbKrVqMnB/Xtp1rI1AYEVWbNyuc05e3ZskwROWBVqQh2TycT27duZMmUKDz/8MOvXry/uuJzeoUOHaNq0KRqNhkcffZSaNWvSqFEj63GVSsWoUaPsGKHjqVWrFp9//jlLlizhkUceoXnz5jbHXV1dHb7GI6c2LsDLFY30jXNojlyuZmZm8swzz6DT6ahVqxa///47zz//vM05ffoNxNPBarvtycXFhedeGM+X3y4h/MWJNGnWPNc5DRo1LfnARKlV4DwLf/75J2vWrGH79u00btyYw4cPs2XLFtzd3UsqPqekKApPPPEE586dA2DDhg1MnjyZbdu2MW/ePK5cucJTTz3lsDVFpcV//vMfTpw4werVq6lQoQKffvopFSpUsHdYRcLb3QWdi5r4VFnFwdE4Q7n6wQcf8MMPPwBw4cIFhgwZQnR0NNWrV+d///sftes3YvDTI+0cpWOrXacu02d9xKez3yMjPY2+A59gyDPOstSaKAr5JnCdO3emSpUqDBkyhClTpuDl5UVoaKhDFTKlVWxsrDV5y7F37142b97MV199RWxsLKmpqbRu3RoPDw87Ren4vL29WbVqFenp6bi5uaHRaOwdUpFy1VpWcZA1VR2Hs5Sre/futdlOT09n06ZNzJ8/n927dxNS5wEaNWtJk+Yt7RShc3h21BiefPY5TEYjbg72OyKKX75NqN27dycmJob169ezbds2MjIy7jjiRhROYGAgDzzwgM2+li1b8uyzz3L9+nXMZjPLli3jww8/tFOEzsXT09PpkrccOWuqVvZxx03rnM/RmThLuXr7aG5vb28WL17M7t27AYg6+zeTXhhVIlNyODsXFxdJ3kSe8k3gpk2bxtatWxk+fDj79++nR48eJCQksG7dujK3AHNRU6lULFu2jDZt2uDm5ka/fv0YNmwY2dm2w50OHjxopwiFo8lZU9XXwwUHzAfKDGcpV1999VWef/55vLy8qF+/PitWrODo0aM25/xz4RwpyUl2iU+IsqDAPnAqlYp27drRrl07DAYDO3fuZO3atbzzzjvs37+/pGJ0Sk2aNGHfvn3W7eTkZLy8vEhLS7Pue/jhh+0RmnBQKpWK8p6ueOi0JKbryTRI37jSyBnKVTc3NyIiIoiIiLDue/jhh/npp5+s2/UbNMLH188e4QlRJhR6sUgXFxdCQ0MJDQ21zhYtio6Pjw+RkZG8+uqrREdHM2zYMF566SV7hyUckKU2zp3UbANJMm9cqeZM5ep///tfDAYDmzdvpl6DRsz4cK69QxLCqd0xgZs3bx7jx4+3bs+dOxdPT08GDRqEn598uipKXbt25fDhw/YOQzgJb1cXPF20JGfqScky2sz8LuzLGcvV8uXLs3TpUgAuJ6TLBwchitkd54G7fd6sRo0aodVqef/994stKCFE0VCr/x3k4KErdIW7KGZSrgoh7tcdS/TQ0FCb7UceeaTYginrsrKy+Pnnn4mOjmbgwIHUq1fP3iEJJ6HTqqnk40ZqpoHEDD1GqY2zK2ctV3ft2sXmzZsJrl2Ph3v0dsgRtkI4inxr4BISEmy2V69ezcyZM1m6dKkMDS8mjz76KCNHjuTNN9+kadOmueZaEndHURQ+/vhjWrRoQd++ffnrr7/sHZLdebu7UNnXHS9XLfKnteQ5c7n6zTff0KlTJ9555x2ef2Yo701/zd4hObyD+/cy/In+PN7zYZb99J29wxGlTL4J3HPPPWf9/osvvuC3336jQYMG7N69W6r5i8HBgwfZvn27dTs7O5t58+bZMSLHFxERwSuvvMLhw4f57bff6Natm8N3FC8KLho1geXcqFDOFZ2mUKvpiSLizOXqxx9/bLP90+KFZGZk2Ckaxxcfd4MRT/Rn57bNHD10kNcmvciWDevsHZYoRfJtQr310+CmTZv46aef8PDwoE+fPgwYMKBEgitL1Orcf0iddfLZkvLbb7/ZbMfExHDgwAE6d+5sp4hKFy9XFzx1WlKzDCRlGKRZtQQ4c7l6exmmUqulCfU+7Nm5nYwM27kBN29YR9cevewU0f0xKwoGoxmDSUFvMmO4+aW/uc9gMlv3642K9XjOtt7m/H+vydmnv3XfbY9z6zV6kxmAiY/UYexDIXZ+Ve5PvglcVlYWJ0+exGw2YzKZrEs6ubi45JlsiPvTvHlzevTowYYNGwBwd3eXaUTuU7169Vi37t9PrFqtlpAQx37DFjWVSkU5dx1eri4kZepJliW5ipUzl6tTp07lmWeesSapI8LHygoC96F2yAOF2pcfRVEwmnMSmluSmVsSnPySptsTnkIlTQU8jt5kLnWj4E9dS7F3CPct3wSuQoUK1ip9Hx8fYmNjCQwMJDExUWqGismaNWtYuXIlV69epX///tSoUcPeITm01157jT179rBv3z7c3d354IMPqFKlir3DKpXU6n8nAU5I05NllEmAi4Mzl6tPPfUUDz74IJs3byaodn3adS57E5Hn1DLpb0l+DMZbE5pbkybFJlm6PeExmDxp1e85Dq35DrPJSFDDdpwLaMfUX4+hvzVpyus+JkscpStlujMV4KJV46JRodOocdGo0Wkt/7toVDf/V6O7+f2/x/49rtOqb16runmvW665eczdRUO3BhXt/XTvW74J3A8//JDn/nLlytnMti2KjouLC0888YS9w3AaAQEBLFiwgIULF1K7dm1GjRpl75BKvZwluZIy9CRJbVyRc/ZytXnz5jRv3rzE5oG7tZZJf3vz3K2JlLUGyWxJfmy286o5Um47bi5U0lTUtUzm6t3wbq/HnJmM0qw3+y9nAEXbr1CjVv2bMFmTn5v/a1U2CVJ+SZXOui/vxEp3y31vTax0tz2OVq0qkWZ3FZa+wI7urieG0mg0uEu1uHAA27dv55FHHsFoNAKwcuVKdu7caeeoSj+VyjJ3nLvUxpUYZypXz1xP5eTVJDL0tyVNNk1xtonVrbVGt15z+/l5JU2OpjC1TDqtGo1iYtN7L5Jy7SIAmX9tZOjMH6lcIyRXzZJtwpRP0nRLgnZrDZVa+ik6rHua2bN///6sWrWqqGMRokjNnz/fmryBZY6qQ4cO0aJFCztG5Tjyqo1LSU5i0YL5XL54nqGDH2fw4MH2DtNpOEO5uvLwFSYv+z97h5GLVq2yqf35N4n5t/bn1u2Cj+fVhHd7TdRtTX63NOtpClnLtGXDOn69mbwBGLOz0JzdyuhnexTjK+X8fo/8lU3rf6dJw/q8+vLL+Pj42Duke3ZPCZyjFzKibNDpdIXaJ/J3e23c4GGDOHRgHwCRvy4jJSVFmqaLiDOUq5V83PB205KebSygb9K/NUQF1RjdXquk097aB8o2sSooadJqVA5Zy+TikruscnFxsUMkzmPJd4t481XL4MDfV8HO7dttpu9yNIVO4NLS0rh48SJVq1Z16IxVlB2TJ08mMjKS9HTLUPy+ffvSqFEjO0flmNxcNKTHXbEmbzkWL14sCdx9cLZytX3tAI691Z0riRkO2bxZmnTo8jDNWrbmyMEDAJT392fYcHmv3Y+Vv/xos71jxw7Onz9PrVq17BTR/cm3F98rr7xinTV8586d9O7dmzlz5tCvXz/Wr19fYgEKca+aN2/OmTNnmD9/PqtXr+bXX3+1d0gOzc/PD63W9jNfYGCgnaJxTGWhXJW534qGRqNhSeR65n39PTPnfMaGXQepWr2GvcNyaOUDAmy2dTodvr6+9gmmCORbA3fmzBnKly8PWPoS/fTTTwQHB5OQkMDw4cPp2bNniQUpxL0KCgpi7Nix9g7DKQQEBPDGG2/wzjvvAJaEbvr06XaOyrFIuSruhk6no9dj/e0dhtMY/8pr/LlvLynJSQBMmzbN+n50RPkmcGazmbS0NLy8vFCpVNb5s8qXL4/JJKPShCiL3n77bYYMGUJUVBRdunTB29vb3iE5FClXhbCfRk2asePwCf7cu5s2TRvQqMGD9g7pvuSbwI0bN45nnnmGJ598kubNm/PSSy/RtWtX9u3bR6dOnUoyRiFEKVKvXj3q1atn7zAckpSrQtiXt3c5unbvSRU/x5+2J98ErlevXjRo0IBly5Zx8eJFTCYTR44coXfv3lLQCCHEPZByVQhRVAochVq9enVeffXVkopFiCK3atUqlixZQnBwMK+++qospSXsTspVUVgXz59j0YLPSUlJZtCTz9Ch80P2DkmUIvkmcO+//z7du3eXSU+Fw1qxYgWDBg2ybq9bt46TJ086/JqTwnFJuSoKKy0tlcF9uhEfdwOAtZG/8nPkelq2bW/nyERpkW8Ct3r1av78808SExPp2bMnffr04cEHHbvDnyhbbl938u+//2b//v20by8FoLAPKVdFYe3ctsWavIFlAMzqX5dJAies8k3gKlWqxMqVK7l48SJr167l1VdfxWQy0adPH3r37k3NmjVLMk4h7lqlSpVstlUqFRUrVrRTNEJIuSoKr0KF3HMsVgiU8kv8K9+JfHMmY6xRowbjxo1j7dq1fPrpp2RnZxMeHn5fD5qUlMSIESPo3r07I0aMIDk5Oc/zXnvtNdq1a0efPn1s9s+bN49OnTrRt29f+vbt69BLYYjiM3XqVKpWrWrdnjRpErVr17ZjRKKsK85yVTiXlm3bEzbg3y4gderW46mRz9sxIlHa5FsDpyi5l0HJmT7g5Zdfvq8HjYiIoF27doSHhxMREUFERESenXoHDBjAU089xX/+859cx4YPH85zzz13X3EI51azZk2ioqLYuXMnwcHB1K1b194hiTKuOMtV4Xw+XbCI0S9OIiUlmZZt2kn/XWEj3xq4n376qdgedMuWLfTr1w+Afv36sXnz5jzPa9WqlVOsDyjsR6fT0bVrV0neRKlQnOWqcE71GzaiTfuOkryJXPKtgfP09ERRFI4dO0ZMTAwqlYrAwEAaN25832vdxcfHW9dQDAwMtK4NeDd++uknIiMjadiwIVOnTpVETwhR6hVnuSqEKFvyTeB27drFO++8Q/Xq1a0dv69fv86lS5d466236NixY4E3Hj58OHFxcbn2T5w48f4iBoYOHcrYsWNRqVR89tlnfPDBB7z//vv3fV8hhChO91uuCiFEjnwTuPfee4/FixcTHBxss//y5cuEh4ezfv36Am/87bff5nvM39+f2NhYAgMDiY2NvevFZAMCAqzfDxo0iDFjxtzV9UIIYQ/3W64Kx6ECVCpQq1Ro1CrMioKiWPaZlX/7Qyo3z82hKJZ9QtxJvgmcyWTKNQ0DQMWKFTEajff1oKGhoURGRhIeHk5kZCRdu3a9q+tzkj+AzZs3U6dOnfuKRwghSkJxlquieN2akKlVKtRqS2Kmtu4DkwIooNOq0Gk0uGjVaNR5N42bzQoKlkROfbP53KwoGM0KJrOC3mjCYFIwmBTMitma9EmCJ3Lkm8A9/vjjDBw4kF69elG5cmUArl27xrp16xg4cOB9PWh4eDgTJ05kxYoVVK5cmc8++wyAmJgYpk2bxsKFCwGYPHkyBw4cIDExkc6dOzN+/HgGDRrERx99xOnTpwEICgpixowZ9xWPEEKUhOIsV8X9UQEatQo3Fw0aterf2rObyZpWo0KnURdZX0W1NbH7935qVGhvjlXwdM3959loMmM0K5jNCkazGb1RwWA2YzCaMd1M7kTZoVLyGtd+07lz59iyZQsxMTEoikKlSpUIDQ0lJCSkJGMsMgMGDGDlypX2DkMIUYJK2/v+XsvV0vY8CnI5IR2DyTGyCZUKPHVavFy1eOSRNDmKbKMJo8mS3JkVBbMCppuJntFk+V8BkBo8VEAVP3dctaV/ZG9B7/sCf1tr164tE58KIUQRknLV/lQq0Gk0eOjUeLq6oNPmO6OWw3DVaigo/1RymmdNCgbFjN5gJstgRm8ySVLnoPL9rd2xY4f1+9TUVN544w3CwsJ4+eWX8xxdKoQQomBSrtqPRq3C01VLBW9Xgv08CPJzx8/T1SmSt8JQqVS4aNS46TR4u7rg7+VKkJ87VXzdqeTjRsVybgR46Sjn5oJOoyafrnuiFMn3N3fu3LnW7z/44AMCAgJYsGABjRo1Yvr06SUSnBBCOBMpV0uOCtCqVbhq1fh5uBDk607Fcm54u7ngoikbSVthuGo1uOu0eLpqKeeuI8DbleDyHgT7eVCpnBvlPXV46LRob/YLFKVHoRr8jx8/zurVqwHL/G6rVq0q1qCEEMLZSblaPFSAu05LOTfH7tNmb1qNGq1Gjcct+7KNJvQmS/Or3mS2DqqQwRP2ke/HkPj4eBYvXsyiRYtIS0uzWcPPbDaXSHBCFFZsbCyPPfYYHh4edOjQgRMnTliPnTx5UpqnRKkg5WrxUavAy1VLZR9Lk6CjJW+zZs0iMDCQ4OBgIiIirPuvX7/O2bNn7RjZv1y1/za/VvZxp2p5T6rerKnz83DBXadBp1FbR/GK4pVvAjd48GDS09PJyMigf//+JCYmAnDjxg3q169fYgEKURjjx49nzZo1ZGZmsmfPHoYMGUJMTAzNmjWjQYMGVKlShQ8//NDeYYoyTsrVoqXCMoK0gpcrQX4eBJZzw01X+kcW3u7333/njTfe4MaNG0RHRzN69GiOHDnCK6+8QlBQEA888AAPPfQQqamp9g41F61GjYerFj9PS1IXXN6DauU9CPK1JHb+npZ+dbdOzyKKRr4fUV588cU891eoUEH+EIpSZ+fOnTbbx48f5+233+bo0aMAGAwGXn/9dZ588slcs+ALUVKkXC0aKiyjSP08XRyupi0vt5dfAEuWLOHjjz+2bm/fvp0vv/ySKVOmlGRo90SlUlkmM85jgIjemNP0apnHTm8yYzCZMd+coVhaYwuvwN/8nPmKYmNjAcvC8127dpUh8KLUadu2rU0fonr16nH58mWbc0wmExcuXJAETtiVlKt3L2cVBI1ahbuLFg+dxikStxxt27bNtc/Pzy/XvqioqJIIp1jptOo7J3YmheybU5xI/7r85duEGhERweTJkwFo1KgRjRo1AiyrI9zaPi9EafD555/zyCOPoFKpaNq0KT///DMDBgywOScoKIg2bdrYKUIhpFwtjJzRo56uWnw9XKhQzpXKvjf7W5X3JMDb1amSN4D+/fvzxhtv4O3tjb+/P59++imjR4/G29s713nOSqe1NMWWc9cRcHOKkyBfDwK8LKNgpfk1t3zfBb/++iu///47Li4uNvuHDx9Onz59CA8PL/bghCisKlWqsGnTJhRFsS5107RpU7KysliyZAnBwcG8/fbb6HQ6O0cqyjIpV/OWU8Pm5eqCl5sWV23RLVnlKGbOnMnMmTNt9m3dupX33nuPxMREwsPD6dmzp52isw9LbZ2Ocu6W7ZxaOoPJjMGkkG201NiV1ebXfBM4lUpFbGwsQUFBNvtv3LhR5t5YwnHc/rs5duxYxo4da6donE9mZiaLFi3i7Nmz9O3bl4cfftjeITkUKVf/ZVkNQY2HToO7ixadVn3L+qACoGXLljK9zC3yan5VFAWDScFkNmNUFAzGmytMGC3Nr7cndXt2bmfL/9bSrNGDhD8/Cjc3t5J7AkUs3wTu9ddfZ/jw4VSvXt266PLVq1e5dOkSb775ZokFKIQoPQYOHMi6desA+Oyzz1i6dCmDBw+2c1SOo6yWqyosi7dr1Sp0Wg06jQpXFw1uLo43YlSULjkDJqw9wlwt/5nNClkGExkGExnZRkxmhdUrlzNpzEgAvgU2bdzAmjVr7BF2kcg3gevcuTMbNmzg2LFjNosuN2rUCI1G3nRClDUXL160Jm855s+fLwncXShr5WrO8lWeOkuyVtZqGYX9qNUqPFwtkzkrnjqyDCZ++e5rm3N+//13Ll26RLVq1ewU5f0psCeoWq0mODgYFxcXVCoVgYGBTlnICCHuzM3NDbVabTPhrKenpx0jckxloVzVqNV46NR4uznHQvHCsalUKtx1Wny8vWz2azQa52xCPXXqFG+99RapqalUqlQJRVG4fv065cqV46233qJBgwYlGWeZkJKSwtdff010dDRDhgyhVatW9g5JCKtKlSoxduxYPv/8cwDc3d15/fXX7RyVY3H2cnXNmjVs3ryZJk2a8Oyzz6KRNUdFKfLGG2+wY8cOsrKyAMu8jIGBgXaO6j4o+XjssceUo0eP5tp/5MgRJSwsLL/LSrX+/fvbO4R8mc1mpWXLlgqWPpeKRqNRtmzZYu+whMhlx44dyjfffKNcuXLF3qEUSml6399PuVqankdePv30U2v5BSijRo2yd0hC5HL58mXlm2++UXbu3GnvUAqloPd9vh+PMjMzadKkSa79TZs2JTMzs7jyyTJr//79HDx40LptMplYsGCBHSMSIm+dOnVi5MiRuUZSijtz5nJ1/vz5Ntvffvst6enpdopGiLwFBwczcuRIOnbsaO9Q7luBgxjCw8Pp168flSpVAiyL6kZGRtKpU6cSC7CsyKsvkfQvEsK5OHO56uHhYbPt6uqKVutcE+4KUZrk++6aNm0a27dvty75oigKFStWZNiwYXTp0qUkYywTGjVqxMCBA1mxYgUAPj4+vPzyy3aOSghRlJy5XH3rrbcYNGgQJpMJsPQ3cnV1tXNUQjivfBO47OxsGjVqlKtQiY+PJzs7W96YxWDZsmVs3ryZ6Oho+vTpQ0BAgL1DEkIUIWcuV/v378+ZM2fYtm0bTZs2pWXLlvYOSQinlm8fuJkzZ9r0ycqxe/duZs2aVaxBlVUqlYpu3boxfPhwSd6EcELOXq7Wrl2bUaNGSfImRAnIN4E7dOgQ3bt3z7X/sccey7MAEkIIUTApV4UQRSXfBE5R8l8W9taJPIUQQhSOlKtCiKKSbwLn7+/PsWPHcu0/duwY5cuXL9aghBDCGUm5KoQoKvkOYpgyZQoTJ06kf//+1tnBjx8/TmRkJHPnzi2xAIUQwllIuSqEKCr51sA1btyYZcuWoSgKq1atIjIyEoDZs2dbvxdCCFF4Uq4KIYpKgbMsBgQEMGHCBE6ePMnvv/9OZGQkf/75Jz169Cip+IQQwqlIuSqEKAr5JnAXLlxg7dq1rF27Fl9fX3r16oWiKPzwww8lGZ8QQjgNKVeFEEUl3wSuZ8+etGzZkgULFlC9enXAsradEEKIeyPlqhCiqOTbB27evHkEBATwzDPPMG3aNPbu3VvgEHghhBAFk3JVCFFU8q2B69atG926dSMjI4PNmzfz7bffEh8fz1tvvUW3bt3o2LFjScYphBAOT8pVIURRybcGLoeHhwePPfYYX331Fdu3b6d+/fpERESURGxCCOGUpFwVQtyvAkeh3s7X15chQ4YwZMiQ4opHCCHKFClXhRD34o41cEIIIYQQonSRBE4IIYQQwsFIAieEEEII4WAkgRNCCCGEcDCSwAkhhBBCOBhJ4IQQQgghHIwkcEIIIYQQDsYuCVxSUhIjRoyge/fujBgxguTk5FznXLt2jaeffpqePXvSu3dvvvvuu7u6XgghhBDCWdklgYuIiKBdu3Zs3LiRdu3a5TkDuUajYerUqaxfv56lS5eyZMkSoqKiCn29EEIIIYSzsksCt2XLFvr16wdAv3792Lx5c65zAgMDadCgAQBeXl7UqlWLmJiYQl8vhBBCCOGs7JLAxcfHExgYCFgStYSEhALPv3LlCqdOnaJJkyb3dL0QQgghhDO5q7VQ78bw4cOJi4vLtX/ixIl3dZ/09HQmTJjA66+/jpeXVxFFJ4QQQgjhuIotgfv222/zPebv709sbCyBgYHExsZSvnz5PM8zGAxMmDCBsLAwunfvftfXCyGEEEI4I7s0oYaGhhIZGQlAZGQkXbt2zXWOoii88cYb1KpVixEjRtz19UIIIYQQzsouCVx4eDi7d++me/fu7N69m/DwcABiYmJ4/vnnATh06BCrV69m37599O3bl759+7J9+/YCrxdCCCGEKAuKrQm1IH5+fjbzuuWoWLEiCxcuBKBly5acOXPmrq4XQgghhCgLZCUGIYQQQggHIwmcEEIIIYSDkQROCCGEEMLBSAInhBBCCOFgJIETQgghhHAwksAJIYQQQjgYSeCEEEIIIRyMJHBCCCGEEA5GErhSZPv27bRu3ZqgoCCmTJmC0Wi0d0hCCFEoiYmJDBs2jIoVK9KjRw+ioqLsHZIQTs0uKzGI3FJSUnjsscdISUkB4KOPPqJy5cpMmjTJzpEJIcSdvfTSSyxZsgSAjRs3MnjwYA4fPmznqIRwXlIDV0ocPHjQmrzl2LJli52iEUKIu3N7eXXkyBESExPtFI0Qzk8SuFKiYcOG6HQ6m33Nmze3UzRCCHF3WrRoYbNdq1YtfH197ROMEGWAJHClRGBgIIsWLaJChQqo1WoGDBjAf/7zH3uHJYQQhfLf//6XNm3aABASEsKPP/6ISqWyc1RCOC/pA1eKDBs2jCFDhpCdnY2Hh4e9wxFCiEKrUaMG+/btIzU1FS8vL0nehChmksCVMhqNRpI3IYTD8vb2tncIQpQJ0oQqhBBCCOFgJIETQgghhHAwksAJIYQQQjgYSeCEEEIIIRyMJHBCCCGEEA5GEjghhBBCCAcjCZwQQgghhIORBE4IIYQQwsFIAieEEEII4WAkgRNCCCGEcDCSwAkhhBBCOBhJ4IQQQgghHIwkcEIIIYQQDkYSOCGEEEIIByMJnBBCCCGEg5EETgghhBDCwUgCJ4QQQgjhYCSBE0IIIYRwMJLACSGEEEI4GEnghBBCCCEcjCRwQgghhBAORhI4IYQQQggHIwmcEEIIIYSDkQROCCGEEMLBSAInhBBCCOFgtPZ40KSkJCZNmkR0dDRBQUF8+umn+Pj42Jxz7do1pkyZQlxcHGq1msGDB/Pss88CMG/ePJYtW0b58uUBmDx5Ml26dCnx5yGEEEIIYQ92qYGLiIigXbt2bNy4kXbt2hEREZHrHI1Gw9SpU1m/fj1Lly5lyZIlREVFWY8PHz6c1atXs3r1aqdK3g4cOMCqVatIS0uzdyhCCHFXrl+/zvLly/n777/tHYoQTs8uCdyWLVvo168fAP369WPz5s25zgkMDKRBgwYAeHl5UatWLWJiYkoyzBL33HPP0aZNGwYMGEDt2rWlEBRCOIwNGzZQo0YNBg8eTL169Zg3b569QxLCqdklgYuPjycwMBCwJGoJCQkFnn/lyhVOnTpFkyZNrPt++uknwsLCeO2110hOTi7WeEvCqVOnWLRokXU7NjaWjz76yI4ROY+srCzMZrO9wxDCqb3xxhtkZ2cDoCgK06ZNQ6/X2zkqx2cymeR1FHkqtgRu+PDh9OnTJ9dXXrVtBUlPT2fChAm8/vrreHl5ATB06FA2bdrE6tWrCQwM5IMPPiiOp1Ci8kpiExMT7RCJ80hPT2fQoEF4enoSFBTEsmXL7B2SEE7r9vIqLS1NEo/79OWXX1KhQgW8vLx4/vnnMRqN9g5JlCLFNojh22+/zfeYv78/sbGxBAYGEhsbax2McDuDwcCECRMICwuje/fu1v0BAQHW7wcNGsSYMWOKLG57adeuHQ0aNODEiRMAqFQqRo4caeeoHNvs2bNZsWIFYOmb88wzz9C1a1f8/f3tHJkQzmfUqFG8/vrr1u0hQ4ZYP3SLu/f3338zbtw4FEUB4Ouvv6Z58+a88MILdo5MlBZ2GYUaGhpKZGQk4eHhREZG0rVr11znKIrCG2+8Qa1atRgxYoTNsZzkD2Dz5s3UqVOnROIuTmq1mj/++IN58+YRHR3Nk08+SWhoqL3DcmgHDx602c7Ozuavv/7ioYcesk9AQjix1157japVq7J582aaNm0qicZ9OnTokDV5y3F7mSbKNrskcOHh4UycOJEVK1ZQuXJlPvvsMwBiYmKYNm0aCxcu5NChQ6xevZoHHniAvn37Av9OF/LRRx9x+vRpAIKCgpgxY4Y9nkaRCwgI4J133rF3GE7j4YcfZv369dbtcuXK0aJFCztGJIRze+qpp3jqqafsHYZT6NixI1qt1qbZ9OGHH7ZjRKK0sUsC5+fnx3fffZdrf8WKFVm4cCEALVu25MyZM3leL537RWFMnDiRq1evsmTJEoKDg5kzZw7e3t72DksIIe6oatWqLF++nGnTppGYmEh4eDjDhg2zd1iiFLFLAidESXBxcWHu3LnMnTvX3qEIIcRd69evn3XKLSFuJ0tpCSGEEEI4GEnghBBCCCEcjCRwQgghhBAORhI4IYQQQggHIwmcEEIIIYSDkQROCCGEEMLBSAInhBBCCOFgJIETQgghhHAwksAJIYQQQjiYMrUSQ3R0NAMGDLB3GEKIEhQdHW3vEIqElF9ClD0FlV8qRVGUEoxFCCGEEELcJ2lCFUIIIYRwMJLACSGEEEI4GEnghBBCCCEcjCRwQgghhBAORhI4IYQQQggHU6amESltEhMTGT58OABxcXGo1Wri4uJ44IEHMBgMxMXF4eXlhbe3N35+fnz77bd2jdcR5PWali9fHoA+ffrw66+/otVqUavVjBw5kn79+tkvWAdx48YNZs2axV9//YVOpyMoKIjXX38dgFmzZnHx4kW0Wi0PPPAAb775JgEBAXaOWJQUKcOKlpRfRc+pyy9FlAr//e9/la+//tpm33/+8x9l/fr1dorI8d36mi5ZskQZOXKkkpqaqiiKoqSkpCgrV660Z3gOwWw2K4MHD1aWLFli3Xfy5Enlzz//VLp166Zs2bLFun/v3r3KmTNn7BGmKAWkDCtaUn7dP2cvv6QGTpQJX331Fd9//z1eXl4AeHt7079/fztHVfrt27cPrVbL0KFDrfvq16/PihUraNq0KaGhodb9bdu2tUeIQjg9Kb/ujbOXX9IHTji9tLQ00tPTqVatmr1DcThnz56lQYMGhd4vhChaUn7dO2cvvySBE2WCSqWydwhCCHFPpPwSeZEETjg9Ly8v3N3duXz5sr1DcTh16tThxIkTufaHhITkuV8IUbSk/Lp3zl5+SQInyoTw8HDeeecd0tLSAEuzxNKlS+0cVenXtm1b9Ho9y5Yts+47duwY1atX58iRI/zxxx/W/Tt27ODMmTN2iFII5ybl171x9vJLEjhRJjz55JO0adOGxx9/nD59+vDUU0/h5uZm77BKPZVKxeeff87u3bt55JFH6N27N59//jmBgYEsWLCAH374ge7du9OrVy9WrVqFv7+/vUMWwulI+XVvnL38UimKotg7CCGEEEIIUXhSAyeEEEII4WAkgRNCCCGEcDCSwAkhhBBCOBhJ4IQQQgghHIwkcEIIIYQQDkYSOOFQZs+ezaOPPkpYWBjjxo0jJSUFgN27dzNgwADCwsIYMGAAe/futV4zd+5cunTpQrNmzWzupdfrmThxIt26dWPQoEFcuXLF5nhaWhqdOnVixowZ1n1Tp04lNDSUvn370rdvX06dOlWMz1YI4Uyk/BJFSRI4USopioLZbM61v0OHDvz++++sWbOGGjVq8NVXXwHg5+fHl19+yZo1a/jggw+YMmWK9ZqHH36Y5cuX57rX8uXLKVeuHJs2bWL48OHMmTPH5vinn35K69atc103ZcoUVq9ezerVq6lfv/79PlUhhJOR8kuUBK29AxAix5UrV3j++edp06YNR48exdvbm8TERFQqFY8//jjDhw+nY8eO1vObNm3K//73PwAefPBB6/46deqg1+vR6/XodDqaNm2a5+Nt3bqVF198EYAePXowY8YMFEVBpVJx/Phx4uPj6dSpE8ePHy++Jy2EcApSfomSJjVwolS5cOEC/fr1Y+bMmWi1Wuun1QEDBuQ699dff6Vz58659m/YsIH69euj0+kKfKyYmBgqV64MgFartRa4ZrOZ2bNn23wKvtXcuXMJCwtj1qxZ6PX6e3iWQghnJOWXKEmSwIlSpUqVKjRt2pSqVaty+fJl3n33XXbs2IGXl5fNeV9++SUajYbHHnvMZv/Zs2eZM2eOTb+P/OS1CIlKpWLJkiV07tzZWjjeavLkyfzvf//j119/JTk5mYiIiLt8hkIIZyXllyhJ0oQqShUPDw8AfHx8WL16Nbt27WLJkiWsX7+e999/H4BVq1bxxx9/8O2336JSqazXXr9+nRdffJHZs2dTrVq1Oz5WpUqVuHbtGpUqVcJoNJKamoqvry9Hjhzh0KFD/Pzzz6Snp2MwGPDw8OCVV14hMDAQAJ1Ox4ABA1i0aFExvApCCEck5ZcoSZLAiVIpISEBnU5Hjx49qFatGlOnTgVgx44dLFy4kB9//BF3d3fr+SkpKYSHhzN58mRatGhRqMcIDQ1l1apVNGvWjA0bNtC2bVtUKhUff/yx9ZyVK1dy/PhxXnnlFQBiY2MJDAxEURQ2b95MnTp1ivBZCyGcgZRfoiRIAidKpdjYWF577TXrSK7JkycD8O6776LX6xkxYgQATZo0YcaMGfz4449cunSJL774gi+++AKARYsW4e/vz4cffsjvv/9OZmYmnTt3ZtCgQYwfP56BAwfy6quv0q1bN3x8fJg7d+4d43rllVdITExEURTq1avHO++8U0yvgBDCUUn5JUqCSsmrIV0IIYQQQpRaMohBCCGEEMLBSAInhBBCCOFgJIETQgghhHAwksAJIYQQQjgYSeCEEEIIIRyMJHBCCCGEEA5GEjghhBBCCAcjCZwQQgghhIP5f+4J/7b8bq4xAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "_, axes = plt.subplots(1, 2, figsize=(10, 5), sharey=True)\n", + "ax1, ax2 = axes\n", + "\n", + "im_coef, im_p = spearmanr(concat_imputed_df['genotype'], concat_imputed_df[genepair])\n", + "# sns.violinplot(x=concat_imputed_df['genotype'], \n", + "# y=concat_imputed_df[genepair], \n", + "# ax=ax1,\n", + "# inner=None)\n", + "sns.swarmplot(x=concat_imputed_df['genotype'], \n", + " y=concat_imputed_df[genepair], \n", + " ax=ax1,\n", + " color='black')\n", + "sns.regplot(x=concat_imputed_df['genotype'], \n", + " y=concat_imputed_df[genepair], \n", + " ax=ax1, scatter=False)\n", + "ax1.set_title(f'Imputed r={im_coef:.2f}; pvalue {im_p:.4f}')\n", + "ax1.set_xticklabels([f'{refallele}{refallele}', \n", + " f'{refallele}{altallele}',\n", + " f'{altallele}{altallele}'])\n", + "ax1.set_xlabel(snp_id)\n", + "\n", + "coef, p = spearmanr(concat_df['genotype'], concat_df[genepair])\n", + "# sns.violinplot(x=concat_df['genotype'], \n", + "# y=concat_df[genepair], \n", + "# ax=ax2,\n", + "# inner=None)\n", + "sns.swarmplot(x=concat_df['genotype'], \n", + " y=concat_df[genepair], \n", + " ax=ax2,\n", + " color='black')\n", + "sns.regplot(x=concat_df['genotype'], \n", + " y=concat_df[genepair], \n", + " ax=ax2, scatter=False)\n", + "ax2.set_xlabel('')\n", + "ax2.set_title(f'Not Imputed r={coef:.2f}; pvalue {p:.4f}')\n", + "ax2.set_xticklabels([f'{refallele}{refallele}', \n", + " f'{refallele}{altallele}',\n", + " f'{altallele}{altallele}'])\n", + "ax2.set_xlabel(snp_id)\n", + "plt.savefig(example_savedir/f'{snp_name}_ref{refallele}_alt{altallele}_{gene1}_{gene2}.{celltype}_{datasetname}.full.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "PosixPath('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/examples/rs221045_C_refT_altC_AC005076.5_ARHGEF19.monocyte_onemillionv2.full.pdf')" + ] + }, + "execution_count": 112, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "example_savedir/f'{snp_name}_ref{refallele}_alt{altallele}_{gene1}_{gene2}.{celltype}_{datasetname}.full.pdf'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/04_coeqtl_mapping/.ipynb_checkpoints/rb_celltypes-checkpoint.ipynb b/04_coeqtl_mapping/.ipynb_checkpoints/rb_celltypes-checkpoint.ipynb new file mode 100644 index 0000000..834ede3 --- /dev/null +++ b/04_coeqtl_mapping/.ipynb_checkpoints/rb_celltypes-checkpoint.ipynb @@ -0,0 +1,2026 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib as mpl\n", + "mpl.rcParams['pdf.fonttype'] = 42\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "\n", + "from pathlib import Path\n", + "workdir = Path(\"./coeqtl_mapping/\")\n", + "\n", + "celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']\n", + "import matplotlib\n", + "def heatmap(data, row_labels, col_labels, ax=None,\n", + " cbar_kw={}, cbarlabel=\"\", **kwargs):\n", + " \"\"\"\n", + " Create a heatmap from a numpy array and two lists of labels.\n", + "\n", + " Parameters\n", + " ----------\n", + " data\n", + " A 2D numpy array of shape (M, N).\n", + " row_labels\n", + " A list or array of length M with the labels for the rows.\n", + " col_labels\n", + " A list or array of length N with the labels for the columns.\n", + " ax\n", + " A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If\n", + " not provided, use current axes or create a new one. Optional.\n", + " cbar_kw\n", + " A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional.\n", + " cbarlabel\n", + " The label for the colorbar. Optional.\n", + " **kwargs\n", + " All other arguments are forwarded to `imshow`.\n", + " \"\"\"\n", + "\n", + " if not ax:\n", + " ax = plt.gca()\n", + "\n", + " # Plot the heatmap\n", + " im = ax.pcolormesh(data, **kwargs)\n", + "\n", + " # Create colorbar\n", + " cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)\n", + " cbar.ax.set_ylabel(cbarlabel, rotation=-90, va=\"bottom\")\n", + "\n", + " # Let the horizontal axes labeling appear on top.\n", + " ax.tick_params(top=True, bottom=False,\n", + " labeltop=True, labelbottom=False)\n", + "\n", + " # Rotate the tick labels and set their alignment.\n", + " plt.setp(ax.get_xticklabels(), rotation=-30, ha=\"right\",\n", + " rotation_mode=\"anchor\")\n", + "\n", + " # Turn spines off and create white grid.\n", + "# ax.spines[:].set_visible(False)\n", + "\n", + "# ax.set_xticks(np.arange(-0.5, data.shape[1]-2, 1), minor=True)\n", + "# ax.set_yticks(np.arange(-0.5, data.shape[0]-2, 1), minor=True)\n", + " # Show all ticks and label them with the respective list entries.\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + " ax.set_yticklabels([\"\"]+row_labels)\n", + "# ax.grid(which='minor', color=\"white\", linestyle='-', linewidth=2)\n", + "# ax.tick_params(which=\"minor\", bottom=False, left=False)\n", + " return im, cbar\n", + "\n", + "\n", + "def annotate_heatmap(im, data=None, valfmt=\"{x:.2f}\",\n", + " textcolors=(\"black\", \"white\"),\n", + " threshold=None, **textkw):\n", + " \"\"\"\n", + " A function to annotate a heatmap.\n", + "\n", + " Parameters\n", + " ----------\n", + " im\n", + " The AxesImage to be labeled.\n", + " data\n", + " Data used to annotate. If None, the image's data is used. Optional.\n", + " valfmt\n", + " The format of the annotations inside the heatmap. This should either\n", + " use the string format method, e.g. \"$ {x:.2f}\", or be a\n", + " `matplotlib.ticker.Formatter`. Optional.\n", + " textcolors\n", + " A pair of colors. The first is used for values below a threshold,\n", + " the second for those above. Optional.\n", + " threshold\n", + " Value in data units according to which the colors from textcolors are\n", + " applied. If None (the default) uses the middle of the colormap as\n", + " separation. Optional.\n", + " **kwargs\n", + " All other arguments are forwarded to each call to `text` used to create\n", + " the text labels.\n", + " \"\"\"\n", + "\n", + " # Normalize the threshold to the images color range.\n", + " if threshold is not None:\n", + " threshold = im.norm(threshold)\n", + " else:\n", + " threshold = im.norm(data.max())/2.\n", + "\n", + " # Set default alignment to center, but allow it to be\n", + " # overwritten by textkw.\n", + " kw = dict(horizontalalignment=\"center\",\n", + " verticalalignment=\"center\")\n", + " kw.update(textkw)\n", + "\n", + " # Get the formatter in case a string is supplied\n", + " if isinstance(valfmt, str):\n", + " valfmt = matplotlib.ticker.StrMethodFormatter(valfmt)\n", + "\n", + " # Loop over the data and create a `Text` for each \"pixel\".\n", + " # Change the text's color depending on the data.\n", + " texts = []\n", + " for i in range(data.shape[0]):\n", + " for j in range(data.shape[1]):\n", + "# kw.update(color=textcolors[int(im.norm(data[i, j]) > threshold)])\n", + " text = im.axes.text(j+0.5, i+0.5, valfmt(data[i, j], None), **kw)#j+0.1, i+0.5\n", + " texts.append(text)\n", + "\n", + " return texts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## celltypes" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "filtered_res_df = pd.read_csv(workdir/'output/filtered_results/rb_calculations/summary.csv', index_col=0)\n", + "unfiltered_res_df = pd.read_csv(workdir/'output/unfiltered_results/rb_calculations/summary.csv', index_col=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "filtered_res_df_clean = filtered_res_df[filtered_res_df['celltype_discovery']!='B']\n", + "filtered_res_df_clean = filtered_res_df_clean.dropna()\n", + "filtered_res_df_clean.to_excel(workdir/'output/summary/rb_values_replication_in_other_celltypes_filtered_results.xlsx')\n", + "\n", + "unfiltered_res_df_clean = unfiltered_res_df[unfiltered_res_df['celltype_discovery']!='B']\n", + "unfiltered_res_df_clean = unfiltered_res_df_clean.dropna()\n", + "unfiltered_res_df_clean.to_excel(workdir/'output/summary/rb_values_replication_in_other_celltypes_unfiltered_results.xlsx')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### filtered results" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# filtered results\n", + "rb_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "rbse_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "rbpvalue_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "numcoeqtl_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "num_anno_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "rbse_anno_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "for discovery_celltype in celltypes:\n", + " # replication in other celltypes\n", + " for replication_celltype in celltypes:\n", + " if discovery_celltype != replication_celltype:\n", + " rb_results = filtered_res_df[(filtered_res_df['celltype_discovery'] == discovery_celltype) &\n", + " (filtered_res_df['celltype_replication'] == replication_celltype)]\n", + " replicated_coeqtls_num = pd.read_csv(\n", + " workdir/f'output/filtered_results/rb_calculations/discovery_{discovery_celltype}_replication_{replication_celltype}.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t',\n", + " index_col=0\n", + " ).shape[0]\n", + " if rb_results['r'].values[0] < 10 and discovery_celltype != 'B':\n", + " rb_df.loc[replication_celltype, discovery_celltype] = rb_results['r'].values[0]\n", + " rbse_df.loc[replication_celltype, discovery_celltype] = rb_results['se_r'].values[0]\n", + " rbpvalue_df.loc[replication_celltype, discovery_celltype] = rb_results['p'].values[0]\n", + " numcoeqtl_df.loc[replication_celltype, discovery_celltype] = replicated_coeqtls_num\n", + " rbvalue = rb_results['r'].values[0]\n", + " rbsevalue = rb_results['se_r'].values[0]\n", + " num_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={replicated_coeqtls_num}\"\n", + " rbse_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"{rbvalue:.2f}\\nN={replicated_coeqtls_num}\"\n", + " elif discovery_celltype == 'B':\n", + " rb_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " rbse_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " rbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " numcoeqtl_df.loc[replication_celltype, discovery_celltype] = replicated_coeqtls_num\n", + " rbvalue = rb_results['r'].values[0]\n", + " rbsevalue = rb_results['se_r'].values[0]\n", + " num_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={replicated_coeqtls_num}\"\n", + " rbse_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={replicated_coeqtls_num}\"\n", + " else:\n", + " rb_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " rbse_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " rbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " numcoeqtl_df.loc[replication_celltype, discovery_celltype] = replicated_coeqtls_num\n", + " num_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={replicated_coeqtls_num}\"\n", + " rbse_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={replicated_coeqtls_num}\"\n", + " else:\n", + " rb_df.loc[replication_celltype, discovery_celltype] = 1\n", + " rbse_df.loc[replication_celltype, discovery_celltype] = 0\n", + " rbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " replicated_coeqtls_num = pd.read_csv(\n", + " workdir/f'output/filtered_results/UT_{discovery_celltype}/coeqtls_fullresults_fixed.sig.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t'\n", + " ).shape[0]\n", + " numcoeqtl_df.loc[replication_celltype, discovery_celltype] = replicated_coeqtls_num\n", + " num_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={replicated_coeqtls_num}\"\n", + " rbse_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={replicated_coeqtls_num}\"\n", + " \n", + "replicated_ratio_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "for discovery_celltype in numcoeqtl_df.columns:\n", + " for replication_celltype in numcoeqtl_df.index:\n", + " replicated_ratio_df.loc[replication_celltype, discovery_celltype] = \\\n", + " numcoeqtl_df.loc[replication_celltype, discovery_celltype] / numcoeqtl_df.loc[discovery_celltype, discovery_celltype]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CD4TCD8TmonocyteDCNKB
CD4T1.0000000.9715960.7594250.7734290.953264NaN
CD8T0.9882851.0000000.8471181.0024500.966100NaN
monocyte0.7921420.7796881.0000000.7971390.960618NaN
DC0.7947450.8158160.9359051.0000000.853924NaN
NK0.9258020.9678420.868747NaN1.000000NaN
B0.9184790.9524960.948709NaNNaN1.0
\n", + "
" + ], + "text/plain": [ + " CD4T CD8T monocyte DC NK B\n", + "CD4T 1.000000 0.971596 0.759425 0.773429 0.953264 NaN\n", + "CD8T 0.988285 1.000000 0.847118 1.002450 0.966100 NaN\n", + "monocyte 0.792142 0.779688 1.000000 0.797139 0.960618 NaN\n", + "DC 0.794745 0.815816 0.935905 1.000000 0.853924 NaN\n", + "NK 0.925802 0.967842 0.868747 NaN 1.000000 NaN\n", + "B 0.918479 0.952496 0.948709 NaN NaN 1.0" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rb_df" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CD4TCD8TmonocyteDCNKB
CD4T0.000000e+000.000000e+001.126679e-352.425843e-030.000000e+000.0
CD8T0.000000e+000.000000e+007.557685e-590.000000e+000.000000e+000.0
monocyte1.052643e-1215.216640e-920.000000e+001.774726e-211.393096e-3170.0
DC3.609987e-254.217830e-395.947381e-3160.000000e+004.322965e-050.0
NK2.552726e-2640.000000e+008.365584e-060.000000e+000.000000e+000.0
B2.320757e-1441.610287e-2121.074123e-780.000000e+000.000000e+000.0
\n", + "
" + ], + "text/plain": [ + " CD4T CD8T monocyte DC \\\n", + "CD4T 0.000000e+00 0.000000e+00 1.126679e-35 2.425843e-03 \n", + "CD8T 0.000000e+00 0.000000e+00 7.557685e-59 0.000000e+00 \n", + "monocyte 1.052643e-121 5.216640e-92 0.000000e+00 1.774726e-21 \n", + "DC 3.609987e-25 4.217830e-39 5.947381e-316 0.000000e+00 \n", + "NK 2.552726e-264 0.000000e+00 8.365584e-06 0.000000e+00 \n", + "B 2.320757e-144 1.610287e-212 1.074123e-78 0.000000e+00 \n", + "\n", + " NK B \n", + "CD4T 0.000000e+00 0.0 \n", + "CD8T 0.000000e+00 0.0 \n", + "monocyte 1.393096e-317 0.0 \n", + "DC 4.322965e-05 0.0 \n", + "NK 0.000000e+00 0.0 \n", + "B 0.000000e+00 0.0 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rbpvalue_df" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib import cm\n", + "from matplotlib.colors import ListedColormap, LinearSegmentedColormap" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "color_dict = {'CD4T': '#2E9D33',\n", + " 'CD8T': '#126725',\n", + " 'monocyte': '#EDBA1B',\n", + " 'NK': '#965EC8',\n", + " 'DC': '#E64B50',\n", + " 'B': '#009DDB',\n", + " 'cMono': 'peru',\n", + " 'ncMono': 'y',\n", + " 'CD4T_individual_100': '#2E9D33',\n", + " 'CD4T_individual_50': '#2E9D33',\n", + " 'CD4T_50': '#2E9D33',\n", + " 'CD4T_150': '#2E9D33',\n", + " 'CD4T_250': '#2E9D33'}" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":60: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + ":61: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_yticklabels([\"\"]+row_labels)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAG0CAYAAAD96WS9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADTwklEQVR4nOzddZhVxf/A8ffc2m6WXTZg6e6QEGmQEhULg1AUCRUQuxtUvmIAokiJgIgi0qUg0t0N27vUdtf8/jh3l717t4NdfszrefYB5szMCe7ez5k5M3OElBJFURRFUaomXWUfgKIoiqIoBVOBWlEURVGqMBWoFUVRFKUKU4FaURRFUaowFagVRVEUpQpTgVpRFEVRqjAVqBVFURSlClOBugoQQojKPgZFURSlahJqwZOqQQihB/RAulT/KYqiKIqZCtSVTAhRGxgN9ATigEzgdynlT5V6YIqiKEqVoLq+K5EQYjSwFZgChAFngMvAJ0KIo0KI9pV5fIqiKErlUy3qSiKEaAEcAE4Dw6WUR83p9kBN4E2gAfCSlHJvpR2ooiiKUqlUi7ryfA1EAm9IKY8KIYwAUsokKeUZ4CPAEXgaQAhRp9KOVFEURak0KlBXAiFEP6AbMA+t6xsgI3ceKeV5YBxwSAhRE1gkhEgUQgy/pQerKIqiVCoVqCvHU8B1YJOUMlUIIfKO9BZC6KSU/wJr0AaatQc2Ad8KIQ4JIdre8qNWFEVRbjkVqG8xIYQOMAJRUspdAPlNx5JSZpn/aoP2vHodMApoBxwH/hJCvCyEMNySA1cURVEqhQrUt5g5AGcA8QCFBVohhAl4FqgBfCmljDF3iU8GvgOeAO6u8INWFEVRKo0K1LdQrhXIdgJthRBtpJQZhRRpifaceg5wMDtRSnkD+AFIAmYIIRzMLXVFURTl/xn15X4L5eriXoz2vHmiEMIvd57sYC6EcAJeBqKAH6WUKbnyGMzB+hegEeCWq6tcURRF+X9EBepKIKWMA2aijfxeLoQYIoRoKoSoDjnBuifwEDAduJCnfHYr3AYwAbVv1bEriqIot5Za8KQSCSFcgVlAD7QVyRqhLSd6FK3VnQU8JKWMyKesHq1LfBDQwBz8c7ZJKTPNf/eUUl6r4FNRFEVRKogaMVyJpJQxwONCiAZAC7QBZifQgm8bcgXpfKZw1QEeBlagBfTsKV1ZUspMIYQb8D5wvxDCw1zfefXCD0VRlNuLCtRVgJTyHHAOclYg+xht3e/9ufLI7JayEMIBeA/tBR6rpJQJ5jxZ5mfbH6ANRKtlzmMPxJrrMEkp027h6SmKoihloJ5RVzFSykvA90AT4BchRBdzFznmIF0DeAV43JxvB4AQwlcI8SKwHegPfAp8ATgB70opr5iD+EtCiJlqlLiiKMrtQT2jrqLMAfkHtAFna4FwIAEYiNaNvQR4Bm1AWW/gcyAd+ApYak7/A6grpfQ116k31zcfcAbeklLOunVnpSiKopSUCtRVnBCiE/A84A40A0KA5cAsc1f3TGAY2ujwb6WUcUIIG2ACWot6mJTy1zwDzDyAkWjd52eAF6WUe27xqSmKoijFoAL1bUII4S6ljDLPoc4wpzkBLwJvAP8CL0gpLwoh2qHNsb4qpexaQH164ENzWdCWKB0tpYys6HNRFEVRik89p7xNSCmjzH/NypUWj/a6zCFoz6LPCSHmACOA+mhBPDso51UPrVW9EOiH1lUeLoSYWkGnoCiKopSCalH/P2GejjUQrbu7GnBAStmpgLy2aF3ljwJ9pJSHhRB2aNO9BgAzVFe4oihK1aAC9f8jQghftJHg/dAGlv0FjMm9GIo53z3ARmAa8JmUMjXXNjsgRc23VhRFqRpU1/f/L0PQWtVvAXWBX/MJ0q7Aa2groS3MHaQBpJTJKkgriqJUHWrBk/9fjECYlPILACHEKvOfOvMIcYEWyO9Fm9oVVGlHqiiKohSL6vr+f0YI4SClTMw9HSvXNn+00d3hwBNSyuuVcpCKoihKsakW9f8zUspE8595g7QBGI42GvwlFaQVRVFuD+oZ9Z2jJTAJ+AlQI7oVRVFuEypQ3zmaor27eq6UMqmyD0ZRFEUpHvWM+g4ihKgO3MjbLa4oiqJUXSpQK4qiKEoVprq+FUVRFKUKU4FaURRFUaowFagVRVEUpQpTgVpRFEVRqjAVqBVFURSlClOBWlEURVGqMBWoK4kQ4rk7df+Vfe6Koii3ExWoK09lB6vK3H9ln7uiKMptQwVqRVEURanC1NuzKomUsi1QacvCmVekq5T9+w6vCUCNl2vc0cviRUyPEBlxx+/oa2Bwbi7Cz8Td0dfAp5GzuDpm/B19DarPmSkq+xiqMhWoK0nLee0q+xAqjUc3z8o+BEVRlNuG6vpWFEVRlCpMBWpFURRFqcJUoFYURVGUKkwFakVRFEWpwlSgVhRFUZQqTAVqRVEURanCVKBWFEVRlCpMBWpFURRFqcJUoFYURVGUKkwFakVRFEWpwlSgVhRFUZQqTAVqRVEURanCVKBWFEVRlCpMBWpFURRFqcLUay6V21ZmfCZx2+JIC0oDwFTThHN3Z/TO+iLLZsRmEP9vPGnBaZAJRm8jTvc4YfQ25uRJOplE3Ma4AuvwHOOJ3qHofVWkkNBIprzxOVu27UFKSa9uHZk+9VVq+tcotNyHn83io6nf57vNxsZEwtUDFmlh4Vd475OZbNi0g+iYOHy8PXlkaH8+ef+lcjuX0gqLCOX9qW+wY9c2pJR07dSND96Yiq+Pf6Hlpn/3Gf+bOTXfbTYmGy4dvQrAryt/YfKb4wqs5/C/56ju6VX6EygHYQnxvLt7J9tDQ5FI7vH146POd+Pn6FRk2aC4OD7cu4t/w0JJz8qitWd13uvYmVae1S3ytVvyMyEJ8Vbl5/e9lwEBdcrtXBRrKlArtyWZLon6LQqhF7jc6wJAws4Eon6LwmO4BzpjwZ1FWclZRC2LQpgEzr2dEQZB0sEkrezjHhg8tF8L29q2GB6z/hWJ/jMag4uh0oN0UlIyfQePxsbGyLzZHyOE4N2Pv6XPoGc4tGsFDg72BZZ9eviD9O3dxbK+xGQGDh3H4P7dLdIDg8Lo1m8EAbV8+Wra63hV9yAwOIyLl0Iq4rRKJDk5iUdGDsbGZMOMz2YjhODzrz/m4ZGD2PLnLuztHQosO+yh4XS/u7dFWlJyIk8+N5Q+PfvnpPXu1o+/lm6xyCelZOS4R6nlH1DpQTopI52ha/7CpNfzTY+eCART9+/lwdWr+OehR3EwGgssG5WSwn1/rcTRaOSLrt2wMxj5/tgRHlyzig33D6WBm7tF/h5+/kxp294irZ6ra0WclpKLCtTKbSnpeBKZsZlUG1kNg5v2MTZ4Grg+7zrJx5JxaFvwF3TS0SSykrKo9sjNsqaaJq7/dJ2E3Qm4DnIFQGevw2RvsiibFpqGTJHYdratmBMrgbkLf+dSYCgnD/xFvbo1AWjetD6N2wzmh/krmDRheIFl/Xy98fP1tkhbvGw1GRkZPPX4fRbp4yd9hE+N6mxZMxej+Uv/HtqV89mUzi+/LSQ4NJB/1x2gdq26ADRu2JS7723Dz8vnM2bkhALL+nj74uPta5G2YtUyMjIyeHjI4zlpHu7V8HCvZpFv74FdRMdEMWXCm+V4NqWz+PQpguLj2PXI49R20W5am7h70OnXX/j59Emeb9GqwLILTp3gWnISfw6+WfZuH186LFvMFwf382Pvfhb53W1taeflnV9VSgVSz6iV21LqxVSMNYw5gRbA4GLA6GMk5UJKoWXTI9LRu+ktyuqMOoy+RlIupSCzZIFlk08lgx7sGtqV/STKaM26bdzVvkVOkAaoHeBH546tWL3unxLX9/OSv/Cq7kHfXp1z0i5eCmHT1l2MHzMsJ0hXJZv+WUeblu1zgjRATb8A2rfuyKat60pc329/LsGzWnW6392ryHwmo4n7Bgwt8T7K28agQNpW98oJtAC1nJ3p4F2DDUGBhZY9ePUKdVxcLMo6GI109K7B5qAgMrKyKuqwlRJQgVq5LWXcyMjpos7NUM1ARlRG4YV1IHTCKlnoBWRAZkxmvsVkuiTlXAo2tW3Q2VX+r86pMxdp2rieVXqTRnU5feZSieoKDYtk2479DHtkIAbDzeu6a+9hAOxsbbh3yHM4eLbFs2YXRo55kxtRMWU6/vJw7sIZGtZvbJXeoF4jzl08U6K6wiPD2LVvBw8MesTiGuSVnJLMmo2r6N29H+55uoYrw9noKBrlcxwN3dw4Fx1VaFm9EBh11o9wTHo9yZkZBMbFWqRvCgoi4Kcf8J/7Pf3//J11gSX7nCmlU/nfNopSClkpWehsrT++OlsdMqXgFjGAwc1ARkwGWck3WwtSStIj03Pqzk/KxRRkmsSuaeW3pgGiomNxc3W2Snd3cyE6puBBcPn5ZdkasrKyeGqYZbd3RMQ1AJ6d8B7169VizYpZfPrBJNZv3MGAB54nq5JbXDGx0bg6u1qlu7q4ERsXU6K6fv9rGVlZWTx8/7BC823cupb4hDgevv/xQvPdKjGpqbjY2Filu9rYEpOaWmjZei6uXI6NJSrlZi9UlpQcvqoNpIvOVb5PrQA+7XI3ywYMYlbPPtjq9YzatIEV58+W05koBVHPqJX/XwqP0QDYtbAj8XAisRticerhhDAIEvcmkhlrbklbN7YBSD6ZjM5Oh01t6y/FyiKE9cFKWYyLkMfiZatp1aIRLZo1sEjPDsTd7m7Ht9PfAqBHt7twcXbkiadfZdPWndzbp2spjrz85HsNivNByGPFqmU0a9yCJg2bFZrvtz+X4OFejZ739C3xPipKPpegWJ+D4U2aMvfkcV74ZwufdOmKncHAjEMHCY7XbvR0uSr+rIvl//OAgNoMWPU7n+zbw0P1G5btBJRCqRa1clvS2erybflmpWYhbAuItGYGVwOu/V1Jv5LO9XnXufbDNdIi0rBvo42Szm80d2ZCJmnBadg2ts2327wyuLk6ExUda5UeHROXb0u7IPsOHufMuctWg8gA3N1dAejVo5NFep+e2nPsI0dL1r1c3lycXYmOjbZKj42NwSWflnZBDh87yIVL54psJV+5GsmO3duK7B6/lVxsbIhJsW45x6al4ppPSzu3AGcXZvXozdHr17hr2S+0WLyQA1evMKZ5SwC87AueOaDX6Rhcux7hiYlcSUos20kohaoanzRFKSGDh4GMG9bPojNuZGBwL/pjbdvAFpt6NmRGZ4JeC96xW2LROenynYedcjoFJNg1qRrd3qA9iz515qJV+umzl2jcqPjzWn9e8hcGg4FhDw+w3kdjbZBWfq1WAJ2ucu/1G9RrxLkL1jcL5y+epUHdRsWu57c/l2AwGHhg0MOF5vtj9a9kZmYW2T1+KzV0c+dsPs+iz0VHW02vys+gOnXpH1Cbi7ExmPR6ApxdeHXHdnwdHIuch53dcyEK6oZSyoVqUVchUf9d59gzBzkx4QgZiZZBSGZKjj1zkMhV4WXaR8hPgRx75qDVT/hS6zmxiecTuPDpGY4/f4hTk44SviyErDTrVmxKWDKXpp/jxLjDnHzxCCHzAslIKGJAVxnZ1LUhPSKdjJib+8mIzSA9PB3busWbOiV0AoOHAYOrgcyETFLOpmDfMv8WRPKpZAzVDBirV52Rz4MGdGfv/mNcuhyakxYYFMauPUes5kIXJC0tneW/b6B/37vxrGb9pd6xfQu8vaqxactOi/SNW/8DoF2bpqU/gXLQt8cADh3dT1DI5Zy0kLAg9h/eYzEXujBpaWmsWvc7Pe/pazUNK68Vq5bRuGEzmjVuUabjLk/9agVw8OoVi4FfwfFx7IuMpF+tgGLVodfpaODmToCzC5GJiay6dIERTQr/v83IymL1pYv4OTpSvZCWd0UQQowUQkghRIwQwi3PNoN52/tl3MdUIcQx8z6ShBBnhBDvCCEKPFkhhKsQItK8/94F5SspFairoKzkTK6tj6yw+vVOBuq+2dDip1ofy1WIkkOSuDT9HAYnAwEv1sPrAV+id94gZF6gRb706DQufn6OrHRJrbF18H2iJgmn4gj85kKh05zKyq65HXpnPTGrYki5kELKxRRiVsWgd9Jj1+JmqzczLpPIryJJ2J2QkyYzJXHb4ki5kEJqcCqJhxO58csNDNUM+c6/Tr+STsaNjCoziCzb6BFDCajpw4OPv8hfa/9h9bp/ePDxl/D39eLZUTdbhkHB4di6t+bjadYrka3dsJ2o6FirQWTZDAYDn7z/Eus2/su4iR+xeesuZv+4jBcmf0K3ru3p0e2uCju/4nji4RH4+9bk6fGPs3HrWjb9vY5R4x/Hx9uXpx4ZlZMvNCyYms3c+WrmNKs6tmzbQExsNA8PKbyVfPzkEc6cP1WlWtMATzZqgr+TEyM2rmd94GU2BF5mxMb1+Dg6MrzxzWAbEh+Pz4+zmX5wf05aelYm7+z6j3WBl9gRFsrcE8fou/I3Grq5MzbX/Os/LpznuS2bWH7uDP+Fh7HywnkeXLOKo9ev8XYHy8cit5gL8FoF1e0MzAceBwYDvwBvAUsLKTONYo2UKZnbuutbCNEJmATcDVQD4oFDwGLzT1cg94TSFOAGcAz4A1gkpUwrpP7OwH9ow4uMUsoMIcRItP+8onwgpXy/hKcEgGNTZ65vvUa1Pl4YXcq/BaczCBzqOhaa58qqCIxuJmqNrYswiJxyIT8FktQ/Cfta2k3ltY1XkJmS2i/WRW9vXnjE1cilz88RdzgGl7ZuBe6jTOdg1OH+sDtx2+KI3RALUlu0xKm7EzrTzftPKSXIPANrBGRGZxJ3Jo6s1Cz0jnrsmtnh2MFRm6KVR/KpZNCBbaPKX+QkNwcHezatnsuUNz5n5Jg3kVLSs9tdTP/sVRwdb970SynJzMzMd4T2z0v/wt3NhYH3ditwP8MfH4JOp+PLGfNY+MufuLu58Pijg/jkvZcK7BK/VeztHVg+fzXvT32DF18bg5SSuzt144M3PsPB4eZnXGK+BtL6Gvy2aimuLm707n5vofv6bdVSDAYDDw56pNzPoywcjEZ+HzSEd3ftZMI/W5BAVx8/PurcxWJVMokkU0qycv0uCASX4mL54+J54lJTqeHgyLCGjXmpdRtM+puPgGo6OXE9JZkP9u4mJiUVO4OBVtWrs6z/IHr416QSbQJeEELMkFKWa+tGSpl33dit5tb060KIalLK67k3CiG6AE8CLwA/leexiNKMEK0KhBATgf8BfwMLgSDADegLjAKGAbFogfpFYD9gBHyAPsBTwGmgj5TyWj71G9GCfjXAm5uB2hOomytrG2Bmrn1kC5VShlKAlvPaWV34qP+uEzo/iLqvNeDSVxdwv9sD3ye0XwKZKTn+3CGq31cD7yE+RV2eAoX8FEjC6Tgaf1lw153MkJyYcBjPvl54P3hz5aas9CxOTjiCZ39vvO/XjuHM68exr+NIzedqW9Rx+pXjODZyxP8Zy/RsR58+IGq8XOP2/PCVk4jpESIj7vgdfQ0Mzs1F+Jm4O/oa+DRyFlfHjL+jr0H1OTNLdMeXq8F0D7ABmCelfMG8zQCkU4bGUiH7nQJ8AbhKKWNzpRuBw8CvwA60uNNHSrkl34pK6LZsUQsh7kEL0t9JKV/Ms3mVEOJ/gAOQ/dDttJRyT648vwohfkK7mPPQujXyegWtJT0PyFkn0BzUcwK7ECK7mZV3H6VmcDFSracn17dcxbOfF6Zq+Y/clJnF+N0W1ot7ZMRlcPKlI2QmZWLytMH97mp43uuVky/1WioyXWLja9nVqzPqMHnakBqeDEBWWhZp19Nw72rd0rT1tSUlvPAVwhRFUcooAvgOmCiE+FJKGZRfJnPwLoqUUlqtdmQuawt0BCaj3RTknW7xKmACPgfK/VnAbRmogdeBKLSLY0VKeRFACNG9oAqklLuFELPR/oPrZpcxl6uL9iyiP9Cz/A67+Dz7e3Nj+3Wu/BWB/9MBVtvTrqdy5rUTRdZj9DDR+PPmOf+2rWlHjQA/bH1syUqXxB2KIfKPMFKvpuA/UttPpnkgm8HeevSz3kFPZmLmzXwS9A7WHyO9g4HUSBWoFUWpcNOAMcB7wNN5NwohAoDLedPzEQQE5CnbDDieK2kR8FyePPWAt4H7pJSpFfE46LYL1EIIPdAd+FNKWdZIsA6YCHQBcs9zmQ2skFL+K4SolEBtcDTg2c+LK3+F4znAGxtPy1a1wdVIvXeKnn4iDJbjBT37WL7px7mFCzpbHdc3X6V6f29svGxvDoUoy+ftju7IUxTlVpFSRgkhpgPvCSGmYfldDhAOtLcuaSW/ZdwumMs6AJ2BN9Di5hO58swGVkkpN5f02IvrtgvUaM+M7dDufsoq2Pxnzst7hRBPAu2A4k/CLCYhxHOY78Z8h9fEo5tnofmr9anO9a1XufJnODWftXzWqzPosPMvxpSIYgRb1w7uXN98laTAJGy8bHMW/MhItF7zOjMxE6OPNkBFb2/QBmYlWk/FykzKyLelrSiKUgG+QhvE9SGWQRQpZZoQ4kgx6rBqXpgbg9kvZ98uhIgA5gshvpVS7hFCPILW0GsnhHA158sexegghHDJp5u8xO70b9LsMCYBhBDuwHTgTSnl1fLemZTyB+AHyH8wWV56Wz3VB3gTsTyU5HstW8Kl7fouTPbFMFW3QRgEqWHJFtuz0rNIu5aKSzttJLfORofJw5Tvs+iU8BQcGxY+slxRFKU8SCkThBCfoX1/f5F7W1m6vvORHbTrAXuAJmgNx5P55P0TbUCzazH2XajbMVDfAJKBWuVQl7/5zwjznx8DV4Dlue6OskdKuQghUqSUt3StPI8enlzfdIXIlZYLnZS26zs/0XuiQIBdbW0Osc6gw6mZMzEHovEa4pMzZSn2QDQyQ+Lc6uYr8ZxbuRK96waZSZnozc+0E88nkH4jDeeWrsU9zRxJJ5OI2xiHsBF4PuNp8eINmSW5MuMKDh0dcOpc+IpJhYnfEU/q5VQy4zORmVKbe93YDoe2DgjjzS6ItLA0ko4nkXElg4yoDHROOqqPrm5VX/KpZJKOJZERnYFMk+gcdNjUtMGxkyN6J+vn/EVZ+MsqRo97BxcXJ84fXY+b283lQDMyMrDzaMM7rz/Pu2/knT1SfGvWb+PXFes5ePgUFy4F07VLW7aunWeVb8bMn1n22zouB4aSmJSMn48Xgwf24PWXR+NhXl4UoF7zewkKzn8xnmdHPcysGe+U+lhz+3XlL0x+cxzOTi7s3nwUV5eb0/8yMjKo1dyDyeNf5+UJb5R6H5v+Wc+qtSs4euIwgcGX6NiuCysWrc03776Du/n4y3c5efoYTk7O3D/wYV6b+A52thU3537Z2TO8tP1vnE0m9g97Elebm4M5M7Ky8J37PVPatOOVdh1KvY/MrCy+PnKIJWdPcyUxEV9HJ0Y1bZaztGi2vZER/HLmFEeuXeNCTDQ+Do4cePypUu+3jGahDfb6OE96Wbq+88qex5jdvb4A2JYnTyu0Fv4UYG8x6izSbReozVOktgF9hBA2UsriXNyCDDT/mb3sUhOgOdrNQF7XgVXA/WXYX4npjDqqD65B2KJgy3SDDvsA68U5CpN2PZWQuYG4dHDDprotMiOL2EMxRO+6gXu3athUv/kc3GuIDxc+PUPQ95fw6OFJ+o00IpaH4tLW1WK/nvd6Eb3nBoHfXqD6AG8ykzOJ+C0Mu9r2OLdxLfV5y1RJ4v5EnLqWPiAXJCstC7umdtr7qA2QHp5Owt4E0q+k4zbk5hd/WnAa6WHpGL20rv6s9PzfFJWVkoXJ34RDOwd0NjoyojNI2JNAamAq1UZWs5jXXRKxsfF8MWMen34wsVTlC7NqzT8cPX6WDu2bk1LIG5aio2N5YHAvmjaph5OjA4ePneGTad+z7d997N2+LGcJ0d8Wf0VqmuWSBH/+tZXp3yxg8IDu5X78cfGxzJo7gzdf/qDc6964ZQ0nzxynTcv2pKYVfG1OnT3BsGfup9vdvVgw+1dCQoP4+Mt3iLwSzvdfLSj348orLi2Nb48c5p27yn/Bkdf++5dfz51hUpt2tK3uxX/hYXywZxeJ6elMbtMuJ9+OsFD2RETQ0tMTASSmp5f7sRSXeSDXh5h7LXOlp3GzJVwsQogWwJfAb8AlwAZtKthLwHop5W5z3YFAYJ6y2X89KqX8r6TnkZ/bLlCbTUW7i/kCbf6yBSFEbaDQb3jzYilj0AalZb9UdSLW3RQjgRFAb7TW9i3nfnc1rm28QtqVstyTgM5Wj95Bz7X1V8iISwcBNjVs8Rnmj0cPy+fldjXtqT2pPpErwgj8+gJ6ez1unT0s5lUDGN1M1HmlIRG/hhA46xI6g8C5lSs1HvUr08srTLVMJB1Owr6Nfb4vySgLl14uFv+2qWmDTNduDLKSs3LeNe3Q0QHHTlr3fcy6GNLC818bx6GN5Q2Tyd+E3llP9B/RpAWmYdugdAul9OnZmZk/LOHFcU/i7VX40pYlNefb93KCbLd+IwrM98HbEyz+3a1re+ztbBk/6SMOHz1D29ZNAGjd0vqd0O9++C3eXtXo26tzOR65+Ti69GTeLz8wevg4qnt6FV2gBL746Nuca3P/E/0KzDf928/w9vJhzlcLMZoXFjEaTUx843nGj55I86atyvW48uru589PJ48zpnnLcl3CMzQhnl/OnmZy67Y5Qbmbnz8JaWl8ffggo5o0w81W+0xPbtOOKW21xuq4vzezL7LiVlQspvloU2vrl7GeK2iNszfR1tFIQgvYU4C5Zay7xG7LQG0ejT0Z+J8QojFa90Mw2oInvYDRaMu+ZT/EbyyESEA73xpoi6I8BZwCns1V75G8+8o1xWu7lLJCF7B2v7sa7ndbfyELvaDRp4W/eq84DI4GAl6oV+z8jg2dqPdW0d3rdn521Hm5QZH5SsLxLkei/4gmcW8izj2L/yao0soOzrkX1S3LNIucLvsy3GO8+cqzDBw6ls++/JGvvyh9V25+yvIyDQ937UbHaCz46yM4JIJtO/YzcfxT6PXle6MF8NLzr/DEc0P5Zs6XfPz2F0UXKIHiXJv09HS2/beFZ0eOzwnSAIP7P8Cr777Ixr/XVXigntS6LY+tX8NXhw9avYKyLA5fvUqWlPSsafl0sYd/TeadOsHWkGAeqq/9vusqaWU6KeUCtO/9vOkZQJm/jKSUV9BiSGnKbqNsc2as3LZrfUspZ6AtHRqD1kXxN9p/XGO0lvLqXNm/AXYDW4AZgC8wHuiYdxk4pWrQOeiwb2VP0vEkMuOsR59nk1myWD8Flc1KyyI1KJXEg4nYNbVDZ1P6XwmZJZEZkvRr6cRtj8PgYcCmVunfXe3t5cm4Z4cxd8GKAp//gvZstqifzMyCr2FxZGRkkJSUzJ79R/nws9n07HaX1burc/tl2WqklPm+OrM8VPf0YtTjz/LL8gWEhgUXmK+irk1QyGVSUlNoVL+JRbqtjS21atbm3MWKf/2nl70DzzRtzuLTJwmJjy8wX0ZWVpE/mbmWl9Wbg68pzw2LjfmG60x0fk8GlYp0W7aos0kpdwG7CsmyjTLe2ZiXoHu/kO1l3oeSP4f2DiQdTyJhdwIu/VystmfEZnD9p6Lvs3TO1oPA0q+nc2PRzS8c2ya2OPcpW8v96vdXkSnaTYHBy4DbULecddJL65WJT/PjghV8NO175s780Gp7YFAY9VsU/ZaoWjV9uHB8Q6mOISEhCTffjjn/7turM8sWTi+0zC+/rqFVi0Y0b1q+PS25jRs9kcXLF/C/WdP43yczrbaHhAXRsXfRb7ny86nJ3q3Hi8yXW/Y7sPN757Wrixsx+bwjuyJMaNmaRadP8uXB/Xzd3XrJh+D4ONovXVxkPf6OTjmDwOq6ugJw8OoVmle7+UjswBWtWzu/d18rFeu2DtTK/286Ox0ObR1I2J2AQ3sH9K6WXah6Rz0ej3sUXVE+Pa8GVwMej3sg0yVpEWkk7kskNisW1wGupT5e94fdkemSjKgMEvclEv17NO6PuluMXC9xne4uTJownI+mfs8rE0dRt7a/xXafGtXZ/U9hL/PR2NiU/uUu9va27P5nKSmpqRw5doapX/7I/Y+9wMZVP2AwWH+F7Nl/lLPnA/nftIp6qZHGzdWd50ZO4KtZUxk3eiIB/pZrDXh51mDdb/8UUPomk6kUvR7mdyTk1/N7K9+f4GZry9gWrfjy4H5eaNWaAGfLG1pvewc2PvBQkfXkfgFHQzd3uvn68fmB/dRycqZNdS92hofxw4ljQOV1d9/JVKBWqjT7NvYkHU4iYVcCLgMsv4SEXmCoXrqPsDAIjN5a8DL5m9A56IjbGEdaqzRMPqZS1Wn0NNfnY8Lkb+L6T9dJOpaEY4eyzSd/adxTzJyzhA8+mcWiuZ9ZbDOZjLRq0bDIOsr0vF2ny3nv9N2d2tC8SX16D3qG3//czKMPWbfmFy9djdFo4LF8tpW350aMY/4vc/jym0/47gvLMT4mk4mmjYpuUZfm2mRPC4uJjbHaFhsXQ4N65b5eUoHGNG/J3BPHmXZgH7N79rHYZtLraeZR9EDEvFfg6+49Gff3Fh5bvwYAJ6OJd+/qxCv/bcfrFr97WlGBWqnidCYdDh0ciN8ej0M7y9HVZen6zit7ClZmTKb2frUyMrgYELZCq6+MHB3teXXyaF5960smvzjSYtut6PrOq21rLWhfvBxitS01NY3f/thI/75d8azmbrW9vDk4ODLh2cl8+PlbjH3GcgJIRXZ91/KvjY3JhrPnT1ukp6SmEBwSyKB+95eovrJwMBp5sVUb3t+zk/EtW1tsK03XN0ANB0dWDr6fyMREolNTCHB24VSU9qiog3eNgqpRKogK1EqVZ9/SnsSDicTvtBwwU5au77zSQrWpV3m710sr/Xo6MkWWW31jRz/K1zMX8d7H31qk34qu77z+3alNSa1T289q25r124iKjuWpYRUziCw/Ix4fzQ8LZ/L515brXFRk17fJZKJ7196s3rCSlye8kfMIYO3GVaSmpdK3Z8X3JuQ2qmkz5hw/wtT9lutrlKbr26K8gwPeDg5IKfnh+FHqu7rSxcc337xKxVGBWqnyhEHg2NGRuC1xlun6m93XxZV+LZ34f+OxrW+rBdEMbQWyxEOJmAJMFt3eWUlZOQE8Mz4T0iHlnLZcqsHDgMFD+/W5sewGtvVs0bvrEQZBxrUMEg8monPUYd+8fLoJbWxMvPXqGMa+ZDmgzGQy5nRLl0RQcDgHDmlL0EZFxaDT6fj9z00AtGvTjFo1fYiNjWfg0LEMe2Qg9evURAjB/kMnmPHdIlo0b8gDg3tb1bt42Wo83F0Z0O+eUpxl6diYbJg09lVefe8li3STyUTLZm1KXF9oWDBHThwCIDomCp3QsWbjnwC0atYGP1/tHfGTx7/OkGF9eH7SCEY8/iyhYcF8/OU7DOw3hBZNWxdUfYWw0euZ3KY9U3Zss0g36fW08iy8Nyk/C06dwEavp6aTM1eTklh+/ix7IyNYMfA+i2fU15OT2R2hzUgIS0ggKSOD1Ze0RbsauLnR0K3ie1XuBCpQK7cFu2Z2JB5ILHNXss5eh85WR+K+RDITMxFGgd5Fj1M3J+ybWQbV9BvpxKyJsUjL/nfuZUyNNYwkn0zOmUamc9Jh29AWh/YON+dnl4ORT97P/75ZyPmLZX8fzbYd+xk9znJZz8dGTAFg7qyPGPHEEGxtbWjUsA4zv19CWMQVDAYDtWr6MGnCcCY8/wQ2NpbP8q9dj2LD5p089/TDmEzl14IvjkcffJLZ877hclDeFyeV3M59O5j8puXyrGMmaovC/O/TWTz6gPbOh2aNW/DLj3/wyfT3GPH8Izg5OTP0vmG8MendMh9DaQxr2IhZxw5zKbbM74AgM0vy7fHDhCbEY2cw0LmGD+uGDKWRu2XgPRsdxegtGy3Ssv9d1mVMlZvErRyhqNxUnJdy/H929OkDosbLNe7oaxAxPUJkxB2/o6+Bwbm5CD8Td0dfA59GzuLqmPF39DWoPmemGkpeiNt2wRNFURRFuROoQK0oiqIoVZgK1IqiKIpShalArSiKoihVmArUiqIoilKFqUCtKIqiKFWYCtSKoiiKUoWpQK0oiqIoVZgK1IqiKIpShalArSiKoihVmArUiqIoilKFqUCtKIqiKFWYCtSKoiiKUoWpQK0oiqIoVZgK1IqiKIpShalArSiKoihVmKGyD+BOdfTpA5V9CJWmw8IuAETGRVbykVS+9OtbK/sQKpXBuTmrPjtd2YdRqcYuvAuZklrZh6FUYapFrSiKoihVmGpRV5LsVqWiKIqiFEa1qBVFURSlClOBWlEURVGqMBWoFUVRFKUKU4FaURRFUaowFagVRVEUpQpTgVpRFEVRqjAVqBVFURSlClOBWlEURVGqMBWoFUVRFKUKU4FaURRFUaowFagVRVEUpQpTgVpRFEVRqjAVqBVFURSlClOBWlEURVGqMPWay9tU6o1UQpZeJu5kLFKCc1MXaj5eGxsPm6LLXksh5NdArWymxKGOI/6PBuBQ29EiX3p8OqHLg4g5EkVmShb2/vb4PuCPS3O3ijotpYRCw6N59ZM/+fu/c0gkPTo34It3HsDfp+j/o5DwaD783zq277nAjehEfL1deXBAK14Z2wsH+5ufo0b3fEhwWLRV+WWzn+a+vs3L9XxKIzrxKptOLCL4xhlCo8+TnpnKRw/+gYejT5Fl0zNTWX34B/Zd3kByWgJ+bvW5v+146nu1tsiXJbPYdOJn/ju3krjkKLxcajKgxdO0rtWzok6rRMISE3h3/17+jQhDAvfU8OHDdh3xc3QssmxQfDwfHtzHjohw0mUWrT08ebdte1pV88zJs+zCOSbu2lFgHcceHkZ1O/vyOBUlHypQ34YyUzM5+/lJdAZB7dH1QAjC/gjm7NQTNP24FXobfYFlMxLSOf3JCfS2emqNrIvepCNyYzhnpp2gybstsPPRftmy0rM4O+0kGQnp+D1SC6OLiev/XuH8jDM0mNIE58Yut+p0lQIkJafR/8lZ2JgM/PDF4wgBH/5vPfc+MZN9a1+xCLZ5JSalMvCp2aRnZPLupP74+7hx8FgwH3+9kYuB1/j52xEW+Xt3bcTbL/WzSKtfp3qFnFdJXYsP4VDQVmp6NKJe9Vacjthb7LKLd33CidBdPNB2AtWcfNl+dgXfbZnIlP4/4u/eICff6iNz2HpyCYNbP09Nj0YcvLyZudvfYmzP6TTz61wRp1VsSRkZPLRpPSa9jm+63INAMPXIQYZuWsffgx/AwWgssGxUSgpDNqzB0Wjk845dsDcY+P7UCYZuWs/6AffRwNUVgN5+/qztP9iirEQy/O/N1HR0UkG6gqlAfRu6tv0KqVdTaD61NbZedgDY+9tz7LVDXPvnCt73FtySuPp3JOlxaTR642ZZpyYuHHvlEGErQ6g3viEAUftvkByaRMPXmuYEZZfmrpx85yihy4No8l6LCj5LpSjzl+3mcsgNjm5+g7oBWuuneSMfmvf6lJ+W7ubFZ7oXWHb3wctcCLzGXwvG0LtrIwC6dapPdGwSM+ZuIyk5DXs7U07+au4OdGgdUJGnU2r1vFoz7ZH1AOw8v6rYgTo06jz7L2/iqc5v06neIADqe7Xmo78eZ82RHxjb80sA4pOj2HpyCX2bDadP0ycAaOjdlmvxofx5aGalB+pfzp8hKCGenUMeorazMwCN3dzp/Odv/Hz+DM83KbjXY+G501xLSWZlv4E5Zbt41+Culcv54ughfuym9RhUs7Wjmq2dRdk9VyKJSk1lSss2FXRmSjb1jPo2FHM4Gse6TjmBFsDG0xan+s7EHI4qtGzCxQRsvewsyupt9Dg1cCL2aDQyUwKQeDEenUmHUyPnnHxCCJybuZJ4OYG06NRyPiulpNZuPUmHVrVygjRAgL8HndrWZs2WE4WWTUvPBMDZ0dYi3cXZjqwsiZSy/A+4guhE6b7GjoXuQK8z0Dagd06aXmegXUAfTofvJT0zDYBT4XvJyEqnQx3LHoUOde4lPOYi1+PDS3/w5WBjSDBtq3nmBFqAWk5OtK/uxYaQ4ELLHrx2jTrOzhZlHYxG7qruzZbQYDKysgosu/zieUw6HfcH1Cn7SSiFUoH6NpQcloSdn3VXk62vHcnhSYWWFToQBmGdbtCRlZZFytUULUEnEHqBEJZ5deayyaGF70epeKfOR9KkQQ2r9Mb1vTlzIbLQsj27NKBegCdvf76G0+cjSUhMZduu88xc8C+jH+9s1W2+butJPJq+imvjKXQbOoO/Nh0v13OpDBExl/Bw9MFksLxZqeFam4ysdK7Fh+bkM+hMeDr5W+UDiIi9fGsOuABnY2Jo5Go9JqGhiyvnYmIKLasXAqPO+lGZjV5PcmYmgfFx+ZZLzshgddBl+vjVxN3WNt88SvlRXd+3oczEDPT21v91BgcjGYkZhZa19bYj7mQsGQnpGBy1Z1cyS5J4OSGnbgA7b1sykzNJDk/KeW4NkHAxHqDI/SgVLzo2CTcXO6t0Nxd7omOTCy1ra2Nky68v8Pj4+bS9d1pO+shHOvLV+w9a5B3QsyltW9QkwN+dq9fj+f7n/3hs7Dx+mv4Ew+5vVz4nUwkSU+OwNzlZpTuYtNZlUqoWpBLT4rA3OVrdtNrnyVdZYtJScTFZj0dws7EhNq3wnq+6Li78GxFGVEpKTsDNkpLD16/l1J2fDSFBxKen80jdemU8eqU4VIv6dmXdKIZidFd69vBGZkku/XCelKsppMWkEfzLZVKvpVjU697RE4OTgcs/XiApJJH0+HTCV4cSf9b8pSTyOwDlVssbPIBidVunpKYz/MVFXLuRwE/Tn2DT0gl8+vp9/L7uMBPf+90i7//eH8oTD7anS/u6PNC/Fet+Hkeb5v68+8XacjuPyiER+fwiSfJcPykL+LxXnccD+R1ecY5uRINGZEl4Yed2AuPjuJKUxFv7dhOcoN2Q6/L9otG6vT1sbenl65/vdqV8qUB9G9I7GHJavrllJGVgcCi8k8S2ui11xjQgMTCR468e4ujEAyRciMe7rzYAzeiqDSAyOBioN6ERGQnpnHznKEde2M/1HVfxvV/7xTS5FjySVLk13JztiIqxfgQRE5ecb0s7twXL9/Lv3gus/Ok5ht3fjrs71GXisz347I0hzF2yi2Onwwosq9freLB/S8IiY4i4Glvm86gs9iZnEtOsW8NJaVqQsrdxzvkzKTXe6gYob77K4mIyEZNq3fKNSc2/pZ1bLSdnZnbtxrEbN+i48jdarljKwWtXea5xM4B8R3NfSUri34hwhtaui0GnQsitoLq+b0N2vnYkh1l/QaeEJVt0UxfEvb0Hbm3dSYlMRhh02Fa3JXDhRUzuJot52E4NnWn+eRtSr6QgsyS23nZErg9DZ9JhX6vo+ZlKxWpc35vT562fRZ+5EEmjet6Flj15Nhw3F3vq1Kpmkd6uZU0Azl64QovGvgWWzw5Z+bXobxc+rnU4GrKdtIwUi+fUETGXMeiMeDr5AVDDtQ4ZWWlciw+lurO/RT6AGi61b+2B59HQ1Y2z+TyLPhcbkzO9qjCDatWmv38tLsbFYdLrCHBy5tU9O/G1d8h3HvaKSxfIlJJH6tYvh6NXikPdDt2GXFu5k3Ax/ubAL7RFTBIuxOPaqniLkQidwM7HHtvqtqRFpxG17waePa2/3IUQ2HrbYedjT1ZaFte2X8Wjsyd624LnapfJOWAusAjI20jIMm87WI77iwPmm+vN3TjMAo4Ba4HFwEJgJXCW/PsUo4H1wALgZ2A7kJJPvnI0sHcz9h0J4nLw9Zy0oNAodh+8zMBeTQst6+XpTHRsEhcDr1mk7z8SBICPd8Hz5DMyMvlj3RH8fdzw9qzc1mRZNPfvSmZWBoeCtuakZWZlcDBoC418OmDUa71LTX06YtAZ2X95o0X5fZc24ONal2pORS+sUpH6+dXk4PWrBOUa+BWcEM/+q1fo51ezWHXodToauLoS4ORMZFIifwVeYkTDxvnm/e3SBZq4udPM3aNcjr80hBAjhRBSCBEjhHDLs81g3vZ+GfcxVQhxzLyPJCHEGSHEO0KIAltDQghXIUSkef+9C8pXUrd1i1oI0QmYBNwNVAPigUNoX62Lga7AP7mKpAA30L6C/wAWSSnT8tRpD7wGDAP8gevmOt6VUgYKIUaifbUX5QMp5fulPbfCeHb34urWSC58cwbfB2uCgLA/gjG5m/DscTPYpl5P4dirh/AZ4o/vEK0lkJWRRejyIJwaOqO3M5AclkTE2lDsfO2s5l+H/BaEQ4ADBkcjqVdTiFwfhtAL/B4q3i9/maQBR4EOFbyfXYAJyDv2KhM4AtQDmqH9poQAO4AY4K5ceRPRAroL0Avt2PcBm4DB5D+eoByMerQj3y/6j0fGzOPdyf0RQvDRV+vxq+HKM8Nuzu0NDouiaY9PeOOFvrz5gjbF6KmhHfh23jYeeOZHXh3XG38fNw4dD2HqzE20buZHp7ZaK3H5X4dYs+UE/bo3xq+GK1evxzNn8X8cPhHKwhlPVcyJlcKhoL8BCL5xBoCTYbtxtHXD0caVBt5tuJEQwXsrH2JAi6cZ0PIZAPzdG9A2oDe/7Z9BZlYGHo4+7Dj7BzfiIxh19wc5dTvZudOz8WNsPL4IW6M9/u4NORi4hXORBxnT4/Nbf7J5PFG/IfPOnmLEP1t4vVVbhIBpRw7h4+DI8AaNcvKFJMTTceVvTG7RmpdbaiuvpWdl8dHBfXTy8sbJaOJMTDTfnjhGQ1c3nm/SzGpfx25c50xMNO+3q+hfzGJzQfu+fr0C6nZG+64/i9Zs6Ay8BbQDhhRQZhoVMHjhtg3UQoiJwP+Av9H+o4IAN6AvMBvt6zS7jfQisB8wAj5AH2AmMEEI0UdKmbtZMRe4H3gPOADUBD4AtgohWqJ9JXfKlb+Nua7sfWQLLZcTzYfeRk/D15oSsuQyl344D0icG7tS8/EAy5auRGsZZt383AghSLmSwo0918lMysDkZqJaVy9qDPJFZ7DsYMmISyd4SSAZcekYnI24tXHH9wH/nNHiFcoXOIUWJCtq0aMLaLdhrYA9ebbpgUeA3DNPfNGC8CmgLTd/e46jXee+QPaTA3u0T0ogUEE9ow72Nqz/ZRyvfvwno6f8gpTQvVN9vnjnARwdbj7CkBIyM7PIyvU5qOXnzrYVE/nkmw188L/13IhOxK+GK08/2olXx/dBZ372GODvzrUb8bw19S+iYpOwtzXRtoU/q+aPoc89jayOqbLM3f6mxb+X7f0C0BYwaeA9G5BkyUyypOW84Kc6v81fh79n9eE5JKUl4Odejwm9v6Kmh+W53df6eWyMdvxzejlxyTeo7lyTZ7p9Qgv/rhV6XsXhYDSyos8A3juwlwk7tyMldK1Rgw/bd7RYlUwCmVKSletZuwAuxcXxx+WLxKWlUcPegWH16vNi81aY9Na9ZssvnscgBENrV5nR3puAF4QQM6SUhc9JLCEp5bg8SVvNDbnXhRDVpJTXc28UQnQBngReAH4qz2MRt9PCBtmEEPcA24DvpJQv5rO9LuAAuKO1hvtIKbfkydPJvG2zlHKwOc0OrVX+uZTyzVx570Xr2LxXSrkxTz3dC9pHYTos7HL7XfhytG/ETiGeFdbX4BzwLzAI2AA0QLuPBS0YzgNaowXKskgFVqC12KV5nw+j3Z8X5hRaK/wxIPvx3a9AdaBHnrzLgBpAt/yrkj9KkXxpxh39ObCrM1HMHrH3jr4GYxfeJa6MGH1HXwOvhXNL1O+Uq2fzHrRvinlSyhfM2wxAOhXQqymEmAJ8AbhKKWNzpRuBw2jfBjsoRUwozO36jPp1IAp4Nb+NUsqLUspjhVUgpdyN1vIeZA7soLWR9GhPLnOLMf95u16v248d0AQ4g3brVJCsYv7ktQ8tKJd0PEwkWld5dis/w3x8+Q0NcEV7dq0oSkWJAL4DnhNC1Cook/m5dVE/+Q68MW9zND9znox2U5B3usOraN8MFfIs5Lbr+jZfzO7An1LKsg7XWQdMBLoAF6WU8UKIn4EXhRB70bqya6HdQR0FthZUkVIBWqAF6sNo9815xaPdvxbFEa0FnC0SOA88UMLjCQUuobXms2/Zsge85TcLxgbLAWqKolSEacAYtMeVT+fdKIQIAIqzfFwQEJCnbDO0h1vZFgHP5clTD3gbuE9KmVoRMyFuu0CNNmjMDu2illX2Qri512EcBXyD9uw72160bgyLgWclJYR4DvN/cq2RdajevfApNHc8W6A52vDAFmhDO3Kzp+AhHbnlvk/OBP5De/Zdkrd1RqN1ZtUAWpagnKIoFUpKGSWEmA68J4SYBlzMkyUcaF+MqvJbhu2CuawD2kO4N9Di5hO58swGVkkpN5f02IvrdgzU5Sn71if386GP0QYETEFrUddEu1NbL4ToJqVMLO3OpJQ/AD+AekZdbM2Ak2hTsvI+A9YDJZ0hcgLt17EpN38ts9eOSUcbLGbKUyYObYSCI9owxNwPQLJb0vn9iqeSf0tbUZTy9hXaIK4PsQyiSCnThBBHilGH1Xeyudf2gPmf24UQEcB8IcS3Uso9QohH0Hpk2wkhXM35skevOAghXPLpJi+x2zFQ30CbTFPg84gSyF69IAJACNEU7fn3aCllzqg9czf4OWA08HU57Ddf13dc5fJPF9Db6WnxZVuLVcZkpuTAM7vxGeKH7wOlnx4VsjyI2GPRpN1IRWZKTO42eHSqhte9PlbvsY4/F0fI8iCSghLR2+nx6FQNv6E10Zks8yWHJRG85DIJF+IRBh1urd3wfyygfEaHG9FasHvRWtUWB0jJu75j0D49S/PJ9yfa8MPcS10noj0gMQL3Yh3EDYAT+T+LjsGyr6aYfl6xjzGvLcXFyZZT29/BzeXmsPeMjEycG07hzRf78fZL95a8crO1W0/w2+rDHDoewsWg69zdoQ4bl0ywyJOZmcW387azcdspTp+PJCklnboB1Rjz5N0Mf6hDzshwgKV/HuDHX3ZyIfAacQkpeHs606NLA956oR9+PiXpuijc7gtr+HnXx9gZHfnowT8sVgXLzMrghcV3M6DFMwxq9Wyp93EsZAcHLm8m+MZprsWHUs+rFZP6zc4374UrR1h5aCahUeewMzrQrnZf7mv9vNWLPkpr2YVzTNy1A2ejiX0PPoKrzc07v4ysLPwWz+flFq15pVXpXzW5KSSYlZcvcvTGdS7Hx9HRy5uV/Qbmm3fvlUg+OrSfE1E3cDKaeLB2HV5v3Q47w83vqna//0poYkK+5Yc3aMTnHbuU+lgLIqVMEEJ8BkxHe1SZoyxd3/nIDtr10OaKNEHr4T2ZT94/0R5+uRZj34W67QK1lDJDCLEN6COEsJFSluV9i9mfxp3mP7Nf3Jp7mhVSyvNCiBgg/xUAyllmciYRa8Pwf6Q87kXy1J2SQbWu1bH1tkNnFCScjyd8dSiJgQnUf+nm6SWFJHL2i1O4NHOlwaRGpF5LJeTXQNKi06g3rmFOvrToNM5MPYFtDTvqjW9IRlImIcsDSZ5xhsZvNkPoyuF5TRO0lnDehU5K0/XdEusBZKFoM+u7YznqOxktSAMMQPt1zE9NtGfeuVvjkUCCeVspxcan8L85W/no1cGlr6QAqzef4NjpMDq0qkVKanq+eZJT0pk2cxOPP9CecSPvwdHeho3bTzP+zeWcu3iVT9+4LydvVHQi3Ts3YNJzPXF1tuPcpatM/W4zW/49y6GNr+HkWD6BK+fY0hPYdOJn7m87vlzrBTga8i+h0ecI8GyW86rL/IRGn+fbLS/R2Ocuxvb8khsJ4fxx8Dtikq4xutsn5XpMcelpfHfiGG+3LU4PbsmsDwniRHQUbTyrk5qZWWC+U9FRPLplA919fPm5Z1+CE+L58OA+IpKS+MH83mqA+d17kZbn9ZhrgwOZdfI4fYu5AEspzUIb7PVxnvSydH3nlT2HI7t7fQHaDKTcWqG18KegNTHK7LYL1GZT0S7OF2jzly0IIWqjtXMKZJ6eNQZtUNolc3L2PLwOaF/d2XkboN0VFbwAcjlybubK1S0RePetkbP2dnkJGF7X4t/OTVzJTMsicm0Y6fHpGJ20VnDYyhBM7ibqjm+QM79aGASXf7xA4oAEHAK03p3I9WHIDEn9lxrn9ACY3Iyc+ewk0YeicG9XDqsX6dGmZP2XT7qndfZCuWJ9f5t98+/JzUCdgTbpIwFt2ZxE80/uerL/a1qgPcnahHYjkIZ2q+dJ0ffnhejdtSGzF/3H+FHdyn0FsFmfPpLTIu71yDf55rGzNXJy29u4uzrkpPXo0oDo2CRmL9rBO5Puxc5WuwjjR1nOQet6Vz1q+rozZNQctv53lvvvLd8H+41r3MW2s7/Ro8ljuNiV7wpZT3R6I+cd19PXP1dgvrVH5uJq78mz3T5Fr9M++3qdkUU7PyT4xlNWc7HLonsNX346e4rnmjTNd/3tspje6W505gFQ961fU2C+L44cooa9Az9264XR/Nkx6nS8uPNfJty4TgsPbTna5h7VrMp+dvgA1e3s6OFT8LK0ZWUeyPUh5seLudLTuNkSLhYhRAvgS+A3tCGkNmhDWl8C1ptnDSGlDERbLSF32ey/HpVS5v3WKpXbcrqRlPJftDunCUKIzUKIJ4QQXYUQ9wkhvkZrf+VeZqKxEKKjEOJuIcTDQogf0YYGnQZy95HtQBvdPV0I8YoQoocQYgTa0hWxaAtJVjifwdoaw+GrK2zNFAsGR+1LRui1D1hWRhaxx2Nwb+9hsQiKe/tqCIMg5nBUTlrM4ShcWrpZdNM7NXTB5GGyyFdmDbAeTFaRktEesmSi3RL+lecn91IHDmh9Mzq0eQE70bq8+1GmVcleG98HgM9nlv8YFV0xXqag1+ssgnS2ti1qkpqWwY2owodruLtqAcVgKP/lZvu3GAXAhmPFWSSwZLKDdGEyszI4Fb6HNgG9coI0QNuAXhh0Ro6F7CjXY5rYohUAM44dLdd6gZwgXZj0rCz+CQ/lvoDaOUEa4L6A2ph0OjaEBBdYNjQhgZ2RETxYuy76in+Jx3y0/q2yuoL2W/4msAZtYeBeaK3kks4XKbPbtUWNlHKGEGIf2hKiX3JzCdEDaC3l1dyc1JPdZEhF+/o9CowHfs49kltKmSmE6IX2n/Mc2sCE62hLXLwrpSz401iOjK5Gqvf25sqmCLz7+2BTLf9uQ5lZjPFogny7n2WmJCs9i4SL8VzZGE61rtUxmN9xnXo1BZmehZ2f5Z27zqTDprotyWHaeptZaZmkXk+lWjcvq/rtfO1JDrd+cUiRGph/8tKhrRRWEfLbpxPaiITickfrHi9H3p7OPP/U3Xy3YDsTn+1BTV/3fPNlZBTcXZlNCIFeXz5fkv/tvYirsx3e1a3vnDIzs8jIyOLc5au8/ukqGtf3onfXhvnUUjbOdh50a/gQ/5z+ld5Nn8DDMf/BAJlZRb83XSDQ6Up2M3EtPpT0zFR8XC17qIx6G6o5+RIRW5xHosXnZWfP0w0b8+Ppk4xt2gx/x/w7DDOy8ls0wJKAEgfMwPg4UjIzaeRqOd7AVm+glpMz52ILXjBgxaULSODRcnyJh5RyAVq3c970DPL/Bilp/VeAx0tZdhvlvHDwbRuoAaSUu9CCaEG2UcILJqW8Abxs/ilO/hLvozhqDPDl2j9XCF8VSu1nrJfrS72WwrFXDhVZj8nDhpbTLZfxSgpN5OTbN+/MPbp4EjDq5hdOhvkVmtmBOzeDgyFne0ZiJsj88+kdDKRE5F1AWympyWN68tPSXXzyzUbmTBtmtT0oNIrG3T4qsp6avm6c+ffdMh/P5n/P8Pu6I7w7qX++LeWAu97lRrTW0m7T3J81i8Zia1MxS872bfYU/537k3VHf+KpLm9bbb+REM47fzyYT0lL7g7efDz0zxLtOzFVWxPJ3mQdMB1MziSlWr8+s6wmNGvJz+fOMv3oYWZ0sV5YIDghng5/LC+yHj8HRw4MfbRE+85+jWZ+r810M9nk+5rNbCsuXaC5uweN3fK/0VSKdlsH6v/PDI5GvO/1IWxVCN4DfLGtbtmqNrqZaPJe3mHQ1oTB+h7CtrodTd5rQWZqJgkX4olYE4bMPE/d5/PciOZ3+yHz+UeR+ZTScnd14MVnevDptxt5eUwv6tS0fB5bo7ozO1ZOKrIeG5uy/6qfPh/JyIk/c89ddXl5TM9886z9eSzJyemcuXiFL2dvYfDw79my/EVcnQt/P3ZpONi40Kvp46w7+hN9mz1FNSfL558udp68NqDornGDvjQ3EtoHXOTz4ZcV9OF3s7Hh+abNmH70MBOatSDAybJHw9vOng0D7iug9E02+azhXZSc15rmu63g8z147SoX4mL5uH3HEu9TuUkF6irMq58PV7ZEELYymLpjLIOozqDDvqb180Mr+fxm6Uw6HGprg8GcG7lgcjFx+acLePWugWM9p5znzdkt59wykjJy3nmttzeAyD9fZlIGekf18SoPLzzdje8X7eCjr9Yz/6snLbaZTAZaNil6gE5ZV0u6HHydQSO+p5afO79+/0yBz52z32F9V5sAunWsR9MenzB3yU6mPF9ub/yz0LPxY2w78xurj/zAqK4fWGwz6I34uRfd3ZpfsC2KvUkLkolp1i3npLR4ariWdJRj8Yxp3Iyfzpzi8yOHmNW1u8U2k15frFdPluaT4GpuScekWbecY9LSaFjAe6+XXzyPUafj/tp1SrFXJZv6Jq3C9LZ6agzyI2RZIEn9LQfulKXrOy/72lrAT7magmM9J2yq2yIMIudZdLastCxSr6bg3l77MtDb6LGpZkNymPWz6OSwZJwa3b7vKq5KHB1smDK2F69/+hcTn7Vc9eVWdH2HRsQw4KnZODvasGr+GJydijfVKsDfA3dXey4GXS86cynZGu3p12w4fxz4hj5NLW9iKrLr29PJD4PORETMJYv09MxUrseH06ZWrxLVV1wORiMvNmvJ+wf2Mq5pc4ttFdn1HeDkhI1Oz9kYy2fRKZkZBMfHM7iW9SviUjMz+SvwMr18/ahmW/49KncSFairuOo9vYncGE7o75bj2MrS9Z1X/BmtVZDdva4z6HBp7kbUvuv43u+fMxo86sANZIbEtfXNZ02urdy5vvMqGUkZOc+q48/FkXYjFddW6plUeXnuibv55qftfPC/9RbpFd31fe1GAoOGa4t9rF44Fk8PxyJK3HTqXAQ3ohOpU9N6uk55uqfhULaeWsrqI3Ms0iuy69ugN9LEtyOHArcysOXonJHfh4L+JiMrrUJffzmyYWPmnDrBtCOWCwtUZNe3Sa+nh68vfwVeZkrLNhjMg9HWBAWSmpVJP3/r+dGbQoOJTkvlkXIcRHanUoG6itMZdfje50/gAsvla3WGm93XxZUUkkjIskDc21fDproNWemS+LNxXNkcgUsLVxzr3RwY43u/P6c+Ps6FWWfx6uWtLXiyPAi3dh45c6gBvAf4cGP3NS58fYYaA33JSM4kdHkgDnUccWurAnV5sbEx8MYLfZnwlmWLyWQy0LZFyReRCA6L4uAx7eYvKiYRnU6wcv0RQJt+VdPXneSUNO4b9T1BoVF8P+0xwiNjCI+MyamjUT3vnNZ1r0e+4b6+zWlQtzq2JiMnzobz9U/b8PV2ZdSjFft80qg3MaDF0yzZM9Ui3aA3UqtaydcoupEQQdCN0wAkpMWiQ8ehIG3p/1oejXNGmA9sOZov1z/L3H/folvDh7iREMHKg9/RulbPcp1DnZeNXs/kFq2YsmenRbpJr6dVtZJ3uYckxHPkhtbrEZ2WgkCwOkgbtd7Ko1rOCPMpLdswaP1qnvv3b0Y1bEKIecGTQbUCaJnP3OnfLl7A3caG3r7+VtuUklGB+jZQrWt1ItaHkXqlbC8LMzobMTgZCV8TSnpsunm6lQ3+j9bCM88UK/taDjSc0piQ5UGc+99p9PYGqnX2xPchy6BgcrOh4WtNCVkWyIXvziIMAtfW7tQcFlA+q5IpOYY/1IEZP/7DhcBrZa5r++4LjHnNch3VJyZoywTMmTaMpx7qwNXrCRw9qa3xM2rSYqs6Nvwynns6ajMS2reqxeLf9xMUFoWUEn8fNx4Z1IaJz/agmnvJbihLo1O9QWw5+QtX40PKXNe5yIP8vMtycau527XX0z/V+W061RsEgL97Ayb0nsGfB2cya+vL2JkcuKtuf4a0HlvmYyjKY/UaMOvkcS7Fl310+c7ICCbuspz3/ex27cZkRueuPGa+gW/m7sHS3v34+OB+nty6CSeTkYfr1ueN1u2s6ryekszfYSEMb9AYUyla8IolIaUanlsZ7vSXcuwbsVOIZ8UdfQ3kj1IkX5pxR18DuzoTxewRe+/oazB24V3iyojRd/Q18Fo4V93VF+K2XJlMURRFUe4UKlAriqIoShWmArWiKIqiVGEqUCuKoihKFaYCtaIoiqJUYSpQK4qiKEoVpgK1oiiKolRhKlAriqIoShWmArWiKIqiVGEqUCuKoihKFaYCtaIoiqJUYSpQK4qiKEoVpgK1oiiKolRhKlAriqIoShWmArWiKIqiVGEqUCuKoihKFWao7AO4U+0bsbOyD6HSdFjYpbIPQVEU5bahArVyy33e41MANk/aXMlHUvmSL35Z2YdQqezqTKTfC/Ur+zAqnTDoK/sQlCpMBepKsi14e2UfgqIoinIbUM+oFUVRFKUKU4FaURRFUaowFagVRVEUpQpTgVpRFEVRqjAVqBVFURSlClOBWlEURVGqMBWoFUVRFKUKU4FaURRFUaowFagVRVEUpQpTgVpRFEVRqjAVqBVFURSlClOBWlEURVGqMBWoFUVRFKUKU4FaURRFUaow9ZrL29TV8KvM/PA7Dv53ECklbbu0Zfx7E/Dy9Sq03IKv5rNwxsJ8txltjGw6d/Md0bFRMXz/6Rx2b91FcmIydRrXZdTkUXTo1qFcz6W0rkZc5ftp33Nw90GQ0LpTa8a9No7qPtULLbdo5iJ+nvVzvtuMJiPrDq/L+XdcTBw/z/6ZPdv2EHUtCvdq7nS4pwNPjXsKV3fX8jwdpZTCI8P45Ku3+G/vNkDSuX033nn5U3y8/YpRNpT/ff8pew78R3RMFN5ePgzoPYSxIydib+eQky8rK4s5C79m6cqFXLtxlTq16vHC6Cnc2/O+ijuxEghLSODdfbvZHhaKBO7x8eWjuzrj5+hYZNmg+Dg+3L+Xf8PDSM/KonU1T97r0JFW1Tyt8kYkJjL10H62hoYQm5qKl70D99epy9vtqsZ3wv9XKlDfhlKSU5g8bBJGk5HXp78OQjDvy5+Y/Ngk5m78CTt7uwLLDnxsoFWgTU5K4bURr9K5d5ectLTUNCYPm0xsVCxj3nged0931v26ljeffoMvF39Jq06tK+z8iiMlOYVXnn4Fk8nEq5++ihCC+d/MZ8rTU5jzx5xCr0H/of1pd3c7q/reHPMmnXp0ykmTUvLO+HcICwpjxIQR1KxTk6CLQSz4dgHnT53n61++RghRYeeoFC05JYknx92PyWjii/dnIoTgf7M/5Ynnh7B26b8WwTavpOREnhr/IBkZ6Ux6/g18vP04duowX/8wjcDgS3z72U85ef/3/af8tHgmk8e+RbPGLVmzaSUTXn+aH79aSo8ufW7FqRYoKSODoRvWYNLp+eaeHghg6qH9PLh+Nf/c/xAORmOBZaNSUrhv7V84Go180bkrdgYD3584xoPr1rDhvvtp4OqWkzc4Pp7Ba1dR09GJT+7qjKedHSEJCVyOi70FZ3lnU4H6NrRm6RoigiNY9M8ifAO0VkPdRnV5svsTrP5lNY88+0iBZT1rVMezhmWLc9Mfm8jMyKTf0H45advXbuPSmUt8teyrnKDcoXsHRt/7DHM+m8Psv76vgDMrvnUr1hEZGsm8NfPwreULQO0GtRk5YCRrl6/loZEPFVjW09sTT2/L1sLmvzaTmZFJ3yF9c9LCgsI4deQUE9+byMBHBgLQskNLhE7wzYffEBoYin9t/wo4O6W4lq38mZCwQDav2EuAfx0AGtVrSq+h7Vn6x0KeeWJcgWUPHt1HYPBFFny7gq4dewDQqV1XYmOjmfvLTJJTkrCzted61DV+WjyTMSNe4tmnJuTkCwq5xBfffVjpgXrx2dMExceza+gj1HZ2AaCJuzudVvzKz2dP83yzFgWWXXDmFNeSk/lzwOCcsnfX8KHDb8v44tBBfuzZOyfvq7t24G3vwB8DBmPUqaemt5K62rehXZt30bh1k5wgDVCjZg2atWvOzs07S1zfxhUbcPN0o0O39jlppw6fwsbWhpYdW+WkCSFo17UdZ46e4VrktTKdQ1nt/mc3jVo0ygnSADX8atC0dVN2/bOrxPVtXrUZNw832nW52dJOT08HwN7R3iKvo5PWnZiVlVWaQ1fK0dZ/19OqWbucIA3g71uLti3uYsv29YWWTU9PA8DRwbJ72NnJhaysLKSUAOzY8zdp6WkM6f+wRb77+z/M2QunCAkLKo9TKbWNwUG09ayeE2gBajk508HLmw3BhR/bwWtXqePsYlHWwWiko7c3m0OCyDB/xgPj4vgnLJTRTZqqIF0J1BW/DQWev0zthrWt0gPqBxB0PrBEdV2LuMqR3UfoPaQPesPNDhadXo/BaLDq2jWaTABcPnu55AdejoIuBFG7fj7XoG4AwReDS1TXtchrHN13lJ6DeqI36G/WVS+A5u2a88v3v3D2xFmSE5M5c+wMi2cvpn3X9tSqW6vM56GUzflLZ2lQt7FVev06Dblw+WyhZbt06EZAzbp8/u2HnL90hsSkBHbt/5cFy37g8QdH5nSbn794BpPJxuJmAKB+3UYARe6nop2NiaaRm5tVekNXN87FRBdaVi9EvoHXpNOTnJlJYHwcAPuuRAJgqzfw8Ia1+C+YS4PFC5iw/R+iUlLK4SyUwqhAfRuKj4nHycV6kIizqxPxsfElqmvTH5vJysqi30P9LNL96/iTGJ9I0HnLO/JTh07mHENlio+Nx9HZ+ho4uTgRH1eyY9uyegtZWVkW3d6g9SB8MvsT/Gr7MeHRCdzX4T5eGPYCNfxr8N6M98p0/Er5iI2LxsXJxSrdxcWN2PiYQsva2Njy649ryZJZ3PtoF1p0q8VT4x6gx919ef/Vz3PyxcTF4OzoYnXT6uLsZt5eeDCsaDGpqbiYbKzSXW1siElNLbRsPRcXLsfFWgTbLCk5fP0qANHm8pFJSQBM/G87dZ1dWNK3P2+3u4stocE8tnEdWebeB6ViqEB9m8pvEFNpflc2/b6R+k3rU7dxXYv03kN64erhytSXP+PSmUvERsWw+LvFHN13VNu/rvIHUeV7DSj5Rdj812bqNa5HnYZ1rLZ99d5XnD56mpfee4npC6fz0nsvce7EOT6c9KHq+q4i8v9dKPpzkJqawotvjuZG1DWmfzCbpXNW8/qLH7Buy0re+/wVi7pKu49bpbTHN7xhE7KAF/79h8C4OK4kJfHWnp0Ex2s3uzq0erPMv1edvWswtfPddPXxZXijxkztdDdHb1znn9CQ8jsZxYoaTHYbcnJxIi6fFm18bDxOLk7Fruf0kdMEXwxm/HsTrLY5ujjxwfcfMnXyZzzT72kAfGr5MHLiSOZNn4dHdY/Sn0A5cHRxzLf3ICE2ASfn4l+DM8fOEHIphLGvj7Xatnf7Xv5Z9w/TfppGm45tAGjRrgU1/Grw+rOvs2fbHjr37Fz6k1DKzNnZlZi4GKv0uLgYXJxcCy27fNVi9h78j79XHqCWn/YYpUObzjg5OvPWp5N4/MFRNG7QDFcXV2LjY6wCdpy5xe7qbN3tfCu5mGyISbXufo5NS8PVxrqlnVuAszOzuvXg9d07uWvFMgBaeFRjTNPmzDpxDC97bXyGu7mebr6WU966m/99POoGvfxrlvlclPypQH0bCqgfQOA562fEQRcCqVU/oNj1bFyxEb1BT+8hvfPd3qJDC37ZsYSwwDCyMjPxq+PPr3OWYWNrQ4Nm9Ut7+OUioG4AgRcCrdKDLgVRs27xvzA2rdqE3qCn58CeVtsum69xw2YNLdIbNdeeTQZfDFaBupLVr9OQ85fOWKVfuHyOerUb5lPiprMXT+Pi7JoTpLO1bKrdlF0IPEfjBs2oX6cRaWmpBIVetnhOff6S9my6qP1UtIZubpyNtu5+PxcTbTG9qiCDAurQv2YAF+NiMen0BDg78+quHfg6OOTMw27o6g5AQf1ougK3KOVBdX3fhjr36cypw6cIDw7PSYsMieDEgRN06V28wJGels4/q//mrh4dcfVwLTCfEAK/2n7UrFeL1OQU1ixdQ58H+2LnYF9gmVuhU49OnD52moiQiJy0yLBITh4+aTEXujDpaelsW7+NDl075Lt4iVs17Uvu7HHLwUKnj50GwMOrYnoVlmxKxKNvGLUfCCcm3rJ7PSNT4tE3jGmL4kpdf1xiFl8sjuPeideoNzSc2g+Ec+/Ea6zdmZxv/qWbEuk57iq17g+nwcMRPPjadXYft3z2efpyOpNnRNNz3FW8B4Th0Tes1MdXEr279ufIiQMEhwbmpIWGB3Pw6F563XNvoWU9PaoTGxdDYMgli/QjJw4C4O1ZA4B7OvXCZDTx14YVFvlWrf+NBnUb4+9buYMK+9WsxcFrVwmMu/mZCI6PZ9+VSPr5F+/Y9DodDVzdCHB2JjIpkVWXLjGiUZOc7W2rV6e6nR1/h4ValPvb3OXdytN6cZSKJIQYKYSQQogYIYRbnm0G87b3y7iPqUKIY+Z9JAkhzggh3hFCFPjlJ4RwFUJEmveffwuoFFSgLoIQ4n0hhHVzqxINHDYIbz9v3h79Fv9t+o+dm3fy1rNvU71GdQY/MTgnX2RoJL3q9GTh19Yrke3eupu4mDiLudN5/TjtB7av3caR3YdZu3QNYwaNwWAw8Oxrz1bIeZVE/4f64+3jzbsvvMuuv3ex6+9dvDfhPTy9PRn08KCcfFfCr9CvRb98VyLbs30P8bHx9BmS/zzYu/vcjUd1D6a9MY3Vy1ZzZO8RVi9bzedvfI6ntyd397q7ws4PIC5R8vXy8h+0F3Y1k3mrE+nc3MT3r7nz01vu1PU1MPyDKOb+lWCRd+HaRCZ8GUPrRiYWvOPOjEmupGdIhr5+nWMX0nLyHTmfxuZ9qfhW19Oqgancj7kgjz7wFL41ajJmypNs3r6OLdvXM2bKk9Tw8mXYgyNunnNECA06VufbH7/ISRs6aBiODo48M/Exfl+zlN0HdvDDz98y9Zt3ada4JW1b3gVANXdPRg17ntkLZvDTL7PYc/A/3pn6MrsP7GDKuLdv2bkW5MkGjfB3dGLE1o2sDwpkQ3AgI7ZsxMfBkeGNbo6ID0mIx2f+j0w/fDAnLT0ri3f27mJdUCA7wsOYe+oEfVetpKGbG2Nzzb826HTa4LGQYF7ZuYNtYaHMP32S13f/R2fvGnSt4XNLzzkXF+C1CqrbGZgPPA4MBn4B3gKWFlJmGpRioEwRVNd30d4DPgH+ruwDyWZnb8f/ln7FzA9n8tmkT5FS0qZLGya8O8GypSslWZlZyHwGPW38fSPOrs506lVw6zPqWjTfffgdMTdicPVwpWu/roycPApnV+eKOK0SsbO344t5XzB72mymvT4NKSWtO7Zm7OtjsXO4uSqZzL4G+Qys2bxqM04uTnTs1jHffTg4OvDNkm/4edbPLJ+3nBvXbuDh6UHH7h0ZPn64xX4qQo+2Nsz9M5HnH3DEy11fdIFiqumt5+BCL+xtb96n92xnS9i1TL75NYHR990cTb90cxLtm5iY/qJrTlrXVjbUfyiCP7cn06KeFpQf7W3PsL7adKZP5sex/9TNIF6R7O0c+GX2n3z8v7eY8t5YpJR0an8P70z+FAf7m+chpSQzM5MsefN3wc+nJivmbeSbHz/nf7M/JTo2ihpevjx6/wjGPz0ZXa5pSy+Pext7ewcWLJvD9RtXqV2rHt9+Nq/IVvut4GA08nv/Qby7dxcT/v0HKaGrjw8f3dXZYlUyKSFTSosR2gK4FBfHHxcvEpeWSg0HB4Y1aMhLLVtj0lt+5h6t3wCdgG+PHWXZ+bO42tgwtG593m7XoTJX6NsEvCCEmCGljCzPiqWUeVfL2WpuTb8uhKgmpbyee6MQogvwJPAC8BPlSFSlkYtVkRBCAp9IKcv11nlb8PY7+sJ3r9lNbDm15Y6+Br2b9BZRm/2srsGSTYm88GUMa6ZX45E3b/D4vfZMG+8KaF3fXv3DefVJJ14bXr43TO/PjWXWigSubri5iEzP8VfxcNHx26fVctIyMyUB90fwzBAH3h9tPTXqk/lx/G9pPDc2+Vpty8u9T6i4dCDqjv4c1GnnLq4+M+aOvgbVf5pTokgvhBiJ1tq9B9gAzJNSvmDeZgDSgQ+klO+X53EKIaYAXwCuUsrYXOlG4DDwK7AD+AfoI6XcUh77LVbXt7n7VwohGgkhNgohEoUQwUKIUebtT5n77xOEEP8IIermKmsUQnwshAgUQqSZ//zYfGLZeQLM9Y8RQnwohIgwPxdYLYTwy3MsRdZnzudgfsZwUQiRan5u8LsQwksI0da8vyH5nOsCIUSoEEJvDtIAb5nzWzz3EEJ0E0JsFULEm6/JRiFEs+JcU0Upipe7nmeGOLBoXSIhVzIKzJeRKYv8ycwsOg7sPp5KfX/LTrZnBjuw/VAqi9cnEpuQRfj1TF6dGYvBAE/eW7njFBQFiAC+A54TQhT4QN783Lqon3y7rczbHM3PnCej3RTkXeD8VcAEfG5VQTkoadf3b8CPwJfAOGCeEKI+0B14HTACXwNLgLvMZRYCjwCfAv8BnYC3gTpoff+5vQHsAp4GqgPT0Z4LdMuVp8j6hBAmYDPQCvgM2IP2LKMf4CalPCiE2A+MAVZlVyyEcDXX/bmUMlMI0QnYDSwA5pizhZrzDjSXXYvW3QHas5IdQogWUko1sVAps5cecWLh2kQ+XxzPty9bj+ANjsyg9fArRdbj76XnyM/eBW5fuDaRA6fT+f41y308ca/Wnf3KtzG89FUMAF7uOn6fWo16fgW/7EFRbqFpaN/l76HFDgtCiACgOEspBgEBeco2A47nSloEPJcnTz20GHSflDK1Ih4DlDRQfyGlXGQ+uANoD9jHALWllHHm9BrA1+a7GydgGJZdEJuEEJnAR0KIqVLKY7nqD5JS5gRvIYQn8IUQwkdKGW6+aMWp70m0AD5ESvlXrvpzD9ucBfwkhKglpcxefms42l3RXAAp5R7zRQ+TUu7Jcy2+BrZLKXNa5UKIf4BLwMvAxMIvpaIUzc1Zx/ihjny+OJ4XH3Gkto/lr6y3h54t3xU94tbGWPCXx39HU3ljVgyP9Lbj4V6WreR1u5J59bsYRgx04N5OtqSkSuasTOSxt2+w6vNqNK6tgrVSuaSUUUKI6cB7QohpwMU8WcKB9tYlreS3jNsFc1kHoDNaY9IAPJErz2xglZRys3Xx8lHSUd85q9xLKaOBq8Ce7CBtlj2p0R/t+QHA4jz1ZP+7W570tXn+nX0nkz0xtrj19QUi8wTpvJYBMUDuIcxjgLVSytB8S5iZexHqAr/k7joBktBa4PcUUO45IcQBIcSB1UtWF7YLRcnx/FBH3Jx0TF1kPQLcZBQ0r2ss8qdhzfzvyQ+dTeOJ927QtZUN30y2bE1LKZk8I4bBXe34bJwr3Vrb0q+jHcs+9sDRTvDpwtJPEVOUcvYVEAV8mHeDlDINOFKMn1P5lE2RUh6QUm6XUn4GvAg8LoToCCCEeAToAnxonprlCmSPYnQQQlgP4iiFkrao886qTysgDcAWcDf/PSJPnuzRee550qPy/Dv7Dsc2T/6i6vMACp3IKaVMEULMB54xP3fuBDQBphRWziz7PZE/kf/ovnzfCiGl/AH4AdRgMqX4HO10THzMiXd+iGXCw5brm5el6/vU5XQefvM6zesYWfCuB0aDZav7anQW12KyaJ1nupXJKGhax8i54IKfmyvKrSSlTBBCfIb2uPSL3NvK0vWdjwPmP+uhPVJtAtgBJ/PJ+ycQC7gWY9+FqujpWdmB1xvL7ojsb4wbFVTfdaA4g7pmow0OGAI8AAQCG4tRLns/bwD5jeor1dyUDb+tZ9qUaTg4O7D0v2UWy4FmZmTQu25vRkwcwchJo0pTPYnxiayYt4L92/YRcimEzKxMAuoF8Njzj3F3v65W+Y/vP8acT+dw/uR5HJwd6HVfb0a/OhobW8tlCXdv3cWSWUsIOh+ElJJa9c119i35POONKzfy5dtf4uDkwM8bf85zDTK5t+W9PDXuKYaPH17yC5B9vP/s5p91/3Du5DnCg8Np3q450xdMzzfvpj838ecvfxIWFIbRZNTe+z32SZq3bZ6T58k+T3IlPP9gOfCRgUx8b2KpjzXb04MdmPV7Ap8usGzFlrbr+2JYBkNfv04tbwNLPvLAzsa6a9zVUYeNUWt155aWLjlxMZ1aNW797M4Vq5fw2ocv4OTozPZVh3Fxds3ZlpGRQcNOXrz47Ku89FzpptbGJ8SxYOkctu/eyuXgC2RmZlKvdkOeG/4CfbsPtMg7b8ls/tqwgpDwIJKSk/Cu7kOfe/ozdtQk3FzztkHKz7LzZ3lpx3acTSb2PzzMYpnQjKwsfBfMZUqrNrzSpl0htRQuMyuLr48dYcm5s1xJSsTX0ZFRjZsypmlzi3x7IyP55dwZjly/xoXYGHwcHDjwSN6hR7fMLLTv84/zpJel6zuv7F7b7PizANiWJ08rtBb+FGBvMeosUkX/pm03//kY2lzkbNn9+/9WUH2bgMeEEIOllAX2MUspLwohNgGvoF3cD6WUeScdp6HdMeV2Fi2oN5VSTi3hORQpMS6RpbOX8NzrY8q13qvhV1j185/0f7g/T704HKET/P3XVt557h1e/PAlHhjxQE7ei6cvMuWJKbTv1p5P531GZEgE33/6PdevXOe9mTffHLVv217eeuYtut7blScnPAXA2qVrePe5d/jkp08LnaddmMT4RH796VdGTx5dtpPOx66/d3HxzEUat2xMWmrB91Rrl69lxgczGPToIJ6Z9AypKamsWLiC10a/xjdLvqFe43oAvP/N+6SlWdazc/NOls9fXuxV0opiYxK88qQTk2bEWKSbjMKqxVuUa9GZDH39OmkZkteHO3M2T8u4RV0jNiaBjUnw1AAH5q5KxM0phn532ZKcJpm7KpHgK5l8MvZmr15SShZb9mnfc+dDtPd4//WvttKZv7e+xMdYlPiEOOYs/JpXXyjft5iFR4axeMU8Hho8jAnPTEGn07F64++MfWU4778yjaceufl5jImNpl+PQTSo2xgHB0dOnT3Ot3O/YM/B//hz0VaLedgVIS4tjW+PHeGd9ncVnbmEXtv9H7+eP8ekVm1o61md/yLC+WDfHhLT05ncqk1Ovh0RYey5EkHLap4IAYnmd7hXBvNArg8x91rmSk/jZku4WIQQLdAGTf+GNu7IBu2R5kvAeinlbnPdgWixIHfZ7L8elVL+V9LzyE+FBmop5UkhxFLgffMz3F1oXczvAEvzDCQrz/oWoz17XmruDtmLNrCtHzBDSpl7ceBZaKO304F5+ez2FDBQCLEBrZs/3DywbTywyjzCfDlaK94LbcBBsJTyfyU5t9za3dOelQtW8tDTD+Feji+/8PavwZIdS7G1s81J69CtA1fDr7Hs+6UWgXrBV/PxrOHJ+7M+wGDUPiYGk5Gpkz9j2PPDaNC8AQAbf99ENe9qvDvzPfTmBRLa3dOOxzo/ypY/N5c6ULft3JZVS1bx4FMP4u5Zvq2TSR9MyvkSnfjkxALzbVq1iSatmvDSuy/lpLW6qxVDOw9l+4btOYE6+8/c5n89H/dq7rTrUvpWTV6P97Pnu9/iuRiWWaZ6zgZnEHJFq2PYO9adWocXeVHTW/s//+R5F+r5GVi8Poklm5KwNQka1TKw4lMPerS7+Tm6HpPFqI8tn1xl//uxPvbMfKV8A3XXjj1YtHwuo4Y9j2c1r3Kr19+3JttWHcTO9uaguns69STiShhzFn1jEagnj33TomzHtndja2vHO5+9zMmzx2jeuFW5HVd+uvv68dPpk4xp2pzq9uU3VS40IYFfzp1lcsvWOUG5m68fCelpfH30MKMaN8HNRvu/n9yqDVNatwVg3Pa/c95bXYnmozW8yvoygito3+lvovXYJqEF7CmYBxvfSrdiCdERaMPnnwbWAc+Y/z2isEJlqU9KmY42oGw22lD6dWgBuRrWz8HXov0nrCpgZZsJQCKwGthvrg8p5Tq0OywHtP+4jWhz6LzRBpSV2lMvaC3Txd/lHTNXNnb2dhZBOlvDFg25fuXmIjsZ6Rns27aP7gN75ARpgB4Du2M0Gdm5eWeuvOnY2tvmBGkAvV6PnYMdWVmlfwz/xPNaJ8mSH5aUuo6CFLelk56ejn2eNc1tbG0wGA2FvuLyavhVju47Ss9BPS2uS3E93teBG5t8qeNreR9t0Av2zffmxibfMi12cndLG25s8i3wJztIZ+/z2SGObP++OsGrfDj3Ww3++tLTIkgD1PQ2FFjfzFfK/+1S459+GYCZ80t9P5wvezsHiyCdrXmTVly9XnQQcnPRbiqNhoofDT+pZWsAvjp6uFzrPXztKllS0tPP8uU2PXz9ScnMZGuuV1rqKmlFMinlAimlkFJeyJOeIaVsYN72fhnqvyKlfFxKWVtKaSel9JBStpdSzpRSFtpFLqXcZt5/uSx2AsUM1FLK9807zsiTHiClfDJPmsVBSinTpZRvSylrSSmN5j/fNgfT7DKB5jJzC6hrW660Iusz50uQUr5i3m6SUtaQUj4kpbya5/R6AvbA9wWc+04pZVsppW3e/3wp5W4p5SAppZt5e4CU8rHsbpHS8qjuzv0jHmDN0jVEhhb85ZCZkVH0T2bRra9je49avHEqPCiMtNQ0aje0fKuQydYGn5o+BJ0PzEkb9PhgwgLDWPztz8RGxRBzI4aFXy8kMjTSooVeUu7V3Llv2H2s+21dgc9/QXtuXeRPMa5Bfu577D4O7TnE+t/XkxCXwPUr1/nuk+/QG/T0H9q/wHKbV29GSknfIX1LtV+laJ7VvHjqkWf4deUiwiIKXrIgIyOjyJ/ifD72H95NnVr5N9IyMjJITkni8PH9fD1nKp3b30Oj+k1LfW7F5WVvzzONm7L47GlCEgpeEz4jK6vIn8xcN556c/A16S3Dg435pvNMPm/qUirWHbvWt3n1tDpoD/0PSSm3VvIhWRg2dhirl/zFwhkLee1L64ExkSERDLt7WJH1ePl5sWznrwVuX71kNacOn+LNGW/lpGW/69rJxdEqv5Or5buw29/Tnk/mfsonL33MT19qA+DtHe358PuPaNGhhVX5knj0mUdZ+9tafp71M1M+th6MHxkWyVN9nyqyHi8fLxZvLnnvxL0Paus4f/PRN/zvXa3l5l7NnWk/TsMvwK/AcltXb6Ve43rUblC7wDxK2Y0Z/hJL/1jINz9+zrR3v7XaHhoeTLchrYusx7eGP//+daTA7Uv/WMjh4wf434fW9/KJSQm06HZzQayuHXvy3dT8nqBVjAktWrLo7Gm+PHyQr7t2t9oeHB9P+98Ke4eExt/RMWcQWF0XVwAOXr1Kc4+bS8ceuKrdMOf37mulYt2xgRrtufaTwFG0hU6qFGdXZx4Z/SgLv17AsLHD8K1l+XYaD69qfL86304AC0ZTwc8Gj+w+zLfvf0OfB/vS54Gbb5CS2eu/59OtlXdp+FOHTvLpxE+4q0dH+j7YB4Rg44oNfDDufT6d9xmtOxf9RVkQZ1dnHhrxED/P/plHn3kUH/8818DTg+9+/a7IekyFXIPC7Pp7F99+/C0DHxlIpx6dSEtJY+Xilbw19i2+mP8FtetbB+JTR08RcjmEcW/kXc9fKW+uLm4888R4vp37OWOGv0jNPO+Vru7pzcqFRfc+2phsCty25+B/fDj9De4f8AhD+j9std3O1p6VC7eQlpbKybPHmDXvK56b/ASLZv6BwVDxX69uNraMbdaCLw8f5IUWrQhwsnwk4m1vz8b7iu7ZMuluPqJp6OZGNx9fPj98gFpOTrTxrM7OiHB+OHkCqLzu7jvZHRuopZQjgZGVfBiFenj0Q6xc+Afz/zeft79+y2Kb0WSkXhPrQUxWCvilOnP0DG+Nfos2ndrw6uevWmzLfjtWfIx1d1pCbDwBDQJy/v3Ne98Q0CCAt7+5+c6SDt068MLQCcz6aCY/ri/buIuhw4eyaskqFn63kDemvWGxzWgyUq9Rca5ByfcrpeSr97+ia9+ujH9jfE56285teXrw0yz8diHvf/O+Vbktq7ZgMBjoMaBHyXeqlNjTjz/PouU/8tWcqXz10RyLbSajiSYNmhdQ8qaClnw8dvIQY15+gk7tujL1nW/yzaPT6WjRRLsZbdeqIw3rNeGJ54ew/u+/GNz3wRKeTemMadqcuadOMO3QAWZ3s3wjr0mvp5l70QNS816Br7t2Z9z2v3lsk7bGlZPRyLvt7+KVXf/hZafWeL/V7thAfTuwc7Dn8XFPMPvjWTw25lGLbWXp+r505hKvPvUK9ZrU44M5H1oMGAPwqeWD0cZI4DnLNQLSUlIJDwmn28DuN+s6e4khT95vtd9GLRuxavEqq/SSsnOw47HRjzHnizk8PMqyRVORXd/R16OJuRFDw2YNLdKNJiN1G9Yl+JL1mjZpaWls27CNDvd0wNXdtUT7U0rHwd6RsSMn8umMd3j2qQkW28rS9X32wilGvvgwjRs0Z9a0BcUeHJY90jso5FKx8pcHB6ORF1u04v19exjfvKXFttJ0fQPUcHBg5YDBRCYlEp2aSoCTM6eitHG4HbwKXjNeqRgqUFdxQ54awm9zl+c8/81W2q7v0MuhTHnyZWrUrMGn8z6zWrxEK2OkQ7cObFu7jZGTRqI3d+FtX7ed9NR0OvfpnJPX3dOds8fOWNVx+sgZPL2KXoijOAYPG8zvi35nwTcLLNIrsuvb0cURo8nI2eNnLdLT09K5eOYi3n7WX1Z7/tlDfGw8fYb0sdqmVJwnHnqan36Zxf9mf2qRXtqu78vBFxk+fij+vrX48X9LsLUt/nvH9x3aBWDVDV/RRjVuypyTx5l6cL9Femm6vi3LO+Bt74CUkh9OHqe+iytdavjkm1epOCpQV3EmGxPDXxrB9Ne/tEg3mow0bNGoRHVFX49mypMvk5GWwchJoyxGbwPUa1ofk40W1EZOHMn4B8bzwbgPGDL8fiJDI5nz6fd0G9CNhs1vtjIfHPEgsz+ZzUcvfJTznHvTHxs5efAEE95/oRRnbM1kMvHk80/y1ftfWaQbTUarFm9xXAm/khOA42Lj0Akd/27U1spp2LwhXj5emEwmBjw0gFVLVuHk4sRd3e4iLTWNVUtWERkWydjXx1rVu/mvzTi7OnPXPeW/AIVSMBuTDS+MfoW3Pp1kkW4ymnK6pYvretQ1RkwYSnpGGhOfe50Lly1v1Jo0bIGNyYb4hDhGvfgw9937EAH+dRFCcPTkQeYtmU3j+s3o12NQmc+rJGz0em1O884dFukmvZ5W1Up+w7zg9Cls9HpqOjlxNTmJ5efPs/dKJCv6D7R4Rn09OZndkdqKzmEJCSRlZLD6stab0MDVjYZu5T81706kAvVtoP/D9/LrnGWEXi70XSFFCjofyJVQbeTmm0+/YbV96X9L8favAWhB+/Ofv+CHz+bwxtOv4+jkSN+hfRn96rMWZR557lHcPN35Y8EffPKStnKfXx1/3v7mHXoN6VWm482t3wP9WD5/OWFBhS7hXixH9h7hy7ctb3w+mvwRAFM+nkK/B/oBMPa1sfgF+LH+9/VsXLkRk42JWvVq8dkPn1ktZBITFcP+//Yz6JFBGE3qjVK32kODH+fHxd8RGJz3xUklc+Hy2ZzpXqMnWT9a2r7qMH4+NTGZbKgb0ICFv/7IlasR6PV6/Hxq8swT4xjx6HOFDlCrKMPqN2TW8WNcisv7quSSy5RZfHvsOKGJCdjpDXSuUYN1g4fQyM1y8aGzMdGM/sey1yL731NateEVt/Jb8OdOJmTeYbzKLXGnv5Sje81uYsupLXf0NejdpLeI2ux3R18D9z6h4tKBqDv6GtRp5y6uPjPmjr4G1X+ao4aSF+JWrEymKIqiKEopqUCtKIqiKFWYCtSKoiiKUoWpQK0oiqIoVZgK1IqiKIpShalArSiKoihVmArUiqIoilKFqUCtKIqiKFWYCtSKoiiKUoWpQK0oiqIoVZgK1IqiKIpShalArSiKoihVmArUiqIoilKFqUCtKIqiKFWYCtSKoiiKUoWpQK0oiqIoVZihsg/gTtW9ZrfKPoRK83fQNgCCo4Ir90CqAL1zq8o+hEq38dvzlX0IlWrswruw637nfh8oRVMtakVRFEWpwlSLupJktyoVRVEUpTCqRa0oiqIoVZgK1IqiKIpShalArSiKoihVmArUiqIoilKFqUCtKIqiKFWYCtSKoiiKUoWpQK0oiqIoVZgK1IqiKIpShalArSiKoihVmArUiqIoilKFqUCtKIqiKFWYCtSKoiiKUoWpQK0oiqIoVZgK1IqiKIpShanXXN6mroZfZdZHMzn030GklLTp0pZx747Hy9er0HILv1rAoq8X5rvNaDKy4dymnH/HRsXyw2ffs3vrbpITk6nTqA4jJ4+ifbcO5XoupRV1JYpl3y7j1IFTSClp0q4Jj734GB5eHkWWvXHlBn/O/ZMzh86QEJuAm6cb7Xq2Y+CTA7GxswEgMjiSv1f+zdlDZ7kWcQ1bO1sCGgfwwOgH8K/nX9GnVyyhV5J5c8Yptu27jpTQrb0Hn01qir+3XZFlA8OTePfb02zbf52MDEmbJi589EJjWjd2LbDMik1hjH73CD6etpxa3ascz0Qpi9AbN3hjyc/8c+IEUkq6N23G1Ceewr9atSLLhly/zse/r2DH6VPcSIjHx82dB+66i5cH34eDjW1OvmaTXyL4+nWr8ktemsSgtu3K9XwUSypQ34ZSklOY8vhkjCYjr375OkLA/OnzeHnYZH7cMBc7+4K/pAc8NtAq0KYkJ/P6iNfo3KdzTlpaahovPz6ZuKhYnnt9DG6e7qxfvo63nnmTz3/+kladWlXU6RVLakoqX0z8AoPRwNNvPo0QgpVzV/LFi1/wwYIPcoJtvmWTU5k+cTqZmZncP/p+PLw8uHz6MqvmreJq6FWe/+B5AE7uP8nZQ2fp3L8ztRrUIikhifVL1vPxmI95Y9YbBDQMuEVnm7+klEzuG78HG5OOWe+2RAj4ZM45Bo/fw87FXXGwK/jXOyo2jf5jduFob2DGa82xs9Uzc+klBo/fw9afutCwtpNVmZj4dN6ccRovj4KvrXLrJaWmMmjqJ9gYjHz/3PMI4KPff2Pg1E/Y/clnFsE2r8TUFO6b9hkZmZm8NfQh/D08OHT5Ep/+8TuXIiNZMOFFi/y9mrfgjQcetEirX8OnIk5LyUUF6tvQ2qVriAiOYMHfi/AN8AWgTuO6DO/+JGuWrObh0Y8UWNazhieeNTwt0jb/sYnMjEz6Du2Xk7Z93XYun7nE9KVf5QTlDt078Gz/0fwwdQ6zVs0u/xMrgX9X/8u18Gt88ssnePlpvQh+df148/E32bZqG/0e61dg2fPHz3Ml9AqTpk+iWYdmADRq04jE+EQ2LttIakoqNrY2dOjVgZ4P9kQIkVO2UZtGvPbwa2z5bQuj3x5dsSdZhIWrggkMT+LAr92p4+8AQNN6zrR9eBvzVwYz4fE6BZb96fcgrkalsXZWp5yy97TzoNWD//DZ3PMs+KSNVZn3vjtNs/pOeHnYsn2/dctKqRwLtv1D4NWrHPz8S+p6eQPQtGZNWr/yMvP//psJ/QcUWHbPuXNcvBLJyldeo1fzFgDc06Qp0QmJfLN+LUmpqdjb3Lwx83ByokO9+hV7QooV9Yz6NrR7yy4at26cE6QBavjXoFnbZuzatLPE9W36fSNu1dxof8/Nlvbpw6ewsbWhZceWOWlCCNp1bcfZo2e4FnmtbCdRRkf+O0LdJnVzgjSAp48n9ZrV48h/Rwotm5meCYCdg2XPg72jPTJLgtT+7eTqZBGks/N4+XsRfS267CdRRut3XKF9U7ecQAsQ4GPPXS3cWLfjSqFlD5yMoa6fvUVZBzsDnVq5s/G/K2RkZFnk33M0iuUbwvhySrPyPQmlzNYfPkT7evVygjRAgGd1OtZvwNpDBwstm5aRAYCTneXvgou9PVlSIrN/GZRKpQL1bSjwXCABDWpbpQc0CCDoQlCJ6roWcY0ju4/Q6/7e6A36nHSdTofBaLAKVEaTUTuGs5dLceTlJzwwHN86vlbpPrV9CA8ML7Rsk3ZN8PLzYsXsFYRfDiclKYXTB0+z5bctdBvSrdBu84S4BMIuh+ETUPndfWcuJdC4rnUXdePajpy9nFBoWZ1OYDRa//rbGHUkp2ZxOSwpJy09I4uJU4/zwpN1LQK7UjWcDguliZ/1mIlGvn6cCQ8rtGyPps2o6+XNe78u40xYKAkpKWw/dZLZmzbydI9eVt3mGw4fwmv0KKo9PYKeH7zLmoMHyvVclPypru/bUHxsPE4u1l/QTq7OxMfGl6iuzX9sIisry6LbG8C/rj+J8YkEXQiiVr1aOemnDp3SjiGmZPspb4lxidg72VulOzg7kJSQlE+Jm4w2Rl6f9Tqz3p7FO8PfyUnvOqgrT0x6otCyS2YsAQm9H+5dugMvR9Fxabg6Ga3S3ZxNxMSnF1q2fk0Htu27RlRsGu4uJgCysiQHT8WY675Zfsaii6SmZzF5eN3yO3il3EQnJOBqb30D5eboQExiYqFlbU0mNr3zLk9+8zUd3ngtJ31Et+5MHz7CIu+9rdrQpk4dAjw9uRobyw9bNvP411/xw5ixPNbl7vI5GSVfKlDfpvK2dAGkLHk31eY/NlGvaX3qNrb8Eu51X28WzVjItJenMmXaK3hU92DN0tUc23dU27/Oev+3miCfYyjGJUhPTef7974nLjqO0W+Pxt3LncunL7N6wWr0ej1PTXkq33Jrf17L3s17Gfn6SIsu98qUz8egWJ+Dpx+sxZzfAnn+gyNMm9wUO1s90xdcICgiGYDs/95LIYlMX3iBxVPbYmujL6RGpTLl9zkozu9CSloaI2d+y7W4OH4YMxZ/Dw8OXrrEtD//wKDX89XIp3PyfpkncA9u156eH7zHB7/9qgJ1BVNd37chRxcn4mLirNITCmhpF+TMkdMEXwym79C++ezDkfdmf0BcVCzP3vsMD7a5nw3L1zNi4kgAPKoXPQWqIjk4OZAYb91aSIxPxN7RuqWd2461Ozh7+CwTv5hIp36daNiqIfcOu5dHxj/CtlXbCLkQYlVm25/b+OOHP3jg2QfoOrBruZ1HWbg6GS1avtli4tPzbWnnFuBrzw/vt+LImThaP7SNRoO2su94NOMe0x6peFXTujxf+99J7mnrQbtmbsTEpxMTn056RhYSSUx8OskpmeV/YkqJuDo4EJ1Pyzk6MRFXh8IfVSz6dxs7Tp9mxcuv8FiXu+nSqDEvDhjIJ8Oe4Ke/t3I8uOBHaXqdjgc6dCAsKorImMofs/H/mWpR34YC6gcQdD7QKj3ovGU3dVE2/r4RvUFPryH5d+O26NCCn//9hbDAMLIys/Cr48evc37FxtaG+s0alPbwy4VPbR/CLls/f4sIjCjy+XHopVDsneyp7lvdIr1OE22UdHhguMU86V0bdrH4f4vp+1hfBg0fVA5HXz4a1XHizCXrRxBnLifQsLZjkeWH9KzBoG7eXAhOwGTUUdvPgcnTjuPnZZszD/vM5QRCIpMJ6LPJqnxAn008/2gAUyc1LfvJFNPuC2v4edfH2Bkd+ejBP7C3cc7ZlpmVwQuL72ZAi2cY1OrZUu9j0c4P2XNxnVV6j8aP8nD7SRZpey6u5Z/Ty7kWH4JBZ8LPvT4DWjxDPa9Wpd5/STX29eN0aKhV+tnwMBr5WI/jyO1USAiuDg7U8bLsIWpbt665jnCa1yz4OyW78ybf3q0KJIQYCcwHYoHaUsroXNsMQDrwgZTy/TLsYzAwDGgH1AP+lVJ2LyDv3cDnQGvzMS0B3pJSJpd2/7mpFvVtqHPvzpw6fIrw4JuDpiJDIjlx8ASd+nQpVh3paen8s/of7up+F64ergXmE0LgV9uPmvVqkpqcyrpla+j9QB+rEdO3Wqsurbh06hLXwm+OPr8ecZ0Lxy/Q6u5WhZZ1cXchKT6JK6GWI6MvnboEgJunW07aoX8PMX/qfLoO6sqj4x8tvxMoB/27erH/ZAyBuQZ+BYUnsfdYNP3vLl7XvF4vaFjbidp+DkRcS+GPrRE8/eDNL+Z5H7dm9cyOFj+9Onri4Wpi9cyOPPdQQHmfVrEkpyew6cTPFVa/o60br/Sfa/HTs/FjFnn+O/cni3Z+REC1Jjzb7TOe6PQmGVkZfLP5RUJunK2wY8urf+s27L94gctXr+akBV27xp7z5xjQxnqaXW7VXVyJSUzk4pVIi/QDFy8C4OPmll8xADIyM/lz3178PTzwcnUt/QmUjQvwWpG5Sud+oBWwB7C+EzITQrQANgNXgUHA28AoYEF5HYhqUWNxd5YtCbgGHAaWAiuklFl5ylQDXgYGA7UBAVwE1gJfSykjKup4BwwbyJ+LVvLus28z6mVtsY/50+dRvUZ1Bj8+OCffldBInuz2BE+9OJzhL1k+X9rz927iY+Lo+1DB843nTvuR+s0b4OLmQlhQGMt/+BWDwcDo10rfWikv9wy+h7//+Jtv3/iWB0Y/kLPgiVt1N7rd1y0n3/XI67zx2BsMHjGY+0bdB0CX/l3Y9Osmvn7lawYOH4iHlweBZwJZvXA1tRrWol7zegCcPXKWOR/Mwa+OH136d+HiyYs59RqMBmo1KH7vRUUYMcSfH1cE8virB3hrTAMEgk9+OIuvly2jHqiZky84IonWD23j1afr89oz2hzY9Iws3v3uDF1au+PkYODMpXi+WnSRxrUdLeZft29m/UW9ZG0oNkYdXdtW3uOPxjXuYtvZ3+jR5DFc7Mr/OAw6A7U9C5+KtvviWmp7NmdYx5txomGNtrzyaz8OBm3F36NhuR9Xfkb26MEPWzYzbMZ03hn6MEIIPv59BX7u7ozqcXP1uODr12g5ZTKv3f8Ar9+vLVryRNd7mLlhHQ99+QVT7huCv4cHhy9f5vNVK2kdUJuO9bWes99272LtoYP0bdkKP3d3rsbF8eOWzRwOvMy8cRNuyXkWYBPwghBihpQyssjcJfNs9ve+EOK/QvJ9gBbIH5ZSppvzpwELhRDTpJSHynogKlBbehjtgtsANYGBaIH6OSHE4OxuDCFEE7QPiAC+AbLnKLQGxgANgQcq6iDt7O34csn/mP3RTKZO/gwpJa07t2H8uxMsWrpSQlZmljY3OI9NKzbi5OpMx56dCtxP9PUoZn34HTE3YnD1cOXufl0ZMWkkzq7OBZa5VWzsbJjy9RSWfbuMuR/PRUpJ47aNGfbiMGztc00pyb4GuQZYVatRjbe+f4tV81excu5KEmIScK/uzj333cOg4YPQ6bSOpjOHzpCRlkHw+WA+G/eZxf49vD34/LfPb8m5FsTBzsBf33XkzRmneP79o0gk97SrxmcTm+Bof/NXW0rIzJRk5focCLSBYis2hhGbkIFPdVueHOTP5JH1MOUzbauq6d9iFN9tnciGY/N59K4plXIMmVnpONq4WqSZ9LbodQby3NdXKAcbW9a8/iZvLFnMc3NmI4H/a++u46M4+geOf+Y07k4gwd3dihQvFChSSqlAC1X6UPenXkopLbQPdaQCRYtLobi7uwYJCXHPJXe3vz8udsnFLyH8mPfrlRdkd2Z29+5y353ZkW6NGvPFo4/h4pD7t6AoYDKbrT4HIb6+bPrgIyYv+5tPly4mJimJal7ePNmjJ689OCTnbyHE15foxETeXzCfuJQUnHQ6WtWsxd+vvUmvZs0q7Vpt+BRYD7wLTLRnwfkrZ7YIIbRAP+Dr7CCdZRHwCzAYKHegFmXpKfz/TZ4adV1FUS7m2zcMWAzMVBRlYtbzjxOAFuikKMrtfOk1QH9FUVYVdczNYVvv6Re+Z0h3MXvn7Hv6NRjXZZxI2Dfwnn4N3NuvFj88sa/Er0H2M+oPhyxm14UVbDmzkA+GLMLbJdDmM2qT2VhsmQKBSpXbo/33XR9z4MoGHLTOpGUk4+MSRKe6g+jV6FGrdLsvrGL+3i94pMObtAzpQYYxjXXH53DwykbeeGA2/m41bB2ugOd+ay+S/ph/T38OXB8bXaqH3Hm/s4HxwCSgnqIoYbaeUWdtK46iKIrN3pFZNWpj/mfUQogGwBlgtKIof+Xbdxo4pSjKiJJfmW2yRl0MRVGWCiFWAOOFEG9ieQbRAEszx20b6Y1AkUFakqTy69PkMXaeX87aY7N4rPN7BfbHJIfz/t8P2chpzcs5gE+HLc/5PdizHtW9GhDkUYtMUwbHrm1lxeEfuJ14nTGd3s1J16mu5THTgn1TmbfncwDcHL2Z2PvbEgdpyS6mYGnJ/AAYl3+nECIUKMkMTWFAaCmP7ZX1r61u77F59peLDNQlsxZLx4I2QC/AlLVNkqQ7xFnvzv2NR7P22Cz6NHkMH1frHs7ujr68OWBOIblzadTWQ9l6NrLuNNYkuBN6rRObzyygT5PH8MsKwseubWfh/q/oUm8Izap3JdNkYMuZhXy/6RUm9ZlJkKecIKYyKIoSK4SYBnwghJiCpa9QXuFA2xIUZSjD4bNbAmy1iNitK3zVfxhVNVzL+jcQqA5EKYpS9PRXNgghJgghDgohDq6eLyvdklRePRuOwknvxqqjPxfYp1FrCfaqW+xPoHvB6Xjza1OzNwBhMWcBy6Qy8/dOpmVID0a2e4UGgW1pGtyF53t+jV7rZPN8pAr1DZYa7Mf5dyiKkgEcLcHP6TIcNzbrX1s1Z888+8tF1qhLpqi7phJTFOVn4GeQz6glyR4ctE70bfI4fx/8lt6Nx1jtK2vTty3ZfXmyxwsnpseSlB5HiHdDq3QatZZgz7pEJFwt+UVI5aYoSrIQYjIwDZiad18FN31fwlITt5pMQAjhANTC0r+p3GSgLpns2S9uAdeB3kIIp7LUqktr/eL1TH19Cs6uzszb+ZfVzGMmo4k+dXrx+H+e4ImXnyxT+RHXI3i06yOF7n/32/fp+WDP3GOaTCyfu4y1C9dw8+pNHJwcqdu4Dm99806FzVa2c+1O5kyeg6OLI1MWWV6LnPMxmpjQYwIPjn2QweMGl+s4GYYM1s1bx96Ne4mNjMXJxYnQBqG88NkLaLQazCYzGxZt4MTeE4RfCceQbsA/2J+eD/Wk84DOOT1kK8q81dd54dPjuLloOP53TzzccptsjUYzPl3W8eZTdXl7fNknozGZFH5cdIU/V10nLDwNV2cNbZp48PbT9WhSN7e3/8y/LrNkQzhXb6aSmm4iyM+BAV39efXJOjlzh1eW++oPY9Ppv1h19Cer7WVt+rblwJUNCAQhPpbA7KRzRaPScTXauhJmNGVyI+48Pi5FTzRSHvN2bOO5X37G3cmJ49Om45ln9jGjyYTX2Md5a8hDvPPQsDIf44OFC9hw/Cg3YmLIMBoJ9vZmZMfOTOw/wGrZy/+tX8fiPbu5evs2qRkGgjy9eKBVK14dNBhv15LPkmgn3wOvYOkJnleFNX0ripIhhFgPjBRCfJjVRwlgOJbRQytLW6YtMlCXzANAOnAIS/P3eKA/sLSyTiAlKYUFP/zF+Lcm2LVcLz8vvvt7ZoHtc6bN4sSBE7S5r43V9i9e/pwD2w8y+oVHqd+0HilJKRzbd4wMQ4Zdz8uWtOQ01s1bx/Bnh9u9bKPRyPTXphN1K4oHxjxAYGggSfFJnD54GrPZMkojw5DB6t9X06lvJ3oN74XeUc+JvSf47cvfuBV2i5EvFL4OuD0lJhuZ/sclPnyhgd3L/uznc0z/4xKvPF6Hrm28iY3PYOqciwx6YS87/+xKNT/L8L+4xEwGdQ+gYS1XXJw0HD+fwJezL7DjUAxb53ZBVYlzwWvVOgY0G8f8vV9YbdeotTmBtaRikm/x286PaB3aC1+36hhNGRy7to29l9bQpd4QfF2Dc47Zue6DbDu3BGe9G02Cu5BpNLDt3GJikm8xvM3LxRyp/BJSU5m+ehUfPTyq+MSllJiWxqNdu1E3MBC9RsO+Cxf4atUKjly5zIKXX81JF5eczINt2tAouDouDg4cCwvjy+V/s+PMGbZ99EmF37zmpSiKQQjxMVmtlnm2Z5A7hLbEhBAh5AZ4b8AshMj+8jmgKEr2/KofAnuARUKImVhq5VOxzL9R9DqjJSQDdTGEEA8BD2KZxCRVCPE3cA6YIoTYrihKVL70GqCvoihr7Hkebbq2Yflvyxg2bjhefnbpSAiATq+jUatGVtvS09I5e+wsHXt1shozvXnlZrau2crM5d9Tr2nuZA6dSjgbWnk1btuYTUs30XtEb9y93e1a9oYFGwg7H8Ynv3+Cl3/u69ume+6Nik6v44uFX+Diljs9Z6M2jUhJSmHT35sY8vQQdPqKr032bO/Dz4uv8tyoUPy9HYrPUArz19zgoV5BvPds7vvbuI4b7UZtY8Ou24wdapnk5b1nrCfz6NraGycHNS9POcnx84m0aGDf96c4HesM5N9T87idVHCe9tJw0DrhpHdj46k/SUyLRQhBgHsII9q9wn31rWuow9tOwt89hN0XVrLn4hq0ah2BHjV5sdcMGgW1L9d5lETPJk35aeMGnu/bz+4zg33z5Fir37s3bkJahoGvV68iJikpp7b8/nDrkUddGzbCSadj0tzZHAsLo2XN4p//29kc4HUsw7bKqwfWE2FBblN2zsxjiqIcFUL0xdL7fA2WKUR/B96xwzkAMlDn1yJrxjEdlglPBmKZBGUj8DZYhl9lBe+NwFEhxAxy79aaAxOAs1jeMLt5dOJjvP3Em8yb+ScTP3rJnkUXsGP9DlKTUwssfbnyzxU0b9/cKkhXpoFPDOSb175h9e+ri12OsrS2LNtCmx5trIJ0fiq1yipIZ6vZoCa71u6yTJxSRH57eW1sXYZP2s9Xcy4y9bWiZ88qrYxMM67O1l8L7q6W383FTP+Q3eStUVdcbbpjnYF0rFNwvnW1SsOHQ8v/ONBZ786zPUo2kY1apaF7gxF0b1DuYbJl8sbgITw09UumrlxRYGWriuDlYgnOGnXRq6h5uVj+RrTFpCsPRVHmYmOKzqymZ7ssRFDYMQpJux0ofPaocpK9vq0txtKE8Q/wGZZnDKOAfoqipGcnUhTlNJag/AfwJLAaS2AeC/yNZUyfXXn7eTP48SGs+Ws1kTcKnynPZDQV/2MqesWjDUv/wcPHk3bd2uVsM2YaOXv0DKH1Qvlp8o8MbTmYPnV68cLg5ziyu9wT75SIu7c7PR/qyfZV24mOiC40XUleA7MpN+rERMYQezsW3yBf5k6Zywt9X+CZ+59h6n+mcu3CtUKPk+3c0XM4uTjZvZZfmABvPeOHh/Dbiutcu1V4Nwmj0Vzsj8lk3afxqWEhLFp/kzXbI0hMyeTqzVRe/fIk1fwceKhXoM1jpKabOHAyjsm/nKdbG2+rZ9lSxfH38GBC797M3bqZa9FRhaYzmkzF/pgKuQszmkwkp6ez5eRJ/rd+LY/d1w13p4Kr0xlNJlINBvZfvMDny5bSvVFjmtSQY8ntRdaoKd2dU5480cBbWT+VYtRzj7B6/ip+n/Ebr08tOA99cR3DsvlX82f+rgU290VFRHF09xGGjn0ItSb3jjgxLpHMjEz+WfIPgdUDeXXya2j1Whb+tJC3nniTb5f+j/rNKr6m3f/R/mxbuY2Vc1Yy7u0CcxsQfSuaN0cWP0d/3ilA46PjAVg3bx2hDUJ55sNnMGYaWTFrBV++9CUfzf0Ib3/bHeVO7jvJwS0HGfL0EKvXq6JNeqw2c5ZfY8qsC8x8r3mB/WHhqTR/aEux5VQPcOTE8tzOgu9OqI9eq+Kxtw7l1KDr1HBm9fcd8MzXSSw51Uhwz39yfr+/gy9zPyt6EQjJviY9MIg5WzbzxbJlfD++YP+VsKgomr46qdhyavj4cPLrGVbbTt+4Tod3cr/eHunclW/HPV0gb3J6OkETnsr5/f6mzfj9xYpt9bvXyEB9F3HzcGPE+JH8PuM3Rj37CEEh1j1Lvf29+X7lj8WWo9UV3sv13783Yjab6Zuv2ducNe2tMdPI53O/wMffB4Bm7Zoz5r7RLPppAe/P/KC0l1RqLm4u9H24LyvnrmTAowPwDfK12u/h48H7v7xfbDkabZ65sLPmPtY56HhpykvoHSy9WkPrh/L2I2+z+e/NjHiuYPNm+JVwfvroJ+q3rE//0f3Lc1ml5umu48XRtZgy6wKTHqtNzWrWtZxAXwe2zCm+70D+eb1nLQ3jq7kXeW1sXbq28iY2IYNvfr/E0P/sZ92PHQn0zX0m7uSgZsuczqQbzBw/n8C0uZcY9doBVnzXHo1GNtZVBi8XF17sN4Avlv/NywMHUtPPetW0QE9Ptn74SbHl6LUFQ0EtP3+2fvgJqRkG9l04z9erVmI0m5j13AtW6Zx0OrZ++AmGzEyOhV3lq1UrePibaax88+1im8mlkpGB+i4z/KkRLP9tGXO/nsM7M6ynTdTqtNRpVKf4Qop4hLjh7w3UaVSH2vnKcXV3RQhBSN2QnCAN4OjsSKOWjbhw+mL+oipM75G92bR0E8tnLWf8+9YreWm0Gqu1pAsjRO6L4OJueaZWp2mdnCAN4OXvRUCNAJvN31HhUUx7ZRq+gb68+PmLlVqbzvb8qJr8vPgqn/98nl8+amG1T6dV0bQETdB5X4e4hAzemXGaiY/W4p08Q7zua+1Ns6Fb+HbeZSZPyu14qFIJWjb0AKBjCy8a1XZj0At7WbElgmG9i14TXLKfF/r156eNG/hs6RJ+zRdEdRoNzUKKX+Ut7+cgm4NOR6talpXUujRoSICHB8/98jPP9O5Duzq5fbVUKlVOuo7169O4enUemPwZyw/sZ3iHCntse0+Rgfou4+jsyCPPjebHz35g5DPWwzLK2/R99thZrl0M4/n3XyiwT++gJ7BGoM0/aAVQ2dheURycHBgwZgCLZi6i3yP9rPaVpenbJ8gHnV6XM5mFFQVUwrp2GHs7lq8mfYWjsyMvf/XyHVub28VJw8uP1+a9b8/w0phaVvvK0vR98XoKhgwzrbKCbzZPdx2hwU6cv5pcZFktG1qe0V++nlKKq5DKy8XBgVcGPci7f83jpQHWHe3K0/SdX8uals/Y5chIq0BdeDp7rzp575KB+i704GODWTJrMXO+mmW1vbxN3xuW/oNao6bn4Ptt7u/StyvL5v5N1K0ofAMtTc6pyamcPnyKtnk6nlWGHkN7sGHRBpb9ssxqe1mavjUaDU07NuXCsQsY0gzoHS216pjIGCKuR9Cia4uctElxSUx7eRoAr3z9Cq6elT6pg5Wnh4Xw/V9X+PSn81bby9L07edlue7Dp+MZcF9uE2pcQgZXbqTQvH7RNfRdR2IAqBlcsLORVLHG39+LmevX8slS657v5Wn6zm/n2TMABZrXy5pOKjkZqO9COr2Ox156nK/fnma1XavTlrlDlzHTyJZVm2nXvT2ePp4204wYP5KNf2/g7bFv8dhLj6PValj0yyIMaQYeea74mrw9aXVaBj0xiN+n/m61XaPVENogtNTlDRk3hE+f+ZQZb8ygz6g+ZGZksnLOSpxcnOj5kKXGmWHI4OtXvyY6Ipqxb40lLiqOuKjcRXOCQoMqvXat16l5Y1xd/vPFCavtOq0qp1m6pEKCnOjb2Y9v511GqKBLS8sz6hl/XsaQYeaphyxNqAnJmQyftJ8RfatRu7ozQsChU/HMXHCFJnXdGNQ9wF6XJ5WQXqvlzcFDeWmO9c27TqPJaZYuqZPXrvHugnkMbdueUD8/DEYju8+e5YcN6+ndrDnt61pq0wmpqTw0dQojO3Wmtn+A5XNw+RL/W7+OpjVq8GCbkkwGJpWEDNR3qX4j+rPw54XcvHLDLuXt3bSHxLhE+gzrU2gaL18vvlk0gx8/+4Gpr09BMSs0atWIrxdOJ7RepU9sQJcBXfjnr3+IvBFZ7rKCagbx2vTXWPLjEn764CfUGjX1W9bnxc9fxN3L0qSbGJuY87z6l49/KVDG69++ToOW9p8trDiPDgzm23mXuWSHJuc5n7Xif/Mvs3RDODPnX8HVWUPz+m5M+6lTTuB30KmoF+rCT4uucisqHY1aUD3QkRcfqckzI2ui18kORHfCmPu6MWPtGi6Vs8nZz90dbxdXpq1aSWRCPI46PaF+fnz6yGie6NYjJ52DVkv9oGr8uOEfbsXFoVGrqOHjy8T+A3i2d1/02uKnZpVKRmRPNi9Vrnt9UY6eId3F7J2z7+nXYFyXcSJh38B7+jVwb79a/PDEvnv6NXjut/Yi6Y/59/Rr4PrY6Mrr5HIXkmMoJEmSJKkKk4FakiRJkqowGaglSZIkqQqTgVqSJEmSqjAZqCVJkiSpCpOBWpIkSZKqMBmoJUmSJKkKk4FakiRJkqowGaglSZIkqQqTgVqSJEmSqjAZqCVJkiSpCpOBWpIkSZKqMBmoJUmSJKkKk4FakiRJkqowGaglSZIkqQqTgVqSJEmSqjDNnT6Be1XPkO53+hTumM1hW+/0KUiSJN01hKIod/oc7lX37As/bu0EZg/4WQS/HnzPvgYAN6beECnnPrynXwPn+h+KO30OVcGtgUPv6c9B4Opl8nNQBFmjvkPGrZ1wp09BkiRJugvIZ9SSJEmSVIXJQC1JkiRJVZgM1JIkSZJUhclALUmSJElVmAzUkiRJklSFyUAtSZIkSVWYDNSSJEmSVIXJQC1JkiRJVZgM1JIkSZJUhclALUmSJElVmAzUkiRJklSFyUAtSZIkSVWYDNSSJEmSVIXJQC1JkiRJVZhc5vIulRyVzP5f9hJ+5AYoENiiGu0ndMTFz6XYvEkRiRyYvZ9bR29iNprxqedL26fa41PXNydNZmoGO2dsJ+ZSDGmxqag0KtyqudNoUGNq96xbkZdWYsZEIwlbEjCEGQDQh+hx7+GOxq34j7Ux3kjCtgQM1wxgAm2gFvdu7ugCdDlpUk6mEL8+vtAyAp4LQO2sLvd1lMeNWwm8Ofkftuy+jKIodO9Uiy/f7kf1IPdi814PT+CTGVvYvv8KMXGpVPN3Y2j/xrw2oQvOTpbX4c+/j/LsOysKLePSjlfx9y3+MydJUtnJQH0XMqYbWf/OGtRaNV1f6Q7A4T8Osv7t1QyeOQytg7bQvOmJ6ax9YxVaRy0dX+yCRq/h1LITrHt7DYO+HoxHDU8ATEYzKrWKZiOa4+LviinTxJUdl9k+bSvpCek0Htq0Mi61UOZMM9GLohFqgWd/TxCQuDOR6IXR+D3hh0pXeGORKc1E1IIoVDoVHr09EFpB8sFkohdG4zvGF6235fVzqOWA72hfq7wKCrHLYlG7q+94kE5Ny+SBJ39Hp1Pz0xdDEAI+nr6FAU/8xt4Vz+YEW1tSUjMYNPZ3Mo1m3n+pB8GB7hw+Gc5n323lUlgsv38zHIC+3euyecFTVnkVRWHEc39Rs7qnDNKSVAlkoL4LnfvnLMkRSTz00wjcsmpOXjW9WDp+EefWnaHJ0GaF5j279jRpcWn0/2JgTt7A5kEseWohR+YdosfbvQBwcHOg2xs9rfJWb1uDxJsJnN947o4H6tTjqZgSTPiP80fjafkYa320RM6KJOV4Cq5tXAvNm3I0BXOKGd+HfXPy6qvrifw1kqRdSXg96AWA2kmN2sk6GBtuGDCnmXHtVHj5lWXO4kNcuR7HkXUvUjvEcs5N6vvTvO93zF54iIljOxaad+/h61wMi2XFr2O4v0ttALp1qElcQhozZu8mNS0TJ0ctvl7O+Ho5W+XddTCM2Pg03p3YvcKuTZKkXPIZ9V3o+r4wfOv75QRaANcAN/wa+XNtb1iReaPO3sYtyN0qr9ZBi3/jAK4fuIbZZC4yv95Vj0pz5z826ZfS0QXqcgItgMZDg66ajvSL6UXmzbiVgcZTY5VXpVNZ8l5ORzErheZNPZUKanBs4Fj+iyintZvP0655cE6QBggN9qRDyxqs3nSuyLwZmSYAXF30VtvdXR0wmxUUpfDXYP7yY+i0aoYPaFKOs5ckqaTu/DeuVGrxYXF4hHgW2O5Zw5P4a/FF5hUqFSptwbddrVVhMphIupVotV1RFMwmM+mJ6Zxbd4abh2/QePCd/4LOjM5E41OwQUjrrcUYYywyrxACbLRaC41AMSoY423nVzIV0s6l4VDLAbXjnW32Bjhz8TYN6/oW2N6wri9nL0UVmbdHp1rUCfHi/a/+5czFKJJTMti69wrf/7GPp0a1KbTZPC09k2XrT9Ovez28PZ3sch2SJBVNNn3fhQzJBvT5akIAOlc9GcmGIvO6B7sTfvQG6YnpOLg5AKCYFaLOW77YDUnW+c+sPs2+H3cDoNKoaD+hE3Xur2ePyygXc7oZlUPBGw6VowpzetGtAhovDYYwA6Y0U07AVRSFjFsZOWXbknYxDSVDwalx1QhQcQlpeLoXrNl7ujsSn5hWZF4HvYYN88fx6EuLaDvw+5ztT45oydfvDyg036p/z5KYbODRoc3LfuKSJJWKDNR3K2FjW+GtlTka9G/ImZWn2DFtK+2f7YRGr+HYwiMkRyRZihXWBde6rxZ+DfxIT0jn+r4w9v20G6EWNOjf0A4XYX9FNdlmc27uTPLhZOLWxuFxvwdCI0jam4QpwdIcnP81yJZ6KhWVowqHWg52PefysPkxKMFrkG4w8sTLS4iOSeHXL4cSHOjOoeM3+eL7bajVKmZ8ONBmvvnLj+Hj5UTf+6pGz39JuhfIQH0X0rnoC9R8ATKSDehs1LTzcg10477Xe7D3+10sfXohAN61fWg8pCkn/z6Oo5d1bdHB3RGHrFpbcJvqGA1GDszaR73e9e/os2qVg+2as5Ku2Kxp56Xx0OD1gBfx/8YT+WskAFp/LS6tXUg+mIzKuWB+U7IJQ5gB51bOCJXtQF7ZPNwciU0oWHOOT0zHw63oZ+i/LTnMjv1XOb5hIrVqWJ5xd2kbgpurnon/Xc3To9rQtEGAVZ6I20ls2XOZZ8e0Q1MF+ilI0r1CBuq7kEcND+KvxRXYHn89Ho8aHsXmD+1ckxodQki8mYBKq8Yt0I3dM3fi7Otc7Dhs77q+XNx0gbT4VJx97tzQHI23xuaz6MyYTDTexX+sHes54lDHAWOcEaEWaDw0xG+MR+2qtjkOO/V0KihUmWZvgIZ1fDl7seCz6LMXo2hQu+Cz67xOnb+Np7tDTpDO1qZZNUsZl6ILBOoFq45jMik8OqRF+U5ckqRSkbfFd6Ea7UOIOnvbquNXUmQSkacjqNE+pERlqNQqPGp44hboRmpMCle2X6bBgEbF5os8cQuNozanln2nONZxJCM8w6rjlzHBSEZ4Bg61S9Y0LVQCrbcWjYcGU7KJ1HOpOLdwtpk29XQqGl8NOr/CxyZXtgd61mf/sRtcuZ570xZ2I569R67zQM+i+xH4+7gQl5DOpbBYq+0Hjt0EIMi/4PCz+cuP06S+P80aBhTYdycJIZ4UQihCiHghhGe+fZqsfR/a8Xi1hBCpWeXWsVe5tiy8HkbQmuU0+Gc18ZkZVvuMZjNBa5bz1fkz5TrGhshbPH/kIF22bqTamuUM27OjQBqTovDDpQuM2LuTZhvXUXf9avrs2ML8a1cx53vUsvTGdR7cvZ0mG9cSum4l7Tb/w6vHj3AzLbVc55lXZbznQogvhBDHs46RKoQ4K4R4XwhR6N26EMJDCBGRdfxe5Tl+XjJQZynNGy+E6G7rjcj6A76a9VOros61Xr8GuPi78u8nGwjbc5Vre8PY9MkGnH1cqJ/n2XHy7STmDvqVo/MP52wzG83s+3kPYXuuEn7sJqdXnmTlpOV4hnhYjY0+u+4MO77ZxqUtF4k4cYuru66wdcomru66QvOHW6DW3tlez05NnVC7q4lZHkPaxTTSLqYRszwGtasa5+a5wdaYYOTmtJsk7s69qVFMCvFb4km7kIbhmoHkw8nc/uM2Wm8tLm0KthJkRGZgjDZWqdo0wJMjWhFSzYOHn1/A6k1nWbP5HA+/sIDgADfGPdwmJ921m/G4N/6YyTO35WwbM7QFrs46hk2Yx7xlR9m29wrTZ+3i3S830LJxIB1b1bA61tFTtzh94TaPDqnSncjcgTcr4TjfAwmVcJwciUYjMy9dqJCy10fc4lRiAq08vAh0sH0Dnm4yMePiOeq7uvFl0xbMbtOezt4+vH7iKJ+ePWWVNi4zgy7evnzVtCV/tevES3XqszXqNg/u3kGyMdPep1+R77kbMAcYDQwC5gHvAn8VkWcKJeotVDqy6bug7Df+rdJkEkLUBzYB6UBPRVGuVcC5AZZxz/0+f4D9v+xhx7StKEBQ8yDaTeiI1jF3VjJFsfTotupcJCAxPIHL2y6RkWzA2ceZur3r0XxkS6vg6xnixbW9YRyYtRdDkgEHdwfcgz3o9UFfqrez/hK/E1Q6FT4jfUjYkkDc2jhQcqcQLTArmYL1n44AY5yRtDNpmA1m1C5qnJs649LeBaEu+Pw59VQqqMCpYdUK1M5OOtbMfYI3J//D+DeWoSjQvWNNprzdDxfn3Jq/ooDJpGDOMz48JNiDzQuf5vP/beXjGVuIiUslOMCNsSNb8/qzXVHlew4/b/lRNBoVIwfd2YluirEBmCiEmK4oSkRFHEAIMRpoCUwGvqmIY9jSzceP2VcvMz60Nn4O9u3M+FWzlqiyOlAO3r3dZhoHtZo9Pfrgqcv9XHX18SU+M5M5Vy/zer2GOKot3x9P16xtlbejtw/Bjo6M3r+HbVG3eSCwmj1Pv8Lec0VRns+3aVNWbfotIYSPoijReXcKIToDY4CJwCx7nosM1AWV+o0XQjTGEqTjgPsVRQmvyBMEcPFzoee7vYtM4+rvytg14622qdQqen/Yr9jy/Rv50+ej4tPdSRo3Dd6DvYtO466h2mvWXwxCJfB5yKfEx/Ho6YFHT4+ynGKFqx7kzvzvRhaZJiTYg+SzHxTY3rCOL39MH1Gi40x9tz9T3+1fpnOsRJ8C67HUeibau/CslravgdewORK/4kyqW4/R+/cw4+I5Pmti31YNVSGjHPJSC2EVpLO18PBk4Y1rxGYYqOZY+I2sp9aSV6OyeyNuhb7nNsRk/WvVNCCE0AI/AV8Al+19UNn0XdCnWf++W5LEQogWwFbgNtCtMoK0JEk23QL+B0wQQhTaWSPrUVZxP7YC8ZfAWUVR/qioCyiMn96BsSG1mHc9jBuphT/rNZrNxf6YSjB8r6T2xETjrtHiry9YyzcpCgaTidOJCXx45iT1XFzp5uNnt2Nnqej3PDuvS9ajzleA2Yqi5H/08Qagw/IZsTtZoy4o+42fJIT4SlGUoubkbAu8DlwFeiuKElNEWkmSKt4U4BngA2Bc/p1CiFDgSgnKCQNC8+TrAjyOpdn7jnihdl3+vHaFaRfO8k3zVgX2X09Nof2WjcWWE+zoyP6efct9PlujIll16yZv1Gtos6bcbOM64rI6wDV392Bh+844qCukIaJC3vOsvE2AE3k2/Q5MyJemDvAe8KCiKIbC5mEoDxmobSvyjc/jcyydSmSQlqQqQFGUWCHENOADIcQU4FK+JOFYbrCLkzNRgRBCh6VZ8xtFUU7b7WRLyVOn45ladfj6wjleqF2XUCfrEQr+Do6s69yt2HJ0dmh+Pp+UyPNHDtLJ24cXatue/GZRh86kmUxcSE7ifxfPM2rfLpZ36oq71r4jJyriPc/jYlZeZ6AT8DaWuPlonjQ/ACsURSn+LqmMZKC2oQRvfLY1wAPAVCHEU0oxU0IJISaQdTfW6cUuVj20JUmym2+wPK/8GOsvVBRFyRBCHC1BGXn/licBXsC3QgiPrG3ZD2RdhRCuiqIkleeES2pCzTrMvnqZqefPMrNFa6t9OpWKxm7Fr0Ne3hpfWGoKo/btprqjE7Nbty/0uXP2ubTx9KKztw8dt2zk97CrTKxTIVMQ2/s9z86bDhzM+nWbEOIWMEcI8Z2iKHuFECOBzkCbPJ+N7KEjzkIIdxvN5KUmA3XhCn3j85gO7Ac+wnI39lxRBSqK8jPwM8C4tRPs3oVfkiRQFCVZCDEZmAZMzbuvjM2gjYAA4KaNdIeBY0CLsp1t6ThrNEysXY+Pzpzk+VrWQ7gro+k7PC2NkXt34aLRML9dJ1y12uIzATWcnPHQ6riamlKm4xanAt7zwmQH7TrAXiyfDUfglI20y7G0uHqU4NhFkoG6EEW98fnSfSyE0APvCCHSFUV5uazHvLDxPDunb0PnrGP4rFHoXXOnAzWbzPz24CxajG5Fy0dbF1FK0a7tC+PKtktEX4gi8VYiAU0C6f+F7XmdI09FcGD2PmIvx6Bz0lGre21aPd4Wjd76Y3N9fxjHFx+zrNylKHjU8KTJsGaEdAwt9fmlnEwhfn08Qi8IGB9gNR2oYlYI/zoc146uuHV2K3XZ2dIupZF2Jo2MyAxMcSZ0wTp8R1nP5KWYFZIPJZN+OR1jjBElU0HjqcG5pTNOTZysaiWpp1NJOZqCMc6IOcOM2lmNPkSPa0dXm7OcldWffx/l2XdW4O6q5+S//7FakMNoNOPR5BPefqFbudaJNpnM/PDHPn5beoSwG/G4uuhp2zyY9yZ2p0l9f5t54hPTaTXgf9yOTmHV7Mfo0anCphAoje+xdPz5NN/2sjSDfgHMzbe/H5ZhnGOAotcUtbMnQmry05VLTMk30UlFN33HGAw8vG8XAAvad8ZbX/R0xXmdS0okLjOjQHO9ndnzPS9M9guc3co6F0tn4rxaYKnovQbsK0GZxZKBumiFvfFWFEV5VwjhALySFazfLs9BM1IyOLHkGG3GtitPMTZd23OVmMsx+Dbww5S1JrEtsVdi+Oe9tVRrFUyvD/qSHJnEgVn7SIlJpcdb9+eku3HwOv9+vIGQTjVp/rCln8259WfZ/NlGev237GOuFYNC0v4k3O8rvimvtNIvpJN5OxNdoI4MY4bNNIpRIWlvEk6NnHBp7YLQCgyXDcT/E48xxoh799zzMqeZ0dfQ49LOBZVehTHWSNLeJAxXDfiN9Ss4rrucEpIMfPPrLj5+1W4TH+X4ZMYWvv51F69O6EK3DjWJiUvlyx+2M+Dx39iz4lmqBRS8QXr/q43lbk61t6xOPR+T1YKVZ3sGubWikpZ1Fjibd1tWLQ1gn6IoF8txqqWmV6t5pW59Xj9x1Gq7TqWiuUfB5W+LcyM1laMJltnt4jIyUAnB6luWxoMW7p4EOzmRZjLxyP7d3EhLZVqzltxKT+NWeu488/VcXHNq14N3b6d/QCB1nF3Rq9WcSUzgpysXCXRwZHSNks2cWBb2fM+FEM2Ar4DFWIZb6YH7gP8A6xRF2ZNV9lUsnYnz5s3+7zFFUXaW9jpskYG6CIW98YWkfTWrZv2WEMKgKMqHZT1uUKtqnFl1ikaDm+DkZd9JNjq/dF/OohJrXl9ZaLoj8w7h5ONMj7d75Sy+odKo2PH1NqKHN8enjmUc8qXNF3Dydqb7mz1RqS3pglpWY/HYBVzacrHMgVofqiflcAourV1QO9u3p6hHX4+cP6aov2yv2yw0goCnA1A55gZZhxAHzAYzyUeScevshtBaynBpbT2bmb66HrWbmpilMRiuGnCsZ9/pVu/vXJsf/9zPC493wN/XvvOt/7nsKMP6N+aDST1ztjWp70/rATNZv/U8T41qY5V+z+FrLFx1gq/e68/z7xb+ebpD5mAZlfH/bqmvh4Nr8MPlC1xOKX9T8q6YKF4+fsRq24TDBwD4pllLHnYKIdqQzslEy6PWF48eKlDGkg6d6eRtaZVq5eHJohvXuZ6aioJCNUcnBgcF83ytunjrSl4LLyN7veeRQDTwDpbHHqlYAvZrwK/lLLvUZKAuXmne+IlY7rw+EEKkKYoypSwHbP5wSzb+dz3HFx6hw3Ody1JEoUqy8pPZaObmoRs0HtLUaoWs0K612PXtDq7vDcsJ1CajGa2DJidIg2VSFa2jpkTLLRbGtYMrMUtiSNqbhMf9HmUux5aS1P6ESiAcC6bTBmjhJJjSTGi0hf/55AT4Cpip4I3nujJ0/Dy+/HE704pYO7osMjJNuOZbgc3D1TJGNv+czpmZJl76YDWvjO9MaHDpa3L2oijKXAo2TaMoihGokJ5LhR3T3h6uHsLD1QvWQjUqFTu7Fz3hUXmPkVd1J2fCHxhSovI+aFTxs9dV9HuuKEoklqlDy5J3K7ZXoC0zOeFJFkVR5iqKIvI3YymKYlQUpV7Wvg+ztm3N+v3ffGkVRVHGZ+0rU5AGcPJyosHARpxbf5bk24V3JjWbzCX6Ka3EW4mYMkx4hlh/+Wp0GlwD3axW7qrfrwGJ4YkcW3CE9IR00hPSODr/MMmRyTQcWPwiH4VRO6txbulMyvEUjAkFV8nKppiVEv3YS8b1DIReoHYpWMtXzAqKUSEzKpOErQlovDU4hNp/7eoAX1eeebQtcxYd5trN+ELTGY3mYn9M+T4f40e3ZeGq46zedJbEZANXrscx6eM1VAtwY1j/JlZpv5m1i8wMEy8/bd+bSUmSrMkadRXVbERzzq8/y9H5h+kyqWAHkaTIJJaMW1BsOS5+LoyY80ipjp291rWtta31rnoMybl9Lqq1Cub+//Zh+9QtHP7D8hhI66ilx7u9CGgSWKrj5ufazpWU4ykk7UnCs1/BGpsxwUjkL5HFlqN2UxMwofwrPqVfSSftXBpuXdxstkxE/BCBOc0S+LT+WnxG+CA0FfPs9uWnuzB74SEmz9zGD58PLrA/7EY8jXvNKLacGkHunN48Kef391/qgV6nZvTERTlzg9cN9Wbd70/g5ZHbhH8pLJYvf9jBou9HodfJrxFJqkjyL6yK0rs60HhoU47OP0zT4c1xDbTuxOPk5cSg6UOKLUdVplWuLF/QNluI81VOb5+NZPtXWwluW53aPeoiBFz49wJbJ2+i1wd9CWweVIbjW6gcVbi0cSFpdxIu7VzQeFh/XNUuanzHFL3uMmBzoY3SyozOJHZNLLrqOlza2X4u7DPCB7PRjDHGSNK+JKIXR+P7iK9Vz3V78fJwZOLYjkyeuY2Xn+5cYF3pQD9Xti8eX0juXDqd9efjl78O8OUPO3jj2a7c197SmezrX3Yy+Kk/2fDnWAKzlr+c9NEaHri/Pj0717ZVrCRJdiQDdRXWeEhTzqw6xeE/D9Ht9R5W+9RaNV61il6Qoqz0WTXp7Jp1XoZkA541cmu3+37cjWeIB91ez+18VK11dda8vpL9v+5l8HcPletcXFq7kHI4haRdSXg+YF2rFmqB1q9k4zjLwxhvJHpJNBp3Dd5DvAt9zp99LvogPfrqeiJ/jSTlWAqu7Quu7WwPLz7RkR//3M+n321l9lTr11mnU5do3ei8N2Ox8Wm8Nfkf/vNUJ957Kffz1q1DTRrfP53ps3cx5e1+LF13ir2Hr7F9yQTiE9MBSEm19J5PScsgISkdd1f7N/lL0r1KBuoqTOuopdmIFuyftZemw5pZ7avIpm/XQDfUWjVxeZ5FAxgzjCRHJFGzS+442bircTR4oOAMaz51fTm3tnwL2oNlOUvX9q4kbE3Apa11TbYymr5NSSaiF0Wj0qnwHuaNSl+y2rHGQ4PKUYUxvvDn6+Xl4qzjtQldeHvKBiaN62S1ryxN3xevxmDIMNG6qfVqY14ejtSs4cW5S5ZV/c5ejCIt3Ujbgd8XKG/UCwtxd9Vz80CpVomVJKkIMlBXcQ0GNuLk8hMc/t16GGBFNn2rtWqqtQ7m6o7LtHy0dU6P7rCdVzBlmqjePnfIlaOnI9EXCg5xij4fhZO3fYaWObdwJvlQMok7E63Ps4Kbvk2pJqIXW4KTzwgf1E4lfy0zozMxp5kLNNfb2/jRbflu7l4+nrHZantZmr79fSw3QgeP3+SBnvVztsfGp3E5LJYWjSw3O2OGtqBru1Crck6cjeDNyf/w+Ru9adM8uKyXI0mSDTJQV3FqrZoWj7Ri93c7Cmz3qVt8kMov+XYS0ectgdWQaECo4OpOy/KpPvV8cfGzNNO2GN2aNa+tYMvkTTQc2Mgy4cns/YR2rml13IaDGnNg1j62fbmZWj0sUxpe2nyB22ciaf9MxzJdc35CI3Dt6Er8hnjr7WqBLqD0E/wbE4xkRliWkzWnmUFA2jnL5A3aAC0adw1KpkLMkhiMCUY8+3liSjJhSsqdIEbjrcmpXUf9FYVDHQe0XlrQgDHKSNLBJNSuapya2nccfH56nYa3nr+Pif9dbbVdp1PTqmnp+geEBHvQv3s9ZszajUol6NI2hNj4NKb/ugtDppGnR7XNSRcS7GGzjKYNAujUumxj5yVJsk0G6rtA3d71OLn0GInhicUnLsatY7fYOX2b1bYtkzcB0GVSN+r2tgRq79re9PmkPwfn7OffD/9B66yjzv11af249Ux8TR5qhqOnE6dXnmT71C0AuFVzp9vrPajV3Xou4vJwauJE0oEkTHGFz6ZWUobrBuLXx1tti10VC4BHPw807hpMqSYyb1uCedyauPxF4DPSB30Ny7N8XYCO1FOpmBIs56Z2VePUwAmXti6lqoWX1WMPtWTGrN1cDIstd1m/fTOcb+fsZvGak3w3Zw+uLnpaNApk4wcPlDrwS5JkH6I8k1JIZXevL8oxe8DPIvj14Hv6Nbgx9YZIOffhPf0aONf/sGrNPXqH3Bo49J7+HASuXiY/B0WQE55IkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYDtSRJkiRVYTJQS5IkSVIVJgO1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYDtSRJkiRVYTJQS5IkSVIVJgO1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYDtSRJkiRVYZo7fQL3Kq1Ke6dP4Y5zdXC906dwxxljtt/pU5CqgMDVy8SdPoc7Tcy+qNzpc7iTlHF1Cv0MyBq1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYDtSRJkiRVYTJQS5IkSVIVJgO1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYDtSRJkiRVYTJQS5IkSVIVJgO1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFaa50ycglU1yVBJ7ftrFjSM3QFGo1jKYTs90wcXPtdi8iRGJ7Pt1NzeP3sBsNONb348OT3XCt55fTpr4G/GcXn2C8GM3SYxIROuow7eeH20fb4d3LZ+KvLQSy0zI5PbG26RcSQEFnGo64d/HH627tti8GXEZRG2KIuVKCopZwTHIEd/7fXEMcrRKd/G7ixgTjAXyVxtRDdf6xb/WFe1GZDrvfHuRrQdiURTo1saTyf+pS/UAh2LzXg1P478zL7H1YBxGo5lWDd345IXatGzoZpWu6bA9XI9IL5D/z8lNGHifr92uRZIk22SgvgsZ0zNZ/dZK1Fo1PV7tCUJw4Pd9rHpzBcN/eBitQ+GBKj0xnZWvLUPrqKXrxG5o9FqOLzvK6rdWMGT6MDxreAFw4/B1wo/dpF6vBvjU8cWQbODYkiMsn7SUB6cNxbeuX6HHqAzmTDPX/ryG0AgCHwwEIHprNNf+uEbNCTVR6QpvLDKlmrj2+zVUOhUBAwIQWkHcvjiu/3mdkHEh6H30Vumdaznjc5/1zYnOW2f/iyql1HQTD750FL1WxffvNUQI+OznKwyaeIRdv7fD2VFdaN7YhEz6P3cYFycN01+vh6ODmpkLrjNo4lE2/dqa+qHOVunvb+/FW+NCrbbVreFUEZclSVI+MlDfhc6sP01SRCIjfxmNe5A7AF41vVn41DzOrD1Fs4daFJr39JqTpMWlMujL3LxBLaqxYOyfHPrzAL3e6QtAnW51aDyoCUKInLzVWlRj/pN/cnLFcXq81qviLrAE4o/EkxmfSa3naqHzsgRNvZ+ey99fJv5wPF4dvArNG3coDmOy0Sqvc6gzl2ZeInpbNNWGVbNKr3ZS4xjsaKuoO+q3leFcDU/j4F/tqRVsCZqNa7vQetQ+5qy4yYujahSad9aym9yOy2TNzJY5ee9r7UmLEXuYPOsKcz9pYpXe211L2ybuFXcxkiQVSj6jvguF7b2KXwP/nEAL4BbgRkCjQML2XC0y7+2zkbhXc7fKq3XQEtA4kLD9YZhNZgAc3B2tgjSAzlmPezV3UqJT7HcxZZR8PhnHao45gRZA56nDsbojSeeTisybdjMNnZfOKq9Kp8KpuhPJF5JRzEqFnbc9rdsZTdvGbjmBFiA0yJH2Td1YuyO6yLwHTyVSO9jRKq+zo5qOzT34Z1cMRqO5ws5bkqTSkYH6LhR3LRbPkII1Rs8QT+KuxRaZV6gEKk3BJlG1Vo3JYCTxVkKhedOT0om7GotHDc/Sn7SdGaIM6H31BbbrffVkRGcUmVeoBEItCm5XCxSjQkacdf7kC8mc++Ic5yaf4+qcqySdK/pGoLKcvZJKw1ouBbY3rOnMuaupReZVqQRabcHXQK9VkWYwc+Wm9TPp9buiCey5Db/uW+k1/hCrt0eV7+QlSSoxGajvQoYkA3oXG0HK1QFDsqHIvO7BHiSEJ5CemPtFrJgVbp+/nVN2YXZ/vwMFaDqkedlO3I5MaSZUjgU/vmoHNaY0U5F5dd46MmIzMKXmplMUhbTwNADMabm1SZe6Lvj39af66OoEDglEqAU3F98k4UThNzSVJS4xEw/Xgk+vPN20xCcV7ACXV90ajly+nkZsQmbONrNZ4dCZREvZSbnb+3X2ZsrL9Vj6dXN++aARer2KMW+fZOE/EXa6EkmSiiID9V1KFKwMoSjFN9k2GtAYzApbvvqXxPAEUmNT2PXjDpIiErPKtVEwcGThIS5uvUDn57paNZvfjTxaeYAC4SvDyYjNwJhkJPKfSDLjs4JTnpcgoF8A7s3ccarhhFtDN2qMqYFDoANRm6tGjdLWu1WCjwHjhlTDrMCzn5zmyo00IqINvPnNBcJuWW7gVHkKnvpKPR7pH0CnFh4M7uHHyhktaNnAlY9/vGyfi5AkqUgyUN+F9C560m3UfDOSbde083ILdKfHG72IvhjFgqfm8eejv3H7TCRNh1pqyU5eBXvynl5zkgNz99Hm8XY06NvQPhdRTmpHtVXNN5sp3YS6iN7OYHmWHTgkkPRb6Vz+/jIXZ1wk7UYaXu0tjxM0LoX3sRQqgWtDV4xJRozF1Formoerhjgb5xCfZLumnVdoNUd+/m9Djp5LpuXDe2kweDf7TyXw/MhgAPy9C/8cqdWCIT19uXnbQER00S04kiSVn+z1fRfyDPEiLqzgs+i4a3E5w6uKUqtLbUI71iThZjxqjRq3IHd2fLcNZ1+XAuOwz286x86Z22n2UHNaPdLGbtdQXnofPYaogkHCEGVA51P80Cm3hm641nclIzYDoRLovHRErI1A46Yp0ThswHZ1thI1qOnM2SsFO/advZpK/dDih04N7uHHwPt8uXg9FZ1GRc1gR16Zeo5gf32x47Cza+2FNMBUKiHEk8AcIAGoqShKXJ59GiAT+EhRlA/LcYwvgAFADUAHXAPmAdMURSm6Q4CdVcb15jteLeAk4AjUVRTlYr79amAi8DRQB0gBjgCPKYpyyx7nUMDOpTDnLXB0hSlbwDlPK5/JCBMawoMTYfBLZT/GkqlwYhvEhIMpE7yCoMMg6PMU6POMAlnxLaz8rmD+Fr1g4g9lP34eMlDfhULah7L3190k3krALdDyAU2KTCTidATtx3YoURkqtSonqKfEpHB5+0WaDW9hlebKrsts+3ozDfo2osP4zna9hvJyqefC7X9vkxGXgc7TEpgz4jNIu5GGb8+STcIhVCJnzHRmUiaJpxPx7uhdZB7FrJB0JgmNm6bImndl6N/Fh/dnXuLqzTRCq1m+OMJupbHveAIfPFerRGWo1SJnzPStKAN/b7rNS6MLH9YFYDSaWb45imB/fZE17zvAHXgTeKsCynbDEhzPAQagE/Au0AYYXAHHK4mKvN68vsdyU1DYGMU/gL7A58DBrPPqBhQ/6055pSXBup9h+OsVUHYydB4GATVBo4NLh2H1D3D1JEz8sWD6txaAKk8jtbOH3U5FBuoyynNXm80MRAC7gPcVRTlXUcdu0L8Rp1ad4J+P19H28fYg4ODv+3HxdaHhgMY56ZIik1gw7k9ajW5D60fbWk7SaGLvrD0ENQ1C66QjLiyWo4sO4xniZTX++taJcDZP2YhXTW/q9a5P5JncjkNqrRqfOnd2RiqPlh7EHYzj5qKb+HT3AWGZ8ETrpsWzVW6v9Mz4TC7NvIRPV5+cSUsUk8LtTbdxCnFCpVNhiDYQuysWva/eavx14slEks4n4VLHBY2bBlOKibiDcaTfSidoaFClX3N+TzwYxC9LbzL6rRO8O6EmAsFnv16mmr+esYNzz+9aRDotR+7ljSdDeHNcTQAyjWb+O/MSnVt64Oqs4ezlFL75I4yGNZ158ZHqOXmXbIxk7Y5oenf0ppqfnqi4DH5depOj55KY9VGjSr/mYmwAJgohpiuKYteeboqiPJ9v0yYhhBPwlhDCR1GUosfDVYwKu95sQojRQEtgMvCNjf2jgJFAe0VRDuXZtbIizqeAxl1g0x/Q+0lwt/N30mMfWf/eqBNkpMPanyApFlzztV7Wag7qigmpMlCX3wjgBqAGagPvY/kjbqwoSoV0DdY6aBn4xWB2/7yLLVP/BSCoRTCdnumM1jFvs62CYlasO5kJQWJ4Ape2XsCQbMDZx4X6fRrS8uFWqLW5z3ZvHruBKdNEzKVoVr66zOr4Ln6ujP7tsYq4tBJT6VTUGFODyI2R3FphaV1zCnXCr4+f1axkCgoo+TraCciIzSDxVCLmdDMaVw3uzd3x7uJtNWxL66HFlGLi9qbbll7mWhUOgQ4EPxKMS+2Cw6Iqm7OjmpXftuCdby/y7MdnUBS4r40nk/9TBxen3D9tRVEwmRTM1i8Bl2+ksWRjJAnJRoJ89YwZGMgrj4eg0+a+fiGBDkTFZfDfmReJSzTi5KCiZUM3ln7djPvbF936cAd8CqzHUtOdWAnHi8n6N7PIVBWnQq9XCOEJfA28huX7zZbngW35gnTlGfg8fPOUpab76H8r/njZtWR1CR+P2YkM1OV3NM8zm11CiHBgI5amsXUVdVAXP1f6vNevyDSu/m5MWGddEVCpVfT76IFiy28zph1txrQr1zlWNK27luDhwUWm0XnoaPBeA6ttQiWoPqp6ITlyOQY7UuOxopuB77TqAQ788XmTItOEBDoSv6uH1TaNRsXCqc2KLb9tE3dWfdeyXOdYiW4B/wMmCSG+UhQlzFairOe4xVEURSkwzi8rrwPQAXgFmF1RN+QlUNHX+yVwVlGUP7JaEPOXqwXaAz8JIb4ExmFp9j4MvK0oyuaSX0oZuftBzzHw71zo+xT4VLOdzlSCjp9CgMrG/YjJCJkGuHwUNsyBLsPBycY8/6/fB4kx4BkA7R6wPB/X2af1XwZq+0vM+rdyb7kkSQKYAjwDfIAlcFgRQoQCV0pQThgQmi9vE+BEnk2/AxPKeJ72UiHXK4ToAjyOpdm7MN5YOtY9CVwGxmN5fv86sF4I0UlRlIMlOHb59J8A2xZYOnSN+6Lg/ugb8GaPgtvz864GX2613nbjPHyQp2LTaSg88al1Gr8QGPYa1GhkCfandsLGuXDtFLz6W2mvxiYZqMtPnXXHqgZqYelQcRvYeidPSpLuRYqixAohpgEfCCGmAJfyJQkH2pagKFvjzi5m5XXG0mL2Npbv0EfLfsblUxHXK4TQAT8B3yiKcrqIPNnPSLTAAEVRwrPyb8cSuF8HHi7RhZSHiwf0HQcr/wcDJoBvvlYwDz94/+/iy9HYGC3iH2LJa0iFi0dg7Y9Zvcq/zk3TMV9fwsZdLLXqBZ/B6V3QqPwdcWWgLr+z+X4PBwYqipKYP6EQYgJZd+BdJ3az6vglSZLdfIPlme3H5AuiiqJkCCGOlqCMAtPGKIqSjqVXM8A2IcQtYI4Q4jtFUfaW75TLxd7XOwnwAr4VQnhkbcse7+cqhHBVFCUJiMvKdzo7SGcdM1kIsYeia+P21XuspVPZ8hkwfpr1Po0Oqpdg/gdbYw21eghtavl//faWDmtz3oL7H4PaRVxe+0GWQH3lhAzUVcRQLJ3JBBAEvAisFULcpyjKmbwJFUX5GfgZ4Jn1L9wdKz9I0l0mK1BMBqYBU/PuK0/Ttw3ZQbsOcMcCdQVcbyMgALhpI91h4BjQQlGUNCHEZWzc1GD5Pqy8lV0cnGHAs7BoMvR72npfeZq+88sO2revFR2os9lpogEZqMvvZN4JAIQQG4DrwIfYodnn3MazbPt6MzpnHY/MGYPeNbdzgtlk5teBP9Lq0Tbl7vhlNBg5uvgwF7dcIPl2EnoXPb71/Oj9Xj+r3uDZDMkGFk2YT1pcGgM+H0Rwy+I7Z5VV/LF4IlZFoNKrqP1ibauZxxSzwrnPz+Hd1RvfbmUfnhG+MpzE4wUaQfBs54l/H3+rbQnHEog9EEtmbCZCI9D76/Hp6oNTBa/PPG/NLV74/CxuLhqOL+6Ah1tuNwij0YxPt228OS6Ut5+qWeZjPPfpGf5aV3Ckz7MjgvliUt2c32cuuM6SjZFcDU8jNd1MkK+eAV19ePXxELxKOmFMxfoeS2evfA8Uy9X0nV+3rH/zNzffCfa83i+Aufn298MyZnsMlrHk2ZZhGSIWrCjKDQAhhCvQEUuP9MrTYzRsmA3L8o0iK0/Td37n91v+zd+8nt/erNFpteyzLoIM1HaW5y6z+C61pZCRksHRxUdoP66jPYsFLGOr172/mqTIRFqMbIVnDS/SEtK4eeR6oUs+7pu9h8qemstsMBOzJwa/nn4VUr7aSU3wSOte5PknNYk/HE/E2gg8Wnng19MPc6aZ2H2xXJ93nZCxITgUM6OXPSQmG5k+7xofPle7Qsr38dDy15SmVtv8fawnNolLzGRQN18a1nLGxUnN8fPJfDn3KjsOx7F1VhtUqsr9bOSnKIpBCPExWS1YebZnkFsTLhEhRDPgK2AxlmeveuA+4D/AOkVR9tjlpMvBnterKMpZ8j3Sy6qZA+zLNzPZV8BjWFoRPwYysAzncsIS8CuPVg+DXoTf37PertHl1oRL6vpZWPQFtOkPvtXBmAHnD8C/v0HTblAnT236wwctncwCamZ1JtsFm/+AJvdBg5JNQFUcGajtLGsShNrAKXuWG9yqOqdWnqDpkOY25+Muj+N/HyP6YhQjfhqFi2/usINaXWwHgohTt7i4+TydnuvK9ulb7HouRXGu5UzcgTi82nlVyKxgQi1wDC5s8iWLhOMJOAY7EjAgIGebU6gTF6ZdIPF0YqUE6p7tPPl5yQ2eGxlcITOD6bQq2jYpeuGV9yZYz3zWtZUnTg4qXp56nuPnk2nRwMbwlco3B0uHprrFJSxGJBANvIOlSTgVS8B+Dfi1nGXbk72ut8QURYkUQtyHpdl9DpYOZnuAboqi2PU7sES6DIN/foXIq+Urx80HXD0tnccSokDnaAnYI9+CriOs0wbUsgTmhCgwmyy17UEvQL/x5TuHPGSgLr8WQggfLNXLQCzPqL0AG5O/ll3LR1qz7r3VHFlwiM7Pd7Vn0ZxafZJaXWtbBenCmI0mdny3jRYjW+EW6GbX8yiOdxdvUv9KJXpnNAH9AorPUAEUk1Jg0Q+VVmWZKKWSeh289kQow189xle/hTH1lXqVc9ASyG7y1mgqtzatKMpcCjbVoiiKESj3C6QoSiQwurzl2EtFX29pjpm17zwwqCKOW6guwyw/+ak18PnG8pfv7gMTCkzEZtuz08t/vGLIQF1+i/P8PwrL5PX9FEX5x54HcfJypvGgppxYfoxmw1rg6m87qJpNJeu/oVJbRlYk304iJSoZ1wA3ts/YwqVtFzEbzfg3CqDD+M741Paxynd08RHMRhPNh7ck8mzlrkescdHg2caTuP1xeHfwRuth+1loYc31+Yl8zbPGFCMXpl3AlG5C66nFo4UHXh28rNJ5tPYgYk0E8UficW3oijnDTMzOGIRK4NHCo8zXVhoBPjrGDwvmh0XXmTi6BjUKqcUbjcV/FoQQqNXWr0NUXAa1BuwkIdlIaJADjw0MZOIjNQqkyz5GhlHh1MVkJv96hW5tPGlS587P2iZJ/5/IQF1GRd1hVpTmI1tyZt0pDs07QPdXehbYnxSZyF9P/llsOXmnAE2Jsay+dGzxEXzr+XH/W30wZZo49Od+Vr+5nOHfP5yzolZCeAJHFhyi7wcDUOuKXkqyonh38ib+cDzRO6IJHBRYYH9GfAaX/1f8Oskadw11JtbJ+d3B3wGHQAf0PnoUk0LS2SSiNkeREZtB4MDc42QH48h1kUSssdyoqF3UVH+0OjrvEnRGsZNJY2owZ0U4U2ZfYeY7BYeehN1Ko/nw4jsiVw9w4MTS3H4PTeu60KK+Kw1qOWMwmFm9PYqPfrzMpetpfPe29QxvyalGgnvvyPn9/vZezP1EDjmUJHuTgfou4uDqQLOHWnBo3gFajGyZs3JWNicvZ4bOGF5sOXl7cWfPga1x0NDvwwFoHCy1VN96viwYN49Tq07S/inLF/nO/20jpENNgltVXA/v4qgd1Xh18CJ6ezRenbxyVs7KpnXVEjIupNhyRL7m2ey1qLO51HFBpVNZau+dvNF5WY6TdC6JyPWReLTywKWeC4pRIXZ/LDcW3KDGmBro/SpnNSlPNy0vjqrOlDlXmfRoCDWrWdeqA330bPm1dbHl6PLMiw7w/MPW722fTt44O6r5YdENJo2pQe3quf0jnBzUbPm1NekZZo6fT2ba72GMevMEK6Y3R6ORS91Lkr3IQH2XaTq0OSdXnuDgH/vp+UZvq31qrRrvfE3VxXFws3zB+zcKzAnSAC6+rnhU9yT6UhQAl7ZfJOJ0BA/NGI4h2TKSIzPNshaBMd1IRooBnXPlBCmv9l7EHYgjels0QUOsV7ESamG3Dl1ujd2I2x9Heng6Oi8diqIQsTYC1wau+PfNHbLlXMuZyz9cJmpbFMEjip573J6efziYn5fc4PNfr/DLB9a1ap1WRdO6xTdBixKM8xze258fFt3gyNkkq0CtUglaNrT0U+jY3INGtZ0ZNPEoK7ZGMayXf2HFSZJUSjJQ32W0jlpaPNyKvb/sovkw6wH3ZWn6dgtwQ63X2B5opSg5z2fjrsViMhhZ/OyCAsk2fLwOnbOOJ5c8XWBfRVDpVHh39ub2xtukd0i32lfWpu8iZb04phQTphQTDkHWNwJCbRlLnRGdUbLy7MTFScPLj4Xw3v8u8tJo65pwWZu+bcludSkuprfM6ul9+UZasceVJKnkZKC+CzV+oAkn/j7Kgd/3WW0vS9O3SqOmRtsQIk6Gk5meiTarVp18O4n4G/GEdLRMnlG/dwOCmlmvTBNzKZo9P++iw9Od8KtfuTUoj9YexO6NJXqr9TLAZW36tiXxpGUCFIdAS2BWOVh6d6eHW98cKCYFQ4QBrWflT/Tx9EPV+H7hdT79xXryqbI2fduyeONthIBWDYru5b/raDwANasVPcRNkqTSkYH6LqTWqWk1ui07vt1qvV2rxrde6ScDaTOmLcsmLWH9f9fQ7KEWmDKNHJp3EL2LnsaDLBMFuPq74epv+4vaq5Y3AU0KduyqSCqNCp+uPkSste55LtQCx6DSBYrM+EzCV4Tj1tgNnacOs8lM8rlkEo4l4NHKI+f5tEqjwr2lO/EH41E7qnGp44LZaCbuYByZCZn49amYiViKotepeGNsKP+Zcs5qu06rymmWLqlrEek88/FphvXyp1Y1RwyZls5k89dGMHZwEDWzxpgnJBsZ/soxRvTxp3Z1RwSCQ2cSmbngOk3quDCoHDPESZJUkAzUd6n6fRpwfOkREm6WfylczxAvBn4xmH2z9/DvFxtQqVUENa9Gn//2x8mzYqfFLA/3Fu7E7I0hMzazXOWo9CrUjmpidsdgSjGBAJ2PDv++/ni08bBK69/HH723nvij8SQcS0BoBDofHdUfqY5zbedynUdZPToggG/nX+PS9fI1Obs6qfF00zL9zzCi4jIRQL1QJ6ZMqsvTD+W2pjjoVNQLdeKnJTe4FWVAoxZUD3TgxUeq88zwYPQlqKVLklRyIvv5k1S57vVFOX7qN1M0fL/hPf0anPnkjEjY3fOefg3cO22+s3ONSlWGmH3xnv5bUMbVKfRvQd76SpIkSVIVJgO1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYDtSRJkiRVYTJQS5IkSVIVJgO1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYDtSRJkiRVYTJQS5IkSVIVJgO1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYURbnT5yBJkiRJUiFkjVqSJEmSqjAZqCVJkiSpCpOBWpIkSZKqMBmoJUmSJKkKk4FakiRJkqowGaglSZIkqQr7P+fJHvhukSyOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "matplotlib.rcParams.update({'font.size': 16})\n", + "discovery_celltype = 'CD4T'\n", + "fig, axes = plt.subplots(1, 6, figsize=(7, 7), sharey=True)\n", + "for i, discovery_celltype in enumerate(['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']):\n", + " colors = [\"white\", color_dict[discovery_celltype]]\n", + " cmap1 = LinearSegmentedColormap.from_list(\"mycmap\", colors)\n", + " im1, bar = heatmap(rb_df[discovery_celltype].values.reshape((6, 1)), \n", + " list(rb_df.index), \n", + " [discovery_celltype],\n", + " cmap=cmap1, ax=axes[i], vmin=0.7, vmax=1)\n", + " bar.remove()\n", + " _ = annotate_heatmap(im1, \n", + " data=rbse_anno_df[discovery_celltype].values.reshape((6, 1)), \n", + " valfmt=\"{x:^}\", \n", + " textcolors=(\"white\", \"white\"),\n", + " threshold=1)\n", + " if i > 0:\n", + " axes[i].axis('off')\n", + "plt.subplots_adjust(wspace=0, hspace=0)\n", + "plt.savefig('rb_values.filtered_results.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# cdict = {'red': [[0.0, 0.0, 0.0],\n", + "# [0.5, 0.5, 0.5],\n", + "# [1.0, 1.0, 1.0]],\n", + " \n", + "# 'green': [[0.0, 0.0, 0.0],\n", + "# [0.5, 0.5, 0.5],\n", + "# [1.0, 1.0, 1.0]],\n", + " \n", + "# 'blue': [[0.0, 0.0, 0.0],\n", + "# [0.5, 0.5, 0.5],\n", + "# [1.0, 1.0, 1.0]]}\n", + "\n", + "# cdict['alpha'] = ((0.0, 0.0, 0.0),\n", + "# (0.5, 0.5, 0.5),\n", + "# (1.0, 1.0, 1.0))\n", + "# newcmp = LinearSegmentedColormap('alpha', segmentdata=cdict, N=256)\n", + "\n", + "c_white = matplotlib.colors.colorConverter.to_rgba('white',alpha = 0)\n", + "c_black= matplotlib.colors.colorConverter.to_rgba('black',alpha = 1)\n", + "cmap_rb = matplotlib.colors.LinearSegmentedColormap.from_list('rb_cmap',[c_white,c_black],512)\n", + "\n", + "\n", + "\n", + "mpl.cm.register_cmap(cmap=cmap_rb, name='alpha')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":62: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + ":63: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_yticklabels([\"\"]+row_labels)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVIAAAEWCAYAAAA0HB+VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABNjklEQVR4nO3dd3hUZfbA8e/JpBBCl2pdBERZBKSIIE1+ShVBQAQEkRZ6EQVsiCyrAoKISNnQi1JsQBCwAFIUparIIitdQJpKTU/O7487MyYQ6kzIBM7nefKQufedew8zkzNvu+8VVcUYY8zVC8rsAIwxJquzRGqMMT6yRGqMMT6yRGqMMT6yRGqMMT6yRGqMMT6yRGqMMT6yRHqdEhHJ7BiMuVFYIr0Oicgt6r7SQkTsPTYmg9kf2XVGRGoDm0Wkj4gUUtUU93aroRqTQSyRXkdExAW8BqwBTgErROQhALVrgY3JMMGZHYDxq1ZAsKo2BxCRhkADESkJnFHV2ZkanTHXKUuk1wkRuQmIBEa5Hz8M5ABiga3ATBE5pqqfp3pOkKfpb4y5epZIrx8dAFHVj939oY8DS4B5qnpERCYApUTkf0AdYK6qnszEeI25boh1nV0fRCQEKKCqh0SkE3A/MFlV14vILcBUoABO/2kRoDTwqqp+lGlBG3OdsMGm64C7iZ4IHHZPd8oJ/AD8112kDVAF2Ae8q6otgOeAiu7n50p9LBvhN+bKWNP+OuDp50zV3zlaRCJU9ayIVAU6At/jNPN3ucvkBWq5f+8jIkeBJar62zUM3Zjrwg3ftBcRCaSpQb7Gc+4Akog8CpQADuI0/ce5t28GhgA7gLFAPJAH2Aj0s0EoYy6f1Ughm4gUBR7AqZEdzsrxnJsAVXUxgIg8CUSKSDbgLuB34AvgJZzkOUpVj4vICuA+YFPq4wTaF44xgeSG7iMVkduBD4A3cfoQ14rIK9djPKo6D3gaKA58CbQEqgG5geXuJFoEqAAccsdTUkT+6X6+JVFjLuCGbdqLSF5gAJAf6K6qiSJSAJgETAc2qOrB6yEe9+CRnNPkvx14FWdAapyqxovIDJwBqTdx5qQ+AYQAvwEdbbqUMem7kWukj+BMWH/XnbTCVfUY0AU4AvwkIstFpGxWj0cdKakXMFHV/Ti136/dSbQWUBKYDLQH7gAGqWplnMtN6557XFsQxRjHjfyHUBH4U1W3AqhqrPvfIzjN3vnAOGC2iIxyz9PM0vGk03+6QlU3ux++CSzAGZQqDvykqivd+/IAuQBEpICIlPIcz6ZKGXNjJ9KqwBYA9wAM7t8rArWBf6vqJziDPrcC917n8bQHRuMMQFYCNrjPXwX4ETghInWARTjTq1aKSEVbrs+YGzuRfgB4alZxqbYPAD5S1YMiEqqqZwEXzpVCGbkc3ZXG84CngIjk8eXE7hH5X1Q13r1pE87c0grAv4HTQFGgOjBTVevi9NtGikiYiOQJ1OlSItJGRKpndhypiUh7ESmX2XEY/7mRE+ka4DER+VhEHhaRgiLSEidh/NtdxjMSdxC4BdKOXrsHbDIjnt+B3CISLiJPA9NFZI6nyX2lUv+f3Mm0H07y7AV8BkwEzgJxOJeaoqozVDUSp9thQerjBUpz372Qy0xguIhMEZHCARBTbmAK0ENEbPrhdeKGTaSqulVVHwBWAd1wEuWzwIuqmiwiYe5Bn9uBzsCHACKSX0QeE5EvgD0i4pcm9hXEcxvOAiULgHJAI5wBoq+BGSJSwpc4PBP6VfU5IFJV31bVGP7uw40/p382JzAn1fNvV1UVEZeI1M7kZDEDeExVq+JM6ZorIsUyMR5w3qtjwDZVTRKRwoFWYzZX7oZNpB6q+i7wJBCG0zdYwL09XkTyAxNwFv/4yd1fOA7nSqEzOFcGHRKRJiLS+xrFMx5n5abtOLVGVdXFqvofd0wlRKSxiPS6yvOniJuqJqTatRxoLCKl3Qnd89nJBQSLSLCIPAKsck/+HwU86E4W17yG6m463+y5IEFVBwGHcb58MqXWLCL3ATfjXLLr6QqpjdNFcq+IhF3rmC4mELtFAtUNn0gBVDVJVb/DuaLnCRH5RkTeBKJxklUfEVmA00/6GvAt8Cfwjar+gXOZ5SPuAZiaGRjPYpxkGSkiLXBqrkVFZL+I/Bunj3UpztzQulcbj3u6lJ6z7X2cZv4EEWmeqk+0IU4tegjQFCdJHAK6AveKSO5UA1LXJHm5z/MxztQxRCS7e9d24EH3/0fd3xeFrnFM7XCmkrlEJB9QBmeO8Fagl4h0dXfZZOrfZqpukREiEhUI3SKB7IadkH8x4lyfnhf4FfgfTu3hR5yFP14BOuFMUp/rnuvpGWn/FKfGswz4l6ru8XM8O4H1OLWYnsAbqvq9iPTDmTg/U1V/93c87tqpJxmGAtlV9YSI5MBp1u/BSfqPqupJEXkXJ+EXAGJUtc+FjpcRRKQ10EhVW4lIsKomubdvB4YCc3H6fx92x/gj8IKq/pWBMbUCmqlqcxEZivPlczvO6/YWkA+ny2a9uu9kIM5c4tiMiukS8S4GhqvqGhEZ4461ZaoBSZOK1UjT4W4qz1LV71T1T1U9oap34FyTvgp4FPjOk0TdWuEk2iY4NdS3MiCedaqajNPsP4CTVAFOAnU9SdTf8aRKoiHu5r5nVkFunEWiD+G+8klEHsOZ2D9RVTurah8RqSQiA91fCBl6uak70U/HqRmn3t4NJ7l/AfwHp3tmnDv+E8CXIlItg2IKw+mvjXRvugdoDtyJkzj343ymfgOOisjTIjIJWCIi92dETJeItzTQAPDU5F/HmRZntdILsFHDy+BOIImqOkJEyuOMpFcVkR/c/YX/xJnX+auqfg987/6Dzqja12Gc6+SbishXODXk91LFmyHxqLPmKUAHcWYLbAZGq+qwVMUicWp8R8W5GV+kO75uwGsi8jjQHUjIoISaA1gNzBeRicA6cW678gbwGM4sg2Scy2K3u58zUEQigaQMiAecAblnVPVPcS4FDsNp5SgQ7e5+qQvchjP17CTOF/YYnPf6mnF3QSzEafF0E5HxOC2aWFXddy1jyUoskV4GTwJxJ4+jQF/gr1SJpS7OMnQr3OWCPQM1GZEsVHWjiHTGGdBpBXzv7sP0yNB4VHW8iMQAX+FMxcJ9nsLAcWCzqsaJSHGcPsGCOIk9EqffMjSjmoiq+ifwsIjUAwbjXF4bA7zkbqZ2wun73umO2dP0/xBIuMBhfY3pOM48YVT1L3FmDtyJ04+cAtRzx3MP0EdVD3iemwmDYq1w+mzHA+NFZBxO3/hKdzx2n690WCK9Aqo6U0S+Bo65m9iISA2c/qN1qrrDXS6jajapY1kPVHcPWHj79q5VPKo6PZ3NR3Ga+Z+7a8WtgJ2q+oC7qeqZSfAxzgr+GUZVlwHLROQ2Vf0t1eBNAeCk50vQ89pkZP9oOiYA4e7E3hbnAot5ODXX+NT9uhnZDXKuVN0ieVNtdgF1VHWJOx5LoumwRHqF3P1ZALgHWx7DGcH3fGNf03U73TWwgIjH/Uf2kojMUNU/RGQrziAYqtrZ3fdWWVV/uBbxuM/rXfHf3VeZiFNLRURcni/Ea0lVx7rPfxPOpcE7gM+B3sD9qvrZtY7JLQfOhSHvi8hUnC/FVrhnOlzrz3ZWYqP2PhCRcJw+t6OZ+OEPmHg8tT79ezGTosD7OM3WfwG7MrtGIyI9cO5h9Zyqfisiea9xbfTceArh1E73isgQIL+q9siseNwx1cV5v7YDP6rqaEuiF2eJ1A88H7JA+bAFYDxDcAZSxqjqjwEQT3OcOwPswrn89evMqJmeS0SaAt1U9ZHMqi2fE082Tbvug7kAS6Qmw6ROBu55rfGBkNg9RORBnL7kgOn3E5GnVXVmZsdhrowlUpOhPKPOgZRAs4JAaU2Yy2OJ1BhjfGRXNhljjI8skRpjjI8skRpjjI8skfqJ+1rtgGHxXFygxQOBF1OgxeMvIjJVRI6KyM8X2C8i8q6I7BSRn9zra1yUJVL/CbQPncVzcYEWDwReTIEWj79Mx1nf4ELq46wOVgLnNZhwqQNaIjXG3FBUdTXOZdQX0hhnbV9VZ4H1PCJS5GLHtGvt/76hnG8HcaaRBcxcMovn4gItHgi8mPwVT1hYWHx8fHy2S5e8MBG5kji28feauQBRqhp1Bc+/BWdtWI8D7m2/p1/cEikA136lsvR55vT269cvkyNxvP322wCsWbMmkyNxVK/u3D4oLi5wrlrMls3JD/3798/kSNL6z3/+k9kh+F1Q0OU1oFNSUuJUtaIPp0ovIVw0kVsiNcZkCVeQSH091QGctSE8bsVZCeuCrI/UGBPwRISgoKDL+vGDRcDT7tH7B3DWr71gsx6sRmqMySL8lCQRkTlALSC/iBzAuZOCZ93cicASnHtW7cS5u0L7Sx3TEqkxJuCJCMHB/klXqtrqEvsVuKI1YS2RGmOyBH/VSDOCJVJjTMDz9JEGKkukxpgswRKpMcb4wGqkxhjjB5ZIjTHGB/4ctc8IgRuZMcakYjVSY4zxUaCsiZEeS6RZzJ9//smSJUu8j0+ePEmVKlWIj49n69atZM+eHYAHH3yQokWLcvDgQVasWIHL5aJBgwbkyZOHuLg4lixZwuOPP+63D2dycjKRkZHkz5+f4cOHs3PnTkaNGkVMTAxFihRh0KBBREREsHXrVkaNGkVoaCivvvoqt956K6dPn+a1115j5MiRPsfTpUsXli5dSoECBdi0aRMAbdq04ddffwXgxIkT5MmTh++//55vv/2WPn36EBoaysyZMylWrBgnTpygbdu2LFq0yC+vzZ9//kl0dLT38cmTJ3nwwQepUKECABs2bGDVqlV0796d7Nmzc/DgQb788ktcLhePPvooefPmJS4ujsWLF9OsWTO/xJSQkEBiYiIAISEhhIaGEhsb671GXVURESIiIkhKSiI+Ph6A8PBwgoKCUFViY2MJDw+/ZsnNBpsuQkQKA+8AlYB4YC/QF/gR+AXIBpwGxqnqjHOeWwn4DngSWAksd+8qDCQDx9yP71fVhAz8b1xT+fLlo02bNoCzOMOkSZMoXrw427Zto3z58lSsmHbRm82bN/Poo49y6tQpfvzxR2rWrMn333/P/fff79c/go8++og77riDs2fPAjBixAi6d+9OuXLl+Oyzz5gzZw6dOnVi7ty5DB06lMOHD7NgwQJ69uzJjBkzaNu2rV/iadu2LV27dqVTp07ebbNnz/b+PnDgQHLnzg3AmDFjmDNnDvv27SMqKorhw4fz5ptvMmDAAL+9Nvny5aNdu3aA835NnDiR4sWLA3Dq1Cn27dtHzpw5veU3btxI48aNOXnyJD/88AMPPfQQ69ato3Llyn6JKTk5mcTERO8XbmxsLMHBwYSHh3vLxMXFec+VmJhIeHg4KSkpJCQkkC1bNuLj4wkNDb3mNcRATqSZFpn7fuefAl+rajFVLQW8BBQCdqnqfap6D9ASeFZE2qd6rgsYDnwOoKp/qGo5VS0HTARGex5fT0n0XL/99hu5c+cmV65cFywTFBREUlISSUlJBAUFceLECc6cOcOtt97qtziOHj3KunXraNiwoXfb/v37KVu2LAAVK1Zk1apVAAQHB5OQkEBcXBzBwcEcPHiQ48ePU65cOb/EUq1aNfLly5fuPlXl448/pkWLFoBTG4uNjSUmJoaQkBB2797NoUOHvMv1+dv+/fvJkyePN5GvXLmSGjVqpElIqd8vl8vlfb9uu+22Cx32iqSkpOByuRARRASXy+WtnYLzGiUlJRESEpJmm6eWmpKSgqpe84Efz2DT5fxkhsyskT4EJLoXCQBAVX8QkX+kLqSqu0WkHzAKmObe3Av4GKcme8PasWMHd999t/fxjz/+yPbt2ylUqBA1atQgW7ZsVKpUia+++org4GDq1avH6tWrqVq1ql/jGDt2LN26dSMmJsa7rWjRoqxdu5bq1avz9ddfc/ToUcBpZr/11luEhYXx8ssvM378eDp27OjXeC7km2++oVChQt4aYf/+/enRowfh4eFMmTKFF198kcGDB2fY+X/55Rfv+7Vz505y5sxJwYIF05SpXLkyX3zxBcHBwTRo0ICvv/6aatWq+S2GoKAg4uPjvWvfehK2R3JycppmdGhoqLeG6qmNhoWF+S2eK409UGVmIi0NbLrMspuBuwFE5BbgcaA2V5lI3Tf1ioSsuwBucnIyu3bt4sEHHwSgTJky3ubft99+y+rVq6lTpw4FCxakVStnjYYDBw6QI0cOAD777DOCgoKoUaMGERERVx3Ht99+S968eSlZsiRbtmzxbn/hhRcYM2YMM2bM4MEHH/TWcEqUKMHEic535w8//ED+/PkBGDx4MMHBwfTo0eOCNUpfzZ8/nyeeeML7uGzZsqxevRqAtWvXUqRIEVSVNm3aEBISwrBhwyhUqJBfzu15v6pXr05iYiLfffddmlg8ChYsyFNPPQU4LY4cOXKgqkRHRxMUFEStWrV8er9cLhehoaHExMR4a6SpnVsbdblc3vMlJSV5a8+xsbEAhIWFXZMEF+h9pIEbWVqpO2PeAQaqavLVHkxVo1S1oqpWjIzMmvf32rt3LwULFvR+yCMiIggKCkJEKF26NIcPH05TXlX5/vvvqVy5Mt999x1VqlThnnvu4YcffvApjq1bt/LNN9/QokULhgwZwubNmxk6dCh33HEHb7/9NpMnT+bhhx/m5ptvPi+emTNn0q5dO6ZNm0aHDh2oU6cOH3/8sU/xXEhSUhILFy6kefPm5+1TVYYNG8aLL77I66+/zqBBg2jVqhXjx4/32/n37Nnjfb9OnDjByZMnmTFjBlFRUZw+fZpZs2Z5+5c9MXnep3Xr1lG1alVKlSrF5s2bfY4lNDSUiIgIsmfPniZBeZr16TWPVZWEhATCwsK8faQhISFpugUymqc74lI/mSEza6TbgPM/1em7D9ju/r0iMNf9guUHGohIkqou8HuEASx1MxHgzJkz3trmrl27uOmmm9KU/+9//0vRokXJli0biYmJ3g+dr38IXbp0oUuXLgBs2bKFuXPnMmjQIP766y/y5s1LSkoKM2fOpHHjxmmet2zZMqpUqULOnDmJj4/3fglk1G1EVqxYwV133ZVu3/Ds2bOpV68eefPmJSYmxrtAcOquCl9t377d+34VKFCAHj3+XqUtKiqKNm3aeAeAALZt28add9553vuVlJTkcywpKSkEBQWRkpJCUlKS97zJyckXXBzZk2A9iUpEvH2n10og10gzM5GuAN4Qkc6qOgm8I/HZUxdy95mOBMYCqGrRVPumA4tvtCSamJjI/v37efjhh73b1qxZw7FjxxARcuXKxf/93/+lKf/f//6Xpk2bAlC+fHmio6O9U6IywldffcWnn34KQI0aNdKcJy4ujmXLljFq1CgAWrRowSuvvEJISIjPfZRPP/00a9as4fjx4xQrVoxBgwbxzDPP8OGHH3oHmVKLiYlh9uzZLF68GIDevXvTqlUrQkNDmTFjxnnlr0ZiYiL79u2jTp06l11+27Zt3tpzxYoVWbRoES6XK82A3tWKi4vzJsCwsLA0I/QXqo16Ru/h70E6IM1of0YK9Ka9XMtvlPNOLnIzTlO9As5d//biTH/6ibTTnyao6rR0nj8dJ5F+lGrba8AZVR15mWFooEz0tZvfXZzd/O7yBVLff7zDp7uIRkREaOoW2MVs3rx5k483v7timTqPVFUPAedXE+CyvuZU9Zl0tr3mW1TGmEAUKBWe9NiVTcaYLCGQm/aWSI0xAS/Q+0gtkRpjsgRLpMYY4yPrIzXGGB/Yws7GGOMH1rQ3xhgfZObln5fDEqkxJkuwGqkxxvjIEqkxxvggvSX/AoklUmNMlmA1UmOM8UGgDzZl6upPAeKGfwGMyUhhYWE+r/6UJ08erVGjxmWVjY6OvrFWfzLGmMtlTfsAN2vWrMwOAXBuJQyBcymcp7WS+l5Mmem+++4DAnM90sutLV0rvt5CJtAEetPeEqkxJuAF+iWigVtXNsaYVPx18zsRqSciO0Rkp4i8kM7+3CISLSI/isg2EWl/qWMGboo3xphU/NFHKiIuYBzwCHAA2CAii1T1v6mK9QD+q6qNRKQAsENE3lfVhAsd1xKpMSbg+XFh5/uBnaq6233cuUBjIHUiVSCnONXbHMCfwEVv32qJ1BiTJfhpsOkW4LdUjw8Alc8p8x6wCDgE5ASeVNWUix3UEqkxJku4ghppfhHZmOpxlKpGuX9PLxufO5e8LvADUBsoBnwpImtU9dSFTmiJ1BgT8K7wWvvjF5mQfwC4LdXjW3Fqnqm1B4apM/9vp4jsAe4G1l/ohDZqb4zJEoKCgi7r5xI2ACVEpKiIhAItcZrxqe0H/g9ARAoBJYHdFzuo1UiNMVmCP/pIVTVJRHoCnwMuYKqqbhORru79E4GhwHQR2YrTFTBQVY9f7LiWSI0xAc+ft2NW1SXAknO2TUz1+yGgzpUc0xKpMSZLCORLRK2P9BLOnj3L2LFjGThwIAMHDuTXX3/lzJkzDB8+nP79+zN8+HDOnj0LwP/+9z9efvllBg8ezJEjR7zPHzFiBNf7KlvJycm0atWK3r17p9k+c+ZMypcvz19//QU414C3aNGCNm3asH//fgBOnz5N9+7d/fIadenShdtvv50KFSp4t7Vp04bKlStTuXJlSpYsSeXKzmyXb7/9lkqVKvHggw+ya9cuAE6cOEGjRo38+n4dPHiQTZs2sWnTJn755RdSUlLYvn07mzdvZvPmzaxfv57NmzcDcPLkSTZt2sSWLVuIjY0FICkpia1bt/otpoSEBM6ePcvZs2dJSHDmmMfGxnq3nTlzxvuZTkpK8m5PSXFmAKkqMTEx1/Qz7RlsupyfzJCpNVIRKQy8A1QC4oG9QF/gR+AXIBtwGhinqjPcz8kNzAZux4l/JE5n8XL3YQsDycAx9+P7L3ZFwqXMnj2be++9l169epGUlER8fDzR0dGUKlWKRo0aER0dzeLFi3nyySdZunQpvXr14vjx4yxfvpzWrVuzcOFCHnvssYD+NvWHOXPmULRoUc6cOePddvjwYb777jsKFy7s3TZr1ixGjhzJoUOH+Oijj+jXrx+TJk2iY8eOfnmN2rZtS9euXenUqZN32+zZs72/Dxw4kNy5cwMwZswY5syZw759+4iKimL48OG8+eabDBgwwG/vV3x8PAcPHqRChQq4XC62b9/OsWPHuOeee7xldu/e7U0ABw8epFSpUsTFxfH7779z5513sn//fm677Ta/xJScnExiYiLZs2cHnAQaHBxMeHi4t0xcXJz3XImJiYSHh5OSkkJCQgLZsmUjPj6e0NDQa/6ZDuTVnzItMvdVA58CX6tqMVUtBbwEFAJ2qep9qnoPzqjas6mud/VcvlUWqAWMAk6rajlVLQdMBEZ7HvuSRGNjY9mxYwc1a9YEIDg4mIiICDZv3kz16tUBqF69Ops2bQLA5XKRkJBAfHw8LpeLI0eO8Ndff3H33XdfbQhZwpEjR1izZg1NmjRJs33UqFH07ds3zR9ccHAwcXFxxMXFERwczG+//cbRo0fT1CB9Ua1aNfLly5fuPlXl448/pkWLFgCEhIQQGxtLTEwMISEh7N69m0OHDnnfW39RVVJSUrz/hoaGptl37NgxChYsCDg1r5SUFFJSUhARYmNjiY+PJ0+ePH6JJSUlBZfL5b0u3eVykZiYmCaepKQkQkJC0mxTVW9sqpopC4j461r7jJCZNdKHgMRzOnl/EJF/pC6kqrtFpB9OwpzGVVy+dbWOHj1Krly5mDRpEvv376do0aK0adOGU6dOeT/YefLk4dQpZ55uo0aNmDZtGqGhoXTp0oU5c+bQrFmzjAgtoIwcOZI+ffoQExPj3bZq1SoKFizIXXfdlaZshw4d+Pe//022bNkYOnQoo0ePpnv37tckzm+++YZChQpRvHhxAPr370+PHj0IDw9nypQpvPjiiwwePNiv5wwLC+PWW29l/fr1BAUFkTdvXvLmzevdf+rUKUJDQ701wttuu41ff/2VoKAgSpYsye7du/nHP/7ht3iCgoKIj4/3NsuTkpLSNIeTk5PTDOyEhoZ6a6ie2mhYWJjf4rlc/hxsygiZmUhLA5sus+xmnAmxcBWXb12t5ORk9u7dS9u2bSlWrBizZ88mOjr6guXvuOMO7x/iL7/8Qp48eVBV3nvvPYKDg2nVqpW3WXm9WL16Nfny5aNUqVJs3OhcTBIbG8uUKVMYN27ceeVLlizJzJkzAdi0aRMFChRAVRk4cCDBwcH069ePm266KUNinT9/Pk888YT3cdmyZVm9ejUAa9eupUiRIqgqbdq0ISQkhGHDhlGoUCGfzpmYmMgff/xBpUqVCA4O5pdffuHo0aPeGujRo0cpUKCAt3yOHDkoV64c4PSXhoWFoaps374dEeHOO+9MU6O9Ui6Xi9DQUGJiYtKd5H5ubdTlchEREeHd56nxefpvw8LCrlmCC+TuscBN8WmlfgU9l2/dDJQD3hORXFd0MJFIEdkoIhujoqIuWC5fvnzky5ePYsWKAVCpUiX27dtHrly5OHHiBOAMTuTKlfb0qsqiRYto0qQJCxYsoGnTplStWpUvvvjiSsLMEn788UdWrVpFw4YNefHFF9m4cSODBg3i4MGDtGzZkoYNG3L06FGeeuopjh//eyqeqjJlyhQ6d+5MVFQUXbt2pUGDBsyZMydD4kxKSmLhwoU0b978vH2qyrBhw3jxxRd5/fXXGTRoEK1atWL8+PE+n/fEiRNky5aN0NBQgoKCuOmmm7wtGFXljz/+SJNIU8fk6Rvdv38/d9xxBwULFuTQoXMvwrlyoaGhREREkD179jQ1PU+zPr1mu6qSkJBAWFiYt480JCQkTbdARvPThPwMkZk10m3A+Z/q9N0HbHf/fsWXb53Lfd2tJ4PqhVbIz5MnD/ny5eP333+nSJEibNu2jZtvvpmbb76ZNWvW0KhRI9asWUP58uXTPG/t2rWULVuWiIgIEhISvH03nhHS60mvXr3o1asXABs3bmTmzJmMHDkyTZmGDRsye/bsNE3a6OhoqlWrRq5cuYiLi/P+EWTU6vcrVqzgrrvu4tZbbz1v3+zZs6lXrx558+YlJibGG0vqroqrFRYWxunTp0lOTiYoKIgTJ06QI0cOAP766y/Cw8PTbSofPXqUfPnyERIS4h0tFxGSk5N9jiklJYWgoCBSUlJISkryDjx5YkwvGXkSrKdWKCLevtNrwW7HfGErgDdEpLOqTgIQkUpA9tSF3H2mI4Gx7k2ey7fWXO7lW75o27YtEyZMIDk5mQIFCtC5c2dSUlIYN24cq1ev5qabbqJnz57e8vHx8axdu5b+/fsDUK9ePcaOHUtwcDDdunXLqDCzlNjYWBYvXuxt+j/11FP079+f4OBg3nzzTZ+O/fTTT7NmzRqOHz9OsWLFGDRoEM888wwffvihd5AptZiYGGbPns3ixYsB6N27N61atSI0NJQZM2b4FAtArly5yJ8/P1u2bEFEyJEjB0WKFAFIM8iUWnJyMkeOHKF06dIA3HLLLWzfvt3bb+qruLg4bwIMCwtLM0J/odqoZ/Qe/h6kA9KM9me0QG7aZ+pdREXkZpzpTxWAOP6e/vQTaac/TVDVaameMx0ogtPkH6aqs1Md8zXgjKqmrRZd2AVrpNea3bPp4uyeTZcvkO7ZFO/w6S6ihQsX1nbt2l1W2REjRtxYdxF1X4p1fjUBLvg1d6nLt1T1Nd8jM8YEErv5nTHG+IFNfzLGGB9ZjdQYY3xgo/bGGOMHViM1xhgfWR+pMcb4wEbtjTHGD6xGaowxPrJEaowxPrBl9Iwxxg+sj9QYY3xkidQYY3xgTfsswLPqUqAItDuOelZdChSeFZcCiWelfXM+f92axGqkxhjjI7tENMD9/PPPmR0CgHchX89dSTOb586egVIT8NTUt2/ffomS147ntsqehbwDxX/+85/MDsGvbEK+Mcb4gSVSY4zxkQ02GWOMj6xGaowxPrA+UmOM8QMbtTfGGB9ZjdQYY3xgTXtjjPEDG7U3xhgfBXKNNHBTvDHGuHkWLbmcn8s4Vj0R2SEiO0XkhQuUqSUiP4jINhFZdaljWo3UGJMl+KNpLyIuYBzwCHAA2CAii1T1v6nK5AHGA/VUdb+IFLxkbD5HdgNITk7miSeeoEePHgCMGjWKRo0a0bRpU/r06cOpU6cA2LJlC02bNqVly5bs378fgFOnTtGlSxe/ruiUnJxM69at6du3L+BcV12/fn1at25N69atWbt2LQA//PADLVu25Omnn+a3334D4PTp0/Ts2TPgVpjyt+TkZJo2bUq3bt0AOHHiBB07dqRevXp07NiRkydPArB582aaNGlCixYt2LdvH+C8Z507d/bLa/Tnn38yY8YM78+7776bZi2FDRs2MHLkSGJiYgA4ePAg06dPZ9asWfz1118AxMXF8dFHH/ntPUtISODs2bOcPXuWhIQEAGJjY73bzpw5w9mzZwFISkrybk9JSQGcNQ9iYmKu+WfIM+B0qZ9LuB/Yqaq7VTUBmAs0PqdMa+ATVd0PoKpHL3XQLJ1IReQZEbk5o88ze/ZsihYt6n1cpUoVPv30Uz755BPuuOMOJk+eDMCMGTMYPXo0vXv3Zt68eYCT5Dp16uTX/p05c+akiQegdevWfPDBB3zwwQdUq1YNgPfff58RI0bQvXt3PvroIwAmT55M+/btA7q/yR9mzZpFsWLFvI8nT57MAw88wLJly3jggQe879n06dN555136Nu3L3PnzgVgwoQJREZG+uU1ypcvH+3ataNdu3a0bduW4OBgihcvDjgJe9++feTMmdNbfuPGjTRu3Jjq1avzww8/ALBu3ToqV67sl3iSk5NJTEwke/bsZM+enaSkJFJSUggPDyciIoKIiAiCg4MJDnYaq4mJiYSHhxMWFuZNuvHx8YSGhl7Tz9DlJlF3TPlFZGOqn8hUh7oF+C3V4wPubandBeQVka9FZJOIPH2p+LJ0IgWeATI0kR4+fJg1a9bQrFkz77aqVat6P2hly5blyJEjAAQHBxMXF0dcXBzBwcH89ttvHD16lEqVKvktniNHjvDNN9/QpEmTS5YNDg4mPj7eG8+BAwc4evSod1Wn69Xhw4dZtWpVmvdsxYoV3tesSZMmLF++HPj7NYqNjSUkJIT9+/f7/T3z2L9/P3ny5CF37twArFy5kho1aqRJSEFBQSQlJZGUlITL5eLEiROcOXOG2267zS8xpKSk4HK5vEnH5XKRmJjo3a+qJCUlERISkmabqiIipKSkoKrez/+1dAWJ9LiqVkz1E5X6MOkc+tyqdTBQAWgI1AUGichdF4vtkolURP4hIr+IyGQR+VlE3heRh0XkGxH5VUTuF5F8IrJARH4Ske9EpIz7ua+JyFR3Zt8tIr1THbef+3g/i0jfVNufdh/nRxGZJSI5RWSPiIS49+cSkb0i8gRQEXjf3SkcLiIVRGSV+1vkcxEpcqn/36WMGDGCZ5999oL9M59++qm3BtipUyf+9a9/MXv2bFq1asW7775Lz549fQ0hjVGjRtG7d+/zagPz58+nZcuWDBkyxNvV8Mwzz/D6668zZ84cWrRowbhx47xN3evZsGHDeP7559O8Z3/88QcFChQAoECBAvz5558AdO7cmcGDBzNr1ixat27NmDFj6NWrV4bE9csvv3D33XcDsHPnTnLmzEnBgmm73ypXrswXX3zBpk2buO+++1izZo338+UPnkTtSY6e3z2Sk5PTrEYfGhpKXFwciYmJhISEEB8f77eFmq+Un5r2B4DU30q3AofSKbNMVc+q6nFgNVD2Yge93K+V4sATQCSwAacPoRrwGPASTlV5i6o2EZHawEygnPu5dwMPATmBHSIyASgDtAcq43xDfO8eGUsAXgYeVNXjIpJPVU+LyNc43w4LgJbAx6r6oYj0AJ5X1Y3uRDsWaKyqx0TkSeB1oMNl/h/Ps2rVKvLly8c///lPNmzYcN7+qKgoXC4Xjz76qPMfvftu3n//fcBpohUoUABV5fnnnyc4OJjnn3+e/PnzX204rFmzhnz58nHPPfewceNG7/bmzZt7uw8mTJjA6NGjGTx4MCVLlmT69OmA0xfoiefFF18kODiYvn37ctNNN111PIHo66+/9r5n69evv2T5e+65x9uk37hxozex9evXj+DgYAYMGODTe+aRnJzMrl27qF69OomJiXz33Xc88cQT55UrWLAgTz31FAC//fYbOXLkQFWJjo4mKCiIWrVqERERcdVxuFwuQkNDiYmJ8dZIUzu3NupyubznS0pK8iaq2NhYwFn9/lrM70wv1qu0ASghIkWBgzj5pPU5ZRYC74lIMBCKk6dGX+ygl/sK7FHVraqaAmwDlqvzNbYV+AdOUp0FoKorgJtEJLf7uZ+parw7sx8FCrnLf+rO+GeAT4DqQG3gI3dZVPVP9zEm4yRe3P9OSyfGkkBp4EsR+QF4Befb5jwiEunpP4mKikqvCOAMHq1cuZK6devSv39/1q9fzwsvOLMlFi5cyKpVqxg2bNh534KqSlRUFF26dGHChAl0796dRx99lA8++OCC57ocP/74I6tXr6ZRo0a8/PLLbNiwgUGDBnHTTTfhcrkICgri8ccfZ9u2befFM2XKFDp16sSkSZPo0qUL9evX9yaQ68nmzZtZuXIlDz/8MM899xzff/89AwYM4KabbuLYsWMAHDt2jHz58qV5nqoyceJEunbtyrhx4+jZsyeNGjVi9uzZfolrz549FCxYkIiICE6cOMHJkyeZMWMGUVFRnD59mlmzZnkHeDzxfPfdd1SpUoV169ZRtWpVSpUqxebNm32OJTQ0lIiICLJnz56m9umpoabXbFdVEhISCAsL8/aRhoSEpOkWyGj+qJGqahLQE/gc2A7MV9VtItJVRLq6y2wHlgE/AeuByap60dXfL7dGGp/q95RUj1Pcx0hKL+Z0npvsLn+h/61wfn8FqvqNu4uhJuC6wH9KgG2qWuWC/4u/jxcFeDKoXmiF/L59+3pHxjds2MD06dMZNmwYa9euZerUqUybNo3w8PDznrdw4UJq1KhB7ty5iYuL885v83yLX62ePXt6uwo2btzI7NmzGTp0KMePH/fWmlauXJlmkAVg8eLFVKtWjVy5chEXF+f944mLi/MpnkDUr18/+vXrB8D69euZNm0aI0aM4K233mLBggV07tyZBQsWULt27TTPW7BgATVr1jzvPfPXa7R9+3Zvs75AgQLeGSDgtGzatGlD9uzZvdu2bdvGnXfeSbZs2UhMTPQmiaSk9P7UrkxKSgpBQUGkpKSQlJTkPW9ycvIF52J6EqwnUYmIt3vgWrmMZvtlUdUlwJJztk085/FbwFuXe0x/9RivBp4ChopILZzO3lMX+Y+vBqaLyDCcBPg40Banaf+piIxW1T/cTXtPrXQmMAcYmuo4p3G6DAB2AAVEpIqqrnM39e9S1bTVMz944403SEhIIDLSGQwsU6YMr776KuA0eRYtWuS91cPTTz/Ns88+S0hICCNGjPB3KACMGTOG//3vf4gIRYoU4eWXX/bui4uLY/HixYwbNw6Ap556igEDBhASEsLrr7+eIfEEos6dO/Pss8/y8ccfU6RIEUaP/rulFhsby8KFC5k0aRIA7dq1o0+fPoSEhDBy5Eifz52YmMi+ffuoU6fOZZfftm0bzZs3B6BixYosWrQIl8tFw4YNfY4nLi7OmwDDwsK8CSoxMfGCtVHP6D1ASEiIt1KQXkUio/grkWYEudQ3ioj8A1isqqXdj6e7H3/k2QfUwGluFwVigEhV/UlEXgPOqOpI93N/Bh5V1b0i0o+/+y8nq+o77jLtgP44tdctqvqMe3thYA9QRFVPuLc1A94AYoEqOM37d4HcOF8S76jqpEu8BheskV5rds+mi7N7Nl2+QLpnU7zDp1u/FitWTC+3ItK8efNNqlrRl/NdqUvWSFV1L07fo+fxMxfYd+6kVlT1tXMepz7O28Db6TxnBjAjnVCq4fSfnkhV9mPg41RlfsBJ6saY60jqvtxAlCUuERWRsUB9oEFmx2KMyRyWSH2kqhkzsc8Yk2UEShdTerJEIjXG3Nguc7J9prFEaozJEiyRGmOMjyyRGmOMj2ywyRhjfGB9pMYY4weWSI0xxkeWSI0xxkeWSI0xxkeWSI0xxgeBfq39JVd/ugHc8C+AMRkpLCzM59WfSpYsqRMnTrx0QaB27dqBt/qTMcb4YsGCBU38cRxr2gc4z21mM1toaCgQePF47pKa2QoVKgQE1h+Up0X3xx9/ZHIkaXnuQX89CaT3/VyWSI0xAc8m5BtjjB8E8mCTJVJjTJZgNVJjjPGRJVJjjPGB9ZEaY4wfWCI1xhgfWSI1xhgf2ai9Mcb4wPpIjTHGDyyRGmOMjwI5kQZup0OAiIyM5NZbb+W+++7zbhs6dChFixalUqVKVKpUiaVLlwLw7bffUqFCBapWrcrOnTsBOHHiBA0bNsRfq2wFWjxxcXHUq1eP2rVrU6NGDUaMGAHAX3/9RYsWLahSpQotWrTgxIkTAKxfv56HHnqIunXrsmfPHgBOnjxJy5Yt/RZTIDl48CCNGzemSpUqPPjgg/znP/8BoGPHjtSqVYtatWpx3333UatWLQC+//57atSowcMPP8zu3bsB5/V54okn/Pb6HDx4kMcff5wHH3yQ6tWrExUVBcDPP/9M/fr1qVmzJm3atOH06dPemGrWrEmdOnXSxNSiRYvr8j27GlkqkYpIsoj8ICLbRORHEeknIkGp9t8vIqtFZIeI/CIik0Ukuy/nbNu2LdHR0edt79WrFxs2bGDDhg3Ur18fgHfeeYe5c+fyr3/9y/vhfOONNxg4cKDfvk0DLZ6wsDA+/vhjVqxYwfLly1m5ciWbNm1i7NixVK9enXXr1lG9enXGjh0LwMSJE5kyZQovvfQS06dPB+Dtt9+md+/eAV3juFoul4t//etfrFu3jmXLljFlyhR27NjBlClT+Prrr/n666959NFHadiwIQDjx49n2rRpvPLKK0ybNg2AkSNH0rdvX7+9PsHBwQwZMoRvvvmGpUuXMnXqVHbs2EG/fv0YNGgQq1atokGDBowbNw6ACRMmMG3atDTv2ahRo/wa0+Xw9JNe6iczZKlECsSqajlV/SfwCNAAGAwgIoWAD4GBqloSuAdYBuT05YTVq1cnb968l1U2JCSEuLg4YmJiCAkJYdeuXRw6dIgaNWr4EkJAxyMiREREAJCYmEhSUhIiwueff06LFi0AaNGiBcuWLQOcP+K4uDhiY2MJCQlh7969HD58mKpVq/otpkBSuHBhypYtC0DOnDm56667+P333737VZWFCxfStGlT4O/Xx/Oe7dmzh99//50HH3zQbzEVKlSIMmXKAJAjRw5vTDt37qRKlSoA1KxZk8WLFwPO5yg2Ntb7nu3Zs+eav2eehZ0v5yczZNk+UlU9KiKRwAYReQ3oAcxQ1XXu/Qp8lFHnnzhxIu+//z4VKlRg+PDh5M2blwEDBtC9e3fCw8OZOnUqL7zwAoMHD86oEAImnuTkZOrUqcOePXto37495cuX59ixY95l7woVKsTx48cB6N27N88//zzZsmXjvffeY8iQIQwcONDvMQWi/fv3s3XrVipUqODdtm7dOgoUKECxYsUA6Nu3L/369SNbtmxMmDCBV199lRdffPGaxHT33XezbNky6tevz6JFizh48CCQ9j0bN24cr732Gi+88EKGxXQhgdxiyWo10jRUdTfO/6EgUBrYdC3OGxkZyfbt29mwYQOFCxf2JoKyZcuyZs0avvjiC/bs2UORIkVQVZ566imeeeaZDFvXM7PjcblcLF++nC1btrBlyxa2b99+wbKlS5dmyZIlfPLJJ+zbt4/ChQujqkRGRtKjRw+OHTvml5gCzZkzZ3jmmWd4/fXXyZnz70bSJ5984q2NAtx77718/vnnLFy4kL1793pfn44dO9K1a1eOHj3q15g6dOjA0KFDyZkzJ2PGjGHq1Kk8/PDDnDlzxrse7b333svSpUv59NNP2bdvH4UKFUJV6dy5M926dfNrTBdjTfuMdcWvnIhEishGEdno6Tu8EoUKFcLlchEUFESHDh3YsGFDmv2qyptvvslLL73E66+/zqBBg2jVqpW3z8nfAiWe3LlzU7VqVVauXEmBAgW8ifrIkSPkz5//vJjeeecdnn32WUaNGkX//v1p1qwZkydP9mtMgSAxMZH27dvTvHlzHn30Ue/2pKQkPvvsMx5//PHznqOqvP322zz//PO89dZbvPDCCzzxxBNMmjTJbzF16NCBZs2aeWMqUaIEH374IV999RVNmzblH//4R7oxPffcc7z11lsMGDCAJ5544pq9Z/5KpCJSzz2OslNELli1FpFK7nGZ5pc6ZpZOpCJyJ5AMHAW2ARUu/gyHqkapakVVrRgZGXnF503dx7Vw4UL++c9/ptk/a9Ys6tevT968eYmJifH23cTExFzxuQI9nuPHj3Py5EkAYmNjWbNmDcWLF6dOnTrMnz8fgPnz51O3bt00z5s3bx4PP/wwefLkITY21htTbGyszzEFElWlT58+3HXXXXTv3j3NvlWrVlG8eHFuvvnm8543d+5cHnnkEe/r4+kj9Md7pqr07duXu+66i27dunm3e1oDKSkpvP3227Rr1y7N8+bNm5cmpqCgIEQkS71nIuICxgH1gVJAKxEpdYFyw4HPL+e4WbaPVEQKABOB91RVReQ9YL2IfKaq37vLtAG+UtXDV3uetm3bsnr1ao4fP86dd97JoEGDWL16NT/++CMiwh133JGmZhcTE8Ps2bP57LPPAOjTpw8tW7YkNDSUmTNn+vJfDsh4jh49Su/evUlOTiYlJYXHHnuMOnXqULFiRSIjI/nggw+45ZZb0tSkYmJimD9/PvPmzQOgS5cudOzYkdDQUCZMmOBzTIHk+++/Z/78+ZQqVco7xenll1/mkUce4dNPP03TrPeIiYlh7ty5fPSR08XfrVs32rdvT0hICFfTgkovpg8//JB77rmHhx56yBvT7t27mTp1KgANGzakVatWaWKaN2+e98uxW7dudOjQgZCQEO+Urozkx7uI3g/sdHcLIiJzgcbAf88p1wv4GKh0WfFlpXlgIpIMbAVCgCRgFvC2qqa491cBRuD0maYAq4FnVfViX+MaaPdICrR47J5NF2b3bLq0jRs31q9fv/4yX45RunRp/fDDDy+rbKlSpS54F1F3M72eqnZyP24LVFbVnqnK3AJ8ANQGpgCLVfWiA9dZqkaqqq5L7F8HVL9G4RhjrqEr+ALNLyIbUz2OUlVPVT69g5xbm3wHZxpl8uWeM0slUmOMuQzHL3Jf+wPAbake3wocOqdMRWCuO4nmBxqISJKqLrjQCS2RGmOyBD916WwASohIUeAg0BJonbqAqhZNdc7pOE37BRc7qCVSY0yW4I9EqqpJItITZzTeBUxV1W0i0tW9f+LVHNcSqTEm4Plzsr2qLgGWnLMt3QSqqs9czjEtkRpjsoRAmq1xLkukxpgswRKpMcb4KJATaZa+RNQYYwKB1UiNMVlCINdILZEaYwKe3UXUGGP8wBKpMcb4yBJpgPOschQoAi0ez6pLgSIQVyy76aabMjuE614gJ1IbtTfGZKgmTZosyOwYMprVSHHuXRMIcuTIAXDN7oFzKQULFgQCbz3SQFpr07PYcKDVllLfF+p64MeFnTNE4EZmjDFZhNVIjTFZQqDV+lOzGqkxxvjIaqTGmCwhkGuklkiNMVmCJVJjjPFRICdS6yM1xhgfWY3UGBPwbNESY4zxg0BOpNa0N8YYH1mN1BiTJQRyjdQSqTEmSwjkRGpN+4s4cOAADRo0oEKFClSqVInx48cD8PLLL1O+fHkeeOABWrVqxYkTJwBYt24dDzzwADVr1mTXrl0AnDhxgiZNmvht6beDBw/y+OOPU61aNWrUqEFUVBQA27Zto0GDBtSsWZM2bdpw+vRpANavX0+tWrWoW7cue/bsAeDkyZM8+eSTfokpLi6OevXqUbt2bWrUqMGIESMA+Ouvv2jRogVVqlShRYsW3tdo/fr1PPTQQ+fF07JlS78vj7djxw7Kly/v/cmTJw9jxozhhRdeoFy5crRr185bdtasWbz77rt+PX+gSkhI4OzZs5w9e5aEhAQAYmNjvdvOnDnD2bNnAUhKSvJu9ywWo6rExMQE5HKGmSXLJVIRUREZlerx8yLymvv310Tkeffv2UTkSxEZfLXnCg4O5o033mDTpk2sWLGCqKgofvnlF2rXrs369ev57rvvKF68OKNGOeGMHTuW2bNnM3jwYCZPngzA8OHDef755/32bRocHMyQIUNYu3YtS5YsYdq0aezYsYN+/frxyiuvsGrVKho0aMC4ceMAmDBhAlOnTuWll15i+vTpALz99tv06dPHLzGFhYXx8ccfs2LFCpYvX87KlSvZtGkTY8eOpXr16qxbt47q1aszduxYACZOnMiUKVPOi6d3795+r3GULFmSzZs3s3nzZjZs2ED27Nlp0qQJ69at44cffiA5OZmtW7cSGxvLzJkz6datm1/PH4iSk5NJTEwke/bsZM+enaSkJFJSUggPDyciIoKIiAiCg4MJDnYaq4mJiYSHhxMWFuZNuvHx8YSGhl7zGqJn5P5SP5khyyVSIB5oKiL5L1RAREKBj4FNqjrkak9UuHBhypUrBzjLkpUsWZJDhw7xf//3f94PWqVKlTh06BAAISEhxMXFERMTQ0hICLt37+b333+nWrVqVxvCeQoVKkSZMmUAZ9m9EiVKcPjwYXbu3EmVKlUAqFmzJp999hngJN7Y2FhiYmIIDg5m7969/P7771StWtUv8YgIERERgPNHl5SUhIjw+eef06JFCwBatGjBsmXLvPHExcURGxtLSEgIe/fu5fDhw36L50KWL19OsWLFyJcvHwkJCaiqN4aRI0fSs2dPQkJCMjSGQJCSkoLL5fImHZfLRWJione/qpKUlJTmtVBVVBURISUlBVX1fv6NIyu+GklAFPAs8HI6+4OBucCvqvqCv066b98+fvrpJypWrJhm+6xZs2jWrBkAzz33HL169SI8PJxJkybx8ssv88orr/grhPPs37+fn3/+mfLly3P33XezbNky6tevT3R0NAcPHgSgT58+PP/882TLlo1x48bx2muv8cILfntZAKeWU6dOHfbs2UP79u0pX748x44d864fWqhQIY4fPw5A7969vfG89957DBkyhIEDB/o1nvTMmzePli1bkjNnTpo2bUqFChWoXbs2uXPnZsOGDQwaNCjDYwgEQUFBxMfHe5vlSUlJuFwu7/7k5OQ0a3+GhoYSFxeHiJAtWzbi4+MJCwu75nEH+jzSrFgjBRgHPCUiudPZNwBIUtW+F3qyiESKyEYR2ejpY7yYM2fO0KZNG4YNG0auXLm829966y2Cg4N58sknAShTpgwrV65kyZIl7Nmzh8KFC6OqtGvXjk6dOvl1weazZ8/SsWNHhg4dSs6cOXnnnXeYNm0ajzzyCGfOnPHerqR06dIsXbqUTz/9lH379nlj6ty5M927d/dLTC6Xi+XLl7Nlyxa2bNnC9u3bL1i2dOnSLFmyhE8++SRNPJGRkfTo0YNjx475HM+5EhISiI6Opnnz5gD079+fzZs3M3LkSF599VWGDBnC5MmTefLJJ3n99df9fv5A4nK5CA0NJSYmhtjY2DRJFDivNupyuYiIiCB79uykpKR4k1lsbCyxsbHXdJFta9r7maqeAmYCvdPZvRaoIiJ3XeT5UapaUVUrRkZGXvRciYmJtGnThhYtWtC4cWPv9vfff5+lS5cyZcqU8948VeWtt95i4MCBDBs2jJdeeoknn3ySCRMmXMH/8uIxdejQgWbNmtGwYUMASpQowfz58/nyyy95/PHHueOOO86LafTo0fTr14+RI0cyYMAAmjdv7u3L9YfcuXNTtWpVVq5cSYECBbwr6x85coT8+dP2xKgq77zzDs8++yyjRo2if//+NGvWzK/xeCxdupT77rvvvHtPbdmyBYC77rqL2bNnM2/ePH7++Wd+/fVXv8cQSEJDQ73JMXXt09OsT6/ZrqokJCQQFhbm7SMNCQlJ0y1wI8uSidTtHaAjEHHO9tVAX2CpiNzsywlUlR49elCyZEl69erl3f7ll18yevRo5s2bR/bs2c973vvvv0/dunXJmzcvMTExBAUFERQURGxsrC/heGN69tlnKVGiBF27dvVu99TkUlJSGD16dJoRaXCatg8//DB58uQhNjbWbzEdP36ckydPAk4tZc2aNRQvXpw6deowf/58AObPn0/dunWvSTzpmTt3Li1btjxvu6c2mpiYSHJyMuA0fWNiYvweQyDx1CJTUlLS1ECTk5O978O5PAnWU2nw/HstR+4DuUaaFftIAVDVP0VkPk4ynXrOvo9FpACwTERqqOqJqznHunXrmDNnDv/85z+9gyGDBw9mwIABxMfHe2uolSpVYsyYMQDExMTwwQcfsHDhQgB69uxJmzZtCA0NZerUqemf6AqsX7+eDz/8kHvuuYfatWsD8NJLL7F7926mTZsGQIMGDWjVqpX3OTExMcybN8+b2Lp27UqHDh0IDQ1l4sSJPsVz9OhRevfuTXJyMikpKTz22GPUqVOHihUrEhkZyQcffMAtt9zCpEmT0sQzf/585s2bB0CXLl3o2LEjoaGhfqu1pz7XV199dd7/c8GCBVSqVImbb3a+ax944AHKli3LvffeS9myZf0aQ6CJi4vzJsCwsDBv8klMTLxgbdQzeg/OoKrnC8+z7UYnWW0umIicUdUc7t8LAXuAEar6mnsa1BlVHene/xpQG6ijqnEXOKTaze/SZze/uzS7+d2lxTuy+XKM++67T1etWnVZZXPnzr1JVSteuqT/ZLkaqSeJun8/AmRP9fi1c8q+BqTZZowx/pblEqkx5sZj05+MMcYP/DXYJCL1RGSHiOwUkfMmVYvIUyLyk/vnWxG5ZKe5JVJjzA1DRFw489DrA6WAViJS6pxie4CaqloGGIpzAdBFWSI1xtxI7gd2qupuVU3AuQqyceoCqvqtqv7lfvgdcOulDmqJ1BiTJfipaX8L8Fuqxwfc2y6kI7D0Uge1wSZjTJZwBYNN+UVkY6rHUarqaZ6nd5B054CKyEM4ifSSqw5ZIjXGXG+OX2Qe6QHgtlSPbwUOnVtIRMoAk4H6qvrHpU5oTXtjzI1kA1BCRIq6l9tsCSxKXUBEbgc+Adqq6v8u56BWIzXGZAn+mEeqqkki0hP4HHABU1V1m4h0de+fCLwK3ASMd58z6VJXSlkiNcbcUFR1CbDknG0TU/3eCeh0Jce0RGqMCXh2ZZMxxlznrEZqjMkSArlGaokUMuUeNBeTN2/ezA4hjdS3VwkEgfgHFWir6pcoUSKzQ0gtsP7AMoA17Y0xxkdWIzXGZAmB2BLxsBqpMcb4yBKpMcb4yJr2xpgswZr2xhhzHbNEaowxPrJEaowxPrI+UmNMlmB9pMYYcx2zRGqMMT6ypr0xJuDZMnpZXOfOnbnlllsoV66cd9vgwYMpX748FStWpEGDBhw65Nzy5dtvv6V8+fJUqVKFnTt3AnDixAkaNmyIarr31/JLPB5vv/02oaGhHD9+/JrF06VLF+644w4qVvx7AfGffvqJWrVqUalSJZo1a8apU6cAWLduHffffz/VqlVj165d3ngee+wxv8VzrqJFi1KmTBnuu+8+KlWqBMDAgQMpW7Ys7dq185abNWsWY8aM8fv54+PjadasGY0aNaJ+/frec/Tp04dGjRrRqFEjatWqRaNGjQDYtGkTjz76KE2bNmXfvn0AnDp1ivbt22fYa2R8d10lUhFJFpEfRORHEdksIlV9PebTTz/N4sWL02x77rnn2Lx5Mxs3bqRBgwa8/vrrAIwePZp58+YxdOhQoqKcmxa+8cYbDBw40G/fpunFA/Dbb7+xfPlybr/9du+2axFP27ZtWbBgQZpt3bt3Z+jQoWzYsIHHHnuM0aNHAzBmzBg++OADhgwZwqRJkwAYNmwY/fv3z9DaxooVK9iyZQsbNmzg5MmTrFu3jh9//JHk5GS2bt1KbGwsM2bMoHv37n4/d2hoKDNnziQ6OppFixaxevVqtmzZwpgxY4iOjiY6Opq6detSp04dAKZMmcJ7771Hv379+OCDDwAYN24cXbt2Dega2Y3uukqkQKyqllPVssCLwJu+HrB69ernLWuXelm5s2fPej/gISEhxMbGEhMTQ3BwMLt27eLgwYPUqFHD1zAuGg/A888/zxtvvJHmj+1axFOtWjXy5cuXZtuvv/5KtWrOHWz/7//+j4ULF54XT0hICLt37+bQoUNUr17db/FcSlBQEAkJCagqsbGxhISE8NZbb9GrVy9CQkL8fj4RISIiAoCkpCSSkpLSvEeqypIlS7w10pCQEOLi4oiLiyM4OJh9+/Zx5MgRKleu7PfYjP9cz32kuYC/MurggwYN4v333ydXrlx8+eWXAAwYMIDu3bsTHh7OtGnTGDhwIK+99lpGheAVHR3NLbfcQtmyZdNsz6x4SpUqxeLFi2nUqBGffPIJBw4cAJxk37NnT8LDw5k8eTIvvfQSr776aobGIiLUrVsXESEyMpLIyEiaNm1K+fLlqV27Nrlz52bjxo0ZGkdycjJNmjRh//79PPXUU2m6ZTZs2ED+/Pn5xz/+AThdJa+88grZsmXjrbfeYvjw4fTt2zfDYstKArlGfr3VSMPdTftfcO5JPTSjTjR06FB2795Nq1atGD9+PADlypVj7dq1fPnll+zZs4ebb74ZVaV169a0a9eOI0eO+D2OmJgYhg0bxuDBg8/blxnxAEycOJGoqCiqVq3K6dOnCQ0NBaBs2bKsWrWKZcuWsXfvXooUKYKq0rZtWzp06JAh8axdu5ZNmzaxZMkSxo8fz+rVqxkwYABbtmxh1KhRDBo0iCFDhjB58mSefPJJ/v3vf/s9BpfLRXR0NGvWrOGnn37if//7+w6/ixcv5tFHH/U+LlWqFB999BGzZ8/mt99+o2DBgqgqffr04bnnnvP2f5vAcr0lUk/T/m6gHjBT0vkaE5FIEdkoIhs9fYdXq2XLlnz66adptqkqb775Ji+99BL//ve/efXVV2ndujXvvfeeT+dKz65du9i7dy8VK1akRIkSHDhwgMqVK3P48OFMiQegZMmSREdH8+2339KiRQuKFi2aZr+qMnz4cF544QXeeOMNXnnlFVq2bOn9QvKnm2++GYCCBQvSpEkT1q9f7923ZcsWAO666y5mzZrFvHnz2LZtW4atdp8rVy4qV67M6tWrAaep/8UXX9CgQYPzyqoq48ePp0ePHowdO5bevXvTuHFjZs6cmSGxGd9cb4nUS1XXAfmBAunsi1LViqpaMTIy8oqPnfoPbfHixZQsWTLN/lmzZlG/fn3y5s1LTEwMQUFBBAUFERsbe8XnupR7772XgwcP8uuvv/Lrr79y66238v3331O4cOFMiQfg6NGjAKSkpDB8+HA6dUp7Z9vZs2dTr169DI/n7NmznD592vv7l19+SenSpb37X331Vf71r3+RmJhIcnIy4PShxsTE+C2GP/74wztrIS4ujm+//ZY777wTwPt7kSJFznveJ598Qq1atcidOzdxcXEEBQUhIhn2nhnfXLd9pCJyN+AC/vDlOG3atGH16tUcP36cokWL8uqrr7J06VL+97//ERQUxO233864ceO85WNiYpg1axZLlji3ze7bty9PPvkkoaGhzJo1y5dQLhhP+/btL1g+o+Np164dq1ev5o8//qB48eK88sornD17lv/85z8ANG7cmKeffjpNPO+//z7R0dEA9O7dm9atWxMSEsKMGTN8jie1I0eO0LRpU8Cp/bVq1Yp69eoBsGDBAipWrOitsT7wwAOUKVOGMmXKnNfX7Itjx44xYMAAUlJSSElJoX79+tSuXRs4v1nvERsby6effsq0adMAaN++PT179iQkJMQ7A8IEFrme5qaJSDKw1fMQeElVP7vE0zQxMTFjA7tMnlHjQIsnUGpB4eHhAAE1n9LTc+SZpxsoAuzmd6iqTyNFFStW1NTdMhfjcrk2qWrFS5f0n+uqRqqqrsyOwRiTMWzU3hhjrmOWSI0xxkeWSI0xxkeWSI0xxkeWSI0xxkeWSI0xxkeWSI0xxkeWSI0xxkeWSI0xxkeWSI0xNxQRqSciO0Rkp4i8kM5+EZF33ft/EpHylzqmJVJjzA1DRFzAOKA+UApoJSKlzilWHyjh/okEJlzquJZIjTE3kvuBnaq6W1UTgLlA43PKNAZmquM7II+InL/WYSqWSI0xWYLnlsyX+rmEW4DfUj0+4N52pWXSuK5Wf7pKkhE3PfNFoMXjWb4uUATiKkDFixfP7BDSCKSlBv1h06ZNn4tI/sssnk1ENqZ6HKWqnlthpPfhOffFupwyaVgiNcYEPFWt56dDHQBuS/X4VuDQVZRJw5r2xpgbyQaghIgUFZFQoCWw6Jwyi4Cn3aP3DwAnVfX3ix3UaqTGmBuGqiaJSE/gc5xbEU1V1W0i0tW9fyKwBGgA7ARigAvfy8fturrViDHGZAZr2htjjI8skRpjjI8skRpjjI8skRpjjI8skRpjjI8skRpjjI8skRpjjI8skRpjjI/+H/2hMnWZs5+gAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "im, bar = heatmap(replicated_ratio_df.values, \n", + " list(rb_df.index), \n", + " celltypes,\n", + " cmap='alpha', \n", + " vmin=0, vmax=1)\n", + "_ = annotate_heatmap(im, \n", + " data=replicated_ratio_df.values, \n", + " valfmt=\"{x:.0%}\", \n", + " textcolors=(\"white\", \"white\"),\n", + " threshold=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":62: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + ":63: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_yticklabels([\"\"]+row_labels)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh4AAAHPCAYAAAAcSdNdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADR+UlEQVR4nOydd3hUxdeA30nZdJJAKiWEJk3AAgo2EAXBhoWiIFLkQ1FQEBVURBAQBUT9YUVFpAt2FBSsKEVABJTeAqGX9E6y8/1xd9fd7KaQbCrnfZ77bHbuzNw5d2/uPfecM2eU1hpBEARBEITywKOiByAIgiAIwsWDKB6CIAiCIJQbongIgiAIglBuiOIhCIIgCEK5IYqHIAiCIAjlhigegiAIgiCUG6J4CIIgCIJQbojiIQhuRinlWdFjEARBqKyI4iEIbsKqcGit8yp6LIIgCJUVUTwEwX08pJT6Rinlay1QSnlV5IAEQRAqG6J4CIIbUErVBnoBtwOxSqkhSikvrXVuBQ9NEAShUiGKhyCUEqWUAoYAnYADwEjg/4CTSqnudnVQSsn/nCAIFzVKFokThNKhlGoFfA/sAAYCiUA4sAhIBu60j/uwxIKYtfzzCYJwESL+Z0EoBUopb2AUEAm011oft+w6opRaBzwO3KKUigFigLfs6giCIFx0iNlXEErHTUBf4BWtdbxFEbFyM2AC7gTaAS2BnUqpe8p/mIIgCJUDcbUIQglRSgUDnwIttdb1LGXeWuvzSqnhwBTgE6314xb3Sg3gJ+BfrfWDSimltdZ2nx5aa3OFCSQIglAOiKtFEErOzUBXYDCAUspHa52tlKqFEWC6CXgTjNweSqkM4AhwtVLKpLXOsfSjjCraLPEfgiBUd0TxEIQSorX+XCl1l9b6G0vRecvnOCAQWKy1PmDXJBbD5fKl1jpHKdUC6AY0UEqlAtO11onlNHxBEIQKQVwtglACrO4Ru++eFqtGO+BbYBUwXGudbNlvAl4ChmJYSbyAxUAUsAvD6tEEGKm1/rBchREEQShHJLhUEEpAfleI3XTZbhhKxTKr0mGhDfAY8BZGwOlMQANdgBuA7sAsYLRSqmn+40n+D0EQqgtyMxMEN6K1ngRcY+d+QSkVCDwJnAGWATcC7YHBWus/tNZpWuuTwOdAA+A2SzsPu34l6FQQhGqBKB6C4CasioLWek++XbcDfTCsHHuAW4GftNa/WjOaWjiMkXCslqUfs1KqtVLqNfsVb2X9F0EQqjKieAiCmyjEKhEDbMWYehsENAPWWXfaKRJtMDKe/mkpV8DzGAnKblZKXW05jqz/IghClUWCSwWhHFBKBQEZGEGkazEsG7dprc9b9nsAWzDiPh7UWv+jlLoVI1D1HPAXEAqEYLho1pa7EIIgCG5ALB6CUIYopTwsM2BStdZ5FmvFQqApMFgp1Ugp1RlYgGEJeduidHgBrwJxwDBgEPAgsB14TykVVhHyCIIglBbxFV+E5J8KWt2pSHlduV+01v+zJBl7AyOuoyGQBozAmGILRgKyphjKxheWfk4opX7ASMF+ObDa2qc166lkPxUEobIjisdFiCU9tyfgCZyv7kpIZZLXqhhorV9USr0N9ABOAke01tssdWoDY4GlwM/5FIkswBtjBVwb1joW5UNhuFFFAREEodIhMR4XGUqpBsAQoDOQAuQBn2utP6rQgZURlVFei2LgYZf7I//+t4CewH1a61/tysOAzwAfrXUHS5k3MAC4BCNb6gKt9Trrcaq7UikIQtVDYjwuIpRSQzAWKXsKOAbsBg4BU5RS2yxZN6sNlVVebZCXbyotAEqpy4BHgbnAZrtyhWEduR54zVJWHyNe5D3gPgzXzC9KqY+UUgGidAiCUBkRi8dFglKqNcaDbBfGrAmrWd8fY7rncxhvzU9orf+ssIG6iaoqr0XBGAH8Zh2zpbwB8AOwE+gN+AGTMbKhPgx8BWRjLFw3A3hZUq8LglAZEcXjIkEp9QvQCHhEa73Cuny73f4mwJfAWq31w0qphlrrgxU13tJSneS1rPMyDngc6Ka13qCU6oqR6fRDrfUou7o+wB8YbqXuQG7+WA8JQBUEoSIRV8tFgFLqFqAjMAfD9QDgkIRKa70Pw8S/RSkVA8xTSqUrpR4s18G6gaosryv3C9AYQ/GYB1itIFdh/P++bGnnYVmoLhs4AERqrXPsFQy7zKpmpZRnAccSBEEoU0TxuDjoD5wFVmmts10FHVregtdgJKzqjLF8+ypgllJqi1LqynIfdcmpsvK6isvQWu/EkOkNrXWmpfhKDDdSil29PEv+j07AejCyoiqlrlFKTQPeVkpNUkoFW3KKaFE+BEEob0TxqOZY3nK9gQTrbIcCHm7WN2MfjPiHFRhJq9oC/wDfKKVGV/Z1QqqrvFrrhflcQVsxXEkNLfut8rwIhAHfWc7FUxixIf2BSzEWoItXSo2wtNMgq98KglB+VIqbqlB2WMzquUAqGG/ABa31YYkl+D8gGhiktU4CkpRSTwJDgX4Yqbt/LYehl4iLSN7vgL7AE0qp/2EEm3bGWNvlA2A5xsJ0o4E1GAGpADWAXpZ2h7TW38LFvfrtxTbt+GKTV6h8yFtONcbOjL4WuFIpdUURC4y1wYh7eB/jgQuA1vocMBtjrZE3lFIBlfEN+WKSV2u9GWPxuNswLBo/AJOA+cAzgD/wEHAaeExrnW7ZTmBMwf0EOKCUilBKzVNKhVeEHJWE7kqp95RSjSp6IOWEVd6GFT0Q4eKkUt1MBfdi91azACN+YaRSqq59HevDWhmLmI0GEoAPtNZZdnW8LA/jhRjriYRWxjfk8pC3MsREWMegtV6hta6H4U55AiO2Y6DWOhlogKFYrdBax9krTlrrc1rrSVrrXUAT4AGgdTmLUSlQStXAsHoNBfYqpd6vLO61skApFYJh/RqKXcp9QShPRPG4CNBapwBvY8z0WKqU6qGUaqmUigDbg6wzRrbM14D9+dpbrQY+gAnjoVZpKWN5TUqpMKXUlZapq+WOXVyGl+X7p5YYkA12ylcOxmq2v1m+2xSmfMpTGHAGIweIU6yHMvC0/O1dBuJUGJbzcDfG2jeDMaxH7YE4pdR9FTm2ssAi750YrrZMYLdSyruyWfOE6o9ccBcJWuvlGG/AcRiZLj/AyOR5N0aA4ljgT4x04k6pvC0Pn0sxTPfbXOyz/l0pTPZulPcMjvK+hbFC7AKMG/eo/G3Li0JiVzwwfqc44H6llMkqo9W/b/ewqYsRjLvB2txSr71Sqq1dllUT8L6qXtlt62Asxvc78InW+nugG4YbaoxSqjdUq8DbOsDTwEaMYOraWuvzlrgoL7CtEyQIZUp1+YcSioHWOklr3RfDEjATuB/j4XszcAXwiiUGwJVLoSHGm9J3gNXtYM0LkaeUClVKvQlsVkqlKaUuqWi3hJvk/RbL/4lSaihG3MQXGDNh3gJGKKUWKqVCy16i4qGNRegSgA+Ba4CBSqmaSik/q0XEzlXWBvgXqGn5rpRSnYCvgd8spnmAZzHWhIkuFyHKGItiORjDxTTO7rycAGZh5EIZr5QKq4xuxQvFTt7mwJNAMHDUss+ktc5VxlpAR5VSwyv6f1eo5mitZbuIN4wHrPWtPirfPk/LZwDGG34CcGe+OkEYD/WfMFwWBzEUk0jLflNFy1hKee+w2/8dhusi2PLdA0OZOQHcZCnzrmgZ88k0CSNI9lfgXaCOdeyWz/nAr3b1pwBJGMpVeyDc8nuex8iSaq1XqeQswXm5DGNV4A8L2N8SYyXgIRU9VjfKewL42HLdrgJWW/ZZM1jPBc5Zr3mgYUWPu5zPkaroMVwsm1g8LnK0kRviPaAFsFApda31LVcbloxoDPNsX0u93wGUUnWUUo9jPIi7Y2TQnI6hiIzXWp+yBHA+oZR6u7KYq0sg71q75ssxpqNmWOqbgV8AXwwTPcCoyiCvnTXqBYx8H+uATRiJ1axjB0O5WKmUilRKzceY5bMMuFcbMSNnMBKV5QC9lbHwHtou/XxVQynli7EejglDMbPfZ/3d0jGUrQaWOJdKcf2WBDt5fYEJlt8+GogHI2bI4kJ7EMNK9qPlf/dbpdR3lvYXA9bZPo0reiDVnorWfGSrHBvGjWg5RibMxRhBlxMxFlozY1gAfDAevPdgWDd2YUTHB2EEKa4Bjtn16YkRxHkYSAQerWg5L0DeT4Balrq1MRZjm4Oxyu2zlvIQjJgRM8aDGgw3TqWQFyNew9Puu0e+/Y0xFKev+W99l/uAGnZ1brLINw0jR0gW8BEQWNG/YSnOy60WOcYWUqezRe4XLd9rAvdarot3gNeByytalguUd4zle6jlOl9oV2cDxgKEV1i+D7W06YudJYBqahWw3Ne+tPzmeRhT7L0qelzVdavwAchWuTagg+XmuhxjCfk1wHD+M82/jeGCeN76gLIoJKMt/7R9LGX2D7xalv0pGIFt7StazguQtxmGW+YQRrzH2xjm6EOWh3YWhuJSu7LKm1/hsCsPwXA3mC2y3ePit9uNYSm51PK9CRa3kov+Kv2N2vLQXW15yLpUnjCCbZ/HmPnRGmNdnL8s52m7pf1yDKvIIiyut8q45ZM3yK78CPC65e8BFtmewFBWYzBcpl8CNV306VvRcrn5HCnLOcgDBmJYcP/BsA7eX9Hjq45bhQ9Atsq5WW849g8TDMvG80AaRlR8I0t5W2AP8Hsh/XlixA+Y7R50UWU1fjfJ62UZczpwlaVMYfj/t2G8+bauSvICdS2fIRiuMTPwmf1DGEtcDsZquGaMFX5t58TyGQjciGH96pvvGJXyrdjy2z2BsWDgvfn2edj93RrDsjUXI8B4K8Ysobvt6oQBXTAsRT8DzSpavgLkHWX5De+xvwYwFOeXLd9PAD8CDSzfXwWSgWss3/0sso631EsBhle0fG48T3Ut/8+/2V3f4RhuuH3W/33Z3HjOK3oAslXuDWfzfCCG+f13/jNJzrLc3C631PF00U9Ty838Y8tNbLWlzSsVLWMR8v4FfOui3njLzTvQ8l3l21/p5AWuBrYAX1lutOcxppNGWGXnP0uPr+UB8xUQY39uMN6I/7DIE4fhWjoG9Kjo368I+b2AqZZxT8WYXpr/d2sMLMGwBN1jkT8LuL2APjtgWBPGVbR8Bcj7HrA2X7kHRgBxP4zkc7n8Z6lsZ/kt11gUkO8s14EZwwLwHcasmHvLW54yOkeeGDO28oBLrOfN8tnCch28VdHjrG5bhQ9Atqq5YZhwH8B4WzoPrC+kri+Gi+KsnXLihxHMtoRK5HqxG7Oy3JS+Bvbyn6XA+vB92iJPaFWSF7jd8lCZRb4ZSvnqTcRwNeSfxRSJMUNmh+XBHI1hAZqJoYi1rOjfrhjn4G7Lw/UwhgXkRovC0QHDemEGHsYwv58DFhTR330Y8T+V1dITlO97MwxXyusWpWMuRgyLF4bryGqlS7YoGqMwrJo1KmL8ZXxuLseIVTNjxHnZW758MQJwX7N8r5S/b1XcKnwAslXdDeONcTnGjId0jFgHp5sTcIPlITYB8Mm3z68y/0NjzFbZDYyzPHQDMMywR4HvgeiqLm/+8ViUrpcsN93mljLrW+DDlpv0Ov6bMq0wsrseByZVtDwXIPdYDKVyM8Zb/XkMC84Ey/5XLLJa34Q987W3TkMNAuq7OpeVcbMoGYcssu3gv6ngd2G8+U+0nId5rq6RqiBjMc+DL0agdCIwzPJ/noAR43U38DnGYpNdK3qs1W2r8AHIVnU3jKmXZoy3/yjgLhd1QjDemnZi8SFXtQ0j8VIiRvKxXy1KxVGgX3WU1yJHF8tNeDHQ1K58J4abZT2GwvmS3b5/gf9Z/q4SDycMRfJWy9bT8vt5W/b9APxh+dtlgG5V3DCsO1arxkTLAzgUIxB6HRCBYfnYW1V+xxKeh/yzfWphuF3SLf/fWzCCTat0zprKuFXbxZCEcsEbY/rsdACl1NeWTw9tpGFWGOtfdMPI+Hm4wkZaCrTWc5RSizEUrNoYN6Q5GCZalFKe2sgBUi3kBdBar1ZKdcR4AL2ilHoE421YY8x2mImhkE1USg3CMNd78F+OE10R475QtNbpGIHSNpRSXpa8HRpjbR5P7SKtflVFa71fKXUZhuvvO611llLqYYyg2j5a69NKqY1AD4xlA/6puNGWDZZMw6MwXE5vg7F4olLqNQwL3t1AN20sFim4GVVF7g9CJUUpFaC1Tnd1c1ZK1cO4qR/HsA6crZBBuhGrUmX5W9k/YKuLvBYFStnJ2djysPLAsHac1lrfZdkXiRFs+BCGCf9GrfVv+c9NVUQpNR5jWnSs1jqxosdTViil6mOkiP8S+D+tdZJSqj1GAPlQrfXH9td9VcdyfT+OEdPRR2v9uaXc+gLRECNPUUet9e8VONRqS5XNxidUDixvjLhQOrww3qiaAK9W1YdwfuxvvvmUjmojrzYwWxf/01rvt3yaMeIeGiil+iqlfLXWp7TWYzACNAdqrX+z9lFR43cj72Pku3jObs0awOXaPlUWrfVh4BmM6zbJUrwHw91wveV7tZEXI2g8CuP511YpVQcc7mF9MNyIkRUzvOqPWDyEMkEpdSWGj/xT4GmtdUYFD6lMuVjktaTPnoFh4fgUY9ZPnNb6b7s61cHaYX3QPoaxIOB3GDOBzmitTyilvHUVThtfGNbfTyn1BUa6/au11lkVPS53o5S6G2OhR40RTL0LY5bW2xjTja/VWp+usAFWY8TiIZQVLTHWwviwuj6E83FRyKu1ztJaD8dIKV4XIxjvEaXU5XZ1qrTSATarj9Zav4WRRKw98A0wXyn1K0bQYXXnd+ASILaCx1EmaK2/1FrXAWYDL2AsmLgEI0XAC6J0lB1i8RDKDKVUBHCuOgXmFcbFIK/d4nPW+I82GLN89lUHhaMwlFJ3YSiYGcAvWuutFTqgMsaiTP4EzNRaT64OlqyCUEoFAh0x8rbEa62PVfCQqjWieAiCcMFUt5kegmssimYrrfW2ih6LUH0QxUMQBEEQhHJDYjwEQRAEQSg3RPEQBEEQBKHcEMVDEARBEIRyo0orHkqpDkqppUqp40qpHKXUOaXUaqXUAKWUp1Kqk1JK222ZSqmjSqkVSqkhSilTEf1fo5QyW9p6WcoG5uuzoG1CuZwEQRAEQbCglKqrlJqllFqvlMqwPI9ii9nWVyk1XSl1wvK8XK+UusFFPQ+l1LNKqTilVJZSaptS6t7ijrHKKh5KqZHAWow0zWOAmzHWjtgLvIux/LeVxzGWvO6KkQL5OEaSmI1KqfAC+vfGyFx4Kt+u7yx9WbfH8h3Dun1YGvkEQRAEoQQ0BnpjLGx5oSnfPwL+DxiP8Qw9AfxgWdvHnkkYq2+/BXQHNgDLlFK3FusoZbkCXVltGMuOm7GshOlifyOMBY86YWSlu9lFnQ4YKxMuL6CP5zBW25xi6cOrgHoFHqMIGYZW9Hksx9/ropFV5K3e28Uk68Umb3WRFbuVlIEhludTbDHatbHUHWRX5oWRPv8bu7IIIBuYmK/9T8D24oyxqlo8xmIs2f2Mq51a6wNa6+2FdaC1Xo/FMqKUamS/z/L9eYxl38sqLfLQMuq3MnIxyQoib3XmYpIVLi55q4WsuuSL+d2J8bz71K6vXIxsrrcopXwsxbdgZGlekK/9AqCVUqpBUQeqcoqHZeGqTsAqXfr1A6zLYV+br/xd4DOt9ZpS9i8IgiAIVYGWwCHtvOTDDgxFo7FdvWyMFXzz1wNoUdSBvEoxyIoiDPADDruhryOWz2hrgVLqAaAt0MwN/TuglBrKf1r1lUqpiyJ7m7e3N/7+/heFrAD16tXjiiuuuGjkrVu3LpdffvlFIa+vry/BwcEXhawAMTExtG3b9mKRN60sOnXzfX4HRoiAldla69lu6rsmRlxIfhLs9ls/k7TFv1JIvQKpioqHO7GuQKkBlFI1gdeA53QZLBBkuUBmW451sfwz07x584oeQrmyfv36ih5CuZKTk1PRQyg37r///ooeQrmycuXKih5CuaGU2lPRYygGWVrrtmXUt8LyLHRRXpJ6BVIVFY9zGItS1XdDX/Usnycsn5MxZrEsVUqFWMp8LZ/BSqksrXW6G44rCIIgXCR4eLgnqsFsLmn4RrFIAGJclIfa7bd+hrpYNDB/vQKpcoqH1jrXsix1F6WUj9Y6uxTd3Wb5XGv5bAG0wlBu8nMW+Bq4qxTHEwRBEC4yqojisQO4Wynlny/OowWQw38xHTsAH4zZo/vz1QPYWdSBqlxwqYVXgFrAdFc7lVINlFKtC+tAKdUBeBj4Smt90FI8Ergx3/aJZd/NwLhSj1wQBEEQKh/fAN5AL2uBJXFmH4zJHNaX/O8xFJF++do/APyrtT5U1IGqnMUDQGu9Rin1JDBTKdUcmIsRKBoK3IQxd7kvkGxp0lwplYYhbzRGIrH+GJrZ/9n1uzX/sZRSnSx//maZWiQIgiAIxUIp5TaLxwUcs6flzystn92VUmeAM1rr35RS9YEDwEta65fAeP4ppT4F3rAk0DwEDAMaYKdkaK1PK6VeB55VSqUCWzCUk85Aj+KMr0oqHgBa6zeUUhuBUcAMjNkuqcBmDEvGcoxEYwD/s3xmY7hRtmFkHJ2vtb54IuMEQRCEcqe8FQ9gWb7v71g+f8NIR6EAT5y9HoMwkmZOBkIwnpXdtNZb8tV7HmMW0BNAFEaSsd5a6+XFGVyVVTwAtNbrgHWFVPmVC4i0LeAYEzBSwxa0v9THEARBEAR3obUu9JmktY7DxXNLa50JPGnZCmufh6GcTC7J+Kq04iEIgiAIlZmKcLVUdkTxEARBEIQyRBQPR+RsCIIgCIJQbojFQxAEQRDKELF4OCKKhyAIgiCUERLj4YycDUEQBEEQyg2xeAiCIAhCGSIWD0dE8RAEQRCEMkJcLc7I2RAEQRAEodwQi4dQacnJyeHEiROkpqYCEBgYSO3atTGZTBfUVmuNv78/0dHR+Pv72+okJCRw9OjRAvto3rw53t7epRekmBw9epQxY8bw888/o7XmxhtvZNq0adSrV6/QdlOmTOHll192uc/Hx4eEBMdVqo8fP85LL73EDz/8QFJSEtHR0fTs2ZOXXnrJbbIUh6NHj/L888/zyy+/ANCxY0defvnlIuV95ZVXePXVV13u8/Hx4eTJkwAsWrSIxx57rMB+du/eTWRkZAlHf2FkZmaye/duzp07h9aasLAwmjVrhp+fX5FtMzIy2LNnj61tcHAwTZs2JTg42KHer7/+SlZWllP7yy+/vNzkFFwjFg9HRPEQKiVms5mDBw+ilLI9iE6dOsXBgwe55JJLCv1Hzs3NZf/+/Xh6elK3bl08PDw4c+YMBw8epHHjxvj6+gJQo0YNGjVq5NQ+Li4Ok8lUrkpHRkYGt956KyaTidmzZ6OUYuLEiXTv3p0///yTgICAAtsOHDiQLl26OJSlp6dz1113cdtttzmUHz58mJtuuonY2FhmzJhBREQEhw8f5uDBg5QnGRkZ9OjRA5PJxLvvvotSismTJ3PnnXfyxx9/FCpv//79uemmm5z669mzJ927d7eVde3alVWrVjnU01pz//33ExsbW24P47y8PDZt2oSHhwetWrUCYN++fWzcuJFrr70WL6+Cb8M5OTn8+eefeHl50bJlSzw9PYmLi2Pjxo106NCBwMBAh/phYWE0btzYoaywcymUD6J4OCKKh1ApSUhIICcnh6ZNm+Lj4wOAn5+f7a0xPDy8wLbnzp0jNzeXRo0a2doGBgaye/duTp06Rf369QHw8vJyuumnp6eTl5dHaGhoGUnmmo8//phDhw6xdetWmzJ06aWX0rp1az766CMef/zxAtvWqVOHOnXqOJQtWrSI3Nxc+vVzXLn68ccfp3bt2qxcudKmWF1//fVulqZo5s2bR1xcHJs2baJhw4YAtGzZkiuvvJK5c+cWaqlwJe+SJUvIzc3lvvvus5WFhYURFhbmUG/dunUkJCQwduxYN0pTOPHx8WRkZHD99dfblICgoCB+//134uPjadCgQaFtc3JyuOqqq2xta9asyZo1a9i/fz+XXXaZQ31vb29CQkLKShRBcAuihgmVkpSUFPz9/W2KA4DJZCIgIICUlJRC22ZkZODj4+PQ1sPDw9ZWa11g24SEBJRS5X7z/u6777jqqqscLDCxsbF06NCB77777oL7W7hwIREREdx88822soMHD/Ljjz/yyCOPlKs1xxUrV66kbdu2NqUDoH79+lx99dWsWLHigvtbsmQJERERTpYQV/VMJhP33nvvBR+jpJw+fZqQkBAHy4O/vz8hISGcPn260LZJSUn4+/s7tPXy8iI0NJTTp09jNpvLbNyCe7AGl7pjqy5UH0mEakVWVpbNJWKPr6+vSz+2PUoplHJenFEphdaa7Oxsl+3MZjPJyckEBQUVav4uC3bt2kWLFi2cyps3b87u3bsvqK9jx46xZs0a+vTp4yDH+vXrAcNydPvttxMaGkqdOnUYMmQI586dK50AF8ju3btp3ry5U3mzZs3Ys2fPBfV17Ngxfv/9d3r16lXo75aZmclXX33FLbfcQs2aNS94zCUlLS3NySUChhUuLS2t0LYFzYjw8PDAbDaTkZHhUH7mzBlWrVrFDz/8wPr16zl16lTpBi+4BVE8HKk+kgjViry8PDw9PZ3KPT09ycvLK7Stj48P2dnZ5Obm2sq01rabdEHtk5OTMZvN5e5mAUhMTHRpZQkNDSUxMfGC+lq0aBFms9nJzXLixAkAhg0bRpMmTfjyyy+ZNGkSP/zwAz169CjXt+fC5E1KSrqgvj799FPMZrODm8UV3333HampqUXWczfnz593aWHy9vZ2uEZdERAQQHp6Ojk5ObYyrTXJycm2vq1ERETQvHlz2rZtS5s2bfDw8ODvv//m+PHjbpJEENyDxHgI1Y6aNWty9uxZ4uPjqV27Nh4eHpw+fdp283ZlDQHjYejp6UmNGjXKc7g2XI2rMLdQQSxevJg2bdrYAhnz93X99dfz+uuvA9CpUydq1KjBgAEDWL16NbfccksJRl4y3CXvp59+SuvWrbn00ksLrbdkyRLCwsLo2rXrBR+joqhXrx6HDx/mn3/+oXnz5nh4eHDw4EEyMzMBx3OY32IWGRnJ+vXr2bt3L7Vr1y7XcQuOFHTPuVgRi4dQKSnIslGQJcQeHx8fYmJiyMzMZM+ePezatYuMjAxboKErc/z58+dJS0sjNDS0Qm4SISEhLi0bSUlJF2SB2bx5M3v27HGydgA290Lnzp0dyq1xEdu3b7+QIZeKwuS9kPiav/76i71793L//fcXWu/kyZP8+uuvRbpjygJvb28Hy4SV8+fPFzkWf39/WrduTXJyMmvWrOHXX38lKSnJFiBtH8eUH6UUUVFRZGVlFemeFMoOifFwpvpIIlQrfHx8XN4sC4r9yE9wcDDNmzfnkksuoWnTpjRp0gSz2Yy3t7fLPCDWh2BFuFnAiOXYtWuXU/nu3btp1qxZsftZuHAhXl5e9O7d2+UxoOC3r/JUuJo1a+YydmXPnj00bdq02P0sXrwYLy8vevbsWWi9pUuXkpeXV6SCUhYUFMtRUOxHfqKiorjxxhu57rrruOGGG7jmmmvIy8vD19e3WHlAoOx+27lz59qCsfMrkrm5uSilmDBhQqmOMXbsWFq3bk1ISAj+/v40a9aMSZMmOcW32JOUlERUVBRKKX788cdSHV9wP6J4CJWSGjVqkJGR4RAImpOTQ3p6erFdIUopfH198fHx4fz58yQnJ1OrVi2XdZOSki7oRu5ubrvtNjZu3MihQ4dsZYcPH2b9+vXceuutxeojJyeHzz77jFtuucXldOOrrrqKyMhIVq9e7VBu/X7llVeWQoILo3v37mzevJm4uDhb2ZEjR/jzzz8dcnEURk5ODl988QVdunRxmjabnyVLltCyZUsn91N5EBERQXJyssODMiMjg6SkJCIiIorVh1KKwMBA/P39ycrK4uTJk0UmWjObzZw8edL2P1CWJCcnF5jUrbSkpKQwaNAgFi1axPLly+nXrx9TpkwpVIkcM2ZMpXJviMXDkeojiVCtqFWrFiaTicOHD5OcnExycrItsZf9jIScnBy2b9/uEL2vteb48eMkJyeTlpbG2bNn2bdvHz4+Pi4fUBkZGWRlZVWYtQNg0KBB1K9fn969e/Ptt9/y3Xff0bt3b+rWrctDDz1kq3fkyBFq1KjB1KlTnfpYuXIlCQkJLt0sYLiYXnrpJb7//nsef/xxfvzxR2bPns2oUaO44YYb6NSpU1mJ58SDDz5ITEwMffv2ZcWKFaxYsYK+fftSp04dBg4caKt35MgRwsLCmDZtmlMfP/zwA4mJiUVaMbZt28auXbsqxNoBULduXfz8/NiyZQunTp3i9OnT/P333/j6+jooD5mZmfzwww/s37/fVmY2m9m1axenTp3i3LlzNmU0MDDQIf/H8ePH2bp1K8eOHePcuXOcOHGCTZs2kZKSckEWpJLStWtXZs2aZcsa607eeecdRo0axa233spNN93ECy+8wKhRo/jmm284e/asU/21a9eyYMECpkyZ4vaxlARxtTgjwaVCpcTDw4OGDRty/Phx4uPjgf9SpruK8cgflJidnU1SUhJ5eXl4e3tTs2ZNIiIiXP7zWk3EFZl4KSAggBUrVjBmzBiGDBmC1ppOnToxbdo0B3O81pq8vDyXM1AWLlxIzZo1C7UYPPDAA3h4eDBz5kzmz59PaGgo9913HxMnTizXN8SAgAC+/vprnn/+eR555BG01txwww1MnTrVyf1QkLyLFy8mNDS0yIBYqzumV69ebpWhuHh5edGuXTt2795ti6OpVasWzZo1c4jx0FrbNnsyMjI4ceIE58+fx9fXlzp16tCoUSOHa9nf35+cnBz27NnD+fPn8fT0JDg4mCuvvLLQZHvuYty4cXTr1o0pU6Ywa9asMj+e1XKZf7bQ+fPnefjhhxk7dqxDjhihcqFKEkUulB6l1EVz4lu3bl3RQyhXrPkyLhbsp3pWdyrKalJRrFy5stD9c+fOZdCgQezbt48PPviAN954g71791K/fn1yc3Px9vbmxRdftMV5FDV9GAwLgauXi9zcXLKystiwYQMPPvgg3bt356OPPnKoM2XKFD755BP++ecf1q9fz4033sjq1asdEukVcty/tNZti6x4gfj6+uqYmBi39LVv374yGWN5U31sN4IgCEKFMWbMGPz8/Jg4caLL/XFxcXh7exe5uVo/6d9//8Xb25ugoCC6dOlCly5dmD17tkOd/fv3M3nyZN5+++0yj2m5UMTV4oi4WgRBEIRSU7NmTUaPHs3EiRMZM2aMkwJRu3ZtNm3aVGQ/rpSGxo0bs2nTJtLT01m3bh1Tp04lNzeXhQsX2uoMGzaMHj16OC2YWNEUlH32YkYUD0EQBMEtjBo1ilmzZjF+/HgHpQCMtZbyL2rnClexRr6+vrRta3gYOnbsSHR0NIMGDWLEiBG0b9+epUuXsnbtWjZv3mzLfGudwpyenk5ycjLBwcGlE05wG6KGCYIgCG4hMDCQZ599lmXLlrF161aHfaVxteTHqoRYZwDt3LmTzMxMWrZsSWhoKKGhodxxxx0A3HXXXbaEaxWFdf2o0m7VBbF4COVOQkICR48excPDw2Vk/z///ENERARRUVElPsaJEydITU0lJycHrTUmk4mQkBDCw8MdzJ7p6ekkJCTYcoZ4e3u7XLwsMTGRc+fOkZ2djdlsxsvLi8DAQCIjI10mJLMyf/58HnnkEYKDg9mxY4fDlN3c3FyCg4N57rnneP7550ss64oVK1i6dCl///03Bw4c4LrrruP77793qjdr1iyWLl1KXFwc6enp1KlTh9tuu42nn37aIb9J8+bNOXLkiMtjPfTQQ/zvf/+7oPEtWrSIxx57jBo1arBt2zaH2UO5ubmEh4czZsyYUi1Vv3LlSj7//HO2bt3KwYMHueaaa/j2229d1l2/fj0vvvgi//zzDzVq1KBnz56MGzfOLTlcjh49yr///ouXlxcdO3Z0mHVhNptZtWoVjRo1okmTJiU+htaaAwcOcOzYMbKysvDz8yMmJobY2FiHeomJicTHx5OSkkJ6ejo+Pj7lMmX60UcfZebMmYwbN86hvDSulvz89ttvADYlZeDAgU6ybd26lVGjRjFjxgyuvvrqYo6+bBBXiyOieAgVhtls5syZM0RHR5dJ36Ghofj4+KCUIiMjg9OnT5OZmelwg05LSyM9PR0/Pz+UUgUuIJeXl0dgYCDh4eF4enqSnZ3N6dOnSUtL45JLLikyjXtycjIzZ85k0qRJ7hQTgOXLl/PPP//Qrl27QlNjJyYmcuedd9KyZUsCAwPZtm0br7zyCmvWrOGPP/6w3RwXL17sNFPl66+/5o033ih2MjNXpKSk8MYbb5Q6k6UrVqxYwb///kvbtm0LPQf//vsv99xzD507d2bJkiUcPnyY8ePHc+LECebMmeO28eTm5nLw4MEyyaGxY8cOjh07RuPGjQkODiYhIYE9e/aQl5fnYC04d+4ciYmJNhdDcWaUuAMfHx/Gjx/P0KFDHcpNJpPNUlFctm/fzlNPPUWvXr1o2LAh2dnZrFmzhjfffJPu3bvToUMHAGJjY50ULytt2rThuuuuK5EsQtkgiodQYQQGBnL27FnCwsJcrt5ZGurUqePwPSgoyKbo5Obm2qwsERERREZGAkayqvT0dJf95U88FhgYiMlk4tChQ6SlpRXpP77pppt47733eOyxx0plyXHF22+/bVMaCps2OH78eIfvN9xwA/7+/jz++ONs27aNyy+/HMClH37ChAlERkaWKnCvc+fOfPDBBwwbNsx2zt3Fm2++aTsH3bp1K7DeK6+8Qu3atZk7d67tmjOZTAwbNownnniCNm3auGU8tWrV4siRI8TGxrp1hkVmZiZHjx6lUaNGNiUjLCyM3NxcDhw4QL169WwWuEaNGtG4cWPASKJ2oascl4ZBgwYxffp09u3bV6p+IiMjCQsL4+WXX+bkyZP4+/vTsGFDZsyYwZAhQ9w02rJFgkudkbMhVBjWh8/p06fL5XhWZcPeV1oav2lRVg57xowZA8D06dNLfLyCKM1NzZoFtrDFyuLj41mzZg19+vS5IJnzM3r0aABee+21EvdREMU5B+fPn+enn37irrvuclB077rrLkwmEytWrHDbeKxKwYEDB9zWJxiWM8ApKVhYWBhms9khk2d5xAQMHDgQrbVNwbHi5eXF3r170VqXysIVGRnJokWLOHToEJmZmZw7d45Nmzbx2GOPFanQderUCa11sXJ4lDUyndaR6iOJUOXw8vIiLCyMhISEQpNQ2Wd0LGwrqG1eXh6pqamcOXOG0NDQUj08tdaYzWYyMzM5ceIEPj4+BAUFFdkuKiqKhx9+mDlz5hQYPwGGObyorSB3UHHJzc0lIyODjRs3MmXKFDp16lToGiaLFy9Ga11gKvbiEhUVxZAhQ/jkk08q5BwcOnSIrKwspxgeX19fGjRowJ49ey64z4KwrpAcHx9vW8LeFWazucjN/tq2KhP5H0LW76mpqW6TQRDKCnG1CBVKeHg4586d49SpUy4XvcrJyXG5iml+XAWFZmVlsXfvXtv30NBQ6tatW6rx7ty50/bQ8/Pzo2HDhsV+E3nyySeZM2cOL7/8Mu+9957T/sOHD9OiRYsi+4mJiXG5km1xSEtLc3Bz3HzzzSxYsKDQNosXL6ZNmzZceumlJTqmPSNHjmTu3LlMmzaNt956y2n/kSNHiuXuqFevni39eHEpLDW+q9VVS0uDBg2Ij49n//79LhW7jIwM1qxZU2Q/vr6+tsDJgIAAwFjU0H6xROsU0vPnz5d+4IJbEVeLM6J4CBWKl5cX4eHhnDp1ivDwcCfzqZeXl5MZ1xWuzMomk4nGjRtjNpttwaVaa0qTvrhhw4aYzWZbcOnBgwdp3LhxsawoNWvW5PHHH+fll1/mySefdFpLIjo6mt9//73IfgqbRVMU/v7+/P7772RlZbFt2zamTZtGr169+Pbbb126WzZu3MjevXvd5iIKDQ1l+PDhvPrqqzzxxBMOC52BYRX5+eefi+ynJOfAajlwda2UxdIRJpOJ2NhYDhw4QIMGDfD393fY7+vrawuOLAz7h1ZgYCC1atVi//79+Pn5ERISQkJCAocPHwbKx70iXDjyuzgiiodQ4YSFhXH27FlOnTrlpBR4eHiUeJqjh4eH7WYfGBiIl5cXR48epVatWrY3xwvFOpaAgAACAwPZvXs3586dK/by5sOHD+fdd99l8uTJTrMoTCZTsda1Kc1NzMPDgyuuuAKAa665hpYtW9K9e3e+/PJLl4uoLVq0CG9vb7cusDZs2DBmz57N1KlTndJem0ymYi1dX5JzYJ3K7MqykZycXCazq2JjYzly5Aj79+93+m09PDyK5abLL2urVq3Ytm0bf/31F2Ao55dccgk7d+6sdKnCBcEVongIFY6npycRERGcOHHCyR9eGldLfqxKSE5OTokVD3tMJpNtam1xCQwM5KmnnuLZZ59l5MiRDvvKw9WSH6sScvDgQad92dnZfP7559xyyy1uXeE0MDCQUaNGMW7cOEaMGOGwryxdLQ0aNMDHx8fpesrKyiIuLo4ePXpcUH/FwcvLi4YNG7J7924n605JXC3W71dffTVZWVmcP38ef39/W2yHfZ4YofIgrhZHRPEQKgW1atXi7NmznDx50qG8NK6W/FhTKJfGVWFPVlYWeXl5F/yWOXToUGbNmuW0mFZ5uFry88cffwA4PRTByI2RkJBQ6qBSVzz00EO8/fbbTJkyxaG8LF0tJpOJm266ia+++oqxY8faXEtff/012dnZdO/e/YL7LA4xMTHExcU5TS0tiaslf3tfX1+01sTFxREQEGCbpSRUHiTGwxlRPIRKgYeHBxERERw7dsypPL9vvCisM06Cg4MxmUxorUlPT+fs2bMEBQU5WDtyc3NtCsn58+cxm822QD3rjR2M1MzBwcG2hGRZWVmcPXsWb2/vC77Z+/j48OyzzzJ8+HCHcpPJZLNAXAhHjhyxmd0TEhLw8PDgyy+/BODKK68kJiaG5ORk7rrrLvr06UOjRo1QSvHXX38xa9YsWrVq5fJtf9GiRdSqVavQvBglxcfHh2eeecbJ6mMymWz5RC6EI0eO8PfffwOGK8XDw4Ovv/4agMsvv9zmwhs7dixdu3Zl0KBBDBkyhCNHjjB+/Hh69OhRrHVESoKHhweNGjVix44dTuUlWT/kyJEjNhdkTk4Ox44dIzExkXbt2jko4Dk5OSQkJACGkmw2m22KfWBgIIGBgaWQShBKjigeQqWhZs2anDlzptCptcXBy8sLLy8vTp8+TW5uLh4eHphMJqKjo52UhKysLKepndbv9mnb/f39SUxMtI3N29ub4OBgIiIiCs2BURD9+/fnjTfesK01URp+++03HnnkEYeyBx54AID33nuP/v374+vrS9OmTXn33Xc5fvw4Xl5exMTE8PjjjzNs2DAnq82ZM2dYtWoVQ4YMcauFxZ5+/foxa9Yst+S6+OOPP3jsscccygYOHAgYCdb69u0LGPERn332GRMnTqRPnz7UqFGD++67jxdeeKHUYyiMOnXqcOjQITIyMkrdl9aagwcPkpWVhaenJzVr1qR9+/ZO8SKpqalO66VYv5c2bbtwYYjFwxFVFtHcQtEopS6aE1+cgMnqxPr16yt6COVKaRXFqsT9999f0UMoV1auXFnRQyg3lFJ/aa0vLKd7MQgMDNTuyoi7bt26MhljeSNqmCAIgiAI5Ya4WgRBEAShjJDgUmdE8RAEQRCEMkQUD0fkbAiCIAiCUG6IxUMQBEEQyhCxeDgiiocgCIIglBFKKVmrJR+ihgmCIAiCUG6IxUMQBEEQyhBxtTgiiocgCIIglCGieDgiZ0MQBEEQhHJDLB6CIAiCUEZIcKkzVdrioZTqoJRaqpQ6rpTKUUqdU0qtVkoNUEp5KqU6KaW03ZaplDqqlFqhlBqilHJa/Uop5a+UmqiU2mupH6+UmqeUirXsH5ivz4K2CeV9PgRBEITKh4eHh1u24qCUqqeU+kwplayUSlFKfaGUiilm2waWtklKqXSl1C9KKae1YZRScQU89+4qznGqrMVDKTUSmAn8DIwBDgOhQFfgXSAJSLZUfxzYBHgDtYEuwNvAcKVUF631GbuuPwTuAl4ENgMxwETgJ6VUG+A7oINd/SssfVmPYeWoWwQVBEEQhGKglPLHeCZmAwMADUwGflFKtdZapxfSthbwB5AKPAxkAE9a2l6ltd6Vr8kPwIR8ZXuKM84qqXgopW7AUDre0lo/nm/310qpmUAAYF0DfZfWeoNdnU+VUh8BvwBzgDss/foBvYFpWuvpdsc7BawErtVa/wCcsdvnW8AxBEEQBKE8g0v/D2gINNVa7wdQSm0H9mEoEzMLaTsMiAQ62rX9GTiI8fLdO1/9syV95lVVV8tYIAF4xtVOrfUBrfX2wjrQWq/HsIzcrpRqZCn2AjyBlHzVkyyfVfV8CYIgCBWANcbDHVsxuBPYYFUcALTWh4C1QI8i2rYH9uVrmw78jvGcdJuhoso9SJVSnkAnYJXWOquU3a2wfF4LoLVOBeYDjyulblRKBSqlWgLTgW3AT6U8niAIgiCUFS2Bf12U7wBaFNE2D8hxUZ4N+AGN8pXfoZTKUEplK6U2FDe+A6qg4gGEYZyEw27o64jlM9qubBDwJYafLBXjR/QGumitXf0ogiAIglAg5RhcWhNIdFGegBEDWRh7gCaWWA8AlFIewFV2fVtZDowAbgH6AVnAl0qpB4ozyCoZ4+FGrLYrbVc2GXgAeAojWDQGI9B0pVKqY2HBOUUeTKmhwFAwLsSQkJCSdlWl2L69UK9XtWPz5s0VPYRypWPHjhU9hHKjXbt2FT0EoQrixhiPMKWU/Q1mttZ6dr46GmeK46d5D2OSxDyl1OMYwaXPAw0s+822A2g9wqFzpb4ENgBTgQVFHagqKh7ngEygvhv6qmf5PAFgcauMBYZorT+yVlJK/QnsBYYAb5b0YJYLZDaAl5eXq4tDEARBEArirNbaaXqrHYk4WiashOLaEmJDa31QKdUPY5amNc5jC/A6xov4iULa5imllgGvKqWitdYF1oUq6GrRWucCvwJdlFI+pezuNsvnWstnK8un/bRYtNb7MAJMm5fyeIIgCMJFRDkHl+7AiPPITwtgZ1GNtdafA3Us9Rtrra8EAoF4rfWRQhu79iC4pMopHhZeAWphBH06YUmC0rqwDpRSHTCmF32ltT5oKT5p+bwqX91LgBDgWCnGLAiCIFyElGOMxzdAe6VUQ2uBJfnltZZ9RaK1ztNa79JaH1BK1Qb6YMwALRDLjJdewBGt9cnC6kLVdLWgtV6jlHoSmKmUag7MxQgUDQVuwnCJ9OW/BGLNlVJpGPJGYyQZ64+hAf6fXde/Y8xeeU0pFcp/CcTGWfr6pGwlEwRBEIQS8wEwHCOf1TgM68MkIB5431pJKVUfOAC8pLV+yVLmDUwDfsNIKdESeBbDivKaXdv7MabmrrD0Gwk8BlwJ3F+cQVZJxQNAa/2GUmojMAqYgTHbJRVDWXgYI+r2Bkv1/1k+szFiRLZhnKj59jNVLH6qm4DnMIJAXwLOAuuA8cUwNQmCIAiCDaVUuSUQ01qnK6U6Y8RlzMdwf/wEjNRap9kPCyNnlf3ANNAE46U9BCP79hzg5XwzOg8BERgeh5oYQaibgG6WBJtFUmUVDwCt9ToMpaAgfqV40bz2fZ4DRlu24tS/4GMIgiAIFw/FjM9wC5YX5HuLqBNHvueWJX7y9mL0vwHoXIohVtkYD0EQBEEQqiBV2uIhCIIgCJWdclyrpUogiocgCIIglBHlGeNRVZCzIQiCIAhCuSEWD0EQBEEoQ8ozuLQqIIqHIAiCIJQh4mpxRM6GIAiCIAjlhlg8BEEQBKEMEVeLI6J4CIIgCEIZIbNanBHFo4qRl5dHRkYGubm5aK3x9vbG398fT0/PC27r5eWFv78/Xl6Ol4HZbCYjI4Pz58+jtcbT0xM/Pz9MJlNZiSUAp0+f5q233mLz5s1orbnyyisZMWIEkZGRRbY9deoUH330EX///TfJycmEh4dz44030q9fP/z8/Gz1+vTpw8mTzms4TZ48meuvv96t8gj/kZ2dTXx8PCkpKWitqVGjBjExMfj4FL3Adv62AQEB1KtXj4CAAFuds2fPcujQoQL7uOyyy/D29naLLIJQWkTxqEJorUlNTUUpZbvpZGZmkpqaSnBwcKHmPLPZTEpKCkop/P39UUqRlZVFSkoKwcHBNsXFegyz2Wyrl52dTVpaGkFBQXLzKiOysrIYOXIkJpOJZ599FqUUH374ISNHjmTOnDkOykN+MjMzefLJJ8nNzeWhhx4iIiKC3bt38/HHH3P06FEmTJjgUP+qq65i4MCBDmUxMTFlIJUAhsK/Z88ePDw8aNCgAQDHjh1jz549tGzZstCXhtzcXHbt2oWnpyf169fH09OTkydPsnv3blq0aGG7LoKDg2nevLlT+3379uHj4yP/txWMWDwcEcWjCpGdnY3ZbHZQFDw9PUlOTiYrK6vQh1N2drbtTcva1tvbm6SkJDIzMwkMDAQgJyeHvLw8ByXD29ublJQUMjIyCA4OLmMpL06+/fZbTpw4wfz586lbty4AjRo1ol+/fnzzzTf06dOnwLb//vsvR48eZcaMGbRr1w6AK664gtTUVD799FOysrLw9fW11Q8ODqZly5ZlK5Bg48yZM2RnZ9OqVSvb7+Dv78/27ds5c+YMUVFRBbY9ffo058+fp1mzZra2QUFBbN++nWPHjtG4cWPA+B/Nr1ykpqaSm5tL7dq1y0gyobhIjIcjooZVIXJycvDy8nJ4Q/L09MTLy4vz588X2jY3NxcPDw+HtkopvLy8yMnJQWttqwc4uF+UUnh7e5OXl4fZbHanSIKFtWvX0qJFC5vSARAdHc2ll17K2rVrC21r/e39/f0dygMDAzGbzbbfVqgYkpKSCAwMdFD+fHx8CAoKIikpqdC2aWlp+Pr6OrT19PQkKCiI5OTkQn/bs2fPopSiVq1apZZBENyJKB5ViLy8PJdmWU9PT/Ly8ops70rrtpbZKxRKqQI1dKtiIriXuLg4mxnentjYWOLi4gpte+WVV1K3bl3ef/994uLiyMjIYMuWLXz22WfceeedTpawdevW0bVrV26++WaGDRvG77//7k5RhHxkZma6tEb6+vqSmZlZaNuC/heVUpjNZrKysly2M5vNJCYmEhIS4hTDJZQv1uBSd2zVBbkiqxBa6wJvQkW91Xp6enL+/HnMZrPtAtZa2xQJs9mMp6cnnp6eaK2dlBxrPXl7LhtSUlIICgpyKq9RowZpaWmFtvXx8eGtt97ihRdeYMCAAbby2267jZEjRzrU7dChA82aNSM6OprExES+/PJLxo0bx/PPP0/Xrl3dIovgSEEvDF5eXkUq8r6+vqSkpJCbm2tTILTWpKen2/p2RWJiInl5eWLtqCSIq8URUTwuEnx8fMjKyiI9Pd0WNJqZmWmzdFj/MUwmE5mZmaSlpREQEICHhwfZ2dli6SgHXN2ciqPoZWdnM2HCBJKSknj++eeJjIxk165dfPLJJ3h6ejJ69Ghb3fyKyPXXX8+wYcOYPXu2KB6VkPDwcE6dOsXBgweJiYnBw8ODEydOkJ2dXWi7s2fP4uXlRUhISPkMVCiU6mStcAeieFQhCrJsFGQJscfT05PAwEDS09NJTk62lfn6+pKVlWVr7+HhYauXkpJiK/Pz8yMzM1P+gcqIoKAg2/m2JzU11Rb4WxArVqxg69atLFq0iDp16gDQpk0bAgICmDFjBj169LAFIebH09OTTp068f7773Pu3Dl5Qy4DCnKF2lsxCsLX15eGDRty+PBh/vnnH8CI5YmKiuLkyZMuZ6vk5OSQkpJCZGSkvGkLlRJRPKoQBd3ACjLl5sdkMuHt7W2zcnh6epKenu4UdOrt7U1wcLCtnoeHh82XLP7isqGgWI7Dhw8TGxtbaNuDBw8SFBRkUzqsWKdXHj58uEDFQyh7rEp7foqaiWalZs2ahIaG2l4QfH19iYuLw2QyucwDcu7cOQDCwsJKP3ih1BQWM3exIq+vVQiTyURubq6D8pGXl0dubm6x5+krpWyxHGazmZycHJc3L/t6YJjzfXx85B+ojLj22mvZuXMnx48ft5WdOHGCf/75h2uvvbbQtjVr1iQ1NZWjR486lO/cuRMo/AGUm5vLr7/+SmRkpFg7yoiQkBDS0tIcAkGtuXGK6wpRSuHn54evry85OTkkJCQQHh7usu65c+fw8/NzmuVUFsydOxelFCEhISQmJjrsy83NRSnllEfmQhk7diytW7cmJCQEf39/mjVrxqRJk8jIyCiwTVJSElFRUSil+PHHH0t1fHcgwaWOyOtrFcIap5GWlmZ7U7K6P+yn2+Xl5ZGcnIyfn5+tntaajIwMvL29UUqRl5dHZmamzd1iT0ZGBl5eXrZ61htmcd7OhJJx++238+WXX/Lcc88xZMgQlFJ89NFHREREcMcdd9jqnTx5kr59+/Lggw/akoB169aNpUuXMmbMGPr3709ERAR79uxh3rx5NG3alFatWgHw448/snbtWq6++moiIiJswaV79uxh/PjxFSH2RUF4eDinT59m//79NqvUsWPHMJlMDspDdnY227dvp3bt2rZ6ZrOZo0ePEhQUhKenJ5mZmZw4cQI/Pz+X+T/S09PJzMykXr165SOcheTkZF599VVeeeUVt/edkpLCoEGDaNq0KT4+Pqxbt44pU6awefNmvv76a5dtxowZIy9JlRhRPKoQSimCgoLIyMiwzXSwpkwvTmCi2WwmPT0drTUeHh74+Pjg5+fn1Na+nlIKk8mEn59ftdK4Kxt+fn68/vrrvPXWW0yZMsWWMn348OEOb67WGUf2v210dDTvvvsuH3/8MR9++CHJyck2haV///623806k+W9994jJSUFX19fmjVrxvTp07nqqqvKXeaLBU9PT5o2bUp8fDwHDx4EsKVML8pFas0wfO7cOfLy8jCZTISFhREdHe3y/7Gicnd07dqVWbNmMXLkyEITopWEd955x+H7TTfdREZGBq+88gpnz551suitXbuWBQsWMGvWLB566CG3jqWkiBLkiCgeVQxr8qCi6tSsWdOhzKq0FIeighmFsiEyMpJJkyYVWic6OprffvvNqTw2NpaJEycW2rZly5a88cYbpRmiUEJ8fHyKjLPx8fGxZZ61opTikksuKfZx6tevT/369Us0xtIwbtw4unXrxpQpU5g1a1aZH8+qWOV3MZ8/f56HH36YsWPH0rBhwzIfR3GQReKckbMhCIIglIro6GiGDx/O7NmzOXz4cIH1cnNzi9wKyk2Sm5tLWloaP/74IzNnzmTw4MFOSzhMmzaNnJwcnnnmGbfKJ7gXUTwEQRCEUjNmzBj8/PwKtLzFxcXZ1pQpbGvUqJFT23///Rdvb2+CgoLo0qULXbp0Yfbs2Q519u/fz+TJk3n77beLtepveWKd2VLarbogrhZBEASh1NSsWZPRo0czceJExowZ46RA1K5dm02bNhXZjyuloXHjxmzatIn09HTWrVvH1KlTyc3NZeHChbY6w4YNo0ePHnTp0qX0wrgZcbU4IoqHIAiC4BZGjRrFrFmzGD9+vINSAEY6gMsuu6zIPly92fv6+tK2bVsAOnbsSHR0NIMGDWLEiBG0b9+epUuXsnbtWjZv3mxbeM8agG9Nmigra1ceRPGoBGRnZ5Oeno5SiuDgYAftWGtNYmIivr6+pZqXn5GRYVurxX5Wi6+vr9M/+vnz58nMzLTNwzeZTC5nzuTm5pKRkWGrZ51hI9r9f6xcuZJXXnmFwMBAlixZ4hDgm5uby0033cTAgQMZNGhQiY+xdu1afvrpJ/bs2cOxY8do06YNb775pkOdvLw8li1bxoYNG4iLiyMrK4u6dety99130717d4ffbNWqVXz99dfEx8eTkZFBrVq1uPLKKxk4cCARERElHmd14+zZsxw6dAhPT09at27tkFxPa83mzZsdpsaWhKSkJM6dO0d6ejrZ2dkEBQXRrFkzl3VTU1Ntv5mnpye1atWibt26Dr/ttm3byMnJcdk+PDy8yGR1RREYGMizzz7L6NGjefrppx32FbQQYn7q169f5MKIViVk//79tG/fnp07d5KZmUnLli2d6t51110EBwcXuRJwWVKd3CTuQBSPSoTWmqysrDJJ/KO1xsfHBw8PD5RS5Obm2pSL/A/D1NRUmz/Vmu9Da+0w28VsNpOammpLxa61tq3xEhQUJP9o+UhLS2PRokU8/PDDbu/7jz/+YP/+/bRo0aLAh0p2djbz58+na9eu9OzZEz8/PzZs2MD06dM5cuQIw4YNs9VNSUnhiiuu4P777ycwMJAjR44wb948Nm7cyLx588olMVVVIi8vjxMnTpRJ7ozExEQyMjJs/2MFkZGRwZ49ewgODuaSSy4hOzub+Ph4cnJyHGbTNG7c2KmfxMRETp486bZ1XR599FFmzpzJuHHjHMpL42rJj3Vml9WdM3DgQDp16uRQZ+vWrYwaNYoZM2Zw9dVXF3P07kdmtTgjikclwsvLi6ysLHx9fd1+oQYEBDh89/b2tik69ivWWhOSBQYG2qwYSinS09Md1pawpoAODAy0tfXw8CA1NZXz589jMpncOv6qTrt27fjiiy/o2bOn23MsPP3007bfYPjw4S7r+Pj4sHjxYmrUqGEru/LKK0lNTeWLL75g8ODBtht+z549HdpedtllREVF8fTTT7Np0yY6duzo1vFXdWrUqMHp06eJiooqdgbh4hIbG2tT4nft2lVgPWtCskaNGtmuBaUUhw4dIj093fb/n/8+AHD06FHbMgnuwMfHh/HjxzN06FCHcpPJZLNUFJft27fz1FNP0atXLxo2bEh2djZr1qzhzTffpHv37nTo0AEwzlNB1po2bdpw3XXXlUgWoWwQNawSYZ+NtDzIb5XQWtuUBvt9ViXC/m36/PnzeHt7OyhI1u8FvXVfzPTv3x+A+fPnu73v4iipnp6eDkqHlWbNmpGTk2NbOLAgrG1lrR5nateuDeCQ7t5dFMdyaDabSU5OpmbNmg7XQs2aNVFKFepiyM7OJjU11VbXXQwaNIgmTZqUup/IyEjCwsJ4+eWXuf322+nfvz8//fQTM2bM4Msvv3TDSMsHmdXiiNxFKhHW1OdWq0dBWQ2Ls1Q6FL7Mem5uLllZWZhMJtvNyn7xuPz9eHh42ObXa60xm80ux1fQQnYXO7Vq1eLuu+/ms88+47777iswu2Nubm6RfVnX0XEH27ZtIzAw0CnhHBguhLy8POLj43n77beJjY294DfWiwFvb28iIiI4deoUUVFRBboKSvN/WxjZ2dlorZ2WNLDGcRX2IlPaBeUGDhxoS91vj5eXF3v37i1Rn/ZERkayaNGiErXt1KlTsc95WSOuFkdE8ahk+Pr6kp2dTWZmpssMotZ1WIrCw8PDyWebm5vrsPS6yWRyML1aFQ9XNz4PDw/bP7H101U9pVSl+WevbPTt25fly5czd+5cxo4d67T/xIkT3HfffUX2ExUVxaefflrq8WzcuJFffvmFhx56yKUl4+6777Zda02bNmXmzJmVLj9CZSE6OpozZ85w/PhxlwGU1nVYisJkMtGmTZsLOrZVWXX1G3p5eRWqzJ47dw5/f3+J2xHKFVE8KhlWq0dmZiZ5eXlOmrKHh4dLk3lxsJrbtda24FKQFOnlRY0aNejduzeffPIJffv2tZnorYSFhfH+++8X2Y874gji4uJ46aWXuOyyy7j//vtd1pk5cyZZWVkcPnyYhQsXMnr0aGbNmlXs1PsXE15eXkRFRXHs2DGioqKcFl709vamRYsWRfZTnuZ064q5MTEx5XbMi5Hq5iZxB6J4VEKs7pbMzEynYLDSmNmVUra3Ims8hn3QqFXJcWWxsHetWP+JXNWzLiwnuKZXr1588cUXzJkzxynq39vbu8j1PKD0D6fjx48zevRooqOjmTJlSoFxG9axXHrppbZZLt988w39+vUr1fGrK5GRkZw6dYpjx445Jc/y8PAoM6uC9fdzZdnIzc0tcFVp64JyrtxsgnsRV4sjonhUQpRS+Pn5kZGR4fTmVBpXS36sikReXp6D4pE/RsMa02ENMs0f85F/fBKAWDD+/v7069ePd955x8mtUh6ultOnTzNq1Cj8/f2ZPn26y1kOroiOjqZGjRocO3asRMe9GPD09CQ6OtqWS8OesnS1+Pj4oJRyiuUwm81kZ2e7VCzMZjMJCQkEBwe7fSaOIBSFPCEqKT4+Pjarhz2lcbXkx/qGZD/9ztvbm5ycHPz8/Gxv1tZZKvZTZK317KfiWhOUyVTawrnrrrtYunQpH330kUN5WbtakpKSGD16NACvvfbaBeVtOHToEMnJyU7uIcGRiIgITp48ydGjRx3Ky9LV4uHhQXBwMAkJCdSpU8fWR0JCAlprl79zUlISeXl5JQ4qFS4MsQI7IopHJUUpha+vr9Obk727pLhYM4yaTCY8PT1tMR5ZWVm2hZms+Pn5kZKSQlpaGr6+vpjNZjIyMvD29nY4rp+fHzk5ObZ61gRinp6e8gZVBCaTiQEDBjBjxgyHcm9v7wKzUhbGyZMn2b17NwDJycl4eHjw66+/AsZ02aioKLKzs3nqqac4efIkzzzzDGfOnOHMmTO2PmJjY23Wj+HDh3P99dcTExODyWTiwIEDLF26lPDwcG6//fYSSn1x4OHhQZ06dZwyb3p4eBTbumSPNasx/PeikJCQABg5OazBvnXq1GHnzp3s37+fyMhIWwKx0NBQl8c9d+4cXl5ekka8HJAEYs6I4lGJsVo9rLNNSoqHhwceHh62vqz/CP7+/k6zFLy8vAgKCiIjI4PU1FSHlOn5+7TWS0tLc0iZLtp90XTv3p0lS5Y4vRmXhL///ptXXnnFoezFF18EYOzYsXTv3p2EhAT27dsHwOTJk536eOONN7j88ssBaN68OStXruTkyZOA8RZ/0003cd9997ktu2V1JiwsjBMnTpCdnV3qvlJTUzl06JBD2YEDBwBo0KCB7f/X39+fpk2bEh8fz969e/H09CQsLMxluvbz58+TnJxMeHi4PBCFCkHJ1MeKwcvLS18sbxvWN7SLBWs654uFiymTabt27Sp6COXKxo0bK3oI5YZS6i+ttdsT1dSuXVsPGTLELX1NmjSpTMZY3ojFQxAEQRDKELECOyJ2NkEQBEEQyg2xeAiCIAhCGSKxNI6I4iEIgiAIZYRkLnVG1DBBEARBEMoNsXgIgiAIQhkirhZHRPEQBEEQhDJEXC2OiBomCIIgCEK5IRYPQRAEQShDxOLhiCgegiAIglBGyFotzsjZEARBEASh3BCLhyAIgiCUIeJqcUQsHkWglJqglOpc0eMQBEEQqibWJGKl3Yp5rHpKqc+UUslKqRSl1BdKqZhitm1gaZuklEpXSv2ilHJalE4p5aGUelYpFaeUylJKbVNK3Vvc8yGKR9G8CIjiIQiCIFRqlFL+wM9AM2AA0B9oAvyilAooom0t4A/gUuBh4D7Lrl+UUs3zVZ8ETADeAroDG4BlSqlbizNOcbUIgiAIQhlRzsGl/wc0BJpqrfdbjr8d2IehTMwspO0wIBLoaNf2Z+AgMBHobSmLAJ4CXtFaz7C0/UUp1Rh4BVhR1CCLdTYs7gatlGqmlPrBYoI5opQaZNnfXym1WymVZjHNNLJr662UmmwxyeRYPicrpbzt6sRa+n9YKfWSUuqExdSzXClVN99YiuzPUi9AKfWKUuqAUipbKXVSKfW5UipSKXWl5Xg9XMg6Vyl1VCnlqZTSluLnLfW1UmqCXd2OSqmflFKplnPyg1Lq0uKcU0EQBOHioBxdLXcCG6yKA4DW+hCwFnB63uWjPbAvX9t04HfgdqWU1VBxC2ACFuRrvwBopZRqUNQgL1QNWwZ8B9wF/AXMUUq9jKEpjQUGAU2BRXZtPrHsmwfcDnwMjLGU5+dZoDEwGHgC6AAszFenyP6UUiZgNfA4MNdSbziQAIRqrf8CNmFogNi1C8HQ6j7UWudZjo+ljw6W7UNL3duAn4A04AGgLxAE/K6UqudCNkEQBEEoS1oC/7oo3wG0KKJtHpDjojwb8AOsBoWWlrL9+ertsHwWdZwLdrVM11rPA1BKbQbuwHh4N9Bap1jKo4E3lVL1MR7E9wMTtdYTLH2sUkrlAZOUUq9orbfb9X9Ya93X+kUpFQ5MV0rV1loft1gTitPfAxhKQg+t9Td2/X9m9/c7wEdKqfpa68OWsgcxNLkPAbTWGyxa5jGt9YZ85+JN4DettU2LVEr9gmGWGg2MzH/ylFJDgaEAderUYfPmzfmrVEu8vb2LrlSNCAsLq+ghlCtHjx6t6CGUG3379i26kiDko5jWiuIQZnn2WpmttZ5t970mkOiiXQIQWkTfe4AuSqlaWutzYASRAlfZ9W39TNJa63ztE/LVK5ALtXistP6htU4ETmOYdVLs6uy2fNYDbrD87cokA9AxX/l3+b7/Y/m0RuQWt7+uwMl8Skd+lgBJGD4xKw8D32mtC72TKqWaYGh/C5VSXtYNyADW243TAa31bK11W61121q1ahV2CEEQBKGa4OHh4ZYNOGt9hli22S4Ol18hACiO5vMehk4wTynVyGJE+B9gdZ2Y7foq6TGAC1c88mtSOQWUAfjyn+ZzIl+dk5bP/JpRQr7v2XZ92dcvqr9awDEKQWudheGmeciiOFyPYSJ6r7B2FiIsnx8B5/Ntt1uOLwiCIAjlSSKuLQ6huLaE2NBaHwT6AVdiuFGOY3gOXrdUsT53E4BQ5WzGCbXbXyhlPavFOoAo4IBdeZTl81wZ9XcWY0pQUbwLPIkRdHM3EAf8UIx21uM8C/zoYr8rP5kgCIJwkXEBgaHuYAdGDEZ+WgA7i2qstf5cKfUVcAmQo7U+oJR6F4jXWh+xO4YPhtXfPs7DGttR5HHKeo7Pb5bP+/KV97N8rimj/lYBUUqpOwrrTGt9wFL3aaAn8IHW2pyvWg5GYI09ezCUlJZa680utu0IgiAIAuU6q+UboL1SqqHdsWOBay37ikRrnae13mVROmoDfTBe0q18j/Fc7Jev6QPAv5ZZNIVSphYPrfUOpdRiYIIlBmIdhunmBWDxhT6gL6C/BRixG4uVUlOBPzECXW8B3tBa77br9h3gaww3yRwXh90J3KaU+h7DVHXcEuj6GPC1ZQbNUgwrSyRwDXBEa13YfGlBEARBcDcfYMzg/FopNQ4jFmMSEA+8b61kmfxxAHhJa/2SpcwbmIbxgp+CYTl5FsPC8Zq1rdb6tFLqdeBZpVQqsAVDOelM0VN2gfJJIDYAY6bHYGAcht/oVYyEJGXSn9b6vFKqK0bW0aGWz3MYc5nz+5++wwgKXaG1PokzwzECbJZjmJcmAhO01iuUUjcAz2PMgvHDiDXZAHxaQtkEQRCEakZ5JRDTWqcrY4mP14H5GAGfPwEjtdZpdlUV4Imj10NjZDntC4QARzFexl/WWucPH3geI5XEExihDnuA3lrr5cUZZ7EUD8vU1QkuymNdlP2KXXSr1vo8hoIwrpD+43AREZu/r+L2Z6mXhuFCebqwehhamj8FBJVqrddiBNu42rceI5hUEARBEFxSjjEeWGIxCl03xdUzV2udSzGfZ5Y8V5Mt2wVz0aZMV0Z21YYYmuEWrfVPFTwkQRAEQaj2XMyLxL2AkZckGyNxmCAIgiC4FXcFlpan1aSsuWgtHlrrgcDACh6GIAiCUM0px0XiqgRyNgRBEARBKDcuWouHIAiCIJQH1clN4g5E8RAEQRCEMkQUD0dE8RAEQRCEMqK6BYa6A4nxEARBEASh3BDFo4px7NgxhgwZwiWXXEKTJk0YPHgwR48eLbLdjBkziI6OdrnFxsY61D137hyjRo2iZcuWNGjQgFtvvZVffvmljCQqmGPHjjFo0CAaNGhAbGwsAwYMKJasr776KmFhYS63OnXqONRNSEjgueee48orr6Ru3bpcccUVjBkzhrNnz5aVWIKF48ePM3ToUJo3b06zZs0YMmQIx44Vuqi0jWPHjjFy5EiuuuoqGjduzPXXX8+0adPIyMhwqGc2m3nrrbdo3749jRo1okuXLnz33XdlIU6hZGVlsXPnTtauXcvatWvZsWMHWVlZxWqbmZlpa/vHH3+wbds2UlNTXdbNzs5mz549rF+/nt9//50///yTQ4eKXDpDKGOKu+x9UVt1QVwtVYiMjAx69eqFyWTizTffRCnFq6++Ss+ePfn555/x9/cvsG3fvn258cYbnfrr27cvXbt2tZVlZ2fTq1cvEhISeOGFFwgPD2fx4sU8+OCDfPrpp1xzzTVlJl/+sd111134+Pjw9ttvAzB16lTuuusufvvtNwICAgps279/f2666San/nr37k23bt1sZVprHnjgAQ4cOMCYMWO45JJL2Lt3L1OnTmXbtm2sXLlSTKRlRGZmJr1798bHx4fXX38dpRTTpk2jd+/erF69utBrOSMjg/vuu4/c3FyefvppateuzbZt23jttdc4dOgQ777733pW06dP5/333+eZZ56hVatWfPPNNzzyyCPMnTvX6RopK/Ly8ti+fTseHh40bdoUgLi4OLZv386VV16Jp6dngW3Pnz/Ptm3b8PT0pEmTJnh6enL06FG2b9/O5Zdf7nCesrKy2Lp1K76+vjRu3Bhvb2+ysrKKreAIZYfcRxwRxaMKsXDhQg4fPswff/xBgwYNAGjRogXXXHMN8+bN45FHHimwbe3ataldu7ZD2bJly8jNzaV37962suXLl7Nr1y4+//xzm5LRuXNnbrrpJiZNmsTKlSvLQDJn5s+fz+HDh9mwYQMNGxoLLbZs2ZKrrrqKTz75hEcffbTAtq5kXbp0Kbm5ufTp08dWduDAATZu3Mhrr73GgAEDALjuuutQSvH000+zf/9+mjRpUgbSCQsXLuTIkSP89ttvtmu5efPmXH/99SxYsIChQ4cW2HbTpk0cOnSIhQsX0rFjRwCuvfZakpKSeP/998nMzMTPz4+zZ8/y/vvv8+ijj9r+N6699lri4uKYOnVquSkeJ0+eJCsri3bt2uHnZyx0HRAQwKZNmzhx4gR169YtsO3x48fJyclxaBsSEsLGjRuJi4ujRYsWtrr79u3Dx8eH1q1bV6u3Y6H6IVdnFWLVqlVceeWVths1QExMDO3ateOHH3644P6WLVtGeHg4nTp1spVt2bIFX19fOnToYCtTStGxY0e2bt3KiRMnSiVDcfn+++9p27atTekAqF+/PldddVWJlJ8lS5YQERFB586dbWXnz58HICgoyKFucHAwYFhEhLJh9erVXHHFFU7Xctu2bYu8lq2/W2BgoEN5jRo1MJvNtt/t119/JScnh3vuuceh3j333MPu3bs5cuSIO0QpknPnzlGjRg2b4gDg5+dHcHAw586dK7Rtamoqfn5+Dm09PT0JDg4mISHBJmtmZiaJiYnUrl1blI5KiGQudUSu0CrEnj17bKZae5o2bcrevXsvqK/jx4+zdu1a7rnnHry8/jN8eXh44O3t7XSRm0wmAHbv3l2CkV84e/bsoVmzZk7lzZo1K5Gsf/zxB/fee6+DrM2aNaNDhw689tpr/P3336SlpbFlyxZmzJjBzTffzCWXXFJqOQTX7N27t8Bred++fYW2ve6662jQoAEvv/wye/fuJT09nbVr1zJnzhz69+9vcz/s3bsXHx8fB+UGsP2uRR3HXaSnp7t0Hfn7+zvFpORHKeVSkVBKYTabyczMBCAlJQUw/n+3b9/O77//zrp169i9e7dNURMqBkmZ7owoHlWIpKQkQkJCnMpDQkJITk6+oL4+++wzzGazg5sFoHHjxqSmpjo93P/66y/bGMqDxMREl7KGhoZe8BiWLl2K2WzmvvvucyhXSrFkyRIaN25Mly5diI2NpWvXrtSvX5+PP/64FKMXiiIpKclmWbKnONeyr68vX375JVprOnfuTNOmTenTpw833XQTkyf/t1hmUlISNWrUcLphW6+rxMTE0gtSDHJzc/H29nYq9/LyKlIp8PPzIzMz06Ge1toWXJqbmwsYsVlgKFt+fn5ceumlNGjQgISEBP755x+x3gmVClE8qgEluaksW7aMSy+91MFHDHD33XdTq1YtnnjiCXbt2sW5c+d488032bBhA1C+aw640vBLIuunn35Kq1ataNmypdO+UaNGsXnzZmbMmME333zDjBkz2LZtG4MGDcJsNpdo3ELxKOnvm5WVxbBhwzh79ixvvvkmn332GePGjWP58uU8//zzDn256xqqKKKjo9Fas2fPHjIzM8nOzubAgQMFBowGBwfTpEkTQkNDiY6OpnHjxqSlpZWbkiW4Rma1OCLBpVWI4OBgl2/7ycnJLt8eC+Lvv/9m//79vPTSSy6P8eGHH/LEE0/Y4iFiY2MZPXo006ZNIyIiosTjvxBCQkJc3iwLsvoUxJYtW9i3bx9Tpkxx2rdq1Sq++OILvvjiC2644QYArrnmGmJjY+nZsyfff/89t956a4llEAqmNNfykiVLWL9+PX/88YdtKnj79u0JCgpizJgx9O/fnxYtWtisJ/kVEKtFJTQ01G3yFEZBlo2CLCH2+Pn50axZM/bv38+mTZsAI7albt26HD161OYCtboQ88tk/Z6WlkbNmjVLLYtQMqqTm8QdiOJRhWjatCl79uxxKt+7d+8FxSMsXboULy8v7r77bpf727dvz4YNGzh06BB5eXk0atSId955B19fX1q3bl3i8V8IBcm6Z8+eC5J1yZIleHl5ce+99zrt27VrFwCXX365Q/kVV1wBlF8MwMWIdepyfvbu3VvkTKLdu3cTHBzslH/G+jvu27ePFi1a0LRpU7Kzs4mLi3OI87D+ruU1Y6mgWI6MjIxCpw1bCQ8PJywsjMzMTJRS+Pn52Waw+Pr6AhQ6vVwQKhvVx3ZzEdC1a1e2bNnC4cOHbWXx8fFs2rSJW265pVh95OTk8PXXX3PTTTcRFhZWYD2lFA0bNqRJkyZkZmaycOFCevbsWW43uG7durF582bi4uJsZUeOHGHjxo0OuTgKIycnhy+//JKbb77ZpaxW682WLVscyq3xLNHR0SUcvVAUBV3Lmzdvdsgr44rw8HCSk5OdEmNZf8eoqCgAOnXqhMlk4ssvv3So98UXX9C0aVNiYmLcIUqR1KpVi5SUFFsgKBjuopSUFGrVqlWsPpRS+Pv74+fnR3Z2NmfOnHG4PmvUqIHJZHKyElq/55+55S7mzp2LUsqlhTI3NxelFBMmTCjVMcaOHUvr1q0JCQnB39+fZs2aMWnSpEIDc5OSkoiKikIpxY8//liq45cWCS51RhSPKsQDDzxAvXr1GDhwIN9//z0//PADAwcOpHbt2vTv399WLz4+nrp16zJz5kynPlavXk1iYiK9evUq8DhTpkzh22+/Zd26dSxcuJBbbrkFLy8vnnvuuTKRyxX9+/cnJiaG/v37s2LFClauXEn//v2pU6eOLecGGLJGRkYyffp0pz5WrVpFYmKiU1Cpldtvv52oqCgeffRR5syZw++//86cOXN47LHHqFOnjrhZypC+fftSt25dBg8ezA8//MCqVasYPHgwtWvX5oEHHrDVO3r0KPXr1+f111+3lfXu3ZvAwEAefPBBli1bxtq1a3n33XeZPHkyrVu3pl27dgCEhYUxZMgQ3n77bWbPns26det49tlnWbt2LWPHji03WaOjo/H19WXHjh2cPXuWc+fOsWPHDnx8fByUh6ysLNasWeOgjJnNZg4cOMDZs2dJTEzk2LFj/P333/j7+zvk/1BKERsbS0JCAvv27SMhIYHjx4+zf/9+goODL8g9WRKSk5N59dVXy6TvlJQUBg0axKJFi1i+fDn9+vVjypQp3H///QW2GTNmTKV6UIvi4Yi4WqoQ/v7+LFu2jBdffJERI0agtea6665j0qRJTpaIvLw8l8GRy5YtIzQ0lC5duhR4nLNnzzJ+/HjOnj1LWFgY3bt356mnnio3nzgYpuMvv/yScePG8eijj6K15oYbbmDKlCkO+Ru01gXKumTJEkJDQwt8gw4KCuKHH35g2rRpvPXWW5w6dYrIyEi6du3KmDFjnPJECO7D39+fpUuXMmHCBJ544gnbtTxhwgSHa9nV71uvXj2++eYbZs6cybRp00hISKB27dr069ePESNGOAThjRkzhoCAAD766CPOnDlDw4YNeffddwu9/t2Np6cnrVu35uDBgzb3YUhICI0aNXKZtdQ++FUpRWZmJqdPnyY3NxcfHx8iIyOJiYlxCja0vuHHx8dz8uRJvL29iYiIoEGDBmX+0OratSuzZs1i5MiRNouTu3jnnXccvt90001kZGTwyiuv2O5R9qxdu5YFCxYwa9YsHnroIbeORXAPqipFeFcn2rRpo0uS9KsqUlQAXXWjMBdWdaQ46+dUF/r27VvRQyhXfvvtt0L3z507l0GDBrFmzRq6devG4MGDmTVrFvBf8OyLL75YandLfmbMmMHTTz/tNC37/PnzXH755fTp04frr7+eG2+8kdWrV3PzzTcX2adS6i+tdVu3DhRo2LChtp/mXRr69etXJmMsb8TVIgiCIJSK6Ohohg8fzuzZsx1cRfnJzc0tcsvLyyuwbVpaGj/++CMzZ85k8ODBTjOgpk2bRk5ODs8884xb5Sst4mpxRBQPQRAEodSMGTMGPz8/Jk6c6HJ/XFwc3t7eRW6NGjVyavvvv//i7e1NUFAQXbp0oUuXLsyePduhzv79+5k8eTJvv/02Pj4+ZSKj4B4kxkMQBEEoNTVr1mT06NFMnDiRMWPGOCkQtWvXtuUiKQxXSkPjxo3ZtGkT6enprFu3jqlTp5Kbm8vChQttdYYNG0aPHj3KNX6nOBSU9v5iRhQPQRAEwS2MGjWKWbNmMX78eAelAIz1ni677LIi+3DlUvD19aVtWyO0oWPHjkRHRzNo0CBGjBhB+/btWbp0KWvXrmXz5s22xHRpaWmAsVbOhSZZdDfVyU3iDkQNEwRBENxCYGAgzz77LMuWLWPr1q0O+0rjasmPVQnZv38/ADt37iQzM5OWLVsSGhpKaGgod9xxBwB33XUX9evXd6+gQqkQxaMS8OmnnxIdHU3Tpk2d0kjn5uYSHR3NjBkzStx/amoqM2fO5I477rBldLzjjjsKXF7+zz//5I477qBBgwa0bt2aF1980SH5kZXVq1dz55130rx5c5o1a8add97J999/X+R4Fi9eTFhYGA0bNnQpb1hYWKlzAnz//fcMHTqUq666ivDwcO68884C6y5ZsoTOnTsTGxtL06ZNuffee1m/fr1Dncsvv5ywsDCX2+jRo0s11urO0qVLqVu3Li1atHD5e9etW5fXXnutxP2npqby+uuv06NHD9v6Qz169HB5LX7wwQfcdtttXHrppTRq1Ihrr72Wl156yW1rmZw8eZI1a9awdu1apzTpWmvWrFnjkBSvJGitOXz4MH/++Se///47GzdudDmzKDk5mT179rB582bWrFnDn3/+WarjFpdHH32UOnXqMG7cOIdyq6ulqG358uVFHsM628aqpAwcOJBffvnFYbPmfpkxYwbffvutm6W8MCS41BFxtVQiUlJSePvttx0WunIHx44dY+7cufTp04eRI0fi4eHBV199xeDBg3n55ZcZNGiQre7OnTu577776NixI/PmzePIkSNMmjSJkydP8v7779vq/fzzzwwYMIBbb72VJ554AoCFCxcyePBg5s2bV6zpaykpKfzvf/9j/PjxbpUXYOXKlfz777+0bdvWtnKnKz755BNGjx7NwIEDGT9+PBkZGbz77rv07NmTlStX2lLEf/LJJ+Tk5Di0/fbbb3nrrbeKnUn1YiclJYV33nnH7Ynojh07xrx58+jduzdPPPEEHh4efP311wwZMoTJkyczcOBAW92kpCS6d+9O06ZNCQgIYMeOHbzxxhusW7eOFStWuM0Xn5eXx9GjRx1StbuLffv2cerUKWJiYqhRowZJSUkcPHiQvLw8hzf7pKQkkpOTbVlLC5ot4m58fHwYP348Q4cOdSg3mUw2S0Vx2b59O0899RS9evWiYcOGZGdns2bNGt588026d+9Ohw4dAGM9qfwp9K20adOG6667rkSyuIvqpDS4A1E8KhEdO3bko48+4v/+7//cuhhbTEwMGzZscFgX4sYbb+T48eO89dZbDorH9OnTiY6O5oMPPrDl3/D29uaJJ57gsccesz2IP/vsM6Kjo3n//fdtSZA6depEu3bt+Pzzz4uleNx44418+OGHPPzww0RGRrpNXoDXX3/d9hC57bbbCqy3ZMkS2rVr52BRuv7667nkkkv4+uuvbfK6WqNmypQpRERE2BbTEwqnY8eOfPzxxwwZMsTt1/e6devw8/OzlXXq1Injx4/zzjvvOCgeTz/9tEPba665Bj8/P8aOHcu///7rtrWIQkNDOXbsGHXq1LEt5OYOsrKyOHnyJDExMTYlIzQ0lLy8POLj46ldu7bt/9a+zu7du22L45UHgwYNYvr06aVe7ygyMpKwsDBefvllTp48ib+/Pw0bNmTGjBkMGTLETaMVyhtxtVQiRo4cCcCbb77p1n79/f1dLkbVpk0bTp06Zft+/vx5fv31V+644w6HpF933nknJpMJ+4RnOTk5+Pn5OWRe9PT0xN/fv9jLyT/55JMADumw3UVx31xzcnKc1rHw9/fH29u7UDmOHj3KH3/8Qc+ePV1mnxScefzxxwH43//+59Z+rWuY5Kd169YO13dBWNOJW1d4dQfWdWCOHDnitj7BcCsBTivNhoaGYjabSUhIsJWVx1v2wIED0VrTuHFjh3IvLy/27t2L1rpUycMiIyNZtGgRhw4dIjMzk3PnzrFp0yYee+yxIqfMdurUCa11sV6CyhpxtTgiikclIjIyksGDB7NgwQLi4+MLrFeaJDz2bNiwweGGERcXR1ZWFs2aNXOo5+vrS/369R1WE33ggQeIi4vjjTfe4Ny5c5w9e5aZM2dy9OhRBwtKUfI+9NBDzJs3r1zkdcXgwYP57bffWLBgAcnJyZw4cYIxY8bg5eVFv379Cmy3dOlStNYFrgMjOBMREcHAgQNZtGhRodlO3fV7//nnn04PRPtjZGZm8tdffzFz5kyuu+46WrRoUWLZ8mMymahduzYnTpwgKyurwHpa62JtVqwPn/yKtfV7YQunCRWDLBLnjLhaKhmPPfYY8+fPZ+bMmS4tAfHx8Vx11VVF9lO3bt1C58zPnz+fv/76i7feestWZg38czXtLCQkxCEwsFOnTnzyySc89thjtkDQwMBAPvroI9q3b1/k+Kw8/vjjfPLJJ0yfPt3lm/CRI0dsy9QXRr169fj777+LfVwrVuXimWeesVmcIiIi+Oyzzwp8aIGheLRq1cqtD6uLgUcffZSFCxfy+uuvuwwojY+Pt/ntC6Nu3bps2LChwP0LFixgy5YtLq+p9PR0mjZtavvesWNHh/gld1GvXj1OnDjB4cOHHY5nJSsri40bNxbZj4+PD1dffTWAzbKTkpLisJZQSkoKgFNAqyBURkTxqGSEhoby8MMPM3PmTB577DGngKnIyMgCZ6PYU5gZct26dbzwwgv07NmTe++911ZufbMqjmb9119/MXz4cDp37kzPnj1RSrF06VL+7//+j/nz53PttdcW2QcY8j766KNMnz6dESNGOAXjRUVFsXr16iL7KWmmwhUrVjBmzBgGDBhAt27dyMzMZPbs2dx///189dVXNG/e3KnN5s2b2b9/Py+//HKJjnkxExoaytChQ3n99dd59NFHnaY5RkZG8t133xXZT2FxE+vWrePFF1/k3nvv5Z577nHa7+fnx3fffUd2djb//vsvs2bNYuDAgSxZssSt7hZvb2/q1q3L4cOHqVevnpM7yGQycfnllxfZj711IyAggJCQEA4fPoyvr68tuPTYsWOABDFWVuR3cUQUj0rIww8/zJw5c5g+fTpvv/22wz6TycSll15aZB8FXehbt25lwIABXHvttcycOdNhn9XXnX/Ko7XM/q3t+eef55JLLnFYOfLGG2/kzjvvZMKECcVSFqw88sgjfPjhh7zyyitOb54mk4lWrVoV2UdJ/rG11owePZo77rjDQYm48cYb6dChA1OnTmXevHlO7T799FO8vb1dPtSEovm///s/Pv74Y2bMmGFbUMyKyWSiZcuWRfZR2PU9ePBgrrnmmgKnoHt4eNCmTRsArrrqKpo1a0bv3r357rvv6NGjxwVKUzh169bl+PHjHD582MmF6eHhUaIVkJs2bcru3bv5999/ASO2qkGDBuzfv9+tgayC+5DMpY6I4lEJCQgIYMSIEUycOJFhw4Y57CuNq2XXrl3cf//9tGzZkg8//NBp1djY2Fh8fHxsS3dbycrK4siRI7aEPGBEyQ8YMMDpuJdddpnLh3VhBAYG8sQTTzB+/HiGDx/usK8sXS2nT5/mzJkzTm+d1oeffUyLlezsbL766ituvvnmi24VWncREBDA8OHDeemll3jkkUcc9pXG1bJr1y769etHy5YtmT17drFXRbYqIaXNr+EKT09P6tWrx8GDB6lbt67DvpK4Wqzf27RpQ3Z2Nrm5ufj6+pKeng5AjRo13CuAIJQBonhUUgYOHMjs2bOdEmmV1NVy8OBB+vTpQ0xMDPPnz3c5C8BkMtGpUyeWL1/OU089ZTM7f/vtt2RnZ9O1a1db3fDwcKfMhGC8cUZFRRVHRAcGDx7Mu+++y9SpUx3Ky9LVEhISgo+PD1u2bHEoz8nJ4d9//3WZ7fCHH34gMTFRgkpLyYMPPsjs2bOZNm2aQ3lJXS0HDx6kb9++1K9fn7lz57q8vgvCqsCUVXbL2rVrc/ToUSfFpiSuFnt8fHzw8fFBa82xY8fw8/OzWS2FyoW4WhwRxaOS4uPjw6hRo5zyDhR3vQN7zp49S58+fTh//jxPP/2005v8pZdeantwP/XUU9xxxx0MHTqUQYMGER8fz6RJk7j99tttb4YADz30EBMnTuTRRx+1xYksW7aMTZs2MWnSpBLJ+9RTT9mm2NrLW5ybc37i4+NtFpCEhAQ8PDz45ptvACMLab169fDx8aF///58+OGHhIaG0rVrVzIzM/noo484cuQIkydPdur3008/pWbNmpVuIaqqho+PDyNHjmTMmDEO5SaTyeE6Kw5nz56lb9++5OTkMHr06AKv75SUFB544AHuvvtuGjRogFKKrVu3Mnv2bFq0aEH37t1LLZcrPDw8qF+/vlNOCw8PD6ep3MXh+PHjeHh44OvrS05ODqdOnSIlJYVWrVo5POBycnJsuTuysrIwm82cOXMGMKYgBwQElEIqobhUtxkp7kAUj0rMfffdx7vvvsvBgwdL1c/evXtt0xf79+/vtH/jxo3Uq1cPMG7SixYtYsqUKfTv35+goCB69uzJs88+69DmkUceITw8nI8++ojHHnsMgIYNG/LOO+9w9913l2icffv25a233iq1vAB//PEHI0aMcCgbPHgwALNmzeL+++8HYPLkyTRu3JgFCxawaNEifH19adq0KcuWLePGG290aH/27Fl++uknBg4cKL50N9CnTx/ee+89Dh06VKp+7K9vV+6/9evX2xTNJk2aMGfOHE6ePImXlxd169bl4YcfZvDgwWW6lHpUVBRHjx51ufTAhaK1Jj4+nqysLDw9PQkODuayyy5zUiQyMjLYtWuXQ5n1e0xMjCgeQoWh7OeIC+VHmzZttH1CrupMcX3t1YWLLfajsJwc1Y2+fftW9BDKFeuaKBcDSqm/tNYXltO9GDRp0kS7K0niHXfcUSZjLG/E4iEIgiAIZYi4WhyROT6CIAiCIJQbYvEQBEEQhDJELB6OiOIhCIIgCGWIKB6OiKtFEARBEIRyQywegiAIglBGSB4PZ0TxEARBEIQyRBQPR8TVIgiCIAhCuSEWD0EQBEEoQ8Ti4YgoHoIgCIJQhoji4Yi4WgRBEARBKDdE8QCUUgOVUtpuS1dKxSmlvlRK9VZKOZ0npVSYUmqqUupfS/0MpdQ/SqlXlFLRFSGHIAiCUPmwzmwp7VbMY9VTSn2mlEpWSqUopb5QSsUUs22MUuoTpdQRyzNtr1JqslIqIF+9uHzPTOt2V3GOI64WR3oBRwEfIAa4DVgMDFVK3aG1zgRQSrUAVgEK+B+w2dL+cuBhoClQsiVaBUEQhGpDeU6nVUr5Az8D2cAAQAOTgV+UUq211umFtA0AfgS8gReAI0A7YCLQBOiTr8kPwIR8ZXuKM05RPBzZqrXeb/d9vlJqGbAMmAaMUEp5AZ8DWcA1WuvTdvV/Ukq9AXQvrwELgiAIgoX/AxoCTa3PMqXUdmAfxkvxzELaXouhYNyitV5lKftFKVUTeEop5a+1zrCrf1ZrvaEkgxRXSxForT8Hvgb+z6JN3gM0A8bmUzqs9XO11svLeZiCIAhCJaUcXS13AhvsX6C11oeAtUCPItqaLJ8p+cqTMHQFt5ltRPEoHisw3C9tgZuBPEuZIAiCIBRKOSoeLYF/XZTvAFoU0fZHDMvIq0qpFkqpQKVUZ+AJ4D0Xbpo7LHEg2UqpDcWN7wBRPIrLEctnNFAPOJPP5CQIgiAIFU1NINFFeQIQWlhDrXUWcB2GXrADSAV+Ar4FhuervhwYAdwC9MMIPfhSKfVAcQYpMR7Fw6pq6lJ1otRQYChAnTp1MJvNpR1XleDcuXMVPYRyZdCgQRU9hHKlbt26FT2EcmP16tUVPQShCuLG4NIwpdRmu++ztdaz89Vx9ZwqcgBKKV/gUyAC6I/xwn0VMB7IBYbZDqD1iHxtvwQ2AFOBBUUdSxSP4lHP8nkCiAe6uAi0KRLLBTIboE2bNqVSYgRBEISqgRsVj7Na67aF7E/EsHrkJxTXlhB7HgI6AY211gcsZWuUUsnAbKXUe1rrba4aaq3zLBMxXlVKRWutTxR2IHG1FI/bMExJf2H4wTyRmSuCIAhC5WIHRpxHfloAO4to2wpItFM6rGy0fDYvon2xPQOieBSBUuoejEjh9ywWji8w5iq/qpQKd1HfSyl1WzkPUxAEQaiEuCuwtJhWk2+A9kqphnbHj8WYKvtNEW1PAqFKqcb5yq+2fB4rREYvjDxYR7TWJ4sapLhaHLlMKRWGMa0oBrgd42SuBp4FY7qsRRlZDWxVSr3JfwnE2mDEcOwGvivnsQuCIAiVkPJKIAZ8gBEI+rVSahyG9WESRojA+3bjqQ8cAF7SWr9kKZ4LPAmsUEpNwYjxaIuRTOwvjCm5KKXux5iau8LSbyTwGHAlcH9xBimKhyPLLJ9ZwGlgC3Af8JnW2mY+0lrvVEq1AZ4CBmJkb1MYU5G+AN4svyELgiAIlZnyUjy01umWKbCvA/Mxnks/ASO11mn2Q8IIGfCwaxunlGqP8TybDIRhKBazgSlaa+tsiEMYAajTMeJJMoBNQDet9Q/FGacoHoDWei6Gtnchbc4CYy2bIAiCIFQ4WusjwL1F1InDxUwXrfVOoHcRbTcAnUsxRFE8BEEQBKEsKUdXS5VAFA9BEARBKENE8XBEZrUIgiAIglBuiMVDEARBEMqIC5gKe9EgiocgCIIglCGieDgirhZBEARBEMoNsXgIgiAIQhkiFg9HRPEQBEEQhDJEFA9HxNUiCIIgCEK5IRaPKsaxY8eYMGECv//+O1prrr/+eiZOnEidOnUKbffaa68xc+ZMl/t8fHw4ePCg7XtCQgKTJ09m9erVZGRk0Lx5c5566ik6derkTlGK5MSJE0ydOpW1a9eiteaaa67hueeeo3bt2kW2PX78OG+++SZ//vkniYmJREVF0a1bNx5++GH8/f0BOHToEAsXLuTPP//k6NGjBAQEcOmllzJy5EiaNWtW1uI5kZaWxsaNGzl+/DgA0dHRXH311QQGBhbZNjU1lU2bNnHixAnMZjNhYWG0a9eOsLCwAtscPHiQ3377DX9/f/r06eM2OQRnTp8+zXvvvcdff/0FwOWXX86jjz5KREREsdrOnTuXrVu3kpKSQlhYGB07duS+++7Dz8/PVu+BBx7g1KlTTu0nTJjAtdde6z5hhAtGLB6OiOJRhcjMzKR37974+PjwxhtvoJRi2rRp9OrVix9//NH2QHXF/fff76Q4ZGRk8MADD9ClSxdbWXZ2Nr179yYhIYFx48YRHh7O4sWLGTBgAIsXL+aaa64pK/EcyMzMZMCAAZhMJl599VUA3nzzTR588EG++eabQmXNyMhg0KBBnD9/nieeeILo6Gj++ecfZs2axeHDh3njjTcAWLt2LX/++Sd33303LVq0IDU1lQ8//JBevXqxePFiLr300vIQFYDc3Fy+//57PD09uf766wHYsmUL33//PT169MDb27vAtllZWaxYsQJvb286dOiAl5cXO3bsYOXKldxxxx2EhIQ4tcnOzmbjxo0ODy6hbMjKyuLpp5/GZDLxzDPPoJTi448/5qmnnuL9998v9DfIzMzkmWeeIS8vj4EDBxIREcGePXuYN28ex44dY9y4cQ7127ZtS//+/R3K6tWrVyZyCcVDptM6I4pHFWLhwoUcOXKENWvW0KBBAwCaN2/Oddddx/z583n44YcLbFu7dm0nS8Fnn31Gbm4uvXr1spV9++237Nq1i2XLltmUjBtvvJEuXbowZcoUvvuufBbdXbp0KfHx8Xz//ffUr18fgKZNm3LLLbfw6aefMmjQoALbbtmyhbi4OD766COuu+46ANq3b09ycjJz5swhMzMTPz8/br31Vvr16+dwU2jfvj2dO3dm3rx5TJs2rWyFtGPPnj2kpaVxzz33UKNGDQBq1qzJ559/zp49ewpVgnbv3k1mZibdu3e3tY2Ojuazzz7j77//5sYbb3Rqs3nzZkJDQ/H397dZWISyYcWKFZw8eZI5c+bYLJMNGjRg4MCBfPfdd/Ts2bPAtjt27ODYsWNMnTqVtm3bAnDZZZeRmprKsmXLyMrKwtfX11Y/ODiYFi1alK1AglBKJMajCrFq1SquuOIKm9IBEBMTQ7t27Vi1atUF97ds2TLCw8MdLCFbtmzB19eXDh062MqUUtxwww1s3bqVEydOlEqG4vLzzz/Tpk0bm9IBxpvbFVdcwU8//VRo2/PnzwM4uShq1KiB2WzGutBwzZo1nd5EgoKCiI2NdWmyLkvi4+MJDw+3KQ7WsURERHDkyJFC2545c4YaNWo4tPX29iYyMpL4+HjMZrND/VOnTnHgwAGH31goO9avX0+zZs0c3KHR0dG0bNmSdevWFdo2NzcXwMnCFxgYiNYau0WzhUqM1epR2q26IIpHFWLv3r00bdrUqfySSy5h7969F9TX8ePHWbduHXfffTdeXv8Zvjw9PfH29na6yE0mE2C8mZcH+/fv55JLLnEqb9y4Mfv37y+07TXXXENsbCwzZsxg//79pKens379eubNm8d9991XqJsmKSmJffv20ahRo1LLcCEkJSW5dImEhoaSlJRUaFulFB4ezv/Knp6e5OXlkZqaaiszm82sW7eOVq1aOSgqQtlx+PBhh5cFK7GxsUUqlVdccQV16tThww8/5PDhw2RmZvL333/z5Zdfcvvttzu5adavX8/tt9/OrbfeyogRI1i7dq1bZRFKhigejoirpQpR0MMpJCSE5OTkC+rr888/x2w2O7hZABo2bEhqair79u2jSZMmtnJrUFxRD0F3kZyc7PLBGBwcTEpKSqFtfXx8WLRoESNGjOC2226zlffq1Yvx48cX2nbSpElorRkwYEDJBl5CsrOz8fHxcSo3mUzk5OQU2jY4OJjjx487mN211pw5c8bWt5Xt27eTl5dHq1at3Dh6oTBSU1NdBggHBQU5KIWuMJlMvP7667z00ksMGTLEVt69e3eGDx/uULd9+/Y0bdqUqKgoEhMT+frrr5kwYQJjxozh5ptvdo8wguAGRPGoYrjSektibv3ss8+49NJLnfzBd999NzNnzmTkyJHMmDGDyMhIFixYwJ9//lng8cuKkh4rOzubkSNHcu7cOaZNm0bt2rXZvn07b7/9Np6enkycONFlu/fff59vv/2WKVOmOLh4KjvNmjVj165d/P7771x99dV4eXmxbds20tLSgP/OY0pKCtu3b6dz584OVi6h7Cnp/21OTg5TpkwhKSmJMWPG2IJLFyxYgKenJ0888YStbn5F5Nprr+Xxxx9nzpw5ongIlQq5+1QhgoODSUxMdCpPTk4mODi42P38/fff7N+/3+UDODg4mA8++ICRI0fablaxsbE8+eSTTJ8+ncjIyJILcAHUqFHDpRWnIEuIPZ999hkbN25k9erVxMTEANCuXTuCgoJ44YUXuP/++52myy5evNimcBUW7FdWmEwmB8uElZycHJubqyCCgoK44YYb2LBhA59//jkAtWrVomXLlvz77782c/yGDRuIjo4mPDzcdixr/Ed2djaenp6ikJQBgYGBLi0baWlpBAUFFdp25cqVbNu2jU8++cQWHN66dWsCAgJ4/fXXuf322wt0C3p6enLDDTfw4Ycfcu7cOWrVqlV6YYQSUZ3cJO5A7jJViIJiOfbt2+cyHqIgli1bhpeXF3fffbfL/VdffTXr1q3j0KFDmM1mGjZsyLvvvouvr2+5megbN27Mvn37nMoPHDhA48aNC227Z88egoODbUqHldatW9v6sFc8vvrqKyZOnMjgwYMZNmyYG0Z/4YSEhLh0YxXkXstPbGwsMTExpKSk4OHhQY0aNVi3bh0BAQE2M39ycjJpaWksWrTIqf2iRYto0aIFV199dWlFEfIRGxtLXFycU/nhw4edrtH8HDp0iKCgIKcZadZYryNHjhQaj2S1qsiDT6hMSHBpFaJr165s2bKFw4cP28ri4+PZtGmTQy6OwsjJyeHrr7+mc+fOhb4BKaVo2LAhjRs3JjMzk0WLFnHvvfcSEBBQajmKQ+fOndm2bRvx8fG2sqNHj7JlyxY6d+5caNvw8HCSk5MdzhPAtm3bABysNqtXr+a5556jV69ejBkzxo0SXBgxMTGcOXPG4c04NTWVU6dOFflwsuLh4UFISAg1atQgIyODQ4cOOShYHTt2pFu3bg5bnTp18PHxoVu3bjRv3tztcgnQoUMHdu3a5TAj7OTJk+zYsaPImUU1a9YkNTWVY8eOOZTv3r0boNAEcXl5eaxZs4aIiAhq1qxZCgkKZu7cuSilCAkJcbLG5ubmopRiwoQJpTrG8uXL6du3L5dccgkeHh6FJjL8448/uOaaa/Dz8yMqKoonn3ySzMzMUh3fHUhwqSOieFQh+vXrR7169Rg8eDA//PADq1atYtCgQdSuXdshadDRo0eJiYnh9ddfd+rjxx9/JCkpySmo1J6pU6fy7bffsm7dOhYtWkS3bt3w8vLi2WefLRO5XNG7d2/q1KnDo48+yo8//shPP/3Eo48+SlRUlEOWzWPHjtGiRQveeustW9ndd99NQEAAQ4cO5csvv2TDhg18+OGHvPrqq7Rs2ZIrrrgCgE2bNvHkk0/StGlT7r77brZu3Wrbdu7cWW6ygmHNCgwM5Mcff+Tw4cMcOXKEn376iYCAAIeZTGlpabYsllbMZjN//vknhw8f5vjx4+zcuZNvvvmG0NBQWrZsaasXERFBdHS0w+bn54enpyfR0dEyy6WM6N69O1FRUYwfP55169axbt06XnzxRcLDw7n99ttt9U6dOsUtt9zC/PnzbWVdu3bF39+f559/nlWrVrF161aWLl3K7NmzadKkie33/fnnn5kyZQqrV69m69at/PLLLzz11FPs27fPISi1rEhOTrYl+nM3X331FVu3bqV9+/bUrVu3wHrbt2+nS5cuRERE8O233zJ58mQ+/vhjBg4cWCbjKi7uUjqqk+IhrpYqhL+/P0uXLmXChAk8/vjjaK257rrrmDhxooMlQmtNXl6eU/4GMNwsISEhhQabnTlzhhdffNHmF+7evTujR48mNDS0TORyhb+/P5988glTp07lmWeeQWtNhw4deO6551zKah+oV7duXZYuXcqsWbN44403SExMJDo6mj59+vDII4/Ypp5u2LCBnJwcdu7cyf333+9w/Dp16vDzzz+Xj7AYeTe6devGxo0bbenwa9euzVVXXeWQtdSauyF/YGJKSgoHDx4kJyeHgIAAmjRpQps2bfD09Cw3GQTX+Pn5MX36dN59911effVVtNZcfvnlDBs2zGE6rNbaIc8MQFRUFP/73/+YN28ec+fOJTk5mfDwcG699Vb69u1ru5ajoqJISkpi9uzZpKam4uPjQ9OmTXn55Zdp165dmcvYtWtXZs2axciRI4mKinJr3x988IFNTmtCQFe8+OKL1K1bl2XLltn+Z0wmEwMGDGDMmDG2Fw6h4lGSgKZiaNOmjV65cmVFD6NcsM6uuFh45ZVXKnoI5crHH39c0UMoN1avXl3RQyhXipoNM3fuXAYNGsSaNWvo1q0bgwcPZtasWYDhavH29ubFF18stbvFynXXXYeXlxe//vqrQ/n58+epUaMGTz75JFOmTLGVZ2VlERwczNixYwuczWZFKfWX1rqtWwZqR8uWLfXixYvd0lebNm3KZIzljbhaBEEQhFIRHR3N8OHDmT17tlNslT25ublFbnl5eRd8/AMHDpCVleW0tICvry+NGjUqd9dpfsTV4ogoHoIgCEKpGTNmDH5+fgVaFuLi4vD29i5yK0nW4ISEBACX7uCaNWva9guVA4nxEARBEEpNzZo1GT16NBMnTmTMmDFOCkTt2rXZtGlTkf24yuBbFIVNG64M4QTVyVrhDkTxEARBENzCqFGjmDVrFuPHj2fhwoUO+0wmE5dddlmRfZTkIW2dLuzKspGYmOgwu0uoeETxqKR8+umnPPnkk9SoUYP169c7JJHKzc2lfv36PPnkk4wePbpE/cfHx9O+ffsC97/zzjv06NHD9j0vL485c+awePFi4uLi8PPz49JLL+V///ufW7KZfvHFFzz77LMEBQXx008/OWRizc3NpWXLlgwfPpwRI0aU6jhZWVl88MEHLF++nOPHj1OjRg1atWrFrFmzMJlM5OXlMXfuXH777Tf2799PZmYmsbGx9O3bl3vvvdflYmwXyr59+/jjjz8wmUz07NnT4Q3PbDbzySefcNlll3H55ZeX+Bhms5ldu3axd+9e0tLS8Pb2Jjw8nMsvv9whp8OOHTs4ePAgqamp5Obm4u/vT0xMDK1bt3ZYbl0oHj/88AMzZswgICCA+fPnO2QmzcvLo1u3bvTv358HH3ywxMf48MMP2bhxI6dPnyY3N5eIiAg6d+5Mz549HX6zzz//nJ9//pkTJ06QlZVFeHg4HTp0oG/fvmU2dTowMJBnn32W0aNH8/TTTzvsi4uLc7lYXn7q16/vMuFaYTRq1AgfHx927NjhUJ6VlcXBgwcLTR8glD+ieFRyUlJSeOedd3juuefc2m9ERATffPONU/m0adPYtGkTN9xwg0P5448/zq+//sqIESNo06YNqamprF+/3mWa79KQmprKBx98wFNPPeXWfsGIfP+///s/jh49ytChQ2ncuDEJCQmsXbvWNvU4KyuLd999l7vuuosHH3yQgIAAfvvtN1544QUOHjzo1iRjOTk5/PPPP7Rt6/4g9b///pt//vmHVq1aER0dTXZ2Ntu2beP777+nR48etinJ2dnZ1K9fn5CQELy9vUlISGDr1q2cOHGCO++8U0zEJSQ9PZ1PP/20THJoZGRkcMstt1C3bl28vb3ZuXMnixYtYu/evbz00ku2eqmpqVx33XXExsbi7+/P/v37WbBgAdu2bePtt992ixLtikcffZSZM2cybtw4h/KydLWYTCa6detmSzdgTf3/2WefkZ2dzZ133nnBfboT+T9yRBSPSk7Hjh2ZM2cOQ4YMISIiwm39+vj4cOWVVzqUZWZmsnXrVm6++WaHIK2vv/6a5cuX8+2339rSjoMxd9/dXHfddSxYsIABA/6/vTsPb7LKG///Pkma7vteKIVS9haUrSIOCIqgDjqI6ygD6Fd03Bl9XJ5xGB135YfO4MozM6AiLuCCCwqiKMKwaREopZTSFlq6QKEb3Zvcvz9CMk2Ttmmbpiyf13Xlwp6cc9/nkMr9yVlnExkZ6dZrL126lL179/LVV18RGxtrS586dartv318fFi/fr1dD9O4ceOoqKhg+fLl3H///W7rCYiLi2Pfvn0MHToUPz8/t1zT6sCBA/Tr18/uMw4NDeXTTz8lPz/ftqNpy70NYmNj0ev1bNmyhePHj7e5M6Zo3ahRo1i9ejXXXHON23cNve++++x+HjlyJPX19XzwwQd25za13DhrxIgReHt78/e//53s7OwOHbPQEd7e3ixYsIB58+bZpRuNxk4F2YcOHbIFLMePH0en07Fq1SrAcgaT9UDHJ554gnHjxnH99ddz9913k5eXx//8z/9w7bXXOvxb50ln24oUd5BVLac56+mT//jHP7r9XmvWrOHkyZMO3ZJvv/02F1xwgV3Q0V2sZ6W8+eabbr+2dRfW5kFHS3q93unZKCkpKTQ0NDg9pK+zRowYAVh2XHQ3s9lst/EY0O5hc1bWwKq7vhGfC26++WYAp+fidAfr0El7h/y5mq+r5s6dy4ABA9xyrQ0bNnDddddx3XXXkZmZSUZGhu3nDRs22PKdd955rF27lqKiIq688kr+93//lz/84Q+8/fbbbqmHcB/5l+U0FxUVxdy5c3nvvfcoKChoNZ871sevXLmSiIgIJk2aZEtrbGxk586dDBo0iKeffprk5GQSEhL47W9/y6ZNm9zWTqvIyEhuvvlmPvzwQ4fzKZrraHsLCwspKioiPj6exx9/nJEjR5KSksLs2bPZt29fu/XasWMHQUFBbu2F8fPzY/Dgwezfv7/NTdbMZrNLr+YGDx7MwYMHOXToEA0NDbahMT8/P6fj7GazmaamJo4ePcrOnTuJjY3ttvM9zgVhYWFcddVVrFmzhpKSklbzmUwml16tla2trSUtLY1Vq1Yxbdo0p2cpmUwm6urqyMjI4J133uH8888nMTHRLe2cM2cOmqY5HNxoMBjIyspC07Qubx5mvYezV8tenQkTJrBlyxbq6uooKSnhlVdecXtvYmfIPh72ZKjlDHDXXXexfPlyFi1axKJFixzeb2+iqFXv3r3Ztm2b0/eKiorYvHkzt912m923obKyMhoaGvjoo4/o06cPL730EkajkTfeeINbbrmF1atX2765u8vtt9/Ohx9+yKuvvspzzz3n8H5BQQGXXHJJu9dpvu350aNHAcv2yykpKbz88ss0NDTwj3/8g1mzZvH55587nABq9dNPP/H1119z//33u/2b4vDhw8nKyuLXX391uh10VVWVrVu5LQEBAXY9VSNHjkSv17NhwwbbcsKgoCAuv/xyhzH0xsZGli9fbvu5V69edsGn6JwbbriBr776infffdfpnKXi4mK7M5ZaEx0dbff5gOXU2uZDGVOmTOGBBx5wKFtbW2s3v2H06NH85S9/6UArhDucTUGDO0jgcQYIDQ1l3rx5vPzyy9x111307dvX7v3o6GjWrFnT7nXa6mr/+OOPMZvNDsMs1m/STU1NvPvuu7ZzGC644ALGjRvHG2+84fZhkZCQEObOnctrr73G7bff7nA6a1RUlEsP4+bttbbD19eXN99803ZGRnJyMlOmTOG9995zmIUPkJ2dzYMPPsjYsWO5/fbbu9Isp7y9vRk2bBi//vorKSkpdqsgwNIrMn369Hav03JYJDMzk127djFixAhiYmKor69n9+7drFu3jiuuuMLuW6DBYGD69OmYTCaOHz/O7t27Wb9+PVOnTpXhli4ICgri2muv5d133+WGG25wCGzDw8PtDjdsjbP/b3v16sWrr75q68n44IMPMJlMDgc5ent78+qrr9LY2Eh2djYrVqzgL3/5Cy+++KKc4yN6jAQeZ4h58+axdOlSFi5c6PCPldFodGmdeltR96pVqxg2bJjDdYKDg1FKMWDAALvDn/z9/Rk1ahTp6ekdbIlr5syZw/Lly/nHP/7BwoUL7d4zGo0uHeHevL3WeRsjR460O5grNjaWxMREp8Mt+fn5zJ07l969e/P6669327j4sGHD2LdvH2lpaUycONHuPb1e3+Ehj/r6erZv305ycrLdktzY2FhWrlzJnj17SE1NtaUrpWyTSKOjowkNDeWbb74hLy/PbV3y56qZM2eyevVq3n77bYegwMvLy2GIwlVGo9F2avGIESMICwtj4cKFXH311QwdOtSWT6fT2fIlJyfTr18/HnroITZu3Ci9WqLHSOBxhvD39+eee+7hb3/7m20CplVXh1p+/fVXDhw44HQs1tfXl4SEhFZ3BOyub8T+/v7ccccdPP/889x2221273VmqCU+Ph4fH59W29Eyvbi4mNmzZxMQEMA///lPAgICutCatnl5eTF8+HC2b99OSkqK3XudGWqpqKjAZDI5rEjx9vYmMDCQioqKNq9lLVdZWdmRZggnfH19ufHGG3nrrbccehO7MtTSknWFSmFhoV3g0VY+4Tky1GJPAo8zyOzZs1myZAkvvviiXXpXh1pWrlyJwWBgxowZTt+fNm0aS5cupbCw0NZdfPLkSX755RcuvvjijjWiA37/+9+zdOlSXnnlFbv0zgy1eHl5MXHiRH7++WdqampsQw2FhYXk5ubaBTInTpywTVpbunSpRyZZDh48mPT0dNLS0uzSOzPUYu3ROXbsmN0wVX19PZWVlYSHh7d5reLiYoBu22TqXDN9+nQ+/vhjli1bZpfelaGWlqwro1qbp9QyX1sru4TobhJ4nEG8vb2ZP38+Dz/8sF260Wjs9ATPxsZGVq9ezaRJk1rds+HOO+/k448/5g9/+AMPPPAARqORN998k9raWu65555O3dcVRqORu+++22EynNFodOgZcMV9993Hddddxx133MHcuXOpr6/ntddeIygoiFtuuQWwbCB22223ceTIEZ599lmKi4ttD2KApKSkbun90Ov1nHfeefznP/9xSO/oXhqBgYHEx8eTnp6OUso2x2PPnj2YzWbbHh4NDQ2sW7eOxMRE294Px44dY+/evYSFhdn2RxBdYzQaueWWW3j55Zft0r28vGzDIK7KycnhrbfeYuLEicTExNDY2MiePXv49NNPGTNmjK23o7q6mscee4zJkyfTq1cvlFLs37+fjz/+mMTERKcTmUX3kR4PexJ4nGFuuOEG3njjDXJzc91yvfXr11NWVtbmlsKRkZF8/PHH/O1vf+NPf/oTZrOZUaNG8fHHH3f4H86Ouuaaa/jXv/7V4S2UnUlKSuLtt9/mpZdeYv78+RgMBlJTU3nttddsD/fS0lLbEdrOViK88847dvMj3GnAgAGkp6e7ZYjj4osvJj09nZycHPbu3YuXlxfh4eGMGzfO1lbrniX79u2jpqYGpRQBAQEkJyczdOhQmXzoRlOnTuWjjz5qc4m4K0JDQwkODub999/nxIkTeHt7Exsby7x587j88stt+by8vOjTpw+fffaZbdOtmJgYZs6cyYwZM1ze00V03dm2FNYd1Olwct+5aMSIEdrXX3/d09XwiLb2qDgbPf/88z1dBY9aunRpT1fBY7799tueroJHXXrppT1dBY9RSv2iaZrbzy9ISUnRPvnkE7dca+DAgd1SR0+TtXJCCCGE8BgZahFCCCG6kQy12JMeDyGEEEJ4jPR4CCGEEN1IejzsSeAhhBBCdCMJPOzJUIsQQgghPEYCDyGEEEJ4jAy1CCGEEN1IhlrsSY+HEEIIITxGejyEEEKIbiJbpjuSHg8hhBBCeIwEHkIIIYTwGAk8TlFKzVFKaUqpcqVUaIv3DKfee+LUzxef+vnSFvkSlVJ5p16JHqy+EEKI05R1uKWrLxfvFa+UWqWUqlBKVSqlPlFK9XGxbB+l1NtKqcNKqRqlVJZS6mmllH+LfDql1GOnnnV1SqldSqmZrv59SODhKBh4pKOFlFKDgI1AEzBB07Qcd1dMCCHEmcdTgYdSyg/4HhgMzAZmAQOADS2DBydl/YH1wATgL8CVwD+BB4F/t8j+FPAE8CpwObAVWKmUusKVvw+ZXOpoHXCvUuoVTdOKXSmglBoGfAeUAZdomlbYnRUUQghx5vDg5NLbgURgkKZp2afuvRs4ANwBLGqj7HgsQcpUTdPWnUrboJQKAx5SSvlpmlajlIoCHgKe1zRtYbN8ScDzwJr2Kik9Ho6ePvXnn13JrJQ6D/gBOApMlKBDCCFED7kK2GoNOgA0TcsFNgNXt1PWeOrPyhbp5VhiBWv0NPVU3uUt8i0HUpRS/dqrpAQejoqwdB/NU0oltJN3DJZurXxgkqZpR7u7ckIIIUQrhgHpTtL3AkPbKbseS8/IC0qpoUqpAKXUZOB+4E1N06qb3aMeyG5Rfu+pP9u7jwy1tOIFLN1SfwVubSPfs0AFMEXTtOPtXVQpNQ+YBxAYGMgLL7zghqqe/jZv3tzTVfCoP//Zpc6ys8a//91y+Pfsda7tx6BpWk9X4azgxt+bCKXUz81+XqJp2pJmP4dhGfJv6QQQ6iTdRtO0OqXURcDH/DeIAMs8j3ta3KNcc/zlONHs/TZJj4cTmqadAP4/4A+nJo225issk1FfUi78ZmmatkTTtNGapo329fV1U22FEEKcI0qtz5BTryVO8jiLFtt9PimlfIAPgSgsk1InAv8D3AC81uJanbqHlfR4tO5l4F7gb8DNreR5BdgOPIml6+mPHqmZEEKIM4KHdy4tw3mPQyjOe0Kauw24GEjSNO3gqbSNSqkKYIlS6k1N03ZxqvdEKaVa9HpYe1RO0A7p8WiFpmkngeeA64Dz2sj3NyxDLncqpV72TO2EEEIIB3uxzMFoaSiQ0U7ZFKCsWdBhtf3Un0Oa3cMb6O/kHrhwHwk82vE6cIT/rnRxStO0P2NZpvSAUuo5T1RMCCGEaOFz4ILmG1gqpfpiWSr7eTtli7H0ZCS1SE899eeRU39+AzTgOBJwC5B+ahVNm2SopQ2aptUrpf4GOBtHa5n3QaWUN/CoUqpe07Qnur2CQgghTnseHGr5PywTQVcrpR7HMhfjKSwrL99qVp8E4CDwt1O99gDLgD8Ba5RSzwCHgdFYNhP7BcuSXDRNO3qqd/8xpVQVkIZlHshk2l+yC0jg4YqlWCbYDHAh771YuqD+qpSq1TTt3Fi2IoQQosdpmlZ9agnsy8C7WCZ8fgc8cGr6gJUC9DQb9dA0LU8pdQGWHUmfBiKwBCxLgGc0TTM3K/9n4CSWpbYxwH7gek3TvnClnhJ4nKJp2jIsEV/L9CZgYIu0H3Ayg/fURJvbT72EEEIIj9I07TDQ5rkpmqbl4fwZlgFc78I9TFiCkzanIbRGAg8hhBCiG51r+7+0RwIPIYQQohtJ4GFPVrUIIYQQwmMk8BBCCCGEx8hQixBCCNGNZKjFnvR4CCGEEMJjJPAQQgghhMfIUIsQQgjRTTx8SNwZQQKPM0xVVRUbN24kPz8fTdPo06cPEyZMIDAwsN2yFRUVbNq0ifz8fMxmM9HR0Vx00UVER0fb8jQ0NLB+/XqOHTtGdXU1Op2O0NBQRowYweDBg7uzaQ4aGhrIz8+nsrISgKCgIOLj4zEaje2Wra+vp6CggKqqKjRNw8/Pj969e+Pv72/LU1payqFDh1q9xvDhw/Hy8up6Q1xUWlrKv//9b3bv3o2maQwfPpxbb72VyMjIdsseO3aM999/n/T0dCorKwkPD2f8+PFcc801+Pj4APD999/z6quvtnqNf/3rX4SGhrb6vhBCuIMEHmeQxsZGPvnkE/R6PVOmTAFg69atfPzxx9x8881tPiRra2tZtWoVRqORyZMnYzAY2LlzJ5988gk33HADYWGWk5RNJhM6nY7Ro0cTFBSEyWQiKyuLdevWUVtby/nnn++RtprNZrKyslBK0a9fPwCOHDnC/v37GTp0KHq9vtWyTU1N7N+/H51OR58+fdDpdJSUlJCVlcXgwYPx9fUFIDg4mEGDBjmUz87Oxtvb26NBR319PX/9618xGAzce++9KKVYsWIFCxYs4OWXX7YFD87U1dXxxBNPYDKZuOmmm4iIiCA7O5sPP/yQwsJCHnroIQBGjRrFc885nmH47LPPEh0dLUGHEN1EejzsSeBxBtm7dy+VlZXMmjWLkJAQACIiInjnnXfYs2cPI0eObLXsnj17qKmpYebMmbay8fHxLFu2jK1bt3LFFVcA4Ovry7Rp0+zK9u3bl/LycjIyMjwWeBw7doz6+nqGDRtme+j6+vqSnp5OaWmpXS+Ns7KNjY12ZQMDA0lPT6eoqIjERMvBjV5eXg7BRVVVFSaTifDw8G5qmXPffvstJSUlLF68mNjYWAASEhK4++67WbduHVdddVWrZTMzMykqKmLBggWcd955AKSkpHDy5ElWr15NfX093t7eBAcHExwcbFc2IyODqqoqbrzxxm5rmxBCNCeTS88gOTk5xMTE2AIHsHxrj42NJScnp82yxcXFhISE2JX18vIiLi6OvLw8zGZz64UBHx8fdDrP/bpUVFTg7+9v903f29ubgIAAysvL2yxbXV2Nj4+PXVm9Xm8razlSx7njx4+jlLL1AHnKjh07GDBggC3oAIiOjmbw4MFs3769zbJNTU0Atp4cK39/fzRNa7O9GzZswGAwcNFFF3Wh9kII4ToJPM4gJ06ccPpNPDw8nBMnTrRZVinldHjCYDDQ1NRERUWFXbqmaZjNZmpra0lPT+fw4cO2b9OeUFtb6/AgBcvDta6urt3yzro2dTodmqZRX1/vtIzZbKasrIzg4GAMBs92Bubn59OnTx+H9Pj4eAoKCtosO3z4cGJjY3n33XfJz8+ntraWPXv28OWXX3LZZZe1OkxTX1/Pli1bGD16tEtzhIQQnWOdYNrV19lChlrOIHV1dXh7ezuk+/j4tPowtQoNDbU9lKwPdE3TKC4utl27ud27d/Pjjz8Clgf2hAkTGDJkiDua4RKTyeQ0UNLr9bZv+K3x8fGhsrKSpqYmWwChaRrV1dUArZYvLy/HbDZ7fJgF4OTJkwQEBDikBwYGcvLkSScl/stoNPLMM8/w0ksvcf/999vSL730Um6/vfWDkrdv305NTQ0XX3xxp+sthBAdJYHHWaCtrnSrlJQUdu3axbfffsuECRPw8vJix44dthUjLaPpAQMGEBMTQ21tLbm5ufz4448opUhJSemWNjjT2Qg/MjKSo0ePkpuba5tcWlRUZAvOWrvu8ePHMRgMDvMgPMVZvVz5bBsaGli0aBEVFRXcf//9REREcODAAVauXIler+eOO+5wWm7Dhg0EBQUxatSoLtddCCFcJYHHGcTb29tpz4Z18mBbgoODmTp1Kj/88APvvPMOYHlAn3/++aSlpdktMwXw8/PDz88PsEwubWpqYtOmTe2uKHGX1no2TCZTu8Mg3t7e9OvXj8OHD5Oeng5Y2hMdHU1JSYnT1SqNjY1UVlYSFRXVI12a/v7+VFVVOaS31hPS3HfffUd6ejqvv/46MTExAAwbNgx/f3/eeOMNLrvsMtvKIKsTJ06we/durrjiCo98nkKcy86mYRJ3kMDjDBIeHs7x48cd0k+cOOHSZMikpCQSExMpLy9Hp9MREhLChg0bCAgIaHeMPyoqin379lFTU+OR+QC+vr7U1tY6pNfW1ra5tNQqNDSUkJAQ6urq0Ol0eHt7c+jQIby8vJzuA2L9e+2JYRawzOXIz893SC8oKKB3795tlj106BABAQG2oMMqKSkJsCxDbhl4bNy4EbPZzKRJk7pYcyGE6BiZXHoG6devH8XFxXYTQSsrK+2WiLZHp9MRFhZGSEgIJ0+eJCsry6XhkyNHjuDl5WXrBeluwcHBVFdX2/Xw1NfXc/LkSbuVOW1RSuHr64u3tzcNDQ2UlZW1uhnX8ePH8fX19Vj7WhozZgxZWVm2OTcAR48eJTMzkzFjxrRZ1vpZFhUV2aUfOHAAwGlQ+sMPP5CQkOAQkHjKsmXLUEoREhJCWVmZ3XtNTU0opXjiiSfcdr+cnBz8/PxQSpGdne22657rPPE5PvroowwfPpyQkBD8/PwYPHgwTz31FDU1Na2WKS8vJyYmBqUU69ev79L9hftJ4HEGSU5OJigoiC+//JKDBw+Sk5PDl19+SUBAAMnJybZ8lZWVLF68mG3bttnSTCYTGzdu5ODBg+Tn57Nr1y4+/PBDwsPD7fb/2LNnD99++y2ZmZkUFBSQnZ3N119/TXZ2NmPGjPFYt3xERATe3t5kZ2dTXl5OeXk5Bw8exGg0EhERYctXX1/PL7/8QmFhoS1N0zTy8/MpLy+nsrLS9gD39fV1uv9HTU0NdXV1PdbbATBlyhSioqJ4/vnn2b59O9u3b+e5554jIiKCyy67zJbv6NGjXHvttXz00Ue2tMmTJ+Pr68vTTz/Nhg0b2LNnD5999hlvv/02/fv3d9hx9uDBgxw+fPi06O2oqKjghRde6Pb73HXXXT02d+dc0J2fY2VlJXPnzmXFihV88cUX3HzzzTzzzDPcdNNNrZZ55JFHTqvhDVnVYk+GWs4gXl5eXHPNNWzcuJF169YBli76CRMmOAwftNy/QSlFeXk5+/fvp76+noCAAIYOHcro0aPtgomIiAhycnLYtGkTdXV1+Pr6EhYWxvTp0z367Viv1zNw4EDy8/PJzc0FLCs84uPjXQp+6uvrOXHiBCaTCS8vL8LDw4mNjXW6F4l1mMXTe3c05+Pjw5NPPsnSpUv5+9//brdlestlxWaz2W7fFWvA8uGHH7JixQqqqqoIDw9nypQpXHvttQ5t/uGHH9Dr9UyYMMEjbWvLZZddxuLFi3nggQcchorcZcWKFezcuZPHHnuM+fPnd8s9znXd+Tm+/vrrdj9fcskl1NTU8Pzzz1NaWmr3RQRg8+bNLF++nMWLF3Pbbbe5tS7CPSTwOMMEBgZy5ZVXtpknKCiI++67zy5Np9O1ufulVWxsLFdffXWX6uguRqOR/v37t5nH29vbYVWGUso2v8EV8fHxxMfHd6qO7hQZGcnDDz/cZp6oqCg++eQTh/T4+Hjb1ujtue22206bf5Aff/xxpk2bxjPPPMPixYvdfv2ysjL+9Kc/sXDhQkwmk9uvLyy6+3Nsydo72XKieGNjI3fccQePPvqoy8PPwvNkqEUI0WNiY2O55557WLJkSZsH9jU1NbX7chZYPPzwwwwePJhZs2Z1ZzPOed39OVrLnjx5kvXr17No0SJuvfVWh+GzF198kYaGhnYDeE9y1zDL2TTUIoGHEKJHPfLII/j6+vLkk086fT8vL892rk5br5a9Y5s2beKdd95x6KoX3aO7PkeA9PR0vLy8CAwMZMqUKUyZMoUlS5bY5cnOzubpp5/mtddea3d7AdGzZKhFCNGjwsLCePDBB3nyySd55JFHHB48cXFx7Nixo93rNH/YNDQ0cMcddzB//nyGDh3q9joLR93xOVolJSWxY8cOqqur+c9//sNzzz1HU1MT7733ni3PH//4R66++mrbyd3i9CWBhxCix82fP5/FixezYMECu4cJWOb6uHJOUPOu6FdeeYUTJ05w33332Q4VtC6/rKqqoqqqSs6n6Qbu/hytfHx8GD16NAATJ04kNjaWuXPncu+993LBBRfw0UcfsXnzZn7++Wfb5209aqC6upqKiooeXdV0Ng2TuIMMtQghelxAQACPPfYYK1eu5Ndff7V7rzNd9BkZGRQXF9OrVy9CQ0MJDQ3l7rvvBmDkyJH85je/8WTzzhnu/hxbYw1CrHuyZGRkUFtby7Bhw2yf9/Tp0wH43e9+R0JCgnsbKrpEejxOAxkZGaxfvx6j0cicOXPsduY0m828+uqrjB07lgsuuKDT98jJySErK4ujR49SXl5Or169mDlzptO8hYWFbNq0iWPHjuHt7c3AgQO58MILHbYqz83N5eeff7adjBsWFsbIkSPb/YejtLSUQ4cOodfrSU5OtruupmmkpaURGxtLXFxcp9tbXl7OiRMnqKmpsS0fHjRokF0eTdMoKSmhsrKS2tpazGYz3t7eREVFER4ebvct5fjx4xw7doz6+nrbEt3AwEDi4uKc7oTalu+//55XX30VPz8/3nzzTbst0U0mE9dddx3XX389N954Y6fbbzKZWLNmDevXr+fo0aP4+voycOBAbrzxRvr27eu0THV1Nffeey/l5eX89a9/ZcSIEZ2+f2fcddddLFq0iMcff9wuvTNd9I8++ihz5syxe/+bb77hhRdeYPny5Q6/C8J93Pk5tsZ6gKX135o5c+Y4HHb466+/Mn/+fBYuXEhqaqqLtReeIIHHaaShoYFffvmF8ePHu/3aOTk5HDt2jJiYmDZPdy0tLeXTTz8lISGBq666ioqKCjZv3kx1dTWXX365LV9eXh5ffPEF/fv3t+2suXfvXr766iuX9/wwmUwUFxe3uyV4Z5SXl1NbW4u/v7/dnhfNmc1miouLCQsLIyoqCp1OR0VFBYcOHaKurs6uXk1NTQQFBeHn54der6euro6ioiIqKysZNmxYpzZWq6mp4dNPP+2WFRfvv/8+n332Gddccw0pKSlUVlayatUqFixYwKJFixz2PgBsZ/j0FG9vbxYsWMC8efPs0o1Go+0brqsGDx7ssHFaXl4eAKmpqR1abi06xp2f4+7du3nooYe47rrrSExMpL6+no0bN/L3v/+dyy+/nHHjxgGW86RaC6hHjBjBRRdd1Km2uIsMtdiToZbTSJ8+fdi1a5ft+HZ3uuSSS5g1axaXXXZZm2PbW7duJSAggMsvv5z4+HiSk5OZMGECBw4c4OjRo7Z8mZmZtnzW/+kvv/xy/P392b9/v0t1CgoK4tixYzQ2Nna5fS0lJCQwbNgw+vXr12qPhE6nIzk5mT59+hASEkJQUBDx8fGEh4dz9OhRu4AlOjqauLg4QkJCCAwMJDIykoSEBNvhcp1x3nnnsWbNGoetpt1hw4YNjB8/nt///vekpKQwfvx4HnzwQU6ePMkvv/zikH/fvn1s3LiRm2++2e116Yi5c+cyYMCAHq2D6Dp3fY7R0dFERETw7LPP8tvf/pZZs2bx3XffsXDhQj799FM31FT0BAk8TiPWngNXuiM7ypWI22QycejQIQYMGGD3DX7AgAHodDpycnLs8np5edntiqnT6TAajS4d5Q7YdjhsecaIO7jSXqWU05Nu/f390TStzZ4hwFa2s99mrr32WgBWrVrVqfJtaWpqctjx1HoCccvPp6mpiTfffJMZM2Y43VK+O8yZMwdN0xx6HgwGA1lZWWia5tazWtq6p+i87v4co6OjWbFiBbm5udTW1nL8+HF27NjB3Xff3e6QzMUXX4ymaVx66aWdvr/oHhJ4nEb8/f0ZMWIE6enpbX6Ltm6Z3d6royoqKjCZTA5nlhgMBoKDg21zOcBybkx5eTk7duygtraWmpoatm3bRmVlJcOHD3fpfl5eXkRGRlJaWmp3GFxL1u3f23u5S1VVFXq93mFXRGtdzGYzNTU1FBQU4OPjQ1BQUKfuExoayuWXX863335r15vUkslkcunV3LRp09i4cSPbt2+npqaG4uJilixZQnh4uMNQ3meffUZTUxMzZszoVDuEEG2TDcTsyRyP08yoUaPYs2cP27dvdxqpV1ZWsmzZsnavExgYyNy5czt0b+vD39k3CR8fH+rq6mw/JyQkMH36dNauXcuWLVsASyBx5ZVX0qtXL5fvGRMTQ2lpKUVFRU7HaOvr60lPT2/3Okaj0aVTdttTUVFBWVkZcXFxTv9H37Vrl+0h7+fnx8CBA52e/+KqGTNmsG7dOj766CPuueceh/ePHj3KnXfe2e51IiMjeeutt2w/33TTTXh5efHiiy/agtC4uDieeuopu6G2oqIiVq1axaOPPuo00BJCCHeTwOM04+Pjw8iRI9m2bRujRo1yWHvu7+/PDTfc0O51OjPZ0dpr4EpkXVRUxNq1a+nbty+DBg1CKcW+fftYs2YN06dPd/nsE4PBQHR0NIWFhcTExDgEPV5eXg6TBJ3pysPfqra2ltzcXAIDA1s96GrgwIGYzWbq6uooLi4mKyuLQYMGOR2ycUVgYCBXXXUVH330ETNmzHC4b2hoKC+++GK712kZNHzzzTesWrWKa6+9luTkZCorK/n000958skneeaZZ2wH4r311luMGTPGpf0VhBDCHSTwOA2dd9557Nq1i61btzJ16lS79/R6PZGRkd1yX+sy3uY9G1Ytj43/8ccfCQ8Pt6tfQkICK1eu5KeffuL3v/+9y/eNiori6NGjFBYWOqyG0el0+Pn5dbQpHVZfX8+BAwfw9vamf//+rQZf1roEBAQQGBhIeno6paWlXTqRc/r06axZs4b333/f4fRULy+vDp8KXFVVxdKlS7n66qvtluSmpKRw55138tlnn3HrrbeyefNmMjMzeemll2wTmq2ffX19PdXV1bZ5IUKIzjnbhkncQQKP05B12dlPP/3EyJEj7d7rzqGW4OBg9Hq93VwOsEw+rKystJulfvz4cadDG9HR0ezZs6dD99Xr9cTExFBQUOAwudETQy0NDQ1kZWWh1+tJSkpyubfI29vbtrS2K3x9fZk5cybLli3jd7/7nd17nRlqKSwspLGx0WHCn7Unp6CgAID8/HwaGhq4//77Ha73/PPP4+fnx/LlyzvZKiGEcE4Cj9NUSkoKO3futM2fsOrOoRa9Xk9CQgIHDhwgNTXVNnyRnZ2NyWSyO2baz8/P6YTIkpKSTn1LjoyMpKSkhMLCQrv07h5qaWxsJCsrC7Cs3unIPIfa2lpMJpNbDqSaNm0an3/+OStWrLBL78xQS2hoKGD53MaOHWtLr6qqoqioyPY5Tp48meTkZLvr5ObmsnTpUmbPns3AgQM73R4hhGiNBB6nKYPBwNixY/n+++/t0vV6faeWPFZWVlJSUgJYutOVUhw4cACw9FJYV2akpqby0Ucf8fXXXzN8+HAqKyvZtGkTSUlJREVF2a43YsQINm3axDfffGMLDPbt20dRURETJkzocP10Oh2xsbEcPnzYIb0zgUx9fb3tbA7rZFDrfhl+fn54e3tjNps5cOAADQ0N9O3bl4aGBhoaGmzX8PX1tQVwmZmZhIaG4uPjg1KK2tpaSkpKbCtzusrLy4vrr7+eN954wyG9o8s/o6KiGD16NJ999hlKKYYNG0ZVVZVt9Yp1eCwqKsruM22ub9++DBkypHONEULYkaEWexJ4nMaGDh1KWlqa7dCjrigoKGD9+vV2aV9//TUAl156qe0Ez8jISH73u9+xefNmPv/8c4xGI0OGDLHtEGg1cuRI/Pz82LVrF2vXrgUgJCSEqVOndno76oiICEpKStpcWuuqqqoqDh06ZJdm3YckISEBb29vGhsbqa2tBSzf9FsaOHCgbQWIv78/paWltsDEaDQSFhZGdHR0pyeWtjR58mQ+++wzt+xr8uCDD7J69Wo2bdrE559/jq+vL4mJiTzzzDOyj4UQokcpd+5/IFwXHR2tdeUsjjPJ5s2be7oKHvXnP/+5p6vgUefS/h/n2jfXc+n5oJT6RdO0ju3p7oKRI0dqGzdudMu1AgMDu6WOniYbiAkhhBDCY2SoRQghhOhG51pPWXukx0MIIYQQHiOBhxBCCCE8RoZahBBCiG4kQy32pMdDCCGEEB4jgYcQQgghPEYCDyGEEEJ4jMzxEEIIIbqRzPGwJz0eQgghhPAYCTyEEEII4TESeHSSUmqOUkpr9jIppY4opT5SSnXulDQhhBBnFaWU214u3i9eKbVKKVWhlKpUSn2ilOrjQrknWjzTmr/qWuTNayXf71ypo8zx6LrrgAJAD/QH/gJ8p5QapmlaRY/WTAghxDlDKeUHfA/UA7MBDXga2KCUGq5pWnUbxf8JfNMizf9U2udO8q8FnmiRtt+Vekrg0XW/apqWfeq/NyulCoFvgQuBr3uuWkIIIc4xtwOJwCDrc0kptRs4ANwBLGqtoKZpBVi+RNsopWZhiRPedlKkVNO0rZ2ppAy1uF/lqT+9erQWQgghzjVXAVubfRlG07RcYDNwdSeuNxsowdK74TYSeHSdXillUEp5K6WGAM8CR4EferZaQgghzjHDgHQn6XuBoR25kFKqNzAJeE/TtCYnWaYrpWqUUvVKqa2uzu8AGWpxh8wWPxcCv9U0rbJlRqXUPGAeQFBQEL6+vh6oXs+Ljo7u6Sp41NtvO+uVPHvNmDGjp6vgMZqm9XQVPEr2n3APN/49Riilfm728xJN05Y0+zkMKHNS7gQQ2sF7zcLSOeHsH7QvgB1ALhAN3AN8qpSapWna8vYuLIFH183AMi6mgDgsH8AapdQETdP2Nc946hdkCUBsbOy59S+YEEKIrirVNG10O3mcPVs6E/n8Adipadpuhxto2r12F1fqU2Ar8BzQbuAhQy1dl65p2s+apu3QNG01ljE2heNsXyGEEKI7lWHp9WgpFOc9IU4ppcYCg3He2+FA0zQTsBLorZSKbS+/BB5upmlaLZADDO/pugghhDin7MUyz6OloUBGB64zG2gCVnSgjLVXpd3efAk83OzUOur+wLGerosQQoie58ENxD4HLlBKJTa7d19gPM734nBWVyNwI7BG0zSXnmNKKQOWPa0Oa5pW3F5+mePRdecppSKwRHuxWOZ4hAGLe7RWQgghzjX/h+UZtFop9TiW3oengHzgLWsmpVQCcBD4m6Zpf2txjd9ieYY5HWZRSt2EZWnumlPXjQbuBkYBN7lSSQk8um5ls/8+hmUp0zRN09y67lkIIYRoi6Zp1UqpycDLwLtYvhB/BzygadrJZlkVlt22nY16zMayCubLVm6TC0QBL2EJUGqwrHBx+bkngUcnaZq2DFjWw9UQQgghbDRNOwzMbCdPHq2sdNE0rc2Nxk7tVjq5s/UDmeMhhBBCCA+SwEMIIYQQHiNDLUIIIUQ3kh1g7UmPhxBCCCE8RgIPIYQQQniMBB5CCCGE8BgJPIQQQgjhMRJ4CCGEEMJjZFWLEEII0Y1kVYs9CTzOMJWVlXz33Xfk5eUB0LdvXy655BKCgoLaLVteXs6GDRs4dOgQZrOZ2NhYLr74YmJj/3uK8YkTJ0hLS+Pw4cOUl5djNBqJjY3lN7/5DVFRUd3VLKdqa2vZt28fpaWlAISHhzN06FB8fX3bLVtTU0NmZialpaVomkZwcDCDBw8mJCTELt+GDRuora11KD9y5EhiYmLc0g5X1dbWsmfPHo4ds5zLFBkZSXJyMn5+fu2Wra6uZu/evRw7dgxN0wgNDWXo0KGEhoba5Vu3bp3T9o4dO9bu90AIIbqLBB5nkMbGRj744AP0ej1XXnklSik2btzI+++/z9y5czEaja2Wra2t5b333sNoNDJ16lS8vLzYsWMHH3zwAbNmzSIiIgKA3NxcDh8+THJyMtHR0dTX17Nt2zbeeecdbrnlFo89jE0mE9u2bUOn0zF8+HCUUuzfv59t27Zx0UUXYTC0/qvb0NDAli1bMBgMJCcno9fryc3NZdu2bYwfP56AgAC7/BEREQwYMMAurWWe7tbU1MTmzZvR6XSMHDkSgH379rF582YmTZrUbns3bdqEwWDgvPPOQ6/Xc/DgQTZv3szEiRMJDAy0yx8VFcWgQYPs0jzdXiHEuUvmeJxBdu3aRXl5Oddccw0DBw5kwIABzJw5k4qKCn799dc2y+7cuZPq6mquvfZahgwZQlJSEjNnzsRgMLBp0yZbviFDhjB37lzGjh1LQkICAwcO5Prrr8dgMPDzzz93cwv/6/Dhw9TU1DBq1ChiYmKIjo5m9OjR1NbWcvjw4XbLNjQ0MHr0aOLi4mxl9Xo9WVlZDvmNRiOhoaF2Ly8vr+5qmlOHDh2iurra1vMQGxtLamoqtbW1tt6t1uTm5lJfX09qaiq9evUiJiaG1NRUDAYDmZmZDvmNRiNhYWF2r7aCViGEcCcJPM4g2dnZxMXF2XWfh4SE0Lt3b7Kzs9ssW1hYaHuoWhmNRnr37s3Bgwcxm80A+Pn5OYxHent7ExYWxsmTJ/GUo0ePEhoair+/vy3Nz8+P0NBQjh492mbZsrIy/Pz87MoaDAbCwsI4evSora2nk+LiYsLCwux6Hvz9/QkLC6O4uLjNsmVlZfj7+9uVtba3pKTktGyvEOLcJUMtZ5DS0lKSkpIc0iMiIpx+s21OKYVer3dINxgMNDU1UVZWRnh4uNOytbW1lJaWkpKS0rmKd0JVVRXR0dEO6QEBAe0+iJVS6HSOMbVOp8NsNlNTU2P3kD569CjffPMNAEFBQSQmJnp8fkdVVZXTewYGBlJYWNhm2dbaq9frMZlMVFdX2w23FBcX8+WXX9rmvgwYMEDmdwghPEYCjzNIbW0tPj4+Duk+Pj7U1dW1WTYsLIy8vDxqa2ttkzM1TaOoqAigzfLr169H0zRGjx7dhdp3TGNjo9PhDi8vLxobG9ssGxAQQGlpKQ0NDbYhBE3TKC8vt13bKioqiuDgYPz8/Kivr+fQoUOkpaUxYsQIevXq5b4GtaOhocFpe41Go0vtPXbsmEN7y8rKAPv2xsTEEBISgr+/P/X19eTk5LB9+3ZGjhxJfHy8G1skhADLFwNZ1WJPhlrOMJ39BT7//PPRNI0vv/ySsrIyTp48yfr1620P49auu2XLFjIyMpgyZYrDConTVZ8+fQDLnJjq6mrq6urIyMiwreZo3tZhw4bRu3dvwsLCbPMqgoOD2b9/v8fr7ewz0DSt3XJ9+/ZF0zTS0tJs7d2zZw81NTUOeYcPH06fPn0IDw8nLi6O8ePHExISQkZGhlvaIIQQ7ZHA4wzi4+PjdClkXV2d056Q5kJCQpg+fTolJSUsWbKE1157jSNHjjBmzBjA+aqGnTt3snHjRn7zm98wfPhw9zTCRa31bLTWE9Kcn58fI0aMoKKigh9//JHvv/+esrIy+vbtC1jmrLRGKUVMTAx1dXXt9iK5k9FopKGhwSHdlfb6+/szatQoysvLWb9+PWvXruXEiRP0798foM3fDaUUcXFxHm+vEOLcJYHHGSQiIsK2p0VzpaWltuWwbRk0aBB33XUXt912G/PmzWPOnDk0NDQQGBjosA9Ieno669atY8yYMVx44YVua4OrAgMDnU5mPXnypEtLP2NjY7nkkkuYMGECEydO5KKLLsJkMuHj4+PSPiDg2U1/AgMDqaqqckivqqpyWA7rTFxcHFOnTmXy5MlceumlXHzxxTQ1NeHr6+vSPiCetmzZMpRShISE2IaErJqamlBK8cQTT3TpHo8++ijDhw8nJCQEPz8/Bg8ezFNPPeW0J8hdPNGu5nJycmwTwp1NMDeZTLzyyiskJyfj4+NDeHg4l156qW2IVYieIIHHGSQpKYnCwkLb8AhARUUFR44ccTrp1BmdTkdERAShoaFUVVWRmZnJ+eefb5cnKyuLNWvWMGLECCZPnuzOJrgsKiqK8vJyu4dETU0NZWVlLm9kppQiICAAf39/6urqKCoqsg3DtMZsNlNUVISPj0+bPSPuFhMTQ1lZGdXV1ba0mpoaTpw44fJEV6UUgYGB+Pv7U1tby5EjR2y9PK0xm80cOXIEX1/fdnvNukNFRQUvvPBCt1y7srKSuXPnsmLFCr744gtuvvlmnnnmGW666aZuuV9z3dmu5u666y6Cg4NbfX/WrFk89dRTzJ07l7Vr17J06VJGjBghvVuiR8nk0jPIiBEjSEtL4+OPP2bChAkA/PTTTwQGBnLeeefZ8lVUVPDWW28xfvx4xo8fD1i++fzwww/Ex8fj7e1NaWkpW7duJSIigrFjx9rK5ufn8/nnnxMVFUVycjJHjhyxvWcwGJyuNOkO8fHxHDp0iJ9//tm22VVWVhY+Pj52wUNtbS0//PADSUlJtk3AzGYzmZmZhIWFYTAYOHnyJAcPHiQgIIDExERb2cLCQkpKSoiMjMTX19c2ubSystLu79MTEhISbJucDRkyBIDMzEx8fX3tgoeamhrWr1/PoEGDbH8vZrOZvXv3EhERgcFgoKqqiqysLAIDA+0C0oKCAoqLi4mKirK1Nzc3l4qKCkaNGuXR9lpddtllLF68mAceeMDtK4lef/11u58vueQSampqeP75513uJeys7myX1YoVK9i5cyePPfYY8+fPd3j/gw8+4KOPPmLbtm12n+9VV13VLfURwlUSeJxBjEYjN910E9999x1ffvklYHlgXXLJJQ4bQGmaZjcxUSlFWVkZGRkZ1NfXExgYSEpKCuPGjbNbZnvo0CFMJhMlJSW89957dtcMCgrij3/8Yze28L8MBgOpqalkZGSwa9cuNE0jIiKCIUOG2O3iaW1ny0mY1dXVFBYW0tTUhI+PD7179yYpKclu2amvry8NDQ1kZmbS2NiIXq8nODiYMWPGEBkZ6ZF2WhkMBi688ELS09NJS0tD0zQiIyNJSUlx2LW0tfYeOXKExsZGfHx8SEhIYMCAAXbtta7cycjIoKGhAb1eT0hICOPGjfP4dvhWjz/+ONOmTeOZZ55h8eLF3X4/65Lx7t4grrvbVVZWxp/+9CcWLlyIyWRymuf1119n4sSJPRZUCtEaCTzOMEFBQcyYMaPNPMHBwTzyyCN2aTqdjmuvvbbd61900UVcdNFFXaqju/j6+rb7j6afnx9XXHGFXZpOp7NNmm1LaGgoqampXaqjO/n5+dn1PrWW5+qrr7ZL0+l0XHDBBe1ePywszNYDdrqIjY3lnnvu4ZVXXuGhhx4iISHBab6mpqZ2r9XaXjVNTU3U1dWxdetWFi1axK233trm8IQ7dHe7Hn74YQYPHsysWbNYtmyZQ5nGxka2bdvGHXfcwcMPP8y///1vKioqGDlyJM8991yPDaEKATLHQwjRwx555BF8fX158sknnb6fl5eHl5dXuy/rKp7m0tPT8fLyIjAwkClTpjBlyhSWLFnS3U0Cuq9dmzZt4p133nEYSmru+PHjNDQ0sGzZMtatW8f//d//sXr1avz8/Jg2bZpHjz8Q/93Lo6uvs4X0eAghelRYWBgPPvggTz75JI888ojDgzYuLo4dO3a0ex1nk4GTkpLYsWMH1dXV/Oc//+G5556jqanJYRixO3RHuxoaGrjjjjuYP38+Q4cObbWMdZv8xsZG1qxZQ1xcHAATJkwgMTGRl156iQ8//LAzzRKiyyTwEEL0uPnz57N48WIWLFjgEBQYjUaXJvs6+0bo4+Nj23F34sSJxMbGMnfuXO69916Xhqe6yt3teuWVVzhx4gT33XefbXWbdeVXVVWVbfl1aGgoSimGDh1qCzrAsl/PuHHj2LlzZ9cbJ0QnyVCLEKLHBQQE8Nhjj7Fy5UqHk5a7MtTSkjUIae9QRXdxd7syMjIoLi6mV69etkMf7777bgBGjhzJb37zG8AyPyoxMbHV3XCdne0jhKdIj8dpas+ePaxZswZvb2/uvPNOuz0WzGYzL730EuPHj+/yRFDrJLSMjAwqKyvx9vYmNjaWGTNmOJ2oV1dXxz//+U+qq6u54YYb2t0nwlUFBQXs3r0bg8HApEmT7FYdmM1mvvnmG5KSkhg4cGCn77Fr1y675cFWffv2dei2LigoIC8vj5qaGnQ6HYGBgQwYMICwsLBO39/q8OHD7Ny5E4PBwJQpU+xWJJnNZr744gsGDRrE4MGDO32PtLQ08vPzHdITExPtDvs7ePAgBQUFVFdXYzKZ8PX1JSYmhoEDBzqslOpud911F4sWLeLxxx+3S+/KUEtLP/74I4BLQYq7uLNdjz76KHPmzLF7/5tvvuGFF15g+fLltiXWADNmzGDx4sUUFBTQu3dvwNIrsmXLFqZNm9aFFgnRNRJ4nObq6+vZunUrF198sduvbTKZWLlyJRUVFVxwwQVERERQU1NDXl4eZrPZaeDxww8/uL0ezTU1NXHw4MEuPXTbYjQaHVbKtNw46/Dhw6Snp9OnTx8GDRqE2WwmNzeX7du3M27cOLetiGhqauLAgQMMGzbMLddryWg0OqzaadnWhoYGYmNjCQoKwmAwUFFRwf79+yktLWXixIkendDm7e3NggULmDdvnl260Wjs8AGFu3fv5qGHHuK6664jMTGR+vp6Nm7cyN///ncuv/xyxo0b586qt8md7Ro8eLDD/xt5eXkApKam2u3b8tBDD/Huu+9yxRVXsGDBAoxGIwsXLqSmpoZHH320c40Rwg0k8DjN9e3bl7S0NEaPHu3SVuEdsWPHDkpKSrjtttvstkxv/q2puYKCAjIyMrj00kv5+uuv3VoXq4iICA4dOkS/fv26ZedQnU7X7mF3BQUFhISEkJycbEsLDw/n22+/paioyG2BR2RkJLm5ufTv379bdg3V6XTt9tBYNyuzioiIQK/Xs2vXLioqKggJCXF7vdoyd+5cXnrpJQ4cONCl60RHRxMREcGzzz5LcXExfn5+JCYmsnDhQv7f//t/bqqt69zVro6Ijo5m48aNPPjgg8ydOxez2cy4ceP48ccfuy3YFcIVEnic5i688EJWrlzJli1bmDJliluvnZaWxqBBgxzOaXHGZDKxdu1aUlNTu/VhZF2FkJ2d3WP/OJrNZodhBr1e7/Zx8UGDBrFlyxaysrI8fghfW6xt787ejjlz5jgMGYBlI7WsrKwuXz86OpoVK1Z0+Tod1d3t6sg9AQYOHMgXX3zRLfcVorMk8DjNBQQEMHLkSH7++WfGjh3b6rdt6/K59lgfnpWVlVRVVRESEsLXX39NZmYmJpOJ3r17M2nSJIet0bdt24bJZCI1NZXCwsKuNaoN3t7eJCQkkJeXR2JiYqsHurnSXmdr3+vr6/n2229tB6jFx8c7TMJLSEggPT2d/Px8YmJiMJlMZGdno5SyjZW7g7e3N/369SMnJ4ekpKRWD3PrSlu//vprGhsb8fPzIyEhgaSkJKcBhdlsxmw2U1lZSWZmJhEREd2+yZYQ4twkgccZIDU1lV9//ZXNmzc77NIJlrNZ3nzzzXav03zLc+tJqNu2bSM2NparrroKk8nEpk2beP/997n11lttPSFlZWVs2bKFa665xmH77u6QmJjI4cOHOXDggNOegJqaGpfmmvj6+jJp0iTbz0FBQQQHBxMQEIDZbKakpIT9+/dTXV1td5/4+HgA9u7dy549ewBLkDB27Fi3D3cNGDCAvLw89u/f73BYH1ja+u2337Z7HV9fXy677DLbz8HBwYSEhBAYGGg7+C4jI4OTJ0863KepqYmvvvrK9nNUVFSH5x4IIYSrJPA4A/j6+jJmzBg2b95MamqqwxyFgIAA/vCHP7R7nZZnnIDlzIqZM2faVpHExMSwZMkS0tLSbBNa165dS1JSEv369XNTi9pmNBrp168f2dnZJCYmOvQE+Pj4cOGFF7Z7nZZDIy3rHxUVhV6vJy8vj/79++Pv7w9ASUkJe/fupU+fPkRFRWEymcjLy+Pnn38mNTXVpWPqXWU0GklKSmL//v0kJSXZ6mDl4+NjOxCwLS0nArdctREdHY1erycnJ4cBAwbYBVB6vZ4JEyZgNpupqKggKyuLbdu2ceGFF8qySyHc4GzaddQdJPA4Q4wZM4a0tDQ2bdrE9OnT7d7T6/UdPjXWOoTRq1cvu6WrQUFBhIWFUVJSAsC+ffs4cuQIs2fPth2l3dDQAFiW4tbX13fLJNB+/fpx6NAhDhw4wIgRI+ze0+l0Ls1LceV/9ri4OPLy8qioqMDf3x9N09izZw8xMTF2S2wjIyP58ccfycrKcvuhW/379ycnJ4fMzEyHa+t0OpeGPFxpa+/evcnJyaG8vNwu8FBK2YLZ8PBwgoKC2Lx5M4WFhW4dWhJCCJDA44xhNBq54IIL+P777x0OEuvMUEtISEibwybWB9nx48dpamriX//6l0OeTz75BG9vbx544IEOtMQ1BoOB/v37s2/fPoeeis4OtbiioaGBhoYGhwm01mDn5MmTHbqeKwwGAwMHDiQ9Pd1uOSR0fqjFmZYn2rbG2vbq6mqX8gshREdI4HEGOf/889mxYwc//fSTXXpnhlr0ej39+/cnPz+fhoYG20qGyspKTpw4YXsApqSk0KdPH7vrlJSU8P333zNp0iS77ZjdrU+fPuTm5jqsBujsUIsz1omy1l4Fg8GATqezbUdtZZ142doE0K7q27cv2dnZZGZm2qV3dqjFGevmae0tJy4tLQVwGPYRQgh3kMDjDGIwGLjwwgtZu3atXbperyc2NrbD17vooot45513WLVqFWPHjqWpqYnNmzfj7e1t6/IPDg5utas/KiqqW7vi9Xo9SUlJpKen26XrdLoOL+mtra3l119/JS4uDj8/P9vk0oKCAvr06WN7yOr1euLj4zl06BBeXl5ERUVhNpvJy8ujtra2zYO5ukKv1zNo0CB27dpll+7KviMt1dTUkJaWRq9evfD397dNLj18+DB9+/a1tbWxsZEtW7bQu3dv29BLWVkZBw8eJCgoqFO/U0II0R4JPM4ww4cPZ/v27ZSVlXX5WhEREdx44438+OOPrF69Gp1OR0JCAtdcc81p823XOi/BehBWZ+n1eoxGIwcPHrTNUQkICGDo0KEkJCTY5R0yZAj+/v7k5+dTUFCAXq8nICCAMWPGEBkZ2aV6tKVPnz5kZ2d3eYjDYDDg5eXFgQMHqK+vByAwMJCUlBS7YSvrVvA5OTnU1dWhlMLPz4/+/fuTmJjoUi+KEEJ0lHJ13Fe4V2xsrDZ79uyeroZHWJekniuaT9Y9F3z22Wc9XQXRTc6x1Ri/aJrm9nXko0eP1lw5k8cVOp2uW+roabJWTgghhBAeI4GHEEIIITxGAg8hhBBCeIwEHkIIIYTwGAk8hBBCCOExEngIIYQQwmMk8BBCCCGEx0jgIYQQQgiPkcBDCCGEEB4jgYcQQgghPEYCDyGEEEJ4jAQeQgghhPAYCTyEEEKIs4RSKl4ptUopVaGUqlRKfaKU6uNCuSeUUlorr7oWeXVKqceUUnlKqTql1C6l1ExX62joTMOEEEIIcXpRSvkB3wP1wGxAA54GNiilhmuaVt1G8X8C37RI8z+V9nmL9KeAh4A/A78ANwIrlVK/1TRtTXv1lMBDCCGEODvcDiQCgzRNywZQSu0GDgB3AItaK6hpWgFQ0DxNKTULS5zwdrO0KCxBx/Oapi08lbxBKZUEPA+0G3jIUIsQQgjRjZRSbnm54CpgqzXoANA0LRfYDFzdiarPBkqAtc3SpgJGYHmLvMuBFKVUv/YuKoGHEEIIcXYYBqQ7Sd8LDO3IhZRSvYFJwHuapjW1uEc9kN2iyN5Tf7Z7Hxlq8SCl1Dxg3qkfT77wwgv7e7I+QriDi9/EhDjdJXTHRX/55Ze1SqkIN13ORyn1c7Ofl2iatqTZz2FAmZNyJ4DQDt5rFpbOibdbpIcB5ZqmaU7uYX2/TRJ4eNCpX5Al7WYUQghxVtA0bZqnb+kkrTPfDv4A7NQ0bbeTa3XpHjLUIoQQQpwdynDe4xCK854Qp5RSY4HBOPZ2wKneE+XY1Rna7P02SeAhhBBCnB32YpmD0dJQIKMD15kNNAErWrmHN9DfyT1w5T4SeAghhBBnh8+BC5RSidYEpVRfYDyOe3E4pZQyYtmXY42macecZPkGaABubpF+C5B+ahVNmyTwEEIIIc4O/wfkAauVUlcrpa4CVgP5wFvWTEqpBKVUk1JqgZNr/BbLcI2zYRY0TTsKvAw8ppT6k1LqYqXUG8Bk4H9dqaRMLhVCCCHOApqmVSulJmMJDN7FMuHzO+ABTdNONsuqAD3OOx9mY5mn8WUbt/ozcBK4H4gB9gPXa5r2hSv1VI4rYoQQQgghuocMtQghhBDCYyTwEEIIIYTHSOAhhBBCCI+RwEMIIYQQHiOBhxBCCCE8RgIPIYQQQniMBB5CCCGE8BgJPIQQQgjhMf8/PLkl4l+IyFMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "matplotlib.rcParams.update({'font.size': 16})\n", + "fig, ax = plt.subplots(figsize=(8, 7))\n", + "im, bar = heatmap(np.flip(rb_df.values, axis=0), \n", + " list(rb_df.index)[::-1], \n", + " celltypes,\n", + " cmap='alpha', \n", + " vmin=0.7, vmax=1)\n", + "_ = annotate_heatmap(im, \n", + " data=np.flip(rbse_anno_df.values, axis=0), \n", + " valfmt=\"{x:^}\", \n", + " textcolors=(\"white\", \"white\"),\n", + " threshold=1)\n", + "\n", + "plt.savefig('rb_values.filtered_results.varyingalpha.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":62: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + ":63: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_yticklabels([\"\"]+row_labels)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAesAAAG0CAYAAAASKw+DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACdzUlEQVR4nOzdd3gUxRvA8e/cXXovQOiQUEPvvXdBQZpYKAqCSpEmAgoiVUREEBARASu9995779IhEHpLL3e5/f1x4ZIjAUFIcvx4P89zz+Vm352d2VzuvZ2d3ShN0xBCCCGE/dJldAOEEEII8WSSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIWVUkpldBuEEEKkpOSmKCI5pZQe0ANGTd4cQghhFyRZCwCUUnmBTkBtIBxIABZomvZrhjZMCCGEDIMLUEp1AjYAfYFQ4B/gIjBCKXVEKVUuI9snhBCvOjmyfsUppYoD+4FTQDtN044klrsCuYCBQAHgU03T9mRYQ4UQ4hUmR9ZiPHADGKBp2hGllAOApmnRmqb9AwwD3IEPAJRSgRnWUiGEeEVJsn6FKaUaADWA6ViGwQFMyWM0TTsLfAIcVErlAn5XSkUppdqla2OFEOIVJsn61dYWuAOs1TQtTimlHp0BrpTSaZq2FViOZfJZOWAt8KNS6qBSqky6t1oIIV4xkqxfUUopHeAA3NM0bSdAapdqaZpmTvzRCcv565XA+0BZ4BiwVCnVRyllSJeGCyHEK0iS9SsqMQmbgAiAJyVbpZQj8CGQFfhO07QHicPjvYGJwLtA1TRvtBBCvKIkWb+Ckt2pbAdQRilVWtM00xNWKYHlvPXPwIGHhZqm3QWmAtHAD0opt8QjdiGEEC+QfLC+gpINd/+J5fxzT6VUjuQxDxO6UsoD6APcA37RNC02WYwhMWH/BRQCfJINmwshhHhBJFm/wjRNCwcmYZkRPlcp1VQpVUQplRmsCbs20BIYC5x7ZP2HR+NOgCOQN73aLoQQrxK5KYpAKeUNTAZqYblzWSEstx49guXo2wy01DTteirr6rEMjzcBCiR+AbAu0zQtIfHnTJqm3U7jrgghxP8lmcEr0DTtAfCOUqoAUBzLpLPjWBJwaZIl6lQu7woEWgHzsST1h5d7mTVNS1BK+QBDgGZKKb/E+s7KPwkRQoinJ8laWGmadgY4A9Y7lQ3Hcp/wfclitIdHzEopN+ArLP/0Y4mmaZGJMebEc91fY5mcljsxxhUIS6zDUdO0+HTsnhBCvLTknLVIlaZpF4ApQDDwl1KqSuJwOYmJOivwGfBOYtw2AKVUdqVUD2AL0AgYCYwBPIDBmqbdTEzknyqlJsnscSGE+Hdyzlo8UWJSnoplEtoK4BoQCTTGMqT9N9ARyySzusC3gBEYB8xKLF8IBGmalj2xTn1ifTMAT+ALTdMmp1+vhBDi5SLJWjwVpVQl4CPAFygKXAHmApMTh70nAW9jmTX+o6Zp4UopJ6AbliPrtzVNm/PIpDM/oAOWofR/gB6apu1O564JIYTdk2QtnolSylfTtHuJ11ibEss8gB7AAGAr0F3TtPNKqbJYrsG+pWlatcfUpweGJq4LltuZdtI07UZa90UIIV4Wcr5QPBNN0+4l/mhOVhaB5V9tNsVybvqMUupnoD2QH0sif5iYH5UPy9H1b0ADLMPm15RS36RRF4QQ4qUjR9bihUq8VKsxlqFvf2C/pmmVHhPrjGXY/C2gnqZph5RSLlguBXsN+EGGxYUQQpK1SANKqexYZog3wDLZbCnQJfkNUxLjqgNrgNHAKE3T4pItcwFi5XpsIYSQYXCRNppiObr+AggC5qSSqL2Bz7HcMe235IkaQNO0GEnUQghhITdFEWnBAQjVNG0MgFJqSeKzLnHmuMKSzBtiuezrcoa1VAghXgIyDC7ShFLKTdO0qOSXaiVblhPLrO9rwLuapt3JkEYKIcRLQo6sRZrQNC0q8fnRRG0A2mGZJf6pJGohhPh3cs5apLcSQC/gV0BmegshxFOQZC3SWxEs//t6mqZp0RndGCGEeBnIOWuR7pRSmYG7jw6RCyGESJ0kayGEEMLOyTC4EEIIYeckWQshhBB2TpK1EEIIYeckWQshhBB27qVO1kqpSkqpuUqpa0qpeKXUXaXUOqVUe6WUXilVUymlJXvEKKWuKqVWKqU6KaUc/6X+ykopc+K6hsSyDo/U+bjHkHTZCUIIIf7vvbSzwZVSPYHvgY1Y/hfyZcAHqA+8D7wNhAGbsPw/5X1Y7lmdDagHtAVOYfnXjLdTqd8BOIjl3zwGAA6appmUUpmw/HOKh0oDk5Jt46GrmqZdfUHdFUII8Qp7KZN14r9W3AxM1DStRyrLgwA3wBdLsq6nadr6R2IqJS5bp2na66nUMRB4B1gCDCQxWacSV/Nx2/iXPnTWNG3q08b/P5J9IIQQT+dlHQbvD9wD+qW2UNO085qmHX1SBZqm7QJ+ApokJnerxNdfAJ9g+X/MaaFzGtX7MpF9IIQQT+GlS9ZKKT1QE1iraVrsc1a3MvG5yiPlPwHzNU3b+pz1CyGEEM/tZfyvW/6ACy/mfyCHJD5nfViglHoPKAsUegH121BKdSbxaFIZVBnXPG4v3zmIF+iN79vSdFy7V3ofzG5aJqObkOEc9G9mdBMy3MrZURndhAzXOuCJ831fGbHtg1Rq5S9jsn6RHu4UDUAp5QuMBQZqmnbrRW8s8fzsVADXPG5a/sGFX/QmXi5hGd0AIYR4ObyMyfouEAPkfgF15Ux8vp74PBy4CcxVSnknljknPnsppWIf/p9mIYQQIr28dMk68fKpzUA9pZSTpmlxz1Fd48TnHYnPwUAxLF8IHnUHy8zwZs+xPSGEEOKZvXTJOtE3WC7dGoPl+mYbSqm8gMeTKki8dKsLsFjTtAuJxT0B70dCOwDtgbpYjrqFEEKIdPVSJmtN07YqpXoD3yulCgMzsUwW8wHqAJ2wXCP98KxoYaVUJJb+ZsVy45S2wEngw2T1Hn50W4nXUQNsSe06ayGEECKtvZTJGkDTtB+UUnuBXsB3WGaJRwD7sRwxLwOqJ4ZPSHyOwzLEfQToCvyhaVp8erZbCCGEeFYvbbIG0DRtJ7DzCSGbSZrx/V+3MQQY8oTlz70NIYQQ4kleupuiCCGEEK8aSdZCCCGEnZNkLYQQQtg5SdZCCCGEnZNkLYQQQtg5SdZCCCGEnZNkLYQQQtg5SdZCCCGEnZNkLYQQQtg5SdZCCCGEnZNkLYQQQtg5SdZCCCGEnZNkLYQQQtg5SdZCCCGEnZNkLYQQQtg5SdZCCCGEnZNkLYQQQtg5Q0Y3QPx38ffiub3qBjGXoom5Go0Wr1FodFEc/Z2sMdGXorix6BqxV2NIiDShd9XjktuVzE2y4pbP3RpnjjMT+ncI4QcfoHfTE9A8O97lfW22d2vVDR7svkf+wYVRepVu/XySmAdRnNt4ggdX7hJ+7T4JxgTqfvkmrr7uj13nyNzdXN59luyl81LmvarWclO8ieML93L92BUcXB0p/FopspfKY7Pu2Y0nCD1wkeq9X0Ont4/vulevP+D7nzdw8HgIx05dIybWyKktg8idw88m7sjJqwz6djm7DlxAp1NUq5CP0QObEZQnkzUmOiae3l8vYNnaY3h7ufB1n8a0bFLapp7vf97AnKUH2LGkDwaDPl36+Ky27NpF3bfbpCj38vDkzrFjANy5d4+PB/Rn486d5MyalXFDhlCrchWb+G5ffkFIaChLZ8xMj2b/ZwfPbGfh5l+5cusckTHheLn5Uih3SdrU7UquLPkAGD93IBsPLk51/eyZ8jK5zwoA4uJjmLp0BLtPrMfdxYv3GvSkWolGNvELt/zKlkPL+b77PPT6jEkj2r3rmFZMRbt0DO3KPxAfi+OYzahMOWzjosIwzfkG88H1EB+LylcKw9tfoMtZ0DYuPo6EheNI2LUEosNRuQpjaN0PXcHySTHmBBLmjyVh23xwcETfoCOGBu/b1JOwdwWmv0fgOGoNysXjhfVXkvVLLP5WHGH77+OS2xW3/B5EnghPEZMQnYBTZid8K/th8HbAFG7izrqbXPj2DEH9C+Ia6AZYEnHkyXBydMxD7JUYQqZdxCW3K05ZnC3buhfPreXXydsrv90kaoCoOxGEHr6Mdw5ffAMzc/v09SfG37t4i6sHL2Jwdkix7NyG49w+c51Sb1cm/Pp9Dv61Ha8cvrhn8gQsXwzOrjtGxc617SZRA1y4fJuFKw9RsmhOqpQLZP220ylizl28Tb02PxJcIIDp37clIcHMyAmrqff2j+xe9hmZ/S0fKt9NWc/G7af5+dt3OP7PNT7o8ycli+QkX15LQr96/QGjJ69lyfSP7DZRJzduyBDKFi9hfW0wJH3k9R0+jPOXQ5g1cRIrNm6g9UcfcWbbdny8vAA4cOwYfy5cyMHVa9K93c8qMjqMoBzBNKrUBi83X24/uM6Czb/Qb/LbTOi5mMw+2Wld5yMaVnzLZr2b90MZO6sv5QvXspbN3zyNw2d30qPVSC5fP8O4OZ8TlL0w2fzzAHAn7AZzN07hqw+mZliiBtBuXsa8byW6PEWhQFm049tTxmgaxvFd0G5fwfDeYJSrJ6YVUzCOfg/HoUtRvlmtsabpAzAf2YThrc9RmXORsOFPjN+9j8OX89DlDgbAvH0hCZtmYWg/DKLDMf35NbpchdEVrmjZXmwUplkjMbQZ8EITNUiyfqm5FXAneJzlg+ju1jupJmuPYE88gj1ty4p6crLnEe7vumtN1hHHwvCrnRmvkt54lfTmwZ57RJ6MsCbra7Ou4FXOx+Zo3B74BWah4dBWAFzeffaJydqcYObIvN0UqFuUS7vOplh+659r5KlaiICiOQkompOrBy5y+8x1a7I+vmg/2Urmxjdv5rTpzH9UtXwQl/YOB2DGnF2pJuuxUzeg1ykWT++Ct6crAGVL5KZY7eGMn7aJEf3fAGDtllN81LYaTeoWpUndosxZup+NO09bk/VnwxbS/LVSVCyTN51693wK58tPxdKlU122ZvNmJgwdRv0aNahdpQq/z5/PnoMHaVirFmazmW5ffkG/jz8mMFeudG71s6tesjHVSza2KcufsxhdxzZm57G1NKv+Pln9cpHVz7Yvh8/uBKB2mabWsoNnttG48rtUCK5NheDabDm8nCPndluT9bSlo6hSrCGFc5dK2079C1WwPE4T9gCQsGUOplSStfnQerQz+3H4/A90hSsB4JCvNPGf1SRh5S8Y3htsiQs5hXn3Ugwdv0FfraW1fuMXjUhY9AO6nlMtcUe3oKv0OvqKTSzbPbgO87Gt1mSdsGg8KmsQ+oqvv/D+2s/hgXhmSvffjnB1TjqUQdkcIWsmDZ1j0ttB56jDbDQDlkQedSaCrC1zpKgroz3LPji36QSaWSOoZnCqy80mM3qHpKNFvaMBsykBgFunQrl74SbBTVL/4M9IOt2//xnvO3SJ8qXyWBM1QI6s3gQXyMrStUetZUZjAi7JRh1cnB2JizMBlkS+fe95hvd78R9EGSHeaMTF2fJl1GAw4OjgQGxcHAC//P034RER9O3yUUY28bl4unoDPPHod9PBJQRlL0KuLPmtZSaTEUdD0qk0J0dn4o2W/XLw9DaOX9xH+0Z90qbRz0A9xfvefGgDeGexJmoA5eqBrmRtEg6tt43TO6Arn/SFR+kN6Co0xnx8G1pi/0kwohyck2KcXCFxmfnqGRI2z8bQdshz9ix1kqxfEZpZQzNpxN+N59pfVwDwre5vXe4a6Mb9HXcxPjAScTyMmJBoXAPdMBvNhP59hYAWOTC4v7wDMVF3Iji77hjFW1RA95jhW5/cflzZd57Y8Ghu/XONsND7+OTORIIpgWOL9lG4cSkc3ZxSXdfe6fU6HB1T/v6cHA1cCLlLbJwRsBxt/7lwH9dvhbFu6ymOngqlfMncxMWZ6PP1AoZ+1gQ/H7f0bv5/1q7npzgF5iVLyRK07dGdkNBQ67LyJUvyy99/cff+fabPmU1EVBSlixXjzr17DP5uDBOGDsPR0TEDW//sEswJGE3xXLtzickLh+Dj4U+1Eq+lGnvq0kGu3w2hdummNuUFchVn48El3Au/zcEz27l47R8K5iqB0RTP1KUjaNewN55u3unQm+enhZ5F5cifolxlzw93r6HFRiXFZcqBcnJJGWcyot26bHkdWIKE/WvQbl7CfOk45hPbUUElATD9/hX6+h3QZQ1Mk768vJ++4pmETLlA2IEHABg8DeTtmR/nbElvzCxvZOXiD+c41cdylJWpYRbc8rlzc8k1DB4GfKv5pVbtS+PI/N0EFMuFf/6Ax8YUqF+C3b9sYO2QBQAE1QrGN08mTq85gqO7M7kq5Euv5r5w+QMzs/vgRYzGBBwSRw8iImM5dfY6mqZxPyyarJm9GNijAW9+8DNBlb4CoNeHtalQOi8jJqzG39edDq0rZmQ3npqnhwe9PvyQ6hUq4unuzqETJxg9eRJbm7/JvhUryezvz5gvB9H0g/cJKFUSg8HAt198Sa7s2enYty/1qlWnTtWq/74hO/PZpDacDz0BQFa/XAz7cAbe7qn/7W46uASD3pBi+LxNnU/4ekYX3h9ZA4A3q39Aodwlmb1+Ep5uvtQr1yJtO/EiRYWh/FOOCCo3L+tynN3Qoh6Aq2cqcd6WHyLDANDXbYf5+HbiP68LgK5CE3TlG5OwfSHa/RvoX/8kLXoBSLJ+ZQS0ykGmRgEY78Vzd+NtLo4/R2Df/LjmsRwlOfg4kn9IYeJvx6N31WNwNxB3O47ba24SNKAgWrxG6JwQwg89QDnqyFQ/C/517Ovc7eNc2X+BByF3qd2/6RPjXLxdqdm3CdF3I3FwccTRzYmouxGc23ySqt0akGBM4MSS/Vw/dgWDo57AGsEEViuUTr14Pl3bV2fhysN0HzSXQT0bkZBgpv/IJURGxwNJQ+nZA7zZs6IfF0Pu4uXpgp+PGxdD7jB+2ibWz+lBTKyRz0csZtnao7i4ONLjg5p83L56RnYtVaWKFqVU0aLW19UrVqRahfJUbtqUiTNnMLTvZxQtWJDTW7ZyISSEgEyZ8PTwYMf+fSxZs4ZjG9Zz5949egwaxIYd28nk68eQPn1o2bjxE7aa8Xq99Q3RsZHcvHeVxdtm8NW0Toz66E+y+Ga3iTOa4tl+dA1lC9XE083HZpmfVxbGf7qIG/eu4ObsiaebNzfuXmHR1hl889GfxBtj+XXFaHaf2ICTgzNNq7anSZX30rObz0ADlcqpMk1LWfYUccrFHccBf6PdCQW9AeWTBS0qHNPc0Rg++AYMjpjmjyVhx0LQQF+tBfo3ez7VkP2/kWT9inDK5ASZnCCvGx4lvDgz+CQ3Fl0jsFfSEJFSCqfMScO81/4Kwbe6Py45XbmxMJSYS9EUGBqM8b6R89+cximrc4rJa/bGFGfkxNL95K9dBL2DHmOMJTmhaWhmM8aYePSOBuvsbqUUbv5JsziPLdxH7gr58Mruy6mVh3hw5S61+r1ObFg02yeuwSOLF5kKZE1t03alUtlAxn3dkq/GLOf3eZZJObUqF+Dd5uWYvWQ/vl5J57KVUgTmTjpF0vvrhXRoXZHihbPz1XcrOHjsCvtW9efazQfUa/MjhfIFUKtKgXTv07MqXbQYBfLmZf+RpHP0BoOBAoGWYcuEhAS6fzmIwb16kTVzFtp+2oPI6CjObtvO3sOHadaxI8UKFaJgUFBGdeFf5cxsaVvBXCUoXbAanUfXY8GWX/jkzSE2cXtObiAqNjzFEPhDSimbyWhTl46gXrmW5M1WiD/W/MC5qyf4secS7obfZMCUtuTMEkSJfJVSrStDuXlbjpofoUUnTsZNPMJWbl5od6+lEmc5osbdy6Zc+Sd9+TEtGIsuX2n0JWuRsHk2CbuW4DhwNgDxo95B+edAX6P1c3dFkvUrSGfQ4ZLDhZgrMY+NCTt4n5grMeTqYvkgizgejk8VPwweDhg8HHAv4knE8XC7T9bxUXHER8ZxauVhTq08bLMs5vBlrh2+TLn3a5C1WMoZv9ePhhAeeo+ybasBltniOcsF4eTujJO7M5kLZOPWP9deimQN0OW9qnRoVZHzl2/j6e5Mjmw+NH1/CuVK5LYOjT9qyZqjHD0Vyu/j2wGwbusp2rYoTyY/dzL5uVOnakHWbT31UiRrsFzKo1I7ggJ+nDEDnU7RtX17ANZu2cKv343F08ODutWqEVwgPxt2bLfrZJ2cu4snAX65uH43JMWyjQeW4OnmQ5lC/z4qsuv4ei5e/4e+74wF4NCZ7dQu3Qwvd1+83H0plb8KB89st8tkrbLnx3x8W4pyLfQc+GVDObslxR1YhxYXY3PeWgs9BwYHVObcqdZvvnQc864lOA5faXl9bBv6sg1RmXICoC/XCPOxrZKsxX9jjjMTfSkapwDnxy6/Nusq2drkQO+itym3+TmVkSR74+ThQuVP6qUoP/DHNjyyelOgbjE8ArxTLDfFmzi+ZD9FmpW1uSY7Id6ULMaYJm1OS05OBoITv1wcP32NTTvPMG3Mu6nGRsfE02/4Ir79ohke7knvlaiHoxNAVHRcqiOK9mj/0aOcuXiRlo2bpFh2/dZNho8fz/LffkOvT3rPR0VH2/ysvSydBR5E3CH09gVqlGySovzw2Z00qtgGgz7l/QaSi4uP4dflo+jY5HNcnZImFsYak77ox8RHpz6sbAd0Jetg3jYf8z970BWqAIAWE4H58EZ0yS6v0pWsQ8Ki8Zj3rUJftbklLsGEee9KdEWqohxSTizVzGbLpLLXP0H5ZUsqj4tJ9nM0L+qDUpL1S+7B/vsAxFy2zGqMOBaO3sOAwcOAe0EPrv5+Gb2bAdfcrug9DBjvxnNn4y1MYUZydcqTap03l1/HKcAJ73JJdzBzL+zB3Y23cApwxvggnshT4WSqnyXN+/c0rh2xzNR8cPUeADdPheLk7oyjmzP++bLgny/lpDKdQY+Tu0uqywDOrD2KeyZPspfMYy3LlD8rF7efxj2zJ7HhMdw5e+Oxl4Glt0WrDgNw6Lhlpv+aLafI5OuOv6871Srk4+r1B/zy1w4qlsmDk6OBQ8evMGbyeprWL07rN8qkWuc3E9dQIDAzLRonXU9bu0oBpvyxjQKBmbl+K5xNO8/So2OtVNfPSG0/7UHenDkpVbQo3p6eHD5xgtGTJ5M9IICuHTqkiP9s2HBaNmlsc012nSpVGTXxR7w8PNh35AjnL1+mVuXK6diLpzfy9+4EZQ8mT0ABXJzduXbnEku3/45eZ6BpNds7bG05vJwEs4naZZr9a71zNv5E9kx5qVo86Q5mJfJVYuXOv8mRKS/3wm9z9PxumlXr8IJ79HQS9q0CwHzJMqnOfGwLePiiPHzRFaqArlQdVL5SGKf2wdC6P8rNE9PyKYCG4bUPrfXocgejK98Y09/DLZdnZcpJwsa/LDdT6TI21W2bt8yB2Cj09ZP2r65IZUxzvyWhQFlLzO5lGNoMeCF9lWT9kgv56YLN69A/LUNebgXdce9XENe8btzbdod7W25jjjPj4OOAa6AbOTrkwSWHS4r6Yq/HcnfjLfIPLmxTnvn1rJgiTFydcQnlqCNri+x4FLWPIfD9v221eX1swV4A/IKy4J+v/jPXF3EzjEs7zlC9t+0lLwXqFyMuMpbDs3ehd9BTuHEpMhfM9pha0te73WbavO45eD4A1SoEsebv7jg46Nl/5DLTZ+8kIiqWwFz+DOjegK4dUh8GPX3+Jj//uZ0di/valPfv1oBbdyP5uP9snJ0dGPZZE+ra4SS7ogUKMnvZUib99hvRMTEEZMpEs4YN+apXL/x9bW+ju2nnDjbs2M6JjZtsyscNGULXL77gne7d8PfxYfrYsQTnt8/h/oK5SrDj2GqWbJuJMcGIv1cAxQLL0aJm5xSTyzYeWELuLPkJyv7kL5pXb11g5a5ZfN99nk1569of8SDyLj/O/xJHB2faNexFqQJVHlNL2jJN6m77+nfLVQyqYHkcB/yN0ulw6PkLpjnfYPrjKzDGoYJK4fD5nzZHwwCGTqNJWDAW04Jx1tuNOvSZbrlD2iO0iHuYFnyPQ/dJKEPS6ISuZhv0t0IwzR4Jmoa+5tvoqrd6IX1VL9Owzv8T1zxu2qMJ8VWTJ8w+jkoz0uymqR/Vvkoc9G9mdBMy3MrZURndhAzXOuDluqY9rcS2D0p1UoXcFEUIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDv3UidrpVQlpdRcpdQ1pVS8UuquUmqdUqq9UkqvlKqplNKSPWKUUleVUiuVUp2UUo6p1OmqlPpaKXUmMf6KUup3pVSexOUdHqnzcY8h6b0/hBBC/H8yZHQD/iulVE/ge2Aj8DlwGfAB6gM/AQ+AsMTwHsA+wAHIBtQDJgHdlFL1NE27nazqaUAz4CtgP5AL+BrYoJQqAawAKiWLL51Y18NtPHT1hXRUCCHEK++lTNZKqepYEvVETdN6PLJ4iVLqe8AN8E0sO6Vp2u5kMXOUUr8Cm4DpwOuJ9boArYFvNU0bk2x7N4FVQBVN09YAt5Mtc37MNoQQQogX4mUdBu8P3AP6pbZQ07TzmqYdfVIFmqbtwnIE3kQpFZRYbAD0QPgj4Q8Sn1/W/SWEEOIl9tIlH6WUHqgJrNU0LfY5q1uZ+FwFQNO0COAPoIdSqpZSyl0pVQQYAxwBNjzn9oQQQohn9tIla8AfcMFyjvp5hSQ+Z01W9j6wCMu58AjgOJZz3fU0TYt/AdsUQgghnslLec76BVKJz1qysuHAe0BfLBPGcmGZbLZKKVVD07So/7wxpToDnQG8snjRsmDz/1rV/4Uf/piZ0U3IcMpQPaObkPG0fw/5fxdxOy6jm5DxAlJcnCOSeRmT9V0gBsj9AurKmfh8HSBxyLs/0EnTtF8fBiml9gBngE7A+P+6MU3TpgJTAbIXyi4fUUIIIZ7KSzcMrmmaCdgM1FNKOT1ndY0Tn3ckPhdLfE5+CRaapp3FMsms8HNuTwghhHhmL12yTvQN4Idl4lcKSqm8SqniT6pAKVUJ6AIs1jTtQmLxjcTn8o/EFgC8gdDnaLMQQgjxn7yMw+BomrZVKdUb+F4pVRiYiWWymA9QB8tw9Tsk3RSlsFIqEkt/s2K5cUpb4CTwYbKqt2GZ9T1WKeVD0k1Rvkys67e07ZkQQgiR0kuZrAE0TftBKbUX6AV8h2WWeASWBNsFWAY8nL0zIfE5Dss57yNAV+CP5DO8NU1LUErVAQZimQg2FLgD7AQGa5r2cPa4EEIIkW5e2mQNoGnaTiyJ9HE2kzTj+2nrvAv0SXw8Tfwzb0MIIYR4Fi/rOWshhBDilSHJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzhoxugPhvTmw6zrH1Rwn9J5So+5F4ZfEmuEYw1dvVxMnVCYDz+89zaOUBrhy/QsSdcDz8PclXPh+1OtbB3cfdWld8bDwrxy3n1NaTOHu4ULdLPYrVKW6zvW1/beXo2iN89Osn6A36dO3r48RfiCDuXAQJt+MwxySgczfgmNcdl1K+KMek76GmO3HE7LmD8UYMKIVDNhdcK/mj93K0xmhGM1E7bmO8FIly0uNSzg+nfB4224s5fI/4sxF4tsiF0ql06+eTrNtynLE/reafc9e5HxaNv687FcsE8WXPNyhcIJs17n5YFANHzGfZ2sPExMZToXQQ3w5uTdFCOawx0TFx9B48i6VrDuHt5cbX/d6k1evlbLY3dspq5izew87lX2Kwk/dBauq89RZb9+xOdVn96jVY8fvv3Ll3j48H9Gfjzp3kzJqVcUOGUKtyFZvYbl9+QUhoKEtnzEyHVj+9uxE3Wb53BhdvniTk9lniTbGM67SCTF7ZbOKiYsP5e8s4DpzbjNEUS75sxXmvZl9yZspvExdvimP+jsnsOLWS6LgIcmcqQJvqn1IoRxlrjNmcwNztE9l6fAkGvSOvlW1LwzLv2tSz+/Ra/tw0hm/fX4SrkzvpzXxqF6aFP6BdOg6OzuiK18TQZgDKy98aY/ylH+YdC1NdXwUE4vjNWgC0uBhMf36N+eA6cPXE0LIv+gqNbeJNK6di3rUUhyGLUfq0TaeSrF9SO2ZtxyuLF3W71MMzkxfXz15j8/SNXDx4kU5TOqPT6di/eC9xMXHUaF8Tn2y+3Lt6h42/buDcnrN88lt3a1Lf9udWzu87x5tftODGuRssGDqPbAWy4ZfT8gYPuxXG1t8203Zse7tJ1AAxRx6gdzfgUt4PnZuBhDtxxBy4h/FaDJ7NcqCUIiEsnvClV9D7OOFeJwDMGjEH7hG+9CpeLXOhc7H8CcQcvo8pNBq3mllIuBdP1KYbGDI5WRO6OdJIzMH7eLyWzW4SNcC9B1GUKpabzm1rkcnPnSvX7vHd5FXUeHMU+9YMIXcOPzRNo2XHiVy6coexX7fBx8uNMZNX0bDNWHavGkSOrL4AfDd5NRu2n2Lq2Pc5fuoqH/T8lVJFc5EvbxYArl6/x+gfV7Dkt0/tOlED/Dh8GOERkTZluw8e5LPhw2hSry4AfYcP4/zlEGZNnMSKjRto/dFHnNm2HR8vLwAOHDvGnwsXcnD1mnRv/7+5+eAKe86sI2+WwhTMXopjl3eliNE0jbGLe3I7LJR2tfvh5uzJsr3TGTG3MyPazcbPI4s1dtqarzl8cRtvV+9FJq/srD88l9ELujLk7d/InbkgANtOLGPj0fm8X/cLouMi+G3DaHJlLkhwzrIAxMZH89fmsbxTo3fGJOrT+zB+9z66otXQd5sEkfcxLRyH8du2lmTqYPm8MzTtilbrbZt1tTuhmKb0RFeqjrUsYcXPmE/swNBpNNqV05im9kHlLoIuII9lnXvXSVg6CYc+M9I8UYMk65fWu6Pb4ubjZn2dt1ReXD1cWThiPpcOXSSwTBBN+ryRIsYvpz/Tu03jxMZjlG5i+SM7u/sM5VtUpFDVwhSqWpij645wfv95a7JeNX4FRWoXJVex3OnbyX/h0TCrNdkCOGRzRTnridp0E9O1GByyuxJ7+D5KKTxey4bOyZJgDJmdeTD7MrFHHuBa0dJH45UonIp44ZjHHfJA3NlwjFejrck6audtnILccQhwSfd+PslbTSvwVtMKNmVlS+SlRO1BLFp5gJ6d67N83RF27jvH6ll9qFG5EAAVSgdSuOoAvp+yhu+/tnxwrdl8jI/a16JJvZI0qVeS2Yv3sHH7KWuy7jtkDi0al6VS2Xzp28n/IDh/gRRlv86ehaOjI2+9/gYAazZvZsLQYdSvUYPaVarw+/z57Dl4kIa1amE2m+n25Rf0+/hjAnPlSu/m/6tCOUoz+eMNAGw6ujDVZH3w/GbOhB5iYKupBOeyjJDkz1acXtOasGLfTNrV/hyAy7dOs/OfVXzYYAg1ijYFoHDOMnw+syXzd0ymz5vjAThyaQeVCjWiUqGGAOw/t5mjF3dYk/WCnT+RzTcPlQs3StvOP4ZpyY/glw1Dj5+syVNlDcI4tDnmrfPQ13nPUpY5Nyqz7WeZ6cQOAHRV37SWmY9tQV+3LfpSdaFUXcy7lqKd3AGJydr013B05V9Dl790OvROzlm/tJIn4YeyF84OQPjt8CfEWIY9w++EW8sSjAk4ODlYXzs4OWCKNwGWRH7p8EXqf9zwxTX+BUmeqB8yZHIGwBxlab/pZiyGLM7WRA2gc3dA7+NI/MVkR14JGsqQ9OegDDpI0ACID4nCdD0GlwpJQ2n2zDfx9+7gYOnzinWHyZrF25qoAbw8XXmtbgmWrztsLTMaE3BJ9j5wdXEkNs4IwNrNx9m+5wzDB7RIhx68eDGxsSxYuZImderg6+0NQLzRiIuz5f1iMBhwdHAgNi4OgF/+/pvwiAj6dvkoo5r8RDr17x/dB89vwcc9kzVRA7g6eVAqsDoHzm22idPrDFQsWN9aptcZqFSwAccu78JoigfAlGDE0eBkjXF2cCbeZNlfV+6cY+PRBbSvM+B5u/afaecPoytS1eYoVxdYHNx9SDi47onrmncuQuUpii57si95JiPKwTnptaMzmtHSX/PRLZhP78XQut8L7cOTSLL+P3Lp8EUAMuXJ9PiYQ4kxuTNby3IE5+DwqoNE3Ann7J6z3Dh3nRxFcmKKN7Hih+XU+6g+rl6uadv4F8R4PRoAvU/i+WgFpDJsrfQKc7gRzWQGLEfbcafDMUeZiL8SRcLdOPSZndESzETvuI1LeX90zvY79JuQYCY+3sS5izfpNuBPAjJ5Wc83nzx7jSIFs6VYp3CBbFwJvUdkVCwA5Urm5a8Fu7h+8wHrthznyMkrlC8VSFyckd5fzWLY583x80n/4c0XYdHqVURERtK2RUtrWfmSJfnl77+4e/8+0+fMJiIqitLFinHn3j0GfzeGCUOH4ejo+IRa7dvVuxfI4ZdyFCSHXxB3I24QG2/5Wwm9e55MXtlxcrAdNcruH4QpwcjNB1cACMpajH1nN3DjfggXb57k2KXd5MtaDICZ60fSsPS7ZPPNk7adehKdDmVwSFlucES7euaxq5nPHkC7eRl9leY25SqwBAk7FqI9uIX52Fa0kFPogkqiGeMw/TUUQ6u+KHefF92Lx5Jh8P8T4bfD2DhtA4Flg8iebNJQcnHRcayasIJMeTJRqFpha3mtD2rzR9/fGNNsNABV3qlGrqK52DR9A27ebtbhcntnjjIRs+8ehuwu1iNsvbcjxpuxaAkaSm9J2lq8mYT7lqMFLc6MMuhwKetHxMpQHvxp+TLjXMIHhwAXYvbfReeix6mQZ8Z06ilVbzqSg8cuAxCUJzOrZvUhs7+lzfcfRJE7R8pRAV8vyxH4/bBo3N2cGdjzdZq1H09g+c8A6NWlARXLBDHih6X4+3rQoU3VdOrNi/fngoVk9venYc2a1rIxXw6i6QfvE1CqJAaDgW+/+JJc2bPTsW9f6lWrTp2qL29/AaJiw8jkmTVFuZuzZ+LycJwdXYmMDbeWJeeeWBYZGwZA/VJtOHZpF32nW4bKKxZsQMVCDdh6Yin3Im/RtELHtOrKU1EBgZjPH7Yp0+6EQtgteMI55YQdi0DvgK5iE5tyQ7PuGMd2JL5nZQD0jT5El680psUTwMMXXfXWL7wPTyLJ+v9AXHQcf/f/E51ex5sDUx+mTDAlMG/IHMJvh9Pppy42E8U8M3nxyczu3L92D2d3F1y9XLkXeo8ds7bTaXJnjHFGVv+4klNbT+Lg7Ejlt6pQsWWl9OreU9GMZiJWXwMduNdMmjjjVMyb+AtXidp2C9dyfmhmjehdd9CMliNqEg+6dW4GPFvmwhxuRDnp0TnrSQg3EnP0Pp5Nc4JJI2rXLeIvRaEMCufiPjgX9U7/jj7Gr+M6Eh4Zw8WQ24yfupbG733PxvmfkzunP5oGKpU5cRqazevsAT7sXf0VF0Nu4+Xpip+POxdDbvPD1LVsmP85MbHxfD5sLkvXHMLF2ZEenerxyft1UlZsZ67dvMmGHdvp/v77GAxJH3lFCxbk9JatXAgJISBTJjw9PNixfx9L1qzh2Ib13Ll3jx6DBrFhx3Yy+foxpE8fWjZu/IQt2RdN07C+wZ8cmGqUZvv2wMXRjS/fmsad8GvodQZ83DMTFRvB7K3j+bDBEAwGR+Zun8i2E8sAjepFmtKiysdPNWT/Iujrtcc0tQ+mBd+jr9ceLfIBpplfgtJZHqnQjHGY965EV7IWysPXZpnyCcBh2HK4HQKunih3H7RbISSs/hWHgbMhPhbjrJGYD64FRxcMDT5AX69dmvVPkvVLzhhn5O/+f3L/2n0+mNgJr8xeKWLMZjOLRizgwv7zvPttOwLyBaSIUUrhm93P+nrFD8so83pZAvJnZf3Pa7n2Tyjdfv+U8Dth/PrJL2TKk5mgskFp2renpZksidocYcTj9Rzo3JOdfw9wwbVqJmL23uXBact5ekN2FxwLeBJ/NgKV7Fy2Usrmcq7oHbdwKuSFwc+J6L13MN2Ow6tVLsxRCZYZ5t6OOOSwj9MDhfJbjqDKlwqkQc1iFKran+9+WsWPI9vi4+3G/QdRKda5H2YZBvVJdopDKUVgslMkvQfPokObahQPzslX3y7i4NHL7F/7Nddu3Kduq28pnD8btaoWTlG3Pfl70SLMZrPNEPhDBoOBAoGBACQkJND9y0EM7tWLrJmz0PbTHkRGR3F223b2Hj5Ms44dKVaoEAWD7ON9/2/cnb2Iig1PUf6w7OHRtJuzF3cibqSMiwu31pOcv2fSKZV52yeSP1sJSgVWY9PRhew4uYJBbaYDMGJOJzJ5ZaNmsTdJD/rKTdGuXyBh9TQSlk0GpdCVb4wqXgNz6NlU1zEfWg/R4eiqpN5GpRQkm4xm+nMo+uqt0OUqjGn+WLRLx3AcvhLt/k2Mo95GZc+HLrhymvRPzlm/xBJMCcz+8m9CT13lvTHtyBKUMgkDLBuzhOMbj9FqyFtPlWBPbjnBjbPXqd3JconL2T1nKdmoNG4+bmTNn4185fNzbs/jzwGlJy1BI3LddUy3YvFolA2Dn1OKGOci3ni3y4tnq1x4vZsHzyY50KJNGDI7WYfGHxV/MRLTnThcy1q+wBivRONU0BOdiwGDvxMOOVwxXkmZAO2Bt5crQbkzc/7SbQCC82fj5JlrKeL+OXuNnNl9cXdzTrEMYMnqgxw5eYXBvS3Dnuu2HOfdFpXI5OdBiSK5qFOtCGu3HE+7jrwgfy5cQPHCwZQIDn5i3I8zZqDTKbq2bw/A2i1b6Pzue3h6eFC3WjWCC+Rnw47t6dHkFyK7XxBX755PUR567wJ+HgE4O1q+pOXwD+R2WChxxhjbuLsXMOgdyOKdM9X6L948yY5TK2lby3La5OilHZQvUJfMXtnJ7JWd8gXqcvTSzhfcqycztOiF48R9OAxbgeMPu3D4+Ae0m5fR5S+Tarx5+yLw8EFXvOa/1p1wYC3mkFPo3+xpWffYVvRVmqM8/dDlDkZXpCrmo1tfYG9sSbJ+SZnNZuZ/PZeLBy7w9qj3yFk09ctLVv+4koPLD9BsQHMKV3/yhxVYbpCyasJKGnVvbL0OGyA+Jt76c1xMXIohsoygaRpRG29gDI3Bo0E2DFkef1mV0usw+Dqhd3fAdDcOY2g0TkW8U6/XaCZ6521cK2eyubmKdegc0Ix2sAMe4+btcE6fv0FgbstEw8b1SnDtxgO27T5tjQmPiGHl+qM0rlsi1TqiY+L4bOgcvh3cGg/3pGQelex9EBUdaxfvgyfZf/QoJ86coW2LJ89iv37rJsPHj2fi8BHo9UmjLVHR0TY/a/be4WRKB9XgfuQtTl3Zby2Ljovk0PmtlA6qkSyuJglmE3vOJM2YTjCb2HN6LcVyV8LBkHKSnVkzM3P9KJpW6Ih/svPiyRN+rDEmQ/aXcnJFl7Mgyssf89EtaNfPo6/1Too4LewO5hPb0Vd8I/WJaclj42Iw/T0cwzsDUS7uycqjk/0cBaRdf2UY/CW14vtlnNh0nOrtauLo7MCV4yHWZZ6ZvfDK7MW2P7eyc84OSjcug18OP5sYNx83m2Hvh7bM3IR/Ln+K1ilmLQsqG8TehbvJlDsTEXfCuXjgAlXsYLJR9PbbxF+IxLmUD8pBYbqZ9EGhczOgc3fAHGkk9mQYhiwuKL3CdCeW2EP3cczjnuIOZQ/FHLyHztsRp6Ck5Q7ZXYk9EYbe2xFztAlTaDQuxb3Tuov/qnXnSZQqkpuihXPg6e7M2Ys3+fHX9RgMOj79sB4ATeqVoELpIN7v+SsjB7bEx8uVMZNXoWkavT9K/ZK8URNWUCAwgJZNki77qVW1MFN+20jBoACu33zAph3/8OmH9VNd3178uXABBoOBt5s2fWLcZ8OG07JJYyqWTrpmtk6Vqoya+CNeHh7sO3KE85cvU6ty2gxx/hd7E5PrpVunADhycTuerj54uPhQOGdZSuerQf6sxflp5Ze8XaMnbs6eLN0zHQ2NJuU6WOvJnbkgFQvW589N35GQYCKTV3Y2HJnH7bBQPn5tRKrb3nR0IbHGaJs7mBXJVYHZ2yZQMIdlH+46tYp3avZOo96nZL58AvPRLehyF7G8PnuAhFW/oH+tc6rXQifsWgIJpscOgdvELp2ICsiLvnzSnAVdkSokbPgDlTUIHtxEO7kLXcO0m2QnyfoldXa3ZRh66++b2fr7ZptlNd+vTe2OdawxB1cc4OCKAzYxJRuVovkXtufwbl++zd6Fe/jo109symt0qEXUgygWj1qIwclA3S71yVfe9naFGcEYYhmGjj10n9hD922WOZfxtQxh6xSmW7HEnQpDi9fQeTrgXNoX52LeqdaZcD+e2BNheLWwHfpzKeOLOcZE1JaboFe4VPDHIWfK69jTW/lSgSxcvp/x09YSH59Ajmw+VK9YkM8+aUTuxJva6HQ6Fs7ozoDh8+j55V/ExpmoUDqQ1bP7kjObb4o6T5+7zs+/b2Ln8i9tygf0aMLtuxF89NlMnJ0dGfZ5c+pWL5Iu/fwvjEYjc5YupUGNGmTJ9PjLGTft3MGGHds5sXGTTfm4IUPo+sUXvNO9G/4+PkwfOzbVm61klAnLbK/xnblhFACFcpThy7emoVM6+rw5gb+3jGPmhlEYTfHky1acga2m4udpe8qsc4OvmbtjIvN3TCY6LoJcmQrwWYtJ5M2Scj5CRPR95m2fRM+m32HQJx2R1i7eglsPrvLX5rGgadQu0ZKaRZu9+I4/jsEB89EtJKz8BUzxqGxBGNoPQ18t5VwFAPOORagcBdDlKfrEas3XzpOw4U8chiyxKde/0RUt/C6m6f3BwRl9q8/QFa32wrrzKPUyDev8P8leKLv20a9dM7oZGeqHP2ZmdBMyXOjA9Lupgr0yaPZ9dJ4e5vx4L6ObkOE6Fkt9pOtVE9s+KNWJNHLOWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJ+l8opYYopWpndDuEEEK8uiRZ/7uvAEnWQgghMowkayGEEMLOPVWyThwK1pRShZRSa5RSUUqpEKXU+4nL2yql/lFKRSqlNimlgpKt66CUGq6UuqSUik98Hq6UckgWkyex/i5KqaFKqetKqQdKqWVKqRyPtOVf60uMc1NKfaOUOq+UilNK3VBKLVBKZVFKlUncXtNU+jpTKXVVKaVXSmmJxV8kxmtKqSHJYmsopTYopSIS98kapVTRp9mnQgghxNN61iPrecAKoBlwAJiulBoJfAz0B94HCgJ/J1vnt8RlvwNNgBnA54nljxoA5AM+AD4FKgF/PRLzr/UppRyBdUAPYGZiXDfgHuCjadoBYB/QJXnFSilvoDUwTdO0hMTtk1hHpcTHtMTYxsAGIBJ4D3gH8AC2KaVyptI3IYQQ4j8xPGP8GE3TfgdQSu0HXseS8PJqmhaeWJ4VGK+Uyo0leb0NfK1p2pDEOtYqpRKAYUqpbzRNO5qs/suapr3z8IVSKhMwRimVTdO0a4lHrU9T33tYEmtTTdOWJqt/frKfJwO/KqVya5p2ObGsHeBIYkLWNG23UgogVNO03Y/si/HAFk3TrEfnSqlNwAWgD9Dz0Z2nlOoMdAbwz+pPAd/8j4a8Uoa3GpDRTchw0acHZXQTMpyzOXdGNyHDeWTK8e9B4pX2rEfWqx7+oGnafeAWsPthok70T+JzTqB64s9/PlLPw9c1Hilf8cjrY4nPuRKfn7a++sCNRxL1o2YDD4APk5V1AVZomnb1CeuhlMoPBAF/KaUMDx9ANLArWTttaJo2VdO0spqmlfX09XzSJoQQQgirZ03W9x95Hf+YMgBnwDfx5+uPxNxIfPZ9pPzeI6/jktWVPP7f6vMDQnkCTdNisQyhd0xMttWAYGDKk9ZLlDnx+VfA+MijSeL2hRBCiBfiWYfBn9XD5BsAnE9WHpD4fDeN6rsDPM1Er5+A3kBT4E3gErDmKdZ7uJ0BwPpUlsenUiaEEEL8J2l96daWxOc2j5S/m/i8NY3qWwsEKKVef1JlmqadT4z9DGgJ/KJpmvmRsHjA5ZGy01gSexFN0/an8jiKEEII8YKk6ZG1pmknlFKzgCGJ53R3Ypn4NQiY9axJ7Rnq+xPLuehZSqlRwB4sk90aAD9omvZPsmonA0uwDGFPT2WzJ4HGSqnVWIb8ryVOdusKLEmceT4Xy9F8FqAyEKJp2vfP0jchhBDicdLjpijtgdFYLsdaCXRMfN0+rerTNM2IZZLZT1hmX6/EkpT9SXlefAWWiWFLNE27QUrdgChgGZbLvTonbmMllolkblhmj68BvsUyJL/rP/ZNCCGESEFpmvbvUf/HlFL1sAyF19U0bUN6bTeoaJA2ct436bU5u3TvWmRGNyHDvWWWS7eczTMyugkZbv1huXSrdYBjRjfBLsS2D1Kplaf1BDO7lXiXtUBgHHAwPRO1EEII8Sxe5XuDD8Jy3XgclpuhCCGEEHbplT2y1jStA9Ahg5shhBBC/KtX+chaCCGEeClIshZCCCHsnCRrIYQQws5JshZCCCHsnCRrIYQQws5JshZCCCHsnCRrIYQQws5JshZCCCHsnCRrIYQQws5JshZCCCHsnCRrIYQQws5JshZCCCHsnCRrIYQQws5JshZCCCHs3Cv7LzL/H9y9cZel05Zw4cR5Lp++THxsPBPWTSRz9szWmFuht+hRr1uq6/+6ewZunm4AxMXEMWPEdPat34ublztter5N5UaVbeKX/rqE7cu3M2reN+gN+rTr2DO4f/sea2evIuTMJa5euIIxLp5hf36LX4C/NebujTsMeq9fqut/t3giru6uAMTHxjFn4l8c2XEIV3dX3vigBWVrlbeJXztnFfs27KL/T1+h12f8Pti4P5bxcyI4E2LiQaQZPy8d5YOd6NfWg0K5HaxxDyLMfPVLGCt3xhIbp1E22JERH3kRnDcpJjrWTP9JYazYGYO3u44v3/fkzZquNtubMDeC+Ruj2TgpMwa9Srd+Jhd6+zbfz5vLwTNnOHbxAjFxcZyc+Tu5AwJs4u5HRPDFtF9YvmsnMXFxlC8czOguH1E0b16buNj4eIb+NpPZGzcSFhVJ8cAghnXsSNVixa0xCQkJfDVzBn+sXYOTgwM9WrSk25vNbepZsHUL/ab8xKFffsXTzS3tdkAqdhxbw7bDKzkXepywyHv4e2elUtG6tKzVBVcnS1vGzx3IxoOLU10/e6a8TO6zAoC4+BimLh3B7hPrcXfx4r0GPalWopFN/MItv7Ll0HK+7z4Pvd4+0kjCvlWYdy/HfOkYhN9F+WVDV6Y++iYfo1zcrXHmyycxzRuDdvYAKIWuUAUMbw9EZcljjdHiYjD9+TXmg+vA1RNDy77oKzS22Z5p5VTMu5biMGQxKh32gX3sZfGf3Ai5we41u8gbHEihMoU5uuPIY2ObftiMsrXL2pS5uLlYf14ybTHHdh7l45FdCTlzmUmf/0jewnnJmicrYPlisGjKQvpPHWg3iRrgdugtDm7ZR64CuclXND+nDpx4bGyDtxtTvFJJmzJnF2frz2tmr+SfAydp99kHhF64ysxvfiFX/txkzpEFsHwxWP3XMrqO6m0XiRrgfoSZkvkd6fi6O37eOq7eSmD8nAgafHqb7T9nJmcWA5qm8e5Xd7l8w8Q3Xb3wdtfxw+wImn52h80/ZSZ7Jktfxs+JZPPBOCb29eHEBSMfjb5P8fyOBGW3fEyE3k5g7N8RzBvhl2GJGuD8tWss2LqFUvnzU7lIUTYcPJAiRtM0Wg/5iks3b/Ddx13x9nBn7JzZvPb5Z+ya9BPZM2Wyxn48bixr9u5lRKcPyROQlanLltL0i4FsHDeeEkFBAPy5fh3TV65gfPcehEVF0XvSRIoHBlG9RAkAImNi6D/1Z0Z92CXdEzXA4q0zyOSdlfca9MTfK4AL104xe/0kjp3fy+iP/0an09G6zkc0rPiWzXo374cydlZfyheuZS2bv3kah8/upEerkVy+foZxcz4nKHthsvnnAeBO2A3mbpzCVx9MtZtEDZCwahrKLxuGFn1QvgGYL58kYfEEzKd24/DlPJROh/nGJYyj3kZlz4+hy1hISCBhyY/Ej3oHx6HLUJ5+lrpW/Iz5xA4MnUajXTmNaWofVO4i6ALyAKDdu07C0kk49JmRLokaJFm/1AqXLczP234BYOP8DU9M1llyZiF/iQKPXX5422EavNuQsrXLUrZ2WbYv386x3cesyfq3UTOo2LASBUsVfLGdeE75ihdg9PwfANixcusTk7V/1kzkDQ567PITe49Ro1kdilcuRfHKpdi7cTf/HDxpTdbzJs2idI1yBBXJ90L78Dxa1HKlRS3bstIFHajY8RZLt8XQtaUHq3bFsvt4PIu/9adaSScAygU7UqrdDX6cG8E3Xb0BWL8vlk5N3WhUyYVGlVyYvzGGLQdjCcpuOSoZ+NMDmlV3oXwRp/TsYgpVixXj0uy5AMxctSrVZL1i9y52njjOytHfUqNESQAqFA6mSPt2jJs3l+8+6QrA0QvnmbtpEz/17kO7+g0AqFa8OGU7f8jw339j3tdDAVi3bx+ta9WiVU3Lzl62cydr9++zJuvhf/xOgRw5aV3rkV9GOvmy/WS83H2tr4sGlsPdxYvx8wZw/MJeiuerSFa/XGT1y2Wz3uGzOwGoXaaptezgmW00rvwuFYJrUyG4NlsOL+fIud3WZD1t6SiqFGtI4dyl0r5jz8Ch51RrsgXQFaqAcvfG9MtnaP/sQQVXImHlz6B0OPSejnLztMQFlSC+Xx0SVk3D8NbnAJiPbUFfty36UnWhVF3Mu5aindwBicna9NdwdOVfQ5e/dLr1T85Zv8R0uhf36zMZTTg6OVpfOzk7YoyLByyJ/NS+U7zT590Xtr0X5UXugwSTCQfHpGFhRydHjPFGwJLIzx49TbNOrV7Y9tKKr6dlnzw8+l29K5YAP501UQN4uuloUMGZVbtirWVGk4azY9IRs6uTIvEtwIZ9sew8Gs9XnTzToQdP9jS/8xW7dpHVz8+aqAG83NxoVLECy3fvspat3LULB4OBltVrWMsMej0ta9Zk/cEDxMVbdkC8yYSzY9L+c3N2JjZx2YlLF5m+cgXjuqZ+uik9JE/UD+XPWRSAu+G3HrvepoNLCMpehFxZ8lvLTCYjjoakvjo5OhNvjAPg4OltHL+4j/aN+ryopr8wyRO1tSxvMQC0+zcsz+cPo/KVsiZqAOWbFZWjAOaDa5NWNBlRDkmjbjg6oyXuA/PRLZhP78XQOvVTa2lFkvUrYta4v3mnWBveL9+eMV1HE3ImxGZ5vuL52LpkC/dv3+fI9sNc+ucS+UsUwBhvZOaI6bzd+x08vD0yqPUvxpJf59Otfid6v9GVnwZNIPTCVZvleQoFsmfdDsLuPuDkvuNcPR9C3uBAjPFG5k76i2adWuLu5f6Y2jNWQoJGvFHjfKiJ3uMfkMVXR/OaltMc/1w2UjiPQ4p1CuVx4OqtBCJjzACUKejI7HXR3LibwMb9sRy7YKRsYQfi4jX6T3rA4I6e+Hrax/D/vzkVcpng3HlSlBfOnYcrt24RGRNjjcuTJQBXZ+dH4nITbzRy/to1AMoVKsSS7ds5fy2UQ2fPsOHgAcoXKgxAr4k/0rXZmxTImTNtO/WMjl/YB0COzIGpLj916SDX74ZQu3RTm/ICuYqz8eAS7oXf5uCZ7Vy89g8Fc5XAaIpn6tIRtGvYG08377Ru/guh/bMXAJUtcTRMp0cZUv4tYHBEuxWCFm9JyCqwBAk7FqI9uIX52Fa0kFPogkqiGeMw/TUUQ6u+KHef9OqGpYnpujWR7hwcHajbui7Fq5TAw8eTaxdDWTx1EYPf+ZIRc0aSPSgHAC0/acU3XUbycY0uALz+wRsUKFmA+ZPm4eHrSa0WtTOyG8/F4GCgapOaFC5TBA9vD26EXGfNrBV89+kI+k0cRNbc2QBo3K4pEweMY8BbvQGo27ohgcH5WPH7Ety9PKjcqFpGduOJ6vW4zZGzllGAwGx6Fn3rTyYfS2J9EGEmV5aUf+o+Hpbv6mERZtxddHzW1pO3vrhDkbctRyHdW7lTLtiJb/8Ix89bz3sNXVPUYa/uR0SQO0uWFOW+7pYvnA8iI3B3ceFeRATeHim/gPkkxt2PjADgozeasuHAAYp/8D4ALWvUpGWNGvy5bi2hd+7Q7+130qor/8ndsJvMWjeREvkqkT9H0VRjNh1cgkFvoHpJ24lTbep8wtczuvD+SMtow5vVP6BQ7pLMXj8JTzdf6pVrkebtfxG0+zcwLfoBVaQKusQjbBWQF/O5g2gmozVpazGRaKFnQdMgOgwcM2No1h3j2I7E97RMstU3+hBdvtKYFk8AD1901Vune38kWf+f88nkQ6chna2vC5ctTImqJfnsjT4s+nkh3b7tAYBvFl9GLxrDzSs3cfN0w8Pbg5tXbrJ8xjK+/nMo8bHx/DH6N/Zt2IejsyON2zeh4XuNHrdZu+Ll5807PdtZX+crVoDgcsUY3ulLVv+9nPcHWPaPt78PX0z9mjvXb+Pi5oq7lzt3rt1i/bzV9PlhAMa4eOZPmcOR7QdxdHakdov61HqzbkZ1y8ZPn/sQEaVx+YaJSfMiadH/Diu/z0SuAAOaBiqV+WCaZvs6m7+erVMyc+l6Al7uCl9PPZeum5g4P5KV32ciJk5j0M8PWLEjFhcnxcct3OnczD5HGjRNA1J2WkNLEaeeIs7D1ZXVY74j5OZNHAwGsvr58SAyki9/ncaUXn1wcnBgyMwZ/LV+HZqm0bZefQa1a/9CT9M8rZi4KEb83g2dTk+PViNSjTGa4tl+dA1lC9XE0832CNHPKwvjP13EjXtXcHP2xNPNmxt3r7Bo6wy++ehP4o2x/LpiNLtPbMDJwZmmVdvTpMp76dG1p6bFRmEc/xHoDTh0/MZarq/fAfO+VZh+G4SheU9ISMA0eyTERVsClOX3pXwCcBi2HG6HgKsnyt0H7VYICat/xWHgbIiPxThrpGXo3NEFQ4MP0Ndrl0pLXhxJ1q8g/6z+FCxdiPPHz9uUK6UIyJV0+cvMEdOp1bI2uQvlYfYPs7hw4gJjlozl3s17DGk7mOxBOShWqVh6N/+F8M3sS1DR/Fw+fdGmXClFpmxJl77Nmfg3VRpVJ0dQLpZMX0DImYt8OW0oD+484Pteo8iaOxuFSgend/NTKJjLcpRQtrAjdcs5U7LtDcbPiWDspz54e+i4H2FOsc6DSEuZl0dSQlFKkTdb0sdC/0kPaNvQlaJBDgyfEcahM0a2T83M9bsJNO59h4K5DdQo5Zyi7ozm4+HB/YiIFOX3IyMB8E48cvb18OTqrdsp4h4kxj08wn4oV7Kj9a9nzqBicDANK1RgxqqVzN64gXXfjQWgwWd9yRMQQPuG6fuFNt4Yx4jfunHz3hVGdPkdf6+AVOP2nNxAVGx4iiHwh5RSNpPRpi4dQb1yLcmbrRB/rPmBc1dP8GPPJdwNv8mAKW3JmSWIEvkqpUmfnpUWH4dxfBe021dw6P83yjerdZkufxkMbYdgmv8d8dvmA6CCK6Or8ibmXUvAzcsaq5SCzLmtr01/DkVfvRW6XIUxzR+LdukYjsNXot2/mTjDPB+6YNvLXV8kOWf9itI0zfJmfIy96/dy6Z9LtO5uudTjyPbDVG9aA09fT/IUzkPxKsU5sv1wOrU2bfzbPji8/QBXz4fQpEMzAE7uO06FelXw8PYkZ75cFC5TlJP7jqdTa5+el7uOvNkMXLiWAFjOTf9z2Zgi7vRlEzky63F3Sf1jYPn2GI6dN9K/vWUyzsZ9cbSp54q/t55iQY7UKuPExn1xadeR51A4dx5OhVxOUf7P5cvkzJwZdxeXxLjcXLp5g+jY2BRxjg4OBGXLlmr9h86eYfbGDYz56BMA1u3fT7Oq1cgTkJU8AVl5s1p11u3f/4J79WSmBCPf/PkpZ68eZfD7P5Mn4PFXf2w8sARPNx/KFKr+r/XuOr6ei9f/4Z363QE4dGY7tUs3xcvdl8BshSmVvwoHz2x/Yf14HprJiGliV7QLR3HoNQ1dzpRXr+jrvIfjhD04jFiJ49itOPb7He3BLVRgydTPZwMJB9ZiDjmF/s2eAJiPbUVfpTnK0w9d7mB0RapiPro1LbsmyfpVdOfaHc4cOk2+4qlfghQXE8fvo2bS7vP2Ntdix8UkfTDHRsclDjW+nO7dvMuFE+fIUyj1yTfxsXHMnzyblh+3wdnVxab8obiY2BTDpfbg1v0Ezl0xkTer5Zx1w4rOXL9jZsfRpLaHR5lZszuGhpVSPyqOjjXzxZQwRnzkhYerLll5Un+jYuyx9xaNK1bk2p07bDt61FoWHhXFqj27aVwx6QjwtYqVMJpMLNyW9EFrSkhgwdYt1CldGidHRx5lNpvpOfFHPnv7HXJmThqFSZ7wo2Ji0vW9YTab+X52P46e383AdhMpmKvEY2MfRNzh8NmdVC/RGIM+9eT0UFx8DL8uH0XHJp9bb64CEGuMsf4cEx+d8pxKBtDMZkw/98Z8cicOn05Bl+/xl5YpByd02Qug/LJhvnIa7eRO9LVTn3egxcVg+ns4hncG2txcRXs4dA5ocVGQxr9vGQZ/ye1esxuACycuAJbLrDx9PPH09SS4XDB/jP4ds2amQIkCePp6cu3iNZb8shilUzTr3DzVOhf+tICsebNRKdkdzIpWKsaav1eTLW827t++z/Hdx2jcoUnad/ApHNxqOYIJOXMJsFxm5e7tgbuXBwVKFGTBlNloZo28wUG4e3tw88oN1s5aiVKKhu80TrXOlX8uI3POAMrUTLqDWaHSwWxZspEsubISducBpw+dok6rBmnevydpO+QuJfI5EBzogIerjvNXTfy0MBK9Hj5paflgaVTJmXLBjnz0zX2+/tATbw/LTVE0oEer1M85f/dXBPlyGGhWI2lSWfXSTkxbGkn+nAZu3E1g66E4urbImHPWixKT66FzZwFYu38f/l5e+Ht5U614cRpXrESFwsF0/PYbRnT6EG93D8bOmY2mQa9WSZfflQgKomWNGnz+8xRMpgRyBwQwbcUyLt24wa/9+qe67RmrVhIVE0v3ZHcwq1WqFIOm/0rlopbJXHM3b2LUh51TXT8t/LxkGDuOraFVrS44O7pyOiTpngt+XllshsO3HF5OgtlE7TLN/rXeORt/InumvFQtnjScXyJfJVbu/JscmfJyL/w2R8/vplm1Di+yO/+J6Y8hmPetQv/6J+DogvncIesy5RuA8s1quZnJxr9R+UqjHBwxXzpOwvKfLHc6q/h6qvUmLJ2ICsiLvnzSZ4WuSBUSNvyByhoED26indyFrmHHNO2fepmPjl5mQUWDtJHzvvn3wH/RJjj1WYmFywXz1W9D2LRgI+vmrONmyA1iomLw8PagSMWitPykFdnyphziC70QypdvDWTkvG+sN0QBiI2KZcaI6ezfaJlg9lq7xrz+wRvP1fZ71yKfa/2HPqn7Qarl+YsXpNf3n7Nz1Ta2LtvE7Wu3iIuOxd3LnQIlC9O43RtkyZk1xXo3Qq7zbbdh9J/8lfWGKACxMbHMnfgXR3cexsHRgdot6lOvdcPnavtb5kHPtf74OREs2RLDxesmjCbIlklP1eKO9GzjQa6ApO/i98PNDP4ljJU7Y4iLt5zbHt7Fi6JBKY+szoQYqdfjNhsnZbbevQwgMsZyO9JVu2JwdlR83Nydbq2e/3I+Z/OMZ17HrWH9VMurFSvO6jHfAXAvIpyBv/zC8p07iTXGU75wYb7p3IXigbY3xomJi2PIzBnM3byJsMhIigUGMuyDTtYbniR3JyyM0h925O9Bg1PcjvTL6b8ya8N6yx3j6tZj2Acdn/pOd+sP53jarqfqw2/qcuvBtVSXtanzCW8nu+Xwpz+8iaaZmdBryRPrvHrrAn0nvcX33edZb4gClglsU5eOYO/JjTg6OPNG1Xa8WT31v8Fn0Tog5SjGs4jrUwPuhqa6TN+0O4Y3P0ULu4Px595oIacgNhKVORe6aq3Q1++Q6p3IzNfOYxzaHIchS6x3LwPLBDbTn0MxH1oPDs7oG7yPoVGn52r/Q7Htg1I9NyfJOoO8qGT9MntRyfpl9rzJ+v/Bf0nW/2+eN1n/P3jeZP3/4nHJWs5ZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZA0qpDkopLdkjSil1SSm1SCnVWimVYj8ppfyVUqOUUscT46OVUseUUt8opbJmRD+EEEL8fzJkdAPsTCvgKuAE5AIaA7OAzkqp1zVNiwFQSgUDawEFTAD2J65fCugCFATeTN+mCyGE+H8lydrWYU3TziV7/YdSah4wD/gW6K6UMgALgFigsqZpt5LFb1BK/QA0Sq8GCyGE+P8nw+D/QtO0BcAS4EOllCvQHCgE9H8kUT+MN2matiydmymEEOL/mCTrp7MSy9B4WaAukJBYJoQQQqQ5SdZPJyTxOSuQE7itaVp0BrZHCCHEK0TOWT8dlfisPVclSnUGOgNkz5mditkqPG+7XmoJfuaMbkKG89D9ltFNyHB3OkzM6CZkuNKjZ2Z0EzLcIi+HjG6CXZMj66eTM/H5OnAFyJR4/vqZaJo2VdO0spqmlfX1832hDRRCCPH/S5L102mMZfb3AWA9oEdmfAshhEgnkqz/hVKqOfAGMCXxPPVC4DQwWimVKZV4g1KqcTo3UwghxP8xOWdtq6RSyh9wxHJTlCZYbpSyDhgAlkuzEhP4OuCwUmo8STdFKYHlnPQ/wIp0brsQQoj/U5Ksbc1LfI4FbgEHgTbAfE3TrJPLNE07qZQqAfQFOgBDsExCO4vlyHt8+jVZCCHE/ztJ1oCmaTOBmc+4zh2gf+JDCCGESDNyzloIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5Ks/4+0a9GOPN65+W74GGvZji3b6dn5U6qXrEbBgAJUL1mNL3p/wZ3bd2zWjYmOoV+3zyiRpzjVS1Zj2cJlKeqfMn4KDas0xGQypXlf/qsObdoTlCUvY0d9Zy27GnKVoCx5U32Eh4Vb42KiY+jf83NKFyxJrfI1WL54eYr6f544hca1GmXYPrh67TY9+/9ItUbd8crVGMdMdbkUciNF3P0HEXTpOZasBZvjnbsJDVt8xrGTF1LExcbG03/Iz+Qq0hrPnK9RrVF3tu08ahOTkJDAgKG/kL1wSwJLvM2EKQtS1DNv8WZyF32L8IioF9fZ5/DO3p1kW7GY0adP2pQ/MMbT5+ghiqxdSdDqZbTevYNT4WE2MdEJJnofOUjw2hVU2rSWJdeupqh/0vmz1N26EZPZnKb9eFqtOjQmZ1HvVB/vdWmR6jr9v+5JzqLe9Pi8s015TEw0fQd1o2jlPFRpWJKlqxamWPen6eOp37yK3X0WHNm5hb7N69Isnx+ti+ZgzKcduX/7pk3M970681pOt1QfnWuWssbFxkTzQ9+PaV00Bx9UKcqWpfNTbG/eT9/TtX4FEtJhPxjSfAsiXSyZv4RTx0+mKP9r+l9ERUXRrW93cuXJxaULFxk3ahxbN2xh9Y41uLm7AfDTuMls37yd7yaP5Z8Tp+jVuSdFSxQlb1BeAK6HXmfidz/y2/zfMBjs822zdOFS/jlx6rHLP+7xCXUa1LUpe9h/gCk//sT2rdv5dvwY/jn5D3269qJI8SLkDUzcB9euM3ncJKbPnplh++D8xVDmL91C6eIFqFqhKOs2H0gRo2kazd8bxKWQG4wb1Q0fL3e+HT+b+m/2Zd+mn8mRLZM1tnPP71i1bg/fDOlM3txZ+Wn6Uhq/1Z+tKydQslg+AP6YvZZpvy1n4nc9CQuL5NP+P1KiWBA1qpQEIDIyhn6DpzB6aBc8PdxStCe9LQq9yslHEjBY9kuHfXu4EhPF8CLF8XZw4MfzZ2i5ewfrqtUim4sLABPPnWXrnduMK1GaU+HhdD98gGJe3gS6uQNwLSaG8edO81e5Shh09nG8M2LQWCIjI2zKDhzZy9Bvv6BerUYp4vcf2sOi5fPwcPdMsWzSr+PYtmsz34+YzKkzJ/h0QGeKBZcgb+4gAK7fCGXCz9/xx5T5dvVZcHzPDr589w1K16jLF1P/Ivz+PX4fM5SBbRozYeUOHJycAHj70/681raTzbo3r1xmdLcOVKj3mrVs3qSxHNq2kd7f/8zFU8f57tOO5CtWkux5LX8Xd66HMnvCtwz7YzH6dNgP9rOnxX8W9iCMYQOHMWjkID7t1MNm2bCxw/Hz97O+rli1InmDAnmrcWtWLFpO67ZvAbB5/Wbafdieeq/Vo95r9Vg8bzHbN2+3Juuv+w+hcbPGlKlQNv069gzCw8IZMXgYXwwdRK+PP001JmfunJQqWyrVZQBbNm6h7QdtqduwHnUb1mPpwiXs3LrDmqyHfTmU1954jTLlyqRJH55GtUrFuXrS8g1/+h8rU03Wy1bvZMee46xd9B01q5YEoGK5YAqUacvYH+cwblQ3AI4cP8/sBRv5ZXxf2r/TEIDqlUtQompHvh79G4v+HAbA6g37aNOiNm+9WQuApSt3sHrDPmuyHvrtbxTMn5M2zWunZdefSpgxniGnjjGkcDG6Ht5vs2zNzRvsvX+XeRWqUMXf8oWljI8vFTetZfKFswwvUhyATbdv8n6eQBpkyUqDLFlZGHqFbXduW5P14JNHeT1rdsr5+mEvCgQVSlH29/zfcHRw5I1GtkfWRqORz7/uSffOffhr3owU623atp4O73xI/VqvUb/WayxePo9tuzZbk/VX3/SnSYNmlC1VIW068x/9/cNIMmfPxeBpc6zJM2dQQXq+Xp01s3+jSXvLCELWPIFkzRNos+7BrRsBqNvyXWvZ/k1radKhCxXrN6Zi/cZsXjyHw9s2WZP1lK8+o1qT5gSXrZge3ZNh8P8H33w1igKF8tO0ZdMUy5In6odKlC4BwI3rScOn8fFGnJ2drK9dXFyIi40DLIl8z4499P96wItu+gvzzdBR5C9YgDeav/Gf6zDGx+Ps7Gx97ZxsH2zZuIW9u/bQb1D/527r89A9xZHc8tW7yBbgZ03UAF6e7jSuX5Flq3cmxa3ZhYODgVbNalrLDAY9rd+sxbpN+4mLiwcg3mjEJdl7w9XVmbhYy7Ljpy7yy2/LGT/a9ktiRhl+6gQF3T14M3uOFMvW3rxOgJOzNVEDeDo4UC9zAGtuXreWGc1mnJPtZxe9nriEBAA23brJrrt3+aJQkTTsxfOLiY1hxdol1K3ZEB8vH5tlU2ZMwJyQQOcO3VJd12iMx9kp6e/AxcWFuPhYADZtX8/u/TsY2PvrtGv8f/TPwX2Uqlbb5ii3QMkyePr4sXPN0ieuu3HB3+QrVorcBYOtZSZjPE7OLtbXTi4uxMdZ9sP+TWs5vns7Hwwc9oJ78XiSrF9y+3btY8HshQwbO/yp19m9YzcA+Qrms5aVKluSBbMWcOvGTbZs2MLJYycpVa4UcXFxDOn3FZ8P+RwfX5/HVZmh9u/Zx6J5Cxk6eugT474bOYYC2fJRIl9xOrftxOmT/9gsL1G6JAvnLuTWzVts3bSFU8dPUrKMZR98PXAIn33Rz273QXInT1+iSKE8KcqDC+Uh5OotIiNjLHH/XCJPrgBcXZ1t4wrmJj7eyLmL1wAoX7owi5Zv49yFUA4eOcP6zQcoX7YwAD36TaB7l+YUzJczbTv1FPbcu8v80CuMLFoi1eVnIiMo6JFy2LeAhyehMTFEJZ53LOXtw7zQK9yMjWXz7ZucCA+jtI8vcQkJfHniKAMLBePr6JimfXleq9cvIzIqgpZN37YpvxRykQlTv2PEoO9wdEi9D6WKl2XeklncvH2DzTs2cOKfY5QuXo64+DgGj+zHgJ5D8PH2TY9uPBOdXo/B0SFFuYOjI5dPpzxF+NCJfbu4duk8dVu9a1NesFQ51s/7i3s3r3Ng8zounDhKodLlMcbFMWVwXzoMGIqnT/qNrsgw+EvMaDQysNcAOnf/kKD8QU+1TmREJEMHDCVfwXzUb9zAWv7p5z3p0LI95QuVB6BLjy6UKV+GH775AV9/X95q2yZN+vC8jEYjX372BZ0+/pDAfKnvA0cnR95u9w7ValbD18+X82fP89P4ybRq0pKFqxeTr4DlS0uPvp/ywdsdqFTcMrz3YdfOlC5XmgnfjcfXz5fW776Vbv16HvfuR5A7Z0CKcl9vDwDuh0Xg7u7C/QcR+Hi7p4zzSYy7bzkH2vXDZqzfvJ/gCu0BaP1mLVo3q8nvs9cSev02A3q9m6KO9GY0m/n82GE+CsxHPnePVGMeGOPJ4eKaotzbwcG63M1goHeBQry3dxelNqwG4OPAfJT18WXsmX/wdXTinZy5064jL8j8pbPx981Erar1bMoHDu1FozqvU7l89ceu2/Pjz2n3UUvK1rIMrX/0fg/KlCzPuMnf4OfjT5sWbdO07f9VjsD8/HNwn03Zzash3Lt1A71DyiT+0MYFf2NwcKBG01Y25e/0HMjgds14r6zl86HFRz0pXKYCf40biZefPw3atH/xnXgCSdYvsSk//ERsTCzd+nR/qniTyUSPTt25ef0G81cvsJkcEpAtgFU7VhNyKQRPL098fH0IuRTCLxOnMm/VfGJjYhn2xTDWLl+Ds4sznbp2okOX99Oqa0/t5x+nEBsTS9eeqQ/pAWTOkpnhY0ZYX5erWJ7qtWvQqHoDJv8wke8n/wBAQNYAVmxaRcjlEDw9k/bBtMm/MGfZXGJjYhnx1XDWrlyDi4sLH3zUkfadOqRxD/8DDZRSqRRrtq81LfU42zA83F1Zv+R7Ll+5iYODnmwB/jwIi2Tg0KlM/aEvTk4ODBoxnT/nrEXTNNq93YAh/Ts81ZD9izLp/FliExLoka/gY2M0DVLpbgpZnV1YX60Wl6Oj8XRwwNfRkcvRUUy5cI7FlasRY07g65PHWXXjOi56PZ3zBtEx79N9WU4PN25dZ/vuzXzw3kc2f+MLl83hyImDbFq27wlrQ9Ys2Vi7cAeXr1zCy9MLH29fLl+5xM8zJ7Lw91XExsYw9NsvWL1hOS4uLnzYrivvv9slrbv1r5p2/IQxPTry27df0/SDj4l4cJ8Jn3dH6XToVOrvRWNcHNuWL6R8nUZ4+frbLPPPmo1Ja/dw4/JF3Ly88PTx4/rliyz8eTxjFq4jLjaGX4b2Z9fqpTi5uPLmh9154/2P06x/kqxfUqFXQpk4diKjJ4wmLi6OuLg467L4uHjCHoTh7uGOXq8HwGw20+fj3mzfvIMZc6dTuGjhFHUqpcidN+mo4at+g3mrbRuCiwUzZti3HDt0lDW71nLj2g1av9aK/IXyU6VG1bTv7GNcuxrK5PGTGDX2G+Lj44mPj7cui4+PJzwsHDd3N+s+SC5b9myUqVCWo4dtL1NSSpE7T9I++PqLIbR+9y0KFwnmu5FjOHbkGKu2rOHmjZu0eaM1+Qrkp0r1KmnXyf/Ax8eD+/fDU5TffxBpWe5lOfL08fYg5OqtVOIirPUklztnFuvPg0dMp2K5IrxWvyK//rGCWfPXs3HZOADqNu1N3lxZef+9lLOQ08LVmGgmnDvNd8VLEW9OIN6cYF0WZzYTZozH3eCAt6MjD+KNKdZ/YLSUeScbFlZKkcctaWb7l8eP8k6u3BTx9OKbf05yJOwBm6rX5npsDG/u2k4BD0+qJTsXnpEWLZ+L2Wym1RtJQ+BR0ZEMHfMFH3/QEydHJ8LCHwBgNmsYTUbCwh/g6uKGQ+IRqFKKPLnyWtcfPLIfbVq0JbhQMUaPH8aRE4dYv3gXN25do0W718gfVIiqFWukaz8fVevNNlw5d4aFP49nzo/fopSi+ustKFerAZfPpD4MvmvtciLDHlCnZeqjQ0opm8loUwb3oUGb9gQGF+e30UM4e+QgP63fx50b1+jXoj658heiZNVaadI/OWf9kgq5FEJcbBw9O/ekRJ7i1gfA1B+nUiJPcf45kXRO9oteA1m+cDk//vrjUyXY1ctWc/LYSXoP7A3AlvVbaPF2C/z8/ShSvAjValVjy/otadO5pxRy+QpxsXH07tqLUgVKWB8A0yb/QqkCJTh96vRj13/ckeVDa1au4dTxk/T8vBcAWzdtpXnr5vj5+xFcNJiqNauxdVPG7oPUBBfMzcnTl1OUnzp9mVw5MuPubpk0E1woD5dCbhAdHWsbd+Yyjo4O5MubLdX6Dx45w9/z1/P9iE8AWLNhH81fr07e3FnJmzsrLd6owZqNTz56e5FCoqOINZvpdvgAhdeutD4Aplw4R+G1KzkVHkYBdw/ORKb8EnM2MpzsLi64Pebym1U3rnEiPIzPCliGhTfdvkmr7Dnxc3KiqJc3NTJlYtMj1/JmpPlLZxNcsCjBhYpZy+7dv8vde3cYPX4oRSvnsT6u3bjK8jWLKFo5Dxu2rkm1vlXrl3Hi9DH6dhsIwJYd62nV9G38fP0pUqg41SvXYvP29enSt3/T7rPBzD4awqS1e/jzwHk+n/Qb1y6dJ7hcpVTjN8z/C09ff8rVbpDq8uR2rlrKhRNHea/vIAAObFlH3Vbv4uWXiaAiJShVvQ4HNq97of1JTo6sX1LBxYKZtWx2ivK3X2/Dm63fpHXbt8gTmAeA4V8MY/bvsxn70/c0aPLvb8qY6BiGDRjKoJGDcfdIOqcZHR1j/TkqKhrt0fHSdBZcNJi/Fs5KUf5u87dp1rIZrd55y2akILlrV0M5uPcA9V6rn+rymOgYhg8ayhdDv8Td3d2m/KHoqKgM3wepadKwMr/NWsPWHUeoXsXy5SU8IooVa3fZXF7VpEElho7+jflLt9KujWU/mEwJzFu8hbo1y+DklHICktlspnu/CfTv9S65ciQdaUclS/iRUTHpul+KeHoxv2LK0Y2Wu3fQInsO3s6Zm7xu7tTPEsCcqyHsunuHSn6WIc8Io5F1N2/QLFvK2eNguUHK4JPHGBJcDHeDQ7LypKP3KFNCilMHGeXI8UOcOXeKwf1G2JRn8s/C3Okpb3TU9bOOFMofTPfOfSiYPzjF8piYaL4ePYCv+o3E3S1ppCU6Jtr6c1S0ff0dOLu6kbdwUcAya/vKudN8OmZyirj7t29ycOsGGrf7EMMTzmmD5QYpP3/djw+/Go1rsjkRsdFJNwGKjYpM0/0gyfol5eXtRaVqqX9bzJ4ru3XZTz/8xLRJ02j9XmvyBOXh4L6D1jg/f79Uk9mEMRMIzB9IkzebWMuq1KzK77/8RlD+IG7duMnOLTv4sNuHL7hXz8bTy5OKVVK/xjFbjuzWZSO/Go7ZrFGqbCl8/fy4eP4CP02YjNIpPvn0k1TXn/j9jwQGBdK4abJ9UL0Kf0z/ncB8Qdy6eZOd23bS8eNOqa6flhYs3QrAwaNnAFizYS/+ft5k8vOiepUSvN6wEhXLBdPhk28YNaRz4k1RZqFp0Kd70iS5ksXy0apZTfp+ORmT0USe3AH8PGMZl0Ku8/tPqV+m9+sfK4mMiuHTj5Ku3a1TozQDh06jSkXLkdzsBRv5dmj6ncP0cnCksl/qQ9A5XFytyxpkyUoZb1+6HT7AoMJFLDdFOXcGDfgkKH+q6/9w9jRBbu68kS27tayaf2ZmXr5APnd3bsbGsv3ubboE5kt1/fS2YOksDAYDzV6znSzl7ORMpfLVUsQ7OTnh75c51WUA46eMITBPfl5v+Ka1rGrFmsyc9QtBefNz8/YNduzZQuf2j58zkl7OHz/M/k3rCEq8GuDEvl0s+PkHWn7cK9VroTctmkOCyWRzbfXjzBr/DTkC81P99aT3fcmqtVg282dyBBXk3s3rHN6xmead0+4SRknW/+c2r9sMwNw/5zL3z7k2y1q83ZKxP421KTt35hx/TPudZZttb7XZ47Me3L19l37dPsPZxZnPh3xO9dqPn1FqT/IXLMBfv/3FgjnziYqMwsfXh0pVK9Ojb49UZ5CfP3ueP2f8weJ1ttdmduvdnbt37tK/Vz+cnZ357Mt+VKuZ/vvg7Y62l6h17zcBgOqVi7N+yffodDoW/zWcz7/6mR79JhAbF0/FssGsXfQdObNntll32oTPGDxyOl+NmsGD8EiKFwli+ZxRlCqRMnnduRvG4JHTmTtjCA4OSR8dndo15sKl6/Qb/BOaBp07NOH9d9PnfPWz0CnF7+UqMvTUcQYeP0JsgpmyPj7Mq1iV7KnMEj8bGcHMyxdZXbWmTXmv/AW5Ex9Hn6OHcNbpGVgwmJqZMqdYP70ZjUaWrFpAzSp1yOT//O05d+EMv82exsq5m23KP/3oM+7cu03fQd1wdnahf88h1KiS8TfEMTg4sm/TGuZPGYcxLo6c+QvSbeR46r/VLtX4DfP/InfBYPIVe/yNkgCunDvN8t+mMmHldpvytz/tz4M7t/mh78c4OTvzfv+hlK5R9zG1PD9lT8MXr5LipYprjybEV01CnH3cVzkj5dSdz+gmZLg7HSZmdBMyXMLomRndhAx3zOvJQ9GvikY5XFOdSCMTzIQQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8k6kVKqg1JKU0o9UEr5PLLMkLhsSOLrmomv6z4SF6iUupT4CEzH5gshhPg/Jsk6JS/g82ddSSlVENgKmIDqmqZdeNENE0II8WqSZJ3SWqC7UirgaVdQShUBtgARWBJ1SFo1TgghxKtHknVKwxOfv3iaYKVUSWAzcAuooWnatbRplhBCiFeVJOuUrgMTgc5Kqdz/ElsO2AhcAWppmnYrrRsnhBDi1WPI6AbYqdFAF+Ar4IMnxI0EwoB6mqbd/bdKlVKdgc4AWXNkJTw+/AU09eV149a/7rL/ezmzaBndhAyXZfYfGd2EDPdz1xMZ3YQM16u2f0Y3wS7Etg9KtVyOrFOhado9YCzQLnHi2OOswDIhbYxSSj1FvVM1TSuraVpZHz+ffwsXQgghAEnWTzIOuAcMfULMD1iOvt8HJqdDm4QQQryCJFk/hqZpkcAooBVQ8glxQ7EMh3+klBqXPq0TQgjxKpFz1k82GehN0gzxVGma9oVSyhnorZSK1TRtQLq0TgghxCtBkvUTaJoWp5QaCkx9itg+SiknoL9SKk7TtCFp3kAhhBCvBBkG/3czgLNPGdsdmAZ8pZR65rugCSGEEKmRI+tEmqbNBGamUm4CCjxSthlIMftb0zQN+DDxIYQQQrwQcmQthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1i+5beu30uGN9lTIU55KgRVpU+8t9mzbY10e/iCMr3p9RfVC1SifpzwftujEmZNnbOqIiY7hq56DqVqgCq+Va8TqxatTbGf6j9NpWbMFJpMpzfv0OLdv3GLSyPF8+u4nvF6uAfWL1eRG6PUUcRFhEXz/1be0rPYGr5dvyOedenPxzIUUcfFxcUwd+xNtajWnSdn6fPruJxzdf8QmJiEhgWnf/0yrGs14p24rFv4xL0U9W1Zvok3tFkRFRr24zj6HJm8NwDFzPQaPmvHYmE/6/IBj5nq0//gbm/Lo6Fg69xxLlgLNKVSuHXMXb06x7nc/zqFMzS6YTAkvuun/2dXQUHr07UuV2rVxz5wZvYcHly5ftol5v0sX9B4eqT6CS5e2xkVHR9Ppk0/wz5WL/MWLM2fBghTbGzNuHKUqVcrQv4dHnb91hAnretBvbiN6z6rNqOXt2Hl2mXX57zuG8snvFVN9fL34LWtcvCmWP3aOoO/s+gxe2IL9F9el2Nba438wYtl7JJjtp/8A5lO7iB/xFnEfFiGuaxmMP/dBC7tjE2P8pR9xHfKl+ojvX98ap8XFYPy1P3FdyxD3WS0S9qxIsT3TyqnED2qClpD2+8GQ5lsQaWbeb3MZNWAUbTq2oUvvLpjNGqeP/0NsTCwAmqbRvW0PQkOu0n/kADy9Pfl1/DQ6Ne/I3I3zCMgWAMD0Cb+ya8suhk0YztmTZxj4yQAKFy9M7sDcANy4doNfxk3lp9lTMBgy7i1z7UooW9ZsJn9wAYqWLs6BnftSxGiaxlc9BnLj6nW6DvgUd093Zk/7m8869uSnedPIFJDZGjt28Bj2btvFh70/JmuOrCydvZiBH33G+D8nEVQoPwDrlq5hxfyl9BjUm6iISCaOHE9QoXyUKFcKgJjoaH4eM4kufT/Bzd0tfXbEE8xeuJGjJ1J+MUlu194TzFqwAU8P1xTLvp0wmw1bDjBtQl+OnbxIh0++oVTxfOQPzAHA1Wu3GTXub5bPHonBoE+TPvwX5y5cYN7ChZQuVYqqlSuzbsOGFDFffv45XTp2tCm7FBLCu++/z+uvvWYtG/3996zftInpP/3EsRMnaNepE6VLlCB/vnyA5YvBiDFjWLlwYYb+PSR39f5ZJqzrQR7/IrxbcQCOBicOXd7En7tGYDLHU71gCxoV/4BqBZrbrHc38jrTtw2iWM6q1rI1x3/nn2t7aVflS0Lvn2Pm9iHk8itIZs9cANyPusXqYzPoWucH9Dr76D+A+fQ+jN+9j65oNfTdJkHkfUwLx2H8ti0OQxajHJwAMDTtilbrbZt1tTuhmKb0RFeqjrUsYcXPmE/swNBpNNqV05im9kHlLoIuII9lnXvXSVg6CYc+M1D6tN8P9rOnxTMJDQnl20Hf0uur3rTt0tZaXqV2FevPm1dv4tCeg0xb+Cvlq5YHoETZEjQq25CZE2fQf+QAALZv3E6bD96mVsNa1GpYixULVrB7y25rsh79xWjqN21AyfIl06+DqShWpgRztywCYNWC5akm612bdnD84DG+/XUcJctbEmpwiSK0a/g2c2fMpuuAHgCcP32OTSvX02fo5zR4sxEAxcuW4MM33+e3STMY+uNIAPZt20Ot1+pSq5Hlj3jnxu3s27bXmqx/nzSTnHlzUeu1Oo82Jd09CIvks0FTGDPsI9p9NCrVGKPRxMd9f6B/r3eY9nvKI4U1G/fx8QdNeb1hZV5vWJlZCzawccsha7Lu/cVkWjatTqXyRdK0L8+qepUqXL9g+ZIybebMVJN1UGAgQYGBNmXrN20CoN2771rLVq9bR9fOnXmjcWPeaNyYv+fMYf3mzdZk3bNfP1q9+SaVK1ZMq+48swMX12PWEvi49nc4O1i+hBXOVoGr98+y5/wqqhdsQSaPHGTyyGGz3qnrewGoGNTYWnYidBc1CrWkeM7qFM9Znb0X1/DP9X3WZD1v3/eUzl2HoMzF06l3T8e05Efwy4ahx0/W5KmyBmEc2hzz1nno67xnKcucG5U5t+26J3YAoKv6prXMfGwL+rpt0ZeqC6XqYt61FO3kDkhM1qa/hqMr/xq6/KVJDzIM/pJa/PcilE5H6/atHxuzec1mMgdktiZqAA9PD2rUr8mm1ZusZcZ4I84uTtbXzi7OxMfFAZZEfmDXfnoN6pUGvXg2Ot2/v113bd6JX2Z/a6IGcPNwp0LNyuzatCMpbtNODAYDNRrWspbpDQZqNqzNgR37iI+PB8BkNOHklHzfuFiXXTx7gRXzltLti57P27UXYsDQXwgulJs2zWs/NmbspLkkJCTQ6+OWqS6Pjzfhkuy94OriTGycpb9rNu5j266jjBz04Ytt+AvwNO+N1PwxaxZlSpWiSOHC1rL4+HhcXFysr11dXYmLtYxWrV63jq3bt/PN0KHP1+AXzGQ2otcZcNQ72ZS7OnqgYX7senvOrySXXyGyeSd9iUkwG3FIVo+j3hljguU9cCJ0F2dvHqJZ6W4vuAfPTzt/GF2RqjZHubrA4uDuQ8LBlEP5yZl3LkLlKYoue4GkQpMR5eCc9NrRGc1o+Vw0H92C+fReDK37vdA+PIkk65fUwb2HyJsvD6sXr+K1co0olbUkjcu/xuxfZ1ljzp0+T75C+VKsG1QwiOtXrxMdGQ1AsTLFWDpnKbdv3mbHxh2cPn6a4mWKEx8XzzcDRvHplz3x9vVOr649l8vnL5InX94U5XmC8nDr+k1ioqOtcQE5suLs4mwTlzsoD0ajkWshoQAUKl6Y7eu3EBpylTMnTnNg5z4KFw8G4MfhP/Dmey3JmTdXGvfq3+3YfZw/565jwugej405f/Eao8b9zY+je+Do6JBqTPkyhfhjzlqu37zL2o37OHL8PBXKFCYuLp5eAyYy4suO+Pl6plU30tWOXbs4d/487d55x6a8fNmy/P7331y/cYM169dz+OhRKpQrR1xcHJ9+9hkjv/4aPz+/DGp16iolHhnP3fc9D6JvEx0fwfYzi/nn+j5qF3471XXO3zrC7YirVAh8zaY8j38R9lxYSVj0HU6G7ubq/bPkzVQUY0I8c/eOpVnpT3B39krzPj0znQ5lSOV9bXBEu3omZXki89kDaDcvo69ie4pABZYgYcdCtAe3MB/bihZyCl1QSTRjHKa/hmJo1Rfl7vOie/FYMgz+krp94xa3b9zm+6+/p/vAHuTMk5O1S9cycsBITAkJvNf5PcLvh5E9Z7YU63r5WP7QwsPCcXV35aO+H/NJm4+pU8xyRNah6/uUKFeSn8b8hI+fD83fbZ6iDnsVERZBlsRz8cl5eHlYlodH4uLqSkRYBO6e7o+PC4sAoOk7zTmwcx/vN7YModVsVJsaDWuxdslq7ty8zTud26aoI70ZjSY++ewHen3SioL5cj42rttn42n2WlVqVi352Jgv+7bl9TYDyV2sDQC9u7amYrlgho35A38/b95/t9GLbn6G+WPWLBwcHGjT0naUYfCAATRu3pwc+S3zFvp++imVKlRg6KhRZPLzo2P79hnR3CfK5hNEz/qTmbr5c7aetkyI0+sMvF3xc8rmrZfqOnvOr0KvM1Aub32b8sYlOjJxfS8GzG8CQN0i7xKYqRgrjkzD3dmHyvneSNvO/EcqIBDz+cM2ZdqdUAi7BU84p5ywYxHoHdBVbGJTbmjWHePYjsT3rAyAvtGH6PKVxrR4Anj4oqv++FHNtCDJ+iWlmTWiIqMYNmE4dZvUBaBCtQpcuxLKr+On8e6H76JpGiiVcl1Ns3mdJWsW5m9ewNVLV/Hw8sDb15url67w2+SZ/Lbsd2JjYvlu8Bg2rNyAs6sL7T5qyzud3k1Rrz3QNA2Vap9TiePf41zdXPluxnhuXruBwWDAL7M/keERTPv+Z/oM64eDowMzJkxj3ZLVaED9pg1p3+2D/zws+1+M+XEOsTFxDOj5zmNj/pq3nv2HT3Nsx/Qn1pU9qz8HNv/MhUvX8fZyx8/XkwuXrjNu8jw2LRtHTEwcnw2ewpKVO3B1debTj1rQtVOzF9yjtBcXF8e8RYto3LAh/v7+NsuyZ8vGoV27uHDxIt5eXvj5+XHh4kXGTpjA1rVriYmJoc+AASxetgxXV1d6detGt48+yqCeWNwKD+GXzQPI6hXI2xU/x0HvxNErW5m1ezQOekfKBza0iTcmxHPg8gaK5qiCu7O3zTJv18x88fqf3IkMxcXBA3dnL+5EhLL+xN/0afgzxoQ45u8fz5GQzTganKld+G1qFU7fxJUafb32mKb2wbTge/T12qNFPsA080tQOssjFZoxDvPelehK1kJ5+NosUz4BOAxbDrdDwNUT5e6DdiuEhNW/4jBwNsTHYpw1EvPBteDogqHBB+jrtUuz/kmyfkk9PDquVLOSTXnlmpXZsXEHt2/extPHi/D7YSnWDX8QDoCnV9JwplKKnHmTjspGDRxF8/eaU7BoQSaMnMCJIydYuHURt67fosMb7QksEETF6vYzweYhDy9P61FxcpHhljKPxKNpTy9Pbt+49fi4xCPsh5Ifrc+Y8CvBJYtQoXolVs5fzobl6xj7248A9H3/UwJyZKVR88akh5Crt/jmh7+Z8n1v4uKNxMUbrcvi44w8CItEKUW/r36mb/e3cHZ25EFYJABmsxmjycSDsEjcXJ1xcEiclKMUQXmTRmR6DZzIB+81okTRIAaNnM6BI2c4tPUXQq/fofYbvSlcIBe1q6fPJJsXZcmKFTx48L927js+5vsP4PjrsqNGJtIQI0NIRBBBrIhZs6hRe29q1lYSsVdVKaVU0RoVmwwhsWqVxqa2iNUKstf9/ji9OHehKuP4vZ+Pxz1y9/5+vp/7fL655H3fz/fz+cZqDYH/Q6FQaExGGzpqFL26daNC+fJMnDqVU6dPE3XsGNExMdRp1Iiyrq7U8/XNpdZr23b6OwwNjBhYb556hrarXRXik5+y6cQCvEo1xOClhBV1J5LElOdUK637c6pQKDQmo204Po8azi0oZuXMttNLuf3XRSa2WE9swiPm7+2PnUUpXO2q5Gwn38DQpyXKmOuk711B+o4loFBg4N0UhUcdMqKv6twn43QYJDzDoEYrndsVCgW8NBktba0/hrXbYuBQlrTN81DePIvJtN0onzwgdcbnKOydMCjnkyP9k2vW7ylHHdeiIfOs2UBhgFMZR/68/KdWmetXrmFXzI58+bWX7gDs27WPy+cuM2iMahLJ4fBDtGjfAisbK1zLu1L9xRcCfVTSsSS3/ryhFb917SaF7Ypgnk/V5xKOJbl/N0a9zE1d7vpNjI2N+djBXmf9V85fZt+uUAaOHQLAycPHqdWgDnbF7LArZkfthr6cPHQ8m3uVtRu3YkhKSqH7wJkUdm6lfgDMX7KJws6tuHErhkePY5kU+INGmTvRj9i8LYLCzq3YHXpMZ/1bdx3ij3PX+GqMaug3JPwkXdo3xNbGAs/yTtT3rUxI+Mlc6292WbNuHTbW1jRp1OiNZYO2b+ePs2eZOmECAMFhYXTt2BFbW1s8PTxo4OdHcOjrJzDltHtPrmFv5aS1lKqEjRvxyU95nvREI/7btd3kN7XAvdibE8uZ2we4+/dVmnmqJhZeiP6NqqWbUMDMkuJWLpT92JsL0b9lX2fegVGb4ZgsPoFxwC5MFh7FeMBClA9uYeBcWWf5jENBUMASAw/fN9adfiqEjNsXMWw1TLXv2UgMa7RGUdAagxLlMHCrSUZUZDb2RpMk6/dUvRdLhQ7v10yaR/YfocjHRbApYoNvI18exjzk5EtLnOKexxEREoFvI1+d9SYmJDJ70ixGB4zWWDecmJCY+Tw+QWsoXV9U8/Xh8cPHRJ04o47Fx8XzW8RRqvtm/mOqXteHtLQ0IkMOqGPpaWlE7N1PJR8vTExMtOrOyMjgm8CFdOzTmcJ2RdTxpMSXjk1CIkpy79hUcHckNGiu1gOg42f1CA2ai1Mpe51lithaUq92JUKD5lKjqrtW3QkJSYyatJQ5AQMo8NIXu/iEzC848fGJevtZyMqDhw8JDQ/n83btMDbWPdHuHwkJCYwYO5Z5M2dSoEDmaEt8fOYNcOLi4/P8GBQ0t+Lu31dJS0/ViN98dB5jQ1M+MskcRXuW+BcX7x3Dq1TDN66TTklLYvOJhXxW5QvMjD/SiP8jOTV3P/NvojDNh0HxMigK2ZARFYEy5hqGdbVHUJRPH5Nx/hCG1Vronpj2ctnkRNLWT8Oo43gU5vlfiie89DwecvA4yDD4e6pW/VpUqelNwCh/Yv+KpViJYoTuDOHIgSMELAoAwLdxXSp4VWDcwHGM+GokBQsVZOWiFSiVSnoM7qmz3uXzl1HSsSSNWmZe46pWuxo/r/yZUk6leHj/EccOHqPrgLyZZPNPcr364i5sJw4dp5BlISwsLfCo4kn1ujUoV8GNmeMC6TOyPwUKFuCXFetAqaRtz8xZsY6uztRpXJfvZi0mPS2NovZ27Ni4jfvRMYydOVHne+/evJOkhERad2mrjlWsVpmVC5bhXkm15nT/7jD6jhqYQ73XZlEoP3VqVNC5zaF4EfU2XWXMzEwobGuZ5f6B89fh4liMti3rqGN+tSuydOU2yjgVJ+b+X4QfPM2wLJaB5bbNW7cC8PuZMwDsCQ3F1sYGWxsb6tTMvOnH+g0bSEtLy3II/GXTZs3CxdmZdq0zJ1nW8/Xl2+XLKePiQsz9+4QfOMCIIUOytS9vq45rW1ZEjGdp+Chql2mDsZEpZ+8c5OTNEPzKdsDIMDMZnbgRTIYynWqOTV5To8ruqB8oXNCByiXrq2OudlWIuLyJIoVK8DThEZfvn6Se25uPZU7LuHWejKgIDEqo7gGQcfUU6Xu+x7BJX51rodOPboP0tCyHwDXKbl+MomgpDL0zLxsYuNUgfd9PKOwcIfYBygtHMWjc6zW1vBtFXn8j/H/l5umm/CV0wzvVEfc8jq+nLSR0RyjPnj6jlFMpeg7tRdM2mR+op0+eMm/KXML3hJOSnIKHVwVGTx1NGfcyWvXduHqdjo068kvYBvUNUQAS4hKYMX46+/fux8zMjM79utB9UPd3ajvA/Qd/vfU+Dcv76ox7eFVg7qqvAdUs9+/nLuVI+CFSUlIoW8GNfqMH4lhG89JBclIyqxatYP/uMOKex1G6jBO9h/dV3/DkZU+fxNKrRVcmLwjAwyszuaWnp7NywTLCdoSiREmDFo3oNawvhob/7u5evkVS31zoPzAp3ICxwzviP65HlmWcK3fGx9udH5eO1dp26eptajQawm9h36pviAIQF5fIsPGL2bH3KOZmJgzt14YRg9pq7f82DM2zZ+6DYYECOuN1atYkfM8e9euK1auTkZHBH8d0D/3/49Lly1SrW5cTkZHqG6IAxMXFMXTUKLbv3o25mRnDBg1i5BdfvFPblw06/077A5yPPkLIuZ+Iib1BanoKtgXsqeHcklourTAwyPw8Bu7ojFKpZGKLda+t7/7Tm8ze3ZOxTVerb4gCkJSawMbj84i6cxBjQ1P8ynWggdu7Tzgd7mfz5kKvkRF9hbTVk1TLtNJSUHzsiGH9rhjWyuKeApOagTIDk2m7X1/vvWuk+rfGeMo29d3LAJRJ8aSt9Vdd9zY2w7BRD4w+6f1OfQBI6uaoPfMVSdZ5JjuS9fvuvyTrD01OJev3SXYl6/dZdiTr9927JusPRVbJWq5ZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZ/0cKhaK7QqFQvvRIVygU0QqFYqNCoSiT1+0TQgjx4TDK6wZ8ANoCdwFDwBGYBOxTKBRuSqXyaZ62TAghxAdBkvW7O6NUKv988fywQqG4B4QCPsCevGuWEEKID4UMg2e/Zy9+GudpK4QQQnww5Mz63RkqFAojVMPgpYHpwEPgQF42SgghxIdDkvW7u/TK63tAM6VS+ezVggqFoi/QF8C+uD3W5la50Dz9lb9IwbxuQp4zMHue103IcwpDw7xuQp7z6+OY103Ic8lXYvO6CXpNhsHfXSugCuANfApcAHYrFIqyrxZUKpXLlUqll1Kp9LK2sc7dVgohhHhvyZn1uzv30gQzFApFCHAHmAK0z6tGCSGE+HDImXU2UyqVicB1wCOv2yKEEOLDIMk6mykUinyo1ls/yuu2CCGE+DDIMPi781QoFDaAArADBgNWwDd52iohhBAfDEnW727TS88fAeeAxkqlMjiP2iOEEOIDI8n6P1IqlauB1XncDCGEEP8H5Jq1EEIIoeckWQshhBB6TpK1EEIIoeckWQshhBB6TpK1EEIIoeckWQshhBB6TpK1EEIIoeckWQshhBB6TpK1EEIIoeckWQshhBB6TpK1EEIIoeckWQshhBB6TpK1EEIIoeckWQshhBB6TpK1EEIIoeckWQshhBB6TpK1EEIIoeckWb8H7kXfY+KoiTT3a45jYUfsC9hz59YdrXKxT2IZNWgU7iXccSriRPvm7bl4/qJWuaSkJAImBFDRqSKOto4092vOb4d+0yiTnp5O4KRAPEp54OXqxffffq9Vz/Yt26nkXInnz55nX2ffwueftqd04RI6H93bdwXg7u07WZZ59vSpuq7EhETGDBtNRRcPfKvUYufWHVrvt+yb72ji25i0tLRc6+N/0aRVP4wKujPJf5FG/EzUJZq06kchuypY2lfl0/aD+fPabY0yCQmJ9Bk0CVsHH1w8GrPx1z1a9c9Z+AOVfFrr1XG4e/cuQ0aMwMfXl4+srTHIl4+bt25plOnRty8G+fLpfJT19FSXS0hIoFf//ljb2+Pk5saGzZu13m/2/Pl4Vq2qN8egy5CWuNay1fnoPbKdzn0mzxmJay1bRvsP0IgnJiUwYeYXVG3iTIP2Vdi9L0hr3xXrvqFld1+96b/apd9gRgfo7w5DvOD7UfD0sWaZlV9CL2fdjwmNMsslJ8Kqcap6xvrB8V3a77dnOXzVHNJz/jgY5fg7iHd28/pNdmzZgUdFD6r6VCViX4RWGaVSSY/2Pbh96zbT5k6jkEUhFs9bTNsmbQk5EsLH9h+ry44aNIp9wfuYGDARh1IO/Lj8Rzq16sS2fdtw93AHYNO6TaxdtZaZC2fy9OlTJo6ciJuHGz61fACIj4tn6ripTJ4+mQIFC+TOgXiF/6wA4p7HacR+P/k7gZMDqNeovkZ8wBeDqP9K7KP8+dXPv1u0hEMRh5izaB6XLlxkxMBhuHm4U6p0KQBi7sXw7YJvWPXLjxgZ6e+fzS+bdhN17rJW/Oqft/Bt3BW3ss78tGIWaWnpBMxcQt1PunHq8GYK21oDMGv+SsL2H+WH7wKJOneFrn3GUbFCOZydSgBwN/o+0+csY9eW7/TqOPx5/TqbtmyhsqcntWrUICQsTKvMxLFj6de7t0bs5q1bdOzWjeZNm6pjM+fOJSw8nFXLlhF17hxdevakkqcnzk5OgOqLQeCsWezZtk1vjsFXI2YTl6D5pfnMuZPMXDwJv5qNtcr/fvY4O0M3k/8j7b/d79cu4siJCGaM/4bL187zZcBAyrl4ULK4IwD3H95j6Zr5fD93g970H4ArJ2B+D3CrCQMXQ1wsBC2AuV1hchAYm6rKNR8Evp9r7vs4GpYPB0+/zNieZXDhMPSaBXcuwYpRUMINipRUbf87BnYugeE/gGHOHwc9OtIiK9VqVOOP638AsH71ep3JOmRXCMePHmfjro3UqF0DgMrelalevjpLFy4lYE4AAOfPnidoYxDzl8ynfZf2AFSvWZ26Veoyd9pcVm9cDUB4aDiftv2Ulp+1BCB4ZzD7Q/ark/XcwLk4uTjxadtPc7Lrr+VcxkUr9svanzExMaF5qxYacYcSxanoVSnLug6EH6Brz27Ub9yA+o0bsO3XrRyOOKRO1v4TptCkZVMqe3tlbyeyUWzsM0aOm8W8GWPo3OtLjW1zFq7E0NCQXb8uxcKiIADeXuUp49mEeYtWMytgJADBoQcZ2LcjzZvUpXmTuvy8cSf7DhxVJ+vhY2bStlUjfKpWzN3OvUHtmjW5f/MmACtWrdKZrB1Ll8axdGmNWOi+fQB069RJHdsbEsKg/v1p0awZLZo1Y/2GDYSFh6uT9bDRo2nbujU+1arlUG/enlOpMlqxTTt+wtjYhCb1WmnEU9NS+WrOSPp1Gc6G7Wu09os8to9OrXvhV7MxfjUbsyP0V46ejFQn68BF4/mkbksqlffOmc78V9sXg/XHMHhpZvK0Kw3T2sDBzeD34ndcuITq8bILh1U/fVpnxs5Ggl9n8Kynehzbrir3T7L+eRpUaQJOWf9fyU4yDP4eMDB4868pZHcIRe2KqhM1QMFCBanfuD7Bu4I1yhkbG9OiTWYyMzIyouVnLYnYF0FycjIAqSmpmJmZqcvky5dPve3ShUusXbWWwHmB79y37JSUmMSe7bvxa1gPC0uLt9o3NSUVM3NT9Wtzc3N1fyPCD3D86DHGTBqXnc3NdmMnz6dcWSc6tG2ite3YiSiqVamgTtQAxeyL4l7OiW079qljKampmJtlHod8+cxJSkoBYG/oISIPnWTG1BE52Iv/5t/8jejy0/r1VK5YEbdy5dSxlNRUzM3N1a/zmZuT9OKzsDckhIhDh5g1bdq7NTiHJSUnsnf/dur6NMSioKXGtpXrF5OekU6PDgN17puamoqpaebfvpmpOckpqv4fPLaPE2eOMnLA5Jxr/H91/QyUq6F5llvKA/JbwumQ1+97ZCuUcAd758xYWiqYZB4HTMwhVfW3wNlI1Zn8Z6Ozq/VvJMn6A3H54mXKlNP+dl2mbBmi70QTHxcPwJWLVyheojjm+cw1yrmUdSElJYWb128CUNGrIru37+bGtRtEnY4iIjyCSlVU3yDHDx9P74G9cXJxytlOvaW9u/YQFxdHm/afaW2bEzgbZ7vSeDi606dLLy5duKSx3bOyJ79u+JWHDx4QGR7BhXMXqFi5IsnJyUwZ9xVfThyDpZWlVr364tDR3/np5+0snj9R53ZDQwNMTIy14iYmJly7cYekJNU/Y28vD376eRsx9x8RHHaYM1GXqFrFg+TkFIaNns70qcOwtrbIya7kmsNHj/LntWt07dxZI+7t5cWatWuJiYkhODSUM1FRVPP2Jjk5maEjRzLD3x9ra+s8avW/Exqxi/iEOD79pING/Hb0Db5bs4DJI2ZjYmyic1+PcpXYuncDDx/f5+CxcC79eY4KbpVJSUlm2sJxjOw3EctCVrnRjbdjYACG2p9xjEwg+mrW+109BQ9vQQ3NEQhKV4DDQRD7EM4dhNsXobQnpCbDen9oM0r1RSCXyDD4ByL2SSzFSxTXiv9zhhkbG8tH+T8i9kkshSwKZV3u71gAevbvSWR4JDU9awLQ8rOWtGjTgo3rNhJzL4aho4fmSD/eRdDGLVjb2FCnnq86ZmJqwuddO1HLtxZWNtZcv3qNJV8vpm3T1gQFb8PJRfVNeuioYfTo0I1qL4b2+g7qR6Uqlfl6zkKsra1o16mDrrfUC6mpqQz8YiojhnSnjHMpnWVcnEtx9NgZUlNTMTZW/UN7/jyeC5euoVQqeRL7DLuitkwaO4BmbfpT3KUuACO/6EH1qp74z1iCjY0lPbu2ybV+5bQ169ZhbGzM523basS/Gj+eJq1aYe+oGvYdNXw41atWZWpgILY2NvTq3j0PWvt2tu7dgLWlLbWr1tOIT5k7mga1m1KtUs0s9x3cYzR9RnWgdqvyAPT6fDAV3auweNUcLC1s+KxZ5yz3zVNFS6vOrl/2OBqePnz9NeWjQaok791MM95iMCzsDSNfjFY27g1OFWHbN1DACmq11a4rB0my/kAoUaJQKLTjSqXWa13l0CxG/gL52bxnM3dv38XI2IiidkV5GvuUwEmBzFsyD1NTU2ZOncmm9ZtACe06t2P0xNH/eTjyXT24/4DDkYfo3qeHxqSXwkWKEDh3uvq1dzVvavvVoXGtBny7YDELln4NQFG7ouw+sJfbN29TsFBBLK0suX3zNiuWLGfjjs0kJSYxbXIAIbuDMc9nRq/+venWu0eu91OX2Qt+IDEpmfGj+2ZZZsiATmwOCmbgMH+mTBhMWlo6oyfMIS4uAQADA9Vnwv7jIvx+ZAvXb9zBolBBrK0tuH7jDvO/WU1E8BoSE5MYNX42W3fsI18+c4YN6srg/p2yfF99lZyczKYtW2j2ySfY2NhobLO3t+fMsWNcv3EDi0KFsLa25vqNG8z7+msOhoWRmJjIiDFj2LpjB/nMzRk+dChDBgzI4p1y34PH9zl6KpIun/XV+FvYHryJs5dOs3vtkdfuX8TWjm2rD3Dn3k0K5C+EZSEr7ty7yQ8/f8v6JTtJSk5k5uLJhEXuxszMnO7t+tPlsz453a03q99VNft7y3yo3w3iY+HHiaAwUD10SU2GE3uggq8qAb/MsihM2QGPbkO+gqqz6Ee3IXgljPsZUpJgw3Q4HaoaIm/YA+p1zbHuSbL+QFhaWhL7JFYr/jRWtTzJwsJC9dPSgug70VrlYmNV+1pYWWjEizkUUz+f5T8Lr6pe1G9cn3Wr1rFlwxaCglXLOtp80gaHEg583u2VWZa5ZOumIDIyMnQOgb/qY/uPqVzVi6gzURpxhUJBiVKZE0+mjJ9Mu84dKOtejrnTZ3P2jyj2RobwIOY+7Vu0xcnFmRq1sz5DyQ2378QwY+5yln8zleTkFJKTU9TbklNSiI19RoECH1GjWiW+mTeRCVMXsuon1e/Mz7caXTu2YN2GnVhZZo62KBQKHEs7qF9/MXo6Pbu2oUJ5Vyb6f82p0+f549hWou89xLdxV8q6OlLPV38mW/0b23buJDY2lq6ddH/RUB2DzMloQ0eMoFf37lTw8GDCV19x6vffOXviBNH37lG7QQPKubpSr27d3Gr+a+0I3kRGRgatPmmvjsUnxDFz8WR6dxyCqYkZz56r/i8oMzJIS0/l2fOnmJvnw9hINeqiUChwsM8cpZm2YBxtm3XG1cmdBcsDOXfpDDt+jOTB4xg6DWqOU8kyVPeqnbsdfVW1lhBzXZVMdy0FhUI1Aax8HYi+onufM/sg4ZnmxLKXKRSak9HW+UPttlC8rOpLwc1z4L8LnjyAmR3BzgnK+WR/35Br1h8MF1cXLl/UXrJz5dIV7Ivb81H+jwDVNew7t+6QmJCoUe7qpauYmJhQsnRJnfVHnY5iy4Yt+M/2B+BA2AGatmyKQ0kHHEo60OzTZuwP25+9nXoLQZt+paxbOcq6l3tzYYCsRhheCN61l4vnLjB8jGoyVWR4BG3at8Haxppy5d2o6VuLyHDtWfm57fpN1fXmrn3GYuPgo34AzF+0GhsHH86eV12vG9CnAzHXIvnj2FZuXAglZPsK7sU8wtvLQz00/qqtO8L44+xlpk4YDEBI2GG6fN4SWxsrPD1caeDnQ3DYodzpbDZas3YtNjY2NGmsvazpVUHbtnEmKgr/SZMACA4NpWvnztja2uJZoQIN69Vjb2hoTjf5X9sWvBFXJzdcndzVsSdP/+bv2McsWB6IdxMn9SPmYTR7wrfh3cSJiCO6+xAauYuLf55jSO+xABw8Fs6njdtjZWlDWefy1PD25eCx8Fzp2xu1Gg5fH4epO2HeEei3EB7eBOcsVnEc3qI6Yy5f5811/x6iWsLV8gvV63ORquvcBazBoRy41VDFcoicWX8gGjZpyIa1Gzh66CjVa1YH4Pmz54TuCaVVu8yJEw2aNGBu4Fx2BO2gXSfVzRLS0tLY/ut2avvVxtTUVKvujIwMxo8Yz9BRQ7Evbq+OJyQkqJ/Hx8drDbnnlqgzUVy5dIUJ/pP+Vfnou9GcOn6Khk0a6dyemJBIwCR/JgZMJv9La7ETXvqCkxCfkGf9fZlneVfCdv2gFa/ftCed2jejR9fWOL10lmxqaoJbWdXEwLPnr7DvwG+sXjZda39Q9XfE2FnMm/ElBQp8pI7Hv3Qc4uL04zi8jQcPHhCybx8D+vbN8kvKPxISEhj+5ZfMnz2bAgUy1yTHx8ern8fl4Wf/VWcvneHqjUuMHRygEbe1KsyPi7ZqlR85pQ8upcvRr+twXEq5am1PTEpgxqKJjBsSQP58+TXi/0hIiEf56nW0vGSaD4q9mGx7NlJ1tt19hna5p49VS7F8O4LR6z8HJCfCz4HQYTyY59eMq58naF1OzE6SrN8TO7fuBFAP3YaHhmNtY421jTXVa1anYdOGVPauzJDeQ5g0bZL6pigAA4ZlXk9z93CnRZsWTBk7hbTUNIqXLM6aFWu4c+sOi1cu1vne61avIz4unj6DM69L1axbk+mTp1PVpyoAWzdtZXJg3iznCNr4K0ZGRrRo3VJrW+DkADKUSip5VcLK2orrf15n6aIlKAwMGDhskM76vpm/iNKOpWnaMnPCiU/tmvy08kccnRx5cP8BRw4epveAvL9OZ2FREN9aute7OhT/WL3tbvR9vlu5gerenpiamvD7mQvMnPc9rVrU07nUC2Da7O9wcSpJ29aZZ59+vtVYsvxnXF1KcS/mEeERxxg+pFv2d+w/2BykGt4/dfo0AHuCg7G1tcXWxoY6tWqpy63bsIG0tDSNtdVZCZg5kzIuLrRrkzmxrp6fH99+9x2uLi7ci4lh3/79jBiqHxMut+3dgJGhEc0aaA7rmpqaUbViDa3yJiZmWFva6twGsGT1PEo6OPGJ36fqmI9XHdZtWUlpB2ce/nWf334/mOUysFx167zqzNbBTfX66kkIXgGN++heC/3bdtWdx2pkMQT+sp3fQtFSqmH1f5T1gfCfVBPbYh/CxaPQsGf29EUHSdbviX5d+mm8Hj98PKC6ocnmPZsxMDDgx00/EjAhgPEjxpOUlERl78ps3LUR+2L2GvvOXzqfWVNnMTtgNs+ePqNc+XKsDVpLec/yWu/79+O/mTV1FivWrdA4C+ncozO3rt9i6ripKJVKuvTskifXq1NTU9kRtJ3afnWwLWyrtd3Z1YV1q9fy6y+biI+Lx9LKiuq1qvPFqGGUdnLUKn/t6p+s/WEN28J2asSHjBjKX4//Ysyw0ZiZmfHlxDHUqpvH1+jegrGxEcdPnuX7HzbxPC4ex1LFmTimP0MH6J7Ze+nKdZZ+/wvHIzZqxCd+2Z9Hj/6m98BJmJubMX3qMBrW0/2PPre1eyX5Dho2DIA6tWqxPzjzXgNr1q3D3c2NShVff2OXS5cvs2TZMk4ePqwRnzR2LI8ePqTXgAGYm5kxIyCAhvXrZ1FL7klNS2VXWBA1q/phY1X4neu7fusq64N+4NcVmjeYGdBtBH89ecSEmV9gamrGiH6TqOmtB9frjUwgKgL2fA9pKWDnCF38oWYW81iOBIG9i+quZK8Tcw3C18LkrZrx5oPg+V+qW5KamKmWcrnX0llFdlDoy/DN/5sKlSoo90Rq33f5/0lyop7dVzgPOJjlzX3V9YmBUek3F/rAXTkV/+ZCHzjXK7F53QS9oOzppHMyjUwwE0IIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCzymUSmVet+H/hkKh6Av0ffGyDHA5D5ujD0oolUrbvG6EEELoO0nWQgghhJ6TYXAhhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz/0PiMdSHlQbYZ0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "discovery_celltype = 'CD4T'\n", + "fig, axes = plt.subplots(1, 6, figsize=(7, 7), sharey=True)\n", + "for i, discovery_celltype in enumerate(['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']):\n", + " colors = [\"white\", color_dict[discovery_celltype]]\n", + " cmap1 = LinearSegmentedColormap.from_list(\"mycmap\", colors)\n", + " im1, bar = heatmap(np.flip(replicated_ratio_df[discovery_celltype].values.reshape((6, 1)),\n", + " axis=0), \n", + " list(rb_df.index)[::-1], \n", + " [discovery_celltype],\n", + " cmap=cmap1, ax=axes[i], vmin=0, vmax=1)\n", + " bar.remove()\n", + " _ = annotate_heatmap(im1, \n", + " data=replicated_ratio_df[discovery_celltype].values.reshape((6, 1)), \n", + " valfmt=\"{x:.0%}\", \n", + " textcolors=(\"white\", \"white\"),\n", + " threshold=1)\n", + " if i > 0:\n", + " axes[i].axis('off')\n", + " \n", + "plt.subplots_adjust(wspace=0, hspace=0)\n", + "plt.savefig('replicated_ratio.filtered_results.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAEoAAADBCAYAAABopyZqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAHyUlEQVR4nO2dfYxcZRXGf8/2w5XyhwWiiUFasIiW+JGgtQaj0oSASVMU8SOauiFKDIkiMfqXsVFSTYwfmJhIrUpAg6FBiDSmsQRpEInGsAroQoB+kIJWU6WAdm2x9PjHe7cZhpl7n51hd+fG80sms/POPffeOX2ec9+Z5txXEUHSzNhCn0BbyESZZKJMMlEmmSiTTJRJ6xIl6XRJ35X0W0nTkkLSSjN2XNI3JB2Q9J9qH+9yYluXKGAV8CHgEHDPLGN/BFwBbALWAweAnZLe0hgZEa16AGMdf38SCGClEffmatvLO8YWA48A25viW6eoiDg+YOgG4L/Ato59HQNuBi6S9LK64NYlagjOBfZFxHTX+BSwlGLpvvw/JeoUSl3r5qmO9/uyuO5NSfP9jXkKONLxemtEbH2J9i1Kjeo13khtogDGxuZPdMePHz8SEW+do90/BZzRY3x5x/t9GbVEzeXup4D3Szqpq06tBp4DdtcF12ZBEmNjY/P2mGO2A0uAD3Z8vsXAh4E7IuJoXXCjoiTLwvOKpMuqP8+rnt8r6SBwMCLulrQC2ANcExHXAETE/ZK2Ad+RtATYB1wJnAl8rOmYI2W9WXBL1+vvVc93A++hFOhFvNgxlwNfBTYDrwAeAC6OiD80HVB1PwUvWrQoxsfHjfN+aZienp6cw2I+FG1V1LzTyhq1EDRNOFNRFakok6xRJmk9k7SeSVrPJBVlkjXKJBVlkjXKpNF6qahCKsokE2WS1jNJRZnk9MAkJ5wmqSiTrFEmaT2TtJ5JWs8kFWWSNcokFWWSNcokvxSbpKJMMlEmaT2TVJRJTg9McsJpkooyyRplkooyyRplktYzSeuZpPVMGrMw8zVmPh4Okl4j6WeSnpH0rKTbJPXqw+sVe2YV+7Skw5J2SbJaSlpVoySdBNwFHAUmKB2dm4Fdkt4UEYdrYk8FfgP8C/gUMA18ropdExEP1x27bV+KrwDOAs6JiN0Akh4EHqN8+G/XxF4JvAp4d0fsXcBe4CuUeyn0pVWKorTk/27mgwJExD5J9wKXUJ+otcBjXbGHJd0DrJe0uGrv70nbatS5wJ97jE9RWl7reJ7SEtvNUeDlwGvrgkftqneapPs6Xnd3qde15C/vMd7JI8CFkk6NiH8CSBoD1nTsuy+jZr1/GI2Ng7bkbwGuAn4s6SpKMf8ipVUWoLbzu23WO0Tvf/nl9FbaCSJiL6V3+DxKR/pfgXcA11abHKiLHzXrNTFFqVPdrAYeagqOiFsl/Rx4HfBcROyRdB3wRETsr4ttm6K2A2slndVxfiuB86v3GomI5yPi4SpJr6a081/XFNeYqBG778EPgMeB2yVdImkDcDvwBPD9mY0krZB0TNKmjrElkq6V9D5J6yR9BriPotJvNR24VRPOat6zjlJXfkIp4r8Cro6If3ds2qudP4CzgY9SWvmfBK4HvhYRvaYNL2DUrnqNVLXkAw3bPE7XlbCaTK4f9LitS9RC0SrrLSSpKJP8hdOkbRPOBSMVZZI1yiQVZZI1yiStZ5LWM0nrmaSiTLJGmeSXYpNUlEnWKJO86pmk9UzSeiZpPZNUlEnWKJNUlEnWKJO0nklazyStZ5KKMskaZZK/R5mkokyyRpnkVc8krWeS1jNJ65mkokyyRpmkokyyRpmkokxat1iqhmvnP0PSjZL2S5qW9KikzZKWNcW2qphruHb+ZcCdlJVlvwTsB95G6VA/m9KO1pe2WW+Ydv7zKQm5KCLuqMZ2SToF+LxevH7xC2hbMR+mnX9p9fxs1/jTlBJUq4i2dYAO085/J0V5X5e0WtLJVe/fZ4EtdbaF0atRc9bOHxFHJL0TuJWS2Bl+CHy66cRGrUbNWTu/pHFgG/BKYCOlmK8BNgHHKLck6UvbatTA7fzAJyirYq+KiD3V2K8lPQNslbQlIh7oFzxqimpimHb+NwKHOpI0w++r5zdQlgzvSdu61Idp5/8bsFzSqq7xt1fPf6nNQ92bIzgzH7idH7iBcu+oHZImJF0g6QvAN4FJ4N6BEzWTrFGZHlSX8HXAo5R2/puAfcC6pnb+qnN9LXA/ZTa/gzKB3QpcGBG192YZtelBI4O281fjD9FwQ61+5H+AmrROUQtF26YHC0bbJpwLRlrPJK1nktYzSUWZZI0ySUWZZI0ySUWZZI0ySeuZpPVM0nom+XuUSSrKJGuUSV71TFJRJlmjTNJ6Jmk9k7SeSSrKJGuUSSrKJGuUSVrPJK1nktYzyd+jTFJRJlmjTPKqZ5KKMskaZZLWM0nrmaT1TBp7YUapxaM6p4G61CV9WVL0eRxpim+VojRElzql0/OXXWPLqrHGhVbbVqMG7lKPiCcp636eQNJGSg5ubDpw2656w3Sp92IC+Duws2nDVrWhMVyXevfnOh24ALipWki1llbVKIZbdL6bjRShNNoOGhI1OTm5U9JpszyBYRhXfTs/DL7ofDcfB/4YEQ86G9cmKiIuHuAE5pJhutRPIGkN8HrgajdmpHxlMNSi8x1MUO518FM3oG2JGnrReUlLgY8AOyLioH3kiGjNgzJB3A38iTId2EC5V8Fe4OSO7VZQFLOpxz4updS5S2dz7FYpapgu9Q4mKFfJX8zm2KqynDTQKkUtJJkok0yUSSbKJBNlkokyyUSZZKJMMlEm/wPf4KV4Rxo9gAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "\n", + "fig, ax = plt.subplots(figsize=(0.5, 6))\n", + "fig.subplots_adjust(bottom=0.5)\n", + "\n", + "colors = [\"white\", 'black']\n", + "cmap = LinearSegmentedColormap.from_list(\"mycmap\", colors)\n", + "norm = mpl.colors.Normalize(vmin=0.7, vmax=1)\n", + "\n", + "fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),\n", + " cax=ax, orientation='vertical')\n", + "plt.savefig('colorbar.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAEoAAADBCAYAAABopyZqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAJsElEQVR4nO2dbYxdVRWGn3f6wUD7gxLiD5XSNhjSNkqDVasgKTWmNZg2RBGC0YKC34ImYCCVRmuNEogSIApFowRJaABj+wOlAm1VAprWFLUoFWgtGgiFFqqUQpsuf+xz6+Vy7zlr7unMPVvWk9ycmX3OOvvOmrXW2XP3O3vLzAiqGRr0G8iFcJSTcJSTcJSTcJSTcJST7Bwl6a2SbpD0kKR9kkzSNKftsKRrJD0t6eXiHmd4bLNzFHAS8DFgD/DbEdr+GLgYWA58GHgauFfSnEpLM8vqBQy1fX0RYMA0h90pxbUXtrWNBx4D1lbZZxdRZnaoT9PFwAFgddu9DgJ3AAslHVVmnJ2jajAb2G5m+zratwITSSndkzeSo44j1bVOdred78n4spOSxvov5q3A/rbvV5nZqiN0b5FqVLf2SkodBTA0NHZBd+jQof1mNneUbr8bmNqlfUrb+Z40zVGjefutwNmSjumoU7OAV4HHy4xLvSCJoaGhMXuNMmuBCcA5bT/feOBcYJ2ZvVJmXBlRkiuFxxRJHy2+fGdx/JCkXcAuM9so6UTgCWCFma0AMLMtklYD10maAGwHPg9MBz5e1WejUm8E3Nnx/Q+K40ZgPqlAj+P1GXMh8G1gJXAs8AiwyMz+WNWhyj4KHjdunA0PDzve95Fh3759m0exmNci14gac7KsUYOgasAZEVUQEeUkapSTSD0nkXpOIvWcREQ5iRrlJCLKSdQoJ5WpFxGViIhyEo5yEqnnJCLKSQwPnMSA00lElJPKcGnavJ6kEyTdJelFSXsl/VxStxngbrZTJd0qaWchQtsmaaWkSVW2WaWepGOAB4BXgKUkLcFKYL2kd5jZSyW2k4D7SJOgVwE7gXcB3wTeRpoI7UluqXcxMAM42cweB5D0J+DvwGeB75XYnkZyyEIzW1e0rZd0HHBZl6n215Db8GAx8HDLSQBmtl3Sg8ASyh01sTju7Wh/gVSCSiOi0gutQedYvBzMBv7SpX0rSWxRxn2kyLta0ixJkyUtAC4FbipLW2hejTpe0qa27zv1UWVisCld2g9jZvslnQ7cTXJsix8BX6p6Y02rUc85ptT7EoNJGibpN98EfIJUzN9NUggfJAk2epJbjdpDdwnhFLpHWjufJgk4TjKzJ4q230h6EVgl6SYze6SXcW5/FG8l1alOZgGPVti+HdjT5qQWfyiOM0nqlq7kNuBcC8yTNKPVUPzXwmnFuTKeAaZI6lT/vqc4/qvUD1XvrGGOugXYAayRtETSYmAN8BRwc+siSSdKOihpeZvtT4F/A/dIWirpTEmXA9cCm4EH+3bUWA4NPClePMIXANuA24DbScq5BWb2n/a3ToeQzMx2APOALaTR/D2kAewq4INVQv/cijlmthP4SMU1O+jyJDSzR0n/RzNimjY8aCxNG3A2logoJ9nVqEEREeUkapSTSD0nkXpOIvWcREQ5iRrlJLfPowZGRJSTqFFO4qnnJFLPSaSek0g9JxFRTqJGOclqFqZ4T30LyQr7mZLulPSc0qpkj0m6tMouq4hSDSFZYT+3sN9AWqTrRZJmanJV31k5ihpCMklDwK3A/WZ2dtup9Z6Oc0u9rkIy0izvkgrb+SSNQpnYrCe5TanXEZKdXhyHJT0s6YCkZyVdL+noqo6bNjwYNSEZ8ObiuBq4EbgCmAusAE4Azu5hBzRvwDlqQjL+lz0/M7OWeGODpHHAdyXNKqbcS4170rAaVUdI9nxx/HVHe0shPKfMOLenXh0hWUu32RmRrd9QqZolt4iqIyT7JWn8taijfWFx3EQJTatRVdxCUvCukfR1UnR8iy5CMl6/Itnzkr4DXCVpL2ngOZckdr21fcjRjaxSz8xeUtKGf58kJBNwP/CVKiFZwQqS6u4LwGWktYKvITm7lKYNDyqpKSQz0oBzxIPO3FJvYGQXUYMiqxo1SGIC1ElElJOoUU7iqeckUs9JpJ6TSD0nEVFOokY5iYhyEjXKSaSek0g9J5F6TiKinESNchKfRznJTaRRW0jWdp8rlbbF/J3n+qxqlGoKydruMwNYBjzr7Tu3p16dFcna+SFpcYmTcQQL5Jd6dYRkAEg6HzgVuNJz/WE/OG7cJO1BHSEZkqaQZpm/Zmal++l10rTUG00hGaTp822kBW1GRNOK+WiuSPZ+4JPAqVa2s1kPchtw1hGS3Uza0Pmfko4t2sYD44rvXy7bjLBpEVVFHSHZzOL1uS7n9gBfBa7rZdy0GlXFWuBaSTPM7El4jZDsigrbM7u0XUeSB32Zij1Ac4uoOkKyDZ03k/QCML7buU6yiqgjICTrm9yKeS0hWZfr5nv7zS31BkZWqTdIIqKcZFejBkVElJOoUU4i9ZxE6jmJ1HMSEeUkapSTmAB1EhHlJGqUk3jqOYnUcxKp5yRSz0lElJOoUU5yE2n0LSSTNFfSKkl/U9rWcqek2yVN9/SbVY2qKSQ7jzTLfD1pxvktpC0uN0maY2ZPlfWdW42qIyS72sx2tTco7fS4vbjv8q5WBbnVqL63tux0UtH2D0m7SNFVSlapR0qdNV3atwLnjPRmkmaSNib8a9W1TUu90RaSHUbSeOAmYBdJDlRK01JvNFck6+RG4H3AWWZWpa3K7vOoOkKywygtj/QZYGnbnsWlNC2iqqgjJANA0jKSluoSM7vN23FuA846K5Ih6RLSuGuZmd3g6bBFbk+9voVkks4jKex+BTwgaV7bffeWrZgIzXvqlVJTSLaoaF/E69e520ha+bUnudWovoVkZnYBcEG//eaWegMjq9QbJNml3qCIiHISNcpJRJSTqFFOIvWcROo5idRzktvnUQMjIspJ1Cgn8dRzEhHlJGqUk0g9J5F6TiL1nOS2bVzf+qjCdljSNZKeVtqt8SFJZ3hss4qomvooSBqDs4DLgSeBLwL3SnqvmW0pM8ytRtXZsfEU4HzgU2b2k6JtI2n2eQVJUtSTytT7P1poazFwgLS/Xsv2IHAHsFDSUWXGuU2p11loazaw3cz2dbGdCJxUZpxVjaKePqrMtnW+J6WO2rx5872Sjq94A0eSYZULyaB/fZRq2JY7ysw65+gHTR191G6g2zBiStv5njQqrxzU3bFxejHE6LR9lYr1o3JzVB191FpgAm2iWCUd57nAurJl2wAws2xewCTSb/7PpOHAYuAR0uBxctt1JwIHgeUd9neQUvQi4APAXcB+0gKB5X0P+ofvw1lTgbuBvaTdF38BTOu4ZhqpcH+jo/1o0qD0mcJBvwfme/qVjXylxTckudWogRGOchKOchKOchKOchKOchKOchKOchKOcvJfcsY5cEDXPTUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(0.5, 6))\n", + "fig.subplots_adjust(bottom=0.5)\n", + "\n", + "colors = [\"white\", 'black']\n", + "cmap = LinearSegmentedColormap.from_list(\"mycmap\", colors)\n", + "norm = mpl.colors.Normalize(vmin=0, vmax=1)\n", + "\n", + "fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),\n", + " cax=ax, orientation='vertical')\n", + "plt.savefig('colorbar.replication_ratio.pdf')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### celltype comparison for unfiltered results" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "# filtered results\n", + "unrb_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "unrbse_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "unrbpvalue_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "unnumcoeqtl_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "unanno_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "unnum_anno_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "\n", + "for discovery_celltype in celltypes:\n", + " for replication_celltype in celltypes:\n", + " if discovery_celltype != replication_celltype:\n", + " unrb_results = unfiltered_res_df[(unfiltered_res_df['celltype_discovery'] == discovery_celltype) &\n", + " (unfiltered_res_df['celltype_replication'] == replication_celltype)]\n", + " unreplicated_coeqtls_num = pd.read_csv(\n", + " workdir/f'output/unfiltered_results/rb_calculations/discovery_{discovery_celltype}_replication_{replication_celltype}.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t',\n", + " index_col=0\n", + " ).shape[0]\n", + " if rb_results['r'].values[0] < 10 and discovery_celltype != 'B':\n", + " unrb_df.loc[replication_celltype, discovery_celltype] = unrb_results['r'].values[0]\n", + " unrbse_df.loc[replication_celltype, discovery_celltype] = unrb_results['se_r'].values[0]\n", + " unrbpvalue_df.loc[replication_celltype, discovery_celltype] = unrb_results['p'].values[0]\n", + " unnumcoeqtl_df.loc[replication_celltype, discovery_celltype] = unreplicated_coeqtls_num\n", + " unrbvalue = unrb_results['r'].values[0]\n", + " unrbsevalue = unrb_results['se_r'].values[0]\n", + " unnum_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={unreplicated_coeqtls_num}\"\n", + " unanno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"{unrbvalue:.2f}\\nN={unreplicated_coeqtls_num}\"\n", + " elif discovery_celltype == 'B':\n", + " unrb_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " unrbse_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " unrbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " unnumcoeqtl_df.loc[replication_celltype, discovery_celltype] = unreplicated_coeqtls_num\n", + " unrbvalue = unrb_results['r'].values[0]\n", + " unrbsevalue = unrb_results['se_r'].values[0]\n", + " unnum_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={unreplicated_coeqtls_num}\"\n", + " unanno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={unreplicated_coeqtls_num}\"\n", + " else:\n", + " unrb_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " unrbse_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " unrbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " unnumcoeqtl_df.loc[replication_celltype, discovery_celltype] = unreplicated_coeqtls_num\n", + " unnum_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={unreplicated_coeqtls_num}\"\n", + " unanno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={unreplicated_coeqtls_num}\"\n", + " else:\n", + " unrb_df.loc[replication_celltype, discovery_celltype] = 1\n", + " unrbse_df.loc[replication_celltype, discovery_celltype] = 0\n", + " unrbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " unreplicated_coeqtls_num = pd.read_csv(\n", + " workdir/f'output/unfiltered_results/UT_{discovery_celltype}/coeqtls_fullresults_fixed.sig.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t'\n", + " ).shape[0]\n", + " unnumcoeqtl_df.loc[replication_celltype, discovery_celltype] = unreplicated_coeqtls_num\n", + " unnum_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={unreplicated_coeqtls_num}\"\n", + " unanno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={unreplicated_coeqtls_num}\"\n", + " \n", + "unreplicated_ratio_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "for discovery_celltype in unnumcoeqtl_df.columns:\n", + " for replication_celltype in unnumcoeqtl_df.index:\n", + " unreplicated_ratio_df.loc[replication_celltype, discovery_celltype] = \\\n", + " unnumcoeqtl_df.loc[replication_celltype, discovery_celltype] / unnumcoeqtl_df.loc[discovery_celltype, \n", + " discovery_celltype]" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":62: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + ":63: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_yticklabels([\"\"]+row_labels)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAGxCAYAAABVxA75AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACEbElEQVR4nOzdd3RUxd/H8fek90IaIXRIIBB6b4p0EBABBTuKIBYsgPgTAVHpvYMoUkQFQaQjVZHeQUILLfSSQkJ623n+2LBhCSj6QG6A7+ucPeTOzL2ZWZb97J25d1Faa4QQQgiR92yM7oAQQgjxuJIQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBrEzugMi7yilXIF6QBHAG/hTa73L2F4JIcTjS8nXVj4elFKlgHlALeAycASoCmwDummtrxjYPSGEeCzJdPRjQClVAFgA+AJdtNZBQCegLnAdWKqUqmJgF4UQ4rEkIfx46AGEAn2AnwC01rFa6+PZdceAjgBKqfpGdVIIIR43Mh39GFBKXQQ2AD211vFKKaVv+YtXSj0NJAI+wCJgP/Ce1nq7IR0WQojHhFyY9YhTStXBPA29GbgBcFsA22qtVyql3IAdwLdAJrBRKfUr8LbWOj7vey6EEI8+mY5+9EUCGristdZKKXVb/c1AHgRkAT9prd8BKgPuwM/ZF3UJIYS4zySEH2HZgZsAhAMvKaVcbjsLttdam5RS5YHOmKeidwFkrxf3BpyBV/O880II8RiQEH6EabNEYBQQBjx7W31G9o9fARHAcq110s2zZa11BLAJeE0pVTjvei6EEI8HCeHHgNZ6ATAT+FoptVgp1UEpNRxAKfUMUBOYDxzMbq+VUg7Zu58AAgDTrcdUStnmVf+FEOJRJSH8mNBajwcKA+eB54GS2VV9MF+0tf7WNWOtdXp2fQfMtzDZ3na8LAClVM0H3nkhhHhEydXRjxGtdRzwQfbacLJSqgdQB3hGa306u41WSjlordOzb10KAzZorc/fPI5Sygl4CfPFW+8qpXYBzeUqaiGE+HfkTPgxpLVOzv7xNBADjLz1jDY7gL2AIUAS8DWAUqqsUqob8CfQFdiK+f7iQ9n3HxdQSvnl3UiEEOLhJiH8GNNar9VaBwBrgT+UUouUUp8qpb7H/J3SAcCXwCGl1OeYw7gqMEZrXRdwAhTmC7/A/K1ce5RSs5RS8toSQoh/IN+YJQBQShUE/of5W7OKYr4ga4LW+pBS6lngZ+A3rXWb7PaFMf8nECO11oNvOU4NYAJQEfM3dM3K25EIIcTDQ0JYWLm5XnzLtsJ8r/BzwEggCng7e7sJ0Fhrfflm25v3ISulJgPvAIeB97XWv+fpQIQQ4iEgISzumVIqEPPV1O9hvqjvXa319FvqVfaFXfbAOuASEIf5yz4OAM9qraPyut9CCJFfybqduGda68ta697AISAe+FIp1eyWJje/EvMjzN9XvTj7KzDLZLd/Ki/7K4QQ+Z3coiT+FaVUF6A80Ajz905fyi6301pnKqWKAF2ANcBGAK31ReBpI/orhBD5mYSwuGfZVzx3An4Bdtz6PdRa68zsH/tjnoJeqrWOvf2/TRRCCJFDQljcM621CWiplHK/w3+HmKWUqg80xvwVmVuz95EAFkKIu5ALs8R9o5RaivnrLT/NvrVJzoKFEOJvyIVZ4r5QSnUHamG+GOsQyFmwEEL8Ewlhcb8cBmaTfTHWzf8IQgghxN3JdLQQQghhEDkTFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEeihBWSgUopSYopU4ppdKUUheVUquVUq2y6yOVUjr7kaqUOq+U+lUp1eZvjumklDqYvU/17LJBtxznbo/ieTRsIYQQj7h8H8LZobcPaA58ClTE/J/JrwSm39L0SyAQCAE6A5HAr0qpSXc59Gjgwh3KAm95HAfG3FZ2/h/62/2eBvYIk+dACCHuzcPwHzhMxfz/1FbXWifeUn5UKfXDLdsJWusr2T+fA7YqpY4CXyulFmutf7/ZUCn1DOb/27Yj0OpmefbxE29plwkk3nLce9EdmPEv2j+K5DkQQoh7kK/PhJVSBYAWwOTbAhgArfX1fzjETOA60OGWYxYGpgEvASn3r7dCCCHEv5Pfz4RLYz4LPvpfds7+7/UigJJg/i/3gB+AMVrrA/drfTd7+rU7gLJT1VyKuz7W3wVa8N1yBL5X/rF+Dk6+0+qfGz3iXMuNMroLhtv20zmju2C4einpRnfBcPqN0nf9Lv38HsL34z8BUMDNQOgHZABj78NxLbTWM8iefnUp7qqDB4bez8M/dK7tkwkGIYS4F/l6Oho4gTlA/1OqZZ/5hgCns4saY14Lzshe7z2ZXb7jtvVlIYQQ4oHL12fCWutYpdQa4D2l1MTb14WVUl5a67i/OcSbgBewKHv7dcD1lvpCwBrM68Nb71e/hRBCiHuRr0M42zvANmCPUmoA8BfmKeanMN+yVDS7nbtSqiBgDxQBngN6Yr6oaxOA1vrMrQdWSt0M9VNa69tvVxJCCCEeqHwfwlrrM0qpqpjXc0cAQUAMcBB465amA7Mf6UAUsAdor7Velrc9FkIIIe5Nvg9hAK31ZcxntT3vUl/8Px43kr+5+EtrHfZfjiuEEELci/x+YZYQQgjxyJIQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREL4IXVt5WX+6rqXiz+cs5RF/XaFIx8d5PCHB4lac9WqfcrZZI71C8eUbsrrrv5n6ZeSuL7yHNdmR3BlyhGSj8ZZ1ZvSTdz487K5fvpRon44SdKBGKs2N7Zc4eq3x7g2J4KU4/FWdalnEohZfAat9YMeyn0zasYO3MqPptfg9QBkZGQxYMwmaj07G//q4yn15DRe/3gF5y/dsNrvfyN+p0idyZRp/DULVhyxqlv1+ymavvzTQ/U8AEydOpUSJUrg5OREtWrV2Lx5s6Vu9OjRBAQE4O/vz5gxY6z2279/P2XKlCElJSWvu/z/cuDoTvqO7soz79ak3ovFWLlpoVV9vReL3fExZlZ/S5uJ339Ji24Vefa92qzZ8qvV/lv2ruftQR3yz+vg+C6Y+Bb0rg9dg2HLL9b1WsPSidCrHvQIg5EvwcUT1m0y0uCHL+GDmvB2RfPxYi9b13/TB96tDP2awpGt1vuvnwMzPnogw7vJ7oEeXTwQSacSifkzGqfCzpaylPPJXFl6iRLvl0ZriJx4ErfyHjgXdkabNBfmnCXo5aLYODw8n7t0ugm7Ao44l/EibsPFXPUJW6+QfiEJzyZB2HrYk3EpmfjfL2PjbItzGS9SzySQGhFPgbbFyIxLJ37jJRyLumLjbIcpPYuELVfwfrooSikDRvfv7Tp4idmL/iIsxM9SlpyayYGj1/i4e20qlvXnRkIan476g3ZvLWLnr12ws7Nh1e+n+HnlUZZ+05GTZ6/zzoA1NK5XHF9vFxKS0vnfiN9ZMLndQ/M8ACxYsIAPPviAqVOnUr9+faZOnUrLli05cuQIcXFxDBw4kBUrVqC1pnXr1jRr1owKFSqQlZVFt27dmDJlCs7Ozv/8i/KR5NQkShYuQ8sG7flqWq9c9cum7rbaPnb6EH1Hv0Gj2q0Bc8iu27aMcZ/O48KVMwz9+mNqVXwSL48CJKUkMnHel4zo/W3+eR2kJUNQCNRtBzP75q5fPQPWfAdvDIeCJWH5ZBjTBYasAWc3c5v5Q2D/Bug+Fty8YcFQmNgdBi4BG1v4cwGcDYd+C+HQJpjRC8btAKXMYb12FvT/Jffvvo8enndkAUBWchbnvzlDkS7FsHW1tZSnXUnFubALbqEeuJfzwKmwM2mXUwGIXncNpyBn3Mt5GNXt/8SxuDvudQJwKu3Bnd4WMq6k4BTiiWNhV+w8HHAu64V9QWcyrprPcDKvp+EQ5Iq9vzPOIZ7YONiQdSMDgMQd13Aq44ldAcc8HNF/F5+QRtdPVjLlyxZ4eeb02dPdkeXfPkfHlmUJKVGA6hUDmfh5U46fjuXYafOswPHTMTSoWYSqYQV5/ulQ3N0cOHvBPCswaPxmOrUJJbS0ryHj+q/Gjh1Lly5d6NatG6GhoUyaNInAwECmTZvGsWPHqFixIo0aNaJx48ZUrFiRY8eOATB+/HjCwsJo0qSJwSP49+pWaUSPzn15qtbT2Kjcb90+Xv5Wj81711IksCRVQmsDcPbSSaqE1ia0ZEWa1n0GV2d3LkedB+DrBSNpXu9ZShQOydMx/a2KDaFDb6jeEm4fr9bms9RW3aF6CygcAl1HQmoS7FxubpOcAJsXwfN9oXx9KFYe3hwNF47DkW3mNpdOQeXGEBQMjV6GhFhIjDXXzRsEbXuCh88DHaaE8EPmwtyzeFbzxi3UOlCdgpxJu5JKekw66dFppF9NwynIifToNKI3XiOwU2GDevzg2Ae6kBaZSFaCOVjTLyeTGZ2KQ1Hzp2B7XycyrqVgSs0i41oKOlNj6+lA+pVk0i8m41bN7+8On6/0HLSWdk1DaFi76D+2TUhKB8DbwwmACmX82B9+levxqew/fIXU1ExKFvVm18FL/LnrHB93q/1A+36/paens3fvXpo1a2ZV3qxZM7Zt20aFChWIiIjg3LlznD17loiICMLCwoiMjGTy5Mm5pqcfRcmpSazfvpy2T3W2lJUuGsqxM39xIzGeY6cPkZaRSlBAccJP7GPfke282u5dA3v8L0Wfh/goc7je5OAEIdXh1H7z9tlwyMqwblMgEAJLwcl95u0iZeHEXkhPhfDN4OkPbgVg9ypIS4H6HR74UGQ6+iESsymK9GtpFHmzeK46p0LOFOwQxOkxEQAU7BCEUyFnTo87QcFng0iKSOTq0ktok6bgs0F4VvXK284/AB4NCnLjj8tEzT1h+Tjp0aAgTsXdAXAs6oZTGU9iFp5G2dng2aQQyt6GG39cxuPJQFKOxpH0VwzKzgaPBgVxCHQxcDR3N2vhX5w+F8e3w1r9Y9v09Cz6jfyDVg1LEVTQ/Dw0qV+CTm1CebLTPJyc7Ph6aEvcXOx5f9A6JgxsyvdLwpny/V5cnOwZ3a8RtasEPegh/b9ER0eTlZVFQECAVXlAQADr168nNDSUoUOH0rRpUwCGDRtGaGgoLVq0YMiQIWzevJmBAwdiMpkYPHgw7dq1M2AUD9a6rUvJyEin5RMdLWW1Kj1J83rP8uaANjg6ONG/xxhcnFwYNbMfH78xlJWbFvLz6pk4OTjzUZcvqBBS3cAR/IP4aPOfHrfN4Hj4Qlz29TDxUeYpZ7cCudvciDL/XL+j+cx4QEvzdPXbEyAlARaNgl6zYekk2LnMvM9rg80Bfp9JCD8kUq+kcmXxJUr9rww2dneewPBp6IdPw5yzu+vbzdOR7uXcOdbvMKX7lQENJ4cdx7V0eew87POk7w9K8l+xpF9JxqtVEWzd7Um/lEzC1qvYujvgWMx8Nuxe0x/3mv6WfRL3RGFf0AXlaEPirmv4dCpJZkwacWsu4PdKMMo2n6yHZYs4E8ugCZtZO7czDg62f9s2M9NE1/+tJC4hjQVTnrWq++zdenz2bj3L9ojp26lZuRAe7o4MnryV7b+8yuGIaF7ptZzDa7r94+/KD25fu9RaW8p69OhBjx49LHXz5s0DoEmTJoSEhLB9+3ZMJhP16tUjIiICf39/HiXLfv+JJ6o3w/u2qdSuHT+ia8ecC41m/zqR8sFVcXNx59uFY5k9bBWnzh+n/4R3WDRhC/Z2Dnnd9X8n1/q1vkPZ7U003FzgsrOHlwdZ18/uB092hiunYPdKGPAr7FoB334MAxbfp47nkBB+SCSfTCQrMZOIgYdzCk2QFJFIzB9RhE2tgo19TjhnJmZyZcklSn0cQtLpJBwDHHEqZL4QxTHAkeTTSXhU9srjUdw/OtNEwo6reDUvglMJ8xmfva8TmdGpJB2IsYTwrTLj0kg5GofP8yVJORaHfSEXbF3tsXW1R2dpMuPSsPdxyuuh/K1dBy4Rcz2Fmu1mW8qysjRb91xg5s8HubbnAxwd7MjMNNHl4xUcPhHNb7M64eN194uOTkTG8v2v4Wxd9Co/LD1MvWqFKejnRkE/N9IzsoiIjLW6+Cu/8fX1xdbWlitXrliVX7t2LdfZMUBMTAwDBgzg999/Z8eOHQQHBxMaGgpAcHAwO3fupE2bNnnS97wQEXmYY6f/4q1Od7iY6RbnLp9m5R8/M2vYKlb/+QuVy9bE1zsAX+8AMjMzOHfpNKWKls2jXv9LntlnwPFR5inmm27E5Jwde/qBKcu8xut+y4eRhBgIqXHn4x7fCZHh8MqXsHCkeV3a2Q1qt4W5AyAlMeeir/tEQvgh4VnVC5firlZl52dF4hjgiH+rQJSd9ae/ywvO49vIHwdfR1LOpaCzcm470Jka/fDcqXRH2qTBRO6rGhTZn3Rva681N/64jHvdAGwcs8/yTDl13DxePtO6cWl2hr1mVfb2Z79Rqpg3fbrXwsHeloyMLF7rs4KjJ6NZPbsTAX6udzmaeazvD1rHkD5P4unuiDZpMjNNlrrMTBOmrHxyi8pdODg4UK1aNdatW8dzzz1nKV+3bh0dOuRew+vVqxc9e/akePHiHDhwgIyMDEtdeno6WVlZedLvvLJs448E+hWmRlj9u7bRWjNy5qe8+9JnuLl4YNImMrMyLXWZWZlkmfLx8+JbxByyR7ZCiYrmsow0OLEHnvvEvF0sDGzt4fBWc4iC+Yrny6egdNXcx8xIg+8/N1/gZWsH2gRZ2W8KmdmvmQfwxikh/JCwdbHD1sX6r8vG0QZbVzurW5UAEo7cIPVSKoVfLw6ASwkX0q6kcuNAHFqbr6R2KZE/1z9vZUo3kRVvvshIA6bEDDKiUrFxssXW3R77Qi4kbr+GsrcxT0dfTCbleDzudXOfDaUcjUM52OJUynxBm0OgC4k7o0i/lExmTCrYKOy889/Um5eHE14e1mfnLi72eHs6UT7Yj8xME6/0Ws7e8CssnPIsCsXVqCQAPNwdcHayXnKY88shPD0ceaap+SrYOlWDGDx5K9v2XiA8Igo7OxuCS3jnzeD+H3r16sUrr7xCzZo1qVevHtOnT+fSpUtWU9AA69ev58iRI3z33XcA1KhRg+PHj7N8+XJMJhPHjx+nZs2aRgzhX0tOTeLClUgATNrE1ZhLREQexsPNi4K+5nX81LQU1m5dyktt3vrbW42W/zEfdxdPGtZsCUDFMjX4dtFYDh7bzanzR7GztaNYofu//vmvpCbBtbPmn7UJYi/BuSPg6gU+haDJa7Bymvn2pIASsGIqOLpCrexZDRd3aNDRfEbr4WPeb8EwKFwGytXN/fuWT4GwBjmhHlwN5g+Feu1h92ooFAwu9/8OEwnhR4wp3cTFeeco9lZJlI35H6G9twNBrxTjwvfnQEPQq8Wwz4eBc7uMqBSuLzlr2U7cFUXiriicynri1TgIr2aFSdxxlfh1FzGlZmHrbo97LT9cKliHSFZyJol7ovFpX9xSZu/vjGs1X66vPo+Ngw1eTYJQd1lrz88uXk1gxcaTANR/7nuruumDW/Dys2GW7avRSYz8egfr571gKasaVpDe3WrxwgdLcXd14NthrXIFd37UqVMnYmJiGDx4MJcvXyYsLIxVq1ZRrFgxS5uUlBTeffdd5s+fj62tefYjKCiI6dOn06NHD7TWfP311xQqVMioYfwrx07/Rc/BOVc7z1w0lpmLxtLyiY7072G+4nvD9uWkpiXT6snn73qc2Pgo5vw6memDcu5/DS1ZkVfavkO/cd1xcXJlwDvjcHQweGkmMhxGvZyzvXSi+VH3WfPZasvu2V/G8QUkxUPJStBrlvV0cefPwMYOpn8IGakQWgfeHGW+YOtWFyLMV0QPWpZTVrU5ROyBUa+AV4D5dz4AKt98O8ojwqW4qw4eGGp0Nwx1bd/D9U1ED8LJd/75SuZHnWu5UUZ3wXDbfjr3z40ecfVS0o3uguH0G6XvOi3x8H30F0IIIR4REsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhjkoQhhpVSAUmqCUuqUUipNKXVRKbVaKdUquz5SKaWzH6lKqfNKqV+VUm3ucKwQpdQSpVS0UipBKbVDKdUiu27QLce526N4Hg9fCCHEIyrfh3B26O0DmgOfAhWBJsBKYPotTb8EAoEQoDMQCfyqlJp02yFXAE5AY6AKsAVYqpQqBYzOPsbNx3FgzG1l5+/zEIUQQjym7IzuwD2YCiigutY68Zbyo0qpH27ZTtBaX8n++RywVSl1FPhaKbVYa/27UsoXCAbe0lofBFBK/Q/4CKiitV4EWH6HUioTSLzluEIIIcR9k6/PhJVSBYAWwOTbAhgArfX1fzjETOA60CF7OwY4CryilHJTStkC3YEEYOt967gQQghxD/L7mXBpzGfBR//LzlrrLKVUBFAye1srpZoCvwI3ABMQC7TUWl++P10WQggh7k1+D2F1n46hAZRSCvP0dgzQAEgB3gR+UUrV0Fpf/E+/QKnumM+ocff3oHHxRveh2w+vObuWGN0FwykbR6O7IPKBS8duGN0F4xVzMroH+Vq+no4GTmAO0ND/snP2dHMIcDq7qBHQBnhBa71Va71Pa/0OkAS8/l87qbWeobWurrWu7uzl/F8PI4QQ4jGTr0NYax0LrAHeU0q53V6vlPL6h0O8CXgBi7K3XbL/NN3WzkQ+fy6EEEI8eh6G4HkH85TyHqXUc0qpMkqpskqpt4G/bmnnrpQqqJQqopSqq5QaB0zBfFHXpuw22zGvAc9SSlXKvmd4FOY14xV5OCYhhBAi368Jo7U+o5SqCvQDRgBBmNd0DwJv3dJ0YPYjHYgC9gDttdbLbjlWdPYXcwwBNgL2mC/6aqe13pcHwxFCCCEs8n0IA2Rfudwz+3Gn+uL/4lh7MH/xx720DbvX4wohhBD/1sMwHS2EEEI8kiSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDGJndAfEne36cQcnt5zg+vlYbO1tKRhaiPpvNsC3hJ+lzZoRqziy9rDVfgVDA3lh8suW7U1TN3J47WHsneyp/+YThDYpZ6k7te0kexbs4vnxL6CUevCD+pfifjiDKTEzV7l9URfcWwaR+PsV0iMSrOps/Z3wfLaIZTtpWxTpETdQdjY41/LBMdjDUpcemUjqweu4ty2cL8cPMGTynwydstmqzN/XlTObPyQjI4svJmxi7eZTnDl/HXdXB56oVZyvej1FkUKelvafDF/HD0v+wsXZni97NaJzmzBL3arfIxj77XbWzXs13z4HdzN16lRGjRrF5cuXKV++POPHj6dBgwYAjB49mlGjRqG15pNPPqF3796W/fbv30/nzp05cOAAzs7ORnX/bx05u4dl2+dw+vIRridc4522X/FU5XaWeq01CzdNY/2+RSSm3iA4qAJvtvyMIv6lLW0yMtOZu240W8NXk56ZRliJWnRr9Rk+HgUt9dOWf86e47/j5ebLm60+o2LJOpb9V+38gYiLB/mw/cg8G7eV47tgzUw4exjirsLrw6F+h5x6rWHZJNi0AJLjoWQleGkQBAXntMlIg59HwK4VkJ4KoXXg5UFQIDCnfvZncGA9ePqZ68rVy9l//Rw4fQC6j3tgw5QQzqcuHDxPpbaVCShTEDRsm72FXz7+mde+ewMnj5w3jqJVi9Hi01aWbVs7W8vPp7ad5NjGo7Qf8RxxF6+zdtRvFK9RHGdPF9KT09k07Xee+erZfPvm69G+COicbVNyJjd+OY9DSXdLmV2QM26NCuY0sskZS3pkIuknE3B/Oois+AyS/riKfWFXbJxt0ekmkrdH494iMN+O/6aQEj6snpPzwcrW1tzf5NQMDhy5Qt+36lExNIAbCal8OnID7brPZ+eSbtjZ2bDq9wh+XnmYZd++wMmz13n7sxU0qV8SX28XEpLS+GT4en6e8ly+fw5ut2DBAj744AOmTp1K/fr1mTp1Ki1btuTIkSPExcUxcOBAVqxYgdaa1q1b06xZMypUqEBWVhbdunVjypQp+TaAAVLTkynqV5onK7Zh8pLPctUv3fYdy3fM4d1nBlPIpziL/pzOV/O6M+Hd5Tg7ugIwa80I9hz/nQ/aj8DdxYs5a0cx7Kf3GNFtAbY2tqzft5DTl48w5I157D+5hQmL/8e3vf9AKUV0/BVW7JjLsDd/zOOR3yItGYJCoG47mNk3d/3qGbDmO3hjOBQsCcsnw5guMGQNOLuZ28wfAvs3QPex4OYNC4bCxO4wcAnY2MKfC+BsOPRbCIc2wYxeMG4HKAWxl2HtLOj/ywMdpkxH51PtRzxH+RYV8C3hh29JP1p8+jQp8SlcDL9o1c7W3hbXAm6Wx60BHXsuhsKVilKwTEHKNgrF0cWB+MvxAGyd+SehTcrhU9w3T8f1b9g422HjkvPIOJeMcrDBoaSbpY2yVVZtbJxyPoRkxaVjX8gZOz8nHEu7oxxsMCVkAJC8KxqHYHdsvR3zfFz/lq2tDQX93CwPvwLmN1lPdydWfPciHVuVI6SED9UrBjFxUEuOnYrm2OloAI6diuGJGsWoGlaI558uj7ubI2cvxAEwaNwfdG4TRmhpv7v96nxr7NixdOnShW7duhEaGsqkSZMIDAxk2rRpHDt2jIoVK9KoUSMaN25MxYoVOXbsGADjx48nLCyMJk2aGDyCv1c1+AlebPwBdco1y/UBSWvNyp3zaFevK7VDm1LUP5h3nxlCSnoSW8JXApCUmsDG/Yt5pWkvKpWqS8nAcvRsN4xzVyM4dHoHABeiz1A9pCFF/EvTvEZnbiTHciP5OgDfrh7Cc0++jaerT94O/FYVG0KH3lC9Jajbokpr81lqq+5QvQUUDoGuIyE1CXYuN7dJToDNi+D5vlC+PhQrD2+OhgvH4cg2c5tLp6ByY/PZc6OXISEWEmPNdfMGQdue4PFgnwMJ4YdEenI62qRxcneyKr8UfpHpHaYw69VvWTdmDcnXkyx1fqX8uRpxhdSEVK5GXCEzPROvIG8uH7nE+QPnqfli7bwexn+mtSbtWDwOwe4o+5yXbeaVVK7POU3c/EiSNl3FlJIzfW3r40hmVBqmtCwyo1LRmRobT3syr6aQeSkF5yoFjBjKvxZ54Tqln5xAuSaTea3Xr5w5f/2ubRMS0wHw9jC/TiqU9Wff4ctcj09h/+HLpKZmULKoN7sOXGTTzrN83L3eXY+VX6Wnp7N3716aNWtmVd6sWTO2bdtGhQoViIiI4Ny5c5w9e5aIiAjCwsKIjIxk8uTJjBkzxqCe3x/X4i4QlxhNpZJ1LWWO9k6EFq3G8fMHATh9+QhZpkwq3tLG17MgQX4lOX7hAADFA0I4dn4/aRmpHDy1FW83PzxcvNl2+DfS0lOspr/znejzEB9lDtebHJwgpDqc2m/ePhsOWRnWbQoEQmApOLnPvF2kLJzYa56qDt8Mnv7gVgB2r4K0FOvp7wdEpqMfEn9M2YhfaX8CyxWylBWvUYLSDULwLOhJ/JV4ts3awqI+P/PitFewc7CjeI0ShDYpx4/vfI+dox3NP2mJvbM968etpfGHTTn82yH2L96LnaM9T/VsTKHyQQaO8O9lXkjGlJCJY9mctU77Iq44lHDDxt0eU0IGKbtjSFh+EY8ORVC2NjgUcSUzOJUbi8+j7BRuTwWg7GxI+vMaLg38STt+g9RD11F2NrjU88O+YP6bnqxesRBfD21DSEkfomKSGTl9C41enMOeZd3x8XaxapuensWnI9fT6qlgggqa176b1i9F5zZhPPH8LJwc7ZgxrA1uLg70HLSKiYNa8v2vB5kydxfOTvaM6d+c2lUKGzHMfyU6OpqsrCwCAgKsygMCAli/fj2hoaEMHTqUpk2bAjBs2DBCQ0Np0aIFQ4YMYfPmzQwcOBCTycTgwYNp166dAaP47+ISYwDwdLM+Q/Ny8yH2xrXsNtHYKFs8XLyt2ni6+hCXaJ4learys5y9GsFH09rh4eLFRx1Hk5yWwA8bxtP/5Rks3DSNzYdW4uXmw1utPyfIt2QejO4exZvHgMdtM3kevub1YzCHtI2tOVRvb3Mjyvxz/Y7mM+MBLc3T1W9PgJQEWDQKes2GpZNg5zLzPq8NNgf4fSYh/BDYNHUjl8Iv8Pz4F7GxzTkLLNMo1PKzb0k/AkIKMvPFrzmz8zTBDUIAqPNaPeq8lnO2s3PedgLLFcLR1ZHts7fy0ozXiDkTxYovltH1h+7Y2udM5+YnqcduYOvniJ1vzvSxY+mctWF8HLHzcyLuxzNknE22TFm7VPfBpXrOm1XKvljsApxQDjak7InBs0NRsmLTSFx3Ga8XS6Bs89faaPMnSltt16wURPlmU/hh6SHe71LLUp6ZaaLrJ0uJv5HKz1Oes9rns/ee4LP3nrBsj5i2hVqVg/Bwd+SrSX+yfXFXDp+I4uUPf+HIuvdwcMifr4Hb3Wma9mZZjx496NGjh6Vu3rx5ADRp0oSQkBC2b9+OyWSiXr16RERE4O/vn3cdv08UucfPP63t3/Ic2dna82ar/lbV05Z/TpOqHbkUfYath39jRLcFbAlfxaQl/Rj+5vz72v/7Itd47+054OZzZ2dvvhjrVrP7wZOd4cop2L0SBvxqvrDr249hwOL71PEcMh2dz/0xdSPHfj9Gx9Gd8Crk9bdt3XzdcPNzJ+7Cnacrr5+PJfy3QzTo9iTnD5wjqGJh3HzcKFa9BKbMLK6fj30AI/j/M6VkkhGZiGOo59+2s3G1w8bVjqwb6Xesz4pLJ+1YPM61fMm8lIJdoDM2rnbYF3EFk7k+v3NzdaBcaT9OReb8XWVmmujS51fCj19jxayXcp0h3+rEmRjmLj7IV70b8efOs9SvXoRAf3ea1CtJRoaJiMiYvBjG/4uvry+2trZcuXLFqvzatWu5zo4BYmJiGDBgANOnT2fHjh0EBwcTGhpK+fLlCQ4OZufOnXnV9fvCK/sM+OYZ7U3xSbF4Za/hern5YtJZljVeS5vk2Luu8x6O3M3py0doW7cLh87spGrwEzg7utKgwtOcunSYlLSkO+5nCM/sM+D4KOvyGzE5Z8eefmDKylnjvSkhJvcZ9E3Hd0JkODTvCkd3mNelnd2gdluIPAQpifd1GCAhnK/9PnkDxzccpePoThQo+s8XB6TEJ5MYnYCrj2uuOq0168et5Ym3GuLo5ojWGlOmyVJnyjRhMpnu+xjuh7TjN8BW4VjK/W/bmVKyMCVlYuOSe4JHa03S5mu41PbDxtHW/GnYpC11mLTVldj5VWpaJsdPR1PQz3ymn5GRxau9FhN+/BqrZr9kKb8TrTXvD1rN0I8b4+nuhMmkybjlNZCRmUVWVv58DdzKwcGBatWqsW7dOqvydevWUbdu3Vzte/XqRc+ePSlevDgmk4mMjAxLXXp6OllZWQ+8z/eTv1dhvNx8+ev0dktZemYax87to0yRSgCUDCyHrY2dVZuYG1e4GHWaMoUr5zpmRmY636wazFtPf46tjR0aTZbJfH1FZpb5+TLpfPQ8+RYxh+yRrTllGWlwYg+UqmLeLhYGtvZw+JY2sZfh8ikoXTX3MTPS4PvPzdPOtnagTZCVfY1JZvZrRt//fx8yHZ1PbZywjqPrj9Dmy3Y4uTuSFGv+BGbv7ICDswPpKensmLOV0g1CcPVx48aVeLZ++ycuXi6Urh+S63jhqw7h6OZomaYuFFaY7bO3cvHQBaJPR2FjZ0OBIvnvQiXzBVk3cCxlvrrZUp5hImVPDPYl3LBxtcOUkEHyzhiUsx0OxXMHUdqxG1ZXVtsFOpO8J5aMyylkxaaBjcLWyz7PxnWvPh25nlYNgylSyJOomCSGT9tCckoGL7WrSGamiZc/WszeQ5dYOPV5lFJciTK/TjzdHXF2sh7PnEUH8HR35JlmZQGoW60wgydtYtve84Qfv4q9nS0hJQy8GvZf6NWrF6+88go1a9akXr16TJ8+nUuXLllNQQOsX7+eI0eO8N133wFQo0YNjh8/zvLlyzGZTBw/fpyaNWsaMYS/lZKezJXYc4D530B0/GXOXDmGm7Mnfp6BPF3rZRZv/oYg3xIE+hTjl80zcHJwoX7Y0wC4OrnTqEp7vl8/Fk/XArg7m29RKhoQQoWSuS/IXPTndCqXqkvpIPM95GWLVGHO2pE0rPQM2w+voYhfaVydPHLt90ClJsG1s+aftQliL8G5I+DqBT6FoMlrsHKa+fakgBKwYio4ukKtNuZ9XNyhQUdYONJ8hbOrFywYBoXLQLncH9ZYPgXCGkCJiubt4GowfyjUaw+7V0OhYHC5/8+BhHA+dXDZAQB+6fOzVXntV+tS57V62Ngoos9Ec2TdEdISU3Et4EaRykV4emBbHFwcrPZJik1i1w/b6TThRUtZwTIFqfFCLZZ/vgR7Fwda/O9p7BzzXwhlXkrBFJ+B4633AgMoyIxNJy3iMjo9CxsXO+wKOePWtKBVWIP5/uLUfbF4tMv5Eg87Pyecq3iTuPYyyl7hmn3RVn5z6UoCXfosISYuGV9vF2pWCuL3+V0oGuTJ2YtxrNgQAUD9jt9Z7Td9aGteebaSZftqdCIjpm9lw4+vWsqqhhWid/e6vNBzEW6uDnwzom2u4M6vOnXqRExMDIMHD+by5cuEhYWxatUqihUrZmmTkpLCu+++y/z587G1Na9zBwUFMX36dHr06IHWmq+//ppChQrd7dcY5vSlwwya+4Zl++dNU/l501SerNSW954ZwjN13yA9I41vVw8hKeUGpYMq0P/lry33CAN0ad4XWxtbxv3yMekZaVQoUYv32g3F1sZ6zf/ctRNsO7KGUd0XWspqhTbh6Ll9fDH3DQq4B/DuM4Mf/KBvFxkOo3Luj2fpRPOj7rPm25Fadjefvf7wBSRlf1lHr1k59wgDdP4MbOxg+oeQkf1lHW+OMl+wdasLEeYrogctyymr2hwi9sCoV8ArwPw7HwCl9UMwB/cQCShTUL807dV/bvgIm/PzEqO7YLjzHz5vdBcM51LWgDfufGbR5+FGd8FwzxVz+udGjzj9Rum7Xi2W/z76CyGEEI8JCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQzy2IawUqqLUirR6H4IIYR4fD22ISyEEEIY7R9DWCn1h1JqmlJqjFIqVikVpZT6QCnlqJSaopSKU0qdU0q9css+FZRS65VSKdn7zFZKed5SP1sptSL7OBeVUteVUrOUUi63tHFUSo1XSl1VSqUqpXYoperf1reySqllSql4pVSiUmp79u9+QimVoZQqeFv7IUqpv5RSDYFZgKtSSmc/BmW3cVBKjVBKXVBKJSmldiulmv/H51cIIYS4q3s9E34JSABqAcOB8cASIAKoDswBvlVKFcoO0t+ARKAm8CxQF/jutmM2AMKAJkCn7HYf3FI/Mrv8DaAKcAj4TSkVCKCUKgRsATTQFKgKTAFstdZ/AqeAV28eTCllk709E9gGfAgkA4HZj9HZTWcBTwIvAhWyx7ZcKVXpHp8rIYQQ4p4orfXfN1DqD8BRa10ne1sB14DtWuu22WX2QBLm4PLGHGiFtdYJ2fUNgd+BYK31SaXUbKAxUEJrnZnd5pvs7SZKKVfgOvCm1npudr0t5tD/SWvdXyk1BHg5+5jpd+h3H6Cr1jo0e7sl5g8OhbTWMUqpLsBkrbXbLfuUAk4AxbXW524pXwJc0lq/c5fnqDvQHaBQkULVthza+rfP6aNu8dZVRnfBcK/bDzW6C4bTG7oY3QXDXW3xvtFdMFz50zeM7oLh9Bul1d3q7vVM+C/LwcypfQ3zmenNsgzMoekPhAJ/3QzgbNsAE1DulrIjNwM426Xs/QFKAfaAJc201lnA9luOUQXYcqcAzjYHKKmUqpu9/QawRGsd8zfjrAoo4Ej29HZi9sVbT2f36Y601jO01tW11tUL+Pj8zeGFEEKIHHb32C7jtm19lzIbzCF2t9PrW8vvtj/Zx7i9/e3HuOsnCwCtdZRSahnwhlLqONAWaPN3+2T/fg3UuEP/Uv5hXyGEEOJfeRBXRx8BKiml3G8pq5v9u47e4zFOAumA5UKs7OnoOtnHB9gH1FdKOfzNcb4BngfeAq4C62+pSwdsb2u/H3O4F9Ran7ztcfEe+y6EEELckwcRwj9gXh+ee/NKZeBrYLHW+uS9HEBrnQRMA4YrpVoppUKztwOAqdnNpgJuwM9KqRpKqdJKqReUUpVvOdQ6IAb4HJiltTbdUhcJOCmlmiqlfJVSLlrriOz+z1ZKdVRKlVRKVVdK9VFKtf9vT4cQQghxZ/c9hLXWyUBzwAPYBSzFvJb7xr881CfAz5ivVj4AVARaaK0vZ/+ei8ATgAPmi772Az0Byzpz9vr1LMzry7Nu6+c2YDrwExAF9M2uej277UjgGLAi+/ec/Zf9F0IIIf7WP64Ja60b3qEs7A5lBW/5+RDmq5/vdswudygbBAy6ZTsN821EH/7NcQ4Dre5Wny0Q2KC1jrzD/m8Db99WlpHdj0G3txdCCCHup3u9MOuhk/3lINUw3xv8vMHdEUIIIXJ5ZEMY8zR4TWCm1nql0Z0RQgghbvfIhvCdptGFEEKI/ET+AwchhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQO6M7IP6bKWOmMOar0bzS7RW+GPUlAN9MmsGMiTNAw1sfvMWbPbtZ2h8+eJj3u/Zk5eZVODk7GdXtf2XDz2s4tO0AUReuYWdvR9GyxWn12jMEFi9kaTN/7Fz2bNhptV/RMsV5f+zHlu1l3/zC7vU7cHBy4Okuz1D1qZqWusM7D/H7orW8O7IXSqkHP6h/acTcG4ycl2BV5u9tw9EFgbnafjTuOnNXJ/NFNw/ee87dUt5/ehw/rUvGxdGGgV09eK6xi6Xut+0pTPw5kZVjffPN+LedP8eUXTs4eOUyVxITmdSqNS9UqGSp11ozcutm5h7cT3xqKlUDCzGyaQvK+vlZ2qRlZvL57xtYfPQwqZmZNChWnFFNW1DIw8NS/+FvK1l9IgJ/VzdGNWvBk8VLWPafsWc3ey5dZEbbdnk27r/zzQ8TWLd5FZHnT+Jg70jFclX5qNtnBJcItbSZ+N1w1v6xnCtRF7G3cyA0uAI93/gfVcJqWNqMmDKQJWsW4OLkwkfdPqN1046Wut+3rWHmT5P5fuKy/PFaOL4L1syEs4ch7iq8Phzqd8ip1xqWTYJNCyA5HkpWgpcGQVBwTpuMNPh5BOxaAempEFoHXh4EBQJz6md/BgfWg6efua5cvZz918+B0weg+7gHNkwJ4YfQ/t37WTBnPmXLl7WUHQ0/yrih4/h2/kw0mjc7daV+owaULV+WrKwsPv3gU74Y/eVDE8AApw6doO7TT1AkuBigWTNvJTM+m8jH0wfg4u5qaRdcuSwv9H7Vsm1nn/OyPrzzEPv/2E33we8RfTGKBRPmUaZqOVw93UhNTmXZN4t4fWCP/PGmcxelC9uxbLSvZdv2DvNXy/5MYX9EBgV9rCt/257CL7+nsGiYL6cvZvL+mOs0qu6Ij6ctCckm+n8dz7wvfPLV+JPS0wn19aNT+Qq8u3JZrvpJO7czdfdOJrdqQ+kCBRi9dQsdfv6RHW/2wN3REYDPNqxj9ckIZrRph7ezMwM2rufFXxaw4bWu2NrYMPfgfg5eucJvL3dh/elTvLV8CUff+xClFBdv3GDa7p2sffX1vB76Xe06sI0XnulCWNnKaK2ZPGskXXs/x7LZm/Hy8AagRJHS9P9gGEGBRUlLS2Xuoq9565POrPp+O74F/Pl92xpWbljMN6MWcPbCaQaM/Ih6NZ/C29OHpORERkwZyOQhc/PPayEtGYJCoG47mNk3d/3qGbDmO3hjOBQsCcsnw5guMGQNOLuZ28wfAvs3QPex4OYNC4bCxO4wcAnY2MKfC+BsOPRbCIc2wYxeMG4HKAWxl2HtLOj/ywMdpkxHP2RuxN/go24fMnzSCDy9PC3lp0+comz5stR9si71nqxH2fJlOX3iFACzpn5HmdAQ6jesb1S3/5PuX71HzaZ1CCxeiMDiQbzQ+1USbyRy5shpq3Z29nZ4FPC0PG4N6Gvnr1CqYghFgotRpWF1nFyciLkaA8DqOcuo+lRNChbNfVaZn9jZQkABW8vD18vWqv781Uw+nRbH1596Y29n/QYacT6TehUdqRLiQIenXHB3seHslSwABs+6wXONXChbzD7PxnIvmpYqTf8nn6Jt2VBsbgsErTXT9+zig1p1aFOmLKF+/kx+ug2J6en8cvQwADfSUvnhrwMMatiYhiVKUqlgINNaP8Pha9fYFHkGgIiYaFqUDqasnx9dq1YjOjmZmJRkAPqu+42+9Rvg5+pKfvHNqAU82/IFgkuEElKyHMP6TeF6fAz7w3dZ2rRp2pHa1Z6gSKHilC5Rlr7vfElSciLHTpqfl9NnT1Czcl3CylTm6cbtcXN148LlcwCM/3YIbZp2pHTxMoaM744qNoQOvaF6S1C3RZXW5rPUVt2hegsoHAJdR0JqEuxcbm6TnACbF8HzfaF8fShWHt4cDReOw5Ft5jaXTkHlxuaz50YvQ0IsJMaa6+YNgrY9wcPngQ5TQvgh89mH/WjxTEvqPlnXqrxMubKcOXmGi+cvcvHcBc6cPENIaBkunL3A3G/m0m/IZwb1+P5JS0lDmzQubs5W5WeOnOLzFz9heLcvWDjxBxLicqZvC5UI4vyJsyQnJHPhxDky0jLwDfTj7LEznDwUQePnm+f1MP61s1eyKP/CZaq8coU3h8QSeTnTUpeZpek27Dq9X3SnTNHcYRpW0p4DJ9KJSzBxICKdlHRNyUJ27D6azpYDaXz0gnuuffKzs/FxXEtKomGJkpYyZ3t76hQuwu6LFwA4cOUKGSYTT5XImV4O8vAgxMeXXdltyvsHsPPCeVIyMvj9zGkC3NzwcXZhydEjJGdkWE1/50fJyYmYTCY83L3uWJ+ekc7CFd/j5upO2dLlAShTqjzhxw8SnxDH4eMHSU1LpWhQCQ4e2cOu/Vvp9tIHeTiC/6fo8xAfZQ7XmxycIKQ6nNpv3j4bDlkZ1m0KBEJgKTi5z7xdpCyc2Gueqg7fDJ7+4FYAdq+CtBTr6e8HRKajHyLz5/zE2dNnGfP12Fx1pcuUps/Aj3n12VcA+PjzvpQuU5ouHV6j94A+7N62m3FDx6K1ptdnvWnWulled///bcnXCylUsjDFyua8AZepVo4KdStToKAPsVdj+e375UzvN4GPJnyCnb09ZaqVo+pTNZnw0QjsHRzo3OsVHJ0dWTT5Jzq+25nd67ezecnv2Ds68GyP5yleruTf9CDvVSvrwOQ+XgQXsScqLouxPybQ8sMotn7jTwEPW4bPvUEBdxveaON2x/0bVXfiuUYuNOl5DScHxZQ+3rg6K3pPuM6YD7z4cU0y039NxMVRMfxdT2qWd8zjEf471xKTAPC/7SzV39WVywmJ5jZJidgqhY+zi1UbP1dXriWZ93+pQiWOXLtGvZlfU8DZhZnPtOdGWhpfbfqdhZ1eYOSWP1l05DD+rq6Ma9GKYB9f8pNhk/pTtnQYlctVtyr/Y/ta+nz5FqlpKfj5BPDNqJ/xLeAPQP2aT9GmaUc69WiOk6MTQ/83CRdnVwaN+ZiBvUaxZPV8vv9lBk6OzvR7f6jVWnK+Ex9t/tPjtr8XD1/z+jGYQ9rG1hyqt7e5EWX+uX5H85nxgJbm6eq3J0BKAiwaBb1mw9JJsHOZeZ/XBpsD/D6TEH5InD5xitFfjmbB6p9xcHC4Y5uX3niJl954ybK9ZMGvANRrWI/G1Rrxy7rFmEwmnmvekaq1NuLrl7/eWP7Osm9+IfLIad4d2QubWxZFqzyZ8yYUWDyIwqWLMOT1ARzddZgK9SoD0Pylp2n+0tOWduvnr6ZY2RI4uTqzZt5Kek36lMuRl5g7/Fv6zfzSak3ZaE1q3rqGb0/1UAeqvXqV+WuTqRTiwE9rk9k0zf9vj/HJqx588qqHZXv0DzeoEeqAh6sNw+fe4I9p/hw9k8Hrg2PZP7cgDvb5ZE3wbyhun6Y2L+P9HU1OG3tbW0Y2a2FV/8HqFbxauQonYmJYcuwoG157g8VHD/P2imWsf+2N+9j7/58RUwayL3wn309chq2t9dJEzcr1+OXbjcTFx7BoxTx6f9GdH6esxM8nAIB3u3zMu11yLlqc/v1YKpevjrurO5Nnj+CXbzYScfoovb54kzU/7sbB/s7vNflGrr/0e3khaLj5+rGzN1+MdavZ/eDJznDlFOxeCQN+NV/Y9e3HMGDxfep4DpmOfkjs27Wf2JhYWtRpTrBPaYJ9SrNz607mfTuPYJ/SpKWlWbW/HnudsUPGMnjsEA7s3k/xUiUoXaY0IaEhFC9VgoN7DhgzkP9g6YxF7N+0hx5D38cn8O8/OHj6eOHp603UpWt3rI+6eJVda7fz9OvtOPlXBCXLl8ajgCdlqoaSlZFF1MWrD2II942bsw1li9tx6lIWWw6kcTXWRLnOV/BvcRH/Fhc5fzWLL2beIOzFy3fc/+SFDH5ck8znb3qy+UAadSo4UNDHlqeqO5GRCScvZN5xv/zC3818Bnw1KdGqPCo5ybKG6+/qRpbWljXem6KTkvBzufM679ZzZ/nryhXerVmbzWcjaVqqNO6OjnQsF8aBK5dJuO3fl1GGTxnAqo2/8t3YXyhSqHiuehdnV4oFlaBSuep81Xc8dnZ2LFr5wx2PFXn+FL+u/ole3Qewa/9WqlWsg59PAPVqNCQjI4PI8ycf8Gj+Hzyz3wfio6zLb8TknB17+oEpK2eN96aEmNxn0Dcd3wmR4dC8KxzdYV6XdnaD2m0h8hCkJN55v/+H/PORX/ytZk83o0KVClZlfd/tS/FSxXmn1zu5zo6H9BvMq91fo3Cxwhw5dITMjAxLXUZ6OllZpjzp9//Xkq8XcuDPvbw97EP8ixT8x/ZJ8YnciInDo4BnrjqtNYsm/USbru1xdnVGmzRZWVmWuqysLEz5/HlJTdecOJ9J/UqOdHnalbYNrNfHO/aLpsNTLrzS0iXXvlprek+I44vunni42qA1ZGTm1GVkarJMOi+G8Z8V8/TC39WVTZFnqBpovlUtNTOTHRfOM+ipxgBULlgQexsb/og8Q8dyYQBcunGDiJhoagYVznXMtMxMPl77G5OfboOdjQ1aazKzXxcZJvOfJm388zJs0mes/n0Js8b9Ssmiwf+8A6C1ifSM3B8gtNYMGtuHPj0G4e7mgUmbyMzMsNRlZmaQZcrH/xZ8i5hD9shWKFHRXJaRBif2wHOfmLeLhYGtPRzeag5RMF/xfPkUlK6a+5gZafD95+YLvGztQJvg5vtB9nODvv/PiYTwQ8LDywMPLw+rMhcXZ7y8PSlTzvqKxi1/bOHE8ZOMmDISgIpVK3L65Gk2rF6PyWTi9MnTVKqWvy88AVg8dQF7N+6iy4DuOLs5cyM2HgBHZ0ccnZ1IS0ll7Q+rqFCvMh4FPIm9GsPqOctw83QnrE7u8e1auw1nNxfLNHWJ8qVYM28lZw6f5NKZS9ja2uJfOCAvh/iPBs6Ip3ltJwr72RIVZ2LMjzdIStV0buqCn7ctft7W05H2dgp/bxuCi+S+SGveb8l4uNrQpr45uGuFOTBs7g12hKdx+HQG9naK0oWNv1I6MT2dM9fNZy8mrblw4waHrl7B29mZwh6e9Khek7HbtxJcwIdSBQowZttWXB0c6BBqvgDJw9GJlypWZtDvG/BzcbXcolTe39/qXuCbxmzbwlMlSlpCvVbhIvTfuI7OFSqy9NhRyvr64elk7K19X43/H8vXLWTiV7PxcPciKtY80+Pi7IqrsyuJSQnMnD+Zp+o0w9cngOtxMfy05DuuRF2mRcO2uY73y6of8HDzpOkT5mWaqhVqMXnWSPYe2knEqSPY2dlTosj9X//8V1KT4NpZ88/aBLGX4NwRcPUCn0LQ5DVYOc18e1JACVgxFRxdoVYb8z4u7tCgIywcab7C2dULFgyDwmWgXN3cv2/5FAhrkBPqwdVg/lCo1x52r4ZCweDikXu//ycJ4UdMakoqn/cZyMSZkyzrRQULFWTw2CH079UfrTVDxg0lIDB/hc2dbFv5JwBf95toVd70xVY0f+lpbGxsuHz2Ens27iQ1KQV3bw9KVwzhlf91xcnF+k0z4foN1s//jfdG9baUFQkuRqPnmzF78Dc4OjvyQu9XsXfMX2tgl6Ky6DY0ltgbJnw8bage6sCaCX4UCfh3/3SvXc9izI8JrBqX84UWVUIc+LCTO69+EYubs2JaX2+cHY1fDz5w5TLtfppn2R6x5U9GbPmTzmEVmfx0G3rWqkNKZiZ91/1m/rKOQkEsev4Fyz3CAIMbN8XOxoY3l/5KamYGDYoVZ+rTbbG1sV6BOxp1jV+PHeGPLm9aylqXKcuOC+dp99MPBLq7M/npNg9+0P9g/tJZAHTt3dGq/J3X+vBul4+xtbXlVORxfl39E3E3ruPl4U1YmcrMHb+EMqXKW+0THXuNr78fz7xJyy1lYWUq0+3F9/lgwOu4urgyrN9knBytZ1nyXGQ4jHo5Z3vpRPOj7rPms9WW3c1nrz98AUnZX9bRa1bOPcIAnT8DGzuY/iFkZH9Zx5ujzBds3epChPmK6EG33JdetTlE7IFRr4BXgPl3PgBK54NplkdJhSoV9bI/cn/BwONk8dZVRnfBcK/bDzW6C4bTG7oY3QXDXW3xvtFdMFz50zeM7oLh9Bul7/rpVi7MEkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEeixBWSs1WSunsR4ZS6ppS6nel1LtKKfvb2pZSSs1USp1XSqUppSKVUouUUnWN6r8QQohH02MRwtnWA4FAcaAZsBz4AtislHIFUEpVB/YB5YF3gHJAW2AvMCnvuyyEEOJRZmd0B/JQmtb6SvbPF4EDSqm1mEO3r1JqEDAbOA3U01pn3bLvX0qpaXnZWSGEEI++x+lMOBetdTjwG9ABqIz5DHjUbQF8s21cnnZOCCHEI++xDuFsR4CSQHD29lED+yKEEOIx8jhNR9+NAnT2n//tAEp1B7oDFClahEJugfepaw+n2qWrGd0Fwzmpd4zuguHiw3cb3QXDFejqbHQXjHf6htE9yNfkTNh88dVpICJ7O/TfHkBrPUNrXV1rXd3Pz+++dk4IIcSj67EOYaVUGNACWAQcwDw1/bFSyvYObb3ytHNCCCEeeY9TCDsqpQoqpQoppSoppXoBf2C+/Wi01loDrwOlgK1KqdbZ9wxXUEr1xXyLkxBCCHHfPE5rwk2Ay0AWEAeEY75P+GutdTqA1nqXUqoa0A+YDvgDV4BdwHsG9FkIIcQj7LEIYa11F6DLPbY9gfmMWAghhHigHqfpaCGEECJfkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQjif2vznZjq060DJoiVxsnNi7py5udqciDhBp46dCPAJwNvdm9o1anPs6DFLfd/efQn0C6RU8VL89ONPVvuuXL6Sp554Cq31Ax/L/TB3+mzql6nN2C9HW8pio2MY8r8veaZ+axpXepJeXT/kfOQ5q/0mDRtPy5rNaP9kW9Yu+82qbsvGzbz9Qvd89Rxs2X2G53p8T+n6w3EN+YzvF++zqtdaM2TiBkrVH45Phc9p8fK3HDlx1apNWnomvb9cTtGaQ/CrNIjnenzPxSvxVvVd+yykYJUvqdRsLBu3nrTaf+rcbXTpteDBDfJfqrlxDYVWLsn1eGXXdgA+PLg3V13rrZusjjHoyCHKrV1JtQ1rWHzxvFXd2quXeWbbn/nqdfBPJkwbTWCIB/2+6G0p01ozeuJQKtcPoUQFf9q/3IrjJ45a7ff50E8JrVGUak+E8ssy67/jtRtX07Zzs/zzPBzfBRPfgt71oWswbPnFul5rWDoRetWDHmEw8iW4eMK6TUYa/PAlfFAT3q5oPl7sZev6b/rAu5WhX1M4stV6//VzYMZHD2R4N0kI51NJiUmUK1+O0eNG4+zsnKv+zJkzPPXEUxQvXpzf1v3G3oN7GfTFIFzdXAFzyC6Yv4AVq1cwdPhQ3u7+NtHR0QAkJCTwcZ+PmTp9KkqpPB3XfxF+IJzlPy+lVJnSljKtNZ+++wkXIs8zbOoIZv06l4JBBfnw9fdJSU4BzCG7bsVaxs2cwNsfv8fw/sOIi40DIDkxiUnDJtD3q0/z1XOQmJROueAARvVvjbOTfa76sd9sZuKsLYwZ0Jo/f3kHPx9X2rw+i4TENEubvkNWsmTtYWaN68TaH7uRkJhGh+5zycoyAfDd/N0cOHyRjT+/xeudavB6758tb7wXLscxadZWRn72dN4M+B6srteQA41bWB5r6jdEAW0KBVnaNPD1s2rzfY06lrq1Vy/z66UL/FSzLv3LlqfPX/uJSTc/X4mZGQw6Es6oCpXz1evg7+w9sIsfFs6hXJkwq/Ip34xn+qzJDB4witW//IGvjx+dXn+GxMQEwByyv65YyE/fLaF/3y/p81lPYmJjAEhMTODzof9j1OCJ+ed5SEuGoBB44TNwcMpdv3oGrPkOXhwA/ReDuw+M6QIpiTlt5g+BvWug+1j430+QmggTu4Mpy1z/5wI4Gw79FsITnWBGL3O4gzms186Czv0f6DAlhPOpFq1a8NWQr2jfoT02Nrn/mj4f8DmNmzZmxOgRVKlahZIlS9KiVQuKFCkCwLFjx3jiySeoVr0anTp3wsPDg8gzkQAM7D+QF158gdByoXk5pP8kMSGRL/t8zv+GfIa7p7ul/HzkeQ4fCKfXoL6Uq1ieoiWL0WdQX9JS01i/ci0AZ09FUqVmVcpWCKVp62a4urlw+cIlAL4eN41mbZtTonQJQ8Z1Ny0aluGL3s14tkUYNjbWb4Zaa6bM2Urv7k/QrnkY5UMCmDGiI4lJafy84iAA8QmpzFm0lyF9W9C4XmmqlA/i21EdCT9+lY3bTgFw/PQ1WjUKpVxwAG+9VJvo2CSirycD8NEXy+nXszH+Pm55O/C/4ePoiL+Tk+Wx8dpV3O3saB1YyNLG0cbGqo23g4Ol7kRiInUK+FLJy5tngwrjZmfP+WTzeIcdO0L7oMKEuHvk+bj+ixsJ8bzb+03GDpmMp6eXpVxrzTdzpvJe949o3fwZyoaUY8KI6SQmJbJ4xUIATpw6Tt2a9alcoSrPtn4ONzd3zl+IBGDY2C/o0LYTZUqXNWBUd1GxIXToDdVbgrrtPVBr81lqq+5QvQUUDoGuIyE1CXYuN7dJToDNi+D5vlC+PhQrD2+OhgvH4cg2c5tLp6ByYwgKhkYvQ0IsJMaa6+YNgrY9wcPngQ5TQvghZDKZWLViFaGhobRp1YbCBQtTr3Y9Fv680NKmYsWK7N27l+vXr7Nv7z5SUlIoVboUO3fsZNMfm/jk008MHMG9GzlgGA2bP0W1OtWtyjPS0wFwvOXN1sbGBgcHe/7aaw6k0mWDORZ+jBvxNzgWfoy01DSCihUm/EA4+3bu49W3uuTZOO6HyPPXuRqVSON6wZYyZyd76lUvzo595mn4/eEXycjIonH9nDaFA70oW8qPnfvOAlChbCDb954lJTWD9ZtPUNDfHV9vF35ZdYik5HReaV81bwf2L2it+en8WdoHFcHF1s5Svis2hgrrVlH/j3X0+Ws/0Wk5MwPlPTz4Kz6OuIx0/oqPI9WURXFXV/Zej2VbTDTvly5jxFD+k4/7f0DrFu2oX+dJq/Jz5yO5FnWVhvUaWcqcnZypXb0ue/btBKBc2TAOhu8nLv46B8P3k5qaSvFiJdl7YBdbd27m/R598nQs/y/R5yE+yhyuNzk4QUh1OLXfvH02HLIyrNsUCITAUnAye5mnSFk4sRfSUyF8M3j6g1sB2L0K0lKgfocHPhS7f24i8ptr166RmJjIyOEj+fyLzxk8dDB//P4HXV7pgquLK61at6Jp86a88OIL1KtdD2dnZ76d9S1ubm689857TJoyiTmz5zB54mRcXFwYO34sderW+edfnMeW/byEC+cuMGDkoFx1xUoWp2BQQb4eN41PvvoUZxcXFsz+iWtXrhETZZ5iq9WgNs3aNqdbxzdwdHLksxEDcXFxYdTA4fQZ1JeVi1ewcM58HJ2d+Kh/bypUrZjHI/x3rkabpxX9fa3PUv193bh09UZ2m0RsbW3w9XaxauPn68bVaPM03asdqhF+7ArVWk3Ax8uF78d3Jj4hlYGj17Bs1usMnbSBBcsPEuDrzqSv2lGmlF8ejO7ebIqO4lxKMi8WKWYpa+gXQMuChSjq7ML5lGRGHj/Kczu28Fv9hjja2tLQL4D2QYVptWUTTra2TKhUFVdbOz45dIDhFSqz4PxZvjlzCmdbWwaXr0iNAg/2zOe/mrdgNmfOnWbSqBm56q5FXwPA19ffqtzP15/LV82zP081aEKHtp1o2aEhTk7OTBgxHVcXN/oO+JARX4xn/uJ5fDN7Ks7OLgwZMIoaVWs9+EH9V/HmpTU8fK3LPXwhLvsaifgosLE1h+rtbW5EmX+u39F8ZjygJbh5w9sTICUBFo2CXrNh6STYucy8z2uDzQF+n0kIP4RMJvPaXuu2rfngow8AqFS5Env37mX6tOm0at0KgAGfD2DA5wMs+w0bMoxatWvh6enJV4O+YufenYQfCuelzi9x7OQxHG45qzTaudNnmTF2OlN+mI69Q+61UTt7OwZPHM7wz4bQqlZzbG1tqVanBrWfsP4w0bVnN7r27GbZnj31O8IqV8DN3Y2ZE2cwa8n3nI44xYAPPmPhhsV3/F35ze1Ldlrzz+t4Wlv2s7e3ZdygtlbV7/RbzOudahBxOopfVh1iy+J3WbjiIG9+vJDNi9+5j73///nxXCSVPb0Iu2Uqtl2hwpafQz08qejpRc2Na9lw7Sqtsqes+4SE0ickZ/ll/InjVPMugIedHaMijrGuwVMcTbjBW/t2s6NRMxzusARkpJOnTzBs7Bcs+XHN3/47vf11oLW2Kuvzfj/6vN/Psj1u6kiqVamJh7sHoyYMYf3SrRyNOEz3919l58ZD+eo94Y5yve71Hcpub6KB7DZ29vDyIOv62f3gyc5w5RTsXgkDfoVdK+Dbj2HA4vvU8Rz565Um7omvry92dnaEhlqv6ZYtW5bz58/fcZ8TESeYM3sOQ4YNYdMfm6jfoD6BgYE0bdaU9PR0Io5H5EXX71n4gUPEXY/j1TYv8WS5ejxZrh4Hdu3n1x9/4cly9UhPT6dsWFlmL/2e3/asZ8mWFYydOZ74uHgCCxe64zHPnTnHyl9W8PbH77Jv514qVa+Cr78vNevXIjMjg3NnzubxKP+dAF/zmvjVqESr8qiYRMsaboCvG1lZJssab06bpLuu827edYb9hy/xYdf6/LH9NM0blsHdzZFObSuzL/yi1UVfRopOS2PN1cu8VLT437Yr6ORMoJMzp5MT71h/KjGR+efP8lnZ8myNiaZ2AR8CnJxo6OdPujZxKvtCpvxk74FdxF6P4anWtSgc6k3hUG+279rC7B+/pXCoN95e5rO9qCjrK+WjY6Lw8/G/0yE5deYE8xfNo//HX7B155/UrlGPAP+CNKzfmPSMdE6dOXHH/fIFz+wz4Pgo6/IbMTlnx55+5guwbq7x3pQQk/sM+qbjOyEyHJp3haM7zOvSzm5Quy1EHrK+6Os+kRB+CDk4OFC9enUiIqyD88SJExQtWjRXe6017779LsNHDsfT0xOTyURGRoalLiMjg6ysrDzp+71q0ORJ5i7/gVlL5loeZcNCafx0U2YtmYu9fc4Zq5u7G94FvDkfeY7j4cdo0PiJXMfTWjNq4HDe+6Qnbu5uaJMmKzPTUpeZmWmZYcivihfxJsDPzeqWotS0DLbtOUvtqua/9yphQdjb21q1uXglnmOnoqhVtViuY6alZ/Lh50uZ/FU77OxsMWlNRqb5eUjPML8msvLJ87LgwjkcbGx55parou8kJj2NK6kpBDjmvqJWa80nhw4wMDQMD3t7NJoMbbLUZZpMZOWXW3Ru0aLJ0/y+Ygfrl261PCqFVaHd0x1Yv3QrpUqUxt8vgE1bf7fsk5qWys4926l+h2llrTV9B37IwE8G4+Ge+z0hMzMz370nWPEtYg7ZW28pykiDE3ugVBXzdrEwsLWHw7e0ib0Ml09B6Ttc95CRBt9/bp52trUDbYIs83sEmebnBn3//y3IdHQ+lZiYyKmT5qtZTSYT58+d5+CBg3gX8KZo0aL0+rgXL3V+iXr16/HUU0/xxx9/sHDBQhb+sjDXsWZ9NwsvLy/aPdsOgLr16vLloC/ZumUr4YfCsbe3J6RMSF4O7x+5e7jj7uFuVebk4oSHpwclQ8zrMhtXb8DL24uAoIKcPn6KCUPH0qDJE9Ssn/tNZ8WiZbh5uPNks6cAqFitEt9OnMHBPQc4dfwkdnZ2FC2R+wNMXktMSuPUWfOatsmkuXApjoNHLlHAy4Uihbx497V6jJr2ByEl/ShdwpeRU3/H1dWB51tXAsDT3YnXOlbjsxGr8SvgSgFvFz4dtoqwMgE0qpt7PWv4lN9p3CCYahXNU7p1qxXjk6GrePnZKixeHU5osD9eHrlvkctr5guyInmmUBBudjkfwJIyMxkdcYynAwsR4OjI+ZRkhh07gq+jIy0LBuY6zo/nz+Jhb2+Zpq7p7cOoiGPsjI3h6I147GxsKOXmnms/o3l6eOHp4WVV5uLiipenN2VDygHQ7bV3mDBtNKVLhlCqRGnGTx2Jq6sr7Vs/l+t4Py6ci4e7J083Ny9L1KxWh1EThrJzz3aOHg/Hzs6OUiWDc+2Xp1KT4Fr27JQ2QewlOHcEXL3ApxA0eQ1WToOCJSGgBKyYCo6uUKuNeR8Xd2jQERaONF/h7OoFC4ZB4TJQrm7u37d8CoQ1gBLZ14YEV4P5Q6Fee9i9GgoFg8v9v4peQjif2rtnL82bNLdsf/XFV3z1xVe8/OrLfPvdt7R9pi1Tpk9h5PCR9PmoD6WDSzNz9kxaPt3S6jhXr15l+NDh/P5nzifkatWr8fEnH9OpYyfc3N34bvZ3d7wXOb+LiYpm8vAJxMbE4uPnS4tnWtLlnTdytYuNjmHOtFlM+ynngpayFUJ55a3X+Oy9/+Hs6kL/kZ/j6HSHexHz2L7wi7R8ZaZle/DEDQyeuIGXnq3CjBEd6dWtAampGXz05TLi4lOpUakwy757HXc3R8s+I/q1ws7Whtc+mk9KaiYN65Tkm5EdsbW1nvg6HHGVX1YdYvvS9yxlzzQrx9Y9kbR6dSaBAR58M6Ljgx/0PdgWE83ppCQmVba+St5GKY4l3GDRxXPcyMjA38mJej6+TK9awyqsAaLSUplw8jhL6+bMlFTy8qZnqRC67t2Jm60dkypVw9nWNk/GdL+92+1DUlNT6Pdlb+Lj46hSqTrzv1uC220fKqKirzF+2iiW/bTWUla5QlV6vtWLN959ETdXdyaNmoGzk8HvCZHhMOrlnO2lE82Pus+ab0dq2T37yzi+gKR4KFkJes0yTx/f1PkzsLGD6R9CRiqE1oE3R5kv2LrVhQjzFdGDluWUVW0OEXtg1CvgFWD+nQ+AyjffjvKIqFa9mt62c5vR3TDUnlMHjO6C4aqoDUZ3wXDxH+02uguGU+Nyf9Pd4yZw89V/bvSI02+UvuvVYrImLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGeWxCWCk1WymllVL9bytvmF3uq5Qqnv1z9VvqXZRSvymlziilgvO+50IIIR5Vj00IZ0sF+iql/O6lsVLKG1gPBAH1tNYnHmTnhBBCPF4etxD+HYgEBvxTQ6VUIeDP7M0ntNaXHmC/hBBCPIYetxA2Af8DeiilSv1Nu9LAVuAC0ERrfT0vOieEEOLxYmd0B/Ka1nqVUmorMATofJdmc4C9QFutdcY/HVMp1R3oDlAwqCB/XTt0v7r7UBqxYpLRXTDcgrYVjO6C4QJX/Gp0Fww37bWdRnfBeE/6GN2DfO1xOxO+qS/w3K0XYN1mKVCTu4e0Fa31DK11da11dS8f7/vVRyGEEI+4xzKEtda7gV+AEXdpMhLoB8xWSnXJq34JIYR4vDx209G36AccAVrcqVJrPVIplQHMVErZaa2/zdPeCSGEeOQ9tiGstT6plJoBfPA3bcZlB/HXSilbrfXXeddDIYQQj7rHNoSzfQm89ncNtNaTlVKZwNTsIJ6aN10TQgjxqHtsQlhr3eUOZdcA91uKogF1h3bTgekPrHNCCCEeS4/lhVlCCCFEfiAhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiJ3RHRB3F301mslDJ7Ntw1aSk5IJKhrEJ8M/oWqdagAkJyUzZegUNv32B/HX4wkoFED7VzvwYvcXLccYN2gcK39egZOzE+999h4t2re01G1e+ydzp8xlxpJvUErl+fhuF3PqKqf+OEr8hVhSb6RQuVNtitQsZanXWhOx9hBnd5wkIzkd72I+VGhfA/eCXpY2WZlZHFm2j4v7z2LKzMS3dEEqdKiJs5eLpf7gzzu4Gn4BR3dnKnSogV9IoGX/05uPEXc2mqov18+zcf+dwRPXMXTSBqsyf183Irf3ByAxKY2BY35j2drDxMYlU6SQF2++UIuerzewtP9k6ArmLd6Li7MDX/VpQednqljqVm44wthvNrH+px754jXwb0ydOpVRo0Zx+fJlypcvz/jx42nQwDzu0aNHM2rUKLTWfPLJJ/Tu3duy3/79++ncuTMHDhzA2dnZqO7/KyZTFisPfsuuM78RnxyDp4sPNUo05+lKb2JrY34b11qz8uC3bD2xlOT0BIr7lqNTrY8p5FXScpxFu8ez49QqHOycaFf1HWqWbGGp++v8ZtaFf0+vFl/nj9fC8V2wZiacPQxxV+H14VC/Q0691rBsEmxaAMnxULISvDQIgoJz2mSkwc8jYNcKSE+F0Drw8iAoEJhTP/szOLAePP3MdeXq5ey/fg6cPgDdxz2wYUoI51MJ8Qm8+UxXKtWszLjvx+Pl48XFsxfx9i1gaTN+0Dh2bd7FoIlfUKhoIfbv2M/Qj4fgVcCLVh1bsXntn6z59Tcm/jSJ86fPM7j3V9R+sg5ePl4kJSYxbtA4Rs8ekz/+wQGZ6Zm4B3pRuHpJ9v+0LVf9qd+PcGrTUSp3roObnwcR6w6x/euNNPqkDXZO9gAcXrKXK4cvUO3leti7OnJk2V52zfyDJz5qgbKx4dz2k8RfiKX++825dvQS+37YSrNBHVBKkXI9idObjtHggxa5freRQkr68du87pZtW5ucv69Phq3k960nmTm6E8ULe7Nl9xne/WwxPt6uvNiuKis3HGHB8gMsm9WVU5HR9Ph0EU0ahOBbwJWExDQ+GbqShdNfzTevgXu1YMECPvjgA6ZOnUr9+vWZOnUqLVu25MiRI8TFxTFw4EBWrFiB1prWrVvTrFkzKlSoQFZWFt26dWPKlCkPTQADrD38PZuO/8Kr9QYQ5F2Ki9dPMmfrV9jZOtCq4hsArDv8PRuO/MSr9foT4FGMVX99x6R17/N5uwU42bvy1/nN7Dmzlp5NJnAt4Tzztg2hXKHauDl5kZqRxC97JtDjqVH557WQlgxBIVC3Hczsm7t+9QxY8x28MRwKloTlk2FMFxiyBpzdzG3mD4H9G6D7WHDzhgVDYWJ3GLgEbGzhzwVwNhz6LYRDm2BGLxi3A5SC2Muwdhb0/+WBDlOmo/Op76fOxdffly8mfkH5KuUJKhpEzQY1KRFcwtLmrz1/0apDK6rXq06hIoV4+rmnCasaxuF94QCcORFJtTrVKFepHM2fbY6rmyuXzl8EYOqwqbRo35KSISXv+PuNEBAaRGiryhSqVDTXG4HWmtN/HqN0o/IUqlgUj0AvqrxQh8y0DC7sjwQgIyWdc7tOUa51FfzKBOJVuABVXqjLjcvXiYq4AkDCtXgKliuMe0EvitcPIT0xjfSkNAAOLd5NmWYVcHR3ytNx/xM7WxsK+rlbHn4+bpa6nfvO8kK7KjxZuxTFChfgpWerUbNyUXYfPA/A8VNRPFGrJNUqFOb5NpXxcHMi8kIsAJ+P/Y3Oz1QmNDjAkHH9f4wdO5YuXbrQrVs3QkNDmTRpEoGBgUybNo1jx45RsWJFGjVqROPGjalYsSLHjh0DYPz48YSFhdGkSRODR/DvnL52iAqF61OxSAN83ApRscgTVCzcgMiow4D538fGowtoFvYKVYo1opB3KV6tN4DUjGR2n1kLwJX4SIILVqWYbyg1SjTDyd6F6MRLACzdN40aJZoT6FXirn3IcxUbQofeUL0lqNuiSmvzWWqr7lC9BRQOga4jITUJdi43t0lOgM2L4Pm+UL4+FCsPb46GC8fhSPaH/EunoHJj89lzo5chIRYSzf8+mDcI2vYED58HOkwJ4Xxq02+bKF81jH5vfUrzCs14qcmL/Pzdz2itLW0q1azM5nWbuXrRHDB/7T5IxOEIaj9VB4Dg8sEc/esoN+JucPSvo6SlplG4eBEO7T3E3m17eP391w0Z23+RHJtIWkIq/rdMHdva2+FT0p/rkVEAxF+IRWeZ8CuT08bZ2xU3f0+uR0YD4FHIm5gzUWRlZHLt2GUcPZxxcHXk0oGzZKVnWk1/5xdnzsdSqv5QQp8awasf/siZczGWujrVirNq41EuXI4DYMe+s/x19BJNG4QAUCE0kH2HLnI9Ppl94RdISc2gVDEfdu0/x587TtO3x1NGDOn/JT09nb1799KsWTOr8mbNmrFt2zYqVKhAREQE586d4+zZs0RERBAWFkZkZCSTJ09mzJgxBvX8vyvlX4mIK3u5Eh8JwOW4Mxy/sofyQeZ/6zGJl7iREkNooVqWfRzsnCgdUJnT1w4BUNg7mHMxx0hOu8G5mGNkZKXh716YM1HhRFzdR4sKXfJ6WP9d9HmIjzKH600OThBSHU7tN2+fDYesDOs2BQIhsBSc3GfeLlIWTuw1T1WHbwZPf3ArALtXQVqK9fT3AyLT0fnUxXMX+WXOIl7o9gKvvdeFiMPHGd1/NADPv/E8AH2+6sPwT4bRpkYbbO1szWWDP6ZBU/O6WJ2GdWjRviVdWr2Go5MjAyd8jourC8M+Gcb/hn/K8gXLmf/NTzg5O9FncB8q1qhkzGDvQdqNVAAcbjtLdXRzIjU+BYDUhBSUjcLB1dG6jbsTqQnmNkVrliLh0nV+H7kCB1dHqr1Sn8zUDI6uPEDttxpxfM1fXNwXiaOHExU71sI9wDMPRnd3NSoVZcaI5wgp6UdUTCIjpm7kqU7T2LvqI3y8XRkzoA09B/5KyBPDsbMzf6YeM6AtrRqFAtC0QQidn6lMg/ZTcHayY8bI53BzcaTnwMVM/PJZ5v6ylymzt+Ds7MDYgW2pXbWYkcO9J9HR0WRlZREQYH0GHxAQwPr16wkNDWXo0KE0bdoUgGHDhhEaGkqLFi0YMmQImzdvZuDAgZhMJgYPHky7du0MGMW/0yzsFVIzk/hq6QsoZYNJZ9GiQheeLNsRgPgU8wczD6cCVvt5OBUgLtn8IbVcUG1qlGjOiFVvYG/ryKv1BuJo78KPO4bzQq2+bD+1go1H5+Ng68TzNXtTyr9i3g7y34g3f6jGw9e63MPXvH4M5pC2sTWH6u1tbpifE+p3NJ8ZD2hpnq5+ewKkJMCiUdBrNiydBDuXmfd5bbA5wO8zCeF8ymQyEVoxlHf7vQdAmQplOH/mPItmL7SE8M/fLeDg7oOMmT2GgoUD2b9jPxO/nEChIoHUeaouAN37dKd7n5z1xJnjZ1KhWgXcPNyYMepr5q37gZNHT/LpW5+yZMdS7B3s836w/8IdV6v+aQlLm5d4AGxsbajQoSYVbqk+uGAHRWuXJvFaPJcOnuWJj1pycX8k+3/axhMftrzjIfNK8yfLWG3XrFyU8o1G8sOv+3j/jQZM+34bO/adZeH0VykaZF4T7jdiFcUKe9PsCfO+/d9vSv/3m1qOMXzKBmpWLoaHuxODJ6xj+7L3OXz8Ci+9/wNHN/bFweHheFu405LFzbIePXrQo0cPS928efMAaNKkCSEhIWzfvh2TyUS9evWIiIjA398/7zr+H+yNXM/OU6t5vcGXBHqV4ELsCRbuHoePWyHqBbfNaXj7c4K2ep5aV+5G68rdLNur//qOEn4VcHZwY8WBGfRr/T0X407x7abP+Kr9Yuxs8/f7we3jtfrHfjdaY3nTsLM3X4x1q9n94MnOcOUU7F4JA341X9j17ccwYPF96ngOmY7Op3z9fSlx23pt8eASXMmeek5NSWXKsCn07P8+DZo9QXC5YJ5/43maPtOMedPm3fGYZ0+dZfn8ZfT8rCd7t+6hcu0q+Ab4UrthbTLSMzh76uwDH9d/5ehhPgNOS0i1Kk9LTLWs4Tq5O6NN2rLGa9XG7c4X4USfukrchVhKNQwl+sRVAkKDsHOyJ6hqCeLPx5KZmvEARvPfubk6EhocwMnIaFJSMxg4Zg2D+7bk6cblqFA2kLdfqUvHpysyYebmO+5/4kwUcxftZXDflvy54xT1apQg0N+DJg1CyEjPIuJMdB6P6N/z9fXF1taWK1euWJVfu3Yt19kxQExMDAMGDGD69Ons2LGD4OBgQkNDKV++PMHBwezcuTOvuv6fLd47iSblX6J6iaYEeZemVqmWNC7XmbXhcwHwdDavW95IibHaLyH1Ou63nR3fdPXGObadXMGzVd8l4speSgdUwdPFl3KFapFlyuDqjfz7foBn9hlwfJR1+Y2YnLNjTz8wZeWs8d6UEJP7DPqm4zshMhyad4WjO8zr0s5uULstRB6ClMT7OgyQEM63KtaolCsUz50+S2Bh83pnZmYmmRmZ2Nha/xXa2tpgumXd+CatNcM/GcYHAz/AzcMNkzaRmZFpqcvMzMSUlfWARvP/51LADUd3J6IiLlvKsjKyiD19De/ifgB4Fi6AsrWxapMSl0zitXi8i+f+R5eVmcWhX3ZR6bla2NjaoLXGlGUCsDwX+g7PpZFS0zI4fjqKgn7uZGRkkZGRha3Nba8BGxtMJlOufbXW9BzwK0P/1wpPdydMJk1GZs44MzKzyMrKvV9+4+DgQLVq1Vi3bp1V+bp166hbt26u9r169aJnz54UL14ck8lERkbOB6v09HSy8vHr/qaMzFRsbrs4SSlbTNr89+XjVggPZx+OXd6Vs09WGqeuHaCkfwVup7Xmx+3DaV+tJ84ObmityTLlvB9kmTItx86XfIuYQ/bI1pyyjDQ4sQdKZd+CVywMbO3h8C1tYi/D5VNQumruY2akwfefm6edbe1AmyDL/JyQmf2aeQDPycMx7/QYerH7C3Rt25XvJnxH07ZNOR5+nAUzF/DO/94BwM3djap1qjJl6GRcXF0oWLgg+7fvY9WiVbz3Wc9cx1v641LcPNx5qlUjwHxR14xRMziw8wAnj57Azs6OoqWMXQ/MTMsgKToBML8RpMQlE38xFnsXR1y8XSn5RFlOrA/Hzd8DVz8PTqwPx9bRnsJVigNg7+xA0ZqlOLp8P45uTji4OHJ42T48Ar3xCymY6/edWHcIvzKF8CpqPosoUMKfw0v3UqRGSS4dPId7QU/snR3ybPx38unwlbR6KpQihby4FpPI8CkbSU5O5+X21fBwd6JBzRIMHP0bbq4OFC3kzeZdp/lxyT6G9M09jT574W48PZxo1zwMgDrVi/PVhHVs2xPJoeOXsbezJaSkX14P8T/p1asXr7zyCjVr1qRevXpMnz6dS5cuWU1BA6xfv54jR47w3XffAVCjRg2OHz/O8uXLMZlMHD9+nJo1axoxhH+lQpH6rA2fi49bIQp5leB8bAQbj/xErVLmv2elFI1CO/HbodkEeBQjwKMoqw/NwtHOhRolmuU63raTy3BxcKdKMfOFeaX8K7Hi4AxOXj3AxesnsbWxI8CjaJ6OMZfUJLiWfSKiTRB7Cc4dAVcv8CkETV6DldPMtycFlIAVU8HRFWq1Me/j4g4NOsLCkeYrnF29YMEwKFwGyuX+sMbyKRDWAEpkr4UHV4P5Q6Fee9i9GgoFg4vHfR+mym+f9B92oZXK6bm/zb0vx9qyfgtTh0/l3KmzBAQV5Pkuz/F8106WNZ7oa9FMHTqFnX/u5EbcDQoGFeSZF5/hpR4vW60DxUTF8MbTr/PN0m/xD8xZ+5o9aRY/fv0jLm4ufDLsE8s68v/XVz+N/0/7RZ+8yvZp63OVF65ekiov1Mn5so7tJ8hIScerqC8V2tfAI9DL0jYrI4sjy/dxcX8kWRlZ+AUXpEL7Gjh7u1od88blOPbM/pMnerXCzjH7yw5MmsPL9nJhzxmcPJ2p3LkOXkX+2+0JC9rmPvv4L1798Ee27D5DzPVkfAu4UrNSEQZ+2MxyW9GVqAQGjv6NDVtPcD0umaJB3nR5rgYfdG1g9Rq4Gp3Akx2nsGH+2wQVzLnYbNT035n03RbcXB0Z/8UzlnXk+8G59Cf37Vh3MnXqVEaOHMnly5cJCwtj3LhxPPHEE5b6lJQUKleuzPz586lSJecLSubMmUO/fv3QWjNs2DBee+21B9bHaa/dn6nu1Iwklh+YwcFzm0hIvY6Hsw/VizelVSXzRVaQ82UdW04sITktgeJ+5elcsw+FvK0vJrqREsPIVV3p03IGXi457we/HZrDxiM/4WjvQudaH1uuvP7/eufJ/3iLz7GdMOrl3OV1nzXfjmT5so75kHTLl3UUDslpe/PLOnYuh4ybX9bxRc6Xddx0IQKmvAODloGj+Yt9MJnM9xlvXwJeAebfWTzsPw1Fv1H6rgvVEsL32f0M4YfVfw3hR8n9CuGH2YMO4YfB/Qrhh9l/DuFHyN+FsKwJCyGEEAaREBZCCCEMIiEshBBCGERCWAghhDCIhLAQQghhEAlhIYQQwiASwkIIIYRBJISFEEIIg0gICyGEEAaREBZCCCEMIiEshBBCGERCWAghhDCIhLAQQghhEAlhIYQQwiASwkIIIYRBJISFEEIIg0gICyGEEAaREBZCCCEMIiEshBBCGERCWAghhDCIhLAQQghhEAlhIYQQwiASwrdRSs1WSulbHtFKqRVKqbJG900IIcSjRUL4ztYDgdmPZoAz8KuhPRJCCPHIsTO6A/lUmtb6SvbPV5RS44DlSilnrXWKkR0TQgjx6JAz4X+glHIHOgGHJICFEELcT0prbXQf8hWl1GzgZSA1u8gVOA+00lqH32Wf7kB3gCJFi1Q7cfpEHvQ0/zp5JdLoLhiulGmb0V0wnFOR143uguFiL8jndp+1F43uguH0G6XV3erkTPjO/gQqZz9qARuBtUqpIndqrLWeobWurrWu7ufnl2edFEII8XCTNeE7S9Zan7y5oZTaC8RjPtsdYFivhBBCPFLkTPjeaMAEuBjdESGEEI8OORO+M0elVMHsn72B9wA3YLlxXRJCCPGokRC+sybA5eyfE4BjwHNa6z8M65EQQohHjoTwbbTWXYAuBndDCCHEY0DWhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiIZxPbP5zMx3adaBk0ZI42Tkxd85cq3qtNV998RUlipTAy82Lpo2acuTwEas2aWlpfPTBRwQFBFHAowAd2nXgwoULVvWvv/Y6ft5+hIWGsWH9Bqv9p0yawqsvv/rgBvkfJCUmMvzzoTSt1YhqpSrx0jOdOXTgkKU+rHDZOz4Gf/alpc3IL4ZRt3wtGtdoyIrFy62O/8e6jbzy7ItorfNsTP/W5atxvPnRtxSp/D5ewd2p0ugzNu84bqlfsnovbV4eQ5HK7+Nc9A3+3H4s1zH6fjmfQhV6UrpWb376dbtV3cp1B2jUfmi+fg7uZOrUqZQoUQInJyeqVavG5s2bLXWjR48mICAAf39/xowZY7Xf/v37KVOmDCkpKXnd5f9sxNjB+BRxsXqEVi1uqX/3o+656pu1fdLqGP2/+IRSYUFUqBnMwl/nW9X9tm4lrdo3zl+vgeO7YOJb0Ls+dA2GLb9Y12sNSydCr3rQIwxGvgQXT1i3yUiDH76ED2rC2xXNx4u9bF3/TR94tzL0awpHtlrvv34OzPjogQzvJrsHenRxz5ISkyhXvhwvvfISXbt0zVU/ZtQYJoybwDfffUNISAhDBw/l6RZP89eRv3B3dwegT68+rFi2gjnz5uDj40PfPn1p/0x7tu/ajq2tLTO/mcn+ffvZtGUTa35bQ5dXunDu0jmUUpw/f54J4yewZfuWvB763xr48QAijh5nyLhhFAwsyPLFy+j2wuss3biSgMAA/ti32ap9+F/hvNflbZq3bgGYQ3blkpXM+PFbzp05y4Den1GvYX28C3iTlJjIiEHDmTxrKkopI4b3j+Lik2nUfih1awSzePaH+BVw58y5KPx83C1tkpPTqF2tNC88W4euH32b6xgr1x3g56U7WD6vFycjr9KjzyyaPhmGbwF3EhJT6PvlfBbN7Jlvn4M7WbBgAR988AFTp06lfv36TJ06lZYtW3LkyBHi4uIYOHAgK1asQGtN69atadasGRUqVCArK4tu3boxZcoUnJ2djR7Gv1K6VAjLfv7Nsm1ra2tV/2SDRkwbn/P372DvYPn5t3Ur+WXpAhb9sIzTZ07xfp8eNHqyCT4FfElITKD/F58w77uF+es1kJYMQSFQtx3M7Ju7fvUMWPMdvDEcCpaE5ZNhTBcYsgac3cxt5g+B/Rug+1hw84YFQ2Fidxi4BGxs4c8FcDYc+i2EQ5tgRi8YtwOUMof12lnQ/5fcv/s+kjPhfKJFqxZ8NeQr2ndoj42N9V+L1prJEyfTp28fnm3/LOXDyvPtrG9JSEhg/k/mT7Tx8fHM/m42Q0cMpUnTJlSpWoXv5nzHob8OsXH9RgCOHTtG69atKVe+HD3e6UFUVBTR0dEAfNjzQ/oP7I+/v3/eDvxvpKaksn7VWj76tDc169aiaIlivNu7J0WLF2XB9z8B4OvvZ/X4fc1GipcsTo06NQE4feI0NerUJKxSBVq1a42ruxsXzplnByYMH0fr9m0oFVLasDH+k7HTV1PQ34uZ47tRo3JJihf146n65SgbXMjS5sUOdfnso2do9lSFOx7j2MnLNKhdlmqVStDpmdp4uDsTed789z5w5GJeeLY2oSFBeTKe+2Xs2LF06dKFbt26ERoayqRJkwgMDGTatGkcO3aMihUr0qhRIxo3bkzFihU5dsw8OzB+/HjCwsJo0qSJwSP49+xs7QjwL2h5+Pr4WdU7OjhY1Xt7F7DURZw8Tr3aT1ClUjU6tHsed3cPzp6LBGDwiM95rn1nyoaE5uVw/lnFhtChN1RvCeq2qNLafJbaqjtUbwGFQ6DrSEhNgp3Zs13JCbB5ETzfF8rXh2Ll4c3RcOE4HNlmbnPpFFRuDEHB0OhlSIiFxFhz3bxB0LYnePg80GFKCD8Ezpw5w5UrV2jSNOeNw9nZmfoN6rNj+w4A9u3dR0ZGhlWbIkWKUDa0LNu3m6cfK1SswNatW0lJSWHd2nUEBgbi6+vLooWLSEpK4tXX8tdUdFZWJllZWTg6OliVOzo5sW/X3lztk5OSWL1sJR1efM5SVqZcGQ4fDCc+Lp7Df4WTlppK0eJFObj3ALu276J7z7ce+Dj+P5av2UeNKiV5+Z1pFK3yAbVafM602Rv+1bRhxXJF2PdXJNfjktj3VyQpqemUKubPzn2n+HPbMfq+1/oBjuD+S09PZ+/evTRr1syqvFmzZmzbto0KFSoQERHBuXPnOHv2LBEREYSFhREZGcnkyZNzTU8/LM6eO0P56qWoUjeUN995lcizZ6zqd+zeTpnKxaj5REU+7PsOUdHXLHVhoRU48Nc+4uKuc+CvfaSkplCyeCl279vFlm1/8tF7dzjTzM+iz0N8lDlcb3JwgpDqcGq/eftsOGRlWLcpEAiBpeDkPvN2kbJwYi+kp0L4ZvD0B7cCsHsVpKVA/Q4PfCgyHf0QuHrlKgD+AdZnqf4B/ly6eMnc5upVbG1t8fX1tW7j78/Vq+b9u7zehfBD4VSuUBlfX1/m/TSP+Ph4+vfrz8rVKxn85WDm/zSfgIAApk6fSpmyZfJgdHfn6uZGpWqV+XridEqXCcHX35dVS1ZycO8BihYvmqv9yl9XkJ6ewTPPPWspq9ewAa3bt6Hz08/h5OTIkHHDcXF14Yv/fc7AYYP49efFfP/tXJydnfj0q/5UqV41L4f4j86cj2LG9xvp2bUZfd5pxV9HztFr4I8AvN2l8T0do+mTYbzwbG3qt/kKZyd7vhnbFTdXR3p+OoeJQ19h7s9bmPzdOlycHBjz5UvUqZ5/ZwYAoqOjycrKIiAgwKo8ICCA9evXExoaytChQ2natCkAw4YNIzQ0lBYtWjBkyBA2b97MwIEDMZlMDB48mHbt2hkwin+nWpUaTB47g+DSIURFRzF24ghaPvsUWzfspYC3D40bNqV1y7YUK1KccxfOMnTUl7Tr1IqNq7bi6OhIo4ZNea59Z5q0boCTkzNTxs7A1dWN3v/ryZhhE/nx57lMnzkFF2dnhn85lprVaxs95L8Xb57JwcP6/Q4PX4i7mt0myjzl7FYgd5sbUeaf63c0nxkPaPl/7dx7VJRlAsfxrwu4itxKEQRvmKgoZsrFkFqPRrnUsbDjWa3EyswoxTXITPOSB1ZR05NaibtmbllhYFZ4qXTLMkRJu5xELoqaV4LQTHSwgXn3j9HBEWyzxBe33+cczvF9n2feeZ5x3vc37/PMM/bh6scXguUUZM2DpBXw3mLY/r79MQ+m2gP8ClMIX0Munq8xDON/zuFcWMfNzY2Fixc6lSeMSeCR0Y9QVFhEVmYWuXm5rMpYxaiHRpGzLae+Q15VsxfOZXryFG6L6I+Liwshod2JvecuCnbtrlM3661Mbht0G9e3dD7pxiYnMjY50bG9dOESeoXdhIenBy8+v5jVH66huLCY5Mcm8GHuJtyaNr340Kax2Qz63NiRlGeGAnBTaAf27i9j6Wsf/+oQBpiaFMfUpDjHdtqibPr26Yy3lzspC95l24bnyC86zAOPv0xhzlyaNm38l4ZfOh8SEhJISEhwlK1cuRKAmJgYunTpQm5uLjabjejoaIqLixvVNEx9YgYMctoO7xNJWHQPMjLf4Ikx47n3ntrRn+4hofTq2Zuborrx0ccbGBwbB8CkpKlMSprqqPf8wjQiwiLx8vQibX4qmz/IpaAwn4cTHuCrrQU0bUTnwSXVuf4Z9ey7uIoBnKvj6gYjnnMuXzEF+g+H0hL4Yh1MWwN5a2HZRJj2zhVqeC0NR18D/Pztn/jP3xGfV15W7rg79vPzo6amxjHH66hTXn7JC8xnn37GV19+xZPJT7L5k83Exsbi6enJffffx84dOzl16lQD9ObytO/YnhWrV5JX/CWb8j4hY10m1dXVBLZr61SvML+A/G92OQ1F1+fAvv2sWbWapClPkbd1O+F9w/H1a010/1uwWq3sL9n/i4+/2vxb+xBywfwvQLfObTh0pOI3H3PPvlL+vWoLqZOH8unWAqIju9DGz4eYv4RitVZTvK/09za7QbVq1QoXFxdKS53bWVZWVufuGKCiooJp06aRnp7Otm3bCA4OJiQkhB49ehAcHMz27duvVtOvGI8WHnTrEkLJ/r31lrfxDyCgTSD79pfUW7533x7efPs1ZkxOZUvuZ0T1jcbfrw0D+sdgtVrZW1LckM3//bzP3QGfLHfe/1NF7d2xty/YamrneM87VVH3Dvq8ou1wYBcMegQKttnnpZt7wM13w4FvwVJ5RbsBCuFrQlBQEP7+/k5Liqqqqsj5PIebo+zDRn3C+uDm5uZU5/DhwxQWFBIVFVXnmGfPnmX8uPG8tOQlXF1dsRk2rNVWwD7nBlBTU9OQ3bos7u7u+Pq15uSPJ9n66ecMvGOgU3nmG28T2C6QqFv7XfIYhmEwc9IMkqc+jaeXJ4ZhUF1d7Sirrq7GZrM1aD8uV1R4Z4pLnMNmz/5S2gf+ti+LGIbBuMmvMXvqMLy93LHZDKzVNY4ya3UNNTWN6zW4WNOmTQkLC2Pjxo1O+zdu3Ei/fnX//5OSkkhMTKRjx47YbDasVquj7Oeff25U7/Nfq6qqij0lRfj7+ddbXnH8B46VHsWvdd1ywzBIfiaRmVNn4eXljXHBa2J/D1ipsTXy16RVO3vIXrikyHoW9uyAG3rbtzuEgosb5F9Q5/gxOFYCneuZdrKehddn2IedXVzBsEGN/frAuWsjxpU/Nxr/mNMfRGVlJSV77Z9abTYbhw4e4puvv+G666+jffv2jBs/jjmz59C1W1eCg4NJm5WGh4cHw+8bDoC3tzcPjXqIKZOm4Ovr61ii1PPGngyMGVjn+Wal2ufMwiPCAegX3Y+JyROJHxlPVmYW3Xt0x8fH56r1/1JyNm/BZjMI6tyJgwe+Y37qPDp2CiJu2L2OOhaLhXVrsnn48dG/ODy/+q0sPL28uP1O+xd6ekf04cXnF/Fl3k6KC4pwdXWlY6egBu/T5UgcfQcDhsxizuJshg6O5OtdB3n51f8w8+na/h//sZJDR45z8qczAJQcKMPbyx0/X2/8W3s7HW9Fxha8vZoTFxsGQL+IYFIWvEtOXjG7Cg/j5upClxvqv7A3JklJScTHxxMZGUl0dDTp6ekcPXrUaQgaYNOmTezevZvly5cDEBERQVFREdnZ2dhsNoqKioiMjDSjC5dlespkBsXcSdvAdpRXlDF/YRqnz5xh+NARVJ6uZO6CfzD4zjj8Wvtz8PB3pKRNp1VLX+766911jrUyYwVeXt6OYeq+EVHMnp/Ctryt5Bd8i5urG507dbnKPaxH1Wko+87+b8MGx4/Cwd3QwgdaBkDMg7BuiX15kl8QrH0Z/twC+g62P8bdE24dCplz7d9wbuEDq2ZD267QvZ4P69kvQeitEHSjfTs4DDJmQfS98MUGCAgGd68r3k2FcCOxc8dOBsXUzvukzEwhZWYKI0aOYNnyZSRPTMZisTAhcQInTpwgIjKCtRvWOtYIA8ybPw9XV1fi74/HYrEwYOAAXlnxSp31hPm78snKzCJvZ55jX9yQOHI+z2FQzCACAgNYtrzuelMznDpVyQtpC/j+WCnePj7cHns74yc9iZubm6POB++vx3LGwpC/DbnkcX4o/4F/LlrC62vecuwL7dWT0ePG8PfR42jh0YLZC+fSrHmzBu3P5QrvFcTb/xrHjLmrmb0om3YBLZmeHMdjI2s/WK3b+DVjkpc7tp+YtAKAZyfc7TQP/H35SdIWZ/PxO1Mc+8J6BTHxibsYPuZFPFo045UXHqV5s8Y/Fzhs2DAqKipITU3l2LFjhIaGsn79ejp06OCoY7FYGDt2LBkZGY5zIDAwkPT0dBISEjAMg6VLlxIQEHCpp2k0jh47wqPjHuT4iQpaXt+K8D6RfPjeZtq1bY/FYmF3YT6rVr/JyZ9+xK+1P7dE9Wf5kpV4eng6Haes/HvmL5rD+ndqR8x69wpjwtinGPnocDw8PFjywrLGsYb6wC6YN6J2+71F9r9+Q+zLkWLHnPsxjplw+iR06gVJr9auEQYY/iz8yRXSJ4C1CkKiYPQ8+xe2LnS42P6N6Ofer93XZxAU74B58eDjZ3/OBtCkUf1Cyv+BsPAwY+v2rWY3w1R7Sw+Y3QTT3WD7Y78HAJq1e9jsJpju+OFr51e5GkrLj46Y3QTTGaM6X3KITnPCIiIiJlEIi4iImEQhLCIiYhKFsIiIiEkUwiIiIiZRCIuIiJhEISwiImIShbCIiIhJFMIiIiImUQiLiIiYRCEsIiJiEoWwiIiISRTCIiIiJlEIi4iImEQhLCIiYhKFsIiIiEkUwiIiIiZRCIuIiJhEISwiImIShbCIiIhJFMIiIiImUQiLiIiYRCEsIiJiEoWwiIiISRTCIiIiJlEIi4iImEQhLCIiYpImhmGY3YZrXpMmTcYAY85tdgWKTGxOY9DBMAxfsxshItLYKYRFRERMouFoERERkyiERURETKIQFhERMYlCWERExCQKYREREZP8F2N+Ipgs8heTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "matplotlib.rcParams.update({'font.size': 14})\n", + "fig, axes = plt.subplots(1, 6, figsize=(7, 7), sharey=True)\n", + "for i, discovery_celltype in enumerate(['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']):\n", + " colors = [\"white\", color_dict[discovery_celltype]]\n", + " cmap1 = LinearSegmentedColormap.from_list(\"mycmap\", colors)\n", + " im1, bar = heatmap(np.flip(unreplicated_ratio_df[discovery_celltype].values.reshape((6, 1)), \n", + " axis=0), \n", + " list(rb_df.index)[::-1], \n", + " [discovery_celltype],\n", + " cmap=cmap1, ax=axes[i], vmin=0, vmax=1)\n", + " bar.remove()\n", + " _ = annotate_heatmap(im1, \n", + " data=unreplicated_ratio_df[discovery_celltype].values.reshape((6, 1)), \n", + " valfmt=\"{x:.0%}\", \n", + " textcolors=(\"white\", \"white\"),\n", + " threshold=1)\n", + " if i > 0:\n", + " axes[i].axis('off')\n", + " \n", + "plt.subplots_adjust(wspace=0, hspace=0)\n", + "plt.savefig('replication_ratio.unfiltered_results.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":62: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + ":63: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_yticklabels([\"\"]+row_labels)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAGxCAYAAABVxA75AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAC3s0lEQVR4nOzdd3RUxdvA8e/spvfeCaH33otSBAEFC6igqNiwt9cuPyuIvXdRBCuodAFFpfcinYD0lpDeezY77x8bkmyyCUlI2CjP55wc2LlzZ+duNvvszJ2itNYIIYQQ4sIz2LsCQgghxMVKgrAQQghhJxKEhRBCCDuRICyEEELYiQRhIYQQwk4kCAshhBB2IkFYCCGEsBMJwkIIIYSdSBAWQggh7MTB3hUQF45Syh3oBzQCfIE1Wust9q2VEEJcvJQsW3lxUEo1A74HegFngGigK7ABmKi1jrNj9YQQ4qIk3dEXAaWUH/ATEADcprUOB8YCfYFUYKFSqosdqyiEEBclCcIXh3uBNsATwCwArXWK1vqf4mMHgOsAlFL97VVJIYS42Eh39EVAKRUDLAce0lqnK6WULvOLV0pdCWQB/sAcYAfwoNZ6o10qLIQQFwkZmPUfp5Tqg6Ubei2QAVAuABu11kuUUh7AJuArwASsUErNB+7TWqdf+JoLIcR/n3RH//cdBzRwRmutlVKq3PGzAfkloAiYpbW+H+gMeAI/Fw/qEkIIUcckCP+HFQfcTGAvMF4p5VauFeyotTYrpdoB47B0RW8BKL5f/DjgCtx6wSsvhBAXAQnC/2HaIgt4C2gPXFvueGHxf6cAB4FftdbZZ1vLWuuDwGpgglIq4sLVXAghLg4ShC8CWuufgOnAF0qpeUqpMUqp1wGUUlcDPYHZwK7i/Fop5VR8+iEgGDCXLVMpZbxQ9RdCiP8qCcIXCa31+0AEcAq4AWhafOgJLIO2/ip7z1hrXVB8fAyWKUzGcuUVASiletZ75YUQ4j9KRkdfRLTWacAjxfeGc5RS9wJ9gKu11keL82illJPWuqB46lJ7YLnW+tTZcpRSLsB4LIO3HlBKbQGGyShqIYSoGWkJX4S01jnF/z0KJANvlm3RFgdgH2AqkA18AaCUaq2UmgisAe4E1mOZX7yneP6xn1Iq8MJdiRBC/LtJEL6Iaa3/0FoHA38Aq5RSc5RSzyqlvsOypnQwMBnYo5R6EUsw7gq8o7XuC7gACsvAL7CsyrVNKTVDKSXvLSGEOAdZMUsAoJQKAZ7BsmpWJJYBWR9orfcopa4FfgZ+11qPKs4fgWUTiDe11q+UKacH8AHQEcsKXTMu7JUIIcS/hwRhYeXs/eIyjxWWucLXA28CicB9xY+HAJdprc+czXt2HrJS6mPgfmAf8LDWeuUFvRAhhPgXkCAsqk0pFYplNPWDWAb1PaC1/rzMcVU8sMsR+BOIBdKwLPaxE7hWa514oesthBANldy3E9WmtT6jtX4c2AOkA5OVUpeXyXJ2Scz/w7Je9bziJTBbFecfdCHrK4QQDZ1MURI1opS6DWgHDMay7nRscbqD1tqklGoE3AYsA1YAaK1jgCvtUV8hhGjIJAiLaise8TwWmAtsKrsOtdbaVPzf57B0QS/UWqeU3zZRCCFEKQnCotq01mZghFLK08Z2iEVKqf7AZViWyFxffI4EYCGEqIQMzBJ1Rim1EMvyls8WT22SVrAQQlRBBmaJOqGUuhvohWUw1h6QVrAQQpyLBGFRV/YBMykejHV2IwghhBCVk+5oIYQQwk6kJSyEEELYiQRhIYQQwk4kCAshhBB2IkFYCCGEsBMJwkIIIYSdSBAWQggh7ORfEYSVUsFKqQ+UUkeUUvlKqRil1G9KqSuKjx9XSuninzyl1Cml1Hyl1KgqynRRSu0qPqd7cdpLZcqp7CfqAl22EEKI/7gGH4SLg952YBjwLNARy2byS4DPy2SdDIQCLYFxwHFgvlLqo0qKfhs4bSMttMzPP8A75dJOnaO+d1frwv7D5DUQQojq+Tds4PApln1qu2uts8qk71dK/VDmcabWOq74/yeB9Uqp/cAXSql5WuuVZzMqpa7GsrftdcAVZ9OLy88qk88EZJUptzruBqbVIP9/kbwGQghRDQ26JayU8gOGAx+XC8AAaK1Tz1HEdCAVGFOmzAjgM2A8kFt3tRVCCCFqpqG3hJtjaQXvr83JxdvrHQSagmXLPeAH4B2t9c66ur9b3P16N4ByUN3cotwv6rVAWz7Rm1ZP9rmoX4Od91xr7yrYnWvzpy769cNXzzh2Uf8dAAy4vclF/z6oSkMPwnXxy1PA2T+ESUAh8G4dlFtCaz2N4u5Xtyh33eKFNnVZ/L9OXq2+MgkhxMWnQXdHA4ewBNBaRbXilm9L4Ghx0mVY7gUXFt/vPVycvqnc/WUhhBCi3jXolrDWOkUptQx4UCn1Yfn7wkopH611WhVF3AX4AHOKH98OuJc5HgYsw3J/eH1d1VsIIYSojgYdhIvdD2wAtimlngd2Y+liHoRlylJkcT5PpVQI4Ag0Aq4HHsIyqGs1gNb6WNmClVJng/oRrXX56UpCCCFEvWrwQVhrfUwp1RXL/dw3gHAgGdgF3FMm6wvFPwVAIrANGK21XnRhayyEEEJUT4MPwgBa6zNYWrUPVXI8qpblHqeKwV9a6/a1KVcIIYSojoY+MEsIIYT4z5IgLIQQQtiJBGEhhBDCTiQICyGEEHYiQVgIIYSwEwnCQgghhJ1IEBZCCCHsRIKwEEIIYScShIUQQgg7kSAshBBC2IkEYSGEEMJO/hVrR1/MklYkkLgsHlNaIS7hroSNi8C9pafNvHELY0lYdMbmsbbvdcTBy5H0v1NJXpVI7slcdKEZ5zAXgkaG4t3Zpx6v4vyk7YgjZesZirILcApwI3BQY9wivGzmTVp/ipSNMTaPNb2vGw7ujlZpuaczOPVTNE5+rkTd3qnO615XvvhhI+9/tZq4hEzatAjmrf+Nol+PJpXm11rzycx1fDV7M8dPpeDr48bN13ZjypMjSvL8tGgH7365msPHk/D0cGZw3xa8+syVhATafn8J+1uw4jtm//4lyWkJNAlvyYM3PkfHlj0rza+1Zs6fM1i06kfikk7j6e7NsL6juef6pyvk3X1wK4++eRORoc2YOeX3+rwMUYYE4QYsbUsKsbNPET4+EvcWHiSvTOTY+4dpOaUdTv5OFfIHDgvGf2CgVdrJL44C4OBlCT5Z/2Th0caLkGvDMbobSduUwomPj9DsqZaVBnd7yjyQRMLKEwQNicI13Iv0nXHEzD1A1O2dcPRyrpDfr0cYPp2DrdLO/HoIlKoQgIvyTMT9dgS3xt6YMgvq9TrOx5wlu3jylUW8/9I19O0WxbQfN3HNXV+z/bfHaBTma/OcZ15bzG8rDzD16Sto3zKE9Mw84hIzS45v/Ps4dz75E689cyWjhrQjISmTR15awB2Pz2Lpt3dfqEsTNbBiy2I+mjWF/7t5Mh1adGfByu956r07+OaVZQT7h9s859OfprJx1wruveFZmoa3Ijs3k+T0hAr5MrPTee2rJ+jWpi+JafH1fSmiDOmObsAS/4jHr28A/gMCcQlzJXx8JA7ejiSvSrSZ3+hixNHbseRHF2myD2bhd2lpYA6/qRFBV4Tg1tQd52AXgq8OwzXKjfQdaRfoqmomddsZvNoF4tMxGGd/V4Iua4KDuxNpO21/UBicjDi4O5X86CJNbkwm3h2DKuSNX3YEr3aBuIR61PdlnJcPv17LzaO7ccfYXrRuHsy7L1xNSKAnX/64yWb+g0cT+ey7Dfz82a2MGtKOJpH+dG4XzvCBrUvybN5xgvAQbx66/RKiGvnRs0tj7rulL1t3nbpQl1UrSqlVSqlPlVKvKqWSlFIJSqm3lVKG4uM3K6W2KqUyi4/9opQKL3P+QKWUVkpdppTarJTKUUptK94utUH7Zdl0hvcbw8gB42gc1pxHxr+Ev3cgC1f+YDP/yTNHmbf8W6Y+NI3+XYYSFhRJi8bt6N1xUIW8b854mmH9RtO2WZf6vgxRjgThBspsMpN7IgePdtbdrp7tvMg5nFWtMlLWJmF0M+Ldzafq58ozY3RreJ0iushMXnw27lHeVuluUd7kxWZWcpa19D0JGJwd8GjhZ5WetiMOU3Yhfr1ttyAaioICEzv2xTCkf0ur9Mv6t2TT9hM2z1n81z6aNPLjz7UHaTvoDVoPfJ2JT/1EQnLp+6ZPtyjiEjNZsjwarTVJKdnMWbKLYQNa1ev11JHxgAnoCzwIPAqMLT7mBLwIdAJGAgHALBtlvAY8A3TFsj/5D0qpSrc1tbdCUwH/nNhLj3aXWKX3aHcJ+w5vt3nO+p1/EhbQiC17V3PjUwMY++QlvPbVE6RmJFnlW7DiO1LSk7hl1IP1Vn9ROQnCDVRRpgnM4OBlHRwdvBwoTC885/narEldl4RvX38MjpX/mpNWJFCYUoBvH79K89hLUa4JNBjdrLuRHdwcMWVX4zXQmoy9iXi1C8DgUPoa5CfmkLwxhtArmqMMDfZzF4Ck1ByKiswE+Vu31oP8PYhPsv1F5NipFE7GpPHL4l1Me+N6pr81ln+OJHLd3TMxm80A9OrSmG/evZE7Hp+Nd9tJRPaajNbw5ZtjbZbZwERrrV/QWh/UWv8MrAQuA9Baf621Xqq1Pqq13gLcB1yilIooV8bzWuuVWusDwGSgNdBgv5GlZ6ZiNhfh6xVgle7rHUBKuu2esdjEk8Qlx7Bi82KeufMt/jfxHU6eOcKkDyaWvA+Onj7AN4s+5Lm738NoMNb7dYiKJAg3cBW+m2sbaTZk7smgMKUQv0sCKs2Tvi2VM7+cptHdTXAKqHh/tcGwdb3VeA2yj6ZhyizAu0NpV7TZZObM4kMEDojE0cel7upYz8o30jS6QtpZZq3JLzAx/e2x9O/ZlH49mjD97bFs232KbbtPA7D/UDyPv7KIZx64jPXzH2bh13cQn5TJQ8/Pq/drqQO7yz2OBYIAlFJdlVILlVInlFKZwLbiPJFVlBFb/G/FexYNTPlfudaVfyBos6bQVMCkie/QqVVPOrbsyaSJ77D/2C4OHNtNQWE+kz9/hPtumERoYKMLUHthS8PrgxQAGD0dwACF6SardFOmqWSQVVVS1iTi1twdl3BXm8fTt6VycvoxGt3ZpMGOjDa6OoCConKtXlNOIQ5u534N0ncn4BLmgXOAW0laUXYBBcm5xP1+hLjfj1gSteWfg+9sInxMa9yjfOrqEs5bgK8bRqOhQqs3MTm7Quv4rJBATxwcDLRoUjoWoHlUAA4OBk6fSaNn50je/mIl3Ts24v8mDgCgQ+tQ3F2dGHLj57z02DAiQn3q7ZrqQPluEA0YlFLuwDLgL+AWIAFLd/RaLN3UlZVR/A5ouI0Sb09fDAYjKenWXclpGcn4edn+ou3vE4jR6ECjkKYlaRHBTTAaHUhIicXXO4DjsYd4/euneP3rpwDQ2ozWmsF3teCNR7+mR/tLbJYt6o4E4QbK4GDAtbEbWdEZ+PQoHQGbGZ2BdzfbI2LPKkwtIGN3OhETGts8nrY1hVPTj9Pozih8ulddlj0powGXYHdyTqTj2cq/JD3nRHqFe7zlmbIKyD6aSvCwplbpDh5ONJ7Q0SotbWc8OSfSCbu6JY7eDatHwMnJgS7twlm+/hCjR5TWe8X6Q1wzrL3Nc/p0jcJkMnP0RDJNG1tet2MnUzCZzCWjqXNyCzGW64o3Gi0xSGvNv1RrLEF3ktb6GIBSarR9q1Q3HB2caNW4Pdv2rWNgjytK0rdFr+PSbsNtntO+eXeKikzEJJwgPMjyWRCbeJKiIhPB/uEE+gTz9eTfrM5ZuPJ7tu1bx5QHPyckoHwPvqgPDfabn4DAy4NJXZ9M8pok8mJzifnxFKa0QvwHWL75npkbw9G3DlY4L2VdMgZnAz49KgaqtM0pnPzyGKFjwnFv6UlheiGF6YWYskwV8jYEvt1DSd+bSPruBPKTc0lYcRxTVgE+nSzTkBLXnOTUz9EVzkvfk4DB0WgVvMES2J0D3ax+jG4OKKPCOdANg1PDuy/28B2X8P28v5nx8xYOHI7niSmLOJOQwV039gbghbd/44pbp5XkH9yvOZ3bhXPvs7+wc18MO/fFcO+zv9CjUyO6dbDc9rxicBsWL49m2g8bOXYymY1/H+fxKYvo3C680mlP/wIngXzgQaVUU6XUlcAUO9epzlw/7E5+Xz+XxWt+4kTsYT76cTJJaQlcNXA8ANPmvMljb40vyd+tbT9aNm7Pm18/zaET+zh0Yh9vfv00bZp2plVUBxwcHGka0crqx8fTH0dHZ5pGtMLNxd1elwqAUmpm8Uj258qlnx3hXvm9tsrLHK2U+kMplVg8gn6zUuoqG/nGKKWilVL5xf9eez7XUhVpCTdgPj39MGWZSFh8BlO6ZbGOqEeal9y/NaUVkp+Yb3WO1pqUdUn49vLH4FzxO1by6kQogtjZp4mdfbok3b2VB82eangjYz1bB1CUayJ502mKsgtxCnAjfHTrkhZrUXYBhWl5VudorUnfk4hnmwAMjg0vqNbUdVd2Ijkthzc+XUFcQgZtW4Yw/8vbiQy3BMu4hEyOnkwpyW8wGJg77TaemLKIy8d/jquzI4P7teD1SSMxGCzviVvGdCcrO58vvt/As68vwcvThQG9mvHKUyNs1uHfQGudqJSaALwKPIDlvu9jwH9i5YnBPUeSkZXKd79+TEp6Ik3CW/LGo18TEmD5YpWcnkhMwsmS/AaDgdce+YoPf3yZh18fh7OTC93b9eP+sf8reR/8C+QBTymlvtBa2x6BVjMDgBXAc0AKlpH285VSA7XWawGUUn2An7CMsp8HjAZ+UUr101pvroM6WFH/4q6nBsktyl23eKGNvathV3n7z32/9r9u5z319sX5X8O1+VMNe+j5BbB6xrGL/gN2wO1NavU+UErNxDJYLgJYpbV+uDh9IJYR8YFa66TKzq/B82wB1mqtHy9+/BPgp7UeWibPX0Ci1vrG832+8v41X4eEEEJcdMxY5nPfq5RqZiuDUirrHD+/2TqvDE8gtczjPsAf5fIswzIvvc5Jd7QQQogGS2u9VCm1HpgKjLORpfM5isit7IBS6gEsLe3vyiSHAOWX5IsvTq9zEoSFEEI0dE8Bm5RSb5c/oLU+XJsClVJjgLeAcVrr8svPlb+NoGyk1QnpjhZCCNGgaa23AnOBN8ofq013dHEA/g64VWu9qNzhOCq2eoOo2DquE9ISFkII8W8wCYgGyk+M7nyO86y6o5VSNwDfABO01nNs5N8IDMXSSj5rKLChJpWtLgnCdnBq+nFSNyQTfE0YwaNCS9KzDmRy9K2DtH2/Ew6eNfvVnD23vJavtMMl1LI8ozZpEpaeIXVDMoWphTiHuBB6XTieHUo3SNBmTfzCWFI3pWBKK8TBxxHfXn4EXx2GMtbdYNe43w6TsS8J/34R+PcpXRQg52Q6p3/eT7P7u1VYM7omqtonuCjfRPK602QeTMacZ8LB04mA/pF4trbMKdZmTfKG02REJ1GUXYDR3QmvtgH4942o07Wm737qZ76f/zcvPHo5zzxwWUn6ms1HGH7zNE5ufoEAv5rN1TyTkMGzry1hZ3QMh48ncdPVXZn25g0V8n0ycx1fztrEyZhU/HzcGDmkHa88OQIP99LFSmq6h3F9KR4lOwHLes+vlEkfyHmMklVKDQDeBdphWbryTa3153VQ5Rp7bfqTLFs/lzuufYxby2yksOPAJv7vzZtY8ME2fDxrtr57cloCn/40lYMn9hETf5yhfa/l2TvfqpAvOzeT6fPeZfW238jITiPQL5SJo59gUM8rrcqaNudNNu1eRU5eFmGBkfzfrVPo3KpX7S+6hrTWh5VS04BHyqdXtwyl1DgsLeAngDVKqbMt3gKt9dl5fh8UH3sWmA9cCwwC+p/nJdgkQdhOlKMi8fc4/AcG4OBZd1N6Wk5pi9G99NdaNpjHzY8hdWMKERMa4xzmQtbeDI5/coTmz7bGtbFlacfE3+JIXpFIozujcIlwJfd0LqenH0c5Gqy+MNQF5aBI3XoG707B1VqGsrqq2idYF5mJmXMAg7ORsFEtcPB0wpRZgDKW3plJ2RJL2s44QkY0xznAlfzEHOJ+O4IyKqsvDHXBxdmB975czZ3jehFYyTKUNVFQYMLf143H7x7I1z/ZntL406Id/O/NpXz66nX06x7FsVMp3DdpDnn5hXz+2vVA7fYwrmd1Ol9UKdUEWAp8DdyM5QP2U6VUotZ67vmWXxtOjs7M/m0aVw24ER8v/3OfcA4FpgK8Pfy46Yp7Wbx6ts08JlMhT7wzAU83b1687yMC/UJJTDmDk2PpKp+ZORk8+Or1dGjRndcfnY6Ppx+xiSfx9Tz/OtbCZCxfyGrrXixx7/3in7NWAwMBtNYbioP1K8DLwBFgbH3MEQYJwnbj0dqTwtRC4n89Q/hN5deWrz0HT8dKW9GpG1MIGhGMVydLy9d5UCCZ0Rkk/hFP5ERLCyf7cDZenb3xKl5P2inAmYzO3uQcza6zOp7l2sgSJFM2xhB0WVSdlXt2n2CtNVmZKVbH0vcmUpRTSKNxbUsCr6O39UYOebGZeDT1xaOZb8lxj2Yp5J2p3haSNXFp72bExqXz+ifLeeeFq8+7vMYRfiXlzP99j808m3acoGfnSG66pmvJOTdd05WFy/aW5Cm7hzHAuy9czZ9r/uHLHzcx+Qm7LOixEsso1ueBh+ugvHuBWK31Q8WP9yulemFpIdklCHdp3ZvE1Di+/fVjHh7/4nmXFxoQUVLO6m22Z+n8tm4OaRnJfPjMbBwdnErOK2v2b1/g7xPEpInvlJZ9ATZ80FrfZiMtAcuUotqWObCa+eYAtrqq65wEYXtRipAx4Zz4+AgBQ4JxDqq4ZvHe+3dUWYR7Cw+a/F8Lq7RDU/ajTWZcQl0JGhWKR+vS96s2mVHltjU0OBnIPlQaXNxbeJC8MoG8M3m4hLqQF5tL1v5MAq+o+9H5SkHApY2IXXAQn24hONnY1ejQB1uqLMM13JOI60oXRzm7T3DoqHCSN56ukD/rcCou4Z4kLD9O1uFUjC4OeLTyw793eElQdg33JG1nPAXJuTj5u5KflEPOqQz8eoad5xVXZFCKyU+MYOz93/LAhP4laz2XFdjp+SrL6Ns9ioXT76z2c/btFsWsBdvZsuMEPbs05lRsKkuW72fYgNZA6R7Gj951qdV5Ve1hfAGcnS+6QCn1gdb6SPkMSqlzfUtaq7U++w2isrmgE5RSjlrrc++VWceUMnD3dU/x3Ef3MmbobSXrPZc1/D7b64Wf1bFFD958bEa1n3Pdjj9o36IbH/7wMut2/ImXuw8De1zBLSMfwMHB0ju1bvuf9OxwKS9/9hA7DmzC3yeIKy8dy7WDb6l0Jy9RfRKE7cirozduzd2JmxdD43ubVjje4sWqV94yOJUGVAcfR8JvicQ1yg1t0qRtTOHo2wdp+mRLPFpZArFney+S/krAvbUnzkHOZO3PJH17quXjrVjgiGDMeUUcfH6fZex8EQRdGULA4PrZ5c2jqS+u4Z4krz1F6KgWFY43vrWjjbNKKRv7BEfe1K7Se7eF6XnknszHs00A4aNbUZiRT8Jfx9GFZgIHWj70fHuGYS4o4viMXWBQYNb49Q7Hp0u9TBNk+MDW9OnamJfe+51v3x9f4fimRY/YOKuUi3PNuvKvH9mZ5LQcho7/Aq01JpOZm67pWrJkZVV7GK+sZA/jC6GO54uGYNltqax4LJ+JAcCZWlbzvPTuOIj2Lbrx1bx3ePHeDysc/+qlxVWe7+xUs+05YxNPsX3/Rob0vorXH51OXNJp3v/+RXLzc7h/7KTiPCdZsOJ7rr/8Dm664l4On4zmgx9fBmD0ZbfW6PlERRKE7Sz0+ggOTz1AzvGK3b3OwdX/g3IJccElpDS/e3MPCpLzSVwWXxKEw25sxOmZJzj43D5Q4BTojF+/AFLWl45pSd+SSuqGZCInNsE53JW8kznEzjplyVvF3sTnI/DSSE7+uBffuIr3nJ18q/caVHufYA1GN0eCL2+KMihcQjwoyjWRuPIEAQMiUUqR+U8yGdFJhIxsjrO/G/kJ2SSsPI6jt7PV3sR16ZWnrmDg9Z/wyJ0VW+/NGtft675281Fe/2Q57790DT06NeLIiWSefGURUz74kxcevbwkX032ML6A6nK+qK25oLbSL6h7r3+a+18Zw4Fhd1U4FhEcVafPpbUZXy9/nrjtNYwGI62iOpCRlcYns1/hvhueRSmF1ppWUR24+zrLdoctGrfjdMJxFqz4ToJwHZAgbGduTdzx7uZL3C8xBJUb+FSb7ujyZadtLV2NzcHTkaiHmmMuNFOUZcLBx5G4OTElG0IAnPnlNIHDgvHpZRmJ6RrhSkFyAQlL4+otCLuEeuDRwo/ENSfx7x1uday63dHV3SfYwd0RZVBWLWUnf1e0yUxRrgkHN0eSVp/Et3soXq0t1+sc6EZhRj4pm2PqLQh379iIa4a15/m3llqNlIa6745++f1l3DCyM7ff0BOA9q1Cyckt4P5Jc5n04GW12sP4QtFab1VKnZ0varVDUg27oyubC2oCkuuirrXVukknLu02nGlz3uCWUQ9ZHavr7mh/7yCMRgeMhtKNThqHNSOvIJf0zBR8vPzx9wmkcVhzq/MahzZnbvLMaj+PqJwE4QYgZHQYB5+PJnNvulV6Tbqjbck9lYuDd8WuSoOjAYOvE9qkSd+ehneZPYXNBWZLF2wZygCY67dxEHBJJMdn7CL7uPVrUN3u6OruE+wa7knG/iS0Lm3VFabmoRwMGF0tfw7mQrPlhnXZ5zGoem8fvfz4cLqOeJc/11hPNavr7uic3EKM5aabGQ2Gkn2Ea7OH8QVWF/NFNwLXlDs+FNhmj/vB5d015glue24YW/astkqv6+7o9i268demRZjN5pKdlU7FHcPFyRXv4ilR7Zt341TcUavzTsUdI9g/vEJ5ouYkCDcAzsEu+A0IIOmvhArp1ZX4ZzxO/s64hLugTZrUTSlk7Eij8f2l95pzjmZTmFqAS6QbptQC4heeAbMmaERwSR6vTj4k/haHU4ClrNyTOST+kYBv35rNUawpJ18XvDsGkbb9TIX06ji7T3BZZfcJPsu7UzBpO+JJXHEcny4hFKbnk7z+ND6dg0uCskczH1K3xOLo7YxzgCt5CTmkbjuDV9vA87zKqjVrHMAdY3vyyTfrKqTXxK7oWAAys/IxGBS7omNxcjTSpoXl93zF4DZ89PVauraPoEenSI6cSGLy+38wYlAbHBwsLaKH77iEO5/8ie4dG9Gna2O+mrXZag9je6qL+aLA51j2HX4f+ALoB9wG1PkuObURERzFyAHjmPvXzArpNXHopGWv7Zy8LAwGA4dORuNodCQq3NKDdvWg8cxf/h0fzZrMtYNvJS75NDMWfsDVg28u+Xu4/vI7eODV6/nu108Y1PNKDp+MZt7ymdw1+onzvk4hQbjBCB4VSur6ZHQtm1vapDnzy2kKUwswOBpwLt572Ktj6UIc5kIzcfNjKUjMx+BiwLODN43uisLoVvo2CLupEfELYon5/iSmzEIcvR3xuzSA4Kvqdo6wLf59IsjYl0h9NjkdvZwJv641iatOcOLb3RjdnPBqH4h/n9Jv9UGXNSFp3SkS/jpGUW4hDu5OeHcMwq+O5wjb8uyDQ/hh/t+Wrelrqc/VH1g9XrpiP5HhvhxY9QwAz9w/GKVg8vt/EBOXjr+vO1cMbsNLjw0rOedcexg3AOc1X1RrfUwpdQXwHnAflsU6HrbXHGFbJlz1EMvWz+N83gwTXxpp9XjDzuUE+4fz01trAQjyC+Otx7/h09lTueulK/HzDuSK/tdzy6gHSs5p3aQTrzz4OV/NfZtvf/2IYP8w7rjmMa4ZfEut6yVKyX7CdUz2E5b9hEH2EwbZTxhkP2Go/X7CFwvZwEEIIYSwEwnCQgghhJ1IEBZCCCHsRIKwEEIIYScShIUQQgg7kSAshBBC2IkEYSGEEMJOJAgLIYQQdiJBWAghhLATCcJCCCGEnUgQFkIIIexEgrAQQghhJxKEhRBCCDuRICyEEELYyb8iCCulgpVSHyiljiil8pVSMUqp34r3A0UpdVwppYt/8pRSp5RS85VSo2yU1VIptUAplaSUylRKbVJKDS8+9lKZcir7ibrAly+EEOI/qsEH4eKgtx0YBjwLdASGAEuAz8tknQyEAi2BccBxYL5S6qNyRS4GXIDLgC7AOmChUqoZ8HZxGWd//gHeKZd2qo4vUQghxEXKwd4VqIZPAQV011pnlUnfr5T6oczjTK11XPH/TwLrlVL7gS+UUvO01iuVUgFAC+AerfUuAKXUM8D/AV201nOAkudQSpmArDLlCiGEEHWmQbeElVJ+wHDg43IBGACtdeo5ipgOpAJjih8nA/uBW5RSHkopI3A3kAmsr7OKCyGEENXQ0FvCzbG0gvfX5mStdZFS6iDQtPixVkoNBeYDGYAZSAFGaK3P1E2VhRBCiOpp6EFY1VEZGkAppbB0bycDlwC5wF3AXKVUD611TK2eQKm7sbSocfR3qoMq/7slZSbbuwp2V5R32t5VEA1A8ukce1dBNHANujsaOIQlgLapzcnF3c0tgaPFSYOBUcCNWuv1WuvtWuv7gWzg9tpWUms9TWvdXWvd3cGjoX+vEUII0VA06CCstU4BlgEPKqU8yh9XSvmco4i7AB9gTvFjt+J/zeXymWngr4UQQoj/nn9D4LkfS5fyNqXU9UqpVkqp1kqp+4DdZfJ5KqVClFKNlFJ9lVLvAZ9gGdS1ujjPRiz3gGcopToVzxl+C8s948UX8JqEEEKIBn9PGK31MaVUV2AS8AYQjuWe7i7gnjJZXyj+KQASgW3AaK31ojJlJRUvzDEVWAE4Yhn0dY3WevsFuBwhhBCiRIMPwgDFI5cfKv6xdTyqBmVtw7LwR3Xytq9uuUIIIURN/Ru6o4UQQoj/JAnCQgghhJ1IEBZCCCHsRIKwEEIIYScShIUQQgg7kSAshBBC2IkEYSGEEMJOJAgLIYQQdiJBWAghhLATCcJCCCGEnUgQFkIIIezkX7F29MUsaUUCicviMaUV4hLuSti4CNxbelaaP21rCglL4siPz8PBwxH/ywIJGh5ScvzU9OOkbkiucJ5yMtDhsy71cg3nK29fGnm7UjHnFGH0dcKtbyCOoa6V5s8/kknejhSK0gsxuBhxbueDa2ffkuPmbBM5mxIxJeVjTi/EqYUnHoNCKi2vIfhy9m4+mLmDuMRs2jTz4/WnL6Fft3CbeV/9dDOvfbbF5rGjq+4k0N+NdVtjePGDDRw6nkZuXiGNQj2ZMKYdj9zWtT4vQwhRjgThBixtSwqxs08RPj4S9xYeJK9M5Nj7h2k5pR1O/k4V8mfsSefktGOE3dgIzw7e5MfmcfqbExgcDQRcFgRA2I2NCLnO+sP7yGsHqgzs9pR/OJOcDYm49Q/CMcSVvH1pZC6NwfuGxhg9HSvkLziZTfbyONz6BeLYyJ2i1AKy18SjHBQu7X0A0GaNcjHi2tmP/P3pF/iKam7u7wd56o21vPu/AfTpGsZXs/cw5r5f2bpwPI1CK/7eHr6tC3feYL33yG1PLkMpCPS3bKnt7ubIfeM70a6FP64uDmzacYZHpqzEzcWBieM6XpDrEkJId3SDlvhHPH59A/AfEIhLmCvh4yNx8HYkeVWizfxpG5Px6uRDwOAgnAOd8erkTdCVIST+FofWGgCjmxFHb8eSn4KEfAoSC/C7NOBCXlq15e1JxbmlFy5tvDH6OuHePwiDmwP50baDZ8GhDBwbu+PSzgejlyNOjd1x7eJH3s7U0tfA0xH3fkE4t/JCOTf8P4GPv93J+Ktbc/t17Wnd1I+3Jw0gJNCNr37aYzO/h5sTwQHuJT+FJjMbtsdy25h2JXm6tAviuhEtadPcn6gIb8aNas1lfSPZsD32Ql1WrSilVimlPlVKvaqUSlJKJSil3lZKGYqP36yU2qqUyiw+9otSKrzM+QOVUlopdZlSarNSKkcpta14u1QhLriG/wl0kTKbzOSeyMGjnZdVumc7L3IOZ9k+p1CjHJVVmnI0UJhaSGFygc1zUtYk4Rzmgntzj7qpeB3SRZqixHwcI9ys0h0j3DDF51V6jjJavwYYFeZsE+YsU31Vtd4UFBaxIzqBy/pEWqUP7hPJ5p1nqlXGt/Oi8fZ05uqhzSvNs2t/Ipt3xtG/u+0u7gZmPGAC+gIPAo8CY4uPOQEvAp2AkUAAMMtGGa8BzwBdsexP/oNSStnIJ0S9kiDcQBVlmsAMDl7WdwwcvBwoTC+0eY5ney8ydqSRuTcDbdbkx+WR9Ec8AIVpFc8pyikibVsq/g20FazzikCDcrV+DQxuRsw5tgOqY4Q7BcezKTyVjdaaorQC8nanApZ7wf82yam5FBXpkm7ks4L83YhPzjnn+Waz5rv50dw0qjXOTsYKx1td9jX+XT/h0nE/MXFsB+68oUOd1b0eRWutX9BaH9Ra/wysBC4D0Fp/rbVeqrU+qrXeAtwHXKKUiihXxvNa65Va6wPAZKA18K/4BiL+W+SecANX4bu5tpFWzO/SAAoS8jn+8WF0kcboYiRgSBDxi86gDBVPSt2UDGaNTx//uq94XbLxGlRIK+bcxgtzRiGZy86AWaOcDLi09yH37xSbr8G/RfnfuUZX9hJY+WPdcU7HZTFhTFubx5d9M4bsnEK27I7jxfc20DjCixtHtT7/Ctev3eUexwJBAMXdyi8CnQE/St8pkcDpSso42wcfVC6PEPVOgnADZfR0AAMUplu33kyZJhy8Kg5IAlBKEXp9BCFjwjGlF2L0dCBrfyYATgEVB3KlrEnCu5svDh4N822gXIygQJdr9ZpzizC42q6zUgq33gG49vRH5xahXIwUxlhajAbPhnmdVfH3dcVoVCQkWbd6E5NzCSrXOrZlxi/76NU5lDbNbX/RiorwBqBdywASk3N57dPN/4YgXL5bRwMGpZQ7sAz4C7gFSMDSHb0WSzd1ZWXo4n+lZ1BccPKma6AMDgZcG7uRFZ1hlZ4ZnYHbOe7fKoPC0dcJg4OBtM0puDVzrxC4c45mk3cqt8EOyAJQRoUx0JnC09YBqDAmB4dgl6rPNSgM7g4oo6LgcCYOwS6VBu6GzMnRSJe2QazYeMoqfcWmU/TqHFrluWcSsli29rjVgKyqmM2a/IKiWte1AWiNJehO0lqvKe5qDrJznYSo0r/vU+kiEnh5MKe+Oo5rE3fcm7uTvCoJU1oh/gMsgfPM3Bhyj2bT9MmWgKWVnL4tFfdWHmiTJmVdMunbUmn2VKsKZSevScQp2Bn3Vg1vQFZZLh18yV4ZhzHIxTJFKTodc7YJ57aWFlzO5iRMCXl4jbLc8jPnFlFwNBPHMDd0kSb/nwwKjmbhdZX1LUFTUj4AusAMSmFKykcZwejrfGEvsBoevLUzE5/9k24dgundJZSvf95LXEJ2yTSkF9/fwN9741n81bVW5303fz/uro6MHlZxQNbnP+yicYQXLaIs86fX/x3Dh99s566x/4p7wpU5CeQDDyqlPgHaAFPsWyUhqiZBuAHz6emHKctEwuIzmNIti3VEPdIcpwBLoDClFZKfmG91TuqGZM78chqtwb2ZO82eaoVbU3erPEW5RaRvSSVoVCgNfUCoc3NPdH4RedtTyMkpwujnhOeI8JI5wuYcE+YM697J/IOZ5GxKAsAh2AWvURE4BFm3nDPmnrR6XHgiG4OHAz7jm9Tj1dTOmOEtSUnL461pW4lLzKZtc3/mfDqKyDDLyPm4xGyOnbKesqW15tv50dxwZSvcXCvevigya154bwMnYzNwMBpo0siblx/t+28ZmGWT1jpRKTUBeBV4AMt938eA3+1asWr4aN7/WLVzITcOfojrBt5Tkr732BZenHEHM55ei5e7bxUl2Pbb5ln8tvlHEtNiCfAOZcyAiQzsfLVVnpy8LGYt/5CN0X+SmZNGgHcINw15hH7th5fk+X3LbBaum0FqViKNAptz+4inaRvVrfYXXA1KqZnABCyD6F4pkz4Qy2C8QK11Ug3LHA3cC3QBXIBoYKrWelG5fGOwfIFrBhwB/qe1nl/ba6myTmfnToq64Rblrlu80Mbe1bCr01syzp3pP+7Eg8PPnek/zqP9hw37G94FMG/Kvmp9wH40739s2Ps7RqMDnzz6G97ufsD5BeHft8zmuz/e4d6rXqZFRAcOx+zhs4Uv8eh1b9Kj9UAATEWFPDd9Ah4uXowZcDf+XsEkZ8Tj6OBI83DLF7L1e37jg7nPMnHkc7Rp3IXft/zEyh3zef/BRQT6VH1LBGD08+1q9T4oDsJjsdy/b6a1TixOH0jtg/AHwBlgBZCCZbrbC8BArfXa4jx9sIwjeBGYB4wGXgb6aa031+ZaqiL3hIUQogFo16QngT5hzFn1eZ2Ut2bXrwzpdh2XdLyCEL9G9O9wBUO7X8+CddNL8qzYsYD07BSevukj2jTuSpBvOG0ady0JwAC/bviWQV2uZmj364gIbMZdV07CxyOQZVtn10k9z2ElcBx4vi4K01o/orV+XWu9RWt9WGv9MvA3cE2ZbI8CK7XWU7XW+7XWU4FVxel1TrqjhRCiATAoxc1D/483Zz3MlX1uJsQvskKe8a/0qLKMNpHdeO5WSxAvNBXi6GA9KNzJwZnDMXswFRXiYHRky/4VtI7szPSlr7L1wAo8XL3p224YYwbcjYPRkUJTIUfORHNVv9usyuncvC//nNx1fhdcPWYsi6osUEp9oLU+Uj6DUsr26kWl1mqtR1Rx3BNILfO4D/BRuTzLsCwMU+ckCAshRAPRreWltGrUhR//+pDHbni7wvG375tb5flOjqUDCzs378vy7fPo3XYIzcLacyR2H8u3z8VUZCIzJw1fz0DiU0+z99hmLulwBZNu/pSE1Fi+WvIKeQU5TBj+JJk5qZjNRXh7WE9x83b3Jy1rU91c9DlorZcqpdYDU4FxNrJ0PkcRuZUdUEo9AEQA35VJDgHiy2WNL06vcxKEhRCiAbl12GM8O208h2P2VjgW6l+xdVyZ6wbeS1pWEpO+vAWNxsfdn4Gdr2bBuq8xWJbaRmsz3u5+3Hv1yxgNRpqFtSMzN42Zv73JrcOeKClL2Vox58IO6nwK2KSUqvDNRGt9uDYFFg++egsYp7U+Ub7Y8tltpNUJCcJCCNGANA/vQK+2Q/n+j/esRkpDzbqjnR1deODaV7jnqhdJz0rGxzOQP7f9gquzO55ulkFevh6BGI0OGA2lS5pGBDQlvzCXjJxUPN18MRiMpGVZj39Kz07Bx/3CrbSntd6qlJoLvEG5aWe16Y4uDsDfAbeWHxkNxFGx1RtExdZxnZAgLIQQDcz4IY/w6MdXsePQeqv0mnRHn+VgdMTf2xJT1u/5nW4tB2AwWFrCrSM7s3bPUsxmc0labPJxnB1d8XLzRSlFs9C27Dqykb7th5WUuevIRnq3HXJe11gLk7BMKSo/9aDzOc6z6o5WSt0AfANM0FrPsZF/IzAUSyv5rKHAhppUtrokCF8Ap6YfJ3VDMsHXhBE8qnRIf9aBTI6+dZC273fCoYZLKmb9k0nc3Bjy4/IwF5hx8nfC75IAAoeXfoHTJk3C0jOkbkimMLUQ5xAXQq8Lx7ODd0mehCVnSN+eRn5cHsrBgFszd0JHh+MS4WrzeU9/c4KUNUmEXh9u9VznrO/KOAoOZuLawx/Xrn4l6YWxOWT+GoPPrU0xuFbcYKAq5mwTOZsSMSXlY04vxKmFJx6DrOukizR5O1PIP5iJOduE0dsR114BOEWWzp3O3ZFCwbEsitIKUUaFQ5ALrr38cfAr/UArOJpF3v50ipLy0XlFeI4KxzHs3MtGVuWe//3Jj4sO8PyDvXnqntIWztqtp7nijvkcW3MXAb62fw+VWfjXYb7+eS+7DiSSn19E62Z+PDGxO1cOalqSZ8acvcz69QAHDqdg1pqOrQN57sHe9O0aVpJn3bYYPvxmBzujEziTkM1nU4Zw8zX2mXpXH/NFi88fALwLtMOyfvSbWuu6GZp8nkL9IxnS7XqWbvq+Qnp1xSYd5+Dp3bRs1Ins3Ax+3fANJxMO8dDoqSV5hvUcy29bZvH1b68zoteNJKTG8tPKTxnWc2zJGgKj+t7Kh/OepUVEe1pHdmHZ1p9JzUzg8h5jK3vqeqG1PqyUmgY8Uj69umUopcZhaQE/AaxRSp39wCjQWqcU//+D4mPPAvOBa4FBQP/zvASbZIrSBaIcFYm/x2HKtL0DUk0ZnA0EXBZEs6db0WpKO4JGhhK38AxJKxJK8sTNjyF5VRJhN0bS8pV2+A8M5PgnR8g9UboMZNY/WfgPCqT5s61p+mRLlEFx9J2DmGxs+5e2LZWcY9k4+Nheu/qcjIrcnamYc+tmNyNt1igXI66d/SosxnFW7tZk8qLTcesbiPcNjXFu603WH2cwJZVuhVgYm4tLW2+8ronAc2Q4GCBzcQzmvNIlHLXJjGOwC2596naZTxdnI+/P+JvElErHjtTI+m2xXNozgjmfjGLdL+O4/JLG3PToUtb/HVOSZ93WGMYMa8GvX13Lih9uoEWUL9feu5DDJ9JK8mTnFNK2uR9vPn0pri4N4rt6HvCUUiqwLgpTSjUBlmJp3XTBsrXhR8XdlA3CDQPvxWCo2RfTssy6iMUbvuXxT8cw+ZuJFJgKeHXi9wT5lm4WFeAdygu3TuNo7D6e+PQ6pv06mcFdruWmy0rjXL8OI7h9xDPMWT2Nxz+9jgMndjDp5s8I8gmz9bT1bTKWbSxr614sjc/3scwXPvsz72wGrfUGLAPAJmBZ8OVWYGx9zBEGaQlfMB6tPSlMLST+1zOE31T9b7OVcYtyxy2qtDXnFOhM+vY0sg9lETDYslxu6sYUgkYE49XJ0vJ1HhRIZnQGiX/EEznRsjJU08daWJXb6K4o9j24k5zDWXh19ilJL0jKJ3bWKZo+3oJj79dqHASOYa6Ys03kbk/Bvd/5L+lr9HQsKafgaKbNPPmHMnDt7ItTY8trZWznQ2FMDnm70vC4zPIl2OtK6x3sPAaHkDrjCKa4XJyiLMt6Ore0rE5lzq3btZUv7RFBTHwWb36xhbeeHXDe5b35zKVWj5+9rxfL1hxn8Yqj9Otmuc7pbwyzyvP+8wNZvOIof607QfPGPgAMuzSKYZdGAXDvc3+dd73qwEoso1ifBx6ug/LuBWK11g8VP96vlOqFpYVUdZ9vPSjbOj3L28OfH57bUusyIwKb8fb9tnpbrbVs1IlXJ/5QZZ7hPccxvKetgcn1R2t9m420BCxTimpb5sBq5psDnPvFqwMShC8UpQgZE86Jj48QMCQY56CK92723r+jyiLcW3jQ5P9a2DyWeyKHnMNZBF9d+u1Um8woR+vODoOTgexDlY9jMOeZQYPRvfStoYs0J6cdI3hkKC5hNesetaLAtVcAWcticWnvg9Hbxs5O06sO8I6hrnheUYNtX4s0GK1fA2U0YIqrvOWpCyyvgXKufSukupRB8fKjfbnxkSXcd3NnmjbyrpAnpGfVPaR9u4Yy7/OrKz2emV2Ir1flG14UFJrJLzDh49Xw1s0uo67ni/YB/ih3fBkwQSnlqLWumy4rIc5BgvAF5NXRG7fm7sTNi6HxvU0rHG/xYtX33AxOFe8e7H9iN6ZME7pIE3xVKP4DS3vrPNt7kfRXAu6tPXEOciZrfybp21MtH2eViJ11CpdGrrg1K21lxy+MxejhgP+g8+8JdIp0xyHEldytyXgMqbjknfd1VfcSKIea3UFxbORG3p5UHMNcMXg7YorJoeB4VpWvQc6GRIz+zufcqamuDLs0it5dQpn84UZmvlVxucv1c6pugbg6V/5nPG3WbmLjsxg3quImHmdN/mgj7q6OXDGo4nuyIanj+aIhWLY8LCsey2diAJYuSiHqnQThCyz0+ggOTz1AzvHsCseca/Gh3+zpVhTlm8k5kkXcnBicApzx7WuZOhB2YyNOzzzBwef2gbJ0Wfv1CyBlve0xLLGzT5F9KItmz7ZCGSyDMrL+ySRlfTItX6q7QTluvQLIWHAKU2JehWO2Wsfn9Vx9A8lek0D6z5ZpgAYvR5xbepF/0Pb61tkbEimMy8Xr6kYlr8GFMOWxfgwe/wsP31ZxFkSzSJ9albnwz8M89+56Zrw5rGSzh/I+/X4nM37Zy6Ivr8HLo25f+3pSl/NFbc0FtZUuRL2RIHyBuTVxx7ubL3G/xBA0yrolWJvuaKdASxeia4QrpgwT8YtiS4Kwg6cjUQ81x1xopijLhIOPY0mgLi929inStqTQ9MlWOAeWHs86kIkpvZDox3aXZjbDmTkxJP2VQJu3O9bo+gEcglxwauJBzqYkXLv5WR2r6+5og6sDnsPC0CYzOt+McjOSuzm5ZBemsrI3JFJwJBOvkREYvWo5+KyWurUP5uohzXjhvQ08fY/1XNDadEcv/PMwEyf9ybSpQ61GRpf16fc7mfLRJuZ+dhXdO9TLYkB1rg7ni1Y2F9QEJNdFXYWoDgnCdhAyOoyDz0eTudd6+7nadEdb0Rptqvgl3uBowODrhDZp0ren4d3dejeWmB9Pkb41haZPtsQl1Lo1HjAoEJ9u1vmPvncIn55++A2o/Uhh157+pP98gsJTOVbpdd0dXfY85WBAF2kKjmXh1NR6H+Xs9cUBeFQERl/7tAhffKQPPa7+gT/XWS/eU9Pu6Hm/H+Ke5/7ki1eGcs3lFfcSBvjomx1M/WQzcz4dZTU16V+iLuaLbsR60X6wzAXdJveDxYUkQdgOnINd8BsQQNJfCRXSqytpeQJOAU44h1jOyT6YReKyeKv7tjlHsylMLcAl0g1TagHxC8+AWRM0IrgkT8z3J0ndmEzUg80wujtQmG75/DE4GzC6GHHwcsShXKtQGRWO3g64hNT+nqnR2wnnNt7k7UmrkF4TpiTLfsq6wAxKYUrKRxnB6Fu853J8nmV+cICzZWT2tmTQGpfOpV8sstcmkH8oE89hoShnA+YcywwI5WgoGdhmzivCnGVCF1hGRxelF6Kc8jG4GTG41c2fUbNIH26/rh2f/bCrQnp1zfntIBMn/cnUx/vRr3sY8UmW2x6Ojkb8vC2/r/dnbGfyhxv56rXLaRHlU5LHxdkBb0/L65aVU8DRk5YviWatOX0mk90HEvH1dqFRaK0Hp9aJupgvCnwOPKiUeh/4AugH3AbcWEfVFKJaJAjbSfCoUFLXJ6NreftJmzVn5sRQkFSAMlq6pUPGhFsNzDIXmombH0tBYj4GFwOeHbxpdFcUxjJBI3llIgBH3z5kVX7QVaGEXF2/LSTXbn6We7PnMesnY+5Jq8eFJ7IxeDjgM94yBUsXmcnZmow5sxDlqHBs5I7H4BAMZUY+50dbgk3m4hirsly6+eHW3b+k3OxVpfdrc9YkVMhTF565tyc/LjpAbV+U6T/vxWQy8/Qba3n6jbUl6f27h/PbjNEAfDl7N4UmMxOetN7r/qarWvPF1KEA7NiXwBV3lO5hPvXTzUz9dLNVHjubjGUeZ61orY8ppa4A3gPuw7JYx8Na6ws+PUlc3JTWMgahLrlFuesWL9hnZaGG4vQW24OeLiYnHqw4yvli49H+wwu6wn9DNG/Kvov+A3b08+0u+vdBVWTFLCGEEMJOJAgLIYQQdiJBWAghhLATCcJCCCGEnUgQFkIIIexEgrAQQghhJxKEhRBCCDuRICyEEELYiQRhIYQQwk4kCAshhBB2IkFYCCGEsBMJwkIIIYSdSBAWQggh7ESCsBBCCGEnF20QVkrdppTKsnc9hBBCXLwu2iAshBBC2Ns5g7BSapVS6jOl1DtKqRSlVKJS6hGllLNS6hOlVJpS6qRS6pYy53RQSv2llMotPmemUsq7zPGZSqnFxeXEKKVSlVIzlFJuZfI4K6XeV0rFK6XylFKblFL9y9WttVJqkVIqXSmVpZTaWPzclyqlCpVSIeXyT1VK7VZKDQRmAO5KKV3881JxHiel1BtKqdNKqWyl1Fal1LBavr5CCCFEparbEh4PZAK9gNeB94EFwEGgO/AN8JVSKqw4kP4OZAE9gWuBvsDX5cq8BGgPDAHGFud7pMzxN4vT7wC6AHuA35VSoQBKqTBgHaCBoUBX4BPAqLVeAxwBbj1bmFLKUPx4OrABeBTIAUKLf94uzjoDGADcBHQovrZflVKdqvlaCSGEENWitNZVZ1BqFeCste5T/FgBCcBGrfVVxWmOQDaWwOWLJaBFaK0zi48PBFYCLbTWh5VSM4HLgCZaa1Nxni+LHw9RSrkDqcBdWutvi48bsQT9WVrr55RSU4Gbi8sssFHvJ4A7tdZtih+PwPLFIUxrnayUug34WGvtUeacZsAhIEprfbJM+gIgVmt9fyWv0d3A3QCuAa7dBn96eZWv6X9dWEZTe1fB7l6P/NneVbA778477F0Fu1u/VIadXDqhibJ3HRqy6raEd5/9j7ZE7QQsLdOzaYVYgmYQ0AbYfTYAF9sAmIG2ZdKizwbgYrHF5wM0AxyB9WWeowjYWKaMLsA6WwG42DdAU6VU3+LHdwALtNbJVVxnV0AB0cXd21nFg7euLK6TTVrraVrr7lrr7k5eTlUUL4QQQpRyqGa+wnKPdSVpBixBrLLmddn0ys6nuIzy+cuXUeW3K611olJqEXCHUuof4CpgVFXnFD+/BnrYqF/uOc4VQgghaqQ+RkdHA52UUp5l0voWP9f+apZxGCgASgZiFXdH9ykuH2A70F8pVVXT80vgBuAeIB74q8yxAsBYLv8OLME9RGt9uNxPTDXrLoQQQlRLfQThH7DcH/727Ehl4Atgntb6cHUK0FpnA58BryulrlBKtSl+HAx8WpztU8AD+Fkp1UMp1VwpdaNSqnOZov4EkoEXgRlaa3OZY8cBF6XUUKVUgFLKTWt9sLj+M5VS1ymlmiqluiulnlBKja7dyyGEEELYVudBWGudAwwDvIAtwEIs93LvqGFRTwM/YxmtvBPoCAzXWp8pfp4Y4FLACcugrx3AQ0DJfebi+9czsNxfnlGunhuAz4FZQCLwVPGh24vzvgkcABYXP8+JGtZfCCGEqNI5R0f/2ymlPgOaa62HXojn82nmo/u/PvBCPFWDJaOjZXQ0yOhokNHRIKOjz6W6A7P+dYoXB+mGZW7wDXaujhBCCFHBfzYIY+kG7wlM11ovsXdlhBBCiPL+s0FYaz3Q3nUQQgghqiIbOAghhBB2IkFYCCGEsBMJwkIIIYSdSBAWQggh7ESCsBBCCGEnEoSFEEIIO5EgLIQQQtiJBGEhhBDCTv6zi3X8Vxxfdoyjiw6Tn5aHR4Qn7W7rgF8b/0rza605vvQoJ/48Tm5CDo4ejkQMaETr8e0ASN6XxKaX11c4b8B7g/EI96yQ3hBEr9zFrmXbyE3LxjfMn97jBhDaMqLS/Fpr9v61g/2rd5OZlIGzuzMt+7Sl53WXAJCTlsWmn9eQdDKBjPg0mvdpw8A7hl2oy6mV6Yuy+PiXLOJTimjd2JGp93nTp4NzpflXbMvjje8y2H/chLOjomc7J16e6EXzCEcA1u/OZ8rXGRw+VUhuviYiyIFbRrjx4PUN8z0gLOYv/47Zv31JSloCUeEtefCm5+jUqqfNvDPmv8/MhR/aPLbgwy34egWQnJbAJ7Oncuj4Pk7HH+fyvtfy7MS36vMSRDkShBuw2A0xRM/cQ/s7O+Lb2p8Tfxxjy6sbGfDeYFwD3Gyes//bfSRsj6P1ze3wivSiMKeQ/NT8CvkufXcQjh6lWzE7e1X+gW5PR7b8w4bZq+g/fjDBzcOIXrWb3z9YwPWTb8XD38vmOZt+XsPJ3Ufpdd2l+EX4U5BbQE5adsnxIlMRLh6udB7Rg/1r9lyoS6m1+atymPRZOm895EOv9k58/Ws2Y/+XzIavgogIqvgnfOKMiZtfTObuazz47Ck/svPMvPRlBuOeS2bbzBAA3F0Ud1/tTtsmjrg6KzbvK+DxD9JwdVbceZXHhb5EUQ0rNi/mox+n8H+3TKZDy+4sWP49T797B9+8uoxg//AK+ceOmMhVg8ZbpU3+7GFQCl+vAAAKCgvw9vDjpivv5dfVsy/IdQhr0h3dgB1bfJiIAZFEDonCM8KT9nd0xNnXhRN/HLeZPys2k+O/H6Xbk70I6RGKW7A73k18COoaXCGvs5czLj4uJT/K0DA3Otnz53Za9m1L60s74BvmT7+bBuHm7U70qt0286fFpbBvxU4uf+Aqoro0wyvQh4DIICI7NinJ4xngTd+bBtGyXzuc3V0u1KXU2qdzs7jxcjduvcKdVpGOvPGAD8F+Br7+Ndtm/l2HCiksgufv8KJpuAMdmjnx6DhPjsUWkZxeBEDnlk6MHuRG6yhHGoc6cMMQNwZ1d2bT3oILeWmiBn5eNp3h/cYwauA4osKa8+gtL+HnE8jCFT/YzO/m4o6/T2DJT1FRIbsPbmXkgLEleUIDI3jk5hcZccl1eLl7X6hLEWVIS7iBMpvMpB9Np+mo5lbpgR0DSf0nxeY58VvjcAtyI3FnAltf3wRa49cmgDa3tMPZ27qlu+7Z1ZgLzXhEeNJ8dEsC2gfW27XUVpGpiKQT8XQc1s0qPaJdY+KPxNo858SOI3gFeHN67wmWfbgArSG0ZTi9rr8UVy/bvQcNWUGhZtehwgrdxAO7ubA12nbA7NzSEUcjfPdbDreMcCMnXzP7zxy6tHLE39to85zdhwvYGl3AU7fY7l0Q9lVoKuDg8b2MHT7RKr1Hu0vYe3h7tcpYsuZnPNy8GNB9eH1UUdSStIQbqIKMfLRZ41QueDr7uJCflmfznJz4HHKTcjmz4TSd7u9C5we7kR2bybY3NqHNln2jnX2daX9XR7o93pNuT/TEPcyDzVM2kBydVO/XVFN5Wblos64QPF293MhNz7F5TkZSOlnJGRzZ+g8D7hjGwDuHkRaXyrKPFpa8Bv8myRlmiswQ6GP9pxrkayA+1WzznMgQB+a+HsAb32UQemUsTa49w/5jhcyaXHEsQfubzhB6ZQyXPZjIHaPcuX2ke71chzg/6ZmpFJmL8PMOsEr39Q4gJT3xnOebzWaWrv2FYf2uxcmxYd56ulhJS7iBU8q6m1hrDcp217HWGnOhmU4PdsMjzHJfr9OD3Vj96HLSjqTi28IPjzBPPMJKW1W+Lf3ITczh6K9H8G8bYLPchsbyGlR6kCJTEQPvHI5PiC8AA+8czi/PzSTxeBxBTUMvXEXrUPlfeVUvQXxKEY+8m8rYIW6MHuRKVo7m9W8zuHNqCgveDMBQ5tbDkncCyc7TbNtfwMvT04kMcWDskH9fj8FFS2tUpe+EUpt3ryIh5QxXlumKFg2DBOEGysnLGWVQFVq9Ben5FbqWz3LxdUEZVUkABnAPdUcZFXlJudDC9nP5NPcldkNMndW9rrh4uKIMitwM61ZvXmZupV3Lbt7uKKOhJAADeAf7oIwGslIy/3VB2N/LgNEACeVavYlpZoJ8bXdkTV+UjZuLgZcmlt7j++xpPzqOj2NLdAG925e+fxqHWj4C2jZxJCG1iDe/y5Ag3AB5e/piNBhJSbfusUrNSMbX+9xfnn9dPZv2zbvRJLxlfVVR1JJ0RzdQBgcD3k29Sdxt3dWUtCcR31Z+Ns/xbeWHLtJkx5UO2MmJz0EXaVwDK/9gzTiejotPwxugZHQwEtA4mJjoE1bpp6NPENwszOY5wc3D0UVmMhLSStIyE9PRRWY8/P599zudHBWdWjiy6m/rL2Ort+fRo62TzXNy8zWGcn/ZxuLHZts92ICldZ1f+O/rsr8YODo40TKqPdv2rbNK37ZvHe2bd63y3KTUeDbtWmk1IEs0HBKEG7AmI5tzetVJTi4/QebpTPbN2ENeSh6RQ6MAOPBjNJsml875DegQiFcTb3Z/toP0Y2mkH0tj92c78Gnhi3dTHwCOLTlC3JYzZJ/JIvNUBgd+jCZ+axyNhzexUQP76zC0KwfXR3NgzR5SY5PZMGslOWnZtBnYEYAtc9ex5O05JfnD20QSEBnE6pl/kHQygaSTCaye+QdBTUMIjCodJZ58MoHkkwkU5haQn51H8skEUmOTL/j1Vcf9YzyY9WcO3/2WzT8nC3n20zTiks0l928nT0/nmqdKW0hDe7qw+3Ahb36XwZEYE7sOFfDQO6mEBxrp1MIyT3jagiyWbcrlSIyJIzEmvv8tm4/nZHH9ZQ2vFXzHQw/hEBTE1HfftUpftX49DkFBJCXX7vc2a+5cug0ahGfjxoS3a8et991HXHx8XVS5Xtww7E5+XzeXxat/4njsYT78YTLJaQkl05Cm/fIm//fG+ArnLV37Cy7OrgzqeaXNcg+diObQiWiyc7PIyE7j0IlojsccqtdrqQ6l1EyllFZKPVcufWBxeo3vnymlRiul/lBKJSqlMpVSm5VSV9nIN0YpFa2Uyi/+99rzuZaqSHd0AxbWN5yCzAIOz/uH/NR8PBp50uPZ3rgVt2rzU/PIiS9t9SqDosczvdk3Yw8bX1yH0clIQMcg2t7armQKktlkZv93+8hLycXoZLSU+Uxvm9OYGoJmPVuRn53HjiVbyEnPxi/Mn+GPXINn8RzhnPRsMhLTS/Irg2LYw1ezYdYqFr/xM0YnB8LbNqb3DZdaTcOaN9l6WsfJXUfx8PfixjfuvDAXVgPXDnQjJcPMOz9mEp9SRJvGjsx+xZ9GwZY/3/gUM8fPmEryX9rFmWnP+PLRL5YFPlycFd1bO/Hzq/64u1q+d5vN8PL0DE7FFWE0QpMwB164w6vBDsxycXHh7Y8/5u5bbyUw4PzHLqzfvJkJDzzAmy+9xNUjRhCfmMhDTz/NLfffz59z59ZBjeve4F4jSc9K5btFH5OcnkiT8Ja88djXhARY5ggnpyUSm3DS6hytNUvW/MyQPlfj4uxqs9y7Xhxp9XjDzuWE+Ifz0ztr6+dCaiYPeEop9YXW+twj0M5tALACeA5IAcYD85VSA7XWawGUUn2An4AXgXnAaOAXpVQ/rfXmOqiDFaW1dD/VJZ9mPrr/6wPtXQ27Cstoau8q2N3rkT/buwp25915R52Uc8dDD5GQlERMbCwD+vXj/VdfBSwt4SHXXkvc/v0E+Fe+ipwt73zyCZ9Mn87R7aXTe2bOmsUjzz5L+vHjdVJvgPVLs+qsrH+rSyc0qdUiBEqpmUAQEAGs0lo/XJw+EFgJBGqtz3tah1JqC7BWa/148eOfAD+t9dAyef4CErXWN57v85Un3dFCiAbPYDAw9fnn+eKbbzhy7JjNPN5RUVX+XDluXEnevj17ciY+nl+XLUNrTVJyMj/Nn8+IIUMu1CWJ6jEDzwD3KqWa2cqglMo6x89v53gOTyC1zOM+wB/l8iwD+tb2Iqoi3dFCiH+FK4YMoW/Pnjz/2mv8OG1aheN/r1hR5fmurqXdsX169OCHzz/n1vvuIzcvD5PJxJABA5jx0Ud1Xm9xfrTWS5VS64GpwDgbWTqfo4jcyg4opR7A0tL+rkxyCFB+cEB8cXqdkyAshPjXeP2FF+g3YgSP3X9/hWPNm1b/Nkj0P//w6P/+x/8ee4zLBw3iTHw8z7z8Mvc98QQzP/mkLqss6sZTwCal1NvlD2itD9emQKXUGOAtYJzW+kS5w+Xv0yobaXVCgrAQ4l+jR5cujB45kmenTOF/jz1mdcw7KqrKc/v37s2S2ZZNCt744AN6dOnCEw8+CEDHdu1wd3Nj4FVXMWXSJBqFV9wQQdiP1nqrUmou8AYwpewxpdS5bryv1VqPKHfOGCyt31u11ovK5Y+jYqs3iIqt4zohQVgI8a/yyqRJdLjkEpaV636uSXd0Tm4uRqP1OtpnH8tg1QZrEhANlF/8uvM5zrPqjlZK3QB8A0zQWs+xkX8jMBRLK/msocCGmlS2uiQI28GuT7ZzevUpWo5tTYsxrUrSz+71O/Sr4TjVcGvB6u4TXJhTyMHZ+zmzOZbCzEJc/F1pdWMbwvpavvkfnn/QMo84NguDgwGfFr60vqktnpF1u9DFqq+XcWhDNN2u6UvXkb1K0mMPnGLJ23O45b17cfG0PaWiKkWmInYs3syhTfvJScvG1cuNjpd3o/2QLhXyHt58gJVf/kajjk0Y/vA1NsvbsWQL2+avp+2gTvQbP7jG9anKA2+lMvvPHJ6d4MkT40tf33W78rn6ySQO/hJS6YYLlfl1XS4zF2ez50gheQWaVpEOPHaTJyP6lL6W3y7N5qe/cjhwohCzGTo2d+TZCV5WK2kVFWne+C6TX5bnEJ9SRLCfkesGu/H0rZ44GO2741bzpk2ZeMstfPTllxXSq2vksGHc89hjfD5jRkl39OPPP0/Xjh2JjKh8r+r68tqXT/L7+rncOfoxbr3qwZL0Hfs38egbN7Hwo234eNpepKcya7b9zsKVP3LoZDQFhflEhTXnllEP0K9L6eCzX1fNZtmGeRyPOYQ2m2neuB13jv4/OrbsUZLn+8WfsubvZZw6cwxHRyfaNu3M3dc/SdOIVraett5orQ8rpaYBj5RPr24ZSqlxWFrATwBrlFJnW7wFWuuzO+N8UHzsWWA+cC0wCOh/npdgkwRhOzE4Gji66DCRQ6PqdC/fqvYJNpvMbJm6EUd3R7r+Xw9c/FzJS8nF4FA6SD45OonGl0fh08wXDRz8aT+bp2zg0vcG4+Rhe4Wm2jI6Gtn9+zbaDOiAq2fdLBKxYtpSslMyueSWIXgH+5CbkYOpwFQhX0ZiGlvmrCWkReXdjvFHznBg7R78IupvTW0XJ/jolyxuu9KdAJ+aBVxbNuzO55LOzky6zQtfTwNzVuRw68spLHorgD4dLO+F9bvyuWaAK73aeePqrPh8XhbXP5vMqs+DaBZu+Uj44Ocspv+axSdP+NK2iSP7jhXywFupODvCEzfbf+Wx5x5/nG9/+qnW508YN47MrCw+/fprnnzpJbw9PRnYvz+vv/BCHdayZpwcnZm1dBpXDbwRH6+aTbmyZec/W+japg93jXkcT3dv/tq4kOc+vJf3n/mRTq16WvIc2MTgniNp36IbLk6u/LJsOk++fRvTJy8mIqRJcZ7NXDP4Zlo36YjWmq/nv8/jb97CN6/+gZeHz3nXs4YmAxPO4/x7scS994t/zloNDATQWm8oDtavAC8DR4Cx9TFHGCQI241/+wDykvM4POcf2t3Rsc7KdfZyrrQVfXrVSfLT8+nzcv+SwOsWZB38ev3PehR+54e6sWzCElIPpBDcvW4HB4a1akR2ahY7ft1M35sGnXd5p/edIGb/Sca9ekdJK9ozoOIeqWZTESum/Ub3a/oS+89p8rIqDp4syMln5Ve/cemEoez4tV7+9gDo38mZ2KQi3v4hk9cf8Dnv8l6737qMp27x4o8teSzdkFcShL941rpF9fbDPizdkMfyrXk0C7esO741Op9hvVwYXtyCjgxxYHjvXP7+58LvN/y1jRHLQYGBpFUyVam6HrzrLh68667zKqMudWnTm8SUOL5Z9DGP3PzieZf38HjrLxS3XfMIG3etZN32P0uC8PP3vm+V57EJr7Bu+59s3rOmJAi//cQ3Vnn+d/c7XHlfJ/Yc+pt+XS4773pWRmt9m420BCxTimpb5sBq5psD2OqqrnMShO1EKUXrm9qy7a3NRF3RDPeQiisV/X7L4irL8GvjT89JfazSqtonOG7rGfxa+bHv693Eb43D0cOR0D7hNB/d0qo1XJYp1wQaHD0ca3GV52BQ9BjTnz8/WUT7IV3wCvKpkGXGAx9XWURIi3BGPGpZUe74jsMERgWz58+/ObRxP0ZHBxq1j6LH6H44upS24rfOX4+nvxct+7Uj9p/TNstd++1fNOnWgvA2kfUahA0GeOFOb255KZl7rvWgSVjFP8nIq2zvnXxW7/ZO/Pxq5a31rByNt0flXcgFhZBXoPHxKH0P9GrnzNe/ZnPwZCEtIx05cKKQtTsLeHScR6XliPNjUAbuuf4p/vfhvVx3+W2EBzWukGf4Pe2rLKNDyx689fiMSo/n5GXj6V7xi+lZhaYCCgrzq8yTm5eNWZvxdLd/j8h/gQRhOwrqGoxva3/+mb2fro92r3D8krcGVnm+0am0+/LsPsE+zX0xm8ycXnOKzVM20PvFfiVbFObE55C8N4mwfhH0eLY3OQk57Ju+G1Oeiba32v7jjp6xB68ob3xb1ux+VHVFdmxCcPMwts5fz2X3VFzbdvQLN1d5voNT6Vs4MzGd+EOxGB0cGHLfSPJz8i1rTadnMeS+UYCltXx060FGv1h5uQfW7CEjIY2Bd12Yzc+H9nShVzsnps7I4Kv/VXydV30WVOX5Ls6VB9ivFmURm1RU5c5Ir87MwN1VMbxP6SYej4z1ICvXTN+JCRgNYCqCx2705M6rJAjXp96dBtG+RTe+mvMOL97/YYXjX02u+ou5s1PlG7HM/+tbElPjuLxv5csgT5/7Lq4u7lW2cD/8YTLNI9vS7hwbR4jqkSBsZ23Gt2X9/9aQNqriYjDuIdX/wKvWPsFa4+TlTMd7O6MMCu+mPhRmFRD9zV7a3NKuwt7F0d/sJeWfZPpOvsRq3eW61uu6S1j46mwSh8VVOOYd7FPtcs7uMzx44gic3Cxdr/1uGsxv780jJz0bg8HA6q+XMWjiCJzdbX9YpcWlsHXeekY9fQNGh/O/R1tdL97lzbBHEnngYMXu3qbhtfszXbQ2l5e+zODLSb4l60yX98X8LGYuzWbe6wF4uZe2hOevyuWnP3OZ9owvraMc2XOkkEmfpdE4xMjNIxrm+tL/Fffe8DT3TxnD2GMVu8ojgqNqVebqrb/x2c+v8+J9H5asNV3enD9msGjVLN596jvcXW33+H486xX2HNrGx5N+xmi4cH8f/2UShO3Mp7kvob3COPBDtNVIaahdd3T5ssvuE+zs44JyUFYB1SPck6L8IgoyC6wGcUXP3EPshhh6v9gPt+D6/dANbBJCVLfmbJmzji5lRkpDzbqj3bzdcffxKAnAAD6hlpZldkomhfmF5KRns/Td0gX6z05H+eru97lu8q0kHDlDXlYuc178tjSPWXPm0Gn2r97N7Z88iNGx7v9surZyYlR/V17+KoMnxlt/ANamO3rR2lzufzOVT5/0tRoZXdYX87OYOjODn6f606219aC7F7/M4MHrPRg9yNKCbtvEkVPxJt7/KVOCcD1r07QTl3Yfzhc/v8GtVz1kdaw23dGrt/7G1C8fZ9LEt61GRpc1548ZfDXvXd587GvaNO1kM8/HP05h+ebFvP/0j4QFRdbgikRVJAg3AK1uasPq/1tB4k7rueA16Y62pfw+wb6t/Ihdfxpt1iWBOOtMFkZnI06epR/C+2aUBuCy05vqU49r+zPnhW84vfe4VXpNuqODm4dx9O9DFOYVlNwDTo+3LAnr4e+Fg7MjY16+xer8bfM3kJ+TR7/xg/EM8MbVy40xUdZ5Vs/4A+8gHzpf2RNDPbaOn7vdi74T41m+zfr+e027oxeszuGBt1L55ElfrrrUdgD+dE4mr3+byexX/K2mJp2Vm2+2sSexqnI/YlF3Jl73BBMmDWPLntVW6TXtjl6xZQmvffkEz058m4E9rrB5zk+/f8WM+e/zxmNfW01NKuvDHyazYvOvvP/MLBqH2VzCWdSSBOEGwD3Eg8ghURxberRCenUdW3IE10A3PBt5YjaZiVl7mvitcXR9vPSPqvHlTTix7Bj7Zu4hangTchNyOfTzARpf3qSkK3rvV7uIWXuabk/2xNHDkbw0y2byDi4OOLjU39vFO9iH1pd2YO/yHRXSq6t5r9bsWLyZ1TP+oOtVvSnIyWfjrFU06dYCVy9Li84v3LrF6OTmjNlsLkk3OhhxdrP+IHN0csTZ3aXCuXWtabgDt17hzrT5WRXSq2veyhzuezOVyXd706eDM/EpRQA4OSh8vSxR9aOfM5k6M4PPn/alWYRDSR5XZ1XSJT2stysf/JRJ4xAHWjd2YPfhQj6bl1XlvWVRdyKCoxg1cBxz/pxZIb26lm/6lalfPs79Y5+lU8ueJKdZdgJ0dHAsmVo0a+k0vpr7Dv+7510igpuU5HF2csbDzTLw6r1vX+CPDQuY+vDneLp5l+RxdXHDzUV6Rc6XBOEGosV1rTi9+iQU1u786uwT7BrgSs//9SH6272sfXIVzj4uRAyKtOoGP/HHcQA2T7ZeHKbFda1oeUPr2lWumrqO6s2hDdEUUVSr8x1dnLji8TFs+HElC6bOwtnNmaguzekxpl7m2NeLJ8d7MvvPHGq7TO3MJdmYimDSZ+lM+qx0n+V+HZ1Y9LZlpPz0X7MpNMGdU1Otzh031I1PnvQF4PUHvHntG8WTH6WRlGZZrOOWEW482QDmCF8sJlz9EL+vnweF+bU6f9HKHykqMvHRj1P46MfSlR47t+rFB8/OAmDB8u8wFRXy8qflur37jeHZiZYFoxas+B6A/3vTulfqtqsf5vZrH61V3UQp2U+4jsl+wrKfMMh+wlB3+wn/m8l+wrXfT/hiIfsJCyGEEHYiQVgIIYSwEwnCQgghhJ1IEBZCCCHsRIKwEEIIYScShIUQQgg7kSAshBBC2IkEYSGEEMJOJAgLIYQQdiJBWAghhLATCcJCCCGEnUgQFkIIIexEgrAQQghhJxKEhRBCCDu5KIKwUmqmUkoX/xQqpRKUUiuVUg8opRzL5W2mlJqulDqllMpXSh1XSs1RSvW1V/2FEEL8N10UQbjYX0AoEAVcDvwKvAysVUq5AyilugPbgXbA/UBb4Crgb+CjC19lIYQQ/2UO9q7ABZSvtY4r/n8MsFMp9QeWoPuUUuolYCZwFOintS4qc+5updRnF7KyQggh/vsuppZwBVrrvcDvwBigM5YW8FvlAvDZvGkXtHJCCCH+8y7qIFwsGmgKtCh+vN+OdRFCCHERuZi6oyujAF38b+0KUOpu4G4Ar2Av2ge2q6Oq/Tvl5Gp7V8HujB6t7F0Fu0u4/W57V8HuMge9bu8qiAZOWsKWwVdHgYPFj9vUtACt9TStdXetdXc3b7c6rZwQQoj/ros6CCul2gPDgTnATixd008qpYw28vpc0MoJIYT4z7uYgrCzUipEKRWmlOqklHoMWIVl+tHbWmsN3A40A9YrpUYWzxnuoJR6CssUJyGEEKLOXEz3hIcAZ4AiIA3Yi2We8Bda6wIArfUWpVQ3YBLwORAExAFbgAftUGchhBD/YRdFENZa3wbcVs28h7C0iIUQQoh6dTF1RwshhBANigRhIYQQwk4kCAshhBB2IkFYCCGEsBMJwkIIIYSdSBAWQggh7ESCsBBCCGEnEoSFEEIIO5EgLIQQQtiJBGEhhBDCTiQICyGEEHZyUawd/W+2fcHfbPlpE1nJWQREBXLZg0No1DGy0vxHtxxl/TdrSTqWiNHRSHj7CAbdOxi/Rv4leYoKi9jw3Tr2/bmXrOQs3Hzd6XlDL7qP6XEhLqnGdi//mx1LN5OdnoVfWCCXjB9CeKtGlebXWrPrj63sWbmDjMR0XNxdaN2/A/1uGATA6f0nmP/6jxXOG//a3fiF+VdIFw3DzONH+ezoYRLy82jp4cnkdh3o5RdgM29eURHP7N3JnvR0DmVl0sPXj7l9LrHKs/RMLN+ePMbejHTyi8y09PTk4eYtGRYceiEup1aWrP+Reaumk5KZSGRwcyZePYn2TbvbzBufcpo7Xx1SIf3lu76kW+vS12Lx+h9YvP4HElJiCPQN5YbL7uWy7tfU1yWIciQIN2D7V0Sz/OM/GfroMCI6NGLHwr/55emfuGvm3XgFe1fIn3YmjXnP/UK30T0YOWkUBbmFrPpiBb888zP3/HBfSb5FUxaQmZjBsMevwC/Cl+yUbEwFpgt5adV2cHM0a3/4iwG3DiOsZQR7lm/n13d+YvxrE/H0r/gaAKybtZzjOw/Tb9xg/CMCKcjNJzstq0K+8a9OxNndpeSxq5dbvV2HOD8LY0/zQvQeXmvfiZ6+/sw8cZTxWzayasBlRLhW/L2ZtcbZYOT2qKYsT4gjo7CwQp6NKUn08w/k6VZt8XF0ZF7Mae7ctpm5ffpXGtztac3OpUxb+Cr3jX6Bdk26sWTDj7z01d18+uRignzDKj3v5Ylf0jS0dcljD7fSv5ulG2Yxc8k7PHT9ZFpFduKfk7v5eM7zeLh60avd4Hq9HmEhQbgB2/rLFtoP70jnkV0AGPrwMI5tOcqORdsZMHFQhfxxB89gLjIzYOJADEbLnYbeN/Vh9mM/kpOeg5u3G8e2HuX49uPc88N9uHlbPry8Q3wu2DXV1M7ft9C6fwfaD+wMwIBbLufEnqPsWb6DvjcMrJA/9Uwyu//6mxtfuRO/sNIP0sDGFct29XLD1VMC77/BtGNHuCEikvGRUQBMbd+JVYkJfHviGJNat6uQ383BgTc6dAYgOiPdZhCe0q6j1ePHW7ZmeUIcv8edaZBBeMHqmVzW41qG974BgHuvfZ6//1nH0o2zuO2Kxys9z8vNB1+vQJvHVvy9kGG9rmdAl5EAhPg34tCpPcxd+ZUE4QtEgnADVVRYRNzBM/Qc28sqPap7E2L2nrZ5TmirUAxGA7uX7KTjlZ0pzC9k77I9hLYOLQm4h9YdJLRVKFt/3sLeP/bg6OxA057NuHTiQJxcner9umqiyFREwvE4uoywfg0i2zfhzGHbr8HR7YfwCvThxO6j/PruL2itCW/ViH7jBuPm5W6V96eXZlJUaMIvPIAeV/Ujoo2NSC3srsBsZnd6Gvc2bW6VfmlgENtSU+r0ubJMJrwdG9bfAUChqYDDMfsYPfAOq/SuLftx4PiOKs999ZuHKSjMJyywMVdfMoH+nYZbletY7nqdHV04eGoPpqJCHIyOdXcRwiYJwg1UTnoO2qxx97UOHO6+7pzYftzmOd4hPox9+0YWvjSfPz5Yhtaa4OYhXP/G2JI8aWfSOL3nFEZHI9e+PJq8rHz++ugPMpMzufblMfV5STWWm2l5DcoHTzcvd06lH7d5TkZiGpnJ6RzaHM2Qu64EpVg/ezmL3/uF65+fgDIo3H08GDhhGMFNQikqKuKf9XuZ/8aPjH5mPOGtK7/fLuwjpSCfIq0JdHK2Sg90dmZtUn6dPc+M40c5k5fHdeGVjzewl4zsVMzmInw8rMcs+Hj4szMzyeY5Ls7u3DHyKdo26YrRYGTzvpW8+f1jFJoKGNTtKgC6turPn1vm0rf95bRo1J7Dp/eybMscTEWFZGSn4ucVVO/XdrGTINzQKeuHuoqsWSlZ/PbWUtpd3oG2l7WlIKeAtTPWsPDl+dz47niUQaG1RinFVc9djbOH5X7o0Icv5+enZpOdkoW7n0f9XUttKesXQWtd4XUpOWbWFBUWMfSeUfiGWD6wht4ziu+fnkb8sVhCmoXjG+qPb2jph1lo8wgyktLZ8dtmCcINmCr/t1D526DGlpyJYcr+fXzWtTsRbg34FkX5vwU0qpJXwdvd16rl3KJRBzKyU5m76quSIDxu6P2kZibx5Mc3otH4ePhzWbdrmLvqKwzKWH/XIUrIFKUGys3bDWVQZKdkW6XnpGZXaB2ftX3B3zi6ODLo3sEEtwihUadIRv7vKk7tOknMPkv3rYefBx4BniUBGMC/seX+V0ZCRj1dTe24elpeg5x060FVuZk5FVrHZ7n5uGMwGkoCMIBPsB8Go4HM5MqvL7hpGGnxqXVTcVGn/JycMSpFQr51qzepIJ9AZ+dKzqq+JWdieGjndj7s3LXBjoz2cvfFYDCSVq7Vm56Vgo9n9Uf0t4rsSGziiZLHzo4uPDr2Vea+toOvJy1nxnMrCfYLx9XZHS933zqrv6icBOEGyuhoJKRlKMe3HbNKP/73ccLbR9g8x5RXiMFg/a3YYLD8irXZ0oYObx9BVnImBbkFJXlSTiUD2BxxbU9GByNBUSGc2nvcKv3U3mOENrf9GoS1iMBcZCa9TEDNSEjDXGSudDQ1QNLJBNx9GmAvgMDJYKCjtw9rEhOs0tcmJdDd1++8yl4UG8NDO//m/U5dGRkafl5l1SdHByeah7djx8H1Vuk7Dq6ndVSXapdzNPaAzUFaDkZHAnxCMBqMrNm5hJ5tB5Z8doj6Ja9yA9bj+p7sWbabXUt2knQiib8++oOspEw6j+oKwOovVzL7sR9K8jfr3Zy4Q3Gs+2YtKadTiDsYx9I3FuMZ5EVwyxAA2g5ph6uXK0vfWEzisURO7znF8o//pNWA1pW2sO2p8/Ce7F+3m32rdpISm8Sa7/8kOy2L9oMtHzwbfl7F/DdK5/w2ateEwMYh/DV9CYkn4kg8Ecdf05cQ3CyM4CaWVs7OZVs48vdB0uJSSD6dyIafV3F0+0E6DOl2Qa/tvlei8em7grdmWH/RWrs9FZ++K0hOK6jkzOrZuCsN/0tW0mf8Zqv0bxbGMOK+v4katobIy9cw8sHtbNyVZpXnta+O4tN3hdVPy5Hrzqs+5+PuJs34+fRJfjh5nEOZmTy/bzdxeXncGtkEgFcP7OOGTdb1O5iZwd70NFIKCsguKmJvehp709NKji+IPc2DO7cxqXU7evv5k5CXR0JeHqkF5/e615drBtzG8m0LWLb5F07FH+GLBVNJyUjkit7jAJi59B0mfX5bSf7lW+ezavuvnIo/wumEo8xbNZ0lG35kVP+bS/LEJB5jxd8LiUk8zj8nd/PG949xIu4Qt474vwt9eRUopWYqpbRS6rly6QOL02s8hF0pNVop9YdSKlEplamU2qyUuspGvjFKqWilVH7xv9eez7VURe4JN2BtBrclNyOXDd+tJzvFsljH9a+PxTvE0qLLSs4iNTatJH/jrlGMeu5qtszexJbZm3BwdiCsbTg3vDG2ZOSzk6sTY9++ib8++oNv75uBi6cLLfq1ZMDdFac8NQQte7UlLyuXrb9uIDstC//wQEY9dgNeAZbXIDs9i/SEtJL8yqAY9dj1rPn+T+a++gMOjg40ah/FJTcOQRX3EhSZzKyfvZys1CwcnBzwCw9g1GPXE9Wpua0q1CsXJwMf/nCS268JJ8C37kblpmUUcu+UaAZ08+VMonU37rodaVx7WTCvP+qNm4uBT386xZj/28nab3rSrFHp/dAWkW4s/qS0lWU01NUd2Jq7OiyC1IICPjj8Dwn5+bTy8OT7Hn1K7t8m5OdxPMf61s3NWzdyOje35PHl61YBEHvlNQB8d+IYJq15IXoPL0TvKcnXx8+/wsIeDcGlna8gMzuNn/76jJSMRBqHtOClO78gyM/Sgk/NSCQu+aTVOT/99TkJqbEYDAbCA6N45IapJfeDAcxmMwtWzyQm8RhGowMdm/XirQdnEexnu6fJDvKAp5RSX2itE+ugvAHACuA5IAUYD8xXSg3UWq8FUEr1AX4CXgTmAaOBX5RS/bTWm20XW3tK66qG+oiaCm0Vqid8cce5M/6H5ZyU99SUFuf+W73vlWiSUguJScijfxdf3nysJWBpCY96cAdHlvbH36d2gfnmZ/fQvrkHWmsWrUxk4w+9Ks2rtabVqPU8PqEx91xvGRn82ldHz3neueRM9ar1uf8V2we9bu8q2N2Vj7eq1bc3pdRMIAiIAFZprR8uTh8IrAQCtda2h4bX7Hm2AGu11o8XP/4J8NNaDy2T5y8gUWt94/k+X3nSEhbCjgwKXrqvGeOf2cN9N0TQJKLiyNzwy1ZXWUafTt7MebdzyeOv5p4mITmfJ19pz5vlurptKSjU5BWY8fG0nhN6PDaXNletw9HRQPe2XrxwbzOiwl2rd2FC1A0z8AywQCn1gdb6SPkMSqmKy+FZW6u1HlHFcU+g7KjMPsBH5fIsAx6sRn1rTIKwEHZ2ed8AenX0ZsoXR/l6SvsKx9d+U/Wa3i7OpVNJ9h3J4o2vj/Hnl90xGqvXAHll2lE8XI2MuKT0Flv3dt58+lwbWjR2Jym1gLdmHufye/5m0w+98POWBRzEhaO1XqqUWg9MBcbZyNL5HEXkVnZAKfUAlpb2d2WSQ4D4clnji9PrnARhIRqAyfc3Z8jd23hof8VpVE1ttI5tyS8wc+cL+5jyYHOiwqrXYv3sp1PMXBDDgg+74OVe+nEwtI/1tJfu7bzofN1Gflx6hgdvlLnU4oJ7CtiklHq7/AGt9eHaFKiUGgO8BYzTWp8od7j8PTVlI61OSBAWogHo2taLqwYG8eKnR3jy9iirY9Xtjo5LzufAsWweePUAD7x6AACzWaM1+F+ykl/e7sjgXqXB9bOfTjH1y6P88k4nurWt+v6th5sDrZu6c/R0pY0KIeqN1nqrUmou8AYwpeyx2nRHFwfg74BbtdaLyuWPo2KrN4iKreM6IUFYiAbihXub0uumzSzflGyVXt3u6LBAZzZ819Pq2PR5MazcmsL3r3UgMrR0gZaPZ53kta+O8fPbHenTyeecdcvLL+LQiRwu6SoLOAi7mQREA8PLpXc+x3lW3xyVUjcA3wATtNZzbOTfCAzF0ko+ayiwoSaVrS4JwhfAktd/Ze+yPVxyx6X0vaV/SfrJnSeY9X8/8NCCR0s2WKiuf9YcYOevO4g/FEdRQRH+jQPoc3NfWvRraTN/9PJ9/PrKQpr1bs51r91gM8/G79ezZvpqul7TjaGPDCtJf2PQqzbzd7m6K5c/Wv7vwbY/v1zMgXV76D36Unpc3a8k/ezevnd9/EiNdzTKTsti3azlJJyIIz0ulVb92jN04kirPHtX7eTA+j2kxCShtSYwMpjeYy4lrGXp+sCb569lywLrOaZu3u7c+eHDJY+11mxZsI59q3aSl51HSLMwBtxyOf4RtnenqY2mEW7cdnUYn/98ukJ6dTg6GGjbzHrBkQBfR5wdrdM//OEEU744yrQX29I80o34ZMsUJhdnI94elo+E5z46xPD+AUQEu1juCc84Tk5uETeOqJfbYlV6dNff/Hz6FE+1bMOjLVqVpG9ITuS6TevZM3QE/k41XzmrwGzm/UP/MDfmFPH5eQQ4OXNv0+bc1aRZXVa/Wt6b/QzLty3g5uGPMG5I6bajuw9vZtLnE/jh5Y1413AFqz1HtvDN0neJSTxGfkEeQb5hXN7rOkYPvNMq38K13/LbhlkkpMbi6e5D73aXcduVj+PqbFk34OflX7Bxz5+cTjyGo4MTrSI7MeGKx4gKtf1ZU1+01oeVUtOAR8qnV7cMpdQ4LC3gJ4A1Sqmzb+gCrfXZ3UA+KD72LDAfuBYYBPQvX15dkCB8gTg4ObB59iY6j+qCm8/5L4pxatdJGndpzCV3DMDVy4V9f+1j/gtzufG98TTqaH3PLi02lZWfryCiY+UL08dEx7BryU4Cm1ZcsP2BuQ9bPY775wxzJ/1C64FtalRno6MDfy/dRPtBXepk796iQhMunq50v7IPe1fttJkn5sAJWvRsQ1jLCBycHNm5bCsL3/qJG6fcgU9I6WpLPqF+jH5mfMnj8qsFbV+6iR2/b2HIXVfiG+rPlgXrWPjWbG5+/W6cXM9/6cSznrq9CbN+i4N6XC/iy7kxFJo0tz+/zyr9xitC+Oy5tgDEJuRz14v7SE4rJMDHke7tvfnzy+5EhtpndLSLwcCnRw9xS2QU/nWwVCXA/Tu2Epuby5sdOtPU3Z3E/HzyzEV1UnZtODk4M3flV4zoPRZvj/NbCQzA1dmNUf1vISq0Jc6Oruw/vp2P57yIs6MrV/a7CYBV239lxuK3ePiGV2jXpBtxyaf58Of/UWDK55EbpgKWYH5F3xtp0agDoPl+2Uc8N+0OPntyMZ5uPuddzxqaDEw4j/PvxRL33i/+OWs1MBBAa72hOFi/ArwMHAHG1sccYZAgfMFEdmlMZmIGG75dz5CHLz/v8oY8ZF1G/wmXcHTTYQ6tO2gVhItMRSyaspBL7xzAyZ0nyE2veE8vPyuPxVMXMuLJK1n/bcVVkTzKbepwaP0h/Br5Edm5Zlv/RbSJJCslky2L1jHg5vN/DbwCfUrKObz1gM08w+692urxwAnDOLr9ICf2HLUKwgaDodJlK7XW7Fy2lW5X9qZ5D8vm6EPvHslXD33IwU3RtB9U/WUDyzob8MoK9HPi9F8DalWeLc/e1ZRn72pqlbZnXt9znmdrlLY99fUP5ExeLu8d/odXyu0DXBurEhNYm5TIhkFDS1rRjdzsu2Jch+a9SE6PY/Zfn3LPNc+d+4RzaB7RnuYRpb/HEP8INuz5k33HtpUE4f3Hd9C6cScGd7P8nQT7RTC4+9Ws3/1nyXlT7p5uVe7jN77B2Od6EH1se73uOay1vs1GWgKWKUW1LXNgNfPNAWx1Vdc5CcIXiFKKARMHMe/5OXQb0wPf8IpdS++OeMvGmaUiOjbihjdsjdC3yM8pwMXTxSptzVer8Q7xpsPwjpzcWX4AoMXv7/xGq0tb07hrlM0gXFZBbgEHVkTTd0LNe2aUUvS9YSBLPphL56E98A6u+Bp8fneFwY9WQls24uonxlaZpypmUxGmQhPObtavU0ZiGl8/8hFGByPBzcLoc90AvIN8S47lpGcT2b5JSX4HJ0fCWjXizKHTtQ7CovoMCia1bssd2zZzV1QzotwrBszmv/9aZRm9/Pz5oaflC8iyuDN08vZl2tEjzIk5iYvByKCgYJ5t1RZ3B/t8LBqUYsIVjzN15oNc1f9WQgMqjkK/blLXKsto16QbL0/80uaxIzHR7D+xg5uGlk53bdukGyu3L+LAiZ20btyZhNRYNu9bSfc2l1b6HLn52Zi1GQ+3hrXW/L+VBOELqFnv5kS0j2DN9FVc/ULFpUhv/+pOG2eVcnCqfH7m9vnbyErMpN3QDiVpx7Ye5cCqaG7/svJydy7eQWpMKiMnVVg+1abov/ZhKjTRYViHc2e2IapTc0JbRLBx7mqG339NhePjplS92piD4/nNUd04dw2Ozk407dqiJC24aRhD7hqJb6g/OZnZbFu0gTmvfMdNr96Fq4cbOemW5RDdvCvua5ydmnle9RHVd1lQCD18/Xn9n2g+71pxsNqfl1S99KqLsXQ+9YncbLamJuNsMPBl155kmAp5bt9u4vPy+LJbzypKqV892gygTVQXvv39fZ6++d0Kxz98bH6V5zs5ulRImzBlAOlZKZjNRdw49AGu6Fv6RX5AlyvJzEnjmU9vQWtNkdnEoG5Xc/uVT1T6HNMWvErTsDa0bty5+hcmKiVB+AIbeM9gvnvgG878c6bCMd/w2t0H+mf1AVZ+sYKrnr+mZF3pnPQclr6xmFHPXY2Lp+37eMknk1nz1SrGf3gLRsfq7R26a8lOWvRreV73tfuNHcQvk78lfkTF18An+PzvhVVm5x9b2btyB9c8daPVfdyoTtYDcUKahfPtE59xYN1eugwv+4Fcjxvaimp5rk07Rq5fza60iut8N3Gv/i5YZq1RwCdduuNV/MXulXaduGnLBhLz8wh0rhjMLpTbr3ySJz4ay6EBt1c4FhZQs1tAAG/c/wN5BdkcOLGLmUveIdg/oqT7ec+RLcz+6zPuG/2CZZvDpJN8ufBVflj2ETcPf7hCWV8ueo3o43/z5gM/YjTIfsN1QYLwBRbaOoyWl7Ri9Rcr6HurdZdubbqj/1l9gMWvLeLKZ0dZjYxOOpZIVnIWsx8v3WHo7Drhb172GnfOuJvY6Bhy03OZfntp95U2a07tPsmORdt57LcncXAqfYvEH44n7p8zXHrXwBpfd1nBTcNo1r0VG35eSY+r+lkdq6/u6J1/bGXT3DVc9fgNhDQLqzKvk4sTfuEBpMVZBkuebQHnpGfh6V86nzanin2NRf3o7OPLlaFhTD2wz2qkNNSsOzrY2YUQF9eSAAzQwsMSxGNyc+0ahFtGdqBvh8uZseQdq5HSULvu6BB/y2YMUaGtSMtK5sc/Pi4Jwt/9/gEDOl/JsF7Xl+TJL8jlw1+e48ah92M0lv79f7nwNdbsXMqr931DiH/lgzxFzUgQtoMBEwfy1W3TOLrlqFV6Tbuj96+MZunri7nimZG0HmA9UjmkVSh3fH2XVdra6WvIy8xl6KPD8An1wd3PnTtaWedZ+sYSfMN96XNz3wqt412/7sA7xJuoblHVucwq9bl+AD88+yUn9li/BvXRHb3j9y1snreGUY/dYDU1qTKmAhOpZ5KJaGNpdXgF+uDm7c7JfccJbhpWkif2n1P0H1d/A1OEbc+0asvA1ctZWW5/4Zp0R/fw8+fXM7Fkm0wl94CPZltuO0S4nv/I/fN16xX/x/1vjWT7P9ZjNGrTHV2WNpspNJUOvc8vyK0wE8BgMFB+Y58vFkxl7c6lvHbftzQKsh7oJ86PBGE78A33o/PILvw9d2uF9OqKXrGPJa/+yqB7B9OoUyRZKZZFY4wORly9XHFydSKwifV0I2cPZ8xF5pJ0o6MRFw/rP1pHF0dcvVwrnFuYV8i+5fvoNa43Sp1/H6xPsB/tBnZm1x/bKqTXROIJyyI2BbkFKKVIPBGP0cGIX7hlHeTtSzexcc5qLr/nKnxC/MhOs7xODk4OJYOz1s1aTpMuLfDw9yI3I5utC9dTmF9I6/6W+95KKToP68HWRRvwDfXHN8SPrYvW4+TiRMveFUc4i/rVxN2D8ZFRTD92pEJ6dV0bFsF7h/7h/3Zt5/GWrUkvLOSFfbsZGRJGQB1NgTofYQGNGdbrehat/bZCenX9uu47gv0iCA+0DCjcd3Qb81Z/zZV9byrJ07PtIBasmUnziPa0iuzEmeQTfP/7h/RsO7CkFfzZvMms+Hshz932CR6uXqRmWHYUdHF2K5lLLGpPgrCd9L21P3uX7Tl3xkrsXLQDc5GZ5Z/8xfJP/ipJb9Qpkpvev7mKM2tn/8poCnML6DD8/KeHnNXzmv4cWL+XosLalzH7ha+tHh/beRjPAG9ue+d+AHYv3465yMzvny6wyte6f4eShT2yUjNZ9tlCcjNzcPV0I6R5ODe8MKFkz2KArlf0xlRgYvW3y8jPySO4aRhXPzmuTucIi+p7rEVrfjl9CssmOzXn7uDAT7368ty+3YxYtxofR0eGhYTyv9YN50vVjUMfYMXfC8BUu/PNZjMzl7xDfEoMRqORUP9IbrvicUb0Kb2lNW7IfSil+H7ZhySnxeHl7kvPtoO4dcSjJXmWbLDc0vrfF7dVqN/4YQ/VrnKihOwnXMdkP2HZTxiqt5/wf53sJyz7CUPt9xO+WBjOnUUIIYQQ9UGCsBBCCGEnEoSFEEIIO5EgLIQQQtiJBGEhhBDCTiQICyGEEHYiQVgIIYSwEwnCQgghhJ1IEBZCCCHsRIKwEEIIYScShIUQQgg7kSAshBBC2IkEYSGEEMJOJAgLIYQQdiJBWAghhLCTiyYIK6VmKqW0Uuq5cukDi9MDlFJRxf/vXua4m1Lqd6XUMaVUiwtfcyGEEP9VF00QLpYHPKWUCqxOZqWUL/AXEA7001ofqs/KCSGEuLhcbEF4JXAceP5cGZVSYcCa4oeXaq1j67FeQgghLkIXWxA2A88A9yqlmlWRrzmwHjgNDNFap16IygkhhLi4ONi7Ahea1nqpUmo9MBUYV0m2b4C/gau01oXnKlMpdTdwN4CTvxPLT6ysq+r+K2XsNdu7CnY3tV0Te1fB7kIXz1L2roO9nZywWdu7DqJhu9hawmc9BVxfdgBWOQuBnlQepK1oradprbtrrbs7eDrWVR2FEEL8x12UQVhrvRWYC7xRSZY3gUnATKXUbReqXkIIIS4uF113dBmTgGhguK2DWus3lVKFwHSllIPW+qsLWjshhBD/eRdtENZaH1ZKTQMeqSLPe8WB+AullFFr/cWFq6EQQoj/uos2CBebDEyoKoPW+mOllAn4tDgQf3phqiaEEOK/7qIJwlrr22ykJQCeZZKSgAojOrXWnwOf11vlhBBCXJQuyoFZQgghREMgQVgIIYSwEwnCQgghhJ1IEBZCCCHsRIKwEEIIYScShIUQQgg7kSAshBBC2IkEYSGEEMJOJAgLIYQQdiJBWAghhLATCcJCCCGEnVw0a0f/22T+k0Hcb7HkHM+iMK2QqDubEXBJUJXn5JzK5uT3x8g+moWDuwOBg4IJvSoCpSzLYaduSyZxZTw5J7MxF5pxDXMjdFQ4Pl38LsQlifPw5S+H+PC7A8Ql5dKmqTevP96Fvl0qfz9orfl01kG+nnuYE7HZ+Ho5cdPIJrz8UKcKeTfuTOSKe1bQsrEXm38eUZ+XIc7T6gNz+Cv6B9Jzkgn1acL1Pf6P5sGdbeZdvPNLlu6ebvPYG9cvxdPV8ne/9egy/tz3PfEZJ3F1dKdVaA9Gd38Yb1f/+roMUYYE4QaqKK8I1wg3/PsFcvzLw+fOn2vi4Fv78WzlRdsXO5J3Jpdj0w9jcDISMiIMsAR2zzbehP1/e/cdHlWxN3D8O0k2m9577wmhB5BepIiCIoIFyxXFBoLtqoheES+2K1jQV1FEFBuggIAoHek9hJrQAiGEhHTSe/a8f2xI2OwmpG/U+TxPHrJz5kzmhM3+zsyZMt4XM2szsvdlEv/pGcJndMQ23K61L0lqopWbLvHKBzF8NKMnfbu5sHB5POOf3cnB5bfh62Ft8JzXPj7Kht0pvP1sVyJDHMgrKCc1s1gv39W8Mp6atZ/Bvdy5kq5/XGo/ohM2s/zQx0zo/TLBbl3ZeWYln299gZljluJk46GXf3jHBxkYPk4n7ZudrwOiOgCfTz/G4j3/ZVyPZ+jqO5j8kmyWHZjD4l2zeO6Wz9risv7xZHd0O+XQ1RGfu/1w6uVsYF8nfVn7MtGUaQh8IhhLHysceznjMcqbtI0pKIoCgN+DgXje7o1NkC0W7pZ4jfXFKsCanJjsVr4aqTk+++k0D94RyCN3BRMeaM8H03vg7mLBohWGb87OXcxjwc9nWfbhAEYP8SHQx4auEY6MHOCll3faWwe5f3QgN3X+a7R6hBDbhRDzhRDvCiEyhRDpQogPhBAmVccfEkIcEkLkVx1bLoTwvu78IUIIRQgxTAhxQAhRJISIFkJEGe+qGubPU0vpGzyaAWFj8XQI5L7eL2Fn6czOs78azG+hssLe0rn6q1JTQXz6MQaE3lmd50LGSRyt3BgWeT8utl4EunZiSMS9XMyMbavL+seTQfhvojA+H9swW0zMTavT7Ds5UJ5TTllmaZ3naUo0mFrLDpH2qqy8kqOnrzK0j25LZ2gfDw4czzR4zh87kgnwtmHz3lS63LmWTnf8xlOz9pORXaKTb+Hyc6RlFTP9schWq38reRCoAPoB04DngfuqjpkDs4CuwO2AC7DUQBnvATOAKCAL+Elce27TDlVUlnMp6wwdvHrrpHfw6s2FjBMNKmPvud+wUtnQzf/m6rRgty7kFmdyPGkXiqJQUJJDdMJmOnr3a9H6S3WTn75/E+W55aiczHXSzOxV1cfUrhZ656RvSaXsainO/VzbpI5S42XllFFZqeDmpPv/5+ZkwfYDaQbPuZhcQFJqISs3JfLFrN4IAf+Zd5R7X9jJ1m9HYGIiiI3P4X8LT7L12xGYmv7l7sXjFEV5o+r7s0KIJ4BhwFJFUb65Lt8FIcQU4JQQwkdRlMvXHZupKMo2ACHEbGA34A1cn6fdKCjNQaNUVncjX2Nn4cTp4kM3PF+jaNgX/zu9g0ehMq35nAhy7cykgbNZvHsWZRWlaJRKIjxv4uH+M1v8GiTD/nJ/fVLd9G7jlbrzXj2UxeVfEgl6KhS1i7o1qyW1gNptNEXRT7tGoyiUlmn4anYf+ke50a+7G1/N7sPh2GwOx2VTWlbJo6/t5e3nuhHgbdP6lW95x2u9TgHcAIQQUUKINUKIRCFEPhBdlcevnjJSqv6tf+RjOyBq/ZUrKHpphsQm7+NqURr9QsfopF/JSeCXgx9zW+dJzLh9MdOGzSOvOIsl+99v0XpLdZMt4b8Jlb2K8txynbSKvPLqY9e7eiiLhIXxBDwRIkdGt3PODuaYmgrSsnS7kjOuluDmrN+7AeDuYomZqSDUv2awXYifLWamgsuphbg5qTl9IY+nZx/k6dkHAdBoFBQFHHv/zIpPBjGsj2frXVTzldd6rQAmQghrYCOwBfgXkI62O3oX2m7qusq4drvabhslNmoHTIQpecVZOun5JVf1WseG7Dm7miDXzng5BOmkbzz5HQEukYzo9JA2wTEUczMLPto4mTHdJ+Nk7d5i1yAZ1m7fdFLjWIfYkn82H02ZpjotLzYHlYMK8+tautkHM7nw1TkCHg/WDvqS2jVzlSndIhzZdiBVJ33bgTR6d3ExeE6fri5UVCpcuJxfnZaQXEBFpYKvhzVeblbsX3Yre34aWf01aXwIQb427PlpZJ3l/gVEoA26rymKslNRlNP8BVq3DWFmqsLPOZxTVw7qpJ9OOUiQa+d6z80pyuBk8l76Xzcg65qyihJMhG4YMDGpGlei1NOVJrUY2RJupypLKilNq2r9KFCWXUpRYiGmNmaondVcXp5I4YUCwl/pCIBTHxdSVl8m4et4vMb4UJJazJU/UvC6s2aecPb+TBIWxuNznz+2YXaU55QBIMwEZjYqg/VoKanrz5MXm4lzfx+c+1YPVqXoUh6XfzlF8NNRmFo1rg75Z7PJPZZGaXoRmgoNamdLnPp4YxPiWJ0n92QGaRsu6J0b8nwvTMxqPnwqCsrI3JlEYUIOmrJKVPZq3EYEYuVrV/OzjqdTmlZIZXEFPvd2wMqvbaZ1TXswgiff2E+Pjs706erCopXnSc0oZtL4EADe/OwYh2OzWPvFUABuvsmDbhGOTJ19kP/9Wzvod8ZHMfTs5ExUpBMmJoLIEAedn+HqqEatMtVL/4u5BJQC04QQnwMdgLeMW6WWM7TD/Xy3578EuEQS5NqFXWdXkVucycCwuwBYHTOfxMw4valF++LXYm5mQY+A4XpldvYZwE/73mPnmZVEevUhtziT5Yfm4esUbnDaU1sSQiwGJqJ9fv/2delDgG2Aq6Iohkcn1l3mOGAy0B2wAOKAdxRF+a1WvvFo3zvBwHngP4qirGrqtdRHBuF2qjChgLPvx1W/Tll1mZRVl3Hu70rgEyGU55RTml4z6tnMyoywlztw6YcE4t48jpm1GR63euJ+a023Yvq2NJRKhaQlF0lacrE63SbcjohXO7b6NQkzwdVDKdh3dcOskQHXkOLLeVj52eM8wBdTCzPyT2WSsuYsPvd1wMqnJkAKMxMCn9BdpOL6AFxZUkHS0jgsvG3xGheOmaUZ5bmlOjcFSnklll422HVwJnW9flBvTeNv8SM7t5S5i2JJzSwhMtieFZ8Mws9TO0c4NbOYhMsF1flNTAS/zBvE9Lkx3PbkVizUptzc24P3XuiOiUm7HQDcbIqiZAghJgLvAlPRPvf9N7DBqBVrIT0DR1BYmsv649+SV5yFp0MQTw/7CGcb7d94XnEmGfm648oURWFv/Fp6BY7E3Ez/8UXfkNspKS9ix+kVrIz+FEtzG8Lce3BXj2ltck0NUAJMF0IsUBQlowXKGwz8CbwOZKMdab9KCDFEUZRdAEKIvsDPaEfZ/wqMA5YLIforinKgBeqgQyiyy6FFWQfaKJFvdjF2NYwq76RGLy11/XkqisqpyC/DytcOt2EBQPNawoYk/ngSK29bXG/2B7Qt4fStFwl9rled52TuSqIoKQ+/B258I1JZVM75+TE3bAlHTwhsfOX/Zmx7LP37RvwG+mLigX/8B+yU73o36X1Q1RJ2A3yA7YqiPFuVPoQmtoTr+DkHgV2KorxY9fpnwElRlBHX5dkCZCiKcn9zf15tsiUstRkhBC6D/EhZfRaHHh6YO+jfmZ/7pP7pFpbetvjcHVHncaWsEhML3be1UqHhwoIjoCio3axx7u+DhXvNSlMF57KxCnQgZe05ii/lYWZjjl1nVxy6u9OOp45K0j+BBu187tVCiE8URTlfO4MQokD/NB27FEWpbz1WW+Dqda/7Av9XK89GtHPSW5wMwlKbsglywNLbhqxdSXjeEap33P/h+geZCLO6xxLmHEmlPL8Mu8iagUXmTha4jwxC7WaFpqySnMOpJC2Nw39iZ8wdtTcB5bml5B5Nw6GHB053R1CaXkT6nxcBcIwy7nMxSfqnUxRlnRBiD/AOMMFAlm43KKLO9ViFEFPRtrR/uC7ZA6g9CT+tKr3FySAstTnXQX5cWhKLY6r+Dey1wNhY+WezydiRhOftIajsa0aDW3rZYullq/M68fsT5MSkVneJKwpYeFjjOkg7ldTC3ZrynBJyj6bJICxJ7cN0YL8Q4oPaBxRFufHi+gZUDb6aC0xQFCWxdrG1sxtIaxEyCEttzsLTBptQJzJ2JuHcx1vnWFO6o/PPZpO67jwetwXpjIw2RJgILNytKbtaM+/WzFqFubOlTj5zJwvK88oacjmSJLUyRVEOCSFWAu9Ta8R7U7qjqwLwD8DDtUdGA6not3rd0G8dtwgZhCWjcBnoy8Vvj1N4MUcnvbHd0fmns0jdcB6PW4OxDb/xvGdFUSjNLELtWvNM2NLblvJa6yqXXS1BZVd7fQdJkozoNbRTim6tld7tBufpdEcLIe4FvgMmKoqywkD+fcAItK3ka0YAextT2YaSQbiFlWaUEv3IPrzG+eI1xqc6Pe9ULmffj6Pr//VEZdu4UcBlOWVcXnaRoouFlKSV4NxPO02ptquHskhelURpeglqNwu8x/vi2MNwYLqy9jLJK5NwHeaO/79qVtFJWBhP1h7dmQDWQTZ0eKMmOJbnlJH0cyJ5sbloSipRu1vgcZtXo9agNne0wL6LGzkxqXrpDZV3OovUdedxHeyHpa8tFYVV855NTDC11L61s/ZexsLTBpWjhfaZcEwapRnFuA2vGb3s2MODS0vjyNqfjG24M6XpheTEpOEysOb/r7K4gvL8UjQllVW/gxJKLEwxs1ZhZt20YD35zf0s+f0ir0/uzPTHa0Zm74pOY/TkbSRsuQtnh8YtKfrbn0ksWhnP8TM5lJZVEh5ox8uTOjJqsLfB/Ms3JPLY6/sYOcCL5fMG6RxLzSxm1v8dY9OeKxQUlRPgbcPHM3oyoEfbrn/RGvNFq84fDHwEdES7dOUcRVG+bIEqN9r3e2az//w67uj2JLd1mVSdfjb1MPM2TWXOvRuwsXBoUpm1mZtZMO+B7QB8vHEK59KO6OXxtA9k5p3afS82nPiOo5e2k56XiJmJOQGuHRnb/Wm8HIMbVZ/mUhQlXgjxFfBc7fSGliGEmIC2BfwSsFMIca3FW6YoyrXt5D6pOvYqsAq4C7gZGNDMSzBIBuFWIFSC1HUpuA5xR2XX/Gk3SrkGMxsVHqO9ydhhuEekID6f81+cxWusL449nbganc35z88S8Z9O2ATb6uXN2JGOpa+VwbJsO9oTdF2QF2a6I4QTFsZTUVhByHPhqGxVXD2cTcLCeMyd1Y3al9i5rzd5sRk09VFL7tE00ChkbEskY1vNIx1LH1t8J2h3BqosrSRtUwKVReWYmJuidrfGd0IHLD1r1ky28LTB685QMndfJntfMmZ2apwH+GDfrWbJvoLzV3UW/UjblACAU19vXPrXBOvGslCb8skPp5g0PhiXJj4Pv97umAwG93Jn5pQuONqb88v6RB54eTfrFtxMv+66wTPhcgEzPz1Kv+76N085+WXc8tgW+nR1Zfm8Qbg4qrmYXICrk9HWGW/R+aJCiEBgHfAN8BDaD9j5QogMRVFWNrf8plCZqtkc+yMDwu7C1qL+xyoNcU+vf3Nn1FSdtA/XP0mIe7fq108O+R8Vmorq1xWVZbyz9kGiAoZVp51LjWFw+Hj8nTugoPD70YV8uvkZZt65FGu1fbPr2Uiz0d6QNdVktHFvXtXXNTuAIQCKouytCtZvA/9Fu1jHfa0xRxhkEG4Vth3sKc8u48pvl/F7qPnzRdWuFtXlXI3OMpgnbdMVbDvYV7e+LcdYkX86j/RNV7CZUhOEK4oqSFhwjoBJwaSsMbxhjImZQOVQd+uuID4fv4cCq4O7x21epG+5QuGFgjqDsMdt+nfNZtaqeufv3si1QFsft5v9cauaM1wfm2BHbILr/uCz7+SKfaeW321qYA83UtKLeP/rWOa+3KPZ5c15SXdb3Fef7MTG3Sn8vj1ZJwiXV2iY9J+9zHy6C7ui08jK0X3+/cn3p3B3tuSr2X2q04y82cM2tKNYZwLPtkB5k4EURVGeqXp9SgjRG20LyShBOMwjiquF6aw//g333vRis8uzNLfBkpr/s/Ppx8gsSGbigFnVabWD6MELGyitKKFvyB3Vac+M+EQnz8QBs3hx2XDOpx+ni+/AZtezLoqiPGIgLR3tlKKmljmkgflWAIa6qlucDMKtQAjwvseP85+ewe0WTyzc9Fs4MU/Vf1NlE2ZH2IsdGvwzC+PzcRuuO5bAvpM96Vt1u3sTF1/AsZczdpH2dQbhgrP5HH3mEKZWZtiG2+F9t59Oi94m1Jbsg1k4dHfE1MqMnKNXqcivwC6yze+K//JMTARvTuvKAy/tZsr9YQT56H++eA6s/7Ogb3dXfv10cJ3HC4oqcLDVvama/flx/L2sefD2QHZF6/eu/L49meF9PXnk1T3sjE7H09WSh+8M4sl7Q401d7ql54v2BTbVOr4RmCiEUCmKUnuTiFYnMGFs1FQWbJ/OzR3uw9VWv4flhSU3GzizRrBbV6YNn2fw2J5za/B0CCLYre7FhPacW0NHr771btxQWl6EomiwMm9yLJSuI4NwK3Ho6ohNqC3JKy4R/HSY3vHI2fWvqmVi3ri9NcpzyzGzr72fsLnOzkoZ29MoTSsh8En958nX2Hd2wLGnE+YuasoyS0n+NYkz78cS+WYXTFTaOgVPDeP8F+c4Oi0aYSoQZoLAyaFY+VvXWa5Ut5EDvOjT1YXZn59g8Xv6m6nvXjKy3vMt1aZ1Hvvql3OkpBcxYXRAddrW/Vf4dfMldi+pPb6lxsXkAr5ecY6pD4TzwsRITpy9ystzYwB46j7993NbaOH5oh5od1u6Xhraz0QX4EoTq9ksnXz6EeTahd+OfMljg97WO/7q7d/Xe765meHHBcVlBcQk/smY7lPqPDct7xLn0o7w1JA59f6M5Yc+xscx7IYbR0gNI4NwK/K5159Tb52gMEH/Bt3C3dLAGc2jv59wzbPWkivFJK+8RPirnXTWTa7NqU/NQhdWvtZYBdhw4qUYco9dxbGndpBX8sokKvLLCZseiZmNGTkx2VxcGI/61Y5Y+clA3BSzn+3KsEe3EBOXrXcs2LdpLY41W5OY+clRvn23X/U601k5pUx58wCL3u6LYz2jvzUa6B7pyJvTtGtud41w5HxSPguXxxstCFdpyfmihuaCGkpvU3f1mMbc9Y8zPPOU3jE3O98mlXnwwgY0Gg29g+q+8dpzdg32li508tG/EbxmxaF5nE8/xou3LqjZbUlqFhmEW5F1kA2OPZ25/EsinmN0u5Zaujtau5+w7nO9irzy6r2EC+LzqcivIPb1ozUZNFBwNo+MbWlELehd3dK9nrmjOSpHc0qqdnQqSS8hfUsqkbO7VAdcKz9r8s/mk74llYBJbTti8u+iR0dn7hzqw6z/O8r0x3TXsG5Kd/SarUk8+cZ+Fvy3j87I6Lj4HFIzSxgzdXt1mkajjTmOvX/m4M+3ERpgh4eLBRGBuo8XwgLsuJx6timX12JacL5oXXNBKwDDAy/aSIBLJN39bmZ1zOfc1uVRnWNN7Y7ec24N3f2H1DmQqqKynP0X1tE/dAymJobDwopD84i+uJnnb/kcF1vDo+2lxpNBuJV53+1L7GvHyDuRo5Pe0t3R1iG25MXm4jGq5o8jLzYXmxBtK8ohyomOgboDaxIWxWPhboHn7T56I6CvKc8vp/xqWfVALU2pdoqOqLUbjzDRzsGVmu6NqV246Z71bNmn+xy/sd3Rv26+xOQ3D/Dlm70ZO1y35RTV0Zn9y3RbQ299cYKc/DI+nN4Df2/tjVXvri6cS8zTyRd/KR9fz3bR09ES80X3AWNrHR8BRBvjeXBtY7pP5q3f7icueb9OelO6oy9mxnL56jnu7vV8necdS9pBYUkO/UPGGDz+y8GPOHxxM8/fMh8P+4Ab1l9qOBmEW5mFuyUuQ9xI23xFL70xihILAagsrgQhKEosRJgJLL2104zcR3hy+r2TXPk9GYcoJ3Jissk/nUf4a9pWlZm1GWbWuv/dJuammFqbYemjLaOypJKU1Uk49nRGZa+iNLOU5BWXMLNT4RjlpK23pyVqdwsSv7+AzwR/zGxU5BzOJi82l5Bnwxv/C5KqBfva8shdwXyx7KxeekOt2JjIk2/s5+3nu9G/uytpmdq4o1KZ4GSvxtrSTG/PYHtbFRWVik761AfCGTFpC3MXxTLuFj+On7nKgmXneGOq8XcIa4n5osCXaPcdngcsAPoDjwAtvktOU7jZ+TIgdCzbTv+il95Yu8+uxs3Wl1D3qHrzhHv2NNjCXXZgLgcvrOepIXOwUtuRW6ztKFCbWWKhMjzNUWo4GYTbgNedvmTtyUApb3pLMW7WcZ3XuUevYu6spsuH2j8sm1BbgqaEkbLyEimrklC7WRA0JVRvjnB9hAkUXy4ia08GlUWVqBxU2EbYE/x0GKaW2taWiZkJoS9EcHn5JeLnnalerCPgsWAcujs1+fokrRlPdGTpHwlNPv+blfFUVCrM+PAIMz6sWYRhQJQr674aVs+Zunp0dGbJhwOZ/flx5iyKxcfDmv9M6cwT99Q9qK+NNWu+qKIoCUKIUcDHwBS0i3U8a6w5woaM6jLJ4GIbjVFSXsjhi1u4rcukOke1Z+Ynczb1MJMGvWXw+M4z2l/JJ5t1NxEa1eUxbu/2RLPqJ8n9hFuc3E/Y8H7C/zRyP2G5nzDI/YSh6fsJ/1M07sGjJEmSJEktRgZhSZIkSTISGYQlSZIkyUhkEJYkSZIkI5FBWJIkSZKMRAZhSZIkSTISGYQlSZIkyUhkEJYkSZIkI5FBWJIkSZKMRAZhSZIkSTISGYQlSZIkyUhkEJYkSZIkI5FBWJIkSZKMRAZhSZIkSTISGYRrEUIsFkIo131lCiF+F0JEGLtukiRJ0t+LDMKGbQE8q75uASyBVUatkSRJkvS3Y2bsCrRTpYqipFZ9nyqE+BhYK4SwVBSl2JgVkyRJkv4+ZEv4BoQQtsB9wAkZgCVJkqSWJFvCht0qhCio+t4aSAJG1ZVZCPEk8CSAjZsNPT16tH4N27GU7FxjV8HohJm5sasgtQNh/VyMXQWjE9/EK8aug7Epk0JEXcdkS9iwnUC3qq/ewJ/AJiGEr6HMiqJ8pShKT0VRelraW7ZZJSVJkqS/NtkSNqxIUZT4ay+EEIeBXLSt3ZlGq5UkSZL0tyJbwg2jABrAytgVkSRJkv4+ZEvYMLUQwqPqe0dgGmADrDVelSRJkqS/GxmEDRsOXKn6Ph84DdyjKMp2o9VIkiRJ+tuRQbgWRVEeAR4xcjUkSZKkfwD5TFiSJEmSjEQGYUmSJEkyEhmEJUmSJMlIZBCWJEmSJCORQViSJEmSjEQGYUmSJEkyEhmEJUmSJMlIZBCWJEmSJCORQViSJEmSjEQGYUmSJEkyEhmEJUmSJMlI5NrRUruXsOcM57fFUpJXjK2HA53G9sQ5yL3O/MlHL3Juy0kKM/Iwt7EgsH84IUM7Vh8vySsids1hcpOzKcjIx7dnIN3v798Wl9JkC3+O45PvTpCaWUyHYAf+93If+kd5GMybmJxPp9G/6KX/+vlIRvT3AWDN1ot8s/wUx85kU1paSUSQAy893pXRQ/xb9Tqk5lmz/UeWb/6arNx0ArxCefqe1+kc2qvO/Iqi8Oufi/l951JSs5KwtXJgRN+7eOKu6QBk5abz5Yr3iL8US3L6RYb3Hsv0R+a01eVIyCAstXPJRy5yctUhuozvjVOQGxf3nGH/V39y8ytjsHK01sufdiqZmB930+muXrhFeFGQlsvRX/ZjqjIlcGAEAJoKDebWakKGdiJx/7m2vqRGW7nxAtPn7uejV/vRt7sHX/9yivFTN3Lo1/H4etrUed6q+SPpHOZU/drRXl39/Z7oKwy6yYuZU3viaK/ml3XxPPDvraz7elSdwV0yrm3RfzD/l7d59v436RTSk992/MSrnz3GolkbcHfyMnjOlyveZf+JbTw57hUCvcMpLM4nOzej+nh5eRn2No5MGPkUf+xe1laXIl1HdkdL7dr5HXH49grGv28otu72dB53ExZ2llzcc8Zg/svRF3CP9CGwfzjWzra4R/oQOqwT57bFoigKAFZONnQedxN+NwVjbmXelpfTJJ/9cJIH7wjl0fERRAQ58MGMvni4WPH18lP1nudkr8bdxar6y1xlWn1szit9eXFSV3p2diXYz45XJ0fRvYMzv29LbO3LaRYhxHYhxHwhxLtCiEwhRLoQ4gMhhEnV8YeEEIeEEPlVx5YLIbyvO3+IEEIRQgwTQhwQQhQJIaKFEFHGu6qGWbnlG27pO47RAyfg7xnCMxNm4WznytodPxnMn5R6gdXbfmD2lC/p320EXq5+hPp1pHfnIdV5PFx8mHbfG4zsNx5ba4e2uRBJhwzCUrulqagk93I2buG6d/mu4Z5cvZhRxzkaTK8LNgCmKlNKcooovlrYanVtLWXllRw5lcmwvj466UP7enPgWHq95z744lYCb/6J4RPXsnpzwg1/Vn5ROY527f+mBHgQqAD6AdOA54H7qo6ZA7OArsDtgAuw1EAZ7wEzgCggC/hJCCFatdbNUF5RxtlLJ+kZOUAnvUfkAOIuxBg8Z++xLXi6+nIodicPvX4zD742mPcXv8zVvKy2qLLUQDIIS+1WWWEpikZBbWuhk662saQkv8TgOa4Rnlw5kUT6mRQUjUJBeh7nt8cBUJJX3Op1bmlZV0uorFRwddb9Hbg5W5KWafh6rK1UvPPvm/huzlBWfnYLQ3p7MfGVbSz7I77On/PVsjhS0oqYMDqkRevfSuIURXlDUZSziqL8AmwDhgEoivKNoijrFEW5oCjKQWAKMFAI4VOrjJmKomxTFOU0MBuIALxpp3ILrqLRVOJo56KT7mjnQnZepsFzrmQmkZaVzPboP5g+8X1mPPoBSakXmDn/STQaTVtUW2oA+UxYav/02icKdbVZ/PuEUpRZwMFF21E0GszUKoIGRXBm43HacUPnhmrXXVHq/h24OFrw7MOdq19HdXQl62oJ8xYfNxhk12xJ4PV5B/n2fzfj52XbovVuJcdrvU4B3ACqupVnAd0AJ2rePX7A5TrKSKn6161WnnZHYOB9oP8HAoBG0VBeUcaMRz/Axz0QgBmPfsAjs0ZwJvE4HQK7tXZ1pQaQQVhqt8yt1QgTQWmebqu3tKAEtY2FwXOEEETeEUWH0d0oyStBbaMm41wqAFZO+gO52jtnRwtMTQXptVq9GdkluDlbNricnp3d+PE3/UFoa7Yk8MTrO/jqrcF/pZHR5bVeK4CJEMIa2AhsAf4FpKPtjt6Ftpu6rjKUqn/bbc+gvY0jJiamZOfpPobJyc/C0c7Z4DnO9q6YmphVB2AAb7cATE3MSM9OkUG4nWi3bzpJMjEzxd7HiYyzKTrpGWev4BjgWu+5wsQESwcrTMxMST5yEccAV9S2DQ9a7YW5ypTuHVz4c3+yTvqf+5Pp3dWtweWcOJOFh4uVTtqvGy/w+H928OV/BzF2RGAdZ/6lRKANuq8pirKzqqu54b+kdkxlZk6YXycOn9qjk3741B4igwyPKesY3INKTQUpGTWD7a5kXqJSU4G7U7vtef/HkS3hFpaXmseXt35Gr4d70+OBmvl7yccus/aV1Uz8+TEs7RsXDAqzCtm3cDeZ8RnkpuQSOjScoS8N18lzetMptn+0Ve/cx3+bjJm5/n9zzLJoDi7eT8c7OjNw6uDq9IPf7efCrngKMgowUZniGuJKr4d74xHpWZ1n+7w/STl2mcKsQlSWKjw6eNJ7Ul8c/Zz0fk5zBQ+OJGbJHhz8XHAKdOPi3rOU5BYT0C8MgLjfY8hJyqLflBGAtpWcciwRlxAPNBWVXDp4npSjifSfeotOubnJ2QCUl5SDEOQmZ2NiaoKth0OLX0NzTftXJ574zw56dHKlTzd3vll+itSMIh67Wzvlatanhzh8MoPfvxoFwE+/nUNlZkKXCGdMTGD9jiS++vkUs5+reT+u2HCeJ17fwTsv3ET/Hh6kZRYBoFKZ4nTdVKa/mEtAKTBNCPE50AF4y7hVajnjh0/i/W9fIiKgCx2De/D7zqVk5aZzx6AHAPh61VzOXDzO3Bd+ACAqoj+hfh354PsZTLnndQC+WP42EYFdCfOveVwRn6QdM1FUXICJEMQnxaEyVeHvFdrGV1jLoumwdxWMfR7umFqTfvoAzH0I5h0A20Z+5hzeCNuXwqU4KC8Dr2C4/WnoNkw3X/QGWD0PMi6Bqx+M+zdE3WKwyOaSQbgVmJqbcnRFDJGjOmHp0PzWV2V5JRZ2lnS7twen1sfWmc9MbcYD3/5LN81AAE47lcqp9bE4B+p3Yzn4ODJg6mDsPOyoKK3g+Kpj/PH6b9y/6F9YOWpbUm6hboQPj8DaxYbS/BKifzzI2lfX8OB3D2NqZqpXZnN4dw+grKiUs5tPUJpXjK2nA32eGIqVk3Z+bGl+MYWZ+TrnXI6+QNzaGEDB0d+V/lNH4OivO6Blx4d/6LxOi72MpaM1I2aOa9H6t4TxI4PIzilh7sKjpGYWERniyIrPbql+fpuaUUxCku7vYM7XR0lKKcDUVBDib8/8/w7UeR68aPlpKioUXpl7gFfmHqhOH9DDg/WLRrfNhbUwRVEyhBATgXeBqWif+/4b2GDUirWQm3uOJq/gKj+tm092XjoBXmG8O+1r3J21rdrs3AxSMi5V5zcxMeHtqQv5/OfZ/PvDB1Cbq4mKGMCUe17DxKSmE3TyO2N0fs6+43/i7uTNT+/uaJsLq49KDRsWwpAJYGu4271RzhyEDn3hrhfA2gH2/wafPQ3Tf4SwqpvU+COw4Hm481lt4I3ZBF88C68ug6Buza9DLeLa3EmpZVjYWShuER4UZhTg1cWbAU8PAprXEr7eujfWYmFnabAlvHv+Th5f/VS955cWlrJy2s8Mfm4o0T8dxCnAWaclXFtZYRnfjP+K0W/fgW9Pw88Msy5ksvzpZUxY+CAOvo6kxOU2/sL+Zn4a+peY6tOqbLp+/dcdCddCti44/4//gB2uauKvYNF0yM+Gq6kQfhM88IY2vTktYUPeHg+hPeG+V7Wvv3wOCnPgxe9q8nwwEWwd4al5TfoRyqSQOv8WZEu4FQgBvSf1ZePsdXQe2xV7L3u9PF+PXVBvGZ6dPBn99ph689RWWVbBjw9/h6LR4Bzkwk0P98ElRPfZ6c5PthE0IATvbj5E/3Sw/vLKK4lbfxJzK3Ocgw0/gy0vKef05lPYuNli627XqPpKkiTVSwgY/5K2tTp8IrgZaAg83bX+MkJ7wguL6j5eUgBW1312nT8Cw3R7FOk0ALb+2PB6N4IMwq3E/6YAPCI9Ofjdfka8OlLv+D3z7zNwVg1TA93I9XHwcWDIC0NxDnKhvLicE6uPsfrFldw9fwIO3g4AxK2PJTcll6Evj6i3rMQDCWx+bxMVpeVYOVkz+r07q7uirzm59gT7F+2loqQcBx8H7vjfnZiat2xXtCRJEl2GQEgU/PoxTJ6nf3zWb/Wfb17PGIc/f4TsNOg7tiYtNxNqzcfGzgXyDC8Q1FwyCLeiPo/1Y9ULK0gf303vmL2XQ4v+LI9IT53BU+4dPFgxdRkn1xxnwNODyEm6ysHF+7jzg/F6K0rV5tXVh3vm30dJbgmn1sey+Z0N3PXx3Vg710zxCR0ahk+UL0XZhRxbcYRN72xg7IfjUVmoWvS6JEmSuGc6vHMPXHxM/5h7E6fWRW+A5e9ru5hdao8Wr9V7rCj6aS1EBuFW5BbuTmD/YA58s4+o+3vqHGuN7ujrmZia4BrqRm5KDgCpp1IpyS3hl6eWVOdRNApXTqYQ98dJHl89ubolq7JQYe/lgL2XNpgvmfQDpzfE0ePBmtG1ams1ams1Dt4OuEd48O3dC0nYfZ6w4RFNrrMkSZJBgV2gx0hYPld3pDQ0rTs6egMsehkem6M/MtreQKs3P0u/ddxCZBBuZb0f7cPPTy4h6fAlnfSW7o6uTVEUshKycA7SvnEC+wXhFqY7ZXLbh1ux97YnakJPTFT1TBlXFCrLK+s5rv2n3jySJEnNMe5FmHkbnNypm97Y7uhD67SDvh6bAz1v088f3B1i98CtT9Skxe6BkO5Nq/cNyCDcyuy9HOhwW0dOrD6ml94Ymee1d2blReUIIcg8n4GJmSlO/trRgdE/HsQ9wh17bwfKiso4seY42QlZDHxmCABqGzVqG903o5mFGWpbC5wCtEP/ywrLOLo8Bv8+AVg5WVOSW8zJtScoyCwgeJB2ektuSg4Xdp/Hp7svFvaWFGYWcOTnw5ioTPHvHVBn/Y8s3UPSoQtE3NaVsBFdaq4rPpW98zczcvY9da6CVZeU45dI3HuW3ORsKisqsXW3J2x4Zzw6+RrMfzkmgZgfd+Me6U3vx4dWp1eUlHN6/VGunEyiNL8Eex8nOo3tiaOf4TvfY7/sI3F/PJF3RBFyc0eDeRriqZk7WbL2HDOnRjH9iZo/8F2HrjDqiXUkbHsQF8fG/U4ask/wj2vOMmXWLr1zMw5MxEKt/UjILyzj7c9jWLvtIhnZJXQJd2bO9D706FT/IimtQQixGJiIdr3nt69LH4J23WhXRVEML6Bcf7mDgY+AjmiXrpyjKMqXLVDlRpuzeDqb9v/KI2Ne4KFRNS29o2f289LHD7Hyg4PY2zRuJPC1c2v75s2N+HkEA/DHrmVsPrCaxJRzaBQNIb6RPDLmBTqH1PTcFZUUsPi3eew+uomc/CxCfCN5+t6ZRAR00Su7Vbn7w+D7YMt3+ukNdeB3bQv4nle0U5KubetoqgIbB+33wyfC+w/AH19C1AiI2QxnDsAMQ/uANJ8Mwm2g54O9OLvlNJU0vaW4YurPOq8TD1zExs2Wh76fCGinHu34dDtFVwsxt1LjEuzCmLl34R7u3uCfIUwF2ZeyOb0pjpL8EixsLXALc+fOueOqW9SmKlNSjidzbOVRygpLsXSwwrOzF3d9fPcNl4U0MTMl/s84/PuGNTrgGpJ1Pg2XUA8ibuuGysqc5JgEDn67g/5TR+AcpHvdhVn5xK2NwSlIfwGlo7/sIy/lKt3v74eFvRWXDyew78st3Dx9DJYOugPSUo4lcjUpCwu7lll9y0JtyrzFJ3h0fASuTs0vs6H7BFtZmHH893tq1aXm42Daf3dz8lw2C2YPxsvdmp//iGfM5PUcWjkeL3ejLP9ZAkwXQixQFKXZI2SEEIHAOuAb4CFgADBfCJGhKMrK5pbfFOYqNb9s+orbB07AoSXmxFZZ9MZ6nW0K7a+b1nPs7EGG9BhFx3t7YGFuycqt3/Lqp4/y5X/W4uMeAMCHP7xGQvIZpk+cg6ujB1sOrGH6vIf5ZtYGXBzbeO/pO6bBnlVo12Rpgh1LobIClr2j/bom/CaYXrUlZEgUPPUxrJoHaz4FN1/tc+NWmCMMMgi3ODsPO0bNvkMnzdLBisdW1T9/90Ymb5hW7/H+Tw2k/1MDG1XmnXN1F6ZQWai49Y1R9Z5j42rb5GfVLiHuFOcWcXbTcTqPu6lJZVyv8129dF6Hj+xKWlwyV04k6QRhTaWGwz/sImJUN7LiUykrrPkDriyr4MrxS/R8ZDAuIdoPlIhbu5IWd5mLe8/QYVRNC7Uou4CTqw7Rd8oI9n+lvzpZUwzq6UlyeiFzFh5l7it9m13enFplvDo5io27kvh9W6JOEBYC3GstY3lNcUkFa7Ze5McPhjGwl3aw32tToli/8xJfLz/FG9N6GjyvlW0DfICZwLMtUN5kIEVRlGeqXp8SQvQGXgKMEoS7hfUhIyeVH9d9zrT73mixch3snOtsRb/22Ec6r597YDZ7jm3mUNxOfNwDKC0rYdeRjcx68jO6hfcBYOIdz7H/xJ/8tnMJk+78d4vVU89jc/TT7Jxh/tGml3kt0N5Iz9sMd1W3AhmEpTYjTASRo6M4+O12ggZ1wNpFf8eeP27Q5eMc5EafJ4fVebyitBxzK92FMk6tO4KVkw1+vYLJik/VOaZoFBSNorfSl6nKlOyEmgaXplLD4R93EzqiM7bu+vO+m0qYCP77bC/uf2ELUx7oSJCv/lxrj77fGTizRr8oD379XH8a3DWG9gkuLq0k8rZlVFYqdA53ZubUKLpGaHs7Kio1VFYqWKh1fycWajP2HUlr6KW1NA3a/X9XCyE+URTlfO0MQoiCG5SxS1GUa5+sfYFNtY5vBCYKIVSKotTeJKLVCRMTHh/7MrO+nMK4oRPxctXvZr39ufq7gDuH9OS9Z77RSXv63bsoryjD3zOEB0c9Tbfwum/2yivKKCsvxbZq3mylpgKNphJzle6jLHOVBSfjoxt6aVI9ZBCW2pR7pDdOAa6cWneEng8P0js++MX6l0w0VdX9lk3YfYbi3CJ8egRVp6WfSSHlaGKd5ZpZqHAMcOXs5hPYejhgYWfB5ZiLZF/M1LlJOLPxGOZW5gT2D7/RJTbayIG+9OnmzuzPoln8/lC943t+vqve8y3VdU85M7RPcGiAPfPfHEjnMCfyi8r5YkksIx75nb0/30WIvz221ubc1MWNOQuPEhnsiLuLJcs3XODg8XSDNwltRVGUdUKIPcA7wAQDWbrdoIjrt6LyQLvb0vXS0H4mugBXmljNZundeQgdg6P4Zs1HvP74J3rHF/yn/kFIalXNYx5nezeee2A24f5dqKgsY/P+1bw872E+/PdPdAk13BP17W8fY6m2om8X7Y2ulYUNkUHd+Wn9fAK9wnC0d2XbobWcunAEL0MLZ0iNJoOw1OYi74hi1ycbyEnK0jtm49q0D/mUY4nErT1Mj38NrFlXuqCEI0v30uOhAZhb1T1hP+qB/hxdtpfNs1ciTAT23k54dw+o3uQhMz6NpIPnGfzS7U2qW0O89Xwvhj68lmcf1n/cGezXtN9JXfsE9+7qTu+uNd31fbq60e++1SxYFlfdJb7wncE8/eYuwkcuw9RU0C3CmXtuDeLoaf3/szY2HdgvhPig9gFFUeIbWVbt9RRFHelt6olxr/Ds+3dzZsTjese83QIaXI6vRxC+HjU3pJFBUaRlJbN889cGg/CvWxfzx66lzHnue6wta94vMx79gA++n8GEVwdgYmJKqG9Hbu51O+cu1b2OvdRwMghLbc7RzwWvLn7E/R5D2IjOOsea0h2dciyRI0v20P2B/jojo/NTcyjNK2bflzUNnmtrpa996Udunn4HNm72WLvY0n/aSCpKy6koLcfCzoro73dWB/PM+FRK8ovZ9OaKmnI0CnG/H+HCztPcMmt8034R1+nRyZU7hwXwxieHeOUJ3akQTemObsw+waamJnSPdOH8pbzqtCBfOzYsGk1hcTn5BeV4uFoxcfqf+HvZNPLKWpaiKIeEECuB96m1Q1Iju6NT0baGr+cGVABGvdOICOjCgO4j+frXOTw4SndObFO6o3XKDuzK9ug/9NJ/3bqYb3/7mHefWUREoO68Wy9Xfz56cSnFpUUUlRTgbO/GWwufxcPF8CwEqXFkEJaMImJUN7bNWUv6ad29ghvbHZ189CJHluyl+wP98OqqG2wcfJ0Z8rJu6/X0+qOUF5XRefxN1UH2GjO1CjO1irKiUtJPpxB5h3af1sD+YXh19dPJu3/BVryjAvHvE0JLmfVMT3qNW8nmvZd10hvbHf3rxgs89cZOFsxu2D7BiqIQey6bTmH6g3esLVVYW6q4mlfK1r3JzH6+l4ES2txrQBxwa630bjc47/ru6H3A2FrHRwDRxngeXNtjY1/ksf/exqE43TmxjemONuR80imc7HWnma3YsojFaz/h3Wlf60xNqs1SbYWl2or8wlyi43bxxLhXbnAVUkPIICwZhY2rHf59Qrmw87ReekMlH0kg5qc9dBzTA+cgd0rytJ+xJqYmmFurMVOrsPN01DlHZWmOolF00tNPp6AoCjZudhRmaqcy2bjZ4XeTNsCqbS1R2+pOHxKmJqhtLbBxa7lBWsF+djw6PpwvlsTqpTdUQ/YJfu/LGHp1cSPYz478gnK+WBrLyXPZfPxa/+pytuy9jEajEBbowIVLebz+8UFCA+z5151hLXClzaMoSrwQ4ivgudrpjSjmS7T7Ds8DFgD9gUeA+1uoms3i7RbA6AH3serP7/TSG2rl1m/xcPbB3zOUisoythxYw55jm5n11OfVeX7etJBv13zEjEc/wMctkOyqebPm5hbYVHVJH4rdiaIo+HoEkZKeyFe/vo+vexC39mt+D5Akg7BkROG3dCYp+ry2A7AJLu49h6JROLk6mpOra0ZqOge7039qwzfgLi8p49QfRyjJKUJlpcazix8dRnXDxLSeVcRayYynurNkbTw0cU55Q/YJzs0v49m3dpOWWYydjTldI5zZsGg0PTvXtJDy8st48/+iSU4rxNFere0qn9YTVX0rq7Wt2WgX8GgSRVEShBCjgI+BKWgX63jWWHOEDXlo9DNs2t/0ObEVFeUsWPkemTlpqFUW+HuF8s7Ur+ndeUh1nt+2/0hFZTlvf61zP8MtfcYx/RHtFKHC4nwWrf6AzJxUbK0cGNh9JI+OfREzU7lOfEuQ+wm3MLcwN2X8/9W/JOXfndxPWO4nDHI/YZD7CUMz9hP+G6lvP+F2c1srSZIkSf80MghLkiRJkpHIICxJkiRJRiKDsCRJkiQZiQzCkiRJkmQkMghLkiRJkpHIICxJkiRJRiKDsCRJkiQZiQzCkiRJkmQkMghLkiRJkpHIICxJkiRJRiKDsCRJkiQZiQzCkiRJkmQkMghLkiRJkpHIICxJkiRJRiKDsCRJkiQZiQzCkiRJkmQkMghLkiRJkpHIICxJkiRJRiIURTF2Hf7yhBBPAk9WvQwHzhixOu2Bv6IorsauhCRJUnsng7AkSZIkGYnsjpYkSZIkI5FBWJIkSZKMRAZhSZIkSTISGYQlSZIkyUhkEJYkSZIkI/l/Nlgvfq+2EBgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "matplotlib.rcParams.update({'font.size': 14})\n", + "discovery_celltype = 'CD4T'\n", + "fig, axes = plt.subplots(1, 6, figsize=(7, 7), sharey=True)\n", + "for i, discovery_celltype in enumerate(['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']):\n", + " colors = [\"white\", color_dict[discovery_celltype]]\n", + " cmap1 = LinearSegmentedColormap.from_list(\"mycmap\", colors)\n", + " im1, bar = heatmap(np.flip(unrb_df[discovery_celltype].values.reshape((6, 1)), \n", + " axis=0),\n", + " list(rb_df.index)[::-1], \n", + " [discovery_celltype],\n", + " cmap=cmap1, ax=axes[i], vmin=0, vmax=1)\n", + " bar.remove()\n", + " _ = annotate_heatmap(im1, \n", + " data=unanno_df[discovery_celltype].values.reshape((6, 1)), \n", + " valfmt=\"{x:^}\", \n", + " textcolors=(\"white\", \"white\"),\n", + " threshold=1)\n", + " if i > 0:\n", + " axes[i].axis('off')\n", + " \n", + "plt.subplots_adjust(wspace=0, hspace=0)\n", + "plt.savefig('rb_values.unfiltered_results.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## BIOS replication" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "bios_replication_filtered_df = pd.read_csv(\n", + " workdir/'bios/onlyRNAAlignMetrics_rmLLD/filtered_results/replication_summary.csv', \n", + " index_col=0\n", + ").set_index('celltype')\n", + "bios_replication_unfiltered_df = pd.read_csv(\n", + " workdir/'bios/onlyRNAAlignMetrics_rmLLD/unfiltered_results/replication_summary.csv', \n", + " index_col=0\n", + ").set_index('celltype')\n", + "color_dict = {'CD4T': '#2E9D33',\n", + " 'CD8T': 'darkgreen',\n", + " 'monocyte': '#EDBA1B',\n", + " 'NK': '#E64B50',\n", + " 'DC': '#965EC8',\n", + " 'B': '#009DDB',\n", + " 'cMono': 'peru',\n", + " 'ncMono': 'y',\n", + " 'CD4T_individual_100': '#2E9D33',\n", + " 'CD4T_individual_50': '#2E9D33',\n", + " 'CD4T_50': '#2E9D33',\n", + " 'CD4T_150': '#2E9D33',\n", + " 'CD4T_250': '#2E9D33'}\n", + "\n", + "bios_replication_filtered_df['color'] = [color_dict.get(celltype) for celltype in \n", + " bios_replication_filtered_df.index]\n", + "bios_replication_unfiltered_df['color'] = [color_dict.get(celltype) for celltype in \n", + " bios_replication_unfiltered_df.index]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "bios_replication_filtered_df_clean = bios_replication_filtered_df.drop(index=['B'])\n", + "bios_replication_filtered_df_clean = bios_replication_filtered_df_clean.drop(columns=['color'])\n", + "bios_replication_filtered_df_clean.to_excel(workdir/'output/summary/rb_values_bios_replication_filtered_results.xlsx')\n", + "\n", + "bios_replication_unfiltered_df_clean = bios_replication_unfiltered_df.drop(index=['B'])\n", + "bios_replication_unfiltered_df_clean = bios_replication_unfiltered_df_clean.drop(columns=['color'])\n", + "bios_replication_unfiltered_df_clean.to_excel(workdir/'output/summary/rb_values_bios_replication_unfiltered_results.xlsx')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":3: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string \".\" (-> marker='.'). The keyword argument will take precedence.\n", + " ax2.errorbar(y=bios_replication_filtered_df.loc[sorted_celltypes]['r'].values,\n", + ":8: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string \".\" (-> marker='.'). The keyword argument will take precedence.\n", + " ax2.errorbar(y=bios_replication_unfiltered_df.loc[sorted_celltypes]['r'].values,\n", + ":12: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax2.set_xticklabels(['', 'CD4T', '', 'CD8T', '', 'monocyte', '', 'DC', '', 'NK'])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiK0lEQVR4nO3de3hddZ3v8ffHNCUEUIYSRw6lTWVAejEUGioMQVKVm4ggCLTEC0M14gBVHOfAQ44VL+F4GwFLPaVahmGILVhEeh6rIPRGgAoJ1NoSqrW0JYMOoQpS2oa2fM8feydnN91pLt0rO2F/Xs+zn2ev3/qttb57ZWd/1++31votRQRmZla43pbvAMzMLL+cCMzMCpwTgZlZgXMiMDMrcE4EZmYFbli+A+irww8/PMrLy/MdhpnZkNLc3PxyRJRlmzfkEkF5eTlNTU35DsPMbEiRtKm7ee4aMjMrcE4EZmYFzonAzKzADblzBGY2cHbu3Elrays7duzIdyjWSyUlJYwcOZLi4uJeL+NEYGbdam1t5ZBDDqG8vBxJ+Q7HehARbNmyhdbWVsaMGdPr5dw1ZGbd2rFjByNGjHASGCIkMWLEiD634JwIzGyfnASGlv78vZwIzCynqqurqa6uzncY1gdOBJaV/5ltsCgqKmLixImdr40bN/KP//iPAGzcuJEJEyYAsGrVKhYvXpxYHNXV1QN2M+tAfi5wIjCzHGpoaGDlypUsX76c8vJyGhoa9nudBx54IKtWrep8lZeX8/jjj+9Vrz8/mLt27drv+DLt3r07p+sDJwIzG0IaGhqora2lvb0dgE2bNlFbW5uTZNDVwQcfvMf0G2+8wcyZM7nnnnuYOHEi99xzD6+//jpXXHEFJ510EieccAIPPPAAAHfeeScXX3wx5513HmeeeWa39bZv387UqVOpqKjg0ksvZfv27VljKS8v5+tf/zpVVVX89Kc/5aGHHuKUU07hxBNP5OKLL2br1q0AXH/99YwbN46Kigq+/OUvA3D55ZezcOHCPn2u5cuXd7aOTjjhBF577bX93p++fNTMcqKuro5t27btUbZt2zbq6uqoqanp93q3b9/OxIkTARgzZgz333//XnWGDx/O17/+dZqamrjtttsAuOGGG/jABz7AHXfcwSuvvMLkyZP50Ic+BMATTzzB6tWrOeyww7qtd/vtt1NaWsrq1atZvXo1J554YrcxlpSU0NjYyMsvv8yFF17Iww8/zEEHHcS3v/1tvv/973P11Vdz//3389xzzyGJV155pVefPdvnOu+885g9ezannnoqW7dupaSkpA97M7tEE4Gks4FbgSLgxxHxrS7z/xXo+IYMA8YCZRHxlyTjMrPc27x5c5/Ke6uja6ivHnroIRYtWsT3vvc9IHUpbEcsZ5xxBocddtg+661YsYIZM2YAUFFRQUVFRbfbuvTSSwFYuXIlzz77LKeeeiqQOqI/5ZRTePvb305JSQmf+cxnOPfcc/nIRz7S58/T4dRTT+VLX/oSNTU1XHjhhYwcObLf6+qQWCKQVATMBs4AWoGnJC2KiGc76kTEd4HvpuufB1zrJGA2NI0aNYpNm/Ye4HLUqFF5iCZ1c9V9993He97znj3Kf/Ob33DQQQf1WA96fylmx/oigjPOOIP58+fvVefJJ5/kkUceYcGCBdx2220sWbKEYcOG8eabb3Yu+8Ybb/S4reuvv55zzz2XxYsXc/LJJ/Pwww9z3HHH9SrO7iR5jmAysD4iNkTEG8AC4Px91J8G7L33zGxIqK+vp7S0dI+y0tJS6uvrB2T7hxxyyB795WeddRazZs0iIgB45plnsi7XXb33v//9nec31qxZw+rVq3uM4eSTT+axxx5j/fr1QKpr7Pe//z1bt27l1Vdf5cMf/jC33HJLZwunvLyc5uZmAB544AF27tzZ4+f64x//yHvf+16uu+46Kisree6553qMqydJJoIjgRcyplvTZXuRVAqcDdzXzfxaSU2Smtra2nIeqJntv5qaGubOncsBBxwAwOjRo5k7d+5+nR/oiylTpvDss892nlT9yle+ws6dO6moqGDChAl85Stfybpcd/U+//nPs3XrVioqKvjOd77D5MmTe4yhrKyMO++8k2nTplFRUcHJJ5/Mc889x2uvvcZHPvIRKioqOP3007n55psB+OxnP8vy5cuZPHnyXi2V7j7XLbfcwoQJEzj++OM58MADOeecc/Zjr6WoIwvmmqSLgbMi4jPp6U8CkyPimix1LwU+ERHn9bTeysrK8INpktdxD8GyZcvyGoflV0tLC2PHju3TMv7u5F+2v5uk5oiozFY/yZPFrcBRGdMjgRe7qTsVdwuZvSU4AQw9SXYNPQUcI2mMpOGkfuwXda0k6R3A6cADCcZiZmbdSKxFEBG7JF0NPEjq8tE7ImKtpCvT8+ekq34MeCgiXk8qFjMz616i9xFExGJgcZeyOV2m7wTuTDIOMzPrnoeYMDMrcE4EZpZTHrl26HEiMLNBK3M45g433nhj53AQ+9JxLf/NN9/MzJkzefjhh4E9h5O+6aabch90jnQMQLdx40Z+8pOfJLqtghl0ztc2myVv/vz5rF27li1btjBhwgTq6uqYNm3agMfx5z//mccffzzrkBeZbrrpJm644YY+rXv37t0UFRVlnbdr1y6GDcvtz2pHIrjssstyut5MbhGYWU7Mnz+furo67r33Xtrb25k1axZ1dXVZx93Jlerqaq677jomT57Msccey6OPPgrAmWeeyUsvvcTEiRN59NFH9xruGVJj9nSMbNpx9/Pdd9/N5MmTmThxIp/73Oc6ny9w8MEHM3PmTN73vvfxxBNP7BXDDTfcwOmnn86tt95Kc3Mzp59+OpMmTeKss87iT3/6EwA/+MEPOoehnjp1KrB362bChAls3LhxrzgfffRRJk6cyM0338zatWs7Y6yoqOAPf/jDfu9HJwIzy4n6+nrmzZvHlClTKC4uZsqUKcybNy/xsYZ27drFk08+yS233MLXvvY1ABYtWsTRRx/NqlWrOO2007Iu961vfatzZNOGhgZaWlq45557eOyxx1i1ahVFRUWdYw29/vrrTJgwgd/85jdUVVXtta5XXnmF5cuXM2PGDK655hoWLlxIc3MzV1xxBXV1dZ3be+aZZ1i9ejVz5szZax3d+da3vsVpp53GqlWruPbaa5kzZw5f+MIXWLVqFU1NTYN79FEzKywtLS17/UhWVVXR0tLS73V2N/pnZvmFF14IwKRJk/Y6mu6LRx55hObmZk466SQg9RyEd77znUDqcZkXXXRRt8t2DEO9bt061qxZwxlnnAGkupGOOOIIIDWUdU1NDRdccAEXXHBBv+M85ZRTqK+vp7W1lQsvvJBjjjmm3+vq4BaBmeXE2LFjaWxs3KOssbGxz2MVZRoxYgR//etf9yj7y1/+wuGHH9453THIXVFR0X49ejIi+PSnP935SMx169Zx4403AqkHz3R3XgD2HIZ6/Pjxnev43e9+x0MPPQTAL37xC6666iqam5uZNGlS5/mEjmGoIfUshJ5cdtllLFq0iAMPPJCzzjqLJUuW9Pszd3AiMLOcqKurY/r06SxdupSdO3eydOlSpk+f3tk10h8HH3wwRxxxBI888giQSgK/+tWvsnbP9EdxcXHn0M8f/OAHWbhwIS+99FLntno62dzVe97zHtra2jrPI+zcuZO1a9fy5ptv8sILLzBlyhS+853v8Morr7B161bKy8t5+umnAXj66ad5/vnn91pn12GoN2zYwLvf/W5mzJjBRz/60V4Nj90Tdw2ZWU50XB10ySWXsGXLFsaNG0d9ff1+XzV01113cdVVV/Ev//IvAHz1q1/l6KOP3u94AWpra6moqODEE0+koaGBb37zm5x55pm8+eabFBcXM3v2bEaPHt3r9Q0fPpyFCxcyY8YMXn31VXbt2sUXv/hFjj32WD7xiU/w6quvEhFce+21HHrooVx00UXcddddTJw4kZNOOoljjz12r3VWVFQwbNgwjj/+eC6//HJ27NjB3XffTXFxMe9617uYOXPmfu+HxIahTkp/h6H25aN94/1l4GGoh6rBNAy1mRUgJ4Chx+cIzMwKnBOBme3TUOs+LnT9+Xs5EZhZt0pKStiyZYuTwRAREWzZsoWSkpI+LVcQ5wgaGhpYuXIl7e3tlJeXU19fP2AP1DYbykaOHElrayttbW35DsV6qaSkpM93G7/lE0FDQwO1tbW0t7cDsGnTJmprawGcDMx6UFxczJgxY/IdhiUs0a4hSWdLWidpvaTru6lTLWmVpLWSluc6hrq6OrZt27ZH2bZt2/brJhczs7eSxFoEkoqA2cAZQCvwlKRFEfFsRp1DgR8CZ0fEZknvzHUcmzdv7lO5mdlgMJD3YyTZIpgMrI+IDRHxBrAAOL9LncuAn0XEZoCIeCnXQYwaNapP5WZmhSbJRHAk8ELGdGu6LNOxwN9JWiapWdKnsq1IUq2kJklNfT1pVV9fT2lp6R5lpaWliQ+Na2Y2VCSZCLKNH9v1GrRhwCTgXOAs4CuS9hpsIyLmRkRlRFSWlZX1KYiamhrmzp3bOULh6NGjmTt3rk8Um5mlJXnVUCtwVMb0SODFLHVejojXgdclrQCOB36fy0Bqamr40Y9+BPj2dzOzrpJsETwFHCNpjKThwFRgUZc6DwCnSRomqRR4H9D/p1hYTnTcd7F8+XLKy8s7n9JkZm9NibUIImKXpKuBB4Ei4I6IWCvpyvT8ORHRIulXwGrgTeDHEbEmqZisZ77vwqzwJHpDWUQsBhZ3KZvTZfq7wHeTjMN6b1/3XTgRmL01eawh24PvuzArPE4Etgffd2FWeJwIbA++78Ks8DgR2B5834VZ4XnLjz5qfef7LswKi1sEZmYFrmBaBD6yNTPLzi0CM7MC50RgZlbgnAjMzAaZgR7vy4nAzGwQ6W68rySTgROBmdkgko/nrDsRmJkNIvkY78uJwMxsEMnHeF9OBGZmg0g+xvtyIjAzG0TyMd5XwdxZbGY2VAz0eF+JtggknS1pnaT1kq7PMr9a0quSVqVfM5OMx8zM9pZYi0BSETAbOANoBZ6StCginu1S9dGI+EhScZiZ2b4l2SKYDKyPiA0R8QawADg/we2ZmVk/JJkIjgReyJhuTZd1dYqk30r6paTx2VYkqVZSk6Smtra2JGI1MytYSSYCZSmLLtNPA6Mj4nhgFvDzbCuKiLkRURkRlWVlZbmN0syswCWZCFqBozKmRwIvZlaIiL9FxNb0+8VAsaTDE4zJzMy6SDIRPAUcI2mMpOHAVGBRZgVJ75Kk9PvJ6Xi2JBiTmZl1kdhVQxGxS9LVwINAEXBHRKyVdGV6/hzg48DnJe0CtgNTI6Jr95GZmSUo0RvK0t09i7uUzcl4fxtwW5IxmJnZvnmICTOzAudEYGZW4JwIzMwKnBOBmVmBcyIw20/V1dVUV1fnOwyzfnMiMDMrcE4EZmYFzg+mMTMbhAbigTQd3CIwMytwTgRmZgXOicDMrMA5EZiZFTgnArP90NDQwMqVK1m+fDnl5eU0NDTkOySzPvNVQ5bVQF6xMFQ1NDRQW1tLe3s7AJs2baK2thaAmpqafIZm1iduEZj1U11dHdu2bdujbNu2bdTV1eUpIrP+cSIw66fNmzf3qdxssHIiMOunUaNG9ancbLBKNBFIOlvSOknrJV2/j3onSdot6eNJxmOWS/X19ZSWlu5RVlpaSn19fZ4iMuufxBKBpCJgNnAOMA6YJmlcN/W+TerZxmZDRk1NDXPnzuWAAw4AYPTo0cydO9cnim3ISfKqocnA+ojYACBpAXA+8GyXetcA9wEnJRiLWSJqamr40Y9+BPhKKxu6emwRSDpF0mxJqyW1SdosabGkqyS9Yx+LHgm8kDHdmi7LXPeRwMeAOeyDpFpJTZKa2traegrZzMz6YJ+JQNIvgc+Q6rY5GziCVDfP/wJKgAckfbS7xbOURZfpW4DrImL3vuKIiLkRURkRlWVlZfuqamZmfdRT19AnI+LlLmVbgafTr3+TdHg3y7YCR2VMjwRe7FKnElggCeBw4MOSdkXEz3sRu5mZ5UBPXUOdP/KSDsicIelkgCyJosNTwDGSxkgaDkwFFmVWiIgxEVEeEeXAQuCfnQTMzAZWT4ngJxnvn+gy74f7WjAidgFXk+pWagHujYi1kq6UdGWfIzWzIc/Pdx6ceuoaUjfvs03vJSIWA4u7lGU9MRwRl/e0PjMzy72eEkF08z7btFlB8mWjNtT1lAhGSvoBqaP/jvekp4/sfjEzMxsqekoE/5rxvqnLvK7TZmY2BO0zEUTEf3Qtk/R3wCsR4a4hM7O3gJ5uKJsp6bj0+wMkLQH+CPy3pA8NRIBmZpasni4fvRRYl37/aVLnBsqA04GbEozLzMwGSE+J4I2MLqCzgAURsTsiWvBjLs3M3hJ6SgTtkiZIKgOmAA9lzCvtZhkzMxtCejqq/yKpoR/KgJsj4nkASR8Gnkk2NDMzGwg9XTW0EjguS/ledwybmdnQ1NNVQ59QemjQbuYfLakq92GZmdlA6alraASwSlIz0Ay0kXoOwT+QunLoZaDbZxGbmdng11PX0K2SbgM+AJwKVADbSY0m+smI2Jx8iGZmlqQeLwFNPz3s1+mXmZm9xfT4zGIz6z2Pt29DkROBmVmBcyIwMytwvUoEkkZImiXpaUnNkm6VNKIXy50taZ2k9ZL2urpI0vmSVktaJanJl6KavXU1NDSwcuVKli9fTnl5OQ0NDfkOydJ62yJYALwEXAR8nNRlpPfsawFJRcBs4BxgHDBN0rgu1R4Bjo+IicAVwI97HbmZDRkNDQ3U1tbS3t4OwKZNm6itrXUyGCR6mwgOi4hvRMTz6dc3gUN7WGYysD4iNkTEG6SSyfmZFSJia8agdgfhx1+avSXV1dWxbdu2Pcq2bdtGXV1dniKyTL1NBEslTZX0tvTrEuAXPSxzJPBCxnQrWR5vKeljkp5Lr++KbCuSVJvuOmpqa2vrZchmNlhs3pz9lqPuym1g9TTExGuS/gZ8DvgJ0J5+LQCu7WHd2Yam2OuIPyLuj4jjgAuAb2RbUUTMjYjKiKgsKyvrYbNm+TF//nzWrl3LihUrmDBhAvPnz893SIPGqFGj+lRuA2ufiSAiDgHeAYyPiLdFRHH69baIeHsP624FjsqYHgm8uI9trQCOlnR4L2M3GzTmz59PXV0d9957L+3t7cyaNYu6ujong7T6+npKS/ccub60tJT6+vo8RWR7iIgeX0Bzb+p1WWYYsAEYAwwHfksqoWTW+QdA6fcnAv/VMd3da9KkSWE22IwfPz6WLFmyR9mSJUti/PjxeYpo8Ln77rvjgAMOCCBGjx4dd999d75DKihAU3Tzu9rxI7xPkmYDd0bEU31JMunnFtwCFAF3RES9pCvTCWiOpOuATwE7SY1h9K8R0bivdVZWVkZTU1NfwjBLXFFRETt27KC4uLizbOfOnZSUlLB79+48Rja4dNx1vWzZsrzGUYgkNUdEZbZ5vX3c5BTgc5I2Aa+T6v+PiKjY10KR5bkFETEn4/23gW/3MgazQWvs2LE0NjYyZcqUzrLGxkbGjh2bx6jMeqe3ieCcRKMwG+Lq6uqYPn068+bNo6qqisbGRqZPn+4+cBsSepUIImJT0oGYDWXTpk0D4JJLLmHLli2MGzeO+vr6znKzway3LQIz68G0adO4/fbbAfeB29DiQefMzAqcE4GZWYFzIjAzK3BOBGZmBc6JwMyswPmqIbMc8tVCNhS5RWBmVuCcCMzMCpwTgZlZgXMiMDMrcE4EZmYFzonAzKzAORGYmRU4JwIzswKXaCKQdLakdZLWS7o+y/waSavTr8clHZ9kPGaWX8uWLfNNd4NQYolAUhEwm9TTzcYB0ySN61LteeD09CMvvwHMTSoeMzPLLskWwWRgfURsiIg3gAXA+ZkVIuLxiPhrenIlMDLBeMzMLIskE8GRwAsZ063psu5MB36ZbYakWklNkpra2tpyGKKZmSWZCJSlLLJWlKaQSgTXZZsfEXMjojIiKsvKynIYopmZJTn6aCtwVMb0SODFrpUkVQA/Bs6JiC0JxmNmZlkk2SJ4CjhG0hhJw4GpwKLMCpJGAT8DPhkRv08wFjMz60ZiLYKI2CXpauBBoAi4IyLWSroyPX8OMBMYAfxQEsCuiKhMKiYzM9ubIrJ22w9alZWV0dTUlO8wzMyGFEnN3R1o+85iM7MC50RgZlbgnAjMzAqcE4GZWYFzIjAzK3BOBGZmBc6JwMyswDkRmJkVOCcCM7MC50RgZlbgnAjMzAqcE4GZWYFzIjAzK3BOBGZmBc6JwMyswDkRmJkVOCcCM7MCl2gikHS2pHWS1ku6Psv84yQ9Iald0peTjMXMzLJL7JnFkoqA2cAZQCvwlKRFEfFsRrW/ADOAC5KKw8zM9i3JFsFkYH1EbIiIN4AFwPmZFSLipYh4CtiZYBy2n6qrq6murs53GGaWkCQTwZHACxnTremyPpNUK6lJUlNbW1tOgjMzs5QkE4GylEV/VhQRcyOiMiIqy8rK9jMsMzPLlGQiaAWOypgeCbyY4PbMzKwfkkwETwHHSBojaTgwFViU4PbMzKwfEksEEbELuBp4EGgB7o2ItZKulHQlgKR3SWoFvgT8L0mtkt6eVEzWd/Pnz2ft2rWsWLGCCRMmMH/+/HyHZGY5ltjlowARsRhY3KVsTsb7P5PqMrJBaP78+dTV1XHvvfdSVVVFY2Mj06dPB2DatGl5js7MckUR/Tp/mzeVlZXR1NSU7zAKwoQJE5g1axZTpkzpLFu6dCnXXHMNa9asyWNkZoWn4xLuZcuW9Wt5Sc0RUZltnoeYsG61tLRQVVW1R1lVVRUtLS15isjMkuBEYN0aO3YsjY2Ne5Q1NjYyduzYPEVkZklwIrBu1dXVMX36dJYuXcrOnTtZunQp06dPp66uLt+hmVkOJXqy2Ia2jhPCl1xyCVu2bGHcuHHU19f7RLHZW4wTge3TtGnTuP3224H+n6Qys8HNXUNmZgXOicDMrMA5EZiZFTgnAjOzAudEYD1atmyZTxSb5VHSY375qiEzs0FsIMb88lhDZmaDWK7G/NrXWENOBGZmg1hRURE7duyguLi4s2znzp2UlJSwe/fuXq/Hg86ZmQ1RAzHmlxOBmdkgNhBjfvlksZnZIDYQY34l2iKQdLakdZLWS7o+y3xJ+kF6/mpJJyYZT6bq6urOBz2YmQ1m06ZNY/z48bz//e9nzZo1OR/4MbFEIKkImA2cA4wDpkka16XaOcAx6Vct8H+SisfMzLJLskUwGVgfERsi4g1gAXB+lzrnA3dFykrgUElHJBiTmZl1kWQiOBJ4IWO6NV3W1zpIqpXUJKmpra1tvwNL+i49M7OhJMlEoCxlXW9a6E0dImJuRFRGRGVZWdl+BZV5l157ezuzZs2irq7OycDMClaSiaAVOCpjeiTwYj/q5FR9fT3z5s1jypQpFBcXM2XKFObNm0d9fX2SmzUzG7SSTARPAcdIGiNpODAVWNSlziLgU+mrh04GXo2IPyUYEy0tLVRVVe1RVlVVRUtLS5KbNTMbtBJLBBGxC7gaeBBoAe6NiLWSrpR0ZbraYmADsB74EfDPScXTYSDu0jMzG0oSvaEsIhaT+rHPLJuT8T6Aq5KMoauOu/TmzZu3x0h+7hoys0JVcHcWD8RdemZmuZbkM0EKLhFAKhncfvvtQLI718xsKPCgc2ZmBa4gWwTgloCZWQe3CMzMCpwTgZlZgXMiMDMrcE4EZmYFzonAzKzAORGYmRU4JwIzswLnRGBmVuCcCMzMCpxSA4AOHZLagE39XPxw4OUchpMrjqv3BmNMMDjjGowxweCMazDGBLmNa3REZH3E45BLBPtDUlNEVOY7jq4cV+8NxphgcMY1GGOCwRnXYIwJBi4udw2ZmRU4JwIzswJXaIlgbr4D6Ibj6r3BGBMMzrgGY0wwOOMajDHBAMVVUOcIzMxsb4XWIjAzsy6cCMzMCtyQTgSS3iVpgaQ/SnpW0mJJx0raLukZSS2SnpT06SzLniRpt6SPSxohaVX69WdJ/5UxPTwfny0J/dlfkt4h6f9K+q2ktZL+qVD210CRdLmk/5HvOHIt/f+1Kv29+a2kL0l6W8b8yZJWSFon6TlJP5ZUms+Y80VSSPq3jOkvS7ox/f5GSV9Ovy+R9GtJX83l9ofsoyolCbgf+I+ImJoumwj8PfDHiDghXfZu4GeS3hYR/54uKwK+DTwIEBFbgInpeTcCWyPiewP5eZK2H/vrKuDZiDhPUhmwDmiIiInp+jfyFtxfA+xyYA3wYp7jyLXtGd+TdwI/Ad4BfFXS3wM/BaZGxBPp7+dFwCHAtjzFm0/twIWS/ndEZL2BLH2QdR/QHBFfy+XGh3KLYAqwMyLmdBRExCrghcxKEbEB+BIwI6P4GlI79KXkwxw0+ru/Ajgk/Y96MPAXYNdABJxLksozjjrXSGqQ9CFJj0n6Q/ro9DBJP5e0WtJKSRXpZW+UdIekZZI2SJqRsd4vpde3RtIXM8o/lV7PbyX9p6RDJD0vqTg9/+2SNkq6GKgEGtJHzwdKmiRpuaRmSQ9KOmKAd1fORcRLQC1wdfq7dBWpg5In0vMjIhZGxH/nM8482kXqCqFru5k/DFgA/CEirs/1xodyIpgANPey7tPAcQCSjgQ+BszZ5xJvPf3aX8BtwFhSR6u/A74QEW/mPrwB8Q/ArUAFqc93GVAFfBm4Afga8ExEVKSn78pY9jjgLGAyqSPaYkmTgH8C3gecDHxW0gmSxgN1wAci4nhS++w1YBlwbnp9U4H7IuKnQBNQkz563gXMAj4eEZOAO4D6BPbFgEsfZLwNeCd9+z4WitlAjaR3ZJn3P4FdEfHFJDY8ZLuG+kgZ728BrouI3akDE8sic8ecBawCPgAcDfxa0qMR8bd8BLafno+I3wFIWgs8EhEh6XdAOTCaVPcEEbEkfS6k45/yFxHRDrRLeolUl1oVcH9EvJ5e58+A00i1ohZ2NPEj4i/pdfyY1D/0z0klkM9mifE9pH4kf53+fhYBf8rZHsg//9N1IyL+JukuUq3x7V1mNwKnSDo2In6f620P5RbBWmBSL+ueALSk31cCCyRtBD4O/FDSBTmPbvDp7/76J+Bn6ab7euB5/n9rYahpz3j/Zsb0m6QOirL9SHXcaJO57O591CddvtcNOhHxGFAu6XSgKCLWdLPs2oiYmH69NyLO7O4DDSXp80+7SXXJ9uX7WEhuAaYDB3UpXwF8EfhlEhcWDOVEsAQ4QFLnUZWkk0gd1ZFRVg58j1Rzm4gYExHlEVEOLAT+OSJ+PkAx51O/9hewGfhget7fkzpi3TAA8ebDCqAGQFI18HIPLZ8VwAWSSiUdRKrL8VHgEeASSSPS6zosY5m7gPnAv2eUvUbqJCmkTsaXSTolvWxxuqtpSEtfaDAHuC1Sd7HeBnxa0vsy6nxC0rvyFeNgkG493ksqGXSddx/wXeBXkg7N5XaHbNdQukn/MeAWSdcDO4CNpLLm0ZKeAUpI/ZPN6rhiqFDtx/76BnBnuvtEpLrVBuNwvblwI/DvklaTunJlr8uOM0XE05LuBJ5MF/04Ip4BkFQPLJe0G3iG1JVBAA3AN0klgw53AnMkbQdOIdVS/UG6W2oYqaPEtfv30fLiQEmrgGJS5z7+E/g+QET8t6SpwPfSVxS9SSqx/ixPsQ4m/wZcnW1GRMxJJ8tFks6MiB252KCHmDAbQJI+DpwfEZ/MdyxmHYZsi8BsqJE0CzgH+HC+YzHL5BaBmVmBG8oni83MLAecCMzMCpwTgZlZgXMiMDMrcE4EZmYF7v8BK5fQZGfKC3AAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'NK']\n", + "fig, ax2 = plt.subplots()\n", + "ax2.errorbar(y=bios_replication_filtered_df.loc[sorted_celltypes]['r'].values,\n", + " x=[ind for ind in range(len(sorted_celltypes))],\n", + " yerr=bios_replication_filtered_df.loc[sorted_celltypes]['se_r'].values,\n", + " fmt='.', markersize=6, marker='o', color='black', label = 'Filtered results')\n", + "bios_replication_unfiltered_df.loc['DC'] = [np.nan, np.nan, np.nan, np.nan]\n", + "ax2.errorbar(y=bios_replication_unfiltered_df.loc[sorted_celltypes]['r'].values,\n", + " x=[ind+0.05 for ind in range(len(sorted_celltypes))],\n", + " yerr=bios_replication_unfiltered_df.loc[sorted_celltypes]['se_r'].values,\n", + " fmt='.', markersize=6, marker='o', markerfacecolor='white', color='black', label = 'Unfilter results')\n", + "ax2.set_xticklabels(['', 'CD4T', '', 'CD8T', '', 'monocyte', '', 'DC', '', 'NK'])\n", + "plt.legend()\n", + "plt.ylabel(\"rb (SE)\")\n", + "plt.savefig('sf20.comparison_rb_values_bios_replication.pdf')\n", + "plt.savefig('sf20.comparison_rb_values_bios_replication.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":14: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string \".\" (-> marker='.'). The keyword argument will take precedence.\n", + " ax.errorbar(y=bios_replication_filtered_df.loc[celltype]['r'],\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAE3CAYAAABSLw+6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZGklEQVR4nO3df5xddX3n8debBOJjxFWbSTYTNZka0UJhMTJNKZUyFrPFiPJwRbHOoinqFKLULkt16+Th4j52wPqDmv4I7IxgKE4tu7Dij4qNuk6spIFOZIVIKiJkohjCDOqWOM2EJJ/945wpd+7cO98zP++9w/v5eNxHcr7ne879zJlz3/M959x7riICM7PJnFDrAsys/jkozCzJQWFmSQ4KM0tyUJhZkoPCzJIW17qAcuf1nR8rT15Z6zIqevDJvcPfvWxgWbX5zf+pOVqXts5jRcXsHtw9HL1Rte6f9Z8RJzznJfNZUiHHnrp/+JfW/7hq3Z957+54XvOS+SypkKF9vxi+4pZfr1r3429/Ryxevnw+Syrs6Yd/ONzy5c9PqL3ugmLlySv53EW31rqMis68uW1wsvmtS1sZ2DwwX+UUpvdo0rpPeM5LeP7ZX5mvcgr76ddePGndz2tewsUfOX2+yinshnfeM2ndi5cvp/lTn5ivcqbkwIVvqli7Dz3MLMlBYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSU5KMwsyUFhZkkOijrQ3t5Oe3t7rcswq8pBYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSUVDgpJmyQ9KumwpN2Szp2k7zWSosqjPm8WaGZVFQoKSZcAW4BrgbXATuAuSauqLPIJoKXssQPoj4gnZlq0mc2voiOKq4BtEdEbEXsj4krgAHBFpc4RcSgiHh97ACcC5wK9s1K1mc2rZFBIOgk4C9heNms7cE7B53kX8HPgjqkUZ2b1ociIohlYBBwsaz8IrEgtLOkE4DLgryJidMoVmlnNTeWqR5RNq0JbJa8DXgJ8uloHSZ2SBiQNDA0PTaGk2htX+1Dj1N6o23xBbO8GqntMkaAYBo4xcfSwnImjjEo6gZ0R8b1qHSKiJyLaIqJtWXPVL1iqS+NqX9Y4tTfqNl8Q27uB6h6TDIqIOALsBtaXzVpPdvWjKkkrgdfjk5hmDa3oocf1wEZJ75Z0qqQtwErgRgBJ10n6RoXlLgN+AfzPWanWzGqi0HePRsRtkpYCm8neE7EH2BARY99T2AKsKV1GksiudvRFxMjslWxm863wlxRHxFZga5V5Gyu0BfDL067MzOqGP+thZkkOCjNLclCYWZKDwsySHBRmluSgMLMkB4WZJTkozCzJQWFmSQ4KM0taUEHhL/s1mxsLKijMbG44KMwsyUFhZkkOCjNLclCYWZKDwsySHBRmluSgMLMkB4WZJTkozCzJQWFmSQ4KM0tyUJhZkoPCzJIcFGaW5KAwsyQHhZklOSjMLMlBYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzpAUTFH19fezatYsdO3bQ2tpKX19frUsyWzAWRFD09fXR2dnJ6OgoAIODg3R2djoszGZJ4aCQtEnSo5IOS9ot6dxEf0n6Q0n/JGlU0gFJH515yRN1dXUxMjIyrm1kZISurq65eDqzZ53FRTpJugTYAmwCvp3/e5ek0yJif5XFPglcCPwR8ADwfKBlxhVXsH9/5RKqtZs1qrHv1u3v75/X5y06orgK2BYRvRGxNyKuBA4AV1TqLOkVwJXARRHxhYh4JCLui4ivzE7Z461atWpK7WY2NcmgkHQScBawvWzWduCcKotdBDwCXCDpEUn7JN0iafmMqq2iu7ubpqamcW1NTU10d3fPxdOZPesUGVE0A4uAg2XtB4EVVZZ5KbAaeBuwEbgU+BXgS5Jm/QRqR0cHPT09LFmyBIDVq1fT09NDR0fHbD+V2bPSVF60UTatCm2l610CXBoR34qIvycLi3XAr5V3ltQpaUDSwNDw0BRKekZHRwdnn3025513Hvv27Zu3kBhX+9D0aq+F2djmtbAgtncD1T2mSFAMA8eYOHpYzsRRxpgDwNGIeKik7QfAUWDCiYOI6ImItohoW9a8rEBJ9WNc7csap/ZG3eYLYns3UN1jkkEREUeA3cD6slnrgZ1VFrsbWCxpTUnbS8musgxOo04zq6Gihx7XAxslvVvSqZK2ACuBGwEkXSfpGyX9vw58B7hZ0lpJa4GbgXuAgdkr38zmQ6H3UUTEbZKWApvJ3guxB9gQEWOjgxZgTUn/45IuBP4M+BbwL8DXgKsi4vgs1m9m86BQUABExFZga5V5Gyu0HQDeMu3KzKxuLIjPepjZ3HJQmFmSg6LG/PF4awQOihryx+OtUTgoasgfj7dG4aCoIX883hqFg6KG/PF4axQOihryx+OtUTgoasgfj7dGUfidmTY3Ojo66O3tBeb/9mZmRXlEYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSUtqPdR+H0IZnPDIwozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSU5KMwsyUFh1iBq+dUODgqzBlDrr3ZwUJg1gFp/tYODwqwB1PqrHRwUZg2g1l/t4KAwawC1/moHB4VZA6j1VzssqI+Zmy1ktfxqB48ozCzJQWFmSQ4KM0tyUJhZkoPCzJIKB4WkTZIelXRY0m5J507St1VSVHhcMDtlm9l8KhQUki4BtgDXAmuBncBdklJvC7sAaCl5/J/pl2pmtVJ0RHEVsC0ieiNib0RcCRwArkgs92REPF7yODKjas2sJpJBIekk4Cxge9ms7cA5icX/t6QnJN0t6eJp1mhmNVZkRNEMLAIOlrUfBFZUWeYQcDXwVmAD8A3gNkn/sVJnSZ2SBiQNDA0PFSq8Xoyrfahxam/Ubb4gtncD1T1mKlc9omxaFdqyjhHDEfHJiNgVEQMR8WHgfwAfqNK/JyLaIqJtWfOyKZRUe+NqX9Y4tTfqNl8Q27uB6h5TJCiGgWNMHD0sZ+IoYzL3AKdMob+Z1YlkUOQnIHcD68tmrSe7+lHUK8lOgJpZgyn66dHrgVsl3QvcDVwOrARuBJB0HbAuIs7Pp98JPA3cBxwH3gC8F/jgrFZvZvOiUFBExG2SlgKbyd4PsQfYEBGDeZcWYE3ZYpuB1WSHLQ8Bl0XEZ2elajObV4XvRxERW4GtVeZtLJu+BbhlRpWZWd3wZz3MLMlBYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSU5KMwsyUFhZkkOCjNLclCYWZKDwqatvb2d9vb2Wpdh88BBYWZJDgozS3JQmFmSg8LMkhwUZpZU+FZ4ZlZ7/f39NXlejyjMLMlBYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSU5KMwsye/MrAO1eredWVEeUdi09PX1sWvXLnbs2EFrayt9fX21LsnmkIPCpqyvr4/Ozk5GR0cBGBwcpLOz02GxgDkobMq6uroYGRkZ1zYyMkJXV1eNKrK55qCwKdu/f/+U2q3xOShsylatWjWldmt8Dgqbsu7ubpqamsa1NTU10d3dXaOKbK45KGzKOjo66OnpYcmSJQCsXr2anp4eOjo6alyZzRW/j8KmpaOjg97eXsDvA3k2KDyikLRJ0qOSDkvaLencgsudIukpSYemX6aZ1VKhoJB0CbAFuBZYC+wE7pI06dkrSScBfwN8a4Z1mlkNFR1RXAVsi4jeiNgbEVcCB4ArEsv9CXA/8L9mUKOZ1VgyKPJRwVnA9rJZ24FzJlnu9cCFwB/MpEAzq70iI4pmYBFwsKz9ILCi0gKSWoBe4NKIeCr1BJI6JQ1IGhgaHipQUv0YV/tQ49TeqNt8QWzvBqp7zFQuj0bZtCq0jfkscENE7Cq04oieiGiLiLZlzcumUFLtjat9WePU3qjbfEFs7waqe0yRoBgGjjFx9LCciaOMMb8N/FdJRyUdBW4CnptPd067WjOrieT7KCLiiKTdwHrGn5RcD9xRZbEzyqYvArqAdcBj06jTzGqo6BuurgdulXQvcDdwObASuBFA0nXAuog4HyAi9pQuLKkNOF7ebmaNoVBQRMRtkpYCm4EWYA+wISIG8y4twJq5KdHMaq3wW7gjYiuwtcq8jYlltwHbplCXmdURfyjMzJIcFPas097eTnt7e63LaCgOCjNLclCYWZLvR2HT5vtQPHt4RGFmSQ4KM0tyUJhZkoPCzJIcFGaW5KAwsyQHhZklOSjMLMlBYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSU5KMwsyUFhZkkOCjNLclCYWZKDwsySHBRmluSgMLMkB4WZJTkozCzJQWFmSQ4KM0tyUJhZkoPCzJIcFGaW5KAwsyQHhZklOSjMLKlwUEjaJOlRSYcl7ZZ07iR9T5P0TUkH8/6PSLpW0kmzU7aZzafFRTpJugTYAmwCvp3/e5ek0yJif4VFjgC3APcBPwfOBHrz5/vAzMs2s/lUdERxFbAtInojYm9EXAkcAK6o1DkiHo6IbRHx3YgYjIgvAn1A1VGI2Xzo6+tj165d7Nixg9bWVvr6+mpdUkNIBkV+uHAWsL1s1nbgnCJPIullwAXAjqkWaDZb+vr66OzsZHR0FIDBwUE6OzsdFgUUGVE0A4uAg2XtB4EVky0oaaekw8APyA5ZPlSlX6ekAUkDQ8NDBUqqH+NqH2qc2ht1m89ke3d1dTEyMjKubWRkhK6urtkssaJG3U/GTOWqR5RNq0JbuUuAVwFvBzYAH6y44oieiGiLiLZlzcumUFLtjat9WePU3qjbfCbbe//+SqfTqrfPpkbdT8YUOZk5DBxj4uhhORNHGeNExI/y/z4oaRHwaUkfj4ijU67UbIZWrVrF4OBgxXabXHJEERFHgN3A+rJZ64GdU3yuxWSHMWbzrru7m6ampnFtTU1NdHd316iixlHo8ihwPXCrpHuBu4HLgZXAjQCSrgPWRcT5+fSlwGHgAbJLpW3AdcDtETE6qz+BWUEdHR0AvOtd72J0dJTVq1fT3d39r+1WXaGgiIjbJC0FNgMtwB5gQ0SMjeNagDUlixwF/hg4hexcxiDwl8CfzlLdZtPS0dFBb28vAP39/bUtpoEUHVEQEVuBrVXmbSyb/hzwuRlVZmZ1w5/1MLMkB4WZJTkozCzJQWFmSQ4KM0tyUJhZkoPCzJIcFGaW5KAwsyQHhZklOSjMLMlBYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSU5KMwsyUFhZkkOCjNLclCYWZKDwsySHBRmluSgMLMkB4WZJTkozCzJQWFmSQ4KM0tyUJhZkoPCzJIcFGaW5KAwsyQHhZklOSjMLGlxrQswm2/9/f21LqHheERhZkmFg0LSJkmPSjosabekcyfp2y7pC5IOSBqRdL+ky2anZDObb4WCQtIlwBbgWmAtsBO4S9KqKoucAzwAXAycDtwA9Eh6+4wrNrN5V/QcxVXAtojozaevlHQBcAXwx+WdI+LasqYbJL0GeDPw19Mt1sxqIzmikHQScBawvWzWdrKRQ1H/BvjZFPqbWZ0ocujRDCwCDpa1HwRWFHkSSRcC5wM9VeZ3ShqQNDA0PFRklXVjXO1DjVN7o27zBbG9G6juMVO56hFl06rQNoGk3yQ73PiDiLi34oojeiKiLSLaljUvm0JJtTeu9mWNU3ujbvMFsb0bqO4xRYJiGDjGxNHDciaOMsaR9GrgLuDDEXHDtCo0s5pLBkVEHAF2A+vLZq0nu/pRkaTfIguJj0TEp2ZQo5nVWNGrHtcDt0q6F7gbuBxYCdwIIOk6YF1EnJ9PtwN/C2wF+iSNjUaORUTjHaCZPcsVCoqIuE3SUmAz0ALsATZExGDepQVYU7LIRqAJuDp/jBkEWmdWspnNt8Kf9YiIrWQjhErzNlaY3lipr5k1nrr7UNieA987dObNbd+vdR2VHD9y/BWTzd/9w92H9B7VX+1HmbTuXwx/99Cxr7247uo+PBqT1v3Ywz89dMM776m7uo8cHZ207qe+/9Chpy98U93VDXD42LGKtSsieYVzXkkaiIi2WtdRSaq2eq3ddc+vRq0bqtfmT4+aWZKDwsyS6jEoKr7Nu06kaqvX2l33/GrUuqHaxyzq7RyFmdWfehxRmFmdcVCYWZKDwsySHBRmluSgMLMkB4WZJdV1UEj6t5K2SPqhpFFJj0m6S9KGfP4+SZE/Dkv6kaTPS3rDJOt8jqTv5su05W3XlKyn2qO1VrVLermkOyUNS3pK0q785sZzUnu9kbRR0qEZLL+tZFs8LekJSd+U9F5JJ5b1XSPppvz3MZr/nm6XNJX7w86akto3l7W35+3NklpL9+d8fpOkryr7io1TZlpH3QZFvnN/B/gdsjt9/zvgtWT3ubixpOt/I/uY+8uBtwH7gM9L+vMqq/4E8OMKbS0lj+8Dnyxr+1ENa/8y8Byy+46uBb4NfEHSmtmufQH7Otm2aAX+PfAl4CPA30t6LkD+QvsO8KvAJuA04I1kN26qtj/Nh8PAByQVuoeepBeS/bwvAn4zIn4w4woioi4fwFeAnwAnV5j3wvzffcDVFeZ3kt3P8zVl7RcB3wNOzee3VXnuPcA19VA72c2Nx/0sZJ/6PQZcXLZsP/Ak2Z3HfgoMAe8HlgB/Cfwc2A9cWrLMGflO9S/5MtuA55fM30YWVO8HHiO7k/pngKaSPkuAT5HdGvEwsAt4dVltvwJ8Efh/wCHgH/Ln/i3gaWBFWf9u4H6gPf/5Sx/X5H1OAv6ELPh/Afwj8DsVtuk24MsV2k8HjpAFhvLf+33Aogp9X1Cj18G2fH+6H/izkvax7dJMFn4BtJHdUOqBfB944WzVUZcjCkm/BFwA/EVETBhyRkTqtv83ke3Qby5Z54vJvoiog+xFMSfmoPYngb3ApZJOlrSILEyeIrvbWLkXkO38vw58lOwFfCfwENmOdAvwaUkrJTUBXyV74a4D3kT2FQw3l63zXLIX1WuBS/J+7y+Z/7G8/TKyEc8DwFclteTbZCXZKCjIbqH4KrLgWhQR3wJ+CLxjbGWSTsinbyLb4f8QGOGZEdIn8q6fAc4D3k4WOrcAX5J0ZoXtMkFE7Ml//jcDryQbSXw8Io5V6PvzIuucI8eB/wJcno8iq3kZ2T7xY+C1Bfa14mqRkgVSdB3ZTvWmRL99VPirnM/bBXwl//8iYAfwn/PpVuZoRDHbtefTLwLuJdthjgJPAL9RYbl+shfUNfm0yEYVXyzpcyJZkFwMvIfsL/zzKvylelnJX7QfAYtL+vQCX8///9x8fe8omb+I7MX/3/PpbrK7m51U5ee9GthbMv06YBRYmk9vBA6VLbMm3x6rytrvBLaWtW2jwogin/fRfJu9Nf+519Z6/69WO/BN4G/Kfk+lI4pRsmA9cbbrqMsRBdkOPhvrGPsgy4fIhrfXz8J6izzvbKwje6VLIruz2JNkf9nXAbcDd0h6UYVlD4/9J7I96gmyv/BjbU+TjViWkx2C3R8RT5Usv5PsBXhaSduDEXG0ZPon+fKQvWBPpGR0E9lf5H8oWcda4NuR3ai5kluAl5acMLwMuDMinqzSH7JRiYAHJR0aewCvZ/xtGVPGtvVs/N7m2geAt5SetCzzBbL9422z/cT1GhQ/IPvlnTqdhfPh+cuBR/Km84HXAE9LOgo8nLfvktQ3w1rLzXbtvw28AfjdiLg7Ir4TEZvIjsl/r8Iqyj/lF2QhWd52ApN/N0tpe7Xl4ZkXWKX1RFmfyk+U3XD5i8Blyu7N+kayw47JnJCv/9fIDhvGHqeSBU1Rp5Ft64fy6Wn93uZDRPwjcAfZeZlKPkb2R3GbpI2z+dx1GRQR8VPg74D3STq5fL6kFyRW8W6yY/Xb8+nfA87kmZ1pQ97eAXxwpvWWmoPam/J/j5f1O87Mf38PAmdKel5J2zn5evcWXMfDZIcerx5ryMPuN/L1Q3Yl4dXKvp6yml6y4f/vk50U/XrJvCNkhzOl7iMLoBUR8XDZ47EihUs6nex80u3A/83r/aO8/vK+LyiyznnwIbKR5QWVZkbEx8gO5W6S9O5Ze9ZaH4NNcmz2y8AB4J+AtwCvIDtzfgWwP++zj+yM9QrgJWQ7+Z+SHcf/+STrbmVur3rMWu1kx6DDZH9JziQbbXyc7K/8q8qet5/sEOWayX4W4HHgfWQh9BPg8zxzBeL7wB2VjpFL2q4B9pRMfypfzwayv8g9ZCdIW/L5L8rrupNsBPAy4HeBV5asQ8CjZMfZHyl7vnN45kRoM/kVF+CzZOc+LgZeSnay9mrgP5Qtvw34Wr6tV+bb8ap8u+4Cnpv3Wwf8c952IdkhzBlkQ/6BGr0OKm3/vyA7IT/hqkdJn/eRXRn7/VmpoxY//BQ2UgvZ9etH8h3oJ2RfKvS6khfb2CWzUbKzvXcCb0ysd8KGLZs/o6CY7drzF8Df5S+2fwbuAV5foV8/UwiK/P9nAN/Id7yfUeXyaNny1zA+KEovj45S+fLor5Jd5jtEdsVmJ3B6WZ8Pk42UWiv8bDfkL+zgmZO1J+a1PEI26nic7BDmrAovtrFtfTRfTz9wJWUnWIFTyK6m/Dhf536yEcfZNXoNVNr+y/NtWDUo8n6Xk4XFppnW4RvXWN2QdAPZ1Zbyb6WzGqu72/Xbs4+k5wNnkb134q01LscqcFBYPRi7rHdTRPxtrYuxiXzoYWZJdXl51Mzqi4PCzJIcFGaW5KAwsyQHhZklOSjMLOn/A44V5glQ76qlAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# compare between filtered and unfiltered\n", + "fig, axes = plt.subplots(1, 5, figsize=(4, 5), sharey=True)\n", + "sorted_celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'NK']\n", + "# ax1.errorbar(y=bios_replication_filtered_df.loc[sorted_celltypes]['r'].values,\n", + "# x=[ind-0.1 for ind in range(len(sorted_celltypes))],\n", + "# yerr=bios_replication_filtered_df.loc[sorted_celltypes]['se_r'].values,\n", + "# fmt='.', markersize=6, marker='o', \n", + "# ecolor=bios_replication_filtered_df.loc[sorted_celltypes]['color'].values,\n", + "# color=bios_replication_filtered_df.loc[sorted_celltypes]['color'].values[0])\n", + "# ax1.set_xticklabels([\"\"]+sorted_celltypes)\n", + "# ax1.plot([0, 5], [0.5, 0.5], linestyle='--', color='black')\n", + "for ind, celltype in enumerate(sorted_celltypes):\n", + " ax = axes[ind]\n", + " ax.errorbar(y=bios_replication_filtered_df.loc[celltype]['r'],\n", + " x=[0.4],\n", + " yerr=bios_replication_filtered_df.loc[celltype]['se_r'],\n", + " fmt='.', markersize=6, marker='o', ecolor='black',\n", + " markeredgecolor='black', markerfacecolor='black'\n", + " )\n", + " ax.set_xlim([0, 1])\n", + " ax.spines['bottom'].set_color(bios_replication_filtered_df.loc[celltype]['color'])\n", + " ax.spines['top'].set_color(bios_replication_filtered_df.loc[celltype]['color']) \n", + " ax.spines['right'].set_color(bios_replication_filtered_df.loc[celltype]['color'])\n", + " ax.spines['left'].set_color(bios_replication_filtered_df.loc[celltype]['color'])\n", + " ax.set_xticklabels([])\n", + " ax.set_xlabel(celltype)\n", + " \n", + "\n", + "plt.savefig('bios_replication.filtered_results.pdf')\n", + "plt.savefig('bios_replication.filtered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":14: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string \".\" (-> marker='.'). The keyword argument will take precedence.\n", + " ax.errorbar(y=bios_replication_filtered_df.loc[celltype]['r'],\n", + ":20: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string \".\" (-> marker='.'). The keyword argument will take precedence.\n", + " ax.errorbar(y=bios_replication_unfiltered_df.loc[celltype]['r'],\n", + "/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/tools/Beeline/miniconda/envs/scpy3.8/lib/python3.8/site-packages/numpy/core/_asarray.py:102: UserWarning: Warning: converting a masked element to nan.\n", + " return array(a, dtype, copy=False, order=order)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAFtCAYAAADIwpbuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmbklEQVR4nO3dfZhcZX3/8ffXJARTfGjZpCRVSEWtwaAi0Vq64KaaSimtv2rFpls1ujYVKNpy+VC7Xlatq60PVH5YlKUroXVNoe3P+lxBmhBXREzUYjCVohB8wJhFRSAQQvz+/jizZXezm+zmnLOzM/t+XddcydznYb/ZO2fmM/fcc09kJpIkSZIO38OaXYAkSZLU6gzVkiRJUkmGakmSJKkkQ7UkSZJUkqFakiRJKslQLUmSJJU0v9kFlPXswefksqOWNbuMOesbd+4Y/q9XbF1cxbk6/rwjlx+9vIpT6TBs27ltOC/NSvryx5tPzIcd+dgqTqVp2n/3jcO/sOa7lfQjwGXnbstHdCys6nSaht233Tt89uW/Wklf/uAPX5rzlyyp4lQ6DPtu+dbw0k9+tJrnysFv5/KjFlRxKh2GbXfuHc5XPH7Cvmz5UL3sqGVsfP4/NbuMOeupH1q1s6pzLT96OVvftLWq02ma4o+jsr582JGP5VHP+nRVp9M0/Ojqx1TWjwCP6FjI7791ZZWn1BR94GVfqqwv5y9ZQsf73lPV6TRNd5z5e9U9Vx61gK3Pd9CiWeJDt0zal07/kCRJkkoyVEuSJEklGaolSZKkkgzVkiRJUkmGakmSJKkkQ7UkSZJUUi2hOiJOi4iPR8T3IiIjYt0UjjkxIq6NiPsax705IqKO+iRJkqQq1TVSfRSwHXgNcN+hdo6IRwJXA7uAZwCvBl4HnF9TfZIkSVJlavnyl8z8NPBpgIjYMIVDuoFFwMsy8z5ge0SsAM6PiAsyM+uoU5IkSarCbJlT/WvA5xuBesRngWXA8qZUJEmSJE3RbAnVx1BM/Rht16htY0TE+ojYGhFbdw/vrr041WdMX+62L1uZ12X78LpsD/Zj+/DxtTXMllANMH6KR0zSTmb2Z+aqzFy1uGNx/ZWpNmP6crF92cq8LtuH12V7sB/bh4+vrWG2hOofcOCI9JLGn+NHsCVJkjRLdHV10dXV1ewymm62hOovAqdGxJGj2tYA3wdua0pFkiRJ0hTVtU71URHxtIh4WuNnHNu4f2xj+zsj4ppRh3wE2ANsiIiVEfEC4C8AV/6QJEnSrFfXSPUq4KuN28OBtzb+/rbG9qXA8SM7Z+ZdFCPTy4CtwN8D7wUuqKk+SZIkqTJ1rVO9mYc+aDjR9nUTtH0dOK2OeiRJkqQ6zZY51ZIkSVLLMlRLkiRJJRmqJUmSpJIM1ZIkSVJJhmpJkiSpJEO1JEmSVJKhWpIkSSrJUC1JkiSVZKiWJEmSSjJUS5IkSSUZqiVJkqSSDNWSJElSSYZqSZIkqSRDtSRJklSSoVqSJEkqyVAtSZIklWSoliRJkkoyVEuSJEklGaolSZKkkgzVkiRJUkmGakmSJKkkQ7UkSZJUkqFakiRJKslQLUmSJJVkqJYkSZJKMlRLkiRJJRmqJUmSpJIM1ZIkSVJJhmpJkiSpJEO1JEmSVFJtoToizomIWyPi/ojYFhGnHmL/50XEFyPi7ogYjoiPRcQT66pPkiRJqkotoToiXgxcCLwDOAm4DvhMRBw7yf6/DHwM+Hxj/+cCDwc+XUd9kiRJUpXqGqk+H9iQmZdm5o7MPA+4Azh7kv1PBhYAb8zMWzLza8A7geMjoqOmGiVJkqRKVB6qI+IIipB81bhNVwGnTHLYVmAf8MqImBcRjwBeBnw5M4errlGSJEmqUh0j1R3APGDXuPZdwDETHZCZtwFrgLcCe4G7gBOBMyfaPyLWR8TWiNi6e3h3RWWrGcb05W77spV5XbYPr8v2YD+2Dx9fW0Odq3/kuPsxQVuxIeIYYAD4R+AZQBdwN3BlRBxQY2b2Z+aqzFy1uGNxpUVrZo3py8X2ZSvzumwfXpftwX5sHz6+tob5NZxzGNjPgaPSSzhw9HrEucC9mfn6kYaI+CPgOxRTRoZqqFOSJEmqROUj1Zn5ALCNYjrHaGsoVgGZyCKKID7ayH3X0pYkSdKsVldgvQBYFxGvjIgVEXEhsAz4IEBEvDMirhm1/6eAp0fEX0XEEyLi6cBlFCPV22qqUZIkSapEHdM/yMwrIuJo4E3AUmA7cEZm7mzsshQ4ftT+/xkRfwi8HngdcB9wPXB6Zt5bR42SJElSVWoJ1QCZeTFw8STb1k3Q9s/AP9dVjyRJklQX5ytLkiRJJRmqJUmSpJIM1ZIkSVJJhmpJkiSpJEO1JEmSVJKhWpIkSSrJUC1JkiSVZKiWJEmSSjJUSwfR1dVFV1dXs8uQJEmznKFakiRJKslQLUmSJJVkqJYkSZJKMlRLkiRJJRmqJUmSpJIM1ZIkSVJJhmpJkiSpJEO1JEmSVJKhWpIkSSrJUC1JkiSVZKiWJEmSSjJU16Crq4uurq5mlyFJkqQZYqiWJEmSSjJUS5IkSSUZqiVJkqSSDNWSJElSSYZqSZIkqSRDtSRJklSSoVqSJEkqyVAtSZIklWSortjg4CDXX3891157LcuXL2dwcLDZJUmSJKlmtYXqiDgnIm6NiPsjYltEnHqI/SMi/iwi/jsi9kbEHRHxN3XVV4fBwUHWr1/P3r17Adi5cyfr1683WEuSJLW5WkJ1RLwYuBB4B3AScB3wmYg49iCHvRc4B3gDsAI4A9hSR3116e3tZc+ePWPa9uzZQ29vb5MqkiRJ0kyYX9N5zwc2ZOaljfvnRcTpwNnAG8fvHBG/ApwHPCUzd4za9NWa6qvF7bffPq12SZLmsq6uLgA2b97c1DqkKlQ+Uh0RRwAnA1eN23QVcMokhz0f+DZwekR8OyJui4jLI2LJJD9jfURsjYitu4d3V1Z7WcceO/FA/GTtGteXu2dPX2r6Zut1qenzumwP9mP78PG1NdQx/aMDmAfsGte+CzhmkmMeBxwH/AGwDngJ8CTgExFxQI2Z2Z+ZqzJz1eKOxVXVXVpfXx+LFi0a07Zo0SL6+vqaVNHsN6YvF8+evtT0zdbrUtPnddke7Mf24eNra6hz9Y8cdz8maBtdx0LgJZm5JTM/TxGsnwk8o74Sq9Xd3U1/fz8LFy4E4LjjjqO/v5/u7u4mV6bD4UoukiRpquqYUz0M7OfAUeklHDh6PeIO4MHMvHlU2/8ADwLHAl+qusi6dHd3c+mlxVRy54i1rslWcgF8kSRJkg5Q+Uh1Zj4AbAPWjNu0hmIVkIl8AZgfEcePanscRejfWXWN0qG4koskSZqOuqZ/XACsi4hXRsSKiLgQWAZ8ECAi3hkR14za/3PAV4APRcRJEXES8CGKEeqtNdUoTcqVXCRJ0nTUEqoz8wrgz4A3AV8DOoEzMnNk1HkpcPyo/X8GnAn8kGJt6s8C3wWe39gmzShXcpEkSdNR2wcVM/PizFyemQsz8+TM3DJq27rMXD5u/zsy80WZ+YjMXJKZ3Zk52RxsqVau5CJJkqajztU/pJblSi6SJGk66vpGRanluZKLJEmaKkN1DQxgkiRJc4vTPyRJkqSSDNWSJGnG+a21ajeGakmSNKMm+9Zag7VamaFakiTNKL+1Vu3IUC1JkmaU31qrdmSoliRJM8pvrVU7MlRLkqQZ5bfWqh0ZqiVJ0ozyW2vVjvzyF0mSNOP81lq1G0eqJUmSpJIM1ZIkSVJJhmpJkiSpJEO1JEmSVJKhWpIkSSrJUC1JkiSVZKiWJEmSSjJUS5IkSSUZqiVJkqSSDNWS5oSuri66urqaXYYkqU0ZqiVJkqSS5je7AEmSNDdt3ry52SVIlXGkWpIkSSrJUC1JkiSVZKiW1PYGBwe5/vrrufbaa1m+fDmDg4PNLkmS1GYM1ZLa2uDgIOvXr2fv3r0A7Ny5k/Xr1xusJUmVMlRLB7F582Y/SNPient72bNnz5i2PXv20Nvb26SKJEntqLZQHRHnRMStEXF/RGyLiFOneNwTIuLuiLinrtokzR233377tNolSToctYTqiHgxcCHwDuAk4DrgMxFx7CGOOwL4Z2BLHXVJmnuOPXbih53J2iVJOhx1jVSfD2zIzEszc0dmngfcAZx9iOP+FrgR+Jea6pI0x/T19bFo0aIxbYsWLaKvr69JFUmS2lHlobox2nwycNW4TVcBpxzkuN8GzgReXXVNkuau7u5u+vv7WbhwIQDHHXcc/f39dHd3N7kySVI7qWOkugOYB+wa174LOGaiAyJiKXAp8JLMvPtQPyAi1kfE1ojYunt4d9l61URj+nK3fdnKZvN12d3dzbOe9Sye/exnc9tttxmoD8Hrsj3Yj+1jNj++6iF1rv6R4+7HBG0jPgx8IDOvn9KJM/szc1VmrlrcsbhMjWqyMX252L5sZV6X7cPrsj3Yj+3Dx9fWUEeoHgb2c+Co9BIOHL0e8RvAX0XEgxHxIDAA/Fzj/voaapQkSZIqM7/qE2bmAxGxDVjD2A8crgH+bZLDThx3//lAL/BM4HtV1yhJal1dXV0AriEvaVapPFQ3XAD8U0TcAHwBeBWwDPggQES8E3hmZj4HIDO3jz44IlYBPxvfLkmSJM1GtYTqzLwiIo4G3gQsBbYDZ2TmzsYuS4Hj6/jZkjQRRzUlSXWqa6SazLwYuHiSbesOcewGYEPlRUmSJEk1qHP1D0mSJGlOMFRLkiRJJRmqJUmSpJIM1ZIkSTosg4ODXH/99Vx77bUsX76cwcHBZpfUNIZqSZIkTdvg4CDr169n7969AOzcuZP169fP2WBtqJYkSdK09fb2smfPnjFte/bsobe3t0kVNZehWpIkSdN2++23T6u93RmqJUmSNG3HHnvstNrbnaFakiRJ09bX18eiRYvGtC1atIi+vr4mVdRchmpJmqauri66urqaXYYkNVV3dzf9/f0sXLgQgOOOO47+/n66u7ubXFlz1PY15ZIkSWpv3d3dXHrppQBs3ry5ucU0mSPVkqSW4Zq4kmYrQ7UkqSW4Jq6k2cxQLUlqCa6JK2k2M1RL0jRs3LiRm266iS1btrBy5Uo2btzY7JLmDNfElTSbGaolaYo2btxIb28vV155JXv37uWiiy6it7fXYD1DXBNX0mxmqJakKerr62NgYIDVq1ezYMECVq9ezcDAwJxdk3WmuSaupNnMUC1JU7Rjxw46OzvHtHV2drJjx44mVTS3uCaupNnMdaolaYpWrFjB0NAQq1ev/t+2oaEhVqxY0cSq5hbXxJU0WzlSLUlT1NvbS09PD5s2bWLfvn1s2rSJnp4eV5+QJDlSLUlTtXbtWgDOOuss7rzzTk444QT6+vr+t12SNHcZqiVpGtauXcsll1wCOP1AkvQQp39IkiRJJRmqJUmSpJKc/iFJ0+S0D0nSeI5US5IkSSUZqiVJkqSSDNWSJElSSYZqSZIkqSRDtSRJklRSbaE6Is6JiFsj4v6I2BYRpx5k366I+FhE3BEReyLixoh4RV21SZIkSVWqZUm9iHgxcCFwDjDU+PMzEXFCZt4+wSGnAF8H3gXcATwP6I+I+zPzI3XUKElqTS5pKGk2qmud6vOBDZl5aeP+eRFxOnA28MbxO2fmO8Y1fSAiVgMvBAzVkiRJmtUqn/4REUcAJwNXjdt0FcWI9FQ9EvhxVXVJkiRJdaljTnUHMA/YNa59F3DMVE4QEWcCzwH6J9m+PiK2RsTW3cO7y9SqJhvTl7vty1bmddk+vC7bg/3YPnx8bQ11rv6R4+7HBG0HiIhfp5jy8erMvGHCE2f2Z+aqzFy1uGNx+UrVNGP6crF92cq8LtuH12V7sB/bh4+vraGOUD0M7OfAUeklHDh6PUZEdAKfAd6cmR+ooTZJkiSpcpWH6sx8ANgGrBm3aQ1w3WTHRcRpFIH6rZn5vqrrkiRJkupS1+ofFwD/FBE3AF8AXgUsAz4IEBHvBJ6Zmc9p3O8CPgVcDAxGxMgo9/7MdPKQJEmSZrVaQnVmXhERRwNvApYC24EzMnNnY5elwPGjDlkHLAJe27iN2Aksr6NGSZIkqSp1jVSTmRdTjDxPtG3dBPfXTbSvJEmSNNvVufqHJEmSNCcYqiVJkqSSDNWSJElSSYZqSZIkqSRDtSRJklSSoVqSJEkqyVAtSZIklWSoliRJkkoyVEuSJEklGaolSZKkkgzVkiRJUkmGakmSJKkkQ7U0Q7q6uujq6mp2GZIkqQaGakmSJM0arToIZaiWJEmSSjJUS5IkSSUZqqUZsHHjRm666Sa2bNnCypUr2bhxY7NLkiRJFZrf7AKkdrdx40Z6e3u58sor6ezsZGhoiJ6eHgDWrl3b5OokSVIVHKmWatbX18fAwACrV69mwYIFrF69moGBAfr6+ppdmiS1jVb9cJvah6FaqtmOHTvo7Owc09bZ2cmOHTuaVJEkSaqaoVqq2YoVKxgaGhrTNjQ0xIoVK5pUkSRJqpqhWqpZb28vPT09bNq0iX379rFp0yZ6enro7e1tdmmSJKkiflBRqtnIhxHPOuss7rzzTk444QT6+vr8kKIkSW3EUC3NgLVr13LJJZcAsHnz5uYWI0mSKuf0D0mSJKkkQ7U0QzZv3uwotSTVwC/Y0mzg9A9JktSy/IItzRaOVEuSpJblF2xptjBUS5KkluUXbGm2qC1UR8Q5EXFrRNwfEdsi4tRD7H9iRFwbEfdFxPci4s0REXXVJ0mSWp9fsKXZopZQHREvBi4E3gGcBFwHfCYijp1k/0cCVwO7gGcArwZeB5xfR32SJKk9+AVbmi3q+qDi+cCGzLy0cf+8iDgdOBt44wT7dwOLgJdl5n3A9ohYAZwfERdkZtZUZ0vo6uoCXN9YkqTx/IItzRaVh+qIOAI4GXjPuE1XAadMctivAZ9vBOoRnwX+GlgO3FpxmZIkqU34BVuaDeqY/tEBzKOYyjHaLuCYSY45ZpL9R7aNERHrI2JrRGzdPby7TK2zXruvvTmmL3e3d1+2u7l0XbY7r8v2YD+2Dx9fW0Odq3+Mn7IRE7Qdav+J2snM/sxclZmrFncsLlHi7DZ67c29e/dy0UUX0dvb21bBekxfLm7fvpwL5sp1ORd4XbYH+7F9+PjaGuoI1cPAfg4cYV7CgaPRI34wyf4c5Ji259qbkiRJraHyUJ2ZDwDbgDXjNq2hWAVkIl8ETo2II8ft/33gtqprbBWuvSlJktQa6pr+cQGwLiJeGRErIuJCYBnwQYCIeGdEXDNq/48Ae4ANEbEyIl4A/AUwp1f+cO1NSZKk1lDLknqZeUVEHA28CVgKbAfOyMydjV2WAseP2v+uiFgD/D2wFfgx8F6KcD5njay9OTAwQGdnJ0NDQ/T09Dj9Q5KkcVz1Q81W1zrVZObFwMWTbFs3QdvXgdPqqqcVufamJElSa6gtVKsaa9euNURLkiTNcnUuqSdJkiTNCYZqSZIkqSRDtSRJklSSoVqSJEkqyVAtSZIklWSoliRJkkoyVEuSJEklGaolSZKkkgzVkiRJUkmGakmSJKkkQ7UkSZJUkqFakiRJKslQLUmSJJVkqJYkSZJKMlRLkiRJJRmqJUmSpJIM1ZIkSVJJhmpJkiSpJEO1JEmSVJKhWpIkSSrJUC1JkiSVZKiWJEmSSjJUS5IkSSUZqiVJkqSSDNWSJElSSYZqSZIkqSRDtSRJklSSoVqSJEmzwsaNG7npppvYsmULK1euZOPGjc0uacrmN7sASZIkaePGjfT29nLllVfS2dnJ0NAQPT09AKxdu7bJ1R1a5SPVEbEwIi6KiOGIuDciPh4RjznEMX8cEZ+PiB9FxE8iYlNEdFZdmyRJkmanvr4+BgYGWL16NQsWLGD16tUMDAzQ19fX7NKmpI7pH+8DXgisBU4FHgl8MiLmHeSYLuAK4DnArwLfBD4bEU+ooT5JkiTNMjt27KCzc+yYamdnJzt27GhSRdNTaaiOiEcBPcDrMvPqzPwK8BLgKcBzJzsuM7sz8/2Z+dXM/CZwNnA3cHqV9UmSJGl2WrFiBUNDQ2PahoaGWLFiRZMqmp6qR6pPBhYAV400ZOZ3gB3AKdM4zxHAkcCPK61OkiRJs1Jvby89PT1s2rSJffv2sWnTJnp6eujt7W12aVNSdag+BtgPDI9r39XYNlVvB+4BPj7RxohYHxFbI2Lr7uHdh1WoZocxfbnbvmxlXpftw+uyPdiP7WOuPL6uXbuWvr4+zjrrLBYuXMh5551HX19fS3xIEaYYqiPi7RGRh7h1HewUQE7xZ70G+BPgBZn504n2ycz+zFyVmasWdyyeymk1S43py8X2ZSvzumwfXpftwX5sH3Pp8XXt2rU8+clP5rTTTmP79u0tE6hh6kvqvQ/48CH2uR14FjAP6ABGv5RaAmw51A9pBOq3A7+VmTdMsTZJkiSpqaYUqjNzmAOndBwgIrYB+4A1wEcabY8BVgDXHeLY84G3AWdk5tDB9pUkSZJmk0q//CUz74qIAeDdEfFD4E7gAuBG4HMj+0XENcANmfnGxv3XAX3AHwE3R8TI/Ov7MvOuKmuUJEmSqlbHNyr+OfAgxbrTDweuAV6amftH7XM88J1R98+lWDXkinHnuhxYV0ONkiRJUmUqD9WZeT9wXuM22T7LD3ZfkiRJaiV1fKOiJEmSNKcYqiVJkqSSDNWSJElSSYZqSZIkqSRDtSRJklSSoVqSJEkqyVAtSZIklWSoliRJkkoyVEuSJEklGaolSZKkkgzVkiRJUkmGakmSJKkkQ7UkSZJUkqFakiRJKslQLUmSJJVkqJYkSZJKMlRLkiRJJc1vdgGSJElqXZs3b252CbOCI9WSJElSSYZqSZIkqSRDtSRJklSSoVqSJEkqyVAtSZIklWSoliRJkkoyVEuSJEklGaolSZKkkgzVkiRJUkmGakmSJKkkQ7UkSZJUUuWhOiIWRsRFETEcEfdGxMcj4jHTOH5tRGREfLLq2iRJkqQ61DFS/T7ghcBa4FTgkcAnI2LeoQ6MiMcB7wY+X0NdkiRJUi0qDdUR8SigB3hdZl6dmV8BXgI8BXjuIY5dAGwEeoFvV1mXJEmSVKeqR6pPBhYAV400ZOZ3gB3AKYc4tg+4LTMvr7gmSZIkqVZVh+pjgP3A8Lj2XY1tE4qI3wReDLxqKj8kItZHxNaI2Lp7ePfh1qpZYExf7rYvW5nXZfvwumwP9mP78PG1NUwpVEfE2xsfHjzYretgpwByknN3ABuAl2Xmj6dST2b2Z+aqzFy1uGPxVA7RLDWmLxfbl63M67J9eF22B/uxffj42hrmT3G/9wEfPsQ+twPPAuYBHcDol1JLgC2THLcSWAp8LiJG2h4GEBEPAk/OzG9OsU5JkiRpxk0pVGfmMAdO6ThARGwD9gFrgI802h4DrACum+SwLwMnjmt7O/DzwLnArVOpUZIkSWqWqY5UT0lm3hURA8C7I+KHwJ3ABcCNwOdG9ouIa4AbMvONmXkvsH30eSLiJ8D8zBzTLkmSJM1GlYbqhj8HHgSuAB4OXAO8NDP3j9rneOA7NfxsSZIkacZVHqoz837gvMZtsn2WH+Ic66qtSpIkSapPHd+oKEmSJM0phmpJkiSpJEO1JEmSVJKhWpIkSSrJUC1JkiSVZKiWJEmSSjJUS5IkSSUZqiVJkqSS6vhGRUmSJOmwbN68udklHBZHqiVJkqSSDNWSJElSSYZqSZIkqSRDtSRJklSSoVqSJEkqyVAtSZIklWSoliRJkkoyVEuSJEklGaolSZKkkgzVkiRJUkmGakmSJKkkQ7UkSZJUkqFakiRJKslQLUmSJJU0v9kFlLX9jpvueeqHVn2z2XUcrn137etY8KgFw82u43D97IGf/UpV59r2rW33xB9Hy/Yle+hgES3blzxIZX157/B/3bP/6se0bF/+8Ef7O5b8wryW7Mv792Zl/QjwvVt+dM8HXvalluzLn953Z8cjH350S/YjwAMP7q2sL+/+5s337Dvz91qyHwF+uPf+jiULj2zZvrx///7qnivvuOue+NDelu1L7trdwaMWt2xf8sD9k/ZlZOZMllK5iNiamauaXcfhsv56ztUM1l/PuZqhleuvunZ/F83jNfkQ66/nXM3QzvU7/UOSJEkqyVAtSZIkldQOobq/2QWUZP31nKsZrL+eczVDK9dfde3+LprHa/Ih1l/PuZqhbetv+TnVkiRJUrO1w0i1JEmS1FSGakmSJKkkQ7UkSZJUkqFakiRJKslQLUmSJJVkqJYkSZJKMlSXFBG/GBEXRsS3ImJvRHwvIj4TEWc0tt8WEdm43R8R34mIj0bE7xzknEdGxH81jlnVaHvLqPNMdls+Q//stlRlX0bEEyPi3yNiOCLujojrI+L0xjb7co6JiHURcU+z62gnEbFh1PWyLyJ+GBGbIuLciFgwbt/jI2Kgcc3ubVzL/xoRpzSrfo01qj/fNK69q9HeERHLRz8vNrYvioj/iIhbI+IJM1+5pmLc9ZqN58ZPRsSTml1blQzVJTSCz1eA5wFvBJ4CPBf4FPDBUbu+DVgKPBH4A+A24KMRcdEkp34P8N0J2paOun0TeO+4tu+U/CfNWTX05SeBI4HnACcBQ8DHIuJ47EupKp+juF6WA78JfAJ4K/D5iPg5gEYA+wrwZOAc4ATgd4FtwGSPwWqO+4HXR8TiqewcET9P8X/gl4Bfz8z/qbM4lTZyvS6luF4fDny0qRVVLTO9HeYN+DTwfeCoCbb9fOPP24DXTrB9PZDA6nHtzwduAlY0tq+a5GdvB97S7N9Bu9yq7EugY3zfAvOB/cDv25cH7YfNwAcoXmT8CNgNvAZYCPw98BPgduAlo445keLB+r7GMRuAR43avoHiRc5rgO8BPwYuAxaN2mch8D5gF8UT+/VA57jangR8HLgLuAf4YuNnnwbsA44Zt38fcCPQ1fj/MPr2lsY+RwB/S/Ei+l7gy8Dzmt0PrXAb6dcJ2lcCD1CE62hcX18F5k2w76Ob/e/wNqY/P924Zv7vqPaR66eD4sVTAquAZcDXgetGHqO9zd7bRNcrcGajPx/e7PqqujlSfZgi4heA04H3Z+YBb+tm5o8PcYoBiif3F44652MoAkU3RUDQDKihL+8EdgAviYijImIeRfC+G/hCZYW3r26K39WvAn9DEXb/HbiZ4sn0cuAfImJZRCwC/oMi5D4T+D3gFOBD4855KkXYei7w4sZ+rxm1/V2N9ldQvLPwdeA/ImIpQEQso3i3IYE1wNMpQv68zNwCfAt46cjJIuJhjfsDFE/6fwbs4aFRmvc0dr0MeDbwhxQB/XLgExHx1On9yjQiM7dT/J94IfA0ihHqd2fm/gn2/cmMFqdD+RnwF8CrGu/qTebxFI+l3wWeO4XHaM0yEfEIisfcr2dm2+QdQ/XhezzFKMiOwzm48QB/M/A4gEbwGgTem5lfq6hGTU2lfZnFS/A1FCHup8Be4C3Ab2XmHRXU2+5uysy3ZPFW7gXAMLAvMy/MzFsopuAERXjuBo6iGLn+emZeS/EC5gUR8fhR5/wpcHZm7sjMq4B/oZiaQ2OawNnAGzLzU5m5A3gVxaj1uY3jz6UYSX5RZt6QmTdn5odHXav/ALx81M97HrAE+HBmPkAxup2Z+YPG7Z5GaFgLnJWZWzLz25n5forRuj+p5Dc5d32D4nocmWN7WNe2Zl5mfpoiMPcdZLfLgTuA383MPTNSmKpwekTc0/h8yU95aEChbRiqD19UdI5s/P0vKd5CvqCC82p6Ku3LiAjgYooR61MpRlD/Ffi3iPilCn5Wu7tx5C+NFyg/pBg5HmnbR/HOwBKKaVI3Zubdo46/jmLE64RRbd/IzAdH3f9+43iA44EFjHoXofFC6YujznESMNQIyBO5HHjcqA++vQL498y88yD/zqdT/L/5xsgTTePJ5rcbNenwjVyPVVzbmnmvB140+gOJ43yM4nH1D2auJFVgC8W7R0+jeCfyP4GrIuKxTaypUobqw/c/FA/aKw7n4MbI9BOBbzeangOsBvZFxIPALY326yNisGStOriq+/I3gN8B1mbmFzLzK5l5DsVI58snOY0esm/c/Zyk7WGMfWE63uj2yY6Hh4LXROfJcftM/IMyd1PMt35FRBxN8UG4gYMd0/j5CTyDh55onkbx//AVhzhWB3cCxfV4c+P+YV3bao7M/DLwbxSfN5jIuygGojZExLqZqkul7cnMWxq3G4Ae4JEU7y62BUP1YcrMHwGfBf40Io4avz0iHn2IU7wSeDTFCCYUYeupPPTEekajvRt4Q9l6Nbka+nJR48+fjdvvZ3jNVe0bwFMb8/NGnELxe57qW/63UHywrXOkofFC6dca54di9YjOiDjiIOe5FDiLYurGLooPT454AJg3bv+vUoT1Y0Y90YzcvjfF2jVORKyk+IzEvwJfo+jD1zX6dPy+j57R4jQdf0nxTt/pE23MzHcBrwUGIuKVM1mYKpMUz4uLDrVjq/AJvpxzKJ4Ut0bEiyLiVyLiSRFxNqPewgYeERHHRMRjI+KUiPg7ig85vb8xB5TMvDUzt4/ceGiE5VuZOX55PVWvsr6kmDbwI+CyiHhqY83qd1PM8fzkDP6b5oJBincA/jEiToyI04BLgP/XmH99SJl5L8UHhP8mIs6IiBWN+79IMY2Hxp9HAVdGxDMi4vERsTYinjbqVFdTTPn5K+CyzBz9ouo24MiIWNNYb3dRZt7cqH9DRPx+RDwuIlZFxGsj4gWH9+uYcxY2rsdljWvtfIoVZLYB72lMH3o5xXSaL0TEmY01q0+MiNcz9oWPZpHG9dvP2A8Uj9/n7xrbL4kIP4cw+41cr8c0Hmcvonhc/UST66qMobqEzLyVYl7k1RRvU91IMUfodxn7QaM3U3yo4hbgSuCXgRdk5nkzWrAmVWVfZuYwxejKUY1zbKVYdu3/ZOZXav/HzCGNDyk9j+ItxBso5lp+kelPn3gDRX9eRjG6+RTg9JEPljZGjk+jWAJvE8Uo83nA/87TbgS4yyjmZ182rs7rKNY730ixTODrG5te3tj3XcB/U7zoOg3YOc3656rnUlyPtwPXUFyvbwVOa7xYovE288kU71x8sPHnpyjm5P5pE2rW1L2NUdfYRBof7j0XuDgizpmRqnS4Rq7XO4AvUUx9e1Fmbm5mUVWK4nlAklRWRHwAeHxmrml2LZKkmTW/2QVIUquLiEdRjIa+lGJetSRpjjFUS1J5I0t8DWTmp5pdjCRp5jn9Q5IkSSrJDypKkiRJJRmqJUmSpJIM1ZIkSVJJhmpJkiSpJEO1JEmSVJKhWpIkSSrp/wORGRA+wc0kDgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# compare between filtered and unfiltered\n", + "fig, axes = plt.subplots(1, 6, figsize=(12, 6), sharey=True)\n", + "sorted_celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']\n", + "# ax1.errorbar(y=bios_replication_filtered_df.loc[sorted_celltypes]['r'].values,\n", + "# x=[ind-0.1 for ind in range(len(sorted_celltypes))],\n", + "# yerr=bios_replication_filtered_df.loc[sorted_celltypes]['se_r'].values,\n", + "# fmt='.', markersize=6, marker='o', \n", + "# ecolor=bios_replication_filtered_df.loc[sorted_celltypes]['color'].values,\n", + "# color=bios_replication_filtered_df.loc[sorted_celltypes]['color'].values[0])\n", + "# ax1.set_xticklabels([\"\"]+sorted_celltypes)\n", + "# ax1.plot([0, 5], [0.5, 0.5], linestyle='--', color='black')\n", + "for ind, celltype in enumerate(sorted_celltypes):\n", + " ax = axes[ind]\n", + " ax.errorbar(y=bios_replication_filtered_df.loc[celltype]['r'],\n", + " x=[0.4],\n", + " yerr=bios_replication_filtered_df.loc[celltype]['se_r'],\n", + " fmt='.', markersize=6, marker='o', ecolor='black',\n", + " markeredgecolor='black', markerfacecolor='black'\n", + " )\n", + " ax.errorbar(y=bios_replication_unfiltered_df.loc[celltype]['r'],\n", + " x=[0.6],\n", + " yerr=bios_replication_unfiltered_df.loc[celltype]['se_r'],\n", + " fmt='.', markersize=6, marker='o', ecolor='black',\n", + " markeredgecolor='black', markerfacecolor='white')\n", + " ax.set_xlim([0, 1])\n", + " ax.spines['bottom'].set_color(bios_replication_filtered_df.loc[celltype]['color'])\n", + " ax.spines['top'].set_color(bios_replication_filtered_df.loc[celltype]['color']) \n", + " ax.spines['right'].set_color(bios_replication_filtered_df.loc[celltype]['color'])\n", + " ax.spines['left'].set_color(bios_replication_filtered_df.loc[celltype]['color'])\n", + " ax.set_xticklabels([])\n", + " ax.set_xlabel(celltype)\n", + " \n", + "\n", + "plt.savefig('bios_replication_comparison.filter_and_unfilter.pdf')\n", + "plt.savefig('bios_replication_comparison.filter_and_unfilter.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuAAAAKrCAYAAACwQTimAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAB0x0lEQVR4nO3df5ydZXng/89lGGSsmBETfmSSGFYxFUI0EEAW+5WaarAWSGkN2G5F6n6DLZRqu6lJ1y9Qqkt204ql/oCslR9bVszSNMaCZmmoVVyEJIQm/Gg0C0JmAiRIE60dSZhc3z+eMzAZZiaZmfPzmc/79ZrXOc91nvOc686ZPHOd+9zPfUdmIkmSJKk+XtXoBCRJkqTxxAJckiRJqiMLcEmSJKmOLMAlSZKkOrIAlyRJkurosEYnUG+TJk3KGTNmNDoNSRqxjRs3PpeZkxudRz15zpbUyoY6b4+7AnzGjBls2LCh0WlI0ohFxJONzqHePGdLamVDnbcdgnIwm1fCdbPg6o7idvPKRmckSRqP/Hsklca46wEfkc0r4etXwL6eYnvP9mIbYPbCxuUlSRpf/HsklUrNesAj4ssRsTMiHu4XuzoiuiPiocrPL/d7bGlEbIuIrRExv1/81IjYUnns+oiISvzVEfHVSvz+iJhR9Uasu+blk12ffT1FXJKkevHvkVQqtRyCcjNwziDx6zLz7ZWfuwAi4kTgIuCkynO+EBETKvt/EVgEnFD56TvmR4B/ycw3A9cB/7XqLdjTNbK4JEm14N8jqVRqVoBn5reB5w9x9/OB2zPzhcx8AtgGnB4RxwGvy8z7MjOBW4EF/Z5zS+X+HcC8vt7xqpk4dWRxSZJqwb9HUqk04iLMyyNic2WIyusrsU5ge799uiqxzsr9gfEDnpOZLwJ7gDcM9oIRsSgiNkTEhl27dh16pvOuhLb2A2Nt7UVckvSSwYYdDng8KsMIt1X+BpxSizzWr7mRZ65+M/uvmsgzV7+Z9WturMXL1J9/j6RSqXcB/kXgTcDbgaeBP6/EB+u5zmHiwz3nlcHMFZk5NzPnTp48gil0Zy+Ec6+HidOKl5s4rdj2ghdJGuhmBh922Od9vDyUcBHF34OqWr/mRmZt/CTHsotXBRzLLmZt/GQ5inD/HkmlUtdZUDLz2b77EfHfgb+rbHYB0/rtOhXYUYlPHSTe/zldEXEYMJFDH/Jy6GYv9AQnSQeRmd8+yMXw5wO3VoYTfi8iOiLiuMx8ulo5THtwOe2x94BYe+xl2oPL4bxLq/UyDbO69yyWv3A9O37Ww5Qj2lncO/OlMZmSWktde8ArY7r7/CrQ91XlGuCiyswmx1P0kDxQOTH/JCLeURnf/SHga/2ec3Hl/q8D91RO7JKk5jPUUMNXGO2wwaNz8H2PzudGkGZzWr2pm6WrttC9u4cEunf3sHTVFlZv6m50apJGoZbTEH4FuA+YGRFdEfER4L9VphTcDPwi8HGAzHwEWAk8CnwTuCwzeyuH+h3gSxQXZv5f4BuV+F8Bb4iIbcAfAEtq1RZJ0pjVfNjgzhh8350x6ZCP0ayWr91Kz77eA2I9+3pZvnZrgzKSNBY1G4KSmR8cJPxXw+z/aeDTg8Q3ALMGif8M+MBYcpQk1c1QQw2rZvspi5m48ZMHDEPpycPZfupijq3mCzXAjt09I4pLam4uRS9Jqoc1wIcqs6G8A9hTzfHfAKeddykPn/opnmEy+zN4hsk8fOqnOK0E47+ndLSPKC7V1eaVcN0suLqjuN28stEZNT2XopckjVll2OHZwKSI6AKuAtoAMvMG4C7glymGE/4bcEkt8jjtvEtfuuDy2MpPGSyeP5Olq7YcMAylvW0Ci+fPbGBWEkWx/fUrXl6pdc/2YhucxGIYFuCSpDEbYthh/8cTuKxO6ZTOgjnF9arL125lx+4epnS0s3j+zJfiUsOsu+bl4rvPvp4ibgE+JAtwSZJawII5nRbcaj57ukYWF+AYcEmSJI3WxKkjiwuwAJckSdJozbsS2gZcDNzWXsQ1JAtwSZKkGrvwxvu48Mb7Gp1G9c1eCOdez65XHc1+AiZOg3Ovd/z3QTgGXJIkSaM3eyGX31dM8//VS89scDKtwR5wSZIkqY4swCVJkjRqqzd1s+mp3dz/xPOcteweVm/qbnRKTc8CXJIkqYbKXKCu3tTN0lVb2Nu7H4Du3T0sXbWlVG2sBQtwSZKkGil7gbp87dYDVmgF6NnXy/K1WxuUUWuwAJckSaqRsheoO3b3jCiuggW4JElSjZS9QJ3S0T6iuAoW4JIkSTVS9gJ18fyZtLdNOCDW3jaBxfNnNiij1mABLkmSVCNlL1AXzOnk2gtO5vAJRUnZ2dHOtReczII5nQ3OrLm5EM94tnklrLsG9nTBxKnFsrGuXCVJUtX0FaJ/dMdm9vbup7OjncXzZ5aqQF0wp5OvPPAU4EI8h8oCfLzavBK+fgXsq4xB27O92AaLcEmSqmg8FKhlbVet1GwISkR8OSJ2RsTD/WJHRcTdEfGDyu3r+z22NCK2RcTWiJjfL35qRGypPHZ9REQl/uqI+Golfn9EzKhVW0pp3TUvF9999vUUcUmSJNVMLceA3wycMyC2BFiXmScA6yrbRMSJwEXASZXnfCEi+gZMfRFYBJxQ+ek75keAf8nMNwPXAf+1Zi0poz1dI4tLkiSpKmpWgGfmt4HnB4TPB26p3L8FWNAvfntmvpCZTwDbgNMj4jjgdZl5X2YmcOuA5/Qd6w5gXl/vuA7BxKkji0uSJKkq6j0G/JjMfBogM5+OiKMr8U7ge/3266rE9lXuD4z3PWd75VgvRsQe4A3Ac7VLv0TmXXngGHCAtvYiLkmSqsox0upv2B7wiKhXgT5Yz3UOEx/uOa88eMSiiNgQERt27do1yhRLZvZCOPd6mDgNiOL23Ou9AFOS1BibV8KfHg1XT4TrZhXbUkkdrMB+ADiliq/3bEQcV+n9Pg7YWYl3AdP67TcV2FGJTx0k3v85XZUPChN55ZAXADJzBbACYO7cuYMW6ePS7IUW3JKkxuubmav3hWLbmbnURC688T6gut9iHGwMeLXHVK8BLq7cvxj4Wr/4RZWZTY6nuNjygcpwlZ9ExDsq47s/NOA5fcf6deCeyjhxSZLUSpyZS+PMwXrAJ0fEHwz1YGZ+ZqjHIuIrwNnApIjoAq4ClgErI+IjwFPAByrHeSQiVgKPAi8Cl2Vmb+VQv0Mxo0o78I3KD8BfAf8jIrZR9HxfdJC2SJKkZuTMXBpnDlaATwBeyyh6wjPzg0M8NG+I/T8NfHqQ+AZg1iDxn1Ep4CVJUgubOLUYdjJYXCqhgxXgT2em3/9IkqTacWYujTP1HgMuSZJ0IGfm0jhzsB7wVwwXiYjzMnNNjfKRJEnjkTNzaRw5WAF+9oDFJQP4fN/84Jm5qlaJSZIkSWV0sAJ8JfBNivm6+yrxnwPOpVj0xgJckiRJGoGDFeBnUkwduB64ITMzIs7OzEtqn5okSRpParHgidSMhr0IMzPXA+8BDgfuiYjTGWK5d0mSJEkHd7BZUMjM/Zn5F8B/AP5T7VOSJLWiiDgnIrZGxLaIWDLI4xMj4usR8U8R8UhE+G2qpHHpYENQXpKZ3YCXJ0uSXiEiJgCfp/jWtAtYHxFrMvPRfrtdBjyamedGxGRga0Tclpl7G5CyJDXMQXvAI+LiiHgwIn5a+dkQER+qR3KSpJZxOrAtMx+vFNS3A+cP2CeBI6OYXuu1wPPAi/VNU81q9aZuNj21m/ufeJ6zlt3D6k3djU5Jqtnv5bA94JVC+2PAHwAPUsyEcgqwPCLIzFurkoUkqdV1Av3XEu8Czhiwz+eANcAO4EjgwszcP/BAEbEIWAQwffr0miSr5rJ6UzdLV21hb2/x69C9u4elq7YAsGBOZyNT0zhWy9/Lg/WA/y7wq5n5D5m5JzN3Z+Y9wK9VHpMkCQZfOXngRfvzgYeAKcDbgc9FxOte8aTMFZk5NzPnTp48udp5qgktX7uVnn29B8R69vWyfO3WBmUk1fb38mAF+Osy84cDg5XYK06akqRxqwuY1m97KkVPd3+XAKuysA14Avj5OuWnJrZjd8+I4lI91PL38mAF+HCv4P8KSVKf9cAJEXF8RBwOXEQx3KS/p4B5ABFxDDATeLyuWaopTeloH1Fcqoda/l4erAB/a0RsHuRnC/ZaSJIqMvNF4HJgLfAYsDIzH4mIj0bERyu7/Snw7yt/Q9YBn8jM5xqTsZrJ4vkzaW+bcECsvW0Ci+fPbFBGUm1/Lw82DeHbgGM48MIagDfyyq8WJUnjWGbeBdw1IHZDv/s7gPfWOy81v74L2v7ojs3s7d1PZ0c7i+fP9AJMNVQtfy8PVoBfB/xxZj7ZP1iZv/U64NwxZyBJksa9BXM6+coDTwEuRa/mUavfy4MNQZmRmZsHBjNzAzCjallIkiRJ48TBCvAjhnnMKyMkSZIOxU3vL34kDl6Ar4+I/3dgMCI+Amwc7YtGxA8jYktEPBQRGyqxoyLi7oj4QeX29f32XxoR2yJia0TM7xc/tXKcbRFxfWV1NUmS1IK+eumZDj/RuHCwMeAfA/42In6TlwvuucDhwK+O8bV/ccDV70uAdZm5LCKWVLY/EREnUkxndRLF4g1/HxFvycxe4IsUq6V9j+LCn3OAb4wxL0mSJKlmhi3AM/NZiimjfhGYVQnfWVkNs9rOB86u3L8F+BbwiUr89sx8AXgiIrYBp0fEDykWCroPICJuBRZgAS5JkqQmdrAecAAy8x+Af6ji6ybwvyMigRszcwVwTGY+XXm9pyPi6Mq+nRQ93H26KrF9lfsD468QEYsoesqZPn16FZshSZIkjczBxoDXylmZeQrwPuCyiPh/htl3sHHdOUz8lcHMFZk5NzPnTp48eeTZSpIkjdbmldC1Hp68F66bVWxrXGtIAV5ZjIHM3An8LXA68GxEHAdQud1Z2b0LmNbv6VMpFgHqqtwfGJckSWoOm1fC16+A3heK7T3bi22L8HGt7gV4RPxcRBzZd59iVbSHgTXAxZXdLga+Vrm/BrgoIl4dEccDJwAPVIar/CQi3lGZ/eRD/Z4jqVVtXln0EF3dYU+RpNa37hrY13NgbF9PEde4dUhjwKvsGIqZVfpe/39m5jcjYj2wsjLF4VPABwAy85GIWAk8CrwIXFaZAQXgd4CbKeYk/wZegCm1tr6eor4/Vn09RQCzFzYuL0karT1dI4trXKh7AZ6ZjwNvGyT+I2DeEM/5NPDpQeIbeHl2FkmtbrieIgtwSa1o4tSiM2GwuFpCLeamb9RFmJL0SvYUSSqbeVdC24DFw9vai7jGLQtwSc1jqB4he4oktarZC+Hc62HCq4vtidOKbb/VG9cswCU1D3uKJJXR7IUw9TR44zvh4w9bfMsCXFIT6espmjgNCHuKJEml1IhZUCRpaLMXWnBLkprHTe8vbi+5s2qHtAdc5eV80pIkqQnZA65ycj5pSVIzqWLvqVqfPeAqJ1cekyRJTcoCXOXkfNKSJKlJWYCrnJxPWpIkNSkLcJWT80lLkqSx2rwSutbDk/dWdUIHC3CVk/NJS5Kkseib0KH3hWK7b0KHKhThzoKi8nI+aUmSNFrDTegwxvrCHnBJkiRpoBpO6GABLkmSJA1UwwkdLMClVuQqn5Ik1VYNJ3RwDPhBrN7UzfK1W9mxu4cpHe0snj+TBXM6G52WxjNX+Wxtm1cW4wf3dBW9KPOu9H2TpGbUd27+2uXFhZgTp1XtnG0BPozVm7pZumoLPft6Aeje3cPSVVsASlGE++GiRdXwohDVmB+eJKm1zF4IG28p7l9yZ9UOawE+jOVrt75UfPfp2dfL8rVbW75QLfuHCyjxB4ySr/JZ2vcN/PAkSQJKMAY8Is6JiK0RsS0illTz2Dt294wo3kqG+3BRBn0fMLp395C8/AFj9abuRqc2Zv/WfuyI4q2kzO8bQA7xIWmouCSpnFq6AI+ICcDngfcBJwIfjIgTq3X8KR3tI4q3kjJ/uIByf8D4b/su5N/y8ANi/5aH89/2XdigjKqnzO8bwLNMGlG81RxKh0hEnB0RD0XEIxHxj/XOUZKaQUsX4MDpwLbMfDwz9wK3A+dX6+CL58+kvW3CAbH2tgksnj+zWi/RMGX+cAHl/oBxy7+ezpJ9/5Gu/ZPYn0HX/kks2fcfueVfT290amNW5vcN4Nq9Hxj0w9O1ez/QoIyq51A6RCKiA/gCcF5mngS0fsMlld8ld1Z1/De0fgHeCWzvt91ViR0gIhZFxIaI2LBr165DPviCOZ1ce8HJdHa0E0BnRzvXXnByKcajlvnDBZT7A8aUjnbW7H8n79x7Pf/uhdt4597rWbP/naVp20jirWbD694z6IenDa97T6NTq4ZD6RD5DWBVZj4FkJk765yjJDWFVr8IMwaJ5SsCmSuAFQBz5859xePDWTCnsxQF90B9bSrrxW6L58884CJTKM8HDNvWuor27WXN3ne+FGtvm8C15WjfYB0iZwzY5y1AW0R8CzgS+IvMvHXggSJiEbAIYPr06TVJVpIaqdUL8C5gWr/tqcCOBuXScsr64QLK/QHDtrWukrfvUDpEDgNOBeYB7cB9EfG9zPz+AU8aQ6eJJLWCVi/A1wMnRMTxQDdwEcVXnFLpP2DYttZU4vYdSodIF/BcZv4U+GlEfBt4G/B9JGkciczW7lyIiF8GPgtMAL6cmZ8+yP67gCdH8VKTgOdG8bxWUOa2QbnbZ9ta12ja98bMnFyLZMYqIg6jKKTnUXSIrAd+IzMf6bfPW4HPAfOBw4EHgIsy8+Fhjus5+5XK3DYod/vK3DYod/tG27ZBz9ut3gNOZt4F3DWC/Uf1xysiNmTm3NE8t9mVuW1Q7vbZttZVtvZl5osRcTmwlpc7RB6JiI9WHr8hMx+LiG8Cm4H9wJeGK74rz/OcPUCZ2wblbl+Z2wblbl+129byBbgkqTkM1iGSmTcM2F4OLK9nXpLUbFp9GkJJkiSppViAH7oVjU6ghsrcNih3+2xb6yp7+xqtzP++ZW4blLt9ZW4blLt9VW1by1+EKUmSJLUSe8AlSZKkOrIAlyRJkurIAlySJEmqIwtwSZIkqY4swCVJkqQ6sgCXJEmS6sgCXJIkSaojC3BJkiSpjizAJUmSpDqyAJckSZLqyAJckiRJqiMLcEmSJKmODmt0AvU2adKknDFjRqPTkKQR27hx43OZObnRedST52xJrWyo8/a4K8BnzJjBhg0bGp2GJI1YRDzZ6ByGEhFfBn4F2JmZswZ5PIC/AH4Z+Dfgw5n54MGO6zlbUisb6rztEJTxbPNKuG4WXN1R3G5e2eiMJLWum4Fzhnn8fcAJlZ9FwBfrkFOprF9zI89c/Wb2XzWRZ65+M+vX3NjolCSNkgX4eLV5JXz9CtizHcji9utXWIRLGpXM/Dbw/DC7nA/cmoXvAR0RcVx9smt969fcyKyNn+RYdvGqgGPZxayNn7QIl1qUBfjBlLWXeN01sK/nwNi+niIuSdXXCWzvt91ViekQTHtwOe2x94BYe+xl2oPLG5SRpLEYd2PAR6Svl7ivUO3rJQaYvbBxeVXDnq6RxSVpbGKQWA66Y8QiimEqTJ8+vZY5tYyjc9eg/4JH53P1T0bSmNkDPpwy9xJPnDqyuCSNTRcwrd/2VGDHYDtm5orMnJuZcydPHleTvgxpZwz+77AzJtU5E0nVYAE+nDL3Es+7EtraD4y1tRdxSaq+NcCHovAOYE9mPl3tF1m9qZuzlt3D8Uvu5Kxl97B6U3e1X6Ihtp+ymJ48/IBYTx7O9lMWNygjSWPhEJThTJxauUhxkHir6xtCs+6a4gPFxKlF8d3qQ2skNUREfAU4G5gUEV3AVUAbQGbeANxFMQXhNoppCC+pdg6rN3WzdNUWevb1AtC9u4elq7YAsGBOaw83P+28S1lPMRb86HyOnTGJ7acu5rTzLm10ajpEF954HwBfvfTMBmdSfas3dbN87VZ27O5hSkc7i+fPbPn/c7VmAT6ceVceOAYcytVLPHuhBbekqsjMDx7k8QQuq2UOy9dufan47tOzr5fla7eWohg47bxLoVJwH1v5kRqtzB98a8khKMOZvRDOvR4mTgOiuD33eotWSWpCO3b3jCguaeyG++CrodkDfjD2EktSS5jS0U73IMX2lI72QfaW6mf1pm42PbWbvb37OWvZPaUaouEH39GxB1ySVAqL58+kvW3CAbH2tgksnj+zQRlJLw/R2Nu7H3h5iEZZLhAe6gOuH3yHZwEuSSqFBXM6ufaCk+nsaCeAzo52rr3g5NL0NKo1lX2Ihh98R8chKJKk0lgwp9OCW02l7EM0+v6/OQvKyFiAS5Ik1ch4uDbBD74j5xAUSZKkGnGIhgZjD7gkSVKN9PUM/9Edm9nbu59Oh2gIC3BJkqSaWjCnk6888BRQzpUw2bzSlbVHyAJcklQeFgJSfW1eeeCq4Xu2F9vg/71h1H0MeERMi4h/iIjHIuKRiPj9SvyoiLg7In5QuX19v+csjYhtEbE1Iub3i58aEVsqj10fEVHv9kiSmkRfIbBnO5AvFwKbVzY6M4mvXnpmOXu/113zcvHdZ19PEdeQGnER5ovAH2bmW4F3AJdFxInAEmBdZp4ArKtsU3nsIuAk4BzgCxHRdzXDF4FFwAmVn3Pq2RBJUhOxEJDqb0/XyOICGlCAZ+bTmflg5f5PgMeATuB84JbKbrcACyr3zwduz8wXMvMJYBtwekQcB7wuM+/LzARu7fccSdJ4YyEg1d/EqSOLC2jwNIQRMQOYA9wPHJOZT0NRpANHV3brBLb3e1pXJdZZuT8wLqmVbV4J182CqzuKW4cP6FBZCEj1N+9KaBswp3lbexHXkBpWgEfEa4G/AT6WmT8ebtdBYjlMfLDXWhQRGyJiw65du0aerKT6cAyvxsJCQKq/2Qvh3Oth4jQgittzr/cCzINoyCwoEdFGUXzflpmrKuFnI+K4zHy6MrxkZyXeBUzr9/SpwI5KfOog8VfIzBXACoC5c+cOWqRLagLDjeH1ZK6D6fsdcRYUqb5mL/T/2QjVvQCvzFTyV8BjmfmZfg+tAS4GllVuv9Yv/j8j4jPAFIqLLR/IzN6I+ElEvINiCMuHgL+sUzMk1YJjeDVWFgKSWkAjesDPAn4L2BIRD1Vif0xReK+MiI8ATwEfAMjMRyJiJfAoxQwql2Vmb+V5vwPcDLQD36j8SGpVE6dWhp8MEpckqSTqXoBn5r0MPn4bYN4Qz/k08OlB4huAWdXLTlJDzbvywAUdwDG8kqSGuvDG+4DqrmLa0FlQJOkAXswjSRoHXIpeUnNxDK8kqeTsAZckSZLqyAJckiRJqiMLcEmSJKmOLMAlSZKkOhpVAR4RXrwpSZIkjcJoe8AfqGoWkiRJ0jgx2gJ8qIV0JEmSJA1jtENJJkfEHwz1YGZ+ZpTHlSRJkprC6k3dbHpqN3t793PWsntYPH8mC+Z0jvm4oy3AJwCvxZ5wSZIkldDqTd0sXbWFvb37Aeje3cPSVVsAxlyEj7YAfzozrxnTK0uSSiUizgH+gqKT5kuZuWzA4xOBvwamU/z9+bPMvKnuiappXXjjfQB89dIzG5yJBMvXbqVnX+8BsZ59vSxfu3XMBbhjwCVJYxYRE4DPA+8DTgQ+GBEnDtjtMuDRzHwbcDbw5xFxeF0TlaRDtGN3z4jiIzHaAnxe/6kII+K1ETE3Io4ac0aSpFZ0OrAtMx/PzL3A7cD5A/ZJ4MiICIphjM8DL9Y3TUk6NFM62kcUH4nRFuDnAs9GxPcj4n3AZuC/Av8UER8cc1aSpFbTCWzvt91VifX3OeCtwA5gC/D7mbm/PulJ0sgsnj+T9rYJB8Ta2yaweP7MMR97tGPA/xMwEzgS+CdgTmb+34g4Brgb+MqYM5MktZLBhibmgO35wEPAu4E3AXdHxHcy88cHHChiEbAIYPr06dXPVJIOQd847z+6YzN7e/fT2dFetVlQRtsD3puZz2XmE8C/Zub/BcjMZ8eckSSpFXUB0/ptT6Xo6e7vEmBVFrYBTwA/P/BAmbkiM+dm5tzJkyfXLGE1l77p3u5/4nnOWnYPqzd1NzoliQVzOpkzvYMzjj+K7y55d1WKbxh9D/hTEXEtRQ/4P0fEnwOrgF8Cnq5KZtJYbV4J666BPV0wcSrMuxJmL2x0VlJZrQdOiIjjgW7gIuA3BuzzFDAP+E7lG9OZwON1zVJNqZbTvUnNaLQ94P8B+DFFj8d5wH3AUuAY4MNVyUwai80r4etXwJ7tQBa3X7+iiEuqusx8EbgcWAs8BqzMzEci4qMR8dHKbn8K/PuI2AKsAz6Rmc81JmM1k+Gme5PKaFQ94JXxetf2C91R+ZGaw7prYN+AaYL29RRxe8GlmsjMu4C7BsRu6Hd/B/Deeuel5lfL6d6axk3vL24vubOxeagpjLYHnIi4OCIejIifVn42RMSHqpmcNGp7ukYWlyQ1TC2ne5Oa0agK8Eqh/THgD4EpFFNN/RHw+xbhagoTp44sLklqmFpO9yY1o9H2gP8u8KuZ+Q+ZuSczd2fmPcCvVR6TGmveldA2oOekrb2IS5KayoI5nVx7wckcPqEoSzo72rn2gpO9AFOlNdpZUF6XmT8cGMzMH0bE68aWklQFfeO8nQVFklrCgjmdfOWBpwD46qVnNjibKtu8ErrWQ+8LcN0s/x5p1AX4cFdFlOiKCbW02Qs9wUmSGqtvVq7eF4rtvlm5wL9RLaIWHwhHOwTlrRGxeZCfLQyyqMJAEfHliNgZEQ/3ix0VEXdHxA8qt6/v99jSiNgWEVsjYn6/+KkRsaXy2PURMdhKbJIkSY0x3KxcGrdG2wP+Noo5v7cPiL+RV658Npibgc8Bt/aLLQHWZeayiFhS2f5ERJxIsaDDSRQXfP59RLwlM3uBL1IsV/w9iqmvzgG+Mco2SZKkBird0BNwVi4NarQ94NcBP87MJ/v/AP9WeWxYmflt4PkB4fOBWyr3bwEW9IvfnpkvZOYTwDbg9Ig4jmIs+n2ZmRTF/AIkSZKahbNyaRCjLcBnZObmgcHM3ADMGOUxj8nMpyvHeRo4uhLv5MCe9q5KrLNyf2D8FSJiUWWe8g27du0aZXqSJEkj5KxcGsRoC/Ajhnms2rPmDzauO4eJvzKYuSIz52bm3MmTJ1c1OUmSpCHNXgjnXg8TXl1sT5xWbHsB5rg22jHg6yPi/83M/94/GBEfATaO8pjPRsRxmfl0ZXjJzkq8C5jWb7+pFOPMuyr3B8YlSZKax+yFsLEyytal6MXoC/CPAX8bEb/JywX3XOBw4FdHecw1wMXAssrt1/rF/2dEfIbiIswTgAcyszcifhIR7wDuBz4E/OUoX1uSJEmqi1EV4Jn5LPDvI+IXgVmV8J2V1TAPKiK+ApwNTIqILuAqisJ7ZaUX/SngA5XXeiQiVgKPAi8Cl1VmQAH4HYoZVdopZj9xBhRJkiQ1tdH2gAOQmf8A/MMonvfBIR6aN8T+nwY+PUh8Ay9/AJAkSWpODj1RP6O9CFOSJEnSKFiAS5IkSXVkAS5JkiTVkQW4JNXT5pVw3Sy4uqO43byy0RlJkupsTBdhSpJGYPNK+PoVsK+n2N6zvdgGF+WQpHHEHnBJqpd117xcfPfZ11PEJUnjhgW4JNXLnq6RxaXx5qb3Fz9SyVmAS1K9TJw6srg0nmxeCV3r4cl7vT5CpWcBLkn1Mu9KaGs/MNbWXsSl8azv+ojeF4rtvusjLMLVDGrwzYwFuNSKnEmjNc1eCOdeDxOnAVHcnnu9F2BKXh+hccZZUKRW40warW32Qt8naSCvj9A4Yw/4OLZ6UzdnLbuH45fcyVnL7mH1pu5Gp6RDYU+RpLLx+giNMxbg49TqTd0sXbWF7t09JNC9u4elq7ZYhLcCe4oklY3XR2icsQAfp5av3UrPvt4DYj37elm+dmuDMtIhs6dIUtn0XR8x4dXFttdHqOQswMepHbt7RhRXE7GnSFIZzV4IU0+DN74TPv6wxbeaQ42mx/QizINYvamb5Wu3smN3D1M62lk8fyYL5nQ2Oq0xm9LRTvcgxfaUjvZB9lZT6fujtO6aYtjJxKlF8e0fK0mt7pI7G52B9LKhpseEMf/NtQAfRt846b6hGn3jpIGWL8IXz595QNsA2tsmsHj+zAZmpUPmTBqSJNXWcJMejPFvsENQhlHmcdIL5nRy7QUn09nRTgCdHe1ce8HJLf/BQlLjRMQ5EbE1IrZFxJIh9jk7Ih6KiEci4h/rnaMkHbIaTnpgD/gwyj5OesGcTgtuSVUREROAzwPvAbqA9RGxJjMf7bdPB/AF4JzMfCoijm5IspJ0KCZOLYadDBYfI3vAhzHUeGjHSbcG5zmX6up0YFtmPp6Ze4HbgfMH7PMbwKrMfAogM3fWOUdJOnQ1nPTAAnwYi+fPpL1twgExx0m3Buc5l+quE+jfVdRVifX3FuD1EfGtiNgYER8a7EARsSgiNkTEhl27dtUoXUk6iBpOj+kQlGH0Dc8o4ywoZTfc+H3fv+ZW1pmHxoEYJJYDtg8DTgXmAe3AfRHxvcz8/gFPylwBrACYO3fuwGNIUv3MXggbbynuV3GWHgvwg3CcdGsq+/j9sirzzEPjQBcwrd/2VGDHIPs8l5k/BX4aEd8G3gZ8H0kaRxyColIq+/j9so5vL/PMQ33K+t4B64ETIuL4iDgcuAhYM2CfrwG/EBGHRcRrgDOAx+qcpyQ1nAW4SqnM4/fLPL697N9clPm9y8wXgcuBtRRF9crMfCQiPhoRH63s8xjwTWAz8ADwpcx8uFE5S1KjtHwBfijzzmr8KfM852XuJS77Nxdlfu8AMvOuzHxLZr4pMz9did2QmTf022d5Zp6YmbMy87MNS1aSGqilx4AfyryzGr/KOn6/zL3EZV+htczvnSSVVhUvvuzT6j3ghzLvrFQqZe4lLvM3F1Du906SdOhaugecweedPWPgThGxCFgEMH369PpkJtVI2XuJy/rNBZT/vZMkHZpWL8APZd5Z55RVqTg/fevyvZMkAURm69ajEXEmcHVmzq9sLwXIzGuHec4u4MlRvNwk4LnR5NkCytw2KHf7bFvrGk373piZk2uRTLPynD2oMrcNyt2+MrcNyt2+0bZt0PN2qxfgh1Es4DAP6KaYh/Y3MvORGrzWhsycW+3jNoMytw3K3T7b1rrK3r5GK/O/b5nbBuVuX5nbBuVuX7Xb1tJDUDLzxYjom3d2AvDlWhTfkiRJUrW0dAEOxbyzwF2NzkOSJEk6FK0+DWE9rWh0AjVU5rZBudtn21pX2dvXaGX+9y1z26Dc7Stz26Dc7atq21p6DLgkSZLUauwBlyRJkurIAlySJEmqIwtwSZIkqY4swCVJkqQ6sgCXJEmS6sgCXJIkSaojC3BJkiSpjizAJUmSpDqyAJckSZLqyAJckiRJqiMLcEmSJKmOLMAlSZKkOrIAlyRJkurosEYnUG+TJk3KGTNmNDoNSRqxjRs3PpeZkxudRz15zpbUyoY6b4+7AnzGjBls2LCh0WmoHjavhHXXwJ4umDgV5l0Jsxc2Oitp1CLiyUbnUG+esyW1sqHO2+OuANc4sXklfP0K2NdTbO/ZXmyDRbgkSWoox4CrnNZd83Lx3WdfTxGXJElqIAtwldOerpHFJUnSqF14431ceON9jU6jZViAq5wmTh1ZXJIkqU4swFVO866EtvYDY23tRVySJKmBmq4Aj4gJEbEpIv6usn1URNwdET+o3L6+375LI2JbRGyNiPmNy1pNZ/ZCOPd6mDgNiOL23Ou9AFOSJDVcM86C8vvAY8DrKttLgHWZuSwillS2PxERJwIXAScBU4C/j4i3ZGZvI5JWE5q90IJbkiQ1nabqAY+IqcD7gS/1C58P3FK5fwuwoF/89sx8ITOfALYBp9cpVUmSJGlUmqoABz4L/BGwv1/smMx8GqBye3Ql3gls77dfVyX2ChGxKCI2RMSGXbt2VT1pSRrvIuLLEbEzIh4e4vGIiOsrwwY3R8Qp9c5RzW39mht55uo3s/+qiTxz9ZtZv+bGRqck1UzTFOAR8SvAzszceKhPGSSWg+2YmSsyc25mzp08eVyt4ixJ9XIzcM4wj78POKHyswj4Yh1yUotYv+ZGZm38JMeyi1cFHMsuZm38pEW4SqtpCnDgLOC8iPghcDvw7oj4a+DZiDgOoHK7s7J/FzCt3/OnAjvql64kqU9mfht4fphdzgduzcL3gI6+c7s07cHltMfeA2LtsZdpDy5vUEZSbTVNAZ6ZSzNzambOoLi48p7M/A/AGuDiym4XA1+r3F8DXBQRr46I4yl6VR6oc9qSpEPjsEEN6egc/H0+Op+rcyZSfTRNAT6MZcB7IuIHwHsq22TmI8BK4FHgm8BlzoAiSU3LYYMa0s4Y/H3eGZPqnEntuFKk+mvKAjwzv5WZv1K5/6PMnJeZJ1Run++336cz802ZOTMzv9G4jCVJB+GwQQ1p+ymL6cnDD4j15OFsP2VxgzKSaqspC3BJUumsAT5UmQ3lHcCevhmupNPOu5SHT/0UzzCZ/Rk8w2QePvVTnHbepY1OTaqJZlyIR5LUYiLiK8DZwKSI6AKuAtoAMvMG4C7glynWbPg34JLGZKpmddp5l0Kl4D628iOVlQW4JGnMMvODB3k8gcvqlI7UVFZv6mbTU7vZ27ufs5bdw+L5M1kwZ9BrkDVOOARFkiSpRlZv6mbpqi3s7S3WGOze3cPSVVtYvam7wZnpUNXiAloLcEmSpBpZvnYrPfsOnKStZ18vy9dubVBGGom+by/uf+J5zlp2T9U+OFmAS5Ik1ciO3T0jiqt51PLbCwtwSZKkGpnS0T6iuJpHLb+9sACXJEmqkcXzZ9LeNuGAWHvbBBbPn9mgjHSoavnthQW4JElSjSyY08m1F5zM4ROKkquzo51rLzjZWVBaQC2/vahZAR4Rx0TEX0XENyrbJ0bER2r1epIkSc1owZxO5kzv4Izjj+K7S95t8d0iavntRS17wG8G1gJTKtvfBz5Ww9eTJEmSqqLv24vOjnaC6n57UcuFeCZl5sqIWAqQmS9GRO/BniRJkiQ1gwVzOmvyjUUtC/CfRsQbgASIiHcAe2r4epIklVrfYiBfvfTMBmeikfI9a2E3vb+4veTOqh2ylkNQ/gBYA7wpIr4L3ApcUcPXkyRJUp3VarGaMqtlD/gjwLuAmUAAW3HWFUmSpNIYarEawItNh1HLgvi+zHwxMx/JzIczcx9wXw1fT5IkSXVUy8VqyqzqPeARcSzQCbRHxByK3m+A1wGvqfbrSZI0HvR9zb+3dz9nLbuHxfNn2sOohqvlYjVlVoshKPOBDwNTgc/0i/8Y+OMavJ4kSaXm1/xqVlM62ukepNiuxmI1ZVb1AjwzbwFuiYhfy8y/qfbxpUO1elM3y9duZcfuHqZ0tNtbJKllDfc1v+c1NdLi+TNZumrLAb+f1VqspsxqOQb8zyJieUS8tYavIQ2qr7eoe3cPycu9RV6ZLakV+TW/mlXfYjWHTyhKymouVtMUNq+ErvXw5L1w3axiuwpqWYDPplj98q8i4nsRsSgiXlfD15Ne4kUhkspkqK/z/ZpfzWDBnE7mTO/gjOOP4rtL3l2u4vvrV0DvC8X2nu3FdhWK8JoV4Jn5k8z875n574E/Aq4Cno6IWyLizbV6XQnsLZJULovnz6S9bcIBMb/ml2ps3TWwb0DdsK+niI9RzQrwiJgQEedFxN8CfwH8OfDvgK8Dd9XqdSWwt0hSuZT+a36pGe3pGll8BGo5BOUHwPnA8syck5mfycxnM/MO4Js1fN3q2ryyGPNzdUdVx/6otuwtkuovIs6JiK0RsS0ilgzy+MSI+HpE/FNEPBIRl9QijwtvvO+lJdvLpLRf80vNauLUkcVHoJYrYc7OzH8d7IHMbI0l6fvG/vR9/dA39gdg9sLG5aWD6vvD5CwoUn1ExATg88B7gC5gfUSsycxH++12GfBoZp4bEZOBrRFxW2bubUDKkjS8eVceWAcCtLUX8TGqZQH++Yj4/czcDRARrwf+PDN/u4avWV3Djf2xAG96C+Z0WnBL9XM6sC0zHweIiNspvgXtX4AncGREBPBa4HngxXonKkmHpK/W+9rlxYWYE6cVxXcVasBa94Dv7tvIzH+prIzZOmo49qcpbF5ZfJjY01V8nVKlXypJ41InsL3fdhdwxoB9PgesAXYARwIXZub+gQeKiEXAIoDp06fXJFlJOiSzF8LGW4r7l9xZtcPWsgB/VUS8PjP/BSAijqrx61XfxKnFsJPB4q3O4TWSqisGieWA7fnAQ8C7gTcBd0fEdzLzxwc8KXMFsAJg7ty5A48xrn310jMbnYKkKqjlRZh/DvyfiPjTiPhT4P8A/62Gr1d9864sxvr0V6WxPw1Xw6l1JI1LXcC0fttTKXq6+7sEWJWFbcATwM/XKT9Jaho165HOzFsjYgNFTwfABQMuxml+fT3BZRymUfbhNZLqbT1wQkQcD3QDFwG/MWCfp4B5wHci4hhgJvB4NZNYvambTU/tZm/vfs5ado8XX0t1cuWPFlfu3dvQPFpFrYeEtFF8LZmV+61n9sJyFNwDlXl4jdTMSnrtRWa+GBGXA2uBCcCXM/ORiPho5fEbgD8Fbo6ILRR/Gz6Rmc9VK4fVm7pZumoLe3uLYeXdu3tYumoLgEW4pKZSy4V4fh+4DZgEHA38dUT8Xq1eTyNU5uE1UrPqu/Ziz3Ygq7qscTPIzLsy8y2Z+abM/HQldkOl+CYzd2TmezPz5MyclZl/Xc3XX752Kz37eg+I9ezrZfnardV8GUkas1r2gH8EOCMzfwoQEf8VuA/4yxq+pg5VmYfXqLWVtIcYcGrTGtuxu2dEcUk6JFWc/aRPLQvwAPp3RfQy+FXyapSyDq9R6yr77Dxee1FTUzra6R6k2J7S0T7I3lKd3fT+4rYGxVzDbV7JCXv/mTb2FauGl6njpEZqOQvKTcD9EXF1RFwNfA/4qxq+nqRWV/bZeWq4rLFg8fyZtLdNOCDW3jaBxfNnNigjaRyodJwczr6il7VkQ+tqpWYFeGZ+BvhtipXO/gW4JDM/W6vXk1QCZe8h9tqLmlowp5NrLziZwycUf9o6O9q59oKTvQBTqqWyd5zUSK1nQXkIeLrvdSJiemY+NdTOETENuBU4FtgPrMjMv6gs4vNVYAbwQ2BhvwV+llKMN+8FrsjMtbVqjKQaK/vsPF57UXML5nTylQeKPzMuWiPVQdk7TmqkZgV4ZcaTq4BneXn8dwKzh3nai8AfZuaDEXEksDEi7gY+DKzLzGURsQRYAnwiIk6kmGv2JGAK8PcR8ZbM7B3i+JKa2bwrDxwDDuXrIfbaC0llUvaOkxqp5Rjw3wdmZuZJmTm7Mu3UcMU3mfl0Zj5Yuf8T4DGgEzgfuKWy2y3Agsr984HbM/OFzHwC2AacXv2mSKqL2Qvh3Oth4jQgittzr7dglaRm5dC6UanlEJTtwJ7RPjkiZgBzgPuBYzLzaSiK9Ig4urJbJ8XFnX26KjFJrcoeYklls3kldK2H3hfKN0tIpR17V/0ubewjJk4rV/tqpJYF+OPAtyLiTuCFvmDl4sxhRcRrgb8BPpaZP44YcvbCwR7IQY63CFgEMH369INnLklqWY79VlPpm161t1IKlW16VYDZC/nB310PwEkfdyn6Q1HLIShPAXcDhwNH9vsZVkS0URTft2Xmqkr42Yg4rvL4ccDOSrwLmNbv6VOBHQOPmZkrMnNuZs6dPHnyKJsjNZHNK4telKs7ilune5Kk5uQsIRpEzXrAM/NPACoXU2Zm/uvBnhNFV/dfAY8N6ClfA1wMLKvcfq1f/H9GxGcoLsI8AXigao2QmlHZF6uRpDIZJ7OEXPOG5UAxZZ0OrmY94BExKyI2AQ8Dj0TExog46SBPOwv4LeDdEfFQ5eeXKQrv90TED4D3VLbJzEeAlcCjwDeBy5wBRaVnb4o0ft30/pdXVFRrcAEuDaKWY8BXAH+Qmf8AEBFnA/8d+PdDPSEz72Xo5ernDfGcTwOfHkuiUksZJ70pklQK42F6Vbz2YqRqOQb85/qKb4DM/BbwczV8PWl8sDdFklpH3/SqE15dbDu9qqhtAf54RPx/ETGj8vNJ4Ikavp40PjjnqjQ+9U1l9+S9XnzdamYvhKmnwRvfCR9/2OJbNS3AfxuYTDGjySpgEsWKlpLGwsVqpPFnqKnsLMKlllTLMeBvopgi8FWV15kHvJvhl6KXdChcrEYaX4a7+NpzgdRyalmA3wb8J4pZUPbX8HUkSSo3L76WSqWWBfiuzPx6DY8vSdL4MHFqMexksLikllPLMeBXRcSXIuKDEXFB308NX68mVm/q5qxl93D8kjs5a9k9rN7U3eiUJKkpRcQ5EbE1IrZFxJIh9jm7ssbDIxHxj/XOsWV58bVUKrXsAb8E+HmgjZeHoCTFBZktYfWmbpau2kLPvmJtn+7dPSxdtQWABXM6G5maJDWViJgAfJ5isbQuYH1ErMnMR/vt0wF8ATgnM5+KiKMbkmwr6hvn/bXLiwsxJ04rim/Hf7eOS+5sdAZqIrUswN+WmSfX8Pg1t3zt1peK7z49+3pZvnarBbgkHeh0YFtmPg4QEbcD51OsVNznN4BVmfkUQGburHuWrWz2Qth4S3HfYk5qabUswL8XESf27/1oNTt294wo3mpWb+pm+dqt7Njdw5SOdhbPn+kHC0mj1Qn0H6TcBZwxYJ+3AG0R8S3gSOAvMvPWgQeKiEXAIoDp06fXJFlJaqRaFuDvBC6OiCeAFyiWmM/MbJlpCKd0tNM9SLE9paN9kL1bi8NrJFVZDBLLAduHAadSTEvbDtwXEd/LzO8f8KTMFcAKgLlz5w48xvhmz7dUCrW8CPMc4ATgvcC5wK9UblvG4vkzaW+bcECsvW0Ci+fPbFBG1TPc8BpJGoUuirUf+kwFdgyyzzcz86eZ+RzwbeBtdcpPkppGzXrAM/PJWh27Xvp6gss4TKPsw2sk1d164ISIOB7oBi6iGPPd39eAz0XEYcDhFENUrqtrlpLUBGo5BKUUFszpLEXBPVCZh9dIqr/MfDEiLgfWAhOAL2fmIxHx0crjN2TmYxHxTWAzxexYX8rMh6uezE3vL24driGpSVmAj1OL5888YAw4lGd4jaTGyMy7gLsGxG4YsL0cWF7PvCSp2ViAj1NlHl4jSZLUzCzAx7GyDq+RJElqZrWcBUWSJEnSAPaAS2oqZV8gquzta7jNK6FrfbFc+3WzXK5dUlOyAJfUNMq+QFTZ29dwm1fC168oim+APduLbbAIl9RUHIIiqWmUfYGosrev4dZdA/sGTK+6r6eIS1ITsQCX1DTKvkBU2dvXcHu6RhaXpAaxAJfUNIZaCKosC0SVvX0NN3HqyOKS1CAW4JKaxuL5M2lvm3BArEwLRJW9fQ0370poG/Bhpq29iEtSE/EiTElNo+wLRJW9fQ3Xd6Hl1y4vLsScOM1ZUCQ1JQtwqQWVeSq7si8QVfb2NdzshbDxluL+JXc2NhdJGoIFuNRinMpOkqTW5hhwqcU4lZ0kSa3NHnCpxTiVnXQQDj2R1OTsAZdajFPZSZLU2izApRbjVHaSJLU2h6BILcap7CRJam2RmY3Ooa4iYhfw5CieOgl4rsrpNIsytw3K3T7b1rpG0743ZubkWiTTrDxnD6rMbYNyt6/MbYNyt2+0bRv0vD3uCvDRiogNmTm30XnUQpnbBuVun21rXWVvX6OV+d+3zG2DcrevzG2Dcrev2m1zDLgkSZJURxbgkiRJUh1ZgB+6FY1OoIbK3DYod/tsW+sqe/sarcz/vmVuG5S7fWVuG5S7fVVtm2PAJUmSpDqyB1ySJEmqIwtwSZIkqY4swCVJkqQ6sgCXJEmS6sgCXJIkSaojC3BJkiSpjizAJUmSpDqyAJckSZLqyAJckiRJqiMLcEmSJKmOLMAlSZKkOrIAlyRJkurIAlySJEmqo8ManUC9TZo0KWfMmNHoNCRpxDZu3PhcZk5udB715DlbUisb6rw97grwGTNmsGHDhkanIY3J6k3dLF+7lR27e5jS0c7i+TNZMKez0WmpxiLiyUbnUG+es1UG69fcyLQHl3N07mJnTGb7KYs57bxLG52W6mCo8/a4K8ClVrd6UzdLV22hZ18vAN27e1i6aguARbgkNZn1a25k1sZP0h57IeBYdjFx4ydZDxbh45hjwKUWs3zt1peK7z49+3pZvnZrgzKSJA1l2oPLi+K7n/bYy7QHlzcoIzUDC3CpxezY3TOiuCSpcY7OXUPEn6tzJmomDkE5iDKPtS1z26C87ZvS0U73IMX2lI72BmRTfWV93ySNTztjMsfyyiJ8Z0zi2Abko+ZgD/gw+sbadu/uIXl5rO3qTd2NTm3Mytw2KHf7Fs+fSXvbhANi7W0TWDx/ZoMyqp4yv2+SxqftpyymJw8/INaTh7P9lMUNykjNwAJ8GGUea1vmtkG527dgTifXXnAynR3tBNDZ0c61F5xcil7iMr9vksan0867lIdP/RTPMJn9GTzDZB4+9VNegDnOOQRlGGUea1vmtkH527dgTmcpCu6Byv6+SRqfTjvvUqgU3MdWfjS+2QM+jKHG1JZhrG2Z2wblb19Z+b5JksYDC/BhlHmsbZnbBuVvX1n5vkmSxgOHoAyj7yv+Ms7IUOa2QfnbV1a+b5Kk8SAys9E51NXcuXPTZY0ltaKI2JiZcxudRz15zpbUyoY6bzsERZIkSaojC3BJkiSpjizAJUlSU7jwxvu48Mb7Gp2GVHMW4JIkSVIdWYBLkiRJddQSBXhEHBERD0TEP0XEIxHxJ5X4URFxd0T8oHL7+kbnKkmSJA2nJQpw4AXg3Zn5NuDtwDkR8Q5gCbAuM08A1lW2JUmSpOq46f3FTxW1RAGehX+tbLZVfhI4H7ilEr8FWFD/7CRJkqRD1xIFOEBETIiIh4CdwN2ZeT9wTGY+DVC5PXqI5y6KiA0RsWHXrl11y1mSJEmt7ZGn9/DI03uqesyWKcAzszcz3w5MBU6PiFkjeO6KzJybmXMnT55csxwlSZKkg2mZArxPZu4GvgWcAzwbEccBVG53Ni4zSdKhiIhzImJrRGyLCK/dkTTutEQBHhGTI6Kjcr8d+CXgn4E1wMWV3S4GvtaQBCVJhyQiJgCfB94HnAh8MCJObGxWagarN3Wz6and3P/E85y17B5Wb+pudEpSzRzW6AQO0XHALZUT96uAlZn5dxFxH7AyIj4CPAV8oJFJSpIO6nRgW2Y+DhARt1NcUP9oQ7NSQ63e1M3SVVvY27sfgO7dPSxdtQWABXM6G5maVBMtUYBn5mZgziDxHwHz6p+RJGmUOoHt/ba7gDMalIuaxPK1W+nZ13tArGdfL8vXbrUAVym1xBAUSVJpxCCxPGAHZ64ad3bs7hlRXM3nkf/yTh75L+9sdBotwwJcklRPXcC0fttTgR39d3DmqvFnSkf7iOJSq7MAlyTV03rghIg4PiIOBy6iuKC+ai688T4uvPG+ah5SNbZ4/kza2yYcEGtvm8Di+TMblJFGYvWmbj78k9/lV368pHQX0K5fcyNHvdDNW1/YwjNXv5n1a26synFbYgy4JKkcMvPFiLgcWAtMAL6cmY80OC01WN8470+v/Eeey9cxpeM1LJ4/0/HfLWD1pm7u/dsv8LdttzMlnmPHv03is397EfC7Lf/+rV9zI7M2fpL22AvAsexi4sZPsh447bxLx3RsC3BJUl1l5l3AXY3OQ81lwZxOTvjGFwA4acm9Dc5Gh+qhO1dwTazgNZUidWo8xzW5gv9252EsmPMnDc5ubKY9uPyl4rtPe+xl2oPLYYwFuENQJEmSNCr/ce9fv1R893lN7OU/7v3rBmVUPUfn4BeBH53PjfnYFuCSJEkalSmv+tGI4q1kZwx+EfjOmDTmY1uAS5JKo+yrKXqBqZrNz9qPHVG8lWw/ZTE9efgBsZ48nO2nLB7zsS3AJUmlMNRqimUrwqVm8pr3XcOLE444IPbihCN4zfuuaVBG1XPaeZfy8Kmf4uk8iv0JzzCZh0/91JgvwAQLcElSSQy3mqKkGpm9kMPO/0v20lasqDVxGoed/5cwe2GjM6uK0867lOdf3cljrz6ZY6/eVpXiG5wFRZJUEq6mKDXI7IUcvvGW4v4ldzY2lxZhD7gkqRTKvppi2ce3S+OJPeCSpFJYPH8mS1dtOWAYSllWUxxqfDvQ8oud9HfScRMbnYJGy57vEbEHXJJUCgvmdHLtBSdz+ITiT1tnRzvXXnByKQrUcTG+ffNK6FoPT94L180qtqWSsgdcklQaC+Z08pUHngLgq5ee2eBsqqf049s3r4SvXwG9LxTbe7YX21Cai/mk/uwBlySpyZV9fDvrroF9Az5M7Osp4lIJWYBLktTkFs+fSXvbhANiZRnfDsCerpHFpTo66biJVb8+wQJckqQm1ze+fXLsIchSjW8HYOLUkcWlFucYcEmSWsCCOZ2c8I0vAHDSknsbnE2VzbuyGPPdfxhKW3sRl0qooQV4REwCfpSZ2cg8JEnlUaaLL8eNvgstv3Z5cSHmxGlF8e0FmGoGNZhisW4FeES8A1gGPA/8KfA/gEnAqyLiQ5n5zXrlIklSKyr1PNmzF4KrKWqcqGcP+OeAPwYmAvcA78vM70XEzwNfASzAJUmSVHr1vAjzsMz835n5v4BnMvN7AJn5z3XMQZIkSWqoehbg+/vdH7hygGPAJUkajitFSqVRzyEob4uIHwMBtFfuU9k+oo55SJLUWlwpUiqVuvWAZ+aEzHxdZh6ZmYdV7vdttw333IiYFhH/EBGPRcQjEfH7lfhREXF3RPygcvv6qie+eWXR03B1R/l6HMrcNih3+2xb6yp7+1QbrhQplUqrzAP+IvCHmflgRBwJbIyIu4EPA+syc1lELAGWAJ+o2qv29Tj0nfTK1ONQ5rZBudtn21pX2dun2nGlSKlUWmIlzMx8OjMfrNz/CfAY0AmcD1TmLOIWYEFVX7jMPQ5lbhuUu322rXWVvX2qHVeKlEqlJQrw/iJiBjAHuB84JjOfhqJIB44e4jmLImJDRGzYtWvXob9YmXscytw2KHf7bFvrKnv7VDvzrixWhuzPlSKlltVSBXhEvBb4G+Bjmfnjg+3fJzNXZObczJw7efLkQ3/BMvc4lLltUO722bbWVfb2qXZmL4Rzr4cJry62J04rth26JLWklinAI6KNovi+LTNXVcLPRsRxlcePA3ZW9UXL3ONQ5rZBudtn21pX2dun2pq9EKaeBm98J3z84XIW35fc6SqYGhdaogCPiAD+CngsMz/T76E1wMWV+xcDX6vqC/f1OEycBkS5ehzK3DYod/tsW+sqe/skSYckMpt/DZyIeCfwHWALLy/o88cU48BXAtOBp4APZObzwx1r7ty5uWHDhhpmK0m1EREbM3Nuo/OoJ8/ZA9z0/uLWXmKpJQx13m6JaQgz816KBXsGM6+euUiSmpxFqqQm1xJDUCRJkqSysACXJEmS6sgCXJIkSaqjlhgDLkmScFy7VBL2gEuSJEl1ZAEuSZIk1ZEFuCRJklRHFuCSpLqIiOUR8c8RsTki/jYiOhqdkyQ1ggW4JKle7gZmZeZs4PvA0gbnI0kNYQEuSaqLzPzfmfliZfN7wNRG5iNJjWIBLklqhN8GvtHoJCSpESzAJUlVExF/HxEPD/Jzfr99/jPwInDbEMdYFBEbImLDrl27RpbA5pXQtR6evBeum1VsS1KTcSEeSVLVZOYvDfd4RFwM/AowLzNziGOsAFYAzJ07d9B9BrV5JXz9Cuh9odjes73YBpi98JAPI0m1Zg+4JKkuIuIc4BPAeZn5b1V/gXXXwL6eA2P7eoq4JDURC3BJUr18DjgSuDsiHoqIG6p69D1dI4tLUoM4BEWSVBeZ+eaavsDEqcWwk8HiktRE7AGXJJXDvCuhrf3AWFt7EZekJmIBLkkqh9kL4dzrYcKri+2J04ptL8CU1GQcgiJJKo/ZC2HjLcX9S+5sbC6SNAR7wCVJkqQ6sgCXJEmS6sgCXJIkSaojC3BJkiSpjizAJUmSpDqyAJckSZLqqCWmIYyILwO/AuzMzFmV2FHAV4EZwA+BhZn5L43KUZIOxepN3Sxfu5Udu3uY0tHO4vkzWTCns9FpSZLqqFV6wG8GzhkQWwKsy8wTgHWVbUlqWqs3dbN01Ra6d/eQQPfuHpau2sLqTd2NTk2SVEctUYBn5reB5weEzwcqqy1wC7CgnjlJ0kgtX7uVnn29B8R69vWyfO3WBmUkSWqElhiCMoRjMvNpgMx8OiKOHmrHiFgELAKYPn16ndKTpAPt2N0zorhGyRUwJTW5lugBH6vMXJGZczNz7uTJkxudjqRxakpH+4jikqRyauUC/NmIOA6gcruzwflI0rAWz59Je9uEA2LtbRNYPH9mgzKSJDVCKxfga4CLK/cvBr7WwFwk6aAWzOnk2gtOprOjnQA6O9q59oKTnQVFksaZyMxG53BQEfEV4GxgEvAscBWwGlgJTAeeAj6QmQMv1BzsWLuAJ0eRxiTguVE8rxWUuW1Q7vbZttY1mva9MTPH1Tg6z9mDKnPboNztK3PboNztG23bBj1vt0QB3gwiYkNmzm10HrVQ5rZBudtn21pX2dvXaGX+9y1z26Dc7Stz26Dc7at221p5CIokSZLUcizAJUmSpDqyAD90KxqdQA2VuW1Q7vbZttZV9vY1Wpn/fcvcNih3+8rcNih3+6raNseAS5IkSXVkD7gkSZJURxbgkiRJUh1ZgEuSJEl1ZAEuSZIk1ZEFuCRJklRHFuCSJElSHVmAS5IkSXVkAS5JkiTVkQW4JEmSVEcW4JIkSVIdNaQAj4gvR8TOiHi4X+yoiLg7In5QuX19v8eWRsS2iNgaEfP7xU+NiC2Vx66PiKh3WyRJkqSRaFQP+M3AOQNiS4B1mXkCsK6yTUScCFwEnFR5zhciYkLlOV8EFgEnVH4GHlOSJElqKg0pwDPz28DzA8LnA7dU7t8CLOgXvz0zX8jMJ4BtwOkRcRzwusy8LzMTuLXfcyRJkqSmdFijE+jnmMx8GiAzn46IoyvxTuB7/fbrqsT2Ve4PjL9CRCyi6Cnn537u5079+Z//+SqnLkm1t3Hjxucyc3Kj86inSZMm5YwZMxqdhiSNylDn7WYqwIcy2LjuHCb+ymDmCmAFwNy5c3PDhg3Vy05SdW1eCeuugT1dMHEqzLsSZi9sdFZNISKebHQO9TZjxgw8Z0tqVUOdt5upAH82Io6r9H4fB+ysxLuAaf32mwrsqMSnDhKX1Ko2r4SvXwH7eortPduLbbAIlySVRjNNQ7gGuLhy/2Lga/3iF0XEqyPieIqLLR+oDFf5SUS8ozL7yYf6PUdSK1p3zcvFd599PUVckqSSaEgPeER8BTgbmBQRXcBVwDJgZUR8BHgK+ABAZj4SESuBR4EXgcsys7dyqN+hmFGlHfhG5UdSq9rTNbK4JEk1duGN9wHw1UvPrNoxG1KAZ+YHh3ho3hD7fxr49CDxDcCsKqYmqZEmTi2GnQwWlySpJJppCIqk8W7eldDWfmCsrb2IS5JUEhbgkprH7IVw7vUwcRoQxe2513sBpiSpVJppFhRJKoptC25JUonZAy5JkiTVkQW4JEmSVEcW4JKkMYuIL0fEzoh4eIjHIyKuj4htEbE5Ik6pd46SamP9mht55uo3s/+qiTxz9ZtZv+bGRqfU9CzAJUnVcDNwzjCPv49iIbUTgEXAF+uQk6QaW7/mRmZt/CTHsotXBRzLLmZt/KRF+EFYgEuSxiwzvw08P8wu5wO3ZuF7QEdEHFef7CTVyrQHl9Meew+Itcdepj24vEEZtQYLcElSPXQC/VdZ6qrEXiEiFkXEhojYsGvXrrokJ2l0js7B/48enc/VOZPWYgEuSaqHGCSWg+2YmSsyc25mzp08eXKN05I0Fjtj8P+jO2NSnTNpLRbgkqR66AKm9dueCuxoUC6SqmT7KYvpycMPiPXk4Ww/ZXGDMmoNLsQjSaqHNcDlEXE7cAawJzOfbnBOLWX1pm7+6I7N7O3dT2dHO4vnz2TBnEFH8bSsC2+8D4CvXnpmgzPRoTrtvEtZTzEW/Oh8jp0xie2nLua08y5tdGpNzQJ8PNu8EtZdA3u6YOJUmHelKxBKGpWI+ApwNjApIrqAq4A2gMy8AbgL+GVgG/BvwCW1yqWMRdzqTd0sXbWFvb37Aeje3cPSVVsASlOEr97UzaandrO3dz9nLbunlB8wyuq08y6FSsF9bOVHw7MAH682r4SvXwH7eortPduLbbAIlzRimfnBgzyewGW1zqOsRdzytVvp2dd7QKxnXy/L124tRfvGwwcMqT/HgI9X6655ufjus6+niEtSCxqqiFu9qbvBmY3djt09I4q3muE+YEhlZAE+Xu3pGllckppcmYu4KR3tI4q3mrJ/wJAGsgAfryZOHVlckppcmYu4xfNn0t424YBYe9sEFs+f2aCMqqvsHzCkgSzAx6t5V0LbgBNbW3sRl6QWVOYibsGcTq694GQ6O9oJoLOjnWsvOLk046PL/gFDGsiLMMervgstnQVFUkksnj+Tpau2HDAMpUxF3II5naUpuAfqa1fZp1mU+liAj2ezF1pwSyoNi7jWVuYPGNJAFuCSpNKwiJPUChwDLkmSJNWRBbgkSZJURxbgkiRJUh1ZgEuSJEl1ZAEuSZIk1ZEFuCRJklRHFuCSJElSHVmAS5IkSXVkAS5JkiQNYvWmbjY9tZv7n3ies5bdw+pN3VU5rgW4JEmSNMDqTd0sXbWFvb37Aeje3cPSVVuqUoRbgEuSJEkDLF+7lZ59vQfEevb1snzt1jEf2wJckiRJGmDH7p4RxUfCAlySJEkaYEpH+4jiI2EBfjCbV8J1s+DqjuJ288pGZyRJkqQaWzx/Ju1tEw6ItbdNYPH8mWM+9mFjPsIgIuLwzNxbi2PX1eaV8PUrYF/lq4Y924ttgNkLG5eXJEmSamrBnE4A/uiOzezt3U9nRzuL5898KT4Wo+4Bj4j/b4j4ROB/jzqjZrLumpeL7z77eoq4JEmSSm3BnE7mTO/gjOOP4rtL3l2V4hvGNgTlFyLi0/0DEXEs8G3gntEeNCJ+GBFbIuKhiNhQiR0VEXdHxA8qt6/vt//SiNgWEVsjYv5oX3dQe7pGFpckSZIOYiwF+HnA2yLiMwARcQJwL/CFzBxrF/EvZubbM3NuZXsJsC4zTwDWVbaJiBOBi4CTgHOAL0TEhMEOOCoTp44sLknjWEScU+kM2RYRSwZ5fGJEfD0i/ikiHomISxqRpyQ12qgL8Mz8GfCrwBsj4nbg74HFmXljtZLr53zglsr9W4AF/eK3Z+YLmfkEsA04vWqvOu9KaBtwpWtbexGXJL2k0vnxeeB9wInAByudJP1dBjyamW8Dzgb+PCIOr2uiktQExjIG/A+A3wMeAN4DbAKOj4g/qDw2Wgn874jYGBGLKrFjMvNpgMrt0ZV4J7C933O7KrGBuS6KiA0RsWHXrl2HnsnshXDu9TBxGhDF7bnXewGmJL3S6cC2zHy8chH+7RSdJP0lcGREBPBa4HngxfqmKUmNN5ZZUI7sd//6QWKjdVZm7oiIo4G7I+Kfh9k3BonlKwKZK4AVAHPnzn3F48OavdCCW5IObrAOkTMG7PM5YA2wg+LvxYWZuX/ggSqdL4sApk+fXpNkW9ZN7y9uL7mzsXlIGpNRF+CZ+SfVTKTfcXdUbndGxN9S9Ko8GxHHZebTEXEcsLOyexcwrd/Tp1Kc2CVJ9XUoHSLzgYeAdwNvouhk+U5m/viAJ42l06TMNq+ErvXQ+0KxLsW8K+0gkurgyh8trty7t2rHHHUBHhHDDYTOzPzTURzz54BXZeZPKvffC1xD0WNyMbCscvu1ylPWAP+zciHoFOAEiiExkqT6OpQOkUuAZZmZwLaIeAL4eTxvH1zfuhS9LxTbrkshtbSxzILy00F+AD4CfGKUxzwGuDci/onihHxnZn6TovB+T0T8gGK8+TKAzHwEWAk8CnwTuCwze0f52pKk0VsPnBARx1curLyIopOkv6eAeQARcQwwE3i8rlm2KtelkEplLENQ/rzvfkQcCfw+Re/G7cCfD/W8gxzzceBtg8R/ROWkPchjnwY+PdhjkqT6yMwXI+JyYC0wAfhyZj4SER+tPH4D8KfAzRGxhWLIyicy87mGJd1KXJdCKpUxLUUfEUcBfwD8JsX0gKdk5r9UIzFJUmvJzLuAuwbEbuh3fwfF0EKN1MSpxbCTweKSWs5YpiFcTvGV40+AkzPzaotvSZJqwHUppFIZyxjwP6S48PGTwI6I+HHl5ycR8eODPFeqvc0ri5kCru4objevbHRGkjQ6rkshlcpYxoCPpXiXaqtvxoC+i5acMUBSq3NdCqk0LKJVTs4YIEmSmpQFuMrJGQMkSVKTsgBXOQ01M4AzBkiSpEO1eSUn7P1nTty7parXk1mAq5ycMUCSJI1F5Xqyw9lHwMvXk1WhCLcAVzk5Y4AkqZnc9P7iR62jhteTjWkhHqmpOWOAJEkarRpeT2YPuCRJkjRQDa8nswCXJEmSBqrh9WQW4JIkSdJAlevJ9tJGQlWvJ3MMuCRJkjSY2Qv5wd9dD8BJH7+3aoe1B1ySJEmqIwtwSZIkqY4swCWpnjavLFZTu7qjqquqSZJah2PAJaleKquqvbSwQ9+qauCc9ZI0jtgDLkn1UsNV1SRJrcMCXJLqpYarqklqYptXQtd6ePJeh54JcAiKJNXPxKnFsJPB4pLKqW/oWe8LxbZDz1rOScdNrPox7QGXpHqp4apqUinc9P7ip0wceqZB2AMutaLNK4uT956uovd03pX2pLSCvvfI9662+gq4S+5sbB4SOPSsDGpwLrEAl1qNM2m0ttkLfZ+k8cShZxqEQ1CkVuPXmdLQvNhNzcahZxqEBbjUavw6U00qIs6JiK0RsS0ilgyxz9kR8VBEPBIR/1jVBIa62M0iXI00eyGcez1MeHWxPXFase03YeOaQ1CkVlPyrzNXb+pm+dqt7Njdw5SOdhbPn8mCOZ2NTksHERETgM8D7wG6gPURsSYzH+23TwfwBeCczHwqIo6uahLDfTtksdP8+r696H2h+PaiTNdHzF4IG28p7nttgrAHfFxbvambs5bdw/FL7uSsZfewelN3o1PSoSjx15mrN3WzdNUWunf3kED37h6Wrtri72ZrOB3YlpmPZ+Ze4Hbg/AH7/AawKjOfAsjMnVXNwG+HWpffXmicsQA/iLIWqeOh0Cnre/fS15kTpwFRqq8zl6/dSs++3gNiPft6Wb52a4My0gh0Av2/mumqxPp7C/D6iPhWRGyMiA8NdqCIWBQRGyJiw65duw49g6G+BSrJt0Ol5rUtGmccgjKMviK1ryDoK1KBlv9KfLhCp9XbBuV+74DSzqSxY3fPiOJqKjFILAdsHwacCswD2oH7IuJ7mfn9A56UuQJYATB37tyBxxjavCsPnCEISvPtUOn57YXGGXvAh1Hm3riyFzplfu/KbEpH+4jiaipdwLR+21OBHYPs883M/GlmPgd8G3hb1TLwYrfW5bcXGmcswIdR5iK17IVOmd+7Mls8fybtbRMOiLW3TWDx/JkNykgjsB44ISKOj4jDgYuANQP2+RrwCxFxWES8BjgDeKyqWcxeCFNPgze+Ez7+sMV3qyjxtS3SYCzAh1HmIrXshU6Z37syWzCnk2svOJnOjnYC6Oxo59oLTi7HsKGSy8wXgcuBtRRF9crMfCQiPhoRH63s8xjwTWAz8ADwpcx8uOrJXHKnM020Gr+90DjjGPBhLJ4/84BxxFCeIrWvoCnrdG9lfu+g3FP1LZjTWZq2jDeZeRdw14DYDQO2lwPL65mXWoRT9WkcsQAfRtmL1DIXOmV+70p/gWnJlfnDkyTp0FiAH0SZi9SyK+t7V/YZbMrMD0+SJCjBGPBDWfpYKhMvMG1dzs4jjWNem6B+WroH/FCWPpbKZkpHO92DFNteYNr8/PAkHYQFqsaJVu8BP5Slj6VSKfsMNmXm7DySJGj9AvxQlj6WSsWp+lqXH54kSdDiQ1A4tKWPiYhFwCKA6dOn1zonqebKeoFp2ZV5dh5J0qGLzFfUqy0jIs4Ers7M+ZXtpQCZee0wz9kFPDmKl5sEPDeaPFtAmdsG5W6fbWtdo2nfGzNzci2SaVaeswdV5rZBudtX5rZBuds32rYNet5u9QL8MOD7wDygm2Ip5N/IzEdq8FobMnNutY/bDMrcNih3+2xb6yp7+xqtzP++ZW4blLt9ZW4blLt91W5bSw9BycwXI6Jv6eMJwJdrUXxLkiRJ1dLSBTgMvvSxJEmS1KxafRaUelrR6ARqqMxtg3K3z7a1rrK3r9HK/O9b5rZBudtX5rZBudtX1ba19BhwSZIkqdXYAy5JkiTVkQW4JEmSVEcW4JIkSVIdWYBLkiRJdWQBLkmSJNWRBbgkSZJURxbgkiRJUh1ZgEuSJEl1ZAEuSZIk1ZEFuCRJklRHFuCSJElSHbVMAR4RHRFxR0T8c0Q8FhFnRsRREXF3RPygcvv6RucpSZIkDadlCnDgL4BvZubPA28DHgOWAOsy8wRgXWVbkiRJalqRmY3O4aAi4nXAPwH/LvslHBFbgbMz8+mIOA74VmbOHO5YkyZNyhkzZtQ0X0mqhY0bNz6XmZMbnUc9ec6W1MqGOm8f1ohkRuHfAbuAmyLibcBG4PeBYzLzaYBKEX70YE+OiEXAIoDp06ezYcOG+mQtSQOs3tTN8rVb2bG7hykd7SyeP5MFczoP6bkR8WSN02s6M2bM8JwtqWUNdd5ulSEohwGnAF/MzDnATxnBcJPMXJGZczNz7uTJ46rzSFITWb2pm6WrttC9u4cEunf3sHTVFlZv6m50apKkOmqVArwL6MrM+yvbd1AU5M9Whp5Qud3ZoPwk6aCWr91Kz77eA2I9+3pZvnZrgzKqnoj4ckTsjIiHh3g8IuL6iNgWEZsj4pR659jqVm/q5qxl93D8kjs5a9k9fnCT6mD9mht55uo3s/+qiTxz9ZtZv+bGqhy3JQrwzHwG2B4RfeO75wGPAmuAiyuxi4GvNSA9STokO3b3jCjeYm4Gzhnm8fcBJ1R+FgFfrFUiF954HxfeeF+tDt8Qfnsi1d/6NTcya+MnOZZdvCrgWHYxa+Mnq1KEt0QBXvF7wG0RsRl4O/BfgGXAeyLiB8B7KtuS1JSmdLSPKN5KMvPbwPPD7HI+cGsWvgd09H2DqYMr87cnUrOa9uBy2mPvAbH22Mu0B5eP+ditchEmmfkQMHeQh+bVORVJGpXF82eydNWWAwqp9rYJLJ4/7ORNZdEJbO+33VWJPT1wx4EXzqv0355ITeno3AUxWPy5MR+7lXrAJamlLZjTybUXnExnRzsBdHa0c+0FJx/yLCgtbpA/Yww6D64Xzr9Smb89kZrVzhj8/LMzJo352C3TAy5JZbBgTud4KbgH6gKm9dueCuxoUC4tZ5x/eyI1xPZTFjNx4ycPGIbSk4ez/dTFHDvGY9sDLkmqhzXAhyqzobwD2NO3joMObpx/eyI1xGnnXcrDp36KZ5jM/gyeYTIPn/opTjvv0jEf2x5wSdKYRcRXgLOBSRHRBVwFtAFk5g3AXcAvA9uAfwMuaUymrWscf3siNcxp510KlYL72MpPNViAS5LGLDM/eJDHE7isTulIUlNzCIokSZJURxbgkiRJUh1ZgEuSpKZQxlVMpcFYgEuSJEl1ZAEuSZIk1ZEFuCRJarjVm7rZ9NRu7n/iec5adg+rN3U3OiWpZizAJUlSQ63e1M3SVVvY27sfgO7dPSxdtcUiXKVlAS5JKg17UVvT8rVb6dnXe0CsZ18vy9dubVBGUm1ZgEuSSsFe1Na1Y3fPiOJSq7MAlySVgr2orWtKR/uI4lKrswCXJJWCvaita/H8mbS3TTgg1t42gcXzZzYoI6m2LMAlSaVgL2rrWjCnk2svOJnDJxRlSWdHO9decDIL5nQ2ODOpNizAJUmlYC9qa1swp5M50zs44/ij+O6Sd1t8q9QOa3QCkiRVQ1/B9kd3bGZv7346O9pZPH+mhZykpmMBLkkqjQVzOvnKA08B8NVLz2xwNhop3zONFy01BCUiJkTEpoj4u8r2URFxd0T8oHL7+kbnKEmSJA2npQpw4PeBx/ptLwHWZeYJwLrKtiRJktS0WqYAj4ipwPuBL/ULnw/cUrl/C7CgzmlJkiRJI9IyBTjwWeCPgP39Ysdk5tMAldujB3tiRCyKiA0RsWHXrl01T1SSJEkaSksU4BHxK8DOzNw4mudn5orMnJuZcydPnlzl7CRJkqRD1yqzoJwFnBcRvwwcAbwuIv4aeDYijsvMpyPiOGBnQ7OUJEmSDqIlesAzc2lmTs3MGcBFwD2Z+R+ANcDFld0uBr7WoBQlSZKkQ9ISBfgwlgHviYgfAO+pbEuSJElNq1WGoLwkM78FfKty/0fAvEbmI0mSJI1Eq/eAS5IkSS3FAlySJEmqIwtwSVJVRMQ5EbE1IrZFxCtWJo6IsyNiT0Q8VPm5shF5SlKjtdwYcElS84mICcDnKS6I7wLWR8SazHx0wK7fycxfqXuCktRELMAlSdVwOrAtMx8HiIjbgfOBgQV4zX310jPr/ZKSNCJ1G4ISEUdExCuWoYyIoyPiiHrlIUmqiU5ge7/trkpsoDMj4p8i4hsRcdJgB4qIRRGxISI27Nq1qxa5SlJD1XMM+PXALwwSfw9wXR3zkCRVXwwSywHbDwJvzMy3AX8JrB7sQJm5IjPnZubcyZNf0W8jSS2vngX4OzNz1cBgZt4G/D91zEOSVH1dwLR+21OBHf13yMwfZ+a/Vu7fBbRFxKT6pShJzaGeBfhgvSN9nI1FklrbeuCEiDg+Ig4HLgLW9N8hIo6NiKjcP53i3P+jumcqSQ1Wz4swd0bE6Zn5QP9gRJwGOMhPklpYZr4YEZcDa4EJwJcz85GI+Gjl8RuAXwd+JyJeBHqAizJz4DAVSSq9ehbgi4GVEXEzsLESmwt8iKKnRJLUwirDSu4aELuh3/3PAZ+rd16S1GzqNvSj0vN9BsVQlA9XfgI4IzPvr1cekiRJUiPVdR7wzHwWuKpvOsLMdOiJJEmSxpV6zgMeEXF1ROwC/hnYGhG7XIpYkiQBcNP7ix+p5Oo5+8jHgLOA0zPzDZl5FMWQlLMi4uN1zEOSJElqmHoW4B8CPpiZT/QFKksW/4fKY5IkSVLp1XMMeFtmPjcwmJm7IqKtjnlonFi9qZvla7eyY3cPUzraWTx/JgvmDLYytiRJUv3UswDfO8rHpBFbvambpau20LOvF4Du3T0sXbUFwCJckiQ1VD2HoLwtIn48yM9PgJPrmIfGgeVrt75UfPfp2dfL8rVbG5SRJElSoW494Jk5oV6vJe3Y3TOiuKTWsW/fPrq6uvjZz37W6FRK44gjjmDq1Km0tTkiVKqHus4DPloRMQ24FTgW2A+syMy/iIijgK8CM4AfAgsz818alaeax5SOdroHKbandLQ3IBtJ1dTV1cWRRx7JjBkziIhGp9PyMpMf/ehHdHV1cfzxxzc6HWlcqOcQlLF4EfjDzHwr8A7gsog4EVgCrMvME4B1lW2JxfNn0t524Jcu7W0TWDx/ZoMyklQtP/vZz3jDG95g8V0lEcEb3vAGv1GQ6qglCvDMfDozH6zc/wnwGNAJnA/cUtntFmBBQxJU01kwp5NrLziZzo52AujsaOfaC072AkypJEZafF94431ceON9Ncqm9flhRqqvlhiC0l9EzADmAPcDx2Tm01AU6RFx9BDPWQQsApg+fXqdMlWjLZjTacEtSZKaTkv0gPeJiNcCfwN8LDN/fKjPy8wVmTk3M+dOnjy5dglKkprO6k3dbHpqN/c/8TxnLbuH1Zu6q3Lc66+/nre+9a28/vWvZ9myZQBcffXV/Nmf/RkAN998Mzt27KjKaw30wx/+kFmzZtXk2JJqr2V6wCuL9fwNcFtmrqqEn42I4yq938cBOxuXoSSp2fStCbC3dz9Q3TUBvvCFL/CNb3xjyAsXb775ZmbNmsWUKVMO+Zgvvvgihx3WMn+aJY1SS/SARzE47a+AxzLzM/0eWgNcXLl/MfC1eucmSWpetVoT4KMf/SiPP/445513Htdddx2XX375AY/fcccdbNiwgd/8zd/k7W9/Oz09PWzcuJF3vetdnHrqqcyfP5+nn34agLPPPps//uM/5l3vehd/8Rd/MeR+Gzdu5G1vextnnnkmn//858eUv6TGaokCHDgL+C3g3RHxUOXnl4FlwHsi4gfAeyrbkiQBtVsT4IYbbmDKlCn8wz/8A69//etf8fiv//qvM3fuXG677TYeeughDjvsMH7v936PO+64g40bN/Lbv/3b/Of//J9f2n/37t384z/+I1dcccWQ+11yySVcf/313HefF5NKra4lvufKzHuBoS7RnlfPXCRJraNZ1gTYunUrDz/8MO95z3sA6O3t5bjjjnvp8QsvvHDY/fbs2cPu3bt517veBcBv/dZv8Y1vfKOubZBUPS1RgEuSNBqL589k6aotBwxDacSaAJnJSSedNGTv9c/93M8Nu9/u3budKlAqkVYZgiJJ0oj1rQlw+ITiz1091wQ48sgj+clPfgLAzJkz2bVr10uF9b59+3jkkUde8Zyh9uvo6GDixInce++9ANx22201z7/uNq+ErvXw5L1w3axiWyope8AlSaW2YE4nX3ngKQC+eumZdXvdD3/4w3z0ox+lvb2d++67jzvuuIMrrriCPXv28OKLL/Kxj32Mk0466YDnHH744UPud9NNN/Hbv/3bvOY1r2H+/Pl1a0ddbF4JX78Cel8otvdsL7YBZi9sXF5SjURmNjqHupo7d25u2LCh0WlI0ohFxMbMnNvoPOppsHP2Y489xlvf+tYGZVReDf13vW5WUXQPNHEafPzh+ucjVclQ522HoEiSpMba0zWyuNTiLMAlSVJjTZw6srjU4hwDfhCrN3WzfO1WduzuYUpHO4vnz6zLxTv1UOa2SZJayLwrizHf+/pNGdnWXsSlErIAH0bfEsZ901dVcwnjRitz2yRJLabvQsuvXV5ciDlxWlF8ewGmSsohKMOo1RLGzaDMbZOkV7jp/cWPmtfshTD1NHjjO4sLLy2+VWIW4MOo1RLGzaDMbZOa2uaVxYwPV3eUbq7jiDgnIrZGxLaIWDLI4xER11ce3xwRpzQiT0lqNAvwYQy1VHG9lzCuhTK3TWpafXMd79kO5MtzHZegCI+ICcDngfcBJwIfjIgTB+z2PuCEys8i4It1Sa4GC7z88Ic/ZNasWQfErr76av7sz/5s2Od98IMfZPbs2Vx33XVceeWV/P3f/z0AZ599Nn3TLf6X//JfxpzfUG6++WYuv/zymh1f0qGxAB/G4vkzaW+bcECsEUsY10KZ2yY1rXXXHHiRGRTb665pTD7VdTqwLTMfz8y9wO3A+QP2OR+4NQvfAzoi4riaZjXUAi8N+NDzzDPP8H/+z/9h8+bNfPzjH+eaa67hl37pl16x32gK8N7e3oPvJKlpWIAPo28J486OdoL6LmFca2Vu20tK/FW/WlS55zruBPqvpNJViY10HyJiUURsiIgNu3btGltWDfjQc/bZZ/OJT3yC008/nbe85S185zvfAeC9730vO3fu5O1vfzvf+c53+PCHP8wdd9xxwHOXLFlCT08Pb3/72/nN3/xNAP76r/+a008/nbe//e1ceumlLxXbr33ta7nyyis544wzuO+++4bc76abbuItb3kL73rXu/jud79bs3ZLOnQW4AexYE4n313ybp5Y9n6+u+TdpSpQy9y2Mn/VrxZW7rmOY5DYwKWWD2UfMnNFZs7NzLmTJ08eW1YN+tDz4osv8sADD/DZz36WP/mTPwFgzZo1vOlNb+Khhx7iF37hFwZ93rJly2hvb+ehhx7itttu47HHHuOrX/0q3/3ud3nooYeYMGECt912GwA//elPmTVrFvfffz9veMMbBt3v6aef5qqrruK73/0ud999N48++mhN2y3p0DgNocppuF4vr6xXo5R7ruMuYFq/7anAjlHsU10Tpw6xxPnYPvREDPZZ4uX4BRdcAMCpp57KD3/4w1G/zrp169i4cSOnnXYaAD09PRx99NEATJgwgV/7tV8bdr/777+fs88+m74PMhdeeCHf//73R52PpOqwAFc5lfur/lIr9QJRfR/+1l1T/C5OnFqmuY7XAydExPFAN3AR8BsD9lkDXB4RtwNnAHsy8+maZlWjDz1veMMb+Jd/+ZcDYs8//zzHH388AK9+9auBokh+8cUXR/06mcnFF1/Mtdde+4rHjjjiCCZMmDDsfqtXrx7yw4KkxnEIisqp3F/1s3pTN2ctu4fjl9zJWcvuYfWm7kanVBV9C0R17+4heXmBqLK0DyiK7Y8/DFfvLtVcx5n5InA5sBZ4DFiZmY9ExEcj4qOV3e4CHge2Af8d+N2aJzZ7IZx7PUwoCmImTiu2x/jv/trXvpbjjjuOdevWAUXx/c1vfpN3vvOdY82YtrY29u3bB8C8efO444472Llz50uv8+STT77iOUPtd8YZZ/Ctb32LH/3oR+zbt4//9b/+15jzkzR29oCrnEr8VX+ZVzEdboGoVm/beJCZd1EU2f1jN/S7n8Bl9c6L2Qth4y3F/UvurNphb731Vi677DL+8A//EICrrrqKN73pTWM+7qJFi5g9ezannHIKt912G5/61Kd473vfy/79+2lra+Pzn/88b3zjGw94zoknnjjofu94xzu4+uqrOfPMMznuuOM45ZRTnDFFagJRnA/Hj7lz52bfXKsquc0rS/lV/1nL7qF7kAWTOjva+e6Sdzcgo+o5fsmdr7wij+LKvSeWuYphRGzMzLmNzqOeBjtnP/bYY7z1rW9tUEbl1RT/rn2rlVbxg5LUSEOdt+0BV3nNXliKgnugMq9iOqWjfdAPFy4QJUkqk5YfA36wpY+lsinzKqYuECVJGg9auge839LH76GY3mp9RKzJzOpNdFrSYQxAudtWYovnz+Tev/0CH+N2psRz7MhJfJaLeOf82l/PVmsL5nTSuf3vmPbgco7OXeyMyWw/ZTGnzTmn0ampyWSms3tU0Xgbjio1WksX4PRb+higMrXV+UB1CvC+xVz6LuTrW8wFWr9QLXPbSm7BhO/yK21f4rDenwEwNZ5j2YQvcdiEtwEt/t5tXslpW64CeiDgWHZx7JarYMbr/b3US4444gh+9KMf8YY3vMEivAoykx/96EccccQRjU5FGjdavQAfbFnjM6p29DIv5lLmtpXdumteKr77HNb7s3K8d/5e6hBMnTqVrq4uxrxMvV5yxBFHMHVqOaZplVpBqxfgh7SscUQsAhYBTJ8+/dCPXubFXMrctrIr83tX5rapatra2l5a8EYl4+wnGida/SLMQ1rWODNXZObczJzbtxzvISnzYi5lblvZlfm9K3PbJEmqaPUC/KWljyPicIqlj9dU7ejzriwWb+mvJIu5lLptZVfm967MbZMkqaKlC/Chlj6u2gv0LWE8cRoQVVvCuCmUuW1lV+b3rsxtkySpYtythBkRu4AnR/HUScBzVU6nWZS5bVDu9tm21jWa9r0xM0cwjq71ec4eVJnbBuVuX5nbBuVu32jbNuh5e9wV4KMVERvKugR0mdsG5W6fbWtdZW9fo5X537fMbYNyt6/MbYNyt6/abWvpISiSJElSq7EAlyRJkurIAvzQrWh0AjVU5rZBudtn21pX2dvXaGX+9y1z26Dc7Stz26Dc7atq2xwDLkmSJNWRPeCSJElSHVmAS5IkSXU0bgvwiDg2Im6PiP8bEY9GxF0R8ZaI6ImITRHxWEQ8EBEXD/Lc0yKiNyJ+PSLeEBEPVX6eiYjuftuHt0rbImJiRHw9Iv4pIh6JiEuasW31FhEfjogpjc6jv8rv3kOV9+rBiPj3jc5pLCIiI+LP+23/p4i4unL/6oj4T5X7R0TE3RFxVYNSHbF+79UjlffrDyLiVf0ePz0ivh0RWyPinyPiSxHxmkbm3Kw8Z3vOPhTNeM4Gz9uet1/psOqm3RoiIoC/BW7JzIsqsbcDxwD/NzPnVGL/DlgVEa/KzJsqsQnAf6VYfZPM/BHw9spjVwP/mpl/Vs/29DeGtl0GPJqZ50bEZGArcFtmvr2y/9U0uG0N8mHgYWBHg/Por6ff+zIfuBZ4V0MzGpsXgAsi4trMHHSRg0rx8DfAxsz8k7pmNzb936ujgf8JTASuiohjgP8FXJSZ91X+7/4acCTwbw3Ktyl5zvacPQIfpvnO2eB52/P2AOO1B/wXgX2ZeUNfIDMfArb33ykzHwf+ALiiX/j3KH6hdtY+zVEZbdsSOLLyy/Ra4HngxXokHBEz+n2KfDgibouIX4qI70bEDyqfNo+KiNURsTkivhcRsyvPvToivhwR34qIxyPiin7H/YPK8R6OiI/1i3+ocpx/ioj/ERFHRsQTEdFWefx1EfHDiPgAMBe4rfJpuD0iTo2If4yIjRGxNiKOq8e/0TBeB/xLg3MYqxcpri7/+BCPHwbcDvwgM5fULasqy8ydwCLg8sr/s8soiq77Ko9nZt6Rmc82Ms8m5Tnbc3ZZztngebtl1PK8PS57wIFZwMZD3PdB4OcBIqIT+FXg3cBptUltzEbVNuBzwBqKXoMjgQszc3/10xvSm4EPUPyirwd+A3gncB7wxxR/jDZl5oKIeDdwK5VeLIo2/GIl760R8UVgNnAJcAYQwP0R8Y/AXuA/A2dl5nMRcVRm/iQivgW8H1gNXAT8TWb+r4i4DPhPmbmhcrL/S+D8zNwVERcCnwZ+u4b/LoNpj4iHgCOA4yh+H1vd54HNEfHfBnnsj4C/z8yP1Tel6svMx6P4KvNoiv+rtzQ4pVbhObvgObs1z9ngebtl1eq8PV4L8JGIfvc/C3wiM3uLD0Itr38j5gMPUZwU3gTcHRHfycwf1ymXJzJzC0BEPAKsy8yMiC3ADOCNFF/zkJn3RDHWcWLluXdm5gvACxGxk+Kr23cCf5uZP60ccxXwCxS9Rnf0fWWWmc9XjvElihPGaoo/Av/vIDnOpPjPd3fl/Z8APF21f4FD1//rsTOBWyNiVrbwnKKZ+eOIuJWid69nwMP3AmdGxFsy8/v1z67qSnHyaGKes+vDc/bIeN5ubVU/gYzXISiPAKce4r5zgMcq9+cCt0fED4FfB74QEQuqnt3YjLZtlwCrKl+nbAOe4OWelnp4od/9/f2291N8UBzsl7/vxNX/ub3D7E8l/ooTXmZ+F5gREe8CJmTmw0M895HMfHvl5+TMfO9QDaqHytdgk4DJjcyjSj4LfAT4uQHxbwMfA74RTXhx1UhEMY63l2I4xEj+r453nrMLnrP7DtSi52zwvN1qanXeHq8F+D3AqyPipU/MEXEaxSd2+sVmAH9G8RUWmXl8Zs7IzBnAHcDvZubqOuV8qEbVNuApYF7lsWMoeg4er0O+h+rbwG8CRMTZwHMH6en5NrAgIl4TET9H8TX0d4B1wMKIeEPlWEf1e86twFeAm/rFfkLxNSkUFzlNrvReEBFtEXHSGNs1JhHx8xS9Oj9qZB7VUOnZWklxMh/42N8Ay4FvRkRHnVOriigulLsB+Fyl1+tzwMURcUa/ff5DRBzbqBybmOdsz9mlOGdX8vC83SJqed4el0NQKl+T/Srw2YhYAvwM+CHFp7U3RcQminFaPwH+MitX07eCMbTtT4GbK18fBsXXtoNe2dwgVwM3RcRmiiuNXzHVWH+Z+WBE3Aw8UAl9KTM3AUTEp4F/jIheYBPFVfMAtwGfojih97kZuCEieoAzKXrRrq98lXoYxaf/R8bWtBHrG0sIxXt1cWb21jmHWvlz4PLBHsjMGyonuTUR8d7M/Fl9UxuVvveqjeKipf8BfAYgM5+NiIuAP4viSvv9FEXIqgbl2rQ8Z3vOprXP2eB52/P2AC5FL1VExK9TXKzzW43ORZI0PM/ZamXjsgdcGigi/hJ4H/DLjc5FkjQ8z9lqdfaAS5IkSXU0Xi/ClCRJkhrCAlySJEmqIwtwSZIkqY4swCVJkqQ6sgCXJEmS6uj/B72b55KJS1tOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# compare between filtered and unfiltered\n", + "celltypes = ['CD4T', 'CD8T', 'monocyte', 'B', 'NK', 'DC']\n", + "fig, axes = plt.subplots(6, 2, figsize=(12, 12), sharex=True)\n", + "for i, celltype in enumerate(celltypes):\n", + " replication_celltypes = [ct for ct in celltypes]\n", + " ax1, ax2 = axes[i, :]\n", + " ax1.scatter(x=replication_celltypes,\n", + " y=numcoeqtl_df[celltype].loc[replication_celltypes])\n", + " ax1.scatter(x=replication_celltypes,\n", + " y=unnumcoeqtl_df[celltype].loc[replication_celltypes])\n", + " ax2.errorbar(x=replication_celltypes, fmt='.', markersize=12,\n", + " y=rb_df[celltype].loc[replication_celltypes],\n", + " yerr=rbse_df[celltype].loc[replication_celltypes], label='filtered')\n", + " ax2.errorbar(x=replication_celltypes, fmt='.', markersize=12,\n", + " y=unrb_df[celltype].loc[replication_celltypes],\n", + " yerr=unrbse_df[celltype].loc[replication_celltypes], label='Unfiltered')\n", + " ax1.set_ylabel(celltype)\n", + "ax2.legend()\n", + "\n", + "plt.savefig('celltype_rb.comparison_filtered_unfiltered_results.pdf')\n", + "plt.savefig('celltype_rb.comparison_filtered_unfiltered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sub celltypes in monocytes" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rse_rpcelltype_discoverycelltype_replication
10.9714310.0484021.351820e-89ncMonocMono
20.9290810.0886781.101982e-25ncMonomonocyte
30.9367970.0254091.468276e-297cMononcMono
40.9997260.0006130.000000e+00cMonomonocyte
50.8962030.0362405.115902e-135monocytencMono
60.9498240.0086400.000000e+00monocytecMono
\n", + "
" + ], + "text/plain": [ + " r se_r p celltype_discovery celltype_replication\n", + "1 0.971431 0.048402 1.351820e-89 ncMono cMono\n", + "2 0.929081 0.088678 1.101982e-25 ncMono monocyte\n", + "3 0.936797 0.025409 1.468276e-297 cMono ncMono\n", + "4 0.999726 0.000613 0.000000e+00 cMono monocyte\n", + "5 0.896203 0.036240 5.115902e-135 monocyte ncMono\n", + "6 0.949824 0.008640 0.000000e+00 monocyte cMono" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filtered_mono_res_df = pd.read_csv(workdir/'output/filtered_results/rb_calculations/monocyte_subcelltypes/summary.csv', \n", + " index_col=0)\n", + "filtered_mono_res_df" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# filtered results\n", + "mono_subcelltypes = ['monocyte', 'cMono', 'ncMono']\n", + "monorb_df = pd.DataFrame(data=np.zeros((len(mono_subcelltypes), len(mono_subcelltypes))), \n", + " columns=mono_subcelltypes, index=mono_subcelltypes)\n", + "monorbse_df = pd.DataFrame(data=np.zeros((len(mono_subcelltypes), len(mono_subcelltypes))), \n", + " columns=mono_subcelltypes, index=mono_subcelltypes)\n", + "monorbpvalue_df = pd.DataFrame(data=np.zeros((len(mono_subcelltypes), len(mono_subcelltypes))), \n", + " columns=mono_subcelltypes, index=mono_subcelltypes)\n", + "mononumcoeqtl_df = pd.DataFrame(data=np.zeros((len(mono_subcelltypes), len(mono_subcelltypes))), \n", + " columns=mono_subcelltypes, index=mono_subcelltypes)\n", + "monoanno_df = pd.DataFrame(data=np.zeros((len(mono_subcelltypes), len(mono_subcelltypes))), \n", + " columns=mono_subcelltypes, index=mono_subcelltypes)\n", + "mononum_anno_df = pd.DataFrame(data=np.zeros((len(mono_subcelltypes), len(mono_subcelltypes))), \n", + " columns=mono_subcelltypes, index=mono_subcelltypes)\n", + "\n", + "for discovery_celltype in mono_subcelltypes:\n", + " # replication in other celltypes\n", + " for replication_celltype in mono_subcelltypes:\n", + " if discovery_celltype != replication_celltype:\n", + " monorb_results = filtered_mono_res_df[(filtered_mono_res_df['celltype_discovery'] == discovery_celltype) &\n", + " (filtered_mono_res_df['celltype_replication'] == replication_celltype)]\n", + " monoreplicated_coeqtls_num = pd.read_csv(\n", + " workdir/f'output/filtered_results/rb_calculations/monocyte_subcelltypes/discovery_{discovery_celltype}_replication_{replication_celltype}.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t',\n", + " index_col=0\n", + " ).shape[0]\n", + " if monorb_results['r'].values[0] < 10:\n", + " monorb_df.loc[replication_celltype, discovery_celltype] = monorb_results['r'].values[0]\n", + " monorbse_df.loc[replication_celltype, discovery_celltype] = monorb_results['se_r'].values[0]\n", + " monorbpvalue_df.loc[replication_celltype, discovery_celltype] = monorb_results['p'].values[0]\n", + " mononumcoeqtl_df.loc[replication_celltype, discovery_celltype] = monoreplicated_coeqtls_num\n", + " monorbvalue = monorb_results['r'].values[0]\n", + " monorbsevalue = monorb_results['se_r'].values[0]\n", + " monoanno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"rb={monorbvalue:.2f}\\nN={monoreplicated_coeqtls_num}\"\n", + " mononum_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={monoreplicated_coeqtls_num}\"\n", + " else:\n", + " monorb_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " monorbse_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " monorbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " mononumcoeqtl_df.loc[replication_celltype, discovery_celltype] = monoreplicated_coeqtls_num\n", + " monoanno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"rb=NA\\nN={monoreplicated_coeqtls_num}\"\n", + " mononum_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={monoreplicated_coeqtls_num}\"\n", + " else:\n", + " monorb_df.loc[replication_celltype, discovery_celltype] = 1\n", + " monorbse_df.loc[replication_celltype, discovery_celltype] = 0\n", + " monorbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " monoreplicated_coeqtls_num = pd.read_csv(\n", + " workdir/f'output/filtered_results/UT_{discovery_celltype}/coeqtls_fullresults_fixed.sig.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t'\n", + " ).shape[0]\n", + " mononumcoeqtl_df.loc[replication_celltype, discovery_celltype] = monoreplicated_coeqtls_num\n", + " monoanno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={monoreplicated_coeqtls_num}\"\n", + " mononum_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={monoreplicated_coeqtls_num}\"\n", + " \n", + "monoreplicated_ratio_df = pd.DataFrame(data=np.zeros((len(mono_subcelltypes), len(mono_subcelltypes))), \n", + " columns=mono_subcelltypes, index=mono_subcelltypes)\n", + "for discovery_celltype in mononumcoeqtl_df.columns:\n", + " for replication_celltype in mononumcoeqtl_df.index:\n", + " monoreplicated_ratio_df.loc[replication_celltype, discovery_celltype] = \\\n", + " mononumcoeqtl_df.loc[replication_celltype, discovery_celltype] / mononumcoeqtl_df.loc[discovery_celltype, discovery_celltype]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
monocytecMononcMono
monocyte1.0000001.0000000.826087
cMono0.9964411.0000000.826087
ncMono0.9857650.9806451.000000
\n", + "
" + ], + "text/plain": [ + " monocyte cMono ncMono\n", + "monocyte 1.000000 1.000000 0.826087\n", + "cMono 0.996441 1.000000 0.826087\n", + "ncMono 0.985765 0.980645 1.000000" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "monoreplicated_ratio_df" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":60: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + ":61: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_yticklabels([\"\"]+row_labels)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAEkCAYAAABT8ScVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABjlElEQVR4nO3dd3zU9f3A8dc7l71ISCAQtsgQEEER90RFrVtRUHGvOuquq7/W1taiVevWouJoRdyjloqiolURRKaAKEMIJGSQkDCy8/798b0kl0HmXXLfy/vZxz2a+677fGN43/v7maKqGGOMMcaY0BLW2QUwxhhjjDH+Z0meMcYYY0wIsiTPGGOMMSYEWZJnjDHGGBOCLMkzxhhjjAlBluQZY4wxxoQgS/KMMcYYY0JQl03yREQ6uwzGGNMWFr+MMS3RJZM8Eemj3lmgRaRL/g6McSsRmSEiOSLywx72i4g8LiJrRWS5iOzvs+9EEVnj3Xdnx5Xafyx+GeNeHR2/ulyAEJFjgcUicqOIpKlqlXe7PRkb4w4vASc2sf8kYIj3dRXwDICIeICnvPtHAFNEZERAS+pnFr+Mcb2X6MD41aWSPO8v6V7gf0AR8JmIHAOgtr6bMa6gql8C+U0ccjrwijq+BZJEpDcwHlirqutVtQyY5T3WFSx+GeN+HR2/wv1RaBeZAoSr6jkAIvIr4GQRGQbsVNV/dWrpjDH+0AfI8Hm/2butse0HdWC52svilzGhz6/xq8skeSKSglP1+bD3/XFAPFAMrABeEZFcVZ3jc05YdXOIsd+HaZ2Jx8TptvzKVp/3/fLSlUCJz6bpqjq9FZdorOlSm9ge9Cx++Yf9TkxrtCWGBVv86jJJHnAZIKr6trf/ypnAbOB1Vc0WkWeAESLyE3ACMEtVCzuxvEFBRCKBE1T1Q5/+PxYoTbPy8itZMKdvq8+L6L2uRFXHteOjNwP9fN73BTKByD1sdwOLX21kMcy0VVtiWLDFr67UJ+9R4Dzvz5cDEcC33gDZBzgemArcBEwA5ovIOZ1QzmBzCfCeiPxdRM4GsOBoWkap1KpWv/zgA+Ai7yi1g4FCVc0CvgOGiMgg7xf/ZO+xbvAoFr/a6hIshpk2aX0M8wO/xq8uUZPnfWorF5Gt3ikHEoClwCrvIRcChwCfAo+r6joROQk4CnhLRBJVtaj6Wjj9nF3RzNMeItId+A3wO+Bd4H0R6amqz/gc4wGqusLvw7SOAlUBaA0VkdeAo4FUEdkM/AEn6UFVn8Wp4ToZWAvsBi717qsQkeuBOYAHmKGqK/1eQD+z+NV2FsNMewQihnV0/OoSSV71U5vP09vfRSROVXeJyKE4T8YLcJo+1nmPScb5DwFwo4jkALNV1bfjY6cSEY+qtr7TU8tdC/ykqtO8nzcPyBWRCOBgYLk1CZmmVOH/ChNVndLMfgWu28O+2ThB1DUsfrWLxTDTLv6OYR0dv7pEkuerui+Gqu7ybuqOMw/NFqCHz6G3AX8UkeHAkUApMFVEFgG3dGZ1v4jEquru6gApIhGqWu7nzxgBTMJpAkJEjgI24gTG3+D0GxguIq+r6gPeY64EElX1YX+WxbiTolRa5YhfWfxq1edYDDPtEgoxrCv1yQMa9sXwdsb9O87IlatE5FYR+QeQBXwMXAAsAi5R1cOB0cDY+tftiMlIRSRcRM4HnhWR+SJS3UfncBH5WkSO9uPHHQ98p6rLRaQbMA6Iw+kH8KKqno8TQPuISA8RSQOuBm4TkYF+LIdxsSq01S+zZxa/WsVimGk3t8evLleTtyeq+rqI/AhcA3yC0+59ONAN+EBV88SZkPAAvCNaxJmfKlxVV3ZQf45LcDpVvwrkAbd7n1YjcYJ3qr8+SFUf8/ZVAZgIJAEjgTWq+qK3qWWdiNykqlUichuQjtMZ/Jfq64hIuqq6ZQSj8SMFKoMw6IUii18NWQwz7RUKMcySPGqeYkVVlwG/9m7rjzOabRXODPMA04DHgO0iciPOU2CEiGQAlweyb4eIJOAsZTJLVT/0bj5bRO4CtgHz8c6Z4w1sY4Gf21mm6lqDjcBeOF8e3ar3VTcdichonCaRfwFLvGUYijMb9wMicraqvtuOchiXCsYn21Bj8atJFsNMu7g9hnW55trGqKNKfBb7VtVNwExgnqqWepsShgHP44x2GQD8n6oehLPE0MT61xX/Lh4egzPiZqHP9fcFEnGaIJKBr727rgPmAp+LSGxbP7D66V5VFwAP4ATI80TkyurfmffQu4DXcGoPeotIDPAgsL+3TAXe8tr6msb4mcWvPbMYZro6q8nz0Uh/l8983v4VeA+ng/PeOKOyPvfuS8IJVohID6CHqq7yBl7xU1NIKbAYGIPT3wacSU8rcQLQdCBBnHl1pgA/AQ+q6m5vudpVDu+5P4vIVJzRfd1U9SERORkYjNP351VgPc7ErRU4I/7Wquq86mtIF5vCoStTcH2nZTex+NU0i2GmtUIhhlmS13KXAhtwfmcHAi8AiMghwDKcJpATgD8CReJMVni7qi7yHteuGdZVtVBEZgB/EZETcYJPf5wnz5+A24FzgWdx+rv8AHzuc76KH6YsUNUVwHEiEi8i0cD9wFPeL4T+OKP9nsOZpHE88BSAiIwDslR1S3s+37iLzTgbNCx+1V7LYphpMbfHMGuubQHvU+SPqlrq3fQ9ztxTBwB/BnYAg4AjgFdUdSLwEs5otygRSWpPgKymqnO9zSufAANx1q38yvu5k3BG0y3CWdPy36q6TUTGi8hUcaYt8NucVKq6U1VLcJ62nxNn3qnngDtxmmRG4/Rt2SoiHwK3Ah+JyO+gtinIz01CJogoSmUbXsa/LH7tsTwWw0yT2hLDgo1YjXPref9R/w1IAZbjPH1egtOv5CGfYIqIXAxcqqpH+2xrd9OD90l7iKqu9HYQ7qGqX4vI40Au8ArO+pZX4HRqPgS4VlW/9Ols7PfJSL3lmopTW3At8CawRVV/431KfhKnk3duvfNsLckQM3p0hH4wu/UDJgf12/q9tm/tR9MEi18tKpvFMNOmGBZs8cuaa1vJ5x/yrSISqapl3u3jcOZkKpW6k3sm4HTorT6/v6pu8o4gOwr4UlUrWlsO7+eu9P78E/CTOEsZDcGZHHUMTkfrq1T1GxH5LXCi9/OqZ9CvrO5I7Mf+JcNxZtp/HxgKHKCq1etFbvI+LQ8WkX7AGcB0Vd3s5/4/Jgg4SwKZYGLxq0UshhkgNGKYVTO3UvU/ZO8/5jKfXZ8Cp4vIKHXWmaz+3SYC4eJMBHo88IU4k4A+DBymznp0/hqxdRbwqaquxpnlvsAbICNw/ltXAIjIkyLylIgkq5efPh9VXY4zTcOHQCxOnxu8nzsO2BenP86pOCP6/iYiM71NQhYcQ4pQ2YaXCRyLX82zGGZquT9+WZLXBo0FFlV9FfgP8IyInONTbf8r4AucDs1n4awzmYkzaem+4ozwqp4fql1/Iap6pffzBUjD6eMCTlCKA9aIMyHqtTgB8xUR+XN7PnMP5Vjk7euSDYwVkTu8T+nP4iy3NAbnKf0FddbxKwEuqt+3RWonMjUupECVtv5lAsviV4vKYjHMtCmGBRtL8vzAp8ngCZwZ3ed6t8cD+cBVOE+md6ozrcEk4BGgEPhT9XX8ESxVdZf3OnNwAuYtOKPHPDjzZj0DPK+qNwL3AEeKSHL9+6kfrNpYli3AOTiToJ4MTFPVWThfEF8A1ZOLbgX2q/5iEZFB3vMr2/vFYTqX1eQFP4tfTZbHYlgX5/b4ZX3y/MAnuEWoaplPgOmGMxfUH4An1ZlG4DScJ8Ar1ZmwFBE5EDgWWKnOWpTtfh5Q1X+KyHrgFGCGqr4hzgLdB6tqL+9hCcAvQLyI7Ab6APHe5gq/PJN47/Fi8XaSFpGbcf7uFqhqrogk4jyZjxOnA/ZNwFDv7/A6b9ONcSFnSaDgC3qmLotfzZbFYlgXFQoxzJI8P9LazsqXichFOJN//l1Vp/kcdhUwC8jxVuVfhTOC7NfAvSJyJk7AKGtvsFTVr6mdRR7g38BvAbzNHgcBOaqaISKzcJocxorIt8AtqrqrPZ9fT3XzzzKcwPyT9/0/cJ7Qc3D6+eTgNBFdDFwjIrf5/F6Ny1SpuwNkV2Lxq1kWw7ogt8cwS/ICQFWf9j5ZzqV2dndEpBfORJ+LVbVERPbGCQQ9cfqdXAVcDUSqzzQG7SW1I+ruVtVnvZtH4qwP+QcRuR3ohdOJuBx4w7t/YWPXa4vqgK8+s/B7awDOw5kX6xSc/i/PqzPCbwnOE7FxqVB4Cu6KLH41zmJY1xMKMcz65AWIqr6kzrB633mccnA6Lc8RkRSc5XvWqmo/4GCc0Vyn4iyx48+yVE858CSAiKQBJwEZwGacJ+/LVbXUe2w2cJg/y1Cft59KNnChOksX9QBSVfUX7yHHA6+rM9LP3f/KuihFqCSs1S/T+Sx+Nc9iWOhrSwwLNlaT14Gqn0ZF5GV1ZnNfAUR4910pIqOAg1R1aYDLkS0iz+E0b0ThNIlsBhCRKJwn06MCXAYFqhdRB9gG9PV29j4HZ2Hw53yONS7k9qYOU8viV4NyWAzrAtwewyzJ60DVHZpVdY33yW45cId3JNafgFWq+kNHlEVVf/SWKQpnLqyHROR9nFFj76ozE32HzeCuqrNEZADOiLV1OE0ec5o5zQSxUGjqMLUsfjVbJothISYUYljw1S2GMFWt8ml6UFVdr6qHAOuBu3D6tXR0mUpxFgYvwVna6L/A9dW7O7gsD+A0s1ysqh915GebQBAqNazVLxOcLH61qDwWw0JK62NYsLGavE5UPSRfVf8gItGA3zort4Y6k37eLnWXOeqU5Xm8ZTEhwFkSKPiCnvEPi19NlseEgFCIYZbkdSKtu/ZipwcG9VnmyPqQGGOaYvHLmODn7hQ1BHibPSwgmZAUiBUvROREEVkjImtF5M5G9ieLyLsislxEFnoHBFTvu1lEVorIDyLymrcGyrSRxS8T6ty+4oUlecaYgFD1f5887wS8T+FMoTECmCIiI+oddjewVFVHAxfhLDaPiPQBfgOMU9VROEtlTfbrTRtjQkZbYliwCb4SGWNCRhXS6lczxuPMzbbe2zw3Czi93jEjgE+hZhTmQO/cauB0UYkRkXAgFmfeN2OMaZSf41eHsyTPGBMQzvQDfp8MuQ/OJLjVNnu3+VoGnAUgIuOBAUBfdRabfwhnbrMsoFBVP27/nRpjQlFbYliwCb4SdTARucrK4LBy1GXlaG8Z2txcmyoii3xeV9W5aEP1+4RNA5JFZClwA7AEqBCRZJxav0FAOhAnIhe2/r6CRzD8bYCVI9jKAFaO+joqhgWb4CtRxwuGP8BgKANYOeqzctRqdRmqpx9o7QvIU9VxPq/pPpfdDPTzed+Xek2uqlqkqpeq6hicPnk9gA3AccAGVc1VZ8H4d4BDW3tfQSYY/jbAyuErGMoAVo76OiSGBRubQsUYEzCV/l8S6DtgiHeVhS04AyfO9z1ARJKA3d4+e1cAX6pqkYhsAg4WkVigGJgALPJ3AY0xoSMAMaxDdckkz1ttexXA+WfFH1C1dUinTgHwzIM96OwyWDkaGs7+HB82ycrhLUNrVS/u7U+qWiEi1wNzcEbHzvAuYXWNd/+zwD7AKyJSCawCLvfuWyAibwGLgQqcZtzpjXxMUAu2+AXB8282GMoRDGUA6H/YORxwxSNWjlpXt/aEQMSwjiZdfYqjYPjHaILTxPQxnV2EoPJJ1ZuteqQdvG+c3v9u/dlNmjd5yKLvVXVcq0/sgix+mT058He/7uwiBJXvn7+l1VVybYlhwRa/umRNnjEm8KpHphljjBuFQgyzJM8YExCKuL4/izGm6wqFGGZJnjEmYIJxtJkxxrSU22OYJXnGmIBQJSjnjTLGmJYIhRhmSZ4xJkCCc5kfY4xpGffHMEvyjDEBobj/KdgY03WFQgyzJM8YEzBuH5lmjOna3B7D3F16Y4wxxhjTKKvJM8YEhCJUuXz6AWNM1xUKMcySPGNMwLi9qcMY07W5PYZZkmeMCQgFqlzeadkY03WFQgyzJM8YEyBCpcunHzDGdGXuj2HuTlGNMUGr+im4tS9jjAkGbYlhLSEiJ4rIGhFZKyJ3NrI/WUTeFZHlIrJQREb57LtZRFaKyA8i8pqIRDf1WRZRjTEBU+l9Em7NyxhjgoW/45eIeICngJOAEcAUERlR77C7gaWqOhq4CHjMe24f4DfAOFUdBXiAyU19njXXGmMCQlWsZs4Y41oBimHjgbWquh5ARGYBpwOrfI4ZAfzVKYP+KCIDRSTNuy8ciBGRciAWyGzqwywCG2MCplLDWv0yxphgEYD41QfI8Hm/2bvN1zLgLAARGQ8MAPqq6hbgIWATkAUUqurHTX2YRVRjTEAoUOVd+7E1L2OMCQZtiWFAqogs8nldVe+yjQU5rfd+GpAsIkuBG4AlQIWIJOPU+g0C0oE4EbmwqXuw5lpjTICI1cwZY1ysTTEsT1XHNbF/M9DP531f6jW5qmoRcCmAiAiwwfuaCGxQ1VzvvneAQ4F/7enDLMkzxgSEMzLNauaMMe4UoBj2HTBERAYBW3AGTpzve4CIJAG7VbUMuAL4UlWLRGQTcLCIxALFwARgUVMfZkmeMSZg3D5bvDGma/N3DFPVChG5HpiDMzp2hqquFJFrvPufBfYBXhGRSpwBGZd79y0QkbeAxUAFTjPu9KY+z5I8Y0xAhMK6j8aYritQMUxVZwOz62171ufn+cCQPZz7B+APLf0sS/KMMQFTZTV5xhgXc3sMsyTPGBMQqlBpNXnGhRIHr6No3eBWn7ctv5Jzr9zKd0tLuPi8RJ64v0ejx+UXVDL5mq1szKhgQL9wXv9HL5KTPABMezyfGa/twOOBR+9LZeIxce26l/Za+vJdjLn4r206d+uyT9m2ZgGEhdHv4DNI7Du8wTG7t2WS8fVbVFaUEhnfnUFHX4AnMppduZvY9NWb3qOU3mMnkjRw33bcSeuFQgxzd4pqjAlqVSqtfjWnnUsCJYnIWyLyo4isFpFD/HzLxuVUlaqqtp0bHS388bfdefD3qU0e98CTBUw4PJY13wxgwuGxPPBkAQCr1pTx+vs7WTGvP7NnpnP9XblUVtafXaPjqCqqbfv84oKtFKxfwj5n/5a9J17Jpm/eQRv5xW766g3SD/wVI866naSBo8he8TkAMcm9GH76Texz5q3sPfEqNn39FlpV2a77aQt/x6+OZkmeMcY12rMkkNdjwEeqOhzYD1gd+FKbYPdLRjkjj9jIdXfmMO6EDIpLlNvuzWPc8RkcP2kLuXktSy7iYsM4/KAYoqOb/rL/YM4uLjo3AYCLzk3g/Y92ebfv5LzT44mKEgb1j2DwwAgWLilp3821UumOfFa+9QCbvn6bH997BK0sZ/OCD1j93iP8PPsZyot3tug6hZtWkrzXWMI84UQlpBCVmMKu3E0NjispzCG+114AJKYPZfsvKwAIC49EwpzazarKcj/dXddjzbXGmIBwOi0H1ZJAxcCRwCXefWVAmb8LaNxpzbpyXng0jaem9cTTey1j943ioXtTue+RfP70SD5P3N+Dh54uYOY7Oxqce8TBMTz258abZhuTnVtJ7zTn67d3Wjg53iRyy9ZKDtq/dr35vunhbNna8bVXpYW5DDxyMv0PO5vFL9xKbEof+h50GllLPmbrko/pd+hZZC//nPx1ixucG99rL/odcibluwqJ7TmgZntkXBLluwsbHB+T3IvCTStJGjCKgg3LKdu1vWbfrpyNbPzf65TtLGDgUefXJH0dJUAxrENZkmeMCZiWLNjdSo0tCXRQvWOqlwT6yndJIKASyAVeFJH9gO+BG1V1l78LadxnQN9wDj7ASbDCwuC80+MBuODsBM65PAuA265N5rZrkwNWhsZaRjujATAyPpm46gRNhOS9xgDQffABrP/0JQDSRh9D2uhj9ngNbbCIAzR2NwOOOI+M+e+RteQTkvqPqJPIxfUcwIizf0vx9mw2fvEaiX2HExYe0dbbapMAxLAO5e4UNQhdfnM2vUZtYPTRtdXS+QWVnHDeFoYdupETzttCwfbaJ7Npj+cz9JCN7HP4RuZ87nzXlJYqJ03JZPTRm3jmpdonn6tvy2HJitKOuxk/sN/Hnm3Un5ivHzNfP2aFLqBSK1mnP/CtfsK3+gmL9UtKtRiA7ZrHt/oJC/VTdqvTXFKuZSzW/7W5z0ygVU8k2oY+LU0tC9TmJYFwHmr3B55R1bHALqBBn76uxtN7Lbfdm1fz/uFnCvjjQ9tadO7SH0o57JQM9j1qE2OO3cTr79fWcn36v92MOz6D/Y/bxJGnbWbtBqfS9MefyzjslAxiBqzl4WcK/Hsz7RAXu+evQ/H+1T30dAH7H7epwevG3+W26rPSenjIyq4AICu7gp6pTmLTt7eHzZm1TZObMytI79WxtVfgNJU2J3v556x+9+EGr4z57wLemjufWrmyXduJiE1scJ3opDSGnHQ1+5xxM8mD9ycqIaXBMTFJaYRFRFJcsLXtN9UGbYlhwcbVSZ6IXCIi6Z1dDl8Xn5vI7Jm962xrbSfbOfN2c8DoKJZ+1o/n/uUkNctWllKlMHbfqA6/p/aw30fjSrSYDNYyngkcIiegKNlkMIBhHCzHc7AcTyq9We/tMraRnxjNwQxmFJtZB8AGVjOI4YgEX2BxOE0drX3hXRbI5+U72WeLlgRS1UtVdQxOn7weOEsCbQY2q+oC76Fv4SR9nSJY4ldUlPDu7J3kbWt9s2BsjPDS42ms+ML5N3vL7/PYXuhc57o7c/nnU2ksntufKWcl8JdHnX/n3ZPDePTPPbj1msDViLVXVRW89aHzMPXaOzs4bHwM4NTkLZ7bv8GrNU21AKeeEMcrbzgJ8Stv7OC0ic4I2lMnxvH6+zspLVU2bCpn7YZyxo+NbupSgadKwYblAOSvW0x8r0GAU5O3z5m3Nnj1O+RMALr1H0nB+iVUVVZQumMbpUV5xPXo3+Dy5cU7vB9Txdaln5C6jzMWqnTHtpqBFqU78iktzCUqoaP/Zlofw4KN25trLwF+oF6Q70xHHhLDLxl1O4l+MGcXn73dB3A62R579ham/S51j51sI8KhuKSKioraa/z+wW0880DPjrwVv7Dfx54pShWViApVVBBFNOFS2xRRSe2XbhhhVHr/J4SxW3dSSjHJ0rovl45W5f+mjjYvCQQUiUiGiAxT1TU4SwKtovNcQhDEr3APXHlhIo9O386f72pYi9KUoYNra3zSe4XTM9VD7rZKkrp5EIGinc5oysKiStK9fdB6pobTMzWc2XODt5U8LlZYtaaMA0/IoFtiGK8926vF5+514C8U7ayirEx5/6OdfPRaH0YMi+TKW3O4emoi48ZEc8f1yUy+eiszXiuif59wXp/uXH/ksCgmnRrPqKM2Eh4uPHF/Dzyezn2ICwuPpGT7Vla/93c8kdEMOmZqi86LSe5F0qAxrHr7QSQsjH6HnIWEOUnQxv+9TurwQ4nr0Y+CdUvIXf01AEkD9yVlyHgAdm7dQPbyz5zmWxH6HXIW4dHxgbnJJgQghnWoZpM8ERkIfAR8BRyM09/lReCPQE/gAmAtMAPYC9gNXKWqy0XkXqC/d3t/4FFVfdx73VuAy7wf87yqPurdfhFwG05N6XLgWu//D1XVchFJ9L6/HRgHvCoixcAhOB2uHwHigTzgElXNatuvxn9a28n2jBPj+NfbOzjkVxncdm0yH8zZxQGjo0nv5fac3GG/D4iWGAboUL7iP4ThIYU0UsQJ9Gv1B7LYSDgRHMBRAAxkOKtZjAcPIzmQn1nOYEZ25i00KxBzTLVhSaBfgL1E5Hmc+LUJ+EBE+uLEmNNFpDtdPH5de2kSY47dxO3XJdXZ/urbOxptUh08MII3n69bQ79wSQllZcrggc6DyvSHenLKhZnERAuJ8WF8859+Da4TLAb2i2D5vNpapuo58v50R+uSXoD13w1sdPtzD9c+lKZ09/DJm30aPe7um7pz903dW/25/hKV0J0RZ99e8756jrz0A05q9bV6jzmO3mOOa7B9wBHn1fzcc9SR9Bx1ZINjUoaMI2XIuFZ/pj+Fwjx5Lf2W3BuYBFyF8yR9PnA4cBrOdAUZwBJVPUNEjgVeAcZ4zx0OHAMkAGtE5BlgNHApTodpARaIyBc4I93uAQ5T1TwR6a6qO0RkHvAr4D2cJ/e3VfVNEbkOuE1VF4lIBPAEcLqq5orIecBfqA3EQWdPnWzDw4VXn3a+8MvLnf5o773cm1v/kMumLRVMnZRYU70fSrrS76Ncy8glk8M4mXAiWMG3ZOlGessA9pZR7M0oNuiPZLCWwYwkQZIYz7EAFGguUcSgwAr9FiGMIYwmSjq5WacRgWi+aM2SQN6H1LXA2dTGr69x1oI8DafPXpePX4kJYUydlMATzxcSE1P7pXbB2QlccHZCs+dnZVdw8Q3ZvPhYGmFhzvmPTt/Oh/9K56D9o3no6QJuvTevTqJjjBsEYxNsa7S09BtUdYWqVgErgU/V6e29AhiIk/D9E0BVPwNSRKSb99z/qGqpquYBOUCa9/h3VXWXqu4E3gGOAI4F3vIei6rme6/xPE5Qxfv/LzZSxmHAKOATb4fr3+H012lARK6q7tQ9/Z8Nh3T7W3s62T7zUiFTz01g/qISIiOFWf/oxf2P5uNm9vuAfHKIIY5IiSJMwuhBHwqp29m9F/3IYUudbarq7Yu3DxtYxV6MoBf9yWBtRxa/RarXfQyCjssWv1rgxiuTmPFaEbt21z5tvfr2jkYHGky6oraCsWhHFademMWf7kipGZ2am1fJ8lWlNTXz554Wz/zviv1WVmM6QltiWLBpaZLnO4Sxyud9FU5tYFMj3nzPrWzieLzbG9TnqOrXwEAROQrwqOoPezh3paqO8b72VdUTGvsQVZ1e3an7qqndGjvEr9raybZgeyUfzt3FRZMS2F1cRZgIIlBSGpyjKVvKfh8QTQyF5FOpFagqBeQQSyK7tXZ0Yi5ZxFG3FiWLjaTSmwiJ9PbZEwSopIJgVIW0+hUAFr9aoHuyh0mnxTNjZlHNtgvOTmh0oEF1U21ZmXL2ZVlMnZTApFNr+0slJ4VRWFTFT+ucEbWffFnM8CHNj9gMBu0ZbQxw0pRMug9bz6lT63a1vPTGbAaP/6UmUV76g/OnNe+b3SQPXV+z/b5HgvehdfELt7J5wQc177NXfE7m4jktPn/tR9NZ9s97WPvx83W278j8mdXvPcKqt//GL1+81ikrW+xJEMSvdvFXp6Yvcfrm3SciR+OMjitqYtTfl8BLIjINJ7idCUzFae54V0T+rqrbvM0d1X/xrwCvAff5XGcH1HwLrgF6iMghqjrf2/wxVFVX+ukeW+T8X2/li2+KycuvpP/+G/jDbSlt7mR73yP53HNjd0SEiUfH8vSLhex3TAZXX9RwGHqwst9H47pJCj21Dwv4FEFIIIm+DGIFC9mtOxCEaGIZ7jP4s1IryGIjYzkCgP4MYTnzCSOMUQ2miut81dMPuIDFL69brkniqRktrx1844OdfPltMdsKKnn5DSc5nPFoGmNGRfGPh3oy6YqthIVBcrcwnv97GgBbcyoYf2IGRTuqCAsTHntuOz98MYDEhOBoFqsebXznDcmkprR++pLbrk1id7HSWC3rA79P5ZxTGg4eOPygaP79z04faN0s8YSz/ZcV9Nrv2DYNgug5+miqKsrJ+3F+zTbVKn758jWGnPRrorv1IPP7j9j28yJSh3V+THNRDNsjfyV59+JMMLocp+PyxU0drKqLReQlYKF30/OqugRARP4CfOHtNL0E7+z0wKvAn3ECZbWXgGd9Oi6fAzzubWoJBx7FaZ7pMDOfaXwUVls62T7yp9qRk9HRYcx5vfFrBDP7fezZYBnZYPDEfux5KVWPhNcMxABIlh4cQqOVPUHDJf1Z7qULx6/qQQYAaT3C2blhcBNH13XhOQlceE7jffbOPDmeM09umAj06hnOpsWDWl/QDtKe0cYAE46IZd43uwNQss4nEkbq8IPJ/uFL+ow7udXnJ6YPZUdW3a4lFSW7CQsLJ7qbE98T+wxl67JPgyLJA9fEsD1qNslT1V9w+opUv79kD/tOb+Tce+u9973OIzgjyeqf8zLwciNFORynv8t2n2PfBt72OWYpzrJFxpjOFgR9VCx+mbbwx2jjxvzftG38+ZF8jj08hr/ek0pUlPPv49vvSxg7YRO908L52x9SGDkseOf/7LHPYax+9yF61VvtIn/t92SvmNfg+KjEVPaasOfnpvDoOLSqil25Gc6UKvWWNutUQRDD2ssVc1CIyBM4C5K3/tHBGNMpFPfPMeUPFr/cp72jjRtz/90p9OrpoawMrr49hwefKuD/bunO/vtGs+G7gcTHhTH7012cdelW1nwzoPkLdhJPZDTd9x5HzsqvCAuvTSG6730A3fc+oNXXExEGHnMhmxe8j1ZWkNhnGCLBUXsWCjHMFUmeqt7Q2WUwxrSe25+C/cHilzvdeGUS407I4JLJtX1+21OTVz03aFQUXDI5gYef2Q5Qpy/iyRPiuP7OXPK2VbapP2BH6TnqSH587xFShhxYs62tNXkA8WkDGXbK9QAUbV5DSVHrlokLJLfHMFckecYY9wmFTsum6/IdbXzpFKf2rj01eVnZFfROC0dVef+/uxg13BltvDWngrQeHkSEhUtKqKqClO7BUZO1J+FRsSQN2o+8nxaSMtRZoaKtNXngLG0WEZNAVWUF2cs/o1cjEyh3hlCIYZbkGWMCxu0B0nRtrR1tDHDU6Zv5cW0ZO3cr/fffwHMP92TiMXFMvS6b3G2VqMJ+IyN55kFnYui3P9zJsy8XER4OMdHCzGfTgng96lpp+x5N7qqvW3XOmg+fpLQwh8ryUla89icGHHEuiX2Hk71iHoWbVgFKj+GHkpA+JCBlbgu3xzBL8owxxhiv9ow2Bvji/UbnsGbuW43PBnDdZUlcd1lSqz6js1QvcQYQEZPA2Eumter86ibZ+vqOP5W+409tV9lM4yzJM8YERPVs8cYY40ahEMMsyTPGBIzbR6YZY7o2t8cwS/KMMYGh7u/PYozpwkIghlmSZ4wJiFAYmWaM6bpCIYZZkmeMCRi3B0hjTNfm9hhmSZ4xJiBCodOyMabrCoUYZkmeMSZg1OUB0hjTtbk9hlmSZ4wJGLePTDPGdG1uj2GW5BljAkJDYGSaMabrCoUYZkmeMSZg3N7UYYzp2twewyzJM8YEiPs7LRtjujL3xzBL8owxAeP2p2BjTNfm9hgW1tkFMMaEpuqJRFv7ao6InCgia0RkrYjc2cj+ZBF5V0SWi8hCERlVb79HRJaIyIf+u1tjTKhpSwwLNpbkGWMCQ52Oy619NUVEPMBTwEnACGCKiIyod9jdwFJVHQ1cBDxWb/+NwGp/3KIxJoT5OX51BkvyjDEBU4W0+tWM8cBaVV2vqmXALOD0eseMAD4FUNUfgYEikgYgIn2BXwHP+/M+jTGhyc/xq8NZkmeMCQjF6c/S2lcz+gAZPu83e7f5WgacBSAi44EBQF/vvkeB3wJV7bs7Y0yoa0sMCzY28MIYEyBt7qOSKiKLfN5PV9XpNRdtqH4jyTTgMRFZCqwAlgAVInIKkKOq34vI0W0pmDGmKwnOfnatYUmeMSbY5KnquD3s2wz083nfF8j0PUBVi4BLAUREgA3e12TgNBE5GYgGEkXkX6p6oZ/Lb4wxQcGaa40xAePvgRfAd8AQERkkIpE4idsHvgeISJJ3H8AVwJeqWqSqd6lqX1Ud6D3vM0vwjDFNcfvAC6vJM8YEjL/7qKhqhYhcD8wBPMAMVV0pItd49z8L7AO8IiKVwCrgcr8WwhjTZQRjP7vW6LSaPBG5V0RURPb22Xazd9uemmqMMS7hPNn6feAFqjpbVYeq6mBV/Yt327PeBA9Vna+qQ1R1uKqepaoFjVxjnqqe0tZ7s/hlTOhrSwwLNp3dXLsCp9mk2jk4T97GmBAQiMmQg4jFL2NCnNvjV4cleSJykXcG+mUi8k/v5vfwznElInsBhUCuzzlTRGSFiPwgIg/4bN8pIn/xXutbnzmwBojIp97P+VRE+nfU/RljGgpAn7xOYfHLmK7J7fGrQ5I8ERkJ3AMcq6r74cw4D1AEZHiXHZoCvO5zTjrwAHAsMAY4UETO8O6OA771XutL4Erv9ieBV7wz3b8KPB7A2zLGNCMQzbUdzeKXMV1XIOJXe5Zm9A4se0tEfhSR1SJySFOf1VEDL44F3lLVPABVzXdmNgCcGesnAxOBCXinPgAOBOapai6AiLwKHInz9FwGVK87+T1wvPfnQ/BOggr8E3iwscKIyFXAVQCPPpDEpRfGt/sGQ0F8WHRnF8GEECU4k7Y2CNr41X3y2SQcfnC7bzAUrD/7H51dhKDS75K1nV0E1wtEDPNZmvF4nCmhvhORD1TVt6tH9dKMZ4rIcO/xE7z7HgM+UtVzvLMIxDb1eR3VXCs0nLC02r+BqcAm7/xWvufsSblqTcVoJXtOVhv9TFWdrqrjVHWcJXjGBI624RWEgjZ+WYJnTGAFIH61eWlGEUnEeVh8wbuvTFW3N/VhHZXkfQqcKyIpACLSvXqHqhYDdwB/qXfOAuAoEUn1Zr5TgC+a+ZxvqO0IfQHwlR/KboxpiwCNru0EFr+M6YoCM7q2PUsz7oXT7/dFEVkiIs+LSFxTH9YhzbXeeaz+AnzhnbtqCfCLz/5ZjZyTJSJ3AZ/jPBXPVtX3m/mo3wAzROR2nF/Epc0cb4wJpCCtmmsNi1/GdGGtj2FNLcsI7ViaEYgA9gduUNUFIvIYcCfwf3sqTIdNhqyqLwMvt+C4o31+ngnMbOSYeJ+f3wLe8v78C07/GWNMEAjSmrlWs/hlTNfUhhjW1LKM0L6lGWOBzaq6wHvoWzhJ3h519jx5xpgQFipTqBhjuqYAxK/2LM24FWdE/zDvvgk0MzenLWtmjAkIJXRq8owxXU8gYpgflma8AXjVmwSup5luHZbkGWMCQwFL8owxbhWgGKaqs4HZ9bY96/PzfGDIHs5dCrR46URL8owxAWPNr8YYN3N7DLMkzxgTOC4PkMaYLs7lMcwGXhhjjDHGhCCryTPGBEjQTm5sjDEt4P4YZkmeMSZwXN7UYYzp4lwewyzJM8YEhtoUKsYYFwuBGGZJnjEmcFz+FGyM6eJcHsMsyTPGBJC7n4KNMV2du2OYJXnGmMBx+VOwMaaLc3kMsyTPGBM4Lg+QxpguzuUxzJI8Y0xg2LJmxhg3C4EYZpMhG2MCRrX1r+aIyIkiskZE1orInY3sTxaRd0VkuYgsFJFR3u39RORzEVktIitF5Eb/37ExJpT4O351NEvyjDGBo214NUFEPMBTwEnACGCKiIyod9jdwFJVHQ1cBDzm3V4B3Kqq+wAHA9c1cq4xxtTyY/zqDJbkGWMCR6X1r6aNB9aq6npVLQNmAafXO2YE8CmAqv4IDBSRNFXNUtXF3u07gNVAH3/erjEmxPg3fnU4S/KMMQEj2vpXM/oAGT7vN9MwUVsGnAUgIuOBAUDfOuUSGQiMBRa0+eaMMSHPz/Grw9nAC2NMYLS9+SJVRBb5vJ+uqtO9Pzf2qFz/U6YBj4nIUmAFsASnqda5gEg88DZwk6oWtamEIWbTLffQ/5G/tOncwjmfsXP+QggLo/s5pxMzYliDY8o2Z7Jt1ttoaRnhKcmkXnw+YTHRVGzLJ/PPfyO8Zw8AogYOIGXK2e26F+NfH57wHKd8fGWbzv3pn4vZ9J/VECaMvvFweh7Uv8ExhWvzWPbQl1QUlxPbK4EDfn8cEXGRZHz8E2tfW1pzXNG6bRz9wiS6DUlt6620XpA2wbaGJXnGmABpc/NFnqqO28O+zUA/n/d9gUzfA7yJ26UAIiLABu8LEYnASfBeVdV32lK4UKPt6DFelpXNrsVLSb/nNioKi8h58h+k//4OJKxuI9G2mW+SfOYpRA8ZzM75Cyn6dB5Jp5wIQHhqCul33dLu+zD+p6pQ1bZzizbks+XTtRzzymRK8nbxzc3/5riZUxBP3b+NpQ/MY+S1h5I6Np2N/1nN2teWss8V4+l3wlD6nTDUuda6bSy4678dm+AB7YhhQcOSPGNM4Pj/Kfg7YIiIDAK2AJOB830PEJEkYLe3z94VwJeqWuRN+F4AVqvqI34vmYtUbMsn++kXiB46mNING9HycvLf+TelP60jLDaG1EsvwJMQ3+x1ipevJG7/MUhEOBGp3QlPTaXsl01E7TWwznHlOblE7b0XANHDh5Lz1HM1SZ4JLruziph/+39IHduHgpXZVJZW8MOT35C3eAsRCVGMu/d4opJjmr3O1q9+oc+EvfFEeohLTySuTzcKVufQfVSvOsft3LSdlDG9Aeg5rh/f3Poh+1wxvs4xm+f+TJ/jhvjvJlvDavKMMWYP/BwgVbVCRK4H5gAeYIaqrhSRa7z7nwX2AV4RkUpgFXC59/TDgKnACm9TLsDdqjrbv6V0h4qcXOIvPJeU885i4/W3E9mvD93POpXt//2Ewv9+Qvdzz6Rw7jx2fbe4wbnRe+9F90lnUFlYSOTA2iY4T3I3KgqLiKp3fGTvXhSvWEns6FHsXryMioLC2nJsyydz2t8Ji44m6ZSJRHuTQdN5dm7azti7jmG/W4/k/SOeodvQVEZdfyhrXlzEmpcWMfrmI/h55hI2f/Jzg3NT9ktn9E2HU5K3i+QRaTXbY3rGUZK7q8HxCXt1Z+tXv9D7iEFs+XwdxTk7Gxyz5bN1HPTXTnoosCTPGGM6jjcpm11v27M+P88HGjz2q+pXuH0hSj/ydE8iatAA540IcfvvB0DcgfuT+9zLAHQ77mi6HXf0Hq+hLWzmTbngXPLfeo/C/84lZt8RiMfjlCExkT5/ugdPfBylmzaTO/0l0u+5jbCY6LbfmGm32F4JdB/prXELE/ocuzcAfScOZeE9HwEw5PyxDDl/7B6v0ejfRiP/+sbeeQwrHvuKNS8totfhAwmLqNucm78yG090OIl7pbTtZro4S/KMMYHj8qfgUBYWGbnnneJ8GzdXkxeelESlT61cZUEh4d0SGxwf0asnaddfBUB5di7FK390PiYiHE+E8zUU1b8v4akpTtPugH4NrmE6jid6z6mBeP82mqvJi+kRX6dWrjhnF9GpcQ2OTxiQzKGPnAo4NYjZ8zfV2b/l07X0nbB3m+7DL1wewyzJ87Prbsnno7kl9EgN49vPnCeh/IIqLv31NjZlVNK/n4eXnk0hOcl5Wnn4iSL+OWsXnjDhgfuSOO7oaEpLlSmX5ZGZVcnlF8Vz5SVO35jf/LaAyy+KY79RTQTnIHP5zdn855Pd9Ez1sHye06yTX1DJ5Gu2sjGjggH9wnn9H71ITnKe7Kc9ns+M13bg8cCj96Uy8Zg4SkuVMy7JYktWBb++pBu/vqQbAFfflsM1F3dj7L71G4fcYaP+RCa/ABBPN0Ywjl9YTS5ZAEQSxUgOJEpi2K55/MgSwghjFAcRK/GUaxkrWMBYDq8JvEElBJYE6jJU2b1kBXHjxrBr0RKi9xoENF+TFzN6BHkvzSTx2COpKCyiIjevTvNttcodO/EkxKNVVRTOmUvC4QfXbA+Li0XCwijP20ZFbh7hqZ1bY+PpvZabr07ioXudTv4PP1PAzl1V/OG2lpXrpCmZLFhcwmHjo/n3P9Nrtl96YzZfzi+mW6IT+2c8msaYUVHM+2Y3Z16ylUH9na/jM0+O5/9u6e7nu2qHKiVz3jr6HjeEzZ/8TPd9ne+15mryeh0+kO//OJfB5+1HSd4udm3eTvI+PRscV1qwm6jkWLRKWfPK9ww8vXZ+cvV+9uFPnuH322qREIhhnTZPnogMFBEVkft8tqWKSLmIPNlZ5Wqv88+N4+1X644A+vtTRRx1eBRLvu7FUYdH8fennFkbfvypnHfeL2bBZ714+9VUbr27gMpK5dMvShizbyTfzE3j5VedPgwrVpZRVaWuSvAALj43kdkze9fZ9sCTBUw4PJY13wxgwuGxPPBkAQCr1pTx+vs7WTGvP7NnpnP9XblUVipz5u3mgNFRLP2sH8/9y6k1WLaylCrFtQleiRaTwVrGM4FD5AQUJZsMBjCMg+V4DpbjSaU361kNwEZ+YjQHM5hRbGYdABtYzSCGB2eC5xWAefKCQqjFL4mMpHzrVrIeeJSSn9bS7aTjWnReZO9exI3dj8y//I2cp5+n+7ln1oys3fbqm5RudKY03LVoCVv++ACZ9/0NT7duxB18IAAla9eTdf8jZP71EfKe/yfdJ5+NJy42MDfZQlFRwruzd5K3rbJN5992bRIvP5HW6L4Hfp/K4rn9WTy3P2NG1cauww+KrtkeVAke4IkJZ8cvBcy7/E3yFm9m2CV7GvheV+Kg7qQfO5jPps5i/m0fMvqWI2pG1i6Z9jkFP+YAsHnuWuZOmcmnF7xGdGoc/U8eXnONbcsyiekRR1x6w9rhjuL2+NXZNXnrgVOA//O+nwSs7LzitN9hB0exMaOizrbZc0r4z1vOPFDnT4rjV+fk8qd74D9zijnr9BiiooSB/cPZa2A43y8pIyIcSkqUCp/L/OVvRfx9WnJH3opfHHlIDL9klNfZ9sGcXXz2tjN/7UXnJnDs2VuY9rtUPpizk/NOjycqShjUP4LBAyNYuKSEiHAoLqmq8/v4/YPbeOaBhk+FbqIoVVQiKlRRQRTRhEtEzf5Kar9kwgij0vs/IYzdupNSikmWHp1R9JYLwqDnR66NX+Ep3Um/57aa99Vz5LVlxGu3EyfQ7cQJDbanXDCp5ufEY44g8ZgjGhwTN3Y0cWNHt/ozAyncA1demMij07fz57taX6s44YhY5n2zOwAl6xixvRM59pXJNe+r58irP+K1JYZddADDLjqgwfaxdx5T8/PgSaMZPKnxv4HUsX048h+dPG+iy2OYX2vyvE+3q0XkOe8C4B+LSIyI7C0ic0VkmYgsFpHB3lOKgdUiUv1ocB7whs/1BojIp96Fxj8Vkf7e7S+JyOMi8o2IrBeRc7zbRUT+JiI/iMgKETnPn/fXVrl5lfRKc5oje6V5yPU+IWZtraRvuqfmuPTeHjK3VnLMkdFk51Zy7Ck53HhtArM/LmbM6Eh69/I0en23yc6tpHea83zROy2cnDzn97FlayV902uTnL7p4WzZWsnxR8WyNbeSQ36VwW3XJvPBnF0cMDqa9F6d/YzSdtESwwCG8hX/4X98SDgRpIjTDLJWf+B/+h+2sonBjARgIMNZzWIy+Jl+DGYdP9TsM/5h8ctUu/bSJGa+s4PCorq1ea++vYP9j9vU4DXpiqwWXff/pm1jzLGbuOX3uZSW1mYP335fwtgJmzj5/ExWrin1672Yri0Q35JDgCmqeqWIvAGcDdwATFPVd0UkGie5rK6GmQVMFpGtQCXOxKbVHRmeBF5R1ZdF5DLgceAM777ewOHAcOAD4C2cpYzGAPsBqcB3IvKlqrbsX2AHa3TwkUB4uPDCU84TZHm5cub5ecx6KYW7791OxpZKpkyK5eQTmp+nyG32NBgrPFx49WknASovV06aksl7L/fm1j/ksmlLBVMnJXLaxIYdeoNZuZaRSyaHcTLhRLCCb8nSjfSWAewto9ibUWzQH8lgLYMZSYIkMZ5jASjQXKKIQYEV+i1CGEMYTZQE34jEYGy+aIbFL0NiQhhTJyXwxPOFxMTUdoe44OwELjg7oU3XvP/uFHr19FBWBlffnsODTxXwf7d0Z/99o9nw3UDi48KY/ekuzrp0K2u+GeCvWzHt5MIYVkcg+uRtUNWl3p+/BwYBfVT1XQBVLVFV37rsj4DjgSnA6/WudQgw0/vzP3GCYrX3VLVKVVcB1R0gDgdeU9VKVc0GvgAOrF9AEblKRBaJyKIX/9VwTh5/65HqYWu280S4NbuSHilOjVx6bw+bM2ufFDOzKumdVre27vmXd3L+pFgWfl9GRKTw0rPd+dtj7l6JKa2Hh6xsp+01K7uCnqnOPfft7WFzZm3T7ubMCtLr1V4+81IhU89NYP6iEiIjhVn/6MX9j+Z3XOH9JJ8cYogjUqIIkzB60IdCttU5phf9yGFLnW2q6u2Ltw8bWMVejKAX/clgbUcWv+Vau7h353dydlX82vHVt229T9OMG69MYsZrRezaXfst356avN5p4YgIUVHCJZMTWLikBHASyvg456v45AlxlJdrm/sDmgBwV/xqIBA1eb51zZVAkx3JVLVMRL4HbgVGAqc2dfgePkfq/X+TvOtgTgcoyuwX8Dz9pBOimfnmLm65PpGZb+7i5IlOjcvJJ8RwxXX5XH9VAlnZlazbUMEBY2sHVhRsr+KjuSW891oqsz8uIUycmr5Sl9fmn3pCHK+8sYM7bkjmlTd21NTCnToxjguvzebmq5PJzK5g7YZyxo+trZ0q2F7Jh3N3MWdWOh/M2UWYCCJQUuq+R61oYigkn0qtIAwPBeSQQDK7dQex4tQU5JJFHHVrDbLYSCq9iZBIKrUSEASopKLhh3Q2d6776Kr4NfCph9r9G954/e0kHHsk3c9yil44dx5aWkbSr05o9tyyzVvYNusdtKQUwoRuEycQd8AYAIrX/Mz2d/+DahVhUVGkTD2PiB6pqCoFb71P8cofkcgIUqaeR1S/vu29Db/rnuxh0mnxzJhZxKVTnH+H7anJy8quoHdaOKrK+//dxajhTqzfmlNBWg8PIsLCJSVUVUFK904bE9mk9494hsHn7ceo6w8FYO1rS6koLmf4ZQ2eRRo1/9YPyV+VTcq+vTn4wZNrtud+v5mVT82nqqKSpGE9GHPHMYSFB8HvwJ0xrI6O+C0WAZtF5AwAEYkSkfrDpx4G7lDVbfW2f4OzbBHABcBXzXzWl8B5IuIRkR7AkcDC9hS+tS67dhvHn5bDz+sq2OeALF55bRe3XJfA51+WMvawrXz+ZSk3X+eMFNpnWARnnBrD+GO2cvYFeTz8lyQ8nto4/+Dfi7j9xkREhAlHRbNkeRmHTMjm4vPd0zR5/q+3ctgpm1mzroz++2/ghZlF3HF9MnO/3M2wQzcy98vd3HG98z06clgUk06NZ9RRGzn5/EyeuL9Hnd/HfY/kc8+N3RERJh4dy6JlJex3TAZXXNB5I6/aqpuk0JM+LOBTvuUTFKUvg/iZH5ivH/OtfkI+2QxlTM05lVpBFhvpi9MlrD9DWM581vJDzbago214BZfQj1/h4exetoLKnQ1XI2iORESSetFk0n93Gz2vvYKCtz+gancxAPmz3iH1kimk33ULcePGUvjRXABKVv1IeW4e6X+4g5Qp55A/K3iXEL7lmiTy8ltXq3bU6Zs578qtfPZVMf3338Ccz53f69TrstnvmE3sd0wGefmV3HOTM4r27Q93MvroDMZO2MRNv8tl5rNpQTtiPizSQ9aX6yndXtym8/eeMoYDfld3kI5WKYvv/4xx9x7Psa9MJiYtgYyP1vijuP7h7vjVYaNrpwL/EJE/AeU4o9Bqlj1W1ZU0PirtN8AMEbkdyMW76HgT3sVpIlmG8+v+rapubX/xW27G042Pxvr3G42Pgrz9xkRuv7HxJOWvf0yq+Tk6WnjvtSAfSdmImc/0anT7J2/2aXT73Td15+6bGp9C4JE/1d5/dHQYc15v/BpuMVhGNhg8sR+H7PF4j4RzAEfVvE+WHhxC87Utncnt/Vm8Qjp+SVgYCYceTNFnX5J82kmtOjcirfbfZHhSN8IS4qncuZOw2BgQoarEqbCsKi7B082Z33L38pXEjz/AabocNICq4hIqCosanUS5MxStq31gSusRzs4NrXuA+uL9xmsl577VeLy67rIkrrssqVWf0VnEIww4dQTr3ljOiKsOavX5Pcb1JW9J3S4oZYUleCI8xPdPAqDngX356V9LGHDKPv4ocru5PYb5NclT1V+AUT7vH/LZfWwjp4yqv0FVXwJe8rleg/NU9ZJ67+O9/6/A7d6XMaazuShAduX4lXDkoWT+9RG6HX90ne07v1tM0dx5DY6P6JFKjysuqrOt9JdNaEVlzWTGKeefQ87TLyCREYRFR9Hr1hsAqNxehCc5qea88KRuVG5vfKUME3wGnTWKzy95gyHnj6mzPePjn1j72tIGx8f16cb4P0/c4/Uik6Kpqqii4Mcckof3JHPe+kbXr+00LophjXHvHBTGmODn8gDZVYTFRBM//gCK5n2FRNROYxR/4P7EH7h/s+dXFBaR98osUqeeVzMZctHn/6PntZcTNbA/hXPnUfDOv71z5+1hWgHjChFxkfSbOJT1b63AE1WbQvQ7YSj9Thja6uuJCOPuPZ4fnviaqvIqeh7YlzBPEPTHq+byGGZJnjEmIIJ1BnjTuIRjjiDrgUeJP7h2RYOW1ORVFZeQ+8wMkk6ZSNQgZ+qPyh07Kd+SSZR3ibO4/fcj5+nnAfAkdaOyYHvNtSq2F+KxWjxXGXzuaOZd/hb9Tx5Ws62tNXkA3Uf14oinzgQgZ2EGOzMKmzy+o4RCDLMkzxgTOEE4pYBpnCculrj9R7Nz/nfEe5cda64mTysqyH3uZeIOOoC4/fer2R4WG0NVcQnl2blEpPWg+MefiUhzphaM2XckO778mtgDxlD2yybCYqKtqdZlIhOj6XPMYDZ9+CP9f+UsQ9bWmjyoXb+2sqySn19dwtCLmq897jAuj2GW5BljAsflT8FdTeKxR7Hji29afPyuxcsoWbueyl272PntdwCkTj2PyL59SDn/HHKffwXChLCYGFIuPBeAmJHDKV65msw/TkMiImu2G3cZPHk/NrzzQ6vO+d9177Jz43YqisuZc9YrjL3jaHoe1J+1M5eydf5GtEoZdMZIehwQRFPquDyGWZJnjAkYtzd1dAXV69YCeBIT6P/3+1t8bvz4A4gf33BtUoDY/fYldr99G2wXEVLOO6v1BTWdrnodW4Do7rGcMvfKJo5uqLpJtr6R1x3KyOsObVfZAsXtMSyIejcaY4wxxhh/sZo8Y0zguPwp2BjTxbk8hlmSZ4wJjBAYmWaM6cJCIIZZkmeMCRyXB0hjTBfn8hhmSZ4xJnBcHiCNMV2cy2OYJXnGmIBxe1OHMaZrc3sMs9G1xhhXEZETRWSNiKwVkTsb2Z8sIu+KyHIRWSgio1p6rjHGhBJL8owxgaNteDVBRDzAU8BJwAhgioiMqHfY3cBSVR0NXAQ81opzjTGmlh/jV7X2PKh693tEZImIfNjcZ1mSZ4wJDK1d+7E1r2aMB9aq6npVLQNmAafXO2YE8CmAqv4IDBSRtBaea4wxDv/Hr3Y9qPq4EVjdkluwJM8YEzh+rskD+gAZPu83e7f5WgacBSAi44EBQN8WnmuMMbX8X5PXngdVRKQv8Cvg+ZZ8mCV5xpjAaVuSlyoii3xeV/lcsbHVwuuH1mlAsogsBW4AlgAVLTzXGGNq+T/Ja8+DKsCjwG+BqpZ8mI2uNcYEhNDmkWl5qjpuD/s2A/183vcFMn0PUNUi4FIAERFgg/cV29y5xhhTrY0xLFVEFvm8n66q0+tdtr7GHlQf8z6orsD7oCoipwA5qvq9iBzdksJYkmeMCRz/15N9BwwRkUHAFmAycL7vASKSBOz2NoVcAXypqkUi0uy5xhhTR+tjWFMPqdC+B9XJwGkicjIQDSSKyL9U9cI9fZg11xpjAiMAAy9UtQK4HpiD0/H4DVVdKSLXiMg13sP2AVaKyI84nZtvbOrcQNy6MSYEBGDgBT4PqiISiZO4feB7gIgkefeBz4Oqqt6lqn1VdaD3vM+aSvDAavKMMYEUgB5vqjobmF1v27M+P88HhrT0XGOM2SM/xzBVrRCR6odNDzCj+kHVu/9ZnAfVV0SkElgFXN7Wz7MkzxgTODaswRjjZkH2oOpzzDxgXnOfZUmeMSZg3L4kkDGma3N7DLM+ecYYY4wxIchq8owxgePyp2BjTBfn8hhmSZ4xJjBaPjmoMcYEnxCIYZbkGWMCxu39WYwxXZvbY5glecaYwHF5gDTGdHEuj2GW5BljAsbtT8HGmK7N7TGsyyd5a8ptgHG13Mqozi5CUJmTubSzi+B+Lg+QwW7IDQs6uwhBY99N13Z2EYLKipuf7uwihAaXx7AumeGIyFUiskhEFr07c2dnF8eY0KRtfJkm+cavzbq+s4tjTOgKgfjVJWvyVHU6MB3gu40DgvA/izHuJ96X8S/f+HV82CSLX8YESCjEsC6Z5BljOoilIMYYN3N5DLMkzxgTMG7vtGyM6drcHsMsyTPGBI7LA6QxpotzeQyzJM8YEzguD5DGmC7O5THMkjxjTGCo+5s6jDFdWAjEMEvyjDGB4/IAaYzp4lwewyzJM8YEjNufgo0xXZvbY5glecaYwHF5gDTGdHEuj2GW5BljAsbtT8HGmK7N7TGsSy5rZowxxhgT6qwmzxgTGEG6lqMxxrRICMQwS/KMMYHj8gBpjOniXB7DrLnWGBMQgtOfpbWvZq8rcqKIrBGRtSJyZyP7u4nIv0VkmYisFJFLffbd7N32g4i8JiLRfr1pY0zIaEsMCzaW5BljAkfb8GqCiHiAp4CTgBHAFBEZUe+w64BVqrofcDTwsIhEikgf4DfAOFUdBXiAye2+R2NM6PJj/OoM1lxrjAkYUb9HvfHAWlVdDyAis4DTgVU+xyiQICICxAP5QIV3XzgQIyLlQCyQ6e8CGmNCRwBiWIeymjxjTGC0pRav+XjaB8jweb/Zu83Xk8A+OAncCuBGVa1S1S3AQ8AmIAsoVNWP23ZzxpiQ5//41eEsyTPGBEwb++Slisgin9dVvpds5GPqh9aJwFIgHRgDPCkiiSKSjFPrN8i7L05ELvTvHRtjQonb++RZc60xJnDaFvTyVHXcHvZtBvr5vO9LwybXS4FpqqrAWhHZAAwHBgAbVDUXQETeAQ4F/tWmUhpjQl8QJm6tYTV5xpiACcDo2u+AISIySEQicQZOfFDvmE3ABAARSQOGAeu92w8WkVhvf70JwGr/3a0xJtRYTZ4xxuyJn4OeqlaIyPXAHJzRsTNUdaWIXOPd/yxwH/CSiKzAad69Q1XzgDwReQtYjDMQYwkw3b8lNMaElCBM3FrDkjxjTGAE6MlWVWcDs+tte9bn50zghD2c+wfgD/4vlTEm5ARp7VxrWJJnjAkclwfIruJzfZdj5Mw2nbtBfySTDQjCMMaQIr0aHLNDt/Mji6mgghjiGMV4wiWixed3tNV/v5N9bp7WpnPzvp1LwfIFiITR67gziR80vMExJTlbyPr4LarKSono1p0+p1yIJ6p2Xu7yogLWvvAAPQ6bSOr4Y9p8H8YPXB7DrE+eMSYgArXihfEvVW3z99hOLSKbDA7hBMZyBD+yBG1kXrHVfM/e7MshcgI9SGcja1p1fkdSVWhjGUrztlK4egmDL7uD/pOuIuuTt9GqqgbHZX70Bj2P/BWDL/stCUP2ZdvCz+vs3/rZe8TvtU+bymD8JxRWvLCaPGNM4Lh8ItFQVay7WMJXdKcH28mnikp+0mUUkEs4EezLwURKVLPXySWTNPoRJh5iiCNG4ykknyRS6hy3ix0kkQpACmks4X8MZlSLzw+0ssJ8Nr05nbj+e1OcuRGtKGfrZ++ze9NawqJj6XvaVMJj45u9zo61P9Btn7GEhYcTmZRCZFIqxVmbiO0zsO7n5ecQ228wAPEDh7Lxzen0POIkAIp+XkFktxQkItLv92nawOUxzJI8Y0zABOOTrXHsZgcjGcdw2Z+5+hYJJDNU9mO9rmI9qxjOWH7RNWxlU4Nzk+nBMBlDKcV0o3vN9mhiKKW4wfHxJJJLFj1JJ5vNlHiPaen5HaEsP5f0kyfT+4RzWPXgLcSk9aXXsaeT+/Uccr+eQ+/jzyZvwWcUrl7c4Ny4vnvR67izKN9RSEz6gJrtEQndqNhZ2OD4qNTe7Fy7koQhoyhas4yKou0AVJWVsm3BZww49xry6tXumc7h9hhmSZ4xJjCCdAZ444gmlm5SW2OWRl8AetGf5cwHYKAMYyDD2v1ZIxjHGpayQVfRg3TCgrCnUES3ZGLTBzpvREjcZwwA3UaOI+O9FwFIPehYUg86tt2flX7SeWz99F1yv/mYhL1HIh4PADlfz6H7uKMIi2y+FtV0gBCIYZbkGWNMF+RpMvw7C4s0V5MXRUxNrRxACcVEEdPg+DhJZH+OBGCX7iCPLIAWn98RwppoHhXv76O5mryIhG5U7Nhes718RyHh8d0aHB+VksaAc68BoDQ/hx3rnKWXi7M2smPNMnLm/ZvK0mIQISw8nO77H9GeWzNdmCV5ATZrRhHvzdqFKpwxOY4plyfy06oypt2TT/FupXdfD396NJX4hDCWLSrlgd/lExEp/PnxFPoNjGBHYRV3X5/H46/0wJm/1d3ef3Ebc14vQIGJ5yVzxqUprFtVzFP/l0VZqeLxwLV/6s2w/WJZtWg3T/0+k4hI4beP9iV9YBQ7iyp54DcZ/OnFAa78fVx+czb/+WQ3PVM9LJ/XH4D8gkomX7OVjRkVDOgXzuv/6EVykvNkP+3xfGa8tgOPBx69L5WJx8RRWqqccUkWW7Iq+PUl3fj1Jc6XyNW35XDNxd0Yu2/w1AJIwz7nJkjlsIVe9GMrGTV94pqryetBb35gIQN0CKWUUMzOOs2v1cq0hEiJRlXZwGr6sFerzu9wqhStWU63fcZSuGoxMX0HAc3X5MXvPYot//4n3ccdTcXOQsoKconp3b/BcRW7dhAel4BqFXnz55I85lAABp1/Q80xOV99RFhkVFAleJ7ea7n56iQeutfpX/nwMwXs3FXFH25rvg/l0h9Kue7OHIp2OHH+rhuTOe/0BACuuCWb75eVogpD9orgxcfSiI8Ljtpet8ew4Pgthqh1a8p4b9YuXno/jVf/24uvPitm04Zy/nJnPtffkcRrc3pz9MRY/jW9CIBXnyti2jOpXHt7N97+104AXniikEuvS3RlQlPfL2tKmPN6AY+8uxdPfjiYhZ/tYMuGUl58IJvzb+jBkx8O5sKbevLiA9kAvPNCHnc/1Y+Lb0tj9swCAGY9mcu5v3ZvwnvxuYnMntm7zrYHnixgwuGxrPlmABMOj+WBJ517XbWmjNff38mKef2ZPTOd6+/KpbJSmTNvNweMjmLpZ/147l9Of59lK0upUoIqwQNCYoHvrsCDh10UskDnUkAOezGiRefFSzfS6Mt8PmYJ/2MYY2r+ba7SRRRpPgBbyeAb/Yj5zCGKGNIZ2Oz5nUkiIinN28r6lx9h16af6XFoo9MuNhCd2ovE4WNYN+MBNr05nV7Hn42EOV+zmf99neKsDAAKVy9h7XN/Zd3zDxAen0jSvuMDdi/+FBUlvDt7J3nbKlt9bmyM8NLjaaz4wolnt/w+j+2FznUe+WMPlnzan6Wf9ad/n3CemtGwH2OncXn8spq8ANqwtoJRYyOJjnH+ke9/UDTz5hSzaX05Yw9yvowPOjya31yUwzW3JhEeLpSWKCXFSni4sHljOblbK9n/4OimPsY1MtaVMmxsTM3vY9/xscz/eAcisHun87i0a0cV3Xs682eFhwtlpUpJcRWecCFrYxnbtpaz70FxnXYP7XXkITH8klFeZ9sHc3bx2dt9ALjo3ASOPXsL036XygdzdnLe6fFERQmD+kcweGAEC5eUEBEOxSVVVFTUXuP3D27jmQd6duSttIjbOy2HqhiJ4xCf+aKr58gbzKhWX2uQ7MMgGk73MUJqlx/uL0Poz5BWnd+RIrt1Z/Blv615Xz1HXvWI19boccjx9Djk+Abb0086r+bnlHFHkjLuyCav0/PwE1v92YEW7oErL0zk0enb+fNdrRsBPXRwbXN4eq9weqZ6yN1WSVI3D4kJzneCqlJcogRBnl/D7THMavICaPCwCJYsLGV7QSUlxVV8/Xkx2VkV7DU0gi8/cfqhzJ29m+ws52nmkmsT+etd+cyasYNJF8fzzN8KufrWhv053GrA0Gh+WLibooIKSoqrWPTFTnKzyrnyd72ZMS2biw9bw4xpW7nkdidZmfTrVJ64J5P3X9zGqVO788rD2Vx4c/AlMu2VnVtJ7zTneat3Wjg5ec7fw5atlfRNj6g5rm96OFu2VnL8UbFsza3kkF9lcNu1yXwwZxcHjI4mvVeQPbMpzvQDrX0ZY4LWtZcmMfOdHRQW1a3Ne/XtHex/3KYGr0lXZDW4xsIlJZSVKYMH1sa3y27KJn30L6xZW871lwXJ915bYliQCbJvhdAyaO8ILromkRsuzCEmLowh+0Ti8Qj/92AKD/+xgBceL+SI42IJj3AeW4aOjGTGe85s74sXlJCa5kEV7r4uj/AIuPGeZFJ6eDrzltql/95RnHN1Kr+7eCPRsWEMGh6NJxxmv5rPlb/rxWEnJvK//xTy6J2Z3P/PgQweEcMjbzt9d35YuIvuaU5AmHZDBp4I4Yq7e5GcGrp/wo3FC8Gp4Xz1aefvpLxcOWlKJu+93Jtb/5DLpi0VTJ2UyGkTg6O20+1PwcaYuhITwpg6KYEnni8kJqa2yu2CsxO44OyEZs/Pyq7g4huyefGxNMLCas+f8WgalZXKb+7J5fUPdnLp5MSAlL+13B7DQvcbsgkichVwFcBd93fnzPObn+SyrU4/L57Tz3Ou//SD2+nZ28PAvSN44p9OjdTG9eV8/XndeaFUlRefLOIvT6byt9/nc9XN3cjaXMHrL+3g2tuTAlbWjjDx3GQmnpsMwMsPZZPSK4KX/5bN1b93kpbDT07ksbsz65yjqsx6Kpc7Hu/Hs/dmccFNPcneXMYHL23j4tvSOvwe/C2th4es7Ap6p4WTlV1Bz1Qnke/b28PmzNqm3c2ZFaT3qpvkP/NSIVPPTWD+ohIiI4VZ/+jFYadsDpokLxj7qLidb/wazv70lb3adb25+hb9GcJQ2Q+AjbqGCioYLCObPdd3uTJBGMhwekk/ABbp51Tg9Ckoo5RudGc/ObTOiF1F2UURR3EaERIck/+uevAWuo87il7Hng5A3sLPqSorbXHz6cY3/0Fx5kZi++xF/3OuqNm+ZfZr7M5YR5h3+bI+J00hOq0PhSu/J2/hZwCERUTR+4Szie7Zx8935V83XpnEuBMyuMQnEXv17R08/ExBg2MHD4zgzeedfshFO6o49cIs/nRHCgcf0LAbkscjnHtaAg89UxA0SZ7bY1iXTPJUdTowHeC7jQMC+p8wP6+S7qketm6p4POPdvPCu71qtlVVKTOeLOSsC+ommf95axeHHRNNYrcwSooVCQMJg5Jil/+1AdvzKkhKDScns4xv5hTx0Ft78e9XtrFiwW5GHxzHsm92kT6gbrCf+/Z2Djw6gYRuHkqLqwgLg7AwobTE5cOevE49IY5X3tjBHTck88obO2oStFMnxnHhtdncfHUymdkVrN1QzvixtYGxYHslH87dxZxZ6XwwZxdhIohASWlw/J1ULwlk/Ms3fh0fNqndv+EwwshhCwN1eItWuah7roeRHEisJFCqxSzgU1I0jQiJZJzUrrm6TOfTg3Sg7ojdXM1kEz8HTYIHIJ5wdvy8gtSDJ7RolYv6UsYfg5aXU7B0foN9aUefSuKw/epsi0jqzsAp1+GJjmXH+tVkznmTvabe1Nbid4juyR4mnRbPjJlFXDrFqb1rriavrEw5+7Ispk5KYNKptb9XVWXdL+XsPSgSVeXDT3YxfO/g+HsIhRjWJZO8jnTHr/MoKqjEEy7cfl93EruFMWtGEW/+0xk9e8zEWE6dVFvrUlJcxX/e3lVT03f+FQnc+es8IiLgvsdTO+Ue/On+6zIo2l5JeDj8+t7eJHTz8Jv70/nHn7ZSValERIVxw1/Sa44vKa7i03e28+eXBwJwxuUp/OXaDMIjhDse69tJd9F25/96K198U0xefiX999/AH25L4Y7rk5l89VZmvFZE/z7hvD7dqdUcOSyKSafGM+qojYSHC0/c3wOPp7Z5475H8rnnxu6ICBOPjuXpFwvZ75gMrr4oWJ6Ag7OPiqlLEPqwF5v4mb1bOfAiTmq/1KMkhkiNopxSIqj9kq7QcgrIYSTjGpy/lQx60a/thQ+EsDCS9zuY/EVf0vPIk1t9evyAoezatLbFx8f2GVT7c/qAOvPsBbNbrklq1SjYNz7YyZffFrOtoJKX33BmlJjxaBqjR0Ry6Y05FO2oQhVGj4jk6WAZRBagGCYiJwKPAR7geVWdVm9/MjADGAyUAJep6g8i0g94BegFVAHTVfWxpj7LkrwAe+7Nhs2Jky9LZPJljX8RR8eE8cys2nPGjo/mtTm9Gz3WjR58fVCDbSPHxfH4B4MbPT46JoxpM2vPGXVgHE//d++AlS/QZj7Tq9Htn7zZePPM3Td15+6bGp837JE/9aj5OTo6jDmvB18Tj9ufgruKfgzmWz5hoNadEy9LN7GRNQ2OjyWe0XJInW2Fmk8VVcRQt/Yrh0y605NwiaizvVIr2MZWhjPWT3fhP8ljD2f9i38j5aBj6mwvXPk9ed81XG4sMimVfmdc0ux1c76cTe43HxPXfwg9jzqFsPC6X8EFyxcQP6hzRxo3pWhdbZxO6xHOzg2Nx+3GXHhOAhee03hN3/8+CN4Hdn/HMBHxAE8BxwObge9E5ANVXeVz2N3AUlU9U0SGe4+fAFQAt6rqYhFJAL4XkU/qnVuHJXnGmMCxJM8VwiWC3jqATfyMh9p+n72lP71pOJlvfaVazEoWMpIDG8xzl80m0mn4cJdLFkmkBlVTbTVPVDTdRo4j//v/IeG1yWm3kQfQbeQBbbpmzyN/5UyAXFlJ1pw32LbgU3ocNrFm/66NP7N9+QIGXnBDE1cxHc7/MWw8sFZV1wOIyCzgdMA3URsB/BVAVX8UkYEikqaqWeAsF6OqO0RkNdCn3rl1WJJnjAkYq8lzj/4MYQFzayYqhpbV5FVoOUv5msGMqrMWLkCZllJEAaM5tME1soOxqdZHyrgjWf/yI3UmKm5PTV5EvNN6I+HhJO07nm0L59XsK8nJJHPOG/Q/50rCY4Jk0JQB2hTDUkVkkc/76d5+tNX6ABk+7zcDB9W7xjLgLOArERkPDAD6Atk15RIZCIwFFjRVGEvyjDGBoUCVZXluESGRpGlftrChJtFrriavSqtYxjf0ZgBp0rDJLYfNpNIbj9QdFe7008tlFMG70oMnJo7E4WMoWL6gJtFrT01e+c4iIuITUVV2/LyCqB7eaZCKCsh470X6/Op8oroHSV8042hbDMtT1YYdUGs1NtVz/Q+ZBjwmIkuBFcASoGb6exGJB94GblLVoqYKY0meMSZwLMdzlf4MJYN1LT4+mwy2k0c5ZWTqLwCM5EASJAlwBlYMZHiD83LYQgppeCS4v4JSDjya/MVfteqcDTOfoGxbDlXlpfz09B9JP+k84gcNZ8uH/6JytzPgLrpnOr1PmARA7tcfU1m8m6xP3gZAJIy9Lr7Fvzdi2s7/MWwz1KnC7gvUmTfMm7hdCiBO/4cN3hciEoGT4L2qqu8092HB/S/MGONq1lwb/KqXNAOIkmiO5cwmjq6rtwygNwP2uH+cHN3o9nQZWKdZOJhUL2kGEB6XwD63PNCq8wed33ifuoGTr210e/pJ59VZ8swElwDEsO+AISIyCNgCTAbOr/OZIknAblUtA64AvlTVIm/C9wKwWlUfacmHWZJnjAkcm0LFGONmfo5hqlohItcDc3CmUJmhqitF5Brv/meBfYBXRKQSZ1DF5d7TDwOmAiu8TbkAd6vq7D19niV5xpiAsZo8Y4ybBSKGeZOy2fW2Pevz83xgSCPnfUXjffr2KKyNZTTGmE4hIieKyBoRWSsidzayv5uI/FtElonIShG51Gdfkoi8JSI/ishqkXqTvRljTAixmjxjTGAofu+03MKJRK8DVqnqqSLSA1gjIq96+7c8BnykqueISCQQ698SGmNCRgBiWEezJM8YExDOuo9+j5AtmUhUgQRvJ+V4IB+oEJFE4EjgEgBv0lfm7wIaY0JDgGJYh7LmWmNM4FS14dW0xiYSrb+e25M4HZczceaYulFVq4C9gFzgRRFZIiLPi4jNPGuM2TP/xq8OZ0meMSZgRLXVL7wzxvu8rvK9ZCMfU/9ReyKwFEgHxgBPemvxwoH9gWdUdSywC2jQp88YY6q1IX4FFWuuNcYERtv7szQ1Y3yzE4niTCI6TVUVWCsiG4DhwCZgs6pWLwP0FpbkGWP2JAT65FlNnjEmQNSZY6q1r6bVTCTqHTgxGfig3jGbgAkAIpIGDAPWq+pWIENEhnmPm0ATC3sbY7o6v8evDmc1ecaYgPH3HFMtnEj0PuAlEVmB07x7h6rmeS9xA/CqN0Fcj3fpIGOMaYzb5/q0JM8YEzgBeLJtwUSimcAJezh3KdDU4uHGGFMrCGvnWsOSPGNMYChIEI42M8aYFgmBGGZJnjEmcFz+FGyM6eJcHsMsyTPGBI6746MxpqtzeQyzJM8YEzDBOG+UMca0lNtjmCV5xpjAcXmANMZ0cS6PYZbkGWMCQwnKZX6MMaZFQiCGWZJnjAkIITiX+THGmJYIhRhmSZ4xJnBcHiCNMV2cy2OYLWtmjDHGGBOCrCbPGBM4Ln8KNsZ0cS6PYZbkGWMCIwQ6LRtjurAQiGGW5BljAsbtnZaNMV2b22OYJXnGmMBxeYA0xnRxLo9hXTLJE5GrgKu8b69W1emdWR5jQpO6PkAGI4tfpmVu7uwChAD3x7AumeR5g6IFRmMCSXF9gAxGFr+M6SAhEMO6ZJJnjOkgLu+0bIzp4lwewyzJM8YEjNs7LRtjuja3xzBL8owxgePyAGmM6eJcHsMsyTPGBIYCVe4OkMaYLiwEYpglecaYAHH/yDRjTFfm/hhmSZ4xJnBcHiCNMV2cy2OYJXnGmMBxeYA0xnRxLo9hYZ1dAGNMiKruz9LaVzNE5EQRWSMia0Xkzkb2dxORf4vIMhFZKSKX1tvvEZElIvKh/27WGBNy2hLDgozV5BljAkRB/TvJlIh4gKeA44HNwHci8oGqrvI57DpglaqeKiI9gDUi8qqqlnn33wisBhL9WjhjTIjxfwzraFaTZ4wJHNXWv5o2Hlirquu9Sdss4PT6nwokiIgA8UA+UAEgIn2BXwHP+/M2jTEhyr/xq8NZkmeMcZM+QIbP+83ebb6eBPYBMoEVwI2qNY/jjwK/xfXz2BtjTPMsyTPGBEbb++Slisgin9dVPleVPXySr4nAUiAdGAM8KSKJInIKkKOq3/v9Xo0xocf65BljTBPa1nyRp6rj9rBvM9DP531fnBo7X5cC01RVgbUisgEYDhwGnCYiJwPRQKKI/EtVL2xLIY0xXUAQNsG2htXkGWMCx/998r4DhojIIBGJBCYDH9Q7ZhMwAUBE0oBhwHpVvUtV+6rqQO95n1mCZ4xpksv75FlNnjEmQPwf9FS1QkSuB+YAHmCGqq4UkWu8+58F7gNeEpEVOM27d6hqnl8LYozpAoIzcWsNS/KMMYGhQJX/xzeo6mxgdr1tz/r8nAmc0Mw15gHz/F44Y0zoCFAM60iW5BljAsflT8HGmC7O5THMkjxjTOC4PEAaY7o4l8cwS/KMMQESnFMKGGNMy7g/htnoWmNMYCioVrX6ZYwxQaENMawlWrD+drKIvCsiy0VkoYiMaum59VmSZ4wJnLZNhmyMMcHBz/HLZ/3tk4ARwBQRGVHvsLuBpao6GrgIeKwV59ZhSZ4xJnD8P0+eMcZ0HP/Hr5asvz0C+NT5eP0RGOid87Ml59ZhSZ4xJjBUnekHWvsyxphg0JYY1ryWrL+9DDgLQETGAwNwVvdpybl12MALY0zgWM2cMcbNWh/DUkVkkc/76ao63ed9S9bfngY8JiJLgRXAEqCihefWYUmeMSZg1GrmjDEu1oYY1tTa29CC9bdVtQhnDW5ERIAN3ldsc+fWZ821xpgAaUN/PKv5M8YEjYDEr2bX3xaRJO8+gCuAL72JX0vW7q7DavKMMYGh2GhZY4x7BSCGtXD97X2AV0SkElgFXN7UuU19niV5xpjAsXnvjDFuFoAY1oL1t+cDQ1p6blOsudYYY4wxJgRZTZ4xJiAUUGuuNca4VCjEMEvyjDGBoWrNtcYY9wqBGGZJnjEmYNz+FGyM6drcHsMsyTPGBI7Ln4KNMV2cy2OYqM1LZYwJABH5CEhtw6l5qnqiv8tjjDGt0cYYFlTxy5I8Y4wxxpgQZFOoGGOMMcaEIEvyjDHGGGNCkCV5xhhjjDEhyJI8Y4wxxpgQZEmeMcYYY0wI+n80WGfUtBBqkQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(1, 2, figsize=(10, 5))\n", + "ax1, ax2 = axes\n", + "\n", + "im1, bar = heatmap(monoreplicated_ratio_df.values, \n", + " list(monorb_df.index), \n", + " list(monorb_df.columns),\n", + " cmap=\"viridis\",\n", + " ax=ax1)\n", + "\n", + "\n", + "_ = annotate_heatmap(im1, \n", + " data=monoreplicated_ratio_df.values, \n", + " valfmt=\"{x:.0%}\", \n", + " color=\"black\",\n", + " threshold=1)\n", + "\n", + "im2, bar = heatmap(monorb_df.values, \n", + " list(monorb_df.index), \n", + " list(monorb_df.columns),\n", + " cmap=\"viridis\",\n", + " ax=ax2)\n", + "\n", + "\n", + "_ = annotate_heatmap(im2, \n", + " data=monoanno_df.values, \n", + " valfmt=\"{x:^}\", \n", + " color=\"black\",\n", + " threshold=1)\n", + "\n", + "plt.savefig('cmono_ncmono_mono.filtered_results.pdf')\n", + "plt.savefig('cmono_ncmono_mono.filtered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Non-zero ratio and co-expression mean and variances" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "celltype = 'monocyte'\n", + "annotated_coeqtl_df = pd.DataFrame()\n", + "for celltype in celltypes:\n", + " celltype_annotated_coeqtl_df = pd.read_csv(\n", + " workdir/f'output/filtered_results/UT_{celltype}/coeqtls_fullresults_fixed.all.annotated.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t'\n", + " )[['mean_onemillionv2', 'var_onemillionv2', \n", + " 'gene2_nonzeroratio_onemillionv2',\n", + " 'eqtlgene_nonzeroratio_onemillionv2',\n", + " 'gene2_isSig']]\n", + " celltype_annotated_coeqtl_df['celltype'] = celltype\n", + " annotated_coeqtl_df = pd.concat([annotated_coeqtl_df, \n", + " celltype_annotated_coeqtl_df],\n", + " axis=0)\n", + " \n", + "annotated_coeqtl_df_clean = annotated_coeqtl_df.replace([np.inf, -np.inf], np.nan, inplace=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEJCAYAAAB2T0usAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmNklEQVR4nO3deZhcZZn+8e+dTmMiCWuCIE0S0HYgsjShA+ISmWDYBAEBARkMiwYRZBNnGPWSqIz+ZgCJQAAzDmIwLLIjMMi+ioSsQIjQyCINAZIgIQ2dkOX5/XFOZyrd1emqdJ2q7ur7c119ddU5p049p5d6znnP+z6vIgIzM+vb+lU6ADMzqzwnAzMzczIwMzMnAzMzw8nAzMxwMjAzMzJOBpIGSJouaa6keZJ+kmebvSQtkTQn/fpxljGZmVlH/TPe/3JgbES0SKoFHpP0vxHxl3bbPRoRB2Yci5mZdSLTZBDJiLaW9Glt+tXtUW5DhgyJESNGdHc3ZmZ9ysyZMxdFxNB867K+MkBSDTAT+CQwOSKezLPZnpLmAm8AZ0fEvDz7mQBMABg2bBgzZszIMGozs+oj6dXO1mV+AzkiVkVEA1AH7C5px3abzAKGR8QuwCXArZ3sZ0pENEZE49CheRObmZmtp7L1JoqId4GHgP3aLX8vIlrSx3cBtZKGlCsuMzPLvjfRUEmbpI8HAl8C/tpumy0lKX28exrT4izjMjOztWV9z2Ar4HfpfYN+wB8i4g5J3waIiCuAw4GTJa0EWoGjwqVUzaxIK1asoLm5mWXLllU6lIobMGAAdXV11NbWFvwa9cbP3cbGxvANZDPL9fLLLzN48GA233xz0saGPikiWLx4MUuXLmXbbbdda52kmRHRmO91HoFsZlVh2bJlfT4RAEhi8803L/oKycnAzKpGX08Ebdbn55D5OAOznmbSpEk0NTV1WN7c3AxAXV3dWsvr6+s544wzyhGaWcU4GZilWltbKx2CWcU4GVif09lZ/imnnALA5MmTyxiN9VavvfYa3/jGN3jzzTfp168fEyZM4PTTT+90+x//+MeMGTOGL33pS3nXP//885x00km8++67LF++nC984QtMmTKFGTNmMHXqVC6++OKsDgVwMjAzWy/9+/fnwgsvZNSoUSxdupTddtuNcePGMXLkyLzb//SnP13n/k477TTOPPNMDj74YACeeeYZABobG2lszNsBqKR8A9nMqtbPfvYztt9+e8aNG8fRRx/NBRdcwN/+9jf2228/dtttN77whS/w178m42CPO+44TjvtND772c+y3XbbceONN67Zz/nnn8/o0aPZeeedOffccwHYaqutGDVqFACDBw9mhx124PXXX+80luOOO27NPs855xxGjhzJzjvvzNlnnw3AggUL1rpftdNOOwHw0EMPceCBSVHnhQsXMm7cOEaNGsVJJ53E8OHDWbRoUUl+Vk4GZlaVZsyYwU033cTs2bO5+eab1xS3nDBhApdccgkzZ87kggsu4Dvf+c6a1yxYsIDHHnuMO+64g3POOQeAe+65h6amJqZPn86cOXOYOXMmjzzyyFrv9corrzB79mz22GOPLuN65513uOWWW5g3bx5PP/00P/rRjwA488wzGTt2LPvvvz8XXXQR7777bofX/uQnP2Hs2LHMmjWLQw89lL///e/r++PpwM1EZlaVHnvsMQ4++GAGDhwIwEEHHcSyZcv485//zBFHHLFmu+XLl695fMghh9CvXz9GjhzJW2+9BSTJ4J577mHXXXcFoKWlhaamJsaMGbPm+WGHHcakSZPYaKONuoxro402YsCAAXzzm9/ky1/+8pqz/uOPP559992Xu+++m9tuu41f//rXzJ07t8Mx3XLLLQDst99+bLrppuv74+nAycDMqlK+6gqrV69mk002Yc6cOXlf85GPfKTD6yOCf//3f+ekk07qsP2KFSs47LDDOOaYY/jqV79aUFz9+/dn+vTp3H///Vx33XVceumlPPDAAwB8/OMf54QTTuCEE05gxx135Nlnn+3ymErFzURmVpU+//nP88c//pFly5bR0tLCnXfeyUc/+lG23XZbbrjhBiD5cG1/9t3evvvuy5VXXklLSzJP1+uvv87bb79NRHDiiSeyww47cNZZZxUcV0tLC0uWLOGAAw5g0qRJaxLT3XffzYoVKwB48803Wbx4MVtvvXWHY/rDH/4AJFcs//jHPwp+3674ysDMqtLo0aP5yle+wi677MLw4cNpbGxk4403Ztq0aZx88smcd955rFixgqOOOopddtml0/3ss88+zJ8/nz333BOAQYMG8fvf/54XXniBq6++mp122omGhgYAfv7zn3PAAQesM66lS5dy8MEHs2zZMiKCiy66CEg+3E8//XQGDBgAJDett9xyyzU3uAHOPfdcjj76aK6//nq++MUvstVWWzF48ODu/JjWcKE6s5THGfRu8+fPZ4cddlhrWUtLC4MGDeKDDz5gzJgxTJkyZU0PoN5o+fLl1NTU0L9/f5544glOPvnkTpu88v081lWozlcGZla1JkyYwHPPPceyZcsYP358r04EAH//+9/52te+xurVq9lggw347//+75Lt28nAzKrWNddcU/b3POWUU3j88cfXWnb66adz/PHHd3vf9fX1zJ49u9v7ycfJwMyshHprM6N7E5mZmZOBmZk5GZiZGb5nYGZ9wMmnns5bJSroBvCxIUO4/NJfrXObmpqaNcXmAG699VZGjBiRd9tBgwatGdRWKU4GZlb13lq0iIUbb1+6HS76a5ebDBw4sNMxAD1Rps1EkgZImi5prqR5kn6SZxtJuljSi5KeltS7OwKbmeXR0tLC3nvvzahRo9hpp5247bbbOmyzYMECxowZQ0NDAzvuuCOPPvookIxO3nPPPRk1ahRHHHFEJlcRWd8zWA6MjYhdgAZgP0mfabfN/kB9+jUBuDzjmMzMMtfa2kpDQwMNDQ0ceuihDBgwgFtuuYVZs2bx4IMP8r3vfa9D4blrrrmGfffdlzlz5jB37lwaGhpYtGgR5513Hvfddx+zZs2isbGRX/7ylyWPN9NmokiOtC2F1aZf7etfHAxMTbf9i6RNJG0VEQuyjM3MLEvtm4lWrFjBD37wAx555BH69evH66+/zltvvcWWW265ZpvRo0dzwgknsGLFCg455BAaGhp4+OGHee655/jc5z4HwIcffrimTlIpZX7PQFINMBP4JDA5Ip5st8nWwGs5z5vTZWslA0kTSK4cGDZsWGbxmpllYdq0aSxcuJCZM2dSW1vLiBEjWLZs2VrbjBkzhkceeYQ777yTY489lu9///tsuummjBs3jmuvvTbT+DLvWhoRqyKiAagDdpe0Y7tNlO9lefYzJSIaI6Jx6NChGURqZpadJUuWsMUWW1BbW8uDDz7Iq6++2mGbV199lS222IJvfetbnHjiicyaNYvPfOYzPP7447z44osAfPDBB7zwwgslj69svYki4l1JDwH7AbkzNjQD2+Q8rwPeKFdcZlb9PjZkSEE9gIraX5GOOeYYDjroIBobG2loaGD77Tv2bnrooYc4//zzqa2tZdCgQUydOpWhQ4dy1VVXcfTRR6+Zle28887jU5/6VLePI1emyUDSUGBFmggGAl8C/rPdZrcDp0q6DtgDWOL7BWZWSl2NCchC+x4/Q4YM4YknnljntuPHj2f8+PEd1o8dO5annnqq9EHmyPrKYCvgd+l9g37AHyLiDknfBoiIK4C7gAOAF4EPgO6X9jMzs6Jk3ZvoaWDXPMuvyHkcwClZxmHFmTRpEk1NTR2WNzc3A1BXV7fW8vr6es4444xyhGZmGfEIZCtYa2trpUMws4w4GVgHnZ3le1pIs+rlqqVmZuZkYGZmbiYysz7gO2eexlv/KGEJ602HcNlFF3e6fvHixey9994AvPnmm9TU1NA2WHb69OlssMEGJYulVJwMzKzqvfWPRSzdb3jpdnh3x9HDuTbffPM1dYkmTpzIoEGDOPvss9esX7lyJf3796yP354VjZlZlTruuOPYbLPNmD17NqNGjWLw4MFrJYkdd9yRO+64gxEjRvD73/+eiy++mA8//JA99tiDyy67jJqamkzj8z0DM7MyeeGFF7jvvvu48MILO91m/vz5XH/99Tz++OPMmTOHmpoapk2blnlsvjIwMyuTI444ossz/Pvvv5+ZM2cyevRoIBnfs8UWW2Qem5OBmVmZbLjhhmse9+/fn9WrV6953lbOOiIYP348v/jFL8oam5uJzMwqYMSIEcyaNQuAWbNm8fLLLwOw9957c+ONN/L2228D8M477+Qtd11qvjIws6r3sU2HdNkDqOj9ddNhhx3G1KlTaWhoYPTo0WtKUo8cOZLzzjuPffbZh9WrV1NbW8vkyZMZPryEvaHycDIws6q3rjEBWZs4cWLe5QMHDuSee+7Ju+7II4/kyCOPzDCqjtxMZGZmTgZmZuZkYGZVJJkexdbn5+BkYGZVYcCAASxevLjPJ4SIYPHixQwYMKCo1/kGsplVhbq6Opqbm1m4cGGlQ6m4AQMGdJiRsCtOBmZWFWpra9l2220rHUav5WYiMzPLNhlI2kbSg5LmS5on6fQ82+wlaYmkOenXj7OMyczMOsq6mWgl8L2ImCVpMDBT0r0R8Vy77R6NiAMzjsXMzDqR6ZVBRCyIiFnp46XAfGDrLN/TzMyKV7Z7BpJGALsCT+ZZvaekuZL+V9KnO3n9BEkzJM1wbwEzs9IqSzKQNAi4CTgjIt5rt3oWMDwidgEuAW7Nt4+ImBIRjRHR2DaXqJmZlUbmyUBSLUkimBYRN7dfHxHvRURL+vguoFZS90sCmplZwbLuTSTgf4D5EfHLTrbZMt0OSbunMS3OMi4zM1tbQb2JJO0L1AH3R8QrOctPiIgr1/HSzwHHAs9ImpMu+wEwDCAirgAOB06WtBJoBY6Kvj6e3MyszLpMBpJ+DnyepG3/B5ImRcQl6epTgU6TQUQ8Bmhd+4+IS4FLC47YzMxKrpBmooOAsRFxBrAbsL+ki9J16/ygNzOz3qGQZNA/IlYCRMS7JMlhI0k3ABtkGJuZmZVJIcngb5K+2PYkIlZFxInA88AOmUVmZmZlU0gyOAKY3n5hRPwI2KbkEZmZWdl1eQM5IloBJN0OXAfcFhHvp+tezzY8M7O1TZo0iaamprWWNTc3A+St4V9fX88ZZ5xRjtB6tWLGGVxI0qvoOUk3SDpcUnFT6ZiZZaC1tZXW1tZKh9GrFVy1NCIeBh6WVAOMBb5F0q10o4xiMzPrIN9Z/imnnALA5MmTyxxN9SiqhLWkgSS9iY4ERgG/yyIoMzMrr4KTgaTrgT2Au4HJwEMRsTqrwMzMrHyKuTL4LfD1iFiVVTBmZlYZxdwzuFvSZ9N5CfrnLJ+aRWBmZlY+xTQTXQ18ApgDtF0dBOBkYGbWyxXTTNQIjHRFUTOz6lPMOINngS2zCsTMzCqnmCuDISQDzqYDy9sWRsRXSh6VmZmVVTHJYGJWQZiZWWUVNQJZ0seA0emi6RHxdjZhmZlZORV8z0DS10iqlx4BfA14UtLhWQVmZmblU0wz0Q+B0W1XA5KGAvcBN2YRmJmZlU8xvYn6tWsWWlzk683MrIcq5srgbkl/Aq5Nnx8J3FX6kMzMrNwKPrOPiO8DU4CdgV2AKRHxb+t6jaRtJD0oab6keZJOz7ONJF0s6UVJT0saVexBmJlZ9xRVwjoibgJuKuIlK4HvRcQsSYOBmZLujYjncrbZH6hPv/YALk+/m5lZmXR5ZSDpsfT7Uknv5XwtlfTeul4bEQsiYlb6eCkwH9i63WYHA1Mj8RdgE0lbrdfRmJnZeilkDuTPp98Hd+eN0mqnuwJPtlu1NfBazvPmdNmCdq+fAEwAGDZsWHdCMTOzdrpMBpI2W9f6iHingH0MImleOiMi2l9NKN9u87zPFJJ7FjQ2Nla8WJ4n5TazalLIPYOZJB/OnX1ob7euF0uqJUkE0yLi5jybNAPb5DyvA94oIK4exxNym1lvVUgz0bbru3NJAv4HmB8Rv+xks9uBUyVdR3LjeElELOhk2x7Dk3KbWTUppJlonV09224Qd+JzwLHAM5LmpMt+AAxLX3sFyViFA4AXgQ+A47uM2szMSqqQZqIL17EugLGdrox4jPzNS7nbBHBKAXGYmVlGCmkm+udyBGJmZpVTSDPR2Ih4QNJX863v5KawmZn1IoU0E30ReAA4KM+6AJwMzMx6uUKaic5Nv/vGrplZlSq4NpGkTYBvACNyXxcRp5U8KjMzK6tiCtXdBfwFeAZYnU04ZmZWCcUkgwERcVZmkZiZWcUUM1PZ1ZK+JWkrSZu1fWUWmZmZlU0xVwYfAueTzIXcViiuy9pEZpWUr6BgZ9q2aysr0hUXH7RqUkwyOAv4ZEQsyioYs1Jrampi9ryn6Td0UJfbro4PAZj79ktdb7uwpduxmfUkxSSDeSS1g8x6lX5DB/HRwxpKus8PbppT0v2ZVVoxyWAVMEfSg8DytoXuWmpm1vsVkwxuTb/MzKzKFJwMIuJ3kgYCwyLi+QxjMjOzMiu4a6mkg4A5wN3p8wZJt2cUl5mZlVEx4wwmArsD7wJExBxgvWdBMzOznqOYewYrI2JJMpPlGhWfmN7M1tbZ2Irm5mYA6urq1lru8RIGxSWDZyV9HaiRVA+cBvw5m7DMrNRaW1srHYL1YMUkg++SjD5eDlwL/An4WRZBmdn66+wsv21k9eTJk8sYjfUWxfQm+oAkGfwwu3DMzKwSipnP4FPA2XScz2DsOl5zJXAg8HZE7Jhn/V7AbcDL6aKbI+KnhcZkZmalUUwz0Q3AFcBvSEYjF+Iq4FJg6jq2eTQiDiwiDrOqkO9Gb2c3ecE3ei1bxfYmuryYnUfEI5JGFBeSWd/lm7xWKcUkgz9K+g5wC2vXJnqnmzHsKWku8AZwdkTMy7eRpAnABIBhw4Z18y3NKi/fWb5v8lqlFJMMxqffv5+zrLvzGcwChkdEi6QDSGof1efbMCKmAFMAGhsbPb7BrMp5LoryKqY3UclHG0fEezmP75J0maQhnjPBzDwXRXkV05uoFjgZGJMuegj4dUSsWN83l7Ql8FZEhKTdScpjLF7f/ZlZdfFcFOVTTDPR5UAtcFn6/Nh02Tc7e4Gka4G9gCGSmoFz030QEVcAhwMnS1oJtAJHRYSbgApUirIDvhQ3MyguGYyOiF1ynj+Q3vjtVEQc3cX6S0m6nloJFdMjxZfiZgZFznQm6RMR8TcASdtR+HgDy0Cpyg74UtzMikkG3wcelPQSIGA4cHwmUZmZWVkV05vo/rRa6T+RJIO/RsSa8QaSxkXEvRnEaGZmGStmchsiYnlEPB0Rc3MTQeo/SxiXmZmVUVHJoAvqehMzM+uJSpkM3CXUzKyXKmUyMDOzXqqUyeCVEu7LzMzKqJiupUj6LB0nt5mafv9qSSMzK4Hm5mZWL2kp+biH1QtbaP6wuaT7NKukYmoTXQ18ApjD/w02C9Y9cY2ZmfUCxVwZNAIjXTvIyqUUM4HV1dWxeIMPMxlhXbdFxxisbyhFXbCepphk8CywJbAgo1jMuuSZwKwn681/n8UkgyHAc5Kms/ZMZ18peVRmeCYw67lKVResJykmGUzMKggzWz8uQW6lUkxtooezDMTMiucS5FYqxfQm+gxwCbADsAFQA7wfERtlFJuZFcAlyK0Uihl0dilwNNAEDCSZ4cwT05iZVYGiBp1FxIuSaiJiFfBbSX/OKK6SqMbuX2Z9hQcMllcxyeADSRsAcyT9F0kX0w2zCStbvbn7l5lZFopJBseSNCudCpwJbAMclkVQpVKN3b/M+goPGCyvYnoTvSppILBVRPwkw5jMzKzMiulNdBBwAUlPom0lNQA/XdegM0lXAgcCb0fEjnnWC/gVcADwAXBcRMwq6ggy5n7cZtYXFDvobHfgIYCImCNpRBevuYqkx1Fnxez2B+rTrz2Ay9PvPYb7cZtZX1BMMlgZEUuSk/nCRMQjXSSMg4GpafG7v0jaRNJWEdGj6h+5H7dZ8UpRaNDKp5hxBs9K+jpQI6le0iVAd7uWbg28lvO8OV3WgaQJkmZImrFw4cJuvq2ZVUJra6t78/VQxVwZfBf4IUmRumuAPwE/6+b757vMyFsiOyKmAFMAGhsbXUbbrIdzocHepZgrg5HpV39gAEkTz1PdfP9mki6qbeqAN7q5TzMzK1IxVwbTgLNJ5jVYXaL3vx04VdJ1JDeOl/S0+wVmZn1BMclgYUT8sZidS7oW2AsYIqkZOBeoBYiIK4C7SLqVvkjStfT4YvZv1te5ZIOVSjHJ4FxJvwHuZ+3JbW7u7AURcfS6dpj2IiqsU76ZmWWmmGRwPLA9yZl9WzNRAJ0mAzPLlks2WKkUkwx2iYidMovEzMwqppjeRH+RNDKzSMzMrGKKuTL4PDBe0ssk9wxE0uy/cyaRmZlZ2RSTDPbLLAqzKpZlscPm5uakdGSVWr2wsJ5Sq99NRjX322RgQftki+5GVn2KKmGdZSBm1aqpqYnZc5+BgQVMF758BQCzXyjg3631PQZ9dABsUNPNCHum+vr6grdtWpIk0fottut64y2K23dfUdS0l1Z93E+9TAZuRM12pS3Iu+qlJ4EPS7rPnqSYonUuc9F9xdxANjOzKuUrgz7O/dTNDHxlYGZm+Mqg18iqR0pTUxNsXJ03IM2scE4GvURmPVLeb6Hfxht3Mzoz6+2cDHqTLHqkzLu3pPuz8nNf/OpSqelCnQysRyi0GWx9BmUV2nW2N35YDhw4sOA+8+6L33uVY6pQJwPrEQpuBityUNbQzTdl108XVjGlN35Y1tXVFdy33n3xe4dKTRfqZGA9R4mbwVa99KQ/LM0K5K6lZmbmK4OuuFyDWd+WZaHBUt38LQUnAzOzdciy0GBPUjXJIKvs3draSr+hg1yuwdZbc3MztL6XFpYrodb31nQ5tIxlVmiw58g8GUjaD/gVUAP8JiL+X7v1ewG3AS+ni26OiJ8W+z4elGVmtv4yTQaSaoDJwDigGXhK0u0R8Vy7TR+NiAO7/YYelGU9UF1dHQs/WJXJmWW+QUhm6yPrK4PdgRcj4iUASdcBBwPtk4GZ9VJ95QZrtcs6GWwNvJbzvBnId3q0p6S5wBvA2RExr/0GkiYAEwCGDRuWQahmtj76yg3Wapd1MlCeZdHu+SxgeES0SDoAuBXoMLQzIqYAUwAaGxvb78PMKqkP3GCtdlkng2Zgm5zndSRn/2tExHs5j++SdJmkIRGxKOPYLNUTCp1l0uPGvW2sJ1v+Pk1NTYWXmifb5rWsk8FTQL2kbYHXgaOAr+duIGlL4K2ICEm7k4yKXpxxXNamXw2DNqgtqB5Pb6zdY9ZjrV5Fy4crmfv2S11vGslc1wVtu7BlvcLJNBlExEpJpwJ/IulaemVEzJP07XT9FcDhwMmSVgKtwFER4WagcvnIhtTXDy+oHk+WtXuy6HHj3jbW02U1hml9ZD7OICLuAu5qt+yKnMeXApdmHUdv54FLZpYlF6ozM7PqKUdR7TxwyazKrF5VcOeNona7nkUwnQwK0BN625iZZcnJoCvubWOlUOj9nuXvJ98/smFB+7RerF8N/YZu2GOKYFZNMsjsBuvqVQwcuFHFe9tY71VM0m/rT15fP7zk+7b1k91ny8o1rQk9QdUkA6sChfzD9cIz52IG//TGEwr3dKsOVZMMfIO1dyv0DNdnzlZumX22zLu3oPuL5VI1ycB6t0LPnnvjmXO184lYdXAyMDOrkJ7UU9HJoDdxjxSz6tHDeio6GfQS7pFiVmV6SF2wNk4GvUS190gxs8qqrmTgZhQzs/VSNcnAzShmFeQTsV6vapKBm1HMKqNPnIj1gWRXNcnAzCqj2k/E+kSyw8nAzGydqj3ZtfHkNmZm5isDM+tdJk2atKY5pk3b87Yz81z19fVFnd33VU4GZtbrDRzYcwq+9VZOBmbWq1T7WX6lrnwyv2cgaT9Jz0t6UdI5edZL0sXp+qcljco6JjOz3mTgwIGZX/1kemUgqQaYDIwDmoGnJN0eEc/lbLY/UJ9+7QFcnn43y0S+My/o/OzLbc5WTpX6W1NEZLdzaU9gYkTsmz7/d4CI+EXONr8GHoqIa9PnzwN7RcSCzvbb2NgYM2bM6PL9u/qnb9/Ht5h/+nVdyuXrO5zFB0pWx5flz60YWf2MOzu+tlm12tfQr5bjq5bfX0/QU37GxZI0MyIa863L+p7B1sBrOc+b6XjWn2+brYG1koGkCcAEgGHDhnUrqKwut3rKTaxqPr5SxNAT/ik7k+XPuFp+fz1Zbz6+rK8MjgD2jYhvps+PBXaPiO/mbHMn8IuIeCx9fj/wrxExs7P9FnplYGZm/2ddVwZZ30BuBrbJeV4HvLEe25iZWYayTgZPAfWStpW0AXAUcHu7bW4HvpH2KvoMsGRd9wvMzKz0Mr1nEBErJZ0K/AmoAa6MiHmSvp2uvwK4CzgAeBH4ADg+y5jMzKyjzAedRcRdJB/4ucuuyHkcQMeRFGZmVjYuVGdmZk4GZmbmZGBmZjgZmJkZGQ86y4qkhcCrZXzLIcCiMr5fufn4eq9qPjbw8ZXa8IgYmm9Fr0wG5SZpRmej9qqBj6/3quZjAx9fObmZyMzMnAzMzMzJoFBTKh1Axnx8vVc1Hxv4+MrG9wzMzMxXBmZm5mRgZmb00WQgaUtJ10n6m6TnJN0l6VOSWiXNljRf0nRJ4/O8drSkVZIOl7S5pDnp15uSXs95vkElji2Nsejjk7SxpD9KmitpnqTje+rxlZOk4yR9vAfEsSr9uc9Lf0dnSeqXs353SY9Iel7SXyX9RtJHKxlzMSSFpAtznp8taWL6eKKks9PHAyTdK+ncCoVaEjm/z7mSZkn6bKVjyrxqaU8jScAtwO8i4qh0WQPwMeBvEbFrumw74GZJ/SLit+myGuA/SUpyExGLgYZ03USgJSIuKOfxtNeN4zsFeC4iDpI0FHgemBYRDen2E+kBx1cBxwHPUvkJl1pzfhdbANcAGwPnSvoYcANwVEQ8kf4NHAYMJikL3xssB74q6RcRkXcQVnoCchMwMyJ+UtboSi/397kv8Avgi5UMqC9eGfwzsKJdGe05rD0PMxHxEnAWcFrO4u+S/DG+nX2Y6219jy+AwekHySDgHWBlOQKWNCLnbPZZSdMkfUnS45Ka0rPezSTdKulpSX+RtHP62omSrpT0kKSXJJ2Ws9+z0v09K+mMnOXfSPczV9LVkgZLellSbbp+I0mvKJm2tRGYlp7FDZS0m6SHJc2U9CdJW5XjZ5QrIt4mmQ/81PT3dQpJ8n8iXR8RcWNEvFXu2LphJUnPmjM7Wd8fuA5oiohzyhZVeWwE/KPSQfS5KwNgR6DT+ZXbmQVsDyBpa+BQYCwwOpvQSmK9jg+4lGTWuTdIziiPjIjVpQ+vU58EjiD5kHsK+DrweeArwA9IktnsiDhE0lhgKulVGckx/HMa9/OSLgd2JpkoaQ9AwJOSHgY+BH4IfC4iFknaLCKWSnoI+DJwK8mMfDdFxA2STgHOjogZabK4BDg4IhZKOhL4D+CEDH8ueUXES2kz0RYkv/PflTuGDEwGnpb0X3nW/StwX0ScUd6QMjNQ0hxgALAVyedKRfXFZFAM5TyeBPxbRKxKTsaqQu6B7AvMIfmj/ARwr6RHI+K9MsXyckQ8AyBpHnB/RISkZ4ARwHCSpg8i4oH0fsbG6WvvjIjlwHJJb5M0iX0euCUi3k/3eTPwBZIroBvbmiIi4p10H78h+cC5lSSJfCtPjP9E8sF7b/o3UANUcorWqvlDBIiI9yRNJblabW23+jFgT0mfiogXyh9dyeU2E+0JTJW0Y1Swr39fbCaaB+xW4La7AvPTx43AdZJeAQ4HLpN0SMmj6771Pb7jgZvTJoYXgZf5v6uGclie83h1zvPVJCct+T742v5xcl+7ah3bky7v8A8XEY8DIyR9EaiJiGc7ee28iGhIv3aKiH06O6Aspfd8VpE0WRbzO+/pJgEnAhu2W/4IcAbwvz3hhn4ppc17Q4C8BeTKpS8mgweAj0hac+YnaTTJmSc5y0YAF5A0CxAR20bEiIgYAdwIfCcibi1TzMVYr+MD/g7sna77GMlZ8EtliLdQjwDHAEjaC1jUxVXLI8Ahkj4qaUOSJr5HgfuBr0naPN3XZjmvmQpcC/w2Z9lSkuYnSG6qD03P5JBUK+nT3TyuoqU3+K8ALk3PJC8FxkvaI2ebf5G0Zblj6670Su0PJAmh/bqbgPOBuyVtUubQMiNpe5KrzMWVjKPPNROlTQ+HApMknQMsA14hOev4hKTZJO14S4FL2noS9RbdOL6fAVelzTIiaRLrSaWDJwK/lfQ0SQ+ZDt1+c0XELElXAdPTRb+JiNkAkv4DeFjSKmA2SY8hgGnAeSQJoc1VwBWSWoE9Sa4KL06bqPqTnMnO696hFaStjbmW5Gbr1cAvASLiLUlHARekPY1WkyTDm8sQVxYuBE7NtyIirkiT3O2S9omIZeUNrWTafp+Q/L+Nj4hVFYzH5SjM2kg6nOTm8LGVjsWs3PrclYFZPpIuAfYHDqh0LGaV4CsDMzPrkzeQzcysHScDMzNzMjAzMycDs6IoqWJ6afo4t5pmj6huara+nAzMSuM4wMnAei0nAzPyVjIdKukmSU+lX59bx2sPZ+3qpl+WdEvO+nFpbSQktUi6UEkN+/vT0cRI+oSku9NqqI+mo1LNysbJwPq8tKTED4GxEbELcDrwK+CiiBhNUiDvN529PiJuBGYAx6TFx+4Cdmj7oCep+9Q20ntDYFZEjAIeBtomaZkCfDcidgPOBi4r3RGadc2DzsySSq1rVTKV9CVgZE6F2o0kDe5sB7nSkiBXA/8i6bckZSy+ka5eDVyfPv49yQRDg4DPAjfkvN9HunlMZkVxMjDLX8m0H7BnRKxVSrmI8uW/Bf5IUhvqhojobKKgSN/r3baSxmaV4GYis/yVTO8hp1iakqlD1yW3uikR8QbJREE/Iil216YfSbE7SCbweSytvvqykpnVUGKXbhyPWdF8ZWB9XkTMy1PJ9DRgcloltT9JFdBvr2M3V5FT3TS9opgGDI2I53K2ex/4tKSZwBLgyHT5McDlkn5EUpn0OmBuqY7RrCuuTWSWkXQ8wuyI+J+cZS0RMaiCYZnl5WRgloH0zP99YFw6JWfbcicD65GcDMzMzDeQzczMycDMzHAyMDMznAzMzAwnAzMzA/4/C0k8XyBfguoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'],\n", + " y=abs(annotated_coeqtl_df_clean['mean_onemillionv2']),\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " fliersize=1,\n", + " palette='viridis',\n", + " showfliers = False)\n", + "# plt.savefig('mean_onemillionv2.filtered_results.pdf')\n", + "# plt.savefig('mean_onemillionv2.filtered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEGCAYAAACAd+UpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhX0lEQVR4nO3deXwV9b3/8dcnIRg04EZQayrBXrxKUSOEWrRSC6LW3Vqr/mwFteJVWkBrb22vj4ott97+3HBtSzdFcUXRqrfWFVFqa0kCKqLQusaCBNyIBojkc/+YSRqyzknOnGXyfj4eeSSZ9TM5J5/znc985zvm7oiISDIVZDsAERGJj5K8iEiCKcmLiCSYkryISIIpyYuIJFi/bAfQ2uDBg728vDzbYYiI5JWqqqp17l7a0bycSvLl5eUsWbIk22GIiOQVM3uzs3mxJ3kzewPYAGwBPnX3yrj3KSIigUy15L/i7usytC8REQnpwquISIJloiXvwKNm5sCv3H1OKis3NjZSW1vLxo0b44kujxQXF1NWVkZRUVG2QxGRPJGJJH+wu//TzIYAj5nZK+6+qHmmmU0BpgDsscce7Vaura1l4MCBlJeXY2YZCDc3uTvr16+ntraWYcOGZTscEckTsZdr3P2f4fe1wALgC23mz3H3SnevLC1t3wNo48aN7Lzzzn06wQOYGTvvvLPOaEQkJbEmeTPbzswGNv8MHA681IPtpDu0vKS/g4ikKu5yzS7AgjA59QNud/dHYt6n9GGzZ89m1apVW02rra0FoKysrN3yw4cPZ8aMGZkITSQrYk3y7v4asH+c+xDpTkNDQ7ZDEMmanLrjNVe8/fbbnHHGGaxZs4aCggKmTJnC9OnTO13+xz/+MePGjeOwww7rcP6rr77KueeeywcffMCmTZs45JBDmDNnDkuWLGHu3Llcd911cR1Kn9NRq3zq1KkA3HjjjRmORiT7lOQ70K9fP6666ipGjRrFhg0bGD16NBMnTmTEiBEdLv+Tn/yky+1NmzaNCy64gOOPPx6AF198EYDKykoqK3UDsIjEJ29vhvrpT3/K3nvvzcSJEznttNO48sor+cc//sGRRx7J6NGjOeSQQ3jllVcAmDx5MtOmTeOggw5izz33ZP78+S3bueKKKxgzZgz77bcfl156KQC77bYbo0aNAmDgwIHss88+vPPOO53GMnny5JZtXnzxxYwYMYL99tuPiy66CIDVq1dvVQ/ed999AVi4cCHHHHMMAHV1dUycOJFRo0Zx7rnnMnToUNat003CItI7eZnklyxZwr333ktNTQ333Xdfy6BmU6ZM4frrr6eqqoorr7yS888/v2Wd1atX8+yzz/LQQw9x8cUXA/Doo4+yatUqnn/+eZYuXUpVVRWLFi3aal9vvPEGNTU1HHjggd3G9d5777FgwQKWL1/OCy+8wCWXXALABRdcwPjx4/nqV7/KNddcwwcffNBu3csuu4zx48dTXV3NiSeeyFtvvdXTP4+ISIu8LNc8++yzHH/88QwYMACAY489lo0bN/LnP/+Zk08+uWW5TZs2tfx8wgknUFBQwIgRI3j33XeBIMk/+uijHHDAAQDU19ezatUqxo0b1/L7SSedxOzZsxk0aFC3cQ0aNIji4mK+/e1vc/TRR7e00s8880yOOOIIHnnkER544AF+9atfsWzZsnbHtGDBAgCOPPJIdtxxx57+eUREWuRlknf3dtOamprYYYcdWLp0aYfrbLPNNu3Wd3d++MMfcu6557ZbvrGxkZNOOonTTz+dr33ta5Hi6tevH88//zxPPPEEd955JzfccANPPvkkAJ/5zGc466yzOOussxg5ciQvvbT17QIdHZOISG/lZbnmS1/6Eg8++CAbN26kvr6ehx9+mG233ZZhw4Zxzz33AEHSbNtabuuII47gd7/7HfX19QC88847rF27Fnfn7LPPZp999uHCCy+MHFd9fT0ffvghRx11FLNnz275wHnkkUdobGwEYM2aNaxfv57dd9+93THdfffdQHCG8f7770fer4hIZ/KyJT9mzBiOO+449t9/f4YOHUplZSXbb7898+bN47zzzmPWrFk0NjZy6qmnsv/+nXfTP/zww1mxYgVjx44FoKSkhNtuu42VK1dy6623su+++1JRUQHAz372M4466qgu49qwYQPHH388GzduxN255pprgCBpT58+neLiYiC42Lvrrru2XBgGuPTSSznttNO46667+PKXv8xuu+3GwIEDe/NnEhHBcqlMUFlZ6W2fDLVixQr22WefdsvW19dTUlLCJ598wrhx45gzZ05Lj5h8tGnTJgoLC+nXrx/PPfcc5513Xoelp87+HtI59ZOXpDOzqs4eyJSXLXkIetK8/PLLbNy4kUmTJuV1ggd46623+MY3vkFTUxP9+/fn17/+dbZDEpEEyNskf/vtt2d8n1OnTmXx4sVbTZs+fTpnnnlmr7c9fPhwampqer0dEZHW8jbJZ4NO90Uk3+Rl7xoREYlGSV5EJMGU5EVEEizva/LnfWc676ZxIK9dBg/mFzdc2+UyhYWFLYOMAdx///2Ul5d3uGxJSUnLzVYiIpmW90n+3XXrqNt+7/RtcN0r3S4yYMCATodPEBHJJSrXpEF9fT0TJkxg1KhR7LvvvjzwwAPtllm9ejXjxo2joqKCkSNH8swzzwDB3bBjx45l1KhRnHzyyWr1i0haKcn3QENDAxUVFVRUVHDiiSdSXFzMggULqK6u5qmnnuJ73/teuwHHbr/9do444giWLl3KsmXLqKioYN26dcyaNYvHH3+c6upqKisrufrqq7N0VCKSRHlfrsmGtuWaxsZGfvSjH7Fo0SIKCgp45513ePfdd9l1111blhkzZgxnnXUWjY2NnHDCCVRUVPD000/z8ssvc/DBBwOwefPmlnF0RETSQUk+DebNm0ddXR1VVVUUFRVRXl7Oxo0bt1pm3LhxLFq0iIcffphvfetbfP/732fHHXdk4sSJ3HHHHVmKXESSTuWaNPjwww8ZMmQIRUVFPPXUU7z55pvtlnnzzTcZMmQI55xzDmeffTbV1dV88YtfZPHixfz9738H4JNPPmHlypWZDl9EEizvW/K7DB4cqUdMSttL0emnn86xxx5LZWUlFRUV7L13+94+Cxcu5IorrqCoqIiSkhLmzp1LaWkpN998M6eddlrLU6xmzZrFXnvt1evjEBGBBCT57vq0x6FtD5jBgwfz3HPPdbnspEmTmDRpUrv548eP529/+1v6gxQRQeUaEZFEU5IXEUkwJXkRkQRTkhcRSbC8v/AqIskwe/ZsVq1a1W56bW0tAGVlZVtNHz58ODNmzMhEaHlNSV5EclpDQ0O2Q8hreZ/kz79gGu++n8ahhncczE3XXNfp/PXr1zNhwgQA1qxZQ2FhIaWlpQA8//zz9O/fP22xiPQlnbXKp06dCujxmz2V90n+3ffXseHIoenb4CPt71Ztbeedd24Zt2bmzJmUlJRw0UUXtcz/9NNP6dcv7/+sIpIQykZpMHnyZHbaaSdqamoYNWoUAwcO3Cr5jxw5koceeojy8nJuu+02rrvuOjZv3syBBx7ITTfdRGFhYZaPQESSSr1r0mTlypU8/vjjXHXVVZ0us2LFCu666y4WL17M0qVLKSwsZN68eRmMUkT6moy05M2sEFgCvOPux2Rin5l28sknd9sif+KJJ6iqqmLMmDFAcEFpyJAhmQhPRPqoTJVrpgMrgEEZ2l/Gbbfddi0/9+vXj6amppbfm4cddncmTZrE5ZdfnvH4RKRvir1cY2ZlwNHAb+LeV64oLy+nuroagOrqal5//XUAJkyYwPz581m7di0A7733XofDEouIpEsmWvKzgf8EBnY008ymAFMA9thjj5Q3vsuOg7vtEZPy9nrppJNOYu7cuVRUVDBmzJiWoYNHjBjBrFmzOPzww2lqaqKoqIgbb7yRoUPT2DtIRKSVWJO8mR0DrHX3KjM7tKNl3H0OMAegsrLSO1qmK131aY/bzJkzO5w+YMAAHn300Q7nnXLKKZxyyikxRiUi8i9xl2sOBo4zszeAO4HxZnZbzPsUEZFQrEne3X/o7mXuXg6cCjzp7t+Mc58iIvIvedFP3j3lKk4i6e8gIqnKWJJ394U96SNfXFzM+vXr+3yCc3fWr19PcXFxtkMRkTyS88MalJWVUVtbS11dXbZDybri4uJ2w62KiHQl55N8UVERw4YNy3YYIiJ5KS9q8iIi0jNK8iIiCaYkLyKSYEryIiIJlvMXXiW9OnpYcmcPSgY9LFkk3ynJix6ULJJgSvJ9TEetcj0oWSS5VJMXEUkwJXkRkQRTuaaNji5MQucXJ3VhUkRymZJ8RLo4KSL5SEm+jc5a5bo4KSL5SDV5EZEEU5IXEUmwbpO8me1tZhPMrKTN9CPjC0tERNKhyyRvZtOAB4DvAi+Z2fGtZv8szsBERKT3urvweg4w2t3rzawcmG9m5e5+LWCxRyciIr3SXZIvdPd6AHd/w8wOJUj0Q1GSFxHJed3V5NeYWUXzL2HCPwYYDOwbY1wiIpIG3SX5M4A1rSe4+6fufgYwLraoREQkLbpM8u5e6+5rzOxaMzuozbzF8YYmIiK9FbWffDVwiZn93cyuMLPKOIMSEZH0iJTk3f0Wdz8K+AKwEvi5mbUfxUtERHJKqne8/huwN1AOvJL2aEREJK0iJXkza265/wRYTtB3/thYIxMRkV6LOgrl68BYd18XZzAiIpJekZK8u//SzHYPe9j0azV9UWyRiYhIr0VK8mb2P8CpwMvAlnCyA0ryIiI5LGq55kTg3919U5zBiIhIekXtXfMaUBRnICIikn5RW/KfAEvN7AmgpTXv7tNiiUpERNIiapL/Q/glIiJ5JGrvmlvMrD+wVzjpVXdv7G49MysmuDi7Tbiv+e5+aU+DFRGR1ETtXXMocAvwBsE48p81s0kRulBuAsaHDx0pAp41sz+6+196HrKIiEQVtVxzFXC4u78KYGZ7AXcAo7tayd0dqA9/LQq/vGehiohIqqL2rilqTvAA7r6SiL1tzKzQzJYCa4HH3P2vbeZPMbMlZrakrq4uYjgiIhJF1CS/xMx+a2aHhl+/BqqirOjuW9y9AigDvmBmI9vMn+Pule5eWVpamlLwIiLStajlmvOAqcA0gpr8IuCmVHbk7h+Y2ULgSOClVNYVaWv27NmsWhVttOvm5aZOnRpp+eHDhzNjxoyehiaSU6L2rtkEXB1+RWZmpUBjmOAHAIcBP085SpE2Vq1aRc3yFygoLel22SbfDMCyta91v2xdfbfLiOSTLpO8md3t7t8wsxfp4IKpu+/XzfZ3A24xs0KC0tDd7v5Qj6MVaaWgtIRtT6pI6zY/uXdpWrcnkm3dteSnh9+P6cnG3f0F4ICerCsiIr3XZZJ399Xh9zczE46IiKRTd+WaDXTcr90IusEPiiUqERFJi+5a8gMzFYiIiKRfdy35nbqa7+7vpTccERFJp+4uvFYRlGusg3kO7Jn2iEREJG26K9cMy1QgIiKSft2Va/Z291fMbFRH8929Op6wRCTJdMdy5nRXrrkQmEIwCmVbDoxPe0Qikni6YzlzuivXTAm/fyUz4YhIX6E7ljMj6kNDCoGjgfLW67h7SmPZiIhIZkUdhfJBYCPwItAUXzgiIpJOUZN8WYTByEREJMdEfWjIH83s8FgjERGRtIvakv8LsMDMCoBGNHaNiEheSOVB3mOBF8OHc4uISB6IWq5ZBbykBC8ikl+ituRXAwvN7I/ApuaJ6kIpIpLboib518Ov/uGXiIjkgagP8r4MwMy2c/eP4w1JRETSJeodr2OB3wIlwB5mtj9wrrufH2dw0nMaAEpEIHq5ZjZwBPAHAHdfZmbj4gpKOk7StbW1AJSVlW01vaOkqwGgJC6pvDdBjYJsi5rkcfe3zbZ6dsiW9IcjXWloaEhpeQ0AJZmS6ntTMidqkn/bzA4C3Mz6A9OAFfGFJR21fJrLKTfeeGOGoxH5F70380vUJP8fwLXA7kAt8CgQrYCbw+KqW+v0VERyRdTeNeuA02OOJePiqFurZi1x6axRksq1Gul7ovauKQXOof148mfFE1b30nXxJ911a9WsJdNUD5euRC3XPAA8AzxODl9w1ZtdkqyzVrnq4dKVqEl+W3f/QayRpEgXf/KXyg4imRN1gLKHzOyoWCORPq+hoUFnYyJpFrUlPx34kZltJhhPHjSevPSQyg4imRO1d83AuAMREZH0i3zHq5kdBzQPZbDQ3R+KJyQREUmXSDV5M/sfgpLNy+HX9HCaiIjksKgt+aOACndvAjCzW4Aa4OK4AhPJV+o9JLkkcrkG2AF4L/x5+ygrmNlngbnArkATMMfdr00lQJGO1NbW0vRhfdpvPmuqq6d2c21at9lMPYf+JR9fv3wVNclfDtSY2VOAEdTmfxhhvU+B77l7tZkNBKrM7DF3f7ln4YrkPvUeklwStXfNHWa2EBhDkOR/4O5rmueb2efdfXkH660meD4s7r7BzFYQDHKmJC+9UlZWxvr+m2MZSrlsSPthMSS99PplTirjya8mfGhIB24FRnW1vpmVAwcAf20zfQowBWCPPfaIGo6IiEQQ9Y7X7liXM81KgHuBGe7+Uet57j7H3SvdvbK0tDRN4YiICKQvyXtnM8ysiCDBz3P3+9K0PxERiSCV3jUps+B5gb8FVrj71XHuS0QkHZL2DNtuW/IW+Gw3i23uZPrBwLeA8Wa2NPzSQGciklfyefC8blvy7u5mdj8wuotlvtjJ9Gfppl4vIpJLkjaMedSa/F/MbEyskYiISNpFrcl/BTjXzN4EPiZonbu77xdbZCIi0mtRk/xXY41C0k63jYsIRL/j9U0AMxsCFMcakYiIpE2kJB+OJX8V8BlgLTAUWAF8Pr7Q4hdHazdXWrq6bVxEIPqF158CXwRWuvswYAKwOLaoREQkLaLW5Bvdfb2ZFZhZgbs/ZWY/jzWyDIijtauWrojkkqhJ/oNw/JlngHlmtpZgGGHppc4eMNGR5uWa++x2u+z2hb2KTUTyX9Qkv4jgoSHTgW8SPDTkJzHF1KesWrWKmmUvwoBB3S+8qRGAmpVvdr/sx/UUbB/p2S4iHYqrAQLhMAH9exyapCBqkjfgTwRPhroTuMvd18cWVV8zYBCFex6Y1k1uWf5YWrcnfU9sDZCGjyjZthj6960zzWw9FjJqF8rLgMvMbD/gFOBpM6t198N6HUE31JoQyaI4GiCv/ZXOh7vqe+IeEyfVUSjXAmuA9cCQ9IfTnloT+U3XHEQC2XosZNR+8ucRtOBLgfnAORl9TqtaE3lL1xxEsitqS34owVOdlsYYiyRVTNccmuqi3cjW9EFwOlyww4Dul62rz9A5qkhmRK3JXxx3ICIpKSikpH8Rw4fs2e2iqz4MykBRlmVIcMFLJClifTKUZFeiW7rbbMfw4UMj1THzeSzwJEv0+zOHKMknlVq6GRHXheWuHjfXm+1CbjyubsCAAZHfR3p/9o6SfFKppZsR8V1Yfg/6F7K+f/edA5o8WGbZ2te6X7auvvt9Z0BZWVnk95ven72jJC/SWzFdWC4o3S6WUUQlEOc9OLlwttSszyf5dNcFU60J1tbWQsNHYZfONGr4qOWUX6Qnkv7ejPMenNra2lg+QHry4dGnk3wsdUHVBEXyR0z34DQ0NFCz/AUKSku6XT5qua2npbacT/JxtibYdses1wXLysqo+2RLLG+0KBftRDqj92bvFJSWpH0Y857I+SQv+S3pp/wiuS7nk7xaEyIiPZfzSV7ymz6kRbJLSV6kF2IrRzV92tKjS/LPpk2baKprSmuX1aa6emo3p16iVJIXkT4pzutFW2iCfpbe7faQknwuiPpG2/Rx8H2b7SJtU+IXWzlq+WORxmqR3FRYWAil26a9d03ZkNRLlEryWZZKn/rmmyaGDx+a9m2LdCjBDZA4rxdtY5v5JK1b7bn8SPIJfqOlcvda3o7hkeDXL8nUAEmGnE/yeqPlN71++atPNED6gJxP8nqj5Te9fiLZlfNJXkQkNnGVErctzvrgh81iTfJm9jvgGGCtu4+Mc18iWRNHomj6NHKSSEVP+1onUZylxPr6ekpKuh+cDOIf/DDulvzNwA3A3Jj3I5IVcSWKl17aQCNNPY5LupcrpcS4y5SxJnl3X2Rm5XHuQySb4koUU6dOZdna12J5aEhP+lpL/irIdgBmNsXMlpjZkrq6umyHIyKSKFlP8u4+x90r3b2ytLQ02+GIiCRK1pO8iIjER0leRCTB4u5CeQdwKDDYzGqBS939t3HuUyQp0t3PunmbPelrLfkr7t41p8W5fZGkSqlrZtR+1qAHzfdBuuNVJAflSh9uyX+qyYuIJJiSvIhIgqlc08fMnj275fb6Zs2/N5/2tzZ8+PCUSgci0rGO/veg8/+/dP3vKckLAwboMXMi2RL3/5+SfB+jVrlIdmTrf09Jvo1snVKJiMRBST4ilTREJB8pybehVrmIJIm6UIqIJJiSvIhIginJi4gkmGryIiKtJO2GQSV5EZFu5HPvOiV5EZFWcrlV3hN5m+STdkrVVirHl4Rjg+Qcn0guydsk35F8PqWKQscnuSDpDaykydskn/Q3TZKPL8nHBn3zTEUf0Lkrb5O8SL5JSiLM9w+kvkZJXiTNlAQll+hmKBGRBFNLXiRP9MVav/SekrxInktKrV/ioSQvkifUKpeeUJIXkZygclQ8lOQlUXSjTvKoHNU7SvKSeEoS+UEftvFQkpdEUaIQ2Zr6yYuIJJiSvIhIginJi4gkmJK8iEiCKcmLiCSYkryISIIpyYuIJJiSvIhIgpm7ZzuGFmZWB7yZwV0OBtZlcH+ZpuPLbzq+/JXpYxvq7qUdzcipJJ9pZrbE3SuzHUdcdHz5TceXv3Lp2FSuERFJMCV5EZEE6+tJfk62A4iZji+/6fjyV84cW5+uyYuIJF1fb8mLiCSakryISIIlKsmb2a5mdqeZ/cPMXjaz/zWzvcyswcxqzGyFmT1vZpM6WHeMmW0xs6+b2c5mtjT8WmNm77T6vX82ji2MMeXjM7PtzexBM1tmZsvN7MxcPb5MMrPJZvaZHIhjS/h3Xx6+RheaWUGr+V8ws0Vm9qqZvWJmvzGzbbMZc6rMzM3sqla/X2RmM8OfZ5rZReHPxWb2mJldmqVQe63V67nMzKrN7KBsx5SYJ0OZmQELgFvc/dRwWgWwC/APdz8gnLYncJ+ZFbj778NphcDPgT8BuPt6oCKcNxOod/crM3k8bfXi+KYCL7v7sWZWCrwKzHP3inD5meTA8WXBZOAl4J9ZjqOh1WsxBLgd2B641Mx2Ae4BTnX358L3wEnAQOCTLMXbE5uAr5nZ5e7e4Q1CYePiXqDK3S/LaHTp1fr1PAK4HPhyNgNKUkv+K0Cju/+yeYK7LwXebr2Qu78GXAhMazX5uwRvsLXxh9ljPT0+BwaGCaIEeA/4NBMBm1l5q9bnS2Y2z8wOM7PFZrYqbKXuZGb3m9kLZvYXM9svXHemmf3OzBaa2WtmNq3Vdi8Mt/eSmc1oNf2McDvLzOxWMxtoZq+bWVE4f5CZvWFmJwOVwLyw1TXAzEab2dNmVmVmfzKz3TLxN2rN3dcCU4DvhK/XVIIP9efC+e7u89393UzH1kufEvQ2uaCT+f2AO4FV7n5xxqKK3yDg/WwHkZiWPDASqIq4bDWwN4CZ7Q6cCIwHxsQTWlr06PiAG4A/ELRYBwKnuHtT+sPr1L8BJxMkr78B/w/4EnAc8COCD6kadz/BzMYDcwnPogiO4Sth3K+a2S+A/YAzgQMBA/5qZk8Dm4H/Ag5293VmtpO7bzCzhcDRwP3AqcC97n6PmU0FLnL3JeGHwPXA8e5eZ2anAP8NnBXj36VD7v5aWK4ZQvCa35LpGGJyI/CCmf3/Dub9J/C4u8/IbEixGGBmS4FiYDeCvJJVSUryqbBWP88GfuDuW4LGUyK0PpAjgKUEb7bPAY+Z2TPu/lGGYnnd3V8EMLPlwBPu7mb2IlAODCUoQeDuT4bXC7YP133Y3TcBm8xsLUFp6kvAAnf/ONzmfcAhBGcs85vLAe7+XriN3xAkkfsJPhzO6SDGfydIqI+F74FCYHXa/gKpS8wbsZm7f2RmcwnOMBvazH4WGGtme7n7ysxHl1atyzVjgblmNtKz2Fc9SeWa5cDoiMseAKwIf64E7jSzN4CvAzeZ2Qlpj673enp8ZwL3haf6fwde51+t/EzY1Ornpla/NxE0MjpKaM3/EK3X3dLF8oTT2/0juftioNzMvgwUuvtLnay73N0rwq993f3wzg4oTuE1lS0EpcNUXvN8MBs4G9iuzfRFwAzgj7lwMTxdwjLbYKDDgcMyJUlJ/klgGzNraamZ2RiCliKtppUDVxKcnuPuw9y93N3LgfnA+e5+f4ZiTkWPjg94C5gQztuFoNX6WgbijWoRcDqAmR0KrOvmLGMRcIKZbWtm2xGU2p4BngC+YWY7h9vaqdU6c4E7gN+3mraBoAwEwcXo0rDlhZkVmdnne3lcKQsvjP8SuCFs+d0ATDKzA1st800z2zXTsaVDeHZ1N0GibzvvXuAK4BEz2yHDocXCzPYmOCtcn804ElOuCUsAJwKzzexiYCPwBkEL4XNmVkNQJ9sAXN/csyZf9OL4fgrcHJZHjKA0lUvDu84Efm9mLxD0GGnXvbU1d682s5uB58NJv3H3GgAz+2/gaTPbAtQQ9KABmAfMIkj0zW4GfmlmDcBYgrO468JSUT+CVufy3h1aJM013CKCC5S3AlcDuPu7ZnYqcGXY86aJ4EPuvgzEFZergO90NMPdfxl+gP3BzA53942ZDS0tml9PCP7fJrn7lizGo2ENJPnM7OsEF1W/le1YRDItMS15kY6Y2fXAV4Gjsh2LSDaoJS8ikmBJuvAqIiJtKMmLiCSYkryISIIpyYuELBiZ8obw59ajI+bEiJUiPaEkL9K9yYCSvOQlJXlJvA5Gpyw1s3vN7G/h18FdrPt1th6x8mgzW9Bq/sRw/BzMrN7MrrJgHPEnwjtYMbPPmdkj4QiXz4R3QopkhJK8JFo4PMF/AePdfX9gOnAtcI27jyEYHO03na3v7vOBJcDp4cBT/wvs05zACcYGar67eDug2t1HAU8DzQ+/mAN8191HAxcBN6XvCEW6ppuhJOnG02Z0SjM7DBjRatTRQWY2sLMNtBYOL3Er8E0z+z3BkAhnhLObgLvCn28jeHhLCXAQcE+r/W3Ty2MSiUxJXpKuo9EpC4Cx7r7VkLcpDDX9e+BBgvGD7nH3zh7C4uG+PmgeflYk01SukaTraHTKR2k1SJYFj1HsSusRK3H3fxI8hOUSgoHOmhUQDHQGwcNRng1H1HzdgqdRYYH9e3E8IilRS14Szd2XdzA65TTgxnDky34EIzv+RxebuZlWI1aGZwDzgFJ3f7nVch8DnzezKuBD4JRw+unAL8zsEoLRJu8ElqXrGEW6orFrRHog7E9f4+6/bTWt3t1LshiWSDtK8iIpClvqHwMTw8cTNk9XkpecoyQvIpJguvAqIpJgSvIiIgmmJC8ikmBK8iIiCaYkLyKSYP8HzbUbIKElxgMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'], \n", + " y=annotated_coeqtl_df_clean['var_onemillionv2'],\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " palette='viridis', fliersize=1,\n", + " showfliers = False)\n", + "# plt.savefig('var_onemillionv2.filtered_results.pdf')\n", + "# plt.savefig('var_onemillionv2.filtered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqPklEQVR4nO3deXhU5fn/8fdNCAKCoALWEiFgY/1aFdTgLioWRCtirYranyKouGARq1b71a/aalc3qqJIrWtdUHDBStHWDZfWsqosKohSx5VFUUhYQu7fH+cEJ8mEzEnOzCSTz+u6cmXOmvtkkrnPec5z7sfcHRERadla5ToAERHJPSUDERFRMhARESUDERFByUBERIDWuQ6gIbp06eLFxcW5DkNEpFmZPXv2CnfvmmpZs0wGxcXFzJo1K9dhiIg0K2a2rK5laiYSERElAxERUTIQERGUDEREBCUDEREhw8nAzO42sy/MbH4dy83MbjGzJWb2lpntncl4REQktUxfGdwLDN7C8qOAkvBrFHBHhuMREZEUMvqcgbvPMLPiLawyFLjfgzra/zazzma2o7t/msm4ohg3bhyLFy+uNT+RSFBeXp72ftq1a0dRUVG1eSUlJYwdO7axITZKquOL49igaRxfKlt6T4Em+T5FkS/H15T/9+L4HY8bN45p06bV2kdZWRmVlZVpx9KqVSvat29fbd7RRx8d+fhy/dBZd+CjpOlEOK9WMjCzUQRXD/To0SMrwQEsXryYuQveolXXDtXmV5aVw8ZNae9njW9g5Rcbvt1++ZrYYmyMVMfX2GODpnN8UZJdWVkZQK1liUQi5T9+U/0QrUuUD9Cm4MUXX2T5iuVQWFB9QUUlRBiHZU3ZWpavXvXtjI2bSCQSGXnvmtvvOFmuk4GlmJfyXXb3icBEgNLS0qyOyNOqawfa/6RvrPssmzIv1v01Rj4fX8pk3gZoU1Br3UoP/h3KOlVfVsYGVn6xtPq6TSTZpVLXh9zo0aMBGD9+fBajaaTCglonYo0Vx3sXx+947NixTepkItfJIAHslDRdBHySo1gkT+VzsstnRUVFrGyzISPvXVG32s2aLV2uu5ZOBU4PexXtD6xuSvcLRERaioxeGZjZw8BhQBczSwBXA4UA7j4BmAYcDSwByoARmYxHRERSy3RvolPqWe7A6EzGICIi9ct1M5GIiDQBSgYiIqJkICIiSgYiIoKSgYiIoGQgIiIoGYiICLkvRyEi0qTVVaE0lar1qmoU1acpFTtUMhAR2YLFixcz9823od029a+8fiMAc99bVv+65V83MrJ4KRmIiNSn3TYU9N4v1l1uWvpGrPtrLN0zEBERXRmISNNVuXxNWuXCK78KBpVp1bldWvukW2Mjyz9pJQMzO5JgrIHn3f3DpPkj3f3uDMUmIi1YSUlJ2usuXh3cuC3p1rv+lbtF23dLUW8yMLPfAgcDc4D/NbNx7n5ruPgCQMlARGIXpZdNsxzFrYlJ557BEGCAu48F9gGOMrObw2Wphq0UEZFmJp1k0NrdKwDc/SuC5LCNmT1GMJqsiIg0c+kkg/fN7NCqCXff5O5nAu8C/5OxyEREJGvSSQYnAv+pOdPdr6T6YPYiItJM1ZsM3L3c3cvNbKqZnWpmWyct+ziz4YmISDZEeejsRoJeRQvN7DEzO8HM2mYoLhERyaK0Hzpz95eBl82sABgAnE3QrTSNgh0iuZFIJKhcnd6DS1FULl9DYkMi1n2K5FKkJ5DNrB1Bb6JhwN7AfZkISkREsivtZGBmk4D9gOnAeOAld6/MVGAicSgqKmJlmw20/0nfWPdbNmUeRd2KYt2nSC5FuTK4BzjV3TdlKhgREcmNKPcMppvZgWZWnLydu9+ficBERCR7ojQTPQDsDMwDqq4OHFAyEBFp5qI0E5UCu7m7ZyoYERHJjSjJYD7wHeDTDMUiOaCulyIC0ZJBF4IHzv4DrK+a6e7Hxh6ViIhkVZRkcE2mgpDcUddLEYGITyCb2Q5Av3DWf9z9i8yEJSIi2RSlN9FJwPXASwSD2txqZpe6++R6thsM/AkoAO5y99/XWN4J+CvQI4znBne/J8pBiEjLMW7cOBYvXlxtXtV01YhnyUpKSiKNmtZSRWkmugLoV3U1YGZdgX8CdSaDsI7ReGAgkABmmtlUd1+YtNpoYKG7Dwn3+a6ZPejuGyIei4i0UO3atct1CM1elGTQqkaz0Erqr3q6L7DE3ZcCmNkjwFAgORk40NHMDOgArAIqIsQlIi2IzvIzI0oymG5mzwIPh9PDgGn1bNMd+ChpOkFQ3yjZbcBU4BOgIzAsVc0jMxsFjALo0aNHhLBFRKQ+aY9n4O6XAhOBPYE+wER3v6yezSzVrmpMH0nwVPN3gb7AbWZWqyy2u09091J3L+3atWu6YYuISBoilbB29ynAlAibJKg+NGYRwRVAshHA78Mnm5eY2QfArqQYalNERDKj3mRgZq+6+8Fm9g3Vz+oNcHff0uA2M4ESM+sFfAycDJxaY53/AkcAr4RdV78PLI1wDC1Wql4VEDxVDMEzBMnUq0JE6lJvMnD3g8PvHaPu3N0rzOwC4FmCrqV3u/sCMzs3XD4BuBa418zeJkgwl7n7iqg/S75VXl6e6xBEpJlJ58pguy0td/dV9SyfRo0bzWESqHr9CTCovjiktrrO8qv6Wo8fPz6L0YhIc5bOPYPZBM1Ddd0M7h1rRCIiknXpNBP1ykYgIiKSO+k0E+29peXuPie+cEREJBfSaSa6cQvLHBgQUywiIpIj6TQTHZ6NQEREJHfSaSYa4O4vmNnxqZa7++PxhyUiItmUTjPRocALwJAUyxxQMhARaebSaSa6Ovw+IvPhiIhILkQZ3KYzcDpQnLydu4+JPSoREcmqKIXqpgH/Bt4GapWYFhGR5itKMmjr7j/PWCQiIpIzaY9nADxgZmeb2Y5mtl3VV8YiExGRrIlyZbABuJ5gLOSqUtaqTSQikgeiJIOfA99TeWkRkfwTpZloAVCWqUBERCR3olwZbALmmdmLwPqqmepaKiLS/EVJBk+GXyIikmfSTgbufp+ZtQN6uPu7GYxJRESyLMoTyEOAG4A2QC8z6wv82t2PzVBsInlt3LhxLF68uNq8RCIBQFFRUa31S0pK6hzqVKSxotxAvgbYF/gKwN3nARoFTSRG5eXllJeX5zoMaYGi3DOocPfVZtWGQva6VhaRLUt1lj969GgAxo8fn+VopKWLkgzmm9mpQIGZlQBjgNczE5aIiGRTlGTwM4Knj9cDDwPPAtdmIqimJJFIULl6DWVT5sW638rla0hsSMS6TxGRhorSm6iMIBlckblwREQkF6L0JtoFuITa4xkMiD+spqOoqIiVbTbQ/id9Y91v2ZR5FHWr3WNERCQXojQTPQZMAO4ieBpZRETyRNTeRHdkLBIREcmZKM8ZPG1m52s8AxGR/BPlymB4+P3SpHkaz0BEJA9E6U2kp41FpMnauHEjiUSCdevWxbrfU089lRM2VkDrNrHul4r+tClszaJFi+LdL9C2bVuKioooLCxMe5sovYkKgfOA/uGsl4A73X1jPdsNBv4EFAB3ufvvU6xzGDAOKARWuPuh6cYlIgLBM0EdO3akuLiYGpUSGmXZsmWUrd+AbbV1bPsE8PVrab9VG3r27Bnvft1ZuXIliUSCXr3SP4ePcs/gDmAf4Pbwa59wXp3MrAAYDxwF7AacYma71Vinc7i/Y939B8CJEWISEQFg3bp1bL/99rEmgubIzNh+++0jXyFFuWfQz937JE2/YGZv1rPNvsASd18aBvkIMBRYmLTOqcDj7v5fAHf/IkJMIiKbtfREUKUhv4dII52Z2c7u/n74w3pT//MG3YGPkqYTwH411tkFKDSzl4COwJ/c/f6aOzKzUcAogB49ekQIWyR/pSqDXZeq9aqK4dVHJbNblijJ4FLgRTNbChjQExhRzzap0lPNSqetCZqcjgDaAf8ys3+7+3vVNnKfCEwEKC0tVbVUEYIP+LkL3qJV1w71rlvpGwB484ul9a+7fE2jY8t3n37yMZf//EJWLF+OtWrFSaf8lNNHnlXn+rfcdD2l++7HgQf3T7n83Xff5ZxzzuGrr75i/fr1HHLIIUycOJFZs2Zx//33c8stt2TqUIBovYmeD6uVfp/gQ/4dd988FrKZDXT3f9TYLAHslDRdBHySYp0V7r4WWGtmM4A+wHuISL1ade2QkXIpsmUFrVvziyuv5ge778HaNWv4yZDBHHhIf75XskvK9cf8/NKU8zcvHzOGiy66iKFDhwLw9ttvA1BaWkppaWm8wacQ5QYy7r7e3d9y9zeTE0HoDyk2mQmUmFkvM2sDnAxMrbHOU8AhZtbazNoTNCPF39dKRFqca6+9ll133ZWBAwdyyimncMMNN/D+++8zePBg9tlnHw455BDeeecdAM444wzGjBnDgQceSO/evZk8efLm/fzlrrs48dijGTr4h9x60w0AdOu2Az/YfQ8Atu7QgZ13LuHzzz6rM5ZfXjyWZ6f9DYAbf/9bjjn6KAYPHswll1wCwKefflpthLs99gj2/dJLL3HMMccAsHz5cgYOHMjee+/NOeecQ8+ePVmxYkUsv6sozUT1qdUk5O4VZnYBQbnrAuBud19gZueGyye4+yIzmw68BVQSdD+dH2NcItICzZo1iylTpjB37lwqKirYe++92WeffRg1ahQTJkygpKSEN954g/PPP58XXngBCD6QX331Vd555x2OPfZYTjjhBGbMmMF/l33Io089g7tz/llnMPONf9Nvv/03/6yPP/qIRQvn06fvXvXG9dVXX/LP5/7OM9P+ztZtt6JTp04AXHTRRQwYMIADDzyQQYMGMWLECDp37lxt21/96lcMGDCAX/7yl0yfPp2JEyfG9vuKMxmkbMd392nAtBrzJtSYvh64PsZYRKSFe/XVVxk6dCjt2rUDYMiQIaxbt47XX3+dE0/8tgf7+vXfNnIcd9xxtGrVit12243PP/8cgFdeeYXXXnuN448eBEBZWRnLPvxgczJYu3YtY847m8uv+hUdOnasN64OHTqyVZut+L8rrmDQwB8yYkRw63XEiBEceeSRTJ8+naeeeoo777yTN9+s3mHz1Vdf5YknngBg8ODBbLvttg399dQSZzIQEWky3Gufn1ZWVtK5c2fmzZuXcputttqq1vbuztmjzuHk4WfWWn/jxo1ceO7ZDDnuxwwafHRacbVu3ZpHn3qG11/+J89Nn86kSZM2X5l897vfZeTIkYwcOZLdd9+d+fOrN5KkOqa4RLpnUI8PY9yXiEijHHzwwTz99NOsW7eONWvW8Mwzz9C+fXt69erFY489BgQfrjXPvmvq378/j0+ZzNq1awH4/LNPWbliBe7OlZddTO/vfY8zzjon7bjWrl3LN998w6GHHsZVV121OTFNnz6djRuDgg6fffYZK1eupHv37rWO6dFHHwXgueee48svv0z759anMeUoXgYmVJWjcPfjY4tKRKSR+vXrx7HHHkufPn3o2bMnpaWldOrUiQcffJDzzjuP6667jo0bN3LyySfTp0+fOvfTv39/Fr3zLqccfywA7du354/jbuXDD5Yy9fEp7LLr//DjowYCMPYXl3Po4UdsMa61a9dwwdkjWV9ejhncfPPNQPDhfuGFF9K2bVsArr/+er7zne9svsENcPXVV3PKKacwadIkDj30UHbccUc6ptE0lY4ozUR3ENQOuj2cPi2cV3fHWhGRHLrkkku45pprKCsro3///lx88cX06tWL6dOn11r33nvvrTa9Zs23z1qcNnw4p486v9ryHj2LWfThx2nH8rsbx21+/ehTz9SqTXTTTTdx00031drusMMO47DDDgOgU6dOPPvss7Ru3Zp//etfvPjii9Wathoj0+UocqqupzMTiWAg+uRuXKAnLkXyzahRo1i4cCHr1q1j+PDh7L333rkOqVH++9//ctJJJ1FZWUmbNm3485//HNu+M12OokkqLy/PdQiShlTJvK5EDkrmUttDDz2U9Z/56//7X+bOmllt3mkjzuL4k4Y1et8lJSXMnTu30ftJJdPlKHKqrg+Gqtos48ePz2I0Egclcmnqrrr2t7kOoUFiK0chErdUyVyJXCQz6k0GZjbA3V8ws5q9hXY2M9z98QzFJiIiWZLOlcGhwAvAkBTLHFAyEBFp5upNBu5+dfjy1+7+QfIyM9O4yCIiKfyg907s8v1dN0/fNvFuuu+0U8p1O3ToUK0ray5EuYE8BajZL2sywVgEIiJN1nkXXMjnDazuWVFREZSBsG8LNmy/bWcuv/KqLW7Xtm1bnvh7zar+TVc69wx2BX4AdKpx32AboG2mAhMRicvnK1awvNOu9a+YrpULIm+ydu1aLjh7BKtXr6aiooIxY8Yw5EfV6xl9+umnDBs2jK+//pqKigruuOMODjnkEJ577jmuvvpq1q9fz84778w999xDhw71D2gURTpXBt8HjgE6U/2+wTfA2bFGIyKSJ9atW7e5TEX3nXow7vY7ufXOv9ChY0e+XLWKYcf9iGOOPqraNg899BBHHnkkV1xxBZs2baKsrIwVK1Zw3XXX8c9//pOtt96aP/zhD9x0001cddWWr0yiSueewVPAU2Z2gLv/K9afLiKSp2o2E23cuJGbr/89s/7zBq3M+OLzz1m+fDnFxcWb1+nXrx8jR45k48aNHHfccfTt25eXX36ZhQsXctBBBwGwYcMGDjjggNjjjXLPYK6ZjSZoMtrcPOTuI2OPSkQkz/ztycdZtXIlk5/+O4WFhRxx0L7VxlKAoCjejBkzeOaZZzjttNO49NJL2XbbbRk4cCAPP/xwRuOLUsL6AeA7wJEEFUuLCJqKRESkHt988w3bd+lCYWEhb7z+Gp98XLvI3bJly+jWrRtnn302Z555JnPmzGH//ffntddeY8mSJUAwuM5778U/RHyUZPA9d/8/YK273wf8CNgj9ohERPLQkOOOZ/5bb3LCkKN4+qkn6N27d611XnrpJfr27ctee+3FlClTuPDCC+natSv33nsvp5xyCnvuuSf7779/tbLWcYnSTLQx/P6Vme0OfAYUxx6RiEjMdujSBVY07AO0rq6l9Zm9sHqRxW23245Hnnh683RVCWv4tlz28OHDGT58eK19DRgwgJkzZ9aaH6coyWCimW0LXAlMBToA/5eRqEREYnTHbX9q8LbLli2jbP0GbKutY4yo6UkrGZhZK+Brd/8SmAHUvr4REZFmK617Bu5eCVyQ4VhERCRHotxA/oeZXWJmO5nZdlVfGYtMRESyJso9g6rnCUYnzXPUZCQi0uxFGdxGFUpFRPJU2snAzAqB84D+4ayXgDvdfWOdG4mItEBffrmKkacGYx6vWL6cVgUFbLdd0Ko+6alnaNOmTS7DSylKM9EdQCFwezh9WjjvrLiDEhGJ0/kXjeHzLxtWwnpTRQWVNZ4z2G6bbbn8sroLxW277Xab6xLddvONtN96a0aOOnfz8oqKCgoaFE3mREkG/dy9T9L0C2b2ZtwBiYjE7fMvV/DN4J6x7W/V35ZG3uaXF4+lU+fOLFown91234P2bdvQeZtt+M1vfgPA7rvvzt/+9jeKi4v561//yi233MKGDRvYb7/9uP322ykoyGz6iNKbaJOZ7Vw1YWa9gU3xhyQikp8+/GApdz84icuuvLrOdRYtWsSkSZN47bXXmDdvHgUFBTz44IMZjy3KlcElwItmthQwoCcwIiNRiYjkocFHH1PvGf7zzz/P7Nmz6devHwDl5eV069Yt47Gl+wRyAdAHKCEY7MaAd9x9/RY3FBGRzdq1b7/5deuC1lRWVm6eXrduHQDuzvDhw/nd736X1djSfQJ5E3Csu69397fc/c10E4GZDTazd81siZldvoX1+pnZJjM7Ic3YRUSare927878+fMBmDNnDh988AEARxxxBJMnT+aLL74AYNWqVSxbtizj8URpJnrdzG4DJgFrq2a6+5y6NgivKMYDA4EEMNPMprr7whTr/QF4NkI8IiLN1qAjj+SZp6fSt29f+vXrxy677ALAbrvtxnXXXcegQYOorKyksLCQ8ePH07NnfDfAU4mSDA4Mv/86aZ4DA7awzb7AEndfCmBmjwBDgYU11vsZMAXoFyEeEZG07LBtF5jesLPrurqWpuuCiy5OOb9t27Y88MADKT/khw0bxrBhw6IH2whRnkA+vAH77w58lDSdAPZLXsHMugM/JkgqdSYDMxsFjALo0aNHA0IRkZbq9ptvafC2LaWEddpdS81sBzP7i5n9PZzezczOrG+zFPO8xvQ44LLwvkSd3H2iu5e6e2nXrl3TDVtERNIQ5TmDewna9L8bTr8HjK1nmwSwU9J0EfBJjXVKgUfM7EPgBOB2MzsuQlwiItJIUZJBF3d/FKgEcPcK6n/obCZQYma9zKwNcDLBKGmbuXsvdy9292JgMnC+uz8ZIS4RESDolikN+z1ESQZrzWx7wmYeM9sfWF1PQBUEg+I8CywCHnX3BWZ2rpmdu6VtRUSiaNu2LStXrmzxCcHdWblyJW3bto20XZTeRBcTnNXvbGavAV2BE9MIbBowrca8CXWse0aEeERENisqKiKRSLB8+fJY97tq1So2bKyA1jFXGq3YQJvC1pSVlcW7X4LEWFRUFGmbKL2JZpvZoXz7BPK7Kl+dHyqXr6Fsyrz61/uqHIBWndultU8y/wS9NGHjxo1j8eLF1eYlEgmAlB9UJSUljB07tsE/r7CwkF694h92ZfTo0cx9bxkFvferf+UINi19g7126cn48eNj3W9DRRnP4H3g+uSzejP7m7sfk5HIJCtKSkrSXnfx6uAfu6RbGoPbdYu2b2kZysvLcx2C1CFKM9FG4HAz2w84x903EDxHIM1YlDOx0aODEU+bypmMNG2p/rb0N9R0RUkGZe4+zMx+AbxiZidR+5kBEcmiRCJB5er0mvmiqFy+hsSGRKz7lKYtSjIwAHf/o5nNJughtF1GohIRkayKkgw2j/Hm7s+b2SDgjNgjEpG0FRUVsbLNBtr/pG+s+y2bMo+ibtF6o0jzFqU30dNhHaGeSdu9lImgpLZUPTPqUrVeVftsfRrbi0NEmr8ovYl+T/AE8UK+ffLYgRkZiEtqWLx4MXPffBvabVP/yuuDHr9z30ujSmP5142MTOqTyUSeSCQg5u7v0jJFaSb6MfB9jW6WQ+22yUhfZ8msTCbyDu3bQpvMDpQuLUOUZLAUKASUDKRZaRIP1WUskW+IdZ/SckXqWgrMM7PnSUoI7j4m9qhEYqKH6kTSEyUZTKVGxVGRpk4P1YmkJ0pvovvCMtS7hLNUm0hEJE9E6U10GHAf8CHBA2g7mdlwd8/73kRNos1ZRCSDojQT3QgMcvd3AcxsF+BhYJ9MBNZUqM1ZRFqCKMmgsCoRALj7e2ZWmIGYmhS1OYtISxAlGcwys78AD4TTPwVmxx+SiIhkW5RkcB4wGhhDcM9gBnB7JoISEZHsitKbaD1wU/glIiJ5JEpvooOAa6heqA53T+NuqYiINGVRmon+AlxEcJ9gUz3riohIMxIlGax2979nLBIREcmZKMngRTO7Hnic6rWJ5sQelYiIZFWUZFBVcrE0aZ4DA+ILR1qqdGv+a+AekcyI0pvo8C0tD0tT3Nf4kKQlSrvmvwbuEcmIKFcG9bmQoHaRSMPEXPNfA/eIpC/OZGAx7isyjREsItJwcSYDj3FfkWmMYGmpVFVX4pA3VwaAxgiWFqddu3ZpV79VVV3ZkjiTwWsx7ktE0lBUVJR2lVxV1ZUtaZXOSma2q5kdYWYdaswfXPXa3S+oY9vBZvaumS0xs8tTLP+pmb0Vfr1uZn2iHoSIiDROvVcGZjaGoFrpIuAvZnahuz8VLv4tMH0L2xYA44GBQAKYaWZT3X1h0mofAIe6+5dmdhQwkW+faRARyalEIgHlX8ffZFz+dbDvJiKdZqKzgX3cfY2ZFQOTzazY3f9E/fcJ9gWWuPtSADN7BBgKbE4G7v560vr/BooixC8iIjFIJxkUuPsaAHf/MBwLebKZ9aT+ZNAd+ChpOsGWz/rPBFLWPzKzUcAogB49eqQRtohI4xUVFbG8bFNGOqcUFTWdc9907hl8ZmZ9qybCxHAM0AXYo55tUyWLlF1QzexwgmRwWarl7j7R3UvdvbRr165phC0iIulKJxmcDnyWPMPdK9z9dKB/PdsmgJ2SpouAT2quZGZ7AncBQ919ZRoxiYhIjOpNBu6ecPfPAMzsYDMbEb7uQooP9hpmAiVm1svM2gAnA1OTVzCzHgSVUE9z9/cacAwiItJIUUY6u5qgYun3gXuANsBfgYPq2sbdK8zsAuBZoAC4290XmNm54fIJwFXA9sDtZgZQ4e6lde1TRETiF+Whsx8DewFzANz9EzPrWN9G7j4NmFZj3oSk12cBZ0WIQ0REYhYlGWxwdzczBzCzrTMUk0heaSn91KV5i5IMHjWzO4HOZnY2MBL4c2bCEpHmQhWD80OUwW1uMLOBwNcE9w2ucvd/ZCwykTyR7/3UVTE4P0QqVBd++CsBiEh1qhjc7KVVqA7AzI43s8VmttrMvjazb8xMqVtEJA9EuTL4IzDE3RdlKhgREcmNtK8MgM+VCERE8lOUK4NZZjYJeBJYXzXT3R+POygREcmuKMlgG6AMGJQ0zwlKSYiISDMWpWvpiEwGIiIiuROlN9EuZva8mc0Pp/c0syszF5qIiGRLlGaiPwOXAncCuPtbZvYQcF0mApOWJSMlG1SuQSRtUXoTtXf3/9SYVxFnMCIikhtRrgxWmNnOhCOVmdkJwKcZiUpanEyUbGgq5RqA9K961q8Nvm+VRh1IlWvInhbw/kVJBqOBicCuZvYx8AHw04xEJZJHSkpK0l63qpBbSUnP2PctDdNS3r8oyeA4gnEJXiRoXloL/NDMZrv7vPhDE8kPUapuVlXzHD9+fIaikahayvsX5Z5BKXAusC3QGRgFHAb82cx+EXtkIiKSNVGuDLYH9nb3NbB5GMzJQH9gNkHtIskQDZAi6aprfIG6xhLQmAEC0ZJBD2BD0vRGoKe7l5vZ+jq2EZEmol27drkOQZqwKMngIeDfZvZUOD0EeDgc/nJh7JFJNfk+QIrER2f50hBRylFca2bTgIMBA85191nhYvUqEhFpxqKOdDab4P5Ak6M2dRGRhouUDEREatKJWH7Im2SgNvU8kM4HSjN+wlOkKcubZCDNW7pPYjbnJzzzlU7E8oOSgTQJ6faAac5PeIo0ZVGeQBYRkTylK4PmpAVUThSR3FAyaCZaSuVEaaZ0otLs5VcyyOM/yJZSOVGaH52o5Ie8SQb6g4yPCp1JFDpRyQ8ZTwZmNhj4E1AA3OXuv6+x3MLlRwNlwBnuPifqz9EfZOap0Fm8UiXduhIuKOk2Jfl4wpTRZGBmBcB4YCCQAGaa2VR3Ty5sdxRQEn7tB9wRfm/S8vkfubnE2VBN+R9ZCbd5a87vX6avDPYFlrj7UgAzewQYSvUqp0OB+93dCaqidjazHd290eMrZ/ufPtt/CE35Qy0O2U642X7/mtN70RA6YWpeMp0MugMfJU0nqH3Wn2qd7kC1ZGBmowhGV6NHjx6NCiqOf/qm/MfQnM9O6pPv712+y+e/zebOghPyDO3c7ETgSHc/K5w+DdjX3X+WtM4zwO/c/dVw+nngF2GF1JRKS0t91qxZdS0WEZEUwjHrS1Mty/QTyAlgp6TpIuCTBqwjIiIZlOlkMBMoMbNeZtYGOBmYWmOdqcDpFtgfWB3H/QIREUlfRu8ZuHuFmV0APEvQtfRud19gZueGyycA0wi6lS4h6Fo6IpMxiYhIbRl/zsDdpxF84CfPm5D02oHaXQtERCRrVLVURESUDERERMlARERQMhARETL80FmmmNlyYFkWf2QXYEUWf1626fiar3w+NtDxxa2nu3dNtaBZJoNsM7NZdT21lw90fM1XPh8b6PiySc1EIiKiZCAiIkoG6ZqY6wAyTMfXfOXzsYGOL2t0z0BERHRlICIiSgYiIkILTQZm9h0ze8TM3jezhWY2zcx2MbNyM5trZovM7D9mNjzFtv3MbJOZnWBm25vZvPDrMzP7OGm6TS6OLYwx8vGZWScze9rM3jSzBWY2oqkeXzaZ2Rlm9t0mEMem8Pe+IHyPfm5mrZKW72tmM8zsXTN7x8zuMrP2uYw5CjNzM7sxafoSM7smfH2NmV0Svm5rZv8ws6tzFGoskt7PN81sjpkdmOuYMl61tKkxMwOeAO5z95PDeX2BHYD33X2vcF5v4HEza+Xu94TzCoA/EJTkxt1XAn3DZdcAa9z9hmweT02NOL7RwEJ3H2JmXYF3gQfdvW+4/jU0gePLgTOA+eR+wKXypPeiG/AQ0Am42sx2AB4DTnb3f4V/Az8BOhKUhW8O1gPHm9nv3D3lQ1jhCcgUYLa7/yqr0cUv+f08EvgdcGguA2qJVwaHAxtrlNGeR/VxmHH3pcDPgTFJs39G8Mf4RebDbLCGHp8DHcMPkg7AKqAiGwGbWXHS2ex8M3vQzH5oZq+Z2eLwrHc7M3vSzN4ys3+b2Z7htteY2d1m9pKZLTWzMUn7/Xm4v/lmNjZp/unhft40swfMrKOZfWBmheHybczsQwuGbS0FHgzP4tqZ2T5m9rKZzTazZ81sx2z8jpK5+xcE44FfEL5fowmS/7/C5e7uk93982zH1ggVBD1rLqpjeWvgEWCxu1+etaiyYxvgy1wH0eKuDIDdgTrHV65hDrArgJl1B34MDAD6ZSa0WDTo+IDbCEad+4TgjHKYu1fGH16dvgecSPAhNxM4FTgYOBb4X4JkNtfdjzOzAcD9hFdlBMdweBj3u2Z2B7AnwUBJ+wEGvGFmLwMbgCuAg9x9hZlt5+7fmNlLwI+AJwlG5Jvi7o+Z2WjgEnefFSaLW4Gh7r7czIYBvwFGZvD3kpK7Lw2biboRvOf3ZTuGDBgPvGVmf0yx7BfAP919bHZDyph2ZjYPaAvsSPC5klMtMRlEYUmvxwGXufum4GQsLyQfyJHAPII/yp2Bf5jZK+7+dZZi+cDd3wYwswXA8+7uZvY2UAz0JGj6wN1fCO9ndAq3fcbd1wPrzewLgiaxg4En3H1tuM/HgUMIroAmVzVFuPuqcB93EXzgPEmQRM5OEeP3CT54/xH+DRQAuRyiNW/+EAHc/Wszu5/garW8xuJXgQPMbBd3fy/70cUuuZnoAOB+M9vdc9jXvyU2Ey0A9klz3b2AReHrUuARM/sQOAG43cyOiz26xmvo8Y0AHg+bGJYAH/DtVUM2rE96XZk0XUlw0pLqg6/qHyd5201bWJ9wfq1/OHd/DSg2s0OBAnefX8e2C9y9b/i1h7sPquuAMim857OJoMkyynve1I0DzgS2rjF/BjAW+HtTuKEfp7B5rwuQsoBctrTEZPACsJWZbT7zM7N+BGeeJM0rBm4gaBbA3Xu5e7G7FwOTgfPd/cksxRxFg44P+C9wRLhsB4Kz4KVZiDddM4CfApjZYcCKeq5aZgDHmVl7M9uaoInvFeB54CQz2z7c13ZJ29wPPAzckzTvG4LmJwhuqncNz+Qws0Iz+0Ejjyuy8Ab/BOC28EzyNmC4me2XtM7/M7PvZDu2xgqv1B4lSAg1l00Brgemm1nnLIeWMWa2K8FV5spcxtHimonCpocfA+PM7HJgHfAhwVnHzmY2l6Ad7xvg1qqeRM1FI47vWuDesFnGCJrEmlLp4GuAe8zsLYIeMrW6/SZz9zlmdi/wn3DWXe4+F8DMfgO8bGabgLkEPYYAHgSuI0gIVe4FJphZOXAAwVXhLWETVWuCM9kFjTu0tFS1MRcS3Gx9ALgJwN0/N7OTgRvCnkaVBMnw8SzElQk3AhekWuDuE8IkN9XMBrn7uuyGFpuq9xOC/7fh7r4ph/GoHIVIFTM7geDm8Gm5jkUk21rclYFIKmZ2K3AUcHSuYxHJBV0ZiIhIi7yBLCIiNSgZiIiIkoGIiCgZiERiQRXT28LXydU0m0R1U5GGUjIQiccZgJKBNFtKBiKkrGTa1cymmNnM8OugLWx7AtWrm/7IzJ5IWj4wrI2Ema0xsxstqGH/fPg0MWa2s5lND6uhvhI+lSqSNUoG0uKFJSWuAAa4ex/gQuBPwM3u3o+gQN5ddW3v7pOBWcBPw+Jj04D/qfqgJ6j7VPWk99bAHHffG3gZqBqkZSLwM3ffB7gEuD2+IxSpnx46EwkqtVarZGpmPwR2S6pQu42ZdaxrB8nCkiAPAP/PzO4hKGNxeri4EpgUvv4rwQBDHYADgceSft5WjTwmkUiUDERSVzJtBRzg7tVKKUcoX34P8DRBbajH3L2ugYI8/FlfVZU0FskFNROJpK5k+hxJxdIsGDp0S5Krm+LunxAMFHQlQbG7Kq0Iit1BMIDPq2H11Q8sGFkNC/RpxPGIRKYrA2nx3H1BikqmY4DxYZXU1gRVQM/dwm7uJam6aXhF8SDQ1d0XJq23FviBmc0GVgPDwvk/Be4wsysJKpM+ArwZ1zGK1Ee1iUQyJHweYa67/yVp3hp375DDsERSUjIQyYDwzH8tMDAckrNqvpKBNElKBiIiohvIIiKiZCAiIigZiIgISgYiIoKSgYiIAP8fcba6uv0XY5QAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'],\n", + " y=annotated_coeqtl_df_clean['gene2_nonzeroratio_onemillionv2'],\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " palette='viridis', fliersize=1, showfliers = False)\n", + "# plt.savefig('gene2_nonzeroratio_onemillionv2.filtered_results.pdf')\n", + "# plt.savefig('gene2_nonzeroratio_onemillionv2.filtered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAArQElEQVR4nO3deXhU5fn/8fdN2HcVsErYtLEUrVIF9ypiQcW9pUVtLUIrPysWcWm1X63Lt7ZqXUqtKKJV1FJFReuGiLVFXForq7Ko4QuiUVQWRSEBEnL//jgnOEkmmTnJnJksn9d1zZU5a+6TZe6zPM/9mLsjIiLNW4tcByAiIrmnZCAiIkoGIiKiZCAiIigZiIgI0DLXAdRFt27dvG/fvrkOQ0SkUVmwYMF6d++ebFmjTAZ9+/Zl/vz5uQ5DRKRRMbM1NS3TbSIREVEyEBERJQMREUHJQEREUDIQERFiTgZmdq+ZfWpmS2tYbmZ2m5mtNLM3zezAOOMREZHk4r4ymAYcX8vyE4CC8DUOuDPmeEREJIlY+xm4+zwz61vLKqcCD3hQR/s/ZtbVzPZw97VxxiXSEEyaNInCwsJK84qKigDIz8+vtn5BQQETJ07MRmiSQrLfHdT8+2sMv7tcdzrrCXyQMF0UzquWDMxsHMHVA717985KcM1VU/xDT9SQj6+kpCQr30fSV1PSTva7Ki4uBqr/HouKipL+zTWk/51cJwNLMi/paDvuPhWYCjBo0CCNyJMDTf2DKtvHl+xDYPz48QBMnjw5q7FIzQoLC1m05C1o17nKktbVV25RCsBmr7xsc/EO1r1bpfNvyRcZjLL+cp0MioBeCdP5wEc5ikVCNZ2pNJUPqqZ+fBKDdp3J2+uQjO5yx6rXM7q/+sp109KngJ+ErYoOBTbpeYGISPbFemVgZg8BQ4BuZlYEXA20AnD3KcAsYASwEigGxsQZj4iIJBd3a6IzUyx3YHycMYiISGq5vk0kIiINgJKBiIgoGYiISO6bljZa6j0qIk2JkkEGNcZOWaNHj2bt2vRa81b0rhw+fHha6++xxx7cf//9dY5NRLJHySCFunxYJut2XlhYyKxZsyrNawgflp9//jmbt2yGVnlprB10/N68PY2kV7qDzz//vF6xSfM2adKkav8zEPyflZeXp72fFi1a0L59+0rzRowYoSv1KtJKBmbWn6Bm0Ovuvjlh/vHuPjuu4BqCpv5hmZ+fz4bW22n//YEZ3W/xzMXk96h+u0xEGqaUycDMJhD0BVgB/MXMLnT3J8PFvweadDLQh6VIbkycOFFn71mUzpXBucBB7r45LEf9mJn1dfc/kbzQnIiINDLpJIO8iltD7v6emQ0hSAh9UDIQEWkS0kkGH5vZQHdfDBBeIZwE3At8K87gRESarG1bWLJkSbXWebl6QJ5OMvgJUJY4w93LCKqN3hXpu4lkWU0D2SRTsV5FKetU1HdEmpKUycDdiwDM7E/ADHd/LWHZqzHGJlJvhYWFLFr2Ji26d0y5brlvB2DJp6tSr7tuc8p1RGrVpgMH7NOnwYyfEaWfwULgSjPbB3iCIDHMjycskcxp0b1jLK3BRJqStGsTufv97j4COBh4F7jRzNK7/hYRkQatLoXqvg70B/oCb2c0GhERyYm0k4GZVVwJ/C+wjKDvwcmxRSYiIlkT5ZnBauAwd18fVzAiIpIbaScDd59iZj3N7PDE7dx9XiyRiYhI1qSdDMzsBuAMYDmwI5ztgJKBiEgjF+U20enAN9x9W1zBiIhIbkRpTbQKaBVXICIikjtRrgyKgcVm9iKw8+rA3SdkPCoREcmqKMngqfAlIhGoPpI0BlFaE91vZq2BfcJZ77h7aTxhiTQdhYWFLFryFrTrnHrlbcG/1KJ316Ret+SLekYm8pUorYmGAPcD7xGMY9DLzEaraalIGtp1Jm+vQzK6yx2rXs/o/qR5i3Kb6BZguLu/AxAWrHsIOCiOwEREJHuitCZqVZEIANz9XdS6SESkSYhyZTDfzP4CPBhO/whYkPmQREQk26Ikg58D44EJBM8M5gF3xBGUiIhkV5TWRNuAW8OXiIg0ISmfGZjZI+HXt8zszaqvNLY/3szeMbOVZnZ5kuVdzOxpM1tiZsvMbEzdDkVEROoqnSuDC8OvJ0XduZnlAZOBYUAR8IaZPeXuyxNWGw8sd/eTzaw78I6ZTXcPB6QVEZHYpUwG7r42/JpGL5hqDgZWuvsqADN7GDiVoPLpzm8BdDIzAzoCG4GyOnwvERGpo5TJwMy+JPjArrYIcHevrVtlT+CDhOkioGrPm9sJylx8BHQCRrl7eZI4xgHjAHr37p0qbBERiSDlMwN37+TunZO8OqVIBBAkjGq7rDJ9HLAY2BMYCNxuZtX26+5T3X2Quw/q3r17qrBFRCSCdK4Mdq1tubtvrGVxEdArYTqf4Aog0RjgBnd3YKWZrQb6A/9NFZuIiGRGOg+QFxCczdd0lr9XLdu+ARSYWT/gQ4KR0s6qss77wLHAy2a2O/ANgrETREQkS9J5gNyvrjt39zIzuwB4HsgD7nX3ZWZ2Xrh8CvBbYJqZvUWQcC5z9/V1/Z4iIhJdOreJ+rv722Z2YLLl7r6wtu3dfRYwq8q8KQnvPwKGpxeuiIjEIZ3bRBcTtOK5JckyB4ZmNCIREcm6dG4TjQu/HhN/OCIikgtRBrfJA04E+iZu5+6qVSQi0shFqVr6NLAVeAuo1ilMREQaryjJIN/d948tEhERyZkoyeA5Mxvu7nNii0YimTRpEoWFhdXmFxUVAZCfn19pfkFBARMnTsxGaCLSyERJBv8BnjCzFkAp6dUmkhwoKSnJdQgNRlFREeWbNlM8c3FG91u+bjNF24syuk+RXIqSDG4BDgPeCktHSI7VdJY/fvx4ACZPnpzFaESkMYuSDAqBpUoE0pjk5+ezofV22n9/YEb3WzxzMfk98lOvKNJIREkGa4G5ZvYcsK1ippqWiog0flGSwerw1Tp8iYhIE5F2MnD3awHMrIO7b4kvJBERybaUg9tUMLPDzGw5sCKcPsDM7ogtMhERyZq0kwEwiWBUsg0A7r4EOCqGmEREJMuiJAPc/YMqs3ZkMBYREcmRKA+QPzCzwwE3s9bABMJbRiIi0rhFuTI4DxgP9CQY23hgOC0iIo1clNZE64EfxRiLiIjkSJTxDLoD51J9PIOxmQ9LRESyKcozgyeBl4F/oAfHIiJNSpRk0N7dL4stEhERyZkoyeAZMxvh7rNii0YkQbLxGmoaqwE0XoNIfURJBhcC/2Nm2wnGMwCNZyBZprEaROIRpTVRpzgDEakq2Vm+xmoQiUeUKwPM7BS+KkEx192fyXxIIiKSbVEK1d1AcKtoefi6MJwnIiKNXJQrgxHAQHcvBzCz+4FFwOVxBCYiItkTqVAd0DXhfZcMxiEiIjkU5crgemCRmf0LMIJnB7+OJSoREcmqKK2JHjKzucBggmRwmbt/XLHczPZ192WZD1FEJLXS0lKKiorYunVrRvd71llnMbK0DFpmeLTfsqNo3aolK1Zkvvhz27Ztyc/Pp1WrVmlvE6k1kbuvBZ6qYfGDwIFVZ5rZ8cCfgDzgHnev9tDZzIYQDJ7TCljv7kdHiUtEpKioiE6dOtG3b1/MLGP7XbNmDcXbtmNtOmRsnwC+bQvt27SmT58+md2vOxs2bKCoqIh+/fqlvV3UZwa1qfbTN7M8YDJwAjAAONPMBlRZpytwB3CKu+8L/CCDMYlIM7F161Z22223jCaCxsjM2G233SJfIWUyGXiSeQcDK919lbtvBx4GTq2yzlnA4+7+PoC7f5rBmESkGWnuiaBCXX4OmUwGyfQEEofKLArnJdoH2MXM5prZAjP7SbIdmdk4M5tvZvPXrVsXU7giIs1TJpPB9iTzkqWnqlcQLYGDgBOB44DfmNk+1TZyn+rug9x9UPfu3esdrIhIfaz96ENGnzGSE489mpOGHcMD995T6/q33XoTr70yr8bl77zzDkOGDGHgwIF885vfZNy4cQDMnz+fCRMmZDT2ZOpTjuIld3+6Ypm7H5pkkyKgV8J0PvBRknXWu/sWYIuZzQMOAN6NEpuISDbltWzJr668mn33+xZbNm/m+ycfz+HfOYqvF1Q7lwVgwsW/rHV/EyZM4KKLLuLUU4M76W+99RYAgwYNYtCgQZkNPokoI51dT/AMYHo4a4KZHe7utfU1eAMoMLN+wIfAGQTPCBI9CdxuZi2B1sAhwB/Tjas2yUogQ81lkFUCWaRp+e1vf8v06dPp1asX3bp146CDDuL0009n/PjxrFu3jvbt23P33XfTv39/zjnnHDp37sz8+fP5+OOP+cMf/sDIkSMB+Ms99/D888+zfft2vjv8eH5x8aX06LE7PXrsDkCHjh3Ze+8CPvn44xqTwa8vmciQY7/LcSNO4pYbfs8/X5hN61atOPHEE7n55ptZu3Ztpc+kb33rWwDMnTuXm2++mWeeeYZ169Zx1llnsWHDBgYPHszs2bNZsGAB3bp1q/fPKsqVwYkkL0dRYzJw9zIzuwB4nqBp6b3uvszMzguXT3H3FWY2G3gTKCdofrq0boeTHpVBFmn65s+fz8yZM1m0aBFlZWUceOCBHHTQQYwbN44pU6ZQUFDA66+/zvnnn88///lPANauXcsrr7zC22+/zSmnnMLIkSOZN28e7695j0eefBZ35/yfncMbr/+HwYd8dTPkww8+YMXypRww8Nsp4/r888/4x5zneHbWc3Ro24YuXYJiDhdddBFDhw7l8MMPZ/jw4YwZM4auXbtW2vbaa69l6NCh/PrXv2b27NlMnTo1Yz+vSLeJCMpRbAzfp1WOIhwMZ1aVeVOqTN8E3BQxlpRqOstXGWSRpu+VV17h1FNPpV27dgCcfPLJbN26lddee40f/OCrFuzbtm3b+f60006jRYsWDBgwgE8++QSAl19+mVdffZXvjRgOQHFxMWveW70zGWzZsoUJPz+Xy6+6lo6dUlf679ixE21at+E3V1zB8GHfZcyYMQCMGTOG4447jtmzZ/Pkk09y1113sWTJkmrH9MQTTwBw/PHHs8suu9T1x1ONylGISJPkXr21e3l5OV27dmXx4sVJt2nTpk217d2dc8f9P84Y/dNq65eWlnLheedy8mmnM/z4EWnF1bJlSx558llee+kfzJk9mxkzZuy8Mtlzzz0ZO3YsY8eOZb/99mPp0so3SZIdU6ak3ZrI3R8CDgUeD1+HufvDcQUmIlIfRx55JE8//TRbt25l8+bNPPvss7Rv355+/frx6KOPAsGHa9Wz76qOOuooHp/5GFu2bAHgk4/XsmH9etydKy+7hL2+/nXO+dn/SzuuLVu28OWXX3L00UO46qqrdiam2bNnU1oaDCL58ccfs2HDBnr2rNwS/8gjj+SRRx4BYM6cOXz22Wdpf99UUl4ZmFl/d3/bzCpKTRSFX/c0sz3dfWHGohERyZDBgwdzyimncMABB9CnTx8GDRpEly5dmD59Oj//+c+57rrrKC0t5YwzzuCAAw6ocT9HHXUUK95+hzO/dwoA7du35w+T/sx7q1fx1OMz2af/Nzn9hGEATPzV5Rx9zLG1xrVly2YuOHcs20pKMIM//jFoLzNnzhwuvPBC2rZtC8BNN93E1772Nd5+++2d21599dWceeaZzJgxg6OPPpo99tiDTmncmkpHOreJLgbGAbckWebA0IxEIiKSYZdeeinXXHMNxcXFHHXUUVxyySX069eP2bNnV1t32rRplaY3b9688/3Zo0fzk3HnV1reu09fVrz3YdqxXH/LpJ3vH3ny2Wq1iW699VZuvfXWatsNGTKEIUOGANClSxeef/55WrZsyb///W/+9a9/Vbq1VR8pk4G7jwvfnuDulYpdmFnbjEQhIhKDcePGsXz5crZu3cro0aM58MBqtTQblffff58f/vCHlJeX07p1a+6+++6M7TvKA+TXqF6VNNk8EZEG4W9/+1vWv+f//uZ/WDT/jUrzzh7zM773w1H13ndBQQGLFi2q936SSeeZwdcI6gm1M7Nv81WJic5A+1iiEhFppK767e9zHUKdpHNlcBxwDkEpicQbWl8C/xNDTCIikmXpPDO4H7jfzL7v7jOzEJOIiGRZlGEvZ5rZicC+QNuE+f8bR2ANSfm6zRTPXJx6vc+DMhcturZLa5/0qG9kIiKZEaVQ3RSCZwTHAPcAI4H/xhRXg1FQUJD2uoWbgqJ4BT32Sr1yj2j7FpHGZd+9erHPN/rvnL596r307NUr6bodO3as1JQ1F6K0Jjrc3fc3szfd/Vozu4WgJ3KTFqWKqWoeiTRMP7/gQj5Zv75O25aVlQVlIOyrgg277dKVy6+8qtbt2rZtyxPPvVCn75kLUZJBRR+DYjPbE9gApD/asohIjnyyfj3ruvRPvWK6NiyLvMmWLVu44NwxbNq0ibKyMiZMmMDJJ1auZ7R27VpGjRrFF198QVlZGXfeeSff+c53mDNnDldffTXbtm1j77335r777qNjx46ZOhogWjJ4Ohy8/iZgIUHv48z1eBARaUK2bt26s0xFz169mXTHXfz5rr/QsVMnPtu4kVGnnchJI06otM3f/vY3jjvuOK644gp27NhBcXEx69ev57rrruMf//gHHTp04MYbb+TWW2/lqqtqvzKJKq1kYGYtgBfd/XNgppk9A7R1900ZjUZEpImoepuotLSUP950A/P/+zotzPj0k09Yt24dffv23bnO4MGDGTt2LKWlpZx22mkMHDiQl156ieXLl3PEEUcAsH37dg477LCMx5tWMnD38vAZwWHh9DZgW+1biYhIhWf+/jgbN2zgsaefo1WrVhx7xMGVxlKAoCjevHnzePbZZzn77LP55S9/yS677MKwYcN46KGHYo0v7RLWwBwz+76ZJRvkXkREavHll1+yW7dutGrVitdfe5WPPqxe5G7NmjX06NGDc889l5/+9KcsXLiQQw89lFdffZWVK1cCweA6776b+SHiozwzuBjoAOwwsxKCshTu7p0zHpWISBNz8mnf4+c/Hc3Ik0+g/4B92Wuv6k3Q586dy0033USrVq3o2LEjDzzwAN27d2fatGmceeaZO68krrvuOvbZJ/lYy3UVpdNZZopmi4hk2e7dusH6t1OvmERNTUtTWbC8sNL0LrvuysNPPL1zuqKENXxVLnv06NGMHj262r6GDh3KG2+8UW1+JkUaA9nMTiEY7hJgrrs/k/mQREQy687b/1TnbdesWUPxtu1Ymw4ZjKjhSfuZgZndAFwILA9fF4bzRESkkYtyZTACGOju5QBmdj+wCLg8jsBERCR7orQmAuia8L5LBuMQEZEcinJl8HtgkZn9i6Al0VHAr2OJSkREsipKD+Ry4FBgMEEyuMzdP44xNhERyZIoPZAvcPdHgKdijklEpFH77LONjD0rGPN4/bp1tMjLY9dddwVgxpPP0rp161yGl1SU20QvmNmlwAxgS8VMd9+Y8ahERDLo/Ism8MlndSthvaOsjPIq/Qx27bwLl19Wc6G4XXbZdWddotv/eAvtO3Rg7Ljzdi4vKysjr07RxCdKMhgbfh2fMM+BNEZyERHJnU8+W8+Xx/fJ2P42PrMq8ja/vmQiXbp2ZcWypQzY71u0b9uarp0787vf/Q6A/fbbj2eeeYa+ffvy17/+ldtuu43t27dzyCGHcMcdd5CXF2/6SLs1kbv3S/JSIhARSdN7q1dx7/QZXHbl1TWus2LFCmbMmMGrr77K4sWLycvLY/r06bHHFmXYy/YE9Yl6u/s4MysAvqFeyCIi6Tl+xEkpz/BffPFFFixYwODBgwEoKSmhR4/4B0yPcpvoPmABcHg4XQQ8CigZiIikoV379jvft8xrSXl5+c7prVuDwSTdndGjR3P99ddnNbYonc72dvc/AKUA7l5RubRWZna8mb1jZivNrMbeymY22Mx2mNnICDGJiDRKe/bsydKlSwFYuHAhq1evBuDYY4/lscce49NPPwVg48aNrFmzJvZ4oiSD7WbWjuChMWa2NykGuDGzPGAycAIwADjTzAbUsN6NwPMR4hERabSGH3ccmzZtYuDAgdx55507S1IPGDCA6667juHDh7P//vszbNgw1q5dG3s8UW4TXQPMBnqZ2XTgCOCcFNscDKx091UAZvYwcCpBobtEvwBmEnRoExHJqN136Qaz63Z2XVPT0nRdcNElSee3bduWBx98kD59qrdyGjVqFKNGjYoebD1EGc9gjpktIOiFbMCF7p6q4W5P4IOE6SLgkMQVzKwncDowlFqSgZmNA8YB9O7dO92wRUS444+31XlblbCuwsxeBA5x92fd/Rl3X29mU1NtlmSeV5meRFDaYkdtO3L3qe4+yN0Hde/ePd2wRUQkDVFuE/UDLjOzwe5+bThvUIptioBeCdP5wEdV1hkEPBwOrdwNGGFmZe7+9wixiYhIPURJBp8DxwK3mdnTwI/T2OYNoMDM+gEfAmcAZyWu4O79Kt6b2TTgGSUCkfQUFRUxfvz4avNKSkrS3ke7du3Iz8+vNr+goICJEyfWN8SscnfCE8tmzb3qDZjUoiQDc/cy4HwzOwd4Baj1KYq7l5nZBQSthPKAe919mZmdFy6fEjliEdmppKSERcvepEX3jjvnlReXQGmtd10r2ezb2fDp9krzytdtzliM2dK2bVs2bNjAbrvt1qwTgruzYcMG2rZtG2m7KMlg5we3u08zs7eoXKeopsBmAbOqzEuaBNz9nAjxNCuTJk2isLAw9Yqwc72qZ4w1rVu+vYTimYtTrlv+eXC22aJru9TrrtsM8XeaFKBF9460//7AjO4znb+HhiY/P5+ioiLWrVuX0f1u3LiR7aVl0DLDlUbLttO6VUuKi4szu1+CxJjsaq82UVoT3RX2B9g93G4dQXNTyYLCwkIWLXkL2nVOvfK2UgAWvZtGU7otW+jYsQMFPVKXmSrcFCSZdNalR3CbQSRbWrVqRb9+/VKvGNH48eNZ9O4a8vY6JPXKEexY9Trf3qcPkydPzuh+6ypKbaILCD78PyEY6AaClkH7Zz4sSapd51j+IAsK0vuDrLjSaCh/vCKSOVFuE00kKEy3IaZYREQkR6Ikgw+ATXEFIiJNS7LnXEVFRQBNpvVSUxIlGawC5prZsyTUJHL3WzMelYg0SVGavEp2RUkG74ev1uFLRKRGyc7y9dyp4YrSmuhaADPrFEx642uILCIiSUWpTbSfmS0ClgLLzGyBme0bX2giIpItUcYzmApc7O593L0PcAlwdzxhiYhINkVJBh3c/V8VE+4+F2jaNV1FRJqJSK2JzOw3wIPh9I+B1ZkPSUREsi3KlcFYoDvwOPBE+H5MHEGJiEh2RWlN9BkwIcZYpBlLtxBflCJ8EHZyUkNokZSi1CbaB7gU6Ju4nbsPzXxY0tykXYgvShG+ki/o2L4ttM7LQIQiTVuUZwaPEpSxvgdIv1i6SLoyXIhvx6rXge0p1xORaMmgzN3vjC0SERHJmSjJ4GkzO5/g4XFibaKNGY9KJIPK123W4D1SZ0VFRVDyRXilmUElX+ws3NcQREkGo8Ovv0yY50AaI52I5Ea7du3SHmRHg/dIcxalNVGtQwiZ2TB3f6H+IdVNXMNCgkrrNmb5+flpF0VTETVJJj8/n3XFO2IZWCrq0JRxinJlkMqNQM6SQWzDQpZ8Uc/IREQavkwmA8vgvuompmEhRUSauig9kFPxDO5LRESyKJPJQEREGqlMJoP3MrgvERHJoiiD27Q3s9+Y2d3hdIGZnVSx3N2/F0eAIiISvyhXBvcRdDY7LJwuAq7LeEQiIpJ1UVoT7e3uo8zsTAB3LzGz3LcgEmng4uzBui3PgPaZ3a80S1GSwXYza0fYasjM9iahLIWIZN+OHTso/2gTm6e8knrlsvLga8s0bgiU7qBoe8MplSDxi5IMrgZmA73MbDpwBHBOHEGJNCVx9mBtU15CXl56JbqLy4oBaN86de0lWkPXrl3rEZ00NlHKUbxgZguBQwk6mF3o7utji0xEUurfv7/KbUhGRG1a2hb4DPgCGGBmR6XawMyON7N3zGylmV2eZPmPzOzN8PWamR0QMSYREamnKCOd3QiMApYB4c1HHJhXyzZ5wGRgGEHrozfM7Cl3X56w2mrgaHf/zMxOAKYCmb2eFhGRWkV5ZnAa8A13j/LQ+GBgpbuvAjCzh4FTgZ3JwN1fS1j/P0DDKeMnItJMRLlNtApoFXH/PYEPEqaLwnk1+SnwXMTvISIi9RTlyqAYWGxmL1J5pLMJtWyTrB9C0oJ2ZnYMQTI4sobl44BxAL17904zZBERSUeUZPBU+IqiCOiVMJ0PfFR1JTPbH7gHOMHdNyTbkbtPJXiewKBBg1QhVUQkg6I0Lb0/7HTW293fSXOzN4ACM+sHfAicAZyVuIKZ9QYeB85293fTjUdERDInSqG6k4HFBB3PMLOBZlbrlYK7lwEXAM8DK4BH3H2ZmZ1nZueFq10F7AbcYWaLzWx+9MMQEZH6iHKb6BqC1kFzAdx9cXjGXyt3nwXMqjJvSsL7nwE/ixCHiIhkWJTWRGXuvqnKPN27FxFpAqJcGSw1s7OAPDMrACYAr6XYRkSauEmTJlFYWJjWuhXrVZTGSKWgoICJEyfWNTSJIEoy+AVwBUGz0ocIngP8No6gRKTxKCwsZNGSt6Bd59QrbysFYNG7a1KvW/JFPSOTKKK0JiomSAZXxBeOiDRK7TrHUpVVsidKbaKnqf6MYBMwH7jL3bdmMjAREcmeqOUoNgN3h68vgE+AfcJpERFppKI8M/i2uyeWrH7azOa5+1FmtizTgYmISPZESQbdzay3u78PO3sOdwuXbc94ZNKsxDJOcMkXwX5FJKUoyeAS4BUz+z+CAnT9gPPNrANwfxzBiYhIdkRpTTQr7F/QnyAZvJ3w0HhSDLFJMxLHOME7Vr1Ofr6GxxBJR8pkYGbfq2HRXmaGuz+e4ZhEmp50b4Ft2xJ8bdMhrX1KljSD3186VwYn17LMCSqOikgNCgoK0l63ooduQUGfjO9b6qa5/P5SJgN3HwNgZv3cfXXisnQK1Yk0d1HKKVSUaZg8eXJM0UhUzeX3F6Wfwcwk8x7LVCAiIpI76Twz6A/sC3Sp8vygM9A2rsBERCR70nlm8A3gJKArlZ8ffAmcG0NMIiKSZek8M3gSeNLMDnP3f2chJkkilk5ZoI5ZIgJE63R2lpmdWdNCd5+QgXhERCQHoiSDNsAAYEY4/QNgAcG4yBKzODplgTpmiUggSjIoAI5x91IAM5sCzHH3i2KJLCLdRhHJDf3vNQ1RmpbuCXRKmO4YzhMRkUYuypXBDcBCM5sbTh8NXJPpgOpKt1GagHTOLhtxd/+mSv97TUOUZDAN2AFMJEgCVwFfy3hE0iyl2y2/MXf3F2nIoiSDO4ByoJ27P2VmuxD0Sh4cS2TSrKTb5b8xd/cXaciiJIND3P1AM1sE4O6fmVnrmOISEZEsivIAudTM8ggqlWJm3QmuFEREpJGLcmVwG/AE0MPMfgeMBK6MJSpJrhnUVBeR3Igy0tl0M1sAHEsw0tlp7r4itsikkuZSU10aKZ2oNHpRrgxw97eBt2OKRWrRXGqqZ8OkSZN2JsxEFfMqfn4VCgoKIv38mxudqDQNkZJBg6ezE6mHdu3a5TqERqk5nqg0xROKJpMMdHYi6Wro/5T11RQ/qBqLxnxCEXsyMLPjgT8BecA97n5DleUWLh8BFAPnuPvCqN+nOZ6dSOOW7EO7pg9sqP+HdmP+oGpommLyjDUZhE1RJwPDgCLgDTN7yt2XJ6x2AkERvALgEODO8GuDlu1/5GzSmWXuZOIDW78LqYu4rwwOBla6+yoAM3sYOBVITAanAg+4uwP/MbOuZraHu6+t7zfP9odats+8muPxNZWEC03/Q7up//6amriTQU/gg4TpIqqf9SdbpydQKRmY2ThgHEDv3r3rFVRTP/uq7/E15WOT3NLvr+Gy4IQ8pp2b/QA4zt1/Fk6fDRzs7r9IWOdZ4Hp3fyWcfhH4lbsvqGm/gwYN8vnz58cWt4hIU2RmC9x9ULJlUcpR1EUR0CthOh/4qA7riIhIjOJOBm8ABWbWLyxqdwbwVJV1ngJ+YoFDgU2ZeF4gIiLpi/WZgbuXmdkFwPMETUvvdfdlZnZeuHwKMIugWelKgqalY+KMSUREqou9n4G7zyL4wE+cNyXhvQPVmxaIiEjWxH2bSEREGgElAxERUTIQERElAxERIeZOZ3Exs3XAmix+y27A+ix+v2zT8TVeTfnYQMeXaX3cvXuyBY0yGWSbmc2vqddeU6Dja7ya8rGBji+bdJtIRESUDERERMkgXVNzHUDMdHyNV1M+NtDxZY2eGYiIiK4MREREyUBERGimycDMvmZmD5vZ/5nZcjObZWb7mFmJmS0ysxVm9l8zG51k28FmtsPMRprZbma2OHx9bGYfJky3zsWxhTFGPj4z62JmT5vZEjNbZmZjGurxZZOZnWNmezaAOHaEP/dl4e/oYjNrkbD8YDObZ2bvmNnbZnaPmbXPZcxRmJmb2S0J05ea2TXh+2vM7NLwfVsze8HMrs5RqBmR8PtcYmYLzezwXMcUe9XShsbMDHgCuN/dzwjnDQR2B/7P3b8dztsLeNzMWrj7feG8POBGgpLcuPsGYGC47Bpgs7vfnM3jqaoexzceWO7uJ5tZd+AdYLq7DwzXv4YGcHw5cA6wlNwPuFSS8LvoAfwN6AJcbWa7A48CZ7j7v8O/ge8DnQjKwjcG24Dvmdn17p60E1Z4AjITWODu12Y1usxL/H0eB1wPHJ3LgJrjlcExQGmVMtqLqTwOM+6+CrgYmJAw+xcEf4yfxh9mndX1+BzoFH6QdAQ2AmXZCNjM+iaczS41s+lm9l0ze9XMCsOz3l3N7O9m9qaZ/cfM9g+3vcbM7jWzuWa2yswmJOz34nB/S81sYsL8n4T7WWJmD5pZJzNbbWatwuWdzew9C4ZtHQRMD8/i2pnZQWb2kpktMLPnzWyPbPyMErn7pwTjgV8Q/r7GEyT/f4fL3d0fc/dPsh1bPZQRtKy5qIblLYGHgUJ3vzxrUWVHZ+CzXAfR7K4MgP2AGsdXrmIh0B/AzHoCpwNDgcHxhJYRdTo+4HaCUec+IjijHOXu5ZkPr0ZfB35A8CH3BnAWcCRwCvA/BMlskbufZmZDgQcIr8oIjuGYMO53zOxOYH+CgZIOAQx43cxeArYDVwBHuPt6M9vV3b80s7nAicDfCUbkm+nuj5rZeOBSd58fJos/A6e6+zozGwX8Dhgb488lKXdfFd4m6kHwO78/2zHEYDLwppn9IcmyXwH/cPeJ2Q0pNu3MbDHQFtiD4HMlp5pjMojCEt5PAi5z9x3ByViTkHggxwGLCf4o9wZeMLOX3f2LLMWy2t3fAjCzZcCL7u5m9hbQF+hDcOsDd/9n+DyjS7jts+6+DdhmZp8S3BI7EnjC3beE+3wc+A7BFdBjFbci3H1juI97CD5w/k6QRM5NEuM3CD54Xwj/BvKAXA7R2mT+EAHc/Qsze4DgarWkyuJXgMPMbB93fzf70WVc4m2iw4AHzGw/z2Fb/+Z4m2gZcFCa634bWBG+HwQ8bGbvASOBO8zstIxHV391Pb4xwOPhLYaVwGq+umrIhm0J78sTpssJTlqSffBV/OMkbrujlvUJ51f7h3P3V4G+ZnY0kOfuS2vYdpm7Dwxf33L34TUdUJzCZz47CG5ZRvmdN3STgJ8CHarMnwdMBJ5rCA/0Mym8vdcNSFpALluaYzL4J9DGzHae+ZnZYIIzTxLm9QVuJrgtgLv3c/e+7t4XeAw4393/nqWYo6jT8QHvA8eGy3YnOAtelYV40zUP+BGAmQ0B1qe4apkHnGZm7c2sA8EtvpeBF4Efmtlu4b52TdjmAeAh4L6EeV8S3H6C4KF69/BMDjNrZWb71vO4Igsf8E8Bbg/PJG8HRpvZIQnr/NjMvpbt2OorvFJ7hCAhVF02E7gJmG1mXbMcWmzMrD/BVeaGXMbR7G4ThbceTgcmmdnlwFbgPYKzjr3NbBHBfbwvgT9XtCRqLOpxfL8FpoW3ZYzgllhDKh18DXCfmb1J0EKmWrPfRO6+0MymAf8NZ93j7osAzOx3wEtmtgNYRNBiCGA6cB1BQqgwDZhiZiXAYQRXhbeFt6haEpzJLqvfoaWl4h5zK4KHrQ8CtwK4+ydmdgZwc9jSqJwgGT6ehbjicAtwQbIF7j4lTHJPmdlwd9+a3dAypuL3CcH/22h335HDeFSOQqSCmY0keDh8dq5jEcm2ZndlIJKMmf0ZOAEYketYRHJBVwYiItIsHyCLiEgVSgYiIqJkICIiSgYikVhQxfT28H1iNc0GUd1UpK6UDEQy4xxAyUAaLSUDEZJWMu1uZjPN7I3wdUQt246kcnXTE83siYTlw8LaSJjZZjO7xYIa9i+GvYkxs73NbHZYDfXlsFeqSNYoGUizF5aUuAIY6u4HABcCfwL+6O6DCQrk3VPT9u7+GDAf+FFYfGwW8M2KD3qCuk8VPb07AAvd/UDgJaBikJapwC/c/SDgUuCOzB2hSGrqdCYSVGqtVMnUzL4LDEioUNvZzDrVtINEYUmQB4Efm9l9BGUsfhIuLgdmhO//SjDAUEfgcODRhO/Xpp7HJBKJkoFI8kqmLYDD3L1SKeUI5cvvA54mqA31qLvXNFCQh9/r84qSxiK5oNtEIskrmc4hoViaBUOH1iaxuinu/hHBQEFXEhS7q9CCoNgdBAP4vBJWX11twchqWOCAehyPSGS6MpBmz92XJalkOgGYHFZJbUlQBfS8WnYzjYTqpuEVxXSgu7svT1hvC7CvmS0ANgGjwvk/Au40sysJKpM+DCzJ1DGKpKLaRCIxCfsjLHL3vyTM2+zuHXMYlkhSSgYiMQjP/LcAw8IhOSvmKxlIg6RkICIieoAsIiJKBiIigpKBiIigZCAiIigZiIgI8P8BkzGorgOv4lEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'], \n", + " y=annotated_coeqtl_df_clean['eqtlgene_nonzeroratio_onemillionv2'],\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " palette='viridis', fliersize=1, showfliers = False)\n", + "# plt.savefig('eqtlgene_nonzeroratio_onemillionv2.filtered_results.pdf')\n", + "# plt.savefig('eqtlgene_nonzeroratio_onemillionv2.filtered_results.png')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### unfiltered results" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CD4T\n", + "CD8T\n", + "monocyte\n", + "DC\n", + "NK\n", + "B\n" + ] + } + ], + "source": [ + "celltype = 'monocyte'\n", + "annotated_coeqtl_df = pd.DataFrame()\n", + "for celltype in celltypes:\n", + " print(celltype)\n", + " celltype_annotated_coeqtl_df = pd.read_csv(workdir/f'output/unfiltered_results/UT_{celltype}/coeqtls_fullresults_fixed.all.annotated.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t')[['mean_onemillionv2', 'var_onemillionv2', \n", + " 'gene2_nonzeroratio_onemillionv2',\n", + " 'eqtlgene_nonzeroratio_onemillionv2',\n", + " 'gene2_isSig']]\n", + " celltype_annotated_coeqtl_df['celltype'] = celltype\n", + " annotated_coeqtl_df = pd.concat([annotated_coeqtl_df, \n", + " celltype_annotated_coeqtl_df],\n", + " axis=0)\n", + " \n", + "annotated_coeqtl_df_clean = annotated_coeqtl_df.replace([np.inf, -np.inf], np.nan, inplace=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlpUlEQVR4nO3deXxU5dn/8c9FEhsU3FiEBiFaXKCoEYOKC/pgEaVVtGrV+lNRW6xVRC32Z7WvSlue+nvqiqBSHh+1KC51wZXHWlfU1lKWoCwucSeCbAWJBAjk+v1xTuIQJsmcZM5MMvm+X695Zeac+5y5zszkXPd9n3PuY+6OiIi0bx2yHYCIiGSfkoGIiCgZiIiIkoGIiKBkICIiQH62A2iOrl27enFxcbbDEBFpU+bOnbvK3bslm9cmk0FxcTFz5szJdhgiIm2KmX3a0Dx1E4mIiJKBiIgoGYiICG30mIGISH3V1dUsXbqUjRs3ZjuUrCssLKRXr14UFBSkvIySgYjkhKVLl9K5c2eKi4sxs2yHkzXuzurVq1m6dCl77bVXysupm0hEcsLGjRvp0qVLu04EAGZGly5dIreQlAxEJGe090RQqzmfg7qJpN2ZNGkS5eXl202vqKgAoKioaJvpffv2ZcyYMRmJTSRblAxEQlVVVdkOQSRrlAyk3Wmolj927FgAJk6cmMlwpI36/PPPOe+881i+fDkdOnRg9OjRdb+hZH7zm98wZMgQvve97yWd/95773HxxRezdu1aNm3axNFHH83UqVOZM2cO06ZN4/bbb49rUwAlAxGRZsnPz+fmm29m4MCBrF+/nkMOOYRhw4bRv3//pOV/97vfNbq+yy+/nCuvvJKRI0cC8M477wBQWlpKaWlpeoNPQgeQRSRn/f73v2f//fdn2LBhnH322dx00018+OGHnHDCCRxyyCEcffTRvPvuuwCMGjWKyy+/nCOOOIK9996bxx57rG49N954I4MGDeLAAw/k+uuvB6Bnz54MHDgQgM6dO9OvX7+6407JjBo1qm6d11xzDf379+fAAw9k3LhxACxbtoxevXrVlT/ggAMAePXVV/nBD34AwMqVKxk2bBgDBw7k4osvpk+fPqxatSotn1WsycDMCs1stpktMLNFZvbbJGXMzG43s3Ize9vMBsYZk4i0D3PmzOHxxx9n/vz5PPHEE3WDW44ePZpJkyYxd+5cbrrpJn7+85/XLbNs2TLeeOMNnn32Wa655hoAXnjhBT744ANmz55NWVkZc+fOZdasWdu81yeffML8+fM57LDDmoxrzZo1zJgxg0WLFvH222/z61//GoArr7ySoUOHcuKJJ3Lrrbeydu3a7Zb97W9/y9ChQ5k3bx6nnnoqn332WXM/nu3E3U20CRjq7pVmVgC8YWb/6+5vJZQ5EdgnfBwG3BX+FRFptjfeeIORI0fSsWNHAE466SQ2btzI3//+d84444y6cps2bap7fsopp9ChQwf69+/Pl19+CQTJ4IUXXuDggw8GoLKykg8++IAhQ4bUvT7ttNO47bbb2HnnnZuMa+edd6awsJCf/OQnfP/736+r9V9wwQUMHz6c559/nqeeeoo//elPLFiwYLttmjFjBgAnnHACu+22W3M/nu3Emgzc3YHK8GVB+PB6xUYC08Kyb5nZrmbW092XxRmbiOS2YJeyrZqaGnbddVfKysqSLvOtb31ru+XdnV/96ldcfPHF25Wvrq7mtNNO45xzzuGHP/xhSnHl5+cze/ZsXnrpJR5++GEmT57Myy+/DMC3v/1tLrzwQi688EIGDBjAwoULm9ymdIn9mIGZ5ZlZGbAC+Ju7/7NekSLg84TXS8NpIiLNdtRRR/HMM8+wceNGKisree6559hxxx3Za6+9ePTRR4Fg51q/9l3f8OHDueeee6isDOq1FRUVrFixAnfnoosuol+/flx11VUpx1VZWcm6desYMWIEt912W11iev7556murgZg+fLlrF69ertrXo466ij+8pe/AEGL5d///nfK79uU2M8mcvetQImZ7QrMMLMB7p6Y7pJdKrdd+jOz0cBogN69e8cRqojkkEGDBnHyySdz0EEH0adPH0pLS9lll12YPn06l1xyCRMmTKC6upqzzjqLgw46qMH1HH/88SxZsoTBgwcD0KlTJx544AHef/997r//fg444ABKSkoA+MMf/sCIESMajWv9+vWMHDmSjRs34u7ceuutQLBzHzt2LIWFhUBw0LpHjx51B7gBrr/+es4++2weeeQRjjnmGHr27Ennzp1b8jHVsTibHdu9mdn1wNfuflPCtD8Br7r7Q+Hr94BjG+smKi0tdd3pTNJN1xm0bUuWLKFfv37bTKusrKRTp05s2LCBIUOGMHXq1LozgNqiTZs2kZeXR35+Pv/4xz+45JJLGuzySvZ5mNlcd096nmqsLQMz6wZUu/taM+sIfA/4r3rFngYuM7OHCQ4cr9PxAhFJh9GjR7N48WI2btzI+eef36YTAcBnn33Gj370I2pqathhhx347//+77StO+5uop7An80sj+D4xF/c/Vkz+xmAu08BZgIjgHJgA3BBzDGJSDvx4IMPZvw9L730Ut58881tpo0dO5YLLmj5rm2fffZh/vz5LV5PMnGfTfQ2cHCS6VMSnjtwaZxxiIhkyh133JHtEJpFVyCLiIiSgYiIKBmIiAgatVRE2oFf/upa/r12XdrWt9uuu/DHG/7QaJm8vLy6weYAnnzySYqLi5OW7dSpU91FbdmiZCAiOe/fa9cx4idXpm19M+++tckyHTt2bPAagNZI3UQiIhlQWVnJcccdx8CBAznggAN46qmntiuzbNkyhgwZQklJCQMGDOD1118HgquTBw8ezMCBAznjjDNiaUUoGYiIxKCqqoqSkhJKSko49dRTKSwsZMaMGcybN49XXnmFX/ziF9sNPPfggw8yfPhwysrKWLBgASUlJaxatYoJEybw4osvMm/ePEpLS7nlllvSHq+6iUREYlC/m6i6upprr72WWbNm0aFDByoqKvjyyy/p0aNHXZlBgwZx4YUXUl1dzSmnnEJJSQmvvfYaixcv5sgjjwRg8+bNdeMkpZOSgYhIBkyfPp2VK1cyd+5cCgoKKC4uZuPGjduUGTJkCLNmzeK5557j3HPP5eqrr2a33XZj2LBhPPTQQ7HGp24iEZEMWLduHd27d6egoIBXXnmFTz/9dLsyn376Kd27d+enP/0pF110EfPmzePwww/nzTffpLy8HIANGzbw/vvvpz0+tQxEJOfttusuKZ0BFGV9UZ1zzjmcdNJJlJaWUlJSwv77779dmVdffZUbb7yRgoICOnXqxLRp0+jWrRv33XcfZ599dt1d2SZMmMC+++7b4u1IlNEhrNNFQ1hLHDSEdduWbMjm9izqENbqJhIRESUDERFRMhAREZQMREQEJQMREUHJQERE0HUGItIOXHbV1axYtSZt6+vedXcm33Jjg/NXr17NcccdB8Dy5cvJy8ujW7duAMyePZsddtghbbGki5KBiOS8FavW8OEex6RvhV++1ujsLl261I1LNH78eDp16sS4cePq5m/ZsoX8/Na1+21d0YiI5KhRo0ax++67M3/+fAYOHEjnzp23SRIDBgzg2Wefpbi4mAceeIDbb7+dzZs3c9hhh3HnnXeSl5cXa3w6ZiAikiHvv/8+L774IjfffHODZZYsWcIjjzzCm2++SVlZGXl5eUyfPj322NQyEBHJkDPOOKPJGv5LL73E3LlzGTRoEBDcF6F79+6xxxZrMjCzPYFpQA+gBpjq7hPrlTkWeAr4OJz0hLv/Ls64RESyYaeddqp7np+fT01NTd3r2uGs3Z3zzz+fG264IaOxxd1NtAX4hbv3Aw4HLjWz/knKve7uJeFDiUBEcl5xcTHz5s0DYN68eXz8cVAfPu6443jsscdYsWIFAGvWrEk63HW6xdoycPdlwLLw+XozWwIUAYvjfF8RkUTdu+7e5BlAkdfXQqeddhrTpk2jpKSEQYMG1Q1J3b9/fyZMmMDxxx9PTU0NBQUF3HHHHfTp06fF79mYjB0zMLNi4GDgn0lmDzazBcAXwDh3X5Rk+dHAaIDevXvHGKmI5JrGrgmI2/jx45NO79ixIy+88ELSeWeeeSZnnnlmjFFtLyNnE5lZJ+Bx4Ap3/6re7HlAH3c/CJgEPJlsHe4+1d1L3b209uINERFJj9iTgZkVECSC6e7+RP357v6Vu1eGz2cCBWbWNe64RETkG7EmAzMz4H+AJe5+SwNleoTlMLNDw5hWxxmXiOSmtnjnxjg053OI+5jBkcC5wDtmVhZOuxboDeDuU4DTgUvMbAtQBZzl+kZFJKLCwkJWr15Nly5dCOuX7ZK7s3r1agoLCyMtF/fZRG8AjX4r7j4ZmBxnHCKS+3r16sXSpUtZuXJltkPJusLCQnr16hVpGV2BLCI5oaCggL322ivbYbRZGptIRESUDERERMlARERQMhAREZQMREQEJQMREUHJQEREUDIQERFSTAZmNtzMLgqHoU6cfmEsUYmISEY1mQzM7A/AdcABwEtmNiZh9mVxBSYiIpmTSsvgJGCou18BHAKcaGa3hvPa72hQIiI5JJVkkO/uWwDcfS1BctjZzB4FdogxNhERyZBUksGHZnZM7Qt33+ruFwHvAf1ii0xERDImlWRwBjC7/kR3/zWwZ9ojEhGRjGsyGbh7lbtXmdnTZvZjM9spYV5FvOGJiEgmRLnO4GbgKGCxmT1qZqebWbRb6YiISKuU8s1t3P014DUzywOGAj8F7gF2jik2ERHJkEh3OjOzjgRnE50JDAT+HEdQIiKSWSknAzN7BDgMeB64A3jV3WviCkxERDInSsvgXuDH7r41rmBERCQ7ohwzeN7MjgjHJ8pPmD4tjsBERCRzonQT3Q98BygDalsHDigZiIi0cVG6iUqB/u7uqS5gZnsSJIseQA0w1d0n1itjwERgBLABGOXu8yLEJSIiLRTlOoOFBDv1KLYAv3D3fsDhwKVm1r9emROBfcLHaOCuiO8hIiItFKVl0JXggrPZwKbaie5+ckMLuPsyYFn4fL2ZLQGKgMUJxUYC08IWx1tmtquZ9QyXFRGRDIiSDMa35I3CA88HA/+sN6sI+Dzh9dJw2jbJwMxGE7Qc6N27d0tCERGRelLuJgqvQH4X6Bw+loTTmmRmnYDHgSvc/av6s5O9XZL3n+rupe5e2q1bt1TDFhGRFKScDMzsRwSjl54B/Aj4p5mdnsJyBQSJYLq7P5GkyFK2Hf20F/BFqnGJiEjLRekmug4Y5O4rAMysG/Ai8FhDC4RnCv0PQSvilgaKPQ1cZmYPE1zhvE7HC0REMitKMuhQmwhCq2m6ZXEkcC7wjpmVhdOuBXoDuPsUYCbBaaXlBKeWXhAhJhERSYMoyeB5M/sr8FD4+kyCHXmD3P0NmrhPcngW0aUR4hARkTSLMhzF1WZ2GkFt3wguIJsRW2QiIpIxkYawdvfHCQ4Gi4hIDmkyGZjZG+5+lJmtZ9tTPo2gl0c3txERaeOaTAbuflT4t3P84YiISDak0jLYvbH57r4mfeGIiEg2pHLMYC5B91BDVwrvndaIREQk41LpJtorE4GIiEj2pNJNNLCx+br3gIhI25dKN9HNjcxzYGiaYhERkSxJpZvoPzIRiIiIZE8q3URD3f1lM/thsvkNjEQqIiJtSCrdRMcALwMnJZnngJKBiEgbl0o30fXhX40mKiKSo1Iem8jMdgXOA4oTl3P3y9MelYiIZFSUgepmAm8B7wA18YQjIiLZECUZFLr7VbFFIiIiWZPyPZCB+83sp2bW08x2r33EFpmIiGRMlJbBZuBGgnsh1w5lrbGJRERyQJRkcBXQ191XxRWMiIhkR5RuokUEN6wXEZEcE6VlsBUoM7NXgE21E3VqqYhI2xclGTwZPkREJMeknAzc/c9m1hHo7e7vxRiTiIhkWMrHDMzsJKAMeD58XWJmTzexzD1mtsLMFjYw/1gzW2dmZeHjNxFiFxGRNIlyAHk8cCiwFsDdy4Cm7oJ2H3BCE2Ved/eS8PG7CPGIiEiaREkGW9x9Xb1pnrRk7Uz3WcCayFGJiEhGRUkGC83sx0Ceme1jZpOAv6chhsFmtsDM/tfMvttQITMbbWZzzGzOypUr0/C2IiJSK0oyGAN8l+C00oeAr4ArWvj+84A+7n4QMIlGzlZy96nuXurupd26dWvh24qISKIoZxNtIBiK4rp0vbm7f5XwfKaZ3WlmXXWVs4hIZkW5n8G+wDi2v5/B0Oa+uZn1AL50dzezQwlaKqubuz4REWmeKBedPQpMAe4muBq5SWb2EHAs0NXMlgLXAwUA7j4FOB24xMy2AFXAWe7e6EFpERFJvyjJYIu73xVl5e5+dhPzJwOTo6xTRETSL8oB5GfM7Oe6n4GISO6J0jI4P/x7dcI03c9AWrVJkyZRXl6eUtnacmPHjk2pfN++fRkzZkyzY4tLQ9tcUVEBQFFR0TbTW+t2SGZFOZuoqauNRVqd8vJyyhYuYeuOTTdiO2wODlfN/ejLJsvmbWh711JWVVVlOwRpxaKcTVQAXAIMCSe9CvzJ3atjiEskbbbuuDtV+49I6zo7vjszretLp4Zq+bUtnokTJ2YyHGkjonQT3UVwJtCd4etzw2k/SXdQIiKSWVGSwaDwSuFaL5vZgnQHJCIimRfpTmdm9h13/xDAzPYmxesNRCQe7fEAucQjSjK4GnjFzD4CDOgDXBBLVCKSEh0gl3SJcjbRS2a2D7AfQTJ4193r7oVsZsPc/W8xxCgijWhvB8glHlEuOsPdN7n72+6+IDERhP4rjXGJiEgGRUoGTbA0rktERDIoyjGDpmiAOZEMq6ioIG/DurR36+RtWE1FxZa0rlNat3S2DEREpI1KZ8vgkzSuS0RSUFRUxPJN+bEcQC4q2iOt65TWLVIyMLMj2P7mNtPCvz9Ma2QiIpIxUcYmuh/4DlDGNxebOTAt/WGJiEgmRWkZlAL9dScyEZHcE+UA8kKgR1yBiIhI9kRpGXQFFpvZbKDugjN3PzntUYmISEZFSQbj4wpCRJovb8OalK4z6LDxKwBqCndOaZ2gs4nakyhjE70WZyAiEl3fvn1TLltevj5YZu9UdvJ7RFq3tH1RziY6HJgE9AN2APKAr9296WqGiMQiyhDTutOZNCbKAeTJwNnAB0BHgjucTW5sATO7x8xWmNnCBuabmd1uZuVm9raZDYwQj4iIpEnUUUvLgTx33+ru9wLHNrHIfcAJjcw/EdgnfIwmuI2miIhkWJQDyBvMbAegzMz+CCwDdmpsAXefZWbFjRQZCUwLr114y8x2NbOe7r4sQlwiItJCUVoG54blLwO+BvYETmvh+xcBnye8XhpO246ZjTazOWY2Z+XKlS18WxERSRTlbKJPzawj0NPdf5um9092D4SkVzi7+1RgKkBpaamughYRSaOUWwZmdhLBuETPh69LzOzpFr7/UoIWRq1ewBctXKeIiEQUpZtoPHAosBbA3csIRjBtiaeB88Kzig4H1ul4gYhI5kU5gLzF3deZpX53SzN7iOCMo65mthS4HigAcPcpwExgBFAObAAuiBCPiIikSZRksNDMfgzkmdk+wOXA3xtbwN3PbmK+A5dGiEFERGIQpZtoDPBdgkHqHgTWAWPjCEpERDIrSsugf/jIDx8jgZOBA2OIS0SaadKkSZSXl283vXZa7bAUtfr27RtpWAvJTVGSwXRgHMF9DWriCUdE4tKxY8dshyCtWJRksNLdn4ktEhFJC9XypTmiJIPrzexu4CW2vbnNE2mPSkREMipKMrgA2J/g1NDabiIHlAxERNq4KMngIHc/ILZIREQka6KcWvqWmfWPLRIREcmaKC2Do4DzzexjgmMGRnDdmE4tFRFp46Ikg8ZuUiMiIm1YpCGs4wxERESyJ9JtL0VEJDcpGYiIiJKBiIgoGYiICEoGIiKCkoGIiKBkICIiKBmIiAhKBiIiQrThKEREJGbJbltaUVEBQFFR0Xbl03XbUiUDEZFWrqqqKvb3UDIQyZJs1QCldUv2HY8dOxaAiRMnxva+sR8zMLMTzOw9Mys3s2uSzD/WzNaZWVn4+E3cMYm0VlVVVRmpBYrUF2vLwMzygDuAYcBS4F9m9rS7L65X9HV3/0GcsUjbk+s152zVAEWSibub6FCg3N0/AjCzh4GRQP1kIJIS1ZqlNUhWUYGGKyttoaISdzIoAj5PeL0UOCxJucFmtgD4Ahjn7ovqFzCz0cBogN69e8cQqrQ2qjlLW9OWKytxJwNLMs3rvZ4H9HH3SjMbATwJ7LPdQu5TgakApaWl9dchIu1Ea+g+bGh9USorDbUukqktV7v+pjRnm+NOBkuBPRNe9yKo/ddx968Sns80szvNrKu7r4o5NhHJEW2xRl5eXk7ZwiVs3XH3Jst22BzUf+d+9GWTZfM2rGlWPHEng38B+5jZXkAFcBbw48QCZtYD+NLd3cwOJTjDaXXMcYlIG5VL3Ydbd9ydqv1HpHWdHd+d2azlYk0G7r7FzC4D/grkAfe4+yIz+1k4fwpwOnCJmW0BqoCz3F3dQFmUiwfHRKRxsV905u4zgZn1pk1JeD4ZmBx3HNJybbEpLtJaVVRUkLdhXbNr8g3J27CaiootkZfTFchtWFw1+HQcHBORtkXJIAepBi+tQWs466c1KyoqYvmm/FiOGRQV7RF5uZxOBrne960avLQ1qqi0XjmdDBqiH2T70dr6ZduTXDrrJy55G9ak9NvssDE4A7+mcOeU1glqGWxDNWcRaa369u2bctny8vXBMnunspPfI9K6a+V0MhBpbf2yIrWidEnnxBDWIiLS+qll0Ew6U0JEcomSQRrpwLQk09oGJGsr9LlllpJBM+lMifRK9R8/6j990FrL7s+8vLycJe+9T7eiPZsunF8AwKrKpisWKys+b7JMW9baBnLLdUoG0iqkvMOMuLMsyOsAHTqnI8QW6Va0J6f//JdpXedjd/4xretrjVrDQG7tpYWiZNDOtaYferp3mI/d+UfWLq9I2/qkfWovLTslg3ZOTXGRprWHlp2SQRsRVw2+vLy8VTTFpe2K87fZGrr4Mi3Z59nY55aurqacSQatqbsjDnE1VTdsqIJO7e8fTtInrt/m119/TV7eZg0lAnTs2DH298iZZBDXD3LZJx9SXl4ey5ku2e5TB5j0y4vJ27Ba/3Axqqio4KvKr9PeLbCy4nM2ddopretsrrh+m1vTusa2IVsVz5xJBhDPD/Ku68ZQubE6pX5y9ak3Xxw7zJUVn1OzpZo8r241g4FJ6vILdmBzwS5ZH0qkPSRzyLFkEIct1ZtJddSOVHYi3/C6K5azqbX8w8UlPz+f7+63X0pl4xoMrKioiG9VVsVyALJrp/i7D6R9yJlkEFf2rtm6FSz7t2SOa/uqN22iw9av0rrO5ohjh1m7s0z1IkBdNNg8cf428zatyHqrrr0k85xJBnEx60BNfmHO1pwBbMvGrP/DidRnHYwCM0pSaKllYojnXJczySCu7H3XdWOoqd6S9Z1lXNt39+/GwZbqlP6J4v6HW1nxeZO1y7WrVgCwa9fuKa2v6377RopBoou75pxKS02tupbLmWQAqe1MINoOZUv1ZjoVFraZnSVE277qTZvot9++Wf+HS/WzWLu8GiCl5nXX/fZtNTXAOL671pTstH2Btrp9kEPJIMo/faQdyoABKZ8C2hp2ltA2d5ipnk7XFmuAuf7dafu+0Ra3r1bsycDMTgAmAnnA3e7+/+rNt3D+CGADMMrd50V9n9Z216B0y/Xty2W5/t1p+77RFrevVqx3OjOzPOAO4ESgP3C2mfWvV+xEYJ/wMRq4K86YRERke+Ye32mTZjYYGO/uw8PXvwJw9xsSyvwJeNXdHwpfvwcc6+7LGlpvaWmpz5kzp8n3b2iIitpp9ZtoUa4Ibmz8kGRNvziGtIhr++L83KKI6zPO9e1rLTL5/eXK/17czGyuu5cmmxd3N1ERkDhO61LgsBTKFAHbJAMzG03QcqB3794tCiqucT4yMX5IKnJ5++KMIde3rzXI5d8mtJ44miPulsEZwHB3/0n4+lzgUHcfk1DmOeAGd38jfP0S8Et3n9vQelNtGYiIyDcaaxnEesyAoJafOHJcL+CLZpQREZEYxZ0M/gXsY2Z7mdkOwFnA0/XKPA2cZ4HDgXWNHS8QEZH0i/WYgbtvMbPLgL8SnFp6j7svMrOfhfOnADMJTistJzi19II4YxIRke3Ffp2Bu88k2OEnTpuS8NyBS+OOQ0REGhZ3N5GIiLQBSgYiIqJkICIiSgYiIkLMF53FxcxWAp9m8C27Aqsy+H6Zpu1ru3J520Dbl2593L1bshltMhlkmpnNaeiqvVyg7Wu7cnnbQNuXSeomEhERJQMREVEySNXUbAcQM21f25XL2wbavozRMQMREVHLQERElAxERIR2mgzMrIeZPWxmH5rZYjObaWb7mlmVmc03syVmNtvMzk+y7CAz22pmp5tZFzMrCx/Lzawi4fUO2di2MMbI22dmu5jZM2a2wMwWmdkFrXX7MsnMRpnZt1tBHFvDz31R+B1dZWYdEuYfamazzOw9M3vXzO42sx2zGXMUZuZmdnPC63FmNj58Pt7MxoXPC83sb2Z2fZZCTYuE73OBmc0zsyOyHVPso5a2NmZmwAzgz+5+VjitBNgD+NDdDw6n7Q08YWYd3P3ecFoe8F8EQ3Lj7quBknDeeKDS3W/K5PbU14LtuxRY7O4nmVk34D1guruXhOXH0wq2LwtGAQvJ/g2XqhK+i+7Ag8AuwPVmtgfwKHCWu/8j/A2cBnQmGBa+LdgE/NDMbnD3pBdhhRWQx4G57v7bjEaXfonf53DgBuCYbAbUHlsG/wFU1xtGu4xt78OMu38EXAVcnjB5DMGPcUX8YTZbc7fPgc7hjqQTsAbYkomAzaw4oTa70Mymm9n3zOxNM/sgrPXubmZPmtnbZvaWmR0YLjvezO4xs1fN7CMzuzxhvVeF61toZlckTD8vXM8CM7vfzDqb2cdmVhDO39nMPrHgtq2lwPSwFtfRzA4xs9fMbK6Z/dXMembiM0rk7isI7gd+Wfh9XUqQ/P8Rznd3f8zdv8x0bC2wheDMmisbmJ8PPAx84O7XZCyqzNgZ+He2g2h3LQNgANDg/ZXrmQfsD2BmRcCpwFBgUDyhpUWztg+YTHDXuS8IapRnuntN+sNrUF/gDIKd3L+AHwNHAScD1xIks/nufoqZDQWmEbbKCLbhP8K43zOzu4ADCW6UdBhgwD/N7DVgM3AdcKS7rzKz3d19vZm9CnwfeJLgjnyPu/ujZnYpMM7d54TJYhIw0t1XmtmZwH8CF8b4uSTl7h+F3UTdCb7zP2c6hhjcAbxtZn9MMu+XwIvufkVmQ4pNRzMrAwqBngT7laxqj8kgCkt4fhvwf919a1AZywmJGzIcKCP4UX4H+JuZve7uX2Uolo/d/R0AM1sEvOTubmbvAMVAH4KuD9z95fB4xi7hss+5+yZgk5mtIOgSOwqY4e5fh+t8AjiaoAX0WG1XhLuvCddxN8EO50mCJPLTJDHuR7Dj/Vv4G8gDsnmL1pz5IQK4+1dmNo2gtVpVb/YbwGAz29fd3898dGmX2E00GJhmZgM8i+f6t8duokXAISmWPRhYEj4vBR42s0+A04E7zeyUtEfXcs3dvguAJ8IuhnLgY75pNWTCpoTnNQmvawgqLcl2fLX/OInLbm2kPOH07f7h3P1NoNjMjgHy3H1hA8sucveS8HGAux/f0AbFKTzms5WgyzLKd97a3QZcBOxUb/os4Argf1vDAf10Crv3ugJJB5DLlPaYDF4GvmVmdTU/MxtEUPMkYVoxcBNBtwDuvpe7F7t7MfAY8HN3fzJDMUfRrO0DPgOOC+ftQVAL/igD8aZqFnAOgJkdC6xqotUyCzjFzHY0s50IuvheB14CfmRmXcJ17Z6wzDTgIeDehGnrCbqfIDio3i2syWFmBWb23RZuV2ThAf4pwOSwJjkZON/MDkso83/MrEemY2upsKX2F4KEUH/e48CNwPNmtmuGQ4uNme1P0Mpcnc042l03Udj1cCpwm5ldA2wEPiGodXzHzOYT9OOtBybVnknUVrRg+34P3Bd2yxhBl1hrGjp4PHCvmb1NcIbMdqf9JnL3eWZ2HzA7nHS3u88HMLP/BF4zs63AfIIzhgCmAxMIEkKt+4ApZlYFDCZoFd4edlHlE9RkF7Vs01JS28dcQHCw9X7gFgB3/9LMzgJuCs80qiFIhk9kIK443AxclmyGu08Jk9zTZna8u2/MbGhpU/t9QvD/dr67b81iPBqOQqSWmZ1OcHD43GzHIpJp7a5lIJKMmU0CTgRGZDsWkWxQy0BERNrlAWQREalHyUBERJQMREREyUAkEgtGMZ0cPk8cTbNVjG4q0lxKBiLpMQpQMpA2S8lAhKQjmXYzs8fN7F/h48hGlj2dbUc3/b6ZzUiYPywcGwkzqzSzmy0Yw/6l8GpizOw7ZvZ8OBrq6+FVqSIZo2Qg7V44pMR1wFB3PwgYC0wEbnX3QQQD5N3d0PLu/hgwBzgnHHxsJtCvdkdPMO5T7ZXeOwHz3H0g8BpQe5OWqcAYdz8EGAfcmb4tFGmaLjoTCUZq3WYkUzP7HtA/YYTanc2sc0MrSBQOCXI/8H/M7F6CYSzOC2fXAI+Ezx8guMFQJ+AI4NGE9/tWC7dJJBIlA5HkI5l2AAa7+zZDKUcYvvxe4BmCsaEedfeGbhTk4XutrR3SWCQb1E0kknwk0xdIGCzNgluHNiZxdFPc/QuCGwX9mmCwu1odCAa7g+AGPm+Eo69+bMGd1bDAQS3YHpHI1DKQds/dFyUZyfRy4I5wlNR8glFAf9bIau4jYXTTsEUxHejm7osTyn0NfNfM5gLrgDPD6ecAd5nZrwlGJn0YWJCubRRpisYmEolJeD3CfHf/n4Rple7eKYthiSSlZCASg7Dm/zUwLLwlZ+10JQNplZQMREREB5BFRETJQEREUDIQERGUDEREBCUDEREB/j8Wh4+5imbBKAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'],\n", + " y=abs(annotated_coeqtl_df_clean['mean_onemillionv2']),\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " fliersize=1,\n", + " palette='Paired',\n", + " showfliers = False)\n", + "plt.savefig('mean_onemillionv2.unfiltered_results.pdf')\n", + "plt.savefig('mean_onemillionv2.unfiltered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEGCAYAAACAd+UpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiN0lEQVR4nO3deXgV9dn/8fedEE00uAJqgxAttUhRI4ZaXGiLItbdWqv+rHvFx1qhWttHrVfVlqe2dcWtLbVWUVxRtC611gVRu1gSUFEUU1dSkE2QSBIj3L8/ZpIGOEnOSWbOMvm8ritXklnvyZnc53u+8517zN0REZFkKsp1ACIiEh8leRGRBFOSFxFJMCV5EZEEU5IXEUmwPrkOoL1+/fp5ZWVlrsMQESkoNTU1y9y9f6p5eZXkKysrmT17dq7DEBEpKGb2Xkfz1F0jIpJgSvIiIgmmJC8ikmB51ScvIrKhlpYWFi5cSFNTU65DybnS0lIGDhxISUlJ2usoyYtIXlu4cCF9+/alsrISM8t1ODnj7ixfvpyFCxey0047pb2eumtEJK81NTWx7bbb9uoED2BmbLvtthl/olGSF5G819sTfKvu/B3UXSOJcsMNN1BXV7fetPr6egAqKio2Wn7IkCGce+65WYlNJBeU5CXxGhsbcx2CSM4oyUuipGqVT5w4EYDJkydnOxwpUB988AEnn3wyixcvpqioiPHjx7edR6n89Kc/ZfTo0Rx44IEp57/55pucddZZrFy5kubmZvbff3+mTJnC7NmzmTp1Ktdff31ch6IkLyKyoT59+nD11VczYsQIVq9ezV577cXYsWMZNmxYyuV/9rOfdbq9CRMmcN5553HkkUcC8OqrrwJQXV1NdXV1tMFvQBdeRaQg/fznP2fo0KGMHTuWE044gauuuop///vfHHzwwey1117sv//+vPHGGwCceuqpTJgwgX322Yedd96Z6dOnt23nyiuvZOTIkey+++5ceumlAOywww6MGDECgL59+7Lrrru2XdtJ5dRTT23b5oUXXsiwYcPYfffdueCCCwBYtGgRAwcObFt+t912A2DmzJkcdthhACxdupSxY8cyYsQIzjrrLAYPHsyyZct6/HdSkheRgjN79mweeOAB5syZw4MPPthW2HD8+PHccMMN1NTUcNVVV/G9732vbZ1Fixbxwgsv8Oijj3LhhRcC8OSTT/LWW2/x0ksvMXfuXGpqapg1a9Z6+3r33XeZM2cOe++9d5dxrVixghkzZvDaa6/xyiuvcMkllwBw3nnnMWbMGL7xjW9w7bXXsnLlyo3WvfzyyxkzZgy1tbUcffTRvP/++93986xH3TUiUnBeeOEFjjzySMrKygA4/PDDaWpq4m9/+xvHHnts23LNzc1tPx911FEUFRUxbNgwPvzwQyBI8k8++SR77rknAA0NDbz11luMHj267fdjjjmG6667ji222KLLuLbYYgtKS0v57ne/y6GHHtrWSj/ttNMYN24cTzzxBA8//DC/+93vePnllzc6phkzZgBw8MEHs/XWW3f3z7MeJXkRKTjuvtG0devWsdVWWzF37tyU62y66aYbre/uXHTRRZx11lkbLd/S0sIxxxzDiSeeyDe/+c204urTpw8vvfQSTz/9NPfccw833ngjzzzzDACf+9znOP300zn99NMZPnw48+bN6/KYoqDuGhEpOPvttx+PPPIITU1NNDQ08Nhjj7HZZpux0047cf/99wNB0tywtbyhcePGceutt9LQ0AAE91QsWbIEd+eMM85g11135fzzz087roaGBlatWsUhhxzCdddd1/aG88QTT9DS0gLA4sWLWb58+Ub3bey3337cd999QPAJ46OPPkp7v51RS15ECs7IkSM54ogj2GOPPRg8eDDV1dVsueWWTJs2jbPPPptJkybR0tLC8ccfzx577NHhdg466CDmz5/PqFGjACgvL+fOO+9kwYIF3HHHHey2225UVVUB8Itf/IJDDjmk07hWr17NkUceSVNTE+7OtddeCwRJe+LEiZSWlgLBxd7tt9++7cIwwKWXXsoJJ5zAvffey1e/+lV22GEH+vbt25M/EwAW10eE7qiurnY9GUqipnHyhW3+/PnsuuuuG01vaGigvLycNWvWMHr0aKZMmdI2IqYQNTc3U1xcTJ8+ffj73//O2WefnbLrKdXfw8xq3D3lWEy15EWkII0fP57XX3+dpqYmTjnllIJO8ADvv/8+3/72t1m3bh2bbLIJv//97yPZrpK8iBSku+66K+v7POecc3jxxRfXmzZx4kROO+20Hm/7C1/4AnPmzOnxdjakJC8ikqabbrop1yFkTKNrREQSTEleRCTBlORFRBIs9j55M3sXWA2sBT7raJiPiEh3/Piii/lo5arItrf1Vlvy6yt+0ekyxcXFbUXGAB566CEqKytTLlteXt52s1UuZOvC69fdvefl1ERENvDRylUc8t3zItve47dc2+UyZWVlHZZPyDfqrhER6aGGhgYOOOAARowYwW677cbDDz+80TKLFi1i9OjRVFVVMXz4cJ5//nkguBt21KhRjBgxgmOPPTbyVn82krwDT5pZjZmN33CmmY03s9lmNnvp0qVZCEdEpGcaGxupqqqiqqqKo48+mtLSUmbMmEFtbS3PPvssP/zhDzcqOHbXXXcxbtw45s6dy8svv0xVVRXLli1j0qRJPPXUU9TW1lJdXc0111wTaazZ6K7Z193/Y2YDgL+a2Rvu3law2d2nAFMgKGuQhXhERHpkw+6alpYWLr74YmbNmkVRURH19fV8+OGHbL/99m3LjBw5ktNPP52WlhaOOuooqqqqeO6553j99dfZd999Afj000/b6uhEJfYk7+7/Cb8vMbMZwJeBWZ2vJSJSOKZNm8bSpUupqamhpKSEyspKmpqa1ltm9OjRzJo1i8cee4yTTjqJH/3oR2y99daMHTuWu+++O7bYYu2uMbPNzaxv68/AQcC8ztcSESksq1atYsCAAZSUlPDss8/y3nvvbbTMe++9x4ABAzjzzDM544wzqK2t5Stf+QovvvgidXV1AKxZs4YFCxZEGlvcLfntgBlm1rqvu9z9iZj3KSK9yNZbbZnWiJhMtpepE088kcMPP5zq6mqqqqoYOnToRsvMnDmTK6+8kpKSEsrLy5k6dSr9+/fntttu44QTTmh7itWkSZPYZZddenwcrVRqWBJPpYYLW0elhnurTEsNawiliEiCKcmLiCSYkryISIIpyYuIJJiSvIhIginJi4gkmB7/JyIF7fvn/4gly1ZEtr0B/bbhxmuu7HD+8uXLOeCAAwBYvHgxxcXF9O/fH4CXXnqJTTbZJLJYoqAkLyIFbcmyFfx7u69Gt8EPn+t09rbbbttWt+ayyy6jvLycCy64oG3+Z599Rp8++ZNa8ycSEZECdeqpp7LNNtswZ84cRowYQd++fddL/sOHD+fRRx+lsrKSO++8k+uvv55PP/2Uvffem5tvvpni4uLYYlOfvIhIBBYsWMBTTz3F1Vdf3eEy8+fP59577+XFF19k7ty5FBcXM23atFjjUkteRCQCxx57bJct8qeffpqamhpGjhwJBHXpBwwYEGtcSvIiIhHYfPPN237u06cP69ata/u9teywu3PKKadwxRVXZC0uddeIiESssrKS2tpaAGpra3nnnXcAOOCAA5g+fTpLliwBYMWKFSnLEkdJLXkRKWgD+m3T5YiYjLfXQ8cccwxTp06lqqqKkSNHtpUOHjZsGJMmTeKggw5i3bp1lJSUcNNNNzF48OAe77MjSvIiUtA6G9Met8suuyzl9LKyMp588smU84477jiOO+64GKNan7prREQSTEleRCTBlORFJO/l0xPscqk7fwcleRHJa6WlpSxfvrzXJ3p3Z/ny5ZSWlma0ni68ikheGzhwIAsXLmTp0qW5DiXnSktLGThwYEbrKMmLSF4rKSlhp512ynUYBUvdNSIiCaYkLyKSYEryIiIJpiQvIpJgSvIiIgmmJC8ikmBZSfJmVmxmc8zs0WzsT0REAtlqyU8E5mdpXyIiEoo9yZvZQOBQ4Ja49yUiIuvLRkv+OuDHwLpUM81svJnNNrPZum1ZRCRasSZ5MzsMWOLuNR0t4+5T3L3a3av79+8fZzgiIr1O3C35fYEjzOxd4B5gjJndGfM+RUQkFGuSd/eL3H2gu1cCxwPPuPt34tyniIj8l8bJi4gkWJdJ3syGmtkBZla+wfSDM9mRu89098MyDVBERLqv0yRvZhOAh4FzgXlmdmS72b+IMzAREem5rh4aciawl7s3mFklMN3MKt19MmCxRyciIj3SVZIvdvcGAHd/18y+RpDoB6MkLyKS97rqk19sZlWtv4QJ/zCgH7BbjHGJiEgEukryJwOL209w98/c/WRgdGxRiYhIJDpN8u6+0N0Xm9lkM9tng3kvxhuaiIj0VLrj5GuBS8yszsyuNLPqOIMSEZFopJXk3f12dz8E+DKwAPiVmb0Va2QiItJjmd7xOgQYClQCb0QejYiIRCqtJG9mrS33nwGvEYydPzzWyEREpMe6Giff6h1glLsvizMYERGJVlpJ3t1/a2YV4QibPu2mz4otMhER6bG0kryZ/ZKgVPDrwNpwsgNK8iIieSzd7pqjgS+6e3OcwYiISLTSHV3zNlASZyAiIhK9dFvya4C5ZvY00Naad/cJsUQlIiKRSDfJ/yn8EhGRApLu6JrbzWwTYJdw0pvu3hJfWCIiEoV0R9d8DbgdeJegjvyOZnaKhlCKiOS3dLtrrgYOcvc3AcxsF+BuYK+4ApN43HDDDdTV1a03rb6+HoCKioqNlh8yZAjnnntuVmITkeilm+RLWhM8gLsvMDONtkmIxsbGXIcgIjFJN8nPNrM/AHeEv58I1MQTksQpVat84sSJAEyePDnb4YhIzNJN8mcD5wATCPrkZwE3xxWUiIhEI93RNc3ANeGXiIgUiE6TvJnd5+7fNrNXCWrVrMfdd48tMhER6bGuWvITw++HxR2IiIhEr9Mk7+6Lwu/vdWfjZlZK0H+/abiv6e5+aXe2JSIimeuqu2Y1KbppCC6+urtv0cX2m4Ex7t4QDrl8wcz+7O7/6F64IpJUqe7hgI7v49A9HOnpqiXftycbd3cHGsJfS8KvVG8aIiIp6T6OnumqJb9NZ/PdfUVXOzCzYoIx9UOAm9z9nxlFKCK9Qketct3H0TNdXXitIWh5W4p5Duzc1Q7cfS1QZWZbATPMbLi7z2udb2bjgfEAgwYNSjNsERFJR1fdNTtFtSN3X2lmM4GDgXntpk8BpgBUV1erK0dEJEJdddcMdfc3zGxEqvnuXtvF+v2BljDBlwEHAr/qdrQiIpKRrrprzifoSrk6xTwHxnSx/g7A7WG/fBFwn7s/mnGUIiLSLV1114wPv3+9Oxt391eAPbuzroiI9Fy6Dw0pBg4FKtuv4+6qZSMiksfSrUL5CNAEvAqsiy8cERGJUrpJfqCKkYmIFJ6iNJf7s5kdFGskIiISuXRb8v8guJGpCGgh/do1IiKSQ5k8yHsU8GpYj0ZERApAut01bwHzlOBFRApLui35RcBMM/szQflgQEMoRUTyXbpJ/p3wa5PwS0RECkC6D/K+HMDMNnf3T+INSUREopLuHa+jgD8A5cAgM9sDOMvdvxdncCId6egpQqm0Ltdal7wreuKQJEm63TXXAeOAPwG4+8tmNjquoES6UldXx9x581m7WafPtQGg6NNgvEDN2x92uWzxmi6fgyNSUNJN8rj7B2brPTtkbfThiKRv7Wbb0Dj0kEi3WfbG45FuTyTX0k3yH5jZPoCb2SbABGB+fGGJiEgU0h0n/z/AOUAFsBCoCn8XEZE8lu7ommXAiTHHIiIiEUt3dE1/4Ew2rid/ejxhiYhIFNLtk38YeB54Cl1wFREpGOkm+c3c/X9jjURERCKX7oXXR80s2rFqIiISu3ST/ESCRN9kZqvDr4/jDExERHou3dE1feMOREREopf2Ha9mdgTQWspgprs/Gk9IIiISlXSHUP4SGAlMCydNNLP93P3C2CLLkY4KX9XX1wNQUVGx3nQVsxKRfJZuS/4QoMrd1wGY2e3AHCBxSb4jjY2NuQ5BRCRjaXfXAFsBrSX6tow+lPzQUau8tUzt5MmTsxmOiEiPpJvkrwDmmNmzgBH0zV8UW1QiIhKJtIZQuvvdwFeAB8OvUe5+T+t8M/tSqvXMbEcze9bM5pvZa2aW3lMbREQkEpnUk19E+NCQFO4ARqSY/hnwQ3evNbO+QI2Z/dXdX888VBERyVQmffKdsVQTwzeGReHPq81sPkG5YiX5XkwjmESyJ6ok710tYGaVwJ7APzeYPh4YDzBo0KCIwpFCpBFMItGLKsl3yszKgQeAH7j7euUQ3H0KMAWgurq6yzcLKXwawSS9Ua4+wXZ54dUCO3ax2KedrF9CkOCnufuDGcYnIpJojY2NsX6K7bIl7+5uZg8Be3WyzFdSTbfgyd9/AOa7+zXdDbI3SvWurz5ryQeZnJug87NVrj7Bpttd8w8zG+nu/8pw+/sCJwGvmtnccNrF7v54htvZSG880dRnLflK52b+SjfJfx04y8zeAz4hGE3j7r57Zyu5+wt0MPImDkk60VK9IanPWvKBzs3Ckm6S/0asUXSDTjQRka6lW0/+PQAzGwCUxhqRiIhEJq2yBmZ2hJm9BbwDPAe8C/w5xrhERCQC6XbX/Jygds1T7r6nmX0dOCG+sEQKl+7olXyS7jNeW9x9OVBkZkXu/ixQFV9YIskT93hokVTSbcmvDO9afR6YZmZLCIqPicgGdEev5JN0k/wsgoeGTAS+Q/DQkJ/FFJOISM4k7R6cdLtrDPgLMBMoB+4Nu29ERBKvkLva0h1CeTlwuZntDhwHPGdmC939wFijExHJsqTdg5NuS77VEmAxsBwYEH04IiISpXTHyZ9tZjOBp4F+wJldlTQQEZHcS/fC62CCWvBzY4xFREQilm6f/IVxByIiItHLypOhRER6k47uek6ldbnWi7ud6c5wTSV5EZGI1dXVMXfefNZutk2XyxZ9Gjz1tObtDztdrnjNim7FoiQvBam+vp7iNasoe6PHz59ZT/Ga5dTX62Zu6bm1m21D49BDItted8/1TIdQiohIAVFLPqHi6hOE/LiNu6KigsXNfSJtKUHQWqqo2C7SbUZF1S2lO5TkEyqOPkHofr+gxKdQb7eX7FCST7Co+wQh837BuD5R1NXVQVHfjGIpdKpuWTjiuGbU3etFSvISq7q6Oua/uYD+FTt2vXCfEgCWNXTdMl2zphHKe1eST5KkdyfmEyV5iV3/ih351vd+HOk2f/OTc2mJdIuSTUnvTozjmlF3rxcpyeeYujMkX8XZ2q6vr8+L7sTeIO+TfNI/1qk7Q/JVXOfm0voPKCkuUiMkS/I+ycd5ouULdWcUrqQ3QuI4N6ff/GtWLq6PdJvSsbxP8hDfiSbSU72hEZJUcXdH5Ut6zY8oRAqYGiGFqbd0R8Wa5M3sVuAwYIm7D49zXyJJsnLZElYubkn/IjuF1Q2UL+LsjipesyKtC8FFTR8DsK50i06XC0YO5d/omtuAG4GpMe9H8lR9fT0fN3wSecu0pbmZorUfR7rNfNLS3Exzy9q0hg0W4hDDpCsrK2PIkCFpLVtXtxqAITt3lcC3S3ub7cWa5N19lplVxrkPkaTSEMPCVVFRkfYdyHHfsZzzPnkzGw+MBxg0aFCOo8m+pLd0Kyoq2LShMZ7RQyWdf7yVnonr3Fxa/wHrPmuBsvzos066nCd5d58CTAGorq72DefHeaI1l28e6Tal94nr/Py0qZHi5mbVy5cey3mS7+3U0pV8Fde52XphsinSrWautzQg8z7Jx3mi9Ssvi3Sb0vvE+Sa9pmTLXlUvX+IR9xDKu4GvAf3MbCFwqbv/Ic59ZqK+vj7tYWdxP2xXRLKrtzQg4x5dc0Kc2++pxsbGvHnYrohIHPK+uyZu+fKwXRGROPT6JC/xW1r/QVoXt1YuWwLAVv0GdLlsS3MzlPQ4NJGs6ahWTkddwVF1+yrJ54EkJ8FM7tBbuTiom5lOf+bKzcpY1e2oohXX61fcEu1t8dD9W+MlPmVl8fbfK8nnWNKTYCYtkUzu/Js4cWJat/HHLa7Xr3nb4DpROiNh0r8tHjK9NT6ON7C2Al55IK7j6/fFXTaanqvBGAWR5JN8oiU9CSZdXK9fJuLablxvYP2+uAv19fWsau52aJGI8/i6U2MmLnmf5JN+oonkqzjfwCZOnMjiHDdC8uENOhvyPskn/UQTEYlT7vsrREQkNnnfkpfuqa+vp3jNKhW4EunllORFJOvUCMkeJfmEqqioYHFzHxW4EunllOSlYEX9DM3WbepmofipEZI9SvJSkDIZWhvnzUIi+U5JXgpSbxnjLNJTGkIpIpJgasmLFIhcVTGUwqYkL1Lg4q5iKIVNSV6kQKhVLt2hPnkRkQRTkhcRSTAleRGRBOvVffJx1M9Q7QwRySe9OsmLiGwo1VDVjoapQv4PVe3VST6O+hmqnSEaz548hTxMtVcneZFsKuRE0Zsk7Q1XSV4kYklLElLYNLpGRCTBYm/Jm9nBwGSgGLjF3X8Z9z6TIJOLP4XWp6s+awE9DyBbYk3yZlYM3ASMBRYC/zKzP7n76z3ddtKugKcj0z7dQvsnUp91YYjif0/PA8ieuFvyXwbq3P1tADO7BzgS6HGST6U7SWLDRFjU9DG2riXt9b2oZL3kGFUS7OkbUkcnen19PY2NjetNa1zbBEDZOtto+bKyMioqKtpN6fk/UZxvtr3xzT8fZPq/l+pv3tEnvI7otUtP3Em+Avig3e8Lgb3bL2Bm44HxAIMGDUp7w1G8uKmSVX39Zxslwc4ESbB9Us+PlkRHf59U/0j19fUAGyTzQBL+kfQJIVrZPh/0+vWMuXt8Gzc7Fhjn7t8Nfz8J+LK7pzxLqqurffbs2bHFIyKSRGZW4+7VqebFPbpmIbBju98HAv+JeZ8iIhKKO8n/C/iCme1kZpsAxwN/inmfIiISirVP3t0/M7PvA38hGEJ5q7u/Fuc+RUTkv2IfJ+/ujwPRlXkUEZG06Y5XEZEEU5IXEUkwJXkRkQRTkhcRSbBYb4bKlJktBd7L4i77AcuyuL9s0/EVNh1f4cr2sQ129/6pZuRVks82M5vd0V1iSaDjK2w6vsKVT8em7hoRkQRTkhcRSbDenuSn5DqAmOn4CpuOr3DlzbH16j55EZGk6+0teRGRRFOSFxFJsEQleTPb3szuMbN/m9nrZva4me1iZo1mNsfM5pvZS2Z2Sop1R5rZWjP7lplta2Zzw6/FZlbf7vdNcnFsYYwZH5+ZbWlmj5jZy2b2mpmdlq/Hl01mdqqZfS4P4lgb/t1fC1+j882sqN38L5vZLDN708zeMLNbzGyzXMacKTNzM7u63e8XmNll4c+XmdkF4c+lZvZXM7s0R6H2WLvX82UzqzWzfXIdU+xVKLPFzAyYAdzu7seH06oIHrj6b3ffM5y2M/CgmRW5+x/DacXArwhKIuPuy4GqcN5lQIO7X5XN49lQD47vHOB1dz/czPoDbwLT3L0qXP4y8uD4cuBUYB65f4hNY7vXYgBwF7AlcKmZbQfcDxzv7n8Pz4FjgL7AmhzF2x3NwDfN7Ap3T3mDUNi4eACocffLsxpdtNq/nuOAK4Cv5jKgJLXkvw60uPtvWye4+1zWf8Ys4UPFzwcmtJt8LsEJtiT+MLutu8fnQN8wQZQDK4DPshGwmVW2a33OM7NpZnagmb1oZm+FrdRtzOwhM3vFzP5hZruH615mZrea2Uwze9vMJrTb7vnh9uaZ2Q/aTT853M7LZnaHmfU1s3fMrCScv4WZvWvBYymrgWlhq6vMzPYys+fMrMbM/mJmO2Tjb9Seuy8heN7x98PX6xyCN/W/h/Pd3ae7+4fZjq2HPiMYbXJeB/P7APcAb7n7hVmLKn5bAB/lOojEtOSB4UBNmsvWAkMBzKwCOBoYA4yMJ7RIdOv4gBsJnsb1H4IW4HHuvi768Do0BDiWIHn9C/h/wH7AEcDFBG9Sc9z9KDMbA0wl/BRFcAxfD+N+08x+A+wOnEbwQHgD/mlmzwGfAj8B9nX3ZWa2jbuvNrOZwKHAQwRPJnvA3e83s3OAC9x9dvgmcANwpLsvNbPjgP8DTo/x75KSu78ddtcMIHjNb892DDG5CXjFzH6dYt6Pgafc/QfZDSkWZWY2FygFdiDIKzmVpCSfCWv383XA/7r72qDxlAjtD2QcMJfgZPs88Fcze97dP85SLO+4+6sAZvYa8LS7u5m9ClQCgwm6IHD3Z8LrBVuG6z7m7s1As5ktIeia2g+Y4e6fhNt8ENif4BPL9NbuAHdfEW7jFoIk8hDBm8OZKWL8IkFC/Wt4DhQDiyL7C2QuMSdiK3f/2MymEnzCbNxg9gvAKDPbxd0XZD+6SLXvrhkFTDWz4Z7DsepJ6q55DdgrzWX3BOaHP1cD95jZu8C3gJvN7KjIo+u57h7facCD4Uf9OuAd/tvKz4bmdj+va/f7OoJGRqqE1voP0X7dtZ0sTzh9o38kd38RqDSzrwLF7j6vg3Vfc/eq8Gs3dz+oowOKU3hNZS1B12Emr3khuA44A9h8g+mzgB8Af86Hi+FRCbvZ+gEpC4dlS5KS/DPApmbW1lIzs5EELUXaTasEriL4eI677+Tule5eCUwHvufuD2Up5kx06/iA94EDwnnbEbRa385CvOmaBZwIYGZfA5Z18SljFnCUmW1mZpsTdLU9DzwNfNvMtg23tU27daYCdwN/bDdtNUE3EAQXo/uHLS/MrMTMvtTD48pYeGH8t8CNYcvvRuAUM9u73TLfMbPtsx1bFMJPV/cRJPoN5z0AXAk8YWZbZTm0WJjZUIJPhctzGUdiumvCLoCjgevM7EKgCXiXoIXweTObQ9BPthq4oXVkTaHowfH9HLgt7B4xgq6pfCrvehnwRzN7hWDEyEbDW9tz91ozuw14KZx0i7vPATCz/wOeM7O1wByCETQA04BJBIm+1W3Ab82sERhF8Cnu+rCrqA9BqzMbD51v7cMtIbhAeQdwDYC7f2hmxwNXhSNv1hG8yT2YhbjicjXw/VQz3P234RvYn8zsIHdvym5okWh9PSH4fzvF3dfmMB6VNZDkM7NvEVxUPSnXsYhkW2Ja8iKpmNkNwDeAQ3Idi0guqCUvIpJgSbrwKiIiG1CSFxFJMCV5EZEEU5IXCVlQmfLG8Of21RHzomKlSHcoyYt07VRASV4KkpK8JF6K6pT9zewBM/tX+LVvJ+t+i/UrVh5qZjPazR8b1s/BzBrM7GoL6og/Hd7Bipl93syeCCtcPh/eCSmSFUrykmhheYKfAGPcfQ9gIjAZuNbdRxIUR7ulo/XdfTowGzgxLDz1OLBrawInqA3Uenfx5kCtu48AngNaH34xBTjX3fcCLgBuju4IRTqnm6Ek6cawQXVKMzsQGNau6ugWZta3ow20F5aXuAP4jpn9kaAkwsnh7HXAveHPdxI8vKUc2Ae4v93+Nu3hMYmkTUleki5VdcoiYJS7r1fyNoNS038EHiGoH3S/u3f0EBYP97WytfysSLapu0aSLlV1yidpVyTLgscodqZ9xUrc/T8ED2G5hKDQWasigkJnEDwc5YWwouY7FjyNCgvs0YPjEcmIWvKSaO7+WorqlBOAm8LKl30IKjv+TyebuY12FSvDTwDTgP7u/nq75T4BvmRmNcAq4Lhw+onAb8zsEoJqk/cAL0d1jCKdUe0akW4Ix9PPcfc/tJvW4O7lOQxLZCNK8iIZClvqnwBjw8cTtk5Xkpe8oyQvIpJguvAqIpJgSvIiIgmmJC8ikmBK8iIiCaYkLyKSYP8fsn0+EcPGrYUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'], \n", + " y=annotated_coeqtl_df_clean['var_onemillionv2'],\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " palette='Paired', fliersize=1,\n", + " showfliers = False)\n", + "plt.savefig('var_onemillionv2.unfiltered_results.pdf')\n", + "plt.savefig('var_onemillionv2.unfiltered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAApOklEQVR4nO3deZyVZf3/8debYRQMFBVcAgX3JRfCIdMMC0NNUyw1Nb+KuKDmQpqW1veXVn7rW2a5S2TumiauFV+03EizlNUUUEe0ZBQFFBRZZPn8/rjvocNwhnNu5iyzvJ+PxzzmnPu+7vt87jlnzue+r+u6r0sRgZmZdWydqh2AmZlVn5OBmZk5GZiZmZOBmZnhZGBmZkDnagewLnr27Bn9+vWrdhhmZm3KxIkT50ZEr3zr2mQy6NevHxMmTKh2GGZmbYqkfzW3ztVEZmbmZGBmZk4GZmZGG20zyGfZsmXMmjWLJUuWVDuUquvSpQt9+vShtra22qGYWRvRbpLBrFmz6N69O/369UNStcOpmohg3rx5zJo1i2222aba4ZhZG1HWaiJJN0l6V9KLzayXpKsl1Ut6QdKAdX2tJUuWsOmmm3boRAAgiU033dRXSGaWSbnbDG4BDl7L+i8DO6Q/I4AbWvJiHT0RNPLfwcyyKms1UUSMl9RvLUWGArdFMo723yX1kLRlRLxdzrisY7vmmmuor69fY3lDQwMAvXv3Xm359ttvzznnnFOR2KzjuOaaaxg3btwayxctWkSWqQUkscEGG6y27OCDD878ma12b6LewJs5z2ely9YgaYSkCZImzJkzpyLBWceyePFiFi9eXO0wzKqi2g3I+eoz8qbEiBgNjAaoq6trFTPyvPnmm5x44onMnj2bTp06MWLECEaOHNls+R/84AcMGjSIL33pS3nXv/zyy5x++unMnz+fpUuX8vnPf57Ro0czYcIEbrvtNq6++upyHUqH0twZU+N7d9VVV1UyHOugzjnnnFZ1xVntZDAL2CrneR/grSrFklnnzp254oorGDBgAB9++CF77bUXQ4YMYdddd81b/kc/+tFa93fuuedy3nnnMXToUAD++c9/AlBXV0ddXV1pgzczy1HtaqKHgRPTXkWfBRaUur3gxz/+MTvvvDNDhgzhuOOO4xe/+AWvvfYaBx98MHvttRef//znmTFjBgAnnXQS5557Lvvuuy/bbrstY8aMWbWfyy+/nIEDB7LHHntwySWXALDlllsyYEDSAap79+7ssssuq+qd8znppJNW7fOiiy5i1113ZY899uCCCy4A4O2336ZPnz6ryu++++4APPnkk3zlK18BYM6cOQwZMoQBAwZw+umn07dvX+bOnVuqP5eZdVBlvTKQ9DvgC0BPSbOAS4BagIgYBYwFDgHqgUXA8FK+/oQJE7jvvvuYPHkyy5cvZ8CAAey1116MGDGCUaNGscMOO/CPf/yDb37zmzz++ONA8oX89NNPM2PGDA4//HCOOuooHn30UV599VWee+45IoLDDz+c8ePHM2jQoFWv9cYbbzB58mT23nvvgnG99957PPDAA8yYMQNJzJ8/H4DzzjuPwYMHs++++3LggQcyfPhwevTosdq2P/zhDxk8eDAXX3wx48aNY/To0SX7e5lZx1Xu3kTHFVgfwFnlev2nn36aoUOH0rVrVwAOO+wwlixZwt/+9jeOPvroVeWWLl266vERRxxBp06d2HXXXXnnnXcAePTRR3n00Uf59Kc/DcDChQt59dVXVyWDhQsXcuSRR3LllVey4YYbFoxrww03pEuXLpx66qkceuihq876hw8fzkEHHcS4ceN46KGH+PWvf83UqVPXOKYHHngASHoMbLzxxuv65zEzW6XabQZlla971sqVK+nRowdTpkzJu83666+/xvYRwcUXX8zpp5++Rvlly5Zx5JFHcvzxx/O1r32tqLg6d+7Mc889x2OPPcbdd9/Ntddeu+rK5JOf/CQnn3wyJ598Mrvtthsvvrj6/XpZupyZmRWr2m0GZbXffvvxhz/8gSVLlrBw4UL+9Kc/scEGG7DNNttw7733AsmXa9Oz76YOOuggbrrpJhYuXAgk/dHfffddIoJTTjmFXXbZhfPPP7/ouBYuXMiCBQs45JBDuPLKK1clpnHjxrFs2TIAZs+ezbx589bo877ffvvx+9//HkiuWN5///2iX9fMrDnt+spg4MCBHH744ey555707duXuro6NtpoI+68807OPPNMLrvsMpYtW8axxx7Lnnvu2ex+DjzwQKZPn84+++wDQLdu3bjjjjt45ZVXuP3229l9993p378/AD/5yU845JBD1hrXhx9+yNChQ1myZAkRwa9+9Ssg+XIfOXIkXbp0AZJG6y222GJVAzfAJZdcwnHHHcc999zD/vvvz5Zbbkn37t1b8mcyM0Ntsdqhrq4ums50Nn36dHbZZZc1yi5cuJBu3bqxaNEiBg0axOjRo1f1AGqLli5dSk1NDZ07d+bZZ5/lzDPPzFvl1dzfw5rn+wysvZM0MSLy9lNv11cGACNGjGDatGksWbKEYcOGtelEAPDvf/+br3/966xcuZL11luP3/zmN9UOyczagXafDO66666Kv+ZZZ53FM888s9qykSNHMnx4y3vO7rDDDkyePLnF++komhuHKJ/Gcmu7izyXxyyy9qTdJ4NquO6666odgqXq6+uZ8uJ0VmywScGynT5OqkwnznynYNmaRe+1ODaz1sTJwNq9FRtswuKd196on1XXGWNLuj+zamvXXUvNzKw4TgZmZtYxqom+c/H3eH/+gpLtb+MeG/Hzn/5krWVqampWDTQH8OCDD9KvX7+8Zbt167bqhjYzs2roEMng/fkLOOTU80q2v7E3/qpgma5duzY75IWZWWtTVDWRpIMkndJ0CktJJ5clqnZo4cKFHHDAAQwYMIDdd9+dhx56aI0yb7/9NoMGDaJ///7stttu/PWvfwWSO5P32WcfBgwYwNFHH+2rCDMruYLJQNJPgO8DuwOPScrtWH12uQJr6xYvXkz//v3p378/X/3qV+nSpQsPPPAAkyZN4oknnuDb3/72GoPO3XXXXRx00EFMmTKFqVOn0r9/f+bOnctll13GX/7yFyZNmkRdXR2//OUvq3RUZtZeFVNNdBjw6YhYLulS4C5J20bEeeSfttJYs5po2bJlfO9732P8+PF06tSJhoYG3nnnHbbYYotVZQYOHMjJJ5/MsmXLOOKII+jfvz9PPfUU06ZN43Of+xwAH3/88aoxkszMSqWYZNA5IpYDRMR8SYcBoyXdC6xX1ujakTvvvJM5c+YwceJEamtr6devH0uWLFmtzKBBgxg/fjx/+tOfOOGEE7jwwgvZeOONGTJkCL/73e+qFLmZdQTFtBm8Jmn/xicRsSIiTgFeBjwSWpEWLFjAZpttRm1tLU888QT/+te/1ijzr3/9i80224zTTjuNU045hUmTJvHZz36WZ555ZtVQCYsWLeKVV16pdPhm1s4Vc2VwdL6FEfHfkm4ocTxlsXGPjYrqAZRlf1kdf/zxHHbYYdTV1dG/f3923nnnNco8+eSTXH755dTW1tKtWzduu+02evXqxS233MJxxx23aka2yy67jB133LHFx2Fm1qhgMoiIxQCSHgbuBh6KiI/Sdc3P/t6KFLonoBya9vjp2bMnzz777FrLDhs2jGHDhq2xfvDgwTz//POlD9LMLJXlDuQrgP2AaZLulXSUpC5lisvMzCqo6JvOIuIp4ClJNcBg4DTgJqDwDPBmZtaqZboDWVJXkq6mxwADgFvLEZSZmVVW0clA0j3A3sA44DrgyYhYWa7AzMyscrJcGdwMfCMiVpQrGDMzq44sbQbjJO2bjk/UOWf5beUIzMzMKidLNdHtwHbAFKDx6iCAVp8Mzj7/Qt6dW7ppCjfruQnX/vLyZtfPmzePAw44AIDZs2dTU1NDr169AHjuuedYbz3fuG1mrUuWaqI6YNdoOrpaG/Du3Pd4bfP9Cxcs1jtPrXX1pptuumpcoksvvZRu3bpxwQUXrFq/fPlyOnfuEKOHm1kbkeUb6UVgC+DtMsXSrp100klssskmTJ48mQEDBtC9e/fVksRuu+3GH//4R/r168cdd9zB1Vdfzccff8zee+/N9ddfT01NTZWPwMzasyw3nfUkueHsEUkPN/6UK7D26JVXXuEvf/kLV1xxRbNlpk+fzj333MMzzzzDlClTqKmp4c4776xglGbWEWW5Mri0XEF0FEcffXTBM/zHHnuMiRMnMnDgQCCZF2GzzTarRHhm1oFlugNZ0ubAwHTRcxHxbnnCap8+8YlPrHrcuXNnVq78z20ajcNZRwTDhg3jpz/9acXjM7OOq+hqIklfB54jGcX068A/JB1VxHYHS3pZUr2ki/Ks30jSHyRNlfSSpOFZDqCt6tevH5MmTQJg0qRJvP766wAccMABjBkzhnffTfLse++9l3e4azOzUspSTfR9YGDj1YCkXsBfgDHNbZCOY3QdMASYBTwv6eGImJZT7CxgWkQclu7zZUl3RsTHGY+lWZv13KRgD6DM+2uhI488kttuu43+/fszcODAVUNS77rrrlx22WUceOCBrFy5ktraWq677jr69u3b4tc0M2tOlmTQqUm10DwKX1l8BqiPiJkAku4GhgK5ySCA7pIEdAPeA5ZniKugtd0TUG6XXnpp3uVdu3bl0UcfzbvumGOO4ZhjjiljVGZmq8uSDMZJegRonH/xGGBsgW16A2/mPJ9FMr5RrmuBh4G3gO7AMfnGPJI0AhgBsPXWW2cI28zMCim6zSAiLgRGA3sAewKjI+K7BTZTvl01eX4QyV3NnwT6A9dKWmNY7IgYHRF1EVHXeDevmZmVRqbbYCPiPuC+DJvMArbKed6H5Aog13Dgf9M7m+slvQ7sTNJYnUlEkNQ2dWxt8CZxM6uyglcGkp5Of38o6YOcnw8lfVBg8+eBHSRtI2k94FiSKqFc/wYOSF9jc2AnYGbWA+nSpQvz5s3r8F+EEcG8efPo0sWT0JlZ8YqZA3m/9Hf3rDuPiOWSzgYeAWqAmyLiJUlnpOtHAT8GbpH0T5Jqpe9GxNysr9WnTx9mzZrFnDlzsm7a7nTp0oU+ffpUOwwza0MKJgNJa+1HGRFrHQ40IsbSpKE5TQKNj98CDiwURyG1tbVss802Ld2NmVmHVEybwUSSRt/mGoO3LWlEZmZWccVUE/l028ysnSummmjA2tZHxKTShWNmZtVQTDVR8+MtJ9VEg0sUi5mZVUkx1URfrEQgZmZWPcVUEw2OiMclfS3f+oi4v/RhmZlZJRVTTbQ/8DhwWJ51ATgZmJm1ccVUE12S/u4Q8wyYmXVERY9NJKkHcCLQL3e7iDi35FGZmVlFZRmobizwd+CfwBpDTJuZWduVJRl0iYjzyxaJmZlVTdHzGQC3SzpN0paSNmn8KVtkZmZWMVmuDD4GLieZC7lxnGiPTWRm1g5kSQbnA9uvy/DSZmbWumWpJnoJWFSuQMzMrHqyXBmsAKZIegJY2rjQXUvNzNq+LMngwfTHzMzamaKTQUTcKqkrsHVEvFzGmMzMrMKKbjOQdBgwBRiXPu8vqenk9mZm1gZlaUC+FPgMMB8gIqYAngXNzKwdyJIMlkfEgibLIm9JMzNrU7I0IL8o6RtAjaQdgHOBv5UnLDMzq6QsVwbnAJ8i6Vb6O+AD4FtliMnMzCosS2+iRSRDUXy/fOGYmVk1ZJnPYEfgAtacz2Bw6cMyM7NKytJmcC8wCriR5G5kMzNrJ7Ikg+URcUPZIjEzs6rJ0oD8B0nf9HwGZmbtT5Yrg2Hp7wtzlnk+AzOzdiBLbyLfbWxm1k5lGZuoVtK5ksakP2dLqi1iu4MlvSypXtJFzZT5gqQpkl6S9FSWAzAzs5bLUk10A1ALXJ8+PyFddmpzG0iqAa4DhgCzgOclPRwR03LK9Ej3eXBE/FvSZpmOwMzMWixLMhgYEXvmPH9c0tQC23wGqI+ImQCS7gaGAtNyynwDuD8i/g0QEe9miMnMzEogS2+iFZK2a3wiaVsK32/QG3gz5/msdFmuHYGNJT0paaKkE/PtSNIISRMkTZgzZ06GsM3MrJAsVwYXAk9ImgkI6AsML7CN8ixrOtJpZ2Av4ACgK/CspL9HxCurbRQxGhgNUFdX59FSzcxKKEtvosfS0Up3IvmSnxERq+ZCljQkIv7cZLNZwFY5z/sAb+UpMzciPgI+kjQe2BN4BTMzq4gs1URExNKIeCEipuYmgtTP8mzyPLCDpG0krQccCzSdHe0h4POSOkvaANgbmJ4lLjMza5ks1USFrFElFBHLJZ0NPALUADdFxEuSzkjXj4qI6ZLGAS8AK4EbI+LFEsZlZmYFlDIZ5K3Hj4ixwNgmy0Y1eX45cHkJYzEzswwyVROZmVn7VMpk8EYJ92VmZhWUZXKbWuBMYFC66ClgVEQsA4iIr5U+PDMzq4SyDkdhZmZtQ7mHozAzszag3MNRmJlZG1Du4SjMzKwNKNlwFGZm1nYVTAaSBkfE45Ka9hbaThIRcX+ZYjMzswop5spgf+Bx4LA86wJwMjAza+MKJoOIuCR9+KOIeD13nSTPi2xm1g5k6U10X55lY0oViJmZVU8xbQY7A58CNmrSbrAh0KVcgZmZWeUU02awE/AVoAertxt8CJxWhpjMzKzCimkzeAh4SNI+EfFsBWIyM7MKy3LT2WRJZ5FUGa2qHoqIk0selZmZVVSWBuTbgS2Ag0hGLO1DUlVkZmZtXJZksH1E/D/go4i4FTgU2L08YZmZWSVlSQbL0t/zJe0GbAT0K3lEZmZWcVnaDEZL2hj4b+BhoBvw/8oSlZmZVVRRyUBSJ+CDiHgfGA9sW9aozMysooqqJoqIlcDZZY7FzMyqJEubwZ8lXSBpK0mbNP6ULTIzM6uYLG0GjfcTnJWzLHCVkZlZm5dlchuPUGpm1k4VnQwk1QJnAoPSRU8Cv46IZc1uZGYVd80111BfX7/G8oaGBgB69+692vLtt9+ec845pyKxWeuVpZroBqAWuD59fkK67NRSB2Vmpbd48eJqh2CtWJZkMDAi9sx5/rikqaUOyMxaprmz/JEjRwJw1VVXVTIcayOy9CZaIWm7xieStgVWlD4kMzOrtCxXBhcAT0iaCQjoCwwvS1RmZlZRxd6BXAPsCexAMtmNgBkRsbSMsZmZWYUUewfyCuDwiFgaES9ExNRiE4GkgyW9LKle0kVrKTdQ0gpJRxUZu5mZlUiWaqK/SboWuAf4qHFhRExqboP0iuI6YAgwC3he0sMRMS1PuZ8Bj2SIx8zMSiRLMtg3/f2jnGUBDF7LNp8B6iNiJoCku4GhwLQm5c4B7gMGZojHzMxKJMsdyF9ch/33Bt7MeT4L2Du3gKTewFdJkkqzyUDSCGAEwNZbb70OoZiZWXOK7loqaXNJv5X0f+nzXSWdUmizPMuiyfMrge+m7RLNiojREVEXEXW9evUqNmwzMytClvsMbiGp0/9k+vwV4FsFtpkFbJXzvA/wVpMydcDdkt4AjgKul3REhrjMzKyFsrQZ9IyI30u6GCAilksqdNPZ88AOkrYBGoBjgW/kFsgdAE/SLcAfI+LBDHGZdVjNjUOUT2O5xjuRC/GYRR1LlmTwkaRNSat5JH0WWLC2DdKEcTbJFUUNcFNEvCTpjHT9qHUL28wg+YKf8uJ0VmxQeGqRTh8nNbQTZ75TsGzNovdaHJu1LVmSwbdJ5j7eTtIzQC/g6EIbRcRYYGyTZXmTQESclCEeMwNWbLAJi3c+pKT77DpjbOFC1q5k6U00UdL+/OcO5Jc9fLWZWfuQpTfRa8CpEfFSRLwYEcsk/bGMsZmZWYVk6U20DPiipJslrZcu6722DczMrG3IkgwWRcQxwHTgr5L6suY9A2Zm1gZlaUAWQET8XNJEkh5ChbswmJlZq5clGfyg8UFEPCbpQOCkkkdkZmYVl6U30R/ScYT65mz3ZDmCMjOzyio6GUj6X5I7iKfxn+kuAxhfhrjMzKyCslQTfRXYybObmZm1P1mSwUygFnAyMGslGhoaqFm0oOR3DNcsmkdDw/KS7tNatyzJYBEwRdJj5CSEiDi35FGZmVlFZUkGD6c/ZtZK9O7dm9lLO5dlbKLevTcv6T6tdcvSm+jW9M7jHdNFHpvIzKydyNKb6AvArcAbJDegbSVpWES4N5GZWRuXpZroCuDAiHgZQNKOwO+AvcoRmJmZVU6WsYlqGxMBQES8QtK7yMzM2rgsVwYTJP0WuD19fjwwsfQhmZlZpWVJBmcCZwHnkrQZjAeuL0dQZmZWWVl6Ey0Ffpn+mFkL5ZvMvqGhAUi6jDblCeqtnLL0JvoccCmrD1RHRGxb+rDMOqbFixdXOwTroLJUE/0WOI+knWBFgbJmVkC+s/yRI0cCcNVVVxW9n5pF7xU1HEWnJR8AsLLLhkXtE3zTWUeSJRksiIj/K1skZpbZ9ttvX3TZ+voPk222LeZLfvNM+7a2L0syeELS5cD9rD420aSSR2VmRcl3dZGvLWJt3BZhkC0Z7J3+rstZFsDg0oVjZuXStWvXaofQbjSXcJvrANAWEm6W3kRfXNv6dGiKW1sekpm1RGv/0mnP2nIHgCxXBoWMJBm7yMysXWsu4a5LB4DWIstwFIWohPsyM7MKKmUyiBLuy8zMKshXBmZmVtJk8EwJ92VmZhVUVDKQtLOkAyR1a7L84MbHEXF2M9seLOllSfWSLsqz/nhJL6Q/f5O0Z9aDMDOzlinYm0jSuSSjlU4HfitpZEQ8lK7+CTBuLdvWANcBQ4BZwPOSHo6IaTnFXgf2j4j3JX0ZGM1/7mmwDswDuZlVTjFdS08D9oqIhZL6AWMk9YuIqyjcTvAZoD4iZgJIuhsYCqxKBhHxt5zyfwf6ZIjfOpi23I/brDUrJhnURMRCgIh4I50LeYykvhROBr2BN3Oez2LtZ/2nAHnHP5I0AhgBsPXWWxcRtrV1pRrIzcwKK6bNYLak/o1P0sTwFaAnsHuBbfMli7xdUCV9kSQZfDff+ogYHRF1EVHXq1evIsI2M7NiFZMMTgRm5y6IiOURcSIwqMC2s4Ctcp73Ad5qWkjSHsCNwNCImFdETGZmVkIFk0FEzIqI2QCS9pM0PH3ckzxf7E08D+wgaRtJ6wHHAg/nFpC0NclIqCdExCvrcAxmZtZCWWY6u4RkxNKdgJuB9YA7gM81t01ELJd0NvAIUAPcFBEvSTojXT8K+AGwKXC9JIDlEVHX3D7NzKz0sgxU91Xg08AkgIh4S1L3QhtFxFhgbJNlo3IenwqcmiEOM2sD3DW4bcmSDD6OiJAUAJI+UaaYrEjtcUx1a9/cNbj1ypIMfi/p10APSacBJwO/KU9Y1hL+h7PWwF2D25Ysk9v8QtIQ4AOSdoMfRMSfyxZZCbT3M+f2OKa6mVVHpslt0i//Vp0AiuEzZzOz1WXpTfQ14GfAZiQ3kwmIiNiwTLG1mM+czcyKk+XK4OfAYRExvVzBmJlZdWSZz+AdJwIzs/Ypy5XBBEn3AA8CSxsXRsT9pQ7KzMwqK0sy2BBYBByYsyxIhpIwa5UaGhqoWbSArjPGFi6cQc2ieTQ0LC+qbHO92vJpLNfYrlVIW+sBZ61Xlq6lw8sZiFl7VV9fz/SXX6FX760KF+5cC8DchYV7vM1peLNgGbNiZelNtCNwA7B5ROyWjjR6eERcVrbozFqod+/ezF7amcU7H1LS/XadMZbevTcvunyv3ltx1De/U9IYxlz/85Luzzq2LNVEvwEuBH4NEBEvSLoLcDIws3aro1TzZUkGG0TEc+nIoo2KqzQ1M2ujOko1X5ZkMFfSdqQzlUk6Cni7LFGZmbUiHaGaL0syOAsYDewsqQF4HTi+LFGZmVlFZUkGR5DMS/AEyc1qHwFfkjQxIqaUPjQzM6uULMmgLv15mGRcouNJprU8Q9K9EdG6rnmsTSm2kS5rA10yQm2m8RjNOqQs/yWbAgMiYiGsmgZzDDAImEgydpHZOim6kS5jA11tTSfoVHBCPrMOL0sy2Br4OOf5MqBvRCyWtLSZbcyKVupGujHX/5z5sxtKtj/Lr6N0vWzvsiSDu4C/S3oofX4Y8Lt0+stpJY/MVuN/OGutOkrXy/Yuy3AUP5Y0FtiPpM3gjIiYkK6ueq+i9v5l6X84a806QtfL9i7rTGcTSdoHWp2O8GXpf7i2qaGhgQ8WflTyv/WchjdZ2u0TJd2ndVztqpuFvyzNzNZNu0oGZq1R7969WX/h4rKcqPTs1rWk+7Q1dZQruywznZmZWTvlKwMzs7XoKFd2vjIwMzNfGVjrUI562TkNb7Jy+TLo6juQzQpxMmgjKtmI1dw9G8k4P8llc67WcB9Gazen4c2i3rv5c98FoEfPzYraZ8+ddmxxbC1V6QbWfJ/P5j6bUJrPZ3t+/xq1m2TQUVr8q2nx4sL3ZayrctTLNg5HsaRke1w322+/fdFl589eBlBUXXLPnXbMtO/2rJyfzY7y/rWbZFBplT47qWQjVnNxNt6xfdVVV5U0hvYuy/veFv/G5fps3vijC1i8eHHRIwU0p76+fo19ZPl/bO/vX6OyJwNJBwNXATXAjRHxv03WK11/CLAIOCkiJmV9ndbQ4l/Os5NymT/3XebPXlbUP1y5h/Eo5lI862V4bY37SFRCOapRFn3wASs7dWbizHcKlu30cQAUVbZm0XsFy3REZU0GkmqA64AhwCzgeUkPR0TuwHZfBnZIf/YGbkh/Z1aOD2TDzFd5W+LQQw8tWLYxGeSrb6+vr2fcuHGrLdtyyy258cYbC+63UTmO76MF8wGYOnVq0XEUW7ahoaHoZFDs5XLWy/CGhgYWvv8eXWeMLVi+05IPAFjZZcOCZZMvlM0LlusIylWN8k5NJ1YuX0bNonmFd7xyBQA1i5YVLrti+aqrePuPcl8ZfAaoj4iZAJLuBoay+iinQ4HbIiJIRkXtIWnLiMg0v3K+D2RDQ0Pes/VVy5av/sHp2rXrGlU879TUsHz5cj766KOiYym27Pz584veZ7mOb16XLixfvpz1119/1bKlS5eycuXKNfbbuKxTp9XPtjt16rTa9o169OiR/2DyyJc0sgw+CPmvRJqrzsv7d1uRtC50XanVluf7u8HmLa7vzRfb2q6+WmtDfXMxtfT9O/XUU3n77TW/BvJ9PldG+tmMNfe75udzvUyfzXyaO7bm3r/W+t7lKncy6A3kjvQ2izXP+vOV6Q2s9imQNAIYAbD11luv8UJZvkyy9IpZ2z6yVAvl+0LJ8mVSruPLpzX3JuraNdtNOpX8u5VC1uNra7IcX3NXzdXoTVSstvz+KTkhL9POpaOBgyLi1PT5CcBnIuKcnDJ/An4aEU+nzx8DvpOOkJpXXV1dTJgwobnVZmaWRzpnfV2+deVuXZsF5I4p3Qd4ax3KmJlZGZU7GTwP7CBpG0nrAccCDzcp8zBwohKfBRZkbS8wM7OWKWubQUQsl3Q28AhJ19KbIuIlSWek60cBY0m6ldaTdC0dXs6YzMxsTWW/zyAixpJ84ecuG5XzOICzyh2HmZk1z3fkmJmZk4GZmTkZmJkZTgZmZkaZbzorF0lzgH9V8CV7AnMr+HqV5uNru9rzsYGPr9T6RkSvfCvaZDKoNEkTmrtrrz3w8bVd7fnYwMdXSa4mMjMzJwMzM3MyKNboagdQZj6+tqs9Hxv4+CrGbQZmZuYrAzMzczIwMzM6aDKQtIWkuyW9JmmapLGSdpS0WNJkSdMlPSdpWJ5tB0paIekoSZtKmpL+zJbUkPN8vWocWxpj5uOTtJGkP0iaKuklScNb6/FVkqSTJH2yFcSxIv27v5S+R+dL6pSz/jOSxkt6WdIMSTdK2qCaMWchKSRdkfP8AkmXpo8vlXRB+riLpD9LuqRKoZZEzvs5VdIkSftWO6ayj1ra2kgS8ABwa0Qcmy7rTzK7+WsR8el02bbA/ZI6RcTN6bIa4GckQ3ITEfOA/um6S4GFEfGLSh5PUy04vrOAaRFxmKRewMvAnRHRPy1/Ka3g+KrgJOBFqj/h0uKc92Iz4C5gI+ASSZsD9wLHRsSz6WfgSKA7ybDwbcFS4GuSfhoReW/CSk9A7gMmRsQPKxpd6eW+nwcBPwX2r2ZAHfHK4IvAsibDaE9h9XmYiYiZwPnAuTmLzyH5ML5b/jDX2boeXwDd0y+SbsB7wPJKBCypX87Z7IuS7pT0JUnPSHo1PevdRNKDkl6Q9HdJe6TbXirpJklPSpop6dyc/Z6f7u9FSd/KWX5iup+pkm6X1F3S65Jq0/UbSnpDybStdcCd6VlcV0l7SXpK0kRJj0jashJ/o1wR8S7JfOBnp+/XWSTJ/9l0fUTEmIh4p9KxtcBykp415zWzvjNwN/BqRFxUsagqY0Pg/WoH0eGuDIDdgGbnV25iErAzgKTewFeBwcDA8oRWEut0fMC1JLPOvUVyRnlMRKwsfXjN2h44muRL7nngG8B+wOHA90iS2eSIOELSYOA20qsykmP4Yhr3y5JuAPYgmShpb0DAPyQ9BXwMfB/4XETMlbRJRHwo6UngUOBBkhn57ouIeyWdBVwQERPSZHENMDQi5kg6Bvgf4OQy/l3yioiZaTXRZiTv+a2VjqEMrgNekPTzPOu+A/wlIr5V2ZDKpqukKUAXYEuS75Wq6ojJIAvlPL4S+G5ErEhOxtqF3AM5CJhC8qHcDvizpL9GxAcViuX1iPgngKSXgMciIiT9E+gH9CWp+iAiHk/bMzZKt/1TRCwFlkp6l6RKbD/ggYj4KN3n/cDnSa6AxjRWRUTEe+k+biT5wnmQJImclifGnUi+eP+cfgZqgGpO0dpuPogAEfGBpNtIrlYXN1n9NLCPpB0j4pXKR1dyudVE+wC3SdotqtjXvyNWE70E7FVk2U8D09PHdcDdkt4AjgKul3REyaNruXU9vuHA/WkVQz3wOv+5aqiEpTmPV+Y8X0ly0pLvi6/xHyd32xVrKU+6fI1/uIh4BugnaX+gJiJebGbblyKif/qze0Qc2NwBlVPa5rOCpMoyy3ve2l0JnAJ8osny8cC3gP9rDQ36pZRW7/UE8g4gVykdMRk8DqwvadWZn6SBJGee5CzrB/yCpFqAiNgmIvpFRD9gDPDNiHiwQjFnsU7HB/wbOCBdtznJWfDMCsRbrPHA8QCSvgDMLXDVMh44QtIGkj5BUsX3V+Ax4OuSNk33tUnONrcBvwNuzln2IUn1EySN6r3SMzkk1Ur6VAuPK7O0gX8UcG16JnktMEzS3jll/kvSFpWOraXSK7XfkySEpuvuAy4HxknqUeHQykbSziRXmfOqGUeHqyZKqx6+Clwp6SJgCfAGyVnHdpImk9TjfQhc09iTqK1owfH9GLglrZYRSZVYaxo6+FLgZkkvkPSQWaPbb66ImCTpFuC5dNGNETEZQNL/AE9JWgFMJukxBHAncBlJQmh0CzBK0mJgH5KrwqvTKqrOJGeyL7Xs0IrSWMdcS9LYejvwS4CIeEfSscAv0p5GK0mS4f0ViKscrgDOzrciIkalSe5hSQdGxJLKhlYyje8nJP9vwyJiRRXj8XAUZo0kHUXSOHxCtWMxq7QOd2Vglo+ka4AvA4dUOxazavCVgZmZdcgGZDMza8LJwMzMnAzMzMzJwCwTJaOYXps+zh1Ns1WMbmq2rpwMzErjJMDJwNosJwMz8o5k2kvSfZKeT38+t5Ztj2L10U0PlfRAzvoh6dhISFoo6QolY9g/lt5NjKTtJI1LR0P9a3pXqlnFOBlYh5cOKfF9YHBE7AmMBK4CfhURA0kGyLuxue0jYgwwATg+HXxsLLBL4xc9ybhPjXd6fwKYFBEDgKeAxklaRgPnRMRewAXA9aU7QrPCfNOZWTJS62ojmUr6ErBrzgi1G0rq3twOcqVDgtwO/Jekm0mGsTgxXb0SuCd9fAfJBEPdgH2Be3Neb/0WHpNZJk4GZvlHMu0E7BMRqw2lnGH48puBP5CMDXVvRDQ3UVCkrzW/cUhjs2pwNZFZ/pFMHyVnsDQlU4euTe7opkTEWyQTBf03yWB3jTqRDHYHyQQ+T6ejr76uZGY1lNizBcdjlpmvDKzDi4iX8oxkei5wXTpKameSUUDPWMtubiFndNP0iuJOoFdETMsp9xHwKUkTgQXAMeny44EbJP03ycikdwNTS3WMZoV4bCKzMknvR5gcEb/NWbYwIrpVMSyzvJwMzMogPfP/CBiSTsnZuNzJwFolJwMzM3MDspmZORmYmRlOBmZmhpOBmZnhZGBmZsD/BwkN+98jioseAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'],\n", + " y=annotated_coeqtl_df_clean['gene2_nonzeroratio_onemillionv2'],\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " palette='Paired', fliersize=1, showfliers = False)\n", + "plt.savefig('gene2_nonzeroratio_onemillionv2.unfiltered_results.pdf')\n", + "plt.savefig('gene2_nonzeroratio_onemillionv2.unfiltered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAp2klEQVR4nO3de5xVddn38c+XAQUERAXSQAXPp5RwyENqpaGkKd6pt5p3glZYHiB9rLR60oo7M7M8S+TjqSgtzTxxE2UhaZZyMuWgkpqAJ8AjAcMA1/PHWsO9GfbM7DWz157T9/167dfsvdZvrX2tPTP7Wmv9TooIzMysc+vS2gGYmVnrczIwMzMnAzMzczIwMzOcDMzMDOja2gE0R79+/WLw4MGtHYaZWbsya9as5RHRv9i6dpkMBg8ezMyZM1s7DDOzdkXSvxpa59tEZmbmZGBmZk4GZmZGO60zKKa2tpYlS5awZs2a1g6l1XXv3p1BgwbRrVu31g7FzNqJDpMMlixZQu/evRk8eDCSWjucVhMRrFixgiVLljBkyJDWDsfM2olcbxNJulXSm5KebWC9JF0naZGkf0ga1tz3WrNmDdttt12nTgQAkthuu+18hWRmmeRdZ3A7MLKR9Z8Cdk8fY4GbW/JmnT0R1PHnYGZZ5XqbKCJmSBrcSJFRwJ2RjKP9N0l9Je0QEa/lGZeZWUtcf/31LFq0aLPlS5cuBWDgwIGbLN9tt9244IILKhJbc7V2a6KBwOKC10vSZZuRNFbSTEkzly1bVpHgzMyyWL16NatXr27tMJqltSuQi93PKDrbTkRMAiYBVFdXt4kZeRYvXsyZZ57J66+/TpcuXRg7dizjx49vsPy3v/1tjjjiCD75yU8WXf/cc89xzjnn8M4771BTU8Phhx/OpEmTmDlzJnfeeSfXXXddXodiZhk0dJZf9/9/7bXXVjKcsmjtZLAE2LHg9SDg1VaKJbOuXbty9dVXM2zYMN5//30OPPBARowYwT777FO0/He/+91G9zdu3DguvPBCRo0aBcAzzzwDQHV1NdXV1eUN3sysQGvfJnoAODNtVXQw8G656wu+973vsddeezFixAhOP/10fvSjH/HPf/6TkSNHcuCBB3L44YezcOFCAMaMGcO4ceM49NBD2WWXXbjnnns27ueqq65i+PDh7L///lx22WUA7LDDDgwbljSA6t27N3vvvffGe4bFjBkzZuM+L7nkEvbZZx/2339/Lr74YgBee+01Bg0atLH8hz70IQCmT5/Opz/9aQCWLVvGiBEjGDZsGOeccw4777wzy5cvL9fHZWadVK5XBpJ+BXwc6CdpCXAZ0A0gIiYCU4BjgUXAKuCscr7/zJkzuffee5kzZw7r1q1j2LBhHHjggYwdO5aJEyey++678/e//51zzz2XP/3pT0DyhfzYY4+xcOFCTjjhBE4++WSmTZvGCy+8wJNPPklEcMIJJzBjxgyOOOKIje/18ssvM2fOHA466KAm43rrrbe47777WLhwIZJ45513ALjwwgs58sgjOfTQQzn66KM566yz6Nu37ybbfuc73+HII4/k0ksvZerUqUyaNKlsn5eZdV55tyY6vYn1AZyX1/s/9thjjBo1ih49egBw/PHHs2bNGv76179yyimnbCxXU1Oz8fmJJ55Ily5d2GeffXjjjTcAmDZtGtOmTePDH/4wACtXruSFF17YmAxWrlzJSSedxDXXXEOfPn2ajKtPnz50796dL3zhCxx33HEbz/rPOussjjnmGKZOncr999/PT3/6U55++unNjum+++4DYOTIkWyzzTbN/XjMzDZq7TqDXCW5ZlMbNmygb9++zJ07t+g2W2655WbbRwSXXnop55xzzmbla2trOemkkzjjjDP4zGc+U1JcXbt25cknn+SRRx7hrrvu4oYbbth4ZfLBD36Qs88+m7PPPpv99tuPZ5/dtL9esWMyM2up1q4zyNVhhx3Ggw8+yJo1a1i5ciUPP/wwPXv2ZMiQIfzmN78Bki/X+mff9R1zzDHceuutrFy5EkjaEr/55ptEBJ///OfZe++9ueiii0qOa+XKlbz77rsce+yxXHPNNRsT09SpU6mtrQXg9ddfZ8WKFZu1Vz7ssMP49a9/DSRXLG+//XbJ72tm1pAOfWUwfPhwTjjhBA444AB23nlnqqur2XrrrZk8eTJf/vKXmTBhArW1tZx22mkccMABDe7n6KOPZsGCBRxyyCEA9OrVi1/84hc8//zz/PznP+dDH/oQQ4cOBeD73/8+xx57bKNxvf/++4waNYo1a9YQEfzkJz8Bki/38ePH0717dyCptN5+++03VnADXHbZZZx++uncfffdfOxjH2OHHXagd+/eLfmYzMxQe7ztUF1dHfVnOluwYAF77733ZmVXrlxJr169WLVqFUcccQSTJk3a2AKoPaqpqaGqqoquXbvyxBNP8OUvf7noLa+GPg/rmL1HrW1o6/0MJM2KiKLt1Dv0lQHA2LFjmT9/PmvWrGH06NHtOhEAvPLKK/znf/4nGzZsYIsttuBnP/tZa4fUYbTXnqNm5dDhk8Evf/nLir/neeedx+OPP77JsvHjx3PWWS1vObv77rszZ86cFu+nM+uIvUfNWqqkZCBpL5Ixg/4eESsLlo+MiKl5Bdde3Xjjja0dgplZJk22JpI0DrgfuAB4VtKogtXfzyswMzOrnFKuDL4IHBgRK9PhqO+RNDgirqX4QHNmZtbOlJIMqupuDUXEy5I+TpIQdsbJwMysQyglGbwuaWhEzAVIrxA+DdwKfCjP4Mrla5d+g7ffebds+9um79b88IrG75BVVVVtHGgO4He/+x2DBw8uWrZXr14bO7SZWedw/fXXM3Xq5lWuq1atyjTSgCR69uy5ybKRI0dmbg5dSjI4E1hXuCAi1pGMNvrTTO/WSt5+512O/cKFZdvflFt+0mSZHj16NDjkhVVOQ30Kiqkr19icFIXc/6BzyOtvaOnSpdTU1GwyBE5rajIZRMQSAEnXAndHxF8L1j3e4Ia2iZUrVzJq1CjefvttamtrmTBhwsZ5C+q89tprnHrqqbz33nusW7eOm2++mcMPP5xp06Zx2WWXUVNTw6677sptt91Gr169WulI2pdFixYx99kFrO+5bZNlu6xNzsZmvfhGk2WrVr3V4tisfVi0aBELnnue/gN3bLpw124ALF/ZdJ+V91b+m3333bfNNGXO0s9gNvAtSXsA95EkhplNbNNprV69euMQFXVjId1333306dOH5cuXc/DBB3PCCSdsMnn9L3/5S4455hi++c1vsn79elatWsXy5cuZMGECf/zjH9lqq6248sor+fGPf8y3v/3tVjqy9md9z21ZvVfjQ4Rk1WPhlLLuz9q2/gN35ORzv1bWfd5z0w/Lur+WKjkZRMQdwB2StgVOAq6UtFNE7J5bdO1Y/dtEtbW1fOMb32DGjBl06dKFpUuX8sYbb7D99ttvLDN8+HDOPvtsamtrOfHEExk6dCiPPvoo8+fP56Mf/SgAa9eu3ThGkplZuTSnB/JuwF7AYGB+WaPpwCZPnsyyZcuYNWsW3bp1Y/DgwaxZs2aTMkcccQQzZszg4Ycf5nOf+xxf/epX2WabbRgxYgS/+tWvWilyM+sMSh7CWtKVkl4AvgvMI+l7cHxukXUw7777LgMGDKBbt278+c9/5l//+tdmZf71r38xYMAAvvjFL/L5z3+e2bNnc/DBB/P4449vrJhatWoVzz//fKXDN7MOLsuVwUvAIRHR7ibc3abv1iW1AMqyv6zOOOMMjj/+eKqrqxk6dCh77bXXZmWmT5/OVVddRbdu3ejVqxd33nkn/fv35/bbb+f000/fOCPbhAkT2GOPPVp8HGZmdbLUGUyUNFDSoYXbRcSMXCIro6b6BOShfr+Bfv368cQTTzRadvTo0YwePXqz9UceeSRPPfVU+YM0M0uVnAwk/QA4jaSeYH26OIA2nwzMzKxxWW4T/QewZ0TUNFnSzMzalSxzIL8IdMsrEDMzaz1ZrgxWAXMlPQJsvDqIiHFlj8qsEyg2zEFDU2+Ch7+wfGVJBg+kDzPLiafetNaSqQeypC2AujaNz0VEbT5hmXV8xc7yPfWmtZYsrYk+DtwBvEwyj8GOkka3h6al51/0Vd5cXr6BxQb025YbfnxVg+tXrFjBUUcdBcDrr79OVVUV/fv3B+DJJ59kiy22KFssZmblkOU20dXA0RHxHEA6YN2vgAPzCKyc3lz+Fv/8wMfKt8M3Hm109XbbbbdxXKLLL7+cXr16cfHFF29cv27dOrp2bc5IIGZm+cjyjdStLhEARMTzkty6qERjxoxh2223Zc6cOQwbNozevXtvkiT2228/HnroIQYPHswvfvELrrvuOtauXctBBx3ETTfdRFVVVSsfgZl1ZFmals6U9P8kfTx9/AyYlVdgHdHzzz/PH//4R66++uoGyyxYsIC7776bxx9/nLlz51JVVcXkyZMrGKWZdUZZrgy+DJwHjCOpM5gB3JRHUB3VKaec0uQZ/iOPPMKsWbMYPnw4kLQuGTBgQCXCM7NOLEtrohrgx+nDmmGrrbba+Lxr165s2LBh4+u64awjgtGjR3PFFVdUPD4z67yavE0k6dfpz2ck/aP+o4TtR0p6TtIiSZcUWb+1pAclPS1pnqSzmnco7cvgwYOZPXs2ALNnz+all14C4KijjuKee+7hzTffBOCtt94qOty1mVk5lXJlUDez86ez7lxSFXAjMAJYAjwl6YGIKJwU5zxgfkQcL6k/8JykyRGxNuv7NWRAv22bbAGUeX8tdNJJJ3HnnXcydOhQhg8fvnFI6n322YcJEyZw9NFHs2HDBrp168aNN97Izjvv3OL3NDNrSJPJICJeS3825/T0I8CiiHgRQNJdwCg2nSEtgN5KJgPuBbwFrGvGezWosT4Bebv88suLLu/RowfTpk0ruu7UU0/l1FNPzTEqM7NNNZkMJL1P8oW92SogIqJPI5sPBBYXvF4CHFSvzA0kw1y8CvQGTo2IDfXKIGksMBZgp512aipsMzPLoMk6g4joHRF9ijx6N5EIIEkYm+2y3utjgLnAB4GhwA2SNttvREyKiOqIqK7rzWtmZuVRypVBozfII6KxcR6WADsWvB5EcgVQ6CzgBxERwCJJLwF7AU82FVuRWEjuNnVuyUdpZla6UiqQZ5GczTd0lr9LI9s+BewuaQiwlGSmtM/WK/MKcBTwF0kfAPYkmTshk+7du7NixQq22267Tp0QIoIVK1bQvXv31g7FzNqRUiqQhzR35xGxTtL5wO+BKuDWiJgn6Uvp+onA94DbJT1DknC+HhHLs77XoEGDWLJkCcuWLWtuuB1G9+7dGTRoUGuHYWbtSCm3ifaKiIWShhVbHxGzG9s+IqYAU+otm1jw/FXg6NLCbVi3bt0YMqTZecvMrFMr5TbRRSSteIoNqBPAkWWNyMzMKq6U20Rj05+fyD8cMzNrDVkmt6kCjgMGF24XER6ryMysncsyaumDwBrgGWCzTmFmZtZ+ZUkGgyJi/9wiMTOzVpNlcpv/kdTiVj9mZtb2ZLky+Btwn6QuQC2ljU1kZmbtQJZkcDVwCPBMeLwDM7MOJcttoheAZ50IzMw6nixXBq8B0yX9D1BTt9BNS83M2r8syeCl9LFF+jAzsw6i5GQQEd8BkLRVRPw7v5DMzKzSSq4zkHSIpPnAgvT1AZJuyi0yMzOrmCwVyNeQzEq2AiAingaOyCEmMzOrsCzJgIhYXG/R+jLGYmZmrSRLBfJiSYcCIWkLYBzpLSMzM2vfslwZfAk4DxhIMrfx0PS1mZm1c1laEy0HzsgxFjMzayVZ5jPoD3yRzeczOLv8YZmZWSVlqTO4H/gL8EdccWxm1qFkSQY9I+LruUViZmatJksF8kOSjs0tEjMzazVZksF4koSwRtL76eO9vAIzM7PKydKaqHeegZiZWevJUmeApBP43yEopkfEQ+UPyczMKi3LQHU/ILlVND99jE+XmZlZO5flyuBYYGhEbACQdAcwB7gkj8DMzKxyMg1UB/QteL51GeMwM7NWlOXK4ApgjqQ/AyKpO7g0l6jMzKyisrQm+pWk6cBwkmTw9Yh4vW69pH0jYl75QzQzs7xlnc/gtYh4ICLuL0wEqZ8X20bSSEnPSVokqWj9gqSPS5oraZ6kR7PEZGZmLZepaWkTtNkCqQq4ERhBMuz1U5IeiIj5BWX6AjcBIyPiFUkDyhiTmZmVIGsFcmOiyLKPAIsi4sWIWAvcBYyqV+azwG8j4hWAiHizjDGZmVkJypkMihkIFE6VuSRdVmgPYBtJ0yXNknRmsR1JGitppqSZy5YtyylcM7POqZzJYG2RZZvdOmLzK4iuwIHAccAxwP+VtMdmG0VMiojqiKju379/i4M1M7P/1ZLhKB6NiAfr1kXEwUU2WQLsWPB6EPBqkTLLI+LfwL8lzQAOAJ7PEpuZmTVfluEormDT4SjGpcsa8xSwu6QhkrYATgMeqFfmfuBwSV0l9QQOAhaUGpeZmbVcliuD4yg+HEWDHc8iYp2k84HfA1XArRExT9KX0vUTI2KBpKnAP4ANwC0R8WzzDsfMzJoja9PSvsBb6fOShqOIiCnAlHrLJtZ7fRVwVcZYzMysTDwchZmZlW84CjMza7+arECWtFf6cxiwA0nrn8XAB9NlZmbWzpVyZXARMBa4usi6AI4sa0RmZlZxTSaDiBibPv1URKwpXCepey5RmZlZRWXpgfzXEpeZmVk70+SVgaTtScYT6iHpw/zvEBN9gJ45xmZmZhVSSp3BMcAYkqEkflyw/H3gGznEZGZmFVZKncEdwB2SToqIeysQk5mZVViWfgb3SjoO2BfoXrD8u3kEZmZmlZNloLqJwKnABST1BqcAO+cUl5mZVVCW1kSHRsSZwNsR8R3gEDYdntrMzNqpLMmgro/BKkkfBGqBIeUPyczMKi3LQHUPppPXXwXMJul9/LM8gjIzs8oqKRlI6gI8EhHvAPdKegjoHhHv5hmcmZlVRkm3idIJba4ueF3jRGBm1nFkqTOYJukkScUmuTczs3YsS53BRcBWwHpJq0mal0ZE9MklMjMzq5gsnc565xmImZm1nkxzIEs6gWS6S4DpEfFQ+UMyM7NKy9ID+QfAeGB++hifLjMzs3Yuy5XBscDQtGURku4A5gCX5BGYmZlVTpbWRAB9C55vXcY4zMysFWW5Mvg+MEfSn0laEh0BXJpLVGZmVlFZeiBvAA4GhpMkg69HxOs5xmZmZhVSUjKIiA2Szo+IXwMP5ByTmZlVWJY6gz9IuljSjpK2rXvkFpmZmVVMljqDs9Of5xUsC2CX8oVjZmatIUsPZM9dYGbWQWXpdNZT0rckTUpf7y7p0/mFZmZmlZKlzuA2YC1waPp6CTCh7BGZmVnFZUkGu0bED0mmuyQi6kYubZSkkZKek7RIUoO9lSUNl7Re0skZYjIzszLIkgzWSupBUmmMpF2BmsY2kFQF3Ah8CtgHOF3SPg2UuxL4fYZ4zMysTLIkg8uBqcCOkiYDjwBfa2KbjwCLIuLFiFgL3AWMKlLuAuBe4M0M8ZiZWZlkaU00TdIskl7IAsZHxPImNhsILC54vQQ4qLCApIHAfwBHkvRuLkrSWGAswE477VRq2GZmVoIsrYkeAQ6KiIcj4qGIWF7XsqixzYosi3qvryEZ2mJ9YzuKiEkRUR0R1f379y81bDMzK0GWTmdDgK9LGh4R30mXVTexzRJgx4LXg4BX65WpBu5Kp1buBxwraV1E/C5DbGZt1vXXX8+iRYtKKltXbvz48SWV32233bjggguaHZtZnSzJ4B3gKOA6SQ8C/1XCNk8Bu0saAiwFTgM+W1igsDObpNuBh5wIrCNZtGgRC557nv4Dd2y6cNduACxfubrJosuWLm6yjFmpsiQDRcQ64FxJY4DHgG0a2yAi1kk6n6SVUBVwa0TMk/SldP3E5oVt1r70H7gjJ5/bVHuLbO656Ydl3Z91blmSwcYv7oi4XdIzbDpOUVERMQWYUm9Z0SQQEWMyxGNmZmWSpTXRT9P+AB9It1tG0tzUzMzauZKTQXq753LgDZKJbiBpGbR/+cMyK17xunTpUgAGDhy4WXlXppo1X5bbRF8B9oyIFTnFYtak1aubrlg1s+yyJIPFwLt5BWJWX7Gz/Loml9dee22lwzHr0LIkgxeB6ZIepmBMooj4cdmjMjOzisqSDF5JH1ukDzMz6yCytCb6DoCk3snLWJlbVGZmVlFZxibaT9Ic4FlgnqRZkvbNLzQzM6uULENYTwIuioidI2Jn4P8AP8snLDMzq6QsyWCriPhz3YuImA5sVfaIzMys4jK1JpL0f4Gfp6//C3ip/CGZmVmlZbkyOBvoD/wWuC99flYeQZmZWWVlaU30NjAux1jMzKyVZBmbaA/gYmBw4XYRcWT5wzIzs0rKUmfwG5JhrG8BGp2i0szM2pcsyWBdRNycWyRm1qF41Nn2JUsyeFDSuSSVx4VjE71V9qjMrEPyqLNtV5ZkMDr9+dWCZQHsUr5wzKyj8Kiz7UuW1kRDGlsvaURE/KHlIZmZWaVl6WfQlCvLuC8zM6ugciYDlXFfZmZWQeVMBlHGfZmZWQVlqUC2NqZY0z1ouPmem+6ZZbd06VLeW/lv7rnph2Xd77Kli6np1XbG+ixnMni5jPuyFnDzPTPLKstwFD1J5jDYKSK+KGl3YM+IeAggIj6TU4zN1tHPnBuK1c33zMpn4MCBbLlyNSef+7Wy7veem35Iv149yrrPlshSZ3AbSWezQ9LXS4AJZY+oAlavXu2zZzOzAlluE+0aEadKOh0gIlZLatMtiHzmbGZWmizJYK2kHqSthiTtSsGwFGZWeUuXLuW4447bZNmqVauIKL1xnyR69uy52fKRI0e2q9um1jJZksFlwFRgR0mTgY8CY/IIyszMKivLcBR/kDQbOJikg9n4iFieW2Rm1qSBAwf6dqeVRdZOZ92Bt4H3gH0kHdHUBpJGSnpO0iJJlxRZf4akf6SPv0o6IGNMZmbWQlmall4JnArMAzakiwOY0cg2VcCNwAiS1kdPSXogIuYXFHsJ+FhEvC3pU8Ak4KBMR2FmZi2Spc7gRJJ+BVkqjT8CLIqIFwEk3QWMAjYmg4j4a0H5vwGDMuzfzMzKIMttoheBbhn3PxBYXPB6SbqsIZ8H/qfYCkljJc2UNHPZsmUZwzAzs8ZkuTJYBcyV9AibznQ2rpFtivVDKNrmTdInSJLBYcXWR8QkkltIVFdXe1A8M7MyypIMHkgfWSwBdix4PQh4tX4hSfsDtwCfiogVGd/DzMxaKEvT0jvSTmc7RcRzJW72FLC7pCHAUuA04LOFBSTtBPwW+FxEPF9qPGZmVj4l1xlIOh6YS9LxDElDJTV6pRAR64Dzgd8DC4BfR8Q8SV+S9KW02LeB7YCbJM2VNDP7YZiZWUtkuU10OUnroOkAETE3PeNvVERMAabUWzax4PkXgC9kiMPMzMosS2uidRHxbr1lrsg1M+sAslwZPCvps0BVOpfBOOCvTWxjZmbtQJZkcAHwTZJmpb8iqQf4Xh5BWetqjUmBGnrP+urK1A1D3pQkZs/uataULK2JVpEkg2/mF461ZXlOCLRo0SIWPPc8/Qfu2HjBrkm/x+Urm45l2dLFdKvqAl16lyPEZussc+ha+5ZlbKIH2byO4F1gJvDTiFhTzsCs9bTWpED9B+5Y1qkF77nph7zz+tKy7c+sI8ty/fwi0J/kFhEkg9a9AewB/Az4XHlDM+sYOsscuta+ZUkGH46IwiGrH5Q0IyKOkDSv3IGZmVnlZEkG/SXtFBGvwMaew/3SdWvLHpmZWRHFGhs01LgBytPAoTPIkgz+D/CYpH+SDEA3BDhX0lbAHXkEZ9ZSNTU1VMVaeiyc0nThDKpWrWDp0nVl3Wd7VWpLMMjeGqzUL/I8Gzd0FllaE01J+xfsRZIMFhZUGl+TQ2xm1g6U3BIMMrcGK6ZYcsi7cUNn0GQykPSZBlbtIomI+G2ZYzIrmy233JI1XXqzeq9jy7rfHgunMHDgB8q6z/as3C3BgLI3xbXGlXJlcHwj64JkxFHLWVu4FDezjqvJZBARZwFIGhIRLxWuK2WgOiuPSl+Km1nnkqUC+V5gWL1l9wAHli+c5usMZ86+FDezvJRSZ7AXsC+wdb36gz5A97wCy8pnzmZmzVfKlcGewKeBvmxaf/A+8MUcYmo2nzmbWR6WLV1c0nfBO8vfBKBvvwEl7bPfnnu0OLZyKaXO4H7gfkmHRMQTFYjJzKzN2G233Uou+87rtQAlDRPSb889Mu07b1nqDD4r6fSGVkbEuDLEY2bWpmSpL2zP/R2yJIMtgX2Au9PXpwCzSOZFNjMrq3eWv8k7r9eW1NCjvTYKaUuyJIPdgU9ERC2ApInAtIi4MJfIrCL8D2dtVW1NDTW165n14htNlu2yNhldv5SyVaveanFsHVGWZPBBoDdQ90n2SpdZO+Z/OGvL1vfcNpfe47a5LMngB8BsSdPT1x8DLi93QFZ5/ofLX2dojWLtW5ZkcDuwHvgKSRL4NrB92SOyTimPqSGXLV3MhnW10KN1p73sLK1RrH3LkgxuAjYAPSLiAUnbkPRKHp5LZGYdREdvjZLXHM9r16ymqqbGw49XSJZkcFBEDJM0ByAi3pa0RU5xWSeTx9SQdXMge3Jus6ZlSQa1kqpIRipFUn+SKwWrgLzOvmprauiy/r2y7tM6l7zmeL75mxewqtvWHn68QrIkg+uA+4ABkv4bOBn4Vi5RtQOees/MOpIsM51NljQLOIpkprMTI2JBbpFllNeZ87Kli6nptVVJZfOcei+vs6/rv3YO2lDr+7LWJlWtequkv80ua5Kr2w3d+5S0T/CVQX1ZrgyIiIXAwpxiaVc89V774S+U9qnbllvSraqW3XZp+nNetOh9gJLKwgfcCquITMmgLcvrzPmW717M6tWrO2wP3a7dtmBtB74v26NHj5L/8f2F0rb07TeAfr16lHRy5ROxluswySAvbamHbh4dl2praqiqbRtnzqUcX9ZOWXvvuUfJXxD+Qmk+d6pr/3JPBpJGAtcCVcAtEfGDeuuVrj8WWAWMiYjZzXmvPP4g165ZDYiqVSuaDmDDegCqVtU2XXb9uo0VzqXIq+NSzXbbApR0Fp/nmXOpZd0pq+3pjJ3qGppZsaG7A23hLkBTck0GaVPUG4ERwBLgKUkPRMT8gmKfIhkEb3fgIODm9Gcmef1BrujenXXr1rHllk13qairQO7RvZTuF1vQt2/fEsol2kLHpTzPnEs9vo509l7sC6WxW41t9Qul0n+bbflz69Gj6e+UtirvK4OPAIsi4kUASXcBo4DCZDAKuDMiAvibpL6SdoiI17K8UbFfdpZ5kSHbH01jf5DFElMef5B5nZ20lbOevP7p28rxFdOev0zqq+SXdqU/t7aYlFsq72QwECicRHgJm5/1FyszENgkGUgaC4wF2GmnnVoUVF5/OG3lH7kjH1+eMfgLJX/l+Iw74+dWCUpOyHPauXQKcExEfCF9/TngIxFxQUGZh4ErIuKx9PUjwNciYlZD+62uro6ZM2fmFreZWUckaVZEVBdb1yXn914C7FjwehDwajPKmJlZjvJOBk8Bu0sakg5qdxrwQL0yDwBnKnEw8G7W+gIzM2uZXOsMImKdpPOB35M0Lb01IuZJ+lK6fiIwhaRZ6SKSpqVn5RmTmZltLvd+BhExheQLv3DZxILnAZyXdxxmZtawvG8TmZlZO+BkYGZmTgZmZuZkYGZm5NzpLC+SlgH/quBb9gOWV/D9Ks3H13515GMDH1+57RwR/YutaJfJoNIkzWyo115H4ONrvzrysYGPr5J8m8jMzJwMzMzMyaBUk1o7gJz5+Nqvjnxs4OOrGNcZmJmZrwzMzMzJwMzM6KTJQNL2ku6S9E9J8yVNkbSHpNWS5khaIOlJSaOLbDtc0npJJ0vaTtLc9PG6pKUFr0uZCDkXzTk+SVtLelDS05LmSTqrrR5fJUkaI+mDbSCO9ennPi/9HV0kqUvB+o9ImiHpOUkLJd0iqWdrxpyFpJB0dcHriyVdnj6/XNLF6fPukv4g6bJWCrUsCn6fT0uaLenQ1o4p91FL2xpJAu4D7oiI09JlQ4EPAP+MiA+ny3YBfiupS0Tcli6rAq4kGZKbiFgBDE3XXQ6sjIgfVfJ46mvB8Z0HzI+I4yX1B54DJkfE0LT85bSB42sFY4Bnaf0Jl1YX/C4GAL8EtgYuk/QB4DfAaRHxRPo3cBLQm2RY+PagBviMpCsiomgnrPQE5F5gVkR8p6LRlV/h7/MY4ArgY60ZUGe8MvgEUFtvGO25bDoPMxHxInARMK5g8QUkf4xv5h9mszX3+ALonX6R9ALeAtZVImBJgwvOZp+VNFnSJyU9LumF9Kx3W0m/k/QPSX+TtH+67eWSbpU0XdKLksYV7PeidH/PSvpKwfIz0/08LennknpLeklSt3R9H0kvK5m2tRqYnJ7F9ZB0oKRHJc2S9HtJO1TiMyoUEW+SzAd+fvr7Oo8k+T+Rro+IuCci3qh0bC2wjqRlzYUNrO8K3AW8EBGXVCyqyugDvN3aQXS6KwNgP6DB+ZXrmQ3sBSBpIPAfwJHA8HxCK4tmHR9wA8msc6+SnFGeGhEbyh9eg3YDTiH5knsK+CxwGHAC8A2SZDYnIk6UdCRwJ+lVGckxfCKN+zlJNwP7k0yUdBAg4O+SHgXWAt8EPhoRyyVtGxHvS5oOHAf8jmRGvnsj4jeSzgMujoiZabK4HhgVEcsknQr8N3B2jp9LURHxYnqbaADJ7/yOSseQgxuBf0j6YZF1XwP+GBFfqWxIuekhaS7QHdiB5HulVXXGZJCFCp5fA3w9ItYnJ2MdQuGBHAPMJfmj3BX4g6S/RMR7FYrlpYh4BkDSPOCRiAhJzwCDgZ1Jbn0QEX9K6zO2Trd9OCJqgBpJb5LcEjsMuC8i/p3u87fA4SRXQPfU3YqIiLfSfdxC8oXzO5Ik8sUiMe5J8sX7h/RvoApozSlaO8wfIkBEvCfpTpKr1dX1Vj8GHCJpj4h4vvLRlV3hbaJDgDsl7Ret2Na/M94mmgccWGLZDwML0ufVwF2SXgZOBm6SdGLZo2u55h7fWcBv01sMi4CX+N+rhkqoKXi+oeD1BpKTlmJffHX/OIXbrm+kPOnyzf7hIuJxYLCkjwFVEfFsA9vOi4ih6eNDEXF0QweUp7TOZz3JLcssv/O27hrg88BW9ZbPAL4C/E9bqNAvp/T2Xj+g6AByldIZk8GfgC0lbTzzkzSc5MyTgmWDgR+R3BYgIoZExOCIGAzcA5wbEb+rUMxZNOv4gFeAo9J1HyA5C36xAvGWagZwBoCkjwPLm7hqmQGcKKmnpK1IbvH9BXgE+E9J26X72rZgmzuBXwG3FSx7n+T2EySV6v3TMzkkdZO0bwuPK7O0gn8icEN6JnkDMFrSQQVl/kvS9pWOraXSK7VfkySE+uvuBa4CpkrqW+HQciNpL5KrzBWtGUenu02U3nr4D+AaSZcAa4CXSc46dpU0h+Q+3vvA9XUtidqLFhzf94Db09syIrkl1paGDr4cuE3SP0hayGzW7LdQRMyWdDvwZLroloiYAyDpv4FHJa0H5pC0GAKYDEwgSQh1bgcmSloNHEJyVXhdeouqK8mZ7LyWHVpJ6u4xdyOpbP058GOAiHhD0mnAj9KWRhtIkuFvKxBXHq4Gzi+2IiImpknuAUlHR8SayoZWNnW/T0j+30ZHxPpWjMfDUZjVkXQySeXw51o7FrNK63RXBmbFSLoe+BRwbGvHYtYafGVgZmadsgLZzMzqcTIwMzMnAzMzczIwy0TJKKY3pM8LR9NsE6ObmjWXk4FZeYwBnAys3XIyMKPoSKb9Jd0r6an08dFGtj2ZTUc3PU7SfQXrR6RjIyFppaSrlYxh/0jamxhJu0qamo6G+pe0V6pZxTgZWKeXDinxTeDIiDgAGA9cC/wkIoaTDJB3S0PbR8Q9wEzgjHTwsSnA3nVf9CTjPtX19N4KmB0Rw4BHgbpJWiYBF0TEgcDFwE3lO0KzprnTmVkyUusmI5lK+iSwT8EItX0k9W5oB4XSIUF+DvyXpNtIhrE4M129Abg7ff4LkgmGegGHAr8peL8tW3hMZpk4GZgVH8m0C3BIRGwylHKG4ctvAx4kGRvqNxHR0ERBkb7XO3VDGpu1Bt8mMis+kuk0CgZLUzJ1aGMKRzclIl4lmSjoWySD3dXpQjLYHSQT+DyWjr76kpKZ1VDigBYcj1lmvjKwTi8i5hUZyXQccGM6SmpXklFAv9TIbm6nYHTT9IpiMtA/IuYXlPs3sK+kWcC7wKnp8jOAmyV9i2Rk0ruAp8t1jGZN8dhEZjlJ+yPMiYj/V7BsZUT0asWwzIpyMjDLQXrm/29gRDolZ91yJwNrk5wMzMzMFchmZuZkYGZmOBmYmRlOBmZmhpOBmZkB/x+ObU1a6UJD/AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'], \n", + " y=annotated_coeqtl_df_clean['eqtlgene_nonzeroratio_onemillionv2'],\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " palette='Paired', fliersize=1, showfliers = False)\n", + "plt.savefig('eqtlgene_nonzeroratio_onemillionv2.unfiltered_results.pdf')\n", + "plt.savefig('eqtlgene_nonzeroratio_onemillionv2.unfiltered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/04_coeqtl_mapping/README.md b/04_coeqtl_mapping/README.md new file mode 100644 index 0000000..0b4821e --- /dev/null +++ b/04_coeqtl_mapping/README.md @@ -0,0 +1,44 @@ +# 04_coeqtl_mapping + +*plot_effect_concordance_across_cohorts.R*: compares effect sizes (Z-scores) calculated in each individual dataset (before the meta-analysis) + +*plot_celltype_overlap_upset.R* : upset plot overlap of significant co-eQTLs between cell types + +*power_analyis_coeqtls.R* : explores how the number of tests reduce the power to detect co-eQTLs, taking estimates for number of tests based on how many genes are expressed above different cutoffs for Oelen v3 dataset + +Rb calculations are these files: +*prepare_for_rb_calculation.py* : prepare the input files for rb calculation
+*Rb.R* : rb function
+*calculate_rb_for_sc_and_bios.R* : execute rb functions
+*rb_celltypes.ipynb*: examine the rb values for each cell type; also include scripts for examining different characteristics for coeQTLs compared to non-coeQTLs
+ +Co-eQTL pipeline are these files:
+all files in the betaqtl_scripts (incl. templates)
+*individual_networks.py*: make co-expression files for each individual
+*prepare_genelist_and_annotation_for_betaqtl.py*: prepare input files for the qtl mapping pipeline
+*createBatches.sh*: create batches for qtl mapping pipeline
+*submit_process_betaqtl_results.sh*: submit the jobs for concatenating qtl mapping and perform multiple testing procedures
+*concat_betaqtl_results.fixed.py*: concat qtl mapping results
+*screen_permutation_p_values.py*: concat permutation files
+*multipletesting_correction.fixed.py*: perform multiple testing correction
+ +Other co-eQTL analysis:
+*filtering_strategy.py*: filter for gene pairs
+*individual_networks_cmono_ncmono.py*: create co-expression files for each individual for sub cell types in monocytes
+*individual_networks_maxcell.py*: create co-expression files for each individual with a limit of cell number
+*merge_coexpression_for_betaeqtl_maxcell.py*: merge the co-expression files for each individual with a limit of cell number
+*merge_coexpression_for_betaqtl.subsampleindividuals.py*: create co-expression files for each individual with a limit of sample number
+ +BIOS replication are these files:
+*replication_in_bios.py*: perform bios replication
+*select_snps_from_vcf.sh*: select SNP from vcf file
+*examine_bios_replication.ipynb*: examine the bios replication results
+ +Annotating coeQTL results:
+*annotate_coeqtl_files.py*: annotate the coeqtl results for nonzero ratio, mean and var of gene pair
+*collect_nonzeroratio.py*: collect non zero ratio annotation for all genes in all datasets
+ + + + + diff --git a/04_coeqtl_mapping/Rb.R b/04_coeqtl_mapping/Rb.R new file mode 100644 index 0000000..eb22df3 --- /dev/null +++ b/04_coeqtl_mapping/Rb.R @@ -0,0 +1,70 @@ + +#' Function for Rb analysis +#' +#' @param b1 Beta from first dataset. +#' @param se1 Standard error of beta from first dataset. +#' @param b2 Beta from second dataset. +#' @param se2 Standard error of beta from second dataset. +#' @param theta Variable representing sample overlap between two datasets. Should be set 0 if no sample overlap. +#' +#' @return Data frame with Rb, SE(Rb) and corresponding P-value. +#' @export +#' +#' @note This function is slightly adapted from the script shared by Ting Qi. +#' +#' @examples +calcu_cor_true <- function(b1, se1, b2, se2, theta) { + idx <- which(is.infinite(b1) | is.infinite(b2) | is.infinite(se1) | is.infinite(se2)) + if (length(idx) > 0) { + b1 <- b1[-idx] + se1 <- se1[-idx] + b2 <- b2[-idx] + se2 <- se2[-idx] + theta <- theta[-idx] + } + + var_b1 <- var(b1, na.rm = T) - mean(se1^2, na.rm = T) + var_b2 <- var(b2, na.rm = T) - mean(se2^2, na.rm = T) + if (var_b1 < 0) { + var_b1 <- var(b1, na.rm = T) + } + if (var_b2 < 0) { + var_b2 <- var(b2, na.rm = T) + } + cov_b1_b2 <- cov(b1, b2, use = "complete.obs") - mean(theta, na.rm = T) * sqrt(mean(se1^2, na.rm = T) * mean(se2^2, na.rm = T)) + r <- cov_b1_b2 / sqrt(var_b1 * var_b2) + + r_jack <- c() + n <- length(b1) + for (k in 1:n) { + b1_jack <- b1[-k] + se1_jack <- se1[-k] + var_b1_jack <- var(b1_jack, na.rm = T) - mean(se1_jack^2, na.rm = T) + b2_jack <- b2[-k] + se2_jack <- se2[-k] + var_b2_jack <- var(b2_jack, na.rm = T) - mean(se2_jack^2, na.rm = T) + if (var_b1_jack < 0) { + var_b1_jack <- var(b1_jack, na.rm = T) + } + if (var_b2_jack < 0) { + var_b2_jack <- var(b2_jack, na.rm = T) + } + theta_jack <- theta[-k] + cov_e1_jack_e2_jack <- mean(theta_jack, na.rm = T) * sqrt(mean(se1_jack^2, na.rm = T) * mean(se2_jack^2, na.rm = T)) + cov_b1_b2_jack <- cov(b1_jack, b2_jack, use = "complete.obs") - cov_e1_jack_e2_jack + r_tmp <- cov_b1_b2_jack / sqrt(var_b1_jack * var_b2_jack) + r_jack <- c(r_jack, r_tmp) + } + r_mean <- mean(r_jack, na.rm = T) + idx <- which(is.na(r_jack)) + if (length(idx) > 0) { + se_r <- sqrt((n - 1) / n * sum((r_jack[-idx] - r_mean)^2)) + } else { + se_r <- sqrt((n - 1) / n * sum((r_jack - r_mean)^2)) + } + + p <- pchisq((r / se_r)**2, df = 1, lower.tail = FALSE) + + res <- cbind(r, se_r, p) + return(res) +} diff --git a/04_coeqtl_mapping/annotate_coeqtl_files.py b/04_coeqtl_mapping/annotate_coeqtl_files.py new file mode 100644 index 0000000..5d6e71e --- /dev/null +++ b/04_coeqtl_mapping/annotate_coeqtl_files.py @@ -0,0 +1,84 @@ +import pandas as pd +from pathlib import Path +import numpy as np +import argparse + + +def parse(): + parser = argparse.ArgumentParser() + parser.add_argument('--celltype', dest='celltype') + parser.add_argument('--networkcelltype', dest='networkcelltype') + parser.add_argument('--filtertype', dest='filtertype') + return parser + +args = parse().parse_args() +celltype = args.celltype +filtertype = args.filtertype +networkcelltype = args.networkcelltype +# filtertype = 'filtered_results' +workdir = Path("./coeqtl_mapping/") +coeqtl_filepath = workdir/f'output/{filtertype}/UT_{celltype}/coeqtls_fullresults_fixed.all.tsv.gz' + +def find_gene2(genepair, eqtlgene): + gene1, gene2 = genepair.split(';') + if gene1 == eqtlgene: + return gene2 + else: + return gene1 + +coeqtl_df = pd.read_csv(coeqtl_filepath, sep='\t', compression='gzip') +coeqtl_df['gene2'] = [find_gene2(item[0], item[1]) for item in coeqtl_df[['Gene', 'eqtlgene']].values] +unique_genepairs = list(set(coeqtl_df['Gene'])) + + +network_prefix = Path("./coeqtl_mapping/input/individual_networks/UT/") +def annotate_by_datasets(datasetname, coeqtl_df, unique_genepairs): + def read_numpy(prefix): + data = np.load(f'{prefix}.npy') + columns = [item.strip() for item in open(f'{prefix}.cols.txt', 'r').readlines()] + rows = [item.strip() for item in open(f'{prefix}.rows.txt', 'r').readlines()] + return pd.DataFrame(data=data, columns=columns, index=rows) + print(f"Loading {datasetname}.") + network_df = read_numpy(network_prefix / datasetname / f'UT_{networkcelltype}.zscores') + individual_ids = network_df.columns.copy() + common_genepairs = list(set(unique_genepairs) & set(network_df.index)) + selected_network_df = network_df.loc[common_genepairs] + selected_network_df[f'var_{datasetname}'] = np.nanvar(selected_network_df[individual_ids].values, axis=1) + selected_network_df[f'mean_{datasetname}'] = np.nanmean(selected_network_df[individual_ids].values, axis=1) + var_mean_dic = selected_network_df[[f'var_{datasetname}', f'mean_{datasetname}']].T.to_dict() + get_var = lambda x:var_mean_dic.get(x)[f'var_{datasetname}'] if x in var_mean_dic else np.nan + get_mean = lambda x:var_mean_dic.get(x)[f'mean_{datasetname}'] if x in var_mean_dic else np.nan + coeqtl_df[f'var_{datasetname}'] = [get_var(genepair) for genepair in coeqtl_df['Gene']] + coeqtl_df[f'mean_{datasetname}'] = [get_mean(genepair) for genepair in coeqtl_df['Gene']] + return coeqtl_df + +for datasetname in ['onemillionv2', 'onemillionv3', 'stemiv2', 'ng']: + coeqtl_df = annotate_by_datasets(datasetname, coeqtl_df, unique_genepairs) + + +def annotate_with_nonzero(df, celltype, datasetname, condition='UT'): + nonzeroratio_prefix = Path( + "./coeqtl_mapping/input/gene_pair_selection/annotations/") + nonzeroratio_path = nonzeroratio_prefix/f'{datasetname}.genes_nonzeroratio.tsv' + nonzero_df = pd.read_csv(nonzeroratio_path, sep='\t', index_col=0) + if condition == 'UT' and datasetname == 'stemiv2': + colname = f'{datasetname}_t8w_{celltype}' + elif condition == 'UT' and datasetname.startswith('onemillion'): + colname = f'{datasetname}_UT_{celltype}' + elif condition == 'UT' and datasetname.startswith('ng'): + colname = f'{datasetname}_{celltype}' + else: + raise NotImplementedError(f"{datasetname} {celltype} not understood") + nonzero_dict = nonzero_df[colname].T.to_dict() + df[f'eqtlgene_nonzeroratio_{datasetname}'] = [nonzero_dict.get(genename) for genename in df['eqtlgene']] + df[f'gene2_nonzeroratio_{datasetname}'] = [nonzero_dict.get(genename) for genename in df['gene2']] + return df + +for datasetname in ['onemillionv2', 'onemillionv3', 'stemiv2', 'ng']: + print(datasetname) + coeqtl_df = annotate_with_nonzero(coeqtl_df, networkcelltype, datasetname) + + +coeqtl_df.to_csv(workdir/f'output/{filtertype}/UT_{celltype}/coeqtls_fullresults_fixed.all.annotated.tsv.gz', + compression='gzip', sep='\t', index=False) + diff --git a/04_coeqtl_mapping/betaqtl_scripts/createBatches.py b/04_coeqtl_mapping/betaqtl_scripts/createBatches.py new file mode 100644 index 0000000..76763b6 --- /dev/null +++ b/04_coeqtl_mapping/betaqtl_scripts/createBatches.py @@ -0,0 +1,166 @@ +import gzip +import sys +import os +import glob + +if len(sys.argv) < 6: + print("Usage: createbatches.py expfile.txt.gz gte.txt genotype.vcf.gz genelist.txt.gz annotation.txt.gz template.sh nrmaxgenesperbatch outdir") + sys.exit(0) + +expfile = sys.argv[1] +gte = sys.argv[2] +genotype = sys.argv[3] +genelist = sys.argv[4] +annotation = sys.argv[5] +template = sys.argv[6] +nrgenes = int(sys.argv[7]) +out = sys.argv[8] +condition = sys.argv[9] +celltype = sys.argv[10] + +if not out.endswith("/"): + out = out + "/" + +def writeJob(exp, gte, gt, template, batchfile, jobfile, outprefix, logprefix, chr, condition, celltype): + print("Writing job: "+jobfile) + fh = open(template,'r') + lines = fh.readlines() + fh.close() + fho = open(jobfile,'w') + for line in lines: + line = line.replace("GENOTYPE",gt) + line = line.replace("GTE",gte) + line = line.replace("EXPRESSION",exp) + line = line.replace("CHROM",str(chr)) + line = line.replace("BATCHFILE",batchfile) + line = line.replace("OUTPREFIX",outprefix) + line = line.replace("LOGPREFIX",logprefix) + line = line.replace("CONDITION", condition) + line = line.replace("CELLTYPE", celltype) + fho.write(line) + fho.close() + +def checkDir(path): + if os.path.exists(path): + # delete contents + files = glob.glob(path+"*") + for file in files: + print("Removing: "+file) + os.remove(file) + else: + print("Creating dir: "+path) + os.mkdir(path) + +abspath = os.path.abspath(out) +checkDir(abspath+"/batches/") +checkDir(abspath+"/output/") +checkDir(abspath+"/jobs/") +checkDir(abspath+"/logs/") + +# read expression file +fh = None +genesinfile=genelist +print("Reading: "+genesinfile) +if genesinfile.endswith(".txt.gz"): + fh = gzip.open(genesinfile,'rt') +else: + fh = open(genesinfile,'r') +genesInExp = set() +fh.readline() +for line in fh: +# gene = line.split("\t", maxsplit=1)[0] + gene = line.strip() + genesInExp.add(gene) +# print(gene) + +fh.close() +print("{} genes in {}".format(len(genesInExp),expfile)) + +# read gene set +geneset = set() +fh = None +print("Genelist: "+genelist) +if genelist.endswith(".txt.gz"): + fh = gzip.open(genelist,'rt') +else: + fh = open(genelist,'r') +for line in fh: + gene = line.strip() + if gene in genesInExp: + geneset.add(line.strip()) +fh.close() +print("Genes in genelist: {}".format(len(geneset))) + +# read annotation +print("Annotation: "+annotation) +fh = None +if annotation.endswith(".txt.gz"): + fh = gzip.open(annotation,'rt') +else: + fh = open(annotation,'r') +fh.readline() +genesPerChr = {} +annotread = 0 +for line in fh: + elems = line.strip().split("\t") + gene = elems[1] + if gene in geneset: + chr = -1 + try: + chr = int(elems[3]) + except: + print(gene+" has non-numeric chromosome: "+elems[3]) + if chr < 23 and chr > 0: + pos = int(elems[4]) + chrgenes = genesPerChr.get(chr) + if chrgenes is None: + chrgenes = [] + chrgenes.append(gene) + genesPerChr[chr] = chrgenes + annotread = annotread + 1 +fh.close() +print("Annotation read for {} genes".format(annotread)) + +# create batches +for chr in genesPerChr.keys(): + bctr = 1 + chrgenes = genesPerChr.get(chr) + gctr = 0 + bgctr = 0 + batchname = "chr"+str(chr)+"-batch-"+str(bctr) + # write job script for first batch + batchfile = abspath+"/batches/"+batchname+".txt" + print("Writing batch: "+batchfile) + jobfile = abspath+"/jobs/"+batchname+".sh" + outprefix = abspath+"/output/"+batchname + logprefix = abspath+"/logs/"+batchname + print() + print("Writing job: "+template+"\n"+batchfile+"\n"+jobfile+"\n"+outprefix+"\n"+str(chr)) + # exp, gte, gt, template, batchfile, jobfile, outprefix, chr + chrgenotype = genotype.replace("CHR",str(chr)) + writeJob(expfile, gte, chrgenotype, template, batchfile, jobfile, outprefix, logprefix, chr, condition, celltype) + bgout = open(batchfile,'w') + while gctr < len(chrgenes): + bgout.write(chrgenes[gctr]+"\n") + bgctr = bgctr + 1 + if bgctr == nrgenes: + # start new batch + bgout.close() + bctr = bctr + 1 + # write job script for new batch + batchname = "chr"+str(chr)+"-batch-"+str(bctr) + batchfile = abspath+"/batches/"+batchname+".txt" + print("Writing batch: "+batchfile) + jobfile = abspath+"/jobs/"+batchname+".sh" + outprefix = abspath+"/output/"+batchname + logprefix = abspath+"/logs/"+batchname +# writeJob(template, batchfile, jobfile, outprefix, chr) + writeJob(expfile, gte, chrgenotype, template, batchfile, jobfile, outprefix, logprefix, chr, condition, celltype) + + bgout = open(batchfile,'w') + bgctr = 0 + gctr = gctr + 1 + # if there are any genes left, close batch + if bgctr > 0: + bgout.close() + diff --git a/04_coeqtl_mapping/betaqtl_scripts/createBatches.sh b/04_coeqtl_mapping/betaqtl_scripts/createBatches.sh new file mode 100644 index 0000000..ce5ca12 --- /dev/null +++ b/04_coeqtl_mapping/betaqtl_scripts/createBatches.sh @@ -0,0 +1,58 @@ +condition=$1 +celltype=$2 +workdir="/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/" +coexpressionfile=${workdir}/"input/individual_networks/${condition}/${condition}_${celltype}.onemillionv23stemiv2ng.zscores.tsv.gz" +gtefile=${workdir}/"input/summary/gte-fix.tsv" +gtfile=${workdir}/"output/genotypevcfs/chrCHR/GenotypeData.bgz.vcf.gz" +batchsize=100000 + +genelist=${workdir}/"output/${condition}_${celltype}/genelist.noduplicated.txt" +geneannotation=${workdir}/"input/summary/${condition}_${celltype}.genepairs.annotation.gene1position.noduplicated.tsv" +jobtemplatefile=${workdir}/"output/betaqtl_scripts/jobtemplate.noduplicated.sh" +outputfile=${workdir}/"output/${condition}_${celltype}/noduplicated/" +mkdir -p ${outputfile} +python createBatches.py \ + ${coexpressionfile} \ + ${gtefile} \ + ${gtfile} \ + ${genelist} \ + ${geneannotation} \ + ${jobtemplatefile} \ + ${batchsize} \ + ${outputfile} \ + ${condition} \ + ${celltype} + +genelist=${workdir}/"output/${condition}_${celltype}/genelist.duplicatedversion1.txt" +geneannotation=${workdir}/"input/summary/${condition}_${celltype}.genepairs.annotation.gene1position.duplicatedversion1.tsv" +jobtemplatefile=${workdir}/"output/betaqtl_scripts/jobtemplate.duplicatedversion1.sh" +outputfile=${workdir}/"output/${condition}_${celltype}/duplicatedversion1/" +mkdir -p ${outputfile} +python createBatches.py \ + ${coexpressionfile} \ + ${gtefile} \ + ${gtfile} \ + ${genelist} \ + ${geneannotation} \ + ${jobtemplatefile} \ + ${batchsize} \ + ${outputfile} \ + ${condition} \ + ${celltype} + +genelist=${workdir}/"output/${condition}_${celltype}/genelist.duplicatedversion2.txt" +geneannotation=${workdir}/"input/summary/${condition}_${celltype}.genepairs.annotation.gene1position.duplicatedversion2.tsv" +jobtemplatefile=${workdir}/"output/betaqtl_scripts/jobtemplate.duplicatedversion2.sh" +outputfile=${workdir}/"output/${condition}_${celltype}/duplicatedversion2" +mkdir -p ${outputfile} +python createBatches.py \ + ${coexpressionfile} \ + ${gtefile} \ + ${gtfile} \ + ${genelist} \ + ${geneannotation} \ + ${jobtemplatefile} \ + ${batchsize} \ + ${outputfile} \ + ${condition} \ + ${celltype} diff --git a/04_coeqtl_mapping/betaqtl_scripts/jobtemplate.duplicatedversion1.sh b/04_coeqtl_mapping/betaqtl_scripts/jobtemplate.duplicatedversion1.sh new file mode 100644 index 0000000..cd8864f --- /dev/null +++ b/04_coeqtl_mapping/betaqtl_scripts/jobtemplate.duplicatedversion1.sh @@ -0,0 +1,39 @@ +#!/bin/bash +#SBATCH --ntasks=1 +#SBATCH --time=1:00:00 +#SBATCH --mem=24g +#SBATCH --cpus-per-task=11 +#SBATCH -o LOGPREFIX.log +#SBATCH -e LOGPREFIX.err + +set -e +set -u + + + + +ml Java/11-LTS +# ml Java/11.0.2 + +# CHROM, BATCHFILE, OUTPREFIX +# EXP, GTE, GENOTYPE +# CONDITION CELLTYPE +threads=11 +java -Xmx17g \ + -Djava.util.concurrent.ForkJoinPool.common.parallelism=$threads \ + -Dmaximum.threads=$threads -Dthread.pool.size=$threads \ + -jar /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/tools/BetaQTL-1.0-SNAPSHOT-jar-with-dependencies.jar \ + -m betaqtl \ + --maf 0.1\ + -a /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/summary/CONDITION_CELLTYPE.genepairs.annotation.gene1position.duplicatedversion1.tsv \ + -e /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/individual_networks/CONDITION/CONDITION_CELLTYPE.onemillionv23stemiv2ng.zscores.tsv.gz \ + -sgl /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/snp_genepair_selection/CONDITION_CELLTYPE.baseline.duplicatedversion1.tsv \ + -gl BATCHFILE \ + -g /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/summary/gte-fix.tsv \ + -v GENOTYPE \ + --chr CHROM \ + -o OUTPREFIX \ + --perm 100 \ + --outputall \ + --snplog \ + --outputallpermutations diff --git a/04_coeqtl_mapping/betaqtl_scripts/jobtemplate.duplicatedversion2.sh b/04_coeqtl_mapping/betaqtl_scripts/jobtemplate.duplicatedversion2.sh new file mode 100644 index 0000000..9792bc9 --- /dev/null +++ b/04_coeqtl_mapping/betaqtl_scripts/jobtemplate.duplicatedversion2.sh @@ -0,0 +1,39 @@ +#!/bin/bash +#SBATCH --ntasks=1 +#SBATCH --time=1:00:00 +#SBATCH --mem=24g +#SBATCH --cpus-per-task=11 +#SBATCH -o LOGPREFIX.log +#SBATCH -e LOGPREFIX.err + +set -e +set -u + + + + +ml Java/11-LTS +# ml Java/11.0.2 + +# CHROM, BATCHFILE, OUTPREFIX +# EXP, GTE, GENOTYPE +# CONDITION CELLTYPE +threads=11 +java -Xmx17g \ + -Djava.util.concurrent.ForkJoinPool.common.parallelism=$threads \ + -Dmaximum.threads=$threads -Dthread.pool.size=$threads \ + -jar /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/tools/BetaQTL-1.0-SNAPSHOT-jar-with-dependencies.jar \ + -m betaqtl \ + --maf 0.1\ + -a /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/summary/CONDITION_CELLTYPE.genepairs.annotation.gene1position.duplicatedversion2.tsv \ + -e /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/individual_networks/CONDITION/CONDITION_CELLTYPE.onemillionv23stemiv2ng.zscores.tsv.gz \ + -sgl /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/snp_genepair_selection/CONDITION_CELLTYPE.baseline.duplicatedversion2.tsv \ + -gl BATCHFILE \ + -g /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/summary/gte-fix.tsv \ + -v GENOTYPE \ + --chr CHROM \ + -o OUTPREFIX \ + --perm 100 \ + --outputall \ + --snplog \ + --outputallpermutations diff --git a/04_coeqtl_mapping/betaqtl_scripts/jobtemplate.noduplicated.sh b/04_coeqtl_mapping/betaqtl_scripts/jobtemplate.noduplicated.sh new file mode 100644 index 0000000..6373cd7 --- /dev/null +++ b/04_coeqtl_mapping/betaqtl_scripts/jobtemplate.noduplicated.sh @@ -0,0 +1,38 @@ +#!/bin/bash +#SBATCH --ntasks=1 +#SBATCH --time=1:00:00 +#SBATCH --mem=24g +#SBATCH --cpus-per-task=11 +#SBATCH -o LOGPREFIX.log +#SBATCH -e LOGPREFIX.err + +set -e +set -u + + + + +ml Java/11-LTS + +# CHROM, BATCHFILE, OUTPREFIX +# EXP, GTE, GENOTYPE +# CONDITION CELLTYPE +threads=11 +java -Xmx17g \ + -Djava.util.concurrent.ForkJoinPool.common.parallelism=$threads \ + -Dmaximum.threads=$threads -Dthread.pool.size=$threads \ + -jar /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/tools/BetaQTL-1.0-SNAPSHOT-jar-with-dependencies.jar \ + -m betaqtl \ + --maf 0.1 \ + -a /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/summary/CONDITION_CELLTYPE.genepairs.annotation.gene1position.noduplicated.tsv \ + -e /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/individual_networks/CONDITION/CONDITION_CELLTYPE.onemillionv23stemiv2ng.zscores.tsv.gz \ + -sgl /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/snp_genepair_selection/CONDITION_CELLTYPE.baseline.noduplicated.tsv \ + -gl BATCHFILE \ + -g /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/summary/gte-fix.tsv \ + -v GENOTYPE \ + --chr CHROM \ + -o OUTPREFIX \ + --perm 100 \ + --outputall \ + --snplog \ + --outputallpermutations diff --git a/04_coeqtl_mapping/calculate_rb_for_sc_and_bios.R b/04_coeqtl_mapping/calculate_rb_for_sc_and_bios.R new file mode 100644 index 0000000..40415e6 --- /dev/null +++ b/04_coeqtl_mapping/calculate_rb_for_sc_and_bios.R @@ -0,0 +1,89 @@ +# Title : TODO +# Objective : TODO +# Created by: Shuang +# Created on: 1/19/2022 + +source("Rb.R") +library(glue) +library(data.table) + +calculate_rb_bios_replication_summary <- function(biostype, filtertype){ + print(biostype) + print(filtertype) + resdf <- c() + for ( celltype in c('CD4T', 'CD8T', 'monocyte', 'NK', 'B', 'DC') ){ + df <- read.csv(glue('./coeqtl_mapping/bios/{biostype}/{filtertype}/UT_{celltype}/replication_parameters.csv')) + res <- calcu_cor_true(df$flipped_bios_beta, df$std.err_bios, df$MetaBeta, df$MetaSE, df$theta) + res <- cbind(res, celltype) + resdf <- rbind(res, resdf) + } + write.csv(resdf, glue('./coeqtl_mapping/bios/{biostype}/{filtertype}/replication_summary.csv')) +} + +# BIOS replication +args = commandArgs(trailingOnly=TRUE) +calculate_rb_bios_replication_summary(args[1], args[2]) + + +# coeQTLs +filtertype = 'filtered_results' +workdir = './coeqtl_mapping/' +resdf <- c() +for ( celltype_discovery in c('CD4T', 'CD8T', 'monocyte', 'NK', 'B', 'DC') ){ + for ( celltype_replication in c('CD4T', 'CD8T', 'monocyte', 'NK', 'B', 'DC') ){ + if ( celltype_discovery != celltype_replication ){ + df <- fread(glue('{workdir}/output/{filtertype}/rb_calculations/discovery_{celltype_discovery}_replication_{celltype_replication}.tsv.gz')) + print(c(celltype_discovery, celltype_replication, nrow(df))) + if ( nrow(df) < 5 ){ + resdf <- rbind(resdf, c(NA, NA, 0, celltype_discovery, celltype_replication)) + }else{ + res <- calcu_cor_true(df$MetaBeta, df$MetaSE, df$MetaBeta_replication, df$MetaSE_replication, df$theta) + res <- cbind(res, celltype_discovery, celltype_replication) + resdf <- rbind(res, resdf) + } + } + } +} +write.csv(resdf, glue('{workdir}/output/{filtertype}/rb_calculations/summary.csv')) + +# coeQTLs monocyte sub celltypes +filtertype = 'filtered_results' +workdir = './coeqtl_mapping/' +resdf <- c() +for ( celltype_discovery in c('monocyte', 'cMono', 'ncMono') ){ + for ( celltype_replication in c('monocyte', 'cMono', 'ncMono') ){ + if ( celltype_discovery != celltype_replication ){ + df <- fread(glue('{workdir}/output/{filtertype}/rb_calculations/monocyte_subcelltypes/discovery_{celltype_discovery}_replication_{celltype_replication}.tsv.gz')) + print(c(celltype_discovery, celltype_replication, nrow(df))) + if ( nrow(df) < 5 ){ + resdf <- rbind(resdf, c(NA, NA, 0, celltype_discovery, celltype_replication)) + }else{ + res <- calcu_cor_true(df$MetaBeta, df$MetaSE, df$MetaBeta_replication, df$MetaSE_replication, df$theta) + res <- cbind(res, celltype_discovery, celltype_replication) + resdf <- rbind(res, resdf) + } + } + } +} +write.csv(resdf, glue('{workdir}/output/{filtertype}/rb_calculations/monocyte_subcelltypes/summary.csv')) + + +# eQTLs +workdir = './coeqtl_mapping/' +resdf <- c() +for ( celltype_discovery in c('CD4T', 'CD8T', 'monocyte', 'NK', 'B', 'DC') ){ + for ( celltype_replication in c('CD4T', 'CD8T', 'monocyte', 'NK', 'B', 'DC') ){ + if ( celltype_discovery != celltype_replication ){ + df <- fread(glue('{workdir}/input/snp_selection/rb_calculations/discovery_{celltype_discovery}_replication_{celltype_replication}.tsv.gz')) + print(c(celltype_discovery, celltype_replication, nrow(df))) + if ( nrow(df) < 5 ){ + resdf <- rbind(resdf, c(NA, NA, 0, celltype_discovery, celltype_replication)) + }else{ + res <- calcu_cor_true(df$metabeta, df$SE, df$metabeta_replication, df$SE_replication, df$theta) + res <- cbind(res, celltype_discovery, celltype_replication) + resdf <- rbind(res, resdf) + } + } + } +} +write.csv(resdf, glue('{workdir}/input/snp_selection/rb_calculations/summary.csv')) \ No newline at end of file diff --git a/04_coeqtl_mapping/cell-type_specific_eQTLmapping/template_config.xml b/04_coeqtl_mapping/cell-type_specific_eQTLmapping/template_config.xml new file mode 100644 index 0000000..6684866 --- /dev/null +++ b/04_coeqtl_mapping/cell-type_specific_eQTLmapping/template_config.xml @@ -0,0 +1,94 @@ + + + + + + + + 0.95 + 0.0001 + 0.1 + + + + cis + 100000 + nonparametric + + 10 + false + false + + + + fdr + 0.05 + probe-level + 10 + + + + /path/to/output_dir/ + 0.1 + /path/to/plotsoutput_dir/ + 50000000 + false + false + false + true + + + + + /path/to/SNPconfinement/file.tsv + false + false + false + + + + + + + van_der_Wijst + /path/to/van_der_Wijst/genome/trityper/ + /path/to/van_der_Wijst/cell_type_specific_donor_aggregated_matrix/expression.tsv + /path_to_snp_annotation_file/singleCell-annotation-stripped.tsv + false + false + + + van_Blockland_v2 + /path/to/van_Blockland_v2/genome/trityper/ + /path/to/van_Blockland_v2/cell_type_specific_donor_aggregated_matrix/expression.tsv + /path_to_snp_annotation_file/singleCell-annotation-stripped.tsv + false + false + + + van_Blockland_v3 + /path/to/van_Blockland_v3/genome/trityper/ + /path/to/van_Blockland_v3/cell_type_specific_donor_aggregated_matrix/expression.tsv + /path_to_snp_annotation_file/singleCell-annotation-stripped.tsv + false + false + + + Oelen_v2 + /path/to/Oelen_v2/genome/trityper/ + /path/to/Oelen_v2/cell_type_specific_donor_aggregated_matrix/expression.tsv + /path_to_snp_annotation_file/singleCell-annotation-stripped.tsv + false + false + + + Oelen_v3 + /path/to/Oelen_v3/genome/trityper/ + /path/to/Oelen_v3/cell_type_specific_donor_aggregated_matrix/expression.tsv + /path_to_snp_annotation_file/singleCell-annotation-stripped.tsv + false + false + + + + diff --git a/04_coeqtl_mapping/cell-type_specific_eQTLmapping/template_job_file.sh b/04_coeqtl_mapping/cell-type_specific_eQTLmapping/template_job_file.sh new file mode 100644 index 0000000..3c99f30 --- /dev/null +++ b/04_coeqtl_mapping/cell-type_specific_eQTLmapping/template_job_file.sh @@ -0,0 +1,16 @@ +#!/usr/bin/env bash +#SBATCH --job-name=B_1m_v2 +#SBATCH --output=/groups/umcg-bios/tmp01/projects/1M_cells_scRNAseq/ongoing/GRN_reconstruction/EMP_mapping/B/err/B_1m_v2.out +#SBATCH --error=/groups/umcg-bios/tmp01/projects/1M_cells_scRNAseq/ongoing/GRN_reconstruction/EMP_mapping/B/err/B_1m_v2.err +#SBATCH --time=05:59:00 +#SBATCH --cpus-per-task=10 +#SBATCH --mem=64gb +#SBATCH --nodes=1 +#SBATCH --open-mode=append +#SBATCH --export=NONE +#SBATCH --get-user-env=L + +set -e +ml Java/1.8.0_144 + +java -jar -Xmx40g -Xms20g -XX:StringTableSize=10000019 -XX:MaxPermSize=512m /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/cis_eqtl_single_cell/EMP_mapping_30_11_2021/eqtl-mapping-pipeline-1.4.9a-SNAPSHOT/eqtl-mapping-pipeline.jar --mode metaqtl --settings /groups/umcg-bios/tmp01/projects/1M_cells_scRNAseq/ongoing/GRN_reconstruction/EMP_mapping/B/config/1m_v2.xml diff --git a/04_coeqtl_mapping/collect_nonzeroratio.py b/04_coeqtl_mapping/collect_nonzeroratio.py new file mode 100644 index 0000000..b86dc08 --- /dev/null +++ b/04_coeqtl_mapping/collect_nonzeroratio.py @@ -0,0 +1,95 @@ +from pathlib import Path +import numpy as np +import scanpy as sc +import re +import pandas as pd + + +prefix = Path('./seurat_objects') +data_path_dic = {'onemillionv2':prefix/'1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.sct.h5ad', + 'stemiv2': prefix / 'cardio.integrated.20210301.stemiv2.h5ad', + 'onemillionv3': prefix / "1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad", + 'ng': prefix / 'pilot3_seurat3_200420_sct_azimuth.h5ad'} + + +# extract timepoint from timepoint - stimulation annotation +def get_time(x): + if x == 'UT': + return x + else: + pattern = re.compile(r'\d+h') + return re.findall(pattern, x)[0] + + +def count_nonzeroratio(data_sc): + df = pd.DataFrame(data=data_sc.X.toarray(), + index=data_sc.obs.index, + columns=data_sc.var.index) + nonzerocounts = np.count_nonzero(df.values, axis=0)/df.shape[0] + return nonzerocounts + + +def load_onemillion(data_name, data_sc): + var_df = pd.DataFrame(index=data_sc.var.index.values) + data_sc.obs['time'] = [get_time(x) for x in data_sc.obs['timepoint']] + for condition in data_sc.obs['time'].unique(): + for celltype in data_sc.obs['cell_type_lowerres'].unique(): + print(condition, celltype) + subset_sc = data_sc[(data_sc.obs['time']==condition) & + (data_sc.obs['cell_type_lowerres']==celltype)] + var_df[f'{data_name}_{condition}_{celltype}'] = count_nonzeroratio(subset_sc) + return var_df + + +def load_ng(data_sc): + var_df = pd.DataFrame(index=data_sc.var.index.values) + celltype_maping = {'CD4 T': 'CD4T', 'CD8 T': 'CD8T', 'Mono': 'monocyte', 'DC': 'DC', 'NK': 'NK', + 'other T': 'otherT', 'other': 'other', 'B': 'B'} + data_sc.obs['cell_type_mapped_to_onemillion'] = [celltype_maping.get(name) for name in + data_sc.obs['predicted.celltype.l1']] + for celltype in data_sc.obs['cell_type_mapped_to_onemillion'].unique(): + print(celltype) + subset_sc = data_sc[(data_sc.obs['cell_type_mapped_to_onemillion']==celltype)] + var_df[f'ng_{celltype}'] = count_nonzeroratio(subset_sc) + return var_df + + +def load_stemi(dataname, data_sc): + var_df = pd.DataFrame(index=data_sc.var.index.values) + for condition in data_sc.obs['timepoint.final'].unique(): + for celltype in data_sc.obs['cell_type_lowerres'].unique(): + print(condition, celltype) + subset_sc = data_sc[(data_sc.obs['timepoint.final']==condition) & + (data_sc.obs['cell_type_lowerres']==celltype)] + var_df[f'{dataname}_{condition}_{celltype}'] = count_nonzeroratio(subset_sc) + return var_df + + +def get_expressed_ratio(datasetname): + data_sc = sc.read_h5ad(data_path_dic[datasetname]) + if datasetname.startswith('onemillion'): + var_df = load_onemillion(datasetname, data_sc) + elif datasetname.startswith('stemi'): + var_df = load_stemi(datasetname, data_sc) + else: + var_df = load_ng(data_sc) + return var_df + + +def calculate_genes_withnonzeroratio(datasetname, savepath): + print("Processing ", datasetname) + var_df = get_expressed_ratio(datasetname) + var_df.to_csv(savepath, sep='\t') + return var_df + + +work_dir = Path('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/') +nonzero_savepath = work_dir/'coeqtl_mapping/input/gene_pair_selection/annotations/' +for datasetname in ['stemiv2', 'ng', 'onemillionv2', 'onemillionv3']: + print('Processing ', datasetname) + savepath = nonzero_savepath/f'{datasetname}.genes_nonzeroratio.tsv' + var_df = calculate_genes_withnonzeroratio(datasetname, savepath) + + + + diff --git a/04_coeqtl_mapping/concat_all6majorcelltypes_coeqtls.py b/04_coeqtl_mapping/concat_all6majorcelltypes_coeqtls.py new file mode 100644 index 0000000..a2de1f7 --- /dev/null +++ b/04_coeqtl_mapping/concat_all6majorcelltypes_coeqtls.py @@ -0,0 +1,38 @@ +import pandas as pd +from pathlib import Path + +def find_eqtlsnp_gene(snp_genepair, eqtl_snp_gene_set): + snp = snp_genepair.split('_')[0] + gene1, gene2 = snp_genepair.split('_')[1].split(';') + if '_'.join([snp, gene1]) in eqtl_snp_gene_set: + return gene1 + else: + return gene2 + + +workdir = Path("/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output") +eqtl_prefix = Path("/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/snp_selection/eqtl") +writer = pd.ExcelWriter(workdir/'summary/coeQTLs_6majorcelltypes.unfiltered.xlsx', engine='xlsxwriter') +for celltype in ['CD4T', 'CD8T', 'monocyte', 'B', 'DC', 'NK']: + eqtls_path = eqtl_prefix/f'UT_{celltype}_eQTLProbesFDR0.05-ProbeLevel.tsv' + eqtl_df = pd.read_csv(eqtls_path, sep='\t') + eqtl_df['snp_gene'] = ['_'.join(item) for item in eqtl_df[['SNPName', 'genename']].values] + eqtl_snp_gene_set = set(eqtl_df['snp_gene']) + df = pd.read_csv(workdir/f'unfiltered_results/UT_{celltype}/coeqtls_fullresults.sig.tsv.gz', sep='\t', compression='gzip') + df['eqtlgene'] = [find_eqtlsnp_gene(item, eqtl_snp_gene_set) for item in df['snp_genepair']] + print(celltype, df.shape[0], len(df['eqtlgene'].unique())) + df.to_excel(writer, sheet_name=celltype) +writer.save() + + +writer = pd.ExcelWriter(workdir/'summary/coeQTLs_6majorcelltypes.filtered.xlsx', engine='xlsxwriter') +for celltype in ['CD4T', 'CD8T', 'monocyte', 'B', 'DC', 'NK']: + eqtls_path = eqtl_prefix/f'UT_{celltype}_eQTLProbesFDR0.05-ProbeLevel.tsv' + eqtl_df = pd.read_csv(eqtls_path, sep='\t') + eqtl_df['snp_gene'] = ['_'.join(item) for item in eqtl_df[['SNPName', 'genename']].values] + eqtl_snp_gene_set = set(eqtl_df['snp_gene']) + df = pd.read_csv(workdir/f'filtered_results/UT_{celltype}/coeqtls_fullresults.sig.tsv.gz', sep='\t', compression='gzip') + df['eqtlgene'] = [find_eqtlsnp_gene(item, eqtl_snp_gene_set) for item in df['snp_genepair']] + print(celltype, df.shape[0], len(df['eqtlgene'].unique())) + df.to_excel(writer, sheet_name=celltype) +writer.save() \ No newline at end of file diff --git a/04_coeqtl_mapping/concat_betaqtl_results.fixed.py b/04_coeqtl_mapping/concat_betaqtl_results.fixed.py new file mode 100644 index 0000000..7d698f7 --- /dev/null +++ b/04_coeqtl_mapping/concat_betaqtl_results.fixed.py @@ -0,0 +1,65 @@ +import pandas as pd +from pathlib import Path +import os +import argparse +from tqdm import tqdm +from statsmodels.stats.multitest import multipletests + + +def concat_results(prefix, savepath): + concated_df = pd.DataFrame() + coeqtl_annotation_path = f'{args.annotation_prefix}.genepairs.annotation.gene1position.noduplicated.tsv' + coeqtl_annotation_df = pd.read_csv(coeqtl_annotation_path, sep='\t') + coeqtl_annotation_df['chr_pos'] = ['_'.join([str(ele) for ele in item]) for item in + coeqtl_annotation_df[['Chr', 'ChrStart', 'ChrEnd']].values] + coeqtl_annotation_dict = coeqtl_annotation_df.set_index('ArrayAddress')['chr_pos'].T.to_dict() + for filename in tqdm(os.listdir(prefix/'noduplicated/output')): + if filename.endswith("-TopEffects.txt"): + df = pd.read_csv(prefix/'noduplicated/output'/filename, sep='\t') + df['chr_pos'] = [coeqtl_annotation_dict.get(gene) for gene in df['Gene']] + concated_df = pd.concat([concated_df, df], axis=0) + concated_df['snp_genepair'] = ['_'.join(item) for item in concated_df[['SNP', 'Gene']].values] + version1 = pd.DataFrame() + coeqtl_annotation_path = f'{args.annotation_prefix}.genepairs.annotation.gene1position.duplicatedversion1.tsv' + coeqtl_annotation_df = pd.read_csv(coeqtl_annotation_path, sep='\t') + coeqtl_annotation_df['chr_pos'] = ['_'.join([str(ele) for ele in item]) for item in + coeqtl_annotation_df[['Chr', 'ChrStart', 'ChrEnd']].values] + coeqtl_annotation_dict = coeqtl_annotation_df.set_index('ArrayAddress')['chr_pos'].T.to_dict() + for filename in tqdm(os.listdir(prefix/'duplicatedversion1/output')): + if filename.endswith("-TopEffects.txt"): + df = pd.read_csv(prefix/'duplicatedversion1/output'/filename, sep='\t') + df['chr_pos'] = [coeqtl_annotation_dict.get(gene) for gene in df['Gene']] + version1 = pd.concat([version1, df], axis=0) + version1['snp_genepair'] = ['_'.join(item) for item in version1[['SNP', 'Gene']].values] + version2 = pd.DataFrame() + coeqtl_annotation_path = f'{args.annotation_prefix}.genepairs.annotation.gene1position.duplicatedversion2.tsv' + coeqtl_annotation_df = pd.read_csv(coeqtl_annotation_path, sep='\t') + coeqtl_annotation_df['chr_pos'] = ['_'.join([str(ele) for ele in item]) for item in + coeqtl_annotation_df[['Chr', 'ChrStart', 'ChrEnd']].values] + coeqtl_annotation_dict = coeqtl_annotation_df.set_index('ArrayAddress')['chr_pos'].T.to_dict() + for filename in tqdm(os.listdir(prefix/'duplicatedversion2/output')): + if filename.endswith("-TopEffects.txt"): + df = pd.read_csv(prefix/'duplicatedversion2/output'/filename, sep='\t') + df['chr_pos'] = [coeqtl_annotation_dict.get(gene) for gene in df['Gene']] + version2 = pd.concat([version2, df], axis=0) + version2['snp_genepair'] = ['_'.join(item) for item in version2[['SNP', 'Gene']].values] + concated_versions = pd.concat([concated_df, version1, version2], axis=0) + concated_versions = concated_versions.sort_values(by=['GeneChr', 'GenePos']) + concated_versions = concated_versions.set_index('snp_genepair') + # add multiple test significance + concated_versions['multipletestP'] = multipletests(concated_versions['BetaAdjustedMetaP'], + alpha=0.05, method='fdr_bh', + is_sorted=False, returnsorted=False)[1] + concated_versions.to_csv(savepath, sep='\t') + return concated_versions + +def argumentsparser(): + parser = argparse.ArgumentParser() + parser.add_argument('--prefix', type=str, dest='prefix') + parser.add_argument('--savepath', type=str, dest='savepath') + parser.add_argument('--annotation_prefix', type=str, dest='annotation_prefix') + return parser + +if __name__ == '__main__': + args = argumentsparser().parse_args() + concat_results(Path(args.prefix), args.savepath) \ No newline at end of file diff --git a/04_coeqtl_mapping/examine_bios_replication.ipynb b/04_coeqtl_mapping/examine_bios_replication.ipynb new file mode 100644 index 0000000..8c5b906 --- /dev/null +++ b/04_coeqtl_mapping/examine_bios_replication.ipynb @@ -0,0 +1,1013 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy.stats import spearmanr\n", + "from pathlib import Path\n", + "from scipy.stats import t, norm\n", + "import seaborn as sns\n", + "%matplotlib inline\n", + "\n", + "def flip_zscore(zscore, coeqtlallele, altaf, altallele):\n", + " if not pd.isnull(zscore):\n", + " if coeqtlallele == altallele:\n", + " coeqtlaf = altaf\n", + " else:\n", + " coeqtlaf = 1 - altaf\n", + " if coeqtlaf > 0.5:\n", + " return -zscore\n", + " else:\n", + " return zscore\n", + " else:\n", + " return np.nan\n", + " \n", + "def flip_allele(altaf, altallele, refallele):\n", + " if altaf > 0.5:\n", + " return refallele\n", + " else:\n", + " return altallele" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_withbios_prefix = Path(\n", + " \"./coeqtl_mapping/output\"\n", + ")\n", + "filter_type = 'filtered_results'\n", + "\n", + "def flip_direction(allele1, allele2, zscore2):\n", + " if allele1 == allele2:\n", + " return zscore2\n", + " else:\n", + " return -1*zscore2\n", + "\n", + "\n", + "def get_z_score(t_statistic, num):\n", + " prob = t.cdf(t_statistic, num - 2)\n", + " z_score = norm.ppf(prob)\n", + " return z_score" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.patches as mpatches" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "color_dict = {'CD4T': '#2E9D33',\n", + " 'CD8T': 'darkgreen',\n", + " 'monocyte': '#EDBA1B',\n", + " 'NK': '#E64B50',\n", + " 'DC': '#965EC8',\n", + " 'B': '#009DDB',\n", + " 'cMono': 'peru',\n", + " 'ncMono': 'y',\n", + " 'CD4T_individual_100': '#2E9D33',\n", + " 'CD4T_individual_50': '#2E9D33',\n", + " 'CD4T_50': '#2E9D33',\n", + " 'CD4T_150': '#2E9D33',\n", + " 'CD4T_250': '#2E9D33'}" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "workdir = Path(\"./coeqtl_mapping/\")\n", + "bios_replication_filtered_df = pd.read_csv(\n", + " workdir/'bios/onlyRNAAlignMetrics_rmLLD/filtered_results/replication_summary.csv', \n", + " index_col=0\n", + ").set_index('celltype')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "celltype = 'CD4T'\n", + "eqtldf = pd.read_csv(\n", + " workdir/f'input/snp_selection/eqtl/UT_{celltype}_eQTLProbesFDR0.05-ProbeLevel_withAF.tsv',\n", + " sep='\\t'\n", + " )\n", + "eqtldf['snp_eqtlgene'] = ['_'.join(item) for item in eqtldf[['SNPName', 'genename']].values]\n", + "eqtl_allele_af_df = eqtldf.drop_duplicates(subset=['snp_eqtlgene', 'AlleleAssessed', 'AF'])\n", + "eqtl_allele_af_dict = eqtl_allele_af_df.set_index('snp_eqtlgene')[['AlleleAssessed', 'AF', 'alt_allele', 'ref_allele']].T.to_dict()" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "biostype = 'onlyRNAAlignMetrics_rmLLD'\n", + "celltype = 'CD4T'\n", + "filter_type = 'filtered_results'\n", + "\n", + "coeqtl_df = pd.read_csv(\n", + " coeqtl_withbios_prefix/filter_type/f'UT_{celltype}/coeqtls_fullresults_fixed.sig.withbios{biostype}.tsv.gz',\n", + " compression='gzip', \n", + " index_col=0, \n", + " sep='\\t')\n", + "coeqtl_df = coeqtl_df.dropna(subset=['t_bios'])\n", + "coeqtl_df['zscore_bios'] = [get_z_score(item[0], item[1]) for item in \n", + " coeqtl_df[['t_bios', \n", + " 'num_individuals_bios']].values]\n", + "coeqtl_df['flipped_zscore_bios'] = [flip_direction(item[0], item[1], item[2]) for item in \n", + " coeqtl_df[['SNPEffectAllele', \n", + " 'assessed_allele_bios',\n", + " 'zscore_bios']].values]\n", + "\n", + "isConcordant = lambda x:True if x[0]*x[1] > 0 else False\n", + "coeqtl_df['is_concordant'] = [isConcordant(item) for item in \n", + " coeqtl_df[['MetaPZ', 'flipped_zscore_bios']].values]\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
snp_genepairGeneGeneChrGenePosGeneStrandGeneSymbolSNPSNPChrSNPPosSNPAlleles...gene1_biosgene2_biosassessed_allele_biosnum_individuals_biosisinteractionterm_biossnp_genepair_bioscorrected_p_bioszscore_biosflipped_zscore_biosis_concordant
snp_gene1_gene2
rs7605824_SH3YL1_NPM1rs7605824_NPM1;SH3YL1NPM1;SH3YL12217730NaNNPM1;SH3YL1rs76058242280819G/A...SH3YL1NPM1A2491.0Truers7605824_NPM1;SH3YL10.000000-3.617874-3.617874True
rs7605824_SH3YL1_CD48rs7605824_CD48;SH3YL1CD48;SH3YL12217730NaNCD48;SH3YL1rs76058242280819G/A...SH3YL1CD48A2491.0Truers7605824_CD48;SH3YL10.784422-0.446946-0.446946True
rs7605824_SH3YL1_RPS13rs7605824_RPS13;SH3YL1RPS13;SH3YL12217730NaNRPS13;SH3YL1rs76058242280819G/A...SH3YL1RPS13A2491.0Truers7605824_RPS13;SH3YL10.000000-3.489377-3.489377True
rs7605824_SH3YL1_RPL31rs7605824_RPL31;SH3YL1RPL31;SH3YL12217730NaNRPL31;SH3YL1rs76058242280819G/A...SH3YL1RPL31A2491.0Truers7605824_RPL31;SH3YL10.349601-1.325633-1.325633True
rs7605824_SH3YL1_RPL3rs7605824_RPL3;SH3YL1RPL3;SH3YL12217730NaNRPL3;SH3YL1rs76058242280819G/A...SH3YL1RPL3A2491.0Truers7605824_RPL3;SH3YL10.000000-3.854851-3.854851True
..................................................................
rs4147638_SMDT1_ACTBrs4147638_ACTB;SMDT1ACTB;SMDT12242475695NaNACTB;SMDT1rs41476382242487900G/A...SMDT1ACTBG2491.0Truers4147638_ACTB;SMDT10.000000-3.7483263.748326True
rs4147638_SMDT1_RPS25rs4147638_RPS25;SMDT1RPS25;SMDT12242475695NaNRPS25;SMDT1rs41476382242487900G/A...SMDT1RPS25G2491.0Truers4147638_RPS25;SMDT10.0000005.773036-5.773036True
rs4147638_SMDT1_RPS3Ars4147638_RPS3A;SMDT1RPS3A;SMDT12242475695NaNRPS3A;SMDT1rs41476382242487900G/A...SMDT1RPS3AG2491.0Truers4147638_RPS3A;SMDT10.0000004.434777-4.434777True
rs4147638_SMDT1_RPS18rs4147638_RPS18;SMDT1RPS18;SMDT12242475695NaNRPS18;SMDT1rs41476382242487900G/A...SMDT1RPS18G2491.0Truers4147638_RPS18;SMDT10.0000007.128733-7.128733True
rs4147638_SMDT1_RPL11rs4147638_RPL11;SMDT1RPL11;SMDT12242475695NaNRPL11;SMDT1rs41476382242487900G/A...SMDT1RPL11G2491.0Truers4147638_RPL11;SMDT10.0000005.896748-5.896748True
\n", + "

497 rows × 55 columns

\n", + "
" + ], + "text/plain": [ + " snp_genepair Gene GeneChr \\\n", + "snp_gene1_gene2 \n", + "rs7605824_SH3YL1_NPM1 rs7605824_NPM1;SH3YL1 NPM1;SH3YL1 2 \n", + "rs7605824_SH3YL1_CD48 rs7605824_CD48;SH3YL1 CD48;SH3YL1 2 \n", + "rs7605824_SH3YL1_RPS13 rs7605824_RPS13;SH3YL1 RPS13;SH3YL1 2 \n", + "rs7605824_SH3YL1_RPL31 rs7605824_RPL31;SH3YL1 RPL31;SH3YL1 2 \n", + "rs7605824_SH3YL1_RPL3 rs7605824_RPL3;SH3YL1 RPL3;SH3YL1 2 \n", + "... ... ... ... \n", + "rs4147638_SMDT1_ACTB rs4147638_ACTB;SMDT1 ACTB;SMDT1 22 \n", + "rs4147638_SMDT1_RPS25 rs4147638_RPS25;SMDT1 RPS25;SMDT1 22 \n", + "rs4147638_SMDT1_RPS3A rs4147638_RPS3A;SMDT1 RPS3A;SMDT1 22 \n", + "rs4147638_SMDT1_RPS18 rs4147638_RPS18;SMDT1 RPS18;SMDT1 22 \n", + "rs4147638_SMDT1_RPL11 rs4147638_RPL11;SMDT1 RPL11;SMDT1 22 \n", + "\n", + " GenePos GeneStrand GeneSymbol SNP SNPChr \\\n", + "snp_gene1_gene2 \n", + "rs7605824_SH3YL1_NPM1 217730 NaN NPM1;SH3YL1 rs7605824 2 \n", + "rs7605824_SH3YL1_CD48 217730 NaN CD48;SH3YL1 rs7605824 2 \n", + "rs7605824_SH3YL1_RPS13 217730 NaN RPS13;SH3YL1 rs7605824 2 \n", + "rs7605824_SH3YL1_RPL31 217730 NaN RPL31;SH3YL1 rs7605824 2 \n", + "rs7605824_SH3YL1_RPL3 217730 NaN RPL3;SH3YL1 rs7605824 2 \n", + "... ... ... ... ... ... \n", + "rs4147638_SMDT1_ACTB 42475695 NaN ACTB;SMDT1 rs4147638 22 \n", + "rs4147638_SMDT1_RPS25 42475695 NaN RPS25;SMDT1 rs4147638 22 \n", + "rs4147638_SMDT1_RPS3A 42475695 NaN RPS3A;SMDT1 rs4147638 22 \n", + "rs4147638_SMDT1_RPS18 42475695 NaN RPS18;SMDT1 rs4147638 22 \n", + "rs4147638_SMDT1_RPL11 42475695 NaN RPL11;SMDT1 rs4147638 22 \n", + "\n", + " SNPPos SNPAlleles ... gene1_bios gene2_bios \\\n", + "snp_gene1_gene2 ... \n", + "rs7605824_SH3YL1_NPM1 280819 G/A ... SH3YL1 NPM1 \n", + "rs7605824_SH3YL1_CD48 280819 G/A ... SH3YL1 CD48 \n", + "rs7605824_SH3YL1_RPS13 280819 G/A ... SH3YL1 RPS13 \n", + "rs7605824_SH3YL1_RPL31 280819 G/A ... SH3YL1 RPL31 \n", + "rs7605824_SH3YL1_RPL3 280819 G/A ... SH3YL1 RPL3 \n", + "... ... ... ... ... ... \n", + "rs4147638_SMDT1_ACTB 42487900 G/A ... SMDT1 ACTB \n", + "rs4147638_SMDT1_RPS25 42487900 G/A ... SMDT1 RPS25 \n", + "rs4147638_SMDT1_RPS3A 42487900 G/A ... SMDT1 RPS3A \n", + "rs4147638_SMDT1_RPS18 42487900 G/A ... SMDT1 RPS18 \n", + "rs4147638_SMDT1_RPL11 42487900 G/A ... SMDT1 RPL11 \n", + "\n", + " assessed_allele_bios num_individuals_bios \\\n", + "snp_gene1_gene2 \n", + "rs7605824_SH3YL1_NPM1 A 2491.0 \n", + "rs7605824_SH3YL1_CD48 A 2491.0 \n", + "rs7605824_SH3YL1_RPS13 A 2491.0 \n", + "rs7605824_SH3YL1_RPL31 A 2491.0 \n", + "rs7605824_SH3YL1_RPL3 A 2491.0 \n", + "... ... ... \n", + "rs4147638_SMDT1_ACTB G 2491.0 \n", + "rs4147638_SMDT1_RPS25 G 2491.0 \n", + "rs4147638_SMDT1_RPS3A G 2491.0 \n", + "rs4147638_SMDT1_RPS18 G 2491.0 \n", + "rs4147638_SMDT1_RPL11 G 2491.0 \n", + "\n", + " isinteractionterm_bios snp_genepair_bios \\\n", + "snp_gene1_gene2 \n", + "rs7605824_SH3YL1_NPM1 True rs7605824_NPM1;SH3YL1 \n", + "rs7605824_SH3YL1_CD48 True rs7605824_CD48;SH3YL1 \n", + "rs7605824_SH3YL1_RPS13 True rs7605824_RPS13;SH3YL1 \n", + "rs7605824_SH3YL1_RPL31 True rs7605824_RPL31;SH3YL1 \n", + "rs7605824_SH3YL1_RPL3 True rs7605824_RPL3;SH3YL1 \n", + "... ... ... \n", + "rs4147638_SMDT1_ACTB True rs4147638_ACTB;SMDT1 \n", + "rs4147638_SMDT1_RPS25 True rs4147638_RPS25;SMDT1 \n", + "rs4147638_SMDT1_RPS3A True rs4147638_RPS3A;SMDT1 \n", + "rs4147638_SMDT1_RPS18 True rs4147638_RPS18;SMDT1 \n", + "rs4147638_SMDT1_RPL11 True rs4147638_RPL11;SMDT1 \n", + "\n", + " corrected_p_bios zscore_bios flipped_zscore_bios \\\n", + "snp_gene1_gene2 \n", + "rs7605824_SH3YL1_NPM1 0.000000 -3.617874 -3.617874 \n", + "rs7605824_SH3YL1_CD48 0.784422 -0.446946 -0.446946 \n", + "rs7605824_SH3YL1_RPS13 0.000000 -3.489377 -3.489377 \n", + "rs7605824_SH3YL1_RPL31 0.349601 -1.325633 -1.325633 \n", + "rs7605824_SH3YL1_RPL3 0.000000 -3.854851 -3.854851 \n", + "... ... ... ... \n", + "rs4147638_SMDT1_ACTB 0.000000 -3.748326 3.748326 \n", + "rs4147638_SMDT1_RPS25 0.000000 5.773036 -5.773036 \n", + "rs4147638_SMDT1_RPS3A 0.000000 4.434777 -4.434777 \n", + "rs4147638_SMDT1_RPS18 0.000000 7.128733 -7.128733 \n", + "rs4147638_SMDT1_RPL11 0.000000 5.896748 -5.896748 \n", + "\n", + " is_concordant \n", + "snp_gene1_gene2 \n", + "rs7605824_SH3YL1_NPM1 True \n", + "rs7605824_SH3YL1_CD48 True \n", + "rs7605824_SH3YL1_RPS13 True \n", + "rs7605824_SH3YL1_RPL31 True \n", + "rs7605824_SH3YL1_RPL3 True \n", + "... ... \n", + "rs4147638_SMDT1_ACTB True \n", + "rs4147638_SMDT1_RPS25 True \n", + "rs4147638_SMDT1_RPS3A True \n", + "rs4147638_SMDT1_RPS18 True \n", + "rs4147638_SMDT1_RPL11 True \n", + "\n", + "[497 rows x 55 columns]" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "coeqtl_df" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "# flip direction according to AF\n", + "coeqtl_df['eqtl_effect_allele'] = [eqtl_allele_af_dict.get(eqtl)['AlleleAssessed'] for eqtl in \n", + " coeqtl_df['snp_eqtlgene']]\n", + "coeqtl_df['eqtl_alt_af'] = [eqtl_allele_af_dict.get(eqtl)['AF'] for eqtl in coeqtl_df['snp_eqtlgene']]\n", + "coeqtl_df['eqtl_alt_allele'] = [eqtl_allele_af_dict.get(eqtl)['alt_allele'] for eqtl in \n", + " coeqtl_df['snp_eqtlgene']]\n", + "coeqtl_df['eqtl_ref_allele'] = [eqtl_allele_af_dict.get(eqtl)['ref_allele'] for eqtl in \n", + " coeqtl_df['snp_eqtlgene']]\n", + "coeqtl_df[f'MetaPZ_flippedforAF'] = [flip_zscore(zscore, coeqtlallele, altaf, altallele)\n", + " for zscore, coeqtlallele, altaf, altallele in\n", + " coeqtl_df[[f'MetaPZ',\n", + " f'SNPEffectAllele',\n", + " 'eqtl_alt_af',\n", + " 'eqtl_alt_allele']].values]\n", + "coeqtl_df[f'flipped_zscore_bios_flippedforAF'] = [flip_zscore(zscore, coeqtlallele, altaf, altallele)\n", + " for zscore, coeqtlallele, altaf, altallele in\n", + " coeqtl_df[[f'flipped_zscore_bios',\n", + " f'SNPEffectAllele',\n", + " 'eqtl_alt_af',\n", + " 'eqtl_alt_allele']].values]" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.9637681159420289\n" + ] + }, + { + "data": { + "text/plain": [ + "Text(3, -5, 'Concordance = 0.96\\nrb = 0.61')" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATsAAAEvCAYAAAA6m2ZKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABYiklEQVR4nO29eXwUVb73/zmdpLvJHkhYAyQgstkJW3JBCUGQJSwhBBS8uA13xgWHuc9vrs44g4PiyB0d/enoDLnzOMuD+qgkkpUlKBiIwY1EWVpiFDGZAAImkK0D6U53n+ePUGUvVdXV3dVbct6vly9Jd1fV6arT3/M935VQSsFgMBj9HVWgB8BgMBj+gAk7BoMxIGDCjsFgDAiYsGMwGAMCJuwYDMaAgAk7BoMxIAgPxEUTExNpSkpKIC7NYDD6MZ9//nkrpTRJ6L2ACLuUlBTU1dUF4tIMBqMfQwj5l9h7bBvLYDAGBEzYMRiMAQETdgwGY0DAhB2DwRgQMGHHYDAGBEzYMRiMAQETdgwGY0AQkDg7BoPhHvvOVuLPdTtwqfsyhkcNw+ZZj2L5+JxADyukYMKOwQhy9p2txDNHt6PH0gMAuNh9Cc8c3Q4ATOC5AdvGMhhBzp/rdvCCjqPH0oM/1+0I0IhCEybsGIwg51L3ZbdeZwjDhB2DEeQMjxrm1usMYZiwYzCCnM2zHoU2TGv3mjZMi82zHg3QiEIT5qBgMIIczgnBvLHewYQdgxECLB+fw4Sbl7BtLIPBGBAwYcdgMAYETNgxGIwBARN2DAZjQMCEHYPBGBAwb+wAgCWR9w/Yc/QOJuz6OSyJvH/AnqP3KLKNJYTEE0J2E0IaCCFfEULmKHFehvewJPL+gdznuO9sJZYWrsC0f2ZgaeEK7Dtb6c9hBjVKaXavADhAKV1LCFEDiFTovAwvYUnk/QM5z5Fpf9J4rdkRQmIBzAPwDwCglJoope3enpehDCyJvH8g5zkyLV4aJbax4wC0APg/hJDjhJC/E0KiFDgvQwFYEnn/QM5zZFq8NEoIu3AAMwD8D6V0OoBuAE84fogQ8iAhpI4QUtfS0qLAZRlyWD4+B1vnbsGIqOEgIBgRNRxb525h25oQQ85zZFq8NIRS6t0JCBkO4FNKacqNv7MAPEEpXS52zKxZs2hdXZ1X12UwGPY42uyAPu1vIC1uhJDPKaWzhN7z2kFBKb1ECDlHCJlIKf0awEIA9d6el8FguAcrBSWNUt7YzQDeuuGJ/Q7ATxQ6L4PRb/FFkDArBSWOIsKOUnoCgKDqyGAwnNl3thJbP9wGMzUD6AsT2frhNgCBCRMZCNkZLDeWwQgAz3/yAi/oOMzUjOc/ecHvY+FsfRe7L4GC8vF5SgUkB0ugMxN2DEYA6DB1ir7ub2Hgy/g8XwtSd2DCjsEIMvwtDHwZnxdMgc5M2DEYASBeEyf6nr+FgS/j84Ip0JkJOwYjAPxq9mOIUEWIvu9PYeDLLJtgCnRmwo7BCADLx+dgW9ZWqIjwT9CfwsCXWTbBlK7I6tkxGAGCEyZCWQ/+Fga+is8LpkBnJuwYjAASTMLAVwRLoDMTdgxGgAkWYdDfYTY7BoMxIGCaHYPhA/p7+lUofj8m7BgMhenv5dF98f38ITzZNpbBUBh3sgYClTfqzXWVzorwV0oZE3YMhsLIzRoIVN6ot9dVOivCXyllTNgxGAojN2sgUHmj3l5X6ayIi92X3HrdU5iwYzAURm7WQKDyRr29rtJZEWJZJAAU1XKZg4LBUBi5gcLDo4YJai/epIrJMfR7e12lA6Gt1Cr6npKOHa8b7ngCa7jDYCjfIEfu+YKtMc/SwhWSW9YRUcNxYN1eWeeSarjDtrEMRgDgNLAeSw+/jfM2AV+uLc5Xif+eeniFtsW2KLWtZ9tYBsPPOGpWVmrlbV7eCBxXtjhfxrJ5GntnK/TFUKoCDNPsGAw/4ysvrJSX1NdhLp58J9sxiaFkBRgm7BgMP+MrL6yUl9TXYS5iY7/YfclOoNpudZ/88ClBjU5FVIrX1QPYNpbB8Du+8MIC0l7SLdVbBY9xR8BKbYPFvhPwo0eV+zcn4MSco1ZqxYio4YqnjDFhx2D4mc2zHvW6YKeY4BErF+WtgHVlkxP6Thw9lh48+eFTiImIlrTN2eKLfGK2jWUw/Iy33lBP7G/eBgK72gZz30kMK7WKto8UQ+lsEqbZMRgBwJuCnVKCR+qcmjA1f1y8Jg6LUhfhz3U7sKV6q0vvrBw74/LxOfhz3Q6307xURCUaWKxkNgnT7BiMEMNdBwenCdpqVgZTN8q+KZetHcrNh3UVM+eINkyLZ+dtw4io4W5d1xMUE3aEkDBCyHFCiLxQZwaD4RHuJuILaYJmakavtdfuNalto9xtMLedlcp35YhTx/Lbd390IVNSs/tPAF8peD4GY0AjlpHgrmBwZyso9llXdkbbsf65bgfWTMx3qeFFRkTyx/uynSOHIjY7QkgygOUAtgP4pRLnZDAGMnIyEoS8sUJeWqmwEEekto1idkahse45sxcrJ6zA0XNHRa/tKFh93XhIKQfFnwD8CkCM2AcIIQ8CeBAAxowZo9BlGQOV7777DgAwbty4AI/EN7hyQggJBjEBuXLCCuw5s1dW2Mfc0XMVG+vRc0dxYN1e0UR/fzYCBxTYxhJCVgD4gVL6udTnKKWvUUpnUUpnJSUleXtZBqNf40mWhZTQ4baIrthzZq/bKWSuxiq27Z47eq5fS9IrodndBiCXELIMgBZALCHk/1JK71Hg3AyGIMnJyYEegtd4kpEgpQ1JCR1OE5z2zwxQiJd1kxPC4vgdCCGC2RDcWLlz/fHTF9Fu7AAAEBCUfl0GMzUDsN+mA75pGu61Zkcp/Q2lNJlSmgJgPYAqJugYvkatVkOtVgd6GB7jKjDYE++kmCCkoLzmJGfrKNehwX0HoRg5obH2mI38v69brvOCjn/f0oPnP3nBZwULWJwdA0Dgulx5SkdHBzo6OgI9DI+Rm5Eg1zu572wlrpuvi16PExpzR8916SWN08R6/B2AviBhx7G6KuPE0WHq9FnBAkUzKCilRwAcUfKcDN8Tin1Or1y5AgCIi4sL8EjkY7ttFdtKOmYkyLn/QpWHhbC130llOhhM3dh3ttLltcU0QEqp07HeZkIokUnBNDtGwLpcDSQct61ieOKhlKs1AT/a7w6s24uTG+sQp3bW4szULOvZuxPcLOd7hZNwxGuEFy8lPLdM2DEC1uVqICFHIHmaMeDOc4pV20eHdZq6PD6nWGrYxe5LTqaQzbMeRTiR3khGq6Pwq9mP+SyTghUCYPisvhqjj31nKyWDegmIV15Hd4KGr5mv221RvXn2tsHNjufgTCHHL5+UDCy2pcPYqXjnMluYsGMoUl+NIQy3fRXDnc5ZYkjVknOk19prF1riy2ffY+nBuw27ZX/eNlTFF7ZiJuwYPl1NfUWoZOFIbV+VEircc3ryw6cke7ByODpBuHG6++zlOkbkEE7Cfb64sr6xDIYPkQri/e/s3yu6oLgKGOZQQpsEXPd7dYd4TRyqN3zg9XlY31hGv6OtrQ1tbW2BHoZLxGxfI6KGK645y7GzKWmeUNKB1WH8sdaer2I+mbBjhCShIuz8UadN6loRqgjEqWN9UjZJSQcWdy5ftnxkNjsGw4e4sokp2bja37ZXdxwjUtgK/+c/ecGjkvNyYDY7RkgSKiWepISZkIFfG6blG9coLbSUFKxi53TV8NpRkBEQUFDEqWPRazXjmvma4LEEBCc21rocj5TNjml2DIaPcJWGJ5a58vwnL8BoMUmm77kruHyVEugYJiLmtOD6wHJjjlXH4Jr5Ol8a3lXnMZZBwWAEMa7S8MQM/K6S4T2xa7kai1JOASkbJZemdmJjLSIjIp16YLg6r7cwYccISVJSUpCSkhLoYUjiKg3PXW2FO86TXGapsSjpFJBbrcUdTy4BYRkUjIGLShX867SrVCyx7AVtuIYvcil0nJxcZsdtbqw6RnCrODxqmKjw/G317/Db6t8hXhOHX81+TLbAcdzaclqjp30x5MQOyiH4ZwyDIcCVK1f4Mk/BiquwEzEtyFUyvKtqI0Ka2jXzdcFE/Ovm6y6FTruxA0/VPOORpic0lt9W/w7tPR2IUEXIOoeccvJyYJrdAMYX3jl/wRXuHDJkSIBHIg53L5//5AVeq9KGa5w+I3bPxZ6Nq3xWIU2t19qLeE0cKKV2Gp6QBimEY06tXMTS5a5brvMlnaTGoGRMIhN2A5RQLNgZqhgtJv7f7cYOWfdZSgi6iqcTdXwYOzE8aphLz6cYnH3PnQVSyjZnpmYMCh8kKeyUDIJmcXYDFKkQASXyJn1NqMTZucof5UIylFxgpJ6tVJXkEVHDJccap461C4kBfowLFBu/q+9PQEAIESxgoCIqHP/JMdFjBc/HcmMZjshtXMzwDlf3U8l0KA4pW6FUru6BdXvx39m/F7TthZEwEELc9gKLFfjkGB41TLRSi5wKLu7AhN0AROqHxQp2Kouc+6l0CXyp8A85TpPVE/OczklARLebUgKdG4tQ+XfuumIOCKUcExzMZjcAEf1hUSBvaK5/B+Mhwb595ZCbP6q0Ri1m85OTP3v03FGn48zUDBVRCWpbrgQ6NxYpe58/iscyYTcAEf1hEaD7iy5s+3AbkpKSkJWVBZ1O59/B9TO4H/Nvq38n+Tl/atSuKgGLzQ8rtTrlt7ojlLwRwErAhF0/Ra/Xo6amBq2trUhMTLQTXGIBnSOihiP/9nxUVlYiJycHZWVlABCUAq+1tRUAkJiYGOCRCON4/6OiotBt6Rb8rDZMi7yhuSgoKBB8Xv5Gan7Y5rfKEUpS89AWX5Vit4UJu36IXq9HVVUVcnNzMWbMGDQ3N6OiogJAn+CSitMaM2YMWltbkZqairy8PBQVFfHHBROdnX3hE8Eo7Bzvf3V1NdJOTcWn0bWgKntPaJw6Fv8+aj2Mp66LPi9/IzY/8obm4l/vNeLW1sw+wZWRBd148fG5mof+hgm7foLtCqrRaHDXXXchNTUVAJCamorc3FxUVlZCp9PxK+h/H34O3aprdit0Y2MjL0DGjBkDo9GIqqoqAMEn8IKVmpoa5ObmIjU1FXq9Hnq9Hr9e9Ti+NNfjlWN/RktPK4ZohuC/5vwvLB+fg5deegnh4eF48803ee3H9nn5G6FtZd7QXLcFsu19AJznob9hwq4f4LiCbt++3akhDaexcSwfn4Mx15L7jru977jGxkZUVFRgwYIFAIDm5mYkJiYiJycnYBM0FGltbeXvv+0PPhWpWDlhORobG1FUVIQx15Kh1+thtVqxcuVKXojs3r0bERER6OjoQEFBQUC2tI7byoKCAtmCi1t4W1paXM5DudtcJfBa2BFCRgN4A8BwAFYAr1FKX/H2vAz5OK6giYmJaG5u5v8GfhRctnCTqrKyEi0tLdBoNAgPD0dpaSkOHz4Mo9GIpUuXOk1QhjS2999W8HE4asxr1qzhn5XBYEBERARWrVrFC7/i4mIcPHgQkyZNQlNTk6Bg8LXQEPsejvPCduGtrKyUnIf+3uYqodmZAfwXpfQLQkgMgM8JIQcppfUKnJshA8eJmJWVhYqKCqdJxGlstuh0Ouh0Ouzfvx/19fVYs2YNfwznoBASlIEmGKue2AqcoqIiZGRkSC48OTk5eOONN+yeXU1NDdLS0lBZWckLrhkzZuDLL7/EV199henTpyM7O9tOMACQFBpKCEK5C6jtwutqHvp7m+u1sKOUXgRw8ca/uwghXwEYBYAJOz/hOBF1Oh1aWlpQVFQEo9GIxMRELFiwQHICNTU12WkYnINiz549oJQKCspAEmy17IS0lJKSEhgMBpSUlCA/P9/pBz9mzBio1Wq7Z9fS0oLe3l4nAdHe3o777rsPRUVFOHr0KBITE6HT6VBTUwMAokIDkBaEcpG7gNouvI47h6SkJLt5KFdbVApFbXaEkBQA0wF8puR5GT8itEoLTUS9Xo9ly5bJntBiE6+trQ35+fnMXucCIS0lP78vjCcrK0tw4WlsbIRGo7F7dlqtVlBwFRUV8dvfLVu22AlBQoio0BDTnkpLS93S9mwFF3fMhAkTUFNTg9LSUv4c3MJrMBj488fHxyMmJgabNm2yO6dcbVEpFBN2hJBoAMUA/hel1KmsAiHkQQAPAqHTzT3YELNxLFiwAAsWLLCbiK40OUfEJl5SUlJQCroffvgBADB06NAAj6QPKS2Fu39VVVXIycmxcwYtWrQIwI9ChFIqauPjBEFYWJidEIyJiREVGkLj6uzshNVq5cciV9vjTB6A+FycMGEC72CxtTuWlZVBr9fbnd8dc4sSKCLsCCER6BN0b1FKS4Q+Qyl9DcBrQF/VEyWuO9CQsnFs2rTJK6Hk74nnLQaDAUDwCDuhxaK6uhoajQbPPPMMrwmJLUjc/1955RVBwRUfH+/0PDghuGzZMtFnV1NTIzguR5OFu7YyqbmoVqud3svLy3M6v5C26O4i7Q5KeGMJgH8A+IpS+pL3Q2KI4Usbh78nXn/DcbGorq7G8ePHcddddzkJILF7qtfrYTKZUF5e7uSNNRqNmDNnjt2xnPbm6tk5CsK2tjav55HUXBTTToU8t/4KOwGU0exuA3AvAD0h5MSN135LKd2vwLkZNvjSxuHvidcfsVgs2LVrF0wmE7RarWRgtxA1NTVYu3YtDAYDL7g0Gg16enqg0WhQV1eH1NRUdHZ2orq6Gm1tbYiPj+e3h7ae19LSUlRVVcFisaCrq8vOZhgfH+/VPNLr9dBoNILn0Gg0GDRokMvzC22Dy8rKcPDgQRgMBp/MQSW8sUcBEAXGwnCBr7aawZbWE2pw92/16tX8/XMMKQFca0+cthQWFgbA2YtaXFyMN954A1FRUXYhQlIhKOXl5cjLy0NsbCwqKiqQlZUFwFnbc2ce1dTUICMjw+kcxcXFyMjIQFJSksvzC22DOe+/rQMGUG4OsgyKEMJXW81gS+uRQ3h48ExdofuXkJAgqN1ERESIZkXYau5C51yzZg2KiopE7W2AcwjKqlWreJuurX0XAO/NVavVUKlUqKqqsvOsij371tZWZGdnIykpyW4udnd3Izs7mxfW3HsRERFYsWKF3fnEtsHt7e12Dhgl52DwzBiGLGw9Yo54uhX1d7yTEgSTR1/o/mVnZ6O4uNhOAysvL8eyZct4LQuAqHdS7Jn09PRIPitX77W2tvKaaHt7OxISEjB+/HicOXNGtmbPCWXbucilwHHCmnuvsbFRUGDJMckoPQeZsOsn6PV6HDp0CHl5ebyBfN++fbJWan/HO/U3hO5fbGwsLBYLioqK0NPTA61WC51Oh/T0dAAQ1FpsHQoRERGCz0Sr1Qq+HhcXh56eHsnn2NzcjOjoaKetbmFhIdatWydbsxczp+h0OtnbY6FzlJeXY+HChYJjVwIm7EIMMe2tqqoKeXl5dpU21q1b53Kl1uv16O3txRtvvIGEhARkZ2fzmkewhp0AwKVLffXWhg9XtnS3Jwj9cHfv3g21Ws0vPtwz4JwJYloLlxWRmpoqmHkhJlAsFougHa2kpAR33HEHH9cXFhbmtNU1mUxuafZS5hS9Xi/LzOJ4jri4OPT29iI6OhoWi8UnoU9M2AUAT7ebUo6E9vZ2wUobgPhKLXS+4uJimEwmmM1mPhUpGO12165dC/QQeIR+/EKxZrbPgNOyhAp2tra24qGHHsJ7773Ha4YajQaZmZnIzs6GVqt1ysgoLS0VtKMZDAaUlZVBrVZDo9HAYDA4CTZPNHsxc4qUmcXVZ+UKSk9hws7PeOP5dBXI6arShuNKLWYE37NnDx599FHmlXUD7v5wixgXa2a7sEVHR8NoNGLbtm1Qq9WwWq28o8VsNuPAgQM4d+4cNBoNtm/fjsTERD7lr6qqCrW1tXxerGMqIBc8LGRHs431s7WrcUyaNEk0f9e2XJNWq+UFrJwFWq/X4+DBgzAajTCZTIiMjIRarUZHR4fgOdwRlJ7AhJ2f8cbzKSXEoqOj+WBUsZXaUZMQqzfmS49Yf8VxEduxYweqq6uh1+uRm5uLzs5OVFVVYf369XZBx7Z17MrLy3HixAncfffddkKnpaXFZa5zVlYWdu/eDY1Gg/b2dsTHx+PatWvIzMy0m2sZGRlOgk2v12Py5Ml2sX3Lli0D0BfKotPpBIsTAOKLoF6vx4EDBxAREYH169ejs7MThw8fDmh4U/DVyenneOP55ISYLdx2Y9GiRbh+/TqKiorQ0tKCwsJCPqi0sbERu3fvBiEEOTk52LJlC3JychAdHY3q6mqn88XFxbk9toGO7SIWFhaGm266CceOHeNf++ijj3ibalhYGBoaGpCfn8//zYWJEELsXsvNzUVtba2sLV14eDhWrlyJLVu2YOXKlQgPD8eQIUPsPpOdnc0HLW/fvh1FRUXQ6XRYsmQJcnJyEBcXxwtV7js1NDTYfTduXJyZQ+x+aDQarFq1iv/+3L9tz8HV9PMHTLPzM3LsI2I2PVdBxVqt1s4gXlJSgpqaGiQlJQnakPLz8/H222/jxIkT6OrqglqtBqUUlFJs29bXYWzSpElB6ZWNiIgI9BDssF3E9Ho9zpw5Y2f4d1zkxBY9k8nk9JrRaJRl4uCEKWBvkuA8wMCPxR24WDturnHbY6ESTJ4s0I6hMFJxdY4FAnwFE3Z+xpXAkmPTEzLiFhQUOE12rsTQpk2b8MwzzwhWv9BoNHaR/+Xl5TCZTBg0aBBycnJQUlKCyZMn+/EOyWP06NGBHoIdjgHBOp0OtbW1fLkjWzucbSkkx0UvJibG7rxywy+kSnQ1NjaKhoJI2cm4MXriwEhMTITZbOaPEztHQkICf798DRN2fsZVFoQrm57Y5HS1+opV5XCMxl+1ahX27NmD7u5uO4HJkMZ2EeMKcGZkZGDXrl1QqVS8YX/SpEmoqqrCsGHDnGxnJSUlsFqtksJJDDFhEh8fLxoi4ioigPtO7sTP2R574MAB3o582223ORU4qKiowPz581FeXu75jXcDJuwCgNRq6u6WgZu0YkGo3OorpFGKVb9ob28HpdTltQPJxYsXAQAjRowI8Ej6sF3ENBoNcnNzYTAYoFarBWPljh07BovFgj179vAOBavViqlTp3oUfpGSkiIoPCdPnsw7GzjkRgTYLsDt7e1uVb7m3jt48CBfHIHrb8Il+i9YsADR0dF+M5MwYRdkuLNlsJ20nZ2dgisnt/oKaZRi0fjx8fHo7e2VvHaguX79eqCH4AS3iHEmg//9v/8374QA7LV0o9GI++67z+7ec6lVjhV95dDU1ITp06fbPd/p06ejoaHB6bPuRAR4Ew4iFEdXVVWFe++9NyA1E5mwCzLcqWziOGlVKhX27NmDtrY2JCUlCZbNtv0hbdu2zUkb4Gx24eHhTq0VGfJITExEdXW1ZCtBtVqtaD4yl5xv+6wsFguOHj3K/20bM8eVi+eEkT80+EDXTGTCLsiQMyHE+nLqdDpMmTIF27dvR1ZWlsutSlJSElpaWlBeXo6Ojg4+yn7JkiUoKytDZWUlK+DpASkpKTh+/Lho5RONRoOwsDDR9/R6PQC4lWXjakcgtXUFgMOHD4NS6nGfWrlZQb4OHJaCCbsgxFVlEzl9OeVsVbKysrBv3z4+/omDawSTkpLCBJ0HnDlzBvn5+TAYDIK5qjqdDqNHjxY0O2RkZODQoUMwm81Yu3atrABcOfnNUo13VCqV0zjEriWEJ1lBgSgWy4RdiCG3L2dpaanLbZJO19cv1rEUUUVFBTIzM1FbW4vRo0cHpcDTaDSBHoIoXJ6ybV03rpXg4sWL+ftptVqxa9cu9Pb22mnwqamp2LNnjyybmlh+s0qlwqJFi5xi5mzhYvjWr1/vs34UYsI5EMVimbALMeT25RRqtCLkbFi2bBlKSkqcts1TpkzB0aNH/RYD5S6jRo0K9BBEsc1T5rT0V199FTk5OU5loABgy5YtvGAEfvSI2yJkU9Pr9di/f79T+fc1a9Y4CRqxba67FU+EcDeCIFDFYpmwCzJcqfdCDbGjo6OdvHgpKSl2oQKTJk2CXq93cjZwSeaOP8TGxka+FR/DPSwWC79Fte0XUVhYyFcu4bQZjUaD6upqNDQ08M980qRJiI+PtzunUJZNVVUVjEajLEEjtgvwth8F4H7VFDHh2NLSwndi88W2lgm7IEKOei/HW8ulK9lWu+Birrjz2Do5NBoN3njjDT56n4v4Hzt2rJ/vgHwuXLgAIPg0PL1eD4vFgttvvx2lpaWwWq12JoLi4mLU1NQgISEB8+fPx1dffYXjx487xceZTCbJ4GJOO5Ky29oi5vgCvOtHAbjfG0Uqm8KX1XaYsAsi5Kj3cry1Ut3pAWD//v3Q6/Xo6elBdHS0U+jJqlWrcOXKFRw7dgwmk8ljD50vMRqNgR6CIDU1NYiJiUFsbCzCwsKwevVqpy1maWkpwsPDUV5eDrVa7VQlOD8/HxUVFZLPmNOO3BE0Uo4vb8JB3A0pkapS7MtqO0zYBRFybR+u3PdS59Hr9fjqq69w1113obKy0m77yqWLlZaWIiwsTFalY4Y9ra2tWLVqFd59911cv35d8DkYDAb88pe/BADBnOUxY8ago6MDW7duFb2ObR8I4EdBw5VncldYeftcuXPYtnI8ePAgwsLCnOrXOY45IiLCacy+iPtjwi6IEFPv4+LiBCvaunuexMREVFVV8VH9vvTQDVQSExNx5coVWK1W0Tg72y2mp/0/bLWjKVOmIDo62mUTbl/jmNEjVb/OVugVFBTwzhoOX2TuMGEXRAip92VlZTCbzU6T5ty5c2hqahIUgEJ5ktwPoaSkhBdwvvTQDVS4gGKj0Qi1Wi3YYcy2qYxUlWApAp2NIISt+aSgoMAuflNqwfRVP2RHmLALIoQmMKUUa9eutZs0Op3OyahtGw1/5swZuzxJjUbDr6Tl5eXYsWMH2tvbER0djbKyMrsaeO+++65ot/dgypEdNGhQoIcgSFNTE0aNGoXz589j9erV6Ozs5FP4IiMjAcCuqYxer8fQoUPtek0YjUbs37/fZWc4udtPfwXw2u4U3AlH8ZfgZsIuyHCcwJxNx3bCajQap9gqoUbJSUlJ/DFcCtKgQYPsSoG/++67fFWKmJgYWK1WZGZmCkb+L1682P83RIRgqXbiSGtrKzo7O+2cDunp6WhsbOTvMyfYuPxlIc/59OnT7UJUAM/spf4M4LXdKbi7PfdHGpkiZdkJIUsJIV8TQr4lhDyhxDkZfXBJ5Vws3JYtWyRjq7gVlZvk3DF33XUX9Hq9UynwO++8E4QQEEJw7do1GI1GPqGcK91dWVkJg8HA7HUySExMFH0+JpMJEydOhFarRX5+PjZt2oSmpiankuf5+floaGiQXQJdCsdy8d6eTwpuO9rY2MjXr2tsbORbA1RUVCArK0vx68rFa82OEBIGYAeARQDOA6glhFRQSuu9PTejbwI5Rsm7WjWbm5sFw0+kfoSrVq3C4cOHoVKpeC8fJ9y4LlX+Kp8th3PnzgEIvorFWVlZ2Lt3r2gc2fnz5zFs2DCXaVy22z1vq6H4y/7quB3lnCacNzbQNkUltrGZAL6llH4HAISQXQBWAWDCTgF0Op1Tnqur7AhugjlOcikhyTVEEUpeLy4uRkZGBt8cJRgEHldvL9jgqvoKZVDEx8djxowZqK2t5T8vp1qJNxVJPPX2ekogq5q4gnAVaT0+ASFrASyllP70xt/3Avg3SunPxY6ZNWsWraurc+s63333ndNrcXFxGDJkCKxWK5qampzeT0hIQEJCAl8L35EhQ4YgLi4OJpMJ58+fd3o/MTERsbGxMBqNfMS+LUOHDkV0dDSuX7/OV861Zfjw4YiMjMS1a9f4Dva2jBgxAoMGDYLBYMAPP/xg9153dzfq6upw7tw5jB49Gunp6YiPj0d3dzfa29sxZMgQjBs3DhcvXsTHH3+MiRMnYvDgwfyxV69exejRozFu3Di0tbWhra0N7e3tfJVYrVYLANizZw8WLFiA1tZWPmOiu7sbHR0dqKqqQkREBG6++WZMnz4dPT09uHr1KkaOHAmVSoWUlBQAwA8//ACDwWA3/vDwcF7YXrp0yampdUREBK+VXbx40akYp0aj4bMjLly44BREbDKZoFarMW7cOJw7d85J+EVGRmL48OEA+n7cZrPZ7v3o6GgMHToUQJ9TwWq12r0fGxvLCwR3597Vq1fR0NCApqYmxMTEYNGiRdBqtejp6cGVK1dgNptBCEF9fT0MBgNmz57NP5Oenh60trZCpVIhJiYGn332GebOnWt3fHx8PFJTU2XNPb1ez88X23P09PTgzJkzIIRAp9MhLi4OUVFR/PGjRo2CRqNBZ2enoBaYnJzM94C9cuWK0/tjxoxBeHg4P/e6u7v94iQhhHxOKZ0l9J4Smh0ReM1JghJCHgTwIAAnjYNhDyfQ5s2bh5SUFHz33Xf8hL527Ro/cVUqFVJTU2E2m3H58mX+eG7SHjhwADk5OYiNjUVPTw+6u7sRGRnJ/+Dq6uowc+ZMjBw5Eh0dHejp6YFWq0VUVBSioqJw7733oqioCDfffDOAvu5lwapRBQvd3d3o6emB2WxGeHg40tLS+IVFq9ViyJAhaGlpwfnz55GTk4MRI0agvr4eLS0tsFqtIKTv59TQ0ICrV69izpw5TsdfvXpV9njGjx9vd36VSsUXKsjJycGQIUNw/vx5XmDZCjyl6O7uDkiVE0eU0OzmAHiaUrrkxt+/AQBK6R/EjvFEsxtIFBQUCCbmFxYWwmg04sknn7SrkmGxWLB9+3aniHuxkIOCggJ+69ve3o6EhASMHz8ep0+fhlartWuyHBcXB0opWltbER8fD7PZzEf/BxJO2xo3blyAR/IjYp5PW1uVxWLBs88+K1iS/Z133sGgQYPsQoGEjhd61u6MqaioyM4GzF3f05LwUtfm8q8TEhJw++2329mBlb4e4HvNrhbABEJIKoALANYD+HcFzttvcRX3JJXZIFX99qWXXuK3qY6pOdx1CwoK0NLSguvXr9vF6RUWFvJNlm1tda2trbjnnnvsgpyDwVHBxawFE3Jym5ubm0VLshNCnNphCh3vjr3NHUeVq6ZOcragjiFSGRkZeOihh5y0ObGSVb7c6not7CilZkLIzwG8ByAMwD8ppae9Hlk/RU7ck5hRWa1WIzs7WzDaPCMjA6dOncKqVav4KrW253SscOyYExsZGYmVK1c6Ja0XFhbavZaXlxcUaWOcPS6YkPJ8ckHEXFkndzNXuHRBLkDcmzF52tTJ1RZU7LNJSUnQ6XR2glusZJUvt7qKBBVTSvcD2K/EuUIRd1YksdWfa7EHiKfPUEoRGxuLBQsW8N7YuLg4vrFKfHw8PvjgAyxatAiEEJSUlKCqqgoWi8Uu31XoB8BV17WF0yYdX2NpY8KICRGNRoNnn30WCQkJuOmmm/D11187lVAvLS1FTEyM6CKXk5Njp103NDQ4afFCxMXFOZ3TnRQ1dwptuvosN3caGxudmq/7o6Any6Bwga3dQavV8uEe3ARzd0USW/3b29v57aFY+sy5c+f4SWo0GrFq1SocOXIEq1evttt6HjhwwK5/QXl5OXp7eyVzYsWKODqWPw+WtDHOux5Mzi6xRYrr23rw4EF89dVXTvXtAMBsNsNkMjkJoeLiYmRmZjpp13v27MGWLVtczjfbQqLcOU+dOgWz2SwrPctxvtr+HhxDYVzF9DU3NyMiIgKVlZUYNWoU9Ho96urqkJiYKNmJTSmYsJOAE2Q6nQ69vb38JK6uruZzFzm7hNwVSapwoW0JdKF4Je7voqIiREREoLq62mk1XLNmjVP/glWrVqGoqIi/rtCPsqenxylPtri4GL29vR51qPc1jqEkwYDQIsW1s+TaJzoKLq6Eek5ODgoLC516v3Z3dyM7O9vuOtziKKf2m8FgwKpVq+zOefvtt6O8vBy//vWvXX4n2/nqamGX2h5zGRQrVqwAAFRVVTmlyFVXV9vNLaUXVibsJLCtBssJFb1eD71eb/egbO0SgPOKZLvNjY6OFmxwM3/+fJSVlTmVpRbaIi9btgx6vd6uggkH90OwLQl12223oaenh9capkyZgpaWFhQWFsJkMvH1xFQqldMPTaPRuNUJfqBju0i5smEBP84VzmTg2Pu1oKDApX1NSgPiYkVtvZ5cyX052C6MrraaQotoSUkJDAYDH8/JRQMIFZctKipCamqqUyC2Ug4xJuwk4CahrXou1+Mm1a/znXfewZ49e9De3s4LkOjoaLuy1GVlZdi/fz/CwsKcBCOHmKFbo9HY2XjKy8sRERGBUaNG4Z133gEhBCaTCYMGDcKgQYOgVqsRGxvLV1QBfgx1ycnJQXl5uexQB8aPuDNXuOfW3NwMg8HAL3CRkZF8YQCuT4Wjk0JKA/K2fJKttupqqymk2XLFI6qqqvhqL1LRBkKl7JVyVDBhJwE3CW3Vc7keN6l+nbNnz8bx48dx7733OtU547YmeXl5KCoqwpo1a5x+LFwlYaHqJFxql+M2dteuXWhqakJkZKSd/aa0tBQGg8HJYF5SUoK0tDS7TAKGfPR6vaRwsJ0rOp0OJSUlGDx4MHbv3o2IiAi7Z/TOO+84lfQqLy/HqFGjnPrDOqJE+SROW5WjZcop/e6qhJhjpIBSjgom7CTgVkUu3zE3N1fS47Z9+3anySQkHLOzs1FTUyNYltp22xoREYHOzk6nrey1a9ewYcMGvowTt83UaDTo6emxs/FwxwIQDC9ZvXo19uzZw2uUxcXFMBqNMJvN0Ov1OHnyJG9nCSaio6MDPQRR9Ho9Dhw4AK1WK+pdffbZZ/nadbW1tRg5ciS6urr45ti2zyg6Ohq33HKLncBKS0vD/v37ERcX51J4KZWv6o2W6Li996bfsacwYScB93BqamrQ3t7OZzAIue3F6v6LCcekpCRkZWXxnq3q6mpcuHABZ86csZsE7777LiIiIpwcB52dnfwYuSKPOTk5dt2mbLfQb775pmh4ia2xm3NwcMKvpKQE586dCzo7HZfXGowcPHgQERERSEtLE9S8w8PDYbVasXz5cqf7KtSToq2tDXq93kk4mEwmtLa28ouZr5+RUkU2pc4jt9+xJzBh5wJbFZ5Tr/V6vWiDE0ctLCUlRXAVmzBhgpMtj7PN2K7qWq1WMNh3z549SE9PBwC+v+uYMWNEDcqJiYl8QQRXxm5b4Zefn4/CwkI0NTUFXYexYMU2pjEpKclurixduhSxsbF8yIkjQoujVqsVtP0VFRXhscce82uuqVJaoth5fFminQk7mdhuR7kHxeUpuvK+TZgwwWkVk2p3aPtgOW3Mtv0hV72CCwmZNGkSjh07huZm+25TtjajrKwsHDhwwCnmyrEngpDwMxqNyMnJCaoOY1ylEa7ySjBhmwnhOFe4BYoLOXG8l2JhQWIGfV+2HgwEvizRzoSdCzhNjVKKHTt22CUzOwoGKe+bY8KzXNtEfHw83n33XVy4cMEpLsk2JGTUqFF2oSXR0dF2sXXcmN977z2+PLharUZYWJhdTwQh4afVaoPuB+VYkilY0Ov1snp4iNmhhH7sYgHfcsNPQg1f1cRjwk4CIU2tvLwcVqtV0AvmTlVYKUeHbRCv0WhEU1OTYCPloqIiu5AQ2+11YmIiRo4caWdf5Iz6FosFYWFhUKlUsFqt2LVrF3p7exEXF4fe3l474VdcXMy3uetPPyhfwM2XzMxMpwBtVxq0LUIFHMSaSss5X7DjuGvR6XR81omSMGHngKvGNlwYh5AXzJ0EazHbhE6nsxNYS5cuFQ0e7unpsXuN+5FwP7rvvvsOUVFRKC8vR2dnJ9RqNSil2LBhA3/Nt99+G+Hh4bj33nud7JFqtRopKSm4cOEC9Ho9oqOjQ/YH5Q84zd5gMMBkMvEOLY1GA0qp0yKyZMkSWXnVjtqe0KLkuPAqWUHEl9VI9u/fzzdtt921AFBc4DFhZ4OjJrd9+3YnIcN5QYW8YO4YV92xTezfv19UC3SMLhezG65evRrR0dFOqWQWiwUrVqxwarhcXFyM5ORkXL16Ffn5+dizZw8opUGRKhascJ3F3n//fWg0GjvbaElJCR/TGB8fD5Wqr9eV3LxqIW1PbO4oWUHE19VIuGwkoV0LE3Y+xNHm5qipcf0A1q9fL/jg3TWuyrVNcEGntuEuJSUlSElJceoLIWU3fOihh9De3m53bi6diOsmxhXpBIDLly/zDpK2tjbk5+cHhb0OgFMH+WCA6wSn0WicPOj5+fkoLy/Hvffei927d0OtVqOkpAQJCQkwGAxuOxqk5o6cyjpysT0Xp+F1dHRg//79/Di8Qcz54rhrUQIm7GxwtLk5amqHDx922eVcjgBzd1vArXDctkir1WLkyJG4evWq08QTsxu2tLRgx44dTo1bBg8ezOfIJiYmYu7cudDr9ViyZImdk4OzpQQLwbidzsrKQklJCQghgs+go6MDpaWlCA8PF9WUlLCLCs2Bzs5OXLt2zSn3Wu65fKXhiQVec6XolYQJOxscNTmdToeWlhbe60kp9Tq629NJs2zZMtTV1eHJJ59EfX296Dmio6OxY8cOPu82JSUF9fX1iIqKcqpCXFJSgqioKKxbt46v5nLs2DGYTCbU1NTgtttug9FoREVFhU9W2v6GTqdDVVUVCCGimRNarVYyHUoJR4O7OxI55/JVvTmxXQvzxvoYIZubXq/ng4bl5Aa6wnHSGAwGvtBmTU2N5IrrauKVlpaCEMILterqahw/fhxqtRorV67EV199xXej5xr2AMCbb76J6OhoEEJ4wcd5/MLDw6HT6dDQ0ODpbfUJwdiDAgAWLFiAffv2OcUzlpWVQaPRSHrsuTJI3tpFs7Ky7CrryNmRSJ1LrDWnEloot2uxnZfMG+sHXNnclIjutp3s7mp5riaebeQ+0NehKj8/H2+++Sbq6+vR0NBg5/UqLCzk68L19vYKFhAoLS2160nLcA2lFNeuXePjGWNiYmA2m5GTkyOaDsUVtVQigFan0+HgwYN8ZR1vdiQ6nQ7nzp3DqVOnfJbGtWzZMp8IN0eYsHNAyuamRHS37RbD3a0B95qYd9axhwEnWBMTE/Hll1/aeb0MBgO0Wq2d9iFUa62rqwvx8fEoLS11qXky+jT39evX25VpCg//8WfW09MjWM9wxYoVit7XRYsWoaqqCvfee69dvjSHO4KqqalJsMJOSUkJX8IpFGDCzk28je621Q5tjb+2DouWlhbJ6wMQ1DAdI/c5wcoZzm0FYU1NjcutDRfeEuh+n6EE90zDwsL4e8S1T6yqqsLq1avR2dmJPXv28MUpfVEQ1TFtUG7PCbHvlJ2dbZfnm5iYCIPBEFLzgAk7P8NNjtLSUqjValRXVztVtCgpKZGsziqmYZaUlNgJQa6xyvTp050EoZy6fCUlJU5lxIMpZSwYEQssd0zmT09PR2NjI68xc5VrXGnO7njyHcsqeboj4b6T7fm4vq+hBBN2CuLOROSKb9bW1goGVboSKEIaZk1NDSZNmmQ3qUeNGoVjx44hJSXFbnUXy7dUq9V8XT6DwSDY/yAYUsbi4uICPQRBxOy6XK9W2zkSGxsLk8lk1zBJSnP2JvzDmx2JLyuR+BMm7BTCnYloa6s7evSo28ZjMaGalZUlOAaTyYQ777wT7733Hu/1ioiIELQdGY1GPPXUUwCAV1991WdGaW8ZMmRIoIcgiJjWXVNTI6jFl5eXyw4q9ke7QXe+k2NGhy8bXCsBE3YK4c5EtN1CupNPC4gL1XPnzqGpqQkdHR12bvyMjAw0NDSgubnZzuvV2NiI4uJiuwms0+nw5Zdf8ttYo9HolNAeLCs6V/WEC58JJsS0qP379wvmWtvOEamFzp1CE0ojpRn6o8G1EjBhpxCeVjxxd4sgJFR1Op1gj4Kbb74ZDQ0NggbqsrIyUEqdmi9zxvT4+HgsXboUgG9qi3kLV88u2OLsxNDpdLLKekktdO4ujP4iUBqnuzBhpxCeVjzh2hrKbVcoJFS5eDohjYGro3fy5Em7tLA77rgDAHivINcPIT4+HjExMejo6OBDTRxr8TE8Q2yOxMfHi1YvsUWqVaFjw2p/EkiN0x28EnaEkBcArARgAnAWwE8ope0KjCtgyLE9CH3G24onYj0sHBH6wciZbLGxsbBarYiJibHT5qxWK/Ly8hAbG4vS0lJ0d3fDbDYjMTERkyZNcio0wPAcoTnCadhCzZoccZw3XIP27OzsgG4dg1XjdMRbze4ggN9QSs2EkOcB/AaA6zbjQYoc24PYZxYsWGBXOUSpiieOCP1gxCrjchpDdXU1amtr0dvbi7CwMLzxxhtQq9WIiIjAlClT8NFHH/HVTtRqNX7961/b1derqalhwk4BhBa5O+64w617y80b254oQGC3jqHirfVK2FFK37f581MAa70bTmCRY3twVXrd1xPNNqi4vb0darUaKpXKyZHAbW/+8Ic/YNCgQXZpYhUVFRg2bBiamppQW1uLhIQErFq1im8EU19fD51Ox3+vYNuOhDLeBqVzBNPWUYnMIn+gpM1uI4BCBc/nd+RMIDmf8Zcb/r777uMF2O7du/m8WdvtzSuvvILVq1cLOjRsk/65ldi2EQz3vYJtOwIACQkJgR5CQBHbOsbFxaGgoMDvISBKCXFf4lLYEUIOARgu8NYWSmn5jc9sAWAG8JbEeR4E8CAAJ2ERLMixPbj6jD/c8AcPHkR4eDjefPNNfkLPnDkTtbW1oJRi0KBBSEpKQn19Pbq6upzu96lTp5wcGrYFPjnBzW2Rs7KyFBm3kgx0YSdm/zObzUEfAhIoXAo7SukdUu8TQu4HsALAQkoplTjPawBeA4BZs2aJfi6QCE0grqosV/RQrA8sZ5/wtRter9fDarXa1abjJrnjVtVisSAhIcGptplUuZ7m5mbExsaisbGRrysWjD8UrlqLbZL9QEJo60gpxdq1a4PCjheMeOuNXYo+h0Q2pfSaMkMKHI4TKDo6WrCqrFAfWO5YJW0p3Ha4paUFWq2Wb97iGJial5fn1FsiNzcXu3btwsKFC52qLTsKQOBHh0ZJSQm6u7tRWFiItLQ0v5Te8YTm5mYAoRNn5wscF6JnnnkmaOx4wYi3y+JfAGgAHCSEAMCnlNKHvR5VALGdQFIeL7HYM6Xc8Nx2WKfTobe3V7IJ0JgxY5x6S3CNgcrLyxEXF8c3e6GUIi8vz0k7LS4uhkqlwvTp0/HZZ59h3bp1qKiokCxIwJDG3ylUoRICEii89cbepNRAghFPtDSl3PDcdriystJuW+xYdj0rKwvR0dF8kxxAvAz33LlzUVtbK9hgR6VS4Ze//CUsFgtqampgMBjYFsgLApFCFSohIIFiYBo8ZNI2tANLdi1Hq/EKhkcNw+ZZj2KKapLgSmm7ikdHR/OeUU/d8JygdaxsbFt2nUsLM5lMIITwzbXFynAXFRUBAF8A4KGHHuJ/EIsWLQLQpwnExMSgpqbGzlnBcI9ApFCFSghIoGDCToR9ZytxVPsJTEYTAOBi9yVsq/k9Zndn4Gfzfmr3Walera4m2r6zlfhz3Q5c6r7MC9Tl43P4LYljZeO8vDyntDBu9eYmuVgZbqPRiHvvvRdvvfUWni9/ASci9bgedh0J8fEYp70J0Y3RKCsrw8KFC1FeXs62QF4QqDi4YHUoBQNM2Inw57odMFlNdq8ZrSZ8GdcgWbIJkL+K7ztbiWeObkePpa9z18XuS3jm6HYAP25JdDqdU2VjW8aMGQO96TQq6w/ikvYyhk8chptbx6O5uRn11gZekEaHR8M40ojiqgpEj45Gj7UHZtrn0WyztOOp6meQbZ6LidMm4r++/DVaRrXiwAcf4L7JG7y7kT4iWEs8cTD7WfDBhJ0Il7ovC75+1XTV6TVPV/E/1+3gBR1Hj6UHf67bgQPr9gLoE6Tt7e0oKipCRESE0w/ozWNv4fjgkzB3WwD0CcwrUVdx+b3folH7LxhvCOwucxdwoxqSwWJwGotFZcHn0cfx0b8+6TuGAN2kG/+n+Q2MPjsay8fnSH4XfxOsxTs5mP0s+GDCToThUcNwsfuS4Osc3Bb04qhL+HDXx/j/Zv8nLxTkrOJiAvVi9yXsO1uJ5bocpwKJjj+g107/A2aVxe54k9WEb9Rn+ZpvcukwdgLE/jVO+AabsDOZ+oS4Wq0O8EiEYfaz4IMJOxE2z3rUbosJANowLTbPehSAwxaUAC3GVmyr+T2sVituCZ8iuorb2ugIIRCLw+a2s7ZCRugH1K3tFjzeCvcEHQAnQcchJpQDyfnz5wEEd5wds58FF0zYQdxJAEDydcctqNFqwvbDz+E+892Cq7ijjU4i4YTXqITGYBvjV1G4X1ADdRdtmBbacA3ajR1O79lqswxGqDLghZ2Uk2D5+BzR7ZuYttMT3oNNDwoHHAsJSCm4sYiNDRDWQOUSp45Fp6kLw6OGYe7ouTjYeNDpM7baLIMRygRfAX8/I+UkkEJM25HSgtzVwFRE5XJsy8fnYOvcLRgRNRwEBCOihGo2CGMr6Pac2euk1cWpY7F17pags9cxGJ4w4IWdmIbmyk61edaj0IZp7V6T0oL2nRXvsTkobJDTa9owLaxU2O7mOLbl43NwYN1enNhYiwPr9soWeBQUF7sv4d2G3YKaYWREJBN0jH7DgBd2nmhogLBGJaUFSWmKvdZep9dWTlghKrRcjU1IEHtCMDomOBITE1nMGsMtBrzNzpXXVQopm54jUoKDC+615ei5ox6PzdG5EquOASEEHcZOUMivrhXMjonY2NhAD4FHysHFCB4GvLBz5XVVCrG4PTEudV/2amxCgnjf2Ur8tvp3sq4f7I4Jo9EIANBoNAEdhysHFyN4IFLhD75i1qxZtK6uzu/X9RZvVnDHHwXQJ1A0YWp0mDqdPj8iajifRaHU2F15beM1cegwdoaEdvLdd98BCHyc3dLCFYKLmNLPjyEPQsjnlNJZQu8NeM1OLt6u4GJaGgCPt9HuICfsZVD4IFRv+EDR6/Z3PHVwMfwPE3YykQpRkasBSdn4fL2NlvPjYz9Q95GTVsgIDpiwk4kvV3B3HB2eIsdmyH6g7uONg4vhXwZ86IlcPA1RCRY2z3oUEaoI0ffZD9Qz3A1BYgQO5qCQiZiDIZQm9rz/u0DQGaIiKjw7b1vIfA8AMBj6ylRFR0cHeCSMYII5KBTAXyEqrvDGIywk6ADASq0hJegAJuQY7sOEnRv4w7Ymxb6zldj64TY+CPli9yVs/XAbPzZXqIhKMAVNRULPmnH9+nUAwKBBzql2DIYQoTfLBzDPf/KCU7aFmZrx/CcvyDpeLNfWSq1YWrgC0/6ZgaWFKyTzeIOFixcv4uLFi4EeBiOEYJpdCCG2DRV73RZXAozz1LIMAEZ/hWl2AwRXJatskVPiisEINZiwCyGESkFJvW6Lu/GALMCY0d9gwi6E0IQLN5cRe90Wd+MBQyV+kMGQCxN2IUSHUcRmJ/K6Le7WuJs7eq7szwaC4cOHY/hw+VWZGQxFhB0h5DFCCCWEsGqKPsSbLA4u0j9eI6/f6tFzR90am7+JjIxEZGRkoIfBCCG8FnaEkNEAFgFo9n44DCncLQXvyPLxOaje8AH+O/v3Lu18XO/aYOXatWu4du1aoIfBCCGU0OxeBvArwI0SuAyPUCoPc/n4HHx6fw1ObqyT7FfxVM0zQSvwLl26hEuXvG8h6e41169fj/Hjx2PKlClYtmwZvvnmG7+OQYj58+cjFNIvX3/9dUyYMAETJkzA66+/LviZf/3rX1i4cCHS0tIwf/58vj8w0Nd4fvHixZg8eTKmTJmCpqYmt67vVZwdISQXwAVK6UlCRDos//jZBwE8CABjxozx5rIDGqWzOKRaMfZae/HHT19k8Xbo6/G7evVq3H///di1axcA4MSJE7h8+TJuvvlmv43DbDYjPDz0wmOvXr2Kbdu2oa6uDoQQzJw5E7m5uUhISLD73GOPPYb77rsP999/P6qqqvCb3/wGb775JgDgvvvuw5YtW7Bo0SIYDAaoVO7pai4/TQg5RAj5UuC/VQC2ANgq50KU0tcopbMopbOSkpLcGiTDdywfn4OVE1aIvi/UNHsgcvjwYURERODhhx/mX5s2bRqysrJAKcXjjz+OW265BTqdDoWFhQCAI0eOYP78+Vi7di0mTZqEDRs28I3Ra2trceuttyI9PR2ZmZno6upCT08PfvKTn0Cn02H69Ok4fPgwAGDnzp248847sXLlSixevBjXr1/H+vXrkZaWhnXr1vGpcwDwyCOPYNasWZg6dSqeeuop/vWUlBQ89dRTmDFjBnQ6HRoaGgD0FVTgrpmWlobi4mIAwPvvv485c+ZgxowZuPPOO/nCC57y3nvvYdGiRRg8eDASEhKwaNEiHDhwwOlz9fX1WLhwIQDg9ttvR3l5Of+62WzGokWLAPTlRrtrs3W5RFBK7xB6nRCiA5AKgNPqkgF8QQjJpJT6d3/B8Jh9Zyux5wwrH+6KL7/8EjNnzhR8r6SkBCdOnMDJkyfR2tqKjIwMzJs3DwBw/PhxnD59GiNHjsRtt92Gjz76CJmZmVi3bh0KCwuRkZGBzs5ODBo0CK+88goAQK/Xo6GhAYsXL+a3yZ988glOnTqFwYMH46WXXkJkZCROnTqFU6dOYcaMGfxYtm/fjsGDB8NisWDhwoU4deoU0tLSAPR1ZPviiy9QUFCAF198EX//+9/x+9//HnFxcdDr9QCAtrY2tLa24tlnn8WhQ4cQFRWF559/Hi+99BK2brXXa1544QW89dZbTvdj3rx5ePXVV+1eu3DhAkaPHs3/nZycjAsXLjgdm56ejuLiYvznf/4nSktL0dXVhStXruCbb75BfHw88vPz0djYiDvuuAPPPfccwsLCpB+cDR7rw5RSPYCh3N+EkCYAsyilrZ6ek+F/XJVrj1MHTxevYOXo0aO4++67ERYWhmHDhiE7Oxu1tbWIjY1FZmYmkpOTAfRpgk1NTYiLi8OIESOQkZEB4MdOaUePHsXmzZsBAJMmTcLYsWN5YcdpRQDw4Ycf4he/+AUAIC0tjRdmAFBUVITXXnsNZrMZFy9eRH19Pf9+fn4+AGDmzJkoKSkBABw6dIjflgNAQkIC9u7di/r6etx2220AAJPJhDlz5jh978cffxyPP/64rHskVEpOyPT14osv4uc//zl27tyJefPmYdSoUQgPD4fZbEZNTQ2OHz+OMWPGYN26ddi5cyf+4z/+Q9b1AZYbO6DZd7ZSsnpxOAnHr+fIm8z+ZsSIEX693tSpU7F7927B96RqQtp2PwsLC4PZbAalVPCHLnWeqKgou7+Fjm9sbMSLL76I2tpaJCQk4IEHHkBPz48LGTcWbhzcNR3PRSnFokWL8M4774iOB3BPs0tOTsaRI0f4v8+fP4/58+c7HTty5EheEBsMBhQXFyMuLg7JycmYPn0632ApLy8Pn376qVvCTrGgYkppCtPqQgeuGKkYKqLCM/OeClrnxKBBg/xa3mnBggUwGo3429/+xr9WW1uL6upqzJs3D4WFhbBYLGhpacGHH36IzMxM0XNNmjQJ33//PWprawEAXV1dMJvNmDdvHi88vvnmGzQ3N2PixIlOx9t+7ssvv8SpU6cAAJ2dnYiKikJcXBwuX76MykrXnvTFixfjL3/5C/93W1sbZs+ejY8++gjffvstgL4wHyGv8+OPP44TJ044/eco6ABgyZIleP/999HW1oa2tja8//77WLJkidPnWltbYbX2Vef5wx/+gI0bNwIAMjIy0NbWhpaWFgBAVVUVpkyZ4vL72cIyKAYoUttXFYK/crHBYPDaaO4OhBCUlpbi4MGDGD9+PKZOnYqnn34aI0eOxOrVq5GWlob09HQsWLAAf/zjHyWzO9RqNQoLC7F582akp6dj0aJF6OnpwaZNm2CxWKDT6fhtmlBf3EceeQQGgwFpaWn44x//yAvW9PR0TJ8+HVOnTsXGjRv5bagUTz75JNra2nDLLbcgPT0dhw8fRlJSEnbu3Im7774baWlpmD17Nu/Q8JTBgwfjd7/7HTIyMpCRkYGtW7fy2/KtW7eioqICQJ9TZ+LEibj55ptx+fJlbNmyBUCfNvriiy9i4cKF0Ol0oJTiZz/7mVtjYGXZByjT/pkBKhIaSUBwYmOtn0fkHsHSN5YRXEiVZWea3QBFKsWMggZtMDGD4SlM2A1QXKWYPXN0OxN4jH4FE3YDlOXjc5A5QtyIzgp4usYXTX8OHDiAiRMn4qabbsJzzz0n+rkjR45g2rRpmDp1KrKzs/nXN27ciKFDh+KWW25RfGyhDhN2A5i/5RTgzklrRd9nBTyFoZTyHkMlsVgsePTRR1FZWYn6+nq88847qK+vd/pce3s7Nm3ahIqKCpw+fRrvvvsu/94DDzwgmJnAYMJuwPPkrU+IFgMI5gKeo0aNwqhRo/x2vaamJkyePBmbNm3CjBkzcO7cOQDAf/3Xf2HGjBlYuHAhHxbhKceOHcNNN92EcePGQa1WY/369Xy6lC1vv/028vPz+RzzoUP52H7MmzeP93Iy7GHCjuF16ahAoNFoBMMyfMnXX3+N++67D8ePH8fYsWPR3d2NGTNm4IsvvkB2dja2bdvmdMxbb72FadOmOf23dq2zRi03peqbb75BW1sb5s+fj5kzZ+KNN95Q9ov2U1gGBSNoGoC7Q2dnX3VmLtXKH4wdOxazZ8/m/1apVFi3bh0A4J577uHTsWzZsGEDNmzYIOv8clOqzGYzPv/8c3zwwQe4fv065syZg9mzZ/u1+koowoQdA0DgG4C7S2trX7KOP4WdY8qWI0KC6a233sILLzj39b3pppuc0s+Sk5P57THQl1I1cuRIp2OTk5ORmJiIqKgoREVFYd68eTh58iQTdi5g21gGw0OsVisvsN5++23Mnevct2PDhg2CKVVCebYZGRk4c+YMGhsbYTKZsGvXLuTm5jp9btWqVaipqYHZbMa1a9fw2WefYfLkycp/wX4G0+wYDA+JiorC6dOnMXPmTMTFxfF17DwlPDwcf/nLX7BkyRJYLBZs3LgRU6dOBQD89a9/BQA8/PDDmDx5MpYuXYq0tDSoVCr89Kc/5UNN7r77bhw5cgStra1ITk7Gtm3b3EqW78+wdDFGSMLSxRhCsHQxBoMx4GHbWEZIwhXEZDDkwoTdAGff2cqQCjnhUKvVgR4CI8Rgwm4AwxXw5OraXey+xBf0DHaB19HR1wgoLk5e028Gg9nsBjBCBTxDpQDAlStXcOXKlUAPgxFCMM2uHyJ3ayqW6M8KADD6I0yz62dwW9OL3ZdAQfmtqVBtOrFE/2AuAMBgeAoTdv0Md7amoVgAgMHwFLaN7We4szUNxQIADIanMGHXzxgeNUywF6zY1jTUCgBwcLXcGAy5sG1sP8Pdrem+s5VYWrgC0/6ZgaWFK0Km70R4eDjCw9lazZAPmy39DHe2pqEcZ9fW1gYASEhICMj1e3t7cf78efT0CPfeZfgWrVaL5ORkREREyD6GFQIYoOw7W4knP3wKVurcS2FE1HAcWLc3AKOST6ALATQ2NiImJgZDhgwRrGPH8B2UUly5cgVdXV1ITU21e8+nhQAIIZsJIV8TQk4TQv7o7fkYvofT6IQEHcDi7OTQ09PDBF2AIIRgyJAhbmvVXm1jCSG3A1gFII1SaiSEDHV1DCPwCIWn2MLi7OTBBF3g8OTee6vZPQLgOUqpEQAopT94eT6GHxDy1nKwOLvQwdO+tX/961+9atKzbNkytLe3AwBeffVVTJ48GRs2bEBFRYVkr1tPKCsrE2wn6QneOihuBpBFCNkOoAfAY5TSWu+HxfAlBAQUwrZa2wDkYHdSMDzj4Ycf9ur4/fv38/8uKChAZWUlbzsTKiPvDWVlZVixYgWmTJni9blcanaEkEOEkC8F/luFPmGZAGA2gMcBFBER/ZIQ8iAhpI4QUudtf02Gd4gJOg6pFLNgISUlBSkpKYEehmz0ej0KCgrwzDPPoKCgAHq9XrFzHzlyBPPnz8fatWsxadIkbNiwge9U9sQTT2DKlClIS0vDY489BgB4+umn8eKLLwIAamtrkZaWhjlz5uDxxx/ny7vv3LkT+fn5WLp0KSZMmIBf/epX/PVSUlLQ2tqKhx9+GN999x1yc3Px8ssvY+fOnfj5z38OALh8+TJWr16N9PR0pKen4+OPPwYA5OXlYebMmZg6dSpee+01/pzR0dHYsmUL0tPTMXv2bFy+fBkff/wxKioq8Pjjj2PatGk4e/asV/fJpWZHKb1D7D1CyCMASmjfnT1GCLECSATgJM0opa8BeA3o88Z6PGKGX+A0vGDV7lSq0AkR1ev1qKqqQm5uLsaMGYPm5mZUVFQAAHQ6nSLXOH78OE6fPo2RI0fitttuw0cffYQpU6agtLQUDQ0NIITwW09bfvKTn+C1117DrbfeiieeeMLuvRMnTuD48ePQaDSYOHEiNm/ebNfX9q9//SsOHDiAw4cPIzExETt37uTf+8UvfoHs7GyUlpbCYrHAYDAAAP75z39i8ODBuH79OjIyMrBmzRoMGTIE3d3dmD17NrZv345f/epX+Nvf/oYnn3wSubm5WLFihWCfXXfxdsaUAVgAAISQmwGoAbR6eU6GwjgGDg9yCDoWI5i9sqFU4qmmpga5ublITU1FWFgYUlNTkZubi5qaGsWukZmZieTkZKhUKkybNg1NTU2IjY2FVqvFT3/6U5SUlCAyMtLumPb2dnR1deHWW28FAPz7v/+73fsLFy5EXFwctFotpkyZgn/961+yx1NVVYVHHnkEABAWFsbXHXz11Vd57e3cuXM4c+YMgL5irCtWrAAAzJw5E01NTR7dBym8FXb/BDCOEPIlgF0A7qeBCNxjiCJUBcVMLSBw7c0KZq9sR0cHX8Az2GltbXVKbxszZgzf+1YJNBoN/++wsDCYzWaEh4fj2LFjWLNmDcrKyrB06VK7Y1z9VIXO6Q1HjhzBoUOH8Mknn+DkyZOYPn06Hz4SERHBe1iVuJYQXgk7SqmJUnoPpfQWSukMSmmVUgNjKINQmEmvtRdxmliMiBoOAoI4dSwiVPaR6MwrqxyJiYlobm62e625uRmJiYk+va7BYEBHRweWLVuGP/3pTzhx4oTd+wkJCYiJicGnn34KANi1a5di1164cCH+53/+BwBgsVjQ2dmJjo4OJCQkIDIyEg0NDfx1pYiJiUFXV5ciYwodwwfDI8S2oh3GThxYtxcnNtbiw3uqsC1rKy/8RkQNx9a5W4LWXhdqZGVloaKiAo2NjbBYLGhsbERFRQWysrJ8et2uri6sWLECaWlpyM7Oxssvv+z0mX/84x948MEHMWfOHFBKFStz/8orr+Dw4cPQ6XSYOXMmTp8+jaVLl8JsNiMtLQ2/+93vMHv2bJfnWb9+PV544QVMnz7dawcFSxfr5ywtXCEYVxcKKWFSBDpd7KuvvsLkyZNlf16v16Ompgatra1ITExEVlaWYs4JbzAYDHy83nPPPYeLFy/ilVdeCfCo5CH0DKTSxVghgH7O5lmP2iX7A2yLGgh0Ol1QCDdH9u3bhz/84Q8wm80YO3asnUe1v8GEXT+nvxboDJRG199Yt24d1q1bF+hh+AUm7AYAoVqgk8FQEuagYDAYAwIm7BgMxoCACTsGgzEgYMKOwQhRtm/fjqlTpyItLQ3Tpk3DZ599hp/+9Kcel0T6/vvv7XJQ7777bqSlpeHll1/G1q1bcejQIaWGDgD405/+hGvXril6TimYg4LBCEE++eQT7N27F1988QU0Gg1aW1thMpnw97//3eNzjhw5Ert37wYAXLp0CR9//LFb+bDu8qc//Qn33HOPU86ur2CaHYPhB5Tu4nbx4kUkJiby+auJiYkYOXIk5s+fDy5g/x//+AduvvlmzJ8/Hz/72c/48ksPPPAAfvGLX+DWW2/FuHHjeAHX1NTEl3havHgxfvjhB0ybNg01NTV44IEH+M/V1tbi1ltvRXp6OjIzM9HV1YWmpiZkZWVhxowZmDFjBl/SSaz81Kuvvorvv/8et99+O26//Xav7oVsKKV+/2/mzJmUEVzs/XY/XbJrOU3/xyy6ZNdyuvfb/YEeUlBTX18v+7N7v91PM3feRtP+MZP/L3PnbV7d466uLpqenk4nTJhAH3nkEXrkyBFKKaXZ2dm0traWXrhwgY4dO5ZeuXKFmkwmOnfuXProo49SSim9//776dq1a6nFYqGnT5+m48ePp5RS2tjYSKdOner0b+6Yd999lxqNRpqamkqPHTtGKaW0o6OD9vb20u7ubnr9+nVKKaXffPMN5X7jhw8fprGxsfTcuXPUYrHQ2bNn05qaGkoppWPHjqUtLS0e3wOhZwCgjorIHabZMQQrowR78c5QQqgYg21FaE+Ijo7G559/jtdeew1JSUlYt26dXfbDsWPHkJ2djcGDByMiIgJ33nmn3fF5eXlQqVSYMmUKLl+WX8rr66+/xogRI5CRkQEAiI2NRXh4OHp7e/Gzn/0MOp0Od955p53dUKj8VCBgNjuG5I+RBSN7j1gxBm/rBYaFhWH+/PmYP38+dDodXn/9df496kb5JleftYVSKtjs5uWXX8awYcNw8uRJWK1WaLU/1kxUulSUpzDNjuGzHyOjD7G6gN7UC/z666/5wpdAX1XhsWPH8n9nZmaiuroabW1tMJvNKC4u9vhatkyaNAnff/89amv7Ws10dXXBbDajo6MDI0aMgEqlwptvvgmLxeLyXEqWb5IDE3YMn/wYGT+yedaj0DpUh/a2GIPBYMD999/P95eor6/H008/zb8/atQo/Pa3v8W//du/4Y477sCUKVMUKd+kVqtRWFiIzZs3Iz09HYsWLUJPTw82bdqE119/HbNnz8Y333yDqKgol+d68MEHkZOT4zcHBSvxxOBtdo6VUVhNO3HcLfG072yl34sxcOWbzGYzVq9ejY0bN2L16tU+vaY/YSWeGG7TXyujBBOBKMbw9NNP49ChQ+jp6cHixYuRl5fn1+sHG0zYMQCwyij9Ea5dIqMPZrNjMBgDAibsGAwPCYS9m9GHJ/eeCTsGwwO0Wi2uXLnCBF4AoJTiypUrdrF8cmA2OwbDA5KTk3H+/Hm0tLQEeigDEq1Wi+TkZLeOYcKOwfCAiIgIpKamBnoYDDdg21gGgzEgYMKOwWAMCJiwYzAYA4KApIsRQloAuFsCNRFAqw+G4ytCbbxA6I051MYLhN6YQ228YymlSUJvBETYeQIhpE4s5y0YCbXxAqE35lAbLxB6Yw618UrBtrEMBmNAwIQdg8EYEISSsHst0ANwk1AbLxB6Yw618QKhN+ZQG68oIWOzYzAYDG8IJc2OwWAwPCaohR0h5E5CyGlCiJUQMsvm9RRCyHVCyIkb//01kOO0RWzMN977DSHkW0LI14SQJYEaoxiEkKcJIRds7uuyQI9JDELI0hv38VtCyBOBHo8rCCFNhBD9jfsalGW6CSH/JIT8QAj50ua1wYSQg4SQMzf+nxDIMXpDUAs7AF8CyAfwocB7Zyml027897CfxyWF4JgJIVMArAcwFcBSAAWEkDD/D88lL9vc1/2BHowQN+7bDgA5AKYAuPvG/Q12br9xX4M1lGMn+uamLU8A+IBSOgHABzf+DkmCWthRSr+ilH4d6HG4g8SYVwHYRSk1UkobAXwLINO/o+s3ZAL4llL6HaXUBGAX+u4vwwsopR8CuOrw8ioAXI/G1wHk+XNMShLUws4FqYSQ44SQakJIVqAHI4NRAM7Z/H3+xmvBxs8JIadubGmCdcsSKvfSFgrgfULI54SQBwM9GDcYRim9CAA3/j80wOPxmICXeCKEHAIwXOCtLZTScpHDLgIYQym9QgiZCaCMEDKVUtrps4Ha4OGYnTsL9/0A/IrU2AH8D4Dfo29cvwfw/wPY6L/RySYo7qWb3EYp/Z4QMhTAQUJIww1NiuEnAi7sKKV3eHCMEYDxxr8/J4ScBXAzAL8Yfj0ZM/q0j9E2fycD+F6ZEclH7tgJIX8DsNfHw/GUoLiX7kAp/f7G/38ghJSibyseCsLuMiFkBKX0IiFkBIAfAj0gTwnJbSwhJIkz7hNCxgGYAOC7wI7KJRUA1hNCNISQVPSN+ViAx2THjcnMsRp9zpZgpBbABEJIKiFEjT7HT0WAxyQKISSKEBLD/RvAYgTvvXWkAsD9N/59PwCxnUvwQykN2v/Q94M7jz4t7jKA9268vgbAaQAnAXwBYGWgx+pqzDfe2wLgLICvAeQEeqwCY38TgB7AKfRN8hGBHpPEWJcB+ObG/dwS6PG4GOu4G3P15I15G5TjBfAO+kxEvTfm8H8AGII+L+yZG/8fHOhxevofy6BgMBgDgpDcxjIYDIa7MGHHYDAGBEzYMRiMAQETdgwGY0DAhB2DwRgQMGHHYDAGBEzYMRiMAQETdgwGY0Dw/wDCOqoT17PBEwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "coeqtl_sig = coeqtl_df[coeqtl_df['corrected_p_bios']<=0.05]\n", + "coeqtl_nonsig = coeqtl_df[coeqtl_df['corrected_p_bios']>0.05]\n", + "plt.figure(figsize=(5, 5))\n", + "plt.scatter(coeqtl_nonsig['MetaPZ_flippedforAF'], \n", + " coeqtl_nonsig['flipped_zscore_bios_flippedforAF'], \n", + " label='Insignificant',\n", + " edgecolor='gray',\n", + " facecolor='white', alpha=1)\n", + "plt.scatter(coeqtl_sig['MetaPZ_flippedforAF'],\n", + " coeqtl_sig['flipped_zscore_bios_flippedforAF'], \n", + " label='Significant',\n", + " edgecolor=color_dict[celltype],\n", + " facecolor=color_dict[celltype], alpha=1)\n", + "plt.plot([-15, 12], [0, 0], linestyle='--', color='lightgray')\n", + "plt.plot([0, 0], [-6.5, 4], linestyle='--', color='lightgray')\n", + "plt.legend()\n", + "\n", + "concordance_rate = coeqtl_sig[coeqtl_sig['is_concordant']].shape[0] / coeqtl_sig.shape[0]\n", + "print(concordance_rate)\n", + "\n", + "celltype_rb = bios_replication_filtered_df.loc[celltype]['r']\n", + "plt.text(3, -5, f'Concordance = {concordance_rate:.2f}\\nrb = {celltype_rb:.2f}')\n", + "\n", + "# plt.savefig('bios_replication.cd4t.filtered_results.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATsAAAEvCAYAAAA6m2ZKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwSklEQVR4nO2df5Ac5Znfv8+ORmJW9mmFWZ+PNUJy4pPKOg7W7NlKVJdExEG2MbAGG0wg5bpLFUkqvgoctzkRU0bEvkJ3KoKvkstVkZyTS5lgAcJr2XJZtk9yrsKVsFde6WQZqQI2khhxsVywXCwN0uzumz9me9Xb875vv9399sz09PdTpYKdHz1vT7/z9PP7EaUUCCGk3xno9gIIIaQTUNgRQkoBhR0hpBRQ2BFCSgGFHSGkFFDYEUJKwbJufOgVV1yh1q5d242PJoT0MYcOHfq5UmpY91xXhN3atWsxNTXVjY8mhPQxInLS9BzNWEJIKaCwI4SUAgo7QkgpoLAjhJQCCjtCSCmgsCOElAIKO0JIKehKnh0hRM/kdB07953AmZkGrhyqYWLreoyPjnR7WX0BhR0hPcLkdB0PPncUjeYcAKA+08CDzx0FAAo8D9CMJaRH2LnvxKKgC2g057Bz34kurai/oLAjpEc4M9NI9DhJBoUdIT3ClUO1RI+TZFDYEdIjTGxdj1q1suSxWrWCia3ru7Si/oIBCkJ6hCAIwWhsPlDYEdJDjI+OULjlBM1YQkgpoLAjhJQCCjtCSCmgsCOElAIKO0JIKWA0tkdhQXg54XXPDwq7HoQF4eWE1z1fvJixIjIkIs+KyHEReVFE/p6P45YVFoSXkyTXfXK6js079mPdtr3YvGM/JqfrnVpmYfGl2f0xgG8ppT4hIssBDHo6bilhQXg5cb3u1ADTkVmzE5FfAvAPAPwZACilLiqlZrIet8ywILycuF53av7p8GHGvgfAWQD/TUSmReS/ishKD8ctLSwILyeu152afzp8CLtlAN4P4E+VUqMAzgHYFn2RiNwrIlMiMnX27FkPH9u/jI+O4NHbrsHIUA0CYGSohkdvu4YmSp/jet2p+adDlFLZDiDyLgAHlVJrF/7+TQDblFI3md4zNjampqamMn0uIWUl6rMDWhogb4iAiBxSSo3pnsus2Sml/gbAaREJdO1/DODHWY9LCNFDzT8dvqKxvwPgyYVI7E8A/Jan4xJSWPJMEGYrqOR4EXZKqcMAtKojIWVkcrqOiWeOoDnfchPVZxqYeOYIgO6nh5S1SoMVFITkwPY9xxYFXUBzXmH7nmNdFSydztHrJcHKRgCE5MBMo2l8vJvVDp3M0QsEa32mAYVLgrVb509hR0iH6eYPvpM5er2W/ExhR0gOrB6sGp/r5g++kzl6vZb8TGFHSA48fPNGVCtifL5bP/hOVuf0WvIzhR0hOTA+OoKdn7gWFdELvG794DuZo9drZY+MxhKSE4EA0VU7dLPOuVM5er02B5fCjpAc6bUffKfppeRnCjtCcqaXfvBlhj47QkgpoGZHSEJ6qSqg0xT53CnsCElAmVui53nunRCiFHaEJMBWFaD7cfaKJuRjHUnPPcnaOnEDoc+OkAQkqQroldpQX+vIqyKiU2VlFHaEJCBJVUCv1Ib6WkdeFRF1g7A0PZ4WCjtCEpCkKqBXakN9rSOvighTlYm52C4dFHaEJCBJuVWetaFJhmT7WkdepWZzhjk4CvBq8jNAQUhCXJOEJ7auz6VULKlD3+c68kiQHhmqGU3WrMGPMNTsCMmBIPrZaM4tmmm+NKGkPri8i/+TaJk6bELXp8lPzY4Qz0Q1rzmlFjUpHwLGxQenSzV5ftsNmT87Spa0kfAaRQCdNeuzOww1O0I8k3cUNs4H18mUl7TnGl2jTtD57g5DYUeIZ/KOwsZFRTuZ8mI6p/pMo024hs3dB54+0rZGoBWZzavPHs1YQjxzpcHh7sski2sb5VPYxlVemM4VwBJzVmfa65hTynvKSQCFHSGe8Rn9NAkbW1TUl7B18cfpzjWg0ZzDfbsOY+e+Ezh3YVb7Gh1h0zv8WVmhGUuIZ3xFP9P63nwl/7qYw8G52qjPNIyjJW34Nr2p2RGSAz7y0bIU3q9YNrD43tWDVTx880YAwOYd+52bAbiaw+OjI9i570Sq8q6KCOaVgt6o9Zt6Qs2OkB4lje8t0AbDmtRbzXlMnXw9sZaYpPJCp03GUatW8Ngd1+KnO27CSAcmkXkTdiJSEZFpEfmGr2MSUmbSlHmZtMGnXjidOEKbxBwOm+4uDNWqS0z7Tkwi86nZ/RsAL3o8HiF9j636II0AMGl9puinTUuM8z1G1w4Az2+7AV+887pYLW/limVLTOhOjHj04rMTkXcDuAnAHwD4XR/HJKTfiYt22lJMTFFaWyqIjjgz0eR7dInU2vx4OiGb92AiUQaJn+ggIs8CeBTA2wH8nlLqY5rX3AvgXgBYs2bN9SdPnsz8uYQUmc079muFwchQzVraFRU0QEvjC6KiplSQKALg7k1r8IVxezQ1y9rTnmNaROSQUmpM91xmM1ZEPgbgZ0qpQ7bXKaWeUEqNKaXGhoeHs34sIYUnbfJvXJQ2bA6aesUBrXy23YfqqcrIXNduMsW3bBjO1DwgDT7M2M0AbhGRjwK4DMAviciXlVL3eDg2IYXGVoGQNvk3TtCEzcF12/Zaj5V2hsTQYBVvnG/PnYuuPTjuI18/tvh6gcKu759Gc75lVUZN4LzmdmTW7JRSDyql3q2UWgvgUwD2U9AREp8UnDYCaRKGAyJtmpJL6kbSXLbJ6Tp+8dZs2+PVihjX/lZzfvH/zzfnFwVdQCB082xiwDy7ApO1jxjJl7gKhDQRyMnpOs5fbBc0QCviGhUQLvlvSXPZdu470SasAGDl8mXateu+Bx1nZhq5NjHwWkGhlPoegO/5PCbRU+b5pb2IzvRy8WsliUDqAhNAK9AQFT2BgAiCALbI6JYNyXzopvN601AS5qo5XjlUy7VjDDW7gtIrk6uI2VwdGqxqX5+2KsCkIcWVWo2PjuD5bTcYE34PHD+baB1Jk51dzrc60DKB85zbQWFXUHplchUx33iUgteqgKTXdlVtqbDNc8qYoCXkde6Uia3rUR2wN25622UtEzjPSgo2AigoefdMI+6YzMM3G008fud13iKLSROGz12cxeR0PXP0N0o0aThsRofdKeHXxDGzEKmN69WXBQq7gpLX5CqSjMnputZnBrSEiM+qAFvvOB3NObUkrSSvPaPzF27fcwwXZued1xoWuHlVUlDYFZQ874DEnZ37TmgFncA+NSsNLmVYUaLBkOD9WfaMKVASJkn/usBflzcUdgUm71pCEo/J36WQT1Q8uObrtu01BibC6JJ88+izl4XAX5c3FHaEZMDkB3NtdeT7c8Pk5daIC2iYzHoTM5FKjJ6toCCkzHSiD5vr51YrgqFaNbcWSQG2gEZSQRc9Xp4VFNTsCMmAix8sD02lmz5bU6DjsuqAtl7WRvTGsH3PsdSt6OOgsCMkA3GCzFbpAmQTVnH+t7zMQZOgvX/XYeN7atVKmxAbkEuCbOrk69j7168ZAxs+8ke99LNLytjYmJqamur45xLiE1tfuUAgmPq5DdWqbakZ0fdmEVYua/ONrXfdxNb1i+eyqlbFuYuzaM65yx7X/ne59rMjpKy4lOyZNJKZRtP63qy+q7i15dFEwua/DErWfrrjJqxcsSyRoAuOnRUKO0JS4lJ+lbQ6IXhv1tpn29ryCgK4dnFJapIOiJ80HvrsCEmJS/lVUmd+8N4kdaw6c9e2NpMgvW/XYdy36zAqIrjrg1elatce9iMG67p/1+FMczI03aRSQc2OkJS4pJ2YtJ2Hb95ofa9r9w+TlrZlw7C2WH/LhuFYzWpOKXz54Ck8NHnU+jobunXdv+sw1m7bi3MXZlGt2BsDhPGVs0jNrmDkFWEjyRkfHcHUydfx1AunMacUKiK4/fr2CKktamq6lq51rCYt7cDxs7j9+hE8efDUYt5bMHNiVa3qVM711AunU2l3pnUF65hpNFEdEKw2tHYP4zNnkcKuQLBhZ28xOV3H7kP1xZmsc0ph96E6xq6+3Ol62ISgax6dzdw9cPystkj/suqANhUkSnBeaW6wcdpjc15hcPkyq7Ab8XwzZ+pJgej0WDpix3Q9AoZqVWy/ZWOuNyLbnjizYEJGEWBJ6ymTBKiI4LE7rk2VwhL33QTrGBDRDvCuiODlRz9qfb/2mEw96Q+SDBwm+RP3vc80mph45kius0FsfkOb3y+cCnLPpjXa1931watSR4VdZ1/oBB0A4+NZoLArCEHfNB1s2NkdXL735rzKtVW+Ld3DtW537OrL2wTBwMLjabsbh9cFoG3vBuswBR/yaKRAn11BMPVNA5IPTCF+cG2mmbfmbfL9ufr9du47gfnIe+cXHs/S3ViXhqJbR6ea0FLYFQTbD2bXD07jG0dew5uNJiO0HcS1mWY3NW+X/nU27e3xO6/zIoyyCmQfUNj1CHERL1siZnNOLaYS1GcamHj2CABGaPNCd6227zlmTOeY2Lq+p1OGbNpbWmGU5Hw71YSWPrsewKV8x8XhG9CcU/jsV9MnhBIzums18cwRXJzVm7KB8z+vHm0+sPn20gjpPHvSZYGaXReIbqDzF2dje3gF/33g6SNOkapzF+eWTJYiftBFJ5vzCs1ITdPqwSoevrmVdnLdI9/OrUebD0zaG4BUeZ22CG43z5fCrsPoEoNNRH0pJoeuiW5vrn7ENdjwt41ZAK3rbTJvgzmrvWDS6kzJzTv2JxZak9N15xSpTpv2mYWdiFwF4H8AeBdaQZwnlFJ/nPW4/UqSYSU6x3b0LgwBTIoe8+/841rEPqcUHnzuKC6r2j1FQc3ofbsOY2Sohi0bhnHg+FmrAOiUkEiadhLcyE3o2q93shrIh2Y3C+ABpdQPReTtAA6JyHeUUj/2cOy+w1UA2SJe4bvwQ5NH8eWDp7SvY/6dPwIBEx0KbaPRnHO6sYUHTIevpU4AxAkJn4IwadqJ7UYe3c/dMHUzByiUUq8ppX648P//D8CLAGg7GTBtlKFaNbYPmI4Dx89qH89jbmlZCTvcgZZwCpJkh2rVRB08khKtVrAJCd+BgaTDhGw38uh+TpusnAWvPjsRWQtgFMALPo9bVHR3WVM3i7Q1lJ2eW1pGTB08gprkyem6MXCka7+elLB2ZRMScaVdSTU+W+Bi8479bceyjZWMflaWZOW0eEs9EZG3AdgN4D6l1N9qnr9XRKZEZOrsWb020k+Y7rIAnLq5umLaHHnPLS0TcVrI+OgIHrvjWq0WtP2WjUuu91CtmvjzK3JJc7TVu5rWGey9NBpfuIY2aDZhOpapkkf3eDdGUHrpeiIiVQDfALBPKfUf4l5fhq4nnepQ0o3BKmXDdC0rIphXaonG46I9bfzct3DuYjJN75UdNwGwX29TJUfF0FkkzV607WtAn11g+pw8Ai22ric+orEC4M8AvOgi6MpCp3wS3ZwfWhZMNbCBAAm0m0dvuyZWeExO13FxNlqJaiespcddb50gNJnQafaiLa3EpDa5tpLPe8/68NltBvDPABwVkcMLj/07pdQ3PRy7sHTCJxHdMI/feR2FXE6sWDawKDQGpH0ugmskcee+E20JyDYE7fl4UYEXzF09cPwsGs25RU0uPMLQx14MOu/oVj80WMXM+ab2OVMr+XBEeeLZI9i+51iu9d2ZhZ1S6n+jvYNL6XFtq50Wdi3uDDqz0SSrXDSlpNpUOC0lnMMWvfbhlJU5pZaMMIy+Hki3F02ddwStXE/Tcy6t5KP13XnsZdbG5oTrWLm0ZB21R9xIkgQ+IBI7hzWLZh9cX5c1hffC+OgIbr9+ZDHQURHB+9esws59JxLNjbVF/t80VInosgJcBH4ee5nlYjkS180hi9+iG3lKZSTJ9xn14QHtP3TXHni29bgawcHaH5o8umTwzpxSeP7l1xdf56pJ2VJLguOYnnM5jmn9vqBm1yUmp+uYePbIkhD+fQuj5lzutK6j9kg2TN9nrTqwJCUkikkzCTT+1YPJU1CAlm/M1Wd05VANk9P1JYLORNpW64E5nCSVxLWDj++9TGGXM5PTdWzesb/NXHjk68fQnNNvwbg8qMnpOs5fnG17PO88pTKi+2FWBwSz8yq2+4xJMxkfHcHg8uRGVa1aMfrGdK8NghNJNUETNtdMErdN9LWrB6uoDiwV4XnsZU4Xs5A1PG7Libpv1+HY9+vyk3THbB13AJdVK5g5z27FvtG15Iqbdwq0EohXrlim3T/rtu11EkJB9DOIrN6/67DxfeE5rMFkM9vro3RzSp2vVJRc8+z6FR/RzqxBBN2d1uScfqs5j0ZzPvVaiTsugg5oTRdb0kH6mSOLKSImAWQTkIC5BfzqwSreal7K35tpNPHgc0cx5DCIGliqSU1O15d0Xg735nMh3DQhSIMZqlUhAuPNuBPdiinsDPjoymALIgw5TGUPfC7hO57Jsasbhsx+dtnR3fRcu55Eac4rY4cawK1GemLrekw8c2RJrl51QKAUtPt1xbL4gdgVkUWTc3K63nb8N843nVv9R7+vwNQP7/Vu3YzpszPgI9ppCyJsv2Wj9cuvVSvYsmG4rQ4xSUIjI7PZMTUB8E2i1KToJhAYb5xvNpqxIw0fu+PaJYnKuqTn5pzbSEjXVJ1upElRszPgUgER52eISyyuVATzmiBFOPM9yw+NkdnsdOKGIYCzr2znvhNtga3mnDLWvwZDc1xGGgL28/WdNO2SfuITCjsDcYLKxadnq2PcvGO/NhobdhLf7xDEsMF5stlxzQnL+hmumIRJUDURVyUR5xuzna/LOpN8X7bUnTygGWsgLpTuGnyItsgJ3u9iJmfVzEyNPYk7Saa6xTEgyJxiYWvpZduvphSoKBNb17etEQCqFXFaZ5Lvy2VwlE+o2Vmw3QXT+vQCM8J0mcOb2Ue2PclGVDt3/XmKZjZIRQR3fuCq2BkTNrZsGNYGObZsGDbu1ySZBcHfaaOx0cHhJvMa6HzPRQq7lKTpamLKkQuI3uV1ZvBrbzaMhehJ1kLcCQuRtdv2Or3nylXt+6M5r3Dg+NlMuWwmbd2mxSfNLMiaBhJ9vynftNMJ8BR2KUnT1cQWqQomS+3cdwL37zq85K4f3jiuPzZWU+TDiKNPynWcYFJcLYpwICJJn7k86JWeixR2KXG9gC6bLmiD42JquPzYRrq0mcrA2ndkC1goYLE3HZBcALhmCbi4PwZEMg9Sd6186ETScBwUdhlw6WrisumuHKo5mxoTW9dbS80El/w3xC+T03X8VahbSFqCZpVQWMxpc0m0da2Jds11C2bb2j7TRpYqo250KmY0NkdcNl2wUV3Nk/HREdQsg5cVgCcPnko9Po+YSVJUH0dzTrUl79oSbQPBEi39GqpVnccU6siS3Ju2HNL3yEdXKOxyxLbpoukBSVo2PXrbr2vTAwIUwCaeOdAJH5dpXsMDTx/R3jhXrlimHVOY9TOzvC/ueN1qPEthlxKXvCVbTlQ0727LhmFtKY8uyDA+OoKdn7zWmpTJtBP/dCK6bZrXYErf0F1nU285Uw+9tOeVtqeibeRjks7JSaGwS4GrGu7a0HByuo7dh+pLTCQBcPv17SH8zTv2Y+22vcahzAFMO/GPz4oU1wTjOFeI7jqbEuIfvnmj11mtaWe/2vZmnmYtAxQpcA0muEZsTTWw4dwpXWttG9GJVCQ7PitSVtVaibpxe8OmodsEiy145iswkDalxCVZPo+uPRR2KUjiq3AJuccdb3K6bm0NZIJ97fzi0zUwc77ptDdMqSbhtkxJ8J0CEhwviK7ev+swdu47gS0bho2VIq5VKZxB0QPYfBWuNYiuxwNaLdzTwolj/vDpGnA9lslUDLdl6jY6t86XD56yunnCNeOmsjHOoOgBTBtQ13/uweeO4qHJo1YBGBeccO2Ma4LBCj+k8dkJWkX0YZL4yfIeyemDpKMdo6T1/SWFZmwKTL4Kky8v7GuLmpauwYksMFjhh6Q+u2DeyNTJ1/HUC6cX/ayN5hy27zmGR75+zGlmSBLTsxvJuq43U9sAIiD/cjIKu5ToNqCp/5ytZbopOPHlg6dw4PjZWG0irkW4biI7SUcSDTko2QOA3YfqbQGlPNqU+5ibkgbXHna2m24nysm8mLEi8mEROSEiL4nINh/HLCJpmjDafkD1mQaejAlMRE2kKLqJ7CQdLte3OiD44p3XLeZQdrJNebeSdV162PVCY4rMwk5EKgD+BMBHALwPwF0i8r6sxy0iE1vXJxpgHP6vibjypIuG2bMBlYVib5Idlx/rfOTvJNpgpzqi+EbnV7xn05qe8zP6MGM/AOAlpdRPAEBEvgLgVgA/9nDsQjE+OuI0DzZ8l8vaoDOOrMXe5BLjoyOxc1jn5tWS/LAkbcrDHVHSXKs0PRZ90QtdTeLwIexGAJwO/f0qgA96OG4hiDqE40YkRoMP0c6upvdkKUDnWEV/3L1pTWzOY5DQfWamgVW1KqoV0c4bMb037c3J1GNxy4bhxfV0o5dcN4ImOnz47HSWW9uVFZF7RWRKRKbOnu2P2Qi6/KJzF2dji/SjUb0g5+iLd16nDcHfvWmNsa7RFaafZGdyuu4ckQ32xEyjuUTQBVvDNmsmrZ9tfHQEt18/slgzXRHB+9eswu5D9Y53GAnoVocTHT40u1cBXBX6+90AzkRfpJR6AsATADA2NtbZSRs5oXMIN+cUVg9WcXF2Hucu6k3TNCH4A8fPZsq3W1XLJizLjmtvwjgqIqgMIFbTS3NzCtKYgsjvnFL4q5df7/gA9bAmN6CZQdEtS8OHsPsBgPeKyDoAdQCfAvBPPRy3q7io3qYNOXO+iQHLrVsBGP3334ZSrSHG0RbsuuL/rOP8zl2czdyVtsy4RlXj0A2g1pHGz5ZkzrDrYChX0zN4fTDIPa6G29TKKk9zN7MZq5SaBfAZAPsAvAjgaaVU+vqmHsBV9baVecUV6r9xvomZRtN6/PA6suI60Z3o6aQbIOg2nZQka3QZDOVqekb3qYs4N7WyytPc9ZJUrJT6JoBv+jhWHiS9Y5jylR54+giAS+ambehOXAumKI3mHO6LFFH7Hs5Mv116TJHOlcsrOH9xzlsHY6AlLHYfav3Ik4xdHBqsOrk60gyGspmeabTeqDBP+plpKHQFRVh1DuZTRofNpMkqt01dD7/X5mObOvl66k4lad7nAsvG0mO6sf3Bx68BAK0Jl4W4MkMdpntrrTqAy1eucBaatuaautSYNDfRp144jScPnlpcTydyBAsr7KJCLNCi6jMNTDxzZLHuMI2D1JYbFX2vKb/oC+OtH0G4JrKb9EIGe5Ex3diCx5KYcK4kDSy8aUh5eqs5n2hWrW3/64RuklzCgPDv9cHnjmKVIWXL5w26sF1PbKpzc17hjfMtf5irgzTcmunchVlrGZapfXS0vdPY1Zfj5Uc/ild23JT8BGOIm6Zeqw70XAZ70Qm3JQqEhy+fqis2TSdtm/QoceVf0dQY3euDX49tdED4eCLQfub5hcCaDwqr2WVVb21zNmcaTVQHBAMCmIJnYSfq1MnX8Y0jrxmLuwEsmtk+qA4IJrauxyNfP2b00SS9m5Pk+IrQJsEmuNIMbtfhkuge/v3Z3DmuKTsz55t4/M7rsH3PsSW/ozfON71VABVW2KVRnQNc5mw25xWGalVcmJ2PbR8d9q1En9u+5xguzM57NWWb8yq2bIn+ufwI+4qTMID22tkkxAkun62SAveMKe0pur9M7pzomnRupeB4QeOEqDnrK1BRWGGXtKa0IoJ5pbQbwKQlvtlo3W3i2kfbhI6tdCwLcaLT53AYconJ6TomnjninC8HtPbeXR+8CmNXX55YSNr2rQ7fNao+tMXwmnSaXvh4eQYqCivsoqq2iC0aVbH6rFwLqH2aonmz6wenMXb15fTTeWb7nmNOgs6058ZHR7Bu217nQEaQYXBmprHoJ+vkNfXdWDPueHk2MxDVhR/v2NiYmpqa8npMk7pdEVnSr1+XcwdAe7e5/foR7D5Uz+SXsfn98iapVkDiWbttr9Pr7tm0ZjEiHyVLRUzcjbvomDQ/13MWkUNKqTHdc4WNxkYxqbnzSrWp0NEsbQDaPv8Hjp/VCjqXCNOlz2+fD9op5pTqevF1WbE1DHBpdmmi3wco5Tlzo7BmLBBfcAwsVX9tWdpBZ9kwpjbr8wumhevdeU61gh1BHeyWDcNt0VsgeysnG2zzlI1gr7li2xs6U+78xVnnRg/9XgmTV2+8wgo7U1JxmKgjNanz0+Y/SBIgmVfAyhXLcPjhGxcf+8L4NW0m9dp31LRdKpae0wAuzM6nMo37/UeSF2k6nsRp/7qGD9HPMN38+i3S/tDk0cXk+yCYY3IBZKFQws5Fk7P5qZI6P22RKN3d2XY3tw3Qnpyu45GvH8PzL7++5HkB8Pf/zuX44ak3F9fQaM6jOtA6x6T024+kU6TJpwv2pmtdtm4/bdkw3OYz1kVCfXcL6WSzzYcmjy4pj5xTavFv3wKvMMLORZMLHjdFr5KG0eMiR9G7s83xPLAwCyK6aWxagwJw8CdvtJ1rkrSHAJaLpSeNRjyyMDA9SV22znwL0lVMgsf3RLFOTyh76oXTxsd9C7vCRGNdI1hR1T8aycnzrjU5XcfEs0eMjRl1USUfveriiDZHIMlIeo2qA4K3XbbM6IMbGap5q24xrS3tZ9jONY99ZItupymztEVjC6PZudxddT4O18L9KGmEYvC8qYwr3MYpOF5aP1qtOoBGMz4fvyLCsrGMuPpnBa2O0Odigg0+fae2gv112/YmvqHHjfb0reWZcleTZDy4UpjUE5O/qSKyGKJO25U1SpZGguOjI5j+3I3WkYrh46Vtl+4i6ACzuU/cCdIh4n6AP91xE1auWBbbct2n79S2pjRpR3Fr8536ctcHr0r0eBYKI+x0uUm1agWP3XHtYhcKUyeQpJvL1rxT1+0kzWcGdbPnLs4mWltS4rqjEDfGR0fw2B3XGp8fWrhpxd1YfftOXW5mSQSUSw6gT830C+PX4J5Na5YMCbIlZGehMGasS9mKr64PtuadgJs672L65FU3G8CghH90xfwDAmy/ZSMAe4OKPHxervmergIqaDxram4B+I/qf2H8mlyEW5TCCDsg3t/mq47PpaNKXJKuS5ucvLn9+lYXift3HWbJmAd27juh7VryS5dVF1OIzl1o19TzLPFy9ScmEVAHjp81Croi30ALJexc8JF97bqB4oRYOI9Op3G+NTtnbF6QldWD1SU5WnmnEJQBW3ccUwrR6sEqHr55Y27fefQGHwRIwn7DpALKpgUWuS63MD67ThKuz7MhgHPQQlfvl2fsQCkYS+NIOmydgE2Jx0q1BJGrrxdo73gd955wB+XDD9+InZ+4NlNtqek8RxZ6zhWVwuTZ+SDNLMw4DS9LzlSeOXamUiNBK2pIkmPryBHXTDX6etO+y9r1wwe9sIa0lKLrSRxp0klcyoRcHL+mO3WW7hc2RoZq3uYRkEvYOnK4phDFade2ZhWdIknnkaRaaDfpO5+diTRzKV0EWZzwMJXfTJ18fbGFlM+ed2H/jI/INFmKySecJAfWtq86MVLQBRffd6dLy7JSGs0uzSaKE2QuwsMkZJ88eGrRhPUl6FYPVhfvwHn2BSPtzDi2ZwLs+6pIGnkvaKFJKI2wS7OJbCPiXIWHSZj69JSODNVwz6Y1GFy+DPfvOrxoTkRH/1HQ5YdpH0UVvrgbpG7PVSuCcxdme85U7BUt1JVMZqyI7ARwM4CLAF4G8FtKqRkP62ojSXBB99o0Ccc+8vayTEEbGarh3IVZa/JxrVrB2nfUEk+PJ34x7a/brx/BgeNnnfdPdM8NDVbxi7cu7YFeurZ5zovIg0zRWBG5EcB+pdSsiPwhACilfj/ufUmjsUmiQ7bXAv4Gh2RZu0tH4rjOGS747K5B4smjo47vriY+6cWobW5dT5RS3w79eRDAJ7Icz0SS4ELS1ut5E5TfhDuxbnrP6iUNOaPUqgOYnVeZBB3Qu+ZEv5JHO/FeNhV9Tx7LG5/R2N8GsMvj8RZJcsFdXtvJTqyT03XsPlRfrKudUwo/PPXmonlTn2m0aXquHU3i6FVzgrhjMhWHBqvYvGN/14VMXvMi8iA2QCEi3xWRH2n+3Rp6zWcBzAJ40nKce0VkSkSmzp41T17SkSS4EPfaLO2b0rB9zzGtpvnUC6dxZqaBikguQ3YEYJpJH2AKWPzirdmO7eF+IVbYKaU+pJT6Nc2/rwGAiHwawMcA3K0sDkCl1BNKqTGl1NjwcLJp9ab2Tls2DLclNJpeG/zwOxkun5yuG4MLwZjDPPrNCYC7N60pzB2XmNGlEK1cvqytNX8vp3z0ClmjsR8G8PsA/qFS6ryfJbXjMowkuLs9ets1ePS2a4xmah4+kMAsri9oasEcjPM596rTked0JtIdoqbiOkMr817w4/UyWX12/wnACgDfkVYK+UGl1L/MvCoNuuE2aQIRvsPlpkFA3WrrNKcUdh+qY+zqy6nZ5Ugn/b5Ripby0StkSipWSv1dpdRVSqnrFv7lIuh0pNXQ4szcpKQZs5c3NGnypdN+3yi+93BZKGwFxdCgvvDadncL7saN5txiG+isZVRJTYcBaeXQ5Q1NmvzodpkUSwHTUchGAJPTdfzirXZ/WLUixrubztyMDry2fZ7JZElaIbGq1mrmGM2Qt82CDfyAInDugUeTJj96IfetSCkfvUIhNbud+05ohcPK5cuMGyDt3TjOZEnapumN880lgvPhmzdi5yevtU6JmlMKqwerWObYWkMAbNmQLOJN3ClSsT65RCGFna09dtL3xN2N44RktKtxeEqSDgHaBCcAPHbHtahWzMLsjfNNq/YXRgHYfajOvKucoM+smBTSjHWNRoXNzwHDMN64u7FJGNZnGti8Y/+iSetSo2sb4v38thuwfc8xbxPH4nr1kfQUrUyKtCiksHPpYGJKCQljuhu7CEnA3oFC94Mw+fbOzDSsCcg2RoZqOLOgKeqOS/KBPrPi0fPCzhYcsN1ZTSkhFRHMK2W8G7sIyTBhk1a3nmhuoKnOMRCaSQiEtWlcI31IhFyip4VdXNtn253VpNXMK2UdOGMTknEaXlx7apNGqpsEpqNaEaxcvgxvNpqLAhWAtlKDPiRCltLTAYos+UxpI2YmU3N+oQRMR0XEaZ2m/ChbYCWMTtA9+NzRtlZQQ7Uq864IidDTml2WfKY0nYknp+vGxppDg1XjtHeTVqZbp04jNZmhUcLdaieeOYK3XbZM+9krV5hTcAgpKz2t2WXJZ0qTZb5z3wlju6Vwa+yAYMCNSeNz9ZmlGanYtDT3ZGCCkHZ6WrNLo52FSRoxswkJXY7bYCiJOes6gUsBjlW1KkRaE6vSzLBgYMIP3Sz2J/7paWHX6XympIIlEI4+1mnK1YvzT0bNaAYm/FC0magknkwDd9KSdOCOCz7uwqYBIiuWDWhz4PIceqJbi457Nq1JNL2KuNHLg26ImdwG7vQKvu7CJg0NyGampsG1ddSB42f548uBXij2J37pC2GXZPpYHDY/Xyf9N64/Kv748oENMvuPvhB2nbgLd7o8yNV/yB9fPmQNjpHeo6dTT1zpx5Y7E1vXW7ugAPzx5QkbZPYffaHZ9eNdeHx0xNoFZYTBiNxhsX9/0RfCrhdb7viIDtvKyLp9foQUjb5JPeklTL3s7t60JtGIQ1P6A8AUCEJ02FJP+sJn12voosMKwJMHTyXqHmxrrV5f6IEXHRJOCNFDYZcDpiiwApwnUE1O17H7kF14/e7Th7s2zo+QokFhlwO2KLBrOoxLUnG0XJfzYgkxQ2GXA7Yo8Kqaft5tlLQ5gkwyJkQPhV0OjI+OYOVyfcsmx2mIqXMEi5xbSEieUNjlxPmLehN0xtCDLkqaHne2IeGElB0vwk5Efk9ElIhc4eN4/UDWqo7oPFoXbEPCCSk7mYWdiFwF4J8AOJV9Of2Dj0HK46MjeH7bDXhlx0344p3XYbBqv1wzjSajsYQY8KHZPQ7g30I/uqG0+K6tHB8dwY8//xG8suMmq7Z3/67DeGgy+VhGQvqdTOViInILgLpS6ojEeN5F5F4A9wLAmjVrsnxsYcirtlJXCxwQJC+PXX05TVpCQsRqdiLyXRH5kebfrQA+C+BzLh+klHpCKTWmlBobHjZXBpB4xkdHcPv1ZkGWJHmZkLIQq9kppT6ke1xErgGwDkCg1b0bwA9F5ANKqb/xukqyBJfqCubbEbKU1GasUuoogHcGf4vIKwDGlFI/97AuYsGluoL5doQshXl2BSSug3HRe/kRkgfe+tkppdb6OhYxE5dawqaehOjpi+adZWL7nmPG5+5J2C+PkDJBM7ZgmNq0A62xioQQPRR2fYTLNDJCygqFXcFYPWhuESWI9+kRUlYo7ArGwzdvxIChWIXJxISYYYCiYARR1vt2HdY+z2RiQvRQsysg46MjxmYATCYmRA+FXUHx0UKKkDJBM7ag9OJgcEJ6GQq7ApNXCylC+hGasYSQUkBhRwgpBRR2hJBSQGFHCCkFFHaEkFLAaGwBmZyuM+WEkIRQ2BWMyen6ksli9ZkGHnyuNTqRAo8QMzRjC4Zu/kSjOccGAITEQM2uB0hilpoK/dkAgBA71Oy6TGCW1mcaULhklpr60pkK/dkAgBA7FHZdJqlZygYAhKSDZmyXSWqWsgEAIemgsOsyVw7VtLMjbGYpGwAQkhyasV0mjVk6OV3H5h37sW7bXmzesZ9zJwhxgJpdl0lqljLPjpB0UNj1AK5m6eR0HQ88fQRzSi15PAhoUNgRYiazGSsivyMiJ0TkmIj8kY9FkXYCjS4q6AKYZ0eInUyanYhsAXArgF9XSl0QkXf6WRaJoktRCcM8O0LsZNXs/hWAHUqpCwCglPpZ9iURHbqIbQDz7AiJJ6uw+1UAvykiL4jI/xKR3/CxKNKOaTA2AKxYNoD7dx1mZJYQC7FmrIh8F8C7NE99duH9qwFsAvAbAJ4Wkfco1e5YEpF7AdwLAGvWrMmy5lIyr3fVAQBmGk0AjMwSYiNWs1NKfUgp9Wuaf18D8CqA51SL7wOYB3CF4ThPKKXGlFJjw8PDfs+CLMIOKIToyZp6MgngBgDfE5FfBbAcwM+zLoq0d0KpVQfQaM47vZeRWULaySrsvgTgSyLyIwAXAXxaZ8KSZOgSh6sVwQBaqnMcjMwS0k4mYaeUugjgHk9rIQvo0kyacwqrB6sYXL5sUdvbsmEYuw/Vl7yWkVlC9LCCogcxmaEz55uY/tyNSx4bu/pydkAhxAEKux4kSScUdkAhxA12PelB2KCTEP9Qs+tB2KCTEP9Q2PUoNE8J8QvNWEJIKaCwI4SUAgo7QkgpoLAjhJQCCjtCSCmgsCOElAKmnhScaHcU5uMRoofCrsBwrCIh7tCMLTC67ihs3kmIHgq7AmPqjsLmnYS0Q2FXYExNOtm8k5B2KOwKDLujEOIOAxQFht1RCHGHwq7gsDsKIW7QjCWElAIKO0JIKaCwI4SUAgo7QkgpoLAjhJQCCjtCSCmgsCOElAIKO0JIKRClVOc/VOQsgJMd/+ClXAHg511egw94Hr1DP5wDUOzzuFopNax7oivCrhcQkSml1Fi315EVnkfv0A/nAPTPeUShGUsIKQUUdoSQUlBmYfdEtxfgCZ5H79AP5wD0z3ksobQ+O0JIuSizZkcIKRGlE3Yi8kkROSYi8yIyFnnuQRF5SUROiMjWbq0xKSKyXUTqInJ44d9Hu70mV0Tkwwvf90sisq3b60mLiLwiIkcXvv+pbq/HBRH5koj8TER+FHrschH5joj8n4X/ru7mGn1SOmEH4EcAbgPwl+EHReR9AD4FYCOADwP4zyJSaX97z/K4Uuq6hX/f7PZiXFj4fv8EwEcAvA/AXQvXoahsWfj+i5K28d/R2uthtgH4C6XUewH8xcLffUHphJ1S6kWllG7W4K0AvqKUuqCU+imAlwB8oLOrKx0fAPCSUuonSqmLAL6C1nUgHUAp9ZcAXo88fCuAP1/4/z8HMN7JNeVJ6YSdhREAp0N/v7rwWFH4jIj89YJpUhTTo+jfeRgF4NsickhE7u32YjLwy0qp1wBg4b/v7PJ6vNGXMyhE5LsA3qV56rNKqa+Z3qZ5rGdC1bZzAvCnAD6P1no/D+AxAL/dudWlpqe/84RsVkqdEZF3AviOiBxf0JxIj9CXwk4p9aEUb3sVwFWhv98N4IyfFWXH9ZxE5L8A+EbOy/FFT3/nSVBKnVn4789E5KtomehFFHb/V0R+RSn1moj8CoCfdXtBvqAZe4k9AD4lIitEZB2A9wL4fpfX5MTCpgz4OFpBmCLwAwDvFZF1IrIcrQDRni6vKTEislJE3h78P4AbUZxrEGUPgE8v/P+nAZgsocLRl5qdDRH5OID/CGAYwF4ROayU2qqUOiYiTwP4MYBZAP9aKTXXzbUm4I9E5Dq0TMBXAPyLrq7GEaXUrIh8BsA+ABUAX1JKHevystLwywC+KiJA6zf1P5VS3+rukuIRkacA/CMAV4jIqwAeBrADwNMi8s8BnALwye6t0C+soCCElAKasYSQUkBhRwgpBRR2hJBSQGFHCCkFFHaEkFJAYUcIKQUUdoSQUkBhRwgpBf8fDoL+9B6HBAIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def plot_ci_manual(t, s_err, n, x, x2, y2, ax=None):\n", + " \"\"\"Return an axes of confidence bands using a simple approach.\n", + " \n", + " Notes\n", + " -----\n", + " .. math:: \\left| \\: \\hat{\\mu}_{y|x0} - \\mu_{y|x0} \\: \\right| \\; \\leq \\; T_{n-2}^{.975} \\; \\hat{\\sigma} \\; \\sqrt{\\frac{1}{n}+\\frac{(x_0-\\bar{x})^2}{\\sum_{i=1}^n{(x_i-\\bar{x})^2}}}\n", + " .. math:: \\hat{\\sigma} = \\sqrt{\\sum_{i=1}^n{\\frac{(y_i-\\hat{y})^2}{n-2}}}\n", + " \n", + " References\n", + " ----------\n", + " .. [1] M. Duarte. \"Curve fitting,\" Jupyter Notebook.\n", + " http://nbviewer.ipython.org/github/demotu/BMC/blob/master/notebooks/CurveFitting.ipynb\n", + " \n", + " \"\"\"\n", + " if ax is None:\n", + " ax = plt.gca()\n", + " \n", + " ci = t * s_err * np.sqrt(1/n + (x2 - np.mean(x))**2 / np.sum((x - np.mean(x))**2))\n", + " ax.fill_between(x2, y2 + ci, y2 - ci, alpha=0.1, color='gray')\n", + " return ax\n", + "\n", + "from scipy import stats\n", + "def equation(a, b):\n", + " \"\"\"Return a 1D polynomial.\"\"\"\n", + " return np.polyval(a, b) \n", + "\n", + "x=coeqtl_df['MetaPZ_flippedforAF']\n", + "y=coeqtl_df['flipped_zscore_bios_flippedforAF']\n", + "\n", + "p, cov = np.polyfit(x, y, 1, cov=True) # parameters and covariance from of the fit of 1-D polynom.\n", + "y_model = equation(p, x) \n", + "# Statistics\n", + "n = y.size # number of observations\n", + "m = p.size # number of parameters\n", + "dof = n - m # degrees of freedom\n", + "t = stats.t.ppf(0.975, n - m) # used for CI and PI bands\n", + "# Estimates of Error in Data/Model\n", + "resid = y - y_model \n", + "chi2 = np.sum((resid / y_model)**2) # chi-squared; estimates error in data\n", + "chi2_red = chi2 / dof # reduced chi-squared; measures goodness of fit\n", + "s_err = np.sqrt(np.sum(resid**2) / dof) # standard deviation of the error\n", + "\n", + "# Plotting --------------------------------------------------------------------\n", + "fig, ax = plt.subplots(figsize=(5, 5))\n", + "# Data\n", + "ax.scatter(\n", + " x, y\n", + ")\n", + "\n", + "\n", + "# Fit\n", + "ax.plot(x, y_model, \"-\", color=\"0.1\", linewidth=1.5, alpha=0.5, label=\"Fit\") \n", + "\n", + "x2 = np.linspace(np.min(x), np.max(x), 100)\n", + "y2 = equation(p, x2)\n", + "\n", + "# Confidence Interval (select one)\n", + "plot_ci_manual(t, s_err, n, x, x2, y2, ax=ax)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":19: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " coeqtl_sig['celltype'] = celltype\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAJcCAYAAABaL11XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZxk2XXXi373GeLEHDkPNU9d3VVd7pZa3WqVpitbg9vIso3BmPuwMGAQxvfqgkCYh++7+AIfjK+fQYDAgB4ChMRkgWwkZLXUkixLLZVarR6quqqyq7rmqpzHmM+JM+z3x46IjIyMnKqyKrOy9vfz6c7KyIjIkxE71l5r7bV+S0gp0Wg0Go1Go9FoNBrN/Y2x1Reg0Wg0Go1Go9FoNJo7Rwd3Go1Go9FoNBqNRrMD0MGdRqPRaDQajUaj0ewAdHCn0Wg0Go1Go9FoNDsAHdxpNBqNRqPRaDQazQ5AB3cajUaj0Wg0Go1GswPQwZ1Go9FoNBqNRqPR7AB0cKe5qwgh/l9CiB8KIUpCiHEhxFeEEO8UQvzfQghfCFGs/3dRCPHPhRDDKzzPrwshpBDiffXvv1J/zlL9eWot3/+re/tXajSa+5E7tU9CiD8lhBip3+e8EOJn6rdr+6TRaO5LhBB/Tgjx/FZfh+b20cGd5q4hhPjrwD8BfgMYBPYBvwP8dP0u/1VKmQF6gD8ODAEvdXCgDgN/Ehhv3Cal/AkpZVpKmQb+I/Bbje+llL98d/8yjUZzv3On9kkIsRv4HPDXgSzwN4H/JIQY0PZJo9FoNFuFDu40dwUhRA74e8D/JqX8gpSyLKX0pZRfklL+zdb71m8/B/w8MA38jban++fA3wJq9+LaNRrNzmaT7NMeYEFK+RWp+DJQBg7fwz9Fo9FsU4QQ14QQf1MIcUYIURZCfFoIMVg/2S8KIb4uhOiu3/enhBDnhBALQohvCSGOtT3Px+vPkxdC/FchRLzl539JCHFJCDEnhPiiEGJXy88eFUI8V//ZpBDi14QQQ0KIihCit+V+bxFCTAshfgT4V8DJeqXBQv3njhDit4UQN+rP86+EEIl78DJqbgMd3GnuFieBOPB7632AlDIE/gfwrsZtQoifA2pSyj/Y9CvUaDQPKpthn34IjNSdMrNekukBZzb5WjUazf3LnwDeDxwFPgR8Bfg1oA/lg/8fQoijwH8G/hrQD/wB8CUhRKzlef4U8AxwEHgM+HMAQogfA/5h/efDwHXgv9R/lgG+DjwL7AKOAN+QUk4A36o/psEvAP9FSvka8MvAqXqlQVf95/9P/W94U/15dgN/545eGc1dw9rqC9DsWHqBGSllsMHHjaHKoBBCpFElUx/Y5GvTaDQPNndsn6SUoRDiPwD/CRUo1oCfk1KWN/VKNRrN/cwnpZSTAEKI7wBTUspX6t//HvBeIAK+LKV8rn77bwN/FXg7KggD+GdSyrH6z7+ECrIA/gzwb6WUL9d/9reBeSHEAVQSa0JK+Y/q93WBF+r//gzwfwD/UghhAv8r8FOd/gAhhAD+EvCYlHKufttvoGzf377dF0Zz99And5q7xSzQJ4TYaAJhNzBX//ffBT4rpby6qVem0WgedO7YPtXFnX4LeA8QA/4X4N8IId60eZep0WjucyZb/l3t8H0adap2vXGjlDICbqLsTYOJln9X6o+jw2NLKPu2G9gLXF7huv4HcFwIcQh1spiXUv5ghfv2A0lUz/FCvVTz2frtmm2IDu40d4tTqCzRz6z3AUIIA1W28J36Te9FlSxMCCEmUIbqd4UQf2uTr1Wj0TxYbIZ9ehPwbSnlD6WUkZTyRVRW/H2be6kajWaHMwbsb3xTPynbC4zexmNTqMqEUVSA2LEHWErpAr+LOvn7MPDZ1h+33X0GFYg+KqXsqv+XqwtGabYhOrjT3BWklHlUPfa/EEL8jBAiKYSwhRA/IYT4rdb71m8/hqo5HwL+cf1H7wVOoJyoN6GM2F8G/sW9+Ss0Gs1OZJPs04vAuxondUKIN6P68XTPnUaj2Qi/C3xQCPFeIYSNEm3ygO+t47H/CfjzQog3CSEcVCvLC1LKa8D/BIaEEH+tLoiSEUI83fLY/4Dq3fsplPJvg0lgT6Pnr36S+P8DPiGEGAClFiyE+PHb/5M1dxMd3GnuGlLKf4ySCf//oFTmbgL/O/D79bv8vBCiBCwAX0SVErylUVcupZyVUk40/gNCYL5edqDRaDS3zSbYpz8C/m/gvwkhisB/B35DSvm1e/dXaDSa+x0p5QWUoMknUadkHwI+JKVcUyFcSvkN4P9C2Z9x1Endn67/rIgqufwQqqzzDeBHWx77XVS/38v1YLDBN4FzwIQQYqZ+298CLgHfF0IUUEItD9/eX6y52wgp209fNRqNRqPRaDQazU5GCPFN4D9JKf/NVl+LZvPQwZ1Go9FoNBqNRvMAIYR4CngO2Fs/5dPsEHRZpkaj0Wg0Go1G84AghPgMqrTyr+nAbuehT+40Go1Go9FoNBqNZgegT+40Go1Go9FoNBqNZgew0QGuW0pfX588cODAVl+GRqPZRF566aUZKeV9PQxV2yaNZmei7ZNGo9mOrGab7qvg7sCBA/zwhz/c6svQaDSbiBDi+lZfw52ibZNGszPR9kmj0WxHVrNNuixTo9FoNBqNRqPRaHYAOrjTaDQajUaj0Wg0mh2ADu40Go1Go9FoNBqNZgeggzuNRqPRaDQajUaj2QHo4E6j0Wg0Go1Go9FodgA6uNNoNBqNRqPRaDSaHYAO7jQajUaj0Wg0Go1mB6CDO41Go9FoNBqNRqPZAejgTqPRaDQajUaj0Wh2ADq402g0Go1Go9FoNJodwJYGd0KILiHEfxNCvC6EGBFCnNzK69FoNBqNRqPRaDSa+xVri3//PwWelVL+SSFEDEhu8fVoNBqNRqPRaDQazX3JlgV3Qogs8G7gzwFIKWtAbauuR6PRaDSaHc/EWRj5EuRvQm4vHPsQDJ3Y6qvSaDQazSaxlWWZh4Bp4N8JIV4RQvwbIUSq/U5CiI8IIX4ohPjh9PT0vb9KjUaj6YC2TZr7jomz8L1PQnUBsrvV1+99Ut2u2VFo+6TRPLhsZXBnAU8A/1JK+WagDPy/2+8kpfyUlPJJKeWT/f399/oaNRqNpiPaNmnuO0a+BPEuSHSBMNTXeJe6XbOj0PZJo3lw2crg7hZwS0r5Qv37/4YK9jQajUaj0Ww2+ZsQzy69LZ5Vt2s0Go1mR7BlwZ2UcgK4KYR4uH7Te4HzW3U9Go1Go9HsaHJ7wS0svc0tqNs1Go1GsyPY6jl3HwX+oxDiDPAm4De29nI0Go1Go9mhHPsQuAuq105G6qu7oG7XaDQazY5gS0chSClfBZ7cymvQaDQajeaBYOgEvP2jS9Uyn/iwVsvUaDSaHcRWz7nTaDQajUZzrxg6oYM5jUaj2cFsdVmmRqPRaDQajUaj0Wg2AR3caTQajUaj0Wg0Gs0OQAd3Go1Go9FoNBqNRrMD0MGdRqPRaDQajUaj0ewAtKCKRqPRaDQPChNnl6plHvuQFljRaDSaHYQ+udNoNBqN5kFg4ix875Nqvl12t/r6vU+q2zUajUazI9DBnUaj0Wg0DwIjX4J4FyS6QBjqa7xL3a7RaDSaHYEO7jQajUajeRDI34R4dult8ay6XaPRaDQ7Ah3caTQajUbzIJDbC25h6W1uQd2u0Wg0mh2BDu40Go1Go3kQOPYhcBdUr52M1Fd3Qd2u0Wg0mh2BDu40Go1Go3kQGDoBb/+o6rUrjKqvb/+oVsvUaDSaHYQehaDRaDQazYPC0AkdzGk0Gs0ORp/caTQajUaj0Wg0Gs0OQAd3Go1Go9FoNBqNRrMD0GWZGo1Go9HsRCbOqhl2+ZtKEfPYh3RJpkaj0exw9MmdRqPRaDQ7jYmz8L1PKkXM7G719XufVLdrNBqNZseiT+40Go1Go9lpjHwJohAmX1Oz7OJZyOxSt+vTO41Go9mx6OBOo9FoNJqdxsQZmLsGdgKcDPguTJ4Dv7zVV6bRaDSau4guy9RoNBqNZqfh5kEYYMdBiPpXQ92u0Wg0mh2LDu40Go1Go9lpODkgUid2UqqvRPXbNRqNRrNT0cGdRqPRaDQ7jeHHoP+4OrErT0N5CrwyeHktqqLRaDQ7GB3caTQajUaz0zj2ITAtJaJi2OrEzklBelirZmo0Gs0OZssFVYQQJvBDYFRK+ZNbfT0ajUaj0dz3DJ2At38UvvKrIENIdkPfw5AeUGMRRr6k7qfn4Gk0Gs2OYsuDO+CvAiNAdqsvRKPRaDSaHcPQCeg+APvfocRUGsSzMH4G5q9BvGvpHLy3f1QHeBqNRnMfs6VlmUKIPcAHgX+zldeh0Wg0Gs2OJLdXzblrZe6qmn839or6Wp6BRJcK9BonehqNRqO5L9nqnrt/AvwqEK10ByHER4QQPxRC/HB6evqeXZhGo9GshrZNmvuCYx8Cd0GdzMkIZi/DrRfVSV6iR6lo3nwBSlPqRC9/c6uvWLMJaPt0F5g4C3/4D+H3f0V91X2rmm3KlgV3QoifBKaklC+tdj8p5aeklE9KKZ/s7++/R1en0dwl9OawY9C2SXNf0Oi9S3RBYRSKY7D7SXVKN39NBXOVORh9SZ3w5fZu8QVrNgNtnzaZibOqbLm6sLSMWe/hmm3IVvbcvQP4KSHEHwPiQFYI8Tkp5S9s4TVpNHePxuZwuz0uE2e1+IFGo9k4QycWbcXv/4pSz6yVIPTAiAES5q+CnYSBY+o+2sZoNIuMfEnt3Yku9X3j68iX9GdkM9F+zqawZcGdlPJvA38bQAjxHuDjOrDbAvQHafNZ6TW9k83hTgNDjUbzYNJuj0wHxk8rW+JkoDILtYoK8spTYD4OqT5tYzSaVvI31d7bii5j3ly0n7NpbHXPnWYr0WUGm89qr2n+ptoMWlnv5tAaGApDix9oNJq16WSPCmNQGlcBXXmmHtgZkOwBw9I2RqOB5S0UprNcmEiXMW8u2s/ZNLbDKASklN8CvrXFl/HgocsMNp/VXtPcXuVcNW6D9W8OE2cgPwrFcfV9dhcMv0lnDTUazcp0tEcHVAlmaVLNvyOCyFD9d90Hlz5en0xoHkQ6nSAVxgAJHFSfC7eghIqe+PCWXuqOQp+Obhr65O5B5k5OkjSdWe01bVetqy6o7499aPXnnDgL0xeU8yUM9d/CDbj8TZVN1Gg0mk6sZI+iEJw0GCZYKbATIIRKHpWmFu+rTyY0DyKdTpC6D6jAoyFMlOjS5YKbTaexLdoG3RY6uHuQ0R+kzWe117RdtW69m8PIl1Q/jGEqB8ywQJhKEEGj0WhWYiV7ZCeU/TEdIALThtw+EKh+vI0knzSancZKSZHQgx/92/Azv6O+6sBuc7ndBLhmGduiLFOzRRz7kCo9AF1msFms9Zq2qtatl/xNFdhl94A7D4EHlqP+C71NvXyNRrODWMke7XkKrn8Xeg6qhBGoeXd2AsKaSj7l9i7arT/8h1p0S/PgcCctFJrbp5EAbxWAeuLD2t7cBjq4e5DRH6TN5268prm9MPW6+nfXPvXVdxd/ptFoNCthJ1UgB9BzCJK9UJpQs+2iANKDKmEUuDBwHHoPq1MJ0Op1mgcTnfjeOm4nAa5Zhg7uHnT0B2nz2ezX9NiHYOxVmLsMUqrSKa+oHDVdrqDRaDrRGpg9/BMwdxVuvagGmA+egMCHWz+AMIDcbmVPDHOpTdGiW5oHEZ341tzn6OBOo7mX3M5cwaET8N7/C178tHLOAA68C576pXu72eiZiBrN/UN7YFYcg1hajUHoOwJ73gLxnPq++0Dnz/S9Uq/TtkWz3VhvklavXc02RAd3Gs3dpmH8J84o1cuGOMrU6+pE7r3/1/oCvA994p5cbkd0eZZGc3/RHpi5BTW0vFVgpfcQ2I4SiOjEveg90rZFc7+i165mm6LVMjWau0nrEOH8qBoaXJ5U8sqgSi1f/PSWXuK60MNFNZr7i3alzHhWlXO3qgCuFajdC/U6bVs024X2weUTZ1e/v167mm2KPrnTaO4mrca/OL44T8qdV+IoUi6WWm4Wd6NMRA8X1WjuL9pFITK7VN9drQQ//DREkSrLfO+vr/wcq/UebZad0bZFsx24nVM4vXY3n/XaFV0Ouyo6uNNo7ib5m2DYcO074BXUfDo7pYYIgxJH2UxW26Dg9o2hlobWaO4v2gMzJwPJPijcAglYMWWHTv8n1YO3ki3o1Hu0Xkd4PQ6Yti2a7cDtiAfptbu5TJyFb/w9VeEUevXWlVfgvX9nuV3R5bCrossyNZrNpL2swyspGXLfBScLkQ9eXjlXvqvKpPY8tXm/f6UykRc/vVge2moM1yo7aaCHi2o09x9DJxaHLqcH1LDy1CA4KfU5Dmswf2PjZWTrKUdrLUlfzeZo26LZDqw0uLz9FK51jy9Nwfw1vXY3ixc/DXNX1L+d+nsxd2V564ouh10TfXKn0WwWnbJJk2ch9MEBMsNqllStqgK8+VCVaVZm1UaxkdO0lTLiK5WJnP2CKsEKa+r7vocXjeF6ft96paF1qYRGsz3J31Q2ycurIM+MqTl3hZvw2n/b2Gd2PeVoq52ENL42fufRn4Dpkc62RdsUzd2idW3NXwPfU6fYDdpP4dr3eLcASLWvFkb1yIQ75daLqsLAjqvv7TjQoXVFl8OuiQ7uNJrNopMzY1hKftyOq40gMwzFSSCC3B6ozsPUedj/jvWXFqxWkmA6cOkbS4M4t6DKHOJZZTh9V8232v3kxozhWtLQulRCo9m+5PaC/01AKLsEasZdWINaefEz+42/D9ldqizqTkopV3LAxs8oR7rVTlz8Smc7oW2K5m7RvraC2mIQ0Xuo8+DyjgmLg+rrj/7te3jxOxi5xvegy2HXgS7L1Gg2i05lHaledVp34F3wyAch1aeCuqEfAScNqX5VfjD7xvpLC1YrvSyMqd4+wwa/qnr9xl6G7DAglJiLHVdB4MRrqxtDrRym0ewcjn0IDEMldypzUJ5Wwk7CUrZIGCrQm7sM46dXL6XsPwbXn4dzvwdXvw2zl5eXo7WrdYL63suv305om6K5W7Svrd7DqkWiNK5O4RJdy5MI6y3d1Nwee56CWlHZKCnV11qH1hVdyr0mOrjTaDaDibMqG33+f6iAqjSlbk/vUiVQDSO0cAvKE+r0bvK82hTyN2DmDfWYxkaxWmC10gZz60U1jPjAuyCWqJeDZpVDt/dpFWQ2jKaUUJ1b2Riut1+mFb3xaTTbl6ETsPspIFK2IPABqRI+sZS6z8wFiGVUkFeegcnXlKDBV3518bM/cVadtPU9opJXlVlVfXD0J5Y6wis5YPHc+u2EtimazaR1X339y+pz0ErPQbWH/szvqJO4TifWnRIW+sRoc3jql6DnsPp343XuOaxub6XRJpLoWjkQf8DRZZkPGrp/YfNpBELpYVVmWc3Dje/D4KNgWvCuv6n6SSbOQFCBWA7sJASj4JfBzoAdU6WSfY8o52W1UqSVShJAPVYYSjwBlFN14StgxVWAN3NB3deMwaEfXfm918phGs0ORKr/TEf120U++BVYuAFTIyrJFAXq5P/qH9VtQI8K9Bo2qNU2NPqTqgvKxvEzi79qpT7dkS+t305om6LZLNrLMKdeV2JnB961uF821tZKflL7eJFOpZua22JkPM+zZ2OE4Z/iHeYpHknn6R4+tLKPulabyAOODu4eJHT/wt2h1dmJZ1UAVZ6B4hg89ZFFoQA3D0NvUreXp9VIhFoRgjJ07VGy5NMjKghbLbBaaYPZ85T6d6JLnQI2rsNOqFPF7gOqt69x/7ZsmDKuk4wuVPlz02cZ3HOI/tY7tGbMO21+euPTbDYTZ1W5caMXZs9Tat1qe3V7TJ0HTCAAGapTOxmpz+qVb9Es3Y5Clahy6qd4qb7FcsiNiBm0OmANmzFxBuavq9LO1t6mfSfVqYq2KZq7QVvCci73CPLa8xTPfY/xvndwtCui16iqdbian/T2jzL14ueZev08o7KPyV0/xVNyL8e28E+73xkZz/Opb18ll7DJDJ3gq+4j/G7V5yOPHOTYUG6Jb7K7K8EzJwY5Npzb6sve1uiyzAcJ3b9wd2gtHUoPqEzg8Z9W5UcXv7JY2lieUSUEvQ8tOlbxLnWKJyP1HN37lZBBWynSdBDj7MhZPv7503zitRhXjv755SUJT/2ScnxmL6uTw2oeDBN6jrBE0atDCUPDuOarPsO5ONPGAOevjjJdailbac1qdirZBF0qodk8GjOPrn1HlTY35kV+4++vf4SHZiluHmxHvZ52Qok9mY6yRwj1s2QPINXrXZxUpWt9Dy8GcLdTmtZqMwZPwMBxmHld3Z7oUiWdrbZS2xTNZtOyT0+XXH4wbXMl8TgJERKvjPPihFT76vTIin7SyHie//N7EX9y5D38n9Ff4Q+H/gJXzAN86ttXGRnPb+Efd3/z7NlJcgmbWhDywtU5fnB1jivTJT576voy3yRf9fXrvQ70yd2DxAoZ1/nxK/z75y7qrMjtslLpkJuH3L7F21N9KuCqTEPfQ+C7VPyQWc9gJHqMPr/Knv5hBtLxJc83XXI5f3WUyBloGrdPnovzkXf/yvL36e0fVf0xMoRkt3LK0gOLz7eColfDuOYSNgA3B9/HYzf/AzfHxul/aP/SjPlqJZud+hQ0mtth5EsqIeJkF6WxhVCn3usd4fEg0+l03cmqXtvQB2ECkXpNDRsGjkGtpE5HLz0HXlmVle99etGGNJ5no6dp7Taj9zAkexdt0h/+Q21TNHeXln360lSZuGVQC2J823wr/1b+aWIYnLiY5B8YK/tJn5q6ypXpEl0J5Tq/ejPPE/u6yCVsnj07qf2m22R0oYplqNfTsQzSjonnhzx/aRZgiW/S+Kpf79XRJ3cPEh0yrrNz0/zRpMO3LkxxbjTPty5M8VvPXtBZkY1w7EMszE/z8sWrfO3cGC9fvMrC/DQ4bcIBfQ8DkXJYex+iUJhjZmaaV8p9+KV5gvI8/372Ma70/+gSIYKbY+PkRJmbg+/DEAI/DLkyXeJX/uPL/Kl/fYq/+JkX+cRzF9V7NnRClV8e/+mlvQRriBCMLlTJxBdzPbPphzi958NMB4nlGXMtcqC5F+RvQuhRjkxuzle5PF3iZjGiWq3otbYWK5yu33IOMeFalAKJ69fwwwiMmEoEeUX1OU4PwJH3K7GU3F5I9TE7O8n5qzf49TcO8ZO/O88vvfE2Pncmzw9fe42pML72adpaNkPbFM3dpkXgp1j1sPw81fws3zFPknEspJR859IsU2Z/x5Pp16s5dboURsRtk7ht4lgGl6bLZOIWowvVLfmzdgK7uxKMjBdxLIO4bSKEKg/vTtq8cnNhiW8C6Nd7HeiTuweJDhnX67fG+ELlGW6GFSq1AAk4psEnv/4Gv/PhJ7f0cu8XRuRevuR/kKfk8wyLKWbkAJ/y38lPx39I+Y3rzAQJMnGbIwNZ+vuPQ2mc+VKF592HwYKE8Lnmxfi31XdSpI/8xST/oEWIYDpIMLHnp5hLP8RMyeWl6wtEUcRsqYZjmRQqPknb5FPfrvCRdx/k2G2IEOzuSpCv+s2sGMBV6yBzR/83fvz9R5fcd8rs59aSvytFv+lqkQPN5pLbS2X0LNOFAlhxYqaBCDwma5Kk2c/AVl/fdqbD6fqVmRKnJwVDxj6G5BS90Sy10CLu5EgPPqzGsfQ/okrEzRiF5D6u1HKUXj7NVb+H17s+xHfzA0wXy1wMB/mB9TOYNYOjo2n+7pNr9BytZZPuUDhF9+Ro1qRF4GeXcYvXillOJf8Ek8kjCEDUg4lng7fyZ/0vqse0nEx/1/4AmbhFNm7j+mEzuCu5AUU3YHdXYkv/vPuZo4Mp/v33ygggGbPIxC2EELx5X47TNwsU3WCJb6Jf77XRwd2DRAf1sn/u/QSveMP4UYhpCCTg+iHfvjTDyHheb5Dr4Nmzk1R6HuHVxI80bzt3Y46XLszxF8wRqkaaqXyCW2NjHM4EdL3v7/A/xnv48vg4cVswnvewTAGmRFZqfOP1KWAAL/xj7O5K8EauwOiYSy2cIF/1Sccs8lWfhG2SS6iNZqLocXw4q0oVfmTjZVPPnBjkU9++CqisWNENyFd9fv6pPUvuNzKe50uzj/EB73V6Y1CswfkrN3m8D7q0yIFmMzn2IcZPP0+WBXwMRAQxWWba2cO3g7fyZ7f6+rYz+ZtMG71cujJL0fXJxG2uTfn0WAH/PfMXeNr7Lvtrl3GCEl6Y5q173gJv/oWm+NOU2c+/N/8Mld2PcH4sT8ENmJ7x8MMaQSSbe4UlBBcnS3zu1HX+wc8+tvL1rFXKeQfCKa1iDK09OR9590G9f2mWUhf4MR/J8y8/+zLdloUjJV4Q4QURb9qb40yQgXctV3k1X4uRr/ocGUjx0vUF9XxSYpui416pWR8j43m+PjLNYCbOQrVG1Q/xgoinD3bjWBZv3psjX/WZK3lMFFzmyj6WIfjoew9v9aVva3Rwtw25q1nINvnYM999Dj/yMQ0DQ6jbIkMQhFLXNK+T0YUqw7l48/vposvZsSJeuId/ywd5h3eK3UySdwb517V3cP3rNRYqNwgjya15HxDYpiBum7h+iGkYnB0r8O6j/VydLvHS9Xls06Q3ZVPxAipeiB+GHOhVs6ka2cNmqcLQ450lyFcom2qst5LnM7pQJRu3eHRXjp9/as+y978RyJ7J/VkemvtD+rxxpp0Bvph8H39W98Vo7oDldm8vX+75C7yv9CWGS2cBwc3cWzg9+Cd4LdCO1GpMmf2MXLlJRaQpeQETeZeommc83sfN2CFuxg4BEEURU6Uaf/SjP1p/5M8A8B+fu0ilR53kF72AbNxisuBS9gIcy8AwBGEkiVmC0Je8cnP1Mv4RuZcXxU8xePVr7Ba3GNh7hIHWUs6Vxiasw6a09wvrnhzNWhwbzvHOI72cGytQ8kLScYtHd2WJWSphytDRZWvvGamSCFEUYQq4MVchkvCOQz06kXAHND6/Tx7o5uUbCziWgZSS0QUXx7Z437F+vnx6nO9emcMQsCsX58hAmq+PTHOoP61f9xXQwd02415nITNxi3ylhmFIJAIpJRKIW4auaV4n7SWNl6bLeIHKPr0c7OIH0Z9Qd/TBMgS7uwLCSFL2ArxAErOgFkjKXggCcnFBwfUxhODqbJkwAjfwUe+MwDQEtmlimapl1gsi0vXTtmapwjpnwLSut0eGss0Tu5USCo1AdlY8xGz6IQAiKRnPu8vuq9Gsl5XsXiL9EL/f9TeXlOTkqz67M/Yqz6Z5NngrDwfnmfNqeDKB7ZeIyTKfKv0vTAUFdncnSTkWRS9kMBtf9vjWhFWjDC1hm+QrPgiQUtmyMJLETFG3TZ1ZfG8PMP3Qr3DKDchXfD7SLh9/m3Or2pNroHtyHnTWkyD/8Mn9i/L79f3z+myZXbk4H//86WWPOzac433H+vnkNy4TRJKHBtIMZeOYppauuBMan19D2Dyxr4tL02WKVR+E5H3H+vn6yDSjeZcDPQkQounv2KapEzirsGXBnRBiL/AfgCEgAj4lpfynW3U924V7nYU8eaiXLxU9gkgSRBGmIYiZBgNZR9c0r4OR8TwzRZfvXJqlO2lzbDjDXKmG5ytp8SBSTk/D9fEjyehClSAC0xAIwA8kqugfDKFq/wvVgDcmC9yYqxAzBbZh0Jd2iJk+kZREUpXPekEEEvb3JG+rNGQ96611o7wxV8EPQg70pZvPUXQDHFPwCa24qrlNVlqHfhCSr/rA6uXCmqWcCfZw2v5pHq1+m5w3wU3Zy7Phu7gg9yOqAaEs05tyCCLJR39seXlTa8KqUYYWM1WFgR9ECCFIOxZeKEnbJgd6kit+/u/GnrYem6T3rweT9SbIjw3n+Mi7DzbXUcwUGEJgWyY9aavj4y5Olnnb4d5lySYdZNw+rbamPxOnPxNvfn9xskwYRowuVJFS4tgm6ZjFpakybz3YoxM4q7CVJ3cB8DeklC8LITLAS0KI56SU57fwmrace52F/PDJ/VycLHJpqowQYNcDiX09KZ45MXhXfudOoXUTeXQ4zUs3FrgwUUAIQRiBEIuBnWAxwAtVPIaBxDChFkLMUBnykhcSSRjMxHj1Vp64ZarsuK1UpADcWkguFSOXsMhXVcnUwf70bQVUa6239o2y5oe8fGMBgH29KYpuwM25CpGU2Jape140t8VK63A8HyxxwHZ3JTqWC2uWsrsrwX+/vIs/8P44fhAt+ZkAKl5IJD1O7M5xcbLMobb+6tYe3J6Uw8ODaS5MlnhoIM3N+aqyX0LQm7LrCoJy2Ryqxud/s/e09dgknQB4cNlIMuHYcK552yeeu7hYltn2uMbX3391lMGMw5GBNP0Ztab1KfGdsVq//z/62kVuzVUxhUAKCEPJbLmGH0U6gbMGWxbcSSnHgfH6v4tCiBFgN/BAB3edVAuvz5SZKHodSwXulGPDOf7+z5zgs6eu88rNBQSCN+/N8Qsn92sHag0am4gfhlydrdaHcEpkvUEbuRjQtRYtRagTOtM0MIQAQmKWSSghEzdJOzZxy2A87zOYcZgs1uhJxZBSgpRUg4h/8lPHN+X96bTeWo1m+0Z5sF9lx8cLHrZlsrsrQS3rrLgp6jWkWQ+rrcNWB0yzNiPjeaaLLlNFFz+U9WoA9TPHFBiAbRn0Z+I8daBnWTC2Ug/uL7/n8JKfN4LtmaKLvcrnfy0bs1HWY5N0AuDB5XaTCSs97txYnhtzFXIJm8GMQ8EN+N7lWVKOhZQqIf7oruwKz6pZi/YT1NbPb8ENQEB/xmE872IZyr8qezqBsxbboudOCHEAeDPwQoeffQT4CMC+ffvu7YVtAe1ZjOszZV65ucAT+7ru2qnIseEcv7Ga0pmmI43N4AdXCziWwUzJJ2YJIilIozJQqxFGkkBKFSBGksFsnIO9SW7OV7kxX8UPJQjBOw73MlvxKbkBtil455HeTXvv11LJ7LTh7e9LEbNNfvvnHgfg458/TW/6wZtD86DZprvJetVaNavTeqrVl3aYyLuEEkwgVhcqCCWkTJO+tIMhxLITirV6cNuD7Y9//jQ9q3z+N/u9XY9N0jy49ul2kwkrPa7gBuzpTpJL2Dw0mOa7l2aZK9Wo1gIGs3GKbsBkwdPq4rdBe6Lol955AFC26NPPX2Om6FKtBURSEEYRrh8hJQwm47oyaA22PLgTQqSB/w78NSllof3nUspPAZ8CePLJJ1fu2r4LbMXsnPYsxkTR44l9Xc1+An0qsn1obAYF1yfjWHhBhIFyogYzDhcnSyAkfqjuL1oea9b76xL1x3lBRNnzGZkoErdNBjIOw7k4l6fLVGoBSEktiIgiwTuO9G7a37Ba1qz1b1xto9zszPz9wlbZpp0402utdahZH62nWnt6ktimYDzvUgslgaoVJ4yUfPuRgVTzcY1g7Nmzk0RRxMh4gYLrk43bDGWdVfebtT7/m/3ePqj2ZqNspe90L2m3h0cHU3x9ZBrYWDJhpSRELmE1h2j3peNkHCVCt1ANCKXLcC5OKqbFPTZKe3n1qzfm+Mz3ruIFEdm4zZv25jANwUI1IGmbmIbAsZSQyslDm5fg3qlsaXAnhLBRgd1/lFJ+YSuvpZ2tnJ3Tmhn9+OdPb3oPXsMYnh/PN3u2Ht2V2xFO4r2ksRnETEONMKgrOQ1kY5iGIOmoIadz5RqmIfBDiayXaiZjFn4YkYyZxK0YRwZSvHozT9nzONiX4rG9XfSl1fv+2miBrqRNbyrGcC6+6RLAjfXWWBeffv5aM2hYT9Zdn7rcO3byTK+Vyi93YjB7t2g91TrSn6JQ9RnMqhM8Ua/NbCSivnZukloYkXIsjg6keXxvN+fH89yYrRC3TTKOheuHvD5RpNLIULXRKAF9vi4odXxXBseyln3+N7O0VtsbTYNO9vDrI9O871g/FyfLG0omrJSEePbs5JJkQqkWIBF0JWz29ybxgoiLk6UVPyOazrQmoi5OFHjlZh4vCDFQVU2nrsyRdUxsw8AyjeZrXXSDJYlyTWe2Ui1TAJ8GRqSU/3irrmMltsvsnPYs5XTR5dxYAT+UfOK5i2s6OitltaIo4sZsRSkzVnyStsmnvl3ZEU7ivaKxGXzu1HW+c2mWbMLCDyVBJPHDiKFsHD+UZByLiYKLHywKhhfqJZapmMWTB7rpz8S5Oe8ymHVIxKxmYFephXQnY3zwseHm792IOtd6HePVgoa1su761OXesV3s0nporL1z9SHYuYTF8eGNJZHa1+W1mRIf+68T7OlO6IRUB9qV5w72Jvn2G9MIIejLOLxpT45C1efUlTksU9CTtKl4IT+4NsfJwz3kqwFCiKZ4U9w28YKIfHV5iXnre3NsKM2rN/NcmipxqC/FL7/n0F17X7S90TRYyR5enCzzsfcfvaPnnim6fPbUdaaKHrfmqzw8mGZfb4qyFxBJSX/GaX5WvCBS/WGaddOaiDo9mm8myb1Q4gY1JMpP2p1z8EJZn7epEkheuPQgWicAl7OVJ3fvAD4MvCaEeLV+269JKf9g6y5pke0yO6c1S+n6AS9enUcCTx/qXjNr38lh/+Q3LvPwUJqJgkfcNpuDsyeKHseHs9vSSdzOHBvO8Q9+9rGOjmx/2uHSVInz43nKtaWKdQ0dTUMs5qDScQuvFlBw/eZts+UavanYkseutQ5bT2ZvzlY5Ophmf19q1fWyWtDwsfcfXVfWU6+bu892sUtr0bA9YRhxa64KAvKV2oaTSK3rcqbkcmGyBECh6u+oU8vNon2/uDhZQiLIxk2qtZAXrs5TC0IMAX4oybshqZhJV8LhG6/PkI1bFCo+rh/iWEZTGCobX+4qNN6bWhByfa7KUC5OxfOZKnr8P89e5MtnxulKxqiF8q4Igen3XHOn9rA1KHBMwVjeZX9vCtuEU1fmEMBTB7tJ2iYXJtTpXMqxSNgS0xBN8TQpJbnElnc53Ve0JqLKXoiQEbW2oA1gPO9xqD/FB44PASq5PdAy53QnV7PcCVs2fVFK+byUUkgpH5NSvqn+37YI7EAtvHZBjK2o629kKXMJm9O38qTjFicP9zCQSTSdnkYjfDutjlGjcT6I1MDpguvjWOrtdyyDkhtsSyfxfuHYcI6Pvf8of+MDRzl5SPXEnb6V5/J0mZK3XIrcQI1AGM9X+dr5SU5dmaU3qUYhxEyDSCppcds0GGobMrzaOmwYunzVbw4cvjhVYrbkrbpeRheqzb6CBno9bD+2i11ai4btmSh6OLZBLmETt00mCt6qNqud1nV5aaqMlJJCtcaFySIj4wWiKFr3cz0ItO8Xam6pGqKZsE3CKKLohQgByZhBxjGJJCRjJpMFl0d35Tg6mMaxTUpeiGObHB1M8+iu5U5S4725NF3GsQzCSDJXCaiFEY4p+N7lOV64Modl0HS4Rsbz9/5F0exY7sQetu6Vw7k4Z8cK3JitMJmv8u2LM8xXapS8gNdGCxzsT/O2w70cH87x9kO9OJbJ6EKVKzNlokjyyFCG4w9wIHE7PHNiUPkpVZ+YKci7nctaJTBfrhFJybWZEt+/Msu5sTyfeO5iMzhv+DazJY/z4wVeu5Xn1794/oG2NzrVsALbqa6/kaVsZKlaT3tWc8A7ZbV6Ujaz5Rp9aQfXD5slBem4xY3ZMuOFuzNy4UGgsVnMlz3O3MpT8gJEh+Lw1txU1Q8xDMF8yeXiRBFDSJIxk9cnChwfzvHRHzvM10emyVf9da3DVkOnyhhUf82l6TL9mfiK60WLFNwfbCe7tBoN21NyA9KOKvFzLEOJD20gadC6LqeLLvmqj0CVM6/VD/ag0rpf3Jgt4/oh0yWPoicJ65nxIIKcbWKZBhAxWawxlIszU3R59Vae7qTNY3uyxG2rqZYJ8OUzo3zm1A0mCy5+GPFQf6r5Ho8uVBGoQLFcUwFkOm5xZabSTHjpyhDNZnIn9rC9WqUWRhhC8oNr80RSErcMQim5NlPmf54eJe8GlF0f0xBECDKOSTZuUa6FlLxQzwXeIK3l1baxchedIVSf44vX5lgo+8sqkUqezyNDWaaLLi/fWMCxDLqTFrMl74E+wduyk7vtTmsGdDzvkkvYyxbJyLjKHnz886ebWYS7yUazVJ3uP5SN10+DVHCXr/p4fkTSErx8Y4GhukqjzrRunIbS3GujapC5EBB0KDOAxQAvCCWuHzKad7EMwa5cgrcc6CHt2DxzYpAPPrZ7zXXYSiObPlNSjvAbUyWmii4zRRdYeb20ZtEap4atTp1me7Aeu7QdcEzBty9OM1V0uT6rFF8bKmgbSRq0rsuqHxKqKkF6UjHitokQomM/mEbZ/7F8lXItJGGpmZpB3fBEUpVl1gK1B8yVa8yXPUpewDuO9ADwvctz1IKwub6+fGaU3/zKBQpVn4F0DMcyePH6PCXXx/NDKrWQSEp6UjGqfkjCNptVIaCc7/P3eM/U7GzuxB62V6tk4zZ5V/XTJWPqRDsIVf/8zbkq+UqNaiCp1CKiMKTqR9yYqzJdcJkouHfzz9yxNCqe3v5Q/4plrZGEVMxioaICu4P96WYlWi5hk68GFN2gWUEQt01qoaQv7WyoSmSnoU/uVmG1uv7NqPPdaBPoRrNUne5vmgYf/bHDXJwsU/HDplrmeN4lYZtcmlYD04/0p5ofjO3mOG5XRheqjOddIikxhVJ8kmsIUEdA3DIIIglIbi5USY4XGMo4TaO0kTWyuyvBtZkSFyZLShXPDym5AQsVn//+0k3ScZuP/tjhZY/TIgX3D9u136i11/ONySJBIOlOWEyXfK7NVOhN2RzY27Whk8bWdQkC0xD0pGySMdUrvFI/mEbZ/899/3pz9EHkK7skBJhCUPVDip4kZhrkEibZRIwLkyXesr+L9zw80Dwxbay1z5y6QcqxmicdAxlVFTJTcJksetSCCEOAF4QEkSSKJG9MlUjGTGZKLiU34OZsld1dSd0bo7kjNkNAo71a5chAinNjBZK2QXfS5ta8S9UPm7MhG+0UhqFaKqSIyMRtYpbA9UO9lu+A3V0J0o5NLYio+Mv1CeK2ScnzmSi4HOxPN3+WiVtk46q6YK5UozupKjq8IOLE7uwD3Vqid8Xb5LOnrnNluoQfStJxa8PB0O2owG3UAW+/f8wUJG2DP7www+6uBH+9LpQxMp7nL3/2ZboTFo5t4vkhL99Y4E17c5Q8nRVfL7u7ErxwZQY/jMjXQqJ1ThZy/ZAICCJJd9LG80MuTpaYLLjcmKtsKIHwzIlBPvZfJwAliuL6IeOuOhWMJBwdSK84SmG7Bg2a9XEnDs+dOkut9ixf8YnbFi4hMduiO6lUXw1DcKAvveHnbl2XV6dLTBQ9VQoYt9jfk1yy2WsWOTac46GBFG9MlShUA8L6HJYIcCxV2hpJ6Ms41IJwsYR7qqzmebU5RpMFl4H0UnEnISUVP2Iw6zBd9AgiqNQiLAHlKCBhmyRtm1OX54ik5LHduftC6VWzffnymVE++Y3LBJGkJ2VT88PbUvpuT37bpkl/OoZtGoQS9nYnuDlfIV+NMA0wDYMoilBpWKgFESV88AQPpRydDL8DnjkxyBdfHcUPo2U/swz1/hRcn7myv+RnRTdgIOMAsFCtMVv22NOV4C371SipfNV/YFtLdHB3G4yM59Vcn4RF2rm9YOh2VeA26oC3zjBrOF89aWvJ73j27CSOJZgoeIRS4lgGyZjJyHiR9zw8sP4X5gHn6GCKfEWVdaw3sAPwQqmCL6A37TT7IG8uVDm2a2PO0LHhHHu6ExSqPiVPZdD39ybpTsYoeSEH+9MbGqUAWmb4fuBOKgk2owqhU6+nYxk4tsn7jg0SSSXktF558k5rTjljFY4PZ5dULujS4ZV5+lAfcdvke5dnsQwDyxbISNmnih8St0ye2NfFpekyXl0hs+D6zJRczo4WqIVRc+TOYDZOoeqTSyx2c4wXPGKWAULQk3KIZMR8xUeiytwMA2zLImkK8tUa+/tSS66vEUBqG6NZDyPjeT75zcsglH6AF0RcnCpxdCC94cCqU7L84z9+lK+PTJNL2GTiFt++OM3IeIF0zMSPJJ5U82ob1AIJQnJjvsKe7jglL7bKb9SsxLHhHLtyca7PVZb9LIxUVVTMENQCyZfPjNOTshnKxil6AYYQ7O1J8r5jA7x4dZ5yvTy8Uc6/3frR7xU6uLsNnj07SXdSOdqtM4E2Egy1ip1cmlKKS0XPZzzvghDNsrw73eAam+bXzk8QMw1O7M5iCHtJoHBuLE/ZC5gte0SyXraDIB03teO0TkbG83zm1A3itsFcZXHIpkSVc1gG+BFLhm8K1GsdSZBSSSuPL7iYhiBuGyBp9gTMlFwuTZXJV2sYwljV+Xl0V65ZbvK18xPNocXp+nNtVCp6LcdfO2Zbz53Mv1smLBCEXJku8Td+9wzvPz64rvez1Z5l43ZTSr/Rb7WRPrs7mbmoWcozJwb56rkJFWjVSzKDSCllzpZrhFJyabpMb9Lm6qyPF0SYAk5dXpSBb7z+732kj899/yYAGcek6IXUQsn+7jiFusqvJUwsI0ACRwbSlLyQ9x9Xwf03RqYousEy0aaYKZpjMyYKLq/eWOCrZyf46HsP88HHdm/NC6e5K9zpXvHs2Un8MKI3FVvie00UXGL1f2/093dKODVEgzKORTZuUgsAKZcEdqBOwWNCneJ94/UpHh7MMjKe1zbpNhjNV7GEwJdyieicBKpeiGcIHhpwWKgGTBZcLk+XOTaY5shQtrl/PX1IcG6swOmbBd5/fPCB3h92fHDXqu41mI3ziyf33fGGMbpQ5fiuDK/cyOP6IUU3oFJTG9rRwdSaj4el9d5TRZdCVQUEqZjZLMu7UxW4VieJegDx0vWF5pF1w8mfyLsslP26CqckisBnuSHTdKbxOs+WPPb3Jqn6oeoHQmAaSrggZhr49ZIOaAR8AtsUuEFEKMGQEX4UYRomYSTpTcUougF+GPLSdaUC5ZgqS77aycqSchPHag5XfXRXFtiYo71W0KBnzGw9I+N5njs/SSQjLMPA9QMWqosiFms5UK2BWVNxzBREMlr3+9lqz44MpHjp+kJdQMValkFdy8G705mLmkUaJ/l+EHJrwSWKIoSAhSpEEYRhxJWpElNxi/09CSYLNapBSCZu8+iuLP31vrq5ksc3Xp9hd3eCG3MVFio19vWmONibxDINYqFS4rRMgRACU7AkoVR0A968VyWdYGnPeNI2CEN1AuNYBj0pm4Ib8MlvXu5YPq65P9loOWWrnYiZAgE8f3kWP4iYFzV6Uqocz7EM5so+Jw+vvqetN1H59ZFpjg9nefpgD0U34PyYyc35CjPFgE4eUS0CoggDVXml97+NMzKeZ6akkk2dXuMIyDgGk0WfPd0JVZ3kBpwZL7CnN9ncI/ozcd591NlQlchOZUerZbarexWqPr/5lQt8+czoHT3v7q4EjmVxqC/JTKlG1Q+JWQaDmThfH5lelwJYqwqc64dKfINFFTgETaf8dml1kjIJGyEEjmVwaaoMLDr5lZrqx1AzkQzMuiytF0R87tT1O7qGB4HG69yXdqiF9eGmQCglYaQcnkCqTIoh6kGdoQI/N4hwLEHSNsk4MUwh6EraOJbJnm7lMJ8dLdRnVakSzkd3ZVdVgWpVEMslVWB/dCBNb9rZsArmSvPvGqp3f+N3z3BlulQfjLyoYPWgKlTdaxoOi20KwjDi2myZ67NVorqgxXzZ57e/uroqYauqbkNxDCHIJWLrfj9b7VlPyuHhQdUHl60/vuHstM+W6qTK21hz00WXU1dmee78JOfH8pwb08qKt4PqSREMZGJYpoEfqlIn24B4zKIWhIzOVzh9K89b9ndxqD/Nu4/2NwO76aLLxUk1K/OpAz184PgQJw/38Xd/6jg/9+RuxuarFCo+8xWP6YJLLYiIIslsqcahvmRzXfzCyf0dlQ29UDJRcJtKd0IIsnELP+w8w/Beq1Rr7pyVyinDVd7jhp2wDHjhyhynrsyRiZk4tsFkwWOu7Km5l26AZYg197ROc3/bbVvjPrUg5IWrc/zg6hxeEHG4N4VlGur0e4Xnt02Yr/p69uZt8LlT11d8XQGVBPeVum/cNqn6IYWqj1sL+cPXp5kuLqqV6hFOih19cteu7tXoFfjMqRt3dHrXOBkZXXDZ3RVHCIEXRDyxr4uYZa6rFKq13lvUT3haVeCklCtKw66X1oz8kf5UMyOfr9bIV31uzlWoZR1myzUkEEURfqSU1BxLICV859KsLjNYg8br3Juy+daFBap+1CzHFHXVzJ6kzfuODzJfrnF6NE+xGiCRvPNgF9MlH4FkoepTqYWUvIB3PdRHEMEvvfMAf/13T6sSzYRFOmbyrYvTlL0A2zQ4OpjquJZbezPbT0o2UqrQaf7djdlyU/UukhFIg5dvLPDEvq5VZ+lpNp+GM/LorixfPTdJGElMUyVm4rbJYCbGTMlb1Sa1nvQWqz62KaiFkhO71Unvet7P9v6VA31pfvk9h5f9zvWUj+7uSnB1utQ8yUk7JgU3oOAG2hbdBgvlGlNFpfwXyZZScdNQqpmRUv0zDIFtmdyar5K0zaZQzaXpMgjoSztNpxiUQ1bxI57Yl+PceJFqOVQJyqRFTypOLQiZLdc4PrzU5rS/f7u7Erx6Y4Ge1KKN8QJVete+7nSlwP3JRsspW+3E+fFC8wQ4jCSOZdKbjlH2QiJZwzYNPvre5bamnU5zf9tt2+hCFcuAV2/mm7ZnvuzxxlQJyxCE9eOQWoeiKsc2Sdgm43kX21q7RFSzyCs38wxl49yYrxAFS0/vbEOJzamyWOpChhGmYTTnDL5wZY6nDnY353I+qH12rezo4K6TulfGMZm8w5kkDUem1elulLBEUq7bsW11wK/NlJgoeBRcn2zc5kBvkgN9d6YC1+qY92fiPLGvi3NjBQxh4AchRddnpqSyX0Fdtt+xlNx4EEHKMelOagWolWgETefG8py5uYAfRup1rP9cohyoxm39mTj9mThHh7JEUvLF02M8trebF67O4fkhe7qTSCkpegFx22rKkH/g+BD5qs9kvsp3L88SMw1ipgq+f/MrFwBWTVasR4RnpVK5TuM0LkyWODqYrm++sXp/lWgOSteZs3tHw2FRfbQWlVpQV0SU7OqKk7BNCq6/qk1aMm5AqD7it+zP0ZdWjtB638/1rLP1OFjPnBjkY/9lAoQqucpXfWZKNRIxg1//4nn+7k8d1/ZonXz5zCh/dGkGrxYSSJb0AodS4gUhUoJlKjXdXMLm4cE0p28ucGGyyGy5RqHqE7cMDvX1NZ83E7f4xsgcbz3Yw76eJNVAsqtLebyObXLyUG9z71mrPOqZE4N89ewEBTdoKnZ6QcSB3uSydXcnvaWarWN0oUpvKtZMOsHq5ZStdqLkBqQd9ZiiF/CW/V28MVlisujxk4/tWnffXqdEZbtt292V4FsXpnAsgzBSvtxsqYYQai+vCYOgg6IjqITE3p4Ys+UaJw/3dbyPpjNVP6DsBUrzAZYEd5Zp4NfHI9gCyl5AEEmSMTWOxbHVDM/Tt/J84PjQA91n18qOLssczMYpektTLEUvZDAbX+ER66fhdD99qJeTh3qbJSy349g+c2IQwzA4NpzlfccGOTacxTCMJWUGt1OK0j6YOmaZHOpP84/+1GPMl2tcnCxxY66CY5lYoiHvq4K8mCHIJmyODWf0KUwHWstGHt+TY6rkMZF38UOpTuxQH65aGJG0Ddy22S1FN1Dr0w040p/CCyLceq9ezDSWlE423seXbywQM1XwHUnBcFeclGPxmVM3VrzG9ayZ1UrlOg2J3dOdaKreHRlQ1y6lpFhfa1rB8N7RWlLZl4mTjdukHZueVIxkTDnKjmWuaZMaw2T/8Z96nEP9aWzTvCvD7Fuvt0G7zTw2nGNvb4Js3GKm5DFTqtGbijGcjTNXqi0r49R0ZmQ8zye/cZkwirBMA9tQZeGNTd8PJFU/wg8j1V5QC/jmyCSv3VpgPO9ybVYpaFqmIJRwfrzITEklRouuqjxolGwXXF/1BLcNLV/P3nFsOMdH36tmb86WaziWwcOD6WV7IKxcJq73qO3N7q4Ew7l4c59bq5yy1U6kWwL+bNymLx3n+K4cP/Om3RvqwW33hzrZtmdODDJf8anUxe08PyKSEQnboBZJErYak9AJP5RM5j3CSOr9bwOMjOeRkcT1I2xzsThTAGZdrMYS4JiLyXLTAEMIDEPwI7tzvPtoP4/uyume7BZ2dHD3iyf3UfZU03YUKXGAshfwiyf3bcrzr8dYrIdODnR7k28n5/vLZ0ZXdd5Xel6A716ZwzQgYas6ctsyEajGVQkMZB3efriXuG3pU5gOtGaQB7MJuhM2EYszcKh/DSJYcEPKtYBXb8wtWSfvfaSP71+e5QdX5zENmCt7XJutUHSVyECDxvvoBlF9zIIaRjyed8lXatyaqywL5L58ZnTN3qZOf0unXoTGCd7urgSjC1UKbsCNWdW32ZeO85b9XQihmhHa167m7tJqgw71JbENgRuEpGIm1VpA0Q3oSzvrtklr2aLNvN7VbObx4RzHd+Xoz8TZ052gOxWjFkp60jHd07lOnj07SRBJHNNQCsj1XupW+yQlakCzVMHe+bEC1+aqSCRpxyZmmfQkYwRRxNhClW++PsW1mRL5qs+b93Y1HfBs3G464K0iKuvdOz742G4+8fOP85OP7WJfb4q0Y5GwDT79/LUle9t6kgOa7Ucjgf3wYBrHUkqtwIrllO12reQqW3aoP3nX/KwGubjFzXmXkucjBKRiFlU/Iggiqh1E7gxUEAKqfLAxd02zPj536joxyyQIVa8u9QSURCVuTEOQckzS8RjvOdpPX8YhblsYhmi2gmgbsJwdXZbZKFVrVcv86I9tnrzyRoeKr/VcKz2uUynKXMnj//vVi+QSNl4Q8sZkkVOXZzgykKYWyiWlde3P+4nnLjaFPYRQqnhBpLImUkr296ZAqnII04x0/XIH2svL/CCkdcRhe3LPEtQbtGeJENiGwQ+uWDw0mKFSCxnLVylUA57Ym2O4O8HZsQJ/+bMvc2I4Q1fdsU05JkiJF6i5eDFDUHR9amHEn/t3LzKUjXN8V4Z81eeT37jMw0PpdZUvrVUq197nUqvPdQTY15vCNtWJsA7q7j2tNqjkBbz74X4WyjWuzlUIIjh5qIdfOLn/toeG383rbbWZoOxS47ajgym+PjLNTMmjJ2mzUKkxU6qRiavPQC5pr/GbNKMLVXpSthKeCEL8UDZPHQwgZgksQ+D6EZGEWmM4p1Q9RZWaT8w0ma0FJG0TN4gouSEXJkr88SeGuTGrgr3upM1wzuHipIcAjg1nbmvGVKeZrL1tM1k7lYnrHpvtT+vn3rZMTh7uW7Wcst2uPX2oB4ESFBvI2HfFz2qsu4N9KW7MVTANgRcosbsgjDAESCmImYIwkuTq/V5+KOstGIK9PQmGsnFdJrxORsbzfP31KaSUxCwDP4wwQolpCoSAREwphwvD4K0Hujk6lKU7FeOFK3Ok49YSkThtA5ayI4O79v6hu9mjcTcdoQadnO/LMyVmih65hE02bpOv+lyeKrFQ8fnxE0OrNpqPLlTZlYsztuACqjSnUee8vzdVH6zuMVH0dH/LCrTW71+cKDBZ9Fa8r0Blx2uBcp6SMUHVDynXQrwg4q0He7hVD6TOTxS5Nlshl4wRtwTfuzJHbyrGUwe7eag/xfcuzxG3DYRlsFAJlDqnAD9QZZ+nLs+RcVRglndrpONWs3dqpYHBMVN0nD/VyIS1JxcaQgvjBQ+7XvKn69y3B/2ZOB/eYDB3r2m3mZ1EMr4+Ms37jvUzulBlfKFKpRbSk7LpTsaUuEpVi6usRcwUTOTd5lDxdhpD5v3Ih0iNwGnFCySurzJWQkDCNtnVlcAPI37nD69woC/F8eE043mP8+OlJYmoXGJlB7zd/hwdTHFxstz8fqborjoKQ886vD9Zy1da7wy6u0XrPndlpsxU0aXkqnqchG1SqYVYhvrcVP2Qih/hR5IISNsmB/qSGEJsyhirB4XPnrqOF0RYQpCMmYSRgW1JMo5JNhEjkuq1j6TENg0iKSl7AWEUUXB9vjEyxZv35nRiuQM7LrjbiWpanRqBxxZckjGz2Zxc8gJilsFcpbZE0axTBml3l5p7VK6FVOuZJ4HKkjx9qIe+tBKGGc+79+1rdrdpzSCfvpVHCIElVGa81ZESKJEaL1i8tVJb9KJmyz7PX5pVpQcxg/l6wJaO25S8ACFUz8GVmQonD/UyMl6k6AW4bgBSko4Z1EJJyVMNyfmKT7UWkomblLxwyVzDohvg1AcGt34+JgseUf3Etj0bPjKe52vnJ+rCQTZH+lP0Z+Ls70sRs01+++cev0evuKYTO8HerSSS8d1LszzUn+LCRAHLMIiZBl49iXF0MK2z46swMp6vy8XXsAxobfkVgG0JhDCYK9cQQNw2Kdf70xvl+VGLIQtCSTn0mS8b+JFE1MvQrs1WmyrR6xFPaV+v12ZKfOHlW7x5bxf7+1JcnS7xrYvT9KZj9GfiTXvTWklwLxKqmnvLdrBjjSR6o6+05AUE9RaIRMykFkqserdEImaRckwm8x6GgK6kzXzFV/ZJsqR3TLMyr9xcoD8dY67sE0ZgGgZWFDJddDENNZarL+2QjJlcnCoxVXRZqAQ8tkfZi4avolnOjgvuVlPTanxdaXjuellrCO9m06kUJYwk/S1KoF4QNRXPGqzUaK6er8Lje3KqaXiyBMDbD/dsWCHvQaW1bCTv+sRMgRO3iCLJQnVx2KlRVx9sFfdtVYOSQLUWMJCN4/lqwHDMFMxXalT9iIRtLhEpONCX4o2pEvt6kvXhrgb5ao1IKlnpVMwklJKsYzcDyjcmS9imSb7qk7CN5Z+PniR+EJJL2MtK5T717avETAMpJZ4f8r3Ls6Qci0LVJ5SSv/iZF3l0V+6ufwY0nfncqetqzmCoxAaODKSaPWl3+n7cKzvXqTLB9QO+dXGarGNTdtXnqVD12duT4G2HeulNO1pEYxWePTvJ3p4kL12fI8IgrJdeNvACSRAphwpA+uESm9QY4yLrN+YSFpFUPUV+KEnGLDVvqhbyrYvT5OI2CNZcI+3780TBI+VYTBQ90nGLi1MlYqZB2Q3IxsPmiJXYOkSBNPcvretipuRyaarMTMnbVHXctezZ7q4E12ZKXJhUI1hSMQvXr6nPiISBTIyxBZdIKiXxxkzgMJKM5V26Eja2qcZiTZc8XVmwDgSChG3SnVTq9rUwIgwlgYTR+QqOrXrxEjGLhwfTjBc83na4l1zCZrrocmm6zFypplWUO7DjBFVWG7q8XoGJ1VjPEN7NphFI+EHIN0ameOHqLP3pGJXaovKUKcD1I7oSFt+/MsuXTo/yX1+8wUvX5/jEcxf513/0Bh/6Z9/h0b/zLD/7O9/j+TemuDJdJpe0+WM/MsRb9nczkE3cFYW8nUpDYfDRXTn60mpQsBCimdUGVY4ZtXpVLO/H8yPIV9TsQSklfhBSqamh4CnHXCJSMJSNE0o18yVmCqUkZZrYpqGGB9fXglmvUc/GLSbr5bsfefdBaqHs+PnwQsnH3n+UX3rnAQA+/fw1fv2L54miiBO7s9RCSbUWslDxGZ2vsFCp4ZgGt+aqXJ0uaQXDLWBkPM93Ls0ipSTjWLi+Oqn1guCOA597aec6iWS8cmOBcjVguugRsw3suijIXF2IQSefVqexD1qmQdxSolkNmkFcRFPZt34giikWk09Zx2Rvd4KeVIxdXUkEynE1hCDtWJS9gJmSR7UWYpuCmGmsuUba9+eC62MguTJd4mvnJ5kv18gmVH8fgGMKzo0V9H60w2msi5mSy0vXF3D9kJ6kvWnquOuxZ8+cGORCPdHtWEqVMR0zSTmq76vshfVkreqxvzlfpXU3L9eCuhhdnMF6351mdd68N8dcuVYfdaMS2Y0ipzAC1w8ZXahSrQWM510mCy6ZuMXFiQJfPTfJG5NFyp7P2EJF+yBt7LiTu5VmmeSrAbu7kktOLObLKjO0rye57sz0Zs/Z2Uh2vOKr/qxM3OL6TJnnL01TnVOlA1Y9oqjWIubLqhwnkpC0Jc9fnOTsRAkhI6RUu/d8xQchGMiqHp3G33BuLE/BDcglrCVqiZqV+cWT+/jNr1wgZsJsOaAtlsNbSTu5hYofsSvnUK1FLFR9UjHoyTqM5z0so8bTB7vJV31M0+Adh3oZy7vEbRMvCBjIxECq7GHVlxzsS/Aju5XS4NXpEgjB6EKVZ89Ortpf114a8+qNBfKVGk8e6OYt+7v4wwvTgMQLJXu7lIKh64dMFD2OD2d1mdw95tmzkyRsg8mCSyipD921OD9W5D0PD9zxc69m5zbzVK9TZcJEwcUyBTHLwDIFJS/AQCWwzo0VONSf1g30q9DYB4dzcS5OFpWabVtaKQISlqAWSZK2SRBFhJHEEgaOAZZpknQs9vUkuDpboVD1sSzBE7uzzJR8pouqJM00VGn4W/bnsE1zVTvQvj+bQnBjvkrcVnPFpIC5SkB/OkbcNslXaxjCuK/KjDXLWc+pWb7qc2mqjGMZxG1TBXgt6rh38v6vx287NpxjT3eCQtWn5IUkYibpmINtCq7MlInbJrZlkBBKkRhU6XIEICFpK8VxwxB6hNQ6+YWT+/nu5VksQ9mesrvYqxgBJipBPlV0sUyDwWyc6zNlfnBtXrUS2Sr5TSiJokj7IC3suOCu1VHwgoDzY0XmKz6mAK8/CagP9UzJ5fWJImEETx/sWVLjDSuXb7aXEM2U3OZAzcbvX+/i2kidebtxSsctkraFH0kGUjFilsFUwSXpmMxVfBzLpD/jYBqCC1MlkJIwEsQsgSEEgZBUvJCZktdsVAe4MVdhT3eSTNy6L/t3toIPPrabW/MV/snXL1FrCeQapU0AacfEq4V4HeafCpRyaSShL+NQqQVU/YipgodlCMIo4tTVOd5xSPB/vO8hgOa6aV3j736on1oo2duj3r+r0yVeubnA4b4kN2bLvHpjgTCK6E3HOLG7a1l/Xfsa60nHKNQ33LcdUqUQ/akYo3mXrrpaYaNkVM+aureMjOf50ulRxheqRAhSMRM/iJj0XOIxc8VTjrXELBr2azUF1c3uj+mkoNmTirFQ9jENgSUEaSzKtYAgVGWB2iatTmMfPNib4sp0admcTaiX7QhBzFDvbbkWsa8ngZRQcn3mqwFDWYfxvEvMMojHVInU2dEij+5Kq6RCFLEvl+Dxvblmr/ZqdqA9kPfr8uddiRglL2j2LCUdi7e1DELX7/X9y3rsxTMnBvntr17k4mRRjRYwBcmYxdt3ZTvuLRtNLq2lCN1gMOMwXfSQSHqSMcpegGGYJGMme7oS5N2AqYKLH6pT7kguyvaXayGmaSzpQdWszrHhHEcG0s2Aer7iYyyK9gLKP6r6koWKT386xncvz+L6Adm4TVjPpPelY4znXWzL3JK/Yzuy44K7hqPwuVPX+e6lObqTNm8/3MPIeJEXrsxz8rCgLx3n0lQZIQQ9aTXbqxaEXJku8SufexnHNnl4MM2+3tQyQ9SaeWyUEIAyCht1cjZyCthunC5Nl+lNx6hFkg8cHwLgf54ZozsZwzINMo6ler2kxAsiTCCSEoGKNkwh8KMILwibBu5zp65zfjTPbEWVPg1l4xzuT+lsyBqMjOd57vxUU7Gygaz/zwCqtXDJ8NNGHl0A6ZiBFIKCG+AFSh3KjySWYdQVTBMEEVydqQDtznDAex4eaG5urZveRNHjcF+SiaIaDNyTsim4AbOlGrUgZDwfLFGb+/Tz15assSP9KV6+vsBMSQmuxEwVyA1l1TDauL1YMqrL5O4dDWep7IUkHQsZSap+iGOZmIZBb8pZMiOzsR5ipmCy4LG3J9lRzKLVfq1UAbG7K7Hp1QuwXCRjuujyB2cnqAVRPSFFve8qxvuP6/7OtWjdBy3TQNYiTKF6gBtxnkQNAs6lYmTjNnt6bE4e6gUgX/WpBSGXpstUaqpMfDDrEDMNJgoeZ0eL9GcchIBQSi5NqbmXtrl6b1x7IG8aBu96qJe5SlDfjyIGMjGCcLE9QJ/Q3t+sZC8+d+o6fZl40zYVXZ+YaVALIywWGz7b95bbSS612rPWXq2edKzZGzcynmcs7zJb9PCjiFqoRiBkHNVfOlHwlKKjlGosAmr8QSpmUq6FCAGH+lLELFOv2w3w6K5c8725NlsmCOq+kgQQRPV18CO7MvzI3m5GF6pUakrwJm6bmAJmSh5TRY+HBtJb+adsK3ZccAdqA+nLxPmxRwaahsQQgheuzHF2tMC7jzrMlDxsw+BIf4rposvLNxZwTEHB9em3TS5MlpbIyDccl9bM4xv1+myAIwPpDTs558byzYxFOm5xpD+1olBAu7NVcgMsQw2PbdCbUg2/EslEXqlpJut1zH6oeiUaAUUoVfDg1BvVR8bzfPPCNBUvwLENBDA6X6Xo+lrWdw0+e+o6r48XaRHEbCKBENXfkktYhBIK9f6iuKU6XkzTZDDrUPQC+tMON+YqRDIiVpfmmq/4xC2D0QWXP/2p7/PwUJZfPLmvozJdq5P88c+f5sbsYpkLQDZuMRtG9Gfiyx7fvsb6M3GODqaZKHqM511O7MoylnfJxi1enyg2s+z7e5J6M7uHNJylRMyg6EpsS2CZBgjoSTrNAL3dCfr2xWmKbsBQzsEQ9hIxi4P9S+3XavPE2pMAjfvcTnZ9pft8+OR+Lk4WuTRVJvQltilI2Sb7elK692oDVPyI9xzt5/lLM0q+vRYtSSy5tZBjw2kmCzWODqSJpOTMzXnOjhVxLOVoZx2TPd2Jpg057FiM512CMMI0DGK2oFoLOHV5joN9KX7+x1dXzGy1UZ947iL5qs/RocWKmrOjBWphtOo4Bc39Q6dTMy8I+O6lOX7skYEltukt+7u4MlPBsQyQsmMJ9u0klxr2bK7kcXGyBAJMA4azTjMwfPbsJBnHwrIMajU1186xTBBqb5wp1Ug7JiIvEEgQyu45lpLqdwM1f1Ov243ROLV9peQhZURDTFwAgVRSdH0pm8f39QCwqyuJZRjMV2r4odIeaNi0sbyrhWzq7MjgDpYblP5MnKcOdnP6Vp7xvEtv2iFhCS5Nl7kyXVJytokYQgiycQsviLg0VaYvvVyGuWEIJosegxmHIwNp+jNLZ4l1otWRcUzBpcki8Zilfl99MPTRgXRzjlgr7c6WXe+d2tOd4PtXZim4PhU3YL7iMZCNU60FlL2QYjVgb5fDlTkXiKj6Sqs/AhwTbs6X+cbIJF88PUq+WiNmKvEChWoizleDZdejWeR7l2dw1wqA65m+TNwiFTNYqAZqAwPSjtU0UkiJIVTprFlXQShUfab8ENMwsA2DQtXnN79yAYBD/ekVHejdXQlevbFAT2oxAeAFEb2p2CoqqksdetM0lqhQNdZwxVfrIhu3ONif1mqZ95CGbRvMJrBNj0p9XiISBrNqDtzHP3+aG3MVhjJO0/nxQ0naMZt2reD6ZByzqcQ6XXS5NLVYYv6+Y/1LSjYbDstqp3oN1pNdHxnP81vPXmCuXKMWRLwxWeTMrQV+9ZmHOTac48+/4wD/8ltXuDlfIZKCx/fk+Oj7HtLrbJ20OsF+GPH1EdVDLVG9LAiwLIP5ss+JXVnemC7xw2tz5N2AgaxDXyrG1ZkK1+er7Afitnp/vUD1xzgxi7ce7ObSdLlZmj2YdTb0/izf10wO9ad12e0OopO9OD9WpDtpL7NNs2Wft+zv4tJUudlv+b5j/Tx7dpJPP3+N3V0Jzo/neWQou+R3rNUW0PDbfv2L5/GjiL60w5GBFH1pZZsae+jlmRKVWkAtiAgiiWUICqUA149I2AZTRZcgkkQSEraBIQSz5RpSRuzrSfHX339Ur9vbIJIS1w8RqMC5cXBnSDVWIu0osZ2+dJwjAykWKkpTIm4L/FD5TCcPdjOYS+hKszo7NrjrZFDitsUHjg/xsfcf5ctnRvnNr1wg5VhQl3ieKLgMZBy8IMKxDAqump/R7ri0Zh7XcnIadMqiBxG4NeXkO5aa4XRxssRf+dHDyx7fXs7y6K4sl6ZKvD5RIu2YxAzBuBuQcixSMUtlZQOVfcok4/yZI3184eVxSq5PJNTmbgiDuGUSRJLZUg0ZSSphiGkIHMtAIusS6zt2mWwKJS9ELtcrWELGsZQSVL1nqDcVozftUAsj3ry3CwG8cjMPQvDWA9384No8tfr7V/ZCECCkxAtCLEOQcix+51tXODqYWdGBfubEIF89O0HBDZoJCy+IONCb7LhGO/U+tWcg9Yypradh244MpHjpuk9f2gIpqfghV2YqPLGvi+FcnFduzFOo+KTjFv2ZOOm4hVcLmnYtG7fJV32y9VKll28sAIsl5l8fme7oZK92qtdgPdn1z566zo3ZCum4pRRbg4gbsxU+e+o6Hz65n6+PTPPkgR5+9JEBPc/oNmhNcEq5qIgJkE1Y9KRizFd8bsxXScdtHt+T42tnJ/CDiIWKTy2I6EpaFFyf8YJHXybetCGGgJ6UTX8m3kxsNmajboT12BzN/U0nezFf8Xn74Z7mfVptU1863gy6/CDk6yPTS/a4m7NVkrbJgb7FJPh62gKODefY15Pk6YM9GC2S1o3AMGYKbsxWsQyo1EIiKQlVzox81SeILOKWiQH4UUSlFlGt1YjZgt6Uw/HhrNYouA0aJ6YlL8CxTVXtFElMQ5CN20RSEo9ZzaRkXzrOI0MZZss1elPOkvm7a/X8PkhsqdcuhHgG+KeoWOPfSCl/c7Oeey0H5OJkmSf2dTFR8OolmoL+jINdH5TrBSqoWa3ufz1OToN2Z6cWRvSmbCLUANmC65ONW+SSKzePtzvWv/aFM3hBQWW94hY9KZu0Y5GIWbz3mCpdamy4mbjDz7x5N7mEzfevzCqVw7yrGu2F38xUxS0lqS+EwBSCwazDo7u0oVqJkfE8QSiJOgilNIgZsLcnyXjexTLqUsqhXJahbk0APLlf8sLVebz6/CnbUP0ytmkwnncZzMS4NV/lqQM9KzrQx4ZzfPS9h/nkNy/XDWGMA71JDMNYsbRNB2/bn4bdySVs3rwvpwR16qeox4ezTaenL62CtEvT5eZA6BeuzJGOW0RSMpR1GFuocnQgzaWpxRLzhwZXLzFfj0O+HgGDV24ukHbMZrlf3DZBSjXYNhNfFhzejrrxg0wjCTCZr/Ldy7NKyQ8QhnKG1cy6qDkP6Y8uTDFfDTCEElQRUuL6BgNpm/FCjTcmS5imoCcZwzIEQ9ml7+/t9t1qm7Oz6WQv3nmkl1iL+EW7bWr4Up3msh4dTHNhskR3ylnT72pntaqDmaKLaQjKNZ9GIU4jXxtKqAUBmXgciaRSDTENsAyDXNwmZhpkEtaaarGa5Zwby3NpsshsqYYQNJPajmWyvzfJVNEFSbP3v+gGGIbBB44PLhOu0b3/i2xZcCeEMIF/AbwfuAW8KIT4opTy/GY8/1oOyOhClX29KQ70pTncn2r23HlhxNGBDBcnS2vWT28k69ju7GTjNtVaQBjB21qa2DeisFQLJe8+2t/MQp26MrskMw+Li73196tyLAsvCOsKZSFhFNXnikQkYga7c3FKXsie7qTucVmBRjA2kHGoeAG19hkIdYQQTBVduhIWRS/ADyWZ+PJyk2dODDbXU8mL8cd+ZIjXbuW5OFVszpYCqNQCLs/4GIaBFwQ0FGBhuQP9wcd2r1q6qbn/WElQZ5kgzkCKH16bZ65UU4I4lsm+3iS7cnHG8y4H+tJ84NFBLk6WOT2aZzDj8NBgutlnvFqp01oO+XpKN+udK0uQ9ds7qRKvpG6s13JnGkmAl28sEDMFvmXg+hExwyCIIqq1ECEEXUmlOjdXCZrvRyShGkQkLCh6kInb7OtN4gVKuKcraVP0lFO9UQdb8+DRbi8aeycoO9Numxq+1Kefv0Zveqmbur8vRcUPySXsDZ/2rtVL/LZD3Tx7bgoA0fZYN2gIDUVNlUwhYCDrYAjBpakybz3Yo0+ONsh43mWu4mOqNksMoYJpz1ftBoPZBIMZp9n733i/gXUfrjyIbOXJ3VuBS1LKKwBCiP8C/DSwKcEdrO6AtDof/Zk4T+zr4txYAUMYHOxP81d+9PC6jMV6s47tzs6RgRSnLs+RactUbWRhtj9nX8rme5NFBHDq8gzDuTiGYTRl7hv3zcZt3PoHJ4ygFkhC1YpHIKFSiyh4AScP9fLhk/u187QCjdPYJw90M1tyma0s7010LKFmSAURt6pVErbVVCFtLzdpOKutQicf//xp9nTH+e7lOWpBRC1U/S6RhKFsbIkCLHTOXOnM+M6j03u6zB7Uy1fGC4ubYqOfrZUP1r+ut8R8PaynquHNe3OcujKHEKJZll7yQk4e6qEvE19yPe3qxpuh0LnTaSQBvvn6FKZQPU1q5IqkFipHKhc36U7GmK/UAIltKMeqMay54keEUvKOw708vre7+dyNkrnbcbA1mk6J8U62aaUk0aO7ch0FxW7n9y7tJbZwLEEQSoQQavZiy+PVHqz64w2h+k/PjxXUTE7TYL5cwzQFn3juok6irpNKLUDWfRrXj5qvdzWQXJ0u8cT+7mW9/w10SffKbGVwtxu42fL9LeDp9jsJIT4CfARg3759m/bL252PmHV3G7k7NY73pWNUaiFfPD3GYDbOL57cd9vN6F4QqP4728SJGbwxVeLcWJ6hbJx//JzPQNphLO+yvzfFof4kL1yZx6trYoeRpLWqUKCUNwUsOVXSH5qlNE4XDGEz3JWk6BWbc1ccyyBmGdiGoOKH2JZJxlGB/FTRYzRfZVcuzlsP9mAIe0Vn1TEFb+Q9MnGLqaKHjCQx22BXLsFbD/YsUYDVmat7y92yTbdLp4DKMDpviut57J2spfVUNfzCyf3NsviCq2ZzHuxL8Qsn9wNLs7Kt6sYN9GzFtTk2nOPhoQyFuoNc9gKmii5Vv4YhVOmuH0ZUaqEalWAaOIYgipQMvCEMBjIOP7Kna8nzZuIW4/ngthxszb1hu9mndtaTdNxsu7Ta7238LscyicIAiVxWWRBGUikzRhKfxTl3tUBSC0JuzVd410N9urJgAyi5AomUctntgZRcmynzc0+uXD2nX9/ObGVw137qDR0kKaSUnwI+BfDkk0+uIlmxMe51I3f774uZgkzc5viuXNNofX1kmkP96XVfQ+tzPndenQLuHkpzZaZCX1owXayRrwbcmK2QtM3mPD8/hJOHehhdqOAHSwM7UAbr9Yki+arPMyeGtaFagdasYiRVP0DJU6d3EqXyFESQcpTAjReoUqj9vSmmix75qs9L1xc41Jdktuw31cFaZ9aN5V1KbkBfSg1UBUEqpkYbvHJzgbithH9ayxX0e3RvuFu26Xa5E5t2N+zhWhvvseEcH//xoyuWDLdeT2/aYSjjNMU7QPdXrIeR8TwxA96YKhJFixusAXSn1ExUPwzqg5gFMctgKKv6HQtuABKe2N9F0Q10b8t9xnazT7fDvfTTGr/rtVsLXPGCZQ6qWb+hUTZomsqBDiWEEcRMQdwymK8GPDKsKwvWSzJmYQgD05CYhmp2jCJwbIOHBjKA0sj44GpPolnGVgZ3t4C9Ld/vAcbu5QW0Oh8NifdPP38Nx1S9ILVQbuqpVft8n9Zm0NstM2o8Z+MU6QdX53Asg5mST8wSdblYNYDz2HCWXMJuZlv/8PUppkreMjGQCJSRqvi6BGoVWrOKhpCU3IAwUuI2rh+yUPFJOarZWkn9RlimgWMbxGOq/yWKlHDKnu4EjqnUVlrn7uzvTTGci3NpuoxlGgRhRNEL6csIkpZJwQ1wTJNfeucB/d5omvag1Z5t55P31QLAdvv8qW9f1T1e62RkPM/nTl3nq+cnKVR8wjYbb5vKGQ3CiIIbEEnJYDbOgd4klVrIbLmGbRp89L2HOdSf1r0tmk1hPbMv27lbpzMrXctbD/bg+hG1MGS2VAPAFIJcUrnLBTfEDyOiCAxT4Jiqh7UnGcOPZHO0jK4sWB9DuTglL2A8XyWM1PxB2xSYAqaKLpVayNfOT2zbPWy7Yqx9l0WEELYQ4s1CiIFN+N0vAg8JIQ4KIWLAnwa+uAnPu2FaHQfbhFNX5njhyhyWQfPUamQ8v6m/c3ShSqZtxMCdGIPdXQmKblAvbzKac69i9TELBddf9vxJx0J2UHls9Fts1rXtVBqZPlXuFOLETHrSNrUwpBaqPkYT2RweHEmJYwnGFlxippqRs1CtEdajay+UPLpLBeCNTSdTl7E/eaiXH390EEMIhGDxPQaODirBFM3ms8k2757Qas9a+zlXs2G385h7SetnbTzvkkvYupJgBRrv5YvX5ilUfUIpm0qZoEpmIgkz5RqjC1X6Uja7cgke251jIu+RS9r85GO7+MTPP84HH9utX/ttzP1kn7aTjVntWmqh5J0P9XKgL00iZhKzDFKOiR/KekI2whJgWwIpwTIEubiNH0pMIUjX/Tp9ur0+Ht2VY39PAts0EEIJapn13l8/kKrFxTS21X50P7DqyZ0Q4l8Bn5RSnhNC5IBTQAj0CCE+LqX8z7f7i6WUgRDifwe+ihqF8G+llOdu9/nuhNYxBd+/UmgGXVdmKpysK1lu9qnVetTkNkLjFClmGrh+iCkEFS8gDrwxVSIRM7kxWybtWHziuYuMLlSZKdWIWQIvVM2srbi+5EDf4rVoQ9WZ1pPT0bkyr97KE0ayPrpAMO8GxEwlYgDg+iExC0oevPVAN9+/MgfAdMnDMQ0uTZc51Jek5AUdBTKSjkkUqdl66bjFo7uy9KYdzo3lm+/rdj6p2e7cTZt3r1jPjLnNeMy94HYy/Q86jfdyrqKkxYVQ4imiPotTooI7GSnRiPGCR8I2lbCNbdCfdpb10unelu3B/WyftpONWe1aGvvuyUO9CGChUmOhUmvOi+1JxSjXAqr1QM80oCtpM5Z36YrbHOpLrjpCS7OUo4MpvvDyLfpSMeaNGhUvpOpDKiYIpKTLtjixO6vHTGyQtcoy3yWl/OX6v/88cFFK+TNCiCHgK8AdGRIp5R8Af3Anz7Ea63UMOo0JAO7q8frdEjD43KnrfOfSLDFLUPLUPDVDqOzH85dmiZmQdGx6UzFCGREhaetjJZIQRBG9Sfu2lTwfNGKmYGSyRCpm4YcBRS9qBsxuIEnFDGzToFILCf2Q3qTBYC5BLmERRNCbjqnTOD/kxavzPH2op+MaSTs2RwfSHOxfHOB6dbrErfkqe7qTHYeZazbEXbV5d4tWW3duLM/je3JLEkdr2bD1zKW717TOfdTremXa97nvX55BohJyYSSbw8tbE3iNygxBRLUGQagqC0xDMFlwGRnP69d4e3Jf2ifYHBuzWcme1a7ll955oLnvKvE5j7Rjk7BNbNNgrqISrkNZC9cPmC75mKbBu4/00ZWKUQvlqiO0NEtpnTmNAMcMma/6hBIOdCV4fG+OvrQeUL5R1irLrLX8+/3A7wNIKSfu1gVtFhspAWiUNIKaP9cYYn43j9c3UuoyMq5OZT7++dN84rmLKx5NHxvO8Q9+9jH+9YefYLgrSXfSJuWYdCVjpB0Lzw+phUoJ0wsiwlBSC1QZZqxlJVgG9KVjTBRqvD5R0GU460AAQRARRtGSwK6BF0TELIOjgxnSjk0tUtnC47uyxKylH0NZf75Oa+SjP3YY0zTIV30iKclXfS5Olni4Pni60SPZKO3UbJj7zua127qYafDi1Xmmi27zPmvZsFYbuN7H3E1GxvP8+hfP89qtPOfHC1yaLPLDa3N868IUH/70D/i1L5zRJTosf++vzZQYmSgyVXDJ1k/5OxFE6jSvFqivkVRDgxuzTj936vq9/UM06+W+s08N7tTGbGZZ52rX0rrvNsTnnj7UgzAE06UafekYfWkH0xBEUvCOwz184PgQybgaq/VL7zzAx95/VPtL66Qxc/pth3r56Tft4X99ej9HB9JKtVTCG1Nlpouurh7bIGud3C0IIX4SGAXeAfwSgBDCArb1q7yREoDWE5LGmADlXGfu6vH6ekpdvnxmlE9+4zJBJOlJ2dT8kE99u7JqsHVsOMe+niRPH+xpDjj/xsgkfhTheyr70Z2MkYiZVOrjECIElqEiku5kjHTc5umDvUsEWDQrM1XysEzBQjVYLvmKcqCKbsBwTtCfdtjTk+Bj7z/Kxz9/mqcPdXNlukLB9cnGbY7vyuCF6lk6rZH2oeR7exPs600tuc9Wn7rcx9x3Nq/d1p3YneXU5TnOja1/RMbdkBxvZ71Z94YTN1vy6EnazJc9zo3mMYBEzKAWRrxwZY7xvNtxNtaDRPt7P1Hw6E3HKFQD+tIOsxW/gwa1Iu2YlGphPbiTuL4aaj6QifHKTR04b1PuO/vU4E5tzGaUdTZs0PnxPDdnqxwdTLO/L7XsWjrtu7/2hTO8cGWOSEpuzVep+iFBKKnWfAayCV1dcJu0t59MF13yVRV4WwZ4tYAXrsyxrzfJrz7z8FZe6n3FWsHdXwb+GTAM/LWW7NB7gS/fzQu7Uzodu7t+wAtXZ5c5F0vldgNOHuppqmXe6fH6nZQRjIzn+eQ3L4OAnpQ6Ubw4VeLoQHpNg7a7K8G1mRITBY/JQpXxBZdIqlkiMyWPuXINU4BtgGkY+GGEEALbUKdM2bitA4R1MjKe543JIn67JF0bkZQ4tsn+nmSzrLJh2N5W7+0EJeIzkFksqeu0hloD7k88d3FT+zcfcLa9zWtfD+fH8zwylG3+vC8d5+lD3Zy+WVj3iIy7LTneWmJpm/CtC1P83iujvPNIL+840svFyXLz904X1Sl1X9rB9UNVyiwjEAZCGKQcJVowV6498D0Y7ftcwfXpq88o7UrGMERDIEvQnbQpuwHVIEJKiMdMil6oxFaEwA8jDvSl1Nyu9tIDzXZh29unlVivjVnJZ7rTss5WG/TIUJakbXJhskTFD3l0V25Fe/flM6N85tQNXruVJ4zCuqJjXfQjkri+YDJfJZfIbpte5fuJ9qD/3FiBmGXw9j09zJZ9poouZS/g2my5WY2kX9u1WTW4k1JeBJ7pcPtXUUIo25ZO2YAXr86TjlsdMyydMjV3Kie+Ws8IsGbQ9+zZSfwwUgPFhSBumwBMFFxi9X+3X2vj+ZIxwcs3Fkg5FrUgQkrVe2EKJesbRBHVsFGXuzjMPIigGgR4fqADhHXy7NlJ7Lr65UoukQSO9Kc5Ppytzw8cBNbOZq6n7+henLo8KGx3m9dpPdycrZK0TQ70LfZhOpbF+48PbujUfaXRMHfS29J4nq+dnyBmGuzuinNlpkIYRXh+wP88M87/PDPOE3tzDHcn+NaFKS5NlTjQm2R/b5IrMz6VWggRhEISRJKBrINjGRTd4IFPPrXvc9m4Tb7q05eJ87ZDvdycr1DxQlKO2i/ScZtapYaUsl6KqcbldCVtwkhiCEHJDXj6UM9W/lmaFdju9mkt1qpWWm2/u1MRumfPThJFESPjhWaVzMODaQ70pVe0k18+M8pvfuUClimIooiaGsNGFCpfyQAsC35wbZ7uVIz+TFwnxTfIseEc7zvWz2dO3WCyoAK5J/d30ZWMcXO+yly5hmMZyEjqk9ENsOYoBCHETwgh/kgIMSOEmK7/+4/di4u7E545MdgsqYyk5NxYAYkqWVpPX9Jm1He3lhG0/s7Pnbq+ruceXag2++MaOJbBXNlfYtA6XevvvTzO4b4k2YRNuRapTJMAyzSQgN8wUoAfKdnZRmBiAefGipwfyzeDEM3KjC5UsQw1cqITRv2EdFd3Ykn/YsPxLbo+58cLHfsbV1pDretWS5VvLtvZ5nVaD0cH01yYLC3pw2xNIGyUzeptaX0eJEipZjpWawFzZV9VRwQhhhC8eqvAqUuzgLJxV2bKPH9pliCMsAxBhMqW7+qKk4xZzR7WBz351L7PDWUdyl7AUMYhkpKjA2lqYUgURcyWvProFUnOsaAupuWHas0E9dO6fb1JPnxy/9b+YZoV2c726U5Zbb9rX+sbtXPnx/O8PlHE9UMyjppF+/pEkfOr2LXPnLrRTJC37u+NvvhQQsxQatiXpsuArprZKCPjeb4+Ms3x4Sw/9fgudnclOHurwPcuzzJVcHFMgyiCohdSC0KtJ7BO1hqF8JdQZQC/CvywfvOTwG8KIfZIKT91l6/vtmkvAfBDydOHuulLLx7rr5Zh2Yz67pXKCL4xMsdbD/as+dy7uxL4QciFyRJAfV5dgGWIJQat07UGkaTiR5w83AfAG5NF0oaS0AdVy1wfhbcEywDbNAgjSaUW6gBhHezuSvDGZJFQQipmUAui5msrAMcU/OwTe/gHP/tY8zGtGcpjw9nmaVvjhKQR+P3+q6MMZhyODKTpz6i11GndaqnyzWG727xONmV/X4qKrza9zSip3CzJ8tbnySRsPD8kkpLZco1UzAQEQgiSMYPZenY2IyVBGBFGkpgpGVuoIqUK7JKOiQDcWkDJC9nXm3zgk0/t+9yBvjQfeHRwSZnrQ/1pXp8o4oeSmCXqfYw+Rr20zDYgiiS2YfDoriwfPrlf25Jtyna3T3fKaqWXrWv9/HiefFWNJlhvqV6+GiypgIrbJl4QNfu7OjFZcBlIx5gpeSrBJFRAB2p/l0CpFtEVNyjWg01dNbMxOvWMf/nMBFYQIZFYhpon2JuKcWm6zNMHe/TJ6DpYq+fuY8A7pZRzLbd9UwjxE8DzwLY2JK0Ob6MvqZXVMiybIdvbWkYwU3K5NFVmpuSRr/p4QQCsLFU+Mp5nuujyys08ccsgDCNmvQDbNPjoew8vMWSdrrUnZTNbVsJaR/pTXJgoUnAD6qOOmsGHQaMos45UpT2GgKK3stHTLPLMiUHO3Frg+mwFJIQtr61RH8a5r3fpOlvNgQaagd9gxqHgBrx8Y4En9nXRn4nrzODdZVvbvJVKkx7dlds04aM7sX0rjWQ40p/i5RsL2Kag7EUkbZNQSqXiG8h6FlwyV64Rs0wMQyhF30jSlbCJ2yamISh5AY5t8vShHh2E1OmU2PkgiwkkhOCRoQxVP2Ki4CIByxSEkUQi6ErF6Eooga3+TFy/ptubbW2f7pS1Si8ba/PGXIXdXUkycWvdpXrZuEWh4uP6oRo7VHeCsvGV3eDBbJxC1cexDEr1mbXVQEV3AhXsCQEFL8CbK5NJ2PziyX36M7QB2vebvnSc7pRNoeojhAAEwzmHZMyk5Op2ofWyVlmmaDMiAEgpZ+/S9dw1NnqkvxnS4I3feW2mxA+vzZOv+tiGQXfS5oUr88yUOkuVNzblmGXy9sM9JGImBS/kbQd7+MTPP84HH9u95rUOZePYLZL5jimIIoiZyklqnNg15h01CCRMFz2CKGIwu9TB03Tm2HCOX33mYU4e6sGXsmn0TQMsw6AvHeP3Xh5fUtY2ulAl07apNBzo1sDvocHFPqpLU6U7LrnTrMm2tnl3Wpq0Hm7X9q02kqE/E+eJfV10JWIIoaT3h+obdtH1VaWAF1CoqnJN2xQ4loFlCIpewGTRI2YanDzUy1f+6rv5jZ99TDtQa9CwI36ohJy6UzGGsnEqtbAZ4B0dzHCwL01X0sYLQp0R3/5sa/t0p6zHvq2nVaETj+7KcXQwjWOblLwQxzY5Opjm0V3LtRYao6f6UkqtV40rkoRSBXWNJLlpgECQtC0O9KU4Ppzl6yPTekzLBui032TjNnu6k/z4o4N0p2KYhsDzQ2xTaP9nnawV3BWEEI+331i/rXh3Lunu0N6X5AchCdvg089f6zg7bjOcqMbvHC94hBFkEzZP7O/iqQM9CODsaKHjc7car8Fsgvc8PMCPPTJA3wpZ1U7XapoGH/2xw+QSNqdv5RnuSvD+4wMc25VdErR1EkWLgJmSz4ld6eU/1KzI0aEsfSlHNV9LdToaRBFFN2Cy4PLZltlRqznQrYFfXzrOW/Z3kY1bTBa9jv10652DqFkX29rmrdVfuRlrYT22r9PvaXe6TuzOIoFzY8rOxSyTR3fn+Ovvf4i+jEOh6lN0A/rSMZKOpeauhZKkbeAFkpIbENRroExDCUl984J2nNbL6EIV1w9YqNZ4Y6rEzfkKtiVIORaZuE02YZOMKTvjBRGOZS7r5dZ2Zduxre3TnbKe/vHGuj51ZZbnzk9y6sosrr+2uNIzJwYxTYPjw1nee2yA48NZTNNYZtdaE1QD2QT7e1MkYxZpx8I0BDFL0Juy6U7YCAQZx2RvTwIp9YzZ26HTftOTUrMEbdPkzfvUez9fDXh0V1brCayTtcoy/wbwRSHEvwNeQiUrngJ+EfiFu3xtm06jfKW136k33flYf7OkwTvNnAN46mA3p2/lO0qVnxvLU6j6lLyQdNziSH+K3rSzovFa7Vo/yOKxtyEED9Uf82+fv0zRi1ZUdzSBs2OlDf2tDyqt6ylhG3ihOr0DNd+u5IVkHHj+0iwj43mODec6Klxeny2zKxfn/FiBNyaLPLorS38mTl86jm2anOwwc3A9apqaDbHtbd5K/ZWbtRbWsn0r/Z6S5697JMO7jw7w6188z1ypRk86xpF+NafxpevzTORdwijCMFSvHUAqpoK/KJJaZnydxEzBC1fmSMVMPD+i5keMzlXJJW1cP8Q2TdyamstZ8kIO9qWajq62K9uWbW+f7pS1+scb6zodt0g7Jp4f8uLV+TUVXtfj03Vqlzi+K9ec9zsynudXP3+GWwtVTEMQj5ns6k7gh5KS5/O18xNkHItc0l7pMjRttKtlDmbj/OLJfS3zfAPe8/DAbSs2P6isNQrheSHE08CvAH8OdRp9Dnhby3yV+472D3AtCLkyXeJ/+48v05eJk41bPLort2yeWDsj43k+d+o6r9zMI5G8eW9Xxz6QTnXkcdviA8eHOjrrt+ZVEJeNW3h+yMs3Fjg6kG7ORuvEagYxZgq+fXEaP5TNYLEr6RCEbrN+vBUBBMBrt1TmVn+oVqd1PRXcAKNedqbmR9GcmdidVEqpfZk4owtVkrZBLQgZz6tafkMIbMvk8b1ZXrgyzwtX5njqYDdx21qxSXuzxC80ivvZ5nVaC/Nlj7/5+TOEUiIQvHlvjl9YR6/aavZkpTX3xmSRazNl5iuqt3k4F+dgb6rjSIaVkl4feHSI1ycKnBvNM1HwCMIIAeSjGqZh0J3QMuPrpVE6loxZxEyDmVINN1AlT7/6zMN899Isr9xcQCA4eahnybrQdmV7cj/bp5XY6CzgxrpupSFettpzwtrjp9bTb9yXcajUQtKOyXje5epMGVBKvhnHouAGFKpBM5GrWZ2R8TxfeHkMz1fVdJ4f8oWXx/j4jx/dtD7yB5G1Tu6oG4y/cw+u5Z6hpOvh/HiBmaJLvhqQjBksVHxilkmh4pO0TT717cqKmcqR8Ty//dWLXJ0pk3ZMBCqbNJ53+dVnHl7ymNXmkLUboZmiy8N1aXOvLr/rBREXJ0v8lR89vK6/r/U5Y6bgzK0Fbs27gCRmGVyaLFLyFkue2mncahrojO06aN0QamFENm6xUFUZcYQgVh92uivn8J1Ls/zYIwMM5+LNddDIJsYss+5E2Zw8LDg7WuD0rTwfOD604qnxejajjW6eDzrb2eat9l62r4WZksurNxeYK/sc6ksigVNX5pgoeHz8x4/e9hrotOZcP2BsoUItlMQtAyHg2kyFsQWXuZLHH/un31mWAFtJPMEWAi9Qs1kaYk9hCGYUUXBDHLOtUVjTEa+uEH1lukKhPqD8UH8SP4QPPrZ7We92K7crqqNtzd1nO9unjXI7J8RL1nV9Xt3xXRmmSh6feO4i58ZUgvzhwTT7elPkqz6//dWLRFKyvze16u9ZS9Dl2bOTzee4NF0mHbfIuwFxS9CdXBxbdXQwrRMh6+Rzp65zdaZMJm6Rjdt4QcTVmTKfO3V9icK4ZmOs2nMnhHhNCHGmw3+vCSHO3KuL3GxipuDFq/N4fkjVDxHAVLGGbaiaacc2mKj3N61UO/3s2UlmSh6ZuEUiZhGPWaTjFnPl2rLHrFRHDiybJ/WdS7MkHZO37O8ibpsUPSX3u7c3sS5D0V4z/sNr81ybqZBLWCRjFmUvYK7iE4ZyqUpmG6aArGPpGvJ10No/l3IsTMMgbqm5glJKaqHENgVXpit0Jzs3grcLrPSl47z7aH9TBXGl934t8YvNmln2oLCdbd5a72X7Wrg0VabshSRjJvGYslOZuMVMybujz3OnNTcyXsQ2TXblEsRsE4nqTanWAs6OF7EMNQ/qhStz/NazFxgZz3fstbg+W+b8RFEN1277vaGEWhAxV1cB1qzO7q4EjmXxtkO9fOD4EG871ItjWesSBbsdUR1ta+4+29k+3Q63I47SaV1XvJCbs1XyVZ9CXRX9wmSJubJXVyv3mCvX1vw9a/UbN/bp/kyck4d6+dDjuxnOqj77hkjLE/u62N+X0hUG6+SVm3nSjkncNpujKtKOySs3td24E9Y6ufvJe3IV95jWY30/kBgGRFGEaaqXoyF7u1qmcnShiheEZOOLGR7HMii6yxt7V8pmfuK5i8tKX7qTNufHirzn4YHmTL72TNJqtJfTzFVqxCyDIJLs7UmycEs5RqsFdgB9aZs9vaoPZqMjIB40Wk9mH9+d5TtvzCKEQCAx6l+7kjY3F6q8+6HeJY/1goDnzs8hkbx2cwHbMgilJBu3Gco6HOhTpbgrraHVToVBl1fdBtvW5q31XravhZmSRy2M2JtddMjVrEz/jj7PRwdTfPKbl/HDiN5UjOFcnPmKT9Ix6UradKdiANycq1ByA4SARF24AyGaCbCPvf/osh6YXbk4N+YqgFg+pgUAyeuT971uxD2hk224OVehlnX4+OdPr3qytpZd6YS2NfeEbWufbofbOSHutDYvTJY4Opgml7ApeaFqaQkiLk2V6UvH8YIQwdIT/9bf07q/JmyDqUKVb19U46PSjslnTxl8+OT+jid7uWSMXDLGex4eaN6Wr/parn8djIznmSq6hJEkGTPpTsZIOVbdR19JEUKzHtbqubvefpsQog+YlVLet69867E+QknZdtUHf4NSDkvXjcZKH9DG4GoviJpDMb0gImYZyxTHGmUHlgHfujDF770yyruO9DJZ9Dg2nF3yvMeGM3zrwjTfujCFF4Q4lklf2uHnf3x9tcedjKVlima5QNVXXzu9eY2gVwBBJJoiB3quyOq0NmqXvBjvPtrHD67NUa6/mJZhqHK1+undw0PK0ZkpubxwZZ5M3GI4F+ePLs4QRqqsbdoyuTZb5gOPDq5ZurJak/hmzGt8kNjONm+t97J9LfSmHQwBlrlYoNFJFXEjfPnMKJ/8xmXKtYAwkoz5LoVqwIldGUYX3CX2sOj5BJHE9UNuzVfoTsbqow+CJdfc6vh//POn6U3FeKNcatooJUIOlgEIlp0oaTrTvh4cUzRVS1cSElvpsesRFNO25u6zne3T7dAeLE0XXc6NFfBDuWK/f6e1uac7QdIxOXVllqmiy0wJ+jMOBVf5O45lLvvdDb+mfX+9MVvm5RsLmEKwKxdHQLPl5m2Huvniq1MsVH0MAT2pGN3JGJm4Tb7qrzsRoln0jXuSMaYKLp4fMZ536UnZRBFrCuRoVmfV4E4I8TbgN4E54O8DnwX6AEMI8WellM/e/UvcfBoG5W2HejkykOKl6wt4QUihfgSPhP09yVU/oM+cGOTsaJ6rM2VkfbZZyQvZ15vkmRODzUzQc+cnsU0llzsyUSKSEtsQ/PDaPMIQJG1ziVBKxQuJW8oZa2SaonXY7MbvOzeW543JIid2Z+lLxxnMxrk5V8E2BDfnyovz7Vg9wENKLk2V+MHVeSxD8NH3rq/f70Glk5NqGfDqzTyOZeBYBvNlj1sLVa7NlNjXm+LsaAEBPLory5lbeSwhwAA/goQhsIXgu5dmuThZXjUjvpr4xVo9BJqlbGebt573snUtjIzn+a1nL3BjtgJSLlNF3Gh/1Mh4nk9+8zIIJZbiBRFeEHF0IE06blH1o+bvqvohbi3EEAJLwEKlxkypRipm0puOrZo084OQy9Plpi1q9t1JtWG1z4fUrEzrevjEcxexm329a5+sraVa2I62NXef7WyfbofWUzjXD3jx6jwSVR3QmghvF4FqX5u/9oUzTQXNwYzDaN7l2kyZhG3yP8+MEUaSgYzTMQBrP3FWQk4SaSxWHLhBxOkb8/zg2hwGYBmCSAqmS6rU82ef2MXFyfIdKas/aDRe96cOdvPdS7NUayG1IKJQDTi+K8uHT+7f6ku8r1lrzt0/B34D+M/AN4G/KKUcAt4N/MO7fG13jda66p6Uw8ODaRzL5KGBNNmEzZ6eBAf706s29R4bzvHxHz/KyUM9BBHUIsnTh3r41WceBhZ76SIZUa0F/ODaPEEYkbBNEDBecBnKOlycLC2p7744WeLxvV285+EBPvDoEO95eID9vallteGtM4j+zy+c4beevUC+6vP4nhwlN+DU5TmmilUO96WwDCX0UfWj5hveKbBzLDVgPR0zqfghs+UaPSmbh4fSejDnBlEZwSKOZTRryZOOze6uOOMFj/G8Sy2MeOpgN/2ZOBMFl6Rj0p20STkmB/pS9KZjvHJzYdWB52txL4Ze7zC2rc3b6Ht5bDjHrz7zME8f6qEWSYIITh7q4eP1KoCN9kc9e3YSvy4Y1OiNcCyDiYJLLZRLftdcxWdXV4Jc3MQNZF2tU1LyAgpuwNHB1Ip/o2EY/MiuDEa7booEIQTHBjO39fo9yIyM53nu/CTfvzLD96/MMlNygc09WdO25p6wbe3T7dCqR3D6Vp503OKRoTTXZtWa7EpYnB0rrGmbWpPVKcci45jUAtXv3puK8djuHCnHwg/CZfPz2vfXgqv8trCeVK/UAqaLHhU/IggjYpZJJFVFlABuzlX57qVZPvb+o/z2zz2+ao+8ZpHG696XjvOOI70c6EsxmHPoTTvLRAk1G2etFKglpfwagBDi70kpvw8gpXxdiPadd/uxUma6/Vj/QF+aX37P4duaYddJzae1ly6XiHFtpgxAKCNEvQw0YZtUaiF7exPkEraabecGFFyfS1MlrsyUCSNIxy0O9SUpeUHz7zk/nufmbJWjg2n296X46tkJxvJVXrkxj2UadCVsDAGnbxZ4//FB/DBiLO/i14U9poqdBQmCMCKSJqYpSFkGfWmHgusjCh5DWUf3TmyAZ04M8nuvjNKVsJBSNk85njzQjR/Cb//c43ziuYvqpLiORKlqOvWTW1XVKe4oI75Z8xofILatzVvP/LlO9u431rBRsL7+qNGFKr2p2JLSS8cymCv7nDysBJ/ecaSX127lyVd9yl6AJQSJmIkfRiAgaRu87WAPFyfLfHCFv7Ex88g2BUEgMQWoQ22BbRm6E2OdtO8XoYxI2iauH/LS9QXesr8L27z9Et12tK25J2xb+3S7NHyyhor5t9+YoVoLScRUsjOKZFP8ZL0KmpGE4ZxDxY8o/f/Zu/P4uqs68f+vc5fce5Ob3KxN032j+0ZpgYJAZRNkQHBEcFxgXBhlhNFx+bl8Z0TUr6Myg44zDoMyyjB+BVFUlhEEZRXQsrWUpi2le5u9zU1ucvd7fn+ce29u0rtmuzc37+fj0Ueau3zuyXLfOcv7vE8wSnt/kJnVDhqrnSeV1x/597XGaaerL4g1/v08PhBKHteSON4oEIkRjsXwOO0EIrFhZ9iK/MyudXGg20d7XzBZ9XRZczULGt3yfRwHuQZ3qfvZR07vlfTf2HT7lL796G5meZwEozprGlKmTlK+aUypew+WzKiita0PmwUiUYhENZGYZqbHQc9AiM2LG7lkdTOHjg8yp66SgUCYwyf8WJRiTp0zeUDn0mZ38uvxDoZBwZ5OUw1qX7ePaMwcXVDtsNHtC1FbaWd+gwlkn71/G+c2V2NRiq7+APe9dBil42exxc9kA/PDnlvvorPPDAQD4SjVDhuBcJRd7f0MhqMT+SMrKytaPJyzpIEdx/riFU/trJ5dg91qZUa1+SOSmpIys9rBweN+rFZFo9scMuwLRtm8qH5UxQ1GtkWCZd5KKualiznpzv4ptKR4IkZ1+wLs7RygLxCm2mHDYlHc/vietDEukTK5u8MHJIqzRLBZFJesbuaR7Uf52sOtDASjWNCEIhq/BpuCBY2VVDnsOO1W5jVkriTX2ublidYuVrbU0OcPMRiM0N4XxGGzUO20U1Vh4Y22fulI5ZD6+5D4exGOaLyRMJ7KCiqs5qiVRU3ucd0bJLFmwpVUfBqtdHEtcTi5PxTFqsA7GKKrP0ity04wEuFob+a9tqlbbQAefO0oJwbDOGwqedD5ng5f2j7MyL+vLrsFfzhKJBbj9SNhguEYNpvCblFU2GwMhqJYLWYyvC8QJhqDCquFe144mHYiTaS3tLmKB145klxp9frDHOv1c/EqWekfD7nSMtcppfqUUv3A2vj/E5+vmYT2jdrIEruhSJRDPYPsONaXNQ0pUznnR7YfzTuNKbWMdKPbybz6SuxWKxpTAWhmjYNoDOxWC5esbh7WVqXMYdZWi+L4gFnV0cCRE/7kYxLHI2iteflQLxA/LFvDQChKIBzlWK+fnW19tLZ5h7WnqdpJXaUdq9WCs8JKfVUFLruFivi+MItSBMIxPC77sNK0Sim8filkUIgPbJ7PoiY3Zyxs4PSF9dit1mFpSqkpKS11LhrdFTS5K5LpIAsbq5J7DdIdpSGdqAlRMjGvkNLyhZYUn13r4lDPAC8f7E1O4nT5guw81sf+Ll/a10ukTJo0dgs98SMJbrrAZD3c/cIhIvHsANTQn5aIhsMnAngHQyyZUZV11Tn16/C4KghGTOXYGpedufWVVDpMRWE5miW71O9j4u+Fx2XH7bTjsFsJRzWhaEziyNRTMvFptDLFtd7BEBrTl+kPRohpsChFNKb5074TWc+3HJkSPBiKmn12Nc5kHwYFfWmKMaX+fd3V3ke7N8jymSbGRWIarcCqFNVOGzaLwh+KMhiKEY6ao1kqrAqPy5ZcvRP52dMxwKlza6lx2RkIxahx2Tl1bi17OgaK3bSykKta5sklhqaIkZW79naZw8ZD0Viy8wPD05Ba27x85cGdHPeFqHdXsKSpiqZqc40fPLUPm0URjmrcThtLmqoypgqMnAla3GQO0lzittPWF+LQcT8VNgs3nLuAFS0e7nruQLKtMQ2za01p8YFQhLn2SlbOqub5t44n88JrnGZlpz8QJhrTWC0WwhGT8hmNaaJoLPGAdOcz+7lwRRNPtHYl27OqpYatB0/QXOPAZbMwGIoQi8ZoqHYAZgVQA4FwNHmIOhpqpJBBQfJJUxpZACPTyrDMiE+OUop5hZSWz1WpcOTv1tLmKh57ox2AaCzGwR4/vYNhnHYr+3sGWNjkTlu4J/H7bLdZ2by4kaXNVezpGODJ+7ex85iXUDhKDJO+ZLcqiGqi2pz36HbakhMcmVaLjvb6sVvhxX19dPUHODEYoqrCQjBi4pF3MITbaePXrx0FkEOyM0j9fUj8vXDYLPFsgIZkGpp876aWUopPo5Uprv25vZ8zFtXx+M4OtDbzQ9UVVqI6cwG4hJF/a6scVlx2M1md2BahtcbjsmXdrvPlB7bT2Rfk4HE/LruNefUOQpEYPQMhHDYrxwfD2G2KYMQUqIpqsFpNGd+6SptsXSnA0V4/8xurhhUUjGkt1XXHSdn21kfmUfsCEWwWhp1LN7Lzc+cz++nxBamvtBMMR3nlUC8b5tUS05oD3QMsaapKLvG/cqiX9XM9+IKZZ4JS9/StnFXNr15tw1VhZU6dixaPk13tA8mVtURb3U4bwXCUpmoHc+2VnBn/Q9xc46Q/EMHjstNQZedP+330+c3MucJs7o1pTaKwZo3TTkut2c+3p2NgWHvWz6vnrCUN/H5XN7vb+6hy2DhvaR2nNJtjGZ7a3clgKILDbsUXiOB22phfXznsTSjyU8igLNtjC61sKKa+QkrLZ9uXmS5l84nWLmpdNnzBCIdP+HHazCGyFTbFoeODdPsCNLqdJ73eyMmI1GNewlFNOBbfH6cgEtNY41Vf66rs9AejeFz2rPuwHFbFC/uOxzfaO/AOhukPRnBVmBl8pRSRGDTHK99lSz2dzlJ/H4YqQptiOIkVjkwDbIk1YiJlimsajcNmDghvroZef5jB+N67TQvrCEWzZ52OrAw7cj/XgoZKqhy2jOnrAM/u7Unuk0fBoeOD8QnuKMFIlGg0xpxaFwePm/2BJtMpytFePzNrHDLpVACprjuxynZwN3L1zG5V9AcirJkz9IZL/UVKzCY1uh0EwtFkwYC9XQMEw1GqHFZQamiJH2ht6x92cGWqkR312x/fw5mLGob9Inv9Yf7nBXNszbN7e6irNAdX7+0PooGVs6qTf4iv2zyPJ1q7ODEQ5K2uAWqcNgZDEdCacFRTYbcQigwd+xjVmoZKe7Jzlm7g8DfnncJn799Gi8eZ3DBM/HX/uPc4K1tqhu3xkqpnxVHofipRHgr545dtX2ammfKjvQqrxcKChiqcdiuHTwwSCsdw2izJw3/zTaHc2dbHzBoHR3v9xI/UNOdlak1zdQWnL6hnQaM77X7BVMcHQhwfDHFiMITTbjGTXfEKnccHQviCEexWC4saK+WQ7CxSfx8SFaF3d/ioif+8Mg2wJdaIiZYprp06txavP0yF1YLWmka3g2AkxoZ5tVSkHOGRD/P7P8iKEX0YBRmzIQDqKs3nTrsVfzBCMBIjFI1SV1nBQDCKw2HHWWGjxmkjEImitVltslnMtpVF8Swtec/kNtZaAiK7XHvuJoRS6jtKqV1Kqe1KqV8ppWrH+zVG7lNaNauGhY1V2K3WtGWaE2VZl8yoIhiJEQhHqbAqjvtCnBgMc9q82uTtWmu01pwYzH/Ak66cfTAS4dm9PdhtVs5eYg5sbG33sbTZzfKZbrYd7uNP+3tw2S0sih/N0NYXZDAUJRSNUV9pp9JhZ0aNA7tFEdNm312N08aMaif7ewY52D2QsXPW2ubl0PFB/vf1tmHlsR02G+csaZA9XiWi0P1UojwUUlo+277MTEdp1DhtdPQHaPP62dvZTyAUxR+OUuO04vWHcpayT72uLxChucbJ/HoX9vhfFQ24bIrTF9ZjsVhyxsrWNi9vtPXTVGXHZbcSCMfoHQxTaVe0e4N0+4JUWBWN7gr2dZvVRTkkO72Rvw8LGt3cfs06fnTdpqyl2iXWiImWKa59cPN8bjh3Iatn1dAb39+/fq6HCptJ5V7aXJU8/un2x/dk3d+WKR4GozptLNwZPyrEOxjiyAk/NotiMBwDNLEYVDvs2K0Walw2OvoCtHicuOw2qirMPrwKm4VwTLNkhlveM3lK/IzCkSi/b+1M9nVh+FFfuX7WIr1irdw9DnxRax1RSn0L+CLw/433i4xcrRqZbpI6e5mYTWp0Ozltfi17Owfo9gVpcDs4pakKu81KvduRrCxXYbVwzpKGvAc86Wardh7rp64yMYtkZ8Yy85hQJIo/HOP0hfXJGY3ETJDHZcM7aE2eMeX1h+nqDxKKampddvxhM/Dr7A9gs1gIhqN84u0nH0CemKGdWe2gb9AE15cOnGD5zGosFosM5kZhotKZCknPE+Wj0NLymdJ6M82UN1c72Gu10B+JopTCZlE4bAqLxYJFWXKmUKZLJ3c7K9gw38XipireONZHOKpZ0OjO673w6I6O5Mx5vdvKQDDCkV4//cEodVV2FIpgJEZFvPDT3s4BVrSMXyn/cjOafboSa8REyxXXvvHutcP+lnpcdjYtqOWJ1q6CVpTT/f6ni4WHegY43OPHYTcxzx4/3sViUaDBbrdQV1XBkhlVvNU1QDRmVurqq+wcHwgnY+dMjzNZo0HeM/kbTOnrHuwe4BP/8zLBiDl0fkVLtayEjlJRBneJc1riXgTeM9GvmavjnVgiPjFgDpjuGQhht1q4bvM8FjUNHUNw+sL65PLxBzbPz/v10y1BnxgMc9bi+mGPq3baeKK1hzMWNqRNHfD6I8NSQ2srKwiGowyEojRUVdDZHyQUjTEYiuK0abr6o/zz7/awapZn2NecOkPrdtrY2zXAcV+Itr4gX71ipbyJCjSe6Uwjf1cr4inFkptefnLFpfEopHPJ6mZue2wPr/qCBCNRHDYrjW4HzTUO1s6pZU+nD0e8Wm6imtw/v3dtztdNjWmLGivZuv9EMp28wmZNZhvk2/6jvX5Wzqrm1UNmlvb4QAhrfO/ejGoHoDjS66ezL8C8+kq6fUFJ4xlnsg9GjFYhk5u54lq6bS2FnsuZTrp+2O4Oky3ldtp45VAvlRU2XHYrHX1Bqhw2Ni+up9FtBm12q4VoTLP/+CBWpZjtcRKKaqIxzboMW35EZo/u6CAajbGzrY+uvgB9gQiRaCx51u9rh71smFeb85xDcbKipGWO8GHgt5nuVErdoJR6SSn1UldX16heIJ+S4onDc3e3+zg+EKahqoKlM9zJKpMjl/gvXNHEozs68l42Tpcm8LYlDTjtw8fX/YEICpU2deBor99UrNQk00MD4Sj9wSgVNoU3YKrd1VdV4HaYvSoOu5V2r5+ndnfyN/e8wpce2E5rm5ejvX4C4Qgv7OvhtcOm7RsX1DKvvlLeQKMwXulM6X5XO/qCHOwZyCs9T0yescamQo46GKtYvNKSQiU/7+wPMr+xig3zak3xpGCUGqeNOXWuvGJAakyLxOCMRfVsXlRPty/EzrY++gNhHt3RkffXM7vWhcNm47T5tTjtVgZCEXR8lvxor6mc2VBpI6rhxGCEBrdDZnPHWSGpwKK0jUffKV8THcsypZYXujqWrh82p87F/EZTGT0RC8NRjdVi4uTTe7r4+UuHeOCVw2w74qW+qoINczy47FYOHvfT0R/AabdQYUu/5Udk9sYxL3s6fATDUYKRGArTtw1GY8nstL1dA7ISOgoTtnKnlHoCmJnmri9rrX8Tf8yXgQjw00zX0VrfCdwJsHHjxlEd0plPSfHWNq85pymmhx2D4PWbDkrqPoXRrtKkSxNNt6H01LmejCs1s2tdVNqttPcHk5UsKyuszHQ6ONIbwGEz++4GQxFzEHkozJudEebXV1LnsvHGsT7ufGY/gVCEPR0+3E4bCs2Bbh+tx7zMa6iSA4JHYbTpTCNnO7v6Ayf/rtZXEo6YSoP5pOeJyTHW2FTIUQf5Sjd7/uiODuY3VLF2Tm3ycV5/OD4Ai9BUPZRONHLVJpdMMW12bSXV8cqM3350N7M8ToJRnXVGPzGr7nHZWdhYyd7OfnoHw1RVmE5TMBzDF4gxs8bJytkeGdjlodBU8UJTgUXpGo++U74mIpalyrWiPJZVw9sf35O8diIW7u/ysafTR5VdsbPdRySmsQA2i6KjP0CFxUJzjZM5dS76AhEGQhHCkSht3oi8ZwrQF4iAMgVsQtEYFTaFxaIIR01VLofNgi8QkZXQUZiwwZ3W+sJs9yulrgP+ArhAaz2hgSefM6AyHYPQ4Hac1EEfr0CW6Q8pkLWK0J3PDA6rZNk3GGbJDDcoRXd/EH84RiiqsVtAK4UF6BkIMbPGgY63d29HP4FIlBPHQwwEI1gsCptSRKIxyW8ehdGkM6WbJHhubw9nLa4fdp1qp402byRnpUExtYz3/qZMk06+YJjlM2tOeh2Pywy+Ep8XXK2sfQe0PgTew+CZCysu59EdFcNiYygS5VDPIMcHQpy7tCn9RFj8Oiu8h/liZRM/61uH5a2neDD2CDUVPvqUm5/G3sG96kpiGuw22ROcj/GahBQil4neq5mtsuJYt0Sku/aeDh8zayp4/Vg/VRU2lDITX/5IDLtFEdLm7LsKm4Uap41IVNNY7ZS/0QUyNSRC8QKGlvih8BYi8aw0tMZuVZJ+PwrFqpZ5CaaAyhVa68GJfr3ZtS76A8PPo8t0DEIoqoctB6froI9XigCYP6Sfvmgpt129Lrk6mK3yXbr7brpgMRaLhcWNVdRVVmCNb/B12m1Eo5qqCis2i6LLF8TttFHttNE9EMJuUQQiUYifS2WxQDgak0pPozAynWl/l48X3+phZ7zqU7r0lHSpnHWVdlrb+oc9TmatylOuuFSoTKnBXn8k7euszBJncmrfAc9/H/y9UDPbfHz++0TbXh8WG/d2DeB2mFnZtOnKI64zwxrgmiP/xA36XqoIElIO6unj0+pn/Hvsa3z4FB/LW2pk8JEHqXwpJst4x7KRsvWJxvp7nu7acxtcDIZjxLSmwmbOsrNZTVJ7OH7ens2iOD4YIhiJUV9ll7TBUVjZ4mH5zOrkGasaqHdXsKC+EoAT/girZtUUvA1KFK9a5r8BDuBxZc5Xe1Fr/fGJerFc52kkZp0Sh70CyWMQ0s0YZFqlWWs7Ak/+77CZbGauHlWbs82eprtvUZObR3d0MBiO0j0QTJ4RU6XMQZsaTTCiWdJUhev4Lj4SeZi5uocD1nqerdjMftsCguEYgUhM8ptHIXUV9o1jXo6c8LNsppt5DZnPvUk325k4Y9DrD8vZL2VuvM/5yTR7nji4euTrfGhRP4t2/ZIVA4ehMRGv8hw0tT4Ezlpw1ZrP4x/PPvECjwWWJ2OjLxDBZoEa5/CV6GR8SXMdT+AQSmtiykaVHsBGBAsxTmc7a/d9im73KfDkRWOKr9OBVL4Uk2UyzizL1Cca+Xve7QvwZoePjv5gsm25JoPSpWo+sr0Nl91KNBYzaZnK9AuD8cGdRYE/ZPaKza+vlAnYUUg9j/D0hfUc7B5gT4ePWXUuVrZ4kvsW5ezNwhWrWuaSyXy9XPsIsh2DkO4XKF0gqzy+iyvsj4CjadhMNmfdNCkdkNTglMghD0WivH7UnGVns1g4293GlUf+hyXePxKLaQZjDmbpSlZE9nGHfh+7WYDDapGVolFK/Axuf3wPc+qGDlnOlLabbpIg9YxB2fNS3sZ7f1OmSadEpdzU1/nQon4W7fmxGViNJl55D5vnpXLWsNx1gJ+nDCTt8UqvazJVkktzHbsOE8VKJQFshLGg0ZhD0e2xQWb790LPokmNr1ORVL4Uk6WYezVTf8+7fYHkBH1ztWPUA4FLVjfz2I52U6k6viAZiWd1WS0aq0UxGI5SVWFj6Qw3VmvuczzFyVaow3yx8ld0Ht7LUd1I06yL+cS1b5uQSqnTTbFW7iZdtpWw1MFafZWDFS3m0MxMAWHkL2THrIu5pGE7tdamk2ayaX1o0jsfqYUJtiybwaGeAYJHX+cDsQdZ4N9HjS1CIGqhIjpAVNmp0m28O/oY/1n9t1Q67LJSNEb5zphnmu2UGanpYzz3N2WbPT/pdZ78JsSi0PE6BPrAWQPVs/KPV565ZkCYiHMAgT7qWhZxw/KhTt6qWTV09AWxW01RlJNm9NNdx+aASBibDmEBNAqTsANWWwVWHYL+Y9C8pijxdaqYjNUUIRKKtVcz9ff8zQ5f8vYlM9wsih5g7okniP6qE1asznu1f0WLh5suWMz3//BWfNXOxkDInAd69pJ6nHYruzt8zKlzsbApv3M8xQjxlPwZzlpmLF/J6kAfBB4ENR/InuEkGQi5lf/gLs2m/5Fv7oJmnTL9Qvb3nRw0nDXmdSfZyK9nQaOb97v3McO6BN7YDlYnFXYrgQEfM1U3UYuN86NbeTh0gFkLT+ODm+dLoBqD1JnEBt+bnHL8SZwDRwlUzYZ2a/L3RCrTibzkEcOg0Di2HY4fALsLHNUQDkDHGxAeyK9NKy43K2dg4lygDwK9sOGDrJh5cgXNk9qkDsOTP4C27eA9BE0roH4hBPqwNSxGde2GWAwztDMsANGQ+aS/A+afXZT4OlVIfBFTXoH9t47+IM3VDpbMcLNcHWbjsf/Bb63mWKye1QVmJ1y2dnZyu8vRXj8Oq5liCsWr/n58y2J5L41FhtT+kRN2koEwOuU9uEts1s8j9SjvWadMv5Dew6aDM2ImG8/cMX8Zo3HS1/PrLqiKpz9pqCCC1RIiGo0StDhwWKN8d96z1J61Kf99NyKtxEzijMG9nNZ9L/1U0aEa2eSJnPT7J5XpRFYFxDAo4Pcp4AVlAXt8RtTuhEjQ3D7y9dN1rmauNm1IvW/DB/NrU+rXNHM12Cuhc6cZWM5cC1f9B9a9f4Cn/2n4YFNZQcfAaoegF3r2QeOkZvhPORJfxJQ1yv5bYiBwyqEnCdiq6ddVVLushWdTte9gxa6HRuxJliyBcZMhtX/khJ1kIIxOeQ/uWh/KnHqUuL99u+nQODzQsjb3GzjTL6TTAyf2w/5DMNhtZp2dHrjgK8Mfm6mzlOfs/Kgl0p9qZkHvIYiEsCqw2iuosAG1C6GuSdKcxkFiJrH3f/+H4zEXtqpaTptRRYPbaX4G8j0W+Ro5mdTfBof/DLsfMbd75sPCt+UXL1JjTH8H6KhJgbQ5zMCOmImDqY/P1rlK/Etc98Uf5Be7Rn5NjUugqnFoVe7Jb5iYPOtUOHEAfJ3m8E5iYLHGVxs90NUK53y60O+oEGIiFdKXydYf+u3nYaDbxIbGZeCeYZ6T+vdzxPPf1fJ2vv+GmbByB9rosTQSiMZYNTt+FEy+2VQFTqqJUciQ2j9yQUQyEEanvAd3mVKP+ttMpyEWNfcrC/hPmBnkXG/gTL+Q7pnQtQt8HaABW4W5/rb/ZzoviYCVLmAsvRT2/HZiA0kijap+CQT7wXvEdJicVWYQOmtD0dJIy9GKFg80DMLCxeb3K0G+x6IQqZNJna2w7ynAAuEgqAEzcWVzmniWLV6MjD1ODwx0QSwCwZD5vaxbOHwlLJ+0mdF0gtJNkEUCsP9pmL1xKCZH/GCxATGzamdzQUU8llfNMO2RjpYQpaOQeJCrPzTQDa560287/CeYe4YZ6CX+fqZ5/qI9P+amVX/Nb9oqOUYjTRY/q+a00OSOZyjkm02VZ8qgGIMsqf0nPVQyEApWlHPuJk1q6pFS8Y8W6D1o3rj9x8zAz+UxHQdfm7k9sbKXzorLzS+gv9ekCPl7zedgZr/rFkLzCmhYbAaLbdvhVx83BQy23jUUMJTFfHTWwtY709+erR2FmrnaBE1fm+lI2RxQ1QBNy2DheWZWrIhppGXJM9d8T1PJ91gUIvV36NgrYK0AHTYfHVXmY8/u3PEitbOiLNCyzsQAiw2WXWqKk1htJr4leA+bP7qpIgHY9Qj8+sbsMS1bW9K9L9rjg9TDL5oJssEu8HWZmOrwmBU7iwWqW2DBuSZ9c+baPL+JQohJMTLOZIsHmR6b6A8lVvPtThMbuncP//uZ4fmLup7k0xct5R1/+TE2NCmarIHhfbXUGJdJutgnE7PjK5Ha76o1A/WO1yHYF8+o21Hs1k155Tm4a99hOh4nDoCvHQaPm1WqcACImTd6YqbA5jDPsTmGUjezvYFTfyH7jpqPZ90E0aDpiCSuF/SZDko0aF7b3wv7njSdo1TOGrOSmE8gSXxdiY5V6hsg232J+/f81nTi1r8fllwMVodJU61qLCzwifxkmgiQ77HIV+rvULDfdGKiYagwh7xirTCxZuSga+T7f2RnxT3DFCSJhobHsdRZ6ZGDMF8nHPyjec3ETHummJYthq643MTmNx+H1ofNR+8hEz9Dg2bCLThgYmd4wKwuxiJmINrXDgeeNc+X95EQpSWfQVGir/L6z012la9z+GMT/aHGZfEYEDAxZ6B7+N/PXK+Vqa+WbzXgbBOzufpbIj8z4xVMnTWmb9q8emgFV76nY1J+aZmpS/WVDWZ/2fF9ZiBjdw2t3vXsM79Q4cBQMYHEgC/Xykpir0kqz1zo3GWuY3eC/zigzOu6PCawuOrNDLWyDM1CWSvAUZO7GEu2dAfInQqRbp8LQM+bJp0UYM6mQr7TIpcCik4IkVbq75C1wsQXi80M9CIBwAJ2hxl0OWrAYjeDpe33waK3w6aPmGukPXLACcsvg7d/Mf1rj0ybadtm/t+ybmimPBHTqmcOPS9bDG3fYVb72rebSS+L1aSv+70QjZivMRbFpGJaTHx2ekxbrXYIDYBjttk7LO8jIUpLrn1Uqf2Y6png7xtKuUxkDzlqYO/vzcSTspq9wf7jZhI6tU8z8rV8nSZGRUNmwJVa/KlQ2VIGZT/e+JIU2AlRfit3iSIqh16A4/tNB8hij6+sxTtDjcvh6Etgq4Sw33QsIn5wt4x+ZWXF5VDVZJaVQ37TCYlFzAx74zLzmJlrzErigWfNY6x283iby8xEZ1vhyZbukE8qRLpZLofbpK7OP9ukZlkrZMYkH4XM2s1cbTrPV/7AfJRgJQqV+B3afBPEwqbDE42YFbugFwI+MwjyzIUjW81zXHWmo5N4P49mFXnkzHc0ZGJForABmJjmP57fdROdorZtZo+ys9YMUl21YHWaGBz2xweuITOQjYVMjIyFTFyvnQdLLjDxXAhRWnLFmdaHTOzqeN2kXQ90mNjVtcs89sQB0y8L9pl+m8Vq+lJ1C+DSbw//+5n6Wv3xflWwD2afNvbVn2yrfqmF+nb/1nyMRcd3G810IimwE6IMV+7iRVT8J6CiygSSQK/Zc1dRaVbR5pxm3qz9x6B+wVC1zMYl5rylQiq/JcxcDRf8g5mVPrLVzK5XNsC8zUOdIZsTKhvNfdF4EYOW9WZQFQ2ZNmVa4clVNjZXSdl0M2rtr5uZd5kxyZ/M2oliCQ/AvLNMjIsMmkGetcJ0omwVplqvzWkyB7Q2M9ndb5o9v8svM3tuu1oLW0VOnfl+8pvm9z2VzWlWCLPFroTEJFQ0ZIqiDHaZ9od84KoZymQI9ZmJr0gQUPHz7izxtE2fHIEgRKnKla3Sth16D5gJ7aom0xca7ILeACw8F6KzzEAuGhrKbnLUmL+1I2NK6mvtesQ8zjPXZCMlYsnWu+Dy20f/taSLY2M9I1QMl2fVTFGY8hvc9R0zVeBC/Wbmp6LSzP5YK0yxk2C/eVz9QtMhuvIHQ88da8d95uqhQJK4VqLzlVjWTwSp1AqKOmZmhzKlR0HuN0CuN0e6NAP/cVNMJZXMmGQnKQSiWLyHYfapZmAXnmMGcUGf6cwM9Ji9Kg2nmMcOnjCres6aoT2/e347tkmITKlK+V4zMUGVSIePBIdSTSsbzUdlhQq3idXH34KYhqjfrNTVLzYz5HIEghClK1sqZNALWEyqpfewec9rZQZ6b/+iyYapajT9o8SkeKJ/lO21vIdNf+/IVjPhlBh07XvS9MXG829zvmeEivwUUDVT5K+80jLbd8TPRIqaTkIsYlIuIV5aOzi0/Ht8v0kBSE2tK6TSUy6ZlvVb1o6ugmK2dId8Uq7StWfR200gLLQt05mkEIhiSWzyTxSCCg1A72GTxpTYu9Z7yBSQ8nebARPKZCtEQ0OreKMtADCWAgWp7W9cZlLkldUM2pTVZFbMP9uknVqspsNU1QQzV5lsCnvlUCGsuvkykSLEVOT0QHjQxKlo2PSzYhEY6DQxKREjfJ0mzXLXI2b/ndWR/bqeuUMVdxPV0ZUymUnjnS7p8AAxM3hMLdTnkFL9ozLWvysirfJauWt9yJTKDg2aValAr+k4WGymwxDsMzPHOx801dk8c81Md2KFLtB38i/UWDrumWawRjNLkSvdIdt9Iw8KPfPG4efuFdqW6UxSCESxJGY4rRWmQ+HrAAV4ZpvBm98W30PcazoaNpdJTw/ZTdqQzWlS1ceSSjzaAgWp7XfWmuJNh/4EfYfA02Q+tzmhpsXsiW5cYjp34YCJ342nwIJzTn7vCSGmjplrzcS61WEm4W0Osz/YXmn6KCsuh9/faorgKavpj4QHzccdv4bVV6a/7orLTREpV50ZcEWCZuJo9sbxnXht32FWH4MDJgvM5jQrjCPPCBWFGcvfFZFWeQ3uvIfNBv+jL4FnDribzYxQyGfORkLH96sEoGaOCShHXzLpPt4j5vm+DlMNLpESEOgzgejJbw4NjvLdh5dOrkHayIFY6mtlewNkzA/PUWXTXmkq7YHpYMmMSXaSQiCKJRE7tt4Fbz5m3svWChPj7JUw90zTcfIeMh2nWGRoUsvqNCt7wb74ft/a3KnE2WLRWNqfuOaqd5lVucQ+QNdMOOdzsO3/mYqfgd743mk3LD5/KCNB3mtCTE2JQVhNixkYJQZhM9fE+2+rze2Dx+ODpwpzXJO1Ap79jhlApYtBM1ebTKS2beZ5zhrTB2x//eTqmaOV6EtVzzJp78oCxEwhvpFnhApRZOU1uEusqsw53WzGjYbMgKZlndkL9+Q3zcrewT+aN+ZAp8mT7nkLauebDbnBPjNj3LQS+o6YKkx2J8zaYPbpjUcBjdSBWKID9eIPzCCy75jZUDxexToy7RHbepeZEXPWmkqZiUGKyE6ONxClIHGMAIDGdJLaXzeDvOaV4J4Fex83qY3hgImFsQhUVJvD0E+5OPuM9kQVDko7CXXl8NdFmf/bXFBVYSplDnSaWX95rwkxdSUGYYdeMBPqYPpkQZ8ZuLXvMBPwVjtU1gMKAifMgCoSyD4htekjQzErEhiatJ5/tunj/epvwDPPbI3Jd6CXOsF14oAZyDUuMXv6unebs/d8bSdX8hSiyMprcJea9jP/7KEBy6aPmPsTG/otVpPzbXWYSmw6ZjoPtfPMIO7Qi3DgabOiV9VgHtO507yhEyt641FAY2QHau/v46mjs4b2/I31tRJfs68zpfpUtfl6F18ohUFGQ1IIRDEk4kX3m+aMKKfHTAa56kwaeiQYP3pluYlTR7eaeBKOV9Z0egCL6aQc3w8NizO/VrEKB7U+ZCa3Zq0fui2Ripmt4JQQYmpYeB689QeommH6IsF+k0G14nLz/nfVQ+CAqUapFEQx/Zf6hdknpNJVz2xZZ+7r3AkoCPbmP1E1sn925CWTSeCsMfHVPWOo2Iv0B0SJKa/BXa5VFavDDKBOHDRnKiU281ri3watzRvWVWvSmk65yAQJZ43pOHXvNvePVwGNkR2oaMjMrCdeB8b+Wp65Ztaqc+dQFalAn1mRPPTCUJGCxmWmSpUUBhFicuWb/jjyKAG7y9we6jd77WwVJmshETs8s6FzN9QvgsFuM8BDm6pyXa3wtk9lblOuo1cmysjX9XVC9y4Tr2DsqVVCiOLqajVbQPqPmb6IywMzUtKzZ64xk++RoNmTh45vpZmde4tMavXMmtmmj3fgWdP3sTkg0J//RNXI/llVoynQl9o/k/32okSV1+AOsu896ztqZrKVih+U6YufEVVlAoGOmccO9pgVOxgq221zDFW5LOQNna3jNrIj46wxnbTE6/g6TQ75WHLGV1wOP/+QuWYsYqrRxaJDlfVmrDBf3+E/wYyV2WfzhRDjq5D0x5FHCdidZtXOYjOz4KFB0/E4stU8xlpp3ud2l0lrGuiEUADq5pk9x9liSa7CQeO9Hy9xzRMHzAy53WWKFvjazddgrYCdv4HX7zcTUYWkVgkhSof3sFmFS+1r6NhQLPH3wvyz4NDzpj9kscdTN/vj+4crcsfK1PiVyFZKrZburDHpn9kGiiP7Z43LTFbXQPfw461kD7AoQeV1FEI2rQ+ZikYLzjEV45QyHaO6BSbFScfAWR0vUmA3e1bAvKEDvSYVqr/dbPQ/cSC/zbOJjpu/d3gwSpQhT5T9BTOQC/qgZ6+ZZe9oNTNOwT6YfdrJzy1E2G++vpDPlE+P+M0+lsAJs4ppcwDKzJzJpmAhJk8hx6+kHiUQDZqiAz37TGqmr8McBuz3mgIkfi8c3wst6wFl3v/1i2D1u81B6C1rs7cr2/EqueLaaKQWKwj6TKbB8bfMqmQ0ZGJX125z274/wLZ74YEbTAU9IcTUkdrvSUhMHCXiTnULLLvM9M8qXDBvs9muUrcwv1iZuE7PWyaVsmOnKTRV2WjuP77f9H2yxbCR7XTPgOZVZgVPSvaLEld+K3eQflY5dZl+yUWw/2kID5hOUc2seKrTPPOGPedz5sDfRMcmEjJpmq76+Avo/NqRa99KYo/gYI8pVa4sUNlgUggOPG06OvPOHEoBSH1uvhLHQ5w4aNJOR7a9v83sQaydA45aCVRCTKZ80h8T8ax9u3kfN60AVwMc+ZNZ1XLVm9U7e6Wp2hbyDaU6OaqHCieN19ErT34z//14o0k5DQ+CsgFhc5+OMixuRQImNlts2SvoCSGKLxED2rbHDzFXZsDVtAIaFg2PSSPjzikXDcWMxAHnqTKlis9cDUsvhWe+bfo3VhtU1JhJemuFmchuWpE9hqWrjG2xSvEUMSWU3+AuU5qTvdLM1vQfg/4OM6BCmX0q9kpTTOX8Lw+9aRuXDG3Mdc8YfjyCvze/QVaujlsikP3286YDU1kHc+N7Zt74lQk4qQO70ex5SeSwd+yId5IUQx0lBcTiM2VnSEqmEJMtn/THRDxrXg32KlPt0tdp9ufWzDKDnO49Jn0pEjBnwiX20PYdHX1110wp7vnux0u0PRY17TjyEux62EyejTyvKnHNRCXjynqTKaEjI148XkkzFjFfq8UqRaCEKFWJGBCNQO8BwGImzGtmm7204UGTRZAakzLFnUT9gMRePWeNmQDP1G/pajWZWq7aoYJyA93Q86ZJa+/aZSpdNi5LX0tBKmOLKaz8BneZVsv626HtNZOyFAlggkwU5p0NM5afPGBLtzE3Id9BlmcudO81ASQx6xMOmlmk1D10dQtMdc/Ea/g6zapi+zGTPpoIPqPZvJvoPFZUgT/E8JW7+P/DfrNPZ/lfFHZtIcTY5Do3cWQ8a1hsDvj195pBnFIm1ToWjheHcp+8h3Y01V2zrbjlGpAmtD5kBnaJYk42p0khffjvTObEpo+cfM1An0nDikZNenxkxKodAFYgZuJW7TwpAiVEqUrEr47XzdEmdqeJT5FBmP+2wqrgNq0w6dgVbpOR4PeC92jmfkvqJFSiumV/u4k9rnpAD8XKuWeYFb2RMWxk7GzfMX5nHgsxgcpvz5338NCm2QRnjdmrMXujSVcKDZiS4TWzzD6VxGPSzTyfOGA28h941gy6IP9BVtMKU+LXH09FOL7fnJ1Xt3B4jvfIvXdH/gwWh9kL5/eaTbw9bw3teRkpEXB+faP5mJo3nsg9dzebNmCJf4z/UxZTvGD2RjPTJYSYPInZYVdt+n0c6eJZNGjet5Gg+XywxxSF0lEzcRQNmziy93HzsdC9cLn21GXbj5d4/pPfhNd/PlSRV0fNjLuymra3bUt/TWsF2N3ma7TaMQO5VBpsdjPes1hM+6RanRClKRG/An3xvf0MFacrNBOpqxUaTjGpnV27zMeGUzL3W9Lt7Wt/3QzsWtaZFHAwFTjbtmXuXyWfOwF7jYWYIEUd3CmlPquU0kqpxtyPzlOmzbpg8rsXnBM/5LfZFFTJVAEzdYO/sppB1uEXzUpcriCQkCj56/KYqm/2SvDMAX/P8M3AqZ2l7l2m42J3mtU8l2eoY5Ru826ugJPoPM7bbIKpAtDma7LYTGCrbjGvu+sRCVRCTLaZq83s9ZU/MB9T3+Pp4pnVYVIuI4H4LHgALMrEl4rq+BmeVrMvz1pReAckV5GXbAPS1HhUUQ0DXWalsfvN+MHr8XZGQ+mv2bLODOzczfFiVzNMuqnVCfYasFSYFUprBcxcb7IhpAiUEKUpEb8Sx0nBUNXKQjOR2rebeFM1w+wnrpphPm/fnv7x6Sah/MfNNhX3DHNsjN1pistFQ7mLoxRS/EqIIitaWqZSai5wEXBoXC+cKc1pzqb4mSq1Js3xyJ/Nmz0aNPvbLDY49/ND10l9Izuqh/K1fW35b6hNLfmbKMcLQ521xMxVam53fzu4Z0LT8qH9dtkOysznsOGZq+Hy200a1NPfNjP6sajZv1NRaQKVr9ukdv3qb9LviRFCTL508ayq0ZQF958wA7lQvxnsLHq7qbSbiDN25+gOH8+2p25kuuaZNw6/bmphlGA/Zv4wZgahsYiJN1UzzfXS7XG5/PaTX6NphUmlOrLVpGI63CbrYqYchyBESUvEL3cLdO00A7tE5d5CjxEIeOOZRk7zud1pruc9mj5VMt2euUVvN7EShlI1EynmY62hIEQJKeaeu9uBzwO/GderZtoEC0OdpKpG08Ho3Wre1JUN5k2757dDldfS5WtnG2Slk7o3xWI1aZnRkOng+DpNR83XZtIpE0EJ8tvPklBIwJm5Gq7576HZ9e43TYqqr2OovbGoqTAlFeiEKL508WzeX8G2/2c6NtXNEGsyAz2L3XSALBVm0soz16ST+71mb16+A6FMe+qsjuHFqnreMpNBnnlD586lFkZJnMHnPRzPArcAFpNO2bhsKK6l2983ch+OTDYJMfWkxq/woEmldHrMhHehEzMOj4lziXOHI0FTmyASGspcSheTUmNJou8DhVUPhvz3GgtRAooyuFNKXQEc1VpvU0rleuwNwA0A8+bNy+8FMhUQSO0kRf1wysVDlZYSB4b/6uOw/DLTkUms9CUU+kZOPeog0GeCm8VqVsz2PmH2xix42/B0yqWXmkEm5Bd8RhNwEmWC3/qD6fhZ7eCZbWbEtTbtlQp0QmQ1qtg0GiPj2ZPfNPt2Z506dFuiihzKDOQaTjFV4WxOUxEYlfnA31TtO0ws3Pek2Zsyc425RqDXpFMmsgR8naZQCgqCvcOrEgf6hjIV7E4T8waPxwtZYbIorBXmmvM2Dx8wdu8159fVzZeVOSHGYNLiUy6jKeiUKnXyJ6bNNpVgv+kfhZ0mTmWLSakxbywVMHMVvxKihEzY4E4p9QQwM81dXwa+BFycz3W01ncCdwJs3LgxzwPmMkgNMr++cWjFy9dpKiZZHYA2QaHvKGa6ecHo38ipRx1Y7SZFU2uzAhgMm5ntxOAyMTjras288pgu9WA0Aad9hxlAeuaaEsW2CpOLbneZvXhVDZJqIEQO4xqbCpFutb5+oXkfn3nj0Kq8NV7AIBoy+0usFdknbVKPXVh4nik+sP9pk8p01k3w4g+Gzpnq3h0fODog0D8Uv6KhocIo4YAZaFqsZsIskakQC4NrphnYbb3TpLvbXRAcMHv0rHaz4ueZl9+AVAhxkqLFp/GUGpNmn2YyAkIRU4/A5oQ3HzOVLiFzTBoZ80Y72JSjEcQUMmGDO631heluV0qtARYCiVW7OcArSqnTtdbt49aAbKW8E1Uwj7xkOiuhARMUwHQqOl4f6nDUzDIDvZFv5HwP50131AFA68PJI5uSUvfgjSy/m+7svkSnp9CAk9gX07IOvIdMKqaymvTMygazKiCpBkKUjtR4c+IA9HeacuLpznuyV5rqwFa7iRdzTh9KK882aZM4uqDj9aHr1m80z525eniWQGJlLlEcAczHxLl6W+8aWv2bvdEM9qy2of3KiZg20G0GoScOmf10FS4zGOw9aDpziYIF0oESYnpp32EmxlMnfwa7TQZA64Ow8sqhPXS+zqGiTVZbvDo4478nbqyrkEJMkklPy9Ravw4kT+ZWSh0ANmqtu8ftRbINhmBog6//RPyslMOmYmQsHG+U1XRK/MdNKuXImeNcg62R0qVOJsoCp8qUTpmraEqhAad9u2lPsB+cdTDQCSoKWKFxuQmOUoFOiNIwMt70dcCh503MqmoaOu9p5tqhx81YaeJJLOUQ8Fzp2u3b4fgB05FyVJuVt443zL4WGJ4l4Kg211OYSaLU66crjOKaOXzSKRHTqhqhZ5/ZhxcLQSBsUjltTnNYu73SVBpOvL50rIQofyMnf3r2mUGdww2OGtMv6zsG694H235mJrOwABEz4RToMwO+dGfXCTENlN8h5pB9MARD9zlrzFJ+f5spROCeYVbuEgdtVjWmnznOp0JlqrQV75pIpoDmSqcczypN7TvgxEHz9Qa9ZjMyCirrzapd4xLpRAlRSkbGm6jfVNSNBiHkM8elNC2HNx+F5jXmcU3LTaq5VuaYk8Qet2zp2pmq0QW85vPEXt2td5oqndGgOY6gqnHorLvU62ebdErEtMZl0Lbd7D9GAdoMSEMDZmBpdZjPn7sdnv1nk1Xw9i9LgRUhytnIyR8dM5POsYiJCRVuk8Ld1Wqyqwbi5xUHeqGy2UxQtW2DxlNkT5yYloo+uNNaLxj3i44cDPk6zaGXvnZTzGT2aeb2RBXMhlPM3pJIwKzYhQNmVU/XwMHngBGV5godbKWtePc+85oH/2geM2dTYSt/BZ8RE59F3/WIKW4w0Gmq61nsZp/MQBec8Ql42835X1MIMfFGxptAn4lbIZ/Zy5aIb+3bAW1W390zzF6Url3meJUF5+ZO13Z4zGM728zMOJgMA2et+X9ir27zGpNm3rPPdK467GbVMNP106WwJ2Kae4ZZnYv1x9PWY2BxmOMd0EMHoKNMrOo9CI9+wVxXBnhCTF3ZtrakTv50vAE6AspmJoGsETOgiwSH+lwz15gCUlpD2GeysOwu2a8rpq2iHmI+YVIP/k0USwn0QfVMM4N98I/m9gSb0+RuVzWaVMxYxBQCUFZTVnzkQcCZDkrPVaEycVDxistNJ8laAcsuNR2lRGcqnXSHceZ7kDoMP1hYawj1kfzRRwNADFDwxi/zu54QYvKMjDfOmqFqcanxzVkL/j5zhqevM75Xbi2see/Jh6OnUz0TAj4IDQIasJiCS762oY5Y6iG+jUtgwTnmNTJdPzX2pKawN60YimkOtxlEOtxQuzA+mNPxwZ4ynTpLfB5SKROft945xm+qEKJoMsWFkX0s9wxTs0DZzIAtUdnbYjMxwzPXrOQd/KOZlHfPMIebK2UmzGVgJ6ap8hzcpQ6GunZhOgiYGe3E/pC2bcMHSps+Yjb7zzrVBA6nxzwuGjTPSaRnjrz+aAZbIztJrtrh12/fYSpj/vpG8xHMDJSr1hQscNUWNiOV+nouj+mwWSxmNszmNMHRYoOevUPBVQhRGkbGG3eLWbWrnjU8vs0+DbPahUnFLDQuAej4njeLHYiZGKFjQzPsieIpCbnSwzPFukRVYFetWbmrbjEdNbvTnAPqqjeTXzpmOmoo83+L3Vy3vy3/r0kIUVpy9YFSY17LerNtxFphYh4WCMa3tkhtACHSKs/BXWJvSMfrJlUp2Av1i4fSMOefbVIRRw6UEumT0ZDZi2Z3mtQm94zhnZjE40Y72MrWSco0owVDK3/5zMJner3GZSaYRiPxYxkwH20OqKgeCq5CiNIwMt40LoELv2qqY/rawVVjKmLOWGHilbJAx04zm22vzP91okGoqDLp6bFIfP9xlUnjbt8+uoyFfAaEnrnmtaMhE4uU1czQ2xzma0kcH6MYKkRV3ZL/1yWEKC254kJqzIuFYcmFsPh8ExdiYVMwqmaWOZ7lyFaTCWB3mowGuzPexwtO+pclRKko+p67CZG6N0Rr0wE5/pYpGOKeYVarll9mBkkjzVxt7su1x20sJXGz7aErtFhLoa/nngFzzoQDT5liC2A6TDpm0hjkfDshSk/aeHOl+TAylkT8ZjJryQUmruR7Vlzi3MsK91BRlWjEDLAC3tGdqZkp1lkdQ5U93TPMmXr+E2bFzllrij01LofON+L77xTYa8yeG3slbLoh+9cihChd+dQRyNTHSkyAWyvMVprOXSYTYME5JpZA/NrpjlkWYnooz5W7xAApGoqXzD0C/R1w9OX8UpXGmnaZS7brjyb1qdDXm7HMrAq66s1MmMMNi7aYmTApGyzE1DHyvX3oRRjsMYOxg380MTA13SnXtZQye96iYYiEh86xc3hGl7GQKdbB0CRWz5vxvTULoboZVr0L5p0FVqvpsDUuA1cdWJTZf3PJP0kxFSGmosSWk7btplhdz1uF97FGpnRm2mojKZtiGivPlTvvYbM348hWs0pXO98M7o6/Zfal5OqQjOZg8HykVoeyVw6lhqZefzwqY6Z7zWCfeV2HB1rWwsXfMKubztr8Z+GFEKUlNVa1b4f+Y+aYhMp41d/DfypsRd49Y+hMKZsT6uZB/RKTCpp4vULiYKZY+uIPzKw7mNgcCcTTqJQZzDUsArvDpKHD8NjZ1QrtS6RYghBTSep5nTNXmz5Q505zjma2arsjjawenNhqc/Tlk/tT+bQpU8VOIaaw8hzceebCm4+blMyBTjP7bLGCZ168glweb96xpF2mM/Ig4sRgauRAczSpT/m8ZvPqoWslAljjkvEfwAohJlciVj30abC5zLEm4QGThm5zmpTHUy7Kfo1ErKhfYiadsJhZ8IZTTOwcyyx4uliamMSKhkwKpiZenViZap+Ny4cGlCNjZ2IfspQ5F2LqGLnlpHGJmeBx1abfIpNJugnw0MDJGU+5SFwRZaw8B3crLodX7zElva3xTfmRIIT98bOgRmksszz57qUbz1XDXK+Z2ulKfG0v/kBmsISYatp3wL4nTZXfwW6zauc9ApWNZkVs5OBsZCzzdQ7FCmcNdO+GgW6zEnjpt8cnFqS+ptVhZtkHusHVYCbhdBSq50Isalbnzvm0ed5E7EMWQkyufM8HztXPGjkBfny/ydKavbGwQZrEFVHGynPP3czVplNjsQGx+Nkoc00luIB3dNfMdS5LLoXspUs9E6/Qypijec2xfm1CiOJqfcjsoa2oMu9huzNeTMprzvBMjSHp3u/7njSpkWCyGxacAyvfZfa4jdfALvU1rRWAMoPKwR7zGKt9aAa+bv7wA43Hex+yEGJy5VNtN5++yMi9v/3HzMCucUn6YxUykbgiylh5Du7ABAZ3kwkcnrlDAz2HZ3TXy3UuSy6jKSM+Vvm+5li/NiFEcXkPw8w1ZoBmsZn3eO18M8jb9JHhj033fnfVm/TNVOMZn9K9ZoUbogFwN0PTcqiZA2gYPAG9h03hhfYdxYmdQojxlU+hunz7IqkT4HULzB7dVPkM0iSuiDJWvoO7lrXQtHL42SdNK83tozHWWZ6JrsA5lteUGSwhpjbPXLO/bu4ZQzFPqZNX7SD9+33mGvAfn7j4lO41fcfAVglokzYfi5g0zYEOU/gqMWvftGLyY6cQYnzlU213NH2R0Q7SitEnE2KSlO/gbsXlYLWZs+6WXWo+Wm2jf+OOdZZnrAefj0a+rykzWEJMbYmOirXCVI6bfzY0nnLyqh2kf7/bnGYgOFHxKd1rDvSAZ/bQgLS/zRSEqWyA6plDs/ZdrZMfO4UQ4y/XlpPR9EVGO0grRp9MiElSngVVYPyPMxiPKpbjXYFztK85csNy0wpzLALIsQhCTEWFxLtMsWwiOzbpXtNii6fPzzD/An1m353dNfS8xKx9MWKnEGJyjaafNZa+nsQVUabKd3AH4/vGnaiz7yZbuvK/e34LSy81M+RT+WsTYjrLN94VI5ale81zP29ij7/XdOSsFeY8zpb1Q8+TDAIhpo/RxiYZpAkxTHkP7sZbOQSQTOV/u1oLO2tGCDF1lUoWQepZmy3rTHqUtcKkV0kGgRDTTzn0s4QoMhnclZN06Zapq3ErLs//rBkhxPQylnM8x2rwhDnMHAUdr5uqxi1rJYNACCGEKJAM7iayQzOZnaWR6ZY9b8G2e835Lw43vPk4bL/PHHIcCUHD4qHnSuqTEOUnEX/atpuBk9MDM9emj0Pp0rUTBwHDxMSxxGtGI+bQ9EAfRENQMwsqqid3cCmEKI5iTioJUabKt1pmPiby8O7JPhh85Pkw/cfMOVLH98LRl8xjnHUQDsKRrWbwJ+V/hShPifjTvRd6D4DfC8cPmPd9ujiU6XyprXdNXBxLvObxvWblzmIzxVT8vXD8LfPaQojyNdn9JCGmiek9uJvIw7sn+2DwkefDBPrAUQ19xyAWhYFO8xh/DzScYgZ/Uv5XiPKUiD+++PECLo8ZOPUfSx+HMp0vdWRr5kHfk9+EX984dNh4oRKv2XfM7LOz2swAT0fNyt2RraP5yoUQU8Vk95OEmCam9+BuIg/vnuyDwUeeD+OsMQcZxyLg6zKpTxYrKKsZ1KHMc7yHTSCVmTIhykci/gT6wOYwt9kc5vN0cSjT+VJwchyLBGDfk2OfbU+8ZjQMoX4Y7DHXQkF4EHwdYxs8CiFK22T3k4SYJqb34G4iD++e7IPBRx7kWT0LQj5AgYo/RkehuhkiQbPHRVIhhChPifjjrDHvdzAfEwO+kXEo00HAczadHMfaXwdX/dhn21dcbvYDhgbMYC4SNHvugv3gPWQOM7fYzX7h+z4AD31aYpQQ5WSy+0lCTBPTe3CXqUMzHvvPJvLa6STOh3HVmpW5hsVw4VfBVWdmxhVmwBcOmtSs0KCpSjfQLakQQpSbRPxxt0DEb/bchf0mBqSLQyPjRyJde9NHTo5j/uMwc83w5+c7296+Yyidc+tdZhBXUWXSMVGANq+jbNC4bCg101UHbdtkEkqIcjLZ/SQhponpXS1zIg/zLdZBwSOv39Vqiir42qC/w1TNs9jAUQPhABz5M8w5HaoaJRVCiHKRGn/Cg0PVMhsWZ65Gl+l8qZFxbNHbzR65VPnMto+syLnzIbMX2F4FlfWgMWnkET+4m2CwC2xOsDtBa7Oil5iEkj3CQkx9xegnCTENFG1wp5S6CfgkEAEe0Vp/vigNmcgDM0vhMM4Vl5sOVfMaTO9JQ3DApGwOdJqKmt27TWdNUiGEKB/jFX9GXicxSIOhNM98DhtPLZ7g64T+NrMHOOyHWNhkGDg9JhXTWTtUFAqGUkplP44Q5aUU+klClJmiDO6UUm8H3gWs1VoHlVIzitGOkjWe576kzoydOARBH1jtpijCQNh0oML+oRkzIYTIFoNGO9vuPWxW7HydsPdxiAYgFjMDO2UxA71An/mYKAITDoBSEA1CyzrZjyOEEELkUKyVu08A/6S1DgJorTuL1I7Sk+0w4bEM8Gauhj2PmtQme6XpPIUGzQpeLGI6TYk9dzKLJsT0lU8MGs1su2cuHH4JOrYNDeJiAZJFn3Q8s2D+WVAbH8Dte9IUb5m90WQX5LNCKIQQQkxjxSqoshQ4Ryn1J6XU00qpTZkeqJS6QSn1klLqpa6urklsYpHke+5LamGCfEuFB33x4xAwHSWb03SwlNV01KRq5uQYzc9OlJyyjU0TdfZU0wo4uhWiUZN6qWOAMv8H8zp1CyA8APufAvcMuOAWOOUis7onZ3IKkbeyjU9CiJwmbHCnlHpCKbUjzb93YVYM64Azgc8BP1dKqXTX0VrfqbXeqLXe2NTUNFHNLR35nPuSmFkv9CgDuwuqZpiCKtEQxELmNrtTDhCdLKP92YmSU7axaaLOnupqNTGmotKkhlss8cPL7eagdWU1RZ86d5r41L0X9vzWpIRe+QN4+xdlYCdEnso2PgkhcpqwtEyt9YWZ7lNKfQJ4QGutgT8rpWJAIyDTS565psPvqh26beQ+k9SZdRj6OLKK3Mh9M/WLTMepaoZJy+zabWbPa2YNPUcKFkysfH92QhRLPjFoNLyHze++r9MM6KwVQweY21wmZVxZzaCvohq6d0HjcnlvCCGEEAUoVlrmr4HzAZRSS4EKoLtIbSkt+Zz7MtrVvUgQKhvN/cE+07lyVMOsDUPPk4IFE2uiVkWEGC8TdfaU1QH+E6Y4irKYQik6Cu5m8Mw2r+WoBM8cczSC1QG+Y/LeEEIIIQpQrIIq/wX8l1JqBxACrouv4ol8KtGNenVvgUl3cs8w17Y6oO+YGeTpWP4lzcXoTdSqiBDjZSLPnrI5zKHlwX5TpddihdmngcNtbo8ETYGn3kOmom8sZlbvhBBCCJGXogzutNYh4APFeO0pIVclusTZdZD5nKlE2fFUzhroO2r2riSMTN2UA0QnVj4/OyGKbSLOnooGYf7Z0POm2fdbNx8aTjHFUjxzob8TOnaaQ9etdlNoRVnMBFT7DolLQgghRB6Kdoi5GIPxWt1LXEs6TZNnIldFhChliZi04Jyh2/y94JppKmluu9ekalrtZvUuFoF5Z5kKmrLvTgghhMiLDO6mqvFY3RPFIQNqMR1li0mtD8GcTbD/abOqZ3eaoiqxkOxJFUIIIQpQrIIqYqIlVohctSYVU86IEkIUU7aY5D0M9Quh8RSonWf+uWrjA0DZkyqEEELkS1buypmsEAkhSkmmmJRI2WxcBkf+bPbdDZ4w+/EOPgfnfG7SmyqEEEJMRbJyJ4QQorgSxy9YK6BuEfg6IDJojkVoXG4OM2/fUexWCiGEECVPVu6mqpFVLldcLqt0QojiGW1MSjwv2Gee298BdQuhZZ05tgXMqp4UVRFCCCFykpW7qSjdAeXPf19mtoUQxTHamJT6vObV0LzGHGxeMxu6d8OuR+DAs+bMOymqIoQQQuQkg7upKPWAcmUxH5215vYS941vfINVq1axdu1a1q9fz5/+9CcAPvrRj7Jz585RXfPYsWO85z3vSX7+vve9j7Vr13L77bfzj//4jzzxxBPj0vaE7373uwwODo7pGr/+9a+Hfb1jaafWmptvvpklS5awdu1aXnnllbSPe//738+yZctYvXo1H/7whwmHwwB4vV4uv/xy1q1bx6pVq/jxj388qnaIaWy0MSnd82xOs88uHABHtfl48I9gdUzolyCxyShGbEq46aabcLvdyc9/85vfJH8eGzdu5LnnnhtVO4SYyiQ2GaXUbyr52KS1njL/TjvtNC201r/6hNa//7rWf/i/Q/9+/3Vzewl7/vnn9ZlnnqkDgYDWWuuuri599OjRcX2NtrY2PW/evHG95kjz58/XXV1dOR8XiUQy3nfdddfp+++/f1za88gjj+hLLrlEx2Ix/cILL+jTTz894+NisZiOxWL62muv1T/4wQ+01lp/4xvf0J///Oe11lp3dnbquro6HQwGx6Vt+QBe0iUQX8byb9rHptHGpHTP+49ztP6/c7T+z7drfdcl5uO/nqb1g5+asOZLbBpSjNiktdZbt27VH/jAB3RVVVXytv7+fh2LxbTWWm/btk0vW7ZsXNpVCIlPopgkNg0ppX5TqccmWbmbijxzTXnwVKMtF96+A578Jvz6RvNxAlM729raaGxsxOEwM/CNjY3MmjULgC1btvDSSy8BcNddd7F06VK2bNnCxz72MT75yU8CcP3113PzzTdz1llnsWjRIn7xi18AcODAAVavNntxLr74Yjo7O1m/fj3PPvss119/ffJxW7du5ayzzmLdunWcfvrp9Pf3c+DAAc455xw2bNjAhg0beP755wF46qmn2LJlC+95z3tYvnw573//+9Fa86//+q8cO3aMt7/97bz97W8/6WtcsGABt956K29729u4//77+eEPf8imTZtYt24df/mXf8ng4CDPP/88Dz74IJ/73OdYv349b7311rB2/v73v+fUU09lzZo1fPjDHyYYDGb9vv7mN7/hQx/6EEopzjzzTHp7e2lrazvpce985ztRSqGU4vTTT+fIkSMAKKXo7+9Ha43P56O+vh6bTbbjigLkG5NGxhur4+TnRQJmz53dCcF+83H+2RDN/j4YC4lNxY1N0WiUz33uc3z7298edrvb7UYpBcDAwEDy/0JMFxKbSrPfVOqxSQZ3U1Gispy/F3TMfAz0mtsLMcl79y6++GIOHz7M0qVLufHGG3n66adPesyxY8f42te+xosvvsjjjz/Orl27ht3f1tbGc889x8MPP8wXvvCFk57/4IMPsnjxYl577TXOOeec5O2hUIhrrrmG733ve2zbto0nnngCl8vFjBkzePzxx3nllVe47777uPnmm5PPefXVV/nud7/Lzp072bdvH3/84x+5+eabmTVrFk8++SRPPvlk2q/T6XTy3HPPce211/Lud7+brVu3sm3bNlasWMFdd93FWWedxRVXXMF3vvMdXnvtNRYvXpx8biAQ4Prrr+e+++7j9ddfJxKJ8B//8R+ASUF48MEHT3q9o0ePMnfuUCd6zpw5HD16NNOPgXA4zD333MMll1wCwCc/+UlaW1uZNWsWa9as4Xvf+x4Wi4QGUYB8YlK6eNN3FE4cGP48qx0aToEF58Dyy8xHm3NCz7qT2FTc2PRv//ZvXHHFFbS0tJx0369+9SuWL1/OZZddxn/913+l/bqEKFcSm0qz3wSlHZukBzcVjdcB5ZO8d8/tdvPyyy9z55130tTUxDXXXMNPfvKTYY/585//zHnnnUd9fT12u52rr7562P1XXnklFouFlStX0tHRkfdr7969m5aWFjZt2gRATU0NNpuNcDjMxz72MdasWcPVV189LJ/79NNPZ86cOVgsFtavX8+BAwfyeq1rrrkm+f8dO3ZwzjnnsGbNGn7605/yxhtv5GznwoULWbp0KQDXXXcdzzzzDAC33norV1xxxUnPMavzw2WbRbrxxhs599xzk0H8scceY/369Rw7dozXXnuNT37yk/T19WV8vhAnyScmpYs3dQuhZtbw553zOQj1w5uPw66HzccT+wufvCqAxKbixaZjx45x//33c9NNN6V93auuuopdu3bx61//mn/4h3/I/gUKMZEmMdMpQWJTafaboLRjk+ReTVXjcUC597CZQU/lrJnQqnRWq5UtW7awZcsW1qxZw913383111+fvD/dGy5VIjUhn8em0lqnfePefvvtNDc3s23bNmKxGE6nM+1rWa1WIpFIXq9VVVWV/P/111/Pr3/9a9atW8dPfvITnnrqqZztLNScOXM4fHjoZ3bkyJFk2sZIX/3qV+nq6uI///M/k7f9+Mc/5gtf+AJKKZYsWcLChQvZtWsXp59+esFtEdNYrpiUKd70HYW3f3HotvYdQPy9mnw7THzKi8Smp3K2s1D5xKZXX32VvXv3smTJEgAGBwdZsmQJe/fuHfa4c889l7feeovu7m4aGxsLbosQY5LIPHDWDs90Gs3EeoEkNj2Vs52FGmu/KVUpxiZZuZvOxnPvXh52797Nm2++mfz8tddeY/78+cMec/rpp/P0009z4sQJIpEIv/zlL8fltZcvX86xY8fYunUrAP39/UQiEbxeLy0tLVgsFu655x6i0WjOa1VXV9Pf35/X6/b399PS0kI4HOanP/1pzmssX76cAwcOJDs299xzD+edd17W17jiiiv47//+b7TWvPjii3g8nrTpTT/60Y947LHH+NnPfjYs7XLevHn8/ve/B6Cjo4Pdu3ezaNGivL4+IfKWb7xpfQjqFsApF8GKvzAf6xZMaDVgiU3Fi02XXXYZ7e3tHDhwgAMHDlBZWZl8jb179yY7bq+88gqhUIiGhoa8vj4hxlWRqpRLbCrNflOpxyYZ3E1n47V3L08+n4/rrruOlStXsnbtWnbu3Mktt9wy7DGzZ8/mS1/6EmeccQYXXnghK1euxOPxjPm1KyoquO+++7jppptYt24dF110EYFAgBtvvJG7776bM888kz179gybPcrkhhtu4NJLL027MXikr33ta5xxxhlcdNFFLF++PHn7tddey3e+8x1OPfVU3nrrreTtTqeTH//4x1x99dWsWbMGi8XCxz/+cSBz7vg73/lOFi1axJIlS/jYxz7GD37wg2H3HTt2DICPf/zjdHR0sHnzZtavX8+tt94KwD/8wz/w/PPPs2bNGi644AK+9a1vlczskygj+cYb72GzopdqgjMKJDYVNzZl8stf/pLVq1ezfv16/vZv/5b77ruv5AoXiGmiCHEJJDYVOzZl6jeVemxSo1nOLJaNGzfqRGUgMU7ad5iZJ+9hM4O+4vIJTzHIxefz4Xa7iUQiXHXVVXz4wx/mqquuKmqbxMRRSr2std5Y7HaMhcSmPKWLNzD8Nl8nWCvMzHiCv9d8npq+WQQSm6YfiU8CMHvsEnEooUTiEkhsmo6yxSbZczfdjcfevXF2yy238MQTTxAIBLj44ou58sori90kIcR4GBlv0u1j6TuG2Wy30MyMB/rMCt+GDxalyakkNgkxTa243MQqKLm4BBKbxHAyuBMl57bbbit2E4QQkyF1H4uvE7p3w0A32F1msNd31KzmbfhgSUxCSWwSYppKVAROzTIokbgEEpvEcDK4E0IIURyJCpq+TjjyZ3Oouase/MchPDgpleiEECIvJZjpJEQ6UlBFTKr29nauvfZaFi9ezMqVK3nnO9/Jnj17it0stmzZQinvSXjqqad4/vnnk5/fcccd/Pd///eor/fNb36TJUuWsGzZMh577LG0j9m2bRubN29mzZo1XH755cPOvtu+fTubN29m1apVrFmzhkAgMOq2iGkm9ayoEwfg+H6zYmd1gN0J0RBUNU5KJbphzZLYNCqlFJtCoRB//dd/zZo1a1i3bl3OEupCTAUSm0anGLHptdde48wzz2T9+vVs3LiRP//5zwAcOHAAl8vF+vXrWb9+fbLgy0SRlTsxabTWXHXVVVx33XXce++9gHkjdHR0JA+fnAyRSASbrfR+9bO166mnnsLtdnPWWWcBjCkw7Ny5k3vvvZc33niDY8eOceGFF7Jnzx6sVuuwx330ox/ltttu47zzzuO//uu/+M53vsPXvvY1IpEIH/jAB7jnnntYt24dPT092O32UbdHTCMj99iFg3DElNmmugXCAYgEoGXdpFSiS5DYlN1UiU0//OEPAXj99dfp7Ozk0ksvZevWrcNKmAsxlUhsyq7UYtPnP/95vvKVr3DppZfyv//7v3z+859PTjItXryY1157bdRtKIREPDFpnnzySex2+7A32Pr16znnnHPQWvO5z32O1atXs2bNGu677z7AvDm3bNnCe97zHpYvX8773//+5NkiW7du5ayzzmLdunWcfvrp9Pf3EwgEkjO3p556Kk8++SQAP/nJT7j66qu5/PLLufjii/H7/Vx77bWsXbuWa665Br/fn2zTJz7xCTZu3MiqVav4yle+krx9wYIFfOUrX2HDhg2sWbOGXbt2AaZKVeI1165dmzxj5ne/+x2bN29mw4YNXH311fh8vpO+J1u2bOFLX/oS5513Ht/73vd46KGHOOOMMzj11FO58MIL6ejo4MCBA9xxxx3cfvvtrF+/nmeffZZbbrklmWOfmClau3YtV111FSdOnMj6c/jNb37Dtddei8PhYOHChSxZsiQ5u5Rq9+7dnHvuuQBcdNFFw76utWvXsm7dOgAaGhpOCnBCpDXyrKjGJTB7I+ioScW0O2HuGeCeMaFnbo4ksak8YtPOnTu54IILAJgxYwa1tbUlvbIgRC4Sm6ZWbFJKJTMJvF5vxoPRJ1rpDcNF2dqxYwennXZa2vseeOABXnvtNbZt20Z3dzebNm1K/vF+9dVXeeONN5g1axZnn302f/zjHzn99NO55ppruO+++9i0aRN9fX24XC6+973vAWbmdteuXVx88cXJ9IUXXniB7du3U19fz7/8y79QWVnJ9u3b2b59Oxs2bEi25Rvf+Ab19fVEo1EuuOACtm/fztq1awFobGzklVde4Qc/+AG33XYbP/rRj/ja176Gx+Ph9ddfB+DEiRN0d3fz9a9/nSeeeIKqqiq+9a1v8S//8i/84z/+40lfe29vL08//XTyuS+++CJKKX70ox/x7W9/m3/+53/m4x//OG63m89+9rMAyUPHAT70oQ/x/e9/n/POO49//Md/5Ktf/Srf/e53ueOOO4CTZ6uOHj3KmWeemfx8zpw5HD169KR2rV69mgcffJB3vetd3H///Rw+bFZR9uzZg1KKd7zjHXR1dXHttdfy+c9/Pv0PXYhUiT12qRoWmf11zhoz8HPWDJ2BN0mV6CQ2lUdsWrduXbITdvjwYV5++WUOHz7M6aefnv4HL0SJk9g0tWLTd7/7Xd7xjnfw2c9+llgsNiwtdP/+/Zx66qnU1NTw9a9/nXPOOSftz3U8FGVwp5RaD9wBOIEIcKPW+uQhsJg2nnvuOd73vvdhtVppbm7mvPPOY+vWrdTU1HD66aczZ84cwMxYHThwAI/HQ0tLC5s2bQKgpqYmeZ2bbroJgOXLlzN//vxkkLrooouor68H4JlnnuHmm28GYO3atckgBPDzn/+cO++8k0gkQltbGzt37kze/+53vxuA0047jQceeACAJ554IpkuAVBXV8fDDz/Mzp07OfvsswGzF2Tz5s1pv/Zrrrkm+f8jR45wzTXX0NbWRigUYuHChVm/b16vl97eXs477zwArrvuOq6++mogcwpCurMt0x2++V//9V/cfPPN3HrrrVxxxRVUVFQAJg3iueeeY+vWrVRWVnLBBRdw2mmnJWfMhcjIM/fks6ICfdCy1pQaL8FKdBKbjKkQmz784Q/T2trKxo0bmT9/PmeddVZJppIJMR4kNhmlFJv+4z/+g9tvv52//Mu/5Oc//zkf+chHeOKJJ2hpaeHQoUM0NDTw8ssvc+WVV/LGG28kfwbjrVhR79vAV7XWv1VKvTP++ZYitUVMklWrVvGLX/wi7X3p3jgJDocj+X+r1UokEkFrnfaNle06VVVVwz5P9/z9+/dz2223sXXrVurq6rj++uuHFQtJtCXRjsRrjryW1pqLLrqIn/3sZxnbk65dN910E3//93/PFVdcwVNPPcUtt9yS8/mFmjNnTnKmG0xgTJc6sHz5cn73u98BZrXukUceST7/vPPOo7GxEYB3vvOdvPLKKzK4E7llOyuqiJXoJDblbtdUiE02m43bb789+bizzjqLU045ZdzbKcRkkdiUu12lFJvuvvvu5Ero1VdfzUc/+lHAfA8S34fTTjuNxYsXs2fPHjZuTHsG+ZgVa8+dBhLDVQ9wrEjtEJPo/PPPJxgMJje9g8n/fvrppzn33HO57777iEajdHV18cwzz2RNpVm+fDnHjh1j61ZTjKG/v59IJMK5557LT3/6U8D80T906BDLli076fmpj9uxYwfbt28HoK+vj6qqKjweDx0dHfz2t7/N+XVdfPHF/Nu//Vvy8xMnTnDmmWfyxz/+kb179wIwODiYV3Urr9fL7Nkmbe3uu+9O3l5dXU1/f/9Jj/d4PNTV1fHss88CcM899yRnozK54ooruPfeewkGg+zfv58333wz7fe6s7MTgFgsxte//vXkjNY73vEOtm/fzuDgIJFIhKeffpqVK1fm/NqESJ4V5ao1Z9i5akviuAOJTeURmwYHBxkYGADg8ccfx2azSWwSU5rEpqkVm2bNmpVMF/3DH/6QnFzq6uoiGo0CsG/fPt58800WLVqU82sbrWIN7j4FfEcpdRi4DfhipgcqpW5QSr2klHqpq6trstonJoBSil/96lc8/vjjLF68mFWrVnHLLbcwa9YsrrrqqmSRjvPPP59vf/vbzJw5M+O1KioquO+++7jppptYt24dF110EYFAgBtvvJFoNMqaNWu45ppr+MlPfjJsBivhE5/4BD6fj7Vr1/Ltb387+SZdt24dp556KqtWreLDH/5wMj0gm//zf/4PJ06cYPXq1axbt44nn3ySpqYmfvKTn/C+972PtWvXcuaZZyY3Emdzyy23cPXVV3POOeckV8YALr/8cn71q18lNwanuvvuu/nc5z7H2rVree2115L56XfccUcyfzzVqlWreO9738vKlSu55JJL+Pd///dkQZSPfvSjyQIEP/vZz1i6dCnLly9n1qxZ/PVf/zVg0if+/u//nk2bNrF+/Xo2bNjAZZddlvNrKzcSm0Zp5mp4+xfhyh+YjyWQeimxqTxiU2dnJxs2bGDFihV861vf4p577sn5dZUriU/lQWLT1IpNP/zhD/nMZz7DunXr+NKXvsSdd94JmJTWxM/qPe95D3fccUcy3XUiqGzLsWO6sFJPAOl+y74MXAA8rbX+pVLqvcANWusLc11z48aNWipfCVFelFIva60nJjdhkkhsEqI8SXwSQpSibLFpwvbcZRusKaX+G/i7+Kf3Az+aqHYIIYQQQgghxHRQrLTMY0AiwfV84M0itUMIIYQQQgghykKxqmV+DPieUsoGBIAbitQOIYQQQgghhCgLRRncaa2fA9KfyiiEEEIIIYQQomDFSssUQgghhBBCCDGOJqxa5kRQSnUBB4vdjjw0At3FbkSeplJbQdo70YrR3vla66ZJfs1xJbFpwkh7J85UaisUr70SnyaH/D5OLGnvxCm52DSlBndThVLqpalSOnkqtRWkvRNtqrVXFGaq/XylvRNnKrUVpl57RWGm2s9X2juxplJ7S7GtkpYphBBCCCGEEGVABndCCCGEEEIIUQZkcDcx7ix2AwowldoK0t6JNtXaKwoz1X6+0t6JM5XaClOvvaIwU+3nK+2dWFOpvSXXVtlzJ8aNUupHwL9orXeO4rkLgIe11qvHvWHm+tcDG7XWn1RK3QL4tNa3TcRrCSFKi8QmIUSpkvgkxluxDjEXZUhr/dFit0EIIUaS2CSEKFUSn8R4k7RMUTClVJVS6hGl1Dal1A6l1DXx259SSm2M/9+nlPpG/DEvKqWa47cvjn++VSl1q1LKl+b6VqXUd+KP2a6U+psM7fhQ/P5tSql74rc1KaV+GX/uVqXU2RP3nRBClBKJTUKIUiXxSUwWGdyJ0bgEOKa1XhdPBXg0zWOqgBe11uuAZ4CPxW//HvA9rfUm4FiG638E8MYfswn4mFJqYeoDlFKrgC8D58df4+9Srn97/Ll/CfxotF+kEGLKkdgkhChVEp/EpJDBnRiN14ELlVLfUkqdo7X2pnlMCHg4/v+XgQXx/28G7o////9luP7FwIeUUq8BfwIagFNGPOZ84Bda624ArfXx+O0XAv8Wf+6DQI1Sqjr/L00IMYVJbBJClCqJT2JSyJ47UTCt9R6l1GnAO4FvKqV+p7W+dcTDwnqoWk+Uwn7XFHCT1vqxHI9JVw3IAmzWWvuHPVipAl5eCDEVSWwSQpQqiU9issjKnSiYUmoWMKi1/h/gNmBDAU9/EbPkD3Bthsc8BnxCKWWPv95SpVTViMf8HnivUqoh/pj6+O2/Az6Z0tb1BbRNCDGFSWwSQpQqiU9issjKnRiNNcB3lFIxIAx8ooDnfgr4H6XUZ4BHgHRpCT/CpCK8osy0URdwZeoDtNZvKKW+ATytlIoCrwLXAzcD/66U2o75/X4G+HgB7RNCTF0Sm4QQpUrik5gUcs6dmFRKqUrAr7XWSqlrgfdprd9V7HYJIaY3iU1CiFIl8UkUQlbuxGQ7DbNpVwG9wIeL2xwhhAAkNgkhSpfEJ5E3WbkTQgghhBBCiDIgBVWEEEIIIYQQogzI4E4IIYQQQgghyoAM7oQQQgghhBCiDMjgTgghhBBCCCHKgAzuhBBCCCGEEKIMyOBOCCGEEEIIIcqADO6EEEIIIYQQogzI4E4IIYQQQgghyoAM7oQQQgghhBCiDMjgTgghhBBCCCHKgAzuhBBCCCGEEKIMyOBOCCGEEEIIIcqADO6EEEIIIYQQogzI4E4IIYQQQgghyoAM7oQQQgghhBCiDMjgTgghhBBCCCHKgAzuhBBCCCGEEKIMyOBOCCGEEEIIIcqADO6EEEIIIYQQogzI4E4IIYQQQgghyoAM7kTRKKUOKKU6lFJVKbd9VCn1VPz/Wim1JOW+zyql2pRSq4rQXCHENBWPVX6llE8pdUIp9YhSam6x2yWEmF5SYlG/UqpXKfW8UurjSilLymNOV0r9b/z+40qpPyul/rqY7RaTSwZ3othswN/lepBS6v8AnwLO01q/MdGNEkKIES7XWruBFqAD+H6R2yOEmJ4u11pXA/OBfwL+P+AuAKXUZuAPwNPAEqAB+ARwaXGaKopBBnei2L4DfFYpVZvpAUqprwMfBc7VWu+ZrIYJIcRIWusA8AtgZbHbIoSYvrTWXq31g8A1wHVKqdWYPtXdWutvaa27tfGy1vq9xW2tmEwyuBPF9hLwFPDZDPf/EyZwnau13jdZjRJCiHSUUpWYmPRisdsihBBa6z8DR4DzgM2YyScxjdmK3QAhgH8E/qiU+l6a+y7GzEIdmuQ2CSFEql8rpSKAG+gE3lHk9gghRMIxoBazaNNW3KaIYpOVO1F0WusdwMPAF9LcfS3wHqXUVye3VUIIMcyVWutawAF8EnhaKTWzuE0SQggAZgO9QAyzL1hMYzK4E6XiK8DHMAEq1R7gQuBGpVS6wZ8QQkwarXVUa/0AEAXeVuz2CCGmN6XUJkzf6RngBeAvi9siUWwyuBMlQWu9F7gPuDnNfW9gBnifU0p9apKbJoQQScp4F1AHtBa7PUKI6UkpVaOU+gvgXuB/tNavA58HrldKfU4p1RB/3Dql1L3FbKuYXLLnTpSSW4EPprtDa71NKfUO4HGlVEBrfcfkNk0IMc09pJSKAho4CFwnx7IIIYrgofj+3xiwE/gX4A4ArfXzSqnzga8C/yces94E/r1YjRWTT2mti90GIYQQQgghhBBjJGmZQgghhBBCCFEGZHAnhBBCCCGEEGVABndCCCGEEEIIUQZkcCeEEEIIIYQQZWBKVctsbGzUCxYsKHYzhBDj6OWXX+7WWjcVux1jIbFJiPIk8UkIUYqyxaYpNbhbsGABL730UrGbIYQYR0qpg8Vuw1hJbBKiPEl8EkKUomyxSdIyhRBCCCGEEKIMyOBOCCGEEEIIIcqADO6EEEIIIYQQogxMqT13QgghhBBibMLhMEeOHCEQCBS7KSXL6XQyZ84c7HZ7sZsiREFkcCeEEEIIMY0cOXKE6upqFixYgFKq2M0pOVprenp6OHLkCAsXLix2c4QoiKRlCiGEEEJMI4FAgIaGBhnYZaCUoqGhQVY2xZQkK3dCFKJ9B7Q+BN7D4JkLKy6HmauL3SohhBCiIDKwy06+P2KqkpU7IfLVvgOe/z74e6Fmtvn4/PfN7UIIIYQQQhSZDO6EyFfrQ+CsBVctKIv56Kw1twshhBAib0opPvOZzyQ/v+2227jlllsm7PVeeuklbr755gm7vhClQtIyhciX97BZsUvlrDG3CyGEEGWqtc3Lozs6ONrrZ3ati0tWN7OixTOmazocDh544AG++MUv0tjYOE4tzWzjxo1s3Lhxwl9HiGIr6sqdUqpWKfULpdQupVSrUmpzMdsjRFaeuRDoG35boM/cLoQQQpSh1jYvdz6zH68/TIvHidcf5s5n9tPa5h3TdW02GzfccAO33377SfcdPHiQCy64gLVr13LBBRdw6NAhAK6//npuvvlmzjrrLBYtWsQvfvGLtNe+//77Wb16NevWrePcc88F4KmnnuIv/uIvAOjq6uKiiy5iw4YN/M3f/A3z58+nu7t7TF+PEKWi2GmZ3wMe1VovB9YBrUVujxCZrbgcAr1mr11/O7z5OLz5GPg6Zd+dEEKIsvTojg48Ljselx2LUsn/P7qjY8zX/tu//Vt++tOf4vUOHyh+8pOf5EMf+hDbt2/n/e9//7B0yra2Np577jkefvhhvvCFL6S97q233spjjz3Gtm3bePDBB0+6/6tf/Srnn38+r7zyCldddVVy8ChEOSja4E4pVQOcC9wFoLUOaa17i9UeIXKauRrOugmiIdj/tLlt4XlgrZDCKkIIIcrS0V4/1c7hu3iqnTaO9vrHfO2amho+9KEP8a//+q/Dbn/hhRf4q7/6KwA++MEP8txzzyXvu/LKK7FYLKxcuZKOjvQDzLPPPpvrr7+eH/7wh0Sj0ZPuf+6557j22msBuOSSS6irqxvz1yJEqSjmyt0ioAv4sVLqVaXUj5RSVSMfpJS6QSn1klLqpa6urslvpRCpZq4G9ww45R1wykVQPVMKq0xTEpuEEKVqPOPT7FoX/YHIsNv6AxFm17rGdN2ET33qU9x1110MDAxkfEzqsQQOhyP5f601AF/+8pdZv34969evB+COO+7g61//OocPH2b9+vX09PQMu17ieUKUo2IO7mzABuA/tNanAgPASevrWus7tdYbtdYbm5qaJruNQpzMe9gUUkklhVWmHYlNQohSNZ7x6ZLVzXj9Ybz+MDGtk/+/ZHXzuLS1vr6e9773vdx1113J28466yzuvfdeAH7605/ytre9Les1vvGNb/Daa6/x2muvAfDWW29xxhlncOutt9LY2Mjhw8P/Pr/tbW/j5z//OQC/+93vOHHixLh8LUKUgmIO7o4AR7TWf4p//gvMYE+I0iaFVYQQQkwTK1o83HDuQjwuO23eAB6XnRvOXTjmapmpPvOZzwwraPKv//qv/PjHP2bt2rXcc889fO973yvoep/73OdYs2YNq1ev5txzz2XdunXD7v/KV77C7373OzZs2MBvf/tbWlpaqK6uHpevRYhiK9pRCFrrdqXUYaXUMq31buACYGex2iNE3lZcbvbYgVmxC/SZQisbPljUZgkhhBATYUWLZ1wHcwA+ny/5/+bmZgYHB5OfL1iwgD/84Q8nPecnP/lJxmukeuCBB066bcuWLWzZsgUAj8fDY489hs1m44UXXuDJJ58clu4pxFRW7HPubgJ+qpSqAPYBf13k9giRW6KwSutDJhXTM9cM7GauLnbLhBBCCJHDoUOHeO9730ssFqOiooIf/vCHxW6SEOOmqIM7rfVrgJwoKaaematlMCeEEEJMQaeccgqvvvpqsZshxIQo9sqdEEIIIYQQoly17xie7bTicpkgn0DFPsRcCCGEEEIIUY7ad5g6Bf5eqJltPsrZwBNKBndCCCGEEEKI8df6kDkL2FULyiJnA08CGdwJIYQQQgghxp+cDTzpZHAnhBBCCCEm1Te+8Q1WrVrF2rVrWb9+PX/605/46Ec/ys6dcipWWZGzgSedFFQRQgghhBCZjXNBjBdeeIGHH36YV155BYfDQXd3N6FQiB/96Efj2GhREuRs4EknK3dCCCGEECK9CSiI0dbWRmNjY/Lg8MbGRmbNmsWWLVt46aWXALjrrrtYunQpW7Zs4WMf+xif/OQnx+GLEZMucTawqxb6jpqPZ90k1TInkKzcCSGEEEKI9FILYsDQx9aHRt1Bv/jii7n11ltZunQpF154Iddccw3nnXde8v5jx47xta99jVdeeYXq6mrOP/981q1bN6YvQxSRnA08qWTlTgghhBBCpDcBBTHcbjcvv/wyd955J01NTVxzzTX85Cc/Sd7/5z//mfPOO4/6+nrsdjtXX331qF9LiOlGVu6EEEIIIUR6nrkmFTOxYgfjUhDDarWyZcsWtmzZwpo1a7j77ruT92mtx3RtIaYzWbkTQgghhBDprbjcFMDw94KOmY+BXnP7KO3evZs333wz+flrr73G/Pnzk5+ffvrpPP3005w4cYJIJMIvf/nLUb+WENONrNwJIYQQQoj0EgUxUqtlbvjgmPZQ+Xw+brrpJnp7e7HZbCxZsoQ777yT97znPQDMnj2bL33pS5xxxhnMmjWLlStX4vF4xusrEqKsyeBOCCGEEEJkNs4FMU477TSef/75k25/6qmnkv//q7/6K2644QYikQhXXXUVF1988bi9vhDlTNIyhRBCCCFESbnllltYv349q1evZuHChVx55ZXFbpIQU4Ks3AkhhBBCiJJy2223FbsJQkxJsnInhBBCCDHNSEXK7OT7I6YqGdwJIYQQQkwjTqeTnp4eGcBkoLWmp6cHp9NZ7KYIUTBJyxRCCCGEmEbmzJnDkSNH6OrqKnZTSpbT6WTOnDnFboYQBZPBnRBCCCHENGK321m4cGGxmyGEmACSlimEEEIIIYQQZUAGd0IIIYQQQghRBmRwJ4QQQgghhBBlQAZ3QgghhBBCCFEGij64U0pZlVKvKqUeLnZbhBBCCCGEEGKqKvrgDvg7oLXYjRBCCCGEEEKIqayogzul1BzgMuBHxWyHEEIIIYQQQkx1xV65+y7weSCW6QFKqRuUUi8ppV6SwzaFEKVCYpMQolRJfBJi+ira4E4p9RdAp9b65WyP01rfqbXeqLXe2NTUNEmtE0KI7CQ2CSFKlcQnIaavYq7cnQ1coZQ6ANwLnK+U+p8itkcIIYQQQgghpqyiDe601l/UWs/RWi8ArgX+oLX+QLHaI4QQQgghhBBTWbH33AkhhBBCCCGEGAe2YjcAQGv9FPBUkZshhBBCCCGEEFOWrNwJIYQQQgghRBmQwZ0QQgghhBBClAEZ3AkhhBBCCCFEGZDBnRBCCCGEEEKUARncCSGEEEIIIUQZkMGdEEIIIYQQQpQBGdwJIYQQQgghRBmQwZ0QQgghhBBClIGSOMRcCCGEEEIIMU2074DWh8B7GDxzYcXlMHN1sVtVFmTlTgghhBBCCDE52nfA898Hfy/UzDYfn/++uV2MmazcCTHVyGyXEEIIIaaq1ofAWQuuWvN54mPrQ9KfGQeycifEVCKzXUIIIYSYyryHwVkz/DZnjbldjJms3AkxGsVaPZPZLiGEEEJMZZ65ZnI60YcBCPSZ28WYycqdEIUq5uqZzHYJIfLRvgOe/Cb8+kbzUVb3hRClYsXlEOg1/ScdMx8DveZ2MWYyuBOiUKmrZ8piPjprze0TzTPXzG6lktkuIUQqSd8WQpSwVj2X/1ZX8Nj+ADt27aQz6oSzbpIMpHEiaZlCFMp72HSYUk3W6tmKy00nLfGagT4z27XhgxP/2kKIqUHSt4UQJaq1zcudz+zH41pA1yk38kIggncwzA16LiuK3bgyISt3QhSqmKtnM1eb2S1XLfQdNR9ltksIkUrSt4UQJerRHR14XHY8LjsWpZL/f3RHR7GbVjZk5U6IQhV79WzmahnMCSEyk2IFQogSdbTXT4vHOey2aqeNo73+IrWo/MjgTohCJVbPUqtlbvigDLiEEKWh2BNQQgiRorXNy6M7Ojja6+fQ8UFC4SgLm9zJ+/sDEWbXuorYwvIig7sylPomml3r4pLVzaxo8RS7WeVFVs+EEKVKJqCEECViaI+dnRaPk3AkyiuHegGY31hFfyCC1x/mmk1zitvQMiKDuzIz8k3k9Ye585n93HDuQhngCSHEdCETUEKIEpC6xw5gQaNZsWvrC1JhtzK71sU1m+ZIH3UcyeCuzIx8EyU+PrqjQ944QgghhBBi0qTbYzevoQq7zcptV68rUqvKm1TLLDNHe/1UO4eP2WWjqhBCCCGEmGyza130ByLDbpM9dhOraIM7pdRcpdSTSqlWpdQbSqm/K1ZbykVrm5dDxwf57evtvLCvh67+ACBvIiGEEEIIMfkuWd2M1x/G6w8T0zr5/0tWNxe7aWWrmCt3EeAzWusVwJnA3yqlVhaxPVNaYq9dS40DqwX6/GFeOdjL/i6fvImEEEIIIcSkW9Hi4YZzFxKORPl9ayd/2t+Dyy6JgxOpaN9drXWb1vqV+P/7gVZgdrHaM9Ul9totaHSzcUEdHpedcCxGe39QiqkIIYQQQoiiGQzHOH1hPReuaKbCZuXOZ/bT2uYtdrPKUkkUVFFKLQBOBf6U5r4bgBsA5s2bN7kNm0JSN6w2up00up3EtKbNG8g4sJMjE4QYPYlNQohSJfFJlJLUYn9d/QH2dg1w3BfiKw/u5KtXrJS+5zgr+rqoUsoN/BL4lNa6b+T9Wus7tdYbtdYbm5qaJr+BI7S2ebn98T189v5t3P74npKZdSh0w2oijdPrDw87MqFUvh4hSl2pxaZyUaoxVoipROKTKCWJYn9d/QFeOdRLMBylrtJGjy8ofc8JUNTBnVLKjhnY/VRr/UAx25KPUh4QFbphNXUWxaJU8v+P7uiY5JYLIYRRyjFWCCHE6CQWIPZ2DeCwWXDarYSimka3Q/qeE6CY1TIVcBfQqrX+l2K1oxClPCBKbFj1uOy0eQN4XPase+3kyAQhRKkp5RgrhBBidBILEMd9ISqsikA4SjASY8mMKul7ToBi7rk7G/gg8LpS6rX4bV/SWv9v8ZqUXbqDGEvpl3JFiyfvvOXZtS68/nDykHOQIxOEEMVV6jFWCCFE4Va0eLhwRRN/2t9DR3uAGpeNdXM8NLpNhkai7ym1IMZHMatlPqe1VlrrtVrr9fF/JTuwg/I6iFHOHRFClJpyirFCCCGM1jYvT7R2sWl+HbNqnVQ77ezrGhx2XJek5Y+fohdUmUrKaUBUaBqnKJwUhhCiMOUUY4UQQhj5HNclafnjpySOQpgqEgOi1CXjazbNmbIDokLSOEVhEjNQHpd92AyUDKCFyKzcYqwQQoj8juuStPzxI4O7AsmASOQjdQaq2xdgb+cA3b6gnOkiRA4SY4UQorzkU+dBakGMH0nLnAYkPXDyJaqRdvsCvHywl0A4Sn2lneO+kOSQCyGEEGLayCflXtLyx48M7iZJsQZYskG1OJJnunQOP9Ol3l0hOeRCCCGEmDbyqfMgtSDGj6RlToJc+68msvRranogkPz46I4OecOMs9SfY4VV0dEXpNsXpL7SnjzTZdWsGskhF0IIIcS0ki7lPl3/99MXLS1SC8uHDO4mQaYB1j0vHEQBz+7toa7SzoqW6pyFNwodCMoG1ckxcgDfH4gQ0xqX3cqJwQj17gpWzaqhqXr4mS4jryHnuwghhBClT/5mj02hhefk+50/GdxNgnQDrEA4wvNvHaeu0o7Tpmj3+tnfM8C8ukoWN1WlXVkbTQVG2aA6OdIN4Oc3VDHL46Q9voL3yqETOGxWGt0ONm2Yxe2P70kGqaXNVTzR2iXVNUXZkz/QQoipTipij10hmWXy/S6M7LmbBOkO5m1t66eu0k5/IEzPQAhQOG0WuvqD7GrvZ2eaPXGjOQMk1wZVKbYyPna2edl5zMvvdrbz4r4eun0Bqp02On1BYloDoFAAeP0hHnjl2LB9kN///VvEYjE530WUNdkDLIQoB3Im29glCs+lypRZlvr97vEF2dnWx+tHvHzlwZ3y9yMNGdxNgnQDrBODYVbOqiYQiQEKm1VhsyiiWqOUwuuPnHSdQt4ICZk2qAJ8+YHt/M09r/DU7k5sFqSjNUqtbV4O9/jpC0SodtgIhKO8fLCXQz0DeP0R5jdUsWXZDC5eNZMty2YQjmq6fcFhfxQiMXPeSypJnxXlRjpEQohyMJr+mBgusfDR7Qvw4r4efreznWf2dOGwqpMem/h+d/UHeOVQL8FwlLpKGz2+oPRb05C0zEmQ7mDec5Y0YLdZcdgsBMMxIlGNRmNVCjTUOE/+0Yw2xXLkJtbE7Pm+Lh+1LvM6rx32smFebbKjJcvcmY1MK+vuD7C02c2eTh/BSMz8TCMxdnf4mFPnOukPQCgSQ6OH3VZfZY+v4A6R9FlRbmQPsBCiHOTqj0n6eW5Lm6u47bE9dPlCVFZY8DhthMIxjnkDtLZ5h32/Et/vvV1DFcgD4SiNbof0W9OQwd0kyTTAqnHasSmFNxAmGNHMqXOyuLGKhU3uk65xyepm7nxmP2A6RP2BCF5/mGs2zSmoLYnZ81A0RrXDhlJmlmRv1wBnLKyXjlYW6fK+n93bw9lL6tkwr5a9XQP4AhFqnDZqXHZWzfKc9AegwmZhMBThhX09+AIR3E4bLrsFu9WC1x8e089WiFIme4CFEOUgW39M9ofl1trm5RcvH8XrDxOJxujzxwiEY5y9uIFmj4t7XjhIU7XzpLoEx30h6iptyQrkq2dLBfJ0JC2zSBKreatn1RCMalo8Li5d3cymBfVYrZa0hzaO1xkgieXtGqedE4MhjpwY5Givn31dPg52D0hHK4t0aWV1lXZ2HuunqdrJ5kUNXLSymZWzPKya5Umbkmu3KvoDEfr8YaoqLPT5w+zrHuSqU1vkfBdR1uSQWiFEOUj0x0KRKE+0dvDn/ceptJsutaSfZ5ao8/C3P32FVw/1Eo7GqKu043HZsFgUh074CYQjPLe3Z9je7Cdau7hwRRP17gqOD4Zx2q2cNr+WRrdTJgjTkJW7IlrR4uEb7147bPne47JzzaY5GTv16c4JKVRi9ryhyk5rWx8VVgsWpYlpxauHe3mHdLQySpdWtqKlmuffOp521S01JfeNY176AhF6BkLUOO3YLQpfKIrHZWdZs5vBkJbzXURZS5eini3eCSFEKfOHY5yxsCH5t//OZ/bjC4ZZPrNm2ONkdWl45pPXH8ZmgWBEEwxHcTlsaGJ09AWwWVR8wDdURfPEQJC7XziEx2WjbzBMc7WD+ipHcoJQHsyCzwAARg5JREFUspyGk8HdJMuUhz2ZnZtEOsHR3gAzaxx4/RH84Rjz6l0sbqpiT8cAl01aa6aWdGllTruNty1pwOOyJwdwHpctOUuX+NkeOj7InLpK/hRfvQtFdXLmKab1tA/8YnpIxLtELLzruQOyJ0UIMeVkKuV/tNdPfyAi6ecjpH6/lFJYFNitFvqCEQbDMZTS2K1WTgyGOXtJffJ53b4Au9r7icbgjIX1VNqt7O7wMRiOsmqWRyYI05DB3SSa7DzsbAPJG85dyGd+vh2LRbGgsYolM6pkkJGHTHn2iQqkiQFctdM27OebGtSqXXaC4SgOm2Jv54CkFYhpZzSxUAoUCCFKSaYCUTXxv/+Jz2UPvZH6/WqpcXKgZ4BgJIZFKSwWCEc0FVZYPasah21oeLK3cwClFPVuk+a6oNFNXZUppCLZTunJnrtRGO3ZcJOZh53PeVJup41IFDQQP4pNBhk5ZNv3mO3nm1o2eUlTFcFIDLTG6w/JviNRFgqJi4XGQjkfTwhRatKdYdwfiLBq1vjURyg3qd+vtXM9WCwKpSBx8EGFzcqMGgdaM2xvdrcvCNr0nRIkzTU7WbkrULYZZyDrzPJklgHPlC6Q6Dzd+cx+WmoceAdD9PnDvHKwl6XNbqxWy7SfXcolUxpttp9vajpnU7WTDfNqeeNYHxZlybnPUohSV+hKXKGxMFs8k/eNEKIYslXMnOztNlNB6vervsqB02ZhMBglHNOoqMaqoLs/SH8wwj9ctoI9HQMc7fXT4HYws9pBU/XQ3wxZiMhOVu4KlGnG+Z4XDuacWc40yzMRv6DZDthMfA0LGt1sXFCHx2UnHIvR3h+U2aUxyPbzHVklsMJmZVGTm39+71o+fdFS+Z6LKa3QlbhCY6EcGCyEKDXjVcF8ukj9fu1q7yMQjhGLaRRgMUc84wtG8fkjPL+3h09ftJTbrl7HV69YiTV+VJRUWc6PrNxlkW6PR6YZ5ydaezhjYUPWmeWRszwHuwfY0+FjboOL2x/fk1zpG4+9JdnOk0r9GhrdThrdTjr7/Ww73CfFDcYg1yyeVAkU5eqNY176/GF8wShup40lTVU0uB0ZB1/p3isHewaY5XHy2fu3nRSD5Hw8IUQpGdlP+8jbFsjf8zwkVjRvf3wPh3oGeTPgwxLPy4xpiGpNNBTl4dfb+MDm+cPqREj/KX+ycpdBpj0eFfEzylL1ByIoVM6Z5dRZi9a2PvZ0+lg2083ymTXJ6//n02/y6Xu38cj2Ng71DLC/yzeqvSXZzpMaOWve7Qvwp30nsFuV7GcZg1yzeCtaPMmZKFmtE+Witc3LkRN++gIR3A4rwXCUVw71Zj0zc+R7JRSJYlEKu82aNgbJ+XhCiFIhe4DH7mivH4tS2Kym5kNUm5U7gBgwEIjw7Ud3J7+n0n8qjKzcZZBpj0c4Ek1bBenUuZ68St+mzlpUVVhp7wuyp9NHjdOOy27hzme6aKp2UF9lJxiJsafTx9IZ7oL3luSa6UidNd9xtA8FrJpVk0ypSnwP5A1UGMmzF9PNozs6WNbsZneHj2AkhsNmMbGrw8cn3r444/NS3yu3P76HCps1a+ZDpd3Cn/cfR6M5dW6tpD8JIYpC9gCP3exaF2929ON22OkdDJ90fwx4q9Mn39NRksFdBpnSL9u8kbSDJiBjSl46O9u8HOoZxGm3Uu2wEQhHebOjn0AkRo3ThlIKp90KQHtfgIr4/0fKlsKZaaAxcuAXisZYMqOKvV0DvHbYi9tpY1FjJb5g5KTnCiFEqqO9fuY1VOF22tjbOUBfIEyN04an0p73H+VsBVZSi7VcsGJGMrYKIUQxJOJVV3+AvV0D+OJZCzUpk/siu0tWN7P9SC89vlDawZ3W0OYN8MYxWQ0djaIO7pRSlwDfA6zAj7TW/1TM9qTKtscj06CpkJxgrz8ybADntFuJxDQWpQlGYsnbHTYLxwfCbF58cnrTWM7NS/0avvTAdv607zhupy2ZVrV1/wnOWFSf9RpCCJGIlYn9u8BJsTPfa6SLtzJLLoQoJbNrXezv8rGn04fDZsHtsNIXiNAXiNDa5pW4lIcVLR4+f8ky7nnhID/fepiYHrpPYVI0wzFNuzdQrCZOaUXbc6eUsgL/DlwKrATep5RaWaz2jDSaPR6F5ATXOG2gIRCOorUmEI5it1qorLASjMSSt/cFItgsKu3rjte5eYk3UirN0NkjQgiRyXjsh8t2DamUKYQoJZesbmZPhw8gmYYOsKzZPSHnFperFS0e/u+717KspSbZ3xzZ7xwMSQbZaBSzoMrpwF6t9T6tdQi4F3hXEdszzESXuF01y8PSZjcOuxVfMIrDbmX1rGrqq5wsa3bjsFnoGQgBcNMFizOeFTUenZ5gVHPGojqcdivdviBdviAxHePVw17ZIFyA0R5uL8RUNh6xMts1JvMIGSGEyGVFi4e5DS5qnDb6gxGcdiunza9lXkOVTDqNwqxaJ1Y1fEBiAaoqLDgybEkS2RUzLXM2cDjl8yPAGSMfpJS6AbgBYN68eZPTsriJLI5hSoEPsrKlZtgevfdumsuejgHsNiubFzdmPZJgvMqDJ66zZEYVXn+YaqfdJDwrlXea53Q3lhRZMTUVMzaVmvGIlZmuke2IESFEehKfJtbKFs9J/S+vPyyTTqOwssXD7rZ+OvqDgMZmUdgsFpRFcerc2mI3b0oq5uAuXdbfyOxAtNZ3AncCbNy48aT7p6ps1Swvy/Ma49XpSVxnX5ePCqv5sQSjmg3zPFTYrLK3JQ//88JB9nX5CEVj1DjtLJlRlUyRle9deSrX2FRq5IwjIQon8WliZet/jcdZxdNB4vu0s82L1aKocVhRFkUgHCMQiVFVYUHFHyffv8IUc3B3BJib8vkc4FiR2jLu8nlzFzLbnel6hXR6Ml0jcZ2///k20FDtsrFqVg1N1U5iWkuaQQ6tbV6e3dtDrcuWrHz68sFeTp3n4Wiv5IsLMVpyULAQohRl6n8BksWTh9Rsp+Uza6i0W9l+xEsoEiUAzKt3sXFBHXabVb5/o1DQ4E4pZQdWA0e11p1jfO2twClKqYXAUeBa4K/GeM2SMN4permul88187nGxStnjkua53Tz6I4O6irN9yy1AurOY/1sWTajmE0TYzTOMU8UQFKdhchO4lNxpet/3f74Hqnum4eRVZAXNLqpq3Kws62PlS01J1Vblu9fYbIWVFFK3aGUWhX/vwfYBvw38KpS6n1jeWGtdQT4JPAY0Ar8XGv9xliuWSrGq4rleF4vn2uMR9W76ehor58VLdXDqpyiNScGM3/vpPhKaZrImCcKM95xVIipTuJT6Tva6ycQjvDCvh4e39nBC/t6CIQjkgE1QqaCgB19AamOPA5yrdydo7X+ePz/fw3s0VpfqZSaCfwW+NlYXlxr/b/A/47lGsWWLtUx24G8ozEe18v3GpV2C3/efxyN5tS5tTJLnodEQZoN82qTB5rarYq3LWlI+72TFYmSNqExbzordB/KeMdRIcqAxKcSkSmeVViVnBucQer37NDxQcKRKAsa3cn7Xz/SS48vyE/+eIAal411czyc0lwjGWSjkGtwF0r5/0XA/QBa63al5BS0TJ10l91CfyAybumN41EVM9c1Ur+WC1bMSG4OFrklNlZ7XHbOWFif/N59cPP8tI+XQ5lLmsS8CTCaCY3xqgYsRBmR+FQCssUzOTc4vcT3LBaL0eYNcKzXz44jvTRV91JZYaPXH6LTG8RuA1D0+TXPvdnNYDBCndsp1ZELlOucu16l1F8opU4FzgYeBVBK2YBp/xc2U9qQgnFNb5zoQ4KzfS2SApVboed8yaHMJU1i3gQYTXyRNHEhTiLxqQRki2ep5wYnzsA7Y1Edwej0Llj66I4OYrEYuzt8BCMx01dW0N4XwOsP0dkXBAVuh53KChuRmCamYU/XgGQ1jUKulbu/Af4VaAE+pbVuj99+AfDIRDZsKsiUNtTmjeRVxTLfNKXxKAWe6xqSAjU2hVQ+lRWJkiYxbwLkE1/SxUM5AkGIYSQ+lYBs8Szx9/3MRQ3J+7z+MDOq7SMvM60c7fXT5g3gsFlw2q0c8QWpctgIR82ZylaLwmZRBCMxalx27FYLkWiUgWCEu547IEdKFCjr4E5rvQe4JM3tj2EKoUxr2TrpuTr7haYpjbxeoiBHIeeopF4j0ZFKvGkqrGpcU0lFZnIoc+mSmDcxUmNlV3+AvV0DHPeFqHdXJIsJZYqHn75oaZFbL0RpkPhUGrL1/eTve3qza128eugEDVUVAAQjMSyAy25lIBihwmYhEo2BNgms0ViMvkCUuiqpTTAaudIyUUpdqpR6WinVrZTqiv//nZPRuFI3lrShsaRBJgaGXn942C99vhUX0z2/oy/IwZ4BSYGaBIWmcYrJJTFv/CVi5f4uH68c7KXPH8ZqgZYaB3c+s5//eeGgpIULkQeJT8WXre8nf9/Tu2R1M3arhb5ABK01VqUIRTVuh40qh42GqgqiMY3WmlhM0x+MApqN8+vkb8IoZF25U0p9DJMG8HngpfjNG4F/UkrN0VrfOcHtK2ljSZccSxrkWAtypH1+fSXhSBSPyy4pUJOgkDROMXkk5k2MRKz8yoM7CcdiNLodLJlRRaPbTC79ef9xLlgx/ExISQsXYjiJT6UhV99P/r6fbEWLh5vOX8z3f/8WxwfCNLor8PojRGKadbNr2N0xQH18gOcLRgE4fWEdpzTXJK8hfxPyl2vP3aeBt2mtj6fc9gel1KXAc8C0DySjfROPZd/VWPfHZdsr+OmLlp6Usil5zmIakZg3QVa0eJhXX8kZC+uxpFT2q3ba0GhJCxciN4lPJUIGcIW7bO1sFjW5k4PiCqtCAcGoZvMiBxoIRTWza1109wew26zJNP7EEVOrZtXkehlB7sGdGhFEANBa90jZ3bEZS172WAtyZHu+nMEmpjmJeRMoU+w5dW5t8ugV2aciREYSn8SUlu+guLXNy7cf3c2hnkHcDis2i/lb0dEXpLXNK/3RHHLtuetTSq0beWP8tv6JadL0MJa87LGWCM/2fDkSQUxzEvMmUKbY88HN82WfihC5SXwS00ZXf5DjgyGOegNoDZsX1zO3vlL6o3nItXL3GeBBpdSPgZcxZzFuAq4DPjDBbZuyCjniYDSdl7EejZD6/J1tXrz+CDVOW/Lz5TOHL3tLnnN2+f68xZQgMW+cZHpf5NqrIoTISOKTKHuJDLJAOMaSpiq8/gjHvAEGQhEa3Q48ldP7WIl85DoK4Tml1BnAjcD1gALeAM5MOV9FpJistMax5nsnnnvo+CCzaysJhCM8tbuT/d0DHOoeZOPCOhrdZl+e7H3JTNJYy4vEvPGR630h7w0hCifxSUwHiQyyencFvQMhegZCAATCMfoCEfr8EUnNzCHXyh3xgPGPk9CWKa+1zctXHtxJjy+YrAanNezr8vGZn2/nopXNOVd10s12AxOyMpR4A4UiUV477MVhs9BcXUGHL8hTu7uoc9nxR2LYrRZuOn/xmF+vHI21cqkoPRLzxm4074tcK+CyQi6ExCdR/hJF/5Y0VfFYpw8F2K0KfzhKjcvO0ma39LFyyHUUwuuYZf+T7gK01nrthLRqCkrMVB/3haivtBMIR/njm90opahx2ojpWM5VnXSz3bc9toeY1sxvqBq3laFEJ+nXrx2ludqBPxzFYbPgtFtx2Cz4ghEGglEGQ1FOmeFmZo2TJ1q7WNTkljfTCGOtXCpKi8S88VHo+yLXSp+skAsh8UlMD4nCW03VTmqcNoKRGP5wlMoKKxvm1dLgdkgfK4dcK3d/MSmtKAOpy8jBcBSn3Up7OAZoalx2PK6KnLPX6Wa7X/UFAVg7pzZ5W7Zr5JLaSWqudtAXiNDm9TO3zgVYCUZiWCwW5tdXEIppNi9uBMDrD8tMSRpjrVwqSo7EvHFQ6Psi10qfrJALAUh8KimSTTA+Rn4flzZX8URrFwBN8X5qjcvOafNrk2ejSh8ru6zVMrXWB0f+AwaAQ/H/i7ijvX6qnTaWNFURjMQIhKNEY5pgJEYwEmPJjCog++x14hqpgpEooUhs2G35rgy1tnm5/fE9fPb+bdz++J7kGyjRSVoyww2AzWKhsz9IIBwlGInhsFnQQI1zqGMmq1HpjbVyqSgtEvPGR6Hvi3SxLzXm5LpfiOlA4lPpSEyUe/3hYdkErW3eYjdtSkn3fXyitYsLVzThcdmpiU/kLWt2U1/lkD5WnrIO7pRSZyqlnlJKPaCUOlUptQPYAXQopS6ZnCZODbNrXfQHIjRVO9kwrxaH3Uo0pqmwWThtfi1awwv7evjt6+0cOj6YNgAkrpHKYbNSYRv+Y8pnZWjkG2Z/l49P37uNn790mJ3HvHT1B5JtnVnjYCAYBeDUeR6qnXZ8wWhyQJrva05HYznSQpQeiXnjo9D3RbrYlxpzct0vxHQg8al0yLFR4yPT93FPxwCfvmgpP7puE7dfs44FjW7pYxUgV1rmvwFfAjzAH4BLtdYvKqWWAz8DHp3g9k0ZqYeSN7gdVNisVFVYsShFvz/Cng4fKLBaoKXGkXa/SLqDzRvdjuTMdyGH+6a+Ybr6A+zpNK8Pmr5AhFcO9bJhXi1N1U42LWxg3Vzz/6O9flbNqqGjL4jdaiWmtRwonEOu6n+SujGlSMwbJ4VUxUwX+1JjTq77hZgmJD5Nomx/u2W//fjI5/soFZYLl+sQc5vW+nda6/uBdq31iwBa610T37SpJd1M9ecvWca7N8zipUMnONo7SF8gzOKmKhY0utPO8KS7xmffsZTPX7Ks4JWh1DSmvV0DOGwWapw2XHZr8jF7O33DDhH+9EVLue3qdfzfd6/ls+9YKqtR40BSN6YciXlFkGulT1bIhQAkPk2aXH+7JZtgfOTzfUy3xUhkl2vlLnWz18jpiHQVm6aVdLM6n75o6bD7n2jtotJuY7bHSSiq2dc9CEC3L0RHvymWkjoblGmGotBOzOxaF/u7fLT3B9nd3k9VhZUqh5WmaidLZlTxZoePjv4gm132tAegy0zJ+JBCEFOOxLwSJTFJCIlPkyXX327JJhgfub6PUil5dHKt3K1TSvUppfqBtfH/Jz5fMwntK1n5rMikVtAMRTVOu5VYTPOn/SfoC0RornZM2ErO0uYqXj3cS58/TKXdwmAoSkdfkIYqO41uJytnebhy/Ww+fdFSeYNMICkEMeVIzCsCWeEWIi8SnyZJrr/dkk0wPnJ9H2Vv4+hkXbnTWluz3T+d5bMik3oQ4yuHegHoD4QJR83k25IZ7glbydnTMcCGebW09wVNxc2ops5lp9sXYkZNWGaYJokclTC1SMwrDlnhFiI3iU+TJ5+/3ZJNMD6yfR9lb+Po5ErLFBnk8wuXehDjhnm17O0awBeMUu20JYuZpHteoR7ZfpS7XzhER1+A5hon122ex9FeP/MazP4+gG5fIGcqphh/krohRG7yB1wIUUrkb3dpkAny0cmVlikyyGcTaOpZTw1uBytbaphd62LTgrrkwC7d8wrxyPaj/NNvd9PnDzPDXUGfP8w//XY3g8HwsPalS8WUTaoTT1I3hMhNihMIIUqJ/O0uDXKW8OgUZeVOKfUd4HIgBLwF/LXWurcYbRmtfGZ1EsEhtejKTRcs5onWroKPNsjk7hcOUeWwpaQzmfH6weN+HHZbxval26T67Ud3M8vjJBjVUrJ/HEnqhhDZySy5EKLUyN/u4kvXj5bMs9yKlZb5OPBFrXVEKfUt4IvA/1ektoxKvr9w6YLDoiZ3wb+omc5b6egLMMNdMeyx1Q4rnb5Q1vaN3OMSikQ51DPI8YEQ5y5tkopEQohJI3/AhRBCpCOD7MIVZXCntf5dyqcvAu8pRjuyyefg6dH+wo18XiI9MtNrZSsF21zjpM8fTq7YAfQHozTXOAvapLq3awC3w0ooGktWJAIpaCCEmByp8SoRf+967sCwmJhPXBZCCCGms1LYc/dh4LeZ7lRK3aCUekkp9VJXV9ekNGgyy3IXcqRCulKw122ex0DQpDDFYjG8/jADwQjXbZ6X9XVH7nHxBSJooMY5tGlVChoIkVkxYtN0kCkmPrL9qByXIESeJD4JMX1N2OBOKfWEUmpHmn/vSnnMl4EI8NNM19Fa36m13qi13tjU1DRRzR1mMs/VSPda0WiMrzy4M1noZGebN+N5K5etnc0XLl1GjctOpy9EjcvOFy5dxmVrZ2d93ZGbVO1WhS8YZcmMquRjpKCBEJkVIzZNB5ni790vHJLzjoTIk8QnIaavCUvL1FpfmO1+pdR1wF8AF2it9US1YzQmsyz3yNfq6g+wp8NHOBbjjIX1eP1hDvf4qbRbk8cawPCB12VrZ+cczI00co/Lqlk1dPQFsVutxLSWggZCiKLIFH87+gKcsbD+pNslu0AIIYQYUqxqmZdgCqicp7UeLEYbspnMczVGvtbergFQ0Oh2JGenlza72d3ho67KMa6V5NLt/ZOCBkKIYsoUf5trnPQHInLekRCiZMm+YFEKirXn7t+AauBxpdRrSqk7itSOtCbzXI2Rr3XcF0JrPSw9cn5jFXPqXBN+3sqKFg+fvmgpt139/7d359FR1/f+x58fAgTZIhhWg4iCAiELCBFQBAWsywGllQKnVlDQX1Gxra0ca6/K1etFxV6q1bqVAuXaqrR1r3UrIOpVIhaQRRZrKpgge0ggC4H3749vZjIJk2QSZg2vxzk5M/Od73znPZPkfb7v72fL8q+FJyISTbXl36nDztB6RyISt6I5X4NIXWI1W2bvWLxvqKI5LXfN9+rYtiXd2ieT2rb6Iufp3b3CK2Q718Om16BwO6T0gH7joOuAsMcvIhJOdeXfxiwjIyISDTWXmNKs4xIrsVrnLu5Fc12NmlOA+678NKoL5s71kLsA/rUMTukIXTOg5AB89BsYPksFXiSpoBYJi9ryr9Y7EpF4Fc35GkTqEg9LITQdO9fDsrnw8s3e7c71DT6E76p1o7pg7lzvFXEFa+GUDt62HblwtBxaneoVHhIZvu++5AC0P72qoG7E34CIiIgklppLTIHGBUtsqOUuXHwn961OrX5y34jWskZfnd70mvf+R8shuR04523fsxl6XuC1KElk+L77U071HvtuN72m1jsREZEm7rIBXXjm/a8Awjr5nUhDqbhriLq63QWe3Bfv8gqqQ3vgzdlw+cPROcEv3O4Vlq3aw5FSaNEKmidD6UHvJ6VH9c+Su8Br2QNIGwJDpqsQaSzfdx+oVXsV1CK1UTdmEWlCojlfg0hdVNyFqr6WOd/JffEu+GoFlB+GYxVegffefTD6nvCeuAQ7MUrp4cWVei7sWOXtZwZJLaH0AAz6YdVr37sP9v3La+EzIG8lHMyH0XfrBKsxfN+9r8UOji+oRZqixhRpYezpICISVXXkPI0LlnigMXehCmyZc82828BxbCk9vJP5b1ZDyX5wgEuC5i29Iip3QfhiqW18V6d+XhGX1BJOH+ztW7ofumVVP2na9JpXdCa3hxanQMtTvPuHdmtcXmP1G+d99yUHwI55t6UHvO0iTVVjx5rWl09FROKRxtdLAlBxF6rC7V43u0CB3e58J/eFO7ziygA7Cm27eK1jvu6P4VDbidHuTV4Rd8qpcOwI9BkLk/4Xxs2vfjW8cDscLfO6bPo0T4aKMnUjbKyuA6q++4PfeLdqhZCmrrFFWn35VEQkHunClCQAdcsMVX3d7nwn91/+AyrKIbkNtOsCLdvAob1Qss+bRTOpsqA6WtawcSaB3QAK1sHp51V/3ndi1HVA/cdL6QG7vvCKuRaV0/ZWVBZ76kbYeKF89yJNSWPHmqb0gB2rYc8XUFYMyW0htS+kVeY1jccTkXik8fWSANRyF6r6ut35TkZ8V6NbtoUWreHwPq8lp3UqNGvhjW3LW+ndD7U5v2Y3gKSW8O8PvfF9Pg0Z39VvHLRJhbKDcKQEyku8+206qRuhiITO1x09UCi5qEUb+PojKDvk5cmyQ97jFm2qxgRvfcdb1mXrO95jdXsSkVhrbM4TiSIVd6Gqq9tdYPHV80KvG2bxt1D0rVcAntIRzhgKe7d6Y9uS23v3Q23Or9kNoFuWt71gbePGd3Ud4E3wcuYIOHrE68J55ghNpiIiDdPYsaZb/w7tuno9HI4dqezp0NXbnrvAG6cMXq6E8I9bFhFpDI2vlwSgbpkNUVu3u5prnHXPhu2rvK6YSS3g9Cxo29kbd5fcztvHd+UnlOb8neu8BFJW5O2feq63bt03q71CM6WHNxNmQwqzrgO8sXgiIo3lu+gV2IUylFxUVABtukCzgOuLx45520sPennS12W8RSvAwjtuWUSkMRqb80SiSMVdOAT2wS7eBfu+hPbdvLF3zZO9iU7apFatPwdV3Tfra87fuR72/xtwVa/f/gl07g99r4SLfxHRjyYiUqfGjDVt1w1KCuGUgCnDy4q87aUHvQmpAtV8LCISKxpfL3FO3TLDIbAP9p7NlZOmOO/EJbAL5Wl9vLFtZQe9+6E05296zVviwOFNenKswisgt77j3WociogkmiE3QXmxV+AdO+bdlhd729OGQHmRdyHLzLstL/K2i4iISJ3UchcO/cZ5Y+4ASguhWUtvNsxuld0xfV0ofWPbwHv+lK71N+f7umQeKfXWoSs/7M3A2aq9N7GKb+Ff0OxyIpIYBlzt3eY+43XFbNcNLrrD257aGw7me/mu9KDX+6Hj2TBkeiwjFhERSQgq7upT25TcNbefc7nX/RIHzkGP873CDqB5q8Z1oQzsktm2M+w75I3hO6UDtO5YNcYvdwEcOeyN+wtcVDNwwhcVfiISTwZcXVXkBeo6ALKmeIVf6X6vB0TWFOUsERGREKhbZl1qLkHgK5rWv3z89i1vekXThKcgtU/lQuYnOJNSsC6Zrhkc3uNNqgJeC96O3NoX1aztM6g7p4jEo53rvXzaJQMGXOPdbnlTOUtERCQEKu7qUnMJAl/RlPtM7cVUXUsmNFThdjjtLEjL8WaMcw6aNYfklKpWwcBZNwP5ZuGs7TPUt/yCiEgsKGeJiIg0mrpl1sU3C2bxLm+iFN8U3Qe+9sbRBQpc0iBcMyml9PBa2tp29n5Sz/UWQE9u77UKlh70WgXThnj3fd00oWoWzsCZPIPFKiIST5SzREREGk3FXV1SesDeL2HXRm/cXHI7r2iqKINv/gkVh73HrdpDu+5w2tnhff/AiVp8E6h0PMs78Qlc3w6q7+cr+gb90LvaXXIgeOEnIhJvfBe1astZGkMsIiJSKxV3dek3Dl76f4DzZmyrKPPGv3U8G3as8k4sktt503gXfgNdM2HZ3NBOOkI5QQm6WOY9wY9Z16KatRV+IiLR0JCCrOZFrcCc5RtDXNvkUSIiIic5FXd16ToAUs6AsgNQWuSdaHTLgt1fVI4JSansDpkCbbvC5y9Azwurn3T4ZtEMPKmB+k9Qap4MDb257pOX2rqCBi0Q61l+QUQkXOoryIIVfrXlrGVzq8bjQdWtb7yziEg0qSeBxCEVd/Xplnl8F6F/fwinnl61Zh1A3vtw9Ej1k45De2DlvOMLvhat6z5BCffV6XCNARQRaajACVKger6D2nNdsKVjNB5PROKFehJInNJsmfXpN87rElRyoGppg6QW0LZ79f0O7YXWp1XfVpxfVfAFzvq2I7f22S1Bs8WJSNNRuD18s/mm9KiaIdhHY4hFJBZ0riZxKqYtd865nwPzgE5mtieWsdQqWLfGEXd46y6VHKgaE9Ks+fFXlIMVfL6TnNpmt4Tgs3S2agfJpyIiklDqmiClvpa4ml2eOvXzcq9vP40hFpFYUU+CE6durRERs5Y751wPYCzwdaxiCFnXAV4Xoat/690OuPr4tewumg3Nkqq38AUr+EoPVi5dcKD6voELnaf0gL3/8iZtOVJaOWnLQSj8Wgv5ikhiCdb7wZfv6mqJ83V5KjlQ1eVpy5veOOZwrCMqInIi1JPgxATL8R/9Rue5YRDLlrv5wGzglRjG0HjBxrGl9q5+BeKi2ce38JUe8E5GIPiEATvXey12X74LzVpAu26VBzfo1P/4iQN01UNE4ll9kzrVNjNm7gLYsxWOlnvPpZ7rdXnavSn4eDwRkWiqa2ZfqV9d47F1HntCYlLcOefGA9+Y2VrnXH373gTcBHDGGWdEIboTEErBF3hSU3PfwMG5rU+D8kPegukdekKP86FNavXmfg3mFYmZhMpNsdbQ2XwB/rUMWnXwei4cKYXtn3i9HtTlSaReyk9RoNnIT4y6tUZMxIo759y7QNcgT/0SuAu4NJTjmNkzwDMAgwcPtrAFGC0Nmaky8CpGcjsoP1zZ1XOf93zN5n5d9RCJmYTPTfEiWI5cNhdO6ejddw5atPLu7/wc+oyNbnwiCUj5KUo0G3nj1TUeW05IxIo7MxsTbLtzLgPoBfha7dKAz5xzOWa2M1LxJITAiVTKiuBomdc1s/wQbHvXm6Uz9VzvxKffuOBXPSpK4Ys31E1TRBJX4XbomgHffOo9bp4MGJTsrxqbLCIiiUvdWiMm6t0yzexzoLPvsXMuDxgct7NlQvjHtdV2PN9VjD2bvRa55HZQ/C0cA8qLoU0Xb7/A9fICZ90s3uWtwZfcXt00RSRx+XJhWk7VjMFJLeGsi2tf+Fw5TkQkcahba8Ronbv6hHs2n7qO55tV7tAe70TGJXlj71J6wKlnQlLz6mupQPVZ6ArWetu6ZWnNFRFJXL5cmNQSel7g/aT2gSHTNcOaiEhTUXM2ehV2YRHz4s7MzozrVrtwLVK5c73XnfKlH1XNAFfzeL6rGG1SvXF2LVp5V67tGDiqLwTcqr3XbTNwSYaj5d5JUNvO1ffT4FQRiXe+HPnyzV4+rG3JAy0cLCIiUquYLmKeEMIxm0/grJZmgHlr2KXleIVY4PG6DoDLH67av1V77+p12UHoll11TN+g08DBvMvmelexA2lwqojEu2Az/255M3iXcs2wJiIiUquYt9zFvXAsUhl4pfmUFMBBUrI3liTY8XwteL6r1t2yoONZXpEXbNFzn7oWCxYRiVcNaY3TwsEiIiK1UnFXn3AUTIXbq7pUpp7rzWhpBqWFwY9Xc7KAIdNh9D3BuygFqlkU1rafiEg8CcyRPrW1xukiloiISK3ULbM+4ZjNJ3Atj7advQXJC9YCztsWeLy6Fia/+BehxatiTkQSSUPWO9IMayIiIrVScReKEy2Yaq7lkdTSm/ktWKta7oKqCVdatfda+gInXBERaWpqW+/ojGHeWOKaSx7oIpaIiEhQ6pYZDaF2l9y5Hv61zOuymdwOjpTC9k+8bpzRmiwgcMa6ZXM1vbiIRF6wHHnO5d6kKlryQEREJGRquYuWwCvNvjF1H/+2+tXoTa/BKR29fZzzlkIA2Pk59Bkb+Rjr6hKqq+QiEkk1W+OWzfVy0dFy+PeHVQuZ5y6AcfNjFqaIiEg8U8tdtNW1AG/hduia4a1fd6S0atmEkn1eARjpVjWtHyUi8aJwu9drYfsnXj5MbuflxH8tU+udiIhILVTcRVtdBVRKD2heuXB5i1ZQVgQ4OOti77W1FYXh0pAZ60REIimlh9droXkrLx865/2c0lEXnERERGqh4i7a6iqgfFN8J7WEnhd4P6l9vKUQotGqpvWjRCRe9Bvn9VrAvBa7I6Ver4auGbrgJCIiUgsVd9FWVwFV18Qr0WhV0/pRIhIvug6o7LXgvF4MLSp7NTRvpQtOIiIitdCEKtFW25Tfg37obattiu+GrAPVWFo/SkTiyZDpVZM8BcuXIiIiUo2Ku2hrbAFVX1EYzvhUzIlIPNAFJxERkQZRcRcLjSmgdJIjIicjXXASEREJmYq7RKKTHBERERERqYUmVBEREREREWkC1HIXDTvXV+9O2W+cWuBERERERCSs1HIXaTvXR37xcREREREROempuIu0aCw+LiIiIiIiJz0Vd5EWjcXHRURERETkpKfiLtJSenhr0gUK9+LjIiIiIiJy0lNxF2n9xnmLjZccADvm3ZYe8LaLiIiIiIiEiYq7SPMtPn7KqXDwG+92+CzNlikiIiIiImEVs6UQnHOzgFuBCuANM5sdq1giTouPi4iIiIhIhMWkuHPOXQxcBWSaWZlzrnMs4hAREREREWkqYtUtcybwoJmVAZjZrhjFISIiIiIi0iTEqrg7BxjhnPvEObfCOTekth2dczc55z51zn26e/fuKIYoIlI75SYRiVfKTyInr4gVd865d51z64P8XIXXHbQDMBS4A3jROeeCHcfMnjGzwWY2uFOnTpEKV0SkQZSbRCReKT+JnLwiNubOzMbU9pxzbibwVzMzYJVz7hiQCujykoiIiIiISCPEqlvmy8AlAM65c4CWwJ4YxSIiIiIiIpLwYrUUwu+B3zvn1gPlwNTKVjwRERERERFphJgUd2ZWDlwbi/cWERERERFpimLVLVNERERERETCSMWdiIiIiIhIE6DiTkREREREpAlQcSciIiIiItIEqLgTERERERFpAlTciYiIiIiINAEq7kRERERERJoAFXciIiIiIiJNgIo7iaoHHniA9PR0MjMzyc7O5pNPPgFgxowZbNy4sVHHzM/P55prrvE/njJlCpmZmcyfP5977rmHd999Nyyx+/z617/m8OHDJ3SMl19+udrnPZE4zYzbbruN3r17k5mZyWeffRZ0v+nTp5OVlUVmZibXXHMNxcXFABQWFjJu3DiysrJIT09n4cKFjYpDJJEpN3likZt8Zs2aRdu2bf2P9+/fz4QJE8jMzCQnJ4f169c3Kg6RRKbc5IlFbnr88cfp3bs3zjn27Nnj3/7cc8+RmZlJZmYmw4cPZ+3atY2KI2LMLGF+zjvvPJPE9dFHH9nQoUOttLTUzMx2795t33zzTVjfo6CgwM4444ywHrOmnj172u7du+vdr6Kiotbnpk6dakuXLg1LPG+88YZddtllduzYMfu///s/y8nJCbpfYWGh//5Pf/pTmzt3rpmZPfDAAzZ79mwzM9u1a5d16NDBysrKwhJbKIBPLQ7yy4n8KDclNuWmKrHITWZmubm5du2111qbNm38237+85/bnDlzzMxs06ZNdskll4QlroZQfpJYUm6qEovc9Nlnn9lXX311XPwffvih7du3z8zM/va3v9WZ2yKlrtykljuJmoKCAlJTU0lOTgYgNTWV7t27AzBq1Cg+/fRTABYsWMA555zDqFGjuPHGG7n11lsBmDZtGrfddhvDhw/nrLPO4s9//jMAeXl5DBgwAIBLL72UXbt2kZ2dzcqVK5k2bZp/v9zcXIYPH05WVhY5OTkUFRWRl5fHiBEjGDRoEIMGDeKjjz4CYPny5YwaNYprrrmGvn378oMf/AAz47HHHiM/P5+LL76Yiy+++LjPeOaZZ3Lfffdx4YUXsnTpUp599lmGDBlCVlYW3/ve9zh8+DAfffQRr776KnfccQfZ2dl8+eWX1eJ87733GDhwIBkZGdxwww2UlZXV+b2+8sorXHfddTjnGDp0KAcOHKCgoOC4/dq3bw94F3RKSkpwzgHgnKOoqAgzo7i4mI4dO9K8efNQf60iCU+5Kba56ejRo9xxxx08/PDD1bZv3LiR0aNHA9C3b1/y8vL49ttv6/t1ijQZyk2xzU0DBw7kzDPPPG778OHD6dChAwBDhw5lx44ddb5f1NVW9cXjj64+JbaioiLLysqyPn362MyZM2358uX+50aOHGm5ubn2zTffWM+ePW3v3r1WXl5uF154od1yyy1m5l21ueaaa+zo0aO2YcMGO/vss83M7KuvvrL09PTj7vtes3TpUisrK7NevXrZqlWrzMxrxTpy5IgdOnTISkpKzMxsy5Yt5vsbW7ZsmbVv3962b99uR48etaFDh9rKlSvNrO4rUD179rSHHnrI/3jPnj3++7/85S/tscceqxZXzThLSkosLS3NNm/ebGZmP/zhD23+/PlmZnb33XfbK6+8ctx7Xnnllf7YzMwuueQSy83NDRrftGnTrHPnzjZq1Cg7dOiQmZkdPHjQRo0aZV27drU2bdrY66+/HvS1kYKujEuMKTfFNjf9+te/tv/5n/8xM6vWcveLX/zCfvrTn5qZ2SeffGJJSUn26aefBv18kaL8JLGk3BT786b64p83b55Nnz691tdGSl25SS13EjVt27Zl9erVPPPMM3Tq1IlJkyaxaNGiavusWrWKkSNH0rFjR1q0aMHEiROrPX/11VfTrFkz+vfv36AruJs3b6Zbt24MGTIE8FqxmjdvzpEjR7jxxhvJyMhg4sSJ1fpz5+TkkJaWRrNmzcjOziYvLy+k95o0aZL//vr16xkxYgQZGRk899xzbNiwod44e/XqxTnnnAPA1KlTef/99wG47777GD9+/HGv8f7Hq/O1ytW0cOFC8vPz6devHy+88AIAb731FtnZ2eTn57NmzRpuvfVWDh48GNJnFWkKlJtil5vy8/NZunQps2bNOm7fO++8k/3795Odnc1vfvMbBg4cqF4FclJRbor9eVNdli1bxoIFC3jooYca/NpIUpaUqEpKSmLUqFGMGjWKjIwMFi9ezLRp0/zPB/uHC+TrmhDKvoHMLOg/7vz58+nSpQtr167l2LFjtGrVKuh7JSUlUVFREdJ7tWnTxn9/2rRpvPzyy2RlZbFo0SKWL19eb5wNlZaWxvbt2/2Pd+zY4e+2EUxSUhKTJk1i3rx5XH/99SxcuJA777wT5xy9e/emV69efPHFF+Tk5DQ4FpFEpdy0vN44GyqU3PTPf/6Tbdu20bt3bwAOHz5M79692bZtG+3bt/dP8GRm9OrVi169ejU4DpFEpty0vN44G6qh503BrFu3jhkzZvDmm29y2mmnNTiGSFLLnUTN5s2b2bp1q//xmjVr6NmzZ7V9cnJyWLFiBfv376eiooK//OUvYXnvvn37kp+fT25uLgBFRUVUVFRQWFhIt27daNasGUuWLOHo0aP1Hqtdu3YUFRWF9L5FRUV069aNI0eO8Nxzz9V7DN+4km3btgGwZMkSRo4cWed7jB8/nj/84Q+YGR9//DEpKSl069at2j5m5j+mmfHaa6/Rt29fAM444wzee+89AL799ls2b97MWWedFdLnE2kKlJtil5uuvPJKdu7cSV5eHnl5ebRu3dr/HgcOHKC8vByA3/3ud1x00UX+scMiJwPlptjlprp8/fXXfPe732XJkiX+FsN4ouJOoqa4uJipU6fSv39/MjMz2bhxI3PmzKm2z+mnn85dd93F+eefz5gxY+jfvz8pKSkn/N4tW7bkhRdeYNasWWRlZTF27FhKS0u5+eabWbx4MUOHDmXLli3Vrh7V5qabbuLyyy8POjC4pvvvv5/zzz+fsWPH+ospgMmTJzNv3jwGDhzIl19+6d/eqlUrFi5cyMSJE8nIyKBZs2b86Ec/Arxpf1999dXj3uOKK67grLPOonfv3tx444389re/rfZcfn4+ZsbUqVPJyMggIyODgoIC7rnnHgDuvvtuPvroIzIyMhg9ejQPPfQQqamp9X42kaZCuSl2uakumzZtIj09nb59+/Lmm2/y6KOP1vu5RJoS5abY5qbHHnuMtLQ0duzYQWZmJjNmzAC87p579+7l5ptvJjs7m8GDB9f7uaLJNaY5M1YGDx5svpmBpOkqLi6mbdu2VFRUMGHCBG644QYmTJgQ67AkQpxzq80svjJjAyk3nRyUm04+yk+SCJSbTj515Sa13EncmTNnDtnZ2QwYMIBevXpx9dVXxzokERHlJhGJS8pNEkgTqkjceeSRR2IdgojIcZSbRCQeKTdJILXcSVTt3LmTyZMnc/bZZ9O/f3+uuOIKtmzZEuuwqi0GGo+WL1/uXygU4KmnnuIPf/hDo483d+5cevfuzbnnnstbb70VdJ+1a9cybNgwMjIyGDdunH95hCNHjvjH7/Xr14+5c+c2Og6ReKHc1DjhzE179+7l4osvpm3btv5FmIPZt28fY8eOpU+fPowdO5b9+/f7nwslt4kkEuWmxonFedOaNWsYOnSofxzeqlWr/M+tW7eOYcOGkZ6eTkZGBqWlpY2OpT4q7iRqzIwJEyYwatQovvzySzZu3Mh///d/N2jdlXAIdWreaKsrrppJ6kc/+hHXXXddo95n48aNPP/882zYsIG///3v3HzzzUFnu5oxYwYPPvggn3/+ORMmTGDevHkALF26lLKyMj7//HNWr17N008/HfJaNiLxSLmpbtHKTa1ateL++++vtxXiwQcfZPTo0WzdupXRo0fz4IMPAqHnNpFEodxUt3g7b5o9ezb33nsva9as4b777mP27Nn+OK+99lqeeuopNmzYwPLly2nRokWjYgmFijuJmmXLltGiRQv/LEYA2dnZjBgxAjPjjjvuYMCAAWRkZPgX2F6+fDmjRo3immuuoW/fvvzgBz/wr2mSm5vL8OHDycrKIicnh6KiIkpLS7n++uvJyMhg4MCBLFu2DIBFixYxceJExo0bx6WXXkpJSQmTJ08mMzOTSZMmUVJS4o9p5syZDB48mPT0dO69917/9jPPPJN7772XQYMGkZGRwRdffAF4A5l975mZmemfhvjtt99m2LBhDBo0iIkTJ1JcXHzcdzJq1CjuuusuRo4cyaOPPsprr73G+eefz8CBAxkzZgzffvsteXl5PPXUU8yfP5/s7GxWrlzJnDlz/CdAvitFmZmZTJgwodpV7GBeeeUVJk+eTHJyMr169aJ3797Vri75bN68mYsuugiAsWPH+j+Xc45Dhw5RUVFBSUkJLVu21PTkktCUm+IjN7Vp04YLL7yw2rpZwbzyyitMnToV8BYsfvnll/3bQ8ltIolCuSk+clOoucU55+/lVFhY6F877+233yYzM5OsrCwATjvtNJKSkup8zxNiZgnzc95555kkrkcffdR+8pOfBH3uz3/+s40ZM8YqKips586d1qNHD8vPz7dly5ZZ+/btbfv27Xb06FEbOnSorVy50srKyqxXr162atUqMzMrLCy0I0eO2COPPGLTpk0zM7NNmzZZjx49rKSkxBYuXGinn3667d2718zMfvWrX9n1119vZmZr1661pKQky83NNTPz71NRUWEjR460tWvXmplZz5497bHHHjMzsyeeeMKmT59uZmazZ8+2H//4x/7Psm/fPtu9e7eNGDHCiouLzczswQcftP/8z/887nOPHDnSZs6cWe21x44dMzOzZ5991m6//XYzM7v33ntt3rx5/v0CH2dkZNjy5cvNzOzuu+/2x/Lkk0/ak08+edx73nLLLbZkyRL/4xtuuMGWLl163H7Dhg2zl19+2f99tW3b1szMysvLbdKkSZaammqtW7e2p59++rjXNgTwqcVBfjmRH+WmxKbcFB+5yWfhwoV2yy231Pp8SkpKtcennnqqmYWe2xpC+UliSbkpPnJTqLll48aN1qNHD0tLS7Pu3btbXl6emZnNnz/frr32Wrv00ktt4MCB9tBDDx332oaqKzfFZEIV51w28BTQCqgAbjYzXV47iX3wwQdMmTKFpKQkunTpwsiRI8nNzaV9+/bk5OSQlpYGeFes8vLy/AtODhkyBMDfcvTBBx8wa9YswFvYsmfPnv6+6WPHjqVjx44AvP/++9x2220AZGZmkpmZ6Y/lxRdf5JlnnqGiooKCggI2btzof/673/0uAOeddx5//etfAXj33Xd5/vnn/a/v0KEDr7/+Ohs3buSCCy4AoLy8nGHDhgX97JMmTfLf37FjB5MmTaKgoIDy8nJ69epV5/dWWFjIgQMH/At2Tp06lYkTJwJUu9IXyMsJ1Tnnjtv2+9//nttuu4377ruP8ePH07JlSwBWrVpFUlIS+fn57N+/nxEjRjBmzBgtfC5NknKTJxq56USFmttEmgLlJk88nTc9+eSTzJ8/n+9973u8+OKLTJ8+nXfffZeKigo++OADcnNzad26NaNHj+a8885j9OjRdcbaWLHqlvkw8J9mlg3cU/lYmrj09HRWr14d9Llg/zg+ycnJ/vtJSUlUVFRgZkH/seo6Ts2FNoO9/quvvuKRRx7hvffeY926dVx55ZXVBr36YvHF4XvPmscyM8aOHcuaNWtYs2YNGzduZMGCBfXGNWvWLG699VY+//xznn766YgMuE1LS2P79u3+xzt27PB3HQjUt29f3n77bVavXs2UKVM4++yzAfjjH//IZZddRosWLejcuTMXXHBBXA+qFqmPclN85KZQdenShYKCAgAKCgro3LkzEHpuE0kUyk3xkZtCzS2LFy/2F7MTJ070d91MS0tj5MiRpKam0rp1a6644go+++yzsMfpE6vizgDfIJ0UID9GcUgUXXLJJZSVlfHss8/6t+Xm5rJixQouuugiXnjhBY4ePcru3bt5//33ycnJqfVYffv2JT8/n9zcXACKioqoqKjgoosu4rnnngNgy5YtfP3115x77rnHvT5wv/Xr17Nu3ToADh48SJs2bUhJSeHbb7/lzTffrPdzXXrppTz++OP+x/v372fo0KF8+OGHbNu2DYDDhw+HNLtVYWEhp59+OuAlCZ927dpRVFR03P4pKSl06NCBlStXArBkyRL/1ajajB8/nueff56ysjK++uortm7dGvS73rVrFwDHjh3jv/7rv/xXtM444wz+8Y9/YGYcOnSIjz/+mL59+9b72UTilXJTfOSmUI0fP94fw+LFi7nqqqv820PJbSKJQrkpPnJTqLmle/furFixAoB//OMf9OnTB4DvfOc7rFu3jsOHD1NRUcGKFSvo379/vZ+tsWJV3P0EmOec2w48Avyith2dczc55z51zn26e/fuaMUnEeCc46WXXuKdd97h7LPPJj09nTlz5tC9e3cmTJjgH2x6ySWX8PDDD9O1a9daj9WyZUteeOEFZs2aRVZWFmPHjqW0tNQ/g1FGRgaTJk1i0aJF1a5g+cycOZPi4mIyMzN5+OGH/f+kWVlZDBw4kPT0dG644QZ/94C6/Md//Af79+9nwIABZGVlsWzZMjp16sSiRYuYMmUKmZmZDB061D+QuC5z5sxh4sSJjBgxgtTUVP/2cePG8dJLL/kHBgdavHgxd9xxB5mZmaxZs4Z77rkH8Kb9feqpp457j/T0dL7//e/Tv39/LrvsMp544gn/wN4ZM2b4W+H+9Kc/cc4559C3b1+6d+/O9ddfD8Att9xCcXExAwYMYMiQIVx//fXVumecLJSbmg7lpvjITeBNwHD77bezaNEi0tLS2LhxI1A9N915552888479OnTh3feeYc777wTqDu3nWyUn5oG5ab4yE2hnjc9++yz/OxnPyMrK4u77rqLZ555BvC6nd5+++0MGTKE7OxsBg0axJVXXlnvZ2ssV1dz7Akd2Ll3gWB/Zb8ERgMrzOwvzrnvAzeZ2Zj6jjl48GBT9y+RpsU5t9rMBsc6jhOh3CTSNCk/iUg8qis3RWxClbqKNefcH4AfVz5cCvwuUnGIiIiIiIicDGLVLTMf8HVwvQTYGqM4REREREREmoSYLIUA3Ag86pxrDpQCN8UoDhERERERkSYhJsWdmX0AnBeL9xYREREREWmKYtUtU0RERERERMJIxZ2IiIiIiEgTELGlECLBObcb+Hes4whBKrAn1kGEKJFiBcUbabGIt6eZdYrye4aVclPEKN7ISaRYIXbxKj9Fh/4eI0vxRk7c5aaEKu4ShXPu00RZFyeRYgXFG2mJFq80TKL9fhVv5CRSrJB48UrDJNrvV/FGViLFG4+xqlumiIiIiIhIE6DiTkREREREpAlQcRcZz8Q6gAZIpFhB8UZaosUrDZNov1/FGzmJFCskXrzSMIn2+1W8kZVI8cZdrBpzJyIiIiIi0gSo5U5ERERERKQJUHEnIiIiIiLSBKi4CxPn3ETn3Abn3DHn3OAaz/3CObfNObfZOfedWMVYG+fcHOfcN865NZU/V8Q6pmCcc5dVfofbnHN3xjqeujjn8pxzn1d+n5/GOp6anHO/d87tcs6tD9jW0Tn3jnNua+Vth1jGKOGj/BRZiZSbQPlJ4odyU2QpN4VXouQmFXfhsx74LvB+4EbnXH9gMpAOXAb81jmXFP3w6jXfzLIrf/4W62BqqvzOngAuB/oDUyq/23h2ceX3GVfrn1RahPf3GOhO4D0z6wO8V/lYmgblpwhJ0NwEyk8SH5SbIkS5KSIWkQC5ScVdmJjZJjPbHOSpq4DnzazMzL4CtgE50Y2uScgBtpnZv8ysHHge77uVRjCz94F9NTZfBSyuvL8YuDqaMUnkKD9FlHJTmCk/nTyUmyJKuSnMEiU3qbiLvNOB7QGPd1Ruize3OufWVTY5x7xJOYhE+R59DHjbObfaOXdTrIMJURczKwCovO0c43gk8hLl/yqe81OifIeBlJ8k3iXK/5VyU3gpN4VB81gHkEicc+8CXYM89Usze6W2lwXZFvX1J+qKHXgSuB8vrvuBXwE3RC+6kMTF99gAF5hZvnOuM/COc+6Lyis+IhGh/BQzcfEdNpDyk0SNclPMxMV32EDKTWGg4q4BzGxMI162A+gR8DgNyA9PRKELNXbn3LPA6xEOpzHi4nsMlZnlV97ucs69hNc9It4T1LfOuW5mVuCc6wbsinVAEjrlp5iJi++wIZSfJJqUm2ImLr7DhlBuCg91y4y8V4HJzrlk51wvoA+wKsYxVVP5x+gzAW+Ac7zJBfo453o551riDbR+NcYxBeWca+Oca+e7D1xKfH6nNb0KTK28PxWo7YqqNB3KTycuYXITKD9JwlBuOnHKTdERd7lJLXdh4pybAPwG6AS84ZxbY2bfMbMNzrkXgY1ABXCLmR2NZaxBPOycy8Zrrs8D/l9MownCzCqcc7cCbwFJwO/NbEOMw6pNF+Al5xx4/2N/NLO/xzak6pxzfwJGAanOuR3AvcCDwIvOuenA18DE2EUo4aT8FDkJlptA+UniiHJT5Cg3hV+i5CZnFu/db0VERERERKQ+6pYpIiIiIiLSBKi4ExERERERaQJU3ImIiIiIiDQBKu5ERERERESaABV3IiIiIiIiTYCKOwkb59zvnHP9G/naM51zEVvPxDk3zTn3eOX9Oc65n0fqvUQkvig3iUi8Un6ScNM6dxI2ZjYj1jGIiNSk3CQi8Ur5ScJNLXfSYM65Ns65N5xza51z651zkyq3L3fODa68X+yce6Byn4+dc10qt59d+TjXOXefc644yPGTnHPzKvdZ55wLujCoc+66yufXOueWVG7r5Jz7S+Vrc51zF0TumxCReKLcJCLxSvlJokXFnTTGZUC+mWWZ2QDg70H2aQN8bGZZwPvAjZXbHwUeNbMhQH4tx58OFFbuMwS40TnXK3AH51w68Evgksr3+HHA8edXvvZ7wO8a+yFFJOEoN4lIvFJ+kqhQcSeN8Tkwxjn3kHNuhJkVBtmnHHi98v5q4MzK+8OApZX3/1jL8S8FrnPOrQE+AU4D+tTY5xLgz2a2B8DM9lVuHwM8XvnaV4H2zrl2oX80EUlgyk0iEq+UnyQqNOZOGszMtjjnzgOuAOY65942s/tq7HbEzKzy/lEa9rfmgFlm9lY9+1iQ7c2AYWZWUm1n5xrw9iKSiJSbRCReKT9JtKjlThrMOdcdOGxm/ws8AgxqwMs/xmvyB5hcyz5vATOdcy0q3+8c51ybGvu8B3zfOXda5T4dK7e/DdwaEGt2A2ITkQSm3CQi8Ur5SaJFLXfSGBnAPOfcMeAIMLMBr/0J8L/OuZ8BbwDBuiX8Dq8rwmfOu2y0G7g6cAcz2+CcewBY4Zw7CvwTmAbcBjzhnFuH9/f9PvCjBsQnIolLuUlE4pXyk0SFq2r9FYk851xroMTMzDk3GZhiZlfFOi4RObkpN4lIvFJ+koZQy51E23l4g3YdcAC4IbbhiIgAyk0iEr+UnyRkarkTERERERFpAjShioiIiIiISBOg4k5ERERERKQJUHEnIiIiIiLSBKi4ExERERERaQJU3ImIiIiIiDQB/x+5QJNdT/2OBQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# withbiostechnicalandcelltypePICs\n", + "sig_df = pd.DataFrame()\n", + "fig, axes = plt.subplots(2, 3, figsize=(15, 10), sharex=True, sharey=True)\n", + "celltypes = ['CD4T', 'CD8T', 'monocyte', 'NK', 'B', 'DC']\n", + "for i in range(2):\n", + " for j in range(3):\n", + " celltype = celltypes[i*3+j]\n", + " coeqtl_df = pd.read_csv(\n", + " coeqtl_withbios_prefix/filter_type/f'UT_{celltype}/coeqtls_fullresults_fixed.sig.withbiosonlyRNAAlignMetrics_rmLLD.tsv.gz',\n", + " compression='gzip', index_col=0, sep='\\t')\n", + " coeqtl_df['zscore_bios'] = [get_z_score(item[0], item[1]) for item in \n", + " coeqtl_df[['t_bios', \n", + " 'num_individuals_bios']].values]\n", + " coeqtl_df['flipped_zscore_bios'] = [flip_direction(item[0], item[1], item[2]) for item in \n", + " coeqtl_df[['SNPEffectAllele', \n", + " 'assessed_allele_bios',\n", + " 'zscore_bios']].values]\n", + " # flip the direction according to AF\n", + " coeqtl_df['eqtl_effect_allele'] = [eqtl_allele_af_dict.get(eqtl)['AlleleAssessed'] for eqtl in \n", + " coeqtl_df['snp_eqtlgene']]\n", + " coeqtl_df['eqtl_alt_af'] = [eqtl_allele_af_dict.get(eqtl)['AF'] for eqtl in coeqtl_df['snp_eqtlgene']]\n", + " coeqtl_df['eqtl_alt_allele'] = [eqtl_allele_af_dict.get(eqtl)['alt_allele'] for eqtl in \n", + " coeqtl_df['snp_eqtlgene']]\n", + " coeqtl_df['eqtl_ref_allele'] = [eqtl_allele_af_dict.get(eqtl)['ref_allele'] for eqtl in \n", + " coeqtl_df['snp_eqtlgene']]\n", + " coeqtl_df[f'MetaPZ_flippedforAF'] = [flip_zscore(zscore, coeqtlallele, altaf, altallele)\n", + " for zscore, coeqtlallele, altaf, altallele in\n", + " coeqtl_df[[f'MetaPZ',\n", + " f'SNPEffectAllele',\n", + " 'eqtl_alt_af',\n", + " 'eqtl_alt_allele']].values]\n", + " coeqtl_df[f'flipped_zscore_bios_flippedforAF'] = [flip_zscore(zscore, coeqtlallele, altaf, altallele)\n", + " for zscore, coeqtlallele, altaf, altallele in\n", + " coeqtl_df[[f'flipped_zscore_bios',\n", + " f'SNPEffectAllele',\n", + " 'eqtl_alt_af',\n", + " 'eqtl_alt_allele']].values]\n", + " ## end flip\n", + " coeqtl_sig = coeqtl_df[coeqtl_df['corrected_p_bios']<=0.05]\n", + " coeqtl_sig['celltype'] = celltype\n", + " sig_df = pd.concat([coeqtl_sig, sig_df], axis=0)\n", + " significant_ratio = coeqtl_sig.shape[0] / coeqtl_df.shape[0]\n", + " coeqtl_sig_samedirection = coeqtl_sig[((coeqtl_sig['MetaPZ']>0) & (coeqtl_sig['flipped_zscore_bios']>0)) | \n", + " ((coeqtl_sig['MetaPZ']<0) & (coeqtl_sig['flipped_zscore_bios']<0))]\n", + " consistent_ratio = coeqtl_sig_samedirection.shape[0] / coeqtl_sig.shape[0]\n", + " # draw\n", + " ax = axes[i][j]\n", + " ax.scatter(coeqtl_df['MetaPZ'][coeqtl_df['corrected_p_bios']>0.05], \n", + " coeqtl_df['flipped_zscore_bios'][coeqtl_df['corrected_p_bios']>0.05], alpha=0.5,\n", + " label='Non-sig')\n", + " ax.scatter(coeqtl_df['MetaPZ'][coeqtl_df['corrected_p_bios']<=0.05],\n", + " coeqtl_df['flipped_zscore_bios'][coeqtl_df['corrected_p_bios']<=0.05], alpha=0.5,\n", + " label='Sig')\n", + " ax.set_xlabel('single cell')\n", + " ax.set_ylabel('BIOS')\n", + " ax.set_title(celltype)\n", + " ax.text(-2, -8, \n", + " f'Significant ratio: {significant_ratio:.2f}\\nConcordance ratio: {consistent_ratio:.2f}')\n", + "ax.legend(loc='upper left')\n", + " \n", + "# plt.savefig('bios_replication.filtered_results.scatterplots.pdf')\n", + "# plt.savefig('bios_replication.filtered_results.scatterplots.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":19: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " coeqtl_sig['celltype'] = celltype\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAJcCAYAAABaL11XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eXik11nnjX/Os9SiKlVpbUm9b+62Oh07duzEdhKTxDHpEBwyGdaZ5AWGazy8DB4whMyE+Q288F7AO7x5MUyGWTwYBkKASUI2T4iNnc1x4jjtJba7W+59VWuXat+e5fz+OFXqUnVpL1WppfO5Ll2Sqp6qOqV6dJ5zn/t7f28hpUSj0Wg0Go1Go9FoNDc2RqsHoNFoNBqNRqPRaDSa1aODO41Go9FoNBqNRqPZAOjgTqPRaDQajUaj0Wg2ADq402g0Go1Go9FoNJoNgA7uNBqNRqPRaDQajWYDoIM7jUaj0Wg0Go1Go9kA6OBOo9FoNBqNRqPRaDYAOrjTrClCiH8mhHhBCJERQowIIb4qhHi7EOL/EkI4Qoh0+euUEOI/CyEG5nme3xZCSCHEe8q/f7X8nJny85Sqfv9vzX2XGo3mRmS185MQ4ieFEEPlY04IIT5Yvl3PTxqN5oZECPFzQohnWz0OzcrRwZ1mzRBC/Brwx8DvA33ATuC/AD9WPuR/SSnbgS7gnwD9wIt1FlD7gB8HRiq3SSnfJ6WMSimjwKeBP6z8LqX8xbV9ZxqN5kZntfOTEGIb8NfArwEx4DeAvxFCbNHzk0aj0WhahQ7uNGuCECIO/C7wr6WUn5dSZqWUjpTycSnlb1QfW779OPBTwATw6zVP95+BfwuUmjF2jUazsWnQ/LQdSEgpvyoVXwGywL4mvhWNRrNOEUJcEEL8hhDiVSFEVgjxmBCir5zZTwshnhZCdJaP/YAQ4rgQIiGE+KYQYrDmeT5afp6kEOJ/CSFCVff/SyHEGSHEtBDiy0KIrVX3vUEI8VT5vjEhxG8KIfqFEDkhRHfVcW8WQkwIId4I/Dfg7rLSIFG+PyiE+IQQ4lL5ef6bECLchD+jZgXo4E6zVtwNhIAvLPUBUkoP+BLwjsptQoifAEpSyn9o+Ag1Gs1mpRHz0wvAUHlRZpYlmUXg1QaPVaPR3Lj8U+B+4ADwAPBV4DeBHtQa/N8IIQ4Afwv8KtAL/APwuBAiUPU8PwkcAfYAtwA/ByCEeDfwB+X7B4CLwN+V72sHngaeALYC+4GvSSlHgW+WH1Phw8DfSSlfA34ReK6sNOgo3/8fy+/hTeXn2Qb81qr+Mpo1w2r1ADQblm5gUkrpLvNxV1EyKIQQUZRk6ocbPDaNRrO5WfX8JKX0hBB/BfwNKlAsAT8hpcw2dKQajeZG5pNSyjEAIcS3gXEp5cvl378A3Af4wFeklE+Vb/8E8CvAPaggDOA/SSmvlu9/HBVkAfxz4M+llC+V7/s4MCOE2I3axBqVUv5/5WMLwPPln/8S+DfAfxVCmMDPAB+o9waEEAL4l8AtUsrp8m2/j5r7Pr7SP4xm7dCZO81aMQX0CCGWu4GwDZgu//w7wKeklOcbOjKNRrPZWfX8VDZ3+kPgnUAA+CHgz4QQb2rcMDUazQ3OWNXP+Tq/R1FZtYuVG6WUPnAZNd9UGK36OVd+HHUem0HNb9uAHcDZecb1JeCQEGIvKrOYlFJ+f55je4E2VM1xoizVfKJ8u2YdooM7zVrxHGqX6INLfYAQwkDJFr5dvuk+lGRhVAgxipqoPiOE+LcNHqtGo9lcNGJ+ehPwjJTyBSmlL6U8itoVf09jh6rRaDY4V4FdlV/KmbIdwPAKHhtBKROGUQFi3RpgKWUB+Awq8/cR4FPVd9ccPokKRN8gpewof8XLhlGadYgO7jRrgpQyidJj/6kQ4oNCiDYhhC2EeJ8Q4g+rjy3fPojSnPcDf1S+6z7gMGoR9SbUJPavgD9tzrvQaDQbkQbNT0eBd1QydUKI21D1eLrmTqPRLIfPAO8XQtwnhLBRpk1F4LtLeOzfAD8vhHiTECKIKmV5Xkp5AfjfQL8Q4lfLhijtQoi3Vj32r1C1ex9AOf9WGAO2V2r+ypnE/wE8IoTYAsotWAjx3pW/Zc1aooM7zZohpfwjlE34/w/lMncZ+GXgi+VDfkoIkQESwJdRUoI3V3TlUsopKeVo5QvwgJmy7ECj0WhWTAPmp28B/xfwOSFEGvh74PellP/YvHeh0WhudKSUJ1GGJp9EZckeAB6QUi7qEC6l/BrwH1DzzwgqU/fT5fvSKMnlAyhZ52ngXVWP/Q6q3u+lcjBY4evAcWBUCDFZvu3fAmeA7wkhUiijloMre8eatUZIWZt91Wg0Go1Go9FoNBsZIcTXgb+RUv5Zq8eiaRw6uNNoNBqNRqPRaDYRQog7gaeAHeUsn2aDoGWZGo1Go9FoNBrNJkEI8ZcoaeWv6sBu46EzdxqNRqPRaDQajUazAdCZO41Go9FoNBqNRqPZACy3gWtL6enpkbt37271MDQaTQN58cUXJ6WUN3QzVD03aTQbEz0/aTSa9chCc9MNFdzt3r2bF154odXD0Gg0DUQIcbHVY1gtem7SaDYmen7SaDTrkYXmJi3L1Gg0Go1Go9FoNJoNgA7uNBqNRqPRaDQajWYDoIM7jUaj0Wg0Go1Go9kA6OBOo9FoNBqNRqPRaDYALQ3uhBAPCyGOCyGOCSH+VggRauV4NBqNRqPRaDQajeZGpWXBnRBiG/BvgDuklIcBE/jpVo1Ho9FoNBqNRqPRaG5kWt0KwQLCQggHaAOutng864/RYzD0OCQvQ3wHDD4A/YdbPSqNRqPRbDb09Uij0Wjmsg7nxZZl7qSUw8AngEvACJCUUv5j7XFCiAeFEC8IIV6YmJho9jBby+gx+O4nIZ+A2Db1/bufVLdrNBqNRtMs9PVIo9Fo5rJO58VWyjI7gR8D9gBbgYgQ4sO1x0kpH5VS3iGlvKO3t24j9vXH6DH4xh/AF39JfV/phzz0OIQ6INwBwlDfQx3qdo1Go9FomoW+Hmk0Gs1c1um82EpDlfcA56WUE1JKB/g8cE8Lx9MYGhnFJy9DKDb3tlBM3a7RaDQaTbPQ1yONRqOZyzqdF1sZ3F0C7hJCtAkhBHAfMNTC8TSGRkbx8R1QSM29rZBSt2s0Go1G0yz09Uij0Wjmsk7nxVbW3D0PfA54CXitPJZHWzWehtHIKL53EC58G45/AS48A5NnoJBQxZoajUaj0TSLwQfU9SefAOmr7/p61DKEEKYQ4mUhxP9u9Vg0mk1L9byYHoXTT8HpJyEz3tK6u5b2uZNS/raU8mYp5WEp5UeklMVWjqchNCqKHz0Gp74KWw5BWzdkp2DydTjwvpa78Gg0Go1mk9F/GO55SKlRUsPq+z0P6etR6/gVNoLaSaO5kanMi14Jzn9L3bbnh8AMtNRYpdWtEDYegw+oDxRUxq6QUlH97R9Z3vNUyzu796nb8gmYGAI+2KjRajQajUazNPoP62BuHSCE2A68H/g94NdaPBzNOrTC1zSR/sMQ3QI3vVet2asZerwl50JLM3cbkkbtbq7TIk2NRqPRaDQt5Y+BjwH+fAds6jZSzWSdWuFrmsw6W7PrzN1a0IjdzfgONUlU7wKsgyJNjUaj0Wg0rUEI8aPAuJTyRSHEO+c7Tkr5KGUfgzvuuEM2Z3SbkGqVFVz73qKMjaZFrLM1uw7umsmxL8LRRyE9Au0DcOeDcPiD9Y9tlLxTo9FoNBrNRuFtwAeEED8ChICYEOKvpZTX9QnWNIHkZZWxq0arrDY+tVLc3kHlkwHrYs2ug7tmceyL8PRvQyAKkT7IJ9XviUvgZK/XalfkndUnz+0f0TtBGo1mY6LrVjSaRZFSfhz4OEA5c/dRHdi1kHWWsdE0gYoUN9RxTYp76qvK8HBiaF2s2XVw1yyOPqoCu3Bc/R6Og1uA7/4nOPxP52q1KzV6unhdo9FsBupdLKvnQo1Go1mPaJXV5mM+Ke7EELzr4y0a1Fx0cNcs0iMqY1dNZRI4/nn1e2wrdO3XWm2NRrO50HUrGs2ykVJ+E/hmi4exOZhPWaBVVpuPG0CKq4O7ZtE+oKSYlcxdKQv5KfWzMEACM5egmAYn17JhajQaTdO5AS6WGo1mk7KYskCrrDYXN4AUVwd3a0G9HZ47H1Q1dgDBdkgOg5RgtYFpq9uFUCdIMdm6sWs0Gk2zuQEulhqNZpMyn7Lg6GOqv5muE95c3ABSXN3nrtHM1/OkZz+853dU5i47pgK5th4IhMBzVaCHhFIOMmPwxV+Cb/yB7pWi0Wg2Pr2DcPFZOP4FOP8MTJ1VF8vBB1o9Mo1Gs9mp18PMLcC5b+j+dpuRRvWzXkN05q7R1NvhyU7CVz8Gnbth9zvUgmXocTj9lJJgljLgFsH3wDQhGNemAhpNixFCdAB/BhxGCaf/hZTyuZYOaiMyekw5jfXcDJmrkJ2CQhLu/Zie9zQaTeuppywYfQ3CXbpOeLOyzqW4OrhrNLW1I5lxmDihArddb7sWsB14H1x9GabPQaRXLR0TF1RgOHCrqsPTk4VG00r+BHhCSvnjQogA0NbqAW1IqjfEevar2/IJ5TzGB1s2rE2Pbk2h0SjqyfDy07Dnh+Yep+uENesELctsNPEd6h+/wuRJwIBIz7WALdShFi73/ZbK5HkO+A60dcO+dysNdwU9WWg0TUcIEQPuBR4DkFKWpJSJlg5qo1JP8qTnvdYyX3mBlpxpNiP1ZHh73wVWaO5xuk5Ys07QmbtGU7vDk50EYULPwWvHVC9coltg4BY1IWTGwQzMfT49WWg0rWAvMAH8hRDiVuBF4FeklNnKAUKIB4EHAXbu3NmSQW4I6kmeps5BZkTVHuusUfPRrSk0mrnUyvAqGyCwbk01NJsXnblrFKPHlAHK9/4L2G3gldQOT6QH+t4wNxtXSIEZvH5nNHUVZs6rn6Wvvs9cUEGfNljRaJqJBdwO/Fcp5W1AFvh31QdIKR+VUt4hpbyjt7e3FWPcGAw+oBZFlXlv8gwMvwDtW3XWqFXobKpGszD9h1V5zdhrcOxz6vuB9+nND826QGfuGkFtD5TKDs49D6n7K0Fc9e6O3abq8MZeU7eFYqotQm4Cps+q26wgGDYEotC9VxusaDTN4wpwRUr5fPn3z1ET3GkaRG0T4MwIbL8Tuvep+3XWqPno1hQazcJUjKD63qj8FAqpsjHUfj1PaVqOztw1gmoJS3VdXWUxUs8yNTMKY8fBKai+d7lpuPy8ytIZAYhsAScPCJh8Xck7q59Xo9GsGVLKUeCyEKKip74PONHCIW1s+g/Duz4OH/wvylW4a8/c+3XWqLnUZlPzCd2aQrP5qCiy6imnKus+rwQXv6O+Jk+r3ncaTYvRmbtGUOuQCXMXI/UsUwtJFQja5YLcUgYMS31vH1C3p0fAK4LZoYxZolv0IkejaR4PAZ8uO2WeA36+xePZHFSyRl5JzXuFlKpFHri11SPbPNRmU+M7VC2RzkhoNgu1iqxa5VTyslJWDb+gymyC7dd6340e0/8rmpaig7tGsBIJSzAO+RmVubOCqnm5YUDRUU3MvVL5y4GOndccOLU0RqNpClLKHwB3tHocm47BB+Br/7eSpwfawbShmFLKB71oah7rvI+TRtMw6rX9WMxUKL5D9So2g9c26RGq952WkG98VtoqpkktZrQssxGsRMIycAv0HlKTQjENgTYwQ2AI1dDcDKhMnleE9BiE2rU0RqPRbHz6D0NsKwRjqkWMHVYtYzr3aEl6M1hIiqbRbDTmbfvx6sKmQoMPqF53Uqovp6Ayd/1v1Oqqjc7oMfja76rgfuQV9f1rv7v4XNnEFjM6uGsE89XVLRSNDz4ApqWKcQ++D7a/FUppCHcDUgV4hqlq70opCHYs7Xk1Go3mRscrwv77lLEKwJWjarE1+mprx7XR0f3tNJuN+TwTCsm5PYthrnKq/7DqdSeE2qC3Q7Djrar3nVZXbWyOPgbT59TPwfIGwPS5xestF/LnaDBaltkoliNhqaRliykYH4JSVu1Oh2IQ6gQ3WM7eBVWdXbgDfuZv13T4Go1Gs26I74CpszB+Qi2Wgu1lp+GklmauJbq/nWazMZ9nQjCulFKV3ytO5zvvVhnt5GW1Rov0KhOoUEz155wYgs5d6hjdn3NjcuWouiZJT50HblEFaxeeWfhxi/lzNBCduWs21TujkS3g5NTOz7Y3q9/dPOy+F970z+GNPw79t6gvjUaj2SwMPqAWSQhVk+wWQQC9g1qauZbo/naazUZ8hwrKLnwbXv+K+j51TpXO1CqyDrxPtTuoZLbNACCVP8LoMeVsvuUQ9B3WWe+NTikPyWHwXHUeeK5ytV/o847vWDgb3EBaGtwJITqEEJ8TQrwuhBgSQtzdyvE0heqd0anTKqUbjKmfK25wI69UNTE/r5uYazSazUX/YYjvVCZTU2fKznQWBKM60FhLqhcfmXG10D3xJZi5oK89mo1J76ByvMwnVU/hfFL93js4t0XLuz6uNpxqZXWde5TCqr1fZfImXldtEbySbl21Udl+J2TH1M+GqXpW4yun+4U+7ya2mGm1LPNPgCeklD9ethtva/F41p7qtGwhpVK7lZ+jW5TJyuXn4NjnlFOclGo3wCvC+Otw9WW477d0ql+j0Wwsal3ETFv1+ozvuJa9u/gdZa6iaTyjx1RAd+4bytzLL4EVBmFC+9a5NvAazUZhYkgt1tNX1TosHIctg2XlwAfnHjufrG7kVXW8EQQnA6mrMHFKSThL6Wa9E02zuPMX4NSTgFcuobIg3KlqLhfafGxii5mWBXdCiBhwL/BzAFLKElBq1XiaRnXbhFBMOSw5OdXf7tjnIDsN7X0qkj/xOKSuQHy7OnHc4rWizQceafU70Wg0msZQr6fU2DFwS9cK1jVrR/Xff88PqYVLKQPd+2Dr7WrjMZ/QtXeaG56hkSRPHBtjOJFnW0eYn5s4R2f/HnWuV5B+/UX6fG2vikm1IZIdUxtRdri8GfUsHPrgGr8jTdPpPwwH3qtUdl5JreV7Dip5Zrh/8cc2YQ5tZeZuLzAB/IUQ4lbgReBXpJTZ6oOEEA8CDwLs3Lmz6YNcMfP1shh8QF1EAbpvgrNfV/3uYtuhMKMKNL2Sytblp8o98DLQ1lXupSJVMadGo9FsFOoZeRgWtEXVvFdIqQto/xuVikHTWGr//pEeJTEKhFVgB7r2TnPDMzSS5NFnzhMP2wzEQyTzDs9Pt3FnYILu7r5rB9bUQVUCQm/kAD+S/hx9fUW6u3qvmayE4lDMqIMlqj7YMKFUaObb0zSTO3/h2oZYteHO7R9p9ciA1tbcWcDtwH+VUt4GZIF/V3uQlPJRKeUdUso7ent7mz3GxanXE2ghO+nqtgm+ozJy8R0qrSt96NgFRgDOPKXcNJ3ctUkD1MSh0Wg0G4mKkUelzuv1r6hNr5kL1wK7noPaZnytqDVSCcXUArW6+H+NCv81mmbxxLEx4mGbeNjGEIJ42OZcz7sZGxubtw6qEhAm8w6i/zDf7P5pjo5KZkYvVLWnukX1uKus5bwSIKBrr96M2qispAVaE2ll5u4KcEVK+Xz5989RJ7hb19STEn33k2C3LWwnPXlGLWDSIypw23GX2ik985RazEgXDFvJkSoTTjGjdrJLaV1zotFoNha1rQ+EAaWcWiR5jnImu/Bt6NoHt/+HVo9241ErN+s5qP7ewZi6/qyzXWmNZiUMJ/IMxEOzv0+kC5xJ9HI0/cM8OHKcm8MX6BzYO6cOqjogBCh2D/K9tv0MhW0efteBa08+9Lgy1ojvUJJMtwA9B/SGyEamjsSyVvZ75HAfgwPxpg+tZZk7KeUocFkIcbB8033AiVaNZ0XM15DwytH57aSPfRGe/m3lyBTpU4YpZ7+mahwCUZXN81y1qLEjKrUvpTJTSV9VPVXu/IWmv1WNRqNZM2pbH2THwQooIw8nq+bFYAxiW9fNzuiGotbFzQyorMPAretyV1qjWQnbOsKkCy6gAruXLiVIFVyyHQd5svfn+V3zXzN08y/NOc+HE3naQ3PzIO0hi+FE/toN/Ye5fMsvM54pMDo6zOW0T7L9JrV+WwMnRM36pDrLW5H9PvrMeYZGkk0fS6vdMh8CPl12yjwH/HyLx7M86jknuQXIjCn76EiP2gGNbrkmaTn6qAriwuVIPr5N7Vbnp1Xjy9RVoKQurk4O2rrBd9Xztm+95q6p0Wg0G4VK64NiAgpptQMe265aHxTTcPP7VdCRGm71SDcmdV3ctCuzZmNx5HAfjz5zHoAz49fKXXqiAYZGUkxmivz2l0/wOx84NJtt2dYRJpl3ZjN3AOmCy7aO8OzvQyNJHh0+xE07f4s3ZZ4hnLvK8WQHB277Gfbq/6FNQ22Wt/L9iWNjTc/etTS4k1L+ALijlWNYFbVSlsy4suoOd4MhVHbu0veg7w1qB+f2j8Brn1EZuwqBCFht4OXVIiYUKwd/nTA+pDKCnqOCuoFbVdCnHcs0Gs1GY+CWa/PphW8rJ2G3eE0FoWu+1pYmubhpNK1icCDOg/fu4YljY4yli/S1B+mJBjg3mSNoGXS12UxnSjz6zHkevHcPgwPxOQFhe8giXXBJ5h1+6s7tgArsfuOzrzKcyPNto42B2Ae5ZUcc2zQZGrF5WP9LbRpqZb9QJ8vbJFraxPyGp1bKMvKKun3X3aqOLhxXkqLL31MLk6HHlbSomIZSFhKXYPK06idkt6vd6f33q0AwPaYyd74DCBXwXfm+yuBpxzKNRrPRqJ5Pu29ShlLFlPp5DZu9ajSazcPgQJyH7z/AB9+0jUNb40xlHYKWQcg2KXmSrmiAeNjmiWNjs8c/eO8e4mGbkWSBeNjmwXv3APDvP/8qP/8XRzk1lgbpYwi4PJPnu2emKLpuSxb1mtZRLfutUJvlbRY6uFsNtW45Xgl2vU3JMKNblCQzEFEGK/2H1QLFaoPMKEyfh2JOBXpuURmmXH6hLOW8WS1qrKAyVunYrlohmEEYfU3vXms0mo1HrZPw7neoL9/RNV8ajaahHDncRzLvMJkpEjAFBcej6Prs741cl22pBISf+Ilbefh+ZaLy6DPnOXY1he9LTEOQc3ykhKBlkCt5nLiabsmiXtM6KudUMu/gSzn785HDfYs/uMG0uubuxqdayvKNP1ABXIXJk4ABkc5rhisDt0BuEnLTUEqptgedewEJY68oE4GBW8DNQWSLMmcRZVMVKVUvPL17rdFoNiJaGqjRaJpAJSP3218+wXSmRFc0wBu2xuhtV0YYCwVmldqqkudT8nyQEseTzORKdIRtXF8yk2vNol7TOqplv8evJkkVXOJha04WuFno4K6RVDcoD8VUI3JhqgxehVBMyS0rDckDbRAsZ/cME9rL3e0Tl5U0s/smyE0oWacZgL3v0osfjUaj0TSe0WNzTVUGH9DXG82GZXAgzu984NBsY/P2kDWbbanU1IGqq/vUcxd5+XICgSDvuLx1TxclxyNVcBGAkOBLSORdLEPQ0SZbsqjXtI5KG4TjV5NcmclzsC/Kzu7IrGtmpY6zGejgrpHUOo5FepTDZXTLtWOmzysZpucoJzjPheSwOlYCxz8P0b6yHfiEMmlp61KST+nDnh9q2dvTaDSaNUEHFa1nvr6tWg6r2cBUZ1sqvckqgd0jT53ixEiS02NpXFfSHQ0ggZmsw9eHxsk7HqYA11fLNwDflwQtwV17u1uyqNe0hkobhHjYJpV3ADg5liEasuiJKpOVZrpm6uCu0VTLiioXy3xCZewKKdXLqf9WJcF0iyCEuj03BUhVV2eWa+2kr2rvnBz0HlQX3FNfhZ79+mKr0Wg2BjqoWB9U922Fa9+1O/O6QgixA/groB/wgUellH/S2lGtD1baQHpwID7nuOqFejLnkCl4uFLSISEStNjSHuTCZBbXl5jGtcCuQtH1SeUd+mJK2tkKK3xNc3ni2Bie53NiJMXJsQxtAYP2oM2Z8Sw90VDTXTN1cFePhXaRl7PDXMnkHX0MTn5V3eYUlEFKMALnv6UCOySz04NXhKlTENuhjvU9Va8nhGqHoFshaJaKzoZobgR0ULE+qNe3NRTT7szrDxf4dSnlS0KIduBFIcRTUsoTrR5YK6kOyKobSK8ka1bdryxdVO6HAVMwkysRCVrYlsCTas3mSzCF+l4J8lwf/vHEGKmCw207u7Rr5ibg+NUkV6bzBG2DSMCk5PpMuSUc3wea75qpg7taFtpFhrn3TZ2FL/wr1Xx34Jb5F89OTrlohmJw5mvqK9INvs+cwA7Uz64DyUvXAru2ThXoXX4ett+pL7aaxdHZEM2Ngg4q1ge1fVuhfm9BvWnUUqSUI8BI+ee0EGII2AZs6uCukQ2kq/uVmUKQdzxcz8cwDTrbXCbTJSxD4EuJ41//+Eqw9/3zM1iGwa07Olf35jTrnlTBBQEh26QrEmAkWcDzJQXHq1vHudboVgi1VO8iVxwuQx3q9ur7spMwfkLFZcXEtcXz6LGFny++XfVrSg6rujtE+UADhFX+3QffBSQYBrT1KAMWK6RbIWiWxkLnsUaznojvKCsYqtANy5tPdZ/B9CicfgpOP6nqvivXtepSg+pNo9rrnqYpCCF2A7cBz9e570EhxAtCiBcmJiaaPrZmM5zI0x6am69YqRSu0q9sMlMgW3QxRHkLXkouTGaZzBQpevUDOwBPqpWclJLXhlPaNXMTEA9bSKmCubaASVfExjRAIGZ7I2q3zFay2C5y5b7JkyrYsoJQSF8vJarsbr72GYj2Q+/NylglcVHV1BXTqn+TEEBZtC09ZrN40gOEqr1zi8pNEwl53QpBswR0NmTVCCFM4AVgWEr5o60ez4al1mW4kFJBxs67VXsZnSFqDtVlBOe/BeEuZeBlBq5l/bWEdt0ghIgCfw/8qpQyVXu/lPJR4FGAO+64o7YsbMOxrSNMMu/MZuxg5VK4I4f7ePSZ85ybyNAesghYBqOpIp7nUfJ8JOXgbYHn8CUELAPbFLrebgNSW9+5JRrEcTxOT2TJFF2iQYs3bo1x686u2d6IzUQHd7UsJk2p3FdIqRo4t6gWJHBt8VwtiWvvh9SYyvJ5DjjZ8pMKZrN0800TwZhy28xOqkxeMKZbIWiWxlIlVpqF+BVgCIi1eiAbmlqX4fgOFdi98rfKMdgtwvjrcPUHcN9/0PPfWlHZkLxyVAV2A7fOdXqufD5606jlCCFsVGD3aSnl51s9nmYyn2lKJSADlbFLF9wVS+EqDpq/9OmXSBdUzd32zjACMAScGEnho1oPzxfkCaGkcTu7Iyt9q5p1Sr36zpNjaa7M5OloC7A1HiJd9Dg7meMn7mzNmkvLMmuplqZIX30vJNTt1fcF29Vi2SuqPnaZcVVLN/IqfPVjqsVBuAPaeiE7prJ7s4EdqOnAr/q5CmGrL99TffDiO1Rg13MT3PkLa/0X0GwEFjqPNYsihNgOvB/4s1aPZdOQGVfz57HPwZceUvPp+AkV4Dl5mD6rskqaxjN6DL72u0qKmbysygbOf0t9JnAtgNMS2pYjhBDAY8CQlPKPWj2eZlJZVCfzzhzTlKGR5GxAFg/bjCQLDZHCBS2TnmiQvT0RLENwaSZHvuRimwYBUyyYvTOAgutz3809K359zfqkur7TEEp26XiSWEjdlil5xMM2t+/s4NRYdvEnXAN05q6WervIt3/k2m5x5b5wBxSS0DOoFs8Xv6Pu3/U2uPSckk+GYpCbBEyuBXLzYSoHTbdwrRWCkKrWrpAEhDbD0Cydxc5jzWL8MfAxoH2+A4QQDwIPAuzcubM5o9qIjB6Dr/3fKngTFqTHwEmr+1xHzYmljDKuunK0tWPdqBx9DKbPqb+/74Ezo2rJLzwLhz8EU+cgM6KuazMXoXcQuvdek9De/pFWv4PNxNuAjwCvCSF+UL7tN6WU/9C6ITWHxUxTalsarPa1DvZFOTmWoej6BC0DIeHSTAFTQN5dWOkqhJKK5kobXhG76RhO5LEMlcHNFFyiIYtUwSFoGdy1t3v2OF/Kljml6uCuHtW96ha6ryJjef0rKrNWkbFEeiCfVHV5hRT4JRZVaIfjsGUQEpdU1g+pgsbd77gmr9MLc81yWOg81syLEOJHgXEp5YtCiHfOd9xmq2lZM4YeV7XIxQwUk0qGWYuThfRV6NBB9Jpw5SgIE/KTanPRd9X1J3ERLr8A02eUU3PXHrAjql+rk1Mu0XrTqKlIKZ/lmhPbpqLaxbLCWvUPG07kaQuauJ7PxaksrucjJRiGmHclZwGRkInjSxxP0h6yOH412fCxaVpLwBQ8f26aaMgiGjQpOh4zWYct7cE5xy1W87nSvoxLQQd3q6GyeK7UIYiyyrXnIJz9hrrdL4G7wMQjTGbnaacAZghSF5ShihWAE19SC5rbf2ut341Go1G8DfiAEOJHgBAQE0L8tZTywy0e18bkwrOqrYxhlIMKr/5xpbQKMDRrQ3ZClRlI/9q1zPdg6iTsuAu696nbuvdBW7facHzXx1s2XM3mo5GmKbXULrRzBYdXh5Nkih7tIYtM0cVxfXxfIoXAElCdvBOoBoSpgochVNDp+nBlJj8rG9VsDOqlaiIBE8fzSeadJdV8NrIvYz10zV0jqFeHUEwqKZHrLPxYK6hMV3oOQikHqauqShfUhXXmPKRG1mbcGo3mOqSUH5dSbpdS7gZ+Gvi6DuzWiNFjSuEgDLXRNW/+U4AUuuZ4rejap65ZnleWZebUpqTvQnYKAjWmENpERdMCjhzum+0Z5ks5+/NqWw3Uq+U7MZomkXeQUpIuOORKPo5fCegkfs1cJau+S6Dk+RQdj4N9UZ44Nraq8WnWF0VP8ta9nYRsk3TRxfMlnRGbvONxYiTF66Mp4mGb9wz28sSxMT762Vd45KlTDI1cy+LW1u2VXI9zExl+/TOvXnfsStDBXSOoNa+4+JySGAVjKnCz6rglCUPdHu2HH/49OPgjkB4GNwt4qPYIftkp7hj8zU8pW3DdT0ij0WwUhh4Hq03VFnvOPFm78rIppHe+14y2LiW39B2VvZtdqvoqyDv51WvmKqBNVDQtYS1MU6C+QYZpCGS5CXXRUf8PlQWz4y/uolByfUxDsLM70rK6K83asK0jTNCyuGtvN7ft6MD1Ja4PO7vaODQQIxq0OdAX4emhibrmPzC3L+NEusBLlxIgJb70rzt2JejgrhFUzCvCHZAahvyU6oEXKF8shQQjABjKKMUMqhYHN70H9r4Tvv8/4NufKGfsKgnfijypXHuXGVPSJd0wVqNpGlLKb+oed2tI8rKaN4WpskTzpu4k2GFlvKLnv8bjFVVPuzlL1kpZl6GMVEZe0c67mpYzOBDn4fsP8ImfuJWH7z/QEAlbvQbo3ZEAXrnGLhwwaLMN1ZZ4CfhSfV2aznJpKtsQ2ahm/VCdQX7lcoKJdJGRZJ6841FylVPmXz536boNg3jYns3ibusIz7bZODORJWgZIATxcOC6Y1eCDu4aRf9hVX9w1y+p372SuggWM4BRlh0JZbay5Q2qlcLIK2oHNHlBLW7c6h3TGqRUhgKhDrXbrdFoNDc6ZlAFDshyndc8lyQjqGruxk/odghrQXwHxLaCUVnglvuwCkuVDoC6po0dg7HX1HVr6HEdaGs2BNUL7QoD8RCWKXDKRipCgGks3cdGSHB9eOlSggN9utfdRqKSQR5P5jk1liFTdLANQcn1eelSgoLjMpYqXLdhUG3+Ux0gpsvy36Lrs39L5LpjV4I2VFkKFVfMiqX84AP13cEqlt6+r3ahK/IWUZZYClN9T15W7m/tW5W9dDELdlu55cE8SF9dUHWtg0aj2UhYQaVyyCeYV+wkUMFFKavbIawFgw+oPndeZYFbrhySAqQLhqnMbFLDyvirkISZC/DaZ1W9+MAt818XNZpVsJaOghXqNUA3DIN7b+rh+XPTpIsuvpSYhiBkCYquXMj7HFAzWcA0uG2H6nX2/oaOWNMqKufj985O8upwEpCYhoEEJjMleqIBhkbS9MVCpAvuvOY/lQDxiWNjah9NCN68K05PNHTdsStBZ+4WY/SYkkLmE8oRM5+YXxp59DHVqynSqyREFVmLLC9YpKcujIapMnH5GUhcVrdnxlG1dvNRDu50rYNGo9koeEXVG7StS7kDz3ucozbHSq1pCLspKKS5XnfmqaA60A65KdULD9RnkR6F7CSkrix8XdRoVshXXh3m4b97ha+8OsKlqSznJzKrrkWqx3y1fA/ddxP7tkQJmMZsg2rTNBYN7ACiQZObtkTZ1aNr7jYKFeOd8xMZzkxk8cquOq4nyRQ9pJTMZEvM5Bx+9u6dC5r/VG9a3Lajg55oENs0G2YUpDN3izH0uJJChjvU75XvQ49fv0t55ai6CAbCkJ9W2Tu3iNrDKTcyL6bAyYNpq+a8Tg4ifVBaQjYueVHtlt7+Hxr05jQajaaFxHeowGD3O1Tz8ukz8xzoq00y6et2CGvB0OMq0A53lo3ByvXeoKSZfW+AS8+pzJ5bUAGfFVTHpEcXvi42gqWqZzQbhqGRJJ/8+lkQ0BWxKbo+p8YzHNgSnW1a3kjma4C+f0uURM5hOlfCl7C7O8L5yQz5kr9gkNcesrhle7xhrRo0radivHNiJIUvJQFLUHJR7TGQpAo+Ydvk/kN97O2N0nZmiu+fn0YiuW1Hx6z5T20bhHRBZYYd12Mkqc6Xn7pz+6rOcR3cLUalh101C0kjZzc+papfsFBZOt+75gQnTDADStpiBCG+FdIj8/d3qmbq7ArfiEaj0awzBh9QGR9Q0vSF8H2IbtHtENaC5GV1PSqkUZuRVctWK6h63fme2pT0XBUAhjqY00t7rUoGKuqZUMdc9cw9D+kAr8WspWTyiWNjOJ5PdySAEIKQbQIwmioQKP/cDMbTRTrabCzTIBqy2N8bASk5PZbBMiHnXB/i2QZIKckUXEzTn7fXmebGYjiRZyAeIlNwCdsmnufj+qom0zTA86Ho+gRtMRu83Te4ZbbnXYVqd1aAeNhmV3eEeNjm4fsPNGSsLQ/uhBAm8AIwvC5d6So7y5WdSZgrjTz2RTj6qArOSll1XYx0QTFdbl4u1MXRtJXqUgigKtDDg8kzqAdaqDaYCzB9Hr71h/BTf9XAN6nRaDQtoP8wHHgfPPtHC2TtykR7VdsYvaBvPGYQsuPgl7jO1MvJKllsWzcUZlA9B30VDAbaoGOnOm6tSgaWo57RNI3VNmGuFxgCs7cdv5okZBkUXX82sAtaBtNZh7v3rTwTtpyAdGgkyZUZJak0BVyYzHByNE1H2MIyJPl52hgLIZjKOLxwaYZ//yM36wbmG4RtHWGSeYdoyMLxPGZypdnp0pdgCOiJBPjSD0Z5+/5uSq7H8+dTZAoutin41HMX+f0P3TIbJFazWgOVWtZDzd2vAEOtHsS81Pawq7aBPvZFePq3IZ9U0spAOxQTMHVubmG67yvJi6y0RBDl+8ttDgozqnXCop1TAOEreYxGsxxGj6k+iV/8Jd0vUbN+GD0Gp76qVA6RPqVqqIcwoWs/HP5gU4e3qfCqpJi1SB8yE+pzEAbqGlZUCpSBN13fHqGR803yssoKVqONxVrOp567yLmJDN8/P83z56dnLeCXYt9er2n4Hz5xkk88eWr2toBpkMy7JHMlCo6qZ0oVXCxDrLgWqd7rLlTD98SxMfrbA4wk85wez5Atukjpk8y7mKbJfOaZridpC5qEbZOnhyYaXiOoaQ0Vh8v+9iCO6+N6/qzOQUqIhWw6IwFKrs+Z8QwvXUpQdDyiQeWz8eyZKYZGknXdWRst321pcCeE2A68H/izVo5jQap72I2WbaCLZRvo7zwCgSiE42AY0N6nLna+ozJ0ld52vqsujlZQOY95rjrGsNTvvlM2ClhCcIdQu6gazVIZPaac8E4/pdpvnH5K/a4DPE2rGXocslPKYj9xfgFpugkTJ5o6tE3F5KlyfXgdKi7Ppqmud8GoMgUzAmpFkxlX18eKTHI5JmRLCQLjO1RWsBptLNZShkaSPHtmCqQkGjQpOt6sBfxSsg/1moZPZ0tMZoqztx3eFiNgGQRtk6BlMJUtAfDQfftWnAmr97oLBaTHryYZTZWwhEAgyTs+2aKH53uUPA9vvr0QwPF8eqLBVfcr06wfKsY7juczkS3hlpfsBhAw1TkynCwQsg2GEwWClkHINhFCUHB9Co7Lr33mFSbTBS5OZec1W2kErc7c/THwMRaIaoQQDwohXhBCvDAxMdG0gc2h/7DakQzFoO+N0HdYXbCmzpR3McuUsuoCKVAyEsNQAZwdQgV5pXK/u3JrBL86SFtKYId6XHRLw96aZhPwrT9UZj8zF9R56+SU653uF6ZpNReehcvPldvGLIAslXuGahrO6DG4+gPmLwkQzBraODm1uWiHofegCupCsbkGJ9UySmGUj+m4vj/rUoPAhdQzmpbwxLExOttsEGK2Hi5oGQyNpJeUfajXNLzk+hTda5s7PdEQb93biWkY7OyO8KO3bOWRn7qV99+yrfbplkzt606kC5y4muSLPxjmkadOXZdhSxVcEOBKiWEYhG0D2xQUXZ/iIhU0UsL+LZGGy+00ref8ZI4dnW30RAMqeytUPqfo+VCuv8s7HhenslyezjGazCsX1pANEmzLxBCCkuvNcWdtpHy3ZTV3QogfBcallC8KId4533FSykeBRwHuuOOOpTjQrg31dP+BdlVrZxjKJjo3pYrOhQFuTvUIQpatpMPQ1qOkJEsxTqmLUJnB3psb8pY0m4DRY3D+W2Vzn5A6P7OTqn7m/DNqt3zkVSgmIRSHft2vSrNGVNcntw/AnQ/C1GkoLXHh45bU+azPzcZy9LFy1q58vapFuoBVTkfkwOyE+DY1p4TarwVulc9lqSZk89XSHX1MbWBWO2Pe89Bct8zbPzL3PNBumk1lOJHn0NZ2Xr6kgqGgZSClJJF3l5R9qNQuVfcAC1jX5xqClsX9h/oaZjJR/boT6QIvXUoA0NcerFszGA9bJHMlXM9HIvF8KHkSf5GVqAD29kbpiSrpp3bL3Dg8cWwM15d0RWyVaQ5ZpAouJVcStA1iIZPJrEN/LEje8cg7HjM5jy3tQdqCFkHbVOd9V1tDDVRqaWXm7m3AB4QQF4C/A94thPjrFo5nYerp/nsOql51o8eVtMh1VKAnhcrieQWVnfPdcr2dqS6QlZqFZSHACsNN71WyGI1mKQw9Xq6TsdTWkmmpRVlmXAV5k2cgcUHVjU5fUG6sul+VptHU1ifnk/Dkx9W8WaNakHW+AFVvrLPNjefKUTxh4GBe9zeXgINFXtjkpUVOBpguGYxkXAqFnLoG1gZuS5VR1rumugU4943rs3kA7/o4fPC/qO+1gd1SZaCahrCtI0zQsnjzrg5Ctkm66CKE4B37u5eUfajULlXL0roiAXqiwTWVqlW/7pnxa0qAm/qidSWahwbi3NzfTsA0cRyJ48l5y1LnIGBHZ2hN3oOmtQwn8rOtOQKWQcAy6YoEsC1BJGhScH22d4R52/4euiJBdna1EbQM8o5H0fWV2yqNN1CppWXBnZTy41LK7VLK3cBPA1+XUn64VeNZlNoLVmYc0sNgR1TzXemBkBDugc7tXLtECrWwNssNek0b9WdfRhJSmBCMQWyr+tK1BprFqNSyvPzXasGUm4TcDDhFQEIpA7EByIyoTYNwXEmt0lfrS6g0mtVw9NG59cnheLkxuaByGZoNKq6L6so/mkElL9Y0lLzrkfGDGLjXzAGovoJJikaEEbpJESEksxSkzYveTUwQuy5wO9f7Lk6cv8S3XzvNc2cnmJoaqy+jrBcEjr4G4a7FJZ3VLFUGqmkYlSDJNk3esqeLt+7pZm9vlA/fvWtJj6/XNPxjRw7y0fceuK6ReCOlatWvO5YuEgupALUnqpwLqxfcQyNJJtIFXr6cxBBgGkJ1tUI5Z5oL7M8bAo6PZHBcr+HvQdNatnWE6Y+FKLo+0YCF4/k4niQatLlnbzch2+L2XR30toe4fWcHQdvEMg1KruT2nep2aLyBSi0tb4Vww1DdjykUU8YUoOy5o1vUIiU3rbIhpTwYdrm2TqqAzslBIqt+9pdpiCI9JZtzcup13/+Jxr43zcaispPteyqwEyYg1fnj5NS5aVqw460w/CIE29XjrKBabGknOk0DqLYc/82xiwTjA1ByGUsWyRRdtntF2oRJQPiIioS9ds+rvD/mIzAX64OnWRGvyP3sYIKonP1zA2oRWxI2phAMi35CZo7XzX3s9i9xNbSfy1mLidfOciDuEfqhf8Jeym6Ex0Pc1P3TvCnzDKHcVY4WtnDgnT/P3lqZZO01tZCC/DTs+aG5xy02Hy23F61m1VSCpOqWAsttujxf0/C1DoSqX7dWGlpZcFe3eTg0EOXZ01M4vlSmGQI8X+LMY5NgArZp8O6btxAP2zqw22AcOdzHo8/kOLAlymiqQLLgkMo7RAImo+kibxhoJ2Sr0Kq3PURve4j+9iCnxjMELBNfytm+d2vZ/3BdBHdSym8C32zxMBam4pp59DE4+dWytn+nMgKYPq8W0b6r6uv8cpsDUb5MSl8tsP1S2SFzhWPwHVWjMnlG1xNo5ufoYzB5umpxIwFDJUhEufI33KWkw6EYOAVl+uMWry2ydHZYswqu64Fl9mBMT5IhiuP5ahccQUKGydLNABOEZGlO1dfsxriEHAHyRYsRbiIwktQLpgbyP/Lv5p95l+kwkgQoIVHBdIYQYelQxMR18mSFQU7Cfxf/lEOZYQaYYET08M3uH+H08RAPdidn3QiL4UGe7x4E1AJ6aMTm4dpLVuWaWl0rt/dd11QuFRabjxbrRatZE+YLzm4U1CL9PKAydtUL7sp5XHI9XhtOYVsGQV9FcyHbJFN056tQxQM8XzkjZhZzXdHccFRvbOQcj7BtEjINMiWX02NprtgmWzNFDm/rmD2vTNPgoXfv49RYdsWbIctlXQR364rFCrOdHOx6G4y9CulxSA2rYM6v6hFkWEqKKX2VdXNdZutKiqvsd+IWVAsG3e9JU4/RY6pmJdQJSHUuehlV7ylQpj52GPpvhYkh6LlZWcy7RXW+du1VEqrbP9LiN6K5kam2HAd4betPcefZP8byfaQRIezlcDC5Qh9jdFP0DXaLUQI4OJhYeFQqkz0puEIvSaOflzo/yOllNErWLM4rznbG/J/k/+QL3CtepYSJED4+JiXpMyljxEnzfXErfy/fy6vOdl6M3Es4YBKyTe7q7iaed2azOMtqztt/ePb6OjSS5Oj3nmXwzF9itnWwY6CPXqs0Ox/N23y6XgZQz2HrhuU0DW8mC2UfH3v2ApYBP7icJFfyMAVIJEUXfOlSNkWcF9eH//3KCO+4qadp70fTPCobG7/0qRcYS+YpehIhwDYEhZKHQHKgr52RpMoE37m7Y05g14z/AR3cVVORs4U65hZmV/r3VGv7e26G8SEV1Pl+WYLpMutoKb3F7b1XgusoG3uNph5Dj6usHCh3TM8tZ5ClOi+dvPo9GFWZ5579asOi4pbZvU87zWlWTe0i/+yW9/DKlQTvzX+Z7SLBiOzgUfEhhs2t3Fn4DhZ5TOGxQ4zjY5ATAWUZjeQ1uYeXOMSz/t3c1T04G0ishwXiRqA9aPF6dhe/7P0qP2x8j58z/5EdchwpBCf9HRyVgzzh38lJuYuAZWAKSORKGEaQw9uUIUolgKvngriU2pJrmd7dyF3/BzvHv4Zz9jRy/0G23PMQQ3LH3EzwHGfDOhnAWjdNTUu4LoNfx5GylcyXfdzWEeabJ8cJWgaWIVTD6bJ0vLREs/NsyePoedW0ej28V01jGRpJ8q3TkyqwQ1luOJ7ENFQLjd72EA/ff6Bl/wM6uKtmPmvmis1ztbY/ukVt3Zi2CuTssJJNSlR2LdShvjca3yvLPjWaOiQvQ/8bYfgFZWCRnVAZOa8EZkgFdnYULn4Hdr9DOc9pNA2m3iL/hci9PO7eyUA8zIWpLJ4vcR3Js+6Pzx7z3nJw0SdnGKOT/+n9ME/6dyGAuGVxF2vvMrbZuGdfN3+fzOO6kif9u3jSv2v2vor0TMx+KcfAvOPNMaKoBHALSd0WojrTO80BptsPqPMnZPNw/wGeeOrUnExw5ftskF+VAdSsH2oz+Nd9bk1kORnEI4f7+MLLw4QsQbboUnT9ZVXTCMAyBcmCx6eeu8jvf+iWhrwHzfrhiWNjOK6PL8tzoyh3BPUlri9nr1Gt+h/QwV01ixVm12r7TVvJ3QwTAhFVw1TKMZu9m1eVvRpcsLsb/JyaDUPlHN3+Fpg8qTYCSllV82mHIdKrzttiatGn0mhWSmWRP50pMpoqMJ11cH2P3miQqzM5MgUXWWdqrA0uKkggW3SZzBSwTVP3jWogO7vDlNz616nKraYAUe7WK8sfnG2ajKfznLiaZibnsKMjxNeHxpjKlpQVfEeYu/b1LKm2ZDE557LlnnVYr/LAjUy9z63oujx1Yrqpn8NysyeDA3EOb23nu2encX1J2DYolBfyS8UQKtn38uVE496IZl3wlVeH+fNnz1MqnxAVl+eKx06bacxeo2r/BybSBc6MZxhLK2XfWp3/rexzt/5YrD/P4ANKy59PqGxIW3fZhKJL2Xp7vpJmSldZzDc8sAMwIT6wBs+r2RBUzlEzoGpD990H7f1w8P3QvVdJMLPjysX1ylHdC0qzJgwOxHnPYC+nxjNMZUt0RWxu3d5BJGiRdzyMsluKvZCfeA2OD0fPz+i+UQ1kaCTJF14awTbFgp1X3bLkCCSGISg4Hs+enuDLPxhhNFmgI2TyynCSc5MZSq5HpuAyNJqmLSCWtHDZ1hFW0rcqquWci92/lPf56DPnSeadOYv7oZFV1sBrFqT2c5vMFHj+3Ay2KZr6OVRnTwwhZn/+1HMXeeSpU3z0s6/wyFOn5oyjoy1AdyRAZ5tNNGgRtpe+XPbK/y+RgMnC/1maG43//q3TfOxzr5KuMcupNgLrjgRmr1GV/4GJdIGnh8b4ymujnJvIEg2Ya3r+6+CumtrgLZ+Y25+n4u4V7lBGKjvvhr43QqQbpAFubu3HGGiD9q1r/zqaG5PaczTcoRzoYgOq4bAdgsgW1TfRDOhmv5o149RYlrv2dvOjt2zl7n097O6JUnR9bMvktp2dvGFbjFh4eeKR8XRh3dTrbASeODaG60tsa/GlgABKrsQSIIQgVXDY1xuhPx7i9EQWIdX+Zt7xiQYtDCF49JkLiy5chkaSTKYLfP31cb55cpyxVP665s/1ml4vJ8ifb3Ff3bBaszSGRpLzBkS11H5ux4ZTCOANW2NN/RyGE3naQ3PnmoLj8uyZqXkD/pInuXNPJ1tiIYqeT9Ayl/WaUoJlGty2Q89VGwW1SXQBd4EUbsASfPS9B2avUUcO93FxKsvz56aZTBewDHB9Sa7k4Xjemp3/WpZZTT1r5trC7Fpt/+ixsvX8qWt97a6JWVDGuI3EhAGt39YsQL1z9LufVO0RKjbjXlH1uTMD12pKF3OK1WiWQT1JVipfouB4nB7PAMomfznklupmoFkSw4k8XRGbq8kctsmCZhGVK1vOlRjAZKaElNAXC5X7fvkEbQNfKue4sG2QKXoL1pZUy+Xetr+LE1fTfPfsNG/f3z0niF9tX7VGyDo1K5M3PnjvHv76uYt8bWia4USO7TXZ1mZ8DvVqgIdG0nS2zV8Lta0jzIXJDG0Bi+5IgILrQ27p85Vlqk2Qe/brMpqNwhPHxii5PgKVGattdWgZsH9LO3t7ozzy1KnZuSpsGURDFpPZIpGASXc0iCEEZ8azvGVP15qc/5svuFtsAbvcwuzKsbKqFcIsVVdKYYNcZvPyejipa5lEjWY+as/zA++DseNKlumVwAzC1ZfUZkQpDZlxSF1VDc1Tw3DlBXj9f8M7fmNTtt0QQuwA/groR83hj0op/6S1o7qxqF1QTWYKzORcTAHpgoM7TxPghSh5UjtlNpBtHWFKjsfxqymWUyOurOFVcO54ElOAU26CbpU1t44naQ9ZHL+anLPQqa4xmWs2YLPl4LVzpvYzXm5fteoau0vTORzXY3dPdPb+5cg6NYqVmkPkHJ+37OnixFWTVMHlpUsJbt/ZQW97aMluqqupl6xn9DOTc3jb/q45x1UHmgf6Inz+pStYpiCVK5EuqvVcwFCtDhabvnZ2RTg0EOPUWJb3L3mkmvVMJQM8k/MBOSu4VfMexMMBogHzug2QYyNp7tnXRdA2KToevpRMpItkSy4Fx+Pw1ljDx7q5ZJmVDEY+MbfVwWplaRe+rVwsxQIXRyGub866Euq5EGg01Yweg6/9Lpx+CkZeUd9f+RsI90B+Rpn+FNMwdQ5mLkCgXR03fkIFfG5R1ZNK4Jk/3KyyTRf4dSnlIHAX8K+FEIdaPKYbinqSrKAlcH25osCugs62NI4jh/swTYPuSICSt/Rriw+0lyWORddTNXsCHNcnaBkUHZ+S5zMQC3BlJj+v9K2eXK4RmZzaGrv+9iAvXUpwYTKzIlmnRrHY51VPslkdEN7Udy24PjOeWdLn0Ih6yUoGMR62GRpJcWIkhWXAiatpJtLXXM2rA81TY1n29bQxlVGBnWUKLKFqf8MBY8FKuoht0BUNsqsnouerDcS2jjAHtkQANQdW6/RClsEbt7Yjq+TGFelxZ5vN0Eia/b0RUnmHy9N5Co5H0DLIFFyuJgsNr7vbXMFddasDYajvoQ51+2ooJMEKq8bldRHq9Tr3oKSaq0Gsfryajc3Rx671QgyWd4TGh2D4qNqEMGwoZZQ0s7JZ4JXALanAzy63TAjFlNvmJjzfpJQjUsqXyj+ngSFg28KP0lRTvaAaSRYoeT6RgMlqjaaCyzBh0SxM5TPy/OVF254Ez5dEQya+L/Gk4I1bY0SCFkVXErBUrVG2JDnYF5231m21RinzUVtjt6c3ym07OhhJFRlJFoiHbV27uQIW+rzmC8JOjCRnA8KeaIg37+ogFrIYSxeJh23eM9jLE8fG5q3ha1S95OBAnCOH+2gP2RwaiPHWvV2kCy7Pn5uuW+c5nMiTc3zCtkk0aGEKgVmee0qLtEYIBwwm0wWdHd5gqM0wk2jQnCN7NAUc7G+nMxoiHrau2wA5tLWdmZxDwDJpC5iYhsCTki3tId66t4td3ZGG191tLlnmYq0Oaqkj4RySO66XBwRjuO4kjrQJUrhuR0cKCwMfb+YSAm9R76TqVO/19/kw8uri71WzeblyVMkrbVVjkpUWXi5HyClwydxFh5sm7jsYpoVpWJAeUY8rpFS7hApuUZkFzff/sUkQQuwGbgOer7n9QeBBgJ07dzZ/YDcA1VK6//NTL/D00DjLSBDVZTpbasDINBUGB+Jkl1nLaKAa9ZoCgrbBDx3o4b98+I7r5HMnRpLs7I7MeWx1pmelffEWo16N3a6eCAHb5BM/ceuqnnszs9DnNZ9kcziRJ11wZ3/viYawTZO7w/bs8y1Uw9fIeslaGfDd+wTHhlO8ciXJDx/qn1PHua0jzPfOTpLIl3Bc1cys4qPhLLIXUvIk01mHy9M5fuq9B5Y9Ts36ZHAgTl8sSEdbgJKngjpDqM/79HiWvliI4ZkC46kib9gao7ddnbdBy+Id+7uJh20yJY99vRH2b4nO3u9L2fAM7+YK7so9wCa8EGfGs6QLDj1Wnu1bB9hSe2xFwhnqmJVwJr72RzzuvJ9c181zJqJfib2ZaPKbtMsEUE7VSpCibIIrHRwZQvjFOU1h50PW+0Vc+1UUtX2zZn7yrkci45FyVfNV1/fZKwu4mDjS5KrYgjAEtlegzcuQt+IkRAf9fgKzlMUoZsCwKBSynCt2czlnc+KpU5uyL5QQIgr8PfCrUso5fVKklI8CjwLccccda6qXvpF7dA2NJPlPT5/m6aFxnOU0iqqDAIZGdY/GRpMpLi+4q6xtpYSutiB5x2doJHldXdwjT526zsiiOpuxWqOU+ahnoKGzKKtnoc/rsWcv1A3CYiFr1jhpqQFhdQ1fIz/L2kCxJxri3gNBRpIFHr5/bhB2oC9CquDieHJ2TbdUUgWPvnaDvljwhpmnNUuj5Ek62wK0BSxCtkm26DKazJPIO7xwcYY37+zg5Jhyx7xzTychW53/1RsWzZibNpcsc/ABEjMTnDh3mWLJodvMYxST/M+pW67Xu9aRcJ7LWNxZeBbH8/j++WmePz/FuYkMn5h+O5OR/SAlDkIFdkBBWvjlosucL3ClQQlViT5rqrnYV4U54l49WWjqMzSS5EV3P34hRamYo+C6GF4RT8Ko3wFeAeEVmPIjBGUOV0qGnXbyvkHK6CAvbZyZS2R9k2PONkrSYHTg/k3ZF0oIYaMCu09LKT/fqnHcyD26hkaS/OETJ3nu3DRCQGCVqnTJ8gMRzeL4Kw26Bdx7oKeurGhoJMlEVYuD8fT10jdQAcPD9x/gEz9xKw/ff6Ahi+HVtk5Y7wghjgghTgohzggh/l0zX3u+z2s+yeYbts6VZ1dLYpdSc9nIz3I5MuBTY1lu39mBwcqE5PmS5GzZFVizcdjWEWY66xC0DLJFl5FkgWzJI2AaOJ7k/FSem/ujREMWr1xJXicBb9bctLkyd/2H+XLbP2VH8Gl6/XHSgQFO9/0YOXP39W5PVRLOiUyBM+NZTk74bDMu8p30FPGwTXvQouB4fCOxhf0Hf4H/I3Uc6bsgIEAJC4mUBmkZ4Aq9xMgSokScjLqPhTN49XCAQL9uhaCpzxPHxijEP4CbHKZDJojILEVpc0puJyPDZAjTL6YIihxFTMZEJ4bhk3AMXpRvJGAIbvfOMlXsJh0Z4HLfe5iO3kS86vk3w06kEEIAjwFDUso/auVYVupQ10oqmcYv/2CY8XSBgitXHkDUEFpCTzbN0hkaSa64ClJK6G0PXScrqrbMH+yP8oPLSc6MZ9jbE+EX37l3zc/btcoIrgeEECbwp8D9wBXgqBDiy1LKE60c10KSzfmcTpeSlWvkZ7kcGfBwIs9AR4hIyCKZd6+7fzGKnse5yeyyH6dZ3xw53MeTx0ZJFVxS5Yy0LyESMAgFTIKWwVTW4d4DvXUzws2amzZXcAe86m5nYu8vYohrYVV7Pb1rlYTzxYsJQpZBr13iXKGLpOMQDVoIIRBCEA1afGOmj23cyW0cJy1DlLAJ4LCTccZkBynaMIRPSDqkRRthChj42OWeQEsJ8iQw5nezQ7dC0MzDcCLPUKaP7zg/wRHzKH3+BFdkD0/4dwJwxDiKg8X3/DfQTQJX2GT9KBKJQBDzsnzDegv/s/gz3LO9i75omIl0gTMTWdJ5BwQ3lCRwFbwN+AjwmhDiB+XbflNK+Q/NHsiN1qOrsrD3PJ+pbJGS4+PJ5RjtL0zIXq0plaaaJ46NrfizkcBEukDAMucsyCsbEiXX4+J0nv54iFzRYTxd5D8+cYqvvDpSrluRayYzXm7rhBuItwBnpJTnAIQQfwf8GNDS4G4li9alBluN+iznGyNwXbuObR1hvnlyvCwrXX5wJ6UkU3Rn5cqajcHgQJyH7tvHJ79+lnRBxQLRoInnQ1dbgKBlkCo4C0otmzE3bbrgbsn67cEH4Luf5PKEJGSGiYkssWCBP8+/HdOEqWwR0xAk8w6WkJy4muLP5bv5NXOSbpEiSp4iNqfYRka2kSFMXGRJEiYm8yRkDEt4DPtd9IoZ+kUSEAiuD/Yqeu8ZGeH3vH/Of9ONpTXzsK0jzNeGxigYu/iv7CHrzpWwnfR2zf58UFzkQfMfMIA0bbSTJUaOz4sfnrXuNYTgpUsJgpZRtjsXCzat3ShIKZ9l+Yn1NeFGqx+qLOxPjKQI2yb5ko9oYAsXd5nOjpqFOX515Zk7U8Dxqyn29ka5c3fH7AL5+NUkt26Pc24yR9Ay8HzJdM7Fl5JYyOK7Z6fpjgS4c0/noo2wNdexDah2uboCvLX2oFYYPi130dqKDGvtGOdrzP6ewV6+8LJDaQV9WwygLWARtMx1rbDQrIz336JUfb/3D6+TzruEbEEoYGAagoKjJJqNMIZaDZsuuFtop6jWtODHDvw8EyN/S7c7xhmni2+KH+WS1Y/vSXIlH8+XFB2XbMknbBucLO7iE95PcsQ4yjYxyXBNxqTNLxITWc7KbZyQu3nCv5OTUi2232t8j58z/5HtjAOCjAzSIXK0UaRAgOe9A/yp/yFOyl16J0gzL0cO9/EX3zlPwDTJOwvvNp6Uu3jU+5E55+v/ku8kaeyi0/M5N5nl9HgaUwjaAhZtAZN79ndjm/qC1UzWylFwrahkGjMFl972INNZp2FZO4C2gL34QZolkyq4CLGyFqoC1ZD+PYO9fO7FYaazJUquz3S2xLOnJgnYBj3RIMOJPAJoC5hkSx5CQDRkcW4yx917uwFma/ZuVOOgJlJv0+m6T6+Zhk+rodUZ1vlk76fGsrx9fzf/+9WRZT2fBdi2Qbbk0R0NcPzq+q+N1iyPoZEkTw9NcMfOTk6NZUBAvtyQPO/4vGN/N/fs7+aJY2M89uyFlsxlmy64WygtX7t788njIYqxj3ByLEM0ZBG0DLoMp7x4CdIWMBnxQPrX6udOyl1zsiMV6t1WzZP+XTzp37Wk96AX1pr5GByI8/Z93Xz3/PSSFmv1ztd40SNoqd2nvOOR93yKrk/BMZnJlti3pX3dSgI3Ijda/VDQFDxzaoLxdAGzvIjPFV1cX666DQJAV2TTXbbWlHjYwqyyeV8q2+NBouEAsbDNd85McWkqRzSkejxVavCMvCRbdJnJORgCOtramMqWCNvmbANfUJsWJ0aSXJrOLWiLrwFUpm5H1e/bgastGssNz0Ky9194+26ePD5G0BJ4vmSxJF5lE8sQsLMzjG2aXJnJ6w35DUb1hkA0ZHFmIovrSeJtAf74A4eA6+OJZs9lm/IqWW+n6JGnTtXdvXlhLD1nSyxkm3SEbYKWyVi6iBBgmpB3ZMN2phdD7wRpFuKh99zE5JeO88LFmWU9brZNh1C7+fGwTcnzEQJs08AyDZ4/P4NtGuzuia7J2DX1afXu9mJUVA8nRpKcHkvjupLOsMVExsHxPExDELJNPF9ScDzcVUyWM7nl179o5ufQQJzvnp5YdpsKx4dCyWV7Z5iXLyeIBs3ZesiOtgD5ksvVZIGC5+CWo/oLU1kMIQjZBhensngSvnduiv5YkGTeZVtH2w1lHNQijgI3CSH2AMPATwP/rBUDuZFbtFSobEaVPJ9YyGb/lgi2qWpIBwfi3LQlwtBomtQidXcBA4QhiAZt9vVGKLpqU/RgX1SfwxuM6g2B3vYQiVyJ8xMZLk5n+chj3ycesji8Ld7SuWxTBnf1mG/3Jl10uWdfF+cmckykC6QKDo4nSRc9dnaGCZiCS9MO0Lzg7qTu86RZgMGBOD2RwJJ24itNOB1ffQewDIP2kEXB9bAFZD2J43pIqfLTJ8cy/OI7963pe9AsTiMWVo16jsouZTLnELItCngEbItIwCOR95BAyfMxDYiFbRI5h5VWzmWKOrhrJOlCkayz/KuX6/u4vsGW9iBXE4Xrrn+ZoocBDMRDjCTzOB54PlgWjKeKhGyTXV2qnvRqIs/WeGhRW3wNSCldIcQvA08CJvDnUsrjzR7HfLVqN1KmdWgkydVkgUzBJRo0yZdcnjs7zZ6eCHfevlX1aSy4bGkP4vuSbMmb97pa8kH4khmvxGvDLlvjIe7a101XJKjP4Q1GdR38ixemeP78DI4vMYXa8JrKlLgyk+NAX4xbdsTpiYaaPpfp4K7MfKYFfbEQQcti/5YIY8k8rg+2ITCEYDpXouD4eJ6SGzUruBtLFZv0SpoblaMXp5d0nC9VVi5kCwbiYSYzyihoJlcimXdnizsMAa4PhpDEQ9YNc/HeqDRiYVX7HOcnMjz8d6Ps6A5zaCC+5ECvWqKSLrrEyhJ2X0rawwG6o0FSeYe84zOVLWEZEsOAlfqi2Ma68LnZMDxxfHzZNZEGUHB8Qrbq43rbjni5l6EgaBkUXZ9M0SUStHB8SWdbEF/6ZIseRU8SDVrYlgBhEAtZHNgSZTRdJF1WDFSoGAdthAxRIym79jbdubeaG7FFSy1PHBtjV3eEgXiIMxNZMgWX9pBFwBQ8PTRBPGyzqyvM987PqM1OAxyPeTemJCoTGAlYTGRKTGdKs1lAzcahUgc/nSny4qUEni8xBJiGIOf4CNR6aTxd5MWLCd68q6Pp54EO7srMZ1rws3fv5OmhCc5NZMg5HpYQSNTuc7rgUnDcVUmMVkKpEYUrmg3L7z7+GhMZZ0nHKidWn4F4hFzJAyS+9HFdX92HWsgZhiBsG3S2BZDlNiJ6wdU6/vq5i5ybyKhsmBAUHJepjMO3T0/w3kN9fPjuXYt+FtWLs4l0gVPjqjA8mXOWFSxWqx5iIZuC4xG0DM5NZtnWESZXckkXPbojARK5Eom8y2ris0JJZ+4ayUzWWfbGpGWA50tsQzCeKfJr9x9gNFVkMlMkVXAIWia2KehpDzKTcwiYBpYwEULg5R0O9EXJlnzuP6Qa9/pSknc9kuW+UdXX4Dt3d8y21hhNFfjBpQRPHhvlofv2zbrWaZrPjdaipR6V92AIm9529V58KXl6aIy37unG8TwuTOXpjQYwUOUKi2m0iq7ENDwsQzlN37PfWrfmV5qVUamD/+0vn8DxlMN90DJwfZXlkaiN82TeIRYyOTasHIWbeR7obrBlKh9WPGwzkizMdpV//y3bePDePZTKphK2Jehss5nJOTieT8n19U6yZt0wNJLkr567tKzHuD6YpkG8zebt+3vpj4WJhGwqvaKFAMtU2eqAZRAPW7NZn2TemZM5GhrR9aBrzdBIkm+fmUJKiYGqY7o4lUcIiev5PHdumk88eWrRz2I4kZ+VwZ2ZyBK0VBYlXXRng76Kg+FCbOsIky4bY+zfompNUgUX1/MZSea5MJkjU3QYTxcwhFoYraaf+Ux+aRsXmqUhVqA56YwE6Y4GANUK4bFnL9AfC/KGrTEOb+vgnQe38KbtHUxkSqQLDtPZIlOZIomcgwFMZktEqySY6YLLoXmuwafGsniez6nxDEXXpytig4BPfv2snm9aSPX/fYVGtWgZGknyyFOn+OhnX+GRpxafy1bKfO9BIGgPWZwZV/NiVyTI/i1RdnaF2dG58PuTQN7xSBVc0kX3hpKpapbO4ECcnV1tdIQthFBJl5In8bm2KW4aMJYukcyXmn4etCxzJ4TYAfwV0I/Kcj8qpfyTVo0H6vc/qfTtaQ/ZbGn3aQtYTGSKWIYgU/SwTAMhBHKVJgHLRbsvaerxyadPL+roVcEyIGQZSCH46q/cy0c/+woD8RCvDicwDaFMVAy1T9lmWyDg5v52dvdEN4Qk50bliWNjdLapv3ciX0JKiWUKiq6ko82mPWQxmSku+llUS9ErNSdFV5kKwNJ34atVD12RIAf7orx6JYnj+ri+jyclrgsl122IdH0Fbac0CxC0BLllxsvJfImONpt03ifWZjEQD81m2h68dw8Ax4aTRGwT3/dJFzwEELIEHZEAY6kCuzrD+FLOae1RzzjosWcvMJoqELSMWcOWWMhiKlua9xzXqoK1Z61atDSzlm++93Dbjjjpgkuq4NAeVMvkouvT0x5ib08b4y9fobCAgKDiVO15erLayGQLDnnHK1+T5l7d2gIme3ojOJ4kFrabPv+0MnPnAr8upRwE7gL+tRDiUAvHM4fazMRALEiq4DKVLpIvevjSp+R6GIKy0UTzMARL2lHXbD6eOT2x5GNdH3Iln4AheOSpU5y4muLJY6NMZ1Xj1kjAmL1IdbbZbOsIYxgGRw73zcn6VLjRJDk3KsOJPIMD7RRdn1y5wF8gcTyfrkigXPPkLfpZHDncRzKvJJjRoEmq4FJ0ffZviQBL34WvVT3s7oly975u7tzdSdGRyLJMpVGzZMDUSolGMTSSXJHMv+RJRlMlHN+jMxzAEGJOtveJY2Ps6GrjnTf3Eg3ZRIMWoYBBwDbZ3hXhzl2d5Fw5J0M33+JnW0eY6axD0Lq2XCm6Pt2RQN1zXKsKmsN8aqfVLmKrNw5rz6tGM997uGd/N987N8VossCFySwz2ZI659psjp6fIRYOLCgtr8x3Uko+9dzFho9b03qGRpK8PprGEAaxkEn1Zck2YHdPG4YQSCmJh5ufR2tZ5k5KOQKMlH9OCyGGgG3AiVaNqZrazETF+v3sRJaCV6DgeBiG2i0XyKZm7WwDvYjW1CVbWt5OoQ8k8i5ffPkKhwbaee7cDJ6UlDwP2zQJ2mozYTxd5Ef3dM025jx+VVneH94WoyeqahUaJcnRLEwl43b7zg6+eWqCfMkDIYiHLdoCVrnmbfHi7er+ebGwTargcrAvSlckOBv0LXUXvjbj8tHPvsJERmUVGz011m4qaFbOE8fGMFdSViArpiqSyWyRyUzhOke4Si1TPGyzvXwuZooed+/txpcqsPvET9y66EsdOdzHk8dGSRWUWU/FYn53d1vdc1yrCprHclu0LCWjuta1fPXG8PD9B+bc//TQBAe2RLEMuDCVp5Qu8tY9nVxNKlfYA31RxtOLm5ZFQzYvX040ZNya9YWaOw12dYcZTxVxPEnJ9TEERIM2noSIbbK7u60lraPWRc2dEGI3cBvwfJ37HhRCvCCEeGFiYulZidUynMhTdF2+d26KL/3gCp978TKvDifxpORfvmM3beVUvetLnCZn3n2JXkRr6rKShbQELk7nee7cNJGgSdA0ylkhZXyxrSPMW/Z28eG7d/H00ATJvMOt2+NkCso2ejydnw0Gjhzua/Rb0tRQybgFLJN7b+qhJxLANFQtcL7kki649ESDS/osBgfiPHz/Af7sZ+/kkZ+6ld090Ybswm/rCDOcKBCwDewGX2UMoTN3jeLESJKC4y37cT7XHANnsg7fODnBZKYwu8FTXcsUC9mzAVmlzm45G0GDA3Eeuk+1XpnKlghaBv2xICfHMhy/mryuJkurCtYnS82ornUt3yeePMU3T45zbDjBN0+OX1efXNkc2NMb5b7Bfn7sTQPs6m7j0kwex5Mc7ItwZXpp55Ljegj0fLURGU7k6YrYOGW3/FhIlUS4vmrXYwL9seCs2qnZtHwLVAgRBf4e+FUp5XUN3KSUjwKPAtxxxx1rmh+r3tF5fSRFIlciHDBn6wUyBZf+WIi//O4l0nmHUrNtMsv4Er2I1jScRN5VBkGmQVvA4qYtUYquT7rgsiUanLMjHg/bvHWv4PjVFK9cTnH/ob7ZmhnN2lKdccsUXe492EsiW+L8dA7Xh7vLgfhyP4tGNko/criP//nd81hCUGzwNJnWfe4aRjLvsoLYbhYlP5PkinP7g333zBTfPjNFZ5vNQDzIqbEiAhgcaF92Vhjg/bdsY2+vqvU9MZLk8lSeA31RdvVErqvJmq+tkd4QbS1LzaiuVS0fKJfh85NZ2kPW7KbD+cksf/3cRX7vQ7cAatFum/C9cylSBYdYyObQ1nYcTwWe3zw5Tmqhgrsqco7P7i593m1EtnWEKTkeZyeyuJ5PruhRcJVzZsgSDCcLuD48dN++lqyLWhrcCSFsVGD3aSnl51s5ltoi3lcuz5DIq2JJKSHverieZDxdIF30MIT6EJtcbgdAJGjqRbRmTcg5PgFf9aGqUOmBVSuX6W0Pce+BICPJwhxZi2ZtuRHMIgYH4rxtXzffPTuNEF7zmoBqlkWsERJXCTnHI5/IM5EucG4iwxu3xXnb/i5OXE1zYiTD4YF2OiIBSp4kHrbn3QiqPbcP9EU4NZadc64DbOtomzdIWMvgQLNyliq3rN68qnzujdo4fPlykmjQnDXmCdkmUkpevnwtcxc0Bc+dm6Y9ZNEeVDL3b5+apKNNtXI5P5WlUPIwmL/fXYWAKeiMBFY9bs3648jhPn77S5PMZEuz54EAogET2zJpD5ncta+bU2NZ3t+C8bXSLVMAjwFDUso/atU4KtTuKtmmyUAsyKWZAlL62KZJLGSSKXp4vkR1BGsNvtRumZq1o+RJMgWHyUyRcEAZIXzn7BTtQYtXLs9gmybRkMX+3giBJdR2aRpHM53kVstD991E0T3FSxenyRQ9nNX0P6iiRy+WGsYbtsb55snxVTmQFj1JJGAQCVokcw6TmRKvDSe5e1837zy4ZTaLttgGUO25fWEyw+dfusJtOzpmM3R/+MRJLkxlCVkm7WGb/b0Retvn1vqtZXCgWTnLyahWqwgqAf9jz15Y9WaWRF4nkxTl268dw5wjCo5HIu8QDpgMDsS4OJXl7ER2SWLLnmiQou5LvCE5N5Hh4lQWwwDpXzPRKXo+Qggcz2ipHLyVmbu3AR8BXhNC/KB8229KKf+hmYOoTBxf/MEwfe2ql0lve4hoyKJYUmYSkWCAoG1QcDwcz2/5JrRtGOt2QafZGJR8mMkUCHQo58RowCw3oHYYiAUpluD5c9Ps7G7jY0cOtni0m4cnjo3h+z5DI9ckQ/2xYEPNIlaSGaz3GFA1Bz5qB7tRwV3t7r9m5Rw53Mdjz54jU1y5NtMQqqG5QGAYgnDAIFdyefVKkrZglnTeAcGi51HtButoqkgkaHF2MstoushkusB01kEg2dHVRtHxeOlSgtt3dly3ydRIibGmMawko9rozazbdnTw/LlpEKLsKuyTKXq8dW/X7DElT3Lnnk7OTebIFFwyRZeBWBDbNDGE4C17uhhJFMg5HgFD1HWbNQVYhmAm7xLU7r4bisq17tPPXwQJAcskX/JmFU4lV+L77uw53qrN71a6ZT4Lra00rZ44+tpVq4PZi4UBr4yppqkFp4Rg8RR8s7AMOWsNrC9gmrVipuBjZQp0R0MYQtAdDRIJWmSKLpYliYYstsZD+hxsIidGkpweTZN3VA+56UyJsWSe3GoKp6pYymKqnnTu6aGJOY/5xJOn8KVkV3eEg33tnBxN0yjnqeFkoSHPo1FB0J6eCK8NX1fuvmR8CQVX4maLBEwD15O4vs/lmRy7uyPYpkAIseiivFa2lyo4GEiuzBTY3d1G3vGwDMi7klTeId4WIGiqut+9vVEtu1znrCSj2mjn04/cvYuRZIHpbIl0wSVgGezsbuMjd++aPaaSYbx7bzcA/3hilIAhCAbUcrknGuLtN3Xz1IlxpJQYQv0PVGMagnDARDWp0WwUqq+PjucTMAUl18M21Dngltv+tAUsHE+2VA7eckOVVlI9cdzUF+XFiwkAnj83yVi6hEDO6qrX0z9oMu9p9y/NdaxFH6fJjMPB/namsg7tlknQMjANg/sP9c3amWuax2iiwFTWoS1gErRMPF+qzybRmM9hscVUveDvk18/y4Et0TmPeTlTpOB45Eoek5nikg0IlkKtk55mdTQooYrrg4FPyvMxhaCjTZ0PJU/y5l1xbNNccFFeK9uLhWzOjGcIWoKQbeJ4EsMQRANKkhmyTZL5EoYwtIrlBmG5GdVGt0UYHIjzsSMHF1Qm1GYYA6bBVLpIRwSeOjFGNGQRtgRdkQCpgoOJwDYF2XLPUVDnvF90OTTQvqI+kpr1SfX1MRK0KDk+AvCAkG1guD6eVFJe1/cJN9oqehls6uCueuLoiYZ4864OTo9leOVKlpBl4ABCgJDrK7gr+VK7f2muYy2avErg+HCKA/2xWcv0ldiZa1ZHJVt2blI5c9mmwDQMQGIagswCDpLzSSbrLXAWW0zVC/4cz2c0VWBP77VePql8iamsQ8g2CZfNCxqF7nPXWBK5UsOeq9Jm00OSLjh4Evpj6nxabFFeu6jujwV5bTjJtngIKSWmEBRdn+2dITwf7trbPRsM6sBuY7IWzqeLBZjXZRjjIUZTBVxf0h40mUgVGEsXGOyLcnpCtToout6suZ4ATAMiAYtzkzm2d7SteKya9UX19fHWbXG+c3YK0xRIV+JLlQgK2wY90SBbYiECltmyEqoNd5VcTr1I7cTREw1hmybHryZBSJyyrakhwKv6x5VV31uFdv/S1DKcyK/JeTmTdxmezqqdDgnxiM1XXh3BMsRs/ynN2lGdLQvZBq4BeUftEkeCJrGQgWWZc46vzIEBUzCWKrKjq62uZLJWernYYqpe8NcdCTCddebclsg5OJ6v+oWW5XSeD9SRMC2Xwb721T2BZg4LbQwsBUsoORKo66JtqCDPMk362oOYhuDFiwkO9kUXbOZbu6je3RPlnQd8hhMF0kWX3vYg2aKL60MsZK6opYLmxuJAX4RPfu0sri/pitj0x0KYprHmn3l1APjIU6ewLYPRVJFUwaHo+fTFQpiWxZZokMuJAtUrQklZouerCe/SjFZYbRSqr48H+mOk8g4vXU7gIQkK6GsP0B4OAnBTX3TVMuLVsKGCu+UW385X4NsWsJTe3wCBQAjwvGv/uNXfW0Ur072a9cm2jvCabTqMpIt0hm2ClkHB8emOBBiIh3h6aIK9vVG9c76GVGfLBuJhriTyREyBbQl6okGmMiXituCjn32FoCm4mizMBm7PnJogXXDpjwcxhD0rmQS4ZXsHMFd6uZjpQb3gbyAeIpVXx7WHLC5OZsm7PrYQGEDJ89U8iqQRCqUO7ZbZMIZGkhRXWa/pSrUBahnKpMLzJQiJIQSTmRK7utsouj4nxzL84jsX3gyqzapUX9PbQxaXprKcHMsQK/8/aBfMjcvQSJKnhyY42B9lJFlgKlsiVXB56N3N7Rs2nMizszsyuzHxjydGiQZMJtMF0gVXZZXLy7FZEwmpfjMFTGcblxnXtJbq62PBcRlNFRmIhznYF+FqssiZ8QwdbfCmnR30RJemWFgrlhXclfvSHQaGpZTjazOklbPc4tv5CnxHknmOnp/GMgSuf02TuZS+Js2ilelezfrkQF9kTc5PgdrkcH3oDtoceePA7H3JvLNujH3W+/y0UuZIQXbEyRQccuV6tnzJw/E89vd2zAZzmYLLQDyEIWwcTxINmpwZz85ebIquN8cOfCJd4Mx4hrG0CvreM9g7p7dY9QK6XvBnGAYP3bdv9jGj6SI7O5UUKVNSWSHXlw07N8fL49Ssnk89d7EhrmYqGyuxTYOC49LRZrOlPchYukim6BELWcRWIJ+sl837xXe2pinwatioc9NCrLYfZ/V6rhJYJfPOon3D5nvdlY6nXi3oeLpAKu/iS0ksZJEquHM2VVX2rtx2QZtlbhiq56Pnz08RDVkc3hajJxriQD/kSi6TmRIvX0oSDWVb2i5qweBOCPHfgE9KKY8LIeLAc6jawS4hxEellH/bjEEulZUU39bTX791TzcjiTyTmRJ+eUliInF9sMuNy90Wp+5KrqcdMzVzODWWrevctVokanGeLjik8g7pFy8Tsgx620Ps7W1jONEag4u1np+EEEeAPwFM4M+klP/Pqge9AqoXFz3REG+7qYdjwylKnk97yGZwoH128VPyfBXMTWSrWrq4pArXZJPBKgnnRLrAS5cSAPS1B0nmHZ4emph302ghx7v3oxZWv/6ZV3E8j1TBwzbBb2BgBzTUnGWz892zk1imAe7q3VYdT20cBC1BZ1sAyzTY2xvl7qrauJVwI7Y1uNHWTo2mES0MlrqeW0yG/ugz53nPYO91jr5LHU+9WtChkRRdbTYlzydbvFZvV03B8TEE7A7rmruNRGU+qpyfhlDR+0S6gONJskWXvliQYsltabuoxbR975BSHi///PPAKSnlG4E3Ax9b05GtgG0d4euc1FZSfHvkcB99sRC2aRAJmLQHLUzDoCcSIBK0EOtgJ+bMRFY7ZmrmMJzI173INAqvXDCcLUv1ErkSz5+baWUfnzWbn4QQJvCnwPuAQ8DPCCEOreY5V8qRw32z9UW+lNimyd7eKH/0k7eys6uNnd2R2WNjIRsJZMrz4P7eCJmiR8A08KWyZu6JBumKBEjmHc6MZ2YfW6kRqGwazcfgQJyH7z/AJ37iVh6+/8CcFgmPPnMe2xTEQjbRoMl4urSqBtn1yJd0cNcoMkVvdnGyUgxxbSERtlWGLlt0yRRc9va0zZ67FSOfTcINtXZqNNVZN0OIJc0rtSxlPVeZc5J5h4F4iONXU5yfzOJ43pzX/cvnLq14PJUNrXjYZiRZYHdPlMH+drbEQoRsU8nORf0Lb5tt0hZa2aaGZn1Te36emcgSsk329EQIByxKfmvbRS0W3FWLhe8HvgggpRxdqwGthtpFUL2LytBIkkeeOsVHP/sKjzx1al77+EjQoi8WxDINciUP0xC8eVcnB/pjdEYCWC0ueavovbVboabCto7wmteCClShuCkEiVyp1cZCazk/vQU4I6U8J6UsAX8H/FgDnnfZ1C4u4mF7dse59gKzf4sK5mxT4EtJwDLZ2d3G4a2x2cd+9L0H+NiRg8TDNmPpIrGQxZt3rb5GoLKg29YR4kqiwFiqCLLxqqTL07k1afuxGQlZBtlVGKoIVMPmjjabeNhi35Yo4YBFVyTAW/d24frMOV83ETfU2qnRDCfy17naLndeWcp6rjaIrJahV7/uWKqw5PHUWyMODsQ5criPoCl46sQYZyezJHIOd+/rZiAeQlRtkKgG5up/w5OSeHhDWVtoytSen9OZElJKbtkR56693fzwoX7uPdBLsUWtMBY76xJCiB8FhoG3Ab8AIISwgHUXVSzWJHOpUoEnjo2xqzsyazhQaWI5lXPY3xvhwkRGOb+1kGzR005hmjkc6IssftAqkUC25FN0HUK24F03b2llH5+1nJ+2AZerfr8CvLX6ACHEg8CDADt37lzlyy3MfNK0WsmQbaqdw75YkJFkgW0dYT525OC8EkugYVbjw4k8tgnnJnN0RWxyJSX1a/RUWXQ8LUdvEB1tAWZyDm5pZbJMQ0A0aOFL2NHZxl17u2f7X/7+h25p8GhvKG6otVOjqWe8dHEyy2i6yEc/+8qSat6W0vT8+NUkqbxDpugRDVkY5RK3ahl6uuDSFwuRLriLznPzrRHfM9jL51+6yvnJLNGgSWfY4spMjpFEHmGAU67TEeWyiIqCxpeSLdHgav6UmnVK7fnZFQ0wEAvObpJCa9tFLRbc/SvgPwEDwK9W7TrdB3xlLQe2UhbS5y/VcKVW6x0L2eRLSmYiBBRcH9sQuFI2vL5pqbQFzM24G6pZgFNj2cUPagCmACkluZLkubNTvG1/T1Netw5rOT/VSzjN+W+XUj4KPApwxx13tGQmqLsAeu+BJc8Li7ljLpWhkSSXpnOcHksTMA1624N0RWyyRUGu5OF4smEZ3qIrtRy9QfTHQ0xni2SXEdxVG4v5Un11RWxu2aHOOa0oAW7AtVMjqZ1XLk5meflygtt3diyr5m2h9dzQSJIr5TYDsZBF0fHIFBxl/BUN4Es5O5/97N07eXpoYnY8881z860R//K5SxQdj/aQRcg2kYAh1BoQ15/9f6guizDKx1xNFmazf5qNy/7eCGOp4qxr9EqvpY1iweBOSnkKOFLn9ieBJ9dqUGvFUgt0a3ed9m+J8NzZadpDFqfHMgihutF7EnIlryWytLv3devJQjOHE02SqlUSdQZwtSy/a8XFa43npyvAjqrftwNXV/mca0JlAVQxFnjs2QtLdoMbHIjznsFe/vK5S4ylCvTFQvzs3TuX9Vl+5dVhPvn1s2SKDpmiQ5ttMZIs0BYw1MK/zWYs3Tg7cB8ItK7Oc0OxpT3I68sUzvqohYNhqsWslLCru42uSFD3niuz0dZOy6V202k0XeT2nR3XjJ9cj3MTGX79M69y/6G+ZTtpggrEDvZFOTmWoej6BC2DUMCiUHLZ1hHia0PjSCS37ehgb2+UB3ujC2YBYf414liqQNg2iJXr56azJdoCJrmSS86t3/fYR819u7ojWmmwAanN8qYLyj3VcT1Gku6851izWLRyTAjxPiHEt4QQk0KIifLPP9KMwTWapRqu1DMw2NMTYWs8xMmxNCVXUvIknt+awA60u67mepL55hpNyPJXJGAuq1C+kazh/HQUuEkIsUcIEQB+GvhyA553Tag1FqjsjC9Wm1bpJXVoIMYHbt3KoYEYTw9NLLmmbWgkySe/dhaArfEw7UGbgutTcj08CW/cGiORLzV8ntTzX2NYac2sC9imwbbOMO882EvO8RlJFnBcj7Bt8NizFxasad8MbKS100qoNl6qNn6adeiVEl/6S56raqn0n3vzrg5Ctkm66BILWfTHQwRti7fs6eI9g32zbaOAukZQ1cy3RuyLhZA+XJzKcXYiw3S2RMH1yDk+lPs8ViNQt6WLHgXH1UqDDUg906Bd3RF62kMLnmPNYrFWCP8SJS/4GPBC+eY7gP9HCLG9LEu6YViOBClsG3zr1Djpgkt7yOLmvnZKnmR3d4TpTJHhZKFlkkygZUWamvVLLNScwm2zUlcAgOTcZIaAbS7yqMazlvOTlNIVQvwyapfdBP68yv1uXVBtAX5pOkd/e3DJPT4rLLc3aL3Hu76kK2IjhGBbZ5jL08qSPB6yuZLIswq/jrrYhp7/GkXRk4QDK3MHyzvKWGlXT4SAbfILb989u5PdHbVWZH+/Udhoa6fVsq0jzPmJDKPpIucmMhgCOsIBOiOBZc851c+p3H9Ds3VOybzD0QvT5CcyylwlZLG/N7LktlHzrRHvu7mHP//ORfIlj5AtkFKSLqhWBwFLUKjpjSWBgCEwDMHQSJp3HtyyjL+W5kZgJa3Xmslis/rDwA9LKb8upUyVv76Osgd/eO2H11gWcp2rUNkBzxZdAqZBTzRI0DQ5O5Hl/GQWgWQsXVxTy/mloGsaNLW8YWtzFlCevLbbH7YMLkzlW9UOYU3nJynlP0gpD0gp90kpf2/Vo20gtZm6qUyRU2MZJtKF2WOWcqFZravdcCJP0BZcmMpydiLDVLZEd9TG8ZVN5nimhGUIGnl6mIbQ81+D2NYR5mqisPiBdZBSZTUq6pdG2N9vIDbU2mkxFnMhP9AX4eXLCVJ5B9fzSeUdzk1mmcoUmcwUVrQoruemeXEqy1S2CFK5ZhYdj5cuJZacPatdI1Yy0f/r6BUKJY9cyWUi41BwVQ1xZV6rtxx0PKVZnsltujYgm4JGtV5bKxYL7oSUcrr2Rinl1BqNZ82Zr0dThcoFajRVJGSbxMM2QdtgOlfCFHByLENbwCRgtVYY1BbQwiTNXJrhllmNJSBoW1iGaJU8ecPNT0uldiHdEw2CUL12KizlQrPaC1TAFCSzDiVPYghwXZ+JVIl42OaPfvJWAqbAtkRDN8OkRC+WGsSRw30UnJX5mUpU9q5iT98I+/sNxKaZm5YiCT81luX2nR3YhjJYEkIQK2fGXryY4NJUdtmL4nqb9VvjIfraQyAEQghCtknQMhgaSS/5+StrxF94+25yjk+26DKaLJAruXhStTkIWgILKPlcl7WbRYAQgnfs1/4IG5GltOpoJYvpuFJCiFullK9U3yiEuBVIr92wWkcl1ZoqOBjAuUSOTNGj6PqzTkyRgCg3fm1d+u4LL49w74EtetLQzPKdM81dN7gSHF9y157OVrVD2BTzU7X8smKUUisJ2b8lwgsXZpjOlOa4xC1mbLFat0wBBGyT3qBJtuiRdzwMQ3Cov53BgTjbO9s4O55uaDuEroit570GMTgQxzDAX+EH1B625vRcbFRbjQ3AppibYGnS7kp93GiqyK7uNqazDqaheqaC2jT/xXfuW/Zr17ppfvSzr3BoazsvX1KBZdAykFKSyLvLXnT/9XMXOTeRYTiRp+T5+FJl6gQCyxBggu/L2TKF6kugJaAtYBEN2Xz47l3Lfl+a9U+1adDxq0lGkwUSuRLfPj1BNGhyz74ePnL3rpZdqxYL7n4d+LIQ4i+AF1HRzJ3AzwIfXuOxtYTKBcoUSmrkeD4CtVtT2aGZzDotL+h3PF87MGnm8PLlRFNfL2QZbO8MM9DRNmdB10Q2/Pw0X9+lNtuY07epJxri5v52RlLF2f52S3HqqnW1C5iCtrIhxlIcN4ue5K17Ozk3kcMyHXaE2tjb24ZTdtb/pXfu5df+7geN+nMA8K6b18fO6EYhGrRIrMCMSQD//kdunj0/GtVWY4Ow4eemCkupPaqsq1IFh862AEHLZCJdRAhVKx4LN2bDpvI6b97VwZnxLKmCQ8A0rsue1dswq73/22em6AhbSClV24OKyYIou8SigkfP95G+WiNahsD1JJ4E29RZu41O5bM9NpwkkSuRLrhYpiCRc3nm5AQjycK8fWbXmgVlmVLKZ1GNew3g54B/Uf75rvJ9G45KqtXxfJxyp3IhBGF7bhzc6nL+7khgs8pdNPMgmrjlYBnQ2WZTrJJlNZvNMD/NV8ck4TpJiGEY/M4HDi3bqatahpR3fGzLXLLj5raOMEHL4q693fzwoX7u2ttN0LLY1hFmaCTJqbEsotZKbpXs6t6UmaA145693St6XG/U5v23bJv9fSk17ZuFzTA3VViKtLuyrgqYBgXHwzQEnZEAP3yoj0Nb4w2rF6+8jm2avGVPF2/d083e3uic7NlSZKRPHBujs82elXbapoEhrpmIedLHEEpubgiDgKUCvko/T8tQAa7O2m1shkaS/PaXT/DSpRlmcg6mUZECCxxfMp0ttazmeFGbLCnlqJTyt6SU/1RK+SEp5X+oasi54ahcoEzDwDYNLEMQtAxKnt9QU4DVMhAPbVa5i2YebtvRnEWUQG14mKagKxpo6QJuo89P89UxlTzZ8IX0Sgwx5qs7ONAXmV1ACdFYQ5Uvv7JhPt51wa07l3/OWAbcsavrutsXq2nfTGz0uanCUmqPKuuqw1tjs1niN+2IE7DMhm4OLmWDYSnz3HAiz+BAO0XXJxq0sIxri+WAKfB9gWlAJGDgeD5FV8kyKy7StmnQFwtt6vN/o1PZJJjOlBBIXN8n73iUXB/TEHhSUnL9liVhFmuF8Br1k1QCkFLKW9ZkVC2gNk3/ph1x7PKKJFt0OTeRbWjdyGrJFL11U7ipWR/cs7+bT3//8pq/TtAy2NXdxqGtqgH2chtnN4rNMD8tVMdUW2+yWlZi7Vxbd5AquMTDFn/53KXZ1gxBy6C4QtOOelyZyTXsuTY7X3l1mEefubCsxxiVcvN1tNm53liruUkI8f8CDwAl4Czw81LKxErH2Qhqpd3zScIHB+L83odumbPWiofthjd6XmxeXGyeGxpJcmk6x1SmSNg2EULQHQ1iGQ7Fcv/OkC3oi4XwfEm25FNyfYRQ18at8RC2ZSKF/gfZyFQ2CbqiAdKFEpYh8aWk4HgYwsQUgoBltCwJs1jN3Y82ZRQtZmgkyR8+cZLpbImS63N6LE3QMrBNwWiyyESmsK4CO4C+WFDvCmnmcGosu/hBDcD1fCzT4Ob+CE8PTVxXD9bETN6Gn5+aWce0UkOMymd9aTrH9s422kMW//DaCKmcQzRksb2zjeP5VMPG2Uz58UbnL5+7RCpfWtZjBOpcPHY1zdBIUl+H6rNWc9NTwMfLfTj/I/Bx4N+u0WstmeVsNC127GL1cKtloXmuko3pbw+Syjm4vkRKyRu3xTEMgwfv3cNjz15gIB7i++enKTgeM7kSld2O9pBFpujRYRrEw83pO6tpDZVNgv29ESZSBXIlD8f18XyBaRhEAwZdkUDLkjALnn1Syou1twkheoApKVvd6a1xfOq5i1yaymGZgnTBIe/4SODwQDvxNpuR5PqrbTs3kWn1EDTrjGal/w0DkrkSjz5zgTdui7Gzqw1YfgPs1bIZ5qel7oo3gqUGkvUWX7WOeT3RIMm8w5mJLLfuiPP6aArPb0ytck800IBn0QCMpQosN6kqgVjYJlN0+Mhj36e3PchtOzpa6gy33liruUlK+Y9Vv34P+PGVPlctax1ULXUM9QykGrlhuNA8Vz2PRUMWZyayTGdKjKSK/M4HDs1xhZ1IFyg4SornuBKEJJErlWvwDJJ5V29+bGAq50Fve4i793Xz2nCSi1M5HM+no81quVvmgjV3Qoi7hBDfFEJ8XghxmxDiGHAMGBNCHFntiwshjgghTgohzggh/t1qn2+lvHw5gWnAZKaE50PYNjEFvDqcoj1ksR6z65dm1l/AqWktzUr/e76qLXB9n1evJJnMLK9xdqNY6/lpvbBYHdNiDYSX8zqL1avMZ0ZwYiQ5pzawO2IzniowdDXF6bEMvZEA5qIV3ktjd09z+zluZPpiocUPqkWqa2XJ8XE9n4AheP7cNH/4xMkVn3sbjSbNTf8C+OoCY3hQCPGCEOKFiYmJBZ9oKSYjzWAldb/LZaF5rrrGubc9xN17u3nfG/vZ2dU2xxX28nSO6axDtuggfWWiIlTP8tn2CAOxYEv+hprmUF1r2h0N8uZdXdw32Mfnf+kevvkb7+b3P3RLSwP7xfLG/xn4TSAOfB14n5Tye0KIm4G/BZ5Y6QsLIUzgT4H7gSvAUSHEl6WUJ1b6nCseC4JEzsEyBFa5zs4UAgfJ6bHMinsArSUbIy+haSRHDvfxJ187veav40nIlTwiAYtM0eXMeJaeqFokNrmv1ZrNTzcKjd7pnk8yVdnV/8cTowRMg8PbYhjiWqbu9Fia8VSRkudjCUG6qNo0FF2f6axDKGBxIBLg7ESGore699woZz0N/OzdO3nhwjT+Mq4nEnA8D9MwCFsmoYAFQsw6w+lMBbCKuUkI8TTQX+eufy+l/FL5mH8PuMCn53seKeWjwKMAd9xxx4Kf8FJ61TWDldT9roT55rnFJJuVzOb5yQxSStJFD0NAxBbkXdUCoSNkYpkGo6kik5kiv/3lE7NZP83GoZmqmpWwWHBnVWQAQojflVJ+D0BK+bpYfTrrLcAZKeW58vP/HfBjQNODu9t2xPnSD7JEgiZSCjxfUvIkQcugta3K52dHWQqn0VRo5qTi+T6RYICi6zOZKS6rcXYDWcv5ad2wkFyq3qJsJlvkNz77Kp6UCAS37Yjz4VXIQ6oDSCRIKXnxYoI37+qgJxqi4LhMZIrYQuD4Psm8i+9LYmGTeDhAIl/C8yRO0GzI30MbSTWO99+yjf/xzDl+cGXpNZEGakPUl1B0fHIll7Btki64uj3PNVY8N0kp37PQ/UKIn0XV9N3XKPl5s4KqxVhq3e9aSUjnk2wOxAM8/HevlGvwfC5N5RBC/S8YqMBOopqcd0YDjKeLRIIWXW0205lSs2vRNU2i0aZmjWQxoUx1zqr2v3y1k8o2oNra70r5tjksR1qwUj589y562oMUHJ/pbJFEvoQECiWHdHH5zV2bwc/evbPVQ9BsckzD4PDWdrqjwVb1tVrL+WldsJhcqrZVwmSmwA8uJ7g4lSNgCCwDnjs3zSeeXLlcszqAbA+r3k9By+DMeLY8xjSxkIVlGUjAlz4ImMm5jKWKGIBtCcbTRbx1qILY7PS0hxbviVSFh2peL6WSn01nSxRdf1FnuEbJh28Q1mRuKks6/y3wASllw2xjl9Krrhkspa3CWkpI60k23zPYyxdeHgEBQUtwJZHHR6mnPAklXyKlMhqyTIMrMwWscr+zkifpigYaLi3VaBZjsczdrUKIFOq8DZd/pvz7CsT6c6i3fXXdpLccacFKGRyI8zNv2c6ffuMcQdskEjCRUjKalwQtMA1w19mipLp5rEbTbIKWwYEtUUzTaOWO5FrOT+uCxeRStTvdZ8azZIsebYGyXA7Vk3AyU1yxxKqyqz+ZKZArulyayRGyDCIB1aNqJucQC5m0BVRvpyszOWayJVxPIpHYloHrSYRoTMStpX+NZTS5MjfokifJFF1Knk/IMtnZ3TZvVrUZRhnrjLWam/4zEASeKmcAvyel/MVVjZTmuvIuxFKkbmstIa3Nxjzy1Ckcz6c7EuBKIo9AYBmSUpW83AeQIAR4ro8hTAqOR9H1ecPWWEuyoJrWsR7MiRZzy2yMjqY+V4AdVb9vB66u4estSK4kedfBXkZTRVIFh1TeIWAJCq5c1q6mRrMZyBZdoiGrpW5Qazw/rQsWk0vVLsomM6rubUfs2o570DJIFZwVLy62dYS5MJnhlcsJ8o6PgdrVzxZcHNfjHfu7ef78DF0RNVN2RQKMpVTAkCv55EuFWcnScmq75uP41Q2d8Wk6udLy1SmVpvSuD6aEt+7tWnAuWC81Xc1ireYmKeX+tXje9VQ/tNo+dY1mOJGnO6JKEEquj2UKcsVr91dKdwKGIBIwiQQsCo5P0DZ5w9YYve1qM6NV/c40zWW9bGS1shHHUeAmIcQeYBj4aeCftWoww4k84YCJBIqOx0zOoeiqlcg6S9oBaItdTUuRCPINbEytqc9iNSi1i7LuaBBDKHlQhaLrE7TM2ccsd1fxyOE+/sVfXGQq6yCEMpuyhCDeFkACH7l7Fy9eTJAquMRClmroW17ySNTCx0DJmBqRuUsV1qdU/kYlaC8/DjGEwDQEtim4a183v/+hhXtyr5eaLs38rOf6oWrmmxODpuCRp041PFuyrSOM43qcHMtgCoEhrq0JTaHmNSFgS3uAgicJ2wa+hP72IN3lljCtyIJqWsN62chqWVJKSukCvww8CQwBn5FSHm/VeAKm4Oj5GZK5Eomcw3pvk6X125pWUnR9zk1k+NRz17Vz0jSQxWpQagO1n717J9s728gUXAoll3zJJV1w6YkGOXK4b8X1KqmCi2GoRT0CDFMQDhi8fDnB4ECch+7bB8BUtkSq4NDbHsAoZ3cs5cDBKk0yZ9HNgRvL7mWac6mPVWIagq3xMIeWsGBZLzVdmhufenPi5ekcV5OFNanDO3K4D8MwONgXpScaoOD4CMA2wDTUfBg0YTxTQkqIBGzeuLWdU+MZhkZSrahF17SQ2jp4aM1GVkuvklLKfwD+oZmvOd+udSW1nsg5WKYgLA3y5X/ihcK8Vrlp6h1PTS3NNCiQAFLy7JkpnUVeQxaSS9WTfzw9NMGPv3kb3zkzxcuXEwgEd+/tmnXLfOSpU3V3Ff/6uYv0tIfmdeQMWCa2IbAttR/oepJkzqGnXWVj3n/LNl68OM3ffv/KnHkzaCrTgUbIMSssJZjQLJ2uyPKawksgaJnE22y2d81fZ1fNeqnp0tz41JsTS7EgAcucnc9Krse5iQy//plXuf9Q36qyeNWvZ1smOcdDIJnKOoQsk0jAYDRdxHcl/fEQt26P09seYnc5u/jw/Qca+fY165ylOr6uNZtqC3QhLWzRk7x1bydPnRgHCaGgRbvvky36CwZvAcug2AK3Fb3jqaml2dncvOPT2WZv2LqZVjDf5lO9v+988o9TY9l5ZXLV5ihnxrOkCg4mMJktceTwQN0aATWWEFdmCgihMjYSSa7kcdsONa7//q3TfPr7V/A9VZNXmRGLHrQHTTJFr2GbYLoVQmMpekv/ZKwqU5xbt8d56L6blvS/v55qujTrjNFjMPQ4JC9DfAcMPgD9hxd8SO2c+NHPvkJ3VC1nJ9IFXrqUIGgKfOk3pOap+vUeeeoUybxDyfU4M5ElU3AJmi57ukO8Z/Da3KRlx5uT9bKRtamCu4W0sJVoe19vlILjEbJNpgMmo8kC6QW67nru4tm9tUAvcDS1NPNCYgCXZ3L0xYI8dWKsJW5QG43lFmKvpI6pYo5ycixD0DJoD1qcm8ji+pKS681pTF7tyFlyPLJFj1zJpViuqettD/Lhu3cB8JfPXQKpAj9fSkRVfd1C8+dyMWhuP8fNwLaOMLYBSymhjYZsfuSN/bNZkuV8FjdKTZemiYweg+9+EkIdENsG+YT6/Z6HFg3wqqnOlpyZyBIsKwzi4UDDa54qi/d42Ob9vVPsHP8aJesivrGdicx7mYreBGjZ8WZlvWxkbargbqHF0C+8fTePPnOe/liQ10fTFF0fx/WxKoUj8+DTGlnmuYmMvlBq5tDMC4kPuL4kX/KwTWM2CAFabgF8o7LcQuylyD9qM4EH+iI8eXwUUI3oL07lSeYdokGT14aTvPtmNT9e78iZ443b4oymCkxnHSxD8E9uH+CJY2M89uwFxlOF2R52ApTpQI2BSiM2wRaZjjUr4MjhPv76exeZyZYWNQ9L5h2+/MpVYiGbHZ1h0JIzTT2Wmo0belwFduEO9Xvl+9DjywruqrMl6byDbQpKnuTwthjQwCza6DEGX3+c3/LOcXHYxcqMUIrtJLr3JkbGJ7jl8l/xyvaPcN7ao2XHm5j1sJG1qVz+FyrqrkTbu3ui7OxuIxa2KXk+UgjC9vwrilb5Bf7u4yf4yqvDLXp1zXqk2dlcgaToShxP4nk+n3ru4po1l90MLLcQeylmK7Wfx9NDE3SELSwDLs/kAUE8bCGE4NJ0jslMAajvyLmnN8rO7gjvv2WAh+7bx+ujWZJ5B8u4FshVvvxyU1/bEAzEg4Qsg1ho9XuJvmxubelmQH2+u5e8GJBSSXKHRtP6GqS5nko2Lp+Ym40bPTb3mG/8Abz2GRh9FTLj1+4LxVRQON9zf+MP4Iu/pL6Xn7O6+ThC9fZ8864OeqJqs6ohWbSq99XZv5s3mRc5bF7hdk5yIPEd7ghdISB8+kee0iYqmpazqYK7xRZDFeLhAHfv7SZom+zqDAOCgCnqdl1vFa5flkJpNGUqxkDNwjQMtneGiYdtRlMFXr6cmM08GULM/nyjObsKIf5fIcTrQohXxf+fvT+Pj/uqD/3/13s+s0ojjazFkrzbSZzIURISHEJYQiAJmCUQ2rKUWwottylQaMttoKV8Syn99tsWuDc/mraXuqUb0FIokBKWhCQsgWYhe6JEiePEcWxZkiXZGm2zf87vjzMjjeQZrbNK7+fjYUuaGc2ckUZnzvss77fIt0SkpRKPu9KMgvkDmsFo/IwBRf5KYP7vw0VwPB52tTWyq72RrkgI14DX4+GZ4amC/WJPd4SPXLOXz73tIj5yzV4ODU/P3t9zozNsbvLPvvZmAzxsZstzO5toCnqZSWbW/Pp0sclfVOnJMpZFBci4NktgW9iv70HrVZEgalnyV+PEYz8GW+zlufvOBX9NXRCfgGP3zQV48Qm72leoTYsEjbk+6v+8/SL2dITxOc6i47wVW/i84lFITcPUMASaaJQ0+5zjvG7TST5yzV4N7FRVbajgbrHBUP4st9cDP376JMdPxzh2agbXGJtB01c7P6606zI8Ea92M1SNqeQW4caAl8aAl4DXw6npFILURArgErgd6DXGXAgcAj5eiQdd7uRTvoVBV/6AothKYHPQy/BknMFojMMnJxmZjNPo99DVHGB4MrGsWef8+56Kp9nR2sjWlsC84M3BBgEPH4uSSKcJ+dde11mAh4/pyl2pffGnz5NeRkpTF7tiv6UlSHu2WL1aZ5az8raY6DG7+pYvfzUuP0hqPy9bW0Ng5Cn7WPFxu41zoaWCxqylJr1WbeHzyiRsO9yMLXRnMjA1AgMPrDwgVqrENtSZOyi+FzY3y51MZ3jkWNQmG/A7TCVtMoBkyp3dglmt8gf5kmmXzubg0jdUG0alt6u5GRdjDBPxNGk3Q0g8fO/xQdrDAc7e3Eh7OFiXh8qNMT/I+/Je4JdKdd+LFRAv9UHsgCPcdWiEZMalOejj7M2N+ByHzqYAhx0Pk+kMIgIIPsfD2ZvD7GoPLyt1d/55v3DQSyKVoS0cZOumRtoafdz97ClcY2zAYAweceho8tPW6OfUdJKJeHrVfaipeu+7vvQPRhmZSi77pxr0eWnwe4nGUvoetB6t9RxcZLsN0nLfB/NX46LHbNAIEN4M214Co0/B5BCEroBL3l34cfK/L6fIFs6ynHla+Ly8QUhMgddnP0aP2YrmDW2rTgyjVKlsuOCumFyylfuOTBDwegj6HLpbQjw/No3P8RCNpcnWq6yJoUUq4/Key3dUuxmqhlR6+6OLLVqdcQ2bm4J0NQc5lN3W98DzpzmvqwmPx1Pvh8p/HfiPQleIyPXA9QA7diz9t7icbJilGpT0D0Y5EY0zFU8TDjjEkmnuefYUu9sb6WwOcOG2Fg6dtBkzA14PE/E0Tw9P8f4rz1rW/ecnMNjT3sD9R05jgC2RAA8cPU3adQn6PLQ2BDg1k8QjMJPM0B4OkHZdJhZsP10uA7TlJZBRa/ele46u6D0tns4QjaWYTqT58GuW93pRdWQFQRRwZvKUjh449P2574tP2NW4S95tL1sYJIU3g+OHXVfAqxfZJLFU0FhuPdfagA3s8wo0QzoBDa0wcQKcgG1bQ+uqE8MoVSoa3GXlZqJzg6HpRJrRqSRex0OD30ss5dIc9HJ6Okm6BqK77kiQN164dekbqg3jiROVW7kTIJUxvHR3KwZmU6OHg14Oj0xzairJ4ESCP3nzvpo8eyAidwBdBa76hDHmv7K3+QSQBr5S6D6MMQeBgwD79+9fsldYaTbM5Sq0Gnhr3zA72xrpjgRnazE1Bb10NgdIZgw72xtnf1dT8TTNQS/NK0htn7/KOJVIc9meVsZnkvSdmCSVNuzYFGJwIsHQRJxUxsUYu3OpJeQjlnJp8HuYTq4uHdX4KgNDVdg9z40ta9LSaxd5SWUME/EU21tCHBqeZs9gtCb/xtUqrSSIKlTK4ND3Ye/rYaR/LuDLX43r6IG7PgNuGhrbILwFHO9c8FfMwuBq7Dn7GJt22m2Qy6iPtyZdvXYlLhfIdl9kg7pAE0QHwE3AzCi0751rY7GAWKky0+AuKzcT7XOE0zNJRiftNpXtm0KkXZiIp4gnS1evaa3cZZyPUBvLaldDVsPnwNmbw7Q3BRkYj80WkO1oCtLRFMQ1hsFovGYHfcaYqxe7XkTeA7wJuMoYU5I/ttXUpVtKsdXAqUSK87qa8YiPjib7mLnfSW4iK/e7As4oqbCcxy0UUG5uDvHk4ASJVAavB6YTmdmyCI4IA+NxMq6L1/EguKvaBTGZ0OCulCbjaXwOLPX2ljbQmp0EuPK8TpqC3pIUiFY1ZmEQtXDlLV//LZBJw/Dj9nbBZgh326Cr0CrcUJ8N/jbvg4kBmB6z3/fKjy4dmOUHV4OPQfQFez+tuyu3DbKrd/79991sA1Xj2tXH4CY49azdmun4K7eqqNQCtZMhpMpyM9Hnb2lmeDKB4xG2bQrieDwkUhkyGZdExqVWUmYmMhrcqfkiocrN1QhCT3fT7OB+JVkea52IHAB+H3izMWamVPdbjp9TsYyY0Vi66GOtJnFLvkIlFg7edYQnTkRpCno5u6ORRNrFzj8ZXAMhv0PI55DOuHg9HgLO6t969JxXaTUFvaSXOW+ZMXDhtpa6z4irFpELokItNgALtRQPmgYfg5EnIRW3K1ipuP168LHC9507z9d2Fuy+As5/K+x8hQ0Gl9u2V38cui+039d21qLJVcpupB92vRL2vcUGdP4GG9QNPlo8MYxSFbBhV+4KzTyDXXlo9HsR4PR0EiPCdCKNCzhiSFersN0CpagZpdaXfd0Rbn/y5NI3LIHmoEPQ5yUS8s07f9UU9DIZT9d7Ade/BgLA7TbhCPcaY96/1jstx8+p2Gpgc3ZVpdBjrTVxS7HtpQPjMSbjaTqaglyyo4UfPDlMwOtggNZGP5ubgrQ2ePnZ4VNMJ1efUOWq89pX+Z2qkK2RIEdGl57DaPR7aAh42dneOO/yOs2IqxazcIWqmEQU8IAvCMlpmBmD+CQkJu0q3cL7WOl5vmIW3s/USZttc2rIfl3uLZoL2yEe2H4ZjD4Nsajdg67JVFQVbcgIodBWps/c+jQeEba3NrB9U4iRyQQnJ+M4wFQqNwtdO87raqp2E1SN2dvZuPSNSsDvgZQrHDs1wzteZ9PvX93Twb/c8wLDE3E6m4O85/IddbtNyxhzdjnut9TZMGF+1sqcyXia87dEZrdK5j8WwI23H5q97H2v2LXixy8WUEZCcwFlWzgwu1J5+VmttIeDjE7F+cnTI8RSaWQN/ekLYxpIlNLp2NLbXD0Cl+5qZSblMhlPn/F6q9dVerVGwQjMnLb/pk8CAh7HBjuFtkmWKilK/v1MnbR18hBbN6+SmSrz2xHebP/lvtbATlXRhgzuCs08n5pOAtC7NcI5nWGeHpoknrJnQmotsAObcVepnP7BKP/54EBFHivpQlc2OUeuRuQd/SPs627mst2tTMbT3NE/wp6OcN0GeOVS6hTdi60GLnys/sEon7vtEKNTCRLpDM8MT9I3EOWG162s4G6xgHJf94KAMhLkydgk9z53irZGP9GZ1Gzwt5Zd5Xc/O7b6b1ZnmEqk8QqLJgoLeG3h+/dcvo07+keAdbNKr9ai60LwNcKxe+2gxB8Cf9hmjMxtk8wPcnLn+aZHYeqEPXPn8cIVH1vZ4+afCxx5CsimMm8/r7KZKnuuhTs/DcdHbd07JwCN7XDJJ8v7uEotYUOeuStU3DeZdklkDx60h4NI9mydMdksYTXm+VMlOwqk1oFb+4Z5bmSqIo/l9diBXTI7Qi927kvP4axe/2CUG28/xA1ff5Qbbz9UtIbhSgr2fvmeoxwZnQagOWgDsyOj03z5nqMrattiZ/ZyRdXf94pdBPxeLtwayda2SzE4YZOpNPgc1rK7XROqlFZzwLtoYCeA1+NhMp5iT0e4PAWiVX3qudau1PkabJbIxs326/ZzC2+37Oq1mTRHn7KBnROwg6w7PwW3fGT5hb/zzwVODUGo2dbLC2+211c0U6VAagYmh+H08zB2GEYPV+ixlSpsQ67cFZp59nvnx7lex4OTTfPm93pIp2rksF2W1EpmF1UTBsZjnJxMlv1xHLF/K8dOx2gM+rjh64/yxIkoF22LzPt70nM4q7dw23hgrJ+j3/gbulpn2NS954zzJMtdDXz4WJRwwCHocwAI+hyMMTx8rEDguLB2Vd5j5m8vzQw+zutS93BeKMqmp/aA2NvlB/y7O8IA/PjpkzxxIkrGuAVT758rRznguZ+tMsqAaedW91KeNjvn3caDnjcutW2bQjx+YmL264W/h/sCLyPW2kMi7XJr3zAfuWZlK71qHcsFWd//mF2Na2y3JQJy2xMLbbcc6bfJUDJJOP5z8IVsQfDBR1e2nTL/XODCrZ5jz8HUINz8wTP6r5Lqv8Umkskk7QqkSdttpj/8NLSfrVszVdVsyHfJQluZAl4PJycTfOexE7Q1+mn0O0RnUjgeSGZqK7ADuHi7vrmqOVtbQmQq8Do1xs7kx1IZupsDdEeCPDM8yf1HTnPZHplNra/ncFYvPzA66+QdvHTgi5BOkZgJwunH4bH/gD2vhkvft/TgIS9Ie1fM5ef+lzHsP2f2ahtkmTO/Z2HtqgWDrp7uCD1yDCZ/YG8X3DXvdgPjmTPO5fV0N/HkiQlc1+CRua2Z58pRfsvzTV7pPEEGD5OEuIopPuDczDQN3O3u468zb+Vps5NwwOHyPW1r+OmqhVKuweuBtGt/F9c73yNKA4O0sckzzW94v8dDyTG6Ekc494koeC+qXMIKVfu6euH1n7HbE6dHbcC22PbEwccgMW5XtzwOhDvtyl9isvBWzqUUqn838ABsu3Su/7rzT6F5i906WcpgL3oMRg9B7LR9zk7AloaYHoH7vwjX3rj2x1BqFTbktszczHMqneHO/pP85NBJTk7E2dUamt1ClMoYGvyCa6iZDJn5fuXynUvfSG0YB3o7Cfqdsj+ORyDtGrZEguxqD+MRoXdrMwZ44sTEqlLrq/ly28bbpp7hpce/CAiuN0Q4PghTw3YAkZvlXmwbUy5Ii41D81Z2N6Z44/Q36Zw5jDGGeCrDVCLDxdtb5n9fLl15qGUuzbibsbPzN3/QFgzOBY0Lb5cdnBUq+xD02XOaDX4Hj9g3n3PlKDc4X+PlTj8pcQhKgp0ywiaJ4ROXiExxjfMgn/H+HefJUVrDAe37SmwinmZzUwC/I7zRez9RGpigEYPg+iP4xOWXpv6dCDNkwlvmgvjlbqFTG0TuLMuCr/MN9dn6dLEJe0PX2HILsdM2MFvNdsqFpRumBm1glyuTkEna2nODj86frFrt63eoz/aBN3/QbsM8dcSWP3C8NkumR2ywevz+1d2/UiWwIYO7nJmUy0t2t9IRDhD0exmaTHJOZ5jL9mwi6HPY3Bzi3M4m/E7tbYHUbTEqX093hF968ZayP454hE0Nfi4/a271pD0cZG9nIwPjMb796AmeHJzg6p4OfY2uUi4wOufUj/CQJuGECaROY3Izw8kpO2BZqq7TguBr765tSEOEy5N3zwZeO9oaePfCYCl6zA6ycqZOwvATdlZ+3uDosfm3g9nBWbFzea/a28GV527mkp2t7GgLca3vATZ7J0GEoGRolBSSzY3gyf4TDOd4Bvhw0084e7Mm6Sm1SMhLU9BuAd7uGWNabNZdR4SQ32FTegTcNCYY4ezOpurVFFO1q/8W2LQLzrkGet5kP27adeZrpP8W6OgBDIiX2f3Z06P2nN5qMmfCXP276/7WPm7r7rnrRp8Gf3br5Fpr4i2YMCPcDemYre9nDLhp+y/QsvL7VqqENuS2TJi/9WkqkaE56CWRdjl80iYcCAcc0i5cva+Ti7bHueXRQTKZDDOLnTyvkArWqlZ1on8wyumZZVYiXoOMa7hkewtB39yLcGQyzjPD02xtCXHF3g7NlrlGuW3jwekBUvhpjh0jlJnA4/WD22AHKZt2QjoOT33XBlnxKAQitrhvbsvRglpQHeEgF5+zg+Hjz3F+R2S2vucZv6OF6cpHn7aDooZNc4MjsPcfnyiY1rxY2QeAW267g+vMz2hvOElD7Am8bgLH46XRTM7dT958mheDB8PFzrMc2qKvp1Lb1x2hwecwNJFg2t3CHs8MIVK0J16gITlNW2aM6UAXLzu7jY5wdqttRRNWqJq33Pp10WM28Ao0wcCDcPqorZHnb7SrX/FxuOTdi575XdLC/is+AY5v/kTUal+/+RNmYM/VNW+1SV1Sjj0/GGqxZ++2vWzl969UiWzYMCG/VlM46CWRyhDwepiI21Tdfo8Qzh7c72gK0tHk4/mxpVNGV0KN5XZRNSA3WVEoUUWpOAINfoeWRv+8AtlPnJjAAL1bm2ezZebapMHdyuUCo+TNQXyTE/hMEsfjxckkIT1jA6zpUTj9AgTCcOp5e1nstN0OlDsfV6CmVIc3SUdPL5979UWLNGDBGZbp0bkMeDnBZhtMxsfnvo5PzA3OKJDoZagP7v8ie07dyZgb5nlnN+2OodUdwWvSBbeR2BjPAAZPKqZbfcvATibM0NPdTKbjTZz1/N/QEj9O86ZNNPg2wXiUTf44MAFTEzbYzyXPKFSoWm08y61fl7tdeDOc+3q7K2DwUTthFWqZ7TuWOvO7qIX9l+OHxAR0v6hw21YSSBYKYvdcCYdvh3AXpBPgDUBjhz0TrVSVbNhtmflnQs7uaCSRdpmIp2kKePE7HqYSGdoafNzz3Bi3PznM+EwaDDiOhwafp6rlEdIufPexytQ0U/Uhd05rYdbXUvI7ws7WBpIZMy8deipjuGzPJtrDQUYm49zz3Bj3PTfGD54cKprCXy2upzvCRdtaaG9uoqF1K44vaLf7GAP+Zpg5ZQMpN5OdLY6AN2TPm+S2HPVca28TGwfj2o/xcXv5YhaeYWlsh459c2nGwQ6Oui+cf7tQS/EBWG470+CjBBrb2NIc5GVOP93+GD4yyIK0LrLgc4cMbd6ETeKiSiq/nMbjme3EQ100RzbR4Li2btmuV9oB6wv3wAv3QiyaTYTRrWfvlLXcvmbh7Rw/tJ8Db/2C3VbZ1bvoWd5lWdh/dV8ErXvsYy1s28Jtlkudx4tst31fPm8Qznmd3Yq65SL78ao/0kkPVVUbduUuP2NmWzhAZ5OfvhOTTMRStDX6CXiFQ8NThAMOXo/NDmiARI1kV/mXe17gjRduXfqGakPIlffAlOb16fPMXyH2AF2REGdtDrO1JTRvVebG2w8RjaUYmYzz0AvjBLwefI4gIhy864jWwVqtTAJ2vhzGnoGZMVsYWDxzZzzECxPHoS2b/dIbsLWWMDA5ZC/b+3qbejw3K33Ju1eeZjx/ALRwhS7/drnb/ujPz5wFzw3YMkm7JUsEJmYgNY0n1AqxU9k7mHvRLQzwPJlp+Mln4B3/upqfplrEvFXWf4vDBPa1NDUMTVP2nNSxeyG0yW7PbT93Lt19JYpFq9pQbJUrF1DlX1eor1nO7Za7xXMxufvLPU7zVtv3TAzMf8wf/fn8bZZLFUBfuCqY6wuXu6qoVIVUJbgTkc8C1wJJ4Fng14wx45VsQ/6ZkCdORBmeTHLBliZmUi6nplOMTtkCrUnXgyOC1yNl2+62GsMT8Wo3QdWQ3GRFokTH7hZu/Q34POxsDeHxeM7YGpd77OdGpghkkw8lM4YX74zgcxzdnrlauS1Mu15pBxGBJrv1cnoUfF4byCcm7OClZQekEpCI2pnkcJf93kPfX/vAY7kDt8VKKOQGWMFmG5j6gvZcSjoF/jCEO+yWptw2z0I8Prt6pMrnZ38Fh+8AN1sz0+O3ZztnTkGgGfa9xU4w5OjZu41j4d/36GH45vX2/G9X9qzvqz++9P0snBBaKNfvZZJ2C3B8wq66dS+ylXypti4MwnKTUI9/zfaVHectrwD6cvtCpaqsWit3twMfN8akReQvgY8Dv1/pRuRmK2+8/RANPodDJ6cIeD20NvoYmYozGU/zinPaOXxyGp/jQcjUTIDX2Rxc+kZqw+jpjnB1Twfferh023Xzz+8ZYzg0Ms0nLt1+RqCWmyj5va89hmtcIiE/vVubaQ8HcY3RYuarlT9LHGiyA5SZUWhoB18Axl8AXyOYDEQHAAPBiP3YcZ6dhZ4ZsyUMNu1aW32npQZkcGaygfxZ8NyAraEDXvhvcF0bNAh2ENeyAyYHF7//dGJ+YKFKq+9muOsvwU1lLxAb5CWzMz2Ne4om0FEbQP7f99RJGH0KEPt3vdJzcYvpudbWpTv1rM1y6fjsJNbEwPLPeC7WF8Fc4NfUZcsyHLsPtl9mA7ylXtOF+sK1JIBRqgyqEtwZY36Q9+W9wC+V43H6B6PzsrUVzAyHPa80NBEn4PUQ9NlaYY1+L1OJNIdPTjMRt+m5fQ4ky5+QcFnec/mOajdB1ZhDw9Mlvb9cYCdAOODFA9x057Pc/MgJ9nVH5v099XRHuGafTX+fS6gCWsx8TfJniUMtNiOmt8F+nkna5CmZlF2xyySyK2Cd9jD/6NPw/E9h5rTNRLfz5csfgK12oLLYdqqXfnBuwBZqs0WMUzF7dsvxAx77XBaTidtVAlUe9x/M/g48dtssbjaXTdq+3qZH4ejP7BbN1t1nJNBR61z+3/fo07Ysizdgi48vtZ1xJbp6bcHx6ZFsyZdmmwzF8S///hfri/IDv/bzbNF1IzDy1PyMncu12I4FDfA2rioH/LUwDfrrwPeLXSki14vIAyLywMjIyLLvtH8wysG7jhCNpeiOBInGUhy860jBBA9bW0Kcmk4RyEtG0Rhw8DkeRqcSNAW8CAIIZcxXsSJ63k4tVK4VMgFOTaeYSmRAIDqTKvj3VKy2mWY4LAEDeLyQnITRQ7bWneOHyDabkKCjxwZ1vkYbQKXiNhhMTtk03YduW15tvJUmGMhXKNlAbhY8N2ALNNuZ+Naz4KJ3wt432NlzN2Wfn2eJiYBw99LtUCs31AfDT2aDu+xKnccLYic7cQ1s2mEHwyefhOG+xRPoqPUn/+87PmEDu3RirsRAKbfoTg3Z+8+3kvtfrC/Kr+MZ3gzbXgKhZvuYq3lNrzUBjFp/1vI+WiJlC1VE5A4R6Svw7y15t/kEkAa+Uux+jDEHjTH7jTH7Ozo6lv34+XXscunZIyEft/YNn3HbA72deD3CRDyNMYZ4KkMq7eJz4MR4jCcHJ0ik0zgCGXf+QX+lasXWllBZ/qBFsrGFQHPQy2QiPfv39KV7jnLj7Ye44euPcmvfMFf3dMxm0YyEfJpMZS1ybxCjh2H8eZsZM9hiV+KmR+x5KLBBW/dFNsAbesT+sty0fUMR7Ire1Em79SgdX3yAtJaBymIZ84b64Pj9doUx2DyXkKNtD3SeDx/4Gbz7W9CyhaJvS74wxMaW8YNTK5J7nXmDNqBDsqt1GfsRbNbM9vPs784bhHE9Z1dNInKDiBgRaa/Yg+b/fQez28TT8bkSKaXaojvUZ+vf5c4Zp+K27zp1ZPn3v1hftDDwC2+GzgvhgrfPZexcifxgMUfPom5sNRDwly24M8ZcbYzpLfDvvwBE5D3Am4D/YYwp+VG2XGr4fE1Bb8HVjZ7uCB++6iwAxqaTpDMuM8kMU4kM2zeF2NPeSHPQT8DnZCsuWX6nemGepphXCx3o7SS7q7ikRMDxCCI2W2xz0G67jKfS/Ozw2LzV8Tv6RzjQ28nn3nYRH7lmrwZ2heQO89/8Qfux2Gxe7g1iatCWOQhFstkKWwGB+JhNTLLtJXOBkhOwA4vJQbuy5wvbUgkmYwflQ48vPkBay0BlYQry3Cw42ODB8duANBW3W6GmTs4fEHb12oFiqMhrJpO0WzlVaeVeZ+3nkp0ZyF6RdwYhk4HnfwZHfmJvY0xVZqMViMh24BrghYo+cP7fd6DFThxt3mdLpSy3zMpy9N9iJ6qEubpxiM36u9z7L9YXdfWuvkRMMU4ADt8JT33XboVf2K+pjacGAv5qZcs8gE2g8ipjzEw5HiOXGn6553/2dIS5ZEcLDx8bZ3gygXENW1tCtDTY2fGGQIbpVIbmgMNMMkPGQCpTnfQqHtAU8+oMNkFQM48cn1j6xivgFfB4BEFIpF16t9pOq39wkk0Nvtm/MS1evgwrOZ+ROzeSm8GGuTMuHefaZCnt59rzL8fvt8FTY7vNXJeYtDOGkyfyBkjGZttcbBCznGLEi50lKJRsIJduvPsiOwPvDdq2Dj5qt5Re8u7ZAuccy9ZRK8RN2eeihbNLK3rMZiKNjdrX29RJuyIzuz3TZz8/fcROMjh+O8FQynNWaiVuBD4G/FfFH3lhiZRyZI2MHrMTVcHmuWyZoWYbUOYyXeY/bkfP/HIv+eUZCrWnlBkvh/pg4oRN+OJvspNPz//U1tW75JNr/lGoOrWc99Eyq1a2zL8GAsDtIgJwrzHm/aV8gPw6dk1BL5PxNNFYindcuu2M2+bO50VCPq7u6eRbDw1wcjJOxhimEmk2NfiZTmTAGNqbArgGJmaSnI6lS9nk5RNmt5jqIFrlS2QMHvKrha1dPANkXDySpqupidbGANFYitMzKV5+duu82xZbHVdZi2VxWzi4yL1B5JcPiI3bc3eJCRsEHb7DBnSebEa5hg44/Xy2YK+xmTVnRm1AhcCeVy8+iClWxymXYGClyQOG+uyMdi6TZ9vZtj2xqF0Szq3sfesDMPI0uInibfMGIRDWYKLUItvhmduzq76OXeWdHM5mzXTs6ygdt5cnjU2ssuNy+726/ayiROTNwIAx5tHs2Gmx214PXA+wY0cZErAtJ4PuauT6vfDmufIEuYHywv5n7Fl49Kuwdb8NCJebzKRUbe+/xWYibt4yF4gGmm3btI/amIb67ATZcz+CUCt0XWDfuyqcfKpa2TLPLvdj5Nexy2XLfMel2woGQ1++5yjPjUyRzLgkUxlOTsRJuoZkLM1kPM3oVBLHI4T9Dh1NQc7e3Mjhk9Pcf+QUIvaseSV5RAfRqjApw4lQAQJeDy0NAZ4fm8HrdTh/S4RXnt2Gzzt/H6hmx1zCcgr05mamhx6zZ0/C3XZ2+NS4TZDib7Tn6MAWK09M2iySu15pg7pM0g42cm8u575x7s3l0vct3r6lZrVXEpzmBmK5QDMVt8letr3EXhZqsd/zH79qM9W5S0yWBZpsgg8NJkqr51p47D/AE7Crd0j2d2GAtN1Ka4wN7kjbVeDcoFu3n5WciNwBdBW46hPAHwKvXc79GGMOAgcB9u/fXytVnArLX41zAra/Y9eZE0wL+5/JE9kzxYPQfnblV5Nz/bl45v4mjGu3gqqNJ3/yYfer7DGIIz+xk6oVTj5VrZW7isjVsVtM/2CUnx4eoyVkU70fOxUjmRetZQxk0m42HbzD2ZsbaQ8HMQYeOXYaY0zFyyN40EG0Kuzi7RGeGizdtkyPQMARXKAtbLcon78lwkeu2Tu74g1Lr46rrKW2a+S/OXT22uyXJx6CxLRdSfGGbNKL+DjgsWfwJK+MQLDZDiyu+9v5A6ZQV2m2TS0nOM3pv8UmgTEZu5roDdnVu/ztmJBXmHyJ9ebc9lINJkqrq9cOPp7+vg3i/CHw+u3PO3fC3BeCtNeWo3AzdgCrpRDKwhhzdaHLReQCYDeQW7XbBjwkIi8xxgxVsImlVajgOMZOUk0MzJ9guvdv5/c/uS3r+QlSKrmaXAPb71QNWTj50NQ19/qo8EpujST2r55b+4bZ1OBDRBiPpXAxs2sfwlxmTEds7Tuf4+Aaw4NHTyNUp+6da9AU86qgX7l8Jw2BlWdVESDota92R+w/sK+1WNrgeOzqXTLtzq4Y51bHNTvmCix1mH9hlq22s+zXLdth0277BuEL2UBJyKYyzSZLyW0Lyk9Q8uqP20BvuVnglkrhvFiK8YX30/cNeOYHdotfIGJXGMcO27Nbe18/155Myv4sllp1ziRsuYdSJG1Q8136Prvtt2Wn/V36sivDiA3m3Azg2smGQPjMJBWq7IwxjxtjNhtjdhljdgHHgUvqOrCDM/u8XE3F4/efeaY31/9MncwmLxm2fYon7z2vksFVqZOzqPpWA4lUctb1yt1yipgPjMfo6W7ikWNRZpIZ8vN2BrxiV+5cg9cROpsDREI+nhyMMhSN43OEeLryux3EIzqIVgX1dEfY1dpA3+Dkir7Pky3zEfJCPD2XETbHuLZuXdDnzFsxXs7qeL0SkRuAzwIdxpjRktzpUtseC62MZRL2FxKK2K2N6UR2q2O2uLQ3YAOk08/b7Ux7Xr36pCNLbbtczpm8+79ot4ROj4B4bdtip+wMuy9ozwce+r7dRtXVa7eUDj6eDVSL9Kcerw3srvojDSbKoavXJuI59nN7vs7xg69hLvA2rv16637Y9mI7WaDUWuR2Fjz+NbvCkTsvfPoo+IPgbTzzDF3PtXDnn9rt3f4mu+18YgCmx+wW9UqfbSplchZV/2poJXfdBnf5SVLyi5gvDIpyWTUv2dHCjw+NMBlPzY4v4mkzOzke8DqMz6Q50NvJ6GScoM9hZHLxMyLnylEOeO5nq4wyYNq51b2Up83OVd8up9HvrNsBtVq7hqDvjMuWeo05HiGdMXhEMGeEdnb17sjoNC/a3rIhVozLmm58scP8hd4cnGwx3/ZzbbZJcWzA5wTtKp7Ha+vg+RvtPn/Hv7ykAoUU23Y5+JjNehk9lh30F9gyNVuX7xnb5nQS3Bk7Gy+ODRq8QdvOXM2frl54+Ufg278Fqdw2wAWvv/ZzbeDRdpYOmsplqM9OGgTC0NRtF1HHB0CmoaHNviaat9oVEl2VqAnZ1bv6lL8VM9xlV/eHnrB9mS9oS2+4E7afye8runrteeLpEXtdY5vNHBw9DgMPwnlvrHxwVa7EMqr+LDX5WUHrNrjLL2IOxdO057JqRkI+rjinnR89dZLhyeTs9QYQY8/b7e0M8+V7jvLTw2Nc6D3G+d672ELhwfK5cpQbvF+jjSjNMs0reIx3OXcyaDYxbFp50uziVvdSAD7l/Wd2yjCNJBBc3uXcwW2Z/fy36eU8OX7GgNzvbPjdtKqQ7Ezob08+zIPeRr6Xsa+X13nu5WPOfxCRaQTIILzd82MeNGcjwB4ZxuPAQ56z+VL6ag6xExF73hTsOM8jYIyhMbBuu4yFqpNuvNCbQ2O73dI4+KgNkNwUJKehZRfsuMwe2sbYhCoAw4/bbU3f/xi8/jMrG3gUCi7HnoPoC9CyY+5MTHz8zOAxt+qXmICZ0zbIhGzWRQOu2Nl5X8Ami5kamnvOV/w+/PR/Q2raDvCMgNeXLQHhgYEH7OdaBqE8CmX9a9kGkW2wuadw2QulVit/h0DHeXZCSBxIz4AnOz5r6LCvxZ0vn7+tLZOAs6+yk0Y5HefaySZdUVbVVEMruet2pDYwHqM7Epx3WaEMk/lZNacSadqbggR9DgPjMYwBr+Oh0e+wqTHAzvZG7uw/yYt8x7ku/m0GvQEG021EZJrrne9xMPOG2QDv3c4d7JJh0niIEMMvSRqJ0ypRzjcv8HL6+HXn+zikCEl63vm+MAl+2ftDftn8iAmCjLKJF5nDvM7zAH8nv8B/84oK/ARVXRnqgzs/DdOj9KROcp5vml+SH/OM6eZiz7OESGIEHNzs2ohwQH6OKw4nTBsTJszlTj/dcorPZd7BU5kds6/J9ia/HZsDO9sa130JjuWmGy9LqvFCbw473gWP/ptdWfGF7KDICcDm8+xAJ5O0AyCYqyMXarUB3kpX8AoFlyP9tlhx/lbNmTEbPG7aNTfoz636pePZ7Q6Nto6Gce2Kj3jBTUIiCZn03GHzOz9tvy/cATOOvb1kX30zY/a8197XrW1FUi1usax/OmBWy7VYDcx8+TsEwpvtlvNkLBvcCYS32h0C8Ykzt7VFttsSCJMn7HXBZmjaYlf2laq2GlnJXbfB3UqKmOefG7rh64/SHQly35FTdM0c5pWZe2jPnGRgpp2JU6/HsIlrAw8QjTWS8TfiJ40vnWK3nOB/e7/A7e6L+ZFcyiXOYaZMkHaiIIZGEjhkNx2JSwPZ1UFzZhoBIfuLEUMLMcIkeB67Fe4Dnm8y6dtV4p+Wqnv3fxFOPQfipVlmSJo4Lc4M3eYUMP81ZgDEzH7cIaOcIsm0J0K3Z5rrnAf5bGIHrgGvky1ennHZtim0bkpwlCLdeNlSjS98c/jRn9tkKlsunrsst7r26o/b62PjdsXOG7TbmlJxu+KXv6VpMfmDsoXbLjfthNbdc7edOgnDT9hELjtfPncuxtdgV/kSU5CaAceXLYCNTa0vHpu23M3YF2RDhy1afuo5m24/FbfBn8cDkR22nh/GbuNsyvtVaZ270quhsyKqTq2kBubC11u409a+DHdk+wrH9geO/8xtbR09tradP2xX82NRiA7AeW+qyNNUqh6s2/19B3o7icZSRGMpXGNmP1/qvNDWlhCT8TQvDw/y5plvEEhNMmxaaTbT7D/xZQ60j9KePklzpJWQ36HbmeBS5zBhJ0G3M86bnPv4rPcLNMsUjkdoJEELUzhiozgROzGVWxVZog4pHsCPy9kySLtEaSLOu5oeLdWPSa0Xx++3b3SpKXxumhBxPNjXl8y+2OxNZ7PB5r32GogTccdpc2a4pGWKbZsa8HkFDBgMLQ0+LtwWWTclOIwxVxtjehf+A55jLt3488ylGy8UCFbGUhm4Onrg6M/subipIZg5ZVf02s9dXqauoT6bpOCZ2+HEo3b758QJeOkHs1k2L5yfIXP0aRuoNbbbj6EWO6CbGbPbJz1em1XRdSEdswO5Xa+C7gtswBZqhtazbFKEqWG7opeYgExu0sBjz9Ck49nseXmFzbVodnlo1j+1VguzXub6hf5bzrztwtdb0xZbw7P1bJu0ByB+GrovOjM4HOm3twlF7PeEIvbrkf5yP0Ol6sa6XblbSRHzfLkzeK+a/Cm+5lZGZgLEUxk6Wts4azPsCjzKQ6c302KmCbVE6DYn8SY8RDLjGMePT0I0pk7S5E7T4pkm4EnhLZCgYtm1prPf6hGIMEOSDC8JaYFMVYDBbt1Lz+DxeMB1z3zlib2dSPY8KZDBgxdIe4SAiZNs3MoFHfbvJJbK0NkcpKe7Cb/XWfd17IwxjwObc19nA7z9JcuWuVz5K2mnn4fJk3bL0sJtSEN92cyT59mBUnLKrrrteJnd7hQbX3r15f4v2kAr0GzvO52wX9//Rbj2xjO3ak6P2m2W7efO3UewGY7+N2y7FMaesW0ORuw/fyOE2+e2m+ZWGZ2AXcXLZLN/utntmmQLZufq+oU2zT2OriaVRw2dFVF1aiU1MBe+3trOsitvI/3263OuWXxLZ9sem203x7g66aNUnnUb3MEK07RnB1M90WN8vKGD6NAzHHF2s6s9wNmbG+kIB20HMtTHSzpakefuYSbqZVPmFAGSIIYJT5iO9DBeTxofhiBxwJ5VKrT1Es5MOZ9/Hdi8AjleMni8Bh/Ty3tOauPYdqmt+yNOtiaVfeFkY7n5cjXsAA8Gx+PB4zh4BabxcLf/ZezuCPOBV9szDLkJkkjIt6wJErVGC7c3TQzDC3fbLIaNHfO3IeXPlgeb7Zk7BGZGINa9vExdx++3acV92TPKvqAtSXD8fvt1biB2/xdtoevYaQi1zb+P3Mpe6247UJs6aVf4YlEbbObPvt99kw0QQ63ZzJ8pm6UxHgdcW1wRY/vbZBqirn3cdNyuCl7xsRL8kNUZauSsiKpTK93aW/D1dt2Zt1t4js8J2PvVLcRKFbWug7tlWzCY2hyfYLP/NOe0d0L7lrnbZbPGte7cAbsvYdPRn0EmmzzAH2ZTcgw7OMkWfM1abO/rUgt4+dc7jg/HTc6P+JQCW4R44oStETQ1RP7rr9irxetvttdm4uAN4A13EtlxOTdc+4vzbrdkMLfcQ/R1qCrpxhfWmsvEbLrwTGJuG1JTN9x/ECYH7Xm09vPsSt32y2DkKVvzadcVy1t9SccgMWJX7EzGBlCO355pyZeasWfs0nG7Svf8T+3XudpS2y6dG3SFN9t/ucQH9/7t3GvjZR+2yVimR6Gp0z6n5HS2kDmcMR2RnraFitvOhva982vkqdJZx3/HqgLKkQa+0Dm+iRPYPmJ31dPNK1Wr1u2ZuxUptFe8o8duERg9DM/fBU98C478BMLd9vrYmE1y0HZ2to6Txx4EdlPkD6xLys3YgZRUvnC6qnFdvbbA8/lvgYbNgMeeZSrIA41d9rVExia98Abs9rdL37eyx829+cbG5x+iH+pb09PZ0BaesYtP2EAp2GLrOLVn035Pj9qgLzYBx39uV8vCm+0ZuQvenj0vt4xEKq4L8UlIxewqWmLaBluYud9jfh/Z1GXLLgSabW2pUIsN2C593/xzNGPP2tW/cPf81wbYEg1bLobtL7WBqnEp3G9m+zrjzhVCL3aOR62e/h2r1Rjqswmdbv6g/Zvc+3rbH0wMzPULa5kgKDQ227TLvkZL+ThKrTO6cgeF94q37raz4qNP2QFPQ5udsZ4cgKntdsAVaLKD4kSbnVU3mVU8uIdlB4Mmbduy7AN7akPJbXOJHoP4lM1EODOStyKCzUrYcR5c8Da7muLNJkfJpOHUETuZsZI3yYWrTLmPmtFw9RZubwo22+2NoewKai6hScOmucLmRmxfVSi73GL6b4Etl8Azt+UVEc/2L1sumfs9Luwjw5ttramFqfLzz9FMnrCJDnJnY/JfG6/++NxtUzP2XF58EijUh+a2aM7Y57rtUj1fU2pL/R3rqp5aqNCq2qHvlzbQKnaOr9QlOvT1rdYZXbkD+8ecnw0Osl8b2PkKOP+tsPsKW9AVj52tjo/DyNN2QNzQBuddawfOK+VZYXwtYrcxKVVMZDs0d9tBdfu5Ns20N2RT1bedBdv2wzO32tdtx965fw1tdqvfSiyVyVGt3MJMcuFu+zfftMV+PT0KuNnfbXYrpnhg+Em7XdLXsPzHih6z593AnmXxZv/lShDkfo/F+siF51y6eu2g67q/tTPsbXvmX597beQPpkTsmT+vj6KMC/4Gu9o89Lierym1xf6OdVVPFbKS7JirVazfcQJzK4Y/+vO1vRb19a3WIQ3uoHga6GBk/hte+7l2u9LpIzbVt3HtrHNyynY4LdttgoBl/1jFbuVciUzK1pFSqpjc6zk6YLfqua4dqLfsBMSeyTv9vL3N6DMw/oJ9TQWa7Gr1Six30K+WL5fAJLftqP1suPpPbGA+MWBLEHTsmys2PTMGE8dt3xNogsTk8gcnke02WPKHbYmChja73dLfND+IWk2q/MUGZvmDqUzKnhE0eauGCxlsAhaM3Z6pKfpLa7G/40oM4lX9qcTEXqF+5/Tzth8sVTCmr2+1DmlwB2cOpmb3cC+o7xTeDL6QHSg7vrnivh4vTA3Caz5pz484y12NM6z4fJ7J2O2hShWTez2bTLZgtMemrp8Zg+kRGOyzGQ+nTtpzVqmY3UI3ddK+fldC62OVR/4K2Ks/Dr3XzX39+s/YPiY2boOi539qf8+RbTYpyskn7dfLGZz0XGuD/XTC1sebHrOvh2BkfhBVtI9cZOtSsdcGzB9MOT67suzx2q/nvS2Jva6hNbu9WGDPq3XLVKkt9nesq/OqkNVM7OWf0VvOiluhfqd5i813UKpgTF/fah3SM3c5xdJAL8z+lI7BOa+zSQVyjGs7nt7r7Nc/+IT9umChg5yCSeqXJ5Na3fepjaOrFzovsEmB4lF7FguB1CTMjNokKiZjB/Vu2n6dHoWrPrnyx9H6WJWV/zPv+4YNxpyADcYa2uzWxYkB8C5zm7g3COmknbjKpO3rQjxnBlErTZVf7LVx79/a1cccY8CkbD/qa4TkBHMFGT02UO3ogc3n2YBjpUl/1NIW+zteaYp7tTGsNDtmoTN6d9+09CTRwn7n5g/O7z9yj7/aYExf32od0uBuMYXe8Pa8OjtQzpPfEfReZ7NqPv19m8zCzVA8iJPsv5Ws3jl2pluppXRfaLcQe+PZFTyxEwPisa9hj2O3GbvGrpp0XTg3QbESWh+r8nI/78f+w66ygQ3MJgbs2byZKXtOeKGFiQOmTkL3xdlkLNnzdvEJ2y2VIojKvTZyj3vv39ptVamE3W46ddImo/L4AGMLmXt89jXp9dltppkkDD1iz+9pVrzyKfZ33NEDd33GTgI1tkF4i1051tTzG9tKJ/ZKlXyr1MFYOUo4KFVlGtwtZeEbXm72CQp3BEN9Nv13Oma3E3kDdkZ8asQOYnKBnnht9suVbsv0+e12UKWW0nMtPPwlO1A2xp4PxdjAzk2CJ2gnCjxee55p1yuq3WK1Ev232N+bMwOxUft7NI6tA9XUeebW2EIz58/9CHa/Cra9xGbhjE/Ys3eBltIFUQsfN52cK5A+dcKe8UuPQvM2OyGWmAKPgY5z7RZ4Y+yW4vBmDewqbajPZkDcvC9bfmPMvkZe+VH9XaiVTewVy3y50hW3UgdjuvtErUMa3C2mWHrcYh1B383w08/CxGB266THJjfI5JKm5FbwJHt+ZBXbMlMzcM6Bkjw9tQF4g5DOrsS4GWbPM7lp+08cuzUzPm5n6FX9iB6DrgtsoBRqh+QkuDO2byk0+C40cx5qtYlTzrlmLkHLwlnxtVr4uG1n2Y+TJ+D0UUDs6mNyEpJxG/w52TOiJruq3NimZ2DKqdh7Xf7vLvd7i43b7d5cV7XmqjpUqhW3cgRjuvtErTMa3BVTaJb7zk9ns7slbIfy0g/OdQhDfXbrCmITG4w+A5lpG79lEtksmrlMcIa5ek6rOHs38MCan57aAPpvmb/lbmrYvpmmpsBpyG7TzA6kt71EB2z1JjdY2n6ZXXVzvLbsRfdFhbfXFpo577rAbiOPjZdvS1KxOqLJaQhtst1fsNkm+Ymdtq9LcewEWfSYvc2mi/UMTLksdhaqVKstSpVyxU2DMaUWpdkyi8nNWGaStnbUs3faGfLDP7TnmJ74Fnzzertal7u9m7adlojdjmnyC5QbwJs9r+dkL3PyHnC5hckFXrhnzU9PbQDRY/ac0raXgC9otwd7/bYeY0PEvhYDzXD262DrxTpgqze5DIeOH3a+3P5rP6f4WblC2e28QXuOeCVZMFeqWFa9RDS7Wmzs6vHUsE0Ok0v0k5i0r1fHbwNXzcBaHvmrc9OjMPw4nHgYvv8xOymkpU5UKawm465SalV05a6Y6DF7sH/gAfsGl4rZemGTA3aQ3NBm3+R++lmbGCB6zG4dSiXsdiLx2PNxqYzNAOembKCYgblALrs1U7zgbbCZDJdcxRPNlqmWJ7eyE948t+Vu9DAcv88Wut60a64QdmxcB2z1ZqXbk4rNnJd7gFXscYMRu4IXaLITaLHT2P4vm/AnkwS8dlumDgLLJ7c6N3USjv/cvt+FWm2g52/C/k52a7IJtXa64qZURVQ1uBORG4DPAh3GmNFqtuUMke3wzO32jc4XtAMNN2UTUKSmQFrtm93MmB1cRbbbwG7wYfummEnZ8yLisbPjGckmVAH7Zpm3HVM8NhW4rwnSM3bmuliQJx5NqKKWp1iWu2v+X5skIdiS3Q43rgO2erWSwVK1EgcUe9z+W+YmH+LjzG4k8Tg2oHMNZOJw3ht1QFhOuUmg0afn3u9ScZtuftMu+94XatFkE0opVSeqFtyJyHbgGuCFarVhUT3XZtOMb8oGaY4N7gItdssQ2I8N2YP+L/2gPZOXSdnEFSabRMWIHbicsesyP7lKxi7iSS7JyiKrd44PXv6R0j1PtT4tluWu9zq72qzZwTaeas2cL1VHdGbcBnUmYz+K2Ims2LhdUbr5g/MTfajSya2sTo/a4G7ihM32vGkXpOP2fe/VH692K5VSSi1TNVfubgQ+BvxXFduwuGAExo/awUZok32jS8cBAyefsoOP7hfZQUdXr93aMvS4TTM/y9hAr2C8Jnbrp8eZW+lbyjmvW10tMrWx5J8ZFcmeW/Lb5Bm91+n2GDWnWKbEcstf0cPNZsZ0spNj7lyf6fjtKtJyix6rlcn9Hv7rt2DsWfCHoWWnndA8+t+w65XVbqFSSqkVqEpwJyJvBgaMMY+KLJ5IRESuB64H2LFjRwVax1z2sNazs+c+PHawEdluMwp6AhDIJqgYewYu/hX7fVNDdvYTD4VX4HJbMbOz0rnbeHw2/fdsBs1CPPZ7XvXREj9ZtS7lzowev99uCw402a1Wz/3Ivr51cLw+5QK1wcdswpJgxBanLxawLZYpsVKvkamT2Z0RcdsFSq6guYGW7WsveqyW1tULWy6xGUwDzTYhWG6HilKrUa1JI6VU+YI7EbkD6Cpw1SeAPwReu5z7McYcBA4C7N+/fxWF4VYhP3tYsNmeRZgehfgk7L7SnouLT9jrmrbMpZCPR+dqh3myaebzeXx2VlrIZs3MBrbJ5SRScaGho5TPUq1nuTOj3qA9QwN2BS/UqoPj9SoXqGXSMP484IGZ0zahU7GArVDtu9zluY/lGpzl2jv4mN1u7qbttkyTtpmGPV7Y86r536Np+Msnk7AZV8eemXt/67og76y4UstUC5NGSm1gZQvujDFXF7pcRC4AdgO5VbttwEMi8hJjzFC52rMi+bV9cpkGjQt9/2lTxkteBQnjzg02AhE7gDYZMF7OWMHzONntRpm57Z0e//LaJA7svkIH5mp5cmdGQ9kzo+mEHaRt3a+D4/UqF6gNPw7e0FxijMkT0HlB4b6jWB2zocfg9PNnDs72vt5OZpUi4Mu1d2bUBqD+BrtylElnt2em7DZ38cxle9U0/OWTS6ySvw0zNg6hQnO0Si1isUkjHb8oVXYVr3NnjHncGLPZGLPLGLMLOA5cUjOBHRSvy9TUvXjNn+4LIZx9IzQZ8OT/eD3ZgM61h9ZzAZ/jY+lVu2xR39bdOjBXy9PVa+uXIbZemC9o6915gzo4Xq+ix+bS1XsD9jJvYG4VplDfUayvi0fnBmfisR/djM2+GhufH/AN9a2tvZmU3b2QmLQTEW7abnn3BGxN0b7/hKe/b8t4xMe13l255OomxsbtJGQui67+vNVK5f628+mqu1IVo0XMCyn2Jnfp9Yu/+XX02EG0N2AHRG72PJ2v0c6ke4PZBCqeudW/dGwZDTJ2YHXqiA7M1fJd+j5b1DpX4NrxFx+sDfXBj/7cZiX80Z+vfsCuqicXqAWb52f0zQV8hfqOYn1dIHLm4GxiwAZe+QFfsGVuC+dq2jvwMKRm7L900tYTxUByBhwHwp22Bmj0OIw+ZVcOdea/PLTItCqVYpNGOn5RqiKqXsQ8u3pXXYUO/harB1UshXwu9fyWS2y2sehxG5DteRWc/wtw56fsFjlv0A64TvZBOmUHVOKdK51QVAYO3w7nvakSPxG1Hiy3rpmej1gfcintw90w8qTtZ4wLrXuK1zFcqgZdbjsV2JqejW3zv3+ls/H5fW1iCo7dY3cyGJOt7+mC+O3nTd3Q0Gr7zcSknaDInW9W5aFZdFUp5PoimJtc0lqqSlVM1YO7qltsYFuotk+xN7/8PeZtZ9nLxp61510O/8BmIEvF7BYk8djVvPQpeztjlg7wxLG3O/R9G2DqG7BajvzXa25gfe/fzj8vpecj1of8QC01M5cts+2sxc/GLVWDLjc4c3wQ3jL/NiuZjV/Y1z55y9wKo3GzN8ruavD6bVAHc6uPuq1Lqfqw3IlFpVRZaHBXqoHtwsQEUydh+Ak7A73z5XbL0fH7bXmF8SN21W5WxhY79/jttifchfdu7yeTsMkGdNCtVmqxSYxiSTU28EBaRD4MfAhIA981xnysyk1anlKtvBQanL3yo3ZyKTa+utn4/L526iRMDgIeWxdUHGyCKa/NMuwPZ88oi/3YfZFu61KqnugqsFJVo8FdqQa2uUxjueBw9Gk7A92wyX7MreYduQuSU3bLprcxe+bOBQQa2mH6ZLaYeYEkK64Lg9kzKkqtxGKTGAtfu7ChB9Ii8mrgLcCFxpiEiGyudpsqZqnaVMW2pS/H4GP2LNfkoO0DTfYs8WxfJ/Zrj2MTqsRO29Id2y6dOy+q27rUBle3E09KqYrR4K5UA9uFe8ynR+0gpf3cudu07obDd4C/yZZMcLw29XdsHHBhZsQmEMik7OfzAjyxA574hN1updRKLDaJ8dIP6vmI+T4A/IUxJgFgjDlZ5fZUxnLOXq52Nn6ob65eqDdkt2G6LnZ8ip0AMy6IgaatEGyCt35hLpAMdem2LrXhbeiJJ6XUsmm2zFKlf87PNDbclz3zMm0HNFPZsWHu3EomaWeoZ07Zx8oP4hJThTNoOgF7Ji+TtOdolFqJxbKXaZa8hfYCrxSR+0TkJyJyaaEbicj1IvKAiDwwMjJS4SaWQf7qbimyYea7/4u2vEIqZlftxJnLGCxeO9HlC0Jwk92GGT1uH7fnWrjub+355437elQqZ2NOPCmlVkRX7kp58Df3Paefh+0vtWfuYlE4di907LMDmB2Xw7M/glS2WO/s+Tqx5+3SsWxCgQbIxLODIGz5BNeFTVug68LSPHe1cSyVvWyDnY8QkTuAQtWZP4HtFzcBLwUuBb4mInuMMfP2ShtjDgIHAfbv379UscraV66zl0N98NyP7Lljj9cGbyZjP/d47URXOgW4kIzZy1p2aNZWpc6Um3j6MyAO3GCMub/QDUXkeuB6gB07dlSuhUqpqtPgDko7sM2f/Q40zW1FmhqE13/G3mbgQXu2LnfWDrGXe3z2UzcNwbBNoGLSEGi11xsXWnZqUVm1cpq9bB5jzNXFrhORDwDfzAZzPxcRF2gH1sHy3CLKdfay/xZbAsZNAh67vdzNZDMHSzaZipsthZDdro6b3aXQogmk1IZSioknWIeTT0qpZdPgrtTyZ7/Dm+0/49rtbrkBSveFEB2w2zfBDnwyaVu01wnZM3WJSXtmLwO42UHQ7ivhVR/VgY5anQ22OrcGNwOvAX4sInsBPzBa1RZVQrlqU0WP2e3ojt8GbEZsf2Yy4AtDUxckJ2HmtO3znIAtYv7Ud2wCl0DLWp+ZUnVDJ56UUmulZ+5KbbGzTTldF9rtmV0X2PNzgWbwem32uEzKJhNo22PPn4Qi0LId3vR5eMe/6OBcqfL7R2CPiPQBXwXeU2hmfN0p19nLyHZbq65lFwQigLETXh4vhDvAG4BNu+c+T01nb2MgNgHRF+zWTqXUzdiJJzbUxJNSakV05a7Ulpr9HuqDk/3w3E+AbCpw1wCS3ZYp0NgJvgZo9MD2y+yM90g/cF1VnpJSG4kxJgn8SrXbURXlWN3tudZurTSuLQmTTmTP3bm2n/MFIRW3WTQnTtj8UrHTtm+Mj9sJsJ981k5uKbWx/SPwj9mJpyQbZeJJKbUiunJXaovNfg/1wZ2fhpNP2q1IvhBgbPrvrhfBBb9kt3F6spnjtl9mv97gBaWVUnWsqxeu+Jg9TzwzZlfnNu+z54cb2yHcDbFTMDWcPYMn2fPGri0bY4Bn74C+m6v8RJSqLmNM0hjzK8aYXmPMJcaYH1a7TUqp2qMrd+VQbPa7/xabXCXQbIO3xjY7Yw2w+xU23feP/lwLSiul1pfe684sgJ5LDNV/Cww+Av4GmxU4MQWeoE2sYtLga7QB3/0H7f0opZRSqigN7iopeszOSAea5y7zBmzwlluZ6+iBH37aBngeDzR02DN3l3yyKk1WSqmSKDbp1dU7l4hqehQe/pJd5UslbNIVN20Lm08OVrzJSimlVL3R4G4pQ31nzjav9kxKZDucfMqeOfEF7WXphA3wItvtYz36bzapitcHqSRMDs1fxVNKqfUmV4YhvNluxUyMY88he+1ZvOmTsGlXdduolFJK1QEN7hYz1GeTowRb7Kxyrqju3tfbBCcLA76lAsGea+HEw3DqOWw2OGwK8Naz5pIOTI+CvxGSBhzX1oCKndZaT0qp2rWWSbChPpg6aQudh1rBH86WgvHMz665aXdZn4JSSim1HmhClcXkFyQXj/3oZuCuz9hALz/g67vZflx4eX4K765euOqTsOuVdnXOTdnPr/qjua1J8ShMj2Tr3vkBYzPIDT1W8aevlFJLyk2CLdb3LfW9jh92v8peFj8FDW12Yisxbreyb3kxBBrL+CSUUkqp9UFX7haTX5A8Z2LAngHJbZXMfbz/IHRecObl+StuudntTALOe+OZs9uR7ZD8ISA2mQBkP/fboE8ppWpN/iQYFO77lvu9TV2QmrGZMzf32C3r6QRMDtjan0oppZRalK7cLaZQQfKZMZvlMl+w2R72DzafeXkuUcpyZrd7rrVZ4UzGruylU3ZgE2zObk9SSqkaEz22eN+30u91/HYCTSmllFIrpsHdYnqutUV0Y+P2zEdsHBwfhLfMv118Apq6zwwE80sYFNriGWyxl+d09cLeA7aIuXEBFzbtgO6LofvC8jxHpZRai0KTYIXKtwz12VIvN3/QfhzqK/y96bg9X+cL2kQq0yfBdeH4/cvb6qmUUkptYBrcLaZQQfJXftRumcwP+OLjcOn1ZwaC8fG5Wk7Lnd2+9H2w5SLYdYWtC5WK2eQtHT1lfapKKbUqhSbB8vs+KL5zoaOn8ARa2znQfi44AWjcDKGIXdFb7lk+pZRSaoPSM3dLKVSbaWEx3kvebW9T7HKYS/W9VHHyrl6bjfOnn7VbMxva7GDo0Pft/WvGTKVULclNghXr+6D4ubyR/jO/95UftSVhjv63PZ/sBGyB892vsgGeZg5WSimlitLgbjUWK8ZbbNDRc62ddQa7YhefsDPWl7zbXpafSvz089B+ng3mcmLjOqhRStWmxfo+KJycKrdzYeH3DvUBApmk3cIuBb5HKaWUUgVVbVumiHxYRJ4WkSdE5DPVakfFFNri+bIPz9XHy9+yND0KI0/a2k85OqhRStWr5Z7LAzuJtWkXbD4PWnZC6x676jf6dPHvUUoppRRQpZU7EXk18BbgQmNMQkQ2V6MdFVdsdju3ZSmTtFuRYqfBGDjxkE2wAjqoUUrVr8V2LiwsgD74WHab+7lw7D77PY7fTnrl73ZQSiml1BmqtXL3AeAvjDEJAGPMySVuv75Fj9kMcUd+AmPP2bN2iQkYfQYmhwonKFBKqXpRbOcCnJloJfqC7QfDm2H7ZTZrZuwUNLbP7XZQSimlVEHVOnO3F3iliPwZEAduMMbcX+iGInI9cD3Ajh07KtfCSopshyf/y67YOQHwN4IBMjG7ktf7i2cmKFBKqXpSaOfCj/58LtHK1Em79TIxZSe6wBYud/x2cksDO6WUUmpJZQvuROQOoKvAVZ/IPu4m4KXApcDXRGSPMcYsvLEx5iBwEGD//v1nXL8u9FwL937BlljwOLaIudcL4V3g9cGrP17tFiqlVOnlEq1MnYTjP7eTW03dMHkCRp+C1Iyt8amTW0oppdSylC24M8ZcXew6EfkA8M1sMPdzEXGBdmCkXO2pCQvPlvRcOzeb3dgOySl77s6bre3kcewWTaWUWi8WZgZOJ20w5wTsFsxUHCLboPMCu6Knk1tKqVpWbGynVJVU68zdzcBrAERkL+AHRqvUlsooVsQ3V5B39xUQaLIdQ2Q7eLyQmIRtl1az1UopVToL+8FwNxy/H6IDdvtlKm7PH7efqxmClVK1b6mxnVJVUK3g7h+BPSLSB3wVeE+hLZnrSn4RX/HYj8EWeznApe+zKb/BJlMB+/Wl76t8W5VSqhwW9oPtZ8PW/XYreuyUXbnbfplNpqIZgpVStW6psZ1SVVCVhCrGmCTwK9V47KpZrIgv2CX8qz6pS/tKqfWrUD/YtseerQs220FRsHkuQ7CWPVBK1bKlxnZKVUG1smVuPJHtdsASapm7bOHMdLE6eEqpihGRFwFfAIJAGvigMebnVW3UelGsH+y+0E5m5U9uaRIVpVStW87YTqkK0+CuUhYr4quUqiWfAf7EGPN9EXlD9usrq9ukdWKxflAnt5RS9UbHdqoGVevM3cZTrIivDmaUqjUGaM5+HgFOVLEt64v2g0qp9UT7NFWDdOWuknRmWql68LvAbSLyOewE2MsK3UhErgeuB9ixY0fFGlf3tB9USq0n2qepGqPBnVJqwxGRO4CuAld9ArgK+Igx5hsi8nbgi8AZdTuNMQeBgwD79+9f39l+lVJKKVUXNLhTSm04xpgzgrUcEflX4HeyX34d+IeKNEoppZRSao30zJ1SSs13AnhV9vPXAM9UsS1KKaWUUsumK3dKKTXfbwCfFxEvECd7rk4ppZRSqtZpcKeUUnmMMT8DXlztdiillFJKrZRuy1RKKaWUUkqpdUCMqZ8kbyIyAhytwEO1A6MVeJzlqqX21FJbQNuzlFpqT7G27DTGdFS6MaVUwb5pNWrpNbBS9dr2em031G/by9Vu7Z/Wrl5fU6u10Z4v6HOuhqJ9U10Fd5UiIg8YY/ZXux05tdSeWmoLaHuWUkvtqaW2bCT1/HOv17bXa7uhftter+3eCDba72ajPV/Q51xrdFumUkoppZRSSq0DGtwppZRSSiml1DqgwV1hB6vdgAVqqT211BbQ9iylltpTS23ZSOr5516vba/XdkP9tr1e270RbLTfzUZ7vqDPuabomTullFJKKaWUWgd05U4ppZRSSiml1gEN7pRSSimllFJqHdDgDhCR/xCRR7L/nheRR4rc7nkReTx7uwfK2J5PichAXpveUOR2B0TkaRE5LCJ/UKa2fFZEnhKRx0TkWyLSUuR2Zf3ZLPVcxfqr7PWPicglpW5D3mNtF5EfiUi/iDwhIr9T4DZXikg073f4yXK1J/t4i/78K/XzEZFz857zIyIyISK/u+A2Ff3ZbFQi8rbs69MVkf0Lrvt49rXwtIi8rlptXI7l9oe1ohL9crlU6j1urUTkH0XkpIj05V3WKiK3i8gz2Y+bqtnGjW699D+rVW/91lrUc5+3WjXfVxpj9F/eP+B/A58sct3zQHsF2vAp4IYlbuMAzwJ7AD/wKLCvDG15LeDNfv6XwF9W+meznOcKvAH4PiDAS4H7yvj76QYuyX7eBBwq0J4rge+U+7Wy3J9/JX8+C35vQ9hCm1X72WzUf0APcC7wY2B/3uX7sn9DAWB39m/LqXZ7F3keS/aHtfKvUv1yGdtfkfe4ErTzCuASoC/vss8Af5D9/A+KvVfpv4r9jtZF/7OG5183/dYan2dd93lreN413Vfqyl0eERHg7cC/V7sty/AS4LAx5jljTBL4KvCWUj+IMeYHxph09st7gW2lfoxlWM5zfQvwr8a6F2gRke5yNMYYM2iMeSj7+STQD2wtx2OVUMV+PnmuAp41xhwt8+OoAowx/caYpwtc9Rbgq8aYhDHmCHAY+zem1q4i/fJGZ4y5Czi14OK3AP+S/fxfgOsq2SY1n/Y/G4b2eTVIg7v5XgkMG2OeKXK9AX4gIg+KyPVlbsuHstvn/rHI9pKtwLG8r49T/gDj17GrP4WU82eznOdajZ8HIrILuBi4r8DVl4vIoyLyfRE5v8xNWernX42fzzspPlFSyZ+Nmq8qfytrtFR/WCvq8Webr5LvcaXWaYwZBDsBB2yucntUYfX+N7IS9dJvrcVG+n3mq+m+0lvtBlSKiNwBdBW46hPGmP/Kfv7LLL5q93JjzAkR2QzcLiJPZWcQS9oe4P8Cf4p98fwpdqvory+8iwLfu6q6Fsv52YjIJ4A08JUid1Oyn02hJha4bOFzLdnPY7lEJAx8A/hdY8zEgqsfwm5HnMrutb8ZOKeMzVnq51/Rn4+I+IE3Ax8vcHWlfzbr1jL7tTO+rcBlVa2JU4L+sFbU3M92hcrZj6t1Zr30P6u1jvqttVg3v88Vqum+csMEd8aYqxe7XkS8wC8AL17kPk5kP54UkW9hl6NX9ctcqj157fp74DsFrjoObM/7ehtwohxtEZH3AG8CrjLZzcYF7qNkP5sClvNcS/bzWA4R8WEDu68YY7658Pr8YM8Y8z0R+VsRaTfGjJajPcv4+Vf05wO8HnjIGDNcoK0V/dmsZ8vtRxao9GthSSXoD2tFzf1sV6LM/Xi5DYtItzFmMLvl/GS1G7TerZf+Z7XWUb+1Fuvm97kStd5X6rbMOVcDTxljjhe6UkQaRaQp9zk20Uhfoduu1YKzUG8t8jj3A+eIyO7sKsk7gW+XoS0HgN8H3myMmSlym3L/bJbzXL8N/KpYLwWiuS06pZY9m/lFoN8Y83+K3KYreztE5CXYv7WxMrVnOT//iv18soquglfyZ6MK+jbwThEJiMhu7Krpz6vcpqKW2R/Wior0y+VQyfe4Mvk28J7s5+8Biq0cqeqqq/5nteqs31qLuu3zVqse+soNs3K3DGecDxKRLcA/GGPeAHQC38qOSb3Avxljbi1TWz4jIi/CLm0/D/zmwvYYY9Ii8iHgNmy2on80xjxRhrb8NTar1e3Z536vMeb9lfzZFHuuIvL+7PVfAL6HzQh5GJgBfq1Uj1/Ay4F3A4/LXNmMPwR25LXnl4APiEgaiAHvLLbqWQIFf/7V+vmISANwDdnXbfay/LZU8mezYYnIW4GbgA7guyLyiDHmddm/na8BT2K3Wv+WMSZTzbYuoWB/WIsq2C+XQyXf49ZERP4dm3W3XUSOA38M/AXwNRF5H/AC8LbqtVCto/5nteqm31qLOu/zVqvm+0rRMZVSSimllFJK1T/dlqmUUkoppZRS64AGd0oppZRSSim1Dmhwp5RSSimllFLrgAZ3SimllFJKKbUOaHCnlFJKKaWUUuuABneqZETkH0Rk3yq/d5eIlK1OiIi8V0T+Ovv5p0TkhnI9llKqtmjfpJSqVdo/qVLTOneqZIwx/7PabVBKqYW0b1JK1Srtn1Sp6cqdWjERaRSR74rIoyLSJyLvyF7+YxHZn/18SkT+LHube0WkM3v5Wdmv7xeRT4vIVIH7d0Tks9nbPCYiBYt/isivZq9/VES+lL2sQ0S+kf3e+0Xk5eX7SSilaon2TUqpWqX9k6oUDe7UahwAThhjLjLG9AK3FrhNI3CvMeYi4C7gN7KXfx74vDHmUuBEkft/HxDN3uZS4DdEZHf+DUTkfOATwGuyj/E7efd/Y/Z7fxH4h9U+SaVU3dG+SSlVq7R/UhWhwZ1ajceBq0XkL0XklcaYaIHbJIHvZD9/ENiV/fxy4OvZz/+tyP2/FvhVEXkEuA9oA85ZcJvXAP9pjBkFMMacyl5+NfDX2e/9NtAsIk3Lf2pKqTqmfZNSqlZp/6QqQs/cqRUzxhwSkRcDbwD+XER+YIz59IKbpYwxJvt5hpW91gT4sDHmtiVuYwpc7gEuN8bE5t1YZAUPr5SqR9o3KaVqlfZPqlJ05U6tmIhsAWaMMV8GPgdcsoJvvxe75A/wziK3uQ34gIj4so+3V0QaF9zmTuDtItKWvU1r9vIfAB/Ka+uLVtA2pVQd075JKVWrtH9SlaIrd2o1LgA+KyIukAI+sILv/V3gyyLye8B3gULbEv4BuxXhIbHTRiPAdfk3MMY8ISJ/BvxERDLAw8B7gd8G/kZEHsO+vu8C3r+C9iml6pf2TUqpWqX9k6oImVv9Var8RKQBiBljjIi8E/hlY8xbqt0updTGpn2TUqpWaf+kVkJX7lSlvRh7aFeAceDXq9scpZQCtG9SStUu7Z/UsunKnVJKKaWUUkqtA5pQRSmllFJKKaXWAQ3ulFJKKaWUUmod0OBOKaWUUkoppdYBDe5U1YjI8yIynF+HRUT+p4j8OPu5EZGz8667QUQGReT8KjRXKbVBZfuqmIhMichpEfmuiGyvdruUUhtLXl80KSLjInK3iLxfRDx5t3mJiHwve/0pEfm5iPxaNdutKkuDO1VtXuB3lrqRiPw/2DovrzLGPFHuRiml1ALXGmPCQDcwDNxU5fYopTama40xTcBO4C+A3we+CCAilwM/BH4CnA20Yevpvb46TVXVoMGdqrbPAjeISEuxG4jI/wv8T+AKY8yhSjVMKaUWMsbEgf8E9lW7LUqpjcsYEzXGfBt4B/AeEenFjqn+xRjzl8aYUWM9aIx5e3VbqypJgztVbQ8APwZuKHL9X2A7riuMMc9VqlFKKVVItpjwO4B7q90WpZQyxvwcOA68CrgcO/mkNjAtYq5qwSeB/xaRzxe47rXYWagXKtwmpZTKd7OIpIEwcBJ4XZXbo5RSOSeAFuyizWB1m6KqTVfuVNUZY/qA7wB/UODqdwK/JCJ/UtlWKaXUPNcZY1qAAPAh4Cci0lXdJimlFABbgXHAxZ4LVhuYBneqVvwx8BvYDirfIeBq4IMiUij4U0qpijHGZIwx3wQywCuq3R6l1MYmIpdix053AfcAv1jdFqlq0+BO1QRjzGHgP4DfLnDdE9gA76Mi8rsVbppSSs0S6y3AJqC/2u1RSm1MItIsIm8Cvgp82RjzOPAx4L0i8lERacve7iIR+Wo126oqS8/cqVryaeDdha4wxjwqIq8DbheRuDHmC5VtmlJqg7tFRDKAAY4C79GyLEqpKrgle/7XBZ4E/g/wBQBjzN0i8hrgT4D/J9tnPQP8TbUaqypPjDHVboNSSimllFJKqTXSbZlKKaWUUkoptQ5ocKeUUkoppZRS64AGd0oppZRSSim1Dmhwp5RSSimllFLrQF1ly2xvbze7du2qdjOUUiX04IMPjhpjOqrdjrXQvkmp9Un7J6VULVqsb6qr4G7Xrl088MAD1W6GUqqERORotduwVto3KbU+af+klKpFi/VNui1TKaWUUkoppdYBDe6UUkoppZRSah2oanAnIi0i8p8i8pSI9IvI5dVsj1JKKaWUUkrVq2qfufs8cKsx5pdExA80VLk9SimllFLrWiqV4vjx48Tj8Wo3pWYFg0G2bduGz+erdlOUWpGqBXci0gxcAbwXwBiTBJLVao9SSiml1EZw/Phxmpqa2LVrFyJS7ebUHGMMY2NjHD9+nN27d1e7OUqtSDW3Ze4BRoB/EpGHReQfRKRx4Y1E5HoReUBEHhgZGal8K5VSSiml1pF4PE5bW5sGdkWICG1tbbqyqepSNbdleoFLgA8bY+4Tkc8DfwD8Uf6NjDEHgYMA+/fvNxVv5Xo01Af9t0D0GES2Q8+10NVb7VYppZRahf7BKLf2DTMwHmNrS4gDvZ30dEeq3SxV4zSwW5z+fFS5lLvPrubK3XHguDHmvuzX/4kN9lQ5DfXB3TdBbByat9qPd99kL1dKASAi/ygiJ0VE/zBUTesfjHLwriNEYym6I0GisRQH7zpC/2C02k1TSim1QCX67KoFd8aYIeCYiJybvegq4MlqtWfD6L8Fgi0QagHx2I/BFnu5Uirnn4ED1W6EUku5tW+YSMhHJOTDIzL7+a19w9VumlKLEhF+7/d+b/brz33uc3zqU58q2+M98MAD/PZv/3bZ7l+p5ahEn13tbJkfBr6SzZT5HPBrVW7P+hc9Zlfs8gWb7eVKKQCMMXeJyK5qt0OppQyMx+iOBOdd1hT0MjAeq1KL1HpUjm1kgUCAb37zm3z84x+nvb29RC0tbv/+/ezfv7/sj6PUYirRZ1e1zp0x5hFjzH5jzIXGmOuMMaer2Z4NIbId4hPzL4tP2MuVUsumyZ5ULdjaEmIynp532WQ8zdaWUJVapNabcm0j83q9XH/99dx4441nXHf06FGuuuoqLrzwQq666ipeeOEFAN773vfy27/927zsZS9jz549/Od//mfB+/76179Ob28vF110EVdccQUAP/7xj3nTm94EwMjICNdccw2XXHIJv/mbv8nOnTsZHR1d0/NRajkq0WdXNbhTVdBzLcTH7Vk749qP8XF7uVJq2YwxB7OTU/s7Ojqq3Ry1QR3o7SQaSxGNpXCNmf38QG9ntZum1olybiP7rd/6Lb7yla8Qjc4PFD/0oQ/xq7/6qzz22GP8j//xP+ZtpxwcHORnP/sZ3/nOd/iDP/iDgvf76U9/mttuu41HH32Ub3/722dc/yd/8ie85jWv4aGHHuKtb33rbPCoVLlVos/W4G6j6eqFl33YnrWbGLAfX/ZhzZaplFJ1qKc7wvVX7CYS8jEYjRMJ+bj+it2aLbMOLZXISay/EpHDIvKYiFQkCd3AeIym4PxTPKXaRtbc3Myv/uqv8ld/9VfzLr/nnnt417veBcC73/1ufvazn81ed9111+HxeNi3bx/Dw4UDzJe//OW8973v5e///u/JZDJnXP+zn/2Md77znQAcOHCATZs2rfm5KLUcleizq33mTlVDV68Gc0optU70dEc0mFsf/hn4a+Bfi1z/euCc7L/LgP+b/VhWW1tCRGMpIiHf7GWl3Eb2u7/7u1xyySX82q8VT7uQX5YgEAjMfm6MrZD1iU98gu9+97sAPPLII3zhC1/gvvvu47vf/S4vetGLeOSRR+bdX+77lKqGcvfZunKnlFILiMi/A/cA54rIcRF5X7XbpJRa34wxdwGnFrnJW4B/Nda9QIuIdJe7XeXeRtba2srb3/52vvjFL85e9rKXvYyvfvWrAHzlK1/hFa94xaL38Wd/9mc88sgjs0Hcs88+y2WXXcanP/1p2tvbOXZsftK4V7ziFXzta18D4Ac/+AGnT2vKB7V+aHCnlFILGGN+2RjTbYzxGWO2GWO+uPR3KaVUWW0F8qOU49nLzlDKhE+V2Eb2e7/3e/MSmvzVX/0V//RP/8SFF17Il770JT7/+c+v6P4++tGPcsEFF9Db28sVV1zBRRddNO/6P/7jP+YHP/gBl1xyCd///vfp7u6mqampJM9FqZXqH4xy4+2HuOHrj3Lj7YfWnqyoRO1SStWSoT5buzB6zGZC7blWt+IqpVR9kwKXFdxfaIw5CBwE2L9//5r3IJZjG9nU1NTs552dnczMzMx+vWvXLn74wx+e8T3//M//XPQ+8n3zm98847Irr7ySK6+8EoBIJMJtt92G1+vlnnvu4Uc/+tG87Z5KVUouG20k5JuXjXYtEyga3Cm13gz1wd032eL0zVttRtS7b9LEOUopVd+OA/l1i7YBJ6rUlrr2wgsv8Pa3vx3XdfH7/fz93/99tZukNqj8bLTA7Mdb+4Y1uFNKZfXfYgO7UIv9Ovex/xYN7pRSqn59G/iQiHwVm0glaowZrHKb6tI555zDww8/XO1mKFWWouYa3Cm13kSP2RW7fMFme7lSSqmalE3kdCXQLiLHgT8GfADGmC8A3wPeABwGZoDi6SWVUnWhHNloNbhTar2JbLdbMXMrdgDxCXu5UkqpmmSM+eUlrjfAb1WoOUqpCjjQ28nBu44AdsVuMp4mGkvxjku3rfo+NVumUutNz7UQH7cBnnHtx/i4vVwppZRSStWEcmSj1ZU7pdabrl6bPCU/W+Yl79bzdkoppZRSNabU2Wg1uFNqPerq1WBOKaVUzfqzP/sz/u3f/g3HcfB4PPzd3/0df//3f8//+l//i3379lW7eUrVLQ3ulFJKKbWk/sEot/YNMzAeY2tLiAO9nSWvfaZqVIlrp95zzz185zvf4aGHHiIQCDA6OkoymeQf/uEfSthopTYmPXOnbKf9oz+Hmz9oPw71VbtFSimlakiu0G40lppXaLd/MFrtpqlyy9VOjY3Pr526hrHC4OAg7e3ts4XD29vb2bJlC1deeSUPPPAAAF/84hfZu3cvV155Jb/xG7/Bhz70oRI8GaXWPw3uNroydNpKKaXWl/xCux6R2c9v7RuudtNUueXXThWP/RhssZev0mtf+1qOHTvG3r17+eAHP8hPfvKTedefOHGCP/3TP+Xee+/l9ttv56mnnlrLM1BqQ9HgbqMrQ6etlFJqfRkYj9EUnH+SY62FdlWdiB6ztVLzrbF2ajgc5sEHH+TgwYN0dHTwjne8g3/+53+evf7nP/85r3rVq2htbcXn8/G2t71t1Y+l1EajZ+42Oi14rZRSagnlKLSr6kSZaqc6jsOVV17JlVdeyQUXXMC//Mu/zF5nS/oppVZDV+42ush220nn04LXStW1/sEoN95+iBu+/ig33n5Iz0WpNTvQ20k0liIaS+EaM/v5gd7OajdNlVsZaqc+/fTTPPPMM7NfP/LII+zcuXP265e85CX85Cc/4fTp06TTab7xjW+s+rGU2mg0uNvotOC1UuuKJr5Q5VCOQruqTuRqp4ZaYGLAfnzZh9eULXNqaor3vOc97Nu3jwsvvJAnn3yST33qU7PXb926lT/8wz/ksssu4+qrr2bfvn1EIvpaU2o5dFvmRqcFr5VaV/ITXwCzH2/tG9aBuFqTUhfaVXWkxLVTX/ziF3P33XefcfmPf/zj2c/f9a53cf3115NOp3nrW9/Ka1/72pI9vlLrmQZ3SgteK7WODIzH6I4E512miS+UUvXmU5/6FHfccQfxeJzXvva1XHfdddVuklJ1QYM7pZRaRzTxhVJqPfjc5z5X7SYoVZc0uNuohvrmb8XMnbFbeJmu6ClVVw70dnLwriOAXbGbjKeJxlK849JtVW6ZUqqWGGMQkWo3o2Zpxk5VrzShykZUqHD5nX8Kd35ai5krVec08YVSainBYJCxsTENYIowxjA2NkYwGFz6xkrVGF2524jyC5eD/Xh8xH6+5eK5y3K31dU7peqKJr5QSi1m27ZtHD9+nJGRkWo3pWYFg0G2bdMdD6r+aHC3ERUqXJ5OwMLdGVrMXKmq6B+McmvfMAPjMba2hDjQ26nBmlLLpH8/S/P5fOzevbvazVBKlYFuy9yIChUu9wbACcy/TIuZK1VxWqdOqdXTvx+l1Eanwd1GVKhweWMHNLZrMXOlqiy/Tp1HZPbzW/uGq900pWqe/v0opTa6qgd3IuKIyMMi8p1qt2XDyBUuD7XAxID9eNUfwVWfnH/Zyz6s5+2UqrCB8RhNwfk75rVOnVLLo38/SqmNrhbO3P0O0A80V7shG0qxwuUazClVVVqnTqnV078fpdRGV9WVOxHZBrwR+IdqtkMppWrFgd5OorEU0VgK15jZzw/0dla7aUrVPP37UUrVqv7BKDfefogbvv4oN95+qGxngau9LfP/B3wMcIvdQESuF5EHROQBTdmrlFrvtE6dUqunfz9KqVpUyWRPVduWKSJvAk4aYx4UkSuL3c4YcxA4CLB//36ttqmUWve0Tp1Sq6d/P0qpWpOf7AmY/Xhr33DJ+6tqnrl7OfBmEXkDEASaReTLxphfqWKblFofhvpsAfroMVvOoudaPU+plFJKKVUFA+MxuiPBeZeVK9lT1bZlGmM+bozZZozZBbwT+KEGdkqVwFAf3H2TLWfRvNV+vPsme7lSSimllKqorS0hJuPpeZeVK9lTtc/cKaVKrf8WCLbYchbisR+DLfZypZRSSilVUZVM9lQTwZ0x5sfGmDdVux1KrQvRYxBcUFkk2GwvV8smIgdE5GkROSwif1Dt9iillFKqPlUy2VMt1LlTSpVSZLvdihlqmbssPmEvV8siIg7wN8A1wHHgfhH5tjHmyeq2TCmllFL1qFLJnmpi5U4pVUI910J83AZ4xrUf4+P2crVcLwEOG2OeM8Ykga8Cb6lym5RSSimlFqUrdxudZlVcf7p64WUfnv97veTd+ntdma1A/j7W48Bl+TcQkeuB6wF27NhRuZYppZRSShWhwd1GNtQHd/4pTI9AOgEnn4ITj8BVf6SBQL3r6tXf4dpIgcvm1dnUGpxKKaWUqjW6LXMju/+LcOpZ+3kuAcepZ+3lSm1sx4H8Q4rbgBNVaotSSiml1LJocLeRHb8f/E3gC4KI/ehvspcrtbHdD5wjIrtFxI+txfntKrdJKbWOLZWhV0SuFJGoiDyS/ffJarRTKVXbdFvmRrdw81mhzWhKbTDGmLSIfAi4DXCAfzTGPFHlZiml1qkVZOj9qZaOUkotRoO7jax1Dzz/U0DAF4JAE7hp2PXKardMqaozxnwP+F6126GU2hBmM/QCiEguQ6+WX1FKrYgGdxtNLjvm0GMw8rRNEZGJQ3ISZkahbS9c+r5qt1IppZTaSJbM0Jt1uYg8ij0DfEOxHQWazVepjUvP3G0kQ31w90227llsHBBwk+ANQiBiz9ulpqvcSKWUUmrDWTJDL/AQsNMYcxFwE3BzsTszxhw0xuw3xuzv6OgoXSuVUjVPV+7Wq0L16/pvgWALhFpg6iRMDUMmBeKBTbvB3wgzY/Z2mkZfKaWUqpQlM/QaYybyPv+eiPytiLQbY0Yr1EalVB3Qlbv1KH+Frnmr/Xj3TXYrZrDZBnaJKGSS4PHZj5MnYOY0NLbZgFAppZRSlbJkhl4R6RIRyX7+EuwYbqziLVVK1TRduVuP8lfoYO5j9BjEJ2D0aWhoh+S0TaDi+Ozmj9godJ5vV/qUUkopVRHFMvSKyPuz138B+CXgAyKSBmLAO40xC7duKqU2OA3u1qPoMWjeyshUnMeORRmaiINxeZEftvpHaJkehVArhBO40eMk0oZYBsTrQ5KGlp5rq/0MVJ3qH4xya98wA+MxtraEONDbSU93pNrNUkqpmlcoQ282qMt9/tfAX1e6XUqp+qLB3XoU2c7Y2DB3H0szPpPC7xUazQwPxLfz1clX8zvmKIwMMmaaGZJL2eKbooUoU04LX0+9kWvNdnqq/RzUqlUrwOofjHLwriNEQj66I0GisRQH7zrC9Vfs1gBPKaWUUqoCNLhbJ/IH9Bd6L2Tv8/9EbNpHzITwJGdAprnNuZKBic0cz/wP3s0tDCeCTNLACDH2NHXRt/M9zDi7uLVvWAfjdaqaAdatfcNEQj4iIR/A7Ed9PSmllFJKVYYGd3UqP5jzO8LwRILtrQ10R4I8MNrNNyau4Rruo9uMMkAb/+ZeweFkN5npGIOeTrwtb+aCzE/p5iTH0+18NXMle3dspy3oZWA8Vu2np1apmgHWwHiM7khw3mVN+npSSimllKoYDe7q0MLVmbsOjTAZT9MVCeARH0OTCQZ8e/h8bBseETLG2IQpAi6QcuGe6W5+mP5F3OxVpOHQY4NcvD3Ci3a0VvcJqlUrFmA9ORjlxtsPlXWr5taWENFYajagBJiMp9naEirp4yillFJKqcK0FEIdyl+d8YiQyhjCAYfDJ20B8ql4ms5mPwYh7ZrZKqi5nFoGmEpkMMyvkJpIuzx8LMrezsYKPhtVSltbQkzG0/Mue2FsmmNjMaKx1Lytmv2D0ZI+9oHeTqKxFNFYCteY2c8P9HaW9HGUUkoppVRhGtzVoYHxGE3BuUXXcNCLABPx1OzXGSO0NvhwPALZ1TmfI/jyfuP5CZQ9gEfsNr5Dw9MVeR6q9AoFWI8ej5IxLj8/cor7jpwimc4QCfm4tW+4pI/d0x3h+it2Ewn5GIzGiYR8mkxFbSj92RXyG77+KDfefqjkEyhKKaXUUnRbZh1auP3t7I5G7nvuFOGgF9cYupoCDI7H2LelmceOR3ENOB7BuC4p12BSGdLu/FU7BFxjyLiGJ07ogKRe5QKs3HnMgCPEUhkiwQABn0MileGhF8Z50fYIU4n00ne4isfXYE5tRJotVimlVC3Q4K4OHejt5OBdRwB7nsrvddjR1sCWSJDBaJzdHWFe19vJoeFp4mmX/hMTJFIuKdel0e/FEUM07s4L7lwDybTdqHn8dIz+wagOSOpUfoB14+2H6GoOEktmGJlOkky7eAQeOjrO6y/ornJLlVo/NFusUkqpWqDBXR1auDqztSXExw6ce8YA4o3Y2eTP3XaI0akEx0/PIAhJIwXv1wDTiQyX7grrgGSdGBiPsSUS4L+fPYXP8RDwCvGUy/HxmJ6tVKqENFusUkqpWqDBXZ1a7va3L99zlNGpBMmMy5ZIiMlEmujp5PwtmXlSGZcdbY06IFkntraE+PHTk3RHgkwl0iTSLj5H6GgKcWh4mjdWu4FKrROaLVYppVQt0OCuzuXq3T05GCUaS9Mc9HL+lshshsKfHh6jJeSlKeAlGktxeiZJyi1+f7GUywtj0+xqD1foGahyOtDbybceHmBTyEskFCKRdkmkXV60PaIBvFIltHC7/GQ8TTSW4h2Xbqtyy5RSSm0kGtzVsdwBftd1eWFsBhFhYiZFg8/h4F0zNPg8bGqws8ixVIbRqSRez+IJUg3w2PEo77/yrAo8A1VOucDf64GhiQQNfoeO5iDnb2nG73XmrTAopdam0Hb5d1y6Tbe3K6WUqigN7upY7gB//+AEQZ9D0OcQT2UYmkywr7uZuw6dJORzODYeI51xCXo9QOHzdjm50E8HJPUtP3PfZXtaue+50yTTLtPxFD8/chqvR/jwVRrAK1VKmi1WKaVUtWlwV8dyB/gn4imaAvZXGfB6mIqniafSjE4l2dISYntLiGdHpplOZnDdYqft5kwm0pots87Nz9zn47yuFHc/e4qpRJq9nWG6I0Hu6B9hT0dYf89KqXUvt5Mht6p6oLdT+z6l1LqkRczr2NaWEJPxNM1BH4m0PUiXSLuEg14efmEc47o8NzrFsyPTiNhf9mLn7QC8HmFTg4+Ddx3RArx1bGGh+7HpFDtaQ2xpCXH5We3sag+XpZC5UkrVmtxOhmgsNa8Gob7HKaXWo6oFdyKyXUR+JCL9IvKEiPxOtdpSrw70dnLs1Azj00meG5ni2ZNTRGMpGrzC82PTIIJPbMAXS7nE0kuv2mVcw9kdOvCvd7nAP2cinkKAcF7Ap2nalVp/+gej3Hj7IW74+qPcePshDWCYv5PBIzL7ub7HKaXWo2qu3KWB3zPG9AAvBX5LRPZVsT1157mRKZ4dmeTkVALHI7iuSyyVYWQ6RaPfizGGWNrgeMC7+FG7WR4P9A9OEE+ldeBfh3IDuydORLn3uTGeH53CNQa/42EqkeHsjrnadpqmXan1RVeoClu4kwF0cksptX5VLbgzxgwaYx7Kfj4J9ANbq9WeetM/GOWmHz5L0OflnM1hdrY1sjkS4rJdrbjGEGnwEUu5CCAiyDKDO4CJeJr+wUkd+NeZ/IFdT3czezeHeXpoiqeGJujd0syOtgb8XgfXGKKxFNFYarZkhlKq/ukKVWELdzKATm4ppdavmkioIiK7gIuB+wpcdz1wPcCOHTsq27AadmvfMKmMS1ujHxEh6HOIJTM8cPQ008kMjkAmuwszk1l6O2ZOyoXTMykyZpq9nY1Lf4OqGfOTqMDujjCt4QCRkI+PXLP3jIQCmqZdqfUll2Qrn65QaQ1CpdTGUvXgTkTCwDeA3zXGTCy83hhzEDgIsH///uVHKevcwHiMtkY/ibRL0OcwnUgzOpUgYwztDT6OnV79m7kBOps0m2K9WWpgp2nalVrftraEiMZS82pY6gqV1iBUSm0sVQ3uRMSHDey+Yoz5ZiUec72kQ97aEiKVzvD08BQAp6aTuAa8Hg8NQR9NoTSnp1MskRyzqLM6Gme389Tjz2cj0oGdUhubrlAVp5NbSqmNoprZMgX4ItBvjPk/lXjM9XTY/EBvJx6Ph3M7wwS8HibjKRyPcNnuTWRcSLuGgNeWLF/BcTsAmvwexmZSup2nzuztbOTHTw3zr3c/z1fuO8r3Hx+kb2Cc0cm4Zs5TagPIrVBFQj4Go3EiIR/XX7FbgxqllNpAqrly93Lg3cDjIvJI9rI/NMZ8r1wPuPBMUu5jPa5O5W8z8XkdEKGrKcDujjBHT8WIJTOkMnaL5UqDu4DPYXQyrqs+daR/MMp/PjhALJUhlkqTiBlGp5IEHCHsd7hg+6bZyQwd7Cm1fukKlVJKbWxVC+6MMT9j5XHHmqy3w+a5N/H+wSg33fEMPz40wo8PjRBPpknm7cdc6UHFZMbl1HSKY6dmeMfr9pa0zao8bu0bZuB0jJlkBoMQ8gnJjEsiY7jnyCkOj0zPBvoD4zH+5M37dAColFJKKbXOVLPOXcWtx3TI/YNRPnPr0zw9PMWmBi/xVIakOz9qXmkEPZ3I0NHkp7M5oAFAnRgYj3FqJknGdfF6JFv30F6XTBtGpxIkUi6TiRT9J6L85pce4hPffEy3aSqllFJKrSMbKrg70Ns5W99rvdT6urVvmFPTScJBL2kXNjX4cQQ82X+OrG559MU7N5FcQQkFVV1bW0JkMoaMARFIpjOzyXQMkM4YRCCWdHGNoSXkpe/ERN2eOVVKKaWUUmfaUMHdejxsPjAeI5l2CXg9JNIujkfwewXX2OBOYMUZMzMGLWJeZw70dhIJecHATCJDIjP/+rSB8ZkkAD7HIehzSGZcLXBcgIi8TUSeEBFXRPZXuz1KKaWUUstV9Tp3lbbeDptvbQnxzPAkiWyAl84YGvxe0pkUjsdDMmNDO2FlZ++GJuJ1vaK50fR0R/jogXP5w288RqLIimvKBQdDLJXh6NgMHU2Buj5zWkZ9wC8Af1fthiillFJKrcSGWrlbjw70dtLa6GcqnqbR7xBPZUilDR1NAba3hvB7PQQcwbvC33QylVn6Rqqm7OkII57Ff9FGIJNxmUmmmU6kOTo6rSu0Cxhj+o0xT1e7HUoppZRSK6XBXZ3r6Y7wsQPnctmeVhzHQ1vYz462BvZtifCGC7awf2cLfsez4oyZGYOex6ozt/YNM5lIL3obj4DP6yHocwj4HA4NT+kK7SqJyPUi8oCIPDAyMlLt5iillFJKbbxtmaXUPxi1KejHY2xtCXGgt7MqWz57uiP8f79wYcH2ff3+F4inXdIrPHjnEWbPY62nbazr2cB4bDZDZiEC7GprZCaZYTqZpjnoJdLg25C/XxG5A+gqcNUnjDH/tZz7MMYcBA4C7N+/X7MPlUCt9KlKKaVUvdLgbpX6B6McvOsIkZCP7kiwJgtEf/meo0zE06y80h24BhLpNAPji68EqdrQPxjlhVMzi94m6BVOz6RoD/vZ3tpAT3czkZBv9vs30qDaGHN1tdug5quHPlUppZSqdRrcrdKtfcNEQr7ZwXHu48KVrkoNmgs9zsPHojT4HWKpzIoTqoR8Hp48McmV524ueVtVaeUGxSGvEPJ5mEmduXznAGkXorEkk/Eku9vCs0XqCw2qP3fbITqbAyQzZkMEe6r6ltunKqWUUqo4De5WaWA8RnckOO+y/MyD/YNRvnzPUX749Aiuawj5PDzT4KdvIMoNr9u75GBlJUHhdx8b4KY7nyXtGlobfSRTGQ7eNUMslSbS4GNsOrni5zeZSBOYqe8agBvFrX3DZDIuw5NJ2sJ+0tE4ybz4zpstdJhyDQL4fB6CfgfXGJ4bmeJf7nmBsakE7eEAZ29uBODI6DSjUwmu2Nux4VZQROStwE1AB/BdEXnEGPO6Kjdr3VuqT1VqvRORA8DnsfNx/2CM+YsF10v2+jcAM8B7jTEPVbyhSqmapglVVmlrS4jJ+Pwti5PxNFtbQrMrIQ88f5qZRJqMa5hMZJhJpjkyOs2X7zm66H3nvj8aS83bnlQouUn/YJSbfvgsCLQ2+kikXQ6dnOLUoy5meQAARYNJREFUVJzT00mOjs7gmpVvzEymDa84u21DDObr3cB4jKGJOBnXZSbpEg76cPIq1xtsghywBc79Xg+9W5tpDnq56c5nOTWVpLXBRzyV4cGj4zx2LEo44JDKGDwis6spG6UenjHmW8aYbcaYgDGmUwO7ylisT1VqvRMRB/gb4PXAPuCXRWTfgpu9Hjgn++964P9WtJFKqbqgwd0qHejtJBpLEY2lcI2Z/fxAb+fs9qKxmSQBn4eAz4PXAzPJDOGAw8PHFs9Amb89aanB9a19w6QyLs1BLyJC0Ofguob7nz/NVCJN2phVnLizyTfeffnOVXynqrStLSFOTaeYTmQwxtaxc/N+6Zm84N4YcF3DY8eiDEbjdrU37CeZMTaDptfD4EQcAcLBuYV9XUFR5bZYn6rUBvAS4LAx5jljTBL4KvCWBbd5C/CvxroXaBGR7ko3VClV2zS4W6We7gjXX7GbSMjHYDROJOSb3bY2MB6jKTswzi2gOB4hkXazZ98WD7fyvz+n2OB6YDxGW6OfRF46zLHpOPG0i0dk3iB/JUQ0+V+9ONDbidcjTCfTJNK2PmGh354AjgdCfofBiThj00laG32c3dFIIu0ST2XwO0LGNUwlMpzd0Tj7vbqCosptsT5VqeXqH4xy4+2HuOHrj3Lj7YfqqZzPVuBY3tfHs5et9DaAlmpRaiPTM3dr0NMdKTjw2NoSIhpL0dUcZOB0DBvOGRwRphIZLtvTuuj95r4/l1AAig+ut7aEGJ2M8+zINK4xhHwOE7EMGPB6hGRm5UGaAI1+LYNQL3q6I3z4qrP45H89yUwijUek6G0DXg8YQ8YFn+OhqzlIR1OQS3a0cHhkmlNTSba2hOhoCuD32nN5k/E00ViKd1y6rYLPSm1ExfpUpZajzjOuFuq4F76BL+c29kIt1aLUhqUrd2WQ2150VkcjzSEvGdcQT7k0h7zsaGtYcrvjSrYn7e1s5NmRaZqDXoJeD1OJNBljE7ikV7ls5/UIW1qCug2vjrzxwq18+i37aAj4igb0JvtfLGUzYH74NWfhOB6isRRt4QD7upu5YFuEz77tQj524FxdQVFK1ZWVHGmoQceB7XlfbwNOrOI2SqkNTlfuyiC3vejWvmFmUhmiMVsw+vwtkWWllM///ly2zHdcuq3g9x0anubi7S0MTSYYnYwjHiGdcUlmXDIrLFye0x72cVZHWLfh1Zk3XriV7z46yK1PDmOKxPUp12VLU4CuSJBDw9Oc19XInU+NMjwRp7M5yHsu3zH7OtNgTilVT+o84+r9wDkishsYAN4JvGvBbb4NfEhEvgpcBkSNMYOVbaZSqtZpcFcma91etNzvHxiPsbO9kXDQy0QsRVPQR0vQy7Oj06RWuXK3JRLEcTyayKAOnYqlFj1nmcxALJVh4HSMo2PTTMTTvHR3K5ftbmUynuaO/hH2dIQ1sFNK1Z2VHGmoNcaYtIh8CLgNWwrhH40xT4jI+7PXfwH4HrYMwmFsKYRfq1Z7lVK1S7dl1rlc+vDDI9MEvB6CPgef16Ep6CXk8+B3ip+/KubBYxOc19WoA/w6tJzkAeOxNB6BiViaWCLDsyPT9biFSSml5qn3jKvGmO8ZY/YaY84yxvxZ9rIvZAM7slkyfyt7/QXGmAeq22KlVC3S4K4EqpmdK/dmdmoqid8R4qkMibRLU9DH7rYGQn5vwRPYS6mzLGMqayaRWfR6vwfAMB5LkTGGoE8YmojPXl9HW5iUUmoezbiqlFIa3K3ZSgqOl0Puzaw17OfUTIqgz2FPewOJtMvx8Th+B3yrWL2Lp6no81AlskimTLBJVXzZshwBr4eFuVfqZQuTUkoV0tMd4SPX7OVzb7uIj1yzVwM7pdSGs2HP3PUPRuclLFlOopNC8rNzAbMfK1lGoKc7wp+8eR8H7zqC67o8NTRJMpVmKp5mkiJ5kpcht0VP3xzrR9DxkMoUX71LueA1Br/jocHvEI2l2BoJackDpZRSSql1YEOu3JVytW0lBcfLKbeCNziRYHwmSTSWQQDPavZkZukWvfoT9C/9J51MG/yO0OD3sq+7mf27NukWJqWUUkqpdWBDrtwttdq2klW9WsvONRlPMRHPkDEGAUSEonnxF7E57NMtenWmfzBKMgMhnxBLnfk7F+wWXZ/jYf/utjWtWCullFJKqdqzIYO7xWrh5Fb1IiHfvFW9YisaB3o7OXjXkdn7WO7WtlJtC82/v4N3HcHveEimMrjYwfyiefEX8dI97bpFr87c2jdMV1OAZ0dTRW/jeITzt0b43NsuqmDLlFJKKaVUJazbbZmLZbDMlQ/Il1ulyl/VW056+ELZua7u6eDWvuGi2TPLkYQl1+6tLUFytcsNqz9v1xT06ha9OtI/GOWWRwc4Pj5DukjxegPE0y5Xndde0bYppZRSSqnKWFFwJyI+EblYRDaXq0GlsFTwtFgtnNWcocvPznWgt5M7+keKPnb/YJQ//vaTPH48ypODE4xNJUpSX2xgPEYinebJExNLJUxclplUkQhB1Zz+wSifufVpTk2nSBaL7LKMgc/d9gwX/cltfOBLD6yrbKj10j8ppdYH7XOUUrVo0W2ZIvIF4CZjzBMiEgHuATJAq4jcYIz590o0cqWWOlOXW23L3xb5jku30dMdWfMZutxjpzIZfn5kgol4Cr/j4cv3HOVXLt/JwbuOMDaVoLXBRyKV4aEXxrlkRwtt4cCKkpcs3NYZcISfP3+KU9PJVdW1WyiTcTVTZp24tW+YU9NJmoIO47HiWzJzHA8k0y4/OTTCI8dO07uthX3dkbo7f1ev/ZNSqj5pn6OUqgdLnbl7pTHm/dnPfw04ZIy5TkS6gO8DNdmRLXamLicX5C202jN0+Y/tc+DhF6IEvB6aAl7iqQw/PTwG2ECzPRwgnsoQ9DkAHB6Zxu91lhVA9g9G+fI9R/np4TE2Nfjo6W4iGktxIhrnRDRGxjX4HCGTXu2GTGtoIo4/2z5V2wbGYyTTLvFlrrYK9iimMYbxWJroTGrJs6U1qi77J6VU3dI+RylV85balpnM+/wa4GYAY8xQuRpUCoudqVtKoTN0Kxnwbm0J8eSJSQJeD0Gfg4ggImxq8PHwsShNQS9nb24kkXaJpzL4HeHUVHJ2W+hicttN+05M0BKycfkjx6Ik0xmaAl7SGZvmPr3KJCr5BqNxzZRZJ7a2hMi4dnvxcsTShmTaxTWGVMZlMpEuydbgKqjL/kkpVbe0z1FK1bylgrtxEXmTiFwMvBy4FUBEvMCaR/4ickBEnhaRwyLyB2u9v5zFztQtR/4Zuo9cs3dFKxkHejs5PZMCYzDGEE9lSKRderqbMNhC0e3hIC/e2ULQ53BqJkVr2L+sADK35TOZcQn6HII+h4DXw6PHoxwansLrAQxkSnBcbjK+/J+Xqq4DvZ0k08ULlxdisK8TY8DJHtKsw7qGZe2flFJqAe1zlFI1b6ltmb8J/BXQDfxu3uzUVcB31/LAIuIAf4Od/ToO3C8i3zbGPLmW+wUWPVNXbj3dEV5xdhtPnJhgKpEhHPRy/pZm/F6Hi7e3zK6utDYG6Ol2iMZSy14ZzG03bQ76Zrd1BrweBkanaQp48Xo8+BxDIrP2lbtGv1NP2/M2tJ7uCOd0NZFKZzgxkVx2hlQDeB2IpzLc89wYp6aStIb99A9G6+V3X7b+SSlV30pdbihL+xylVM1bNLgzxhwCDhS4/DbgtjU+9kuAw8aY5wBE5KvAW4A1B3dQ/ExdJbw7mzglEvLNO7d3/RW7AVYddOaSvZy9uZEHj47bC42Z3ZLX0uBjMJrBEVhrfKfn7erL5nCAx4zQ4PcwnVze0q1XIOA4jEwm8DoeHA90Nwfq5uxdmfsnpVSdWmm92uXSPkcpVQ+WLIUgIq8XkZ+IyKiIjGQ/f0MJHnsrcCzv6+PZyxY+/vUi8oCIPDAyMlKChy2/xc7trXXLZzSWwuc4XLzDft/pmD1L2BhwSGUMHhFCfmfNBQxTqZVt81PV0z8Y5UQ0zmQiTXIZSVV8jtC7pZlzu5tIZFwkW89x/65N7GoP19XZuzL2T0qpOrXSerUroX2OUqrWLVUK4Tew2xA+BjyQvXg/8Bciss0Yc3ANj10oY/8Z603ZxzgIsH///rXvN6yQcqwczt9umubKczdzoLeT50am+OR/PclELJktXC6IB1jD2bvhySTffWyAN154RrytasytfcPsbGukbyDKWHLpoDzo9dDgd5iIpwn6vBzo7aSzee64SL2cvStz/6SUqlPLyZi9GtrnKKXqwVJn7j4CvMIYcyrvsh+KyOuBn5ENulbpOLA97+ttwIk13N+GsDBo7B+Mckf/CL1bmvj586dJZQzJtFnzyp0xhpvufJY9HeGa35630eUGMo0Bh7FpCkyRzBf0OZyaTuH1CC/f00rQN78bWEldxyorZ/+klKpTa61Xuwjtc5RSNW+p4E4WdGIAGGPGRNZcKvt+4BwR2Q0MAO8E3rXWOy2HMh3MLsnj5baf7GhtoMHv5e5nx5hKpBFhTSt3GQOnphNayLwO5AYync0hBk7HWKwShgANAS9vvLB7Nhtqfl3HF8ameXp4im2bQtx4+6FaL2xezv5JKVWn1lqvdhHa5yilat5SCzwTInLRwguzl02u5YGNMWngQ9hDyP3A14wxT6zlPsshdzA7GkvNO5jdPxiticcbGI/RFLQx+t6uZra3NtAW9mczaa7+zcYAk4l0XWzP2+hyZzFDy/h9+73CdS/aOnveM/986FNDEzw9NMXezWF6upvL/lovgbL1T0qp0usfjHLj7Ye44euPcuPth8rWt6y1Xu0itM9RStW8pVbufg/4toj8E/Agdsx/KfAe4FfW+uDGmO8B31vr/ZRT/sFsYPZjuVa0Vvp4C7efuAZaQj4yLniMIbHsxPhnSmZMvWzP29B6uiNc3dPBTT98Fr/XQ2qRbJl+x0ODX7jx9kM8ORglGkvTHPRy/pYIHeEAW1saKvZaL4Gy9k9KqdIpVwbLYsqUMVv7HKVUzVuqFMLPROQy4IPAe7G7up4AXppX36XuLbYNslwHs4tZ6ePt7WzkpjufJe0aWht9pDIZRiaTbG4KcOx0ek1tcV2jhczrxKHhaV66p41kOsPA6VjBWocBr7B3cyNfvvcYZ3U0MhiNIyJMzKRo8Dk8cjzKy85qnXdOpZaTq2yU/kmp9aDSE6XloH2OUqoeLLVyR7bD+mQF2lIVS80mlvFgdkErebxcMpVzu8IMRuOMTSfJuAaPGIxxSWXWcOgOCHqpmzfdjS43KTAZT+Ma8Ajzzt75PfCLl2zj8Mg0jQHDoZNTdIQDBH0O8VSGockEmxp89A9OzsucWevJVdZ7/6TUelHpidJy0T5HKVXrliqF8DiFc+8JYIwxF5alVRW01GxiGQ9mF7SSx8tv+672MADRWIqfHjrJyHSqYK2J5RKgu6VhDfegKik3KRBLZUgXyKji93roaAryyLEoTQGHwWiMbdmgLeD1MBVPc9H2Zv778CmisVRFXutrtRH6J6XWi0pPlJaD9jlKqXqw1MrdmyrSiipaajZxfm05u23zHZduK9uK1koer1jbXWyh6rUUBQx4hcv3tK3hHlQl5SYFkunCde5mki63PznMeCxJLOmhMeAlkXYJ+hwSaZdw0EvA6+WVZ7cRCfkq8lovgXXfPym1XlR6orRMtM9RStW8pc7cHV14mYi0A2PGmLopKL6Y5cwmruZg9lrKJyz38Yq1XYBkKoPP8ZB2V7c10+t4+JXLd67qe1Xl5SYFvvf4CXITyx6AvO2ZjX4Pp6ddjk8kaA55OXZqhkiDj4DjsLO1gWgsVbbkBuVQrv5JRD4LXAskgWeBXzPGjK/2/pRSlZ8oLYeNMCZSStW/RUshiMhLReTHIvJNEblYRPqAPmBYRA5UponllUsjH42lcI2Z/XwtiURKXT6hWProYm1v8HsxCOGAd1np8QvpaArU1ZuusoOnSNA3u2JrmAvsvI4wMpUgmYGOJj8Br0NjwMtELE1Lg5fdHeG6CuygrP3T7UBvdovVIeDjpWivUhtdT3eEj1yzl8+97aLZciz1ZCOMiZRS9W+pOnd/Dfx/wL8DPwT+pzGmC7gC+PMyt60iylEPJ/8snEdk9vNb+4ZXfF9LBYohn4f7joxxZ/9JUukM11+xm65IEBF7/i5VIGvicpzX2bSq71PV0z8YJZlx8Qo4HptUBcDBniXd3Bxi26YQ2zY14PcK3S0hNjX4cZFaL1ZeTFn6J2PMD7J1OAHuBepq35hSqmzW/ZhIKVX/ljpz5zXG/ABARD5tjLkXwBjzlMha0nXUllLXwyllVrBiCV++fM9RZlIukZCPq3s6Z88vAJy/JcKhoUliiQzpVW4UaW30r+4bVdXc2jdMOODFAOmMS8Y1kDE4Yldxp+JpwgGH0zNJJuMZIqEMmxq8jE0lylpvqowq0T/9OvAfha4QkeuB6wF27NhRqsdTStWuDTEmUkrVt6VW7vIPbC2MTHR/eRFbW0JMxufXmFttVrCB8RhNwfkxeFPQy8PHogVXB798z1FGJm1ZBLOGX9HwZGLV36uqY2A8xpaWEJubArQ0+AkHfbQ2+nE8QnPIRzjgMBFPc2o6RXvYT9DnkMwY2sOBVa8sV9mq+ycRuUNE+gr8e0vebT4BpIGvFLoPY8xBY8x+Y8z+jo6O1T4HpVT90DGRUqrmLbVyd5GITGDT/Iayn5P9Olj82za2UmYFK5Y0xWDOCPoS6TT/ffgUrzlvM7vaGugfmlz1cxiOxlf9vao6traESKUzTMTThAOCMWmmEmkCPg9bIkFSrmEinqbB79Ac9BJPZUikXXq3NtdlvSnW0D8ZY65e7HoReQ82M95VmihBKZWlYyKlVM1bdOXOGOMYY5qNMU3GGG/289zXvsW+dyMr5Tm+YklTLt7ecsbq4JMnJgl4hScHJ4jGUqxlSHpqWlfu6s2B3k48Hg9dzQFGJhNMJdL4HA8XbYsQ9Hv5vdfu5cZ3XER3S4hTMymCPocX72yhPRysu3pTUL7+KZsY4feBNxtjZkrXYqVUPdMxkVKqHiy1cqdWqVTn+IqljwbOWB0cmogT8jmMTyeZSWZwsHvKViN3fk/Vj9xr5Y+//SStjQFaw37O7miko8km4vnSPUfpaAoSCXmZmEnR2RSgtTEwO2FQZ/WmyumvgQBwe/Yczb3GmPdXt0lKKaWUUkvT4G4Ra6lVV0rFAsVc0PfEiSgT8TSJVIZMxiACGIPjCOlVZstMra48nqqynu4IzUEvGMNUPM3hkWkAXGO4+1m7Zfe8rmYafA5PD08xk8pw/pZI3dWbKidjzNnVboNSSiml1GpocFdErgRBJOSbV4Kg1jIKjk7GOTQ8xaYGHw1+h4lYipmkC7J0tpzFeDTxV13qH4xy/LQ9O9cc9JJIZXjohXFc17CpYS7r6q72MJsabSKVj1yzt5pNVkoppZRSJaLBXRFfvucoz438/9u79+g27/vO8+8vQJCAeAEtiSJ1teTrSpbtRJHduJlm6sZxFad20nRy6W5Tt82M2mTi7XSbk6njszPd9nSTNp315qTNbrVJ5vRM0ulk2tqJ61iJnXHjXmLXduILbdqOLUuWKFKiLgRFESBx+e4fDyCBNEiCJO78vM7hAfngwYPfw+cB8Hzx/f1+30lmsjl6ohGu2NB5YUbBlQR3C2UDl5IpLASfh8Ym6Y0Fh/H8TDD9vYUgu8LMW2dHeGUbkLo4OHiCge52nj9+jhP5brrgnD6fZmO8g8cPneaKDZ2s74o26yQqIiItx8zWEpRd2Q4cBj7k7mdLrHcYOAdkgYy7761dK0WkGawkudOyhkYS/P2rp3F3ujuCWQWfPjLOdCbDC8cT3PvwK3zqvz/LvQ+/cqGYeLnbna8g+WLFyucq1L+byeaIRsJEI2HCBjmMeDRCiJXNy3z5+q4VPFrq5YXjCUYnZljf1U4sEuJcKs2pyRnaQhCPRi6cy6cmU005iYqISIv6HeB77n4l8L383/O52d3fosBOREpRcFfCwcETXLImgplhZkQjYTraQjx1+CzHzibLDsBKbbdUbbqDgycWvK+UQv27nmiE6UyQpjODSNiYzmSBlQV3b798/QoeLfUykcqAQe+adrau7aQnFmFNexux9jDT+fGX7WFjcDiYUXXf7v46t1hERID3AX+e//3PgffXryki0swU3JUwPJ5k58ZupjM5Uuks7g7unJiY5ur+rrIDsFLbLVWQfHg8ueB9pRQKpV+xobOonTCTzhEJh4nHVtbjdk27Bt01o3isDXe/cN5OzWQJGfREI+zZ1ktHJEw668xkcw03flREZBXrd/cRgPzthnnWc+C7Zva0me2fb2Nmtt/MnjKzp8bGxqrQXBFpVAruStjcGyMaabtwMTw5nQUz1ne1s21d56x1lzJuqRCQFSt0jVvovlIK9e8i4TBv3RZcoE9nsrRHQrSF4WxyuUUQAvf9aGRJXU6lMezaGGdjTwenJqd5+cS5oFB5Oihs/urYea7o6+QnLlvHrbsGFNiJiNSQmT1iZoMlft63hM28w933AO8B/q2ZvbPUSu5+wN33uvvevr6+irRfRJqDgrsSCoFTe1uYn9ixlht3rOWyvi5uumzdkgKw+bY7tyD5vt39C95XSnGh9HQWfvrqDdx0+Xqu39zDqcmV16g7M5kqOyMpjeOq/k5eOzVFdzTClt4ojjOVznE+NcPhU5M89sopjpw+r+6YIiI15u63uPvuEj/fBE6Y2UaA/O3JebZxPH97ErgPuLFW7ReR5qDgroTiwGkkkSIei7D/nTv4pZsunRWAvT42yeOvnebFkURZk6vMt91CHbv57ltoe7/17qv42L/YDsDx8RQ/OpagEh0qz01neeG4MnfNZGgkwZ//4A0AzqXSHDk9hbvR1R4mHA66Y05OZ4hFQsraiYg0lm8Bd+Z/vxP45twVzKzTzLoLvwO3AoM1a6GINAWVQphHOYXDj51NcvVAF9vWdZZdB2++7S5233yK6/Fdv7WHV0YnlvT4hUykVta1U2qncB6cnpxmoKeDmaxz6tw0a9rDhEPGVDpHOGSEDIZGztW7uSIiMtvngG+Y2ceAN4APApjZJuDL7n4b0A/cZ2YQXL/9hbsfrFN7RaRBKbhbpuHxJB1tIbqibRcmVwFWXAdvqYpn2YQIl3S2c/r8DL6SqTKBdCanQuZNpHAerO/qIJXOEo2EwSCZzuJAW8jAnYnpDGfPp/nM3zzHR2+6VBk8EZEG4O6ngXeVWH4cuC3/+yHg+ho3TUSazKoP7pZTODwei4CDu/P0kXHedmkvAD8+McmJc9MAC26nkobHk2yMRzk1meLVk+dpD4dWVgMhLxoJkavAdqQ2CufBFRs6efrIOADdHW2cmUoTCRmRcIhz08GMqt3RNl44PvGmTPNSXgsiIiIi0nhW9Zi75RYOj8cidMeCOngdbSGePZrg6SPjTKQy9Hd3LLn+3Ups7o3xxunzPH1knFQ6S29nhPa2IOVm+Z/lyDr0RFd97N80CrOtru+K8rZLe4Oi9iEDh5wHY+3cc8QiYTb1RklnfVYZj6W+FkRERESk8azq4G65hcMBrugL6svhzkjiYimEKzZ0Lbn+3Urs293PyycmAehoCzF2bppoexvdHWE2xjvY1Btd1kFOZ3L0d3dUtrFSNcWzra7t7CAWCZFM5+hoM9rCQYgfDoXo624nHAq6ExeX8Vjqa0FEREREGs+qDu6WWzgcoK87yp5tvWBGJhdkufZs66WvO7rodirhweeG+dCf/YDf+NoPGUkkSWeyTE5nyTlsjkfpjkZIpnNMZ4IL/CXzivTulBopnm31pdEJnh+eoKs9TFc0Qjb4DoKwwblUlulMjiv6OmeV8Vjqa0FEREREGs+qDu6WWzi8UAqhvS3MZX1d/Ny1A+zaFL8Q2C22nZV68LlhPvfQy0wk02zoaicSCnF8PMlMJgvAqckZwiEImRE2o70ttOTJUaIdYWayCu+aSaE0xq6NcSJh48zUDOdSGYwguJucyXF2aoZL18ZobwvPqqO41NeCiIiIiDSeVR3craRw+EL17xbbzkr9+Q/eoLOjLehCFwrRu6aNdC7Ivmzobic5k+XsVJqr+zvpiQX39Xe109le/uEOmenCvkm9OJIgkUzjQMggk3OcYPxlzp1/eO0Uj71yknOpNAcHTzA0kljya0FEREREGk9dZswws88DtwMzwGvAr7r7eK3bUQjWimcI/PANW5ZVp26p21mJExMpNnS1X/g7mc7REw1zfiaHY2xbt4Z0JsfZZIbbrt3Emnbjey+d4tiZKcKWZmI6u+D2wwaZbE4X9k0qkczkM7VGOpvDi7rYRttCGCHOTKW5sat9Vn3GWp7DIiIiIlJ59ZoO8WHgbnfPmNkfAncD/74eDVlO4fBqbqec6ej7e6JMJNPEY0EmbjqTA4x1Xe3s2dbLqyfPk8jNYBhX9XfyyNAYuzb2cHnfGp44dBYnxeR0dt4xdeEQDMSjurBvUj3RNsKhEOl0hnTu4vIgcwddHSHSWefQqSluumwdEEyo8lvvvkrHXERERKSJ1SW4c/fvFv35OPCvKrXtRqrVtdS2FNfRK56OvrgWGcCdN23jcw+9DEB3Rxh3mMnk2LWpm6ePjNPRFqIjHAIzPn/wZToiYdLZHGP5Gny5fDe9+Rn/00B3Bf4DUmtDIwlGEilS6SwzJRK0M9kcmawTjYSYzI+xm85kePjFMw3xmhERERGR5WuEMXe/Bjw0351mtt/MnjKzp8bGxhbcUCPV6lpOW8qdjv69123md95zNT2xCCcnZxiIR9m1qYdzqSzt+Wnvp7POpniU0+dnGBlPcnw8xfmZLMl0lvPF6ZxSPJiURTXOmkvhnDszmSJdYjKcSAgi4RDnZ7J0d0ToirZxajLFE4fOEglb3V8zIiIiIrIyVcvcmdkjwECJu+5x92/m17kHyABfn2877n4AOACwd+/eBRNOxcERcOH24OCJmmciltOW4fEkG+PRWcvmm47+vddt5r3Xbb7w99BIgv/tG8+CQ3esjWs29fDq2HnaQkYilaGjLUTYgm55i+mPd3Bqcoav/eAIf/CB68rdZamzg4MnyGZznJnKEAlDOntxrJ1BULIjFub8TJZszrls/RoGhycw4JpNPRe+UChsS9k7ERERkeZSteDO3W9Z6H4zuxP4OeBd7l6ROfeXEhxV20Jtma+75ubeGIlk+sIFNpQ/Hf3OjXFu3TUw6/HPHE1gGDiYBVmbVGbhrF0kZMRj7YQMfnRU2ZtmMjyeZHQihQHhcAhwcu64Q1sYQhaid00HA/EQ122JM5N1ZrI5bthxyawyHqpvJyIiItKc6tIt08z2EUygcoe7T1Vqu41Uq2u+trSHbd7umiudjn7u4yNhYybn9MTaMAyHYCzegpwT+QBhsZF50lg298Y4cz5NV0eYbM4JhSCXj+U9Z2y5JMa1W+J8/oPX8X9+4Dr++IPXc+uuAaKR2d/xqL6diLzJ6CA8+lm4/xPB7ehgvVskIiIl1GvM3Z8A3cDDZvaMmf2/ldhoI9Xqmq8tBvOOq5uvjl653ePmPv6aTT30dbVzSWc70UiISDgEFpQ6mE/IjEQyzenJGd66tbci/wupjX27+2kLGV0dbXS0hTGMcNhoCxltbcYN29e+6XxqpNfMqqALZGlGo4PwT1+E5Dj0bA5u/+mLOn9FRBpQvWbLvKIa211O3bpqma8tX/mHw6ztmv1vL+4Gt9KSCsWPHxpJcPb8DP946DTpdJacQ1vYiISNnkiIRCr7pjF47k44HKKtzfjoTZcuux1Sezs3xrnrXZfzxf/xGj05J+cQDhmd7W3c9a7LZ43RLH5Mo7xmWl7hAjnaO/sC+SfvgoHd9W6dyPyGHgjO21hv8HfhdugBnbsiIg2mXnXuqqZS9eYqoVRbVjKurhyF8XwvjiQ4ejrJVf1d3LZ7gEdfGuP8dIYd6zvZujbGE6+fpTMC59NZwsaFemjpHGzojnBlf3fD/B+lfO+9bjOX9XUtqQRHI71mWpoukKVZJY4GX0gUi/YEy0VEpKG0XHDX6Pbt7ufAY68DQcbuXCpDIpnmwzdsWfG2i+vkJabSYPDKyUn2bOtlXVcH/T0dxNrbuLK/h5dGz5EMG1PpLOkchPLdNd1hPJkhElqg76Y0NAVrDUoXyNKs4luDTHPhCwmA1ESwXEREGoqCuxqrVje4oZEE//FbL3J6cpr1XR2MTU7T19XBdCbH88MJEskZzk8HE7xMTWeYSGWCWTTzj3eHjEM4BKGQceSMZksUqShdIEuz2nl70IUYgi8kUhOQGoc9H61rs0RE5M0U3JUwX6mCSql0ZuVi8eoZ1q6JkEpnmUhmiIRCtLcZR88m2dDdwUQyzXQmxxtnpuhd08ZoYppMfsxdYehdLgdd7SEmpzPzPp+ILIMukKVZDewOxoYOPRBkmuNbg/NW3YlFRBqOgrs5irs2FpcqWMqslbVWKJi+tqud6XSWaCTM+q52Tk3OBDXPgIlkhqnpLBhMpbPMnMuRzs6eTSUSCiZcOZvMcO26rrrsi0jL0gWyNLOB3TpXRUSawKoK7srJyBUCpcKEJzOZLIfGJvntbzzHu3f1VzyLVwmFgulX9HXywzfGAeiJtjE1k+HM+Rky2RyWzpKzoPZFLuuksm+uYpfOQTbnWAjuvGlbrXdDpPXpAlma0ejg7C8ldt6u81hEpEGtmuCu3IxcIVACGDuX4p9ePUUynSWVyfF3L5/kuWPjfHrf1TUN8BYLSgszcPZ1R9mzrZdXx85zZnKGjb1riIRDnJqcIZvLEc5n6rIwb3nyHLA13lFy2nxpDsUzpiaSGXqibVyzKd6QX0yISINTCQ8RkaZSryLmNVeckZtbPLzY5t4Y51LBeLNnjyUYT2XI5qCzPQzAG6en+C8/OFKzdheC0kQyPSsoHRpJXFinuBD1uq4Odm3s4dotcf6PO3YxnckxnclyfiZHNj9pynyBHQQTrOzepACgWRXOl8OnJnnj9BQTyTTHziR5fWzyTeeNlGZmv29mz5nZM2b2XTPbVO82idTN0AOQzcCJ5+Hlh4LbbCZYLiIiDWfVBHfD40m6o/MXDy8oDpROJFJBeQBgXVcH0UiYro4wPzo6XrN2lxOUFmbgjMcijCRSxGMR9r9zBwCT0xnaLAjaFgrqCuKxNjqjkcVXlIZUOF9GJ6aJRsLEYxE6IiFGz02X/DJDSvq8u1/n7m8B/hb4D3Vuj0j9jDwHYy9COgUd3cHt2IvBchERaTirpltmucXDi0sVpHM5OsIh+uNR1rQH/yoHdmQOw6P/WJPxB8XdRAtKBaWlZuC89+FXGOiJcvj0FJEw5Nxxh+J5VIygxt1VHGFf+EneGpskMnEpjIbV5aYJFc6XiVSa7o7gnO1oCzGZypQ8b+TN3H2i6M9OyvteRKQ1TSeAEETyn0ORKGSm88tFRKTRrJrgbinFwwuB0qlzKX5w6AwhM9yd6UyOvqlX+dcdD0Fyx8XxB9/7veD37PTKg705A9eva7uOQ6ntiwalpQyPJ3nrtl6Gx5Pkck42Z2RxzKGrI0Q668xknavsCL/e9m3SkR6mYgPcEM9oTEWTKnyJ0RMNSmJEI2GmMzm68ud8OeeNgJn9AfDLQAK4eZ519gP7AbZt0wRE0qKicZg6G2Ts2jqCwM5zwXIREXmTapdUW8yq6ZY5X9fFWf/s0UF49LNw/yfg0c/ysaum2LG+E4CJVBqAO9qf5tItm4JCxBaC7AycOQQjz84ebD46uPRGFgauJ8cvbOuOqb9mzZmXSCTT5NwvdBndt7t/0c1t7o0RjbSxfV0nXdEI3bEI6zo7uLyvk77uGFcP9PChvVv45fjzpCM9rF23gbdtX8u6df3B4HmNqWg6hW7FAz0dpNLZYKxm8jV+Zfq/8p7Xfp//JfX15Z2bLcbMHjGzwRI/7wNw93vcfSvwdeCTpbbh7gfcfa+77+3r66tl80VqZ+A66L8myNhNnwtu+68JlouIyCzlzJVRbasmcweLFA8vMSPYZa/8Z+7Z+6t8c2TDhej7nWPTXLJ248XHnXo5GIeQnQmCvVhvsHzogaVnvYYeCJ6/sI1YL73Ar2Sf4+vRay+04cM3bCnrG4B9u/t54DuP8Am+T5hjnAxv4B/a3k5003VMTmfp7+lgJutc2z1B/5bL6etec/HB0Z4geyhNpbhb8VQ6S0/iFX4h/S2iHevYuvFK+sIpZWUBd7+lzFX/AngQ+I9VbI5I49p5e/Ce0X9t8LmQmoDUeLBcRERmmVtSrXB7cPBEzbJ3qyq4W1CJwArgstf/G7/VtQEiR6FtK3R3BR9uhfVSExCKBB96BcsNjEafC7J20+eCbay/GjrXs2FimN9691VL3txOO8rGyIMc6mjjWHaAtelJ7rQHeDXaxw0//S/YaUeD/T51BEZHwK6Hrg0X9yu+den7IHU360uMRx+B5BUXz1fyAfxyvnxYJczsSnf/cf7PO4CX6tkekboa2B18GVRc527PR/X+ISJSQrlzZVSTgruCxNEgY1csk4LXvw9X/uzFLpcTx8lPqxIEYOF2mJ6ATW+5+LjlBEajg3D2CGDBdtMpOPoEbNgF6y5f3j4NPUDvJX3s2dTLnsKy5Dg/GXsO7NKLmcrNb4Mj/wiH/x4ufQe0RYNvZvd8dHnPK42j1HmtrOxiPmdmVxOUfTwC/Ead2yNSXwO7FcyJiJSh3Akcq2nVjLlbVHxrEJQVG30eYmsvjq+L9cIl24OL5VgvTAzDxuth7eVBkOe5IABcTpeVoQegb2cwfWVm+uLA9df/Lphy+tHPLn2sVOLo7IwiXLywf/IrcOrHQVB3+sew4Rro6IHhp4N9W+Xd9lpGqfNaWdkFufsvuPvufDmE2919uN5tEhERkcZXXFJtqXNlVIoydwWFcQVwcVxB8gzs+Jez14v2BEHdzXdfXDZnhstldVlJHIV1lwXbP/UyTJ4MAsX2zmBbhYlaioOuuc87d5bO+NbgcRe65BHsV7gDDj0K0UuCoPX0ITjxAvReCr1bZ++bNJ/i8yLckc82b589XkZZWREREZGKKp77YKlzZVSKgruCUuMKLrs5yMgVK5X1WGmXldFBOHsYjj0FneuDsXYQXJjH4qUnaikxAcybgr9SAWtqHCJrgoxkegrOjUA2A54JMnkzk8G2lbVrTnPPi9QE4MGEPxPDF798gCAbXINajSIiIiKrxYITONZAawd3C2W25ruv+AK3cKEM1ct6FJ6jayMkz0IyAW88DunzQdauEOgV2lAYKzXPBDCzJsooBKxPfgVefihYtuUGmByFgWvhxfuDAC8UAQtDNg2ZmWD92++t3D5K7ZQ8L3YEt4WMbDlfDIiISM2Y2QeB3wV2Aje6+1PzrLcP+AIQBr7s7p+rWSNFpCm07pi7EjXjLtSfW+i+YoXgqDC+rhpj0QoX4+uvgK1vDzJ1ng3G7/Xtujh7JczOGi40nm6u9FQwUcrV7wkykWePwMx5yGbBPZg4JjsDHV3Q1QfHnqzc/kltlXNeFAeAhayw6hqKiNTTIPAB4LH5VjCzMPCnwHuAXcAvmtmu2jRPRJpF62buFspsweJZr4JqzxJWPJth14bgx3NBoBluCwLPUlnD+cbTze0yWvx/mDwZjOebnoRXH4ZsKsjYhdvzAaXDzBSEI0iTKue80AyaIiINxd2HAMxsodVuBF5190P5df8SeB/wYtUbKCJNo3Uzd4UMxuTJYIr/lx4M6siNPre0rFe1zTeb4cbrFs4a7rw9CPaS4wvP0ln8fzj6RFBioWcT5HKAQS4b3Hb0QKgtWG/LDdXdZ6mecs4LzaApItKMNgPFFyrH8svexMz2m9lTZvbU2NhYTRonIo2hdTN38a1w+jU4+WJQt62jO5/9SkDXQPB7dibIZKUmguzVxutr3875Jj0pzLg5X9aw3MKyhUzOqZeD/0MkGgR4kSh0b4KpE8HybAZCYWhrhxs+Vs09lmoq57xY6JwTEZGqMLNHgIESd93j7t8sZxMllnmpFd39AHAAYO/evSXXEZHW1LrB3c7b4b5fB+xizTgD1u8M7j97GM68Bu3dQTfE6YkgQ1brmSLLDdLme+xi6xUu5M+fys+QmYLsdJC9sxD4Oujunx3galKN5rbYebGSc05ERJbF3W9Z4SaOAcVdLLYAx1e4TRFpMa0b3A3shvg2mB6H1LkgQ7Hx+qDUwMRwENycHwuyd9Ee2PiWILgpjMlbqH7cQharPbfU9VaqcCH/0KeDAK9z/cUM5eG/h2g8mGylkL1R1m51qPZYUhERqbQngSvNbAcwDHwE+J/r2yQRaTStG9xBMG5t7uQSyfEgmEochSveFWSvCjwHI88FWb35polfrLxCOVPM13oq+oHd8J4/uvicha54ay8Lnr+4/pku+EVERGrKzH4e+CLQBzxoZs+4+8+a2SaCkge3uXvGzD4JfIegFMJX3f2FOjZbRBpQawd3C40tGnqg9KyC0wno3Tb/LJsLBWXl1J4r/F3ubJ2VUrIr3n9QMCciIlJn7n4fcF+J5ceB24r+/jbw7Ro2TUSWaGgkwcHBEwyPJ9ncG2Pf7v6aFjVv7eBusbFFpQK/aHz+mTQXC8rKnWK+XlPRqyueiIiIiEhVDI0kOPDY68RjETbGoySSaQ489jr737mjZgFeawd3MH9AM1/gN19Gr9CVc6GgrNzac8XrFWrPFcbD1XpCFxERERERWbGDgyeIxyLEY0HN6MLtwcETNQvu6lrnzsw+ZWZuZuvr0oCB3XDz3fD+LwW3A7sXrhO2WH2wcmvPFdY79SocfRySiaCYePemIJs4OljV3RYRERERkcoaHk/SHZ2dO+uOtjE8nqxZG+oW3JnZVuDdwBv1akNJhYxeqeLhiwVvCz22oDAhy/QEHHsCps9DLA7b3g7rLg+6fRbG94mIiIiISFPY3BvjXCoDwKnJFI8fOs23nx/hjTNTDI0katKGenbLvBf4NFBO4c7aWmpXzuJ1FxrXVjxLZv/uoMh6KAzrr4auDcE6i429q1UJBRERkeXQ55SIrFL7dvdz4LHXOXt+mpdGz2FmREIhBro7ajb2ri6ZOzO7Axh292fLWHe/mT1lZk+NjY3VoHWLKNWVs1zFE7JYKBhjRygYc1dQaoxeQSE4TI7Pnq1T3ThFRKQR6HNKRFaxnRvj7H/nDkYmpsnmoCcWYc+lvezo6yIei3Bw8ETV21C1zJ2ZPQIMlLjrHuAzwK3lbMfdDwAHAPbu3esVa2A9zJ2QZU0fjL0MiTfAPbgvFA6ygaVUu4SCvm0VEZGVqEepHxGRBrJzY5xta9fwEzvWEjK7sLxWY++qlrlz91vcfffcH+AQsAN41swOA1uAH5pZqUCwtRRPyDJ5Ek7/+GLphanTcPJFuOo9838AJo7OX6ZhpfRtq4iIrFQ1P6dERJpE8di7gnOpDJt7Y1V/7pqPuXP354ENhb/zAd5edz9VlSesZTZqsecqLqo+9hJgEInBjn8ZjLlLjsPYEIxeUXo7C5VaWOl+6ttWERFZqXJLAomItLDC2DsIMnbnUhkSyTQfvmFL1Z+7rqUQqq6W2ahynqt4Ns3JUYj1wJYbZ0+mMvrc/NuZb7bOvp0r309929p6Rgfh0c/C/Z8IbpWFFZFqK7ckkIhICyuMvYvHIowkUsRjkZoVMq97EXN33161jdcyG1XucxXPplnq281UAuLbSm/n5rvnL7y+1P2cm+kLdwTPr29bW0PxzKzFAf/c0hwiIpVUzqzSIiKrwM6N8ZoVLi9W9+CuquZOYAKVHaNW/OE18tybP7wWeq7iLprRnnxgNw4d8YUzaKVKLTz+paXtZ6kL/4njgAM7ZrdnvsldpLGpm61I9WjyqYUtVBJIRESqqrWDu2r1/S8VHCXegMgaWH9Fec8137ebQw+U1+bii4uzhyEzExRBL+e5S174b4fsTPC7vm1tftX8YkNkNVNWvPIULIuIVExrB3fzZcdWmo0qFRz17Qxmu+xcX/5zzfft5mJtnntxkZ6GY08G963dsfhzz3fhPzEcdP2U5qdJDUSqQ1nxylKwLCJSUa09oUrxBCYTw8FtJT4wSk0+snYHXHLpyp+rnDbPLYa+/grYvBfOHS/vuYtLMhTowr+1aFIDkerQ5FOVNffzLNYb/D30QH3bJSLSpFo7cwfV6fs/X1Zk4LryM18LdUNZrM2lMm/rLoNIB7z/S4s/d7UymtI4SnX73XZT8PfjX1LXJ5HlUla8stSFXESkolo7c1ctK82KrLREw0ozb9XKaEpjGdgdfNnw/i8F5+YrD6lIvchKKSteWepJIiJSUQrulmMlwdHoIDz0aTj+IzjxPJw/tfRuKJUILjV4fXVR1yeRytCXY5WlYFlEpKJav1tmtSynu2chY3f+FMTWQjoFR5+ArT8RTMRSbjeUldQR0uD11Uldn0QqR1P9V47q4omIVJSCu1oqZE861weBXSQaLD/1MoTbl9YNZbkXF5rpbXXSOCERaVQKlkVEKkbdMitpdBAe/Szc/4ngdu54psIsa+uvhux0EOCF24NMXq26oWimt9VJXZ+WzMw+ZWZuZuvr3RYRERGRcii4q5RyJkkpDBzv2gBbbgwyd8kzQSavuFvkYkHiSmjw+uqkcUJLYmZbgXcDb9S7LSIiIiLlUrfMSimnu2NxCYLO9UHWLjX+5sCummPiVAZh9VLXp6W4F/g08M16N0RERESkXMrcVUo53R2XU6C80rMaKoMjsiAzuwMYdvdnF1lvv5k9ZWZPjY2N1ah1IiIiIvNT5q5Syp2wYjkFyis9Jk4ZHFnlzOwRYKDEXfcAnwFuXWwb7n4AOACwd+9er2gDRURERJZBwV2lVKq7o2Y1FKk6d7+l1HIzuxbYATxrZgBbgB+a2Y3uPlrDJoqIiIgsmbplVkqlujtqVkORunH35919g7tvd/ftwDFgjwI7ERERaQbK3FVSJbo7qqCriIiIiIgsg4K7RqQxcSINIZ+9ExEREWkK6pYpIiIiIiLSAhTciYiIiIiItAAFdyIiIiIiIi1AY+6Wa3Rw9qQnO2/XODkREREREakbZe6WY3QwqGmXHA8KjifHg79HB+vdMhEREWkyZvZBM3vBzHJmtneB9Q6b2fNm9oyZPVXLNopIc1DmbjmGHoBo78VC44XboQeUvRMREZGlGgQ+APxZGeve7O6nqtweEWlSCu6WI3E0yNgVi/YEy0VERESWwN2HAMys3k0RkSan4G454luDrpiFjB1AaiJYLtJoND5URKRVOPBdM3Pgz9z9QKmVzGw/sB9g27ZtNWyeiNSbgrvl2Hl7MMYOgoxdagJS47Dno3VtlsibFMaHRntnjw/9ybsU4ImI1JCZPQIMlLjrHnf/ZpmbeYe7HzezDcDDZvaSuz82d6V80HcAYO/evb7YRodGEhwcPMHweJLNvTH27e5n58Z4mU0SkUaiCVWWY2B3cHEc64WJ4eBWF8vSiIrHh1oouI32BstFRKRm3P0Wd99d4qfcwA53P56/PQncB9y40nYNjSQ48NjrJJJpNsajJJJpDjz2OkMjiZVuWkTqQJm75RrYrWBOGp/Gh4qItAQz6wRC7n4u//utwO+tdLsHB08Qj0WIxyIAF24PDp5Q9k6kCdUtc2dmd5nZy/mpf/+oXu0QaWnxrUG34WIaHyoi0lDM7OfN7BhwE/CgmX0nv3yTmX07v1o/8A9m9izwz8CD7n5wpc89PJ6kOzr7u/7uaBvD48mVblpE6qAumTszuxl4H3Cdu0/n+46LSCUUT6AS7gi6DrND40NFpLU18eRR7n4fQTfLucuPA7flfz8EXF/p597cGyORTF/I2AGcS2XY3Bur9FOJrCr1Gstar8zdx4HPufs0XOg7LiIrVZhAJTkedMcMtwMG2RmNDxWR1jX3va8wedToYL1b1vD27e4nkUyTSKbJuV/4fd/u/no3TaRp1XMsa72Cu6uAnzKzJ8zs+2Z2w3wrmtl+M3vKzJ4aGxurYRNFmlCpCVQu2Q5dG+D9X4Kb71ZgJyKtR5NHLdvOjXH2v3MH8ViEkUSKeCzC/nfu0Hg7kRUoHssaMrvw+8HBE1V/7qp1y1xoyt/8814CvB24AfiGmV3m7m+arnep0/mKrGqaQEVEViO9963Izo1xBXMiFTQ8nmRjPDprWa3GslYtuHP3W+a7z8w+DvxNPpj7ZzPLAesBpeZEViK+NeiOFOu9uEwTqIhIq9N7n4g0kHqOZa1Xt8z7gZ8BMLOrgHbgVJ3aItI6dt4eTJiSHAfPBbep8WC5iEir0nufiDSQeo5lrVdw91XgMjMbBP4SuLNUl0wRWaKB3cGEKbFeTaAiIquH3vtEpIHUcyxrXUohuPsM8Ev1eG6RljewWxc0IrL66L1PRBpIvcay1q2IuYiIiIiIiFSOgjsREREREZEWoOBORERERESkBSi4ExERERERaQEK7kRERERERFqAgjsREREREZEWYM1UXs7MxoAjNXzK9ayO4uqrZT9B+9qILnX3vno3YiWK3pua5X++FNqn5qB9qo5Wen+CxvifltKo7YLGbVujtgsat22t1K5535uaKrirNTN7yt331rsd1bZa9hO0r1Jdrfg/1z41B+2TlKNR/6eN2i5o3LY1arugcdu2WtqlbpkiIiIiIiItQMGdiIiIiIhIC1Bwt7AD9W5AjayW/QTtq1RXK/7PtU/NQfsk5WjU/2mjtgsat22N2i5o3LatinZpzJ2IiIiIiEgLUOZORERERESkBSi4ExERERERaQEK7uYwsw+a2QtmljOzvXPuu9vMXjWzl83sZ+vVxmows981s2Ezeyb/c1u921RJZrYvf9xeNbPfqXd7qsnMDpvZ8/nj+FS929PKzOy/Fb1mDpvZM/Os1zTHZAn71FSvKTO7K9/eF8zsj+ZZp2mOE5S9T01znMr9HGq249SIyjl36sXMPmVmbmbr692WAjP7vJm9ZGbPmdl9ZtZb5/Y03OvazLaa2aNmNpQ/r36z3m0qZmZhM/uRmf1tvdtSzMx6zeyv8ufXkJndtNJttlWiYS1mEPgA8GfFC81sF/AR4BpgE/CImV3l7tnaN7Fq7nX3P653IyrNzMLAnwLvBo4BT5rZt9z9xfq2rKpudvdGLNTZUtz9w4Xfzew/AYkFVm+KY1LOPjXba8rMbgbeB1zn7tNmtmGB1ZviOJWzT812nPLK/RxqiuPUiJb4eqgpM9tKcL6+Ue+2zPEwcLe7Z8zsD4G7gX9fj4Y08Os6A/y2u//QzLqBp83s4QZoV8FvAkNAT70bMscXgIPu/q/MrB1Ys9INKnM3h7sPufvLJe56H/CX7j7t7q8DrwI31rZ1skw3Aq+6+yF3nwH+kuB4ilSEmRnwIeC/1rstlbLIPjXba+rjwOfcfRrA3U/WuT2VUM4+Ndtxktpo5NfDvcCngYaa7c/dv+vumfyfjwNb6tichnxdu/uIu/8w//s5gkBqc31bFTCzLcB7gS/Xuy3FzKwHeCfwFQB3n3H38ZVuV8Fd+TYDR4v+PkaDnLQV9Ml8l4Ovmtkl9W5MBa2GY1fMge+a2dNmtr/ejVklfgo44e4/nuf+ZjwmC+1Ts72mrgJ+ysyeMLPvm9kN86zXTMepnH1qtuME5X0ONdNxakTlvh5qyszuAIbd/dl6t2URvwY8VMfnb/jXtZltB94KPFHnphT83wRfGuTq3I65LgPGgP+c7zL6ZTPrXOlGV2W3TDN7BBgocdc97v7N+R5WYllDfbO0mIX2G/h/gN8n2KffB/4TwRtYK2j6Y7dE73D34/muNg+b2Uvu/li9G9Wsyny/+EUWzto11DGpwD413Gtqkfe3NuAS4O3ADcA3zOwyf3MtoKY5TpS3T812nMr9HGqo49SIKvR6qHW7PgPcWu02zKec90Uzu4eg++HXa9m2ORrudV3MzLqAvwb+nbtPNEB7fg446e5Pm9lP17k5c7UBe4C73P0JM/sC8DvA/77Sja467n7LMh52DNha9PcW4HhlWlQb5e63mf1/QEMNOF2hpj92S+Hux/O3J83sPoIuHLrwWabFXjdm1kYwTvdtC2yjoY5JBfap4V5TC+2TmX0c+Jv8xes/m1kOWE/wjWnxNprmOJW5T011nIot9DnUaMepEVXi9VDLdpnZtcAO4NmgRzhbgB+a2Y3uPlrtdi3UtgIzuxP4OeBdtQiEF9Bwr+sCM4sQBHZfd/e/qXd78t4B3GHBBE1RoMfMvubuv1TndkFwLI+5eyHD+VcEwd2KqFtm+b4FfMTMOsxsB3Al8M91blPFmNnGoj9/nmBimVbxJHClme3ID1b9CMHxbDlm1pkfyEw+tX8rrXUsG9EtwEvufqzUnU16TBbcJ5rvNXU/8DMAZnYV0A7MmoyjCY/T/SyyTzTZcSrnc6gJj1Mjup/Fz52acvfn3X2Du2939+0EF717ahXYLcbM9hFMoHKHu0/VuTkN+brOj9P+CjDk7v9XvdtT4O53u/uW/Hn1EeB/NEhgR/78PmpmV+cXvQtY8QQ0qzJztxAz+3ngi0Af8KCZPePuP+vuL5jZNwj+6Rng37bYTJl/ZGZvIUjtHwZ+va6tqaD87FafBL4DhIGvuvsLdW5WtfQD9+W/+WwD/sLdD9a3SS3vI8zpvmhmm4Avu/ttNOcxWXCfmvA19VXgq2Y2CMwAd7q7N/lxWnSfmvA4lfwcavLj1IhKnjt1blOj+xOgg6AbMMDj7v4b9WhIA7+u3wF8FHjeLpbQ+Yy7f7t+TWoKdwFfzwfqh4BfXekGTa9nERERERGR5qdumSIiIiIiIi1AwZ2IiIiIiEgLUHAnIiIiIiLSAhTciYiIiIiItAAFdyIiIiIiIi1AwZ1UjJl92cx2LfOx2/PTMleFmf2Kmf1J/vffNbNPVeu5RKSx6L1JRBqV3p+k0lTnTirG3f91vdsgIjKX3ptEpFHp/UkqTZk7WTIz6zSzB83sWTMbNLMP55f/nZntzf8+aWZ/kF/ncTPrzy+/PP/3k2b2e2Y2WWL7YTP7fH6d58ysZEF1M/vl/P3Pmtl/yS/rM7O/zj/2STN7R/X+EyLSSPTeJCKNSu9PUisK7mQ59gHH3f16d98NHCyxTifwuLtfDzwG/Jv88i8AX3D3G4Dj82z/Y0Aiv84NwL8xsx3FK5jZNcA9wM/kn+M3i7Z/b/6xvwB8ebk7KSJNR+9NItKo9P4kNaHgTpbjeeAWM/tDM/spd0+UWGcG+Nv8708D2/O/3wT89/zvfzHP9m8FftnMngGeANYBV85Z52eAv3L3UwDufia//BbgT/KP/RbQY2bd5e+aiDQxvTeJSKPS+5PUhMbcyZK5+ytm9jbgNuCzZvZdd/+9Oaul3d3zv2dZ2rlmwF3u/p1F1vESy0PATe6enLWy2RKeXkSakd6bRKRR6f1JakWZO1kyM9sETLn714A/BvYs4eGPE6T8AT4yzzrfAT5uZpH8811lZp1z1vke8CEzW5dfZ21++XeBTxa19S1LaJuINDG9N4lIo9L7k9SKMneyHNcCnzezHJAGPr6Ex/474Gtm9tvAg0CpbglfJuiK8EMLvjYaA95fvIK7v2BmfwB838yywI+AXwH+V+BPzew5gvP7MeA3ltA+EWleem8SkUal9yepCbuY/RWpPjNbAyTd3c3sI8Avuvv76t0uEVnd9N4kIo1K70+yFMrcSa29jWDQrgHjwK/VtzkiIoDem0Skcen9ScqmzJ2IiIiIiEgL0IQqIiIiIiIiLUDBnYiIiIiISAtQcCciIiIiItICFNyJiIiIiIi0AAV3IiIiIiIiLeD/B74SWiYlNzACAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# unfiltered results \n", + "# withbiosonlyRNAAlignMetrics_rmLLD\n", + "sig_df = pd.DataFrame()\n", + "fig, axes = plt.subplots(2, 3, figsize=(15, 10), sharex=True, sharey=True)\n", + "celltypes = ['CD4T', 'CD8T', 'monocyte', 'NK', 'B', 'DC']\n", + "for i in range(2):\n", + " for j in range(3):\n", + " celltype = celltypes[i*3+j]\n", + " coeqtl_df = pd.read_csv(\n", + " coeqtl_withbios_prefix/'unfiltered_results'/f'UT_{celltype}/coeqtls_fullresults_fixed.sig.withbiosonlyRNAAlignMetrics_rmLLD.tsv.gz',\n", + " compression='gzip', index_col=0, sep='\\t')\n", + " coeqtl_df['zscore_bios'] = [get_z_score(item[0], item[1]) for item in \n", + " coeqtl_df[['t_bios', \n", + " 'num_individuals_bios']].values]\n", + " coeqtl_df['flipped_zscore_bios'] = [flip_direction(item[0], item[1], item[2]) for item in \n", + " coeqtl_df[['SNPEffectAllele', \n", + " 'assessed_allele_bios',\n", + " 'zscore_bios']].values]\n", + " coeqtl_sig = coeqtl_df[coeqtl_df['corrected_p_bios']<=0.05]\n", + " coeqtl_sig['celltype'] = celltype\n", + " sig_df = pd.concat([coeqtl_sig, sig_df], axis=0)\n", + " # draw\n", + " ax = axes[i][j]\n", + " ax.scatter(coeqtl_df['MetaPZ'][coeqtl_df['corrected_p_bios']>0.05], \n", + " coeqtl_df['flipped_zscore_bios'][coeqtl_df['corrected_p_bios']>0.05], alpha=0.5,\n", + " label='Non-sig')\n", + " ax.scatter(coeqtl_df['MetaPZ'][coeqtl_df['corrected_p_bios']<=0.05],\n", + " coeqtl_df['flipped_zscore_bios'][coeqtl_df['corrected_p_bios']<=0.05], alpha=0.5,\n", + " label='Sig')\n", + " ax.set_xlabel('single cell')\n", + " ax.set_ylabel('BIOS')\n", + " ax.set_title(celltype)\n", + "ax.legend(loc='upper left')\n", + "# plt.savefig('bios_replication.unfiltered_results.scatterplots.pdf')\n", + "# plt.savefig('bios_replication.unfiltered_results.scatterplots.png', dpi=300)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/04_coeqtl_mapping/filtering_strategy.py b/04_coeqtl_mapping/filtering_strategy.py new file mode 100644 index 0000000..f901ab4 --- /dev/null +++ b/04_coeqtl_mapping/filtering_strategy.py @@ -0,0 +1,56 @@ +import pandas as pd +import numpy as np +from pathlib import Path +import argparse +from scipy.stats import norm +from time import time + + +sig_thres_zscore = norm.ppf(1-0.025) +individual_network_prefix = Path("./input/individual_networks") +saveprefix = Path("./input/gene_pair_selection/annotations/") +def read_numpy(prefix): + data = np.load(f'{prefix}.npy') + rows = [item.strip() for item in open(f'{prefix}.rows.txt', 'r').readlines()] + cols = [item.strip() for item in open(f'{prefix}.cols.txt', 'r').readlines()] + return pd.DataFrame(data=data, columns=cols, index=rows) + + +def merge_datasets(celltype, condition): + res_df = pd.DataFrame() + for datasetname in ['stemiv2', 'onemillionv2', 'onemillionv3', 'ng']: + data_path = individual_network_prefix / condition / datasetname / f'{condition}_{celltype}.zscores' + startime = time() + df = read_numpy(data_path) + res_df = pd.concat([res_df, df], axis=1) + print(f'Merged {datasetname}, it took', time() - startime) + return res_df + + +def calculate_significance_freq(zscore_df, thres=sig_thres_zscore): + freqs = (abs(zscore_df.values) > thres).sum(axis=1) + assert len(freqs) == zscore_df.shape[0] + return freqs + + +def parse(): + parser = argparse.ArgumentParser() + parser.add_argument('--celltype', dest='celltype') + parser.add_argument('--condition', dest='condition') + return parser + + +def main(): + args = parse().parse_args() + celltype, condition = args.celltype, args.condition + celltype_condition_df = merge_datasets(celltype, condition) + celltype_condition_df['sig_count'] = calculate_significance_freq(celltype_condition_df) + celltype_condition_df['sig_freq'] = [item/celltype_condition_df.shape[1] for item in celltype_condition_df['sig_count']] + print(celltype, celltype_condition_df[celltype_condition_df['sig_freq']>=0.1].shape) + celltype_condition_df[['sig_count', 'sig_freq']].to_csv(saveprefix/f'{condition}_{celltype}.significance_frequency.tsv', + sep='\t') + return celltype_condition_df + + +if __name__ == '__main__': + _ = main() \ No newline at end of file diff --git a/04_coeqtl_mapping/individual_networks.py b/04_coeqtl_mapping/individual_networks.py new file mode 100644 index 0000000..82dd60a --- /dev/null +++ b/04_coeqtl_mapping/individual_networks.py @@ -0,0 +1,270 @@ +import os +import re +from itertools import combinations +from pathlib import Path + +import numpy as np +import pandas as pd +import scanpy as sc +from scipy.stats import spearmanr +from scipy.stats import t, norm +from tqdm import tqdm +import argparse +from scipy.stats import rankdata +from collections import namedtuple + + +def get_time(x): + if x == 'UT': + return x + else: + pattern = re.compile(r'\d+h') + return re.findall(pattern, x)[0] + +class DATASET: + def __init__(self, datasetname): + self.name = datasetname + self.path_prefix = Path("./seurat_objects") + self.information = self.get_information() + def get_information(self): + if self.name == 'onemillionv2': + self.path = '1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.sct.h5ad' + self.individual_id_col = 'assignment' + self.timepoint_id_col = 'time' + self.celltype_id = 'cell_type_lowerres' + self.chosen_condition = {'UT': 'UT', + 'stimulated': '3h'} + elif self.name == 'onemillionv3': + self.path = '1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad' + self.individual_id_col = 'assignment' + self.timepoint_id_col = 'time' + self.celltype_id = 'cell_type_lowerres' + self.chosen_condition = {'UT': 'UT', + 'stimulated': '3h'} + elif self.name == 'stemiv2': + self.path = 'cardio.integrated.20210301.stemiv2.h5ad' + self.individual_id_col = 'assignment.final' + self.timepoint_id_col = 'timepoint.final' + self.celltype_id = 'cell_type_lowerres' + self.chosen_condition = {'UT': 't8w', + 'stimulated': 'Baseline'} + elif self.name == 'ng': + self.path = 'pilot3_seurat3_200420_sct_azimuth.h5ad' + self.individual_id_col = 'snumber' + self.celltype_id = 'cell_type_mapped_to_onemillion' + else: + raise IOError("Dataset name not understood.") + + def load_dataset(self): + self.get_information() + print(f'Loading dataset {self.name} from {self.path_prefix} {self.path}') + self.data_sc = sc.read_h5ad(self.path_prefix / self.path) + if self.name.startswith('onemillion'): + self.data_sc.obs['time'] = [get_time(item) for item in self.data_sc.obs['timepoint']] + elif self.name == 'ng': + celltype_maping = {'CD4 T': 'CD4T', 'CD8 T': 'CD8T', 'Mono': 'monocyte', 'DC': 'DC', 'NK': 'NK', + 'other T': 'otherT', 'other': 'other', 'B': 'B'} + self.data_sc.obs['cell_type_mapped_to_onemillion'] = [celltype_maping.get(name) for name in + self.data_sc.obs['predicted.celltype.l1']] + + +def corr_to_z(coef, num): + t_statistic = coef * np.sqrt((num - 2) / (1 - coef ** 2)) + prob = t.cdf(t_statistic, num - 2) + z_score = norm.ppf(prob) + positive_coef_probs = 1 - prob + positive_coef_probs[coef < 0] = 0 + negative_coef_probs = prob + negative_coef_probs[coef > 0] = 0 + probs = negative_coef_probs + positive_coef_probs + return z_score, probs + + +# def z_to_corr(z, num): +# prob = norm.cdf(z) +# t_statistic = t.ppf(prob, num - 2) +# corr = t_statistic / np.sqrt(num - 2 + t_statistic ** 2) +# return corr + + +def save_numpy(data_df, prefix): + np.save(f'{prefix}.npy', data_df.values) + with open(f'{prefix}.cols.txt', 'w') as f: + f.write('\n'.join(data_df.columns)) + with open(f'{prefix}.rows.txt', 'w') as f: + f.write('\n'.join(data_df.index)) + return None + +def _contains_nan(a, nan_policy='propagate'): + ''' + From scipy: https://github.com/scipy/scipy/blob/v1.7.1/scipy/stats/stats.py#L4343-L4525 + ''' + policies = ['propagate', 'raise', 'omit'] + if nan_policy not in policies: + raise ValueError("nan_policy must be one of {%s}" % + ', '.join("'%s'" % s for s in policies)) + try: + with np.errstate(invalid='ignore'): + contains_nan = np.isnan(np.sum(a)) + except TypeError: + try: + contains_nan = np.nan in set(a.ravel()) + except TypeError: + contains_nan = False + nan_policy = 'omit' + + if contains_nan and nan_policy == 'raise': + raise ValueError("The input contains nan values") + + return contains_nan, nan_policy + + +def _chk_asarray(a, axis): + ''' + From scipy: https://github.com/scipy/scipy/blob/v1.7.1/scipy/stats/stats.py#L4343-L4525 + ''' + if axis is None: + a = np.ravel(a) + outaxis = 0 + else: + a = np.asarray(a) + outaxis = axis + + if a.ndim == 0: + a = np.atleast_1d(a) + + return a, outaxis + + +def spearmanr_withnan(a, axis=0, nan_policy='propagate'): + ''' + Modified from scipy: https://github.com/scipy/scipy/blob/v1.7.1/scipy/stats/stats.py#L4343-L4525 + ''' + SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue')) + if axis is not None and axis > 1: + raise ValueError("spearmanr only handles 1-D or 2-D arrays, supplied axis argument {}, " + "please use only values 0, 1 or None for axis".format(axis)) + a, axisout = _chk_asarray(a, axis) + if a.ndim > 2: + raise ValueError("spearmanr only handles 1-D or 2-D arrays") + n_vars = a.shape[1 - axisout] + n_obs = a.shape[axisout] + if n_obs <= 1: + # Handle empty arrays or single observations. + return SpearmanrResult(np.nan, np.nan) + a_contains_nan, nan_policy = _contains_nan(a, nan_policy) + variable_has_nan = np.zeros(n_vars, dtype=bool) + if a_contains_nan: + if nan_policy == 'propagate': + if a.ndim == 1 or n_vars <= 2: + return SpearmanrResult(np.nan, np.nan) + else: + variable_has_nan = np.isnan(a).sum(axis=axisout) + a_ranked = np.apply_along_axis(rankdata, axisout, a) + rs = np.corrcoef(a_ranked, rowvar=axisout) + dof = n_obs - 2 # degrees of freedom + # rs can have elements equal to 1, so avoid zero division warnings + with np.errstate(divide='ignore'): + t_ = rs * np.sqrt((dof/((rs+1.0)*(1.0-rs))).clip(0)) + prob = 2 * t.sf(np.abs(t_), dof) + # For backwards compatibility, return scalars when comparing 2 columns + if rs.shape == (2, 2): + return SpearmanrResult(rs[1, 0], prob[1, 0]) + else: + rs[variable_has_nan, :] = np.nan + rs[:, variable_has_nan] = np.nan + return SpearmanrResult(rs, prob) + + +def get_individual_networks_selected_genepairs(data_sc, individual_colname, selected_genepairs): + data_df = pd.DataFrame(data=data_sc.X.toarray(), + index=data_sc.obs.index, + columns=data_sc.var.index) + selected_genes = list(set([ele for item in selected_genepairs for ele in item.split(';')]) & set(data_sc.var.index)) + selected_genes_sorted_genepairs = [';'.join(sorted(item)) for item in combinations(selected_genes, 2)] + common_genepairs = list(set(selected_genes_sorted_genepairs) & set(selected_genepairs)) + coef_df = pd.DataFrame(index=common_genepairs) + coef_p_df = pd.DataFrame(index=common_genepairs) + zscore_df = pd.DataFrame(index=common_genepairs) + zscore_p_df = pd.DataFrame(index=common_genepairs) + data_selected_df = data_df[selected_genes] + print(f"Begin calculating networks for {len(data_sc.obs[individual_colname].unique())} individuals") + for ind_id in tqdm(data_sc.obs[individual_colname].unique()): + cell_num = data_sc.obs[data_sc.obs[individual_colname] == ind_id].shape[0] + if cell_num > 10: + individual_df = data_selected_df.loc[data_sc.obs[individual_colname] == ind_id] + individual_coefs, individual_coef_ps = spearmanr_withnan(individual_df.values, axis=0) + try: + individual_coefs_flatten = pd.DataFrame(data=individual_coefs[np.triu_indices_from(individual_coefs, 1)], + index=selected_genes_sorted_genepairs).loc[common_genepairs] + individual_coef_ps_flatten = pd.DataFrame(data=individual_coef_ps[np.triu_indices_from(individual_coefs, 1)], + index=selected_genes_sorted_genepairs).loc[common_genepairs] + individual_zscores_flatten, individual_zscore_ps_flatten = corr_to_z(individual_coefs_flatten, cell_num) + coef_df[ind_id] = individual_coefs_flatten + coef_p_df[ind_id] = individual_coef_ps_flatten + zscore_df[ind_id] = individual_zscores_flatten + zscore_p_df[ind_id] = individual_zscore_ps_flatten + except: + continue + else: + print("Deleted this individual because of low cell number", cell_num) + return coef_df, coef_p_df, zscore_df, zscore_p_df + + +def get_individual_networks_given_celltype_condition_datasetname(celltype, datasetname, condition='UT'): + # load the data and data information + dataset = DATASET(datasetname) + dataset.load_dataset() + print(f"{datasetname} loaded.") + # calculate the individual network for specific condition and celltype + print(datasetname, celltype, condition) + work_prefix = Path('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing') + selected_genepairs_path = work_prefix / 'coeqtl_mapping/input/snp_genepair_selection' / f'{condition}_{celltype}.baseline.tsv' + selected_genepairs = pd.read_csv(selected_genepairs_path, sep='\t')['genepair_sorted'].values + if datasetname == 'ng': + data_selected = dataset.data_sc[(dataset.data_sc.obs[dataset.celltype_id] == celltype)] + else: + data_selected = dataset.data_sc[(dataset.data_sc.obs[dataset.celltype_id] == celltype) & + (dataset.data_sc.obs[dataset.timepoint_id_col] == dataset.chosen_condition[condition])] + individual_coefs_df, individual_coefs_p_df, individual_zscores_df, individual_zscores_p_df = get_individual_networks_selected_genepairs( + data_selected, + dataset.individual_id_col, + selected_genepairs + ) + print(individual_coefs_df.head()) + save_prefix = Path('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input') + if not os.path.exists(save_prefix / 'individual_networks' / condition / datasetname): + os.mkdir(save_prefix / 'individual_networks' / condition / datasetname) + ## not saving the coefficients + # save_numpy(individual_coefs_df, + # save_prefix / 'individual_networks' / condition / datasetname / f'{condition}_{celltype}.coefs') + # save_numpy(individual_coefs_p_df, + # save_prefix / 'individual_networks' / condition / datasetname / f'{condition}_{celltype}.coef_ps') + save_numpy(individual_zscores_df, + save_prefix / 'individual_networks' / condition / datasetname / f'{condition}_{celltype}.zscores') + save_numpy(individual_zscores_p_df, + save_prefix / 'individual_networks' / condition / datasetname / f'{condition}_{celltype}.zscore_ps') + print("Saved ") + return individual_coefs_df, individual_coefs_p_df, individual_zscores_df, individual_zscores_p_df + + +def argumentsparser(): + parser = argparse.ArgumentParser() + parser.add_argument('--datasetname', type=str, dest='datasetname') + parser.add_argument('--celltype', type=str, dest='celltype') + parser.add_argument('--condition', type=str, dest='condition') + parser.add_argument('--nonzeroratio', type=float, dest='nonzeroratio') + return parser + +def run_get_individual_networks_given_celltype_condition_datasetname(): + args = argumentsparser().parse_args() + print(f"Starting to calculate individual network for {args.datasetname}, {args.celltype}, {args.condition}, " + f"for genes {args.nonzeroratio}.") + _ = get_individual_networks_given_celltype_condition_datasetname(celltype=args.celltype, + condition=args.condition, + datasetname=args.datasetname) + return None + + +if __name__ == '__main__': + run_get_individual_networks_given_celltype_condition_datasetname() diff --git a/04_coeqtl_mapping/individual_networks_cmono_ncmono.py b/04_coeqtl_mapping/individual_networks_cmono_ncmono.py new file mode 100644 index 0000000..e01e855 --- /dev/null +++ b/04_coeqtl_mapping/individual_networks_cmono_ncmono.py @@ -0,0 +1,309 @@ +import argparse +import os +import re +from collections import namedtuple +from itertools import combinations +from pathlib import Path + +import numpy as np +import pandas as pd +import scanpy as sc +from scipy.stats import rankdata +from scipy.stats import t, norm +from tqdm import tqdm + + +def get_time(x): + if x == 'UT': + return x + else: + pattern = re.compile(r'\d+h') + return re.findall(pattern, x)[0] + + +class DATASET: + def __init__(self, datasetname): + self.name = datasetname + self.path_prefix = Path( + "./seurat_objects") + self.information = self.get_information() + def get_information(self): + if self.name == 'onemillionv2': + self.path = '1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.sct.h5ad' + self.individual_id_col = 'assignment' + self.timepoint_id_col = 'time' + self.celltype_id = 'cell_type_lowerres' + self.chosen_condition = {'UT': 'UT', + 'stimulated': '3h'} + elif self.name == 'onemillionv3': + self.path = '1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad' + self.individual_id_col = 'assignment' + self.timepoint_id_col = 'time' + self.celltype_id = 'cell_type_lowerres' + self.chosen_condition = {'UT': 'UT', + 'stimulated': '3h'} + elif self.name == 'stemiv2': + self.path = 'cardio.integrated.20210301.stemiv2.h5ad' + self.individual_id_col = 'assignment.final' + self.timepoint_id_col = 'timepoint.final' + self.celltype_id = 'cell_type_lowerres' + self.chosen_condition = {'UT': 't8w', + 'stimulated': 'Baseline'} + elif self.name == 'ng': + self.path = 'pilot3_seurat3_200420_sct_azimuth.h5ad' + self.individual_id_col = 'snumber' + self.celltype_id = 'cell_type_mapped_to_onemillion' + else: + raise IOError("Dataset name not understood.") + def load_dataset(self): + self.get_information() + print(f'Loading dataset {self.name} from {self.path_prefix} {self.path}') + self.data_sc = sc.read_h5ad(self.path_prefix / self.path) + if self.name.startswith('onemillion'): + self.data_sc.obs['time'] = [get_time(item) for item in self.data_sc.obs['timepoint']] + elif self.name == 'ng': + celltype_maping = {'CD4 T': 'CD4T', 'CD8 T': 'CD8T', 'Mono': 'monocyte', 'DC': 'DC', 'NK': 'NK', + 'other T': 'otherT', 'other': 'other', 'B': 'B'} + self.data_sc.obs['cell_type_mapped_to_onemillion'] = [celltype_maping.get(name) for name in + self.data_sc.obs['predicted.celltype.l1']] + def get_cMono_ncMono(self): + def tell_cmono_foronemillion(x): + if x == 'mono 1' or x == 'mono 3' or x == 'mono 4': + return 'cMono' + elif x == 'mono 2': + return 'ncMono' + if self.name.startswith('onemillion'): + self.data_sc.obs['sub_monocytes'] = [tell_cmono_foronemillion(x) for x in + self.data_sc.obs['cell_type']] + self.cmono = self.data_sc[self.data_sc.obs['sub_monocytes'] == 'cMono'] + self.ncmono = self.data_sc[self.data_sc.obs['sub_monocytes'] == 'ncMono'] + elif self.name.startswith('stemi'): + self.cmono = self.data_sc[self.data_sc.obs['cell_type'] == 'cMono'] + self.ncmono = self.data_sc[self.data_sc.obs['cell_type'] == 'ncMono'] + elif self.name == 'ng': + self.cmono = self.data_sc[self.data_sc.obs['predicted.celltype.l2'] == 'CD14 Mono'] + self.ncmono = self.data_sc[self.data_sc.obs['predicted.celltype.l2'] == 'CD16 Mono'] + else: + raise IOError("Dataset name not understood.") + + + +def save_numpy(data_df, prefix): + np.save(f'{prefix}.npy', data_df.values) + with open(f'{prefix}.cols.txt', 'w') as f: + f.write('\n'.join(data_df.columns)) + with open(f'{prefix}.rows.txt', 'w') as f: + f.write('\n'.join(data_df.index)) + return None + + +def corr_to_z(coef, num): + t_statistic = coef * np.sqrt((num - 2) / (1 - coef ** 2)) + prob = t.cdf(t_statistic, num - 2) + z_score = norm.ppf(prob) + positive_coef_probs = 1 - prob + positive_coef_probs[coef < 0] = 0 + negative_coef_probs = prob + negative_coef_probs[coef > 0] = 0 + probs = negative_coef_probs + positive_coef_probs + return z_score, probs + + +def _contains_nan(a, nan_policy='propagate'): + policies = ['propagate', 'raise', 'omit'] + if nan_policy not in policies: + raise ValueError("nan_policy must be one of {%s}" % + ', '.join("'%s'" % s for s in policies)) + try: + with np.errstate(invalid='ignore'): + contains_nan = np.isnan(np.sum(a)) + except TypeError: + try: + contains_nan = np.nan in set(a.ravel()) + except TypeError: + contains_nan = False + nan_policy = 'omit' + if contains_nan and nan_policy == 'raise': + raise ValueError("The input contains nan values") + return contains_nan, nan_policy + + +def _chk_asarray(a, axis): + if axis is None: + a = np.ravel(a) + outaxis = 0 + else: + a = np.asarray(a) + outaxis = axis + if a.ndim == 0: + a = np.atleast_1d(a) + return a, outaxis + + +def spearmanr_withnan(a, axis=0, nan_policy='propagate'): + SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue')) + if axis is not None and axis > 1: + raise ValueError("spearmanr only handles 1-D or 2-D arrays, supplied axis argument {}, " + "please use only values 0, 1 or None for axis".format(axis)) + a, axisout = _chk_asarray(a, axis) + if a.ndim > 2: + raise ValueError("spearmanr only handles 1-D or 2-D arrays") + n_vars = a.shape[1 - axisout] + n_obs = a.shape[axisout] + if n_obs <= 1: + # Handle empty arrays or single observations. + return SpearmanrResult(np.nan, np.nan) + a_contains_nan, nan_policy = _contains_nan(a, nan_policy) + variable_has_nan = np.zeros(n_vars, dtype=bool) + if a_contains_nan: + if nan_policy == 'propagate': + if a.ndim == 1 or n_vars <= 2: + return SpearmanrResult(np.nan, np.nan) + else: + variable_has_nan = np.isnan(a).sum(axis=axisout) + a_ranked = np.apply_along_axis(rankdata, axisout, a) + rs = np.corrcoef(a_ranked, rowvar=axisout) + dof = n_obs - 2 # degrees of freedom + # rs can have elements equal to 1, so avoid zero division warnings + with np.errstate(divide='ignore'): + t_ = rs * np.sqrt((dof / ((rs + 1.0) * (1.0 - rs))).clip(0)) + prob = 2 * t.sf(np.abs(t_), dof) + # For backwards compatibility, return scalars when comparing 2 columns + if rs.shape == (2, 2): + return SpearmanrResult(rs[1, 0], prob[1, 0]) + else: + rs[variable_has_nan, :] = np.nan + rs[:, variable_has_nan] = np.nan + return SpearmanrResult(rs, prob) + + +def get_individual_networks_selected_genepairs(data_sc, individual_colname, selected_genepairs): + data_df = pd.DataFrame(data=data_sc.X.toarray(), + index=data_sc.obs.index, + columns=data_sc.var.index) + selected_genes = list(set([ele for item in selected_genepairs for ele in item.split(';')]) & set(data_sc.var.index)) + selected_genes_sorted_genepairs = [';'.join(sorted(item)) for item in combinations(selected_genes, 2)] + common_genepairs = list(set(selected_genes_sorted_genepairs) & set(selected_genepairs)) + coef_df = pd.DataFrame(index=common_genepairs) + coef_p_df = pd.DataFrame(index=common_genepairs) + zscore_df = pd.DataFrame(index=common_genepairs) + zscore_p_df = pd.DataFrame(index=common_genepairs) + data_selected_df = data_df[selected_genes] + print(f"Begin calculating networks for {len(data_sc.obs[individual_colname].unique())} individuals") + for ind_id in tqdm(data_sc.obs[individual_colname].unique()): + cell_num = data_sc.obs[data_sc.obs[individual_colname] == ind_id].shape[0] + if cell_num > 10: + individual_df = data_selected_df.loc[data_sc.obs[individual_colname] == ind_id] + individual_coefs, individual_coef_ps = spearmanr_withnan(individual_df.values, axis=0) + try: + individual_coefs_flatten = \ + pd.DataFrame(data=individual_coefs[np.triu_indices_from(individual_coefs, 1)], + index=selected_genes_sorted_genepairs).loc[common_genepairs] + individual_coef_ps_flatten = \ + pd.DataFrame(data=individual_coef_ps[np.triu_indices_from(individual_coefs, 1)], + index=selected_genes_sorted_genepairs).loc[common_genepairs] + individual_zscores_flatten, individual_zscore_ps_flatten = corr_to_z(individual_coefs_flatten, cell_num) + coef_df[ind_id] = individual_coefs_flatten + coef_p_df[ind_id] = individual_coef_ps_flatten + zscore_df[ind_id] = individual_zscores_flatten + zscore_p_df[ind_id] = individual_zscore_ps_flatten + except: + continue + else: + print("Deleted this individual because of low cell number", cell_num) + return coef_df, coef_p_df, zscore_df, zscore_p_df + + +def get_individual_networks_UT_subcelltypesMonocytes(celltype, datasetname, condition='UT'): + # load the data and data information + dataset = DATASET(datasetname) + dataset.load_dataset() + dataset.get_cMono_ncMono() + print(f"{datasetname} loaded.") + # calculate the individual network for specific condition and celltype + print(datasetname, celltype, condition) + work_prefix = Path('./') + selected_genepairs_path = work_prefix / 'coeqtl_mapping/input/snp_genepair_selection' / f'{condition}_monocyte_{datasetname}.baseline.tsv' + selected_genepairs = pd.read_csv(selected_genepairs_path, sep='\t')['genepair_sorted'].values + if celltype == 'cMono': + data_celltype = dataset.cmono + elif celltype == 'ncMono': + data_celltype = dataset.ncmono + else: + raise IOError("Celltype not understood. select from cMono or ncMono.") + if datasetname == 'ng': + data_selected = data_celltype + else: + data_selected = data_celltype[ + data_celltype.obs[dataset.timepoint_id_col] == dataset.chosen_condition[condition]] + individual_coefs_df, individual_coefs_p_df, individual_zscores_df, individual_zscores_p_df = get_individual_networks_selected_genepairs( + data_selected, + dataset.individual_id_col, + selected_genepairs + ) + print(individual_coefs_df.head()) + save_prefix = Path('./coeqtl_mapping/input') + if not os.path.exists(save_prefix / 'individual_networks' / condition / datasetname): + os.mkdir(save_prefix / 'individual_networks' / condition / datasetname) + # save_numpy(individual_coefs_df, + # save_prefix / 'individual_networks' / condition / datasetname / f'{condition}_{celltype}.coefs') + # save_numpy(individual_coefs_p_df, + # save_prefix / 'individual_networks' / condition / datasetname / f'{condition}_{celltype}.coef_ps') + save_numpy(individual_zscores_df, + save_prefix / 'individual_networks' / condition / datasetname / f'{condition}_{celltype}.zscores') + save_numpy(individual_zscores_p_df, + save_prefix / 'individual_networks' / condition / datasetname / f'{condition}_{celltype}.zscore_ps') + print("Saved.") + return individual_coefs_df, individual_coefs_p_df, individual_zscores_df, individual_zscores_p_df + + +def argumentsparser(): + parser = argparse.ArgumentParser() + parser.add_argument('--datasetname', type=str, dest='datasetname') + parser.add_argument('--celltype', type=str, dest='celltype') + parser.add_argument('--condition', type=str, dest='condition') + return parser + + +def run_get_individual_networks_given_celltype_condition_datasetname(): + args = argumentsparser().parse_args() + print(f"Starting to calculate individual network for {args.datasetname}, {args.celltype}, {args.condition}.") + _ = get_individual_networks_UT_subcelltypesMonocytes(celltype=args.celltype, + condition=args.condition, + datasetname=args.datasetname) + return None + + +if __name__ == '__main__': + run_get_individual_networks_given_celltype_condition_datasetname() + + +# dataset = DATASET('stemiv2') +# dataset.load_dataset() +# dataset.get_cMono_ncMono() +# celldf = dataset.data_sc.obs +# cellnum = celldf[(celldf[dataset.celltype_id]=='CD4T') & (celldf[dataset.timepoint_id_col]==dataset.chosen_condition['UT'])][dataset.individual_id_col].value_counts() +# print('CD4T, ', cellnum[cellnum>10].mean()) +# cellnum = celldf[(celldf[dataset.celltype_id]=='CD8T') & (celldf[dataset.timepoint_id_col]==dataset.chosen_condition['UT'])][dataset.individual_id_col].value_counts() +# print('CD8T, ', cellnum[cellnum>10].mean()) +# cellnum = celldf[(celldf[dataset.celltype_id]=='monocyte') & (celldf[dataset.timepoint_id_col]==dataset.chosen_condition['UT'])][dataset.individual_id_col].value_counts() +# print('Monocyte, ', cellnum[cellnum>10].mean()) +# cellnum = dataset.cmono.obs[dataset.cmono.obs[dataset.timepoint_id_col]==dataset.chosen_condition['UT']][dataset.individual_id_col].value_counts() +# print('cMono, ', cellnum[cellnum>10].mean()) +# cellnum = dataset.ncmono.obs[dataset.ncmono.obs[dataset.timepoint_id_col]==dataset.chosen_condition['UT']][dataset.individual_id_col].value_counts() +# print('ncMono, ', cellnum[cellnum>10].mean()) +# +# dataset = DATASET('ng') +# dataset.load_dataset() +# dataset.get_cMono_ncMono() +# celldf = dataset.data_sc.obs +# cellnum = celldf[(celldf[dataset.celltype_id]=='CD4T')][dataset.individual_id_col].value_counts() +# print('CD4T, ', cellnum[cellnum>10].mean()) +# cellnum = celldf[(celldf[dataset.celltype_id]=='CD8T')][dataset.individual_id_col].value_counts() +# print('CD8T, ', cellnum[cellnum>10].mean()) +# cellnum = celldf[(celldf[dataset.celltype_id]=='monocyte') ][dataset.individual_id_col].value_counts() +# print('Monocyte, ', cellnum[cellnum>10].mean()) +# cellnum = dataset.cmono.obs[dataset.individual_id_col].value_counts() +# print('cMono, ', cellnum[cellnum>10].mean()) +# cellnum = dataset.ncmono.obs[dataset.individual_id_col].value_counts() +# print('ncMono, ', cellnum[cellnum>10].mean()) \ No newline at end of file diff --git a/04_coeqtl_mapping/individual_networks_maxcell.py b/04_coeqtl_mapping/individual_networks_maxcell.py new file mode 100644 index 0000000..72566f6 --- /dev/null +++ b/04_coeqtl_mapping/individual_networks_maxcell.py @@ -0,0 +1,315 @@ +import os +import re +from itertools import combinations +from pathlib import Path + +import numpy as np +import pandas as pd +import scanpy as sc +from scipy.stats import spearmanr +from scipy.stats import t, norm +from tqdm import tqdm +import argparse +from scipy.stats import rankdata +from collections import namedtuple + + +def get_time(x): + if x == 'UT': + return x + else: + pattern = re.compile(r'\d+h') + return re.findall(pattern, x)[0] + + +class DATASET: + def __init__(self, datasetname): + self.name = datasetname + self.path_prefix = Path("./seurat_objects") + self.information = self.get_information() + def get_information(self): + if self.name == 'onemillionv2': + self.path = '1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.sct.h5ad' + self.individual_id_col = 'assignment' + self.timepoint_id_col = 'time' + self.celltype_id = 'cell_type_lowerres' + self.chosen_condition = {'UT': 'UT', + 'stimulated': '3h'} + elif self.name == 'onemillionv3': + self.path = '1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad' + self.individual_id_col = 'assignment' + self.timepoint_id_col = 'time' + self.celltype_id = 'cell_type_lowerres' + self.chosen_condition = {'UT': 'UT', + 'stimulated': '3h'} + elif self.name == 'stemiv2': + self.path = 'cardio.integrated.20210301.stemiv2.h5ad' + self.individual_id_col = 'assignment.final' + self.timepoint_id_col = 'timepoint.final' + self.celltype_id = 'cell_type_lowerres' + self.chosen_condition = {'UT': 't8w', + 'stimulated': 'Baseline'} + elif self.name == 'ng': + self.path = 'pilot3_seurat3_200420_sct_azimuth.h5ad' + self.individual_id_col = 'snumber' + self.celltype_id = 'cell_type_mapped_to_onemillion' + else: + raise IOError("Dataset name not understood.") + def load_dataset(self): + self.get_information() + print(f'Loading dataset {self.name} from {self.path_prefix} {self.path}') + self.data_sc = sc.read_h5ad(self.path_prefix / self.path) + if self.name.startswith('onemillion'): + self.data_sc.obs['time'] = [get_time(item) for item in self.data_sc.obs['timepoint']] + elif self.name == 'ng': + celltype_maping = {'CD4 T': 'CD4T', 'CD8 T': 'CD8T', 'Mono': 'monocyte', 'DC': 'DC', 'NK': 'NK', + 'other T': 'otherT', 'other': 'other', 'B': 'B'} + self.data_sc.obs['cell_type_mapped_to_onemillion'] = [celltype_maping.get(name) for name in + self.data_sc.obs['predicted.celltype.l1']] + + + +def select_gene_nonzeroratio(df, ratio): + nonzerocounts = np.count_nonzero(df.values, axis=0) / df.shape[0] + selected_genes = df.columns[nonzerocounts > ratio] + return selected_genes + + +def corr_to_z(coef, num): + t_statistic = coef * np.sqrt((num - 2) / (1 - coef ** 2)) + prob = t.cdf(t_statistic, num - 2) + z_score = norm.ppf(prob) + positive_coef_probs = 1 - prob + positive_coef_probs[coef < 0] = 0 + negative_coef_probs = prob + negative_coef_probs[coef > 0] = 0 + probs = negative_coef_probs + positive_coef_probs + return z_score, probs + + +def z_to_corr(z, num): + prob = norm.cdf(z) + t_statistic = t.ppf(prob, num - 2) + corr = t_statistic / np.sqrt(num - 2 + t_statistic ** 2) + return corr + + +def get_om_name(filename): + pattern = re.compile(r'LLDeep_\d\d\d\d') + return re.findall(pattern, filename)[0] + + +def get_stemi_name(filename): + pattern = re.compile(r'TEST_\d.') + return re.findall(pattern, filename)[0] + + +def save_numpy(data_df, prefix): + np.save(f'{prefix}.npy', data_df.values) + with open(f'{prefix}.cols.txt', 'w') as f: + f.write('\n'.join(data_df.columns)) + with open(f'{prefix}.rows.txt', 'w') as f: + f.write('\n'.join(data_df.index)) + return None + +def _contains_nan(a, nan_policy='propagate'): + policies = ['propagate', 'raise', 'omit'] + if nan_policy not in policies: + raise ValueError("nan_policy must be one of {%s}" % + ', '.join("'%s'" % s for s in policies)) + try: + with np.errstate(invalid='ignore'): + contains_nan = np.isnan(np.sum(a)) + except TypeError: + try: + contains_nan = np.nan in set(a.ravel()) + except TypeError: + contains_nan = False + nan_policy = 'omit' + if contains_nan and nan_policy == 'raise': + raise ValueError("The input contains nan values") + return contains_nan, nan_policy + + +def _chk_asarray(a, axis): + if axis is None: + a = np.ravel(a) + outaxis = 0 + else: + a = np.asarray(a) + outaxis = axis + if a.ndim == 0: + a = np.atleast_1d(a) + return a, outaxis + + +def spearmanr_withnan(a, axis=0, nan_policy='propagate'): + SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue')) + if axis is not None and axis > 1: + raise ValueError("spearmanr only handles 1-D or 2-D arrays, supplied axis argument {}, " + "please use only values 0, 1 or None for axis".format(axis)) + a, axisout = _chk_asarray(a, axis) + if a.ndim > 2: + raise ValueError("spearmanr only handles 1-D or 2-D arrays") + n_vars = a.shape[1 - axisout] + n_obs = a.shape[axisout] + if n_obs <= 1: + # Handle empty arrays or single observations. + return SpearmanrResult(np.nan, np.nan) + a_contains_nan, nan_policy = _contains_nan(a, nan_policy) + variable_has_nan = np.zeros(n_vars, dtype=bool) + if a_contains_nan: + if nan_policy == 'propagate': + if a.ndim == 1 or n_vars <= 2: + return SpearmanrResult(np.nan, np.nan) + else: + variable_has_nan = np.isnan(a).sum(axis=axisout) + a_ranked = np.apply_along_axis(rankdata, axisout, a) + rs = np.corrcoef(a_ranked, rowvar=axisout) + dof = n_obs - 2 # degrees of freedom + # rs can have elements equal to 1, so avoid zero division warnings + with np.errstate(divide='ignore'): + t_ = rs * np.sqrt((dof/((rs+1.0)*(1.0-rs))).clip(0)) + prob = 2 * t.sf(np.abs(t_), dof) + # For backwards compatibility, return scalars when comparing 2 columns + if rs.shape == (2, 2): + return SpearmanrResult(rs[1, 0], prob[1, 0]) + else: + rs[variable_has_nan, :] = np.nan + rs[:, variable_has_nan] = np.nan + return SpearmanrResult(rs, prob) + +def read_numpy(prefix): + data = np.load(f'{prefix}.npy') + columns = [item.strip() for item in open(f'{prefix}.rows.txt', 'r').readlines()] + return pd.DataFrame(data=data, columns=columns, index=columns) + + +def read_all_files(prefix, genepairs): + res_df = pd.DataFrame(index=genepairs) + for filename in os.listdir(prefix): + if filename.endswith('_coefs.npy'): + data = np.load(f'{prefix}/{filename}') + if len(data.shape) > 1: + data_uppertria = data[np.triu_indices_from(data, 1)] + individual_id = get_stemi_name(filename) + res_df[individual_id] = data_uppertria + return res_df + + +def get_unique_genepairs(genepair_list, sep=';'): + unique_pairs = set() + for genepair in genepair_list: + reverse_genepair = sep.join(genepair.split(sep)) + if genepair in unique_pairs or reverse_genepair in unique_pairs: + continue + else: + unique_pairs.add(genepair) + return unique_pairs + + +def get_genes(genepair_list, sep=';'): + genes = list(set([gene for genepair in genepair_list for gene in genepair.split(sep)])) + return genes + + +def get_genepairs(genelist_path): + genelist = [item.strip() for item in open(genelist_path, 'r').readlines()] + genepairs = [';'.join(sorted(item)) for item in combinations(genelist, 2)] + return genelist, genepairs + + +def get_individual_networks_selected_genepairs(data_sc, individual_colname, selected_genepairs, maxcell): + data_df = pd.DataFrame(data=data_sc.X.toarray(), + index=data_sc.obs.index, + columns=data_sc.var.index) + selected_genes = list(set([ele for item in selected_genepairs + for ele in item.split(';')]) & set(data_sc.var.index)) + selected_genes_sorted_genepairs = [';'.join(sorted(item)) for item in combinations(selected_genes, 2)] + common_genepairs = list(set(selected_genes_sorted_genepairs) & set(selected_genepairs)) + coef_df = pd.DataFrame(index=common_genepairs) + coef_p_df = pd.DataFrame(index=common_genepairs) + zscore_df = pd.DataFrame(index=common_genepairs) + zscore_p_df = pd.DataFrame(index=common_genepairs) + data_selected_df = data_df[selected_genes] + print(f"Begin calculating networks for {len(data_sc.obs[individual_colname].unique())} individuals.") + for ind_id in tqdm(data_sc.obs[individual_colname].unique()): + cell_num = data_sc.obs[data_sc.obs[individual_colname] == ind_id].shape[0] + if cell_num > 10: + if maxcell>0 and cell_num >= maxcell: + individual_df = data_selected_df.loc[data_sc.obs[individual_colname] == ind_id].sample(maxcell, random_state=5) + cell_num = maxcell + else: + individual_df = data_selected_df.loc[data_sc.obs[individual_colname] == ind_id] + # individual_df = data_selected_df.loc[data_sc.obs[individual_colname] == ind_id] + individual_coefs, individual_coef_ps = spearmanr_withnan(individual_df.values, axis=0) + try: + individual_coefs_flatten = pd.DataFrame(data=individual_coefs[np.triu_indices_from(individual_coefs, 1)], + index=selected_genes_sorted_genepairs).loc[common_genepairs] + individual_coef_ps_flatten = pd.DataFrame(data=individual_coef_ps[np.triu_indices_from(individual_coefs, 1)], + index=selected_genes_sorted_genepairs).loc[common_genepairs] + individual_zscores_flatten, individual_zscore_ps_flatten = corr_to_z(individual_coefs_flatten.values, + cell_num) + coef_df[ind_id] = individual_coefs_flatten + coef_p_df[ind_id] = individual_coef_ps_flatten + zscore_df[ind_id] = individual_zscores_flatten + zscore_p_df[ind_id] = individual_zscore_ps_flatten + except: + continue + else: + print("Deleted this individual because of low cell number", cell_num) + return coef_df, coef_p_df, zscore_df, zscore_p_df + + +def get_individual_networks_given_celltype_condition_datasetname(celltype, datasetname, condition='UT', maxcell=-1): + # load the data and data information + dataset = DATASET(datasetname) + dataset.load_dataset() + print(f"{datasetname} loaded.") + # calculate the individual network for specific condition and celltype + print(datasetname, celltype, condition) + work_prefix = Path('./') + selected_genepairs_path = work_prefix / f'coeqtl_mapping/input/snp_genepair_selection/{condition}_{celltype}_{datasetname}.baseline.tsv' + selected_genepairs = pd.read_csv(selected_genepairs_path, sep='\t')['genepair_sorted'].values + if datasetname == 'ng': + data_selected = dataset.data_sc[(dataset.data_sc.obs[dataset.celltype_id] == celltype)] + else: + data_selected = dataset.data_sc[(dataset.data_sc.obs[dataset.celltype_id] == celltype) & + (dataset.data_sc.obs[dataset.timepoint_id_col] == dataset.chosen_condition[condition])] + individual_coefs_df, individual_coefs_p_df, individual_zscores_df, individual_zscores_p_df = \ + get_individual_networks_selected_genepairs( + data_selected, + dataset.individual_id_col, + selected_genepairs, + maxcell + ) + print(individual_coefs_df.head()) + save_prefix = Path('./coeqtl_mapping/input') + if not os.path.exists(save_prefix / 'individual_networks' / condition / datasetname): + os.mkdir(save_prefix / 'individual_networks' / condition / datasetname) + save_numpy(individual_zscores_df, + save_prefix / 'individual_networks' / condition / datasetname / f'{condition}_{celltype}.max{maxcell}cells.zscores') + print("Saved ") + return individual_coefs_df, individual_coefs_p_df, individual_zscores_df, individual_zscores_p_df + + +def argumentsparser(): + parser = argparse.ArgumentParser() + parser.add_argument('--datasetname', type=str, dest='datasetname') + parser.add_argument('--celltype', type=str, dest='celltype') + parser.add_argument('--condition', type=str, dest='condition') + parser.add_argument('--maxcell', type=float, dest='maxcell') + return parser + +def run_get_individual_networks_given_celltype_condition_datasetname(): + args = argumentsparser().parse_args() + print(f"Starting to calculate individual network for {args.datasetname}, {args.celltype}, {args.condition}, " + f"for max cell number {args.maxcell}.") + _ = get_individual_networks_given_celltype_condition_datasetname(celltype=args.celltype, + condition=args.condition, + datasetname=args.datasetname, + maxcell=int(args.maxcell)) + return None + +if __name__ == '__main__': + run_get_individual_networks_given_celltype_condition_datasetname() \ No newline at end of file diff --git a/04_coeqtl_mapping/launch_sbatch_files.sh b/04_coeqtl_mapping/launch_sbatch_files.sh new file mode 100644 index 0000000..27633da --- /dev/null +++ b/04_coeqtl_mapping/launch_sbatch_files.sh @@ -0,0 +1,48 @@ +# Calculate individual networks +working_dir=/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping +condition='UT' +for celltype in 'CD4T' 'CD8T' 'B' 'NK' 'DC' +do +for dataset in 'stemiv2' 'onemillionv2' 'onemillionv3' 'ng' +do + echo ${dataset}_${condition}_${celltype} + sbatch --parsable --job-name ${dataset}_${condition}_${celltype} \ + --output ${working_dir}/input/individual_networks/logs/${dataset}_${condition}_${celltype}.out \ + --error ${working_dir}/input/individual_networks/logs/${dataset}_${condition}_${celltype}.err \ + ${working_dir}/input/individual_networks/submit_individual_networks.sh ${dataset} ${celltype} ${condition} +done +done # decided not to save into tsv after saving in numpy + +# merge individual networks and create gene list and annotation file for betaqtl +for celltype in 'CD4T' 'CD8T' 'B' 'NK' 'DC' +do + echo ${condition}_${celltype} + sbatch --parsable --job-name merge_${condition}_${celltype} \ + --output ${working_dir}/input/individual_networks/logs/merge_${condition}_${celltype}.out \ + --error ${working_dir}/input/individual_networks/logs/merge_${condition}_${celltype}.err \ + ${working_dir}/input/individual_networks/submit_merge_coexpression.sh ${celltype} ${condition} +done + + +# rsync the betaqtl_scripts to gearshift: /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/${condition}_${celltype} +# make batches for betaqtl +for celltype in 'CD4T' 'CD8T' 'B' 'NK' 'DC' +do +cd ${working_dir}/output/${condition}_${celltype} ||exit +./createBatches.sh ${condition} ${celltype} +# submit betaqtl jobs +./suball.sh ${working_dir}/output/${condition}_${celltype}/noduplicated/jobs +./suball.sh ${working_dir}/output/${condition}_${celltype}/duplicatedversion1/jobs +./suball.sh ${working_dir}/output/${condition}_${celltype}/duplicatedversion2/jobs +done + +# concate and process output from betaqtl +for celltype in 'CD4T' 'CD8T' 'B' 'NK' 'DC' +do + cd ${working_dir}/output/${condition}_${celltype} ||exit + echo ${condition}_${celltype} + sbatch --parsable --job-name process_betaqtl_results_${condition}_${celltype} \ + --output ${working_dir}/input/individual_networks/logs/process_betaqtl_results_${condition}_${celltype}.out \ + --error ${working_dir}/input/individual_networks/logs/process_betaqtl_results_${condition}_${celltype}.err \ + ${working_dir}/output/submit_process_betaqtl_results.sh ${condition} ${celltype} +done \ No newline at end of file diff --git a/04_coeqtl_mapping/merge_coexpression_for_betaeqtl.py b/04_coeqtl_mapping/merge_coexpression_for_betaeqtl.py new file mode 100644 index 0000000..e1bb6fd --- /dev/null +++ b/04_coeqtl_mapping/merge_coexpression_for_betaeqtl.py @@ -0,0 +1,40 @@ +import pandas as pd +from pathlib import Path +import numpy as np +import argparse + + +def read_numpy(prefix): + data = np.load(f'{prefix}.npy') + columns = [item.strip() for item in open(f'{prefix}.cols.txt', 'r').readlines()] + rows = [item.strip() for item in open(f'{prefix}.rows.txt', 'r').readlines()] + return pd.DataFrame(data=data, columns=columns, index=rows) + + +def concat_numpy_files(celltype, condition, res_prefix): + allres = pd.DataFrame() + for dataset in ['onemillionv2', 'onemillionv3', 'stemiv2', 'ng']: + if condition =='stimulated' and dataset == 'ng': + continue + else: + numpyfile_path = res_prefix/condition/dataset/f'{condition}_{celltype}.zscores' + df = read_numpy(numpyfile_path) + allres = pd.concat([df, allres], axis=1) + print(f'Adding {dataset}, it has shape:', allres.shape) + allres.to_csv(res_prefix/condition/f'{condition}_{celltype}.onemillionv23stemiv2ng.zscores.tsv', sep='\t') + return allres + + +def argumentsparser(): + parser = argparse.ArgumentParser() + parser.add_argument('--celltype', type=str, dest='celltype') + parser.add_argument('--condition', type=str, dest='condition') + return parser + + +workdir = Path("/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping") +res_prefix = workdir/'input/individual_networks/' + +args = argumentsparser().parse_args() +celltype, condition = args.celltype, args.condition +_ = concat_numpy_files(celltype, condition, res_prefix) \ No newline at end of file diff --git a/04_coeqtl_mapping/merge_coexpression_for_betaeqtl_maxcell.py b/04_coeqtl_mapping/merge_coexpression_for_betaeqtl_maxcell.py new file mode 100644 index 0000000..319f6a2 --- /dev/null +++ b/04_coeqtl_mapping/merge_coexpression_for_betaeqtl_maxcell.py @@ -0,0 +1,42 @@ +import pandas as pd +from pathlib import Path +import numpy as np +import argparse + + +def read_numpy(prefix): + data = np.load(f'{prefix}.npy') + columns = [item.strip() for item in open(f'{prefix}.cols.txt', 'r').readlines()] + rows = [item.strip() for item in open(f'{prefix}.rows.txt', 'r').readlines()] + return pd.DataFrame(data=data, columns=columns, index=rows) + + +def concat_numpy_files(celltype, condition, res_prefix, maxcell): + allres = pd.DataFrame() + for dataset in ['onemillionv2', 'onemillionv3', 'stemiv2', 'ng']: + if condition =='stimulated' and dataset == 'ng': + continue + else: + numpyfile_path = res_prefix/condition/dataset/f'{condition}_{celltype}.max{maxcell}cells.zscores' + df = read_numpy(numpyfile_path) + allres = pd.concat([df, allres], axis=1, join='outer') + print(f'Adding {dataset}, it has shape:', allres.shape) + allres.to_csv(res_prefix/condition/f'{condition}_{celltype}.max{maxcell}cells.onemillionv23stemiv2ng.zscores.tsv.gz', + compression='gzip', sep='\t') + return allres + + +def argumentsparser(): + parser = argparse.ArgumentParser() + parser.add_argument('--celltype', type=str, dest='celltype') + parser.add_argument('--condition', type=str, dest='condition') + parser.add_argument('--maxcell', type=str, dest='maxcell') + return parser + + +workdir = Path("./coeqtl_mapping") +res_prefix = workdir/'input/individual_networks/' + +args = argumentsparser().parse_args() +celltype, condition, maxcell = args.celltype, args.condition, int(args.maxcell) +_ = concat_numpy_files(celltype, condition, res_prefix, maxcell) diff --git a/04_coeqtl_mapping/merge_coexpression_for_betaqtl.subsampleindividuals.py b/04_coeqtl_mapping/merge_coexpression_for_betaqtl.subsampleindividuals.py new file mode 100644 index 0000000..d0e2dc0 --- /dev/null +++ b/04_coeqtl_mapping/merge_coexpression_for_betaqtl.subsampleindividuals.py @@ -0,0 +1,44 @@ +import pandas as pd +from pathlib import Path +import numpy as np +import argparse + + +def read_numpy(prefix): + data = np.load(f'{prefix}.npy') + columns = [item.strip() for item in open(f'{prefix}.cols.txt', 'r').readlines()] + rows = [item.strip() for item in open(f'{prefix}.rows.txt', 'r').readlines()] + return pd.DataFrame(data=data, columns=columns, index=rows) + + +def concat_numpy_files(celltype, condition, res_prefix, num): + allres = pd.DataFrame() + for dataset in ['onemillionv2', 'onemillionv3', 'stemiv2', 'ng']: + if condition =='stimulated' and dataset == 'ng': + continue + else: + numpyfile_path = res_prefix/condition/dataset/f'{condition}_{celltype}.zscores' + df = read_numpy(numpyfile_path) + allres = pd.concat([df, allres], axis=1, join='outer') + print(f'Adding {dataset}, it has shape:', allres.shape) + allres.sample(num, axis=1).to_csv(res_prefix/condition/f'{condition}_{celltype}.onemillionv23stemiv2ng.{num}randompeople.zscores.tsv.gz', + sep='\t', compression='gzip') + # allres.sample(50).to_csv(res_prefix / condition / f'{condition}_{celltype}.onemillionv23stemiv2ng.50randompeople.zscores.tsv.gz', + # sep='\t', compression='gzip') + return allres + + +def argumentsparser(): + parser = argparse.ArgumentParser() + parser.add_argument('--celltype', type=str, dest='celltype') + parser.add_argument('--condition', type=str, dest='condition') + parser.add_argument('--num', type=str, dest='num') + return parser + + +workdir = Path("./coeqtl_mapping") +res_prefix = workdir/'input/individual_networks/' + +args = argumentsparser().parse_args() +celltype, condition, number = args.celltype, args.condition, int(args.num) +_ = concat_numpy_files(celltype, condition, res_prefix, number) \ No newline at end of file diff --git a/04_coeqtl_mapping/multipletesting_correction.fixed.py b/04_coeqtl_mapping/multipletesting_correction.fixed.py new file mode 100644 index 0000000..bf7a9c4 --- /dev/null +++ b/04_coeqtl_mapping/multipletesting_correction.fixed.py @@ -0,0 +1,129 @@ +import pandas as pd +from statsmodels.stats.multitest import multipletests +import numpy as np +import argparse +from scipy.optimize import minimize +from scipy.stats import beta +from scipy import special +from pathlib import Path + + +def read_numpy(prefix): + data = np.load(f'{prefix}.npy') + columns = [f'perm{item.strip()}' for item in open(f'{prefix}.cols.txt', 'r').readlines()] + rows = [item.strip() for item in open(f'{prefix}.rows.txt', 'r').readlines()] + return pd.DataFrame(data=data, columns=columns, index=rows) + + +def beta_distribution_mle_function(x, p): + k, n = x + ll = (k - 1) * np.sum(np.log(p)) + (n - 1) * np.sum(np.log(1 - p)) - np.size(p) * special.betaln(k, n) + return -1 * ll + + +def beta_distribution_initial_guess(x): + """ + https://stats.stackexchange.com/questions/13245/which-is-a-good-tool-to-compute-parameters-for-a-beta-distribution + """ + mean = np.mean(x) + var = np.var(x) + a = mean * ((mean * (1 - mean) / var) - 1) + b = (1 - mean) * ((mean * (1 - mean) / var) - 1) + return a, b + + +def fit_beta_distribution(p, a_bnd=(0.1, 10), b_bnd=(1, 1000000)): + a, b = beta_distribution_initial_guess(p) + x0 = np.array([min(max(a, a_bnd[0]), a_bnd[1]), min(max(b, b_bnd[0]), b_bnd[1])]) + res = minimize(beta_distribution_mle_function, + x0=x0, + args=(p, ), + method='nelder-mead', + bounds=(a_bnd, b_bnd), + options={"maxiter": 10000, "disp": True}) + return res.x, res.nfev, res.nit + + +def arguments(): + parser = argparse.ArgumentParser() + parser.add_argument('--permutation_pvalue_path', dest='permutation_pvalue_path') + parser.add_argument('--coeqtl_path', dest='coeqtl_path') + parser.add_argument('--eqtl_path', dest='eqtl_path') + parser.add_argument('--save_prefix', dest='saveprefix') + return parser + + +def find_eqtlsnp_gene(snp, genepair, eqtl_snp_gene_set): + gene1, gene2 = genepair.split(';') + if '_'.join([snp, gene1]) in eqtl_snp_gene_set: + return '_'.join([snp, gene1]) + else: + return '_'.join([snp, gene2]) + + +def find_eqtl_gene(coeqtl_chrpos, annotation_dict): + annotation_eqtlgene = annotation_dict.get(coeqtl_chrpos) + return annotation_eqtlgene + +def main(): + args = arguments().parse_args() + coeqtl_path = args.coeqtl_path + eqtls_path = args.eqtl_path + saveprefix = args.saveprefix + permutation_pvalue_path = args.permutation_pvalue_path + permutation_cols = [f'Perm{ind}' for ind in range(0, 100)] + permutation_pvalues_df = pd.read_csv(permutation_pvalue_path, sep='\t', + compression='gzip', index_col=0) + eqtl_df = pd.read_csv(eqtls_path, sep='\t') + eqtl_df['chr_pos'] = ['_'.join([str(ele) for ele in item]) for item in eqtl_df[['ProbeChr', 'ProbeCenterChrPos']].values] + eqtl_snp_gene_set = set(['_'.join(item) for item in eqtl_df[['SNPName', 'genename']].values]) + annotation_path = '/groups/umcg-bios/tmp01/projects/1M_cells_scRNAseq/ongoing/eQTL_mapping/probeannotation/singleCell-annotation-stripped.tsv' + mappingdic = pd.read_csv('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/resources/features_v3_reformated_names.tsv', + sep='\t', names=['geneid', 'genename']).set_index('geneid')['genename'].T.to_dict() + annotation_df = pd.read_csv(annotation_path, sep='\t') + annotation_df['chr_pos'] = ['_'.join([str(ele) for ele in item]) for item in annotation_df[['Chr', 'ChrStart', 'ChrEnd']].values] + annotation_df['genename'] = [mappingdic.get(ensemblid) for ensemblid in annotation_df['Ensembl']] + annotation_dict = annotation_df.set_index('chr_pos')['genename'].T.to_dict() + # eqtl_df['snp_gene'] = ['_'.join(item) for item in eqtl_df[['SNPName', 'genename']].values] + # eqtl_snp_gene_set = set(eqtl_df['snp_gene']) + coeqtls = pd.read_csv(coeqtl_path, sep='\t', index_col=0, compression='gzip') + coeqtls['eqtlgene'] = [find_eqtl_gene(chr_pos, annotation_dict) for (chr_pos) in coeqtls['chr_pos']] + coeqtls['snp_eqtlgene'] = ['_'.join(item) for item in coeqtls[['SNP', 'eqtlgene']].values] + coeqtls_lowest_nominalP = coeqtls.sort_values(by='MetaP', ascending=True).drop_duplicates(subset=['snp_eqtlgene']) + coeqtls_lowest_nominalP_dict = coeqtls_lowest_nominalP.set_index('snp_eqtlgene')['MetaP'].T.to_dict() + permutation_pvalues_df['SNP'] = [item.split('_')[0] for item in permutation_pvalues_df.index] + permutation_pvalues_df['nominalP'] = [coeqtls_lowest_nominalP_dict.get(snp) for snp in + permutation_pvalues_df.index] + permutation_pvalues_df = permutation_pvalues_df.dropna(subset=['nominalP']) + permutation_pvalues_df['beta_shape1'], permutation_pvalues_df['beta_shape2'] = \ + zip(*[fit_beta_distribution(x)[0] for x in permutation_pvalues_df[permutation_cols].values]) + permutation_pvalues_df['pval_beta'] = [1-beta.sf(x[0], x[1], x[2]) for x in + permutation_pvalues_df[['nominalP', 'beta_shape1', 'beta_shape2']].values] + assert permutation_pvalues_df['pval_beta'].isnull().sum() == 0 + # over all eqtls, perform BH-FDR + permutation_pvalues_df['qval'] = multipletests(permutation_pvalues_df['pval_beta'].values, method='fdr_bh')[1] + permutation_pvalues_df.to_csv(f'{saveprefix}.eqtls_betaadjustedPs.tsv.gz', sep='\t', compression='gzip') + ub = permutation_pvalues_df[permutation_pvalues_df['qval']>=0.05].sort_values(by=['pval_beta'], ascending=True)['pval_beta'].values[0] + lb = permutation_pvalues_df[permutation_pvalues_df['qval']<=0.05].sort_values(by=['pval_beta'], ascending=False)['pval_beta'].values[0] + pthreshold = (ub + lb) / 2 + print('Minimum p-value threshold', pthreshold) + permutation_pvalues_df['threshold_per_betadistribution'] = [beta.ppf(pthreshold, x[0], x[1]) for x in + permutation_pvalues_df[['beta_shape1', 'beta_shape2']].values] + permutation_pvalue_threshold_dict = permutation_pvalues_df.T.to_dict() + coeqtls['snp_beta_shape1'] = [permutation_pvalue_threshold_dict.get(snp)['beta_shape1'] for snp in coeqtls['snp_eqtlgene'].values] + coeqtls['snp_beta_shape2'] = [permutation_pvalue_threshold_dict.get(snp)['beta_shape2'] for snp in coeqtls['snp_eqtlgene']] + coeqtls['snp_pvalbeta'] = [permutation_pvalue_threshold_dict.get(snp)['pval_beta'] for snp in coeqtls['snp_eqtlgene']] + coeqtls['snp_qval'] = [permutation_pvalue_threshold_dict.get(snp)['qval'] for snp in coeqtls['snp_eqtlgene']] + coeqtls['gene2_pthreshold'] = [permutation_pvalue_threshold_dict.get(snp)['threshold_per_betadistribution'] + for snp in coeqtls['snp_eqtlgene']] + issig = lambda x:True if x[0] <= x[1] else False + coeqtls['gene2_isSig'] = [issig(item) for item in coeqtls[['MetaP', 'gene2_pthreshold']].values] + significant_coeqtls = coeqtls[(coeqtls['snp_qval']<=0.05) & (coeqtls['gene2_isSig'])] + print('Significant results:', significant_coeqtls.shape[0]) + coeqtls.to_csv(f'{saveprefix}.all.tsv.gz', sep='\t', compression='gzip') + significant_coeqtls.to_csv(f'{saveprefix}.sig.tsv.gz', sep='\t', compression='gzip') + return coeqtls + + +if __name__ == '__main__': + _ = main() diff --git a/04_coeqtl_mapping/plot_celltype_overlap_upset.R b/04_coeqtl_mapping/plot_celltype_overlap_upset.R new file mode 100644 index 0000000..8e5cd48 --- /dev/null +++ b/04_coeqtl_mapping/plot_celltype_overlap_upset.R @@ -0,0 +1,46 @@ +# ------------------------------------------------------------------------------ +# Generate an upset plot of overlap between cell types +# Input: significant co-eQTL results per cell type +# Output: upset plot +# ------------------------------------------------------------------------------ + +library(data.table) +library(UpSetR) + +coeqtls_mono<-fread("coeqtl_mapping/output/filtered_results/UT_monocyte/coeqtls_fullresults_fixed.sig.tsv.gz") +coeqtls_cd4t<-fread("coeqtl_mapping/output/filtered_results/UT_CD4T/coeqtls_fullresults_fixed.sig.tsv.gz") +coeqtls_cd8t<-fread("coeqtl_mapping/output/filtered_results/UT_CD8T/coeqtls_fullresults_fixed.sig.tsv.gz") +coeqtls_nk<-fread("coeqtl_mapping/output/filtered_results/UT_NK/coeqtls_fullresults_fixed.sig.tsv.gz") +coeqtls_dc<-fread("coeqtl_mapping/output/filtered_results/UT_DC/coeqtls_fullresults_fixed.sig.tsv.gz") +coeqtls_b<-fread("coeqtl_mapping/output/filtered_results/UT_B/coeqtls_fullresults_fixed.sig.tsv.gz") + +pdf(paste0(outdir, "grn_plot_snp_gene_gene.pdf")) + +upset(fromList(list(Monocyte = coeqtls_mono$snp_genepair, + `CD4+ T` = coeqtls_cd4t$snp_genepair, + `CD8+ T` = coeqtls_cd8t$snp_genepair, + NK = coeqtls_nk$snp_genepair, + DC = coeqtls_dc$snp_genepair, + B = coeqtls_b$snp_genepair)), + set_size.show = T,set_size.scale_max = 600, + mainbar.y.label = "SNP-Gene-Gene", + nintersects = 40, nsets = 10, + text.scale = 1.5) + +dev.off() + +#Identify all elements that are in at least four of the six cell types +all_coeqtls<-c(unique(coeqtls_mono$snp_genepair), + unique(coeqtls_cd4t$snp_genepair), + unique(coeqtls_cd8t$snp_genepair), + unique(coeqtls_nk$snp_genepair), + unique(coeqtls_dc$snp_genepair), + unique(coeqtls_b$snp_genepair)) + +occurrence<-data.frame(table(all_coeqtls)) + +#Show all coeQTLs part of at least three different cell types: +most_occ<-occurrence[occurrence$Freq > 2,] +#How many of the frequent coeQTls are associated with the RPS26 locus: +mean(startsWith(as.character(most_occ$all_coeqtls),"rs1131017")) + diff --git a/04_coeqtl_mapping/plot_co-eQTL.R b/04_coeqtl_mapping/plot_co-eQTL.R new file mode 100644 index 0000000..0357de4 --- /dev/null +++ b/04_coeqtl_mapping/plot_co-eQTL.R @@ -0,0 +1,152 @@ +############################################################################################################################ +# Code Author: Dylan de Vries +# Name: plot_co-eQTL.R +# Function: Plot co-eQTLs +############################################################################################################################ +# +# Libraries +# +############################################################################################################################ +library(data.table) +library(ggplot2) +library(ggbeeswarm) +library(gridExtra) + +############################################################################################################################ +# +# Functions +# +############################################################################################################################ +# Name: get.expression.data +# Function: Get the expression data and calculate the co-expression for plotting purposes +# Input: +# Name Type Description +# sample character sample name +# cell.type character cell type to get the data for +# gene1 character first gene to get data for +# gene2 character second gene to get data for +# genotype character the genotype of the co-eQTL for this sample +# +# Output: +# A list with two data frames of one sample. The first is for making the boxplots and the second for the personalized expression regression plot +get.expression.data <- function(sample, cell.type, gene1, gene2, genotype){ + sample.gene1.expression <- data@assays$SCT@data[gene1, rownames(data@meta.data[data@meta.data$cell_type_lowerres == cell.type & data@meta.data$assignment == sample,])] + sample.gene2.expression <- data@assays$SCT@data[gene2, rownames(data@meta.data[data@meta.data$cell_type_lowerres == cell.type & data@meta.data$assignment == sample,])] + + sample.co.expression <- cor(sample.gene1.expression, sample.gene2.expression, method="spearman") + expr.plot.data <- data.frame(gene1.expression=sample.gene1.expression, gene2.expression=sample.gene2.expression, sample=sample, genotype=genotype) + plot.data <- list(sample.co.expression, expr.plot.data) + return(plot.data) +} + +# Name: prepare.plot.data +# Function: Combine the data of all samples into data.frames +# Input: +# Name Type Description +# gene1 character first gene to get data for +# gene2 character second gene to get data for +# SNP.name character the rs-ID for the co-eQTL SNP +# cell.type character cell type to get the data for +# +# Output: +# A list with two data frames. The first is for making the boxplots and the second for the personalized expression regression plot +prepare.plot.data <- function(gene1, gene2, SNP.name, cell.type){ + co.expressions <- c() + genotypes <- c() + expr.plot.data <- data.frame(gene1.expression=numeric(0), gene2.expression=numeric(0), sample=character(0), genotype=character(0)) + for (sample in samples){ + genotypes <- c(genotypes, genotypes_all[SNP.name, sample]) + plot.data <- get.expression.data(sample, cell.type, gene1, gene2, genotypes_all[SNP.name, sample]) + expr.plot.data <- rbind(expr.plot.data, plot.data[[2]]) + co.expressions <- c(co.expressions, plot.data[[1]]) + } + plot.data <- data.frame(co.expression=co.expressions, sample=samples, genotype=genotypes) + combined.plot.data <- list(plot.data, expr.plot.data) + return(combined.plot.data) +} + +# Name: plot.co.eQTL.boxplot +# Function: Make a plot for the co-eQTL +# Input: +# Name Type Description +# plot.data data.frame the data for the boxplot +# expr.plot.data data.frame the data for the expression regression plot +# gene1 character first gene to get data for +# gene2 character second gene to get data for +# SNP.name character the rs-ID for the co-eQTL SNP +# cell.type character cell type to get the data for +# meta.z numeric meta z-score +# QTL.type character indicates whether it's amongst the strongest, middle or weakest co-eQTLs +# QTL.type.index character the index of the co-eQTL within its type +# +# Output: +# A list with two data frames. The first is for making the boxplots and the second for the personalized expression regression plot +plot.co.eQTL.boxplot <- function(plot.data, expr.plot.data, gene1, gene2, SNP.name, cell.type, meta.z, QTL.type, QTL.type.index){ + genotype.colors <- c("#57a350", "#fd7600", "#383bfe", "white") + names(genotype.colors) <- c("0/0", "0/1", "1/1", "white") + + sample.color <- c(colorRampPalette(c("#9efc95", "#57a350"))(length(which(plot.data$genotype=="0/0"))), + colorRampPalette(c("#fabb84", "#fd7600"))(length(which(plot.data$genotype=="0/1"))), + colorRampPalette(c("#acadfc", "#383bfe"))(length(which(plot.data$genotype=="1/1")))) + names(sample.color) <- c(as.character(plot.data$sample[plot.data$genotype == "0/0"]), as.character(plot.data$sample[plot.data$genotype == "0/1"]), as.character(plot.data$sample[plot.data$genotype == "1/1"])) + + expr.plot <- ggplot(expr.plot.data, aes(x=gene1.expression, y=gene2.expression, fill=sample, color=sample)) + geom_point(size=0.5) + + geom_smooth(method = "lm", fullrange = T, se=F) + + scale_fill_manual(values=sample.color) + + scale_color_manual(values=sample.color) + + xlab(paste0(gene1, " expression")) + + ylab(paste0(gene2, " expression")) + + ggtitle(paste0(SNP.name, " effect on ", gene1, " - ", gene2, "\nco-expression")) + + guides(fill=FALSE, color=FALSE) + + theme(axis.text.x = element_text(angle = 90, hjust = 1, size=7), panel.border = element_rect(color="black", fill=NA, size=1.1), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank(), strip.background = element_rect(colour="white", fill="white")) + + box.plot <- ggplot(plot.data) + geom_boxplot(aes(x=genotype, y=co.expression, fill=genotype), outlier.shape=NA, alpha=0.6) + + geom_quasirandom(aes(x=genotype, y=co.expression, color=genotype, fill="white"), pch=21, size=2, alpha=1, dodge.width=0.4, alpha=0.6) + + scale_fill_manual(values=genotype.colors) + + scale_color_manual(values=genotype.colors) + + xlab("Genotype") + + ylab(paste0(gene1, " - ", gene2, " co-expression")) + + ggtitle(paste0(SNP.name, " co-eQTL\n", QTL.type, " ", QTL.type.index)) + + guides(fill=FALSE, color=FALSE) + + theme(axis.text.x = element_text(angle = 90, hjust = 1, size=7), panel.border = element_rect(color="black", fill=NA, size=1.1), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank(), strip.background = element_rect(colour="white", fill="white")) + + pdf(paste0("/groups/umcg-bios/tmp01/projects/1M_cells_scRNAseq/ongoing/co-eQTLs/plots/", cell.type, "/", cell.type, "_co-eQTL_", SNP.name, "_", gene1, "-", gene2, ".pdf")) + grid.arrange(expr.plot, box.plot, ncol=2) + dev.off() +} + +############################################################################################################################ +# +# Main code +# +############################################################################################################################ +data <- readRDS("/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/seurat_objects/1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.rds") +vcf <- fread('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/genotypes/LL_trityper_plink_converted.vcf.gz') +target.QTLs <- read.table("/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/filtered_results/UT_monocyte/coeqtls_fullresults.sig.tsv.gz", header=T, sep="\t", stringsAsFactors=F) +target.QTLs <- target.QTLs[order(abs(target.QTLs$MetaPZ), decreasing=T),] +genotypes_all <- as.data.frame(vcf[, 10:ncol(vcf)]) +rownames(genotypes_all) <- vcf$ID + +#Get the 10 strongest, 10 middling and 10 weakest of the input co-eQTLs +QTL.selection <- target.QTLs[c(1:10, floor(nrow(target.QTLs)/2):(floor(nrow(target.QTLs)/2)+10), (nrow(target.QTLs)-10):nrow(target.QTLs)),] +samples <- unique(data@meta.data$assignment) + +for (QTL.index in 1:nrow(QTL.selection)){ + print(QTL.index) + if (QTL.index <= 10){ + type <- "strong" + QTL.type.index <- QTL.index + } else if (QTL.index <= 20){ + type <- "medium" + QTL.type.index <- QTL.index - 10 + } else { + type <- "poor" + QTL.type.index <- QTL.index - 20 + } + genes <- unlist(strsplit(QTL.selection$Gene[QTL.index], ";")) + combined.plot.data <- prepare.plot.data(genes[1], genes[2], QTL.selection$SNP[QTL.index], "monocyte") + plot.data <- combined.plot.data[[1]] + expr.plot.data <- combined.plot.data[[2]] + + plot.co.eQTL.boxplot(plot.data, expr.plot.data, genes[1], genes[2], QTL.selection$SNP[QTL.index], "monocyte", QTL.selection$MetaPZ[QTL.index], type, QTL.type.index) +} diff --git a/04_coeqtl_mapping/plot_effect_concordance_across_cohorts.R b/04_coeqtl_mapping/plot_effect_concordance_across_cohorts.R new file mode 100644 index 0000000..b876047 --- /dev/null +++ b/04_coeqtl_mapping/plot_effect_concordance_across_cohorts.R @@ -0,0 +1,73 @@ +################################################################################ +# Compare effect sizes (Z-scores) calculated in each individual dataset +# (before the meta-analysis) +# Input: coeqtls results of the respective cell type +# Output: pairwise plot showing the differences for each combination of cohorts +################################################################################ + +library(GGally) #to generate pairwise comparison plots +library(viridis) + +coeqtl_dir<-"coeqtl_mapping/output/filtered_results/" +plot_dir<-"coeqtl_interpretation/plots_filtered/" + +cell_type<-"CD4T" + +# Load current set of coeQTL +coeqtls<-fread(paste0(coeqtl_dir,"UT_", + cell_type,"/coeqtls_fullresults.all.tsv.gz")) +coeqtls$gene1<-gsub(";.*","",coeqtls$Gene) +coeqtls$gene2<-gsub(".*;","",coeqtls$Gene) + +# Gene 1 and 2 should be ordered alphabetically, but there is an issue regarding +# small and capital letters (so order them again!) +coeqtls$swap<-ifelse(coeqtls$gene1 > coeqtls$gene2,coeqtls$gene1,coeqtls$gene2) +coeqtls$gene1<-ifelse(coeqtls$gene1 > coeqtls$gene2,coeqtls$gene2,coeqtls$gene1) +coeqtls$gene2<-coeqtls$swap +coeqtls$swap<-NULL + +# Filter for significant coeQTLs +sign_coeqtls<-coeqtls[coeqtls$gene2_isSig == "TRUE" & + coeqtls$snp_qval <= 0.05,] + +print(paste(nrow(sign_coeqtls),"significant coeQTLs from", + nrow(coeqtls),"pairs")) +print(paste("CoeQTLs consisting of:", + length(unique(sign_coeqtls$GeneSymbol)), "unique gene pairs from", + length(unique(c(sign_coeqtls$gene1,sign_coeqtls$gene2))),"unique genes", + "and",length(unique(sign_coeqtls$SNP)),"unique SNPs")) + +# Check Z score distribution +z_scores<-strsplit(sign_coeqtls$`DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)`, + split=";") +z_scores<-matrix(as.numeric(unlist(z_scores)),ncol=4,byrow=TRUE) +z_scores<-as.data.frame(z_scores) +colnames(z_scores)<-c("ng","onemillionv2","onemillionv3","stemiv2") +z_scores$coeqtl<-sign_coeqtls$snp_genepair +z_scores$meta_z<-sign_coeqtls$MetaPZ + +#Flip the Z-scores so that AF is always representing the minor allele +z_scores$AF<-sign_coeqtls$SNPEffectAlleleFreq +for(colN in c("ng","onemillionv2","onemillionv3","stemiv2","meta_z")){ + z_scores[,colN]<-ifelse(z_scores$AF>=0.5,z_scores[,colN]*(-1),z_scores[,colN]) +} + +#Rename Z score columns +colnames(z_scores)[1:4]<-c("van der Wijst","Oelen (v2)","Oelen (v3)", "van Blokland (v2)") +z_scores<-z_scores[,c("Oelen (v2)","Oelen (v3)", "van Blokland (v2)", + "van der Wijst","coeqtl","meta_z","AF")] +#Plot comparison of Z scores between cohorts +lowerfun <- function(data,mapping){ + ggplot(data = data, mapping = mapping)+ + geom_bin2d()+ + scale_fill_viridis("Density",breaks=c(2,7),labels = c("Low", "High"))+ + geom_hline(yintercept=0)+geom_vline(xintercept=0) +} + +g<-ggpairs(z_scores[1:4], + lower=list(continuous=wrap(lowerfun)), + legend=c(2,1))+ + theme(legend.position = "bottom") +ggsave(g,file=paste0(plot_dir,cell_type, + "_zscore_dist_cohorts.pdf"), + height=6,width=6) \ No newline at end of file diff --git a/04_coeqtl_mapping/plot_example_imputed_zero.ipynb b/04_coeqtl_mapping/plot_example_imputed_zero.ipynb new file mode 100644 index 0000000..fc28e77 --- /dev/null +++ b/04_coeqtl_mapping/plot_example_imputed_zero.ipynb @@ -0,0 +1,571 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import os\n", + "import re\n", + "from pathlib import Path\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import scanpy as sc\n", + "from scipy.stats import spearmanr, pearsonr\n", + "from scipy.stats import t, norm\n", + "from tqdm import tqdm\n", + "\n", + "\n", + "def get_time(x):\n", + " if x == 'UT':\n", + " return x\n", + " else:\n", + " pattern = re.compile(r'\\d+h')\n", + " return re.findall(pattern, x)[0]\n", + "\n", + "\n", + "class DATASET:\n", + " def __init__(self, datasetname):\n", + " self.name = datasetname\n", + " self.path_prefix = Path(\"./seurat_objects\")\n", + " self.information = self.get_information()\n", + " def get_information(self):\n", + " if self.name == 'onemillionv2':\n", + " self.path = '1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.sct.h5ad'\n", + " self.individual_id_col = 'assignment'\n", + " self.timepoint_id_col = 'time'\n", + " self.celltype_id = 'cell_type_lowerres'\n", + " self.chosen_condition = {'UT': 'UT',\n", + " 'stimulated': '3h'}\n", + " elif self.name == 'onemillionv3':\n", + " self.path = '1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad'\n", + " self.individual_id_col = 'assignment'\n", + " self.timepoint_id_col = 'time'\n", + " self.celltype_id = 'cell_type_lowerres'\n", + " self.chosen_condition = {'UT': 'UT',\n", + " 'stimulated': '3h'}\n", + " elif self.name == 'stemiv2':\n", + " self.path = 'cardio.integrated.20210301.stemiv2.h5ad'\n", + " self.individual_id_col = 'assignment.final'\n", + " self.timepoint_id_col = 'timepoint.final'\n", + " self.celltype_id = 'cell_type_lowerres'\n", + " self.chosen_condition = {'UT': 't8w',\n", + " 'stimulated': 'Baseline'}\n", + " elif self.name == 'ng':\n", + " self.path = 'pilot3_seurat3_200420_sct_azimuth.h5ad'\n", + " self.individual_id_col = 'snumber'\n", + " self.celltype_id = 'cell_type_mapped_to_onemillion'\n", + " else:\n", + " raise IOError(\"Dataset name not understood.\")\n", + " def load_dataset(self):\n", + " self.get_information()\n", + " print(f'Loading dataset {self.name} from {self.path_prefix} {self.path}')\n", + " self.data_sc = sc.read_h5ad(self.path_prefix / self.path)\n", + " if self.name.startswith('onemillion'):\n", + " self.data_sc.obs['time'] = [get_time(item) for item in self.data_sc.obs['timepoint']]\n", + " elif self.name == 'ng':\n", + " celltype_maping = {'CD4 T': 'CD4T', 'CD8 T': 'CD8T', 'Mono': 'monocyte', 'DC': 'DC', 'NK': 'NK',\n", + " 'other T': 'otherT', 'other': 'other', 'B': 'B'}\n", + " self.data_sc.obs['cell_type_mapped_to_onemillion'] = [celltype_maping.get(name) for name in\n", + " self.data_sc.obs['predicted.celltype.l1']]\n", + " def get_cMono_ncMono(self):\n", + " def tell_cmono_foronemillion(x):\n", + " if x == 'mono 1' or x == 'mono 3' or x == 'mono 4':\n", + " return 'cMono'\n", + " elif x == 'mono 2':\n", + " return 'ncMono'\n", + " if self.name.startswith('onemillion'):\n", + " self.data_sc.obs['sub_monocytes'] = [tell_cmono_foronemillion(x) for x in\n", + " self.data_sc.obs['cell_type']]\n", + " self.cmono = self.data_sc[self.data_sc.obs['sub_monocytes'] == 'cMono']\n", + " self.ncmono = self.data_sc[self.data_sc.obs['sub_monocytes'] == 'ncMono']\n", + " elif self.name.startswith('stemi'):\n", + " self.cmono = self.data_sc[self.data_sc.obs['cell_type'] == 'cMono']\n", + " self.ncmono = self.data_sc[self.data_sc.obs['cell_type'] == 'ncMono']\n", + " elif self.name == 'ng':\n", + " self.cmono = self.data_sc[self.data_sc.obs['predicted.celltype.l2'] == 'CD14 Mono']\n", + " self.ncmono = self.data_sc[self.data_sc.obs['predicted.celltype.l2'] == 'CD16 Mono']\n", + " else:\n", + " raise IOError(\"Dataset name not understood.\")\n", + "\n", + "example_savedir = Path(\n", + " \"/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/examples\"\n", + ")\n", + "\n", + "import subprocess\n", + "bashfile_path = '/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/bios/select_snps_from_vcf.sh'\n", + "def get_snps_from_vcffile(bashfile_path, vcf_path, snps_path, savepath):\n", + " response = subprocess.run([bashfile_path, vcf_path, snps_path, savepath])\n", + " print(response)\n", + " return None\n", + "\n", + "# sample id mapping\n", + "gtefile = pd.read_csv(\n", + " '/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/summary/gte-fix.tsv',\n", + " sep='\\t'\n", + ")\n", + "gte_dict = gtefile.set_index(\"expressionsampleID\")[\"genotypesampleID\"].T.to_dict()\n", + "\n", + "\n", + "def corr_to_z(coef, num):\n", + " t_statistic = coef * np.sqrt((num - 2) / (1 - coef ** 2))\n", + " prob = t.cdf(t_statistic, num - 2)\n", + " z_score = norm.ppf(prob)\n", + " positive_coef_probs = 1 - prob\n", + " positive_coef_probs[coef < 0] = 0\n", + " negative_coef_probs = prob\n", + " negative_coef_probs[coef > 0] = 0\n", + " probs = negative_coef_probs + positive_coef_probs\n", + " return z_score, probs\n", + "\n", + "\n", + "def get_individual_networks_selected_genepairs(data_df, data_sc, individual_colname, genepair, fillna=False):\n", + "# data_df = pd.DataFrame(data=data_sc.X.toarray(),\n", + "# index=data_sc.obs.index,\n", + "# columns=data_sc.var.index)\n", + " gene1, gene2 = genepair.split(';')\n", + " sorted_genepair = [';'.join(sorted([gene1, gene2]))]\n", + " coef_df = pd.DataFrame(index=sorted_genepair)\n", + " coef_p_df = pd.DataFrame(index=sorted_genepair)\n", + " zscore_df = pd.DataFrame(index=sorted_genepair)\n", + " zscore_p_df = pd.DataFrame(index=sorted_genepair)\n", + " data_selected_df = data_df[[gene1, gene2]]\n", + " print(\n", + " f\"Calculating networks for {len(data_sc.obs[individual_colname].unique())} individuals and;\\n{genepair}\"\n", + " )\n", + " for ind_id in tqdm(data_sc.obs[individual_colname].unique()):\n", + " cell_num = data_sc.obs[data_sc.obs[individual_colname] == ind_id].shape[0]\n", + " if cell_num > 10:\n", + " individual_df = data_selected_df.loc[data_sc.obs[individual_colname] == ind_id]\n", + " individual_coefs, individual_coef_ps = spearmanr(individual_df.values, axis=0)\n", + " if data_selected_df.shape[1] == 2:\n", + " individual_coefs_flatten = pd.DataFrame(data = [individual_coefs],\n", + " index = sorted_genepair)\n", + " individual_coef_ps_flatten = \\\n", + " pd.DataFrame(data=[individual_coef_ps],\n", + " index=sorted_genepair)\n", + " else:\n", + " individual_coefs_flatten = pd.DataFrame(\n", + " data=individual_coefs[np.triu_indices_from(individual_coefs, 1)],\n", + " index=sorted_genepair).loc[sorted_genepair]\n", + " individual_coef_ps_flatten = \\\n", + " pd.DataFrame(data=individual_coef_ps[np.triu_indices_from(individual_coefs, 1)],\n", + " index=sorted_genepair).loc[sorted_genepair]\n", + " coef_df[ind_id] = individual_coefs_flatten\n", + " coef_p_df[ind_id] = individual_coef_ps_flatten\n", + " try:\n", + " individual_zscores_flatten, individual_zscore_ps_flatten = corr_to_z(\n", + " individual_coefs_flatten.values,\n", + " cell_num\n", + " )\n", + " zscore_df[ind_id] = individual_zscores_flatten\n", + " zscore_p_df[ind_id] = individual_zscore_ps_flatten\n", + " except:\n", + " continue\n", + " else:\n", + " print(\"Deleted this individual because of low cell number\", cell_num)\n", + " if fillna:\n", + " zscore_df = zscore_df.fillna(0)\n", + " return data_selected_df, zscore_df, zscore_p_df" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading dataset onemillionv2 from /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/seurat_objects 1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.sct.h5ad\n" + ] + } + ], + "source": [ + "datasetname = 'onemillionv2'\n", + "dataset = DATASET(datasetname)\n", + "dataset.load_dataset()\n", + "data_sc = dataset.data_sc" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CompletedProcess(args=['/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/bios/select_snps_from_vcf.sh', '/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/genotypevcfs/chr1/GenotypeData.vcf.gz', PosixPath('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/examples/snplist.rs221045'), PosixPath('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/examples/rs221045.vcf')], returncode=0)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
#CHROMPOSIDREFALTQUALFILTERINFOFORMAT1_LLDeep_1191...s21s43s24s23s45s26s25s28s27s29
0116530049rs221045TC...GT:DS0/0:0.03...0/1:1.00/0:0.0100000000000000090/1:1.00/0:0.00/0:0.01/1:2.00/0:0.00/1:1.00/0:0.00/1:1.0
\n", + "

1 rows × 182 columns

\n", + "
" + ], + "text/plain": [ + " #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT 1_LLDeep_1191 \\\n", + "0 1 16530049 rs221045 T C . . . GT:DS 0/0:0.03 \n", + "\n", + " ... s21 s43 s24 s23 s45 s26 \\\n", + "0 ... 0/1:1.0 0/0:0.010000000000000009 0/1:1.0 0/0:0.0 0/0:0.0 1/1:2.0 \n", + "\n", + " s25 s28 s27 s29 \n", + "0 0/0:0.0 0/1:1.0 0/0:0.0 0/1:1.0 \n", + "\n", + "[1 rows x 182 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "celltype = 'monocyte'\n", + "snp_id = 'rs221045'\n", + "chromosome = '1'\n", + "snp_vcf_path = example_savedir/f'{snp_id}.vcf'\n", + "with open(example_savedir/f'snplist.{snp_id}', 'w') as f:\n", + " f.write(f'{snp_id}\\n')\n", + "vcf_path = f'/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/genotypevcfs/chr{chromosome}/GenotypeData.vcf.gz'\n", + "get_snps_from_vcffile(bashfile_path, vcf_path, example_savedir/f'snplist.{snp_id}', snp_vcf_path)\n", + "gt = pd.read_csv(snp_vcf_path, sep='\\t', skiprows=6)\n", + "gt" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculating networks for 72 individuals and;\n", + "AC005076.5;ARHGEF19\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/72 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# genepair = 'RP1-29C18.10;ZNF501'\n", + "# genepair = 'CCDC15;UNC5B'\n", + "# genepair = 'GSTM3;RP1-29C18.10'\n", + "# genepair = 'MMEL1;SARS2'\n", + "genepair = 'AC005076.5;ARHGEF19'\n", + "gene1, gene2 = genepair.split(';')\n", + "\n", + "if datasetname == 'ng':\n", + " ut_celltype = data_sc[data_sc.obs[dataset.celltype_id]==celltype]\n", + "else:\n", + " ut_celltype = data_sc[(data_sc.obs[dataset.celltype_id]==celltype) &\n", + " (data_sc.obs[dataset.timepoint_id_col]==dataset.chosen_condition['UT'])]\n", + "\n", + "ut_celltype_df = pd.DataFrame(data=ut_celltype.X.toarray(),\n", + " columns=ut_celltype.var.index,\n", + " index=ut_celltype.obs.index)\n", + "selected_expression_df, ut_zscore_df, ut_zscore_p_df = get_individual_networks_selected_genepairs(\n", + " data_df = ut_celltype_df,\n", + " data_sc = ut_celltype,\n", + " individual_colname = dataset.individual_id_col,\n", + " genepair = genepair,\n", + " fillna=False\n", + ")\n", + "\n", + "ut_t = ut_zscore_df.T\n", + "ut_t['gt_sampleid'] = [gte_dict.get(name) for name in ut_t.index]\n", + "ut_t = ut_t.set_index('gt_sampleid')\n", + "common_individuals = list(set(gt.columns) & set(ut_t.index))\n", + "gt_t = gt[common_individuals].T\n", + "gt_t['genotype'] = [item.split(':')[0].count('1') for item in gt_t[0]]\n", + "concat_df = pd.concat([gt_t, ut_t], axis=1).replace([np.inf, -np.inf], np.nan).dropna()\n", + "print('Not Imputed', spearmanr(concat_df['genotype'], concat_df[genepair]))\n", + "\n", + "ut_t_imputed = ut_zscore_df.fillna(0).T\n", + "ut_t_imputed['gt_sampleid'] = [gte_dict.get(name) for name in ut_t_imputed.index]\n", + "ut_t_imputed = ut_t_imputed.set_index('gt_sampleid')\n", + "common_individuals_imputed = list(set(gt.columns) & set(ut_t_imputed.index))\n", + "gt_t_imputed = gt[common_individuals_imputed].T\n", + "gt_t_imputed['genotype'] = [item.split(':')[0].count('1') for item in gt_t_imputed[0]]\n", + "concat_imputed_df = pd.concat([gt_t_imputed, ut_t_imputed], axis=1).replace([np.inf, -np.inf], np.nan).dropna()\n", + "print('Imputed', spearmanr(concat_imputed_df['genotype'], concat_imputed_df[genepair]))\n", + "\n", + "# dosage_dict = gt_t['genotype'].T.to_dict()\n", + "# selected_expression_df_withsample = pd.concat([selected_expression_df,\n", + "# ut_celltype.obs[[dataset.individual_id_col]]],\n", + "# axis=1)\n", + "# selected_expression_df_withsample['gt_sampleid'] = [gte_dict.get(name) for name in\n", + "# selected_expression_df_withsample[dataset.individual_id_col]]\n", + "# selected_expression_df_withsample['genotype'] = [dosage_dict.get(gt_sampleid) for gt_sampleid in\n", + "# selected_expression_df_withsample['gt_sampleid']]\n", + "\n", + "sns.set_style('white')\n", + "refallele = gt['REF'].values[0]\n", + "altallele = gt['ALT'].values[0]\n", + "snp_name = f'{snp_id}_{altallele}'\n", + "\n", + "_, axes = plt.subplots(1, 2, figsize=(10, 5), sharey=True)\n", + "ax1, ax2 = axes\n", + "\n", + "im_coef, im_p = spearmanr(concat_imputed_df['genotype'], concat_imputed_df[genepair])\n", + "sns.violinplot(x=concat_imputed_df['genotype'], \n", + " y=concat_imputed_df[genepair], \n", + " ax=ax1,\n", + " inner=None)\n", + "sns.swarmplot(x=concat_imputed_df['genotype'], \n", + " y=concat_imputed_df[genepair], \n", + " ax=ax1,\n", + " color='black')\n", + "ax1.set_title(f'Imputed r={im_coef:.2f}; pvalue {im_p:.4f}')\n", + "# ax1.set_xticklabels([f'{refallele}{refallele}', \n", + "# f'{refallele}{altallele}',\n", + "# f'{altallele}{altallele}'])\n", + "ax1.set_xlabel(snp_id)\n", + "\n", + "coef, p = spearmanr(concat_df['genotype'], concat_df[genepair])\n", + "sns.violinplot(x=concat_df['genotype'], \n", + " y=concat_df[genepair], \n", + " ax=ax2,\n", + " inner=None)\n", + "sns.swarmplot(x=concat_df['genotype'], \n", + " y=concat_df[genepair], \n", + " ax=ax2,\n", + " color='black')\n", + "ax2.set_xlabel('')\n", + "ax2.set_title(f'Not Imputed r={coef:.2f}; pvalue {p:.4f}')\n", + "# ax2.set_xticklabels([f'{refallele}{refallele}', \n", + "# f'{refallele}{altallele}',\n", + "# f'{altallele}{altallele}'])\n", + "ax2.set_xlabel(snp_id)\n", + "plt.savefig(example_savedir/f'{snp_name}_ref{refallele}_alt{altallele}_{gene1}_{gene2}.{celltype}_{datasetname}.full.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/tools/Beeline/miniconda/envs/scpy3.8/lib/python3.8/site-packages/seaborn/categorical.py:1296: UserWarning: 42.5% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", + " warnings.warn(msg, UserWarning)\n", + "/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/tools/Beeline/miniconda/envs/scpy3.8/lib/python3.8/site-packages/seaborn/categorical.py:1296: UserWarning: 7.1% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAFNCAYAAACAH1JNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABur0lEQVR4nO3dd1zV9ffA8dcdXLaAIA5wY2ruvbUwNQc5UtNsqBmapqmVXyuzMrMsy/qaZVjatBwpZurXnXvk+pkzcaSiguzNXZ/fH1duXhmiApd7Oc/HA+Uz77kX7ptz31OlKIqCEEIIIYRwGGp7ByCEEEIIIe6OJHBCCCGEEA5GEjghhBBCCAcjCZwQQgghhIORBE4IIYQQwsFIAieEEEII4WAkgRN3VLduXf755x97h+EUpk6dyty5c+0dhhAiH/v376dz5872DsNphIaGsmfPHnuH4ZQkgSsh9volXrlyJUOHDi3xx71Xa9as4eGHH6Zp06aMHTuWpKSkPM+Lj49n8uTJdOzYkRYtWjBkyBD+7//+z3p8//791KtXj2bNmlm/Vq1aVULPwj4K+9oBXLlyhaeffpomTZrw6KOP2vxu7tu3j7CwMFq2bEmbNm0YN24cMTEx1uNJSUlMnDiRNm3a0KZNG15++WXS0tIASEhIYMiQIbRp04aWLVvyxBNPcOjQoWJ7zuLehIaG0r59ezIyMqz7li9fztNPP12o659++mmWL1+e7/ErV65Qt25djEbjfcd6txzpQ5KiKHz00UfW99KHH35IQVOz7t27l0cffZQmTZrw9NNPEx0dbT327bff0rVrV5o3b07Hjh2ZNWuWXV7/knK3r926devo2bMnzZo1o1evXmzevNl6LCUlhf/85z+0a9eOdu3aMW/evDzvceDAAerWrWvz+/XHH38wdOhQWrZsSYcOHZg2bZq1PCxuksCJIqMoCmaz+Z6vP3v2LNOnT+fDDz9k9+7duLu788477+R5bkZGBo0aNWLlypUcOHCA/v37Ex4eTnp6uvWcwMBAjhw5Yv3q37//PcdW2t3Nawfw8ssv8+CDD7J//34mTZrEhAkTSEhIACAkJISvv/6agwcPsnPnTqpXr85bb71lvfbTTz8lJSWFLVu2sHnzZuLj460FnqenJ7NmzWLv3r38+eefPP/887zwwgtO/YfEUZlMJr7//nt7h+HQ7vf3eunSpWzevJnVq1fz22+/8ccff/DLL7/keW5CQgIvvvgiL730EgcOHKBhw4ZMmjTJejw0NJRVq1Zx+PBhfv/9d06fPs0PP/xwX/GVZnfz2sXExDBlyhSmTp3K4cOHmTJlCi+//DLx8fEAvP/++2RmZrJ161aWL1/O6tWr+fXXX23uYTAYeO+992jSpInN/tTUVF544QV27tzJunXruH79Oh9++GHxPOnbSAJnBytXrmTIkCHMmjWLli1b0rVrVw4fPszKlSvp0qUL7dq1s6ktmjp1KtOnT2fEiBE0a9aMp556yvrJK69Pujmfjs+dO8dbb73F0aNHadasGS1btgRAr9cze/ZsHnroIdq3b8/06dPJysqyXv/111/TsWNHOnbsyIoVKwp8Lk8//TRz585lyJAhNGnShMuXL9/z67JmzRpCQ0Np1aoVnp6evPTSS2zatCnPTzNVq1ZlxIgRBAYGotFoeOKJJzAYDFy4cKFQjxUREcHo0aPzPR4aGspXX31Fr169aNWqFa+99hrZ2dkA9OzZk23btlnPNRqNtGnThhMnTgAwYcIEOnToQIsWLRg2bBhnz57N8zHyqh29tbn6Tj+nW93Na3fhwgVOnDjB+PHjcXNzo0ePHjzwwANs2LABgICAACpWrGg9X6PRcOnSJev2lStX6Nq1K15eXnh7e9OtWzeioqIAcHV1pVatWqjVahRFQa1Wk5ycTHJycr6vtbCP5557jkWLFpGSkpLn8cOHD/P444/TokULHn/8cQ4fPgzA3LlzOXjwIDNmzKBZs2bMmDHjjo81depU3n77bUaNGkWzZs0YMmQIN27c4L333qNVq1Y8+uijnDx50np+Qe+/gt43S5cuZc2aNXzzzTc0a9aMMWPGAJY/4OPHj6dt27aEhobaJK5ZWVlMnTqVVq1a0atXL/76668Cn0vdunX56aef6N69O927d7/jcy9IZGQkI0eOpFKlSlSsWJERI0bk21KwadMm6tSpQ8+ePXF1dWX8+PGcPn2ac+fOAVCtWjXKlSsHYH3v3dr1ZfTo0UREROR575y/I0uXLrWW/YsWLQIsr13jxo1tavRPnjxJmzZtMBgMXLp0iWeeecamRj6/36nba0dvb64u6Od0P6/d9evX8fb2pkuXLqhUKh566CHc3d2t5drWrVsZNWoU7u7uBAcHM3DgwFwJ3OLFi+nQoQO1atWy2R8WFkbnzp1xd3fHx8eHwYMHc+TIkXzjLkqSwNnJsWPHqFu3Lvv376dPnz5MnjyZv/76i02bNvHRRx8xY8YMm9qkNWvWMHbsWGvT4CuvvHLHx6hduzbvvPMOTZs25ciRIxw8eBCAjz76iAsXLhAZGcnGjRuJjY1l/vz5AOzYsYNFixaxaNEiNm7cyN69e+/4OKtXr+bdd9/l8OHDVKlShbfffpuWLVvm+RUWFpbvfc6ePUvdunWt29WqVcPFxYWLFy/eMYZTp05hMBioXr26dV9CQgLt27cnNDSUWbNm2TQXhYeH89VXXxV4z5w/BJs2beLChQt88cUXAPTu3Zvff//det6uXbvw8/OjQYMGAHTu3JkNGzawd+9eHnzwwUL9rPJS0M/pdnfz2kVFRVG1alW8vLys++rVq2dNwgCuXr1Ky5Ytady4MYsWLWLUqFHWY8OGDeOPP/6wJmYbNmygU6dONo8RFhZG48aNeeGFFxg0aBD+/v739BqI4tOwYUNat27NN998k+tYUlISo0eP5umnn2b//v2MGDGC0aNHk5iYyKRJk2jZsiXTp0/nyJEjTJ8+vVCPt379eiZOnMi+ffvQ6XQ88cQTNGjQgH379tGjRw/ef/99m/Pze/8V5IknniAsLIznnnuOI0eOsGDBAsxmMy+88AJ169Zlx44dfPfdd3z33Xfs3LkTgM8//5xLly6xadMmvvnmGyIjI+/4OJs3b2bZsmWsW7cOwNrlIK+vt99+O9/7nD17lnr16lm369Wrl+8Hvtvf4x4eHlSrVs3mfbtmzRqaN29O27ZtOX36NEOGDLEe++qrrwgPDy/wee3fv5+NGzfyzTffEBERwZ49e6hYsSJNmzZl48aNNo/To0cPXFxcUBSF0aNHs3PnTtavX8/169fzbYIsyJ1+Tnm9HoV97Ro2bEjt2rXZsmULJpOJzZs3o9PpbF7PWymKYnOv6Ohofv31V8aNG3fH5/Hnn38SEhJyx/OKgiRwdhIcHMzjjz+ORqOhV69eXLt2jXHjxqHT6ejYsSM6nc6m1uOhhx6iVatW6HQ6Jk2axNGjR7l27dpdP66iKCxfvpzXX38dX19fvLy8GD16NGvXrgUsheyAAQN44IEH8PDw4MUXX7zjPfv370+dOnXQarW4uLjw9ttvc/DgwTy/1qxZk+99MjIy8Pb2ttnn5eVlk8jmJS0tjSlTpvDiiy9ar69VqxaRkZHs2rWL7777jhMnTvDBBx/c8bncatiwYVSuXBlfX19eeOEF62sUFhbG1q1byczMBCyFWZ8+fazXDRw4EC8vL3Q6nfVTcmpq6l099p1+Tre7m9cuPT0917ne3t4251apUoWDBw+yb98+XnrpJZtPnQ8++CAGg8H6iVuj0fDkk0/a3G/NmjUcOnSIjz/+mBYtWtzVcxclZ8KECfz444/W5vMcf/zxB9WrV6dfv35otVr69OlDrVq1bGqe71a3bt1o2LAhrq6udOvWDVdXV/r162ctA0+dOmVzfn7vv7v1119/WZsfdTodVatWZfDgwdbka/369YwZMwZfX18qV65cqH6A4eHh+Pr64ubmBlh+3/Mr8wpK4DIyMmw+SHl7e5ORkZFnX67CvMfDwsI4fPgwGzZsYMiQIXf9wWncuHF4eHhQt25dBgwYYP2gGhYWZv1eURTWrVtn/TBevXp1OnTogE6no3z58owYMYI///zzrh4X7vxzut3dvHYajYa+ffvyyiuv0KhRI15++WVmzJiBh4cHAJ06dSIiIoK0tDT++ecffv31V2v5DjBz5kxeeuklPD09C3wOu3fvJjIykgkTJtz1878X2hJ5FJHLrW+snEIgICDAus/V1dXmjVmpUiXr956envj4+BAbG3vXb9CEhAQyMzMZMGCAdd+tfddiY2Np2LCh9VhQUNAd71m5cuW7igHg4MGDPP/884AlWVi7di0eHh65mvzS0tIKfNNkZWUxZswYmjRpYtMkWqFCBSpUqABYmltfffVVRo8eXajmnhy3Pq8qVaoQGxsLWAqs2rVrs23bNh5++GG2bt1q/dRuMpmYO3cu//vf/0hISECttnxGSkxMzFX4FuROP6fb3c1r5+npWehzfX196d+/P3379mXHjh1otVpeeukl6tWrxxdffIGiKMyePZtXX32Vzz77zOZaV1dX+vTpQ8+ePalfv77Np2VROjzwwAM89NBDREREULt2bev+2NhYqlSpYnNulSpVbAaz3K3by7xbyzs3NzebGnLI//13t6Kjo4mNjbV2IQHL+zRnOzY2Ntdj3cm9lHkLFiyw1vqHhYVZE4hby/m0tDQ8PDxQqVS5rs/rPZ6enp7n+7ZGjRrUqVOHd955h88//7zQMd76vIKCgvj7778B6NGjB++++y4xMTH8888/qFQq6+sXHx/PzJkzOXjwIOnp6SiKYm3KvRt3+jnd7m5euz179jBnzhy+//57GjRowPHjxxk7diwLFy6kfv36TJs2jXfffZcePXrg6+tL7969rR8Ytm7dSnp6Or169Sow/qNHj/Lyyy/z3//+l5o1a971878XksA5iOvXr1u/T09PJzk5mcDAQFxdXQFLIpPzaeTGjRvWc2//Zfbz88PNzY21a9fa9HPKERgYaFOzd/Xq1TvGdvtjTJ8+Pd+atpxkrWXLlrn6CdSpU4fTp09bty9fvozBYKBGjRp53kuv1zNu3DgqVqx4x8RMpVIVOEIpL7e/DoGBgdbtPn368Pvvv2M2mwkJCbE23a5Zs4YtW7awePFigoODSU1NpVWrVnk+tru7u02ftlt/bnf6Od3ubl67kJAQLl++TFpamvV35vTp0za1iLcymUzEx8eTlpaGr68vZ86c4e2337Z+eh06dGiuGrhbGY1GLl++LAlcKTVhwgT69+/PyJEjrfsCAwNzvfevXbuWq6m8OOX3/ivofQO5y6PKlSsTHBxs0wR4qwoVKnDt2jXq1KmT63Hzc/tj9O7dO9+yMidZGzNmjLVPXo6c923jxo0By/swJ47b1alTx6aPV0ZGBpcuXcq3uc5oNNq04hTGtWvXrIn8ra95uXLl6NChA+vXr+f8+fP07t3b+hp8/PHHqFQqfvvtN/z8/Ni8eXO+5fHtP7u4uDjr93f6Od3ubl67U6dO0bJlSxo1agRA48aNady4MXv27KF+/fr4+vry8ccfW8//5JNPrPfdu3cvx48fp0OHDoBl0IJGo+Hvv//myy+/BCx9Al944QVmzZpFu3btChV/UZAmVAexfft2Dh48iF6v57PPPqNJkyZUrlyZ8uXLU7FiRVavXo3JZGLFihU2Awn8/f2JiYlBr9cDoFarGTRoELNmzbKOwImJibH2M3j00UdZtWoVUVFRZGZm3tWntxwzZsywGf1561dBzSBhYWFs27aNgwcPkpGRwWeffUa3bt1sqslzGAwGJkyYgKurK7Nnz7bWdOXYv38/V69eRVEUrl27xpw5c+jatav1+Lx58+7YVLJkyRKuX79OUlKStUN1jl69erF7925+/vlnm8QnPT0dnU6Hn58fmZmZfPLJJ/neP6fPxqlTp8jOzrbpN3Knn9P9vHY1a9akfv36zJ8/n+zsbDZt2sSZM2fo0aMHABs3buT8+fOYzWYSEhJ4//33efDBB/H19QUs/UmWL19OVlYWWVlZLF261NqX5OjRo9bf06ysLCIiIoiLi7MWhqL0qV69Or169bIZsdilSxcuXrzImjVrMBqNrFu3jqioKB566CHA0lpwPwOWCiO/919B7xuwlHlXrlyxbjdu3BgvLy8iIiLIysrCZDLx999/c+zYMcAyKCkiIoLk5GSuX79+TyM3165dm2+ZV9CHy759+7J48WJiYmKIiYlh8eLF+Y6W79atG2fPnmXDhg1kZ2czf/586tata024li9fbi0roqKiiIiIsEkmnn766Tv2Tfviiy/IzMzk7NmzrFy50qbMCwsLY/Xq1WzYsMGmL3N6ejoeHh6UK1eOmJgYvv7663zvX79+fbZv305SUhI3btzgu+++sx6708/pfl67Ro0acfDgQWsz/cmTJzl06JC13Lp06RKJiYmYTCa2b9/O0qVLeeGFFwB46aWX2LBhA5GRkURGRhIaGsqgQYOsfTb//vtvRo0axZtvvkloaGiBr29RkwTOQfTp04f58+dbRzt+9NFH1mPvvvsu33zzDW3atCEqKopmzZpZj7Vt25aQkBA6duxImzZtAHj11VepXr06gwcPpnnz5gwfPtw6erNLly48++yzPPvss3Tr1o22bduW2HPMqfJ/5ZVXaN++Penp6TbTV0yfPt3aYfrIkSNs27aN3bt306pVK+tcbzkDNU6ePMkTTzxB06ZNGTJkCA888ABvvPGG9V7Xrl2jefPmBcbTp08fRo4cySOPPELVqlWtb2iw1FDkDA65tZDr168fVapUoVOnTvTu3ZumTZvme/+aNWsybtw4hg8fTvfu3XP1FSvo53Q/rx1YPmEeP36cVq1aMWfOHP773/9Svnx5wJIojho1iubNmxMWFoZarbZJ5GfNmkV0dDRdunShc+fOXL582dq/UK/XM2PGDNq0aUPnzp3ZsWMHERERhapFFPYzbtw4myZMPz8/FixYwOLFi2nTpg1ff/01CxYssP6OPPPMM2zYsIFWrVoxc+bMYokpv/ffnd43AwcOJCoqipYtWzJ27Fg0Gg1ffvklp0+fpmvXrrRt29Zmrq4XX3yRKlWq0LVrV0aOHEnfvn2L5fnkZciQITz88MOEhYURFhZGly5dbAYe9O7dm99++w2A8uXLM2/ePObOnUurVq04duyYzQfEw4cPExYWRtOmTQkPD6dz585MnjzZerwwZV7r1q3p1q0bw4cPZ+TIkXTs2NF6LDQ0lIsXLxIQEGBTm/7iiy9y8uRJWrZsSXh4eIEjc/v27Uu9evUIDQ1l5MiRNmXnnX5O9/PatW7dmvHjxzNhwgSaNWvG+PHjGT16tPX5HT9+nLCwMJo3b84nn3zCnDlzrLV5Xl5e1i45FSpUwM3NDXd3d+sH2sWLF5OQkMAbb7xh/TvUu3fvAl/noqJS7rZdSZS4qVOnUrFiRZs5f8T96du3L99++y1+fn55Hg8NDWXmzJm0b9++hCMTQsj7r2hdv36dl156iaVLl+Z5PGdqoBMnTqDVSs8qRyE/KVEmrV692t4hCCFEiahUqVK+yZtwXNKEKoQQQgjhYKQJVQghhBDCwUgNnBBCCCGEg5EETgghhBDCwZSpQQxt2rQp1MoCQgjnER0dzf79++0dxn2T8kuIsqeg8qtMJXBBQUGsXLnS3mEIIUrQrcuROTIpv4Qoewoqv6QJVQghhBDCwUgCJ4QQQgjhYCSBE0IIIYRwMJLACSGEEEI4GEnghBBCCCEcjCRwQgghhBAORhI4IYQQQggHY9cEbseOHfTo0YNu3boRERGR67iiKMycOZNu3boRFhbGiRMnCn3t3frzzz/p1asXmZmZXL58mYyMDJvjN27cID4+3mZfWloaV65csdlnNBq5cOECJpPJZr+j3XPOnDlMnz6d+xEbG0tCQgIZGRlcvnzZ5pjJZOLChQsYjUab/VeuXCEtLc1mX3x8PHFxcTb7HO2eiqJw8eJF9Ho9ji4zM5NLly7ZOwwhhCjbFDsxGo1K165dlUuXLinZ2dlKWFiYcvbsWZtz/vjjD+W5555TzGazcuTIEWXgwIGFvjYv/fv3z3O/l5eXAth8eXt7K4sWLVKMRqMyfPhwRa1WKxqNRhk7dqxiNpuVefPmKR4eHgqgdO7cWYmPj1d27typVKlSRQGUGjVqKAcPHlSuXbumtG7d2qHuefvXhQsX7upnazAYlGHDhikqlUrRaDSKi4uLAiht27ZVYmJilD///FOpVq2aAihBQUHK7t27lfj4eKVTp04KoHh6eirz589XzGazMmbMGEWj0ShqtVoZMWKEYjQalW+++Ubx9vZ2qHu6ubkpgBIYGKhs2LDhrl7P0mTJkiWKj4+PAijNmzdXLl++bO+Q7ii/972jcZbnIYQovILe93ZL4A4fPqyMHDnSur1gwQJlwYIFNue8+eabypo1a6zb3bt3V2JiYgp1bV7yeiGuXLmSZ9KS80d34cKFufZ///33ikajsdk3ZcoUpW7dujb7WrdurYwePdoh73nrl6ur6139bL///vt87zV27FilRYsWNvsefPBB5eWXX7bZp9Vqle+++y7X9d98843i6urqkPfM+QoODlaMRuNdvaalQUpKSq4PO88++6y9w7ojZ0l8nOV5CCEKr6D3vd2W0oqJiaFSpUrW7YoVK3Ls2LECz6lUqRIxMTGFurawvvnmm3yPZWVl5bkG2Z49e3I1PZ44cYK///7bZt/Jkydxc3MrkXseOHCgSO95q+zs7HyP5eXkyZP5Hjt16hSnTp2y2Xf69GmqV69us89oNLJ3795c1+/fvz9XPCV5zxo1atzzPXNcuXKF1NRUfH198zxeWl2+fDlXs3FBP2shhBDFx2594BRFybVPpVIV6pzCXFtYBfXzqlq1KsOHD7e5t0aj4bnnniMgIMDm3LCwMB599FGbfX369KF3794lcs9nn322SO95q9sToTsp6F69e/fOdbxXr1706dPHZl+FChV47rnnUKv//RVVqVSMGDEi14LeJXnP2/fdzT1zdOjQweGSN4B69epRu3Ztm323v8ZCCCFKSElVA96utDShKoqiPPnkkzbNQkFBQcpjjz2mHD9+XFEURVm6dKnSpk0bpUOHDsrq1asVRVGUQ4cOKT179lQaN26szJ49WzGbzcqNGzeU4cOHK/Xr11dGjx6tJCUlKUajUXnnnXeURo0aOcw91Wr1PTef5vjpp5+U1q1bK82bN1dat26tNGrUSHn33XcVk8mkJCYmKuHh4Ur9+vWVESNGKHFxcYrZbFbef/99pXHjxkqvXr2UI0eOKIqiKJGRkUr79u2Vtm3bKsuWLVMURVH++usvJSwszGHu2aBBA6Vt27bKgw8+qDz55JNKdHT0Pb2mpcGZM2eU/v37Kw0aNFCmTZumGAwGe4d0R87S9Ogsz0MIUXilsg+cwWBQQkNDbQYi/P333zbnbNu2zWYQw+OPP17oa/MiBaAQZY+zvO+d5XkIIQqvVPaB02q1TJ8+nVGjRmEymXj88cepU6cOP//8MwBDhw6lS5cubN++nW7duuHu7s6sWbMKvFYIIYQQoiywWwIH0KVLF7p06WKzb+jQodbvVSoVb731VqGvFUIIIYQoC2QlBiGEEEIIByMJnBBCCCGEg5EETgghhBDCwUgCJ4QQQgjhYCSBE0IIIYRwMJLACSGEEEI4GEnghBBCCCEcjCRwQgghhBAORhI4IYQQQggHIwmcEEIIIYSDkQSuFMrSm4hPy8ZkVuwdihBCCCFKIbuuhSrypqCQkmkgPduIj7sL3m4uqNUqe4clhBBCiFJCauBKMaNZIT5dz7XkTDL1RnuHI4QQQohSQhI4B5BtNHM9OYu4tGzM0qwqhBBClHnShOogFCAl00Cm3oinqxYPFy1uOo29wxJCCCGEHUgC52AMJoWkDAPJGHDRqCnnrsXLVfrICSGEEGWJJHAOSgH0JjNxaXqSMgx4umrx1GlxdVGjUkkyJ4QQQjgzSeCcgNGskJxpICXTgEatwtNVi5ebFletNLEKIYQQzkgSOCeicEsyl2WgnJsLfh46aV4VQgghnIwkcE5KUSA500CG3oivhw4vV600rQohhBBOQhI4J2cwKdxIzSYpQ28ZvarT4uYiTatCCCGEI5MEroywjl7NMKDTqnHXaXDTanB10aCRJlYhhBDCoUgCV8YoWCYGzjaaUWFApQIXjRpXFw0eLhrcdRppahVCCCFKOUngyjAFS1+5nIQuNdMyt5yPh4v0mRNCCCFKMUnghFXO3HI3UrNJTNfj4arFVaNGq1Hh5iI1c0IIIURpIQmcyJPRrJCSaQBABWjUKjx0WrQaFTqNGjcXjUxPIoQQQtiJJHClzMrDV9h44jp1K3nTvnYAFbxd7R2SdX65lKx/EzpL3zkNri5qXDVqXDRqdFq1JHVCCCFECZAErpRZtPsCx6NT+N+JGD7bEkW9St50DAmgY0gA1fw97B0ecGvfORPZRhNgm9S5uVhq6Fy1arQatV1jFUIIIZyRJHClzCeDm/L51ii2nYklNcvI6eupnL6eyte7LlDVz52OdSzJXN1K3qhLUZ+025O65EwDahWoVZb+c+6uGty1GknohBBCiCIgCVwp80BFb2Y/3ogrCRn8X3Qyu87GsTsqnhtp2VxOzOTnA5f5+cBl/L10dKgdQMcQf5pU9cWlFCZGZgXMikJatpG0bCPq25tdtWp0Gml2FUIIIe6WJHCllFajpnk1P5pX82N8aAhnYlLZHRXPrqg4/onPID5Nz2//d5Xf/u8qnq4a2tXyp2NIAK1qlMddVzpXWjAX0OzqoVPjerOGzkWjkhGvQgghRAEkgXMAKpWKepXKUa9SOZ7rWJPLCRnsjopjV1QcJ6+lkp5tYvOpWDafisVFo6JFdT86hQTQrrY/vh46e4efr9x96SwTC6uwTC6s1ajRqlWWr5sDJSS5E0IIISSBc0hVy3swpHU1hrSuRlxaNnvPWWrmjlxKwmBS2Hc+gX3nE1CroGGQDx1CAugUEkAlHzd7h35HimK7WsStVDf71OUkdJqcbA/rf6hu2VarVKg1KlxUluZaWTJMCCGEs5AEzsEFeLkS1qQKYU2qkJZtZP/5eHZFxXPgQgKZBhPHriRz7EoyX/5xjpAKXnQI8adjnQBqBXg6XE2WooBJUTCZlVzJXUFymmq1astUJy4aNVqtChWWZBGz5b7KzT57Of9bvkC5+b1apUKtVuGiVqNWY0kgb4/xtnhv3avcdq5apUKjUaG9ed+c829NVO39M1Juvt5Gk4LBbAYFFBTUahVeri52jU0IIcoySeCciJerlq71K9K1fkX0RjOHLyWyKyqOPVHxJGUaiLqRRtSNNL7b+w+VfdzoGBJAhxB/GlTxceraqZymWr3JjN5U+MQv7ztBJqYiiStHnq+86t9aRI3akuBp1ap/t1X/JohqlQqVGtSoLM8VBbPZkniZzJZk1FJZefOmOYkq/yasys2bqVSWe6tUKgxGM0az2fKsFdsE1M1FIwmcEELYkSRwTkqnVdO2lj9ta/ljekTh5NUUdt3sN3ctOYtryVksP3SF5Yeu4OfhQrvalkEQzav5odOWvhGtzuz2mrmcnTkJltGc5xlCCCHKMEngygCNWkWjYB8aBfswpkstzselW6cnibqRRmKGgXV/XWfdX9dxd9HQumZ5Oob406aWP16u8isihBBClDby17mMUalU1K7gRe0KXjzbvgbXkjPZFRXP7qg4jkcnk2kwsf3vG2z/+wZatYqmVX3pWCeA9rX9CfCy/7JeQgghhJAErsyr7OPOoBbBDGoRTFKG/uaI1ngO/pOAwaRw8J9EDv6TyKebz/JgZW863FzWq2r50rGslxBCCFEW2SWBS0pKYtKkSURHRxMUFMSnn36Kj49PrvN27NjBe++9h9lsZtCgQYSHhwMwb948li1bRvny5QGYPHkyXbp0KdHn4Ix8PXT0bFSZno0qk6k3ceBiAruj4th3PoG0bCMnr6Vy8loqC3deoLq/h3WN1gcqetl9tKQQQghRltglgYuIiKBdu3aEh4cTERFBREQEr776qs05JpOJGTNmsHjxYipWrMjAgQMJDQ0lJCQEgOHDh/Pcc8/ZI/wywV2nocsDFejyQAWMJjNHLydZVoI4F0d8mp5/4jP4J/4SP+2/RAUvV+v0JI2DfGS9UyGEEKKY2SWB27JlCz/88AMA/fr14+mnn86VwB07dozq1atTtWpVAHr37s2WLVusCZwoOVqNmpY1ytOyRnnGdw3hzPVUy4jWs3FcTszkRlo2kUevEnn0Kt5uWtrV8qdDSAAta/jh7lI6l/USQgghHJldErj4+HgCAwMBCAwMJCEhIdc5MTExVKpUybpdsWJFjh07Zt3+6aefiIyMpGHDhkydOjXPJlhR9NQqFfUrl6N+5XI836kWl+IzrNOTnL6eSmqWkY0nY9h4MgZXrZqW1f3oWCeAtrX88XGXecOEEEKIolBsCdzw4cOJi4vLtX/ixImFul5Rcs99ldPPaujQoYwdOxaVSsVnn33GBx98wPvvv39f8Yp7U83fgyf9q/Fkm2rcSM1md1Qcu6PiOHolmWyjmd3n4tl9Lh61ChoH+9AxJID2IQFUKlf6l/USQgghSqtiS+C+/fbbfI/5+/sTGxtLYGAgsbGx1sEIt6pUqRLXr1+3bsfExFhr7QICAqz7Bw0axJgxY4oucHHPKni70q9ZEP2aBZGaZWDfecsgiAMXEsgymjl6OZmjl5P5fNs5QgK96BQSQMc6AdTw95BBEEIIIcRdsEsTamhoKJGRkYSHhxMZGUnXrl1zndOoUSMuXrzI5cuXqVixImvXruXjjz8GsCZ/AJs3b6ZOnTolGr+4M283F7o9WJFuD1Yk22Di4D+J7I6KZ8+5OFKyjETFphEVm8biPRcJ8nW3DIIICeDBKuVQSzInhBBCFMguCVx4eDgTJ05kxYoVVK5cmc8++wyw1LJNmzaNhQsXotVqmT59OqNGjcJkMvH4449bE7WPPvqI06dPAxAUFMSMGTPs8TREIbm6aOgQEkCHkABM5gc4Hp1s7TcXk5JNdFImyw5eYdlBy7JeOXPNNa3qK8t6CSGEEHlQKXl1NnNSAwYMYOXKlfYO444y9UauJ2flvUamE1EUhajYtJvJXDwX4tJtjnvoNLSpWZ6OIQG0rlkeT1nWq9Rwc9FQxdfd3mEUiqO87+/EWZ6HEKLwCnrfy19EYTcqlYo6Fb2pU9GbER1qEp2Uye6b05OcuJpCht7EtjM32HbmBi4aFc2q+dExxJ/2tQMo76mzd/hCCCGE3UgCJ0qNIF93BresyuCWVUlI17PnnGWN1sOXEjGYFA5cSODAhQTmbjrLg1XKWVaCqBNAkIPUBAkhhBBFRRK4UkilUuGu02JWFMxmBbOioPDv1CrKzX+cuYm1vKeOPo0r06dxZTL0Rg5cSGDn2Tj2X0ggQ2/ixNUUTlxN4asd56kZ4EnHEMvkwXUCZVkvIYQQzk8SuFLIzUVDJZ/cKxgoioJZAdPNpM5kVjCYzGQbzRhNZoxmBUVRyOnV6CwJnodOy0N1A3mobiB6481lvc7FsTsqnoR0PRfi0rkQl84P+y4R6O1qrZlrFOSDRi3JnBBCCOcjCZwDUalUaFQUmJSYzApGsxmzWcGoKJhMCtlGM9kGk6Umz8GTO51WTeua5WldszwvdVU4dS2FXWfj2H0uniuJmcSmZrPySDQrj0RTzk1Lu9qW6UlaVvfDVZb1EkII4SQkgXMyGrUKjTrvRCUnuTOZFFKyjGTqjQ6byIFlWa8GVXxoUMWH8M61uBifYRkEERXH3zFppGQZ2XAihg0nYnDTqmlVszwdQgJoV6s83m6yrJcQQgjHJQlcGWJN7rTg4aolPdtIapaRLIORWyeTccSkTqVSUTPAk5oBnjzVtjoxKVnsjopnV1Qcx64kkWU0s/NsHDvPxqFRq2hyc1mvDiEBVPB2tXf4QgghxF2RBK4M83TV4umqtfSfM+UMkLjZ5HqzX53BZMbsgBldxXJuDGgexIDmQSRnGth33pLMHbyYSLbRzOFLSRy+lMR/t0ZRt5I3HW+uBFHd39PeoQshhBB3JAmcQKtRo72l1dX9linWjCYzmXoT6XoTWQajQyZzPu4u9GhQiR4NKpFlMHHwYiK7z8Wx51w8qVlGzlxP5cz1VL7ZdZFgP3fLIIiQAOpV9pZlvYQQQpRKksCJAmk1arzd1Xi7u1iSOYOJbIMZvclSQ2e+OTLWUbi5aOhYxzJK1Wgycyw6mV1nLclcbGo2VxIz+eXPy/zy52X8PXW0v1kz17SqLy4aWdZLCCFE6SAJnCg0rUaNt0aNt9u/+0xmhSyDiQy9iQy9EZMDZXNajZrm1fxoXs2P8aEhnI1NY+fZOHZHxXExPoP4dD1r/u8aa/7vGp6uGtrWtMw116Zmedx1MqJVCCGE/UgCJ+6LRq2y9qUzmXWkZxtIyTSiN5ntHdpdUalUPFDRmwcqevNcx5pcScxgV1Q8u87GcfJaCunZJracjmXL6VhcNCpaVPejY0gA7Wv74+shy3oJIYQoWZLAiSKjUaso567D282FNL2RlAwjepPJZoSrowj282BIKw+GtKpKfFo2e85ZBkEcuZSEwaSw73wC+84noFZBwyAfOoQE0DHEn8o+sqyXEEKI4ldgArdv3z42btzItWvX0Gq1VK9enUGDBlG9evWSik84IJVKhberC96uLuhvTiKcefPLkZpYc/h7uRLWpAphTaqQlm1k//kEdkXFceBCApkGE8euJHPsSjJf/nGO2hU86RASQKeQAGpV8JRlvUQuUq4KIYpCvgncnDlziI+Pp23btsTFxREUFES1atV46aWXGD16ND179izJOIWD0mnV6LSWQRAms0JGtpHUbCPZRsesmfNy1dK1fiBd61uW9Tp8KZFdUXHsiYonKdPAuRvpnLuRzvd7/6Gyjxsdbg6CaFBFlvUSUq4KIYpOvgnc9u3bWbNmDQC9e/fmqaee4j//+Q89evRg2LBhUtCIu6ZRq/B2d8Hb3QWDyYzBaCbLaCJTb0JvMt93QmcwGDgfdZbqNWri5l78TZk6rZq2tfxpW8sf0yMKJ6+msOvmShDXkrO4lpzFikPRrDgUja+7C+1rWwZBtKjuh04rI1rLIilXRUHOnz+Pm5sbVapUsXcowgHkm8CpVCqSkpLw9fUlNjYWs9nSKd3HxwfFEatORKniolHjolHj4aoFT9AbzWTojSRnGu6pmfXYkUOMfmYIsTHX8fH145Mvv+ahrt05dGAfa1evpFLlKgx9ZgTe5XyK4dlYktNGwT40CvZhTJdaXIhLv5nMxRMVm0ZSpoF1x6+z7vh13Fws67l2DAmgbU1/vNykK2pZIeWqyEtWVhaPP/4469atQ61WM3r0aL744gtiY2OJiIggKSmJZ555hsaNG9s7VFGK5PuXY8yYMfTv35+aNWty/vx53n77bQASEhKoV69eScUnyghLU6sOL1ctSRkGUrMNd1UjN+ONKcTGXAcgOSmRN1+dyKyP5zFy6ADrH8l1v61i1YY/ir1fmkqlolYFL2pV8OKZdjW4npzFrijL9CR/RSeTZTCz4+84dvxtWdarWVVfOoQE0CHEnwAvWdbLmUm5KvKyePFi1q1bB4DZbObLL7+kf//+jBkzhvPnzwPw+eefs3fvXpo1a2bPUEUpkm8C16tXL9q3b8/ly5epXr065cqVA6B8+fJ8/PHHJRagKFu0GjUB3q54uWlJyTSQrjcWKpH758I5m+1r0Vf46duvrckbwF9HD3PsyCGaNG9Z1GEXqJKPGwNbBDOwRTBJGXr2nk9g19k4Dv6TgMGkcPCfRA7+k8hnW85Sv7K3dY3WauU9SjROUfykXBV5OXv2bK59q1evtiZvANnZ2SxatIh58+aVZGiiFCuwI46vry+NGjWyFjI5zp07l88VQhQNNxcNgeXcqOzjTjl3lzsOAOjWK8xmu3NoN7y8vXOd5+HpVaRx3i1fDx09G1bivf4NiRzbgbfDHuSR+oF4uVo+S526lsrCnRcYvvhPhi/+k693nuf09RRpXnMiUq6K2/Xr18+mZcDd3Z0OHTrkOs/Ly77llyhd7qnzzXPPPccff/xRxKEIkZubiwY3Fw3l3FxIytCTnm0kr1Rm+swP8fX1Y++uHTRq0ozJr71JzPXrbNmwnpTkJAAeGzCYOnVLTzOVu05D5wcq0PmBChhNZv7vimVZr13n4ohP03MpIYMlBzJYcuAyAV66m3PNBdAk2AetLOvldKRcLbs6d+7MsmXLmD9/Ph4eHrz22mu0b9+er7/+mq1btwJQpUoVxo4da+dIRWmSbwI3c+bMPPcrikJKSkqxBSQsr7HMH2ZLp1UTWM6NLL2JlKzcTatu7u5MeXOGzTW+fuXZuv8of2zeSKUqQbTt0KmEoy48rUZNi+p+tKjux/iuIZy5nnqz31w8lxIyiEvTs/roVVYfvYq3m5a2tfzpEOJPqxrlcXeRZb0cRVkoV6X8ujcDBw5k4MCBNvs2btzIxo0bSUpKok+fPnjn0aogyq58E7hff/2VqVOnotPlXibo999/L9agyqpVq1YxceJErl27xtChQ/nqq69wc3O784VliJtOg5tOg8FkJjXLQEqmgYIGrfqV96f/4KElF2ARUKtU1K9cjvqVy/F8p1pcis+wTk9y+noqqVlGNp2MYdPJGHRaNS1vLuvVrpY/Ph4u9g5fFMCZy9WrV6/yzDPPsHXrVho3bszixYulw/190mg0MrWMyFe+CVyjRo2oU6cOzZs3z3VMOlEWvfj4eJ588kmysrIA+P777wkJCeHNN9+0c2Slk4tGTXlPV7xcXUhI15OhN9o7pGJTzd+DJ/2r8WSbatxIzWbPuTh2nY3j6JVk9EYze87Fs+dcPGoVNA72uTmiNYBK5ST5L22cuVwdP348W7ZsAeD//u//GDp0KKdOnZLaOFGqZOqNpGebKOfu4vDzceabwP33v//F1TXvKQ1y2uRF0Tl69Kg1ecuxf/9+O0XjOHRaNRXLuZKSqSY1y4jBZEYBkhIT0Lq44OXlXE0OFbxd6ds0iL5Ng0jLMrLvQrx1Wa8sg5mjl5M5ejmZ+dvOERLoRaeQADrWCaCGv4f8IS0FnLlc3bdvn832mTNnSEpKws/Pz04ROa7s7GwSExOpVKmSvUNxCkaTZZ7R1CwjeqMZVODt7vjzb+abfmZkZOBeArPZC4vmzZvj4WE7bUSnTqW3z1ZpolKp8PHQEVzegwqeLkydMJpW9WvSql4N5sx6x97hFRsvNy2P1K/I22ENWPVCe2b2a8CjDSrh425pRo2KTWPxnos8991Bnl50gC//OMfx6GSHXI/WWThzuXp7edWgQQNJ3u7Bzz//TOXKlalcuTIdO3YkNjbW3iE5rCy9iRup2UQnZRKXpifbaPmAn+dIOAeUbwI3btw46/fjx48vkWDKMj8/P1asWEH9+vUpV64cL7zwApMmTbJ3WA5n+dIlLP9lCWazGb1ez5efzuHQgX13vtDBubpoaF87gCmP1mXFmHbMHdyEgS2CrM2oV5OyWH7oChN+Ocrgr/by8ca/2Xc+3vJpVJQYZy5X582bx2OPPYaHhwft27dn6dKl9g7J4SQnJzNq1CgSExMB2L17N2+99Zado3IsJrNCaqaB6MRMriVnkpp1b6v7OIJ86xBvnXfq8uXLJRJMWdezZ0/psHqf/vrrr1z7zv99ihat29ohGvvQqFU0qepLk6q+vNClNudupFunJzl/I53EDANr/7rG2r+u4aHT0KZmeTqEBNC6ZnnrfHSieDhzuVqhQgVWr15t7zAc2vnz58nIyLDZl1eZJnLLMphIyzKSrjc6bcJ2uwLXQs3reyFKs549ezJ37lzrtlar5fGwnvh76ki6x3VWHZlKpSIk0IuQQC+Gd6jB1aRMdt8c0Xo8OoUMvYltZ26w7cwNtGoVzav50rFOAO1rB1DeM/dISXF/pFwVBWnYsCHBwcFcuXLFuk8+1OfPbFZI1xtJzTSSbTQ5S8tooeWbwJ0+fZrmzZujKArZ2dnWUVM5c/wcPny4xIIsSy5evMjVq1dp06YNGo3M73W3unXrxsKFC/n8889xc3OjatWqhIaGEhwczKz3P6BB8zak3eU6q86kiq87g1pWZVDLqiRm6Nl7zjII4tA/iRhMCgcuJnLgYiJzN53lwSrl6BASQKeQAIL8nLPfVklz9nI1PT2dQ4cOUb9+fSpUqGDvcByOi4sL69atY8qUKZw/f56mTZuyYsUKvvnmG8LDw5k6daq9QywVzGbFMo1UlgGDqYwW5oBKKUNr9AwYMICVK1faO4x8vfbaa8yePRtFUQgJCWHr1q1UrVrV3mE5rE8++YSXX37Zuu3r68vly5dxcXMnLctIalbBc8iVJRl6IwcuJLIrKo795+NJ15tsjtcM8KRDiD8dQwKoE+iFu05LFV/HSOpK+/u+sEr789izZw99+vQhMTERV1dXvv76a5566il7h+WwoqOjqVWrFnq93rrv559/ZsiQIXaMyr6yDCYy9EbSsowY76PwVgFV/Nxx1Zb+SpKC3vf5DmLYu3ev9fvb+2ps3LixiEITOc6dO2dN3gCioqKYPXu2naNybJs3b7bZTkpK4tChQ7hqNfh7uVLF1wNvNxfusMxqmeCh0/JQ3QpM612flWPbM/vxRoQ1rmxtRr0Ql86P+y4x5sfDDF24n/nbosgymO5wV3E7Zy5Xp0yZYu18n52dzcSJEzEYDHaOynHt2LHDJnmD3GVaWZBlMJGQns2VhAyuJWWSlGG4r+TNmeSbwH344YfW7ydMmGBz7Msvvyy+iMqo6OjoXAuW39oPQty922eB1+l0PPjgg/9ua9VU8P43kZM8zsJFo6ZVjfJM6vYAy0a3Zd7QpgxpVZXgm82osanZ/LT/EhtOXLdzpI7HmcvV2xPShIQEMjMz7RSN42vatGmufWVlZYucJtJrSZaRpEkZBvQ35/gU/8o3gbs1mbg9sShDra4lpl27dtSoUcNm35NPPmmfYJzE1KlTCQsLQ6VSERAQwKJFi/Lsl5OTyFX2cYwq9ZKkVqloUMWH8M61+G5EKxYNb8nIDjUY1CKY0HqB9g7P4ThzuXp7edW7d2/KlStnp2gcX/369fn0008pV64cGo2GZ555hvDwcHuHVayyDCbi07K5nJjBjdRsMg2mMttfuTDuaRSqjJ4qei4uLmzbto0PPviA6Ohohg0bxuDBg+0dlkPz9vbmt99+IzU1FXd3d7TagqfIcNNpqOLiRlKGnuQ7rLFaFqlUKmr4e1LD3xM3Fw3ebrLu6t1y5nJ15syZBAQEsHnzZpo2bcprr71m75Ac3ksvvcQLL7yAwWDA09PT3uEUm4xsIylZRjL1Rqlluwv5/kW7fPkyY8aMyfU9SNNecalRowYLFiywdxhO5caNG6xdu5bg4GC6du16xz+SKpUKP09XPFy1JKYbpEARRcqZy1WNRsPLL79sM3BI3B+TycTGjRtJSkoiLCwMHx8fe4dUpPRGM0kZetKzpZy9F/kmcF988YX1+5EjR9ocu31biNLor7/+omPHjqSkpADwxBNP8MsvvxTqWlethko+GtKzjSRlGMg2Sod9cf+kXBWFZTabeeSRR/jjjz8AqFSpEvv376datWr2DawIKIpCSqahTM7NWZTyTeBat25dknEIUeTmzJljTd4Ali5dyvTp020GMtyJp6sWD52G1CyDjH4S903KVVFYW7dutSZvANevX+fLL7/k/ffft19QRSDLYCIhTU+WfCi+b/kOYti8eTM//fSTdXvQoEF07dqVrl278r///a9EghPifqSnpxdq352oVCrKueuo4utOORmtKu6DlKuisIqq/CoNTGaF1GwDMclZXEvOlOStiOSbwH399deEhoZat/V6PStWrOCHH37g559/LpHghLgfY8aMQa3+91e8devWtGzZ8p7vp9WoCfB2pWI5N1w0ksaJuyflqiisHj16EBISYt12c3Pjueees2NEd8dsVkjLNhCbksWVxAxupGSTrjfKqNIilG8TqsFgoHLlytbtFi1a4Ofnh5+f333P7ZOUlMSkSZOIjo4mKCiITz/9NM/Oma+99hp//PEH/v7+/P7773d9vSjbHnnkEfbs2cOyZcsIDg5m1KhRRTLSz8NVi06rJi5NT4beWASRirKiOMtV4Vzc3NzYu3cvCxcuJCkpiaeffpqGDRvaO6w7ytKbSM02klGGFpW3l3xr4G7tOwQwffp06/cJCQn39aARERG0a9eOjRs30q5dOyIiIvI8b8CAAXz99df3fL0Qbdq04eOPP2bSpEl4e3sX2X21GjWVfNyo4OWKVpZyEIVUnOWqcD4BAQHWJRZLe/KWZTBx/WYTaWqWDE4oCfkmcI0bN2bZsmW59v/yyy80btz4vh50y5Yt9OvXD4B+/frluzxIq1at8qxZK+z1jiYjI4OIiAjeeustjh8/bu9wRCF4u7tY+sa5u+Dg03iJElCc5WppsG3bNl5//XWWL1+O2Wy2dziiBJjNCgnp2VxLziRDpl0qUfk2ob7++uuMGzeONWvW0KBBAwBOnDiBXq9n/vz59/Wg8fHxBAZaZnEPDAy860+e93t9adWjRw927doFwPvvv8/WrVvp2LGjnaMSd6LVqAnwcsVLpyU+XS9Tjoh8FWe5am9fffWVzbx2L774IvPmzbNjRKI46Y1mMvVGUrIMGEySttlDvgmcv78/v/zyC3v37iUqKgqALl260K5du0LdePjw4cTFxeXaP3HixHuL1Mn9+eef1uQNLH1l5s+fLwmcA3HTaaisdSMhQ09qpkE+iYpc7rdcLc3mzp1rs/3VV18xe/ZsPDw87BSRKA7ZRhMpmUbSsg0yIMHO8k3gkpKSAMt6bPXr18+139fXt8Abf/vtt/ke8/f3JzY2lsDAQGJjYylfvnyhAy6K60sjF5fcyxLltU+Ubmq1igAvVzx1GhLTDTJcXti433K1NLu9vNJqtTajwIVj0xvNpGQaSJXErdTIN4EbMGAAKpUKRVG4ceOGtclSURRUKhVbtmy55wcNDQ0lMjKS8PBwIiMj6dq1a4leXxo1bdqU3r17s3btWgA8PT2ZNGmSnaMS98pdp8VdpyUt20ByhlGaVQVQvOWqvb3++usMGzYM5eZf95dffhk3Nzc7RyXul95oJjXLQGqWrA9d2uSbwG3dutX6fb9+/YiMjCyyBw0PD2fixImsWLGCypUr89lnnwEQExPDtGnTWLhwIQCTJ0/mwIEDJCYm0rlzZ8aPH8+gQYPyvd7RRUZGsmbNGq5evUrfvn0JDg62d0jiPnm5uuCp05KWbSQpQy99Rcq44ixX7W3o0KE0bNiQLVu20KxZM7p06WLvkMQ9UhSFDL2JjGwTaXqpcSut8k3gblUUc2fdys/Pj++++y7X/ooVK1qTN4BPPvnkrq53dFqtlv79+9s7DFHEVCoV3m6WRC4xQ09KlhSIoujL1dKgUaNGNGrUiNQsA1kGE65atVM+T2djMivojSayjWYyDSb0RjNmsyL9eEu5QiVwQoj7p1ar8PdyxVNGqwonl5RhwGgyo1arcNGo0WnVuGrU1u/VMnei3WUZTGTojWQZzOiNJhQFSdgcTL4J3OLFi63fx8fH22wDjBgxoviiEsKJuek0VHFxIylDT1Km1MaVJWWnXLXU3pjMCiaziSyD5cOKClCpuJnIaXDVWhI8F40arUYGPBQnvdGM3mTCYDSTZTSTpTdJwubg8k3gbl00d/DgwQ67iK4QpZFKpcLP0xV3nZaENL2MVi0jynq5qgCKAtlGM9lGM6lYkjpUoFGp0N5M5tx0alw1GnRaSeruldFkJstoIttgJlNvwmA2y4dFJ5NvAvfiiy/me1FGRkaxBCNEWePmoqGyrxspmQaSMmX5GWcn5Wpuys1/jIqC8WZtXWqWpaZOq1bhqtXg5qKWmrpCMJkVUrMMpGcb0ZskYXN2Bb4TYmJi+Ouvv9Dr9YClyv+TTz6he/fuJRKcEGWBSqXCx0NHZR93vFy1SO8g5yblauEoChhMCmnZRuLS9FxPzuJKYgbRiRnEpmSRkJ5tGSyhN2E0lb1lu8xmxZLsZhtITM8mJsXy+iSk68k2SvJWFuRbA/ftt9+yYMECqlevjl6v55lnnuGDDz6gb9++rFy5siRjFKLQ/u///o+EhAQ6deqEVutYY3R0WjWB5dwsBXKaHqPUxjkdKVfv3e3Nrzly+tWpVSpctGq0ajUataX2Tq1WoVWr0WkcY+DEjRs3OHjwIC1atLDOEZhDbzSTbbI0iWYbTBhu1rBJKVF25fsXbtmyZfzvf//D19eXq1ev0r17d3788UeaNm1aguEJUXhPP/00P/74IwB169Zlx44duQpBR+Dt6oKbVkNiup70bFkc2plIuVr0chI7s6Jg1JsA2/6ktw6ccNVqcNWWztGwv/32G0888QRZWVnodDqWLFlC3379Sc40kKE3YjQrUqsmbOTbhOrq6mpd1qVKlSrUqFFDCpkSsG/fPn799VdSU1PtHYpD2bdvnzV5Azhz5oxDL6TtorHUxgWUc0Vbiv7IiPvj7OXq1atX+eWXX4j6+4y9Q7FSAPPNmruULAM30rK5lpzJpYR0ohMzuJGaTXKGnky9EaPJbF1JolhjUizNnzlfadkGJk2eTFZWFgB6vZ6JkyYTnZRJcqZlsXhJ3sTt8q2Bu379OjNnzrRux8fH22xPmzateCMrg0aMGGFdQ7ZChQrs3LmTunXr2jcoB3H9+vVc+65evcqrr77KkiVLCA4OZs6cOXTq1MkO0d07b1cX3LWWdVXTsg1SG+fgnLlcXb9+Pf369bP27Zs2czYjwsfaOaq85dUcmzMaVoWlOVatUqHTWmrqNCoVKjWoUKFRq9CqLf/faZLinAlyDSYzBpOCyaxgVhT0RrPNgCUFiLkeY3NtbGwMG9evZe4HM0lJSeaJp4YzbtKrRfo6CMeWbwI3ZcoUm+0GDRoUezBl2cmTJ63JG1j6QsyZM8dmZQqRv27dulG5cmWuXbsGgFqtxtXVlTlz5gCWZC4sLIwrV67g5eVlz1DvmlajpkI5V9yz1SSmy3JcjsyZy9U333zTmrwBfDr7PYYNH4VOp7NjVIWXMxrWUmOnAAp6kxmybc+7PdHTqNWo1bccu3kvk0nBaC58P7X+g4fy4+J/y/sevR9j3MinMBgMAHzy/gyqVq/BYwMG3fuTFE4l3wQuvyWdsrOzbdbzE0UjKSkp177ExMSSD8RBeXp6smvXLj755BMSEhIYOXJkrqXYkpOTOXjwIA899JB9grxPXta+cVIb56icuVy9vbzKzEjHoNc7TAJXWLcnekZz0czhOG3mbKrVqMnB/Xtp1rI1AYEVWbNyuc05e3ZskwROWBVqQh2TycT27duZMmUKDz/8MOvXry/uuJzeoUOHaNq0KRqNhkcffZSaNWvSqFEj63GVSsWoUaPsGKHjqVWrFp9//jlLlizhkUceoXnz5jbHXV1dHb7GI6c2LsDLFY30jXNojlyuZmZm8swzz6DT6ahVqxa///47zz//vM05ffoNxNPBarvtycXFhedeGM+X3y4h/MWJNGnWPNc5DRo1LfnARKlV4DwLf/75J2vWrGH79u00btyYw4cPs2XLFtzd3UsqPqekKApPPPEE586dA2DDhg1MnjyZbdu2MW/ePK5cucJTTz3lsDVFpcV//vMfTpw4werVq6lQoQKffvopFSpUsHdYRcLb3QWdi5r4VFnFwdE4Q7n6wQcf8MMPPwBw4cIFhgwZQnR0NNWrV+d///sftes3YvDTI+0cpWOrXacu02d9xKez3yMjPY2+A59gyDPOstSaKAr5JnCdO3emSpUqDBkyhClTpuDl5UVoaKhDFTKlVWxsrDV5y7F37142b97MV199RWxsLKmpqbRu3RoPDw87Ren4vL29WbVqFenp6bi5uaHRaOwdUpFy1VpWcZA1VR2Hs5Sre/futdlOT09n06ZNzJ8/n927dxNS5wEaNWtJk+Yt7RShc3h21BiefPY5TEYjbg72OyKKX75NqN27dycmJob169ezbds2MjIy7jjiRhROYGAgDzzwgM2+li1b8uyzz3L9+nXMZjPLli3jww8/tFOEzsXT09PpkrccOWuqVvZxx03rnM/RmThLuXr7aG5vb28WL17M7t27AYg6+zeTXhhVIlNyODsXFxdJ3kSe8k3gpk2bxtatWxk+fDj79++nR48eJCQksG7dujK3AHNRU6lULFu2jDZt2uDm5ka/fv0YNmwY2dm2w50OHjxopwiFo8lZU9XXwwUHzAfKDGcpV1999VWef/55vLy8qF+/PitWrODo0aM25/xz4RwpyUl2iU+IsqDAPnAqlYp27drRrl07DAYDO3fuZO3atbzzzjvs37+/pGJ0Sk2aNGHfvn3W7eTkZLy8vEhLS7Pue/jhh+0RmnBQKpWK8p6ueOi0JKbryTRI37jSyBnKVTc3NyIiIoiIiLDue/jhh/npp5+s2/UbNMLH188e4QlRJhR6sUgXFxdCQ0MJDQ21zhYtio6Pjw+RkZG8+uqrREdHM2zYMF566SV7hyUckKU2zp3UbANJMm9cqeZM5ep///tfDAYDmzdvpl6DRsz4cK69QxLCqd0xgZs3bx7jx4+3bs+dOxdPT08GDRqEn598uipKXbt25fDhw/YOQzgJb1cXPF20JGfqScky2sz8LuzLGcvV8uXLs3TpUgAuJ6TLBwchitkd54G7fd6sRo0aodVqef/994stKCFE0VCr/x3k4KErdIW7KGZSrgoh7tcdS/TQ0FCb7UceeaTYginrsrKy+Pnnn4mOjmbgwIHUq1fP3iEJJ6HTqqnk40ZqpoHEDD1GqY2zK2ctV3ft2sXmzZsJrl2Ph3v0dsgRtkI4inxr4BISEmy2V69ezcyZM1m6dKkMDS8mjz76KCNHjuTNN9+kadOmueZaEndHURQ+/vhjWrRoQd++ffnrr7/sHZLdebu7UNnXHS9XLfKnteQ5c7n6zTff0KlTJ9555x2ef2Yo701/zd4hObyD+/cy/In+PN7zYZb99J29wxGlTL4J3HPPPWf9/osvvuC3336jQYMG7N69W6r5i8HBgwfZvn27dTs7O5t58+bZMSLHFxERwSuvvMLhw4f57bff6Natm8N3FC8KLho1geXcqFDOFZ2mUKvpiSLizOXqxx9/bLP90+KFZGZk2Ckaxxcfd4MRT/Rn57bNHD10kNcmvciWDevsHZYoRfJtQr310+CmTZv46aef8PDwoE+fPgwYMKBEgitL1Orcf0iddfLZkvLbb7/ZbMfExHDgwAE6d+5sp4hKFy9XFzx1WlKzDCRlGKRZtQQ4c7l6exmmUqulCfU+7Nm5nYwM27kBN29YR9cevewU0f0xKwoGoxmDSUFvMmO4+aW/uc9gMlv3642K9XjOtt7m/H+vydmnv3XfbY9z6zV6kxmAiY/UYexDIXZ+Ve5PvglcVlYWJ0+exGw2YzKZrEs6ubi45JlsiPvTvHlzevTowYYNGwBwd3eXaUTuU7169Vi37t9PrFqtlpAQx37DFjWVSkU5dx1eri4kZepJliW5ipUzl6tTp07lmWeesSapI8LHygoC96F2yAOF2pcfRVEwmnMSmluSmVsSnPySptsTnkIlTQU8jt5kLnWj4E9dS7F3CPct3wSuQoUK1ip9Hx8fYmNjCQwMJDExUWqGismaNWtYuXIlV69epX///tSoUcPeITm01157jT179rBv3z7c3d354IMPqFKlir3DKpXU6n8nAU5I05NllEmAi4Mzl6tPPfUUDz74IJs3byaodn3adS57E5Hn1DLpb0l+DMZbE5pbkybFJlm6PeExmDxp1e85Dq35DrPJSFDDdpwLaMfUX4+hvzVpyus+JkscpStlujMV4KJV46JRodOocdGo0Wkt/7toVDf/V6O7+f2/x/49rtOqb16runmvW665eczdRUO3BhXt/XTvW74J3A8//JDn/nLlytnMti2KjouLC0888YS9w3AaAQEBLFiwgIULF1K7dm1GjRpl75BKvZwluZIy9CRJbVyRc/ZytXnz5jRv3rzE5oG7tZZJf3vz3K2JlLUGyWxJfmy286o5Um47bi5U0lTUtUzm6t3wbq/HnJmM0qw3+y9nAEXbr1CjVv2bMFmTn5v/a1U2CVJ+SZXOui/vxEp3y31vTax0tz2OVq0qkWZ3FZa+wI7urieG0mg0uEu1uHAA27dv55FHHsFoNAKwcuVKdu7caeeoSj+VyjJ3nLvUxpUYZypXz1xP5eTVJDL0tyVNNk1xtonVrbVGt15z+/l5JU2OpjC1TDqtGo1iYtN7L5Jy7SIAmX9tZOjMH6lcIyRXzZJtwpRP0nRLgnZrDZVa+ik6rHua2bN///6sWrWqqGMRokjNnz/fmryBZY6qQ4cO0aJFCztG5Tjyqo1LSU5i0YL5XL54nqGDH2fw4MH2DtNpOEO5uvLwFSYv+z97h5GLVq2yqf35N4n5t/bn1u2Cj+fVhHd7TdRtTX63NOtpClnLtGXDOn69mbwBGLOz0JzdyuhnexTjK+X8fo/8lU3rf6dJw/q8+vLL+Pj42Duke3ZPCZyjFzKibNDpdIXaJ/J3e23c4GGDOHRgHwCRvy4jJSVFmqaLiDOUq5V83PB205KebSygb9K/NUQF1RjdXquk097aB8o2sSooadJqVA5Zy+TikruscnFxsUMkzmPJd4t481XL4MDfV8HO7dttpu9yNIVO4NLS0rh48SJVq1Z16IxVlB2TJ08mMjKS9HTLUPy+ffvSqFEjO0flmNxcNKTHXbEmbzkWL14sCdx9cLZytX3tAI691Z0riRkO2bxZmnTo8jDNWrbmyMEDAJT392fYcHmv3Y+Vv/xos71jxw7Onz9PrVq17BTR/cm3F98rr7xinTV8586d9O7dmzlz5tCvXz/Wr19fYgEKca+aN2/OmTNnmD9/PqtXr+bXX3+1d0gOzc/PD63W9jNfYGCgnaJxTGWhXJW534qGRqNhSeR65n39PTPnfMaGXQepWr2GvcNyaOUDAmy2dTodvr6+9gmmCORbA3fmzBnKly8PWPoS/fTTTwQHB5OQkMDw4cPp2bNniQUpxL0KCgpi7Nix9g7DKQQEBPDGG2/wzjvvAJaEbvr06XaOyrFIuSruhk6no9dj/e0dhtMY/8pr/LlvLynJSQBMmzbN+n50RPkmcGazmbS0NLy8vFCpVNb5s8qXL4/JJKPShCiL3n77bYYMGUJUVBRdunTB29vb3iE5FClXhbCfRk2asePwCf7cu5s2TRvQqMGD9g7pvuSbwI0bN45nnnmGJ598kubNm/PSSy/RtWtX9u3bR6dOnUoyRiFEKVKvXj3q1atn7zAckpSrQtiXt3c5unbvSRU/x5+2J98ErlevXjRo0IBly5Zx8eJFTCYTR44coXfv3lLQCCHEPZByVQhRVAochVq9enVeffXVkopFiCK3atUqlixZQnBwMK+++qospSXsTspVUVgXz59j0YLPSUlJZtCTz9Ch80P2DkmUIvkmcO+//z7du3eXSU+Fw1qxYgWDBg2ybq9bt46TJ086/JqTwnFJuSoKKy0tlcF9uhEfdwOAtZG/8nPkelq2bW/nyERpkW8Ct3r1av78808SExPp2bMnffr04cEHHbvDnyhbbl938u+//2b//v20by8FoLAPKVdFYe3ctsWavIFlAMzqX5dJAies8k3gKlWqxMqVK7l48SJr167l1VdfxWQy0adPH3r37k3NmjVLMk4h7lqlSpVstlUqFRUrVrRTNEJIuSoKr0KF3HMsVgiU8kv8K9+JfHMmY6xRowbjxo1j7dq1fPrpp2RnZxMeHn5fD5qUlMSIESPo3r07I0aMIDk5Oc/zXnvtNdq1a0efPn1s9s+bN49OnTrRt29f+vbt69BLYYjiM3XqVKpWrWrdnjRpErVr17ZjRKKsK85yVTiXlm3bEzbg3y4gderW46mRz9sxIlHa5FsDpyi5l0HJmT7g5Zdfvq8HjYiIoF27doSHhxMREUFERESenXoHDBjAU089xX/+859cx4YPH85zzz13X3EI51azZk2ioqLYuXMnwcHB1K1b194hiTKuOMtV4Xw+XbCI0S9OIiUlmZZt2kn/XWEj3xq4n376qdgedMuWLfTr1w+Afv36sXnz5jzPa9WqlVOsDyjsR6fT0bVrV0neRKlQnOWqcE71GzaiTfuOkryJXPKtgfP09ERRFI4dO0ZMTAwqlYrAwEAaN25832vdxcfHW9dQDAwMtK4NeDd++uknIiMjadiwIVOnTpVETwhR6hVnuSqEKFvyTeB27drFO++8Q/Xq1a0dv69fv86lS5d466236NixY4E3Hj58OHFxcbn2T5w48f4iBoYOHcrYsWNRqVR89tlnfPDBB7z//vv3fV8hhChO91uuCiFEjnwTuPfee4/FixcTHBxss//y5cuEh4ezfv36Am/87bff5nvM39+f2NhYAgMDiY2NvevFZAMCAqzfDxo0iDFjxtzV9UIIYQ/3W64Kx6ECVCpQq1Ro1CrMioKiWPaZlX/7Qyo3z82hKJZ9QtxJvgmcyWTKNQ0DQMWKFTEajff1oKGhoURGRhIeHk5kZCRdu3a9q+tzkj+AzZs3U6dOnfuKRwghSkJxlquieN2akKlVKtRqS2Kmtu4DkwIooNOq0Gk0uGjVaNR5N42bzQoKlkROfbP53KwoGM0KJrOC3mjCYFIwmBTMitma9EmCJ3Lkm8A9/vjjDBw4kF69elG5cmUArl27xrp16xg4cOB9PWh4eDgTJ05kxYoVVK5cmc8++wyAmJgYpk2bxsKFCwGYPHkyBw4cIDExkc6dOzN+/HgGDRrERx99xOnTpwEICgpixowZ9xWPEEKUhOIsV8X9UQEatQo3Fw0aterf2rObyZpWo0KnURdZX0W1NbH7935qVGhvjlXwdM3959loMmM0K5jNCkazGb1RwWA2YzCaMd1M7kTZoVLyGtd+07lz59iyZQsxMTEoikKlSpUIDQ0lJCSkJGMsMgMGDGDlypX2DkMIUYJK2/v+XsvV0vY8CnI5IR2DyTGyCZUKPHVavFy1eOSRNDmKbKMJo8mS3JkVBbMCppuJntFk+V8BkBo8VEAVP3dctaV/ZG9B7/sCf1tr164tE58KIUQRknLV/lQq0Gk0eOjUeLq6oNPmO6OWw3DVaigo/1RymmdNCgbFjN5gJstgRm8ySVLnoPL9rd2xY4f1+9TUVN544w3CwsJ4+eWX8xxdKoQQomBSrtqPRq3C01VLBW9Xgv08CPJzx8/T1SmSt8JQqVS4aNS46TR4u7rg7+VKkJ87VXzdqeTjRsVybgR46Sjn5oJOoyafrnuiFMn3N3fu3LnW7z/44AMCAgJYsGABjRo1Yvr06SUSnBBCOBMpV0uOCtCqVbhq1fh5uBDk607Fcm54u7ngoikbSVthuGo1uOu0eLpqKeeuI8DbleDyHgT7eVCpnBvlPXV46LRob/YLFKVHoRr8jx8/zurVqwHL/G6rVq0q1qCEEMLZSblaPFSAu05LOTfH7tNmb1qNGq1Gjcct+7KNJvQmS/Or3mS2DqqQwRP2ke/HkPj4eBYvXsyiRYtIS0uzWcPPbDaXSHBCFFZsbCyPPfYYHh4edOjQgRMnTliPnTx5UpqnRKkg5WrxUavAy1VLZR9Lk6CjJW+zZs0iMDCQ4OBgIiIirPuvX7/O2bNn7RjZv1y1/za/VvZxp2p5T6rerKnz83DBXadBp1FbR/GK4pVvAjd48GDS09PJyMigf//+JCYmAnDjxg3q169fYgEKURjjx49nzZo1ZGZmsmfPHoYMGUJMTAzNmjWjQYMGVKlShQ8//NDeYYoyTsrVoqXCMoK0gpcrQX4eBJZzw01X+kcW3u7333/njTfe4MaNG0RHRzN69GiOHDnCK6+8QlBQEA888AAPPfQQqamp9g41F61GjYerFj9PS1IXXN6DauU9CPK1JHb+npZ+dbdOzyKKRr4fUV588cU891eoUEH+EIpSZ+fOnTbbx48f5+233+bo0aMAGAwGXn/9dZ588slcs+ALUVKkXC0aKiyjSP08XRyupi0vt5dfAEuWLOHjjz+2bm/fvp0vv/ySKVOmlGRo90SlUlkmM85jgIjemNP0apnHTm8yYzCZMd+coVhaYwuvwN/8nPmKYmNjAcvC8127dpUh8KLUadu2rU0fonr16nH58mWbc0wmExcuXJAETtiVlKt3L2cVBI1ahbuLFg+dxikStxxt27bNtc/Pzy/XvqioqJIIp1jptOo7J3YmheybU5xI/7r85duEGhERweTJkwFo1KgRjRo1AiyrI9zaPi9EafD555/zyCOPoFKpaNq0KT///DMDBgywOScoKIg2bdrYKUIhpFwtjJzRo56uWnw9XKhQzpXKvjf7W5X3JMDb1amSN4D+/fvzxhtv4O3tjb+/P59++imjR4/G29s713nOSqe1NMWWc9cRcHOKkyBfDwK8LKNgpfk1t3zfBb/++iu///47Li4uNvuHDx9Onz59CA8PL/bghCisKlWqsGnTJhRFsS5107RpU7KysliyZAnBwcG8/fbb6HQ6O0cqyjIpV/OWU8Pm5eqCl5sWV23RLVnlKGbOnMnMmTNt9m3dupX33nuPxMREwsPD6dmzp52isw9LbZ2Ocu6W7ZxaOoPJjMGkkG201NiV1ebXfBM4lUpFbGwsQUFBNvtv3LhR5t5YwnHc/rs5duxYxo4da6donE9mZiaLFi3i7Nmz9O3bl4cfftjeITkUKVf/ZVkNQY2HToO7ixadVn3L+qACoGXLljK9zC3yan5VFAWDScFkNmNUFAzGmytMGC3Nr7cndXt2bmfL/9bSrNGDhD8/Cjc3t5J7AkUs3wTu9ddfZ/jw4VSvXt266PLVq1e5dOkSb775ZokFKIQoPQYOHMi6desA+Oyzz1i6dCmDBw+2c1SOo6yWqyosi7dr1Sp0Wg06jQpXFw1uLo43YlSULjkDJqw9wlwt/5nNClkGExkGExnZRkxmhdUrlzNpzEgAvgU2bdzAmjVr7BF2kcg3gevcuTMbNmzg2LFjNosuN2rUCI1G3nRClDUXL160Jm855s+fLwncXShr5WrO8lWeOkuyVtZqGYX9qNUqPFwtkzkrnjqyDCZ++e5rm3N+//13Ll26RLVq1ewU5f0psCeoWq0mODgYFxcXVCoVgYGBTlnICCHuzM3NDbVabTPhrKenpx0jckxloVzVqNV46NR4uznHQvHCsalUKtx1Wny8vWz2azQa52xCPXXqFG+99RapqalUqlQJRVG4fv065cqV46233qJBgwYlGWeZkJKSwtdff010dDRDhgyhVatW9g5JCKtKlSoxduxYPv/8cwDc3d15/fXX7RyVY3H2cnXNmjVs3ryZJk2a8Oyzz6KRNUdFKfLGG2+wY8cOsrKyAMu8jIGBgXaO6j4o+XjssceUo0eP5tp/5MgRJSwsLL/LSrX+/fvbO4R8mc1mpWXLlgqWPpeKRqNRtmzZYu+whMhlx44dyjfffKNcuXLF3qEUSml6399PuVqankdePv30U2v5BSijRo2yd0hC5HL58mXlm2++UXbu3GnvUAqloPd9vh+PMjMzadKkSa79TZs2JTMzs7jyyTJr//79HDx40LptMplYsGCBHSMSIm+dOnVi5MiRuUZSijtz5nJ1/vz5Ntvffvst6enpdopGiLwFBwczcuRIOnbsaO9Q7luBgxjCw8Pp168flSpVAiyL6kZGRtKpU6cSC7CsyKsvkfQvEsK5OHO56uHhYbPt6uqKVutcE+4KUZrk++6aNm0a27dvty75oigKFStWZNiwYXTp0qUkYywTGjVqxMCBA1mxYgUAPj4+vPzyy3aOSghRlJy5XH3rrbcYNGgQJpMJsPQ3cnV1tXNUQjivfBO47OxsGjVqlKtQiY+PJzs7W96YxWDZsmVs3ryZ6Oho+vTpQ0BAgL1DEkIUIWcuV/v378+ZM2fYtm0bTZs2pWXLlvYOSQinlm8fuJkzZ9r0ycqxe/duZs2aVaxBlVUqlYpu3boxfPhwSd6EcELOXq7Wrl2bUaNGSfImRAnIN4E7dOgQ3bt3z7X/sccey7MAEkIIUTApV4UQRSXfBE5R8l8W9taJPIUQQhSOlKtCiKKSbwLn7+/PsWPHcu0/duwY5cuXL9aghBDCGUm5KoQoKvkOYpgyZQoTJ06kf//+1tnBjx8/TmRkJHPnzi2xAIUQwllIuSqEKCr51sA1btyYZcuWoSgKq1atIjIyEoDZs2dbvxdCCFF4Uq4KIYpKgbMsBgQEMGHCBE6ePMnvv/9OZGQkf/75Jz169Cip+IQQwqlIuSqEKAr5JnAXLlxg7dq1rF27Fl9fX3r16oWiKPzwww8lGZ8QQjgNKVeFEEUl3wSuZ8+etGzZkgULFlC9enXAsradEEKIeyPlqhCiqOTbB27evHkEBATwzDPPMG3aNPbu3VvgEHghhBAFk3JVCFFU8q2B69atG926dSMjI4PNmzfz7bffEh8fz1tvvUW3bt3o2LFjScYphBAOT8pVIURRybcGLoeHhwePPfYYX331Fdu3b6d+/fpERESURGxCCOGUpFwVQtyvAkeh3s7X15chQ4YwZMiQ4opHCCHKFClXhRD34o41cEIIIYQQonSRBE4IIYQQwsFIAieEEEII4WAkgRNCCCGEcDCSwAkhhBBCOBhJ4IQQQgghHIwkcEIIIYQQDsYuCVxSUhIjRoyge/fujBgxguTk5FznXLt2jaeffpqePXvSu3dvvvvuu7u6XgghhBDCWdklgYuIiKBdu3Zs3LiRdu3a5TkDuUajYerUqaxfv56lS5eyZMkSoqKiCn29EEIIIYSzsksCt2XLFvr16wdAv3792Lx5c65zAgMDadCgAQBeXl7UqlWLmJiYQl8vhBBCCOGs7JLAxcfHExgYCFgStYSEhALPv3LlCqdOnaJJkyb3dL0QQgghhDO5q7VQ78bw4cOJi4vLtX/ixIl3dZ/09HQmTJjA66+/jpeXVxFFJ4QQQgjhuIotgfv222/zPebv709sbCyBgYHExsZSvnz5PM8zGAxMmDCBsLAwunfvftfXCyGEEEI4I7s0oYaGhhIZGQlAZGQkXbt2zXWOoii88cYb1KpVixEjRtz19UIIIYQQzsouCVx4eDi7d++me/fu7N69m/DwcABiYmJ4/vnnATh06BCrV69m37599O3bl759+7J9+/YCrxdCCCGEKAuKrQm1IH5+fjbzuuWoWLEiCxcuBKBly5acOXPmrq4XQgghhCgLZCUGIYQQQggHIwmcEEIIIYSDkQROCCGEEMLBSAInhBBCCOFgJIETQgghhHAwksAJIYQQQjgYSeCEEEIIIRyMJHBCCCGEEA5GErhSZPv27bRu3ZqgoCCmTJmC0Wi0d0hCCFEoiYmJDBs2jIoVK9KjRw+ioqLsHZIQTs0uKzGI3FJSUnjsscdISUkB4KOPPqJy5cpMmjTJzpEJIcSdvfTSSyxZsgSAjRs3MnjwYA4fPmznqIRwXlIDV0ocPHjQmrzl2LJli52iEUKIu3N7eXXkyBESExPtFI0Qzk8SuFKiYcOG6HQ6m33Nmze3UzRCCHF3WrRoYbNdq1YtfH197ROMEGWAJHClRGBgIIsWLaJChQqo1WoGDBjAf/7zH3uHJYQQhfLf//6XNm3aABASEsKPP/6ISqWyc1RCOC/pA1eKDBs2jCFDhpCdnY2Hh4e9wxFCiEKrUaMG+/btIzU1FS8vL0nehChmksCVMhqNRpI3IYTD8vb2tncIQpQJ0oQqhBBCCOFgJIETQgghhHAwksAJIYQQQjgYSeCEEEIIIRyMJHBCCCGEEA5GEjghhBBCCAcjCZwQQgghhIORBE4IIYQQwsFIAieEEEII4WAkgRNCCCGEcDCSwAkhhBBCOBhJ4IQQQgghHIwkcEIIIYQQDkYSOCGEEEIIByMJnBBCCCGEg5EETgghhBDCwUgCJ4QQQgjhYCSBE0IIIYRwMJLACSGEEEI4GEnghBBCCCEcjCRwQgghhBAORhI4IYQQQggHIwmcEEIIIYSDkQROCCGEEMLBSAInhBBCCOFgtPZ40KSkJCZNmkR0dDRBQUF8+umn+Pj42Jxz7do1pkyZQlxcHGq1msGDB/Pss88CMG/ePJYtW0b58uUBmDx5Ml26dCnx5yGEEEIIYQ92qYGLiIigXbt2bNy4kXbt2hEREZHrHI1Gw9SpU1m/fj1Lly5lyZIlREVFWY8PHz6c1atXs3r1aqdK3g4cOMCqVatIS0uzdyhCCHFXrl+/zvLly/n777/tHYoQTs8uCdyWLVvo168fAP369WPz5s25zgkMDKRBgwYAeHl5UatWLWJiYkoyzBL33HPP0aZNGwYMGEDt2rWlEBRCOIwNGzZQo0YNBg8eTL169Zg3b569QxLCqdklgYuPjycwMBCwJGoJCQkFnn/lyhVOnTpFkyZNrPt++uknwsLCeO2110hOTi7WeEvCqVOnWLRokXU7NjaWjz76yI4ROY+srCzMZrO9wxDCqb3xxhtkZ2cDoCgK06ZNQ6/X2zkqx2cymeR1FHkqtgRu+PDh9OnTJ9dXXrVtBUlPT2fChAm8/vrreHl5ATB06FA2bdrE6tWrCQwM5IMPPiiOp1Ci8kpiExMT7RCJ80hPT2fQoEF4enoSFBTEsmXL7B2SEE7r9vIqLS1NEo/79OWXX1KhQgW8vLx4/vnnMRqN9g5JlCLFNojh22+/zfeYv78/sbGxBAYGEhsbax2McDuDwcCECRMICwuje/fu1v0BAQHW7wcNGsSYMWOKLG57adeuHQ0aNODEiRMAqFQqRo4caeeoHNvs2bNZsWIFYOmb88wzz9C1a1f8/f3tHJkQzmfUqFG8/vrr1u0hQ4ZYP3SLu/f3338zbtw4FEUB4Ouvv6Z58+a88MILdo5MlBZ2GYUaGhpKZGQk4eHhREZG0rVr11znKIrCG2+8Qa1atRgxYoTNsZzkD2Dz5s3UqVOnROIuTmq1mj/++IN58+YRHR3Nk08+SWhoqL3DcmgHDx602c7Ozuavv/7ioYcesk9AQjix1157japVq7J582aaNm0qicZ9OnTokDV5y3F7mSbKNrskcOHh4UycOJEVK1ZQuXJlPvvsMwBiYmKYNm0aCxcu5NChQ6xevZoHHniAvn37Av9OF/LRRx9x+vRpAIKCgpgxY4Y9nkaRCwgI4J133rF3GE7j4YcfZv369dbtcuXK0aJFCztGJIRze+qpp3jqqafsHYZT6NixI1qt1qbZ9OGHH7ZjRKK0sUsC5+fnx3fffZdrf8WKFVm4cCEALVu25MyZM3leL537RWFMnDiRq1evsmTJEoKDg5kzZw7e3t72DksIIe6oatWqLF++nGnTppGYmEh4eDjDhg2zd1iiFLFLAidESXBxcWHu3LnMnTvX3qEIIcRd69evn3XKLSFuJ0tpCSGEEEI4GEnghBBCCCEcjCRwQgghhBAORhI4IYQQQggHIwmcEEIIIYSDkQROCCGEEMLBSAInhBBCCOFgJIETQgghhHAwksAJIYQQQjiYMrUSQ3R0NAMGDLB3GEKIEhQdHW3vEIqElF9ClD0FlV8qRVGUEoxFCCGEEELcJ2lCFUIIIYRwMJLACSGEEEI4GEnghBBCCCEcjCRwQgghhBAORhI4IYQQQggHU6amESltEhMTGT58OABxcXGo1Wri4uJ44IEHMBgMxMXF4eXlhbe3N35+fnz77bd2jdcR5PWali9fHoA+ffrw66+/otVqUavVjBw5kn79+tkvWAdx48YNZs2axV9//YVOpyMoKIjXX38dgFmzZnHx4kW0Wi0PPPAAb775JgEBAXaOWJQUKcOKlpRfRc+pyy9FlAr//e9/la+//tpm33/+8x9l/fr1dorI8d36mi5ZskQZOXKkkpqaqiiKoqSkpCgrV660Z3gOwWw2K4MHD1aWLFli3Xfy5Enlzz//VLp166Zs2bLFun/v3r3KmTNn7BGmKAWkDCtaUn7dP2cvv6QGTpQJX331Fd9//z1eXl4AeHt7079/fztHVfrt27cPrVbL0KFDrfvq16/PihUraNq0KaGhodb9bdu2tUeIQjg9Kb/ujbOXX9IHTji9tLQ00tPTqVatmr1DcThnz56lQYMGhd4vhChaUn7dO2cvvySBE2WCSqWydwhCCHFPpPwSeZEETjg9Ly8v3N3duXz5sr1DcTh16tThxIkTufaHhITkuV8IUbSk/Lp3zl5+SQInyoTw8HDeeecd0tLSAEuzxNKlS+0cVenXtm1b9Ho9y5Yts+47duwY1atX58iRI/zxxx/W/Tt27ODMmTN2iFII5ybl171x9vJLEjhRJjz55JO0adOGxx9/nD59+vDUU0/h5uZm77BKPZVKxeeff87u3bt55JFH6N27N59//jmBgYEsWLCAH374ge7du9OrVy9WrVqFv7+/vUMWwulI+XVvnL38UimKotg7CCGEEEIIUXhSAyeEEEII4WAkgRNCCCGEcDCSwAkhhBBCOBhJ4IQQQgghHIwkcEIIIYQQDkYSOOFQZs+ezaOPPkpYWBjjxo0jJSUFgN27dzNgwADCwsIYMGAAe/futV4zd+5cunTpQrNmzWzupdfrmThxIt26dWPQoEFcuXLF5nhaWhqdOnVixowZ1n1Tp04lNDSUvn370rdvX06dOlWMz1YI4Uyk/BJFSRI4USopioLZbM61v0OHDvz++++sWbOGGjVq8NVXXwHg5+fHl19+yZo1a/jggw+YMmWK9ZqHH36Y5cuX57rX8uXLKVeuHJs2bWL48OHMmTPH5vinn35K69atc103ZcoUVq9ezerVq6lfv/79PlUhhJOR8kuUBK29AxAix5UrV3j++edp06YNR48exdvbm8TERFQqFY8//jjDhw+nY8eO1vObNm3K//73PwAefPBB6/46deqg1+vR6/XodDqaNm2a5+Nt3bqVF198EYAePXowY8YMFEVBpVJx/Phx4uPj6dSpE8ePHy++Jy2EcApSfomSJjVwolS5cOEC/fr1Y+bMmWi1Wuun1QEDBuQ699dff6Vz58659m/YsIH69euj0+kKfKyYmBgqV64MgFartRa4ZrOZ2bNn23wKvtXcuXMJCwtj1qxZ6PX6e3iWQghnJOWXKEmSwIlSpUqVKjRt2pSqVaty+fJl3n33XXbs2IGXl5fNeV9++SUajYbHHnvMZv/Zs2eZM2eOTb+P/OS1CIlKpWLJkiV07tzZWjjeavLkyfzvf//j119/JTk5mYiIiLt8hkIIZyXllyhJ0oQqShUPDw8AfHx8WL16Nbt27WLJkiWsX7+e999/H4BVq1bxxx9/8O2336JSqazXXr9+nRdffJHZs2dTrVq1Oz5WpUqVuHbtGpUqVcJoNJKamoqvry9Hjhzh0KFD/Pzzz6Snp2MwGPDw8OCVV14hMDAQAJ1Ox4ABA1i0aFExvApCCEck5ZcoSZLAiVIpISEBnU5Hjx49qFatGlOnTgVgx44dLFy4kB9//BF3d3fr+SkpKYSHhzN58mRatGhRqMcIDQ1l1apVNGvWjA0bNtC2bVtUKhUff/yx9ZyVK1dy/PhxXnnlFQBiY2MJDAxEURQ2b95MnTp1ivBZCyGcgZRfoiRIAidKpdjYWF577TXrSK7JkycD8O6776LX6xkxYgQATZo0YcaMGfz4449cunSJL774gi+++AKARYsW4e/vz4cffsjvv/9OZmYmnTt3ZtCgQYwfP56BAwfy6quv0q1bN3x8fJg7d+4d43rllVdITExEURTq1avHO++8U0yvgBDCUUn5JUqCSsmrIV0IIYQQQpRaMohBCCGEEMLBSAInhBBCCOFgJIETQgghhHAwksAJIYQQQjgYSeCEEEIIIRyMJHBCCCGEEA5GEjghhBBCCAcjCZwQQgghhIP5f+4J/7b8bq4xAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "_, axes = plt.subplots(1, 2, figsize=(10, 5), sharey=True)\n", + "ax1, ax2 = axes\n", + "\n", + "im_coef, im_p = spearmanr(concat_imputed_df['genotype'], concat_imputed_df[genepair])\n", + "# sns.violinplot(x=concat_imputed_df['genotype'], \n", + "# y=concat_imputed_df[genepair], \n", + "# ax=ax1,\n", + "# inner=None)\n", + "sns.swarmplot(x=concat_imputed_df['genotype'], \n", + " y=concat_imputed_df[genepair], \n", + " ax=ax1,\n", + " color='black')\n", + "sns.regplot(x=concat_imputed_df['genotype'], \n", + " y=concat_imputed_df[genepair], \n", + " ax=ax1, scatter=False)\n", + "ax1.set_title(f'Imputed r={im_coef:.2f}; pvalue {im_p:.4f}')\n", + "ax1.set_xticklabels([f'{refallele}{refallele}', \n", + " f'{refallele}{altallele}',\n", + " f'{altallele}{altallele}'])\n", + "ax1.set_xlabel(snp_id)\n", + "\n", + "coef, p = spearmanr(concat_df['genotype'], concat_df[genepair])\n", + "# sns.violinplot(x=concat_df['genotype'], \n", + "# y=concat_df[genepair], \n", + "# ax=ax2,\n", + "# inner=None)\n", + "sns.swarmplot(x=concat_df['genotype'], \n", + " y=concat_df[genepair], \n", + " ax=ax2,\n", + " color='black')\n", + "sns.regplot(x=concat_df['genotype'], \n", + " y=concat_df[genepair], \n", + " ax=ax2, scatter=False)\n", + "ax2.set_xlabel('')\n", + "ax2.set_title(f'Not Imputed r={coef:.2f}; pvalue {p:.4f}')\n", + "ax2.set_xticklabels([f'{refallele}{refallele}', \n", + " f'{refallele}{altallele}',\n", + " f'{altallele}{altallele}'])\n", + "ax2.set_xlabel(snp_id)\n", + "plt.savefig(example_savedir/f'{snp_name}_ref{refallele}_alt{altallele}_{gene1}_{gene2}.{celltype}_{datasetname}.full.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "PosixPath('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/examples/rs221045_C_refT_altC_AC005076.5_ARHGEF19.monocyte_onemillionv2.full.pdf')" + ] + }, + "execution_count": 112, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "example_savedir/f'{snp_name}_ref{refallele}_alt{altallele}_{gene1}_{gene2}.{celltype}_{datasetname}.full.pdf'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/04_coeqtl_mapping/power_analysis_coeqtls.R b/04_coeqtl_mapping/power_analysis_coeqtls.R new file mode 100644 index 0000000..ff2e515 --- /dev/null +++ b/04_coeqtl_mapping/power_analysis_coeqtls.R @@ -0,0 +1,79 @@ +################################################################################ +# Evaluate how number of triplets decreases the power to detect +# co-expression QTLs by calculating the power dependent on the sample size +# (N=173), heritability (Rsq: 0.1-0.3), Bonferroni multiple testing correction, +# and different number of tests +# The number of tests is estimated based on different expression cutoffs for +# the Oelen v3 dataset, assuming that all pairwise combinations are tested for +# all genes above the respective cutoff and one SNP per pair +# Input: Seurat object with data from Oelen v3 +# Output: line plot visualizing power for different number of tests +################################################################################ + +library(Seurat) +library(scPower) +library(ggplot2) + +theme_set(theme_bw()) + +################################################################################ +# Getting expression distribution for Oelen v3 dataset +################################################################################ + +#Load complete seurat object +seurat<-readRDS("seurat_objects/1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.rds") + +#Filter for monocytes and UT timepoint +seurat<-seurat[,seurat$cell_type_lowerres == "monocyte"] +seurat<-seurat[,seurat$timepoint == "UT"] + +#Calculate for each gene the non-zero ratio +nonzero_ratio<-rowMeans(as.matrix(seurat@assays$SCT@counts)>0) + +#Get cumulative ratio +thresholds<-seq(0,1,0.05) +num_genes<-sapply(thresholds,function(i)sum(nonzero_ratio>i)) + +#Save results in a file +nonzero_count<-data.frame(nonzero_ratio=thresholds,num_genes) + +################################################################################ +# Performing power calculation +################################################################################ + +#Samples in meta-analysis +nSamples<-173 + +bonfLevel<-function(nTests){ + return(0.05/nTests) +} + +#Test different heritabilities +Rsq<-seq(0.1,0.3,0.05) + +#Number tests +nonzero_count$genepairs<-nonzero_count$num_genes*(nonzero_count$num_genes-1)/2 + +res<-NULL +for(her in Rsq){ + for(i in 1:(nrow(nonzero_count)-1)){ + res<-rbind(res, + data.frame(her, + numTests=nonzero_count$genepairs[i], + cutoff=nonzero_count$nonzero_ratio[i], + power=scPower:::power.eqtl.ftest(her, + bonfLevel(nonzero_count$genepairs[i]), + nSamples))) + } +} + +#Plot results +g<-ggplot(res,aes(x=numTests,y=power,color=as.factor(her)))+ + geom_line()+ + scale_color_discrete("Heritability")+ + scale_x_log10()+ + xlab("Number tests")+ylab("Power") +print(g) +ggsave(g,file="power_calculation/power_effect_nonzeroratio.png", + height=5,width=6) + diff --git a/04_coeqtl_mapping/prepare_for_rb_calculation.py b/04_coeqtl_mapping/prepare_for_rb_calculation.py new file mode 100644 index 0000000..9eaf191 --- /dev/null +++ b/04_coeqtl_mapping/prepare_for_rb_calculation.py @@ -0,0 +1,307 @@ +import pandas as pd +import numpy as np +from pathlib import Path +from scipy.stats import pearsonr +import argparse + + +def argumentsparser(): + parser = argparse.ArgumentParser() + parser.add_argument('--filtertype', type=str, dest='filtertype') + return parser + +def prepare_for_rb_BIOS_replication(celltype, filtertype, bios_replication_type='onlyRNAAlignMetrics'): + ''' + Rb Calculation preparation for BIOS replication + ''' + workdir = Path("./coeqtl_mapping") + coeqtl_path = workdir/f'output/{filtertype}/UT_{celltype}/coeqtls_fullresults_fixed.sig.withbios{bios_replication_type}.tsv.gz' + coeqtl_df = pd.read_csv(coeqtl_path, sep='\t', compression='gzip') + coeqtl_df['theta'] = 0 + def flip_direction(allele1, allele2, coef2): + if allele1 == allele2: + return coef2 + else: + return -1*coef2 + coeqtl_df['flipped_bios_beta'] = [flip_direction(item[0], + item[1], + item[2]) for item in + coeqtl_df[['SNPEffectAllele', + 'assessed_allele_bios', + 'coef_bios']].values] + coeqtl_df[['snp_genepair', 'snp_eqtlgene', + 'flipped_bios_beta', 'std err_bios', + 'MetaBeta', 'MetaSE', 'theta']].dropna().to_csv( + workdir/f'bios/{bios_replication_type}/{filtertype}/UT_{celltype}/replication_parameters.csv' + ) + return coeqtl_df + + +def find_gene2(genepair, eqtlgene): + gene1, gene2 = genepair.split(';') + if gene1 == eqtlgene: + return gene2 + else: + return gene1 + + +def flip_direction(df, flipcol, allele1_col, allele2_col): + df = df.rename({flipcol: f'{flipcol}_ori'}, axis=1) + def flip(x1, x2, x3): + if not pd.isnull(x1): + if x2 == x3: + return x1 + else: + return -x1 + else: + return x1 + df[f'{flipcol}'] = [flip(score, allele1, allele2) for (score, allele1,allele2) + in df[[f'{flipcol}_ori', allele1_col, allele2_col]].values] + return df + + +# coeQTLs +args = argumentsparser().parse_args() +filtertype = args.filtertype +workdir = Path("/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping") +celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'B', 'NK'] +for celltype_replication in celltypes: + print(f"Discovery: {celltype_replication}") + replication_coeqtl_path = workdir / f'output/{filtertype}/UT_{celltype_replication}/coeqtls_fullresults_fixed.all.tsv.gz' + replication_coeqtl_df = pd.read_csv(replication_coeqtl_path, sep='\t', compression='gzip') + replication_coeqtl_df['gene2'] = [find_gene2(x[0], x[1]) for x in + replication_coeqtl_df[['Gene', + 'eqtlgene']].values] + replication_coeqtl_df['snp_eqtlgene_gene2'] = ['_'.join([item[0], item[1]]) for item in + replication_coeqtl_df[['snp_eqtlgene', + 'gene2']].values] + replication_coeqtl_df = replication_coeqtl_df.set_index('snp_eqtlgene_gene2') + replication_coexpression_df = pd.read_csv(workdir/f'input/individual_networks/UT/UT_{celltype_replication}.sigcoeQTLs.tsv.gz', + compression='gzip', sep='\t', index_col=0) + for celltype_discovery in celltypes: + if celltype_replication != celltype_discovery: + print(f"Replication: {celltype_discovery}") + discovery_coeqtl_path = workdir / f'output/{filtertype}/UT_{celltype_discovery}/coeqtls_fullresults_fixed.sig.tsv.gz' + discovery_coeqtl_df = pd.read_csv(discovery_coeqtl_path, sep='\t', compression='gzip') + discovery_coeqtl_df['gene2'] = [find_gene2(x[0], x[1]) for x in + discovery_coeqtl_df[['Gene', + 'eqtlgene']].values] + discovery_coeqtl_df['snp_eqtlgene_gene2'] = ['_'.join([item[0], item[1]]) for item in + discovery_coeqtl_df[['snp_eqtlgene', + 'gene2']].values] + discovery_coeqtl_df = discovery_coeqtl_df.set_index('snp_eqtlgene_gene2') + tested_coeqtls = list(set(replication_coeqtl_df.index) & set(discovery_coeqtl_df.index)) + merged_coeqtl_df = pd.concat([replication_coeqtl_df.loc[tested_coeqtls], + discovery_coeqtl_df.loc[tested_coeqtls].add_suffix('_replication')], # todo: here is wrong.. should be discovery + axis=1) + merged_coeqtl_df = flip_direction(merged_coeqtl_df, + 'MetaBeta_replication', + 'SNPEffectAllele', + 'SNPEffectAllele_replication') # MetaBeta, MetaSE, MetaBeta_replication, MetaSE_replication + disovery_coexpression_df = pd.read_csv( + workdir / f'input/individual_networks/UT/UT_{celltype_discovery}.sigcoeQTLs.tsv.gz', + compression='gzip', sep='\t', index_col=0) + # find overlapping individuals + tested_genepairs = list(merged_coeqtl_df['Gene'].unique()) + tested_coexpression_discovery_df = disovery_coexpression_df.loc[tested_genepairs] + tested_coexpression_discovery_df.replace([np.inf, -np.inf], np.nan, inplace=True) + tested_coexpression_replication_df = replication_coexpression_df.loc[tested_genepairs] + tested_coexpression_replication_df.replace([np.inf, -np.inf], np.nan, inplace=True) + other_col_dict = {genepair:np.nan for genepair in tested_genepairs} + for genepair in tested_genepairs: + tested_coexpression_discovery_genepair_nonan = tested_coexpression_discovery_df.loc[genepair].dropna() + tested_coexpression_replication_genepair_nonan = tested_coexpression_replication_df.loc[genepair].dropna() + common_individuals = list(set(tested_coexpression_discovery_genepair_nonan.index) & set(tested_coexpression_replication_genepair_nonan.index)) + num_common = len(common_individuals) + num_discovery = tested_coexpression_discovery_genepair_nonan.shape[0] + num_replication = tested_coexpression_replication_genepair_nonan.shape[0] + rho = pearsonr(tested_coexpression_discovery_genepair_nonan[common_individuals], + tested_coexpression_replication_genepair_nonan[common_individuals])[0] + other_col_dict[genepair] = rho * num_common / np.sqrt(num_discovery * num_replication) + merged_coeqtl_df['theta'] = [other_col_dict.get(genepair) for genepair in merged_coeqtl_df['Gene']] + merged_coeqtl_df[['MetaBeta', + 'MetaBeta_replication', + 'MetaSE', + 'MetaSE_replication', + 'theta']].to_csv(workdir/f'output/{filtertype}/rb_calculations/discovery_{celltype_discovery}_replication_{celltype_replication}.tsv.gz', + sep='\t', + compression='gzip') + else: + continue + + +# cmono ncmono and monocyte +filtertype = 'filtered_results' +workdir = Path("./coeqtl_mapping") +celltypes = ['monocyte', 'cMono', 'ncMono'] +for celltype_replication in celltypes: + print(f"Discovery: {celltype_replication}") + replication_coeqtl_path = workdir / f'output/{filtertype}/UT_{celltype_replication}/coeqtls_fullresults_fixed.all.tsv.gz' + replication_coeqtl_df = pd.read_csv(replication_coeqtl_path, sep='\t', compression='gzip') + replication_coeqtl_df['gene2'] = [find_gene2(x[0], x[1]) for x in + replication_coeqtl_df[['Gene', + 'eqtlgene']].values] + replication_coeqtl_df['snp_eqtlgene_gene2'] = ['_'.join([item[0], item[1]]) for item in + replication_coeqtl_df[['snp_eqtlgene', + 'gene2']].values] + replication_coeqtl_df = replication_coeqtl_df.set_index('snp_eqtlgene_gene2') + replication_coexpression_df = pd.read_csv(workdir/f'input/individual_networks/UT/monocyte_subcelltypes/UT_{celltype_replication}.sigcoeQTLs.tsv.gz', + compression='gzip', sep='\t', index_col=0) + for celltype_discovery in celltypes: + if celltype_replication != celltype_discovery: + print(f"Replication: {celltype_discovery}") + discovery_coeqtl_path = workdir / f'output/{filtertype}/UT_{celltype_discovery}/coeqtls_fullresults_fixed.sig.tsv.gz' + discovery_coeqtl_df = pd.read_csv(discovery_coeqtl_path, sep='\t', compression='gzip') + discovery_coeqtl_df['gene2'] = [find_gene2(x[0], x[1]) for x in + discovery_coeqtl_df[['Gene', + 'eqtlgene']].values] + discovery_coeqtl_df['snp_eqtlgene_gene2'] = ['_'.join([item[0], item[1]]) for item in + discovery_coeqtl_df[['snp_eqtlgene', + 'gene2']].values] + discovery_coeqtl_df = discovery_coeqtl_df.set_index('snp_eqtlgene_gene2') + tested_coeqtls = list(set(replication_coeqtl_df.index) & set(discovery_coeqtl_df.index)) + merged_coeqtl_df = pd.concat([replication_coeqtl_df.loc[tested_coeqtls], + discovery_coeqtl_df.loc[tested_coeqtls].add_suffix('_replication')], # todo: also here it is wrong... + axis=1) + merged_coeqtl_df = flip_direction(merged_coeqtl_df, + 'MetaBeta_replication', + 'SNPEffectAllele', + 'SNPEffectAllele_replication') # MetaBeta, MetaSE, MetaBeta_replication, MetaSE_replication + disovery_coexpression_df = pd.read_csv( + workdir / f'input/individual_networks/UT/monocyte_subcelltypes/UT_{celltype_discovery}.sigcoeQTLs.tsv.gz', + compression='gzip', sep='\t', index_col=0) + # find overlapping individuals + tested_genepairs = list(merged_coeqtl_df['Gene'].unique()) + tested_coexpression_discovery_df = disovery_coexpression_df.loc[tested_genepairs] + tested_coexpression_discovery_df.replace([np.inf, -np.inf], np.nan, inplace=True) + tested_coexpression_replication_df = replication_coexpression_df.loc[tested_genepairs] + tested_coexpression_replication_df.replace([np.inf, -np.inf], np.nan, inplace=True) + other_col_dict = {genepair:np.nan for genepair in tested_genepairs} + for genepair in tested_genepairs: + tested_coexpression_discovery_genepair_nonan = tested_coexpression_discovery_df.loc[genepair].dropna() + tested_coexpression_replication_genepair_nonan = tested_coexpression_replication_df.loc[genepair].dropna() + common_individuals = list(set(tested_coexpression_discovery_genepair_nonan.index) & set(tested_coexpression_replication_genepair_nonan.index)) + num_common = len(common_individuals) + num_discovery = tested_coexpression_discovery_genepair_nonan.shape[0] + num_replication = tested_coexpression_replication_genepair_nonan.shape[0] + rho = pearsonr(tested_coexpression_discovery_genepair_nonan[common_individuals], + tested_coexpression_replication_genepair_nonan[common_individuals])[0] + other_col_dict[genepair] = rho * num_common / np.sqrt(num_discovery * num_replication) + merged_coeqtl_df['theta'] = [other_col_dict.get(genepair) for genepair in merged_coeqtl_df['Gene']] + merged_coeqtl_df[['MetaBeta', + 'MetaBeta_replication', + 'MetaSE', + 'MetaSE_replication', + 'theta']].to_csv(workdir/f'output/{filtertype}/rb_calculations/monocyte_subcelltypes/discovery_{celltype_discovery}_replication_{celltype_replication}.tsv.gz', + sep='\t', + compression='gzip') + else: + continue + + +# eQTLs +workdir = Path("./cis_eqtl_single_cell/EMP_mapping_1_12_2021_perm1000/output/") +celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'B', 'NK'] +genename_dict = pd.read_csv('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/resources/features_v3_reformated_names.tsv', + sep='\t', names=['ensemblid', 'genename']).set_index('ensemblid')['genename'].T.to_dict() + +def read_alldataset_celltype_expression_df(celltype): + expression_prefix = Path('./expression_files/sources_for_coeqtl') + df = pd.DataFrame() + for datasetname in ['1m_v2', '1m_v3', 'NG', 't8w']: + dataset_df = pd.read_csv(expression_prefix/f'{datasetname}/{celltype}_expression.tsv', sep='\t', index_col=0) + dataset_df['genename'] = [genename_dict.get(geneid) for geneid in dataset_df.index] + dataset_df = dataset_df.dropna(subset=['genename']).set_index('genename') + df = pd.concat([df, dataset_df], axis=1) + return df + +for celltype_replication in celltypes: + print(f"Discovery: {celltype_replication}") + replication_coeqtl_path = workdir / f'{celltype_replication}/eQTLsFDR-ProbeLevel.txt.gz' + replication_coeqtl_df = pd.read_csv(replication_coeqtl_path, sep='\t', compression='gzip') + replication_coeqtl_df['genename'] = [genename_dict.get(ensemblid) for ensemblid in replication_coeqtl_df['ProbeName']] + replication_coeqtl_df['snp_gene'] = ['_'.join(item) for item in replication_coeqtl_df[['SNPName', 'genename']].values] + replication_coeqtl_df = replication_coeqtl_df.set_index('snp_gene') + replication_coeqtl_df['metabeta'] = [float(item.split(' (')[0]) for item in replication_coeqtl_df['Meta-Beta (SE)']] + replication_coeqtl_df['SE'] = [float(item.split(' (')[1][:-2]) for item in replication_coeqtl_df['Meta-Beta (SE)']] + replication_coexpression_df = read_alldataset_celltype_expression_df(celltype_replication) + for celltype_discovery in celltypes: + if celltype_replication != celltype_discovery: + print(f"Replication: {celltype_discovery}") + discovery_coeqtl_path = workdir / f'{celltype_discovery}/eQTLsFDR0.05-ProbeLevel.txt.gz' + discovery_coeqtl_df = pd.read_csv(discovery_coeqtl_path, sep='\t', compression='gzip') + discovery_coeqtl_df['genename'] = [genename_dict.get(ensemblid) for ensemblid in + discovery_coeqtl_df['ProbeName']] + discovery_coeqtl_df['snp_gene'] = ['_'.join(item) for item in + discovery_coeqtl_df[['SNPName', 'genename']].values] + discovery_coeqtl_df = discovery_coeqtl_df.set_index('snp_gene') + discovery_coeqtl_df['metabeta'] = [float(item.split(' (')[0]) for item in discovery_coeqtl_df['Meta-Beta (SE)']] + discovery_coeqtl_df['SE'] = [float(item.split(' (')[1][:-2]) for item in discovery_coeqtl_df['Meta-Beta (SE)']] + tested_eqtls = list(set(replication_coeqtl_df.index) & set(discovery_coeqtl_df.index)) + merged_coeqtl_df = pd.concat([replication_coeqtl_df.loc[tested_eqtls], + discovery_coeqtl_df.loc[tested_eqtls].add_suffix('_replication')], # todo here it is wrong... + axis=1) + merged_coeqtl_df = flip_direction(merged_coeqtl_df, + 'metabeta_replication', + 'AlleleAssessed', + 'AlleleAssessed_replication') + discovery_coexpression_df = read_alldataset_celltype_expression_df(celltype_discovery) + # find overlapping individuals + tested_genepairs = list(merged_coeqtl_df['genename'].unique()) + tested_coexpression_discovery_df = discovery_coexpression_df.loc[tested_genepairs] + tested_coexpression_discovery_df.replace([np.inf, -np.inf], np.nan, inplace=True) + tested_coexpression_replication_df = replication_coexpression_df.loc[tested_genepairs] + tested_coexpression_replication_df.replace([np.inf, -np.inf], np.nan, inplace=True) + other_col_dict = {genepair:np.nan for genepair in tested_genepairs} + for genepair in tested_genepairs: + tested_coexpression_discovery_genepair_nonan = tested_coexpression_discovery_df.loc[genepair].dropna() + tested_coexpression_replication_genepair_nonan = tested_coexpression_replication_df.loc[genepair].dropna() + common_individuals = list(set(tested_coexpression_discovery_genepair_nonan.index) & set(tested_coexpression_replication_genepair_nonan.index)) + num_common = len(common_individuals) + num_discovery = tested_coexpression_discovery_genepair_nonan.shape[0] + num_replication = tested_coexpression_replication_genepair_nonan.shape[0] + rho = pearsonr(tested_coexpression_discovery_genepair_nonan[common_individuals], + tested_coexpression_replication_genepair_nonan[common_individuals])[0] + other_col_dict[genepair] = rho * num_common / np.sqrt(num_discovery * num_replication) + merged_coeqtl_df['theta'] = [other_col_dict.get(genepair) for genepair in merged_coeqtl_df['genename']] + merged_coeqtl_df[['metabeta', + 'metabeta_replication', + 'SE', + 'SE_replication', + 'theta']].to_csv(f'./coeqtl_mapping/input/snp_selection/rb_calculations/discovery_{celltype_discovery}_replication_{celltype_replication}.tsv.gz', + sep='\t', + compression='gzip') + else: + continue + + + +filtertype = 'filtered_results' +workdir = Path("./coeqtl_mapping") +celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'B', 'NK'] +for celltype_replication in celltypes: + for celltype_discovery in celltypes: + if celltype_replication != celltype_discovery: + print(celltype_discovery, celltype_replication) + merged_coeqtl_df = pd.read_csv(workdir/f'output/{filtertype}/rb_calculations/discovery_{celltype_discovery}_replication_{celltype_replication}.tsv.gz', + sep='\t', + compression='gzip') + merged_coeqtl_df = merged_coeqtl_df.rename({ + 'MetaBeta_replication': 'MetaBeta_discovery', + 'MetaSE_replication': 'MetaSE_discovery' + }, + axis=1) + merged_coeqtl_df = merged_coeqtl_df.rename({ + 'MetaBeta': 'MetaBeta_replication', + 'MetaSE': 'MetaSE_replication' + }, + axis=1) + merged_coeqtl_df = merged_coeqtl_df.rename({ + 'MetaBeta_discovery': 'MetaBeta', + 'MetaSE_discovery': 'MetaSE' + }, + axis=1) + merged_coeqtl_df.to_csv( + workdir / f'output/{filtertype}/rb_calculations/discovery_{celltype_discovery}_replication_{celltype_replication}.fixed.tsv.gz', + sep='\t', + compression='gzip') \ No newline at end of file diff --git a/04_coeqtl_mapping/prepare_genelist_and_annotation_for_betaqtl.py b/04_coeqtl_mapping/prepare_genelist_and_annotation_for_betaqtl.py new file mode 100644 index 0000000..c5ea9f3 --- /dev/null +++ b/04_coeqtl_mapping/prepare_genelist_and_annotation_for_betaqtl.py @@ -0,0 +1,73 @@ +import pandas as pd +import numpy as np +from pathlib import Path +import argparse +import os + + +def parse(): + parser = argparse.ArgumentParser() + parser.add_argument('--condition', dest = 'condition') + parser.add_argument('--celltype', dest='celltype') + return parser + +args = parse().parse_args() +condition, celltype = args.condition , args.celltype + +# old code for creating the annotation file.. +workdir = Path("/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/") +eqtl_annotations_path = workdir/f'input/snp_genepair_selection/annotations/{condition}_{celltype}.baseline.annotatedeQTL.tsv' +savepath = workdir/f'output/{condition}_{celltype}/' +if not os.path.isdir(savepath): + os.mkdir(savepath) + +eqtl_annotations = pd.read_csv(eqtl_annotations_path, sep='\t') + +annotation_cols = ['Platform', 'ArrayAddress', 'Symbol', 'Chr', 'ChrStart', 'ChrEnd', 'Probe', 'Seq'] +gene_annotation_dict = pd.read_csv('/groups/umcg-bios/tmp01/projects/1M_cells_scRNAseq/ongoing/eQTL_mapping/probeannotation/singleCell-annotation-stripped.tsv', + sep='\t').set_index('Ensembl').T.to_dict() +genename_ensembl_mapping = pd.read_csv(workdir/'../resources/features_v3_reformated_names.tsv', + sep='\t', names=['Ensembl', 'genename']).set_index('genename')['Ensembl'].T.to_dict() + + +eqtl_annotations['ArrayAddress'] = eqtl_annotations['genepair_sorted'] +eqtl_annotations['Symbol'] = eqtl_annotations['genepair_sorted'] +eqtl_annotations['Probe'] = eqtl_annotations['genepair_sorted'] +eqtl_annotations['Seq'] = 'NNNNNNN' +getchr = lambda x:gene_annotation_dict.get(x)['Chr'] if x in gene_annotation_dict else np.nan +getchrstart = lambda x:int(gene_annotation_dict.get(x)['ChrStart']) if x in gene_annotation_dict else np.nan +getchrend = lambda x:int(gene_annotation_dict.get(x)['ChrEnd']) if x in gene_annotation_dict else np.nan +eqtl_annotations['Platform'] = 'SingleCell' + +eqtl_annotations['eqtlgene'] = [item.split(';')[0] for item in eqtl_annotations['eqtlgene1_gene2']] +eqtl_annotations['eqtlgene_ensembl'] = [genename_ensembl_mapping.get(genename) for genename in eqtl_annotations['eqtlgene']] + +eqtl_annotations['Chr'] = [getchr(gene) for gene in eqtl_annotations['eqtlgene_ensembl']] +eqtl_annotations['ChrStart'] = [getchrstart(gene) for gene in eqtl_annotations['eqtlgene_ensembl']] +eqtl_annotations['ChrEnd'] = [getchrend(gene) for gene in eqtl_annotations['eqtlgene_ensembl']] +counts = eqtl_annotations['genepair_sorted'].value_counts() +duplicated_genepairs_set = set(counts[counts>1].index.values) +isdup = lambda x:True if x in duplicated_genepairs_set else False +eqtl_annotations['isdup'] = [isdup(genepair) for genepair in eqtl_annotations['genepair_sorted']] +eqtl_annotations[eqtl_annotations['isdup']==False][['snp', 'genepair_sorted']].to_csv(workdir/f'input/snp_genepair_selection/{condition}_{celltype}.baseline.noduplicated.tsv', + sep='\t', index=False) +eqtl_annotations[eqtl_annotations['isdup']==False][annotation_cols].to_csv(workdir/f'input/summary/{condition}_{celltype}.genepairs.annotation.gene1position.noduplicated.tsv', + sep='\t', index=False) +eqtl_annotations[eqtl_annotations['isdup']==False][['genepair_sorted']].to_csv(savepath/'genelist.noduplicated.txt', header=None, index=False) + + +duplicated = eqtl_annotations[eqtl_annotations['isdup']].drop_duplicates(subset=['genepair_sorted'], keep='first') +duplicated[['snp', 'genepair_sorted']].to_csv(workdir/f'input/snp_genepair_selection/{condition}_{celltype}.baseline.duplicatedversion1.tsv', + sep='\t', index=False) +duplicated[annotation_cols].to_csv(workdir/f'input/summary/{condition}_{celltype}.genepairs.annotation.gene1position.duplicatedversion1.tsv', + sep='\t', index=False) +duplicated[['genepair_sorted']].to_csv(savepath/'genelist.duplicatedversion1.txt', header=None, index=False) + + +duplcated_version2 = eqtl_annotations[eqtl_annotations['isdup']].drop_duplicates(subset=['genepair_sorted'], keep='last') +duplcated_version2[['snp', 'genepair_sorted']].to_csv(workdir/f'input/snp_genepair_selection/{condition}_{celltype}.baseline.duplicatedversion2.tsv', + sep='\t', index=False) +duplcated_version2[annotation_cols].to_csv(workdir/f'input/summary/{condition}_{celltype}.genepairs.annotation.gene1position.duplicatedversion2.tsv', + sep='\t', index=False) +duplcated_version2[['genepair_sorted']].to_csv(savepath/'genelist.duplicatedversion2.txt', header=None, index=False) + diff --git a/04_coeqtl_mapping/rb_celltypes.ipynb b/04_coeqtl_mapping/rb_celltypes.ipynb new file mode 100644 index 0000000..834ede3 --- /dev/null +++ b/04_coeqtl_mapping/rb_celltypes.ipynb @@ -0,0 +1,2026 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib as mpl\n", + "mpl.rcParams['pdf.fonttype'] = 42\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "\n", + "from pathlib import Path\n", + "workdir = Path(\"./coeqtl_mapping/\")\n", + "\n", + "celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']\n", + "import matplotlib\n", + "def heatmap(data, row_labels, col_labels, ax=None,\n", + " cbar_kw={}, cbarlabel=\"\", **kwargs):\n", + " \"\"\"\n", + " Create a heatmap from a numpy array and two lists of labels.\n", + "\n", + " Parameters\n", + " ----------\n", + " data\n", + " A 2D numpy array of shape (M, N).\n", + " row_labels\n", + " A list or array of length M with the labels for the rows.\n", + " col_labels\n", + " A list or array of length N with the labels for the columns.\n", + " ax\n", + " A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If\n", + " not provided, use current axes or create a new one. Optional.\n", + " cbar_kw\n", + " A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional.\n", + " cbarlabel\n", + " The label for the colorbar. Optional.\n", + " **kwargs\n", + " All other arguments are forwarded to `imshow`.\n", + " \"\"\"\n", + "\n", + " if not ax:\n", + " ax = plt.gca()\n", + "\n", + " # Plot the heatmap\n", + " im = ax.pcolormesh(data, **kwargs)\n", + "\n", + " # Create colorbar\n", + " cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)\n", + " cbar.ax.set_ylabel(cbarlabel, rotation=-90, va=\"bottom\")\n", + "\n", + " # Let the horizontal axes labeling appear on top.\n", + " ax.tick_params(top=True, bottom=False,\n", + " labeltop=True, labelbottom=False)\n", + "\n", + " # Rotate the tick labels and set their alignment.\n", + " plt.setp(ax.get_xticklabels(), rotation=-30, ha=\"right\",\n", + " rotation_mode=\"anchor\")\n", + "\n", + " # Turn spines off and create white grid.\n", + "# ax.spines[:].set_visible(False)\n", + "\n", + "# ax.set_xticks(np.arange(-0.5, data.shape[1]-2, 1), minor=True)\n", + "# ax.set_yticks(np.arange(-0.5, data.shape[0]-2, 1), minor=True)\n", + " # Show all ticks and label them with the respective list entries.\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + " ax.set_yticklabels([\"\"]+row_labels)\n", + "# ax.grid(which='minor', color=\"white\", linestyle='-', linewidth=2)\n", + "# ax.tick_params(which=\"minor\", bottom=False, left=False)\n", + " return im, cbar\n", + "\n", + "\n", + "def annotate_heatmap(im, data=None, valfmt=\"{x:.2f}\",\n", + " textcolors=(\"black\", \"white\"),\n", + " threshold=None, **textkw):\n", + " \"\"\"\n", + " A function to annotate a heatmap.\n", + "\n", + " Parameters\n", + " ----------\n", + " im\n", + " The AxesImage to be labeled.\n", + " data\n", + " Data used to annotate. If None, the image's data is used. Optional.\n", + " valfmt\n", + " The format of the annotations inside the heatmap. This should either\n", + " use the string format method, e.g. \"$ {x:.2f}\", or be a\n", + " `matplotlib.ticker.Formatter`. Optional.\n", + " textcolors\n", + " A pair of colors. The first is used for values below a threshold,\n", + " the second for those above. Optional.\n", + " threshold\n", + " Value in data units according to which the colors from textcolors are\n", + " applied. If None (the default) uses the middle of the colormap as\n", + " separation. Optional.\n", + " **kwargs\n", + " All other arguments are forwarded to each call to `text` used to create\n", + " the text labels.\n", + " \"\"\"\n", + "\n", + " # Normalize the threshold to the images color range.\n", + " if threshold is not None:\n", + " threshold = im.norm(threshold)\n", + " else:\n", + " threshold = im.norm(data.max())/2.\n", + "\n", + " # Set default alignment to center, but allow it to be\n", + " # overwritten by textkw.\n", + " kw = dict(horizontalalignment=\"center\",\n", + " verticalalignment=\"center\")\n", + " kw.update(textkw)\n", + "\n", + " # Get the formatter in case a string is supplied\n", + " if isinstance(valfmt, str):\n", + " valfmt = matplotlib.ticker.StrMethodFormatter(valfmt)\n", + "\n", + " # Loop over the data and create a `Text` for each \"pixel\".\n", + " # Change the text's color depending on the data.\n", + " texts = []\n", + " for i in range(data.shape[0]):\n", + " for j in range(data.shape[1]):\n", + "# kw.update(color=textcolors[int(im.norm(data[i, j]) > threshold)])\n", + " text = im.axes.text(j+0.5, i+0.5, valfmt(data[i, j], None), **kw)#j+0.1, i+0.5\n", + " texts.append(text)\n", + "\n", + " return texts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## celltypes" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "filtered_res_df = pd.read_csv(workdir/'output/filtered_results/rb_calculations/summary.csv', index_col=0)\n", + "unfiltered_res_df = pd.read_csv(workdir/'output/unfiltered_results/rb_calculations/summary.csv', index_col=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "filtered_res_df_clean = filtered_res_df[filtered_res_df['celltype_discovery']!='B']\n", + "filtered_res_df_clean = filtered_res_df_clean.dropna()\n", + "filtered_res_df_clean.to_excel(workdir/'output/summary/rb_values_replication_in_other_celltypes_filtered_results.xlsx')\n", + "\n", + "unfiltered_res_df_clean = unfiltered_res_df[unfiltered_res_df['celltype_discovery']!='B']\n", + "unfiltered_res_df_clean = unfiltered_res_df_clean.dropna()\n", + "unfiltered_res_df_clean.to_excel(workdir/'output/summary/rb_values_replication_in_other_celltypes_unfiltered_results.xlsx')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### filtered results" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# filtered results\n", + "rb_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "rbse_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "rbpvalue_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "numcoeqtl_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "num_anno_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "rbse_anno_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "for discovery_celltype in celltypes:\n", + " # replication in other celltypes\n", + " for replication_celltype in celltypes:\n", + " if discovery_celltype != replication_celltype:\n", + " rb_results = filtered_res_df[(filtered_res_df['celltype_discovery'] == discovery_celltype) &\n", + " (filtered_res_df['celltype_replication'] == replication_celltype)]\n", + " replicated_coeqtls_num = pd.read_csv(\n", + " workdir/f'output/filtered_results/rb_calculations/discovery_{discovery_celltype}_replication_{replication_celltype}.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t',\n", + " index_col=0\n", + " ).shape[0]\n", + " if rb_results['r'].values[0] < 10 and discovery_celltype != 'B':\n", + " rb_df.loc[replication_celltype, discovery_celltype] = rb_results['r'].values[0]\n", + " rbse_df.loc[replication_celltype, discovery_celltype] = rb_results['se_r'].values[0]\n", + " rbpvalue_df.loc[replication_celltype, discovery_celltype] = rb_results['p'].values[0]\n", + " numcoeqtl_df.loc[replication_celltype, discovery_celltype] = replicated_coeqtls_num\n", + " rbvalue = rb_results['r'].values[0]\n", + " rbsevalue = rb_results['se_r'].values[0]\n", + " num_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={replicated_coeqtls_num}\"\n", + " rbse_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"{rbvalue:.2f}\\nN={replicated_coeqtls_num}\"\n", + " elif discovery_celltype == 'B':\n", + " rb_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " rbse_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " rbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " numcoeqtl_df.loc[replication_celltype, discovery_celltype] = replicated_coeqtls_num\n", + " rbvalue = rb_results['r'].values[0]\n", + " rbsevalue = rb_results['se_r'].values[0]\n", + " num_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={replicated_coeqtls_num}\"\n", + " rbse_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={replicated_coeqtls_num}\"\n", + " else:\n", + " rb_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " rbse_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " rbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " numcoeqtl_df.loc[replication_celltype, discovery_celltype] = replicated_coeqtls_num\n", + " num_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={replicated_coeqtls_num}\"\n", + " rbse_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={replicated_coeqtls_num}\"\n", + " else:\n", + " rb_df.loc[replication_celltype, discovery_celltype] = 1\n", + " rbse_df.loc[replication_celltype, discovery_celltype] = 0\n", + " rbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " replicated_coeqtls_num = pd.read_csv(\n", + " workdir/f'output/filtered_results/UT_{discovery_celltype}/coeqtls_fullresults_fixed.sig.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t'\n", + " ).shape[0]\n", + " numcoeqtl_df.loc[replication_celltype, discovery_celltype] = replicated_coeqtls_num\n", + " num_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={replicated_coeqtls_num}\"\n", + " rbse_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={replicated_coeqtls_num}\"\n", + " \n", + "replicated_ratio_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "for discovery_celltype in numcoeqtl_df.columns:\n", + " for replication_celltype in numcoeqtl_df.index:\n", + " replicated_ratio_df.loc[replication_celltype, discovery_celltype] = \\\n", + " numcoeqtl_df.loc[replication_celltype, discovery_celltype] / numcoeqtl_df.loc[discovery_celltype, discovery_celltype]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CD4TCD8TmonocyteDCNKB
CD4T1.0000000.9715960.7594250.7734290.953264NaN
CD8T0.9882851.0000000.8471181.0024500.966100NaN
monocyte0.7921420.7796881.0000000.7971390.960618NaN
DC0.7947450.8158160.9359051.0000000.853924NaN
NK0.9258020.9678420.868747NaN1.000000NaN
B0.9184790.9524960.948709NaNNaN1.0
\n", + "
" + ], + "text/plain": [ + " CD4T CD8T monocyte DC NK B\n", + "CD4T 1.000000 0.971596 0.759425 0.773429 0.953264 NaN\n", + "CD8T 0.988285 1.000000 0.847118 1.002450 0.966100 NaN\n", + "monocyte 0.792142 0.779688 1.000000 0.797139 0.960618 NaN\n", + "DC 0.794745 0.815816 0.935905 1.000000 0.853924 NaN\n", + "NK 0.925802 0.967842 0.868747 NaN 1.000000 NaN\n", + "B 0.918479 0.952496 0.948709 NaN NaN 1.0" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rb_df" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CD4TCD8TmonocyteDCNKB
CD4T0.000000e+000.000000e+001.126679e-352.425843e-030.000000e+000.0
CD8T0.000000e+000.000000e+007.557685e-590.000000e+000.000000e+000.0
monocyte1.052643e-1215.216640e-920.000000e+001.774726e-211.393096e-3170.0
DC3.609987e-254.217830e-395.947381e-3160.000000e+004.322965e-050.0
NK2.552726e-2640.000000e+008.365584e-060.000000e+000.000000e+000.0
B2.320757e-1441.610287e-2121.074123e-780.000000e+000.000000e+000.0
\n", + "
" + ], + "text/plain": [ + " CD4T CD8T monocyte DC \\\n", + "CD4T 0.000000e+00 0.000000e+00 1.126679e-35 2.425843e-03 \n", + "CD8T 0.000000e+00 0.000000e+00 7.557685e-59 0.000000e+00 \n", + "monocyte 1.052643e-121 5.216640e-92 0.000000e+00 1.774726e-21 \n", + "DC 3.609987e-25 4.217830e-39 5.947381e-316 0.000000e+00 \n", + "NK 2.552726e-264 0.000000e+00 8.365584e-06 0.000000e+00 \n", + "B 2.320757e-144 1.610287e-212 1.074123e-78 0.000000e+00 \n", + "\n", + " NK B \n", + "CD4T 0.000000e+00 0.0 \n", + "CD8T 0.000000e+00 0.0 \n", + "monocyte 1.393096e-317 0.0 \n", + "DC 4.322965e-05 0.0 \n", + "NK 0.000000e+00 0.0 \n", + "B 0.000000e+00 0.0 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rbpvalue_df" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib import cm\n", + "from matplotlib.colors import ListedColormap, LinearSegmentedColormap" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "color_dict = {'CD4T': '#2E9D33',\n", + " 'CD8T': '#126725',\n", + " 'monocyte': '#EDBA1B',\n", + " 'NK': '#965EC8',\n", + " 'DC': '#E64B50',\n", + " 'B': '#009DDB',\n", + " 'cMono': 'peru',\n", + " 'ncMono': 'y',\n", + " 'CD4T_individual_100': '#2E9D33',\n", + " 'CD4T_individual_50': '#2E9D33',\n", + " 'CD4T_50': '#2E9D33',\n", + " 'CD4T_150': '#2E9D33',\n", + " 'CD4T_250': '#2E9D33'}" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":60: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + ":61: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_yticklabels([\"\"]+row_labels)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAG0CAYAAAD96WS9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADTwklEQVR4nOzddZhVxf/A8ffc2m6WXTZg6e6QEGmQEhULg1AUCRUQuxtUvmIAokiJgIgi0qUg0t0N27vUdtf8/jh3l717t4NdfszrefYB5szMCe7ez5k5M3OElBJFURRFUaomXWUfgKIoiqIoBVOBWlEURVGqMBWoFUVRFKUKU4FaURRFUaowFagVRVEUpQpTgVpRFEVRqjAVqBVFURSlClOBugoQQojKPgZFURSlahJqwZOqQQihB/RAulT/KYqiKIqZCtSVTAhRGxgN9ATigEzgdynlT5V6YIqiKEqVoLq+K5EQYjSwFZgChAFngMvAJ0KIo0KI9pV5fIqiKErlUy3qSiKEaAEcAE4Dw6WUR83p9kBN4E2gAfCSlHJvpR2ooiiKUqlUi7ryfA1EAm9IKY8KIYwAUsokKeUZ4CPAEXgaQAhRp9KOVFEURak0KlBXAiFEP6AbMA+t6xsgI3ceKeV5YBxwSAhRE1gkhEgUQgy/pQerKIqiVCoVqCvHU8B1YJOUMlUIIfKO9BZC6KSU/wJr0AaatQc2Ad8KIQ4JIdre8qNWFEVRbjkVqG8xIYQOMAJRUspdAPlNx5JSZpn/aoP2vHodMApoBxwH/hJCvCyEMNySA1cURVEqhQrUt5g5AGcA8QCFBVohhAl4FqgBfCmljDF3iU8GvgOeAO6u8INWFEVRKo0K1LdQrhXIdgJthRBtpJQZhRRpifaceg5wMDtRSnkD+AFIAmYIIRzMLXVFURTl/xn15X4L5eriXoz2vHmiEMIvd57sYC6EcAJeBqKAH6WUKbnyGMzB+hegEeCWq6tcURRF+X9EBepKIKWMA2aijfxeLoQYIoRoKoSoDjnBuifwEDAduJCnfHYr3AYwAbVv1bEriqIot5Za8KQSCSFcgVlAD7QVyRqhLSd6FK3VnQU8JKWMyKesHq1LfBDQwBz8c7ZJKTPNf/eUUl6r4FNRFEVRKogaMVyJpJQxwONCiAZAC7QBZifQgm8bcgXpfKZw1QEeBlagBfTsKV1ZUspMIYQb8D5wvxDCw1zfefXCD0VRlNuLCtRVgJTyHHAOclYg+xht3e/9ufLI7JayEMIBeA/tBR6rpJQJ5jxZ5mfbH6ANRKtlzmMPxJrrMEkp027h6SmKoihloJ5RVzFSykvA90AT4BchRBdzFznmIF0DeAV43JxvB4AQwlcI8SKwHegPfAp8ATgB70opr5iD+EtCiJlqlLiiKMrtQT2jrqLMAfkHtAFna4FwIAEYiNaNvQR4Bm1AWW/gcyAd+ApYak7/A6grpfQ116k31zcfcAbeklLOunVnpSiKopSUCtRVnBCiE/A84A40A0KA5cAsc1f3TGAY2ujwb6WUcUIIG2ACWot6mJTy1zwDzDyAkWjd52eAF6WUe27xqSmKoijFoAL1bUII4S6ljDLPoc4wpzkBLwJvAP8CL0gpLwoh2qHNsb4qpexaQH164ENzWdCWKB0tpYys6HNRFEVRik89p7xNSCmjzH/NypUWj/a6zCFoz6LPCSHmACOA+mhBPDso51UPrVW9EOiH1lUeLoSYWkGnoCiKopSCalH/P2GejjUQrbu7GnBAStmpgLy2aF3ljwJ9pJSHhRB2aNO9BgAzVFe4oihK1aAC9f8jQghftJHg/dAGlv0FjMm9GIo53z3ARmAa8JmUMjXXNjsgRc23VhRFqRpU1/f/L0PQWtVvAXWBX/MJ0q7Aa2groS3MHaQBpJTJKkgriqJUHWrBk/9fjECYlPILACHEKvOfOvMIcYEWyO9Fm9oVVGlHqiiKohSL6vr+f0YI4SClTMw9HSvXNn+00d3hwBNSyuuVcpCKoihKsakW9f8zUspE8595g7QBGI42GvwlFaQVRVFuD+oZ9Z2jJTAJ+AlQI7oVRVFuEypQ3zmaor27eq6UMqmyD0ZRFEUpHvWM+g4ihKgO3MjbLa4oiqJUXSpQK4qiKEoVprq+FUVRFKUKU4FaURRFUaowFagVRVEUpQpTgVpRFEVRqjAVqBVFURSlClOBWlEURVGqMBWoK4kQ4rk7df+Vfe6Koii3ExWoK09lB6vK3H9ln7uiKMptQwVqRVEURanC1NuzKomUsi1QacvCmVekq5T9+w6vCUCNl2vc0cviRUyPEBlxx+/oa2Bwbi7Cz8Td0dfAp5GzuDpm/B19DarPmSkq+xiqMhWoK0nLee0q+xAqjUc3z8o+BEVRlNuG6vpWFEVRlCpMBWpFURRFqcJUoFYURVGUKkwFakVRFEWpwlSgVhRFUZQqTAVqRVEURanCVKBWFEVRlCpMBWpFURRFqcJUoFYURVGUKkwFakVRFEWpwlSgVhRFUZQqTAVqRVEURanCVKBWFEVRlCpMBWpFURRFqcLUay6V21ZmfCZx2+JIC0oDwFTThHN3Z/TO+iLLZsRmEP9vPGnBaZAJRm8jTvc4YfQ25uRJOplE3Ma4AuvwHOOJ3qHofVWkkNBIprzxOVu27UFKSa9uHZk+9VVq+tcotNyHn83io6nf57vNxsZEwtUDFmlh4Vd475OZbNi0g+iYOHy8PXlkaH8+ef+lcjuX0gqLCOX9qW+wY9c2pJR07dSND96Yiq+Pf6Hlpn/3Gf+bOTXfbTYmGy4dvQrAryt/YfKb4wqs5/C/56ju6VX6EygHYQnxvLt7J9tDQ5FI7vH146POd+Pn6FRk2aC4OD7cu4t/w0JJz8qitWd13uvYmVae1S3ytVvyMyEJ8Vbl5/e9lwEBdcrtXBRrKlArtyWZLon6LQqhF7jc6wJAws4Eon6LwmO4BzpjwZ1FWclZRC2LQpgEzr2dEQZB0sEkrezjHhg8tF8L29q2GB6z/hWJ/jMag4uh0oN0UlIyfQePxsbGyLzZHyOE4N2Pv6XPoGc4tGsFDg72BZZ9eviD9O3dxbK+xGQGDh3H4P7dLdIDg8Lo1m8EAbV8+Wra63hV9yAwOIyLl0Iq4rRKJDk5iUdGDsbGZMOMz2YjhODzrz/m4ZGD2PLnLuztHQosO+yh4XS/u7dFWlJyIk8+N5Q+PfvnpPXu1o+/lm6xyCelZOS4R6nlH1DpQTopI52ha/7CpNfzTY+eCART9+/lwdWr+OehR3EwGgssG5WSwn1/rcTRaOSLrt2wMxj5/tgRHlyzig33D6WBm7tF/h5+/kxp294irZ6ra0WclpKLCtTKbSnpeBKZsZlUG1kNg5v2MTZ4Grg+7zrJx5JxaFvwF3TS0SSykrKo9sjNsqaaJq7/dJ2E3Qm4DnIFQGevw2RvsiibFpqGTJHYdratmBMrgbkLf+dSYCgnD/xFvbo1AWjetD6N2wzmh/krmDRheIFl/Xy98fP1tkhbvGw1GRkZPPX4fRbp4yd9hE+N6mxZMxej+Uv/HtqV89mUzi+/LSQ4NJB/1x2gdq26ADRu2JS7723Dz8vnM2bkhALL+nj74uPta5G2YtUyMjIyeHjI4zlpHu7V8HCvZpFv74FdRMdEMWXCm+V4NqWz+PQpguLj2PXI49R20W5am7h70OnXX/j59Emeb9GqwLILTp3gWnISfw6+WfZuH186LFvMFwf382Pvfhb53W1taeflnV9VSgVSz6iV21LqxVSMNYw5gRbA4GLA6GMk5UJKoWXTI9LRu+ktyuqMOoy+RlIupSCzZIFlk08lgx7sGtqV/STKaM26bdzVvkVOkAaoHeBH546tWL3unxLX9/OSv/Cq7kHfXp1z0i5eCmHT1l2MHzMsJ0hXJZv+WUeblu1zgjRATb8A2rfuyKat60pc329/LsGzWnW6392ryHwmo4n7Bgwt8T7K28agQNpW98oJtAC1nJ3p4F2DDUGBhZY9ePUKdVxcLMo6GI109K7B5qAgMrKyKuqwlRJQgVq5LWXcyMjpos7NUM1ARlRG4YV1IHTCKlnoBWRAZkxmvsVkuiTlXAo2tW3Q2VX+r86pMxdp2rieVXqTRnU5feZSieoKDYtk2479DHtkIAbDzeu6a+9hAOxsbbh3yHM4eLbFs2YXRo55kxtRMWU6/vJw7sIZGtZvbJXeoF4jzl08U6K6wiPD2LVvBw8MesTiGuSVnJLMmo2r6N29H+55uoYrw9noKBrlcxwN3dw4Fx1VaFm9EBh11o9wTHo9yZkZBMbFWqRvCgoi4Kcf8J/7Pf3//J11gSX7nCmlU/nfNopSClkpWehsrT++OlsdMqXgFjGAwc1ARkwGWck3WwtSStIj03Pqzk/KxRRkmsSuaeW3pgGiomNxc3W2Snd3cyE6puBBcPn5ZdkasrKyeGqYZbd3RMQ1AJ6d8B7169VizYpZfPrBJNZv3MGAB54nq5JbXDGx0bg6u1qlu7q4ERsXU6K6fv9rGVlZWTx8/7BC823cupb4hDgevv/xQvPdKjGpqbjY2Filu9rYEpOaWmjZei6uXI6NJSrlZi9UlpQcvqoNpIvOVb5PrQA+7XI3ywYMYlbPPtjq9YzatIEV58+W05koBVHPqJX/XwqP0QDYtbAj8XAisRticerhhDAIEvcmkhlrbklbN7YBSD6ZjM5Oh01t6y/FyiKE9cFKWYyLkMfiZatp1aIRLZo1sEjPDsTd7m7Ht9PfAqBHt7twcXbkiadfZdPWndzbp2spjrz85HsNivNByGPFqmU0a9yCJg2bFZrvtz+X4OFejZ739C3xPipKPpegWJ+D4U2aMvfkcV74ZwufdOmKncHAjEMHCY7XbvR0uSr+rIvl//OAgNoMWPU7n+zbw0P1G5btBJRCqRa1clvS2erybflmpWYhbAuItGYGVwOu/V1Jv5LO9XnXufbDNdIi0rBvo42Szm80d2ZCJmnBadg2ts2327wyuLk6ExUda5UeHROXb0u7IPsOHufMuctWg8gA3N1dAejVo5NFep+e2nPsI0dL1r1c3lycXYmOjbZKj42NwSWflnZBDh87yIVL54psJV+5GsmO3duK7B6/lVxsbIhJsW45x6al4ppPSzu3AGcXZvXozdHr17hr2S+0WLyQA1evMKZ5SwC87AueOaDX6Rhcux7hiYlcSUos20kohaoanzRFKSGDh4GMG9bPojNuZGBwL/pjbdvAFpt6NmRGZ4JeC96xW2LROenynYedcjoFJNg1qRrd3qA9iz515qJV+umzl2jcqPjzWn9e8hcGg4FhDw+w3kdjbZBWfq1WAJ2ucu/1G9RrxLkL1jcL5y+epUHdRsWu57c/l2AwGHhg0MOF5vtj9a9kZmYW2T1+KzV0c+dsPs+iz0VHW02vys+gOnXpH1Cbi7ExmPR6ApxdeHXHdnwdHIuch53dcyEK6oZSyoVqUVchUf9d59gzBzkx4QgZiZZBSGZKjj1zkMhV4WXaR8hPgRx75qDVT/hS6zmxiecTuPDpGY4/f4hTk44SviyErDTrVmxKWDKXpp/jxLjDnHzxCCHzAslIKGJAVxnZ1LUhPSKdjJib+8mIzSA9PB3busWbOiV0AoOHAYOrgcyETFLOpmDfMv8WRPKpZAzVDBirV52Rz4MGdGfv/mNcuhyakxYYFMauPUes5kIXJC0tneW/b6B/37vxrGb9pd6xfQu8vaqxactOi/SNW/8DoF2bpqU/gXLQt8cADh3dT1DI5Zy0kLAg9h/eYzEXujBpaWmsWvc7Pe/pazUNK68Vq5bRuGEzmjVuUabjLk/9agVw8OoVi4FfwfFx7IuMpF+tgGLVodfpaODmToCzC5GJiay6dIERTQr/v83IymL1pYv4OTpSvZCWd0UQQowUQkghRIwQwi3PNoN52/tl3MdUIcQx8z6ShBBnhBDvCCEKPFkhhKsQItK8/94F5SspFairoKzkTK6tj6yw+vVOBuq+2dDip1ofy1WIkkOSuDT9HAYnAwEv1sPrAV+id94gZF6gRb706DQufn6OrHRJrbF18H2iJgmn4gj85kKh05zKyq65HXpnPTGrYki5kELKxRRiVsWgd9Jj1+JmqzczLpPIryJJ2J2QkyYzJXHb4ki5kEJqcCqJhxO58csNDNUM+c6/Tr+STsaNjCoziCzb6BFDCajpw4OPv8hfa/9h9bp/ePDxl/D39eLZUTdbhkHB4di6t+bjadYrka3dsJ2o6FirQWTZDAYDn7z/Eus2/su4iR+xeesuZv+4jBcmf0K3ru3p0e2uCju/4nji4RH4+9bk6fGPs3HrWjb9vY5R4x/Hx9uXpx4ZlZMvNCyYms3c+WrmNKs6tmzbQExsNA8PKbyVfPzkEc6cP1WlWtMATzZqgr+TEyM2rmd94GU2BF5mxMb1+Dg6MrzxzWAbEh+Pz4+zmX5wf05aelYm7+z6j3WBl9gRFsrcE8fou/I3Grq5MzbX/Os/LpznuS2bWH7uDP+Fh7HywnkeXLOKo9ev8XYHy8cit5gL8FoF1e0MzAceBwYDvwBvAUsLKTONYo2UKZnbuutbCNEJmATcDVQD4oFDwGLzT1cg94TSFOAGcAz4A1gkpUwrpP7OwH9ow4uMUsoMIcRItP+8onwgpXy/hKcEgGNTZ65vvUa1Pl4YXcq/BaczCBzqOhaa58qqCIxuJmqNrYswiJxyIT8FktQ/Cfta2k3ltY1XkJmS2i/WRW9vXnjE1cilz88RdzgGl7ZuBe6jTOdg1OH+sDtx2+KI3RALUlu0xKm7EzrTzftPKSXIPANrBGRGZxJ3Jo6s1Cz0jnrsmtnh2MFRm6KVR/KpZNCBbaPKX+QkNwcHezatnsuUNz5n5Jg3kVLSs9tdTP/sVRwdb970SynJzMzMd4T2z0v/wt3NhYH3ditwP8MfH4JOp+PLGfNY+MufuLu58Pijg/jkvZcK7BK/VeztHVg+fzXvT32DF18bg5SSuzt144M3PsPB4eZnXGK+BtL6Gvy2aimuLm707n5vofv6bdVSDAYDDw56pNzPoywcjEZ+HzSEd3ftZMI/W5BAVx8/PurcxWJVMokkU0qycv0uCASX4mL54+J54lJTqeHgyLCGjXmpdRtM+puPgGo6OXE9JZkP9u4mJiUVO4OBVtWrs6z/IHr416QSbQJeEELMkFKWa+tGSpl33dit5tb060KIalLK67k3CiG6AE8CLwA/leexiNKMEK0KhBATgf8BfwMLgSDADegLjAKGAbFogfpFYD9gBHyAPsBTwGmgj5TyWj71G9GCfjXAm5uB2hOomytrG2Bmrn1kC5VShlKAlvPaWV34qP+uEzo/iLqvNeDSVxdwv9sD3ye0XwKZKTn+3CGq31cD7yE+RV2eAoX8FEjC6Tgaf1lw153MkJyYcBjPvl54P3hz5aas9CxOTjiCZ39vvO/XjuHM68exr+NIzedqW9Rx+pXjODZyxP8Zy/RsR58+IGq8XOP2/PCVk4jpESIj7vgdfQ0Mzs1F+Jm4O/oa+DRyFlfHjL+jr0H1OTNLdMeXq8F0D7ABmCelfMG8zQCkU4bGUiH7nQJ8AbhKKWNzpRuBw8CvwA60uNNHSrkl34pK6LZsUQsh7kEL0t9JKV/Ms3mVEOJ/gAOQ/dDttJRyT648vwohfkK7mPPQujXyegWtJT0PyFkn0BzUcwK7ECK7mZV3H6VmcDFSracn17dcxbOfF6Zq+Y/clJnF+N0W1ot7ZMRlcPKlI2QmZWLytMH97mp43uuVky/1WioyXWLja9nVqzPqMHnakBqeDEBWWhZp19Nw72rd0rT1tSUlvPAVwhRFUcooAvgOmCiE+FJKGZRfJnPwLoqUUlqtdmQuawt0BCaj3RTknW7xKmACPgfK/VnAbRmogdeBKLSLY0VKeRFACNG9oAqklLuFELPR/oPrZpcxl6uL9iyiP9Cz/A67+Dz7e3Nj+3Wu/BWB/9MBVtvTrqdy5rUTRdZj9DDR+PPmOf+2rWlHjQA/bH1syUqXxB2KIfKPMFKvpuA/UttPpnkgm8HeevSz3kFPZmLmzXwS9A7WHyO9g4HUSBWoFUWpcNOAMcB7wNN5NwohAoDLedPzEQQE5CnbDDieK2kR8FyePPWAt4H7pJSpFfE46LYL1EIIPdAd+FNKWdZIsA6YCHQBcs9zmQ2skFL+K4SolEBtcDTg2c+LK3+F4znAGxtPy1a1wdVIvXeKnn4iDJbjBT37WL7px7mFCzpbHdc3X6V6f29svGxvDoUoy+ftju7IUxTlVpFSRgkhpgPvCSGmYfldDhAOtLcuaSW/ZdwumMs6AJ2BN9Di5hO58swGVkkpN5f02IvrtgvUaM+M7dDufsoq2Pxnzst7hRBPAu2A4k/CLCYhxHOY78Z8h9fEo5tnofmr9anO9a1XufJnODWftXzWqzPosPMvxpSIYgRb1w7uXN98laTAJGy8bHMW/MhItF7zOjMxE6OPNkBFb2/QBmYlWk/FykzKyLelrSiKUgG+QhvE9SGWQRQpZZoQ4kgx6rBqXpgbg9kvZ98uhIgA5gshvpVS7hFCPILW0GsnhHA158sexegghHDJp5u8xO70b9LsMCYBhBDuwHTgTSnl1fLemZTyB+AHyH8wWV56Wz3VB3gTsTyU5HstW8Kl7fouTPbFMFW3QRgEqWHJFtuz0rNIu5aKSzttJLfORofJw5Tvs+iU8BQcGxY+slxRFKU8SCkThBCfoX1/f5F7W1m6vvORHbTrAXuAJmgNx5P55P0TbUCzazH2XajbMVDfAJKBWuVQl7/5zwjznx8DV4Dlue6OskdKuQghUqSUt3StPI8enlzfdIXIlZYLnZS26zs/0XuiQIBdbW0Osc6gw6mZMzEHovEa4pMzZSn2QDQyQ+Lc6uYr8ZxbuRK96waZSZnozc+0E88nkH4jDeeWrsU9zRxJJ5OI2xiHsBF4PuNp8eINmSW5MuMKDh0dcOpc+IpJhYnfEU/q5VQy4zORmVKbe93YDoe2DgjjzS6ItLA0ko4nkXElg4yoDHROOqqPrm5VX/KpZJKOJZERnYFMk+gcdNjUtMGxkyN6J+vn/EVZ+MsqRo97BxcXJ84fXY+b283lQDMyMrDzaMM7rz/Pu2/knT1SfGvWb+PXFes5ePgUFy4F07VLW7aunWeVb8bMn1n22zouB4aSmJSMn48Xgwf24PWXR+NhXl4UoF7zewkKzn8xnmdHPcysGe+U+lhz+3XlL0x+cxzOTi7s3nwUV5eb0/8yMjKo1dyDyeNf5+UJb5R6H5v+Wc+qtSs4euIwgcGX6NiuCysWrc03776Du/n4y3c5efoYTk7O3D/wYV6b+A52thU3537Z2TO8tP1vnE0m9g97Elebm4M5M7Ky8J37PVPatOOVdh1KvY/MrCy+PnKIJWdPcyUxEV9HJ0Y1bZaztGi2vZER/HLmFEeuXeNCTDQ+Do4cePypUu+3jGahDfb6OE96Wbq+88qex5jdvb4A2JYnTyu0Fv4UYG8x6izSbReozVOktgF9hBA2UsriXNyCDDT/mb3sUhOgOdrNQF7XgVXA/WXYX4npjDqqD65B2KJgy3SDDvsA68U5CpN2PZWQuYG4dHDDprotMiOL2EMxRO+6gXu3athUv/kc3GuIDxc+PUPQ95fw6OFJ+o00IpaH4tLW1WK/nvd6Eb3nBoHfXqD6AG8ykzOJ+C0Mu9r2OLdxLfV5y1RJ4v5EnLqWPiAXJCstC7umdtr7qA2QHp5Owt4E0q+k4zbk5hd/WnAa6WHpGL20rv6s9PzfFJWVkoXJ34RDOwd0NjoyojNI2JNAamAq1UZWs5jXXRKxsfF8MWMen34wsVTlC7NqzT8cPX6WDu2bk1LIG5aio2N5YHAvmjaph5OjA4ePneGTad+z7d997N2+LGcJ0d8Wf0VqmuWSBH/+tZXp3yxg8IDu5X78cfGxzJo7gzdf/qDc6964ZQ0nzxynTcv2pKYVfG1OnT3BsGfup9vdvVgw+1dCQoP4+Mt3iLwSzvdfLSj348orLi2Nb48c5p27yn/Bkdf++5dfz51hUpt2tK3uxX/hYXywZxeJ6elMbtMuJ9+OsFD2RETQ0tMTASSmp5f7sRSXeSDXh5h7LXOlp3GzJVwsQogWwJfAb8AlwAZtKthLwHop5W5z3YFAYJ6y2X89KqX8r6TnkZ/bLlCbTUW7i/kCbf6yBSFEbaDQb3jzYilj0AalZb9UdSLW3RQjgRFAb7TW9i3nfnc1rm28QtqVstyTgM5Wj95Bz7X1V8iISwcBNjVs8Rnmj0cPy+fldjXtqT2pPpErwgj8+gJ6ez1unT0s5lUDGN1M1HmlIRG/hhA46xI6g8C5lSs1HvUr08srTLVMJB1Owr6Nfb4vySgLl14uFv+2qWmDTNduDLKSs3LeNe3Q0QHHTlr3fcy6GNLC818bx6GN5Q2Tyd+E3llP9B/RpAWmYdugdAul9OnZmZk/LOHFcU/i7VX40pYlNefb93KCbLd+IwrM98HbEyz+3a1re+ztbBk/6SMOHz1D29ZNAGjd0vqd0O9++C3eXtXo26tzOR65+Ti69GTeLz8wevg4qnt6FV2gBL746Nuca3P/E/0KzDf928/w9vJhzlcLMZoXFjEaTUx843nGj55I86atyvW48uru589PJ48zpnnLcl3CMzQhnl/OnmZy67Y5Qbmbnz8JaWl8ffggo5o0w81W+0xPbtOOKW21xuq4vzezL7LiVlQspvloU2vrl7GeK2iNszfR1tFIQgvYU4C5Zay7xG7LQG0ejT0Z+J8QojFa90Mw2oInvYDRaMu+ZT/EbyyESEA73xpoi6I8BZwCns1V75G8+8o1xWu7lLJCF7B2v7sa7ndbfyELvaDRp4W/eq84DI4GAl6oV+z8jg2dqPdW0d3rdn521Hm5QZH5SsLxLkei/4gmcW8izj2L/yao0soOzrkX1S3LNIucLvsy3GO8+cqzDBw6ls++/JGvvyh9V25+yvIyDQ937UbHaCz46yM4JIJtO/YzcfxT6PXle6MF8NLzr/DEc0P5Zs6XfPz2F0UXKIHiXJv09HS2/beFZ0eOzwnSAIP7P8Cr777Ixr/XVXigntS6LY+tX8NXhw9avYKyLA5fvUqWlPSsafl0sYd/TeadOsHWkGAeqq/9vusqaWU6KeUCtO/9vOkZQJm/jKSUV9BiSGnKbqNsc2as3LZrfUspZ6AtHRqD1kXxN9p/XGO0lvLqXNm/AXYDW4AZgC8wHuiYdxk4pWrQOeiwb2VP0vEkMuOsR59nk1myWD8Flc1KyyI1KJXEg4nYNbVDZ1P6XwmZJZEZkvRr6cRtj8PgYcCmVunfXe3t5cm4Z4cxd8GKAp//gvZstqifzMyCr2FxZGRkkJSUzJ79R/nws9n07HaX1burc/tl2WqklPm+OrM8VPf0YtTjz/LL8gWEhgUXmK+irk1QyGVSUlNoVL+JRbqtjS21atbm3MWKf/2nl70DzzRtzuLTJwmJjy8wX0ZWVpE/mbmWl9Wbg68pzw2LjfmG60x0fk8GlYp0W7aos0kpdwG7CsmyjTLe2ZiXoHu/kO1l3oeSP4f2DiQdTyJhdwIu/VystmfEZnD9p6Lvs3TO1oPA0q+nc2PRzS8c2ya2OPcpW8v96vdXkSnaTYHBy4DbULecddJL65WJT/PjghV8NO175s780Gp7YFAY9VsU/ZaoWjV9uHB8Q6mOISEhCTffjjn/7turM8sWTi+0zC+/rqFVi0Y0b1q+PS25jRs9kcXLF/C/WdP43yczrbaHhAXRsXfRb7ny86nJ3q3Hi8yXW/Y7sPN757Wrixsx+bwjuyJMaNmaRadP8uXB/Xzd3XrJh+D4ONovXVxkPf6OTjmDwOq6ugJw8OoVmle7+UjswBWtWzu/d18rFeu2DtTK/286Ox0ObR1I2J2AQ3sH9K6WXah6Rz0ej3sUXVE+Pa8GVwMej3sg0yVpEWkk7kskNisW1wGupT5e94fdkemSjKgMEvclEv17NO6PuluMXC9xne4uTJownI+mfs8rE0dRt7a/xXafGtXZ/U9hL/PR2NiU/uUu9va27P5nKSmpqRw5doapX/7I/Y+9wMZVP2AwWH+F7Nl/lLPnA/nftIp6qZHGzdWd50ZO4KtZUxk3eiIB/pZrDXh51mDdb/8UUPomk6kUvR7mdyTk1/N7K9+f4GZry9gWrfjy4H5eaNWaAGfLG1pvewc2PvBQkfXkfgFHQzd3uvn68fmB/dRycqZNdS92hofxw4ljQOV1d9/JVKBWqjT7NvYkHU4iYVcCLgMsv4SEXmCoXrqPsDAIjN5a8DL5m9A56IjbGEdaqzRMPqZS1Wn0NNfnY8Lkb+L6T9dJOpaEY4eyzSd/adxTzJyzhA8+mcWiuZ9ZbDOZjLRq0bDIOsr0vF2ny3nv9N2d2tC8SX16D3qG3//czKMPWbfmFy9djdFo4LF8tpW350aMY/4vc/jym0/47gvLMT4mk4mmjYpuUZfm2mRPC4uJjbHaFhsXQ4N65b5eUoHGNG/J3BPHmXZgH7N79rHYZtLraeZR9EDEvFfg6+49Gff3Fh5bvwYAJ6OJd+/qxCv/bcfrFr97WlGBWqnidCYdDh0ciN8ej0M7y9HVZen6zit7ClZmTKb2frUyMrgYELZCq6+MHB3teXXyaF5960smvzjSYtut6PrOq21rLWhfvBxitS01NY3f/thI/75d8azmbrW9vDk4ODLh2cl8+PlbjH3GcgJIRXZ91/KvjY3JhrPnT1ukp6SmEBwSyKB+95eovrJwMBp5sVUb3t+zk/EtW1tsK03XN0ANB0dWDr6fyMREolNTCHB24VSU9qiog3eNgqpRKogK1EqVZ9/SnsSDicTvtBwwU5au77zSQrWpV3m710sr/Xo6MkWWW31jRz/K1zMX8d7H31qk34qu77z+3alNSa1T289q25r124iKjuWpYRUziCw/Ix4fzQ8LZ/L515brXFRk17fJZKJ7196s3rCSlye8kfMIYO3GVaSmpdK3Z8X3JuQ2qmkz5hw/wtT9lutrlKbr26K8gwPeDg5IKfnh+FHqu7rSxcc337xKxVGBWqnyhEHg2NGRuC1xlun6m93XxZV+LZ34f+OxrW+rBdEMbQWyxEOJmAJMFt3eWUlZOQE8Mz4T0iHlnLZcqsHDgMFD+/W5sewGtvVs0bvrEQZBxrUMEg8monPUYd+8fLoJbWxMvPXqGMa+ZDmgzGQy5nRLl0RQcDgHDmlL0EZFxaDT6fj9z00AtGvTjFo1fYiNjWfg0LEMe2Qg9evURAjB/kMnmPHdIlo0b8gDg3tb1bt42Wo83F0Z0O+eUpxl6diYbJg09lVefe8li3STyUTLZm1KXF9oWDBHThwCIDomCp3QsWbjnwC0atYGP1/tHfGTx7/OkGF9eH7SCEY8/iyhYcF8/OU7DOw3hBZNWxdUfYWw0euZ3KY9U3Zss0g36fW08iy8Nyk/C06dwEavp6aTM1eTklh+/ix7IyNYMfA+i2fU15OT2R2hzUgIS0ggKSOD1Ze0RbsauLnR0K3ie1XuBCpQK7cFu2Z2JB5ILHNXss5eh85WR+K+RDITMxFGgd5Fj1M3J+ybWQbV9BvpxKyJsUjL/nfuZUyNNYwkn0zOmUamc9Jh29AWh/YON+dnl4ORT97P/75ZyPmLZX8fzbYd+xk9znJZz8dGTAFg7qyPGPHEEGxtbWjUsA4zv19CWMQVDAYDtWr6MGnCcCY8/wQ2NpbP8q9dj2LD5p089/TDmEzl14IvjkcffJLZ877hclDeFyeV3M59O5j8puXyrGMmaovC/O/TWTz6gPbOh2aNW/DLj3/wyfT3GPH8Izg5OTP0vmG8MendMh9DaQxr2IhZxw5zKbbM74AgM0vy7fHDhCbEY2cw0LmGD+uGDKWRu2XgPRsdxegtGy3Ssv9d1mVMlZvErRyhqNxUnJdy/H929OkDosbLNe7oaxAxPUJkxB2/o6+Bwbm5CD8Td0dfA59GzuLqmPF39DWoPmemGkpeiNt2wRNFURRFuROoQK0oiqIoVZgK1IqiKIpShalArSiKoihVmArUiqIoilKFqUCtKIqiKFWYCtSKoiiKUoWpQK0oiqIoVZgK1IqiKIpShalArSiKoihVmArUiqIoilKFqUCtKIqiKFWYCtSKoiiKUoWpQK0oiqIoVZgK1IqiKIpShalArSiKoihVmKGyD+BOdfTpA5V9CJWmw8IuAETGRVbykVS+9OtbK/sQKpXBuTmrPjtd2YdRqcYuvAuZklrZh6FUYapFrSiKoihVmGpRV5LsVqWiKIqiFEa1qBVFURSlClOBWlEURVGqMBWoFUVRFKUKU4FaURRFUaowFagVRVEUpQpTgVpRFEVRqjAVqBVFURSlClOBWlEURVGqMBWoFUVRFKUKU4FaURRFUaowFagVRVEUpQpTgVpRFEVRqjAVqBVFURSlClOBWlEURVGqMPWay9tU6o1UQpZeJu5kLFKCc1MXaj5eGxsPm6LLXksh5NdArWymxKGOI/6PBuBQ29EiX3p8OqHLg4g5EkVmShb2/vb4PuCPS3O3ijotpYRCw6N59ZM/+fu/c0gkPTo34It3HsDfp+j/o5DwaD783zq277nAjehEfL1deXBAK14Z2wsH+5ufo0b3fEhwWLRV+WWzn+a+vs3L9XxKIzrxKptOLCL4xhlCo8+TnpnKRw/+gYejT5Fl0zNTWX34B/Zd3kByWgJ+bvW5v+146nu1tsiXJbPYdOJn/ju3krjkKLxcajKgxdO0rtWzok6rRMISE3h3/17+jQhDAvfU8OHDdh3xc3QssmxQfDwfHtzHjohw0mUWrT08ebdte1pV88zJs+zCOSbu2lFgHcceHkZ1O/vyOBUlHypQ34YyUzM5+/lJdAZB7dH1QAjC/gjm7NQTNP24FXobfYFlMxLSOf3JCfS2emqNrIvepCNyYzhnpp2gybstsPPRftmy0rM4O+0kGQnp+D1SC6OLiev/XuH8jDM0mNIE58Yut+p0lQIkJafR/8lZ2JgM/PDF4wgBH/5vPfc+MZN9a1+xCLZ5JSalMvCp2aRnZPLupP74+7hx8FgwH3+9kYuB1/j52xEW+Xt3bcTbL/WzSKtfp3qFnFdJXYsP4VDQVmp6NKJe9Vacjthb7LKLd33CidBdPNB2AtWcfNl+dgXfbZnIlP4/4u/eICff6iNz2HpyCYNbP09Nj0YcvLyZudvfYmzP6TTz61wRp1VsSRkZPLRpPSa9jm+63INAMPXIQYZuWsffgx/AwWgssGxUSgpDNqzB0Wjk845dsDcY+P7UCYZuWs/6AffRwNUVgN5+/qztP9iirEQy/O/N1HR0UkG6gqlAfRu6tv0KqVdTaD61NbZedgDY+9tz7LVDXPvnCt73FtySuPp3JOlxaTR642ZZpyYuHHvlEGErQ6g3viEAUftvkByaRMPXmuYEZZfmrpx85yihy4No8l6LCj5LpSjzl+3mcsgNjm5+g7oBWuuneSMfmvf6lJ+W7ubFZ7oXWHb3wctcCLzGXwvG0LtrIwC6dapPdGwSM+ZuIyk5DXs7U07+au4OdGgdUJGnU2r1vFoz7ZH1AOw8v6rYgTo06jz7L2/iqc5v06neIADqe7Xmo78eZ82RHxjb80sA4pOj2HpyCX2bDadP0ycAaOjdlmvxofx5aGalB+pfzp8hKCGenUMeorazMwCN3dzp/Odv/Hz+DM83KbjXY+G501xLSWZlv4E5Zbt41+Culcv54ughfuym9RhUs7Wjmq2dRdk9VyKJSk1lSss2FXRmSjb1jPo2FHM4Gse6TjmBFsDG0xan+s7EHI4qtGzCxQRsvewsyupt9Dg1cCL2aDQyUwKQeDEenUmHUyPnnHxCCJybuZJ4OYG06NRyPiulpNZuPUmHVrVygjRAgL8HndrWZs2WE4WWTUvPBMDZ0dYi3cXZjqwsiZSy/A+4guhE6b7GjoXuQK8z0Dagd06aXmegXUAfTofvJT0zDYBT4XvJyEqnQx3LHoUOde4lPOYi1+PDS3/w5WBjSDBtq3nmBFqAWk5OtK/uxYaQ4ELLHrx2jTrOzhZlHYxG7qruzZbQYDKysgosu/zieUw6HfcH1Cn7SSiFUoH6NpQcloSdn3VXk62vHcnhSYWWFToQBmGdbtCRlZZFytUULUEnEHqBEJZ5deayyaGF70epeKfOR9KkQQ2r9Mb1vTlzIbLQsj27NKBegCdvf76G0+cjSUhMZduu88xc8C+jH+9s1W2+butJPJq+imvjKXQbOoO/Nh0v13OpDBExl/Bw9MFksLxZqeFam4ysdK7Fh+bkM+hMeDr5W+UDiIi9fGsOuABnY2Jo5Go9JqGhiyvnYmIKLasXAqPO+lGZjV5PcmYmgfFx+ZZLzshgddBl+vjVxN3WNt88SvlRXd+3oczEDPT21v91BgcjGYkZhZa19bYj7mQsGQnpGBy1Z1cyS5J4OSGnbgA7b1sykzNJDk/KeW4NkHAxHqDI/SgVLzo2CTcXO6t0Nxd7omOTCy1ra2Nky68v8Pj4+bS9d1pO+shHOvLV+w9a5B3QsyltW9QkwN+dq9fj+f7n/3hs7Dx+mv4Ew+5vVz4nUwkSU+OwNzlZpTuYtNZlUqoWpBLT4rA3OVrdtNrnyVdZYtJScTFZj0dws7EhNq3wnq+6Li78GxFGVEpKTsDNkpLD16/l1J2fDSFBxKen80jdemU8eqU4VIv6dmXdKIZidFd69vBGZkku/XCelKsppMWkEfzLZVKvpVjU697RE4OTgcs/XiApJJH0+HTCV4cSf9b8pSTyOwDlVssbPIBidVunpKYz/MVFXLuRwE/Tn2DT0gl8+vp9/L7uMBPf+90i7//eH8oTD7anS/u6PNC/Fet+Hkeb5v68+8XacjuPyiER+fwiSfJcPykL+LxXnccD+R1ecY5uRINGZEl4Yed2AuPjuJKUxFv7dhOcoN2Q6/L9otG6vT1sbenl65/vdqV8qUB9G9I7GHJavrllJGVgcCi8k8S2ui11xjQgMTCR468e4ujEAyRciMe7rzYAzeiqDSAyOBioN6ERGQnpnHznKEde2M/1HVfxvV/7xTS5FjySVLk13JztiIqxfgQRE5ecb0s7twXL9/Lv3gus/Ok5ht3fjrs71GXisz347I0hzF2yi2Onwwosq9freLB/S8IiY4i4Glvm86gs9iZnEtOsW8NJaVqQsrdxzvkzKTXe6gYob77K4mIyEZNq3fKNSc2/pZ1bLSdnZnbtxrEbN+i48jdarljKwWtXea5xM4B8R3NfSUri34hwhtaui0GnQsitoLq+b0N2vnYkh1l/QaeEJVt0UxfEvb0Hbm3dSYlMRhh02Fa3JXDhRUzuJot52E4NnWn+eRtSr6QgsyS23nZErg9DZ9JhX6vo+ZlKxWpc35vT562fRZ+5EEmjet6Flj15Nhw3F3vq1Kpmkd6uZU0Azl64QovGvgWWzw5Z+bXobxc+rnU4GrKdtIwUi+fUETGXMeiMeDr5AVDDtQ4ZWWlciw+lurO/RT6AGi61b+2B59HQ1Y2z+TyLPhcbkzO9qjCDatWmv38tLsbFYdLrCHBy5tU9O/G1d8h3HvaKSxfIlJJH6tYvh6NXikPdDt2GXFu5k3Ax/ubAL7RFTBIuxOPaqniLkQidwM7HHtvqtqRFpxG17waePa2/3IUQ2HrbYedjT1ZaFte2X8Wjsyd624LnapfJOWAusAjI20jIMm87WI77iwPmm+vN3TjMAo4Ba4HFwEJgJXCW/PsUo4H1wALgZ2A7kJJPvnI0sHcz9h0J4nLw9Zy0oNAodh+8zMBeTQst6+XpTHRsEhcDr1mk7z8SBICPd8Hz5DMyMvlj3RH8fdzw9qzc1mRZNPfvSmZWBoeCtuakZWZlcDBoC418OmDUa71LTX06YtAZ2X95o0X5fZc24ONal2pORS+sUpH6+dXk4PWrBOUa+BWcEM/+q1fo51ezWHXodToauLoS4ORMZFIifwVeYkTDxvnm/e3SBZq4udPM3aNcjr80hBAjhRBSCBEjhHDLs81g3vZ+GfcxVQhxzLyPJCHEGSHEO0KIAltDQghXIUSkef+9C8pXUrd1i1oI0QmYBNwNVAPigUNoX62Lga7AP7mKpAA30L6C/wAWSSnT8tRpD7wGDAP8gevmOt6VUgYKIUaifbUX5QMp5fulPbfCeHb34urWSC58cwbfB2uCgLA/gjG5m/DscTPYpl5P4dirh/AZ4o/vEK0lkJWRRejyIJwaOqO3M5AclkTE2lDsfO2s5l+H/BaEQ4ADBkcjqVdTiFwfhtAL/B4q3i9/maQBR4EOFbyfXYAJyDv2KhM4AtQDmqH9poQAO4AY4K5ceRPRAroL0Avt2PcBm4DB5D+eoByMerQj3y/6j0fGzOPdyf0RQvDRV+vxq+HKM8Nuzu0NDouiaY9PeOOFvrz5gjbF6KmhHfh23jYeeOZHXh3XG38fNw4dD2HqzE20buZHp7ZaK3H5X4dYs+UE/bo3xq+GK1evxzNn8X8cPhHKwhlPVcyJlcKhoL8BCL5xBoCTYbtxtHXD0caVBt5tuJEQwXsrH2JAi6cZ0PIZAPzdG9A2oDe/7Z9BZlYGHo4+7Dj7BzfiIxh19wc5dTvZudOz8WNsPL4IW6M9/u4NORi4hXORBxnT4/Nbf7J5PFG/IfPOnmLEP1t4vVVbhIBpRw7h4+DI8AaNcvKFJMTTceVvTG7RmpdbaiuvpWdl8dHBfXTy8sbJaOJMTDTfnjhGQ1c3nm/SzGpfx25c50xMNO+3q+hfzGJzQfu+fr0C6nZG+64/i9Zs6Ay8BbQDhhRQZhoVMHjhtg3UQoiJwP+Av9H+o4IAN6AvMBvt6zS7jfQisB8wAj5AH2AmMEEI0UdKmbtZMRe4H3gPOADUBD4AtgohWqJ9JXfKlb+Nua7sfWQLLZcTzYfeRk/D15oSsuQyl344D0icG7tS8/EAy5auRGsZZt383AghSLmSwo0918lMysDkZqJaVy9qDPJFZ7DsYMmISyd4SSAZcekYnI24tXHH9wH/nNHiFcoXOIUWJCtq0aMLaLdhrYA9ebbpgUeA3DNPfNGC8CmgLTd/e46jXee+QPaTA3u0T0ogUEE9ow72Nqz/ZRyvfvwno6f8gpTQvVN9vnjnARwdbj7CkBIyM7PIyvU5qOXnzrYVE/nkmw188L/13IhOxK+GK08/2olXx/dBZ372GODvzrUb8bw19S+iYpOwtzXRtoU/q+aPoc89jayOqbLM3f6mxb+X7f0C0BYwaeA9G5BkyUyypOW84Kc6v81fh79n9eE5JKUl4Odejwm9v6Kmh+W53df6eWyMdvxzejlxyTeo7lyTZ7p9Qgv/rhV6XsXhYDSyos8A3juwlwk7tyMldK1Rgw/bd7RYlUwCmVKSletZuwAuxcXxx+WLxKWlUcPegWH16vNi81aY9Na9ZssvnscgBENrV5nR3puAF4QQM6SUhc9JLCEp5bg8SVvNDbnXhRDVpJTXc28UQnQBngReAH4qz2MRt9PCBtmEEPcA24DvpJQv5rO9LuAAuKO1hvtIKbfkydPJvG2zlHKwOc0OrVX+uZTyzVx570Xr2LxXSrkxTz3dC9pHYTos7HL7XfhytG/ETiGeFdbX4BzwLzAI2AA0QLuPBS0YzgNaowXKskgFVqC12KV5nw+j3Z8X5hRaK/wxIPvx3a9AdaBHnrzLgBpAt/yrkj9KkXxpxh39ObCrM1HMHrH3jr4GYxfeJa6MGH1HXwOvhXNL1O+Uq2fzHrRvinlSyhfM2wxAOhXQqymEmAJ8AbhKKWNzpRuBw2jfBjsoRUwozO36jPp1IAp4Nb+NUsqLUspjhVUgpdyN1vIeZA7soLWR9GhPLnOLMf95u16v248d0AQ4g3brVJCsYv7ktQ8tKJd0PEwkWld5dis/w3x8+Q0NcEV7dq0oSkWJAL4DnhNC1Cook/m5dVE/+Q68MW9zND9znox2U5B3usOraN8MFfIs5Lbr+jZfzO7An1LKsg7XWQdMBLoAF6WU8UKIn4EXhRB70bqya6HdQR0FthZUkVIBWqAF6sNo9815xaPdvxbFEa0FnC0SOA88UMLjCQUuobXms2/Zsge85TcLxgbLAWqKolSEacAYtMeVT+fdKIQIAIqzfFwQEJCnbDO0h1vZFgHP5clTD3gbuE9KmVoRMyFuu0CNNmjMDu2illX2Qri512EcBXyD9uw72160bgyLgWclJYR4DvN/cq2RdajevfApNHc8W6A52vDAFmhDO3Kzp+AhHbnlvk/OBP5De/Zdkrd1RqN1ZtUAWpagnKIoFUpKGSWEmA68J4SYBlzMkyUcaF+MqvJbhu2CuawD2kO4N9Di5hO58swGVkkpN5f02IvrdgzU5Sn71if386GP0QYETEFrUddEu1NbL4ToJqVMLO3OpJQ/AD+AekZdbM2Ak2hTsvI+A9YDJZ0hcgLt17EpN38ts9eOSUcbLGbKUyYObYSCI9owxNwPQLJb0vn9iqeSf0tbUZTy9hXaIK4PsQyiSCnThBBHilGH1Xeyudf2gPmf24UQEcB8IcS3Uso9QohH0Hpk2wkhXM35skevOAghXPLpJi+x2zFQ30CbTFPg84gSyF69IAJACNEU7fn3aCllzqg9czf4OWA08HU57Ddf13dc5fJPF9Db6WnxZVuLVcZkpuTAM7vxGeKH7wOlnx4VsjyI2GPRpN1IRWZKTO42eHSqhte9PlbvsY4/F0fI8iCSghLR2+nx6FQNv6E10Zks8yWHJRG85DIJF+IRBh1urd3wfyygfEaHG9FasHvRWtUWB0jJu75j0D49S/PJ9yfa8MPcS10noj0gMQL3Yh3EDYAT+T+LjsGyr6aYfl6xjzGvLcXFyZZT29/BzeXmsPeMjEycG07hzRf78fZL95a8crO1W0/w2+rDHDoewsWg69zdoQ4bl0ywyJOZmcW387azcdspTp+PJCklnboB1Rjz5N0Mf6hDzshwgKV/HuDHX3ZyIfAacQkpeHs606NLA956oR9+PiXpuijc7gtr+HnXx9gZHfnowT8sVgXLzMrghcV3M6DFMwxq9Wyp93EsZAcHLm8m+MZprsWHUs+rFZP6zc4374UrR1h5aCahUeewMzrQrnZf7mv9vNWLPkpr2YVzTNy1A2ejiX0PPoKrzc07v4ysLPwWz+flFq15pVXpXzW5KSSYlZcvcvTGdS7Hx9HRy5uV/Qbmm3fvlUg+OrSfE1E3cDKaeLB2HV5v3Q47w83vqna//0poYkK+5Yc3aMTnHbuU+lgLIqVMEEJ8BkxHe1SZoyxd3/nIDtr10OaKNEHr4T2ZT94/0R5+uRZj34W67QK1lDJDCLEN6COEsJFSluV9i9mfxp3mP7Nf3Jp7mhVSyvNCiBgg/xUAyllmciYRa8Pwf6Q87kXy1J2SQbWu1bH1tkNnFCScjyd8dSiJgQnUf+nm6SWFJHL2i1O4NHOlwaRGpF5LJeTXQNKi06g3rmFOvrToNM5MPYFtDTvqjW9IRlImIcsDSZ5xhsZvNkPoyuF5TRO0lnDehU5K0/XdEusBZKFoM+u7YznqOxktSAMMQPt1zE9NtGfeuVvjkUCCeVspxcan8L85W/no1cGlr6QAqzef4NjpMDq0qkVKanq+eZJT0pk2cxOPP9CecSPvwdHeho3bTzP+zeWcu3iVT9+4LydvVHQi3Ts3YNJzPXF1tuPcpatM/W4zW/49y6GNr+HkWD6BK+fY0hPYdOJn7m87vlzrBTga8i+h0ecI8GyW86rL/IRGn+fbLS/R2Ocuxvb8khsJ4fxx8Dtikq4xutsn5XpMcelpfHfiGG+3LU4PbsmsDwniRHQUbTyrk5qZWWC+U9FRPLplA919fPm5Z1+CE+L58OA+IpKS+MH83mqA+d17kZbn9ZhrgwOZdfI4fYu5AEspzUIb7PVxnvSydH3nlT2HI7t7fQHaDKTcWqG18KegNTHK7LYL1GZT0S7OF2jzly0IIWqjtXMKZJ6eNQZtUNolc3L2PLwOaF/d2XkboN0VFbwAcjlybubK1S0RePetkbP2dnkJGF7X4t/OTVzJTMsicm0Y6fHpGJ20VnDYyhBM7ibqjm+QM79aGASXf7xA4oAEHAK03p3I9WHIDEn9lxrn9ACY3Iyc+ewk0YeicG9XDqsX6dGmZP2XT7qndfZCuWJ9f5t98+/JzUCdgTbpIwFt2ZxE80/uerL/a1qgPcnahHYjkIZ2q+dJ0ffnhejdtSGzF/3H+FHdyn0FsFmfPpLTIu71yDf55rGzNXJy29u4uzrkpPXo0oDo2CRmL9rBO5Puxc5WuwjjR1nOQet6Vz1q+rozZNQctv53lvvvLd8H+41r3MW2s7/Ro8ljuNiV7wpZT3R6I+cd19PXP1dgvrVH5uJq78mz3T5Fr9M++3qdkUU7PyT4xlNWc7HLonsNX346e4rnmjTNd/3tspje6W505gFQ961fU2C+L44cooa9Az9264XR/Nkx6nS8uPNfJty4TgsPbTna5h7VrMp+dvgA1e3s6OFT8LK0ZWUeyPUh5seLudLTuNkSLhYhRAvgS+A3tCGkNmhDWl8C1ptnDSGlDERbLSF32ey/HpVS5v3WKpXbcrqRlPJftDunCUKIzUKIJ4QQXYUQ9wkhvkZrf+VeZqKxEKKjEOJuIcTDQogf0YYGnQZy95HtQBvdPV0I8YoQoocQYgTa0hWxaAtJVjifwdoaw+GrK2zNFAsGR+1LRui1D1hWRhaxx2Nwb+9hsQiKe/tqCIMg5nBUTlrM4ShcWrpZdNM7NXTB5GGyyFdmDbAeTFaRktEesmSi3RL+lecn91IHDmh9Mzq0eQE70bq8+1GmVcleG98HgM9nlv8YFV0xXqag1+ssgnS2ti1qkpqWwY2owodruLtqAcVgKP/lZvu3GAXAhmPFWSSwZLKDdGEyszI4Fb6HNgG9coI0QNuAXhh0Ro6F7CjXY5rYohUAM44dLdd6gZwgXZj0rCz+CQ/lvoDaOUEa4L6A2ph0OjaEBBdYNjQhgZ2RETxYuy76in+Jx3y0/q2yuoL2W/4msAZtYeBeaK3kks4XKbPbtUWNlHKGEGIf2hKiX3JzCdEDaC3l1dyc1JPdZEhF+/o9CowHfs49kltKmSmE6IX2n/Mc2sCE62hLXLwrpSz401iOjK5Gqvf25sqmCLz7+2BTLf9uQ5lZjPFogny7n2WmJCs9i4SL8VzZGE61rtUxmN9xnXo1BZmehZ2f5Z27zqTDprotyWHaeptZaZmkXk+lWjcvq/rtfO1JDrd+cUiRGph/8tKhrRRWEfLbpxPaiITickfrHi9H3p7OPP/U3Xy3YDsTn+1BTV/3fPNlZBTcXZlNCIFeXz5fkv/tvYirsx3e1a3vnDIzs8jIyOLc5au8/ukqGtf3onfXhvnUUjbOdh50a/gQ/5z+ld5Nn8DDMf/BAJlZRb83XSDQ6Up2M3EtPpT0zFR8XC17qIx6G6o5+RIRW5xHosXnZWfP0w0b8+Ppk4xt2gx/x/w7DDOy8ls0wJKAEgfMwPg4UjIzaeRqOd7AVm+glpMz52ILXjBgxaULSODRcnyJh5RyAVq3c970DPL/Bilp/VeAx0tZdhvlvHDwbRuoAaSUu9CCaEG2UcILJqW8Abxs/ilO/hLvozhqDPDl2j9XCF8VSu1nrJfrS72WwrFXDhVZj8nDhpbTLZfxSgpN5OTbN+/MPbp4EjDq5hdOhvkVmtmBOzeDgyFne0ZiJsj88+kdDKRE5F1AWympyWN68tPSXXzyzUbmTBtmtT0oNIrG3T4qsp6avm6c+ffdMh/P5n/P8Pu6I7w7qX++LeWAu97lRrTW0m7T3J81i8Zia1MxS872bfYU/537k3VHf+KpLm9bbb+REM47fzyYT0lL7g7efDz0zxLtOzFVWxPJ3mQdMB1MziSlWr8+s6wmNGvJz+fOMv3oYWZ0sV5YIDghng5/LC+yHj8HRw4MfbRE+85+jWZ+r810M9nk+5rNbCsuXaC5uweN3fK/0VSKdlsH6v/PDI5GvO/1IWxVCN4DfLGtbtmqNrqZaPJe3mHQ1oTB+h7CtrodTd5rQWZqJgkX4olYE4bMPE/d5/PciOZ3+yHz+UeR+ZTScnd14MVnevDptxt5eUwv6tS0fB5bo7ozO1ZOKrIeG5uy/6qfPh/JyIk/c89ddXl5TM9886z9eSzJyemcuXiFL2dvYfDw79my/EVcnQt/P3ZpONi40Kvp46w7+hN9mz1FNSfL558udp68NqDornGDvjQ3EtoHXOTz4ZcV9OF3s7Hh+abNmH70MBOatSDAybJHw9vOng0D7iug9E02+azhXZSc15rmu63g8z147SoX4mL5uH3HEu9TuUkF6irMq58PV7ZEELYymLpjLIOozqDDvqb180Mr+fxm6Uw6HGprg8GcG7lgcjFx+acLePWugWM9p5znzdkt59wykjJy3nmttzeAyD9fZlIGekf18SoPLzzdje8X7eCjr9Yz/6snLbaZTAZaNil6gE5ZV0u6HHydQSO+p5afO79+/0yBz52z32F9V5sAunWsR9MenzB3yU6mPF9ub/yz0LPxY2w78xurj/zAqK4fWGwz6I34uRfd3ZpfsC2KvUkLkolp1i3npLR4ariWdJRj8Yxp3Iyfzpzi8yOHmNW1u8U2k15frFdPluaT4GpuScekWbecY9LSaFjAe6+XXzyPUafj/tp1SrFXJZv6Jq3C9LZ6agzyI2RZIEn9LQfulKXrOy/72lrAT7magmM9J2yq2yIMIudZdLastCxSr6bg3l77MtDb6LGpZkNymPWz6OSwZJwa3b7vKq5KHB1smDK2F69/+hcTn7Vc9eVWdH2HRsQw4KnZODvasGr+GJydijfVKsDfA3dXey4GXS86cynZGu3p12w4fxz4hj5NLW9iKrLr29PJD4PORETMJYv09MxUrseH06ZWrxLVV1wORiMvNmvJ+wf2Mq5pc4ttFdn1HeDkhI1Oz9kYy2fRKZkZBMfHM7iW9SviUjMz+SvwMr18/ahmW/49KncSFairuOo9vYncGE7o75bj2MrS9Z1X/BmtVZDdva4z6HBp7kbUvuv43u+fMxo86sANZIbEtfXNZ02urdy5vvMqGUkZOc+q48/FkXYjFddW6plUeXnuibv55qftfPC/9RbpFd31fe1GAoOGa4t9rF44Fk8PxyJK3HTqXAQ3ohOpU9N6uk55uqfhULaeWsrqI3Ms0iuy69ugN9LEtyOHArcysOXonJHfh4L+JiMrrUJffzmyYWPmnDrBtCOWCwtUZNe3Sa+nh68vfwVeZkrLNhjMg9HWBAWSmpVJP3/r+dGbQoOJTkvlkXIcRHanUoG6itMZdfje50/gAsvla3WGm93XxZUUkkjIskDc21fDproNWemS+LNxXNkcgUsLVxzr3RwY43u/P6c+Ps6FWWfx6uWtLXiyPAi3dh45c6gBvAf4cGP3NS58fYYaA33JSM4kdHkgDnUccWurAnV5sbEx8MYLfZnwlmWLyWQy0LZFyReRCA6L4uAx7eYvKiYRnU6wcv0RQJt+VdPXneSUNO4b9T1BoVF8P+0xwiNjCI+MyamjUT3vnNZ1r0e+4b6+zWlQtzq2JiMnzobz9U/b8PV2ZdSjFft80qg3MaDF0yzZM9Ui3aA3UqtaydcoupEQQdCN0wAkpMWiQ8ehIG3p/1oejXNGmA9sOZov1z/L3H/folvDh7iREMHKg9/RulbPcp1DnZeNXs/kFq2YsmenRbpJr6dVtZJ3uYckxHPkhtbrEZ2WgkCwOkgbtd7Ko1rOCPMpLdswaP1qnvv3b0Y1bEKIecGTQbUCaJnP3OnfLl7A3caG3r7+VtuUklGB+jZQrWt1ItaHkXqlbC8LMzobMTgZCV8TSnpsunm6lQ3+j9bCM88UK/taDjSc0piQ5UGc+99p9PYGqnX2xPchy6BgcrOh4WtNCVkWyIXvziIMAtfW7tQcFlA+q5IpOYY/1IEZP/7DhcBrZa5r++4LjHnNch3VJyZoywTMmTaMpx7qwNXrCRw9qa3xM2rSYqs6Nvwynns6ajMS2reqxeLf9xMUFoWUEn8fNx4Z1IaJz/agmnvJbihLo1O9QWw5+QtX40PKXNe5yIP8vMtycau527XX0z/V+W061RsEgL97Ayb0nsGfB2cya+vL2JkcuKtuf4a0HlvmYyjKY/UaMOvkcS7Fl310+c7ICCbuspz3/ex27cZkRueuPGa+gW/m7sHS3v34+OB+nty6CSeTkYfr1ueN1u2s6ryekszfYSEMb9AYUyla8IolIaUanlsZ7vSXcuwbsVOIZ8UdfQ3kj1IkX5pxR18DuzoTxewRe+/oazB24V3iyojRd/Q18Fo4V93VF+K2XJlMURRFUe4UKlAriqIoShWmArWiKIqiVGEqUCuKoihKFaYCtaIoiqJUYSpQK4qiKEoVpgK1oiiKolRhKlAriqIoShWmArWiKIqiVGEqUCuKoihKFaYCtaIoiqJUYSpQK4qiKEoVpgK1oiiKolRhKlAriqIoShWmArWiKIqiVGEqUCuKoihKFWao7AO4U+0bsbOyD6HSdFjYpbIPQVEU5bahArVyy33e41MANk/aXMlHUvmSL35Z2YdQqezqTKTfC/Ur+zAqnTDoK/sQlCpMBepKsi14e2UfgqIoinIbUM+oFUVRFKUKU4FaURRFUaowFagVRVEUpQpTgVpRFEVRqjAVqBVFURSlClOBWlEURVGqMBWoFUVRFKUKU4FaURRFUaowFagVRVEUpQpTgVpRFEVRqjAVqBVFURSlClOBWlEURVGqMBWoFUVRFKUKU4FaURRFUaow9ZrL29TV8KvM/PA7Dv53ECklbbu0Zfx7E/Dy9Sq03IKv5rNwxsJ8txltjGw6d/Md0bFRMXz/6Rx2b91FcmIydRrXZdTkUXTo1qFcz6W0rkZc5ftp33Nw90GQ0LpTa8a9No7qPtULLbdo5iJ+nvVzvtuMJiPrDq/L+XdcTBw/z/6ZPdv2EHUtCvdq7nS4pwNPjXsKV3fX8jwdpZTCI8P45Ku3+G/vNkDSuX033nn5U3y8/YpRNpT/ff8pew78R3RMFN5ePgzoPYSxIydib+eQky8rK4s5C79m6cqFXLtxlTq16vHC6Cnc2/O+ijuxEghLSODdfbvZHhaKBO7x8eWjuzrj5+hYZNmg+Dg+3L+Xf8PDSM/KonU1T97r0JFW1Tyt8kYkJjL10H62hoYQm5qKl70D99epy9vtqsZ3wv9XKlDfhlKSU5g8bBJGk5HXp78OQjDvy5+Y/Ngk5m78CTt7uwLLDnxsoFWgTU5K4bURr9K5d5ectLTUNCYPm0xsVCxj3nged0931v26ljeffoMvF39Jq06tK+z8iiMlOYVXnn4Fk8nEq5++ihCC+d/MZ8rTU5jzx5xCr0H/of1pd3c7q/reHPMmnXp0ykmTUvLO+HcICwpjxIQR1KxTk6CLQSz4dgHnT53n61++RghRYeeoFC05JYknx92PyWjii/dnIoTgf7M/5Ynnh7B26b8WwTavpOREnhr/IBkZ6Ux6/g18vP04duowX/8wjcDgS3z72U85ef/3/af8tHgmk8e+RbPGLVmzaSUTXn+aH79aSo8ufW7FqRYoKSODoRvWYNLp+eaeHghg6qH9PLh+Nf/c/xAORmOBZaNSUrhv7V84Go180bkrdgYD3584xoPr1rDhvvtp4OqWkzc4Pp7Ba1dR09GJT+7qjKedHSEJCVyOi70FZ3lnU4H6NrRm6RoigiNY9M8ifAO0VkPdRnV5svsTrP5lNY88+0iBZT1rVMezhmWLc9Mfm8jMyKTf0H45advXbuPSmUt8teyrnKDcoXsHRt/7DHM+m8Psv76vgDMrvnUr1hEZGsm8NfPwreULQO0GtRk5YCRrl6/loZEPFVjW09sTT2/L1sLmvzaTmZFJ3yF9c9LCgsI4deQUE9+byMBHBgLQskNLhE7wzYffEBoYin9t/wo4O6W4lq38mZCwQDav2EuAfx0AGtVrSq+h7Vn6x0KeeWJcgWUPHt1HYPBFFny7gq4dewDQqV1XYmOjmfvLTJJTkrCzted61DV+WjyTMSNe4tmnJuTkCwq5xBfffVjpgXrx2dMExceza+gj1HZ2AaCJuzudVvzKz2dP83yzFgWWXXDmFNeSk/lzwOCcsnfX8KHDb8v44tBBfuzZOyfvq7t24G3vwB8DBmPUqaemt5K62rehXZt30bh1k5wgDVCjZg2atWvOzs07S1zfxhUbcPN0o0O39jlppw6fwsbWhpYdW+WkCSFo17UdZ46e4VrktTKdQ1nt/mc3jVo0ygnSADX8atC0dVN2/bOrxPVtXrUZNw832nW52dJOT08HwN7R3iKvo5PWnZiVlVWaQ1fK0dZ/19OqWbucIA3g71uLti3uYsv29YWWTU9PA8DRwbJ72NnJhaysLKSUAOzY8zdp6WkM6f+wRb77+z/M2QunCAkLKo9TKbWNwUG09ayeE2gBajk508HLmw3BhR/bwWtXqePsYlHWwWiko7c3m0OCyDB/xgPj4vgnLJTRTZqqIF0J1BW/DQWev0zthrWt0gPqBxB0PrBEdV2LuMqR3UfoPaQPesPNDhadXo/BaLDq2jWaTABcPnu55AdejoIuBFG7fj7XoG4AwReDS1TXtchrHN13lJ6DeqI36G/WVS+A5u2a88v3v3D2xFmSE5M5c+wMi2cvpn3X9tSqW6vM56GUzflLZ2lQt7FVev06Dblw+WyhZbt06EZAzbp8/u2HnL90hsSkBHbt/5cFy37g8QdH5nSbn794BpPJxuJmAKB+3UYARe6nop2NiaaRm5tVekNXN87FRBdaVi9EvoHXpNOTnJlJYHwcAPuuRAJgqzfw8Ia1+C+YS4PFC5iw/R+iUlLK4SyUwqhAfRuKj4nHycV6kIizqxPxsfElqmvTH5vJysqi30P9LNL96/iTGJ9I0HnLO/JTh07mHENlio+Nx9HZ+ho4uTgRH1eyY9uyegtZWVkW3d6g9SB8MvsT/Gr7MeHRCdzX4T5eGPYCNfxr8N6M98p0/Er5iI2LxsXJxSrdxcWN2PiYQsva2Njy649ryZJZ3PtoF1p0q8VT4x6gx919ef/Vz3PyxcTF4OzoYnXT6uLsZt5eeDCsaDGpqbiYbKzSXW1siElNLbRsPRcXLsfFWgTbLCk5fP0qANHm8pFJSQBM/G87dZ1dWNK3P2+3u4stocE8tnEdWebeB6ViqEB9m8pvEFNpflc2/b6R+k3rU7dxXYv03kN64erhytSXP+PSmUvERsWw+LvFHN13VNu/rvIHUeV7DSj5Rdj812bqNa5HnYZ1rLZ99d5XnD56mpfee4npC6fz0nsvce7EOT6c9KHq+q4i8v9dKPpzkJqawotvjuZG1DWmfzCbpXNW8/qLH7Buy0re+/wVi7pKu49bpbTHN7xhE7KAF/79h8C4OK4kJfHWnp0Ex2s3uzq0erPMv1edvWswtfPddPXxZXijxkztdDdHb1znn9CQ8jsZxYoaTHYbcnJxIi6fFm18bDxOLk7Fruf0kdMEXwxm/HsTrLY5ujjxwfcfMnXyZzzT72kAfGr5MHLiSOZNn4dHdY/Sn0A5cHRxzLf3ICE2ASfn4l+DM8fOEHIphLGvj7Xatnf7Xv5Z9w/TfppGm45tAGjRrgU1/Grw+rOvs2fbHjr37Fz6k1DKzNnZlZi4GKv0uLgYXJxcCy27fNVi9h78j79XHqCWn/YYpUObzjg5OvPWp5N4/MFRNG7QDFcXV2LjY6wCdpy5xe7qbN3tfCu5mGyISbXufo5NS8PVxrqlnVuAszOzuvXg9d07uWvFMgBaeFRjTNPmzDpxDC97bXyGu7mebr6WU966m/99POoGvfxrlvlclPypQH0bCqgfQOA562fEQRcCqVU/oNj1bFyxEb1BT+8hvfPd3qJDC37ZsYSwwDCyMjPxq+PPr3OWYWNrQ4Nm9Ut7+OUioG4AgRcCrdKDLgVRs27xvzA2rdqE3qCn58CeVtsum69xw2YNLdIbNdeeTQZfDFaBupLVr9OQ85fOWKVfuHyOerUb5lPiprMXT+Pi7JoTpLO1bKrdlF0IPEfjBs2oX6cRaWmpBIVetnhOff6S9my6qP1UtIZubpyNtu5+PxcTbTG9qiCDAurQv2YAF+NiMen0BDg78+quHfg6OOTMw27o6g5AQf1ougK3KOVBdX3fhjr36cypw6cIDw7PSYsMieDEgRN06V28wJGels4/q//mrh4dcfVwLTCfEAK/2n7UrFeL1OQU1ixdQ58H+2LnYF9gmVuhU49OnD52moiQiJy0yLBITh4+aTEXujDpaelsW7+NDl075Lt4iVs17Uvu7HHLwUKnj50GwMOrYnoVlmxKxKNvGLUfCCcm3rJ7PSNT4tE3jGmL4kpdf1xiFl8sjuPeideoNzSc2g+Ec+/Ea6zdmZxv/qWbEuk57iq17g+nwcMRPPjadXYft3z2efpyOpNnRNNz3FW8B4Th0Tes1MdXEr279ufIiQMEhwbmpIWGB3Pw6F563XNvoWU9PaoTGxdDYMgli/QjJw4C4O1ZA4B7OvXCZDTx14YVFvlWrf+NBnUb4+9buYMK+9WsxcFrVwmMu/mZCI6PZ9+VSPr5F+/Y9DodDVzdCHB2JjIpkVWXLjGiUZOc7W2rV6e6nR1/h4ValPvb3OXdytN6cZSKJIQYKYSQQogYIYRbnm0G87b3y7iPqUKIY+Z9JAkhzggh3hFCFPjlJ4RwFUJEmveffwuoFFSgLoIQ4n0hhHVzqxINHDYIbz9v3h79Fv9t+o+dm3fy1rNvU71GdQY/MTgnX2RoJL3q9GTh19Yrke3eupu4mDiLudN5/TjtB7av3caR3YdZu3QNYwaNwWAw8Oxrz1bIeZVE/4f64+3jzbsvvMuuv3ex6+9dvDfhPTy9PRn08KCcfFfCr9CvRb98VyLbs30P8bHx9BmS/zzYu/vcjUd1D6a9MY3Vy1ZzZO8RVi9bzedvfI6ntyd397q7ws4PIC5R8vXy8h+0F3Y1k3mrE+nc3MT3r7nz01vu1PU1MPyDKOb+lWCRd+HaRCZ8GUPrRiYWvOPOjEmupGdIhr5+nWMX0nLyHTmfxuZ9qfhW19Oqgancj7kgjz7wFL41ajJmypNs3r6OLdvXM2bKk9Tw8mXYgyNunnNECA06VufbH7/ISRs6aBiODo48M/Exfl+zlN0HdvDDz98y9Zt3ada4JW1b3gVANXdPRg17ntkLZvDTL7PYc/A/3pn6MrsP7GDKuLdv2bkW5MkGjfB3dGLE1o2sDwpkQ3AgI7ZsxMfBkeGNbo6ID0mIx2f+j0w/fDAnLT0ri3f27mJdUCA7wsOYe+oEfVetpKGbG2Nzzb826HTa4LGQYF7ZuYNtYaHMP32S13f/R2fvGnSt4XNLzzkXF+C1CqrbGZgPPA4MBn4B3gKWFlJmGpRioEwRVNd30d4DPgH+ruwDyWZnb8f/ln7FzA9n8tmkT5FS0qZLGya8O8GypSslWZlZyHwGPW38fSPOrs506lVw6zPqWjTfffgdMTdicPVwpWu/roycPApnV+eKOK0SsbO344t5XzB72mymvT4NKSWtO7Zm7OtjsXO4uSqZzL4G+Qys2bxqM04uTnTs1jHffTg4OvDNkm/4edbPLJ+3nBvXbuDh6UHH7h0ZPn64xX4qQo+2Nsz9M5HnH3DEy11fdIFiqumt5+BCL+xtb96n92xnS9i1TL75NYHR990cTb90cxLtm5iY/qJrTlrXVjbUfyiCP7cn06KeFpQf7W3PsL7adKZP5sex/9TNIF6R7O0c+GX2n3z8v7eY8t5YpJR0an8P70z+FAf7m+chpSQzM5MsefN3wc+nJivmbeSbHz/nf7M/JTo2ihpevjx6/wjGPz0ZXa5pSy+Pext7ewcWLJvD9RtXqV2rHt9+Nq/IVvut4GA08nv/Qby7dxcT/v0HKaGrjw8f3dXZYlUyKSFTSosR2gK4FBfHHxcvEpeWSg0HB4Y1aMhLLVtj0lt+5h6t3wCdgG+PHWXZ+bO42tgwtG593m7XoTJX6NsEvCCEmCGljCzPiqWUeVfL2WpuTb8uhKgmpbyee6MQogvwJPAC8BPlSFSlkYtVkRBCAp9IKcv11nlb8PY7+sJ3r9lNbDm15Y6+Br2b9BZRm/2srsGSTYm88GUMa6ZX45E3b/D4vfZMG+8KaF3fXv3DefVJJ14bXr43TO/PjWXWigSubri5iEzP8VfxcNHx26fVctIyMyUB90fwzBAH3h9tPTXqk/lx/G9pPDc2+Vpty8u9T6i4dCDqjv4c1GnnLq4+M+aOvgbVf5pTokgvhBiJ1tq9B9gAzJNSvmDeZgDSgQ+klO+X53EKIaYAXwCuUsrYXOlG4DDwK7AD+AfoI6XcUh77LVbXt7n7VwohGgkhNgohEoUQwUKIUebtT5n77xOEEP8IIermKmsUQnwshAgUQqSZ//zYfGLZeQLM9Y8RQnwohIgwPxdYLYTwy3MsRdZnzudgfsZwUQiRan5u8LsQwksI0da8vyH5nOsCIUSoEEJvDtIAb5nzWzz3EEJ0E0JsFULEm6/JRiFEs+JcU0Upipe7nmeGOLBoXSIhVzIKzJeRKYv8ycwsOg7sPp5KfX/LTrZnBjuw/VAqi9cnEpuQRfj1TF6dGYvBAE/eW7njFBQFiAC+A54TQhT4QN783Lqon3y7rczbHM3PnCej3RTkXeD8VcAEfG5VQTkoadf3b8CPwJfAOGCeEKI+0B14HTACXwNLgLvMZRYCjwCfAv8BnYC3gTpoff+5vQHsAp4GqgPT0Z4LdMuVp8j6hBAmYDPQCvgM2IP2LKMf4CalPCiE2A+MAVZlVyyEcDXX/bmUMlMI0QnYDSwA5pizhZrzDjSXXYvW3QHas5IdQogWUko1sVAps5cecWLh2kQ+XxzPty9bj+ANjsyg9fArRdbj76XnyM/eBW5fuDaRA6fT+f41y308ca/Wnf3KtzG89FUMAF7uOn6fWo16fgW/7EFRbqFpaN/l76HFDgtCiACgOEspBgEBeco2A47nSloEPJcnTz20GHSflDK1Ih4DlDRQfyGlXGQ+uANoD9jHALWllHHm9BrA1+a7GydgGJZdEJuEEJnAR0KIqVLKY7nqD5JS5gRvIYQn8IUQwkdKGW6+aMWp70m0AD5ESvlXrvpzD9ucBfwkhKglpcxefms42l3RXAAp5R7zRQ+TUu7Jcy2+BrZLKXNa5UKIf4BLwMvAxMIvpaIUzc1Zx/ihjny+OJ4XH3Gkto/lr6y3h54t3xU94tbGWPCXx39HU3ljVgyP9Lbj4V6WreR1u5J59bsYRgx04N5OtqSkSuasTOSxt2+w6vNqNK6tgrVSuaSUUUKI6cB7QohpwMU8WcKB9tYlreS3jNsFc1kHoDNaY9IAPJErz2xglZRys3Xx8lHSUd85q9xLKaOBq8Ce7CBtlj2p0R/t+QHA4jz1ZP+7W570tXn+nX0nkz0xtrj19QUi8wTpvJYBMUDuIcxjgLVSytB8S5iZexHqAr/k7joBktBa4PcUUO45IcQBIcSB1UtWF7YLRcnx/FBH3Jx0TF1kPQLcZBQ0r2ss8qdhzfzvyQ+dTeOJ927QtZUN30y2bE1LKZk8I4bBXe34bJwr3Vrb0q+jHcs+9sDRTvDpwtJPEVOUcvYVEAV8mHeDlDINOFKMn1P5lE2RUh6QUm6XUn4GvAg8LoToCCCEeAToAnxonprlCmSPYnQQQlgP4iiFkrao886qTysgDcAWcDf/PSJPnuzRee550qPy/Dv7Dsc2T/6i6vMACp3IKaVMEULMB54xP3fuBDQBphRWziz7PZE/kf/ovnzfCiGl/AH4AdRgMqX4HO10THzMiXd+iGXCw5brm5el6/vU5XQefvM6zesYWfCuB0aDZav7anQW12KyaJ1nupXJKGhax8i54IKfmyvKrSSlTBBCfIb2uPSL3NvK0vWdjwPmP+uhPVJtAtgBJ/PJ+ycQC7gWY9+FqujpWdmB1xvL7ojsb4wbFVTfdaA4g7pmow0OGAI8AAQCG4tRLns/bwD5jeor1dyUDb+tZ9qUaTg4O7D0v2UWy4FmZmTQu25vRkwcwchJo0pTPYnxiayYt4L92/YRcimEzKxMAuoF8Njzj3F3v65W+Y/vP8acT+dw/uR5HJwd6HVfb0a/OhobW8tlCXdv3cWSWUsIOh+ElJJa9c119i35POONKzfy5dtf4uDkwM8bf85zDTK5t+W9PDXuKYaPH17yC5B9vP/s5p91/3Du5DnCg8Np3q450xdMzzfvpj838ecvfxIWFIbRZNTe+z32SZq3bZ6T58k+T3IlPP9gOfCRgUx8b2KpjzXb04MdmPV7Ap8usGzFlrbr+2JYBkNfv04tbwNLPvLAzsa6a9zVUYeNUWt155aWLjlxMZ1aNW797M4Vq5fw2ocv4OTozPZVh3Fxds3ZlpGRQcNOXrz47Ku89FzpptbGJ8SxYOkctu/eyuXgC2RmZlKvdkOeG/4CfbsPtMg7b8ls/tqwgpDwIJKSk/Cu7kOfe/ozdtQk3FzztkHKz7LzZ3lpx3acTSb2PzzMYpnQjKwsfBfMZUqrNrzSpl0htRQuMyuLr48dYcm5s1xJSsTX0ZFRjZsypmlzi3x7IyP55dwZjly/xoXYGHwcHDjwSN6hR7fMLLTv84/zpJel6zuv7F7b7PizANiWJ08rtBb+FGBvMeosUkX/pm03//kY2lzkbNn9+/9WUH2bgMeEEIOllAX2MUspLwohNgGvoF3cD6WUeScdp6HdMeV2Fi2oN5VSTi3hORQpMS6RpbOX8NzrY8q13qvhV1j185/0f7g/T704HKET/P3XVt557h1e/PAlHhjxQE7ei6cvMuWJKbTv1p5P531GZEgE33/6PdevXOe9mTffHLVv217eeuYtut7blScnPAXA2qVrePe5d/jkp08LnaddmMT4RH796VdGTx5dtpPOx66/d3HxzEUat2xMWmrB91Rrl69lxgczGPToIJ6Z9AypKamsWLiC10a/xjdLvqFe43oAvP/N+6SlWdazc/NOls9fXuxV0opiYxK88qQTk2bEWKSbjMKqxVuUa9GZDH39OmkZkteHO3M2T8u4RV0jNiaBjUnw1AAH5q5KxM0phn532ZKcJpm7KpHgK5l8MvZmr15SShZb9mnfc+dDtPd4//WvttKZv7e+xMdYlPiEOOYs/JpXXyjft5iFR4axeMU8Hho8jAnPTEGn07F64++MfWU4778yjaceufl5jImNpl+PQTSo2xgHB0dOnT3Ot3O/YM/B//hz0VaLedgVIS4tjW+PHeGd9ncVnbmEXtv9H7+eP8ekVm1o61md/yLC+WDfHhLT05ncqk1Ovh0RYey5EkHLap4IAYnmd7hXBvNArg8x91rmSk/jZku4WIQQLdAGTf+GNu7IBu2R5kvAeinlbnPdgWixIHfZ7L8elVL+V9LzyE+FBmop5UkhxFLgffMz3F1oXczvAEvzDCQrz/oWoz17XmruDtmLNrCtHzBDSpl7ceBZaKO304F5+ez2FDBQCLEBrZs/3DywbTywyjzCfDlaK94LbcBBsJTyfyU5t9za3dOelQtW8tDTD+Feji+/8PavwZIdS7G1s81J69CtA1fDr7Hs+6UWgXrBV/PxrOHJ+7M+wGDUPiYGk5Gpkz9j2PPDaNC8AQAbf99ENe9qvDvzPfTmBRLa3dOOxzo/ypY/N5c6ULft3JZVS1bx4FMP4u5Zvq2TSR9MyvkSnfjkxALzbVq1iSatmvDSuy/lpLW6qxVDOw9l+4btOYE6+8/c5n89H/dq7rTrUvpWTV6P97Pnu9/iuRiWWaZ6zgZnEHJFq2PYO9adWocXeVHTW/s//+R5F+r5GVi8Poklm5KwNQka1TKw4lMPerS7+Tm6HpPFqI8tn1xl//uxPvbMfKV8A3XXjj1YtHwuo4Y9j2c1r3Kr19+3JttWHcTO9uaguns69STiShhzFn1jEagnj33TomzHtndja2vHO5+9zMmzx2jeuFW5HVd+uvv68dPpk4xp2pzq9uU3VS40IYFfzp1lcsvWOUG5m68fCelpfH30MKMaN8HNRvu/n9yqDVNatwVg3Pa/c95bXYnmozW8yvoygito3+lvovXYJqEF7CmYBxvfSrdiCdERaMPnnwbWAc+Y/z2isEJlqU9KmY42oGw22lD6dWgBuRrWz8HXov0nrCpgZZsJQCKwGthvrg8p5Tq0OywHtP+4jWhz6LzRBpSV2lMvaC3Txd/lHTNXNnb2dhZBOlvDFg25fuXmIjsZ6Rns27aP7gN75ARpgB4Du2M0Gdm5eWeuvOnY2tvmBGkAvV6PnYMdWVmlfwz/xPNaJ8mSH5aUuo6CFLelk56ejn2eNc1tbG0wGA2FvuLyavhVju47Ss9BPS2uS3E93teBG5t8qeNreR9t0Av2zffmxibfMi12cndLG25s8i3wJztIZ+/z2SGObP++OsGrfDj3Ww3++tLTIkgD1PQ2FFjfzFfK/+1S459+GYCZ80t9P5wvezsHiyCdrXmTVly9XnQQcnPRbiqNhoofDT+pZWsAvjp6uFzrPXztKllS0tPP8uU2PXz9ScnMZGuuV1rqKmlFMinlAimlkFJeyJOeIaVsYN72fhnqvyKlfFxKWVtKaSel9JBStpdSzpRSFtpFLqXcZt5/uSx2AsUM1FLK9807zsiTHiClfDJPmsVBSinTpZRvSylrSSmN5j/fNgfT7DKB5jJzC6hrW660Iusz50uQUr5i3m6SUtaQUj4kpbya5/R6AvbA9wWc+04pZVsppW3e/3wp5W4p5SAppZt5e4CU8rHsbpHS8qjuzv0jHmDN0jVEhhb85ZCZkVH0T2bRra9je49avHEqPCiMtNQ0aje0fKuQydYGn5o+BJ0PzEkb9PhgwgLDWPztz8RGxRBzI4aFXy8kMjTSooVeUu7V3Llv2H2s+21dgc9/QXtuXeRPMa5Bfu577D4O7TnE+t/XkxCXwPUr1/nuk+/QG/T0H9q/wHKbV29GSknfIX1LtV+laJ7VvHjqkWf4deUiwiIKXrIgIyOjyJ/ifD72H95NnVr5N9IyMjJITkni8PH9fD1nKp3b30Oj+k1LfW7F5WVvzzONm7L47GlCEgpeEz4jK6vIn8xcN556c/A16S3Dg435pvNMPm/qUirWHbvWt3n1tDpoD/0PSSm3VvIhWRg2dhirl/zFwhkLee1L64ExkSERDLt7WJH1ePl5sWznrwVuX71kNacOn+LNGW/lpGW/69rJxdEqv5Or5buw29/Tnk/mfsonL33MT19qA+DtHe358PuPaNGhhVX5knj0mUdZ+9tafp71M1M+th6MHxkWyVN9nyqyHi8fLxZvLnnvxL0Paus4f/PRN/zvXa3l5l7NnWk/TsMvwK/AcltXb6Ve43rUblC7wDxK2Y0Z/hJL/1jINz9+zrR3v7XaHhoeTLchrYusx7eGP//+daTA7Uv/WMjh4wf434fW9/KJSQm06HZzQayuHXvy3dT8nqBVjAktWrLo7Gm+PHyQr7t2t9oeHB9P+98Ke4eExt/RMWcQWF0XVwAOXr1Kc4+bS8ceuKrdMOf37mulYt2xgRrtufaTwFG0hU6qFGdXZx4Z/SgLv17AsLHD8K1l+XYaD69qfL86304AC0ZTwc8Gj+w+zLfvf0OfB/vS54Gbb5CS2eu/59OtlXdp+FOHTvLpxE+4q0dH+j7YB4Rg44oNfDDufT6d9xmtOxf9RVkQZ1dnHhrxED/P/plHn3kUH/8818DTg+9+/a7IekyFXIPC7Pp7F99+/C0DHxlIpx6dSEtJY+Xilbw19i2+mP8FtetbB+JTR08RcjmEcW/kXc9fKW+uLm4888R4vp37OWOGv0jNPO+Vru7pzcqFRfc+2phsCty25+B/fDj9De4f8AhD+j9std3O1p6VC7eQlpbKybPHmDXvK56b/ASLZv6BwVDxX69uNraMbdaCLw8f5IUWrQhwsnwk4m1vz8b7iu7ZMuluPqJp6OZGNx9fPj98gFpOTrTxrM7OiHB+OHkCqLzu7jvZHRuopZQjgZGVfBiFenj0Q6xc+Afz/zeft79+y2Kb0WSkXhPrQUxWCvilOnP0DG+Nfos2ndrw6uevWmzLfjtWfIx1d1pCbDwBDQJy/v3Ne98Q0CCAt7+5+c6SDt068MLQCcz6aCY/ri/buIuhw4eyaskqFn63kDemvWGxzWgyUq9Rca5ByfcrpeSr97+ia9+ujH9jfE56285teXrw0yz8diHvf/O+Vbktq7ZgMBjoMaBHyXeqlNjTjz/PouU/8tWcqXz10RyLbSajiSYNmhdQ8qaClnw8dvIQY15+gk7tujL1nW/yzaPT6WjRRLsZbdeqIw3rNeGJ54ew/u+/GNz3wRKeTemMadqcuadOMO3QAWZ3s3wjr0mvp5l70QNS816Br7t2Z9z2v3lsk7bGlZPRyLvt7+KVXf/hZafWeL/V7thAfTuwc7Dn8XFPMPvjWTw25lGLbWXp+r505hKvPvUK9ZrU44M5H1oMGAPwqeWD0cZI4DnLNQLSUlIJDwmn28DuN+s6e4khT95vtd9GLRuxavEqq/SSsnOw47HRjzHnizk8PMqyRVORXd/R16OJuRFDw2YNLdKNJiN1G9Yl+JL1mjZpaWls27CNDvd0wNXdtUT7U0rHwd6RsSMn8umMd3j2qQkW28rS9X32wilGvvgwjRs0Z9a0BcUeHJY90jso5FKx8pcHB6ORF1u04v19exjfvKXFttJ0fQPUcHBg5YDBRCYlEp2aSoCTM6eitHG4HbwKXjNeqRgqUFdxQ54awm9zl+c8/81W2q7v0MuhTHnyZWrUrMGn8z6zWrxEK2OkQ7cObFu7jZGTRqI3d+FtX7ed9NR0OvfpnJPX3dOds8fOWNVx+sgZPL2KXoijOAYPG8zvi35nwTcLLNIrsuvb0cURo8nI2eNnLdLT09K5eOYi3n7WX1Z7/tlDfGw8fYb0sdqmVJwnHnqan36Zxf9mf2qRXtqu78vBFxk+fij+vrX48X9LsLUt/nvH9x3aBWDVDV/RRjVuypyTx5l6cL9Femm6vi3LO+Bt74CUkh9OHqe+iytdavjkm1epOCpQV3EmGxPDXxrB9Ne/tEg3mow0bNGoRHVFX49mypMvk5GWwchJoyxGbwPUa1ofk40W1EZOHMn4B8bzwbgPGDL8fiJDI5nz6fd0G9CNhs1vtjIfHPEgsz+ZzUcvfJTznHvTHxs5efAEE95/oRRnbM1kMvHk80/y1ftfWaQbTUarFm9xXAm/khOA42Lj0Akd/27U1spp2LwhXj5emEwmBjw0gFVLVuHk4sRd3e4iLTWNVUtWERkWydjXx1rVu/mvzTi7OnPXPeW/AIVSMBuTDS+MfoW3Pp1kkW4ymnK6pYvretQ1RkwYSnpGGhOfe50Lly1v1Jo0bIGNyYb4hDhGvfgw9937EAH+dRFCcPTkQeYtmU3j+s3o12NQmc+rJGz0em1O884dFukmvZ5W1Up+w7zg9Cls9HpqOjlxNTmJ5efPs/dKJCv6D7R4Rn09OZndkdqKzmEJCSRlZLD6stab0MDVjYZu5T81706kAvVtoP/D9/LrnGWEXi70XSFFCjofyJVQbeTmm0+/YbV96X9L8favAWhB+/Ofv+CHz+bwxtOv4+jkSN+hfRn96rMWZR557lHcPN35Y8EffPKStnKfXx1/3v7mHXoN6VWm482t3wP9WD5/OWFBhS7hXixH9h7hy7ctb3w+mvwRAFM+nkK/B/oBMPa1sfgF+LH+9/VsXLkRk42JWvVq8dkPn1ktZBITFcP+//Yz6JFBGE3qjVK32kODH+fHxd8RGJz3xUklc+Hy2ZzpXqMnWT9a2r7qMH4+NTGZbKgb0ICFv/7IlasR6PV6/Hxq8swT4xjx6HOFDlCrKMPqN2TW8WNcisv7quSSy5RZfHvsOKGJCdjpDXSuUYN1g4fQyM1y8aGzMdGM/sey1yL731NateEVt/Jb8OdOJmTeYbzKLXGnv5Sje81uYsupLXf0NejdpLeI2ux3R18D9z6h4tKBqDv6GtRp5y6uPjPmjr4G1X+ao4aSF+JWrEymKIqiKEopqUCtKIqiKFWYCtSKoiiKUoWpQK0oiqIoVZgK1IqiKIpShalArSiKoihVmArUiqIoilKFqUCtKIqiKFWYCtSKoiiKUoWpQK0oiqIoVZgK1IqiKIpShalArSiKoihVmArUiqIoilKFqUCtKIqiKFWYCtSKoiiKUoWpQK0oiqIoVZihsg/gTtW9ZrfKPoRK83fQNgCCo4Ir90CqAL1zq8o+hEq38dvzlX0IlWrswruw637nfh8oRVMtakVRFEWpwlSLupJktyoVRVEUpTCqRa0oiqIoVZgK1IqiKIpShalArSiKoihVmArUiqIoilKFqUCtKIqiKFWYCtSKoiiKUoWpQK0oiqIoVZgK1IqiKIpShalArSiKoihVmArUiqIoilKFqUCtKIqiKFWYCtSKoiiKUoWpQK0oiqIoVZgK1IqiKIpShanXXN6mroZfZdZHMzn030GklLTp0pZx747Hy9er0HILv1rAoq8X5rvNaDKy4dymnH/HRsXyw2ffs3vrbpITk6nTqA4jJ4+ifbcO5XoupRV1JYpl3y7j1IFTSClp0q4Jj734GB5eHkWWvXHlBn/O/ZMzh86QEJuAm6cb7Xq2Y+CTA7GxswEgMjiSv1f+zdlDZ7kWcQ1bO1sCGgfwwOgH8K/nX9GnVyyhV5J5c8Yptu27jpTQrb0Hn01qir+3XZFlA8OTePfb02zbf52MDEmbJi589EJjWjd2LbDMik1hjH73CD6etpxa3ascz0Qpi9AbN3hjyc/8c+IEUkq6N23G1Ceewr9atSLLhly/zse/r2DH6VPcSIjHx82dB+66i5cH34eDjW1OvmaTXyL4+nWr8ktemsSgtu3K9XwUSypQ34ZSklOY8vhkjCYjr375OkLA/OnzeHnYZH7cMBc7+4K/pAc8NtAq0KYkJ/P6iNfo3KdzTlpaahovPz6ZuKhYnnt9DG6e7qxfvo63nnmTz3/+kladWlXU6RVLakoqX0z8AoPRwNNvPo0QgpVzV/LFi1/wwYIPcoJtvmWTU5k+cTqZmZncP/p+PLw8uHz6MqvmreJq6FWe/+B5AE7uP8nZQ2fp3L8ztRrUIikhifVL1vPxmI95Y9YbBDQMuEVnm7+klEzuG78HG5OOWe+2RAj4ZM45Bo/fw87FXXGwK/jXOyo2jf5jduFob2DGa82xs9Uzc+klBo/fw9afutCwtpNVmZj4dN6ccRovj4KvrXLrJaWmMmjqJ9gYjHz/3PMI4KPff2Pg1E/Y/clnFsE2r8TUFO6b9hkZmZm8NfQh/D08OHT5Ep/+8TuXIiNZMOFFi/y9mrfgjQcetEirX8OnIk5LyUUF6tvQ2qVriAiOYMHfi/AN8AWgTuO6DO/+JGuWrObh0Y8UWNazhieeNTwt0jb/sYnMjEz6Du2Xk7Z93XYun7nE9KVf5QTlDt078Gz/0fwwdQ6zVs0u/xMrgX9X/8u18Gt88ssnePlpvQh+df148/E32bZqG/0e61dg2fPHz3Ml9AqTpk+iWYdmADRq04jE+EQ2LttIakoqNrY2dOjVgZ4P9kQIkVO2UZtGvPbwa2z5bQuj3x5dsSdZhIWrggkMT+LAr92p4+8AQNN6zrR9eBvzVwYz4fE6BZb96fcgrkalsXZWp5yy97TzoNWD//DZ3PMs+KSNVZn3vjtNs/pOeHnYsn2/dctKqRwLtv1D4NWrHPz8S+p6eQPQtGZNWr/yMvP//psJ/QcUWHbPuXNcvBLJyldeo1fzFgDc06Qp0QmJfLN+LUmpqdjb3Lwx83ByokO9+hV7QooV9Yz6NrR7yy4at26cE6QBavjXoFnbZuzatLPE9W36fSNu1dxof8/Nlvbpw6ewsbWhZceWOWlCCNp1bcfZo2e4FnmtbCdRRkf+O0LdJnVzgjSAp48n9ZrV48h/Rwotm5meCYCdg2XPg72jPTJLgtT+7eTqZBGks/N4+XsRfS267CdRRut3XKF9U7ecQAsQ4GPPXS3cWLfjSqFlD5yMoa6fvUVZBzsDnVq5s/G/K2RkZFnk33M0iuUbwvhySrPyPQmlzNYfPkT7evVygjRAgGd1OtZvwNpDBwstm5aRAYCTneXvgou9PVlSIrN/GZRKpQL1bSjwXCABDWpbpQc0CCDoQlCJ6roWcY0ju4/Q6/7e6A36nHSdTofBaLAKVEaTUTuGs5dLceTlJzwwHN86vlbpPrV9CA8ML7Rsk3ZN8PLzYsXsFYRfDiclKYXTB0+z5bctdBvSrdBu84S4BMIuh+ETUPndfWcuJdC4rnUXdePajpy9nFBoWZ1OYDRa//rbGHUkp2ZxOSwpJy09I4uJU4/zwpN1LQK7UjWcDguliZ/1mIlGvn6cCQ8rtGyPps2o6+XNe78u40xYKAkpKWw/dZLZmzbydI9eVt3mGw4fwmv0KKo9PYKeH7zLmoMHyvVclPypru/bUHxsPE4u1l/QTq7OxMfGl6iuzX9sIisry6LbG8C/rj+J8YkEXQiiVr1aOemnDp3SjiGmZPspb4lxidg72VulOzg7kJSQlE+Jm4w2Rl6f9Tqz3p7FO8PfyUnvOqgrT0x6otCyS2YsAQm9H+5dugMvR9Fxabg6Ga3S3ZxNxMSnF1q2fk0Htu27RlRsGu4uJgCysiQHT8WY675Zfsaii6SmZzF5eN3yO3il3EQnJOBqb30D5eboQExiYqFlbU0mNr3zLk9+8zUd3ngtJ31Et+5MHz7CIu+9rdrQpk4dAjw9uRobyw9bNvP411/xw5ixPNbl7vI5GSVfKlDfpvK2dAGkLHk31eY/NlGvaX3qNrb8Eu51X28WzVjItJenMmXaK3hU92DN0tUc23dU27/Oev+3miCfYyjGJUhPTef7974nLjqO0W+Pxt3LncunL7N6wWr0ej1PTXkq33Jrf17L3s17Gfn6SIsu98qUz8egWJ+Dpx+sxZzfAnn+gyNMm9wUO1s90xdcICgiGYDs/95LIYlMX3iBxVPbYmujL6RGpTLl9zkozu9CSloaI2d+y7W4OH4YMxZ/Dw8OXrrEtD//wKDX89XIp3PyfpkncA9u156eH7zHB7/9qgJ1BVNd37chRxcn4mLirNITCmhpF+TMkdMEXwym79C++ezDkfdmf0BcVCzP3vsMD7a5nw3L1zNi4kgAPKoXPQWqIjk4OZAYb91aSIxPxN7RuqWd2461Ozh7+CwTv5hIp36daNiqIfcOu5dHxj/CtlXbCLkQYlVm25/b+OOHP3jg2QfoOrBruZ1HWbg6GS1avtli4tPzbWnnFuBrzw/vt+LImThaP7SNRoO2su94NOMe0x6peFXTujxf+99J7mnrQbtmbsTEpxMTn056RhYSSUx8OskpmeV/YkqJuDo4EJ1Pyzk6MRFXh8IfVSz6dxs7Tp9mxcuv8FiXu+nSqDEvDhjIJ8Oe4Ke/t3I8uOBHaXqdjgc6dCAsKorImMofs/H/mWpR34YC6gcQdD7QKj3ovGU3dVE2/r4RvUFPryH5d+O26NCCn//9hbDAMLIys/Cr48evc37FxtaG+s0alPbwy4VPbR/CLls/f4sIjCjy+XHopVDsneyp7lvdIr1OE22UdHhguMU86V0bdrH4f4vp+1hfBg0fVA5HXz4a1XHizCXrRxBnLifQsLZjkeWH9KzBoG7eXAhOwGTUUdvPgcnTjuPnZZszD/vM5QRCIpMJ6LPJqnxAn008/2gAUyc1LfvJFNPuC2v4edfH2Bkd+ejBP7C3cc7ZlpmVwQuL72ZAi2cY1OrZUu9j0c4P2XNxnVV6j8aP8nD7SRZpey6u5Z/Ty7kWH4JBZ8LPvT4DWjxDPa9Wpd5/STX29eN0aKhV+tnwMBr5WI/jyO1USAiuDg7U8bLsIWpbt665jnCa1yz4OyW78ybf3q0KJIQYCcwHYoHaUsroXNsMQDrwgZTy/TLsYzAwDGgH1AP+lVJ2LyDv3cDnQGvzMS0B3pJSJpd2/7mpFvVtqHPvzpw6fIrw4JuDpiJDIjlx8ASd+nQpVh3paen8s/of7up+F64ergXmE0LgV9uPmvVqkpqcyrpla+j9QB+rEdO3Wqsurbh06hLXwm+OPr8ecZ0Lxy/Q6u5WhZZ1cXchKT6JK6GWI6MvnboEgJunW07aoX8PMX/qfLoO6sqj4x8tvxMoB/27erH/ZAyBuQZ+BYUnsfdYNP3vLl7XvF4vaFjbidp+DkRcS+GPrRE8/eDNL+Z5H7dm9cyOFj+9Onri4Wpi9cyOPPdQQHmfVrEkpyew6cTPFVa/o60br/Sfa/HTs/FjFnn+O/cni3Z+REC1Jjzb7TOe6PQmGVkZfLP5RUJunK2wY8urf+s27L94gctXr+akBV27xp7z5xjQxnqaXW7VXVyJSUzk4pVIi/QDFy8C4OPmll8xADIyM/lz3178PTzwcnUt/QmUjQvwWpG5Sud+oBWwB7C+EzITQrQANgNXgUHA28AoYEF5HYhqUWNxd5YtCbgGHAaWAiuklFl5ylQDXgYGA7UBAVwE1gJfSykjKup4BwwbyJ+LVvLus28z6mVtsY/50+dRvUZ1Bj8+OCffldBInuz2BE+9OJzhL1k+X9rz927iY+Lo+1DB843nTvuR+s0b4OLmQlhQGMt/+BWDwcDo10rfWikv9wy+h7//+Jtv3/iWB0Y/kLPgiVt1N7rd1y0n3/XI67zx2BsMHjGY+0bdB0CX/l3Y9Osmvn7lawYOH4iHlweBZwJZvXA1tRrWol7zegCcPXKWOR/Mwa+OH136d+HiyYs59RqMBmo1KH7vRUUYMcSfH1cE8virB3hrTAMEgk9+OIuvly2jHqiZky84IonWD23j1afr89oz2hzY9Iws3v3uDF1au+PkYODMpXi+WnSRxrUdLeZft29m/UW9ZG0oNkYdXdtW3uOPxjXuYtvZ3+jR5DFc7Mr/OAw6A7U9C5+KtvviWmp7NmdYx5txomGNtrzyaz8OBm3F36NhuR9Xfkb26MEPWzYzbMZ03hn6MEIIPv59BX7u7ozqcXP1uODr12g5ZTKv3f8Ar9+vLVryRNd7mLlhHQ99+QVT7huCv4cHhy9f5vNVK2kdUJuO9bWes99272LtoYP0bdkKP3d3rsbF8eOWzRwOvMy8cRNuyXkWYBPwghBihpQyssjcJfNs9ve+EOK/QvJ9gBbIH5ZSppvzpwELhRDTpJSHynogKlBbehjtgtsANYGBaIH6OSHE4OxuDCFEE7QPiAC+AbLnKLQGxgANgQcq6iDt7O34csn/mP3RTKZO/gwpJa07t2H8uxMsWrpSQlZmljY3OI9NKzbi5OpMx56dCtxP9PUoZn34HTE3YnD1cOXufl0ZMWkkzq7OBZa5VWzsbJjy9RSWfbuMuR/PRUpJ47aNGfbiMGztc00pyb4GuQZYVatRjbe+f4tV81excu5KEmIScK/uzj333cOg4YPQ6bSOpjOHzpCRlkHw+WA+G/eZxf49vD34/LfPb8m5FsTBzsBf33XkzRmneP79o0gk97SrxmcTm+Bof/NXW0rIzJRk5focCLSBYis2hhGbkIFPdVueHOTP5JH1MOUzbauq6d9iFN9tnciGY/N59K4plXIMmVnpONq4WqSZ9LbodQby3NdXKAcbW9a8/iZvLFnMc3NmI4H/a++u46M4+geOf+Y07k4gwd3dihQvFChSSqlAC1X6UPenXkopLbQPdaQCRYtLobi7uwYJCXHPJXe3vz8udsnFLyH8mPfrlRdkd2Z29+5y353ZkW6NGvPFo4/h4pD7t6AoYDKbrT4HIb6+bPrgIyYv+5tPly4mJimJal7ePNmjJ689OCTnbyHE15foxETeXzCfuJQUnHQ6WtWsxd+vvUmvZs0q7Vpt+BRYD7wLTLRnwfkrZ7YIIbRAP+Dr7CCdZRHwCzAYKHegFmXpKfz/TZ4adV1FUS7m2zcMWAzMVBRlYtbzjxOAFuikKMrtfOk1QH9FUVYVdczNYVvv6Re+Z0h3MXvn7Hv6NRjXZZxI2Dfwnn4N3NuvFj88sa/Er0H2M+oPhyxm14UVbDmzkA+GLMLbJdDmM2qT2VhsmQKBSpXbo/33XR9z4MoGHLTOpGUk4+MSRKe6g+jV6FGrdLsvrGL+3i94pMObtAzpQYYxjXXH53DwykbeeGA2/m41bB2ugOd+ay+S/ph/T38OXB8bXaqH3Hm/s4HxwCSgnqIoYbaeUWdtK46iKIrN3pFZNWpj/mfUQogGwBlgtKIof+Xbdxo4pSjKiJJfmW2yRl0MRVGWCiFWAOOFEG9ieQbRAEszx20b6Y1AkUFakqTy69PkMXaeX87aY7N4rPN7BfbHJIfz/t8P2chpzcs5gE+HLc/5PdizHtW9GhDkUYtMUwbHrm1lxeEfuJ14nTGd3s1J16mu5THTgn1TmbfncwDcHL2Z2PvbEgdpyS6mYGnJ/AAYl3+nECIUKMkMTWFAaCmP7ZX1r61u77F59peLDNQlsxZLx4I2QC/AlLVNkqQ7xFnvzv2NR7P22Cz6NHkMH1frHs7ujr68OWBOIblzadTWQ9l6NrLuNNYkuBN6rRObzyygT5PH8MsKwseubWfh/q/oUm8Izap3JdNkYMuZhXy/6RUm9ZlJkKecIKYyKIoSK4SYBnwghJiCpa9QXuFA2xIUZSjD4bNbAmy1iNitK3zVfxhVNVzL+jcQqA5EKYpS9PRXNgghJgghDgohDq6eLyvdklRePRuOwknvxqqjPxfYp1FrCfaqW+xPoHvB6Xjza1OzNwBhMWcBy6Qy8/dOpmVID0a2e4UGgW1pGtyF53t+jV7rZPN8pAr1DZYa7Mf5dyiKkgEcLcHP6TIcNzbrX1s1Z888+8tF1qhLpqi7phJTFOVn4GeQz6glyR4ctE70bfI4fx/8lt6Nx1jtK2vTty3ZfXmyxwsnpseSlB5HiHdDq3QatZZgz7pEJFwt+UVI5aYoSrIQYjIwDZiad18FN31fwlITt5pMQAjhANTC0r+p3GSgLpns2S9uAdeB3kIIp7LUqktr/eL1TH19Cs6uzszb+ZfVzGMmo4k+dXrx+H+e4ImXnyxT+RHXI3i06yOF7n/32/fp+WDP3GOaTCyfu4y1C9dw8+pNHJwcqdu4Dm99806FzVa2c+1O5kyeg6OLI1MWWV6LnPMxmpjQYwIPjn2QweMGl+s4GYYM1s1bx96Ne4mNjMXJxYnQBqG88NkLaLQazCYzGxZt4MTeE4RfCceQbsA/2J+eD/Wk84DOOT1kK8q81dd54dPjuLloOP53TzzccptsjUYzPl3W8eZTdXl7fNknozGZFH5cdIU/V10nLDwNV2cNbZp48PbT9WhSN7e3/8y/LrNkQzhXb6aSmm4iyM+BAV39efXJOjlzh1eW++oPY9Ppv1h19Cer7WVt+rblwJUNCAQhPpbA7KRzRaPScTXauhJmNGVyI+48Pi5FTzRSHvN2bOO5X37G3cmJ49Om45ln9jGjyYTX2Md5a8hDvPPQsDIf44OFC9hw/Cg3YmLIMBoJ9vZmZMfOTOw/wGrZy/+tX8fiPbu5evs2qRkGgjy9eKBVK14dNBhv15LPkmgn3wOvYOkJnleFNX0ripIhhFgPjBRCfJjVRwlgOJbRQytLW6YtMlCXzANAOnAIS/P3eKA/sLSyTiAlKYUFP/zF+Lcm2LVcLz8vvvt7ZoHtc6bN4sSBE7S5r43V9i9e/pwD2w8y+oVHqd+0HilJKRzbd4wMQ4Zdz8uWtOQ01s1bx/Bnh9u9bKPRyPTXphN1K4oHxjxAYGggSfFJnD54GrPZMkojw5DB6t9X06lvJ3oN74XeUc+JvSf47cvfuBV2i5EvFL4OuD0lJhuZ/sclPnyhgd3L/uznc0z/4xKvPF6Hrm28iY3PYOqciwx6YS87/+xKNT/L8L+4xEwGdQ+gYS1XXJw0HD+fwJezL7DjUAxb53ZBVYlzwWvVOgY0G8f8vV9YbdeotTmBtaRikm/x286PaB3aC1+36hhNGRy7to29l9bQpd4QfF2Dc47Zue6DbDu3BGe9G02Cu5BpNLDt3GJikm8xvM3LxRyp/BJSU5m+ehUfPTyq+MSllJiWxqNdu1E3MBC9RsO+Cxf4atUKjly5zIKXX81JF5eczINt2tAouDouDg4cCwvjy+V/s+PMGbZ99EmF37zmpSiKQQjxMVmtlnm2Z5A7hLbEhBAh5AZ4b8AshMj+8jmgKEr2/KofAnuARUKImVhq5VOxzL9R9DqjJSQDdTGEEA8BD2KZxCRVCPE3cA6YIoTYrihKVL70GqCvoihr7Hkebbq2Yflvyxg2bjhefnbpSAiATq+jUatGVtvS09I5e+wsHXt1shozvXnlZrau2crM5d9Tr2nuZA6dSjgbWnk1btuYTUs30XtEb9y93e1a9oYFGwg7H8Ynv3+Cl3/u69ume+6Nik6v44uFX+Diljs9Z6M2jUhJSmHT35sY8vQQdPqKr032bO/Dz4uv8tyoUPy9HYrPUArz19zgoV5BvPds7vvbuI4b7UZtY8Ou24wdapnk5b1nrCfz6NraGycHNS9POcnx84m0aGDf96c4HesM5N9T87idVHCe9tJw0DrhpHdj46k/SUyLRQhBgHsII9q9wn31rWuow9tOwt89hN0XVrLn4hq0ah2BHjV5sdcMGgW1L9d5lETPJk35aeMGnu/bz+4zg33z5Fir37s3bkJahoGvV68iJikpp7b8/nDrkUddGzbCSadj0tzZHAsLo2XN4p//29kc4HUsw7bKqwfWE2FBblN2zsxjiqIcFUL0xdL7fA2WKUR/B96xwzkAMlDn1yJrxjEdlglPBmKZBGUj8DZYhl9lBe+NwFEhxAxy79aaAxOAs1jeMLt5dOJjvP3Em8yb+ScTP3rJnkUXsGP9DlKTUwssfbnyzxU0b9/cKkhXpoFPDOSb175h9e+ri12OsrS2LNtCmx5trIJ0fiq1yipIZ6vZoCa71u6yTJxSRH57eW1sXYZP2s9Xcy4y9bWiZ88qrYxMM67O1l8L7q6W383FTP+Q3eStUVdcbbpjnYF0rFNwvnW1SsOHQ8v/ONBZ786zPUo2kY1apaF7gxF0b1DuYbJl8sbgITw09UumrlxRYGWriuDlYgnOGnXRq6h5uVj+RrTFpCsPRVHmYmOKzqymZ7ssRFDYMQpJux0ofPaocpK9vq0txtKE8Q/wGZZnDKOAfoqipGcnUhTlNJag/AfwJLAaS2AeC/yNZUyfXXn7eTP48SGs+Ws1kTcKnynPZDQV/2MqesWjDUv/wcPHk3bd2uVsM2YaOXv0DKH1Qvlp8o8MbTmYPnV68cLg5ziyu9wT75SIu7c7PR/qyfZV24mOiC40XUleA7MpN+rERMYQezsW3yBf5k6Zywt9X+CZ+59h6n+mcu3CtUKPk+3c0XM4uTjZvZZfmABvPeOHh/Dbiutcu1V4Nwmj0Vzsj8lk3afxqWEhLFp/kzXbI0hMyeTqzVRe/fIk1fwceKhXoM1jpKabOHAyjsm/nKdbG2+rZ9lSxfH38GBC797M3bqZa9FRhaYzmkzF/pgKuQszmkwkp6ez5eRJ/rd+LY/d1w13p4Kr0xlNJlINBvZfvMDny5bSvVFjmtSQY8ntRdaoKd2dU5480cBbWT+VYtRzj7B6/ip+n/Ebr08tOA99cR3DsvlX82f+rgU290VFRHF09xGGjn0ItSb3jjgxLpHMjEz+WfIPgdUDeXXya2j1Whb+tJC3nniTb5f+j/rNKr6m3f/R/mxbuY2Vc1Yy7u0CcxsQfSuaN0cWP0d/3ilA46PjAVg3bx2hDUJ55sNnMGYaWTFrBV++9CUfzf0Ib3/bHeVO7jvJwS0HGfL0EKvXq6JNeqw2c5ZfY8qsC8x8r3mB/WHhqTR/aEux5VQPcOTE8tzOgu9OqI9eq+Kxtw7l1KDr1HBm9fcd8MzXSSw51Uhwz39yfr+/gy9zPyt6EQjJviY9MIg5WzbzxbJlfD++YP+VsKgomr46qdhyavj4cPLrGVbbTt+4Tod3cr/eHunclW/HPV0gb3J6OkETnsr5/f6mzfj9xYpt9bvXyEB9F3HzcGPE+JH8PuM3Rj37CEEh1j1Lvf29+X7lj8WWo9UV3sv13783Yjab6Zuv2ducNe2tMdPI53O/wMffB4Bm7Zoz5r7RLPppAe/P/KC0l1RqLm4u9H24LyvnrmTAowPwDfK12u/h48H7v7xfbDkabZ65sLPmPtY56HhpykvoHSy9WkPrh/L2I2+z+e/NjHiuYPNm+JVwfvroJ+q3rE//0f3Lc1ml5umu48XRtZgy6wKTHqtNzWrWtZxAXwe2zCm+70D+eb1nLQ3jq7kXeW1sXbq28iY2IYNvfr/E0P/sZ92PHQn0zX0m7uSgZsuczqQbzBw/n8C0uZcY9doBVnzXHo1GNtZVBi8XF17sN4Avlv/NywMHUtPPetW0QE9Ptn74SbHl6LUFQ0EtP3+2fvgJqRkG9l04z9erVmI0m5j13AtW6Zx0OrZ++AmGzEyOhV3lq1UrePibaax88+1im8mlkpGB+i4z/KkRLP9tGXO/nsM7M6ynTdTqtNRpVKf4Qop4hLjh7w3UaVSH2vnKcXV3RQhBSN2QnCAN4OjsSKOWjbhw+mL+oipM75G92bR0E8tnLWf8+9YreWm0Gqu1pAsjRO6L4OJueaZWp2mdnCAN4OXvRUCNAJvN31HhUUx7ZRq+gb68+PmLlVqbzvb8qJr8vPgqn/98nl8+amG1T6dV0bQETdB5X4e4hAzemXGaiY/W4p08Q7zua+1Ns6Fb+HbeZSZPyu14qFIJWjb0AKBjCy8a1XZj0At7WbElgmG9i14TXLKfF/r156eNG/hs6RJ+zRdEdRoNzUKKX+Ut7+cgm4NOR6talpXUujRoSICHB8/98jPP9O5Duzq5fbVUKlVOuo7169O4enUemPwZyw/sZ3iHCntse0+Rgfou4+jsyCPPjebHz35g5DPWwzLK2/R99thZrl0M4/n3XyiwT++gJ7BGoM0/aAVQ2dheURycHBgwZgCLZi6i3yP9rPaVpenbJ8gHnV6XM5mFFQVUwrp2GHs7lq8mfYWjsyMvf/XyHVub28VJw8uP1+a9b8/w0phaVvvK0vR98XoKhgwzrbKCbzZPdx2hwU6cv5pcZFktG1qe0V++nlKKq5DKy8XBgVcGPci7f83jpQHWHe3K0/SdX8uals/Y5chIq0BdeDp7rzp575KB+i704GODWTJrMXO+mmW1vbxN3xuW/oNao6bn4Ptt7u/StyvL5v5N1K0ofAMtTc6pyamcPnyKtnk6nlWGHkN7sGHRBpb9ssxqe1mavjUaDU07NuXCsQsY0gzoHS216pjIGCKuR9Cia4uctElxSUx7eRoAr3z9Cq6elT6pg5Wnh4Xw/V9X+PSn81bby9L07edlue7Dp+MZcF9uE2pcQgZXbqTQvH7RNfRdR2IAqBlcsLORVLHG39+LmevX8slS657v5Wn6zm/n2TMABZrXy5pOKjkZqO9COr2Ox156nK/fnma1XavTlrlDlzHTyJZVm2nXvT2ePp4204wYP5KNf2/g7bFv8dhLj6PValj0yyIMaQYeea74mrw9aXVaBj0xiN+n/m61XaPVENogtNTlDRk3hE+f+ZQZb8ygz6g+ZGZksnLOSpxcnOj5kKXGmWHI4OtXvyY6Ipqxb40lLiqOuKjcRXOCQoMqvXat16l5Y1xd/vPFCavtOq0qp1m6pEKCnOjb2Y9v511GqKBLS8sz6hl/XsaQYeaphyxNqAnJmQyftJ8RfatRu7ozQsChU/HMXHCFJnXdGNQ9wF6XJ5WQXqvlzcFDeWmO9c27TqPJaZYuqZPXrvHugnkMbdueUD8/DEYju8+e5YcN6+ndrDnt61pq0wmpqTw0dQojO3Wmtn+A5XNw+RL/W7+OpjVq8GCbkkwGJpWEDNR3qX4j+rPw54XcvHLDLuXt3bSHxLhE+gzrU2gaL18vvlk0gx8/+4Gpr09BMSs0atWIrxdOJ7RepU9sQJcBXfjnr3+IvBFZ7rKCagbx2vTXWPLjEn764CfUGjX1W9bnxc9fxN3L0qSbGJuY87z6l49/KVDG69++ToOW9p8trDiPDgzm23mXuWSHJuc5n7Xif/Mvs3RDODPnX8HVWUPz+m5M+6lTTuB30KmoF+rCT4uucisqHY1aUD3QkRcfqckzI2ui18kORHfCmPu6MWPtGi6Vs8nZz90dbxdXpq1aSWRCPI46PaF+fnz6yGie6NYjJ52DVkv9oGr8uOEfbsXFoVGrqOHjy8T+A3i2d1/02uKnZpVKRmRPNi9Vrnt9UY6eId3F7J2z7+nXYFyXcSJh38B7+jVwb79a/PDEvnv6NXjut/Yi6Y/59/Rr4PrY6Mrr5HIXkmMoJEmSJKkKk4FakiRJkqowGaglSZIkqQqTgVqSJEmSqjAZqCVJkiSpCpOBWpIkSZKqMBmoJUmSJKkKk4FakiRJkqowGaglSZIkqQqTgVqSJEmSqjAZqCVJkiSpCpOBWpIkSZKqMBmoJUmSJKkKk4FakiRJkqowGaglSZIkqQqTgVqSJEmSqjDNnT6Be1XPkO53+hTumM1hW+/0KUiSJN01hKIod/oc7lX37As/bu0EZg/4WQS/HnzPvgYAN6beECnnPrynXwPn+h+KO30OVcGtgUPv6c9B4Opl8nNQBFmjvkPGrZ1wp09BkiRJugvIZ9SSJEmSVIXJQC1JkiRJVZgM1JIkSZJUhclALUmSJElVmAzUkiRJklSFyUAtSZIkSVWYDNSSJEmSVIXJQC1JkiRJVZgM1JIkSZJUhclALUmSJElVmAzUkiRJklSFyUAtSZIkSVWYDNSSJEmSVIXJQC1JkiRJVZhc5vIulRyVzP5f9hJ+5AYoENiiGu0ndMTFz6XYvEkRiRyYvZ9bR29iNprxqedL26fa41PXNydNZmoGO2dsJ+ZSDGmxqag0KtyqudNoUGNq96xbkZdWYsZEIwlbEjCEGQDQh+hx7+GOxq34j7Ux3kjCtgQM1wxgAm2gFvdu7ugCdDlpUk6mEL8+vtAyAp4LQO2sLvd1lMeNWwm8Ofkftuy+jKIodO9Uiy/f7kf1IPdi814PT+CTGVvYvv8KMXGpVPN3Y2j/xrw2oQvOTpbX4c+/j/LsOysKLePSjlfx9y3+MydJUtnJQH0XMqYbWf/OGtRaNV1f6Q7A4T8Osv7t1QyeOQytg7bQvOmJ6ax9YxVaRy0dX+yCRq/h1LITrHt7DYO+HoxHDU8ATEYzKrWKZiOa4+LviinTxJUdl9k+bSvpCek0Htq0Mi61UOZMM9GLohFqgWd/TxCQuDOR6IXR+D3hh0pXeGORKc1E1IIoVDoVHr09EFpB8sFkohdG4zvGF6235fVzqOWA72hfq7wKCrHLYlG7q+94kE5Ny+SBJ39Hp1Pz0xdDEAI+nr6FAU/8xt4Vz+YEW1tSUjMYNPZ3Mo1m3n+pB8GB7hw+Gc5n323lUlgsv38zHIC+3euyecFTVnkVRWHEc39Rs7qnDNKSVAlkoL4LnfvnLMkRSTz00wjcsmpOXjW9WDp+EefWnaHJ0GaF5j279jRpcWn0/2JgTt7A5kEseWohR+YdosfbvQBwcHOg2xs9rfJWb1uDxJsJnN947o4H6tTjqZgSTPiP80fjafkYa320RM6KJOV4Cq5tXAvNm3I0BXOKGd+HfXPy6qvrifw1kqRdSXg96AWA2kmN2sk6GBtuGDCnmXHtVHj5lWXO4kNcuR7HkXUvUjvEcs5N6vvTvO93zF54iIljOxaad+/h61wMi2XFr2O4v0ttALp1qElcQhozZu8mNS0TJ0ctvl7O+Ho5W+XddTCM2Pg03p3YvcKuTZKkXPIZ9V3o+r4wfOv75QRaANcAN/wa+XNtb1iReaPO3sYtyN0qr9ZBi3/jAK4fuIbZZC4yv95Vj0pz5z826ZfS0QXqcgItgMZDg66ajvSL6UXmzbiVgcZTY5VXpVNZ8l5ORzErheZNPZUKanBs4Fj+iyintZvP0655cE6QBggN9qRDyxqs3nSuyLwZmSYAXF30VtvdXR0wmxUUpfDXYP7yY+i0aoYPaFKOs5ckqaTu/DeuVGrxYXF4hHgW2O5Zw5P4a/FF5hUqFSptwbddrVVhMphIupVotV1RFMwmM+mJ6Zxbd4abh2/QePCd/4LOjM5E41OwQUjrrcUYYywyrxACbLRaC41AMSoY423nVzIV0s6l4VDLAbXjnW32Bjhz8TYN6/oW2N6wri9nL0UVmbdHp1rUCfHi/a/+5czFKJJTMti69wrf/7GPp0a1KbTZPC09k2XrT9Ovez28PZ3sch2SJBVNNn3fhQzJBvT5akIAOlc9GcmGIvO6B7sTfvQG6YnpOLg5AKCYFaLOW77YDUnW+c+sPs2+H3cDoNKoaD+hE3Xur2ePyygXc7oZlUPBGw6VowpzetGtAhovDYYwA6Y0U07AVRSFjFsZOWXbknYxDSVDwalx1QhQcQlpeLoXrNl7ujsSn5hWZF4HvYYN88fx6EuLaDvw+5ztT45oydfvDyg036p/z5KYbODRoc3LfuKSJJWKDNR3K2FjW+GtlTka9G/ImZWn2DFtK+2f7YRGr+HYwiMkRyRZihXWBde6rxZ+DfxIT0jn+r4w9v20G6EWNOjf0A4XYX9FNdlmc27uTPLhZOLWxuFxvwdCI0jam4QpwdIcnP81yJZ6KhWVowqHWg52PefysPkxKMFrkG4w8sTLS4iOSeHXL4cSHOjOoeM3+eL7bajVKmZ8ONBmvvnLj+Hj5UTf+6pGz39JuhfIQH0X0rnoC9R8ATKSDehs1LTzcg10477Xe7D3+10sfXohAN61fWg8pCkn/z6Oo5d1bdHB3RGHrFpbcJvqGA1GDszaR73e9e/os2qVg+2as5Ku2Kxp56Xx0OD1gBfx/8YT+WskAFp/LS6tXUg+mIzKuWB+U7IJQ5gB51bOCJXtQF7ZPNwciU0oWHOOT0zHw63oZ+i/LTnMjv1XOb5hIrVqWJ5xd2kbgpurnon/Xc3To9rQtEGAVZ6I20ls2XOZZ8e0Q1MF+ilI0r1CBuq7kEcND+KvxRXYHn89Ho8aHsXmD+1ckxodQki8mYBKq8Yt0I3dM3fi7Otc7Dhs77q+XNx0gbT4VJx97tzQHI23xuaz6MyYTDTexX+sHes54lDHAWOcEaEWaDw0xG+MR+2qtjkOO/V0KihUmWZvgIZ1fDl7seCz6LMXo2hQu+Cz67xOnb+Np7tDTpDO1qZZNUsZl6ILBOoFq45jMik8OqRF+U5ckqRSkbfFd6Ea7UOIOnvbquNXUmQSkacjqNE+pERlqNQqPGp44hboRmpMCle2X6bBgEbF5os8cQuNozanln2nONZxJCM8w6rjlzHBSEZ4Bg61S9Y0LVQCrbcWjYcGU7KJ1HOpOLdwtpk29XQqGl8NOr/CxyZXtgd61mf/sRtcuZ570xZ2I569R67zQM+i+xH4+7gQl5DOpbBYq+0Hjt0EIMi/4PCz+cuP06S+P80aBhTYdycJIZ4UQihCiHghhGe+fZqsfR/a8Xi1hBCpWeXWsVe5tiy8HkbQmuU0+Gc18ZkZVvuMZjNBa5bz1fkz5TrGhshbPH/kIF22bqTamuUM27OjQBqTovDDpQuM2LuTZhvXUXf9avrs2ML8a1cx53vUsvTGdR7cvZ0mG9cSum4l7Tb/w6vHj3AzLbVc55lXZbznQogvhBDHs46RKoQ4K4R4XwhR6N26EMJDCBGRdfxe5Tl+XjJQZynNGy+E6G7rjcj6A76a9VOros61Xr8GuPi78u8nGwjbc5Vre8PY9MkGnH1cqJ/n2XHy7STmDvqVo/MP52wzG83s+3kPYXuuEn7sJqdXnmTlpOV4hnhYjY0+u+4MO77ZxqUtF4k4cYuru66wdcomru66QvOHW6DW3tlez05NnVC7q4lZHkPaxTTSLqYRszwGtasa5+a5wdaYYOTmtJsk7s69qVFMCvFb4km7kIbhmoHkw8nc/uM2Wm8tLm0KthJkRGZgjDZWqdo0wJMjWhFSzYOHn1/A6k1nWbP5HA+/sIDgADfGPdwmJ921m/G4N/6YyTO35WwbM7QFrs46hk2Yx7xlR9m29wrTZ+3i3S830LJxIB1b1bA61tFTtzh94TaPDqnSncjcgTcr4TjfAwmVcJwciUYjMy9dqJCy10fc4lRiAq08vAh0sH0Dnm4yMePiOeq7uvFl0xbMbtOezt4+vH7iKJ+ePWWVNi4zgy7evnzVtCV/tevES3XqszXqNg/u3kGyMdPep1+R77kbMAcYDQwC5gHvAn8VkWcKJeotVDqy6bug7Df+rdJkEkLUBzYB6UBPRVGuVcC5AZZxz/0+f4D9v+xhx7StKEBQ8yDaTeiI1jF3VjJFsfTotupcJCAxPIHL2y6RkWzA2ceZur3r0XxkS6vg6xnixbW9YRyYtRdDkgEHdwfcgz3o9UFfqrez/hK/E1Q6FT4jfUjYkkDc2jhQcqcQLTArmYL1n44AY5yRtDNpmA1m1C5qnJs649LeBaEu+Pw59VQqqMCpYdUK1M5OOtbMfYI3J//D+DeWoSjQvWNNprzdDxfn3Jq/ooDJpGDOMz48JNiDzQuf5vP/beXjGVuIiUslOMCNsSNb8/qzXVHlew4/b/lRNBoVIwfd2YluirEBmCiEmK4oSkRFHEAIMRpoCUwGvqmIY9jSzceP2VcvMz60Nn4O9u3M+FWzlqiyOlAO3r3dZhoHtZo9Pfrgqcv9XHX18SU+M5M5Vy/zer2GOKot3x9P16xtlbejtw/Bjo6M3r+HbVG3eSCwmj1Pv8Lec0VRns+3aVNWbfotIYSPoijReXcKIToDY4CJwCx7nosM1AWV+o0XQjTGEqTjgPsVRQmvyBMEcPFzoee7vYtM4+rvytg14622qdQqen/Yr9jy/Rv50+ej4tPdSRo3Dd6DvYtO466h2mvWXwxCJfB5yKfEx/Ho6YFHT4+ynGKFqx7kzvzvRhaZJiTYg+SzHxTY3rCOL39MH1Gi40x9tz9T3+1fpnOsRJ8C67HUeibau/CslravgdewORK/4kyqW4/R+/cw4+I5Pmti31YNVSGjHPJSC2EVpLO18PBk4Y1rxGYYqOZY+I2sp9aSV6OyeyNuhb7nNsRk/WvVNCCE0AI/AV8Al+19UNn0XdCnWf++W5LEQogWwFbgNtCtMoK0JEk23QL+B0wQQhTaWSPrUVZxP7YC8ZfAWUVR/qioCyiMn96BsSG1mHc9jBuphT/rNZrNxf6YSjB8r6T2xETjrtHiry9YyzcpCgaTidOJCXx45iT1XFzp5uNnt2Nnqej3PDuvS9ajzleA2Yqi5H/08Qagw/IZsTtZoy4o+42fJIT4SlGUoubkbAu8DlwFeiuKElNEWkmSKt4U4BngA2Bc/p1CiFDgSgnKCQNC8+TrAjyOpdn7jnihdl3+vHaFaRfO8k3zVgX2X09Nof2WjcWWE+zoyP6efct9PlujIll16yZv1Gtos6bcbOM64rI6wDV392Bh+844qCukIaJC3vOsvE2AE3k2/Q5MyJemDvAe8KCiKIbC5mEoDxmobSvyjc/jcyydSmSQlqQqQFGUWCHENOADIcQU4FK+JOFYbrCLkzNRgRBCh6VZ8xtFUU7b7WRLyVOn45ladfj6wjleqF2XUCfrEQr+Do6s69yt2HJ0dmh+Pp+UyPNHDtLJ24cXatue/GZRh86kmUxcSE7ifxfPM2rfLpZ36oq71r4jJyriPc/jYlZeZ6AT8DaWuPlonjQ/ACsURSn+LqmMZKC2oQRvfLY1wAPAVCHEU0oxU0IJISaQdTfW6cUuVj20JUmym2+wPK/8GOsvVBRFyRBCHC1BGXn/licBXsC3QgiPrG3ZD2RdhRCuiqIkleeES2pCzTrMvnqZqefPMrNFa6t9OpWKxm7Fr0Ne3hpfWGoKo/btprqjE7Nbty/0uXP2ubTx9KKztw8dt2zk97CrTKxTIVMQ2/s9z86bDhzM+nWbEOIWMEcI8Z2iKHuFECOBzkCbPJ+N7KEjzkIIdxvN5KUmA3XhCn3j85gO7Ac+wnI39lxRBSqK8jPwM8C4tRPs3oVfkiRQFCVZCDEZmAZMzbuvjM2gjYAA4KaNdIeBY0CLsp1t6ThrNEysXY+Pzpzk+VrWQ7gro+k7PC2NkXt34aLRML9dJ1y12uIzATWcnPHQ6riamlKm4xanAt7zwmQH7TrAXiyfDUfglI20y7G0uHqU4NhFkoG6EEW98fnSfSyE0APvCCHSFUV5uazHvLDxPDunb0PnrGP4rFHoXXOnAzWbzPz24CxajG5Fy0dbF1FK0a7tC+PKtktEX4gi8VYiAU0C6f+F7XmdI09FcGD2PmIvx6Bz0lGre21aPd4Wjd76Y3N9fxjHFx+zrNylKHjU8KTJsGaEdAwt9fmlnEwhfn08Qi8IGB9gNR2oYlYI/zoc146uuHV2K3XZ2dIupZF2Jo2MyAxMcSZ0wTp8R1nP5KWYFZIPJZN+OR1jjBElU0HjqcG5pTNOTZysaiWpp1NJOZqCMc6IOcOM2lmNPkSPa0dXm7OcldWffx/l2XdW4O6q5+S//7FakMNoNOPR5BPefqFbudaJNpnM/PDHPn5beoSwG/G4uuhp2zyY9yZ2p0l9f5t54hPTaTXgf9yOTmHV7Mfo0anCphAoje+xdPz5NN/2sjSDfgHMzbe/H5ZhnGOAotcUtbMnQmry05VLTMk30UlFN33HGAw8vG8XAAvad8ZbX/R0xXmdS0okLjOjQHO9ndnzPS9M9guc3co6F0tn4rxaYKnovQbsK0GZxZKBumiFvfFWFEV5VwjhALySFazfLs9BM1IyOLHkGG3GtitPMTZd23OVmMsx+Dbww5S1JrEtsVdi+Oe9tVRrFUyvD/qSHJnEgVn7SIlJpcdb9+eku3HwOv9+vIGQTjVp/rCln8259WfZ/NlGev237GOuFYNC0v4k3O8rvimvtNIvpJN5OxNdoI4MY4bNNIpRIWlvEk6NnHBp7YLQCgyXDcT/E48xxoh799zzMqeZ0dfQ49LOBZVehTHWSNLeJAxXDfiN9Ss4rrucEpIMfPPrLj5+1W4TH+X4ZMYWvv51F69O6EK3DjWJiUvlyx+2M+Dx39iz4lmqBRS8QXr/q43lbk61t6xOPR+T1YKVZ3sGubWikpZ1Fjibd1tWLQ1gn6IoF8txqqWmV6t5pW59Xj9x1Gq7TqWiuUfB5W+LcyM1laMJltnt4jIyUAnB6luWxoMW7p4EOzmRZjLxyP7d3EhLZVqzltxKT+NWeu488/VcXHNq14N3b6d/QCB1nF3Rq9WcSUzgpysXCXRwZHSNks2cWBb2fM+FEM2Ar4DFWIZb6YH7gP8A6xRF2ZNV9lUsnYnz5s3+7zFFUXaW9jpskYG6CIW98YWkfTWrZv2WEMKgKMqHZT1uUKtqnFl1ikaDm+DkZd9JNjq/dF/OohJrXl9ZaLoj8w7h5ONMj7d75Sy+odKo2PH1NqKHN8enjmUc8qXNF3Dydqb7mz1RqS3pglpWY/HYBVzacrHMgVofqiflcAourV1QO9u3p6hHX4+cP6aov2yv2yw0goCnA1A55gZZhxAHzAYzyUeScevshtBaynBpbT2bmb66HrWbmpilMRiuGnCsZ9/pVu/vXJsf/9zPC493wN/XvvOt/7nsKMP6N+aDST1ztjWp70/rATNZv/U8T41qY5V+z+FrLFx1gq/e68/z7xb+ebpD5mAZlfH/bqmvh4Nr8MPlC1xOKX9T8q6YKF4+fsRq24TDBwD4pllLHnYKIdqQzslEy6PWF48eKlDGkg6d6eRtaZVq5eHJohvXuZ6aioJCNUcnBgcF83ytunjrSl4LLyN7veeRQDTwDpbHHqlYAvZrwK/lLLvUZKAuXmne+IlY7rw+EEKkKYoypSwHbP5wSzb+dz3HFx6hw3Ody1JEoUqy8pPZaObmoRs0HtLUaoWs0K612PXtDq7vDcsJ1CajGa2DJidIg2VSFa2jpkTLLRbGtYMrMUtiSNqbhMf9HmUux5aS1P6ESiAcC6bTBmjhJJjSTGi0hf/55AT4Cpip4I3nujJ0/Dy+/HE704pYO7osMjJNuOZbgc3D1TJGNv+czpmZJl76YDWvjO9MaHDpa3L2oijKXAo2TaMoihGokJ5LhR3T3h6uHsLD1QvWQjUqFTu7Fz3hUXmPkVd1J2fCHxhSovI+aFTxs9dV9HuuKEoklqlDy5J3K7ZXoC0zOeFJFkVR5iqKIvI3YymKYlQUpV7Wvg+ztm3N+v3ffGkVRVHGZ+0rU5AGcPJyosHARpxbf5bk24V3JjWbzCX6Ka3EW4mYMkx4hlh/+Wp0GlwD3axW7qrfrwGJ4YkcW3CE9IR00hPSODr/MMmRyTQcWPwiH4VRO6txbulMyvEUjAkFV8nKppiVEv3YS8b1DIReoHYpWMtXzAqKUSEzKpOErQlovDU4hNp/7eoAX1eeebQtcxYd5trN+ELTGY3mYn9M+T4f40e3ZeGq46zedJbEZANXrscx6eM1VAtwY1j/JlZpv5m1i8wMEy8/bd+bSUmSrMkadRXVbERzzq8/y9H5h+kyqWAHkaTIJJaMW1BsOS5+LoyY80ipjp291rWtta31rnoMybl9Lqq1Cub+//Zh+9QtHP7D8hhI66ilx7u9CGgSWKrj5ufazpWU4ykk7UnCs1/BGpsxwUjkL5HFlqN2UxMwofwrPqVfSSftXBpuXdxstkxE/BCBOc0S+LT+WnxG+CA0FfPs9uWnuzB74SEmz9zGD58PLrA/7EY8jXvNKLacGkHunN48Kef391/qgV6nZvTERTlzg9cN9Wbd70/g5ZHbhH8pLJYvf9jBou9HodfJrxFJqkjyL6yK0rs60HhoU47OP0zT4c1xDbTuxOPk5cSg6UOKLUdVplWuLF/QNluI81VOb5+NZPtXWwluW53aPeoiBFz49wJbJ2+i1wd9CWweVIbjW6gcVbi0cSFpdxIu7VzQeFh/XNUuanzHFL3uMmBzoY3SyozOJHZNLLrqOlza2X4u7DPCB7PRjDHGSNK+JKIXR+P7iK9Vz3V78fJwZOLYjkyeuY2Xn+5cYF3pQD9Xti8eX0juXDqd9efjl78O8OUPO3jj2a7c197SmezrX3Yy+Kk/2fDnWAKzlr+c9NEaHri/Pj0717ZVrCRJdiQDdRXWeEhTzqw6xeE/D9Ht9R5W+9RaNV61il6Qoqz0WTXp7Jp1XoZkA541cmu3+37cjWeIB91ez+18VK11dda8vpL9v+5l8HcPletcXFq7kHI4haRdSXg+YF2rFmqB1q9k4zjLwxhvJHpJNBp3Dd5DvAt9zp99LvogPfrqeiJ/jSTlWAqu7Quu7WwPLz7RkR//3M+n321l9lTr11mnU5do3ei8N2Ox8Wm8Nfkf/vNUJ957Kffz1q1DTRrfP53ps3cx5e1+LF13ir2Hr7F9yQTiE9MBSEm19J5PScsgISkdd1f7N/lL0r1KBuoqTOuopdmIFuyftZemw5pZ7avIpm/XQDfUWjVxeZ5FAxgzjCRHJFGzS+442bircTR4oOAMaz51fTm3tnwL2oNlOUvX9q4kbE3Apa11TbYymr5NSSaiF0Wj0qnwHuaNSl+y2rHGQ4PKUYUxvvDn6+Xl4qzjtQldeHvKBiaN62S1ryxN3xevxmDIMNG6qfVqY14ejtSs4cW5S5ZV/c5ejCIt3Ujbgd8XKG/UCwtxd9Vz80CpVomVJKkIMlBXcQ0GNuLk8hMc/t16GGBFNn2rtWqqtQ7m6o7LtHy0dU6P7rCdVzBlmqjePnfIlaOnI9EXCg5xij4fhZO3fYaWObdwJvlQMok7E63Ps4Kbvk2pJqIXW4KTzwgf1E4lfy0zozMxp5kLNNfb2/jRbflu7l4+nrHZantZmr79fSw3QgeP3+SBnvVztsfGp3E5LJYWjSw3O2OGtqBru1Crck6cjeDNyf/w+Ru9adM8uKyXI0mSDTJQV3FqrZoWj7Ri93c7Cmz3qVt8kMov+XYS0ectgdWQaECo4OpOy/KpPvV8cfGzNNO2GN2aNa+tYMvkTTQc2Mgy4cns/YR2rml13IaDGnNg1j62fbmZWj0sUxpe2nyB22ciaf9MxzJdc35CI3Dt6Er8hnjr7WqBLqD0E/wbE4xkRliWkzWnmUFA2jnL5A3aAC0adw1KpkLMkhiMCUY8+3liSjJhSsqdIEbjrcmpXUf9FYVDHQe0XlrQgDHKSNLBJNSuapya2nccfH56nYa3nr+Pif9dbbVdp1PTqmnp+geEBHvQv3s9ZszajUol6NI2hNj4NKb/ugtDppGnR7XNSRcS7GGzjKYNAujUumxj5yVJsk0G6rtA3d71OLn0GInhicUnLsatY7fYOX2b1bYtkzcB0GVSN+r2tgRq79re9PmkPwfn7OffD/9B66yjzv11af249Ux8TR5qhqOnE6dXnmT71C0AuFVzp9vrPajV3Xou4vJwauJE0oEkTHGFz6ZWUobrBuLXx1tti10VC4BHPw807hpMqSYyb1uCedyauPxF4DPSB30Ny7N8XYCO1FOpmBIs56Z2VePUwAmXti6lqoWX1WMPtWTGrN1cDIstd1m/fTOcb+fsZvGak3w3Zw+uLnpaNApk4wcPlDrwS5JkH6I8k1JIZXevL8oxe8DPIvj14Hv6Nbgx9YZIOffhPf0aONf/sGrNPXqH3Bo49J7+HASuXiY/B0WQE55IkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYDtSRJkiRVYTJQS5IkSVIVJgO1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYDtSRJkiRVYTJQS5IkSVIVJgO1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYDtSRJkiRVYZo7fQL3Kq1Ke6dP4Y5zdXC906dwxxljtt/pU5CqgMDVy8SdPoc7Tcy+qNzpc7iTlHF1Cv0MyBq1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYDtSRJkiRVYTJQS5IkSVIVJgO1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYDtSRJkiRVYTJQS5IkSVIVJgO1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFaa50ycglU1yVBJ7ftrFjSM3QFGo1jKYTs90wcXPtdi8iRGJ7Pt1NzeP3sBsNONb348OT3XCt55fTpr4G/GcXn2C8GM3SYxIROuow7eeH20fb4d3LZ+KvLQSy0zI5PbG26RcSQEFnGo64d/HH627tti8GXEZRG2KIuVKCopZwTHIEd/7fXEMcrRKd/G7ixgTjAXyVxtRDdf6xb/WFe1GZDrvfHuRrQdiURTo1saTyf+pS/UAh2LzXg1P478zL7H1YBxGo5lWDd345IXatGzoZpWu6bA9XI9IL5D/z8lNGHifr92uRZIk22SgvgsZ0zNZ/dZK1Fo1PV7tCUJw4Pd9rHpzBcN/eBitQ+GBKj0xnZWvLUPrqKXrxG5o9FqOLzvK6rdWMGT6MDxreAFw4/B1wo/dpF6vBvjU8cWQbODYkiMsn7SUB6cNxbeuX6HHqAzmTDPX/ryG0AgCHwwEIHprNNf+uEbNCTVR6QpvLDKlmrj2+zVUOhUBAwIQWkHcvjiu/3mdkHEh6H30Vumdaznjc5/1zYnOW2f/iyql1HQTD750FL1WxffvNUQI+OznKwyaeIRdv7fD2VFdaN7YhEz6P3cYFycN01+vh6ODmpkLrjNo4lE2/dqa+qHOVunvb+/FW+NCrbbVreFUEZclSVI+MlDfhc6sP01SRCIjfxmNe5A7AF41vVn41DzOrD1Fs4daFJr39JqTpMWlMujL3LxBLaqxYOyfHPrzAL3e6QtAnW51aDyoCUKInLzVWlRj/pN/cnLFcXq81qviLrAE4o/EkxmfSa3naqHzsgRNvZ+ey99fJv5wPF4dvArNG3coDmOy0Sqvc6gzl2ZeInpbNNWGVbNKr3ZS4xjsaKuoO+q3leFcDU/j4F/tqRVsCZqNa7vQetQ+5qy4yYujahSad9aym9yOy2TNzJY5ee9r7UmLEXuYPOsKcz9pYpXe211L2ybuFXcxkiQVSj6jvguF7b2KXwP/nEAL4BbgRkCjQML2XC0y7+2zkbhXc7fKq3XQEtA4kLD9YZhNZgAc3B2tgjSAzlmPezV3UqJT7HcxZZR8PhnHao45gRZA56nDsbojSeeTisybdjMNnZfOKq9Kp8KpuhPJF5JRzEqFnbc9rdsZTdvGbjmBFiA0yJH2Td1YuyO6yLwHTyVSO9jRKq+zo5qOzT34Z1cMRqO5ws5bkqTSkYH6LhR3LRbPkII1Rs8QT+KuxRaZV6gEKk3BJlG1Vo3JYCTxVkKhedOT0om7GotHDc/Sn7SdGaIM6H31BbbrffVkRGcUmVeoBEItCm5XCxSjQkacdf7kC8mc++Ic5yaf4+qcqySdK/pGoLKcvZJKw1ouBbY3rOnMuaupReZVqQRabcHXQK9VkWYwc+Wm9TPp9buiCey5Db/uW+k1/hCrt0eV7+QlSSoxGajvQoYkA3oXG0HK1QFDsqHIvO7BHiSEJ5CemPtFrJgVbp+/nVN2YXZ/vwMFaDqkedlO3I5MaSZUjgU/vmoHNaY0U5F5dd46MmIzMKXmplMUhbTwNADMabm1SZe6Lvj39af66OoEDglEqAU3F98k4UThNzSVJS4xEw/Xgk+vPN20xCcV7ACXV90ajly+nkZsQmbONrNZ4dCZREvZSbnb+3X2ZsrL9Vj6dXN++aARer2KMW+fZOE/EXa6EkmSiiID9V1KFKwMoSjFN9k2GtAYzApbvvqXxPAEUmNT2PXjDpIiErPKtVEwcGThIS5uvUDn57paNZvfjTxaeYAC4SvDyYjNwJhkJPKfSDLjs4JTnpcgoF8A7s3ccarhhFtDN2qMqYFDoANRm6tGjdLWu1WCjwHjhlTDrMCzn5zmyo00IqINvPnNBcJuWW7gVHkKnvpKPR7pH0CnFh4M7uHHyhktaNnAlY9/vGyfi5AkqUgyUN+F9C560m3UfDOSbde083ILdKfHG72IvhjFgqfm8eejv3H7TCRNh1pqyU5eBXvynl5zkgNz99Hm8XY06NvQPhdRTmpHtVXNN5sp3YS6iN7OYHmWHTgkkPRb6Vz+/jIXZ1wk7UYaXu0tjxM0LoX3sRQqgWtDV4xJRozF1Formoerhjgb5xCfZLumnVdoNUd+/m9Djp5LpuXDe2kweDf7TyXw/MhgAPy9C/8cqdWCIT19uXnbQER00S04kiSVn+z1fRfyDPEiLqzgs+i4a3E5w6uKUqtLbUI71iThZjxqjRq3IHd2fLcNZ1+XAuOwz286x86Z22n2UHNaPdLGbtdQXnofPYaogkHCEGVA51P80Cm3hm641nclIzYDoRLovHRErI1A46Yp0ThswHZ1thI1qOnM2SsFO/advZpK/dDih04N7uHHwPt8uXg9FZ1GRc1gR16Zeo5gf32x47Cza+2FNMBUKiHEk8AcIAGoqShKXJ59GiAT+EhRlA/LcYwvgAFADUAHXAPmAdMURSm6Q4CdVcb15jteLeAk4AjUVRTlYr79amAi8DRQB0gBjgCPKYpyyx7nUMDOpTDnLXB0hSlbwDlPK5/JCBMawoMTYfBLZT/GkqlwYhvEhIMpE7yCoMMg6PMU6POMAlnxLaz8rmD+Fr1g4g9lP34eMlDfhULah7L3190k3krALdDyAU2KTCTidATtx3YoURkqtSonqKfEpHB5+0WaDW9hlebKrsts+3ozDfo2osP4zna9hvJyqefC7X9vkxGXgc7TEpgz4jNIu5GGb8+STcIhVCJnzHRmUiaJpxPx7uhdZB7FrJB0JgmNm6bImndl6N/Fh/dnXuLqzTRCq1m+OMJupbHveAIfPFerRGWo1SJnzPStKAN/b7rNS6MLH9YFYDSaWb45imB/fZE17zvAHXgTeKsCynbDEhzPAQagE/Au0AYYXAHHK4mKvN68vsdyU1DYGMU/gL7A58DBrPPqBhQ/6055pSXBup9h+OsVUHYydB4GATVBo4NLh2H1D3D1JEz8sWD6txaAKk8jtbOH3U5FBuoyynNXm80MRAC7gPcVRTlXUcdu0L8Rp1ad4J+P19H28fYg4ODv+3HxdaHhgMY56ZIik1gw7k9ajW5D60fbWk7SaGLvrD0ENQ1C66QjLiyWo4sO4xniZTX++taJcDZP2YhXTW/q9a5P5JncjkNqrRqfOnd2RiqPlh7EHYzj5qKb+HT3AWGZ8ETrpsWzVW6v9Mz4TC7NvIRPV5+cSUsUk8LtTbdxCnFCpVNhiDYQuysWva/eavx14slEks4n4VLHBY2bBlOKibiDcaTfSidoaFClX3N+TzwYxC9LbzL6rRO8O6EmAsFnv16mmr+esYNzz+9aRDotR+7ljSdDeHNcTQAyjWb+O/MSnVt64Oqs4ezlFL75I4yGNZ158ZHqOXmXbIxk7Y5oenf0ppqfnqi4DH5depOj55KY9VGjSr/mYmwAJgohpiuKYteeboqiPJ9v0yYhhBPwlhDCR1GUosfDVYwKu95sQojRQEtgMvCNjf2jgJFAe0VRDuXZtbIizqeAxl1g0x/Q+0lwt/N30mMfWf/eqBNkpMPanyApFlzztV7Wag7qigmpMlCX3wjgBqAGagPvY/kjbqwoSoV0DdY6aBn4xWB2/7yLLVP/BSCoRTCdnumM1jFvs62CYlasO5kJQWJ4Ape2XsCQbMDZx4X6fRrS8uFWqLW5z3ZvHruBKdNEzKVoVr66zOr4Ln6ujP7tsYq4tBJT6VTUGFODyI2R3FphaV1zCnXCr4+f1axkCgoo+TraCciIzSDxVCLmdDMaVw3uzd3x7uJtNWxL66HFlGLi9qbbll7mWhUOgQ4EPxKMS+2Cw6Iqm7OjmpXftuCdby/y7MdnUBS4r40nk/9TBxen3D9tRVEwmRTM1i8Bl2+ksWRjJAnJRoJ89YwZGMgrj4eg0+a+fiGBDkTFZfDfmReJSzTi5KCiZUM3ln7djPvbF936cAd8CqzHUtOdWAnHi8n6N7PIVBWnQq9XCOEJfA28huX7zZbngW35gnTlGfg8fPOUpab76H8r/njZtWR1CR+P2YkM1OV3NM8zm11CiHBgI5amsXUVdVAXP1f6vNevyDSu/m5MWGddEVCpVfT76IFiy28zph1txrQr1zlWNK27luDhwUWm0XnoaPBeA6ttQiWoPqp6ITlyOQY7UuOxopuB77TqAQ788XmTItOEBDoSv6uH1TaNRsXCqc2KLb9tE3dWfdeyXOdYiW4B/wMmCSG+UhQlzFairOe4xVEURSkwzi8rrwPQAXgFmF1RN+QlUNHX+yVwVlGUP7JaEPOXqwXaAz8JIb4ExmFp9j4MvK0oyuaSX0oZuftBzzHw71zo+xT4VLOdzlSCjp9CgMrG/YjJCJkGuHwUNsyBLsPBycY8/6/fB4kx4BkA7R6wPB/X2af1XwZq+0vM+rdyb7kkSQKYAjwDfIAlcFgRQoQCV0pQThgQmi9vE+BEnk2/AxPKeJ72UiHXK4ToAjyOpdm7MN5YOtY9CVwGxmN5fv86sF4I0UlRlIMlOHb59J8A2xZYOnSN+6Lg/ugb8GaPgtvz864GX2613nbjPHyQp2LTaSg88al1Gr8QGPYa1GhkCfandsLGuXDtFLz6W2mvxiYZqMtPnXXHqgZqYelQcRvYeidPSpLuRYqixAohpgEfCCGmAJfyJQkH2pagKFvjzi5m5XXG0mL2Npbv0EfLfsblUxHXK4TQAT8B3yiKcrqIPNnPSLTAAEVRwrPyb8cSuF8HHi7RhZSHiwf0HQcr/wcDJoBvvlYwDz94/+/iy9HYGC3iH2LJa0iFi0dg7Y9Zvcq/zk3TMV9fwsZdLLXqBZ/B6V3QqPwdcWWgLr+z+X4PBwYqipKYP6EQYgJZd+BdJ3az6vglSZLdfIPlme3H5AuiiqJkCCGOlqCMAtPGKIqSjqVXM8A2IcQtYI4Q4jtFUfaW75TLxd7XOwnwAr4VQnhkbcse7+cqhHBVFCUJiMvKdzo7SGcdM1kIsYeia+P21XuspVPZ8hkwfpr1Po0Oqpdg/gdbYw21eghtavl//faWDmtz3oL7H4PaRVxe+0GWQH3lhAzUVcRQLJ3JBBAEvAisFULcpyjKmbwJFUX5GfgZ4Jn1L9wdKz9I0l0mK1BMBqYBU/PuK0/Ttw3ZQbsOcMcCdQVcbyMgALhpI91h4BjQQlGUNCHEZWzc1GD5Pqy8lV0cnGHAs7BoMvR72npfeZq+88sO2revFR2os9lpogEZqMvvZN4JAIQQG4DrwIfYodnn3MazbPt6MzpnHY/MGYPeNbdzgtlk5teBP9Lq0Tbl7vhlNBg5uvgwF7dcIPl2EnoXPb71/Oj9Xj+r3uDZDMkGFk2YT1pcGgM+H0Rwy+I7Z5VV/LF4IlZFoNKrqP1ibauZxxSzwrnPz+Hd1RvfbmUfnhG+MpzE4wUaQfBs54l/H3+rbQnHEog9EEtmbCZCI9D76/Hp6oNTBa/PPG/NLV74/CxuLhqOL+6Ah1tuNwij0YxPt228OS6Ut5+qWeZjPPfpGf5aV3Ckz7MjgvliUt2c32cuuM6SjZFcDU8jNd1MkK+eAV19ePXxELxKOmFMxfoeS2evfA8Uy9X0nV+3rH/zNzffCfa83i+Aufn298MyZnsMlrHk2ZZhGSIWrCjKDQAhhCvQEUuP9MrTYzRsmA3L8o0iK0/Td37n91v+zd+8nt/erNFpteyzLoIM1HaW5y6z+C61pZCRksHRxUdoP66jPYsFLGOr172/mqTIRFqMbIVnDS/SEtK4eeR6oUs+7pu9h8qemstsMBOzJwa/nn4VUr7aSU3wSOte5PknNYk/HE/E2gg8Wnng19MPc6aZ2H2xXJ93nZCxITgUM6OXPSQmG5k+7xofPle7Qsr38dDy15SmVtv8fawnNolLzGRQN18a1nLGxUnN8fPJfDn3KjsOx7F1VhtUqsr9bOSnKIpBCPExWS1YebZnkFsTLhEhRDPgK2AxlmeveuA+4D/AOkVR9tjlpMvBnterKMpZ8j3Sy6qZA+zLNzPZV8BjWFoRPwYysAzncsIS8CuPVg+DXoTf37PertHl1oRL6vpZWPQFtOkPvtXBmAHnD8C/v0HTblAnT236wwctncwCamZ1JtsFm/+AJvdBg5JNQFUcGajtLGsShNrAKXuWG9yqOqdWnqDpkOY25+Muj+N/HyP6YhQjfhqFi2/usINaXWwHgohTt7i4+TydnuvK9ulb7HouRXGu5UzcgTi82nlVyKxgQi1wDC5s8iWLhOMJOAY7EjAgIGebU6gTF6ZdIPF0YqUE6p7tPPl5yQ2eGxlcITOD6bQq2jYpeuGV9yZYz3zWtZUnTg4qXp56nuPnk2nRwMbwlco3B0uHprrFJSxGJBANvIOlSTgVS8B+Dfi1nGXbk72ut8QURYkUQtyHpdl9DpYOZnuAboqi2PU7sES6DIN/foXIq+Urx80HXD0tnccSokDnaAnYI9+CriOs0wbUsgTmhCgwmyy17UEvQL/x5TuHPGSgLr8WQggfLNXLQCzPqL0AG5O/ll3LR1qz7r3VHFlwiM7Pd7Vn0ZxafZJaXWtbBenCmI0mdny3jRYjW+EW6GbX8yiOdxdvUv9KJXpnNAH9AorPUAEUk1Jg0Q+VVmWZKKWSeh289kQow189xle/hTH1lXqVc9ASyG7y1mgqtzatKMpcCjbVoiiKESj3C6QoSiQwurzl2EtFX29pjpm17zwwqCKOW6guwyw/+ak18PnG8pfv7gMTCkzEZtuz08t/vGLIQF1+i/P8PwrL5PX9FEX5x54HcfJypvGgppxYfoxmw1rg6m87qJpNJeu/oVJbRlYk304iJSoZ1wA3ts/YwqVtFzEbzfg3CqDD+M741Paxynd08RHMRhPNh7ck8mzlrkescdHg2caTuP1xeHfwRuth+1loYc31+Yl8zbPGFCMXpl3AlG5C66nFo4UHXh28rNJ5tPYgYk0E8UficW3oijnDTMzOGIRK4NHCo8zXVhoBPjrGDwvmh0XXmTi6BjUKqcUbjcV/FoQQqNXWr0NUXAa1BuwkIdlIaJADjw0MZOIjNQqkyz5GhlHh1MVkJv96hW5tPGlS587P2iZJ/5/IQF1GRd1hVpTmI1tyZt0pDs07QPdXehbYnxSZyF9P/llsOXmnAE2Jsay+dGzxEXzr+XH/W30wZZo49Od+Vr+5nOHfP5yzolZCeAJHFhyi7wcDUOuKXkqyonh38ib+cDzRO6IJHBRYYH9GfAaX/1f8Oskadw11JtbJ+d3B3wGHQAf0PnoUk0LS2SSiNkeREZtB4MDc42QH48h1kUSssdyoqF3UVH+0OjrvEnRGsZNJY2owZ0U4U2ZfYeY7BYeehN1Ko/nw4jsiVw9w4MTS3H4PTeu60KK+Kw1qOWMwmFm9PYqPfrzMpetpfPe29QxvyalGgnvvyPn9/vZezP1EDjmUJHuTgfou4uDqQLOHWnBo3gFajGyZs3JWNicvZ4bOGF5sOXl7cWfPga1x0NDvwwFoHCy1VN96viwYN49Tq07S/inLF/nO/20jpENNgltVXA/v4qgd1Xh18CJ6ezRenbxyVs7KpnXVEjIupNhyRL7m2ey1qLO51HFBpVNZau+dvNF5WY6TdC6JyPWReLTywKWeC4pRIXZ/LDcW3KDGmBro/SpnNSlPNy0vjqrOlDlXmfRoCDWrWdeqA330bPm1dbHl6PLMiw7w/MPW722fTt44O6r5YdENJo2pQe3quf0jnBzUbPm1NekZZo6fT2ba72GMevMEK6Y3R6ORS91Lkr3IQH2XaTq0OSdXnuDgH/vp+UZvq31qrRrvfE3VxXFws3zB+zcKzAnSAC6+rnhU9yT6UhQAl7ZfJOJ0BA/NGI4h2TKSIzPNshaBMd1IRooBnXPlBCmv9l7EHYgjels0QUOsV7ESamG3Dl1ujd2I2x9Heng6Oi8diqIQsTYC1wau+PfNHbLlXMuZyz9cJmpbFMEjip573J6efziYn5fc4PNfr/DLB9a1ap1WRdO6xTdBixKM8xze258fFt3gyNkkq0CtUglaNrT0U+jY3INGtZ0ZNPEoK7ZGMayXf2HFSZJUSjJQ32W0jlpaPNyKvb/sovkw6wH3ZWn6dgtwQ63X2B5opSg5z2fjrsViMhhZ/OyCAsk2fLwOnbOOJ5c8XWBfRVDpVHh39ub2xtukd0i32lfWpu8iZb04phQTphQTDkHWNwJCbRlLnRGdUbLy7MTFScPLj4Xw3v8u8tJo65pwWZu+bcludSkuprfM6ul9+UZasceVJKnkZKC+CzV+oAkn/j7Kgd/3WW0vS9O3SqOmRtsQIk6Gk5meiTarVp18O4n4G/GEdLRMnlG/dwOCmlmvTBNzKZo9P++iw9Od8KtfuTUoj9YexO6NJXqr9TLAZW36tiXxpGUCFIdAS2BWOVh6d6eHW98cKCYFQ4QBrWflT/Tx9EPV+H7hdT79xXryqbI2fduyeONthIBWDYru5b/raDwANasVPcRNkqTSkYH6LqTWqWk1ui07vt1qvV2rxrde6ScDaTOmLcsmLWH9f9fQ7KEWmDKNHJp3EL2LnsaDLBMFuPq74epv+4vaq5Y3AU0KduyqSCqNCp+uPkSste55LtQCx6DSBYrM+EzCV4Tj1tgNnacOs8lM8rlkEo4l4NHKI+f5tEqjwr2lO/EH41E7qnGp44LZaCbuYByZCZn49amYiViKotepeGNsKP+Zcs5qu06rymmWLqlrEek88/FphvXyp1Y1RwyZls5k89dGMHZwEDWzxpgnJBsZ/soxRvTxp3Z1RwSCQ2cSmbngOk3quDCoHDPESZJUkAzUd6n6fRpwfOkREm6WfylczxAvBn4xmH2z9/DvFxtQqVUENa9Gn//2x8mzYqfFLA/3Fu7E7I0hMzazXOWo9CrUjmpidsdgSjGBAJ2PDv++/ni08bBK69/HH723nvij8SQcS0BoBDofHdUfqY5zbedynUdZPToggG/nX+PS9fI1Obs6qfF00zL9zzCi4jIRQL1QJ6ZMqsvTD+W2pjjoVNQLdeKnJTe4FWVAoxZUD3TgxUeq88zwYPQlqKVLklRyIvv5k1S57vVFOX7qN1M0fL/hPf0anPnkjEjY3fOefg3cO22+s3ONSlWGmH3xnv5bUMbVKfRvQd76SpIkSVIVJgO1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYDtSRJkiRVYTJQS5IkSVIVJgO1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYDtSRJkiRVYTJQS5IkSVIVJgO1JEmSJFVhMlBLkiRJUhUmA7UkSZIkVWEyUEuSJElSFSYURbnT5yBJkiRJUiFkjVqSJEmSqjAZqCVJkiSpCpOBWpIkSZKqMBmoJUmSJKkKk4FakiRJkqowGaglSZIkqQr7P+fJHvhukSyOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "matplotlib.rcParams.update({'font.size': 16})\n", + "discovery_celltype = 'CD4T'\n", + "fig, axes = plt.subplots(1, 6, figsize=(7, 7), sharey=True)\n", + "for i, discovery_celltype in enumerate(['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']):\n", + " colors = [\"white\", color_dict[discovery_celltype]]\n", + " cmap1 = LinearSegmentedColormap.from_list(\"mycmap\", colors)\n", + " im1, bar = heatmap(rb_df[discovery_celltype].values.reshape((6, 1)), \n", + " list(rb_df.index), \n", + " [discovery_celltype],\n", + " cmap=cmap1, ax=axes[i], vmin=0.7, vmax=1)\n", + " bar.remove()\n", + " _ = annotate_heatmap(im1, \n", + " data=rbse_anno_df[discovery_celltype].values.reshape((6, 1)), \n", + " valfmt=\"{x:^}\", \n", + " textcolors=(\"white\", \"white\"),\n", + " threshold=1)\n", + " if i > 0:\n", + " axes[i].axis('off')\n", + "plt.subplots_adjust(wspace=0, hspace=0)\n", + "plt.savefig('rb_values.filtered_results.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# cdict = {'red': [[0.0, 0.0, 0.0],\n", + "# [0.5, 0.5, 0.5],\n", + "# [1.0, 1.0, 1.0]],\n", + " \n", + "# 'green': [[0.0, 0.0, 0.0],\n", + "# [0.5, 0.5, 0.5],\n", + "# [1.0, 1.0, 1.0]],\n", + " \n", + "# 'blue': [[0.0, 0.0, 0.0],\n", + "# [0.5, 0.5, 0.5],\n", + "# [1.0, 1.0, 1.0]]}\n", + "\n", + "# cdict['alpha'] = ((0.0, 0.0, 0.0),\n", + "# (0.5, 0.5, 0.5),\n", + "# (1.0, 1.0, 1.0))\n", + "# newcmp = LinearSegmentedColormap('alpha', segmentdata=cdict, N=256)\n", + "\n", + "c_white = matplotlib.colors.colorConverter.to_rgba('white',alpha = 0)\n", + "c_black= matplotlib.colors.colorConverter.to_rgba('black',alpha = 1)\n", + "cmap_rb = matplotlib.colors.LinearSegmentedColormap.from_list('rb_cmap',[c_white,c_black],512)\n", + "\n", + "\n", + "\n", + "mpl.cm.register_cmap(cmap=cmap_rb, name='alpha')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":62: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + ":63: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_yticklabels([\"\"]+row_labels)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVIAAAEWCAYAAAA0HB+VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABNjklEQVR4nO3dd3hUZfbA8e/JpBBCl2pdBERZBKSIIE1+ShVBQAQEkRZ6EQVsiCyrAoKISNnQi1JsQBCwAFIUparIIitdQJpKTU/O7487MyYQ6kzIBM7nefKQufedew8zkzNvu+8VVcUYY8zVC8rsAIwxJquzRGqMMT6yRGqMMT6yRGqMMT6yRGqMMT6yRGqMMT6yRGqMMT6yRHqdEhHJ7BiMuVFYIr0Oicgt6r7SQkTsPTYmg9kf2XVGRGoDm0Wkj4gUUtUU93aroRqTQSyRXkdExAW8BqwBTgErROQhALVrgY3JMMGZHYDxq1ZAsKo2BxCRhkADESkJnFHV2ZkanTHXKUuk1wkRuQmIBEa5Hz8M5ABiga3ATBE5pqqfp3pOkKfpb4y5epZIrx8dAFHVj939oY8DS4B5qnpERCYApUTkf0AdYK6qnszEeI25boh1nV0fRCQEKKCqh0SkE3A/MFlV14vILcBUoABO/2kRoDTwqqp+lGlBG3OdsMGm64C7iZ4IHHZPd8oJ/AD8112kDVAF2Ae8q6otgOeAiu7n50p9LBvhN+bKWNP+OuDp50zV3zlaRCJU9ayIVAU6At/jNPN3ucvkBWq5f+8jIkeBJar62zUM3Zjrwg3ftBcRCaSpQb7Gc+4Akog8CpQADuI0/ce5t28GhgA7gLFAPJAH2Aj0s0EoYy6f1Ughm4gUBR7AqZEdzsrxnJsAVXUxgIg8CUSKSDbgLuB34AvgJZzkOUpVj4vICuA+YFPq4wTaF44xgeSG7iMVkduBD4A3cfoQ14rIK9djPKo6D3gaKA58CbQEqgG5geXuJFoEqAAccsdTUkT+6X6+JVFjLuCGbdqLSF5gAJAf6K6qiSJSAJgETAc2qOrB6yEe9+CRnNPkvx14FWdAapyqxovIDJwBqTdx5qQ+AYQAvwEdbbqUMem7kWukj+BMWH/XnbTCVfUY0AU4AvwkIstFpGxWj0cdKakXMFHV/Ti136/dSbQWUBKYDLQH7gAGqWplnMtN6557XFsQxRjHjfyHUBH4U1W3AqhqrPvfIzjN3vnAOGC2iIxyz9PM0vGk03+6QlU3ux++CSzAGZQqDvykqivd+/IAuQBEpICIlPIcz6ZKGXNjJ9KqwBYA9wAM7t8rArWBf6vqJziDPrcC917n8bQHRuMMQFYCNrjPXwX4ETghInWARTjTq1aKSEVbrs+YGzuRfgB4alZxqbYPAD5S1YMiEqqqZwEXzpVCGbkc3ZXG84CngIjk8eXE7hH5X1Q13r1pE87c0grAv4HTQFGgOjBTVevi9NtGikiYiOQJ1OlSItJGRKpndhypiUh7ESmX2XEY/7mRE+ka4DER+VhEHhaRgiLSEidh/NtdxjMSdxC4BdKOXrsHbDIjnt+B3CISLiJPA9NFZI6nyX2lUv+f3Mm0H07y7AV8BkwEzgJxOJeaoqozVDUSp9thQerjBUpz372Qy0xguIhMEZHCARBTbmAK0ENEbPrhdeKGTaSqulVVHwBWAd1wEuWzwIuqmiwiYe5Bn9uBzsCHACKSX0QeE5EvgD0i4pcm9hXEcxvOAiULgHJAI5wBoq+BGSJSwpc4PBP6VfU5IFJV31bVGP7uw40/p382JzAn1fNvV1UVEZeI1M7kZDEDeExVq+JM6ZorIsUyMR5w3qtjwDZVTRKRwoFWYzZX7oZNpB6q+i7wJBCG0zdYwL09XkTyAxNwFv/4yd1fOA7nSqEzOFcGHRKRJiLS+xrFMx5n5abtOLVGVdXFqvofd0wlRKSxiPS6yvOniJuqJqTatRxoLCKl3Qnd89nJBQSLSLCIPAKsck/+HwU86E4W17yG6m463+y5IEFVBwGHcb58MqXWLCL3ATfjXLLr6QqpjdNFcq+IhF3rmC4mELtFAtUNn0gBVDVJVb/DuaLnCRH5RkTeBKJxklUfEVmA00/6GvAt8Cfwjar+gXOZ5SPuAZiaGRjPYpxkGSkiLXBqrkVFZL+I/Bunj3UpztzQulcbj3u6lJ6z7X2cZv4EEWmeqk+0IU4tegjQFCdJHAK6AveKSO5UA1LXJHm5z/MxztQxRCS7e9d24EH3/0fd3xeFrnFM7XCmkrlEJB9QBmeO8Fagl4h0dXfZZOrfZqpukREiEhUI3SKB7IadkH8x4lyfnhf4FfgfTu3hR5yFP14BOuFMUp/rnuvpGWn/FKfGswz4l6ru8XM8O4H1OLWYnsAbqvq9iPTDmTg/U1V/93c87tqpJxmGAtlV9YSI5MBp1u/BSfqPqupJEXkXJ+EXAGJUtc+FjpcRRKQ10EhVW4lIsKomubdvB4YCc3H6fx92x/gj8IKq/pWBMbUCmqlqcxEZivPlczvO6/YWkA+ny2a9uu9kIM5c4tiMiukS8S4GhqvqGhEZ4461ZaoBSZOK1UjT4W4qz1LV71T1T1U9oap34FyTvgp4FPjOk0TdWuEk2iY4NdS3MiCedaqajNPsP4CTVAFOAnU9SdTf8aRKoiHu5r5nVkFunEWiD+G+8klEHsOZ2D9RVTurah8RqSQiA91fCBl6uak70U/HqRmn3t4NJ7l/AfwHp3tmnDv+E8CXIlItg2IKw+mvjXRvugdoDtyJkzj343ymfgOOisjTIjIJWCIi92dETJeItzTQAPDU5F/HmRZntdILsFHDy+BOIImqOkJEyuOMpFcVkR/c/YX/xJnX+auqfg987/6Dzqja12Gc6+SbishXODXk91LFmyHxqLPmKUAHcWYLbAZGq+qwVMUicWp8R8W5GV+kO75uwGsi8jjQHUjIoISaA1gNzBeRicA6cW678gbwGM4sg2Scy2K3u58zUEQigaQMiAecAblnVPVPcS4FDsNp5SgQ7e5+qQvchjP17CTOF/YYnPf6mnF3QSzEafF0E5HxOC2aWFXddy1jyUoskV4GTwJxJ4+jQF/gr1SJpS7OMnQr3OWCPQM1GZEsVHWjiHTGGdBpBXzv7sP0yNB4VHW8iMQAX+FMxcJ9nsLAcWCzqsaJSHGcPsGCOIk9EqffMjSjmoiq+ifwsIjUAwbjXF4bA7zkbqZ2wun73umO2dP0/xBIuMBhfY3pOM48YVT1L3FmDtyJ04+cAtRzx3MP0EdVD3iemwmDYq1w+mzHA+NFZBxO3/hKdzx2n690WCK9Aqo6U0S+Bo65m9iISA2c/qN1qrrDXS6jajapY1kPVHcPWHj79q5VPKo6PZ3NR3Ga+Z+7a8WtgJ2q+oC7qeqZSfAxzgr+GUZVlwHLROQ2Vf0t1eBNAeCk50vQ89pkZP9oOiYA4e7E3hbnAot5ODXX+NT9uhnZDXKuVN0ieVNtdgF1VHWJOx5LoumwRHqF3P1ZALgHWx7DGcH3fGNf03U73TWwgIjH/Uf2kojMUNU/RGQrziAYqtrZ3fdWWVV/uBbxuM/rXfHf3VeZiFNLRURcni/Ea0lVx7rPfxPOpcE7gM+B3sD9qvrZtY7JLQfOhSHvi8hUnC/FVrhnOlzrz3ZWYqP2PhCRcJw+t6OZ+OEPmHg8tT79ezGTosD7OM3WfwG7MrtGIyI9cO5h9Zyqfisiea9xbfTceArh1E73isgQIL+q9siseNwx1cV5v7YDP6rqaEuiF2eJ1A88H7JA+bAFYDxDcAZSxqjqjwEQT3OcOwPswrn89evMqJmeS0SaAt1U9ZHMqi2fE082Tbvug7kAS6Qmw6ROBu55rfGBkNg9RORBnL7kgOn3E5GnVXVmZsdhrowlUpOhPKPOgZRAs4JAaU2Yy2OJ1BhjfGRXNhljjI8skRpjjI8skRpjjI8skfqJ+1rtgGHxXFygxQOBF1OgxeMvIjJVRI6KyM8X2C8i8q6I7BSRn9zra1yUJVL/CbQPncVzcYEWDwReTIEWj79Mx1nf4ELq46wOVgLnNZhwqQNaIjXG3FBUdTXOZdQX0hhnbV9VZ4H1PCJS5GLHtGvt/76hnG8HcaaRBcxcMovn4gItHgi8mPwVT1hYWHx8fHy2S5e8MBG5kji28feauQBRqhp1Bc+/BWdtWI8D7m2/p1/cEikA136lsvR55vT269cvkyNxvP322wCsWbMmkyNxVK/u3D4oLi5wrlrMls3JD/3798/kSNL6z3/+k9kh+F1Q0OU1oFNSUuJUtaIPp0ovIVw0kVsiNcZkCVeQSH091QGctSE8bsVZCeuCrI/UGBPwRISgoKDL+vGDRcDT7tH7B3DWr71gsx6sRmqMySL8lCQRkTlALSC/iBzAuZOCZ93cicASnHtW7cS5u0L7Sx3TEqkxJuCJCMHB/klXqtrqEvsVuKI1YS2RGmOyBH/VSDOCJVJjTMDz9JEGKkukxpgswRKpMcb4wGqkxhjjB5ZIjTHGB/4ctc8IgRuZMcakYjVSY4zxUaCsiZEeS6RZzJ9//smSJUu8j0+ePEmVKlWIj49n69atZM+eHYAHH3yQokWLcvDgQVasWIHL5aJBgwbkyZOHuLg4lixZwuOPP+63D2dycjKRkZHkz5+f4cOHs3PnTkaNGkVMTAxFihRh0KBBREREsHXrVkaNGkVoaCivvvoqt956K6dPn+a1115j5MiRPsfTpUsXli5dSoECBdi0aRMAbdq04ddffwXgxIkT5MmTh++//55vv/2WPn36EBoaysyZMylWrBgnTpygbdu2LFq0yC+vzZ9//kl0dLT38cmTJ3nwwQepUKECABs2bGDVqlV0796d7Nmzc/DgQb788ktcLhePPvooefPmJS4ujsWLF9OsWTO/xJSQkEBiYiIAISEhhIaGEhsb671GXVURESIiIkhKSiI+Ph6A8PBwgoKCUFViY2MJDw+/ZsnNBpsuQkQKA+8AlYB4YC/QF/gR+AXIBpwGxqnqjHOeWwn4DngSWAksd+8qDCQDx9yP71fVhAz8b1xT+fLlo02bNoCzOMOkSZMoXrw427Zto3z58lSsmHbRm82bN/Poo49y6tQpfvzxR2rWrMn333/P/fff79c/go8++og77riDs2fPAjBixAi6d+9OuXLl+Oyzz5gzZw6dOnVi7ty5DB06lMOHD7NgwQJ69uzJjBkzaNu2rV/iadu2LV27dqVTp07ebbNnz/b+PnDgQHLnzg3AmDFjmDNnDvv27SMqKorhw4fz5ptvMmDAAL+9Nvny5aNdu3aA835NnDiR4sWLA3Dq1Cn27dtHzpw5veU3btxI48aNOXnyJD/88AMPPfQQ69ato3Llyn6JKTk5mcTERO8XbmxsLMHBwYSHh3vLxMXFec+VmJhIeHg4KSkpJCQkkC1bNuLj4wkNDb3mNcRATqSZFpn7fuefAl+rajFVLQW8BBQCdqnqfap6D9ASeFZE2qd6rgsYDnwOoKp/qGo5VS0HTARGex5fT0n0XL/99hu5c+cmV65cFywTFBREUlISSUlJBAUFceLECc6cOcOtt97qtziOHj3KunXraNiwoXfb/v37KVu2LAAVK1Zk1apVAAQHB5OQkEBcXBzBwcEcPHiQ48ePU65cOb/EUq1aNfLly5fuPlXl448/pkWLFoBTG4uNjSUmJoaQkBB2797NoUOHvMv1+dv+/fvJkyePN5GvXLmSGjVqpElIqd8vl8vlfb9uu+22Cx32iqSkpOByuRARRASXy+WtnYLzGiUlJRESEpJmm6eWmpKSgqpe84Efz2DT5fxkhsyskT4EJLoXCQBAVX8QkX+kLqSqu0WkHzAKmObe3Av4GKcme8PasWMHd999t/fxjz/+yPbt2ylUqBA1atQgW7ZsVKpUia+++org4GDq1avH6tWrqVq1ql/jGDt2LN26dSMmJsa7rWjRoqxdu5bq1avz9ddfc/ToUcBpZr/11luEhYXx8ssvM378eDp27OjXeC7km2++oVChQt4aYf/+/enRowfh4eFMmTKFF198kcGDB2fY+X/55Rfv+7Vz505y5sxJwYIF05SpXLkyX3zxBcHBwTRo0ICvv/6aatWq+S2GoKAg4uPjvWvfehK2R3JycppmdGhoqLeG6qmNhoWF+S2eK409UGVmIi0NbLrMspuBuwFE5BbgcaA2V5lI3Tf1ioSsuwBucnIyu3bt4sEHHwSgTJky3ubft99+y+rVq6lTpw4FCxakVStnjYYDBw6QI0cOAD777DOCgoKoUaMGERERVx3Ht99+S968eSlZsiRbtmzxbn/hhRcYM2YMM2bM4MEHH/TWcEqUKMHEic535w8//ED+/PkBGDx4MMHBwfTo0eOCNUpfzZ8/nyeeeML7uGzZsqxevRqAtWvXUqRIEVSVNm3aEBISwrBhwyhUqJBfzu15v6pXr05iYiLfffddmlg8ChYsyFNPPQU4LY4cOXKgqkRHRxMUFEStWrV8er9cLhehoaHExMR4a6SpnVsbdblc3vMlJSV5a8+xsbEAhIWFXZMEF+h9pIEbWVqpO2PeAQaqavLVHkxVo1S1oqpWjIzMmvf32rt3LwULFvR+yCMiIggKCkJEKF26NIcPH05TXlX5/vvvqVy5Mt999x1VqlThnnvu4YcffvApjq1bt/LNN9/QokULhgwZwubNmxk6dCh33HEHb7/9NpMnT+bhhx/m5ptvPi+emTNn0q5dO6ZNm0aHDh2oU6cOH3/8sU/xXEhSUhILFy6kefPm5+1TVYYNG8aLL77I66+/zqBBg2jVqhXjx4/32/n37Nnjfb9OnDjByZMnmTFjBlFRUZw+fZpZs2Z5+5c9MXnep3Xr1lG1alVKlSrF5s2bfY4lNDSUiIgIsmfPniZBeZr16TWPVZWEhATCwsK8faQhISFpugUymqc74lI/mSEza6TbgPM/1em7D9ju/r0iMNf9guUHGohIkqou8HuEASx1MxHgzJkz3trmrl27uOmmm9KU/+9//0vRokXJli0biYmJ3g+dr38IXbp0oUuXLgBs2bKFuXPnMmjQIP766y/y5s1LSkoKM2fOpHHjxmmet2zZMqpUqULOnDmJj4/3fglk1G1EVqxYwV133ZVu3/Ds2bOpV68eefPmJSYmxrtAcOquCl9t377d+34VKFCAHj3+XqUtKiqKNm3aeAeAALZt28add9553vuVlJTkcywpKSkEBQWRkpJCUlKS97zJyckXXBzZk2A9iUpEvH2n10og10gzM5GuAN4Qkc6qOgm8I/HZUxdy95mOBMYCqGrRVPumA4tvtCSamJjI/v37efjhh73b1qxZw7FjxxARcuXKxf/93/+lKf/f//6Xpk2bAlC+fHmio6O9U6IywldffcWnn34KQI0aNdKcJy4ujmXLljFq1CgAWrRowSuvvEJISIjPfZRPP/00a9as4fjx4xQrVoxBgwbxzDPP8OGHH3oHmVKLiYlh9uzZLF68GIDevXvTqlUrQkNDmTFjxnnlr0ZiYiL79u2jTp06l11+27Zt3tpzxYoVWbRoES6XK82A3tWKi4vzJsCwsLA0I/QXqo16Ru/h70E6IM1of0YK9Ka9XMtvlPNOLnIzTlO9As5d//biTH/6ibTTnyao6rR0nj8dJ5F+lGrba8AZVR15mWFooEz0tZvfXZzd/O7yBVLff7zDp7uIRkREaOoW2MVs3rx5k483v7timTqPVFUPAedXE+CyvuZU9Zl0tr3mW1TGmEAUKBWe9NiVTcaYLCGQm/aWSI0xAS/Q+0gtkRpjsgRLpMYY4yPrIzXGGB/Yws7GGOMH1rQ3xhgfZObln5fDEqkxJkuwGqkxxvjIEqkxxvggvSX/AoklUmNMlmA1UmOM8UGgDzZl6upPAeKGfwGMyUhhYWE+r/6UJ08erVGjxmWVjY6OvrFWfzLGmMtlTfsAN2vWrMwOAXBuJQyBcymcp7WS+l5Mmem+++4DAnM90sutLV0rvt5CJtAEetPeEqkxJuAF+iWigVtXNsaYVPx18zsRqSciO0Rkp4i8kM7+3CISLSI/isg2EWl/qWMGboo3xphU/NFHKiIuYBzwCHAA2CAii1T1v6mK9QD+q6qNRKQAsENE3lfVhAsd1xKpMSbg+XFh5/uBnaq6233cuUBjIHUiVSCnONXbHMCfwEVv32qJ1BiTJfhpsOkW4LdUjw8Alc8p8x6wCDgE5ASeVNWUix3UEqkxJku4ghppfhHZmOpxlKpGuX9PLxufO5e8LvADUBsoBnwpImtU9dSFTmiJ1BgT8K7wWvvjF5mQfwC4LdXjW3Fqnqm1B4apM/9vp4jsAe4G1l/ohDZqb4zJEoKCgi7r5xI2ACVEpKiIhAItcZrxqe0H/g9ARAoBJYHdFzuo1UiNMVmCP/pIVTVJRHoCnwMuYKqqbhORru79E4GhwHQR2YrTFTBQVY9f7LiWSI0xAc+ft2NW1SXAknO2TUz1+yGgzpUc0xKpMSZLCORLRK2P9BLOnj3L2LFjGThwIAMHDuTXX3/lzJkzDB8+nP79+zN8+HDOnj0LwP/+9z9efvllBg8ezJEjR7zPHzFiBNf7KlvJycm0atWK3r17p9k+c+ZMypcvz19//QU414C3aNGCNm3asH//fgBOnz5N9+7d/fIadenShdtvv50KFSp4t7Vp04bKlStTuXJlSpYsSeXKzmyXb7/9lkqVKvHggw+ya9cuAE6cOEGjRo38+n4dPHiQTZs2sWnTJn755RdSUlLYvn07mzdvZvPmzaxfv57NmzcDcPLkSTZt2sSWLVuIjY0FICkpia1bt/otpoSEBM6ePcvZs2dJSHDmmMfGxnq3nTlzxvuZTkpK8m5PSXFmAKkqMTEx1/Qz7RlsupyfzJCpNVIRKQy8A1QC4oG9QF/gR+AXIBtwGhinqjPcz8kNzAZux4l/JE5n8XL3YQsDycAx9+P7L3ZFwqXMnj2be++9l169epGUlER8fDzR0dGUKlWKRo0aER0dzeLFi3nyySdZunQpvXr14vjx4yxfvpzWrVuzcOFCHnvssYD+NvWHOXPmULRoUc6cOePddvjwYb777jsKFy7s3TZr1ixGjhzJoUOH+Oijj+jXrx+TJk2iY8eOfnmN2rZtS9euXenUqZN32+zZs72/Dxw4kNy5cwMwZswY5syZw759+4iKimL48OG8+eabDBgwwG/vV3x8PAcPHqRChQq4XC62b9/OsWPHuOeee7xldu/e7U0ABw8epFSpUsTFxfH7779z5513sn//fm677Ta/xJScnExiYiLZs2cHnAQaHBxMeHi4t0xcXJz3XImJiYSHh5OSkkJCQgLZsmUjPj6e0NDQa/6ZDuTVnzItMvdVA58CX6tqMVUtBbwEFAJ2qep9qnoPzqjas6mud/VcvlUWqAWMAk6rajlVLQdMBEZ7HvuSRGNjY9mxYwc1a9YEIDg4mIiICDZv3kz16tUBqF69Ops2bQLA5XKRkJBAfHw8LpeLI0eO8Ndff3H33XdfbQhZwpEjR1izZg1NmjRJs33UqFH07ds3zR9ccHAwcXFxxMXFERwczG+//cbRo0fT1CB9Ua1aNfLly5fuPlXl448/pkWLFgCEhIQQGxtLTEwMISEh7N69m0OHDnnfW39RVVJSUrz/hoaGptl37NgxChYsCDg1r5SUFFJSUhARYmNjiY+PJ0+ePH6JJSUlBZfL5b0u3eVykZiYmCaepKQkQkJC0mxTVW9sqpopC4j461r7jJCZNdKHgMRzOnl/EJF/pC6kqrtFpB9OwpzGVVy+dbWOHj1Krly5mDRpEvv376do0aK0adOGU6dOeT/YefLk4dQpZ55uo0aNmDZtGqGhoXTp0oU5c+bQrFmzjAgtoIwcOZI+ffoQExPj3bZq1SoKFizIXXfdlaZshw4d+Pe//022bNkYOnQoo0ePpnv37tckzm+++YZChQpRvHhxAPr370+PHj0IDw9nypQpvPjiiwwePNiv5wwLC+PWW29l/fr1BAUFkTdvXvLmzevdf+rUKUJDQ701wttuu41ff/2VoKAgSpYsye7du/nHP/7ht3iCgoKIj4/3NsuTkpLSNIeTk5PTDOyEhoZ6a6ie2mhYWJjf4rlc/hxsygiZmUhLA5sus+xmnAmxcBWXb12t5ORk9u7dS9u2bSlWrBizZ88mOjr6guXvuOMO7x/iL7/8Qp48eVBV3nvvPYKDg2nVqpW3WXm9WL16Nfny5aNUqVJs3OhcTBIbG8uUKVMYN27ceeVLlizJzJkzAdi0aRMFChRAVRk4cCDBwcH069ePm266KUNinT9/Pk888YT3cdmyZVm9ejUAa9eupUiRIqgqbdq0ISQkhGHDhlGoUCGfzpmYmMgff/xBpUqVCA4O5pdffuHo0aPeGujRo0cpUKCAt3yOHDkoV64c4PSXhoWFoaps374dEeHOO+9MU6O9Ui6Xi9DQUGJiYtKd5H5ubdTlchEREeHd56nxefpvw8LCrlmCC+TuscBN8WmlfgU9l2/dDJQD3hORXFd0MJFIEdkoIhujoqIuWC5fvnzky5ePYsWKAVCpUiX27dtHrly5OHHiBOAMTuTKlfb0qsqiRYto0qQJCxYsoGnTplStWpUvvvjiSsLMEn788UdWrVpFw4YNefHFF9m4cSODBg3i4MGDtGzZkoYNG3L06FGeeuopjh//eyqeqjJlyhQ6d+5MVFQUXbt2pUGDBsyZMydD4kxKSmLhwoU0b978vH2qyrBhw3jxxRd5/fXXGTRoEK1atWL8+PE+n/fEiRNky5aN0NBQgoKCuOmmm7wtGFXljz/+SJNIU8fk6Rvdv38/d9xxBwULFuTQoXMvwrlyoaGhREREkD179jQ1PU+zPr1mu6qSkJBAWFiYt480JCQkTbdARvPThPwMkZk10m3A+Z/q9N0HbHf/fsWXb53Lfd2tJ4PqhVbIz5MnD/ny5eP333+nSJEibNu2jZtvvpmbb76ZNWvW0KhRI9asWUP58uXTPG/t2rWULVuWiIgIEhISvH03nhHS60mvXr3o1asXABs3bmTmzJmMHDkyTZmGDRsye/bsNE3a6OhoqlWrRq5cuYiLi/P+EWTU6vcrVqzgrrvu4tZbbz1v3+zZs6lXrx558+YlJibGG0vqroqrFRYWxunTp0lOTiYoKIgTJ06QI0cOAP766y/Cw8PTbSofPXqUfPnyERIS4h0tFxGSk5N9jiklJYWgoCBSUlJISkryDjx5YkwvGXkSrKdWKCLevtNrwW7HfGErgDdEpLOqTgIQkUpA9tSF3H2mI4Gx7k2ey7fWXO7lW75o27YtEyZMIDk5mQIFCtC5c2dSUlIYN24cq1ev5qabbqJnz57e8vHx8axdu5b+/fsDUK9ePcaOHUtwcDDdunXLqDCzlNjYWBYvXuxt+j/11FP079+f4OBg3nzzTZ+O/fTTT7NmzRqOHz9OsWLFGDRoEM888wwffvihd5AptZiYGGbPns3ixYsB6N27N61atSI0NJQZM2b4FAtArly5yJ8/P1u2bEFEyJEjB0WKFAFIM8iUWnJyMkeOHKF06dIA3HLLLWzfvt3bb+qruLg4bwIMCwtLM0J/odqoZ/Qe/h6kA9KM9me0QG7aZ+pdREXkZpzpTxWAOP6e/vQTaac/TVDVaameMx0ogtPkH6aqs1Md8zXgjKqmrRZd2AVrpNea3bPp4uyeTZcvkO7ZFO/w6S6ihQsX1nbt2l1W2REjRtxYdxF1X4p1fjUBLvg1d6nLt1T1Nd8jM8YEErv5nTHG+IFNfzLGGB9ZjdQYY3xgo/bGGOMHViM1xhgfWR+pMcb4wEbtjTHGD6xGaowxPrJEaowxPrBl9Iwxxg+sj9QYY3xkidQYY3xgTfsswLPqUqAItDuOelZdChSeFZcCiWelfXM+f92axGqkxhjjI7tENMD9/PPPmR0CgHchX89dSTOb586egVIT8NTUt2/ffomS147ntsqehbwDxX/+85/MDsGvbEK+Mcb4gSVSY4zxkQ02GWOMj6xGaowxPrA+UmOM8QMbtTfGGB9ZjdQYY3xgTXtjjPEDG7U3xhgfBXKNNHBTvDHGuHkWLbmcn8s4Vj0R2SEiO0XkhQuUqSUiP4jINhFZdaljWo3UGJMl+KNpLyIuYBzwCHAA2CAii1T1v6nK5AHGA/VUdb+IFLxkbD5HdgNITk7miSeeoEePHgCMGjWKRo0a0bRpU/r06cOpU6cA2LJlC02bNqVly5bs378fgFOnTtGlSxe/ruiUnJxM69at6du3L+BcV12/fn1at25N69atWbt2LQA//PADLVu25Omnn+a3334D4PTp0/Ts2TPgVpjyt+TkZJo2bUq3bt0AOHHiBB07dqRevXp07NiRkydPArB582aaNGlCixYt2LdvH+C8Z507d/bLa/Tnn38yY8YM78+7776bZi2FDRs2MHLkSGJiYgA4ePAg06dPZ9asWfz1118AxMXF8dFHH/ntPUtISODs2bOcPXuWhIQEAGJjY73bzpw5w9mzZwFISkrybk9JSQGcNQ9iYmKu+WfIM+B0qZ9LuB/Yqaq7VTUBmAs0PqdMa+ATVd0PoKpHL3XQLJ1IReQZEbk5o88ze/ZsihYt6n1cpUoVPv30Uz755BPuuOMOJk+eDMCMGTMYPXo0vXv3Zt68eYCT5Dp16uTX/p05c+akiQegdevWfPDBB3zwwQdUq1YNgPfff58RI0bQvXt3PvroIwAmT55M+/btA7q/yR9mzZpFsWLFvI8nT57MAw88wLJly3jggQe879n06dN555136Nu3L3PnzgVgwoQJREZG+uU1ypcvH+3ataNdu3a0bduW4OBgihcvDjgJe9++feTMmdNbfuPGjTRu3Jjq1avzww8/ALBu3ToqV67sl3iSk5NJTEwke/bsZM+enaSkJFJSUggPDyciIoKIiAiCg4MJDnYaq4mJiYSHhxMWFuZNuvHx8YSGhl7Tz9DlJlF3TPlFZGOqn8hUh7oF+C3V4wPubandBeQVka9FZJOIPH2p+LJ0IgWeATI0kR4+fJg1a9bQrFkz77aqVat6P2hly5blyJEjAAQHBxMXF0dcXBzBwcH89ttvHD16lEqVKvktniNHjvDNN9/QpEmTS5YNDg4mPj7eG8+BAwc4evSod1Wn69Xhw4dZtWpVmvdsxYoV3tesSZMmLF++HPj7NYqNjSUkJIT9+/f7/T3z2L9/P3ny5CF37twArFy5kho1aqRJSEFBQSQlJZGUlITL5eLEiROcOXOG2267zS8xpKSk4HK5vEnH5XKRmJjo3a+qJCUlERISkmabqiIipKSkoKrez/+1dAWJ9LiqVkz1E5X6MOkc+tyqdTBQAWgI1AUGichdF4vtkolURP4hIr+IyGQR+VlE3heRh0XkGxH5VUTuF5F8IrJARH4Ske9EpIz7ua+JyFR3Zt8tIr1THbef+3g/i0jfVNufdh/nRxGZJSI5RWSPiIS49+cSkb0i8gRQEXjf3SkcLiIVRGSV+1vkcxEpcqn/36WMGDGCZ5999oL9M59++qm3BtipUyf+9a9/MXv2bFq1asW7775Lz549fQ0hjVGjRtG7d+/zagPz58+nZcuWDBkyxNvV8Mwzz/D6668zZ84cWrRowbhx47xN3evZsGHDeP7559O8Z3/88QcFChQAoECBAvz5558AdO7cmcGDBzNr1ixat27NmDFj6NWrV4bE9csvv3D33XcDsHPnTnLmzEnBgmm73ypXrswXX3zBpk2buO+++1izZo338+UPnkTtSY6e3z2Sk5PTrEYfGhpKXFwciYmJhISEEB8f77eFmq+Un5r2B4DU30q3AofSKbNMVc+q6nFgNVD2Yge93K+V4sATQCSwAacPoRrwGPASTlV5i6o2EZHawEygnPu5dwMPATmBHSIyASgDtAcq43xDfO8eGUsAXgYeVNXjIpJPVU+LyNc43w4LgJbAx6r6oYj0AJ5X1Y3uRDsWaKyqx0TkSeB1oMNl/h/Ps2rVKvLly8c///lPNmzYcN7+qKgoXC4Xjz76qPMfvftu3n//fcBpohUoUABV5fnnnyc4OJjnn3+e/PnzX204rFmzhnz58nHPPfewceNG7/bmzZt7uw8mTJjA6NGjGTx4MCVLlmT69OmA0xfoiefFF18kODiYvn37ctNNN111PIHo66+/9r5n69evv2T5e+65x9uk37hxozex9evXj+DgYAYMGODTe+aRnJzMrl27qF69OomJiXz33Xc88cQT55UrWLAgTz31FAC//fYbOXLkQFWJjo4mKCiIWrVqERERcdVxuFwuQkNDiYmJ8dZIUzu3NupyubznS0pK8iaq2NhYwFn9/lrM70wv1qu0ASghIkWBgzj5pPU5ZRYC74lIMBCKk6dGX+ygl/sK7FHVraqaAmwDlqvzNbYV+AdOUp0FoKorgJtEJLf7uZ+parw7sx8FCrnLf+rO+GeAT4DqQG3gI3dZVPVP9zEm4yRe3P9OSyfGkkBp4EsR+QF4Befb5jwiEunpP4mKikqvCOAMHq1cuZK6devSv39/1q9fzwsvOLMlFi5cyKpVqxg2bNh534KqSlRUFF26dGHChAl0796dRx99lA8++OCC57ocP/74I6tXr6ZRo0a8/PLLbNiwgUGDBnHTTTfhcrkICgri8ccfZ9u2befFM2XKFDp16sSkSZPo0qUL9evX9yaQ68nmzZtZuXIlDz/8MM899xzff/89AwYM4KabbuLYsWMAHDt2jHz58qV5nqoyceJEunbtyrhx4+jZsyeNGjVi9uzZfolrz549FCxYkIiICE6cOMHJkyeZMWMGUVFRnD59mlmzZnkHeDzxfPfdd1SpUoV169ZRtWpVSpUqxebNm32OJTQ0lIiICLJnz56m9umpoabXbFdVEhISCAsL8/aRhoSEpOkWyGj+qJGqahLQE/gc2A7MV9VtItJVRLq6y2wHlgE/AeuByap60dXfL7dGGp/q95RUj1Pcx0hKL+Z0npvsLn+h/61wfn8FqvqNu4uhJuC6wH9KgG2qWuWC/4u/jxcFeDKoXmiF/L59+3pHxjds2MD06dMZNmwYa9euZerUqUybNo3w8PDznrdw4UJq1KhB7ty5iYuL885v83yLX62ePXt6uwo2btzI7NmzGTp0KMePH/fWmlauXJlmkAVg8eLFVKtWjVy5chEXF+f944mLi/MpnkDUr18/+vXrB8D69euZNm0aI0aM4K233mLBggV07tyZBQsWULt27TTPW7BgATVr1jzvPfPXa7R9+3Zvs75AgQLeGSDgtGzatGlD9uzZvdu2bdvGnXfeSbZs2UhMTPQmiaSk9P7UrkxKSgpBQUGkpKSQlJTkPW9ycvIF52J6EqwnUYmIt3vgWrmMZvtlUdUlwJJztk085/FbwFuXe0x/9RivBp4ChopILZzO3lMX+Y+vBqaLyDCcBPg40Banaf+piIxW1T/cTXtPrXQmMAcYmuo4p3G6DAB2AAVEpIqqrnM39e9S1bTVMz944403SEhIIDLSGQwsU6YMr776KuA0eRYtWuS91cPTTz/Ns88+S0hICCNGjPB3KACMGTOG//3vf4gIRYoU4eWXX/bui4uLY/HixYwbNw6Ap556igEDBhASEsLrr7+eIfEEos6dO/Pss8/y8ccfU6RIEUaP/rulFhsby8KFC5k0aRIA7dq1o0+fPoSEhDBy5Eifz52YmMi+ffuoU6fOZZfftm0bzZs3B6BixYosWrQIl8tFw4YNfY4nLi7OmwDDwsK8CSoxMfGCtVHP6D1ASEiIt1KQXkUio/grkWYEudQ3ioj8A1isqqXdj6e7H3/k2QfUwGluFwVigEhV/UlEXgPOqOpI93N/Bh5V1b0i0o+/+y8nq+o77jLtgP44tdctqvqMe3thYA9QRFVPuLc1A94AYoEqOM37d4HcOF8S76jqpEu8BheskV5rds+mi7N7Nl2+QLpnU7zDp1u/FitWTC+3ItK8efNNqlrRl/NdqUvWSFV1L07fo+fxMxfYd+6kVlT1tXMepz7O28Db6TxnBjAjnVCq4fSfnkhV9mPg41RlfsBJ6saY60jqvtxAlCUuERWRsUB9oEFmx2KMyRyWSH2kqhkzsc8Yk2UEShdTerJEIjXG3Nguc7J9prFEaozJEiyRGmOMjyyRGmOMj2ywyRhjfGB9pMYY4weWSI0xxkeWSI0xxkeWSI0xxkeWSI0xxgeBfq39JVd/ugHc8C+AMRkpLCzM59WfSpYsqRMnTrx0QaB27dqBt/qTMcb4YsGCBU38cRxr2gc4z21mM1toaCgQePF47pKa2QoVKgQE1h+Up0X3xx9/ZHIkaXnuQX89CaT3/VyWSI0xAc8m5BtjjB8E8mCTJVJjTJZgNVJjjPGRJVJjjPGB9ZEaY4wfWCI1xhgfWSI1xhgf2ai9Mcb4wPpIjTHGDyyRGmOMjwI5kQZup0OAiIyM5NZbb+W+++7zbhs6dChFixalUqVKVKpUiaVLlwLw7bffUqFCBapWrcrOnTsBOHHiBA0bNsRfq2wFWjxxcXHUq1eP2rVrU6NGDUaMGAHAX3/9RYsWLahSpQotWrTgxIkTAKxfv56HHnqIunXrsmfPHgBOnjxJy5Yt/RZTIDl48CCNGzemSpUqPPjgg/znP/8BoGPHjtSqVYtatWpx3333UatWLQC+//57atSowcMPP8zu3bsB5/V54okn/Pb6HDx4kMcff5wHH3yQ6tWrExUVBcDPP/9M/fr1qVmzJm3atOH06dPemGrWrEmdOnXSxNSiRYvr8j27GlkqkYpIsoj8ICLbRORHEeknIkGp9t8vIqtFZIeI/CIik0Ukuy/nbNu2LdHR0edt79WrFxs2bGDDhg3Ur18fgHfeeYe5c+fyr3/9y/vhfOONNxg4cKDfvk0DLZ6wsDA+/vhjVqxYwfLly1m5ciWbNm1i7NixVK9enXXr1lG9enXGjh0LwMSJE5kyZQovvfQS06dPB+Dtt9+md+/eAV3juFoul4t//etfrFu3jmXLljFlyhR27NjBlClT+Prrr/n666959NFHadiwIQDjx49n2rRpvPLKK0ybNg2AkSNH0rdvX7+9PsHBwQwZMoRvvvmGpUuXMnXqVHbs2EG/fv0YNGgQq1atokGDBowbNw6ACRMmMG3atDTv2ahRo/wa0+Xw9JNe6iczZKlECsSqajlV/SfwCNAAGAwgIoWAD4GBqloSuAdYBuT05YTVq1cnb968l1U2JCSEuLg4YmJiCAkJYdeuXRw6dIgaNWr4EkJAxyMiREREAJCYmEhSUhIiwueff06LFi0AaNGiBcuWLQOcP+K4uDhiY2MJCQlh7969HD58mKpVq/otpkBSuHBhypYtC0DOnDm56667+P333737VZWFCxfStGlT4O/Xx/Oe7dmzh99//50HH3zQbzEVKlSIMmXKAJAjRw5vTDt37qRKlSoA1KxZk8WLFwPO5yg2Ntb7nu3Zs+eav2eehZ0v5yczZNk+UlU9KiKRwAYReQ3oAcxQ1XXu/Qp8lFHnnzhxIu+//z4VKlRg+PDh5M2blwEDBtC9e3fCw8OZOnUqL7zwAoMHD86oEAImnuTkZOrUqcOePXto37495cuX59ixY95l7woVKsTx48cB6N27N88//zzZsmXjvffeY8iQIQwcONDvMQWi/fv3s3XrVipUqODdtm7dOgoUKECxYsUA6Nu3L/369SNbtmxMmDCBV199lRdffPGaxHT33XezbNky6tevz6JFizh48CCQ9j0bN24cr732Gi+88EKGxXQhgdxiyWo10jRUdTfO/6EgUBrYdC3OGxkZyfbt29mwYQOFCxf2JoKyZcuyZs0avvjiC/bs2UORIkVQVZ566imeeeaZDFvXM7PjcblcLF++nC1btrBlyxa2b99+wbKlS5dmyZIlfPLJJ+zbt4/ChQujqkRGRtKjRw+OHTvml5gCzZkzZ3jmmWd4/fXXyZnz70bSJ5984q2NAtx77718/vnnLFy4kL1793pfn44dO9K1a1eOHj3q15g6dOjA0KFDyZkzJ2PGjGHq1Kk8/PDDnDlzxrse7b333svSpUv59NNP2bdvH4UKFUJV6dy5M926dfNrTBdjTfuMdcWvnIhEishGEdno6Tu8EoUKFcLlchEUFESHDh3YsGFDmv2qyptvvslLL73E66+/zqBBg2jVqpW3z8nfAiWe3LlzU7VqVVauXEmBAgW8ifrIkSPkz5//vJjeeecdnn32WUaNGkX//v1p1qwZkydP9mtMgSAxMZH27dvTvHlzHn30Ue/2pKQkPvvsMx5//PHznqOqvP322zz//PO89dZbvPDCCzzxxBNMmjTJbzF16NCBZs2aeWMqUaIEH374IV999RVNmzblH//4R7oxPffcc7z11lsMGDCAJ5544pq9Z/5KpCJSzz2OslNELli1FpFK7nGZ5pc6ZpZOpCJyJ5AMHAW2ARUu/gyHqkapakVVrRgZGXnF503dx7Vw4UL++c9/ptk/a9Ys6tevT968eYmJifH23cTExFzxuQI9nuPHj3Py5EkAYmNjWbNmDcWLF6dOnTrMnz8fgPnz51O3bt00z5s3bx4PP/wwefLkITY21htTbGyszzEFElWlT58+3HXXXXTv3j3NvlWrVlG8eHFuvvnm8543d+5cHnnkEe/r4+kj9Md7pqr07duXu+66i27dunm3e1oDKSkpvP3227Rr1y7N8+bNm5cmpqCgIEQkS71nIuICxgH1gVJAKxEpdYFyw4HPL+e4WbaPVEQKABOB91RVReQ9YL2IfKaq37vLtAG+UtXDV3uetm3bsnr1ao4fP86dd97JoEGDWL16NT/++CMiwh133JGmZhcTE8Ps2bP57LPPAOjTpw8tW7YkNDSUmTNn+vJfDsh4jh49Su/evUlOTiYlJYXHHnuMOnXqULFiRSIjI/nggw+45ZZb0tSkYmJimD9/PvPmzQOgS5cudOzYkdDQUCZMmOBzTIHk+++/Z/78+ZQqVco7xenll1/mkUce4dNPP03TrPeIiYlh7ty5fPSR08XfrVs32rdvT0hICFfTgkovpg8//JB77rmHhx56yBvT7t27mTp1KgANGzakVatWaWKaN2+e98uxW7dudOjQgZCQEO+Urozkx7uI3g/sdHcLIiJzgcbAf88p1wv4GKh0WfFlpXlgIpIMbAVCgCRgFvC2qqa491cBRuD0maYAq4FnVfViX+MaaPdICrR47J5NF2b3bLq0jRs31q9fv/4yX45RunRp/fDDDy+rbKlSpS54F1F3M72eqnZyP24LVFbVnqnK3AJ8ANQGpgCLVfWiA9dZqkaqqq5L7F8HVL9G4RhjrqEr+ALNLyIbUz2OUlVPVT69g5xbm3wHZxpl8uWeM0slUmOMuQzHL3Jf+wPAbake3wocOqdMRWCuO4nmBxqISJKqLrjQCS2RGmOyBD916WwASohIUeAg0BJonbqAqhZNdc7pOE37BRc7qCVSY0yW4I9EqqpJItITZzTeBUxV1W0i0tW9f+LVHNcSqTEm4Plzsr2qLgGWnLMt3QSqqs9czjEtkRpjsoRAmq1xLkukxpgswRKpMcb4KJATaZa+RNQYYwKB1UiNMVlCINdILZEaYwKe3UXUGGP8wBKpMcb4yBJpgPOschQoAi0ez6pLgSIQVyy76aabMjuE614gJ1IbtTfGZKgmTZosyOwYMprVSHHuXRMIcuTIAXDN7oFzKQULFgQCbz3SQFpr07PYcKDVllLfF+p64MeFnTNE4EZmjDFZhNVIjTFZQqDV+lOzGqkxxvjIaqTGmCwhkGuklkiNMVmCJVJjjPFRICdS6yM1xhgfWY3UGBPwbNESY4zxg0BOpNa0N8YYH1mN1BiTJQRyjdQSqTEmSwjkRGpN+4s4cOAADRo0oEKFClSqVInx48cD8PLLL1O+fHkeeOABWrVqxYkTJwBYt24dDzzwADVr1mTXrl0AnDhxgiZNmvht6beDBw/y+OOPU61aNWrUqEFUVBQA27Zto0GDBtSsWZM2bdpw+vRpANavX0+tWrWoW7cue/bsAeDkyZM8+eSTfokpLi6OevXqUbt2bWrUqMGIESMA+Ouvv2jRogVVqlShRYsW3tdo/fr1PPTQQ+fF07JlS78vj7djxw7Kly/v/cmTJw9jxozhhRdeoFy5crRr185bdtasWbz77rt+PX+gSkhI4OzZs5w9e5aEhAQAYmNjvdvOnDnD2bNnAUhKSvJu9ywWo6rExMQE5HKGmSXLJVIRUREZlerx8yLymvv310Tkeffv2UTkSxEZfLXnCg4O5o033mDTpk2sWLGCqKgofvnlF2rXrs369ev57rvvKF68OKNGOeGMHTuW2bNnM3jwYCZPngzA8OHDef755/32bRocHMyQIUNYu3YtS5YsYdq0aezYsYN+/frxyiuvsGrVKho0aMC4ceMAmDBhAlOnTuWll15i+vTpALz99tv06dPHLzGFhYXx8ccfs2LFCpYvX87KlSvZtGkTY8eOpXr16qxbt47q1aszduxYACZOnMiUKVPOi6d3795+r3GULFmSzZs3s3nzZjZs2ED27Nlp0qQJ69at44cffiA5OZmtW7cSGxvLzJkz6datm1/PH4iSk5NJTEwke/bsZM+enaSkJFJSUggPDyciIoKIiAiCg4MJDnYaq4mJiYSHhxMWFuZNuvHx8YSGhl7zGqJn5P5SP5khyyVSIB5oKiL5L1RAREKBj4FNqjrkak9UuHBhypUrBzjLkpUsWZJDhw7xf//3f94PWqVKlTh06BAAISEhxMXFERMTQ0hICLt37+b333+nWrVqVxvCeQoVKkSZMmUAZ9m9EiVKcPjwYXbu3EmVKlUAqFmzJp999hngJN7Y2FhiYmIIDg5m7969/P7771StWtUv8YgIERERgPNHl5SUhIjw+eef06JFCwBatGjBsmXLvPHExcURGxtLSEgIe/fu5fDhw36L50KWL19OsWLFyJcvHwkJCaiqN4aRI0fSs2dPQkJCMjSGQJCSkoLL5fImHZfLRWJione/qpKUlJTmtVBVVBURISUlBVX1fv6NIyu+GklAFPAs8HI6+4OBucCvqvqCv066b98+fvrpJypWrJhm+6xZs2jWrBkAzz33HL169SI8PJxJkybx8ssv88orr/grhPPs37+fn3/+mfLly3P33XezbNky6tevT3R0NAcPHgSgT58+PP/882TLlo1x48bx2muv8cILfntZAKeWU6dOHfbs2UP79u0pX748x44d864fWqhQIY4fPw5A7969vfG89957DBkyhIEDB/o1nvTMmzePli1bkjNnTpo2bUqFChWoXbs2uXPnZsOGDQwaNCjDYwgEQUFBxMfHe5vlSUlJuFwu7/7k5OQ0a3+GhoYSFxeHiJAtWzbi4+MJCwu75nEH+jzSrFgjBRgHPCUiudPZNwBIUtW+F3qyiESKyEYR2ejpY7yYM2fO0KZNG4YNG0auXLm829966y2Cg4N58sknAShTpgwrV65kyZIl7Nmzh8KFC6OqtGvXjk6dOvl1weazZ8/SsWNHhg4dSs6cOXnnnXeYNm0ajzzyCGfOnPHerqR06dIsXbqUTz/9lH379nlj6ty5M927d/dLTC6Xi+XLl7Nlyxa2bNnC9u3bL1i2dOnSLFmyhE8++SRNPJGRkfTo0YNjx475HM+5EhISiI6Opnnz5gD079+fzZs3M3LkSF599VWGDBnC5MmTefLJJ3n99df9fv5A4nK5CA0NJSYmhtjY2DRJFDivNupyuYiIiCB79uykpKR4k1lsbCyxsbHXdJFta9r7maqeAmYCvdPZvRaoIiJ3XeT5UapaUVUrRkZGXvRciYmJtGnThhYtWtC4cWPv9vfff5+lS5cyZcqU8948VeWtt95i4MCBDBs2jJdeeoknn3ySCRMmXMH/8uIxdejQgWbNmtGwYUMASpQowfz58/nyyy95/PHHueOOO86LafTo0fTr14+RI0cyYMAAmjdv7u3L9YfcuXNTtWpVVq5cSYECBbwr6x85coT8+dP2xKgq77zzDs8++yyjRo2if//+NGvWzK/xeCxdupT77rvvvHtPbdmyBYC77rqL2bNnM2/ePH7++Wd+/fVXv8cQSEJDQ73JMXXt09OsT6/ZrqokJCQQFhbm7SMNCQlJ0y1wI8uSidTtHaAjEHHO9tVAX2CpiNzsywlUlR49elCyZEl69erl3f7ll18yevRo5s2bR/bs2c973vvvv0/dunXJmzcvMTExBAUFERQURGxsrC/heGN69tlnKVGiBF27dvVu99TkUlJSGD16dJoRaXCatg8//DB58uQhNjbWbzEdP36ckydPAk4tZc2aNRQvXpw6deowf/58AObPn0/dunWvSTzpmTt3Li1btjxvu6c2mpiYSHJyMuA0fWNiYvweQyDx1CJTUlLS1ECTk5O978O5PAnWU2nw/HstR+4DuUaaFftIAVDVP0VkPk4ynXrOvo9FpACwTERqqOqJqznHunXrmDNnDv/85z+9gyGDBw9mwIABxMfHe2uolSpVYsyYMQDExMTwwQcfsHDhQgB69uxJmzZtCA0NZerUqemf6AqsX7+eDz/8kHvuuYfatWsD8NJLL7F7926mTZsGQIMGDWjVqpX3OTExMcybN8+b2Lp27UqHDh0IDQ1l4sSJPsVz9OhRevfuTXJyMikpKTz22GPUqVOHihUrEhkZyQcffMAtt9zCpEmT0sQzf/585s2bB0CXLl3o2LEjoaGhfqu1pz7XV199dd7/c8GCBVSqVImbb3a+ax944AHKli3LvffeS9myZf0aQ6CJi4vzJsCwsDBv8klMTLxgbdQzeg/OoKrnC8+z7UYnWW0umIicUdUc7t8LAXuAEar6mnsa1BlVHene/xpQG6ijqnEXOKTaze/SZze/uzS7+d2lxTuy+XKM++67T1etWnVZZXPnzr1JVSteuqT/ZLkaqSeJun8/AmRP9fi1c8q+BqTZZowx/pblEqkx5sZj05+MMcYP/DXYJCL1RGSHiOwUkfMmVYvIUyLyk/vnWxG5ZKe5JVJjzA1DRFw489DrA6WAViJS6pxie4CaqloGGIpzAdBFWSI1xtxI7gd2qupuVU3AuQqyceoCqvqtqv7lfvgdcOulDmqJ1BiTJfipaX8L8Fuqxwfc2y6kI7D0Uge1wSZjTJZwBYNN+UVkY6rHUarqaZ6nd5B054CKyEM4ifSSqw5ZIjXGXG+OX2Qe6QHgtlSPbwUOnVtIRMoAk4H6qvrHpU5oTXtjzI1kA1BCRIq6l9tsCSxKXUBEbgc+Adqq6v8u56BWIzXGZAn+mEeqqkki0hP4HHABU1V1m4h0de+fCLwK3ASMd58z6VJXSlkiNcbcUFR1CbDknG0TU/3eCeh0Jce0RGqMCXh2ZZMxxlznrEZqjMkSArlGaokUMuUeNBeTN2/ezA4hjdS3VwkEgfgHFWir6pcoUSKzQ0gtsP7AMoA17Y0xxkdWIzXGZAmB2BLxsBqpMcb4yBKpMcb4yJr2xpgswZr2xhhzHbNEaowxPrJEaowxPrI+UmNMlmB9pMYYcx2zRGqMMT6ypr0xJuDZMnpZXOfOnbnlllsoV66cd9vgwYMpX748FStWpEGDBhw65Nzy5dtvv6V8+fJUqVKFnTt3AnDixAkaNmyIarr31/JLPB5vv/02oaGhHD9+/JrF06VLF+644w4qVvx7AfGffvqJWrVqUalSJZo1a8apU6cAWLduHffffz/VqlVj165d3ngee+wxv8VzrqJFi1KmTBnuu+8+KlWqBMDAgQMpW7Ys7dq185abNWsWY8aM8fv54+PjadasGY0aNaJ+/frec/Tp04dGjRrRqFEjatWqRaNGjQDYtGkTjz76KE2bNmXfvn0AnDp1ivbt22fYa2R8d10lUhFJFpEfRORHEdksIlV9PebTTz/N4sWL02x77rnn2Lx5Mxs3bqRBgwa8/vrrAIwePZp58+YxdOhQoqKcmxa+8cYbDBw40G/fpunFA/Dbb7+xfPlybr/9du+2axFP27ZtWbBgQZpt3bt3Z+jQoWzYsIHHHnuM0aNHAzBmzBg++OADhgwZwqRJkwAYNmwY/fv3z9DaxooVK9iyZQsbNmzg5MmTrFu3jh9//JHk5GS2bt1KbGwsM2bMoHv37n4/d2hoKDNnziQ6OppFixaxevVqtmzZwpgxY4iOjiY6Opq6detSp04dAKZMmcJ7771Hv379+OCDDwAYN24cXbt2Dega2Y3uukqkQKyqllPVssCLwJu+HrB69ernLWuXelm5s2fPej/gISEhxMbGEhMTQ3BwMLt27eLgwYPUqFHD1zAuGg/A888/zxtvvJHmj+1axFOtWjXy5cuXZtuvv/5KtWrOHWz/7//+j4ULF54XT0hICLt37+bQoUNUr17db/FcSlBQEAkJCagqsbGxhISE8NZbb9GrVy9CQkL8fj4RISIiAoCkpCSSkpLSvEeqypIlS7w10pCQEOLi4oiLiyM4OJh9+/Zx5MgRKleu7PfYjP9cz32kuYC/MurggwYN4v333ydXrlx8+eWXAAwYMIDu3bsTHh7OtGnTGDhwIK+99lpGheAVHR3NLbfcQtmyZdNsz6x4SpUqxeLFi2nUqBGffPIJBw4cAJxk37NnT8LDw5k8eTIvvfQSr776aobGIiLUrVsXESEyMpLIyEiaNm1K+fLlqV27Nrlz52bjxo0ZGkdycjJNmjRh//79PPXUU2m6ZTZs2ED+/Pn5xz/+AThdJa+88grZsmXjrbfeYvjw4fTt2zfDYstKArlGfr3VSMPdTftfcO5JPTSjTjR06FB2795Nq1atGD9+PADlypVj7dq1fPnll+zZs4ebb74ZVaV169a0a9eOI0eO+D2OmJgYhg0bxuDBg8/blxnxAEycOJGoqCiqVq3K6dOnCQ0NBaBs2bKsWrWKZcuWsXfvXooUKYKq0rZtWzp06JAh8axdu5ZNmzaxZMkSxo8fz+rVqxkwYABbtmxh1KhRDBo0iCFDhjB58mSefPJJ/v3vf/s9BpfLRXR0NGvWrOGnn37if//7+w6/ixcv5tFHH/U+LlWqFB999BGzZ8/mt99+o2DBgqgqffr04bnnnvP2f5vAcr0lUk/T/m6gHjBT0vkaE5FIEdkoIhs9fYdXq2XLlnz66adptqkqb775Ji+99BL//ve/efXVV2ndujXvvfeeT+dKz65du9i7dy8VK1akRIkSHDhwgMqVK3P48OFMiQegZMmSREdH8+2339KiRQuKFi2aZr+qMnz4cF544QXeeOMNXnnlFVq2bOn9QvKnm2++GYCCBQvSpEkT1q9f7923ZcsWAO666y5mzZrFvHnz2LZtW4atdp8rVy4qV67M6tWrAaep/8UXX9CgQYPzyqoq48ePp0ePHowdO5bevXvTuHFjZs6cmSGxGd9cb4nUS1XXAfmBAunsi1LViqpaMTIy8oqPnfoPbfHixZQsWTLN/lmzZlG/fn3y5s1LTEwMQUFBBAUFERsbe8XnupR7772XgwcP8uuvv/Lrr79y66238v3331O4cOFMiQfg6NGjAKSkpDB8+HA6dUp7Z9vZs2dTr169DI/n7NmznD592vv7l19+SenSpb37X331Vf71r3+RmJhIcnIy4PShxsTE+C2GP/74wztrIS4ujm+//ZY777wTwPt7kSJFznveJ598Qq1atcidOzdxcXEEBQUhIhn2nhnfXLd9pCJyN+AC/vDlOG3atGH16tUcP36cokWL8uqrr7J06VL+97//ERQUxO233864ceO85WNiYpg1axZLlji3ze7bty9PPvkkoaGhzJo1y5dQLhhP+/btL1g+o+Np164dq1ev5o8//qB48eK88sornD17lv/85z8ANG7cmKeffjpNPO+//z7R0dEA9O7dm9atWxMSEsKMGTN8jie1I0eO0LRpU8Cp/bVq1Yp69eoBsGDBAipWrOitsT7wwAOUKVOGMmXKnNfX7Itjx44xYMAAUlJSSElJoX79+tSuXRs4v1nvERsby6effsq0adMAaN++PT179iQkJMQ7A8IEFrme5qaJSDKw1fMQeElVP7vE0zQxMTFjA7tMnlHjQIsnUGpB4eHhAAE1n9LTc+SZpxsoAuzmd6iqTyNFFStW1NTdMhfjcrk2qWrFS5f0n+uqRqqqrsyOwRiTMWzU3hhjrmOWSI0xxkeWSI0xxkeWSI0xxkeWSI0xxkeWSI0xxkeWSI0xxkeWSI0xxkeWSI0xxkeWSI0xNxQRqSciO0Rkp4i8kM5+EZF33ft/EpHylzqmJVJjzA1DRFzAOKA+UApoJSKlzilWHyjh/okEJlzquJZIjTE3kvuBnaq6W1UTgLlA43PKNAZmquM7II+InL/WYSqWSI0xWYLnlsyX+rmEW4DfUj0+4N52pWXSuK5Wf7pKkhE3PfNFoMXjWb4uUATiKkDFixfP7BDSCKSlBv1h06ZNn4tI/sssnk1ENqZ6HKWqnlthpPfhOffFupwyaVgiNcYEPFWt56dDHQBuS/X4VuDQVZRJw5r2xpgbyQaghIgUFZFQoCWw6Jwyi4Cn3aP3DwAnVfX3ix3UaqTGmBuGqiaJSE/gc5xbEU1V1W0i0tW9fyKwBGgA7ARigAvfy8fturrViDHGZAZr2htjjI8skRpjjI8skRpjjI8skRpjjI8skRpjjI8skRpjjI8skRpjjI8skRpjjI/+H/2hMnWZs5+gAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "im, bar = heatmap(replicated_ratio_df.values, \n", + " list(rb_df.index), \n", + " celltypes,\n", + " cmap='alpha', \n", + " vmin=0, vmax=1)\n", + "_ = annotate_heatmap(im, \n", + " data=replicated_ratio_df.values, \n", + " valfmt=\"{x:.0%}\", \n", + " textcolors=(\"white\", \"white\"),\n", + " threshold=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":62: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + ":63: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_yticklabels([\"\"]+row_labels)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh4AAAHPCAYAAAAcSdNdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADR+UlEQVR4nOydd3hUxdeA30nZdJJAKiWEJk3AAgo2EAXBhoWiIFLkQ1FQEBVURBAQBUT9YUVFpAt2FBSsKEVABJTeAqGX9E6y8/1xd9fd7KaQbCrnfZ77bHbuzNw5d2/uPfecM2eU1hpBEARBEITywKOiByAIgiAIwsWDKB6CIAiCIJQbongIgiAIglBuiOIhCIIgCEK5IYqHIAiCIAjlhigegiAIgiCUG6J4CIIgCIJQbojiIQhuRinlWdFjEARBqKyI4iEIbsKqcGit8yp6LIIgCJUVUTwEwX08pJT6Rinlay1QSnlV5IAEQRAqG6J4CIIbUErVBnoBtwOxSqkhSikvrXVuBQ9NEAShUiGKhyCUEqWUAoYAnYADwEjg/4CTSqnudnVQSsn/nCAIFzVKFokThNKhlGoFfA/sAAYCiUA4sAhIBu60j/uwxIKYtfzzCYJwESL+Z0EoBUopb2AUEAm011oft+w6opRaBzwO3KKUigFigLfs6giCIFx0iNlXEErHTUBf4BWtdbxFEbFyM2AC7gTaAS2BnUqpe8p/mIIgCJUDcbUIQglRSgUDnwIttdb1LGXeWuvzSqnhwBTgE6314xb3Sg3gJ+BfrfWDSimltdZ2nx5aa3OFCSQIglAOiKtFEErOzUBXYDCAUspHa52tlKqFEWC6CXgTjNweSqkM4AhwtVLKpLXOsfSjjCraLPEfgiBUd0TxEIQSorX+XCl1l9b6G0vRecvnOCAQWKy1PmDXJBbD5fKl1jpHKdUC6AY0UEqlAtO11onlNHxBEIQKQVwtglACrO4Ru++eFqtGO+BbYBUwXGudbNlvAl4ChmJYSbyAxUAUsAvD6tEEGKm1/rBchREEQShHJLhUEEpAfleI3XTZbhhKxTKr0mGhDfAY8BZGwOlMQANdgBuA7sAsYLRSqmn+40n+D0EQqgtyMxMEN6K1ngRcY+d+QSkVCDwJnAGWATcC7YHBWus/tNZpWuuTwOdAA+A2SzsPu34l6FQQhGqBKB6C4CasioLWek++XbcDfTCsHHuAW4GftNa/WjOaWjiMkXCslqUfs1KqtVLqNfsVb2X9F0EQqjKieAiCmyjEKhEDbMWYehsENAPWWXfaKRJtMDKe/mkpV8DzGAnKblZKXW05jqz/IghClUWCSwWhHFBKBQEZGEGkazEsG7dprc9b9nsAWzDiPh7UWv+jlLoVI1D1HPAXEAqEYLho1pa7EIIgCG5ALB6CUIYopTwsM2BStdZ5FmvFQqApMFgp1Ugp1RlYgGEJeduidHgBrwJxwDBgEPAgsB14TykVVhHyCIIglBbxFV+E5J8KWt2pSHlduV+01v+zJBl7AyOuoyGQBozAmGILRgKyphjKxheWfk4opX7ASMF+ObDa2qc166lkPxUEobIjisdFiCU9tyfgCZyv7kpIZZLXqhhorV9USr0N9ABOAke01tssdWoDY4GlwM/5FIkswBtjBVwb1joW5UNhuFFFAREEodIhMR4XGUqpBsAQoDOQAuQBn2utP6rQgZURlVFei2LgYZf7I//+t4CewH1a61/tysOAzwAfrXUHS5k3MAC4BCNb6gKt9Trrcaq7UikIQtVDYjwuIpRSQzAWKXsKOAbsBg4BU5RS2yxZN6sNlVVebZCXbyotAEqpy4BHgbnAZrtyhWEduR54zVJWHyNe5D3gPgzXzC9KqY+UUgGidAiCUBkRi8dFglKqNcaDbBfGrAmrWd8fY7rncxhvzU9orf+ssIG6iaoqr0XBGAH8Zh2zpbwB8AOwE+gN+AGTMbKhPgx8BWRjLFw3A3hZUq8LglAZEcXjIkEp9QvQCHhEa73Cuny73f4mwJfAWq31w0qphlrrgxU13tJSneS1rPMyDngc6Ka13qCU6oqR6fRDrfUou7o+wB8YbqXuQG7+WA8JQBUEoSIRV8tFgFLqFqAjMAfD9QDgkIRKa70Pw8S/RSkVA8xTSqUrpR4s18G6gaosryv3C9AYQ/GYB1itIFdh/P++bGnnYVmoLhs4AERqrXPsFQy7zKpmpZRnAccSBEEoU0TxuDjoD5wFVmmts10FHVregtdgJKzqjLF8+ypgllJqi1LqynIfdcmpsvK6isvQWu/EkOkNrXWmpfhKDDdSil29PEv+j07AejCyoiqlrlFKTQPeVkpNUkoFW3KKaFE+BEEob0TxqOZY3nK9gQTrbIcCHm7WN2MfjPiHFRhJq9oC/wDfKKVGV/Z1QqqrvFrrhflcQVsxXEkNLfut8rwIhAHfWc7FUxixIf2BSzEWoItXSo2wtNMgq98KglB+VIqbqlB2WMzquUAqGG/ABa31YYkl+D8gGhiktU4CkpRSTwJDgX4Yqbt/LYehl4iLSN7vgL7AE0qp/2EEm3bGWNvlA2A5xsJ0o4E1GAGpADWAXpZ2h7TW38LFvfrtxTbt+GKTV6h8yFtONcbOjL4WuFIpdUURC4y1wYh7eB/jgQuA1vocMBtjrZE3lFIBlfEN+WKSV2u9GWPxuNswLBo/AJOA+cAzgD/wEHAaeExrnW7ZTmBMwf0EOKCUilBKzVNKhVeEHJWE7kqp95RSjSp6IOWEVd6GFT0Q4eKkUt1MBfdi91azACN+YaRSqq59HevDWhmLmI0GEoAPtNZZdnW8LA/jhRjriYRWxjfk8pC3MsREWMegtV6hta6H4U55AiO2Y6DWOhlogKFYrdBax9krTlrrc1rrSVrrXUAT4AGgdTmLUSlQStXAsHoNBfYqpd6vLO61skApFYJh/RqKXcp9QShPRPG4CNBapwBvY8z0WKqU6qGUaqmUigDbg6wzRrbM14D9+dpbrQY+gAnjoVZpKWN5TUqpMKXUlZapq+WOXVyGl+X7p5YYkA12ylcOxmq2v1m+2xSmfMpTGHAGIweIU6yHMvC0/O1dBuJUGJbzcDfG2jeDMaxH7YE4pdR9FTm2ssAi750YrrZMYLdSyruyWfOE6o9ccBcJWuvlGG/AcRiZLj/AyOR5N0aA4ljgT4x04k6pvC0Pn0sxTPfbXOyz/l0pTPZulPcMjvK+hbFC7AKMG/eo/G3Li0JiVzwwfqc44H6llMkqo9W/b/ewqYsRjLvB2txSr71Sqq1dllUT8L6qXtlt62Asxvc78InW+nugG4YbaoxSqjdUq8DbOsDTwEaMYOraWuvzlrgoL7CtEyQIZUp1+YcSioHWOklr3RfDEjATuB/j4XszcAXwiiUGwJVLoSHGm9J3gNXtYM0LkaeUClVKvQlsVkqlKaUuqWi3hJvk/RbL/4lSaihG3MQXGDNh3gJGKKUWKqVCy16i4qGNRegSgA+Ba4CBSqmaSik/q0XEzlXWBvgXqGn5rpRSnYCvgd8spnmAZzHWhIkuFyHKGItiORjDxTTO7rycAGZh5EIZr5QKq4xuxQvFTt7mwJNAMHDUss+ktc5VxlpAR5VSwyv6f1eo5mitZbuIN4wHrPWtPirfPk/LZwDGG34CcGe+OkEYD/WfMFwWBzEUk0jLflNFy1hKee+w2/8dhusi2PLdA0OZOQHcZCnzrmgZ88k0CSNI9lfgXaCOdeyWz/nAr3b1pwBJGMpVeyDc8nuex8iSaq1XqeQswXm5DGNV4A8L2N8SYyXgIRU9VjfKewL42HLdrgJWW/ZZM1jPBc5Zr3mgYUWPu5zPkaroMVwsm1g8LnK0kRviPaAFsFApda31LVcbloxoDPNsX0u93wGUUnWUUo9jPIi7Y2TQnI6hiIzXWp+yBHA+oZR6u7KYq0sg71q75ssxpqNmWOqbgV8AXwwTPcCoyiCvnTXqBYx8H+uATRiJ1axjB0O5WKmUilRKzceY5bMMuFcbMSNnMBKV5QC9lbHwHtou/XxVQynli7EejglDMbPfZ/3d0jGUrQaWOJdKcf2WBDt5fYEJlt8+GogHI2bI4kJ7EMNK9qPlf/dbpdR3lvYXA9bZPo0reiDVnorWfGSrHBvGjWg5RibMxRhBlxMxFlozY1gAfDAevPdgWDd2YUTHB2EEKa4Bjtn16YkRxHkYSAQerWg5L0DeT4Balrq1MRZjm4Oxyu2zlvIQjJgRM8aDGgw3TqWQFyNew9Puu0e+/Y0xFKev+W99l/uAGnZ1brLINw0jR0gW8BEQWNG/YSnOy60WOcYWUqezRe4XLd9rAvdarot3gNeByytalguUd4zle6jlOl9oV2cDxgKEV1i+D7W06YudJYBqahWw3Ne+tPzmeRhT7L0qelzVdavwAchWuTagg+XmuhxjCfk1wHD+M82/jeGCeN76gLIoJKMt/7R9LGX2D7xalv0pGIFt7StazguQtxmGW+YQRrzH2xjm6EOWh3YWhuJSu7LKm1/hsCsPwXA3mC2y3ePit9uNYSm51PK9CRa3kov+Kv2N2vLQXW15yLpUnjCCbZ/HmPnRGmNdnL8s52m7pf1yDKvIIiyut8q45ZM3yK78CPC65e8BFtmewFBWYzBcpl8CNV306VvRcrn5HCnLOcgDBmJYcP/BsA7eX9Hjq45bhQ9Atsq5WW849g8TDMvG80AaRlR8I0t5W2AP8Hsh/XlixA+Y7R50UWU1fjfJ62UZczpwlaVMYfj/t2G8+bauSvICdS2fIRiuMTPwmf1DGEtcDsZquGaMFX5t58TyGQjciGH96pvvGJXyrdjy2z2BsWDgvfn2edj93RrDsjUXI8B4K8Ysobvt6oQBXTAsRT8DzSpavgLkHWX5De+xvwYwFOeXLd9PAD8CDSzfXwWSgWss3/0sso631EsBhle0fG48T3Ut/8+/2V3f4RhuuH3W/33Z3HjOK3oAslXuDWfzfCCG+f13/jNJzrLc3C631PF00U9Ty838Y8tNbLWlzSsVLWMR8v4FfOui3njLzTvQ8l3l21/p5AWuBrYAX1lutOcxppNGWGXnP0uPr+UB8xUQY39uMN6I/7DIE4fhWjoG9Kjo368I+b2AqZZxT8WYXpr/d2sMLMGwBN1jkT8LuL2APjtgWBPGVbR8Bcj7HrA2X7kHRgBxP4zkc7n8Z6lsZ/kt11gUkO8s14EZwwLwHcasmHvLW54yOkeeGDO28oBLrOfN8tnCch28VdHjrG5bhQ9Atqq5YZhwH8B4WzoPrC+kri+Gi+KsnXLihxHMtoRK5HqxG7Oy3JS+Bvbyn6XA+vB92iJPaFWSF7jd8lCZRb4ZSvnqTcRwNeSfxRSJMUNmh+XBHI1hAZqJoYi1rOjfrhjn4G7Lw/UwhgXkRovC0QHDemEGHsYwv58DFhTR330Y8T+V1dITlO97MwxXyusWpWMuRgyLF4bryGqlS7YoGqMwrJo1KmL8ZXxuLseIVTNjxHnZW758MQJwX7N8r5S/b1XcKnwAslXdDeONcTnGjId0jFgHp5sTcIPlITYB8Mm3z68y/0NjzFbZDYyzPHQDMMywR4HvgeiqLm/+8ViUrpcsN93mljLrW+DDlpv0Ov6bMq0wsrseByZVtDwXIPdYDKVyM8Zb/XkMC84Ey/5XLLJa34Q987W3TkMNAuq7OpeVcbMoGYcssu3gv6ngd2G8+U+0nId5rq6RqiBjMc+DL0agdCIwzPJ/noAR43U38DnGYpNdK3qs1W2r8AHIVnU3jKmXZoy3/yjgLhd1QjDemnZi8SFXtQ0j8VIiRvKxXy1KxVGgX3WU1yJHF8tNeDHQ1K58J4abZT2GwvmS3b5/gf9Z/q4SDycMRfJWy9bT8vt5W/b9APxh+dtlgG5V3DCsO1arxkTLAzgUIxB6HRCBYfnYW1V+xxKeh/yzfWphuF3SLf/fWzCCTat0zprKuFXbxZCEcsEbY/rsdACl1NeWTw9tpGFWGOtfdMPI+Hm4wkZaCrTWc5RSizEUrNoYN6Q5GCZalFKe2sgBUi3kBdBar1ZKdcR4AL2ilHoE421YY8x2mImhkE1USg3CMNd78F+OE10R475QtNbpGIHSNpRSXpa8HRpjbR5P7SKtflVFa71fKXUZhuvvO611llLqYYyg2j5a69NKqY1AD4xlA/6puNGWDZZMw6MwXE5vg7F4olLqNQwL3t1AN20sFim4GVVF7g9CJUUpFaC1Tnd1c1ZK1cO4qR/HsA6crZBBuhGrUmX5W9k/YKuLvBYFStnJ2djysPLAsHac1lrfZdkXiRFs+BCGCf9GrfVv+c9NVUQpNR5jWnSs1jqxosdTViil6mOkiP8S+D+tdZJSqj1GAPlQrfXH9td9VcdyfT+OEdPRR2v9uaXc+gLRECNPUUet9e8VONRqS5XNxidUDixvjLhQOrww3qiaAK9W1YdwfuxvvvmUjmojrzYwWxf/01rvt3yaMeIeGiil+iqlfLXWp7TWYzACNAdqrX+z9lFR43cj72Pku3jObs0awOXaPlUWrfVh4BmM6zbJUrwHw91wveV7tZEXI2g8CuP511YpVQcc7mF9MNyIkRUzvOqPWDyEMkEpdSWGj/xT4GmtdUYFD6lMuVjktaTPnoFh4fgUY9ZPnNb6b7s61cHaYX3QPoaxIOB3GDOBzmitTyilvHUVThtfGNbfTyn1BUa6/au11lkVPS53o5S6G2OhR40RTL0LY5bW2xjTja/VWp+usAFWY8TiIZQVLTHWwviwuj6E83FRyKu1ztJaD8dIKV4XIxjvEaXU5XZ1qrTSATarj9Zav4WRRKw98A0wXyn1K0bQYXXnd+ASILaCx1EmaK2/1FrXAWYDL2AsmLgEI0XAC6J0lB1i8RDKDKVUBHCuOgXmFcbFIK/d4nPW+I82GLN89lUHhaMwlFJ3YSiYGcAvWuutFTqgMsaiTP4EzNRaT64OlqyCUEoFAh0x8rbEa62PVfCQqjWieAiCcMFUt5kegmssimYrrfW2ih6LUH0QxUMQBEEQhHJDYjwEQRAEQSg3RPEQBEEQBKHcEMVDEARBEIRyo0orHkqpDkqppUqp40qpHKXUOaXUaqXUAKWUp1Kqk1JK222ZSqmjSqkVSqkhSilTEf1fo5QyW9p6WcoG5uuzoG1CuZwEQRAEQbCglKqrlJqllFqvlMqwPI9ii9nWVyk1XSl1wvK8XK+UusFFPQ+l1LNKqTilVJZSaptS6t7ijrHKKh5KqZHAWow0zWOAmzHWjtgLvIux/LeVxzGWvO6KkQL5OEaSmI1KqfAC+vfGyFx4Kt+u7yx9WbfH8h3Dun1YGvkEQRAEoQQ0BnpjLGx5oSnfPwL+DxiP8Qw9AfxgWdvHnkkYq2+/BXQHNgDLlFK3FusoZbkCXVltGMuOm7GshOlifyOMBY86YWSlu9lFnQ4YKxMuL6CP5zBW25xi6cOrgHoFHqMIGYZW9Hksx9/ropFV5K3e28Uk68Umb3WRFbuVlIEhludTbDHatbHUHWRX5oWRPv8bu7IIIBuYmK/9T8D24oyxqlo8xmIs2f2Mq51a6wNa6+2FdaC1Xo/FMqKUamS/z/L9eYxl38sqLfLQMuq3MnIxyQoib3XmYpIVLi55q4WsuuSL+d2J8bz71K6vXIxsrrcopXwsxbdgZGlekK/9AqCVUqpBUQeqcoqHZeGqTsAqXfr1A6zLYV+br/xd4DOt9ZpS9i8IgiAIVYGWwCHtvOTDDgxFo7FdvWyMFXzz1wNoUdSBvEoxyIoiDPADDruhryOWz2hrgVLqAaAt0MwN/TuglBrKf1r1lUqpiyJ7m7e3N/7+/heFrAD16tXjiiuuuGjkrVu3LpdffvlFIa+vry/BwcEXhawAMTExtG3b9mKRN60sOnXzfX4HRoiAldla69lu6rsmRlxIfhLs9ls/k7TFv1JIvQKpioqHO7GuQKkBlFI1gdeA53QZLBBkuUBmW451sfwz07x584oeQrmyfv36ih5CuZKTk1PRQyg37r///ooeQrmycuXKih5CuaGU2lPRYygGWVrrtmXUt8LyLHRRXpJ6BVIVFY9zGItS1XdDX/Usnycsn5MxZrEsVUqFWMp8LZ/BSqksrXW6G44rCIIgXCR4eLgnqsFsLmn4RrFIAGJclIfa7bd+hrpYNDB/vQKpcoqH1jrXsix1F6WUj9Y6uxTd3Wb5XGv5bAG0wlBu8nMW+Bq4qxTHEwRBEC4yqojisQO4Wynlny/OowWQw38xHTsAH4zZo/vz1QPYWdSBqlxwqYVXgFrAdFc7lVINlFKtC+tAKdUBeBj4Smt90FI8Ergx3/aJZd/NwLhSj1wQBEEQKh/fAN5AL2uBJXFmH4zJHNaX/O8xFJF++do/APyrtT5U1IGqnMUDQGu9Rin1JDBTKdUcmIsRKBoK3IQxd7kvkGxp0lwplYYhbzRGIrH+GJrZ/9n1uzX/sZRSnSx//maZWiQIgiAIxUIp5TaLxwUcs6flzystn92VUmeAM1rr35RS9YEDwEta65fAeP4ppT4F3rAk0DwEDAMaYKdkaK1PK6VeB55VSqUCWzCUk85Aj+KMr0oqHgBa6zeUUhuBUcAMjNkuqcBmDEvGcoxEYwD/s3xmY7hRtmFkHJ2vtb54IuMEQRCEcqe8FQ9gWb7v71g+f8NIR6EAT5y9HoMwkmZOBkIwnpXdtNZb8tV7HmMW0BNAFEaSsd5a6+XFGVyVVTwAtNbrgHWFVPmVC4i0LeAYEzBSwxa0v9THEARBEAR3obUu9JmktY7DxXNLa50JPGnZCmufh6GcTC7J+Kq04iEIgiAIlZmKcLVUdkTxEARBEIQyRBQPR+RsCIIgCIJQbojFQxAEQRDKELF4OCKKhyAIgiCUERLj4YycDUEQBEEQyg2xeAiCIAhCGSIWD0dE8RAEQRCEMkJcLc7I2RAEQRAEodwQi4dQacnJyeHEiROkpqYCEBgYSO3atTGZTBfUVmuNv78/0dHR+Pv72+okJCRw9OjRAvto3rw53t7epRekmBw9epQxY8bw888/o7XmxhtvZNq0adSrV6/QdlOmTOHll192uc/Hx4eEBMdVqo8fP85LL73EDz/8QFJSEtHR0fTs2ZOXXnrJbbIUh6NHj/L888/zyy+/ANCxY0defvnlIuV95ZVXePXVV13u8/Hx4eTJkwAsWrSIxx57rMB+du/eTWRkZAlHf2FkZmaye/duzp07h9aasLAwmjVrhp+fX5FtMzIy2LNnj61tcHAwTZs2JTg42KHer7/+SlZWllP7yy+/vNzkFFwjFg9HRPEQKiVms5mDBw+ilLI9iE6dOsXBgwe55JJLCv1Hzs3NZf/+/Xh6elK3bl08PDw4c+YMBw8epHHjxvj6+gJQo0YNGjVq5NQ+Li4Ok8lUrkpHRkYGt956KyaTidmzZ6OUYuLEiXTv3p0///yTgICAAtsOHDiQLl26OJSlp6dz1113cdtttzmUHz58mJtuuonY2FhmzJhBREQEhw8f5uDBg5QnGRkZ9OjRA5PJxLvvvotSismTJ3PnnXfyxx9/FCpv//79uemmm5z669mzJ927d7eVde3alVWrVjnU01pz//33ExsbW24P47y8PDZt2oSHhwetWrUCYN++fWzcuJFrr70WL6+Cb8M5OTn8+eefeHl50bJlSzw9PYmLi2Pjxo106NCBwMBAh/phYWE0btzYoaywcymUD6J4OCKKh1ApSUhIICcnh6ZNm+Lj4wOAn5+f7a0xPDy8wLbnzp0jNzeXRo0a2doGBgaye/duTp06Rf369QHw8vJyuumnp6eTl5dHaGhoGUnmmo8//phDhw6xdetWmzJ06aWX0rp1az766CMef/zxAtvWqVOHOnXqOJQtWrSI3Nxc+vVzXLn68ccfp3bt2qxcudKmWF1//fVulqZo5s2bR1xcHJs2baJhw4YAtGzZkiuvvJK5c+cWaqlwJe+SJUvIzc3lvvvus5WFhYURFhbmUG/dunUkJCQwduxYN0pTOPHx8WRkZHD99dfblICgoCB+//134uPjadCgQaFtc3JyuOqqq2xta9asyZo1a9i/fz+XXXaZQ31vb29CQkLKShRBcAuihgmVkpSUFPz9/W2KA4DJZCIgIICUlJRC22ZkZODj4+PQ1sPDw9ZWa11g24SEBJRS5X7z/u6777jqqqscLDCxsbF06NCB77777oL7W7hwIREREdx88822soMHD/Ljjz/yyCOPlKs1xxUrV66kbdu2NqUDoH79+lx99dWsWLHigvtbsmQJERERTpYQV/VMJhP33nvvBR+jpJw+fZqQkBAHy4O/vz8hISGcPn260LZJSUn4+/s7tPXy8iI0NJTTp09jNpvLbNyCe7AGl7pjqy5UH0mEakVWVpbNJWKPr6+vSz+2PUoplHJenFEphdaa7Oxsl+3MZjPJyckEBQUVav4uC3bt2kWLFi2cyps3b87u3bsvqK9jx46xZs0a+vTp4yDH+vXrAcNydPvttxMaGkqdOnUYMmQI586dK50AF8ju3btp3ry5U3mzZs3Ys2fPBfV17Ngxfv/9d3r16lXo75aZmclXX33FLbfcQs2aNS94zCUlLS3NySUChhUuLS2t0LYFzYjw8PDAbDaTkZHhUH7mzBlWrVrFDz/8wPr16zl16lTpBi+4BVE8HKk+kgjViry8PDw9PZ3KPT09ycvLK7Stj48P2dnZ5Obm2sq01rabdEHtk5OTMZvN5e5mAUhMTHRpZQkNDSUxMfGC+lq0aBFms9nJzXLixAkAhg0bRpMmTfjyyy+ZNGkSP/zwAz169CjXt+fC5E1KSrqgvj799FPMZrODm8UV3333HampqUXWczfnz593aWHy9vZ2uEZdERAQQHp6Ojk5ObYyrTXJycm2vq1ERETQvHlz2rZtS5s2bfDw8ODvv//m+PHjbpJEENyDxHgI1Y6aNWty9uxZ4uPjqV27Nh4eHpw+fdp283ZlDQHjYejp6UmNGjXKc7g2XI2rMLdQQSxevJg2bdrYAhnz93X99dfz+uuvA9CpUydq1KjBgAEDWL16NbfccksJRl4y3CXvp59+SuvWrbn00ksLrbdkyRLCwsLo2rXrBR+joqhXrx6HDx/mn3/+oXnz5nh4eHDw4EEyMzMBx3OY32IWGRnJ+vXr2bt3L7Vr1y7XcQuOFHTPuVgRi4dQKSnIslGQJcQeHx8fYmJiyMzMZM+ePezatYuMjAxboKErc/z58+dJS0sjNDS0Qm4SISEhLi0bSUlJF2SB2bx5M3v27HGydgA290Lnzp0dyq1xEdu3b7+QIZeKwuS9kPiav/76i71793L//fcXWu/kyZP8+uuvRbpjygJvb28Hy4SV8+fPFzkWf39/WrduTXJyMmvWrOHXX38lKSnJFiBtH8eUH6UUUVFRZGVlFemeFMoOifFwpvpIIlQrfHx8XN4sC4r9yE9wcDDNmzfnkksuoWnTpjRp0gSz2Yy3t7fLPCDWh2BFuFnAiOXYtWuXU/nu3btp1qxZsftZuHAhXl5e9O7d2+UxoOC3r/JUuJo1a+YydmXPnj00bdq02P0sXrwYLy8vevbsWWi9pUuXkpeXV6SCUhYUFMtRUOxHfqKiorjxxhu57rrruOGGG7jmmmvIy8vD19e3WHlAoOx+27lz59qCsfMrkrm5uSilmDBhQqmOMXbsWFq3bk1ISAj+/v40a9aMSZMmOcW32JOUlERUVBRKKX788cdSHV9wP6J4CJWSGjVqkJGR4RAImpOTQ3p6erFdIUopfH198fHx4fz58yQnJ1OrVi2XdZOSki7oRu5ubrvtNjZu3MihQ4dsZYcPH2b9+vXceuutxeojJyeHzz77jFtuucXldOOrrrqKyMhIVq9e7VBu/X7llVeWQoILo3v37mzevJm4uDhb2ZEjR/jzzz8dcnEURk5ODl988QVdunRxmjabnyVLltCyZUsn91N5EBERQXJyssODMiMjg6SkJCIiIorVh1KKwMBA/P39ycrK4uTJk0UmWjObzZw8edL2P1CWJCcnF5jUrbSkpKQwaNAgFi1axPLly+nXrx9TpkwpVIkcM2ZMpXJviMXDkeojiVCtqFWrFiaTicOHD5OcnExycrItsZf9jIScnBy2b9/uEL2vteb48eMkJyeTlpbG2bNn2bdvHz4+Pi4fUBkZGWRlZVWYtQNg0KBB1K9fn969e/Ptt9/y3Xff0bt3b+rWrctDDz1kq3fkyBFq1KjB1KlTnfpYuXIlCQkJLt0sYLiYXnrpJb7//nsef/xxfvzxR2bPns2oUaO44YYb6NSpU1mJ58SDDz5ITEwMffv2ZcWKFaxYsYK+fftSp04dBg4caKt35MgRwsLCmDZtmlMfP/zwA4mJiUVaMbZt28auXbsqxNoBULduXfz8/NiyZQunTp3i9OnT/P333/j6+jooD5mZmfzwww/s37/fVmY2m9m1axenTp3i3LlzNmU0MDDQIf/H8ePH2bp1K8eOHePcuXOcOHGCTZs2kZKSckEWpJLStWtXZs2aZcsa607eeecdRo0axa233spNN93ECy+8wKhRo/jmm284e/asU/21a9eyYMECpkyZ4vaxlARxtTgjwaVCpcTDw4OGDRty/Phx4uPjgf9SpruK8cgflJidnU1SUhJ5eXl4e3tTs2ZNIiIiXP7zWk3EFZl4KSAggBUrVjBmzBiGDBmC1ppOnToxbdo0B3O81pq8vDyXM1AWLlxIzZo1C7UYPPDAA3h4eDBz5kzmz59PaGgo9913HxMnTizXN8SAgAC+/vprnn/+eR555BG01txwww1MnTrVyf1QkLyLFy8mNDS0yIBYqzumV69ebpWhuHh5edGuXTt2795ti6OpVasWzZo1c4jx0FrbNnsyMjI4ceIE58+fx9fXlzp16tCoUSOHa9nf35+cnBz27NnD+fPn8fT0JDg4mCuvvLLQZHvuYty4cXTr1o0pU6Ywa9asMj+e1XKZf7bQ+fPnefjhhxk7dqxDjhihcqFKEkUulB6l1EVz4lu3bl3RQyhXrPkyLhbsp3pWdyrKalJRrFy5stD9c+fOZdCgQezbt48PPviAN954g71791K/fn1yc3Px9vbmxRdftMV5FDV9GAwLgauXi9zcXLKystiwYQMPPvgg3bt356OPPnKoM2XKFD755BP++ecf1q9fz4033sjq1asdEukVcty/tNZti6x4gfj6+uqYmBi39LVv374yGWN5U31sN4IgCEKFMWbMGPz8/Jg4caLL/XFxcXh7exe5uVo/6d9//8Xb25ugoCC6dOlCly5dmD17tkOd/fv3M3nyZN5+++0yj2m5UMTV4oi4WgRBEIRSU7NmTUaPHs3EiRMZM2aMkwJRu3ZtNm3aVGQ/rpSGxo0bs2nTJtLT01m3bh1Tp04lNzeXhQsX2uoMGzaMHj16OC2YWNEUlH32YkYUD0EQBMEtjBo1ilmzZjF+/HgHpQCMtZbyL2rnClexRr6+vrRta3gYOnbsSHR0NIMGDWLEiBG0b9+epUuXsnbtWjZv3mzLfGudwpyenk5ycjLBwcGlE05wG6KGCYIgCG4hMDCQZ599lmXLlrF161aHfaVxteTHqoRYZwDt3LmTzMxMWrZsSWhoKKGhodxxxx0A3HXXXbaEaxWFdf2o0m7VBbF4COVOQkICR48excPDw2Vk/z///ENERARRUVElPsaJEydITU0lJycHrTUmk4mQkBDCw8MdzJ7p6ekkJCTYcoZ4e3u7XLwsMTGRc+fOkZ2djdlsxsvLi8DAQCIjI10mJLMyf/58HnnkEYKDg9mxY4fDlN3c3FyCg4N57rnneP7550ss64oVK1i6dCl///03Bw4c4LrrruP77793qjdr1iyWLl1KXFwc6enp1KlTh9tuu42nn37aIb9J8+bNOXLkiMtjPfTQQ/zvf/+7oPEtWrSIxx57jBo1arBt2zaH2UO5ubmEh4czZsyYUi1Vv3LlSj7//HO2bt3KwYMHueaaa/j2229d1l2/fj0vvvgi//zzDzVq1KBnz56MGzfOLTlcjh49yr///ouXlxcdO3Z0mHVhNptZtWoVjRo1okmTJiU+htaaAwcOcOzYMbKysvDz8yMmJobY2FiHeomJicTHx5OSkkJ6ejo+Pj7lMmX60UcfZebMmYwbN86hvDSulvz89ttvADYlZeDAgU6ybd26lVGjRjFjxgyuvvrqYo6+bBBXiyOieAgVhtls5syZM0RHR5dJ36Ghofj4+KCUIiMjg9OnT5OZmelwg05LSyM9PR0/Pz+UUgUuIJeXl0dgYCDh4eF4enqSnZ3N6dOnSUtL45JLLikyjXtycjIzZ85k0qRJ7hQTgOXLl/PPP//Qrl27QlNjJyYmcuedd9KyZUsCAwPZtm0br7zyCmvWrOGPP/6w3RwXL17sNFPl66+/5o033ih2MjNXpKSk8MYbb5Q6k6UrVqxYwb///kvbtm0LPQf//vsv99xzD507d2bJkiUcPnyY8ePHc+LECebMmeO28eTm5nLw4MEyyaGxY8cOjh07RuPGjQkODiYhIYE9e/aQl5fnYC04d+4ciYmJNhdDcWaUuAMfHx/Gjx/P0KFDHcpNJpPNUlFctm/fzlNPPUWvXr1o2LAh2dnZrFmzhjfffJPu3bvToUMHAGJjY50ULytt2rThuuuuK5EsQtkgiodQYQQGBnL27FnCwsJcrt5ZGurUqePwPSgoyKbo5Obm2qwsERERREZGAkayqvT0dJf95U88FhgYiMlk4tChQ6SlpRXpP77pppt47733eOyxx0plyXHF22+/bVMaCps2OH78eIfvN9xwA/7+/jz++ONs27aNyy+/HMClH37ChAlERkaWKnCvc+fOfPDBBwwbNsx2zt3Fm2++aTsH3bp1K7DeK6+8Qu3atZk7d67tmjOZTAwbNownnniCNm3auGU8tWrV4siRI8TGxrp1hkVmZiZHjx6lUaNGNiUjLCyM3NxcDhw4QL169WwWuEaNGtG4cWPASKJ2oascl4ZBgwYxffp09u3bV6p+IiMjCQsL4+WXX+bkyZP4+/vTsGFDZsyYwZAhQ9w02rJFgkudkbMhVBjWh8/p06fL5XhWZcPeV1oav2lRVg57xowZA8D06dNLfLyCKM1NzZoFtrDFyuLj41mzZg19+vS5IJnzM3r0aABee+21EvdREMU5B+fPn+enn37irrvuclB077rrLkwmEytWrHDbeKxKwYEDB9zWJxiWM8ApKVhYWBhms9khk2d5xAQMHDgQrbVNwbHi5eXF3r170VqXysIVGRnJokWLOHToEJmZmZw7d45Nmzbx2GOPFanQderUCa11sXJ4lDUyndaR6iOJUOXw8vIiLCyMhISEQpNQ2Wd0LGwrqG1eXh6pqamcOXOG0NDQUj08tdaYzWYyMzM5ceIEPj4+BAUFFdkuKiqKhx9+mDlz5hQYPwGGObyorSB3UHHJzc0lIyODjRs3MmXKFDp16lToGiaLFy9Ga11gKvbiEhUVxZAhQ/jkk08q5BwcOnSIrKwspxgeX19fGjRowJ49ey64z4KwrpAcHx9vW8LeFWazucjN/tq2KhP5H0LW76mpqW6TQRDKCnG1CBVKeHg4586d49SpUy4XvcrJyXG5iml+XAWFZmVlsXfvXtv30NBQ6tatW6rx7ty50/bQ8/Pzo2HDhsV+E3nyySeZM2cOL7/8Mu+9957T/sOHD9OiRYsi+4mJiXG5km1xSEtLc3Bz3HzzzSxYsKDQNosXL6ZNmzZceumlJTqmPSNHjmTu3LlMmzaNt956y2n/kSNHiuXuqFevni39eHEpLDW+q9VVS0uDBg2Ij49n//79LhW7jIwM1qxZU2Q/vr6+tsDJgIAAwFjU0H6xROsU0vPnz5d+4IJbEVeLM6J4CBWKl5cX4eHhnDp1ivDwcCfzqZeXl5MZ1xWuzMomk4nGjRtjNpttwaVaa0qTvrhhw4aYzWZbcOnBgwdp3LhxsawoNWvW5PHHH+fll1/mySefdFpLIjo6mt9//73IfgqbRVMU/v7+/P7772RlZbFt2zamTZtGr169+Pbbb126WzZu3MjevXvd5iIKDQ1l+PDhvPrqqzzxxBMOC52BYRX5+eefi+ynJOfAajlwda2UxdIRJpOJ2NhYDhw4QIMGDfD393fY7+vrawuOLAz7h1ZgYCC1atVi//79+Pn5ERISQkJCAocPHwbKx70iXDjyuzgiiodQ4YSFhXH27FlOnTrlpBR4eHiUeJqjh4eH7WYfGBiIl5cXR48epVatWrY3xwvFOpaAgAACAwPZvXs3586dK/by5sOHD+fdd99l8uTJTrMoTCZTsda1Kc1NzMPDgyuuuAKAa665hpYtW9K9e3e+/PJLl4uoLVq0CG9vb7cusDZs2DBmz57N1KlTndJem0ymYi1dX5JzYJ3K7MqykZycXCazq2JjYzly5Aj79+93+m09PDyK5abLL2urVq3Ytm0bf/31F2Ao55dccgk7d+6sdKnCBcEVongIFY6npycRERGcOHHCyR9eGldLfqxKSE5OTokVD3tMJpNtam1xCQwM5KmnnuLZZ59l5MiRDvvKw9WSH6sScvDgQad92dnZfP7559xyyy1uXeE0MDCQUaNGMW7cOEaMGOGwryxdLQ0aNMDHx8fpesrKyiIuLo4ePXpcUH/FwcvLi4YNG7J7924n605JXC3W71dffTVZWVmcP38ef39/W2yHfZ4YofIgrhZHRPEQKgW1atXi7NmznDx50qG8NK6W/FhTKJfGVWFPVlYWeXl5F/yWOXToUGbNmuW0mFZ5uFry88cffwA4PRTByI2RkJBQ6qBSVzz00EO8/fbbTJkyxaG8LF0tJpOJm266ia+++oqxY8faXEtff/012dnZdO/e/YL7LA4xMTHExcU5TS0tiaslf3tfX1+01sTFxREQEGCbpSRUHiTGwxlRPIRKgYeHBxERERw7dsypPL9vvCisM06Cg4MxmUxorUlPT+fs2bMEBQU5WDtyc3NtCsn58+cxm822QD3rjR2M1MzBwcG2hGRZWVmcPXsWb2/vC77Z+/j48OyzzzJ8+HCHcpPJZLNAXAhHjhyxmd0TEhLw8PDgyy+/BODKK68kJiaG5ORk7rrrLvr06UOjRo1QSvHXX38xa9YsWrVq5fJtf9GiRdSqVavQvBglxcfHh2eeecbJ6mMymWz5RC6EI0eO8PfffwOGK8XDw4Ovv/4agMsvv9zmwhs7dixdu3Zl0KBBDBkyhCNHjjB+/Hh69OhRrHVESoKHhweNGjVix44dTuUlWT/kyJEjNhdkTk4Ox44dIzExkXbt2jko4Dk5OSQkJACGkmw2m22KfWBgIIGBgaWQShBKjigeQqWhZs2anDlzptCptcXBy8sLLy8vTp8+TW5uLh4eHphMJqKjo52UhKysLKepndbv9mnb/f39SUxMtI3N29ub4OBgIiIiCs2BURD9+/fnjTfesK01URp+++03HnnkEYeyBx54AID33nuP/v374+vrS9OmTXn33Xc5fvw4Xl5exMTE8PjjjzNs2DAnq82ZM2dYtWoVQ4YMcauFxZ5+/foxa9Yst+S6+OOPP3jsscccygYOHAgYCdb69u0LGPERn332GRMnTqRPnz7UqFGD++67jxdeeKHUYyiMOnXqcOjQITIyMkrdl9aagwcPkpWVhaenJzVr1qR9+/ZO8SKpqalO66VYv5c2bbtwYYjFwxFVFtHcQtEopS6aE1+cgMnqxPr16yt6COVKaRXFqsT9999f0UMoV1auXFnRQyg3lFJ/aa0vLKd7MQgMDNTuyoi7bt26MhljeSNqmCAIgiAI5Ya4WgRBEAShjJDgUmdE8RAEQRCEMkQUD0fkbAiCIAiCUG6IxUMQBEEQyhCxeDgiiocgCIIglBFKKVmrJR+ihgmCIAiCUG6IxUMQBEEQyhBxtTgiiocgCIIglCGieDgiZ0MQBEEQhHJDLB6CIAiCUEZIcKkzVdrioZTqoJRaqpQ6rpTKUUqdU0qtVkoNUEp5KqU6KaW03ZaplDqqlFqhlBqilHJa/Uop5a+UmqiU2mupH6+UmqeUirXsH5ivz4K2CeV9PgRBEITKh4eHh1u24qCUqqeU+kwplayUSlFKfaGUiilm2waWtklKqXSl1C9KKae1YZRScQU89+4qznGqrMVDKTUSmAn8DIwBDgOhQFfgXSAJSLZUfxzYBHgDtYEuwNvAcKVUF631GbuuPwTuAl4ENgMxwETgJ6VUG+A7oINd/SssfVmPYeWoWwQVBEEQhGKglPLHeCZmAwMADUwGflFKtdZapxfSthbwB5AKPAxkAE9a2l6ltd6Vr8kPwIR8ZXuKM84qqXgopW7AUDre0lo/nm/310qpmUAAYF0DfZfWeoNdnU+VUh8BvwBzgDss/foBvYFpWuvpdsc7BawErtVa/wCcsdvnW8AxBEEQBKE8g0v/D2gINNVa7wdQSm0H9mEoEzMLaTsMiAQ62rX9GTiI8fLdO1/9syV95lVVV8tYIAF4xtVOrfUBrfX2wjrQWq/HsIzcrpRqZCn2AjyBlHzVkyyfVfV8CYIgCBWANcbDHVsxuBPYYFUcALTWh4C1QI8i2rYH9uVrmw78jvGcdJuhoso9SJVSnkAnYJXWOquU3a2wfF4LoLVOBeYDjyulblRKBSqlWgLTgW3AT6U8niAIgiCUFS2Bf12U7wBaFNE2D8hxUZ4N+AGN8pXfoZTKUEplK6U2FDe+A6qg4gGEYZyEw27o64jlM9qubBDwJYafLBXjR/QGumitXf0ogiAIglAg5RhcWhNIdFGegBEDWRh7gCaWWA8AlFIewFV2fVtZDowAbgH6AVnAl0qpB4ozyCoZ4+FGrLYrbVc2GXgAeAojWDQGI9B0pVKqY2HBOUUeTKmhwFAwLsSQkJCSdlWl2L69UK9XtWPz5s0VPYRypWPHjhU9hHKjXbt2FT0EoQrixhiPMKWU/Q1mttZ6dr46GmeK46d5D2OSxDyl1OMYwaXPAw0s+822A2g9wqFzpb4ENgBTgQVFHagqKh7ngEygvhv6qmf5PAFgcauMBYZorT+yVlJK/QnsBYYAb5b0YJYLZDaAl5eXq4tDEARBEArirNbaaXqrHYk4WiashOLaEmJDa31QKdUPY5amNc5jC/A6xov4iULa5imllgGvKqWitdYF1oUq6GrRWucCvwJdlFI+pezuNsvnWstnK8un/bRYtNb7MAJMm5fyeIIgCMJFRDkHl+7AiPPITwtgZ1GNtdafA3Us9Rtrra8EAoF4rfWRQhu79iC4pMopHhZeAWphBH06YUmC0rqwDpRSHTCmF32ltT5oKT5p+bwqX91LgBDgWCnGLAiCIFyElGOMxzdAe6VUQ2uBJfnltZZ9RaK1ztNa79JaH1BK1Qb6YMwALRDLjJdewBGt9cnC6kLVdLWgtV6jlHoSmKmUag7MxQgUDQVuwnCJ9OW/BGLNlVJpGPJGYyQZ64+hAf6fXde/Y8xeeU0pFcp/CcTGWfr6pGwlEwRBEIQS8wEwHCOf1TgM68MkIB5431pJKVUfOAC8pLV+yVLmDUwDfsNIKdESeBbDivKaXdv7MabmrrD0Gwk8BlwJ3F+cQVZJxQNAa/2GUmojMAqYgTHbJRVDWXgYI+r2Bkv1/1k+szFiRLZhnKj59jNVLH6qm4DnMIJAXwLOAuuA8cUwNQmCIAiCDaVUuSUQ01qnK6U6Y8RlzMdwf/wEjNRap9kPCyNnlf3ANNAE46U9BCP79hzg5XwzOg8BERgeh5oYQaibgG6WBJtFUmUVDwCt9ToMpaAgfqV40bz2fZ4DRlu24tS/4GMIgiAIFw/FjM9wC5YX5HuLqBNHvueWJX7y9mL0vwHoXIohVtkYD0EQBEEQqiBV2uIhCIIgCJWdclyrpUogiocgCIIglBHlGeNRVZCzIQiCIAhCuSEWD0EQBEEoQ8ozuLQqIIqHIAiCIJQh4mpxRM6GIAiCIAjlhlg8BEEQBKEMEVeLI6J4CIIgCEIZIbNanBHFo4qRl5dHRkYGubm5aK3x9vbG398fT0/PC27r5eWFv78/Xl6Ol4HZbCYjI4Pz58+jtcbT0xM/Pz9MJlNZiSUAp0+f5q233mLz5s1orbnyyisZMWIEkZGRRbY9deoUH330EX///TfJycmEh4dz44030q9fP/z8/Gz1+vTpw8mTzms4TZ48meuvv96t8gj/kZ2dTXx8PCkpKWitqVGjBjExMfj4FL3Adv62AQEB1KtXj4CAAFuds2fPcujQoQL7uOyyy/D29naLLIJQWkTxqEJorUlNTUUpZbvpZGZmkpqaSnBwcKHmPLPZTEpKCkop/P39UUqRlZVFSkoKwcHBNsXFegyz2Wyrl52dTVpaGkFBQXLzKiOysrIYOXIkJpOJZ599FqUUH374ISNHjmTOnDkOykN+MjMzefLJJ8nNzeWhhx4iIiKC3bt38/HHH3P06FEmTJjgUP+qq65i4MCBDmUxMTFlIJUAhsK/Z88ePDw8aNCgAQDHjh1jz549tGzZstCXhtzcXHbt2oWnpyf169fH09OTkydPsnv3blq0aGG7LoKDg2nevLlT+3379uHj4yP/txWMWDwcEcWjCpGdnY3ZbHZQFDw9PUlOTiYrK6vQh1N2drbtTcva1tvbm6SkJDIzMwkMDAQgJyeHvLw8ByXD29ublJQUMjIyCA4OLmMpL06+/fZbTpw4wfz586lbty4AjRo1ol+/fnzzzTf06dOnwLb//vsvR48eZcaMGbRr1w6AK664gtTUVD799FOysrLw9fW11Q8ODqZly5ZlK5Bg48yZM2RnZ9OqVSvb7+Dv78/27ds5c+YMUVFRBbY9ffo058+fp1mzZra2QUFBbN++nWPHjtG4cWPA+B/Nr1ykpqaSm5tL7dq1y0gyobhIjIcjooZVIXJycvDy8nJ4Q/L09MTLy4vz588X2jY3NxcPDw+HtkopvLy8yMnJQWttqwc4uF+UUnh7e5OXl4fZbHanSIKFtWvX0qJFC5vSARAdHc2ll17K2rVrC21r/e39/f0dygMDAzGbzbbfVqgYkpKSCAwMdFD+fHx8CAoKIikpqdC2aWlp+Pr6OrT19PQkKCiI5OTkQn/bs2fPopSiVq1apZZBENyJKB5ViLy8PJdmWU9PT/Ly8ops70rrtpbZKxRKqQI1dKtiIriXuLg4mxnentjYWOLi4gpte+WVV1K3bl3ef/994uLiyMjIYMuWLXz22WfceeedTpawdevW0bVrV26++WaGDRvG77//7k5RhHxkZma6tEb6+vqSmZlZaNuC/heVUpjNZrKysly2M5vNJCYmEhIS4hTDJZQv1uBSd2zVBbkiqxBa6wJvQkW91Xp6enL+/HnMZrPtAtZa2xQJs9mMp6cnnp6eaK2dlBxrPXl7LhtSUlIICgpyKq9RowZpaWmFtvXx8eGtt97ihRdeYMCAAbby2267jZEjRzrU7dChA82aNSM6OprExES+/PJLxo0bx/PPP0/Xrl3dIovgSEEvDF5eXkUq8r6+vqSkpJCbm2tTILTWpKen2/p2RWJiInl5eWLtqCSIq8URUTwuEnx8fMjKyiI9Pd0WNJqZmWmzdFj/MUwmE5mZmaSlpREQEICHhwfZ2dli6SgHXN2ciqPoZWdnM2HCBJKSknj++eeJjIxk165dfPLJJ3h6ejJ69Ghb3fyKyPXXX8+wYcOYPXu2KB6VkPDwcE6dOsXBgweJiYnBw8ODEydOkJ2dXWi7s2fP4uXlRUhISPkMVCiU6mStcAeieFQhCrJsFGQJscfT05PAwEDS09NJTk62lfn6+pKVlWVr7+HhYauXkpJiK/Pz8yMzM1P+gcqIoKAg2/m2JzU11Rb4WxArVqxg69atLFq0iDp16gDQpk0bAgICmDFjBj169LAFIebH09OTTp068f7773Pu3Dl5Qy4DCnKF2lsxCsLX15eGDRty+PBh/vnnH8CI5YmKiuLkyZMuZ6vk5OSQkpJCZGSkvGkLlRJRPKoQBd3ACjLl5sdkMuHt7W2zcnh6epKenu4UdOrt7U1wcLCtnoeHh82XLP7isqGgWI7Dhw8TGxtbaNuDBw8SFBRkUzqsWKdXHj58uEDFQyh7rEp7foqaiWalZs2ahIaG2l4QfH19iYuLw2QyucwDcu7cOQDCwsJKP3ih1BQWM3exIq+vVQiTyURubq6D8pGXl0dubm6x5+krpWyxHGazmZycHJc3L/t6YJjzfXx85B+ojLj22mvZuXMnx48ft5WdOHGCf/75h2uvvbbQtjVr1iQ1NZWjR486lO/cuRMo/AGUm5vLr7/+SmRkpFg7yoiQkBDS0tIcAkGtuXGK6wpRSuHn54evry85OTkkJCQQHh7usu65c+fw8/NzmuVUFsydOxelFCEhISQmJjrsy83NRSnllEfmQhk7diytW7cmJCQEf39/mjVrxqRJk8jIyCiwTVJSElFRUSil+PHHH0t1fHcgwaWOyOtrFcIap5GWlmZ7U7K6P+yn2+Xl5ZGcnIyfn5+tntaajIwMvL29UUqRl5dHZmamzd1iT0ZGBl5eXrZ61htmcd7OhJJx++238+WXX/Lcc88xZMgQlFJ89NFHREREcMcdd9jqnTx5kr59+/Lggw/akoB169aNpUuXMmbMGPr3709ERAR79uxh3rx5NG3alFatWgHw448/snbtWq6++moiIiJswaV79uxh/PjxFSH2RUF4eDinT59m//79NqvUsWPHMJlMDspDdnY227dvp3bt2rZ6ZrOZo0ePEhQUhKenJ5mZmZw4cQI/Pz+X+T/S09PJzMykXr165SOcheTkZF599VVeeeUVt/edkpLCoEGDaNq0KT4+Pqxbt44pU6awefNmvv76a5dtxowZIy9JlRhRPKoQSimCgoLIyMiwzXSwpkwvTmCi2WwmPT0drTUeHh74+Pjg5+fn1Na+nlIKk8mEn59ftdK4Kxt+fn68/vrrvPXWW0yZMsWWMn348OEOb67WGUf2v210dDTvvvsuH3/8MR9++CHJyck2haV///623806k+W9994jJSUFX19fmjVrxvTp07nqqqvKXeaLBU9PT5o2bUp8fDwHDx4EsKVML8pFas0wfO7cOfLy8jCZTISFhREdHe3y/7Gicnd07dqVWbNmMXLkyEITopWEd955x+H7TTfdREZGBq+88gpnz551suitXbuWBQsWMGvWLB566CG3jqWkiBLkiCgeVQxr8qCi6tSsWdOhzKq0FIeighmFsiEyMpJJkyYVWic6OprffvvNqTw2NpaJEycW2rZly5a88cYbpRmiUEJ8fHyKjLPx8fGxZZ61opTikksuKfZx6tevT/369Us0xtIwbtw4unXrxpQpU5g1a1aZH8+qWOV3MZ8/f56HH36YsWPH0rBhwzIfR3GQReKckbMhCIIglIro6GiGDx/O7NmzOXz4cIH1cnNzi9wKyk2Sm5tLWloaP/74IzNnzmTw4MFOSzhMmzaNnJwcnnnmGbfKJ7gXUTwEQRCEUjNmzBj8/PwKtLzFxcXZ1pQpbGvUqJFT23///Rdvb2+CgoLo0qULXbp0Yfbs2Q519u/fz+TJk3n77beLtepveWKd2VLarbogrhZBEASh1NSsWZPRo0czceJExowZ46RA1K5dm02bNhXZjyuloXHjxmzatIn09HTWrVvH1KlTyc3NZeHChbY6w4YNo0ePHnTp0qX0wrgZcbU4IoqHIAiC4BZGjRrFrFmzGD9+vINSAEY6gMsuu6zIPly92fv6+tK2bVsAOnbsSHR0NIMGDWLEiBG0b9+epUuXsnbtWjZv3mxbeM8agG9Nmigra1ceRPGoBGRnZ5Oeno5SiuDgYAftWGtNYmIivr6+pZqXn5GRYVurxX5Wi6+vr9M/+vnz58nMzLTNwzeZTC5nzuTm5pKRkWGrZ51hI9r9f6xcuZJXXnmFwMBAlixZ4hDgm5uby0033cTAgQMZNGhQiY+xdu1afvrpJ/bs2cOxY8do06YNb775pkOdvLw8li1bxoYNG4iLiyMrK4u6dety99130717d4ffbNWqVXz99dfEx8eTkZFBrVq1uPLKKxk4cCARERElHmd14+zZsxw6dAhPT09at27tkFxPa83mzZsdpsaWhKSkJM6dO0d6ejrZ2dkEBQXRrFkzl3VTU1Ntv5mnpye1atWibt26Dr/ttm3byMnJcdk+PDy8yGR1RREYGMizzz7L6NGjefrppx32FbQQYn7q169f5MKIViVk//79tG/fnp07d5KZmUnLli2d6t51110EBwcXuRJwWVKd3CTuQBSPSoTWmqysrDJJ/KO1xsfHBw8PD5RS5Obm2pSL/A/D1NRUmz/Vmu9Da+0w28VsNpOammpLxa61tq3xEhQUJP9o+UhLS2PRokU8/PDDbu/7jz/+YP/+/bRo0aLAh0p2djbz58+na9eu9OzZEz8/PzZs2MD06dM5cuQIw4YNs9VNSUnhiiuu4P777ycwMJAjR44wb948Nm7cyLx588olMVVVIi8vjxMnTpRJ7ozExEQyMjJs/2MFkZGRwZ49ewgODuaSSy4hOzub+Ph4cnJyHGbTNG7c2KmfxMRETp486bZ1XR599FFmzpzJuHHjHMpL42rJj3Vml9WdM3DgQDp16uRQZ+vWrYwaNYoZM2Zw9dVXF3P07kdmtTgjikclwsvLi6ysLHx9fd1+oQYEBDh89/b2tik69ivWWhOSBQYG2qwYSinS09Md1pawpoAODAy0tfXw8CA1NZXz589jMpncOv6qTrt27fjiiy/o2bOn23MsPP3007bfYPjw4S7r+Pj4sHjxYmrUqGEru/LKK0lNTeWLL75g8ODBtht+z549HdpedtllREVF8fTTT7Np0yY6duzo1vFXdWrUqMHp06eJiooqdgbh4hIbG2tT4nft2lVgPWtCskaNGtmuBaUUhw4dIj093fb/n/8+AHD06FHbMgnuwMfHh/HjxzN06FCHcpPJZLNUFJft27fz1FNP0atXLxo2bEh2djZr1qzhzTffpHv37nTo0AEwzlNB1po2bdpw3XXXlUgWoWwQNawSYZ+NtDzIb5XQWtuUBvt9ViXC/m36/PnzeHt7OyhI1u8FvXVfzPTv3x+A+fPnu73v4iipnp6eDkqHlWbNmpGTk2NbOLAgrG1lrR5nateuDeCQ7t5dFMdyaDabSU5OpmbNmg7XQs2aNVFKFepiyM7OJjU11VbXXQwaNIgmTZqUup/IyEjCwsJ4+eWXuf322+nfvz8//fQTM2bM4Msvv3TDSMsHmdXiiNxFKhHW1OdWq0dBWQ2Ls1Q6FL7Mem5uLllZWZhMJtvNyn7xuPz9eHh42ObXa60xm80ux1fQQnYXO7Vq1eLuu+/ms88+47777iswu2Nubm6RfVnX0XEH27ZtIzAw0CnhHBguhLy8POLj43n77beJjY294DfWiwFvb28iIiI4deoUUVFRBboKSvN/WxjZ2dlorZ2WNLDGcRX2IlPaBeUGDhxoS91vj5eXF3v37i1Rn/ZERkayaNGiErXt1KlTsc95WSOuFkdE8ahk+Pr6kp2dTWZmpssMotZ1WIrCw8PDyWebm5vrsPS6yWRyML1aFQ9XNz4PDw/bP7H101U9pVSl+WevbPTt25fly5czd+5cxo4d67T/xIkT3HfffUX2ExUVxaefflrq8WzcuJFffvmFhx56yKUl4+6777Zda02bNmXmzJmVLj9CZSE6OpozZ85w/PhxlwGU1nVYisJkMtGmTZsLOrZVWXX1G3p5eRWqzJ47dw5/f3+J2xHKFVE8KhlWq0dmZiZ5eXlOmrKHh4dLk3lxsJrbtda24FKQFOnlRY0aNejduzeffPIJffv2tZnorYSFhfH+++8X2Y874gji4uJ46aWXuOyyy7j//vtd1pk5cyZZWVkcPnyYhQsXMnr0aGbNmlXs1PsXE15eXkRFRXHs2DGioqKcFl709vamRYsWRfZTnuZ064q5MTEx5XbMi5Hq5iZxB6J4VEKs7pbMzEynYLDSmNmVUra3Ims8hn3QqFXJcWWxsHetWP+JXNWzLiwnuKZXr1588cUXzJkzxynq39vbu8j1PKD0D6fjx48zevRooqOjmTJlSoFxG9axXHrppbZZLt988w39+vUr1fGrK5GRkZw6dYpjx445Jc/y8PAoM6uC9fdzZdnIzc0tcFVp64JyrtxsgnsRV4sjonhUQpRS+Pn5kZGR4fTmVBpXS36sikReXp6D4pE/RsMa02ENMs0f85F/fBKAWDD+/v7069ePd955x8mtUh6ultOnTzNq1Cj8/f2ZPn26y1kOroiOjqZGjRocO3asRMe9GPD09CQ6OtqWS8OesnS1+Pj4oJRyiuUwm81kZ2e7VCzMZjMJCQkEBwe7fSaOIBSFPCEqKT4+Pjarhz2lcbXkx/qGZD/9ztvbm5ycHPz8/Gxv1tZZKvZTZK317KfiWhOUyVTawrnrrrtYunQpH330kUN5WbtakpKSGD16NACvvfbaBeVtOHToEMnJyU7uIcGRiIgITp48ydGjRx3Ky9LV4uHhQXBwMAkJCdSpU8fWR0JCAlprl79zUlISeXl5JQ4qFS4MsQI7IopHJUUpha+vr9Obk727pLhYM4yaTCY8PT1tMR5ZWVm2hZms+Pn5kZKSQlpaGr6+vpjNZjIyMvD29nY4rp+fHzk5ObZ61gRinp6e8gZVBCaTiQEDBjBjxgyHcm9v7wKzUhbGyZMn2b17NwDJycl4eHjw66+/AsZ02aioKLKzs3nqqac4efIkzzzzDGfOnOHMmTO2PmJjY23Wj+HDh3P99dcTExODyWTiwIEDLF26lPDwcG6//fYSSn1x4OHhQZ06dZwyb3p4eBTbumSPNasx/PeikJCQABg5OazBvnXq1GHnzp3s37+fyMhIWwKx0NBQl8c9d+4cXl5ekka8HJAEYs6I4lGJsVo9rLNNSoqHhwceHh62vqz/CP7+/k6zFLy8vAgKCiIjI4PU1FSHlOn5+7TWS0tLc0iZLtp90XTv3p0lS5Y4vRmXhL///ptXXnnFoezFF18EYOzYsXTv3p2EhAT27dsHwOTJk536eOONN7j88ssBaN68OStXruTkyZOA8RZ/0003cd9997ktu2V1JiwsjBMnTpCdnV3qvlJTUzl06JBD2YEDBwBo0KCB7f/X39+fpk2bEh8fz969e/H09CQsLMxluvbz58+TnJxMeHi4PBCFCkHJ1MeKwcvLS18sbxvWN7SLBWs654uFiymTabt27Sp6COXKxo0bK3oI5YZS6i+ttdsT1dSuXVsPGTLELX1NmjSpTMZY3ojFQxAEQRDKELECOyJ2NkEQBEEQyg2xeAiCIAhCGSKxNI6I4iEIgiAIZYRkLnVG1DBBEARBEMoNsXgIgiAIQhkirhZHRPEQBEEQhDJEXC2OiBomCIIgCEK5IRYPQRAEQShDxOLhiCgegiAIglBGyFotzsjZEARBEASh3BCLhyAIgiCUIeJqcUQsHkWglJqglOpc0eMQBEEQqibWJGKl3Yp5rHpKqc+UUslKqRSl1BdKqZhitm1gaZuklEpXSv2ilHJalE4p5aGUelYpFaeUylJKbVNK3Vvc8yGKR9G8CIjiIQiCIFRqlFL+wM9AM2AA0B9oAvyilAooom0t4A/gUuBh4D7Lrl+UUs3zVZ8ETADeAroDG4BlSqlbizNOcbUIgiAIQhlRzsGl/wc0BJpqrfdbjr8d2IehTMwspO0wIBLoaNf2Z+AgMBHobSmLAJ4CXtFaz7C0/UUp1Rh4BVhR1CCLdTYs7gatlGqmlPrBYoI5opQaZNnfXym1WymVZjHNNLJr662UmmwxyeRYPicrpbzt6sRa+n9YKfWSUuqExdSzXClVN99YiuzPUi9AKfWKUuqAUipbKXVSKfW5UipSKXWl5Xg9XMg6Vyl1VCnlqZTSluLnLfW1UmqCXd2OSqmflFKplnPyg1Lq0uKcU0EQBOHioBxdLXcCG6yKA4DW+hCwFnB63uWjPbAvX9t04HfgdqWU1VBxC2ACFuRrvwBopZRqUNQgL1QNWwZ8B9wF/AXMUUq9jKEpjQUGAU2BRXZtPrHsmwfcDnwMjLGU5+dZoDEwGHgC6AAszFenyP6UUiZgNfA4MNdSbziQAIRqrf8CNmFogNi1C8HQ6j7UWudZjo+ljw6W7UNL3duAn4A04AGgLxAE/K6UqudCNkEQBEEoS1oC/7oo3wG0KKJtHpDjojwb8AOsBoWWlrL9+ertsHwWdZwLdrVM11rPA1BKbQbuwHh4N9Bap1jKo4E3lVL1MR7E9wMTtdYTLH2sUkrlAZOUUq9orbfb9X9Ya93X+kUpFQ5MV0rV1loft1gTitPfAxhKQg+t9Td2/X9m9/c7wEdKqfpa68OWsgcxNLkPAbTWGyxa5jGt9YZ85+JN4DettU2LVEr9gmGWGg2MzH/ylFJDgaEAderUYfPmzfmrVEu8vb2LrlSNCAsLq+ghlCtHjx6t6CGUG3379i26kiDko5jWiuIQZnn2WpmttZ5t970mkOiiXQIQWkTfe4AuSqlaWutzYASRAlfZ9W39TNJa63ztE/LVK5ALtXistP6htU4ETmOYdVLs6uy2fNYDbrD87cokA9AxX/l3+b7/Y/m0RuQWt7+uwMl8Skd+lgBJGD4xKw8D32mtC72TKqWaYGh/C5VSXtYNyADW243TAa31bK11W61121q1ahV2CEEQBKGa4OHh4ZYNOGt9hli22S4Ol18hACiO5vMehk4wTynVyGJE+B9gdZ2Y7foq6TGAC1c88mtSOQWUAfjyn+ZzIl+dk5bP/JpRQr7v2XZ92dcvqr9awDEKQWudheGmeciiOFyPYSJ6r7B2FiIsnx8B5/Ntt1uOLwiCIAjlSSKuLQ6huLaE2NBaHwT6AVdiuFGOY3gOXrdUsT53E4BQ5WzGCbXbXyhlPavFOoAo4IBdeZTl81wZ9XcWY0pQUbwLPIkRdHM3EAf8UIx21uM8C/zoYr8rP5kgCIJwkXEBgaHuYAdGDEZ+WgA7i2qstf5cKfUVcAmQo7U+oJR6F4jXWh+xO4YPhtXfPs7DGttR5HHKeo7Pb5bP+/KV97N8rimj/lYBUUqpOwrrTGt9wFL3aaAn8IHW2pyvWg5GYI09ezCUlJZa680utu0IgiAIAuU6q+UboL1SqqHdsWOBay37ikRrnae13mVROmoDfTBe0q18j/Fc7Jev6QPAv5ZZNIVSphYPrfUOpdRiYIIlBmIdhunmBWDxhT6gL6C/BRixG4uVUlOBPzECXW8B3tBa77br9h3gaww3yRwXh90J3KaU+h7DVHXcEuj6GPC1ZQbNUgwrSyRwDXBEa13YfGlBEARBcDcfYMzg/FopNQ4jFmMSEA+8b61kmfxxAHhJa/2SpcwbmIbxgp+CYTl5FsPC8Zq1rdb6tFLqdeBZpVQqsAVDOelM0VN2gfJJIDYAY6bHYGAcht/oVYyEJGXSn9b6vFKqK0bW0aGWz3MYc5nz+5++wwgKXaG1PokzwzECbJZjmJcmAhO01iuUUjcAz2PMgvHDiDXZAHxaQtkEQRCEakZ5JRDTWqcrY4mP14H5GAGfPwEjtdZpdlUV4Imj10NjZDntC4QARzFexl/WWucPH3geI5XEExihDnuA3lrr5cUZZ7EUD8vU1QkuymNdlP2KXXSr1vo8hoIwrpD+43AREZu/r+L2Z6mXhuFCebqwehhamj8FBJVqrddiBNu42rceI5hUEARBEFxSjjEeWGIxCl03xdUzV2udSzGfZ5Y8V5Mt2wVz0aZMV0Z21YYYmuEWrfVPFTwkQRAEQaj2XMyLxL2AkZckGyNxmCAIgiC4FXcFlpan1aSsuWgtHlrrgcDACh6GIAiCUM0px0XiqgRyNgRBEARBKDcuWouHIAiCIJQH1clN4g5E8RAEQRCEMkQUD0dE8RAEQRCEMqK6BYa6A4nxEARBEASh3BDFo4px7NgxhgwZwiWXXEKTJk0YPHgwR48eLbLdjBkziI6OdrnFxsY61D137hyjRo2iZcuWNGjQgFtvvZVffvmljCQqmGPHjjFo0CAaNGhAbGwsAwYMKJasr776KmFhYS63OnXqONRNSEjgueee48orr6Ru3bpcccUVjBkzhrNnz5aVWIKF48ePM3ToUJo3b06zZs0YMmQIx44Vuqi0jWPHjjFy5EiuuuoqGjduzPXXX8+0adPIyMhwqGc2m3nrrbdo3749jRo1okuXLnz33XdlIU6hZGVlsXPnTtauXcvatWvZsWMHWVlZxWqbmZlpa/vHH3+wbds2UlNTXdbNzs5mz549rF+/nt9//50///yTQ4eKXDpDKGOKu+x9UVt1QVwtVYiMjAx69eqFyWTizTffRCnFq6++Ss+ePfn555/x9/cvsG3fvn258cYbnfrr27cvXbt2tZVlZ2fTq1cvEhISeOGFFwgPD2fx4sU8+OCDfPrpp1xzzTVlJl/+sd111134+Pjw9ttvAzB16lTuuusufvvtNwICAgps279/f2666San/nr37k23bt1sZVprHnjgAQ4cOMCYMWO45JJL2Lt3L1OnTmXbtm2sXLlSTKRlRGZmJr1798bHx4fXX38dpRTTpk2jd+/erF69utBrOSMjg/vuu4/c3FyefvppateuzbZt23jttdc4dOgQ777733pW06dP5/333+eZZ56hVatWfPPNNzzyyCPMnTvX6RopK/Ly8ti+fTseHh40bdoUgLi4OLZv386VV16Jp6dngW3Pnz/Ptm3b8PT0pEmTJnh6enL06FG2b9/O5Zdf7nCesrKy2Lp1K76+vjRu3Bhvb2+ysrKKreAIZYfcRxwRxaMKsXDhQg4fPswff/xBgwYNAGjRogXXXHMN8+bN45FHHimwbe3ataldu7ZD2bJly8jNzaV37962suXLl7Nr1y4+//xzm5LRuXNnbrrpJiZNmsTKlSvLQDJn5s+fz+HDh9mwYQMNGxoLLbZs2ZKrrrqKTz75hEcffbTAtq5kXbp0Kbm5ufTp08dWduDAATZu3Mhrr73GgAEDALjuuutQSvH000+zf/9+mjRpUgbSCQsXLuTIkSP89ttvtmu5efPmXH/99SxYsIChQ4cW2HbTpk0cOnSIhQsX0rFjRwCuvfZakpKSeP/998nMzMTPz4+zZ8/y/vvv8+ijj9r+N6699lri4uKYOnVquSkeJ0+eJCsri3bt2uHnZyx0HRAQwKZNmzhx4gR169YtsO3x48fJyclxaBsSEsLGjRuJi4ujRYsWtrr79u3Dx8eH1q1bV6u3Y6H6IVdnFWLVqlVceeWVths1QExMDO3ateOHH3644P6WLVtGeHg4nTp1spVt2bIFX19fOnToYCtTStGxY0e2bt3KiRMnSiVDcfn+++9p27atTekAqF+/PldddVWJlJ8lS5YQERFB586dbWXnz58HICgoyKFucHAwYFhEhLJh9erVXHHFFU7Xctu2bYu8lq2/W2BgoEN5jRo1MJvNtt/t119/JScnh3vuuceh3j333MPu3bs5cuSIO0QpknPnzlGjRg2b4gDg5+dHcHAw586dK7Rtamoqfn5+Dm09PT0JDg4mISHBJmtmZiaJiYnUrl1blI5KiGQudUSu0CrEnj17bKZae5o2bcrevXsvqK/jx4+zdu1a7rnnHry8/jN8eXh44O3t7XSRm0wmAHbv3l2CkV84e/bsoVmzZk7lzZo1K5Gsf/zxB/fee6+DrM2aNaNDhw689tpr/P3336SlpbFlyxZmzJjBzTffzCWXXFJqOQTX7N27t8Bred++fYW2ve6662jQoAEvv/wye/fuJT09nbVr1zJnzhz69+9vcz/s3bsXHx8fB+UGsP2uRR3HXaSnp7t0Hfn7+zvFpORHKeVSkVBKYTabyczMBCAlJQUw/n+3b9/O77//zrp169i9e7dNURMqBkmZ7owoHlWIpKQkQkJCnMpDQkJITk6+oL4+++wzzGazg5sFoHHjxqSmpjo93P/66y/bGMqDxMREl7KGhoZe8BiWLl2K2WzmvvvucyhXSrFkyRIaN25Mly5diI2NpWvXrtSvX5+PP/64FKMXiiIpKclmWbKnONeyr68vX375JVprOnfuTNOmTenTpw833XQTkyf/t1hmUlISNWrUcLphW6+rxMTE0gtSDHJzc/H29nYq9/LyKlIp8PPzIzMz06Ge1toWXJqbmwsYsVlgKFt+fn5ceumlNGjQgISEBP755x+x3gmVClE8qgEluaksW7aMSy+91MFHDHD33XdTq1YtnnjiCXbt2sW5c+d488032bBhA1C+aw640vBLIuunn35Kq1ataNmypdO+UaNGsXnzZmbMmME333zDjBkz2LZtG4MGDcJsNpdo3ELxKOnvm5WVxbBhwzh79ixvvvkmn332GePGjWP58uU8//zzDn256xqqKKKjo9Fas2fPHjIzM8nOzubAgQMFBowGBwfTpEkTQkNDiY6OpnHjxqSlpZWbkiW4Rma1OCLBpVWI4OBgl2/7ycnJLt8eC+Lvv/9m//79vPTSSy6P8eGHH/LEE0/Y4iFiY2MZPXo006ZNIyIiosTjvxBCQkJc3iwLsvoUxJYtW9i3bx9Tpkxx2rdq1Sq++OILvvjiC2644QYArrnmGmJjY+nZsyfff/89t956a4llEAqmNNfykiVLWL9+PX/88YdtKnj79u0JCgpizJgx9O/fnxYtWtisJ/kVEKtFJTQ01G3yFEZBlo2CLCH2+Pn50axZM/bv38+mTZsAI7albt26HD161OYCtboQ88tk/Z6WlkbNmjVLLYtQMqqTm8QdiOJRhWjatCl79uxxKt+7d+8FxSMsXboULy8v7r77bpf727dvz4YNGzh06BB5eXk0atSId955B19fX1q3bl3i8V8IBcm6Z8+eC5J1yZIleHl5ce+99zrt27VrFwCXX365Q/kVV1wBlF8MwMWIdepyfvbu3VvkTKLdu3cTHBzslH/G+jvu27ePFi1a0LRpU7Kzs4mLi3OI87D+ruU1Y6mgWI6MjIxCpw1bCQ8PJywsjMzMTJRS+Pn52Waw+Pr6AhQ6vVwQKhvVx3ZzEdC1a1e2bNnC4cOHbWXx8fFs2rSJW265pVh95OTk8PXXX3PTTTcRFhZWYD2lFA0bNqRJkyZkZmaycOFCevbsWW43uG7durF582bi4uJsZUeOHGHjxo0OuTgKIycnhy+//JKbb77ZpaxW682WLVscyq3xLNHR0SUcvVAUBV3Lmzdvdsgr44rw8HCSk5OdEmNZf8eoqCgAOnXqhMlk4ssvv3So98UXX9C0aVNiYmLcIUqR1KpVi5SUFFsgKBjuopSUFGrVqlWsPpRS+Pv74+fnR3Z2NmfOnHG4PmvUqIHJZHKyElq/55+55S7mzp2LUsqlhTI3NxelFBMmTCjVMcaOHUvr1q0JCQnB39+fZs2aMWnSpEIDc5OSkoiKikIpxY8//liq45cWCS51RhSPKsQDDzxAvXr1GDhwIN9//z0//PADAwcOpHbt2vTv399WLz4+nrp16zJz5kynPlavXk1iYiK9evUq8DhTpkzh22+/Zd26dSxcuJBbbrkFLy8vnnvuuTKRyxX9+/cnJiaG/v37s2LFClauXEn//v2pU6eOLecGGLJGRkYyffp0pz5WrVpFYmKiU1Cpldtvv52oqCgeffRR5syZw++//86cOXN47LHHqFOnjrhZypC+fftSt25dBg8ezA8//MCqVasYPHgwtWvX5oEHHrDVO3r0KPXr1+f111+3lfXu3ZvAwEAefPBBli1bxtq1a3n33XeZPHkyrVu3pl27dgCEhYUxZMgQ3n77bWbPns26det49tlnWbt2LWPHji03WaOjo/H19WXHjh2cPXuWc+fOsWPHDnx8fByUh6ysLNasWeOgjJnNZg4cOMDZs2dJTEzk2LFj/P333/j7+zvk/1BKERsbS0JCAvv27SMhIYHjx4+zf/9+goODL8g9WRKSk5N59dVXy6TvlJQUBg0axKJFi1i+fDn9+vVjypQp3H///QW2GTNmTKV6UIvi4Yi4WqoQ/v7+LFu2jBdffJERI0agtea6665j0qRJTpaIvLw8l8GRy5YtIzQ0lC5duhR4nLNnzzJ+/HjOnj1LWFgY3bt356mnnio3nzgYpuMvv/yScePG8eijj6K15oYbbmDKlCkO+Ru01gXKumTJEkJDQwt8gw4KCuKHH35g2rRpvPXWW5w6dYrIyEi6du3KmDFjnPJECO7D39+fpUuXMmHCBJ544gnbtTxhwgSHa9nV71uvXj2++eYbZs6cybRp00hISKB27dr069ePESNGOAThjRkzhoCAAD766CPOnDlDw4YNeffddwu9/t2Np6cnrVu35uDBgzb3YUhICI0aNXKZtdQ++FUpRWZmJqdPnyY3NxcfHx8iIyOJiYlxCja0vuHHx8dz8uRJvL29iYiIoEGDBmX+0OratSuzZs1i5MiRNouTu3jnnXccvt90001kZGTwyiuv2O5R9qxdu5YFCxYwa9YsHnroIbeORXAPqipFeFcn2rRpo0uS9KsqUlQAXXWjMBdWdaQ46+dUF/r27VvRQyhXfvvtt0L3z507l0GDBrFmzRq6devG4MGDmTVrFvBf8OyLL75YandLfmbMmMHTTz/tNC37/PnzXH755fTp04frr7+eG2+8kdWrV3PzzTcX2adS6i+tdVu3DhRo2LChtp/mXRr69etXJmMsb8TVIgiCIJSK6Ohohg8fzuzZsx1cRfnJzc0tcsvLyyuwbVpaGj/++CMzZ85k8ODBTjOgpk2bRk5ODs8884xb5Sst4mpxRBQPQRAEodSMGTMGPz8/Jk6c6HJ/XFwc3t7eRW6NGjVyavvvv//i7e1NUFAQXbp0oUuXLsyePduhzv79+5k8eTJvv/02Pj4+ZSKj4B4kxkMQBEEoNTVr1mT06NFMnDiRMWPGOCkQtWvXtuUiKQxXSkPjxo3ZtGkT6enprFu3jqlTp5Kbm8vChQttdYYNG0aPHj3KNX6nOBSU9v5iRhQPQRAEwS2MGjWKWbNmMX78eAelAIz1ni677LIi+3DlUvD19aVtWyO0oWPHjkRHRzNo0CBGjBhB+/btWbp0KWvXrmXz5s22xHRpaWmAsVbOhSZZdDfVyU3iDkQNEwRBENxCYGAgzz77LMuWLWPr1q0O+0rjasmPVQnZv38/ADt37iQzM5OWLVsSGhpKaGgod9xxBwB33XUX9evXd6+gQqkQxaMS8OmnnxIdHU3Tpk2d0kjn5uYSHR3NjBkzStx/amoqM2fO5I477rBldLzjjjsKXF7+zz//5I477qBBgwa0bt2aF1980SH5kZXVq1dz55130rx5c5o1a8add97J999/X+R4Fi9eTFhYGA0bNnQpb1hYWKlzAnz//fcMHTqUq666ivDwcO68884C6y5ZsoTOnTsTGxtL06ZNuffee1m/fr1Dncsvv5ywsDCX2+jRo0s11urO0qVLqVu3Li1atHD5e9etW5fXXnutxP2npqby+uuv06NHD9v6Qz169HB5LX7wwQfcdtttXHrppTRq1Ihrr72Wl156yW1rmZw8eZI1a9awdu1apzTpWmvWrFnjkBSvJGitOXz4MH/++Se///47GzdudDmzKDk5mT179rB582bWrFnDn3/+WarjFpdHH32UOnXqMG7cOIdyq6ulqG358uVFHsM628aqpAwcOJBffvnFYbPmfpkxYwbffvutm6W8MCS41BFxtVQiUlJSePvttx0WunIHx44dY+7cufTp04eRI0fi4eHBV199xeDBg3n55ZcZNGiQre7OnTu577776NixI/PmzePIkSNMmjSJkydP8v7779vq/fzzzwwYMIBbb72VJ554AoCFCxcyePBg5s2bV6zpaykpKfzvf/9j/PjxbpUXYOXKlfz777+0bdvWtnKnKz755BNGjx7NwIEDGT9+PBkZGbz77rv07NmTlStX2lLEf/LJJ+Tk5Di0/fbbb3nrrbeKnUn1YiclJYV33nnH7Ynojh07xrx58+jduzdPPPEEHh4efP311wwZMoTJkyczcOBAW92kpCS6d+9O06ZNCQgIYMeOHbzxxhusW7eOFStWuM0Xn5eXx9GjRx1StbuLffv2cerUKWJiYqhRowZJSUkcPHiQvLw8hzf7pKQkkpOTbVlLC5ot4m58fHwYP348Q4cOdSg3mUw2S0Vx2b59O0899RS9evWiYcOGZGdns2bNGt588026d+9Ohw4dAGM9qfwp9K20adOG6667rkSyuIvqpDS4A1E8KhEdO3bko48+4v/+7//cuhhbTEwMGzZscFgX4sYbb+T48eO89dZbDorH9OnTiY6O5oMPPrDl3/D29uaJJ57gsccesz2IP/vsM6Kjo3n//fdtSZA6depEu3bt+Pzzz4uleNx44418+OGHPPzww0RGRrpNXoDXX3/d9hC57bbbCqy3ZMkS2rVr52BRuv7667nkkkv4+uuvbfK6WqNmypQpRERE2BbTEwqnY8eOfPzxxwwZMsTt1/e6devw8/OzlXXq1Injx4/zzjvvOCgeTz/9tEPba665Bj8/P8aOHcu///7rtrWIQkNDOXbsGHXq1LEt5OYOsrKyOHnyJDExMTYlIzQ0lLy8POLj46ldu7bt/9a+zu7du22L45UHgwYNYvr06aVe7ygyMpKwsDBefvllTp48ib+/Pw0bNmTGjBkMGTLETaMVyhtxtVQiRo4cCcCbb77p1n79/f1dLkbVpk0bTp06Zft+/vx5fv31V+644w6HpF933nknJpMJ+4RnOTk5+Pn5OWRe9PT0xN/fv9jLyT/55JMADumw3UVx31xzcnKc1rHw9/fH29u7UDmOHj3KH3/8Qc+ePV1mnxScefzxxwH43//+59Z+rWuY5Kd169YO13dBWNOJW1d4dQfWdWCOHDnitj7BcCsBTivNhoaGYjabSUhIsJWVx1v2wIED0VrTuHFjh3IvLy/27t2L1rpUycMiIyNZtGgRhw4dIjMzk3PnzrFp0yYee+yxIqfMdurUCa11sV6CyhpxtTgiikclIjIyksGDB7NgwQLi4+MLrFeaJDz2bNiwweGGERcXR1ZWFs2aNXOo5+vrS/369R1WE33ggQeIi4vjjTfe4Ny5c5w9e5aZM2dy9OhRBwtKUfI+9NBDzJs3r1zkdcXgwYP57bffWLBgAcnJyZw4cYIxY8bg5eVFv379Cmy3dOlStNYFrgMjOBMREcHAgQNZtGhRodlO3fV7//nnn04PRPtjZGZm8tdffzFz5kyuu+46WrRoUWLZ8mMymahduzYnTpwgKyurwHpa62JtVqwPn/yKtfV7YQunCRWDLBLnjLhaKhmPPfYY8+fPZ+bMmS4tAfHx8Vx11VVF9lO3bt1C58zPnz+fv/76i7feestWZg38czXtLCQkxCEwsFOnTnzyySc89thjtkDQwMBAPvroI9q3b1/k+Kw8/vjjfPLJJ0yfPt3lm/CRI0dsy9QXRr169fj777+LfVwrVuXimWeesVmcIiIi+Oyzzwp8aIGheLRq1cqtD6uLgUcffZSFCxfy+uuvuwwojY+Pt/ntC6Nu3bps2LChwP0LFixgy5YtLq+p9PR0mjZtavvesWNHh/gld1GvXj1OnDjB4cOHHY5nJSsri40bNxbZj4+PD1dffTWAzbKTkpLisJZQSkoKgFNAqyBURkTxqGSEhoby8MMPM3PmTB577DGngKnIyMgCZ6PYU5gZct26dbzwwgv07NmTe++911ZufbMqjmb9119/MXz4cDp37kzPnj1RSrF06VL+7//+j/nz53PttdcW2QcY8j766KNMnz6dESNGOAXjRUVFsXr16iL7KWmmwhUrVjBmzBgGDBhAt27dyMzMZPbs2dx///189dVXNG/e3KnN5s2b2b9/Py+//HKJjnkxExoaytChQ3n99dd59NFHnaY5RkZG8t133xXZT2FxE+vWrePFF1/k3nvv5Z577nHa7+fnx3fffUd2djb//vsvs2bNYuDAgSxZssSt7hZvb2/q1q3L4cOHqVevnpM7yGQycfnllxfZj711IyAggJCQEA4fPoyvr68tuPTYsWOABDFWVuR3cUQUj0rIww8/zJw5c5g+fTpvv/22wz6TycSll15aZB8FXehbt25lwIABXHvttcycOdNhn9XXnX/Ko7XM/q3t+eef55JLLnFYOfLGG2/kzjvvZMKECcVSFqw88sgjfPjhh7zyyitOb54mk4lWrVoV2UdJ/rG11owePZo77rjDQYm48cYb6dChA1OnTmXevHlO7T799FO8vb1dPtSEovm///s/Pv74Y2bMmGFbUMyKyWSiZcuWRfZR2PU9ePBgrrnmmgKnoHt4eNCmTRsArrrqKpo1a0bv3r357rvv6NGjxwVKUzh169bl+PHjHD582MmF6eHhUaIVkJs2bcru3bv5999/ASO2qkGDBuzfv9+tgayC+5DMpY6I4lEJCQgIYMSIEUycOJFhw4Y57CuNq2XXrl3cf//9tGzZkg8//NBp1djY2Fh8fHxsS3dbycrK4siRI7aEPGBEyQ8YMMDpuJdddpnLh3VhBAYG8sQTTzB+/HiGDx/usK8sXS2nT5/mzJkzTm+d1oeffUyLlezsbL766ituvvnmi24VWncREBDA8OHDeemll3jkkUcc9pXG1bJr1y769etHy5YtmT17drFXRbYqIaXNr+EKT09P6tWrx8GDB6lbt67DvpK4Wqzf27RpQ3Z2Nrm5ufj6+pKeng5AjRo13CuAIJQBonhUUgYOHMjs2bOdEmmV1NVy8OBB+vTpQ0xMDPPnz3c5C8BkMtGpUyeWL1/OU089ZTM7f/vtt2RnZ9O1a1db3fDwcKfMhGC8cUZFRRVHRAcGDx7Mu+++y9SpUx3Ky9LVEhISgo+PD1u2bHEoz8nJ4d9//3WZ7fCHH34gMTFRgkpLyYMPPsjs2bOZNm2aQ3lJXS0HDx6kb9++1K9fn7lz57q8vgvCqsCUVXbL2rVrc/ToUSfFpiSuFnt8fHzw8fFBa82xY8fw8/OzWS2FyoW4WhwRxaOS4uPjw6hRo5zyDhR3vQN7zp49S58+fTh//jxPP/2005v8pZdeantwP/XUU9xxxx0MHTqUQYMGER8fz6RJk7j99tttb4YADz30EBMnTuTRRx+1xYksW7aMTZs2MWnSpBLJ+9RTT9mm2NrLW5ybc37i4+NtFpCEhAQ8PDz45ptvACMLab169fDx8aF///58+OGHhIaG0rVrVzIzM/noo484cuQIkydPdur3008/pWbNmpVuIaqqho+PDyNHjmTMmDEO5SaTyeE6Kw5nz56lb9++5OTkMHr06AKv75SUFB544AHuvvtuGjRogFKKrVu3Mnv2bFq0aEH37t1LLZcrPDw8qF+/vlNOCw8PD6ep3MXh+PHjeHh44OvrS05ODqdOnSIlJYVWrVo5POBycnJsuTuysrIwm82cOXMGMKYgBwQElEIqobhUtxkp7kAUj0rMfffdx7vvvsvBgwdL1c/evXtt0xf79+/vtH/jxo3Uq1cPMG7SixYtYsqUKfTv35+goCB69uzJs88+69DmkUceITw8nI8++ojHHnsMgIYNG/LOO+9w9913l2icffv25a233iq1vAB//PEHI0aMcCgbPHgwALNmzeL+++8HYPLkyTRu3JgFCxawaNEifH19adq0KcuWLePGG290aH/27Fl++uknBg4cKL50N9CnTx/ee+89Dh06VKp+7K9vV+6/9evX2xTNJk2aMGfOHE6ePImXlxd169bl4YcfZvDgwWW6lHpUVBRHjx51ufTAhaK1Jj4+nqysLDw9PQkODuayyy5zUiQyMjLYtWuXQ5n1e0xMjCgeQoWh7OeIC+VHmzZttH1CrupMcX3t1YWLLfajsJwc1Y2+fftW9BDKFeuaKBcDSqm/tNYXltO9GDRp0kS7K0niHXfcUSZjLG/E4iEIgiAIZYi4WhyROT6CIAiCIJQbYvEQBEEQhDJELB6OiOIhCIIgCGWIKB6OiKtFEARBEIRyQywegiAIglBGSB4PZ0TxEARBEIQyRBQPR8TVIgiCIAhCuSEWD0EQBEEoQ8Ti4YgoHoIgCIJQhoji4Yi4WgRBEARBKDdE8QCUUgOVUtpuS1dKxSmlvlRK9VZKOZ0npVSYUmqqUupfS/0MpdQ/SqlXlFLRFSGHIAiCUPmwzmwp7VbMY9VTSn2mlEpWSqUopb5QSsUUs22MUuoTpdQRyzNtr1JqslIqIF+9uHzPTOt2V3GOI64WR3oBRwEfIAa4DVgMDFVK3aG1zgRQSrUAVgEK+B+w2dL+cuBhoClQsiVaBUEQhGpDeU6nVUr5Az8D2cAAQAOTgV+UUq211umFtA0AfgS8gReAI0A7YCLQBOiTr8kPwIR8ZXuKM05RPBzZqrXeb/d9vlJqGbAMmAaMUEp5AZ8DWcA1WuvTdvV/Ukq9AXQvrwELgiAIgoX/AxoCTa3PMqXUdmAfxkvxzELaXouhYNyitV5lKftFKVUTeEop5a+1zrCrf1ZrvaEkgxRXSxForT8Hvgb+z6JN3gM0A8bmUzqs9XO11svLeZiCIAhCJaUcXS13AhvsX6C11oeAtUCPItqaLJ8p+cqTMHQFt5ltRPEoHisw3C9tgZuBPEuZIAiCIBRKOSoeLYF/XZTvAFoU0fZHDMvIq0qpFkqpQKVUZ+AJ4D0Xbpo7LHEg2UqpDcWN7wBRPIrLEctnNFAPOJPP5CQIgiAIFU1NINFFeQIQWlhDrXUWcB2GXrADSAV+Ar4FhuervhwYAdwC9MMIPfhSKfVAcQYpMR7Fw6pq6lJ1otRQYChAnTp1MJvNpR1XleDcuXMVPYRyZdCgQRU9hHKlbt26FT2EcmP16tUVPQShCuLG4NIwpdRmu++ztdaz89Vx9ZwqcgBKKV/gUyAC6I/xwn0VMB7IBYbZDqD1iHxtvwQ2AFOBBUUdSxSP4lHP8nkCiAe6uAi0KRLLBTIboE2bNqVSYgRBEISqgRsVj7Na67aF7E/EsHrkJxTXlhB7HgI6AY211gcsZWuUUsnAbKXUe1rrba4aaq3zLBMxXlVKRWutTxR2IHG1FI/bMExJf2H4wTyRmSuCIAhC5WIHRpxHfloAO4to2wpItFM6rGy0fDYvon2xPQOieBSBUuoejEjh9ywWji8w5iq/qpQKd1HfSyl1WzkPUxAEQaiEuCuwtJhWk2+A9kqphnbHj8WYKvtNEW1PAqFKqcb5yq+2fB4rREYvjDxYR7TWJ4sapLhaHLlMKRWGMa0oBrgd42SuBp4FY7qsRRlZDWxVSr3JfwnE2mDEcOwGvivnsQuCIAiVkPJKIAZ8gBEI+rVSahyG9WESRojA+3bjqQ8cAF7SWr9kKZ4LPAmsUEpNwYjxaIuRTOwvjCm5KKXux5iau8LSbyTwGHAlcH9xBimKhyPLLJ9ZwGlgC3Af8JnW2mY+0lrvVEq1AZ4CBmJkb1MYU5G+AN4svyELgiAIlZnyUjy01umWKbCvA/Mxnks/ASO11mn2Q8IIGfCwaxunlGqP8TybDIRhKBazgSlaa+tsiEMYAajTMeJJMoBNQDet9Q/FGacoHoDWei6Gtnchbc4CYy2bIAiCIFQ4WusjwL1F1InDxUwXrfVOoHcRbTcAnUsxRFE8BEEQBKEsKUdXS5VAFA9BEARBKENE8XBEZrUIgiAIglBuiMVDEARBEMqIC5gKe9EgiocgCIIglCGieDgirhZBEARBEMoNsXgIgiAIQhkiFg9HRPEQBEEQhDJEFA9HxNUiCIIgCEK5IRaPKsaxY8eYMGECv//+O1prrr/+eiZOnEidOnUKbffaa68xc+ZMl/t8fHw4ePCg7XtCQgKTJ09m9erVZGRk0Lx5c5566ik6derkTlGK5MSJE0ydOpW1a9eiteaaa67hueeeo3bt2kW2PX78OG+++SZ//vkniYmJREVF0a1bNx5++GH8/f0BOHToEAsXLuTPP//k6NGjBAQEcOmllzJy5EiaNWtW1uI5kZaWxsaNGzl+/DgA0dHRXH311QQGBhbZNjU1lU2bNnHixAnMZjNhYWG0a9eOsLCwAtscPHiQ3377DX9/f/r06eM2OQRnTp8+zXvvvcdff/0FwOWXX86jjz5KREREsdrOnTuXrVu3kpKSQlhYGB07duS+++7Dz8/PVu+BBx7g1KlTTu0nTJjAtdde6z5hhAtGLB6OiOJRhcjMzKR37974+PjwxhtvoJRi2rRp9OrVix9//NH2QHXF/fff76Q4ZGRk8MADD9ClSxdbWXZ2Nr179yYhIYFx48YRHh7O4sWLGTBgAIsXL+aaa64pK/EcyMzMZMCAAZhMJl599VUA3nzzTR588EG++eabQmXNyMhg0KBBnD9/nieeeILo6Gj++ecfZs2axeHDh3njjTcAWLt2LX/++Sd33303LVq0IDU1lQ8//JBevXqxePFiLr300vIQFYDc3Fy+//57PD09uf766wHYsmUL33//PT169MDb27vAtllZWaxYsQJvb286dOiAl5cXO3bsYOXKldxxxx2EhIQ4tcnOzmbjxo0ODy6hbMjKyuLpp5/GZDLxzDPPoJTi448/5qmnnuL9998v9DfIzMzkmWeeIS8vj4EDBxIREcGePXuYN28ex44dY9y4cQ7127ZtS//+/R3K6tWrVyZyCcVDptM6I4pHFWLhwoUcOXKENWvW0KBBAwCaN2/Oddddx/z583n44YcLbFu7dm0nS8Fnn31Gbm4uvXr1spV9++237Nq1i2XLltmUjBtvvJEuXbowZcoUvvuufBbdXbp0KfHx8Xz//ffUr18fgKZNm3LLLbfw6aefMmjQoALbbtmyhbi4OD766COuu+46ANq3b09ycjJz5swhMzMTPz8/br31Vvr16+dwU2jfvj2dO3dm3rx5TJs2rWyFtGPPnj2kpaVxzz33UKNGDQBq1qzJ559/zp49ewpVgnbv3k1mZibdu3e3tY2Ojuazzz7j77//5sYbb3Rqs3nzZkJDQ/H397dZWISyYcWKFZw8eZI5c+bYLJMNGjRg4MCBfPfdd/Ts2bPAtjt27ODYsWNMnTqVtm3bAnDZZZeRmprKsmXLyMrKwtfX11Y/ODiYFi1alK1AglBKJMajCrFq1SquuOIKm9IBEBMTQ7t27Vi1atUF97ds2TLCw8MdLCFbtmzB19eXDh062MqUUtxwww1s3bqVEydOlEqG4vLzzz/Tpk0bm9IBxpvbFVdcwU8//VRo2/PnzwM4uShq1KiB2WzGutBwzZo1nd5EgoKCiI2NdWmyLkvi4+MJDw+3KQ7WsURERHDkyJFC2545c4YaNWo4tPX29iYyMpL4+HjMZrND/VOnTnHgwAGH31goO9avX0+zZs0c3KHR0dG0bNmSdevWFdo2NzcXwMnCFxgYiNYau0WzhUqM1epR2q26IIpHFWLv3r00bdrUqfySSy5h7969F9TX8ePHWbduHXfffTdeXv8Zvjw9PfH29na6yE0mE2C8mZcH+/fv55JLLnEqb9y4Mfv37y+07TXXXENsbCwzZsxg//79pKens379eubNm8d9991XqJsmKSmJffv20ahRo1LLcCEkJSW5dImEhoaSlJRUaFulFB4ezv/Knp6e5OXlkZqaaiszm82sW7eOVq1aOSgqQtlx+PBhh5cFK7GxsUUqlVdccQV16tThww8/5PDhw2RmZvL333/z5Zdfcvvttzu5adavX8/tt9/OrbfeyogRI1i7dq1bZRFKhigejoirpQpR0MMpJCSE5OTkC+rr888/x2w2O7hZABo2bEhqair79u2jSZMmtnJrUFxRD0F3kZyc7PLBGBwcTEpKSqFtfXx8WLRoESNGjOC2226zlffq1Yvx48cX2nbSpElorRkwYEDJBl5CsrOz8fHxcSo3mUzk5OQU2jY4OJjjx487mN211pw5c8bWt5Xt27eTl5dHq1at3Dh6oTBSU1NdBggHBQU5KIWuMJlMvP7667z00ksMGTLEVt69e3eGDx/uULd9+/Y0bdqUqKgoEhMT+frrr5kwYQJjxozh5ptvdo8wguAGRPGoYrjSektibv3ss8+49NJLnfzBd999NzNnzmTkyJHMmDGDyMhIFixYwJ9//lng8cuKkh4rOzubkSNHcu7cOaZNm0bt2rXZvn07b7/9Np6enkycONFlu/fff59vv/2WKVOmOLh4KjvNmjVj165d/P7771x99dV4eXmxbds20tLSgP/OY0pKCtu3b6dz584OVi6h7Cnp/21OTg5TpkwhKSmJMWPG2IJLFyxYgKenJ0888YStbn5F5Nprr+Xxxx9nzpw5ongIlQq5+1QhgoODSUxMdCpPTk4mODi42P38/fff7N+/3+UDODg4mA8++ICRI0fablaxsbE8+eSTTJ8+ncjIyJILcAHUqFHDpRWnIEuIPZ999hkbN25k9erVxMTEANCuXTuCgoJ44YUXuP/++52myy5evNimcBUW7FdWmEwmB8uElZycHJubqyCCgoK44YYb2LBhA59//jkAtWrVomXLlvz77782c/yGDRuIjo4mPDzcdixr/Ed2djaenp6ikJQBgYGBLi0baWlpBAUFFdp25cqVbNu2jU8++cQWHN66dWsCAgJ4/fXXuf322wt0C3p6enLDDTfw4Ycfcu7cOWrVqlV6YYQSUZ3cJO5A7jJViIJiOfbt2+cyHqIgli1bhpeXF3fffbfL/VdffTXr1q3j0KFDmM1mGjZsyLvvvouvr2+5megbN27Mvn37nMoPHDhA48aNC227Z88egoODbUqHldatW9v6sFc8vvrqKyZOnMjgwYMZNmyYG0Z/4YSEhLh0YxXkXstPbGwsMTExpKSk4OHhQY0aNVi3bh0BAQE2M39ycjJpaWksWrTIqf2iRYto0aIFV199dWlFEfIRGxtLXFycU/nhw4edrtH8HDp0iKCgIKcZadZYryNHjhQaj2S1qsiDT6hMSHBpFaJr165s2bKFw4cP28ri4+PZtGmTQy6OwsjJyeHrr7+mc+fOhb4BKaVo2LAhjRs3JjMzk0WLFnHvvfcSEBBQajmKQ+fOndm2bRvx8fG2sqNHj7JlyxY6d+5caNvw8HCSk5MdzhPAtm3bABysNqtXr+a5556jV69ejBkzxo0SXBgxMTGcOXPG4c04NTWVU6dOFflwsuLh4UFISAg1atQgIyODQ4cOOShYHTt2pFu3bg5bnTp18PHxoVu3bjRv3tztcgnQoUMHdu3a5TAj7OTJk+zYsaPImUU1a9YkNTWVY8eOOZTv3r0boNAEcXl5eaxZs4aIiAhq1qxZCgkKZu7cuSilCAkJcbLG5ubmopRiwoQJpTrG8uXL6du3L5dccgkeHh6FJjL8448/uOaaa/Dz8yMqKoonn3ySzMzMUh3fHUhwqSOieFQh+vXrR7169Rg8eDA//PADq1atYtCgQdSuXdshadDRo0eJiYnh9ddfd+rjxx9/JCkpySmo1J6pU6fy7bffsm7dOhYtWkS3bt3w8vLi2WefLRO5XNG7d2/q1KnDo48+yo8//shPP/3Eo48+SlRUlEOWzWPHjtGiRQveeustW9ndd99NQEAAQ4cO5csvv2TDhg18+OGHvPrqq7Rs2ZIrrrgCgE2bNvHkk0/StGlT7r77brZu3Wrbdu7cWW6ygmHNCgwM5Mcff+Tw4cMcOXKEn376iYCAAIeZTGlpabYsllbMZjN//vknhw8f5vjx4+zcuZNvvvmG0NBQWrZsaasXERFBdHS0w+bn54enpyfR0dEyy6WM6N69O1FRUYwfP55169axbt06XnzxRcLDw7n99ttt9U6dOsUtt9zC/PnzbWVdu3bF39+f559/nlWrVrF161aWLl3K7NmzadKkie33/fnnn5kyZQqrV69m69at/PLLLzz11FPs27fPISi1rEhOTrYl+nM3X331FVu3bqV9+/bUrVu3wHrbt2+nS5cuRERE8O233zJ58mQ+/vhjBg4cWCbjKi7uUjqqk+IhrpYqhL+/P0uXLmXChAk8/vjjaK257rrrmDhxooMlQmtNXl6eU/4GMNwsISEhhQabnTlzhhdffNHmF+7evTujR48mNDS0TORyhb+/P5988glTp07lmWeeQWtNhw4deO6551zKah+oV7duXZYuXcqsWbN44403SExMJDo6mj59+vDII4/Ypp5u2LCBnJwcdu7cyf333+9w/Dp16vDzzz+Xj7AYeTe6devGxo0bbenwa9euzVVXXeWQtdSauyF/YGJKSgoHDx4kJyeHgIAAmjRpQps2bfD09Cw3GQTX+Pn5MX36dN59911effVVtNZcfvnlDBs2zGE6rNbaIc8MQFRUFP/73/+YN28ec+fOJTk5mfDwcG699Vb69u1ru5ajoqJISkpi9uzZpKam4uPjQ9OmTXn55Zdp165dmcvYtWtXZs2axciRI4mKinJr3x988IFNTmtCQFe8+OKL1K1bl2XLltn+Z0wmEwMGDGDMmDG2Fw6h4lGSgKZiaNOmjV65cmVFD6NcsM6uuFh45ZVXKnoI5crHH39c0UMoN1avXl3RQyhXipoNM3fuXAYNGsSaNWvo1q0bgwcPZtasWYDhavH29ubFF18stbvFynXXXYeXlxe//vqrQ/n58+epUaMGTz75JFOmTLGVZ2VlERwczNixYwuczWZFKfWX1rqtWwZqR8uWLfXixYvd0lebNm3KZIzljbhaBEEQhFIRHR3N8OHDmT17tlNslT25ublFbnl5eRd8/AMHDpCVleW0tICvry+NGjUqd9dpfsTV4ogoHoIgCEKpGTNmDH5+fgVaFuLi4vD29i5yK0nW4ISEBACX7uCaNWva9guVA4nxEARBEEpNzZo1GT16NBMnTmTMmDFOCkTt2rXZtGlTkf24yuBbFIVNG64M4QTVyVrhDkTxEARBENzCqFGjmDVrFuPHj2fhwoUO+0wmE5dddlmRfZTkIW2dLuzKspGYmOgwu0uoeETxqKR8+umnPPnkk9SoUYP169c7JJHKzc2lfv36PPnkk4wePbpE/cfHx9O+ffsC97/zzjv06NHD9j0vL485c+awePFi4uLi8PPz49JLL+V///ufW7KZfvHFFzz77LMEBQXx008/OWRizc3NpWXLlgwfPpwRI0aU6jhZWVl88MEHLF++nOPHj1OjRg1atWrFrFmzMJlM5OXlMXfuXH777Tf2799PZmYmsbGx9O3bl3vvvdflYmwXyr59+/jjjz8wmUz07NnT4Q3PbDbzySefcNlll3H55ZeX+Bhms5ldu3axd+9e0tLS8Pb2Jjw8nMsvv9whp8OOHTs4ePAgqamp5Obm4u/vT0xMDK1bt3ZYbl0oHj/88AMzZswgICCA+fPnO2QmzcvLo1u3bvTv358HH3ywxMf48MMP2bhxI6dPnyY3N5eIiAg6d+5Mz549HX6zzz//nJ9//pkTJ06QlZVFeHg4HTp0oG/fvmU2dTowMJBnn32W0aNH8/TTTzvsi4uLc7lYXn7q16/vMuFaYTRq1AgfHx927NjhUJ6VlcXBgwcLTR8glD+ieFRyUlJSeOedd3juuefc2m9ERATffPONU/m0adPYtGkTN9xwg0P5448/zq+//sqIESNo06YNqamprF+/3mWa79KQmprKBx98wFNPPeXWfsGIfP+///s/jh49ytChQ2ncuDEJCQmsXbvWNvU4KyuLd999l7vuuosHH3yQgIAAfvvtN1544QUOHjzo1iRjOTk5/PPPP7Rt6/4g9b///pt//vmHVq1aER0dTXZ2Ntu2beP777+nR48etinJ2dnZ1K9fn5CQELy9vUlISGDr1q2cOHGCO++8U0zEJSQ9PZ1PP/20THJoZGRkcMstt1C3bl28vb3ZuXMnixYtYu/evbz00ku2eqmpqVx33XXExsbi7+/P/v37WbBgAdu2bePtt992ixLtikcffZSZM2cybtw4h/KydLWYTCa6detmSzdgTf3/2WefkZ2dzZ133nnBfboT+T9yRBSPSk7Hjh2ZM2cOQ4YMISIiwm39+vj4cOWVVzqUZWZmsnXrVm6++WaHIK2vv/6a5cuX8+2339rSjoMxd9/dXHfddSxYsIABA/6/vTsPb7LKG///Pkma7vteKIVS9haUrSIOCIqgDjqI6ygD6Fd03Bl9XJ5xGB135YfO4MozM6AiLuCCCwqiKMKwaREopZTSFlq6QKEb3Zvcvz9CMk2Ttmmbpiyf13Xlwp6cc9/nkMr9yVlnExkZ6dZrL126lL179/LVV18RGxtrS586dartv318fFi/fr1dD9O4ceOoqKhg+fLl3H///W7rCYiLi2Pfvn0MHToUPz8/t1zT6sCBA/Tr18/uMw4NDeXTTz8lPz/ftqNpy70NYmNj0ev1bNmyhePHj7e5M6Zo3ahRo1i9ejXXXHON23cNve++++x+HjlyJPX19XzwwQd25za13DhrxIgReHt78/e//53s7OwOHbPQEd7e3ixYsIB58+bZpRuNxk4F2YcOHbIFLMePH0en07Fq1SrAcgaT9UDHJ554gnHjxnH99ddz9913k5eXx//8z/9w7bXXOvxb50ln24oUd5BVLac56+mT//jHP7r9XmvWrOHkyZMO3ZJvv/02F1xwgV3Q0V2sZ6W8+eabbr+2dRfW5kFHS3q93unZKCkpKTQ0NDg9pK+zRowYAVh2XHQ3s9lst/EY0O5hc1bWwKq7vhGfC26++WYAp+fidAfr0El7h/y5mq+r5s6dy4ABA9xyrQ0bNnDddddx3XXXkZmZSUZGhu3nDRs22PKdd955rF27lqKiIq688kr+93//lz/84Q+8/fbbbqmHcB/5l+U0FxUVxdy5c3nvvfcoKChoNZ871sevXLmSiIgIJk2aZEtrbGxk586dDBo0iKeffprk5GQSEhL47W9/y6ZNm9zWTqvIyEhuvvlmPvzwQ4fzKZrraHsLCwspKioiPj6exx9/nJEjR5KSksLs2bPZt29fu/XasWMHQUFBbu2F8fPzY/Dgwezfv7/NTdbMZrNLr+YGDx7MwYMHOXToEA0NDbahMT8/P6fj7GazmaamJo4ePcrOnTuJjY3ttvM9zgVhYWFcddVVrFmzhpKSklbzmUwml16tla2trSUtLY1Vq1Yxbdo0p2cpmUwm6urqyMjI4J133uH8888nMTHRLe2cM2cOmqY5HNxoMBjIyspC07Qubx5mvYezV8tenQkTJrBlyxbq6uooKSnhlVdecXtvYmfIPh72ZKjlDHDXXXexfPlyFi1axKJFixzeb2+iqFXv3r3Ztm2b0/eKiorYvHkzt912m923obKyMhoaGvjoo4/o06cPL730EkajkTfeeINbbrmF1atX2765u8vtt9/Ohx9+yKuvvspzzz3n8H5BQQGXXHJJu9dpvu350aNHAcv2yykpKbz88ss0NDTwj3/8g1mzZvH55587nABq9dNPP/H1119z//33u/2b4vDhw8nKyuLXX391uh10VVWVrVu5LQEBAXY9VSNHjkSv17NhwwbbcsKgoCAuv/xyhzH0xsZGli9fbvu5V69edsGn6JwbbriBr776infffdfpnKXi4mK7M5ZaEx0dbff5gOXU2uZDGVOmTOGBBx5wKFtbW2s3v2H06NH85S9/6UArhDucTUGDO0jgcQYIDQ1l3rx5vPzyy9x111307dvX7v3o6GjWrFnT7nXa6mr/+OOPMZvNDsMs1m/STU1NvPvuu7ZzGC644ALGjRvHG2+84fZhkZCQEObOnctrr73G7bff7nA6a1RUlEsP4+bttbbD19eXN99803ZGRnJyMlOmTOG9995zmIUPkJ2dzYMPPsjYsWO5/fbbu9Isp7y9vRk2bBi//vorKSkpdqsgwNIrMn369Hav03JYJDMzk127djFixAhiYmKor69n9+7drFu3jiuuuMLuW6DBYGD69OmYTCaOHz/O7t27Wb9+PVOnTpXhli4ICgri2muv5d133+WGG25wCGzDw8PtDjdsjbP/b3v16sWrr75q68n44IMPMJlMDgc5ent78+qrr9LY2Eh2djYrVqzgL3/5Cy+++KKc4yN6jAQeZ4h58+axdOlSFi5c6PCPldFodGmdeltR96pVqxg2bJjDdYKDg1FKMWDAALvDn/z9/Rk1ahTp6ekdbIlr5syZw/Lly/nHP/7BwoUL7d4zGo0uHeHevL3WeRsjR460O5grNjaWxMREp8Mt+fn5zJ07l969e/P6669327j4sGHD2LdvH2lpaUycONHuPb1e3+Ehj/r6erZv305ycrLdktzY2FhWrlzJnj17SE1NtaUrpWyTSKOjowkNDeWbb74hLy/PbV3y56qZM2eyevVq3n77bYegwMvLy2GIwlVGo9F2avGIESMICwtj4cKFXH311QwdOtSWT6fT2fIlJyfTr18/HnroITZu3Ci9WqLHSOBxhvD39+eee+7hb3/7m20CplVXh1p+/fVXDhw44HQs1tfXl4SEhFZ3BOyub8T+/v7ccccdPP/889x2221273VmqCU+Ph4fH59W29Eyvbi4mNmzZxMQEMA///lPAgICutCatnl5eTF8+HC2b99OSkqK3XudGWqpqKjAZDI5rEjx9vYmMDCQioqKNq9lLVdZWdmRZggnfH19ufHGG3nrrbccehO7MtTSknWFSmFhoV3g0VY+4Tky1GJPAo8zyOzZs1myZAkvvviiXXpXh1pWrlyJwWBgxowZTt+fNm0aS5cupbCw0NZdfPLkSX755RcuvvjijjWiA37/+9+zdOlSXnnlFbv0zgy1eHl5MXHiRH7++WdqampsQw2FhYXk5ubaBTInTpywTVpbunSpRyZZDh48mPT0dNLS0uzSOzPUYu3ROXbsmN0wVX19PZWVlYSHh7d5reLiYoBu22TqXDN9+nQ+/vhjli1bZpfelaGWlqwro1qbp9QyX1sru4TobhJ4nEG8vb2ZP38+Dz/8sF260Wjs9ATPxsZGVq9ezaRJk1rds+HOO+/k448/5g9/+AMPPPAARqORN998k9raWu65555O3dcVRqORu+++22EynNFodOgZcMV9993Hddddxx133MHcuXOpr6/ntddeIygoiFtuuQWwbCB22223ceTIEZ599lmKi4ttD2KApKSkbun90Ov1nHfeefznP/9xSO/oXhqBgYHEx8eTnp6OUso2x2PPnj2YzWbbHh4NDQ2sW7eOxMRE294Px44dY+/evYSFhdn2RxBdYzQaueWWW3j55Zft0r28vGzDIK7KycnhrbfeYuLEicTExNDY2MiePXv49NNPGTNmjK23o7q6mscee4zJkyfTq1cvlFLs37+fjz/+mMTERKcTmUX3kR4PexJ4nGFuuOEG3njjDXJzc91yvfXr11NWVtbmlsKRkZF8/PHH/O1vf+NPf/oTZrOZUaNG8fHHH3f4H86Ouuaaa/jXv/7V4S2UnUlKSuLtt9/mpZdeYv78+RgMBlJTU3nttddsD/fS0lLbEdrOViK88847dvMj3GnAgAGkp6e7ZYjj4osvJj09nZycHPbu3YuXlxfh4eGMGzfO1lbrniX79u2jpqYGpRQBAQEkJyczdOhQmXzoRlOnTuWjjz5qc4m4K0JDQwkODub999/nxIkTeHt7Exsby7x587j88stt+by8vOjTpw+fffaZbdOtmJgYZs6cyYwZM1ze00V03dm2FNYd1Olwct+5aMSIEdrXX3/d09XwiLb2qDgbPf/88z1dBY9aunRpT1fBY7799tueroJHXXrppT1dBY9RSv2iaZrbzy9ISUnRPvnkE7dca+DAgd1SR0+TtXJCCCGE8BgZahFCCCG6kQy12JMeDyGEEEJ4jPR4CCGEEN1IejzsSeAhhBBCdCMJPOzJUIsQQgghPEYCDyGEEEJ4jAy1CCGEEN1IhlrsSY+HEEIIITxGejyEEEKIbiJbpjuSHg8hhBBCeIwEHkIIIYTwGAk8TlFKzVFKaUqpcqVUaIv3DKfee+LUzxef+vnSFvkSlVJ5p16JHqy+EEKI05R1uKWrLxfvFa+UWqWUqlBKVSqlPlFK9XGxbB+l1NtKqcNKqRqlVJZS6mmllH+LfDql1GOnnnV1SqldSqmZrv59SODhKBh4pKOFlFKDgI1AEzBB07Qcd1dMCCHEmcdTgYdSyg/4HhgMzAZmAQOADS2DBydl/YH1wATgL8CVwD+BB4F/t8j+FPAE8CpwObAVWKmUusKVvw+ZXOpoHXCvUuoVTdOKXSmglBoGfAeUAZdomlbYnRUUQghx5vDg5NLbgURgkKZp2afuvRs4ANwBLGqj7HgsQcpUTdPWnUrboJQKAx5SSvlpmlajlIoCHgKe1zRtYbN8ScDzwJr2Kik9Ho6ePvXnn13JrJQ6D/gBOApMlKBDCCFED7kK2GoNOgA0TcsFNgNXt1PWeOrPyhbp5VhiBWv0NPVU3uUt8i0HUpRS/dqrpAQejoqwdB/NU0oltJN3DJZurXxgkqZpR7u7ckIIIUQrhgHpTtL3AkPbKbseS8/IC0qpoUqpAKXUZOB+4E1N06qb3aMeyG5Rfu+pP9u7jwy1tOIFLN1SfwVubSPfs0AFMEXTtOPtXVQpNQ+YBxAYGMgLL7zghqqe/jZv3tzTVfCoP//Zpc6ys8a//91y+Pfsda7tx6BpWk9X4azgxt+bCKXUz81+XqJp2pJmP4dhGfJv6QQQ6iTdRtO0OqXURcDH/DeIAMs8j3ta3KNcc/zlONHs/TZJj4cTmqadAP4/4A+nJo225issk1FfUi78ZmmatkTTtNGapo329fV1U22FEEKcI0qtz5BTryVO8jiLFtt9PimlfIAPgSgsk1InAv8D3AC81uJanbqHlfR4tO5l4F7gb8DNreR5BdgOPIml6+mPHqmZEEKIM4KHdy4tw3mPQyjOe0Kauw24GEjSNO3gqbSNSqkKYIlS6k1N03ZxqvdEKaVa9HpYe1RO0A7p8WiFpmkngeeA64Dz2sj3NyxDLncqpV72TO2EEEIIB3uxzMFoaSiQ0U7ZFKCsWdBhtf3Un0Oa3cMb6O/kHrhwHwk82vE6cIT/rnRxStO0P2NZpvSAUuo5T1RMCCGEaOFz4ILmG1gqpfpiWSr7eTtli7H0ZCS1SE899eeRU39+AzTgOBJwC5B+ahVNm2SopQ2aptUrpf4GOBtHa5n3QaWUN/CoUqpe07Qnur2CQgghTnseHGr5PywTQVcrpR7HMhfjKSwrL99qVp8E4CDwt1O99gDLgD8Ba5RSzwCHgdFYNhP7BcuSXDRNO3qqd/8xpVQVkIZlHshk2l+yC0jg4YqlWCbYDHAh771YuqD+qpSq1TTt3Fi2IoQQosdpmlZ9agnsy8C7WCZ8fgc8cGr6gJUC9DQb9dA0LU8pdQGWHUmfBiKwBCxLgGc0TTM3K/9n4CSWpbYxwH7gek3TvnClnhJ4nKJp2jIsEV/L9CZgYIu0H3Ayg/fURJvbT72EEEIIj9I07TDQ5rkpmqbl4fwZlgFc78I9TFiCkzanIbRGAg8hhBCiG51r+7+0RwIPIYQQohtJ4GFPVrUIIYQQwmMk8BBCCCGEx8hQixBCCNGNZKjFnvR4CCGEEMJjJPAQQgghhMfIUIsQQgjRTTx8SNwZQQKPM0xVVRUbN24kPz8fTdPo06cPEyZMIDAwsN2yFRUVbNq0ifz8fMxmM9HR0Vx00UVER0fb8jQ0NLB+/XqOHTtGdXU1Op2O0NBQRowYweDBg7uzaQ4aGhrIz8+nsrISgKCgIOLj4zEaje2Wra+vp6CggKqqKjRNw8/Pj969e+Pv72/LU1payqFDh1q9xvDhw/Hy8up6Q1xUWlrKv//9b3bv3o2maQwfPpxbb72VyMjIdsseO3aM999/n/T0dCorKwkPD2f8+PFcc801+Pj4APD999/z6quvtnqNf/3rX4SGhrb6vhBCuIMEHmeQxsZGPvnkE/R6PVOmTAFg69atfPzxx9x8881tPiRra2tZtWoVRqORyZMnYzAY2LlzJ5988gk33HADYWGWk5RNJhM6nY7Ro0cTFBSEyWQiKyuLdevWUVtby/nnn++RtprNZrKyslBK0a9fPwCOHDnC/v37GTp0KHq9vtWyTU1N7N+/H51OR58+fdDpdJSUlJCVlcXgwYPx9fUFIDg4mEGDBjmUz87Oxtvb26NBR319PX/9618xGAzce++9KKVYsWIFCxYs4OWXX7YFD87U1dXxxBNPYDKZuOmmm4iIiCA7O5sPP/yQwsJCHnroIQBGjRrFc885nmH47LPPEh0dLUGHEN1EejzsSeBxBtm7dy+VlZXMmjWLkJAQACIiInjnnXfYs2cPI0eObLXsnj17qKmpYebMmbay8fHxLFu2jK1bt3LFFVcA4Ovry7Rp0+zK9u3bl/LycjIyMjwWeBw7doz6+nqGDRtme+j6+vqSnp5OaWmpXS+Ns7KNjY12ZQMDA0lPT6eoqIjERMvBjV5eXg7BRVVVFSaTifDw8G5qmXPffvstJSUlLF68mNjYWAASEhK4++67WbduHVdddVWrZTMzMykqKmLBggWcd955AKSkpHDy5ElWr15NfX093t7eBAcHExwcbFc2IyODqqoqbrzxxm5rmxBCNCeTS88gOTk5xMTE2AIHsHxrj42NJScnp82yxcXFhISE2JX18vIiLi6OvLw8zGZz64UBHx8fdDrP/bpUVFTg7+9v903f29ubgIAAysvL2yxbXV2Nj4+PXVm9Xm8razlSx7njx4+jlLL1AHnKjh07GDBggC3oAIiOjmbw4MFs3769zbJNTU0Atp4cK39/fzRNa7O9GzZswGAwcNFFF3Wh9kII4ToJPM4gJ06ccPpNPDw8nBMnTrRZVinldHjCYDDQ1NRERUWFXbqmaZjNZmpra0lPT+fw4cO2b9OeUFtb6/AgBcvDta6urt3yzro2dTodmqZRX1/vtIzZbKasrIzg4GAMBs92Bubn59OnTx+H9Pj4eAoKCtosO3z4cGJjY3n33XfJz8+ntraWPXv28OWXX3LZZZe1OkxTX1/Pli1bGD16tEtzhIQQnWOdYNrV19lChlrOIHV1dXh7ezuk+/j4tPowtQoNDbU9lKwPdE3TKC4utl27ud27d/Pjjz8Clgf2hAkTGDJkiDua4RKTyeQ0UNLr9bZv+K3x8fGhsrKSpqYmWwChaRrV1dUArZYvLy/HbDZ7fJgF4OTJkwQEBDikBwYGcvLkSScl/stoNPLMM8/w0ksvcf/999vSL730Um6/vfWDkrdv305NTQ0XX3xxp+sthBAdJYHHWaCtrnSrlJQUdu3axbfffsuECRPw8vJix44dthUjLaPpAQMGEBMTQ21tLbm5ufz4448opUhJSemWNjjT2Qg/MjKSo0ePkpuba5tcWlRUZAvOWrvu8ePHMRgMDvMgPMVZvVz5bBsaGli0aBEVFRXcf//9REREcODAAVauXIler+eOO+5wWm7Dhg0EBQUxatSoLtddCCFcJYHHGcTb29tpz4Z18mBbgoODmTp1Kj/88APvvPMOYHlAn3/++aSlpdktMwXw8/PDz88PsEwubWpqYtOmTe2uKHGX1no2TCZTu8Mg3t7e9OvXj8OHD5Oeng5Y2hMdHU1JSYnT1SqNjY1UVlYSFRXVI12a/v7+VFVVOaS31hPS3HfffUd6ejqvv/46MTExAAwbNgx/f3/eeOMNLrvsMtvKIKsTJ06we/durrjiCo98nkKcy86mYRJ3kMDjDBIeHs7x48cd0k+cOOHSZMikpCQSExMpLy9Hp9MREhLChg0bCAgIaHeMPyoqin379lFTU+OR+QC+vr7U1tY6pNfW1ra5tNQqNDSUkJAQ6urq0Ol0eHt7c+jQIby8vJzuA2L9e+2JYRawzOXIz893SC8oKKB3795tlj106BABAQG2oMMqKSkJsCxDbhl4bNy4EbPZzKRJk7pYcyGE6BiZXHoG6devH8XFxXYTQSsrK+2WiLZHp9MRFhZGSEgIJ0+eJCsry6XhkyNHjuDl5WXrBeluwcHBVFdX2/Xw1NfXc/LkSbuVOW1RSuHr64u3tzcNDQ2UlZW1uhnX8ePH8fX19Vj7WhozZgxZWVm2OTcAR48eJTMzkzFjxrRZ1vpZFhUV2aUfOHAAwGlQ+sMPP5CQkOAQkHjKsmXLUEoREhJCWVmZ3XtNTU0opXjiiSfcdr+cnBz8/PxQSpGdne22657rPPE5PvroowwfPpyQkBD8/PwYPHgwTz31FDU1Na2WKS8vJyYmBqUU69ev79L9hftJ4HEGSU5OJigoiC+//JKDBw+Sk5PDl19+SUBAAMnJybZ8lZWVLF68mG3bttnSTCYTGzdu5ODBg+Tn57Nr1y4+/PBDwsPD7fb/2LNnD99++y2ZmZkUFBSQnZ3N119/TXZ2NmPGjPFYt3xERATe3t5kZ2dTXl5OeXk5Bw8exGg0EhERYctXX1/PL7/8QmFhoS1N0zTy8/MpLy+nsrLS9gD39fV1uv9HTU0NdXV1PdbbATBlyhSioqJ4/vnn2b59O9u3b+e5554jIiKCyy67zJbv6NGjXHvttXz00Ue2tMmTJ+Pr68vTTz/Nhg0b2LNnD5999hlvv/02/fv3d9hx9uDBgxw+fPi06O2oqKjghRde6Pb73HXXXT02d+dc0J2fY2VlJXPnzmXFihV88cUX3HzzzTzzzDPcdNNNrZZ55JFHTqvhDVnVYk+GWs4gXl5eXHPNNWzcuJF169YBli76CRMmOAwftNy/QSlFeXk5+/fvp76+noCAAIYOHcro0aPtgomIiAhycnLYtGkTdXV1+Pr6EhYWxvTp0z367Viv1zNw4EDy8/PJzc0FLCs84uPjXQp+6uvrOXHiBCaTCS8vL8LDw4mNjXW6F4l1mMXTe3c05+Pjw5NPPsnSpUv5+9//brdlestlxWaz2W7fFWvA8uGHH7JixQqqqqoIDw9nypQpXHvttQ5t/uGHH9Dr9UyYMMEjbWvLZZddxuLFi3nggQcchorcZcWKFezcuZPHHnuM+fPnd8s9znXd+Tm+/vrrdj9fcskl1NTU8Pzzz1NaWmr3RQRg8+bNLF++nMWLF3Pbbbe5tS7CPSTwOMMEBgZy5ZVXtpknKCiI++67zy5Np9O1ufulVWxsLFdffXWX6uguRqOR/v37t5nH29vbYVWGUso2v8EV8fHxxMfHd6qO7hQZGcnDDz/cZp6oqCg++eQTh/T4+Hjb1ujtue22206bf5Aff/xxpk2bxjPPPMPixYvdfv2ysjL+9Kc/sXDhQkwmk9uvLyy6+3Nsydo72XKieGNjI3fccQePPvqoy8PPwvNkqEUI0WNiY2O55557WLJkSZsH9jU1NbX7chZYPPzwwwwePJhZs2Z1ZzPOed39OVrLnjx5kvXr17No0SJuvfVWh+GzF198kYaGhnYDeE9y1zDL2TTUIoGHEKJHPfLII/j6+vLkk086fT8vL892rk5br5a9Y5s2beKdd95x6KoX3aO7PkeA9PR0vLy8CAwMZMqUKUyZMoUlS5bY5cnOzubpp5/mtddea3d7AdGzZKhFCNGjwsLCePDBB3nyySd55JFHHB48cXFx7Nixo93rNH/YNDQ0cMcddzB//nyGDh3q9joLR93xOVolJSWxY8cOqqur+c9//sNzzz1HU1MT7733ni3PH//4R66++mrbyd3i9CWBhxCix82fP5/FixezYMECu4cJWOb6uHJOUPOu6FdeeYUTJ05w33332Q4VtC6/rKqqoqqqSs6n6Qbu/hytfHx8GD16NAATJ04kNjaWuXPncu+993LBBRfw0UcfsXnzZn7++Wfb5209aqC6upqKiooeXdV0Ng2TuIMMtQghelxAQACPPfYYK1eu5Ndff7V7rzNd9BkZGRQXF9OrVy9CQ0MJDQ3l7rvvBmDkyJH85je/8WTzzhnu/hxbYw1CrHuyZGRkUFtby7Bhw2yf9/Tp0wH43e9+R0JCgnsbKrpEejxOAxkZGaxfvx6j0cicOXPsduY0m828+uqrjB07lgsuuKDT98jJySErK4ujR49SXl5Or169mDlzptO8hYWFbNq0iWPHjuHt7c3AgQO58MILHbYqz83N5eeff7adjBsWFsbIkSPb/YejtLSUQ4cOodfrSU5OtruupmmkpaURGxtLXFxcp9tbXl7OiRMnqKmpsS0fHjRokF0eTdMoKSmhsrKS2tpazGYz3t7eREVFER4ebvct5fjx4xw7doz6+nrbEt3AwEDi4uKc7oTalu+//55XX30VPz8/3nzzTbst0U0mE9dddx3XX389N954Y6fbbzKZWLNmDevXr+fo0aP4+voycOBAbrzxRvr27eu0THV1Nffeey/l5eX89a9/ZcSIEZ2+f2fcddddLFq0iMcff9wuvTNd9I8++ihz5syxe/+bb77hhRdeYPny5Q6/C8J93Pk5tsZ6gKX135o5c+Y4HHb466+/Mn/+fBYuXEhqaqqLtReeIIHHaaShoYFffvmF8ePHu/3aOTk5HDt2jJiYmDZPdy0tLeXTTz8lISGBq666ioqKCjZv3kx1dTWXX365LV9eXh5ffPEF/fv3t+2suXfvXr766iuX9/wwmUwUFxe3uyV4Z5SXl1NbW4u/v7/dnhfNmc1miouLCQsLIyoqCp1OR0VFBYcOHaKurs6uXk1NTQQFBeHn54der6euro6ioiIqKysZNmxYpzZWq6mp4dNPP+2WFRfvv/8+n332Gddccw0pKSlUVlayatUqFixYwKJFixz2PgBsZ/j0FG9vbxYsWMC8efPs0o1Go+0brqsGDx7ssHFaXl4eAKmpqR1abi06xp2f4+7du3nooYe47rrrSExMpL6+no0bN/L3v/+dyy+/nHHjxgGW86RaC6hHjBjBRRdd1Km2uIsMtdiToZbTSJ8+fdi1a5ft+HZ3uuSSS5g1axaXXXZZm2PbW7duJSAggMsvv5z4+HiSk5OZMGECBw4c4OjRo7Z8mZmZtnzW/+kvv/xy/P392b9/v0t1CgoK4tixYzQ2Nna5fS0lJCQwbNgw+vXr12qPhE6nIzk5mT59+hASEkJQUBDx8fGEh4dz9OhRu4AlOjqauLg4QkJCCAwMJDIykoSEBNvhcp1x3nnnsWbNGoetpt1hw4YNjB8/nt///vekpKQwfvx4HnzwQU6ePMkvv/zikH/fvn1s3LiRm2++2e116Yi5c+cyYMCAHq2D6Dp3fY7R0dFERETw7LPP8tvf/pZZs2bx3XffsXDhQj799FM31FT0BAk8TiPWngNXuiM7ypWI22QycejQIQYMGGD3DX7AgAHodDpycnLs8np5edntiqnT6TAajS4d5Q7YdjhsecaIO7jSXqWU05Nu/f390TStzZ4hwFa2s99mrr32WgBWrVrVqfJtaWpqctjx1HoCccvPp6mpiTfffJMZM2Y43VK+O8yZMwdN0xx6HgwGA1lZWWia5tazWtq6p+i87v4co6OjWbFiBbm5udTW1nL8+HF27NjB3Xff3e6QzMUXX4ymaVx66aWdvr/oHhJ4nEb8/f0ZMWIE6enpbX6Ltm6Z3d6royoqKjCZTA5nlhgMBoKDg21zOcBybkx5eTk7duygtraWmpoatm3bRmVlJcOHD3fpfl5eXkRGRlJaWmp3GFxL1u3f23u5S1VVFXq93mFXRGtdzGYzNTU1FBQU4OPjQ1BQUKfuExoayuWXX863335r15vUkslkcunV3LRp09i4cSPbt2+npqaG4uJilixZQnh4uMNQ3meffUZTUxMzZszoVDuEEG2TDcTsyRyP08yoUaPYs2cP27dvdxqpV1ZWsmzZsnavExgYyNy5czt0b+vD39k3CR8fH+rq6mw/JyQkMH36dNauXcuWLVsASyBx5ZVX0qtXL5fvGRMTQ2lpKUVFRU7HaOvr60lPT2/3Okaj0aVTdttTUVFBWVkZcXFxTv9H37Vrl+0h7+fnx8CBA52e/+KqGTNmsG7dOj766CPuueceh/ePHj3KnXfe2e51IiMjeeutt2w/33TTTXh5efHiiy/agtC4uDieeuopu6G2oqIiVq1axaOPPuo00BJCCHeTwOM04+Pjw8iRI9m2bRujRo1yWHvu7+/PDTfc0O51OjPZ0dpr4EpkXVRUxNq1a+nbty+DBg1CKcW+fftYs2YN06dPd/nsE4PBQHR0NIWFhcTExDgEPV5eXg6TBJ3pysPfqra2ltzcXAIDA1s96GrgwIGYzWbq6uooLi4mKyuLQYMGOR2ycUVgYCBXXXUVH330ETNmzHC4b2hoKC+++GK712kZNHzzzTesWrWKa6+9luTkZCorK/n000958skneeaZZ2wH4r311luMGTPGpf0VhBDCHSTwOA2dd9557Nq1i61btzJ16lS79/R6PZGRkd1yX+sy3uY9G1Ytj43/8ccfCQ8Pt6tfQkICK1eu5KeffuL3v/+9y/eNiori6NGjFBYWOqyG0el0+Pn5dbQpHVZfX8+BAwfw9vamf//+rQZf1roEBAQQGBhIeno6paWlXTqRc/r06axZs4b333/f4fRULy+vDp8KXFVVxdKlS7n66qvtluSmpKRw55138tlnn3HrrbeyefNmMjMzeemll2wTmq2ffX19PdXV1bZ5IUKIzjnbhkncQQKP05B12dlPP/3EyJEj7d7rzqGW4OBg9Hq93VwOsEw+rKystJulfvz4cadDG9HR0ezZs6dD99Xr9cTExFBQUOAwudETQy0NDQ1kZWWh1+tJSkpyubfI29vbtrS2K3x9fZk5cybLli3jd7/7nd17nRlqKSwspLGx0WHCn7Unp6CgAID8/HwaGhq4//77Ha73/PPP4+fnx/LlyzvZKiGEcE4Cj9NUSkoKO3futM2fsOrOoRa9Xk9CQgIHDhwgNTXVNnyRnZ2NyWSyO2baz8/P6YTIkpKSTn1LjoyMpKSkhMLCQrv07h5qaWxsJCsrC7Cs3unIPIfa2lpMJpNbDqSaNm0an3/+OStWrLBL78xQS2hoKGD53MaOHWtLr6qqoqioyPY5Tp48meTkZLvr5ObmsnTpUmbPns3AgQM73R4hhGiNBB6nKYPBwNixY/n+++/t0vV6faeWPFZWVlJSUgJYutOVUhw4cACw9FJYV2akpqby0Ucf8fXXXzN8+HAqKyvZtGkTSUlJREVF2a43YsQINm3axDfffGMLDPbt20dRURETJkzocP10Oh2xsbEcPnzYIb0zgUx9fb3tbA7rZFDrfhl+fn54e3tjNps5cOAADQ0N9O3bl4aGBhoaGmzX8PX1tQVwmZmZhIaG4uPjg1KK2tpaSkpKbCtzusrLy4vrr7+eN954wyG9o8s/o6KiGD16NJ999hlKKYYNG0ZVVZVt9Yp1eCwqKsruM22ub9++DBkypHONEULYkaEWexJ4nMaGDh1KWlqa7dCjrigoKGD9+vV2aV9//TUAl156qe0Ez8jISH73u9+xefNmPv/8c4xGI0OGDLHtEGg1cuRI/Pz82LVrF2vXrgUgJCSEqVOndno76oiICEpKStpcWuuqqqoqDh06ZJdm3YckISEBb29vGhsbqa2tBSzf9FsaOHCgbQWIv78/paWltsDEaDQSFhZGdHR0pyeWtjR58mQ+++wzt+xr8uCDD7J69Wo2bdrE559/jq+vL4mJiTzzzDOyj4UQokcpd+5/IFwXHR2tdeUsjjPJ5s2be7oKHvXnP/+5p6vgUefS/h/n2jfXc+n5oJT6RdO0ju3p7oKRI0dqGzdudMu1AgMDu6WOniYbiAkhhBDCY2SoRQghhOhG51pPWXukx0MIIYQQHiOBhxBCCCE8RoZahBBCiG4kQy32pMdDCCGEEB4jgYcQQgghPEYCDyGEEEJ4jMzxEEIIIbqRzPGwJz0eQgghhPAYCTyEEEII4TESeHSSUmqOUkpr9jIppY4opT5SSnXulDQhhBBnFaWU214u3i9eKbVKKVWhlKpUSn2ilOrjQrknWjzTmr/qWuTNayXf71ypo8zx6LrrgAJAD/QH/gJ8p5QapmlaRY/WTAghxDlDKeUHfA/UA7MBDXga2KCUGq5pWnUbxf8JfNMizf9U2udO8q8FnmiRtt+Vekrg0XW/apqWfeq/NyulCoFvgQuBr3uuWkIIIc4xtwOJwCDrc0kptRs4ANwBLGqtoKZpBVi+RNsopWZhiRPedlKkVNO0rZ2ppAy1uF/lqT+9erQWQgghzjVXAVubfRlG07RcYDNwdSeuNxsowdK74TYSeHSdXillUEp5K6WGAM8CR4EferZaQgghzjHDgHQn6XuBoR25kFKqNzAJeE/TtCYnWaYrpWqUUvVKqa2uzu8AGWpxh8wWPxcCv9U0rbJlRqXUPGAeQFBQEL6+vh6oXs+Ljo7u6Sp41NtvO+uVPHvNmDGjp6vgMZqm9XQVPEr2n3APN/49Riilfm728xJN05Y0+zkMKHNS7gQQ2sF7zcLSOeHsH7QvgB1ALhAN3AN8qpSapWna8vYuLIFH183AMi6mgDgsH8AapdQETdP2Nc946hdkCUBsbOy59S+YEEKIrirVNG10O3mcPVs6E/n8Adipadpuhxto2r12F1fqU2Ar8BzQbuAhQy1dl65p2s+apu3QNG01ljE2heNsXyGEEKI7lWHp9WgpFOc9IU4ppcYCg3He2+FA0zQTsBLorZSKbS+/BB5upmlaLZADDO/pugghhDin7MUyz6OloUBGB64zG2gCVnSgjLVXpd3efAk83OzUOur+wLGerosQQoie58ENxD4HLlBKJTa7d19gPM734nBWVyNwI7BG0zSXnmNKKQOWPa0Oa5pW3F5+mePRdecppSKwRHuxWOZ4hAGLe7RWQgghzjX/h+UZtFop9TiW3oengHzgLWsmpVQCcBD4m6Zpf2txjd9ieYY5HWZRSt2EZWnumlPXjQbuBkYBN7lSSQk8um5ls/8+hmUp0zRN09y67lkIIYRoi6Zp1UqpycDLwLtYvhB/BzygadrJZlkVlt22nY16zMayCubLVm6TC0QBL2EJUGqwrHBx+bkngUcnaZq2DFjWw9UQQgghbDRNOwzMbCdPHq2sdNE0rc2Nxk7tVjq5s/UDmeMhhBBCCA+SwEMIIYQQHiNDLUIIIUQ3kh1g7UmPhxBCCCE8RgIPIYQQQniMBB5CCCGE8BgJPIQQQgjhMRJ4CCGEEMJjZFWLEEII0Y1kVYs9CTzOMJWVlXz33Xfk5eUB0LdvXy655BKCgoLaLVteXs6GDRs4dOgQZrOZ2NhYLr74YmJj/3uK8YkTJ0hLS+Pw4cOUl5djNBqJjY3lN7/5DVFRUd3VLKdqa2vZt28fpaWlAISHhzN06FB8fX3bLVtTU0NmZialpaVomkZwcDCDBw8mJCTELt+GDRuora11KD9y5EhiYmLc0g5X1dbWsmfPHo4ds5zLFBkZSXJyMn5+fu2Wra6uZu/evRw7dgxN0wgNDWXo0KGEhoba5Vu3bp3T9o4dO9bu90AIIbqLBB5nkMbGRj744AP0ej1XXnklSik2btzI+++/z9y5czEaja2Wra2t5b333sNoNDJ16lS8vLzYsWMHH3zwAbNmzSIiIgKA3NxcDh8+THJyMtHR0dTX17Nt2zbeeecdbrnlFo89jE0mE9u2bUOn0zF8+HCUUuzfv59t27Zx0UUXYTC0/qvb0NDAli1bMBgMJCcno9fryc3NZdu2bYwfP56AgAC7/BEREQwYMMAurWWe7tbU1MTmzZvR6XSMHDkSgH379rF582YmTZrUbns3bdqEwWDgvPPOQ6/Xc/DgQTZv3szEiRMJDAy0yx8VFcWgQYPs0jzdXiHEuUvmeJxBdu3aRXl5Oddccw0DBw5kwIABzJw5k4qKCn799dc2y+7cuZPq6mquvfZahgwZQlJSEjNnzsRgMLBp0yZbviFDhjB37lzGjh1LQkICAwcO5Prrr8dgMPDzzz93cwv/6/Dhw9TU1DBq1ChiYmKIjo5m9OjR1NbWcvjw4XbLNjQ0MHr0aOLi4mxl9Xo9WVlZDvmNRiOhoaF2Ly8vr+5qmlOHDh2iurra1vMQGxtLamoqtbW1tt6t1uTm5lJfX09qaiq9evUiJiaG1NRUDAYDmZmZDvmNRiNhYWF2r7aCViGEcCcJPM4g2dnZxMXF2XWfh4SE0Lt3b7Kzs9ssW1hYaHuoWhmNRnr37s3Bgwcxm80A+Pn5OYxHent7ExYWxsmTJ/GUo0ePEhoair+/vy3Nz8+P0NBQjh492mbZsrIy/Pz87MoaDAbCwsI4evSora2nk+LiYsLCwux6Hvz9/QkLC6O4uLjNsmVlZfj7+9uVtba3pKTktGyvEOLcJUMtZ5DS0lKSkpIc0iMiIpx+s21OKYVer3dINxgMNDU1UVZWRnh4uNOytbW1lJaWkpKS0rmKd0JVVRXR0dEO6QEBAe0+iJVS6HSOMbVOp8NsNlNTU2P3kD569CjffPMNAEFBQSQmJnp8fkdVVZXTewYGBlJYWNhm2dbaq9frMZlMVFdX2w23FBcX8+WXX9rmvgwYMEDmdwghPEYCjzNIbW0tPj4+Duk+Pj7U1dW1WTYsLIy8vDxqa2ttkzM1TaOoqAigzfLr169H0zRGjx7dhdp3TGNjo9PhDi8vLxobG9ssGxAQQGlpKQ0NDbYhBE3TKC8vt13bKioqiuDgYPz8/Kivr+fQoUOkpaUxYsQIevXq5b4GtaOhocFpe41Go0vtPXbsmEN7y8rKAPv2xsTEEBISgr+/P/X19eTk5LB9+3ZGjhxJfHy8G1skhADLFwNZ1WJPhlrOMJ39BT7//PPRNI0vv/ySsrIyTp48yfr1620P49auu2XLFjIyMpgyZYrDConTVZ8+fQDLnJjq6mrq6urIyMiwreZo3tZhw4bRu3dvwsLCbPMqgoOD2b9/v8fr7ewz0DSt3XJ9+/ZF0zTS0tJs7d2zZw81NTUOeYcPH06fPn0IDw8nLi6O8ePHExISQkZGhlvaIIQQ7ZHA4wzi4+PjdClkXV2d056Q5kJCQpg+fTolJSUsWbKE1157jSNHjjBmzBjA+aqGnTt3snHjRn7zm98wfPhw9zTCRa31bLTWE9Kcn58fI0aMoKKigh9//JHvv/+esrIy+vbtC1jmrLRGKUVMTAx1dXXt9iK5k9FopKGhwSHdlfb6+/szatQoysvLWb9+PWvXruXEiRP0798foM3fDaUUcXFxHm+vEOLcJYHHGSQiIsK2p0VzpaWltuWwbRk0aBB33XUXt912G/PmzWPOnDk0NDQQGBjosA9Ieno669atY8yYMVx44YVua4OrAgMDnU5mPXnypEtLP2NjY7nkkkuYMGECEydO5KKLLsJkMuHj4+PSPiDg2U1/AgMDqaqqckivqqpyWA7rTFxcHFOnTmXy5MlceumlXHzxxTQ1NeHr6+vSPiCetmzZMpRShISE2IaErJqamlBK8cQTT3TpHo8++ijDhw8nJCQEPz8/Bg8ezFNPPeW0J8hdPNGu5nJycmwTwp1NMDeZTLzyyiskJyfj4+NDeHg4l156qW2IVYieIIHHGSQpKYnCwkLb8AhARUUFR44ccTrp1BmdTkdERAShoaFUVVWRmZnJ+eefb5cnKyuLNWvWMGLECCZPnuzOJrgsKiqK8vJyu4dETU0NZWVlLm9kppQiICAAf39/6urqKCoqsg3DtMZsNlNUVISPj0+bPSPuFhMTQ1lZGdXV1ba0mpoaTpw44fJEV6UUgYGB+Pv7U1tby5EjR2y9PK0xm80cOXIEX1/fdnvNukNFRQUvvPBCt1y7srKSuXPnsmLFCr744gtuvvlmnnnmGW666aZuuV9z3dmu5u666y6Cg4NbfX/WrFk89dRTzJ07l7Vr17J06VJGjBghvVuiR8nk0jPIiBEjSEtL4+OPP2bChAkA/PTTTwQGBnLeeefZ8lVUVPDWW28xfvx4xo8fD1i++fzwww/Ex8fj7e1NaWkpW7duJSIigrFjx9rK5ufn8/nnnxMVFUVycjJHjhyxvWcwGJyuNOkO8fHxHDp0iJ9//tm22VVWVhY+Pj52wUNtbS0//PADSUlJtk3AzGYzmZmZhIWFYTAYOHnyJAcPHiQgIIDExERb2cLCQkpKSoiMjMTX19c2ubSystLu79MTEhISbJucDRkyBIDMzEx8fX3tgoeamhrWr1/PoEGDbH8vZrOZvXv3EhERgcFgoKqqiqysLAIDA+0C0oKCAoqLi4mKirK1Nzc3l4qKCkaNGuXR9lpddtllLF68mAceeMDtK4lef/11u58vueQSampqeP75513uJeys7myX1YoVK9i5cyePPfYY8+fPd3j/gw8+4KOPPmLbtm12n+9VV13VLfURwlUSeJxBjEYjN910E9999x1ffvklYHlgXXLJJQ4bQGmaZjcxUSlFWVkZGRkZ1NfXExgYSEpKCuPGjbNbZnvo0CFMJhMlJSW89957dtcMCgrij3/8Yze28L8MBgOpqalkZGSwa9cuNE0jIiKCIUOG2O3iaW1ny0mY1dXVFBYW0tTUhI+PD7179yYpKclu2amvry8NDQ1kZmbS2NiIXq8nODiYMWPGEBkZ6ZF2WhkMBi688ELS09NJS0tD0zQiIyNJSUlx2LW0tfYeOXKExsZGfHx8SEhIYMCAAXbtta7cycjIoKGhAb1eT0hICOPGjfP4dvhWjz/+ONOmTeOZZ55h8eLF3X4/65Lx7t4grrvbVVZWxp/+9CcWLlyIyWRymuf1119n4sSJPRZUCtEaCTzOMEFBQcyYMaPNPMHBwTzyyCN2aTqdjmuvvbbd61900UVcdNFFXaqju/j6+rb7j6afnx9XXHGFXZpOp7NNmm1LaGgoqampXaqjO/n5+dn1PrWW5+qrr7ZL0+l0XHDBBe1ePywszNYDdrqIjY3lnnvu4ZVXXuGhhx4iISHBab6mpqZ2r9XaXjVNTU3U1dWxdetWFi1axK233trm8IQ7dHe7Hn74YQYPHsysWbNYtmyZQ5nGxka2bdvGHXfcwcMPP8y///1vKioqGDlyJM8991yPDaEKATLHQwjRwx555BF8fX158sknnb6fl5eHl5dXuy/rKp7m0tPT8fLyIjAwkClTpjBlyhSWLFnS3U0Cuq9dmzZt4p133nEYSmru+PHjNDQ0sGzZMtatW8f//d//sXr1avz8/Jg2bZpHjz8Q/93Lo6uvs4X0eAghelRYWBgPPvggTz75JI888ojDgzYuLo4dO3a0ex1nk4GTkpLYsWMH1dXV/Oc//+G5556jqanJYRixO3RHuxoaGrjjjjuYP38+Q4cObbWMdZv8xsZG1qxZQ1xcHAATJkwgMTGRl156iQ8//LAzzRKiyyTwEEL0uPnz57N48WIWLFjgEBQYjUaXJvs6+0bo4+Nj23F34sSJxMbGMnfuXO69916Xhqe6yt3teuWVVzhx4gT33XefbXWbdeVXVVWVbfl1aGgoSimGDh1qCzrAsl/PuHHj2LlzZ9cbJ0QnyVCLEKLHBQQE8Nhjj7Fy5UqHk5a7MtTSkjUIae9QRXdxd7syMjIoLi6mV69etkMf7777bgBGjhzJb37zG8AyPyoxMbHV3XCdne0jhKdIj8dpas+ePaxZswZvb2/uvPNOuz0WzGYzL730EuPHj+/yRFDrJLSMjAwqKyvx9vYmNjaWGTNmOJ2oV1dXxz//+U+qq6u54YYb2t0nwlUFBQXs3r0bg8HApEmT7FYdmM1mvvnmG5KSkhg4cGCn77Fr1y675cFWffv2dei2LigoIC8vj5qaGnQ6HYGBgQwYMICwsLBO39/q8OHD7Ny5E4PBwJQpU+xWJJnNZr744gsGDRrE4MGDO32PtLQ08vPzHdITExPtDvs7ePAgBQUFVFdXYzKZ8PX1JSYmhoEDBzqslOpud911F4sWLeLxxx+3S+/KUEtLP/74I4BLQYq7uLNdjz76KHPmzLF7/5tvvuGFF15g+fLltiXWADNmzGDx4sUUFBTQu3dvwNIrsmXLFqZNm9aFFgnRNRJ4nObq6+vZunUrF198sduvbTKZWLlyJRUVFVxwwQVERERQU1NDXl4eZrPZaeDxww8/uL0ezTU1NXHw4MEuPXTbYjQaHVbKtNw46/Dhw6Snp9OnTx8GDRqE2WwmNzeX7du3M27cOLetiGhqauLAgQMMGzbMLddryWg0OqzaadnWhoYGYmNjCQoKwmAwUFFRwf79+yktLWXixIkendDm7e3NggULmDdvnl260Wjs8AGFu3fv5qGHHuK6664jMTGR+vp6Nm7cyN///ncuv/xyxo0b586qt8md7Ro8eLDD/xt5eXkApKam2u3b8tBDD/Huu+9yxRVXsGDBAoxGIwsXLqSmpoZHH320c40Rwg0k8DjN9e3bl7S0NEaPHu3SVuEdsWPHDkpKSrjtttvstkxv/q2puYKCAjIyMrj00kv5+uuv3VoXq4iICA4dOkS/fv26ZedQnU7X7mF3BQUFhISEkJycbEsLDw/n22+/paioyG2BR2RkJLm5ufTv379bdg3V6XTt9tBYNyuzioiIQK/Xs2vXLioqKggJCXF7vdoyd+5cXnrpJQ4cONCl60RHRxMREcGzzz5LcXExfn5+JCYmsnDhQv7f//t/bqqt69zVro6Ijo5m48aNPPjgg8ydOxez2cy4ceP48ccfuy3YFcIVEnic5i688EJWrlzJli1bmDJliluvnZaWxqBBgxzOaXHGZDKxdu1aUlNTu/VhZF2FkJ2d3WP/OJrNZodhBr1e7/Zx8UGDBrFlyxaysrI8fghfW6xt787ejjlz5jgMGYBlI7WsrKwuXz86OpoVK1Z0+Tod1d3t6sg9AQYOHMgXX3zRLfcVorMk8DjNBQQEMHLkSH7++WfGjh3b6rdt6/K59lgfnpWVlVRVVRESEsLXX39NZmYmJpOJ3r17M2nSJIet0bdt24bJZCI1NZXCwsKuNaoN3t7eJCQkkJeXR2JiYqsHurnSXmdr3+vr6/n2229tB6jFx8c7TMJLSEggPT2d/Px8YmJiMJlMZGdno5SyjZW7g7e3N/369SMnJ4ekpKRWD3PrSlu//vprGhsb8fPzIyEhgaSkJKcBhdlsxmw2U1lZSWZmJhEREd2+yZYQ4twkgccZIDU1lV9//ZXNmzc77NIJlrNZ3nzzzXav03zLc+tJqNu2bSM2NparrroKk8nEpk2beP/997n11lttPSFlZWVs2bKFa665xmH77u6QmJjI4cOHOXDggNOegJqaGpfmmvj6+jJp0iTbz0FBQQQHBxMQEIDZbKakpIT9+/dTXV1td5/4+HgA9u7dy549ewBLkDB27Fi3D3cNGDCAvLw89u/f73BYH1ja+u2337Z7HV9fXy677DLbz8HBwYSEhBAYGGg7+C4jI4OTJ0863KepqYmvvvrK9nNUVFSH5x4IIYSrJPA4A/j6+jJmzBg2b95MamqqwxyFgIAA/vCHP7R7nZZnnIDlzIqZM2faVpHExMSwZMkS0tLSbBNa165dS1JSEv369XNTi9pmNBrp168f2dnZJCYmOvQE+Pj4cOGFF7Z7nZZDIy3rHxUVhV6vJy8vj/79++Pv7w9ASUkJe/fupU+fPkRFRWEymcjLy+Pnn38mNTXVpWPqXWU0GklKSmL//v0kJSXZ6mDl4+NjOxCwLS0nArdctREdHY1erycnJ4cBAwbYBVB6vZ4JEyZgNpupqKggKyuLbdu2ceGFF8qySyHc4GzaddQdJPA4Q4wZM4a0tDQ2bdrE9OnT7d7T6/UdPjXWOoTRq1cvu6WrQUFBhIWFUVJSAsC+ffs4cuQIs2fPth2l3dDQAFiW4tbX13fLJNB+/fpx6NAhDhw4wIgRI+ze0+l0Ls1LceV/9ri4OPLy8qioqMDf3x9N09izZw8xMTF2S2wjIyP58ccfycrKcvuhW/379ycnJ4fMzEyHa+t0OpeGPFxpa+/evcnJyaG8vNwu8FBK2YLZ8PBwgoKC2Lx5M4WFhW4dWhJCCJDA44xhNBq54IIL+P777x0OEuvMUEtISEibwybWB9nx48dpamriX//6l0OeTz75BG9vbx544IEOtMQ1BoOB/v37s2/fPoeeis4OtbiioaGBhoYGhwm01mDn5MmTHbqeKwwGAwMHDiQ9Pd1uOSR0fqjFmZYn2rbG2vbq6mqX8gshREdI4HEGOf/889mxYwc//fSTXXpnhlr0ej39+/cnPz+fhoYG20qGyspKTpw4YXsApqSk0KdPH7vrlJSU8P333zNp0iS77ZjdrU+fPuTm5jqsBujsUIsz1omy1l4Fg8GATqezbUdtZZ142doE0K7q27cv2dnZZGZm2qV3dqjFGevmae0tJy4tLQVwGPYRQgh3kMDjDGIwGLjwwgtZu3atXbperyc2NrbD17vooot45513WLVqFWPHjqWpqYnNmzfj7e1t6/IPDg5utas/KiqqW7vi9Xo9SUlJpKen26XrdLoOL+mtra3l119/JS4uDj8/P9vk0oKCAvr06WN7yOr1euLj4zl06BBeXl5ERUVhNpvJy8ujtra2zYO5ukKv1zNo0CB27dpll+7KviMt1dTUkJaWRq9evfD397dNLj18+DB9+/a1tbWxsZEtW7bQu3dv29BLWVkZBw8eJCgoqFO/U0II0R4JPM4ww4cPZ/v27ZSVlXX5WhEREdx44438+OOPrF69Gp1OR0JCAtdcc81p823XOi/BehBWZ+n1eoxGIwcPHrTNUQkICGDo0KEkJCTY5R0yZAj+/v7k5+dTUFCAXq8nICCAMWPGEBkZ2aV6tKVPnz5kZ2d3eYjDYDDg5eXFgQMHqK+vByAwMJCUlBS7YSvrVvA5OTnU1dWhlMLPz4/+/fuTmJjoUi+KEEJ0lHJ13Fe4V2xsrDZ79uyeroZHWJekniuaT9Y9F3z22Wc9XQXRTc6x1Ri/aJrm9nXko0eP1lw5k8cVOp2uW+roabJWTgghhBAeI4GHEEIIITxGAg8hhBBCeIwEHkIIIYTwGAk8hBBCCOExEngIIYQQwmMk8BBCCCGEx0jgIYQQQgiPkcBDCCGEEB4jgYcQQgghPEYCDyGEEEJ4jAQeQgghhPAYCTyEEEKIs4RSKl4ptUopVaGUqlRKfaKU6uNCuSeUUlorr7oWeXVKqceUUnlKqTql1C6l1ExX62joTMOEEEIIcXpRSvkB3wP1wGxAA54GNiilhmuaVt1G8X8C37RI8z+V9nmL9KeAh4A/A78ANwIrlVK/1TRtTXv1lMBDCCGEODvcDiQCgzRNywZQSu0GDgB3AItaK6hpWgFQ0DxNKTULS5zwdrO0KCxBx/Oapi08lbxBKZUEPA+0G3jIUIsQQgjRjZRSbnm54CpgqzXoANA0LRfYDFzdiarPBkqAtc3SpgJGYHmLvMuBFKVUv/YuKoGHEEIIcXYYBqQ7Sd8LDO3IhZRSvYFJwHuapjW1uEc9kN2iyN5Tf7Z7Hxlq8SCl1Dxg3qkfT77wwgv7e7I+QriDi9/EhDjdJXTHRX/55Ze1SqkIN13ORyn1c7Ofl2iatqTZz2FAmZNyJ4DQDt5rFpbOibdbpIcB5ZqmaU7uYX2/TRJ4eNCpX5Al7WYUQghxVtA0bZqnb+kkrTPfDv4A7NQ0bbeTa3XpHjLUIoQQQpwdynDe4xCK854Qp5RSY4HBOPZ2wKneE+XY1Rna7P02SeAhhBBCnB32YpmD0dJQIKMD15kNNAErWrmHN9DfyT1w5T4SeAghhBBnh8+BC5RSidYEpVRfYDyOe3E4pZQyYtmXY42macecZPkGaABubpF+C5B+ahVNmyTwEEIIIc4O/wfkAauVUlcrpa4CVgP5wFvWTEqpBKVUk1JqgZNr/BbLcI2zYRY0TTsKvAw8ppT6k1LqYqXUG8Bk4H9dqaRMLhVCCCHOApqmVSulJmMJDN7FMuHzO+ABTdNONsuqAD3OOx9mY5mn8WUbt/ozcBK4H4gB9gPXa5r2hSv1VI4rYoQQQgghuocMtQghhBDCYyTwEEIIIYTHSOAhhBBCCI+RwEMIIYQQHiOBhxBCCCE8RgIPIYQQQniMBB5CCCGE8BgJPIQQQgjhMf8/PLkl4l+IyFMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "matplotlib.rcParams.update({'font.size': 16})\n", + "fig, ax = plt.subplots(figsize=(8, 7))\n", + "im, bar = heatmap(np.flip(rb_df.values, axis=0), \n", + " list(rb_df.index)[::-1], \n", + " celltypes,\n", + " cmap='alpha', \n", + " vmin=0.7, vmax=1)\n", + "_ = annotate_heatmap(im, \n", + " data=np.flip(rbse_anno_df.values, axis=0), \n", + " valfmt=\"{x:^}\", \n", + " textcolors=(\"white\", \"white\"),\n", + " threshold=1)\n", + "\n", + "plt.savefig('rb_values.filtered_results.varyingalpha.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":62: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + ":63: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_yticklabels([\"\"]+row_labels)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAesAAAG0CAYAAAASKw+DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACdzUlEQVR4nOzdd3gUxRvA8e/cXXovQOiQUEPvvXdBQZpYKAqCSpEmAgoiVUREEBARASu9995779IhEHpLL3e5/f1x4ZIjAUFIcvx4P89zz+Vm352d2VzuvZ2d3ShN0xBCCCGE/dJldAOEEEII8WSSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIWVUkpldBuEEEKkpOSmKCI5pZQe0ANGTd4cQghhFyRZCwCUUnmBTkBtIBxIABZomvZrhjZMCCGEDIMLUEp1AjYAfYFQ4B/gIjBCKXVEKVUuI9snhBCvOjmyfsUppYoD+4FTQDtN044klrsCuYCBQAHgU03T9mRYQ4UQ4hUmR9ZiPHADGKBp2hGllAOApmnRmqb9AwwD3IEPAJRSgRnWUiGEeEVJsn6FKaUaADWA6ViGwQFMyWM0TTsLfAIcVErlAn5XSkUppdqla2OFEOIVJsn61dYWuAOs1TQtTimlHp0BrpTSaZq2FViOZfJZOWAt8KNS6qBSqky6t1oIIV4xkqxfUUopHeAA3NM0bSdAapdqaZpmTvzRCcv565XA+0BZ4BiwVCnVRyllSJeGCyHEK0iS9SsqMQmbgAiAJyVbpZQj8CGQFfhO07QHicPjvYGJwLtA1TRvtBBCvKIkWb+Ckt2pbAdQRilVWtM00xNWKYHlvPXPwIGHhZqm3QWmAtHAD0opt8QjdiGEEC+QfLC+gpINd/+J5fxzT6VUjuQxDxO6UsoD6APcA37RNC02WYwhMWH/BRQCfJINmwshhHhBJFm/wjRNCwcmYZkRPlcp1VQpVUQplRmsCbs20BIYC5x7ZP2HR+NOgCOQN73aLoQQrxK5KYpAKeUNTAZqYblzWSEstx49guXo2wy01DTteirr6rEMjzcBCiR+AbAu0zQtIfHnTJqm3U7jrgghxP8lmcEr0DTtAfCOUqoAUBzLpLPjWBJwaZIl6lQu7woEWgHzsST1h5d7mTVNS1BK+QBDgGZKKb/E+s7KPwkRQoinJ8laWGmadgY4A9Y7lQ3Hcp/wfclitIdHzEopN+ArLP/0Y4mmaZGJMebEc91fY5mcljsxxhUIS6zDUdO0+HTsnhBCvLTknLVIlaZpF4ApQDDwl1KqSuJwOYmJOivwGfBOYtw2AKVUdqVUD2AL0AgYCYwBPIDBmqbdTEzknyqlJsnscSGE+Hdyzlo8UWJSnoplEtoK4BoQCTTGMqT9N9ARyySzusC3gBEYB8xKLF8IBGmalj2xTn1ifTMAT+ALTdMmp1+vhBDi5SLJWjwVpVQl4CPAFygKXAHmApMTh70nAW9jmTX+o6Zp4UopJ6AbliPrtzVNm/PIpDM/oAOWofR/gB6apu1O564JIYTdk2QtnolSylfTtHuJ11ibEss8gB7AAGAr0F3TtPNKqbJYrsG+pWlatcfUpweGJq4LltuZdtI07UZa90UIIV4Wcr5QPBNN0+4l/mhOVhaB5V9tNsVybvqMUupnoD2QH0sif5iYH5UPy9H1b0ADLMPm15RS36RRF4QQ4qUjR9bihUq8VKsxlqFvf2C/pmmVHhPrjGXY/C2gnqZph5RSLlguBXsN+EGGxYUQQpK1SANKqexYZog3wDLZbCnQJfkNUxLjqgNrgNHAKE3T4pItcwFi5XpsIYSQYXCRNppiObr+AggC5qSSqL2Bz7HcMe235IkaQNO0GEnUQghhITdFEWnBAQjVNG0MgFJqSeKzLnHmuMKSzBtiuezrcoa1VAghXgIyDC7ShFLKTdO0qOSXaiVblhPLrO9rwLuapt3JkEYKIcRLQo6sRZrQNC0q8fnRRG0A2mGZJf6pJGohhPh3cs5apLcSQC/gV0BmegshxFOQZC3SWxEs//t6mqZp0RndGCGEeBnIOWuR7pRSmYG7jw6RCyGESJ0kayGEEMLOyTC4EEIIYeckWQshhBB2TpK1EEIIYeckWQshhBB27qVO1kqpSkqpuUqpa0qpeKXUXaXUOqVUe6WUXilVUymlJXvEKKWuKqVWKqU6KaUc/6X+ykopc+K6hsSyDo/U+bjHkHTZCUIIIf7vvbSzwZVSPYHvgY1Y/hfyZcAHqA+8D7wNhAGbsPw/5X1Y7lmdDagHtAVOYfnXjLdTqd8BOIjl3zwGAA6appmUUpmw/HOKh0oDk5Jt46GrmqZdfUHdFUII8Qp7KZN14r9W3AxM1DStRyrLgwA3wBdLsq6nadr6R2IqJS5bp2na66nUMRB4B1gCDCQxWacSV/Nx2/iXPnTWNG3q08b/P5J9IIQQT+dlHQbvD9wD+qW2UNO085qmHX1SBZqm7QJ+ApokJnerxNdfAJ9g+X/MaaFzGtX7MpF9IIQQT+GlS9ZKKT1QE1iraVrsc1a3MvG5yiPlPwHzNU3b+pz1CyGEEM/tZfyvW/6ACy/mfyCHJD5nfViglHoPKAsUegH121BKdSbxaFIZVBnXPG4v3zmIF+iN79vSdFy7V3ofzG5aJqObkOEc9G9mdBMy3MrZURndhAzXOuCJ831fGbHtg1Rq5S9jsn6RHu4UDUAp5QuMBQZqmnbrRW8s8fzsVADXPG5a/sGFX/QmXi5hGd0AIYR4ObyMyfouEAPkfgF15Ux8vp74PBy4CcxVSnknljknPnsppWIf/p9mIYQQIr28dMk68fKpzUA9pZSTpmlxz1Fd48TnHYnPwUAxLF8IHnUHy8zwZs+xPSGEEOKZvXTJOtE3WC7dGoPl+mYbSqm8gMeTKki8dKsLsFjTtAuJxT0B70dCOwDtgbpYjrqFEEKIdPVSJmtN07YqpXoD3yulCgMzsUwW8wHqAJ2wXCP98KxoYaVUJJb+ZsVy45S2wEngw2T1Hn50W4nXUQNsSe06ayGEECKtvZTJGkDTtB+UUnuBXsB3WGaJRwD7sRwxLwOqJ4ZPSHyOwzLEfQToCvyhaVp8erZbCCGEeFYvbbIG0DRtJ7DzCSGbSZrx/V+3MQQY8oTlz70NIYQQ4kleupuiCCGEEK8aSdZCCCGEnZNkLYQQQtg5SdZCCCGEnZNkLYQQQtg5SdZCCCGEnZNkLYQQQtg5SdZCCCGEnZNkLYQQQtg5SdZCCCGEnZNkLYQQQtg5SdZCCCGEnZNkLYQQQtg5SdZCCCGEnZNkLYQQQtg5SdZCCCGEnZNkLYQQQtg5Q0Y3QPx38ffiub3qBjGXoom5Go0Wr1FodFEc/Z2sMdGXorix6BqxV2NIiDShd9XjktuVzE2y4pbP3RpnjjMT+ncI4QcfoHfTE9A8O97lfW22d2vVDR7svkf+wYVRepVu/XySmAdRnNt4ggdX7hJ+7T4JxgTqfvkmrr7uj13nyNzdXN59luyl81LmvarWclO8ieML93L92BUcXB0p/FopspfKY7Pu2Y0nCD1wkeq9X0Ont4/vulevP+D7nzdw8HgIx05dIybWyKktg8idw88m7sjJqwz6djm7DlxAp1NUq5CP0QObEZQnkzUmOiae3l8vYNnaY3h7ufB1n8a0bFLapp7vf97AnKUH2LGkDwaDPl36+Ky27NpF3bfbpCj38vDkzrFjANy5d4+PB/Rn486d5MyalXFDhlCrchWb+G5ffkFIaChLZ8xMj2b/ZwfPbGfh5l+5cusckTHheLn5Uih3SdrU7UquLPkAGD93IBsPLk51/eyZ8jK5zwoA4uJjmLp0BLtPrMfdxYv3GvSkWolGNvELt/zKlkPL+b77PPT6jEkj2r3rmFZMRbt0DO3KPxAfi+OYzahMOWzjosIwzfkG88H1EB+LylcKw9tfoMtZ0DYuPo6EheNI2LUEosNRuQpjaN0PXcHySTHmBBLmjyVh23xwcETfoCOGBu/b1JOwdwWmv0fgOGoNysXjhfVXkvVLLP5WHGH77+OS2xW3/B5EnghPEZMQnYBTZid8K/th8HbAFG7izrqbXPj2DEH9C+Ia6AZYEnHkyXBydMxD7JUYQqZdxCW3K05ZnC3buhfPreXXydsrv90kaoCoOxGEHr6Mdw5ffAMzc/v09SfG37t4i6sHL2Jwdkix7NyG49w+c51Sb1cm/Pp9Dv61Ha8cvrhn8gQsXwzOrjtGxc617SZRA1y4fJuFKw9RsmhOqpQLZP220ylizl28Tb02PxJcIIDp37clIcHMyAmrqff2j+xe9hmZ/S0fKt9NWc/G7af5+dt3OP7PNT7o8ycli+QkX15LQr96/QGjJ69lyfSP7DZRJzduyBDKFi9hfW0wJH3k9R0+jPOXQ5g1cRIrNm6g9UcfcWbbdny8vAA4cOwYfy5cyMHVa9K93c8qMjqMoBzBNKrUBi83X24/uM6Czb/Qb/LbTOi5mMw+2Wld5yMaVnzLZr2b90MZO6sv5QvXspbN3zyNw2d30qPVSC5fP8O4OZ8TlL0w2fzzAHAn7AZzN07hqw+mZliiBtBuXsa8byW6PEWhQFm049tTxmgaxvFd0G5fwfDeYJSrJ6YVUzCOfg/HoUtRvlmtsabpAzAf2YThrc9RmXORsOFPjN+9j8OX89DlDgbAvH0hCZtmYWg/DKLDMf35NbpchdEVrmjZXmwUplkjMbQZ8EITNUiyfqm5FXAneJzlg+ju1jupJmuPYE88gj1ty4p6crLnEe7vumtN1hHHwvCrnRmvkt54lfTmwZ57RJ6MsCbra7Ou4FXOx+Zo3B74BWah4dBWAFzeffaJydqcYObIvN0UqFuUS7vOplh+659r5KlaiICiOQkompOrBy5y+8x1a7I+vmg/2Urmxjdv5rTpzH9UtXwQl/YOB2DGnF2pJuuxUzeg1ykWT++Ct6crAGVL5KZY7eGMn7aJEf3fAGDtllN81LYaTeoWpUndosxZup+NO09bk/VnwxbS/LVSVCyTN51693wK58tPxdKlU122ZvNmJgwdRv0aNahdpQq/z5/PnoMHaVirFmazmW5ffkG/jz8mMFeudG71s6tesjHVSza2KcufsxhdxzZm57G1NKv+Pln9cpHVz7Yvh8/uBKB2mabWsoNnttG48rtUCK5NheDabDm8nCPndluT9bSlo6hSrCGFc5dK2079C1WwPE4T9gCQsGUOplSStfnQerQz+3H4/A90hSsB4JCvNPGf1SRh5S8Y3htsiQs5hXn3Ugwdv0FfraW1fuMXjUhY9AO6nlMtcUe3oKv0OvqKTSzbPbgO87Gt1mSdsGg8KmsQ+oqvv/D+2s/hgXhmSvffjnB1TjqUQdkcIWsmDZ1j0ttB56jDbDQDlkQedSaCrC1zpKgroz3LPji36QSaWSOoZnCqy80mM3qHpKNFvaMBsykBgFunQrl74SbBTVL/4M9IOt2//xnvO3SJ8qXyWBM1QI6s3gQXyMrStUetZUZjAi7JRh1cnB2JizMBlkS+fe95hvd78R9EGSHeaMTF2fJl1GAw4OjgQGxcHAC//P034RER9O3yUUY28bl4unoDPPHod9PBJQRlL0KuLPmtZSaTEUdD0qk0J0dn4o2W/XLw9DaOX9xH+0Z90qbRz0A9xfvefGgDeGexJmoA5eqBrmRtEg6tt43TO6Arn/SFR+kN6Co0xnx8G1pi/0kwohyck2KcXCFxmfnqGRI2z8bQdshz9ix1kqxfEZpZQzNpxN+N59pfVwDwre5vXe4a6Mb9HXcxPjAScTyMmJBoXAPdMBvNhP59hYAWOTC4v7wDMVF3Iji77hjFW1RA95jhW5/cflzZd57Y8Ghu/XONsND7+OTORIIpgWOL9lG4cSkc3ZxSXdfe6fU6HB1T/v6cHA1cCLlLbJwRsBxt/7lwH9dvhbFu6ymOngqlfMncxMWZ6PP1AoZ+1gQ/H7f0bv5/1q7npzgF5iVLyRK07dGdkNBQ67LyJUvyy99/cff+fabPmU1EVBSlixXjzr17DP5uDBOGDsPR0TEDW//sEswJGE3xXLtzickLh+Dj4U+1Eq+lGnvq0kGu3w2hdummNuUFchVn48El3Au/zcEz27l47R8K5iqB0RTP1KUjaNewN55u3unQm+enhZ5F5cifolxlzw93r6HFRiXFZcqBcnJJGWcyot26bHkdWIKE/WvQbl7CfOk45hPbUUElATD9/hX6+h3QZQ1Mk768vJ++4pmETLlA2IEHABg8DeTtmR/nbElvzCxvZOXiD+c41cdylJWpYRbc8rlzc8k1DB4GfKv5pVbtS+PI/N0EFMuFf/6Ax8YUqF+C3b9sYO2QBQAE1QrGN08mTq85gqO7M7kq5Euv5r5w+QMzs/vgRYzGBBwSRw8iImM5dfY6mqZxPyyarJm9GNijAW9+8DNBlb4CoNeHtalQOi8jJqzG39edDq0rZmQ3npqnhwe9PvyQ6hUq4unuzqETJxg9eRJbm7/JvhUryezvz5gvB9H0g/cJKFUSg8HAt198Sa7s2enYty/1qlWnTtWq/74hO/PZpDacDz0BQFa/XAz7cAbe7qn/7W46uASD3pBi+LxNnU/4ekYX3h9ZA4A3q39Aodwlmb1+Ep5uvtQr1yJtO/EiRYWh/FOOCCo3L+tynN3Qoh6Aq2cqcd6WHyLDANDXbYf5+HbiP68LgK5CE3TlG5OwfSHa/RvoX/8kLXoBSLJ+ZQS0ykGmRgEY78Vzd+NtLo4/R2Df/LjmsRwlOfg4kn9IYeJvx6N31WNwNxB3O47ba24SNKAgWrxG6JwQwg89QDnqyFQ/C/517Ovc7eNc2X+BByF3qd2/6RPjXLxdqdm3CdF3I3FwccTRzYmouxGc23ySqt0akGBM4MSS/Vw/dgWDo57AGsEEViuUTr14Pl3bV2fhysN0HzSXQT0bkZBgpv/IJURGxwNJQ+nZA7zZs6IfF0Pu4uXpgp+PGxdD7jB+2ibWz+lBTKyRz0csZtnao7i4ONLjg5p83L56RnYtVaWKFqVU0aLW19UrVqRahfJUbtqUiTNnMLTvZxQtWJDTW7ZyISSEgEyZ8PTwYMf+fSxZs4ZjG9Zz5949egwaxIYd28nk68eQPn1o2bjxE7aa8Xq99Q3RsZHcvHeVxdtm8NW0Toz66E+y+Ga3iTOa4tl+dA1lC9XE083HZpmfVxbGf7qIG/eu4ObsiaebNzfuXmHR1hl889GfxBtj+XXFaHaf2ICTgzNNq7anSZX30rObz0ADlcqpMk1LWfYUccrFHccBf6PdCQW9AeWTBS0qHNPc0Rg++AYMjpjmjyVhx0LQQF+tBfo3ez7VkP2/kWT9inDK5ASZnCCvGx4lvDgz+CQ3Fl0jsFfSEJFSCqfMScO81/4Kwbe6Py45XbmxMJSYS9EUGBqM8b6R89+cximrc4rJa/bGFGfkxNL95K9dBL2DHmOMJTmhaWhmM8aYePSOBuvsbqUUbv5JsziPLdxH7gr58Mruy6mVh3hw5S61+r1ObFg02yeuwSOLF5kKZE1t03alUtlAxn3dkq/GLOf3eZZJObUqF+Dd5uWYvWQ/vl5J57KVUgTmTjpF0vvrhXRoXZHihbPz1XcrOHjsCvtW9efazQfUa/MjhfIFUKtKgXTv07MqXbQYBfLmZf+RpHP0BoOBAoGWYcuEhAS6fzmIwb16kTVzFtp+2oPI6CjObtvO3sOHadaxI8UKFaJgUFBGdeFf5cxsaVvBXCUoXbAanUfXY8GWX/jkzSE2cXtObiAqNjzFEPhDSimbyWhTl46gXrmW5M1WiD/W/MC5qyf4secS7obfZMCUtuTMEkSJfJVSrStDuXlbjpofoUUnTsZNPMJWbl5od6+lEmc5osbdy6Zc+Sd9+TEtGIsuX2n0JWuRsHk2CbuW4DhwNgDxo95B+edAX6P1c3dFkvUrSGfQ4ZLDhZgrMY+NCTt4n5grMeTqYvkgizgejk8VPwweDhg8HHAv4knE8XC7T9bxUXHER8ZxauVhTq08bLMs5vBlrh2+TLn3a5C1WMoZv9ePhhAeeo+ybasBltniOcsF4eTujJO7M5kLZOPWP9deimQN0OW9qnRoVZHzl2/j6e5Mjmw+NH1/CuVK5LYOjT9qyZqjHD0Vyu/j2wGwbusp2rYoTyY/dzL5uVOnakHWbT31UiRrsFzKo1I7ggJ+nDEDnU7RtX17ANZu2cKv343F08ODutWqEVwgPxt2bLfrZJ2cu4snAX65uH43JMWyjQeW4OnmQ5lC/z4qsuv4ei5e/4e+74wF4NCZ7dQu3Qwvd1+83H0plb8KB89st8tkrbLnx3x8W4pyLfQc+GVDObslxR1YhxYXY3PeWgs9BwYHVObcqdZvvnQc864lOA5faXl9bBv6sg1RmXICoC/XCPOxrZKsxX9jjjMTfSkapwDnxy6/Nusq2drkQO+itym3+TmVkSR74+ThQuVP6qUoP/DHNjyyelOgbjE8ArxTLDfFmzi+ZD9FmpW1uSY7Id6ULMaYJm1OS05OBoITv1wcP32NTTvPMG3Mu6nGRsfE02/4Ir79ohke7knvlaiHoxNAVHRcqiOK9mj/0aOcuXiRlo2bpFh2/dZNho8fz/LffkOvT3rPR0VH2/ysvSydBR5E3CH09gVqlGySovzw2Z00qtgGgz7l/QaSi4uP4dflo+jY5HNcnZImFsYak77ox8RHpz6sbAd0Jetg3jYf8z970BWqAIAWE4H58EZ0yS6v0pWsQ8Ki8Zj3rUJftbklLsGEee9KdEWqohxSTizVzGbLpLLXP0H5ZUsqj4tJ9nM0L+qDUpL1S+7B/vsAxFy2zGqMOBaO3sOAwcOAe0EPrv5+Gb2bAdfcrug9DBjvxnNn4y1MYUZydcqTap03l1/HKcAJ73JJdzBzL+zB3Y23cApwxvggnshT4WSqnyXN+/c0rh2xzNR8cPUeADdPheLk7oyjmzP++bLgny/lpDKdQY+Tu0uqywDOrD2KeyZPspfMYy3LlD8rF7efxj2zJ7HhMdw5e+Oxl4Glt0WrDgNw6Lhlpv+aLafI5OuOv6871Srk4+r1B/zy1w4qlsmDk6OBQ8evMGbyeprWL07rN8qkWuc3E9dQIDAzLRonXU9bu0oBpvyxjQKBmbl+K5xNO8/So2OtVNfPSG0/7UHenDkpVbQo3p6eHD5xgtGTJ5M9IICuHTqkiP9s2HBaNmlsc012nSpVGTXxR7w8PNh35AjnL1+mVuXK6diLpzfy9+4EZQ8mT0ABXJzduXbnEku3/45eZ6BpNds7bG05vJwEs4naZZr9a71zNv5E9kx5qVo86Q5mJfJVYuXOv8mRKS/3wm9z9PxumlXr8IJ79HQS9q0CwHzJMqnOfGwLePiiPHzRFaqArlQdVL5SGKf2wdC6P8rNE9PyKYCG4bUPrfXocgejK98Y09/DLZdnZcpJwsa/LDdT6TI21W2bt8yB2Cj09ZP2r65IZUxzvyWhQFlLzO5lGNoMeCF9lWT9kgv56YLN69A/LUNebgXdce9XENe8btzbdod7W25jjjPj4OOAa6AbOTrkwSWHS4r6Yq/HcnfjLfIPLmxTnvn1rJgiTFydcQnlqCNri+x4FLWPIfD9v221eX1swV4A/IKy4J+v/jPXF3EzjEs7zlC9t+0lLwXqFyMuMpbDs3ehd9BTuHEpMhfM9pha0te73WbavO45eD4A1SoEsebv7jg46Nl/5DLTZ+8kIiqWwFz+DOjegK4dUh8GPX3+Jj//uZ0di/valPfv1oBbdyP5uP9snJ0dGPZZE+ra4SS7ogUKMnvZUib99hvRMTEEZMpEs4YN+apXL/x9bW+ju2nnDjbs2M6JjZtsyscNGULXL77gne7d8PfxYfrYsQTnt8/h/oK5SrDj2GqWbJuJMcGIv1cAxQLL0aJm5xSTyzYeWELuLPkJyv7kL5pXb11g5a5ZfN99nk1569of8SDyLj/O/xJHB2faNexFqQJVHlNL2jJN6m77+nfLVQyqYHkcB/yN0ulw6PkLpjnfYPrjKzDGoYJK4fD5nzZHwwCGTqNJWDAW04Jx1tuNOvSZbrlD2iO0iHuYFnyPQ/dJKEPS6ISuZhv0t0IwzR4Jmoa+5tvoqrd6IX1VL9Owzv8T1zxu2qMJ8VWTJ8w+jkoz0uymqR/Vvkoc9G9mdBMy3MrZURndhAzXOuDluqY9rcS2D0p1UoXcFEUIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDv3UidrpVQlpdRcpdQ1pVS8UuquUmqdUqq9UkqvlKqplNKSPWKUUleVUiuVUp2UUo6p1OmqlPpaKXUmMf6KUup3pVSexOUdHqnzcY8h6b0/hBBC/H8yZHQD/iulVE/ge2Aj8DlwGfAB6gM/AQ+AsMTwHsA+wAHIBtQDJgHdlFL1NE27nazqaUAz4CtgP5AL+BrYoJQqAawAKiWLL51Y18NtPHT1hXRUCCHEK++lTNZKqepYEvVETdN6PLJ4iVLqe8AN8E0sO6Vp2u5kMXOUUr8Cm4DpwOuJ9boArYFvNU0bk2x7N4FVQBVN09YAt5Mtc37MNoQQQogX4mUdBu8P3AP6pbZQ07TzmqYdfVIFmqbtwnIE3kQpFZRYbAD0QPgj4Q8Sn1/W/SWEEOIl9tIlH6WUHqgJrNU0LfY5q1uZ+FwFQNO0COAPoIdSqpZSyl0pVQQYAxwBNjzn9oQQQohn9tIla8AfcMFyjvp5hSQ+Z01W9j6wCMu58AjgOJZz3fU0TYt/AdsUQgghnslLec76BVKJz1qysuHAe0BfLBPGcmGZbLZKKVVD07So/7wxpToDnQG8snjRsmDz/1rV/4Uf/piZ0U3IcMpQPaObkPG0fw/5fxdxOy6jm5DxAlJcnCOSeRmT9V0gBsj9AurKmfh8HSBxyLs/0EnTtF8fBiml9gBngE7A+P+6MU3TpgJTAbIXyi4fUUIIIZ7KSzcMrmmaCdgM1FNKOT1ndY0Tn3ckPhdLfE5+CRaapp3FMsms8HNuTwghhHhmL12yTvQN4Idl4lcKSqm8SqniT6pAKVUJ6AIs1jTtQmLxjcTn8o/EFgC8gdDnaLMQQgjxn7yMw+BomrZVKdUb+F4pVRiYiWWymA9QB8tw9Tsk3RSlsFIqEkt/s2K5cUpb4CTwYbKqt2GZ9T1WKeVD0k1Rvkys67e07ZkQQgiR0kuZrAE0TftBKbUX6AV8h2WWeASWBNsFWAY8nL0zIfE5Dss57yNAV+CP5DO8NU1LUErVAQZimQg2FLgD7AQGa5r2cPa4EEIIkW5e2mQNoGnaTiyJ9HE2kzTj+2nrvAv0SXw8Tfwzb0MIIYR4Fi/rOWshhBDilSHJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzhoxugPhvTmw6zrH1Rwn9J5So+5F4ZfEmuEYw1dvVxMnVCYDz+89zaOUBrhy/QsSdcDz8PclXPh+1OtbB3cfdWld8bDwrxy3n1NaTOHu4ULdLPYrVKW6zvW1/beXo2iN89Osn6A36dO3r48RfiCDuXAQJt+MwxySgczfgmNcdl1K+KMek76GmO3HE7LmD8UYMKIVDNhdcK/mj93K0xmhGM1E7bmO8FIly0uNSzg+nfB4224s5fI/4sxF4tsiF0ql06+eTrNtynLE/reafc9e5HxaNv687FcsE8WXPNyhcIJs17n5YFANHzGfZ2sPExMZToXQQ3w5uTdFCOawx0TFx9B48i6VrDuHt5cbX/d6k1evlbLY3dspq5izew87lX2Kwk/dBauq89RZb9+xOdVn96jVY8fvv3Ll3j48H9Gfjzp3kzJqVcUOGUKtyFZvYbl9+QUhoKEtnzEyHVj+9uxE3Wb53BhdvniTk9lniTbGM67SCTF7ZbOKiYsP5e8s4DpzbjNEUS75sxXmvZl9yZspvExdvimP+jsnsOLWS6LgIcmcqQJvqn1IoRxlrjNmcwNztE9l6fAkGvSOvlW1LwzLv2tSz+/Ra/tw0hm/fX4SrkzvpzXxqF6aFP6BdOg6OzuiK18TQZgDKy98aY/ylH+YdC1NdXwUE4vjNWgC0uBhMf36N+eA6cPXE0LIv+gqNbeJNK6di3rUUhyGLUfq0TaeSrF9SO2ZtxyuLF3W71MMzkxfXz15j8/SNXDx4kU5TOqPT6di/eC9xMXHUaF8Tn2y+3Lt6h42/buDcnrN88lt3a1Lf9udWzu87x5tftODGuRssGDqPbAWy4ZfT8gYPuxXG1t8203Zse7tJ1AAxRx6gdzfgUt4PnZuBhDtxxBy4h/FaDJ7NcqCUIiEsnvClV9D7OOFeJwDMGjEH7hG+9CpeLXOhc7H8CcQcvo8pNBq3mllIuBdP1KYbGDI5WRO6OdJIzMH7eLyWzW4SNcC9B1GUKpabzm1rkcnPnSvX7vHd5FXUeHMU+9YMIXcOPzRNo2XHiVy6coexX7fBx8uNMZNX0bDNWHavGkSOrL4AfDd5NRu2n2Lq2Pc5fuoqH/T8lVJFc5EvbxYArl6/x+gfV7Dkt0/tOlED/Dh8GOERkTZluw8e5LPhw2hSry4AfYcP4/zlEGZNnMSKjRto/dFHnNm2HR8vLwAOHDvGnwsXcnD1mnRv/7+5+eAKe86sI2+WwhTMXopjl3eliNE0jbGLe3I7LJR2tfvh5uzJsr3TGTG3MyPazcbPI4s1dtqarzl8cRtvV+9FJq/srD88l9ELujLk7d/InbkgANtOLGPj0fm8X/cLouMi+G3DaHJlLkhwzrIAxMZH89fmsbxTo3fGJOrT+zB+9z66otXQd5sEkfcxLRyH8du2lmTqYPm8MzTtilbrbZt1tTuhmKb0RFeqjrUsYcXPmE/swNBpNNqV05im9kHlLoIuII9lnXvXSVg6CYc+M9I8UYMk65fWu6Pb4ubjZn2dt1ReXD1cWThiPpcOXSSwTBBN+ryRIsYvpz/Tu03jxMZjlG5i+SM7u/sM5VtUpFDVwhSqWpij645wfv95a7JeNX4FRWoXJVex3OnbyX/h0TCrNdkCOGRzRTnridp0E9O1GByyuxJ7+D5KKTxey4bOyZJgDJmdeTD7MrFHHuBa0dJH45UonIp44ZjHHfJA3NlwjFejrck6audtnILccQhwSfd+PslbTSvwVtMKNmVlS+SlRO1BLFp5gJ6d67N83RF27jvH6ll9qFG5EAAVSgdSuOoAvp+yhu+/tnxwrdl8jI/a16JJvZI0qVeS2Yv3sHH7KWuy7jtkDi0al6VS2Xzp28n/IDh/gRRlv86ehaOjI2+9/gYAazZvZsLQYdSvUYPaVarw+/z57Dl4kIa1amE2m+n25Rf0+/hjAnPlSu/m/6tCOUoz+eMNAGw6ujDVZH3w/GbOhB5iYKupBOeyjJDkz1acXtOasGLfTNrV/hyAy7dOs/OfVXzYYAg1ijYFoHDOMnw+syXzd0ymz5vjAThyaQeVCjWiUqGGAOw/t5mjF3dYk/WCnT+RzTcPlQs3StvOP4ZpyY/glw1Dj5+syVNlDcI4tDnmrfPQ13nPUpY5Nyqz7WeZ6cQOAHRV37SWmY9tQV+3LfpSdaFUXcy7lqKd3AGJydr013B05V9Dl790OvROzlm/tJIn4YeyF84OQPjt8CfEWIY9w++EW8sSjAk4ODlYXzs4OWCKNwGWRH7p8EXqf9zwxTX+BUmeqB8yZHIGwBxlab/pZiyGLM7WRA2gc3dA7+NI/MVkR14JGsqQ9OegDDpI0ACID4nCdD0GlwpJQ2n2zDfx9+7gYOnzinWHyZrF25qoAbw8XXmtbgmWrztsLTMaE3BJ9j5wdXEkNs4IwNrNx9m+5wzDB7RIhx68eDGxsSxYuZImderg6+0NQLzRiIuz5f1iMBhwdHAgNi4OgF/+/pvwiAj6dvkoo5r8RDr17x/dB89vwcc9kzVRA7g6eVAqsDoHzm22idPrDFQsWN9aptcZqFSwAccu78JoigfAlGDE0eBkjXF2cCbeZNlfV+6cY+PRBbSvM+B5u/afaecPoytS1eYoVxdYHNx9SDi47onrmncuQuUpii57si95JiPKwTnptaMzmtHSX/PRLZhP78XQut8L7cOTSLL+P3Lp8EUAMuXJ9PiYQ4kxuTNby3IE5+DwqoNE3Ann7J6z3Dh3nRxFcmKKN7Hih+XU+6g+rl6uadv4F8R4PRoAvU/i+WgFpDJsrfQKc7gRzWQGLEfbcafDMUeZiL8SRcLdOPSZndESzETvuI1LeX90zvY79JuQYCY+3sS5izfpNuBPAjJ5Wc83nzx7jSIFs6VYp3CBbFwJvUdkVCwA5Urm5a8Fu7h+8wHrthznyMkrlC8VSFyckd5fzWLY583x80n/4c0XYdHqVURERtK2RUtrWfmSJfnl77+4e/8+0+fMJiIqitLFinHn3j0GfzeGCUOH4ejo+IRa7dvVuxfI4ZdyFCSHXxB3I24QG2/5Wwm9e55MXtlxcrAdNcruH4QpwcjNB1cACMpajH1nN3DjfggXb57k2KXd5MtaDICZ60fSsPS7ZPPNk7adehKdDmVwSFlucES7euaxq5nPHkC7eRl9leY25SqwBAk7FqI9uIX52Fa0kFPogkqiGeMw/TUUQ6u+KHefF92Lx5Jh8P8T4bfD2DhtA4Flg8iebNJQcnHRcayasIJMeTJRqFpha3mtD2rzR9/fGNNsNABV3qlGrqK52DR9A27ebtbhcntnjjIRs+8ehuwu1iNsvbcjxpuxaAkaSm9J2lq8mYT7lqMFLc6MMuhwKetHxMpQHvxp+TLjXMIHhwAXYvbfReeix6mQZ8Z06ilVbzqSg8cuAxCUJzOrZvUhs7+lzfcfRJE7R8pRAV8vyxH4/bBo3N2cGdjzdZq1H09g+c8A6NWlARXLBDHih6X4+3rQoU3VdOrNi/fngoVk9venYc2a1rIxXw6i6QfvE1CqJAaDgW+/+JJc2bPTsW9f6lWrTp2qL29/AaJiw8jkmTVFuZuzZ+LycJwdXYmMDbeWJeeeWBYZGwZA/VJtOHZpF32nW4bKKxZsQMVCDdh6Yin3Im/RtELHtOrKU1EBgZjPH7Yp0+6EQtgteMI55YQdi0DvgK5iE5tyQ7PuGMd2JL5nZQD0jT5El680psUTwMMXXfXWL7wPTyLJ+v9AXHQcf/f/E51ex5sDUx+mTDAlMG/IHMJvh9Pppy42E8U8M3nxyczu3L92D2d3F1y9XLkXeo8ds7bTaXJnjHFGVv+4klNbT+Lg7Ejlt6pQsWWl9OreU9GMZiJWXwMduNdMmjjjVMyb+AtXidp2C9dyfmhmjehdd9CMliNqEg+6dW4GPFvmwhxuRDnp0TnrSQg3EnP0Pp5Nc4JJI2rXLeIvRaEMCufiPjgX9U7/jj7Gr+M6Eh4Zw8WQ24yfupbG733PxvmfkzunP5oGKpU5cRqazevsAT7sXf0VF0Nu4+Xpip+POxdDbvPD1LVsmP85MbHxfD5sLkvXHMLF2ZEenerxyft1UlZsZ67dvMmGHdvp/v77GAxJH3lFCxbk9JatXAgJISBTJjw9PNixfx9L1qzh2Ib13Ll3jx6DBrFhx3Yy+foxpE8fWjZu/IQt2RdN07C+wZ8cmGqUZvv2wMXRjS/fmsad8GvodQZ83DMTFRvB7K3j+bDBEAwGR+Zun8i2E8sAjepFmtKiysdPNWT/Iujrtcc0tQ+mBd+jr9ceLfIBpplfgtJZHqnQjHGY965EV7IWysPXZpnyCcBh2HK4HQKunih3H7RbISSs/hWHgbMhPhbjrJGYD64FRxcMDT5AX69dmvVPkvVLzhhn5O/+f3L/2n0+mNgJr8xeKWLMZjOLRizgwv7zvPttOwLyBaSIUUrhm93P+nrFD8so83pZAvJnZf3Pa7n2Tyjdfv+U8Dth/PrJL2TKk5mgskFp2renpZksidocYcTj9Rzo3JOdfw9wwbVqJmL23uXBact5ekN2FxwLeBJ/NgKV7Fy2Usrmcq7oHbdwKuSFwc+J6L13MN2Ow6tVLsxRCZYZ5t6OOOSwj9MDhfJbjqDKlwqkQc1iFKran+9+WsWPI9vi4+3G/QdRKda5H2YZBvVJdopDKUVgslMkvQfPokObahQPzslX3y7i4NHL7F/7Nddu3Kduq28pnD8btaoWTlG3Pfl70SLMZrPNEPhDBoOBAoGBACQkJND9y0EM7tWLrJmz0PbTHkRGR3F223b2Hj5Ms44dKVaoEAWD7ON9/2/cnb2Iig1PUf6w7OHRtJuzF3cibqSMiwu31pOcv2fSKZV52yeSP1sJSgVWY9PRhew4uYJBbaYDMGJOJzJ5ZaNmsTdJD/rKTdGuXyBh9TQSlk0GpdCVb4wqXgNz6NlU1zEfWg/R4eiqpN5GpRQkm4xm+nMo+uqt0OUqjGn+WLRLx3AcvhLt/k2Mo95GZc+HLrhymvRPzlm/xBJMCcz+8m9CT13lvTHtyBKUMgkDLBuzhOMbj9FqyFtPlWBPbjnBjbPXqd3JconL2T1nKdmoNG4+bmTNn4185fNzbs/jzwGlJy1BI3LddUy3YvFolA2Dn1OKGOci3ni3y4tnq1x4vZsHzyY50KJNGDI7WYfGHxV/MRLTnThcy1q+wBivRONU0BOdiwGDvxMOOVwxXkmZAO2Bt5crQbkzc/7SbQCC82fj5JlrKeL+OXuNnNl9cXdzTrEMYMnqgxw5eYXBvS3Dnuu2HOfdFpXI5OdBiSK5qFOtCGu3HE+7jrwgfy5cQPHCwZQIDn5i3I8zZqDTKbq2bw/A2i1b6Pzue3h6eFC3WjWCC+Rnw47t6dHkFyK7XxBX755PUR567wJ+HgE4O1q+pOXwD+R2WChxxhjbuLsXMOgdyOKdM9X6L948yY5TK2lby3La5OilHZQvUJfMXtnJ7JWd8gXqcvTSzhfcqycztOiF48R9OAxbgeMPu3D4+Ae0m5fR5S+Tarx5+yLw8EFXvOa/1p1wYC3mkFPo3+xpWffYVvRVmqM8/dDlDkZXpCrmo1tfYG9sSbJ+SZnNZuZ/PZeLBy7w9qj3yFk09ctLVv+4koPLD9BsQHMKV3/yhxVYbpCyasJKGnVvbL0OGyA+Jt76c1xMXIohsoygaRpRG29gDI3Bo0E2DFkef1mV0usw+Dqhd3fAdDcOY2g0TkW8U6/XaCZ6521cK2eyubmKdegc0Ix2sAMe4+btcE6fv0FgbstEw8b1SnDtxgO27T5tjQmPiGHl+qM0rlsi1TqiY+L4bOgcvh3cGg/3pGQelex9EBUdaxfvgyfZf/QoJ86coW2LJ89iv37rJsPHj2fi8BHo9UmjLVHR0TY/a/be4WRKB9XgfuQtTl3Zby2Ljovk0PmtlA6qkSyuJglmE3vOJM2YTjCb2HN6LcVyV8LBkHKSnVkzM3P9KJpW6Ih/svPiyRN+rDEmQ/aXcnJFl7Mgyssf89EtaNfPo6/1Too4LewO5hPb0Vd8I/WJaclj42Iw/T0cwzsDUS7uycqjk/0cBaRdf2UY/CW14vtlnNh0nOrtauLo7MCV4yHWZZ6ZvfDK7MW2P7eyc84OSjcug18OP5sYNx83m2Hvh7bM3IR/Ln+K1ilmLQsqG8TehbvJlDsTEXfCuXjgAlXsYLJR9PbbxF+IxLmUD8pBYbqZ9EGhczOgc3fAHGkk9mQYhiwuKL3CdCeW2EP3cczjnuIOZQ/FHLyHztsRp6Ck5Q7ZXYk9EYbe2xFztAlTaDQuxb3Tuov/qnXnSZQqkpuihXPg6e7M2Ys3+fHX9RgMOj79sB4ATeqVoELpIN7v+SsjB7bEx8uVMZNXoWkavT9K/ZK8URNWUCAwgJZNki77qVW1MFN+20jBoACu33zAph3/8OmH9VNd3178uXABBoOBt5s2fWLcZ8OG07JJYyqWTrpmtk6Vqoya+CNeHh7sO3KE85cvU6ty2gxx/hd7E5PrpVunADhycTuerj54uPhQOGdZSuerQf6sxflp5Ze8XaMnbs6eLN0zHQ2NJuU6WOvJnbkgFQvW589N35GQYCKTV3Y2HJnH7bBQPn5tRKrb3nR0IbHGaJs7mBXJVYHZ2yZQMIdlH+46tYp3avZOo96nZL58AvPRLehyF7G8PnuAhFW/oH+tc6rXQifsWgIJpscOgdvELp2ICsiLvnzSnAVdkSokbPgDlTUIHtxEO7kLXcO0m2QnyfoldXa3ZRh66++b2fr7ZptlNd+vTe2OdawxB1cc4OCKAzYxJRuVovkXtufwbl++zd6Fe/jo109symt0qEXUgygWj1qIwclA3S71yVfe9naFGcEYYhmGjj10n9hD922WOZfxtQxh6xSmW7HEnQpDi9fQeTrgXNoX52LeqdaZcD+e2BNheLWwHfpzKeOLOcZE1JaboFe4VPDHIWfK69jTW/lSgSxcvp/x09YSH59Ajmw+VK9YkM8+aUTuxJva6HQ6Fs7ozoDh8+j55V/ExpmoUDqQ1bP7kjObb4o6T5+7zs+/b2Ln8i9tygf0aMLtuxF89NlMnJ0dGfZ5c+pWL5Iu/fwvjEYjc5YupUGNGmTJ9PjLGTft3MGGHds5sXGTTfm4IUPo+sUXvNO9G/4+PkwfOzbVm61klAnLbK/xnblhFACFcpThy7emoVM6+rw5gb+3jGPmhlEYTfHky1acga2m4udpe8qsc4OvmbtjIvN3TCY6LoJcmQrwWYtJ5M2Scj5CRPR95m2fRM+m32HQJx2R1i7eglsPrvLX5rGgadQu0ZKaRZu9+I4/jsEB89EtJKz8BUzxqGxBGNoPQ18t5VwFAPOORagcBdDlKfrEas3XzpOw4U8chiyxKde/0RUt/C6m6f3BwRl9q8/QFa32wrrzKPUyDev8P8leKLv20a9dM7oZGeqHP2ZmdBMyXOjA9Lupgr0yaPZ9dJ4e5vx4L6ObkOE6Fkt9pOtVE9s+KNWJNHLOWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJWgghhLBzkqyFEEIIOyfJ+l8opYYopWpndDuEEEK8uiRZ/7uvAEnWQgghMowkayGEEMLOPVWyThwK1pRShZRSa5RSUUqpEKXU+4nL2yql/lFKRSqlNimlgpKt66CUGq6UuqSUik98Hq6UckgWkyex/i5KqaFKqetKqQdKqWVKqRyPtOVf60uMc1NKfaOUOq+UilNK3VBKLVBKZVFKlUncXtNU+jpTKXVVKaVXSmmJxV8kxmtKqSHJYmsopTYopSIS98kapVTRp9mnQgghxNN61iPrecAKoBlwAJiulBoJfAz0B94HCgJ/J1vnt8RlvwNNgBnA54nljxoA5AM+AD4FKgF/PRLzr/UppRyBdUAPYGZiXDfgHuCjadoBYB/QJXnFSilvoDUwTdO0hMTtk1hHpcTHtMTYxsAGIBJ4D3gH8AC2KaVyptI3IYQQ4j8xPGP8GE3TfgdQSu0HXseS8PJqmhaeWJ4VGK+Uyo0leb0NfK1p2pDEOtYqpRKAYUqpbzRNO5qs/suapr3z8IVSKhMwRimVTdO0a4lHrU9T33tYEmtTTdOWJqt/frKfJwO/KqVya5p2ObGsHeBIYkLWNG23UgogVNO03Y/si/HAFk3TrEfnSqlNwAWgD9Dz0Z2nlOoMdAbwz+pPAd/8j4a8Uoa3GpDRTchw0acHZXQTMpyzOXdGNyHDeWTK8e9B4pX2rEfWqx7+oGnafeAWsPthok70T+JzTqB64s9/PlLPw9c1Hilf8cjrY4nPuRKfn7a++sCNRxL1o2YDD4APk5V1AVZomnb1CeuhlMoPBAF/KaUMDx9ANLArWTttaJo2VdO0spqmlfX09XzSJoQQQgirZ03W9x95Hf+YMgBnwDfx5+uPxNxIfPZ9pPzeI6/jktWVPP7f6vMDQnkCTdNisQyhd0xMttWAYGDKk9ZLlDnx+VfA+MijSeL2hRBCiBfiWYfBn9XD5BsAnE9WHpD4fDeN6rsDPM1Er5+A3kBT4E3gErDmKdZ7uJ0BwPpUlsenUiaEEEL8J2l96daWxOc2j5S/m/i8NY3qWwsEKKVef1JlmqadT4z9DGgJ/KJpmvmRsHjA5ZGy01gSexFN0/an8jiKEEII8YKk6ZG1pmknlFKzgCGJ53R3Ypn4NQiY9axJ7Rnq+xPLuehZSqlRwB4sk90aAD9omvZPsmonA0uwDGFPT2WzJ4HGSqnVWIb8ryVOdusKLEmceT4Xy9F8FqAyEKJp2vfP0jchhBDicdLjpijtgdFYLsdaCXRMfN0+rerTNM2IZZLZT1hmX6/EkpT9SXlefAWWiWFLNE27QUrdgChgGZbLvTonbmMllolkblhmj68BvsUyJL/rP/ZNCCGESEFpmvbvUf/HlFL1sAyF19U0bUN6bTeoaJA2ct436bU5u3TvWmRGNyHDvWWWS7eczTMyugkZbv1huXSrdYBjRjfBLsS2D1Kplaf1BDO7lXiXtUBgHHAwPRO1EEII8Sxe5XuDD8Jy3XgclpuhCCGEEHbplT2y1jStA9Ahg5shhBBC/KtX+chaCCGEeClIshZCCCHsnCRrIYQQws5JshZCCCHsnCRrIYQQws5JshZCCCHsnCRrIYQQws5JshZCCCHsnCRrIYQQws5JshZCCCHsnCRrIYQQws5JshZCCCHsnCRrIYQQws5JshZCCCHs3Cv7LzL/H9y9cZel05Zw4cR5Lp++THxsPBPWTSRz9szWmFuht+hRr1uq6/+6ewZunm4AxMXEMWPEdPat34ublztter5N5UaVbeKX/rqE7cu3M2reN+gN+rTr2DO4f/sea2evIuTMJa5euIIxLp5hf36LX4C/NebujTsMeq9fqut/t3giru6uAMTHxjFn4l8c2XEIV3dX3vigBWVrlbeJXztnFfs27KL/T1+h12f8Pti4P5bxcyI4E2LiQaQZPy8d5YOd6NfWg0K5HaxxDyLMfPVLGCt3xhIbp1E22JERH3kRnDcpJjrWTP9JYazYGYO3u44v3/fkzZquNtubMDeC+Ruj2TgpMwa9Srd+Jhd6+zbfz5vLwTNnOHbxAjFxcZyc+Tu5AwJs4u5HRPDFtF9YvmsnMXFxlC8czOguH1E0b16buNj4eIb+NpPZGzcSFhVJ8cAghnXsSNVixa0xCQkJfDVzBn+sXYOTgwM9WrSk25vNbepZsHUL/ab8xKFffsXTzS3tdkAqdhxbw7bDKzkXepywyHv4e2elUtG6tKzVBVcnS1vGzx3IxoOLU10/e6a8TO6zAoC4+BimLh3B7hPrcXfx4r0GPalWopFN/MItv7Ll0HK+7z4Pvd4+0kjCvlWYdy/HfOkYhN9F+WVDV6Y++iYfo1zcrXHmyycxzRuDdvYAKIWuUAUMbw9EZcljjdHiYjD9+TXmg+vA1RNDy77oKzS22Z5p5VTMu5biMGQxKh32gX3sZfGf3Ai5we41u8gbHEihMoU5uuPIY2ObftiMsrXL2pS5uLlYf14ybTHHdh7l45FdCTlzmUmf/0jewnnJmicrYPlisGjKQvpPHWg3iRrgdugtDm7ZR64CuclXND+nDpx4bGyDtxtTvFJJmzJnF2frz2tmr+SfAydp99kHhF64ysxvfiFX/txkzpEFsHwxWP3XMrqO6m0XiRrgfoSZkvkd6fi6O37eOq7eSmD8nAgafHqb7T9nJmcWA5qm8e5Xd7l8w8Q3Xb3wdtfxw+wImn52h80/ZSZ7Jktfxs+JZPPBOCb29eHEBSMfjb5P8fyOBGW3fEyE3k5g7N8RzBvhl2GJGuD8tWss2LqFUvnzU7lIUTYcPJAiRtM0Wg/5iks3b/Ddx13x9nBn7JzZvPb5Z+ya9BPZM2Wyxn48bixr9u5lRKcPyROQlanLltL0i4FsHDeeEkFBAPy5fh3TV65gfPcehEVF0XvSRIoHBlG9RAkAImNi6D/1Z0Z92CXdEzXA4q0zyOSdlfca9MTfK4AL104xe/0kjp3fy+iP/0an09G6zkc0rPiWzXo374cydlZfyheuZS2bv3kah8/upEerkVy+foZxcz4nKHthsvnnAeBO2A3mbpzCVx9MtZtEDZCwahrKLxuGFn1QvgGYL58kYfEEzKd24/DlPJROh/nGJYyj3kZlz4+hy1hISCBhyY/Ej3oHx6HLUJ5+lrpW/Iz5xA4MnUajXTmNaWofVO4i6ALyAKDdu07C0kk49JmRLokaJFm/1AqXLczP234BYOP8DU9M1llyZiF/iQKPXX5422EavNuQsrXLUrZ2WbYv386x3cesyfq3UTOo2LASBUsVfLGdeE75ihdg9PwfANixcusTk7V/1kzkDQ567PITe49Ro1kdilcuRfHKpdi7cTf/HDxpTdbzJs2idI1yBBXJ90L78Dxa1HKlRS3bstIFHajY8RZLt8XQtaUHq3bFsvt4PIu/9adaSScAygU7UqrdDX6cG8E3Xb0BWL8vlk5N3WhUyYVGlVyYvzGGLQdjCcpuOSoZ+NMDmlV3oXwRp/TsYgpVixXj0uy5AMxctSrVZL1i9y52njjOytHfUqNESQAqFA6mSPt2jJs3l+8+6QrA0QvnmbtpEz/17kO7+g0AqFa8OGU7f8jw339j3tdDAVi3bx+ta9WiVU3Lzl62cydr9++zJuvhf/xOgRw5aV3rkV9GOvmy/WS83H2tr4sGlsPdxYvx8wZw/MJeiuerSFa/XGT1y2Wz3uGzOwGoXaaptezgmW00rvwuFYJrUyG4NlsOL+fIud3WZD1t6SiqFGtI4dyl0r5jz8Ch51RrsgXQFaqAcvfG9MtnaP/sQQVXImHlz6B0OPSejnLztMQFlSC+Xx0SVk3D8NbnAJiPbUFfty36UnWhVF3Mu5aindwBicna9NdwdOVfQ5e/dLr1T85Zv8R0uhf36zMZTTg6OVpfOzk7YoyLByyJ/NS+U7zT590Xtr0X5UXugwSTCQfHpGFhRydHjPFGwJLIzx49TbNOrV7Y9tKKr6dlnzw8+l29K5YAP501UQN4uuloUMGZVbtirWVGk4azY9IRs6uTIvEtwIZ9sew8Gs9XnTzToQdP9jS/8xW7dpHVz8+aqAG83NxoVLECy3fvspat3LULB4OBltVrWMsMej0ta9Zk/cEDxMVbdkC8yYSzY9L+c3N2JjZx2YlLF5m+cgXjuqZ+uik9JE/UD+XPWRSAu+G3HrvepoNLCMpehFxZ8lvLTCYjjoakvjo5OhNvjAPg4OltHL+4j/aN+ryopr8wyRO1tSxvMQC0+zcsz+cPo/KVsiZqAOWbFZWjAOaDa5NWNBlRDkmjbjg6oyXuA/PRLZhP78XQOvVTa2lFkvUrYta4v3mnWBveL9+eMV1HE3ImxGZ5vuL52LpkC/dv3+fI9sNc+ucS+UsUwBhvZOaI6bzd+x08vD0yqPUvxpJf59Otfid6v9GVnwZNIPTCVZvleQoFsmfdDsLuPuDkvuNcPR9C3uBAjPFG5k76i2adWuLu5f6Y2jNWQoJGvFHjfKiJ3uMfkMVXR/OaltMc/1w2UjiPQ4p1CuVx4OqtBCJjzACUKejI7HXR3LibwMb9sRy7YKRsYQfi4jX6T3rA4I6e+Hrax/D/vzkVcpng3HlSlBfOnYcrt24RGRNjjcuTJQBXZ+dH4nITbzRy/to1AMoVKsSS7ds5fy2UQ2fPsOHgAcoXKgxAr4k/0rXZmxTImTNtO/WMjl/YB0COzIGpLj916SDX74ZQu3RTm/ICuYqz8eAS7oXf5uCZ7Vy89g8Fc5XAaIpn6tIRtGvYG08377Ru/guh/bMXAJUtcTRMp0cZUv4tYHBEuxWCFm9JyCqwBAk7FqI9uIX52Fa0kFPogkqiGeMw/TUUQ6u+KHef9OqGpYnpujWR7hwcHajbui7Fq5TAw8eTaxdDWTx1EYPf+ZIRc0aSPSgHAC0/acU3XUbycY0uALz+wRsUKFmA+ZPm4eHrSa0WtTOyG8/F4GCgapOaFC5TBA9vD26EXGfNrBV89+kI+k0cRNbc2QBo3K4pEweMY8BbvQGo27ohgcH5WPH7Ety9PKjcqFpGduOJ6vW4zZGzllGAwGx6Fn3rTyYfS2J9EGEmV5aUf+o+Hpbv6mERZtxddHzW1pO3vrhDkbctRyHdW7lTLtiJb/8Ix89bz3sNXVPUYa/uR0SQO0uWFOW+7pYvnA8iI3B3ceFeRATeHim/gPkkxt2PjADgozeasuHAAYp/8D4ALWvUpGWNGvy5bi2hd+7Q7+130qor/8ndsJvMWjeREvkqkT9H0VRjNh1cgkFvoHpJ24lTbep8wtczuvD+SMtow5vVP6BQ7pLMXj8JTzdf6pVrkebtfxG0+zcwLfoBVaQKusQjbBWQF/O5g2gmozVpazGRaKFnQdMgOgwcM2No1h3j2I7E97RMstU3+hBdvtKYFk8AD1901Vune38kWf+f88nkQ6chna2vC5ctTImqJfnsjT4s+nkh3b7tAYBvFl9GLxrDzSs3cfN0w8Pbg5tXbrJ8xjK+/nMo8bHx/DH6N/Zt2IejsyON2zeh4XuNHrdZu+Ll5807PdtZX+crVoDgcsUY3ulLVv+9nPcHWPaPt78PX0z9mjvXb+Pi5oq7lzt3rt1i/bzV9PlhAMa4eOZPmcOR7QdxdHakdov61HqzbkZ1y8ZPn/sQEaVx+YaJSfMiadH/Diu/z0SuAAOaBiqV+WCaZvs6m7+erVMyc+l6Al7uCl9PPZeum5g4P5KV32ciJk5j0M8PWLEjFhcnxcct3OnczD5HGjRNA1J2WkNLEaeeIs7D1ZXVY74j5OZNHAwGsvr58SAyki9/ncaUXn1wcnBgyMwZ/LV+HZqm0bZefQa1a/9CT9M8rZi4KEb83g2dTk+PViNSjTGa4tl+dA1lC9XE0832CNHPKwvjP13EjXtXcHP2xNPNmxt3r7Bo6wy++ehP4o2x/LpiNLtPbMDJwZmmVdvTpMp76dG1p6bFRmEc/xHoDTh0/MZarq/fAfO+VZh+G4SheU9ISMA0eyTERVsClOX3pXwCcBi2HG6HgKsnyt0H7VYICat/xWHgbIiPxThrpGXo3NEFQ4MP0Ndrl0pLXhxJ1q8g/6z+FCxdiPPHz9uUK6UIyJV0+cvMEdOp1bI2uQvlYfYPs7hw4gJjlozl3s17DGk7mOxBOShWqVh6N/+F8M3sS1DR/Fw+fdGmXClFpmxJl77Nmfg3VRpVJ0dQLpZMX0DImYt8OW0oD+484Pteo8iaOxuFSgend/NTKJjLcpRQtrAjdcs5U7LtDcbPiWDspz54e+i4H2FOsc6DSEuZl0dSQlFKkTdb0sdC/0kPaNvQlaJBDgyfEcahM0a2T83M9bsJNO59h4K5DdQo5Zyi7ozm4+HB/YiIFOX3IyMB8E48cvb18OTqrdsp4h4kxj08wn4oV7Kj9a9nzqBicDANK1RgxqqVzN64gXXfjQWgwWd9yRMQQPuG6fuFNt4Yx4jfunHz3hVGdPkdf6+AVOP2nNxAVGx4iiHwh5RSNpPRpi4dQb1yLcmbrRB/rPmBc1dP8GPPJdwNv8mAKW3JmSWIEvkqpUmfnpUWH4dxfBe021dw6P83yjerdZkufxkMbYdgmv8d8dvmA6CCK6Or8ibmXUvAzcsaq5SCzLmtr01/DkVfvRW6XIUxzR+LdukYjsNXot2/mTjDPB+6YNvLXV8kOWf9itI0zfJmfIy96/dy6Z9LtO5uudTjyPbDVG9aA09fT/IUzkPxKsU5sv1wOrU2bfzbPji8/QBXz4fQpEMzAE7uO06FelXw8PYkZ75cFC5TlJP7jqdTa5+el7uOvNkMXLiWAFjOTf9z2Zgi7vRlEzky63F3Sf1jYPn2GI6dN9K/vWUyzsZ9cbSp54q/t55iQY7UKuPExn1xadeR51A4dx5OhVxOUf7P5cvkzJwZdxeXxLjcXLp5g+jY2BRxjg4OBGXLlmr9h86eYfbGDYz56BMA1u3fT7Oq1cgTkJU8AVl5s1p11u3f/4J79WSmBCPf/PkpZ68eZfD7P5Mn4PFXf2w8sARPNx/KFKr+r/XuOr6ei9f/4Z363QE4dGY7tUs3xcvdl8BshSmVvwoHz2x/Yf14HprJiGliV7QLR3HoNQ1dzpRXr+jrvIfjhD04jFiJ49itOPb7He3BLVRgydTPZwMJB9ZiDjmF/s2eAJiPbUVfpTnK0w9d7mB0RapiPro1LbsmyfpVdOfaHc4cOk2+4qlfghQXE8fvo2bS7vP2Ntdix8UkfTDHRsclDjW+nO7dvMuFE+fIUyj1yTfxsXHMnzyblh+3wdnVxab8obiY2BTDpfbg1v0Ezl0xkTer5Zx1w4rOXL9jZsfRpLaHR5lZszuGhpVSPyqOjjXzxZQwRnzkhYerLll5Un+jYuyx9xaNK1bk2p07bDt61FoWHhXFqj27aVwx6QjwtYqVMJpMLNyW9EFrSkhgwdYt1CldGidHRx5lNpvpOfFHPnv7HXJmThqFSZ7wo2Ji0vW9YTab+X52P46e383AdhMpmKvEY2MfRNzh8NmdVC/RGIM+9eT0UFx8DL8uH0XHJp9bb64CEGuMsf4cEx+d8pxKBtDMZkw/98Z8cicOn05Bl+/xl5YpByd02Qug/LJhvnIa7eRO9LVTn3egxcVg+ns4hncG2txcRXs4dA5ocVGQxr9vGQZ/ye1esxuACycuAJbLrDx9PPH09SS4XDB/jP4ds2amQIkCePp6cu3iNZb8shilUzTr3DzVOhf+tICsebNRKdkdzIpWKsaav1eTLW827t++z/Hdx2jcoUnad/ApHNxqOYIJOXMJsFxm5e7tgbuXBwVKFGTBlNloZo28wUG4e3tw88oN1s5aiVKKhu80TrXOlX8uI3POAMrUTLqDWaHSwWxZspEsubISducBpw+dok6rBmnevydpO+QuJfI5EBzogIerjvNXTfy0MBK9Hj5paflgaVTJmXLBjnz0zX2+/tATbw/LTVE0oEer1M85f/dXBPlyGGhWI2lSWfXSTkxbGkn+nAZu3E1g66E4urbImHPWixKT66FzZwFYu38f/l5e+Ht5U614cRpXrESFwsF0/PYbRnT6EG93D8bOmY2mQa9WSZfflQgKomWNGnz+8xRMpgRyBwQwbcUyLt24wa/9+qe67RmrVhIVE0v3ZHcwq1WqFIOm/0rlopbJXHM3b2LUh51TXT8t/LxkGDuOraFVrS44O7pyOiTpngt+XllshsO3HF5OgtlE7TLN/rXeORt/InumvFQtnjScXyJfJVbu/JscmfJyL/w2R8/vplm1Di+yO/+J6Y8hmPetQv/6J+DogvncIesy5RuA8s1quZnJxr9R+UqjHBwxXzpOwvKfLHc6q/h6qvUmLJ2ICsiLvnzSZ4WuSBUSNvyByhoED26indyFrmHHNO2fepmPjl5mQUWDtJHzvvn3wH/RJjj1WYmFywXz1W9D2LRgI+vmrONmyA1iomLw8PagSMWitPykFdnyphziC70QypdvDWTkvG+sN0QBiI2KZcaI6ezfaJlg9lq7xrz+wRvP1fZ71yKfa/2HPqn7Qarl+YsXpNf3n7Nz1Ta2LtvE7Wu3iIuOxd3LnQIlC9O43RtkyZk1xXo3Qq7zbbdh9J/8lfWGKACxMbHMnfgXR3cexsHRgdot6lOvdcPnavtb5kHPtf74OREs2RLDxesmjCbIlklP1eKO9GzjQa6ApO/i98PNDP4ljJU7Y4iLt5zbHt7Fi6JBKY+szoQYqdfjNhsnZbbevQwgMsZyO9JVu2JwdlR83Nydbq2e/3I+Z/OMZ17HrWH9VMurFSvO6jHfAXAvIpyBv/zC8p07iTXGU75wYb7p3IXigbY3xomJi2PIzBnM3byJsMhIigUGMuyDTtYbniR3JyyM0h925O9Bg1PcjvTL6b8ya8N6yx3j6tZj2Acdn/pOd+sP53jarqfqw2/qcuvBtVSXtanzCW8nu+Xwpz+8iaaZmdBryRPrvHrrAn0nvcX33edZb4gClglsU5eOYO/JjTg6OPNG1Xa8WT31v8Fn0Tog5SjGs4jrUwPuhqa6TN+0O4Y3P0ULu4Px595oIacgNhKVORe6aq3Q1++Q6p3IzNfOYxzaHIchS6x3LwPLBDbTn0MxH1oPDs7oG7yPoVGn52r/Q7Htg1I9NyfJOoO8qGT9MntRyfpl9rzJ+v/Bf0nW/2+eN1n/P3jeZP3/4nHJWs5ZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZCyGEEHZOkrUQQghh5yRZA0qpDkopLdkjSil1SSm1SCnVWimVYj8ppfyVUqOUUscT46OVUseUUt8opbJmRD+EEEL8fzJkdAPsTCvgKuAE5AIaA7OAzkqp1zVNiwFQSgUDawEFTAD2J65fCugCFATeTN+mCyGE+H8lydrWYU3TziV7/YdSah4wD/gW6K6UMgALgFigsqZpt5LFb1BK/QA0Sq8GCyGE+P8nw+D/QtO0BcAS4EOllCvQHCgE9H8kUT+MN2matiydmymEEOL/mCTrp7MSy9B4WaAukJBYJoQQQqQ5SdZPJyTxOSuQE7itaVp0BrZHCCHEK0TOWT8dlfisPVclSnUGOgNkz5mditkqPG+7XmoJfuaMbkKG89D9ltFNyHB3OkzM6CZkuNKjZ2Z0EzLcIi+HjG6CXZMj66eTM/H5OnAFyJR4/vqZaJo2VdO0spqmlfX1832hDRRCCPH/S5L102mMZfb3AWA9oEdmfAshhEgnkqz/hVKqOfAGMCXxPPVC4DQwWimVKZV4g1KqcTo3UwghxP8xOWdtq6RSyh9wxHJTlCZYbpSyDhgAlkuzEhP4OuCwUmo8STdFKYHlnPQ/wIp0brsQQoj/U5Ksbc1LfI4FbgEHgTbAfE3TrJPLNE07qZQqAfQFOgBDsExCO4vlyHt8+jVZCCHE/ztJ1oCmaTOBmc+4zh2gf+JDCCGESDNyzloIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5KshRBCCDsnyVoIIYSwc5Ks/4+0a9GOPN65+W74GGvZji3b6dn5U6qXrEbBgAJUL1mNL3p/wZ3bd2zWjYmOoV+3zyiRpzjVS1Zj2cJlKeqfMn4KDas0xGQypXlf/qsObdoTlCUvY0d9Zy27GnKVoCx5U32Eh4Vb42KiY+jf83NKFyxJrfI1WL54eYr6f544hca1GmXYPrh67TY9+/9ItUbd8crVGMdMdbkUciNF3P0HEXTpOZasBZvjnbsJDVt8xrGTF1LExcbG03/Iz+Qq0hrPnK9RrVF3tu08ahOTkJDAgKG/kL1wSwJLvM2EKQtS1DNv8WZyF32L8IioF9fZ5/DO3p1kW7GY0adP2pQ/MMbT5+ghiqxdSdDqZbTevYNT4WE2MdEJJnofOUjw2hVU2rSWJdeupqh/0vmz1N26EZPZnKb9eFqtOjQmZ1HvVB/vdWmR6jr9v+5JzqLe9Pi8s015TEw0fQd1o2jlPFRpWJKlqxamWPen6eOp37yK3X0WHNm5hb7N69Isnx+ti+ZgzKcduX/7pk3M970681pOt1QfnWuWssbFxkTzQ9+PaV00Bx9UKcqWpfNTbG/eT9/TtX4FEtJhPxjSfAsiXSyZv4RTx0+mKP9r+l9ERUXRrW93cuXJxaULFxk3ahxbN2xh9Y41uLm7AfDTuMls37yd7yaP5Z8Tp+jVuSdFSxQlb1BeAK6HXmfidz/y2/zfMBjs822zdOFS/jlx6rHLP+7xCXUa1LUpe9h/gCk//sT2rdv5dvwY/jn5D3269qJI8SLkDUzcB9euM3ncJKbPnplh++D8xVDmL91C6eIFqFqhKOs2H0gRo2kazd8bxKWQG4wb1Q0fL3e+HT+b+m/2Zd+mn8mRLZM1tnPP71i1bg/fDOlM3txZ+Wn6Uhq/1Z+tKydQslg+AP6YvZZpvy1n4nc9CQuL5NP+P1KiWBA1qpQEIDIyhn6DpzB6aBc8PdxStCe9LQq9yslHEjBY9kuHfXu4EhPF8CLF8XZw4MfzZ2i5ewfrqtUim4sLABPPnWXrnduMK1GaU+HhdD98gGJe3gS6uQNwLSaG8edO81e5Shh09nG8M2LQWCIjI2zKDhzZy9Bvv6BerUYp4vcf2sOi5fPwcPdMsWzSr+PYtmsz34+YzKkzJ/h0QGeKBZcgb+4gAK7fCGXCz9/xx5T5dvVZcHzPDr589w1K16jLF1P/Ivz+PX4fM5SBbRozYeUOHJycAHj70/681raTzbo3r1xmdLcOVKj3mrVs3qSxHNq2kd7f/8zFU8f57tOO5CtWkux5LX8Xd66HMnvCtwz7YzH6dNgP9rOnxX8W9iCMYQOHMWjkID7t1MNm2bCxw/Hz97O+rli1InmDAnmrcWtWLFpO67ZvAbB5/Wbafdieeq/Vo95r9Vg8bzHbN2+3Juuv+w+hcbPGlKlQNv069gzCw8IZMXgYXwwdRK+PP001JmfunJQqWyrVZQBbNm6h7QdtqduwHnUb1mPpwiXs3LrDmqyHfTmU1954jTLlyqRJH55GtUrFuXrS8g1/+h8rU03Wy1bvZMee46xd9B01q5YEoGK5YAqUacvYH+cwblQ3AI4cP8/sBRv5ZXxf2r/TEIDqlUtQompHvh79G4v+HAbA6g37aNOiNm+9WQuApSt3sHrDPmuyHvrtbxTMn5M2zWunZdefSpgxniGnjjGkcDG6Ht5vs2zNzRvsvX+XeRWqUMXf8oWljI8vFTetZfKFswwvUhyATbdv8n6eQBpkyUqDLFlZGHqFbXduW5P14JNHeT1rdsr5+mEvCgQVSlH29/zfcHRw5I1GtkfWRqORz7/uSffOffhr3owU623atp4O73xI/VqvUb/WayxePo9tuzZbk/VX3/SnSYNmlC1VIW068x/9/cNIMmfPxeBpc6zJM2dQQXq+Xp01s3+jSXvLCELWPIFkzRNos+7BrRsBqNvyXWvZ/k1radKhCxXrN6Zi/cZsXjyHw9s2WZP1lK8+o1qT5gSXrZge3ZNh8P8H33w1igKF8tO0ZdMUy5In6odKlC4BwI3rScOn8fFGnJ2drK9dXFyIi40DLIl8z4499P96wItu+gvzzdBR5C9YgDeav/Gf6zDGx+Ps7Gx97ZxsH2zZuIW9u/bQb1D/527r89A9xZHc8tW7yBbgZ03UAF6e7jSuX5Flq3cmxa3ZhYODgVbNalrLDAY9rd+sxbpN+4mLiwcg3mjEJdl7w9XVmbhYy7Ljpy7yy2/LGT/a9ktiRhl+6gQF3T14M3uOFMvW3rxOgJOzNVEDeDo4UC9zAGtuXreWGc1mnJPtZxe9nriEBAA23brJrrt3+aJQkTTsxfOLiY1hxdol1K3ZEB8vH5tlU2ZMwJyQQOcO3VJd12iMx9kp6e/AxcWFuPhYADZtX8/u/TsY2PvrtGv8f/TPwX2Uqlbb5ii3QMkyePr4sXPN0ieuu3HB3+QrVorcBYOtZSZjPE7OLtbXTi4uxMdZ9sP+TWs5vns7Hwwc9oJ78XiSrF9y+3btY8HshQwbO/yp19m9YzcA+Qrms5aVKluSBbMWcOvGTbZs2MLJYycpVa4UcXFxDOn3FZ8P+RwfX5/HVZmh9u/Zx6J5Cxk6eugT474bOYYC2fJRIl9xOrftxOmT/9gsL1G6JAvnLuTWzVts3bSFU8dPUrKMZR98PXAIn33Rz273QXInT1+iSKE8KcqDC+Uh5OotIiNjLHH/XCJPrgBcXZ1t4wrmJj7eyLmL1wAoX7owi5Zv49yFUA4eOcP6zQcoX7YwAD36TaB7l+YUzJczbTv1FPbcu8v80CuMLFoi1eVnIiMo6JFy2LeAhyehMTFEJZ53LOXtw7zQK9yMjWXz7ZucCA+jtI8vcQkJfHniKAMLBePr6JimfXleq9cvIzIqgpZN37YpvxRykQlTv2PEoO9wdEi9D6WKl2XeklncvH2DzTs2cOKfY5QuXo64+DgGj+zHgJ5D8PH2TY9uPBOdXo/B0SFFuYOjI5dPpzxF+NCJfbu4duk8dVu9a1NesFQ51s/7i3s3r3Ng8zounDhKodLlMcbFMWVwXzoMGIqnT/qNrsgw+EvMaDQysNcAOnf/kKD8QU+1TmREJEMHDCVfwXzUb9zAWv7p5z3p0LI95QuVB6BLjy6UKV+GH775AV9/X95q2yZN+vC8jEYjX372BZ0+/pDAfKnvA0cnR95u9w7ValbD18+X82fP89P4ybRq0pKFqxeTr4DlS0uPvp/ywdsdqFTcMrz3YdfOlC5XmgnfjcfXz5fW776Vbv16HvfuR5A7Z0CKcl9vDwDuh0Xg7u7C/QcR+Hi7p4zzSYy7bzkH2vXDZqzfvJ/gCu0BaP1mLVo3q8nvs9cSev02A3q9m6KO9GY0m/n82GE+CsxHPnePVGMeGOPJ4eKaotzbwcG63M1goHeBQry3dxelNqwG4OPAfJT18WXsmX/wdXTinZy5064jL8j8pbPx981Erar1bMoHDu1FozqvU7l89ceu2/Pjz2n3UUvK1rIMrX/0fg/KlCzPuMnf4OfjT5sWbdO07f9VjsD8/HNwn03Zzash3Lt1A71DyiT+0MYFf2NwcKBG01Y25e/0HMjgds14r6zl86HFRz0pXKYCf40biZefPw3atH/xnXgCSdYvsSk//ERsTCzd+nR/qniTyUSPTt25ef0G81cvsJkcEpAtgFU7VhNyKQRPL098fH0IuRTCLxOnMm/VfGJjYhn2xTDWLl+Ds4sznbp2okOX99Oqa0/t5x+nEBsTS9eeqQ/pAWTOkpnhY0ZYX5erWJ7qtWvQqHoDJv8wke8n/wBAQNYAVmxaRcjlEDw9k/bBtMm/MGfZXGJjYhnx1XDWrlyDi4sLH3zUkfadOqRxD/8DDZRSqRRrtq81LfU42zA83F1Zv+R7Ll+5iYODnmwB/jwIi2Tg0KlM/aEvTk4ODBoxnT/nrEXTNNq93YAh/Ts81ZD9izLp/FliExLoka/gY2M0DVLpbgpZnV1YX60Wl6Oj8XRwwNfRkcvRUUy5cI7FlasRY07g65PHWXXjOi56PZ3zBtEx79N9WU4PN25dZ/vuzXzw3kc2f+MLl83hyImDbFq27wlrQ9Ys2Vi7cAeXr1zCy9MLH29fLl+5xM8zJ7Lw91XExsYw9NsvWL1hOS4uLnzYrivvv9slrbv1r5p2/IQxPTry27df0/SDj4l4cJ8Jn3dH6XToVOrvRWNcHNuWL6R8nUZ4+frbLPPPmo1Ja/dw4/JF3Ly88PTx4/rliyz8eTxjFq4jLjaGX4b2Z9fqpTi5uPLmh9154/2P06x/kqxfUqFXQpk4diKjJ4wmLi6OuLg467L4uHjCHoTh7uGOXq8HwGw20+fj3mzfvIMZc6dTuGjhFHUqpcidN+mo4at+g3mrbRuCiwUzZti3HDt0lDW71nLj2g1av9aK/IXyU6VG1bTv7GNcuxrK5PGTGDX2G+Lj44mPj7cui4+PJzwsHDd3N+s+SC5b9myUqVCWo4dtL1NSSpE7T9I++PqLIbR+9y0KFwnmu5FjOHbkGKu2rOHmjZu0eaM1+Qrkp0r1KmnXyf/Ax8eD+/fDU5TffxBpWe5lOfL08fYg5OqtVOIirPUklztnFuvPg0dMp2K5IrxWvyK//rGCWfPXs3HZOADqNu1N3lxZef+9lLOQ08LVmGgmnDvNd8VLEW9OIN6cYF0WZzYTZozH3eCAt6MjD+KNKdZ/YLSUeScbFlZKkcctaWb7l8eP8k6u3BTx9OKbf05yJOwBm6rX5npsDG/u2k4BD0+qJTsXnpEWLZ+L2Wym1RtJQ+BR0ZEMHfMFH3/QEydHJ8LCHwBgNmsYTUbCwh/g6uKGQ+IRqFKKPLnyWtcfPLIfbVq0JbhQMUaPH8aRE4dYv3gXN25do0W718gfVIiqFWukaz8fVevNNlw5d4aFP49nzo/fopSi+ustKFerAZfPpD4MvmvtciLDHlCnZeqjQ0opm8loUwb3oUGb9gQGF+e30UM4e+QgP63fx50b1+jXoj658heiZNVaadI/OWf9kgq5FEJcbBw9O/ekRJ7i1gfA1B+nUiJPcf45kXRO9oteA1m+cDk//vrjUyXY1ctWc/LYSXoP7A3AlvVbaPF2C/z8/ShSvAjValVjy/otadO5pxRy+QpxsXH07tqLUgVKWB8A0yb/QqkCJTh96vRj13/ckeVDa1au4dTxk/T8vBcAWzdtpXnr5vj5+xFcNJiqNauxdVPG7oPUBBfMzcnTl1OUnzp9mVw5MuPubpk0E1woD5dCbhAdHWsbd+Yyjo4O5MubLdX6Dx45w9/z1/P9iE8AWLNhH81fr07e3FnJmzsrLd6owZqNTz56e5FCoqOINZvpdvgAhdeutD4Aplw4R+G1KzkVHkYBdw/ORKb8EnM2MpzsLi64Pebym1U3rnEiPIzPCliGhTfdvkmr7Dnxc3KiqJc3NTJlYtMj1/JmpPlLZxNcsCjBhYpZy+7dv8vde3cYPX4oRSvnsT6u3bjK8jWLKFo5Dxu2rkm1vlXrl3Hi9DH6dhsIwJYd62nV9G38fP0pUqg41SvXYvP29enSt3/T7rPBzD4awqS1e/jzwHk+n/Qb1y6dJ7hcpVTjN8z/C09ff8rVbpDq8uR2rlrKhRNHea/vIAAObFlH3Vbv4uWXiaAiJShVvQ4HNq97of1JTo6sX1LBxYKZtWx2ivK3X2/Dm63fpHXbt8gTmAeA4V8MY/bvsxn70/c0aPLvb8qY6BiGDRjKoJGDcfdIOqcZHR1j/TkqKhrt0fHSdBZcNJi/Fs5KUf5u87dp1rIZrd55y2akILlrV0M5uPcA9V6rn+rymOgYhg8ayhdDv8Td3d2m/KHoqKgM3wepadKwMr/NWsPWHUeoXsXy5SU8IooVa3fZXF7VpEElho7+jflLt9KujWU/mEwJzFu8hbo1y+DklHICktlspnu/CfTv9S65ciQdaUclS/iRUTHpul+KeHoxv2LK0Y2Wu3fQInsO3s6Zm7xu7tTPEsCcqyHsunuHSn6WIc8Io5F1N2/QLFvK2eNguUHK4JPHGBJcDHeDQ7LypKP3KFNCilMHGeXI8UOcOXeKwf1G2JRn8s/C3Okpb3TU9bOOFMofTPfOfSiYPzjF8piYaL4ePYCv+o3E3S1ppCU6Jtr6c1S0ff0dOLu6kbdwUcAya/vKudN8OmZyirj7t29ycOsGGrf7EMMTzmmD5QYpP3/djw+/Go1rsjkRsdFJNwGKjYpM0/0gyfol5eXtRaVqqX9bzJ4ru3XZTz/8xLRJ02j9XmvyBOXh4L6D1jg/f79Uk9mEMRMIzB9IkzebWMuq1KzK77/8RlD+IG7duMnOLTv4sNuHL7hXz8bTy5OKVVK/xjFbjuzWZSO/Go7ZrFGqbCl8/fy4eP4CP02YjNIpPvn0k1TXn/j9jwQGBdK4abJ9UL0Kf0z/ncB8Qdy6eZOd23bS8eNOqa6flhYs3QrAwaNnAFizYS/+ft5k8vOiepUSvN6wEhXLBdPhk28YNaRz4k1RZqFp0Kd70iS5ksXy0apZTfp+ORmT0USe3AH8PGMZl0Ku8/tPqV+m9+sfK4mMiuHTj5Ku3a1TozQDh06jSkXLkdzsBRv5dmj6ncP0cnCksl/qQ9A5XFytyxpkyUoZb1+6HT7AoMJFLDdFOXcGDfgkKH+q6/9w9jRBbu68kS27tayaf2ZmXr5APnd3bsbGsv3ubboE5kt1/fS2YOksDAYDzV6znSzl7ORMpfLVUsQ7OTnh75c51WUA46eMITBPfl5v+Ka1rGrFmsyc9QtBefNz8/YNduzZQuf2j58zkl7OHz/M/k3rCEq8GuDEvl0s+PkHWn7cK9VroTctmkOCyWRzbfXjzBr/DTkC81P99aT3fcmqtVg282dyBBXk3s3rHN6xmead0+4SRknW/+c2r9sMwNw/5zL3z7k2y1q83ZKxP421KTt35hx/TPudZZttb7XZ47Me3L19l37dPsPZxZnPh3xO9dqPn1FqT/IXLMBfv/3FgjnziYqMwsfXh0pVK9Ojb49UZ5CfP3ueP2f8weJ1ttdmduvdnbt37tK/Vz+cnZ357Mt+VKuZ/vvg7Y62l6h17zcBgOqVi7N+yffodDoW/zWcz7/6mR79JhAbF0/FssGsXfQdObNntll32oTPGDxyOl+NmsGD8EiKFwli+ZxRlCqRMnnduRvG4JHTmTtjCA4OSR8dndo15sKl6/Qb/BOaBp07NOH9d9PnfPWz0CnF7+UqMvTUcQYeP0JsgpmyPj7Mq1iV7KnMEj8bGcHMyxdZXbWmTXmv/AW5Ex9Hn6OHcNbpGVgwmJqZMqdYP70ZjUaWrFpAzSp1yOT//O05d+EMv82exsq5m23KP/3oM+7cu03fQd1wdnahf88h1KiS8TfEMTg4sm/TGuZPGYcxLo6c+QvSbeR46r/VLtX4DfP/InfBYPIVe/yNkgCunDvN8t+mMmHldpvytz/tz4M7t/mh78c4OTvzfv+hlK5R9zG1PD9lT8MXr5LipYprjybEV01CnH3cVzkj5dSdz+gmZLg7HSZmdBMyXMLomRndhAx3zOvJQ9GvikY5XFOdSCMTzIQQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8laCCGEsHOSrIUQQgg7J8k6kVKqg1JKU0o9UEr5PLLMkLhsSOLrmomv6z4SF6iUupT4CEzH5gshhPg/Jsk6JS/g82ddSSlVENgKmIDqmqZdeNENE0II8WqSZJ3SWqC7UirgaVdQShUBtgARWBJ1SFo1TgghxKtHknVKwxOfv3iaYKVUSWAzcAuooWnatbRplhBCiFeVJOuUrgMTgc5Kqdz/ElsO2AhcAWppmnYrrRsnhBDi1WPI6AbYqdFAF+Ar4IMnxI0EwoB6mqbd/bdKlVKdgc4AWXNkJTw+/AU09eV149a/7rL/ezmzaBndhAyXZfYfGd2EDPdz1xMZ3YQM16u2f0Y3wS7Etg9KtVyOrFOhado9YCzQLnHi2OOswDIhbYxSSj1FvVM1TSuraVpZHz+ffwsXQgghAEnWTzIOuAcMfULMD1iOvt8HJqdDm4QQQryCJFk/hqZpkcAooBVQ8glxQ7EMh3+klBqXPq0TQgjxKpFz1k82GehN0gzxVGma9oVSyhnorZSK1TRtQLq0TgghxCtBkvUTaJoWp5QaCkx9itg+SiknoL9SKk7TtCFp3kAhhBCvBBkG/3czgLNPGdsdmAZ8pZR65rugCSGEEKmRI+tEmqbNBGamUm4CCjxSthlIMftb0zQN+DDxIYQQQrwQcmQthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1kIIIYSdk2QthBBC2DlJ1i+5beu30uGN9lTIU55KgRVpU+8t9mzbY10e/iCMr3p9RfVC1SifpzwftujEmZNnbOqIiY7hq56DqVqgCq+Va8TqxatTbGf6j9NpWbMFJpMpzfv0OLdv3GLSyPF8+u4nvF6uAfWL1eRG6PUUcRFhEXz/1be0rPYGr5dvyOedenPxzIUUcfFxcUwd+xNtajWnSdn6fPruJxzdf8QmJiEhgWnf/0yrGs14p24rFv4xL0U9W1Zvok3tFkRFRr24zj6HJm8NwDFzPQaPmvHYmE/6/IBj5nq0//gbm/Lo6Fg69xxLlgLNKVSuHXMXb06x7nc/zqFMzS6YTAkvuun/2dXQUHr07UuV2rVxz5wZvYcHly5ftol5v0sX9B4eqT6CS5e2xkVHR9Ppk0/wz5WL/MWLM2fBghTbGzNuHKUqVcrQv4dHnb91hAnretBvbiN6z6rNqOXt2Hl2mXX57zuG8snvFVN9fL34LWtcvCmWP3aOoO/s+gxe2IL9F9el2Nba438wYtl7JJjtp/8A5lO7iB/xFnEfFiGuaxmMP/dBC7tjE2P8pR9xHfKl+ojvX98ap8XFYPy1P3FdyxD3WS0S9qxIsT3TyqnED2qClpD2+8GQ5lsQaWbeb3MZNWAUbTq2oUvvLpjNGqeP/0NsTCwAmqbRvW0PQkOu0n/kADy9Pfl1/DQ6Ne/I3I3zCMgWAMD0Cb+ya8suhk0YztmTZxj4yQAKFy9M7sDcANy4doNfxk3lp9lTMBgy7i1z7UooW9ZsJn9wAYqWLs6BnftSxGiaxlc9BnLj6nW6DvgUd093Zk/7m8869uSnedPIFJDZGjt28Bj2btvFh70/JmuOrCydvZiBH33G+D8nEVQoPwDrlq5hxfyl9BjUm6iISCaOHE9QoXyUKFcKgJjoaH4eM4kufT/Bzd0tfXbEE8xeuJGjJ1J+MUlu194TzFqwAU8P1xTLvp0wmw1bDjBtQl+OnbxIh0++oVTxfOQPzAHA1Wu3GTXub5bPHonBoE+TPvwX5y5cYN7ChZQuVYqqlSuzbsOGFDFffv45XTp2tCm7FBLCu++/z+uvvWYtG/3996zftInpP/3EsRMnaNepE6VLlCB/vnyA5YvBiDFjWLlwYYb+PSR39f5ZJqzrQR7/IrxbcQCOBicOXd7En7tGYDLHU71gCxoV/4BqBZrbrHc38jrTtw2iWM6q1rI1x3/nn2t7aVflS0Lvn2Pm9iHk8itIZs9cANyPusXqYzPoWucH9Dr76D+A+fQ+jN+9j65oNfTdJkHkfUwLx2H8ti0OQxajHJwAMDTtilbrbZt1tTuhmKb0RFeqjrUsYcXPmE/swNBpNNqV05im9kHlLoIuII9lnXvXSVg6CYc+M1D6tN8P9rOnxTMJDQnl20Hf0uur3rTt0tZaXqV2FevPm1dv4tCeg0xb+Cvlq5YHoETZEjQq25CZE2fQf+QAALZv3E6bD96mVsNa1GpYixULVrB7y25rsh79xWjqN21AyfIl06+DqShWpgRztywCYNWC5akm612bdnD84DG+/XUcJctbEmpwiSK0a/g2c2fMpuuAHgCcP32OTSvX02fo5zR4sxEAxcuW4MM33+e3STMY+uNIAPZt20Ot1+pSq5Hlj3jnxu3s27bXmqx/nzSTnHlzUeu1Oo82Jd09CIvks0FTGDPsI9p9NCrVGKPRxMd9f6B/r3eY9nvKI4U1G/fx8QdNeb1hZV5vWJlZCzawccsha7Lu/cVkWjatTqXyRdK0L8+qepUqXL9g+ZIybebMVJN1UGAgQYGBNmXrN20CoN2771rLVq9bR9fOnXmjcWPeaNyYv+fMYf3mzdZk3bNfP1q9+SaVK1ZMq+48swMX12PWEvi49nc4O1i+hBXOVoGr98+y5/wqqhdsQSaPHGTyyGGz3qnrewGoGNTYWnYidBc1CrWkeM7qFM9Znb0X1/DP9X3WZD1v3/eUzl2HoMzF06l3T8e05Efwy4ahx0/W5KmyBmEc2hzz1nno67xnKcucG5U5t+26J3YAoKv6prXMfGwL+rpt0ZeqC6XqYt61FO3kDkhM1qa/hqMr/xq6/KVJDzIM/pJa/PcilE5H6/atHxuzec1mMgdktiZqAA9PD2rUr8mm1ZusZcZ4I84uTtbXzi7OxMfFAZZEfmDXfnoN6pUGvXg2Ot2/v113bd6JX2Z/a6IGcPNwp0LNyuzatCMpbtNODAYDNRrWspbpDQZqNqzNgR37iI+PB8BkNOHklHzfuFiXXTx7gRXzltLti57P27UXYsDQXwgulJs2zWs/NmbspLkkJCTQ6+OWqS6Pjzfhkuy94OriTGycpb9rNu5j266jjBz04Ytt+AvwNO+N1PwxaxZlSpWiSOHC1rL4+HhcXFysr11dXYmLtYxWrV63jq3bt/PN0KHP1+AXzGQ2otcZcNQ72ZS7OnqgYX7senvOrySXXyGyeSd9iUkwG3FIVo+j3hljguU9cCJ0F2dvHqJZ6W4vuAfPTzt/GF2RqjZHubrA4uDuQ8LBlEP5yZl3LkLlKYoue4GkQpMR5eCc9NrRGc1o+Vw0H92C+fReDK37vdA+PIkk65fUwb2HyJsvD6sXr+K1co0olbUkjcu/xuxfZ1ljzp0+T75C+VKsG1QwiOtXrxMdGQ1AsTLFWDpnKbdv3mbHxh2cPn6a4mWKEx8XzzcDRvHplz3x9vVOr649l8vnL5InX94U5XmC8nDr+k1ioqOtcQE5suLs4mwTlzsoD0ajkWshoQAUKl6Y7eu3EBpylTMnTnNg5z4KFw8G4MfhP/Dmey3JmTdXGvfq3+3YfZw/565jwugej405f/Eao8b9zY+je+Do6JBqTPkyhfhjzlqu37zL2o37OHL8PBXKFCYuLp5eAyYy4suO+Pl6plU30tWOXbs4d/487d55x6a8fNmy/P7331y/cYM169dz+OhRKpQrR1xcHJ9+9hkjv/4aPz+/DGp16iolHhnP3fc9D6JvEx0fwfYzi/nn+j5qF3471XXO3zrC7YirVAh8zaY8j38R9lxYSVj0HU6G7ubq/bPkzVQUY0I8c/eOpVnpT3B39krzPj0znQ5lSOV9bXBEu3omZXki89kDaDcvo69ie4pABZYgYcdCtAe3MB/bihZyCl1QSTRjHKa/hmJo1Rfl7vOie/FYMgz+krp94xa3b9zm+6+/p/vAHuTMk5O1S9cycsBITAkJvNf5PcLvh5E9Z7YU63r5WP7QwsPCcXV35aO+H/NJm4+pU8xyRNah6/uUKFeSn8b8hI+fD83fbZ6iDnsVERZBlsRz8cl5eHlYlodH4uLqSkRYBO6e7o+PC4sAoOk7zTmwcx/vN7YModVsVJsaDWuxdslq7ty8zTud26aoI70ZjSY++ewHen3SioL5cj42rttn42n2WlVqVi352Jgv+7bl9TYDyV2sDQC9u7amYrlgho35A38/b95/t9GLbn6G+WPWLBwcHGjT0naUYfCAATRu3pwc+S3zFvp++imVKlRg6KhRZPLzo2P79hnR3CfK5hNEz/qTmbr5c7aetkyI0+sMvF3xc8rmrZfqOnvOr0KvM1Aub32b8sYlOjJxfS8GzG8CQN0i7xKYqRgrjkzD3dmHyvneSNvO/EcqIBDz+cM2ZdqdUAi7BU84p5ywYxHoHdBVbGJTbmjWHePYjsT3rAyAvtGH6PKVxrR4Anj4oqv++FHNtCDJ+iWlmTWiIqMYNmE4dZvUBaBCtQpcuxLKr+On8e6H76JpGiiVcl1Ns3mdJWsW5m9ewNVLV/Hw8sDb15url67w2+SZ/Lbsd2JjYvlu8Bg2rNyAs6sL7T5qyzud3k1Rrz3QNA2Vap9TiePf41zdXPluxnhuXruBwWDAL7M/keERTPv+Z/oM64eDowMzJkxj3ZLVaED9pg1p3+2D/zws+1+M+XEOsTFxDOj5zmNj/pq3nv2HT3Nsx/Qn1pU9qz8HNv/MhUvX8fZyx8/XkwuXrjNu8jw2LRtHTEwcnw2ewpKVO3B1debTj1rQtVOzF9yjtBcXF8e8RYto3LAh/v7+NsuyZ8vGoV27uHDxIt5eXvj5+XHh4kXGTpjA1rVriYmJoc+AASxetgxXV1d6detGt48+yqCeWNwKD+GXzQPI6hXI2xU/x0HvxNErW5m1ezQOekfKBza0iTcmxHPg8gaK5qiCu7O3zTJv18x88fqf3IkMxcXBA3dnL+5EhLL+xN/0afgzxoQ45u8fz5GQzTganKld+G1qFU7fxJUafb32mKb2wbTge/T12qNFPsA080tQOssjFZoxDvPelehK1kJ5+NosUz4BOAxbDrdDwNUT5e6DdiuEhNW/4jBwNsTHYpw1EvPBteDogqHBB+jrtUuz/kmyfkk9PDquVLOSTXnlmpXZsXEHt2/extPHi/D7YSnWDX8QDoCnV9JwplKKnHmTjspGDRxF8/eaU7BoQSaMnMCJIydYuHURt67fosMb7QksEETF6vYzweYhDy9P61FxcpHhljKPxKNpTy9Pbt+49fi4xCPsh5Ifrc+Y8CvBJYtQoXolVs5fzobl6xj7248A9H3/UwJyZKVR88akh5Crt/jmh7+Z8n1v4uKNxMUbrcvi44w8CItEKUW/r36mb/e3cHZ25EFYJABmsxmjycSDsEjcXJ1xcEiclKMUQXmTRmR6DZzIB+81okTRIAaNnM6BI2c4tPUXQq/fofYbvSlcIBe1q6fPJJsXZcmKFTx48L927js+5vsP4PjrsqNGJtIQI0NIRBBBrIhZs6hRe29q1lYSsVdVKaVU0RoVmwwhsWqVxqa2iNUKstf9/ji9OHehKuP4vZ+Pxz1y9/5+vp/7fL655H3fz/fz+cZqDYH/Q6FQaExGGzpqFL26daNC+fJMnDqVU6dPE3XsGNExMdRp1Iiyrq7U8/XNpdZr23b6OwwNjBhYb556hrarXRXik5+y6cQCvEo1xOClhBV1J5LElOdUK637c6pQKDQmo204Po8azi0oZuXMttNLuf3XRSa2WE9swiPm7+2PnUUpXO2q5Gwn38DQpyXKmOuk711B+o4loFBg4N0UhUcdMqKv6twn43QYJDzDoEYrndsVCgW8NBktba0/hrXbYuBQlrTN81DePIvJtN0onzwgdcbnKOydMCjnkyP9k2vW7ylHHdeiIfOs2UBhgFMZR/68/KdWmetXrmFXzI58+bWX7gDs27WPy+cuM2iMahLJ4fBDtGjfAisbK1zLu1L9xRcCfVTSsSS3/ryhFb917SaF7Ypgnk/V5xKOJbl/N0a9zE1d7vpNjI2N+djBXmf9V85fZt+uUAaOHQLAycPHqdWgDnbF7LArZkfthr6cPHQ8m3uVtRu3YkhKSqH7wJkUdm6lfgDMX7KJws6tuHErhkePY5kU+INGmTvRj9i8LYLCzq3YHXpMZ/1bdx3ij3PX+GqMaug3JPwkXdo3xNbGAs/yTtT3rUxI+Mlc6292WbNuHTbW1jRp1OiNZYO2b+ePs2eZOmECAMFhYXTt2BFbW1s8PTxo4OdHcOjrJzDltHtPrmFv5aS1lKqEjRvxyU95nvREI/7btd3kN7XAvdibE8uZ2we4+/dVmnmqJhZeiP6NqqWbUMDMkuJWLpT92JsL0b9lX2fegVGb4ZgsPoFxwC5MFh7FeMBClA9uYeBcWWf5jENBUMASAw/fN9adfiqEjNsXMWw1TLXv2UgMa7RGUdAagxLlMHCrSUZUZDb2RpMk6/dUvRdLhQ7v10yaR/YfocjHRbApYoNvI18exjzk5EtLnOKexxEREoFvI1+d9SYmJDJ70ixGB4zWWDecmJCY+Tw+QWsoXV9U8/Xh8cPHRJ04o47Fx8XzW8RRqvtm/mOqXteHtLQ0IkMOqGPpaWlE7N1PJR8vTExMtOrOyMjgm8CFdOzTmcJ2RdTxpMSXjk1CIkpy79hUcHckNGiu1gOg42f1CA2ai1Mpe51lithaUq92JUKD5lKjqrtW3QkJSYyatJQ5AQMo8NIXu/iEzC848fGJevtZyMqDhw8JDQ/n83btMDbWPdHuHwkJCYwYO5Z5M2dSoEDmaEt8fOYNcOLi4/P8GBQ0t+Lu31dJS0/ViN98dB5jQ1M+MskcRXuW+BcX7x3Dq1TDN66TTklLYvOJhXxW5QvMjD/SiP8jOTV3P/NvojDNh0HxMigK2ZARFYEy5hqGdbVHUJRPH5Nx/hCG1Vronpj2ctnkRNLWT8Oo43gU5vlfiie89DwecvA4yDD4e6pW/VpUqelNwCh/Yv+KpViJYoTuDOHIgSMELAoAwLdxXSp4VWDcwHGM+GokBQsVZOWiFSiVSnoM7qmz3uXzl1HSsSSNWmZe46pWuxo/r/yZUk6leHj/EccOHqPrgLyZZPNPcr364i5sJw4dp5BlISwsLfCo4kn1ujUoV8GNmeMC6TOyPwUKFuCXFetAqaRtz8xZsY6uztRpXJfvZi0mPS2NovZ27Ni4jfvRMYydOVHne+/evJOkhERad2mrjlWsVpmVC5bhXkm15nT/7jD6jhqYQ73XZlEoP3VqVNC5zaF4EfU2XWXMzEwobGuZ5f6B89fh4liMti3rqGN+tSuydOU2yjgVJ+b+X4QfPM2wLJaB5bbNW7cC8PuZMwDsCQ3F1sYGWxsb6tTMvOnH+g0bSEtLy3II/GXTZs3CxdmZdq0zJ1nW8/Xl2+XLKePiQsz9+4QfOMCIIUOytS9vq45rW1ZEjGdp+Chql2mDsZEpZ+8c5OTNEPzKdsDIMDMZnbgRTIYynWqOTV5To8ruqB8oXNCByiXrq2OudlWIuLyJIoVK8DThEZfvn6Se25uPZU7LuHWejKgIDEqo7gGQcfUU6Xu+x7BJX51rodOPboP0tCyHwDXKbl+MomgpDL0zLxsYuNUgfd9PKOwcIfYBygtHMWjc6zW1vBtFXn8j/H/l5umm/CV0wzvVEfc8jq+nLSR0RyjPnj6jlFMpeg7tRdM2mR+op0+eMm/KXML3hJOSnIKHVwVGTx1NGfcyWvXduHqdjo068kvYBvUNUQAS4hKYMX46+/fux8zMjM79utB9UPd3ajvA/Qd/vfU+Dcv76ox7eFVg7qqvAdUs9+/nLuVI+CFSUlIoW8GNfqMH4lhG89JBclIyqxatYP/uMOKex1G6jBO9h/dV3/DkZU+fxNKrRVcmLwjAwyszuaWnp7NywTLCdoSiREmDFo3oNawvhob/7u5evkVS31zoPzAp3ICxwzviP65HlmWcK3fGx9udH5eO1dp26eptajQawm9h36pviAIQF5fIsPGL2bH3KOZmJgzt14YRg9pq7f82DM2zZ+6DYYECOuN1atYkfM8e9euK1auTkZHBH8d0D/3/49Lly1SrW5cTkZHqG6IAxMXFMXTUKLbv3o25mRnDBg1i5BdfvFPblw06/077A5yPPkLIuZ+Iib1BanoKtgXsqeHcklourTAwyPw8Bu7ojFKpZGKLda+t7/7Tm8ze3ZOxTVerb4gCkJSawMbj84i6cxBjQ1P8ynWggdu7Tzgd7mfz5kKvkRF9hbTVk1TLtNJSUHzsiGH9rhjWyuKeApOagTIDk2m7X1/vvWuk+rfGeMo29d3LAJRJ8aSt9Vdd9zY2w7BRD4w+6f1OfQBI6uaoPfMVSdZ5JjuS9fvuvyTrD01OJev3SXYl6/dZdiTr9927JusPRVbJWq5ZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZCyGEEHpOkrUQQgih5yRZ/0cKhaK7QqFQvvRIVygU0QqFYqNCoSiT1+0TQgjx4TDK6wZ8ANoCdwFDwBGYBOxTKBRuSqXyaZ62TAghxAdBkvW7O6NUKv988fywQqG4B4QCPsCevGuWEEKID4UMg2e/Zy9+GudpK4QQQnww5Mz63RkqFAojVMPgpYHpwEPgQF42SgghxIdDkvW7u/TK63tAM6VS+ezVggqFoi/QF8C+uD3W5la50Dz9lb9IwbxuQp4zMHue103IcwpDw7xuQp7z6+OY103Ic8lXYvO6CXpNhsHfXSugCuANfApcAHYrFIqyrxZUKpXLlUqll1Kp9LK2sc7dVgohhHhvyZn1uzv30gQzFApFCHAHmAK0z6tGCSGE+HDImXU2UyqVicB1wCOv2yKEEOLDIMk6mykUinyo1ls/yuu2CCGE+DDIMPi781QoFDaAArADBgNWwDd52iohhBAfDEnW727TS88fAeeAxkqlMjiP2iOEEOIDI8n6P1IqlauB1XncDCGEEP8H5Jq1EEIIoeckWQshhBB6TpK1EEIIoeckWQshhBB6TpK1EEIIoeckWQshhBB6TpK1EEIIoeckWQshhBB6TpK1EEIIoeckWQshhBB6TpK1EEIIoeckWQshhBB6TpK1EEIIoeckWQshhBB6TpK1EEIIoeckWQshhBB6TpK1EEIIoeckWb8H7kXfY+KoiTT3a45jYUfsC9hz59YdrXKxT2IZNWgU7iXccSriRPvm7bl4/qJWuaSkJAImBFDRqSKOto4092vOb4d+0yiTnp5O4KRAPEp54OXqxffffq9Vz/Yt26nkXInnz55nX2ffwueftqd04RI6H93bdwXg7u07WZZ59vSpuq7EhETGDBtNRRcPfKvUYufWHVrvt+yb72ji25i0tLRc6+N/0aRVP4wKujPJf5FG/EzUJZq06kchuypY2lfl0/aD+fPabY0yCQmJ9Bk0CVsHH1w8GrPx1z1a9c9Z+AOVfFrr1XG4e/cuQ0aMwMfXl4+srTHIl4+bt25plOnRty8G+fLpfJT19FSXS0hIoFf//ljb2+Pk5saGzZu13m/2/Pl4Vq2qN8egy5CWuNay1fnoPbKdzn0mzxmJay1bRvsP0IgnJiUwYeYXVG3iTIP2Vdi9L0hr3xXrvqFld1+96b/apd9gRgfo7w5DvOD7UfD0sWaZlV9CL2fdjwmNMsslJ8Kqcap6xvrB8V3a77dnOXzVHNJz/jgY5fg7iHd28/pNdmzZgUdFD6r6VCViX4RWGaVSSY/2Pbh96zbT5k6jkEUhFs9bTNsmbQk5EsLH9h+ry44aNIp9wfuYGDARh1IO/Lj8Rzq16sS2fdtw93AHYNO6TaxdtZaZC2fy9OlTJo6ciJuHGz61fACIj4tn6ripTJ4+mQIFC+TOgXiF/6wA4p7HacR+P/k7gZMDqNeovkZ8wBeDqP9K7KP8+dXPv1u0hEMRh5izaB6XLlxkxMBhuHm4U6p0KQBi7sXw7YJvWPXLjxgZ6e+fzS+bdhN17rJW/Oqft/Bt3BW3ss78tGIWaWnpBMxcQt1PunHq8GYK21oDMGv+SsL2H+WH7wKJOneFrn3GUbFCOZydSgBwN/o+0+csY9eW7/TqOPx5/TqbtmyhsqcntWrUICQsTKvMxLFj6de7t0bs5q1bdOzWjeZNm6pjM+fOJSw8nFXLlhF17hxdevakkqcnzk5OgOqLQeCsWezZtk1vjsFXI2YTl6D5pfnMuZPMXDwJv5qNtcr/fvY4O0M3k/8j7b/d79cu4siJCGaM/4bL187zZcBAyrl4ULK4IwD3H95j6Zr5fD93g970H4ArJ2B+D3CrCQMXQ1wsBC2AuV1hchAYm6rKNR8Evp9r7vs4GpYPB0+/zNieZXDhMPSaBXcuwYpRUMINipRUbf87BnYugeE/gGHOHwc9OtIiK9VqVOOP638AsH71ep3JOmRXCMePHmfjro3UqF0DgMrelalevjpLFy4lYE4AAOfPnidoYxDzl8ynfZf2AFSvWZ26Veoyd9pcVm9cDUB4aDiftv2Ulp+1BCB4ZzD7Q/ark/XcwLk4uTjxadtPc7Lrr+VcxkUr9svanzExMaF5qxYacYcSxanoVSnLug6EH6Brz27Ub9yA+o0bsO3XrRyOOKRO1v4TptCkZVMqe3tlbyeyUWzsM0aOm8W8GWPo3OtLjW1zFq7E0NCQXb8uxcKiIADeXuUp49mEeYtWMytgJADBoQcZ2LcjzZvUpXmTuvy8cSf7DhxVJ+vhY2bStlUjfKpWzN3OvUHtmjW5f/MmACtWrdKZrB1Ll8axdGmNWOi+fQB069RJHdsbEsKg/v1p0awZLZo1Y/2GDYSFh6uT9bDRo2nbujU+1arlUG/enlOpMlqxTTt+wtjYhCb1WmnEU9NS+WrOSPp1Gc6G7Wu09os8to9OrXvhV7MxfjUbsyP0V46ejFQn68BF4/mkbksqlffOmc78V9sXg/XHMHhpZvK0Kw3T2sDBzeD34ndcuITq8bILh1U/fVpnxs5Ggl9n8Kynehzbrir3T7L+eRpUaQJOWf9fyU4yDP4eMDB4868pZHcIRe2KqhM1QMFCBanfuD7Bu4I1yhkbG9OiTWYyMzIyouVnLYnYF0FycjIAqSmpmJmZqcvky5dPve3ShUusXbWWwHmB79y37JSUmMSe7bvxa1gPC0uLt9o3NSUVM3NT9Wtzc3N1fyPCD3D86DHGTBqXnc3NdmMnz6dcWSc6tG2ite3YiSiqVamgTtQAxeyL4l7OiW079qljKampmJtlHod8+cxJSkoBYG/oISIPnWTG1BE52Iv/5t/8jejy0/r1VK5YEbdy5dSxlNRUzM3N1a/zmZuT9OKzsDckhIhDh5g1bdq7NTiHJSUnsnf/dur6NMSioKXGtpXrF5OekU6PDgN17puamoqpaebfvpmpOckpqv4fPLaPE2eOMnLA5Jxr/H91/QyUq6F5llvKA/JbwumQ1+97ZCuUcAd758xYWiqYZB4HTMwhVfW3wNlI1Zn8Z6Ozq/VvJMn6A3H54mXKlNP+dl2mbBmi70QTHxcPwJWLVyheojjm+cw1yrmUdSElJYWb128CUNGrIru37+bGtRtEnY4iIjyCSlVU3yDHDx9P74G9cXJxytlOvaW9u/YQFxdHm/afaW2bEzgbZ7vSeDi606dLLy5duKSx3bOyJ79u+JWHDx4QGR7BhXMXqFi5IsnJyUwZ9xVfThyDpZWlVr364tDR3/np5+0snj9R53ZDQwNMTIy14iYmJly7cYekJNU/Y28vD376eRsx9x8RHHaYM1GXqFrFg+TkFIaNns70qcOwtrbIya7kmsNHj/LntWt07dxZI+7t5cWatWuJiYkhODSUM1FRVPP2Jjk5maEjRzLD3x9ra+s8avW/Exqxi/iEOD79pING/Hb0Db5bs4DJI2ZjYmyic1+PcpXYuncDDx/f5+CxcC79eY4KbpVJSUlm2sJxjOw3EctCVrnRjbdjYACG2p9xjEwg+mrW+109BQ9vQQ3NEQhKV4DDQRD7EM4dhNsXobQnpCbDen9oM0r1RSCXyDD4ByL2SSzFSxTXiv9zhhkbG8tH+T8i9kkshSwKZV3u71gAevbvSWR4JDU9awLQ8rOWtGjTgo3rNhJzL4aho4fmSD/eRdDGLVjb2FCnnq86ZmJqwuddO1HLtxZWNtZcv3qNJV8vpm3T1gQFb8PJRfVNeuioYfTo0I1qL4b2+g7qR6Uqlfl6zkKsra1o16mDrrfUC6mpqQz8YiojhnSnjHMpnWVcnEtx9NgZUlNTMTZW/UN7/jyeC5euoVQqeRL7DLuitkwaO4BmbfpT3KUuACO/6EH1qp74z1iCjY0lPbu2ybV+5bQ169ZhbGzM523basS/Gj+eJq1aYe+oGvYdNXw41atWZWpgILY2NvTq3j0PWvt2tu7dgLWlLbWr1tOIT5k7mga1m1KtUs0s9x3cYzR9RnWgdqvyAPT6fDAV3auweNUcLC1s+KxZ5yz3zVNFS6vOrl/2OBqePnz9NeWjQaok791MM95iMCzsDSNfjFY27g1OFWHbN1DACmq11a4rB0my/kAoUaJQKLTjSqXWa13l0CxG/gL52bxnM3dv38XI2IiidkV5GvuUwEmBzFsyD1NTU2ZOncmm9ZtACe06t2P0xNH/eTjyXT24/4DDkYfo3qeHxqSXwkWKEDh3uvq1dzVvavvVoXGtBny7YDELln4NQFG7ouw+sJfbN29TsFBBLK0suX3zNiuWLGfjjs0kJSYxbXIAIbuDMc9nRq/+venWu0eu91OX2Qt+IDEpmfGj+2ZZZsiATmwOCmbgMH+mTBhMWlo6oyfMIS4uAQADA9Vnwv7jIvx+ZAvXb9zBolBBrK0tuH7jDvO/WU1E8BoSE5MYNX42W3fsI18+c4YN6srg/p2yfF99lZyczKYtW2j2ySfY2NhobLO3t+fMsWNcv3EDi0KFsLa25vqNG8z7+msOhoWRmJjIiDFj2LpjB/nMzRk+dChDBgzI4p1y34PH9zl6KpIun/XV+FvYHryJs5dOs3vtkdfuX8TWjm2rD3Dn3k0K5C+EZSEr7ty7yQ8/f8v6JTtJSk5k5uLJhEXuxszMnO7t+tPlsz453a03q99VNft7y3yo3w3iY+HHiaAwUD10SU2GE3uggq8qAb/MsihM2QGPbkO+gqqz6Ee3IXgljPsZUpJgw3Q4HaoaIm/YA+p1zbHuSbL+QFhaWhL7JFYr/jRWtTzJwsJC9dPSgug70VrlYmNV+1pYWWjEizkUUz+f5T8Lr6pe1G9cn3Wr1rFlwxaCglXLOtp80gaHEg583u2VWZa5ZOumIDIyMnQOgb/qY/uPqVzVi6gzURpxhUJBiVKZE0+mjJ9Mu84dKOtejrnTZ3P2jyj2RobwIOY+7Vu0xcnFmRq1sz5DyQ2378QwY+5yln8zleTkFJKTU9TbklNSiI19RoECH1GjWiW+mTeRCVMXsuon1e/Mz7caXTu2YN2GnVhZZo62KBQKHEs7qF9/MXo6Pbu2oUJ5Vyb6f82p0+f549hWou89xLdxV8q6OlLPV38mW/0b23buJDY2lq6ddH/RUB2DzMloQ0eMoFf37lTw8GDCV19x6vffOXviBNH37lG7QQPKubpSr27d3Gr+a+0I3kRGRgatPmmvjsUnxDFz8WR6dxyCqYkZz56r/i8oMzJIS0/l2fOnmJvnw9hINeqiUChwsM8cpZm2YBxtm3XG1cmdBcsDOXfpDDt+jOTB4xg6DWqOU8kyVPeqnbsdfVW1lhBzXZVMdy0FhUI1Aax8HYi+onufM/sg4ZnmxLKXKRSak9HW+UPttlC8rOpLwc1z4L8LnjyAmR3BzgnK+WR/35Br1h8MF1cXLl/UXrJz5dIV7Ivb81H+jwDVNew7t+6QmJCoUe7qpauYmJhQsnRJnfVHnY5iy4Yt+M/2B+BA2AGatmyKQ0kHHEo60OzTZuwP25+9nXoLQZt+paxbOcq6l3tzYYCsRhheCN61l4vnLjB8jGoyVWR4BG3at8Haxppy5d2o6VuLyHDtWfm57fpN1fXmrn3GYuPgo34AzF+0GhsHH86eV12vG9CnAzHXIvnj2FZuXAglZPsK7sU8wtvLQz00/qqtO8L44+xlpk4YDEBI2GG6fN4SWxsrPD1caeDnQ3DYodzpbDZas3YtNjY2NGmsvazpVUHbtnEmKgr/SZMACA4NpWvnztja2uJZoQIN69Vjb2hoTjf5X9sWvBFXJzdcndzVsSdP/+bv2McsWB6IdxMn9SPmYTR7wrfh3cSJiCO6+xAauYuLf55jSO+xABw8Fs6njdtjZWlDWefy1PD25eCx8Fzp2xu1Gg5fH4epO2HeEei3EB7eBOcsVnEc3qI6Yy5f5811/x6iWsLV8gvV63ORquvcBazBoRy41VDFcoicWX8gGjZpyIa1Gzh66CjVa1YH4Pmz54TuCaVVu8yJEw2aNGBu4Fx2BO2gXSfVzRLS0tLY/ut2avvVxtTUVKvujIwMxo8Yz9BRQ7Evbq+OJyQkqJ/Hx8drDbnnlqgzUVy5dIUJ/pP+Vfnou9GcOn6Khk0a6dyemJBIwCR/JgZMJv9La7ETXvqCkxCfkGf9fZlneVfCdv2gFa/ftCed2jejR9fWOL10lmxqaoJbWdXEwLPnr7DvwG+sXjZda39Q9XfE2FnMm/ElBQp8pI7Hv3Qc4uL04zi8jQcPHhCybx8D+vbN8kvKPxISEhj+5ZfMnz2bAgUy1yTHx8ern8fl4Wf/VWcvneHqjUuMHRygEbe1KsyPi7ZqlR85pQ8upcvRr+twXEq5am1PTEpgxqKJjBsSQP58+TXi/0hIiEf56nW0vGSaD4q9mGx7NlJ1tt19hna5p49VS7F8O4LR6z8HJCfCz4HQYTyY59eMq58naF1OzE6SrN8TO7fuBFAP3YaHhmNtY421jTXVa1anYdOGVPauzJDeQ5g0bZL6pigAA4ZlXk9z93CnRZsWTBk7hbTUNIqXLM6aFWu4c+sOi1cu1vne61avIz4unj6DM69L1axbk+mTp1PVpyoAWzdtZXJg3iznCNr4K0ZGRrRo3VJrW+DkADKUSip5VcLK2orrf15n6aIlKAwMGDhskM76vpm/iNKOpWnaMnPCiU/tmvy08kccnRx5cP8BRw4epveAvL9OZ2FREN9aute7OhT/WL3tbvR9vlu5gerenpiamvD7mQvMnPc9rVrU07nUC2Da7O9wcSpJ29aZZ59+vtVYsvxnXF1KcS/mEeERxxg+pFv2d+w/2BykGt4/dfo0AHuCg7G1tcXWxoY6tWqpy63bsIG0tDSNtdVZCZg5kzIuLrRrkzmxrp6fH99+9x2uLi7ci4lh3/79jBiqHxMut+3dgJGhEc0aaA7rmpqaUbViDa3yJiZmWFva6twGsGT1PEo6OPGJ36fqmI9XHdZtWUlpB2ce/nWf334/mOUysFx167zqzNbBTfX66kkIXgGN++heC/3bdtWdx2pkMQT+sp3fQtFSqmH1f5T1gfCfVBPbYh/CxaPQsGf29EUHSdbviX5d+mm8Hj98PKC6ocnmPZsxMDDgx00/EjAhgPEjxpOUlERl78ps3LUR+2L2GvvOXzqfWVNnMTtgNs+ePqNc+XKsDVpLec/yWu/79+O/mTV1FivWrdA4C+ncozO3rt9i6ripKJVKuvTskifXq1NTU9kRtJ3afnWwLWyrtd3Z1YV1q9fy6y+biI+Lx9LKiuq1qvPFqGGUdnLUKn/t6p+s/WEN28J2asSHjBjKX4//Ysyw0ZiZmfHlxDHUqpvH1+jegrGxEcdPnuX7HzbxPC4ex1LFmTimP0MH6J7Ze+nKdZZ+/wvHIzZqxCd+2Z9Hj/6m98BJmJubMX3qMBrW0/2PPre1eyX5Dho2DIA6tWqxPzjzXgNr1q3D3c2NShVff2OXS5cvs2TZMk4ePqwRnzR2LI8ePqTXgAGYm5kxIyCAhvXrZ1FL7klNS2VXWBA1q/phY1X4neu7fusq64N+4NcVmjeYGdBtBH89ecSEmV9gamrGiH6TqOmtB9frjUwgKgL2fA9pKWDnCF38oWYW81iOBIG9i+quZK8Tcw3C18LkrZrx5oPg+V+qW5KamKmWcrnX0llFdlDoy/DN/5sKlSoo90Rq33f5/0lyop7dVzgPOJjlzX3V9YmBUek3F/rAXTkV/+ZCHzjXK7F53QS9oOzppHMyjUwwE0IIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCzymUSmVet+H/hkKh6Av0ffGyDHA5D5ujD0oolUrbvG6EEELoO0nWQgghhJ6TYXAhhBBCz0myFkIIIfScJGshhBBCz0myFkIIIfScJGshhBBCz/0PiMdSHlQbYZ0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "discovery_celltype = 'CD4T'\n", + "fig, axes = plt.subplots(1, 6, figsize=(7, 7), sharey=True)\n", + "for i, discovery_celltype in enumerate(['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']):\n", + " colors = [\"white\", color_dict[discovery_celltype]]\n", + " cmap1 = LinearSegmentedColormap.from_list(\"mycmap\", colors)\n", + " im1, bar = heatmap(np.flip(replicated_ratio_df[discovery_celltype].values.reshape((6, 1)),\n", + " axis=0), \n", + " list(rb_df.index)[::-1], \n", + " [discovery_celltype],\n", + " cmap=cmap1, ax=axes[i], vmin=0, vmax=1)\n", + " bar.remove()\n", + " _ = annotate_heatmap(im1, \n", + " data=replicated_ratio_df[discovery_celltype].values.reshape((6, 1)), \n", + " valfmt=\"{x:.0%}\", \n", + " textcolors=(\"white\", \"white\"),\n", + " threshold=1)\n", + " if i > 0:\n", + " axes[i].axis('off')\n", + " \n", + "plt.subplots_adjust(wspace=0, hspace=0)\n", + "plt.savefig('replicated_ratio.filtered_results.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAEoAAADBCAYAAABopyZqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAHyUlEQVR4nO2dfYxcZRXGf8/2w5XyhwWiiUFasIiW+JGgtQaj0oSASVMU8SOauiFKDIkiMfqXsVFSTYwfmJhIrUpAg6FBiDSmsQRpEInGsAroQoB+kIJWU6WAdm2x9PjHe7cZhpl7n51hd+fG80sms/POPffeOX2ec9+Z5txXEUHSzNhCn0BbyESZZKJMMlEmmSiTTJRJ6xIl6XRJ35X0W0nTkkLSSjN2XNI3JB2Q9J9qH+9yYluXKGAV8CHgEHDPLGN/BFwBbALWAweAnZLe0hgZEa16AGMdf38SCGClEffmatvLO8YWA48A25viW6eoiDg+YOgG4L/Ato59HQNuBi6S9LK64NYlagjOBfZFxHTX+BSwlGLpvvw/JeoUSl3r5qmO9/uyuO5NSfP9jXkKONLxemtEbH2J9i1Kjeo13khtogDGxuZPdMePHz8SEW+do90/BZzRY3x5x/t9GbVEzeXup4D3Szqpq06tBp4DdtcF12ZBEmNjY/P2mGO2A0uAD3Z8vsXAh4E7IuJoXXCjoiTLwvOKpMuqP8+rnt8r6SBwMCLulrQC2ANcExHXAETE/ZK2Ad+RtATYB1wJnAl8rOmYI2W9WXBL1+vvVc93A++hFOhFvNgxlwNfBTYDrwAeAC6OiD80HVB1PwUvWrQoxsfHjfN+aZienp6cw2I+FG1V1LzTyhq1EDRNOFNRFakok6xRJmk9k7SeSVrPJBVlkjXKJBVlkjXKpNF6qahCKsokE2WS1jNJRZnk9MAkJ5wmqSiTrFEmaT2TtJ5JWs8kFWWSNcokFWWSNcokvxSbpKJMMlEmaT2TVJRJTg9McsJpkooyyRplkooyyRplktYzSeuZpPVMGrMw8zVmPh4Okl4j6WeSnpH0rKTbJPXqw+sVe2YV+7Skw5J2SbJaSlpVoySdBNwFHAUmKB2dm4Fdkt4UEYdrYk8FfgP8C/gUMA18ropdExEP1x27bV+KrwDOAs6JiN0Akh4EHqN8+G/XxF4JvAp4d0fsXcBe4CuUeyn0pVWKorTk/27mgwJExD5J9wKXUJ+otcBjXbGHJd0DrJe0uGrv70nbatS5wJ97jE9RWl7reJ7SEtvNUeDlwGvrgkftqneapPs6Xnd3qde15C/vMd7JI8CFkk6NiH8CSBoD1nTsuy+jZr1/GI2Ng7bkbwGuAn4s6SpKMf8ipVUWoLbzu23WO0Tvf/nl9FbaCSJiL6V3+DxKR/pfgXcA11abHKiLHzXrNTFFqVPdrAYeagqOiFsl/Rx4HfBcROyRdB3wRETsr4ttm6K2A2slndVxfiuB86v3GomI5yPi4SpJr6a081/XFNeYqBG778EPgMeB2yVdImkDcDvwBPD9mY0krZB0TNKmjrElkq6V9D5J6yR9BriPotJvNR24VRPOat6zjlJXfkIp4r8Cro6If3ds2qudP4CzgY9SWvmfBK4HvhYRvaYNL2DUrnqNVLXkAw3bPE7XlbCaTK4f9LitS9RC0SrrLSSpKJP8hdOkbRPOBSMVZZI1yiQVZZI1yiStZ5LWM0nrmaSiTLJGmeSXYpNUlEnWKJO86pmk9UzSeiZpPZNUlEnWKJNUlEnWKJO0nklazyStZ5KKMskaZZK/R5mkokyyRpnkVc8krWeS1jNJ65mkokyyRpmkokyyRpmkokxat1iqhmvnP0PSjZL2S5qW9KikzZKWNcW2qphruHb+ZcCdlJVlvwTsB95G6VA/m9KO1pe2WW+Ydv7zKQm5KCLuqMZ2SToF+LxevH7xC2hbMR+mnX9p9fxs1/jTlBJUq4i2dYAO085/J0V5X5e0WtLJVe/fZ4EtdbaF0atRc9bOHxFHJL0TuJWS2Bl+CHy66cRGrUbNWTu/pHFgG/BKYCOlmK8BNgHHKLck6UvbatTA7fzAJyirYq+KiD3V2K8lPQNslbQlIh7oFzxqimpimHb+NwKHOpI0w++r5zdQlgzvSdu61Idp5/8bsFzSqq7xt1fPf6nNQ92bIzgzH7idH7iBcu+oHZImJF0g6QvAN4FJ4N6BEzWTrFGZHlSX8HXAo5R2/puAfcC6pnb+qnN9LXA/ZTa/gzKB3QpcGBG192YZtelBI4O281fjD9FwQ61+5H+AmrROUQtF26YHC0bbJpwLRlrPJK1nktYzSUWZZI0ySUWZZI0ySUWZZI0ySeuZpPVM0nom+XuUSSrKJGuUSV71TFJRJlmjTNJ6Jmk9k7SeSSrKJGuUSSrKJGuUSVrPJK1nktYzyd+jTFJRJlmjTPKqZ5KKMskaZZLWM0nrmaT1TBp7YUapxaM6p4G61CV9WVL0eRxpim+VojRElzql0/OXXWPLqrHGhVbbVqMG7lKPiCcp636eQNJGSg5ubDpw2656w3Sp92IC+Duws2nDVrWhMVyXevfnOh24ALipWki1llbVKIZbdL6bjRShNNoOGhI1OTm5U9JpszyBYRhXfTs/DL7ofDcfB/4YEQ86G9cmKiIuHuAE5pJhutRPIGkN8HrgajdmpHxlMNSi8x1MUO518FM3oG2JGnrReUlLgY8AOyLioH3kiGjNgzJB3A38iTId2EC5V8Fe4OSO7VZQFLOpxz4updS5S2dz7FYpapgu9Q4mKFfJX8zm2KqynDTQKkUtJJkok0yUSSbKJBNlkokyyUSZZKJMMlEm/wPf4KV4Rxo9gAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "\n", + "fig, ax = plt.subplots(figsize=(0.5, 6))\n", + "fig.subplots_adjust(bottom=0.5)\n", + "\n", + "colors = [\"white\", 'black']\n", + "cmap = LinearSegmentedColormap.from_list(\"mycmap\", colors)\n", + "norm = mpl.colors.Normalize(vmin=0.7, vmax=1)\n", + "\n", + "fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),\n", + " cax=ax, orientation='vertical')\n", + "plt.savefig('colorbar.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAEoAAADBCAYAAABopyZqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAJsElEQVR4nO2dbYxdVRWGn3f6wUD7gxLiD5XSNhjSNkqDVasgKTWmNZg2RBGC0YKC34ImYCCVRmuNEogSIApFowRJaABj+wOlAm1VAprWFLUoFWgtGgiFFqqUQpsuf+xz6+Vy7zlr7unMPVvWk9ycmX3OOvvOmrXW2XP3O3vLzAiqGRr0G8iFcJSTcJSTcJSTcJSTcJST7Bwl6a2SbpD0kKR9kkzSNKftsKRrJD0t6eXiHmd4bLNzFHAS8DFgD/DbEdr+GLgYWA58GHgauFfSnEpLM8vqBQy1fX0RYMA0h90pxbUXtrWNBx4D1lbZZxdRZnaoT9PFwAFgddu9DgJ3AAslHVVmnJ2jajAb2G5m+zratwITSSndkzeSo44j1bVOdred78n4spOSxvov5q3A/rbvV5nZqiN0b5FqVLf2SkodBTA0NHZBd+jQof1mNneUbr8bmNqlfUrb+Z40zVGjefutwNmSjumoU7OAV4HHy4xLvSCJoaGhMXuNMmuBCcA5bT/feOBcYJ2ZvVJmXBlRkiuFxxRJHy2+fGdx/JCkXcAuM9so6UTgCWCFma0AMLMtklYD10maAGwHPg9MBz5e1WejUm8E3Nnx/Q+K40ZgPqlAj+P1GXMh8G1gJXAs8AiwyMz+WNWhyj4KHjdunA0PDzve95Fh3759m0exmNci14gac7KsUYOgasAZEVUQEeUkapSTSD0nkXpOIvWcREQ5iRrlJCLKSdQoJ5WpFxGViIhyEo5yEqnnJCLKSQwPnMSA00lElJPKcGnavJ6kEyTdJelFSXsl/VxStxngbrZTJd0qaWchQtsmaaWkSVW2WaWepGOAB4BXgKUkLcFKYL2kd5jZSyW2k4D7SJOgVwE7gXcB3wTeRpoI7UluqXcxMAM42cweB5D0J+DvwGeB75XYnkZyyEIzW1e0rZd0HHBZl6n215Db8GAx8HDLSQBmtl3Sg8ASyh01sTju7Wh/gVSCSiOi0gutQedYvBzMBv7SpX0rSWxRxn2kyLta0ixJkyUtAC4FbipLW2hejTpe0qa27zv1UWVisCld2g9jZvslnQ7cTXJsix8BX6p6Y02rUc85ptT7EoNJGibpN98EfIJUzN9NUggfJAk2epJbjdpDdwnhFLpHWjufJgk4TjKzJ4q230h6EVgl6SYze6SXcW5/FG8l1alOZgGPVti+HdjT5qQWfyiOM0nqlq7kNuBcC8yTNKPVUPzXwmnFuTKeAaZI6lT/vqc4/qvUD1XvrGGOugXYAayRtETSYmAN8BRwc+siSSdKOihpeZvtT4F/A/dIWirpTEmXA9cCm4EH+3bUWA4NPClePMIXANuA24DbScq5BWb2n/a3ToeQzMx2APOALaTR/D2kAewq4INVQv/cijlmthP4SMU1O+jyJDSzR0n/RzNimjY8aCxNG3A2logoJ9nVqEEREeUkapSTSD0nkXpOIvWcREQ5iRrlJLfPowZGRJSTqFFO4qnnJFLPSaSek0g9JxFRTqJGOclqFqZ4T30LyQr7mZLulPSc0qpkj0m6tMouq4hSDSFZYT+3sN9AWqTrRZJmanJV31k5ihpCMklDwK3A/WZ2dtup9Z6Oc0u9rkIy0izvkgrb+SSNQpnYrCe5TanXEZKdXhyHJT0s6YCkZyVdL+noqo6bNjwYNSEZ8ObiuBq4EbgCmAusAE4Azu5hBzRvwDlqQjL+lz0/M7OWeGODpHHAdyXNKqbcS4170rAaVUdI9nxx/HVHe0shPKfMOLenXh0hWUu32RmRrd9QqZolt4iqIyT7JWn8taijfWFx3EQJTatRVdxCUvCukfR1UnR8iy5CMl6/Itnzkr4DXCVpL2ngOZckdr21fcjRjaxSz8xeUtKGf58kJBNwP/CVKiFZwQqS6u4LwGWktYKvITm7lKYNDyqpKSQz0oBzxIPO3FJvYGQXUYMiqxo1SGIC1ElElJOoUU7iqeckUs9JpJ6TSD0nEVFOokY5iYhyEjXKSaSek0g9J5F6TiKinESNchKfRznJTaRRW0jWdp8rlbbF/J3n+qxqlGoKydruMwNYBjzr7Tu3p16dFcna+SFpcYmTcQQL5Jd6dYRkAEg6HzgVuNJz/WE/OG7cJO1BHSEZkqaQZpm/Zmal++l10rTUG00hGaTp822kBW1GRNOK+WiuSPZ+4JPAqVa2s1kPchtw1hGS3Uza0Pmfko4t2sYD44rvXy7bjLBpEVVFHSHZzOL1uS7n9gBfBa7rZdy0GlXFWuBaSTPM7El4jZDsigrbM7u0XUeSB32Zij1Ac4uoOkKyDZ03k/QCML7buU6yiqgjICTrm9yKeS0hWZfr5nv7zS31BkZWqTdIIqKcZFejBkVElJOoUU4i9ZxE6jmJ1HMSEeUkapSTmAB1EhHlJGqUk3jqOYnUcxKp5yRSz0lElJOoUU5yE2n0LSSTNFfSKkl/U9rWcqek2yVN9/SbVY2qKSQ7jzTLfD1pxvktpC0uN0maY2ZPlfWdW42qIyS72sx2tTco7fS4vbjv8q5WBbnVqL63tux0UtH2D0m7SNFVSlapR0qdNV3atwLnjPRmkmaSNib8a9W1TUu90RaSHUbSeOAmYBdJDlRK01JvNFck6+RG4H3AWWZWpa3K7vOoOkKywygtj/QZYGnbnsWlNC2iqqgjJANA0jKSluoSM7vN23FuA846K5Ih6RLSuGuZmd3g6bBFbk+9voVkks4jKex+BTwgaV7bffeWrZgIzXvqlVJTSLaoaF/E69e520ha+bUnudWovoVkZnYBcEG//eaWegMjq9QbJNml3qCIiHISNcpJRJSTqFFOIvWcROo5idRzktvnUQMjIspJ1Cgn8dRzEhHlJGqUk0g9J5F6TiL1nOS2bVzf+qjCdljSNZKeVtqt8SFJZ3hss4qomvooSBqDs4DLgSeBLwL3SnqvmW0pM8ytRtXZsfEU4HzgU2b2k6JtI2n2eQVJUtSTytT7P1poazFwgLS/Xsv2IHAHsFDSUWXGuU2p11loazaw3cz2dbGdCJxUZpxVjaKePqrMtnW+J6WO2rx5872Sjq94A0eSYZULyaB/fZRq2JY7ysw65+gHTR191G6g2zBiStv5njQqrxzU3bFxejHE6LR9lYr1o3JzVB191FpgAm2iWCUd57nAurJl2wAws2xewCTSb/7PpOHAYuAR0uBxctt1JwIHgeUd9neQUvQi4APAXcB+0gKB5X0P+ofvw1lTgbuBvaTdF38BTOu4ZhqpcH+jo/1o0qD0mcJBvwfme/qVjXylxTckudWogRGOchKOchKOchKOchKOchKOchKOchKOcvJfcsY5cEDXPTUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(0.5, 6))\n", + "fig.subplots_adjust(bottom=0.5)\n", + "\n", + "colors = [\"white\", 'black']\n", + "cmap = LinearSegmentedColormap.from_list(\"mycmap\", colors)\n", + "norm = mpl.colors.Normalize(vmin=0, vmax=1)\n", + "\n", + "fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),\n", + " cax=ax, orientation='vertical')\n", + "plt.savefig('colorbar.replication_ratio.pdf')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### celltype comparison for unfiltered results" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "# filtered results\n", + "unrb_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "unrbse_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "unrbpvalue_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "unnumcoeqtl_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "unanno_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "unnum_anno_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "\n", + "for discovery_celltype in celltypes:\n", + " for replication_celltype in celltypes:\n", + " if discovery_celltype != replication_celltype:\n", + " unrb_results = unfiltered_res_df[(unfiltered_res_df['celltype_discovery'] == discovery_celltype) &\n", + " (unfiltered_res_df['celltype_replication'] == replication_celltype)]\n", + " unreplicated_coeqtls_num = pd.read_csv(\n", + " workdir/f'output/unfiltered_results/rb_calculations/discovery_{discovery_celltype}_replication_{replication_celltype}.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t',\n", + " index_col=0\n", + " ).shape[0]\n", + " if rb_results['r'].values[0] < 10 and discovery_celltype != 'B':\n", + " unrb_df.loc[replication_celltype, discovery_celltype] = unrb_results['r'].values[0]\n", + " unrbse_df.loc[replication_celltype, discovery_celltype] = unrb_results['se_r'].values[0]\n", + " unrbpvalue_df.loc[replication_celltype, discovery_celltype] = unrb_results['p'].values[0]\n", + " unnumcoeqtl_df.loc[replication_celltype, discovery_celltype] = unreplicated_coeqtls_num\n", + " unrbvalue = unrb_results['r'].values[0]\n", + " unrbsevalue = unrb_results['se_r'].values[0]\n", + " unnum_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={unreplicated_coeqtls_num}\"\n", + " unanno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"{unrbvalue:.2f}\\nN={unreplicated_coeqtls_num}\"\n", + " elif discovery_celltype == 'B':\n", + " unrb_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " unrbse_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " unrbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " unnumcoeqtl_df.loc[replication_celltype, discovery_celltype] = unreplicated_coeqtls_num\n", + " unrbvalue = unrb_results['r'].values[0]\n", + " unrbsevalue = unrb_results['se_r'].values[0]\n", + " unnum_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={unreplicated_coeqtls_num}\"\n", + " unanno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={unreplicated_coeqtls_num}\"\n", + " else:\n", + " unrb_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " unrbse_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " unrbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " unnumcoeqtl_df.loc[replication_celltype, discovery_celltype] = unreplicated_coeqtls_num\n", + " unnum_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={unreplicated_coeqtls_num}\"\n", + " unanno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={unreplicated_coeqtls_num}\"\n", + " else:\n", + " unrb_df.loc[replication_celltype, discovery_celltype] = 1\n", + " unrbse_df.loc[replication_celltype, discovery_celltype] = 0\n", + " unrbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " unreplicated_coeqtls_num = pd.read_csv(\n", + " workdir/f'output/unfiltered_results/UT_{discovery_celltype}/coeqtls_fullresults_fixed.sig.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t'\n", + " ).shape[0]\n", + " unnumcoeqtl_df.loc[replication_celltype, discovery_celltype] = unreplicated_coeqtls_num\n", + " unnum_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={unreplicated_coeqtls_num}\"\n", + " unanno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={unreplicated_coeqtls_num}\"\n", + " \n", + "unreplicated_ratio_df = pd.DataFrame(data=np.zeros((len(celltypes), len(celltypes))), \n", + " columns=celltypes, index=celltypes)\n", + "for discovery_celltype in unnumcoeqtl_df.columns:\n", + " for replication_celltype in unnumcoeqtl_df.index:\n", + " unreplicated_ratio_df.loc[replication_celltype, discovery_celltype] = \\\n", + " unnumcoeqtl_df.loc[replication_celltype, discovery_celltype] / unnumcoeqtl_df.loc[discovery_celltype, \n", + " discovery_celltype]" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":62: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + ":63: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_yticklabels([\"\"]+row_labels)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAGxCAYAAABVxA75AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACEbElEQVR4nOzdd3RUxd/H8fek90IaIXRIIBB6b4p0EBABBTuKIBYsgPgTAVHpvYMoUkQFQaQjVZHeQUILLfSSQkJ623n+2LBhCSj6QG6A7+ucPeTOzL2ZWZb97J25d1Faa4QQQgiR92yM7oAQQgjxuJIQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBrEzugMi7yilXIF6QBHAG/hTa73L2F4JIcTjS8nXVj4elFKlgHlALeAycASoCmwDummtrxjYPSGEeCzJdPRjQClVAFgA+AJdtNZBQCegLnAdWKqUqmJgF4UQ4rEkIfx46AGEAn2AnwC01rFa6+PZdceAjgBKqfpGdVIIIR43Mh39GFBKXQQ2AD211vFKKaVv+YtXSj0NJAI+wCJgP/Ce1nq7IR0WQojHhFyY9YhTStXBPA29GbgBcFsA22qtVyql3IAdwLdAJrBRKfUr8LbWOj7vey6EEI8+mY5+9EUCGristdZKKXVb/c1AHgRkAT9prd8BKgPuwM/ZF3UJIYS4zySEH2HZgZsAhAMvKaVcbjsLttdam5RS5YHOmKeidwFkrxf3BpyBV/O880II8RiQEH6EabNEYBQQBjx7W31G9o9fARHAcq110s2zZa11BLAJeE0pVTjvei6EEI8HCeHHgNZ6ATAT+FoptVgp1UEpNRxAKfUMUBOYDxzMbq+VUg7Zu58AAgDTrcdUStnmVf+FEOJRJSH8mNBajwcKA+eB54GS2VV9MF+0tf7WNWOtdXp2fQfMtzDZ3na8LAClVM0H3nkhhHhEydXRjxGtdRzwQfbacLJSqgdQB3hGa306u41WSjlordOzb10KAzZorc/fPI5Sygl4CfPFW+8qpXYBzeUqaiGE+HfkTPgxpLVOzv7xNBADjLz1jDY7gL2AIUAS8DWAUqqsUqob8CfQFdiK+f7iQ9n3HxdQSvnl3UiEEOLhJiH8GNNar9VaBwBrgT+UUouUUp8qpb7H/J3SAcCXwCGl1OeYw7gqMEZrXRdwAhTmC7/A/K1ce5RSs5RS8toSQoh/IN+YJQBQShUE/of5W7OKYr4ga4LW+pBS6lngZ+A3rXWb7PaFMf8nECO11oNvOU4NYAJQEfM3dM3K25EIIcTDQ0JYWLm5XnzLtsJ8r/BzwEggCng7e7sJ0Fhrfflm25v3ISulJgPvAIeB97XWv+fpQIQQ4iEgISzumVIqEPPV1O9hvqjvXa319FvqVfaFXfbAOuASEIf5yz4OAM9qraPyut9CCJFfybqduGda68ta697AISAe+FIp1eyWJje/EvMjzN9XvTj7KzDLZLd/Ki/7K4QQ+Z3coiT+FaVUF6A80Ajz905fyi6301pnKqWKAF2ANcBGAK31ReBpI/orhBD5mYSwuGfZVzx3An4Bdtz6PdRa68zsH/tjnoJeqrWOvf2/TRRCCJFDQljcM621CWiplHK/w3+HmKWUqg80xvwVmVuz95EAFkKIu5ALs8R9o5RaivnrLT/NvrVJzoKFEOJvyIVZ4r5QSnUHamG+GOsQyFmwEEL8Ewlhcb8cBmaTfTHWzf8IQgghxN3JdLQQQghhEDkTFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEeihBWSgUopSYopU4ppdKUUheVUquVUq2y6yOVUjr7kaqUOq+U+lUp1eZvjumklDqYvU/17LJBtxznbo/ieTRsIYQQj7h8H8LZobcPaA58ClTE/J/JrwSm39L0SyAQCAE6A5HAr0qpSXc59Gjgwh3KAm95HAfG3FZ2/h/62/2eBvYIk+dACCHuzcPwHzhMxfz/1FbXWifeUn5UKfXDLdsJWusr2T+fA7YqpY4CXyulFmutf7/ZUCn1DOb/27Yj0OpmefbxE29plwkk3nLce9EdmPEv2j+K5DkQQoh7kK/PhJVSBYAWwOTbAhgArfX1fzjETOA60OGWYxYGpgEvASn3r7dCCCHEv5Pfz4RLYz4LPvpfds7+7/UigJJg/i/3gB+AMVrrA/drfTd7+rU7gLJT1VyKuz7W3wVa8N1yBL5X/rF+Dk6+0+qfGz3iXMuNMroLhtv20zmju2C4einpRnfBcPqN0nf9Lv38HsL34z8BUMDNQOgHZABj78NxLbTWM8iefnUp7qqDB4bez8M/dK7tkwkGIYS4F/l6Oho4gTlA/1OqZZ/5hgCns4saY14Lzshe7z2ZXb7jtvVlIYQQ4oHL12fCWutYpdQa4D2l1MTb14WVUl5a67i/OcSbgBewKHv7dcD1lvpCwBrM68Nb71e/hRBCiHuRr0M42zvANmCPUmoA8BfmKeanMN+yVDS7nbtSqiBgDxQBngN6Yr6oaxOA1vrMrQdWSt0M9VNa69tvVxJCCCEeqHwfwlrrM0qpqpjXc0cAQUAMcBB465amA7Mf6UAUsAdor7Velrc9FkIIIe5Nvg9hAK31ZcxntT3vUl/8Px43kr+5+EtrHfZfjiuEEELci/x+YZYQQgjxyJIQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREL4IXVt5WX+6rqXiz+cs5RF/XaFIx8d5PCHB4lac9WqfcrZZI71C8eUbsrrrv5n6ZeSuL7yHNdmR3BlyhGSj8ZZ1ZvSTdz487K5fvpRon44SdKBGKs2N7Zc4eq3x7g2J4KU4/FWdalnEohZfAat9YMeyn0zasYO3MqPptfg9QBkZGQxYMwmaj07G//q4yn15DRe/3gF5y/dsNrvfyN+p0idyZRp/DULVhyxqlv1+ymavvzTQ/U8AEydOpUSJUrg5OREtWrV2Lx5s6Vu9OjRBAQE4O/vz5gxY6z2279/P2XKlCElJSWvu/z/cuDoTvqO7soz79ak3ovFWLlpoVV9vReL3fExZlZ/S5uJ339Ji24Vefa92qzZ8qvV/lv2ruftQR3yz+vg+C6Y+Bb0rg9dg2HLL9b1WsPSidCrHvQIg5EvwcUT1m0y0uCHL+GDmvB2RfPxYi9b13/TB96tDP2awpGt1vuvnwMzPnogw7vJ7oEeXTwQSacSifkzGqfCzpaylPPJXFl6iRLvl0ZriJx4ErfyHjgXdkabNBfmnCXo5aLYODw8n7t0ugm7Ao44l/EibsPFXPUJW6+QfiEJzyZB2HrYk3EpmfjfL2PjbItzGS9SzySQGhFPgbbFyIxLJ37jJRyLumLjbIcpPYuELVfwfrooSikDRvfv7Tp4idmL/iIsxM9SlpyayYGj1/i4e20qlvXnRkIan476g3ZvLWLnr12ws7Nh1e+n+HnlUZZ+05GTZ6/zzoA1NK5XHF9vFxKS0vnfiN9ZMLndQ/M8ACxYsIAPPviAqVOnUr9+faZOnUrLli05cuQIcXFxDBw4kBUrVqC1pnXr1jRr1owKFSqQlZVFt27dmDJlCs7Ozv/8i/KR5NQkShYuQ8sG7flqWq9c9cum7rbaPnb6EH1Hv0Gj2q0Bc8iu27aMcZ/O48KVMwz9+mNqVXwSL48CJKUkMnHel4zo/W3+eR2kJUNQCNRtBzP75q5fPQPWfAdvDIeCJWH5ZBjTBYasAWc3c5v5Q2D/Bug+Fty8YcFQmNgdBi4BG1v4cwGcDYd+C+HQJpjRC8btAKXMYb12FvT/Jffvvo8enndkAUBWchbnvzlDkS7FsHW1tZSnXUnFubALbqEeuJfzwKmwM2mXUwGIXncNpyBn3Mt5GNXt/8SxuDvudQJwKu3Bnd4WMq6k4BTiiWNhV+w8HHAu64V9QWcyrprPcDKvp+EQ5Iq9vzPOIZ7YONiQdSMDgMQd13Aq44ldAcc8HNF/F5+QRtdPVjLlyxZ4eeb02dPdkeXfPkfHlmUJKVGA6hUDmfh5U46fjuXYafOswPHTMTSoWYSqYQV5/ulQ3N0cOHvBPCswaPxmOrUJJbS0ryHj+q/Gjh1Lly5d6NatG6GhoUyaNInAwECmTZvGsWPHqFixIo0aNaJx48ZUrFiRY8eOATB+/HjCwsJo0qSJwSP49+pWaUSPzn15qtbT2Kjcb90+Xv5Wj81711IksCRVQmsDcPbSSaqE1ia0ZEWa1n0GV2d3LkedB+DrBSNpXu9ZShQOydMx/a2KDaFDb6jeEm4fr9bms9RW3aF6CygcAl1HQmoS7FxubpOcAJsXwfN9oXx9KFYe3hwNF47DkW3mNpdOQeXGEBQMjV6GhFhIjDXXzRsEbXuCh88DHaaE8EPmwtyzeFbzxi3UOlCdgpxJu5JKekw66dFppF9NwynIifToNKI3XiOwU2GDevzg2Ae6kBaZSFaCOVjTLyeTGZ2KQ1Hzp2B7XycyrqVgSs0i41oKOlNj6+lA+pVk0i8m41bN7+8On6/0HLSWdk1DaFi76D+2TUhKB8DbwwmACmX82B9+levxqew/fIXU1ExKFvVm18FL/LnrHB93q/1A+36/paens3fvXpo1a2ZV3qxZM7Zt20aFChWIiIjg3LlznD17loiICMLCwoiMjGTy5Mm5pqcfRcmpSazfvpy2T3W2lJUuGsqxM39xIzGeY6cPkZaRSlBAccJP7GPfke282u5dA3v8L0Wfh/goc7je5OAEIdXh1H7z9tlwyMqwblMgEAJLwcl95u0iZeHEXkhPhfDN4OkPbgVg9ypIS4H6HR74UGQ6+iESsymK9GtpFHmzeK46p0LOFOwQxOkxEQAU7BCEUyFnTo87QcFng0iKSOTq0ktok6bgs0F4VvXK284/AB4NCnLjj8tEzT1h+Tjp0aAgTsXdAXAs6oZTGU9iFp5G2dng2aQQyt6GG39cxuPJQFKOxpH0VwzKzgaPBgVxCHQxcDR3N2vhX5w+F8e3w1r9Y9v09Cz6jfyDVg1LEVTQ/Dw0qV+CTm1CebLTPJyc7Ph6aEvcXOx5f9A6JgxsyvdLwpny/V5cnOwZ3a8RtasEPegh/b9ER0eTlZVFQECAVXlAQADr168nNDSUoUOH0rRpUwCGDRtGaGgoLVq0YMiQIWzevJmBAwdiMpkYPHgw7dq1M2AUD9a6rUvJyEin5RMdLWW1Kj1J83rP8uaANjg6ONG/xxhcnFwYNbMfH78xlJWbFvLz6pk4OTjzUZcvqBBS3cAR/IP4aPOfHrfN4Hj4Qlz29TDxUeYpZ7cCudvciDL/XL+j+cx4QEvzdPXbEyAlARaNgl6zYekk2LnMvM9rg80Bfp9JCD8kUq+kcmXxJUr9rww2dneewPBp6IdPw5yzu+vbzdOR7uXcOdbvMKX7lQENJ4cdx7V0eew87POk7w9K8l+xpF9JxqtVEWzd7Um/lEzC1qvYujvgWMx8Nuxe0x/3mv6WfRL3RGFf0AXlaEPirmv4dCpJZkwacWsu4PdKMMo2n6yHZYs4E8ugCZtZO7czDg62f9s2M9NE1/+tJC4hjQVTnrWq++zdenz2bj3L9ojp26lZuRAe7o4MnryV7b+8yuGIaF7ptZzDa7r94+/KD25fu9RaW8p69OhBjx49LHXz5s0DoEmTJoSEhLB9+3ZMJhP16tUjIiICf39/HiXLfv+JJ6o3w/u2qdSuHT+ia8ecC41m/zqR8sFVcXNx59uFY5k9bBWnzh+n/4R3WDRhC/Z2Dnnd9X8n1/q1vkPZ7U003FzgsrOHlwdZ18/uB092hiunYPdKGPAr7FoB334MAxbfp47nkBB+SCSfTCQrMZOIgYdzCk2QFJFIzB9RhE2tgo19TjhnJmZyZcklSn0cQtLpJBwDHHEqZL4QxTHAkeTTSXhU9srjUdw/OtNEwo6reDUvglMJ8xmfva8TmdGpJB2IsYTwrTLj0kg5GofP8yVJORaHfSEXbF3tsXW1R2dpMuPSsPdxyuuh/K1dBy4Rcz2Fmu1mW8qysjRb91xg5s8HubbnAxwd7MjMNNHl4xUcPhHNb7M64eN194uOTkTG8v2v4Wxd9Co/LD1MvWqFKejnRkE/N9IzsoiIjLW6+Cu/8fX1xdbWlitXrliVX7t2LdfZMUBMTAwDBgzg999/Z8eOHQQHBxMaGgpAcHAwO3fupE2bNnnS97wQEXmYY6f/4q1Od7iY6RbnLp9m5R8/M2vYKlb/+QuVy9bE1zsAX+8AMjMzOHfpNKWKls2jXv9LntlnwPFR5inmm27E5Jwde/qBKcu8xut+y4eRhBgIqXHn4x7fCZHh8MqXsHCkeV3a2Q1qt4W5AyAlMeeir/tEQvgh4VnVC5firlZl52dF4hjgiH+rQJSd9ae/ywvO49vIHwdfR1LOpaCzcm470Jka/fDcqXRH2qTBRO6rGhTZn3Rva681N/64jHvdAGwcs8/yTDl13DxePtO6cWl2hr1mVfb2Z79Rqpg3fbrXwsHeloyMLF7rs4KjJ6NZPbsTAX6udzmaeazvD1rHkD5P4unuiDZpMjNNlrrMTBOmrHxyi8pdODg4UK1aNdatW8dzzz1nKV+3bh0dOuRew+vVqxc9e/akePHiHDhwgIyMDEtdeno6WVlZedLvvLJs448E+hWmRlj9u7bRWjNy5qe8+9JnuLl4YNImMrMyLXWZWZlkmfLx8+JbxByyR7ZCiYrmsow0OLEHnvvEvF0sDGzt4fBWc4iC+Yrny6egdNXcx8xIg+8/N1/gZWsH2gRZ2W8KmdmvmQfwxikh/JCwdbHD1sX6r8vG0QZbVzurW5UAEo7cIPVSKoVfLw6ASwkX0q6kcuNAHFqbr6R2KZE/1z9vZUo3kRVvvshIA6bEDDKiUrFxssXW3R77Qi4kbr+GsrcxT0dfTCbleDzudXOfDaUcjUM52OJUynxBm0OgC4k7o0i/lExmTCrYKOy889/Um5eHE14e1mfnLi72eHs6UT7Yj8xME6/0Ws7e8CssnPIsCsXVqCQAPNwdcHayXnKY88shPD0ceaap+SrYOlWDGDx5K9v2XiA8Igo7OxuCS3jnzeD+H3r16sUrr7xCzZo1qVevHtOnT+fSpUtWU9AA69ev58iRI3z33XcA1KhRg+PHj7N8+XJMJhPHjx+nZs2aRgzhX0tOTeLClUgATNrE1ZhLREQexsPNi4K+5nX81LQU1m5dyktt3vrbW42W/zEfdxdPGtZsCUDFMjX4dtFYDh7bzanzR7GztaNYofu//vmvpCbBtbPmn7UJYi/BuSPg6gU+haDJa7Bymvn2pIASsGIqOLpCrexZDRd3aNDRfEbr4WPeb8EwKFwGytXN/fuWT4GwBjmhHlwN5g+Feu1h92ooFAwu9/8OEwnhR4wp3cTFeeco9lZJlI35H6G9twNBrxTjwvfnQEPQq8Wwz4eBc7uMqBSuLzlr2U7cFUXiriicynri1TgIr2aFSdxxlfh1FzGlZmHrbo97LT9cKliHSFZyJol7ovFpX9xSZu/vjGs1X66vPo+Ngw1eTYJQd1lrz88uXk1gxcaTANR/7nuruumDW/Dys2GW7avRSYz8egfr571gKasaVpDe3WrxwgdLcXd14NthrXIFd37UqVMnYmJiGDx4MJcvXyYsLIxVq1ZRrFgxS5uUlBTeffdd5s+fj62tefYjKCiI6dOn06NHD7TWfP311xQqVMioYfwrx07/Rc/BOVc7z1w0lpmLxtLyiY7072G+4nvD9uWkpiXT6snn73qc2Pgo5vw6memDcu5/DS1ZkVfavkO/cd1xcXJlwDvjcHQweGkmMhxGvZyzvXSi+VH3WfPZasvu2V/G8QUkxUPJStBrlvV0cefPwMYOpn8IGakQWgfeHGW+YOtWFyLMV0QPWpZTVrU5ROyBUa+AV4D5dz4AKt98O8ojwqW4qw4eGGp0Nwx1bd/D9U1ED8LJd/75SuZHnWu5UUZ3wXDbfjr3z40ecfVS0o3uguH0G6XvOi3x8H30F0IIIR4REsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhjkoQhhpVSAUmqCUuqUUipNKXVRKbVaKdUquz5SKaWzH6lKqfNKqV+VUm3ucKwQpdQSpVS0UipBKbVDKdUiu27QLce526N4Hg9fCCHEIyrfh3B26O0DmgOfAhWBJsBKYPotTb8EAoEQoDMQCfyqlJp02yFXAE5AY6AKsAVYqpQqBYzOPsbNx3FgzG1l5+/zEIUQQjym7IzuwD2YCiigutY68Zbyo0qpH27ZTtBaX8n++RywVSl1FPhaKbVYa/27UsoXCAbe0lofBFBK/Q/4CKiitV4EWH6HUioTSLzluEIIIcR9k6/PhJVSBYAWwOTbAhgArfX1fzjETOA60CF7OwY4CryilHJTStkC3YEEYOt967gQQghxD/L7mXBpzGfBR//LzlrrLKVUBFAye1srpZoCvwI3ABMQC7TUWl++P10WQggh7k1+D2F1n46hAZRSCvP0dgzQAEgB3gR+UUrV0Fpf/E+/QKnumM+ocff3oHHxRveh2w+vObuWGN0FwykbR6O7IPKBS8duGN0F4xVzMroH+Vq+no4GTmAO0ND/snP2dHMIcDq7qBHQBnhBa71Va71Pa/0OkAS8/l87qbWeobWurrWu7uzl/F8PI4QQ4jGTr0NYax0LrAHeU0q53V6vlPL6h0O8CXgBi7K3XbL/NN3WzkQ+fy6EEEI8eh6G4HkH85TyHqXUc0qpMkqpskqpt4G/bmnnrpQqqJQqopSqq5QaB0zBfFHXpuw22zGvAc9SSlXKvmd4FOY14xV5OCYhhBAi368Jo7U+o5SqCvQDRgBBmNd0DwJv3dJ0YPYjHYgC9gDttdbLbjlWdPYXcwwBNgL2mC/6aqe13pcHwxFCCCEs8n0IA2Rfudwz+3Gn+uL/4lh7MH/xx720DbvX4wohhBD/1sMwHS2EEEI8kiSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDGJndAfEne36cQcnt5zg+vlYbO1tKRhaiPpvNsC3hJ+lzZoRqziy9rDVfgVDA3lh8suW7U1TN3J47WHsneyp/+YThDYpZ6k7te0kexbs4vnxL6CUevCD+pfifjiDKTEzV7l9URfcWwaR+PsV0iMSrOps/Z3wfLaIZTtpWxTpETdQdjY41/LBMdjDUpcemUjqweu4ty2cL8cPMGTynwydstmqzN/XlTObPyQjI4svJmxi7eZTnDl/HXdXB56oVZyvej1FkUKelvafDF/HD0v+wsXZni97NaJzmzBL3arfIxj77XbWzXs13z4HdzN16lRGjRrF5cuXKV++POPHj6dBgwYAjB49mlGjRqG15pNPPqF3796W/fbv30/nzp05cOAAzs7ORnX/bx05u4dl2+dw+vIRridc4522X/FU5XaWeq01CzdNY/2+RSSm3iA4qAJvtvyMIv6lLW0yMtOZu240W8NXk56ZRliJWnRr9Rk+HgUt9dOWf86e47/j5ebLm60+o2LJOpb9V+38gYiLB/mw/cg8G7eV47tgzUw4exjirsLrw6F+h5x6rWHZJNi0AJLjoWQleGkQBAXntMlIg59HwK4VkJ4KoXXg5UFQIDCnfvZncGA9ePqZ68rVy9l//Rw4fQC6j3tgw5QQzqcuHDxPpbaVCShTEDRsm72FXz7+mde+ewMnj5w3jqJVi9Hi01aWbVs7W8vPp7ad5NjGo7Qf8RxxF6+zdtRvFK9RHGdPF9KT09k07Xee+erZfPvm69G+COicbVNyJjd+OY9DSXdLmV2QM26NCuY0sskZS3pkIuknE3B/Oois+AyS/riKfWFXbJxt0ekmkrdH494iMN+O/6aQEj6snpPzwcrW1tzf5NQMDhy5Qt+36lExNIAbCal8OnID7brPZ+eSbtjZ2bDq9wh+XnmYZd++wMmz13n7sxU0qV8SX28XEpLS+GT4en6e8ly+fw5ut2DBAj744AOmTp1K/fr1mTp1Ki1btuTIkSPExcUxcOBAVqxYgdaa1q1b06xZMypUqEBWVhbdunVjypQp+TaAAVLTkynqV5onK7Zh8pLPctUv3fYdy3fM4d1nBlPIpziL/pzOV/O6M+Hd5Tg7ugIwa80I9hz/nQ/aj8DdxYs5a0cx7Kf3GNFtAbY2tqzft5DTl48w5I157D+5hQmL/8e3vf9AKUV0/BVW7JjLsDd/zOOR3yItGYJCoG47mNk3d/3qGbDmO3hjOBQsCcsnw5guMGQNOLuZ28wfAvs3QPex4OYNC4bCxO4wcAnY2MKfC+BsOPRbCIc2wYxeMG4HKAWxl2HtLOj/ywMdpkxH51PtRzxH+RYV8C3hh29JP1p8+jQp8SlcDL9o1c7W3hbXAm6Wx60BHXsuhsKVilKwTEHKNgrF0cWB+MvxAGyd+SehTcrhU9w3T8f1b9g422HjkvPIOJeMcrDBoaSbpY2yVVZtbJxyPoRkxaVjX8gZOz8nHEu7oxxsMCVkAJC8KxqHYHdsvR3zfFz/lq2tDQX93CwPvwLmN1lPdydWfPciHVuVI6SED9UrBjFxUEuOnYrm2OloAI6diuGJGsWoGlaI558uj7ubI2cvxAEwaNwfdG4TRmhpv7v96nxr7NixdOnShW7duhEaGsqkSZMIDAxk2rRpHDt2jIoVK9KoUSMaN25MxYoVOXbsGADjx48nLCyMJk2aGDyCv1c1+AlebPwBdco1y/UBSWvNyp3zaFevK7VDm1LUP5h3nxlCSnoSW8JXApCUmsDG/Yt5pWkvKpWqS8nAcvRsN4xzVyM4dHoHABeiz1A9pCFF/EvTvEZnbiTHciP5OgDfrh7Cc0++jaerT94O/FYVG0KH3lC9Jajbokpr81lqq+5QvQUUDoGuIyE1CXYuN7dJToDNi+D5vlC+PhQrD2+OhgvH4cg2c5tLp6ByY/PZc6OXISEWEmPNdfMGQdue4PFgnwMJ4YdEenI62qRxcneyKr8UfpHpHaYw69VvWTdmDcnXkyx1fqX8uRpxhdSEVK5GXCEzPROvIG8uH7nE+QPnqfli7bwexn+mtSbtWDwOwe4o+5yXbeaVVK7POU3c/EiSNl3FlJIzfW3r40hmVBqmtCwyo1LRmRobT3syr6aQeSkF5yoFjBjKvxZ54Tqln5xAuSaTea3Xr5w5f/2ubRMS0wHw9jC/TiqU9Wff4ctcj09h/+HLpKZmULKoN7sOXGTTzrN83L3eXY+VX6Wnp7N3716aNWtmVd6sWTO2bdtGhQoViIiI4Ny5c5w9e5aIiAjCwsKIjIxk8uTJjBkzxqCe3x/X4i4QlxhNpZJ1LWWO9k6EFq3G8fMHATh9+QhZpkwq3tLG17MgQX4lOX7hAADFA0I4dn4/aRmpHDy1FW83PzxcvNl2+DfS0lOspr/znejzEB9lDtebHJwgpDqc2m/ePhsOWRnWbQoEQmApOLnPvF2kLJzYa56qDt8Mnv7gVgB2r4K0FOvp7wdEpqMfEn9M2YhfaX8CyxWylBWvUYLSDULwLOhJ/JV4ts3awqI+P/PitFewc7CjeI0ShDYpx4/vfI+dox3NP2mJvbM968etpfGHTTn82yH2L96LnaM9T/VsTKHyQQaO8O9lXkjGlJCJY9mctU77Iq44lHDDxt0eU0IGKbtjSFh+EY8ORVC2NjgUcSUzOJUbi8+j7BRuTwWg7GxI+vMaLg38STt+g9RD11F2NrjU88O+YP6bnqxesRBfD21DSEkfomKSGTl9C41enMOeZd3x8XaxapuensWnI9fT6qlgggqa176b1i9F5zZhPPH8LJwc7ZgxrA1uLg70HLSKiYNa8v2vB5kydxfOTvaM6d+c2lUKGzHMfyU6OpqsrCwCAgKsygMCAli/fj2hoaEMHTqUpk2bAjBs2DBCQ0Np0aIFQ4YMYfPmzQwcOBCTycTgwYNp166dAaP47+ISYwDwdLM+Q/Ny8yH2xrXsNtHYKFs8XLyt2ni6+hCXaJ4learys5y9GsFH09rh4eLFRx1Hk5yWwA8bxtP/5Rks3DSNzYdW4uXmw1utPyfIt2QejO4exZvHgMdtM3kevub1YzCHtI2tOVRvb3Mjyvxz/Y7mM+MBLc3T1W9PgJQEWDQKes2GpZNg5zLzPq8NNgf4fSYh/BDYNHUjl8Iv8Pz4F7GxzTkLLNMo1PKzb0k/AkIKMvPFrzmz8zTBDUIAqPNaPeq8lnO2s3PedgLLFcLR1ZHts7fy0ozXiDkTxYovltH1h+7Y2udM5+YnqcduYOvniJ1vzvSxY+mctWF8HLHzcyLuxzNknE22TFm7VPfBpXrOm1XKvljsApxQDjak7InBs0NRsmLTSFx3Ga8XS6Bs89faaPMnSltt16wURPlmU/hh6SHe71LLUp6ZaaLrJ0uJv5HKz1Oes9rns/ee4LP3nrBsj5i2hVqVg/Bwd+SrSX+yfXFXDp+I4uUPf+HIuvdwcMifr4Hb3Wma9mZZjx496NGjh6Vu3rx5ADRp0oSQkBC2b9+OyWSiXr16RERE4O/vn3cdv08UucfPP63t3/Ic2dna82ar/lbV05Z/TpOqHbkUfYath39jRLcFbAlfxaQl/Rj+5vz72v/7Itd47+054OZzZ2dvvhjrVrP7wZOd4cop2L0SBvxqvrDr249hwOL71PEcMh2dz/0xdSPHfj9Gx9Gd8Crk9bdt3XzdcPNzJ+7Cnacrr5+PJfy3QzTo9iTnD5wjqGJh3HzcKFa9BKbMLK6fj30AI/j/M6VkkhGZiGOo59+2s3G1w8bVjqwb6Xesz4pLJ+1YPM61fMm8lIJdoDM2rnbYF3EFk7k+v3NzdaBcaT9OReb8XWVmmujS51fCj19jxayXcp0h3+rEmRjmLj7IV70b8efOs9SvXoRAf3ea1CtJRoaJiMiYvBjG/4uvry+2trZcuXLFqvzatWu5zo4BYmJiGDBgANOnT2fHjh0EBwcTGhpK+fLlCQ4OZufOnXnV9fvCK/sM+OYZ7U3xSbF4Za/hern5YtJZljVeS5vk2Luu8x6O3M3py0doW7cLh87spGrwEzg7utKgwtOcunSYlLSkO+5nCM/sM+D4KOvyGzE5Z8eefmDKylnjvSkhJvcZ9E3Hd0JkODTvCkd3mNelnd2gdluIPAQpifd1GCAhnK/9PnkDxzccpePoThQo+s8XB6TEJ5MYnYCrj2uuOq0168et5Ym3GuLo5ojWGlOmyVJnyjRhMpnu+xjuh7TjN8BW4VjK/W/bmVKyMCVlYuOSe4JHa03S5mu41PbDxtHW/GnYpC11mLTVldj5VWpaJsdPR1PQz3ymn5GRxau9FhN+/BqrZr9kKb8TrTXvD1rN0I8b4+nuhMmkybjlNZCRmUVWVv58DdzKwcGBatWqsW7dOqvydevWUbdu3Vzte/XqRc+ePSlevDgmk4mMjAxLXXp6OllZWQ+8z/eTv1dhvNx8+ev0dktZemYax87to0yRSgCUDCyHrY2dVZuYG1e4GHWaMoUr5zpmRmY636wazFtPf46tjR0aTZbJfH1FZpb5+TLpfPQ8+RYxh+yRrTllGWlwYg+UqmLeLhYGtvZw+JY2sZfh8ikoXTX3MTPS4PvPzdPOtnagTZCVfY1JZvZrRt//fx8yHZ1PbZywjqPrj9Dmy3Y4uTuSFGv+BGbv7ICDswPpKensmLOV0g1CcPVx48aVeLZ++ycuXi6Urh+S63jhqw7h6OZomaYuFFaY7bO3cvHQBaJPR2FjZ0OBIvnvQiXzBVk3cCxlvrrZUp5hImVPDPYl3LBxtcOUkEHyzhiUsx0OxXMHUdqxG1ZXVtsFOpO8J5aMyylkxaaBjcLWyz7PxnWvPh25nlYNgylSyJOomCSGT9tCckoGL7WrSGamiZc/WszeQ5dYOPV5lFJciTK/TjzdHXF2sh7PnEUH8HR35JlmZQGoW60wgydtYtve84Qfv4q9nS0hJQy8GvZf6NWrF6+88go1a9akXr16TJ8+nUuXLllNQQOsX7+eI0eO8N133wFQo0YNjh8/zvLlyzGZTBw/fpyaNWsaMYS/lZKezJXYc4D530B0/GXOXDmGm7Mnfp6BPF3rZRZv/oYg3xIE+hTjl80zcHJwoX7Y0wC4OrnTqEp7vl8/Fk/XArg7m29RKhoQQoWSuS/IXPTndCqXqkvpIPM95GWLVGHO2pE0rPQM2w+voYhfaVydPHLt90ClJsG1s+aftQliL8G5I+DqBT6FoMlrsHKa+fakgBKwYio4ukKtNuZ9XNyhQUdYONJ8hbOrFywYBoXLQLncH9ZYPgXCGkCJiubt4GowfyjUaw+7V0OhYHC5/8+BhHA+dXDZAQB+6fOzVXntV+tS57V62Ngoos9Ec2TdEdISU3Et4EaRykV4emBbHFwcrPZJik1i1w/b6TThRUtZwTIFqfFCLZZ/vgR7Fwda/O9p7BzzXwhlXkrBFJ+B4633AgMoyIxNJy3iMjo9CxsXO+wKOePWtKBVWIP5/uLUfbF4tMv5Eg87Pyecq3iTuPYyyl7hmn3RVn5z6UoCXfosISYuGV9vF2pWCuL3+V0oGuTJ2YtxrNgQAUD9jt9Z7Td9aGteebaSZftqdCIjpm9lw4+vWsqqhhWid/e6vNBzEW6uDnwzom2u4M6vOnXqRExMDIMHD+by5cuEhYWxatUqihUrZmmTkpLCu+++y/z587G1Na9zBwUFMX36dHr06IHWmq+//ppChQrd7dcY5vSlwwya+4Zl++dNU/l501SerNSW954ZwjN13yA9I41vVw8hKeUGpYMq0P/lry33CAN0ad4XWxtbxv3yMekZaVQoUYv32g3F1sZ6zf/ctRNsO7KGUd0XWspqhTbh6Ll9fDH3DQq4B/DuM4Mf/KBvFxkOo3Luj2fpRPOj7rPm25Fadjefvf7wBSRlf1lHr1k59wgDdP4MbOxg+oeQkf1lHW+OMl+wdasLEeYrogctyymr2hwi9sCoV8ArwPw7HwCl9UMwB/cQCShTUL807dV/bvgIm/PzEqO7YLjzHz5vdBcM51LWgDfufGbR5+FGd8FwzxVz+udGjzj9Rum7Xi2W/z76CyGEEI8JCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQzy2IawUqqLUirR6H4IIYR4fD22ISyEEEIY7R9DWCn1h1JqmlJqjFIqVikVpZT6QCnlqJSaopSKU0qdU0q9css+FZRS65VSKdn7zFZKed5SP1sptSL7OBeVUteVUrOUUi63tHFUSo1XSl1VSqUqpXYoperf1reySqllSql4pVSiUmp79u9+QimVoZQqeFv7IUqpv5RSDYFZgKtSSmc/BmW3cVBKjVBKXVBKJSmldiulmv/H51cIIYS4q3s9E34JSABqAcOB8cASIAKoDswBvlVKFcoO0t+ARKAm8CxQF/jutmM2AMKAJkCn7HYf3FI/Mrv8DaAKcAj4TSkVCKCUKgRsATTQFKgKTAFstdZ/AqeAV28eTCllk709E9gGfAgkA4HZj9HZTWcBTwIvAhWyx7ZcKVXpHp8rIYQQ4p4orfXfN1DqD8BRa10ne1sB14DtWuu22WX2QBLm4PLGHGiFtdYJ2fUNgd+BYK31SaXUbKAxUEJrnZnd5pvs7SZKKVfgOvCm1npudr0t5tD/SWvdXyk1BHg5+5jpd+h3H6Cr1jo0e7sl5g8OhbTWMUqpLsBkrbXbLfuUAk4AxbXW524pXwJc0lq/c5fnqDvQHaBQkULVthza+rfP6aNu8dZVRnfBcK/bDzW6C4bTG7oY3QXDXW3xvtFdMFz50zeM7oLh9Bul1d3q7vVM+C/LwcypfQ3zmenNsgzMoekPhAJ/3QzgbNsAE1DulrIjNwM426Xs/QFKAfaAJc201lnA9luOUQXYcqcAzjYHKKmUqpu9/QawRGsd8zfjrAoo4Ej29HZi9sVbT2f36Y601jO01tW11tUL+Pj8zeGFEEKIHHb32C7jtm19lzIbzCF2t9PrW8vvtj/Zx7i9/e3HuOsnCwCtdZRSahnwhlLqONAWaPN3+2T/fg3UuEP/Uv5hXyGEEOJfeRBXRx8BKiml3G8pq5v9u47e4zFOAumA5UKs7OnoOtnHB9gH1FdKOfzNcb4BngfeAq4C62+pSwdsb2u/H3O4F9Ran7ztcfEe+y6EEELckwcRwj9gXh+ee/NKZeBrYLHW+uS9HEBrnQRMA4YrpVoppUKztwOAqdnNpgJuwM9KqRpKqdJKqReUUpVvOdQ6IAb4HJiltTbdUhcJOCmlmiqlfJVSLlrriOz+z1ZKdVRKlVRKVVdK9VFKtf9vT4cQQghxZ/c9hLXWyUBzwAPYBSzFvJb7xr881CfAz5ivVj4AVARaaK0vZ/+ei8ATgAPmi772Az0Byzpz9vr1LMzry7Nu6+c2YDrwExAF9M2uej277UjgGLAi+/ec/Zf9F0IIIf7WP64Ja60b3qEs7A5lBW/5+RDmq5/vdswudygbBAy6ZTsN821EH/7NcQ4Dre5Wny0Q2KC1jrzD/m8Db99WlpHdj0G3txdCCCHup3u9MOuhk/3lINUw3xv8vMHdEUIIIXJ5ZEMY8zR4TWCm1nql0Z0RQgghbvfIhvCdptGFEEKI/ET+AwchhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQO6M7IP6bKWOmMOar0bzS7RW+GPUlAN9MmsGMiTNAw1sfvMWbPbtZ2h8+eJj3u/Zk5eZVODk7GdXtf2XDz2s4tO0AUReuYWdvR9GyxWn12jMEFi9kaTN/7Fz2bNhptV/RMsV5f+zHlu1l3/zC7vU7cHBy4Okuz1D1qZqWusM7D/H7orW8O7IXSqkHP6h/acTcG4ycl2BV5u9tw9EFgbnafjTuOnNXJ/NFNw/ee87dUt5/ehw/rUvGxdGGgV09eK6xi6Xut+0pTPw5kZVjffPN+LedP8eUXTs4eOUyVxITmdSqNS9UqGSp11ozcutm5h7cT3xqKlUDCzGyaQvK+vlZ2qRlZvL57xtYfPQwqZmZNChWnFFNW1DIw8NS/+FvK1l9IgJ/VzdGNWvBk8VLWPafsWc3ey5dZEbbdnk27r/zzQ8TWLd5FZHnT+Jg70jFclX5qNtnBJcItbSZ+N1w1v6xnCtRF7G3cyA0uAI93/gfVcJqWNqMmDKQJWsW4OLkwkfdPqN1046Wut+3rWHmT5P5fuKy/PFaOL4L1syEs4ch7iq8Phzqd8ip1xqWTYJNCyA5HkpWgpcGQVBwTpuMNPh5BOxaAempEFoHXh4EBQJz6md/BgfWg6efua5cvZz918+B0weg+7gHNkwJ4YfQ/t37WTBnPmXLl7WUHQ0/yrih4/h2/kw0mjc7daV+owaULV+WrKwsPv3gU74Y/eVDE8AApw6doO7TT1AkuBigWTNvJTM+m8jH0wfg4u5qaRdcuSwv9H7Vsm1nn/OyPrzzEPv/2E33we8RfTGKBRPmUaZqOVw93UhNTmXZN4t4fWCP/PGmcxelC9uxbLSvZdv2DvNXy/5MYX9EBgV9rCt/257CL7+nsGiYL6cvZvL+mOs0qu6Ij6ctCckm+n8dz7wvfPLV+JPS0wn19aNT+Qq8u3JZrvpJO7czdfdOJrdqQ+kCBRi9dQsdfv6RHW/2wN3REYDPNqxj9ckIZrRph7ezMwM2rufFXxaw4bWu2NrYMPfgfg5eucJvL3dh/elTvLV8CUff+xClFBdv3GDa7p2sffX1vB76Xe06sI0XnulCWNnKaK2ZPGskXXs/x7LZm/Hy8AagRJHS9P9gGEGBRUlLS2Xuoq9565POrPp+O74F/Pl92xpWbljMN6MWcPbCaQaM/Ih6NZ/C29OHpORERkwZyOQhc/PPayEtGYJCoG47mNk3d/3qGbDmO3hjOBQsCcsnw5guMGQNOLuZ28wfAvs3QPex4OYNC4bCxO4wcAnY2MKfC+BsOPRbCIc2wYxeMG4HKAWxl2HtLOj/ywMdpkxHP2RuxN/go24fMnzSCDy9PC3lp0+comz5stR9si71nqxH2fJlOX3iFACzpn5HmdAQ6jesb1S3/5PuX71HzaZ1CCxeiMDiQbzQ+1USbyRy5shpq3Z29nZ4FPC0PG4N6Gvnr1CqYghFgotRpWF1nFyciLkaA8DqOcuo+lRNChbNfVaZn9jZQkABW8vD18vWqv781Uw+nRbH1596Y29n/QYacT6TehUdqRLiQIenXHB3seHslSwABs+6wXONXChbzD7PxnIvmpYqTf8nn6Jt2VBsbgsErTXT9+zig1p1aFOmLKF+/kx+ug2J6en8cvQwADfSUvnhrwMMatiYhiVKUqlgINNaP8Pha9fYFHkGgIiYaFqUDqasnx9dq1YjOjmZmJRkAPqu+42+9Rvg5+pKfvHNqAU82/IFgkuEElKyHMP6TeF6fAz7w3dZ2rRp2pHa1Z6gSKHilC5Rlr7vfElSciLHTpqfl9NnT1Czcl3CylTm6cbtcXN148LlcwCM/3YIbZp2pHTxMoaM744qNoQOvaF6S1C3RZXW5rPUVt2hegsoHAJdR0JqEuxcbm6TnACbF8HzfaF8fShWHt4cDReOw5Ft5jaXTkHlxuaz50YvQ0IsJMaa6+YNgrY9wcPngQ5TQvgh89mH/WjxTEvqPlnXqrxMubKcOXmGi+cvcvHcBc6cPENIaBkunL3A3G/m0m/IZwb1+P5JS0lDmzQubs5W5WeOnOLzFz9heLcvWDjxBxLicqZvC5UI4vyJsyQnJHPhxDky0jLwDfTj7LEznDwUQePnm+f1MP61s1eyKP/CZaq8coU3h8QSeTnTUpeZpek27Dq9X3SnTNHcYRpW0p4DJ9KJSzBxICKdlHRNyUJ27D6azpYDaXz0gnuuffKzs/FxXEtKomGJkpYyZ3t76hQuwu6LFwA4cOUKGSYTT5XImV4O8vAgxMeXXdltyvsHsPPCeVIyMvj9zGkC3NzwcXZhydEjJGdkWE1/50fJyYmYTCY83L3uWJ+ekc7CFd/j5upO2dLlAShTqjzhxw8SnxDH4eMHSU1LpWhQCQ4e2cOu/Vvp9tIHeTiC/6fo8xAfZQ7XmxycIKQ6nNpv3j4bDlkZ1m0KBEJgKTi5z7xdpCyc2Gueqg7fDJ7+4FYAdq+CtBTr6e8HRKajHyLz5/zE2dNnGfP12Fx1pcuUps/Aj3n12VcA+PjzvpQuU5ouHV6j94A+7N62m3FDx6K1ptdnvWnWulled///bcnXCylUsjDFyua8AZepVo4KdStToKAPsVdj+e375UzvN4GPJnyCnb09ZaqVo+pTNZnw0QjsHRzo3OsVHJ0dWTT5Jzq+25nd67ezecnv2Ds68GyP5yleruTf9CDvVSvrwOQ+XgQXsScqLouxPybQ8sMotn7jTwEPW4bPvUEBdxveaON2x/0bVXfiuUYuNOl5DScHxZQ+3rg6K3pPuM6YD7z4cU0y039NxMVRMfxdT2qWd8zjEf471xKTAPC/7SzV39WVywmJ5jZJidgqhY+zi1UbP1dXriWZ93+pQiWOXLtGvZlfU8DZhZnPtOdGWhpfbfqdhZ1eYOSWP1l05DD+rq6Ma9GKYB9f8pNhk/pTtnQYlctVtyr/Y/ta+nz5FqlpKfj5BPDNqJ/xLeAPQP2aT9GmaUc69WiOk6MTQ/83CRdnVwaN+ZiBvUaxZPV8vv9lBk6OzvR7f6jVWnK+Ex9t/tPjtr8XD1/z+jGYQ9rG1hyqt7e5EWX+uX5H85nxgJbm6eq3J0BKAiwaBb1mw9JJsHOZeZ/XBpsD/D6TEH5InD5xitFfjmbB6p9xcHC4Y5uX3niJl954ybK9ZMGvANRrWI/G1Rrxy7rFmEwmnmvekaq1NuLrl7/eWP7Osm9+IfLIad4d2QubWxZFqzyZ8yYUWDyIwqWLMOT1ARzddZgK9SoD0Pylp2n+0tOWduvnr6ZY2RI4uTqzZt5Kek36lMuRl5g7/Fv6zfzSak3ZaE1q3rqGb0/1UAeqvXqV+WuTqRTiwE9rk9k0zf9vj/HJqx588qqHZXv0DzeoEeqAh6sNw+fe4I9p/hw9k8Hrg2PZP7cgDvb5ZE3wbyhun6Y2L+P9HU1OG3tbW0Y2a2FV/8HqFbxauQonYmJYcuwoG157g8VHD/P2imWsf+2N+9j7/58RUwayL3wn309chq2t9dJEzcr1+OXbjcTFx7BoxTx6f9GdH6esxM8nAIB3u3zMu11yLlqc/v1YKpevjrurO5Nnj+CXbzYScfoovb54kzU/7sbB/s7vNflGrr/0e3khaLj5+rGzN1+MdavZ/eDJznDlFOxeCQN+NV/Y9e3HMGDxfep4DpmOfkjs27Wf2JhYWtRpTrBPaYJ9SrNz607mfTuPYJ/SpKWlWbW/HnudsUPGMnjsEA7s3k/xUiUoXaY0IaEhFC9VgoN7DhgzkP9g6YxF7N+0hx5D38cn8O8/OHj6eOHp603UpWt3rI+6eJVda7fz9OvtOPlXBCXLl8ajgCdlqoaSlZFF1MWrD2II942bsw1li9tx6lIWWw6kcTXWRLnOV/BvcRH/Fhc5fzWLL2beIOzFy3fc/+SFDH5ck8znb3qy+UAadSo4UNDHlqeqO5GRCScvZN5xv/zC3818Bnw1KdGqPCo5ybKG6+/qRpbWljXem6KTkvBzufM679ZzZ/nryhXerVmbzWcjaVqqNO6OjnQsF8aBK5dJuO3fl1GGTxnAqo2/8t3YXyhSqHiuehdnV4oFlaBSuep81Xc8dnZ2LFr5wx2PFXn+FL+u/ole3Qewa/9WqlWsg59PAPVqNCQjI4PI8ycf8Gj+Hzyz3wfio6zLb8TknB17+oEpK2eN96aEmNxn0Dcd3wmR4dC8KxzdYV6XdnaD2m0h8hCkJN55v/+H/PORX/ytZk83o0KVClZlfd/tS/FSxXmn1zu5zo6H9BvMq91fo3Cxwhw5dITMjAxLXUZ6OllZpjzp9//Xkq8XcuDPvbw97EP8ixT8x/ZJ8YnciInDo4BnrjqtNYsm/USbru1xdnVGmzRZWVmWuqysLEz5/HlJTdecOJ9J/UqOdHnalbYNrNfHO/aLpsNTLrzS0iXXvlprek+I44vunni42qA1ZGTm1GVkarJMOi+G8Z8V8/TC39WVTZFnqBpovlUtNTOTHRfOM+ipxgBULlgQexsb/og8Q8dyYQBcunGDiJhoagYVznXMtMxMPl77G5OfboOdjQ1aazKzXxcZJvOfJm388zJs0mes/n0Js8b9Ssmiwf+8A6C1ifSM3B8gtNYMGtuHPj0G4e7mgUmbyMzMsNRlZmaQZcrH/xZ8i5hD9shWKFHRXJaRBif2wHOfmLeLhYGtPRzeag5RMF/xfPkUlK6a+5gZafD95+YLvGztQJvg5vtB9nODvv/PiYTwQ8LDywMPLw+rMhcXZ7y8PSlTzvqKxi1/bOHE8ZOMmDISgIpVK3L65Gk2rF6PyWTi9MnTVKqWvy88AVg8dQF7N+6iy4DuOLs5cyM2HgBHZ0ccnZ1IS0ll7Q+rqFCvMh4FPIm9GsPqOctw83QnrE7u8e1auw1nNxfLNHWJ8qVYM28lZw6f5NKZS9ja2uJfOCAvh/iPBs6Ip3ltJwr72RIVZ2LMjzdIStV0buqCn7ctft7W05H2dgp/bxuCi+S+SGveb8l4uNrQpr45uGuFOTBs7g12hKdx+HQG9naK0oWNv1I6MT2dM9fNZy8mrblw4waHrl7B29mZwh6e9Khek7HbtxJcwIdSBQowZttWXB0c6BBqvgDJw9GJlypWZtDvG/BzcbXcolTe39/qXuCbxmzbwlMlSlpCvVbhIvTfuI7OFSqy9NhRyvr64elk7K19X43/H8vXLWTiV7PxcPciKtY80+Pi7IqrsyuJSQnMnD+Zp+o0w9cngOtxMfy05DuuRF2mRcO2uY73y6of8HDzpOkT5mWaqhVqMXnWSPYe2knEqSPY2dlTosj9X//8V1KT4NpZ88/aBLGX4NwRcPUCn0LQ5DVYOc18e1JACVgxFRxdoVYb8z4u7tCgIywcab7C2dULFgyDwmWgXN3cv2/5FAhrkBPqwdVg/lCo1x52r4ZCweDikXu//ycJ4UdMakoqn/cZyMSZkyzrRQULFWTw2CH079UfrTVDxg0lIDB/hc2dbFv5JwBf95toVd70xVY0f+lpbGxsuHz2Ens27iQ1KQV3bw9KVwzhlf91xcnF+k0z4foN1s//jfdG9baUFQkuRqPnmzF78Dc4OjvyQu9XsXfMX2tgl6Ky6DY0ltgbJnw8bage6sCaCX4UCfh3/3SvXc9izI8JrBqX84UWVUIc+LCTO69+EYubs2JaX2+cHY1fDz5w5TLtfppn2R6x5U9GbPmTzmEVmfx0G3rWqkNKZiZ91/1m/rKOQkEsev4Fyz3CAIMbN8XOxoY3l/5KamYGDYoVZ+rTbbG1sV6BOxp1jV+PHeGPLm9aylqXKcuOC+dp99MPBLq7M/npNg9+0P9g/tJZAHTt3dGq/J3X+vBul4+xtbXlVORxfl39E3E3ruPl4U1YmcrMHb+EMqXKW+0THXuNr78fz7xJyy1lYWUq0+3F9/lgwOu4urgyrN9knBytZ1nyXGQ4jHo5Z3vpRPOj7rPms9WW3c1nrz98AUnZX9bRa1bOPcIAnT8DGzuY/iFkZH9Zx5ujzBds3epChPmK6EG33JdetTlE7IFRr4BXgPl3PgBK54NplkdJhSoV9bI/cn/BwONk8dZVRnfBcK/bDzW6C4bTG7oY3QXDXW3xvtFdMFz50zeM7oLh9Bul7/rpVi7MEkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEeixBWSs1WSunsR4ZS6ppS6nel1LtKKfvb2pZSSs1USp1XSqUppSKVUouUUnWN6r8QQohH02MRwtnWA4FAcaAZsBz4AtislHIFUEpVB/YB5YF3gHJAW2AvMCnvuyyEEOJRZmd0B/JQmtb6SvbPF4EDSqm1mEO3r1JqEDAbOA3U01pn3bLvX0qpaXnZWSGEEI++x+lMOBetdTjwG9ABqIz5DHjUbQF8s21cnnZOCCHEI++xDuFsR4CSQHD29lED+yKEEOIx8jhNR9+NAnT2n//tAEp1B7oDFClahEJugfepaw+n2qWrGd0Fwzmpd4zuguHiw3cb3QXDFejqbHQXjHf6htE9yNfkTNh88dVpICJ7O/TfHkBrPUNrXV1rXd3Pz+++dk4IIcSj67EOYaVUGNACWAQcwDw1/bFSyvYObb3ytHNCCCEeeY9TCDsqpQoqpQoppSoppXoBf2C+/Wi01loDrwOlgK1KqdbZ9wxXUEr1xXyLkxBCCHHfPE5rwk2Ay0AWEAeEY75P+GutdTqA1nqXUqoa0A+YDvgDV4BdwHsG9FkIIcQj7LEIYa11F6DLPbY9gfmMWAghhHigHqfpaCGEECJfkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQjif2vznZjq060DJoiVxsnNi7py5udqciDhBp46dCPAJwNvdm9o1anPs6DFLfd/efQn0C6RU8VL89ONPVvuuXL6Sp554Cq31Ax/L/TB3+mzql6nN2C9HW8pio2MY8r8veaZ+axpXepJeXT/kfOQ5q/0mDRtPy5rNaP9kW9Yu+82qbsvGzbz9Qvd89Rxs2X2G53p8T+n6w3EN+YzvF++zqtdaM2TiBkrVH45Phc9p8fK3HDlx1apNWnomvb9cTtGaQ/CrNIjnenzPxSvxVvVd+yykYJUvqdRsLBu3nrTaf+rcbXTpteDBDfJfqrlxDYVWLsn1eGXXdgA+PLg3V13rrZusjjHoyCHKrV1JtQ1rWHzxvFXd2quXeWbbn/nqdfBPJkwbTWCIB/2+6G0p01ozeuJQKtcPoUQFf9q/3IrjJ45a7ff50E8JrVGUak+E8ssy67/jtRtX07Zzs/zzPBzfBRPfgt71oWswbPnFul5rWDoRetWDHmEw8iW4eMK6TUYa/PAlfFAT3q5oPl7sZev6b/rAu5WhX1M4stV6//VzYMZHD2R4N0kI51NJiUmUK1+O0eNG4+zsnKv+zJkzPPXEUxQvXpzf1v3G3oN7GfTFIFzdXAFzyC6Yv4AVq1cwdPhQ3u7+NtHR0QAkJCTwcZ+PmTp9KkqpPB3XfxF+IJzlPy+lVJnSljKtNZ+++wkXIs8zbOoIZv06l4JBBfnw9fdJSU4BzCG7bsVaxs2cwNsfv8fw/sOIi40DIDkxiUnDJtD3q0/z1XOQmJROueAARvVvjbOTfa76sd9sZuKsLYwZ0Jo/f3kHPx9X2rw+i4TENEubvkNWsmTtYWaN68TaH7uRkJhGh+5zycoyAfDd/N0cOHyRjT+/xeudavB6758tb7wXLscxadZWRn72dN4M+B6srteQA41bWB5r6jdEAW0KBVnaNPD1s2rzfY06lrq1Vy/z66UL/FSzLv3LlqfPX/uJSTc/X4mZGQw6Es6oCpXz1evg7+w9sIsfFs6hXJkwq/Ip34xn+qzJDB4witW//IGvjx+dXn+GxMQEwByyv65YyE/fLaF/3y/p81lPYmJjAEhMTODzof9j1OCJ+ed5SEuGoBB44TNwcMpdv3oGrPkOXhwA/ReDuw+M6QIpiTlt5g+BvWug+1j430+QmggTu4Mpy1z/5wI4Gw79FsITnWBGL3O4gzms186Czv0f6DAlhPOpFq1a8NWQr2jfoT02Nrn/mj4f8DmNmzZmxOgRVKlahZIlS9KiVQuKFCkCwLFjx3jiySeoVr0anTp3wsPDg8gzkQAM7D+QF158gdByoXk5pP8kMSGRL/t8zv+GfIa7p7ul/HzkeQ4fCKfXoL6Uq1ieoiWL0WdQX9JS01i/ci0AZ09FUqVmVcpWCKVp62a4urlw+cIlAL4eN41mbZtTonQJQ8Z1Ny0aluGL3s14tkUYNjbWb4Zaa6bM2Urv7k/QrnkY5UMCmDGiI4lJafy84iAA8QmpzFm0lyF9W9C4XmmqlA/i21EdCT9+lY3bTgFw/PQ1WjUKpVxwAG+9VJvo2CSirycD8NEXy+nXszH+Pm55O/C/4ePoiL+Tk+Wx8dpV3O3saB1YyNLG0cbGqo23g4Ol7kRiInUK+FLJy5tngwrjZmfP+WTzeIcdO0L7oMKEuHvk+bj+ixsJ8bzb+03GDpmMp6eXpVxrzTdzpvJe949o3fwZyoaUY8KI6SQmJbJ4xUIATpw6Tt2a9alcoSrPtn4ONzd3zl+IBGDY2C/o0LYTZUqXNWBUd1GxIXToDdVbgrrtPVBr81lqq+5QvQUUDoGuIyE1CXYuN7dJToDNi+D5vlC+PhQrD2+OhgvH4cg2c5tLp6ByYwgKhkYvQ0IsJMaa6+YNgrY9wcPngQ5TQvghZDKZWLViFaGhobRp1YbCBQtTr3Y9Fv680NKmYsWK7N27l+vXr7Nv7z5SUlIoVboUO3fsZNMfm/jk008MHMG9GzlgGA2bP0W1OtWtyjPS0wFwvOXN1sbGBgcHe/7aaw6k0mWDORZ+jBvxNzgWfoy01DSCihUm/EA4+3bu49W3uuTZOO6HyPPXuRqVSON6wZYyZyd76lUvzo595mn4/eEXycjIonH9nDaFA70oW8qPnfvOAlChbCDb954lJTWD9ZtPUNDfHV9vF35ZdYik5HReaV81bwf2L2it+en8WdoHFcHF1s5Svis2hgrrVlH/j3X0+Ws/0Wk5MwPlPTz4Kz6OuIx0/oqPI9WURXFXV/Zej2VbTDTvly5jxFD+k4/7f0DrFu2oX+dJq/Jz5yO5FnWVhvUaWcqcnZypXb0ue/btBKBc2TAOhu8nLv46B8P3k5qaSvFiJdl7YBdbd27m/R598nQs/y/R5yE+yhyuNzk4QUh1OLXfvH02HLIyrNsUCITAUnAye5mnSFk4sRfSUyF8M3j6g1sB2L0K0lKgfocHPhS7f24i8ptr166RmJjIyOEj+fyLzxk8dDB//P4HXV7pgquLK61at6Jp86a88OIL1KtdD2dnZ76d9S1ubm689857TJoyiTmz5zB54mRcXFwYO34sderW+edfnMeW/byEC+cuMGDkoFx1xUoWp2BQQb4eN41PvvoUZxcXFsz+iWtXrhETZZ5iq9WgNs3aNqdbxzdwdHLksxEDcXFxYdTA4fQZ1JeVi1ewcM58HJ2d+Kh/bypUrZjHI/x3rkabpxX9fa3PUv193bh09UZ2m0RsbW3w9XaxauPn68bVaPM03asdqhF+7ArVWk3Ax8uF78d3Jj4hlYGj17Bs1usMnbSBBcsPEuDrzqSv2lGmlF8ejO7ebIqO4lxKMi8WKWYpa+gXQMuChSjq7ML5lGRGHj/Kczu28Fv9hjja2tLQL4D2QYVptWUTTra2TKhUFVdbOz45dIDhFSqz4PxZvjlzCmdbWwaXr0iNAg/2zOe/mrdgNmfOnWbSqBm56q5FXwPA19ffqtzP15/LV82zP081aEKHtp1o2aEhTk7OTBgxHVcXN/oO+JARX4xn/uJ5fDN7Ks7OLgwZMIoaVWs9+EH9V/HmpTU8fK3LPXwhLvsaifgosLE1h+rtbW5EmX+u39F8ZjygJbh5w9sTICUBFo2CXrNh6STYucy8z2uDzQF+n0kIP4RMJvPaXuu2rfngow8AqFS5Env37mX6tOm0at0KgAGfD2DA5wMs+w0bMoxatWvh6enJV4O+YufenYQfCuelzi9x7OQxHG45qzTaudNnmTF2OlN+mI69Q+61UTt7OwZPHM7wz4bQqlZzbG1tqVanBrWfsP4w0bVnN7r27GbZnj31O8IqV8DN3Y2ZE2cwa8n3nI44xYAPPmPhhsV3/F35ze1Ldlrzz+t4Wlv2s7e3ZdygtlbV7/RbzOudahBxOopfVh1iy+J3WbjiIG9+vJDNi9+5j73///nxXCSVPb0Iu2Uqtl2hwpafQz08qejpRc2Na9lw7Sqtsqes+4SE0ickZ/ll/InjVPMugIedHaMijrGuwVMcTbjBW/t2s6NRMxzusARkpJOnTzBs7Bcs+XHN3/47vf11oLW2Kuvzfj/6vN/Psj1u6kiqVamJh7sHoyYMYf3SrRyNOEz3919l58ZD+eo94Y5yve71Hcpub6KB7DZ29vDyIOv62f3gyc5w5RTsXgkDfoVdK+Dbj2HA4vvU8Rz565Um7omvry92dnaEhlqv6ZYtW5bz58/fcZ8TESeYM3sOQ4YNYdMfm6jfoD6BgYE0bdaU9PR0Io5H5EXX71n4gUPEXY/j1TYv8WS5ejxZrh4Hdu3n1x9/4cly9UhPT6dsWFlmL/2e3/asZ8mWFYydOZ74uHgCCxe64zHPnTnHyl9W8PbH77Jv514qVa+Cr78vNevXIjMjg3NnzubxKP+dAF/zmvjVqESr8qiYRMsaboCvG1lZJssab06bpLuu827edYb9hy/xYdf6/LH9NM0blsHdzZFObSuzL/yi1UVfRopOS2PN1cu8VLT437Yr6ORMoJMzp5MT71h/KjGR+efP8lnZ8myNiaZ2AR8CnJxo6OdPujZxKvtCpvxk74FdxF6P4anWtSgc6k3hUG+279rC7B+/pXCoN95e5rO9qCjrK+WjY6Lw8/G/0yE5deYE8xfNo//HX7B155/UrlGPAP+CNKzfmPSMdE6dOXHH/fIFz+wz4Pgo6/IbMTlnx55+5guwbq7x3pQQk/sM+qbjOyEyHJp3haM7zOvSzm5Quy1EHrK+6Os+kRB+CDk4OFC9enUiIqyD88SJExQtWjRXe6017779LsNHDsfT0xOTyURGRoalLiMjg6ysrDzp+71q0ORJ5i7/gVlL5loeZcNCafx0U2YtmYu9fc4Zq5u7G94FvDkfeY7j4cdo0PiJXMfTWjNq4HDe+6Qnbu5uaJMmKzPTUpeZmWmZYcivihfxJsDPzeqWotS0DLbtOUvtqua/9yphQdjb21q1uXglnmOnoqhVtViuY6alZ/Lh50uZ/FU77OxsMWlNRqb5eUjPML8msvLJ87LgwjkcbGx55parou8kJj2NK6kpBDjmvqJWa80nhw4wMDQMD3t7NJoMbbLUZZpMZOWXW3Ru0aLJ0/y+Ygfrl261PCqFVaHd0x1Yv3QrpUqUxt8vgE1bf7fsk5qWys4926l+h2llrTV9B37IwE8G4+Ge+z0hMzMz370nWPEtYg7ZW28pykiDE3ugVBXzdrEwsLWHw7e0ib0Ml09B6Ttc95CRBt9/bp52trUDbYIs83sEmebnBn3//y3IdHQ+lZiYyKmT5qtZTSYT58+d5+CBg3gX8KZo0aL0+rgXL3V+iXr16/HUU0/xxx9/sHDBQhb+sjDXsWZ9NwsvLy/aPdsOgLr16vLloC/ZumUr4YfCsbe3J6RMSF4O7x+5e7jj7uFuVebk4oSHpwclQ8zrMhtXb8DL24uAoIKcPn6KCUPH0qDJE9Ssn/tNZ8WiZbh5uPNks6cAqFitEt9OnMHBPQc4dfwkdnZ2FC2R+wNMXktMSuPUWfOatsmkuXApjoNHLlHAy4Uihbx497V6jJr2ByEl/ShdwpeRU3/H1dWB51tXAsDT3YnXOlbjsxGr8SvgSgFvFz4dtoqwMgE0qpt7PWv4lN9p3CCYahXNU7p1qxXjk6GrePnZKixeHU5osD9eHrlvkctr5guyInmmUBBudjkfwJIyMxkdcYynAwsR4OjI+ZRkhh07gq+jIy0LBuY6zo/nz+Jhb2+Zpq7p7cOoiGPsjI3h6I147GxsKOXmnms/o3l6eOHp4WVV5uLiipenN2VDygHQ7bV3mDBtNKVLhlCqRGnGTx2Jq6sr7Vs/l+t4Py6ci4e7J083Ny9L1KxWh1EThrJzz3aOHg/Hzs6OUiWDc+2Xp1KT4Fr27JQ2QewlOHcEXL3ApxA0eQ1WToOCJSGgBKyYCo6uUKuNeR8Xd2jQERaONF/h7OoFC4ZB4TJQrm7u37d8CoQ1gBLZ14YEV4P5Q6Fee9i9GgoFg8v9v4peQjif2rtnL82bNLdsf/XFV3z1xVe8/OrLfPvdt7R9pi1Tpk9h5PCR9PmoD6WDSzNz9kxaPt3S6jhXr15l+NDh/P5nzifkatWr8fEnH9OpYyfc3N34bvZ3d7wXOb+LiYpm8vAJxMbE4uPnS4tnWtLlnTdytYuNjmHOtFlM+ynngpayFUJ55a3X+Oy9/+Hs6kL/kZ/j6HSHexHz2L7wi7R8ZaZle/DEDQyeuIGXnq3CjBEd6dWtAampGXz05TLi4lOpUakwy757HXc3R8s+I/q1ws7Whtc+mk9KaiYN65Tkm5EdsbW1nvg6HHGVX1YdYvvS9yxlzzQrx9Y9kbR6dSaBAR58M6Ljgx/0PdgWE83ppCQmVba+St5GKY4l3GDRxXPcyMjA38mJej6+TK9awyqsAaLSUplw8jhL6+bMlFTy8qZnqRC67t2Jm60dkypVw9nWNk/GdL+92+1DUlNT6Pdlb+Lj46hSqTrzv1uC220fKqKirzF+2iiW/bTWUla5QlV6vtWLN959ETdXdyaNmoGzk8HvCZHhMOrlnO2lE82Pus+ab0dq2T37yzi+gKR4KFkJes0yTx/f1PkzsLGD6R9CRiqE1oE3R5kv2LrVhQjzFdGDluWUVW0OEXtg1CvgFWD+nQ+AyjffjvKIqFa9mt62c5vR3TDUnlMHjO6C4aqoDUZ3wXDxH+02uguGU+Nyf9Pd4yZw89V/bvSI02+UvuvVYrImLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGeWxCWCk1WymllVL9bytvmF3uq5Qqnv1z9VvqXZRSvymlziilgvO+50IIIR5Vj00IZ0sF+iql/O6lsVLKG1gPBAH1tNYnHmTnhBBCPF4etxD+HYgEBvxTQ6VUIeDP7M0ntNaXHmC/hBBCPIYetxA2Af8DeiilSv1Nu9LAVuAC0ERrfT0vOieEEOLxYmd0B/Ka1nqVUmorMATofJdmc4C9QFutdcY/HVMp1R3oDlAwqCB/XTt0v7r7UBqxYpLRXTDcgrYVjO6C4QJX/Gp0Fww37bWdRnfBeE/6GN2DfO1xOxO+qS/w3K0XYN1mKVCTu4e0Fa31DK11da11dS8f7/vVRyGEEI+4xzKEtda7gV+AEXdpMhLoB8xWSnXJq34JIYR4vDx209G36AccAVrcqVJrPVIplQHMVErZaa2/zdPeCSGEeOQ9tiGstT6plJoBfPA3bcZlB/HXSilbrfXXeddDIYQQj7rHNoSzfQm89ncNtNaTlVKZwNTsIJ6aN10TQgjxqHtsQlhr3eUOZdcA91uKogF1h3bTgekPrHNCCCEeS4/lhVlCCCFEfiAhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiISwEEIIYRAJYSGEEMIgEsJCCCGEQSSEhRBCCINICAshhBAGkRAWQgghDCIhLIQQQhhEQlgIIYQwiJ3RHRB3F301mslDJ7Ntw1aSk5IJKhrEJ8M/oWqdagAkJyUzZegUNv32B/HX4wkoFED7VzvwYvcXLccYN2gcK39egZOzE+999h4t2re01G1e+ydzp8xlxpJvUErl+fhuF3PqKqf+OEr8hVhSb6RQuVNtitQsZanXWhOx9hBnd5wkIzkd72I+VGhfA/eCXpY2WZlZHFm2j4v7z2LKzMS3dEEqdKiJs5eLpf7gzzu4Gn4BR3dnKnSogV9IoGX/05uPEXc2mqov18+zcf+dwRPXMXTSBqsyf183Irf3ByAxKY2BY35j2drDxMYlU6SQF2++UIuerzewtP9k6ArmLd6Li7MDX/VpQednqljqVm44wthvNrH+px754jXwb0ydOpVRo0Zx+fJlypcvz/jx42nQwDzu0aNHM2rUKLTWfPLJJ/Tu3duy3/79++ncuTMHDhzA2dnZqO7/KyZTFisPfsuuM78RnxyDp4sPNUo05+lKb2JrY34b11qz8uC3bD2xlOT0BIr7lqNTrY8p5FXScpxFu8ez49QqHOycaFf1HWqWbGGp++v8ZtaFf0+vFl/nj9fC8V2wZiacPQxxV+H14VC/Q0691rBsEmxaAMnxULISvDQIgoJz2mSkwc8jYNcKSE+F0Drw8iAoEJhTP/szOLAePP3MdeXq5ey/fg6cPgDdxz2wYUoI51MJ8Qm8+UxXKtWszLjvx+Pl48XFsxfx9i1gaTN+0Dh2bd7FoIlfUKhoIfbv2M/Qj4fgVcCLVh1bsXntn6z59Tcm/jSJ86fPM7j3V9R+sg5ePl4kJSYxbtA4Rs8ekz/+wQGZ6Zm4B3pRuHpJ9v+0LVf9qd+PcGrTUSp3roObnwcR6w6x/euNNPqkDXZO9gAcXrKXK4cvUO3leti7OnJk2V52zfyDJz5qgbKx4dz2k8RfiKX++825dvQS+37YSrNBHVBKkXI9idObjtHggxa5freRQkr68du87pZtW5ucv69Phq3k960nmTm6E8ULe7Nl9xne/WwxPt6uvNiuKis3HGHB8gMsm9WVU5HR9Ph0EU0ahOBbwJWExDQ+GbqShdNfzTevgXu1YMECPvjgA6ZOnUr9+vWZOnUqLVu25MiRI8TFxTFw4EBWrFiB1prWrVvTrFkzKlSoQFZWFt26dWPKlCkPTQADrD38PZuO/8Kr9QYQ5F2Ki9dPMmfrV9jZOtCq4hsArDv8PRuO/MSr9foT4FGMVX99x6R17/N5uwU42bvy1/nN7Dmzlp5NJnAt4Tzztg2hXKHauDl5kZqRxC97JtDjqVH557WQlgxBIVC3Hczsm7t+9QxY8x28MRwKloTlk2FMFxiyBpzdzG3mD4H9G6D7WHDzhgVDYWJ3GLgEbGzhzwVwNhz6LYRDm2BGLxi3A5SC2Muwdhb0/+WBDlOmo/Op76fOxdffly8mfkH5KuUJKhpEzQY1KRFcwtLmrz1/0apDK6rXq06hIoV4+rmnCasaxuF94QCcORFJtTrVKFepHM2fbY6rmyuXzl8EYOqwqbRo35KSISXv+PuNEBAaRGiryhSqVDTXG4HWmtN/HqN0o/IUqlgUj0AvqrxQh8y0DC7sjwQgIyWdc7tOUa51FfzKBOJVuABVXqjLjcvXiYq4AkDCtXgKliuMe0EvitcPIT0xjfSkNAAOLd5NmWYVcHR3ytNx/xM7WxsK+rlbHn4+bpa6nfvO8kK7KjxZuxTFChfgpWerUbNyUXYfPA/A8VNRPFGrJNUqFOb5NpXxcHMi8kIsAJ+P/Y3Oz1QmNDjAkHH9f4wdO5YuXbrQrVs3QkNDmTRpEoGBgUybNo1jx45RsWJFGjVqROPGjalYsSLHjh0DYPz48YSFhdGkSRODR/DvnL52iAqF61OxSAN83ApRscgTVCzcgMiow4D538fGowtoFvYKVYo1opB3KV6tN4DUjGR2n1kLwJX4SIILVqWYbyg1SjTDyd6F6MRLACzdN40aJZoT6FXirn3IcxUbQofeUL0lqNuiSmvzWWqr7lC9BRQOga4jITUJdi43t0lOgM2L4Pm+UL4+FCsPb46GC8fhSPaH/EunoHJj89lzo5chIRYSzf8+mDcI2vYED58HOkwJ4Xxq02+bKF81jH5vfUrzCs14qcmL/Pzdz2itLW0q1azM5nWbuXrRHDB/7T5IxOEIaj9VB4Dg8sEc/esoN+JucPSvo6SlplG4eBEO7T3E3m17eP391w0Z23+RHJtIWkIq/rdMHdva2+FT0p/rkVEAxF+IRWeZ8CuT08bZ2xU3f0+uR0YD4FHIm5gzUWRlZHLt2GUcPZxxcHXk0oGzZKVnWk1/5xdnzsdSqv5QQp8awasf/siZczGWujrVirNq41EuXI4DYMe+s/x19BJNG4QAUCE0kH2HLnI9Ppl94RdISc2gVDEfdu0/x587TtO3x1NGDOn/JT09nb1799KsWTOr8mbNmrFt2zYqVKhAREQE586d4+zZs0RERBAWFkZkZCSTJ09mzJgxBvX8vyvlX4mIK3u5Eh8JwOW4Mxy/sofyQeZ/6zGJl7iREkNooVqWfRzsnCgdUJnT1w4BUNg7mHMxx0hOu8G5mGNkZKXh716YM1HhRFzdR4sKXfJ6WP9d9HmIjzKH600OThBSHU7tN2+fDYesDOs2BQIhsBSc3GfeLlIWTuw1T1WHbwZPf3ArALtXQVqK9fT3AyLT0fnUxXMX+WXOIl7o9gKvvdeFiMPHGd1/NADPv/E8AH2+6sPwT4bRpkYbbO1szWWDP6ZBU/O6WJ2GdWjRviVdWr2Go5MjAyd8jourC8M+Gcb/hn/K8gXLmf/NTzg5O9FncB8q1qhkzGDvQdqNVAAcbjtLdXRzIjU+BYDUhBSUjcLB1dG6jbsTqQnmNkVrliLh0nV+H7kCB1dHqr1Sn8zUDI6uPEDttxpxfM1fXNwXiaOHExU71sI9wDMPRnd3NSoVZcaI5wgp6UdUTCIjpm7kqU7T2LvqI3y8XRkzoA09B/5KyBPDsbMzf6YeM6AtrRqFAtC0QQidn6lMg/ZTcHayY8bI53BzcaTnwMVM/PJZ5v6ylymzt+Ds7MDYgW2pXbWYkcO9J9HR0WRlZREQYH0GHxAQwPr16wkNDWXo0KE0bdoUgGHDhhEaGkqLFi0YMmQImzdvZuDAgZhMJgYPHky7du0MGMW/0yzsFVIzk/hq6QsoZYNJZ9GiQheeLNsRgPgU8wczD6cCVvt5OBUgLtn8IbVcUG1qlGjOiFVvYG/ryKv1BuJo78KPO4bzQq2+bD+1go1H5+Ng68TzNXtTyr9i3g7y34g3f6jGw9e63MPXvH4M5pC2sTWH6u1tbpifE+p3NJ8ZD2hpnq5+ewKkJMCiUdBrNiydBDuXmfd5bbA5wO8zCeF8ymQyEVoxlHf7vQdAmQplOH/mPItmL7SE8M/fLeDg7oOMmT2GgoUD2b9jPxO/nEChIoHUeaouAN37dKd7n5z1xJnjZ1KhWgXcPNyYMepr5q37gZNHT/LpW5+yZMdS7B3s836w/8IdV6v+aQlLm5d4AGxsbajQoSYVbqk+uGAHRWuXJvFaPJcOnuWJj1pycX8k+3/axhMftrzjIfNK8yfLWG3XrFyU8o1G8sOv+3j/jQZM+34bO/adZeH0VykaZF4T7jdiFcUKe9PsCfO+/d9vSv/3m1qOMXzKBmpWLoaHuxODJ6xj+7L3OXz8Ci+9/wNHN/bFweHheFu405LFzbIePXrQo0cPS928efMAaNKkCSEhIWzfvh2TyUS9evWIiIjA398/7zr+H+yNXM/OU6t5vcGXBHqV4ELsCRbuHoePWyHqBbfNaXj7c4K2ep5aV+5G68rdLNur//qOEn4VcHZwY8WBGfRr/T0X407x7abP+Kr9Yuxs8/f7we3jtfrHfjdaY3nTsLM3X4x1q9n94MnOcOUU7F4JA341X9j17ccwYPF96ngOmY7Op3z9fSlx23pt8eASXMmeek5NSWXKsCn07P8+DZo9QXC5YJ5/43maPtOMedPm3fGYZ0+dZfn8ZfT8rCd7t+6hcu0q+Ab4UrthbTLSMzh76uwDH9d/5ehhPgNOS0i1Kk9LTLWs4Tq5O6NN2rLGa9XG7c4X4USfukrchVhKNQwl+sRVAkKDsHOyJ6hqCeLPx5KZmvEARvPfubk6EhocwMnIaFJSMxg4Zg2D+7bk6cblqFA2kLdfqUvHpysyYebmO+5/4kwUcxftZXDflvy54xT1apQg0N+DJg1CyEjPIuJMdB6P6N/z9fXF1taWK1euWJVfu3Yt19kxQExMDAMGDGD69Ons2LGD4OBgQkNDKV++PMHBwezcuTOvuv6fLd47iSblX6J6iaYEeZemVqmWNC7XmbXhcwHwdDavW95IibHaLyH1Ou63nR3fdPXGObadXMGzVd8l4speSgdUwdPFl3KFapFlyuDqjfz7foBn9hlwfJR1+Y2YnLNjTz8wZeWs8d6UEJP7DPqm4zshMhyad4WjO8zr0s5uULstRB6ClMT7OgyQEM63KtaolCsUz50+S2Bh83pnZmYmmRmZ2Nha/xXa2tpgumXd+CatNcM/GcYHAz/AzcMNkzaRmZFpqcvMzMSUlfWARvP/51LADUd3J6IiLlvKsjKyiD19De/ifgB4Fi6AsrWxapMSl0zitXi8i+f+R5eVmcWhX3ZR6bla2NjaoLXGlGUCsDwX+g7PpZFS0zI4fjqKgn7uZGRkkZGRha3Nba8BGxtMJlOufbXW9BzwK0P/1wpPdydMJk1GZs44MzKzyMrKvV9+4+DgQLVq1Vi3bp1V+bp166hbt26u9r169aJnz54UL14ck8lERkbOB6v09HSy8vHr/qaMzFRsbrs4SSlbTNr89+XjVggPZx+OXd6Vs09WGqeuHaCkfwVup7Xmx+3DaV+tJ84ObmityTLlvB9kmTItx86XfIuYQ/bI1pyyjDQ4sQdKZd+CVywMbO3h8C1tYi/D5VNQumruY2akwfefm6edbe1AmyDL/JyQmf2aeQDPycMx7/QYerH7C3Rt25XvJnxH07ZNOR5+nAUzF/DO/94BwM3djap1qjJl6GRcXF0oWLgg+7fvY9WiVbz3Wc9cx1v641LcPNx5qlUjwHxR14xRMziw8wAnj57Azs6OoqWMXQ/MTMsgKToBML8RpMQlE38xFnsXR1y8XSn5RFlOrA/Hzd8DVz8PTqwPx9bRnsJVigNg7+xA0ZqlOLp8P45uTji4OHJ42T48Ar3xCymY6/edWHcIvzKF8CpqPosoUMKfw0v3UqRGSS4dPId7QU/snR3ybPx38unwlbR6KpQihby4FpPI8CkbSU5O5+X21fBwd6JBzRIMHP0bbq4OFC3kzeZdp/lxyT6G9M09jT574W48PZxo1zwMgDrVi/PVhHVs2xPJoeOXsbezJaSkX14P8T/p1asXr7zyCjVr1qRevXpMnz6dS5cuWU1BA6xfv54jR47w3XffAVCjRg2OHz/O8uXLMZlMHD9+nJo1axoxhH+lQpH6rA2fi49bIQp5leB8bAQbj/xErVLmv2elFI1CO/HbodkEeBQjwKMoqw/NwtHOhRolmuU63raTy3BxcKdKMfOFeaX8K7Hi4AxOXj3AxesnsbWxI8CjaJ6OMZfUJLiWfSKiTRB7Cc4dAVcv8CkETV6DldPMtycFlIAVU8HRFWq1Me/j4g4NOsLCkeYrnF29YMEwKFwGyuX+sMbyKRDWAEpkr4UHV4P5Q6Fee9i9GgoFg4vHfR+mym+f9B92oZXK6bm/zb0vx9qyfgtTh0/l3KmzBAQV5Pkuz/F8106WNZ7oa9FMHTqFnX/u5EbcDQoGFeSZF5/hpR4vW60DxUTF8MbTr/PN0m/xD8xZ+5o9aRY/fv0jLm4ufDLsE8s68v/XVz+N/0/7RZ+8yvZp63OVF65ekiov1Mn5so7tJ8hIScerqC8V2tfAI9DL0jYrI4sjy/dxcX8kWRlZ+AUXpEL7Gjh7u1od88blOPbM/pMnerXCzjH7yw5MmsPL9nJhzxmcPJ2p3LkOXkX+2+0JC9rmPvv4L1798Ee27D5DzPVkfAu4UrNSEQZ+2MxyW9GVqAQGjv6NDVtPcD0umaJB3nR5rgYfdG1g9Rq4Gp3Akx2nsGH+2wQVzLnYbNT035n03RbcXB0Z/8UzlnXk+8G59Cf37Vh3MnXqVEaOHMnly5cJCwtj3LhxPPHEE5b6lJQUKleuzPz586lSJecLSubMmUO/fv3QWjNs2DBee+21B9bHaa/dn6nu1Iwklh+YwcFzm0hIvY6Hsw/VizelVSXzRVaQ82UdW04sITktgeJ+5elcsw+FvK0vJrqREsPIVV3p03IGXi457we/HZrDxiM/4WjvQudaH1uuvP7/eufJ/3iLz7GdMOrl3OV1nzXfjmT5so75kHTLl3UUDslpe/PLOnYuh4ybX9bxRc6Xddx0IQKmvAODloGj+Yt9MJnM9xlvXwJeAebfWTzsPw1Fv1H6rgvVEsL32f0M4YfVfw3hR8n9CuGH2YMO4YfB/Qrhh9l/DuFHyN+FsKwJCyGEEAaREBZCCCEMIiEshBBCGERCWAghhDCIhLAQQghhEAlhIYQQwiASwkIIIYRBJISFEEIIg0gICyGEEAaREBZCCCEMIiEshBBCGERCWAghhDCIhLAQQghhEAlhIYQQwiASwkIIIYRBJISFEEIIg0gICyGEEAaREBZCCCEMIiEshBBCGERCWAghhDCIhLAQQghhEAlhIYQQwiASwrdRSs1WSulbHtFKqRVKqbJG900IIcSjRUL4ztYDgdmPZoAz8KuhPRJCCPHIsTO6A/lUmtb6SvbPV5RS44DlSilnrXWKkR0TQgjx6JAz4X+glHIHOgGHJICFEELcT0prbXQf8hWl1GzgZSA1u8gVOA+00lqH32Wf7kB3gCJFi1Q7cfpEHvQ0/zp5JdLoLhiulGmb0V0wnFOR143uguFiL8jndp+1F43uguH0G6XV3erkTPjO/gQqZz9qARuBtUqpIndqrLWeobWurrWu7ufnl2edFEII8XCTNeE7S9Zan7y5oZTaC8RjPtsdYFivhBBCPFLkTPjeaMAEuBjdESGEEI8OORO+M0elVMHsn72B9wA3YLlxXRJCCPGokRC+sybA5eyfE4BjwHNa6z8M65EQQohHjoTwbbTWXYAuBndDCCHEY0DWhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiISyEEEIYREJYCCGEMIiEsBBCCGEQCWEhhBDCIBLCQgghhEEkhIUQQgiDSAgLIYQQBpEQFkIIIQwiIZxPbP5zMx3adaBk0ZI42Tkxd85cq3qtNV998RUlipTAy82Lpo2acuTwEas2aWlpfPTBRwQFBFHAowAd2nXgwoULVvWvv/Y6ft5+hIWGsWH9Bqv9p0yawqsvv/rgBvkfJCUmMvzzoTSt1YhqpSrx0jOdOXTgkKU+rHDZOz4Gf/alpc3IL4ZRt3wtGtdoyIrFy62O/8e6jbzy7ItorfNsTP/W5atxvPnRtxSp/D5ewd2p0ugzNu84bqlfsnovbV4eQ5HK7+Nc9A3+3H4s1zH6fjmfQhV6UrpWb376dbtV3cp1B2jUfmi+fg7uZOrUqZQoUQInJyeqVavG5s2bLXWjR48mICAAf39/xowZY7Xf/v37KVOmDCkpKXnd5f9sxNjB+BRxsXqEVi1uqX/3o+656pu1fdLqGP2/+IRSYUFUqBnMwl/nW9X9tm4lrdo3zl+vgeO7YOJb0Ls+dA2GLb9Y12sNSydCr3rQIwxGvgQXT1i3yUiDH76ED2rC2xXNx4u9bF3/TR94tzL0awpHtlrvv34OzPjogQzvJrsHenRxz5ISkyhXvhwvvfISXbt0zVU/ZtQYJoybwDfffUNISAhDBw/l6RZP89eRv3B3dwegT68+rFi2gjnz5uDj40PfPn1p/0x7tu/ajq2tLTO/mcn+ffvZtGUTa35bQ5dXunDu0jmUUpw/f54J4yewZfuWvB763xr48QAijh5nyLhhFAwsyPLFy+j2wuss3biSgMAA/ti32ap9+F/hvNflbZq3bgGYQ3blkpXM+PFbzp05y4Den1GvYX28C3iTlJjIiEHDmTxrKkopI4b3j+Lik2nUfih1awSzePaH+BVw58y5KPx83C1tkpPTqF2tNC88W4euH32b6xgr1x3g56U7WD6vFycjr9KjzyyaPhmGbwF3EhJT6PvlfBbN7Jlvn4M7WbBgAR988AFTp06lfv36TJ06lZYtW3LkyBHi4uIYOHAgK1asQGtN69atadasGRUqVCArK4tu3boxZcoUnJ2djR7Gv1K6VAjLfv7Nsm1ra2tV/2SDRkwbn/P372DvYPn5t3Ur+WXpAhb9sIzTZ07xfp8eNHqyCT4FfElITKD/F58w77uF+es1kJYMQSFQtx3M7Ju7fvUMWPMdvDEcCpaE5ZNhTBcYsgac3cxt5g+B/Rug+1hw84YFQ2Fidxi4BGxs4c8FcDYc+i2EQ5tgRi8YtwOUMof12lnQ/5fcv/s+kjPhfKJFqxZ8NeQr2ndoj42N9V+L1prJEyfTp28fnm3/LOXDyvPtrG9JSEhg/k/mT7Tx8fHM/m42Q0cMpUnTJlSpWoXv5nzHob8OsXH9RgCOHTtG69atKVe+HD3e6UFUVBTR0dEAfNjzQ/oP7I+/v3/eDvxvpKaksn7VWj76tDc169aiaIlivNu7J0WLF2XB9z8B4OvvZ/X4fc1GipcsTo06NQE4feI0NerUJKxSBVq1a42ruxsXzplnByYMH0fr9m0oFVLasDH+k7HTV1PQ34uZ47tRo3JJihf146n65SgbXMjS5sUOdfnso2do9lSFOx7j2MnLNKhdlmqVStDpmdp4uDsTed789z5w5GJeeLY2oSFBeTKe+2Xs2LF06dKFbt26ERoayqRJkwgMDGTatGkcO3aMihUr0qhRIxo3bkzFihU5dsw8OzB+/HjCwsJo0qSJwSP49+xs7QjwL2h5+Pr4WdU7OjhY1Xt7F7DURZw8Tr3aT1ClUjU6tHsed3cPzp6LBGDwiM95rn1nyoaE5uVw/lnFhtChN1RvCeq2qNLafJbaqjtUbwGFQ6DrSEhNgp3Zs13JCbB5ETzfF8rXh2Ll4c3RcOE4HNlmbnPpFFRuDEHB0OhlSIiFxFhz3bxB0LYnePg80GFKCD8Ezpw5w5UrV2jSNOeNw9nZmfoN6rNj+w4A9u3dR0ZGhlWbIkWKUDa0LNu3m6cfK1SswNatW0lJSWHd2nUEBgbi6+vLooWLSEpK4tXX8tdUdFZWJllZWTg6OliVOzo5sW/X3lztk5OSWL1sJR1efM5SVqZcGQ4fDCc+Lp7Df4WTlppK0eJFObj3ALu276J7z7ce+Dj+P5av2UeNKiV5+Z1pFK3yAbVafM602Rv+1bRhxXJF2PdXJNfjktj3VyQpqemUKubPzn2n+HPbMfq+1/oBjuD+S09PZ+/evTRr1syqvFmzZmzbto0KFSoQERHBuXPnOHv2LBEREYSFhREZGcnkyZNzTU8/LM6eO0P56qWoUjeUN995lcizZ6zqd+zeTpnKxaj5REU+7PsOUdHXLHVhoRU48Nc+4uKuc+CvfaSkplCyeCl279vFlm1/8tF7dzjTzM+iz0N8lDlcb3JwgpDqcGq/eftsOGRlWLcpEAiBpeDkPvN2kbJwYi+kp0L4ZvD0B7cCsHsVpKVA/Q4PfCgyHf0QuHrlKgD+AdZnqf4B/ly6eMnc5upVbG1t8fX1tW7j78/Vq+b9u7zehfBD4VSuUBlfX1/m/TSP+Ph4+vfrz8rVKxn85WDm/zSfgIAApk6fSpmyZfJgdHfn6uZGpWqV+XridEqXCcHX35dVS1ZycO8BihYvmqv9yl9XkJ6ewTPPPWspq9ewAa3bt6Hz08/h5OTIkHHDcXF14Yv/fc7AYYP49efFfP/tXJydnfj0q/5UqV41L4f4j86cj2LG9xvp2bUZfd5pxV9HztFr4I8AvN2l8T0do+mTYbzwbG3qt/kKZyd7vhnbFTdXR3p+OoeJQ19h7s9bmPzdOlycHBjz5UvUqZ5/ZwYAoqOjycrKIiAgwKo8ICCA9evXExoaytChQ2natCkAw4YNIzQ0lBYtWjBkyBA2b97MwIEDMZlMDB48mHbt2hkwin+nWpUaTB47g+DSIURFRzF24ghaPvsUWzfspYC3D40bNqV1y7YUK1KccxfOMnTUl7Tr1IqNq7bi6OhIo4ZNea59Z5q0boCTkzNTxs7A1dWN3v/ryZhhE/nx57lMnzkFF2dnhn85lprVaxs95L8Xb57JwcP6/Q4PX4i7mt0myjzl7FYgd5sbUeaf63c0nxkPaPl/7dx7VJRlAsfxrwu4itxKEQRvmKgoZsrFkFqPRrnUsbDjWa3EyswoxTXITPOSB1ZR05NaibtmbllhYFZ4qXTLMkRJu5xELoqaV4LQTHSwgXn3j9HBEWyzxBe33+cczvF9n2feeZ5x3vc37/PMM/bh6scXguUUZM2DpBXw3mLY/r79MQ+m2gP8ClMIX0Munq8xDON/zuFcWMfNzY2Fixc6lSeMSeCR0Y9QVFhEVmYWuXm5rMpYxaiHRpGzLae+Q15VsxfOZXryFG6L6I+Liwshod2JvecuCnbtrlM3661Mbht0G9e3dD7pxiYnMjY50bG9dOESeoXdhIenBy8+v5jVH66huLCY5Mcm8GHuJtyaNr340Kax2Qz63NiRlGeGAnBTaAf27i9j6Wsf/+oQBpiaFMfUpDjHdtqibPr26Yy3lzspC95l24bnyC86zAOPv0xhzlyaNm38l4ZfOh8SEhJISEhwlK1cuRKAmJgYunTpQm5uLjabjejoaIqLixvVNEx9YgYMctoO7xNJWHQPMjLf4Ikx47n3ntrRn+4hofTq2Zuborrx0ccbGBwbB8CkpKlMSprqqPf8wjQiwiLx8vQibX4qmz/IpaAwn4cTHuCrrQU0bUTnwSXVuf4Z9ey7uIoBnKvj6gYjnnMuXzEF+g+H0hL4Yh1MWwN5a2HZRJj2zhVqeC0NR18D/Pztn/jP3xGfV15W7rg79vPzo6amxjHH66hTXn7JC8xnn37GV19+xZPJT7L5k83Exsbi6enJffffx84dOzl16lQD9ObytO/YnhWrV5JX/CWb8j4hY10m1dXVBLZr61SvML+A/G92OQ1F1+fAvv2sWbWapClPkbd1O+F9w/H1a010/1uwWq3sL9n/i4+/2vxb+xBywfwvQLfObTh0pOI3H3PPvlL+vWoLqZOH8unWAqIju9DGz4eYv4RitVZTvK/09za7QbVq1QoXFxdKS53bWVZWVufuGKCiooJp06aRnp7Otm3bCA4OJiQkhB49ehAcHMz27duvVtOvGI8WHnTrEkLJ/r31lrfxDyCgTSD79pfUW7533x7efPs1ZkxOZUvuZ0T1jcbfrw0D+sdgtVrZW1LckM3//bzP3QGfLHfe/1NF7d2xty/YamrneM87VVH3Dvq8ou1wYBcMegQKttnnpZt7wM13w4FvwVJ5RbsBCuFrQlBQEP7+/k5Liqqqqsj5PIebo+zDRn3C+uDm5uZU5/DhwxQWFBIVFVXnmGfPnmX8uPG8tOQlXF1dsRk2rNVWwD7nBlBTU9OQ3bos7u7u+Pq15uSPJ9n66ecMvGOgU3nmG28T2C6QqFv7XfIYhmEwc9IMkqc+jaeXJ4ZhUF1d7Sirrq7GZrM1aD8uV1R4Z4pLnMNmz/5S2gf+ti+LGIbBuMmvMXvqMLy93LHZDKzVNY4ya3UNNTWN6zW4WNOmTQkLC2Pjxo1O+zdu3Ei/fnX//5OSkkhMTKRjx47YbDasVquj7Oeff25U7/Nfq6qqij0lRfj7+ddbXnH8B46VHsWvdd1ywzBIfiaRmVNn4eXljXHBa2J/D1ipsTXy16RVO3vIXrikyHoW9uyAG3rbtzuEgosb5F9Q5/gxOFYCneuZdrKehddn2IedXVzBsEGN/frAuWsjxpU/Nxr/mNMfRGVlJSV77Z9abTYbhw4e4puvv+G666+jffv2jBs/jjmz59C1W1eCg4NJm5WGh4cHw+8bDoC3tzcPjXqIKZOm4Ovr61ii1PPGngyMGVjn+Wal2ufMwiPCAegX3Y+JyROJHxlPVmYW3Xt0x8fH56r1/1JyNm/BZjMI6tyJgwe+Y37qPDp2CiJu2L2OOhaLhXVrsnn48dG/ODy/+q0sPL28uP1O+xd6ekf04cXnF/Fl3k6KC4pwdXWlY6egBu/T5UgcfQcDhsxizuJshg6O5OtdB3n51f8w8+na/h//sZJDR45z8qczAJQcKMPbyx0/X2/8W3s7HW9Fxha8vZoTFxsGQL+IYFIWvEtOXjG7Cg/j5upClxvqv7A3JklJScTHxxMZGUl0dDTp6ekcPXrUaQgaYNOmTezevZvly5cDEBERQVFREdnZ2dhsNoqKioiMjDSjC5dlespkBsXcSdvAdpRXlDF/YRqnz5xh+NARVJ6uZO6CfzD4zjj8Wvtz8PB3pKRNp1VLX+766911jrUyYwVeXt6OYeq+EVHMnp/Ctryt5Bd8i5urG507dbnKPaxH1Wko+87+b8MGx4/Cwd3QwgdaBkDMg7BuiX15kl8QrH0Z/twC+g62P8bdE24dCplz7d9wbuEDq2ZD267QvZ4P69kvQeitEHSjfTs4DDJmQfS98MUGCAgGd68r3k2FcCOxc8dOBsXUzvukzEwhZWYKI0aOYNnyZSRPTMZisTAhcQInTpwgIjKCtRvWOtYIA8ybPw9XV1fi74/HYrEwYOAAXlnxSp31hPm78snKzCJvZ55jX9yQOHI+z2FQzCACAgNYtrzuelMznDpVyQtpC/j+WCnePj7cHns74yc9iZubm6POB++vx3LGwpC/DbnkcX4o/4F/LlrC62vecuwL7dWT0ePG8PfR42jh0YLZC+fSrHmzBu3P5QrvFcTb/xrHjLmrmb0om3YBLZmeHMdjI2s/WK3b+DVjkpc7tp+YtAKAZyfc7TQP/H35SdIWZ/PxO1Mc+8J6BTHxibsYPuZFPFo045UXHqV5s8Y/Fzhs2DAqKipITU3l2LFjhIaGsn79ejp06OCoY7FYGDt2LBkZGY5zIDAwkPT0dBISEjAMg6VLlxIQEHCpp2k0jh47wqPjHuT4iQpaXt+K8D6RfPjeZtq1bY/FYmF3YT6rVr/JyZ9+xK+1P7dE9Wf5kpV4eng6Haes/HvmL5rD+ndqR8x69wpjwtinGPnocDw8PFjywrLGsYb6wC6YN6J2+71F9r9+Q+zLkWLHnPsxjplw+iR06gVJr9auEQYY/iz8yRXSJ4C1CkKiYPQ8+xe2LnS42P6N6Ofer93XZxAU74B58eDjZ3/OBtCkUf1Cyv+BsPAwY+v2rWY3w1R7Sw+Y3QTT3WD7Y78HAJq1e9jsJpju+OFr51e5GkrLj46Y3QTTGaM6X3KITnPCIiIiJlEIi4iImEQhLCIiYhKFsIiIiEkUwiIiIiZRCIuIiJhEISwiImIShbCIiIhJFMIiIiImUQiLiIiYRCEsIiJiEoWwiIiISRTCIiIiJlEIi4iImEQhLCIiYhKFsIiIiEkUwiIiIiZRCIuIiJhEISwiImIShbCIiIhJFMIiIiImUQiLiIiYRCEsIiJiEoWwiIiISRTCIiIiJlEIi4iImEQhLCIiYpImhmGY3YZrXpMmTcYAY85tdgWKTGxOY9DBMAxfsxshItLYKYRFRERMouFoERERkyiERURETKIQFhERMYlCWERExCQKYREREZP8F2N+Ipgs8heTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "matplotlib.rcParams.update({'font.size': 14})\n", + "fig, axes = plt.subplots(1, 6, figsize=(7, 7), sharey=True)\n", + "for i, discovery_celltype in enumerate(['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']):\n", + " colors = [\"white\", color_dict[discovery_celltype]]\n", + " cmap1 = LinearSegmentedColormap.from_list(\"mycmap\", colors)\n", + " im1, bar = heatmap(np.flip(unreplicated_ratio_df[discovery_celltype].values.reshape((6, 1)), \n", + " axis=0), \n", + " list(rb_df.index)[::-1], \n", + " [discovery_celltype],\n", + " cmap=cmap1, ax=axes[i], vmin=0, vmax=1)\n", + " bar.remove()\n", + " _ = annotate_heatmap(im1, \n", + " data=unreplicated_ratio_df[discovery_celltype].values.reshape((6, 1)), \n", + " valfmt=\"{x:.0%}\", \n", + " textcolors=(\"white\", \"white\"),\n", + " threshold=1)\n", + " if i > 0:\n", + " axes[i].axis('off')\n", + " \n", + "plt.subplots_adjust(wspace=0, hspace=0)\n", + "plt.savefig('replication_ratio.unfiltered_results.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":62: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + ":63: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_yticklabels([\"\"]+row_labels)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAGxCAYAAABVxA75AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAC3s0lEQVR4nOzdd3RUxdvA8e/spvfeCaH33otSBAEFC6igqNiwt9cuPyuIvXdRBCuodAFFpfcinYD0lpDeezY77x8bkmyyCUlI2CjP55wc2LlzZ+duNvvszJ2itNYIIYQQ4sIz2LsCQgghxMVKgrAQQghhJxKEhRBCCDuRICyEEELYiQRhIYQQwk4kCAshhBB2IkFYCCGEsBMJwkIIIYSdSBAWQggh7MTB3hUQF45Syh3oBzQCfIE1Wust9q2VEEJcvJQsW3lxUEo1A74HegFngGigK7ABmKi1jrNj9YQQ4qIk3dEXAaWUH/ATEADcprUOB8YCfYFUYKFSqosdqyiEEBclCcIXh3uBNsATwCwArXWK1vqf4mMHgOsAlFL97VVJIYS42Eh39EVAKRUDLAce0lqnK6WULvOLV0pdCWQB/sAcYAfwoNZ6o10qLIQQFwkZmPUfp5Tqg6Ubei2QAVAuABu11kuUUh7AJuArwASsUErNB+7TWqdf+JoLIcR/n3RH//cdBzRwRmutlVKq3PGzAfkloAiYpbW+H+gMeAI/Fw/qEkIIUcckCP+HFQfcTGAvMF4p5VauFeyotTYrpdoB47B0RW8BKL5f/DjgCtx6wSsvhBAXAQnC/2HaIgt4C2gPXFvueGHxf6cAB4FftdbZZ1vLWuuDwGpgglIq4sLVXAghLg4ShC8CWuufgOnAF0qpeUqpMUqp1wGUUlcDPYHZwK7i/Fop5VR8+iEgGDCXLVMpZbxQ9RdCiP8qCcIXCa31+0AEcAq4AWhafOgJLIO2/ip7z1hrXVB8fAyWKUzGcuUVASiletZ75YUQ4j9KRkdfRLTWacAjxfeGc5RS9wJ9gKu11keL82illJPWuqB46lJ7YLnW+tTZcpRSLsB4LIO3HlBKbQGGyShqIYSoGWkJX4S01jnF/z0KJANvlm3RFgdgH2AqkA18AaCUaq2UmgisAe4E1mOZX7yneP6xn1Iq8MJdiRBC/LtJEL6Iaa3/0FoHA38Aq5RSc5RSzyqlvsOypnQwMBnYo5R6EUsw7gq8o7XuC7gACsvAL7CsyrVNKTVDKSXvLSGEOAdZMUsAoJQKAZ7BsmpWJJYBWR9orfcopa4FfgZ+11qPKs4fgWUTiDe11q+UKacH8AHQEcsKXTMu7JUIIcS/hwRhYeXs/eIyjxWWucLXA28CicB9xY+HAJdprc+czXt2HrJS6mPgfmAf8LDWeuUFvRAhhPgXkCAsqk0pFYplNPWDWAb1PaC1/rzMcVU8sMsR+BOIBdKwLPaxE7hWa514oesthBANldy3E9WmtT6jtX4c2AOkA5OVUpeXyXJ2Scz/w7Je9bziJTBbFecfdCHrK4QQDZ1MURI1opS6DWgHDMay7nRscbqD1tqklGoE3AYsA1YAaK1jgCvtUV8hhGjIJAiLaise8TwWmAtsKrsOtdbaVPzf57B0QS/UWqeU3zZRCCFEKQnCotq01mZghFLK08Z2iEVKqf7AZViWyFxffI4EYCGEqIQMzBJ1Rim1EMvyls8WT22SVrAQQlRBBmaJOqGUuhvohWUw1h6QVrAQQpyLBGFRV/YBMykejHV2IwghhBCVk+5oIYQQwk6kJSyEEELYiQRhIYQQwk4kCAshhBB2IkFYCCGEsBMJwkIIIYSdSBAWQggh7ORfEYSVUsFKqQ+UUkeUUvlKqRil1G9KqSuKjx9XSuninzyl1Cml1Hyl1KgqynRRSu0qPqd7cdpLZcqp7CfqAl22EEKI/7gGH4SLg952YBjwLNARy2byS4DPy2SdDIQCLYFxwHFgvlLqo0qKfhs4bSMttMzPP8A75dJOnaO+d1frwv7D5DUQQojq+Tds4PApln1qu2uts8qk71dK/VDmcabWOq74/yeB9Uqp/cAXSql5WuuVZzMqpa7GsrftdcAVZ9OLy88qk88EZJUptzruBqbVIP9/kbwGQghRDQ26JayU8gOGAx+XC8AAaK1Tz1HEdCAVGFOmzAjgM2A8kFt3tRVCCCFqpqG3hJtjaQXvr83JxdvrHQSagmXLPeAH4B2t9c66ur9b3P16N4ByUN3cotwv6rVAWz7Rm1ZP9rmoX4Od91xr7yrYnWvzpy769cNXzzh2Uf8dAAy4vclF/z6oSkMPwnXxy1PA2T+ESUAh8G4dlFtCaz2N4u5Xtyh33eKFNnVZ/L9OXq2+MgkhxMWnQXdHA4ewBNBaRbXilm9L4Ghx0mVY7gUXFt/vPVycvqnc/WUhhBCi3jXolrDWOkUptQx4UCn1Yfn7wkopH611WhVF3AX4AHOKH98OuJc5HgYsw3J/eH1d1VsIIYSojgYdhIvdD2wAtimlngd2Y+liHoRlylJkcT5PpVQI4Ag0Aq4HHsIyqGs1gNb6WNmClVJng/oRrXX56UpCCCFEvWrwQVhrfUwp1RXL/dw3gHAgGdgF3FMm6wvFPwVAIrANGK21XnRhayyEEEJUT4MPwgBa6zNYWrUPVXI8qpblHqeKwV9a6/a1KVcIIYSojoY+MEsIIYT4z5IgLIQQQtiJBGEhhBDCTiQICyGEEHYiQVgIIYSwEwnCQgghhJ1IEBZCCCHsRIKwEEIIYScShIUQQgg7kSAshBBC2IkEYSGEEMJO/hVrR1/MklYkkLgsHlNaIS7hroSNi8C9pafNvHELY0lYdMbmsbbvdcTBy5H0v1NJXpVI7slcdKEZ5zAXgkaG4t3Zpx6v4vyk7YgjZesZirILcApwI3BQY9wivGzmTVp/ipSNMTaPNb2vGw7ujlZpuaczOPVTNE5+rkTd3qnO615XvvhhI+9/tZq4hEzatAjmrf+Nol+PJpXm11rzycx1fDV7M8dPpeDr48bN13ZjypMjSvL8tGgH7365msPHk/D0cGZw3xa8+syVhATafn8J+1uw4jtm//4lyWkJNAlvyYM3PkfHlj0rza+1Zs6fM1i06kfikk7j6e7NsL6juef6pyvk3X1wK4++eRORoc2YOeX3+rwMUYYE4QYsbUsKsbNPET4+EvcWHiSvTOTY+4dpOaUdTv5OFfIHDgvGf2CgVdrJL44C4OBlCT5Z/2Th0caLkGvDMbobSduUwomPj9DsqZaVBnd7yjyQRMLKEwQNicI13Iv0nXHEzD1A1O2dcPRyrpDfr0cYPp2DrdLO/HoIlKoQgIvyTMT9dgS3xt6YMgvq9TrOx5wlu3jylUW8/9I19O0WxbQfN3HNXV+z/bfHaBTma/OcZ15bzG8rDzD16Sto3zKE9Mw84hIzS45v/Ps4dz75E689cyWjhrQjISmTR15awB2Pz2Lpt3dfqEsTNbBiy2I+mjWF/7t5Mh1adGfByu956r07+OaVZQT7h9s859OfprJx1wruveFZmoa3Ijs3k+T0hAr5MrPTee2rJ+jWpi+JafH1fSmiDOmObsAS/4jHr28A/gMCcQlzJXx8JA7ejiSvSrSZ3+hixNHbseRHF2myD2bhd2lpYA6/qRFBV4Tg1tQd52AXgq8OwzXKjfQdaRfoqmomddsZvNoF4tMxGGd/V4Iua4KDuxNpO21/UBicjDi4O5X86CJNbkwm3h2DKuSNX3YEr3aBuIR61PdlnJcPv17LzaO7ccfYXrRuHsy7L1xNSKAnX/64yWb+g0cT+ey7Dfz82a2MGtKOJpH+dG4XzvCBrUvybN5xgvAQbx66/RKiGvnRs0tj7rulL1t3nbpQl1UrSqlVSqlPlVKvKqWSlFIJSqm3lVKG4uM3K6W2KqUyi4/9opQKL3P+QKWUVkpdppTarJTKUUptK94utUH7Zdl0hvcbw8gB42gc1pxHxr+Ev3cgC1f+YDP/yTNHmbf8W6Y+NI3+XYYSFhRJi8bt6N1xUIW8b854mmH9RtO2WZf6vgxRjgThBspsMpN7IgePdtbdrp7tvMg5nFWtMlLWJmF0M+Ldzafq58ozY3RreJ0iushMXnw27lHeVuluUd7kxWZWcpa19D0JGJwd8GjhZ5WetiMOU3Yhfr1ttyAaioICEzv2xTCkf0ur9Mv6t2TT9hM2z1n81z6aNPLjz7UHaTvoDVoPfJ2JT/1EQnLp+6ZPtyjiEjNZsjwarTVJKdnMWbKLYQNa1ev11JHxgAnoCzwIPAqMLT7mBLwIdAJGAgHALBtlvAY8A3TFsj/5D0qpSrc1tbdCUwH/nNhLj3aXWKX3aHcJ+w5vt3nO+p1/EhbQiC17V3PjUwMY++QlvPbVE6RmJFnlW7DiO1LSk7hl1IP1Vn9ROQnCDVRRpgnM4OBlHRwdvBwoTC885/narEldl4RvX38MjpX/mpNWJFCYUoBvH79K89hLUa4JNBjdrLuRHdwcMWVX4zXQmoy9iXi1C8DgUPoa5CfmkLwxhtArmqMMDfZzF4Ck1ByKiswE+Vu31oP8PYhPsv1F5NipFE7GpPHL4l1Me+N6pr81ln+OJHLd3TMxm80A9OrSmG/evZE7Hp+Nd9tJRPaajNbw5ZtjbZbZwERrrV/QWh/UWv8MrAQuA9Baf621Xqq1Pqq13gLcB1yilIooV8bzWuuVWusDwGSgNdBgv5GlZ6ZiNhfh6xVgle7rHUBKuu2esdjEk8Qlx7Bi82KeufMt/jfxHU6eOcKkDyaWvA+Onj7AN4s+5Lm738NoMNb7dYiKJAg3cBW+m2sbaTZk7smgMKUQv0sCKs2Tvi2VM7+cptHdTXAKqHh/tcGwdb3VeA2yj6ZhyizAu0NpV7TZZObM4kMEDojE0cel7upYz8o30jS6QtpZZq3JLzAx/e2x9O/ZlH49mjD97bFs232KbbtPA7D/UDyPv7KIZx64jPXzH2bh13cQn5TJQ8/Pq/drqQO7yz2OBYIAlFJdlVILlVInlFKZwLbiPJFVlBFb/G/FexYNTPlfudaVfyBos6bQVMCkie/QqVVPOrbsyaSJ77D/2C4OHNtNQWE+kz9/hPtumERoYKMLUHthS8PrgxQAGD0dwACF6SardFOmqWSQVVVS1iTi1twdl3BXm8fTt6VycvoxGt3ZpMGOjDa6OoCConKtXlNOIQ5u534N0ncn4BLmgXOAW0laUXYBBcm5xP1+hLjfj1gSteWfg+9sInxMa9yjfOrqEs5bgK8bRqOhQqs3MTm7Quv4rJBATxwcDLRoUjoWoHlUAA4OBk6fSaNn50je/mIl3Ts24v8mDgCgQ+tQ3F2dGHLj57z02DAiQn3q7ZrqQPluEA0YlFLuwDLgL+AWIAFLd/RaLN3UlZVR/A5ouI0Sb09fDAYjKenWXclpGcn4edn+ou3vE4jR6ECjkKYlaRHBTTAaHUhIicXXO4DjsYd4/euneP3rpwDQ2ozWmsF3teCNR7+mR/tLbJYt6o4E4QbK4GDAtbEbWdEZ+PQoHQGbGZ2BdzfbI2LPKkwtIGN3OhETGts8nrY1hVPTj9Pozih8ulddlj0powGXYHdyTqTj2cq/JD3nRHqFe7zlmbIKyD6aSvCwplbpDh5ONJ7Q0SotbWc8OSfSCbu6JY7eDatHwMnJgS7twlm+/hCjR5TWe8X6Q1wzrL3Nc/p0jcJkMnP0RDJNG1tet2MnUzCZzCWjqXNyCzGW64o3Gi0xSGvNv1RrLEF3ktb6GIBSarR9q1Q3HB2caNW4Pdv2rWNgjytK0rdFr+PSbsNtntO+eXeKikzEJJwgPMjyWRCbeJKiIhPB/uEE+gTz9eTfrM5ZuPJ7tu1bx5QHPyckoHwPvqgPDfabn4DAy4NJXZ9M8pok8mJzifnxFKa0QvwHWL75npkbw9G3DlY4L2VdMgZnAz49KgaqtM0pnPzyGKFjwnFv6UlheiGF6YWYskwV8jYEvt1DSd+bSPruBPKTc0lYcRxTVgE+nSzTkBLXnOTUz9EVzkvfk4DB0WgVvMES2J0D3ax+jG4OKKPCOdANg1PDuy/28B2X8P28v5nx8xYOHI7niSmLOJOQwV039gbghbd/44pbp5XkH9yvOZ3bhXPvs7+wc18MO/fFcO+zv9CjUyO6dbDc9rxicBsWL49m2g8bOXYymY1/H+fxKYvo3C680mlP/wIngXzgQaVUU6XUlcAUO9epzlw/7E5+Xz+XxWt+4kTsYT76cTJJaQlcNXA8ANPmvMljb40vyd+tbT9aNm7Pm18/zaET+zh0Yh9vfv00bZp2plVUBxwcHGka0crqx8fTH0dHZ5pGtMLNxd1elwqAUmpm8Uj258qlnx3hXvm9tsrLHK2U+kMplVg8gn6zUuoqG/nGKKWilVL5xf9eez7XUhVpCTdgPj39MGWZSFh8BlO6ZbGOqEeal9y/NaUVkp+Yb3WO1pqUdUn49vLH4FzxO1by6kQogtjZp4mdfbok3b2VB82eangjYz1bB1CUayJ502mKsgtxCnAjfHTrkhZrUXYBhWl5VudorUnfk4hnmwAMjg0vqNbUdVd2Ijkthzc+XUFcQgZtW4Yw/8vbiQy3BMu4hEyOnkwpyW8wGJg77TaemLKIy8d/jquzI4P7teD1SSMxGCzviVvGdCcrO58vvt/As68vwcvThQG9mvHKUyNs1uHfQGudqJSaALwKPIDlvu9jwH9i5YnBPUeSkZXKd79+TEp6Ik3CW/LGo18TEmD5YpWcnkhMwsmS/AaDgdce+YoPf3yZh18fh7OTC93b9eP+sf8reR/8C+QBTymlvtBa2x6BVjMDgBXAc0AKlpH285VSA7XWawGUUn2An7CMsp8HjAZ+UUr101pvroM6WFH/4q6nBsktyl23eKGNvathV3n7z32/9r9u5z319sX5X8O1+VMNe+j5BbB6xrGL/gN2wO1NavU+UErNxDJYLgJYpbV+uDh9IJYR8YFa66TKzq/B82wB1mqtHy9+/BPgp7UeWibPX0Ci1vrG832+8v41X4eEEEJcdMxY5nPfq5RqZiuDUirrHD+/2TqvDE8gtczjPsAf5fIswzIvvc5Jd7QQQogGS2u9VCm1HpgKjLORpfM5isit7IBS6gEsLe3vyiSHAOWX5IsvTq9zEoSFEEI0dE8Bm5RSb5c/oLU+XJsClVJjgLeAcVrr8svPlb+NoGyk1QnpjhZCCNGgaa23AnOBN8ofq013dHEA/g64VWu9qNzhOCq2eoOo2DquE9ISFkII8W8wCYgGyk+M7nyO86y6o5VSNwDfABO01nNs5N8IDMXSSj5rKLChJpWtLgnCdnBq+nFSNyQTfE0YwaNCS9KzDmRy9K2DtH2/Ew6eNfvVnD23vJavtMMl1LI8ozZpEpaeIXVDMoWphTiHuBB6XTieHUo3SNBmTfzCWFI3pWBKK8TBxxHfXn4EXx2GMtbdYNe43w6TsS8J/34R+PcpXRQg52Q6p3/eT7P7u1VYM7omqtonuCjfRPK602QeTMacZ8LB04mA/pF4trbMKdZmTfKG02REJ1GUXYDR3QmvtgH4942o07Wm737qZ76f/zcvPHo5zzxwWUn6ms1HGH7zNE5ufoEAv5rN1TyTkMGzry1hZ3QMh48ncdPVXZn25g0V8n0ycx1fztrEyZhU/HzcGDmkHa88OQIP99LFSmq6h3F9KR4lOwHLes+vlEkfyHmMklVKDQDeBdphWbryTa3153VQ5Rp7bfqTLFs/lzuufYxby2yksOPAJv7vzZtY8ME2fDxrtr57cloCn/40lYMn9hETf5yhfa/l2TvfqpAvOzeT6fPeZfW238jITiPQL5SJo59gUM8rrcqaNudNNu1eRU5eFmGBkfzfrVPo3KpX7S+6hrTWh5VS04BHyqdXtwyl1DgsLeAngDVKqbMt3gKt9dl5fh8UH3sWmA9cCwwC+p/nJdgkQdhOlKMi8fc4/AcG4OBZd1N6Wk5pi9G99NdaNpjHzY8hdWMKERMa4xzmQtbeDI5/coTmz7bGtbFlacfE3+JIXpFIozujcIlwJfd0LqenH0c5Gqy+MNQF5aBI3XoG707B1VqGsrqq2idYF5mJmXMAg7ORsFEtcPB0wpRZgDKW3plJ2RJL2s44QkY0xznAlfzEHOJ+O4IyKqsvDHXBxdmB975czZ3jehFYyTKUNVFQYMLf143H7x7I1z/ZntL406Id/O/NpXz66nX06x7FsVMp3DdpDnn5hXz+2vVA7fYwrmd1Ol9UKdUEWAp8DdyM5QP2U6VUotZ67vmWXxtOjs7M/m0aVw24ER8v/3OfcA4FpgK8Pfy46Yp7Wbx6ts08JlMhT7wzAU83b1687yMC/UJJTDmDk2PpKp+ZORk8+Or1dGjRndcfnY6Ppx+xiSfx9Tz/OtbCZCxfyGrrXixx7/3in7NWAwMBtNYbioP1K8DLwBFgbH3MEQYJwnbj0dqTwtRC4n89Q/hN5deWrz0HT8dKW9GpG1MIGhGMVydLy9d5UCCZ0Rkk/hFP5ERLCyf7cDZenb3xKl5P2inAmYzO3uQcza6zOp7l2sgSJFM2xhB0WVSdlXt2n2CtNVmZKVbH0vcmUpRTSKNxbUsCr6O39UYOebGZeDT1xaOZb8lxj2Yp5J2p3haSNXFp72bExqXz+ifLeeeFq8+7vMYRfiXlzP99j808m3acoGfnSG66pmvJOTdd05WFy/aW5Cm7hzHAuy9czZ9r/uHLHzcx+Qm7LOixEsso1ueBh+ugvHuBWK31Q8WP9yulemFpIdklCHdp3ZvE1Di+/fVjHh7/4nmXFxoQUVLO6m22Z+n8tm4OaRnJfPjMbBwdnErOK2v2b1/g7xPEpInvlJZ9ATZ80FrfZiMtAcuUotqWObCa+eYAtrqq65wEYXtRipAx4Zz4+AgBQ4JxDqq4ZvHe+3dUWYR7Cw+a/F8Lq7RDU/ajTWZcQl0JGhWKR+vS96s2mVHltjU0OBnIPlQaXNxbeJC8MoG8M3m4hLqQF5tL1v5MAq+o+9H5SkHApY2IXXAQn24hONnY1ejQB1uqLMM13JOI60oXRzm7T3DoqHCSN56ukD/rcCou4Z4kLD9O1uFUjC4OeLTyw793eElQdg33JG1nPAXJuTj5u5KflEPOqQz8eoad5xVXZFCKyU+MYOz93/LAhP4laz2XFdjp+SrL6Ns9ioXT76z2c/btFsWsBdvZsuMEPbs05lRsKkuW72fYgNZA6R7Gj951qdV5Ve1hfAGcnS+6QCn1gdb6SPkMSqlzfUtaq7U++w2isrmgE5RSjlrrc++VWceUMnD3dU/x3Ef3MmbobSXrPZc1/D7b64Wf1bFFD958bEa1n3Pdjj9o36IbH/7wMut2/ImXuw8De1zBLSMfwMHB0ju1bvuf9OxwKS9/9hA7DmzC3yeIKy8dy7WDb6l0Jy9RfRKE7cirozduzd2JmxdD43ubVjje4sWqV94yOJUGVAcfR8JvicQ1yg1t0qRtTOHo2wdp+mRLPFpZArFney+S/krAvbUnzkHOZO3PJH17quXjrVjgiGDMeUUcfH6fZex8EQRdGULA4PrZ5c2jqS+u4Z4krz1F6KgWFY43vrWjjbNKKRv7BEfe1K7Se7eF6XnknszHs00A4aNbUZiRT8Jfx9GFZgIHWj70fHuGYS4o4viMXWBQYNb49Q7Hp0u9TBNk+MDW9OnamJfe+51v3x9f4fimRY/YOKuUi3PNuvKvH9mZ5LQcho7/Aq01JpOZm67pWrJkZVV7GK+sZA/jC6GO54uGYNltqax4LJ+JAcCZWlbzvPTuOIj2Lbrx1bx3ePHeDysc/+qlxVWe7+xUs+05YxNPsX3/Rob0vorXH51OXNJp3v/+RXLzc7h/7KTiPCdZsOJ7rr/8Dm664l4On4zmgx9fBmD0ZbfW6PlERRKE7Sz0+ggOTz1AzvGK3b3OwdX/g3IJccElpDS/e3MPCpLzSVwWXxKEw25sxOmZJzj43D5Q4BTojF+/AFLWl45pSd+SSuqGZCInNsE53JW8kznEzjplyVvF3sTnI/DSSE7+uBffuIr3nJ18q/caVHufYA1GN0eCL2+KMihcQjwoyjWRuPIEAQMiUUqR+U8yGdFJhIxsjrO/G/kJ2SSsPI6jt7PV3sR16ZWnrmDg9Z/wyJ0VW+/NGtft675281Fe/2Q57790DT06NeLIiWSefGURUz74kxcevbwkX032ML6A6nK+qK25oLbSL6h7r3+a+18Zw4Fhd1U4FhEcVafPpbUZXy9/nrjtNYwGI62iOpCRlcYns1/hvhueRSmF1ppWUR24+zrLdoctGrfjdMJxFqz4ToJwHZAgbGduTdzx7uZL3C8xBJUb+FSb7ujyZadtLV2NzcHTkaiHmmMuNFOUZcLBx5G4OTElG0IAnPnlNIHDgvHpZRmJ6RrhSkFyAQlL4+otCLuEeuDRwo/ENSfx7x1uday63dHV3SfYwd0RZVBWLWUnf1e0yUxRrgkHN0eSVp/Et3soXq0t1+sc6EZhRj4pm2PqLQh379iIa4a15/m3llqNlIa6745++f1l3DCyM7ff0BOA9q1Cyckt4P5Jc5n04GW12sP4QtFab1VKnZ0varVDUg27oyubC2oCkuuirrXVukknLu02nGlz3uCWUQ9ZHavr7mh/7yCMRgeMhtKNThqHNSOvIJf0zBR8vPzx9wmkcVhzq/MahzZnbvLMaj+PqJwE4QYgZHQYB5+PJnNvulV6Tbqjbck9lYuDd8WuSoOjAYOvE9qkSd+ehneZPYXNBWZLF2wZygCY67dxEHBJJMdn7CL7uPVrUN3u6OruE+wa7knG/iS0Lm3VFabmoRwMGF0tfw7mQrPlhnXZ5zGoem8fvfz4cLqOeJc/11hPNavr7uic3EKM5aabGQ2Gkn2Ea7OH8QVWF/NFNwLXlDs+FNhmj/vB5d015glue24YW/astkqv6+7o9i268demRZjN5pKdlU7FHcPFyRXv4ilR7Zt341TcUavzTsUdI9g/vEJ5ouYkCDcAzsEu+A0IIOmvhArp1ZX4ZzxO/s64hLugTZrUTSlk7Eij8f2l95pzjmZTmFqAS6QbptQC4heeAbMmaERwSR6vTj4k/haHU4ClrNyTOST+kYBv35rNUawpJ18XvDsGkbb9TIX06ji7T3BZZfcJPsu7UzBpO+JJXHEcny4hFKbnk7z+ND6dg0uCskczH1K3xOLo7YxzgCt5CTmkbjuDV9vA87zKqjVrHMAdY3vyyTfrKqTXxK7oWAAys/IxGBS7omNxcjTSpoXl93zF4DZ89PVauraPoEenSI6cSGLy+38wYlAbHBwsLaKH77iEO5/8ie4dG9Gna2O+mrXZag9je6qL+aLA51j2HX4f+ALoB9wG1PkuObURERzFyAHjmPvXzArpNXHopGWv7Zy8LAwGA4dORuNodCQq3NKDdvWg8cxf/h0fzZrMtYNvJS75NDMWfsDVg28u+Xu4/vI7eODV6/nu108Y1PNKDp+MZt7ymdw1+onzvk4hQbjBCB4VSur6ZHQtm1vapDnzy2kKUwswOBpwLt572Ktj6UIc5kIzcfNjKUjMx+BiwLODN43uisLoVvo2CLupEfELYon5/iSmzEIcvR3xuzSA4Kvqdo6wLf59IsjYl0h9NjkdvZwJv641iatOcOLb3RjdnPBqH4h/n9Jv9UGXNSFp3SkS/jpGUW4hDu5OeHcMwq+O5wjb8uyDQ/hh/t+Wrelrqc/VH1g9XrpiP5HhvhxY9QwAz9w/GKVg8vt/EBOXjr+vO1cMbsNLjw0rOedcexg3AOc1X1RrfUwpdQXwHnAflsU6HrbXHGFbJlz1EMvWz+N83gwTXxpp9XjDzuUE+4fz01trAQjyC+Otx7/h09lTueulK/HzDuSK/tdzy6gHSs5p3aQTrzz4OV/NfZtvf/2IYP8w7rjmMa4ZfEut6yVKyX7CdUz2E5b9hEH2EwbZTxhkP2Go/X7CFwvZwEEIIYSwEwnCQgghhJ1IEBZCCCHsRIKwEEIIYScShIUQQgg7kSAshBBC2IkEYSGEEMJOJAgLIYQQdiJBWAghhLATCcJCCCGEnUgQFkIIIexEgrAQQghhJxKEhRBCCDuRICyEEELYyb8iCCulgpVSHyiljiil8pVSMUqp34r3A0UpdVwppYt/8pRSp5RS85VSo2yU1VIptUAplaSUylRKbVJKDS8+9lKZcir7ibrAly+EEOI/qsEH4eKgtx0YBjwLdASGAEuAz8tknQyEAi2BccBxYL5S6qNyRS4GXIDLgC7AOmChUqoZ8HZxGWd//gHeKZd2qo4vUQghxEXKwd4VqIZPAQV011pnlUnfr5T6oczjTK11XPH/TwLrlVL7gS+UUvO01iuVUgFAC+AerfUuAKXUM8D/AV201nOAkudQSpmArDLlCiGEEHWmQbeElVJ+wHDg43IBGACtdeo5ipgOpAJjih8nA/uBW5RSHkopI3A3kAmsr7OKCyGEENXQ0FvCzbG0gvfX5mStdZFS6iDQtPixVkoNBeYDGYAZSAFGaK3P1E2VhRBCiOpp6EFY1VEZGkAppbB0bycDlwC5wF3AXKVUD611TK2eQKm7sbSocfR3qoMq/7slZSbbuwp2V5R32t5VEA1A8ukce1dBNHANujsaOIQlgLapzcnF3c0tgaPFSYOBUcCNWuv1WuvtWuv7gWzg9tpWUms9TWvdXWvd3cGjoX+vEUII0VA06CCstU4BlgEPKqU8yh9XSvmco4i7AB9gTvFjt+J/zeXymWngr4UQQoj/nn9D4LkfS5fyNqXU9UqpVkqp1kqp+4DdZfJ5KqVClFKNlFJ9lVLvAZ9gGdS1ujjPRiz3gGcopToVzxl+C8s948UX8JqEEEKIBn9PGK31MaVUV2AS8AYQjuWe7i7gnjJZXyj+KQASgW3AaK31ojJlJRUvzDEVWAE4Yhn0dY3WevsFuBwhhBCiRIMPwgDFI5cfKv6xdTyqBmVtw7LwR3Xytq9uuUIIIURN/Ru6o4UQQoj/JAnCQgghhJ1IEBZCCCHsRIKwEEIIYScShIUQQgg7kSAshBBC2IkEYSGEEMJOJAgLIYQQdiJBWAghhLATCcJCCCGEnUgQFkIIIezkX7F29MUsaUUCicviMaUV4hLuSti4CNxbelaaP21rCglL4siPz8PBwxH/ywIJGh5ScvzU9OOkbkiucJ5yMtDhsy71cg3nK29fGnm7UjHnFGH0dcKtbyCOoa6V5s8/kknejhSK0gsxuBhxbueDa2ffkuPmbBM5mxIxJeVjTi/EqYUnHoNCKi2vIfhy9m4+mLmDuMRs2jTz4/WnL6Fft3CbeV/9dDOvfbbF5rGjq+4k0N+NdVtjePGDDRw6nkZuXiGNQj2ZMKYdj9zWtT4vQwhRjgThBixtSwqxs08RPj4S9xYeJK9M5Nj7h2k5pR1O/k4V8mfsSefktGOE3dgIzw7e5MfmcfqbExgcDQRcFgRA2I2NCLnO+sP7yGsHqgzs9pR/OJOcDYm49Q/CMcSVvH1pZC6NwfuGxhg9HSvkLziZTfbyONz6BeLYyJ2i1AKy18SjHBQu7X0A0GaNcjHi2tmP/P3pF/iKam7u7wd56o21vPu/AfTpGsZXs/cw5r5f2bpwPI1CK/7eHr6tC3feYL33yG1PLkMpCPS3bKnt7ubIfeM70a6FP64uDmzacYZHpqzEzcWBieM6XpDrEkJId3SDlvhHPH59A/AfEIhLmCvh4yNx8HYkeVWizfxpG5Px6uRDwOAgnAOd8erkTdCVIST+FofWGgCjmxFHb8eSn4KEfAoSC/C7NOBCXlq15e1JxbmlFy5tvDH6OuHePwiDmwP50baDZ8GhDBwbu+PSzgejlyNOjd1x7eJH3s7U0tfA0xH3fkE4t/JCOTf8P4GPv93J+Ktbc/t17Wnd1I+3Jw0gJNCNr37aYzO/h5sTwQHuJT+FJjMbtsdy25h2JXm6tAviuhEtadPcn6gIb8aNas1lfSPZsD32Ql1WrSilVimlPlVKvaqUSlJKJSil3lZKGYqP36yU2qqUyiw+9otSKrzM+QOVUlopdZlSarNSKkcpta14u1QhLriG/wl0kTKbzOSeyMGjnZdVumc7L3IOZ9k+p1CjHJVVmnI0UJhaSGFygc1zUtYk4Rzmgntzj7qpeB3SRZqixHwcI9ys0h0j3DDF51V6jjJavwYYFeZsE+YsU31Vtd4UFBaxIzqBy/pEWqUP7hPJ5p1nqlXGt/Oi8fZ05uqhzSvNs2t/Ipt3xtG/u+0u7gZmPGAC+gIPAo8CY4uPOQEvAp2AkUAAMMtGGa8BzwBdsexP/oNSStnIJ0S9kiDcQBVlmsAMDl7WdwwcvBwoTC+0eY5ney8ydqSRuTcDbdbkx+WR9Ec8AIVpFc8pyikibVsq/g20FazzikCDcrV+DQxuRsw5tgOqY4Q7BcezKTyVjdaaorQC8nanApZ7wf82yam5FBXpkm7ks4L83YhPzjnn+Waz5rv50dw0qjXOTsYKx1td9jX+XT/h0nE/MXFsB+68oUOd1b0eRWutX9BaH9Ra/wysBC4D0Fp/rbVeqrU+qrXeAtwHXKKUiihXxvNa65Va6wPAZKA18K/4BiL+W+SecANX4bu5tpFWzO/SAAoS8jn+8WF0kcboYiRgSBDxi86gDBVPSt2UDGaNTx//uq94XbLxGlRIK+bcxgtzRiGZy86AWaOcDLi09yH37xSbr8G/RfnfuUZX9hJY+WPdcU7HZTFhTFubx5d9M4bsnEK27I7jxfc20DjCixtHtT7/Ctev3eUexwJBAMXdyi8CnQE/St8pkcDpSso42wcfVC6PEPVOgnADZfR0AAMUplu33kyZJhy8Kg5IAlBKEXp9BCFjwjGlF2L0dCBrfyYATgEVB3KlrEnCu5svDh4N822gXIygQJdr9ZpzizC42q6zUgq33gG49vRH5xahXIwUxlhajAbPhnmdVfH3dcVoVCQkWbd6E5NzCSrXOrZlxi/76NU5lDbNbX/RiorwBqBdywASk3N57dPN/4YgXL5bRwMGpZQ7sAz4C7gFSMDSHb0WSzd1ZWXo4n+lZ1BccPKma6AMDgZcG7uRFZ1hlZ4ZnYHbOe7fKoPC0dcJg4OBtM0puDVzrxC4c45mk3cqt8EOyAJQRoUx0JnC09YBqDAmB4dgl6rPNSgM7g4oo6LgcCYOwS6VBu6GzMnRSJe2QazYeMoqfcWmU/TqHFrluWcSsli29rjVgKyqmM2a/IKiWte1AWiNJehO0lqvKe5qDrJznYSo0r/vU+kiEnh5MKe+Oo5rE3fcm7uTvCoJU1oh/gMsgfPM3Bhyj2bT9MmWgKWVnL4tFfdWHmiTJmVdMunbUmn2VKsKZSevScQp2Bn3Vg1vQFZZLh18yV4ZhzHIxTJFKTodc7YJ57aWFlzO5iRMCXl4jbLc8jPnFlFwNBPHMDd0kSb/nwwKjmbhdZX1LUFTUj4AusAMSmFKykcZwejrfGEvsBoevLUzE5/9k24dgundJZSvf95LXEJ2yTSkF9/fwN9741n81bVW5303fz/uro6MHlZxQNbnP+yicYQXLaIs86fX/x3Dh99s566x/4p7wpU5CeQDDyqlPgHaAFPsWyUhqiZBuAHz6emHKctEwuIzmNIti3VEPdIcpwBLoDClFZKfmG91TuqGZM78chqtwb2ZO82eaoVbU3erPEW5RaRvSSVoVCgNfUCoc3NPdH4RedtTyMkpwujnhOeI8JI5wuYcE+YM697J/IOZ5GxKAsAh2AWvURE4BFm3nDPmnrR6XHgiG4OHAz7jm9Tj1dTOmOEtSUnL461pW4lLzKZtc3/mfDqKyDDLyPm4xGyOnbKesqW15tv50dxwZSvcXCvevigya154bwMnYzNwMBpo0siblx/t+28ZmGWT1jpRKTUBeBV4AMt938eA3+1asWr4aN7/WLVzITcOfojrBt5Tkr732BZenHEHM55ei5e7bxUl2Pbb5ln8tvlHEtNiCfAOZcyAiQzsfLVVnpy8LGYt/5CN0X+SmZNGgHcINw15hH7th5fk+X3LbBaum0FqViKNAptz+4inaRvVrfYXXA1KqZnABCyD6F4pkz4Qy2C8QK11Ug3LHA3cC3QBXIBoYKrWelG5fGOwfIFrBhwB/qe1nl/ba6myTmfnToq64Rblrlu80Mbe1bCr01syzp3pP+7Eg8PPnek/zqP9hw37G94FMG/Kvmp9wH40739s2Ps7RqMDnzz6G97ufsD5BeHft8zmuz/e4d6rXqZFRAcOx+zhs4Uv8eh1b9Kj9UAATEWFPDd9Ah4uXowZcDf+XsEkZ8Tj6OBI83DLF7L1e37jg7nPMnHkc7Rp3IXft/zEyh3zef/BRQT6VH1LBGD08+1q9T4oDsJjsdy/b6a1TixOH0jtg/AHwBlgBZCCZbrbC8BArfXa4jx9sIwjeBGYB4wGXgb6aa031+ZaqiL3hIUQogFo16QngT5hzFn1eZ2Ut2bXrwzpdh2XdLyCEL9G9O9wBUO7X8+CddNL8qzYsYD07BSevukj2jTuSpBvOG0ady0JwAC/bviWQV2uZmj364gIbMZdV07CxyOQZVtn10k9z2ElcBx4vi4K01o/orV+XWu9RWt9WGv9MvA3cE2ZbI8CK7XWU7XW+7XWU4FVxel1TrqjhRCiATAoxc1D/483Zz3MlX1uJsQvskKe8a/0qLKMNpHdeO5WSxAvNBXi6GA9KNzJwZnDMXswFRXiYHRky/4VtI7szPSlr7L1wAo8XL3p224YYwbcjYPRkUJTIUfORHNVv9usyuncvC//nNx1fhdcPWYsi6osUEp9oLU+Uj6DUsr26kWl1mqtR1Rx3BNILfO4D/BRuTzLsCwMU+ckCAshRAPRreWltGrUhR//+pDHbni7wvG375tb5flOjqUDCzs378vy7fPo3XYIzcLacyR2H8u3z8VUZCIzJw1fz0DiU0+z99hmLulwBZNu/pSE1Fi+WvIKeQU5TBj+JJk5qZjNRXh7WE9x83b3Jy1rU91c9DlorZcqpdYDU4FxNrJ0PkcRuZUdUEo9AEQA35VJDgHiy2WNL06vcxKEhRCiAbl12GM8O208h2P2VjgW6l+xdVyZ6wbeS1pWEpO+vAWNxsfdn4Gdr2bBuq8xWJbaRmsz3u5+3Hv1yxgNRpqFtSMzN42Zv73JrcOeKClL2Vox58IO6nwK2KSUqvDNRGt9uDYFFg++egsYp7U+Ub7Y8tltpNUJCcJCCNGANA/vQK+2Q/n+j/esRkpDzbqjnR1deODaV7jnqhdJz0rGxzOQP7f9gquzO55ulkFevh6BGI0OGA2lS5pGBDQlvzCXjJxUPN18MRiMpGVZj39Kz07Bx/3CrbSntd6qlJoLvEG5aWe16Y4uDsDfAbeWHxkNxFGx1RtExdZxnZAgLIQQDcz4IY/w6MdXsePQeqv0mnRHn+VgdMTf2xJT1u/5nW4tB2AwWFrCrSM7s3bPUsxmc0labPJxnB1d8XLzRSlFs9C27Dqykb7th5WUuevIRnq3HXJe11gLk7BMKSo/9aDzOc6z6o5WSt0AfANM0FrPsZF/IzAUSyv5rKHAhppUtrokCF8Ap6YfJ3VDMsHXhBE8qnRIf9aBTI6+dZC273fCoYZLKmb9k0nc3Bjy4/IwF5hx8nfC75IAAoeXfoHTJk3C0jOkbkimMLUQ5xAXQq8Lx7ODd0mehCVnSN+eRn5cHsrBgFszd0JHh+MS4WrzeU9/c4KUNUmEXh9u9VznrO/KOAoOZuLawx/Xrn4l6YWxOWT+GoPPrU0xuFbcYKAq5mwTOZsSMSXlY04vxKmFJx6DrOukizR5O1PIP5iJOduE0dsR114BOEWWzp3O3ZFCwbEsitIKUUaFQ5ALrr38cfAr/UArOJpF3v50ipLy0XlFeI4KxzHs3MtGVuWe//3Jj4sO8PyDvXnqntIWztqtp7nijvkcW3MXAb62fw+VWfjXYb7+eS+7DiSSn19E62Z+PDGxO1cOalqSZ8acvcz69QAHDqdg1pqOrQN57sHe9O0aVpJn3bYYPvxmBzujEziTkM1nU4Zw8zX2mXpXH/NFi88fALwLtMOyfvSbWuu6GZp8nkL9IxnS7XqWbvq+Qnp1xSYd5+Dp3bRs1Ins3Ax+3fANJxMO8dDoqSV5hvUcy29bZvH1b68zoteNJKTG8tPKTxnWc2zJGgKj+t7Kh/OepUVEe1pHdmHZ1p9JzUzg8h5jK3vqeqG1PqyUmgY8Uj69umUopcZhaQE/AaxRSp39wCjQWqcU//+D4mPPAvOBa4FBQP/zvASbZIrSBaIcFYm/x2HKtL0DUk0ZnA0EXBZEs6db0WpKO4JGhhK38AxJKxJK8sTNjyF5VRJhN0bS8pV2+A8M5PgnR8g9UboMZNY/WfgPCqT5s61p+mRLlEFx9J2DmGxs+5e2LZWcY9k4+Nheu/qcjIrcnamYc+tmNyNt1igXI66d/SosxnFW7tZk8qLTcesbiPcNjXFu603WH2cwJZVuhVgYm4tLW2+8ronAc2Q4GCBzcQzmvNIlHLXJjGOwC2596naZTxdnI+/P+JvElErHjtTI+m2xXNozgjmfjGLdL+O4/JLG3PToUtb/HVOSZ93WGMYMa8GvX13Lih9uoEWUL9feu5DDJ9JK8mTnFNK2uR9vPn0pri4N4rt6HvCUUiqwLgpTSjUBlmJp3XTBsrXhR8XdlA3CDQPvxWCo2RfTssy6iMUbvuXxT8cw+ZuJFJgKeHXi9wT5lm4WFeAdygu3TuNo7D6e+PQ6pv06mcFdruWmy0rjXL8OI7h9xDPMWT2Nxz+9jgMndjDp5s8I8gmz9bT1bTKWbSxr614sjc/3scwXPvsz72wGrfUGLAPAJmBZ8OVWYGx9zBEGaQlfMB6tPSlMLST+1zOE31T9b7OVcYtyxy2qtDXnFOhM+vY0sg9lETDYslxu6sYUgkYE49XJ0vJ1HhRIZnQGiX/EEznRsjJU08daWJXb6K4o9j24k5zDWXh19ilJL0jKJ3bWKZo+3oJj79dqHASOYa6Ys03kbk/Bvd/5L+lr9HQsKafgaKbNPPmHMnDt7ItTY8trZWznQ2FMDnm70vC4zPIl2OtK6x3sPAaHkDrjCKa4XJyiLMt6Ore0rE5lzq3btZUv7RFBTHwWb36xhbeeHXDe5b35zKVWj5+9rxfL1hxn8Yqj9Otmuc7pbwyzyvP+8wNZvOIof607QfPGPgAMuzSKYZdGAXDvc3+dd73qwEoso1ifBx6ug/LuBWK11g8VP96vlOqFpYVUdZ9vPSjbOj3L28OfH57bUusyIwKb8fb9tnpbrbVs1IlXJ/5QZZ7hPccxvKetgcn1R2t9m420BCxTimpb5sBq5psDnPvFqwMShC8UpQgZE86Jj48QMCQY56CK92723r+jyiLcW3jQ5P9a2DyWeyKHnMNZBF9d+u1Um8woR+vODoOTgexDlY9jMOeZQYPRvfStoYs0J6cdI3hkKC5hNesetaLAtVcAWcticWnvg9Hbxs5O06sO8I6hrnheUYNtX4s0GK1fA2U0YIqrvOWpCyyvgXKufSukupRB8fKjfbnxkSXcd3NnmjbyrpAnpGfVPaR9u4Yy7/OrKz2emV2Ir1flG14UFJrJLzDh49Xw1s0uo67ni/YB/ih3fBkwQSnlqLWumy4rIc5BgvAF5NXRG7fm7sTNi6HxvU0rHG/xYtX33AxOFe8e7H9iN6ZME7pIE3xVKP4DS3vrPNt7kfRXAu6tPXEOciZrfybp21MtH2eViJ11CpdGrrg1K21lxy+MxejhgP+g8+8JdIp0xyHEldytyXgMqbjknfd1VfcSKIea3UFxbORG3p5UHMNcMXg7YorJoeB4VpWvQc6GRIz+zufcqamuDLs0it5dQpn84UZmvlVxucv1c6pugbg6V/5nPG3WbmLjsxg3quImHmdN/mgj7q6OXDGo4nuyIanj+aIhWLY8LCsey2diAJYuSiHqnQThCyz0+ggOTz1AzvHsCseca/Gh3+zpVhTlm8k5kkXcnBicApzx7WuZOhB2YyNOzzzBwef2gbJ0Wfv1CyBlve0xLLGzT5F9KItmz7ZCGSyDMrL+ySRlfTItX6q7QTluvQLIWHAKU2JehWO2Wsfn9Vx9A8lek0D6z5ZpgAYvR5xbepF/0Pb61tkbEimMy8Xr6kYlr8GFMOWxfgwe/wsP31ZxFkSzSJ9albnwz8M89+56Zrw5rGSzh/I+/X4nM37Zy6Ivr8HLo25f+3pSl/NFbc0FtZUuRL2RIHyBuTVxx7ubL3G/xBA0yrolWJvuaKdASxeia4QrpgwT8YtiS4Kwg6cjUQ81x1xopijLhIOPY0mgLi929inStqTQ9MlWOAeWHs86kIkpvZDox3aXZjbDmTkxJP2VQJu3O9bo+gEcglxwauJBzqYkXLv5WR2r6+5og6sDnsPC0CYzOt+McjOSuzm5ZBemsrI3JFJwJBOvkREYvWo5+KyWurUP5uohzXjhvQ08fY/1XNDadEcv/PMwEyf9ybSpQ61GRpf16fc7mfLRJuZ+dhXdO9TLYkB1rg7ni1Y2F9QEJNdFXYWoDgnCdhAyOoyDz0eTudd6+7nadEdb0Rptqvgl3uBowODrhDZp0ren4d3dejeWmB9Pkb41haZPtsQl1Lo1HjAoEJ9u1vmPvncIn55++A2o/Uhh157+pP98gsJTOVbpdd0dXfY85WBAF2kKjmXh1NR6H+Xs9cUBeFQERl/7tAhffKQPPa7+gT/XWS/eU9Pu6Hm/H+Ke5/7ki1eGcs3lFfcSBvjomx1M/WQzcz4dZTU16V+iLuaLbsR60X6wzAXdJveDxYUkQdgOnINd8BsQQNJfCRXSqytpeQJOAU44h1jOyT6YReKyeKv7tjlHsylMLcAl0g1TagHxC8+AWRM0IrgkT8z3J0ndmEzUg80wujtQmG75/DE4GzC6GHHwcsShXKtQGRWO3g64hNT+nqnR2wnnNt7k7UmrkF4TpiTLfsq6wAxKYUrKRxnB6Fu853J8nmV+cICzZWT2tmTQGpfOpV8sstcmkH8oE89hoShnA+YcywwI5WgoGdhmzivCnGVCF1hGRxelF6Kc8jG4GTG41c2fUbNIH26/rh2f/bCrQnp1zfntIBMn/cnUx/vRr3sY8UmW2x6Ojkb8vC2/r/dnbGfyhxv56rXLaRHlU5LHxdkBb0/L65aVU8DRk5YviWatOX0mk90HEvH1dqFRaK0Hp9aJupgvCnwOPKiUeh/4AugH3AbcWEfVFKJaJAjbSfCoUFLXJ6NreftJmzVn5sRQkFSAMlq6pUPGhFsNzDIXmombH0tBYj4GFwOeHbxpdFcUxjJBI3llIgBH3z5kVX7QVaGEXF2/LSTXbn6We7PnMesnY+5Jq8eFJ7IxeDjgM94yBUsXmcnZmow5sxDlqHBs5I7H4BAMZUY+50dbgk3m4hirsly6+eHW3b+k3OxVpfdrc9YkVMhTF565tyc/LjpAbV+U6T/vxWQy8/Qba3n6jbUl6f27h/PbjNEAfDl7N4UmMxOetN7r/qarWvPF1KEA7NiXwBV3lO5hPvXTzUz9dLNVHjubjGUeZ61orY8ppa4A3gPuw7JYx8Na6ws+PUlc3JTWMgahLrlFuesWL9hnZaGG4vQW24OeLiYnHqw4yvli49H+wwu6wn9DNG/Kvov+A3b08+0u+vdBVWTFLCGEEMJOJAgLIYQQdiJBWAghhLATCcJCCCGEnUgQFkIIIexEgrAQQghhJxKEhRBCCDuRICyEEELYiQRhIYQQwk4kCAshhBB2IkFYCCGEsBMJwkIIIYSdSBAWQggh7ESCsBBCCGEnF20QVkrdppTKsnc9hBBCXLwu2iAshBBC2Ns5g7BSapVS6jOl1DtKqRSlVKJS6hGllLNS6hOlVJpS6qRS6pYy53RQSv2llMotPmemUsq7zPGZSqnFxeXEKKVSlVIzlFJuZfI4K6XeV0rFK6XylFKblFL9y9WttVJqkVIqXSmVpZTaWPzclyqlCpVSIeXyT1VK7VZKDQRmAO5KKV3881JxHiel1BtKqdNKqWyl1Fal1LBavr5CCCFEparbEh4PZAK9gNeB94EFwEGgO/AN8JVSKqw4kP4OZAE9gWuBvsDX5cq8BGgPDAHGFud7pMzxN4vT7wC6AHuA35VSoQBKqTBgHaCBoUBX4BPAqLVeAxwBbj1bmFLKUPx4OrABeBTIAUKLf94uzjoDGADcBHQovrZflVKdqvlaCSGEENWitNZVZ1BqFeCste5T/FgBCcBGrfVVxWmOQDaWwOWLJaBFaK0zi48PBFYCLbTWh5VSM4HLgCZaa1Nxni+LHw9RSrkDqcBdWutvi48bsQT9WVrr55RSU4Gbi8sssFHvJ4A7tdZtih+PwPLFIUxrnayUug34WGvtUeacZsAhIEprfbJM+gIgVmt9fyWv0d3A3QCuAa7dBn96eZWv6X9dWEZTe1fB7l6P/NneVbA778477F0Fu1u/VIadXDqhibJ3HRqy6raEd5/9j7ZE7QQsLdOzaYVYgmYQ0AbYfTYAF9sAmIG2ZdKizwbgYrHF5wM0AxyB9WWeowjYWKaMLsA6WwG42DdAU6VU3+LHdwALtNbJVVxnV0AB0cXd21nFg7euLK6TTVrraVrr7lrr7k5eTlUUL4QQQpRyqGa+wnKPdSVpBixBrLLmddn0ys6nuIzy+cuXUeW3K611olJqEXCHUuof4CpgVFXnFD+/BnrYqF/uOc4VQgghaqQ+RkdHA52UUp5l0voWP9f+apZxGCgASgZiFXdH9ykuH2A70F8pVVXT80vgBuAeIB74q8yxAsBYLv8OLME9RGt9uNxPTDXrLoQQQlRLfQThH7DcH/727Ehl4Atgntb6cHUK0FpnA58BryulrlBKtSl+HAx8WpztU8AD+Fkp1UMp1VwpdaNSqnOZov4EkoEXgRlaa3OZY8cBF6XUUKVUgFLKTWt9sLj+M5VS1ymlmiqluiulnlBKja7dyyGEEELYVudBWGudAwwDvIAtwEIs93LvqGFRTwM/YxmtvBPoCAzXWp8pfp4Y4FLACcugrx3AQ0DJfebi+9czsNxfnlGunhuAz4FZQCLwVPGh24vzvgkcABYXP8+JGtZfCCGEqNI5R0f/2ymlPgOaa62HXojn82nmo/u/PvBCPFWDJaOjZXQ0yOhokNHRIKOjz6W6A7P+dYoXB+mGZW7wDXaujhBCCFHBfzYIY+kG7wlM11ovsXdlhBBCiPL+s0FYaz3Q3nUQQgghqiIbOAghhBB2IkFYCCGEsBMJwkIIIYSdSBAWQggh7ESCsBBCCGEnEoSFEEIIO5EgLIQQQtiJBGEhhBDCTv6zi3X8Vxxfdoyjiw6Tn5aHR4Qn7W7rgF8b/0rza605vvQoJ/48Tm5CDo4ejkQMaETr8e0ASN6XxKaX11c4b8B7g/EI96yQ3hBEr9zFrmXbyE3LxjfMn97jBhDaMqLS/Fpr9v61g/2rd5OZlIGzuzMt+7Sl53WXAJCTlsWmn9eQdDKBjPg0mvdpw8A7hl2oy6mV6Yuy+PiXLOJTimjd2JGp93nTp4NzpflXbMvjje8y2H/chLOjomc7J16e6EXzCEcA1u/OZ8rXGRw+VUhuviYiyIFbRrjx4PUN8z0gLOYv/47Zv31JSloCUeEtefCm5+jUqqfNvDPmv8/MhR/aPLbgwy34egWQnJbAJ7Oncuj4Pk7HH+fyvtfy7MS36vMSRDkShBuw2A0xRM/cQ/s7O+Lb2p8Tfxxjy6sbGfDeYFwD3Gyes//bfSRsj6P1ze3wivSiMKeQ/NT8CvkufXcQjh6lWzE7e1X+gW5PR7b8w4bZq+g/fjDBzcOIXrWb3z9YwPWTb8XD38vmOZt+XsPJ3Ufpdd2l+EX4U5BbQE5adsnxIlMRLh6udB7Rg/1r9lyoS6m1+atymPRZOm895EOv9k58/Ws2Y/+XzIavgogIqvgnfOKMiZtfTObuazz47Ck/svPMvPRlBuOeS2bbzBAA3F0Ud1/tTtsmjrg6KzbvK+DxD9JwdVbceZXHhb5EUQ0rNi/mox+n8H+3TKZDy+4sWP49T797B9+8uoxg//AK+ceOmMhVg8ZbpU3+7GFQCl+vAAAKCgvw9vDjpivv5dfVsy/IdQhr0h3dgB1bfJiIAZFEDonCM8KT9nd0xNnXhRN/HLeZPys2k+O/H6Xbk70I6RGKW7A73k18COoaXCGvs5czLj4uJT/K0DA3Otnz53Za9m1L60s74BvmT7+bBuHm7U70qt0286fFpbBvxU4uf+Aqoro0wyvQh4DIICI7NinJ4xngTd+bBtGyXzuc3V0u1KXU2qdzs7jxcjduvcKdVpGOvPGAD8F+Br7+Ndtm/l2HCiksgufv8KJpuAMdmjnx6DhPjsUWkZxeBEDnlk6MHuRG6yhHGoc6cMMQNwZ1d2bT3oILeWmiBn5eNp3h/cYwauA4osKa8+gtL+HnE8jCFT/YzO/m4o6/T2DJT1FRIbsPbmXkgLEleUIDI3jk5hcZccl1eLl7X6hLEWVIS7iBMpvMpB9Np+mo5lbpgR0DSf0nxeY58VvjcAtyI3FnAltf3wRa49cmgDa3tMPZ27qlu+7Z1ZgLzXhEeNJ8dEsC2gfW27XUVpGpiKQT8XQc1s0qPaJdY+KPxNo858SOI3gFeHN67wmWfbgArSG0ZTi9rr8UVy/bvQcNWUGhZtehwgrdxAO7ubA12nbA7NzSEUcjfPdbDreMcCMnXzP7zxy6tHLE39to85zdhwvYGl3AU7fY7l0Q9lVoKuDg8b2MHT7RKr1Hu0vYe3h7tcpYsuZnPNy8GNB9eH1UUdSStIQbqIKMfLRZ41QueDr7uJCflmfznJz4HHKTcjmz4TSd7u9C5we7kR2bybY3NqHNln2jnX2daX9XR7o93pNuT/TEPcyDzVM2kBydVO/XVFN5Wblos64QPF293MhNz7F5TkZSOlnJGRzZ+g8D7hjGwDuHkRaXyrKPFpa8Bv8myRlmiswQ6GP9pxrkayA+1WzznMgQB+a+HsAb32UQemUsTa49w/5jhcyaXHEsQfubzhB6ZQyXPZjIHaPcuX2ke71chzg/6ZmpFJmL8PMOsEr39Q4gJT3xnOebzWaWrv2FYf2uxcmxYd56ulhJS7iBU8q6m1hrDcp217HWGnOhmU4PdsMjzHJfr9OD3Vj96HLSjqTi28IPjzBPPMJKW1W+Lf3ITczh6K9H8G8bYLPchsbyGlR6kCJTEQPvHI5PiC8AA+8czi/PzSTxeBxBTUMvXEXrUPlfeVUvQXxKEY+8m8rYIW6MHuRKVo7m9W8zuHNqCgveDMBQ5tbDkncCyc7TbNtfwMvT04kMcWDskH9fj8FFS2tUpe+EUpt3ryIh5QxXlumKFg2DBOEGysnLGWVQFVq9Ben5FbqWz3LxdUEZVUkABnAPdUcZFXlJudDC9nP5NPcldkNMndW9rrh4uKIMitwM61ZvXmZupV3Lbt7uKKOhJAADeAf7oIwGslIy/3VB2N/LgNEACeVavYlpZoJ8bXdkTV+UjZuLgZcmlt7j++xpPzqOj2NLdAG925e+fxqHWj4C2jZxJCG1iDe/y5Ag3AB5e/piNBhJSbfusUrNSMbX+9xfnn9dPZv2zbvRJLxlfVVR1JJ0RzdQBgcD3k29Sdxt3dWUtCcR31Z+Ns/xbeWHLtJkx5UO2MmJz0EXaVwDK/9gzTiejotPwxugZHQwEtA4mJjoE1bpp6NPENwszOY5wc3D0UVmMhLSStIyE9PRRWY8/P599zudHBWdWjiy6m/rL2Ort+fRo62TzXNy8zWGcn/ZxuLHZts92ICldZ1f+O/rsr8YODo40TKqPdv2rbNK37ZvHe2bd63y3KTUeDbtWmk1IEs0HBKEG7AmI5tzetVJTi4/QebpTPbN2ENeSh6RQ6MAOPBjNJsml875DegQiFcTb3Z/toP0Y2mkH0tj92c78Gnhi3dTHwCOLTlC3JYzZJ/JIvNUBgd+jCZ+axyNhzexUQP76zC0KwfXR3NgzR5SY5PZMGslOWnZtBnYEYAtc9ex5O05JfnD20QSEBnE6pl/kHQygaSTCaye+QdBTUMIjCodJZ58MoHkkwkU5haQn51H8skEUmOTL/j1Vcf9YzyY9WcO3/2WzT8nC3n20zTiks0l928nT0/nmqdKW0hDe7qw+3Ahb36XwZEYE7sOFfDQO6mEBxrp1MIyT3jagiyWbcrlSIyJIzEmvv8tm4/nZHH9ZQ2vFXzHQw/hEBTE1HfftUpftX49DkFBJCXX7vc2a+5cug0ahGfjxoS3a8et991HXHx8XVS5Xtww7E5+XzeXxat/4njsYT78YTLJaQkl05Cm/fIm//fG+ArnLV37Cy7OrgzqeaXNcg+diObQiWiyc7PIyE7j0IlojsccqtdrqQ6l1EyllFZKPVcufWBxeo3vnymlRiul/lBKJSqlMpVSm5VSV9nIN0YpFa2Uyi/+99rzuZaqSHd0AxbWN5yCzAIOz/uH/NR8PBp50uPZ3rgVt2rzU/PIiS9t9SqDosczvdk3Yw8bX1yH0clIQMcg2t7armQKktlkZv93+8hLycXoZLSU+Uxvm9OYGoJmPVuRn53HjiVbyEnPxi/Mn+GPXINn8RzhnPRsMhLTS/Irg2LYw1ezYdYqFr/xM0YnB8LbNqb3DZdaTcOaN9l6WsfJXUfx8PfixjfuvDAXVgPXDnQjJcPMOz9mEp9SRJvGjsx+xZ9GwZY/3/gUM8fPmEryX9rFmWnP+PLRL5YFPlycFd1bO/Hzq/64u1q+d5vN8PL0DE7FFWE0QpMwB164w6vBDsxycXHh7Y8/5u5bbyUw4PzHLqzfvJkJDzzAmy+9xNUjRhCfmMhDTz/NLfffz59z59ZBjeve4F4jSc9K5btFH5OcnkiT8Ja88djXhARY5ggnpyUSm3DS6hytNUvW/MyQPlfj4uxqs9y7Xhxp9XjDzuWE+Ifz0ztr6+dCaiYPeEop9YXW+twj0M5tALACeA5IAcYD85VSA7XWawGUUn2An4AXgXnAaOAXpVQ/rfXmOqiDFaW1dD/VJZ9mPrr/6wPtXQ27Cstoau8q2N3rkT/buwp25915R52Uc8dDD5GQlERMbCwD+vXj/VdfBSwt4SHXXkvc/v0E+Fe+ipwt73zyCZ9Mn87R7aXTe2bOmsUjzz5L+vHjdVJvgPVLs+qsrH+rSyc0qdUiBEqpmUAQEAGs0lo/XJw+EFgJBGqtz3tah1JqC7BWa/148eOfAD+t9dAyef4CErXWN57v85Un3dFCiAbPYDAw9fnn+eKbbzhy7JjNPN5RUVX+XDluXEnevj17ciY+nl+XLUNrTVJyMj/Nn8+IIUMu1CWJ6jEDzwD3KqWa2cqglMo6x89v53gOTyC1zOM+wB/l8iwD+tb2Iqoi3dFCiH+FK4YMoW/Pnjz/2mv8OG1aheN/r1hR5fmurqXdsX169OCHzz/n1vvuIzcvD5PJxJABA5jx0Ud1Xm9xfrTWS5VS64GpwDgbWTqfo4jcyg4opR7A0tL+rkxyCFB+cEB8cXqdkyAshPjXeP2FF+g3YgSP3X9/hWPNm1b/Nkj0P//w6P/+x/8ee4zLBw3iTHw8z7z8Mvc98QQzP/mkLqss6sZTwCal1NvlD2itD9emQKXUGOAtYJzW+kS5w+Xv0yobaXVCgrAQ4l+jR5cujB45kmenTOF/jz1mdcw7KqrKc/v37s2S2ZZNCt744AN6dOnCEw8+CEDHdu1wd3Nj4FVXMWXSJBqFV9wQQdiP1nqrUmou8AYwpewxpdS5bryv1VqPKHfOGCyt31u11ovK5Y+jYqs3iIqt4zohQVgI8a/yyqRJdLjkEpaV636uSXd0Tm4uRqP1OtpnH8tg1QZrEhANlF/8uvM5zrPqjlZK3QB8A0zQWs+xkX8jMBRLK/msocCGmlS2uiQI28GuT7ZzevUpWo5tTYsxrUrSz+71O/Sr4TjVcGvB6u4TXJhTyMHZ+zmzOZbCzEJc/F1pdWMbwvpavvkfnn/QMo84NguDgwGfFr60vqktnpF1u9DFqq+XcWhDNN2u6UvXkb1K0mMPnGLJ23O45b17cfG0PaWiKkWmInYs3syhTfvJScvG1cuNjpd3o/2QLhXyHt58gJVf/kajjk0Y/vA1NsvbsWQL2+avp+2gTvQbP7jG9anKA2+lMvvPHJ6d4MkT40tf33W78rn6ySQO/hJS6YYLlfl1XS4zF2ez50gheQWaVpEOPHaTJyP6lL6W3y7N5qe/cjhwohCzGTo2d+TZCV5WK2kVFWne+C6TX5bnEJ9SRLCfkesGu/H0rZ44GO2741bzpk2ZeMstfPTllxXSq2vksGHc89hjfD5jRkl39OPPP0/Xjh2JjKh8r+r68tqXT/L7+rncOfoxbr3qwZL0Hfs38egbN7Hwo234eNpepKcya7b9zsKVP3LoZDQFhflEhTXnllEP0K9L6eCzX1fNZtmGeRyPOYQ2m2neuB13jv4/OrbsUZLn+8WfsubvZZw6cwxHRyfaNu3M3dc/SdOIVraett5orQ8rpaYBj5RPr24ZSqlxWFrATwBrlFJnW7wFWuuzO+N8UHzsWWA+cC0wCOh/npdgkwRhOzE4Gji66DCRQ6PqdC/fqvYJNpvMbJm6EUd3R7r+Xw9c/FzJS8nF4FA6SD45OonGl0fh08wXDRz8aT+bp2zg0vcG4+Rhe4Wm2jI6Gtn9+zbaDOiAq2fdLBKxYtpSslMyueSWIXgH+5CbkYOpwFQhX0ZiGlvmrCWkReXdjvFHznBg7R78IupvTW0XJ/jolyxuu9KdAJ+aBVxbNuzO55LOzky6zQtfTwNzVuRw68spLHorgD4dLO+F9bvyuWaAK73aeePqrPh8XhbXP5vMqs+DaBZu+Uj44Ocspv+axSdP+NK2iSP7jhXywFupODvCEzfbf+Wx5x5/nG9/+qnW508YN47MrCw+/fprnnzpJbw9PRnYvz+vv/BCHdayZpwcnZm1dBpXDbwRH6+aTbmyZec/W+japg93jXkcT3dv/tq4kOc+vJf3n/mRTq16WvIc2MTgniNp36IbLk6u/LJsOk++fRvTJy8mIqRJcZ7NXDP4Zlo36YjWmq/nv8/jb97CN6/+gZeHz3nXs4YmAxPO4/x7scS994t/zloNDATQWm8oDtavAC8DR4Cx9TFHGCQI241/+wDykvM4POcf2t3Rsc7KdfZyrrQVfXrVSfLT8+nzcv+SwOsWZB38ev3PehR+54e6sWzCElIPpBDcvW4HB4a1akR2ahY7ft1M35sGnXd5p/edIGb/Sca9ekdJK9ozoOIeqWZTESum/Ub3a/oS+89p8rIqDp4syMln5Ve/cemEoez4tV7+9gDo38mZ2KQi3v4hk9cf8Dnv8l6737qMp27x4o8teSzdkFcShL941rpF9fbDPizdkMfyrXk0C7esO741Op9hvVwYXtyCjgxxYHjvXP7+58LvN/y1jRHLQYGBpFUyVam6HrzrLh68667zKqMudWnTm8SUOL5Z9DGP3PzieZf38HjrLxS3XfMIG3etZN32P0uC8PP3vm+V57EJr7Bu+59s3rOmJAi//cQ3Vnn+d/c7XHlfJ/Yc+pt+XS4773pWRmt9m420BCxTimpb5sBq5psD2OqqrnMShO1EKUXrm9qy7a3NRF3RDPeQiisV/X7L4irL8GvjT89JfazSqtonOG7rGfxa+bHv693Eb43D0cOR0D7hNB/d0qo1XJYp1wQaHD0ca3GV52BQ9BjTnz8/WUT7IV3wCvKpkGXGAx9XWURIi3BGPGpZUe74jsMERgWz58+/ObRxP0ZHBxq1j6LH6H44upS24rfOX4+nvxct+7Uj9p/TNstd++1fNOnWgvA2kfUahA0GeOFOb255KZl7rvWgSVjFP8nIq2zvnXxW7/ZO/Pxq5a31rByNt0flXcgFhZBXoPHxKH0P9GrnzNe/ZnPwZCEtIx05cKKQtTsLeHScR6XliPNjUAbuuf4p/vfhvVx3+W2EBzWukGf4Pe2rLKNDyx689fiMSo/n5GXj6V7xi+lZhaYCCgrzq8yTm5eNWZvxdLd/j8h/gQRhOwrqGoxva3/+mb2fro92r3D8krcGVnm+0am0+/LsPsE+zX0xm8ycXnOKzVM20PvFfiVbFObE55C8N4mwfhH0eLY3OQk57Ju+G1Oeiba32v7jjp6xB68ob3xb1ux+VHVFdmxCcPMwts5fz2X3VFzbdvQLN1d5voNT6Vs4MzGd+EOxGB0cGHLfSPJz8i1rTadnMeS+UYCltXx060FGv1h5uQfW7CEjIY2Bd12Yzc+H9nShVzsnps7I4Kv/VXydV30WVOX5Ls6VB9ivFmURm1RU5c5Ir87MwN1VMbxP6SYej4z1ICvXTN+JCRgNYCqCx2705M6rJAjXp96dBtG+RTe+mvMOL97/YYXjX02u+ou5s1PlG7HM/+tbElPjuLxv5csgT5/7Lq4u7lW2cD/8YTLNI9vS7hwbR4jqkSBsZ23Gt2X9/9aQNqriYjDuIdX/wKvWPsFa4+TlTMd7O6MMCu+mPhRmFRD9zV7a3NKuwt7F0d/sJeWfZPpOvsRq3eW61uu6S1j46mwSh8VVOOYd7FPtcs7uMzx44gic3Cxdr/1uGsxv780jJz0bg8HA6q+XMWjiCJzdbX9YpcWlsHXeekY9fQNGh/O/R1tdL97lzbBHEnngYMXu3qbhtfszXbQ2l5e+zODLSb4l60yX98X8LGYuzWbe6wF4uZe2hOevyuWnP3OZ9owvraMc2XOkkEmfpdE4xMjNIxrm+tL/Fffe8DT3TxnD2GMVu8ojgqNqVebqrb/x2c+v8+J9H5asNV3enD9msGjVLN596jvcXW33+H486xX2HNrGx5N+xmi4cH8f/2UShO3Mp7kvob3COPBDtNVIaahdd3T5ssvuE+zs44JyUFYB1SPck6L8IgoyC6wGcUXP3EPshhh6v9gPt+D6/dANbBJCVLfmbJmzji5lRkpDzbqj3bzdcffxKAnAAD6hlpZldkomhfmF5KRns/Td0gX6z05H+eru97lu8q0kHDlDXlYuc178tjSPWXPm0Gn2r97N7Z88iNGx7v9surZyYlR/V17+KoMnxlt/ANamO3rR2lzufzOVT5/0tRoZXdYX87OYOjODn6f606219aC7F7/M4MHrPRg9yNKCbtvEkVPxJt7/KVOCcD1r07QTl3Yfzhc/v8GtVz1kdaw23dGrt/7G1C8fZ9LEt61GRpc1548ZfDXvXd587GvaNO1kM8/HP05h+ebFvP/0j4QFRdbgikRVJAg3AK1uasPq/1tB4k7rueA16Y62pfw+wb6t/Ihdfxpt1iWBOOtMFkZnI06epR/C+2aUBuCy05vqU49r+zPnhW84vfe4VXpNuqODm4dx9O9DFOYVlNwDTo+3LAnr4e+Fg7MjY16+xer8bfM3kJ+TR7/xg/EM8MbVy40xUdZ5Vs/4A+8gHzpf2RNDPbaOn7vdi74T41m+zfr+e027oxeszuGBt1L55ElfrrrUdgD+dE4mr3+byexX/K2mJp2Vm2+2sSexqnI/YlF3Jl73BBMmDWPLntVW6TXtjl6xZQmvffkEz058m4E9rrB5zk+/f8WM+e/zxmNfW01NKuvDHyazYvOvvP/MLBqH2VzCWdSSBOEGwD3Eg8ghURxberRCenUdW3IE10A3PBt5YjaZiVl7mvitcXR9vPSPqvHlTTix7Bj7Zu4hangTchNyOfTzARpf3qSkK3rvV7uIWXuabk/2xNHDkbw0y2byDi4OOLjU39vFO9iH1pd2YO/yHRXSq6t5r9bsWLyZ1TP+oOtVvSnIyWfjrFU06dYCVy9Li84v3LrF6OTmjNlsLkk3OhhxdrP+IHN0csTZ3aXCuXWtabgDt17hzrT5WRXSq2veyhzuezOVyXd706eDM/EpRQA4OSh8vSxR9aOfM5k6M4PPn/alWYRDSR5XZ1XSJT2stysf/JRJ4xAHWjd2YPfhQj6bl1XlvWVRdyKCoxg1cBxz/pxZIb26lm/6lalfPs79Y5+lU8ueJKdZdgJ0dHAsmVo0a+k0vpr7Dv+7510igpuU5HF2csbDzTLw6r1vX+CPDQuY+vDneLp5l+RxdXHDzUV6Rc6XBOEGosV1rTi9+iQU1u786uwT7BrgSs//9SH6272sfXIVzj4uRAyKtOoGP/HHcQA2T7ZeHKbFda1oeUPr2lWumrqO6s2hDdEUUVSr8x1dnLji8TFs+HElC6bOwtnNmaguzekxpl7m2NeLJ8d7MvvPHGq7TO3MJdmYimDSZ+lM+qx0n+V+HZ1Y9LZlpPz0X7MpNMGdU1Otzh031I1PnvQF4PUHvHntG8WTH6WRlGZZrOOWEW482QDmCF8sJlz9EL+vnweF+bU6f9HKHykqMvHRj1P46MfSlR47t+rFB8/OAmDB8u8wFRXy8qflur37jeHZiZYFoxas+B6A/3vTulfqtqsf5vZrH61V3UQp2U+4jsl+wrKfMMh+wlB3+wn/m8l+wrXfT/hiIfsJCyGEEHYiQVgIIYSwEwnCQgghhJ1IEBZCCCHsRIKwEEIIYScShIUQQgg7kSAshBBC2IkEYSGEEMJOJAgLIYQQdiJBWAghhLATCcJCCCGEnUgQFkIIIexEgrAQQghhJxKEhRBCCDu5KIKwUmqmUkoX/xQqpRKUUiuVUg8opRzL5W2mlJqulDqllMpXSh1XSs1RSvW1V/2FEEL8N10UQbjYX0AoEAVcDvwKvAysVUq5AyilugPbgXbA/UBb4Crgb+CjC19lIYQQ/2UO9q7ABZSvtY4r/n8MsFMp9QeWoPuUUuolYCZwFOintS4qc+5updRnF7KyQggh/vsuppZwBVrrvcDvwBigM5YW8FvlAvDZvGkXtHJCCCH+8y7qIFwsGmgKtCh+vN+OdRFCCHERuZi6oyujAF38b+0KUOpu4G4Ar2Av2ge2q6Oq/Tvl5Gp7V8HujB6t7F0Fu0u4/W57V8HuMge9bu8qiAZOWsKWwVdHgYPFj9vUtACt9TStdXetdXc3b7c6rZwQQoj/ros6CCul2gPDgTnATixd008qpYw28vpc0MoJIYT4z7uYgrCzUipEKRWmlOqklHoMWIVl+tHbWmsN3A40A9YrpUYWzxnuoJR6CssUJyGEEKLOXEz3hIcAZ4AiIA3Yi2We8Bda6wIArfUWpVQ3YBLwORAExAFbgAftUGchhBD/YRdFENZa3wbcVs28h7C0iIUQQoh6dTF1RwshhBANigRhIYQQwk4kCAshhBB2IkFYCCGEsBMJwkIIIYSdSBAWQggh7ESCsBBCCGEnEoSFEEIIO5EgLIQQQtiJBGEhhBDCTiQICyGEEHZyUawd/W+2fcHfbPlpE1nJWQREBXLZg0No1DGy0vxHtxxl/TdrSTqWiNHRSHj7CAbdOxi/Rv4leYoKi9jw3Tr2/bmXrOQs3Hzd6XlDL7qP6XEhLqnGdi//mx1LN5OdnoVfWCCXjB9CeKtGlebXWrPrj63sWbmDjMR0XNxdaN2/A/1uGATA6f0nmP/6jxXOG//a3fiF+VdIFw3DzONH+ezoYRLy82jp4cnkdh3o5RdgM29eURHP7N3JnvR0DmVl0sPXj7l9LrHKs/RMLN+ePMbejHTyi8y09PTk4eYtGRYceiEup1aWrP+Reaumk5KZSGRwcyZePYn2TbvbzBufcpo7Xx1SIf3lu76kW+vS12Lx+h9YvP4HElJiCPQN5YbL7uWy7tfU1yWIciQIN2D7V0Sz/OM/GfroMCI6NGLHwr/55emfuGvm3XgFe1fIn3YmjXnP/UK30T0YOWkUBbmFrPpiBb888zP3/HBfSb5FUxaQmZjBsMevwC/Cl+yUbEwFpgt5adV2cHM0a3/4iwG3DiOsZQR7lm/n13d+YvxrE/H0r/gaAKybtZzjOw/Tb9xg/CMCKcjNJzstq0K+8a9OxNndpeSxq5dbvV2HOD8LY0/zQvQeXmvfiZ6+/sw8cZTxWzayasBlRLhW/L2ZtcbZYOT2qKYsT4gjo7CwQp6NKUn08w/k6VZt8XF0ZF7Mae7ctpm5ffpXGtztac3OpUxb+Cr3jX6Bdk26sWTDj7z01d18+uRignzDKj3v5Ylf0jS0dcljD7fSv5ulG2Yxc8k7PHT9ZFpFduKfk7v5eM7zeLh60avd4Hq9HmEhQbgB2/rLFtoP70jnkV0AGPrwMI5tOcqORdsZMHFQhfxxB89gLjIzYOJADEbLnYbeN/Vh9mM/kpOeg5u3G8e2HuX49uPc88N9uHlbPry8Q3wu2DXV1M7ft9C6fwfaD+wMwIBbLufEnqPsWb6DvjcMrJA/9Uwyu//6mxtfuRO/sNIP0sDGFct29XLD1VMC77/BtGNHuCEikvGRUQBMbd+JVYkJfHviGJNat6uQ383BgTc6dAYgOiPdZhCe0q6j1ePHW7ZmeUIcv8edaZBBeMHqmVzW41qG974BgHuvfZ6//1nH0o2zuO2Kxys9z8vNB1+vQJvHVvy9kGG9rmdAl5EAhPg34tCpPcxd+ZUE4QtEgnADVVRYRNzBM/Qc28sqPap7E2L2nrZ5TmirUAxGA7uX7KTjlZ0pzC9k77I9hLYOLQm4h9YdJLRVKFt/3sLeP/bg6OxA057NuHTiQJxcner9umqiyFREwvE4uoywfg0i2zfhzGHbr8HR7YfwCvThxO6j/PruL2itCW/ViH7jBuPm5W6V96eXZlJUaMIvPIAeV/Ujoo2NSC3srsBsZnd6Gvc2bW6VfmlgENtSU+r0ubJMJrwdG9bfAUChqYDDMfsYPfAOq/SuLftx4PiOKs999ZuHKSjMJyywMVdfMoH+nYZbletY7nqdHV04eGoPpqJCHIyOdXcRwiYJwg1UTnoO2qxx97UOHO6+7pzYftzmOd4hPox9+0YWvjSfPz5Yhtaa4OYhXP/G2JI8aWfSOL3nFEZHI9e+PJq8rHz++ugPMpMzufblMfV5STWWm2l5DcoHTzcvd06lH7d5TkZiGpnJ6RzaHM2Qu64EpVg/ezmL3/uF65+fgDIo3H08GDhhGMFNQikqKuKf9XuZ/8aPjH5mPOGtK7/fLuwjpSCfIq0JdHK2Sg90dmZtUn6dPc+M40c5k5fHdeGVjzewl4zsVMzmInw8rMcs+Hj4szMzyeY5Ls7u3DHyKdo26YrRYGTzvpW8+f1jFJoKGNTtKgC6turPn1vm0rf95bRo1J7Dp/eybMscTEWFZGSn4ucVVO/XdrGTINzQKeuHuoqsWSlZ/PbWUtpd3oG2l7WlIKeAtTPWsPDl+dz47niUQaG1RinFVc9djbOH5X7o0Icv5+enZpOdkoW7n0f9XUttKesXQWtd4XUpOWbWFBUWMfSeUfiGWD6wht4ziu+fnkb8sVhCmoXjG+qPb2jph1lo8wgyktLZ8dtmCcINmCr/t1D526DGlpyJYcr+fXzWtTsRbg34FkX5vwU0qpJXwdvd16rl3KJRBzKyU5m76quSIDxu6P2kZibx5Mc3otH4ePhzWbdrmLvqKwzKWH/XIUrIFKUGys3bDWVQZKdkW6XnpGZXaB2ftX3B3zi6ODLo3sEEtwihUadIRv7vKk7tOknMPkv3rYefBx4BniUBGMC/seX+V0ZCRj1dTe24elpeg5x060FVuZk5FVrHZ7n5uGMwGkoCMIBPsB8Go4HM5MqvL7hpGGnxqXVTcVGn/JycMSpFQr51qzepIJ9AZ+dKzqq+JWdieGjndj7s3LXBjoz2cvfFYDCSVq7Vm56Vgo9n9Uf0t4rsSGziiZLHzo4uPDr2Vea+toOvJy1nxnMrCfYLx9XZHS933zqrv6icBOEGyuhoJKRlKMe3HbNKP/73ccLbR9g8x5RXiMFg/a3YYLD8irXZ0oYObx9BVnImBbkFJXlSTiUD2BxxbU9GByNBUSGc2nvcKv3U3mOENrf9GoS1iMBcZCa9TEDNSEjDXGSudDQ1QNLJBNx9GmAvgMDJYKCjtw9rEhOs0tcmJdDd1++8yl4UG8NDO//m/U5dGRkafl5l1SdHByeah7djx8H1Vuk7Dq6ndVSXapdzNPaAzUFaDkZHAnxCMBqMrNm5hJ5tB5Z8doj6Ja9yA9bj+p7sWbabXUt2knQiib8++oOspEw6j+oKwOovVzL7sR9K8jfr3Zy4Q3Gs+2YtKadTiDsYx9I3FuMZ5EVwyxAA2g5ph6uXK0vfWEzisURO7znF8o//pNWA1pW2sO2p8/Ce7F+3m32rdpISm8Sa7/8kOy2L9oMtHzwbfl7F/DdK5/w2ateEwMYh/DV9CYkn4kg8Ecdf05cQ3CyM4CaWVs7OZVs48vdB0uJSSD6dyIafV3F0+0E6DOl2Qa/tvlei8em7grdmWH/RWrs9FZ++K0hOK6jkzOrZuCsN/0tW0mf8Zqv0bxbGMOK+v4katobIy9cw8sHtbNyVZpXnta+O4tN3hdVPy5Hrzqs+5+PuJs34+fRJfjh5nEOZmTy/bzdxeXncGtkEgFcP7OOGTdb1O5iZwd70NFIKCsguKmJvehp709NKji+IPc2DO7cxqXU7evv5k5CXR0JeHqkF5/e615drBtzG8m0LWLb5F07FH+GLBVNJyUjkit7jAJi59B0mfX5bSf7lW+ezavuvnIo/wumEo8xbNZ0lG35kVP+bS/LEJB5jxd8LiUk8zj8nd/PG949xIu4Qt474vwt9eRUopWYqpbRS6rly6QOL02s8hF0pNVop9YdSKlEplamU2qyUuspGvjFKqWilVH7xv9eez7VURe4JN2BtBrclNyOXDd+tJzvFsljH9a+PxTvE0qLLSs4iNTatJH/jrlGMeu5qtszexJbZm3BwdiCsbTg3vDG2ZOSzk6sTY9++ib8++oNv75uBi6cLLfq1ZMDdFac8NQQte7UlLyuXrb9uIDstC//wQEY9dgNeAZbXIDs9i/SEtJL8yqAY9dj1rPn+T+a++gMOjg40ah/FJTcOQRX3EhSZzKyfvZys1CwcnBzwCw9g1GPXE9Wpua0q1CsXJwMf/nCS268JJ8C37kblpmUUcu+UaAZ08+VMonU37rodaVx7WTCvP+qNm4uBT386xZj/28nab3rSrFHp/dAWkW4s/qS0lWU01NUd2Jq7OiyC1IICPjj8Dwn5+bTy8OT7Hn1K7t8m5OdxPMf61s3NWzdyOje35PHl61YBEHvlNQB8d+IYJq15IXoPL0TvKcnXx8+/wsIeDcGlna8gMzuNn/76jJSMRBqHtOClO78gyM/Sgk/NSCQu+aTVOT/99TkJqbEYDAbCA6N45IapJfeDAcxmMwtWzyQm8RhGowMdm/XirQdnEexnu6fJDvKAp5RSX2itE+ugvAHACuA5IAUYD8xXSg3UWq8FUEr1AX4CXgTmAaOBX5RS/bTWm20XW3tK66qG+oiaCm0Vqid8cce5M/6H5ZyU99SUFuf+W73vlWiSUguJScijfxdf3nysJWBpCY96cAdHlvbH36d2gfnmZ/fQvrkHWmsWrUxk4w+9Ks2rtabVqPU8PqEx91xvGRn82ldHz3neueRM9ar1uf8V2we9bu8q2N2Vj7eq1bc3pdRMIAiIAFZprR8uTh8IrAQCtda2h4bX7Hm2AGu11o8XP/4J8NNaDy2T5y8gUWt94/k+X3nSEhbCjgwKXrqvGeOf2cN9N0TQJKLiyNzwy1ZXWUafTt7MebdzyeOv5p4mITmfJ19pz5vlurptKSjU5BWY8fG0nhN6PDaXNletw9HRQPe2XrxwbzOiwl2rd2FC1A0z8AywQCn1gdb6SPkMSqmKy+FZW6u1HlHFcU+g7KjMPsBH5fIsAx6sRn1rTIKwEHZ2ed8AenX0ZsoXR/l6SvsKx9d+U/Wa3i7OpVNJ9h3J4o2vj/Hnl90xGqvXAHll2lE8XI2MuKT0Flv3dt58+lwbWjR2Jym1gLdmHufye/5m0w+98POWBRzEhaO1XqqUWg9MBcbZyNL5HEXkVnZAKfUAlpb2d2WSQ4D4clnji9PrnARhIRqAyfc3Z8jd23hof8VpVE1ttI5tyS8wc+cL+5jyYHOiwqrXYv3sp1PMXBDDgg+74OVe+nEwtI/1tJfu7bzofN1Gflx6hgdvlLnU4oJ7CtiklHq7/AGt9eHaFKiUGgO8BYzTWp8od7j8PTVlI61OSBAWogHo2taLqwYG8eKnR3jy9iirY9Xtjo5LzufAsWweePUAD7x6AACzWaM1+F+ykl/e7sjgXqXB9bOfTjH1y6P88k4nurWt+v6th5sDrZu6c/R0pY0KIeqN1nqrUmou8AYwpeyx2nRHFwfg74BbtdaLyuWPo2KrN4iKreM6IUFYiAbihXub0uumzSzflGyVXt3u6LBAZzZ819Pq2PR5MazcmsL3r3UgMrR0gZaPZ53kta+O8fPbHenTyeecdcvLL+LQiRwu6SoLOAi7mQREA8PLpXc+x3lW3xyVUjcA3wATtNZzbOTfCAzF0ko+ayiwoSaVrS4JwhfAktd/Ze+yPVxyx6X0vaV/SfrJnSeY9X8/8NCCR0s2WKiuf9YcYOevO4g/FEdRQRH+jQPoc3NfWvRraTN/9PJ9/PrKQpr1bs51r91gM8/G79ezZvpqul7TjaGPDCtJf2PQqzbzd7m6K5c/Wv7vwbY/v1zMgXV76D36Unpc3a8k/ezevnd9/EiNdzTKTsti3azlJJyIIz0ulVb92jN04kirPHtX7eTA+j2kxCShtSYwMpjeYy4lrGXp+sCb569lywLrOaZu3u7c+eHDJY+11mxZsI59q3aSl51HSLMwBtxyOf4RtnenqY2mEW7cdnUYn/98ukJ6dTg6GGjbzHrBkQBfR5wdrdM//OEEU744yrQX29I80o34ZMsUJhdnI94elo+E5z46xPD+AUQEu1juCc84Tk5uETeOqJfbYlV6dNff/Hz6FE+1bMOjLVqVpG9ITuS6TevZM3QE/k41XzmrwGzm/UP/MDfmFPH5eQQ4OXNv0+bc1aRZXVa/Wt6b/QzLty3g5uGPMG5I6bajuw9vZtLnE/jh5Y1413AFqz1HtvDN0neJSTxGfkEeQb5hXN7rOkYPvNMq38K13/LbhlkkpMbi6e5D73aXcduVj+PqbFk34OflX7Bxz5+cTjyGo4MTrSI7MeGKx4gKtf1ZU1+01oeVUtOAR8qnV7cMpdQ4LC3gJ4A1Sqmzb+gCrfXZ3UA+KD72LDAfuBYYBPQvX15dkCB8gTg4ObB59iY6j+qCm8/5L4pxatdJGndpzCV3DMDVy4V9f+1j/gtzufG98TTqaH3PLi02lZWfryCiY+UL08dEx7BryU4Cm1ZcsP2BuQ9bPY775wxzJ/1C64FtalRno6MDfy/dRPtBXepk796iQhMunq50v7IPe1fttJkn5sAJWvRsQ1jLCBycHNm5bCsL3/qJG6fcgU9I6WpLPqF+jH5mfMnj8qsFbV+6iR2/b2HIXVfiG+rPlgXrWPjWbG5+/W6cXM9/6cSznrq9CbN+i4N6XC/iy7kxFJo0tz+/zyr9xitC+Oy5tgDEJuRz14v7SE4rJMDHke7tvfnzy+5EhtpndLSLwcCnRw9xS2QU/nWwVCXA/Tu2Epuby5sdOtPU3Z3E/HzyzEV1UnZtODk4M3flV4zoPRZvj/NbCQzA1dmNUf1vISq0Jc6Oruw/vp2P57yIs6MrV/a7CYBV239lxuK3ePiGV2jXpBtxyaf58Of/UWDK55EbpgKWYH5F3xtp0agDoPl+2Uc8N+0OPntyMZ5uPuddzxqaDEw4j/PvxRL33i/+OWs1MBBAa72hOFi/ArwMHAHG1sccYZAgfMFEdmlMZmIGG75dz5CHLz/v8oY8ZF1G/wmXcHTTYQ6tO2gVhItMRSyaspBL7xzAyZ0nyE2veE8vPyuPxVMXMuLJK1n/bcVVkTzKbepwaP0h/Br5Edm5Zlv/RbSJJCslky2L1jHg5vN/DbwCfUrKObz1gM08w+692urxwAnDOLr9ICf2HLUKwgaDodJlK7XW7Fy2lW5X9qZ5D8vm6EPvHslXD33IwU3RtB9U/WUDyzob8MoK9HPi9F8DalWeLc/e1ZRn72pqlbZnXt9znmdrlLY99fUP5ExeLu8d/odXyu0DXBurEhNYm5TIhkFDS1rRjdzsu2Jch+a9SE6PY/Zfn3LPNc+d+4RzaB7RnuYRpb/HEP8INuz5k33HtpUE4f3Hd9C6cScGd7P8nQT7RTC4+9Ws3/1nyXlT7p5uVe7jN77B2Od6EH1se73uOay1vs1GWgKWKUW1LXNgNfPNAWx1Vdc5CcIXiFKKARMHMe/5OXQb0wPf8IpdS++OeMvGmaUiOjbihjdsjdC3yM8pwMXTxSptzVer8Q7xpsPwjpzcWX4AoMXv7/xGq0tb07hrlM0gXFZBbgEHVkTTd0LNe2aUUvS9YSBLPphL56E98A6u+Bp8fneFwY9WQls24uonxlaZpypmUxGmQhPObtavU0ZiGl8/8hFGByPBzcLoc90AvIN8S47lpGcT2b5JSX4HJ0fCWjXizKHTtQ7CovoMCia1bssd2zZzV1QzotwrBszmv/9aZRm9/Pz5oaflC8iyuDN08vZl2tEjzIk5iYvByKCgYJ5t1RZ3B/t8LBqUYsIVjzN15oNc1f9WQgMqjkK/blLXKsto16QbL0/80uaxIzHR7D+xg5uGlk53bdukGyu3L+LAiZ20btyZhNRYNu9bSfc2l1b6HLn52Zi1GQ+3hrXW/L+VBOELqFnv5kS0j2DN9FVc/ULFpUhv/+pOG2eVcnCqfH7m9vnbyErMpN3QDiVpx7Ye5cCqaG7/svJydy7eQWpMKiMnVVg+1abov/ZhKjTRYViHc2e2IapTc0JbRLBx7mqG339NhePjplS92piD4/nNUd04dw2Ozk407dqiJC24aRhD7hqJb6g/OZnZbFu0gTmvfMdNr96Fq4cbOemW5RDdvCvua5ydmnle9RHVd1lQCD18/Xn9n2g+71pxsNqfl1S99KqLsXQ+9YncbLamJuNsMPBl155kmAp5bt9u4vPy+LJbzypKqV892gygTVQXvv39fZ6++d0Kxz98bH6V5zs5ulRImzBlAOlZKZjNRdw49AGu6Fv6RX5AlyvJzEnjmU9vQWtNkdnEoG5Xc/uVT1T6HNMWvErTsDa0bty5+hcmKiVB+AIbeM9gvnvgG878c6bCMd/w2t0H+mf1AVZ+sYKrnr+mZF3pnPQclr6xmFHPXY2Lp+37eMknk1nz1SrGf3gLRsfq7R26a8lOWvRreV73tfuNHcQvk78lfkTF18An+PzvhVVm5x9b2btyB9c8daPVfdyoTtYDcUKahfPtE59xYN1eugwv+4Fcjxvaimp5rk07Rq5fza60iut8N3Gv/i5YZq1RwCdduuNV/MXulXaduGnLBhLz8wh0rhjMLpTbr3ySJz4ay6EBt1c4FhZQs1tAAG/c/wN5BdkcOLGLmUveIdg/oqT7ec+RLcz+6zPuG/2CZZvDpJN8ufBVflj2ETcPf7hCWV8ueo3o43/z5gM/YjTIfsN1QYLwBRbaOoyWl7Ri9Rcr6HurdZdubbqj/1l9gMWvLeLKZ0dZjYxOOpZIVnIWsx8v3WHo7Drhb172GnfOuJvY6Bhy03OZfntp95U2a07tPsmORdt57LcncXAqfYvEH44n7p8zXHrXwBpfd1nBTcNo1r0VG35eSY+r+lkdq6/u6J1/bGXT3DVc9fgNhDQLqzKvk4sTfuEBpMVZBkuebQHnpGfh6V86nzanin2NRf3o7OPLlaFhTD2wz2qkNNSsOzrY2YUQF9eSAAzQwsMSxGNyc+0ahFtGdqBvh8uZseQdq5HSULvu6BB/y2YMUaGtSMtK5sc/Pi4Jwt/9/gEDOl/JsF7Xl+TJL8jlw1+e48ah92M0lv79f7nwNdbsXMqr931DiH/lgzxFzUgQtoMBEwfy1W3TOLrlqFV6Tbuj96+MZunri7nimZG0HmA9UjmkVSh3fH2XVdra6WvIy8xl6KPD8An1wd3PnTtaWedZ+sYSfMN96XNz3wqt412/7sA7xJuoblHVucwq9bl+AD88+yUn9li/BvXRHb3j9y1snreGUY/dYDU1qTKmAhOpZ5KJaGNpdXgF+uDm7c7JfccJbhpWkif2n1P0H1d/A1OEbc+0asvA1ctZWW5/4Zp0R/fw8+fXM7Fkm0wl94CPZltuO0S4nv/I/fN16xX/x/1vjWT7P9ZjNGrTHV2WNpspNJUOvc8vyK0wE8BgMFB+Y58vFkxl7c6lvHbftzQKsh7oJ86PBGE78A33o/PILvw9d2uF9OqKXrGPJa/+yqB7B9OoUyRZKZZFY4wORly9XHFydSKwifV0I2cPZ8xF5pJ0o6MRFw/rP1pHF0dcvVwrnFuYV8i+5fvoNa43Sp1/H6xPsB/tBnZm1x/bKqTXROIJyyI2BbkFKKVIPBGP0cGIX7hlHeTtSzexcc5qLr/nKnxC/MhOs7xODk4OJYOz1s1aTpMuLfDw9yI3I5utC9dTmF9I6/6W+95KKToP68HWRRvwDfXHN8SPrYvW4+TiRMveFUc4i/rVxN2D8ZFRTD92pEJ6dV0bFsF7h/7h/3Zt5/GWrUkvLOSFfbsZGRJGQB1NgTofYQGNGdbrehat/bZCenX9uu47gv0iCA+0DCjcd3Qb81Z/zZV9byrJ07PtIBasmUnziPa0iuzEmeQTfP/7h/RsO7CkFfzZvMms+Hshz932CR6uXqRmWHYUdHF2K5lLLGpPgrCd9L21P3uX7Tl3xkrsXLQDc5GZ5Z/8xfJP/ipJb9Qpkpvev7mKM2tn/8poCnML6DD8/KeHnNXzmv4cWL+XosLalzH7ha+tHh/beRjPAG9ue+d+AHYv3465yMzvny6wyte6f4eShT2yUjNZ9tlCcjNzcPV0I6R5ODe8MKFkz2KArlf0xlRgYvW3y8jPySO4aRhXPzmuTucIi+p7rEVrfjl9CssmOzXn7uDAT7368ty+3YxYtxofR0eGhYTyv9YN50vVjUMfYMXfC8BUu/PNZjMzl7xDfEoMRqORUP9IbrvicUb0Kb2lNW7IfSil+H7ZhySnxeHl7kvPtoO4dcSjJXmWbLDc0vrfF7dVqN/4YQ/VrnKihOwnXMdkP2HZTxiqt5/wf53sJyz7CUPt9xO+WBjOnUUIIYQQ9UGCsBBCCGEnEoSFEEIIO5EgLIQQQtiJBGEhhBDCTiQICyGEEHYiQVgIIYSwEwnCQgghhJ1IEBZCCCHsRIKwEEIIYScShIUQQgg7kSAshBBC2IkEYSGEEMJOJAgLIYQQdiJBWAghhLCTiyYIK6VmKqW0Uuq5cukDi9MDlFJRxf/vXua4m1Lqd6XUMaVUiwtfcyGEEP9VF00QLpYHPKWUCqxOZqWUL/AXEA7001ofqs/KCSGEuLhcbEF4JXAceP5cGZVSYcCa4oeXaq1j67FeQgghLkIXWxA2A88A9yqlmlWRrzmwHjgNDNFap16IygkhhLi4ONi7Ahea1nqpUmo9MBUYV0m2b4C/gau01oXnKlMpdTdwN4CTvxPLT6ysq+r+K2XsNdu7CnY3tV0Te1fB7kIXz1L2roO9nZywWdu7DqJhu9hawmc9BVxfdgBWOQuBnlQepK1oradprbtrrbs7eDrWVR2FEEL8x12UQVhrvRWYC7xRSZY3gUnATKXUbReqXkIIIS4uF113dBmTgGhguK2DWus3lVKFwHSllIPW+qsLWjshhBD/eRdtENZaH1ZKTQMeqSLPe8WB+AullFFr/cWFq6EQQoj/uos2CBebDEyoKoPW+mOllAn4tDgQf3phqiaEEOK/7qIJwlrr22ykJQCeZZKSgAojOrXWnwOf11vlhBBCXJQuyoFZQgghREMgQVgIIYSwEwnCQgghhJ1IEBZCCCHsRIKwEEIIYScShIUQQgg7kSAshBBC2IkEYSGEEMJOJAgLIYQQdiJBWAghhLATCcJCCCGEnVw0a0f/22T+k0Hcb7HkHM+iMK2QqDubEXBJUJXn5JzK5uT3x8g+moWDuwOBg4IJvSoCpSzLYaduSyZxZTw5J7MxF5pxDXMjdFQ4Pl38LsQlifPw5S+H+PC7A8Ql5dKmqTevP96Fvl0qfz9orfl01kG+nnuYE7HZ+Ho5cdPIJrz8UKcKeTfuTOSKe1bQsrEXm38eUZ+XIc7T6gNz+Cv6B9Jzkgn1acL1Pf6P5sGdbeZdvPNLlu6ebvPYG9cvxdPV8ne/9egy/tz3PfEZJ3F1dKdVaA9Gd38Yb1f/+roMUYYE4QaqKK8I1wg3/PsFcvzLw+fOn2vi4Fv78WzlRdsXO5J3Jpdj0w9jcDISMiIMsAR2zzbehP1/e/cdHlWxN3D8O0k2m9577wmhB5BepIiCIoIFyxXFBoLtqoheES+2K1jQV1FEFBuggIAoHek9hJrQAiGEhHTSe/a8f2xI2OwmpG/U+TxPHrJz5kzmhM3+zsyZMt4XM2szsvdlEv/pGcJndMQ23K61L0lqopWbLvHKBzF8NKMnfbu5sHB5POOf3cnB5bfh62Ft8JzXPj7Kht0pvP1sVyJDHMgrKCc1s1gv39W8Mp6atZ/Bvdy5kq5/XGo/ohM2s/zQx0zo/TLBbl3ZeWYln299gZljluJk46GXf3jHBxkYPk4n7ZudrwOiOgCfTz/G4j3/ZVyPZ+jqO5j8kmyWHZjD4l2zeO6Wz9risv7xZHd0O+XQ1RGfu/1w6uVsYF8nfVn7MtGUaQh8IhhLHysceznjMcqbtI0pKIoCgN+DgXje7o1NkC0W7pZ4jfXFKsCanJjsVr4aqTk+++k0D94RyCN3BRMeaM8H03vg7mLBohWGb87OXcxjwc9nWfbhAEYP8SHQx4auEY6MHOCll3faWwe5f3QgN3X+a7R6hBDbhRDzhRDvCiEyhRDpQogPhBAmVccfEkIcEkLkVx1bLoTwvu78IUIIRQgxTAhxQAhRJISIFkJEGe+qGubPU0vpGzyaAWFj8XQI5L7eL2Fn6czOs78azG+hssLe0rn6q1JTQXz6MQaE3lmd50LGSRyt3BgWeT8utl4EunZiSMS9XMyMbavL+seTQfhvojA+H9swW0zMTavT7Ds5UJ5TTllmaZ3naUo0mFrLDpH2qqy8kqOnrzK0j25LZ2gfDw4czzR4zh87kgnwtmHz3lS63LmWTnf8xlOz9pORXaKTb+Hyc6RlFTP9schWq38reRCoAPoB04DngfuqjpkDs4CuwO2AC7DUQBnvATOAKCAL+Elce27TDlVUlnMp6wwdvHrrpHfw6s2FjBMNKmPvud+wUtnQzf/m6rRgty7kFmdyPGkXiqJQUJJDdMJmOnr3a9H6S3WTn75/E+W55aiczHXSzOxV1cfUrhZ656RvSaXsainO/VzbpI5S42XllFFZqeDmpPv/5+ZkwfYDaQbPuZhcQFJqISs3JfLFrN4IAf+Zd5R7X9jJ1m9HYGIiiI3P4X8LT7L12xGYmv7l7sXjFEV5o+r7s0KIJ4BhwFJFUb65Lt8FIcQU4JQQwkdRlMvXHZupKMo2ACHEbGA34A1cn6fdKCjNQaNUVncjX2Nn4cTp4kM3PF+jaNgX/zu9g0ehMq35nAhy7cykgbNZvHsWZRWlaJRKIjxv4uH+M1v8GiTD/nJ/fVLd9G7jlbrzXj2UxeVfEgl6KhS1i7o1qyW1gNptNEXRT7tGoyiUlmn4anYf+ke50a+7G1/N7sPh2GwOx2VTWlbJo6/t5e3nuhHgbdP6lW95x2u9TgHcAIQQUUKINUKIRCFEPhBdlcevnjJSqv6tf+RjOyBq/ZUrKHpphsQm7+NqURr9QsfopF/JSeCXgx9zW+dJzLh9MdOGzSOvOIsl+99v0XpLdZMt4b8Jlb2K8txynbSKvPLqY9e7eiiLhIXxBDwRIkdGt3PODuaYmgrSsnS7kjOuluDmrN+7AeDuYomZqSDUv2awXYifLWamgsuphbg5qTl9IY+nZx/k6dkHAdBoFBQFHHv/zIpPBjGsj2frXVTzldd6rQAmQghrYCOwBfgXkI62O3oX2m7qusq4drvabhslNmoHTIQpecVZOun5JVf1WseG7Dm7miDXzng5BOmkbzz5HQEukYzo9JA2wTEUczMLPto4mTHdJ+Nk7d5i1yAZ1m7fdFLjWIfYkn82H02ZpjotLzYHlYMK8+tautkHM7nw1TkCHg/WDvqS2jVzlSndIhzZdiBVJ33bgTR6d3ExeE6fri5UVCpcuJxfnZaQXEBFpYKvhzVeblbsX3Yre34aWf01aXwIQb427PlpZJ3l/gVEoA26rymKslNRlNP8BVq3DWFmqsLPOZxTVw7qpJ9OOUiQa+d6z80pyuBk8l76Xzcg65qyihJMhG4YMDGpGlei1NOVJrUY2RJupypLKilNq2r9KFCWXUpRYiGmNmaondVcXp5I4YUCwl/pCIBTHxdSVl8m4et4vMb4UJJazJU/UvC6s2aecPb+TBIWxuNznz+2YXaU55QBIMwEZjYqg/VoKanrz5MXm4lzfx+c+1YPVqXoUh6XfzlF8NNRmFo1rg75Z7PJPZZGaXoRmgoNamdLnPp4YxPiWJ0n92QGaRsu6J0b8nwvTMxqPnwqCsrI3JlEYUIOmrJKVPZq3EYEYuVrV/OzjqdTmlZIZXEFPvd2wMqvbaZ1TXswgiff2E+Pjs706erCopXnSc0oZtL4EADe/OwYh2OzWPvFUABuvsmDbhGOTJ19kP/9Wzvod8ZHMfTs5ExUpBMmJoLIEAedn+HqqEatMtVL/4u5BJQC04QQnwMdgLeMW6WWM7TD/Xy3578EuEQS5NqFXWdXkVucycCwuwBYHTOfxMw4valF++LXYm5mQY+A4XpldvYZwE/73mPnmZVEevUhtziT5Yfm4esUbnDaU1sSQiwGJqJ9fv/2delDgG2Aq6Iohkcn1l3mOGAy0B2wAOKAdxRF+a1WvvFo3zvBwHngP4qirGrqtdRHBuF2qjChgLPvx1W/Tll1mZRVl3Hu70rgEyGU55RTml4z6tnMyoywlztw6YcE4t48jpm1GR63euJ+a023Yvq2NJRKhaQlF0lacrE63SbcjohXO7b6NQkzwdVDKdh3dcOskQHXkOLLeVj52eM8wBdTCzPyT2WSsuYsPvd1wMqnJkAKMxMCn9BdpOL6AFxZUkHS0jgsvG3xGheOmaUZ5bmlOjcFSnklll422HVwJnW9flBvTeNv8SM7t5S5i2JJzSwhMtieFZ8Mws9TO0c4NbOYhMsF1flNTAS/zBvE9Lkx3PbkVizUptzc24P3XuiOiUm7HQDcbIqiZAghJgLvAlPRPvf9N7DBqBVrIT0DR1BYmsv649+SV5yFp0MQTw/7CGcb7d94XnEmGfm648oURWFv/Fp6BY7E3Ez/8UXfkNspKS9ix+kVrIz+FEtzG8Lce3BXj2ltck0NUAJMF0IsUBQlowXKGwz8CbwOZKMdab9KCDFEUZRdAEKIvsDPaEfZ/wqMA5YLIforinKgBeqgQyiyy6FFWQfaKJFvdjF2NYwq76RGLy11/XkqisqpyC/DytcOt2EBQPNawoYk/ngSK29bXG/2B7Qt4fStFwl9rled52TuSqIoKQ+/B258I1JZVM75+TE3bAlHTwhsfOX/Zmx7LP37RvwG+mLigX/8B+yU73o36X1Q1RJ2A3yA7YqiPFuVPoQmtoTr+DkHgV2KorxY9fpnwElRlBHX5dkCZCiKcn9zf15tsiUstRkhBC6D/EhZfRaHHh6YO+jfmZ/7pP7pFpbetvjcHVHncaWsEhML3be1UqHhwoIjoCio3axx7u+DhXvNSlMF57KxCnQgZe05ii/lYWZjjl1nVxy6u9OOp45K0j+BBu187tVCiE8URTlfO4MQokD/NB27FEWpbz1WW+Dqda/7Av9XK89GtHPSW5wMwlKbsglywNLbhqxdSXjeEap33P/h+geZCLO6xxLmHEmlPL8Mu8iagUXmTha4jwxC7WaFpqySnMOpJC2Nw39iZ8wdtTcB5bml5B5Nw6GHB053R1CaXkT6nxcBcIwy7nMxSfqnUxRlnRBiD/AOMMFAlm43KKLO9ViFEFPRtrR/uC7ZA6g9CT+tKr3FySAstTnXQX5cWhKLY6r+Dey1wNhY+WezydiRhOftIajsa0aDW3rZYullq/M68fsT5MSkVneJKwpYeFjjOkg7ldTC3ZrynBJyj6bJICxJ7cN0YL8Q4oPaBxRFufHi+gZUDb6aC0xQFCWxdrG1sxtIaxEyCEttzsLTBptQJzJ2JuHcx1vnWFO6o/PPZpO67jwetwXpjIw2RJgILNytKbtaM+/WzFqFubOlTj5zJwvK88oacjmSJLUyRVEOCSFWAu9Ta8R7U7qjqwLwD8DDtUdGA6not3rd0G8dtwgZhCWjcBnoy8Vvj1N4MUcnvbHd0fmns0jdcB6PW4OxDb/xvGdFUSjNLELtWvNM2NLblvJa6yqXXS1BZVd7fQdJkozoNbRTim6tld7tBufpdEcLIe4FvgMmKoqywkD+fcAItK3ka0YAextT2YaSQbiFlWaUEv3IPrzG+eI1xqc6Pe9ULmffj6Pr//VEZdu4UcBlOWVcXnaRoouFlKSV4NxPO02ptquHskhelURpeglqNwu8x/vi2MNwYLqy9jLJK5NwHeaO/79qVtFJWBhP1h7dmQDWQTZ0eKMmOJbnlJH0cyJ5sbloSipRu1vgcZtXo9agNne0wL6LGzkxqXrpDZV3OovUdedxHeyHpa8tFYVV855NTDC11L61s/ZexsLTBpWjhfaZcEwapRnFuA2vGb3s2MODS0vjyNqfjG24M6XpheTEpOEysOb/r7K4gvL8UjQllVW/gxJKLEwxs1ZhZt20YD35zf0s+f0ir0/uzPTHa0Zm74pOY/TkbSRsuQtnh8YtKfrbn0ksWhnP8TM5lJZVEh5ox8uTOjJqsLfB/Ms3JPLY6/sYOcCL5fMG6RxLzSxm1v8dY9OeKxQUlRPgbcPHM3oyoEfbrn/RGvNFq84fDHwEdES7dOUcRVG+bIEqN9r3e2az//w67uj2JLd1mVSdfjb1MPM2TWXOvRuwsXBoUpm1mZtZMO+B7QB8vHEK59KO6OXxtA9k5p3afS82nPiOo5e2k56XiJmJOQGuHRnb/Wm8HIMbVZ/mUhQlXgjxFfBc7fSGliGEmIC2BfwSsFMIca3FW6YoyrXt5D6pOvYqsAq4C7gZGNDMSzBIBuFWIFSC1HUpuA5xR2XX/Gk3SrkGMxsVHqO9ydhhuEekID6f81+cxWusL449nbganc35z88S8Z9O2ATb6uXN2JGOpa+VwbJsO9oTdF2QF2a6I4QTFsZTUVhByHPhqGxVXD2cTcLCeMyd1Y3al9i5rzd5sRk09VFL7tE00ChkbEskY1vNIx1LH1t8J2h3BqosrSRtUwKVReWYmJuidrfGd0IHLD1r1ky28LTB685QMndfJntfMmZ2apwH+GDfrWbJvoLzV3UW/UjblACAU19vXPrXBOvGslCb8skPp5g0PhiXJj4Pv97umAwG93Jn5pQuONqb88v6RB54eTfrFtxMv+66wTPhcgEzPz1Kv+76N085+WXc8tgW+nR1Zfm8Qbg4qrmYXICrk9HWGW/R+aJCiEBgHfAN8BDaD9j5QogMRVFWNrf8plCZqtkc+yMDwu7C1qL+xyoNcU+vf3Nn1FSdtA/XP0mIe7fq108O+R8Vmorq1xWVZbyz9kGiAoZVp51LjWFw+Hj8nTugoPD70YV8uvkZZt65FGu1fbPr2Uiz0d6QNdVktHFvXtXXNTuAIQCKouytCtZvA/9Fu1jHfa0xRxhkEG4Vth3sKc8u48pvl/F7qPnzRdWuFtXlXI3OMpgnbdMVbDvYV7e+LcdYkX86j/RNV7CZUhOEK4oqSFhwjoBJwaSsMbxhjImZQOVQd+uuID4fv4cCq4O7x21epG+5QuGFgjqDsMdt+nfNZtaqeufv3si1QFsft5v9cauaM1wfm2BHbILr/uCz7+SKfaeW321qYA83UtKLeP/rWOa+3KPZ5c15SXdb3Fef7MTG3Sn8vj1ZJwiXV2iY9J+9zHy6C7ui08jK0X3+/cn3p3B3tuSr2X2q04y82cM2tKNYZwLPtkB5k4EURVGeqXp9SgjRG20LyShBOMwjiquF6aw//g333vRis8uzNLfBkpr/s/Ppx8gsSGbigFnVabWD6MELGyitKKFvyB3Vac+M+EQnz8QBs3hx2XDOpx+ni+/AZtezLoqiPGIgLR3tlKKmljmkgflWAIa6qlucDMKtQAjwvseP85+ewe0WTyzc9Fs4MU/Vf1NlE2ZH2IsdGvwzC+PzcRuuO5bAvpM96Vt1u3sTF1/AsZczdpH2dQbhgrP5HH3mEKZWZtiG2+F9t59Oi94m1Jbsg1k4dHfE1MqMnKNXqcivwC6yze+K//JMTARvTuvKAy/tZsr9YQT56H++eA6s/7Ogb3dXfv10cJ3HC4oqcLDVvama/flx/L2sefD2QHZF6/eu/L49meF9PXnk1T3sjE7H09WSh+8M4sl7Q401d7ql54v2BTbVOr4RmCiEUCmKUnuTiFYnMGFs1FQWbJ/OzR3uw9VWv4flhSU3GzizRrBbV6YNn2fw2J5za/B0CCLYre7FhPacW0NHr771btxQWl6EomiwMm9yLJSuI4NwK3Ho6ohNqC3JKy4R/HSY3vHI2fWvqmVi3ri9NcpzyzGzr72fsLnOzkoZ29MoTSsh8En958nX2Hd2wLGnE+YuasoyS0n+NYkz78cS+WYXTFTaOgVPDeP8F+c4Oi0aYSoQZoLAyaFY+VvXWa5Ut5EDvOjT1YXZn59g8Xv6m6nvXjKy3vMt1aZ1Hvvql3OkpBcxYXRAddrW/Vf4dfMldi+pPb6lxsXkAr5ecY6pD4TzwsRITpy9ystzYwB46j7993NbaOH5oh5od1u6Xhraz0QX4EoTq9ksnXz6EeTahd+OfMljg97WO/7q7d/Xe765meHHBcVlBcQk/smY7lPqPDct7xLn0o7w1JA59f6M5Yc+xscx7IYbR0gNI4NwK/K5159Tb52gMEH/Bt3C3dLAGc2jv59wzbPWkivFJK+8RPirnXTWTa7NqU/NQhdWvtZYBdhw4qUYco9dxbGndpBX8sokKvLLCZseiZmNGTkx2VxcGI/61Y5Y+clA3BSzn+3KsEe3EBOXrXcs2LdpLY41W5OY+clRvn23X/U601k5pUx58wCL3u6LYz2jvzUa6B7pyJvTtGtud41w5HxSPguXxxstCFdpyfmihuaCGkpvU3f1mMbc9Y8zPPOU3jE3O98mlXnwwgY0Gg29g+q+8dpzdg32li508tG/EbxmxaF5nE8/xou3LqjZbUlqFhmEW5F1kA2OPZ25/EsinmN0u5Zaujtau5+w7nO9irzy6r2EC+LzqcivIPb1ozUZNFBwNo+MbWlELehd3dK9nrmjOSpHc0qqdnQqSS8hfUsqkbO7VAdcKz9r8s/mk74llYBJbTti8u+iR0dn7hzqw6z/O8r0x3TXsG5Kd/SarUk8+cZ+Fvy3j87I6Lj4HFIzSxgzdXt1mkajjTmOvX/m4M+3ERpgh4eLBRGBuo8XwgLsuJx6timX12JacL5oXXNBKwDDAy/aSIBLJN39bmZ1zOfc1uVRnWNN7Y7ec24N3f2H1DmQqqKynP0X1tE/dAymJobDwopD84i+uJnnb/kcF1vDo+2lxpNBuJV53+1L7GvHyDuRo5Pe0t3R1iG25MXm4jGq5o8jLzYXmxBtK8ohyomOgboDaxIWxWPhboHn7T56I6CvKc8vp/xqWfVALU2pdoqOqLUbjzDRzsGVmu6NqV246Z71bNmn+xy/sd3Rv26+xOQ3D/Dlm70ZO1y35RTV0Zn9y3RbQ299cYKc/DI+nN4Df2/tjVXvri6cS8zTyRd/KR9fz3bR09ES80X3AWNrHR8BRBvjeXBtY7pP5q3f7icueb9OelO6oy9mxnL56jnu7vV8necdS9pBYUkO/UPGGDz+y8GPOHxxM8/fMh8P+4Ab1l9qOBmEW5mFuyUuQ9xI23xFL70xihILAagsrgQhKEosRJgJLL2104zcR3hy+r2TXPk9GYcoJ3Jissk/nUf4a9pWlZm1GWbWuv/dJuammFqbYemjLaOypJKU1Uk49nRGZa+iNLOU5BWXMLNT4RjlpK23pyVqdwsSv7+AzwR/zGxU5BzOJi82l5Bnwxv/C5KqBfva8shdwXyx7KxeekOt2JjIk2/s5+3nu9G/uytpmdq4o1KZ4GSvxtrSTG/PYHtbFRWVik761AfCGTFpC3MXxTLuFj+On7nKgmXneGOq8XcIa4n5osCXaPcdngcsAPoDjwAtvktOU7jZ+TIgdCzbTv+il95Yu8+uxs3Wl1D3qHrzhHv2NNjCXXZgLgcvrOepIXOwUtuRW6ztKFCbWWKhMjzNUWo4GYTbgNedvmTtyUApb3pLMW7WcZ3XuUevYu6spsuH2j8sm1BbgqaEkbLyEimrklC7WRA0JVRvjnB9hAkUXy4ia08GlUWVqBxU2EbYE/x0GKaW2taWiZkJoS9EcHn5JeLnnalerCPgsWAcujs1+fokrRlPdGTpHwlNPv+blfFUVCrM+PAIMz6sWYRhQJQr674aVs+Zunp0dGbJhwOZ/flx5iyKxcfDmv9M6cwT99Q9qK+NNWu+qKIoCUKIUcDHwBS0i3U8a6w5woaM6jLJ4GIbjVFSXsjhi1u4rcukOke1Z+Ynczb1MJMGvWXw+M4z2l/JJ5t1NxEa1eUxbu/2RLPqJ8n9hFuc3E/Y8H7C/zRyP2G5nzDI/YSh6fsJ/1M07sGjJEmSJEktRgZhSZIkSTISGYQlSZIkyUhkEJYkSZIkI5FBWJIkSZKMRAZhSZIkSTISGYQlSZIkyUhkEJYkSZIkI5FBWJIkSZKMRAZhSZIkSTISGYQlSZIkyUhkEJYkSZIkI5FBWJIkSZKMRAZhSZIkSTISGYRrEUIsFkIo131lCiF+F0JEGLtukiRJ0t+LDMKGbQE8q75uASyBVUatkSRJkvS3Y2bsCrRTpYqipFZ9nyqE+BhYK4SwVBSl2JgVkyRJkv4+ZEv4BoQQtsB9wAkZgCVJkqSWJFvCht0qhCio+t4aSAJG1ZVZCPEk8CSAjZsNPT16tH4N27GU7FxjV8HohJm5sasgtQNh/VyMXQWjE9/EK8aug7Epk0JEXcdkS9iwnUC3qq/ewJ/AJiGEr6HMiqJ8pShKT0VRelraW7ZZJSVJkqS/NtkSNqxIUZT4ay+EEIeBXLSt3ZlGq5UkSZL0tyJbwg2jABrAytgVkSRJkv4+ZEvYMLUQwqPqe0dgGmADrDVelSRJkqS/GxmEDRsOXKn6Ph84DdyjKMp2o9VIkiRJ+tuRQbgWRVEeAR4xcjUkSZKkfwD5TFiSJEmSjEQGYUmSJEkyEhmEJUmSJMlIZBCWJEmSJCORQViSJEmSjEQGYUmSJEkyEhmEJUmSJMlIZBCWJEmSJCORQViSJEmSjEQGYUmSJEkyEhmEJUmSJMlI5NrRUruXsOcM57fFUpJXjK2HA53G9sQ5yL3O/MlHL3Juy0kKM/Iwt7EgsH84IUM7Vh8vySsids1hcpOzKcjIx7dnIN3v798Wl9JkC3+O45PvTpCaWUyHYAf+93If+kd5GMybmJxPp9G/6KX/+vlIRvT3AWDN1ot8s/wUx85kU1paSUSQAy893pXRQ/xb9Tqk5lmz/UeWb/6arNx0ArxCefqe1+kc2qvO/Iqi8Oufi/l951JSs5KwtXJgRN+7eOKu6QBk5abz5Yr3iL8US3L6RYb3Hsv0R+a01eVIyCAstXPJRy5yctUhuozvjVOQGxf3nGH/V39y8ytjsHK01sufdiqZmB930+muXrhFeFGQlsvRX/ZjqjIlcGAEAJoKDebWakKGdiJx/7m2vqRGW7nxAtPn7uejV/vRt7sHX/9yivFTN3Lo1/H4etrUed6q+SPpHOZU/drRXl39/Z7oKwy6yYuZU3viaK/ml3XxPPDvraz7elSdwV0yrm3RfzD/l7d59v436RTSk992/MSrnz3GolkbcHfyMnjOlyveZf+JbTw57hUCvcMpLM4nOzej+nh5eRn2No5MGPkUf+xe1laXIl1HdkdL7dr5HXH49grGv28otu72dB53ExZ2llzcc8Zg/svRF3CP9CGwfzjWzra4R/oQOqwT57bFoigKAFZONnQedxN+NwVjbmXelpfTJJ/9cJIH7wjl0fERRAQ58MGMvni4WPH18lP1nudkr8bdxar6y1xlWn1szit9eXFSV3p2diXYz45XJ0fRvYMzv29LbO3LaRYhxHYhxHwhxLtCiEwhRLoQ4gMhhEnV8YeEEIeEEPlVx5YLIbyvO3+IEEIRQgwTQhwQQhQJIaKFEFHGu6qGWbnlG27pO47RAyfg7xnCMxNm4WznytodPxnMn5R6gdXbfmD2lC/p320EXq5+hPp1pHfnIdV5PFx8mHbfG4zsNx5ba4e2uRBJhwzCUrulqagk93I2buG6d/mu4Z5cvZhRxzkaTK8LNgCmKlNKcooovlrYanVtLWXllRw5lcmwvj466UP7enPgWHq95z744lYCb/6J4RPXsnpzwg1/Vn5ROY527f+mBHgQqAD6AdOA54H7qo6ZA7OArsDtgAuw1EAZ7wEzgCggC/hJCCFatdbNUF5RxtlLJ+kZOUAnvUfkAOIuxBg8Z++xLXi6+nIodicPvX4zD742mPcXv8zVvKy2qLLUQDIIS+1WWWEpikZBbWuhk662saQkv8TgOa4Rnlw5kUT6mRQUjUJBeh7nt8cBUJJX3Op1bmlZV0uorFRwddb9Hbg5W5KWafh6rK1UvPPvm/huzlBWfnYLQ3p7MfGVbSz7I77On/PVsjhS0oqYMDqkRevfSuIURXlDUZSziqL8AmwDhgEoivKNoijrFEW5oCjKQWAKMFAI4VOrjJmKomxTFOU0MBuIALxpp3ILrqLRVOJo56KT7mjnQnZepsFzrmQmkZaVzPboP5g+8X1mPPoBSakXmDn/STQaTVtUW2oA+UxYav/02icKdbVZ/PuEUpRZwMFF21E0GszUKoIGRXBm43HacUPnhmrXXVHq/h24OFrw7MOdq19HdXQl62oJ8xYfNxhk12xJ4PV5B/n2fzfj52XbovVuJcdrvU4B3ACqupVnAd0AJ2rePX7A5TrKSKn6161WnnZHYOB9oP8HAoBG0VBeUcaMRz/Axz0QgBmPfsAjs0ZwJvE4HQK7tXZ1pQaQQVhqt8yt1QgTQWmebqu3tKAEtY2FwXOEEETeEUWH0d0oyStBbaMm41wqAFZO+gO52jtnRwtMTQXptVq9GdkluDlbNricnp3d+PE3/UFoa7Yk8MTrO/jqrcF/pZHR5bVeK4CJEMIa2AhsAf4FpKPtjt6Ftpu6rjKUqn/bbc+gvY0jJiamZOfpPobJyc/C0c7Z4DnO9q6YmphVB2AAb7cATE3MSM9OkUG4nWi3bzpJMjEzxd7HiYyzKTrpGWev4BjgWu+5wsQESwcrTMxMST5yEccAV9S2DQ9a7YW5ypTuHVz4c3+yTvqf+5Pp3dWtweWcOJOFh4uVTtqvGy/w+H928OV/BzF2RGAdZ/6lRKANuq8pirKzqqu54b+kdkxlZk6YXycOn9qjk3741B4igwyPKesY3INKTQUpGTWD7a5kXqJSU4G7U7vtef/HkS3hFpaXmseXt35Gr4d70+OBmvl7yccus/aV1Uz8+TEs7RsXDAqzCtm3cDeZ8RnkpuQSOjScoS8N18lzetMptn+0Ve/cx3+bjJm5/n9zzLJoDi7eT8c7OjNw6uDq9IPf7efCrngKMgowUZniGuJKr4d74xHpWZ1n+7w/STl2mcKsQlSWKjw6eNJ7Ul8c/Zz0fk5zBQ+OJGbJHhz8XHAKdOPi3rOU5BYT0C8MgLjfY8hJyqLflBGAtpWcciwRlxAPNBWVXDp4npSjifSfeotOubnJ2QCUl5SDEOQmZ2NiaoKth0OLX0NzTftXJ574zw56dHKlTzd3vll+itSMIh67Wzvlatanhzh8MoPfvxoFwE+/nUNlZkKXCGdMTGD9jiS++vkUs5+reT+u2HCeJ17fwTsv3ET/Hh6kZRYBoFKZ4nTdVKa/mEtAKTBNCPE50AF4y7hVajnjh0/i/W9fIiKgCx2De/D7zqVk5aZzx6AHAPh61VzOXDzO3Bd+ACAqoj+hfh354PsZTLnndQC+WP42EYFdCfOveVwRn6QdM1FUXICJEMQnxaEyVeHvFdrGV1jLoumwdxWMfR7umFqTfvoAzH0I5h0A20Z+5hzeCNuXwqU4KC8Dr2C4/WnoNkw3X/QGWD0PMi6Bqx+M+zdE3WKwyOaSQbgVmJqbcnRFDJGjOmHp0PzWV2V5JRZ2lnS7twen1sfWmc9MbcYD3/5LN81AAE47lcqp9bE4B+p3Yzn4ODJg6mDsPOyoKK3g+Kpj/PH6b9y/6F9YOWpbUm6hboQPj8DaxYbS/BKifzzI2lfX8OB3D2NqZqpXZnN4dw+grKiUs5tPUJpXjK2nA32eGIqVk3Z+bGl+MYWZ+TrnXI6+QNzaGEDB0d+V/lNH4OivO6Blx4d/6LxOi72MpaM1I2aOa9H6t4TxI4PIzilh7sKjpGYWERniyIrPbql+fpuaUUxCku7vYM7XR0lKKcDUVBDib8/8/w7UeR68aPlpKioUXpl7gFfmHqhOH9DDg/WLRrfNhbUwRVEyhBATgXeBqWif+/4b2GDUirWQm3uOJq/gKj+tm092XjoBXmG8O+1r3J21rdrs3AxSMi5V5zcxMeHtqQv5/OfZ/PvDB1Cbq4mKGMCUe17DxKSmE3TyO2N0fs6+43/i7uTNT+/uaJsLq49KDRsWwpAJYGu4271RzhyEDn3hrhfA2gH2/wafPQ3Tf4SwqpvU+COw4Hm481lt4I3ZBF88C68ug6Buza9DLeLa3EmpZVjYWShuER4UZhTg1cWbAU8PAprXEr7eujfWYmFnabAlvHv+Th5f/VS955cWlrJy2s8Mfm4o0T8dxCnAWaclXFtZYRnfjP+K0W/fgW9Pw88Msy5ksvzpZUxY+CAOvo6kxOU2/sL+Zn4a+peY6tOqbLp+/dcdCddCti44/4//gB2uauKvYNF0yM+Gq6kQfhM88IY2vTktYUPeHg+hPeG+V7Wvv3wOCnPgxe9q8nwwEWwd4al5TfoRyqSQOv8WZEu4FQgBvSf1ZePsdXQe2xV7L3u9PF+PXVBvGZ6dPBn99ph689RWWVbBjw9/h6LR4Bzkwk0P98ElRPfZ6c5PthE0IATvbj5E/3Sw/vLKK4lbfxJzK3Ocgw0/gy0vKef05lPYuNli627XqPpKkiTVSwgY/5K2tTp8IrgZaAg83bX+MkJ7wguL6j5eUgBW1312nT8Cw3R7FOk0ALb+2PB6N4IMwq3E/6YAPCI9Ofjdfka8OlLv+D3z7zNwVg1TA93I9XHwcWDIC0NxDnKhvLicE6uPsfrFldw9fwIO3g4AxK2PJTcll6Evj6i3rMQDCWx+bxMVpeVYOVkz+r07q7uirzm59gT7F+2loqQcBx8H7vjfnZiat2xXtCRJEl2GQEgU/PoxTJ6nf3zWb/Wfb17PGIc/f4TsNOg7tiYtNxNqzcfGzgXyDC8Q1FwyCLeiPo/1Y9ULK0gf303vmL2XQ4v+LI9IT53BU+4dPFgxdRkn1xxnwNODyEm6ysHF+7jzg/F6K0rV5tXVh3vm30dJbgmn1sey+Z0N3PXx3Vg710zxCR0ahk+UL0XZhRxbcYRN72xg7IfjUVmoWvS6JEmSuGc6vHMPXHxM/5h7E6fWRW+A5e9ru5hdao8Wr9V7rCj6aS1EBuFW5BbuTmD/YA58s4+o+3vqHGuN7ujrmZia4BrqRm5KDgCpp1IpyS3hl6eWVOdRNApXTqYQ98dJHl89ubolq7JQYe/lgL2XNpgvmfQDpzfE0ePBmtG1ams1ams1Dt4OuEd48O3dC0nYfZ6w4RFNrrMkSZJBgV2gx0hYPld3pDQ0rTs6egMsehkem6M/MtreQKs3P0u/ddxCZBBuZb0f7cPPTy4h6fAlnfSW7o6uTVEUshKycA7SvnEC+wXhFqY7ZXLbh1ux97YnakJPTFT1TBlXFCrLK+s5rv2n3jySJEnNMe5FmHkbnNypm97Y7uhD67SDvh6bAz1v088f3B1i98CtT9Skxe6BkO5Nq/cNyCDcyuy9HOhwW0dOrD6ml94Ymee1d2blReUIIcg8n4GJmSlO/trRgdE/HsQ9wh17bwfKiso4seY42QlZDHxmCABqGzVqG903o5mFGWpbC5wCtEP/ywrLOLo8Bv8+AVg5WVOSW8zJtScoyCwgeJB2ektuSg4Xdp/Hp7svFvaWFGYWcOTnw5ioTPHvHVBn/Y8s3UPSoQtE3NaVsBFdaq4rPpW98zczcvY9da6CVZeU45dI3HuW3ORsKisqsXW3J2x4Zzw6+RrMfzkmgZgfd+Me6U3vx4dWp1eUlHN6/VGunEyiNL8Eex8nOo3tiaOf4TvfY7/sI3F/PJF3RBFyc0eDeRriqZk7WbL2HDOnRjH9iZo/8F2HrjDqiXUkbHsQF8fG/U4ask/wj2vOMmXWLr1zMw5MxEKt/UjILyzj7c9jWLvtIhnZJXQJd2bO9D706FT/IimtQQixGJiIdr3nt69LH4J23WhXRVEML6Bcf7mDgY+AjmiXrpyjKMqXLVDlRpuzeDqb9v/KI2Ne4KFRNS29o2f289LHD7Hyg4PY2zRuJPC1c2v75s2N+HkEA/DHrmVsPrCaxJRzaBQNIb6RPDLmBTqH1PTcFZUUsPi3eew+uomc/CxCfCN5+t6ZRAR00Su7Vbn7w+D7YMt3+ukNdeB3bQv4nle0U5KubetoqgIbB+33wyfC+w/AH19C1AiI2QxnDsAMQ/uANJ8Mwm2g54O9OLvlNJU0vaW4YurPOq8TD1zExs2Wh76fCGinHu34dDtFVwsxt1LjEuzCmLl34R7u3uCfIUwF2ZeyOb0pjpL8EixsLXALc+fOueOqW9SmKlNSjidzbOVRygpLsXSwwrOzF3d9fPcNl4U0MTMl/s84/PuGNTrgGpJ1Pg2XUA8ibuuGysqc5JgEDn67g/5TR+AcpHvdhVn5xK2NwSlIfwGlo7/sIy/lKt3v74eFvRWXDyew78st3Dx9DJYOugPSUo4lcjUpCwu7lll9y0JtyrzFJ3h0fASuTs0vs6H7BFtZmHH893tq1aXm42Daf3dz8lw2C2YPxsvdmp//iGfM5PUcWjkeL3ejLP9ZAkwXQixQFKXZI2SEEIHAOuAb4CFgADBfCJGhKMrK5pbfFOYqNb9s+orbB07AoSXmxFZZ9MZ6nW0K7a+b1nPs7EGG9BhFx3t7YGFuycqt3/Lqp4/y5X/W4uMeAMCHP7xGQvIZpk+cg6ujB1sOrGH6vIf5ZtYGXBzbeO/pO6bBnlVo12Rpgh1LobIClr2j/bom/CaYXrUlZEgUPPUxrJoHaz4FN1/tc+NWmCMMMgi3ODsPO0bNvkMnzdLBisdW1T9/90Ymb5hW7/H+Tw2k/1MDG1XmnXN1F6ZQWai49Y1R9Z5j42rb5GfVLiHuFOcWcXbTcTqPu6lJZVyv8129dF6Hj+xKWlwyV04k6QRhTaWGwz/sImJUN7LiUykrrPkDriyr4MrxS/R8ZDAuIdoPlIhbu5IWd5mLe8/QYVRNC7Uou4CTqw7Rd8oI9n+lvzpZUwzq6UlyeiFzFh5l7it9m13enFplvDo5io27kvh9W6JOEBYC3GstY3lNcUkFa7Ze5McPhjGwl3aw32tToli/8xJfLz/FG9N6GjyvlW0DfICZwLMtUN5kIEVRlGeqXp8SQvQGXgKMEoS7hfUhIyeVH9d9zrT73mixch3snOtsRb/22Ec6r597YDZ7jm3mUNxOfNwDKC0rYdeRjcx68jO6hfcBYOIdz7H/xJ/8tnMJk+78d4vVU89jc/TT7Jxh/tGml3kt0N5Iz9sMd1W3AhmEpTYjTASRo6M4+O12ggZ1wNpFf8eeP27Q5eMc5EafJ4fVebyitBxzK92FMk6tO4KVkw1+vYLJik/VOaZoFBSNorfSl6nKlOyEmgaXplLD4R93EzqiM7bu+vO+m0qYCP77bC/uf2ELUx7oSJCv/lxrj77fGTizRr8oD379XH8a3DWG9gkuLq0k8rZlVFYqdA53ZubUKLpGaHs7Kio1VFYqWKh1fycWajP2HUlr6KW1NA3a/X9XCyE+URTlfO0MQoiCG5SxS1GUa5+sfYFNtY5vBCYKIVSKotTeJKLVCRMTHh/7MrO+nMK4oRPxctXvZr39ufq7gDuH9OS9Z77RSXv63bsoryjD3zOEB0c9Tbfwum/2yivKKCsvxbZq3mylpgKNphJzle6jLHOVBSfjoxt6aVI9ZBCW2pR7pDdOAa6cWneEng8P0js++MX6l0w0VdX9lk3YfYbi3CJ8egRVp6WfSSHlaGKd5ZpZqHAMcOXs5hPYejhgYWfB5ZiLZF/M1LlJOLPxGOZW5gT2D7/RJTbayIG+9OnmzuzPoln8/lC943t+vqve8y3VdU85M7RPcGiAPfPfHEjnMCfyi8r5YkksIx75nb0/30WIvz221ubc1MWNOQuPEhnsiLuLJcs3XODg8XSDNwltRVGUdUKIPcA7wAQDWbrdoIjrt6LyQLvb0vXS0H4mugBXmljNZundeQgdg6P4Zs1HvP74J3rHF/yn/kFIalXNYx5nezeee2A24f5dqKgsY/P+1bw872E+/PdPdAk13BP17W8fY6m2om8X7Y2ulYUNkUHd+Wn9fAK9wnC0d2XbobWcunAEL0MLZ0iNJoOw1OYi74hi1ycbyEnK0jtm49q0D/mUY4nErT1Mj38NrFlXuqCEI0v30uOhAZhb1T1hP+qB/hxdtpfNs1ciTAT23k54dw+o3uQhMz6NpIPnGfzS7U2qW0O89Xwvhj68lmcf1n/cGezXtN9JXfsE9+7qTu+uNd31fbq60e++1SxYFlfdJb7wncE8/eYuwkcuw9RU0C3CmXtuDeLoaf3/szY2HdgvhPig9gFFUeIbWVbt9RRFHelt6olxr/Ds+3dzZsTjese83QIaXI6vRxC+HjU3pJFBUaRlJbN889cGg/CvWxfzx66lzHnue6wta94vMx79gA++n8GEVwdgYmJKqG9Hbu51O+cu1b2OvdRwMghLbc7RzwWvLn7E/R5D2IjOOsea0h2dciyRI0v20P2B/jojo/NTcyjNK2bflzUNnmtrpa996Udunn4HNm72WLvY0n/aSCpKy6koLcfCzoro73dWB/PM+FRK8ovZ9OaKmnI0CnG/H+HCztPcMmt8034R1+nRyZU7hwXwxieHeOUJ3akQTemObsw+waamJnSPdOH8pbzqtCBfOzYsGk1hcTn5BeV4uFoxcfqf+HvZNPLKWpaiKIeEECuB96m1Q1Iju6NT0baGr+cGVABGvdOICOjCgO4j+frXOTw4SndObFO6o3XKDuzK9ug/9NJ/3bqYb3/7mHefWUREoO68Wy9Xfz56cSnFpUUUlRTgbO/GWwufxcPF8CwEqXFkEJaMImJUN7bNWUv6ad29ghvbHZ189CJHluyl+wP98OqqG2wcfJ0Z8rJu6/X0+qOUF5XRefxN1UH2GjO1CjO1irKiUtJPpxB5h3af1sD+YXh19dPJu3/BVryjAvHvE0JLmfVMT3qNW8nmvZd10hvbHf3rxgs89cZOFsxu2D7BiqIQey6bTmH6g3esLVVYW6q4mlfK1r3JzH6+l4ES2txrQBxwa630bjc47/ru6H3A2FrHRwDRxngeXNtjY1/ksf/exqE43TmxjemONuR80imc7HWnma3YsojFaz/h3Wlf60xNqs1SbYWl2or8wlyi43bxxLhXbnAVUkPIICwZhY2rHf59Qrmw87ReekMlH0kg5qc9dBzTA+cgd0rytJ+xJqYmmFurMVOrsPN01DlHZWmOolF00tNPp6AoCjZudhRmaqcy2bjZ4XeTNsCqbS1R2+pOHxKmJqhtLbBxa7lBWsF+djw6PpwvlsTqpTdUQ/YJfu/LGHp1cSPYz478gnK+WBrLyXPZfPxa/+pytuy9jEajEBbowIVLebz+8UFCA+z5151hLXClzaMoSrwQ4ivgudrpjSjmS7T7Ds8DFgD9gUeA+1uoms3i7RbA6AH3serP7/TSG2rl1m/xcPbB3zOUisoythxYw55jm5n11OfVeX7etJBv13zEjEc/wMctkOyqebPm5hbYVHVJH4rdiaIo+HoEkZKeyFe/vo+vexC39mt+D5Akg7BkROG3dCYp+ry2A7AJLu49h6JROLk6mpOra0ZqOge7039qwzfgLi8p49QfRyjJKUJlpcazix8dRnXDxLSeVcRayYynurNkbTw0cU55Q/YJzs0v49m3dpOWWYydjTldI5zZsGg0PTvXtJDy8st48/+iSU4rxNFere0qn9YTVX0rq7Wt2WgX8GgSRVEShBCjgI+BKWgX63jWWHOEDXlo9DNs2t/0ObEVFeUsWPkemTlpqFUW+HuF8s7Ur+ndeUh1nt+2/0hFZTlvf61zP8MtfcYx/RHtFKHC4nwWrf6AzJxUbK0cGNh9JI+OfREzU7lOfEuQ+wm3MLcwN2X8/9W/JOXfndxPWO4nDHI/YZD7CUMz9hP+G6lvP+F2c1srSZIkSf80MghLkiRJkpHIICxJkiRJRiKDsCRJkiQZiQzCkiRJkmQkMghLkiRJkpHIICxJkiRJRiKDsCRJkiQZiQzCkiRJkmQkMghLkiRJkpHIICxJkiRJRiKDsCRJkiQZiQzCkiRJkmQkMghLkiRJkpHIICxJkiRJRiKDsCRJkiQZiQzCkiRJkmQkMghLkiRJkpHIICxJkiRJRiIURTF2Hf7yhBBPAk9WvQwHzhixOu2Bv6IorsauhCRJUnsng7AkSZIkGYnsjpYkSZIkI5FBWJIkSZKMRAZhSZIkSTISGYQlSZIkyUhkEJYkSZIkI/l/Nlgvfq+2EBgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "matplotlib.rcParams.update({'font.size': 14})\n", + "discovery_celltype = 'CD4T'\n", + "fig, axes = plt.subplots(1, 6, figsize=(7, 7), sharey=True)\n", + "for i, discovery_celltype in enumerate(['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']):\n", + " colors = [\"white\", color_dict[discovery_celltype]]\n", + " cmap1 = LinearSegmentedColormap.from_list(\"mycmap\", colors)\n", + " im1, bar = heatmap(np.flip(unrb_df[discovery_celltype].values.reshape((6, 1)), \n", + " axis=0),\n", + " list(rb_df.index)[::-1], \n", + " [discovery_celltype],\n", + " cmap=cmap1, ax=axes[i], vmin=0, vmax=1)\n", + " bar.remove()\n", + " _ = annotate_heatmap(im1, \n", + " data=unanno_df[discovery_celltype].values.reshape((6, 1)), \n", + " valfmt=\"{x:^}\", \n", + " textcolors=(\"white\", \"white\"),\n", + " threshold=1)\n", + " if i > 0:\n", + " axes[i].axis('off')\n", + " \n", + "plt.subplots_adjust(wspace=0, hspace=0)\n", + "plt.savefig('rb_values.unfiltered_results.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## BIOS replication" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "bios_replication_filtered_df = pd.read_csv(\n", + " workdir/'bios/onlyRNAAlignMetrics_rmLLD/filtered_results/replication_summary.csv', \n", + " index_col=0\n", + ").set_index('celltype')\n", + "bios_replication_unfiltered_df = pd.read_csv(\n", + " workdir/'bios/onlyRNAAlignMetrics_rmLLD/unfiltered_results/replication_summary.csv', \n", + " index_col=0\n", + ").set_index('celltype')\n", + "color_dict = {'CD4T': '#2E9D33',\n", + " 'CD8T': 'darkgreen',\n", + " 'monocyte': '#EDBA1B',\n", + " 'NK': '#E64B50',\n", + " 'DC': '#965EC8',\n", + " 'B': '#009DDB',\n", + " 'cMono': 'peru',\n", + " 'ncMono': 'y',\n", + " 'CD4T_individual_100': '#2E9D33',\n", + " 'CD4T_individual_50': '#2E9D33',\n", + " 'CD4T_50': '#2E9D33',\n", + " 'CD4T_150': '#2E9D33',\n", + " 'CD4T_250': '#2E9D33'}\n", + "\n", + "bios_replication_filtered_df['color'] = [color_dict.get(celltype) for celltype in \n", + " bios_replication_filtered_df.index]\n", + "bios_replication_unfiltered_df['color'] = [color_dict.get(celltype) for celltype in \n", + " bios_replication_unfiltered_df.index]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "bios_replication_filtered_df_clean = bios_replication_filtered_df.drop(index=['B'])\n", + "bios_replication_filtered_df_clean = bios_replication_filtered_df_clean.drop(columns=['color'])\n", + "bios_replication_filtered_df_clean.to_excel(workdir/'output/summary/rb_values_bios_replication_filtered_results.xlsx')\n", + "\n", + "bios_replication_unfiltered_df_clean = bios_replication_unfiltered_df.drop(index=['B'])\n", + "bios_replication_unfiltered_df_clean = bios_replication_unfiltered_df_clean.drop(columns=['color'])\n", + "bios_replication_unfiltered_df_clean.to_excel(workdir/'output/summary/rb_values_bios_replication_unfiltered_results.xlsx')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":3: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string \".\" (-> marker='.'). The keyword argument will take precedence.\n", + " ax2.errorbar(y=bios_replication_filtered_df.loc[sorted_celltypes]['r'].values,\n", + ":8: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string \".\" (-> marker='.'). The keyword argument will take precedence.\n", + " ax2.errorbar(y=bios_replication_unfiltered_df.loc[sorted_celltypes]['r'].values,\n", + ":12: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax2.set_xticklabels(['', 'CD4T', '', 'CD8T', '', 'monocyte', '', 'DC', '', 'NK'])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiK0lEQVR4nO3de3hddZ3v8ffHNCUEUIYSRw6lTWVAejEUGioMQVKVm4ggCLTEC0M14gBVHOfAQ44VL+F4GwFLPaVahmGILVhEeh6rIPRGgAoJ1NoSqrW0JYMOoQpS2oa2fM8feydnN91pLt0rO2F/Xs+zn2ev3/qttb57ZWd/1++31votRQRmZla43pbvAMzMLL+cCMzMCpwTgZlZgXMiMDMrcE4EZmYFbli+A+irww8/PMrLy/MdhpnZkNLc3PxyRJRlmzfkEkF5eTlNTU35DsPMbEiRtKm7ee4aMjMrcE4EZmYFzonAzKzADblzBGY2cHbu3Elrays7duzIdyjWSyUlJYwcOZLi4uJeL+NEYGbdam1t5ZBDDqG8vBxJ+Q7HehARbNmyhdbWVsaMGdPr5dw1ZGbd2rFjByNGjHASGCIkMWLEiD634JwIzGyfnASGlv78vZwIzCynqqurqa6uzncY1gdOBJaV/5ltsCgqKmLixImdr40bN/KP//iPAGzcuJEJEyYAsGrVKhYvXpxYHNXV1QN2M+tAfi5wIjCzHGpoaGDlypUsX76c8vJyGhoa9nudBx54IKtWrep8lZeX8/jjj+9Vrz8/mLt27drv+DLt3r07p+sDJwIzG0IaGhqora2lvb0dgE2bNlFbW5uTZNDVwQcfvMf0G2+8wcyZM7nnnnuYOHEi99xzD6+//jpXXHEFJ510EieccAIPPPAAAHfeeScXX3wx5513HmeeeWa39bZv387UqVOpqKjg0ksvZfv27VljKS8v5+tf/zpVVVX89Kc/5aGHHuKUU07hxBNP5OKLL2br1q0AXH/99YwbN46Kigq+/OUvA3D55ZezcOHCPn2u5cuXd7aOTjjhBF577bX93p++fNTMcqKuro5t27btUbZt2zbq6uqoqanp93q3b9/OxIkTARgzZgz333//XnWGDx/O17/+dZqamrjtttsAuOGGG/jABz7AHXfcwSuvvMLkyZP50Ic+BMATTzzB6tWrOeyww7qtd/vtt1NaWsrq1atZvXo1J554YrcxlpSU0NjYyMsvv8yFF17Iww8/zEEHHcS3v/1tvv/973P11Vdz//3389xzzyGJV155pVefPdvnOu+885g9ezannnoqW7dupaSkpA97M7tEE4Gks4FbgSLgxxHxrS7z/xXo+IYMA8YCZRHxlyTjMrPc27x5c5/Ke6uja6ivHnroIRYtWsT3vvc9IHUpbEcsZ5xxBocddtg+661YsYIZM2YAUFFRQUVFRbfbuvTSSwFYuXIlzz77LKeeeiqQOqI/5ZRTePvb305JSQmf+cxnOPfcc/nIRz7S58/T4dRTT+VLX/oSNTU1XHjhhYwcObLf6+qQWCKQVATMBs4AWoGnJC2KiGc76kTEd4HvpuufB1zrJGA2NI0aNYpNm/Ye4HLUqFF5iCZ1c9V9993He97znj3Kf/Ob33DQQQf1WA96fylmx/oigjPOOIP58+fvVefJJ5/kkUceYcGCBdx2220sWbKEYcOG8eabb3Yu+8Ybb/S4reuvv55zzz2XxYsXc/LJJ/Pwww9z3HHH9SrO7iR5jmAysD4iNkTEG8AC4Px91J8G7L33zGxIqK+vp7S0dI+y0tJS6uvrB2T7hxxyyB795WeddRazZs0iIgB45plnsi7XXb33v//9nec31qxZw+rVq3uM4eSTT+axxx5j/fr1QKpr7Pe//z1bt27l1Vdf5cMf/jC33HJLZwunvLyc5uZmAB544AF27tzZ4+f64x//yHvf+16uu+46Kisree6553qMqydJJoIjgRcyplvTZXuRVAqcDdzXzfxaSU2Smtra2nIeqJntv5qaGubOncsBBxwAwOjRo5k7d+5+nR/oiylTpvDss892nlT9yle+ws6dO6moqGDChAl85Stfybpcd/U+//nPs3XrVioqKvjOd77D5MmTe4yhrKyMO++8k2nTplFRUcHJJ5/Mc889x2uvvcZHPvIRKioqOP3007n55psB+OxnP8vy5cuZPHnyXi2V7j7XLbfcwoQJEzj++OM58MADOeecc/Zjr6WoIwvmmqSLgbMi4jPp6U8CkyPimix1LwU+ERHn9bTeysrK8INpktdxD8GyZcvyGoflV0tLC2PHju3TMv7u5F+2v5uk5oiozFY/yZPFrcBRGdMjgRe7qTsVdwuZvSU4AQw9SXYNPQUcI2mMpOGkfuwXda0k6R3A6cADCcZiZmbdSKxFEBG7JF0NPEjq8tE7ImKtpCvT8+ekq34MeCgiXk8qFjMz616i9xFExGJgcZeyOV2m7wTuTDIOMzPrnoeYMDMrcE4EZpZTHrl26HEiMLNBK3M45g433nhj53AQ+9JxLf/NN9/MzJkzefjhh4E9h5O+6aabch90jnQMQLdx40Z+8pOfJLqtghl0ztc2myVv/vz5rF27li1btjBhwgTq6uqYNm3agMfx5z//mccffzzrkBeZbrrpJm644YY+rXv37t0UFRVlnbdr1y6GDcvtz2pHIrjssstyut5MbhGYWU7Mnz+furo67r33Xtrb25k1axZ1dXVZx93Jlerqaq677jomT57Msccey6OPPgrAmWeeyUsvvcTEiRN59NFH9xruGVJj9nSMbNpx9/Pdd9/N5MmTmThxIp/73Oc6ny9w8MEHM3PmTN73vvfxxBNP7BXDDTfcwOmnn86tt95Kc3Mzp59+OpMmTeKss87iT3/6EwA/+MEPOoehnjp1KrB362bChAls3LhxrzgfffRRJk6cyM0338zatWs7Y6yoqOAPf/jDfu9HJwIzy4n6+nrmzZvHlClTKC4uZsqUKcybNy/xsYZ27drFk08+yS233MLXvvY1ABYtWsTRRx/NqlWrOO2007Iu961vfatzZNOGhgZaWlq45557eOyxx1i1ahVFRUWdYw29/vrrTJgwgd/85jdUVVXtta5XXnmF5cuXM2PGDK655hoWLlxIc3MzV1xxBXV1dZ3be+aZZ1i9ejVz5szZax3d+da3vsVpp53GqlWruPbaa5kzZw5f+MIXWLVqFU1NTYN79FEzKywtLS17/UhWVVXR0tLS73V2N/pnZvmFF14IwKRJk/Y6mu6LRx55hObmZk466SQg9RyEd77znUDqcZkXXXRRt8t2DEO9bt061qxZwxlnnAGkupGOOOIIIDWUdU1NDRdccAEXXHBBv+M85ZRTqK+vp7W1lQsvvJBjjjmm3+vq4BaBmeXE2LFjaWxs3KOssbGxz2MVZRoxYgR//etf9yj7y1/+wuGHH9453THIXVFR0X49ejIi+PSnP935SMx169Zx4403AqkHz3R3XgD2HIZ6/Pjxnev43e9+x0MPPQTAL37xC6666iqam5uZNGlS5/mEjmGoIfUshJ5cdtllLFq0iAMPPJCzzjqLJUuW9Pszd3AiMLOcqKurY/r06SxdupSdO3eydOlSpk+f3tk10h8HH3wwRxxxBI888giQSgK/+tWvsnbP9EdxcXHn0M8f/OAHWbhwIS+99FLntno62dzVe97zHtra2jrPI+zcuZO1a9fy5ptv8sILLzBlyhS+853v8Morr7B161bKy8t5+umnAXj66ad5/vnn91pn12GoN2zYwLvf/W5mzJjBRz/60V4Nj90Tdw2ZWU50XB10ySWXsGXLFsaNG0d9ff1+XzV01113cdVVV/Ev//IvAHz1q1/l6KOP3u94AWpra6moqODEE0+koaGBb37zm5x55pm8+eabFBcXM3v2bEaPHt3r9Q0fPpyFCxcyY8YMXn31VXbt2sUXv/hFjj32WD7xiU/w6quvEhFce+21HHrooVx00UXcddddTJw4kZNOOoljjz12r3VWVFQwbNgwjj/+eC6//HJ27NjB3XffTXFxMe9617uYOXPmfu+HxIahTkp/h6H25aN94/1l4GGoh6rBNAy1mRUgJ4Chx+cIzMwKnBOBme3TUOs+LnT9+Xs5EZhZt0pKStiyZYuTwRAREWzZsoWSkpI+LVcQ5wgaGhpYuXIl7e3tlJeXU19fP2AP1DYbykaOHElrayttbW35DsV6qaSkpM93G7/lE0FDQwO1tbW0t7cDsGnTJmprawGcDMx6UFxczJgxY/IdhiUs0a4hSWdLWidpvaTru6lTLWmVpLWSluc6hrq6OrZt27ZH2bZt2/brJhczs7eSxFoEkoqA2cAZQCvwlKRFEfFsRp1DgR8CZ0fEZknvzHUcmzdv7lO5mdlgMJD3YyTZIpgMrI+IDRHxBrAAOL9LncuAn0XEZoCIeCnXQYwaNapP5WZmhSbJRHAk8ELGdGu6LNOxwN9JWiapWdKnsq1IUq2kJklNfT1pVV9fT2lp6R5lpaWliQ+Na2Y2VCSZCLKNH9v1GrRhwCTgXOAs4CuS9hpsIyLmRkRlRFSWlZX1KYiamhrmzp3bOULh6NGjmTt3rk8Um5mlJXnVUCtwVMb0SODFLHVejojXgdclrQCOB36fy0Bqamr40Y9+BPj2dzOzrpJsETwFHCNpjKThwFRgUZc6DwCnSRomqRR4H9D/p1hYTnTcd7F8+XLKy8s7n9JkZm9NibUIImKXpKuBB4Ei4I6IWCvpyvT8ORHRIulXwGrgTeDHEbEmqZisZ77vwqzwJHpDWUQsBhZ3KZvTZfq7wHeTjMN6b1/3XTgRmL01eawh24PvuzArPE4Etgffd2FWeJwIbA++78Ks8DgR2B5834VZ4XnLjz5qfef7LswKi1sEZmYFrmBaBD6yNTPLzi0CM7MC50RgZlbgnAjMzAaZgR7vy4nAzGwQ6W68rySTgROBmdkgko/nrDsRmJkNIvkY78uJwMxsEMnHeF9OBGZmg0g+xvtyIjAzG0TyMd5XwdxZbGY2VAz0eF+JtggknS1pnaT1kq7PMr9a0quSVqVfM5OMx8zM9pZYi0BSETAbOANoBZ6StCginu1S9dGI+EhScZiZ2b4l2SKYDKyPiA0R8QawADg/we2ZmVk/JJkIjgReyJhuTZd1dYqk30r6paTx2VYkqVZSk6Smtra2JGI1MytYSSYCZSmLLtNPA6Mj4nhgFvDzbCuKiLkRURkRlWVlZbmN0syswCWZCFqBozKmRwIvZlaIiL9FxNb0+8VAsaTDE4zJzMy6SDIRPAUcI2mMpOHAVGBRZgVJ75Kk9PvJ6Xi2JBiTmZl1kdhVQxGxS9LVwINAEXBHRKyVdGV6/hzg48DnJe0CtgNTI6Jr95GZmSUo0RvK0t09i7uUzcl4fxtwW5IxmJnZvnmICTOzAudEYGZW4JwIzMwKnBOBmVmBcyIw20/V1dVUV1fnOwyzfnMiMDMrcE4EZmYFzg+mMTMbhAbigTQd3CIwMytwTgRmZgXOicDMrMA5EZiZFTgnArP90NDQwMqVK1m+fDnl5eU0NDTkOySzPvNVQ5bVQF6xMFQ1NDRQW1tLe3s7AJs2baK2thaAmpqafIZm1iduEZj1U11dHdu2bdujbNu2bdTV1eUpIrP+cSIw66fNmzf3qdxssHIiMOunUaNG9ancbLBKNBFIOlvSOknrJV2/j3onSdot6eNJxmOWS/X19ZSWlu5RVlpaSn19fZ4iMuufxBKBpCJgNnAOMA6YJmlcN/W+TerZxmZDRk1NDXPnzuWAAw4AYPTo0cydO9cnim3ISfKqocnA+ojYACBpAXA+8GyXetcA9wEnJRiLWSJqamr40Y9+BPhKKxu6emwRSDpF0mxJqyW1SdosabGkqyS9Yx+LHgm8kDHdmi7LXPeRwMeAOeyDpFpJTZKa2traegrZzMz6YJ+JQNIvgc+Q6rY5GziCVDfP/wJKgAckfbS7xbOURZfpW4DrImL3vuKIiLkRURkRlWVlZfuqamZmfdRT19AnI+LlLmVbgafTr3+TdHg3y7YCR2VMjwRe7FKnElggCeBw4MOSdkXEz3sRu5mZ5UBPXUOdP/KSDsicIelkgCyJosNTwDGSxkgaDkwFFmVWiIgxEVEeEeXAQuCfnQTMzAZWT4ngJxnvn+gy74f7WjAidgFXk+pWagHujYi1kq6UdGWfIzWzIc/Pdx6ceuoaUjfvs03vJSIWA4u7lGU9MRwRl/e0PjMzy72eEkF08z7btFlB8mWjNtT1lAhGSvoBqaP/jvekp4/sfjEzMxsqekoE/5rxvqnLvK7TZmY2BO0zEUTEf3Qtk/R3wCsR4a4hM7O3gJ5uKJsp6bj0+wMkLQH+CPy3pA8NRIBmZpasni4fvRRYl37/aVLnBsqA04GbEozLzMwGSE+J4I2MLqCzgAURsTsiWvBjLs3M3hJ6SgTtkiZIKgOmAA9lzCvtZhkzMxtCejqq/yKpoR/KgJsj4nkASR8Gnkk2NDMzGwg9XTW0EjguS/ledwybmdnQ1NNVQ59QemjQbuYfLakq92GZmdlA6alraASwSlIz0Ay0kXoOwT+QunLoZaDbZxGbmdng11PX0K2SbgM+AJwKVADbSY0m+smI2Jx8iGZmlqQeLwFNPz3s1+mXmZm9xfT4zGIz6z2Pt29DkROBmVmBcyIwMytwvUoEkkZImiXpaUnNkm6VNKIXy50taZ2k9ZL2urpI0vmSVktaJanJl6KavXU1NDSwcuVKli9fTnl5OQ0NDfkOydJ62yJYALwEXAR8nNRlpPfsawFJRcBs4BxgHDBN0rgu1R4Bjo+IicAVwI97HbmZDRkNDQ3U1tbS3t4OwKZNm6itrXUyGCR6mwgOi4hvRMTz6dc3gUN7WGYysD4iNkTEG6SSyfmZFSJia8agdgfhx1+avSXV1dWxbdu2Pcq2bdtGXV1dniKyTL1NBEslTZX0tvTrEuAXPSxzJPBCxnQrWR5vKeljkp5Lr++KbCuSVJvuOmpqa2vrZchmNlhs3pz9lqPuym1g9TTExGuS/gZ8DvgJ0J5+LQCu7WHd2Yam2OuIPyLuj4jjgAuAb2RbUUTMjYjKiKgsKyvrYbNm+TF//nzWrl3LihUrmDBhAvPnz893SIPGqFGj+lRuA2ufiSAiDgHeAYyPiLdFRHH69baIeHsP624FjsqYHgm8uI9trQCOlnR4L2M3GzTmz59PXV0d9957L+3t7cyaNYu6ujong7T6+npKS/ccub60tJT6+vo8RWR7iIgeX0Bzb+p1WWYYsAEYAwwHfksqoWTW+QdA6fcnAv/VMd3da9KkSWE22IwfPz6WLFmyR9mSJUti/PjxeYpo8Ln77rvjgAMOCCBGjx4dd999d75DKihAU3Tzu9rxI7xPkmYDd0bEU31JMunnFtwCFAF3RES9pCvTCWiOpOuATwE7SY1h9K8R0bivdVZWVkZTU1NfwjBLXFFRETt27KC4uLizbOfOnZSUlLB79+48Rja4dNx1vWzZsrzGUYgkNUdEZbZ5vX3c5BTgc5I2Aa+T6v+PiKjY10KR5bkFETEn4/23gW/3MgazQWvs2LE0NjYyZcqUzrLGxkbGjh2bx6jMeqe3ieCcRKMwG+Lq6uqYPn068+bNo6qqisbGRqZPn+4+cBsSepUIImJT0oGYDWXTpk0D4JJLLmHLli2MGzeO+vr6znKzway3LQIz68G0adO4/fbbAfeB29DiQefMzAqcE4GZWYFzIjAzK3BOBGZmBc6JwMyswPmqIbMc8tVCNhS5RWBmVuCcCMzMCpwTgZlZgXMiMDMrcE4EZmYFzonAzKzAORGYmRU4JwIzswKXaCKQdLakdZLWS7o+y/waSavTr8clHZ9kPGaWX8uWLfNNd4NQYolAUhEwm9TTzcYB0ySN61LteeD09CMvvwHMTSoeMzPLLskWwWRgfURsiIg3gAXA+ZkVIuLxiPhrenIlMDLBeMzMLIskE8GRwAsZ063psu5MB36ZbYakWklNkpra2tpyGKKZmSWZCJSlLLJWlKaQSgTXZZsfEXMjojIiKsvKynIYopmZJTn6aCtwVMb0SODFrpUkVQA/Bs6JiC0JxmNmZlkk2SJ4CjhG0hhJw4GpwKLMCpJGAT8DPhkRv08wFjMz60ZiLYKI2CXpauBBoAi4IyLWSroyPX8OMBMYAfxQEsCuiKhMKiYzM9ubIrJ22w9alZWV0dTUlO8wzMyGFEnN3R1o+85iM7MC50RgZlbgnAjMzAqcE4GZWYFzIjAzK3BOBGZmBc6JwMyswDkRmJkVOCcCM7MC50RgZlbgnAjMzAqcE4GZWYFzIjAzK3BOBGZmBc6JwMyswDkRmJkVOCcCM7MCl2gikHS2pHWS1ku6Psv84yQ9Iald0peTjMXMzLJL7JnFkoqA2cAZQCvwlKRFEfFsRrW/ADOAC5KKw8zM9i3JFsFkYH1EbIiIN4AFwPmZFSLipYh4CtiZYBy2n6qrq6murs53GGaWkCQTwZHACxnTremyPpNUK6lJUlNbW1tOgjMzs5QkE4GylEV/VhQRcyOiMiIqy8rK9jMsMzPLlGQiaAWOypgeCbyY4PbMzKwfkkwETwHHSBojaTgwFViU4PbMzKwfEksEEbELuBp4EGgB7o2ItZKulHQlgKR3SWoFvgT8L0mtkt6eVEzWd/Pnz2ft2rWsWLGCCRMmMH/+/HyHZGY5ltjlowARsRhY3KVsTsb7P5PqMrJBaP78+dTV1XHvvfdSVVVFY2Mj06dPB2DatGl5js7MckUR/Tp/mzeVlZXR1NSU7zAKwoQJE5g1axZTpkzpLFu6dCnXXHMNa9asyWNkZoWn4xLuZcuW9Wt5Sc0RUZltnoeYsG61tLRQVVW1R1lVVRUtLS15isjMkuBEYN0aO3YsjY2Ne5Q1NjYyduzYPEVkZklwIrBu1dXVMX36dJYuXcrOnTtZunQp06dPp66uLt+hmVkOJXqy2Ia2jhPCl1xyCVu2bGHcuHHU19f7RLHZW4wTge3TtGnTuP3224H+n6Qys8HNXUNmZgXOicDMrMA5EZiZFTgnAjOzAudEYD1atmyZTxSb5VHSY375qiEzs0FsIMb88lhDZmaDWK7G/NrXWENOBGZmg1hRURE7duyguLi4s2znzp2UlJSwe/fuXq/Hg86ZmQ1RAzHmlxOBmdkgNhBjfvlksZnZIDYQY34l2iKQdLakdZLWS7o+y3xJ+kF6/mpJJyYZT6bq6urOBz2YmQ1m06ZNY/z48bz//e9nzZo1OR/4MbFEIKkImA2cA4wDpkka16XaOcAx6Vct8H+SisfMzLJLskUwGVgfERsi4g1gAXB+lzrnA3dFykrgUElHJBiTmZl1kWQiOBJ4IWO6NV3W1zpIqpXUJKmpra1tvwNL+i49M7OhJMlEoCxlXW9a6E0dImJuRFRGRGVZWdl+BZV5l157ezuzZs2irq7OycDMClaSiaAVOCpjeiTwYj/q5FR9fT3z5s1jypQpFBcXM2XKFObNm0d9fX2SmzUzG7SSTARPAcdIGiNpODAVWNSlziLgU+mrh04GXo2IPyUYEy0tLVRVVe1RVlVVRUtLS5KbNTMbtBJLBBGxC7gaeBBoAe6NiLWSrpR0ZbraYmADsB74EfDPScXTYSDu0jMzG0oSvaEsIhaT+rHPLJuT8T6Aq5KMoauOu/TmzZu3x0h+7hoys0JVcHcWD8RdemZmuZbkM0EKLhFAKhncfvvtQLI718xsKPCgc2ZmBa4gWwTgloCZWQe3CMzMCpwTgZlZgXMiMDMrcE4EZmYFzonAzKzAORGYmRU4JwIzswLnRGBmVuCcCMzMCpxSA4AOHZLagE39XPxw4OUchpMrjqv3BmNMMDjjGowxweCMazDGBLmNa3REZH3E45BLBPtDUlNEVOY7jq4cV+8NxphgcMY1GGOCwRnXYIwJBi4udw2ZmRU4JwIzswJXaIlgbr4D6Ibj6r3BGBMMzrgGY0wwOOMajDHBAMVVUOcIzMxsb4XWIjAzsy6cCMzMCtyQTgSS3iVpgaQ/SnpW0mJJx0raLukZSS2SnpT06SzLniRpt6SPSxohaVX69WdJ/5UxPTwfny0J/dlfkt4h6f9K+q2ktZL+qVD210CRdLmk/5HvOHIt/f+1Kv29+a2kL0l6W8b8yZJWSFon6TlJP5ZUms+Y80VSSPq3jOkvS7ox/f5GSV9Ovy+R9GtJX83l9ofsoyolCbgf+I+ImJoumwj8PfDHiDghXfZu4GeS3hYR/54uKwK+DTwIEBFbgInpeTcCWyPiewP5eZK2H/vrKuDZiDhPUhmwDmiIiInp+jfyFtxfA+xyYA3wYp7jyLXtGd+TdwI/Ad4BfFXS3wM/BaZGxBPp7+dFwCHAtjzFm0/twIWS/ndEZL2BLH2QdR/QHBFfy+XGh3KLYAqwMyLmdBRExCrghcxKEbEB+BIwI6P4GlI79KXkwxw0+ru/Ajgk/Y96MPAXYNdABJxLksozjjrXSGqQ9CFJj0n6Q/ro9DBJP5e0WtJKSRXpZW+UdIekZZI2SJqRsd4vpde3RtIXM8o/lV7PbyX9p6RDJD0vqTg9/+2SNkq6GKgEGtJHzwdKmiRpuaRmSQ9KOmKAd1fORcRLQC1wdfq7dBWpg5In0vMjIhZGxH/nM8482kXqCqFru5k/DFgA/CEirs/1xodyIpgANPey7tPAcQCSjgQ+BszZ5xJvPf3aX8BtwFhSR6u/A74QEW/mPrwB8Q/ArUAFqc93GVAFfBm4Afga8ExEVKSn78pY9jjgLGAyqSPaYkmTgH8C3gecDHxW0gmSxgN1wAci4nhS++w1YBlwbnp9U4H7IuKnQBNQkz563gXMAj4eEZOAO4D6BPbFgEsfZLwNeCd9+z4WitlAjaR3ZJn3P4FdEfHFJDY8ZLuG+kgZ728BrouI3akDE8sic8ecBawCPgAcDfxa0qMR8bd8BLafno+I3wFIWgs8EhEh6XdAOTCaVPcEEbEkfS6k45/yFxHRDrRLeolUl1oVcH9EvJ5e58+A00i1ohZ2NPEj4i/pdfyY1D/0z0klkM9mifE9pH4kf53+fhYBf8rZHsg//9N1IyL+JukuUq3x7V1mNwKnSDo2In6f620P5RbBWmBSL+ueALSk31cCCyRtBD4O/FDSBTmPbvDp7/76J+Bn6ab7euB5/n9rYahpz3j/Zsb0m6QOirL9SHXcaJO57O591CddvtcNOhHxGFAu6XSgKCLWdLPs2oiYmH69NyLO7O4DDSXp80+7SXXJ9uX7WEhuAaYDB3UpXwF8EfhlEhcWDOVEsAQ4QFLnUZWkk0gd1ZFRVg58j1Rzm4gYExHlEVEOLAT+OSJ+PkAx51O/9hewGfhget7fkzpi3TAA8ebDCqAGQFI18HIPLZ8VwAWSSiUdRKrL8VHgEeASSSPS6zosY5m7gPnAv2eUvUbqJCmkTsaXSTolvWxxuqtpSEtfaDAHuC1Sd7HeBnxa0vsy6nxC0rvyFeNgkG493ksqGXSddx/wXeBXkg7N5XaHbNdQukn/MeAWSdcDO4CNpLLm0ZKeAUpI/ZPN6rhiqFDtx/76BnBnuvtEpLrVBuNwvblwI/DvklaTunJlr8uOM0XE05LuBJ5MF/04Ip4BkFQPLJe0G3iG1JVBAA3AN0klgw53AnMkbQdOIdVS/UG6W2oYqaPEtfv30fLiQEmrgGJS5z7+E/g+QET8t6SpwPfSVxS9SSqx/ixPsQ4m/wZcnW1GRMxJJ8tFks6MiB252KCHmDAbQJI+DpwfEZ/MdyxmHYZsi8BsqJE0CzgH+HC+YzHL5BaBmVmBG8oni83MLAecCMzMCpwTgZlZgXMiMDMrcE4EZmYF7v8BK5fQZGfKC3AAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'NK']\n", + "fig, ax2 = plt.subplots()\n", + "ax2.errorbar(y=bios_replication_filtered_df.loc[sorted_celltypes]['r'].values,\n", + " x=[ind for ind in range(len(sorted_celltypes))],\n", + " yerr=bios_replication_filtered_df.loc[sorted_celltypes]['se_r'].values,\n", + " fmt='.', markersize=6, marker='o', color='black', label = 'Filtered results')\n", + "bios_replication_unfiltered_df.loc['DC'] = [np.nan, np.nan, np.nan, np.nan]\n", + "ax2.errorbar(y=bios_replication_unfiltered_df.loc[sorted_celltypes]['r'].values,\n", + " x=[ind+0.05 for ind in range(len(sorted_celltypes))],\n", + " yerr=bios_replication_unfiltered_df.loc[sorted_celltypes]['se_r'].values,\n", + " fmt='.', markersize=6, marker='o', markerfacecolor='white', color='black', label = 'Unfilter results')\n", + "ax2.set_xticklabels(['', 'CD4T', '', 'CD8T', '', 'monocyte', '', 'DC', '', 'NK'])\n", + "plt.legend()\n", + "plt.ylabel(\"rb (SE)\")\n", + "plt.savefig('sf20.comparison_rb_values_bios_replication.pdf')\n", + "plt.savefig('sf20.comparison_rb_values_bios_replication.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":14: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string \".\" (-> marker='.'). The keyword argument will take precedence.\n", + " ax.errorbar(y=bios_replication_filtered_df.loc[celltype]['r'],\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAE3CAYAAABSLw+6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZGklEQVR4nO3df5xddX3n8debBOJjxFWbSTYTNZka0UJhMTJNKZUyFrPFiPJwRbHOoinqFKLULkt16+Th4j52wPqDmv4I7IxgKE4tu7Dij4qNuk6spIFOZIVIKiJkohjCDOqWOM2EJJ/945wpd+7cO98zP++9w/v5eNxHcr7ne879zJlz3/M959x7riICM7PJnFDrAsys/jkozCzJQWFmSQ4KM0tyUJhZkoPCzJIW17qAcuf1nR8rT15Z6zIqevDJvcPfvWxgWbX5zf+pOVqXts5jRcXsHtw9HL1Rte6f9Z8RJzznJfNZUiHHnrp/+JfW/7hq3Z957+54XvOS+SypkKF9vxi+4pZfr1r3429/Ryxevnw+Syrs6Yd/ONzy5c9PqL3ugmLlySv53EW31rqMis68uW1wsvmtS1sZ2DwwX+UUpvdo0rpPeM5LeP7ZX5mvcgr76ddePGndz2tewsUfOX2+yinshnfeM2ndi5cvp/lTn5ivcqbkwIVvqli7Dz3MLMlBYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSU5KMwsyUFhZkkOijrQ3t5Oe3t7rcswq8pBYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSUVDgpJmyQ9KumwpN2Szp2k7zWSosqjPm8WaGZVFQoKSZcAW4BrgbXATuAuSauqLPIJoKXssQPoj4gnZlq0mc2voiOKq4BtEdEbEXsj4krgAHBFpc4RcSgiHh97ACcC5wK9s1K1mc2rZFBIOgk4C9heNms7cE7B53kX8HPgjqkUZ2b1ociIohlYBBwsaz8IrEgtLOkE4DLgryJidMoVmlnNTeWqR5RNq0JbJa8DXgJ8uloHSZ2SBiQNDA0PTaGk2htX+1Dj1N6o23xBbO8GqntMkaAYBo4xcfSwnImjjEo6gZ0R8b1qHSKiJyLaIqJtWXPVL1iqS+NqX9Y4tTfqNl8Q27uB6h6TDIqIOALsBtaXzVpPdvWjKkkrgdfjk5hmDa3oocf1wEZJ75Z0qqQtwErgRgBJ10n6RoXlLgN+AfzPWanWzGqi0HePRsRtkpYCm8neE7EH2BARY99T2AKsKV1GksiudvRFxMjslWxm863wlxRHxFZga5V5Gyu0BfDL067MzOqGP+thZkkOCjNLclCYWZKDwsySHBRmluSgMLMkB4WZJTkozCzJQWFmSQ4KM0taUEHhL/s1mxsLKijMbG44KMwsyUFhZkkOCjNLclCYWZKDwsySHBRmluSgMLMkB4WZJTkozCzJQWFmSQ4KM0tyUJhZkoPCzJIcFGaW5KAwsyQHhZklOSjMLMlBYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzpAUTFH19fezatYsdO3bQ2tpKX19frUsyWzAWRFD09fXR2dnJ6OgoAIODg3R2djoszGZJ4aCQtEnSo5IOS9ot6dxEf0n6Q0n/JGlU0gFJH515yRN1dXUxMjIyrm1kZISurq65eDqzZ53FRTpJugTYAmwCvp3/e5ek0yJif5XFPglcCPwR8ADwfKBlxhVXsH9/5RKqtZs1qrHv1u3v75/X5y06orgK2BYRvRGxNyKuBA4AV1TqLOkVwJXARRHxhYh4JCLui4ivzE7Z461atWpK7WY2NcmgkHQScBawvWzWduCcKotdBDwCXCDpEUn7JN0iafmMqq2iu7ubpqamcW1NTU10d3fPxdOZPesUGVE0A4uAg2XtB4EVVZZ5KbAaeBuwEbgU+BXgS5Jm/QRqR0cHPT09LFmyBIDVq1fT09NDR0fHbD+V2bPSVF60UTatCm2l610CXBoR34qIvycLi3XAr5V3ltQpaUDSwNDw0BRKekZHRwdnn3025513Hvv27Zu3kBhX+9D0aq+F2djmtbAgtncD1T2mSFAMA8eYOHpYzsRRxpgDwNGIeKik7QfAUWDCiYOI6ImItohoW9a8rEBJ9WNc7csap/ZG3eYLYns3UN1jkkEREUeA3cD6slnrgZ1VFrsbWCxpTUnbS8musgxOo04zq6Gihx7XAxslvVvSqZK2ACuBGwEkXSfpGyX9vw58B7hZ0lpJa4GbgXuAgdkr38zmQ6H3UUTEbZKWApvJ3guxB9gQEWOjgxZgTUn/45IuBP4M+BbwL8DXgKsi4vgs1m9m86BQUABExFZga5V5Gyu0HQDeMu3KzKxuLIjPepjZ3HJQmFmSg6LG/PF4awQOihryx+OtUTgoasgfj7dG4aCoIX883hqFg6KG/PF4axQOihryx+OtUTgoasgfj7dGUfidmTY3Ojo66O3tBeb/9mZmRXlEYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSUtqPdR+H0IZnPDIwozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSU5KMwsyUFh1iBq+dUODgqzBlDrr3ZwUJg1gFp/tYODwqwB1PqrHRwUZg2g1l/t4KAwawC1/moHB4VZA6j1VzssqI+Zmy1ktfxqB48ozCzJQWFmSQ4KM0tyUJhZkoPCzJIKB4WkTZIelXRY0m5J507St1VSVHhcMDtlm9l8KhQUki4BtgDXAmuBncBdklJvC7sAaCl5/J/pl2pmtVJ0RHEVsC0ieiNib0RcCRwArkgs92REPF7yODKjas2sJpJBIekk4Cxge9ms7cA5icX/t6QnJN0t6eJp1mhmNVZkRNEMLAIOlrUfBFZUWeYQcDXwVmAD8A3gNkn/sVJnSZ2SBiQNDA0PFSq8Xoyrfahxam/Ubb4gtncD1T1mKlc9omxaFdqyjhHDEfHJiNgVEQMR8WHgfwAfqNK/JyLaIqJtWfOyKZRUe+NqX9Y4tTfqNl8Q27uB6h5TJCiGgWNMHD0sZ+IoYzL3AKdMob+Z1YlkUOQnIHcD68tmrSe7+lHUK8lOgJpZgyn66dHrgVsl3QvcDVwOrARuBJB0HbAuIs7Pp98JPA3cBxwH3gC8F/jgrFZvZvOiUFBExG2SlgKbyd4PsQfYEBGDeZcWYE3ZYpuB1WSHLQ8Bl0XEZ2elajObV4XvRxERW4GtVeZtLJu+BbhlRpWZWd3wZz3MLMlBYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSU5KMwsyUFhZkkOCjNLclCYWZKDwqatvb2d9vb2Wpdh88BBYWZJDgozS3JQmFmSg8LMkhwUZpZU+FZ4ZlZ7/f39NXlejyjMLMlBYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSU5KMwsye/MrAO1eredWVEeUdi09PX1sWvXLnbs2EFrayt9fX21LsnmkIPCpqyvr4/Ozk5GR0cBGBwcpLOz02GxgDkobMq6uroYGRkZ1zYyMkJXV1eNKrK55qCwKdu/f/+U2q3xOShsylatWjWldmt8Dgqbsu7ubpqamsa1NTU10d3dXaOKbK45KGzKOjo66OnpYcmSJQCsXr2anp4eOjo6alyZzRW/j8KmpaOjg97eXsDvA3k2KDyikLRJ0qOSDkvaLencgsudIukpSYemX6aZ1VKhoJB0CbAFuBZYC+wE7pI06dkrSScBfwN8a4Z1mlkNFR1RXAVsi4jeiNgbEVcCB4ArEsv9CXA/8L9mUKOZ1VgyKPJRwVnA9rJZ24FzJlnu9cCFwB/MpEAzq70iI4pmYBFwsKz9ILCi0gKSWoBe4NKIeCr1BJI6JQ1IGhgaHipQUv0YV/tQ49TeqNt8QWzvBqp7zFQuj0bZtCq0jfkscENE7Cq04oieiGiLiLZlzcumUFLtjat9WePU3qjbfEFs7waqe0yRoBgGjjFx9LCciaOMMb8N/FdJRyUdBW4CnptPd067WjOrieT7KCLiiKTdwHrGn5RcD9xRZbEzyqYvArqAdcBj06jTzGqo6BuurgdulXQvcDdwObASuBFA0nXAuog4HyAi9pQuLKkNOF7ebmaNoVBQRMRtkpYCm4EWYA+wISIG8y4twJq5KdHMaq3wW7gjYiuwtcq8jYlltwHbplCXmdURfyjMzJIcFPas097eTnt7e63LaCgOCjNLclCYWZLvR2HT5vtQPHt4RGFmSQ4KM0tyUJhZkoPCzJIcFGaW5KAwsyQHhZklOSjMLMlBYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSU5KMwsyUFhZkkOCjNLclCYWZKDwsySHBRmluSgMLMkB4WZJTkozCzJQWFmSQ4KM0tyUJhZkoPCzJIcFGaW5KAwsyQHhZklOSjMLKlwUEjaJOlRSYcl7ZZ07iR9T5P0TUkH8/6PSLpW0kmzU7aZzafFRTpJugTYAmwCvp3/e5ek0yJif4VFjgC3APcBPwfOBHrz5/vAzMs2s/lUdERxFbAtInojYm9EXAkcAK6o1DkiHo6IbRHx3YgYjIgvAn1A1VGI2Xzo6+tj165d7Nixg9bWVvr6+mpdUkNIBkV+uHAWsL1s1nbgnCJPIullwAXAjqkWaDZb+vr66OzsZHR0FIDBwUE6OzsdFgUUGVE0A4uAg2XtB4EVky0oaaekw8APyA5ZPlSlX6ekAUkDQ8NDBUqqH+NqH2qc2ht1m89ke3d1dTEyMjKubWRkhK6urtkssaJG3U/GTOWqR5RNq0JbuUuAVwFvBzYAH6y44oieiGiLiLZlzcumUFLtjat9WePU3qjbfCbbe//+SqfTqrfPpkbdT8YUOZk5DBxj4uhhORNHGeNExI/y/z4oaRHwaUkfj4ijU67UbIZWrVrF4OBgxXabXHJEERFHgN3A+rJZ64GdU3yuxWSHMWbzrru7m6ampnFtTU1NdHd316iixlHo8ihwPXCrpHuBu4HLgZXAjQCSrgPWRcT5+fSlwGHgAbJLpW3AdcDtETE6qz+BWUEdHR0AvOtd72J0dJTVq1fT3d39r+1WXaGgiIjbJC0FNgMtwB5gQ0SMjeNagDUlixwF/hg4hexcxiDwl8CfzlLdZtPS0dFBb28vAP39/bUtpoEUHVEQEVuBrVXmbSyb/hzwuRlVZmZ1w5/1MLMkB4WZJTkozCzJQWFmSQ4KM0tyUJhZkoPCzJIcFGaW5KAwsyQHhZklOSjMLMlBYWZJDgozS3JQmFmSg8LMkhwUZpbkoDCzJAeFmSU5KMwsyUFhZkkOCjNLclCYWZKDwsySHBRmluSgMLMkB4WZJTkozCzJQWFmSQ4KM0tyUJhZkoPCzJIcFGaW5KAwsyQHhZklOSjMLGlxrQswm2/9/f21LqHheERhZkmFg0LSJkmPSjosabekcyfp2y7pC5IOSBqRdL+ky2anZDObb4WCQtIlwBbgWmAtsBO4S9KqKoucAzwAXAycDtwA9Eh6+4wrNrN5V/QcxVXAtojozaevlHQBcAXwx+WdI+LasqYbJL0GeDPw19Mt1sxqIzmikHQScBawvWzWdrKRQ1H/BvjZFPqbWZ0ocujRDCwCDpa1HwRWFHkSSRcC5wM9VeZ3ShqQNDA0PFRklXVjXO1DjVN7o27zBbG9G6juMVO56hFl06rQNoGk3yQ73PiDiLi34oojeiKiLSLaljUvm0JJtTeu9mWNU3ujbvMFsb0bqO4xRYJiGDjGxNHDciaOMsaR9GrgLuDDEXHDtCo0s5pLBkVEHAF2A+vLZq0nu/pRkaTfIguJj0TEp2ZQo5nVWNGrHtcDt0q6F7gbuBxYCdwIIOk6YF1EnJ9PtwN/C2wF+iSNjUaORUTjHaCZPcsVCoqIuE3SUmAz0ALsATZExGDepQVYU7LIRqAJuDp/jBkEWmdWspnNt8Kf9YiIrWQjhErzNlaY3lipr5k1nrr7UNieA987dObNbd+vdR2VHD9y/BWTzd/9w92H9B7VX+1HmbTuXwx/99Cxr7247uo+PBqT1v3Ywz89dMM776m7uo8cHZ207qe+/9Chpy98U93VDXD42LGKtSsieYVzXkkaiIi2WtdRSaq2eq3ddc+vRq0bqtfmT4+aWZKDwsyS6jEoKr7Nu06kaqvX2l33/GrUuqHaxyzq7RyFmdWfehxRmFmdcVCYWZKDwsySHBRmluSgMLMkB4WZJdV1UEj6t5K2SPqhpFFJj0m6S9KGfP4+SZE/Dkv6kaTPS3rDJOt8jqTv5su05W3XlKyn2qO1VrVLermkOyUNS3pK0q785sZzUnu9kbRR0qEZLL+tZFs8LekJSd+U9F5JJ5b1XSPppvz3MZr/nm6XNJX7w86akto3l7W35+3NklpL9+d8fpOkryr7io1TZlpH3QZFvnN/B/gdsjt9/zvgtWT3ubixpOt/I/uY+8uBtwH7gM9L+vMqq/4E8OMKbS0lj+8Dnyxr+1ENa/8y8Byy+46uBb4NfEHSmtmufQH7Otm2aAX+PfAl4CPA30t6LkD+QvsO8KvAJuA04I1kN26qtj/Nh8PAByQVuoeepBeS/bwvAn4zIn4w4woioi4fwFeAnwAnV5j3wvzffcDVFeZ3kt3P8zVl7RcB3wNOzee3VXnuPcA19VA72c2Nx/0sZJ/6PQZcXLZsP/Ak2Z3HfgoMAe8HlgB/Cfwc2A9cWrLMGflO9S/5MtuA55fM30YWVO8HHiO7k/pngKaSPkuAT5HdGvEwsAt4dVltvwJ8Efh/wCHgH/Ln/i3gaWBFWf9u4H6gPf/5Sx/X5H1OAv6ELPh/Afwj8DsVtuk24MsV2k8HjpAFhvLf+33Aogp9X1Cj18G2fH+6H/izkvax7dJMFn4BtJHdUOqBfB944WzVUZcjCkm/BFwA/EVETBhyRkTqtv83ke3Qby5Z54vJvoiog+xFMSfmoPYngb3ApZJOlrSILEyeIrvbWLkXkO38vw58lOwFfCfwENmOdAvwaUkrJTUBXyV74a4D3kT2FQw3l63zXLIX1WuBS/J+7y+Z/7G8/TKyEc8DwFclteTbZCXZKCjIbqH4KrLgWhQR3wJ+CLxjbGWSTsinbyLb4f8QGOGZEdIn8q6fAc4D3k4WOrcAX5J0ZoXtMkFE7Ml//jcDryQbSXw8Io5V6PvzIuucI8eB/wJcno8iq3kZ2T7xY+C1Bfa14mqRkgVSdB3ZTvWmRL99VPirnM/bBXwl//8iYAfwn/PpVuZoRDHbtefTLwLuJdthjgJPAL9RYbl+shfUNfm0yEYVXyzpcyJZkFwMvIfsL/zzKvylelnJX7QfAYtL+vQCX8///9x8fe8omb+I7MX/3/PpbrK7m51U5ee9GthbMv06YBRYmk9vBA6VLbMm3x6rytrvBLaWtW2jwogin/fRfJu9Nf+519Z6/69WO/BN4G/Kfk+lI4pRsmA9cbbrqMsRBdkOPhvrGPsgy4fIhrfXz8J6izzvbKwje6VLIruz2JNkf9nXAbcDd0h6UYVlD4/9J7I96gmyv/BjbU+TjViWkx2C3R8RT5Usv5PsBXhaSduDEXG0ZPon+fKQvWBPpGR0E9lf5H8oWcda4NuR3ai5kluAl5acMLwMuDMinqzSH7JRiYAHJR0aewCvZ/xtGVPGtvVs/N7m2geAt5SetCzzBbL9422z/cT1GhQ/IPvlnTqdhfPh+cuBR/Km84HXAE9LOgo8nLfvktQ3w1rLzXbtvw28AfjdiLg7Ir4TEZvIjsl/r8Iqyj/lF2QhWd52ApN/N0tpe7Xl4ZkXWKX1RFmfyk+U3XD5i8Blyu7N+kayw47JnJCv/9fIDhvGHqeSBU1Rp5Ft64fy6Wn93uZDRPwjcAfZeZlKPkb2R3GbpI2z+dx1GRQR8VPg74D3STq5fL6kFyRW8W6yY/Xb8+nfA87kmZ1pQ97eAXxwpvWWmoPam/J/j5f1O87Mf38PAmdKel5J2zn5evcWXMfDZIcerx5ryMPuN/L1Q3Yl4dXKvp6yml6y4f/vk50U/XrJvCNkhzOl7iMLoBUR8XDZ47EihUs6nex80u3A/83r/aO8/vK+LyiyznnwIbKR5QWVZkbEx8gO5W6S9O5Ze9ZaH4NNcmz2y8AB4J+AtwCvIDtzfgWwP++zj+yM9QrgJWQ7+Z+SHcf/+STrbmVur3rMWu1kx6DDZH9JziQbbXyc7K/8q8qet5/sEOWayX4W4HHgfWQh9BPg8zxzBeL7wB2VjpFL2q4B9pRMfypfzwayv8g9ZCdIW/L5L8rrupNsBPAy4HeBV5asQ8CjZMfZHyl7vnN45kRoM/kVF+CzZOc+LgZeSnay9mrgP5Qtvw34Wr6tV+bb8ap8u+4Cnpv3Wwf8c952IdkhzBlkQ/6BGr0OKm3/vyA7IT/hqkdJn/eRXRn7/VmpoxY//BQ2UgvZ9etH8h3oJ2RfKvS6khfb2CWzUbKzvXcCb0ysd8KGLZs/o6CY7drzF8Df5S+2fwbuAV5foV8/UwiK/P9nAN/Id7yfUeXyaNny1zA+KEovj45S+fLor5Jd5jtEdsVmJ3B6WZ8Pk42UWiv8bDfkL+zgmZO1J+a1PEI26nic7BDmrAovtrFtfTRfTz9wJWUnWIFTyK6m/Dhf536yEcfZNXoNVNr+y/NtWDUo8n6Xk4XFppnW4RvXWN2QdAPZ1Zbyb6WzGqu72/Xbs4+k5wNnkb134q01LscqcFBYPRi7rHdTRPxtrYuxiXzoYWZJdXl51Mzqi4PCzJIcFGaW5KAwsyQHhZklOSjMLOn/A44V5glQ76qlAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# compare between filtered and unfiltered\n", + "fig, axes = plt.subplots(1, 5, figsize=(4, 5), sharey=True)\n", + "sorted_celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'NK']\n", + "# ax1.errorbar(y=bios_replication_filtered_df.loc[sorted_celltypes]['r'].values,\n", + "# x=[ind-0.1 for ind in range(len(sorted_celltypes))],\n", + "# yerr=bios_replication_filtered_df.loc[sorted_celltypes]['se_r'].values,\n", + "# fmt='.', markersize=6, marker='o', \n", + "# ecolor=bios_replication_filtered_df.loc[sorted_celltypes]['color'].values,\n", + "# color=bios_replication_filtered_df.loc[sorted_celltypes]['color'].values[0])\n", + "# ax1.set_xticklabels([\"\"]+sorted_celltypes)\n", + "# ax1.plot([0, 5], [0.5, 0.5], linestyle='--', color='black')\n", + "for ind, celltype in enumerate(sorted_celltypes):\n", + " ax = axes[ind]\n", + " ax.errorbar(y=bios_replication_filtered_df.loc[celltype]['r'],\n", + " x=[0.4],\n", + " yerr=bios_replication_filtered_df.loc[celltype]['se_r'],\n", + " fmt='.', markersize=6, marker='o', ecolor='black',\n", + " markeredgecolor='black', markerfacecolor='black'\n", + " )\n", + " ax.set_xlim([0, 1])\n", + " ax.spines['bottom'].set_color(bios_replication_filtered_df.loc[celltype]['color'])\n", + " ax.spines['top'].set_color(bios_replication_filtered_df.loc[celltype]['color']) \n", + " ax.spines['right'].set_color(bios_replication_filtered_df.loc[celltype]['color'])\n", + " ax.spines['left'].set_color(bios_replication_filtered_df.loc[celltype]['color'])\n", + " ax.set_xticklabels([])\n", + " ax.set_xlabel(celltype)\n", + " \n", + "\n", + "plt.savefig('bios_replication.filtered_results.pdf')\n", + "plt.savefig('bios_replication.filtered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":14: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string \".\" (-> marker='.'). The keyword argument will take precedence.\n", + " ax.errorbar(y=bios_replication_filtered_df.loc[celltype]['r'],\n", + ":20: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string \".\" (-> marker='.'). The keyword argument will take precedence.\n", + " ax.errorbar(y=bios_replication_unfiltered_df.loc[celltype]['r'],\n", + "/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/tools/Beeline/miniconda/envs/scpy3.8/lib/python3.8/site-packages/numpy/core/_asarray.py:102: UserWarning: Warning: converting a masked element to nan.\n", + " return array(a, dtype, copy=False, order=order)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAFtCAYAAADIwpbuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmbklEQVR4nO3dfZhcZX3/8ffXJARTfGjZpCRVSEWtwaAi0Vq64KaaSimtv2rFpls1ujYVKNpy+VC7Xlatq60PVH5YlKUroXVNoe3P+lxBmhBXREzUYjCVohB8wJhFRSAQQvz+/jizZXezm+zmnLOzM/t+XddcydznYb/ZO2fmM/fcc09kJpIkSZIO38OaXYAkSZLU6gzVkiRJUkmGakmSJKkkQ7UkSZJUkqFakiRJKslQLUmSJJU0v9kFlPXswefksqOWNbuMOesbd+4Y/q9XbF1cxbk6/rwjlx+9vIpT6TBs27ltOC/NSvryx5tPzIcd+dgqTqVp2n/3jcO/sOa7lfQjwGXnbstHdCys6nSaht233Tt89uW/Wklf/uAPX5rzlyyp4lQ6DPtu+dbw0k9+tJrnysFv5/KjFlRxKh2GbXfuHc5XPH7Cvmz5UL3sqGVsfP4/NbuMOeupH1q1s6pzLT96OVvftLWq02ma4o+jsr582JGP5VHP+nRVp9M0/Ojqx1TWjwCP6FjI7791ZZWn1BR94GVfqqwv5y9ZQsf73lPV6TRNd5z5e9U9Vx61gK3Pd9CiWeJDt0zal07/kCRJkkoyVEuSJEklGaolSZKkkgzVkiRJUkmGakmSJKkkQ7UkSZJUUi2hOiJOi4iPR8T3IiIjYt0UjjkxIq6NiPsax705IqKO+iRJkqQq1TVSfRSwHXgNcN+hdo6IRwJXA7uAZwCvBl4HnF9TfZIkSVJlavnyl8z8NPBpgIjYMIVDuoFFwMsy8z5ge0SsAM6PiAsyM+uoU5IkSarCbJlT/WvA5xuBesRngWXA8qZUJEmSJE3RbAnVx1BM/Rht16htY0TE+ojYGhFbdw/vrr041WdMX+62L1uZ12X78LpsD/Zj+/DxtTXMllANMH6KR0zSTmb2Z+aqzFy1uGNx/ZWpNmP6crF92cq8LtuH12V7sB/bh4+vrWG2hOofcOCI9JLGn+NHsCVJkjRLdHV10dXV1ewymm62hOovAqdGxJGj2tYA3wdua0pFkiRJ0hTVtU71URHxtIh4WuNnHNu4f2xj+zsj4ppRh3wE2ANsiIiVEfEC4C8AV/6QJEnSrFfXSPUq4KuN28OBtzb+/rbG9qXA8SM7Z+ZdFCPTy4CtwN8D7wUuqKk+SZIkqTJ1rVO9mYc+aDjR9nUTtH0dOK2OeiRJkqQ6zZY51ZIkSVLLMlRLkiRJJRmqJUmSpJIM1ZIkSVJJhmpJkiSpJEO1JEmSVJKhWpIkSSrJUC1JkiSVZKiWJEmSSjJUS5IkSSUZqiVJkqSSDNWSJElSSYZqSZIkqSRDtSRJklSSoVqSJEkqyVAtSZIklWSoliRJkkoyVEuSJEklGaolSZKkkgzVkiRJUkmGakmSJKkkQ7UkSZJUkqFakiRJKslQLUmSJJVkqJYkSZJKMlRLkiRJJRmqJUmSpJIM1ZIkSVJJhmpJkiSpJEO1JEmSVFJtoToizomIWyPi/ojYFhGnHmL/50XEFyPi7ogYjoiPRcQT66pPkiRJqkotoToiXgxcCLwDOAm4DvhMRBw7yf6/DHwM+Hxj/+cCDwc+XUd9kiRJUpXqGqk+H9iQmZdm5o7MPA+4Azh7kv1PBhYAb8zMWzLza8A7geMjoqOmGiVJkqRKVB6qI+IIipB81bhNVwGnTHLYVmAf8MqImBcRjwBeBnw5M4errlGSJEmqUh0j1R3APGDXuPZdwDETHZCZtwFrgLcCe4G7gBOBMyfaPyLWR8TWiNi6e3h3RWWrGcb05W77spV5XbYPr8v2YD+2Dx9fW0Odq3/kuPsxQVuxIeIYYAD4R+AZQBdwN3BlRBxQY2b2Z+aqzFy1uGNxpUVrZo3py8X2ZSvzumwfXpftwX5sHz6+tob5NZxzGNjPgaPSSzhw9HrEucC9mfn6kYaI+CPgOxRTRoZqqFOSJEmqROUj1Zn5ALCNYjrHaGsoVgGZyCKKID7ayH3X0pYkSdKsVldgvQBYFxGvjIgVEXEhsAz4IEBEvDMirhm1/6eAp0fEX0XEEyLi6cBlFCPV22qqUZIkSapEHdM/yMwrIuJo4E3AUmA7cEZm7mzsshQ4ftT+/xkRfwi8HngdcB9wPXB6Zt5bR42SJElSVWoJ1QCZeTFw8STb1k3Q9s/AP9dVjyRJklQX5ytLkiRJJRmqJUmSpJIM1ZIkSVJJhmpJkiSpJEO1JEmSVJKhWpIkSSrJUC1JkiSVZKiWJEmSSjJUSwfR1dVFV1dXs8uQJEmznKFakiRJKslQLUmSJJVkqJYkSZJKMlRLkiRJJRmqJUmSpJIM1ZIkSVJJhmpJkiSpJEO1JEmSVJKhWpIkSSrJUC1JkiSVZKiWJEmSSjJU16Crq4uurq5mlyFJkqQZYqiWJEmSSjJUS5IkSSUZqiVJkqSSDNWSJElSSYZqSZIkqSRDtSRJklSSoVqSJEkqyVAtSZIklWSortjg4CDXX3891157LcuXL2dwcLDZJUmSJKlmtYXqiDgnIm6NiPsjYltEnHqI/SMi/iwi/jsi9kbEHRHxN3XVV4fBwUHWr1/P3r17Adi5cyfr1683WEuSJLW5WkJ1RLwYuBB4B3AScB3wmYg49iCHvRc4B3gDsAI4A9hSR3116e3tZc+ePWPa9uzZQ29vb5MqkiRJ0kyYX9N5zwc2ZOaljfvnRcTpwNnAG8fvHBG/ApwHPCUzd4za9NWa6qvF7bffPq12SZLmsq6uLgA2b97c1DqkKlQ+Uh0RRwAnA1eN23QVcMokhz0f+DZwekR8OyJui4jLI2LJJD9jfURsjYitu4d3V1Z7WcceO/FA/GTtGteXu2dPX2r6Zut1qenzumwP9mP78PG1NdQx/aMDmAfsGte+CzhmkmMeBxwH/AGwDngJ8CTgExFxQI2Z2Z+ZqzJz1eKOxVXVXVpfXx+LFi0a07Zo0SL6+vqaVNHsN6YvF8+evtT0zdbrUtPnddke7Mf24eNra6hz9Y8cdz8maBtdx0LgJZm5JTM/TxGsnwk8o74Sq9Xd3U1/fz8LFy4E4LjjjqO/v5/u7u4mV6bD4UoukiRpquqYUz0M7OfAUeklHDh6PeIO4MHMvHlU2/8ADwLHAl+qusi6dHd3c+mlxVRy54i1rslWcgF8kSRJkg5Q+Uh1Zj4AbAPWjNu0hmIVkIl8AZgfEcePanscRejfWXWN0qG4koskSZqOuqZ/XACsi4hXRsSKiLgQWAZ8ECAi3hkR14za/3PAV4APRcRJEXES8CGKEeqtNdUoTcqVXCRJ0nTUEqoz8wrgz4A3AV8DOoEzMnNk1HkpcPyo/X8GnAn8kGJt6s8C3wWe39gmzShXcpEkSdNR2wcVM/PizFyemQsz8+TM3DJq27rMXD5u/zsy80WZ+YjMXJKZ3Zk52RxsqVau5CJJkqajztU/pJblSi6SJGk66vpGRanluZKLJEmaKkN1DQxgkiRJc4vTPyRJkqSSDNWSJGnG+a21ajeGakmSNKMm+9Zag7VamaFakiTNKL+1Vu3IUC1JkmaU31qrdmSoliRJM8pvrVU7MlRLkqQZ5bfWqh0ZqiVJ0ozyW2vVjvzyF0mSNOP81lq1G0eqJUmSpJIM1ZIkSVJJhmpJkiSpJEO1JEmSVJKhWpIkSSrJUC1JkiSVZKiWJEmSSjJUS5IkSSUZqiVJkqSSDNWS5oSuri66urqaXYYkqU0ZqiVJkqSS5je7AEmSNDdt3ry52SVIlXGkWpIkSSrJUC1JkiSVZKiW1PYGBwe5/vrrufbaa1m+fDmDg4PNLkmS1GYM1ZLa2uDgIOvXr2fv3r0A7Ny5k/Xr1xusJUmVMlRLB7F582Y/SNPient72bNnz5i2PXv20Nvb26SKJEntqLZQHRHnRMStEXF/RGyLiFOneNwTIuLuiLinrtokzR233377tNolSToctYTqiHgxcCHwDuAk4DrgMxFx7CGOOwL4Z2BLHXVJmnuOPXbih53J2iVJOhx1jVSfD2zIzEszc0dmngfcAZx9iOP+FrgR+Jea6pI0x/T19bFo0aIxbYsWLaKvr69JFUmS2lHlobox2nwycNW4TVcBpxzkuN8GzgReXXVNkuau7u5u+vv7WbhwIQDHHXcc/f39dHd3N7kySVI7qWOkugOYB+wa174LOGaiAyJiKXAp8JLMvPtQPyAi1kfE1ojYunt4d9l61URj+nK3fdnKZvN12d3dzbOe9Sye/exnc9tttxmoD8Hrsj3Yj+1jNj++6iF1rv6R4+7HBG0jPgx8IDOvn9KJM/szc1VmrlrcsbhMjWqyMX252L5sZV6X7cPrsj3Yj+3Dx9fWUEeoHgb2c+Co9BIOHL0e8RvAX0XEgxHxIDAA/Fzj/voaapQkSZIqM7/qE2bmAxGxDVjD2A8crgH+bZLDThx3//lAL/BM4HtV1yhJal1dXV0AriEvaVapPFQ3XAD8U0TcAHwBeBWwDPggQES8E3hmZj4HIDO3jz44IlYBPxvfLkmSJM1GtYTqzLwiIo4G3gQsBbYDZ2TmzsYuS4Hj6/jZkjQRRzUlSXWqa6SazLwYuHiSbesOcewGYEPlRUmSJEk1qHP1D0mSJGlOMFRLkiRJJRmqJUmSpJIM1ZIkSTosg4ODXH/99Vx77bUsX76cwcHBZpfUNIZqSZIkTdvg4CDr169n7969AOzcuZP169fP2WBtqJYkSdK09fb2smfPnjFte/bsobe3t0kVNZehWpIkSdN2++23T6u93RmqJUmSNG3HHnvstNrbnaFakiRJ09bX18eiRYvGtC1atIi+vr4mVdRchmpJmqauri66urqaXYYkNVV3dzf9/f0sXLgQgOOOO47+/n66u7ubXFlz1PY15ZIkSWpv3d3dXHrppQBs3ry5ucU0mSPVkqSW4Zq4kmYrQ7UkqSW4Jq6k2cxQLUlqCa6JK2k2M1RL0jRs3LiRm266iS1btrBy5Uo2btzY7JLmDNfElTSbGaolaYo2btxIb28vV155JXv37uWiiy6it7fXYD1DXBNX0mxmqJakKerr62NgYIDVq1ezYMECVq9ezcDAwJxdk3WmuSaupNnMUC1JU7Rjxw46OzvHtHV2drJjx44mVTS3uCaupNnMdaolaYpWrFjB0NAQq1ev/t+2oaEhVqxY0cSq5hbXxJU0WzlSLUlT1NvbS09PD5s2bWLfvn1s2rSJnp4eV5+QJDlSLUlTtXbtWgDOOuss7rzzTk444QT6+vr+t12SNHcZqiVpGtauXcsll1wCOP1AkvQQp39IkiRJJRmqJUmSpJKc/iFJ0+S0D0nSeI5US5IkSSUZqiVJkqSSDNWSJElSSYZqSZIkqSRDtSRJklRSbaE6Is6JiFsj4v6I2BYRpx5k366I+FhE3BEReyLixoh4RV21SZIkSVWqZUm9iHgxcCFwDjDU+PMzEXFCZt4+wSGnAF8H3gXcATwP6I+I+zPzI3XUKElqTS5pKGk2qmud6vOBDZl5aeP+eRFxOnA28MbxO2fmO8Y1fSAiVgMvBAzVkiRJmtUqn/4REUcAJwNXjdt0FcWI9FQ9EvhxVXVJkiRJdaljTnUHMA/YNa59F3DMVE4QEWcCzwH6J9m+PiK2RsTW3cO7y9SqJhvTl7vty1bmddk+vC7bg/3YPnx8bQ11rv6R4+7HBG0HiIhfp5jy8erMvGHCE2f2Z+aqzFy1uGNx+UrVNGP6crF92cq8LtuH12V7sB/bh4+vraGOUD0M7OfAUeklHDh6PUZEdAKfAd6cmR+ooTZJkiSpcpWH6sx8ANgGrBm3aQ1w3WTHRcRpFIH6rZn5vqrrkiRJkupS1+ofFwD/FBE3AF8AXgUsAz4IEBHvBJ6Zmc9p3O8CPgVcDAxGxMgo9/7MdPKQJEmSZrVaQnVmXhERRwNvApYC24EzMnNnY5elwPGjDlkHLAJe27iN2Aksr6NGSZIkqSp1jVSTmRdTjDxPtG3dBPfXTbSvJEmSNNvVufqHJEmSNCcYqiVJkqSSDNWSJElSSYZqSZIkqSRDtSRJklSSoVqSJEkqyVAtSZIklWSoliRJkkoyVEuSJEklGaolSZKkkgzVkiRJUkmGakmSJKkkQ7U0Q7q6uujq6mp2GZIkqQaGakmSJM0arToIZaiWJEmSSjJUS5IkSSUZqqUZsHHjRm666Sa2bNnCypUr2bhxY7NLkiRJFZrf7AKkdrdx40Z6e3u58sor6ezsZGhoiJ6eHgDWrl3b5OokSVIVHKmWatbX18fAwACrV69mwYIFrF69moGBAfr6+ppdmiS1jVb9cJvah6FaqtmOHTvo7Owc09bZ2cmOHTuaVJEkSaqaoVqq2YoVKxgaGhrTNjQ0xIoVK5pUkSRJqpqhWqpZb28vPT09bNq0iX379rFp0yZ6enro7e1tdmmSJKkiflBRqtnIhxHPOuss7rzzTk444QT6+vr8kKIkSW3EUC3NgLVr13LJJZcAsHnz5uYWI0mSKuf0D0mSJKkkQ7U0QzZv3uwotSTVwC/Y0mzg9A9JktSy/IItzRaOVEuSpJblF2xptjBUS5KkluUXbGm2qC1UR8Q5EXFrRNwfEdsi4tRD7H9iRFwbEfdFxPci4s0REXXVJ0mSWp9fsKXZopZQHREvBi4E3gGcBFwHfCYijp1k/0cCVwO7gGcArwZeB5xfR32SJKk9+AVbmi3q+qDi+cCGzLy0cf+8iDgdOBt44wT7dwOLgJdl5n3A9ohYAZwfERdkZtZUZ0vo6uoCXN9YkqTx/IItzRaVh+qIOAI4GXjPuE1XAadMctivAZ9vBOoRnwX+GlgO3FpxmZIkqU34BVuaDeqY/tEBzKOYyjHaLuCYSY45ZpL9R7aNERHrI2JrRGzdPby7TK2zXruvvTmmL3e3d1+2u7l0XbY7r8v2YD+2Dx9fW0Odq3+Mn7IRE7Qdav+J2snM/sxclZmrFncsLlHi7DZ67c29e/dy0UUX0dvb21bBekxfLm7fvpwL5sp1ORd4XbYH+7F9+PjaGuoI1cPAfg4cYV7CgaPRI34wyf4c5Ji259qbkiRJraHyUJ2ZDwDbgDXjNq2hWAVkIl8ETo2II8ft/33gtqprbBWuvSlJktQa6pr+cQGwLiJeGRErIuJCYBnwQYCIeGdEXDNq/48Ae4ANEbEyIl4A/AUwp1f+cO1NSZKk1lDLknqZeUVEHA28CVgKbAfOyMydjV2WAseP2v+uiFgD/D2wFfgx8F6KcD5njay9OTAwQGdnJ0NDQ/T09Dj9Q5KkcVz1Q81W1zrVZObFwMWTbFs3QdvXgdPqqqcVufamJElSa6gtVKsaa9euNURLkiTNcnUuqSdJkiTNCYZqSZIkqSRDtSRJklSSoVqSJEkqyVAtSZIklWSoliRJkkoyVEuSJEklGaolSZKkkgzVkiRJUkmGakmSJKkkQ7UkSZJUkqFakiRJKslQLUmSJJVkqJYkSZJKMlRLkiRJJRmqJUmSpJIM1ZIkSVJJhmpJkiSpJEO1JEmSVJKhWpIkSSrJUC1JkiSVZKiWJEmSSjJUS5IkSSUZqiVJkqSSDNWSJElSSYZqSZIkqSRDtSRJklSSoVqSJEmzwsaNG7npppvYsmULK1euZOPGjc0uacrmN7sASZIkaePGjfT29nLllVfS2dnJ0NAQPT09AKxdu7bJ1R1a5SPVEbEwIi6KiOGIuDciPh4RjznEMX8cEZ+PiB9FxE8iYlNEdFZdmyRJkmanvr4+BgYGWL16NQsWLGD16tUMDAzQ19fX7NKmpI7pH+8DXgisBU4FHgl8MiLmHeSYLuAK4DnArwLfBD4bEU+ooT5JkiTNMjt27KCzc+yYamdnJzt27GhSRdNTaaiOiEcBPcDrMvPqzPwK8BLgKcBzJzsuM7sz8/2Z+dXM/CZwNnA3cHqV9UmSJGl2WrFiBUNDQ2PahoaGWLFiRZMqmp6qR6pPBhYAV400ZOZ3gB3AKdM4zxHAkcCPK61OkiRJs1Jvby89PT1s2rSJffv2sWnTJnp6eujt7W12aVNSdag+BtgPDI9r39XYNlVvB+4BPj7RxohYHxFbI2Lr7uHdh1WoZocxfbnbvmxlXpftw+uyPdiP7WOuPL6uXbuWvr4+zjrrLBYuXMh5551HX19fS3xIEaYYqiPi7RGRh7h1HewUQE7xZ70G+BPgBZn504n2ycz+zFyVmasWdyyeymk1S43py8X2ZSvzumwfXpftwX5sH3Pp8XXt2rU8+clP5rTTTmP79u0tE6hh6kvqvQ/48CH2uR14FjAP6ABGv5RaAmw51A9pBOq3A7+VmTdMsTZJkiSpqaYUqjNzmAOndBwgIrYB+4A1wEcabY8BVgDXHeLY84G3AWdk5tDB9pUkSZJmk0q//CUz74qIAeDdEfFD4E7gAuBG4HMj+0XENcANmfnGxv3XAX3AHwE3R8TI/Ov7MvOuKmuUJEmSqlbHNyr+OfAgxbrTDweuAV6amftH7XM88J1R98+lWDXkinHnuhxYV0ONkiRJUmUqD9WZeT9wXuM22T7LD3ZfkiRJaiV1fKOiJEmSNKcYqiVJkqSSDNWSJElSSYZqSZIkqSRDtSRJklSSoVqSJEkqyVAtSZIklWSoliRJkkoyVEuSJEklGaolSZKkkgzVkiRJUkmGakmSJKkkQ7UkSZJUkqFakiRJKslQLUmSJJVkqJYkSZJKMlRLkiRJJc1vdgGSJElqXZs3b252CbOCI9WSJElSSYZqSZIkqSRDtSRJklSSoVqSJEkqyVAtSZIklWSoliRJkkoyVEuSJEklGaolSZKkkgzVkiRJUkmGakmSJKkkQ7UkSZJUUuWhOiIWRsRFETEcEfdGxMcj4jHTOH5tRGREfLLq2iRJkqQ61DFS/T7ghcBa4FTgkcAnI2LeoQ6MiMcB7wY+X0NdkiRJUi0qDdUR8SigB3hdZl6dmV8BXgI8BXjuIY5dAGwEeoFvV1mXJEmSVKeqR6pPBhYAV400ZOZ3gB3AKYc4tg+4LTMvr7gmSZIkqVZVh+pjgP3A8Lj2XY1tE4qI3wReDLxqKj8kItZHxNaI2Lp7ePfh1qpZYExf7rYvW5nXZfvwumwP9mP78PG1NUwpVEfE2xsfHjzYretgpwByknN3ABuAl2Xmj6dST2b2Z+aqzFy1uGPxVA7RLDWmLxfbl63M67J9eF22B/uxffj42hrmT3G/9wEfPsQ+twPPAuYBHcDol1JLgC2THLcSWAp8LiJG2h4GEBEPAk/OzG9OsU5JkiRpxk0pVGfmMAdO6ThARGwD9gFrgI802h4DrACum+SwLwMnjmt7O/DzwLnArVOpUZIkSWqWqY5UT0lm3hURA8C7I+KHwJ3ABcCNwOdG9ouIa4AbMvONmXkvsH30eSLiJ8D8zBzTLkmSJM1GlYbqhj8HHgSuAB4OXAO8NDP3j9rneOA7NfxsSZIkacZVHqoz837gvMZtsn2WH+Ic66qtSpIkSapPHd+oKEmSJM0phmpJkiSpJEO1JEmSVJKhWpIkSSrJUC1JkiSVZKiWJEmSSjJUS5IkSSUZqiVJkqSS6vhGRUmSJOmwbN68udklHBZHqiVJkqSSDNWSJElSSYZqSZIkqSRDtSRJklSSoVqSJEkqyVAtSZIklWSoliRJkkoyVEuSJEklGaolSZKkkgzVkiRJUkmGakmSJKkkQ7UkSZJUkqFakiRJKslQLUmSJJU0v9kFlLX9jpvueeqHVn2z2XUcrn137etY8KgFw82u43D97IGf/UpV59r2rW33xB9Hy/Yle+hgES3blzxIZX157/B/3bP/6se0bF/+8Ef7O5b8wryW7Mv792Zl/QjwvVt+dM8HXvalluzLn953Z8cjH350S/YjwAMP7q2sL+/+5s337Dvz91qyHwF+uPf+jiULj2zZvrx///7qnivvuOue+NDelu1L7trdwaMWt2xf8sD9k/ZlZOZMllK5iNiamauaXcfhsv56ztUM1l/PuZqhleuvunZ/F83jNfkQ66/nXM3QzvU7/UOSJEkqyVAtSZIkldQOobq/2QWUZP31nKsZrL+eczVDK9dfde3+LprHa/Ih1l/PuZqhbetv+TnVkiRJUrO1w0i1JEmS1FSGakmSJKkkQ7UkSZJUkqFakiRJKslQLUmSJJVkqJYkSZJKMlSXFBG/GBEXRsS3ImJvRHwvIj4TEWc0tt8WEdm43R8R34mIj0bE7xzknEdGxH81jlnVaHvLqPNMdls+Q//stlRlX0bEEyPi3yNiOCLujojrI+L0xjb7co6JiHURcU+z62gnEbFh1PWyLyJ+GBGbIuLciFgwbt/jI2Kgcc3ubVzL/xoRpzSrfo01qj/fNK69q9HeERHLRz8vNrYvioj/iIhbI+IJM1+5pmLc9ZqN58ZPRsSTml1blQzVJTSCz1eA5wFvBJ4CPBf4FPDBUbu+DVgKPBH4A+A24KMRcdEkp34P8N0J2paOun0TeO+4tu+U/CfNWTX05SeBI4HnACcBQ8DHIuJ47EupKp+juF6WA78JfAJ4K/D5iPg5gEYA+wrwZOAc4ATgd4FtwGSPwWqO+4HXR8TiqewcET9P8X/gl4Bfz8z/qbM4lTZyvS6luF4fDny0qRVVLTO9HeYN+DTwfeCoCbb9fOPP24DXTrB9PZDA6nHtzwduAlY0tq+a5GdvB97S7N9Bu9yq7EugY3zfAvOB/cDv25cH7YfNwAcoXmT8CNgNvAZYCPw98BPgduAlo445keLB+r7GMRuAR43avoHiRc5rgO8BPwYuAxaN2mch8D5gF8UT+/VA57jangR8HLgLuAf4YuNnnwbsA44Zt38fcCPQ1fj/MPr2lsY+RwB/S/Ei+l7gy8Dzmt0PrXAb6dcJ2lcCD1CE62hcX18F5k2w76Ob/e/wNqY/P924Zv7vqPaR66eD4sVTAquAZcDXgetGHqO9zd7bRNcrcGajPx/e7PqqujlSfZgi4heA04H3Z+YBb+tm5o8PcYoBiif3F44652MoAkU3RUDQDKihL+8EdgAviYijImIeRfC+G/hCZYW3r26K39WvAn9DEXb/HbiZ4sn0cuAfImJZRCwC/oMi5D4T+D3gFOBD4855KkXYei7w4sZ+rxm1/V2N9ldQvLPwdeA/ImIpQEQso3i3IYE1wNMpQv68zNwCfAt46cjJIuJhjfsDFE/6fwbs4aFRmvc0dr0MeDbwhxQB/XLgExHx1On9yjQiM7dT/J94IfA0ihHqd2fm/gn2/cmMFqdD+RnwF8CrGu/qTebxFI+l3wWeO4XHaM0yEfEIisfcr2dm2+QdQ/XhezzFKMiOwzm48QB/M/A4gEbwGgTem5lfq6hGTU2lfZnFS/A1FCHup8Be4C3Ab2XmHRXU2+5uysy3ZPFW7gXAMLAvMy/MzFsopuAERXjuBo6iGLn+emZeS/EC5gUR8fhR5/wpcHZm7sjMq4B/oZiaQ2OawNnAGzLzU5m5A3gVxaj1uY3jz6UYSX5RZt6QmTdn5odHXav/ALx81M97HrAE+HBmPkAxup2Z+YPG7Z5GaFgLnJWZWzLz25n5forRuj+p5Dc5d32D4nocmWN7WNe2Zl5mfpoiMPcdZLfLgTuA383MPTNSmKpwekTc0/h8yU95aEChbRiqD19UdI5s/P0vKd5CvqCC82p6Ku3LiAjgYooR61MpRlD/Ffi3iPilCn5Wu7tx5C+NFyg/pBg5HmnbR/HOwBKKaVI3Zubdo46/jmLE64RRbd/IzAdH3f9+43iA44EFjHoXofFC6YujznESMNQIyBO5HHjcqA++vQL498y88yD/zqdT/L/5xsgTTePJ5rcbNenwjVyPVVzbmnmvB140+gOJ43yM4nH1D2auJFVgC8W7R0+jeCfyP4GrIuKxTaypUobqw/c/FA/aKw7n4MbI9BOBbzeangOsBvZFxIPALY326yNisGStOriq+/I3gN8B1mbmFzLzK5l5DsVI58snOY0esm/c/Zyk7WGMfWE63uj2yY6Hh4LXROfJcftM/IMyd1PMt35FRBxN8UG4gYMd0/j5CTyDh55onkbx//AVhzhWB3cCxfV4c+P+YV3bao7M/DLwbxSfN5jIuygGojZExLqZqkul7cnMWxq3G4Ae4JEU7y62BUP1YcrMHwGfBf40Io4avz0iHn2IU7wSeDTFCCYUYeupPPTEekajvRt4Q9l6Nbka+nJR48+fjdvvZ3jNVe0bwFMb8/NGnELxe57qW/63UHywrXOkofFC6dca54di9YjOiDjiIOe5FDiLYurGLooPT454AJg3bv+vUoT1Y0Y90YzcvjfF2jVORKyk+IzEvwJfo+jD1zX6dPy+j57R4jQdf0nxTt/pE23MzHcBrwUGIuKVM1mYKpMUz4uLDrVjq/AJvpxzKJ4Ut0bEiyLiVyLiSRFxNqPewgYeERHHRMRjI+KUiPg7ig85vb8xB5TMvDUzt4/ceGiE5VuZOX55PVWvsr6kmDbwI+CyiHhqY83qd1PM8fzkDP6b5oJBincA/jEiToyI04BLgP/XmH99SJl5L8UHhP8mIs6IiBWN+79IMY2Hxp9HAVdGxDMi4vERsTYinjbqVFdTTPn5K+CyzBz9ouo24MiIWNNYb3dRZt7cqH9DRPx+RDwuIlZFxGsj4gWH9+uYcxY2rsdljWvtfIoVZLYB72lMH3o5xXSaL0TEmY01q0+MiNcz9oWPZpHG9dvP2A8Uj9/n7xrbL4kIP4cw+41cr8c0Hmcvonhc/UST66qMobqEzLyVYl7k1RRvU91IMUfodxn7QaM3U3yo4hbgSuCXgRdk5nkzWrAmVWVfZuYwxejKUY1zbKVYdu3/ZOZXav/HzCGNDyk9j+ItxBso5lp+kelPn3gDRX9eRjG6+RTg9JEPljZGjk+jWAJvE8Uo83nA/87TbgS4yyjmZ182rs7rKNY730ixTODrG5te3tj3XcB/U7zoOg3YOc3656rnUlyPtwPXUFyvbwVOa7xYovE288kU71x8sPHnpyjm5P5pE2rW1L2NUdfYRBof7j0XuDgizpmRqnS4Rq7XO4AvUUx9e1Fmbm5mUVWK4nlAklRWRHwAeHxmrml2LZKkmTW/2QVIUquLiEdRjIa+lGJetSRpjjFUS1J5I0t8DWTmp5pdjCRp5jn9Q5IkSSrJDypKkiRJJRmqJUmSpJIM1ZIkSVJJhmpJkiSpJEO1JEmSVJKhWpIkSSrp/wORGRA+wc0kDgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# compare between filtered and unfiltered\n", + "fig, axes = plt.subplots(1, 6, figsize=(12, 6), sharey=True)\n", + "sorted_celltypes = ['CD4T', 'CD8T', 'monocyte', 'DC', 'NK', 'B']\n", + "# ax1.errorbar(y=bios_replication_filtered_df.loc[sorted_celltypes]['r'].values,\n", + "# x=[ind-0.1 for ind in range(len(sorted_celltypes))],\n", + "# yerr=bios_replication_filtered_df.loc[sorted_celltypes]['se_r'].values,\n", + "# fmt='.', markersize=6, marker='o', \n", + "# ecolor=bios_replication_filtered_df.loc[sorted_celltypes]['color'].values,\n", + "# color=bios_replication_filtered_df.loc[sorted_celltypes]['color'].values[0])\n", + "# ax1.set_xticklabels([\"\"]+sorted_celltypes)\n", + "# ax1.plot([0, 5], [0.5, 0.5], linestyle='--', color='black')\n", + "for ind, celltype in enumerate(sorted_celltypes):\n", + " ax = axes[ind]\n", + " ax.errorbar(y=bios_replication_filtered_df.loc[celltype]['r'],\n", + " x=[0.4],\n", + " yerr=bios_replication_filtered_df.loc[celltype]['se_r'],\n", + " fmt='.', markersize=6, marker='o', ecolor='black',\n", + " markeredgecolor='black', markerfacecolor='black'\n", + " )\n", + " ax.errorbar(y=bios_replication_unfiltered_df.loc[celltype]['r'],\n", + " x=[0.6],\n", + " yerr=bios_replication_unfiltered_df.loc[celltype]['se_r'],\n", + " fmt='.', markersize=6, marker='o', ecolor='black',\n", + " markeredgecolor='black', markerfacecolor='white')\n", + " ax.set_xlim([0, 1])\n", + " ax.spines['bottom'].set_color(bios_replication_filtered_df.loc[celltype]['color'])\n", + " ax.spines['top'].set_color(bios_replication_filtered_df.loc[celltype]['color']) \n", + " ax.spines['right'].set_color(bios_replication_filtered_df.loc[celltype]['color'])\n", + " ax.spines['left'].set_color(bios_replication_filtered_df.loc[celltype]['color'])\n", + " ax.set_xticklabels([])\n", + " ax.set_xlabel(celltype)\n", + " \n", + "\n", + "plt.savefig('bios_replication_comparison.filter_and_unfilter.pdf')\n", + "plt.savefig('bios_replication_comparison.filter_and_unfilter.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuAAAAKrCAYAAACwQTimAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAB0x0lEQVR4nO3df5ydZXng/89lGGSsmBETfmSSGFYxFUI0EEAW+5WaarAWSGkN2G5F6n6DLZRqu6lJ1y9Qqkt204ql/oCslR9bVszSNMaCZmmoVVyEJIQm/Gg0C0JmAiRIE60dSZhc3z+eMzAZZiaZmfPzmc/79ZrXOc91nvOc686ZPHOd+9zPfUdmIkmSJKk+XtXoBCRJkqTxxAJckiRJqiMLcEmSJKmOLMAlSZKkOrIAlyRJkurosEYnUG+TJk3KGTNmNDoNSRqxjRs3PpeZkxudRz15zpbUyoY6b4+7AnzGjBls2LCh0WlI0ohFxJONzqHePGdLamVDnbcdgnIwm1fCdbPg6o7idvPKRmckSRqP/Hsklca46wEfkc0r4etXwL6eYnvP9mIbYPbCxuUlSRpf/HsklUrNesAj4ssRsTMiHu4XuzoiuiPiocrPL/d7bGlEbIuIrRExv1/81IjYUnns+oiISvzVEfHVSvz+iJhR9Uasu+blk12ffT1FXJKkevHvkVQqtRyCcjNwziDx6zLz7ZWfuwAi4kTgIuCkynO+EBETKvt/EVgEnFD56TvmR4B/ycw3A9cB/7XqLdjTNbK4JEm14N8jqVRqVoBn5reB5w9x9/OB2zPzhcx8AtgGnB4RxwGvy8z7MjOBW4EF/Z5zS+X+HcC8vt7xqpk4dWRxSZJqwb9HUqk04iLMyyNic2WIyusrsU5ge799uiqxzsr9gfEDnpOZLwJ7gDcM9oIRsSgiNkTEhl27dh16pvOuhLb2A2Nt7UVckvSSwYYdDng8KsMIt1X+BpxSizzWr7mRZ65+M/uvmsgzV7+Z9WturMXL1J9/j6RSqXcB/kXgTcDbgaeBP6/EB+u5zmHiwz3nlcHMFZk5NzPnTp48gil0Zy+Ec6+HidOKl5s4rdj2ghdJGuhmBh922Od9vDyUcBHF34OqWr/mRmZt/CTHsotXBRzLLmZt/GQ5inD/HkmlUtdZUDLz2b77EfHfgb+rbHYB0/rtOhXYUYlPHSTe/zldEXEYMJFDH/Jy6GYv9AQnSQeRmd8+yMXw5wO3VoYTfi8iOiLiuMx8ulo5THtwOe2x94BYe+xl2oPL4bxLq/UyDbO69yyWv3A9O37Ww5Qj2lncO/OlMZmSWktde8ArY7r7/CrQ91XlGuCiyswmx1P0kDxQOTH/JCLeURnf/SHga/2ec3Hl/q8D91RO7JKk5jPUUMNXGO2wwaNz8H2PzudGkGZzWr2pm6WrttC9u4cEunf3sHTVFlZv6m50apJGoZbTEH4FuA+YGRFdEfER4L9VphTcDPwi8HGAzHwEWAk8CnwTuCwzeyuH+h3gSxQXZv5f4BuV+F8Bb4iIbcAfAEtq1RZJ0pjVfNjgzhh8350x6ZCP0ayWr91Kz77eA2I9+3pZvnZrgzKSNBY1G4KSmR8cJPxXw+z/aeDTg8Q3ALMGif8M+MBYcpQk1c1QQw2rZvspi5m48ZMHDEPpycPZfupijq3mCzXAjt09I4pLam4uRS9Jqoc1wIcqs6G8A9hTzfHfAKeddykPn/opnmEy+zN4hsk8fOqnOK0E47+ndLSPKC7V1eaVcN0suLqjuN28stEZNT2XopckjVll2OHZwKSI6AKuAtoAMvMG4C7glymGE/4bcEkt8jjtvEtfuuDy2MpPGSyeP5Olq7YcMAylvW0Ci+fPbGBWEkWx/fUrXl6pdc/2YhucxGIYFuCSpDEbYthh/8cTuKxO6ZTOgjnF9arL125lx+4epnS0s3j+zJfiUsOsu+bl4rvPvp4ibgE+JAtwSZJawII5nRbcaj57ukYWF+AYcEmSJI3WxKkjiwuwAJckSdJozbsS2gZcDNzWXsQ1JAtwSZKkGrvwxvu48Mb7Gp1G9c1eCOdez65XHc1+AiZOg3Ovd/z3QTgGXJIkSaM3eyGX31dM8//VS89scDKtwR5wSZIkqY4swCVJkjRqqzd1s+mp3dz/xPOcteweVm/qbnRKTc8CXJIkqYbKXKCu3tTN0lVb2Nu7H4Du3T0sXbWlVG2sBQtwSZKkGil7gbp87dYDVmgF6NnXy/K1WxuUUWuwAJckSaqRsheoO3b3jCiuggW4JElSjZS9QJ3S0T6iuAoW4JIkSTVS9gJ18fyZtLdNOCDW3jaBxfNnNiij1mABLkmSVCNlL1AXzOnk2gtO5vAJRUnZ2dHOtReczII5nQ3OrLm5EM94tnklrLsG9nTBxKnFsrGuXCVJUtX0FaJ/dMdm9vbup7OjncXzZ5aqQF0wp5OvPPAU4EI8h8oCfLzavBK+fgXsq4xB27O92AaLcEmSqmg8FKhlbVet1GwISkR8OSJ2RsTD/WJHRcTdEfGDyu3r+z22NCK2RcTWiJjfL35qRGypPHZ9REQl/uqI+Golfn9EzKhVW0pp3TUvF9999vUUcUmSJNVMLceA3wycMyC2BFiXmScA6yrbRMSJwEXASZXnfCEi+gZMfRFYBJxQ+ek75keAf8nMNwPXAf+1Zi0poz1dI4tLkiSpKmpWgGfmt4HnB4TPB26p3L8FWNAvfntmvpCZTwDbgNMj4jjgdZl5X2YmcOuA5/Qd6w5gXl/vuA7BxKkji0uSJKkq6j0G/JjMfBogM5+OiKMr8U7ge/3266rE9lXuD4z3PWd75VgvRsQe4A3Ac7VLv0TmXXngGHCAtvYiLkmSqsox0upv2B7wiKhXgT5Yz3UOEx/uOa88eMSiiNgQERt27do1yhRLZvZCOPd6mDgNiOL23Ou9AFOS1BibV8KfHg1XT4TrZhXbUkkdrMB+ADiliq/3bEQcV+n9Pg7YWYl3AdP67TcV2FGJTx0k3v85XZUPChN55ZAXADJzBbACYO7cuYMW6ePS7IUW3JKkxuubmav3hWLbmbnURC688T6gut9iHGwMeLXHVK8BLq7cvxj4Wr/4RZWZTY6nuNjygcpwlZ9ExDsq47s/NOA5fcf6deCeyjhxSZLUSpyZS+PMwXrAJ0fEHwz1YGZ+ZqjHIuIrwNnApIjoAq4ClgErI+IjwFPAByrHeSQiVgKPAi8Cl2Vmb+VQv0Mxo0o78I3KD8BfAf8jIrZR9HxfdJC2SJKkZuTMXBpnDlaATwBeyyh6wjPzg0M8NG+I/T8NfHqQ+AZg1iDxn1Ep4CVJUgubOLUYdjJYXCqhgxXgT2em3/9IkqTacWYujTP1HgMuSZJ0IGfm0jhzsB7wVwwXiYjzMnNNjfKRJEnjkTNzaRw5WAF+9oDFJQP4fN/84Jm5qlaJSZIkSWV0sAJ8JfBNivm6+yrxnwPOpVj0xgJckiRJGoGDFeBnUkwduB64ITMzIs7OzEtqn5okSRpParHgidSMhr0IMzPXA+8BDgfuiYjTGWK5d0mSJEkHd7BZUMjM/Zn5F8B/AP5T7VOSJLWiiDgnIrZGxLaIWDLI4xMj4usR8U8R8UhE+G2qpHHpYENQXpKZ3YCXJ0uSXiEiJgCfp/jWtAtYHxFrMvPRfrtdBjyamedGxGRga0Tclpl7G5CyJDXMQXvAI+LiiHgwIn5a+dkQER+qR3KSpJZxOrAtMx+vFNS3A+cP2CeBI6OYXuu1wPPAi/VNU81q9aZuNj21m/ufeJ6zlt3D6k3djU5Jqtnv5bA94JVC+2PAHwAPUsyEcgqwPCLIzFurkoUkqdV1Av3XEu8Czhiwz+eANcAO4EjgwszcP/BAEbEIWAQwffr0miSr5rJ6UzdLV21hb2/x69C9u4elq7YAsGBOZyNT0zhWy9/Lg/WA/y7wq5n5D5m5JzN3Z+Y9wK9VHpMkCQZfOXngRfvzgYeAKcDbgc9FxOte8aTMFZk5NzPnTp48udp5qgktX7uVnn29B8R69vWyfO3WBmUk1fb38mAF+Osy84cDg5XYK06akqRxqwuY1m97KkVPd3+XAKuysA14Avj5OuWnJrZjd8+I4lI91PL38mAF+HCv4P8KSVKf9cAJEXF8RBwOXEQx3KS/p4B5ABFxDDATeLyuWaopTeloH1Fcqoda/l4erAB/a0RsHuRnC/ZaSJIqMvNF4HJgLfAYsDIzH4mIj0bERyu7/Snw7yt/Q9YBn8jM5xqTsZrJ4vkzaW+bcECsvW0Ci+fPbFBGUm1/Lw82DeHbgGM48MIagDfyyq8WJUnjWGbeBdw1IHZDv/s7gPfWOy81v74L2v7ojs3s7d1PZ0c7i+fP9AJMNVQtfy8PVoBfB/xxZj7ZP1iZv/U64NwxZyBJksa9BXM6+coDTwEuRa/mUavfy4MNQZmRmZsHBjNzAzCjallIkiRJ48TBCvAjhnnMKyMkSZIOxU3vL34kDl6Ar4+I/3dgMCI+Amwc7YtGxA8jYktEPBQRGyqxoyLi7oj4QeX29f32XxoR2yJia0TM7xc/tXKcbRFxfWV1NUmS1IK+eumZDj/RuHCwMeAfA/42In6TlwvuucDhwK+O8bV/ccDV70uAdZm5LCKWVLY/EREnUkxndRLF4g1/HxFvycxe4IsUq6V9j+LCn3OAb4wxL0mSJKlmhi3AM/NZiimjfhGYVQnfWVkNs9rOB86u3L8F+BbwiUr89sx8AXgiIrYBp0fEDykWCroPICJuBRZgAS5JkqQmdrAecAAy8x+Af6ji6ybwvyMigRszcwVwTGY+XXm9pyPi6Mq+nRQ93H26KrF9lfsD468QEYsoesqZPn16FZshSZIkjczBxoDXylmZeQrwPuCyiPh/htl3sHHdOUz8lcHMFZk5NzPnTp48eeTZSpIkjdbmldC1Hp68F66bVWxrXGtIAV5ZjIHM3An8LXA68GxEHAdQud1Z2b0LmNbv6VMpFgHqqtwfGJckSWoOm1fC16+A3heK7T3bi22L8HGt7gV4RPxcRBzZd59iVbSHgTXAxZXdLga+Vrm/BrgoIl4dEccDJwAPVIar/CQi3lGZ/eRD/Z4jqVVtXln0EF3dYU+RpNa37hrY13NgbF9PEde4dUhjwKvsGIqZVfpe/39m5jcjYj2wsjLF4VPABwAy85GIWAk8CrwIXFaZAQXgd4CbKeYk/wZegCm1tr6eor4/Vn09RQCzFzYuL0karT1dI4trXKh7AZ6ZjwNvGyT+I2DeEM/5NPDpQeIbeHl2FkmtbrieIgtwSa1o4tSiM2GwuFpCLeamb9RFmJL0SvYUSSqbeVdC24DFw9vai7jGLQtwSc1jqB4he4oktarZC+Hc62HCq4vtidOKbb/VG9cswCU1D3uKJJXR7IUw9TR44zvh4w9bfMsCXFIT6espmjgNCHuKJEml1IhZUCRpaLMXWnBLkprHTe8vbi+5s2qHtAdc5eV80pIkqQnZA65ycj5pSVIzqWLvqVqfPeAqJ1cekyRJTcoCXOXkfNKSJKlJWYCrnJxPWpIkNSkLcJWT80lLkqSx2rwSutbDk/dWdUIHC3CVk/NJS5Kkseib0KH3hWK7b0KHKhThzoKi8nI+aUmSNFrDTegwxvrCHnBJkiRpoBpO6GABLkmSJA1UwwkdLMClVuQqn5Ik1VYNJ3RwDPhBrN7UzfK1W9mxu4cpHe0snj+TBXM6G52WxjNX+Wxtm1cW4wf3dBW9KPOu9H2TpGbUd27+2uXFhZgTp1XtnG0BPozVm7pZumoLPft6Aeje3cPSVVsASlGE++GiRdXwohDVmB+eJKm1zF4IG28p7l9yZ9UOawE+jOVrt75UfPfp2dfL8rVbW75QLfuHCyjxB4ySr/JZ2vcN/PAkSQJKMAY8Is6JiK0RsS0illTz2Dt294wo3kqG+3BRBn0fMLp395C8/AFj9abuRqc2Zv/WfuyI4q2kzO8bQA7xIWmouCSpnFq6AI+ICcDngfcBJwIfjIgTq3X8KR3tI4q3kjJ/uIByf8D4b/su5N/y8ANi/5aH89/2XdigjKqnzO8bwLNMGlG81RxKh0hEnB0RD0XEIxHxj/XOUZKaQUsX4MDpwLbMfDwz9wK3A+dX6+CL58+kvW3CAbH2tgksnj+zWi/RMGX+cAHl/oBxy7+ezpJ9/5Gu/ZPYn0HX/kks2fcfueVfT290amNW5vcN4Nq9Hxj0w9O1ez/QoIyq51A6RCKiA/gCcF5mngS0fsMlld8ld1Z1/De0fgHeCWzvt91ViR0gIhZFxIaI2LBr165DPviCOZ1ce8HJdHa0E0BnRzvXXnByKcajlvnDBZT7A8aUjnbW7H8n79x7Pf/uhdt4597rWbP/naVp20jirWbD694z6IenDa97T6NTq4ZD6RD5DWBVZj4FkJk765yjJDWFVr8IMwaJ5SsCmSuAFQBz5859xePDWTCnsxQF90B9bSrrxW6L58884CJTKM8HDNvWuor27WXN3ne+FGtvm8C15WjfYB0iZwzY5y1AW0R8CzgS+IvMvHXggSJiEbAIYPr06TVJVpIaqdUL8C5gWr/tqcCOBuXScsr64QLK/QHDtrWukrfvUDpEDgNOBeYB7cB9EfG9zPz+AU8aQ6eJJLWCVi/A1wMnRMTxQDdwEcVXnFLpP2DYttZU4vYdSodIF/BcZv4U+GlEfBt4G/B9JGkciczW7lyIiF8GPgtMAL6cmZ8+yP67gCdH8VKTgOdG8bxWUOa2QbnbZ9ta12ja98bMnFyLZMYqIg6jKKTnUXSIrAd+IzMf6bfPW4HPAfOBw4EHgIsy8+Fhjus5+5XK3DYod/vK3DYod/tG27ZBz9ut3gNOZt4F3DWC/Uf1xysiNmTm3NE8t9mVuW1Q7vbZttZVtvZl5osRcTmwlpc7RB6JiI9WHr8hMx+LiG8Cm4H9wJeGK74rz/OcPUCZ2wblbl+Z2wblbl+129byBbgkqTkM1iGSmTcM2F4OLK9nXpLUbFp9GkJJkiSppViAH7oVjU6ghsrcNih3+2xb6yp7+xqtzP++ZW4blLt9ZW4blLt9VW1by1+EKUmSJLUSe8AlSZKkOrIAlyRJkurIAlySJEmqIwtwSZIkqY4swCVJkqQ6sgCXJEmS6sgCXJIkSaojC3BJkiSpjizAJUmSpDqyAJckSZLqyAJckiRJqiMLcEmSJKmODmt0AvU2adKknDFjRqPTkKQR27hx43OZObnRedST52xJrWyo8/a4K8BnzJjBhg0bGp2GJI1YRDzZ6ByGEhFfBn4F2JmZswZ5PIC/AH4Z+Dfgw5n54MGO6zlbUisb6rztEJTxbPNKuG4WXN1R3G5e2eiMJLWum4Fzhnn8fcAJlZ9FwBfrkFOprF9zI89c/Wb2XzWRZ65+M+vX3NjolCSNkgX4eLV5JXz9CtizHcji9utXWIRLGpXM/Dbw/DC7nA/cmoXvAR0RcVx9smt969fcyKyNn+RYdvGqgGPZxayNn7QIl1qUBfjBlLWXeN01sK/nwNi+niIuSdXXCWzvt91ViekQTHtwOe2x94BYe+xl2oPLG5SRpLEYd2PAR6Svl7ivUO3rJQaYvbBxeVXDnq6RxSVpbGKQWA66Y8QiimEqTJ8+vZY5tYyjc9eg/4JH53P1T0bSmNkDPpwy9xJPnDqyuCSNTRcwrd/2VGDHYDtm5orMnJuZcydPHleTvgxpZwz+77AzJtU5E0nVYAE+nDL3Es+7EtraD4y1tRdxSaq+NcCHovAOYE9mPl3tF1m9qZuzlt3D8Uvu5Kxl97B6U3e1X6Ihtp+ymJ48/IBYTx7O9lMWNygjSWPhEJThTJxauUhxkHir6xtCs+6a4gPFxKlF8d3qQ2skNUREfAU4G5gUEV3AVUAbQGbeANxFMQXhNoppCC+pdg6rN3WzdNUWevb1AtC9u4elq7YAsGBOaw83P+28S1lPMRb86HyOnTGJ7acu5rTzLm10ajpEF954HwBfvfTMBmdSfas3dbN87VZ27O5hSkc7i+fPbPn/c7VmAT6ceVceOAYcytVLPHuhBbekqsjMDx7k8QQuq2UOy9dufan47tOzr5fla7eWohg47bxLoVJwH1v5kRqtzB98a8khKMOZvRDOvR4mTgOiuD33eotWSWpCO3b3jCguaeyG++CrodkDfjD2EktSS5jS0U73IMX2lI72QfaW6mf1pm42PbWbvb37OWvZPaUaouEH39GxB1ySVAqL58+kvW3CAbH2tgksnj+zQRlJLw/R2Nu7H3h5iEZZLhAe6gOuH3yHZwEuSSqFBXM6ufaCk+nsaCeAzo52rr3g5NL0NKo1lX2Ihh98R8chKJKk0lgwp9OCW02l7EM0+v6/OQvKyFiAS5Ik1ch4uDbBD74j5xAUSZKkGnGIhgZjD7gkSVKN9PUM/9Edm9nbu59Oh2gIC3BJkqSaWjCnk6888BRQzpUw2bzSlbVHyAJcklQeFgJSfW1eeeCq4Xu2F9vg/71h1H0MeERMi4h/iIjHIuKRiPj9SvyoiLg7In5QuX19v+csjYhtEbE1Iub3i58aEVsqj10fEVHv9kiSmkRfIbBnO5AvFwKbVzY6M4mvXnpmOXu/113zcvHdZ19PEdeQGnER5ovAH2bmW4F3AJdFxInAEmBdZp4ArKtsU3nsIuAk4BzgCxHRdzXDF4FFwAmVn3Pq2RBJUhOxEJDqb0/XyOICGlCAZ+bTmflg5f5PgMeATuB84JbKbrcACyr3zwduz8wXMvMJYBtwekQcB7wuM+/LzARu7fccSdJ4YyEg1d/EqSOLC2jwNIQRMQOYA9wPHJOZT0NRpANHV3brBLb3e1pXJdZZuT8wLqmVbV4J182CqzuKW4cP6FBZCEj1N+9KaBswp3lbexHXkBpWgEfEa4G/AT6WmT8ebtdBYjlMfLDXWhQRGyJiw65du0aerKT6cAyvxsJCQKq/2Qvh3Oth4jQgittzr/cCzINoyCwoEdFGUXzflpmrKuFnI+K4zHy6MrxkZyXeBUzr9/SpwI5KfOog8VfIzBXACoC5c+cOWqRLagLDjeH1ZK6D6fsdcRYUqb5mL/T/2QjVvQCvzFTyV8BjmfmZfg+tAS4GllVuv9Yv/j8j4jPAFIqLLR/IzN6I+ElEvINiCMuHgL+sUzMk1YJjeDVWFgKSWkAjesDPAn4L2BIRD1Vif0xReK+MiI8ATwEfAMjMRyJiJfAoxQwql2Vmb+V5vwPcDLQD36j8SGpVE6dWhp8MEpckqSTqXoBn5r0MPn4bYN4Qz/k08OlB4huAWdXLTlJDzbvywAUdwDG8kqSGuvDG+4DqrmLa0FlQJOkAXswjSRoHXIpeUnNxDK8kqeTsAZckSZLqyAJckiRJqiMLcEmSJKmOLMAlSZKkOhpVAR4RXrwpSZIkjcJoe8AfqGoWkiRJ0jgx2gJ8qIV0JEmSJA1jtENJJkfEHwz1YGZ+ZpTHlSRJkprC6k3dbHpqN3t793PWsntYPH8mC+Z0jvm4oy3AJwCvxZ5wSZIkldDqTd0sXbWFvb37Aeje3cPSVVsAxlyEj7YAfzozrxnTK0uSSiUizgH+gqKT5kuZuWzA4xOBvwamU/z9+bPMvKnuiappXXjjfQB89dIzG5yJBMvXbqVnX+8BsZ59vSxfu3XMBbhjwCVJYxYRE4DPA+8DTgQ+GBEnDtjtMuDRzHwbcDbw5xFxeF0TlaRDtGN3z4jiIzHaAnxe/6kII+K1ETE3Io4ac0aSpFZ0OrAtMx/PzL3A7cD5A/ZJ4MiICIphjM8DL9Y3TUk6NFM62kcUH4nRFuDnAs9GxPcj4n3AZuC/Av8UER8cc1aSpFbTCWzvt91VifX3OeCtwA5gC/D7mbm/PulJ0sgsnj+T9rYJB8Ta2yaweP7MMR97tGPA/xMwEzgS+CdgTmb+34g4Brgb+MqYM5MktZLBhibmgO35wEPAu4E3AXdHxHcy88cHHChiEbAIYPr06dXPVJIOQd847z+6YzN7e/fT2dFetVlQRtsD3puZz2XmE8C/Zub/BcjMZ8eckSSpFXUB0/ptT6Xo6e7vEmBVFrYBTwA/P/BAmbkiM+dm5tzJkyfXLGE1l77p3u5/4nnOWnYPqzd1NzoliQVzOpkzvYMzjj+K7y55d1WKbxh9D/hTEXEtRQ/4P0fEnwOrgF8Cnq5KZtJYbV4J666BPV0wcSrMuxJmL2x0VlJZrQdOiIjjgW7gIuA3BuzzFDAP+E7lG9OZwON1zVJNqZbTvUnNaLQ94P8B+DFFj8d5wH3AUuAY4MNVyUwai80r4etXwJ7tQBa3X7+iiEuqusx8EbgcWAs8BqzMzEci4qMR8dHKbn8K/PuI2AKsAz6Rmc81JmM1k+Gme5PKaFQ94JXxetf2C91R+ZGaw7prYN+AaYL29RRxe8GlmsjMu4C7BsRu6Hd/B/Deeuel5lfL6d6axk3vL24vubOxeagpjLYHnIi4OCIejIifVn42RMSHqpmcNGp7ukYWlyQ1TC2ne5Oa0agK8Eqh/THgD4EpFFNN/RHw+xbhagoTp44sLklqmFpO9yY1o9H2gP8u8KuZ+Q+ZuSczd2fmPcCvVR6TGmveldA2oOekrb2IS5KayoI5nVx7wckcPqEoSzo72rn2gpO9AFOlNdpZUF6XmT8cGMzMH0bE68aWklQFfeO8nQVFklrCgjmdfOWBpwD46qVnNjibKtu8ErrWQ+8LcN0s/x5p1AX4cFdFlOiKCbW02Qs9wUmSGqtvVq7eF4rtvlm5wL9RLaIWHwhHOwTlrRGxeZCfLQyyqMJAEfHliNgZEQ/3ix0VEXdHxA8qt6/v99jSiNgWEVsjYn6/+KkRsaXy2PURMdhKbJIkSY0x3KxcGrdG2wP+Noo5v7cPiL+RV658Npibgc8Bt/aLLQHWZeayiFhS2f5ERJxIsaDDSRQXfP59RLwlM3uBL1IsV/w9iqmvzgG+Mco2SZKkBird0BNwVi4NarQ94NcBP87MJ/v/AP9WeWxYmflt4PkB4fOBWyr3bwEW9IvfnpkvZOYTwDbg9Ig4jmIs+n2ZmRTF/AIkSZKahbNyaRCjLcBnZObmgcHM3ADMGOUxj8nMpyvHeRo4uhLv5MCe9q5KrLNyf2D8FSJiUWWe8g27du0aZXqSJEkj5KxcGsRoC/Ajhnms2rPmDzauO4eJvzKYuSIz52bm3MmTJ1c1OUmSpCHNXgjnXg8TXl1sT5xWbHsB5rg22jHg6yPi/83M/94/GBEfATaO8pjPRsRxmfl0ZXjJzkq8C5jWb7+pFOPMuyr3B8YlSZKax+yFsLEyytal6MXoC/CPAX8bEb/JywX3XOBw4FdHecw1wMXAssrt1/rF/2dEfIbiIswTgAcyszcifhIR7wDuBz4E/OUoX1uSJEmqi1EV4Jn5LPDvI+IXgVmV8J2V1TAPKiK+ApwNTIqILuAqisJ7ZaUX/SngA5XXeiQiVgKPAi8Cl1VmQAH4HYoZVdopZj9xBhRJkiQ1tdH2gAOQmf8A/MMonvfBIR6aN8T+nwY+PUh8Ay9/AJAkSWpODj1RP6O9CFOSJEnSKFiAS5IkSXVkAS5JkiTVkQW4JNXT5pVw3Sy4uqO43byy0RlJkupsTBdhSpJGYPNK+PoVsK+n2N6zvdgGF+WQpHHEHnBJqpd117xcfPfZ11PEJUnjhgW4JNXLnq6RxaXx5qb3Fz9SyVmAS1K9TJw6srg0nmxeCV3r4cl7vT5CpWcBLkn1Mu9KaGs/MNbWXsSl8azv+ojeF4rtvusjLMLVDGrwzYwFuNSKnEmjNc1eCOdeDxOnAVHcnnu9F2BKXh+hccZZUKRW40warW32Qt8naSCvj9A4Yw/4OLZ6UzdnLbuH45fcyVnL7mH1pu5Gp6RDYU+RpLLx+giNMxbg49TqTd0sXbWF7t09JNC9u4elq7ZYhLcCe4oklY3XR2icsQAfp5av3UrPvt4DYj37elm+dmuDMtIhs6dIUtn0XR8x4dXFttdHqOQswMepHbt7RhRXE7GnSFIZzV4IU0+DN74TPv6wxbeaQ42mx/QizINYvamb5Wu3smN3D1M62lk8fyYL5nQ2Oq0xm9LRTvcgxfaUjvZB9lZT6fujtO6aYtjJxKlF8e0fK0mt7pI7G52B9LKhpseEMf/NtQAfRt846b6hGn3jpIGWL8IXz595QNsA2tsmsHj+zAZmpUPmTBqSJNXWcJMejPFvsENQhlHmcdIL5nRy7QUn09nRTgCdHe1ce8HJLf/BQlLjRMQ5EbE1IrZFxJIh9jk7Ih6KiEci4h/rnaMkHbIaTnpgD/gwyj5OesGcTgtuSVUREROAzwPvAbqA9RGxJjMf7bdPB/AF4JzMfCoijm5IspJ0KCZOLYadDBYfI3vAhzHUeGjHSbcG5zmX6up0YFtmPp6Ze4HbgfMH7PMbwKrMfAogM3fWOUdJOnQ1nPTAAnwYi+fPpL1twgExx0m3Buc5l+quE+jfVdRVifX3FuD1EfGtiNgYER8a7EARsSgiNkTEhl27dtUoXUk6iBpOj+kQlGH0Dc8o4ywoZTfc+H3fv+ZW1pmHxoEYJJYDtg8DTgXmAe3AfRHxvcz8/gFPylwBrACYO3fuwGNIUv3MXggbbynuV3GWHgvwg3CcdGsq+/j9sirzzEPjQBcwrd/2VGDHIPs8l5k/BX4aEd8G3gZ8H0kaRxyColIq+/j9so5vL/PMQ33K+t4B64ETIuL4iDgcuAhYM2CfrwG/EBGHRcRrgDOAx+qcpyQ1nAW4SqnM4/fLPL697N9clPm9y8wXgcuBtRRF9crMfCQiPhoRH63s8xjwTWAz8ADwpcx8uFE5S1KjtHwBfijzzmr8KfM852XuJS77Nxdlfu8AMvOuzHxLZr4pMz9did2QmTf022d5Zp6YmbMy87MNS1aSGqilx4AfyryzGr/KOn6/zL3EZV+htczvnSSVVhUvvuzT6j3ghzLvrFQqZe4lLvM3F1Du906SdOhaugecweedPWPgThGxCFgEMH369PpkJtVI2XuJy/rNBZT/vZMkHZpWL8APZd5Z55RVqTg/fevyvZMkAURm69ajEXEmcHVmzq9sLwXIzGuHec4u4MlRvNwk4LnR5NkCytw2KHf7bFvrGk373piZk2uRTLPynD2oMrcNyt2+MrcNyt2+0bZt0PN2qxfgh1Es4DAP6KaYh/Y3MvORGrzWhsycW+3jNoMytw3K3T7b1rrK3r5GK/O/b5nbBuVuX5nbBuVuX7Xb1tJDUDLzxYjom3d2AvDlWhTfkiRJUrW0dAEOxbyzwF2NzkOSJEk6FK0+DWE9rWh0AjVU5rZBudtn21pX2dvXaGX+9y1z26Dc7Stz26Dc7atq21p6DLgkSZLUauwBlyRJkurIAlySJEmqIwtwSZIkqY4swCVJkqQ6sgCXJEmS6sgCXJIkSaojC3BJkiSpjizAJUmSpDqyAJckSZLqyAJckiRJqiMLcEmSJKmOLMAlSZKkOrIAlyRJkurosEYnUG+TJk3KGTNmNDoNSRqxjRs3PpeZkxudRz15zpbUyoY6b4+7AnzGjBls2LCh0WmoHjavhHXXwJ4umDgV5l0Jsxc2Oitp1CLiyUbnUG+esyW1sqHO2+OuANc4sXklfP0K2NdTbO/ZXmyDRbgkSWoox4CrnNZd83Lx3WdfTxGXJElqIAtwldOerpHFJUnSqF14431ceON9jU6jZViAq5wmTh1ZXJIkqU4swFVO866EtvYDY23tRVySJKmBmq4Aj4gJEbEpIv6usn1URNwdET+o3L6+375LI2JbRGyNiPmNy1pNZ/ZCOPd6mDgNiOL23Ou9AFOSJDVcM86C8vvAY8DrKttLgHWZuSwillS2PxERJwIXAScBU4C/j4i3ZGZvI5JWE5q90IJbkiQ1nabqAY+IqcD7gS/1C58P3FK5fwuwoF/89sx8ITOfALYBp9cpVUmSJGlUmqoABz4L/BGwv1/smMx8GqBye3Ql3gls77dfVyX2ChGxKCI2RMSGXbt2VT1pSRrvIuLLEbEzIh4e4vGIiOsrwwY3R8Qp9c5RzW39mht55uo3s/+qiTxz9ZtZv+bGRqck1UzTFOAR8SvAzszceKhPGSSWg+2YmSsyc25mzp08eVyt4ixJ9XIzcM4wj78POKHyswj4Yh1yUotYv+ZGZm38JMeyi1cFHMsuZm38pEW4SqtpCnDgLOC8iPghcDvw7oj4a+DZiDgOoHK7s7J/FzCt3/OnAjvql64kqU9mfht4fphdzgduzcL3gI6+c7s07cHltMfeA2LtsZdpDy5vUEZSbTVNAZ6ZSzNzambOoLi48p7M/A/AGuDiym4XA1+r3F8DXBQRr46I4yl6VR6oc9qSpEPjsEEN6egc/H0+Op+rcyZSfTRNAT6MZcB7IuIHwHsq22TmI8BK4FHgm8BlzoAiSU3LYYMa0s4Y/H3eGZPqnEntuFKk+mvKAjwzv5WZv1K5/6PMnJeZJ1Run++336cz802ZOTMzv9G4jCVJB+GwQQ1p+ymL6cnDD4j15OFsP2VxgzKSaqspC3BJUumsAT5UmQ3lHcCevhmupNPOu5SHT/0UzzCZ/Rk8w2QePvVTnHbepY1OTaqJZlyIR5LUYiLiK8DZwKSI6AKuAtoAMvMG4C7glynWbPg34JLGZKpmddp5l0Kl4D628iOVlQW4JGnMMvODB3k8gcvqlI7UVFZv6mbTU7vZ27ufs5bdw+L5M1kwZ9BrkDVOOARFkiSpRlZv6mbpqi3s7S3WGOze3cPSVVtYvam7wZnpUNXiAloLcEmSpBpZvnYrPfsOnKStZ18vy9dubVBGGom+by/uf+J5zlp2T9U+OFmAS5Ik1ciO3T0jiqt51PLbCwtwSZKkGpnS0T6iuJpHLb+9sACXJEmqkcXzZ9LeNuGAWHvbBBbPn9mgjHSoavnthQW4JElSjSyY08m1F5zM4ROKkquzo51rLzjZWVBaQC2/vahZAR4Rx0TEX0XENyrbJ0bER2r1epIkSc1owZxO5kzv4Izjj+K7S95t8d0iavntRS17wG8G1gJTKtvfBz5Ww9eTJEmSqqLv24vOjnaC6n57UcuFeCZl5sqIWAqQmS9GRO/BniRJkiQ1gwVzOmvyjUUtC/CfRsQbgASIiHcAe2r4epIklVrfYiBfvfTMBmeikfI9a2E3vb+4veTOqh2ylkNQ/gBYA7wpIr4L3ApcUcPXkyRJUp3VarGaMqtlD/gjwLuAmUAAW3HWFUmSpNIYarEawItNh1HLgvi+zHwxMx/JzIczcx9wXw1fT5IkSXVUy8VqyqzqPeARcSzQCbRHxByK3m+A1wGvqfbrSZI0HvR9zb+3dz9nLbuHxfNn2sOohqvlYjVlVoshKPOBDwNTgc/0i/8Y+OMavJ4kSaXm1/xqVlM62ukepNiuxmI1ZVb1AjwzbwFuiYhfy8y/qfbxpUO1elM3y9duZcfuHqZ0tNtbJKllDfc1v+c1NdLi+TNZumrLAb+f1VqspsxqOQb8zyJieUS8tYavIQ2qr7eoe3cPycu9RV6ZLakV+TW/mlXfYjWHTyhKymouVtMUNq+ErvXw5L1w3axiuwpqWYDPplj98q8i4nsRsSgiXlfD15Ne4kUhkspkqK/z/ZpfzWDBnE7mTO/gjOOP4rtL3l2u4vvrV0DvC8X2nu3FdhWK8JoV4Jn5k8z875n574E/Aq4Cno6IWyLizbV6XQnsLZJULovnz6S9bcIBMb/ml2ps3TWwb0DdsK+niI9RzQrwiJgQEedFxN8CfwH8OfDvgK8Dd9XqdSWwt0hSuZT+a36pGe3pGll8BGo5BOUHwPnA8syck5mfycxnM/MO4Js1fN3q2ryyGPNzdUdVx/6otuwtkuovIs6JiK0RsS0ilgzy+MSI+HpE/FNEPBIRl9QijwtvvO+lJdvLpLRf80vNauLUkcVHoJYrYc7OzH8d7IHMbI0l6fvG/vR9/dA39gdg9sLG5aWD6vvD5CwoUn1ExATg88B7gC5gfUSsycxH++12GfBoZp4bEZOBrRFxW2bubUDKkjS8eVceWAcCtLUX8TGqZQH++Yj4/czcDRARrwf+PDN/u4avWV3Djf2xAG96C+Z0WnBL9XM6sC0zHweIiNspvgXtX4AncGREBPBa4HngxXonKkmHpK/W+9rlxYWYE6cVxXcVasBa94Dv7tvIzH+prIzZOmo49qcpbF5ZfJjY01V8nVKlXypJ41InsL3fdhdwxoB9PgesAXYARwIXZub+gQeKiEXAIoDp06fXJFlJOiSzF8LGW4r7l9xZtcPWsgB/VUS8PjP/BSAijqrx61XfxKnFsJPB4q3O4TWSqisGieWA7fnAQ8C7gTcBd0fEdzLzxwc8KXMFsAJg7ty5A48xrn310jMbnYKkKqjlRZh/DvyfiPjTiPhT4P8A/62Gr1d9864sxvr0V6WxPw1Xw6l1JI1LXcC0fttTKXq6+7sEWJWFbcATwM/XKT9Jaho165HOzFsjYgNFTwfABQMuxml+fT3BZRymUfbhNZLqbT1wQkQcD3QDFwG/MWCfp4B5wHci4hhgJvB4NZNYvambTU/tZm/vfs5ado8XX0t1cuWPFlfu3dvQPFpFrYeEtFF8LZmV+61n9sJyFNwDlXl4jdTMSnrtRWa+GBGXA2uBCcCXM/ORiPho5fEbgD8Fbo6ILRR/Gz6Rmc9VK4fVm7pZumoLe3uLYeXdu3tYumoLgEW4pKZSy4V4fh+4DZgEHA38dUT8Xq1eTyNU5uE1UrPqu/Ziz3Ygq7qscTPIzLsy8y2Z+abM/HQldkOl+CYzd2TmezPz5MyclZl/Xc3XX752Kz37eg+I9ezrZfnardV8GUkas1r2gH8EOCMzfwoQEf8VuA/4yxq+pg5VmYfXqLWVtIcYcGrTGtuxu2dEcUk6JFWc/aRPLQvwAPp3RfQy+FXyapSyDq9R6yr77Dxee1FTUzra6R6k2J7S0T7I3lKd3fT+4rYGxVzDbV7JCXv/mTb2FauGl6njpEZqOQvKTcD9EXF1RFwNfA/4qxq+nqRWV/bZeWq4rLFg8fyZtLdNOCDW3jaBxfNnNigjaRyodJwczr6il7VkQ+tqpWYFeGZ+BvhtipXO/gW4JDM/W6vXk1QCZe8h9tqLmlowp5NrLziZwycUf9o6O9q59oKTvQBTqqWyd5zUSK1nQXkIeLrvdSJiemY+NdTOETENuBU4FtgPrMjMv6gs4vNVYAbwQ2BhvwV+llKMN+8FrsjMtbVqjKQaK/vsPF57UXML5nTylQeKPzMuWiPVQdk7TmqkZgV4ZcaTq4BneXn8dwKzh3nai8AfZuaDEXEksDEi7gY+DKzLzGURsQRYAnwiIk6kmGv2JGAK8PcR8ZbM7B3i+JKa2bwrDxwDDuXrIfbaC0llUvaOkxqp5Rjw3wdmZuZJmTm7Mu3UcMU3mfl0Zj5Yuf8T4DGgEzgfuKWy2y3Agsr984HbM/OFzHwC2AacXv2mSKqL2Qvh3Oth4jQgittzr7dglaRm5dC6UanlEJTtwJ7RPjkiZgBzgPuBYzLzaSiK9Ig4urJbJ8XFnX26KjFJrcoeYklls3kldK2H3hfKN0tIpR17V/0ubewjJk4rV/tqpJYF+OPAtyLiTuCFvmDl4sxhRcRrgb8BPpaZP44YcvbCwR7IQY63CFgEMH369INnLklqWY79VlPpm161t1IKlW16VYDZC/nB310PwEkfdyn6Q1HLIShPAXcDhwNH9vsZVkS0URTft2Xmqkr42Yg4rvL4ccDOSrwLmNbv6VOBHQOPmZkrMnNuZs6dPHnyKJsjNZHNK4telKs7ilune5Kk5uQsIRpEzXrAM/NPACoXU2Zm/uvBnhNFV/dfAY8N6ClfA1wMLKvcfq1f/H9GxGcoLsI8AXigao2QmlHZF6uRpDIZJ7OEXPOG5UAxZZ0OrmY94BExKyI2AQ8Dj0TExog46SBPOwv4LeDdEfFQ5eeXKQrv90TED4D3VLbJzEeAlcCjwDeBy5wBRaVnb4o0ft30/pdXVFRrcAEuDaKWY8BXAH+Qmf8AEBFnA/8d+PdDPSEz72Xo5ernDfGcTwOfHkuiUksZJ70pklQK42F6Vbz2YqRqOQb85/qKb4DM/BbwczV8PWl8sDdFklpH3/SqE15dbDu9qqhtAf54RPx/ETGj8vNJ4Ikavp40PjjnqjQ+9U1l9+S9XnzdamYvhKmnwRvfCR9/2OJbNS3AfxuYTDGjySpgEsWKlpLGwsVqpPFnqKnsLMKlllTLMeBvopgi8FWV15kHvJvhl6KXdChcrEYaX4a7+NpzgdRyalmA3wb8J4pZUPbX8HUkSSo3L76WSqWWBfiuzPx6DY8vSdL4MHFqMexksLikllPLMeBXRcSXIuKDEXFB308NX68mVm/q5qxl93D8kjs5a9k9rN7U3eiUJKkpRcQ5EbE1IrZFxJIh9jm7ssbDIxHxj/XOsWV58bVUKrXsAb8E+HmgjZeHoCTFBZktYfWmbpau2kLPvmJtn+7dPSxdtQWABXM6G5maJDWViJgAfJ5isbQuYH1ErMnMR/vt0wF8ATgnM5+KiKMbkmwr6hvn/bXLiwsxJ04rim/Hf7eOS+5sdAZqIrUswN+WmSfX8Pg1t3zt1peK7z49+3pZvnarBbgkHeh0YFtmPg4QEbcD51OsVNznN4BVmfkUQGburHuWrWz2Qth4S3HfYk5qabUswL8XESf27/1oNTt294wo3mpWb+pm+dqt7Njdw5SOdhbPn+kHC0mj1Qn0H6TcBZwxYJ+3AG0R8S3gSOAvMvPWgQeKiEXAIoDp06fXJFlJaqRaFuDvBC6OiCeAFyiWmM/MbJlpCKd0tNM9SLE9paN9kL1bi8NrJFVZDBLLAduHAadSTEvbDtwXEd/LzO8f8KTMFcAKgLlz5w48xvhmz7dUCrW8CPMc4ATgvcC5wK9UblvG4vkzaW+bcECsvW0Ci+fPbFBG1TPc8BpJGoUuirUf+kwFdgyyzzcz86eZ+RzwbeBtdcpPkppGzXrAM/PJWh27Xvp6gss4TKPsw2sk1d164ISIOB7oBi6iGPPd39eAz0XEYcDhFENUrqtrlpLUBGo5BKUUFszpLEXBPVCZh9dIqr/MfDEiLgfWAhOAL2fmIxHx0crjN2TmYxHxTWAzxexYX8rMh6uezE3vL24driGpSVmAj1OL5888YAw4lGd4jaTGyMy7gLsGxG4YsL0cWF7PvCSp2ViAj1NlHl4jSZLUzCzAx7GyDq+RJElqZrWcBUWSJEnSAPaAS2oqZV8gquzta7jNK6FrfbFc+3WzXK5dUlOyAJfUNMq+QFTZ29dwm1fC168oim+APduLbbAIl9RUHIIiqWmUfYGosrev4dZdA/sGTK+6r6eIS1ITsQCX1DTKvkBU2dvXcHu6RhaXpAaxAJfUNIZaCKosC0SVvX0NN3HqyOKS1CAW4JKaxuL5M2lvm3BArEwLRJW9fQ0370poG/Bhpq29iEtSE/EiTElNo+wLRJW9fQ3Xd6Hl1y4vLsScOM1ZUCQ1JQtwqQWVeSq7si8QVfb2NdzshbDxluL+JXc2NhdJGoIFuNRinMpOkqTW5hhwqcU4lZ0kSa3NHnCpxTiVnXQQDj2R1OTsAZdajFPZSZLU2izApRbjVHaSJLU2h6BILcap7CRJam2RmY3Ooa4iYhfw5CieOgl4rsrpNIsytw3K3T7b1rpG0743ZubkWiTTrDxnD6rMbYNyt6/MbYNyt2+0bRv0vD3uCvDRiogNmTm30XnUQpnbBuVun21rXWVvX6OV+d+3zG2DcrevzG2Dcrev2m1zDLgkSZJURxbgkiRJUh1ZgB+6FY1OoIbK3DYod/tsW+sqe/sarcz/vmVuG5S7fWVuG5S7fVVtm2PAJUmSpDqyB1ySJEmqIwtwSZIkqY4swCVJkqQ6sgCXJEmS6sgCXJIkSaojC3BJkiSpjizAJUmSpDqyAJckSZLqyAJckiRJqiMLcEmSJKmOLMAlSZKkOrIAlyRJkurIAlySJEmqo8ManUC9TZo0KWfMmNHoNCRpxDZu3PhcZk5udB715DlbUisb6rw97grwGTNmsGHDhkanIY3J6k3dLF+7lR27e5jS0c7i+TNZMKez0WmpxiLiyUbnUG+es1UG69fcyLQHl3N07mJnTGb7KYs57bxLG52W6mCo8/a4K8ClVrd6UzdLV22hZ18vAN27e1i6aguARbgkNZn1a25k1sZP0h57IeBYdjFx4ydZDxbh45hjwKUWs3zt1peK7z49+3pZvnZrgzKSJA1l2oPLi+K7n/bYy7QHlzcoIzUDC3CpxezY3TOiuCSpcY7OXUPEn6tzJmomDkE5iDKPtS1z26C87ZvS0U73IMX2lI72BmRTfWV93ySNTztjMsfyyiJ8Z0zi2Abko+ZgD/gw+sbadu/uIXl5rO3qTd2NTm3Mytw2KHf7Fs+fSXvbhANi7W0TWDx/ZoMyqp4yv2+SxqftpyymJw8/INaTh7P9lMUNykjNwAJ8GGUea1vmtkG527dgTifXXnAynR3tBNDZ0c61F5xcil7iMr9vksan0867lIdP/RTPMJn9GTzDZB4+9VNegDnOOQRlGGUea1vmtkH527dgTmcpCu6Byv6+SRqfTjvvUqgU3MdWfjS+2QM+jKHG1JZhrG2Z2wblb19Z+b5JksYDC/BhlHmsbZnbBuVvX1n5vkmSxgOHoAyj7yv+Ms7IUOa2QfnbV1a+b5Kk8SAys9E51NXcuXPTZY0ltaKI2JiZcxudRz15zpbUyoY6bzsERZIkSaojC3BJkiSpjizAJUlSU7jwxvu48Mb7Gp2GVHMW4JIkSVIdWYBLkiRJddQSBXhEHBERD0TEP0XEIxHxJ5X4URFxd0T8oHL7+kbnKkmSJA2nJQpw4AXg3Zn5NuDtwDkR8Q5gCbAuM08A1lW2JUmSpOq46f3FTxW1RAGehX+tbLZVfhI4H7ilEr8FWFD/7CRJkqRD1xIFOEBETIiIh4CdwN2ZeT9wTGY+DVC5PXqI5y6KiA0RsWHXrl11y1mSJEmt7ZGn9/DI03uqesyWKcAzszcz3w5MBU6PiFkjeO6KzJybmXMnT55csxwlSZKkg2mZArxPZu4GvgWcAzwbEccBVG53Ni4zSdKhiIhzImJrRGyLCK/dkTTutEQBHhGTI6Kjcr8d+CXgn4E1wMWV3S4GvtaQBCVJhyQiJgCfB94HnAh8MCJObGxWagarN3Wz6and3P/E85y17B5Wb+pudEpSzRzW6AQO0XHALZUT96uAlZn5dxFxH7AyIj4CPAV8oJFJSpIO6nRgW2Y+DhARt1NcUP9oQ7NSQ63e1M3SVVvY27sfgO7dPSxdtQWABXM6G5maVBMtUYBn5mZgziDxHwHz6p+RJGmUOoHt/ba7gDMalIuaxPK1W+nZ13tArGdfL8vXbrUAVym1xBAUSVJpxCCxPGAHZ64ad3bs7hlRXM3nkf/yTh75L+9sdBotwwJcklRPXcC0fttTgR39d3DmqvFnSkf7iOJSq7MAlyTV03rghIg4PiIOBy6iuKC+ai688T4uvPG+ah5SNbZ4/kza2yYcEGtvm8Di+TMblJFGYvWmbj78k9/lV368pHQX0K5fcyNHvdDNW1/YwjNXv5n1a26synFbYgy4JKkcMvPFiLgcWAtMAL6cmY80OC01WN8470+v/Eeey9cxpeM1LJ4/0/HfLWD1pm7u/dsv8LdttzMlnmPHv03is397EfC7Lf/+rV9zI7M2fpL22AvAsexi4sZPsh447bxLx3RsC3BJUl1l5l3AXY3OQ81lwZxOTvjGFwA4acm9Dc5Gh+qhO1dwTazgNZUidWo8xzW5gv9252EsmPMnDc5ubKY9uPyl4rtPe+xl2oPLYYwFuENQJEmSNCr/ce9fv1R893lN7OU/7v3rBmVUPUfn4BeBH53PjfnYFuCSJEkalSmv+tGI4q1kZwx+EfjOmDTmY1uAS5JKo+yrKXqBqZrNz9qPHVG8lWw/ZTE9efgBsZ48nO2nLB7zsS3AJUmlMNRqimUrwqVm8pr3XcOLE444IPbihCN4zfuuaVBG1XPaeZfy8Kmf4uk8iv0JzzCZh0/91JgvwAQLcElSSQy3mqKkGpm9kMPO/0v20lasqDVxGoed/5cwe2GjM6uK0867lOdf3cljrz6ZY6/eVpXiG5wFRZJUEq6mKDXI7IUcvvGW4v4ldzY2lxZhD7gkqRTKvppi2ce3S+OJPeCSpFJYPH8mS1dtOWAYSllWUxxqfDvQ8oud9HfScRMbnYJGy57vEbEHXJJUCgvmdHLtBSdz+ITiT1tnRzvXXnByKQrUcTG+ffNK6FoPT94L180qtqWSsgdcklQaC+Z08pUHngLgq5ee2eBsqqf049s3r4SvXwG9LxTbe7YX21Cai/mk/uwBlySpyZV9fDvrroF9Az5M7Osp4lIJWYBLktTkFs+fSXvbhANiZRnfDsCerpHFpTo66biJVb8+wQJckqQm1ze+fXLsIchSjW8HYOLUkcWlFucYcEmSWsCCOZ2c8I0vAHDSknsbnE2VzbuyGPPdfxhKW3sRl0qooQV4REwCfpSZ2cg8JEnlUaaLL8eNvgstv3Z5cSHmxGlF8e0FmGoGNZhisW4FeES8A1gGPA/8KfA/gEnAqyLiQ5n5zXrlIklSKyr1PNmzF4KrKWqcqGcP+OeAPwYmAvcA78vM70XEzwNfASzAJUmSVHr1vAjzsMz835n5v4BnMvN7AJn5z3XMQZIkSWqoehbg+/vdH7hygGPAJUkajitFSqVRzyEob4uIHwMBtFfuU9k+oo55SJLUWlwpUiqVuvWAZ+aEzHxdZh6ZmYdV7vdttw333IiYFhH/EBGPRcQjEfH7lfhREXF3RPygcvv6qie+eWXR03B1R/l6HMrcNih3+2xb6yp7+1QbrhQplUqrzAP+IvCHmflgRBwJbIyIu4EPA+syc1lELAGWAJ+o2qv29Tj0nfTK1ONQ5rZBudtn21pX2dun2nGlSKlUWmIlzMx8OjMfrNz/CfAY0AmcD1TmLOIWYEFVX7jMPQ5lbhuUu322rXWVvX2qHVeKlEqlJQrw/iJiBjAHuB84JjOfhqJIB44e4jmLImJDRGzYtWvXob9YmXscytw2KHf7bFvrKnv7VDvzrixWhuzPlSKlltVSBXhEvBb4G+Bjmfnjg+3fJzNXZObczJw7efLkQ3/BMvc4lLltUO722bbWVfb2qXZmL4Rzr4cJry62J04rth26JLWklinAI6KNovi+LTNXVcLPRsRxlcePA3ZW9UXL3ONQ5rZBudtn21pX2dun2pq9EKaeBm98J3z84XIW35fc6SqYGhdaogCPiAD+CngsMz/T76E1wMWV+xcDX6vqC/f1OEycBkS5ehzK3DYod/tsW+sqe/skSYckMpt/DZyIeCfwHWALLy/o88cU48BXAtOBp4APZObzwx1r7ty5uWHDhhpmK0m1EREbM3Nuo/OoJ8/ZA9z0/uLWXmKpJQx13m6JaQgz816KBXsGM6+euUiSmpxFqqQm1xJDUCRJkqSysACXJEmS6sgCXJIkSaqjlhgDLkmScFy7VBL2gEuSJEl1ZAEuSZIk1ZEFuCRJklRHFuCSpLqIiOUR8c8RsTki/jYiOhqdkyQ1ggW4JKle7gZmZeZs4PvA0gbnI0kNYQEuSaqLzPzfmfliZfN7wNRG5iNJjWIBLklqhN8GvtHoJCSpESzAJUlVExF/HxEPD/Jzfr99/jPwInDbEMdYFBEbImLDrl27RpbA5pXQtR6evBeum1VsS1KTcSEeSVLVZOYvDfd4RFwM/AowLzNziGOsAFYAzJ07d9B9BrV5JXz9Cuh9odjes73YBpi98JAPI0m1Zg+4JKkuIuIc4BPAeZn5b1V/gXXXwL6eA2P7eoq4JDURC3BJUr18DjgSuDsiHoqIG6p69D1dI4tLUoM4BEWSVBeZ+eaavsDEqcWwk8HiktRE7AGXJJXDvCuhrf3AWFt7EZekJmIBLkkqh9kL4dzrYcKri+2J04ptL8CU1GQcgiJJKo/ZC2HjLcX9S+5sbC6SNAR7wCVJkqQ6sgCXJEmS6sgCXJIkSaojC3BJkiSpjizAJUmSpDqyAJckSZLqqCWmIYyILwO/AuzMzFmV2FHAV4EZwA+BhZn5L43KUZIOxepN3Sxfu5Udu3uY0tHO4vkzWTCns9FpSZLqqFV6wG8GzhkQWwKsy8wTgHWVbUlqWqs3dbN01Ra6d/eQQPfuHpau2sLqTd2NTk2SVEctUYBn5reB5weEzwcqqy1wC7CgnjlJ0kgtX7uVnn29B8R69vWyfO3WBmUkSWqElhiCMoRjMvNpgMx8OiKOHmrHiFgELAKYPn16ndKTpAPt2N0zorhGyRUwJTW5lugBH6vMXJGZczNz7uTJkxudjqRxakpH+4jikqRyauUC/NmIOA6gcruzwflI0rAWz59Je9uEA2LtbRNYPH9mgzKSJDVCKxfga4CLK/cvBr7WwFwk6aAWzOnk2gtOprOjnQA6O9q59oKTnQVFksaZyMxG53BQEfEV4GxgEvAscBWwGlgJTAeeAj6QmQMv1BzsWLuAJ0eRxiTguVE8rxWUuW1Q7vbZttY1mva9MTPH1Tg6z9mDKnPboNztK3PboNztG23bBj1vt0QB3gwiYkNmzm10HrVQ5rZBudtn21pX2dvXaGX+9y1z26Dc7Stz26Dc7at221p5CIokSZLUcizAJUmSpDqyAD90KxqdQA2VuW1Q7vbZttZV9vY1Wpn/fcvcNih3+8rcNih3+6raNseAS5IkSXVkD7gkSZJURxbgkiRJUh1ZgEuSJEl1ZAEuSZIk1ZEFuCRJklRHFuCSJElSHVmAS5IkSXVkAS5JkiTVkQW4JEmSVEcW4JIkSVIdNaQAj4gvR8TOiHi4X+yoiLg7In5QuX19v8eWRsS2iNgaEfP7xU+NiC2Vx66PiKh3WyRJkqSRaFQP+M3AOQNiS4B1mXkCsK6yTUScCFwEnFR5zhciYkLlOV8EFgEnVH4GHlOSJElqKg0pwDPz28DzA8LnA7dU7t8CLOgXvz0zX8jMJ4BtwOkRcRzwusy8LzMTuLXfcyRJkqSmdFijE+jnmMx8GiAzn46IoyvxTuB7/fbrqsT2Ve4PjL9CRCyi6Cnn537u5079+Z//+SqnLkm1t3Hjxucyc3Kj86inSZMm5YwZMxqdhiSNylDn7WYqwIcy2LjuHCb+ymDmCmAFwNy5c3PDhg3Vy05SdW1eCeuugT1dMHEqzLsSZi9sdFZNISKebHQO9TZjxgw8Z0tqVUOdt5upAH82Io6r9H4fB+ysxLuAaf32mwrsqMSnDhKX1Ko2r4SvXwH7eortPduLbbAIlySVRjNNQ7gGuLhy/2Lga/3iF0XEqyPieIqLLR+oDFf5SUS8ozL7yYf6PUdSK1p3zcvFd599PUVckqSSaEgPeER8BTgbmBQRXcBVwDJgZUR8BHgK+ABAZj4SESuBR4EXgcsys7dyqN+hmFGlHfhG5UdSq9rTNbK4JEk1duGN9wHw1UvPrNoxG1KAZ+YHh3ho3hD7fxr49CDxDcCsKqYmqZEmTi2GnQwWlySpJJppCIqk8W7eldDWfmCsrb2IS5JUEhbgkprH7IVw7vUwcRoQxe2513sBpiSpVJppFhRJKoptC25JUonZAy5JkiTVkQW4JEmSVEcW4JKkMYuIL0fEzoh4eIjHIyKuj4htEbE5Ik6pd46SamP9mht55uo3s/+qiTxz9ZtZv+bGRqfU9CzAJUnVcDNwzjCPv49iIbUTgEXAF+uQk6QaW7/mRmZt/CTHsotXBRzLLmZt/KRF+EFYgEuSxiwzvw08P8wu5wO3ZuF7QEdEHFef7CTVyrQHl9Meew+Itcdepj24vEEZtQYLcElSPXQC/VdZ6qrEXiEiFkXEhojYsGvXrrokJ2l0js7B/48enc/VOZPWYgEuSaqHGCSWg+2YmSsyc25mzp08eXKN05I0Fjtj8P+jO2NSnTNpLRbgkqR66AKm9dueCuxoUC6SqmT7KYvpycMPiPXk4Ww/ZXGDMmoNLsQjSaqHNcDlEXE7cAawJzOfbnBOLWX1pm7+6I7N7O3dT2dHO4vnz2TBnEFH8bSsC2+8D4CvXnpmgzPRoTrtvEtZTzEW/Oh8jp0xie2nLua08y5tdGpNzQJ8PNu8EtZdA3u6YOJUmHelKxBKGpWI+ApwNjApIrqAq4A2gMy8AbgL+GVgG/BvwCW1yqWMRdzqTd0sXbWFvb37Aeje3cPSVVsASlOEr97UzaandrO3dz9nLbunlB8wyuq08y6FSsF9bOVHw7MAH682r4SvXwH7eortPduLbbAIlzRimfnBgzyewGW1zqOsRdzytVvp2dd7QKxnXy/L124tRfvGwwcMqT/HgI9X6655ufjus6+niEtSCxqqiFu9qbvBmY3djt09I4q3muE+YEhlZAE+Xu3pGllckppcmYu4KR3tI4q3mrJ/wJAGsgAfryZOHVlckppcmYu4xfNn0t424YBYe9sEFs+f2aCMqqvsHzCkgSzAx6t5V0LbgBNbW3sRl6QWVOYibsGcTq694GQ6O9oJoLOjnWsvOLk046PL/gFDGsiLMMervgstnQVFUkksnj+Tpau2HDAMpUxF3II5naUpuAfqa1fZp1mU+liAj2ezF1pwSyoNi7jWVuYPGNJAFuCSpNKwiJPUChwDLkmSJNWRBbgkSZJURxbgkiRJUh1ZgEuSJEl1ZAEuSZIk1ZEFuCRJklRHFuCSJElSHVmAS5IkSXVkAS5JkiQNYvWmbjY9tZv7n3ies5bdw+pN3VU5rgW4JEmSNMDqTd0sXbWFvb37Aeje3cPSVVuqUoRbgEuSJEkDLF+7lZ59vQfEevb1snzt1jEf2wJckiRJGmDH7p4RxUfCAlySJEkaYEpH+4jiI2EBfjCbV8J1s+DqjuJ288pGZyRJkqQaWzx/Ju1tEw6ItbdNYPH8mWM+9mFjPsIgIuLwzNxbi2PX1eaV8PUrYF/lq4Y924ttgNkLG5eXJEmSamrBnE4A/uiOzezt3U9nRzuL5898KT4Wo+4Bj4j/b4j4ROB/jzqjZrLumpeL7z77eoq4JEmSSm3BnE7mTO/gjOOP4rtL3l2V4hvGNgTlFyLi0/0DEXEs8G3gntEeNCJ+GBFbIuKhiNhQiR0VEXdHxA8qt6/vt//SiNgWEVsjYv5oX3dQe7pGFpckSZIOYiwF+HnA2yLiMwARcQJwL/CFzBxrF/EvZubbM3NuZXsJsC4zTwDWVbaJiBOBi4CTgHOAL0TEhMEOOCoTp44sLknjWEScU+kM2RYRSwZ5fGJEfD0i/ikiHomISxqRpyQ12qgL8Mz8GfCrwBsj4nbg74HFmXljtZLr53zglsr9W4AF/eK3Z+YLmfkEsA04vWqvOu9KaBtwpWtbexGXJL2k0vnxeeB9wInAByudJP1dBjyamW8Dzgb+PCIOr2uiktQExjIG/A+A3wMeAN4DbAKOj4g/qDw2Wgn874jYGBGLKrFjMvNpgMrt0ZV4J7C933O7KrGBuS6KiA0RsWHXrl2HnsnshXDu9TBxGhDF7bnXewGmJL3S6cC2zHy8chH+7RSdJP0lcGREBPBa4HngxfqmKUmNN5ZZUI7sd//6QWKjdVZm7oiIo4G7I+Kfh9k3BonlKwKZK4AVAHPnzn3F48OavdCCW5IObrAOkTMG7PM5YA2wg+LvxYWZuX/ggSqdL4sApk+fXpNkW9ZN7y9uL7mzsXlIGpNRF+CZ+SfVTKTfcXdUbndGxN9S9Ko8GxHHZebTEXEcsLOyexcwrd/Tp1Kc2CVJ9XUoHSLzgYeAdwNvouhk+U5m/viAJ42l06TMNq+ErvXQ+0KxLsW8K+0gkurgyh8trty7t2rHHHUBHhHDDYTOzPzTURzz54BXZeZPKvffC1xD0WNyMbCscvu1ylPWAP+zciHoFOAEiiExkqT6OpQOkUuAZZmZwLaIeAL4eTxvH1zfuhS9LxTbrkshtbSxzILy00F+AD4CfGKUxzwGuDci/onihHxnZn6TovB+T0T8gGK8+TKAzHwEWAk8CnwTuCwze0f52pKk0VsPnBARx1curLyIopOkv6eAeQARcQwwE3i8rlm2KtelkEplLENQ/rzvfkQcCfw+Re/G7cCfD/W8gxzzceBtg8R/ROWkPchjnwY+PdhjkqT6yMwXI+JyYC0wAfhyZj4SER+tPH4D8KfAzRGxhWLIyicy87mGJd1KXJdCKpUxLUUfEUcBfwD8JsX0gKdk5r9UIzFJUmvJzLuAuwbEbuh3fwfF0EKN1MSpxbCTweKSWs5YpiFcTvGV40+AkzPzaotvSZJqwHUppFIZyxjwP6S48PGTwI6I+HHl5ycR8eODPFeqvc0ri5kCru4objevbHRGkjQ6rkshlcpYxoCPpXiXaqtvxoC+i5acMUBSq3NdCqk0LKJVTs4YIEmSmpQFuMrJGQMkSVKTsgBXOQ01M4AzBkiSpEO1eSUn7P1nTty7parXk1mAq5ycMUCSJI1F5Xqyw9lHwMvXk1WhCLcAVzk5Y4AkqZnc9P7iR62jhteTjWkhHqmpOWOAJEkarRpeT2YPuCRJkjRQDa8nswCXJEmSBqrh9WQW4JIkSdJAlevJ9tJGQlWvJ3MMuCRJkjSY2Qv5wd9dD8BJH7+3aoe1B1ySJEmqIwtwSZIkqY4swCWpnjavLFZTu7qjqquqSZJah2PAJaleKquqvbSwQ9+qauCc9ZI0jtgDLkn1UsNV1SRJrcMCXJLqpYarqklqYptXQtd6ePJeh54JcAiKJNXPxKnFsJPB4pLKqW/oWe8LxbZDz1rOScdNrPox7QGXpHqp4apqUinc9P7ip0wceqZB2AMutaLNK4uT956uovd03pX2pLSCvvfI9662+gq4S+5sbB4SOPSsDGpwLrEAl1qNM2m0ttkLfZ+k8cShZxqEQ1CkVuPXmdLQvNhNzcahZxqEBbjUavw6U00qIs6JiK0RsS0ilgyxz9kR8VBEPBIR/1jVBIa62M0iXI00eyGcez1MeHWxPXFase03YeOaQ1CkVlPyrzNXb+pm+dqt7Njdw5SOdhbPn8mCOZ2NTksHERETgM8D7wG6gPURsSYzH+23TwfwBeCczHwqIo6uahLDfTtksdP8+r696H2h+PaiTNdHzF4IG28p7nttgrAHfFxbvambs5bdw/FL7uSsZfewelN3o1PSoSjx15mrN3WzdNUWunf3kED37h6Wrtri72ZrOB3YlpmPZ+Ze4Hbg/AH7/AawKjOfAsjMnVXNwG+HWpffXmicsQA/iLIWqeOh0Cnre/fS15kTpwFRqq8zl6/dSs++3gNiPft6Wb52a4My0gh0Av2/mumqxPp7C/D6iPhWRGyMiA8NdqCIWBQRGyJiw65duw49g6G+BSrJt0Ol5rUtGmccgjKMviK1ryDoK1KBlv9KfLhCp9XbBuV+74DSzqSxY3fPiOJqKjFILAdsHwacCswD2oH7IuJ7mfn9A56UuQJYATB37tyBxxjavCsPnCEISvPtUOn57YXGGXvAh1Hm3riyFzplfu/KbEpH+4jiaipdwLR+21OBHYPs883M/GlmPgd8G3hb1TLwYrfW5bcXGmcswIdR5iK17IVOmd+7Mls8fybtbRMOiLW3TWDx/JkNykgjsB44ISKOj4jDgYuANQP2+RrwCxFxWES8BjgDeKyqWcxeCFNPgze+Ez7+sMV3qyjxtS3SYCzAh1HmIrXshU6Z37syWzCnk2svOJnOjnYC6Oxo59oLTi7HsKGSy8wXgcuBtRRF9crMfCQiPhoRH63s8xjwTWAz8ADwpcx8uOrJXHKnM020Gr+90DjjGPBhLJ4/84BxxFCeIrWvoCnrdG9lfu+g3FP1LZjTWZq2jDeZeRdw14DYDQO2lwPL65mXWoRT9WkcsQAfRtmL1DIXOmV+70p/gWnJlfnDkyTp0FiAH0SZi9SyK+t7V/YZbMrMD0+SJCjBGPBDWfpYKhMvMG1dzs4jjWNem6B+WroH/FCWPpbKZkpHO92DFNteYNr8/PAkHYQFqsaJVu8BP5Slj6VSKfsMNmXm7DySJGj9AvxQlj6WSsWp+lqXH54kSdDiQ1A4tKWPiYhFwCKA6dOn1zonqebKeoFp2ZV5dh5J0qGLzFfUqy0jIs4Ers7M+ZXtpQCZee0wz9kFPDmKl5sEPDeaPFtAmdsG5W6fbWtdo2nfGzNzci2SaVaeswdV5rZBudtX5rZBuds32rYNet5u9QL8MOD7wDygm2Ip5N/IzEdq8FobMnNutY/bDMrcNih3+2xb6yp7+xqtzP++ZW4blLt9ZW4blLt91W5bSw9BycwXI6Jv6eMJwJdrUXxLkiRJ1dLSBTgMvvSxJEmS1KxafRaUelrR6ARqqMxtg3K3z7a1rrK3r9HK/O9b5rZBudtX5rZBudtX1ba19BhwSZIkqdXYAy5JkiTVkQW4JEmSVEcW4JIkSVIdWYBLkiRJdWQBLkmSJNWRBbgkSZJURxbgkiRJUh1ZgEuSJEl1ZAEuSZIk1ZEFuCRJklRHFuCSJElSHbVMAR4RHRFxR0T8c0Q8FhFnRsRREXF3RPygcvv6RucpSZIkDadlCnDgL4BvZubPA28DHgOWAOsy8wRgXWVbkiRJalqRmY3O4aAi4nXAPwH/LvslHBFbgbMz8+mIOA74VmbOHO5YkyZNyhkzZtQ0X0mqhY0bNz6XmZMbnUc9ec6W1MqGOm8f1ohkRuHfAbuAmyLibcBG4PeBYzLzaYBKEX70YE+OiEXAIoDp06ezYcOG+mQtSQOs3tTN8rVb2bG7hykd7SyeP5MFczoP6bkR8WSN02s6M2bM8JwtqWUNdd5ulSEohwGnAF/MzDnATxnBcJPMXJGZczNz7uTJ46rzSFITWb2pm6WrttC9u4cEunf3sHTVFlZv6m50apKkOmqVArwL6MrM+yvbd1AU5M9Whp5Qud3ZoPwk6aCWr91Kz77eA2I9+3pZvnZrgzKqnoj4ckTsjIiHh3g8IuL6iNgWEZsj4pR659jqVm/q5qxl93D8kjs5a9k9fnCT6mD9mht55uo3s/+qiTxz9ZtZv+bGqhy3JQrwzHwG2B4RfeO75wGPAmuAiyuxi4GvNSA9STokO3b3jCjeYm4Gzhnm8fcBJ1R+FgFfrFUiF954HxfeeF+tDt8Qfnsi1d/6NTcya+MnOZZdvCrgWHYxa+Mnq1KEt0QBXvF7wG0RsRl4O/BfgGXAeyLiB8B7KtuS1JSmdLSPKN5KMvPbwPPD7HI+cGsWvgd09H2DqYMr87cnUrOa9uBy2mPvAbH22Mu0B5eP+ditchEmmfkQMHeQh+bVORVJGpXF82eydNWWAwqp9rYJLJ4/7ORNZdEJbO+33VWJPT1wx4EXzqv0355ITeno3AUxWPy5MR+7lXrAJamlLZjTybUXnExnRzsBdHa0c+0FJx/yLCgtbpA/Yww6D64Xzr9Smb89kZrVzhj8/LMzJo352C3TAy5JZbBgTud4KbgH6gKm9dueCuxoUC4tZ5x/eyI1xPZTFjNx4ycPGIbSk4ez/dTFHDvGY9sDLkmqhzXAhyqzobwD2NO3joMObpx/eyI1xGnnXcrDp36KZ5jM/gyeYTIPn/opTjvv0jEf2x5wSdKYRcRXgLOBSRHRBVwFtAFk5g3AXcAvA9uAfwMuaUymrWscf3siNcxp510KlYL72MpPNViAS5LGLDM/eJDHE7isTulIUlNzCIokSZJURxbgkiRJUh1ZgEuSpKZQxlVMpcFYgEuSJEl1ZAEuSZIk1ZEFuCRJarjVm7rZ9NRu7n/iec5adg+rN3U3OiWpZizAJUlSQ63e1M3SVVvY27sfgO7dPSxdtcUiXKVlAS5JKg17UVvT8rVb6dnXe0CsZ18vy9dubVBGUm1ZgEuSSsFe1Na1Y3fPiOJSq7MAlySVgr2orWtKR/uI4lKrswCXJJWCvaita/H8mbS3TTgg1t42gcXzZzYoI6m2LMAlSaVgL2rrWjCnk2svOJnDJxRlSWdHO9decDIL5nQ2ODOpNizAJUmlYC9qa1swp5M50zs44/ij+O6Sd1t8q9QOa3QCkiRVQ1/B9kd3bGZv7346O9pZPH+mhZykpmMBLkkqjQVzOvnKA08B8NVLz2xwNhop3zONFy01BCUiJkTEpoj4u8r2URFxd0T8oHL7+kbnKEmSJA2npQpw4PeBx/ptLwHWZeYJwLrKtiRJktS0WqYAj4ipwPuBL/ULnw/cUrl/C7CgzmlJkiRJI9IyBTjwWeCPgP39Ysdk5tMAldujB3tiRCyKiA0RsWHXrl01T1SSJEkaSksU4BHxK8DOzNw4mudn5orMnJuZcydPnlzl7CRJkqRD1yqzoJwFnBcRvwwcAbwuIv4aeDYijsvMpyPiOGBnQ7OUJEmSDqIlesAzc2lmTs3MGcBFwD2Z+R+ANcDFld0uBr7WoBQlSZKkQ9ISBfgwlgHviYgfAO+pbEuSJElNq1WGoLwkM78FfKty/0fAvEbmI0mSJI1Eq/eAS5IkSS3FAlySJEmqIwtwSVJVRMQ5EbE1IrZFxCtWJo6IsyNiT0Q8VPm5shF5SlKjtdwYcElS84mICcDnKS6I7wLWR8SazHx0wK7fycxfqXuCktRELMAlSdVwOrAtMx8HiIjbgfOBgQV4zX310jPr/ZKSNCJ1G4ISEUdExCuWoYyIoyPiiHrlIUmqiU5ge7/trkpsoDMj4p8i4hsRcdJgB4qIRRGxISI27Nq1qxa5SlJD1XMM+PXALwwSfw9wXR3zkCRVXwwSywHbDwJvzMy3AX8JrB7sQJm5IjPnZubcyZNf0W8jSS2vngX4OzNz1cBgZt4G/D91zEOSVH1dwLR+21OBHf13yMwfZ+a/Vu7fBbRFxKT6pShJzaGeBfhgvSN9nI1FklrbeuCEiDg+Ig4HLgLW9N8hIo6NiKjcP53i3P+jumcqSQ1Wz4swd0bE6Zn5QP9gRJwGOMhPklpYZr4YEZcDa4EJwJcz85GI+Gjl8RuAXwd+JyJeBHqAizJz4DAVSSq9ehbgi4GVEXEzsLESmwt8iKKnRJLUwirDSu4aELuh3/3PAZ+rd16S1GzqNvSj0vN9BsVQlA9XfgI4IzPvr1cekiRJUiPVdR7wzHwWuKpvOsLMdOiJJEmSxpV6zgMeEXF1ROwC/hnYGhG7XIpYkiQBcNP7ix+p5Oo5+8jHgLOA0zPzDZl5FMWQlLMi4uN1zEOSJElqmHoW4B8CPpiZT/QFKksW/4fKY5IkSVLp1XMMeFtmPjcwmJm7IqKtjnlonFi9qZvla7eyY3cPUzraWTx/JgvmDLYytiRJUv3UswDfO8rHpBFbvambpau20LOvF4Du3T0sXbUFwCJckiQ1VD2HoLwtIn48yM9PgJPrmIfGgeVrt75UfPfp2dfL8rVbG5SRJElSoW494Jk5oV6vJe3Y3TOiuKTWsW/fPrq6uvjZz37W6FRK44gjjmDq1Km0tTkiVKqHus4DPloRMQ24FTgW2A+syMy/iIijgK8CM4AfAgsz818alaeax5SOdroHKbandLQ3IBtJ1dTV1cWRRx7JjBkziIhGp9PyMpMf/ehHdHV1cfzxxzc6HWlcqOcQlLF4EfjDzHwr8A7gsog4EVgCrMvME4B1lW2JxfNn0t524Jcu7W0TWDx/ZoMyklQtP/vZz3jDG95g8V0lEcEb3vAGv1GQ6qglCvDMfDozH6zc/wnwGNAJnA/cUtntFmBBQxJU01kwp5NrLziZzo52AujsaOfaC072AkypJEZafF94431ceON9Ncqm9flhRqqvlhiC0l9EzADmAPcDx2Tm01AU6RFx9BDPWQQsApg+fXqdMlWjLZjTacEtSZKaTkv0gPeJiNcCfwN8LDN/fKjPy8wVmTk3M+dOnjy5dglKkprO6k3dbHpqN/c/8TxnLbuH1Zu6q3Lc66+/nre+9a28/vWvZ9myZQBcffXV/Nmf/RkAN998Mzt27KjKaw30wx/+kFmzZtXk2JJqr2V6wCuL9fwNcFtmrqqEn42I4yq938cBOxuXoSSp2fStCbC3dz9Q3TUBvvCFL/CNb3xjyAsXb775ZmbNmsWUKVMO+Zgvvvgihx3WMn+aJY1SS/SARzE47a+AxzLzM/0eWgNcXLl/MfC1eucmSWpetVoT4KMf/SiPP/445513Htdddx2XX375AY/fcccdbNiwgd/8zd/k7W9/Oz09PWzcuJF3vetdnHrqqcyfP5+nn34agLPPPps//uM/5l3vehd/8Rd/MeR+Gzdu5G1vextnnnkmn//858eUv6TGaokCHDgL+C3g3RHxUOXnl4FlwHsi4gfAeyrbkiQBtVsT4IYbbmDKlCn8wz/8A69//etf8fiv//qvM3fuXG677TYeeughDjvsMH7v936PO+64g40bN/Lbv/3b/Of//J9f2n/37t384z/+I1dcccWQ+11yySVcf/313HefF5NKra4lvufKzHuBoS7RnlfPXCRJraNZ1gTYunUrDz/8MO95z3sA6O3t5bjjjnvp8QsvvHDY/fbs2cPu3bt517veBcBv/dZv8Y1vfKOubZBUPS1RgEuSNBqL589k6aotBwxDacSaAJnJSSedNGTv9c/93M8Nu9/u3budKlAqkVYZgiJJ0oj1rQlw+ITiz1091wQ48sgj+clPfgLAzJkz2bVr10uF9b59+3jkkUde8Zyh9uvo6GDixInce++9ANx22201z7/uNq+ErvXw5L1w3axiWyope8AlSaW2YE4nX3ngKQC+eumZdXvdD3/4w3z0ox+lvb2d++67jzvuuIMrrriCPXv28OKLL/Kxj32Mk0466YDnHH744UPud9NNN/Hbv/3bvOY1r2H+/Pl1a0ddbF4JX78Cel8otvdsL7YBZi9sXF5SjURmNjqHupo7d25u2LCh0WlI0ohFxMbMnNvoPOppsHP2Y489xlvf+tYGZVReDf13vW5WUXQPNHEafPzh+ucjVclQ522HoEiSpMba0zWyuNTiLMAlSVJjTZw6srjU4hwDfhCrN3WzfO1WduzuYUpHO4vnz6zLxTv1UOa2SZJayLwrizHf+/pNGdnWXsSlErIAH0bfEsZ901dVcwnjRitz2yRJLabvQsuvXV5ciDlxWlF8ewGmSsohKMOo1RLGzaDMbZOkV7jp/cWPmtfshTD1NHjjO4sLLy2+VWIW4MOo1RLGzaDMbZOa2uaVxYwPV3eUbq7jiDgnIrZGxLaIWDLI4xER11ce3xwRpzQiT0lqNAvwYQy1VHG9lzCuhTK3TWpafXMd79kO5MtzHZegCI+ICcDngfcBJwIfjIgTB+z2PuCEys8i4It1Sa4GC7z88Ic/ZNasWQfErr76av7sz/5s2Od98IMfZPbs2Vx33XVceeWV/P3f/z0AZ599Nn3TLf6X//JfxpzfUG6++WYuv/zymh1f0qGxAB/G4vkzaW+bcECsEUsY10KZ2yY1rXXXHHiRGRTb665pTD7VdTqwLTMfz8y9wO3A+QP2OR+4NQvfAzoi4riaZjXUAi8N+NDzzDPP8H/+z/9h8+bNfPzjH+eaa67hl37pl16x32gK8N7e3oPvJKlpWIAPo28J486OdoL6LmFca2Vu20tK/FW/WlS55zruBPqvpNJViY10HyJiUURsiIgNu3btGltWDfjQc/bZZ/OJT3yC008/nbe85S185zvfAeC9730vO3fu5O1vfzvf+c53+PCHP8wdd9xxwHOXLFlCT08Pb3/72/nN3/xNAP76r/+a008/nbe//e1ceumlLxXbr33ta7nyyis544wzuO+++4bc76abbuItb3kL73rXu/jud79bs3ZLOnQW4AexYE4n313ybp5Y9n6+u+TdpSpQy9y2Mn/VrxZW7rmOY5DYwKWWD2UfMnNFZs7NzLmTJ08eW1YN+tDz4osv8sADD/DZz36WP/mTPwFgzZo1vOlNb+Khhx7iF37hFwZ93rJly2hvb+ehhx7itttu47HHHuOrX/0q3/3ud3nooYeYMGECt912GwA//elPmTVrFvfffz9veMMbBt3v6aef5qqrruK73/0ud999N48++mhN2y3p0DgNocppuF4vr6xXo5R7ruMuYFq/7anAjlHsU10Tpw6xxPnYPvREDPZZ4uX4BRdcAMCpp57KD3/4w1G/zrp169i4cSOnnXYaAD09PRx99NEATJgwgV/7tV8bdr/777+fs88+m74PMhdeeCHf//73R52PpOqwAFc5lfur/lIr9QJRfR/+1l1T/C5OnFqmuY7XAydExPFAN3AR8BsD9lkDXB4RtwNnAHsy8+maZlWjDz1veMMb+Jd/+ZcDYs8//zzHH388AK9+9auBokh+8cUXR/06mcnFF1/Mtdde+4rHjjjiCCZMmDDsfqtXrx7yw4KkxnEIisqp3F/1s3pTN2ctu4fjl9zJWcvuYfWm7kanVBV9C0R17+4heXmBqLK0DyiK7Y8/DFfvLtVcx5n5InA5sBZ4DFiZmY9ExEcj4qOV3e4CHge2Af8d+N2aJzZ7IZx7PUwoCmImTiu2x/jv/trXvpbjjjuOdevWAUXx/c1vfpN3vvOdY82YtrY29u3bB8C8efO444472Llz50uv8+STT77iOUPtd8YZZ/Ctb32LH/3oR+zbt4//9b/+15jzkzR29oCrnEr8VX+ZVzEdboGoVm/beJCZd1EU2f1jN/S7n8Bl9c6L2Qth4y3F/UvurNphb731Vi677DL+8A//EICrrrqKN73pTWM+7qJFi5g9ezannHIKt912G5/61Kd473vfy/79+2lra+Pzn/88b3zjGw94zoknnjjofu94xzu4+uqrOfPMMznuuOM45ZRTnDFFagJRnA/Hj7lz52bfXKsquc0rS/lV/1nL7qF7kAWTOjva+e6Sdzcgo+o5fsmdr7wij+LKvSeWuYphRGzMzLmNzqOeBjtnP/bYY7z1rW9tUEbl1RT/rn2rlVbxg5LUSEOdt+0BV3nNXliKgnugMq9iOqWjfdAPFy4QJUkqk5YfA36wpY+lsinzKqYuECVJGg9auge839LH76GY3mp9RKzJzOpNdFrSYQxAudtWYovnz+Tev/0CH+N2psRz7MhJfJaLeOf82l/PVmsL5nTSuf3vmPbgco7OXeyMyWw/ZTGnzTmn0ampyWSms3tU0Xgbjio1WksX4PRb+higMrXV+UB1CvC+xVz6LuTrW8wFWr9QLXPbSm7BhO/yK21f4rDenwEwNZ5j2YQvcdiEtwEt/t5tXslpW64CeiDgWHZx7JarYMbr/b3US4444gh+9KMf8YY3vMEivAoykx/96EccccQRjU5FGjdavQAfbFnjM6p29DIv5lLmtpXdumteKr77HNb7s3K8d/5e6hBMnTqVrq4uxrxMvV5yxBFHMHVqOaZplVpBqxfgh7SscUQsAhYBTJ8+/dCPXubFXMrctrIr83tX5rapatra2l5a8EYl4+wnGida/SLMQ1rWODNXZObczJzbtxzvISnzYi5lblvZlfm9K3PbJEmqaPUC/KWljyPicIqlj9dU7ejzriwWb+mvJIu5lLptZVfm967MbZMkqaKlC/Chlj6u2gv0LWE8cRoQVVvCuCmUuW1lV+b3rsxtkySpYtythBkRu4AnR/HUScBzVU6nWZS5bVDu9tm21jWa9r0xM0cwjq71ec4eVJnbBuVuX5nbBuVu32jbNuh5e9wV4KMVERvKugR0mdsG5W6fbWtdZW9fo5X537fMbYNyt6/MbYNyt6/abWvpISiSJElSq7EAlyRJkurIAvzQrWh0AjVU5rZBudtn21pX2dvXaGX+9y1z26Dc7Stz26Dc7atq2xwDLkmSJNWRPeCSJElSHVmAS5IkSXU0bgvwiDg2Im6PiP8bEY9GxF0R8ZaI6ImITRHxWEQ8EBEXD/Lc0yKiNyJ+PSLeEBEPVX6eiYjuftuHt0rbImJiRHw9Iv4pIh6JiEuasW31FhEfjogpjc6jv8rv3kOV9+rBiPj3jc5pLCIiI+LP+23/p4i4unL/6oj4T5X7R0TE3RFxVYNSHbF+79UjlffrDyLiVf0ePz0ivh0RWyPinyPiSxHxmkbm3Kw8Z3vOPhTNeM4Gz9uet1/psOqm3RoiIoC/BW7JzIsqsbcDxwD/NzPnVGL/DlgVEa/KzJsqsQnAf6VYfZPM/BHw9spjVwP/mpl/Vs/29DeGtl0GPJqZ50bEZGArcFtmvr2y/9U0uG0N8mHgYWBHg/Por6ff+zIfuBZ4V0MzGpsXgAsi4trMHHSRg0rx8DfAxsz8k7pmNzb936ujgf8JTASuiohjgP8FXJSZ91X+7/4acCTwbw3Ktyl5zvacPQIfpvnO2eB52/P2AOO1B/wXgX2ZeUNfIDMfArb33ykzHwf+ALiiX/j3KH6hdtY+zVEZbdsSOLLyy/Ra4HngxXokHBEz+n2KfDgibouIX4qI70bEDyqfNo+KiNURsTkivhcRsyvPvToivhwR34qIxyPiin7H/YPK8R6OiI/1i3+ocpx/ioj/ERFHRsQTEdFWefx1EfHDiPgAMBe4rfJpuD0iTo2If4yIjRGxNiKOq8e/0TBeB/xLg3MYqxcpri7/+BCPHwbcDvwgM5fULasqy8ydwCLg8sr/s8soiq77Ko9nZt6Rmc82Ms8m5Tnbc3ZZztngebtl1PK8PS57wIFZwMZD3PdB4OcBIqIT+FXg3cBptUltzEbVNuBzwBqKXoMjgQszc3/10xvSm4EPUPyirwd+A3gncB7wxxR/jDZl5oKIeDdwK5VeLIo2/GIl760R8UVgNnAJcAYQwP0R8Y/AXuA/A2dl5nMRcVRm/iQivgW8H1gNXAT8TWb+r4i4DPhPmbmhcrL/S+D8zNwVERcCnwZ+u4b/LoNpj4iHgCOA4yh+H1vd54HNEfHfBnnsj4C/z8yP1Tel6svMx6P4KvNoiv+rtzQ4pVbhObvgObs1z9ngebtl1eq8PV4L8JGIfvc/C3wiM3uLD0Itr38j5gMPUZwU3gTcHRHfycwf1ymXJzJzC0BEPAKsy8yMiC3ADOCNFF/zkJn3RDHWcWLluXdm5gvACxGxk+Kr23cCf5uZP60ccxXwCxS9Rnf0fWWWmc9XjvElihPGaoo/Av/vIDnOpPjPd3fl/Z8APF21f4FD1//rsTOBWyNiVrbwnKKZ+eOIuJWid69nwMP3AmdGxFsy8/v1z67qSnHyaGKes+vDc/bIeN5ubVU/gYzXISiPAKce4r5zgMcq9+cCt0fED4FfB74QEQuqnt3YjLZtlwCrKl+nbAOe4OWelnp4od/9/f2291N8UBzsl7/vxNX/ub3D7E8l/ooTXmZ+F5gREe8CJmTmw0M895HMfHvl5+TMfO9QDaqHytdgk4DJjcyjSj4LfAT4uQHxbwMfA74RTXhx1UhEMY63l2I4xEj+r453nrMLnrP7DtSi52zwvN1qanXeHq8F+D3AqyPipU/MEXEaxSd2+sVmAH9G8RUWmXl8Zs7IzBnAHcDvZubqOuV8qEbVNuApYF7lsWMoeg4er0O+h+rbwG8CRMTZwHMH6en5NrAgIl4TET9H8TX0d4B1wMKIeEPlWEf1e86twFeAm/rFfkLxNSkUFzlNrvReEBFtEXHSGNs1JhHx8xS9Oj9qZB7VUOnZWklxMh/42N8Ay4FvRkRHnVOriigulLsB+Fyl1+tzwMURcUa/ff5DRBzbqBybmOdsz9mlOGdX8vC83SJqed4el0NQKl+T/Srw2YhYAvwM+CHFp7U3RcQminFaPwH+MitX07eCMbTtT4GbK18fBsXXtoNe2dwgVwM3RcRmiiuNXzHVWH+Z+WBE3Aw8UAl9KTM3AUTEp4F/jIheYBPFVfMAtwGfojih97kZuCEieoAzKXrRrq98lXoYxaf/R8bWtBHrG0sIxXt1cWb21jmHWvlz4PLBHsjMGyonuTUR8d7M/Fl9UxuVvveqjeKipf8BfAYgM5+NiIuAP4viSvv9FEXIqgbl2rQ8Z3vOprXP2eB52/P2AC5FL1VExK9TXKzzW43ORZI0PM/ZamXjsgdcGigi/hJ4H/DLjc5FkjQ8z9lqdfaAS5IkSXU0Xi/ClCRJkhrCAlySJEmqIwtwSZIkqY4swCVJkqQ6sgCXJEmS6uj/B72b55KJS1tOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# compare between filtered and unfiltered\n", + "celltypes = ['CD4T', 'CD8T', 'monocyte', 'B', 'NK', 'DC']\n", + "fig, axes = plt.subplots(6, 2, figsize=(12, 12), sharex=True)\n", + "for i, celltype in enumerate(celltypes):\n", + " replication_celltypes = [ct for ct in celltypes]\n", + " ax1, ax2 = axes[i, :]\n", + " ax1.scatter(x=replication_celltypes,\n", + " y=numcoeqtl_df[celltype].loc[replication_celltypes])\n", + " ax1.scatter(x=replication_celltypes,\n", + " y=unnumcoeqtl_df[celltype].loc[replication_celltypes])\n", + " ax2.errorbar(x=replication_celltypes, fmt='.', markersize=12,\n", + " y=rb_df[celltype].loc[replication_celltypes],\n", + " yerr=rbse_df[celltype].loc[replication_celltypes], label='filtered')\n", + " ax2.errorbar(x=replication_celltypes, fmt='.', markersize=12,\n", + " y=unrb_df[celltype].loc[replication_celltypes],\n", + " yerr=unrbse_df[celltype].loc[replication_celltypes], label='Unfiltered')\n", + " ax1.set_ylabel(celltype)\n", + "ax2.legend()\n", + "\n", + "plt.savefig('celltype_rb.comparison_filtered_unfiltered_results.pdf')\n", + "plt.savefig('celltype_rb.comparison_filtered_unfiltered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sub celltypes in monocytes" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rse_rpcelltype_discoverycelltype_replication
10.9714310.0484021.351820e-89ncMonocMono
20.9290810.0886781.101982e-25ncMonomonocyte
30.9367970.0254091.468276e-297cMononcMono
40.9997260.0006130.000000e+00cMonomonocyte
50.8962030.0362405.115902e-135monocytencMono
60.9498240.0086400.000000e+00monocytecMono
\n", + "
" + ], + "text/plain": [ + " r se_r p celltype_discovery celltype_replication\n", + "1 0.971431 0.048402 1.351820e-89 ncMono cMono\n", + "2 0.929081 0.088678 1.101982e-25 ncMono monocyte\n", + "3 0.936797 0.025409 1.468276e-297 cMono ncMono\n", + "4 0.999726 0.000613 0.000000e+00 cMono monocyte\n", + "5 0.896203 0.036240 5.115902e-135 monocyte ncMono\n", + "6 0.949824 0.008640 0.000000e+00 monocyte cMono" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filtered_mono_res_df = pd.read_csv(workdir/'output/filtered_results/rb_calculations/monocyte_subcelltypes/summary.csv', \n", + " index_col=0)\n", + "filtered_mono_res_df" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# filtered results\n", + "mono_subcelltypes = ['monocyte', 'cMono', 'ncMono']\n", + "monorb_df = pd.DataFrame(data=np.zeros((len(mono_subcelltypes), len(mono_subcelltypes))), \n", + " columns=mono_subcelltypes, index=mono_subcelltypes)\n", + "monorbse_df = pd.DataFrame(data=np.zeros((len(mono_subcelltypes), len(mono_subcelltypes))), \n", + " columns=mono_subcelltypes, index=mono_subcelltypes)\n", + "monorbpvalue_df = pd.DataFrame(data=np.zeros((len(mono_subcelltypes), len(mono_subcelltypes))), \n", + " columns=mono_subcelltypes, index=mono_subcelltypes)\n", + "mononumcoeqtl_df = pd.DataFrame(data=np.zeros((len(mono_subcelltypes), len(mono_subcelltypes))), \n", + " columns=mono_subcelltypes, index=mono_subcelltypes)\n", + "monoanno_df = pd.DataFrame(data=np.zeros((len(mono_subcelltypes), len(mono_subcelltypes))), \n", + " columns=mono_subcelltypes, index=mono_subcelltypes)\n", + "mononum_anno_df = pd.DataFrame(data=np.zeros((len(mono_subcelltypes), len(mono_subcelltypes))), \n", + " columns=mono_subcelltypes, index=mono_subcelltypes)\n", + "\n", + "for discovery_celltype in mono_subcelltypes:\n", + " # replication in other celltypes\n", + " for replication_celltype in mono_subcelltypes:\n", + " if discovery_celltype != replication_celltype:\n", + " monorb_results = filtered_mono_res_df[(filtered_mono_res_df['celltype_discovery'] == discovery_celltype) &\n", + " (filtered_mono_res_df['celltype_replication'] == replication_celltype)]\n", + " monoreplicated_coeqtls_num = pd.read_csv(\n", + " workdir/f'output/filtered_results/rb_calculations/monocyte_subcelltypes/discovery_{discovery_celltype}_replication_{replication_celltype}.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t',\n", + " index_col=0\n", + " ).shape[0]\n", + " if monorb_results['r'].values[0] < 10:\n", + " monorb_df.loc[replication_celltype, discovery_celltype] = monorb_results['r'].values[0]\n", + " monorbse_df.loc[replication_celltype, discovery_celltype] = monorb_results['se_r'].values[0]\n", + " monorbpvalue_df.loc[replication_celltype, discovery_celltype] = monorb_results['p'].values[0]\n", + " mononumcoeqtl_df.loc[replication_celltype, discovery_celltype] = monoreplicated_coeqtls_num\n", + " monorbvalue = monorb_results['r'].values[0]\n", + " monorbsevalue = monorb_results['se_r'].values[0]\n", + " monoanno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"rb={monorbvalue:.2f}\\nN={monoreplicated_coeqtls_num}\"\n", + " mononum_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={monoreplicated_coeqtls_num}\"\n", + " else:\n", + " monorb_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " monorbse_df.loc[replication_celltype, discovery_celltype] = np.nan\n", + " monorbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " mononumcoeqtl_df.loc[replication_celltype, discovery_celltype] = monoreplicated_coeqtls_num\n", + " monoanno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"rb=NA\\nN={monoreplicated_coeqtls_num}\"\n", + " mononum_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={monoreplicated_coeqtls_num}\"\n", + " else:\n", + " monorb_df.loc[replication_celltype, discovery_celltype] = 1\n", + " monorbse_df.loc[replication_celltype, discovery_celltype] = 0\n", + " monorbpvalue_df.loc[replication_celltype, discovery_celltype] = 0\n", + " monoreplicated_coeqtls_num = pd.read_csv(\n", + " workdir/f'output/filtered_results/UT_{discovery_celltype}/coeqtls_fullresults_fixed.sig.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t'\n", + " ).shape[0]\n", + " mononumcoeqtl_df.loc[replication_celltype, discovery_celltype] = monoreplicated_coeqtls_num\n", + " monoanno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={monoreplicated_coeqtls_num}\"\n", + " mononum_anno_df.loc[replication_celltype, discovery_celltype] = \\\n", + " f\"N={monoreplicated_coeqtls_num}\"\n", + " \n", + "monoreplicated_ratio_df = pd.DataFrame(data=np.zeros((len(mono_subcelltypes), len(mono_subcelltypes))), \n", + " columns=mono_subcelltypes, index=mono_subcelltypes)\n", + "for discovery_celltype in mononumcoeqtl_df.columns:\n", + " for replication_celltype in mononumcoeqtl_df.index:\n", + " monoreplicated_ratio_df.loc[replication_celltype, discovery_celltype] = \\\n", + " mononumcoeqtl_df.loc[replication_celltype, discovery_celltype] / mononumcoeqtl_df.loc[discovery_celltype, discovery_celltype]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
monocytecMononcMono
monocyte1.0000001.0000000.826087
cMono0.9964411.0000000.826087
ncMono0.9857650.9806451.000000
\n", + "
" + ], + "text/plain": [ + " monocyte cMono ncMono\n", + "monocyte 1.000000 1.000000 0.826087\n", + "cMono 0.996441 1.000000 0.826087\n", + "ncMono 0.985765 0.980645 1.000000" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "monoreplicated_ratio_df" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":60: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_xticklabels([\"\"]+col_labels)\n", + ":61: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + " ax.set_yticklabels([\"\"]+row_labels)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAEkCAYAAABT8ScVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABjlElEQVR4nO3dd3zU9f3A8dc7l71ISCAQtsgQEEER90RFrVtRUHGvOuquq7/W1taiVevWouJoRdyjloqiolURRKaAKEMIJGSQkDCy8/798b0kl0HmXXLfy/vZxz2a+677fGN43/v7maKqGGOMMcaY0BLW2QUwxhhjjDH+Z0meMcYYY0wIsiTPGGOMMSYEWZJnjDHGGBOCLMkzxhhjjAlBluQZY4wxxoQgS/KMMcYYY0JQl03yREQ6uwzGGNMWFr+MMS3RJZM8Eemj3lmgRaRL/g6McSsRmSEiOSLywx72i4g8LiJrRWS5iOzvs+9EEVnj3Xdnx5Xafyx+GeNeHR2/ulyAEJFjgcUicqOIpKlqlXe7PRkb4w4vASc2sf8kYIj3dRXwDICIeICnvPtHAFNEZERAS+pnFr+Mcb2X6MD41aWSPO8v6V7gf0AR8JmIHAOgtr6bMa6gql8C+U0ccjrwijq+BZJEpDcwHlirqutVtQyY5T3WFSx+GeN+HR2/wv1RaBeZAoSr6jkAIvIr4GQRGQbsVNV/dWrpjDH+0AfI8Hm/2butse0HdWC52svilzGhz6/xq8skeSKSglP1+bD3/XFAPFAMrABeEZFcVZ3jc05YdXOIsd+HaZ2Jx8TptvzKVp/3/fLSlUCJz6bpqjq9FZdorOlSm9ge9Cx++Yf9TkxrtCWGBVv86jJJHnAZIKr6trf/ypnAbOB1Vc0WkWeAESLyE3ACMEtVCzuxvEFBRCKBE1T1Q5/+PxYoTbPy8itZMKdvq8+L6L2uRFXHteOjNwP9fN73BTKByD1sdwOLX21kMcy0VVtiWLDFr67UJ+9R4Dzvz5cDEcC33gDZBzgemArcBEwA5ovIOZ1QzmBzCfCeiPxdRM4GsOBoWkap1KpWv/zgA+Ai7yi1g4FCVc0CvgOGiMgg7xf/ZO+xbvAoFr/a6hIshpk2aX0M8wO/xq8uUZPnfWorF5Gt3ikHEoClwCrvIRcChwCfAo+r6joROQk4CnhLRBJVtaj6Wjj9nF3RzNMeItId+A3wO+Bd4H0R6amqz/gc4wGqusLvw7SOAlUBaA0VkdeAo4FUEdkM/AEn6UFVn8Wp4ToZWAvsBi717qsQkeuBOYAHmKGqK/1eQD+z+NV2FsNMewQihnV0/OoSSV71U5vP09vfRSROVXeJyKE4T8YLcJo+1nmPScb5DwFwo4jkALNV1bfjY6cSEY+qtr7TU8tdC/ykqtO8nzcPyBWRCOBgYLk1CZmmVOH/ChNVndLMfgWu28O+2ThB1DUsfrWLxTDTLv6OYR0dv7pEkuerui+Gqu7ybuqOMw/NFqCHz6G3AX8UkeHAkUApMFVEFgG3dGZ1v4jEquru6gApIhGqWu7nzxgBTMJpAkJEjgI24gTG3+D0GxguIq+r6gPeY64EElX1YX+WxbiTolRa5YhfWfxq1edYDDPtEgoxrCv1yQMa9sXwdsb9O87IlatE5FYR+QeQBXwMXAAsAi5R1cOB0cDY+tftiMlIRSRcRM4HnhWR+SJS3UfncBH5WkSO9uPHHQ98p6rLRaQbMA6Iw+kH8KKqno8TQPuISA8RSQOuBm4TkYF+LIdxsSq01S+zZxa/WsVimGk3t8evLleTtyeq+rqI/AhcA3yC0+59ONAN+EBV88SZkPAAvCNaxJmfKlxVV3ZQf45LcDpVvwrkAbd7n1YjcYJ3qr8+SFUf8/ZVAZgIJAEjgTWq+qK3qWWdiNykqlUichuQjtMZ/Jfq64hIuqq6ZQSj8SMFKoMw6IUii18NWQwz7RUKMcySPGqeYkVVlwG/9m7rjzOabRXODPMA04DHgO0iciPOU2CEiGQAlweyb4eIJOAsZTJLVT/0bj5bRO4CtgHz8c6Z4w1sY4Gf21mm6lqDjcBeOF8e3ar3VTcdichonCaRfwFLvGUYijMb9wMicraqvtuOchiXCsYn21Bj8atJFsNMu7g9hnW55trGqKNKfBb7VtVNwExgnqqWepsShgHP44x2GQD8n6oehLPE0MT61xX/Lh4egzPiZqHP9fcFEnGaIJKBr727rgPmAp+LSGxbP7D66V5VFwAP4ATI80TkyurfmffQu4DXcGoPeotIDPAgsL+3TAXe8tr6msb4mcWvPbMYZro6q8nz0Uh/l8983v4VeA+ng/PeOKOyPvfuS8IJVohID6CHqq7yBl7xU1NIKbAYGIPT3wacSU8rcQLQdCBBnHl1pgA/AQ+q6m5vudpVDu+5P4vIVJzRfd1U9SERORkYjNP351VgPc7ErRU4I/7Wquq86mtIF5vCoStTcH2nZTex+NU0i2GmtUIhhlmS13KXAhtwfmcHAi8AiMghwDKcJpATgD8CReJMVni7qi7yHteuGdZVtVBEZgB/EZETcYJPf5wnz5+A24FzgWdx+rv8AHzuc76KH6YsUNUVwHEiEi8i0cD9wFPeL4T+OKP9nsOZpHE88BSAiIwDslR1S3s+37iLzTgbNCx+1V7LYphpMbfHMGuubQHvU+SPqlrq3fQ9ztxTBwB/BnYAg4AjgFdUdSLwEs5otygRSWpPgKymqnO9zSufAANx1q38yvu5k3BG0y3CWdPy36q6TUTGi8hUcaYt8NucVKq6U1VLcJ62nxNn3qnngDtxmmRG4/Rt2SoiHwK3Ah+JyO+gtinIz01CJogoSmUbXsa/LH7tsTwWw0yT2hLDgo1YjXPref9R/w1IAZbjPH1egtOv5CGfYIqIXAxcqqpH+2xrd9OD90l7iKqu9HYQ7qGqX4vI40Au8ArO+pZX4HRqPgS4VlW/9Ols7PfJSL3lmopTW3At8CawRVV/431KfhKnk3duvfNsLckQM3p0hH4wu/UDJgf12/q9tm/tR9MEi18tKpvFMNOmGBZs8cuaa1vJ5x/yrSISqapl3u3jcOZkKpW6k3sm4HTorT6/v6pu8o4gOwr4UlUrWlsO7+eu9P78E/CTOEsZDcGZHHUMTkfrq1T1GxH5LXCi9/OqZ9CvrO5I7Mf+JcNxZtp/HxgKHKCq1etFbvI+LQ8WkX7AGcB0Vd3s5/4/Jgg4SwKZYGLxq0UshhkgNGKYVTO3UvU/ZO8/5jKfXZ8Cp4vIKHXWmaz+3SYC4eJMBHo88IU4k4A+DBymznp0/hqxdRbwqaquxpnlvsAbICNw/ltXAIjIkyLylIgkq5efPh9VXY4zTcOHQCxOnxu8nzsO2BenP86pOCP6/iYiM71NQhYcQ4pQ2YaXCRyLX82zGGZquT9+WZLXBo0FFlV9FfgP8IyInONTbf8r4AucDs1n4awzmYkzaem+4ozwqp4fql1/Iap6pffzBUjD6eMCTlCKA9aIMyHqtTgB8xUR+XN7PnMP5Vjk7euSDYwVkTu8T+nP4iy3NAbnKf0FddbxKwEuqt+3RWonMjUupECVtv5lAsviV4vKYjHMtCmGBRtL8vzAp8ngCZwZ3ed6t8cD+cBVOE+md6ozrcEk4BGgEPhT9XX8ESxVdZf3OnNwAuYtOKPHPDjzZj0DPK+qNwL3AEeKSHL9+6kfrNpYli3AOTiToJ4MTFPVWThfEF8A1ZOLbgX2q/5iEZFB3vMr2/vFYTqX1eQFP4tfTZbHYlgX5/b4ZX3y/MAnuEWoaplPgOmGMxfUH4An1ZlG4DScJ8Ar1ZmwFBE5EDgWWKnOWpTtfh5Q1X+KyHrgFGCGqr4hzgLdB6tqL+9hCcAvQLyI7Ab6APHe5gq/PJN47/Fi8XaSFpGbcf7uFqhqrogk4jyZjxOnA/ZNwFDv7/A6b9ONcSFnSaDgC3qmLotfzZbFYlgXFQoxzJI8P9LazsqXichFOJN//l1Vp/kcdhUwC8jxVuVfhTOC7NfAvSJyJk7AKGtvsFTVr6mdRR7g38BvAbzNHgcBOaqaISKzcJocxorIt8AtqrqrPZ9fT3XzzzKcwPyT9/0/cJ7Qc3D6+eTgNBFdDFwjIrf5/F6Ny1SpuwNkV2Lxq1kWw7ogt8cwS/ICQFWf9j5ZzqV2dndEpBfORJ+LVbVERPbGCQQ9cfqdXAVcDUSqzzQG7SW1I+ruVtVnvZtH4qwP+QcRuR3ohdOJuBx4w7t/YWPXa4vqgK8+s/B7awDOw5kX6xSc/i/PqzPCbwnOE7FxqVB4Cu6KLH41zmJY1xMKMcz65AWIqr6kzrB633mccnA6Lc8RkRSc5XvWqmo/4GCc0Vyn4iyx48+yVE858CSAiKQBJwEZwGacJ+/LVbXUe2w2cJg/y1Cft59KNnChOksX9QBSVfUX7yHHA6+rM9LP3f/KuihFqCSs1S/T+Sx+Nc9iWOhrSwwLNlaT14Gqn0ZF5GV1ZnNfAUR4910pIqOAg1R1aYDLkS0iz+E0b0ThNIlsBhCRKJwn06MCXAYFqhdRB9gG9PV29j4HZ2Hw53yONS7k9qYOU8viV4NyWAzrAtwewyzJ60DVHZpVdY33yW45cId3JNafgFWq+kNHlEVVf/SWKQpnLqyHROR9nFFj76ozE32HzeCuqrNEZADOiLV1OE0ec5o5zQSxUGjqMLUsfjVbJothISYUYljw1S2GMFWt8ml6UFVdr6qHAOuBu3D6tXR0mUpxFgYvwVna6L/A9dW7O7gsD+A0s1ysqh915GebQBAqNazVLxOcLH61qDwWw0JK62NYsLGavE5UPSRfVf8gItGA3zort4Y6k37eLnWXOeqU5Xm8ZTEhwFkSKPiCnvEPi19NlseEgFCIYZbkdSKtu/ZipwcG9VnmyPqQGGOaYvHLmODn7hQ1BHibPSwgmZAUiBUvROREEVkjImtF5M5G9ieLyLsislxEFnoHBFTvu1lEVorIDyLymrcGyrSRxS8T6ty+4oUlecaYgFD1f5887wS8T+FMoTECmCIiI+oddjewVFVHAxfhLDaPiPQBfgOMU9VROEtlTfbrTRtjQkZbYliwCb4SGWNCRhXS6lczxuPMzbbe2zw3Czi93jEjgE+hZhTmQO/cauB0UYkRkXAgFmfeN2OMaZSf41eHsyTPGBMQzvQDfp8MuQ/OJLjVNnu3+VoGnAUgIuOBAUBfdRabfwhnbrMsoFBVP27/nRpjQlFbYliwCb4SdTARucrK4LBy1GXlaG8Z2txcmyoii3xeV9W5aEP1+4RNA5JFZClwA7AEqBCRZJxav0FAOhAnIhe2/r6CRzD8bYCVI9jKAFaO+joqhgWb4CtRxwuGP8BgKANYOeqzctRqdRmqpx9o7QvIU9VxPq/pPpfdDPTzed+Xek2uqlqkqpeq6hicPnk9gA3AccAGVc1VZ8H4d4BDW3tfQSYY/jbAyuErGMoAVo76OiSGBRubQsUYEzCV/l8S6DtgiHeVhS04AyfO9z1ARJKA3d4+e1cAX6pqkYhsAg4WkVigGJgALPJ3AY0xoSMAMaxDdckkz1ttexXA+WfFH1C1dUinTgHwzIM96OwyWDkaGs7+HB82ycrhLUNrVS/u7U+qWiEi1wNzcEbHzvAuYXWNd/+zwD7AKyJSCawCLvfuWyAibwGLgQqcZtzpjXxMUAu2+AXB8282GMoRDGUA6H/YORxwxSNWjlpXt/aEQMSwjiZdfYqjYPjHaILTxPQxnV2EoPJJ1ZuteqQdvG+c3v9u/dlNmjd5yKLvVXVcq0/sgix+mT058He/7uwiBJXvn7+l1VVybYlhwRa/umRNnjEm8KpHphljjBuFQgyzJM8YExCKuL4/izGm6wqFGGZJnjEmYIJxtJkxxrSU22OYJXnGmIBQJSjnjTLGmJYIhRhmSZ4xJkCCc5kfY4xpGffHMEvyjDEBobj/KdgY03WFQgyzJM8YEzBuH5lmjOna3B7D3F16Y4wxxhjTKKvJM8YEhCJUuXz6AWNM1xUKMcySPGNMwLi9qcMY07W5PYZZkmeMCQgFqlzeadkY03WFQgyzJM8YEyBCpcunHzDGdGXuj2HuTlGNMUGr+im4tS9jjAkGbYlhLSEiJ4rIGhFZKyJ3NrI/WUTeFZHlIrJQREb57LtZRFaKyA8i8pqIRDf1WRZRjTEBU+l9Em7NyxhjgoW/45eIeICngJOAEcAUERlR77C7gaWqOhq4CHjMe24f4DfAOFUdBXiAyU19njXXGmMCQlWsZs4Y41oBimHjgbWquh5ARGYBpwOrfI4ZAfzVKYP+KCIDRSTNuy8ciBGRciAWyGzqwywCG2MCplLDWv0yxphgEYD41QfI8Hm/2bvN1zLgLAARGQ8MAPqq6hbgIWATkAUUqurHTX2YRVRjTEAoUOVd+7E1L2OMCQZtiWFAqogs8nldVe+yjQU5rfd+GpAsIkuBG4AlQIWIJOPU+g0C0oE4EbmwqXuw5lpjTICI1cwZY1ysTTEsT1XHNbF/M9DP531f6jW5qmoRcCmAiAiwwfuaCGxQ1VzvvneAQ4F/7enDLMkzxgSEMzLNauaMMe4UoBj2HTBERAYBW3AGTpzve4CIJAG7VbUMuAL4UlWLRGQTcLCIxALFwARgUVMfZkmeMSZg3D5bvDGma/N3DFPVChG5HpiDMzp2hqquFJFrvPufBfYBXhGRSpwBGZd79y0QkbeAxUAFTjPu9KY+z5I8Y0xAhMK6j8aYritQMUxVZwOz62171ufn+cCQPZz7B+APLf0sS/KMMQFTZTV5xhgXc3sMsyTPGBMQqlBpNXnGhRIHr6No3eBWn7ctv5Jzr9zKd0tLuPi8RJ64v0ejx+UXVDL5mq1szKhgQL9wXv9HL5KTPABMezyfGa/twOOBR+9LZeIxce26l/Za+vJdjLn4r206d+uyT9m2ZgGEhdHv4DNI7Du8wTG7t2WS8fVbVFaUEhnfnUFHX4AnMppduZvY9NWb3qOU3mMnkjRw33bcSeuFQgxzd4pqjAlqVSqtfjWnnUsCJYnIWyLyo4isFpFD/HzLxuVUlaqqtp0bHS388bfdefD3qU0e98CTBUw4PJY13wxgwuGxPPBkAQCr1pTx+vs7WTGvP7NnpnP9XblUVtafXaPjqCqqbfv84oKtFKxfwj5n/5a9J17Jpm/eQRv5xW766g3SD/wVI866naSBo8he8TkAMcm9GH76Texz5q3sPfEqNn39FlpV2a77aQt/x6+OZkmeMcY12rMkkNdjwEeqOhzYD1gd+FKbYPdLRjkjj9jIdXfmMO6EDIpLlNvuzWPc8RkcP2kLuXktSy7iYsM4/KAYoqOb/rL/YM4uLjo3AYCLzk3g/Y92ebfv5LzT44mKEgb1j2DwwAgWLilp3821UumOfFa+9QCbvn6bH997BK0sZ/OCD1j93iP8PPsZyot3tug6hZtWkrzXWMI84UQlpBCVmMKu3E0NjispzCG+114AJKYPZfsvKwAIC49EwpzazarKcj/dXddjzbXGmIBwOi0H1ZJAxcCRwCXefWVAmb8LaNxpzbpyXng0jaem9cTTey1j943ioXtTue+RfP70SD5P3N+Dh54uYOY7Oxqce8TBMTz258abZhuTnVtJ7zTn67d3Wjg53iRyy9ZKDtq/dr35vunhbNna8bVXpYW5DDxyMv0PO5vFL9xKbEof+h50GllLPmbrko/pd+hZZC//nPx1ixucG99rL/odcibluwqJ7TmgZntkXBLluwsbHB+T3IvCTStJGjCKgg3LKdu1vWbfrpyNbPzf65TtLGDgUefXJH0dJUAxrENZkmeMCZiWLNjdSo0tCXRQvWOqlwT6yndJIKASyAVeFJH9gO+BG1V1l78LadxnQN9wDj7ASbDCwuC80+MBuODsBM65PAuA265N5rZrkwNWhsZaRjujATAyPpm46gRNhOS9xgDQffABrP/0JQDSRh9D2uhj9ngNbbCIAzR2NwOOOI+M+e+RteQTkvqPqJPIxfUcwIizf0vx9mw2fvEaiX2HExYe0dbbapMAxLAO5e4UNQhdfnM2vUZtYPTRtdXS+QWVnHDeFoYdupETzttCwfbaJ7Npj+cz9JCN7HP4RuZ87nzXlJYqJ03JZPTRm3jmpdonn6tvy2HJitKOuxk/sN/Hnm3Un5ivHzNfP2aFLqBSK1mnP/CtfsK3+gmL9UtKtRiA7ZrHt/oJC/VTdqvTXFKuZSzW/7W5z0ygVU8k2oY+LU0tC9TmJYFwHmr3B55R1bHALqBBn76uxtN7Lbfdm1fz/uFnCvjjQ9tadO7SH0o57JQM9j1qE2OO3cTr79fWcn36v92MOz6D/Y/bxJGnbWbtBqfS9MefyzjslAxiBqzl4WcK/Hsz7RAXu+evQ/H+1T30dAH7H7epwevG3+W26rPSenjIyq4AICu7gp6pTmLTt7eHzZm1TZObMytI79WxtVfgNJU2J3v556x+9+EGr4z57wLemjufWrmyXduJiE1scJ3opDSGnHQ1+5xxM8mD9ycqIaXBMTFJaYRFRFJcsLXtN9UGbYlhwcbVSZ6IXCIi6Z1dDl8Xn5vI7Jm962xrbSfbOfN2c8DoKJZ+1o/n/uUkNctWllKlMHbfqA6/p/aw30fjSrSYDNYyngkcIiegKNlkMIBhHCzHc7AcTyq9We/tMraRnxjNwQxmFJtZB8AGVjOI4YgEX2BxOE0drX3hXRbI5+U72WeLlgRS1UtVdQxOn7weOEsCbQY2q+oC76Fv4SR9nSJY4ldUlPDu7J3kbWt9s2BsjPDS42ms+ML5N3vL7/PYXuhc57o7c/nnU2ksntufKWcl8JdHnX/n3ZPDePTPPbj1msDViLVXVRW89aHzMPXaOzs4bHwM4NTkLZ7bv8GrNU21AKeeEMcrbzgJ8Stv7OC0ic4I2lMnxvH6+zspLVU2bCpn7YZyxo+NbupSgadKwYblAOSvW0x8r0GAU5O3z5m3Nnj1O+RMALr1H0nB+iVUVVZQumMbpUV5xPXo3+Dy5cU7vB9Txdaln5C6jzMWqnTHtpqBFqU78iktzCUqoaP/Zlofw4KN25trLwF+oF6Q70xHHhLDLxl1O4l+MGcXn73dB3A62R579ham/S51j51sI8KhuKSKioraa/z+wW0880DPjrwVv7Dfx54pShWViApVVBBFNOFS2xRRSe2XbhhhVHr/J4SxW3dSSjHJ0rovl45W5f+mjjYvCQQUiUiGiAxT1TU4SwKtovNcQhDEr3APXHlhIo9O386f72pYi9KUoYNra3zSe4XTM9VD7rZKkrp5EIGinc5oysKiStK9fdB6pobTMzWc2XODt5U8LlZYtaaMA0/IoFtiGK8926vF5+514C8U7ayirEx5/6OdfPRaH0YMi+TKW3O4emoi48ZEc8f1yUy+eiszXiuif59wXp/uXH/ksCgmnRrPqKM2Eh4uPHF/Dzyezn2ICwuPpGT7Vla/93c8kdEMOmZqi86LSe5F0qAxrHr7QSQsjH6HnIWEOUnQxv+9TurwQ4nr0Y+CdUvIXf01AEkD9yVlyHgAdm7dQPbyz5zmWxH6HXIW4dHxgbnJJgQghnWoZpM8ERkIfAR8BRyM09/lReCPQE/gAmAtMAPYC9gNXKWqy0XkXqC/d3t/4FFVfdx73VuAy7wf87yqPurdfhFwG05N6XLgWu//D1XVchFJ9L6/HRgHvCoixcAhOB2uHwHigTzgElXNatuvxn9a28n2jBPj+NfbOzjkVxncdm0yH8zZxQGjo0nv5fac3GG/D4iWGAboUL7iP4ThIYU0UsQJ9Gv1B7LYSDgRHMBRAAxkOKtZjAcPIzmQn1nOYEZ25i00KxBzTLVhSaBfgL1E5Hmc+LUJ+EBE+uLEmNNFpDtdPH5de2kSY47dxO3XJdXZ/urbOxptUh08MII3n69bQ79wSQllZcrggc6DyvSHenLKhZnERAuJ8WF8859+Da4TLAb2i2D5vNpapuo58v50R+uSXoD13w1sdPtzD9c+lKZ09/DJm30aPe7um7pz903dW/25/hKV0J0RZ99e8756jrz0A05q9bV6jzmO3mOOa7B9wBHn1fzcc9SR9Bx1ZINjUoaMI2XIuFZ/pj+Fwjx5Lf2W3BuYBFyF8yR9PnA4cBrOdAUZwBJVPUNEjgVeAcZ4zx0OHAMkAGtE5BlgNHApTodpARaIyBc4I93uAQ5T1TwR6a6qO0RkHvAr4D2cJ/e3VfVNEbkOuE1VF4lIBPAEcLqq5orIecBfqA3EQWdPnWzDw4VXn3a+8MvLnf5o773cm1v/kMumLRVMnZRYU70fSrrS76Ncy8glk8M4mXAiWMG3ZOlGessA9pZR7M0oNuiPZLCWwYwkQZIYz7EAFGguUcSgwAr9FiGMIYwmSjq5WacRgWi+aM2SQN6H1LXA2dTGr69x1oI8DafPXpePX4kJYUydlMATzxcSE1P7pXbB2QlccHZCs+dnZVdw8Q3ZvPhYGmFhzvmPTt/Oh/9K56D9o3no6QJuvTevTqJjjBsEYxNsa7S09BtUdYWqVgErgU/V6e29AhiIk/D9E0BVPwNSRKSb99z/qGqpquYBOUCa9/h3VXWXqu4E3gGOAI4F3vIei6rme6/xPE5Qxfv/LzZSxmHAKOATb4fr3+H012lARK6q7tQ9/Z8Nh3T7W3s62T7zUiFTz01g/qISIiOFWf/oxf2P5uNm9vuAfHKIIY5IiSJMwuhBHwqp29m9F/3IYUudbarq7Yu3DxtYxV6MoBf9yWBtRxa/RarXfQyCjssWv1rgxiuTmPFaEbt21z5tvfr2jkYHGky6oraCsWhHFademMWf7kipGZ2am1fJ8lWlNTXz554Wz/zviv1WVmM6QltiWLBpaZLnO4Sxyud9FU5tYFMj3nzPrWzieLzbG9TnqOrXwEAROQrwqOoPezh3paqO8b72VdUTGvsQVZ1e3an7qqndGjvEr9raybZgeyUfzt3FRZMS2F1cRZgIIlBSGpyjKVvKfh8QTQyF5FOpFagqBeQQSyK7tXZ0Yi5ZxFG3FiWLjaTSmwiJ9PbZEwSopIJgVIW0+hUAFr9aoHuyh0mnxTNjZlHNtgvOTmh0oEF1U21ZmXL2ZVlMnZTApFNr+0slJ4VRWFTFT+ucEbWffFnM8CHNj9gMBu0ZbQxw0pRMug9bz6lT63a1vPTGbAaP/6UmUV76g/OnNe+b3SQPXV+z/b5HgvehdfELt7J5wQc177NXfE7m4jktPn/tR9NZ9s97WPvx83W278j8mdXvPcKqt//GL1+81ikrW+xJEMSvdvFXp6Yvcfrm3SciR+OMjitqYtTfl8BLIjINJ7idCUzFae54V0T+rqrbvM0d1X/xrwCvAff5XGcH1HwLrgF6iMghqjrf2/wxVFVX+ukeW+T8X2/li2+KycuvpP/+G/jDbSlt7mR73yP53HNjd0SEiUfH8vSLhex3TAZXX9RwGHqwst9H47pJCj21Dwv4FEFIIIm+DGIFC9mtOxCEaGIZ7jP4s1IryGIjYzkCgP4MYTnzCSOMUQ2miut81dMPuIDFL69brkniqRktrx1844OdfPltMdsKKnn5DSc5nPFoGmNGRfGPh3oy6YqthIVBcrcwnv97GgBbcyoYf2IGRTuqCAsTHntuOz98MYDEhOBoFqsebXznDcmkprR++pLbrk1id7HSWC3rA79P5ZxTGg4eOPygaP79z04faN0s8YSz/ZcV9Nrv2DYNgug5+miqKsrJ+3F+zTbVKn758jWGnPRrorv1IPP7j9j28yJSh3V+THNRDNsjfyV59+JMMLocp+PyxU0drKqLReQlYKF30/OqugRARP4CfOHtNL0E7+z0wKvAn3ECZbWXgGd9Oi6fAzzubWoJBx7FaZ7pMDOfaXwUVls62T7yp9qRk9HRYcx5vfFrBDP7fezZYBnZYPDEfux5KVWPhNcMxABIlh4cQqOVPUHDJf1Z7qULx6/qQQYAaT3C2blhcBNH13XhOQlceE7jffbOPDmeM09umAj06hnOpsWDWl/QDtKe0cYAE46IZd43uwNQss4nEkbq8IPJ/uFL+ow7udXnJ6YPZUdW3a4lFSW7CQsLJ7qbE98T+wxl67JPgyLJA9fEsD1qNslT1V9w+opUv79kD/tOb+Tce+u9973OIzgjyeqf8zLwciNFORynv8t2n2PfBt72OWYpzrJFxpjOFgR9VCx+mbbwx2jjxvzftG38+ZF8jj08hr/ek0pUlPPv49vvSxg7YRO908L52x9SGDkseOf/7LHPYax+9yF61VvtIn/t92SvmNfg+KjEVPaasOfnpvDoOLSqil25Gc6UKvWWNutUQRDD2ssVc1CIyBM4C5K3/tHBGNMpFPfPMeUPFr/cp72jjRtz/90p9OrpoawMrr49hwefKuD/bunO/vtGs+G7gcTHhTH7012cdelW1nwzoPkLdhJPZDTd9x5HzsqvCAuvTSG6730A3fc+oNXXExEGHnMhmxe8j1ZWkNhnGCLBUXsWCjHMFUmeqt7Q2WUwxrSe25+C/cHilzvdeGUS407I4JLJtX1+21OTVz03aFQUXDI5gYef2Q5Qpy/iyRPiuP7OXPK2VbapP2BH6TnqSH587xFShhxYs62tNXkA8WkDGXbK9QAUbV5DSVHrlokLJLfHMFckecYY9wmFTsum6/IdbXzpFKf2rj01eVnZFfROC0dVef+/uxg13BltvDWngrQeHkSEhUtKqKqClO7BUZO1J+FRsSQN2o+8nxaSMtRZoaKtNXngLG0WEZNAVWUF2cs/o1cjEyh3hlCIYZbkGWMCxu0B0nRtrR1tDHDU6Zv5cW0ZO3cr/fffwHMP92TiMXFMvS6b3G2VqMJ+IyN55kFnYui3P9zJsy8XER4OMdHCzGfTgng96lpp+x5N7qqvW3XOmg+fpLQwh8ryUla89icGHHEuiX2Hk71iHoWbVgFKj+GHkpA+JCBlbgu3xzBL8owxxhiv9ow2Bvji/UbnsGbuW43PBnDdZUlcd1lSqz6js1QvcQYQEZPA2Eumter86ibZ+vqOP5W+409tV9lM4yzJM8YERPVs8cYY40ahEMMsyTPGBIzbR6YZY7o2t8cwS/KMMYGh7u/PYozpwkIghlmSZ4wJiFAYmWaM6bpCIYZZkmeMCRi3B0hjTNfm9hhmSZ4xJiBCodOyMabrCoUYZkmeMSZg1OUB0hjTtbk9hlmSZ4wJGLePTDPGdG1uj2GW5BljAkJDYGSaMabrCoUYZkmeMSZg3N7UYYzp2twewyzJM8YEiPs7LRtjujL3xzBL8owxAeP2p2BjTNfm9hgW1tkFMMaEpuqJRFv7ao6InCgia0RkrYjc2cj+ZBF5V0SWi8hCERlVb79HRJaIyIf+u1tjTKhpSwwLNpbkGWMCQ52Oy619NUVEPMBTwEnACGCKiIyod9jdwFJVHQ1cBDxWb/+NwGp/3KIxJoT5OX51BkvyjDEBU4W0+tWM8cBaVV2vqmXALOD0eseMAD4FUNUfgYEikgYgIn2BXwHP+/M+jTGhyc/xq8NZkmeMCQjF6c/S2lcz+gAZPu83e7f5WgacBSAi44EBQF/vvkeB3wJV7bs7Y0yoa0sMCzY28MIYEyBt7qOSKiKLfN5PV9XpNRdtqH4jyTTgMRFZCqwAlgAVInIKkKOq34vI0W0pmDGmKwnOfnatYUmeMSbY5KnquD3s2wz083nfF8j0PUBVi4BLAUREgA3e12TgNBE5GYgGEkXkX6p6oZ/Lb4wxQcGaa40xAePvgRfAd8AQERkkIpE4idsHvgeISJJ3H8AVwJeqWqSqd6lqX1Ud6D3vM0vwjDFNcfvAC6vJM8YEjL/7qKhqhYhcD8wBPMAMVV0pItd49z8L7AO8IiKVwCrgcr8WwhjTZQRjP7vW6LSaPBG5V0RURPb22Xazd9uemmqMMS7hPNn6feAFqjpbVYeq6mBV/Yt327PeBA9Vna+qQ1R1uKqepaoFjVxjnqqe0tZ7s/hlTOhrSwwLNp3dXLsCp9mk2jk4T97GmBAQiMmQg4jFL2NCnNvjV4cleSJykXcG+mUi8k/v5vfwznElInsBhUCuzzlTRGSFiPwgIg/4bN8pIn/xXutbnzmwBojIp97P+VRE+nfU/RljGgpAn7xOYfHLmK7J7fGrQ5I8ERkJ3AMcq6r74cw4D1AEZHiXHZoCvO5zTjrwAHAsMAY4UETO8O6OA771XutL4Erv9ieBV7wz3b8KPB7A2zLGNCMQzbUdzeKXMV1XIOJXe5Zm9A4se0tEfhSR1SJySFOf1VEDL44F3lLVPABVzXdmNgCcGesnAxOBCXinPgAOBOapai6AiLwKHInz9FwGVK87+T1wvPfnQ/BOggr8E3iwscKIyFXAVQCPPpDEpRfGt/sGQ0F8WHRnF8GEECU4k7Y2CNr41X3y2SQcfnC7bzAUrD/7H51dhKDS75K1nV0E1wtEDPNZmvF4nCmhvhORD1TVt6tH9dKMZ4rIcO/xE7z7HgM+UtVzvLMIxDb1eR3VXCs0nLC02r+BqcAm7/xWvufsSblqTcVoJXtOVhv9TFWdrqrjVHWcJXjGBI624RWEgjZ+WYJnTGAFIH61eWlGEUnEeVh8wbuvTFW3N/VhHZXkfQqcKyIpACLSvXqHqhYDdwB/qXfOAuAoEUn1Zr5TgC+a+ZxvqO0IfQHwlR/KboxpiwCNru0EFr+M6YoCM7q2PUsz7oXT7/dFEVkiIs+LSFxTH9YhzbXeeaz+AnzhnbtqCfCLz/5ZjZyTJSJ3AZ/jPBXPVtX3m/mo3wAzROR2nF/Epc0cb4wJpCCtmmsNi1/GdGGtj2FNLcsI7ViaEYgA9gduUNUFIvIYcCfwf3sqTIdNhqyqLwMvt+C4o31+ngnMbOSYeJ+f3wLe8v78C07/GWNMEAjSmrlWs/hlTNfUhhjW1LKM0L6lGWOBzaq6wHvoWzhJ3h519jx5xpgQFipTqBhjuqYAxK/2LM24FWdE/zDvvgk0MzenLWtmjAkIJXRq8owxXU8gYpgflma8AXjVmwSup5luHZbkGWMCQwFL8owxbhWgGKaqs4HZ9bY96/PzfGDIHs5dCrR46URL8owxAWPNr8YYN3N7DLMkzxgTOC4PkMaYLs7lMcwGXhhjjDHGhCCryTPGBEjQTm5sjDEt4P4YZkmeMSZwXN7UYYzp4lwewyzJM8YEhtoUKsYYFwuBGGZJnjEmcFz+FGyM6eJcHsMsyTPGBJC7n4KNMV2du2OYJXnGmMBx+VOwMaaLc3kMsyTPGBM4Lg+QxpguzuUxzJI8Y0xg2LJmxhg3C4EYZpMhG2MCRrX1r+aIyIkiskZE1orInY3sTxaRd0VkuYgsFJFR3u39RORzEVktIitF5Eb/37ExJpT4O351NEvyjDGBo214NUFEPMBTwEnACGCKiIyod9jdwFJVHQ1cBDzm3V4B3Kqq+wAHA9c1cq4xxtTyY/zqDJbkGWMCR6X1r6aNB9aq6npVLQNmAafXO2YE8CmAqv4IDBSRNFXNUtXF3u07gNVAH3/erjEmxPg3fnU4S/KMMQEj2vpXM/oAGT7vN9MwUVsGnAUgIuOBAUDfOuUSGQiMBRa0+eaMMSHPz/Grw9nAC2NMYLS9+SJVRBb5vJ+uqtO9Pzf2qFz/U6YBj4nIUmAFsASnqda5gEg88DZwk6oWtamEIWbTLffQ/5G/tOncwjmfsXP+QggLo/s5pxMzYliDY8o2Z7Jt1ttoaRnhKcmkXnw+YTHRVGzLJ/PPfyO8Zw8AogYOIGXK2e26F+NfH57wHKd8fGWbzv3pn4vZ9J/VECaMvvFweh7Uv8ExhWvzWPbQl1QUlxPbK4EDfn8cEXGRZHz8E2tfW1pzXNG6bRz9wiS6DUlt6620XpA2wbaGJXnGmABpc/NFnqqO28O+zUA/n/d9gUzfA7yJ26UAIiLABu8LEYnASfBeVdV32lK4UKPt6DFelpXNrsVLSb/nNioKi8h58h+k//4OJKxuI9G2mW+SfOYpRA8ZzM75Cyn6dB5Jp5wIQHhqCul33dLu+zD+p6pQ1bZzizbks+XTtRzzymRK8nbxzc3/5riZUxBP3b+NpQ/MY+S1h5I6Np2N/1nN2teWss8V4+l3wlD6nTDUuda6bSy4678dm+AB7YhhQcOSPGNM4Pj/Kfg7YIiIDAK2AJOB830PEJEkYLe3z94VwJeqWuRN+F4AVqvqI34vmYtUbMsn++kXiB46mNING9HycvLf+TelP60jLDaG1EsvwJMQ3+x1ipevJG7/MUhEOBGp3QlPTaXsl01E7TWwznHlOblE7b0XANHDh5Lz1HM1SZ4JLruziph/+39IHduHgpXZVJZW8MOT35C3eAsRCVGMu/d4opJjmr3O1q9+oc+EvfFEeohLTySuTzcKVufQfVSvOsft3LSdlDG9Aeg5rh/f3Poh+1wxvs4xm+f+TJ/jhvjvJlvDavKMMWYP/BwgVbVCRK4H5gAeYIaqrhSRa7z7nwX2AV4RkUpgFXC59/TDgKnACm9TLsDdqjrbv6V0h4qcXOIvPJeU885i4/W3E9mvD93POpXt//2Ewv9+Qvdzz6Rw7jx2fbe4wbnRe+9F90lnUFlYSOTA2iY4T3I3KgqLiKp3fGTvXhSvWEns6FHsXryMioLC2nJsyydz2t8Ji44m6ZSJRHuTQdN5dm7azti7jmG/W4/k/SOeodvQVEZdfyhrXlzEmpcWMfrmI/h55hI2f/Jzg3NT9ktn9E2HU5K3i+QRaTXbY3rGUZK7q8HxCXt1Z+tXv9D7iEFs+XwdxTk7Gxyz5bN1HPTXTnoosCTPGGM6jjcpm11v27M+P88HGjz2q+pXuH0hSj/ydE8iatAA540IcfvvB0DcgfuT+9zLAHQ77mi6HXf0Hq+hLWzmTbngXPLfeo/C/84lZt8RiMfjlCExkT5/ugdPfBylmzaTO/0l0u+5jbCY6LbfmGm32F4JdB/prXELE/ocuzcAfScOZeE9HwEw5PyxDDl/7B6v0ejfRiP/+sbeeQwrHvuKNS8totfhAwmLqNucm78yG090OIl7pbTtZro4S/KMMYHj8qfgUBYWGbnnneJ8GzdXkxeelESlT61cZUEh4d0SGxwf0asnaddfBUB5di7FK390PiYiHE+E8zUU1b8v4akpTtPugH4NrmE6jid6z6mBeP82mqvJi+kRX6dWrjhnF9GpcQ2OTxiQzKGPnAo4NYjZ8zfV2b/l07X0nbB3m+7DL1wewyzJ87Prbsnno7kl9EgN49vPnCeh/IIqLv31NjZlVNK/n4eXnk0hOcl5Wnn4iSL+OWsXnjDhgfuSOO7oaEpLlSmX5ZGZVcnlF8Vz5SVO35jf/LaAyy+KY79RTQTnIHP5zdn855Pd9Ez1sHye06yTX1DJ5Gu2sjGjggH9wnn9H71ITnKe7Kc9ns+M13bg8cCj96Uy8Zg4SkuVMy7JYktWBb++pBu/vqQbAFfflsM1F3dj7L71G4fcYaP+RCa/ABBPN0Ywjl9YTS5ZAEQSxUgOJEpi2K55/MgSwghjFAcRK/GUaxkrWMBYDq8JvEElBJYE6jJU2b1kBXHjxrBr0RKi9xoENF+TFzN6BHkvzSTx2COpKCyiIjevTvNttcodO/EkxKNVVRTOmUvC4QfXbA+Li0XCwijP20ZFbh7hqZ1bY+PpvZabr07ioXudTv4PP1PAzl1V/OG2lpXrpCmZLFhcwmHjo/n3P9Nrtl96YzZfzi+mW6IT+2c8msaYUVHM+2Y3Z16ylUH9na/jM0+O5/9u6e7nu2qHKiVz3jr6HjeEzZ/8TPd9ne+15mryeh0+kO//OJfB5+1HSd4udm3eTvI+PRscV1qwm6jkWLRKWfPK9ww8vXZ+cvV+9uFPnuH322qREIhhnTZPnogMFBEVkft8tqWKSLmIPNlZ5Wqv88+N4+1X644A+vtTRRx1eBRLvu7FUYdH8fennFkbfvypnHfeL2bBZ714+9VUbr27gMpK5dMvShizbyTfzE3j5VedPgwrVpZRVaWuSvAALj43kdkze9fZ9sCTBUw4PJY13wxgwuGxPPBkAQCr1pTx+vs7WTGvP7NnpnP9XblUVipz5u3mgNFRLP2sH8/9y6k1WLaylCrFtQleiRaTwVrGM4FD5AQUJZsMBjCMg+V4DpbjSaU361kNwEZ+YjQHM5hRbGYdABtYzSCGB2eC5xWAefKCQqjFL4mMpHzrVrIeeJSSn9bS7aTjWnReZO9exI3dj8y//I2cp5+n+7ln1oys3fbqm5RudKY03LVoCVv++ACZ9/0NT7duxB18IAAla9eTdf8jZP71EfKe/yfdJ5+NJy42MDfZQlFRwruzd5K3rbJN5992bRIvP5HW6L4Hfp/K4rn9WTy3P2NG1cauww+KrtkeVAke4IkJZ8cvBcy7/E3yFm9m2CV7GvheV+Kg7qQfO5jPps5i/m0fMvqWI2pG1i6Z9jkFP+YAsHnuWuZOmcmnF7xGdGoc/U8eXnONbcsyiekRR1x6w9rhjuL2+NXZNXnrgVOA//O+nwSs7LzitN9hB0exMaOizrbZc0r4z1vOPFDnT4rjV+fk8qd74D9zijnr9BiiooSB/cPZa2A43y8pIyIcSkqUCp/L/OVvRfx9WnJH3opfHHlIDL9klNfZ9sGcXXz2tjN/7UXnJnDs2VuY9rtUPpizk/NOjycqShjUP4LBAyNYuKSEiHAoLqmq8/v4/YPbeOaBhk+FbqIoVVQiKlRRQRTRhEtEzf5Kar9kwgij0vs/IYzdupNSikmWHp1R9JYLwqDnR66NX+Ep3Um/57aa99Vz5LVlxGu3EyfQ7cQJDbanXDCp5ufEY44g8ZgjGhwTN3Y0cWNHt/ozAyncA1demMij07fz57taX6s44YhY5n2zOwAl6xixvRM59pXJNe+r58irP+K1JYZddADDLjqgwfaxdx5T8/PgSaMZPKnxv4HUsX048h+dPG+iy2OYX2vyvE+3q0XkOe8C4B+LSIyI7C0ic0VkmYgsFpHB3lOKgdUiUv1ocB7whs/1BojIp96Fxj8Vkf7e7S+JyOMi8o2IrBeRc7zbRUT+JiI/iMgKETnPn/fXVrl5lfRKc5oje6V5yPU+IWZtraRvuqfmuPTeHjK3VnLMkdFk51Zy7Ck53HhtArM/LmbM6Eh69/I0en23yc6tpHea83zROy2cnDzn97FlayV902uTnL7p4WzZWsnxR8WyNbeSQ36VwW3XJvPBnF0cMDqa9F6d/YzSdtESwwCG8hX/4X98SDgRpIjTDLJWf+B/+h+2sonBjARgIMNZzWIy+Jl+DGYdP9TsM/5h8ctUu/bSJGa+s4PCorq1ea++vYP9j9vU4DXpiqwWXff/pm1jzLGbuOX3uZSW1mYP335fwtgJmzj5/ExWrin1672Yri0Q35JDgCmqeqWIvAGcDdwATFPVd0UkGie5rK6GmQVMFpGtQCXOxKbVHRmeBF5R1ZdF5DLgceAM777ewOHAcOAD4C2cpYzGAPsBqcB3IvKlqrbsX2AHa3TwkUB4uPDCU84TZHm5cub5ecx6KYW7791OxpZKpkyK5eQTmp+nyG32NBgrPFx49WknASovV06aksl7L/fm1j/ksmlLBVMnJXLaxIYdeoNZuZaRSyaHcTLhRLCCb8nSjfSWAewto9ibUWzQH8lgLYMZSYIkMZ5jASjQXKKIQYEV+i1CGEMYTZQE34jEYGy+aIbFL0NiQhhTJyXwxPOFxMTUdoe44OwELjg7oU3XvP/uFHr19FBWBlffnsODTxXwf7d0Z/99o9nw3UDi48KY/ekuzrp0K2u+GeCvWzHt5MIYVkcg+uRtUNWl3p+/BwYBfVT1XQBVLVFV37rsj4DjgSnA6/WudQgw0/vzP3GCYrX3VLVKVVcB1R0gDgdeU9VKVc0GvgAOrF9AEblKRBaJyKIX/9VwTh5/65HqYWu280S4NbuSHilOjVx6bw+bM2ufFDOzKumdVre27vmXd3L+pFgWfl9GRKTw0rPd+dtj7l6JKa2Hh6xsp+01K7uCnqnOPfft7WFzZm3T7ubMCtLr1V4+81IhU89NYP6iEiIjhVn/6MX9j+Z3XOH9JJ8cYogjUqIIkzB60IdCttU5phf9yGFLnW2q6u2Ltw8bWMVejKAX/clgbUcWv+Vau7h353dydlX82vHVt229T9OMG69MYsZrRezaXfst356avN5p4YgIUVHCJZMTWLikBHASyvg456v45AlxlJdrm/sDmgBwV/xqIBA1eb51zZVAkx3JVLVMRL4HbgVGAqc2dfgePkfq/X+TvOtgTgcoyuwX8Dz9pBOimfnmLm65PpGZb+7i5IlOjcvJJ8RwxXX5XH9VAlnZlazbUMEBY2sHVhRsr+KjuSW891oqsz8uIUycmr5Sl9fmn3pCHK+8sYM7bkjmlTd21NTCnToxjguvzebmq5PJzK5g7YZyxo+trZ0q2F7Jh3N3MWdWOh/M2UWYCCJQUuq+R61oYigkn0qtIAwPBeSQQDK7dQex4tQU5JJFHHVrDbLYSCq9iZBIKrUSEASopKLhh3Q2d6776Kr4NfCph9r9G954/e0kHHsk3c9yil44dx5aWkbSr05o9tyyzVvYNusdtKQUwoRuEycQd8AYAIrX/Mz2d/+DahVhUVGkTD2PiB6pqCoFb71P8cofkcgIUqaeR1S/vu29Db/rnuxh0mnxzJhZxKVTnH+H7anJy8quoHdaOKrK+//dxajhTqzfmlNBWg8PIsLCJSVUVUFK904bE9mk9494hsHn7ceo6w8FYO1rS6koLmf4ZQ2eRRo1/9YPyV+VTcq+vTn4wZNrtud+v5mVT82nqqKSpGE9GHPHMYSFB8HvwJ0xrI6O+C0WAZtF5AwAEYkSkfrDpx4G7lDVbfW2f4OzbBHABcBXzXzWl8B5IuIRkR7AkcDC9hS+tS67dhvHn5bDz+sq2OeALF55bRe3XJfA51+WMvawrXz+ZSk3X+eMFNpnWARnnBrD+GO2cvYFeTz8lyQ8nto4/+Dfi7j9xkREhAlHRbNkeRmHTMjm4vPd0zR5/q+3ctgpm1mzroz++2/ghZlF3HF9MnO/3M2wQzcy98vd3HG98z06clgUk06NZ9RRGzn5/EyeuL9Hnd/HfY/kc8+N3RERJh4dy6JlJex3TAZXXNB5I6/aqpuk0JM+LOBTvuUTFKUvg/iZH5ivH/OtfkI+2QxlTM05lVpBFhvpi9MlrD9DWM581vJDzbago214BZfQj1/h4exetoLKnQ1XI2iORESSetFk0n93Gz2vvYKCtz+gancxAPmz3iH1kimk33ULcePGUvjRXABKVv1IeW4e6X+4g5Qp55A/K3iXEL7lmiTy8ltXq3bU6Zs578qtfPZVMf3338Ccz53f69TrstnvmE3sd0wGefmV3HOTM4r27Q93MvroDMZO2MRNv8tl5rNpQTtiPizSQ9aX6yndXtym8/eeMoYDfld3kI5WKYvv/4xx9x7Psa9MJiYtgYyP1vijuP7h7vjVYaNrpwL/EJE/AeU4o9Bqlj1W1ZU0PirtN8AMEbkdyMW76HgT3sVpIlmG8+v+rapubX/xW27G042Pxvr3G42Pgrz9xkRuv7HxJOWvf0yq+Tk6WnjvtSAfSdmImc/0anT7J2/2aXT73Td15+6bGp9C4JE/1d5/dHQYc15v/BpuMVhGNhg8sR+H7PF4j4RzAEfVvE+WHhxC87Utncnt/Vm8Qjp+SVgYCYceTNFnX5J82kmtOjcirfbfZHhSN8IS4qncuZOw2BgQoarEqbCsKi7B082Z33L38pXEjz/AabocNICq4hIqCosanUS5MxStq31gSusRzs4NrXuA+uL9xmsl577VeLy67rIkrrssqVWf0VnEIww4dQTr3ljOiKsOavX5Pcb1JW9J3S4oZYUleCI8xPdPAqDngX356V9LGHDKPv4ocru5PYb5NclT1V+AUT7vH/LZfWwjp4yqv0FVXwJe8rleg/NU9ZJ67+O9/6/A7d6XMaazuShAduX4lXDkoWT+9RG6HX90ne07v1tM0dx5DY6P6JFKjysuqrOt9JdNaEVlzWTGKeefQ87TLyCREYRFR9Hr1hsAqNxehCc5qea88KRuVG5vfKUME3wGnTWKzy95gyHnj6mzPePjn1j72tIGx8f16cb4P0/c4/Uik6Kpqqii4Mcckof3JHPe+kbXr+00LophjXHvHBTGmODn8gDZVYTFRBM//gCK5n2FRNROYxR/4P7EH7h/s+dXFBaR98osUqeeVzMZctHn/6PntZcTNbA/hXPnUfDOv71z5+1hWgHjChFxkfSbOJT1b63AE1WbQvQ7YSj9Thja6uuJCOPuPZ4fnviaqvIqeh7YlzBPEPTHq+byGGZJnjEmIIJ1BnjTuIRjjiDrgUeJP7h2RYOW1ORVFZeQ+8wMkk6ZSNQgZ+qPyh07Kd+SSZR3ibO4/fcj5+nnAfAkdaOyYHvNtSq2F+KxWjxXGXzuaOZd/hb9Tx5Ws62tNXkA3Uf14oinzgQgZ2EGOzMKmzy+o4RCDLMkzxgTOEE4pYBpnCculrj9R7Nz/nfEe5cda64mTysqyH3uZeIOOoC4/fer2R4WG0NVcQnl2blEpPWg+MefiUhzphaM2XckO778mtgDxlD2yybCYqKtqdZlIhOj6XPMYDZ9+CP9f+UsQ9bWmjyoXb+2sqySn19dwtCLmq897jAuj2GW5BljAsflT8FdTeKxR7Hji29afPyuxcsoWbueyl272PntdwCkTj2PyL59SDn/HHKffwXChLCYGFIuPBeAmJHDKV65msw/TkMiImu2G3cZPHk/NrzzQ6vO+d9177Jz43YqisuZc9YrjL3jaHoe1J+1M5eydf5GtEoZdMZIehwQRFPquDyGWZJnjAkYtzd1dAXV69YCeBIT6P/3+1t8bvz4A4gf33BtUoDY/fYldr99G2wXEVLOO6v1BTWdrnodW4Do7rGcMvfKJo5uqLpJtr6R1x3KyOsObVfZAsXtMSyIejcaY4wxxhh/sZo8Y0zguPwp2BjTxbk8hlmSZ4wJjBAYmWaM6cJCIIZZkmeMCRyXB0hjTBfn8hhmSZ4xJnBcHiCNMV2cy2OYJXnGmIBxe1OHMaZrc3sMs9G1xhhXEZETRWSNiKwVkTsb2Z8sIu+KyHIRWSgio1p6rjHGhBJL8owxgaNteDVBRDzAU8BJwAhgioiMqHfY3cBSVR0NXAQ81opzjTGmlh/jV7X2PKh693tEZImIfNjcZ1mSZ4wJDK1d+7E1r2aMB9aq6npVLQNmAafXO2YE8CmAqv4IDBSRtBaea4wxDv/Hr3Y9qPq4EVjdkluwJM8YEzh+rskD+gAZPu83e7f5WgacBSAi44EBQN8WnmuMMbX8X5PXngdVRKQv8Cvg+ZZ8mCV5xpjAaVuSlyoii3xeV/lcsbHVwuuH1mlAsogsBW4AlgAVLTzXGGNq+T/Ja8+DKsCjwG+BqpZ8mI2uNcYEhNDmkWl5qjpuD/s2A/183vcFMn0PUNUi4FIAERFgg/cV29y5xhhTrY0xLFVEFvm8n66q0+tdtr7GHlQf8z6orsD7oCoipwA5qvq9iBzdksJYkmeMCRz/15N9BwwRkUHAFmAycL7vASKSBOz2NoVcAXypqkUi0uy5xhhTR+tjWFMPqdC+B9XJwGkicjIQDSSKyL9U9cI9fZg11xpjAiMAAy9UtQK4HpiD0/H4DVVdKSLXiMg13sP2AVaKyI84nZtvbOrcQNy6MSYEBGDgBT4PqiISiZO4feB7gIgkefeBz4Oqqt6lqn1VdaD3vM+aSvDAavKMMYEUgB5vqjobmF1v27M+P88HhrT0XGOM2SM/xzBVrRCR6odNDzCj+kHVu/9ZnAfVV0SkElgFXN7Wz7MkzxgTODaswRjjZkH2oOpzzDxgXnOfZUmeMSZg3L4kkDGma3N7DLM+ecYYY4wxIchq8owxgePyp2BjTBfn8hhmSZ4xJjBaPjmoMcYEnxCIYZbkGWMCxu39WYwxXZvbY5glecaYwHF5gDTGdHEuj2GW5BljAsbtT8HGmK7N7TGsyyd5a8ptgHG13Mqozi5CUJmTubSzi+B+Lg+QwW7IDQs6uwhBY99N13Z2EYLKipuf7uwihAaXx7AumeGIyFUiskhEFr07c2dnF8eY0KRtfJkm+cavzbq+s4tjTOgKgfjVJWvyVHU6MB3gu40DgvA/izHuJ96X8S/f+HV82CSLX8YESCjEsC6Z5BljOoilIMYYN3N5DLMkzxgTMG7vtGyM6drcHsMsyTPGBI7LA6QxpotzeQyzJM8YEzguD5DGmC7O5THMkjxjTGCo+5s6jDFdWAjEMEvyjDGB4/IAaYzp4lwewyzJM8YEjNufgo0xXZvbY5glecaYwHF5gDTGdHEuj2GW5BljAsbtT8HGmK7N7TGsSy5rZowxxhgT6qwmzxgTGEG6lqMxxrRICMQwS/KMMYHj8gBpjOniXB7DrLnWGBMQgtOfpbWvZq8rcqKIrBGRtSJyZyP7u4nIv0VkmYisFJFLffbd7N32g4i8JiLRfr1pY0zIaEsMCzaW5BljAkfb8GqCiHiAp4CTgBHAFBEZUe+w64BVqrofcDTwsIhEikgf4DfAOFUdBXiAye2+R2NM6PJj/OoM1lxrjAkYUb9HvfHAWlVdDyAis4DTgVU+xyiQICICxAP5QIV3XzgQIyLlQCyQ6e8CGmNCRwBiWIeymjxjTGC0pRav+XjaB8jweb/Zu83Xk8A+OAncCuBGVa1S1S3AQ8AmIAsoVNWP23ZzxpiQ5//41eEsyTPGBEwb++Slisgin9dVvpds5GPqh9aJwFIgHRgDPCkiiSKSjFPrN8i7L05ELvTvHRtjQonb++RZc60xJnDaFvTyVHXcHvZtBvr5vO9LwybXS4FpqqrAWhHZAAwHBgAbVDUXQETeAQ4F/tWmUhpjQl8QJm6tYTV5xpiACcDo2u+AISIySEQicQZOfFDvmE3ABAARSQOGAeu92w8WkVhvf70JwGr/3a0xJtRYTZ4xxuyJn4OeqlaIyPXAHJzRsTNUdaWIXOPd/yxwH/CSiKzAad69Q1XzgDwReQtYjDMQYwkw3b8lNMaElCBM3FrDkjxjTGAE6MlWVWcDs+tte9bn50zghD2c+wfgD/4vlTEm5ARp7VxrWJJnjAkclwfIruJzfZdj5Mw2nbtBfySTDQjCMMaQIr0aHLNDt/Mji6mgghjiGMV4wiWixed3tNV/v5N9bp7WpnPzvp1LwfIFiITR67gziR80vMExJTlbyPr4LarKSono1p0+p1yIJ6p2Xu7yogLWvvAAPQ6bSOr4Y9p8H8YPXB7DrE+eMSYgArXihfEvVW3z99hOLSKbDA7hBMZyBD+yBG1kXrHVfM/e7MshcgI9SGcja1p1fkdSVWhjGUrztlK4egmDL7uD/pOuIuuTt9GqqgbHZX70Bj2P/BWDL/stCUP2ZdvCz+vs3/rZe8TvtU+bymD8JxRWvLCaPGNM4Lh8ItFQVay7WMJXdKcH28mnikp+0mUUkEs4EezLwURKVLPXySWTNPoRJh5iiCNG4ykknyRS6hy3ix0kkQpACmks4X8MZlSLzw+0ssJ8Nr05nbj+e1OcuRGtKGfrZ++ze9NawqJj6XvaVMJj45u9zo61P9Btn7GEhYcTmZRCZFIqxVmbiO0zsO7n5ecQ228wAPEDh7Lxzen0POIkAIp+XkFktxQkItLv92nawOUxzJI8Y0zABOOTrXHsZgcjGcdw2Z+5+hYJJDNU9mO9rmI9qxjOWH7RNWxlU4Nzk+nBMBlDKcV0o3vN9mhiKKW4wfHxJJJLFj1JJ5vNlHiPaen5HaEsP5f0kyfT+4RzWPXgLcSk9aXXsaeT+/Uccr+eQ+/jzyZvwWcUrl7c4Ny4vnvR67izKN9RSEz6gJrtEQndqNhZ2OD4qNTe7Fy7koQhoyhas4yKou0AVJWVsm3BZww49xry6tXumc7h9hhmSZ4xJjCCdAZ444gmlm5SW2OWRl8AetGf5cwHYKAMYyDD2v1ZIxjHGpayQVfRg3TCgrCnUES3ZGLTBzpvREjcZwwA3UaOI+O9FwFIPehYUg86tt2flX7SeWz99F1yv/mYhL1HIh4PADlfz6H7uKMIi2y+FtV0gBCIYZbkGWNMF+RpMvw7C4s0V5MXRUxNrRxACcVEEdPg+DhJZH+OBGCX7iCPLIAWn98RwppoHhXv76O5mryIhG5U7Nhes718RyHh8d0aHB+VksaAc68BoDQ/hx3rnKWXi7M2smPNMnLm/ZvK0mIQISw8nO77H9GeWzNdmCV5ATZrRhHvzdqFKpwxOY4plyfy06oypt2TT/FupXdfD396NJX4hDCWLSrlgd/lExEp/PnxFPoNjGBHYRV3X5/H46/0wJm/1d3ef3Ebc14vQIGJ5yVzxqUprFtVzFP/l0VZqeLxwLV/6s2w/WJZtWg3T/0+k4hI4beP9iV9YBQ7iyp54DcZ/OnFAa78fVx+czb/+WQ3PVM9LJ/XH4D8gkomX7OVjRkVDOgXzuv/6EVykvNkP+3xfGa8tgOPBx69L5WJx8RRWqqccUkWW7Iq+PUl3fj1Jc6XyNW35XDNxd0Yu2/w1AJIwz7nJkjlsIVe9GMrGTV94pqryetBb35gIQN0CKWUUMzOOs2v1cq0hEiJRlXZwGr6sFerzu9wqhStWU63fcZSuGoxMX0HAc3X5MXvPYot//4n3ccdTcXOQsoKconp3b/BcRW7dhAel4BqFXnz55I85lAABp1/Q80xOV99RFhkVFAleJ7ea7n56iQeutfpX/nwMwXs3FXFH25rvg/l0h9Kue7OHIp2OHH+rhuTOe/0BACuuCWb75eVogpD9orgxcfSiI8Ljtpet8ew4Pgthqh1a8p4b9YuXno/jVf/24uvPitm04Zy/nJnPtffkcRrc3pz9MRY/jW9CIBXnyti2jOpXHt7N97+104AXniikEuvS3RlQlPfL2tKmPN6AY+8uxdPfjiYhZ/tYMuGUl58IJvzb+jBkx8O5sKbevLiA9kAvPNCHnc/1Y+Lb0tj9swCAGY9mcu5v3ZvwnvxuYnMntm7zrYHnixgwuGxrPlmABMOj+WBJ517XbWmjNff38mKef2ZPTOd6+/KpbJSmTNvNweMjmLpZ/147l9Of59lK0upUoIqwQNCYoHvrsCDh10UskDnUkAOezGiRefFSzfS6Mt8PmYJ/2MYY2r+ba7SRRRpPgBbyeAb/Yj5zCGKGNIZ2Oz5nUkiIinN28r6lx9h16af6XFoo9MuNhCd2ovE4WNYN+MBNr05nV7Hn42EOV+zmf99neKsDAAKVy9h7XN/Zd3zDxAen0jSvuMDdi/+FBUlvDt7J3nbKlt9bmyM8NLjaaz4wolnt/w+j+2FznUe+WMPlnzan6Wf9ad/n3CemtGwH2OncXn8spq8ANqwtoJRYyOJjnH+ke9/UDTz5hSzaX05Yw9yvowPOjya31yUwzW3JhEeLpSWKCXFSni4sHljOblbK9n/4OimPsY1MtaVMmxsTM3vY9/xscz/eAcisHun87i0a0cV3Xs682eFhwtlpUpJcRWecCFrYxnbtpaz70FxnXYP7XXkITH8klFeZ9sHc3bx2dt9ALjo3ASOPXsL036XygdzdnLe6fFERQmD+kcweGAEC5eUEBEOxSVVVFTUXuP3D27jmQd6duSttIjbOy2HqhiJ4xCf+aKr58gbzKhWX2uQ7MMgGk73MUJqlx/uL0Poz5BWnd+RIrt1Z/Blv615Xz1HXvWI19boccjx9Djk+Abb0086r+bnlHFHkjLuyCav0/PwE1v92YEW7oErL0zk0enb+fNdrRsBPXRwbXN4eq9weqZ6yN1WSVI3D4kJzneCqlJcogRBnl/D7THMavICaPCwCJYsLGV7QSUlxVV8/Xkx2VkV7DU0gi8/cfqhzJ29m+ws52nmkmsT+etd+cyasYNJF8fzzN8KufrWhv053GrA0Gh+WLibooIKSoqrWPTFTnKzyrnyd72ZMS2biw9bw4xpW7nkdidZmfTrVJ64J5P3X9zGqVO788rD2Vx4c/AlMu2VnVtJ7zTneat3Wjg5ec7fw5atlfRNj6g5rm96OFu2VnL8UbFsza3kkF9lcNu1yXwwZxcHjI4mvVeQPbMpzvQDrX0ZY4LWtZcmMfOdHRQW1a3Ne/XtHex/3KYGr0lXZDW4xsIlJZSVKYMH1sa3y27KJn30L6xZW871lwXJ915bYliQCbJvhdAyaO8ILromkRsuzCEmLowh+0Ti8Qj/92AKD/+xgBceL+SI42IJj3AeW4aOjGTGe85s74sXlJCa5kEV7r4uj/AIuPGeZFJ6eDrzltql/95RnHN1Kr+7eCPRsWEMGh6NJxxmv5rPlb/rxWEnJvK//xTy6J2Z3P/PgQweEcMjbzt9d35YuIvuaU5AmHZDBp4I4Yq7e5GcGrp/wo3FC8Gp4Xz1aefvpLxcOWlKJu+93Jtb/5DLpi0VTJ2UyGkTg6O20+1PwcaYuhITwpg6KYEnni8kJqa2yu2CsxO44OyEZs/Pyq7g4huyefGxNMLCas+f8WgalZXKb+7J5fUPdnLp5MSAlL+13B7DQvcbsgkichVwFcBd93fnzPObn+SyrU4/L57Tz3Ou//SD2+nZ28PAvSN44p9OjdTG9eV8/XndeaFUlRefLOIvT6byt9/nc9XN3cjaXMHrL+3g2tuTAlbWjjDx3GQmnpsMwMsPZZPSK4KX/5bN1b93kpbDT07ksbsz65yjqsx6Kpc7Hu/Hs/dmccFNPcneXMYHL23j4tvSOvwe/C2th4es7Ap6p4WTlV1Bz1Qnke/b28PmzNqm3c2ZFaT3qpvkP/NSIVPPTWD+ohIiI4VZ/+jFYadsDpokLxj7qLidb/wazv70lb3adb25+hb9GcJQ2Q+AjbqGCioYLCObPdd3uTJBGMhwekk/ABbp51Tg9Ckoo5RudGc/ObTOiF1F2UURR3EaERIck/+uevAWuo87il7Hng5A3sLPqSorbXHz6cY3/0Fx5kZi++xF/3OuqNm+ZfZr7M5YR5h3+bI+J00hOq0PhSu/J2/hZwCERUTR+4Szie7Zx8935V83XpnEuBMyuMQnEXv17R08/ExBg2MHD4zgzeedfshFO6o49cIs/nRHCgcf0LAbkscjnHtaAg89UxA0SZ7bY1iXTPJUdTowHeC7jQMC+p8wP6+S7qketm6p4POPdvPCu71qtlVVKTOeLOSsC+ommf95axeHHRNNYrcwSooVCQMJg5Jil/+1AdvzKkhKDScns4xv5hTx0Ft78e9XtrFiwW5GHxzHsm92kT6gbrCf+/Z2Djw6gYRuHkqLqwgLg7AwobTE5cOevE49IY5X3tjBHTck88obO2oStFMnxnHhtdncfHUymdkVrN1QzvixtYGxYHslH87dxZxZ6XwwZxdhIohASWlw/J1ULwlk/Ms3fh0fNqndv+EwwshhCwN1eItWuah7roeRHEisJFCqxSzgU1I0jQiJZJzUrrm6TOfTg3Sg7ojdXM1kEz8HTYIHIJ5wdvy8gtSDJ7RolYv6UsYfg5aXU7B0foN9aUefSuKw/epsi0jqzsAp1+GJjmXH+tVkznmTvabe1Nbid4juyR4mnRbPjJlFXDrFqb1rriavrEw5+7Ispk5KYNKptb9XVWXdL+XsPSgSVeXDT3YxfO/g+HsIhRjWJZO8jnTHr/MoKqjEEy7cfl93EruFMWtGEW/+0xk9e8zEWE6dVFvrUlJcxX/e3lVT03f+FQnc+es8IiLgvsdTO+Ue/On+6zIo2l5JeDj8+t7eJHTz8Jv70/nHn7ZSValERIVxw1/Sa44vKa7i03e28+eXBwJwxuUp/OXaDMIjhDse69tJd9F25/96K198U0xefiX999/AH25L4Y7rk5l89VZmvFZE/z7hvD7dqdUcOSyKSafGM+qojYSHC0/c3wOPp7Z5475H8rnnxu6ICBOPjuXpFwvZ75gMrr4oWJ6Ag7OPiqlLEPqwF5v4mb1bOfAiTmq/1KMkhkiNopxSIqj9kq7QcgrIYSTjGpy/lQx60a/thQ+EsDCS9zuY/EVf0vPIk1t9evyAoezatLbFx8f2GVT7c/qAOvPsBbNbrklq1SjYNz7YyZffFrOtoJKX33BmlJjxaBqjR0Ry6Y05FO2oQhVGj4jk6WAZRBagGCYiJwKPAR7geVWdVm9/MjADGAyUAJep6g8i0g94BegFVAHTVfWxpj7LkrwAe+7Nhs2Jky9LZPJljX8RR8eE8cys2nPGjo/mtTm9Gz3WjR58fVCDbSPHxfH4B4MbPT46JoxpM2vPGXVgHE//d++AlS/QZj7Tq9Htn7zZePPM3Td15+6bGp837JE/9aj5OTo6jDmvB18Tj9ufgruKfgzmWz5hoNadEy9LN7GRNQ2OjyWe0XJInW2Fmk8VVcRQt/Yrh0y605NwiaizvVIr2MZWhjPWT3fhP8ljD2f9i38j5aBj6mwvXPk9ed81XG4sMimVfmdc0ux1c76cTe43HxPXfwg9jzqFsPC6X8EFyxcQP6hzRxo3pWhdbZxO6xHOzg2Nx+3GXHhOAhee03hN3/8+CN4Hdn/HMBHxAE8BxwObge9E5ANVXeVz2N3AUlU9U0SGe4+fAFQAt6rqYhFJAL4XkU/qnVuHJXnGmMCxJM8VwiWC3jqATfyMh9p+n72lP71pOJlvfaVazEoWMpIDG8xzl80m0mn4cJdLFkmkBlVTbTVPVDTdRo4j//v/IeG1yWm3kQfQbeQBbbpmzyN/5UyAXFlJ1pw32LbgU3ocNrFm/66NP7N9+QIGXnBDE1cxHc7/MWw8sFZV1wOIyCzgdMA3URsB/BVAVX8UkYEikqaqWeAsF6OqO0RkNdCn3rl1WJJnjAkYq8lzj/4MYQFzayYqhpbV5FVoOUv5msGMqrMWLkCZllJEAaM5tME1soOxqdZHyrgjWf/yI3UmKm5PTV5EvNN6I+HhJO07nm0L59XsK8nJJHPOG/Q/50rCY4Jk0JQB2hTDUkVkkc/76d5+tNX6ABk+7zcDB9W7xjLgLOArERkPDAD6Atk15RIZCIwFFjRVGEvyjDGBoUCVZXluESGRpGlftrChJtFrriavSqtYxjf0ZgBp0rDJLYfNpNIbj9QdFe7008tlFMG70oMnJo7E4WMoWL6gJtFrT01e+c4iIuITUVV2/LyCqB7eaZCKCsh470X6/Op8oroHSV8042hbDMtT1YYdUGs1NtVz/Q+ZBjwmIkuBFcASoGb6exGJB94GblLVoqYKY0meMSZwLMdzlf4MJYN1LT4+mwy2k0c5ZWTqLwCM5EASJAlwBlYMZHiD83LYQgppeCS4v4JSDjya/MVfteqcDTOfoGxbDlXlpfz09B9JP+k84gcNZ8uH/6JytzPgLrpnOr1PmARA7tcfU1m8m6xP3gZAJIy9Lr7Fvzdi2s7/MWwz1KnC7gvUmTfMm7hdCiBO/4cN3hciEoGT4L2qqu8092HB/S/MGONq1lwb/KqXNAOIkmiO5cwmjq6rtwygNwP2uH+cHN3o9nQZWKdZOJhUL2kGEB6XwD63PNCq8wed33ifuoGTr210e/pJ59VZ8swElwDEsO+AISIyCNgCTAbOr/OZIknAblUtA64AvlTVIm/C9wKwWlUfacmHWZJnjAkcm0LFGONmfo5hqlohItcDc3CmUJmhqitF5Brv/meBfYBXRKQSZ1DF5d7TDwOmAiu8TbkAd6vq7D19niV5xpiAsZo8Y4ybBSKGeZOy2fW2Pevz83xgSCPnfUXjffr2KKyNZTTGmE4hIieKyBoRWSsidzayv5uI/FtElonIShG51Gdfkoi8JSI/ishqkXqTvRljTAixmjxjTGAofu+03MKJRK8DVqnqqSLSA1gjIq96+7c8BnykqueISCQQ698SGmNCRgBiWEezJM8YExDOuo9+j5AtmUhUgQRvJ+V4IB+oEJFE4EjgEgBv0lfm7wIaY0JDgGJYh7LmWmNM4FS14dW0xiYSrb+e25M4HZczceaYulFVq4C9gFzgRRFZIiLPi4jNPGuM2TP/xq8OZ0meMSZgRLXVL7wzxvu8rvK9ZCMfU/9ReyKwFEgHxgBPemvxwoH9gWdUdSywC2jQp88YY6q1IX4FFWuuNcYERtv7szQ1Y3yzE4niTCI6TVUVWCsiG4DhwCZgs6pWLwP0FpbkGWP2JAT65FlNnjEmQNSZY6q1r6bVTCTqHTgxGfig3jGbgAkAIpIGDAPWq+pWIENEhnmPm0ATC3sbY7o6v8evDmc1ecaYgPH3HFMtnEj0PuAlEVmB07x7h6rmeS9xA/CqN0Fcj3fpIGOMaYzb5/q0JM8YEzgBeLJtwUSimcAJezh3KdDU4uHGGFMrCGvnWsOSPGNMYChIEI42M8aYFgmBGGZJnjEmcFz+FGyM6eJcHsMsyTPGBI6746MxpqtzeQyzJM8YEzDBOG+UMca0lNtjmCV5xpjAcXmANMZ0cS6PYZbkGWMCQwnKZX6MMaZFQiCGWZJnjAkIITiX+THGmJYIhRhmSZ4xJnBcHiCNMV2cy2OYLWtmjDHGGBOCrCbPGBM4Ln8KNsZ0cS6PYZbkGWMCIwQ6LRtjurAQiGGW5BljAsbtnZaNMV2b22OYJXnGmMBxeYA0xnRxLo9hXTLJE5GrgKu8b69W1emdWR5jQpO6PkAGI4tfpmVu7uwChAD3x7AumeR5g6IFRmMCSXF9gAxGFr+M6SAhEMO6ZJJnjOkgLu+0bIzp4lwewyzJM8YEjNs7LRtjuja3xzBL8owxgePyAGmM6eJcHsMsyTPGBIYCVe4OkMaYLiwEYpglecaYAHH/yDRjTFfm/hhmSZ4xJnBcHiCNMV2cy2OYJXnGmMBxeYA0xnRxLo9hYZ1dAGNMiKruz9LaVzNE5EQRWSMia0Xkzkb2dxORf4vIMhFZKSKX1tvvEZElIvKh/27WGBNy2hLDgozV5BljAkRB/TvJlIh4gKeA44HNwHci8oGqrvI57DpglaqeKiI9gDUi8qqqlnn33wisBhL9WjhjTIjxfwzraFaTZ4wJHNXWv5o2Hlirquu9Sdss4PT6nwokiIgA8UA+UAEgIn2BXwHP+/M2jTEhyr/xq8NZkmeMcZM+QIbP+83ebb6eBPYBMoEVwI2qNY/jjwK/xfXz2BtjTPMsyTPGBEbb++Slisgin9dVPleVPXySr4nAUiAdGAM8KSKJInIKkKOq3/v9Xo0xocf65BljTBPa1nyRp6rj9rBvM9DP531fnBo7X5cC01RVgbUisgEYDhwGnCYiJwPRQKKI/EtVL2xLIY0xXUAQNsG2htXkGWMCx/998r4DhojIIBGJBCYDH9Q7ZhMwAUBE0oBhwHpVvUtV+6rqQO95n1mCZ4xpksv75FlNnjEmQPwf9FS1QkSuB+YAHmCGqq4UkWu8+58F7gNeEpEVOM27d6hqnl8LYozpAoIzcWsNS/KMMYGhQJX/xzeo6mxgdr1tz/r8nAmc0Mw15gHz/F44Y0zoCFAM60iW5BljAsflT8HGmC7O5THMkjxjTOC4PEAaY7o4l8cwS/KMMQESnFMKGGNMy7g/htnoWmNMYCioVrX6ZYwxQaENMawlWrD+drKIvCsiy0VkoYiMaum59VmSZ4wJnLZNhmyMMcHBz/HLZ/3tk4ARwBQRGVHvsLuBpao6GrgIeKwV59ZhSZ4xJnD8P0+eMcZ0HP/Hr5asvz0C+NT5eP0RGOid87Ml59ZhSZ4xJjBUnekHWvsyxphg0JYY1ryWrL+9DDgLQETGAwNwVvdpybl12MALY0zgWM2cMcbNWh/DUkVkkc/76ao63ed9S9bfngY8JiJLgRXAEqCihefWYUmeMSZg1GrmjDEu1oYY1tTa29CC9bdVtQhnDW5ERIAN3ldsc+fWZ821xpgAaUN/PKv5M8YEjYDEr2bX3xaRJO8+gCuAL72JX0vW7q7DavKMMYGh2GhZY4x7BSCGtXD97X2AV0SkElgFXN7UuU19niV5xpjAsXnvjDFuFoAY1oL1t+cDQ1p6blOsudYYY4wxJgRZTZ4xJiAUUGuuNca4VCjEMEvyjDGBoWrNtcYY9wqBGGZJnjEmYNz+FGyM6drcHsMsyTPGBI7Ln4KNMV2cy2OYqM1LZYwJABH5CEhtw6l5qnqiv8tjjDGt0cYYFlTxy5I8Y4wxxpgQZFOoGGOMMcaEIEvyjDHGGGNCkCV5xhhjjDEhyJI8Y4wxxpgQZEmeMcYYY0wI+n80WGfUtBBqkQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(1, 2, figsize=(10, 5))\n", + "ax1, ax2 = axes\n", + "\n", + "im1, bar = heatmap(monoreplicated_ratio_df.values, \n", + " list(monorb_df.index), \n", + " list(monorb_df.columns),\n", + " cmap=\"viridis\",\n", + " ax=ax1)\n", + "\n", + "\n", + "_ = annotate_heatmap(im1, \n", + " data=monoreplicated_ratio_df.values, \n", + " valfmt=\"{x:.0%}\", \n", + " color=\"black\",\n", + " threshold=1)\n", + "\n", + "im2, bar = heatmap(monorb_df.values, \n", + " list(monorb_df.index), \n", + " list(monorb_df.columns),\n", + " cmap=\"viridis\",\n", + " ax=ax2)\n", + "\n", + "\n", + "_ = annotate_heatmap(im2, \n", + " data=monoanno_df.values, \n", + " valfmt=\"{x:^}\", \n", + " color=\"black\",\n", + " threshold=1)\n", + "\n", + "plt.savefig('cmono_ncmono_mono.filtered_results.pdf')\n", + "plt.savefig('cmono_ncmono_mono.filtered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Non-zero ratio and co-expression mean and variances" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "celltype = 'monocyte'\n", + "annotated_coeqtl_df = pd.DataFrame()\n", + "for celltype in celltypes:\n", + " celltype_annotated_coeqtl_df = pd.read_csv(\n", + " workdir/f'output/filtered_results/UT_{celltype}/coeqtls_fullresults_fixed.all.annotated.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t'\n", + " )[['mean_onemillionv2', 'var_onemillionv2', \n", + " 'gene2_nonzeroratio_onemillionv2',\n", + " 'eqtlgene_nonzeroratio_onemillionv2',\n", + " 'gene2_isSig']]\n", + " celltype_annotated_coeqtl_df['celltype'] = celltype\n", + " annotated_coeqtl_df = pd.concat([annotated_coeqtl_df, \n", + " celltype_annotated_coeqtl_df],\n", + " axis=0)\n", + " \n", + "annotated_coeqtl_df_clean = annotated_coeqtl_df.replace([np.inf, -np.inf], np.nan, inplace=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEJCAYAAAB2T0usAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmNklEQVR4nO3deZhcZZn+8e+dTmMiCWuCIE0S0HYgsjShA+ISmWDYBAEBARkMiwYRZBNnGPWSqIz+ZgCJQAAzDmIwLLIjMMi+ioSsQIjQyCINAZIgIQ2dkOX5/XFOZyrd1emqdJ2q7ur7c119ddU5p049p5d6znnP+z6vIgIzM+vb+lU6ADMzqzwnAzMzczIwMzMnAzMzw8nAzMxwMjAzMzJOBpIGSJouaa6keZJ+kmebvSQtkTQn/fpxljGZmVlH/TPe/3JgbES0SKoFHpP0vxHxl3bbPRoRB2Yci5mZdSLTZBDJiLaW9Glt+tXtUW5DhgyJESNGdHc3ZmZ9ysyZMxdFxNB867K+MkBSDTAT+CQwOSKezLPZnpLmAm8AZ0fEvDz7mQBMABg2bBgzZszIMGozs+oj6dXO1mV+AzkiVkVEA1AH7C5px3abzAKGR8QuwCXArZ3sZ0pENEZE49CheRObmZmtp7L1JoqId4GHgP3aLX8vIlrSx3cBtZKGlCsuMzPLvjfRUEmbpI8HAl8C/tpumy0lKX28exrT4izjMjOztWV9z2Ar4HfpfYN+wB8i4g5J3waIiCuAw4GTJa0EWoGjwqVUzaxIK1asoLm5mWXLllU6lIobMGAAdXV11NbWFvwa9cbP3cbGxvANZDPL9fLLLzN48GA233xz0saGPikiWLx4MUuXLmXbbbdda52kmRHRmO91HoFsZlVh2bJlfT4RAEhi8803L/oKycnAzKpGX08Ebdbn55D5OAOznmbSpEk0NTV1WN7c3AxAXV3dWsvr6+s544wzyhGaWcU4GZilWltbKx2CWcU4GVif09lZ/imnnALA5MmTyxiN9VavvfYa3/jGN3jzzTfp168fEyZM4PTTT+90+x//+MeMGTOGL33pS3nXP//885x00km8++67LF++nC984QtMmTKFGTNmMHXqVC6++OKsDgVwMjAzWy/9+/fnwgsvZNSoUSxdupTddtuNcePGMXLkyLzb//SnP13n/k477TTOPPNMDj74YACeeeYZABobG2lszNsBqKR8A9nMqtbPfvYztt9+e8aNG8fRRx/NBRdcwN/+9jf2228/dtttN77whS/w178m42CPO+44TjvtND772c+y3XbbceONN67Zz/nnn8/o0aPZeeedOffccwHYaqutGDVqFACDBw9mhx124PXXX+80luOOO27NPs855xxGjhzJzjvvzNlnnw3AggUL1rpftdNOOwHw0EMPceCBSVHnhQsXMm7cOEaNGsVJJ53E8OHDWbRoUUl+Vk4GZlaVZsyYwU033cTs2bO5+eab1xS3nDBhApdccgkzZ87kggsu4Dvf+c6a1yxYsIDHHnuMO+64g3POOQeAe+65h6amJqZPn86cOXOYOXMmjzzyyFrv9corrzB79mz22GOPLuN65513uOWWW5g3bx5PP/00P/rRjwA488wzGTt2LPvvvz8XXXQR7777bofX/uQnP2Hs2LHMmjWLQw89lL///e/r++PpwM1EZlaVHnvsMQ4++GAGDhwIwEEHHcSyZcv485//zBFHHLFmu+XLl695fMghh9CvXz9GjhzJW2+9BSTJ4J577mHXXXcFoKWlhaamJsaMGbPm+WGHHcakSZPYaKONuoxro402YsCAAXzzm9/ky1/+8pqz/uOPP559992Xu+++m9tuu41f//rXzJ07t8Mx3XLLLQDst99+bLrppuv74+nAycDMqlK+6gqrV69mk002Yc6cOXlf85GPfKTD6yOCf//3f+ekk07qsP2KFSs47LDDOOaYY/jqV79aUFz9+/dn+vTp3H///Vx33XVceumlPPDAAwB8/OMf54QTTuCEE05gxx135Nlnn+3ymErFzURmVpU+//nP88c//pFly5bR0tLCnXfeyUc/+lG23XZbbrjhBiD5cG1/9t3evvvuy5VXXklLSzJP1+uvv87bb79NRHDiiSeyww47cNZZZxUcV0tLC0uWLOGAAw5g0qRJaxLT3XffzYoVKwB48803Wbx4MVtvvXWHY/rDH/4AJFcs//jHPwp+3674ysDMqtLo0aP5yle+wi677MLw4cNpbGxk4403Ztq0aZx88smcd955rFixgqOOOopddtml0/3ss88+zJ8/nz333BOAQYMG8fvf/54XXniBq6++mp122omGhgYAfv7zn3PAAQesM66lS5dy8MEHs2zZMiKCiy66CEg+3E8//XQGDBgAJDett9xyyzU3uAHOPfdcjj76aK6//nq++MUvstVWWzF48ODu/JjWcKE6s5THGfRu8+fPZ4cddlhrWUtLC4MGDeKDDz5gzJgxTJkyZU0PoN5o+fLl1NTU0L9/f5544glOPvnkTpu88v081lWozlcGZla1JkyYwHPPPceyZcsYP358r04EAH//+9/52te+xurVq9lggw347//+75Lt28nAzKrWNddcU/b3POWUU3j88cfXWnb66adz/PHHd3vf9fX1zJ49u9v7ycfJwMyshHprM6N7E5mZmZOBmZk5GZiZGb5nYGZ9wMmnns5bJSroBvCxIUO4/NJfrXObmpqaNcXmAG699VZGjBiRd9tBgwatGdRWKU4GZlb13lq0iIUbb1+6HS76a5ebDBw4sNMxAD1Rps1EkgZImi5prqR5kn6SZxtJuljSi5KeltS7OwKbmeXR0tLC3nvvzahRo9hpp5247bbbOmyzYMECxowZQ0NDAzvuuCOPPvookIxO3nPPPRk1ahRHHHFEJlcRWd8zWA6MjYhdgAZgP0mfabfN/kB9+jUBuDzjmMzMMtfa2kpDQwMNDQ0ceuihDBgwgFtuuYVZs2bx4IMP8r3vfa9D4blrrrmGfffdlzlz5jB37lwaGhpYtGgR5513Hvfddx+zZs2isbGRX/7ylyWPN9NmokiOtC2F1aZf7etfHAxMTbf9i6RNJG0VEQuyjM3MLEvtm4lWrFjBD37wAx555BH69evH66+/zltvvcWWW265ZpvRo0dzwgknsGLFCg455BAaGhp4+OGHee655/jc5z4HwIcffrimTlIpZX7PQFINMBP4JDA5Ip5st8nWwGs5z5vTZWslA0kTSK4cGDZsWGbxmpllYdq0aSxcuJCZM2dSW1vLiBEjWLZs2VrbjBkzhkceeYQ777yTY489lu9///tsuummjBs3jmuvvTbT+DLvWhoRqyKiAagDdpe0Y7tNlO9lefYzJSIaI6Jx6NChGURqZpadJUuWsMUWW1BbW8uDDz7Iq6++2mGbV199lS222IJvfetbnHjiicyaNYvPfOYzPP7447z44osAfPDBB7zwwgslj69svYki4l1JDwH7AbkzNjQD2+Q8rwPeKFdcZlb9PjZkSEE9gIraX5GOOeYYDjroIBobG2loaGD77Tv2bnrooYc4//zzqa2tZdCgQUydOpWhQ4dy1VVXcfTRR6+Zle28887jU5/6VLePI1emyUDSUGBFmggGAl8C/rPdZrcDp0q6DtgDWOL7BWZWSl2NCchC+x4/Q4YM4YknnljntuPHj2f8+PEd1o8dO5annnqq9EHmyPrKYCvgd+l9g37AHyLiDknfBoiIK4C7gAOAF4EPgO6X9jMzs6Jk3ZvoaWDXPMuvyHkcwClZxmHFmTRpEk1NTR2WNzc3A1BXV7fW8vr6es4444xyhGZmGfEIZCtYa2trpUMws4w4GVgHnZ3le1pIs+rlqqVmZuZkYGZmbiYysz7gO2eexlv/KGEJ602HcNlFF3e6fvHixey9994AvPnmm9TU1NA2WHb69OlssMEGJYulVJwMzKzqvfWPRSzdb3jpdnh3x9HDuTbffPM1dYkmTpzIoEGDOPvss9esX7lyJf3796yP354VjZlZlTruuOPYbLPNmD17NqNGjWLw4MFrJYkdd9yRO+64gxEjRvD73/+eiy++mA8//JA99tiDyy67jJqamkzj8z0DM7MyeeGFF7jvvvu48MILO91m/vz5XH/99Tz++OPMmTOHmpoapk2blnlsvjIwMyuTI444ossz/Pvvv5+ZM2cyevRoIBnfs8UWW2Qem5OBmVmZbLjhhmse9+/fn9WrV6953lbOOiIYP348v/jFL8oam5uJzMwqYMSIEcyaNQuAWbNm8fLLLwOw9957c+ONN/L2228D8M477+Qtd11qvjIws6r3sU2HdNkDqOj9ddNhhx3G1KlTaWhoYPTo0WtKUo8cOZLzzjuPffbZh9WrV1NbW8vkyZMZPryEvaHycDIws6q3rjEBWZs4cWLe5QMHDuSee+7Ju+7II4/kyCOPzDCqjtxMZGZmTgZmZuZkYGZVJJkexdbn5+BkYGZVYcCAASxevLjPJ4SIYPHixQwYMKCo1/kGsplVhbq6Opqbm1m4cGGlQ6m4AQMGdJiRsCtOBmZWFWpra9l2220rHUav5WYiMzPLNhlI2kbSg5LmS5on6fQ82+wlaYmkOenXj7OMyczMOsq6mWgl8L2ImCVpMDBT0r0R8Vy77R6NiAMzjsXMzDqR6ZVBRCyIiFnp46XAfGDrLN/TzMyKV7Z7BpJGALsCT+ZZvaekuZL+V9KnO3n9BEkzJM1wbwEzs9IqSzKQNAi4CTgjIt5rt3oWMDwidgEuAW7Nt4+ImBIRjRHR2DaXqJmZlUbmyUBSLUkimBYRN7dfHxHvRURL+vguoFZS90sCmplZwbLuTSTgf4D5EfHLTrbZMt0OSbunMS3OMi4zM1tbQb2JJO0L1AH3R8QrOctPiIgr1/HSzwHHAs9ImpMu+wEwDCAirgAOB06WtBJoBY6Kvj6e3MyszLpMBpJ+DnyepG3/B5ImRcQl6epTgU6TQUQ8Bmhd+4+IS4FLC47YzMxKrpBmooOAsRFxBrAbsL+ki9J16/ygNzOz3qGQZNA/IlYCRMS7JMlhI0k3ABtkGJuZmZVJIcngb5K+2PYkIlZFxInA88AOmUVmZmZlU0gyOAKY3n5hRPwI2KbkEZmZWdl1eQM5IloBJN0OXAfcFhHvp+tezzY8M7O1TZo0iaamprWWNTc3A+St4V9fX88ZZ5xRjtB6tWLGGVxI0qvoOUk3SDpcUnFT6ZiZZaC1tZXW1tZKh9GrFVy1NCIeBh6WVAOMBb5F0q10o4xiMzPrIN9Z/imnnALA5MmTyxxN9SiqhLWkgSS9iY4ERgG/yyIoMzMrr4KTgaTrgT2Au4HJwEMRsTqrwMzMrHyKuTL4LfD1iFiVVTBmZlYZxdwzuFvSZ9N5CfrnLJ+aRWBmZlY+xTQTXQ18ApgDtF0dBOBkYGbWyxXTTNQIjHRFUTOz6lPMOINngS2zCsTMzCqnmCuDISQDzqYDy9sWRsRXSh6VmZmVVTHJYGJWQZiZWWUVNQJZ0seA0emi6RHxdjZhmZlZORV8z0DS10iqlx4BfA14UtLhWQVmZmblU0wz0Q+B0W1XA5KGAvcBN2YRmJmZlU8xvYn6tWsWWlzk683MrIcq5srgbkl/Aq5Nnx8J3FX6kMzMrNwKPrOPiO8DU4CdgV2AKRHxb+t6jaRtJD0oab6keZJOz7ONJF0s6UVJT0saVexBmJlZ9xRVwjoibgJuKuIlK4HvRcQsSYOBmZLujYjncrbZH6hPv/YALk+/m5lZmXR5ZSDpsfT7Uknv5XwtlfTeul4bEQsiYlb6eCkwH9i63WYHA1Mj8RdgE0lbrdfRmJnZeilkDuTPp98Hd+eN0mqnuwJPtlu1NfBazvPmdNmCdq+fAEwAGDZsWHdCMTOzdrpMBpI2W9f6iHingH0MImleOiMi2l9NKN9u87zPFJJ7FjQ2Nla8WJ4n5TazalLIPYOZJB/OnX1ob7euF0uqJUkE0yLi5jybNAPb5DyvA94oIK4exxNym1lvVUgz0bbru3NJAv4HmB8Rv+xks9uBUyVdR3LjeElELOhk2x7Dk3KbWTUppJlonV09224Qd+JzwLHAM5LmpMt+AAxLX3sFyViFA4AXgQ+A47uM2szMSqqQZqIL17EugLGdrox4jPzNS7nbBHBKAXGYmVlGCmkm+udyBGJmZpVTSDPR2Ih4QNJX863v5KawmZn1IoU0E30ReAA4KM+6AJwMzMx6uUKaic5Nv/vGrplZlSq4NpGkTYBvACNyXxcRp5U8KjMzK6tiCtXdBfwFeAZYnU04ZmZWCcUkgwERcVZmkZiZWcUUM1PZ1ZK+JWkrSZu1fWUWmZmZlU0xVwYfAueTzIXcViiuy9pEZpWUr6BgZ9q2aysr0hUXH7RqUkwyOAv4ZEQsyioYs1Jrampi9ryn6Td0UJfbro4PAZj79ktdb7uwpduxmfUkxSSDeSS1g8x6lX5DB/HRwxpKus8PbppT0v2ZVVoxyWAVMEfSg8DytoXuWmpm1vsVkwxuTb/MzKzKFJwMIuJ3kgYCwyLi+QxjMjOzMiu4a6mkg4A5wN3p8wZJt2cUl5mZlVEx4wwmArsD7wJExBxgvWdBMzOznqOYewYrI2JJMpPlGhWfmN7M1tbZ2Irm5mYA6urq1lru8RIGxSWDZyV9HaiRVA+cBvw5m7DMrNRaW1srHYL1YMUkg++SjD5eDlwL/An4WRZBmdn66+wsv21k9eTJk8sYjfUWxfQm+oAkGfwwu3DMzKwSipnP4FPA2XScz2DsOl5zJXAg8HZE7Jhn/V7AbcDL6aKbI+KnhcZkZmalUUwz0Q3AFcBvSEYjF+Iq4FJg6jq2eTQiDiwiDrOqkO9Gb2c3ecE3ei1bxfYmuryYnUfEI5JGFBeSWd/lm7xWKcUkgz9K+g5wC2vXJnqnmzHsKWku8AZwdkTMy7eRpAnABIBhw4Z18y3NKi/fWb5v8lqlFJMMxqffv5+zrLvzGcwChkdEi6QDSGof1efbMCKmAFMAGhsbPb7BrMp5LoryKqY3UclHG0fEezmP75J0maQhnjPBzDwXRXkV05uoFjgZGJMuegj4dUSsWN83l7Ql8FZEhKTdScpjLF7f/ZlZdfFcFOVTTDPR5UAtcFn6/Nh02Tc7e4Gka4G9gCGSmoFz030QEVcAhwMnS1oJtAJHRYSbgApUirIDvhQ3MyguGYyOiF1ynj+Q3vjtVEQc3cX6S0m6nloJFdMjxZfiZgZFznQm6RMR8TcASdtR+HgDy0Cpyg74UtzMikkG3wcelPQSIGA4cHwmUZmZWVkV05vo/rRa6T+RJIO/RsSa8QaSxkXEvRnEaGZmGStmchsiYnlEPB0Rc3MTQeo/SxiXmZmVUVHJoAvqehMzM+uJSpkM3CXUzKyXKmUyMDOzXqqUyeCVEu7LzMzKqJiupUj6LB0nt5mafv9qSSMzK4Hm5mZWL2kp+biH1QtbaP6wuaT7NKukYmoTXQ18ApjD/w02C9Y9cY2ZmfUCxVwZNAIjXTvIyqUUM4HV1dWxeIMPMxlhXbdFxxisbyhFXbCepphk8CywJbAgo1jMuuSZwKwn681/n8UkgyHAc5Kms/ZMZ18peVRmeCYw67lKVResJykmGUzMKggzWz8uQW6lUkxtooezDMTMiucS5FYqxfQm+gxwCbADsAFQA7wfERtlFJuZFcAlyK0Uihl0dilwNNAEDCSZ4cwT05iZVYGiBp1FxIuSaiJiFfBbSX/OKK6SqMbuX2Z9hQcMllcxyeADSRsAcyT9F0kX0w2zCStbvbn7l5lZFopJBseSNCudCpwJbAMclkVQpVKN3b/M+goPGCyvYnoTvSppILBVRPwkw5jMzKzMiulNdBBwAUlPom0lNQA/XdegM0lXAgcCb0fEjnnWC/gVcADwAXBcRMwq6ggy5n7cZtYXFDvobHfgIYCImCNpRBevuYqkx1Fnxez2B+rTrz2Ay9PvPYb7cZtZX1BMMlgZEUuSk/nCRMQjXSSMg4GpafG7v0jaRNJWEdGj6h+5H7dZ8UpRaNDKp5hxBs9K+jpQI6le0iVAd7uWbg28lvO8OV3WgaQJkmZImrFw4cJuvq2ZVUJra6t78/VQxVwZfBf4IUmRumuAPwE/6+b757vMyFsiOyKmAFMAGhsbXUbbrIdzocHepZgrg5HpV39gAEkTz1PdfP9mki6qbeqAN7q5TzMzK1IxVwbTgLNJ5jVYXaL3vx04VdJ1JDeOl/S0+wVmZn1BMclgYUT8sZidS7oW2AsYIqkZOBeoBYiIK4C7SLqVvkjStfT4YvZv1te5ZIOVSjHJ4FxJvwHuZ+3JbW7u7AURcfS6dpj2IiqsU76ZmWWmmGRwPLA9yZl9WzNRAJ0mAzPLlks2WKkUkwx2iYidMovEzMwqppjeRH+RNDKzSMzMrGKKuTL4PDBe0ssk9wxE0uy/cyaRmZlZ2RSTDPbLLAqzKpZlscPm5uakdGSVWr2wsJ5Sq99NRjX322RgQftki+5GVn2KKmGdZSBm1aqpqYnZc5+BgQVMF758BQCzXyjg3631PQZ9dABsUNPNCHum+vr6grdtWpIk0fottut64y2K23dfUdS0l1Z93E+9TAZuRM12pS3Iu+qlJ4EPS7rPnqSYonUuc9F9xdxANjOzKuUrgz7O/dTNDHxlYGZm+Mqg18iqR0pTUxNsXJ03IM2scE4GvURmPVLeb6Hfxht3Mzoz6+2cDHqTLHqkzLu3pPuz8nNf/OpSqelCnQysRyi0GWx9BmUV2nW2N35YDhw4sOA+8+6L33uVY6pQJwPrEQpuBityUNbQzTdl108XVjGlN35Y1tXVFdy33n3xe4dKTRfqZGA9R4mbwVa99KQ/LM0K5K6lZmbmK4OuuFyDWd+WZaHBUt38LQUnAzOzdciy0GBPUjXJIKvs3draSr+hg1yuwdZbc3MztL6XFpYrodb31nQ5tIxlVmiw58g8GUjaD/gVUAP8JiL+X7v1ewG3AS+ni26OiJ8W+z4elGVmtv4yTQaSaoDJwDigGXhK0u0R8Vy7TR+NiAO7/YYelGU9UF1dHQs/WJXJmWW+QUhm6yPrK4PdgRcj4iUASdcBBwPtk4GZ9VJ95QZrtcs6GWwNvJbzvBnId3q0p6S5wBvA2RExr/0GkiYAEwCGDRuWQahmtj76yg3Wapd1MlCeZdHu+SxgeES0SDoAuBXoMLQzIqYAUwAaGxvb78PMKqkP3GCtdlkng2Zgm5zndSRn/2tExHs5j++SdJmkIRGxKOPYLNUTCp1l0uPGvW2sJ1v+Pk1NTYWXmifb5rWsk8FTQL2kbYHXgaOAr+duIGlL4K2ICEm7k4yKXpxxXNamXw2DNqgtqB5Pb6zdY9ZjrV5Fy4crmfv2S11vGslc1wVtu7BlvcLJNBlExEpJpwJ/IulaemVEzJP07XT9FcDhwMmSVgKtwFER4WagcvnIhtTXDy+oHk+WtXuy6HHj3jbW02U1hml9ZD7OICLuAu5qt+yKnMeXApdmHUdv54FLZpYlF6ozM7PqKUdR7TxwyazKrF5VcOeNona7nkUwnQwK0BN625iZZcnJoCvubWOlUOj9nuXvJ98/smFB+7RerF8N/YZu2GOKYFZNMsjsBuvqVQwcuFHFe9tY71VM0m/rT15fP7zk+7b1k91ny8o1rQk9QdUkA6sChfzD9cIz52IG//TGEwr3dKsOVZMMfIO1dyv0DNdnzlZumX22zLu3oPuL5VI1ycB6t0LPnnvjmXO184lYdXAyMDOrkJ7UU9HJoDdxjxSz6tHDeio6GfQS7pFiVmV6SF2wNk4GvUS190gxs8qqrmTgZhQzs/VSNcnAzShmFeQTsV6vapKBm1HMKqNPnIj1gWRXNcnAzCqj2k/E+kSyw8nAzGydqj3ZtfHkNmZm5isDM+tdJk2atKY5pk3b87Yz81z19fVFnd33VU4GZtbrDRzYcwq+9VZOBmbWq1T7WX6lrnwyv2cgaT9Jz0t6UdI5edZL0sXp+qcljco6JjOz3mTgwIGZX/1kemUgqQaYDIwDmoGnJN0eEc/lbLY/UJ9+7QFcnn43y0S+My/o/OzLbc5WTpX6W1NEZLdzaU9gYkTsmz7/d4CI+EXONr8GHoqIa9PnzwN7RcSCzvbb2NgYM2bM6PL9u/qnb9/Ht5h/+nVdyuXrO5zFB0pWx5flz60YWf2MOzu+tlm12tfQr5bjq5bfX0/QU37GxZI0MyIa863L+p7B1sBrOc+b6XjWn2+brYG1koGkCcAEgGHDhnUrqKwut3rKTaxqPr5SxNAT/ik7k+XPuFp+fz1Zbz6+rK8MjgD2jYhvps+PBXaPiO/mbHMn8IuIeCx9fj/wrxExs7P9FnplYGZm/2ddVwZZ30BuBrbJeV4HvLEe25iZWYayTgZPAfWStpW0AXAUcHu7bW4HvpH2KvoMsGRd9wvMzKz0Mr1nEBErJZ0K/AmoAa6MiHmSvp2uvwK4CzgAeBH4ADg+y5jMzKyjzAedRcRdJB/4ucuuyHkcQMeRFGZmVjYuVGdmZk4GZmbmZGBmZjgZmJkZGQ86y4qkhcCrZXzLIcCiMr5fufn4eq9qPjbw8ZXa8IgYmm9Fr0wG5SZpRmej9qqBj6/3quZjAx9fObmZyMzMnAzMzMzJoFBTKh1Axnx8vVc1Hxv4+MrG9wzMzMxXBmZm5mRgZmb00WQgaUtJ10n6m6TnJN0l6VOSWiXNljRf0nRJ4/O8drSkVZIOl7S5pDnp15uSXs95vkElji2Nsejjk7SxpD9KmitpnqTje+rxlZOk4yR9vAfEsSr9uc9Lf0dnSeqXs353SY9Iel7SXyX9RtJHKxlzMSSFpAtznp8taWL6eKKks9PHAyTdK+ncCoVaEjm/z7mSZkn6bKVjyrxqaU8jScAtwO8i4qh0WQPwMeBvEbFrumw74GZJ/SLit+myGuA/SUpyExGLgYZ03USgJSIuKOfxtNeN4zsFeC4iDpI0FHgemBYRDen2E+kBx1cBxwHPUvkJl1pzfhdbANcAGwPnSvoYcANwVEQ8kf4NHAYMJikL3xssB74q6RcRkXcQVnoCchMwMyJ+UtboSi/397kv8Avgi5UMqC9eGfwzsKJdGe05rD0PMxHxEnAWcFrO4u+S/DG+nX2Y6219jy+AwekHySDgHWBlOQKWNCLnbPZZSdMkfUnS45Ka0rPezSTdKulpSX+RtHP62omSrpT0kKSXJJ2Ws9+z0v09K+mMnOXfSPczV9LVkgZLellSbbp+I0mvKJm2tRGYlp7FDZS0m6SHJc2U9CdJW5XjZ5QrIt4mmQ/81PT3dQpJ8n8iXR8RcWNEvFXu2LphJUnPmjM7Wd8fuA5oiohzyhZVeWwE/KPSQfS5KwNgR6DT+ZXbmQVsDyBpa+BQYCwwOpvQSmK9jg+4lGTWuTdIziiPjIjVpQ+vU58EjiD5kHsK+DrweeArwA9IktnsiDhE0lhgKulVGckx/HMa9/OSLgd2JpkoaQ9AwJOSHgY+BH4IfC4iFknaLCKWSnoI+DJwK8mMfDdFxA2STgHOjogZabK4BDg4IhZKOhL4D+CEDH8ueUXES2kz0RYkv/PflTuGDEwGnpb0X3nW/StwX0ScUd6QMjNQ0hxgALAVyedKRfXFZFAM5TyeBPxbRKxKTsaqQu6B7AvMIfmj/ARwr6RHI+K9MsXyckQ8AyBpHnB/RISkZ4ARwHCSpg8i4oH0fsbG6WvvjIjlwHJJb5M0iX0euCUi3k/3eTPwBZIroBvbmiIi4p10H78h+cC5lSSJfCtPjP9E8sF7b/o3UANUcorWqvlDBIiI9yRNJblabW23+jFgT0mfiogXyh9dyeU2E+0JTJW0Y1Swr39fbCaaB+xW4La7AvPTx43AdZJeAQ4HLpN0SMmj6771Pb7jgZvTJoYXgZf5v6uGclie83h1zvPVJCct+T742v5xcl+7ah3bky7v8A8XEY8DIyR9EaiJiGc7ee28iGhIv3aKiH06O6Aspfd8VpE0WRbzO+/pJgEnAhu2W/4IcAbwvz3hhn4ppc17Q4C8BeTKpS8mgweAj0hac+YnaTTJmSc5y0YAF5A0CxAR20bEiIgYAdwIfCcibi1TzMVYr+MD/g7sna77GMlZ8EtliLdQjwDHAEjaC1jUxVXLI8Ahkj4qaUOSJr5HgfuBr0naPN3XZjmvmQpcC/w2Z9lSkuYnSG6qD03P5JBUK+nT3TyuoqU3+K8ALk3PJC8FxkvaI2ebf5G0Zblj6670Su0PJAmh/bqbgPOBuyVtUubQMiNpe5KrzMWVjKPPNROlTQ+HApMknQMsA14hOev4hKTZJO14S4FL2noS9RbdOL6fAVelzTIiaRLrSaWDJwK/lfQ0SQ+ZDt1+c0XELElXAdPTRb+JiNkAkv4DeFjSKmA2SY8hgGnAeSQJoc1VwBWSWoE9Sa4KL06bqPqTnMnO696hFaStjbmW5Gbr1cAvASLiLUlHARekPY1WkyTDm8sQVxYuBE7NtyIirkiT3O2S9omIZeUNrWTafp+Q/L+Nj4hVFYzH5SjM2kg6nOTm8LGVjsWs3PrclYFZPpIuAfYHDqh0LGaV4CsDMzPrkzeQzcysHScDMzNzMjAzMycDs6IoqWJ6afo4t5pmj6huara+nAzMSuM4wMnAei0nAzPyVjIdKukmSU+lX59bx2sPZ+3qpl+WdEvO+nFpbSQktUi6UEkN+/vT0cRI+oSku9NqqI+mo1LNysbJwPq8tKTED4GxEbELcDrwK+CiiBhNUiDvN529PiJuBGYAx6TFx+4Cdmj7oCep+9Q20ntDYFZEjAIeBtomaZkCfDcidgPOBi4r3RGadc2DzsySSq1rVTKV9CVgZE6F2o0kDe5sB7nSkiBXA/8i6bckZSy+ka5eDVyfPv49yQRDg4DPAjfkvN9HunlMZkVxMjDLX8m0H7BnRKxVSrmI8uW/Bf5IUhvqhojobKKgSN/r3baSxmaV4GYis/yVTO8hp1iakqlD1yW3uikR8QbJREE/Iil216YfSbE7SCbweSytvvqykpnVUGKXbhyPWdF8ZWB9XkTMy1PJ9DRgcloltT9JFdBvr2M3V5FT3TS9opgGDI2I53K2ex/4tKSZwBLgyHT5McDlkn5EUpn0OmBuqY7RrCuuTWSWkXQ8wuyI+J+cZS0RMaiCYZnl5WRgloH0zP99YFw6JWfbcicD65GcDMzMzDeQzczMycDMzHAyMDMznAzMzAwnAzMzA/4/C0k8XyBfguoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'],\n", + " y=abs(annotated_coeqtl_df_clean['mean_onemillionv2']),\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " fliersize=1,\n", + " palette='viridis',\n", + " showfliers = False)\n", + "# plt.savefig('mean_onemillionv2.filtered_results.pdf')\n", + "# plt.savefig('mean_onemillionv2.filtered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEGCAYAAACAd+UpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhX0lEQVR4nO3deXwV9b3/8dcnIRg04EZQayrBXrxKUSOEWrRSC6LW3Vqr/mwFteJVWkBrb22vj4ott97+3HBtSzdFcUXRqrfWFVFqa0kCKqLQusaCBNyIBojkc/+YSRqyzknOnGXyfj4eeSSZ9TM5J5/znc985zvm7oiISDIVZDsAERGJj5K8iEiCKcmLiCSYkryISIIpyYuIJFi/bAfQ2uDBg728vDzbYYiI5JWqqqp17l7a0bycSvLl5eUsWbIk22GIiOQVM3uzs3mxJ3kzewPYAGwBPnX3yrj3KSIigUy15L/i7usytC8REQnpwquISIJloiXvwKNm5sCv3H1OKis3NjZSW1vLxo0b44kujxQXF1NWVkZRUVG2QxGRPJGJJH+wu//TzIYAj5nZK+6+qHmmmU0BpgDsscce7Vaura1l4MCBlJeXY2YZCDc3uTvr16+ntraWYcOGZTscEckTsZdr3P2f4fe1wALgC23mz3H3SnevLC1t3wNo48aN7Lzzzn06wQOYGTvvvLPOaEQkJbEmeTPbzswGNv8MHA681IPtpDu0vKS/g4ikKu5yzS7AgjA59QNud/dHYt6n9GGzZ89m1apVW02rra0FoKysrN3yw4cPZ8aMGZkITSQrYk3y7v4asH+c+xDpTkNDQ7ZDEMmanLrjNVe8/fbbnHHGGaxZs4aCggKmTJnC9OnTO13+xz/+MePGjeOwww7rcP6rr77KueeeywcffMCmTZs45JBDmDNnDkuWLGHu3Llcd911cR1Kn9NRq3zq1KkA3HjjjRmORiT7lOQ70K9fP6666ipGjRrFhg0bGD16NBMnTmTEiBEdLv+Tn/yky+1NmzaNCy64gOOPPx6AF198EYDKykoqK3UDsIjEJ29vhvrpT3/K3nvvzcSJEznttNO48sor+cc//sGRRx7J6NGjOeSQQ3jllVcAmDx5MtOmTeOggw5izz33ZP78+S3bueKKKxgzZgz77bcfl156KQC77bYbo0aNAmDgwIHss88+vPPOO53GMnny5JZtXnzxxYwYMYL99tuPiy66CIDVq1dvVQ/ed999AVi4cCHHHHMMAHV1dUycOJFRo0Zx7rnnMnToUNat003CItI7eZnklyxZwr333ktNTQ333Xdfy6BmU6ZM4frrr6eqqoorr7yS888/v2Wd1atX8+yzz/LQQw9x8cUXA/Doo4+yatUqnn/+eZYuXUpVVRWLFi3aal9vvPEGNTU1HHjggd3G9d5777FgwQKWL1/OCy+8wCWXXALABRdcwPjx4/nqV7/KNddcwwcffNBu3csuu4zx48dTXV3NiSeeyFtvvdXTP4+ISIu8LNc8++yzHH/88QwYMACAY489lo0bN/LnP/+Zk08+uWW5TZs2tfx8wgknUFBQwIgRI3j33XeBIMk/+uijHHDAAQDU19ezatUqxo0b1/L7SSedxOzZsxk0aFC3cQ0aNIji4mK+/e1vc/TRR7e00s8880yOOOIIHnnkER544AF+9atfsWzZsnbHtGDBAgCOPPJIdtxxx57+eUREWuRlknf3dtOamprYYYcdWLp0aYfrbLPNNu3Wd3d++MMfcu6557ZbvrGxkZNOOonTTz+dr33ta5Hi6tevH88//zxPPPEEd955JzfccANPPvkkAJ/5zGc466yzOOussxg5ciQvvbT17QIdHZOISG/lZbnmS1/6Eg8++CAbN26kvr6ehx9+mG233ZZhw4Zxzz33AEHSbNtabuuII47gd7/7HfX19QC88847rF27Fnfn7LPPZp999uHCCy+MHFd9fT0ffvghRx11FLNnz275wHnkkUdobGwEYM2aNaxfv57dd9+93THdfffdQHCG8f7770fer4hIZ/KyJT9mzBiOO+449t9/f4YOHUplZSXbb7898+bN47zzzmPWrFk0NjZy6qmnsv/+nXfTP/zww1mxYgVjx44FoKSkhNtuu42VK1dy6623su+++1JRUQHAz372M4466qgu49qwYQPHH388GzduxN255pprgCBpT58+neLiYiC42Lvrrru2XBgGuPTSSznttNO46667+PKXv8xuu+3GwIEDe/NnEhHBcqlMUFlZ6W2fDLVixQr22WefdsvW19dTUlLCJ598wrhx45gzZ05Lj5h8tGnTJgoLC+nXrx/PPfcc5513Xoelp87+HtI59ZOXpDOzqs4eyJSXLXkIetK8/PLLbNy4kUmTJuV1ggd46623+MY3vkFTUxP9+/fn17/+dbZDEpEEyNskf/vtt2d8n1OnTmXx4sVbTZs+fTpnnnlmr7c9fPhwampqer0dEZHW8jbJZ4NO90Uk3+Rl7xoREYlGSV5EJMGU5EVEEizva/LnfWc676ZxIK9dBg/mFzdc2+UyhYWFLYOMAdx///2Ul5d3uGxJSUnLzVYiIpmW90n+3XXrqNt+7/RtcN0r3S4yYMCATodPEBHJJSrXpEF9fT0TJkxg1KhR7LvvvjzwwAPtllm9ejXjxo2joqKCkSNH8swzzwDB3bBjx45l1KhRnHzyyWr1i0haKcn3QENDAxUVFVRUVHDiiSdSXFzMggULqK6u5qmnnuJ73/teuwHHbr/9do444giWLl3KsmXLqKioYN26dcyaNYvHH3+c6upqKisrufrqq7N0VCKSRHlfrsmGtuWaxsZGfvSjH7Fo0SIKCgp45513ePfdd9l1111blhkzZgxnnXUWjY2NnHDCCVRUVPD000/z8ssvc/DBBwOwefPmlnF0RETSQUk+DebNm0ddXR1VVVUUFRVRXl7Oxo0bt1pm3LhxLFq0iIcffphvfetbfP/732fHHXdk4sSJ3HHHHVmKXESSTuWaNPjwww8ZMmQIRUVFPPXUU7z55pvtlnnzzTcZMmQI55xzDmeffTbV1dV88YtfZPHixfz9738H4JNPPmHlypWZDl9EEizvW/K7DB4cqUdMSttL0emnn86xxx5LZWUlFRUV7L13+94+Cxcu5IorrqCoqIiSkhLmzp1LaWkpN998M6eddlrLU6xmzZrFXnvt1evjEBGBBCT57vq0x6FtD5jBgwfz3HPPdbnspEmTmDRpUrv548eP529/+1v6gxQRQeUaEZFEU5IXEUkwJXkRkQRTkhcRSbC8v/AqIskwe/ZsVq1a1W56bW0tAGVlZVtNHz58ODNmzMhEaHlNSV5EclpDQ0O2Q8hreZ/kz79gGu++n8ahhncczE3XXNfp/PXr1zNhwgQA1qxZQ2FhIaWlpQA8//zz9O/fP22xiPQlnbXKp06dCujxmz2V90n+3ffXseHIoenb4CPt71Ztbeedd24Zt2bmzJmUlJRw0UUXtcz/9NNP6dcv7/+sIpIQykZpMHnyZHbaaSdqamoYNWoUAwcO3Cr5jxw5koceeojy8nJuu+02rrvuOjZv3syBBx7ITTfdRGFhYZaPQESSSr1r0mTlypU8/vjjXHXVVZ0us2LFCu666y4WL17M0qVLKSwsZN68eRmMUkT6moy05M2sEFgCvOPux2Rin5l28sknd9sif+KJJ6iqqmLMmDFAcEFpyJAhmQhPRPqoTJVrpgMrgEEZ2l/Gbbfddi0/9+vXj6amppbfm4cddncmTZrE5ZdfnvH4RKRvir1cY2ZlwNHAb+LeV64oLy+nuroagOrqal5//XUAJkyYwPz581m7di0A7733XofDEouIpEsmWvKzgf8EBnY008ymAFMA9thjj5Q3vsuOg7vtEZPy9nrppJNOYu7cuVRUVDBmzJiWoYNHjBjBrFmzOPzww2lqaqKoqIgbb7yRoUPT2DtIRKSVWJO8mR0DrHX3KjM7tKNl3H0OMAegsrLSO1qmK131aY/bzJkzO5w+YMAAHn300Q7nnXLKKZxyyikxRiUi8i9xl2sOBo4zszeAO4HxZnZbzPsUEZFQrEne3X/o7mXuXg6cCjzp7t+Mc58iIvIvedFP3j3lKk4i6e8gIqnKWJJ394U96SNfXFzM+vXr+3yCc3fWr19PcXFxtkMRkTyS88MalJWVUVtbS11dXbZDybri4uJ2w62KiHQl55N8UVERw4YNy3YYIiJ5KS9q8iIi0jNK8iIiCaYkLyKSYEryIiIJlvMXXiW9OnpYcmcPSgY9LFkk3ynJix6ULJJgSvJ9TEetcj0oWSS5VJMXEUkwJXkRkQRTuaaNji5MQucXJ3VhUkRymZJ8RLo4KSL5SEm+jc5a5bo4KSL5SDV5EZEEU5IXEUmwbpO8me1tZhPMrKTN9CPjC0tERNKhyyRvZtOAB4DvAi+Z2fGtZv8szsBERKT3urvweg4w2t3rzawcmG9m5e5+LWCxRyciIr3SXZIvdPd6AHd/w8wOJUj0Q1GSFxHJed3V5NeYWUXzL2HCPwYYDOwbY1wiIpIG3SX5M4A1rSe4+6fufgYwLraoREQkLbpM8u5e6+5rzOxaMzuozbzF8YYmIiK9FbWffDVwiZn93cyuMLPKOIMSEZH0iJTk3f0Wdz8K+AKwEvi5mbUfxUtERHJKqne8/huwN1AOvJL2aEREJK0iJXkza265/wRYTtB3/thYIxMRkV6LOgrl68BYd18XZzAiIpJekZK8u//SzHYPe9j0azV9UWyRiYhIr0VK8mb2P8CpwMvAlnCyA0ryIiI5LGq55kTg3919U5zBiIhIekXtXfMaUBRnICIikn5RW/KfAEvN7AmgpTXv7tNiiUpERNIiapL/Q/glIiJ5JGrvmlvMrD+wVzjpVXdv7G49MysmuDi7Tbiv+e5+aU+DFRGR1ETtXXMocAvwBsE48p81s0kRulBuAsaHDx0pAp41sz+6+196HrKIiEQVtVxzFXC4u78KYGZ7AXcAo7tayd0dqA9/LQq/vGehiohIqqL2rilqTvAA7r6SiL1tzKzQzJYCa4HH3P2vbeZPMbMlZrakrq4uYjgiIhJF1CS/xMx+a2aHhl+/BqqirOjuW9y9AigDvmBmI9vMn+Pule5eWVpamlLwIiLStajlmvOAqcA0gpr8IuCmVHbk7h+Y2ULgSOClVNYVaWv27NmsWhVttOvm5aZOnRpp+eHDhzNjxoyehiaSU6L2rtkEXB1+RWZmpUBjmOAHAIcBP085SpE2Vq1aRc3yFygoLel22SbfDMCyta91v2xdfbfLiOSTLpO8md3t7t8wsxfp4IKpu+/XzfZ3A24xs0KC0tDd7v5Qj6MVaaWgtIRtT6pI6zY/uXdpWrcnkm3dteSnh9+P6cnG3f0F4ICerCsiIr3XZZJ399Xh9zczE46IiKRTd+WaDXTcr90IusEPiiUqERFJi+5a8gMzFYiIiKRfdy35nbqa7+7vpTccERFJp+4uvFYRlGusg3kO7Jn2iEREJG26K9cMy1QgIiKSft2Va/Z291fMbFRH8929Op6wRCTJdMdy5nRXrrkQmEIwCmVbDoxPe0Qikni6YzlzuivXTAm/fyUz4YhIX6E7ljMj6kNDCoGjgfLW67h7SmPZiIhIZkUdhfJBYCPwItAUXzgiIpJOUZN8WYTByEREJMdEfWjIH83s8FgjERGRtIvakv8LsMDMCoBGNHaNiEheSOVB3mOBF8OHc4uISB6IWq5ZBbykBC8ikl+ituRXAwvN7I/ApuaJ6kIpIpLboib518Ov/uGXiIjkgagP8r4MwMy2c/eP4w1JRETSJeodr2OB3wIlwB5mtj9wrrufH2dw0nMaAEpEIHq5ZjZwBPAHAHdfZmbj4gpKOk7StbW1AJSVlW01vaOkqwGgJC6pvDdBjYJsi5rkcfe3zbZ6dsiW9IcjXWloaEhpeQ0AJZmS6ntTMidqkn/bzA4C3Mz6A9OAFfGFJR21fJrLKTfeeGOGoxH5F70380vUJP8fwLXA7kAt8CgQrYCbw+KqW+v0VERyRdTeNeuA02OOJePiqFurZi1x6axRksq1Gul7ovauKQXOof148mfFE1b30nXxJ911a9WsJdNUD5euRC3XPAA8AzxODl9w1ZtdkqyzVrnq4dKVqEl+W3f/QayRpEgXf/KXyg4imRN1gLKHzOyoWCORPq+hoUFnYyJpFrUlPx34kZltJhhPHjSevPSQyg4imRO1d83AuAMREZH0i3zHq5kdBzQPZbDQ3R+KJyQREUmXSDV5M/sfgpLNy+HX9HCaiIjksKgt+aOACndvAjCzW4Aa4OK4AhPJV+o9JLkkcrkG2AF4L/x5+ygrmNlngbnArkATMMfdr00lQJGO1NbW0vRhfdpvPmuqq6d2c21at9lMPYf+JR9fv3wVNclfDtSY2VOAEdTmfxhhvU+B77l7tZkNBKrM7DF3f7ln4YrkPvUeklwStXfNHWa2EBhDkOR/4O5rmueb2efdfXkH660meD4s7r7BzFYQDHKmJC+9UlZWxvr+m2MZSrlsSPthMSS99PplTirjya8mfGhIB24FRnW1vpmVAwcAf20zfQowBWCPPfaIGo6IiEQQ9Y7X7liXM81KgHuBGe7+Uet57j7H3SvdvbK0tDRN4YiICKQvyXtnM8ysiCDBz3P3+9K0PxERiSCV3jUps+B5gb8FVrj71XHuS0QkHZL2DNtuW/IW+Gw3i23uZPrBwLeA8Wa2NPzSQGciklfyefC8blvy7u5mdj8wuotlvtjJ9Gfppl4vIpJLkjaMedSa/F/MbEyskYiISNpFrcl/BTjXzN4EPiZonbu77xdbZCIi0mtRk/xXY41C0k63jYsIRL/j9U0AMxsCFMcakYiIpE2kJB+OJX8V8BlgLTAUWAF8Pr7Q4hdHazdXWrq6bVxEIPqF158CXwRWuvswYAKwOLaoREQkLaLW5Bvdfb2ZFZhZgbs/ZWY/jzWyDIijtauWrojkkqhJ/oNw/JlngHlmtpZgGGHppc4eMNGR5uWa++x2u+z2hb2KTUTyX9Qkv4jgoSHTgW8SPDTkJzHF1KesWrWKmmUvwoBB3S+8qRGAmpVvdr/sx/UUbB/p2S4iHYqrAQLhMAH9exyapCBqkjfgTwRPhroTuMvd18cWVV8zYBCFex6Y1k1uWf5YWrcnfU9sDZCGjyjZthj6960zzWw9FjJqF8rLgMvMbD/gFOBpM6t198N6HUE31JoQyaI4GiCv/ZXOh7vqe+IeEyfVUSjXAmuA9cCQ9IfTnloT+U3XHEQC2XosZNR+8ucRtOBLgfnAORl9TqtaE3lL1xxEsitqS34owVOdlsYYiyRVTNccmuqi3cjW9EFwOlyww4Dul62rz9A5qkhmRK3JXxx3ICIpKSikpH8Rw4fs2e2iqz4MykBRlmVIcMFLJClifTKUZFeiW7rbbMfw4UMj1THzeSzwJEv0+zOHKMknlVq6GRHXheWuHjfXm+1CbjyubsCAAZHfR3p/9o6SfFKppZsR8V1Yfg/6F7K+f/edA5o8WGbZ2te6X7auvvt9Z0BZWVnk95ven72jJC/SWzFdWC4o3S6WUUQlEOc9OLlwttSszyf5dNcFU60J1tbWQsNHYZfONGr4qOWUX6Qnkv7ejPMenNra2lg+QHry4dGnk3wsdUHVBEXyR0z34DQ0NFCz/AUKSku6XT5qua2npbacT/JxtibYdses1wXLysqo+2RLLG+0KBftRDqj92bvFJSWpH0Y857I+SQv+S3pp/wiuS7nk7xaEyIiPZfzSV7ymz6kRbJLSV6kF2IrRzV92tKjS/LPpk2baKprSmuX1aa6emo3p16iVJIXkT4pzutFW2iCfpbe7faQknwuiPpG2/Rx8H2b7SJtU+IXWzlq+WORxmqR3FRYWAil26a9d03ZkNRLlEryWZZKn/rmmyaGDx+a9m2LdCjBDZA4rxdtY5v5JK1b7bn8SPIJfqOlcvda3o7hkeDXL8nUAEmGnE/yeqPlN71++atPNED6gJxP8nqj5Te9fiLZlfNJXkQkNnGVErctzvrgh81iTfJm9jvgGGCtu4+Mc18iWRNHomj6NHKSSEVP+1onUZylxPr6ekpKuh+cDOIf/DDulvzNwA3A3Jj3I5IVcSWKl17aQCNNPY5LupcrpcS4y5SxJnl3X2Rm5XHuQySb4koUU6dOZdna12J5aEhP+lpL/irIdgBmNsXMlpjZkrq6umyHIyKSKFlP8u4+x90r3b2ytLQ02+GIiCRK1pO8iIjER0leRCTB4u5CeQdwKDDYzGqBS939t3HuUyQp0t3PunmbPelrLfkr7t41p8W5fZGkSqlrZtR+1qAHzfdBuuNVJAflSh9uyX+qyYuIJJiSvIhIgqlc08fMnj275fb6Zs2/N5/2tzZ8+PCUSgci0rGO/veg8/+/dP3vKckLAwboMXMi2RL3/5+SfB+jVrlIdmTrf09Jvo1snVKJiMRBST4ilTREJB8pybehVrmIJIm6UIqIJJiSvIhIginJi4gkmGryIiKtJO2GQSV5EZFu5HPvOiV5EZFWcrlV3hN5m+STdkrVVirHl4Rjg+Qcn0guydsk35F8PqWKQscnuSDpDaykydskn/Q3TZKPL8nHBn3zTEUf0Lkrb5O8SL5JSiLM9w+kvkZJXiTNlAQll+hmKBGRBFNLXiRP9MVav/SekrxInktKrV/ioSQvkifUKpeeUJIXkZygclQ8lOQlUXSjTvKoHNU7SvKSeEoS+UEftvFQkpdEUaIQ2Zr6yYuIJJiSvIhIginJi4gkmJK8iEiCKcmLiCSYkryISIIpyYuIJJiSvIhIgpm7ZzuGFmZWB7yZwV0OBtZlcH+ZpuPLbzq+/JXpYxvq7qUdzcipJJ9pZrbE3SuzHUdcdHz5TceXv3Lp2FSuERFJMCV5EZEE6+tJfk62A4iZji+/6fjyV84cW5+uyYuIJF1fb8mLiCSakryISIIlKsmb2a5mdqeZ/cPMXjaz/zWzvcyswcxqzGyFmT1vZpM6WHeMmW0xs6+b2c5mtjT8WmNm77T6vX82ji2MMeXjM7PtzexBM1tmZsvN7MxcPb5MMrPJZvaZHIhjS/h3Xx6+RheaWUGr+V8ws0Vm9qqZvWJmvzGzbbMZc6rMzM3sqla/X2RmM8OfZ5rZReHPxWb2mJldmqVQe63V67nMzKrN7KBsx5SYJ0OZmQELgFvc/dRwWgWwC/APdz8gnLYncJ+ZFbj778NphcDPgT8BuPt6oCKcNxOod/crM3k8bfXi+KYCL7v7sWZWCrwKzHP3inD5meTA8WXBZOAl4J9ZjqOh1WsxBLgd2B641Mx2Ae4BTnX358L3wEnAQOCTLMXbE5uAr5nZ5e7e4Q1CYePiXqDK3S/LaHTp1fr1PAK4HPhyNgNKUkv+K0Cju/+yeYK7LwXebr2Qu78GXAhMazX5uwRvsLXxh9ljPT0+BwaGCaIEeA/4NBMBm1l5q9bnS2Y2z8wOM7PFZrYqbKXuZGb3m9kLZvYXM9svXHemmf3OzBaa2WtmNq3Vdi8Mt/eSmc1oNf2McDvLzOxWMxtoZq+bWVE4f5CZvWFmJwOVwLyw1TXAzEab2dNmVmVmfzKz3TLxN2rN3dcCU4DvhK/XVIIP9efC+e7u89393UzH1kufEvQ2uaCT+f2AO4FV7n5xxqKK3yDg/WwHkZiWPDASqIq4bDWwN4CZ7Q6cCIwHxsQTWlr06PiAG4A/ELRYBwKnuHtT+sPr1L8BJxMkr78B/w/4EnAc8COCD6kadz/BzMYDcwnPogiO4Sth3K+a2S+A/YAzgQMBA/5qZk8Dm4H/Ag5293VmtpO7bzCzhcDRwP3AqcC97n6PmU0FLnL3JeGHwPXA8e5eZ2anAP8NnBXj36VD7v5aWK4ZQvCa35LpGGJyI/CCmf3/Dub9J/C4u8/IbEixGGBmS4FiYDeCvJJVSUryqbBWP88GfuDuW4LGUyK0PpAjgKUEb7bPAY+Z2TPu/lGGYnnd3V8EMLPlwBPu7mb2IlAODCUoQeDuT4bXC7YP133Y3TcBm8xsLUFp6kvAAnf/ONzmfcAhBGcs85vLAe7+XriN3xAkkfsJPhzO6SDGfydIqI+F74FCYHXa/gKpS8wbsZm7f2RmcwnOMBvazH4WGGtme7n7ysxHl1atyzVjgblmNtKz2Fc9SeWa5cDoiMseAKwIf64E7jSzN4CvAzeZ2Qlpj673enp8ZwL3haf6fwde51+t/EzY1Ornpla/NxE0MjpKaM3/EK3X3dLF8oTT2/0juftioNzMvgwUuvtLnay73N0rwq993f3wzg4oTuE1lS0EpcNUXvN8MBs4G9iuzfRFwAzgj7lwMTxdwjLbYKDDgcMyJUlJ/klgGzNraamZ2RiCliKtppUDVxKcnuPuw9y93N3LgfnA+e5+f4ZiTkWPjg94C5gQztuFoNX6WgbijWoRcDqAmR0KrOvmLGMRcIKZbWtm2xGU2p4BngC+YWY7h9vaqdU6c4E7gN+3mraBoAwEwcXo0rDlhZkVmdnne3lcKQsvjP8SuCFs+d0ATDKzA1st800z2zXTsaVDeHZ1N0GibzvvXuAK4BEz2yHDocXCzPYmOCtcn804ElOuCUsAJwKzzexiYCPwBkEL4XNmVkNQJ9sAXN/csyZf9OL4fgrcHJZHjKA0lUvDu84Efm9mLxD0GGnXvbU1d682s5uB58NJv3H3GgAz+2/gaTPbAtQQ9KABmAfMIkj0zW4GfmlmDcBYgrO468JSUT+CVufy3h1aJM013CKCC5S3AlcDuPu7ZnYqcGXY86aJ4EPuvgzEFZergO90NMPdfxl+gP3BzA53942ZDS0tml9PCP7fJrn7lizGo2ENJPnM7OsEF1W/le1YRDItMS15kY6Y2fXAV4Gjsh2LSDaoJS8ikmBJuvAqIiJtKMmLiCSYkryISIIpyYuELBiZ8obw59ajI+bEiJUiPaEkL9K9yYCSvOQlJXlJvA5Gpyw1s3vN7G/h18FdrPt1th6x8mgzW9Bq/sRw/BzMrN7MrrJgHPEnwjtYMbPPmdkj4QiXz4R3QopkhJK8JFo4PMF/AePdfX9gOnAtcI27jyEYHO03na3v7vOBJcDp4cBT/wvs05zACcYGar67eDug2t1HAU8DzQ+/mAN8191HAxcBN6XvCEW6ppuhJOnG02Z0SjM7DBjRatTRQWY2sLMNtBYOL3Er8E0z+z3BkAhnhLObgLvCn28jeHhLCXAQcE+r/W3Ty2MSiUxJXpKuo9EpC4Cx7r7VkLcpDDX9e+BBgvGD7nH3zh7C4uG+PmgeflYk01SukaTraHTKR2k1SJYFj1HsSusRK3H3fxI8hOUSgoHOmhUQDHQGwcNRng1H1HzdgqdRYYH9e3E8IilRS14Szd2XdzA65TTgxnDky34EIzv+RxebuZlWI1aGZwDzgFJ3f7nVch8DnzezKuBD4JRw+unAL8zsEoLRJu8ElqXrGEW6orFrRHog7E9f4+6/bTWt3t1LshiWSDtK8iIpClvqHwMTw8cTNk9XkpecoyQvIpJguvAqIpJgSvIiIgmmJC8ikmBK8iIiCaYkLyKSYP8HzbUbIKElxgMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'], \n", + " y=annotated_coeqtl_df_clean['var_onemillionv2'],\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " palette='viridis', fliersize=1,\n", + " showfliers = False)\n", + "# plt.savefig('var_onemillionv2.filtered_results.pdf')\n", + "# plt.savefig('var_onemillionv2.filtered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqPklEQVR4nO3deXhU5fn/8fdNCAKCoALWEiFgY/1aFdTgLioWRCtirYranyKouGARq1b71a/aalc3qqJIrWtdUHDBStHWDZfWsqosKohSx5VFUUhYQu7fH+cEJ8mEzEnOzCSTz+u6cmXOmvtkkrnPec5z7sfcHRERadla5ToAERHJPSUDERFRMhARESUDERFByUBERIDWuQ6gIbp06eLFxcW5DkNEpFmZPXv2CnfvmmpZs0wGxcXFzJo1K9dhiIg0K2a2rK5laiYSERElAxERUTIQERGUDEREBCUDEREhw8nAzO42sy/MbH4dy83MbjGzJWb2lpntncl4REQktUxfGdwLDN7C8qOAkvBrFHBHhuMREZEUMvqcgbvPMLPiLawyFLjfgzra/zazzma2o7t/msm4ohg3bhyLFy+uNT+RSFBeXp72ftq1a0dRUVG1eSUlJYwdO7axITZKquOL49igaRxfKlt6T4Em+T5FkS/H15T/9+L4HY8bN45p06bV2kdZWRmVlZVpx9KqVSvat29fbd7RRx8d+fhy/dBZd+CjpOlEOK9WMjCzUQRXD/To0SMrwQEsXryYuQveolXXDtXmV5aVw8ZNae9njW9g5Rcbvt1++ZrYYmyMVMfX2GODpnN8UZJdWVkZQK1liUQi5T9+U/0QrUuUD9Cm4MUXX2T5iuVQWFB9QUUlRBiHZU3ZWpavXvXtjI2bSCQSGXnvmtvvOFmuk4GlmJfyXXb3icBEgNLS0qyOyNOqawfa/6RvrPssmzIv1v01Rj4fX8pk3gZoU1Br3UoP/h3KOlVfVsYGVn6xtPq6TSTZpVLXh9zo0aMBGD9+fBajaaTCglonYo0Vx3sXx+947NixTepkItfJIAHslDRdBHySo1gkT+VzsstnRUVFrGyzISPvXVG32s2aLV2uu5ZOBU4PexXtD6xuSvcLRERaioxeGZjZw8BhQBczSwBXA4UA7j4BmAYcDSwByoARmYxHRERSy3RvolPqWe7A6EzGICIi9ct1M5GIiDQBSgYiIqJkICIiSgYiIoKSgYiIoGQgIiIoGYiICLkvRyEi0qTVVaE0lar1qmoU1acpFTtUMhAR2YLFixcz9823od029a+8fiMAc99bVv+65V83MrJ4KRmIiNSn3TYU9N4v1l1uWvpGrPtrLN0zEBERXRmISNNVuXxNWuXCK78KBpVp1bldWvukW2Mjyz9pJQMzO5JgrIHn3f3DpPkj3f3uDMUmIi1YSUlJ2usuXh3cuC3p1rv+lbtF23dLUW8yMLPfAgcDc4D/NbNx7n5ruPgCQMlARGIXpZdNsxzFrYlJ557BEGCAu48F9gGOMrObw2Wphq0UEZFmJp1k0NrdKwDc/SuC5LCNmT1GMJqsiIg0c+kkg/fN7NCqCXff5O5nAu8C/5OxyEREJGvSSQYnAv+pOdPdr6T6YPYiItJM1ZsM3L3c3cvNbKqZnWpmWyct+ziz4YmISDZEeejsRoJeRQvN7DEzO8HM2mYoLhERyaK0Hzpz95eBl82sABgAnE3QrTSNgh0iuZFIJKhcnd6DS1FULl9DYkMi1n2K5FKkJ5DNrB1Bb6JhwN7AfZkISkREsivtZGBmk4D9gOnAeOAld6/MVGAicSgqKmJlmw20/0nfWPdbNmUeRd2KYt2nSC5FuTK4BzjV3TdlKhgREcmNKPcMppvZgWZWnLydu9+ficBERCR7ojQTPQDsDMwDqq4OHFAyEBFp5qI0E5UCu7m7ZyoYERHJjSjJYD7wHeDTDMUiOaCulyIC0ZJBF4IHzv4DrK+a6e7Hxh6ViIhkVZRkcE2mgpDcUddLEYGITyCb2Q5Av3DWf9z9i8yEJSIi2RSlN9FJwPXASwSD2txqZpe6++R6thsM/AkoAO5y99/XWN4J+CvQI4znBne/J8pBiEjLMW7cOBYvXlxtXtV01YhnyUpKSiKNmtZSRWkmugLoV3U1YGZdgX8CdSaDsI7ReGAgkABmmtlUd1+YtNpoYKG7Dwn3+a6ZPejuGyIei4i0UO3atct1CM1elGTQqkaz0Erqr3q6L7DE3ZcCmNkjwFAgORk40NHMDOgArAIqIsQlIi2IzvIzI0oymG5mzwIPh9PDgGn1bNMd+ChpOkFQ3yjZbcBU4BOgIzAsVc0jMxsFjALo0aNHhLBFRKQ+aY9n4O6XAhOBPYE+wER3v6yezSzVrmpMH0nwVPN3gb7AbWZWqyy2u09091J3L+3atWu6YYuISBoilbB29ynAlAibJKg+NGYRwRVAshHA78Mnm5eY2QfArqQYalNERDKj3mRgZq+6+8Fm9g3Vz+oNcHff0uA2M4ESM+sFfAycDJxaY53/AkcAr4RdV78PLI1wDC1Wql4VEDxVDMEzBMnUq0JE6lJvMnD3g8PvHaPu3N0rzOwC4FmCrqV3u/sCMzs3XD4BuBa418zeJkgwl7n7iqg/S75VXl6e6xBEpJlJ58pguy0td/dV9SyfRo0bzWESqHr9CTCovjiktrrO8qv6Wo8fPz6L0YhIc5bOPYPZBM1Ddd0M7h1rRCIiknXpNBP1ykYgIiKSO+k0E+29peXuPie+cEREJBfSaSa6cQvLHBgQUywiIpIj6TQTHZ6NQEREJHfSaSYa4O4vmNnxqZa7++PxhyUiItmUTjPRocALwJAUyxxQMhARaebSaSa6Ovw+IvPhiIhILkQZ3KYzcDpQnLydu4+JPSoREcmqKIXqpgH/Bt4GapWYFhGR5itKMmjr7j/PWCQiIpIzaY9nADxgZmeb2Y5mtl3VV8YiExGRrIlyZbABuJ5gLOSqUtaqTSQikgeiJIOfA99TeWkRkfwTpZloAVCWqUBERCR3olwZbALmmdmLwPqqmepaKiLS/EVJBk+GXyIikmfSTgbufp+ZtQN6uPu7GYxJRESyLMoTyEOAG4A2QC8z6wv82t2PzVBsInlt3LhxLF68uNq8RCIBQFFRUa31S0pK6hzqVKSxotxAvgbYF/gKwN3nARoFTSRG5eXllJeX5zoMaYGi3DOocPfVZtWGQva6VhaRLUt1lj969GgAxo8fn+VopKWLkgzmm9mpQIGZlQBjgNczE5aIiGRTlGTwM4Knj9cDDwPPAtdmIqimJJFIULl6DWVT5sW638rla0hsSMS6TxGRhorSm6iMIBlckblwREQkF6L0JtoFuITa4xkMiD+spqOoqIiVbTbQ/id9Y91v2ZR5FHWr3WNERCQXojQTPQZMAO4ieBpZRETyRNTeRHdkLBIREcmZKM8ZPG1m52s8AxGR/BPlymB4+P3SpHkaz0BEJA9E6U2kp41FpMnauHEjiUSCdevWxbrfU089lRM2VkDrNrHul4r+tClszaJFi+LdL9C2bVuKioooLCxMe5sovYkKgfOA/uGsl4A73X1jPdsNBv4EFAB3ufvvU6xzGDAOKARWuPuh6cYlIgLBM0EdO3akuLiYGpUSGmXZsmWUrd+AbbV1bPsE8PVrab9VG3r27Bnvft1ZuXIliUSCXr3SP4ePcs/gDmAf4Pbwa59wXp3MrAAYDxwF7AacYma71Vinc7i/Y939B8CJEWISEQFg3bp1bL/99rEmgubIzNh+++0jXyFFuWfQz937JE2/YGZv1rPNvsASd18aBvkIMBRYmLTOqcDj7v5fAHf/IkJMIiKbtfREUKUhv4dII52Z2c7u/n74w3pT//MG3YGPkqYTwH411tkFKDSzl4COwJ/c/f6aOzKzUcAogB49ekQIWyR/pSqDXZeq9aqK4dVHJbNblijJ4FLgRTNbChjQExhRzzap0lPNSqetCZqcjgDaAf8ys3+7+3vVNnKfCEwEKC0tVbVUEYIP+LkL3qJV1w71rlvpGwB484ul9a+7fE2jY8t3n37yMZf//EJWLF+OtWrFSaf8lNNHnlXn+rfcdD2l++7HgQf3T7n83Xff5ZxzzuGrr75i/fr1HHLIIUycOJFZs2Zx//33c8stt2TqUIBovYmeD6uVfp/gQ/4dd988FrKZDXT3f9TYLAHslDRdBHySYp0V7r4WWGtmM4A+wHuISL1ade2QkXIpsmUFrVvziyuv5ge778HaNWv4yZDBHHhIf75XskvK9cf8/NKU8zcvHzOGiy66iKFDhwLw9ttvA1BaWkppaWm8wacQ5QYy7r7e3d9y9zeTE0HoDyk2mQmUmFkvM2sDnAxMrbHOU8AhZtbazNoTNCPF39dKRFqca6+9ll133ZWBAwdyyimncMMNN/D+++8zePBg9tlnHw455BDeeecdAM444wzGjBnDgQceSO/evZk8efLm/fzlrrs48dijGTr4h9x60w0AdOu2Az/YfQ8Atu7QgZ13LuHzzz6rM5ZfXjyWZ6f9DYAbf/9bjjn6KAYPHswll1wCwKefflpthLs99gj2/dJLL3HMMccAsHz5cgYOHMjee+/NOeecQ8+ePVmxYkUsv6sozUT1qdUk5O4VZnYBQbnrAuBud19gZueGyye4+yIzmw68BVQSdD+dH2NcItICzZo1iylTpjB37lwqKirYe++92WeffRg1ahQTJkygpKSEN954g/PPP58XXngBCD6QX331Vd555x2OPfZYTjjhBGbMmMF/l33Io089g7tz/llnMPONf9Nvv/03/6yPP/qIRQvn06fvXvXG9dVXX/LP5/7OM9P+ztZtt6JTp04AXHTRRQwYMIADDzyQQYMGMWLECDp37lxt21/96lcMGDCAX/7yl0yfPp2JEyfG9vuKMxmkbMd392nAtBrzJtSYvh64PsZYRKSFe/XVVxk6dCjt2rUDYMiQIaxbt47XX3+dE0/8tgf7+vXfNnIcd9xxtGrVit12243PP/8cgFdeeYXXXnuN448eBEBZWRnLPvxgczJYu3YtY847m8uv+hUdOnasN64OHTqyVZut+L8rrmDQwB8yYkRw63XEiBEceeSRTJ8+naeeeoo777yTN9+s3mHz1Vdf5YknngBg8ODBbLvttg399dQSZzIQEWky3Gufn1ZWVtK5c2fmzZuXcputttqq1vbuztmjzuHk4WfWWn/jxo1ceO7ZDDnuxwwafHRacbVu3ZpHn3qG11/+J89Nn86kSZM2X5l897vfZeTIkYwcOZLdd9+d+fOrN5KkOqa4RLpnUI8PY9yXiEijHHzwwTz99NOsW7eONWvW8Mwzz9C+fXt69erFY489BgQfrjXPvmvq378/j0+ZzNq1awH4/LNPWbliBe7OlZddTO/vfY8zzjon7bjWrl3LN998w6GHHsZVV121OTFNnz6djRuDgg6fffYZK1eupHv37rWO6dFHHwXgueee48svv0z759anMeUoXgYmVJWjcPfjY4tKRKSR+vXrx7HHHkufPn3o2bMnpaWldOrUiQcffJDzzjuP6667jo0bN3LyySfTp0+fOvfTv39/Fr3zLqccfywA7du354/jbuXDD5Yy9fEp7LLr//DjowYCMPYXl3Po4UdsMa61a9dwwdkjWV9ejhncfPPNQPDhfuGFF9K2bVsArr/+er7zne9svsENcPXVV3PKKacwadIkDj30UHbccUc6ptE0lY4ozUR3ENQOuj2cPi2cV3fHWhGRHLrkkku45pprKCsro3///lx88cX06tWL6dOn11r33nvvrTa9Zs23z1qcNnw4p486v9ryHj2LWfThx2nH8rsbx21+/ehTz9SqTXTTTTdx00031drusMMO47DDDgOgU6dOPPvss7Ru3Zp//etfvPjii9Wathoj0+UocqqupzMTiWAg+uRuXKAnLkXyzahRo1i4cCHr1q1j+PDh7L333rkOqVH++9//ctJJJ1FZWUmbNm3485//HNu+M12OokkqLy/PdQiShlTJvK5EDkrmUttDDz2U9Z/56//7X+bOmllt3mkjzuL4k4Y1et8lJSXMnTu30ftJJdPlKHKqrg+Gqtos48ePz2I0Egclcmnqrrr2t7kOoUFiK0chErdUyVyJXCQz6k0GZjbA3V8ws5q9hXY2M9z98QzFJiIiWZLOlcGhwAvAkBTLHFAyEBFp5upNBu5+dfjy1+7+QfIyM9O4yCIiKfyg907s8v1dN0/fNvFuuu+0U8p1O3ToUK0ray5EuYE8BajZL2sywVgEIiJN1nkXXMjnDazuWVFREZSBsG8LNmy/bWcuv/KqLW7Xtm1bnvh7zar+TVc69wx2BX4AdKpx32AboG2mAhMRicvnK1awvNOu9a+YrpULIm+ydu1aLjh7BKtXr6aiooIxY8Yw5EfV6xl9+umnDBs2jK+//pqKigruuOMODjnkEJ577jmuvvpq1q9fz84778w999xDhw71D2gURTpXBt8HjgE6U/2+wTfA2bFGIyKSJ9atW7e5TEX3nXow7vY7ufXOv9ChY0e+XLWKYcf9iGOOPqraNg899BBHHnkkV1xxBZs2baKsrIwVK1Zw3XXX8c9//pOtt96aP/zhD9x0001cddWWr0yiSueewVPAU2Z2gLv/K9afLiKSp2o2E23cuJGbr/89s/7zBq3M+OLzz1m+fDnFxcWb1+nXrx8jR45k48aNHHfccfTt25eXX36ZhQsXctBBBwGwYcMGDjjggNjjjXLPYK6ZjSZoMtrcPOTuI2OPSkQkz/ztycdZtXIlk5/+O4WFhRxx0L7VxlKAoCjejBkzeOaZZzjttNO49NJL2XbbbRk4cCAPP/xwRuOLUsL6AeA7wJEEFUuLCJqKRESkHt988w3bd+lCYWEhb7z+Gp98XLvI3bJly+jWrRtnn302Z555JnPmzGH//ffntddeY8mSJUAwuM5778U/RHyUZPA9d/8/YK273wf8CNgj9ohERPLQkOOOZ/5bb3LCkKN4+qkn6N27d611XnrpJfr27ctee+3FlClTuPDCC+natSv33nsvp5xyCnvuuSf7779/tbLWcYnSTLQx/P6Vme0OfAYUxx6RiEjMdujSBVY07AO0rq6l9Zm9sHqRxW23245Hnnh683RVCWv4tlz28OHDGT58eK19DRgwgJkzZ9aaH6coyWCimW0LXAlMBToA/5eRqEREYnTHbX9q8LbLli2jbP0GbKutY4yo6UkrGZhZK+Brd/8SmAHUvr4REZFmK617Bu5eCVyQ4VhERCRHotxA/oeZXWJmO5nZdlVfGYtMRESyJso9g6rnCUYnzXPUZCQi0uxFGdxGFUpFRPJU2snAzAqB84D+4ayXgDvdfWOdG4mItEBffrmKkacGYx6vWL6cVgUFbLdd0Ko+6alnaNOmTS7DSylKM9EdQCFwezh9WjjvrLiDEhGJ0/kXjeHzLxtWwnpTRQWVNZ4z2G6bbbn8sroLxW277Xab6xLddvONtN96a0aOOnfz8oqKCgoaFE3mREkG/dy9T9L0C2b2ZtwBiYjE7fMvV/DN4J6x7W/V35ZG3uaXF4+lU+fOLFown91234P2bdvQeZtt+M1vfgPA7rvvzt/+9jeKi4v561//yi233MKGDRvYb7/9uP322ykoyGz6iNKbaJOZ7Vw1YWa9gU3xhyQikp8+/GApdz84icuuvLrOdRYtWsSkSZN47bXXmDdvHgUFBTz44IMZjy3KlcElwItmthQwoCcwIiNRiYjkocFHH1PvGf7zzz/P7Nmz6devHwDl5eV069Yt47Gl+wRyAdAHKCEY7MaAd9x9/RY3FBGRzdq1b7/5deuC1lRWVm6eXrduHQDuzvDhw/nd736X1djSfQJ5E3Csu69397fc/c10E4GZDTazd81siZldvoX1+pnZJjM7Ic3YRUSare927878+fMBmDNnDh988AEARxxxBJMnT+aLL74AYNWqVSxbtizj8URpJnrdzG4DJgFrq2a6+5y6NgivKMYDA4EEMNPMprr7whTr/QF4NkI8IiLN1qAjj+SZp6fSt29f+vXrxy677ALAbrvtxnXXXcegQYOorKyksLCQ8ePH07NnfDfAU4mSDA4Mv/86aZ4DA7awzb7AEndfCmBmjwBDgYU11vsZMAXoFyEeEZG07LBtF5jesLPrurqWpuuCiy5OOb9t27Y88MADKT/khw0bxrBhw6IH2whRnkA+vAH77w58lDSdAPZLXsHMugM/JkgqdSYDMxsFjALo0aNHA0IRkZbq9ptvafC2LaWEddpdS81sBzP7i5n9PZzezczOrG+zFPO8xvQ44LLwvkSd3H2iu5e6e2nXrl3TDVtERNIQ5TmDewna9L8bTr8HjK1nmwSwU9J0EfBJjXVKgUfM7EPgBOB2MzsuQlwiItJIUZJBF3d/FKgEcPcK6n/obCZQYma9zKwNcDLBKGmbuXsvdy9292JgMnC+uz8ZIS4RESDolikN+z1ESQZrzWx7wmYeM9sfWF1PQBUEg+I8CywCHnX3BWZ2rpmdu6VtRUSiaNu2LStXrmzxCcHdWblyJW3bto20XZTeRBcTnNXvbGavAV2BE9MIbBowrca8CXWse0aEeERENisqKiKRSLB8+fJY97tq1So2bKyA1jFXGq3YQJvC1pSVlcW7X4LEWFRUFGmbKL2JZpvZoXz7BPK7Kl+dHyqXr6Fsyrz61/uqHIBWndultU8y/wS9NGHjxo1j8eLF1eYlEgmAlB9UJSUljB07tsE/r7CwkF694h92ZfTo0cx9bxkFvferf+UINi19g7126cn48eNj3W9DRRnP4H3g+uSzejP7m7sfk5HIJCtKSkrSXnfx6uAfu6RbGoPbdYu2b2kZysvLcx2C1CFKM9FG4HAz2w84x903EDxHIM1YlDOx0aODEU+bypmMNG2p/rb0N9R0RUkGZe4+zMx+AbxiZidR+5kBEcmiRCJB5er0mvmiqFy+hsSGRKz7lKYtSjIwAHf/o5nNJughtF1GohIRkayKkgw2j/Hm7s+b2SDgjNgjEpG0FRUVsbLNBtr/pG+s+y2bMo+ibtF6o0jzFqU30dNhHaGeSdu9lImgpLZUPTPqUrVeVftsfRrbi0NEmr8ovYl+T/AE8UK+ffLYgRkZiEtqWLx4MXPffBvabVP/yuuDHr9z30ujSmP5142MTOqTyUSeSCQg5u7v0jJFaSb6MfB9jW6WQ+22yUhfZ8msTCbyDu3bQpvMDpQuLUOUZLAUKASUDKRZaRIP1WUskW+IdZ/SckXqWgrMM7PnSUoI7j4m9qhEYqKH6kTSEyUZTKVGxVGRpk4P1YmkJ0pvovvCMtS7hLNUm0hEJE9E6U10GHAf8CHBA2g7mdlwd8/73kRNos1ZRCSDojQT3QgMcvd3AcxsF+BhYJ9MBNZUqM1ZRFqCKMmgsCoRALj7e2ZWmIGYmhS1OYtISxAlGcwys78AD4TTPwVmxx+SiIhkW5RkcB4wGhhDcM9gBnB7JoISEZHsitKbaD1wU/glIiJ5JEpvooOAa6heqA53T+NuqYiINGVRmon+AlxEcJ9gUz3riohIMxIlGax2979nLBIREcmZKMngRTO7Hnic6rWJ5sQelYiIZFWUZFBVcrE0aZ4DA+ILR1qqdGv+a+AekcyI0pvo8C0tD0tT3Nf4kKQlSrvmvwbuEcmIKFcG9bmQoHaRSMPEXPNfA/eIpC/OZGAx7isyjREsItJwcSYDj3FfkWmMYGmpVFVX4pA3VwaAxgiWFqddu3ZpV79VVV3ZkjiTwWsx7ktE0lBUVJR2lVxV1ZUtaZXOSma2q5kdYWYdaswfXPXa3S+oY9vBZvaumS0xs8tTLP+pmb0Vfr1uZn2iHoSIiDROvVcGZjaGoFrpIuAvZnahuz8VLv4tMH0L2xYA44GBQAKYaWZT3X1h0mofAIe6+5dmdhQwkW+faRARyalEIgHlX8ffZFz+dbDvJiKdZqKzgX3cfY2ZFQOTzazY3f9E/fcJ9gWWuPtSADN7BBgKbE4G7v560vr/BooixC8iIjFIJxkUuPsaAHf/MBwLebKZ9aT+ZNAd+ChpOsGWz/rPBFLWPzKzUcAogB49eqQRtohI4xUVFbG8bFNGOqcUFTWdc9907hl8ZmZ9qybCxHAM0AXYo55tUyWLlF1QzexwgmRwWarl7j7R3UvdvbRr165phC0iIulKJxmcDnyWPMPdK9z9dKB/PdsmgJ2SpouAT2quZGZ7AncBQ919ZRoxiYhIjOpNBu6ecPfPAMzsYDMbEb7uQooP9hpmAiVm1svM2gAnA1OTVzCzHgSVUE9z9/cacAwiItJIUUY6u5qgYun3gXuANsBfgYPq2sbdK8zsAuBZoAC4290XmNm54fIJwFXA9sDtZgZQ4e6lde1TRETiF+Whsx8DewFzANz9EzPrWN9G7j4NmFZj3oSk12cBZ0WIQ0REYhYlGWxwdzczBzCzrTMUk0heaSn91KV5i5IMHjWzO4HOZnY2MBL4c2bCEpHmQhWD80OUwW1uMLOBwNcE9w2ucvd/ZCwykTyR7/3UVTE4P0QqVBd++CsBiEh1qhjc7KVVqA7AzI43s8VmttrMvjazb8xMqVtEJA9EuTL4IzDE3RdlKhgREcmNtK8MgM+VCERE8lOUK4NZZjYJeBJYXzXT3R+POygREcmuKMlgG6AMGJQ0zwlKSYiISDMWpWvpiEwGIiIiuROlN9EuZva8mc0Pp/c0syszF5qIiGRLlGaiPwOXAncCuPtbZvYQcF0mApOWJSMlG1SuQSRtUXoTtXf3/9SYVxFnMCIikhtRrgxWmNnOhCOVmdkJwKcZiUpanEyUbGgq5RqA9K961q8Nvm+VRh1IlWvInhbw/kVJBqOBicCuZvYx8AHw04xEJZJHSkpK0l63qpBbSUnP2PctDdNS3r8oyeA4gnEJXiRoXloL/NDMZrv7vPhDE8kPUapuVlXzHD9+fIaikahayvsX5Z5BKXAusC3QGRgFHAb82cx+EXtkIiKSNVGuDLYH9nb3NbB5GMzJQH9gNkHtIskQDZAi6aprfIG6xhLQmAEC0ZJBD2BD0vRGoKe7l5vZ+jq2EZEmol27drkOQZqwKMngIeDfZvZUOD0EeDgc/nJh7JFJNfk+QIrER2f50hBRylFca2bTgIMBA85191nhYvUqEhFpxqKOdDab4P5Ak6M2dRGRhouUDEREatKJWH7Im2SgNvU8kM4HSjN+wlOkKcubZCDNW7pPYjbnJzzzlU7E8oOSgTQJ6faAac5PeIo0ZVGeQBYRkTylK4PmpAVUThSR3FAyaCZaSuVEaaZ0otLs5VcyyOM/yJZSOVGaH52o5Ie8SQb6g4yPCp1JFDpRyQ8ZTwZmNhj4E1AA3OXuv6+x3MLlRwNlwBnuPifqz9EfZOap0Fm8UiXduhIuKOk2Jfl4wpTRZGBmBcB4YCCQAGaa2VR3Ty5sdxRQEn7tB9wRfm/S8vkfubnE2VBN+R9ZCbd5a87vX6avDPYFlrj7UgAzewQYSvUqp0OB+93dCaqidjazHd290eMrZ/ufPtt/CE35Qy0O2U642X7/mtN70RA6YWpeMp0MugMfJU0nqH3Wn2qd7kC1ZGBmowhGV6NHjx6NCiqOf/qm/MfQnM9O6pPv712+y+e/zebOghPyDO3c7ETgSHc/K5w+DdjX3X+WtM4zwO/c/dVw+nngF2GF1JRKS0t91qxZdS0WEZEUwjHrS1Mty/QTyAlgp6TpIuCTBqwjIiIZlOlkMBMoMbNeZtYGOBmYWmOdqcDpFtgfWB3H/QIREUlfRu8ZuHuFmV0APEvQtfRud19gZueGyycA0wi6lS4h6Fo6IpMxiYhIbRl/zsDdpxF84CfPm5D02oHaXQtERCRrVLVURESUDERERMlARERQMhARETL80FmmmNlyYFkWf2QXYEUWf1626fiar3w+NtDxxa2nu3dNtaBZJoNsM7NZdT21lw90fM1XPh8b6PiySc1EIiKiZCAiIkoG6ZqY6wAyTMfXfOXzsYGOL2t0z0BERHRlICIiSgYiIkILTQZm9h0ze8TM3jezhWY2zcx2MbNyM5trZovM7D9mNjzFtv3MbJOZnWBm25vZvPDrMzP7OGm6TS6OLYwx8vGZWScze9rM3jSzBWY2oqkeXzaZ2Rlm9t0mEMem8Pe+IHyPfm5mrZKW72tmM8zsXTN7x8zuMrP2uYw5CjNzM7sxafoSM7smfH2NmV0Svm5rZv8ws6tzFGoskt7PN81sjpkdmOuYMl61tKkxMwOeAO5z95PDeX2BHYD33X2vcF5v4HEza+Xu94TzCoA/EJTkxt1XAn3DZdcAa9z9hmweT02NOL7RwEJ3H2JmXYF3gQfdvW+4/jU0gePLgTOA+eR+wKXypPeiG/AQ0Am42sx2AB4DTnb3f4V/Az8BOhKUhW8O1gPHm9nv3D3lQ1jhCcgUYLa7/yqr0cUv+f08EvgdcGguA2qJVwaHAxtrlNGeR/VxmHH3pcDPgTFJs39G8Mf4RebDbLCGHp8DHcMPkg7AKqAiGwGbWXHS2ex8M3vQzH5oZq+Z2eLwrHc7M3vSzN4ys3+b2Z7htteY2d1m9pKZLTWzMUn7/Xm4v/lmNjZp/unhft40swfMrKOZfWBmheHybczsQwuGbS0FHgzP4tqZ2T5m9rKZzTazZ81sx2z8jpK5+xcE44FfEL5fowmS/7/C5e7uk93982zH1ggVBD1rLqpjeWvgEWCxu1+etaiyYxvgy1wH0eKuDIDdgTrHV65hDrArgJl1B34MDAD6ZSa0WDTo+IDbCEad+4TgjHKYu1fGH16dvgecSPAhNxM4FTgYOBb4X4JkNtfdjzOzAcD9hFdlBMdweBj3u2Z2B7AnwUBJ+wEGvGFmLwMbgCuAg9x9hZlt5+7fmNlLwI+AJwlG5Jvi7o+Z2WjgEnefFSaLW4Gh7r7czIYBvwFGZvD3kpK7Lw2biboRvOf3ZTuGDBgPvGVmf0yx7BfAP919bHZDyph2ZjYPaAvsSPC5klMtMRlEYUmvxwGXufum4GQsLyQfyJHAPII/yp2Bf5jZK+7+dZZi+cDd3wYwswXA8+7uZvY2UAz0JGj6wN1fCO9ndAq3fcbd1wPrzewLgiaxg4En3H1tuM/HgUMIroAmVzVFuPuqcB93EXzgPEmQRM5OEeP3CT54/xH+DRQAuRyiNW/+EAHc/Wszu5/garW8xuJXgQPMbBd3fy/70cUuuZnoAOB+M9vdc9jXvyU2Ey0A9klz3b2AReHrUuARM/sQOAG43cyOiz26xmvo8Y0AHg+bGJYAH/DtVUM2rE96XZk0XUlw0pLqg6/qHyd5201bWJ9wfq1/OHd/DSg2s0OBAnefX8e2C9y9b/i1h7sPquuAMim857OJoMkyynve1I0DzgS2rjF/BjAW+HtTuKEfp7B5rwuQsoBctrTEZPACsJWZbT7zM7N+BGeeJM0rBm4gaBbA3Xu5e7G7FwOTgfPd/cksxRxFg44P+C9wRLhsB4Kz4KVZiDddM4CfApjZYcCKeq5aZgDHmVl7M9uaoInvFeB54CQz2z7c13ZJ29wPPAzckzTvG4LmJwhuqncNz+Qws0Iz+0Ejjyuy8Ab/BOC28EzyNmC4me2XtM7/M7PvZDu2xgqv1B4lSAg1l00Brgemm1nnLIeWMWa2K8FV5spcxtHimonCpocfA+PM7HJgHfAhwVnHzmY2l6Ad7xvg1qqeRM1FI47vWuDesFnGCJrEmlLp4GuAe8zsLYIeMrW6/SZz9zlmdi/wn3DWXe4+F8DMfgO8bGabgLkEPYYAHgSuI0gIVe4FJphZOXAAwVXhLWETVWuCM9kFjTu0tFS1MRcS3Gx9ALgJwN0/N7OTgRvCnkaVBMnw8SzElQk3AhekWuDuE8IkN9XMBrn7uuyGFpuq9xOC/7fh7r4ph/GoHIVIFTM7geDm8Gm5jkUk21rclYFIKmZ2K3AUcHSuYxHJBV0ZiIhIi7yBLCIiNSgZiIiIkoGIiCgZiERiQRXT28LXydU0m0R1U5GGUjIQiccZgJKBNFtKBiKkrGTa1cymmNnM8OugLWx7AtWrm/7IzJ5IWj4wrI2Ema0xsxstqGH/fPg0MWa2s5lND6uhvhI+lSqSNUoG0uKFJSWuAAa4ex/gQuBPwM3u3o+gQN5ddW3v7pOBWcBPw+Jj04D/qfqgJ6j7VPWk99bAHHffG3gZqBqkZSLwM3ffB7gEuD2+IxSpnx46EwkqtVarZGpmPwR2S6pQu42ZdaxrB8nCkiAPAP/PzO4hKGNxeri4EpgUvv4rwQBDHYADgceSft5WjTwmkUiUDERSVzJtBRzg7tVKKUcoX34P8DRBbajH3L2ugYI8/FlfVZU0FskFNROJpK5k+hxJxdIsGDp0S5Krm+LunxAMFHQlQbG7Kq0Iit1BMIDPq2H11Q8sGFkNC/RpxPGIRKYrA2nx3H1BikqmY4DxYZXU1gRVQM/dwm7uJam6aXhF8SDQ1d0XJq23FviBmc0GVgPDwvk/Be4wsysJKpM+ArwZ1zGK1Ee1iUQyJHweYa67/yVp3hp375DDsERSUjIQyYDwzH8tMDAckrNqvpKBNElKBiIiohvIIiKiZCAiIigZiIgISgYiIoKSgYiIAP8fcba6uv0XY5QAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'],\n", + " y=annotated_coeqtl_df_clean['gene2_nonzeroratio_onemillionv2'],\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " palette='viridis', fliersize=1, showfliers = False)\n", + "# plt.savefig('gene2_nonzeroratio_onemillionv2.filtered_results.pdf')\n", + "# plt.savefig('gene2_nonzeroratio_onemillionv2.filtered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAArQElEQVR4nO3deXhU5fn/8fdN2HcVsErYtLEUrVIF9ypiQcW9pUVtLUIrPysWcWm1X63Lt7ZqXUqtKKJV1FJFReuGiLVFXForq7Ko4QuiUVQWRSEBEnL//jgnOEkmmTnJnJksn9d1zZU5a+6TZe6zPM/9mLsjIiLNW4tcByAiIrmnZCAiIkoGIiKiZCAiIigZiIgI0DLXAdRFt27dvG/fvrkOQ0SkUVmwYMF6d++ebFmjTAZ9+/Zl/vz5uQ5DRKRRMbM1NS3TbSIREVEyEBERJQMREUHJQEREUDIQERFiTgZmdq+ZfWpmS2tYbmZ2m5mtNLM3zezAOOMREZHk4r4ymAYcX8vyE4CC8DUOuDPmeEREJIlY+xm4+zwz61vLKqcCD3hQR/s/ZtbVzPZw97VxxiXSEEyaNInCwsJK84qKigDIz8+vtn5BQQETJ07MRmiSQrLfHdT8+2sMv7tcdzrrCXyQMF0UzquWDMxsHMHVA717985KcM1VU/xDT9SQj6+kpCQr30fSV1PSTva7Ki4uBqr/HouKipL+zTWk/51cJwNLMi/paDvuPhWYCjBo0CCNyJMDTf2DKtvHl+xDYPz48QBMnjw5q7FIzQoLC1m05C1o17nKktbVV25RCsBmr7xsc/EO1r1bpfNvyRcZjLL+cp0MioBeCdP5wEc5ikVCNZ2pNJUPqqZ+fBKDdp3J2+uQjO5yx6rXM7q/+sp109KngJ+ErYoOBTbpeYGISPbFemVgZg8BQ4BuZlYEXA20AnD3KcAsYASwEigGxsQZj4iIJBd3a6IzUyx3YHycMYiISGq5vk0kIiINgJKBiIgoGYiISO6bljZa6j0qIk2JkkEGNcZOWaNHj2bt2vRa81b0rhw+fHha6++xxx7cf//9dY5NRLJHySCFunxYJut2XlhYyKxZsyrNawgflp9//jmbt2yGVnlprB10/N68PY2kV7qDzz//vF6xSfM2adKkav8zEPyflZeXp72fFi1a0L59+0rzRowYoSv1KtJKBmbWn6Bm0Ovuvjlh/vHuPjuu4BqCpv5hmZ+fz4bW22n//YEZ3W/xzMXk96h+u0xEGqaUycDMJhD0BVgB/MXMLnT3J8PFvweadDLQh6VIbkycOFFn71mUzpXBucBB7r45LEf9mJn1dfc/kbzQnIiINDLpJIO8iltD7v6emQ0hSAh9UDIQEWkS0kkGH5vZQHdfDBBeIZwE3At8K87gRESarG1bWLJkSbXWebl6QJ5OMvgJUJY4w93LCKqN3hXpu4lkWU0D2SRTsV5FKetU1HdEmpKUycDdiwDM7E/ADHd/LWHZqzHGJlJvhYWFLFr2Ji26d0y5brlvB2DJp6tSr7tuc8p1RGrVpgMH7NOnwYyfEaWfwULgSjPbB3iCIDHMjycskcxp0b1jLK3BRJqStGsTufv97j4COBh4F7jRzNK7/hYRkQatLoXqvg70B/oCb2c0GhERyYm0k4GZVVwJ/C+wjKDvwcmxRSYiIlkT5ZnBauAwd18fVzAiIpIbaScDd59iZj3N7PDE7dx9XiyRiYhI1qSdDMzsBuAMYDmwI5ztgJKBiEgjF+U20enAN9x9W1zBiIhIbkRpTbQKaBVXICIikjtRrgyKgcVm9iKw8+rA3SdkPCoREcmqKMngqfAlIhGoPpI0BlFaE91vZq2BfcJZ77h7aTxhiTQdhYWFLFryFrTrnHrlbcG/1KJ316Ret+SLekYm8pUorYmGAPcD7xGMY9DLzEaraalIGtp1Jm+vQzK6yx2rXs/o/qR5i3Kb6BZguLu/AxAWrHsIOCiOwEREJHuitCZqVZEIANz9XdS6SESkSYhyZTDfzP4CPBhO/whYkPmQREQk26Ikg58D44EJBM8M5gF3xBGUiIhkV5TWRNuAW8OXiIg0ISmfGZjZI+HXt8zszaqvNLY/3szeMbOVZnZ5kuVdzOxpM1tiZsvMbEzdDkVEROoqnSuDC8OvJ0XduZnlAZOBYUAR8IaZPeXuyxNWGw8sd/eTzaw78I6ZTXcPB6QVEZHYpUwG7r42/JpGL5hqDgZWuvsqADN7GDiVoPLpzm8BdDIzAzoCG4GyOnwvERGpo5TJwMy+JPjArrYIcHevrVtlT+CDhOkioGrPm9sJylx8BHQCRrl7eZI4xgHjAHr37p0qbBERiSDlMwN37+TunZO8OqVIBBAkjGq7rDJ9HLAY2BMYCNxuZtX26+5T3X2Quw/q3r17qrBFRCSCdK4Mdq1tubtvrGVxEdArYTqf4Aog0RjgBnd3YKWZrQb6A/9NFZuIiGRGOg+QFxCczdd0lr9XLdu+ARSYWT/gQ4KR0s6qss77wLHAy2a2O/ANgrETREQkS9J5gNyvrjt39zIzuwB4HsgD7nX3ZWZ2Xrh8CvBbYJqZvUWQcC5z9/V1/Z4iIhJdOreJ+rv722Z2YLLl7r6wtu3dfRYwq8q8KQnvPwKGpxeuiIjEIZ3bRBcTtOK5JckyB4ZmNCIREcm6dG4TjQu/HhN/OCIikgtRBrfJA04E+iZu5+6qVSQi0shFqVr6NLAVeAuo1ilMREQaryjJIN/d948tEhERyZkoyeA5Mxvu7nNii0YimTRpEoWFhdXmFxUVAZCfn19pfkFBARMnTsxGaCLSyERJBv8BnjCzFkAp6dUmkhwoKSnJdQgNRlFREeWbNlM8c3FG91u+bjNF24syuk+RXIqSDG4BDgPeCktHSI7VdJY/fvx4ACZPnpzFaESkMYuSDAqBpUoE0pjk5+ezofV22n9/YEb3WzxzMfk98lOvKNJIREkGa4G5ZvYcsK1ippqWiog0flGSwerw1Tp8iYhIE5F2MnD3awHMrIO7b4kvJBERybaUg9tUMLPDzGw5sCKcPsDM7ogtMhERyZq0kwEwiWBUsg0A7r4EOCqGmEREJMuiJAPc/YMqs3ZkMBYREcmRKA+QPzCzwwE3s9bABMJbRiIi0rhFuTI4DxgP9CQY23hgOC0iIo1clNZE64EfxRiLiIjkSJTxDLoD51J9PIOxmQ9LRESyKcozgyeBl4F/oAfHIiJNSpRk0N7dL4stEhERyZkoyeAZMxvh7rNii0YkQbLxGmoaqwE0XoNIfURJBhcC/2Nm2wnGMwCNZyBZprEaROIRpTVRpzgDEakq2Vm+xmoQiUeUKwPM7BS+KkEx192fyXxIIiKSbVEK1d1AcKtoefi6MJwnIiKNXJQrgxHAQHcvBzCz+4FFwOVxBCYiItkTqVAd0DXhfZcMxiEiIjkU5crgemCRmf0LMIJnB7+OJSoREcmqKK2JHjKzucBggmRwmbt/XLHczPZ192WZD1FEJLXS0lKKiorYunVrRvd71llnMbK0DFpmeLTfsqNo3aolK1Zkvvhz27Ztyc/Pp1WrVmlvE6k1kbuvBZ6qYfGDwIFVZ5rZ8cCfgDzgHnev9tDZzIYQDJ7TCljv7kdHiUtEpKioiE6dOtG3b1/MLGP7XbNmDcXbtmNtOmRsnwC+bQvt27SmT58+md2vOxs2bKCoqIh+/fqlvV3UZwa1qfbTN7M8YDJwAjAAONPMBlRZpytwB3CKu+8L/CCDMYlIM7F161Z22223jCaCxsjM2G233SJfIWUyGXiSeQcDK919lbtvBx4GTq2yzlnA4+7+PoC7f5rBmESkGWnuiaBCXX4OmUwGyfQEEofKLArnJdoH2MXM5prZAjP7SbIdmdk4M5tvZvPXrVsXU7giIs1TJpPB9iTzkqWnqlcQLYGDgBOB44DfmNk+1TZyn+rug9x9UPfu3esdrIhIfaz96ENGnzGSE489mpOGHcMD995T6/q33XoTr70yr8bl77zzDkOGDGHgwIF885vfZNy4cQDMnz+fCRMmZDT2ZOpTjuIld3+6Ypm7H5pkkyKgV8J0PvBRknXWu/sWYIuZzQMOAN6NEpuISDbltWzJr668mn33+xZbNm/m+ycfz+HfOYqvF1Q7lwVgwsW/rHV/EyZM4KKLLuLUU4M76W+99RYAgwYNYtCgQZkNPokoI51dT/AMYHo4a4KZHe7utfU1eAMoMLN+wIfAGQTPCBI9CdxuZi2B1sAhwB/Tjas2yUogQ81lkFUCWaRp+e1vf8v06dPp1asX3bp146CDDuL0009n/PjxrFu3jvbt23P33XfTv39/zjnnHDp37sz8+fP5+OOP+cMf/sDIkSMB+Ms99/D888+zfft2vjv8eH5x8aX06LE7PXrsDkCHjh3Ze+8CPvn44xqTwa8vmciQY7/LcSNO4pYbfs8/X5hN61atOPHEE7n55ptZu3Ztpc+kb33rWwDMnTuXm2++mWeeeYZ169Zx1llnsWHDBgYPHszs2bNZsGAB3bp1q/fPKsqVwYkkL0dRYzJw9zIzuwB4nqBp6b3uvszMzguXT3H3FWY2G3gTKCdofrq0boeTHpVBFmn65s+fz8yZM1m0aBFlZWUceOCBHHTQQYwbN44pU6ZQUFDA66+/zvnnn88///lPANauXcsrr7zC22+/zSmnnMLIkSOZN28e7695j0eefBZ35/yfncMbr/+HwYd8dTPkww8+YMXypRww8Nsp4/r888/4x5zneHbWc3Ro24YuXYJiDhdddBFDhw7l8MMPZ/jw4YwZM4auXbtW2vbaa69l6NCh/PrXv2b27NlMnTo1Yz+vSLeJCMpRbAzfp1WOIhwMZ1aVeVOqTN8E3BQxlpRqOstXGWSRpu+VV17h1FNPpV27dgCcfPLJbN26lddee40f/OCrFuzbtm3b+f60006jRYsWDBgwgE8++QSAl19+mVdffZXvjRgOQHFxMWveW70zGWzZsoUJPz+Xy6+6lo6dUlf679ixE21at+E3V1zB8GHfZcyYMQCMGTOG4447jtmzZ/Pkk09y1113sWTJkmrH9MQTTwBw/PHHs8suu9T1x1ONylGISJPkXr21e3l5OV27dmXx4sVJt2nTpk217d2dc8f9P84Y/dNq65eWlnLheedy8mmnM/z4EWnF1bJlSx558llee+kfzJk9mxkzZuy8Mtlzzz0ZO3YsY8eOZb/99mPp0so3SZIdU6ak3ZrI3R8CDgUeD1+HufvDcQUmIlIfRx55JE8//TRbt25l8+bNPPvss7Rv355+/frx6KOPAsGHa9Wz76qOOuooHp/5GFu2bAHgk4/XsmH9etydKy+7hL2+/nXO+dn/SzuuLVu28OWXX3L00UO46qqrdiam2bNnU1oaDCL58ccfs2HDBnr2rNwS/8gjj+SRRx4BYM6cOXz22Wdpf99UUl4ZmFl/d3/bzCpKTRSFX/c0sz3dfWHGohERyZDBgwdzyimncMABB9CnTx8GDRpEly5dmD59Oj//+c+57rrrKC0t5YwzzuCAAw6ocT9HHXUUK95+hzO/dwoA7du35w+T/sx7q1fx1OMz2af/Nzn9hGEATPzV5Rx9zLG1xrVly2YuOHcs20pKMIM//jFoLzNnzhwuvPBC2rZtC8BNN93E1772Nd5+++2d21599dWceeaZzJgxg6OPPpo99tiDTmncmkpHOreJLgbGAbckWebA0IxEIiKSYZdeeinXXHMNxcXFHHXUUVxyySX069eP2bNnV1t32rRplaY3b9688/3Zo0fzk3HnV1reu09fVrz3YdqxXH/LpJ3vH3ny2Wq1iW699VZuvfXWatsNGTKEIUOGANClSxeef/55WrZsyb///W/+9a9/Vbq1VR8pk4G7jwvfnuDulYpdmFnbjEQhIhKDcePGsXz5crZu3cro0aM58MBqtTQblffff58f/vCHlJeX07p1a+6+++6M7TvKA+TXqF6VNNk8EZEG4W9/+1vWv+f//uZ/WDT/jUrzzh7zM773w1H13ndBQQGLFi2q936SSeeZwdcI6gm1M7Nv81WJic5A+1iiEhFppK767e9zHUKdpHNlcBxwDkEpicQbWl8C/xNDTCIikmXpPDO4H7jfzL7v7jOzEJOIiGRZlGEvZ5rZicC+QNuE+f8bR2ANSfm6zRTPXJx6vc+DMhcturZLa5/0qG9kIiKZEaVQ3RSCZwTHAPcAI4H/xhRXg1FQUJD2uoWbgqJ4BT32Sr1yj2j7FpHGZd+9erHPN/rvnL596r307NUr6bodO3as1JQ1F6K0Jjrc3fc3szfd/Vozu4WgJ3KTFqWKqWoeiTRMP7/gQj5Zv75O25aVlQVlIOyrgg277dKVy6+8qtbt2rZtyxPPvVCn75kLUZJBRR+DYjPbE9gApD/asohIjnyyfj3ruvRPvWK6NiyLvMmWLVu44NwxbNq0ibKyMiZMmMDJJ1auZ7R27VpGjRrFF198QVlZGXfeeSff+c53mDNnDldffTXbtm1j77335r777qNjx46ZOhogWjJ4Ohy8/iZgIUHv48z1eBARaUK2bt26s0xFz169mXTHXfz5rr/QsVMnPtu4kVGnnchJI06otM3f/vY3jjvuOK644gp27NhBcXEx69ev57rrruMf//gHHTp04MYbb+TWW2/lqqtqvzKJKq1kYGYtgBfd/XNgppk9A7R1900ZjUZEpImoepuotLSUP950A/P/+zotzPj0k09Yt24dffv23bnO4MGDGTt2LKWlpZx22mkMHDiQl156ieXLl3PEEUcAsH37dg477LCMx5tWMnD38vAZwWHh9DZgW+1biYhIhWf+/jgbN2zgsaefo1WrVhx7xMGVxlKAoCjevHnzePbZZzn77LP55S9/yS677MKwYcN46KGHYo0v7RLWwBwz+76ZJRvkXkREavHll1+yW7dutGrVitdfe5WPPqxe5G7NmjX06NGDc889l5/+9KcsXLiQQw89lFdffZWVK1cCweA6776b+SHiozwzuBjoAOwwsxKCshTu7p0zHpWISBNz8mnf4+c/Hc3Ik0+g/4B92Wuv6k3Q586dy0033USrVq3o2LEjDzzwAN27d2fatGmceeaZO68krrvuOvbZJ/lYy3UVpdNZZopmi4hk2e7dusH6t1OvmERNTUtTWbC8sNL0LrvuysNPPL1zuqKENXxVLnv06NGMHj262r6GDh3KG2+8UW1+JkUaA9nMTiEY7hJgrrs/k/mQREQy687b/1TnbdesWUPxtu1Ymw4ZjKjhSfuZgZndAFwILA9fF4bzRESkkYtyZTACGOju5QBmdj+wCLg8jsBERCR7orQmAuia8L5LBuMQEZEcinJl8HtgkZn9i6Al0VHAr2OJSkREsipKD+Ry4FBgMEEyuMzdP44xNhERyZIoPZAvcPdHgKdijklEpFH77LONjD0rGPN4/bp1tMjLY9dddwVgxpPP0rp161yGl1SU20QvmNmlwAxgS8VMd9+Y8ahERDLo/Ism8MlndSthvaOsjPIq/Qx27bwLl19Wc6G4XXbZdWddotv/eAvtO3Rg7Ljzdi4vKysjr07RxCdKMhgbfh2fMM+BNEZyERHJnU8+W8+Xx/fJ2P42PrMq8ja/vmQiXbp2ZcWypQzY71u0b9uarp0787vf/Q6A/fbbj2eeeYa+ffvy17/+ldtuu43t27dzyCGHcMcdd5CXF2/6SLs1kbv3S/JSIhARSdN7q1dx7/QZXHbl1TWus2LFCmbMmMGrr77K4sWLycvLY/r06bHHFmXYy/YE9Yl6u/s4MysAvqFeyCIi6Tl+xEkpz/BffPFFFixYwODBgwEoKSmhR4/4B0yPcpvoPmABcHg4XQQ8CigZiIikoV379jvft8xrSXl5+c7prVuDwSTdndGjR3P99ddnNbYonc72dvc/AKUA7l5RubRWZna8mb1jZivNrMbeymY22Mx2mNnICDGJiDRKe/bsydKlSwFYuHAhq1evBuDYY4/lscce49NPPwVg48aNrFmzJvZ4oiSD7WbWjuChMWa2NykGuDGzPGAycAIwADjTzAbUsN6NwPMR4hERabSGH3ccmzZtYuDAgdx55507S1IPGDCA6667juHDh7P//vszbNgw1q5dG3s8UW4TXQPMBnqZ2XTgCOCcFNscDKx091UAZvYwcCpBobtEvwBmEnRoExHJqN136Qaz63Z2XVPT0nRdcNElSee3bduWBx98kD59qrdyGjVqFKNGjYoebD1EGc9gjpktIOiFbMCF7p6q4W5P4IOE6SLgkMQVzKwncDowlFqSgZmNA8YB9O7dO92wRUS444+31XlblbCuwsxeBA5x92fd/Rl3X29mU1NtlmSeV5meRFDaYkdtO3L3qe4+yN0Hde/ePd2wRUQkDVFuE/UDLjOzwe5+bThvUIptioBeCdP5wEdV1hkEPBwOrdwNGGFmZe7+9wixiYhIPURJBp8DxwK3mdnTwI/T2OYNoMDM+gEfAmcAZyWu4O79Kt6b2TTgGSUCkfQUFRUxfvz4avNKSkrS3ke7du3Iz8+vNr+goICJEyfWN8SscnfCE8tmzb3qDZjUoiQDc/cy4HwzOwd4Baj1KYq7l5nZBQSthPKAe919mZmdFy6fEjliEdmppKSERcvepEX3jjvnlReXQGmtd10r2ezb2fDp9krzytdtzliM2dK2bVs2bNjAbrvt1qwTgruzYcMG2rZtG2m7KMlg5we3u08zs7eoXKeopsBmAbOqzEuaBNz9nAjxNCuTJk2isLAw9Yqwc72qZ4w1rVu+vYTimYtTrlv+eXC22aJru9TrrtsM8XeaFKBF9460//7AjO4znb+HhiY/P5+ioiLWrVuX0f1u3LiR7aVl0DLDlUbLttO6VUuKi4szu1+CxJjsaq82UVoT3RX2B9g93G4dQXNTyYLCwkIWLXkL2nVOvfK2UgAWvZtGU7otW+jYsQMFPVKXmSrcFCSZdNalR3CbQSRbWrVqRb9+/VKvGNH48eNZ9O4a8vY6JPXKEexY9Trf3qcPkydPzuh+6ypKbaILCD78PyEY6AaClkH7Zz4sSapd51j+IAsK0vuDrLjSaCh/vCKSOVFuE00kKEy3IaZYREQkR6Ikgw+ATXEFIiJNS7LnXEVFRQBNpvVSUxIlGawC5prZsyTUJHL3WzMelYg0SVGavEp2RUkG74ev1uFLRKRGyc7y9dyp4YrSmuhaADPrFEx642uILCIiSUWpTbSfmS0ClgLLzGyBme0bX2giIpItUcYzmApc7O593L0PcAlwdzxhiYhINkVJBh3c/V8VE+4+F2jaNV1FRJqJSK2JzOw3wIPh9I+B1ZkPSUREsi3KlcFYoDvwOPBE+H5MHEGJiEh2RWlN9BkwIcZYpBlLtxBflCJ8EHZyUkNokZSi1CbaB7gU6Ju4nbsPzXxY0tykXYgvShG+ki/o2L4ttM7LQIQiTVuUZwaPEpSxvgdIv1i6SLoyXIhvx6rXge0p1xORaMmgzN3vjC0SERHJmSjJ4GkzO5/g4XFibaKNGY9KJIPK123W4D1SZ0VFRVDyRXilmUElX+ws3NcQREkGo8Ovv0yY50AaI52I5Ea7du3SHmRHg/dIcxalNVGtQwiZ2TB3f6H+IdVNXMNCgkrrNmb5+flpF0VTETVJJj8/n3XFO2IZWCrq0JRxinJlkMqNQM6SQWzDQpZ8Uc/IREQavkwmA8vgvuompmEhRUSauig9kFPxDO5LRESyKJPJQEREGqlMJoP3MrgvERHJoiiD27Q3s9+Y2d3hdIGZnVSx3N2/F0eAIiISvyhXBvcRdDY7LJwuAq7LeEQiIpJ1UVoT7e3uo8zsTAB3LzGz3LcgEmng4uzBui3PgPaZ3a80S1GSwXYza0fYasjM9iahLIWIZN+OHTso/2gTm6e8knrlsvLga8s0bgiU7qBoe8MplSDxi5IMrgZmA73MbDpwBHBOHEGJNCVx9mBtU15CXl56JbqLy4oBaN86de0lWkPXrl3rEZ00NlHKUbxgZguBQwk6mF3o7utji0xEUurfv7/KbUhGRG1a2hb4DPgCGGBmR6XawMyON7N3zGylmV2eZPmPzOzN8PWamR0QMSYREamnKCOd3QiMApYB4c1HHJhXyzZ5wGRgGEHrozfM7Cl3X56w2mrgaHf/zMxOAKYCmb2eFhGRWkV5ZnAa8A13j/LQ+GBgpbuvAjCzh4FTgZ3JwN1fS1j/P0DDKeMnItJMRLlNtApoFXH/PYEPEqaLwnk1+SnwXMTvISIi9RTlyqAYWGxmL1J5pLMJtWyTrB9C0oJ2ZnYMQTI4sobl44BxAL17904zZBERSUeUZPBU+IqiCOiVMJ0PfFR1JTPbH7gHOMHdNyTbkbtPJXiewKBBg1QhVUQkg6I0Lb0/7HTW293fSXOzN4ACM+sHfAicAZyVuIKZ9QYeB85293fTjUdERDInSqG6k4HFBB3PMLOBZlbrlYK7lwEXAM8DK4BH3H2ZmZ1nZueFq10F7AbcYWaLzWx+9MMQEZH6iHKb6BqC1kFzAdx9cXjGXyt3nwXMqjJvSsL7nwE/ixCHiIhkWJTWRGXuvqnKPN27FxFpAqJcGSw1s7OAPDMrACYAr6XYRkSauEmTJlFYWJjWuhXrVZTGSKWgoICJEyfWNTSJIEoy+AVwBUGz0ocIngP8No6gRKTxKCwsZNGSt6Bd59QrbysFYNG7a1KvW/JFPSOTKKK0JiomSAZXxBeOiDRK7TrHUpVVsidKbaKnqf6MYBMwH7jL3bdmMjAREcmeqOUoNgN3h68vgE+AfcJpERFppKI8M/i2uyeWrH7azOa5+1FmtizTgYmISPZESQbdzay3u78PO3sOdwuXbc94ZNKsxDJOcMkXwX5FJKUoyeAS4BUz+z+CAnT9gPPNrANwfxzBiYhIdkRpTTQr7F/QnyAZvJ3w0HhSDLFJMxLHOME7Vr1Ofr6GxxBJR8pkYGbfq2HRXmaGuz+e4ZhEmp50b4Ft2xJ8bdMhrX1KljSD3186VwYn17LMCSqOikgNCgoK0l63ooduQUGfjO9b6qa5/P5SJgN3HwNgZv3cfXXisnQK1Yk0d1HKKVSUaZg8eXJM0UhUzeX3F6Wfwcwk8x7LVCAiIpI76Twz6A/sC3Sp8vygM9A2rsBERCR70nlm8A3gJKArlZ8ffAmcG0NMIiKSZek8M3gSeNLMDnP3f2chJkkilk5ZoI5ZIgJE63R2lpmdWdNCd5+QgXhERCQHoiSDNsAAYEY4/QNgAcG4yBKzODplgTpmiUggSjIoAI5x91IAM5sCzHH3i2KJLCLdRhHJDf3vNQ1RmpbuCXRKmO4YzhMRkUYuypXBDcBCM5sbTh8NXJPpgOpKt1GagHTOLhtxd/+mSv97TUOUZDAN2AFMJEgCVwFfy3hE0iyl2y2/MXf3F2nIoiSDO4ByoJ27P2VmuxD0Sh4cS2TSrKTb5b8xd/cXaciiJIND3P1AM1sE4O6fmVnrmOISEZEsivIAudTM8ggqlWJm3QmuFEREpJGLcmVwG/AE0MPMfgeMBK6MJSpJrhnUVBeR3Igy0tl0M1sAHEsw0tlp7r4itsikkuZSU10aKZ2oNHpRrgxw97eBt2OKRWrRXGqqZ8OkSZN2JsxEFfMqfn4VCgoKIv38mxudqDQNkZJBg6ezE6mHdu3a5TqERqk5nqg0xROKJpMMdHYi6Wro/5T11RQ/qBqLxnxCEXsyMLPjgT8BecA97n5DleUWLh8BFAPnuPvCqN+nOZ6dSOOW7EO7pg9sqP+HdmP+oGpommLyjDUZhE1RJwPDgCLgDTN7yt2XJ6x2AkERvALgEODO8GuDlu1/5GzSmWXuZOIDW78LqYu4rwwOBla6+yoAM3sYOBVITAanAg+4uwP/MbOuZraHu6+t7zfP9odats+8muPxNZWEC03/Q7up//6amriTQU/gg4TpIqqf9SdbpydQKRmY2ThgHEDv3r3rFVRTP/uq7/E15WOT3NLvr+Gy4IQ8pp2b/QA4zt1/Fk6fDRzs7r9IWOdZ4Hp3fyWcfhH4lbsvqGm/gwYN8vnz58cWt4hIU2RmC9x9ULJlUcpR1EUR0CthOh/4qA7riIhIjOJOBm8ABWbWLyxqdwbwVJV1ngJ+YoFDgU2ZeF4gIiLpi/WZgbuXmdkFwPMETUvvdfdlZnZeuHwKMIugWelKgqalY+KMSUREqou9n4G7zyL4wE+cNyXhvQPVmxaIiEjWxH2bSEREGgElAxERUTIQERElAxERIeZOZ3Exs3XAmix+y27A+ix+v2zT8TVeTfnYQMeXaX3cvXuyBY0yGWSbmc2vqddeU6Dja7ya8rGBji+bdJtIRESUDERERMkgXVNzHUDMdHyNV1M+NtDxZY2eGYiIiK4MREREyUBERGimycDMvmZmD5vZ/5nZcjObZWb7mFmJmS0ysxVm9l8zG51k28FmtsPMRprZbma2OHx9bGYfJky3zsWxhTFGPj4z62JmT5vZEjNbZmZjGurxZZOZnWNmezaAOHaEP/dl4e/oYjNrkbD8YDObZ2bvmNnbZnaPmbXPZcxRmJmb2S0J05ea2TXh+2vM7NLwfVsze8HMrs5RqBmR8PtcYmYLzezwXMcUe9XShsbMDHgCuN/dzwjnDQR2B/7P3b8dztsLeNzMWrj7feG8POBGgpLcuPsGYGC47Bpgs7vfnM3jqaoexzceWO7uJ5tZd+AdYLq7DwzXv4YGcHw5cA6wlNwPuFSS8LvoAfwN6AJcbWa7A48CZ7j7v8O/ge8DnQjKwjcG24Dvmdn17p60E1Z4AjITWODu12Y1usxL/H0eB1wPHJ3LgJrjlcExQGmVMtqLqTwOM+6+CrgYmJAw+xcEf4yfxh9mndX1+BzoFH6QdAQ2AmXZCNjM+iaczS41s+lm9l0ze9XMCsOz3l3N7O9m9qaZ/cfM9g+3vcbM7jWzuWa2yswmJOz34nB/S81sYsL8n4T7WWJmD5pZJzNbbWatwuWdzew9C4ZtHQRMD8/i2pnZQWb2kpktMLPnzWyPbPyMErn7pwTjgV8Q/r7GEyT/f4fL3d0fc/dPsh1bPZQRtKy5qIblLYGHgUJ3vzxrUWVHZ+CzXAfR7K4MgP2AGsdXrmIh0B/AzHoCpwNDgcHxhJYRdTo+4HaCUec+IjijHOXu5ZkPr0ZfB35A8CH3BnAWcCRwCvA/BMlskbufZmZDgQcIr8oIjuGYMO53zOxOYH+CgZIOAQx43cxeArYDVwBHuPt6M9vV3b80s7nAicDfCUbkm+nuj5rZeOBSd58fJos/A6e6+zozGwX8Dhgb488lKXdfFd4m6kHwO78/2zHEYDLwppn9IcmyXwH/cPeJ2Q0pNu3MbDHQFtiD4HMlp5pjMojCEt5PAi5z9x3ByViTkHggxwGLCf4o9wZeMLOX3f2LLMWy2t3fAjCzZcCL7u5m9hbQF+hDcOsDd/9n+DyjS7jts+6+DdhmZp8S3BI7EnjC3beE+3wc+A7BFdBjFbci3H1juI97CD5w/k6QRM5NEuM3CD54Xwj/BvKAXA7R2mT+EAHc/Qsze4DgarWkyuJXgMPMbB93fzf70WVc4m2iw4AHzGw/z2Fb/+Z4m2gZcFCa634bWBG+HwQ8bGbvASOBO8zstIxHV391Pb4xwOPhLYaVwGq+umrIhm0J78sTpssJTlqSffBV/OMkbrujlvUJ51f7h3P3V4G+ZnY0kOfuS2vYdpm7Dwxf33L34TUdUJzCZz47CG5ZRvmdN3STgJ8CHarMnwdMBJ5rCA/0Mym8vdcNSFpALluaYzL4J9DGzHae+ZnZYIIzTxLm9QVuJrgtgLv3c/e+7t4XeAw4393/nqWYo6jT8QHvA8eGy3YnOAtelYV40zUP+BGAmQ0B1qe4apkHnGZm7c2sA8EtvpeBF4Efmtlu4b52TdjmAeAh4L6EeV8S3H6C4KF69/BMDjNrZWb71vO4Igsf8E8Bbg/PJG8HRpvZIQnr/NjMvpbt2OorvFJ7hCAhVF02E7gJmG1mXbMcWmzMrD/BVeaGXMbR7G4ThbceTgcmmdnlwFbgPYKzjr3NbBHBfbwvgT9XtCRqLOpxfL8FpoW3ZYzgllhDKh18DXCfmb1J0EKmWrPfRO6+0MymAf8NZ93j7osAzOx3wEtmtgNYRNBiCGA6cB1BQqgwDZhiZiXAYQRXhbeFt6haEpzJLqvfoaWl4h5zK4KHrQ8CtwK4+ydmdgZwc9jSqJwgGT6ehbjicAtwQbIF7j4lTHJPmdlwd9+a3dAypuL3CcH/22h335HDeFSOQqSCmY0keDh8dq5jEcm2ZndlIJKMmf0ZOAEYketYRHJBVwYiItIsHyCLiEgVSgYiIqJkICIiSgYikVhQxfT28H1iNc0GUd1UpK6UDEQy4xxAyUAaLSUDEZJWMu1uZjPN7I3wdUQt246kcnXTE83siYTlw8LaSJjZZjO7xYIa9i+GvYkxs73NbHZYDfXlsFeqSNYoGUizF5aUuAIY6u4HABcCfwL+6O6DCQrk3VPT9u7+GDAf+FFYfGwW8M2KD3qCuk8VPb07AAvd/UDgJaBikJapwC/c/SDgUuCOzB2hSGrqdCYSVGqtVMnUzL4LDEioUNvZzDrVtINEYUmQB4Efm9l9BGUsfhIuLgdmhO//SjDAUEfgcODRhO/Xpp7HJBKJkoFI8kqmLYDD3L1SKeUI5cvvA54mqA31qLvXNFCQh9/r84qSxiK5oNtEIskrmc4hoViaBUOH1iaxuinu/hHBQEFXEhS7q9CCoNgdBAP4vBJWX11twchqWOCAehyPSGS6MpBmz92XJalkOgGYHFZJbUlQBfS8WnYzjYTqpuEVxXSgu7svT1hvC7CvmS0ANgGjwvk/Au40sysJKpM+DCzJ1DGKpKLaRCIxCfsjLHL3vyTM2+zuHXMYlkhSSgYiMQjP/LcAw8IhOSvmKxlIg6RkICIieoAsIiJKBiIigpKBiIigZCAiIigZiIgI8P8BkzGorgOv4lEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'], \n", + " y=annotated_coeqtl_df_clean['eqtlgene_nonzeroratio_onemillionv2'],\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " palette='viridis', fliersize=1, showfliers = False)\n", + "# plt.savefig('eqtlgene_nonzeroratio_onemillionv2.filtered_results.pdf')\n", + "# plt.savefig('eqtlgene_nonzeroratio_onemillionv2.filtered_results.png')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### unfiltered results" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CD4T\n", + "CD8T\n", + "monocyte\n", + "DC\n", + "NK\n", + "B\n" + ] + } + ], + "source": [ + "celltype = 'monocyte'\n", + "annotated_coeqtl_df = pd.DataFrame()\n", + "for celltype in celltypes:\n", + " print(celltype)\n", + " celltype_annotated_coeqtl_df = pd.read_csv(workdir/f'output/unfiltered_results/UT_{celltype}/coeqtls_fullresults_fixed.all.annotated.tsv.gz',\n", + " compression='gzip',\n", + " sep='\\t')[['mean_onemillionv2', 'var_onemillionv2', \n", + " 'gene2_nonzeroratio_onemillionv2',\n", + " 'eqtlgene_nonzeroratio_onemillionv2',\n", + " 'gene2_isSig']]\n", + " celltype_annotated_coeqtl_df['celltype'] = celltype\n", + " annotated_coeqtl_df = pd.concat([annotated_coeqtl_df, \n", + " celltype_annotated_coeqtl_df],\n", + " axis=0)\n", + " \n", + "annotated_coeqtl_df_clean = annotated_coeqtl_df.replace([np.inf, -np.inf], np.nan, inplace=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlpUlEQVR4nO3deXxU5dn/8c9FEhsU3FiEBiFaXKCoEYOKC/pgEaVVtGrV+lNRW6xVRC32Z7WvSlue+nvqiqBSHh+1KC51wZXHWlfU1lKWoCwucSeCbAWJBAjk+v1xTuIQJsmcZM5MMvm+X695Zeac+5y5zszkXPd9n3PuY+6OiIi0bx2yHYCIiGSfkoGIiCgZiIiIkoGIiKBkICIiQH62A2iOrl27enFxcbbDEBFpU+bOnbvK3bslm9cmk0FxcTFz5szJdhgiIm2KmX3a0Dx1E4mIiJKBiIgoGYiICG30mIGISH3V1dUsXbqUjRs3ZjuUrCssLKRXr14UFBSkvIySgYjkhKVLl9K5c2eKi4sxs2yHkzXuzurVq1m6dCl77bVXysupm0hEcsLGjRvp0qVLu04EAGZGly5dIreQlAxEJGe090RQqzmfg7qJpN2ZNGkS5eXl202vqKgAoKioaJvpffv2ZcyYMRmJTSRblAxEQlVVVdkOQSRrlAyk3Wmolj927FgAJk6cmMlwpI36/PPPOe+881i+fDkdOnRg9OjRdb+hZH7zm98wZMgQvve97yWd/95773HxxRezdu1aNm3axNFHH83UqVOZM2cO06ZN4/bbb49rUwAlAxGRZsnPz+fmm29m4MCBrF+/nkMOOYRhw4bRv3//pOV/97vfNbq+yy+/nCuvvJKRI0cC8M477wBQWlpKaWlpeoNPQgeQRSRn/f73v2f//fdn2LBhnH322dx00018+OGHnHDCCRxyyCEcffTRvPvuuwCMGjWKyy+/nCOOOIK9996bxx57rG49N954I4MGDeLAAw/k+uuvB6Bnz54MHDgQgM6dO9OvX7+6407JjBo1qm6d11xzDf379+fAAw9k3LhxACxbtoxevXrVlT/ggAMAePXVV/nBD34AwMqVKxk2bBgDBw7k4osvpk+fPqxatSotn1WsycDMCs1stpktMLNFZvbbJGXMzG43s3Ize9vMBsYZk4i0D3PmzOHxxx9n/vz5PPHEE3WDW44ePZpJkyYxd+5cbrrpJn7+85/XLbNs2TLeeOMNnn32Wa655hoAXnjhBT744ANmz55NWVkZc+fOZdasWdu81yeffML8+fM57LDDmoxrzZo1zJgxg0WLFvH222/z61//GoArr7ySoUOHcuKJJ3Lrrbeydu3a7Zb97W9/y9ChQ5k3bx6nnnoqn332WXM/nu3E3U20CRjq7pVmVgC8YWb/6+5vJZQ5EdgnfBwG3BX+FRFptjfeeIORI0fSsWNHAE466SQ2btzI3//+d84444y6cps2bap7fsopp9ChQwf69+/Pl19+CQTJ4IUXXuDggw8GoLKykg8++IAhQ4bUvT7ttNO47bbb2HnnnZuMa+edd6awsJCf/OQnfP/736+r9V9wwQUMHz6c559/nqeeeoo//elPLFiwYLttmjFjBgAnnHACu+22W3M/nu3Emgzc3YHK8GVB+PB6xUYC08Kyb5nZrmbW092XxRmbiOS2YJeyrZqaGnbddVfKysqSLvOtb31ru+XdnV/96ldcfPHF25Wvrq7mtNNO45xzzuGHP/xhSnHl5+cze/ZsXnrpJR5++GEmT57Myy+/DMC3v/1tLrzwQi688EIGDBjAwoULm9ymdIn9mIGZ5ZlZGbAC+Ju7/7NekSLg84TXS8NpIiLNdtRRR/HMM8+wceNGKisree6559hxxx3Za6+9ePTRR4Fg51q/9l3f8OHDueeee6isDOq1FRUVrFixAnfnoosuol+/flx11VUpx1VZWcm6desYMWIEt912W11iev7556murgZg+fLlrF69ertrXo466ij+8pe/AEGL5d///nfK79uU2M8mcvetQImZ7QrMMLMB7p6Y7pJdKrdd+jOz0cBogN69e8cRqojkkEGDBnHyySdz0EEH0adPH0pLS9lll12YPn06l1xyCRMmTKC6upqzzjqLgw46qMH1HH/88SxZsoTBgwcD0KlTJx544AHef/997r//fg444ABKSkoA+MMf/sCIESMajWv9+vWMHDmSjRs34u7ceuutQLBzHzt2LIWFhUBw0LpHjx51B7gBrr/+es4++2weeeQRjjnmGHr27Ennzp1b8jHVsTibHdu9mdn1wNfuflPCtD8Br7r7Q+Hr94BjG+smKi0tdd3pTNJN1xm0bUuWLKFfv37bTKusrKRTp05s2LCBIUOGMHXq1LozgNqiTZs2kZeXR35+Pv/4xz+45JJLGuzySvZ5mNlcd096nmqsLQMz6wZUu/taM+sIfA/4r3rFngYuM7OHCQ4cr9PxAhFJh9GjR7N48WI2btzI+eef36YTAcBnn33Gj370I2pqathhhx347//+77StO+5uop7An80sj+D4xF/c/Vkz+xmAu08BZgIjgHJgA3BBzDGJSDvx4IMPZvw9L730Ut58881tpo0dO5YLLmj5rm2fffZh/vz5LV5PMnGfTfQ2cHCS6VMSnjtwaZxxiIhkyh133JHtEJpFVyCLiIiSgYiIKBmIiAgatVRE2oFf/upa/r12XdrWt9uuu/DHG/7QaJm8vLy6weYAnnzySYqLi5OW7dSpU91FbdmiZCAiOe/fa9cx4idXpm19M+++tckyHTt2bPAagNZI3UQiIhlQWVnJcccdx8CBAznggAN46qmntiuzbNkyhgwZQklJCQMGDOD1118HgquTBw8ezMCBAznjjDNiaUUoGYiIxKCqqoqSkhJKSko49dRTKSwsZMaMGcybN49XXnmFX/ziF9sNPPfggw8yfPhwysrKWLBgASUlJaxatYoJEybw4osvMm/ePEpLS7nlllvSHq+6iUREYlC/m6i6upprr72WWbNm0aFDByoqKvjyyy/p0aNHXZlBgwZx4YUXUl1dzSmnnEJJSQmvvfYaixcv5sgjjwRg8+bNdeMkpZOSgYhIBkyfPp2VK1cyd+5cCgoKKC4uZuPGjduUGTJkCLNmzeK5557j3HPP5eqrr2a33XZj2LBhPPTQQ7HGp24iEZEMWLduHd27d6egoIBXXnmFTz/9dLsyn376Kd27d+enP/0pF110EfPmzePwww/nzTffpLy8HIANGzbw/vvvpz0+tQxEJOfttusuKZ0BFGV9UZ1zzjmcdNJJlJaWUlJSwv77779dmVdffZUbb7yRgoICOnXqxLRp0+jWrRv33XcfZ599dt1d2SZMmMC+++7b4u1IlNEhrNNFQ1hLHDSEdduWbMjm9izqENbqJhIRESUDERFRMhAREZQMREQEJQMREUHJQERE0HUGItIOXHbV1axYtSZt6+vedXcm33Jjg/NXr17NcccdB8Dy5cvJy8ujW7duAMyePZsddtghbbGki5KBiOS8FavW8OEex6RvhV++1ujsLl261I1LNH78eDp16sS4cePq5m/ZsoX8/Na1+21d0YiI5KhRo0ax++67M3/+fAYOHEjnzp23SRIDBgzg2Wefpbi4mAceeIDbb7+dzZs3c9hhh3HnnXeSl5cXa3w6ZiAikiHvv/8+L774IjfffHODZZYsWcIjjzzCm2++SVlZGXl5eUyfPj322NQyEBHJkDPOOKPJGv5LL73E3LlzGTRoEBDcF6F79+6xxxZrMjCzPYFpQA+gBpjq7hPrlTkWeAr4OJz0hLv/Ls64RESyYaeddqp7np+fT01NTd3r2uGs3Z3zzz+fG264IaOxxd1NtAX4hbv3Aw4HLjWz/knKve7uJeFDiUBEcl5xcTHz5s0DYN68eXz8cVAfPu6443jsscdYsWIFAGvWrEk63HW6xdoycPdlwLLw+XozWwIUAYvjfF8RkUTdu+7e5BlAkdfXQqeddhrTpk2jpKSEQYMG1Q1J3b9/fyZMmMDxxx9PTU0NBQUF3HHHHfTp06fF79mYjB0zMLNi4GDgn0lmDzazBcAXwDh3X5Rk+dHAaIDevXvHGKmI5JrGrgmI2/jx45NO79ixIy+88ELSeWeeeSZnnnlmjFFtLyNnE5lZJ+Bx4Ap3/6re7HlAH3c/CJgEPJlsHe4+1d1L3b209uINERFJj9iTgZkVECSC6e7+RP357v6Vu1eGz2cCBWbWNe64RETkG7EmAzMz4H+AJe5+SwNleoTlMLNDw5hWxxmXiOSmtnjnxjg053OI+5jBkcC5wDtmVhZOuxboDeDuU4DTgUvMbAtQBZzl+kZFJKLCwkJWr15Nly5dCOuX7ZK7s3r1agoLCyMtF/fZRG8AjX4r7j4ZmBxnHCKS+3r16sXSpUtZuXJltkPJusLCQnr16hVpGV2BLCI5oaCggL322ivbYbRZGptIRESUDERERMlARERQMhAREZQMREQEJQMREUHJQEREUDIQERFSTAZmNtzMLgqHoU6cfmEsUYmISEY1mQzM7A/AdcABwEtmNiZh9mVxBSYiIpmTSsvgJGCou18BHAKcaGa3hvPa72hQIiI5JJVkkO/uWwDcfS1BctjZzB4FdogxNhERyZBUksGHZnZM7Qt33+ruFwHvAf1ii0xERDImlWRwBjC7/kR3/zWwZ9ojEhGRjGsyGbh7lbtXmdnTZvZjM9spYV5FvOGJiEgmRLnO4GbgKGCxmT1qZqebWbRb6YiISKuU8s1t3P014DUzywOGAj8F7gF2jik2ERHJkEh3OjOzjgRnE50JDAT+HEdQIiKSWSknAzN7BDgMeB64A3jV3WviCkxERDInSsvgXuDH7r41rmBERCQ7ohwzeN7MjgjHJ8pPmD4tjsBERCRzonQT3Q98BygDalsHDigZiIi0cVG6iUqB/u7uqS5gZnsSJIseQA0w1d0n1itjwERgBLABGOXu8yLEJSIiLRTlOoOFBDv1KLYAv3D3fsDhwKVm1r9emROBfcLHaOCuiO8hIiItFKVl0JXggrPZwKbaie5+ckMLuPsyYFn4fL2ZLQGKgMUJxUYC08IWx1tmtquZ9QyXFRGRDIiSDMa35I3CA88HA/+sN6sI+Dzh9dJw2jbJwMxGE7Qc6N27d0tCERGRelLuJgqvQH4X6Bw+loTTmmRmnYDHgSvc/av6s5O9XZL3n+rupe5e2q1bt1TDFhGRFKScDMzsRwSjl54B/Aj4p5mdnsJyBQSJYLq7P5GkyFK2Hf20F/BFqnGJiEjLRekmug4Y5O4rAMysG/Ai8FhDC4RnCv0PQSvilgaKPQ1cZmYPE1zhvE7HC0REMitKMuhQmwhCq2m6ZXEkcC7wjpmVhdOuBXoDuPsUYCbBaaXlBKeWXhAhJhERSYMoyeB5M/sr8FD4+kyCHXmD3P0NmrhPcngW0aUR4hARkTSLMhzF1WZ2GkFt3wguIJsRW2QiIpIxkYawdvfHCQ4Gi4hIDmkyGZjZG+5+lJmtZ9tTPo2gl0c3txERaeOaTAbuflT4t3P84YiISDak0jLYvbH57r4mfeGIiEg2pHLMYC5B91BDVwrvndaIREQk41LpJtorE4GIiEj2pNJNNLCx+br3gIhI25dKN9HNjcxzYGiaYhERkSxJpZvoPzIRiIiIZE8q3URD3f1lM/thsvkNjEQqIiJtSCrdRMcALwMnJZnngJKBiEgbl0o30fXhX40mKiKSo1Iem8jMdgXOA4oTl3P3y9MelYiIZFSUgepmAm8B7wA18YQjIiLZECUZFLr7VbFFIiIiWZPyPZCB+83sp2bW08x2r33EFpmIiGRMlJbBZuBGgnsh1w5lrbGJRERyQJRkcBXQ191XxRWMiIhkR5RuokUEN6wXEZEcE6VlsBUoM7NXgE21E3VqqYhI2xclGTwZPkREJMeknAzc/c9m1hHo7e7vxRiTiIhkWMrHDMzsJKAMeD58XWJmTzexzD1mtsLMFjYw/1gzW2dmZeHjNxFiFxGRNIlyAHk8cCiwFsDdy4Cm7oJ2H3BCE2Ved/eS8PG7CPGIiEiaREkGW9x9Xb1pnrRk7Uz3WcCayFGJiEhGRUkGC83sx0Ceme1jZpOAv6chhsFmtsDM/tfMvttQITMbbWZzzGzOypUr0/C2IiJSK0oyGAN8l+C00oeAr4ArWvj+84A+7n4QMIlGzlZy96nuXurupd26dWvh24qISKIoZxNtIBiK4rp0vbm7f5XwfKaZ3WlmXXWVs4hIZkW5n8G+wDi2v5/B0Oa+uZn1AL50dzezQwlaKqubuz4REWmeKBedPQpMAe4muBq5SWb2EHAs0NXMlgLXAwUA7j4FOB24xMy2AFXAWe7e6EFpERFJvyjJYIu73xVl5e5+dhPzJwOTo6xTRETSL8oB5GfM7Oe6n4GISO6J0jI4P/x7dcI03c9AWrVJkyZRXl6eUtnacmPHjk2pfN++fRkzZkyzY4tLQ9tcUVEBQFFR0TbTW+t2SGZFOZuoqauNRVqd8vJyyhYuYeuOTTdiO2wODlfN/ejLJsvmbWh711JWVVVlOwRpxaKcTVQAXAIMCSe9CvzJ3atjiEskbbbuuDtV+49I6zo7vjszretLp4Zq+bUtnokTJ2YyHGkjonQT3UVwJtCd4etzw2k/SXdQIiKSWVGSwaDwSuFaL5vZgnQHJCIimRfpTmdm9h13/xDAzPYmxesNRCQe7fEAucQjSjK4GnjFzD4CDOgDXBBLVCKSEh0gl3SJcjbRS2a2D7AfQTJ4193r7oVsZsPc/W8xxCgijWhvB8glHlEuOsPdN7n72+6+IDERhP4rjXGJiEgGRUoGTbA0rktERDIoyjGDpmiAOZEMq6ioIG/DurR36+RtWE1FxZa0rlNat3S2DEREpI1KZ8vgkzSuS0RSUFRUxPJN+bEcQC4q2iOt65TWLVIyMLMj2P7mNtPCvz9Ma2QiIpIxUcYmuh/4DlDGNxebOTAt/WGJiEgmRWkZlAL9dScyEZHcE+UA8kKgR1yBiIhI9kRpGXQFFpvZbKDugjN3PzntUYmISEZFSQbj4wpCRJovb8OalK4z6LDxKwBqCndOaZ2gs4nakyhjE70WZyAiEl3fvn1TLltevj5YZu9UdvJ7RFq3tH1RziY6HJgE9AN2APKAr9296WqGiMQiyhDTutOZNCbKAeTJwNnAB0BHgjucTW5sATO7x8xWmNnCBuabmd1uZuVm9raZDYwQj4iIpEnUUUvLgTx33+ru9wLHNrHIfcAJjcw/EdgnfIwmuI2miIhkWJQDyBvMbAegzMz+CCwDdmpsAXefZWbFjRQZCUwLr114y8x2NbOe7r4sQlwiItJCUVoG54blLwO+BvYETmvh+xcBnye8XhpO246ZjTazOWY2Z+XKlS18WxERSRTlbKJPzawj0NPdf5um9092D4SkVzi7+1RgKkBpaamughYRSaOUWwZmdhLBuETPh69LzOzpFr7/UoIWRq1ewBctXKeIiEQUpZtoPHAosBbA3csIRjBtiaeB88Kzig4H1ul4gYhI5kU5gLzF3deZpX53SzN7iOCMo65mthS4HigAcPcpwExgBFAObAAuiBCPiIikSZRksNDMfgzkmdk+wOXA3xtbwN3PbmK+A5dGiEFERGIQpZtoDPBdgkHqHgTWAWPjCEpERDIrSsugf/jIDx8jgZOBA2OIS0SaadKkSZSXl283vXZa7bAUtfr27RtpWAvJTVGSwXRgHMF9DWriCUdE4tKxY8dshyCtWJRksNLdn4ktEhFJC9XypTmiJIPrzexu4CW2vbnNE2mPSkREMipKMrgA2J/g1NDabiIHlAxERNq4KMngIHc/ILZIREQka6KcWvqWmfWPLRIREcmaKC2Do4DzzexjgmMGRnDdmE4tFRFp46Ikg8ZuUiMiIm1YpCGs4wxERESyJ9JtL0VEJDcpGYiIiJKBiIgoGYiICEoGIiKCkoGIiKBkICIiKBmIiAhKBiIiQrThKEREJGbJbltaUVEBQFFR0Xbl03XbUiUDEZFWrqqqKvb3UDIQyZJs1QCldUv2HY8dOxaAiRMnxva+sR8zMLMTzOw9Mys3s2uSzD/WzNaZWVn4+E3cMYm0VlVVVRmpBYrUF2vLwMzygDuAYcBS4F9m9rS7L65X9HV3/0GcsUjbk+s152zVAEWSibub6FCg3N0/AjCzh4GRQP1kIJIS1ZqlNUhWUYGGKyttoaISdzIoAj5PeL0UOCxJucFmtgD4Ahjn7ovqFzCz0cBogN69e8cQqrQ2qjlLW9OWKytxJwNLMs3rvZ4H9HH3SjMbATwJ7LPdQu5TgakApaWl9dchIu1Ea+g+bGh9USorDbUukqktV7v+pjRnm+NOBkuBPRNe9yKo/ddx968Sns80szvNrKu7r4o5NhHJEW2xRl5eXk7ZwiVs3XH3Jst22BzUf+d+9GWTZfM2rGlWPHEng38B+5jZXkAFcBbw48QCZtYD+NLd3cwOJTjDaXXMcYlIG5VL3Ydbd9ydqv1HpHWdHd+d2azlYk0G7r7FzC4D/grkAfe4+yIz+1k4fwpwOnCJmW0BqoCz3F3dQFmUiwfHRKRxsV905u4zgZn1pk1JeD4ZmBx3HNJybbEpLtJaVVRUkLdhXbNr8g3J27CaiootkZfTFchtWFw1+HQcHBORtkXJIAepBi+tQWs466c1KyoqYvmm/FiOGRQV7RF5uZxOBrne960avLQ1qqi0XjmdDBqiH2T70dr6ZduTXDrrJy55G9ak9NvssDE4A7+mcOeU1glqGWxDNWcRaa369u2bctny8vXBMnunspPfI9K6a+V0MhBpbf2yIrWidEnnxBDWIiLS+qll0Ew6U0JEcomSQRrpwLQk09oGJGsr9LlllpJBM+lMifRK9R8/6j990FrL7s+8vLycJe+9T7eiPZsunF8AwKrKpisWKys+b7JMW9baBnLLdUoG0iqkvMOMuLMsyOsAHTqnI8QW6Va0J6f//JdpXedjd/4xretrjVrDQG7tpYWiZNDOtaYferp3mI/d+UfWLq9I2/qkfWovLTslg3ZOTXGRprWHlp2SQRsRVw2+vLy8VTTFpe2K87fZGrr4Mi3Z59nY55aurqacSQatqbsjDnE1VTdsqIJO7e8fTtInrt/m119/TV7eZg0lAnTs2DH298iZZBDXD3LZJx9SXl4ey5ku2e5TB5j0y4vJ27Ba/3Axqqio4KvKr9PeLbCy4nM2ddopretsrrh+m1vTusa2IVsVz5xJBhDPD/Ku68ZQubE6pX5y9ak3Xxw7zJUVn1OzpZo8r241g4FJ6vILdmBzwS5ZH0qkPSRzyLFkEIct1ZtJddSOVHYi3/C6K5azqbX8w8UlPz+f7+63X0pl4xoMrKioiG9VVsVyALJrp/i7D6R9yJlkEFf2rtm6FSz7t2SOa/uqN22iw9av0rrO5ohjh1m7s0z1IkBdNNg8cf428zatyHqrrr0k85xJBnEx60BNfmHO1pwBbMvGrP/DidRnHYwCM0pSaKllYojnXJczySCu7H3XdWOoqd6S9Z1lXNt39+/GwZbqlP6J4v6HW1nxeZO1y7WrVgCwa9fuKa2v6377RopBoou75pxKS02tupbLmWQAqe1MINoOZUv1ZjoVFraZnSVE277qTZvot9++Wf+HS/WzWLu8GiCl5nXX/fZtNTXAOL671pTstH2Btrp9kEPJIMo/faQdyoABKZ8C2hp2ltA2d5ipnk7XFmuAuf7dafu+0Ra3r1bsycDMTgAmAnnA3e7+/+rNt3D+CGADMMrd50V9n9Z216B0y/Xty2W5/t1p+77RFrevVqx3OjOzPOAO4ESgP3C2mfWvV+xEYJ/wMRq4K86YRERke+Ye32mTZjYYGO/uw8PXvwJw9xsSyvwJeNXdHwpfvwcc6+7LGlpvaWmpz5kzp8n3b2iIitpp9ZtoUa4Ibmz8kGRNvziGtIhr++L83KKI6zPO9e1rLTL5/eXK/17czGyuu5cmmxd3N1ERkDhO61LgsBTKFAHbJAMzG03QcqB3794tCiqucT4yMX5IKnJ5++KMIde3rzXI5d8mtJ44miPulsEZwHB3/0n4+lzgUHcfk1DmOeAGd38jfP0S8Et3n9vQelNtGYiIyDcaaxnEesyAoJafOHJcL+CLZpQREZEYxZ0M/gXsY2Z7mdkOwFnA0/XKPA2cZ4HDgXWNHS8QEZH0i/WYgbtvMbPLgL8SnFp6j7svMrOfhfOnADMJTistJzi19II4YxIRke3Ffp2Bu88k2OEnTpuS8NyBS+OOQ0REGhZ3N5GIiLQBSgYiIqJkICIiSgYiIkLMF53FxcxWAp9m8C27Aqsy+H6Zpu1ru3J520Dbl2593L1bshltMhlkmpnNaeiqvVyg7Wu7cnnbQNuXSeomEhERJQMREVEySNXUbAcQM21f25XL2wbavozRMQMREVHLQERElAxERIR2mgzMrIeZPWxmH5rZYjObaWb7mlmVmc03syVmNtvMzk+y7CAz22pmp5tZFzMrCx/Lzawi4fUO2di2MMbI22dmu5jZM2a2wMwWmdkFrXX7MsnMRpnZt1tBHFvDz31R+B1dZWYdEuYfamazzOw9M3vXzO42sx2zGXMUZuZmdnPC63FmNj58Pt7MxoXPC83sb2Z2fZZCTYuE73OBmc0zsyOyHVPso5a2NmZmwAzgz+5+VjitBNgD+NDdDw6n7Q08YWYd3P3ecFoe8F8EQ3Lj7quBknDeeKDS3W/K5PbU14LtuxRY7O4nmVk34D1guruXhOXH0wq2LwtGAQvJ/g2XqhK+i+7Ag8AuwPVmtgfwKHCWu/8j/A2cBnQmGBa+LdgE/NDMbnD3pBdhhRWQx4G57v7bjEaXfonf53DgBuCYbAbUHlsG/wFU1xtGu4xt78OMu38EXAVcnjB5DMGPcUX8YTZbc7fPgc7hjqQTsAbYkomAzaw4oTa70Mymm9n3zOxNM/sgrPXubmZPmtnbZvaWmR0YLjvezO4xs1fN7CMzuzxhvVeF61toZlckTD8vXM8CM7vfzDqb2cdmVhDO39nMPrHgtq2lwPSwFtfRzA4xs9fMbK6Z/dXMembiM0rk7isI7gd+Wfh9XUqQ/P8Rznd3f8zdv8x0bC2wheDMmisbmJ8PPAx84O7XZCyqzNgZ+He2g2h3LQNgANDg/ZXrmQfsD2BmRcCpwFBgUDyhpUWztg+YTHDXuS8IapRnuntN+sNrUF/gDIKd3L+AHwNHAScD1xIks/nufoqZDQWmEbbKCLbhP8K43zOzu4ADCW6UdBhgwD/N7DVgM3AdcKS7rzKz3d19vZm9CnwfeJLgjnyPu/ujZnYpMM7d54TJYhIw0t1XmtmZwH8CF8b4uSTl7h+F3UTdCb7zP2c6hhjcAbxtZn9MMu+XwIvufkVmQ4pNRzMrAwqBngT7laxqj8kgCkt4fhvwf919a1AZywmJGzIcKCP4UX4H+JuZve7uX2Uolo/d/R0AM1sEvOTubmbvAMVAH4KuD9z95fB4xi7hss+5+yZgk5mtIOgSOwqY4e5fh+t8AjiaoAX0WG1XhLuvCddxN8EO50mCJPLTJDHuR7Dj/Vv4G8gDsnmL1pz5IQK4+1dmNo2gtVpVb/YbwGAz29fd3898dGmX2E00GJhmZgM8i+f6t8duokXAISmWPRhYEj4vBR42s0+A04E7zeyUtEfXcs3dvguAJ8IuhnLgY75pNWTCpoTnNQmvawgqLcl2fLX/OInLbm2kPOH07f7h3P1NoNjMjgHy3H1hA8sucveS8HGAux/f0AbFKTzms5WgyzLKd97a3QZcBOxUb/os4Argf1vDAf10Crv3ugJJB5DLlPaYDF4GvmVmdTU/MxtEUPMkYVoxcBNBtwDuvpe7F7t7MfAY8HN3fzJDMUfRrO0DPgOOC+ftQVAL/igD8aZqFnAOgJkdC6xqotUyCzjFzHY0s50IuvheB14CfmRmXcJ17Z6wzDTgIeDehGnrCbqfIDio3i2syWFmBWb23RZuV2ThAf4pwOSwJjkZON/MDkso83/MrEemY2upsKX2F4KEUH/e48CNwPNmtmuGQ4uNme1P0Mpcnc042l03Udj1cCpwm5ldA2wEPiGodXzHzOYT9OOtBybVnknUVrRg+34P3Bd2yxhBl1hrGjp4PHCvmb1NcIbMdqf9JnL3eWZ2HzA7nHS3u88HMLP/BF4zs63AfIIzhgCmAxMIEkKt+4ApZlYFDCZoFd4edlHlE9RkF7Vs01JS28dcQHCw9X7gFgB3/9LMzgJuCs80qiFIhk9kIK443AxclmyGu08Jk9zTZna8u2/MbGhpU/t9QvD/dr67b81iPBqOQqSWmZ1OcHD43GzHIpJp7a5lIJKMmU0CTgRGZDsWkWxQy0BERNrlAWQREalHyUBERJQMREREyUAkEgtGMZ0cPk8cTbNVjG4q0lxKBiLpMQpQMpA2S8lAhKQjmXYzs8fN7F/h48hGlj2dbUc3/b6ZzUiYPywcGwkzqzSzmy0Yw/6l8GpizOw7ZvZ8OBrq6+FVqSIZo2Qg7V44pMR1wFB3PwgYC0wEbnX3QQQD5N3d0PLu/hgwBzgnHHxsJtCvdkdPMO5T7ZXeOwHz3H0g8BpQe5OWqcAYdz8EGAfcmb4tFGmaLjoTCUZq3WYkUzP7HtA/YYTanc2sc0MrSBQOCXI/8H/M7F6CYSzOC2fXAI+Ezx8guMFQJ+AI4NGE9/tWC7dJJBIlA5HkI5l2AAa7+zZDKUcYvvxe4BmCsaEedfeGbhTk4XutrR3SWCQb1E0kknwk0xdIGCzNgluHNiZxdFPc/QuCGwX9mmCwu1odCAa7g+AGPm+Eo69+bMGd1bDAQS3YHpHI1DKQds/dFyUZyfRy4I5wlNR8glFAf9bIau4jYXTTsEUxHejm7osTyn0NfNfM5gLrgDPD6ecAd5nZrwlGJn0YWJCubRRpisYmEolJeD3CfHf/n4Rple7eKYthiSSlZCASg7Dm/zUwLLwlZ+10JQNplZQMREREB5BFRETJQEREUDIQERGUDEREBCUDEREB/j8Wh4+5imbBKAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'],\n", + " y=abs(annotated_coeqtl_df_clean['mean_onemillionv2']),\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " fliersize=1,\n", + " palette='Paired',\n", + " showfliers = False)\n", + "plt.savefig('mean_onemillionv2.unfiltered_results.pdf')\n", + "plt.savefig('mean_onemillionv2.unfiltered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEGCAYAAACAd+UpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiN0lEQVR4nO3deXgV9dn/8fedEE00uAJqgxAttUhRI4ZaXGiLItbdWqv+rHvFx1qhWttHrVfVlqe2dcWtLbVWUVxRtC611gVRu1gSUFEUU1dSkE2QSBIj3L8/ZpIGOEnOSWbOMvm8ritXklnvyZnc53u+8517zN0REZFkKsp1ACIiEh8leRGRBFOSFxFJMCV5EZEEU5IXEUmwPrkOoL1+/fp5ZWVlrsMQESkoNTU1y9y9f6p5eZXkKysrmT17dq7DEBEpKGb2Xkfz1F0jIpJgSvIiIgmmJC8ikmB51ScvIrKhlpYWFi5cSFNTU65DybnS0lIGDhxISUlJ2usoyYtIXlu4cCF9+/alsrISM8t1ODnj7ixfvpyFCxey0047pb2eumtEJK81NTWx7bbb9uoED2BmbLvtthl/olGSF5G819sTfKvu/B3UXSOJcsMNN1BXV7fetPr6egAqKio2Wn7IkCGce+65WYlNJBeU5CXxGhsbcx2CSM4oyUuipGqVT5w4EYDJkydnOxwpUB988AEnn3wyixcvpqioiPHjx7edR6n89Kc/ZfTo0Rx44IEp57/55pucddZZrFy5kubmZvbff3+mTJnC7NmzmTp1Ktdff31ch6IkLyKyoT59+nD11VczYsQIVq9ezV577cXYsWMZNmxYyuV/9rOfdbq9CRMmcN5553HkkUcC8OqrrwJQXV1NdXV1tMFvQBdeRaQg/fznP2fo0KGMHTuWE044gauuuop///vfHHzwwey1117sv//+vPHGGwCceuqpTJgwgX322Yedd96Z6dOnt23nyiuvZOTIkey+++5ceumlAOywww6MGDECgL59+7Lrrru2XdtJ5dRTT23b5oUXXsiwYcPYfffdueCCCwBYtGgRAwcObFt+t912A2DmzJkcdthhACxdupSxY8cyYsQIzjrrLAYPHsyyZct6/HdSkheRgjN79mweeOAB5syZw4MPPthW2HD8+PHccMMN1NTUcNVVV/G9732vbZ1Fixbxwgsv8Oijj3LhhRcC8OSTT/LWW2/x0ksvMXfuXGpqapg1a9Z6+3r33XeZM2cOe++9d5dxrVixghkzZvDaa6/xyiuvcMkllwBw3nnnMWbMGL7xjW9w7bXXsnLlyo3WvfzyyxkzZgy1tbUcffTRvP/++93986xH3TUiUnBeeOEFjjzySMrKygA4/PDDaWpq4m9/+xvHHnts23LNzc1tPx911FEUFRUxbNgwPvzwQyBI8k8++SR77rknAA0NDbz11luMHj267fdjjjmG6667ji222KLLuLbYYgtKS0v57ne/y6GHHtrWSj/ttNMYN24cTzzxBA8//DC/+93vePnllzc6phkzZgBw8MEHs/XWW3f3z7MeJXkRKTjuvtG0devWsdVWWzF37tyU62y66aYbre/uXHTRRZx11lkbLd/S0sIxxxzDiSeeyDe/+c204urTpw8vvfQSTz/9NPfccw833ngjzzzzDACf+9znOP300zn99NMZPnw48+bN6/KYoqDuGhEpOPvttx+PPPIITU1NNDQ08Nhjj7HZZpux0047cf/99wNB0tywtbyhcePGceutt9LQ0AAE91QsWbIEd+eMM85g11135fzzz087roaGBlatWsUhhxzCdddd1/aG88QTT9DS0gLA4sWLWb58+Ub3bey3337cd999QPAJ46OPPkp7v51RS15ECs7IkSM54ogj2GOPPRg8eDDV1dVsueWWTJs2jbPPPptJkybR0tLC8ccfzx577NHhdg466CDmz5/PqFGjACgvL+fOO+9kwYIF3HHHHey2225UVVUB8Itf/IJDDjmk07hWr17NkUceSVNTE+7OtddeCwRJe+LEiZSWlgLBxd7tt9++7cIwwKWXXsoJJ5zAvffey1e/+lV22GEH+vbt25M/EwAW10eE7qiurnY9GUqipnHyhW3+/PnsuuuuG01vaGigvLycNWvWMHr0aKZMmdI2IqYQNTc3U1xcTJ8+ffj73//O2WefnbLrKdXfw8xq3D3lWEy15EWkII0fP57XX3+dpqYmTjnllIJO8ADvv/8+3/72t1m3bh2bbLIJv//97yPZrpK8iBSku+66K+v7POecc3jxxRfXmzZx4kROO+20Hm/7C1/4AnPmzOnxdjakJC8ikqabbrop1yFkTKNrREQSTEleRCTBlORFRBIs9j55M3sXWA2sBT7raJiPiEh3/Piii/lo5arItrf1Vlvy6yt+0ekyxcXFbUXGAB566CEqKytTLlteXt52s1UuZOvC69fdvefl1ERENvDRylUc8t3zItve47dc2+UyZWVlHZZPyDfqrhER6aGGhgYOOOAARowYwW677cbDDz+80TKLFi1i9OjRVFVVMXz4cJ5//nkguBt21KhRjBgxgmOPPTbyVn82krwDT5pZjZmN33CmmY03s9lmNnvp0qVZCEdEpGcaGxupqqqiqqqKo48+mtLSUmbMmEFtbS3PPvssP/zhDzcqOHbXXXcxbtw45s6dy8svv0xVVRXLli1j0qRJPPXUU9TW1lJdXc0111wTaazZ6K7Z193/Y2YDgL+a2Rvu3law2d2nAFMgKGuQhXhERHpkw+6alpYWLr74YmbNmkVRURH19fV8+OGHbL/99m3LjBw5ktNPP52WlhaOOuooqqqqeO6553j99dfZd999Afj000/b6uhEJfYk7+7/Cb8vMbMZwJeBWZ2vJSJSOKZNm8bSpUupqamhpKSEyspKmpqa1ltm9OjRzJo1i8cee4yTTjqJH/3oR2y99daMHTuWu+++O7bYYu2uMbPNzaxv68/AQcC8ztcSESksq1atYsCAAZSUlPDss8/y3nvvbbTMe++9x4ABAzjzzDM544wzqK2t5Stf+QovvvgidXV1AKxZs4YFCxZEGlvcLfntgBlm1rqvu9z9iZj3KSK9yNZbbZnWiJhMtpepE088kcMPP5zq6mqqqqoYOnToRsvMnDmTK6+8kpKSEsrLy5k6dSr9+/fntttu44QTTmh7itWkSZPYZZddenwcrVRqWBJPpYYLW0elhnurTEsNawiliEiCKcmLiCSYkryISIIpyYuIJJiSvIhIginJi4gkmB7/JyIF7fvn/4gly1ZEtr0B/bbhxmuu7HD+8uXLOeCAAwBYvHgxxcXF9O/fH4CXXnqJTTbZJLJYoqAkLyIFbcmyFfx7u69Gt8EPn+t09rbbbttWt+ayyy6jvLycCy64oG3+Z599Rp8++ZNa8ycSEZECdeqpp7LNNtswZ84cRowYQd++fddL/sOHD+fRRx+lsrKSO++8k+uvv55PP/2Uvffem5tvvpni4uLYYlOfvIhIBBYsWMBTTz3F1Vdf3eEy8+fP59577+XFF19k7ty5FBcXM23atFjjUkteRCQCxx57bJct8qeffpqamhpGjhwJBHXpBwwYEGtcSvIiIhHYfPPN237u06cP69ata/u9teywu3PKKadwxRVXZC0uddeIiESssrKS2tpaAGpra3nnnXcAOOCAA5g+fTpLliwBYMWKFSnLEkdJLXkRKWgD+m3T5YiYjLfXQ8cccwxTp06lqqqKkSNHtpUOHjZsGJMmTeKggw5i3bp1lJSUcNNNNzF48OAe77MjSvIiUtA6G9Met8suuyzl9LKyMp588smU84477jiOO+64GKNan7prREQSTEleRCTBlORFJO/l0xPscqk7fwcleRHJa6WlpSxfvrzXJ3p3Z/ny5ZSWlma0ni68ikheGzhwIAsXLmTp0qW5DiXnSktLGThwYEbrKMmLSF4rKSlhp512ynUYBUvdNSIiCaYkLyKSYEryIiIJpiQvIpJgSvIiIgmmJC8ikmBZSfJmVmxmc8zs0WzsT0REAtlqyU8E5mdpXyIiEoo9yZvZQOBQ4Ja49yUiIuvLRkv+OuDHwLpUM81svJnNNrPZum1ZRCRasSZ5MzsMWOLuNR0t4+5T3L3a3av79+8fZzgiIr1O3C35fYEjzOxd4B5gjJndGfM+RUQkFGuSd/eL3H2gu1cCxwPPuPt34tyniIj8l8bJi4gkWJdJ3syGmtkBZla+wfSDM9mRu89098MyDVBERLqv0yRvZhOAh4FzgXlmdmS72b+IMzAREem5rh4aciawl7s3mFklMN3MKt19MmCxRyciIj3SVZIvdvcGAHd/18y+RpDoB6MkLyKS97rqk19sZlWtv4QJ/zCgH7BbjHGJiEgEukryJwOL209w98/c/WRgdGxRiYhIJDpN8u6+0N0Xm9lkM9tng3kvxhuaiIj0VLrj5GuBS8yszsyuNLPqOIMSEZFopJXk3f12dz8E+DKwAPiVmb0Va2QiItJjmd7xOgQYClQCb0QejYiIRCqtJG9mrS33nwGvEYydPzzWyEREpMe6Giff6h1glLsvizMYERGJVlpJ3t1/a2YV4QibPu2mz4otMhER6bG0kryZ/ZKgVPDrwNpwsgNK8iIieSzd7pqjgS+6e3OcwYiISLTSHV3zNlASZyAiIhK9dFvya4C5ZvY00Naad/cJsUQlIiKRSDfJ/yn8EhGRApLu6JrbzWwTYJdw0pvu3hJfWCIiEoV0R9d8DbgdeJegjvyOZnaKhlCKiOS3dLtrrgYOcvc3AcxsF+BuYK+4ApN43HDDDdTV1a03rb6+HoCKioqNlh8yZAjnnntuVmITkeilm+RLWhM8gLsvMDONtkmIxsbGXIcgIjFJN8nPNrM/AHeEv58I1MQTksQpVat84sSJAEyePDnb4YhIzNJN8mcD5wATCPrkZwE3xxWUiIhEI93RNc3ANeGXiIgUiE6TvJnd5+7fNrNXCWrVrMfdd48tMhER6bGuWvITw++HxR2IiIhEr9Mk7+6Lwu/vdWfjZlZK0H+/abiv6e5+aXe2JSIimeuqu2Y1KbppCC6+urtv0cX2m4Ex7t4QDrl8wcz+7O7/6F64IpJUqe7hgI7v49A9HOnpqiXftycbd3cHGsJfS8KvVG8aIiIp6T6OnumqJb9NZ/PdfUVXOzCzYoIx9UOAm9z9nxlFKCK9Qketct3H0TNdXXitIWh5W4p5Duzc1Q7cfS1QZWZbATPMbLi7z2udb2bjgfEAgwYNSjNsERFJR1fdNTtFtSN3X2lmM4GDgXntpk8BpgBUV1erK0dEJEJdddcMdfc3zGxEqvnuXtvF+v2BljDBlwEHAr/qdrQiIpKRrrprzifoSrk6xTwHxnSx/g7A7WG/fBFwn7s/mnGUIiLSLV1114wPv3+9Oxt391eAPbuzroiI9Fy6Dw0pBg4FKtuv4+6qZSMiksfSrUL5CNAEvAqsiy8cERGJUrpJfqCKkYmIFJ6iNJf7s5kdFGskIiISuXRb8v8guJGpCGgh/do1IiKSQ5k8yHsU8GpYj0ZERApAut01bwHzlOBFRApLui35RcBMM/szQflgQEMoRUTyXbpJ/p3wa5PwS0RECkC6D/K+HMDMNnf3T+INSUREopLuHa+jgD8A5cAgM9sDOMvdvxdncCId6egpQqm0Ltdal7wreuKQJEm63TXXAeOAPwG4+8tmNjquoES6UldXx9x581m7WafPtQGg6NNgvEDN2x92uWzxmi6fgyNSUNJN8rj7B2brPTtkbfThiKRv7Wbb0Dj0kEi3WfbG45FuTyTX0k3yH5jZPoCb2SbABGB+fGGJiEgU0h0n/z/AOUAFsBCoCn8XEZE8lu7ommXAiTHHIiIiEUt3dE1/4Ew2rid/ejxhiYhIFNLtk38YeB54Cl1wFREpGOkm+c3c/X9jjURERCKX7oXXR80s2rFqIiISu3ST/ESCRN9kZqvDr4/jDExERHou3dE1feMOREREopf2Ha9mdgTQWspgprs/Gk9IIiISlXSHUP4SGAlMCydNNLP93P3C2CLLkY4KX9XX1wNQUVGx3nQVsxKRfJZuS/4QoMrd1wGY2e3AHCBxSb4jjY2NuQ5BRCRjaXfXAFsBrSX6tow+lPzQUau8tUzt5MmTsxmOiEiPpJvkrwDmmNmzgBH0zV8UW1QiIhKJtIZQuvvdwFeAB8OvUe5+T+t8M/tSqvXMbEcze9bM5pvZa2aW3lMbREQkEpnUk19E+NCQFO4ARqSY/hnwQ3evNbO+QI2Z/dXdX888VBERyVQmffKdsVQTwzeGReHPq81sPkG5YiX5XkwjmESyJ6ok710tYGaVwJ7APzeYPh4YDzBo0KCIwpFCpBFMItGLKsl3yszKgQeAH7j7euUQ3H0KMAWgurq6yzcLKXwawSS9Ua4+wXZ54dUCO3ax2KedrF9CkOCnufuDGcYnIpJojY2NsX6K7bIl7+5uZg8Be3WyzFdSTbfgyd9/AOa7+zXdDbI3SvWurz5ryQeZnJug87NVrj7Bpttd8w8zG+nu/8pw+/sCJwGvmtnccNrF7v54htvZSG880dRnLflK52b+SjfJfx04y8zeAz4hGE3j7r57Zyu5+wt0MPImDkk60VK9IanPWvKBzs3Ckm6S/0asUXSDTjQRka6lW0/+PQAzGwCUxhqRiIhEJq2yBmZ2hJm9BbwDPAe8C/w5xrhERCQC6XbX/Jygds1T7r6nmX0dOCG+sEQKl+7olXyS7jNeW9x9OVBkZkXu/ixQFV9YIskT93hokVTSbcmvDO9afR6YZmZLCIqPicgGdEev5JN0k/wsgoeGTAS+Q/DQkJ/FFJOISM4k7R6cdLtrDPgLMBMoB+4Nu29ERBKvkLva0h1CeTlwuZntDhwHPGdmC939wFijExHJsqTdg5NuS77VEmAxsBwYEH04IiISpXTHyZ9tZjOBp4F+wJldlTQQEZHcS/fC62CCWvBzY4xFREQilm6f/IVxByIiItHLypOhRER6k47uek6ldbnWi7ud6c5wTSV5EZGI1dXVMXfefNZutk2XyxZ9Gjz1tObtDztdrnjNim7FoiQvBam+vp7iNasoe6PHz59ZT/Ga5dTX62Zu6bm1m21D49BDItted8/1TIdQiohIAVFLPqHi6hOE/LiNu6KigsXNfSJtKUHQWqqo2C7SbUZF1S2lO5TkEyqOPkHofr+gxKdQb7eX7FCST7Co+wQh837BuD5R1NXVQVHfjGIpdKpuWTjiuGbU3etFSvISq7q6Oua/uYD+FTt2vXCfEgCWNXTdMl2zphHKe1eST5KkdyfmEyV5iV3/ih351vd+HOk2f/OTc2mJdIuSTUnvTozjmlF3rxcpyeeYujMkX8XZ2q6vr8+L7sTeIO+TfNI/1qk7Q/JVXOfm0voPKCkuUiMkS/I+ycd5ouULdWcUrqQ3QuI4N6ff/GtWLq6PdJvSsbxP8hDfiSbSU72hEZJUcXdH5Ut6zY8oRAqYGiGFqbd0R8Wa5M3sVuAwYIm7D49zXyJJsnLZElYubkn/IjuF1Q2UL+LsjipesyKtC8FFTR8DsK50i06XC0YO5d/omtuAG4GpMe9H8lR9fT0fN3wSecu0pbmZorUfR7rNfNLS3Exzy9q0hg0W4hDDpCsrK2PIkCFpLVtXtxqAITt3lcC3S3ub7cWa5N19lplVxrkPkaTSEMPCVVFRkfYdyHHfsZzzPnkzGw+MBxg0aFCOo8m+pLd0Kyoq2LShMZ7RQyWdf7yVnonr3Fxa/wHrPmuBsvzos066nCd5d58CTAGorq72DefHeaI1l28e6Tal94nr/Py0qZHi5mbVy5cey3mS7+3U0pV8Fde52XphsinSrWautzQg8z7Jx3mi9Ssvi3Sb0vvE+Sa9pmTLXlUvX+IR9xDKu4GvAf3MbCFwqbv/Ic59ZqK+vj7tYWdxP2xXRLKrtzQg4x5dc0Kc2++pxsbGvHnYrohIHPK+uyZu+fKwXRGROPT6JC/xW1r/QVoXt1YuWwLAVv0GdLlsS3MzlPQ4NJGs6ahWTkddwVF1+yrJ54EkJ8FM7tBbuTiom5lOf+bKzcpY1e2oohXX61fcEu1t8dD9W+MlPmVl8fbfK8nnWNKTYCYtkUzu/Js4cWJat/HHLa7Xr3nb4DpROiNh0r8tHjK9NT6ON7C2Al55IK7j6/fFXTaanqvBGAWR5JN8oiU9CSZdXK9fJuLablxvYP2+uAv19fWsau52aJGI8/i6U2MmLnmf5JN+oonkqzjfwCZOnMjiHDdC8uENOhvyPskn/UQTEYlT7vsrREQkNnnfkpfuqa+vp3jNKhW4EunllORFJOvUCMkeJfmEqqioYHFzHxW4EunllOSlYEX9DM3WbepmofipEZI9SvJSkDIZWhvnzUIi+U5JXgpSbxnjLNJTGkIpIpJgasmLFIhcVTGUwqYkL1Lg4q5iKIVNSV6kQKhVLt2hPnkRkQRTkhcRSTAleRGRBOvVffJx1M9Q7QwRySe9OsmLiGwo1VDVjoapQv4PVe3VST6O+hmqnSEaz548hTxMtVcneZFsKuRE0Zsk7Q1XSV4kYklLElLYNLpGRCTBYm/Jm9nBwGSgGLjF3X8Z9z6TIJOLP4XWp6s+awE9DyBbYk3yZlYM3ASMBRYC/zKzP7n76z3ddtKugKcj0z7dQvsnUp91YYjif0/PA8ieuFvyXwbq3P1tADO7BzgS6HGST6U7SWLDRFjU9DG2riXt9b2oZL3kGFUS7OkbUkcnen19PY2NjetNa1zbBEDZOtto+bKyMioqKtpN6fk/UZxvtr3xzT8fZPq/l+pv3tEnvI7otUtP3Em+Avig3e8Lgb3bL2Bm44HxAIMGDUp7w1G8uKmSVX39Zxslwc4ESbB9Us+PlkRHf59U/0j19fUAGyTzQBL+kfQJIVrZPh/0+vWMuXt8Gzc7Fhjn7t8Nfz8J+LK7pzxLqqurffbs2bHFIyKSRGZW4+7VqebFPbpmIbBju98HAv+JeZ8iIhKKO8n/C/iCme1kZpsAxwN/inmfIiISirVP3t0/M7PvA38hGEJ5q7u/Fuc+RUTkv2IfJ+/ujwPRlXkUEZG06Y5XEZEEU5IXEUkwJXkRkQRTkhcRSbBYb4bKlJktBd7L4i77AcuyuL9s0/EVNh1f4cr2sQ129/6pZuRVks82M5vd0V1iSaDjK2w6vsKVT8em7hoRkQRTkhcRSbDenuSn5DqAmOn4CpuOr3DlzbH16j55EZGk6+0teRGRRFOSFxFJsEQleTPb3szuMbN/m9nrZva4me1iZo1mNsfM5pvZS2Z2Sop1R5rZWjP7lplta2Zzw6/FZlbf7vdNcnFsYYwZH5+ZbWlmj5jZy2b2mpmdlq/Hl01mdqqZfS4P4lgb/t1fC1+j882sqN38L5vZLDN708zeMLNbzGyzXMacKTNzM7u63e8XmNll4c+XmdkF4c+lZvZXM7s0R6H2WLvX82UzqzWzfXIdU+xVKLPFzAyYAdzu7seH06oIHrj6b3ffM5y2M/CgmRW5+x/DacXArwhKIuPuy4GqcN5lQIO7X5XN49lQD47vHOB1dz/czPoDbwLT3L0qXP4y8uD4cuBUYB65f4hNY7vXYgBwF7AlcKmZbQfcDxzv7n8Pz4FjgL7AmhzF2x3NwDfN7Ap3T3mDUNi4eACocffLsxpdtNq/nuOAK4Cv5jKgJLXkvw60uPtvWye4+1zWf8Ys4UPFzwcmtJt8LsEJtiT+MLutu8fnQN8wQZQDK4DPshGwmVW2a33OM7NpZnagmb1oZm+FrdRtzOwhM3vFzP5hZruH615mZrea2Uwze9vMJrTb7vnh9uaZ2Q/aTT853M7LZnaHmfU1s3fMrCScv4WZvWvBYymrgWlhq6vMzPYys+fMrMbM/mJmO2Tjb9Seuy8heN7x98PX6xyCN/W/h/Pd3ae7+4fZjq2HPiMYbXJeB/P7APcAb7n7hVmLKn5bAB/lOojEtOSB4UBNmsvWAkMBzKwCOBoYA4yMJ7RIdOv4gBsJnsb1H4IW4HHuvi768Do0BDiWIHn9C/h/wH7AEcDFBG9Sc9z9KDMbA0wl/BRFcAxfD+N+08x+A+wOnEbwQHgD/mlmzwGfAj8B9nX3ZWa2jbuvNrOZwKHAQwRPJnvA3e83s3OAC9x9dvgmcANwpLsvNbPjgP8DTo/x75KSu78ddtcMIHjNb892DDG5CXjFzH6dYt6Pgafc/QfZDSkWZWY2FygFdiDIKzmVpCSfCWv383XA/7r72qDxlAjtD2QcMJfgZPs88Fcze97dP85SLO+4+6sAZvYa8LS7u5m9ClQCgwm6IHD3Z8LrBVuG6z7m7s1As5ktIeia2g+Y4e6fhNt8ENif4BPL9NbuAHdfEW7jFoIk8hDBm8OZKWL8IkFC/Wt4DhQDiyL7C2QuMSdiK3f/2MymEnzCbNxg9gvAKDPbxd0XZD+6SLXvrhkFTDWz4Z7DsepJ6q55DdgrzWX3BOaHP1cD95jZu8C3gJvN7KjIo+u57h7facCD4Uf9OuAd/tvKz4bmdj+va/f7OoJGRqqE1voP0X7dtZ0sTzh9o38kd38RqDSzrwLF7j6vg3Vfc/eq8Gs3dz+oowOKU3hNZS1B12Emr3khuA44A9h8g+mzgB8Af86Hi+FRCbvZ+gEpC4dlS5KS/DPApmbW1lIzs5EELUXaTasEriL4eI677+Tule5eCUwHvufuD2Up5kx06/iA94EDwnnbEbRa385CvOmaBZwIYGZfA5Z18SljFnCUmW1mZpsTdLU9DzwNfNvMtg23tU27daYCdwN/bDdtNUE3EAQXo/uHLS/MrMTMvtTD48pYeGH8t8CNYcvvRuAUM9u73TLfMbPtsx1bFMJPV/cRJPoN5z0AXAk8YWZbZTm0WJjZUIJPhctzGUdiumvCLoCjgevM7EKgCXiXoIXweTObQ9BPthq4oXVkTaHowfH9HLgt7B4xgq6pfCrvehnwRzN7hWDEyEbDW9tz91ozuw14KZx0i7vPATCz/wOeM7O1wByCETQA04BJBIm+1W3Ab82sERhF8Cnu+rCrqA9BqzMbD51v7cMtIbhAeQdwDYC7f2hmxwNXhSNv1hG8yT2YhbjicjXw/VQz3P234RvYn8zsIHdvym5okWh9PSH4fzvF3dfmMB6VNZDkM7NvEVxUPSnXsYhkW2Ja8iKpmNkNwDeAQ3Idi0guqCUvIpJgSbrwKiIiG1CSFxFJMCV5EZEEU5IXCVlQmfLG8Of21RHzomKlSHcoyYt07VRASV4KkpK8JF6K6pT9zewBM/tX+LVvJ+t+i/UrVh5qZjPazR8b1s/BzBrM7GoL6og/Hd7Bipl93syeCCtcPh/eCSmSFUrykmhheYKfAGPcfQ9gIjAZuNbdRxIUR7ulo/XdfTowGzgxLDz1OLBrawInqA3Uenfx5kCtu48AngNaH34xBTjX3fcCLgBuju4IRTqnm6Ek6cawQXVKMzsQGNau6ugWZta3ow20F5aXuAP4jpn9kaAkwsnh7HXAveHPdxI8vKUc2Ae4v93+Nu3hMYmkTUleki5VdcoiYJS7r1fyNoNS038EHiGoH3S/u3f0EBYP97WytfysSLapu0aSLlV1yidpVyTLgscodqZ9xUrc/T8ED2G5hKDQWasigkJnEDwc5YWwouY7FjyNCgvs0YPjEcmIWvKSaO7+WorqlBOAm8LKl30IKjv+TyebuY12FSvDTwDTgP7u/nq75T4BvmRmNcAq4Lhw+onAb8zsEoJqk/cAL0d1jCKdUe0akW4Ix9PPcfc/tJvW4O7lOQxLZCNK8iIZClvqnwBjw8cTtk5Xkpe8oyQvIpJguvAqIpJgSvIiIgmmJC8ikmBK8iIiCaYkLyKSYP8fsn0+EcPGrYUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'], \n", + " y=annotated_coeqtl_df_clean['var_onemillionv2'],\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " palette='Paired', fliersize=1,\n", + " showfliers = False)\n", + "plt.savefig('var_onemillionv2.unfiltered_results.pdf')\n", + "plt.savefig('var_onemillionv2.unfiltered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAApOklEQVR4nO3deZyVZf3/8debYRQMFBVcAgX3JRfCIdMMC0NNUyw1Nb+KuKDmQpqW1veXVn7rW2a5S2TumiauFV+03EizlNUUUEe0ZBQFFBRZZPn8/rjvocNwhnNu5iyzvJ+PxzzmnPu+7vt87jlnzue+r+u6r0sRgZmZdWydqh2AmZlVn5OBmZk5GZiZmZOBmZnhZGBmZkDnagewLnr27Bn9+vWrdhhmZm3KxIkT50ZEr3zr2mQy6NevHxMmTKh2GGZmbYqkfzW3ztVEZmbmZGBmZk4GZmZGG20zyGfZsmXMmjWLJUuWVDuUquvSpQt9+vShtra22qGYWRvRbpLBrFmz6N69O/369UNStcOpmohg3rx5zJo1i2222aba4ZhZG1HWaiJJN0l6V9KLzayXpKsl1Ut6QdKAdX2tJUuWsOmmm3boRAAgiU033dRXSGaWSbnbDG4BDl7L+i8DO6Q/I4AbWvJiHT0RNPLfwcyyKms1UUSMl9RvLUWGArdFMo723yX1kLRlRLxdzrisY7vmmmuor69fY3lDQwMAvXv3Xm359ttvzznnnFOR2KzjuOaaaxg3btwayxctWkSWqQUkscEGG6y27OCDD878ma12b6LewJs5z2ely9YgaYSkCZImzJkzpyLBWceyePFiFi9eXO0wzKqi2g3I+eoz8qbEiBgNjAaoq6trFTPyvPnmm5x44onMnj2bTp06MWLECEaOHNls+R/84AcMGjSIL33pS3nXv/zyy5x++unMnz+fpUuX8vnPf57Ro0czYcIEbrvtNq6++upyHUqH0twZU+N7d9VVV1UyHOugzjnnnFZ1xVntZDAL2CrneR/grSrFklnnzp254oorGDBgAB9++CF77bUXQ4YMYdddd81b/kc/+tFa93fuuedy3nnnMXToUAD++c9/AlBXV0ddXV1pgzczy1HtaqKHgRPTXkWfBRaUur3gxz/+MTvvvDNDhgzhuOOO4xe/+AWvvfYaBx98MHvttRef//znmTFjBgAnnXQS5557Lvvuuy/bbrstY8aMWbWfyy+/nIEDB7LHHntwySWXALDlllsyYEDSAap79+7ssssuq+qd8znppJNW7fOiiy5i1113ZY899uCCCy4A4O2336ZPnz6ryu++++4APPnkk3zlK18BYM6cOQwZMoQBAwZw+umn07dvX+bOnVuqP5eZdVBlvTKQ9DvgC0BPSbOAS4BagIgYBYwFDgHqgUXA8FK+/oQJE7jvvvuYPHkyy5cvZ8CAAey1116MGDGCUaNGscMOO/CPf/yDb37zmzz++ONA8oX89NNPM2PGDA4//HCOOuooHn30UV599VWee+45IoLDDz+c8ePHM2jQoFWv9cYbbzB58mT23nvvgnG99957PPDAA8yYMQNJzJ8/H4DzzjuPwYMHs++++3LggQcyfPhwevTosdq2P/zhDxk8eDAXX3wx48aNY/To0SX7e5lZx1Xu3kTHFVgfwFnlev2nn36aoUOH0rVrVwAOO+wwlixZwt/+9jeOPvroVeWWLl266vERRxxBp06d2HXXXXnnnXcAePTRR3n00Uf59Kc/DcDChQt59dVXVyWDhQsXcuSRR3LllVey4YYbFoxrww03pEuXLpx66qkceuihq876hw8fzkEHHcS4ceN46KGH+PWvf83UqVPXOKYHHngASHoMbLzxxuv65zEzW6XabQZlla971sqVK+nRowdTpkzJu83666+/xvYRwcUXX8zpp5++Rvlly5Zx5JFHcvzxx/O1r32tqLg6d+7Mc889x2OPPcbdd9/Ntddeu+rK5JOf/CQnn3wyJ598Mrvtthsvvrj6/XpZupyZmRWr2m0GZbXffvvxhz/8gSVLlrBw4UL+9Kc/scEGG7DNNttw7733AsmXa9Oz76YOOuggbrrpJhYuXAgk/dHfffddIoJTTjmFXXbZhfPPP7/ouBYuXMiCBQs45JBDuPLKK1clpnHjxrFs2TIAZs+ezbx589bo877ffvvx+9//HkiuWN5///2iX9fMrDnt+spg4MCBHH744ey555707duXuro6NtpoI+68807OPPNMLrvsMpYtW8axxx7Lnnvu2ex+DjzwQKZPn84+++wDQLdu3bjjjjt45ZVXuP3229l9993p378/AD/5yU845JBD1hrXhx9+yNChQ1myZAkRwa9+9Ssg+XIfOXIkXbp0AZJG6y222GJVAzfAJZdcwnHHHcc999zD/vvvz5Zbbkn37t1b8mcyM0Ntsdqhrq4ums50Nn36dHbZZZc1yi5cuJBu3bqxaNEiBg0axOjRo1f1AGqLli5dSk1NDZ07d+bZZ5/lzDPPzFvl1dzfw5rn+wysvZM0MSLy9lNv11cGACNGjGDatGksWbKEYcOGtelEAPDvf/+br3/966xcuZL11luP3/zmN9UOyczagXafDO66666Kv+ZZZ53FM888s9qykSNHMnx4y3vO7rDDDkyePLnF++komhuHKJ/Gcmu7izyXxyyy9qTdJ4NquO6666odgqXq6+uZ8uJ0VmywScGynT5OqkwnznynYNmaRe+1ODaz1sTJwNq9FRtswuKd196on1XXGWNLuj+zamvXXUvNzKw4TgZmZtYxqom+c/H3eH/+gpLtb+MeG/Hzn/5krWVqampWDTQH8OCDD9KvX7+8Zbt167bqhjYzs2roEMng/fkLOOTU80q2v7E3/qpgma5duzY75IWZWWtTVDWRpIMkndJ0CktJJ5clqnZo4cKFHHDAAQwYMIDdd9+dhx56aI0yb7/9NoMGDaJ///7stttu/PWvfwWSO5P32WcfBgwYwNFHH+2rCDMruYLJQNJPgO8DuwOPScrtWH12uQJr6xYvXkz//v3p378/X/3qV+nSpQsPPPAAkyZN4oknnuDb3/72GoPO3XXXXRx00EFMmTKFqVOn0r9/f+bOnctll13GX/7yFyZNmkRdXR2//OUvq3RUZtZeFVNNdBjw6YhYLulS4C5J20bEeeSfttJYs5po2bJlfO9732P8+PF06tSJhoYG3nnnHbbYYotVZQYOHMjJJ5/MsmXLOOKII+jfvz9PPfUU06ZN43Of+xwAH3/88aoxkszMSqWYZNA5IpYDRMR8SYcBoyXdC6xX1ujakTvvvJM5c+YwceJEamtr6devH0uWLFmtzKBBgxg/fjx/+tOfOOGEE7jwwgvZeOONGTJkCL/73e+qFLmZdQTFtBm8Jmn/xicRsSIiTgFeBjwSWpEWLFjAZpttRm1tLU888QT/+te/1ijzr3/9i80224zTTjuNU045hUmTJvHZz36WZ555ZtVQCYsWLeKVV16pdPhm1s4Vc2VwdL6FEfHfkm4ocTxlsXGPjYrqAZRlf1kdf/zxHHbYYdTV1dG/f3923nnnNco8+eSTXH755dTW1tKtWzduu+02evXqxS233MJxxx23aka2yy67jB133LHFx2Fm1qhgMoiIxQCSHgbuBh6KiI/Sdc3P/t6KFLonoBya9vjp2bMnzz777FrLDhs2jGHDhq2xfvDgwTz//POlD9LMLJXlDuQrgP2AaZLulXSUpC5lisvMzCqo6JvOIuIp4ClJNcBg4DTgJqDwDPBmZtaqZboDWVJXkq6mxwADgFvLEZSZmVVW0clA0j3A3sA44DrgyYhYWa7AzMyscrJcGdwMfCMiVpQrGDMzq44sbQbjJO2bjk/UOWf5beUIzMzMKidLNdHtwHbAFKDx6iCAVp8Mzj7/Qt6dW7ppCjfruQnX/vLyZtfPmzePAw44AIDZs2dTU1NDr169AHjuuedYbz3fuG1mrUuWaqI6YNdoOrpaG/Du3Pd4bfP9Cxcs1jtPrXX1pptuumpcoksvvZRu3bpxwQUXrFq/fPlyOnfuEKOHm1kbkeUb6UVgC+DtMsXSrp100klssskmTJ48mQEDBtC9e/fVksRuu+3GH//4R/r168cdd9zB1Vdfzccff8zee+/N9ddfT01NTZWPwMzasyw3nfUkueHsEUkPN/6UK7D26JVXXuEvf/kLV1xxRbNlpk+fzj333MMzzzzDlClTqKmp4c4776xglGbWEWW5Mri0XEF0FEcffXTBM/zHHnuMiRMnMnDgQCCZF2GzzTarRHhm1oFlugNZ0ubAwHTRcxHxbnnCap8+8YlPrHrcuXNnVq78z20ajcNZRwTDhg3jpz/9acXjM7OOq+hqIklfB54jGcX068A/JB1VxHYHS3pZUr2ki/Ks30jSHyRNlfSSpOFZDqCt6tevH5MmTQJg0qRJvP766wAccMABjBkzhnffTfLse++9l3e4azOzUspSTfR9YGDj1YCkXsBfgDHNbZCOY3QdMASYBTwv6eGImJZT7CxgWkQclu7zZUl3RsTHGY+lWZv13KRgD6DM+2uhI488kttuu43+/fszcODAVUNS77rrrlx22WUceOCBrFy5ktraWq677jr69u3b4tc0M2tOlmTQqUm10DwKX1l8BqiPiJkAku4GhgK5ySCA7pIEdAPeA5ZniKugtd0TUG6XXnpp3uVdu3bl0UcfzbvumGOO4ZhjjiljVGZmq8uSDMZJegRonH/xGGBsgW16A2/mPJ9FMr5RrmuBh4G3gO7AMfnGPJI0AhgBsPXWW2cI28zMCim6zSAiLgRGA3sAewKjI+K7BTZTvl01eX4QyV3NnwT6A9dKWmNY7IgYHRF1EVHXeDevmZmVRqbbYCPiPuC+DJvMArbKed6H5Aog13Dgf9M7m+slvQ7sTNJYnUlEkNQ2dWxt8CZxM6uyglcGkp5Of38o6YOcnw8lfVBg8+eBHSRtI2k94FiSKqFc/wYOSF9jc2AnYGbWA+nSpQvz5s3r8F+EEcG8efPo0sWT0JlZ8YqZA3m/9Hf3rDuPiOWSzgYeAWqAmyLiJUlnpOtHAT8GbpH0T5Jqpe9GxNysr9WnTx9mzZrFnDlzsm7a7nTp0oU+ffpUOwwza0MKJgNJa+1HGRFrHQ40IsbSpKE5TQKNj98CDiwURyG1tbVss802Ld2NmVmHVEybwUSSRt/mGoO3LWlEZmZWccVUE/l028ysnSummmjA2tZHxKTShWNmZtVQTDVR8+MtJ9VEg0sUi5mZVUkx1URfrEQgZmZWPcVUEw2OiMclfS3f+oi4v/RhmZlZJRVTTbQ/8DhwWJ51ATgZmJm1ccVUE12S/u4Q8wyYmXVERY9NJKkHcCLQL3e7iDi35FGZmVlFZRmobizwd+CfwBpDTJuZWduVJRl0iYjzyxaJmZlVTdHzGQC3SzpN0paSNmn8KVtkZmZWMVmuDD4GLieZC7lxnGiPTWRm1g5kSQbnA9uvy/DSZmbWumWpJnoJWFSuQMzMrHqyXBmsAKZIegJY2rjQXUvNzNq+LMngwfTHzMzamaKTQUTcKqkrsHVEvFzGmMzMrMKKbjOQdBgwBRiXPu8vqenk9mZm1gZlaUC+FPgMMB8gIqYAngXNzKwdyJIMlkfEgibLIm9JMzNrU7I0IL8o6RtAjaQdgHOBv5UnLDMzq6QsVwbnAJ8i6Vb6O+AD4FtliMnMzCosS2+iRSRDUXy/fOGYmVk1ZJnPYEfgAtacz2Bw6cMyM7NKytJmcC8wCriR5G5kMzNrJ7Ikg+URcUPZIjEzs6rJ0oD8B0nf9HwGZmbtT5Yrg2Hp7wtzlnk+AzOzdiBLbyLfbWxm1k5lGZuoVtK5ksakP2dLqi1iu4MlvSypXtJFzZT5gqQpkl6S9FSWAzAzs5bLUk10A1ALXJ8+PyFddmpzG0iqAa4DhgCzgOclPRwR03LK9Ej3eXBE/FvSZpmOwMzMWixLMhgYEXvmPH9c0tQC23wGqI+ImQCS7gaGAtNyynwDuD8i/g0QEe9miMnMzEogS2+iFZK2a3wiaVsK32/QG3gz5/msdFmuHYGNJT0paaKkE/PtSNIISRMkTZgzZ06GsM3MrJAsVwYXAk9ImgkI6AsML7CN8ixrOtJpZ2Av4ACgK/CspL9HxCurbRQxGhgNUFdX59FSzcxKKEtvosfS0Up3IvmSnxERq+ZCljQkIv7cZLNZwFY5z/sAb+UpMzciPgI+kjQe2BN4BTMzq4gs1URExNKIeCEipuYmgtTP8mzyPLCDpG0krQccCzSdHe0h4POSOkvaANgbmJ4lLjMza5ks1USFrFElFBHLJZ0NPALUADdFxEuSzkjXj4qI6ZLGAS8AK4EbI+LFEsZlZmYFlDIZ5K3Hj4ixwNgmy0Y1eX45cHkJYzEzswwyVROZmVn7VMpk8EYJ92VmZhWUZXKbWuBMYFC66ClgVEQsA4iIr5U+PDMzq4SyDkdhZmZtQ7mHozAzszag3MNRmJlZG1Du4SjMzKwNKNlwFGZm1nYVTAaSBkfE45Ka9hbaThIRcX+ZYjMzswop5spgf+Bx4LA86wJwMjAza+MKJoOIuCR9+KOIeD13nSTPi2xm1g5k6U10X55lY0oViJmZVU8xbQY7A58CNmrSbrAh0KVcgZmZWeUU02awE/AVoAertxt8CJxWhpjMzKzCimkzeAh4SNI+EfFsBWIyM7MKy3LT2WRJZ5FUGa2qHoqIk0selZmZVVSWBuTbgS2Ag0hGLO1DUlVkZmZtXJZksH1E/D/go4i4FTgU2L08YZmZWSVlSQbL0t/zJe0GbAT0K3lEZmZWcVnaDEZL2hj4b+BhoBvw/8oSlZmZVVRRyUBSJ+CDiHgfGA9sW9aozMysooqqJoqIlcDZZY7FzMyqJEubwZ8lXSBpK0mbNP6ULTIzM6uYLG0GjfcTnJWzLHCVkZlZm5dlchuPUGpm1k4VnQwk1QJnAoPSRU8Cv46IZc1uZGYVd80111BfX7/G8oaGBgB69+692vLtt9+ec845pyKxWeuVpZroBqAWuD59fkK67NRSB2Vmpbd48eJqh2CtWJZkMDAi9sx5/rikqaUOyMxaprmz/JEjRwJw1VVXVTIcayOy9CZaIWm7xieStgVWlD4kMzOrtCxXBhcAT0iaCQjoCwwvS1RmZlZRxd6BXAPsCexAMtmNgBkRsbSMsZmZWYUUewfyCuDwiFgaES9ExNRiE4GkgyW9LKle0kVrKTdQ0gpJRxUZu5mZlUiWaqK/SboWuAf4qHFhRExqboP0iuI6YAgwC3he0sMRMS1PuZ8Bj2SIx8zMSiRLMtg3/f2jnGUBDF7LNp8B6iNiJoCku4GhwLQm5c4B7gMGZojHzMxKJMsdyF9ch/33Bt7MeT4L2Du3gKTewFdJkkqzyUDSCGAEwNZbb70OoZiZWXOK7loqaXNJv5X0f+nzXSWdUmizPMuiyfMrge+m7RLNiojREVEXEXW9evUqNmwzMytClvsMbiGp0/9k+vwV4FsFtpkFbJXzvA/wVpMydcDdkt4AjgKul3REhrjMzKyFsrQZ9IyI30u6GCAilksqdNPZ88AOkrYBGoBjgW/kFsgdAE/SLcAfI+LBDHGZdVjNjUOUT2O5xjuRC/GYRR1LlmTwkaRNSat5JH0WWLC2DdKEcTbJFUUNcFNEvCTpjHT9qHUL28wg+YKf8uJ0VmxQeGqRTh8nNbQTZ75TsGzNovdaHJu1LVmSwbdJ5j7eTtIzQC/g6EIbRcRYYGyTZXmTQESclCEeMwNWbLAJi3c+pKT77DpjbOFC1q5k6U00UdL+/OcO5Jc9fLWZWfuQpTfRa8CpEfFSRLwYEcsk/bGMsZmZWYVk6U20DPiipJslrZcu6722DczMrG3IkgwWRcQxwHTgr5L6suY9A2Zm1gZlaUAWQET8XNJEkh5ChbswmJlZq5clGfyg8UFEPCbpQOCkkkdkZmYVl6U30R/ScYT65mz3ZDmCMjOzyio6GUj6X5I7iKfxn+kuAxhfhrjMzKyCslQTfRXYybObmZm1P1mSwUygFnAyMGslGhoaqFm0oOR3DNcsmkdDw/KS7tNatyzJYBEwRdJj5CSEiDi35FGZmVlFZUkGD6c/ZtZK9O7dm9lLO5dlbKLevTcv6T6tdcvSm+jW9M7jHdNFHpvIzKydyNKb6AvArcAbJDegbSVpWES4N5GZWRuXpZroCuDAiHgZQNKOwO+AvcoRmJmZVU6WsYlqGxMBQES8QtK7yMzM2rgsVwYTJP0WuD19fjwwsfQhmZlZpWVJBmcCZwHnkrQZjAeuL0dQZmZWWVl6Ey0Ffpn+mFkL5ZvMvqGhAUi6jDblCeqtnLL0JvoccCmrD1RHRGxb+rDMOqbFixdXOwTroLJUE/0WOI+knWBFgbJmVkC+s/yRI0cCcNVVVxW9n5pF7xU1HEWnJR8AsLLLhkXtE3zTWUeSJRksiIj/K1skZpbZ9ttvX3TZ+voPk222LeZLfvNM+7a2L0syeELS5cD9rD420aSSR2VmRcl3dZGvLWJt3BZhkC0Z7J3+rstZFsDg0oVjZuXStWvXaofQbjSXcJvrANAWEm6W3kRfXNv6dGiKW1sekpm1RGv/0mnP2nIHgCxXBoWMJBm7yMysXWsu4a5LB4DWIstwFIWohPsyM7MKKmUyiBLuy8zMKshXBmZmVtJk8EwJ92VmZhVUVDKQtLOkAyR1a7L84MbHEXF2M9seLOllSfWSLsqz/nhJL6Q/f5O0Z9aDMDOzlinYm0jSuSSjlU4HfitpZEQ8lK7+CTBuLdvWANcBQ4BZwPOSHo6IaTnFXgf2j4j3JX0ZGM1/7mmwDswDuZlVTjFdS08D9oqIhZL6AWMk9YuIqyjcTvAZoD4iZgJIuhsYCqxKBhHxt5zyfwf6ZIjfOpi23I/brDUrJhnURMRCgIh4I50LeYykvhROBr2BN3Oez2LtZ/2nAHnHP5I0AhgBsPXWWxcRtrV1pRrIzcwKK6bNYLak/o1P0sTwFaAnsHuBbfMli7xdUCV9kSQZfDff+ogYHRF1EVHXq1evIsI2M7NiFZMMTgRm5y6IiOURcSIwqMC2s4Ctcp73Ad5qWkjSHsCNwNCImFdETGZmVkIFk0FEzIqI2QCS9pM0PH3ckzxf7E08D+wgaRtJ6wHHAg/nFpC0NclIqCdExCvrcAxmZtZCWWY6u4RkxNKdgJuB9YA7gM81t01ELJd0NvAIUAPcFBEvSTojXT8K+AGwKXC9JIDlEVHX3D7NzKz0sgxU91Xg08AkgIh4S1L3QhtFxFhgbJNlo3IenwqcmiEOM2sD3DW4bcmSDD6OiJAUAJI+UaaYrEjtcUx1a9/cNbj1ypIMfi/p10APSacBJwO/KU9Y1hL+h7PWwF2D25Ysk9v8QtIQ4AOSdoMfRMSfyxZZCbT3M+f2OKa6mVVHpslt0i//Vp0AiuEzZzOz1WXpTfQ14GfAZiQ3kwmIiNiwTLG1mM+czcyKk+XK4OfAYRExvVzBmJlZdWSZz+AdJwIzs/Ypy5XBBEn3AA8CSxsXRsT9pQ7KzMwqK0sy2BBYBByYsyxIhpIwa5UaGhqoWbSArjPGFi6cQc2ieTQ0LC+qbHO92vJpLNfYrlVIW+sBZ61Xlq6lw8sZiFl7VV9fz/SXX6FX760KF+5cC8DchYV7vM1peLNgGbNiZelNtCNwA7B5ROyWjjR6eERcVrbozFqod+/ezF7amcU7H1LS/XadMZbevTcvunyv3ltx1De/U9IYxlz/85Luzzq2LNVEvwEuBH4NEBEvSLoLcDIws3aro1TzZUkGG0TEc+nIoo2KqzQ1M2ujOko1X5ZkMFfSdqQzlUk6Cni7LFGZmbUiHaGaL0syOAsYDewsqQF4HTi+LFGZmVlFZUkGR5DMS/AEyc1qHwFfkjQxIqaUPjQzM6uULMmgLv15mGRcouNJprU8Q9K9EdG6rnmsTSm2kS5rA10yQm2m8RjNOqQs/yWbAgMiYiGsmgZzDDAImEgydpHZOim6kS5jA11tTSfoVHBCPrMOL0sy2Br4OOf5MqBvRCyWtLSZbcyKVupGujHX/5z5sxtKtj/Lr6N0vWzvsiSDu4C/S3oofX4Y8Lt0+stpJY/MVuN/OGutOkrXy/Yuy3AUP5Y0FtiPpM3gjIiYkK6ueq+i9v5l6X84a806QtfL9i7rTGcTSdoHWp2O8GXpf7i2qaGhgQ8WflTyv/WchjdZ2u0TJd2ndVztqpuFvyzNzNZNu0oGZq1R7969WX/h4rKcqPTs1rWk+7Q1dZQruywznZmZWTvlKwMzs7XoKFd2vjIwMzNfGVjrUI562TkNb7Jy+TLo6juQzQpxMmgjKtmI1dw9G8k4P8llc67WcB9Gazen4c2i3rv5c98FoEfPzYraZ8+ddmxxbC1V6QbWfJ/P5j6bUJrPZ3t+/xq1m2TQUVr8q2nx4sL3ZayrctTLNg5HsaRke1w322+/fdFl589eBlBUXXLPnXbMtO/2rJyfzY7y/rWbZFBplT47qWQjVnNxNt6xfdVVV5U0hvYuy/veFv/G5fps3vijC1i8eHHRIwU0p76+fo19ZPl/bO/vX6OyJwNJBwNXATXAjRHxv03WK11/CLAIOCkiJmV9ndbQ4l/Os5NymT/3XebPXlbUP1y5h/Eo5lI862V4bY37SFRCOapRFn3wASs7dWbizHcKlu30cQAUVbZm0XsFy3REZU0GkmqA64AhwCzgeUkPR0TuwHZfBnZIf/YGbkh/Z1aOD2TDzFd5W+LQQw8tWLYxGeSrb6+vr2fcuHGrLdtyyy258cYbC+63UTmO76MF8wGYOnVq0XEUW7ahoaHoZFDs5XLWy/CGhgYWvv8eXWeMLVi+05IPAFjZZcOCZZMvlM0LlusIylWN8k5NJ1YuX0bNonmFd7xyBQA1i5YVLrti+aqrePuPcl8ZfAaoj4iZAJLuBoay+iinQ4HbIiJIRkXtIWnLiMg0v3K+D2RDQ0Pes/VVy5av/sHp2rXrGlU879TUsHz5cj766KOiYym27Pz584veZ7mOb16XLixfvpz1119/1bKlS5eycuXKNfbbuKxTp9XPtjt16rTa9o169OiR/2DyyJc0sgw+CPmvRJqrzsv7d1uRtC50XanVluf7u8HmLa7vzRfb2q6+WmtDfXMxtfT9O/XUU3n77TW/BvJ9PldG+tmMNfe75udzvUyfzXyaO7bm3r/W+t7lKncy6A3kjvQ2izXP+vOV6Q2s9imQNAIYAbD11luv8UJZvkyy9IpZ2z6yVAvl+0LJ8mVSruPLpzX3JuraNdtNOpX8u5VC1uNra7IcX3NXzdXoTVSstvz+KTkhL9POpaOBgyLi1PT5CcBnIuKcnDJ/An4aEU+nzx8DvpOOkJpXXV1dTJgwobnVZmaWRzpnfV2+deVuXZsF5I4p3Qd4ax3KmJlZGZU7GTwP7CBpG0nrAccCDzcp8zBwohKfBRZkbS8wM7OWKWubQUQsl3Q28AhJ19KbIuIlSWek60cBY0m6ldaTdC0dXs6YzMxsTWW/zyAixpJ84ecuG5XzOICzyh2HmZk1z3fkmJmZk4GZmTkZmJkZTgZmZkaZbzorF0lzgH9V8CV7AnMr+HqV5uNru9rzsYGPr9T6RkSvfCvaZDKoNEkTmrtrrz3w8bVd7fnYwMdXSa4mMjMzJwMzM3MyKNboagdQZj6+tqs9Hxv4+CrGbQZmZuYrAzMzczIwMzM6aDKQtIWkuyW9JmmapLGSdpS0WNJkSdMlPSdpWJ5tB0paIekoSZtKmpL+zJbUkPN8vWocWxpj5uOTtJGkP0iaKuklScNb6/FVkqSTJH2yFcSxIv27v5S+R+dL6pSz/jOSxkt6WdIMSTdK2qCaMWchKSRdkfP8AkmXpo8vlXRB+riLpD9LuqRKoZZEzvs5VdIkSftWO6ayj1ra2kgS8ABwa0Qcmy7rTzK7+WsR8el02bbA/ZI6RcTN6bIa4GckQ3ITEfOA/um6S4GFEfGLSh5PUy04vrOAaRFxmKRewMvAnRHRPy1/Ka3g+KrgJOBFqj/h0uKc92Iz4C5gI+ASSZsD9wLHRsSz6WfgSKA7ybDwbcFS4GuSfhoReW/CSk9A7gMmRsQPKxpd6eW+nwcBPwX2r2ZAHfHK4IvAsibDaE9h9XmYiYiZwPnAuTmLzyH5ML5b/jDX2boeXwDd0y+SbsB7wPJKBCypX87Z7IuS7pT0JUnPSHo1PevdRNKDkl6Q9HdJe6TbXirpJklPSpop6dyc/Z6f7u9FSd/KWX5iup+pkm6X1F3S65Jq0/UbSnpDybStdcCd6VlcV0l7SXpK0kRJj0jashJ/o1wR8S7JfOBnp+/XWSTJ/9l0fUTEmIh4p9KxtcBykp415zWzvjNwN/BqRFxUsagqY0Pg/WoH0eGuDIDdgGbnV25iErAzgKTewFeBwcDA8oRWEut0fMC1JLPOvUVyRnlMRKwsfXjN2h44muRL7nngG8B+wOHA90iS2eSIOELSYOA20qsykmP4Yhr3y5JuAPYgmShpb0DAPyQ9BXwMfB/4XETMlbRJRHwo6UngUOBBkhn57ouIeyWdBVwQERPSZHENMDQi5kg6Bvgf4OQy/l3yioiZaTXRZiTv+a2VjqEMrgNekPTzPOu+A/wlIr5V2ZDKpqukKUAXYEuS75Wq6ojJIAvlPL4S+G5ErEhOxtqF3AM5CJhC8qHcDvizpL9GxAcViuX1iPgngKSXgMciIiT9E+gH9CWp+iAiHk/bMzZKt/1TRCwFlkp6l6RKbD/ggYj4KN3n/cDnSa6AxjRWRUTEe+k+biT5wnmQJImclifGnUi+eP+cfgZqgGpO0dpuPogAEfGBpNtIrlYXN1n9NLCPpB0j4pXKR1dyudVE+wC3SdotqtjXvyNWE70E7FVk2U8D09PHdcDdkt4AjgKul3REyaNruXU9vuHA/WkVQz3wOv+5aqiEpTmPV+Y8X0ly0pLvi6/xHyd32xVrKU+6fI1/uIh4BugnaX+gJiJebGbblyKif/qze0Qc2NwBlVPa5rOCpMoyy3ve2l0JnAJ8osny8cC3gP9rDQ36pZRW7/UE8g4gVykdMRk8DqwvadWZn6SBJGee5CzrB/yCpFqAiNgmIvpFRD9gDPDNiHiwQjFnsU7HB/wbOCBdtznJWfDMCsRbrPHA8QCSvgDMLXDVMh44QtIGkj5BUsX3V+Ax4OuSNk33tUnONrcBvwNuzln2IUn1EySN6r3SMzkk1Ur6VAuPK7O0gX8UcG16JnktMEzS3jll/kvSFpWOraXSK7XfkySEpuvuAy4HxknqUeHQykbSziRXmfOqGUeHqyZKqx6+Clwp6SJgCfAGyVnHdpImk9TjfQhc09iTqK1owfH9GLglrZYRSZVYaxo6+FLgZkkvkPSQWaPbb66ImCTpFuC5dNGNETEZQNL/AE9JWgFMJukxBHAncBlJQmh0CzBK0mJgH5KrwqvTKqrOJGeyL7Xs0IrSWMdcS9LYejvwS4CIeEfSscAv0p5GK0mS4f0ViKscrgDOzrciIkalSe5hSQdGxJLKhlYyje8nJP9vwyJiRRXj8XAUZo0kHUXSOHxCtWMxq7QOd2Vglo+ka4AvA4dUOxazavCVgZmZdcgGZDMza8LJwMzMnAzMzMzJwCwTJaOYXps+zh1Ns1WMbmq2rpwMzErjJMDJwNosJwMz8o5k2kvSfZKeT38+t5Ztj2L10U0PlfRAzvoh6dhISFoo6QolY9g/lt5NjKTtJI1LR0P9a3pXqlnFOBlYh5cOKfF9YHBE7AmMBK4CfhURA0kGyLuxue0jYgwwATg+HXxsLLBL4xc9ybhPjXd6fwKYFBEDgKeAxklaRgPnRMRewAXA9aU7QrPCfNOZWTJS62ojmUr6ErBrzgi1G0rq3twOcqVDgtwO/Jekm0mGsTgxXb0SuCd9fAfJBEPdgH2Be3Neb/0WHpNZJk4GZvlHMu0E7BMRqw2lnGH48puBP5CMDXVvRDQ3UVCkrzW/cUhjs2pwNZFZ/pFMHyVnsDQlU4euTe7opkTEWyQTBf03yWB3jTqRDHYHyQQ+T6ejr76uZGY1lNizBcdjlpmvDKzDi4iX8oxkei5wXTpKameSUUDPWMtubiFndNP0iuJOoFdETMsp9xHwKUkTgQXAMeny44EbJP03ycikdwNTS3WMZoV4bCKzMknvR5gcEb/NWbYwIrpVMSyzvJwMzMogPfP/CBiSTsnZuNzJwFolJwMzM3MDspmZORmYmRlOBmZmhpOBmZnhZGBmZsD/BwkN+98jioseAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'],\n", + " y=annotated_coeqtl_df_clean['gene2_nonzeroratio_onemillionv2'],\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " palette='Paired', fliersize=1, showfliers = False)\n", + "plt.savefig('gene2_nonzeroratio_onemillionv2.unfiltered_results.pdf')\n", + "plt.savefig('gene2_nonzeroratio_onemillionv2.unfiltered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAp2klEQVR4nO3de5xVddn38c+XAQUERAXSQAXPp5RwyENqpaGkKd6pt5p3glZYHiB9rLR60oo7M7M8S+TjqSgtzTxxE2UhaZZyMuWgkpqAJ8AjAcMA1/PHWsO9GfbM7DWz157T9/167dfsvdZvrX2tPTP7Wmv9TooIzMysc+vS2gGYmVnrczIwMzMnAzMzczIwMzOcDMzMDOja2gE0R79+/WLw4MGtHYaZWbsya9as5RHRv9i6dpkMBg8ezMyZM1s7DDOzdkXSvxpa59tEZmbmZGBmZk4GZmZGO60zKKa2tpYlS5awZs2a1g6l1XXv3p1BgwbRrVu31g7FzNqJDpMMlixZQu/evRk8eDCSWjucVhMRrFixgiVLljBkyJDWDsfM2olcbxNJulXSm5KebWC9JF0naZGkf0ga1tz3WrNmDdttt12nTgQAkthuu+18hWRmmeRdZ3A7MLKR9Z8Cdk8fY4GbW/JmnT0R1PHnYGZZ5XqbKCJmSBrcSJFRwJ2RjKP9N0l9Je0QEa/lGZeZWUtcf/31LFq0aLPlS5cuBWDgwIGbLN9tt9244IILKhJbc7V2a6KBwOKC10vSZZuRNFbSTEkzly1bVpHgzMyyWL16NatXr27tMJqltSuQi93PKDrbTkRMAiYBVFdXt4kZeRYvXsyZZ57J66+/TpcuXRg7dizjx49vsPy3v/1tjjjiCD75yU8WXf/cc89xzjnn8M4771BTU8Phhx/OpEmTmDlzJnfeeSfXXXddXodiZhk0dJZf9/9/7bXXVjKcsmjtZLAE2LHg9SDg1VaKJbOuXbty9dVXM2zYMN5//30OPPBARowYwT777FO0/He/+91G9zdu3DguvPBCRo0aBcAzzzwDQHV1NdXV1eUN3sysQGvfJnoAODNtVXQw8G656wu+973vsddeezFixAhOP/10fvSjH/HPf/6TkSNHcuCBB3L44YezcOFCAMaMGcO4ceM49NBD2WWXXbjnnns27ueqq65i+PDh7L///lx22WUA7LDDDgwbljSA6t27N3vvvffGe4bFjBkzZuM+L7nkEvbZZx/2339/Lr74YgBee+01Bg0atLH8hz70IQCmT5/Opz/9aQCWLVvGiBEjGDZsGOeccw4777wzy5cvL9fHZWadVK5XBpJ+BXwc6CdpCXAZ0A0gIiYCU4BjgUXAKuCscr7/zJkzuffee5kzZw7r1q1j2LBhHHjggYwdO5aJEyey++678/e//51zzz2XP/3pT0DyhfzYY4+xcOFCTjjhBE4++WSmTZvGCy+8wJNPPklEcMIJJzBjxgyOOOKIje/18ssvM2fOHA466KAm43rrrbe47777WLhwIZJ45513ALjwwgs58sgjOfTQQzn66KM566yz6Nu37ybbfuc73+HII4/k0ksvZerUqUyaNKlsn5eZdV55tyY6vYn1AZyX1/s/9thjjBo1ih49egBw/PHHs2bNGv76179yyimnbCxXU1Oz8fmJJ55Ily5d2GeffXjjjTcAmDZtGtOmTePDH/4wACtXruSFF17YmAxWrlzJSSedxDXXXEOfPn2ajKtPnz50796dL3zhCxx33HEbz/rPOussjjnmGKZOncr999/PT3/6U55++unNjum+++4DYOTIkWyzzTbN/XjMzDZq7TqDXCW5ZlMbNmygb9++zJ07t+g2W2655WbbRwSXXnop55xzzmbla2trOemkkzjjjDP4zGc+U1JcXbt25cknn+SRRx7hrrvu4oYbbth4ZfLBD36Qs88+m7PPPpv99tuPZ5/dtL9esWMyM2up1q4zyNVhhx3Ggw8+yJo1a1i5ciUPP/wwPXv2ZMiQIfzmN78Bki/X+mff9R1zzDHceuutrFy5EkjaEr/55ptEBJ///OfZe++9ueiii0qOa+XKlbz77rsce+yxXHPNNRsT09SpU6mtrQXg9ddfZ8WKFZu1Vz7ssMP49a9/DSRXLG+//XbJ72tm1pAOfWUwfPhwTjjhBA444AB23nlnqqur2XrrrZk8eTJf/vKXmTBhArW1tZx22mkccMABDe7n6KOPZsGCBRxyyCEA9OrVi1/84hc8//zz/PznP+dDH/oQQ4cOBeD73/8+xx57bKNxvf/++4waNYo1a9YQEfzkJz8Bki/38ePH0717dyCptN5+++03VnADXHbZZZx++uncfffdfOxjH2OHHXagd+/eLfmYzMxQe7ztUF1dHfVnOluwYAF77733ZmVXrlxJr169WLVqFUcccQSTJk3a2AKoPaqpqaGqqoquXbvyxBNP8OUvf7noLa+GPg/rmL1HrW1o6/0MJM2KiKLt1Dv0lQHA2LFjmT9/PmvWrGH06NHtOhEAvPLKK/znf/4nGzZsYIsttuBnP/tZa4fUYbTXnqNm5dDhk8Evf/nLir/neeedx+OPP77JsvHjx3PWWS1vObv77rszZ86cFu+nM+uIvUfNWqqkZCBpL5Ixg/4eESsLlo+MiKl5Bdde3Xjjja0dgplZJk22JpI0DrgfuAB4VtKogtXfzyswMzOrnFKuDL4IHBgRK9PhqO+RNDgirqX4QHNmZtbOlJIMqupuDUXEy5I+TpIQdsbJwMysQyglGbwuaWhEzAVIrxA+DdwKfCjP4Mrla5d+g7ffebds+9um79b88IrG75BVVVVtHGgO4He/+x2DBw8uWrZXr14bO7SZWedw/fXXM3Xq5lWuq1atyjTSgCR69uy5ybKRI0dmbg5dSjI4E1hXuCAi1pGMNvrTTO/WSt5+512O/cKFZdvflFt+0mSZHj16NDjkhVVOQ30Kiqkr19icFIXc/6BzyOtvaOnSpdTU1GwyBE5rajIZRMQSAEnXAndHxF8L1j3e4Ia2iZUrVzJq1CjefvttamtrmTBhwsZ5C+q89tprnHrqqbz33nusW7eOm2++mcMPP5xp06Zx2WWXUVNTw6677sptt91Gr169WulI2pdFixYx99kFrO+5bZNlu6xNzsZmvfhGk2WrVr3V4tisfVi0aBELnnue/gN3bLpw124ALF/ZdJ+V91b+m3333bfNNGXO0s9gNvAtSXsA95EkhplNbNNprV69euMQFXVjId1333306dOH5cuXc/DBB3PCCSdsMnn9L3/5S4455hi++c1vsn79elatWsXy5cuZMGECf/zjH9lqq6248sor+fGPf8y3v/3tVjqy9md9z21ZvVfjQ4Rk1WPhlLLuz9q2/gN35ORzv1bWfd5z0w/Lur+WKjkZRMQdwB2StgVOAq6UtFNE7J5bdO1Y/dtEtbW1fOMb32DGjBl06dKFpUuX8sYbb7D99ttvLDN8+HDOPvtsamtrOfHEExk6dCiPPvoo8+fP56Mf/SgAa9eu3ThGkplZuTSnB/JuwF7AYGB+WaPpwCZPnsyyZcuYNWsW3bp1Y/DgwaxZs2aTMkcccQQzZszg4Ycf5nOf+xxf/epX2WabbRgxYgS/+tWvWilyM+sMSh7CWtKVkl4AvgvMI+l7cHxukXUw7777LgMGDKBbt278+c9/5l//+tdmZf71r38xYMAAvvjFL/L5z3+e2bNnc/DBB/P4449vrJhatWoVzz//fKXDN7MOLsuVwUvAIRHR7ibc3abv1iW1AMqyv6zOOOMMjj/+eKqrqxk6dCh77bXXZmWmT5/OVVddRbdu3ejVqxd33nkn/fv35/bbb+f000/fOCPbhAkT2GOPPVp8HGZmdbLUGUyUNFDSoYXbRcSMXCIro6b6BOShfr+Bfv368cQTTzRadvTo0YwePXqz9UceeSRPPfVU+YM0M0uVnAwk/QA4jaSeYH26OIA2nwzMzKxxWW4T/QewZ0TUNFnSzMzalSxzIL8IdMsrEDMzaz1ZrgxWAXMlPQJsvDqIiHFlj8qsEyg2zEFDU2+Ch7+wfGVJBg+kDzPLiafetNaSqQeypC2AujaNz0VEbT5hmXV8xc7yPfWmtZYsrYk+DtwBvEwyj8GOkka3h6al51/0Vd5cXr6BxQb025YbfnxVg+tXrFjBUUcdBcDrr79OVVUV/fv3B+DJJ59kiy22KFssZmblkOU20dXA0RHxHEA6YN2vgAPzCKyc3lz+Fv/8wMfKt8M3Hm109XbbbbdxXKLLL7+cXr16cfHFF29cv27dOrp2bc5IIGZm+cjyjdStLhEARMTzkty6qERjxoxh2223Zc6cOQwbNozevXtvkiT2228/HnroIQYPHswvfvELrrvuOtauXctBBx3ETTfdRFVVVSsfgZl1ZFmals6U9P8kfTx9/AyYlVdgHdHzzz/PH//4R66++uoGyyxYsIC7776bxx9/nLlz51JVVcXkyZMrGKWZdUZZrgy+DJwHjCOpM5gB3JRHUB3VKaec0uQZ/iOPPMKsWbMYPnw4kLQuGTBgQCXCM7NOLEtrohrgx+nDmmGrrbba+Lxr165s2LBh4+u64awjgtGjR3PFFVdUPD4z67yavE0k6dfpz2ck/aP+o4TtR0p6TtIiSZcUWb+1pAclPS1pnqSzmnco7cvgwYOZPXs2ALNnz+all14C4KijjuKee+7hzTffBOCtt94qOty1mVk5lXJlUDez86ez7lxSFXAjMAJYAjwl6YGIKJwU5zxgfkQcL6k/8JykyRGxNuv7NWRAv22bbAGUeX8tdNJJJ3HnnXcydOhQhg8fvnFI6n322YcJEyZw9NFHs2HDBrp168aNN97Izjvv3OL3NDNrSJPJICJeS3825/T0I8CiiHgRQNJdwCg2nSEtgN5KJgPuBbwFrGvGezWosT4Bebv88suLLu/RowfTpk0ruu7UU0/l1FNPzTEqM7NNNZkMJL1P8oW92SogIqJPI5sPBBYXvF4CHFSvzA0kw1y8CvQGTo2IDfXKIGksMBZgp512aipsMzPLoMk6g4joHRF9ijx6N5EIIEkYm+2y3utjgLnAB4GhwA2SNttvREyKiOqIqK7rzWtmZuVRypVBozfII6KxcR6WADsWvB5EcgVQ6CzgBxERwCJJLwF7AU82FVuRWEjuNnVuyUdpZla6UiqQZ5GczTd0lr9LI9s+BewuaQiwlGSmtM/WK/MKcBTwF0kfAPYkmTshk+7du7NixQq22267Tp0QIoIVK1bQvXv31g7FzNqRUiqQhzR35xGxTtL5wO+BKuDWiJgn6Uvp+onA94DbJT1DknC+HhHLs77XoEGDWLJkCcuWLWtuuB1G9+7dGTRoUGuHYWbtSCm3ifaKiIWShhVbHxGzG9s+IqYAU+otm1jw/FXg6NLCbVi3bt0YMqTZecvMrFMr5TbRRSSteIoNqBPAkWWNyMzMKq6U20Rj05+fyD8cMzNrDVkmt6kCjgMGF24XER6ryMysncsyaumDwBrgGWCzTmFmZtZ+ZUkGgyJi/9wiMTOzVpNlcpv/kdTiVj9mZtb2ZLky+Btwn6QuQC2ljU1kZmbtQJZkcDVwCPBMeLwDM7MOJcttoheAZ50IzMw6nixXBq8B0yX9D1BTt9BNS83M2r8syeCl9LFF+jAzsw6i5GQQEd8BkLRVRPw7v5DMzKzSSq4zkHSIpPnAgvT1AZJuyi0yMzOrmCwVyNeQzEq2AiAingaOyCEmMzOrsCzJgIhYXG/R+jLGYmZmrSRLBfJiSYcCIWkLYBzpLSMzM2vfslwZfAk4DxhIMrfx0PS1mZm1c1laEy0HzsgxFjMzayVZ5jPoD3yRzeczOLv8YZmZWSVlqTO4H/gL8EdccWxm1qFkSQY9I+LruUViZmatJksF8kOSjs0tEjMzazVZksF4koSwRtL76eO9vAIzM7PKydKaqHeegZiZWevJUmeApBP43yEopkfEQ+UPyczMKi3LQHU/ILlVND99jE+XmZlZO5flyuBYYGhEbACQdAcwB7gkj8DMzKxyMg1UB/QteL51GeMwM7NWlOXK4ApgjqQ/AyKpO7g0l6jMzKyisrQm+pWk6cBwkmTw9Yh4vW69pH0jYl75QzQzs7xlnc/gtYh4ICLuL0wEqZ8X20bSSEnPSVokqWj9gqSPS5oraZ6kR7PEZGZmLZepaWkTtNkCqQq4ERhBMuz1U5IeiIj5BWX6AjcBIyPiFUkDyhiTmZmVIGsFcmOiyLKPAIsi4sWIWAvcBYyqV+azwG8j4hWAiHizjDGZmVkJypkMihkIFE6VuSRdVmgPYBtJ0yXNknRmsR1JGitppqSZy5YtyylcM7POqZzJYG2RZZvdOmLzK4iuwIHAccAxwP+VtMdmG0VMiojqiKju379/i4M1M7P/1ZLhKB6NiAfr1kXEwUU2WQLsWPB6EPBqkTLLI+LfwL8lzQAOAJ7PEpuZmTVfluEormDT4SjGpcsa8xSwu6QhkrYATgMeqFfmfuBwSV0l9QQOAhaUGpeZmbVcliuD4yg+HEWDHc8iYp2k84HfA1XArRExT9KX0vUTI2KBpKnAP4ANwC0R8WzzDsfMzJoja9PSvsBb6fOShqOIiCnAlHrLJtZ7fRVwVcZYzMysTDwchZmZlW84CjMza7+arECWtFf6cxiwA0nrn8XAB9NlZmbWzpVyZXARMBa4usi6AI4sa0RmZlZxTSaDiBibPv1URKwpXCepey5RmZlZRWXpgfzXEpeZmVk70+SVgaTtScYT6iHpw/zvEBN9gJ45xmZmZhVSSp3BMcAYkqEkflyw/H3gGznEZGZmFVZKncEdwB2SToqIeysQk5mZVViWfgb3SjoO2BfoXrD8u3kEZmZmlZNloLqJwKnABST1BqcAO+cUl5mZVVCW1kSHRsSZwNsR8R3gEDYdntrMzNqpLMmgro/BKkkfBGqBIeUPyczMKi3LQHUPppPXXwXMJul9/LM8gjIzs8oqKRlI6gI8EhHvAPdKegjoHhHv5hmcmZlVRkm3idIJba4ueF3jRGBm1nFkqTOYJukkScUmuTczs3YsS53BRcBWwHpJq0mal0ZE9MklMjMzq5gsnc565xmImZm1nkxzIEs6gWS6S4DpEfFQ+UMyM7NKy9ID+QfAeGB++hifLjMzs3Yuy5XBscDQtGURku4A5gCX5BGYmZlVTpbWRAB9C55vXcY4zMysFWW5Mvg+MEfSn0laEh0BXJpLVGZmVlFZeiBvAA4GhpMkg69HxOs5xmZmZhVSUjKIiA2Szo+IXwMP5ByTmZlVWJY6gz9IuljSjpK2rXvkFpmZmVVMljqDs9Of5xUsC2CX8oVjZmatIUsPZM9dYGbWQWXpdNZT0rckTUpf7y7p0/mFZmZmlZKlzuA2YC1waPp6CTCh7BGZmVnFZUkGu0bED0mmuyQi6kYubZSkkZKek7RIUoO9lSUNl7Re0skZYjIzszLIkgzWSupBUmmMpF2BmsY2kFQF3Ah8CtgHOF3SPg2UuxL4fYZ4zMysTLIkg8uBqcCOkiYDjwBfa2KbjwCLIuLFiFgL3AWMKlLuAuBe4M0M8ZiZWZlkaU00TdIskl7IAsZHxPImNhsILC54vQQ4qLCApIHAfwBHkvRuLkrSWGAswE477VRq2GZmVoIsrYkeAQ6KiIcj4qGIWF7XsqixzYosi3qvryEZ2mJ9YzuKiEkRUR0R1f379y81bDMzK0GWTmdDgK9LGh4R30mXVTexzRJgx4LXg4BX65WpBu5Kp1buBxwraV1E/C5DbGZt1vXXX8+iRYtKKltXbvz48SWV32233bjggguaHZtZnSzJ4B3gKOA6SQ8C/1XCNk8Bu0saAiwFTgM+W1igsDObpNuBh5wIrCNZtGgRC557nv4Dd2y6cNduACxfubrJosuWLm6yjFmpsiQDRcQ64FxJY4DHgG0a2yAi1kk6n6SVUBVwa0TMk/SldP3E5oVt1r70H7gjJ5/bVHuLbO656Ydl3Z91blmSwcYv7oi4XdIzbDpOUVERMQWYUm9Z0SQQEWMyxGNmZmWSpTXRT9P+AB9It1tG0tzUzMzauZKTQXq753LgDZKJbiBpGbR/+cMyK17xunTpUgAGDhy4WXlXppo1X5bbRF8B9oyIFTnFYtak1aubrlg1s+yyJIPFwLt5BWJWX7Gz/Loml9dee22lwzHr0LIkgxeB6ZIepmBMooj4cdmjMjOzisqSDF5JH1ukDzMz6yCytCb6DoCk3snLWJlbVGZmVlFZxibaT9Ic4FlgnqRZkvbNLzQzM6uULENYTwIuioidI2Jn4P8AP8snLDMzq6QsyWCriPhz3YuImA5sVfaIzMys4jK1JpL0f4Gfp6//C3ip/CGZmVmlZbkyOBvoD/wWuC99flYeQZmZWWVlaU30NjAux1jMzKyVZBmbaA/gYmBw4XYRcWT5wzIzs0rKUmfwG5JhrG8BGp2i0szM2pcsyWBdRNycWyRm1qF41Nn2JUsyeFDSuSSVx4VjE71V9qjMrEPyqLNtV5ZkMDr9+dWCZQHsUr5wzKyj8Kiz7UuW1kRDGlsvaURE/KHlIZmZWaVl6WfQlCvLuC8zM6ugciYDlXFfZmZWQeVMBlHGfZmZWQVlqUC2NqZY0z1ouPmem+6ZZbd06VLeW/lv7rnph2Xd77Kli6np1XbG+ixnMni5jPuyFnDzPTPLKstwFD1J5jDYKSK+KGl3YM+IeAggIj6TU4zN1tHPnBuK1c33zMpn4MCBbLlyNSef+7Wy7veem35Iv149yrrPlshSZ3AbSWezQ9LXS4AJZY+oAlavXu2zZzOzAlluE+0aEadKOh0gIlZLatMtiHzmbGZWmizJYK2kHqSthiTtSsGwFGZWeUuXLuW4447bZNmqVauIKL1xnyR69uy52fKRI0e2q9um1jJZksFlwFRgR0mTgY8CY/IIyszMKivLcBR/kDQbOJikg9n4iFieW2Rm1qSBAwf6dqeVRdZOZ92Bt4H3gH0kHdHUBpJGSnpO0iJJlxRZf4akf6SPv0o6IGNMZmbWQlmall4JnArMAzakiwOY0cg2VcCNwAiS1kdPSXogIuYXFHsJ+FhEvC3pU8Ak4KBMR2FmZi2Spc7gRJJ+BVkqjT8CLIqIFwEk3QWMAjYmg4j4a0H5vwGDMuzfzMzKIMttoheBbhn3PxBYXPB6SbqsIZ8H/qfYCkljJc2UNHPZsmUZwzAzs8ZkuTJYBcyV9AibznQ2rpFtivVDKNrmTdInSJLBYcXWR8QkkltIVFdXe1A8M7MyypIMHkgfWSwBdix4PQh4tX4hSfsDtwCfiogVGd/DzMxaKEvT0jvSTmc7RcRzJW72FLC7pCHAUuA04LOFBSTtBPwW+FxEPF9qPGZmVj4l1xlIOh6YS9LxDElDJTV6pRAR64Dzgd8DC4BfR8Q8SV+S9KW02LeB7YCbJM2VNDP7YZiZWUtkuU10OUnroOkAETE3PeNvVERMAabUWzax4PkXgC9kiMPMzMosS2uidRHxbr1lrsg1M+sAslwZPCvps0BVOpfBOOCvTWxjZmbtQJZkcAHwTZJmpb8iqQf4Xh5BWetqjUmBGnrP+urK1A1D3pQkZs/uataULK2JVpEkg2/mF461ZXlOCLRo0SIWPPc8/Qfu2HjBrkm/x+Urm45l2dLFdKvqAl16lyPEZussc+ha+5ZlbKIH2byO4F1gJvDTiFhTzsCs9bTWpED9B+5Y1qkF77nph7zz+tKy7c+sI8ty/fwi0J/kFhEkg9a9AewB/Az4XHlDM+sYOsscuta+ZUkGH46IwiGrH5Q0IyKOkDSv3IGZmVnlZEkG/SXtFBGvwMaew/3SdWvLHpmZWRHFGhs01LgBytPAoTPIkgz+D/CYpH+SDEA3BDhX0lbAHXkEZ9ZSNTU1VMVaeiyc0nThDKpWrWDp0nVl3Wd7VWpLMMjeGqzUL/I8Gzd0FllaE01J+xfsRZIMFhZUGl+TQ2xm1g6U3BIMMrcGK6ZYcsi7cUNn0GQykPSZBlbtIomI+G2ZYzIrmy233JI1XXqzeq9jy7rfHgunMHDgB8q6z/as3C3BgLI3xbXGlXJlcHwj64JkxFHLWVu4FDezjqvJZBARZwFIGhIRLxWuK2WgOiuPSl+Km1nnkqUC+V5gWL1l9wAHli+c5usMZ86+FDezvJRSZ7AXsC+wdb36gz5A97wCy8pnzmZmzVfKlcGewKeBvmxaf/A+8MUcYmo2nzmbWR6WLV1c0nfBO8vfBKBvvwEl7bPfnnu0OLZyKaXO4H7gfkmHRMQTFYjJzKzN2G233Uou+87rtQAlDRPSb889Mu07b1nqDD4r6fSGVkbEuDLEY2bWpmSpL2zP/R2yJIMtgX2Au9PXpwCzSOZFNjMrq3eWv8k7r9eW1NCjvTYKaUuyJIPdgU9ERC2ApInAtIi4MJfIrCL8D2dtVW1NDTW165n14htNlu2yNhldv5SyVaveanFsHVGWZPBBoDdQ90n2SpdZO+Z/OGvL1vfcNpfe47a5LMngB8BsSdPT1x8DLi93QFZ5/ofLX2dojWLtW5ZkcDuwHvgKSRL4NrB92SOyTimPqSGXLV3MhnW10KN1p73sLK1RrH3LkgxuAjYAPSLiAUnbkPRKHp5LZGYdREdvjZLXHM9r16ymqqbGw49XSJZkcFBEDJM0ByAi3pa0RU5xWSeTx9SQdXMge3Jus6ZlSQa1kqpIRipFUn+SKwWrgLzOvmprauiy/r2y7tM6l7zmeL75mxewqtvWHn68QrIkg+uA+4ABkv4bOBn4Vi5RtQOees/MOpIsM51NljQLOIpkprMTI2JBbpFllNeZ87Kli6nptVVJZfOcei+vs6/rv3YO2lDr+7LWJlWtequkv80ua5Kr2w3d+5S0T/CVQX1ZrgyIiIXAwpxiaVc89V774S+U9qnbllvSraqW3XZp+nNetOh9gJLKwgfcCquITMmgLcvrzPmW717M6tWrO2wP3a7dtmBtB74v26NHj5L/8f2F0rb07TeAfr16lHRy5ROxluswySAvbamHbh4dl2praqiqbRtnzqUcX9ZOWXvvuUfJXxD+Qmk+d6pr/3JPBpJGAtcCVcAtEfGDeuuVrj8WWAWMiYjZzXmvPP4g165ZDYiqVSuaDmDDegCqVtU2XXb9uo0VzqXIq+NSzXbbApR0Fp/nmXOpZd0pq+3pjJ3qGppZsaG7A23hLkBTck0GaVPUG4ERwBLgKUkPRMT8gmKfIhkEb3fgIODm9Gcmef1BrujenXXr1rHllk13qairQO7RvZTuF1vQt2/fEsol2kLHpTzPnEs9vo509l7sC6WxW41t9Qul0n+bbflz69Gj6e+UtirvK4OPAIsi4kUASXcBo4DCZDAKuDMiAvibpL6SdoiI17K8UbFfdpZ5kSHbH01jf5DFElMef5B5nZ20lbOevP7p28rxFdOev0zqq+SXdqU/t7aYlFsq72QwECicRHgJm5/1FyszENgkGUgaC4wF2GmnnVoUVF5/OG3lH7kjH1+eMfgLJX/l+Iw74+dWCUpOyHPauXQKcExEfCF9/TngIxFxQUGZh4ErIuKx9PUjwNciYlZD+62uro6ZM2fmFreZWUckaVZEVBdb1yXn914C7FjwehDwajPKmJlZjvJOBk8Bu0sakg5qdxrwQL0yDwBnKnEw8G7W+gIzM2uZXOsMImKdpPOB35M0Lb01IuZJ+lK6fiIwhaRZ6SKSpqVn5RmTmZltLvd+BhExheQLv3DZxILnAZyXdxxmZtawvG8TmZlZO+BkYGZmTgZmZuZkYGZm5NzpLC+SlgH/quBb9gOWV/D9Ks3H13515GMDH1+57RwR/YutaJfJoNIkzWyo115H4ONrvzrysYGPr5J8m8jMzJwMzMzMyaBUk1o7gJz5+Nqvjnxs4OOrGNcZmJmZrwzMzMzJwMzM6KTJQNL2ku6S9E9J8yVNkbSHpNWS5khaIOlJSaOLbDtc0npJJ0vaTtLc9PG6pKUFr0uZCDkXzTk+SVtLelDS05LmSTqrrR5fJUkaI+mDbSCO9ennPi/9HV0kqUvB+o9ImiHpOUkLJd0iqWdrxpyFpJB0dcHriyVdnj6/XNLF6fPukv4g6bJWCrUsCn6fT0uaLenQ1o4p91FL2xpJAu4D7oiI09JlQ4EPAP+MiA+ny3YBfiupS0Tcli6rAq4kGZKbiFgBDE3XXQ6sjIgfVfJ46mvB8Z0HzI+I4yX1B54DJkfE0LT85bSB42sFY4Bnaf0Jl1YX/C4GAL8EtgYuk/QB4DfAaRHxRPo3cBLQm2RY+PagBviMpCsiomgnrPQE5F5gVkR8p6LRlV/h7/MY4ArgY60ZUGe8MvgEUFtvGO25bDoPMxHxInARMK5g8QUkf4xv5h9mszX3+ALonX6R9ALeAtZVImBJgwvOZp+VNFnSJyU9LumF9Kx3W0m/k/QPSX+TtH+67eWSbpU0XdKLksYV7PeidH/PSvpKwfIz0/08LennknpLeklSt3R9H0kvK5m2tRqYnJ7F9ZB0oKRHJc2S9HtJO1TiMyoUEW+SzAd+fvr7Oo8k+T+Rro+IuCci3qh0bC2wjqRlzYUNrO8K3AW8EBGXVCyqyugDvN3aQXS6KwNgP6DB+ZXrmQ3sBSBpIPAfwJHA8HxCK4tmHR9wA8msc6+SnFGeGhEbyh9eg3YDTiH5knsK+CxwGHAC8A2SZDYnIk6UdCRwJ+lVGckxfCKN+zlJNwP7k0yUdBAg4O+SHgXWAt8EPhoRyyVtGxHvS5oOHAf8jmRGvnsj4jeSzgMujoiZabK4HhgVEcsknQr8N3B2jp9LURHxYnqbaADJ7/yOSseQgxuBf0j6YZF1XwP+GBFfqWxIuekhaS7QHdiB5HulVXXGZJCFCp5fA3w9ItYnJ2MdQuGBHAPMJfmj3BX4g6S/RMR7FYrlpYh4BkDSPOCRiAhJzwCDgZ1Jbn0QEX9K6zO2Trd9OCJqgBpJb5LcEjsMuC8i/p3u87fA4SRXQPfU3YqIiLfSfdxC8oXzO5Ik8sUiMe5J8sX7h/RvoApozSlaO8wfIkBEvCfpTpKr1dX1Vj8GHCJpj4h4vvLRlV3hbaJDgDsl7Ret2Na/M94mmgccWGLZDwML0ufVwF2SXgZOBm6SdGLZo2u55h7fWcBv01sMi4CX+N+rhkqoKXi+oeD1BpKTlmJffHX/OIXbrm+kPOnyzf7hIuJxYLCkjwFVEfFsA9vOi4ih6eNDEXF0QweUp7TOZz3JLcssv/O27hrg88BW9ZbPAL4C/E9bqNAvp/T2Xj+g6AByldIZk8GfgC0lbTzzkzSc5MyTgmWDgR+R3BYgIoZExOCIGAzcA5wbEb+rUMxZNOv4gFeAo9J1HyA5C36xAvGWagZwBoCkjwPLm7hqmQGcKKmnpK1IbvH9BXgE+E9J26X72rZgmzuBXwG3FSx7n+T2EySV6v3TMzkkdZO0bwuPK7O0gn8icEN6JnkDMFrSQQVl/kvS9pWOraXSK7VfkySE+uvuBa4CpkrqW+HQciNpL5KrzBWtGUenu02U3nr4D+AaSZcAa4CXSc46dpU0h+Q+3vvA9XUtidqLFhzf94Db09syIrkl1paGDr4cuE3SP0hayGzW7LdQRMyWdDvwZLroloiYAyDpv4FHJa0H5pC0GAKYDEwgSQh1bgcmSloNHEJyVXhdeouqK8mZ7LyWHVpJ6u4xdyOpbP058GOAiHhD0mnAj9KWRhtIkuFvKxBXHq4Gzi+2IiImpknuAUlHR8SayoZWNnW/T0j+30ZHxPpWjMfDUZjVkXQySeXw51o7FrNK63RXBmbFSLoe+BRwbGvHYtYafGVgZmadsgLZzMzqcTIwMzMnAzMzczIwy0TJKKY3pM8LR9NsE6ObmjWXk4FZeYwBnAys3XIyMKPoSKb9Jd0r6an08dFGtj2ZTUc3PU7SfQXrR6RjIyFppaSrlYxh/0jamxhJu0qamo6G+pe0V6pZxTgZWKeXDinxTeDIiDgAGA9cC/wkIoaTDJB3S0PbR8Q9wEzgjHTwsSnA3nVf9CTjPtX19N4KmB0Rw4BHgbpJWiYBF0TEgcDFwE3lO0KzprnTmVkyUusmI5lK+iSwT8EItX0k9W5oB4XSIUF+DvyXpNtIhrE4M129Abg7ff4LkgmGegGHAr8peL8tW3hMZpk4GZgVH8m0C3BIRGwylHKG4ctvAx4kGRvqNxHR0ERBkb7XO3VDGpu1Bt8mMis+kuk0CgZLUzJ1aGMKRzclIl4lmSjoWySD3dXpQjLYHSQT+DyWjr76kpKZ1VDigBYcj1lmvjKwTi8i5hUZyXQccGM6SmpXklFAv9TIbm6nYHTT9IpiMtA/IuYXlPs3sK+kWcC7wKnp8jOAmyV9i2Rk0ruAp8t1jGZN8dhEZjlJ+yPMiYj/V7BsZUT0asWwzIpyMjDLQXrm/29gRDolZ91yJwNrk5wMzMzMFchmZuZkYGZmOBmYmRlOBmZmhpOBmZkB/x+ObU1a6UJD/AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x=annotated_coeqtl_df_clean['celltype'], \n", + " y=annotated_coeqtl_df_clean['eqtlgene_nonzeroratio_onemillionv2'],\n", + " hue=annotated_coeqtl_df_clean['gene2_isSig'],\n", + " palette='Paired', fliersize=1, showfliers = False)\n", + "plt.savefig('eqtlgene_nonzeroratio_onemillionv2.unfiltered_results.pdf')\n", + "plt.savefig('eqtlgene_nonzeroratio_onemillionv2.unfiltered_results.png')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/04_coeqtl_mapping/replication_in_bios.py b/04_coeqtl_mapping/replication_in_bios.py new file mode 100644 index 0000000..e20c8c2 --- /dev/null +++ b/04_coeqtl_mapping/replication_in_bios.py @@ -0,0 +1,233 @@ +import argparse +import os +import subprocess +from pathlib import Path + +import pandas as pd +import statsmodels.api as sm +from statsmodels.stats.multitest import multipletests +from tqdm import tqdm + +workdir = Path("./coeqtl_mapping") +bios_exp_path = 'BIOS_NoRNAPhenoNA_NoSexNA_NoMixups_NoMDSOutlier_20RNAseqAlignemntMetrics/data/gene_read_counts_BIOS_and_LLD_passQC.tsv.SampleSelection.ProbesWithZeroVarianceRemoved.TMM.SampleSelection.ProbesWithZeroVarianceRemoved.Log2Transformed.ProbesCentered.SamplesZTransformed.CovariatesRemovedOLS.txt.gz' + +unique_mappingfile = "./resources/features_v3_reformated_names.tsv" +bios_gt_prefix = Path('./genotypes-hrc-imputed-vcf/') +gte_mapping_path = "./coeqtl_mapping/bios/gte.tsv" + + +def get_snps_from_vcffile(bashfile_path, vcf_path, snps_path, savepath): + response = subprocess.run([bashfile_path, vcf_path, snps_path, savepath]) + print(response) + return None + + +def get_genes_from_gzipfile(expression_path, gene_path, savepath): + print("Loading exp dataframe...") + exp_df = pd.read_csv(expression_path, sep='\t', index_col=0, compression='gzip') + print("Full exp loaded.") + genes = pd.read_csv(gene_path, sep='\t')['ensembl'] + common_genes = list(set(genes) & set(exp_df.index.values)) + print(f"Selecting {len(common_genes)} to save. {len(genes) - len(common_genes)} genes not found in BIOS") + selected_exp_df = exp_df.loc[common_genes] + genes_dic = pd.read_csv(gene_path, sep='\t').set_index('ensembl')['symbol'].T.to_dict() + common_genes_names = [genes_dic.get(geneid) for geneid in common_genes] + selected_exp_df.index = common_genes_names + selected_exp_df.to_csv(savepath, sep='\t') + print(f"Selected {selected_exp_df.shape[0]} genes in {savepath}.") + return selected_exp_df + + +def make_snps_genes_files_for_coeqtls(coeqtl_path): + significant_coeqtls = pd.read_csv(coeqtl_path, sep='\t', compression='gzip', index_col=0) + mappings = pd.read_csv(unique_mappingfile, sep='\t', names=['geneid', 'genename', 'type']).set_index('genename')[ + 'geneid'].T.to_dict() + snps = significant_coeqtls['SNP'].unique() + genes = [ele for item in significant_coeqtls['Gene'].values for ele in item.split(';')] + genes = list(set([item for item in genes if item])) + genes_df = pd.DataFrame(data=[[item, mappings.get(item)] for item in genes], + columns=['symbol', 'ensembl']).dropna(subset=['ensembl']) + print(f"Writing {len(snps)} snps and {len(genes)} genes from coeQTLs.") + with open(f"{str(coeqtl_path)[:-len('.tsv.gz')]}.snps.txt", 'w') as f: + f.write('\n'.join(snps)) + genes_df.to_csv(f"{str(coeqtl_path)[:-len('.tsv.gz')]}.genes.tsv", + sep='\t', index=False) + return snps, genes_df + + +def replicate(annotated_coeqtl_path, + bios_gt_path, + bios_gene_path, + saveprefix, + gte_mapping_path, + vcf_header_rows=6): + import warnings + def find_gene2(eqtlgene, genepair): + gene1, gene2 = genepair.split(';') + if eqtlgene == gene1: + return gene2 + else: + return gene1 + warnings.simplefilter(action='ignore', category=FutureWarning) + gte_mapping = pd.read_csv(gte_mapping_path, sep='\t').set_index('gt')['exp'].T.to_dict() + # transform the GT columns into expression ids + gt = pd.read_csv(bios_gt_path, skiprows=vcf_header_rows, sep='\t') + sc_individuals = pd.read_csv( + './coeqtl_mapping/input/summary/gte-fix.tsv', + sep='\t' + )['genotypesampleID'] + # remove LLD individuals + remove_individuals = list(set(sc_individuals) & set(gt.columns)) + gt = gt.drop(remove_individuals, axis=1) + gt_snp_set = set(gt['ID'].values) + # map genotype and expression individual names + find_name = lambda x: gte_mapping.get(x) if x in gte_mapping else x + gt = gt.rename({item: find_name(item) for item in gt.columns}, axis=1) + # load expression data + exp = pd.read_csv(bios_gene_path, index_col=0, sep='\t', compression='gzip') + genename_mapping = pd.read_csv(unique_mappingfile, sep='\t', names=['gene_id', 'gene_name']).set_index('gene_id')[ + 'gene_name'].T.to_dict() + exp['genename'] = [genename_mapping.get(geneid) for geneid in exp.index] + exp = exp.dropna(subset=['genename']).set_index('genename') + expression_gene_name_set = set(exp.index) + common_indidvidauls = list(set(exp.columns) & set(gt.columns)) + gt_df = gt.set_index('ID') + exp_common = exp[common_indidvidauls] + coeqtls = pd.read_csv(annotated_coeqtl_path, sep='\t', compression='gzip', index_col=0) + coeqtls['gene1'] = [item.split('_')[1] for item in coeqtls['snp_eqtlgene']] + coeqtls['gene2'] = [find_gene2(gene1, genepair) for (gene1, genepair) in coeqtls[['gene1', 'Gene']].values] + coeqtl_pairs = coeqtls[['SNP', 'gene1', 'gene2']].values + # start solving the interaction models + i = 0 + res_df = pd.DataFrame() + for snp, gene1, gene2 in tqdm(coeqtl_pairs): + if snp in gt_snp_set and gene1 in expression_gene_name_set and gene2 in expression_gene_name_set: # todo: ESNG id to genename + i += 1 + gt_selected = gt_df.loc[snp] + gene1_selected = exp_common.loc[gene1] + gene2_selected = exp_common.loc[gene2] + x_df = pd.concat([gt_selected[common_indidvidauls], gene2_selected], axis=1) + x_df[f'{snp}_dosage'] = [float(item.split(':')[1]) for item in x_df[snp]] + x_df[f'{snp}_{gene2}'] = x_df[f'{snp}_dosage'] * x_df[gene2] + X = sm.add_constant(x_df[[f'{snp}_dosage', gene2, f'{snp}_{gene2}']]) + model = sm.OLS(gene1_selected.T, X) + results_data = model.fit().summary().tables[1].data + results = pd.DataFrame(data=results_data[1:], columns=results_data[0]).set_index('') + results['gene1'] = gene1 + results['gene2'] = gene2 + results['assessed_allele'] = gt_selected['ALT'] + results['num_individuals'] = len(common_indidvidauls) + res_df = pd.concat([res_df, results], axis=0) + if len(coeqtl_pairs) > 10000: + if i % 10000 == 0 and i > 1: + res_df.to_csv(f"{saveprefix}.part{int(i / 10000)}.tsv", sep='\t') + res_df = pd.DataFrame() + print(f"results part {int(i / 10000)} has been saved in {saveprefix}.part{int(i / 10000)}.tsv") + part_ind = 1 + int(i / 10000) + res_df.to_csv(f"{saveprefix}.part{part_ind}.tsv.gz", sep='\t', compression='gzip') + print(f"results part {part_ind} has been saved in {saveprefix}.part{part_ind}.tsv") + return res_df + + +def make_gte_mapping_file(): + prefix = Path("./tmp03boxy/input/") + gtm = pd.DataFrame() + for filename in os.listdir(prefix / "hrcGTM"): + sub_gtm = pd.read_csv(prefix / f"hrcGTM/{filename}", compression='gzip', sep='\t', names=['gt', 'met']) + gtm = pd.concat([gtm, sub_gtm], axis=0) + gtm = gtm.set_index('met') + mte_path = prefix / 'hrcMTE/CODAM_LLDeep_LLS660Q_LLSOmni_NTR_RS_MTE.txt' + mte = pd.read_csv(mte_path, sep='\t', names=['met', 'exp']).set_index('met') + all_mapping = pd.concat([gtm, mte], axis=1) + gte = all_mapping[['gt', 'exp']] + gte = gte.dropna() + gte.to_csv('./coeqtl_mapping/bios/gte.tsv', + sep='\t', index=False) + return gte + + +def examine_replicated_in_bios(replication_res_path, savepath): + from statsmodels.stats.multitest import multipletests + bios_replication = pd.read_csv(replication_res_path, sep='\t') + bios_replication['snp_genepair'] = ['_'.join(item) for item in bios_replication[['Unnamed: 0', 'gene1']].values] + tobesave = lambda x: True if 'dosage' not in x and 'const' not in x and x.startswith('rs') else False + bios_replication['isinteractionterm'] = [tobesave(item) for item in bios_replication['snp_genepair']] + bios_interactions_df = bios_replication[bios_replication['isinteractionterm']] + bios_interactions_df['corrected_p'] = multipletests(bios_interactions_df['P>|t|'], method='fdr_bh')[1] + bios_interactions_df.to_csv(savepath, sep='\t') + significant_res = bios_interactions_df[bios_interactions_df['corrected_p'] <= 0.05] + print("Significantly replicated coeQTLs: ", significant_res.shape[0]) + return bios_interactions_df + + +def arguments(): + parser = argparse.ArgumentParser() + parser.add_argument('--saveprefix', type=str, dest='saveprefix') + parser.add_argument('--coeqtlpath', type=str, dest='coeqtlpath') + parser.add_argument('--selection', type=str, dest='selection') + parser.add_argument('--chromosome', type=str, dest='chr') + parser.add_argument('--replicate', type=str, dest='replicate') + parser.add_argument('--bios_selected_vcf', type=str, dest='bios_selected_vcf') + return parser + + +if __name__ == '__main__': + # _ = make_gte_mapping_file() # make the GTE files for BIOS + args = arguments().parse_args() + print("Arguments:") + print(args) + # get snps and genes from coeQTL results + coeqtl_path = args.coeqtlpath + savedirectory = Path(args.saveprefix) + if not os.path.isdir(savedirectory): + os.makedirs(savedirectory) + if args.selection == 'snp': + if not os.path.exists(f"{coeqtl_path[:-len('.tsv.gz')]}.snps.txt"): + _ = make_snps_genes_files_for_coeqtls(coeqtl_path) + # get snps from vcf + chromosome = args.chr + snp_bashfile_path = workdir / 'bios/select_snps_from_vcf.sh' + dataname = f"chr{chromosome}" + bios_gt_path = bios_gt_prefix / f"chr{chromosome}/GenotypeData.vcf.gz" + snp_savepath = savedirectory / f'bios_selected.chr{chromosome}.vcf' + get_snps_from_vcffile(snp_bashfile_path, bios_gt_path, f"{coeqtl_path[:-len('.tsv.gz')]}.snps.txt", + snp_savepath) + elif args.selection == 'gene': + if not os.path.exists(f"{coeqtl_path[:-len('.tsv.gz')]}.snps.txt"): + _ = make_snps_genes_files_for_coeqtls(coeqtl_path) + # get genes from gzip files + gene_savepath = savedirectory / f'bios_selected_gene_expression.tsv' + _ = get_genes_from_gzipfile(bios_exp_path, f"{coeqtl_path[:-len('.tsv.gz')]}.genes.tsv", gene_savepath) + if args.replicate: + # perform replication in bios + work_prefix = Path("./coeqtl_mapping/") + bios_gt_path = args.bios_selected_vcf + vcf_header_rows = 6 + bios_gene_path = bios_exp_path + saveprefix = savedirectory / 'bios_replication_results.eqtlgene1_gene2' + replicate(annotated_coeqtl_path=coeqtl_path, + bios_gt_path=bios_gt_path, + bios_gene_path=bios_gene_path, + saveprefix=saveprefix, + gte_mapping_path=gte_mapping_path, + vcf_header_rows=vcf_header_rows) + # concatenate replication results saved in parts + res_df = pd.DataFrame() + for filename in os.listdir(savedirectory): + if filename.startswith('bios_replication_results.eqtlgene1_gene2.') and 'part' in filename and filename.endswith('gz'): + print(filename) + df = pd.read_csv(savedirectory / filename, sep='\t', compression='gzip') + res_df = pd.concat([res_df, df], axis=0) + tobesave = lambda x: True if 'dosage' not in x and 'const' not in x and x.startswith('rs') else False + res_df['isinteractionterm'] = [tobesave(item) for item in res_df['Unnamed: 0']] + bios_interactions_df = res_df[res_df['isinteractionterm']] + bios_interactions_df['snp_genepair'] = ['_'.join([item[0].split('_')[0], + ';'.join(sorted([item[0].split('_')[1], item[1]]))]) for item + in + bios_interactions_df[['Unnamed: 0', 'gene1']].values] + bios_interactions_df['corrected_p'] = multipletests(bios_interactions_df['P>|t|'], method='fdr_bh')[1] + bios_interactions_df.to_csv(savedirectory / 'bios_replication_results.eqtlgene1_gene2.all.tsv.gz', + sep='\t', index=False, compression='gzip') + bios_interactions_df[bios_interactions_df['corrected_p'] <= 0.05].to_csv( + savedirectory / 'bios_replication_results.eqtlgene1_gene2.sig.tsv.gz', + sep='\t', index=False, compression='gzip') diff --git a/04_coeqtl_mapping/screen_permutation_p_values.py b/04_coeqtl_mapping/screen_permutation_p_values.py new file mode 100644 index 0000000..2812dc8 --- /dev/null +++ b/04_coeqtl_mapping/screen_permutation_p_values.py @@ -0,0 +1,130 @@ +import argparse +import os +from pathlib import Path + +import numpy as np +import pandas as pd +from tqdm import tqdm +import gzip + + +workdir = Path('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping') +annotation_path = '/groups/umcg-bios/tmp01/projects/1M_cells_scRNAseq/ongoing/eQTL_mapping/probeannotation/singleCell-annotation-stripped.tsv' +mappingdic = pd.read_csv('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/resources/features_v3_reformated_names.tsv', + sep='\t', names=['geneid', 'genename']).set_index('geneid')['genename'].T.to_dict() +annotation_df = pd.read_csv(annotation_path, sep='\t') +annotation_df['chr_pos'] = ['_'.join([str(ele) for ele in item]) for item in annotation_df[['Chr', 'ChrStart', 'ChrEnd']].values] +annotation_df['genename'] = [mappingdic.get(ensemblid) for ensemblid in annotation_df['Ensembl']] +annotation_dict = annotation_df.set_index('chr_pos')['genename'].T.to_dict() + +def update_perm(old_p_list, new_p_list): + return np.min([old_p_list, new_p_list], axis=0) + + +def find_eqtlsnp_gene(snp, genepair, coeqtl_annotation_dic): + genepair_chrpos = coeqtl_annotation_dic.get(genepair) + eqtlgene = annotation_dict.get(genepair_chrpos) + snp_genepair = '_'.join([snp, eqtlgene]) + return snp_genepair + + +def loop_through_one_batch_perm(batch_perm_path, snpgene1_minpvalues_dict, coeqtl_annotation_dict): + with gzip.open(batch_perm_path, 'rb') as f: + f.readline() + while True: + line = f.readline().decode('utf-8') + if not line: + break + else: + linecontent = line.strip().split('\t') + perm_ps = [float(ele) for ele in linecontent[2:102]] + snp_gene1 = find_eqtlsnp_gene(linecontent[1], linecontent[0], coeqtl_annotation_dict) + snpgene1_minpvalues_dict[snp_gene1] = update_perm(snpgene1_minpvalues_dict[snp_gene1], + perm_ps) + return snpgene1_minpvalues_dict + + +def update_dictionary_per_permutation_batch(batch_perm_path, snpgene1_minpvalues_df, coeqtl_annotation_dict): + batch_perm_df = pd.read_csv(batch_perm_path, compression='gzip', sep='\t') + # print(batch_perm_df.head()) + batch_perm_df['chr_pos'] = [coeqtl_annotation_dict.get(genepair) for genepair in batch_perm_df['Gene']] + batch_perm_df['eqtlgene'] = [annotation_dict.get(chrpos) for chrpos in batch_perm_df['chr_pos']] + batch_perm_df['snp_eqtlgene'] = ['_'.join(item) for item in batch_perm_df[['SNP', 'eqtlgene']].values] + # print(batch_perm_df.head()) + merge_columns = ['snp_eqtlgene'] + [f'Perm{ind}' for ind in range(100)] + merged_df = pd.concat([batch_perm_df[merge_columns], snpgene1_minpvalues_df[merge_columns]], + axis=0) + # print(merged_df.head()) + reduced_df = merged_df.groupby(by='snp_eqtlgene').agg(min) + reduced_df['snp_eqtlgene'] = reduced_df.index + # print(reduced_df.head()) + return reduced_df + + +def save_numpy(data_df, prefix): + np.save(f'{prefix}.npy', data_df.values) + with open(f'{prefix}.cols.txt', 'w') as f: + f.write('\n'.join([str(ele) for ele in data_df.columns])) + with open(f'{prefix}.rows.txt', 'w') as f: + f.write('\n'.join([str(ele) for ele in data_df.index])) + return None + + +def arguments(): + parser = argparse.ArgumentParser() + parser.add_argument('--eqtl_path', dest='eqtl_path') + parser.add_argument('--result_prefix', dest='result_prefix') + parser.add_argument('--save_prefix', dest='save_prefix') + parser.add_argument('--annotation_prefix', dest='annotation_prefix') + return parser + + + +def main(): + args = arguments().parse_args() + eqtl_path, results_prefix, save_prefix = args.eqtl_path, Path(args.result_prefix), Path(args.save_prefix) + # load eqtl path + eqtl_df = pd.read_csv(eqtl_path, sep='\t') + eqtl_df['snp_gene1'] = ['_'.join(item) for item in eqtl_df[['SNPName', 'genename']].values] + unique_snpgene1 = eqtl_df['snp_gene1'].values + # initialize the dict to contain the + # snpgene1_minpvalues_dict = {item: np.ones(100) for item in unique_snpgene1} + snpgene1_minpvalues_df = pd.DataFrame(data=np.ones((len(unique_snpgene1), 100)), + columns=[f'Perm{ind}' for ind in range(100)]) + snpgene1_minpvalues_df['snp_eqtlgene'] = unique_snpgene1 + # loop through all batch permutation files + coeqtl_annotation_path = f'{args.annotation_prefix}.genepairs.annotation.gene1position.noduplicated.tsv' + coeqtl_annotation_df = pd.read_csv(coeqtl_annotation_path, sep='\t') + coeqtl_annotation_df['chr_pos'] = ['_'.join([str(ele) for ele in item]) for item in + coeqtl_annotation_df[['Chr', 'ChrStart', 'ChrEnd']].values] + coeqtl_annotation_dict = coeqtl_annotation_df.set_index('ArrayAddress')['chr_pos'].T.to_dict() + for filename in tqdm(os.listdir(results_prefix / 'noduplicated/output')): + if '-Permutations.txt.gz' in filename: + snpgene1_minpvalues_df = update_dictionary_per_permutation_batch(results_prefix / 'noduplicated/output'/filename, + snpgene1_minpvalues_df, coeqtl_annotation_dict) + coeqtl_annotation_path = f'{args.annotation_prefix}.genepairs.annotation.gene1position.duplicatedversion1.tsv' + coeqtl_annotation_df = pd.read_csv(coeqtl_annotation_path, sep='\t') + coeqtl_annotation_df['chr_pos'] = ['_'.join([str(ele) for ele in item]) for item in + coeqtl_annotation_df[['Chr', 'ChrStart', 'ChrEnd']].values] + coeqtl_annotation_dict = coeqtl_annotation_df.set_index('ArrayAddress')['chr_pos'].T.to_dict() + for filename in tqdm(os.listdir(results_prefix / 'duplicatedversion1/output')): + if '-Permutations.txt.gz' in filename: + snpgene1_minpvalues_df = update_dictionary_per_permutation_batch(results_prefix / 'duplicatedversion1/output'/filename, + snpgene1_minpvalues_df, coeqtl_annotation_dict) + coeqtl_annotation_path = f'{args.annotation_prefix}.genepairs.annotation.gene1position.duplicatedversion2.tsv' + coeqtl_annotation_df = pd.read_csv(coeqtl_annotation_path, sep='\t') + coeqtl_annotation_df['chr_pos'] = ['_'.join([str(ele) for ele in item]) for item in + coeqtl_annotation_df[['Chr', 'ChrStart', 'ChrEnd']].values] + coeqtl_annotation_dict = coeqtl_annotation_df.set_index('ArrayAddress')['chr_pos'].T.to_dict() + for filename in tqdm(os.listdir(results_prefix / 'duplicatedversion2/output')): + if '-Permutations.txt.gz' in filename: + snpgene1_minpvalues_df = update_dictionary_per_permutation_batch(results_prefix / 'duplicatedversion2/output'/filename, + snpgene1_minpvalues_df, coeqtl_annotation_dict) + # snpgene1_minpvalues_df = pd.DataFrame.from_dict(snpgene1_minpvalues_dict) + snpgene1_minpvalues_df.to_csv(save_prefix / 'concated_alltests_permutations_fixed.tsv.gz', + sep='\t', compression='gzip') + return snpgene1_minpvalues_df + + +if __name__ == '__main__': + _ = main() diff --git a/04_coeqtl_mapping/select_snps_from_vcf.sh b/04_coeqtl_mapping/select_snps_from_vcf.sh new file mode 100644 index 0000000..cc710c4 --- /dev/null +++ b/04_coeqtl_mapping/select_snps_from_vcf.sh @@ -0,0 +1,8 @@ +#!/usr/bin/env bash + +vcfpath=$1 +snpspath=$2 +savepath=$3 + +ml BCFtools +bcftools view --include ID==@${snpspath} ${vcfpath} > ${savepath} \ No newline at end of file diff --git a/04_coeqtl_mapping/submit_individual_networks.sh b/04_coeqtl_mapping/submit_individual_networks.sh new file mode 100644 index 0000000..7a57463 --- /dev/null +++ b/04_coeqtl_mapping/submit_individual_networks.sh @@ -0,0 +1,18 @@ +#!/usr/bin/env bash +#SBATCH --time=16:00:00 +#SBATCH --mem=80gb +#SBATCH --nodes=1 +#SBATCH --export=NONE +#SBATCH --get-user-env=L + +module purge + +conda init bash +source /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/tools/Beeline/miniconda/etc/profile.d/conda.sh +conda activate scpy3.8 + + +python /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/individual_networks/individual_networks.py \ +--datasetname $1 \ +--celltype $2 \ +--condition $3 \ No newline at end of file diff --git a/04_coeqtl_mapping/submit_merge_coexpression.sh b/04_coeqtl_mapping/submit_merge_coexpression.sh new file mode 100644 index 0000000..52f6789 --- /dev/null +++ b/04_coeqtl_mapping/submit_merge_coexpression.sh @@ -0,0 +1,21 @@ +#!/usr/bin/env bash +#SBATCH --time=8:00:00 +#SBATCH --mem=80gb +#SBATCH --nodes=1 +#SBATCH --export=NONE +#SBATCH --get-user-env=L + +module purge + +conda init bash +source /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/tools/Beeline/miniconda/etc/profile.d/conda.sh +conda activate scpy3.8 + + +python /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/individual_networks/merge_coexpression_for_betaeqtl.py \ +--celltype $1 \ +--condition $2 + +python /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/input/individual_networks/prepare_genelist_and_annotation_for_betaqtl.py \ +--celltype $1 \ +--condition $2 \ No newline at end of file diff --git a/04_coeqtl_mapping/submit_process_betaqtl_results.sh b/04_coeqtl_mapping/submit_process_betaqtl_results.sh new file mode 100644 index 0000000..e3c45c8 --- /dev/null +++ b/04_coeqtl_mapping/submit_process_betaqtl_results.sh @@ -0,0 +1,51 @@ +#!/usr/bin/env bash +#SBATCH --time=01:00:00 +#SBATCH --mem=20gb +#SBATCH --nodes=1 +#SBATCH --open-mode=append +#SBATCH --export=NONE +#SBATCH --get-user-env=L + +module purge + +conda init bash +source /groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/tools/Beeline/miniconda/etc/profile.d/conda.sh +conda activate scpy3.8 + + +celltype=$1 + +condition='UT' +workdir="./" + +# unfiltered results +python ${workdir}/output/concat_betaqtl_results.fixed.py \ +--prefix ${workdir}/output/unfiltered_results/${condition}_${celltype_individual} \ +--savepath ${workdir}/output/unfiltered_results/${condition}_${celltype_individual}/concated_alltests_output_fixed.tsv.gz \ +--annotation_prefix ${workdir}/input/summary/${condition}_${celltype} +python ${workdir}/output/screen_permutation_p_values.py \ +--eqtl_path ${workdir}/input/snp_selection/eqtl/${condition}_${celltype}_eQTLProbesFDR0.05-ProbeLevel.tsv \ +--result_prefix ${workdir}/output/unfiltered_results/${condition}_${celltype_individual} \ +--save_prefix ${workdir}/output/unfiltered_results/${condition}_${celltype_individual} \ +--annotation_prefix ${workdir}/input/summary/${condition}_${celltype} +python ${workdir}/output/multipletesting_correction.fixed.py \ +--permutation_pvalue_path ${workdir}/output/unfiltered_results/${condition}_${celltype_individual}/concated_alltests_permutations_fixed.tsv.gz \ +--coeqtl_path ${workdir}/output/unfiltered_results/${condition}_${celltype_individual}/concated_alltests_output_fixed.tsv.gz \ +--eqtl_path ${workdir}/input/snp_selection/eqtl/${condition}_${celltype}_eQTLProbesFDR0.05-ProbeLevel.tsv \ +--save_prefix ${workdir}/output/unfiltered_results/${condition}_${celltype_individual}/coeqtls_fullresults_fixed + +# filtered results +python ${workdir}/output/concat_betaqtl_results.fixed.py \ +--prefix ${workdir}/output/filtered_results/${condition}_${celltype_individual} \ +--savepath ${workdir}/output/filtered_results/${condition}_${celltype_individual}/concated_alltests_output_fixed.tsv.gz \ +--annotation_prefix ${workdir}/input/summary/${condition}_${celltype} +python ${workdir}/output/screen_permutation_p_values.py \ +--eqtl_path ${workdir}/input/snp_selection/eqtl/${condition}_${celltype}_eQTLProbesFDR0.05-ProbeLevel.tsv \ +--result_prefix ${workdir}/output/filtered_results/${condition}_${celltype_individual} \ +--save_prefix ${workdir}/output/filtered_results/${condition}_${celltype_individual} \ +--annotation_prefix ${workdir}/input/summary/${condition}_${celltype} +python ${workdir}/output/multipletesting_correction.fixed.py \ +--permutation_pvalue_path ${workdir}/output/filtered_results/${condition}_${celltype_individual}/concated_alltests_permutations_fixed.tsv.gz \ +--coeqtl_path ${workdir}/output/filtered_results/${condition}_${celltype_individual}/concated_alltests_output_fixed.tsv.gz \ +--eqtl_path ${workdir}/input/snp_selection/eqtl/${condition}_${celltype}_eQTLProbesFDR0.05-ProbeLevel.tsv \ +--save_prefix ${workdir}/output/filtered_results/${condition}_${celltype_individual}/coeqtls_fullresults_fixed diff --git a/05_coeqtl_interpretation/.ipynb_checkpoints/LDTRAIT-checkpoint.ipynb b/05_coeqtl_interpretation/.ipynb_checkpoints/LDTRAIT-checkpoint.ipynb new file mode 100644 index 0000000..659b6fa --- /dev/null +++ b/05_coeqtl_interpretation/.ipynb_checkpoints/LDTRAIT-checkpoint.ipynb @@ -0,0 +1,944 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import requests\n", + "from tqdm import tqdm\n", + "import os\n", + "from io import StringIO\n", + "from pathlib import Path" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "savedir = Path(\"./annotated_coeqtl_snps/ldtrait\")\n", + "\n", + "celltypesnps = {}\n", + "merged_dict = pd.read_excel('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/summary/coeQTLs_6majorcelltypes.filtered.xlsx',\n", + " sheet_name=None)\n", + "for celltype in merged_dict.keys():\n", + " celltypesnps[celltype] = list(merged_dict[celltype]['SNP'].unique())\n", + "allcelltypes_snps = list(set([ele for l in celltypesnps.values() for ele in l]))" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "72" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(allcelltypes_snps)" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 17%|█▋ | 12/72 [05:53<34:19, 34.33s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs62480001\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 18%|█▊ | 13/72 [06:52<39:48, 40.48s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs817352\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 19%|█▉ | 14/72 [07:11<33:43, 34.89s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs80164297\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 24%|██▎ | 17/72 [09:23<37:43, 41.16s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs11772922\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 26%|██▋ | 19/72 [10:43<35:14, 39.89s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs3758833\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 29%|██▉ | 21/72 [11:39<28:28, 33.49s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs11047696\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 31%|███ | 22/72 [12:09<27:15, 32.70s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs9971029\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 32%|███▏ | 23/72 [12:35<24:55, 30.53s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs4949655\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 42%|████▏ | 30/72 [16:56<26:11, 37.41s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs6007595\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 43%|████▎ | 31/72 [17:27<24:21, 35.64s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs7309189\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 44%|████▍ | 32/72 [18:20<27:11, 40.79s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs9657360\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 49%|████▊ | 35/72 [19:43<20:09, 32.70s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs731835\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 53%|█████▎ | 38/72 [26:08<51:53, 91.57s/it] " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs260503\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 58%|█████▊ | 42/72 [28:04<22:59, 46.00s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs13140099\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 60%|█████▉ | 43/72 [28:34<19:51, 41.10s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs2235910\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 71%|███████ | 51/72 [42:19<40:20, 115.26s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs1628955\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 74%|███████▎ | 53/72 [43:55<25:05, 79.24s/it] " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs12443580\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 82%|████████▏ | 59/72 [48:18<09:34, 44.16s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs150458741\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 85%|████████▍ | 61/72 [49:39<07:29, 40.88s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs62423804\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▌ | 62/72 [50:16<06:36, 39.69s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs2267989\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 89%|████████▉ | 64/72 [50:56<03:58, 29.82s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs7605964\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 99%|█████████▊| 71/72 [54:21<00:24, 24.54s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs1261896\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 72/72 [54:53<00:00, 45.75s/it]\n" + ] + } + ], + "source": [ + "# curl -k -H \"Content-Type: application/json\" -X POST -d '{\"snps\": \"rs3\\nrs4\", \"pop\": \"YRI\", \"r2_d\": \"r2\", \"r2_d_threshold\": \"0.1\", \"window\": \"500000\", \"genome_build\": \"grch37\"}' 'https://ldlink.nci.nih.gov/LDlinkRest/ldtrait?token=faketoken123'\n", + "# snp = \"rs10276099\"\n", + "for snp in tqdm(allcelltypes_snps):\n", + " if os.path.exists(savedir/f'{snp}.tsv'):\n", + " continue\n", + " else:\n", + " params = {\"snps\": snp, \n", + " \"pop\": \"CEU\", \n", + " \"r2_d\": \"r2\", \n", + " \"r2_d_threshold\": \"0.8\", \n", + " \"window\": \"500000\", \n", + " \"genome_build\": \"grch37\"}\n", + " r = requests.request(headers={\"Content-Type\": \"application/json\"},\n", + " method='POST',\n", + " json=params, \n", + " url=f'https://ldlink.nci.nih.gov/LDlinkRest/ldtrait?token={token}')\n", + " try:\n", + " if \"No entries in the GWAS Catalog are identified using the LDtrait search criteria.\" in r.text:\n", + " print('no GWAS:', snp)\n", + " continue\n", + " else:\n", + " r_df = pd.read_csv(StringIO(r.text), sep='\\t')\n", + " r_df.to_csv(savedir/f'{snp}.tsv', sep='\\t', index=False)\n", + " except:\n", + " print('failed entry:', snp)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 72/72 [00:00<00:00, 298.96it/s]\n" + ] + } + ], + "source": [ + "allsnps_inld_gwas_df = pd.DataFrame()\n", + "for snp in tqdm(allcelltypes_snps):\n", + " if os.path.exists(savedir/f'{snp}.tsv'):\n", + " df = pd.read_csv(savedir/f'{snp}.tsv', sep='\\t')\n", + " if 'error' not in df.iloc[0].values[0]:\n", + " allsnps_inld_gwas_df = pd.concat([allsnps_inld_gwas_df, df],\n", + " axis=0)\n", + " \n", + "allsnps_inld_gwas_df.to_csv(savedir/'summary.tsv', sep='\\t', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "allsnps_inld_gwas_df = pd.read_csv(savedir/'summary.tsv', sep='\\t')\n", + "magma_df = pd.read_csv(savedir/'coeqtl_with_gwas_and_magma.tsv', sep='\\t')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
VARIABLEcelltypeSNPgeneTYPENGENESBETABETA_STDSEP...non_effect_allelecurrent_buildfrequencysample_sizezscorepvalueeffect_sizestandard_errorimputation_statusn_cases
0B_rs1131017_RPS26Brs1131017RPS26SET38-0.199320-0.0089520.125420.943980...Ghg380.580808546120.1389370.8895000.0022000.015600original17008.0
1B_rs1131017_RPS26Brs1131017RPS26SET380.2013200.0090420.129050.059382...Ghg380.580808532931.7356820.0826200.0239020.013700original19099.0
2B_rs1131017_RPS26Brs1131017RPS26SET370.1636100.0072560.126080.097201...Ghg380.58080829344-2.3486640.018841-0.0105690.004363originalNaN
3B_rs1131017_RPS26Brs1131017RPS26SET38-0.010395-0.0004670.116680.535490...Ghg380.58080815954-0.3241820.745800-0.0099500.025700original7387.0
4B_rs1131017_RPS26Brs1131017RPS26SET380.2823500.0126770.117060.007937...Ghg380.580808337159-1.5978830.110069-0.0002100.000132originalNaN
\n", + "

5 rows × 44 columns

\n", + "
" + ], + "text/plain": [ + " VARIABLE celltype SNP gene TYPE NGENES BETA \\\n", + "0 B_rs1131017_RPS26 B rs1131017 RPS26 SET 38 -0.199320 \n", + "1 B_rs1131017_RPS26 B rs1131017 RPS26 SET 38 0.201320 \n", + "2 B_rs1131017_RPS26 B rs1131017 RPS26 SET 37 0.163610 \n", + "3 B_rs1131017_RPS26 B rs1131017 RPS26 SET 38 -0.010395 \n", + "4 B_rs1131017_RPS26 B rs1131017 RPS26 SET 38 0.282350 \n", + "\n", + " BETA_STD SE P ... non_effect_allele current_build \\\n", + "0 -0.008952 0.12542 0.943980 ... G hg38 \n", + "1 0.009042 0.12905 0.059382 ... G hg38 \n", + "2 0.007256 0.12608 0.097201 ... G hg38 \n", + "3 -0.000467 0.11668 0.535490 ... G hg38 \n", + "4 0.012677 0.11706 0.007937 ... G hg38 \n", + "\n", + " frequency sample_size zscore pvalue effect_size standard_error \\\n", + "0 0.580808 54612 0.138937 0.889500 0.002200 0.015600 \n", + "1 0.580808 53293 1.735682 0.082620 0.023902 0.013700 \n", + "2 0.580808 29344 -2.348664 0.018841 -0.010569 0.004363 \n", + "3 0.580808 15954 -0.324182 0.745800 -0.009950 0.025700 \n", + "4 0.580808 337159 -1.597883 0.110069 -0.000210 0.000132 \n", + "\n", + " imputation_status n_cases \n", + "0 original 17008.0 \n", + "1 original 19099.0 \n", + "2 original NaN \n", + "3 original 7387.0 \n", + "4 original NaN \n", + "\n", + "[5 rows x 44 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "magma_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "VARIABLE B_rs1131017_RPS26\n", + "celltype B\n", + "SNP rs1131017\n", + "gene RPS26\n", + "TYPE SET\n", + "NGENES 38\n", + "BETA -0.19932\n", + "BETA_STD -0.008952\n", + "SE 0.12542\n", + "P 0.94398\n", + "prefix results/current/magma/AD\n", + "trait AD\n", + "FDR 0.973479\n", + "Tag IGAP_Alzheimer\n", + "PUBMED_Paper_Link http://www.ncbi.nlm.nih.gov/pubmed/24162737\n", + "Phenotype Alzheimer\n", + "RSID rs10876864\n", + "RSALIAS rs57455456\n", + "CHR 12\n", + "POS1 56435929\n", + "POS2 56401085\n", + "DIST -34844\n", + "R2 0.991789\n", + "D 0.240643\n", + "DPRIME 0.995886\n", + "MAJOR A\n", + "MINOR G\n", + "MAF 0.408549\n", + "CMMB 0.155229\n", + "CM 71.092406\n", + "panel_variant_id chr12_56007301_G_A_b38\n", + "chromosome chr12\n", + "position 56007301\n", + "effect_allele A\n", + "non_effect_allele G\n", + "current_build hg38\n", + "frequency 0.580808\n", + "sample_size 54612\n", + "zscore 0.138937\n", + "pvalue 0.8895\n", + "effect_size 0.0022\n", + "standard_error 0.0156\n", + "imputation_status original\n", + "n_cases 17008.0\n", + "Name: 0, dtype: object" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "magma_df.iloc[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.041321, 'Inflammatory Bowel Disease'],\n", + " [0.030935, 'Non-cancer illness code, self-reported: psoriasis'],\n", + " [0.0090688,\n", + " 'Non-cancer illness code, self-reported: schizophrenia'],\n", + " [0.0042454,\n", + " 'Overall breast cancer in Europeans, imputed genotype'],\n", + " [0.032584, 'Diagnoses - main ICD10: G40 Epilepsy'],\n", + " [0.0013766,\n", + " 'Estrogen-receptor-negative breast cancer in Europeans, imputed genotype'],\n", + " [0.025212,\n", + " 'Non-cancer illness code, self-reported: high cholesterol']],\n", + " dtype=object)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "magma_df[(magma_df['SNP']=='rs4147638') & (magma_df['P']<0.05)][['P', 'Phenotype']].values" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
QueryGWAS TraitRS NumberPosition (GRCh37)AllelesR2D'Risk AlleleEffect Size (95% CI)Beta or ORP-value
0rs2954654Type 2 diabetesrs2294120chr8:146003567A=0.52, G=0.480.8462950.9578950.4558792997592680.044300.029-0.062.000000e-08
1rs4840568Albumin-globulin ratiors2409780chr8:11337587C=0.237, T=0.7630.8971561.000000NR0.046040.035-0.0571.000000e-16
2rs4840568Non-albumin protein levelsrs2409780chr8:11337587C=0.237, T=0.7630.8971561.000000NR0.044560.034-0.0551.000000e-15
3rs4840568Rheumatoid arthritisrs2618444chr8:11338370A=0.763, C=0.2370.8971561.000000NR0.100500.072-0.1297.000000e-12
4rs4840568Systemic lupus erythematosusrs2618444chr8:11338370A=0.763, C=0.2370.8971561.000000NR1.360001.22-1.517.000000e-09
\n", + "
" + ], + "text/plain": [ + " Query GWAS Trait RS Number Position (GRCh37) \\\n", + "0 rs2954654 Type 2 diabetes rs2294120 chr8:146003567 \n", + "1 rs4840568 Albumin-globulin ratio rs2409780 chr8:11337587 \n", + "2 rs4840568 Non-albumin protein levels rs2409780 chr8:11337587 \n", + "3 rs4840568 Rheumatoid arthritis rs2618444 chr8:11338370 \n", + "4 rs4840568 Systemic lupus erythematosus rs2618444 chr8:11338370 \n", + "\n", + " Alleles R2 D' Risk Allele \\\n", + "0 A=0.52, G=0.48 0.846295 0.957895 0.455879299759268 \n", + "1 C=0.237, T=0.763 0.897156 1.000000 NR \n", + "2 C=0.237, T=0.763 0.897156 1.000000 NR \n", + "3 A=0.763, C=0.237 0.897156 1.000000 NR \n", + "4 A=0.763, C=0.237 0.897156 1.000000 NR \n", + "\n", + " Effect Size (95% CI) Beta or OR P-value \n", + "0 0.04430 0.029-0.06 2.000000e-08 \n", + "1 0.04604 0.035-0.057 1.000000e-16 \n", + "2 0.04456 0.034-0.055 1.000000e-15 \n", + "3 0.10050 0.072-0.129 7.000000e-12 \n", + "4 1.36000 1.22-1.51 7.000000e-09 " + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "allsnps_inld_gwas_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "allsnps_inld_gwas_df.to_excel('./coeqtl_mapping/output/snps_in_ld_with_gwas_catelogue.xlsx')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/05_coeqtl_interpretation/.ipynb_checkpoints/TEM_NAIVE-checkpoint.ipynb b/05_coeqtl_interpretation/.ipynb_checkpoints/TEM_NAIVE-checkpoint.ipynb new file mode 100644 index 0000000..314c2f6 --- /dev/null +++ b/05_coeqtl_interpretation/.ipynb_checkpoints/TEM_NAIVE-checkpoint.ipynb @@ -0,0 +1,1437 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import re\n", + "from itertools import combinations\n", + "from pathlib import Path\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import scanpy as sc\n", + "from scipy.stats import spearmanr\n", + "from scipy.stats import t, norm\n", + "from tqdm import tqdm\n", + "import argparse\n", + "from scipy.stats import rankdata\n", + "from collections import namedtuple\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from scipy import stats\n", + "%matplotlib inline\n", + "\n", + "\n", + "def get_time(x):\n", + " if x == 'UT':\n", + " return x\n", + " else:\n", + " pattern = re.compile(r'\\d+h')\n", + " return re.findall(pattern, x)[0]\n", + "\n", + "\n", + "class DATASET:\n", + " def __init__(self, datasetname):\n", + " self.name = datasetname\n", + " self.path_prefix = Path(\"./seurat_objects\")\n", + " self.information = self.get_information()\n", + " def get_information(self):\n", + " if self.name == 'onemillionv2':\n", + " self.path = '1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.sct.h5ad'\n", + " self.individual_id_col = 'assignment'\n", + " self.timepoint_id_col = 'time'\n", + " self.celltype_id = 'cell_type_lowerres'\n", + " self.chosen_condition = {'UT': 'UT',\n", + " 'stimulated': '3h'}\n", + " elif self.name == 'onemillionv3':\n", + " self.path = '1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad'\n", + " self.individual_id_col = 'assignment'\n", + " self.timepoint_id_col = 'time'\n", + " self.celltype_id = 'cell_type_lowerres'\n", + " self.chosen_condition = {'UT': 'UT',\n", + " 'stimulated': '3h'}\n", + " elif self.name == 'stemiv2':\n", + " self.path = 'cardio.integrated.20210301.stemiv2.h5ad'\n", + " self.individual_id_col = 'assignment.final'\n", + " self.timepoint_id_col = 'timepoint.final'\n", + " self.celltype_id = 'cell_type_lowerres'\n", + " self.chosen_condition = {'UT': 't8w',\n", + " 'stimulated': 'Baseline'}\n", + " elif self.name == 'ng':\n", + " self.path = 'pilot3_seurat3_200420_sct_azimuth.h5ad'\n", + " self.individual_id_col = 'snumber'\n", + " self.celltype_id = 'cell_type_mapped_to_onemillion'\n", + " else:\n", + " raise IOError(\"Dataset name not understood.\")\n", + " def load_dataset(self):\n", + " self.get_information()\n", + " print(f'Loading dataset {self.name} from {self.path_prefix} {self.path}')\n", + " self.data_sc = sc.read_h5ad(self.path_prefix / self.path)\n", + " if self.name.startswith('onemillion'):\n", + " self.data_sc.obs['time'] = [get_time(item) for item in self.data_sc.obs['timepoint']]\n", + " elif self.name == 'ng':\n", + " celltype_maping = {'CD4 T': 'CD4T', 'CD8 T': 'CD8T', 'Mono': 'monocyte', 'DC': 'DC', 'NK': 'NK',\n", + " 'other T': 'otherT', 'other': 'other', 'B': 'B'}\n", + " self.data_sc.obs['cell_type_mapped_to_onemillion'] = [celltype_maping.get(name) for name in\n", + " self.data_sc.obs['predicted.celltype.l1']]\n", + "\n", + "def corr_to_z(coef, num):\n", + " t_statistic = coef * np.sqrt((num - 2) / (1 - coef ** 2))\n", + " prob = t.cdf(t_statistic, num - 2)\n", + " z_score = norm.ppf(prob)\n", + " positive_coef_probs = 1 - prob\n", + " positive_coef_probs[coef < 0] = 0\n", + " negative_coef_probs = prob\n", + " negative_coef_probs[coef > 0] = 0\n", + " probs = negative_coef_probs + positive_coef_probs\n", + " return z_score, probs\n", + "\n", + "\n", + "def get_individual_networks_selected_genepairs(data_df, data_sc, individual_colname, genepair):\n", + "# data_df = pd.DataFrame(data=data_sc.X.toarray(),\n", + "# index=data_sc.obs.index,\n", + "# columns=data_sc.var.index)\n", + " gene1, gene2 = genepair.split(';')\n", + " sorted_genepair = [';'.join(sorted([gene1, gene2]))]\n", + " coef_df = pd.DataFrame(index=sorted_genepair)\n", + " coef_p_df = pd.DataFrame(index=sorted_genepair)\n", + " zscore_df = pd.DataFrame(index=sorted_genepair)\n", + " zscore_p_df = pd.DataFrame(index=sorted_genepair)\n", + " data_selected_df = data_df[[gene1, gene2]]\n", + " print(\n", + " f\"Begin calculating networks for {len(data_sc.obs[individual_colname].unique())} individuals and;\\n{genepair}\"\n", + " )\n", + " for ind_id in tqdm(data_sc.obs[individual_colname].unique()):\n", + " cell_num = data_sc.obs[data_sc.obs[individual_colname] == ind_id].shape[0]\n", + " if cell_num > 10:\n", + " individual_df = data_selected_df.loc[data_sc.obs[individual_colname] == ind_id]\n", + " individual_coefs, individual_coef_ps = spearmanr(individual_df.values, axis=0)\n", + " if data_selected_df.shape[1] == 2:\n", + " individual_coefs_flatten = pd.DataFrame(data = [individual_coefs],\n", + " index = sorted_genepair)\n", + " individual_coef_ps_flatten = \\\n", + " pd.DataFrame(data=[individual_coef_ps],\n", + " index=sorted_genepair)\n", + " else:\n", + " individual_coefs_flatten = pd.DataFrame(\n", + " data=individual_coefs[np.triu_indices_from(individual_coefs, 1)],\n", + " index=selected_genes_sorted_genepairs).loc[sorted_genepair]\n", + " individual_coef_ps_flatten = \\\n", + " pd.DataFrame(data=individual_coef_ps[np.triu_indices_from(individual_coefs, 1)],\n", + " index=selected_genes_sorted_genepairs).loc[sorted_genepair]\n", + " coef_df[ind_id] = individual_coefs_flatten\n", + " coef_p_df[ind_id] = individual_coef_ps_flatten\n", + " try:\n", + "# print(individual_coefs_flatten.values, cell_num)\n", + " individual_zscores_flatten, individual_zscore_ps_flatten = corr_to_z(\n", + " individual_coefs_flatten.values, \n", + " cell_num\n", + " )\n", + " zscore_df[ind_id] = individual_zscores_flatten\n", + " zscore_p_df[ind_id] = individual_zscore_ps_flatten\n", + " except:\n", + " continue\n", + " else:\n", + " print(\"Deleted this individual because of low cell number\", cell_num)\n", + " return data_selected_df, zscore_df, zscore_p_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### One million data" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# load the GT data\n", + "gt = pd.read_csv('./coeqtl_interpretation/rs1131017_TEM_ratio/rs1131017.vcf',\n", + " skiprows=6, sep='\\t')\n", + "change_colnames = lambda col:'_'.join(col.split('_')[1:]) if 'LLDeep' in col else col\n", + "gt = gt.rename({col:change_colnames(col) for col in gt.columns}, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
#CHROMPOSIDREFALTQUALFILTERINFOFORMATLLDeep_1191...s21s43s24s23s45s26s25s28s27s29
01256435929rs1131017CG...GT:DS0/0:0.0...1/1:2.01/1:2.01/1:2.00/1:1.01/1:2.00/1:1.00/0:0.01/1:2.00/0:0.060000000000000051/1:2.0
\n", + "

1 rows × 182 columns

\n", + "
" + ], + "text/plain": [ + " #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT LLDeep_1191 \\\n", + "0 12 56435929 rs1131017 C G . . . GT:DS 0/0:0.0 \n", + "\n", + " ... s21 s43 s24 s23 s45 s26 s25 \\\n", + "0 ... 1/1:2.0 1/1:2.0 1/1:2.0 0/1:1.0 1/1:2.0 0/1:1.0 0/0:0.0 \n", + "\n", + " s28 s27 s29 \n", + "0 1/1:2.0 0/0:0.06000000000000005 1/1:2.0 \n", + "\n", + "[1 rows x 182 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gt.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### CD4T+CD8T" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# # load onemillion v2 data\n", + "# dataset = DATASET('onemillionv2')\n", + "# dataset.load_dataset()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
assignmentpredicted.celltype.l1
LLDeep_0022B0
CD4 T0
CD8 T0
DC0
Mono0
\n", + "
" + ], + "text/plain": [ + " 0\n", + "assignment predicted.celltype.l1 \n", + "LLDeep_0022 B 0\n", + " CD4 T 0\n", + " CD8 T 0\n", + " DC 0\n", + " Mono 0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
assignmentpredicted.celltype.l2
LLDeep_0022ASDC0
B intermediate0
B memory0
B naive0
CD14 Mono0
\n", + "
" + ], + "text/plain": [ + " 0\n", + "assignment predicted.celltype.l2 \n", + "LLDeep_0022 ASDC 0\n", + " B intermediate 0\n", + " B memory 0\n", + " B naive 0\n", + " CD14 Mono 0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CD4T TEMCD4T NaiveCD8T TEMCD8T NaiveCD4TCD8TCD4T TCMCD8T TCMall_num
LLDeep_13702085741322489858827
LLDeep_0434424179593989209406291496
LLDeep_13191101322234922236546191504
LLDeep_02692158807211881018529
LLDeep_0471272428114570103254101241
\n", + "
" + ], + "text/plain": [ + " CD4T TEM CD4T Naive CD8T TEM CD8T Naive CD4T CD8T CD4T TCM \\\n", + "LLDeep_1370 20 85 74 13 224 89 85 \n", + "LLDeep_0434 42 417 95 93 989 209 406 \n", + "LLDeep_1319 110 132 223 4 922 236 546 \n", + "LLDeep_0269 21 58 80 7 211 88 101 \n", + "LLDeep_0471 27 242 81 14 570 103 254 \n", + "\n", + " CD8T TCM all_num \n", + "LLDeep_1370 8 827 \n", + "LLDeep_0434 29 1496 \n", + "LLDeep_1319 19 1504 \n", + "LLDeep_0269 8 529 \n", + "LLDeep_0471 10 1241 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'rs1131017')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA34AAAFNCAYAAABfWL0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACF8klEQVR4nO3deZxkd13v/9entt579p4Js2QyMDBJEIQ7CYsYRwQNgmGR601QFpVfwlVMUEFwATX684JwhXB/aBLDIhclYgTvXA2LEMYxSsgGAUKGZOgs3ZOZ9Cw903vX9vn9cU5VV1dX71Vddarez8ejHt196tSpb3VVf/t8zvf7/XzM3REREREREZHmFat3A0RERERERKS2FPiJiIiIiIg0OQV+IiIiIiIiTU6Bn4iIiIiISJNT4CciIiIiItLkFPiJiIiIiIg0OQV+TcTMdpuZm1mi3m0REVGfJCKNQv2RiAK/hmNmbzGz75rZhJmdMLO/MrP19W7XQszsQ2b2iJmNmtkRM3tTDZ/rp8LnmDCzr5vZ+Qvs+3Yzu9fMps3sU2X3/aKZjZXcJsJ/CP+lVm2fp41vMLPHzWzczP7JzDYusO+fhJ+NrJn9Udl9B8wsX/aa3lzzFyBNT33Ssp97o5l9IfybftzM3rDAvs82sy+b2Skzm1NUt+zveczMcmb2v2r7Cua0YXfY106Ev8uXLbDvT4b7njOzx+bZ5zozezT8/TxkZs+sWeOl6ag/WvZzL6c/erOZ3WdmI2Y2aGZ/XhokL+dYtbLM/sjM7ANmdjq8/bmZWcn9Lzazu8P35Ttm9pKS+15pZnea2dnwc/bXZtZT69e3FhT4NRAz+23gA8C7gHXAC4HzgX81s1Q927aIceDnCNr8ZuAGM3vxUh5oy7jyZmabgc8D7wU2AvcCf7/AQ54E/hT4RPkd7v637t5duAG/BvQD9y+1PatlZhcDNwFvBLYCE8BfLvCQo8DvAP8yz/1Plr4md/+bqjZYWo76pBX5GJAm+Jv+ReCvwr/1SjLA54BfrXRnWR+1FZgE/mGV7VuuzwLfAjYBvw/cZmZb5tl3nKC/fVelO83srQSv9ZVAN/Aq4FS1GyzNSf3RiiynP+oE3gFsBl4A/BTwzhUeq1aW0x9dDbwGeC7wHIL+5hoIgljgIPBBYD3w58D/NbMN4WPXEZw/Pg24ENgR7ht97q5bA9yAXmAM+IWy7d3AEPAr4c8x4D3AD4HTBCcNG8P7dgMOJMKf1wEfB44Dxwg+xPHwvrcAdwIfAoaBR4FXzNO29wC3lW27AfjoPPsfBH57nvsOAIPAu4ETwP9exu/oauA/S37uIjgR2rfI4/4U+NQi+3wd+MNltMWBawmCxVMEHUJsme/5nwF/V/Lz0wk61Z5FHvcZ4I8q/V7r/TnWrXlu6pNW9DvrCv+Gn1my7X8D71/kcc8AfJF93hz2N7bEtnwKuBH4V2AU+Dfg/GW+nmcC06V9EvDvwNsWedzLgMfKtsWAAeCn6v3Z1i16N/VHK/qdrag/Ktn3t4D/W6VjrXl/BPwncHXJz78K3BV+/yrgwbL9HwZ+dZ5jvQ74br3/Dqpx04hf43gx0E4wolXk7mPAF4GXh5uuJbiC8RMEVyKGCa7CVPI3QJbgpOJ5wE8Dby25/wXADwiu7vw58PHSYfASnwV+1sx6AcwsDvwC8HflO5pZB3AJ8OACr3UbwYjd+cDVZrYrHE6f71aYTnAx8EDhIO4+TtC5r+qKkwXTRS8DPr3Mh74W2A88H3g18Cvh8V6yyOspTCcofz0/JOxYV/hS+szsqXAa1YfNrGuFxxEB9UlL6ZPKPRPIufvDJdseYJV9VOjNwKc9PAtZol8E/oTg9/lt4G8Ld4RTm+Z7fYWZBxcD/e4+WnLMlb6eHeHt2WY2EPZTf2xmOg+RpVB/tPb90WUl7axG37bW/dGsc6yyfS28lTLg2fMcq/R3EWla4No4NgOn3D1b4b7jQGHt2TXA2919EMCCtV5PmNkbSx9gZluBVwDr3X0SGDezDxOMmt0U7va4u/91uP/fEEwz3EpwlanI3R83s/sJOtNPAy8FJtz9rgptvZHgj+vLC7zWPMHo2nT48xMEQ+2L6QZOlm07B6x23vWbgH9390eX+bgPuPsZ4IyZfQS4CrjF3e9k6a/nXNm2lb6eI8CPhl/PJ/iH9heE0xpEVkB90vJV82+6yMx2EZzIVpwSuoB/cffD4TF+HzhnZjvdfcDdn7OEx8/3erYvsx0QBH0QnFz/CMHv9ysEoxt/vYLjSWtRf7R8K+6PzOyXCS5sFwLhavRta90fle9/DugOg/f/BJ5mZlcBtwFvIJh11Vl+EDN7OcGFtxcsoY0NT1faGscpYPM887nPY2YdxPnAFwpXQoCHgBxBZ1TqfCAJHC/Z9yagr2SfYufl7hPht93ztO/vCAIbCP5AKl3J+iDB1ZJfWOSq9El3n1rg/vmMEUz3KNVLMG1gNd5EECgt10DJ948TXF1cjqq9Hnc/4e7fd/d8GMD+DvD65R5HpIT6pEWY2RdtJvHKL1LbPurOFVycKvZR4cjIGZbXT1Xz9UyGX//c3c+6+2ME7//PruBY0nrUHy2iWv2Rmb0GeD/B1NbC77UafcFa90fl+/cCYx44TTBT67eAp4DLga8SXIgqMrMXEryXry8b7YwsBX6N4xsEc5dfV7oxnK73CuBr4aYBgj/G9SW3dnc/Vna8gfB4m0v263X3lU45+gfggJntIJjiOKtTM7M/Dtv50+4+ssixZnV44TSG8ux1Y2UdGATD7M8teVwXwRWaFQ+/m9mPEXQ8t63g4TtLvt9FkEwGM/vxRV7Pj4ePKX89e4A2gnnmq+XMncYgshzqkxbpk9z9FT6TgOVvCf52E2a2t+Rwz2X1U4RWenGq2EeZWTfB9LFCP/XgAq/vxvBhDwJ7bHY2u5W+nh8QTGVfzlRVkQL1R2vQH5nZ5QQj8D/n7t8tuasafdta90ezzrHK93X3f3P3S9x9I0GSvWcBd5e08XkE6zF/xd2/RrNY7qJA3Wp3IxilKVx5SBIsRL6dINNkW7jPbwKHCBfFAluAV4ff72b2wuX/Q7DAuJcgyH868BPhfW8huIJc+vwOPGOB9n2RYGHut8q2/y7wCHDeEl7jAVaYhCR8reeAnyeY6/8BwoW68+yfCPf7HwSLkNsLv5uSfW4mWDdT/ti3UJacoMLv6mvABoLO7Agli4iX+HouBkaAHydYOP0Z4NYF9k+Gr+HvCBahtzOzEP0AQfBpYXu+Dnyy3p9p3aJ9U5+0ot/ZrQRrfrqAHwv7rIvn2dfCv+OLwtfaXvi9luzzYoKsgHOSPoWPOTDPsT8V9i8vAVLAhylJjrWM13MXQYKLdoIT2rPAlnn2jYX7vYJgFkQ7kCq5/9PAPxNMD9sR9psVkynoplv5Tf3Rin5ny+mPXkqQEOeylRyrAfujtxGM+G4nuMD/ICWJYAjWdSbD9/8jwH+U3Pfs8LP23+r9ua/2re4N0K3sDQnWcHyPYFrMUwRTDzaU3B8jGJr+AcHw9g+BPwvvK+/U1gF/RTB0fY4gBe6V4X0r6dTeGO7zrgqPmyYYVi/cfm+eY6yqUyPIFnck/P0cAnaX3Pd7wBdLfv6jsG2ltz8qub897DTmZJkjKBnxtwu0w5nJ6nka+J+EQdgyX88bCObvjxP8E9pYct+NwI0lP3+qwut5S3jfbxFkJZsguJL5v1gkO6huui3lpj5p2b+vjcA/hX/TTwBvKLlvV9iWXWW/n9LbY2XHu4kKmf0IAqdRYNM87fgUM1n0xoDDwAUreD27CfrayfA9flnJfT9OMHWq9HdZ/noOldzfS3DyOBr2U+9jiVlKddPNXf3RCn5fy+mPvk6Q7Ka0nV9c4rEasT8ygqQ8Z8Lbn5f2NwRB7Lnw9vdAX8l9nyRYa1n6u3hwue1txJuFL1BESpjZV4Dr3P2hee53YK+7H13blomIgJn9EsHV9t+d5/5PEZxA/sGaNkxEWo76o+hQVk+RCtz9p+vdBhGR+bj7Z+rdBhERUH8UJUruIiIiIiIi0uQ01VNERERERKTJacRPRERERESkySnwExERERERaXJNldxl8+bNvnv37no3Q0Sq6L777jvl7lvq3Y7VUN8k0nzUN4lIo5qvf2qqwG/37t3ce++99W6GiFSRmT1e7zaslvomkeajvklEGtV8/ZOmeoqIiIiIiDQ5BX4iIiIiIiJNToGfiIiIiIhIk1PgJyIiIiIi0uQU+ImIiIiIiDQ5BX4iIiIiIiJNToGfiIiIiIhIk2uqOn7S/A4dGeKmw/0MDE+wc0Mn11y2hwP7+urdLJFV02dbRERESlX73KCmI35mdrmZ/cDMjprZeyrcv8/MvmFm02b2zrL71pvZbWZ2xMweMrMX1bKt0vgOHRnifQcfZGh0ivUdSYZGp3jfwQc5dGSo3k0TWRV9tkVkOczsE2Y2ZGbfq3DfO83MzWxzPdomItVRi3ODmgV+ZhYHPga8ArgIuMrMLirb7QxwLfChCoe4AfiSu+8Dngs8VKu2SjTcdLifZNzoTCUwC74m48ZNh/vr3TSRVdFnW0SW6VPA5eUbzWwn8HLgibVukIhUVy3ODWo54ncpcNTd+909DdwKvLp0B3cfcvd7gEzpdjPrBS4DPh7ul3b3szVsq0TAwPAEHcn4rG0dyTiDwxN1apFIdeizLSLL4e6HCS6el/sw8DuAr22LRKTaanFuUMvAbzswUPLzYLhtKfYAJ4FPmtm3zOwWM+uqdgMlWnZu6GQyk5u1bTKTY8eGzjq1SKQ69NkWkdUysyuAY+7+QL3bIiKrV4tzg1oGflZh21KvQCWA5wN/5e7PA8aBOWsEAczsajO718zuPXny5MpaKpFwzWV7yOSciXQW9+BrJudcc9meejdNZFX02RaR1TCzTuD3gfctYV+dN4lEQC3ODWoZ+A0CO0t+3gE8uYzHDrr7N8OfbyMIBOdw95vdfb+779+yZcuKGyuN78C+Pq6/4mL6eto5N5mhr6ed66+4WJkPJfL02RaRVXo6cAHwgJk9RnDOdb+ZbSvfUedNItFQi3ODWpZzuAfYa2YXAMeAK4E3LOWB7n7CzAbM7Fnu/gPgp4Dv166pEhUH9vXpZFiakj7bIrJS7v5doNiBhMHffnc/VbdGiciqVfvcoGaBn7tnzeztwJeBOPAJd3/QzN4W3n9jeCXqXqAXyJvZO4CL3H0E+A3gb80sBfQDv1yrtoqIiKyG6jDKWjKzzwIHgM1mNgj8obt/vL6tEpFGV9MC7u5+O3B72bYbS74/QTAdodJjvw3sr2X7REREVqtQaykZt1m1lq4HBX9SE+5+1SL3716jpohIhNS0gLuIiEizUx1GERGJAgV+IiIiq6A6jCIiEgUK/ERERFZBdRhFRCQKFPiJiIisguowiohIFNQ0uUsjUuY1ERGppgP7+rieYK3f4PAEO/S/RUREGlBLBX7KvCYiIrWgOowiItLoWmqqpzKviYiIiIhIK2qpwE+Z10REREREpBW11FTPnRs6GRqdojM187KVeU1ERFZL68dFRKTRtdSInzKviYhItRXWjw+NTs1aP37oyFC9myYiIlLUUoHfgX19XH/FxfT1tHNuMkNfTzvXX3GxrsqKiMiK3XS4n0wux4lzU/zgqVFOnJsik8tp/biIiDSUlprqCcq8JiIi1fXI0CjnJjLEYkY8ZmTzzqnRNJncaL2bJkukqboi0gpaasRPRESk2tLZPBjEzDCMmBlYuF0anqbqikirUOAnIiKyCsm4AZDPO+5OPu8ApMLt0thU6klEWoUCPxERkVV45tZeNnWlSMSNnDuJuLGpK8Xerb31bposgUo9iUirUOAnIiKyCtdctodUIs62de08a2sP29a1k0rElTE6InZu6GQyk5u1TaWeRKQZKfATERFZBWWMjjaVehKRVtFyWT1FRESqTRmjo+vAvj6uJ1jrNzg8wQ5l9RSRJqXAT0RERFqaAncRaQWa6ikiIiIiItLkFPiJiIiIiIg0OQV+IiIlzOxyM/uBmR01s/cssN8lZpYzs9evZftEREREVkKBn4hIyMziwMeAVwAXAVeZ2UXz7PcB4Mtr20IRERGRlVFyFxGRGZcCR929H8DMbgVeDXy/bL/fAP4RuGRtmyeN6tCRIW463M/A8AQ7lRVSREQakEb8RERmbAcGSn4eDLcVmdl24LXAjWvYLmlgh44M8b6DDzI0OsX6jiRDo1O87+CDHDoyVO+miYiIFCnwExGZYRW2ednPHwHe7e65BQ9kdrWZ3Wtm9548ebJa7ZMGdNPhfpJxozOVwCz4mowbNx3ur3fTREREimoa+C2WJMHM9pnZN8xs2szeWeH+uJl9y8z+uZbtFBEJDQI7S37eATxZts9+4FYzewx4PfCXZvaa8gO5+83uvt/d92/ZsqVGzZVGMDA8QUcyPmtbRzLO4PBEnVokIiIyV80CvyUmSTgDXAt8aJ7DXAc8VKs2ioiUuQfYa2YXmFkKuBI4WLqDu1/g7rvdfTdwG/Br7v5Pa95SaRg7N3QymZk9ADyZybFjQ2edWiTNzsw+YWZDZva9km0fNLMjZvYdM/uCma2vYxNFpAHVcsSvmCTB3dNAIUlCkbsPufs9QKb8wWa2A3glcEsN2ygiUuTuWeDtBNk6HwI+5+4PmtnbzOxt9W2dNKprLttDJudMpLO4B18zOeeay/bUu2nSvD4FXF627V+BZ7v7c4CHgd9d60aJSGOrZVbPSkkSXrCMx38E+B2gp4ptEhFZkLvfDtxetq1iIhd3f8tatEka24F9fVxPsNZvcHiCHcrqKTXm7ofNbHfZtq+U/HgXwVR0EZGiWgZ+S0mSUPmBZq8Chtz9PjM7sMi+VwNXA+zatWuZTRQREVm9A/v6FOhJI/kV4O8r3aHzJpHWVcupnktJkjCfHwOuCJMn3Aq81Mw+U2lHJVAQERERCZjZ7wNZ4G8r3a/zJpHWVcvAb9EkCfNx99919x1h8oQrgTvc/Zdq11QRERGRaDOzNwOvAn7R3Zc0y0pEWkfNpnq6e9bMCkkS4sAnCkkSwvtvNLNtwL1AL5A3s3cAF7n7SK3aJSIiItJszOxy4N3AT7i7aomIyBy1XOO3aJIEdz9BMAV0oWMcAg7VoHkiIiIiHDoyxE2H+xkYnmBnBJLzmNlngQPAZjMbBP6QIItnG/CvZgZwl7srG7GIFNU08BMRERFpZIeODPG+gw+SjBvrO5IMjU7xvoMPcj00bPDn7ldV2PzxNW+IiESKAj8RERFpWTcd7icZNzpTwSlRZyrBRDrLTYf7GzbwE1mqqI1mS23VMrmLiIiISEMbGJ6gIxmfta0jGWdwWMvkJNoKo9lDo1OzRrMPHRmqd9OkThT4iYiISMvauaGTyUxu1rbJTI4dGzrr1CKR6igdzTYLvibjxk2H++vdNKkTBX4iIiLSsq65bA+ZnDORzuIefM3knGsu21PvpomsikazpZwCPxEREWlZB/b1cf0VF9PX0865yQx9Pe1cf8XFWgclkafRbCmn5C4iIiLS0g7s61OgJ03nmsv28L6DDzKRztKRjDOZyWk0u8Up8BMRaQDKvCYiItV0YF8f1xOs9RscnmCH/re0PAV+IiJ1FsU6YiIi0vg0mi2ltMZPRKTOlHlNREREak2Bn4hInSnzmoiIiNSaAj8RkTpT5jURERGpNQV+IiJ1pjpiIiIiUmsK/ERE6kx1xERERKTWlNVTRKQBKPOaiIiI1JJG/ERERERERJqcAj8REREREZEmp8BPRERERESkySnwExERERERaXIK/ERERERERJqcAj8REREREZEmp8BPRERERESkyamOn4iIiIjM69CRIW463M/A8AQ7N3RyzWV7VHdUJII04iciIiIiFR06MsT7Dj7I0OgU6zuSDI1O8b6DD3LoyFC9myYiy6TAT0REREQquulwP8m40ZlKYBZ8TcaNmw7317tpIrJMCvxEREREpKKB4Qk6kvFZ2zqScQaHJ+rUIhFZqZoGfmZ2uZn9wMyOmtl7Kty/z8y+YWbTZvbOku07zezrZvaQmT1oZtfVsp0iIiIiMtfODZ2cHp+m/+QYR06M0H9yjNPj0+zY0FnvponIMtUsuYuZxYGPAS8HBoF7zOygu3+/ZLczwLXAa8oengV+293vN7Me4D4z+9eyx4qIiIhEjpm9bqH73f3zizz+E8CrgCF3f3a4bSPw98Bu4DHgF9x9eLVtfdGejdz92BliBjGDdC7P0Giaqy7ZuNpDi8gaq2VWz0uBo+7eD2BmtwKvBorBm7sPAUNm9srSB7r7ceB4+P2omT0EbC99rLQmZRYTEZEmcBvw7fAGYCX3ObBg4Ad8Cvj/gE+XbHsP8DV3f384y+o9wLtX29Bv9J9hS3eK0aks6VyeVDxGT3uCb/Sf4drVHlxE1lQtA7/twEDJz4PAC5Z7EDPbDTwP+GZ1miVRVcgslozbrMxi14OCPxERiZKfB/4b8Bzg/wCfdfejS32wux8Oz49KvRo4EH7/N8AhqhD4DQxPsLm7jS097aXPrzV+EaEL5lKqlmv8rMI2X9YBzLqBfwTe4e4j8+xztZnda2b3njx5cgXNlKhQZjEREWkG7v4Fd78S+Angh8D/NLM7zewnVnHYreGMqcLMqaqc3e/c0MlkJjdr22QmpzV+EaBSHFKuloHfILCz5OcdwJNLfbCZJQmCvr9daK67u9/s7vvdff+WLVtW3FhpfMosJiIiTWYKOAeMAF1A+8K7r95yL5hfc9keMjlnIp3FPfiayTnXXLan1k2VVdIFcylXy8DvHmCvmV1gZingSuDgUh5oZgZ8HHjI3f+ihm2UCNFVRxERaQZm9pNmdjNwH/CTwA3u/jx3//IqDvuUmZ0XHv88oOKwznIvmB/Y18f1V1xMX0875yYz9PW0c/0VF2u6YATogrmUq9kaP3fPmtnbgS8DceAT7v6gmb0tvP9GM9sG3Av0AnkzewdwEcGc9zcC3zWzb4eH/D13v71W7ZXGd81le3jfwQeZSGfpSMaZzOR01VFEGoLW0cgyfQ34DnAn0Aa8yczeVLjT3VeSN+Ug8Gbg/eHX/1OFdgJB8KfPc/Ts3NDJ0OgUnamZ031dMG9ttUzuQhio3V627caS708QTAEtdyeV1whKCzuwr4/rCaYuDA5PsEMnVyLSAJR4SlbgV1hm3oNSZvZZgkQum81sEPhDgoDvc2b2q8ATwH+tQjslwq65bA+/8dn7GU/nyHtQjqMrFee9r7yo3k2TOqlp4CdSbbrqKCKNpnQdDUBnKsFEOstNh/vVX0lF7v6p+e4zs0XPzdz9qnnu+qmVtkmaz3cGzxaDPoC8w3g6x3cGz6pvalEK/CRSNJ0q2vT+STMaGJ5gfUdy1jato4mWte6bzOxOd39J+P3/dvc3ltx9N/D8mj25tIxb7nyUeMxoi82k9Mjm89xy56Nc+7Jn1rFlUi+1TO4iUlVKSxxtev+kWSnxVLTVqW/qKvn+4rL7tNRFqmI8nSNW9mmKWbBdWpMCP4kMpSWOtrV4/8zshVU7mMgSKd19tNXpf8tC6/tWvPavVg4dGeKqm+/iJR+4g6tuvksX7CKiKxUvTvMsyHuwXVqTAj+JjIHhCbK5PP0nxzhyYoT+k2Nkc3lNp4qINUor/ZfVPJjIUijdfbTVKeX9ejN7rZn9fPj968LbzwPravnEy6XZGtH11pdcQN6D6Z15z4dfg+3SmhT4SWR0p+IcOztFNufEzcjmnGNnp3TlKiI0HU5aQcMN1cii6tQ3/RtwBfCq8PufC2+vAg7X8omXS7Ntouvalz2T6176DDqScbL54ILGdS99htb3tTAld5HIMAsnqhszKyC8ZLs0tDWqw7jHzA7Od6e7X1HNJxMBlXOIujrViP2/7v75Wj5BtSh5UbRd+7JnKtCTonkDPzP7M3f/vbVsjMhCRqezbOxMcmo8XaxHs7krxdh0tt5NkyVYozqMJ4H/uZoDmNnlwA1AHLjF3d9fdv+rgT8B8kAWeIe737ma5wRlPI0ylXOItjrViP0DIBKBn4qAizSPhUb8LgcU+EnD6GlL8Mi5KZLxGGbgDmcmMuzta6t302SJ1qAO46i7/9tKH2xmceBjwMuBQeAeMzvo7t8v2e1rwEF3dzN7DvA5YN9qGn3oyBDvuu0BRqeyZPN5To1O867bHuCDr3+uAocI0IhI9KlG7PzqNCIqIjWwUOAXN7MNzJNW2N3P1KZJIpW5h6tnCotovGy7CDy2ysdfChx1934AM7sVeDVQDPzcfaxk/y6qsKzrA186wvBEhnjMSMRjuMPwRIYPfOmITkYjQCMisgL7zOw7FbYb4O7+nLVu0HzqNCIqIjWwUOC3D7iPyoGfA7rUI2tqLJ1j+/p2To2lSefypOIxtnW3qR6NFLn768q3LXPa+nZgoOTnQeAFFY75WuB/AH3AK1fQ1Fn6T40TM4iF61XNwM3pPzW+2kPLGtCIiKzAowTJXCJBI6IizWGhwO/77v68NWuJyCIKV9X3bOkubptIZ+nraa9jq6SRmNlHyzcBbzSzbgB3v3axQ1TYNmdEz92/AHzBzC4jWO/3sgptuRq4GmDXrl2Ltj2Xd7L5HO5B4GdAIq7ERVGgERFZgbS7P17vRkjz0/pxKaWsnhIZuqouS/A64BDwFWaCuCsJZi8sxSCws+TnHcCT8+3s7ofN7OlmttndT5XddzNwM8D+/fsXnA66pSvJ4LnpkscGX8/rSs7zCGk0GhGRZfqPejdAmp/Wj0u5her43bBmrRBZAhVJliW4EDhFkJzqq+7+NwQJX/4m/H4x9wB7zewCM0sRBI2zykOY2TMsrCFiZs8HUsDp1TS6pyNF3GZG+swgbsF2EWk+7v72erdhOQ4dGeKqm+/iJR+4g6tuvkvF2yOisH7cIVg/zsz6cWlN8474ufunyreZ2cPurmIgUje6qi4LcfdR4B1m9l+Az5jZv7DwBa7yx2fN7O3AlwnKOXzC3R80s7eF998I/DzwJjPLAJPAf/NVZhganc6yqSsVlCoJG7xJpUpEpAGoTmV0af24lFuojt8oM2tbClOmOgvb3b231o0TEVkJd7/PzF4K/BqwrBp77n47cHvZthtLvv8A8IFqtLNApUqiT+toZDnM7IXufle927EUqlMp0jwWuhL+KeCfgL3u3uPuPcAT4fcK+kSkYZnZemA/cDfw6/VtzeJmlSop3FCpkqgojIgMjU7NGhHRdDhZwF/WuwFLNTA8QUcyPmub6lRGwwWbOsk75POOu5PPO3kPtktrmjfwc/ffIFjn91kzu9bMYlShXpWISK2YWcrMPkVQz+9m4K+Bx8zsE+GavYZUKFWSiBs5dxJxY/v6dpUqiYjSERGz4Gsybtx0uL/eTRNZtZ0bOpnMzO6LVKcyGt7zigtZ35nEYpBzx2KwvjPJe15xYb2bJnWy4NoXd7+PmTTl/wYob76INLI/AJLATnd/nrv/KLCLYFr7e+vZsIXs3NBJIh5jz5Zu9m3rZc+WbhLxmE6sIkIjIrICe8zs4Hy3ejeu1DWX7SGTcybSWdyDr8qoHQ0H9vXxpheeTyoeI++Qisd40wvP1xTdFrZoOQd3zwMfNbN/AFTXT0Qa2euAS929eMbt7qNm9mvAXTRo8HfNZXt4520PcOzsJLm8E48Z3W0J3vvKi+rdNFmCQo3Rwhoo0IiILOok8D/r3YilUJ3K6Dp0ZIjb7j/Glp42doVlsG67/xjP2bFe71+LWjDwM7NNwBuAfeGmh8xsk7uvKnW5iEiN5EuDvgJ3HzOzhp6qbgAerutzq1hJXhqTaozKCoy6+7/VuxFLpYza0aTEPFJu3qmeZnYh8D3gvwAPA48AlwDfNbN98z1ORKSO3Mw2mNnG8huQr3fj5nPT4X56O5Ls3drDheetY+/WHno7klojFhGqMSor8Fi9GyDNT9PQpdxCI35/Alzn7p8r3WhmPw/8vwS1rEREGsk64D6oOGDWsCN+A8MTrO9Iztqmf87RohGRaFvrchzu/rrybWb2Z+7+ezV7Umk5moYu5RYK/H7E3V9fvtHd/9HM/qyGbRIRWRF3313vNqzEzg2dPHpqjNGpLOlcnlQ8Rk97ggs2d9e7aSJNrx4Fys3so+WbgDeaWTeAu19bkyeWlqJp6FJuoaye4yu8T0SkLszsZ8xszgUrM3uDmb28Hm1aihft2cjJsTTpXJ6YQTqX5+RYmhft2Vjvpok0vTqV43gdsBG4l2CWwr1AJvz+vlo+sbQOTUOXcguN+PWZ2W9V2G7Alhq1R0RkNf4Y+LkK2+8AvgD869o2Z2m+0X+Gvp4UI5MzI369HQm+0X8GXfYXqa06TbW+kGBJzeXAu9z9mJn9obv/TS2fVFqPpqFHW7WnoS804vfXQE+FWzdwy1IObmaXm9kPzOyomb2nwv37zOwbZjZtZu9czmNFRCrodPeT5Rvd/QTQVYf2LMnA8ASbutrYs6WbZ23tYc+WbjZ1tWmNn8gaqEeBcncfdfd3EJR0+Ex4DrRgbWURaS2FaehDo1OzpqEfOjK04mPOO+Ln7n+84qMCZhYHPga8HBgE7jGzg+7+/ZLdzgDXAq9ZwWNFRMq1m1nC3bOlG80sCXTUqU2LKl2An8k54Exnc5y3roNsLk8irvNBkVqp5zood7/PzF4K/BpwZ82fUEQioxblOBYq5/DnZva2Ctt/08w+sIRjXwocdfd+d08DtwKvLt3B3Yfc/R6Cee3LeqyIRM+hI0NcdfNdvOQDd3DVzXet6qrVPD4P/LWZFUf3wu9vDO9rSNdctodMzplIZ3EPvk5n87zuedt54swEA2cmGBqd4txkhnS2YatSiERSPddBmdl6YD9wN/DrVTrmb5rZg2b2PTP7rJm1V+O4IrK2alGOY6E1fq8Cnl1h+w3Ad4B3L3Ls7cBAyc+DwAuW2K7VPFZEGtAaZc77A+BPgcfN7PFw2y7g48B7q/Uk1XZgXx/XE1zde+zUGFt7O7jykp1cGiZ3yeTyZHJ5xggGMuMxoyMVpzOVoCMZJx5TuXeR1VjrdVBmlgJuJpjx9ChB/oTzzewLwNvCi94rOe52gplUF7n7pJl9DrgS+FQ12i0ia6cW5TgWCvzc3edcWnb3vJkt5SxjNXW0lvxYM7sauBpg165dSzy8iKy1WkxZKBdO8XyPmf0x8Ixw81F3n6zKE9RQ4cRzcHhi0VG9XN4Zm8oyNhUEgm3JOB3JOJ2pOO1lVwdFpCH9AZAEdrr7KICZ9RAsc3kvq7tQlQA6zCwDdAJPrrKtIlIHtZiGvlDgN2Fme939kdKNZrYXWMpJ1CCws+TnHSy981nyY939ZoKrZuzfv79hCzSLtLq1zJwXBnrfrfqBG9R0Jsd0JsfZCYhZMBrYnozTnozRllAgKNKAXgdc6u7FDtDdR83s14C7WGHgF2YH/RDwBMG52lfc/Sul++iCeWupdlZIWTuls4EGhyfYUYX3b6HA733AF83sT5mpKbMf+F3gHUs49j3AXjO7ADhGMNXgDUts12oeKyINqBZTFmSuvDvj01nGp4PRQDMjlYiRisdoT8boSMaVLEak/vKlQV+Bu4+Z2YovYpvZBoKcCBcAZ4F/MLNfcvfPlDyHLpi3iDVaYiE1VO1p6Atl9fyimb0GeBfwG+Hm7wE/7+6LXkl396yZvR34MhAHPuHuDxYSxrj7jWa2jaBoaS+QN7N3EMxLH6n02JW+yFK68iFSH2uROa9SRs+oKPRNj54aY1vZGr/VcPfiiODoVLAtGY/RGa4RbE/GWNrsfRGpIg+DtEp/fKvJ4PQy4NFCWRsz+zzwYuAzCz5qETp3iqa1WGIh0bLQiB/u/j3gzSs9uLvfDtxetu3Gku9PEEzjXNJjV0tXPkTqpxZTFiq4y8wGgS8BX3L3x6p58Fop7Zt625OcHp/mhjse4Tr2ViX4K5fJ5Tk3mefcZKY4NbQjFadTo4Eia2UdwWyq1eRDqOQJ4IVm1kkw1fOnCC6wr5jOnaJrLZdYSDQsGPg1G135EKmvWmfOc/f9ZnY+8ArgI2GGuzuBLwL/5u7TNXvyVSjtm9LZfHFE9NZ7BmoS+JUqnxqaSsTCRDEaDRSpFXffXaPjftPMbgPuB7LAtwinda6Uzp2iS0sspFxLBX668hF9mm4ii3H3xwnq9t0YFm7/ceBy4E/N7KS7v7KuDaygUt/UnoxxYmTtk5Gms3nSWY0GitSSmf0M0OPut5VtfwNw0t3/daXHdvc/BP5wlU0s0rlTdK3FEguJloUKuF9lZpvWsjG1tnNDJ5OZ3KxtuvIRHYXpJkOjU7Omm9SgCLg0CXfPuPsd7v477n4pYSa7RlOpb5rK5NnW21GnFgUKo4GnRqeLheRPj00zPp0lk1MheZFV+GPg3ypsvwO4fo3bsiCdO0XXgX19XH/FxfT1tHNuMkNfTzvXX3GxLpi3sIVG/M4nyAaVBL5GMFXqbnePbAYoXfmINk03kdVy92P1bkMlpX1T3IzJTI5s3rnykp2LP3gNla4NhKCQfFsiTlsiRioRoy0Ra9lRQc1GkGXqLCRgKeXuJ8ysqx4Nmo/OnaKt1kssJFrm/Q/t7u9395cCPws8APwKcL+Z/Z2ZvcnMtq5VI6tFVz6ibWB4go6y4tSabiLNoLRvGp3KsKmrjeteWpvELtWUyzsT6SzDE2meGpmaNSo4mc4R4euEy6LZCLIC7WY25+J7eLG9vkP9ZQ7s6+P1z9/OydFpHjoxysnRaV7//O06dxKJoEXX+Ln7KPCF8IaZXUSQOOHTwM/UtHU1oCsf0aVFytH30a8+zC13Psp4OkdXKs5bX3IB177smTV7PjPrcvfxmj1BFRX6psHhCdLZ6E6jnC9jaEcyTrJJRwNvOtxPJpfj9FiWdC5PKh6jtyOh2QiykM8Df21mby/0UeFI30fD+xrGoSND3Hb/Mbb0tLErHPG77f5jPGfHen2+RSJm2f+F3f377v4/3T1yQZ9E2zWX7SGTC0YY3IOvmm4SHR/96sPccMdRJjM5ErEgaL/hjqN89KsPV/25zOzFZvZ94KHw5+ea2V9W/YlkQaVrBAfOTPDE6QmGRqY4O5FmIp0l2yTrBB8ZGuXUaJps3onHjGzeOTWa5pGh0Xo3TRrXHwBPAY+b2X1mdh/wGHAyvK9hlC6zMAu+JuPGTYf76900EVmmlsrqKdG2RnXgpEZuufNRYgaJWHC9KWaQzee55c5HazHq92GCGQkHAdz9ATO7rNpPIsuTzecZm85DSVGNwjrBjmQwMphKRG9UMJ3Nk3Mnl3PcoVABI8ojt1Jb7p4F3mNmfww8I9x81N3XPpXvIpTVU6R5KPCTSNFU3egaTwcjfaViFmyvBXcfKKtBV5snqpJCcpBHT42xrbeDKy/Z2fBr/KqhsE5wIp2F8ZlAsD0Zoz0ZJI5p9FqCec+TL1nOWFja6K7ATxYWBnrfrXc7FqJlFiLNY6FyDhsXuq1lI0Uk+rpS8VknxwB5D7bXwICZvRhwM0uZ2TsJp302otLkIL3tSU6PT3PDHY9wd/+ZejdtzRUCwTPjaZ48O8kTZyY4OdrYJSRiFiNuwYUMI/gaNzCL3uilSDktsxBpHguN+J0CBoFs+HPpJVcH9BcvIkv21pdcwA13HCWbzxOzIOjLe7C9Bt4G3ABsJ+jHvgL8ei2eqBpK19Cks/liyvRb7xloiVG/heTyzuhUhtGpmRIS7cl4cTQwGY8Rj9V3RDCViDGZNmIxwywY8cvnPZLTVmVtmFkinO7Z8LTMQqR5LBT4/S/gAPAfwGeBO6Ncw09E6uvalz2TR0+NcfA7J8jkgiQYVzxnW62yepq7/2ItDlwLldbQtCdjnBhpuOU+dZfLBwljxqdnzpnjMSMZD2oJJmJGIh4jGTdS8bWZJrq3r4fHTo8xMlmS1bMrye5N3TV/bomsu8xsEPgS8CV3f6zO7VmQllmINIeF6vhdB/wo8A/AG4Fvmdmfm1lNLs+LSHM7dGSI+544x+5NnTz7ab3s3tTJfU+cq1Wts/80s6+Y2a+a2fpaPEE17dzQyWRm9hLEqUyebb0NVc6rYeXyzlQmx8hkhjPjaYZGpjg2PMmjp8YZODPB0OgU5yYzTGVqU1vwmsv2kM05ubzjHnzNaiqcLMDd9wPXhT9+xMzuMbMPm9lPm1lbPdsmIs1rwXkoHvg68DvAjcAvAy9bi4aJSHNZy5Tg7r6XICX6xcD9ZvbPZvZLVX+iKilfQzOZyZHNO1desrPeTYu8TC7P2FSW02PTPHl2Jhh8KiwrMZnOVaWshAMYwQijhT+LLMDdH3f3G939NcCLgf9LcI7172b2L3VtnIg0pXmneoaFRF8N/DdgC0FB0ee7+8AatU1EmshapwR397uBu83sz4C/AP4G+ExNnmyVCmtoPviVH/DUuUnOW9fJL75gV8uv76uVTC5PJpdnvKSshJmRiBmpRIxUPEZHaukZRW863M+6jiTnrZsZoZ1IZ1XAXZbM3TPAHeENM9te3xaJSDNaaI3fEPAIwfq+owQXMC8xs0sA3P3ztW+eiDSLtUwJbma9wGuBK4GnA18ALq36E1XRgX19vPO273BqPMOp8XP82RcfYtu6drb1trM1vG1b11b8uatN1Xiqyd3J5DwICIHhiSAYDDJ1GrFYUIMyHgvWDibiVlxbqDpnUm3ufqzebRCR5rPQmcM/EAR7+8JbKScYAYycQq2sgeEJdiozlciaueayPbzv4INMpLPFrJU1TAn+APBPwPXu/o1aPEG1TWdzxcyVACNTWUamxnj4qbGK+/e2J8JgsJ2tvTMBYSFYVGC4eu5OzgEc8pCm8pTQzV1tDJ6dKJacSMVjdLcn2L2pm0wuTyJmDV+LUGQhOncSaQ7znhm4+1vWsB1rolArKxk31nckGRqd4n0HH+R6UAcmUmNrnBJ8T9SyEH/j6Gmet3M9Pzw5xvqOFPt3b6CrLcGJkSmeGpni+LngayaIRIqB4SNDlQPDnjAwLASFhYBwW287W9e1063AsGqet3Md3zl2NhgdNEjn8pwaS/PKZ/cwcCYY9UvEZkYJY4WRxPBrLGbELdhu4TEgGGm0Ym3AoFxEK3N38k7FBD0O5N1xD8tpuAc/E5TWyOWdnHsQwzs4M8cqPAZg16b6FCU3sy53H6/Lky9C507RpqBdSi20xu8j7v6O8Pvr3P2Gkvs+FcXAsDS5BEBnKqF1GCJrqNYpwUv6rYNmNufs0N2vqNmTr0LpidWGzhSTmRyHHj7JdS/dyxtesKu4X96dsxMZTpyb4sTIFCfCYDAIDqc5MTJFOhuMSo1OZRmdGuPoPIFhd1siDAIrBIa97XS3KzBcqm8NnGNTV5Kx6RyZXJ5kPEZ3W5xvDZzjjeE+2XyebBXqz5sZRhAcxspGEa2QXAaK+1hYgrcYCJUEOYWHexgIzXwfBETFwDQMSAvPZ0YQqIZBbPlzOV4SfM0EbIVArBC4mVnlIM5nvpY/ppbqMSprZi8GbgG6gV1m9lzgGnf/tTVvzDx07hRdCtql3EL/2S8r+f7NBMWQC55Tm+bUltZhiNTXGlx5/N/h1w9V86C1ttQC7jEzNnal2NiV4qKn9c45jrszPJEJgsEwKDxeCArDn6fD6GNsOsvRk2McPVk5MOxqi88KBLcWA8M2toUjhpq+GDg+Msn6zhQbOmd+H47XpA6jh4EQDrka5w4tTHWt9fO0uA8DPwMcBHD3B8zssoUfsrZ07hRdCtql3EKBn83zfWStZXIJEZltLa48uvt94dd/q8oB10i1CrhbSWB44XkLB4ZBMDjJiZHpmVHDc1NMhYHh+HSOH54c54cnK88+60rFi8Hg1jAg3FoyatjT3jqB4Xm9HRw7Oz5nxG/7+q56N00iwN0Hyv5WcvPtWw86d4ouBe1SbqHAL2ZmGwhq/RW+L/RM8Zq3rAbWOLmEiJRYyyuPZrYX+B/ARUB7Ybu7N+Qfe6UTq1oUcJ8dGM69390ZmcxyfGSSp0ami+sKS9cYTmXCwDCdo//kOP3zBIadqfishDOlaw239rbT20SBYfkav0wuz+nxPK/6kXX1bpo0voFwuqebWQq4Fniozm2aRedO0aWgPfqqPVNqocBvHXAfM8He/SX3RXLexxonlxCREmt85fGTwB8STKP6SeCXaeCZC6UnVnGzuhVwNzPWdSZZ15lk37a59xcCwxMlgWAh+UwQKE4WA8OJdI7+U+P0n6ocGHYk48WAcGs4Sli6zrC3IzqB4bcGzrGxM8l4embErys1e42fyDzeRrCUZjswCHwF+PW6tqiMzp2iS0F7tNViptRCgd9PuPvjKzpqA6t1cgkRqWyNrzx2uPvXzMzCfuyPzOzfCYLBhlN6YvXYqTG29nZw5SU7G66Ae2lg+KxtPXPud3dGprJzk86UJKOZzASz2CYzOR49Nc6j8wSG7cnYrBHCmdHDYORwXUeyYQLD4yOTbOhKsbGr9mv8pOmYu/9ivRuxmAP7+th/wUYmprO0JeO0J2P1bpIsgYL2aKvFTKmFAr8vAM9f0VFFRMqs8ZXHKTOLAY+Y2duBY0BD/6crXJQaHJ4oZuaMGjNjXUeSdR0LB4blQWEhGc2JkSkm0kFgOJXJ89jpCR47XXlEuD0Rm7WmMPi+rTi1dP0aBobn9XZwenyajuTMKohaTNWVpvSfZvYo8PfAP7r72Tq3Z165vDM2nWVsOgsEyaY6UnE6U3E6UwniLV5upFFpwCO6ajFTaqnJXUREVmWNrzy+A+gkWC/zJ8BLCbITSx2VBobP3Fo5MBybzobTSKdnppGeC7OTnptivBAYZvM8fnqCx+cJDNsSsZKAcO4aww2d1QsMr7xkJzfc8QiTmRztyRhTmXxdpurKyt3df4Zb7x3g1Nj0mtY6c/e9ZnYpcCXw+2b2feBWd/9MzZ98lfLujE9nGZ/OAtO0JeN0hKOB7Yl4y9edFFmtWsyUWijw225mH53vTne/drGDm9nlBHPX48At7v7+svstvP9ngQngLe5+f3jfbwJvJVhP+F3gl919arHnFJHGtVZXHt39nvDbMYL1fRIBZkZPe5Ke9sqBIcBYOGJ4/NwUT43OrDV86lwQKBZGI6azeR4/M8HjZ+YPDCtlIy2MGC4nMLx0z0auYy+33jPAiZFJtjXoVF2p7O7+M9xwxyMkYvWpdebudwN3m9mfAX8B/A3Q8IFfuelMjunMTELSVCJGWyJOWxgIphKaHiqyHLWYKbVQ4DdJkNxlRcwsDnwMeDnBguV7zOygu3+/ZLdXAHvD2wuAvwJeYGbbCa7UX+Tuk2b2OYKrYZ9aaXukOaxBHTipoVq/f2b2SeZPPuXu/qtVezKpi+72BN3t3Ty9r7vi/WMlU0lPzMpIGkwrLQ0MnzgzwRPzBIapRIytPW3FhDNby9YYbuhKzSqgfumejQr0IurWewZIxIJpi2a2prXOzKwXeC3BOc7TCZbZXFrTJ10j6WyedDbPaHjJPhGLBaOBqbgCQZElqMVMqYUCv9Pu/jcrPnLQcR11934AM7sVeDVQGvi9Gvi0uztwl5mtN7NCkvEE0GFmGYIpW0+uoi3SBNaiDpzUzhq9f/9cYdsugqmfSypDs4SZCr8IvDv8cQz47+7+wEobLNW1aGA4nZ1V4P5EMSPpFEMjU4xMBYFhOptnYHiSgeHKCVqScZuVjTSTzXPkxCgjUxmetq6DX3zBLl749E01e51SPcdHJultn306tIa1zh4A/gm43t2/UY0Dmtl64Bbg2QQXwn6lWsdejWw+z9h0vnjxJR4z2pNBENiRUiAoUkm1Z0otFPilV3ns7cBAyc+DBKN6i+2z3d3vNbMPAU8QjDx+xd2/ssr2SMStZR04qb61eP/c/R8L35vZHuD3gMuA9wMfX+zxS5yp8ChB1uNhM3sFcDNz+zZpUN1tCbq3dPP0LZUDw/HpkhHDc9OzSlacODcTGGZyzuDwJIMVAsPhiQy/90/fY3NXivM3d4XBYdus7KSbumePGEr9FJPzpGauDa1hrbM94cXvaroB+JK7vz6sDdiQRdty+ZI1guOQjMfoTMXpakvQnoxkueiGpJlSUmrewM/dX7jKY1f6j1beuVXcJywW/2rgAuAs8A9m9kuVFjub2dXA1QC7du1aVYOlsa1xHTipAncnncsznc3z2OlxetoSZHN5EvHgym4t3j8zuxD4feB5wAeBt7l7dokPX3Smgrv/Z8n+dwE7qtFuaQxdbQn2bOlmzzyB4UQ6Oysb6fFzUxz89jGmc3PP3U+Npzk1XvkaajJu9PXMZCItXWe4bV07G7tSypK4RorJedI5UvHYmtQ6M7OPuPs7gINmNufD4+5XrPC4vQQXu94SHifN6i/kr4lMLs+5yTznJjPEY0ZbIkwUk4wrEFwhzZSScguN+K3WIFCa0mwHc6drzrfPy4BH3f0kgJl9HngxFRY7u/vNBFfc2b9/fyQLy8vSrHEdOFmBdDbPdDbHdDYI9tLZPIWL2Vt72jk9Pk13W+3ePzP7B2A/8CHgN4Ec0FtI0uHuZxY5xFJmKpT6VeCLK22vRE9nKsEFmxNcsLmruO0f7hucd/9f2L9jVumKc5MZIBgxPHZ2kmNnK08lTcSMvjATaemU0kJ20k3dbQoMq6SYnOfeAU6PTa9VrbP/HX79UJWPuwc4CXzSzJ5LkKvhOnevXDCzQeXyzkQ6y0QYsiZiMTpSM4FgMq5poUuhmVJSrpaB3z3AXjO7gKCG1pXAG8r2OQi8Pbyq/gLgnLsfN7MngBeaWSfBVM+fAu6tYVslAq65bA/vvO0Bjp2dJJd34jGjuy3Be195Ub2b1pLyeWcqm2M6ky9+zS8wY6k05X13zGp1Vf0SgpkF7wR+O9xWODt2gpOihSxlpkKwo9lPEgR+L5nnfs1GEN72E0+f9fNkJjd7jWGYeOb4SLDGcHgiCAyzeefJs1M8ebZyMut4zOjrmZk+et66mVqGCgxXbq2uHrv7feHXf6vyoRMENZh/w92/aWY3AO8B3lvYIYp9UzafZ3RqbqKYtmSctkRMI4Lz0EwpKbeswM/MrnD3g0vZ192zYeHkLxMkSfiEuz9oZm8L778RuJ2glMNRgnIOvxze900zuw24H8gC3yIc1ZPWZgAeTCHETcUm10jplM3pTJ6pTI5MbnlFxgtX1W+7f5CnRqZqclXd3Xev8hBLmamAmT2HIHnCK9z99Dxt0WwEmaMjGWf3pi52b+qqeP9kJsdQSSbSYnA4GnwtBIa5vHP8XLBfJeWBYSEbaWFK6WYFhkX1LOdgZnuB/wFcBLQXtrv7Sq+IDQKD7v7N8OfbCAK/ombomyoliulMJehuS9CejFWtRmfUaaaUlJs38DOz15VvAj5mZgkAd//8Ygd399sJgrvSbTeWfO/Ar8/z2D8E/nCx55DWcdPhfhJxIx4zch58TcRNUxaqKJvLk87lyeScTC5PNvy63CBvPpfu2cjLL97Kpu62qhyvBhadqWBmu4DPA29094fXvonSaNa3xzk7lau4fbk6knHO39TF+fMEhlPhiGFpgfsT52ayk54J1xQuFhjGjGCN4bq2sqmkwfdbelonMKxnOQfgkwTnOh8GfpLgAviKf/HufsLMBszsWe7+A4IZU99f7HFRl8s7o1MZRqcyxCx4LztScTqT8eKa8lZ0zWV7eNdtD3BseJJsPk8iFqOnXTOlWtlCI36fA74EDDHTCXUBP0cwG2LRwE+kmh4ZGuXcRIZYLAj6snnn1GiaTG603k2LpHzew7V4ueJIXjZfnQAvqpY4U+F9wCbgL8Oryll331+vNkv9WSxGsJy00vbqal8kMJzO5HhqdDoMDmfXMDwxMlUMDPNOsdYhnJtznJjBlp62mYCwp2Qq6bp2tnS3Nc0JdZ3LOXS4+9fMzNz9ceCPzOzfWd2F798A/jbM6NlPOJuqVeS9JFsoM9lCO1OtORroAEbwum3tpjNLY1oo8HsRQQr0e4Ab3d3N7IC7t1QHIo0jnc2DUUyBbgZ582C7LKqQeGUqE3zV762yJcxUeCvw1rVoS8yMmBmO407FNZRmRjJupOIxEvEYhUGawv75cGp03iHnTj7vJffpFKAaCtMvl7q9ltqScXZt7GTXxspTudLZfHGkMAgIJzkRfn1qZJrTJYFhMNV0mgcGKweGm7vbSkYJZ08l7euJTmBY53IOU2YWAx4JLzodA1Y1zOju3yZIclU1h44M8bGvH+WJ4QnO6+3gykt2cumejdV8ipopzRYas6B2YEcyTlsyRluiuQPBmw73s64jyXnrOorblNyltS1UzuEeM3s5wZWjO8zs3ehCgdRRMm5MZoKRKrPgxBYgFW/eTnsl3IORvHQuyKpZuDXCSf7d/We47f5BToxMrVk9oeWsTW4Ei51s5vOzA7bVnlwXjpcPg0EvBIjueH4mQCwNIIGZAJOZALM0qAz2CXZq9ZHkRpJKxBYNDIdGK6wxHJni+MgUZ8bS4XsOQ6PTDI1OM9+I4ebucBrpurmB4ZaetobJzFiPcg4l3kFQZ+9a4E+AlwJvXosnXqpCSYCYQW97gtPj09xwxyNcx97IBH8FeS9kCw1GA4sXzsIEMal4jFQ8RqxJpjkruYuUWzC5i7vngRvCRCsfXpsmiVT2zK29PHpqjNGpLOlcnlQ8Rk97kgs2V6631QoKQd50Js90LsisWa31eNVWSKDQlojVLIFCNdYmN7pYzIhVMa1RtY9XibuTyzvOzAWbwijmzD7BtpnvZwLNfN7J5p1sPlh3WhqINoK2hDGdnduWtkT0Th5TiRg7NnTOewGiEBg+NTIdBoezs5OeGpueExh+91jlwHBTV9vMGsOSOoZbe9vp6127wLBO5RyA4CJ7+O0YDTols1ASoC0RJ5vL05GMM5nJces9A5EL/Mq5O+lsMHNobGqm3GsyHiOViBUzhkY1a6iSu0i5JWX1dPdjwC/UuC0iC7rmsj287+CDbFuXKP7jWcOrsg2hdD3edDZ4/Y1y8ruYYgKFZE0TKGhtcgMyCxIxVVs+72TyefL5mVHKXC4IEgtBJM6saa65fPWnuL7hkl188huPV9zebBYLDDO5PEOjMwXuS2sYnjg3xenx6XB0GU6OTXNybJrvHhuZcxwDNnWn5iSd2RquMezraSeVqF5geOmejbzg6Ztm1WesJTP7JPPPonJ3/9U1acgSFEaN8iWtbU/GODFSuQZlMygkNRufDn6Oh/+72lPBNNFGGa1eTOG8aSKdbdnzJpltwcDPzN4MXAc8K9z0EPBRd/90rRsmUu7Avj6uJ7j6ODg8saZXZdeau5PJhSUUMjMF0aMS5FVyfGSSuMHjp8fJ5J1UPMbm7lS1p5xobXILicWMttjyr8QXRiCzhVuYzTYXBoaF21K98cW7AfjcfYNMZnJ0JOP8wn/ZUdzeSpLxGNvXd7B9fUfF+zO5PCdHp+fUMCz8fGosCAwdODWW5tRYmu89OTcwhJLAsCQg3FoyaljNwLAG/rnCtl0EUz8banipMGrUlphp1lQmz7beyu9xM8rlnbHpbLF8RDIejAQW1gmW/m4aSSudN8nSLFTO4U0EHdBvEdTTM4KioB80MxT8ST0c2NfXVB1WNiydUFyPl8uTDU9Am01XMs7jZyaIW5iVNeccOzvFM7ZU7wq71ibLUhRGIBc6V8vnPSxtMjO9FIIPUyaXJ5P1WWsX3/ji3S0Z6C1XMh7jaes7eNo8gWE2l+fk2HRJNtLJWaUrTo5OF0eeTo+lOT2W5sH5AsOuFFtLgsJtJVNK6x0Yuvs/Fr43sz3A7wGXEVy4+ni92lVJYdQol8+SjBtTmTzZvHPlJTsXf3CTKowIFgrKF5LGtCVmpog2SnKjZjtvktVZaMTv14DXuvtjJdvuMLOfB24FFPiJLEMmFxQ+T5ckXmnGAG9ehcxpxswkTKfqGdW0NlmqIRYz2mMLr+0pTDXN5JxDDw3xyf98jGPngqyH/21/dLIeNpJEPMZ56zpmZSEsVQgMy9cYBiOG0wyNTs0EhuNpTo+n+f7xys8VBIYlawzXdfDcHeu4ZPdGutqWtBJmVczsQuD3gecBHwTe5u7ZhR+19gqjRh/7+lEGhifYFrGsnmthJmnMzLZUIkZnKlFMHpOIxVqmNqY0roV6tt6yoA8Ad3/MzHpr1ySR6CucEE5ng2BvKq0aeePpLFt72zg7kSlO9dzW21acOlNtUVubfOjIEDcd7mdgeGLNMp7K6hSmmn7j6BB/9M8PMjadJZd3zk5k+OBXjvCB1z2HF+/dHE4nDUYIc8Xvo7M+t5GUBoY/WmHAKZd3To6VrDEsjByOTBazlM4NDGfXgj30zgM1D/zM7B8ISi58CPhNgkKQvYULYe5+pqYNWCF9YpcuyKidnrM9GY+FU0TjtCeDLKLNXFJCGstCPdtCq3abd0WvyBK5BydvmVnTNGdO8GS2Qq2s8zd1FafATKSz9PW0V/V5org2uZAuPRm3mmU8ldp5/xcfKpY5cCCbc9KZPB/6yg/40sXb5n1cod+YzuSYCsuuKBhcnXjMiuv+KikEhk+NTPHUuZnspI8MjTJwZpJ0Ls+7//E7/PefeHqt//YuIfi4vBP47XBbyVwIGib7xqEjQ/zm577N6FSWVCLG+PQof/bFh3j983fwsou2sqWnTSNZy1CYJjrG3JIShXqsqTCrqEi1LRT4XWhm36mw3WigDkmk1gprfabDE7NCp91S0zSroFgrK5OjO2Y1yS4W1bXJhXTphZTbNcp4KjVy9OQYpZd6CgHg0ZNjCz4uFa4H6g5Hl8rLswT9jUYGq2lWYLgj2HZ3/xn+/eGhYimcex47w0NPnuOjVz2/Zn9/7r67JgeugZsO988kQ0rnits/8Z+P8Yn/fIxk3Hja+g52rO9g+4YOdmwIkvvs2NDJ5u6URrMWUVpSolTMbNbIYFsivqIAW7NJpNSCgd+atUJkiWrZgbnPBHiZ8ISrEOTJ6hVqZd12/yBPjUzVKrtYJNcmq8hutOXCuKz0/NZ9ZvtSWZggIlhXmAyPU5L8Sf1STXz4qz9gPDPz+8w7jEzn+IN/+i53vuen6tiyxjAwPMGW7jY6U4lgnXqucAE0+IBncs7jpyd4/PTc/qo9GWZ53dDBzg2dYUAY3NZ1JBUULiDvzmQ6x2RJsF2aTTQVj5GML7xuULNJpNxCgV8S2Oru/1G60cx+HHiypq0SqaAaHVguLAKdz1Ncb1OaVVNX1mvr0j0befnFW9nYVbOrwJFcm6wiu9GWMCNTqDpvFBdCJarwGTcLCmeXp4vP5724hrjQfykYXJmnRmfWYRXeMnc4dm6qTi1qLIX+aWNXimz4GZvM5NjQmeK3fvqZHBueZPDsJIPDE8H3w5OcHJ3GCco+/PDkOD88OT7nuF1tcXas7yyOEhZv6zvpbq99cp0oKs8mCmGW4piRjMdIxI1kLJhJkIybZpPIHAv9ZX2EIL1wucnwvp+rQXtE5rVQB/YTz9oyqy6Xe1C+OVe4Op53Mtl81Qs3y1zZXJ7T42lOjk4zFN6C74NU7KfG0vz0RVt5/88/pxZPH8m1ySqyG23P6OvmoROjQbzns7fXSixmdKTidKRmAsLCtPSpTI7JTI7pjPq81dCvLjBfOYc3XLqLXRs72bVx7gWq6UyOJ89NMRAGg8eGJxkYnuTY2UnOjAeB9vh0jh88NcoPnhqd8/h1HclZweD29Z3FKaSln3mZqftb6cJP/6kx4gZPnp0kk8uTjMfY1JXiidPjjE9niceC8kpGMLU0prWaTW+hwG+3u89Z4+fu95rZ7to1SSRQqHGXyQdJUx47PU4Mn9WBbehM8uipMR49NfdqolRfLu+cKQnqTo5OBV/HpovbhsfTLLb88djZmsVgkVybrCK70bZvWxD4Vdq+lkpLUKwPt5XWCi0tKSMz2hMxpsLfSWmw17lAKY9aMLMr3P3gmj7pEqyknENbMs4Fm7u4YPPcOq3j01mOnZ0sjhQGo4QTDA5PMjIVJDw5N5nh3GSmYo3GTV2pMCAMRwvDqaTb13coIUqZrlSCx0+PE4sFQV027xw/N8X5m7p4amTuiHY8ZiTiwWhhIdFMIgwO4woMm8JCgd9CqfYqF9iRluXuuAdz0nMl3+fDr54n3O6YGTEL1lEUpl2aBWfmufAxlUbnOpLxOR3YUyNBlkhZvbwHaeiHwmDuVMloXSGoOzU2vWhQV6q3PcGWnja29LTR19NOX08b52/q5Dk71tfqZUR2bbKK7EbX146cJG5hUhef6c++duRkvZsWnLjFoYOZICaXd6azueK6wekWnyb6kmds4qsV3qufubh2f49m9rryTcDHzCwB4O6fr9mTr8CBfX087/wNnB6bXvWxutoSPHNrD8/c2jPnvpHJDMfOBtNFS6eQDg5PMhGudSuU4Xhg8NysxxqwpaeNnaVBYRgQnreuvWEKqq+p8HwsU7LgOBZurySXd3L5HNOZ+Q8ZMwtHB4PvC4FhIhb8fi3cHjcrTp0O7jet6WwACwV+95jZ/+Puf1260cx+Fbivts2SpcjnPTzRCP6AC3/GwVITL35PyfZgPy9+Hwv/MAuBmjM7UMuF0ybzpffnfdb+a7YubuYFlH3VfJzFuDsjk9liUHdy1hTMIKA7OTpNdhlRXVdbnL6e9iCw626jrxDg9QY/b+lpq1j8el1Hkk3dbdV8eaW0NlnW3Hg6R8xmJ3OJWbC9EcVjwZT5ztTMtmJG0WxQXmIyk2uZzMWnxjL0tscZncrhBO/duo4EJ0bm1mCros8BXwKGmCnj0EWwjMaBhgr81kpvR5LejiQXnjd7Sba7MzyRKRklDILBwojhdDaPQ3F5wX1PnJ31+JjBeetmso7uKEk408zlKIYnM3NqL3q4faWCi/oOK7hWFCsJBgvflweScTPi8SBQXGkmU5nfQoHfO4AvmNkvMhPo7QdSwGtr3K6aOXRkiL869EMePzPOees6uOrSnbzo6ZuDK7Q2M8+5cMXWyr6HyoFW8PPswMQpC7zCgGtWsFYhMKukEJwVjtGK6zbGMzm29rYxPJEpmeqZYiLTmCdXa8XdGZvOzgnoZn0/Nr2s6V0dyXgxkJsZsZv9fWkikqW6u/8Mt90/yImRqVqllf4IWpssa6wtEWMinQvO3sO+OuPQmYrOCMOsjKJhhtnpbI6pdD5YL5ht3kDw+MgkW3vb2bbOikl03L3WWXVfBLwfuAe40d3dzA64+y/X8kmjyszY2JViY1eKH9mxbtZ9eXdOj6WLI4OF27Gzkxw/N0kmF1y8PnY22Hb3o7OP3czlKNLZPPEYxGMzfVEun6/bdO984SQYyM0JSStLxmPFYNEKgWEsqH2YiMeKI4uxcHusZF+Za94zN3d/Cnixmf0k8Oxw87+4+x1r0rIaKGSFjMegpz3BqbFpPvzVR8jnWXCuujSGQgHwnSWZDiczOfq6ajZ61BDGp7Mza+hGpiuur5vKLL0TTyViM6NzhWCuOxip6+tpZ0t3G11t8ap3mnf3n+GGOx6hLRGrZVpprU2WNbexI8FEOjcnucvGjmhnJixkE10XlpbIlJSVaKZMooX/LaVJQ2qdVdfd7zGzlwO/QVBy5t2wxDNhmSVmVrwo+bxdG2bdl8s7Q6NTM1NHC+sJz05y4txUsLRkoXIUiViwfrA4StjJzvDn9REoR5GMG9PZYKZWYQABIBVv7HaXWk0fUzqqOGt00YDC9nC/UoXBoMI01sJjSt/v+WbbuZd9T2HwaGa/YiBLOLhU1pbC/XmnmKywWmssF/2v5O5fB76+6mdqAIWskO3JOJlsvpg979Z7BhT4RUBpAfD2ZKyYWezKS3bWu2krNpXJlY3UzV1ft5zpYsm4sbl02mVPG1t62tnSkypOy+xtT9Tln9Wt9wyQiBkdySCorFFaaa1NlrUXi7GlO8np8Qx5D6aVbepKYrHojPgtRTKsG1Z6ra1QViJYK5gL++VoBYPF/y3pHKl4bM2y6rp7HrjBzG4DPlzTJ2tR8Zhx3roOzlvXwSW7Z9+XyeU5cW6qOGW0YjmK7BLLUZSMFu7Y0EFPe3LO/vWwe1M3g8PjjKdzxZlSXakEOza0Rm6EwgjjUkcXG9nmnjZ6q/C5ivblyGUqFEkuffvbkzFOjDRslncpUSgAfus9A5wYmVxSZrF6SmfzM2UMxtIzI3Qlt0IGs6WIx4zN3Sn6etpKgrv2WVMw13cm51y5ahTHRybpLavNVIMi5VqbLGuuUOds27qZEaKJdJa+noWuQzSH2WUlgpOSdDbPZDqYHhqFxDHF/y33DnB6bHrNs+q6+zHgF9bkyVbo0JEhPvb1ozwxPMF5Df6/d6mS8Rg7N3ayc4nlKArrCU8vsRxFoVh9sJYwTDizxuUoChc1NqcSTXPBXFanpQK/wj/n0oQTU5k823o1EBAVl+7Z2BD/bLK5PKfG0sXadENla+tOjk5zdhmLp2MGG7tSs4K5zeGIXSGw29CZivQi58J0qu62mVGQGkynegcRXZt86MgQNx3uZ2B4olbrH6VGVIdxtlQiFqbVDwLBfN6ZyuaYTAdJYxqxnMSlezbygqdvqlh+oFbM7M3AdcCzwk0PAR9190+vWSOWoLBMJmZBpubT49PccMcjXMfehvh/XAsLlaOYSGdnpo2enZlCeuzsJOfC//uFchTfP165HEVhlDAIDGdqFFa7HEXULphL7bVU4Ff455z3LImY6cqHVJTLO6fHZme9LK1Td2p0mjPj6SVPHDBgQ1dqbvbLkpG6zd3Nm1WsoHSqbnfManJyHNW1yYUTq2Tcarn+UWpEdRgXFitmEQ1OOXJ5ZzITBIJTmVzDjwjWgpm9ieBC1W8B9xP8q3g+8EEzo5GCv8IymbZEnGxOy2Q6Uwn2bu1hb4VyFKNTmZnkMmV1CsfLylF8Z55yFIVRwh2F9YSrLEfRKBfMpTG0VOBX+Of8l4d+yBNnxnXlowXl3RkeTy+YAfP0+PJq1a3rSFZMlFLYtrm7jWQr1g8qc+mejVx+Yiv/cP8gA8OTdKXivPUlF9Tk5Dhqa5MLJ1aFE+MarX+UNRD9lSS1F48Z3W0JutuCz3s2l2cqnB7aQoHgrwGvdffHSrbdYWY/D9wKNEzgV1gmU/p/UctkKutpT3LheZXLUZydzDB4ZmnlKO6vUI5i27r2cJSwc9Z6wr6e9qa/cCzV01KBXyn9c24+hY61kP2ykCyldH3dqbH0slKS94QFyGcFdSUFybf0tFV9akazurv/DF/6/lNs7m6juy3BZCbHbfcf4zk71rd8cFM4sSpVg/WPUiMasV2dRDxGdzxWDARzeWcqkwvrCuaYzuSbsYRRb1nQB4C7P2ZmvRX2r5vCMplCqQvQMpnlMjM2dKbY0Dm3HIW7cyosRzGreP3wJE+WlKN48uwUT56d4u7Hhmc9Phk3nhbWKNy+voOdG2fKUWzqTjXsun+pj5YK/A4dGeJdtz3AyGSGbD4Y+fnAl8d598/s06hfg3N3RqayZaNzhWBuZrQuk1v6yUFXKl6hTl07W7pnMmCu5SLsZrdGWT0jqXBiVVobsdbp5KV6bjrcTzqb4/RYlnQuTyoeo6c9oc/2CsVjRldbopg9tFBcfiKdYyKdbcg1giuw0HBZQw2lFZbJ5PJZknEtk6k2W045inCEcGB4YnY5ijMTPH5m7oXCtrAcxUzW0c7i9xs6G78chQQXzW+9Z4ChsSnO39i16mUELRX4feBLRxieyBAziMcNdxiZzHDzv/cr8KuzsensTAbM0dkZMAvr6qaW8c++PRGbmWrZMzcDZl9PG11tLfXxr7s1yuoZSUoOEm0PPzXCyFSWGEFx4WzOOT2eJpubm9hBlq+0uPzGrhTZXJ6JcI3gZDoX1dHAC81sTs1RgqVeDfWHX1gm87GvH2VgeELLZNbQQuUosrk8x89NFUcJg+BwgoGSchTT2Tz9J8fpr1SOIhWfGSUsmz7aKOUoWl2h/nEiZqxrr85skpqe+ZrZ5cANQBy4xd3fX3a/hff/LDABvMXd7w/vWw/cQpCgwYFfcfdvrKY9/afGiYVFEp2wgKI5AzrxrKnJdI6hCqUMSpOmTCyjVl2BGSRjxo89fTPP3bV+1nTMnjrVqpP5rVFWz0hScpBoK8w0KBTXNQsyWaaXMQNBli4Rj9Ebj9HbniyOBhYyhk5n88XCyg3uwno3YDkO7Ovjeedv4PTYdL2bIqHEAuUo0tk8x8LRwW/88DTffOwMo1MZ3CEbLncZT+d4+KkxHn5qbM7je9sTYRDYOSsD6Y4NnZoJtYZqMVOqZoGfmcWBjwEvBwYJ6msddPfvl+z2CmBveHsB8FfhVwgCwi+5++vNLAXo7LABTWdynBybW8qgdLRubHrpteoSsaAAeXnWy76eNm489EOOnZsq7uuFKQ6nx3nvz11Ui5cnVbQWWT2j7MC+PgV6EZVKxIojT2ZB34Sj9b9roHQ0cANBwD2RCaaETmcauoZgEtjq7v9RutHMfhx4cjUHDs+/7gWOufurVnMsiaZUIsYFm7s4OTLNXY+eZnw6Sz7vxGPG+o4Eb3rhbtZ3pYrrCgfOzC5HMTKV5fvHR/n+8bk1Cjd2pYIgsHT66IYOnraunbakgsJqqsVMqVqO+F0KHHX3fgAzuxV4NVAa+L0a+LQHl+fuMrP1ZnYeMA5cBrwFwN3TQHq1DbpgUydHT44H/5XDf855h/M3aIFyJelsnlNj82e/HBqdWlYB8pjBpq4g42XplMuZenXtCxYg/6ODD87Z5lBxXrs0nkI9odvuH+SpkSmNaknT2NvXww9OjHB2MkPeg75ufUeSvX1z071LbcUqZAydzOSYyuQbLWPoR4Dfq7B9Mrzv51Zx7OsIagI2VJIYWXs3/3s/I5MZYjErLnEancryz989zi1v3j9n/7GpLINnJ8J1hJMl9QonGJ8OZmadGU9zZinlKEoykJ63rl3ZzVegMFOqoySgXu1MqVoGftuBgZKfB5kZzVton+1AFjgJfNLMnktQiPk6d58zSdnMrgauBti1a9eCDXrPKy7kNz57P2PTuWCqJ9CZjHH1ZU9fzutqCtlcnlPjaU7NU3x8aHSK4YmlFyA3gqtApSN1s0fs2tnYtboC5PPNmtJsqui4dM9GXn7xVjZ1t9W7KSJV86I9G7n7sTPEY0bSgguK56ayvEhroOouEY/RE4/R0x78HEzBzTOdCTKGTmZyy8r0XEW73X3OGj93v9fMdq/0oGa2A3gl8P8S1AiUFjYwPFFc4gSLL3Hqbk+wb1sv+7bNLUdxbnKmRuHg8EQx0cyx4UmmVliOYvv6Drb2qhzFfMpnSk2kVz9TqpaBX6V3sbx3nW+fBEEh099w92+a2Q3Ae4D3ztnZ/WbgZoD9+/cv2nvHYlZshAPWhB+2XN45M54OgrixaYZGStbXhdMyz4wtvQA5wIbOZHH93JaeNvp622dKG/S2sbkrteLiotI67u4/w233D3JiZIqdGvGTJvGN/jP0tMUZmcqSCUf8etsTfKP/DNfWu3EySyxmtMeCqaHBbEuYyuQYn84WRzTWSPsC961mGtJHgN8Bqj7crGXzrcvMWN+ZYn1nimdvr1yOYibJzEQxA+mTZ5dWjuK8dYUSFB3FEcOdKkdRnCl16z0DnBybYleDZ/UcBEpz/e5g7rz1+fZxYNDdvxluv40g8FuVD3zpCOPTOVJxK071nEznIpXVM+/O2YlMMVnKqbL1dEEB8uXVquttT9DX087mnqCMQfk0zC3djVGrLm6VR/cSLdInxGNGzAwziolrjOAzsVAuAwuv9pVeUcvlnVzeyeZ9zRIhFLJTtSViqnUmTeXhp0YYT+dIxmLFNX7j6RyPPKWsnlHQnoxz1w9Pc9PhfgaGJ9bqotQ9Zvb/uPtfl240s18lmOW0bGb2KmDI3e8zswML7LfkmVKletuTxYQ67sGJmntwUl+eWTW438MlNR7uC4TbjeA8jJL7C/+hnGBb4X9bvvAc4XnNzDZN91nMzvUdwXKY/Mz642ovcSotR/GjO9fPui+Xd06OTgcjhCXlKAaHJzl+brJYjuKJMxM8MV85iuJawtnrClulHMWlezZy6Z6NbO5po7cK2VZrGfjdA+w1swuAY8CVwBvK9jkIvD1c//cC4Jy7HwcwswEze5a7/wD4KWavDVyRRs/q6e6MTGZnZ8CssMYuu4ygrqstXqxJ11c6Yleytq49Iotxz9/YSf/pue/VrgoZrRqJWZDiPRZjVicVM4iHAVk8ZsTCwK5U4f5EeH8t5PM+6x9zoQnGTHsLwWGu5B/xrNdYMnhf+s8+H/6jB7jt/kHy+TxDI2mO5Z1UPEZvh2qdSfRlcsGFlFz42S/8DSmrZzQcOjLE+w4+SDJua3lR6h3AF8zsF5kJ9PYDKeC1KzzmjwFXmNnPEowo9prZZ9z9l0p3Wu5MqXIWXoAMf1phU6ujUhBa+B/kHvzPyrvj+WB7Qd7nDy5nB6vR/hu++rKn8yf//CATmXxdljjFY8a2de1sW9fO/t2z78vm8pwYmSopRREEhoPDEwyNlJSjODVO/6m55Sg6U/HidNFglLCTneHPvR0qRzGfmgV+7p41s7cDXyYo5/AJd3/QzN4W3n8jcDtBKYejBOUcfrnkEL8B/G2Y0bO/7L7IcfeSWnVzM18WgrzlFKZtT8bYWhrUzSlG3jarIHTU7dnSVTHw27Olq6bPaxYEXoUAzMyIGSRiMeLxIOQpDdhKR9hiRsNfkYrFjNii/7yD+1fzaXrs9DjnJsJF5jEjm3dOjabJ5OZmDWtFh44MrfWIg1RJ4YRz5ueZ7dL4bjrcTzJuxf+X1UiZvhh3fwp4sZn9JEHZKoB/cfc7VnHM3wV+FyAc8XtnedDXbGodhJaOaJbOrikEirm8Fy+e5ioEkXn3eq0hLUqH6+8gCJCXc55ZS4l4LMwIunA5itKi9cfOTnJ6LMj1OLGEchTbw4L1xYQzGzqa6rx4JWr66t39doLgrnTbjSXfO/Dr8zz22wRXv6qmllk9x6ezM6NzI7PX0xWSpUxllv7H1hYWIJ8V1JWM1vX1tNPVFm/4oKKa7jx6elnbl6J0+mQ8ZiTjMZLxGImYkYhbENw14TrQekhn81C2yDxv3jD/hOqpTiMOUiVmRjxGcZQhmI7d+Bd9JDAwPMH6shGC1aZMXyp3/zrw9Zo/kaxIMGMH4qsMKnMlyyoKAWMuDAqDZRd5sjknk8tXNVB8/xcfIlN2uIwH2z//6z9WteeptkI5igs2z72wP5nOFdcTHjs7MWvE8OwSy1FUWk/YKuUoWirsfc8rLuSdtz3A6FSGXN6JxYzeVHLRIe+pTG6e9XQzUzLHl1GAPBmfW6tu5mswgterAuRzTM0TIFTaXhilS8TDYC4Ww2JB0FE+eidrIxk3JjPBVdBirTMI1ty2uHqMOEj1BHX8jFjcZtbR5L0h1kbL4nZu6GRodGrWSMBqU6bXm7sfAg7VuRkSCi4gL+1/XSEQLKzDz+dnAsScezFAXIqz85Tcmm97FHSk4jyjr5tn9HXPua9iOYpw+mh5OYrvHqtcjqK0YH1hPWEzlaNoqcDvwL4+PvT65/KXh37IE2fG2dbbwc8/fzvbN3TwrSeGOTmWnhXMFW7LrVW3ubs8oGufNRVzoVp1sjIbw6yiiXDUTqN0jeeZW3t59NQYo1NZ0rk8qXiMnvYkF2ye23m3mnqOOMjq7e3r4bHTY4xMzny2e7uS7N6kz3YUXHPZHt538EEm0lk6knEmM6tPmS6yUsG6/4VHntydTC4IEDNZZzqXI50NRg1bOenNUspRzGQfnSwWsJ/KzC5H8a0K5Si29raHo4SdbF/fwc6N0SxH0VKBHwTrmXraE/S0J3n8zDjvrVAUfN7HWhBgFIK5LT2pYlBXCOw2dK6uVl0rixdH4mLEYkFik8L3iViM7evaOHZues7jdqxvZ31nqg4tluUonFxtW5fQyVWZZhxxaCX6bEfbgX19XE8w8j44PMEOrbGVBmdmpBJGiliQDoiZC4fuQa3KbM4LiVPnPn6N2tkoFitHcXo8PVOsPqxRODg8uxzF8XNTHD83xT1l5SgSMeO8de3hesXZGUg397Q13EBPywV+p8am+dqRoYr3behMzs6AWfZ1U3ebgrpVKiQ9ScSDr6lwTV1bIrZoHcD/97XP4b9/5l4mszPdWEfC+NPX/Eitmy1VoJOr+WnEIdr02Y6+A/v69H5JUzAz2hJx2hLwmh89jy98+/icfX7uOdvo620nVxg1zAXr7bP51ltzbxYsv9rc3cZzFyhHUTpSeOzsJMfPTRWn4w6EU0vLtSViPK1kPWEjlKNoucDvoqf18oYX7KIrFZ+VPGVzd1vTzN9tBMHVqBipeIy2ZPA1FY+tuiRBKhlnKpstpiVOtcBC3GbUuhNRKlPgEH0KHESk0Xz4yucD93PwOyfI5Z14zLjiOdvC7XMVppBmcnkyuTzT2TzTmdYMCKGsHEXZfaXlKGYFhcOTPDUyVSxH8eipcR6dpxzF7CQzMxlIa1mOwpop3fT+/fv93nvvXXS/qUyOJ8/OjcxlZZLxGO3JOO3JYPQuZkYyXv3EKa/4yGEefmo0rNNDWEYBnrm1hy++47KqPpdUX2nmytJRreuvuHjBE2Yzu8/dq5rhd60ttW8SkehQ3yStIpsLRgUz+SAQTOfyQZmIJoohqimdzfPkucmS6aMzGUhPheUoFtLbniiODBaCwYu3r+PZ29fR3ba0Mbv5+qeWG/H76Fcf5q//vZ/xdI6OZJxf+C87eOOLd9e7WQ2vWOYgbiTD+nWJmNGWiK3ZUPXRoTFyXigsDjjkPNgujU+ZK0VERKInEY+RiEMHcWgPtuXzzlQ2SCqTzgbBYCbnCgYJMj3v3tTF7k0VylFkcjxZVp+wUjmKkeOjPFRWjuKNLzyfP3nNs+ccczlaKvD76Fcf5oY7jmI48RhMZ3P8zV2PAyj4CwVzw4MRvGR8ZrpmI5Q9yBY6k0JTwuAvq04mEgaGJ4gb9J8cK2Y+3NydUubKkAq4i4hItdXqf0ssFlzILc+tl87mmcrmmMrkmEq37jTR+XQk4zy9r5unz1OOYmbaaBAQ/uCpUZ48O0ne4d8fOcmhI0Orev9aKvC75c5HiRnELRasMTIgn+dz9w22bOAXjwXBXVsimKrZnoiveh1ercQNsj5T/610uzS+nrYEjwyNFbO3ZvPOsbNT7K3Q+bUaFXAXEZFqq8f/llQiRioRo7c9WKeWyeWZyuTCgFBTRBfS3Z7gWdt6eNa2HgDu7j/D94+P8LR17XSk4mRyvur3r6UCv/F0jvJ6umbBsGszC7JoxkiGXxPxIJtmIvw5Kp6xpZuHnxrDmVnjZ+F2aXzFjr7Q33vZ9hamabAi9aURd2lGjfC/pbBUqKBQbmK6MEU0vLVy/cH53HrPAIlYkBchEY/RnrRVv38tFfh1pYKEEqUjRO7BsGvUmQVr7gpTM5OJILCrRibNRvGeV1zIO297gLHpbDE7VXdbgve84sJ6N02WYCydY/v6dk6NpYtTPbd1tzGebu4LL0uhabDRp8AhujTiLs1qYHiC9WUZIjuS8br+b5kpNzH73Hsmi2iOyXCEsNUdH5mkt312qLba96+lAr+3vuQCbrjjKO55zIKgL+/wC/9lR72btmypcB1eWzhNM1U+lNmEDuzr40Ovf65S3kdUoUj5npIR2ol0lr6e9jq2qjFoGmy0KXCItkYYFWl0urARTYX/u4XPNgSz3HZs6KxjqyorjAwWslbm8s5kJsdEOtuyawXP6+3g9Pj0rAGq1b5/LRX4XfuyZwJEMqtnoWRCRypORzLesoXkVSsrulSkfH6aBhttChyirRFHRRrJoSNDvOu2BxidypLN5zk1Os27bnuAD77+ufp8N7go/98tzOoqBILT2RyT6Rzj6RzTTb5Eq+DKS3Zywx2PMJnJ0R0zJtKrf/9aKvCDIPi7+iee3rB1/GKFwueFW5UKnzeLj371YW6581HG0zm6UnHe+pILigG9NLaoFCk3s8uBG4A4cIu7v7/s/n3AJ4HnA7/v7h9a7XNqGmy0KXCItiiNitTDB750hOGJTDFfgDsMT2T4wJeONFz/LbMd2NfH6wfPzjlviuL7Vpgeur4zqCs4mQkCwclMjly+OS+SXrpnI9exl1vvGeDk2BS7Nnat+ryp5QK/RlOYslmYtpmMULKVtVYoxxEzSMSCf8w33HEUQMFfRDT6iK2ZxYGPAS8HBoF7zOygu3+/ZLczwLXAa6r1vJoGG207N3TygxMjnJ3MkHeIGazvSPKsbb31bposQZRHRdZC/6lxYhZcmIYgKZ6b039qvM4tk8UcOjLEbfcfY0tPG7vCz/Zt9x/jOTvWN/T/4sUk4jF64jF6wsyhxRISTRgIXrpnI5fu2cjmnrZiptTVUJSxxpLxGL0dSfp62zl/Uxc7NnSyubuN7raEgr5F3HLno7g7ubyTzgZf3Z1b7ny03k2T5nEpcNTd+909DdwKvLp0B3cfcvd7gEy1nvSay/aQyTkT6SzuwVedeEbHtt4UZyaCoA+CteNnJjJs600t/EBpCAf29XH9FRfT19POuckMfT3tXH/FxZE+Ma62XN6ZDmuzTWeb68S6mZVOQzcLvibjxk2H++vdtKoqlI8onFtv39DBpq42OlOJ4gWLqLq7/wy/9fcPcPlHDnPVzXdx6MjQqo7XciN+h44M8ZeHfsjjZ8Y5r7eDKy/ZyaV7Ntbs+UrX5rUnYpEqn9BoRqeylP6rKSx/Gp3K1qU90pS2AwMlPw8CL6j1k0ZlGqxU9rUjJynMxncPRkQK2yUaGn02Qj1t6UoyeG66+HPhf+95XasffZDaatVp6IVpoetI4u5MZ/PFaaHTEaojeHf/GW644xESMWNde3USh7VU4FfIvBaPQW97gtPj09xwxyNcx96qBX/JeIy2ZIyOZLxYd0OqIxYzcnnHyspxaP2jVFGlD9OK/kOY2dXA1QC7du1adH+deEbXeDpHMm7EbKa/z3teazSlKfR0pIiPTJOHYhHdWLhdGpvWrwblIwpLqjZAMRAcn86GyVIaN1vorfcMkMnmOJvOcfzcJG2JOD3tiVUlDmupqGTWkDdhQcSYces9A4s/uIJELEg7u6mrjaet72D3pi52buykr6ednvakgr4q60oF6WzdZ26l20WqYBDYWfLzDuDJlRzI3W929/3uvn/Lli1VaZw0pq5UnGzZVLhs3tU3SVMYnc6yY0MHnck4ibjRmYyzY0MHY9OabdPotIxgrkIguKm7jZ0bO9m1sZMtPW10tydIxBrrvP2x02OcncyQzTlxM7I55/R4mkeeGlnxMVtqxK8w5F16+b49GePEyNIyfKbCmnntyWD6ptbkra2nrWtnbHqM0qUFMQu2i1TJPcBeM7sAOAZcCbyhvk2SRvdT+7bwhW8fL/7sDniwXSTqlHwqupopq2etVEoUU5gWOpXJka/jtNBMLnjuWMwwgqA1n3fSuZW3qaUCv50bOnn01BgjkxnSuTzJeIyuVJwdG7rm7Bszoy1ZEugl4ppSWGdmRsyMZNyCrGJOOPVT74tUh7tnzeztwJcJyjl8wt0fNLO3hfffaGbbgHuBXiBvZu8ALnL3lV+Ck0g7MZJmfUeCkalsMatnb3uCEyPpejdNlkgFyud3zWV7eNdtD3BseJJsPk8iFqOnPcF7X3lRvZsmi2jWrJ61VCinVro+cKKwPnCN6wemEjEm0rli8XozMIdUx8oHnloq8HvRno3c/dgZjGCdWCaX58xEntf86Hp62pPFunnJuGmaZgManc7OrXXW26bpJlJV7n47cHvZthtLvj9BMAVUBAhmk+zY0DnrIpS7N30ChWZRWP+fjBvrO6qTQKHZOIAFF2CxFS58ljVXusQJoDOVYCKdXdUasVZSuj4QIJ/3oH5gWEOw1usDN3QkOTeRmfl7C5OHbe5a+fralgr8vtF/hr6eFOcmMsXAobcjwYPHR9nS01bv5skidm7o5LHTY7O2pXN5dm/qnucRIiK1pwQK0aaT44XddLifdR1JzlvXUdym3080DAxPEDfoPzlWPO/d3J3SRakVisWMrrYEXW1BX1HzQvIWzHBLxizMHG2rnunWUoHfwPAEm7ra2Nw9My9dV2Wj40V7NvLNR08X1/hlcsEf2lWXLJ4xUaTRaapZdKkAeLS1asr7pdLvJ7q6U3EeGQpyIziQzeUYHJ5kb58umFdD+frA6WyOqXS+ausDx9NZtva2MTyRIZPL05ZY/Uy3lprPuHNDJ5Nl83N1VTY6bv/uccr/htyD7SJRVphqNjQ6NWuq2WoLtcraUAHwaNO5wcL0+4mu8XSOQh6QwhhRzlGpmRppS8RZ15lk27p2zt/UydPWd7ChM0VbMr6iUbrzejvmTCdN5/Kr+ttrqRE/XZWNtqMnxwslhIoc+OHJ8Tq1SKQ6NNUs+lSHMbqUvGRhOneKrqHRaRIxghG/cH1Y3ILtUlvl9QNL1wdOZXKks4uvD3zeznV859hZYhYkDUvn8gyNprnqkpXXHq/piJ+ZXW5mPzCzo2b2ngr3m5l9NLz/O2b2/LL742b2LTP752q0R1dlo60wd9pLbgDZas+pFlljA8MTdCRn13zTVCqRtaPkJfPTuVO0xczCDPVx2hJxYsqEXheF9YGbu9vYsaGT8zd1sbW3nd6O5Lzl4b41cI7utji5PKRzwXlwb3ucb/SfWXE7ajbiZ2Zx4GPAywmKIt9jZgfd/fslu70C2BveXgD8Vfi14DrgIYK06VWhq7LRVSjhUGm7SJQpOYhI/Sh5yeJ07hRNF2zq5JGhMTK5XHHGVMxgb9/cMmaytuJliWIq1Q98/Mw4E9M5EvGZ5C5jUzkeGRpd8fPWcsTvUuCou/e7exq4FXh12T6vBj7tgbuA9WZ2HoCZ7QBeCdxSwzZKhCTnqaM433aRqLjmsj1kcs5EOot78FVTqUTWRjONuJvZTjP7upk9ZGYPmtl19W6T1M/P/sh5lE+KynuwXRpLKhGbsz4wk8uTB7I5Zzrr4c++pGmi86ll4LcdGCj5eTDcttR9PgL8DrDgqzOzq83sXjO79+TJk6tqsDS2+WZ0aqanRJ2mUonUT5MlL8kCv+3uFwIvBH7dzLRYsUV9o/8MXW3x4tRlB7raVjdVUGqvsD7QoJiRlfD7XD6oSLBStUzuUmkYprylFfcxs1cBQ+5+n5kdWOhJ3P1m4GaA/fv3L/qbUMr06IrFjAQ+a5FyzILtIlGnqVQi9dFMyUvc/ThwPPx+1MweIrig/v0FH7gInTtF04NPnmNsOjfrZHtsOseDT56rW5tk6cwMY3bwZOH2larliN8gsLPk5x3Ak0vc58eAK8zsMYIpoi81s8+stkFKmR5tF2zqBIxkLEZbIkYyFgMs3C4iUj+Hjgxx1c138ZIP3MFVN9+l/ysR0qwj7ma2G3ge8M3VHEfnTtFVKNtQnhRP5Ryiwd3njJg5qxvxq2Xgdw+w18wuMLMUcCVwsGyfg8CbwuyeLwTOuftxd/9dd9/h7rvDx93h7r+02gaVpkw3C74m48ZNh/tXe2hZA+95xYWs70xiMci5YzFY35nkPa+4sN5NE1k1BQ7RpRPj5tEsKwfMrBv4R+Ad7j5Sdt+ylsjcdLifdDbHiXNT/OCpUU6cmyKdzencKQJy86yFmW+7NBYzK5ZyKCTmiVmDjvi5exZ4O/Blgsycn3P3B83sbWb2tnC324F+4Cjw18Cv1ao90FwLuFvRgX19fOj1z+V5Ozewrbed5+3cwIde/9zIX5UVUeAQbbqoGG3N9vdnZkmCoO9v3f3z5fe7+83uvt/d92/ZsmXR4z381Ainx9Nkc07cjGzOOT2e5pGnRhZ9rIisXDJuxGOzZ7rFY0YqvvLAr6YF3N39doLgrnTbjSXfO/DrixzjEHCoGu1RyvTo0zooaUYq4B5tA8MTrO9Iztqmi4rR0Ux/fxYMBXwceMjd/6Iax8zkgtGhwnp6s6AYdTqnUSORWnrm1l4ePTXG6FSWdC5PKh6jpz3JBZu7V3zMmhZwbzTXXLaHc5MZHhka5ciJER4ZGuXcZCaSC7hFpHloNkK0NVlWyJbTZH9/Pwa8kSA3wrfD28+u5oCpRAwc8u44Tt6DNIOpREudQoqsuWsu20MqEWfbunaetbWHbevaSSXiq4pbWu6v1gA8XBjpldOKioisJQUO0aY6jNHWTH9/7n6nu5u7P8fdfzS83b74I+e3t6+HzT0pEjEjl3cSMWNzT4q9fT3VarbUyHwn+S138h9RtUg8VdOpno3mpsP99HYk2bauo7gtqtM5RKR5NFM6+VZ0YF8f1xP8jxkcnmCH0t1Hiv7+Flb4/Wxbl9DvJ2Keta2HIydG55QDeNY2Be1RUe0lTi0V+GkdRvR99KsPc8udjzKeztGVivPWl1zAtS97Zr2bJbIqChyiT+uPo0t/fwvT7ye63n35Pt512wOMTmXJ5vMkYjF62hO8+/J99W6a1ElLBX5K7hJtH/3qw3zka49QyEI8MpXlI197BEDBn0SeAgeR+tHf38L0+4mmA/v6+ODrn6ugXYpaKvDTdI5ou/Hf+smXrcvMe7BdgV80HDoyxE2H+xkYnmCn/gGJiIjUlIJ2KdVSgZ+mK0TbRGHxfWnk5yXbpaEVamUl4zarVtb1oL9BERGRGtAF12ir9vvXUoEf6MpHlJmBVygbZErNGgnNVCtLRESk0emCa7TV4v1rucBPVz6ia/u6dgbPTs0J/rava69Pg2RZlFxJRERk7dx0uJ90NsfpsdIC4AldcI2IWlwwb6lSHoeODPHO2x7gWwPDPDUyxbcGhnnnbQ9w6MhQvZsmS/Cnr/kRetvixMIRvphBb1ucP33Nj9S3YbIkzVQrS0REpNE9/NQIp8fTZHNO3Ixszjk9nuaRp0bq3TRZgoHhCTqS8VnbVnvBvKVG/N7/xYc4O5EhbkbcDM/D2YkM7//iQ7ryEQEH9vXx0auerzWaEaXkSiLSqDQbaGH6/URTJhdMkYqFV8zNIJ930rkK62ak4dSiGkFLBX6Pnp4gZrP/ADzvPHpaU82iQms0o0vJlUSkEWkd1ML0+4muVCLG+HSWqVwOJ8iNF7NguzS+Wlwwb6nAT0TqS4G7iDQaJZ5amH4/0bWlu43h8TQYWCHyC7dL4zuwr4/XD57lljsfZTydoysV560vuWBVf3ctFfLv2dxF3iHvjuPk3cl7sF1ERERaTy3W0TQT/X6iy90xM1KxGG2JGKlYDDPDK6VIl4Zz6MgQt91/jC09bVy4rYctPW3cdv+xVeUmaanA792X72NDZxIDsrk8BmzoTPLuy/fVu2myRIeODHHVzXfxkg/cwVU336XEPCIisipKPLWwnRs6OTU2Tf/JMY6cGKH/5Binxqb1+4mAsXSODZ0JMvk8U9k8mXyeDZ0JxtOqfxwFpaPtZsHXZNy46XD/io/ZUoHfgX19fPD1z+V5uzZw3roOnrdrAx98/XM1VSEiCusMhkanZq0zUPAnIiIrdc1lexiZzPDIU6M8dPwcjzw1yshkRomnQi/as5GTY2nSuTwxg3Quz8mxNC/as7HeTZNF9LQlGJ7IkozHaE/GSMZjDE9k6W7TSq8oUFbPKtAao+hSPRoREakFh2AdlBlY+LMA8I3+M/T1pBiZnPnf29uR4Bv9Z7i23o2TBRWndBY+0F62XRqasnpKS3v4qRFGprLEsFn1aLI51aMREZGVuelwP+s6kpy3rqO4TclLZgwMT7Cpq43N3e3Fbe6uNX4RMJbOsX19O6fCEdtUPMa27jZN9YwIZfWUlpbJObm8k8NxD8pxAKpHIyIiKzYwPMH6juSsbUpeMqMWow6yNgrv3Z4t3cVtE+ksfT3tCzxKGkUtymC11Bo/iTYPs7DmPZitUPxeUxZERGSFlNxlYddctodMzplIZ3EPvq521EHWht676PvO4FkefPIcT56b4sEnz/GdwbOrOl7LBX7KChldZkY8FhQfLRQhjcfCNRkiIiIroJPjhR3Y18f1V1xMX0875yYz9PW0c/0VF2sabATovYu2j371YW644yiTmRyJWHBB6oY7jvLRrz684mO21FTPQlbIZNxmZYW8HvRHEAGpRIzJtBGLG2bgDvm8k0q03PULERGpklpMp2o2SowXXXrvouuWOx8lZpCIBee5MYNsPs8tdz7KtS975oqO2VKBX2k9DIDOVEILuCNkb18Pj50em51ZrCvJ7k3diz9YRERkHjo5FpFGM57OEcOZzuaKuS3ixqqS87RU4KcF3NFWyG60bV2iatmNZG0dOjLETYf7GRieYKeuqouIiIhU1JaIMZHOYRCUmXHIOHSmVj7TraXmyGkBd7Rprnq0FaZaD41OzZpqrXW2IiIiIrNt7AjG55wg6POy7SvRUiN+taiHIWtL03GiS1OtRURERJYoFmNLd5LT4xnyHqzx29SVxGIrH7eraeBnZpcDNwBx4BZ3f3/Z/Rbe/7PABPAWd7/fzHYCnwa2AXngZne/YbXtObCvj9cPnuWWOx9lPJ2jKxXnrS+5QCedEaKpgtGlqdbSzNQ3iUgjUt8UXYU6jNvWzcxMXG0dxppN9TSzOPAx4BXARcBVZnZR2W6vAPaGt6uBvwq3Z4HfdvcLgRcCv17hsct26MgQt91/jC09bVy4rYctPW3cdv8xTTWLCE0VjDZNtZZmpb5JRBqR+qZoq0WpmVqu8bsUOOru/e6eBm4FXl22z6uBT3vgLmC9mZ3n7sfd/X4Adx8FHgK2r7ZBpVPNzIKvybhx0+H+1R5a1oDev2hTrSxpVuqbpJGY2eVm9gMzO2pm76l3e6R+1DdFWy1yW9Ryqud2YKDk50HgBUvYZztwvLDBzHYDzwO+WelJzOxqgtFCdu3atWCDNNUs2vT+RZtqZUmzUt8kjaJkttXLCc6p7jGzg+7+/fq2TOpBfVP0VTu3RS0DP6uwzZezj5l1A/8IvMPdRyo9ibvfDNwMsH///vLjz1KYK1tILgGaahYlev+iT8l5pBmpb5IGUpxtBWBmhdlWCvxakPomKVfLqZ6DwM6Sn3cATy51HzNLEgR9f+vun69GgzTVLNr0/olII1LfJA1kvplU0oLUN0m5WgZ+9wB7zewCM0sBVwIHy/Y5CLzJAi8Ezrn78TDb58eBh9z9L6rVINWBiza9fyLSiNQ3SQNZdLaVmV1tZvea2b0nT55co2ZJPahvknI1m+rp7lkzezvwZYJyDp9w9wfN7G3h/TcCtxOUcjhKUM7hl8OH/xjwRuC7ZvbtcNvvufvtq22XpppFm94/EWlE6pukQSw622o5S2Qk+tQ3Sama1vELA7Xby7bdWPK9A79e4XF3UvmqlYhITa20/uiaN1REZK7ibCvgGMFsqzfUt0ki0ihqOdVTRCRSVll/VESkrtw9CxRmWz0EfM7dH6xvq0SkUdR0xE9EJGKWkhGvWH8UuMvMivVH1765IiKzVZptJSICGvETESm1lIx4S8qapwQKIiIi0kgU+ImIzFh1/dHiBveb3X2/u+/fsmVLVRonIiIislIK/EREZqyq/qiIiIhIo1LgJyIyY8X1R9e6oSIiIiLLoeQuIiKhVdYfFREREWlYFiSmaw5mdhJ4fIm7bwZO1bA59abXF216fTPOd/dIL5JT3zSLXl+06fXNaLW+CfT+R1kzvzbQ6ytXsX9qqsBvOczsXnffX+921IpeX7Tp9bWuZv/d6PVFm15fa2v2308zv75mfm2g17dUWuMnIiIiIiLS5BT4iYiIiIiINLlWDvxurncDakyvL9r0+lpXs/9u9PqiTa+vtTX776eZX18zvzbQ61uSll3jJyIiIiIi0ipaecRPRERERESkJTR14Gdml5vZD8zsqJm9p8L9ZmYfDe//jpk9vx7tXKklvL4DZnbOzL4d3t5Xj3aulJl9wsyGzOx789wf9fdvsdcX2ffPzHaa2dfN7CEze9DMrquwT6Tfv9VS/xTpz7f6poi+d6D+aTHqmyL/+Vb/FNH3b036JndvyhtB8eUfAnuAFPAAcFHZPj8LfBEw4IXAN+vd7iq/vgPAP9e7rat4jZcBzwe+N8/9kX3/lvj6Ivv+AecBzw+/7wEebqa/vyr8ftQ/Rfvzrb4pou9d2H71T/P/btQ3Rf/zrf4pou/fWvRNzTzidylw1N373T0N3Aq8umyfVwOf9sBdwHozO2+tG7pCS3l9kebuh4EzC+wS5fdvKa8vstz9uLvfH34/CjwEbC/bLdLv3yqpf4ow9U3Rpv5pQeqbIk79U3StRd/UzIHfdmCg5OdB5v7ylrJPo1pq219kZg+Y2RfN7OK1adqaifL7t1SRf//MbDfwPOCbZXe1wvs3H/VPgch/vucR5fduqZrivVP/NIf6pkBTfL7nEeX3b6ki//7Vqm9KrLpljcsqbCtPYbqUfRrVUtp+P3C+u4+Z2c8C/wTsrXXD1lCU37+liPz7Z2bdwD8C73D3kfK7Kzykmd6/hah/aoLP9wKi/N4tRVO8d+qfKlLf1CSf7wVE+f1bisi/f7Xsm5p5xG8Q2Fny8w7gyRXs06gWbbu7j7j7WPj97UDSzDavXRNrLsrv36Ki/v6ZWZKg4/pbd/98hV2a+v1bhPqniH++FxHl925RzfDeqX+al/qmJvh8LyLK79+iov7+1bpvaubA7x5gr5ldYGYp4ErgYNk+B4E3hRlyXgicc/fja93QFVr09ZnZNjOz8PtLCd7v02ve0tqJ8vu3qCi/f2G7Pw485O5/Mc9uTf3+LUL9U4Q/30sQ5fduUVF/79Q/LUh9U8Q/30sQ5fdvUVF+/9aib2raqZ7unjWztwNfJsji9Al3f9DM3hbefyNwO0F2nKPABPDL9Wrvci3x9b0e+O9mlgUmgSvdPTLD+Wb2WYLsTJvNbBD4QyAJ0X//YEmvL8rv348BbwS+a2bfDrf9HrALmuP9Ww31T9H+fKtviu57F1L/NA/1TdH/fKt/ivT7V/O+yaLzuxAREREREZGVaOapniIiIiIiIoICPxERERERkaanwE9ERERERKTJKfATERERERFpcgr8REREREREmpwCP1lzZvZfzexBM8ub2f6S7ZvM7OtmNmZm/1/ZY75kZg+Ej7vRzOLh9svM7H4zy5rZ68se82YzeyS8vblk+9vN7KiZuZUU9TSzd5nZt8Pb98wsZ2Yba/ebEJFGor5JRBqR+iapFgV+UjMWqPQZ+x7wOuBw2fYp4L3AOys85hfc/bnAs4EtwH8Ntz8BvAX4u7Ln3khQ2+UFwKXAH5rZhvDu/wBeBjxe+hh3/6C7/6i7/yjwu8C/ufuZxV+piESJ+iYRaUTqm6TWmraAu9SHme0Gvgh8HXgRcNbMtgBOUCj1w+7+ULjvrMe6+zhwp5k9o/y47j4SfpsAUuHxcPfHwmPlyx7yM8C/FjogM/tX4HLgs+7+rUrPX+Yq4LNLec0i0vjUN4lII1LfJGtJI35SC88CPg28Fci6+7Pd/UeAT67moGb2ZWAIGAVuW2T37cBAyc+D4balPE8nQWf3jytopog0LvVNItKI1DfJmlDgJ7XwuLvfBfQDe8zsf5nZ5cDIIo9bkLv/DHAe0Aa8dJHdK12W8iU+1c8B/6HpCiJNR32TiDQi9U2yJhT4SS2MA7j7MPBc4BDw68Atqz2wu08BB4FXL7LrILCz5OcdwJNLfJor0XQFkWakvklEGpH6JlkTCvykZsLMTzF3/0eCxcfPX+Fxus3svPD7BPCzwJFFHvZl4KfNbEO4OPmnw22LPdc64CeA/7OStopI41PfJCKNSH2T1JoCP6ml7cAhM/s28CmCjE+Y2WvNbJBgEfO/hHPQCe97DPgL4C1mNmhmFwFdwEEz+w7wAMF89RvD/S8Jj/VfgZvM7EGAcLrBnwD3hLfrSxYsXxs+ZgfwHTMrvaL2WuAr4YJpEWlO6ptEpBGpb5KaMvelTt8VERERERGRKNKIn4iIiIiISJNT4CciIiIiItLkFPiJiIiIiIg0OQV+IiIiIiIiTU6Bn4iIiIiISJNT4CciIiIiItLkFPiJiIiIiIg0OQV+IiIiIiIiTe7/B2LT3j7Wqe9OAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "onemillionv2 = dataset.data_sc.obs.copy()\n", + "onemillionv2_celltype_df = pd.read_csv(\n", + " './1M_v2_20201029_azimuth.tsv',\n", + " sep='\\t', index_col=0\n", + ")\n", + "onemillionv2 = pd.concat([onemillionv2, onemillionv2_celltype_df], axis=1)\n", + "onemillionv2 = onemillionv2[onemillionv2['timepoint']=='UT']\n", + "onemillionv2_l1_cellratio_df = onemillionv2.groupby(['assignment', 'predicted.celltype.l1']).size().to_frame()\n", + "display(onemillionv2_l1_cellratio_df.head())\n", + "onemillionv2_celltyperatio = onemillionv2.groupby(['assignment', 'predicted.celltype.l2']).size().to_frame()\n", + "display(onemillionv2_celltyperatio.head())\n", + "onemillionv2_allcells = onemillionv2['assignment'].value_counts()\n", + "\n", + "# caluclate the individual CD4T TEM and NAIVE ratio\n", + "individual_ratio = pd.DataFrame()\n", + "for individual in onemillionv2['assignment'].unique():\n", + " tem_num = onemillionv2_celltyperatio.loc[individual, \"CD4 TEM\"].values[0]\n", + " naive_num = onemillionv2_celltyperatio.loc[individual, \"CD4 Naive\"].values[0]\n", + " cd8t_tem_num = onemillionv2_celltyperatio.loc[individual, \"CD8 TEM\"].values[0]\n", + " tcm_num = onemillionv2_celltyperatio.loc[individual, \"CD4 TCM\"].values[0]\n", + " cd8t_tcm_num = onemillionv2_celltyperatio.loc[individual, \"CD8 TCM\"].values[0]\n", + " cd8t_naive_num = onemillionv2_celltyperatio.loc[individual, \"CD8 Naive\"].values[0]\n", + " cd4t_num = onemillionv2_l1_cellratio_df.loc[individual, 'CD4 T'].values[0]\n", + " cd8t_num = onemillionv2_l1_cellratio_df.loc[individual, 'CD8 T'].values[0]\n", + " all_num = onemillionv2_allcells.loc[individual]\n", + " individual_ratio[individual] = [tem_num, naive_num, \n", + " cd8t_tem_num, cd8t_naive_num,\n", + " cd4t_num, cd8t_num,\n", + " tcm_num, cd8t_tcm_num, all_num]\n", + "\n", + "individual_ratio_df = individual_ratio.T\n", + "individual_ratio_df = individual_ratio_df.rename({0: 'CD4T TEM', 1:'CD4T Naive', \n", + " 2: 'CD8T TEM', 3: 'CD8T Naive',\n", + " 4: 'CD4T', 5: 'CD8T',\n", + " 6: 'CD4T TCM', 7: 'CD8T TCM',\n", + " 8: 'all_num'}, \n", + " axis=1)\n", + "display(individual_ratio_df.head())\n", + "\n", + "\n", + "common_individuals = list(set(individual_ratio_df.index) & set(gt.columns))\n", + "common_individuals_individual_ratio_df = individual_ratio_df.loc[common_individuals]\n", + "common_individuals_individual_ratio_df['gt'] = [float(gt[col].values[0].split(':')[1]) for col in \n", + " common_individuals_individual_ratio_df.index]\n", + "common_individuals_individual_ratio_df['chemistry'] = 'v2'\n", + "\n", + "fig, axes = plt.subplots(1, 3, figsize=(15, 5))\n", + "ax1, ax2, ax3 = axes\n", + "cd4ydata = (common_individuals_individual_ratio_df['CD4T TEM']) / common_individuals_individual_ratio_df['CD4T']\n", + "sns.regplot(x=common_individuals_individual_ratio_df['gt'],\n", + " y=cd4ydata, \n", + " ax=ax1)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_df['gt'],\n", + " cd4ydata)\n", + "ax1.set_title('Oelen v2 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax1.set_ylabel('CD4 TEM / CD4T')\n", + "ax1.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_df['CD4T Naive']) / common_individuals_individual_ratio_df['CD4T']\n", + "sns.regplot(x=common_individuals_individual_ratio_df['gt'],\n", + " y= cd8tydata, \n", + " ax=ax2)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_df['gt'],\n", + " cd8tydata)\n", + "ax2.set_title('Oelen v2 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax2.set_ylabel('CD4 Naive / CD4T')\n", + "ax2.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_df['CD4T Naive']) / common_individuals_individual_ratio_df['CD4T TEM']\n", + "sns.regplot(x=common_individuals_individual_ratio_df['gt'],\n", + " y= cd8tydata, \n", + " ax=ax3)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_df['gt'],\n", + " cd8tydata)\n", + "ax3.set_title('Oelen v2 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax3.set_ylabel('CD4 Naive / CD4T TEM')\n", + "ax3.set_xlabel(\"rs1131017\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'rs1131017')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAFNCAYAAABSRs15AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACDo0lEQVR4nO3de3xcd33n/9dnbrrLli+Kg2PHFpg6hB8p1EmhP5q6UNqEFiglu02gtHTLJmzLAm1hQ9slbdP+2mShW0ILjVNKKd2WtDU37zYhvaTG0CabhIApISYOcoLsJJYty9ZlJM3lfH5/nDPSaCyNZEmjmTN6Px+PsUbnnJn5jmf0nfmc7/f7+Zi7IyIiIiIiIvGXqHcDREREREREZGUowBMREREREWkSCvBERERERESahAI8ERERERGRJqEAT0REREREpEkowBMREREREWkSCvBiwMx2mJmbWarebRERqaQ+SkQakfomWasU4K0SM3ubmf27mWXN7Dkz+xMzW1/vdlVjZh8ys6NmNmpmR8zsZ2v4WK+OHiNrZv9iZpfOc1yLmf2ZmT0dtetrZnZt2f6Mme03s6eiTn1vrdpcjZm9OWrjuJl93sw2VDl2R/Scs9H/wY+U7ft1Mxsru0yYWWBmm6L9G8zsb8zsdHT5KzPrXo3nKM1FfdQFP/YGM/tc9Df+tJm9ucqxLzaz+6K/0XmLz5rZLjObNLP/VZtWz69aPzTHse8zs29G/+/HzOx98xz3Q1E//Lu1a7k0O/VNF/zYK9Y3mdk7zewRM5sys0/WtOHzuMC+6T1m1m9mI2b2jJn94VzB/VromxTgrQIz+1XgduB9wDrg5cClwD+aWaaebVvAOPA6wjb/HHCHmf3AYm441x9UlWM3AZ8FPgBsAB4B/maew1PAAPBDUbs+APytme0oO+YrwM8Azy22DSvJzC4H9gFvBS4CssDHqtzk08DXgI3AbwD7zWwzgLv/nrt3li6E76OD7n46uu3vAj1AH/D86PF+a8WflDQ19VFL8lEgR/g39xbgT6K//bnkgb8FfmER9/nwMtu1VPP2Q3Mw4GcJ+55rgHea2fWzDjBLA3cA/7dmLZamp75pSVayb3qG8HvGJ5bZpuW4kL7pfwMvc/du4MXAFcC7yg9YM32Tu+tSwwvQDYwB/7FieycwCPyn6PcE8H7gO8AQ4R/chmjfDsCBVPT7OuDPgGeBE4R/fMlo39sIA5wPAcPAMeDaedr2fmB/xbY7gI/Mc/wB4Ffn2bcXOA7cTBhY/eUF/B/dCPxb2e8dwASwe5G3/wbwpjm2Hwf2XuDr5YSdQT9wGvggkLjA+/g94K/Lfn8+YWfbNcexLwSmyvcBXwbeMcexFr0/fq5s273AL5b9/kvAffV+3+sSn4v6qCX9n3VEf9MvLNv2l8BtC9zuBYDPs+/66P/0t4D/dQFt+SRwJ/CPwCjwJeDSC3w+i+6H5rn9R4A/muO1+x9R+3633u9zXeJ3Ud+0pP+zFe+bov2/C3zyAttS176JMCD8J+Bjc7x2Td83aQSv9n4AaCUcoZrm7mOEX85fE216F/CThCNTzyPsXD46z33+BVAg/IN8KfCjwNvL9n8/8G1gE+Gb+M/MzOa4n08Dry1N6TOzJPAfgb+uPNDM2oArgceqPNcthCNwlwI3mtl2Mztb5VKaNnA5cLh0J+4+TthRz3fGqbxdFxF2ANXadaHeCOwBXga8AfhP0WO9coHn88p5ns93iDrcOR7rcqDf3UfLth1m7uf+g4Rn5D5Ttu2jwE+YWY+Z9QBvInxfiSyW+qiF+6hKLwSK7v5E2bb5/m4XFD2/W4FfXcrtCc/S/w7h/+fXgb8qu+9vVHl+pZkFF9IPVbbdCPumx8q2XUrYb966xOcjAuqb6t43rYBV75ssXCIzQniS/grCGVWlfWumb9Ki09rbBJx298Ic+54Fvi+6fhPwTnc/DmBmvwV818zeWn6DKKC5Fljv7hPAuJn9IeEoWOlN/LS7/2l0/F8QTg+8iIopi+7+tJk9Stgxfgp4FZB19wfnaOudhH9U91V5rgHwm+4+Ff3+XWB9leNLOoFTFdvOAV3VbhQNs/8V8BfufmQRj7NYt7v7GeCMmX0YuAH4uLt/hcU/n3MV2+Z7PvMdu3WOY3+O8IzhWNm2R4EM4VlLgH+m+nRQkUrqoy7chfyNL8bvAH/m7gNzf5dc0N+7+yEAM/sN4JyZbXP3AXd/ySJufyH9UKXfIhxB+fOybR8BPuDuY0t8PiKgvml9lePns9J903Ktet/k7n8N/LWZ7SKcSn6ybPea6Zs0gld7p4FN88ypvjjaD+FZm8+Vzl4AjwNFwo6l3KVAGni27Nh9QG/ZMdMdkbtno6ud87TvrwkDGIA3M/fZpw8SzmX+jx6Nb8/jlLtPVtk/nzHCqRjlugmH9OdkZgnCaQc54J1LeMxqBsquP014RvBCXMjzWdSx0RnA/0B49rHc3wFPEHbe3YQjn6ueoEFiTX3UAszsXptJdPQWltBnVbnv7wV+BPjDC71tmek+KzoBdIYL67eW9HzM7J2EX6B+vPTF1MxeRzidar511CKLpb5pAbXsm1ZIXfqm6PGOEo6afgzWXt+kAK/2HiCcP/xT5RvNrIPwTNI/R5sGCOd6ry+7tLr7iYr7G4jub1PZcd3uvtTh978D9prZJYRTE2d1UGb221E7f9TdRxa4r1mdVzTFYKzK5S3RoY8RDqOXbtdBuG5tzukM0XSJPyPsvN/k7vlFP9vF2VZ2fTvhImPM7AcXeD4/OM/z6QNaCAOxSo8BfWZWfnbtCs5/7j9F2DEerNh+BbDP3cejzvNO4LUX8mRlzVMftUAf5e7X+kyyo78i/FtORWeIS+b6u12MvYTrhL5rZs8B7wXeFI0OLNZ0n2VmnYRTvUr91mNVnt+d0c0W2w9NM7P/RLiW5dWlkZPIq4E9FmY7fA74aeA9ZvaFC3g+IqC+qd5900pY9b6pQorw+ySstb5ppRf16XL+BfhvhEPE1xCePdoB3EM4va4lOuaXCb+8Xxr9vhl4Q3R9B7MXCX+BcDFvN2GQ/nzgh6J9bwO+UvH4DrygSvvuJVwE+7WK7b8GHAUuXsRz3AscX+L/z2bCIfc3Ec63vx14sMrxdwIPAp3z7G+J7uc44fz6VsDK/n+eqnLfTvih0UPYMR0BbrzA53M5MEK4LqWDcETt7irHP0i4qLuV8EPiLLC54ph/AG6d47b/AvwR0BZdPgb8a73f87rE66I+akn/Z3cTrsPpAP7fqA+7fJ5jLfr7flH0XFvL/l/bCdfflC4fAvaX9wHRbfbOc9+fjPqbVxJO1/5DypJWXcDzWbAfKjv2LYQjHZfNsa+r4vn8TdSmDfV+n+sSv4v6piX9n61I3xTtT0Xbfp9w1lRr6f+y7P9n7zz3XY++6e1Ab3T9RYSB4P+Mfl9TfVPdG7BWLoQpaL9JmB3yJOG0gJ6y/QngVwgX944STrX7vWhfZQe1DvgTwgDmHGH62OujfUvpoN4aHfO+OW43RThEXrr8+jz3sawOinCK0pHo/+cgsKNs368D90bXL43aNVnRrreUHf9UdEz5ZUe07wPAX1VphzOTRXMI+AOiDFsX+HzeTDiHfpzwA2VD2b47gTvLft8RPeeJ6PX/kYr72kq0KHyOx9lJmBZ4iHCE74vArnq/33WJ30V91AX/f20APh/9jX8XeHPZvu1RW7ZX/P+UX56a535/i7IsmsAl0f/3xnmO/yQzmerGgEPAziU8n3n7IcKTVWNlvx8jTK9e/v9+Z5X2NW2mOl1qf1HfdMH/XyvWN0X9UeX+34r2NWLf9OfRe2Sc8LvgB4HWKu1r2r6pNKohsiaY2T8A73b3x+fZ74QB0pOr2zIRkfOZ2c8Qnn3/tXn2f5Lwy+F/X9WGiciapr6psSmLpqwp7v6j9W6DiMhiubuSJolIw1Hf1NiUZEVERERERKRJaIqmiIiIiIhIk9AInoiIiIiISJNQgCciIiIiItIkYpdkZdOmTb5jx456N0NEVtBXv/rV0+6+ud7tWC71TyLNpxn6J/VNIs2nWt9UswDPzD4B/AQw6O4vnmO/ERabfC2QBd7m7o8udL87duzgkUceWenmikgdmdnT9W7DSlD/JNJ8mqF/Ut8k0nyq9U21nKL5SeCaKvuvBXZFlxsJC0+KiIiIiIjIEtUswHP3Q8CZKoe8AfiUhx4E1pvZxbVqj4iIiIiISLOrZ5KVrcBA2e/Ho20iIiIiIiKyBPUM8GyObXMW5TOzG83sETN75NSpUzVuloiIiIiISDzVM8A7Dmwr+/0S4Jm5DnT3u9x9j7vv2bw51omsREREREREaqaeAd4B4Gct9HLgnLs/W8f2iIiIiIiIxFotyyR8GtgLbDKz48BvAmkAd78TuIewRMKThGUSfr5WbREREREREVkLahbgufsNC+x34Jdq9fgiUh8Hjwyy71A/A8NZtvW0c9PVfezd3VvvZs1iZtcQ1uFMAh9399sq9u8FvgAcizZ91t1vXc02SmOKw/tbRNYe9U1Srp5TNEWkyRw8MsgtBx5jcHSS9W1pBkcnueXAYxw8Mljvpk0zsyTwUcJanC8CbjCzF81x6Jfd/Xuji4I7icX7W0TWHvVNUkkBnoismH2H+kknjfZMCrPwZzpp7DvUX++mlbsKeNLd+909B9xNWJdTpKqYvL9FZI1R3ySVajZFU2SpNM0gvgaGs6xvS8/a1pZOcnw4W6cWzWmuGpzfP8dxrzCzw4TZfd/r7o/NdWdmdiNwI8D27dtXuKnSSAaGsyQN+k+NkSsGZJIJNnVmGu39LSJrTEw+e2UVaQRPGsrBI4O8d/9hvjYwzMmRSb42MMx79x/WNIOY2NbTzkS+OGvbRL7IJT3tdWrRnBZTg/NR4FJ3vwL4I+Dz892ZyrisHZ2ZJCfOTlIoOkkzCkXnxNlJOjLJejdNRNawmHz2yipSgCcN5bZ7H+dsNo8HkDTDAzibzXPbvY/Xu2myCDdd3Ue+6GRzBdzDn/mic9PVffVuWrkFa3C6+4i7j0XX7wHSZrZp9ZoojcgsOjdgZZfy7SIidRCTz15ZRQrwpKEcG8qSMEgkDDMjkTASFm6Xxrd3dy+3vv5yertaOTeRp7erlVtff3mjTbF9GNhlZjvNLANcT1iXc5qZbbHoW7uZXUXYVw6tekuloYxOFdi6vpVUwigGTiphbF3fythUod5NE5E1LCafvbKKtAZPRFbU3t29Df2h4u4FM3sncB9hmYRPuPtjZvaOaP+dwHXAfzGzAjABXB+VdpE1bFtPO4Ojk/Rt7pzels0V6O1qrWOrREQa/7NXVpcCPGkofZs6ODo4hrljBu4QOOza3FHvpskixSFJTjTt8p6KbXeWXf9j4I9Xu13S2G66uo9bDjxGNlegLZ1kIl/UNCgREWk4TTlF8+CRQW6460Feefv93HDXg0rQESM3X7ObnvY0BhSKAQb0tKe5+Zrd9W6aLIJq8Ugz0zQoERGJg6YbwSt9wUwnbdYXzFtBH8IxsHd3Lx+87gr2Hern+HCWSxp0BEjmVl6LB6A9kyKbK7DvUL9eQ2kKmgYlIiKNrulG8FTssXlowVP8DAxnaUvPThmvWjwiIiIiq6fpAjx9wYw31cGLN9XiEREREamvpgvw9AUz3lQHL95Ui0dERESkvpouwNMXzHg7NpSlGDhTxYDJQsBUMaAYuOrgxYSSUIiIiIjUV9MlWdm7u5dbQUk6YipfCM5be+fRdokHJaEQERERqZ+mC/BAXzBjzZg7u4qtdkNERERWl5l9AvgJYNDdX1zluCuBB4Gfdvf9q9U+EYmHppuiKfEWzJM6c77tIiIiTeSTwDXVDjCzJHA7cN9qNEhE4kcBnjSUZGLuobr5touIiDQLdz8EnFngsP8KfAZQemkRmVNTTtGU+OrIJBmZLMyakenRdhERkeU4eGSQfYf6GRjOsi2Ga/TNbCvwRuBVwJV1bo6INCiN4ElDufx56+hsSeIwfelsSXL589bVuWUiIhJnB48McsuBxxgcnWR9W5rB0UluOfBY3Oqsfhi42d2LCx1oZjea2SNm9sipU6dq3zIRaRgawZOG8oq+DTz01BnSSSNh4dq7iXzAK/o21LtpskhxP0MuIs1p36F+0kmjPRN+9WnPpMjmCuw71B+nPmoPcLeZAWwCXmtmBXf/fOWB7n4XcBfAnj17tJJdZA3RCJ40lAf6z7C5M0MmmSBwyCQTbO7M8ED/QksSpBEcPDLIe/cf5msDw5wcmeRrA8O8d//huJ0hF5EmNDCcpS09e7p/WzrJ8eH41Fl1953uvsPddwD7gV+cK7gTkbVNI3jSUAaGs2zqbGFzV+v0NneP1QfwWnbbvY8zPJ4j8HB6baHo5As5brv38TidIReRJrStp53B0cnpETyAiXyRS3ra69iq2czs08BeYJOZHQd+E0gDuPuddWyaiMSIAjxpKHH4AJb5PXlqnKKHZQtLiXKKDt85NV7PZomIcNPVfdxy4DGyuQJt6SQT+SL5onPT1X31bto0d7/hAo59Ww2bIiIxpima0lBuurqPfNHJ5gq4hz8b7QNY5lcsFSw0ZkV5BRUyFJE627u7l1tffzm9Xa2cm8jT29XKra+/XLMLRKTpaARPGsre3b3cSrgY/vhwlkuUpCNWUkkjX4zmZxrhz2i7iEi97d3dq88TEWl6GsGThqUxn/h5/qYOSrGcRy9g0sLtIiIiIlJ7CvCkoSgLY7y9/9rLaM8ksSjIM4P2TJL3X3tZfRsmskIOHhnkhrse5JW3388Ndz2ovklERBpOU07RVB2u+Lrt3sc5m82TNCNphgdwNptXFsYYaU0nyRedQhCQSiRorUhLLhJXpULZ6aTNKpR9K6h/EhGRhtF0I3ilD+DB0clZH8A6yxoPx4ayJAwSCcPMSCTCgufHhlQmIQ72Heqnuy3Nrou6uOzidey6qIvutjT7DvXXu2kiy1ZeKNss/JlOmt7fIiLSUGoa4JnZNWb2bTN70szeP8f+HjP7nJl9w8weMrMXL/cx9QEsUj/NUEhYZD56f4uISBzULMAzsyTwUeBa4EXADWb2oorDfh34uru/BPhZ4I7lPq4+gOOtb1MHgUPgjuME7gQebpfGt62nndNjU/SfGuPIcyP0nxrj9NiU6hhKU9jW085Evjhrm+p0iohIo6nlCN5VwJPu3u/uOeBu4A0Vx7wI+GcAdz8C7DCzi5bzoPoAjrebr9lNT3saAwrFAAN62tPcfM3uejdNFuEVfRs4NZYjVwxIGOSKAafGcryib0O9myaybKrTKSIicVDLAG8rMFD2+/FoW7nDwE8BmNlVwKXAJZV3ZGY3mtkjZvbIqVOnqj6oPoDjbe/uXj543RW8dHsPF69r46Xbe/jgdVcogUFMPNB/ht6uDJlkgsAhk0zQ25Xhgf4z9W6ayLKpULaIiMRBLbNozlXZuLK02W3AHWb2deDfga8BhfNu5H4XcBfAnj17qpZHU6Hs+FMh2vgaGM6SSc4+b5RJJjRFWpqG+icREWl0tQzwjgPbyn6/BHim/AB3HwF+HsDMDDgWXZZFH8Ai9dHVkuLo4BjJhJFMGIXAOXF2kl29nfVumoiIiMiaUMspmg8Du8xsp5llgOuBA+UHmNn6aB/A24FDUdAnIjHkHg2we9mlfLuIiIiI1FTNRvDcvWBm7wTuA5LAJ9z9MTN7R7T/TuAy4FNmVgS+BfzCSjy2Cp2L1MdYrkhPe4qh8TyBQ8JgY0ea8Vxx4RuLiIiIyLLVcoom7n4PcE/FtjvLrj8A7FrJxywVOk8nbVah81tBQV5MKECPr85MkufOTZJOJDADdxjOFnjB5pZ6N01ERKRp6buTlKtpofN6UKHzeCsF6IOjk7MC9INHBuvdNFmEcCktYYql0qV8u4iIiKwofXeSSk0X4KnQebztO9RPvljkuXOTfPvkKM+dmyRfLCpAj4nRqQJb17eSShjFwEkljK3rWxmbOi85roiIiKwADW5IpZpO0ayHbT3tDI5O0p6ZeWoqdB4fRwdHOZfNkyjLwnh6NEe+OFrvpskilP7++jbPZM3M5gr0drXWsVUiIiLNa2A4y/q29KxtGtxY25puBE+FzuMtVwjAIGGGYSTMwKLt0vD097ewg0cGueGuB3nl7fdzw10PagqNiIgsy7aedibys5OZaXBjbWu6AG/v7l5uff3l9Ha1cm4iT29XK7e+/nItNI2JdDKc2jeZLzKRLzKZL1IMnExSa7jiQH9/1WmdhIiIrDSdXJVKTTdFE1ToPM42d7ZwNpunvGqaAZs6lYUxLvT3N7/ydRIA7ZkU2VyBfYf69X8mIiJLsnd3L7cSfsYcH85yibJornlNGeBJfJkZZkYmadNp9ouBKwujNAWtkxARkVrQyVUp13RTNCXelIVRmpnWSYiIiEitNeUInoo9xte2nnaOnR6btW2qELBzU+c8txCJj5uu7uOWA4+RzRVoSyeZyBe1TiJm9PkiIiKNrulG8JTEIN5e0beBU2M5csWAhEGuGHBqLMcr+jbUu2nSRMzsGjP7tpk9aWbvr3LclWZWNLPrVuJxlYQm3vT5IrVmZp8ws0Ez++Y8+99iZt+ILv9mZlesdhtFpPE13QiekhjE2wP9Z+jtyjAyUSBXDMgkE3S3pXig/wzvqnfjZFGKgU+PUKWSjXcOycySwEeB1wDHgYfN7IC7f2uO424H7lvJx9c6ifjad6ifXKHI0NhM/9TVmtLni6ykTwJ/DHxqnv3HgB9y92Ezuxa4C/j+VWqbiMRE0wV4SmIQbwPDWTZ2tLCpc6Ywtrvr9WtwuULARK7IeK7AZLTGbGtPW6N2MFcBT7p7P4CZ3Q28AfhWxXH/FfgMcOXqNk8a1RMnRxiZLJDASJpRKDpD4zkKxZF6N02ahLsfMrMdVfb/W9mvDwKX1LxRIhI7Dfr9a+m29bQzODo5PYIHSmIQJ3r94iEInImoVuFErki+GKtC9FuBgbLfj1NxBtzMtgJvBF6FAjyJ5IthAZdEIszqaxb+LeSKXu1mIrXyC8C99W6EiDSexps/tUw3Xd3HyESeoydHefzZcxw9OcrIRF5JDGJCxTob11ShyNlsjmfOTvD0mSwnRyYZmcjHLbiDsLRipcpv6B8Gbnb34hzHzr4zsxvN7BEze+TUqVMr0T5pUJlUgiBwJgtFJvNFJgtFgsDJpJruo1QanJn9MGGAd3OVY9Q3iaxRTTeCB9E3NQtrqmHnf3OTxqVinY3D3ZnMB2RzBbLxG6Wr5jiwrez3S4BnKo7ZA9wd1V/cBLzWzAru/vnKO3P3uwjXwbBnzx51N01sc2cLw+M58PBzxRywcLvIajGzlwAfB65196H5jlPfJLJ2NV2At+9QP+va0ly8rm16m5KsxIuSUNRPKUHKRC6cflkMLvw7wUP9Z7j74QFOjU2yfUNHIwboDwO7zGwncAK4Hnhz+QHuvrN03cw+CfyfuYI7WVvcHTMjkzDMwB2K7rjru7OsDjPbDnwWeKu7P1Hv9ohIY2q6AE9JVkQWr3yUbiJfJFdY3ijdQ/1nuOP+o6QSxrqyNPK3QsMEee5eMLN3EmbHTAKfcPfHzOwd0f4769pAaVhjuSJb17dyOirlkkkm2NLZwnhuwZm8IotiZp8G9gKbzOw48JtAGqb7pluAjcDHohkGBXffU5/WikijaroAT0k6RKoLAiebL5KdCqdeBis4+nD3wwOkEkZbOomZNWyZEne/B7inYtucgZ27v2012iSNb1tPO08Njc3alisG7NjYWacWSbNx9xsW2P924O2r1BwRiammC/BuurqPWw48Nl2HayJfVJKOmDl4ZJB9h/oZGM6yTWvwVkSpjEE2X2AyH9RsStmzIxMkDQaGp8gXA1pSSTZ1ZjSCLk3hFX0beOipMyQMEhYGd4OjOW64ckO9myYiIjKt6VJ/7d3dy62vv5zerlbOTeTp7Wrl1tdfrgAhJg4eGeSWA48xODrJ+rIpfgePDNa7abHi7kzkigyNTTFwJsvx4SxD41NM5Io1XS/UkU5ycmSKQtGn64SdODtJRyZZs8cUWS0P9J9hc2eGTDJB4JBJJtjcmeGB/jP1bpqIiMi0phvBAyXpiLN9h/pJJ216im2jTvFrRPliQHaq9qN0VVlUgcCYKUbgUUZbATRCHWcDw1k2dbawuat1epu7a4RaREQaSlMGePoCFV9KkrN4pbV0E7mwJlcjlDEYzxW4qLuF4Ww+mqKZYEt3C2NThXo3rSGURqjTSZs1Qt1ISWhkflrjLSIicdB0UzQ1xS/etvW0M5GfnZFOX6BCxcAZmypwZjzHs+fCYuODI5OMTjZOsfGLu9tIJhJs62nne7Z007e5k1QyodcvUj5CXUpCk04a+w7117tpsgg3Xd1HvhiWEnEPf2qNt4iINJqmC/D0BSre9AVqtsl8kTPjOY4PZ3l6aJzBkUnOZnM1X0u3VNdfuY1C4Ezki3r95jAwnKUtPXs9okao40NrvEVEJA6aboqmpvjF297dvVx3/Cwf/8oxxnNFOjJJ3v7KnWvmC1SuEDBZKDK5jELj9XRV3wbezS7ufniA02OTbGvMQud1oyl+8ac13iIi0uiaLsDTF6h4O3hkkP2PnmBzVwvbozIX+x89wUsuWd90X6qCwJkqBEzmi0wWikzlgxWtSVcvV/Vt4Kq+DWztaaMlpeyZ5VTGRURERGqt6QI8fYGKt2bOopkrBEwVikzmw5+5QmOsm5PVs3d3L7cSvs+PD2e5REmgRERE1ryVThDZdAGevkDFW7NMsS2NzpUHdHGbbim1oSl+IiIiUlKLDNtNF+CBvkDFWVyn2BYDD6da5sO1cxqdExEREZGF1GL2Wk2zaJrZNWb2bTN70szeP8f+dWb2v83ssJk9ZmY/X8v2SOOLSxbNUsmC02NTDJwJM1yeHJnk3ERewZ2IiIiILEotMmzXbATPzJLAR4HXAMeBh83sgLt/q+ywXwK+5e6vM7PNwLfN7K/cPVerdklja9QptuXr5xqlqLiIiIiIxFstZq/VcormVcCT7t4PYGZ3A28AygM8B7rMzIBO4AxQqGGbJAbqPcU2CJxcMSBXDJjKB0zkihQCBXSLlc0VeOp0ln998jQ/8ZLn0dORqXeTRERERBpSLRJE1jLA2woMlP1+HPj+imP+GDgAPAN0AT/t7vomLasqCDysPZcPmMgXmcoX692kWMgXAwbOZDl2epxjp8fpPz3OU6ezPDcyOX3MpRs7uPqFm+vYSpGVtdKZzqS5mNlPVdvv7p9drbaISDzUYvZaLQM8m2NbZRrBHwO+DrwKeD7wj2b2ZXcfmXVHZjcCNwJs3759wQfWB7DMx72U3TKccjmVDzTdcgGBO8+dm5wO5EqXgeGJqplBe7taGJvSgLw0j1pkOpOms5/we83Xo9/Lvws5oABPRM6z0rPXahngHQe2lf1+CeFIXbmfB25zdweeNLNjwG7gofKD3P0u4C6APXv2VM01rw9gKXEPp1pOFcKpllOFcMjbm6CYeK0MZ3McOzXOsaFxjp2KRuWGxpnMzx8Ed7Qk6dvUwY5NHdM/d27s4LLndavQuTSVZq7TKSvmTcBPAy8BvgB82t2frG+TRGStqWWA9zCwy8x2AieA64E3VxzzXeDVwJfN7CLge4D+5TyoPoDjb6kjsIViwGQhTIIyVQjIFQIFc/OYyBVnj8hFAd3Zify8t0knjUs3dLBzcwc7N7ZHPzvY3NVCuIw29FD/GX7rwLc4NTbJ9g0dGkGXptEsdTqldtz9c8DnzKyDMO/AH5jZRuA33P1L9W2diKwVNQvw3L1gZu8E7gOSwCfc/TEze0e0/07gd4BPmtm/E05juNndTy/ncfUBHG+LHYEtBj49xbKUDEWJUM5XKAYMDE/QfyociSv9fPbc5Ly3MWBrTxs7NoYjcqVAbmtPG8nEXDOvZzzUf4Y77j9KKmGs0wi6NJm41umUupgEzgEjwHagtb7NEZG1pKaFzt39HuCeim13ll1/BvjRlXxMfQDH21wjsONTeT528Du8ZNt6ctHInIK52QJ3To5MTgdwx06HyU8GzmQpVFknt7Ezw86NHezcFF76Nndw6YZ2WtJLm1p598MDpBJGWzqJmWkEXZpKLTKdSXMxsx8GbiDMJP5PwB3u/kh9WyUia01NA7x60AdwvH33zDjr2tIUAydwxx2SCeO7Z8Y5m1V5RICz2dyszJXHouyVE1Wyf3ZkktNBXOmyY1MH6ypGu5fr2ZEJultndysaQZdm0ah1OqWh/DPwDeArQAvws2b2s6Wd7v6uejVMRNaOpgvw9u7u5brjZ/n4V44xnivSkUny9lfu1AdwgwmCMJtlPggoFp18EJAvOpu7Whkam6KtbARpMh+wpbutjq2tj4lcMRqNK5UgCK8PZ6uvk9u+of28YK63Yp1crVzc3cbQ+OzXTyPosynLb7zVu06nNLz/xPkZw0VEVlXTBXgHjwyy/9ETbO5qYXs0grf/0RO85JL1+lCuE3cnXwzXzE3mwyQo85UmuH7PNu64/ygT+SKt6QST+YBC4Fx/5bY5j28GhWLA8bMT01krS6NzC62Te976NnZsag/XyW3qZOemdi7paV9wnVwtXX/lzOuXShpZjaDPoiy/Is3N3T853z4za7rvXCLSmJqus1EWzfoolSTIF51i0SlEI3L5YhigLTab5VV9G3g3u7j74QGeG5lgS3cb11+5jav6NtT4GdSeu3NydCosQ1CWvXLgTJZ8sco6uY7MTAmCKHvlpRs7Zo2SNYry1+/02CTblEVzFvVPIs3NzL7i7q+Mrv+lu7+1bPdDwMvq0zIRWUuaLsBTFs2VUxp5KwZhwBYEUAgCitHauMDDfe5cUBC3kKv6NsQ+oDuXzdN/eoxjp7Ozsldmc9XXye2omFq5c2MH69pXdp1crZVev609baqDV0H9k0jT6yi7fnnFvgWnV5jZJ4CfAAbd/cVz7DfgDuC1QBZ4m7s/uvTmikgzaroAT1k0F68QjbiVRtsKxYB84ARRgpNileyLEprIF3k6qiFXXhy82jq5VMLYvrF9Ontl3+bVXSfXDMzs5e7+YL3bcaHUP4k0vWofnIv5UP0k8MfAp+bZfy2wK7p8P/An0U8RkWlNF+Api2Y48lYIwgCtGHg44hZA0cMpk2GZgZUbcVsLioFzfDg7K3PlsdPjPHt2ct5PbAMuXt86U4JgUzi1cltPG6lkYjWb34w+RgynOql/ij8lyZEFrDezNwKJ6PpPRdsNWLfQjd39kJntqHLIG4BPefgB/qCZrTezi9392eU2XESaR9MFeM2axtp9JlgLomCtWAx/L5UUKAQz699kadydwdGpmTVyUUC30Dq5DR0Zdkbr43ZuDEsQ7NjUmOvkpH6atX9aK5QkRxbhS8Dry66/rmzfoRW4/63AQNnvx6NtCvBEZFrTBXiw+mmsSyNmpbptAGaQMMMAMyPwcH9pHVt5qOABOOFtHWYdmy8Gmi5ZI+cm8jxVMSL31Olxxqusk2vPJNkxXRh8phzB+vbMKrZcgD4zOzDfTnd//Xz76k1p9uNLSXLibxVGYP+3u392Je+wwlzz+Of8gmBmNwI3Amzfvr2GTZJGoNkFUm7eAM/Mfs/df301G9MIpteflY+URevSij4TxBXLpkAGmurY0CbzRZ4eys4alTt2epyh8fkLp6cSYT256eyVm9rp29TJRd1aJ9cgTgF/UO9GyNqiJDnxtkojsP8dqGWAdxworxt0CfDMXAe6+13AXQB79uzRF5UmptkFUqnaCN41QCwDvNJZjKfPjPO8dW38zPdfyg+8YOPMAaXv5x4GcIWiArVmUAycE8MT00XBSyNzz5ydqLqy/eJ1recVBtc6uYY36u5fqncjlkJnWeNLSXLirUlGYA8A7zSzuwmTq5zT+jtpkve2rKBqAV7SzHqYJ62vu5+pTZOWp/wsRndLipMjk9x+3xHend8V+9T7a8VD/We4++EBnh2Z4OI56uC5O6dGp84L5L67wDq5nvb0dBmCvujnjo0dtGW0Ti6Gnqp3A5ZCZ1njTUly4m2VRmB3m9k35thugLv7S6rd2Mw+DewFNpnZceA3gTThje8E7iEskfAkYZmEn1+5pktcaXaBVKoW4O0Gvsr8870b8hOt/CxGvhhMfwjf/fCAArwYeKj/DLffd4TxqQLFwDkzNsXv3jPKq3dfRIBPlyMYn5p/nVxrOnHeiNzOTR30aJ1c03D3nzKzq4GT7v5tM3sl8HLgcXf/+zo3b146yxpvSpITb6s0AnuM2YlVLoi737DAfgd+aan3L81JswukUrUA71vu/tJVa8kKGRjOkjToPzXGVKFIOpmgpz3NcyMT9W6aVDGVL/L0mSx/8I/f5mxUQ86BokN+qsgXDp+/xCBZWie3sX26ltzOTR1c1N1KQuvkmpqZfRi4CkiZ2X3Aq4F7gV82s73u/r56tm8+Ossaf0qSE1+rNAKbc/enV/IORRai2QVSqemyaHa1pDg6OEYyYSQTRiFwTo5McenGjno3TYjWyZ2dOC975TNnJ1goUegr+jbSt7mDHRvD7JXbNrST1jq5teo1wIuBNuAEsNXds2Z2G/A1oCEDPJ1lFamfVRqB/deVvDORxdDsAqlULcC7Y9VasYKmi3eXgoXpn0qgsprcndNjOfpPj3HsdHY6oHt6aLzqOrn5pAz+vze+uAYtlZhyd3czKxV9LL2pAsICww1JZ1lF6qvWI7Du/s6a3blIFZpdIOWqBXhfNrNPEKbfvQ34Q+AVwOPA+9z9qdo378KN5YpsXd/K6bEcU4UgmqKZIZuff82WLM/oZL6s/EBYjuCpoXFGJwvz3qY1nWDHxlIJgijpyeYO3vynDzJVOD8ATCY15VJm+Xsz+zLQCnwc+FszexD4IVammHBN6CyriIiI1Fq1AO/PgU8D64AHo99vBX4U+ATwqpq3bglKU6D6NneGRcIDZyJfpLejpd5Ni72pfJHvngkDuPIMlqfH5q8nl0wY23rawoyVZdkrt6ybe51ceyZFrpCfVdbAou0SD6UsqKfGJtm+oaMmAYy732xmrwiv+oNm9nzgjYTB3v4VfbAVprOsIs3LzF7u7g/Wux0isrZV+9bc5e5/AmBmv+jupaLCf2ZmDTsFoXwKVDphTOSLFALn+iu3LXxjAcJ1cs+cnTivMPiJBdbJXdTdMp3opBTIXeg6uUs3dJBKjDM2VSRfDEdgO1uSbF2vNZRx8FD/Ge64/yiphLGuxmUA3P0BM1tvZldGm/7U3c+t6IOIVFAdQ1nAx4CX1bsRIrK2VQvwAjN7IeEIXruZ7XH3R8zsBUDDFg4rnwL19NA4vV2t59VRk1BpndxTQ+P0n5oJ5J4+kyVXCOa93bq2dFRDbiZ75Y6NHXS0LH+U7fort3HH/UfZ1JmiNZ1gMh8oQI+Rux8eIJUw2tJJzKxmZQDMLAPcBfwkYVpyAy41s88B73D3+YeVRZZIdQxFRCQOqn0j/2/A/yZMWvCTwK+Z2RVAN/Cfa9+0pStNgTo1OsXoZL7ezWkIY5OFMIAbGufYqWiK5ULr5FIJLt3Uwc6N4fq4nRvb6dvcSU97GqtRGYKr+jbwbnZx98MDPDcywZY5Cp1L43p2ZILu1tndSo3KAPx3wuK/29x9FMDMuoCPAh+ILvMys2sIE0klgY+7+20V+98A/A5h/1cA3uPuX1npJyHxojqGsgh9ZnZgvp3u/vrVbIyIrE3zBnju/s/A95Rt+oqZbQKG3V0ZSxpUrhDw3TPZWWvknjo9zuDo1Ly3SVi4dnFWYfDNHVw8zzq51aK8p8uXSiRIJcOSIbNeSg//f93BLBz+wqBy8WPSwtvObDIsER5qZlS+Oy7d0MHTZ8YYnSiQKwa0pJJ0t6XYsbFzpZ/aTwFXuft05Ojuo2b2i4RrhucN8MwsSRgIvgY4DjxsZgfc/Vtlh/0zcCDK1PkS4G+B3Sv9JCReVMdQFuEU8AcLHiUiUkNV59SZ2Ubgzcx8sXkc+GvgTI3bJQsoBs6z5yYqArksx4ezVdfJ9Xa1zCoKvnNjuE4uk2qMzPLla7i6W1MMjU9xx/1HeTe7NIpXoVTrMZVIkDCmryeTRjpppBMJEonVDdBf+YKNfPX+4en25IoBg6M5brhyxV+7oDy4K3H3MTNb6NzAVcCT7t4PYGZ3A28ApgM8dx8rO74DnW8QVMdQFmXU3b9U70aIyNo2b4BnZpcB9wP3ERYONuBK4NfN7FXufmR1mri2uTtnxnOzioIfOz3O00NZpqqsk+tuTc0ekYuyWHauwDq5WipfwwVM1wq7++GBpgjwzCwcFUsa6YSRSiZI2syoWMJs1qhp+ahbONJmJCw6bpWDt8V4oP8MmzszjE6GI3iZZIKu1hQP9J/hXSv7UG5mPXDeICKE0yqr2QoMlP1+HPj+yoPM7I3A7wO9wI8vsZ3SRG66uo/37T/MieEJCkFAKhG+vz/w4y+qd9OkcTxV7waIiFT7tv87wLvd/W/LN5rZm4D/D3hTLRu2Fo1NFXiqIpA7dnqckSrr5FpSYT25HZvaZ9WU29CRqdk6uVqaaw1XazrBcyMTdWpRdaWALJEIR6xKv5dG15IJm57mWLo0s4HhLJs6W9jc1Tq9zd1rMYVtHfBV5g7wFhptW9Rt3P1zwOfM7GrC/vBH5rwzsxuBGwG2b9++wENL3DmAhSdrMA3tymzu/lNRn3HS3b9tZq8EXg487u5/X+fmicgaUS3A+3/c/brKje7+GTP7vRq2qenlCgED0Tq5UlHw/lMLr5O7ZHqdXDs7N3Wyc1M7F69ra6qg4eLuNobGp6ZH8AAm8wFbuttW5fGTCSOdTIRr1gCi0bKkGalkuK8UwCVKX/Jk2mpNYXP3Hcu4+XGgPC3rJcAzVR7rkJk938w2ufvpOfbfRZjRkz179iz4fV9p9uNr36F+1rWluXjdTH+kJCtSzsw+TDgNPGVm9wGvBu4FftnM9rr7++rZPhFZG6oFeONL3CeRwJ1nz05Oj8SV1ssNLGKd3I5NYdbKnZs72bmxnUs3djTMOrlaKpVJmMgXV7xMQvnIWioRTnEsTZfMJBPTgZ0s3WpNYTOzHyOs1bm/YvubgVPu/o9Vbv4wsMvMdgIngOsJ1xqX388LgO9ESVZeBmSAoeW2W2n2401JVmQRXgO8GGgj7F+2unvWzG4jXO6iAE9Eaq5agNdrZr8yx3YDNteoPbHk7gxn8/SfGuPYUJZjp8JyBE+fHmeyyjq5rop1cn1RPbnO1sZeJ1dLSymTUArMZqZIRglHkglSZQGdRttWxypNYftt4HVzbL8f+Bwwb4Dn7gUzeyfh+uIk8Al3f8zM3hHtv5NwCvrPmlkemAB+2t2X/VSUZj/elGRFFsGjE0OlD/9SvxEAzX+WVkQaQrVI4k+Brnn2fbwGbYmF8akCTw1FI3KnZqZXVlsnl0kluHRD+6zslTs2drCpM57r5FZL+bfpdDJBSyoaZUvadOCWSSb0f9hAVnEKW7u7n6rc6O7PmVnHQjd293uAeyq23Vl2/Xbg9pVoaDmNAMXbTVf3ccuBx8jmCtMJoPJF56ar++rdNGkcf29mXwZaCb8r/a2ZPQj8EHCori0TkTWjWh28317unS+imPD7gLeUteUyYLO7170MQ74Y1pOrTHhycqT6Ormt69vOy175vPXNtU6ulsrLJKxrTXN2IsdHDz7JlnWtGuGIgVUMYFrNLOXus86smFmacGpUQ9IIULzt3d3LrYQnMo4PZ7lEayilgrvfbGavCK/6g2b2fOCNhMHe/uq3FhFZGdXKJPwPoL/8rHa0/ZeBLe5+c7U7XkwxYXf/IPDB6PjXAb+82sFd4M6z5yZnZa/sPz3O8eEJilUWym3qzNA3XRS8kx0b27l0QzstZclB5MIkE8bfffU4LakEnS0pzIyWdFJT2GJkFQOYzwJ/ambvdPdxgGjk7iPRvoakEaD427u7V32RVOXuD5jZejO7Mtr0p+5+rq6NEpE1pdoUzZ8gXChc6Q7gG0DVAI9FFBOucAPw6QXuc1nOjOdmjcb1nx7n6aFxJvPzr5PrbEnNrI+b/tlOV2t63tvIwtLJBJlUgkzpZzT98uToJOvb0rOmXWoKW3ysYgDz34HfBZ42s6ejbduBPwM+sNIPtlI0AiTS3MwsQ5hV9yeBY4R5Cy41s88B73D3XB2bJyJrRLUAz939vMjH3QNb3KKnRRUTBjCzduAa4J2LuN9F+cbxs/zf/jM8/uwIx4bGOXZqnLMT+XmPTyeNSzfODuR2btI6ueUqlR0oBXQtUVA3X5FuTWGLt9UKYKKpme83s98GXhBtftLdG7NgYhmNAIk0tf8OpIFt7j4KYGZdhDOaPkADn4ASkeZRLcDLmtkudz9avtHMdhFmlVvIhRQgfh3wr/NNz1xKIeFf/9y/880TI+dtTxg8b451clu1Tm7JkgmjJZUkk0qQSs4U9l5K2QFNYYu/1QxgooDu31flwUREFvZTwFXuPj3txN1HzewXgQdRgCciq6BagHcLcK+Z/S7w1WjbHuDXgPcs4r4vpJjw9VSZnnmhhYQBXnhRF4MjU1y6sZ0dG6MyBJs7tE5uBSQTRms6SUsqQWs6SesK/n9qCpuIiMRYUB7clbj7mJnVqGqMiMhs1bJo3mtmP0lYlPO/Rpu/CbzJ3RdzxnzBYsIAZraOMH3wz1xY06v7H296CcPZPKOT80/LlOoSZqSS4UhcKmFkooAunaxtKR9NYZOFzJVBMy4OHhlk36F+BoazbNMJDJFm42bWw9yzmOZf8C8isoKqVtR2928CP7eUO15kMWEI0wf/QykT3kpJ1TgIaTZmRms6QVs6OT3dUlNWpYE9aGbHgS8CX3T3p+rcnkU5eGSQ9+0/zOhkgUIQcHp0ivftP8wHr7tCQZ5Ic1hHOOvpQpapiIisqKoB3nItVEw4+v2TwCdr2Q45X8KMlnSC1lQymmapguESH+6+x8wuBa4FPmxmW4GvAPcCX3L3+QtW1tHtXzzCcDZPMmGkkgncYTib5/YvHlGAJ9IE3H3Hcu9jETWE1wH/izBzcAr4kLv/+XIfV0SaR00DPGksLekk7ekkbZlw/ZwCOokzd38auBO4Mypw/oOE2Xh/18xOufuP17WBc+g/PU7CwhMsAGbg5vSfXtEJDCJSJ2b2Y0CXu++v2P5m4JS7/+MCt1+whjDwS8C33P11ZrYZ+LaZ/ZVKMIhISbVC5zcQTp0cWsX2yApKWJgMpS2TpCOT1LRVaVrungfujy5EI3oiIqvttwkzg1e6H/gcUDXAY3E1hB3oikpWdQJngFiuSRaR2qg2gncp8HfRmfF/Jpz69JC7aw55g0olErRmEtMZLltSyhYqa5O7n6h3G+ayc2M7T54axwIPR+8cAocXbFKdR5Em0e7upyo3uvtzZtaxiNsvpobwHwMHCDOTdwE/PVfdYhFZu6pl0bwNuC0q0PkjwH8inAr1OGFig/vc/eTqNFPmMj1Cl07SmmmegE5ZBqVZvf/ay3jv/sOMTRUoBk4yYaxvSfP+ay+rd9NEZGW0zpXlNzpZ3raI2y8mOcuPAV8HXgU8H/hHM/uyu88q/nuhNYT12SvSPBacs+fuo+7+OXe/yd1fCvwusBn4VM1bt0QHjwxyw10P8vo//gq/8jeHeah/zvrpsdWSTrKpq4XtG9rZsq6Vde3ppgrubjnwGIOjk6xvSzM4OsktBx7j4JHBejdNGtgiz4zX3d7dvXzouit46bYetnS38tJtPXxIGTRFmslngT8t75Oi63dG+xaymBrCPw981kNPAseA3ZV35O53ufsed9+zefPmqg+qz16R5nLBSVaihb7fAv5g5ZuzfKVOKp001rWmGBqf4o77j/JudnFV34Z6N++CJaP6c+lkgkwqQXu6udfS7TvUTzpptGfCt2Z7JkU2V2DfoX59CZbzmNkPAB8nXIey3cyuAG5y91+sb8vmpzqPIk3tvxOeCH/azJ6Otm0H/gz4wCJuv5gawt8FXg182cwuAr4H6F9Oo/XZK9Jcmi6LZnknlS8GtKWTTOSL3P3wQGwCvJZ0mBQlzHbZHCNzizUwnGV9W3rWtrZ0kuPD2Tq1SBrcHxJOVzoA4O6Hzezq+jZJmpmmsUk10dTM95vZbwMviDY/6e4Ti739ImoI/w7wSTP7d8IpnTe7++nltFufvfGnvknKNV2AN1cn1ZpO8NzIovrWumnLJGnPpNZ8tsttPe0Mjk5On0UEmMgXuaRHSShkbu4+UFHyo1ivtkhzK58hUj6N7VbQFymZJQro/n2Jt61aQ9jdnwF+dFkNrKDP3nhT3ySV5o0kzGxDtctqNvJCbOtpZyI/+/vdZD5gS/di1javrkwqwYaODNs3tHPxujbWtaXXdHAHcNPVfeSLTjZXwD38mS86N13dV++mSWMaiKZpupllzOy9wOP1btRCpgpFjg9nGRqbYjKveDQuymeImIU/00lj36FlzY4Tqbubru5jZCLP0ZOjPP7sOY6eHGVkIq/P3phQ3ySVqo3gnSZc7FvKBFV+ityBhvyrv+nqPm458BjZXIF0wpjIFykEzvVXblv4xjWWTIRZL1tT4fTLTGptB3Nz2bu7l1sJO6vjw1ku0TQDqe4dwB2EqcWPA/9AWAS4oblDrhCQKwScm8iTSiToaEnS0ZKiNb22pmXHiaaxyULmyqAZFw5gYGZg56fulMalvkkqVQvw/gjYC/wr8GngK3GogVceIDw9NE5vVyvXX7mtbuvvMqkEnS2pNbmebqmUhEIugLn7W+rdiOUqBAHnJmaCvZZ0gkwy/NmSSpJMzJU5XVabprHJIjxoZscJy0l90d2fqnN7FmXfoX7WtaW5eN3MbCclWYkP9U1SqVodvHdbuLBlL/BW4I/M7B+AP3H3Y6vUviUpBQinRqcYncyv6mMnzGjLaJROZJX8m5kdA/4G+Iy7n61ze5atEAQUpgLGy7alk4lonW7YtyQU8NVF+QyRUgIvTSGXcu6+x8wuBa4FPmxmW4GvAPcCX3L3qbo2cB4aAYq3m67u4337D3NieIJCEJBKJOhqTfGBH39RvZsmdVI1yUo0YvcvZvY1wlS9vwMcBf50FdoWG8lEGNR1tqRoSyepSPggIjXi7rvM7CrC/uk3zOxbwN3u/r/q3LQVlS8G5CcCRibymBktqUQY7KWTtKQS6nNWiaaQy2K4+9OEde/ujAqc/yBwDfC7ZnbK3X+8rg2cg0aA4m8yXyRXDAgcAg+0vnuNmzfAiwpzvgH4acLC5p8FXubuA6vUtobWkk7Sng5H6bRmRqR+3P0h4CEz+z3gfwJ/ATRVgFfO3ZnMF6c/vM2MdNJoSSVpTSdoa/JamfWmKeRyIdw9D9wfXYhG9BqORqfj7bZ7H2ciH5BOJDAL13lP5ANuu/dx9VdrVLURvEHC0bpPA08Srre90syuBHD3z9a+eY0jmTDaooCuPZPSmpgaUi0XWSwz6wbeSDiC93zgc8BVdW3UKnN3cgUnVwgYnQy3ae2vSGNy9xP1bsNcNDodb8eGsiSM6en7ZuCBc2xIU2zXqmoB3t8RBnW7o0s5JxzRa2oapVt9quUiF+gw8HngVnd/oM5taRi5QsCZQg7Gw/V7pWQtLakweYvW8C2dTkBJs9LotEjzqJZk5W2r2I6GoFG6+tt3qJ98scjQWIFcMSCTTNDdllImL5lPXxyy+9ZTvhiQLwaMMZO5PZ1MkE4myKTCSzppZJJay7cQnYCKv9UO0M2sw93HFz5SZOn6NnVwdHAMc5+eohk47NrcUe+mSZ1UK3T+4bLr767Y98naNWl1ZVIJ1rdneN76Ni7d2EFvdytdrWkFd3VydHCU06M5CoGTTBiFwDk9muPo4Gi9myYNpKx/OmBm513q2bY4yBcDsrkCZ7M5BkcmOTE8wbHT4wycyTI4MsnZbI6JXBHFzrOpmHC8lQL0wdHJWQH6wSODK/5YZvYDUdKnx6PfrzCzj634A62gg0cGueGuB3nl7fdzw10P1uT/RWrj5mt209OexoBCMcCAnvY0N19TOQFP1opqUzSvLrv+c4TFhEteUpvmrI7SCF1HRskIGk2uEICF5SYgnEceWLi+SKTMX0Y/P1TXVjSZ0mgfUSJ3MyOTChO3tKXDJC5reZRPqeTjrTxAB2jPpGpZ6+0PgR8DDgC4+2Ezu7r6TepHo9Pxtnd3L299+aV8/CvHyOecTCrBW19+qV67NaxagGfzXI8dM6M1naCjJUWHpl42tHTSmMhDEMxMMwDIJPWayQx3/2r080v1bkszc3em8kWm8kXOwnSJhtY1GvAplXy8rXaA7u4DFX8fDZu3fpWDX1lhB48Msv/RE2zuamF7lAV1/6MneMkl6/X6rVHVhq8SZtZjZhvLrm8wsw1ALDKOtKQTbOpqYfuGdi5e10a3pl42vBde1M3GjgyppFF0J5U0NnZk2HVRd72bJg3IzHaZ2X4z+5aZ9Zcu9W5XsyqVaDibzfHsuQmeGsryzNkJzmZzTOabf0rnTVf3kS862VwB9/CnUsnHx7aediYqaoPVMEAfMLMfANzMMmb2XqLpmo1oYDhLW0UyOY1Ox4emj0ulaiN464CvMjN692jZvlh8ine3phc+SBpKqRbPlnUp1eKRxfhz4DcJp0P9MPDzNPiMg4NHBvmTg9/hqTPjXNzdxvVXbuOqvg31btaSVNbkS5jNjO5lEk1XokGp5ONtlWu9vYNwactW4DjwD8Av1eKBVoJGp+NN08elUrUA74fc/elVa4kI+gIlF6zN3f/ZzCzqr37LzL5MGPQ1nNI6l2QCultTDI1Pccf9R3k3u2Ib5JULolGtbK4A4zOZiVszYcmZZljzrFTy8bXKny/m7m+pxR3Xggqdx5sCdKlULcD7HPCy1WqISIm+QMkFmDSzBHDUzN4JnAAa9s1TmkbTmk6SLwTTX6TufnigKQK8SsXAGZsqMDYVlmhIJ6P1e5kkralEUwR8Ei+r+Pnyb2Z2DPgb4DPufnY1HnSpdHI13hSgS6XFJlkREWlE7wHagXcBvwO8ijDrb0MqTaMpn+Pemk7w3MhE3dq0mkpZOkcn80BUhD0VFWFPqwi7NA9332VmVwHXA78RlUy4293/V52bNi+dXI0vBehSqVqAt9XMPjLfTnd/Vw3aIyKyaO7+cHR1jHD9XUMrTaNpLUtmMJkP2NLdVsdW1c90Efap2UXYW9IJWpJJ0imbLsouEjfu/hDwkJn9HvA/gb8AGjbAk3hTgC7lqgV4E4RJVkREGoqZ/TnzJ3tyd/+F1WzPYpWm0QReIJUwJvMBhcC5/spt9W5aw5gO+pgJ+hJRPb5U0kgnEmSiUg3KiiyNysy6gTcSjuA9n3DZy1V1bZSIrBnVArwhd/+LVWuJiMji/Z85tm0nnLLZsKkbS9No/uTgd3j6zDhbYp5Fc7UEUbZO8rO3p5NhsBeO8tn0lM+1VJtPGtZh4PPAre7+QJ3bIiIN7uCRQfYd6mdgOMu2FZhiWy3Ayy35XkVEasjdP1O6bmZ9wK8DVwO3AX9Wr3Ytxt7dvbz8+Rt55uzaWHdXS6XRvnIWjfalk0YqEf7MpML1fSsR+K30h7A0rT5v9sKQ0lDUN8VXKcN2Ommsb0szODrJLQce41ZY8ms4b4Dn7i9fakNLzOwawjowSeDj7n7bHMfsBT4MpIHT7v5Dy31cEWl+ZnYZ8BvAS4EPAu9w90L1W0mzc3em8kWm8ufvK63nSyZs+pJKGKmkLapmXy0+hKW5mNmH3f09wAEzOy/Ac/fXr36rpNmpb4q38kL1AO2ZFNlcgX2H+lc+wFsuM0sCHwVeQ1jk82EzO+Du3yo7Zj3wMeAad/+umeldKDoLJQsys78D9gAfAn4ZKALdpREadz9Tv9ZJo5prxK9keuQvYSQSM9M9UwkjYeG2fYf6yReLDI0VyBUDMskE3W2pZX0IS9P5y+jnh+raCllTahEgyOqpRaH6mgV4hIuJn3T3fgAzuxt4A/CtsmPeDHzW3b8L4O6DK/HAChDiS2ehZJGuJEyy8l7gV6Ntpfl3Dqj4j1yQ6ZG/efabGUeeG2F0Ik8iYSQsDBhPjUyRKwQUA1fSF8Hdvxr9/FK92yJrRy0CBFk9tShUXzXAM7NUacqTmXUCu4H+RZ4d3woMlP1+HPj+imNeCKTN7CDQBdzh7p9aZNvnpAAh3nQWShbD3Xcs5/YLTR83s7cAN0e/jgH/xd0PL+cxS/700Hf40D88gbvT2ZLmZZeu5/su7eGi7la2dLeyuatFgUIDcndyhQCM6bV8ZoA5k/mAp4fGp49NmGHG9MhfaVQwVf7TSpeZ4+Z6zPBx9H5YKfd/6yR3fbmf42cnanoC2Mx2Ab8PvAhoLW139wVPPml5i1yobT3tHDs9xujkzOyCrtYUOzd11rtpsgi1KFQ/b4BnZm8D/sDMhoB3E063PAa80Mz+m7t/eoH7nusTqXI+egr4PuDVQBvwgJk96O5PVLTlRuBGgO3bt1d90H2H+skVZk+h6WrVFJq40FkoqbXFTB8n7Ot+yN2Hzexa4C7OP0F1wQ4eGeTOL/UzVQinCZ7J5vinxwf5p8dnJi8kDDZ1toQB37pWLupu4aKumeu9Xa1kUqoLVw/ppDFVgCBwzKCUQiOTnP1xF7iDQzH8Z95RwUplU4zP25dKhPUB08nErMAvEQWcyYSRtJm1hQmbOzB0d8wMdyfwsK3FwAmb7NEx0bHRc/Eg/BmUPa4RBriGRUFv9Byi27kz6xO/dHufdf9lD1R2+Hn7y/+Poq8WTtT+YOaYytt5xf3+3+8Mccf9R8mkEqtxAvjPgd8E/hD4YcI6nQtG6vVc3qLZT/H1ir4NPPTUmeiEEeSKAafGcrz5KmVojoNaFKqvNoL3q8D3EI6sHQZe6u7fMbOLgH8EFgrwjgPlxZ0uAZ6Z45jT7j4OjJvZIeAKYFaA5+53EX7BYs+ePVWzUj1xcoSRyQIJwg+7QtEZGs9RKI4s0FxpBDoLJatgwenj7v5vZcc/SNh/Ldu+Q/0kDNIJoxD49JdwA/LRF9XAYXB0isHRKf79xLk572djRyYM/LpbZweC0e9t6YatFBFrOzZ2cnx4nPFckXwxIJ1M0JFJcUlPx4rcf7Wki4UgoDA19/rB+ZRGCUvBaNG96mM0u7sfHiCVMNrSScys1jNE2tz9n83M3P1p4LfM7MuEQV81dVneotlP8fZA/xl6uzKMTMxeH/xA/xneVe/GyaKsdKH6agFe0d1PA6fNbMzdvwPg7icXOV3kYWCXme0EThAW+3xzxTFfAP7YzFJAhvAM+R9e4HOYJV8MP7xK013MwjN8ueLa/VCLE52FklWwmOnj5X4BuHclHvjo4CjnsnnMIJ2ycNQkcDrb0nz6P7+cU6NTPDcyycmRyejnFCej30+NTlEarBgazzE0nuNbz47O+Tjr2tJs6Z4d9F3U3RIFgq10ttRy+XXzuv7Kbdxx/1E2ZVK0phMNX6i+fNRN4NmRCbpbZ7/3azhDZNLMEsBRM3sn4fegxXx7q8vyFi2PiLeB4SwbO1rY1Dk9Gxh31+ynNazap/x3zez3CTuPI2b2B8BngR8Bnl3ojt29EHVq9xHOI/+Euz9mZu+I9t/p7o+b2ReBbwAB4Vzzby7nCWVSCSZyRQIvm0LjaEpTTOgslCzWMtYIL2b6eOkxfpgwwHtllXYsegp5aQ1XwgwnPAFVtHBtVyaVYGtPG1t72ua8bTFwTo2GAd+z5yajwG+Kk6OTPHduksHRKYpRBHhuIs+5iTzfPjl3ANjRkowCwNaZQHBddL2rle62lNZ9zeGqvg28m13c/fAAz41MqFB9zFzc3cbQ+BQdLTPfB5abyKCK9wDtwLuA3wFeBfzcIm5Xl+UtWh4Rb7VI0iHxVi3A+xngl4BzwPuBa4BfA74LvG0xd+7u9wD3VGy7s+L3DxLWsFoRu3q7eGpobHaA0JFmx0ZN8YsDnYWSxVjmGuHFTB/HzF4CfBy41t2H5ruzC5lCnk4aE/lo3VCVNVxzSSaMLevC6ZhXzDFgVAycM+O56RG/0gjgc6VgcDTM9ggwPlXkO6fG+c6p8fPvCGhNJ8qCv2j0b3oqaCs97ek1GwBe1bdBAV1MXX/lNm6/7wiDI5MU3UklwiUAH/jxF634Y7n7w9HVMcL1d4tVl+UtChDi7aar+3jf/sOcGJ6gEAQ1fW9LPFQrdD5CmAGqZH90aWilTDRb1qVWLBONrB59yMgiLWeN8ILTx81sO+GMhbdWnhVfjhde1M2x02OMTOTJrfAarmTC2NzVwuauFl68dd15+92d4Wy+LACc4uS5yekRwJMjU0zkiwBRVsgsTw/NfWIlk0rQ29UyMwq4LpoKGiWD2dCRUSZQaVxlyWFWegKrmf0589+tu/svLHAXdVneUossfrK6HGay/NbgvS3xslCZhJ8jPDv+PdGmx4GPLHeudy3VIhONrB59yMgiLXmN8GKmjwO3ABuBj0X3V3D3PcttdOn9fdG6JKmEreoaLjNjQ0eGDR0ZLru4+7z97s7oZGFm5C8KBE+em5kKOjpZAMKppseHJzg+PDHnY6WiYLN89K88GczmzhZSSU2bl9V198MDJA2SZgTuJC0sWbHC68z+zxzbthNO2Vww+1G9lrfou1O87TvUz7q2NBevm5nirzWUa1u1Mgk/S9gh/QrwKOG88JcBH4xSLDd0kKc3dDzpQ0YWablrhKtOH3f3twNvX9EWM/P+/pOD3+HpM+MNtYbLzOhuS9PdluaFF3XNecz4VGGOBDBhMDg4MslwNg9AIXCePReuFZzLTCmIskygFUlhtG5aVtpTQ2OMTUVZthO1ybLt7p8pXTezPuDXgauB24A/W+R9rPryFtB3pzjTGkqpVG0E7xeBN7r7U2Xb7jezNwF3Aw0b4Elz0PQCqWLZa4TrZe/uXl7+/I08c3bu0a9G1tGSom9zJ32b517TPJkvMliW+GV6KuhI+PvQeA6oLAUx95frDR0ZtszKAjo7E6hKQciFKs+ybVH5iFpk2Tazy4DfAF5KGIS9o5QQSqQWtLxFKlUL8LorgjsA3P0pMzt/fo/ICjh4ZJD37j/M2FSBYuCcHpvivfsP86HrrtCZRZkW1zXCza41nWT7xna2b5z7S0WuEDA4OjP6V5kI5vTYTCmIM+M5zlQpBdHdmpoO9spH/0rTQTtbVQpCZsukEkzlwyzbiRpl2TazvwP2AB8CfhkoAt1lRewXyvIrcsG0vEUqVfsErHZ6OX6nniUWbrv3cc5m8yQtLFTvAZzN5rnt3scV4MkscVwjvNZlUgku6Wmf96xyoRhweixXFvxN8ty5cETw5MgkgyNTFKIIcGSywMjkGE+cHJvzvjpakrMCvtJoYCko7G5dWimIh/rPcPfDAzw7MsHFDTTFVhZ26YYOTpwdZ3yqSD7wWmXZvpJwAsp7CZNBwUzpAwf0jVtWnJa3SKVqAd5lZvaNObYb6qCkRo4NZcMi52WF6j1wjs2TzU/WpjivEZb5pZKJmVIQc+wP3BkamykFcd5I4MjkrFIQ/afG6V9kKYjy6aBb1s1dCuKh/jPccf9RUgmjuzXF0PgUd9x/lHezS0FeDJQK1W/uTtPVkqrJKIe771ixOxO5AFpDKeWqBnir1goRkQujNcJrUMIWLgVxdiI/XfahfCSw9Hs2t7hSEOmkzV77193KP31rkGIQ0JpKgTM9FeruhwcU4MVAqVD93331OIOjkxrlEJGmVS3ASwMXufu/lm80sx9kjqLAIiuhb1MHRwfHMPdw9M7DhAy7Ni+/Tpg0Fa0RlvOYGT3tGXraM1x28fn7S6UgypO/VGYFLZWCyBe9SimIMFlMOmGkksbpsSk++W9PzVoL2NulUhCN6Kq+Dbz6RRexuaul3k0REamZagHehwnT+1aaiPa9rgbtkTXu5mt28779hxmdLFAoBqQSCXra09x8ze56N00ai9YIywUrLwWxa55SENlcYWb0rywT6HPnJvnOqbHpNYAA+cDJR79/6oGnZ91PwmBjR8tMEfiK0UCVghARkVqpFuDtcPfz1uC5+yNmtqN2TVq+j/zTE3z8K8cYzxXpyCR5+yt38q4feWG9myWLsHd3L299+aV8/CvHyOecTCrBW19+qabQSCWtEZaaaM+k2Lkpxc5N588aeKj/DB/+5yeAMICbyAfkigEv2NxJIXCeG5nkzFgOJ5x5cGpsilNj85eC6GlPh0lfumaKwJfXBWzLqBREHJlZqlQWwcw6gd1AvzJoishqqRbgtVbZ17bSDVkpH/mnJ7jj/idJGKQSYR2QO+5/EkBBXgwcPDLI/kdPsLmrhe3R+pb9j57gJZesV5An5bRGWFbdVX0beA8v5O6HB3huZIJLN3Scl0UzVwg4NTp7/V/5dNBTozOlIIazeYazeR5foBTElrLRv+nEMOta6WxRKYhGY2ZvA/7AzIYIs/x+FDgGvNDM/pu7f7qe7RORtaHap8PDZvaf3f1Pyzea2S8AX61ts5bu4185FgV34dSXhEEhCPj4V44pwIuBfYf6yRWKDI0VyBUDMskEXa0p9h3qV4An5bRGWOpqvtLYmVSCrT1tbO2Z+zxoMXBOjU1x8tz5mUCfW6FSEKVt3W1LKwUhy/KrhKVbuoDDwEvd/TtmdhHwj4ACPKmJg0cG2Xeon4HhLNuUQGjNqxbgvQf4nJm9hZmAbg+QAd5Y43Yt2XiuSOWyhoSF26XxPXFyhJHJAgnCOniFojM0nqNQnHuKk6xZH0ZrhGWVrUSZhGTC2BIFYHMJ3DkznpupATidBXRmJHDqAktBVK79KyWD6enIkFAAuNKK7n4aOG1mY+7+HQB3P9nowbYChPg6eGSQWw48RjpprG9LMzg6yS0HHuNW0Gu4Rs0b4Ln7SeAHzOyHgRdHm//e3e9flZYtUUcmyXiugHsR97COmhl0ZDSVJQ7yxfDMdXkdvCBwcsX5zpfLGhXbNcISX3c/PEAqYbSlw7VxtSiTkDBjU2cLmzpbuPx55+93d85N5Gdq/52byQQ6GNUCvOBSEF0tXLRudvB3UXcrmzpbSCYaOyhpQN81s98nHME7YmZ/AHwW+BHg2bq2rAoFCPG271A/6aTRHn3Xbc+kyOYKmv20hi0Y9bj7vwD/sgptWRGv3r2Zz319pg91BzzcLo0vk0owkSsSlJVJwFG2OakUyzXCEm/PjkzQ3Tr7Y7M1neC5kdVL3GpmrG/PsL49w+4t5+93d8amwkygz56bPK8W4ODIJCOLKgURjjZu7izLBNrVGgWC4Wjg5q4W0ioFUelngF8CzgHvB64Bfg34LvC2+jWrOgUI8TYwnGV9W3rWtrZ0kuPDc5/ckebXdMNaz43kWN+WYmSyQODh9Mzu1hTPjeTq3TRZhF29XTw1NMbIxMwavO6ONDs2dta7adJYYrlGWOLt4u42hsanpkfwIBwl29LdOOcUzIyu1jRdrWle0Dt3v5nNFaaLwVcWgj85MslwNg+E6wVLawPDeKXisYCNnZmZqZ/rKhLBrMFSEO4+Avx+2ab90aWhKUCIt2097QyOTk4H6BAmGbykp72OrZJ6aroAb2A4yyU97bMWlru7OqmYuOnqPt63/zDFwHF3ioFTKDo3Xa3M9zLLe4jhGmGJt+uv3MYd9x9lIl+kNZ1gMh9QCJzrr9xW76ZdkPZMir7NnfRtnjsAnMwXGRyZ4uToZFk9wJlgcCgqBeHA6bEcp8dyfPOZuddJb+jIzFr/txZKQZjZzxFm0PyeaNPjwEfc/VP1a1V1ChDi7aar+7jlwGNkc4XpqeN5fXda05ouwFMnFX9T+SK5YkDgEHjAVF4JcmS2uK4Rlni7qm8D72bXdJmELd1t55VJaAat6STbN7azfePcn5v5YsBgVAriZEXw91xFKYgz4znOjOeqloIoH/2bCQTDALCzNV5fU8zsZwlPQP0K8CjhQOfLgA+aGY0a5N10dR/v3X+YE2cnKBQDkgmjoyXF+6/ZjbsrG2uD27u7l1sJp9oejwY6lCRnbYtXz7kIOosRb7d/8QjjuTBBDoRr8MZzRW7/4hF1VHKeuK0Rlvi7qm9D0wV0FyqdTLB1fRtb189fCuL02NR0IpiTs9YCTjE4OjmdUKtUCuLo4DylIDLJcN1fVxQAViSDWdeWbrTg4xeBN7r7U2Xb7jezNwF3Aw0Z4EEYieLh527pMjSW49jpcdLJBJlUouynkUkmGu3/fk3bu7tX35NkWtMFeDqLEW9PDo5R9PCDxgxwKHq4XaRZJMxIJxME7riHv5d/T0okjISBYTjhMaVjy4VZgm3678Ww6czB09cJ64KmkjadEdGd6fst3U9JaVp0IXCCaJp06bFL7QgqGyJSJpmw6VG4uQTuDI/nwvV9C5WCyC1QCiKVmJn6GQWC5WsBN6x+KYjuiuAOAHd/ysy6V7MhF2LfoX6629JsWddGrhDg7rMyxOaLAflicN7t0smwb0kno+AvGQZ/KSXfEamrpgvwQGcx4qww/Y2TmZ9etl2kCWRSCbZtiO+08en1sbOCQMKz/1EJcHem9xcCJ4iuB2V/4qVAFMLbVe5LmJFI2HR34NFjl7qD0mNLvCTM2NjZwsYqpSDOTuSnk79ULQVRCHj6TJanz8xfCqK3a6YIfL4YcHRwjGyuyPM3d9biBHC1lKqrl271Ag0MZ0ka9J8aY6pQJJ1M0NOeXjBDbBj4wQSzl1KYGamETY/6paMgMJNMTJdBEpHaacoAT+IraVCIRgoqt4tIYzAzUkkj1SD5MQrFgKI7QQCFIJj+WQycoocjkgoG48PM6GnP0LNAKYhS8peTo7MTwVSWgjhxdoITZ2cHKu2ZZK1qvV1mZufV6CQ8b9Gwa0U6M0mePDVO0oykGYWic3JkikuXeCLK3ckXfc5Rv1QiQTplpBLRiF90PZ00TfkUWSEK8KShvGBzJ0+cHJvO0GbR5QXzZHsTEUklE2UfZtWjzmIwM+20EDiFYpgJszQiWSgGCgQbXHkpiF0Xdc15TDZXmFX64blzk9z32EmyuQJFh0wyUatab5et1B2tpunAqjy+cmbP314hhSCgkAM4P4FaKfhrSSW11k9kGRTgSUN5/7WX8d79hxmbKlAMnGTC6GxJ8f5rY/mZuSYdPDLIvkP9DAxn2aY1sNJgkomZtYjz8Sj4C6eflQV90c2CAIru5AuB1iM2qPZMip2bUuzc1DG97eATp9jc1U4ykSAVvQdqUOstDVzk7v9avtHMfhB4ZiUfaCWNThXYur6V02M5pgpBOEWzM0M2V1jVdpSCv4ncTPCn6Z4iF04BnjSUvbt7+dB1VyhJTkwdPDLILQceI5001relazUFSqSmzGz6S+RCSsknSiODpWmhpSAwKBsxlPoqFarvaJkZEapBGaUPA78+x/aJaN/rVvLBVkqpxFTf5s5ZSVZ6O1rq3bRFTfdUkheR2RTgScNRkpz42neon3TSputQ1mgKlEjdLHWE2qMEM+VBYDHw6aQxzkzSGE0VrY3yQvWphNWqjNIOdz9vDZ67P2JmO1bygVZSeYmppIX/N4XAuf7KbfVuWlXTI34V0z0TZqSjKZ4tySTpVDjVU4GfrBUK8ERkxQwMZ1nflp61rQZToETqYjkj1GZG0lhwemi50lTRUtBXLDq5YhBeolEWWbxSofq/++pxBkcnazVDZO7aEKG5CwdWMLNrgDsIF5R+3N1vm+e4K4EHgZ929/0X2tBy5SWmnhoa46KuNq6/cltsaz4G7kzli0zlYYyZaaapRFjHL5UMp30mEzOjfxfytynS6BTgiciKKU3zKY3gQU2mQInUxb5D/eQKRYbGCuSKAZlkgq7WVM1GqGemis69vxitE8wVA6by4U+tC6zuqr4NvPpFF7G5q2ZTDx82s//s7n9avtHMfgH46kI3NrMk8FHgNcDx6P4OuPu35jjuduC+lWp4afbMibMTTOXPT4DSDMIRv/OnekLpJIyRjIK/8vV+iWgdYCOv+dP6dylX0wBvobNQZrYX+AJwLNr0WXe/tZZtEpHaKZ/m05ZO1moKlEhdPHFyhJHJAglmUskPjecoFEfq0p4wYUyS1nRy1rhRoVgK9pzJQpGpfEAhmPtLray49wCfM7O3MBPQ7QEywBsXcfurgCfdvR/AzO4G3gB8q+K4/wp8BrhyBdosRCPm7hQCmJrnmFQiHP1LJiys01lWrzOZiIJAs0Ulc1pJWv8ulWoW4C32LBTwZXf/iVq1Q0RWT/k0HyXJkWaTL4YjY6Wz+GYQBE6u2FgjZqnSWqMMrCOcMj1VKDI+VWQiX9T0zhpy95PAD5jZDwMvjjb/vbvfv8i72AoMlP1+HPj+8gPMbCthsPgqFOCtqkIQUFjkuZJEqV5oFBSmo5+l6ys5Gqj171KpliN4iz0LJSJNRElypFllUgkmckUCd8zAo4KdmVTjJ25oSSVpKatMny8GFIpOPgh/FoJwXV++6Ar+VoC7/wvwL0u46Vzf+itfkA8DN7t7sVp9ODO7EbgRYPv27Qs+cGmK37GhMbbEfA1eIwjcyRWcHHNHhOWJYDLROsBSQHiho38Dw1mSBv2nxqanj2/qzGj9e4Py6TqsYd87vc46cC7qrraMd/FqGeAteBYq8gozO0xYH+a97v5YDdskIiKyJLt6u3hqaIyRiZk1eN0daXZs7Kx30y5YuL4I2ioKw7uHiVwm8wFThXCKtdb1rarjQHnqyks4v37eHuDuKLjbBLzWzAru/vnyg9z9LuAugD179lR9Acun+HW3pBkan+KO+4/ybnYpyKuR8kQwlUq1/9LJBIkEJG1mJHCuILCrJcXRwbHpqaGFwDlxdpJdvfHrm+KsslxOsRTAuc/etwoZkmsZ4C3mLNSjwKXuPmZmrwU+D+w6744u8CyUiEij0kL4+CqtMd2yLtW0a0zNrGy0byYj7lShyGQ+HOVTMpeaehjYZWY7gRPA9cCbyw9w952l62b2SeD/VAZ3F6p8il+uEEy/v+9+eEABXh1Uq/1XrrQWMFcohiVXAiCaXeDuFIOAQjGYXico5yv9XxeCcN1yKSALAvDzwpbzBQ7FYhjQNdLsh1oGeAuehXL3kbLr95jZx8xsk7ufrjhu0WehQF+gRKQxaSF8vO3d3cv3ff04B77xHMXASSaM179ky5p47SqneMJMFs+pQjjaN5lTMpflcveCmb2TMDtmEviEuz9mZu+I9t9Zi8edq8RNazrBcyMTtXg4WSHFwCnijOWKXNTdwnA2T74YkE4m2NSeYWSywHfPhNM0S8lfSqOC6URieopoMtpXbcpvrZSXgynVAnXCUSIzi36CYZjNPI9SvOpO2VTz8Pal25T2l25PtG46KAugC0FjBWYrpZYB3oJnocxsC3DS3d3MrgISwNByHvTgkUHeu/8wY1MFioFzemyK9+4/zIeuu2JNfAiLSOPSQvh4+8g/PcEXDj9LaXZNMXC+cPhZdm56gnf9yAvr27g6mJXFMxrtyxcDJvJFJvMK+JbK3e8B7qnYNmdg5+5vW4nHnKvEzWQ+YEv3okr3SZ1d3N3G0PgU28pKEk3ki/R2zJQDCdwJFhgVTE5nAw2DwMR0gGWz7yfwcOQquu7R9fJAyWwmCCsFZ+UCD++jGYOrRlCzleHuXgBKZ6EeB/62dBaqdCYKuA74ZrQG7yPA9b7MV/q2ex/nbDaPB+GcZQ/gbDbPbfc+vpy7FRFZtoHhLG0VRc1UCD4+7vxSP5VLJwIPt0sonUzQ3Zqmt6uV7Rvb2bahnc1dLXS1pkknGz8ZzVp109V95IvOyZEJzmVznMnmyOaKvOZFFzE+VdCX8AZ3/ZXbKATORL6IE/4sBM71V25b+MZlioGTKwRkcwXGJguMTOQ5N5HnbDY3fRmZyDM2VSCbKzCVL0ajYOdn5vWydWeFICBfnH0pNunIWaOoaR28hc5CufsfA3+8ko95bCgb1iUpS2PtgXNsSF+gRKS+VAg+3rLzFH+eb7uUkrkk6IoSw5WSuEwVAiZz4bo+jfLVX6nEzX/+y0emy4EAfPAfvs0H/+HbpBJGd1uadW1p1rWl6G4Nr3dHl3VtabpbU9Pb1rWl6cgk6zLlby26qm8D72YXdz88wHMjE2zpVhbUta6mAZ6IiMxQIXhZ68qTuHS3ztTom8yFUzsn8kWd1a+Tvbt7uezibp45O8G5ifysQK8QOGfGc5wZzy36/pIJiwLC84O/7rY061pTZUFjuE1B4dJd1bdBAZ1Ma7oAr29TB0cHx7CyOkWBw67NHfVumoiscSoEH29Jg7lqmif1fXRZSgHfOtK4O5P5MNibKhSZyitb52o68M5XcuLsBJO5AhP5IiMTBc5N5BmZDKfqTU/Zm8jP7JvIc24y/FkeFBaXGBSWgsHywG+uIFFBocj8mi7Au/ma3bxv/2FGJwsUigGpRIKe9jQ3X7O73k0TEVEh+Bh74UVdHHludFbibIu2y8owM9oySdoyM2tVc4WAyUKYuGUqHyyYOl6WzyxMBtWeSbFl3eIKL7v7rKCwdBmZLAWG4ZqusxUBY2VQOJzNM5ydozjcPMqDwvLgb66RwmaePvpQ/xnufniAZ0cmuFhTNGOn9PqdjpLlLPfkb9MFeHt39/LB667QGXIREVlRs04gBuEJxK7WlE4g1lgmlSCTSkxP6QwCny7NkM2FgZ/U31KDwsl8MB0Ins3OBISlUcLyEcJS0LiSQeF5o4JzTSdt8KDwof4z3HH/0XCtZGtKhepjpvz1W6kSSk0X4IHOkIuIyMrTCcTGkEjMjPKtbw+/4GdzBSbzAZNRVj+Jh/IR26UEhbNHCPOzRg9Lo4RnazhSGCabOT9QDEcO03S0rE5QePfDA6QSNp2lWYXq46X89SudKFluCaWmDPBERKoxs2uAOwgLCX/c3W+r2L8b+HPgZcBvuPuHVr+V0oh0ArHxJBNGV2t6OlNnoTiTsEW1+JrPcoPCUuBXvqbwXMVI4UoHhbNHCGeCwsr1hEsNCp8dmaC7dfZXehWqj4+5Xr/lllBSgCcia4qZJYGPAq8BjgMPm9kBd/9W2WFngHcBP7nSj3/wyCD7DvUzMJxdkXn2IjJbKpmgK5mgK5rSmSvMFF+fyGk651q0rKBw1gjhzEhhKQis1fTR89YTzhkohpctXa2cyeZm1VlVofr4KBWqL3/9lltCSQGeiKw1VwFPuns/gJndDbwBmA7w3H0QGDSzH1/JBz54ZJD37j/M2FSBYuCcHpvivfsP86HrrlCQJ1IjpTV869rS08WXRRYyKyjsXm5QWODcRG6OrKQFzk7klh0URqWfSZiRnk7razx/cyd/98hAxZTSaE3hKk0flYVdf+U27rj/KBP5IplUYkVKKCnAE5G1ZiswUPb7ceD7V+OBb7v3cc5m8yTNSJrhAZzN5rnt3scV4ImsAjMjpboWUiNLDgoLQcUIYfWg8NxknlxhZupx6ZxF4E6h7ATGwSdOcfCJU3M+bvlIYXngt64tNWdA2N2WoqMlRUJB4YorL1Q/ND61Iuu7FeBJw9EUNqmxuT6dlnxK38xuBG4E2L59e9Vjjw1lSViYJCK8LXjgHBta+jx7ERGJL7MwuUZbevFBIYRT+OYKCqd/rxglHJkszAoKlzpSWFovWAr+utsq6hYqKFySUqH6vs2dK3J/CvCkoRw8MsgtBx4jnVy5VLEiFY4D28p+vwR4Zql35u53AXcB7NmzR3O/RESk5iqDwof6z/D333iuah28sE5heZKZstHBqERFaW3hfCOFSw4KW8uzjKbOCwbXelCoOnjS1PYd6iedDFPEAiuSKlakwsPALjPbCZwArgfevBoP3LepgydOjpIvFnHCocSEwQsvWpkzdiIiS1WaPXNsaIwtXSqUHSeLrYNXCgovuoCRwsmykcKz5UFhWYKZWftWKCicGSGsPlJY2h7noPCh/jPcft8RxqcKBO6cHp3iffsP88FlrM9XgCcNZWA4y/q29Kxty00VK1LO3Qtm9k7gPsIyCZ9w98fM7B3R/jvNbAvwCNANBGb2HuBF7j6ynMe+9sVb+PbJ0en5oB5drn3xluXcrYgskpYAzO3gkUHet/8wo5MF8sWAM2M5br9vnJt/bLeCvBioZR281nSS1iUGhdVKUUxPKY1GDSuDwrNR0LhYCwWFc00pbZSg8K4v9zMykSeRMFLJBB4Fxbd/8YgCPGkO23raGRydnB7Bg+WnihWp5O73APdUbLuz7PpzhFM3V9QD/Wfo7WphdLJArhiQSSboak3xQP8Z3rXSDyYisyiL7fxu/+IRhrN5kokwCU3gMDKR564v9yvAi4FnRyZIGgwMT5EvBqSTCXra03Wrg7eiQeHkzLYwQCxMTyedWtGgMDVdi7C7Yspo+chhLYLCgeFofb4ZhoXr883pPz2+5PtUgCcN5aar+7jlwGNkc4XpM1DLTRUr0igGhrNs6mxhc9fMh567a4RaZBXcdu/jDI/nCDwcOS8UnXwhpyy2QP/p8ekvmIFHaffNGVDfFAsd6SRPn8mSMCNhRqHonByZ4tIN8Tk5vtSgcNaawslCxXTSmbWGI9HI4eQKjxR2t6XqEhQuRAGeNJS9u3u5lXAt3vHh7IqkihVpFBqhFqmfJ0+NU1ZuDAeKDt85tfSz5CINoRQ8GDN5or1se5MqBYW9S1xTWB4UzpmRdIWnj3aXl6EoCwrXt6YZGs8ReEAyYeAQAC/YpELn0kT27u5VQCdNSSPUIvVTmKfAeV6Fz9m5sZ0nT41jQbgyOPDwi+ylPW31bhrAeQW53ed+zRJm09NME2a4hzGORfcxM0oZPkd3pxhdLwkCxx2c8Gcwz2M1kvFcgYu6WxjO5memaHZmyOYK9W5aw1mpkcKz0TTRWUHhZGF6KumSRgodikXHgM6WJO+/9rIlPksFeCIiq2bv7l6uO36Wj3/lGOO5Ih2ZJG9/5U6d0IgRJemQZvT+ay+bXp9YKDrJhNHVkuZXXvM99LRnoiBpZpSoPGiKNoU/y44rj8kSZtO38VnH2+zbXsCIUzFwAvfpIC6VsAu6/WK5O8UgDARLAV8Q/XSfCTYteo7TtwtKx85x2yiIDLcvP4C8uLuNoSi9fslEvkhvR8uy71uWPlI4MkdAeN5I4WSBU6NTnCsL/jJJozVKmLNUCvBERFbJwSOD7H/0BJu7WtgejeDtf/QEL7lkvYKEGFCdTmlWe3f38qHrrojV8ohkwkhS+ymIZuGIYK2+MJcHkGHQGgWCQfi7w3QgWYi2FYLZgeH1V27jjvuPMpEv0ppOMJkPKATO9Vdum/+BpaYuJCj8lb85zND4FC2pBMlEgnTSmMgXl1UiTAGeiMgqUZ3HeNPrF2+l0aO5touWR9TLUgPIYuDTo5g/+bKtnDib5ZP/9tT07JC3/cAOXve9z5s1aliMAsdC2W0Dn3/Kq6yOZ0cm6G5NYRiZVAJYfokwBXgiIqtEdR7jTa9fvCUTULYsZtZ2kbhJJsL1hhDOLvjC4Wfp7W6dXt/9hcPP8n2XblhU0B6OCgYEAdMjifliQL4YUCieP2IoK6s0xbatbFrmchOwKcATEVklyqIZb3r94m1XbxdHnhudNYpn0XaROFvu7IIwWKy+5qs08ldKOjM9AhhAPigFguHPOCSmaSTlU2wzqcSKJGDTeSsRkVVy09V95ItONlfAPfypLJrxcdPVfYxM5Dl6cpTHnz3H0ZOjjEzk9frFxLUv3nJe1nizcHsjMbNrzOzbZvakmb1/jv1vMbNvRJd/M7Mr6tFOaRwDw9lZoz+w8rMLEolw+mBpbVlHS4qu1jTr2tNs6mxhy7pWLulpZ8emDi7d2MHz1rexuauFnvYMna0p2jJJ0slETRLhxN1VfRt496t2sbGjhXMTeXq7Wrn19Zcva8q0RvBEZEUpy+D8lEUz/hyiLIJhSkCdp46PB/rP0NvVwuhkgVwxIJNM0NWa4oH+M7yr3o2LmFkS+CjwGuA48LCZHXD3b5Uddgz4IXcfNrNrgbuA71/91kqjaLTZBaURwbkyQbo7udLUz6KTD8KpoPlCOAK4Vl3Vt4Gr+jbQt7lzRe5PAZ6IrBhlGaxOWTTjbd+hfta1pbl43UxtMCVZiY+B4SybOlvY3DWT1c7dG20N5VXAk+7eD2BmdwNvAKYDPHf/t7LjHwQuWdUWSsOJU41VM6MllaRljgikPPjLFwNyxYB80SkUA4qqV3lBFOCJyIpRlsHq9h3qJ1coMjQ2ewRB/z/xoCQr8batp52nhsYYmZj5++tuS7Fj48qcMV8hW4GBst+PU3107heAe2vaIml4e3f3civEqszFXKoFf+WJX0pBXykAVAKY8ynAE5EVoy/A1T1xcoSRyQIJjKQZhaIzNJ6jUBypd9NkERptGpRcmFf0beChp86QMEgY5IoBg6M5brhyQ72bVm6uBUpzfns1sx8mDPBeOc/+G4EbAbZv375S7ZMG1exlLqpN+yxl+wxH/8KgrxQMrlUK8ERkxegLcHX5Yvg9LRGltjYLM5Plijr7GAc3Xd3H+/Yf5sTwBIUgIJUIR2A/8OMvqnfTZBEe6D/D5s5MQ6/BIxyxK69OfQnwTOVBZvYS4OPAte4+NNcduftdhOvz2LNnjzqZJreW17+nkwnSSWhjdvBXKg5fyvBZLKsBmG+w0b+H+s9w98MDnB6fWpHXTwGeiKyYOK0DqIdMKsFErkjgjhm4A850YVNpfEqyEl8xWYP3MLDLzHYCJ4DrgTeXH2Bm24HPAm919ydWv4nSaA4eGeS9+w8zNlWgGDinx6Z47/7DfOi6K9ZMkDcXMyOdNMJBv7nLQExP+yx4NOUzYKoQrGrg91D/Ge64/yipxMrlL6jpt4qFUv2WHXelmRXN7LpatkdEamvv7l5uff3l9Ha1rliq32ayq7eLTV0ZUgmjGDiphLGpK6M6XDFRSrKyq7eL3Vu62dXbxbq2NPsO9de7abII23ramcgXZ21rtBkG7l4A3gncBzwO/K27P2Zm7zCzd0SH3QJsBD5mZl83s0fq1FxpELfd+zhns3k8gKQZHsDZbJ7b7n283k1reOlkgvZMinXtaTZ3tfC89W3s2NjO1p42ertbp8s8tKST04XlV9rdDw+QShht6SRmYR6DdNKW9dlSsxG8Rab6LR13O2FnJiIx1+zrAJajNMK5ZV1KI5wxNDCcJWnQf2pseorfps5Mo40AyTziMsPA3e8B7qnYdmfZ9bcDb1/tdknjOjaUxd2ZKss0mbRwu1y4WcleWmbvyxcDcoVgOstnKePncrJ8PjsyQXfr7JBsufkLajlFc8FUv5H/CnwGuLKGbRERqbtmyXS2VnW1pDg6OBYt9jcKgXPi7CS7ehsqC6PMQ39/0qwKxYDKpdxFB9ZwkpFaCdf7nT8BcjlZPi/ubmNofGpWsfrlzi6oZYC3YKpfM9sKvBF4FQrwRGQN0AhnfE1/SJc+q71iuzQ8/f3Nby0n6Yi7+cI4hXerp1qWz1Jmz9Iav9KoXyEIg7/rr9zGHfcfZSJfDNfqr8DsgloGeItJ9fth4GZ3L5rNP69VqX5FRKTexnJFtq5v5fRYbnqK5pbOFsZzxYVvLNLADh4Z5JYDj5FOrlySB1k9851j0rmnxpBKJkjNk+UzX3Qu+t5WulpT/Pm/PcXJkckVmV1QywBvMal+9wB3R8HdJuC1ZlZw98+XH6RUv2uLziKKSCMqlQHp2zwzJTObK9BblpVRJI72HeonXywyNDa7CPy+Q/36/BWpETMjkzIyqQQ/fsXz+PErnrdi913LLJrTqX7NLEOY6vdA+QHuvtPdd7j7DmA/8IuVwZ2sLaWziIOjk7POIh48MljvponIGnfT1X3ki042V8A9/NmISTpELtTRwVFOj+YoBD69vvT0aI6jg6P1bposQnKeSXDzbZfmV7MAb5GpfkVm2Xeon3QyTBG7UqliRURWwt7dvXzf9nU8NZTlm8+M8NRQlu/bvk4jHBJ7uUJA0Z2pQsBkPqwDVnQnV9Aqrjh44UVd562Lsmi7rE01LXS+UKrfiu1vq2VbJB4GhrOsb0vP2rbcVLEiIivhI//0BJ//+rPTi8mLgfP5rz/Lzk1P8K4feWFd2yayHLlCkcos74GH26Xx3XzNbt63/zCjkwUKQUAqkaCrNcXN1+yud9OkTmpa6FzkQsWhEK2IrE0fPfid8zKFebRdJM7y8wzUzbddGsve3b289eWXkkklcMI1XW99+aWaXRAjB48McsNdD/LK2+/nhrseXPbSJAV40lC0xkVEGtXUPNPV5tsuEhelUh9WdinfLo3t4JFB9j96gs1dLVy2pYvNXS3sf/SE8hfERC3yTyjAk4ayd3cvt77+cnq7Wjk3kae3q5VbX3+5zkKJiIjUSGdLiqRBqWKVWZigo7Olpit5ZIUof0G87TvUz+nRSb5zapxvPjPCd06Nc3p0clmvn/5ypeGoEK2IiMjqefsrd/KH/3QUiAoWe/jz7a/cWc9mySINDGdJGvSfGpsuc7GpM6P8BTHx6HeHmCrM3pbNB3ztu0NLvk+N4ImIiCxCd+vc50Tn2y4SFy+5ZD3dbbPfx91tKV5yyfr6NEguSGcmyYmzkxSKTtKMQtE5cXaSjkxy4RtL3VUGdyWT82xfDAV4IiIii3D589axoT1NIprGljDY0J7m8uetq2/DRJZp36F+2jNJ2jPJaKpfeF1T/OLBpufWMmsR5fR2WXN02lFEZBUdPDLIvkP9DAxn2dbTzk1X92lKckzcdHUftxx4jJ6ODG3pJBP5opJAxYz+/uZ2dHCUM2M53MAdCkGRiVz4/pbGNzpVYOv6Vk6P5aanaG7pbmFsvqEhaXoawRMRWSW1yJQlq2fv7l6ue9lWTo1O8fhzo5waneK6l21VgBAT+vub3/hUgYAwuCP6GUTbpfFt62knV5ydzTdXDFRiag1TgCciskqU6SzeDh4Z5C8ffJpcIcBwcoWAv3zwaQUIMaG/v/mVRuoqyyQUNIIXC6/o28DJkSnGo1HX8VyRkyNTvKJvQ72bJoswXzC2nCBNAZ6IyCoZGM7Slp696L0tnVSms5i4/YtHGBrLMVUMKAQwVQwYGstx+xeP1Ltpsgj6+5tfMmFzlklIJLSGKw7u/eZz4LNfPzzaLg0vnUpQ+Zdm0falUoAnIrJKtvW0M5Evzto2kS9qGk1MHB0cnXMa29HB0Xo2SxZJf3/z69vUgZmRTiZoSSdIJxOYGX2bOurdNFmE/tPjOLP7Jo+2S+PbubGdZMJoSSZoTSVoSSZIJoydG5feNynAExFZJTdd3Ue+6GRzBdzDn0rSER+l2WpmM5fy7dLY9Pc3v5uv2U1PexoDCsUAA3ra09x8ze56N00WIV8IqOyGPNouje/9117G+vY0loCiO5aA9e1p3n/tZUu+TwV4IiKrZO/uXm59/eX0drVybiJPb1crt77+ciXpiIlUKaLzskv5dmlo+vub397dvXzwuit46fYeLl7Xxku39/DB667Q/01MzHeOSeee4mHv7l4+dN0VvHRbD1u6W3npth4+tMy/P5VJEBFZRXt39+pLU0y9oLeTI8+NzvrSZNF2iQf9/c1P/zfxpQAv/lb6708BnoiIyCJc++ItfPvk6PQ6FwinaV774i31a5TIClGNQJH6Wem/P03RFBERWYQH+s/Q29VCRyZJOml0ZJL0drXwQP+ZejdNZFlUI1Ckfmrx96cAT0REZBEGhrNs6myhb3Mnu7d007e5k02dLUqzL7GnGoEi9VOLvz9N0ZSGo2kiUmtmdg1wB5AEPu7ut1Xst2j/a4Es8DZ3f3TVGyoNZVtPO8dOjzE6WSBXDMgkE3S1pti5SWvw4iIOny/16J8GhrOsb0vP2qYagSKrY2A4S9Kg/9TY9GfLps7Msv7+NIInDUXTRKTWzCwJfBS4FngRcIOZvajisGuBXdHlRuBPVrWR0pBe0beBU2M5csWAhEGuGHBqLMcr+jbUu2myCHH4fKlX/6QagSL109WS4sTZSQqBk0wYhcA5cXaSzpalj8MpwJOGomkisgquAp509353zwF3A2+oOOYNwKc89CCw3swuXu2GSmMJ1+BlyCQTBA6ZZILerozW4MVETD5f6tI/qUZgvCXmqdQy33ZpLD5doZ5ZJXjcl54HVQGeNJSB4Sxt6eSsbZomIitsKzBQ9vvxaNuFHgOAmd1oZo+Y2SOnTp1a0YZKYxkYzrKxY/YavI0dWoMXFzH5fFmx/ulC+ibVCIy3dDJBZSxn0XZpfGO5IlvXt5JKGkV3Uklj6/pWxnPFhW88D63Bk4ayraedwdFJ2jMzb01NE5EVNtc5zcrTZIs5JtzofhdwF8CePXtUdqiJqX+Kt5i8fivWP11o36Q6ePHVt6mDo4NjJBOGGbhDMXD6NnXUu2myCKW+qW/zzHrubK5Ab1frku9Tob00FE0TkVVwHNhW9vslwDNLOEbWGPVP8RaT10/9k1ywm6/ZTU97GgMKxQADetrT3HzN7no3TRahFn2TAjxpKJomIqvgYWCXme00swxwPXCg4pgDwM9a6OXAOXd/drUbKo1F/VO8xeT1U/8kF2zv7l4+eN0VvHR7Dxeva+Ol23v44HVXNNp7W+ZRi75JUzSl4WiaiNSSuxfM7J3AfYRpyD/h7o+Z2Tui/XcC9xCmIH+SMA35z9ervdJY1D/FW6O/fuqfZKka/b0t1a3066cAT0TWHHe/h/BLUvm2O8uuO/BLq90uERH1TyKyXJqiKSIiIiIi0iQU4ImIiIiIiDQJBXgiIiIiIiJNQgGeiIiIiIhIk1CAJyIiIiIi0iQU4ImIiIiIiDQJBXgiIiIiIiJNwsJyKvFhZqeApxd5+CbgdA2bU296fvGm5zfjUnffXMvGrAb1T7Po+cWbnt+M2PdP6ptm0fOLNz2/GfP2TbEL8C6EmT3i7nvq3Y5a0fOLNz2/ta3Z/3/0/OJNz2/tavb/Gz2/eNPzWxxN0RQREREREWkSCvBERERERESaRLMHeHfVuwE1pucXb3p+a1uz///o+cWbnt/a1ez/N3p+8abntwhNvQZPRERERERkLWn2ETwREREREZE1oykCPDO7xsy+bWZPmtn759hvZvaRaP83zOxl9WjnUi3i+e01s3Nm9vXocks92rkUZvYJMxs0s2/Osz/ur91Czy+2rx2AmW0zs38xs8fN7DEze/ccx8T6NVwO9U2xf3+rf4rp66e+aWHqn2L9/lbfFNPXDlapf3L3WF+AJPAdoA/IAIeBF1Uc81rgXsCAlwP/t97tXuHntxf4P/Vu6xKf39XAy4BvzrM/tq/dIp9fbF+7qP0XAy+LrncBTzTT398y/2/UN8X//a3+Kaavn/qmBf9/1D/F+/2tvimmr13U/pr3T80wgncV8KS797t7DrgbeEPFMW8APuWhB4H1Znbxajd0iRbz/GLL3Q8BZ6ocEufXbjHPL9bc/Vl3fzS6Pgo8DmytOCzWr+EyqG+KOfVP8aW+aUHqn2JMfVO8rUb/1AwB3lZgoOz345z/n7SYYxrVYtv+CjM7bGb3mtnlq9O0VRHn126xmuK1M7MdwEuB/1uxay28hnNR3xRqivf3POL8+i1W7F8/9U1zUv8Uiv37ex5xfu0Wqyleu1r1T6llt6z+bI5tlalBF3NMo1pM2x8FLnX3MTN7LfB5YFetG7ZK4vzaLUZTvHZm1gl8BniPu49U7p7jJs30Gs5HfVOTvL+riPPrtxixf/3UN81L/VMTvL+riPNrtxhN8drVsn9qhhG848C2st8vAZ5ZwjGNasG2u/uIu49F1+8B0ma2afWaWFNxfu0W1AyvnZmlCTuov3L3z85xSFO/hlWob2qC9/cC4vz6LSjur5/6pqrUP8X8/b2AOL92C2qG167W/VMzBHgPA7vMbKeZZYDrgQMVxxwAfjbKSPNy4Jy7P7vaDV2iBZ+fmW0xM4uuX0X4ug6tektrI86v3YLi/tpFbf8z4HF3/5/zHNbUr2EV6pti/v5ehDi/fguK8+unvmlB6p9i/P5ehDi/dguK+2u3Gv1T7KdounvBzN4J3EeYNekT7v6Ymb0j2n8ncA9hNpongSzw8/Vq74Va5PO7DvgvZlYAJoDr3T0WQ/Fm9mnCbEibzOw48JtAGuL/2sGinl9sX7vI/wu8Ffh3M/t6tO3Xge3QHK/hUqlviv/7W/1TrF8/9U1VqH+K9/tbfVN8X7tIzfsni9f/h4iIiIiIiMynGaZoioiIiIiICArwREREREREmoYCPBERERERkSahAE9ERERERKRJKMATERERERFpEgrwpCbM7D+Y2WNmFpjZnrLtG83sX8xszMz+uOI2XzSzw9Ht7jSzZLT9ajN71MwKZnZdxW1+zsyORpefK9v+TjN70szcyopfmtn7zOzr0eWbZlY0sw21+58QkUaj/klEGpH6JlkpCvBkWSw01/vom8BPAYcqtk8CHwDeO8dt/qO7XwG8GNgM/Ido+3eBtwF/XfHYGwhro3w/cBXwm2bWE+3+V+BHgKfLb+PuH3T373X37wV+DfiSu59Z+JmKSNyofxKRRqS+SWot9oXOZfWZ2Q7gXuBfgFcAZ81sM+CExUT/0N0fj46ddVt3Hwe+YmYvqLxfdx+JrqaATHR/uPtT0X0FFTf5MeAfS52Mmf0jcA3waXf/2lyPX+EG4NOLec4iEg/qn0SkEalvktWkETxZqu8BPgW8HSi4+4vd/f8B/nw5d2pm9wGDwCiwf4HDtwIDZb8fj7Yt5nHaCTu0zyyhmSLS2NQ/iUgjUt8kq0IBnizV0+7+INAP9JnZH5nZNcDIAreryt1/DLgYaAFetcDhc51i8kU+1OuAf9UUA5GmpP5JRBqR+iZZFQrwZKnGAdx9GLgCOAj8EvDx5d6xu08CB4A3LHDocWBb2e+XAM8s8mGuR1MMRJqV+icRaUTqm2RVKMCTZYmyLCXc/TOEC4BftsT76TSzi6PrKeC1wJEFbnYf8KNm1hMtEP7RaNtCj7UO+CHgC0tpq4jEg/onEWlE6puk1hTgyXJtBQ6a2deBTxJmV8LM3mhmxwkXEv99ND+caN9TwP8E3mZmx83sRUAHcMDMvgEcJpxLfmd0/JXRff0HYJ+ZPQYQTRH4HeDh6HJr2aLhd0W3uQT4hpmVnx17I/AP0aJlEWle6p9EpBGpb5KaMvfFTrsVERERERGRRqYRPBERERERkSahAE9ERERERKRJKMATERERERFpEgrwREREREREmoQCPBERERERkSahAE9ERERERKRJKMATERERERFpEgrwREREREREmsT/D3T2BGUMqlJ+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(1, 3, figsize=(15, 5))\n", + "ax1, ax2, ax3 = axes\n", + "cd4ydata = (common_individuals_individual_ratio_df['CD8T TEM']) / common_individuals_individual_ratio_df['CD8T']\n", + "sns.regplot(x=common_individuals_individual_ratio_df['gt'],\n", + " y=cd4ydata, \n", + " ax=ax1)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_df['gt'],\n", + " cd4ydata)\n", + "ax1.set_title('Oelen v2 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax1.set_ylabel('CD8 TEM / CD8T')\n", + "ax1.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_df['CD8T Naive']) / common_individuals_individual_ratio_df['CD8T']\n", + "sns.regplot(x=common_individuals_individual_ratio_df['gt'],\n", + " y= cd8tydata, \n", + " ax=ax2)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_df['gt'],\n", + " cd8tydata)\n", + "ax2.set_title('Oelen v2 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax2.set_ylabel('CD8 Naive / CD8T')\n", + "ax2.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_df['CD8T Naive']) / common_individuals_individual_ratio_df['CD8T TEM']\n", + "sns.regplot(x=common_individuals_individual_ratio_df['gt'],\n", + " y= cd8tydata, \n", + " ax=ax3)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_df['gt'],\n", + " cd8tydata)\n", + "ax3.set_title('Oelen v2 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax3.set_ylabel('CD8 Naive / CD8T TEM')\n", + "ax3.set_xlabel(\"rs1131017\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'rs1131017')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqsElEQVR4nO3deZwcdZ3/8dd7rtyBYCYQBYnxyorKsdH1zMYbdAVZj1U8YD3IrvpTV9YV8Scq7q663ntJUPDYFTzw4ueKyiqHBx4BIYjEKwIJBBIgIcckmZmez++Pqp6p6emu6Znp6pmefj8fj35097eqvvWZmZpPf/tb3/qWIgIzM2sfHdMdgJmZNZcTv5lZm3HiNzNrM078ZmZtxonfzKzNOPGbmbUZJ35rCEkrJIWkrumOxczyOfHbMElnSLpJUp+kuyR9UtKh0x1XHkkflvQ7SXskbZL0qgL39Yx0H32SrpR0dI315ki6UNJtaVy/lHTSZOoqkqTT0hj3SfqGpMNy1l2RxtmXxv3MzDJJeqek2yXtlvRFSYszyw+T9CVJ96SPL2SXW/M58RsAks4CPgi8DTgEeAJwNHCFpJ7pjG0c+4Dnk8R8OvAJSU+qZ8OJfDuRtBT4GvAu4DBgA/ClGqt3AVuAP0/jehfwZUkrJlFXISQdA6wHXgkcDvQB/5mzySXAL4EHAO8ELpXUmy57VVrPk4EHAvOAf8ts+4/AEmAl8NB0f+9p0I9ikxERfrT5A1gM7AVeUlG+ENgOvDp93wGcDfwBuBf4MnBYumwFEEBX+v4Q4EJgG3AHyT9/Z7rsDOBHwIeBncAfgZNqxHY2cGlF2SeAf62x/mXAWTWWrQW2Am8H7gL+awK/ozOBn2TeLwD2A6vq3H4j8MIG1RXAm4DNwD3Ah4COCf7N/xm4OPP+oUA/sKjKuo8ADmaXAT8E/iZ9fSnwtsyyJwEHgPnp+8uB12eWvwH47nQf9+38cIvfIPlHnUvSCh0WEXtJ/mmflRa9CXgBSUv2gSRJ+z9q1Pk5YBB4GHA88GzgtZnlfwb8BlgK/AtwoSRVqecS4LnlrgFJncBLgIsrV5Q0D3gccHPOz3oESSv7aOBMSQ+WtCvncVq63THAjeVKImIfyQfgMTn7Ksd1OEnyLMc16boyTgVWAycApwCvTvf1lHF+nqfUiOEPJIn/EVX2dQywOSL2ZMpuzMSr9EHm/Rzg4en7/wD+QtISSUuAF5IcVzZNnPgNkuR7T0QMVlm2LV0OsA54Z0RsjYiDJF/XX1TZZZImupOAt0TEvojYDnwMeGlmtdsi4lMRUSL5kFhO0gUwSkTcBlxP8oED8HSgLyJ+WiXW80kS0ndzftYh4N0RcTAi9kfE7RFxaM6j/AGzELi/oq77gUU5+0JSN/AF4HMRsWkqdVX4YETcFxG3Ax8HXgYQET8a5+f50SRiGG/dy4HXpucBDiH5RgUwP32+Hugh+ZZ4L1Aiv1vJCubEb5B0Fyyt0ee9PF0OSSv56+XWI3ALyT9xZcI+GugGtmXWXQ8sy6xzV/lFRPSlLxfWiO9i0sQGnEb11v6HgEeTdFflzTy4IyIO5CyvZS9Jl1jWYmBPlXXLMXUA/0XSkn7jVOqqYkvm9W0k38AmYiIxjLfuRSTfzK4i+VZzZVq+NX3+CvBbkg+KxSTfbv57gvFaAznxG8C1JH24f5ktlLSApOX+/bRoC0lffLYFOTci7qiob0ta39LMeosjYiJdGVlfAdZKOpKki2NU4pf03jTOZ0fE7nHqGvWhkHb17M15vDxd9Wbg2Mx2C0j6xat2K6XdVheSfCi+MCIGMosnVFcNR2VePxi4M63rqeP8PE+tEcNKku6Z31bZ183ASknZbwPHluONiKGIeHdErIiII9PyO9JHed316be/vSTfzJ47gZ/VGm26TzL4MTMewD8AdwMnkrTWVwDfJvmaPidd5+9IWnVHp+97gVPS1ysYfXL3myQnYReTNDAeCvx5uuwM4EcV+w/gYTnxXQ5cAfyyovwdwO+A5XX8jGuBrZP8/fSSdG+8kOR8yAeBn+asfz7wU2DhROtKfz+35tQdJB/GS0g+ADYBZ07w5zkG2A08leTk8n8DX8xZ/6ckJ+Pnknz47gJ602WHpX9fAY8CfpWNh+QbwL+RjPaZR9LN8+PpPubb+THtAfgxcx7Aa9J/2v3ph8B6YElmeQfwVpKTsntIvrL/c7qsMvEfAnyS5Ov+/SRDAV+aLptM4n9lus7bqmx3kKQ7ovw4p0Ydk0786fbPTJPsfpIPwBWZZecAl6evj07jOlAR18vrrOtdwBdy4siO6rkX+AjpiKkJ/jynAbeTDIn9JukIrXTZ+cD5mfcr0jj3p3//Z2aWPSIt6yPpdnprxX4eAvy/NNb7gO8AD5/u472dH0r/MGY2Q0j6HvDmiLilxvIgSZy/b25kNlv48nqzGSYinj3dMdjs5pO7ZmZtxl09ZmZtxi1+M7M20xJ9/EuXLo0VK1ZMdxhmZi3luuuuuycieivLWyLxr1ixgg0bNkx3GGZmLUXSbdXK3dVjZtZmnPjNzNqME7+ZWZspLPFLmivp55JulHRzOpFW+TZsVyi5Xd4V6fzcZmbWJEW2+A8CT4+IY4HjgBMlPYHkjkrfj4iHk0w0dXaBMZiZWYXCRvVEcmXY3vRtd/oIkrsFrU3LP0cy8dPbMWshV23azvprNrNlZx9HLZnPujUrWbtq2fgbms0AhfbxS+qUdAPJfVuviIifAYdHxDaA9Lnqf4ukMyVtkLRhx44dRYZpNiFXbdrOuZfdzPY9Bzh0Xjfb9xzg3Mtu5qpN26c7NLO6FJr4I6IUEccBRwKPl/ToCWx7QUSsjojVvb1jrj8wmzbrr9lMd6eY39OFlDx3d4r112ye7tDM6tKUUT0RsYukS+dE4G5JywHSZzeTrKVs2dnHvO7OUWXzujvZurOvxhZmM0uRo3p6JR2avp7HyI0nLgNOT1c7neQGEGYt46gl89k/UBpVtn+gxJFL5tfYwmxmKbLFvxy4UtJG4BckffzfAj4APEvS74Bnpe/NWsa6NSsZKAV9/YNEJM8DpWDdmpXTHZpZXYoc1bMROL5K+b3AM4rar1nR1q5axnkkff1bd/ZxpEf1WItpiUnazGaatauWOdFby/KUDWZmbcaJ38yszTjxm5m1GSd+M7M248RvZtZmnPjNzNqME7+ZWZtx4jczazNO/GZmbcaJ38yszTjxm5m1GSd+M7M248RvZtZm6kr8kp4i6a/T172SHlJsWGZmVpRxE7+kdwNvB96RFnUD/11kUGZmVpx6WvynAicD+wAi4k5gUZFBmZlZcepJ/P0REUAASFpQbEhmZlakehL/lyWtBw6V9Drgf4FPFRuWmZkVZdxbL0bEhyU9C9gNPBI4NyKuKDwyMzMrxLiJX9LfAV9xsjczmx3q6epZDHxX0g8lvUHS4UUHZWZmxRk38UfEeyPiGOANwAOBqyX9b+GRmZlZISZy5e524C7gXmBZMeGYmVnR6rmA628lXQV8H1gKvC4iHlvHdkdJulLSLZJulvTmtPw9ku6QdEP6eO5UfwgzM6vfuCd3gaOBt0TEDROsexA4KyKul7QIuE5S+QTxxyLiwxOsz8zMGqBm4pe0OCJ2A/+Svj8suzwi7surOCK2AdvS13sk3QI8aMoRm5nZlOR19VycPl8HbEifr8u8r5ukFcDxwM/SojdK2ijpIklLamxzpqQNkjbs2LFjIrszM7McSmZjKHAH0kLgauCfIuJr6XDQe0imgHgfsDwiXp1Xx+rVq2PDhgl91piZtT1J10XE6sryevr4SVvlDwfmlssi4po6tusGvgp8ISK+lm53d2b5p4Bv1RODmZk1Rj1X7r4WeDNwJHAD8ATgWuDp42wn4ELgloj4aKZ8edr/D8nMn7+aVORmZjYp9bT43ww8DvhpRDxN0irgvXVs92TglcBNkm5Iy84BXibpOJKunluBdROM2czMpqCexH8gIg5IQtKciNgk6ZHjbRQRPwJUZdG3JxylmZk1TD2Jf6ukQ4FvAFdI2gncWWRQZmZWnHqmZT41ffkeSVcChwDfKTQqMzMrTF2jesoi4uqiAjEzs+bIu3J3D8kJ2Gw/faTb9ETEhD40zMxsZqiZvCNi1A3V0/l2Xk8yCufrBcdlZmYFqWd2zkMlvQe4EVgEPC4izio6MDMzK0ZeV89S4Czgr4CLgOMj4v5mBWZmZsXI66e/DdgBfAboA16TXIybyF6Na2ZmrSMv8X+I5GQuJF08ZmY2C+Sd3H1PE+MwM7Mmmcg9d83MbBZw4jczazNO/GZmbWZCiV/S54sKxMzMmiNvHP9llUXA09KZOomIkwuMy8zMCpI3nPNI4NfApxmZs2c18JEmxGVmZgXJ6+pZDVwHvBO4PyKuAvZHxNWepdPMrHXljeMfAj4m6Svp8/a89c3MrDXUcyOWrcCLJT0P8Fw9ZmYtbtzEL+kxwKr07cXFhmNmZkXLG9VzCPBN4ChgI8nJ3cdIuh04JSJ2NydEMzNrpLyTu+8DNgAPj4hTI+IFwCOAXwD/1ITYzMysAHldPc8EHpue5AUgIkqSzgFuKjwyMzMrRF6Lvz8iBisL07KDxYVkZmZFymvxz5V0PKNvtk76fk5xIZmZWZHyEv9dQK27bN01XsWSjgI+DxwBDAEXRMQnJB0GfAlYAdwKvCQidk4gZjMzm4K8C7jWTrHuQeCsiLhe0iLgOklXAGcA34+ID0g6GzgbePsU92VmZnWq2ccv6RWSXlml/HWSThuv4ojYFhHXp6/3ALcADwJOAT6XrvY54AWTiNvMzCYp7+TuWcA3qpR/KV1WN0krgOOBnwGHR8Q2SD4cgGU1tjlT0gZJG3bs2DGR3ZmZWY68xN+ZttRHSS/c6q53B5IWAl8F3jKRi74i4oKIWB0Rq3t7e+vdzMzMxpGX+LslLagsTPvre+qpXFI3SdL/QkR8LS2+W9LydPlyYPvEQjYzs6nIS/wXApem3TTAcJfNF9NluSQpXe+WiMiODroMOD19fTrJtBBmZtYkeaN6PixpL3B12l0TwD7gAxHxyTrqfjLwSuAmSTekZecAHwC+LOk1wO3Ai6cQv5mZTVDu7JwRcT5wfpr4Va3PP2fbHzH24q+yZ9QfopmZNVJdN1uPiL3AEwqOxczMmqCuxJ/6YGFRmJlZ00wk8ZuZ2SyQ28cv6TMkJ3UFPFjSReVlEfHqgmMzM7MCjHfrxc9mXj+FkakWzMysRY03qufq8mtJe7LvzcysNU2kj7+/sCjMzKxp6k78EeHhnGZms0Bu4pfUlXm9UNLq9EYqZmbWovLm4z+DZEK130o6CdhIMpb/Rkkva1J8ZmbWYHknd88CHgksAm4Ejo+IP0g6HLgCuKQJ8ZmZWYPlJf5SRNwD3CNpb0T8ASAi7k4m3jQzs1aUl/hvl/R+khb/JkkfAb4GPBPY1ozgzMys8fJO7r4C2A1sBU4GrgXeARxOcsN0MzNrQXnz8e8G3p8pujR9mJlZCxtvOOfpkq6XtC99bJD0qmYFZ2ZmjVezxZ8m+LcAbwWuJ5mo7QTgQ5KIiM83JUIzM2uovBb/64FTI+LKiLg/InZFxA+AF6bLzMysBeUl/sURcWtlYVq2uKiAzMysWHmJf/8kl5mZ2QyWN47/TyRtrFIuYGVB8ZiZWcFyE3/TojAzs6bJS/zdwOER8eNsoaSnAncWGpWZmRUmr4//48CeKuX702VmZtaC8hL/iogY08cfERuAFeNVLOkiSdsl/SpT9h5Jd0i6IX08d1JRm5nZpOUl/rk5y+bVUfdngROrlH8sIo5LH9+uox4zM2ugvMT/C0mvqyyU9BrguvEqjohrgPumEJuZmRUg7+TuW4CvS3o5I4l+NdADnDqFfb4xnQ5iA3BWROycQl1mZjZBNVv8EXF3RDwJeC9wa/p4b0Q8MSLumuT+Pgk8FDiOZE7/j9RaUdKZ6aRwG3bs2DHJ3ZmZWaW8Fj8AEXElcGUjdhYRd5dfS/oU8K2cdS8ALgBYvXp1NGL/ZmY2zrTMjSZpeebtqcCvaq1rZmbFGLfFP1mSLgHWAkslbQXeDayVdBwQJF1H64rav5mZVZc3H/93ge8Al0fEpolWHBEvq1J84UTrMTOzxsrr6jkd2Am8J70L1yclnSJpYZNiMzOzAuTdc/cukouwPiupA/gz4CTgHyTtB74XEf/SlCjNzKxh6urjj4gh4Nr0ca6kpcBzigzMzMyKMamTuxFxD/CFBsdiZmZN0NThnGZmNv2c+M3M2kzecM635m0YER9tfDhmZla0vD7+DwM3AJcDB0nutWtmZi0uL/GfALwUeB7J7JyXAN+PCM+bY2bWwvJm57whIs6OiONIrrg9Bfi1pJObFZyZmTXeuCd3JfUCxwOPAbYC24sOyszMipN3cvevgb8iuQXjpcBLIsJJ38ysxeX18V8I3ATcTnKV7rOlkfO7EeEuHzOzFpSX+J/WtCjMzKxp8hL/LyNid7UFkh5cUDxmZlawvJO7V5VfSPp+xbJvFBGMmZkVLy/xZy/YOixnmZmZtZC8xB81Xld7b2ZmLSKvj39ZOl+PMq9J3/cWHpmZWRu7atN21l+zmS07+zhqyXzWrVnJ2lXLGlJ3Xov/U8AiYGHmdfn9pxuydzMzG+OqTds597Kb2b7nAIfO62b7ngOce9nNXLWpMZdS5bX4742If2/IXszMrG7rr9lMd6eY35Ok6Pk9XfT1D7L+ms0NafXntfhfPeXazcxswrbs7GNed+eosnndnWzd2deQ+n0jFjOzGeaoJfPZP1AaVbZ/oMSRS+Y3pP68xP9YSburPPZIqnphl5mZTd26NSsZKAV9/YNEJM8DpWDdmpUNqT+vj/+miDi+IXsxM7O6rV21jPNI+vq37uzjyAaP6slL/FMi6SLgL4DtEfHotOww4EvACuBWkhk/dxYVg5lZq1q7alnDEn2lvK6er0yx7s8CJ1aUnU1yF6+HA99P35uZWRPl3YHrn6dScURcA9xXUXwK8Ln09eeAF0xlH2ZmNnHNHtVzeERsA0ifa36PkXSmpA2SNuzYsaNpAZqZzXYzdjhnRFwQEasjYnVvr2eIMDNrlAklfkmfn+L+7pa0PK1rOb5/r5lZ0+Xdc/eyyiLgaZIOhUnfevEy4HTgA+nzNydRh5mZTUHecM4jgV+TTMgWJIl/NfCReiqWdAmwFlgqaSvwbpKE/2VJryG5l++LJx25mZlNSl7iXw28GXgn8LaIuEHS/oi4up6KI+JlNRY9Y4IxmplZA9VM/BExBHxM0lfS5+1565uZWWsYN5FHxFbgxZKeB9xffEhmZlakcRO/pMcAq9K3FxcbjpmZFS1vVM8hJKNujgI2kpzcfYyk24FTIsIzdJqZtaC8Fv/7gA3A09P+fiR1Au8H/gn4P8WHZzYzFXk/VLOi5SX+ZwKPLSd9gIgoSToHuKnwyMxmqPL9ULs7Nep+qOeBk7+1hLwrd/sjYrCyMC07WFxIZjNb9n6oUvLc3SnWX7N5ukMzq0tei3+upONJ+vazBMwpLiSzmW3Lzj4Ondc9qqyR90M1K1pe4r8L+GjOMrO2dNSS+Wzfc4D5PSP/Po28H6pZ0fIu4FrbxDjMWsa6NSv5+0tv5I5d+ykNBZ0dYuGcLt71vEdNd2hmdanZxy/pFZJeWaX8dZJOKzYss5lNAAERATG2P9RsJsvr6jkLWFOl/EvAlczwi7k83M6Ksv6azSye180Rh8wbLuvrH2T9NZt9jFlLyBvV0xkReyoL0wu3uqusP2OUh9tt33Ng1HC7qzZ5+n+bui07+5jX3TmqzCd3rZXkJf5uSQsqCyUtAnqKC2nqPNzOinTUkvnsHyiNKvPJXWsleYn/QuBSSSvKBenrL6bLZiy3yKxI69asZKAU9PUPEpE8D5SCdWtWTndoZnXJG9XzYUl7gaslLSS5Gcs+4AMR8clmBTgZHm5nRVq7ahnnkXyz3LqzjyN9DslaTO7snBFxPnB+mvhVrc9/Jlq3ZiXnXnYzff2DzOvuZP9AyS0ya6i1q5Y50VuhihygUtfN1iNiL/CEhuyxCdauWsZ5Jx/DskVzuX//AMsWzeW8k4/xP6qZtYSiB6hM5I5aHwSuaMhem8AtMjNrVdkBKgDze7oaOmS4rha/mZk1T9EDVHJb/JI+Q3JSV8CDJV1UXhYRr25IBGZmNspRS+bzx3v2sufAIP2lIXo6O1g0t4uHLF3YkPrH6+r5bOb1U4DPNWSvZmZW0xNXHsbPb72PDkGHoL80xI69/Zz2+MMaUv94o3quLr+WtCf73szMinHt5vtYtqiH3ftHWvyL53Vx7eb7eFMD6p/Iyd3+BuzPzMzGsWVnHw9YMIelC+cOl0VEc/r4syKiZYZzmpm1sqOWzOfWe/eOafGveEBj+vhzR/VI6sq8XihptaQpdzJJulXSTZJukLRhqvWZmc0mT1x5GNv39NNfGhru49++p58nrmxMH3/efPxnAHdL+q2kk4CNJGP5b5T0sgbs+2kRcVxErG5AXWZms8a1m++jd2EPPZ0dDAX0dHbQu7CHazff15D6x5uP/5HAIuBG4PiI+IOkw0ku5LqkIRGYtSDf78GKtGVnH0sXzqF3UTF9/HldPaWIuCci/gjsjYg/pDu/uwH7DeB7kq6TdGa1FSSdKWmDpA07duxowC7NGsP3e7CiFT31d17iv13S+yX9O7BJ0kckPVnSu4FtU9zvkyPiBOAk4A2SxtzpKyIuiIjVEbG6t7d3irszaxzf78GKVvTU33mJ/xXAbmArcDJwLfAO4HDgjKnsNCLuTJ+3A18HHj+V+syaacvOPgZLQ2zesZdNd+1m8469DJaGfL8Ha5iiJ5rMm49/N/D+TNGl6WNK0rt6dUTEnvT1s4HzplqvWbMs7Onk9zv20SnRKTFYCu7YdYCH9Y65YZ3ZpEQET31EL099RC+dHWp4/ePN1XM68GaSk7wAtwD/GhGfn8I+Dwe+Lqm8/4sj4jtTqM+sqdJjN5nBqvw/GZlym/UigqFIngOIgCCIyK6TlI28hqEIYghKEZSGYrieoYjkkS6LCH6++T4uvX4rd+0+0PABBDUTv6RXAW8B3gpcT3KInwB8SBKTTf4RsRk4djLbms0Eew4O8qBD53LP3v7hi2uOWDyHvQcHpzs0q2JoKE2qaYItJ+Th90OZxJtJ4EPZ5B4MlyWJPsbd71T8fPN9fOIHv2NOV8eoAQTnQUOSf16L//XAqRFxa6bsB5JeSHLf3am0+s1aVvnWnit7R66i7OsfZFlm6J1N3oQTdUWruTJpt6Iv/mILXR1iXnfn8ACCRs7Hn5f4F1ckfQAi4lZJi6e854J5nLUVxbf2HK1a4s0m61HdIWkXR3b9pMuD4dcG23bvZ/Hc0em5WfPx75/ksmlXHmfd3alCviZZe1u7ahkv2rqLT//oj+zrL7Ggp5PXPuUhLXVsuVU9sy1fPI87du1j38ESA0PR8Ll68hL/n0jaWKVcwIxu2qy/ZjP9gyXu3Tv6JgaN+ppk7e2qTdv51A83s6+/xFDA3oODfOqHm3nskYdO+fiqPGlYTrLJspE+5mxyzq6XTdDlvuhqLXCb2Y4/6hA23rGLDkFnh4bn6nnZ44qfj/9PGrKHafDbu3eza/8AQ0PJmfTBUokDgyUGS0PTHZrNAMPJkOrdE8OJtsp2AOd87Ub2HBy5qnIoYM/BEu/46o18801PhbTu7KiO7LpDQ9mRHiOxOCFb2S+33M9h87vp6x9p8S+a25z5+LuBwyPix9lCSU8F7mzAvguzv3+I0tDo0XalIejrd+LPKieaWomu2rrZIYvZwYuRWW/kdXb56JZrtvU5FCMVVA5/q6xzdLwxJuihKsm00SMy7txd/dYU2/b0s/eAR/bMVhHBQCnoLw0xUBpiYHBo1Pv+wfS5NMTAYCTrpO/7M++TR4xevxSj6rh52/0ADJYCCeiEOV0dTenj/zhwTpXy/emy5zckggIMZFv2Yjg5DNTR4s+2BivH6I5dt/r7bOIp1wlUTYi1Axmpq7xNebPKr/XVWo3jjSd269JaQWkoTaxVkmp/rSQ6OER/KZN4BzPrVdkmu15/RQIeKMWoZD0dBAwOJRcJPnxZ8X38KyJiTB9/RGyQtKIhey9IR4foGAqGYDhbCpDg9nuTT0wnQpusTFtiTHmrq7dVO1CRWPurJNLh7QZHt2oHMmX9pcgsH9vybcVBPt2doqezg+7yo0t0d3YMl/Wk74fLujpGbdPT1cG3N25j1/6B9J67GmkINihP5SX+vEHJ8xqy94L0Luhm6/0HR5UFsGReF4ND7u6xqZnf08m+/lLV8smot1U7ujuhsmU60oodtc2o96O7HGrtp9V0iEwCLSdYZd5rOKGOTrgjCTn7fmQdjdqmu6KenuHXGrVOI67g/t9b7mZ5zxx29Q0wMBR0dYojFs6petxNRl7i/4Wk10XEp7KFkl4DXNeQvRdk0bweOncfZIiRLo8OYMHcnukMy2aIcqs22zUwbqs2k0SHajRDB0pD/OP/3FLRqh3beh7dUm7dVm22FZvXqi0nxHJyrpYweyqS9PA2o5L56OTck9ZVxFw202354nls3blvVNnBwSEesrT4rp63kMyp83JGEv1qoAc4tSF7L8ieg4McuWQe9+zt5+Bgie7ODpbM76av3yfepktpaGzf6eiTW7VbtZVdDmNOiuW0aiv7csvbFKG/FPygoDn5K1u1oxJvV/VWbWX3QWWLtd5W7ejWc+NatVZbteGcO/b2c9rjCx7Omd5w5UmSngY8Oi3+n4j4QUP2XKDsJfX9g0NEBPsHSixbMGe6Q2uaiGBwKKqe2BpOnJUt0CpJdGCw+gmxbCs2t1Wb7qeVW7WVXQO33Vt7ZMVzH33EcKt2VBdAmpx7qiTn4VZwm7VqrbZfbrmfByzoHnMBVzOGcwIQEVcCVzZgX02zbs1K3nbpjdyxcz8DpSE6O8SCOV28Ye3DCt1vuVWbTbSj+mAzSbTa6INqrdrKVnD14WHNa9UWSZBJimO/5vd0je0aGH0irbL1OrJNT8U247VquzqVnFSr4ukfubrmz/D3z3lkzWVm9dq2ez/dnR3ASJ9+T2dzhnO2tIMDJQ4ODhFAqRTo4CAbt+5i14GB0SfRclq11RJ0tk94NrRquzqySTBn9EGVRDvmxFamVVvtRNtsadUeOreTXQfGnmQ7dO7kTu7a7FTuDtPw+/G3KZ+TXNDdya339lEeijJYKrF15/6mDOdsWR/8zib2HCyNGnJ3sBRc/Ist0xZTWYeo2p+abbVmk2Y5uVYuzw4XGzs8rL5Wbl6r1mo7+6RH8X+/cRODmQOsS0n5TCIJwfDfOO9PXW1ZefvycqH0uVyYlI0sH73tmPqq7HN4DxqpozJhZuPL7m9MHfX8TOlztQsCx5NXX/l3NRLX1P6vBsrD0VMBlIKmjOppWb+5a0/Nq1CXLuzJHY3Q3aVRLdN6WrXZlnJeou3pap1W7WxXrTVWTmzD7ysSX7K+mNPdwdzuDvb1J98oBczt7mD+nE4OmdddNWEyKlGNxDBmPaonmMoYskmyWovSJ19b2527qs+DWat8omZl4s8bqf/ldU9sWhw2VrZlNJzA0iTbUVlWJcENl3ckLdnsNjA2gY7ZtgEJcf3Vf2BvZvqPAPb2D/GfV/6ek4970JTrN6t1iq5Rp+5mZeK3+pUTbrY7oDLJdpTL0vUqE3Blcu2QRm3bIdExi77p/ObuvRMqN5tpZmXi7xBVT7S2aupJWrbVW8cdAjIJeXjdTIu4nNRHEnKmDncJTFitRlcLntu3GUqqfu6hUf+uszLxz+nqYP/A2A6fnq7mJLlsou7oyCbk0Qk3+zxqG83OlrKZ1UcUOx/UrEz83Z3VE39XR8e422aTrzIJeUyS7hh53dkxsk5nh69qNLOpKfpb5axM/IM1BtQPRXDEIXPH9EG728PMZpJOMWq4cLa8EWZl4u+rMdZ1/8AQ83tm5Y9sZrPI8kPmsWXn2KGbyw9pzMTI4/d9mJlZU0WN6eNrlU/UtCR+SSdK+o2k30s6ezpiMDObqXbsG6BTpKP3kudOJeWN0PR+D0mdwH8AzwK2ksz7f1lE/LrZsZiZzVSdHaIzMyCl1MCbSE1Hi//xwO8jYnNE9ANfBE5p5A56apwBqVVuZjaTrFy6gKFI769NMJTeX3vl0gUNqX86Ev+DgOxsaVvTslEknSlpg6QNO3bsmNAO/vTow5hTMWZ/Tpf406MbcxMDa2+1mg9uVlijvP3EVSyZ353caL00hIAl87t5+4mrGlL/dCT+av8fYwYuRcQFEbE6Ilb39vZOaAfr1qzk8MXzeGjvAh79wMU8tHcBhy+ex7o1Kycbs9mwFxy3fELlZhO1dtUyPvSiYzn+wUtYfsg8jn/wEj70omNZu2pZQ+qfjrGNW4GjMu+PBO5s5A7WrlrGecD6azazdWcfRy6Zz7o1Kxv2S7P29rGXngBcz2Ub76I0FHR2iJMfe0RabtYYa1ctKyxnKeqdjLpRO5S6gN8CzwDuAH4BnBYRN9faZvXq1bFhw4YmRWhmNjtIui4iVleWN73FHxGDkt4IfBfoBC7KS/pmZtZY03IZa0R8G/j2dOzbzKzd+cpdM7M248RvZtZmnPjNzNpM00f1TIakHcBtk9x8KXBPA8NpFMc1MY5rYhzXxMzUuGBqsR0dEWMuhGqJxD8VkjZUG8403RzXxDiuiXFcEzNT44JiYnNXj5lZm3HiNzNrM+2Q+C+Y7gBqcFwT47gmxnFNzEyNCwqIbdb38ZuZ2Wjt0OI3M7MMJ34zszbT0ol/vHv3KvGv6fKNkk6od9uC43p5Gs9GST+RdGxm2a2SbpJ0g6SGTklaR1xrJd2f7vsGSefWu23Bcb0tE9OvJJUkHZYuK+T3JekiSdsl/arG8uk6tsaLa7qOrfHimq5ja7y4mn5spXUfJelKSbdIulnSm6usU9wxFhEt+SCZ2fMPwEqgB7gReFTFOs8FLie5+csTgJ/Vu23BcT0JWJK+PqkcV/r+VmDpNP2+1gLfmsy2RcZVsf7zgR804fe1BjgB+FWN5U0/tuqMq+nHVp1xNf3Yqieu6Ti20rqXAyekrxeRTFXftPzVyi3+eu7dewrw+Uj8FDhU0vI6ty0sroj4SUTsTN/+lORmNEWbys88rb+vCi8DLmnQvmuKiGuA+3JWmY5ja9y4punYquf3Vcu0/r4qNOXYAoiIbRFxffp6D3ALY29BW9gx1sqJv55799Zap677/hYYV9ZrSD7VywL4nqTrJJ3ZoJgmEtcTJd0o6XJJx0xw2yLjQtJ84ETgq5nion5f45mOY2uimnVs1avZx1bdpvPYkrQCOB74WcWiwo6xaZmPv0HquXdvrXXquu/vJNVdt6SnkfxzPiVT/OSIuFPSMuAKSZvSVksz4rqeZG6PvZKeC3wDeHid2xYZV9nzgR9HRLYFV9TvazzTcWzVrcnHVj2m49iaiGk5tiQtJPmweUtE7K5cXGWThhxjrdzir+fevbXWKfK+v3XVLemxwKeBUyLi3nJ5RNyZPm8Hvk7yta4pcUXE7ojYm77+NtAtaWk92xYZV8ZLqfgqXuDvazzTcWzVZRqOrXFN07E1EU0/tiR1kyT9L0TE16qsUtwxVsSJi2Y8SL6tbAYewsgJjmMq1nkeo0+O/LzebQuO68HA74EnVZQvABZlXv8EOLGJcR3ByEV9jwduT3930/r7Stc7hKSvdkEzfl9pnSuofbKy6cdWnXE1/diqM66mH1v1xDWNx5aAzwMfz1mnsGOsZbt6osa9eyX9Tbr8fJLbOz6X5B+hD/jrvG2bGNe5wAOA/5QEMBjJ7HuHA19Py7qAiyPiO02M60XA30oaBPYDL43kSJvu3xfAqcD3ImJfZvPCfl+SLiEZibJU0lbg3UB3JqamH1t1xtX0Y6vOuJp+bNUZFzT52Eo9GXglcJOkG9Kyc0g+uAs/xjxlg5lZm2nlPn4zM5sEJ34zszbjxG9m1mac+M3M2owTv5lZm3Hit7Yl6cXpzIhDklZnyh+Qzpy4V9K/V2zznXTagZslnS+pMy1fI+l6SYOSXlSxzemSfpc+Ts+UvzGdXTHSi5nK5TVnjDRrBCd+m/XS6W2rHeu/Av4SqLwM/wDwLuDvq2zzkog4Fng00Au8OC2/HTgDuLhi34eRjB3/M5ILl94taUm6+MfAM4HbsttExIci4riIOA54B3B1jJ5KwGxKWvYCLrM86cRXlwNXAk8EdknqJZnT5KKI+FhE3JKuO2rb9EKeH0l6WGW9MTKfShfJVZORlt+a1jVUsclzgCvKiVvSFSSTgV0SEb+stv8KTZsx0tqHW/w2mz2S5LL415JcwfroiHgM8JmpVCrpu8B2YA9w6TirT3omxRozRppNmRO/zWa3RTKP+WZgpaR/k3QiUDkL4oRExHNIbqQxB3j6OKtPZSbFajNGmk2ZE7/NZvsAIrkxybHAVcAbSGaunJKIOABcxvg3wJjKTIpjZow0awQnfpv10hEzHRHxVZKTtieMs0mtehamd0BCUhfJBFqbxtnsu8CzJS1JT+o+Oy0bb1+HAH8OfHMysZrlceK3dvAg4Kp0FsTPkoyUQdKp6YyNTwT+J+27J112K/BR4AxJWyU9imR63sskbSSZCnc7cH66/uPSul4MrJd0M0DaTfM+4Bfp47zMid43pdscCWyUlP0mUm3GSLOG8OycZmZtxi1+M7M248RvZtZmnPjNzNqME7+ZWZtx4jczazNO/GZmbcaJ38yszfx/Z9Y5qMl2l/AAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "cd8tydata = (common_individuals_individual_ratio_df['CD8T TEM'] + \\\n", + " common_individuals_individual_ratio_df['CD4T TEM']) / (\n", + " common_individuals_individual_ratio_df['CD8T Naive'] + \\\n", + " common_individuals_individual_ratio_df['CD4T Naive']\n", + ")\n", + "fig, ax = plt.subplots()\n", + "sns.regplot(x=common_individuals_individual_ratio_df['gt'],\n", + " y= cd8tydata, \n", + " ax=ax)\n", + "r, p = stats.spearmanr(common_individuals_individual_ratio_df['gt'],\n", + " cd8tydata)\n", + "ax.set_title('Oelen v2 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax.set_ylabel('CD8+CD4 TEM / CD8+CD4 Naive')\n", + "ax.set_xlabel(\"rs1131017\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Begin calculating networks for 72 individuals and;\n", + "RPS26;RUNX3\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 72/72 [00:00<00:00, 207.95it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SpearmanrResult(correlation=0.29651955126400936, pvalue=0.011433091246178868)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEGCAYAAABsLkJ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAApcElEQVR4nO3de5hkV1nv8e9bl753z/RcOgnMDElrYCCQCE5yROM4IEfC/XhEBRRFwQzeAnrgAUQChqMPPng8woNKciLPOXq4HO5EBUGI4xgJl0lIQmIGCJ2EmUDSPTM90/euy37PH3tXd3V193RVde3edfl9nqepql23RWXPWmu/a613mbsjIiKdJ5V0AUREJBlqAEREOpQaABGRDqUGQESkQ6kBEBHpUJmkC1CLXbt2+cUXX5x0MUREWsodd9xxyt13Vx5vqQbg4osv5tixY0kXQ0SkpZjZw2sdVwhIRKRDqQEQEelQagBERDqUGgARkQ6lBkBEpEO11CwgkWZz5Pg4Nx4d48TkHHuH+zh8cJRD+0eSLpZIVXQFIFKnI8fHuf6W+xifXmB7b5bx6QWuv+U+jhwfT7poIlVRAyBSpxuPjpFNG31dGczC22zauPHoWNJFE6mKGgCROp2YnKM3m15xrDeb5uTkXEIlEqmNGgCROu0d7mM+X1xxbD5fZM9wX0IlEqlNYg2Ame01s38xs/vN7D4ze11SZRGpx+GDo+SLzlyugHt4my86hw+OJl00kaokeQVQAP6buz8Z+DHgt83sKQmWR6Qmh/aPcMOLL2NksIdz83lGBnu44cWXaRaQtIzEpoG6+w+AH0T3p83sfuDxwH8kVSaRWh3aP6IKX1pWU4wBmNnFwNOBr67x3LVmdszMjk1MTGx52URE2lXiDYCZDQCfAF7v7lOVz7v7Te5+wN0P7N69Kp21iIjUKdEGwMyyhJX/B939k0mWRUSk0yQ2BmBmBvwNcL+7/3lS5RDZDKWCkLjFeY4leQXwE8ArgWeb2V3R3/MTLI9ITZQKQuIW9zmWWAPg7re5u7n75e7+I9HfZ5Mqj0itlApC4hb3OZb4ILBIq1IqCIlb3OeYGgCROikVhMQt7nNMDYBInZQKQuIW9znW9hvCaJaGxOXQ/hFuIIzTnpycY4/OL2mwuM8xc/eGfNBWOHDggB87dqzq15dG0LNpozebZj5fJF905WsRkY5iZne4+4HK4219BVA+gg7Q15VhLlfgxqNjagBEpCXEGcVo6wbgxOQc23uzK45ploY0kkKMEqfyKEb5OoAboCHnWVsPAmuWhsRJC8EkbloHsAmapSFx0kIwiZvWAWyCNuyQOGkhmMQt7ihGW48BgDbskPjsHe5jfHphaZIBKMQojXX44Chv+PjdPHJ2nmLgpFPGQHeGt72gMZsntvUVgEicDh8c5dTMIvc+co5vPnKOex85x6mZRYUYpaEMwMHdwaPHDaIGQKRO95w8y9R8YcWxqfkC95w8m0yBpO3ceHSMod4sl14wyJMv2salFwwy1JvVILBI0m6+7UEyaaMnm6Y3m6YnmyaTNm6+7cGkiyZtQoPAIk1qNlckVXE9nrLwuEgjKBmcSJPq70oTVGRSCTw8LtIIcU9lVwMgUqfXXH0JgUMhCAg8iG7D4yKNEPdU9rafBioSl+ue80QgHAuYzRXp70rzmqsvWTou0khxpO1s62ygIiKtrFEZjdfLBqoQkIhIk1IuIBGRDhX3NFCNAYiINKm9w308eGqG6YUCuWJAVzrFYE+GS3YNNOTzdQUgItKknjm6g4mZHLliQMogVwyYmMnxzNEdDfl8XQGIbII2hJE43T52hpHBLqbml68Ahnoz3D52husa8PlqAETqFPduTSInJufY2d/NroGepWPurjEAkaRpz2mJ297hPr716BRn5/MEHqYa2d6b5UkXDjXk8zUGIFInbQgjcbtwqIszc/mllCOBw5m5PBcOdTXk83UFIFKnuHtnIl86PlHT8VolegVgZh8ws3EzuzfJcojUI+7emcj0QqGm47VKOgT0v4FrEi6DSF2+dHyClIU9f4Ol+43qnYmkonzjZst/5cc3K9EQkLsfNbOLkyyDSL1mc0WyaSNly/2owAPtByAN09+VZmqhsCoTXKNSjid9BbAhM7vWzI6Z2bGJCfWspHloPwCJ22WP28aOvixmYRtgBjv6slz2uG0N+fymbwDc/SZ3P+DuB3bv3p10cUSWvObqSygUnYV8kfl8kYV8kULRtR+ANMzhg6MM9GS5ZFc/T33cEJfs6megJ6sNYUSSdvme7Qz1royiDvVmuHzP9mQKJG1HG8JskpbqS1xuPDrGroFu9u3oXzqmhWDSaIf2j8R2PiU9DfTDwO3Ak8zspJm9upGfX1qqPz69sGKp/pHj4438GulQWggmrS7RBsDdX+7uF7l71t33uPvfNPLz495MQTrb3uE+5vMrZ/zM54vsGe5LqEQitWnrMQD10CROhw+Oki86c7kC7uFtvugNG6CTzuPu5AoBs4sFzs7lGJ9a4OTkHJOzuVi+r63HAOLeTEE626H9I9xAeKV5cnKOPRpjkhoUigGLhfAvXwzIFQIKgbPWPu19MS0ub+sG4JmjO/jqg6eX5mrni+F0vVdctS/ZgknbiHOATtpHMQh79ouFYljp5wMKQZB0sdq7AfjcvY9ihMv0Pbq16Ph1z3liomWT9qBZZlIuCJxcMSBXDMgXAvJFj3r2yVf2a2nrBmDs1CzplNGVWh7qKAYBY6dmEyyVtAttCNO5Wq2iX09bNwAicdKGMJ0hVwgr+sV8sWUr+vW0dQNwyc4+HpiYxQIPc2l4mKvlh3dpmp5s3onJObb3Zlcc0yyz1lYeq1/IByzkiwRrDMq2i7aeBvrm5z2Z7X1ZLAVFdywF2/uyvPl5T066aNIGtA6gtRWKAXO5ApOzOR49t8D3Ts/x8OlZfnBunjOzOeZyhbau/KHNrwAO7R/hz156habpSSwOHxzl+lvuYy5XoDebZj4KEWgdQPMphXFyhWCph1+sTOXagdq6AQBN05P4HNo/wktPnuXm2x5kNlekvyvNa66+ROdbQkoDs/liOChbKA3SFteeWy8d0ACIxOXI8XE+fucj7B7sZl90BfDxOx/h8j3b1QjEqBh4uHAqmoET3nrbDMxuJTUAInXSLKD4uIe9+UKxrLKPevUK3TSOGgCROmkW0OaVwjSl2Hw+UCW/ldQAiNRp73Af49MLS1cAoFlAawkCJx+EPfh8Ke9N1Ltv91k2jZIrBEwt5BnqyW784hqoARCpk2YBrZQvDcAWShW+YvPVKAbOmdkcE9OLjE8vMj69EN5OLTIxvcgjZ+eZWSzQ35Xm8j3bGzqTUQ2ASJ06cRZQaQC2NNOm/L5m2qzm7kwtFJiYXuSxqYWlSn6irKI/NZOrKuRlZg1PN6IGQKRO7ToLyN2XKvdCsXxqpWLzleZzxaWKfCLqtYf3o1789CKLheqvgAa6M4wMdrN7sJuRwW6OPTTJYqHIQE+G3myGrkyqoRMN2r4BeO8Xv72qh6ZMoNIIrT4LqHI6ZXmPXsKQ1qmZ8kp9ZYhmYnqR6YVC1Z/XlUkxElXspQp+ZLCHkaHlx+XjSQAv/19fYedAF5lUikw6TNzQyIkGbd0AvPeL3+Y9tz5AyiCTCgfo3nPrAwBqBGTTWmEWUKEUqgnCSr4QLPfsO3kANvCKuPvUcqX+WHQ7OZuj2l8oZbBrYLlyv2Cop6ySDyv6od5wa9paXDTUy8nJWeZyRfKBN3xTqw0bADNLAbh7YGZdwFOBh9z9TENKEKObb3swqvzDljNlUAgCbr7tQTUAsmnNMguoMi7f6Stg3Z3phcJSb325kl/uyU/MLNYUzhruyzIyuFyph5V8qefew47+LtKp2ir3ajx97zbueeQsKYN0ysgVAyZmcrziqh0N+fzzNgBm9l+AG4HAzF4L/AEwCzzRzH7T3f++IaWIyWyuSKYi3V3KwuMim3X44CjXffhOZnJFAg/PrYGuNG97wVMa/l3lUykLHb4waj5fZGKqbLbMUvx9uRe/UEPcvb87HYZiysMzQz1L93cPdNNVWZFskW+cOMfO/iyzi8tXAEO9GW4fO8N1Dfj8ja4A3g5cAfQCdwNXuvu3zOwJwCeApm4A+rvCgbnyhjnw8LjIZt1z8izTi8WlMEHgML1Y5J6TZ2seA3B3CoGHK1+DgGJ0WyiGxzplKmWhGHBqJrfUc39sanHVzJmpGuLu2bQtxdmXY+89K3rxlXH3ZvKDqXm293Wxa2B5DMDdt24MwN0fBTCz77n7t6JjD5dCQ83sNVdfwntufYBCEJCy8B9o4OFxkc16/7+OLW01WuLR8coQY6mCL0Z/S+GaoHPmygfunJ3Lr5oO+VhZmObMTG1x95393WtW7qVj23qzNcfdm8lFQ72cnl1koHu5um1kmLGqMQB3D4BfLzuWBmLap75xSv8INQtI4jAX7QVQWWHN5Yucmllc6rmXKv125u7MLBaWK/WplVMhJ6K/Qg2/w/bebBSO6V4Rfy/97RzojiXu3kxeduVe3nPrd5jPFxlIWcMXG27UAFxLWNEvuPvXyo7vBd7VkBLE7LrnPFEVvtStUAxnzgRRDz4Ilnvy5zM1n9+iEm6NhXxxxVTIiemFFYOqj00vsJCv/iqmrytdFnNfGaK5IKrsk4q7N5OrRndwzaMX8LE7T3Jicr7hiw03agDud/eFyoPu/lB0FSDSkkqDqsVShV70FRV9segU/fyzaLIpWKvOy7ZYvVUoBpyaza0aWB2fqj/uXj7Pfel+WU9+oLt54+7N5GtjZ/j03d8nXwgwwu0q/+4rDzdsseFG/xXuNrO3uPtHSwfMrAf4Q+AXgUs3XQKRTQgr8JUVeeCOE+4B7ThEYz9OOKBaDBozB36gJ8vk3Oqe/kCDE3ZtRinuXplfptSLfyya715tZKYUd19ZqYe9+NK0yO0tHndvJjf92xhT83nSKSOTTuEOk3N5/vSfjm9JA/AzwPvM7DeA3wQuA/4M+DTw9E1/u0iZ8oHSwKPbINzPuXSsdNydhlXk9XrCjn4yqVlmFovkiwHZdIqB7jSP396/ZWWYWSysmP44Xl65Ty1yamaRfLH632hbFHe/oHy1atmUyF0dEHdvJicm50gZpMwwDDNwc8ZOzTbk88/bALj7d4HnmdkbgePAo8Bz3f2+Rny5mV0DvAdIAze7e0uMK8hqQRCGTAIPK+3AoxBKVIGXKm93lm49el/pWKutTC0N0O0ayNCTTbGQD8cLXnbl3oZ8/mK+yMRMZThmuec+Mb3IXA1rWnqz6aVe++6y+Hupst892E1PVpHdTrLRQrAM8Ebg1cBvAc8H3mtmv1WaElqvaAzhL4H/DJwEvm5mt7j7f2zmc6U+QRCGTYIVve2ol1322FnufS/1xDeIlberq0Z38Dou5SNfP8GjU/NcONTLy67cy1WjG6/SLAbOqZmVvfbxiumRZ2sYSM6mbcNUBP3daYVmWsze7b08fGYOC5xUiqizBD+8a2umgX4D+FfgR939HHCTmb0Q+IyZfdLd/2AT330V8IC7jwGY2UeAlwBqAOrkUeVdLOuFl8fDS730UuVdDBoXD+905b+gu3N2Pr9qOmT5wqbTs4tVx90N2DHQFfXUe1iRTCwaWN3elyWlyr3tXHvwh/jTzx9nLleg6E46ZWzvzvLm5z25IZ+/UQPwKne/o/yAu/+DmX2JcCB4Mx4PnCh7fBL4T5UvMrNrCaejsm/fvk1+ZfOrrMTLK+zKMErg4eubIR7eSWaj+e63ffsU/++OEyzki7jD+PRilLfFaprvPtSTWZ4tM7Sy1757qJtd/V1Lq0Cls1w1uoM3PXc/H7/zJI9NLbBnuG/rNoSprPzLjs8Db93kd6/VXVn1r8bdbwJuAjhw4EDT1nBeXiHDUiUNy5V1GB8vux9V8oUgwB0KQWeGUppJrhCsWp06XtGLXzeXVGlco+y/YU82tTSvfTn+vrIXr7h75zGzpcHd8DFL4TmLHkP4fE82Tcqs6hXStdhoDOBBVlbKVvbY3f2HNvHdJwkXlJXsAb6/ic+rSSmuXd7TLvWuiWLdpQq9dFssVeQtPHDZyUpb742XLWJayu8+VXvcfS0GpFLw/l/+UUai+e6Ku7eeygo6lTLON/kpZeEMHcNIR681W76fMov+wqye1Z4TR46P8+df/DbZtLG9N7vlO4IdqHicAn4BeAPh+MBmfB241MwuAR4BXga8YpOfucqR4+PceHSMh07PcuFQDy+/ci9Xju5UT7vNuDvn5vMrp0NWTI88NVNb3H24v2tVhsgLygZZf/H9t1N5LeCAOfzQ7sbka5f1lfeYw8fLFfFShZtaWfmWV+xLlfbSNMvoeBNNc41706GNQkCnYWlPgFcSzgi6C3jBZmfruHvBzH4H+DzhNNAPNGp6acmR4+Ncf8t9ZNPGYHeGUzOL/M8vfYfXOVXN1JDmMZcrVOR0r0gFPL1IroYUwIM95Vvv9ayaHrlroJvsBnH3VNoorjHH3pqoAmkmZkY6qpTLK+9SRZ1eqqhXVtxrVdLlIZN2FvemQxuFgLKESeB+D7gNeEm0NqAh3P2zwGcb9XmVylvPXCGgN9q39SNfP6EGoInkCgETMyt77pXZImcXq5/v3pNJrZjnvirPzFA3vQ2IuwfrXE6sd7wdrOhBl4U3ynvdmbSRSRmZVGpFr7sTKuxGi3vToY1CQA8CBeAvgO8BV5jZFaUn3f2TDSlFTNZqPXuyKR6dmk+oRJ2nPO6+cs77cp6ZtdIprCedMnYPrJWKYLknP9iTbNy92ao5i3rOwKredfh8+JcuxaxTtnR/RThFlfiWO3xwlOtvuY+5XGGpA7uV2UC/SBjWvCL6K+dAUzcAe4f7eOj0DFPzBRYLxUSW6rczd2dqvrB6Z6ayVASnZ3M1pULe0d913lQEw33xbL1Xj6RKEQ4shj3ttC1X2KlU2PNOp2zpNc3yW0l9Du0f4QbCaMbJybktnwb6qoZ8S0KeObqDrz10JrpMhXwx4PRswAufti3porWE+VxxRRKx8emFikp+kcUa4+7lWSLLp0KWUhFsFHdvKuVz4iqP1/NxFoVO0mH4JJsOK/BsOrVUmatC7zyH9o80rMKvtNEYwO9XHHLgFHCbuz8YS4ka6PaxM+we6GJ6YfkKoL8rzTdOnOOVSRcuYfliwKmZlRtlL02JjB5P15ACuCuTWjljplTJDy3f722zrTjD0Iqvmid9vjBJqZLPplNk0uFtdum2hRo/aQsbhYAG1zh2MfBWM3uHu3+k8UVqnBOTc+waCAcCc4UgWqTlbT8GEHgYd6+cDlkeppmcrW3rvVKemfJwTPnA6lBv581339GX5bHp3IpjDuzsy9KdTS+HY6JwTVcmRVc61XG/kzSvjUJAf7TWcTPbQTg+0NQNwFoj6Av5gAuHehMs1ea4O9MLhaXeevlq1aWt92YWa4q7D/dl19i4Y3lgdUd/88Tdm0UmlWKwZ3UDADDc383jt7fuOSado65tedz9jLVAN6Z8BD1t4X6ajUzXG4f5fHHVzkzlMffxqQUWaoi793enl+e5V/TcR4Z62D2grfcqlcI06bJB1UwUqinF5s2Ms/N50lbabKY0px0mZhaT/r8gbaS0mPXE5Bx7t3IQeD1m9mxgsiEliFH5CPpDp2a4oIZ0vXEoFANOzeSW88xMLa7qydcSd8+mbVXa391li5pGBrtXXP10ujUr9lSKVCrs0ZeOV7sSNFcIwoo/Ggw2CxuCWhakiZxP+WLWLU8FYWbfZPU8hx2EOXt+ddPfvoXiXpoTuDM5m6uIta/cOPtMnXH3FZt3lK1W3aat99aUSYUDrJm00RUNrnZlGj/IGniwIrVEKbuIuxoAaYxEU0EAL6x47MBpd2/MfmQxK289h3qynJ5d5D23fofXcWlNVwHuHm69t06vfTzaeq+WFMDDfdmlqY+V2SIVd99YJpUim1mePVMZntkKQbD29xTXOS5Sq0RTQbj7w2sdN7PtwG+7+x83pBQxqTYVxEK+uCqJ2ERF/H0+X30qgr6u9LohmdJgq+Lu1SlV9F3pFNloFk1XOtUUCbvyxbCnb6X/icYCSsdFNivRVBBmthd4G/A4wo3gPwS8E/iV6H5TOzE5x7aesPKfyxXIF4NwMdjMIn/46XuXFjdN1Rh3L58xs2I6ZBSPH+hW3L0Wa82N745CNs18FZRKGWl3ilEKcYC00RSNk7SHpFNB/C3hlpCfAK4BvgLcBzzN3R9tSAlitHe4j7GJ6TWn6n35u6dXHUsZ7OxfK8/Mcux9u+LudVsrbJNNp8jUkB+9mezuz3Ly3MoZP0WHi/qz67xDpDaJpoIAdrj7O6L7nzezx4Ar3b0l5rmVUkFU2jfcyzOeMLyqct810N3UPc5WUV7RdzVZ2KaRBnu7SJ1bxC0cADYL9wIY7O1KumjSRhJLBQFgZsMsZzd5FOgzs34I1wPEUqoGuX3sDNt6MkzO5ZfmaQ/1ZNjR3811P31p0sVreSkzspkwXNMV3WZT7VfRr2d6scDeHb2cmsmRKwZ0pVPsGuhiZrH6kKJIkjZqALYBd7AyvdWd0a0DjQlExeQ749NMLxToyqRwwm0cZxcLPHymJSYxNQ0zI1uWyqA0pbLTc9eUBuhGy3b/mssVGBnsSbBUItXbaBbQxVtUjljkCgFE+cyD6BK9aK6FOutIp2xF5d5Vml7Z4RX9eg4fHOWNH7+bRybnKQRBlB4iw9te8JSkiyZSlbaerpJNG/P5aBP36AoAoCvdGSGK8ynNtOnKLMfpVdHXzgFKG6VY/AsORRqpqgbAzO5092eUPb4/uvuX7v6+WErWAE+8YIgHT81E6aCDKB10hj3DnbEhzFLopjTrJpNaetyKs26azY1Hx9jWm+WibcuJ3xq5SlMEmiAXUHnlHz1+spntBH6sIaWISWkO7YXbMi2TDK5epQHZrnSK7mzUu1dFH6u4V2mKJJoLqJKZDQGXAmPufhr4x02XIEbNlgyuETQg2zz2DvctXWGWZgEN9mS4ZNfAxm8WqUKiuYDM7P8Cr3f3U2b2XOBm4FvApWb2Bnf/2KZLELPSHNoTZ+Zaaol+ZfimVNErhUTzqNxyNFcMmJjJ8YqrWreDIc0l0VxAwBXufiq6/3bgJ939ITPbBXwJaPoGoNmlzJYGYrU9YGu5fewMI4NdTM0vXwEM9Wa4fewM1yVdOGkLieYCAlJmNuTuU0AAfA8guiJo6xlEjVaK0WfTRnc6vZTgTDNvWteJyTl29neza2B53r+7awxAGibpXEB/BPyLmf0l8O/Ax8zsM8CzgX9qSAnaTGVF35XRXPp2FXfvTCTRXEDu/lEzuxP4DeCJ0eufCXzY3T/fkBK0qPIY/coQjir6ThF370ykXBxrTDYM47j7A8CbYvjullG5aEoVvUD8vTORuKeBbliLmdlzzezVZvaEiuO/Xu+XmtnPm9l9ZhaY2YF6P6fRLBqQHejJsHOgm8dt7+Xinf3s3dHHyFAP2/u66OvKqPKXVbQCWOJQPg3UzKL6x7jx6FhDPv+8NZmZ/QnwVuBpwK1m9rtlT//OJr73XuC/Akc38Rmbkkml6O/OMNzXxchQD48f7uXinX3sGe5jZLCHbb1ZerLpjslsKbUr9c7GpxdW9M6OHB9PumjSJk5MztGbTa84tpXTQF8EPN3dC2b2DuBDZjbq7r/HygyhNXH3+4EtXaXa15UmncrQnQkHZpX3XzYr7kU6InFPNNgolpFx9wKAu58lbBCGzOxjQEvterFzoJvtfV30dqVV+UtDxN07Ezl8cJR80ZnLFXD3aGvbrZsG+l0z+yl3/1cAdy8Crzaz/w783PneaGZfBC5c46m3uvtnqi2gmV0LXAuwb9++at+2JM5EStLZ9g738dDpmVULwS7eqVQQ0hhJbwn582sddPc/NLO/Pt8b3f05dZdq5efcBNwEcODAgZrG2uIeQZfOtlYqiPHpHC+/UqkgpHHi3BJyoxDQCGWhHjN7lpm9x8x+H5iIpUQNFPcIunS228fOMNSTphg4iwWnGDhDPWluH2vqnVJFlmzUAHwU6Acwsx8hzP3zPeAK4K/q/VIz+1kzO0m4qOwfzSyWRWUnJucoFAPGJmY4/ugUYxMzFIqBYrTSEN8Zn2ZmoUg2naInG64NmVko8p3x6aSLJlKVjUJAve7+/ej+LwMfcPf/YWYp4K56v9TdPwV8qt73V2ugK823x2cIosBRvlhkfnKeJ44oRiublysEFN0pFsPd5kqT2rTlqLSKja4AyqfLPJswAyju3hJn+KnZ3FLlXxJ4eFxkswIPCDw8pxyW77fGPw+RDa8AbjWzjwI/AIaBWwHM7CKg6WvR0zNrF3G94yK1SFmKtAU4LF0BGBBeIIs0v40agNcDvwhcBFzt7vno+IWEK4Sb2npThrRsXxqhK5NiPmekUoZZ2AgEgWvTHmkZG2UDdTNbANLAU4FHouPf2IKybVo2Bfk1rsaz+vcpDXDpyODqdQD9Wa0DkJaxUS6gvwZ+D9gJvNPM3rYlpWqQC7f11nRcpBaHD46STae5cFsPT7pgkAu39ZBNp5UOWlrGRiGgnyTcFrJoZn3AvwHvjL9YjeHAyEDX0mBwymBXf0tlsJAmpnTQ0uo2agByUfoH3H3OtjJ7WwOUEildUNbjn8sVGBnsOc+7RKoX5ypNkbhtFA3fb2b3RH/fLHv8TTO7ZysKuBlxJ1ISEWllG10BPHlLShETXaKLSKuLM6HlRrOAHl7ruJmlgZcBaz7fTHSJLiKtKtEtIc1syMzeYmbvM7OfsdDvAmPAL2z620VEZF1xJ7TcKAT0d8AkcDvwGuCNhNlBX+LudzWkBCIisqYTk3Ns782uOLaVW0KOuvvTAMzsZuAUsM/dle5QRCRmSW8JWUr9UNoN7EFV/iIiWyPpLSGvMLOp6L4BvdFjI8wUMdSQUoiIyCqJbgnp7unzPS/S6bTntMQtyS0hRWQdpSl649MLK6boHTk+nnTRRKqiBkCkTtpzWlqdGgCROp2YnKM3uzJK2sgpeiJxUwMgUqe9w33M54srjjVyip5I3NQAiNRJyQal1akBEKnTof0j3PDiyxgZ7OHcfJ6RwR5uePFlmgUkLWOjdQAich5KNiitTFcAIiIdSg2AiEiHUgMgItKh1ACIiHQoDQKLbIJyAUkrS6QBMLN3Ay8CcsB3gV9z97NxfJf+gUpc4t6uTyRuSYWA/hl4qrtfDnwbeEscX6JkXRIn5QKSVpdIA+DuX3D3QvTwK8CeOL5H/0AlTsoFJK2uGQaBfx343HpPmtm1ZnbMzI5NTEzU9MH6BypxUi4gaXWxNQBm9kUzu3eNv5eUveatQAH44Hqf4+43ufsBdz+we/fumsqgf6ASJ+UCklYX2yCwuz/nfM+b2a8CLwR+2t09jjIcPjjK9bfcx1yuQG82zXy+qH+g0jBxb9cnErekZgFdA7wJ+Cl3jy0eo3+gEjflApJWltQ6gPcB3cA/mxnAV9z9tXF8kf6BioisLZEGwN1/OInvFRGRZc0wC0hERBKgBkBEpEOpARAR6VBqAEREOpQaABGRDqUGQESkQ6kBEBHpUGoAREQ6lBoAEZEOpQZARKRDqQEQEelQagBERDpUUtlARdrCkePj3Hh0jBOTc+xVunFpMboCEKnTkePjvOHjd/ONE5M8NrXAN05M8oaP382R4+NJF02kKmoAROr0rs/dz9m5PB5A2gwP4Oxcnnd97v6kiyZSFYWAROr04Ok5UgaplAFgBh44D56ObZM7kYbSFYCISIdSAyBSp9Fd/QQOgTuOE7gTeHhcpBWoARCp05uu2c9wXxYDCsUAA4b7srzpmv1JF02kKmoAROp0aP8I737pFTx93zAXbevl6fuGefdLr9A0UGkZGgQW2YRD+0dU4UvL0hWAiEiHUgMgItKh1ACIiHQoNQAiIh1KDYCISIdSAyAi0qHUAIiIdKhEGgAze6eZ3WNmd5nZF8zscUmUQ0SkkyV1BfBud7/c3X8E+Afg+oTKISLSsRJpANx9quxhP+BJlENEpJMllgrCzP4Y+BXgHPCs87zuWuBagH379m1N4UREOoC5x9P5NrMvAheu8dRb3f0zZa97C9Dj7m/f6DMPHDjgx44da2ApRUTan5nd4e4HKo/HdgXg7s+p8qUfAv4R2LABEBGRxklqFtClZQ9fDBxPohwiIp0sqTGAd5nZk4AAeBh4bULlEBHpWIk0AO7+c0l8r4iILGv7DWGOHB/nxqNjnJicY+9wH4cPjmoDDxER2jwVxJHj41x/y32MTy+wvTfL+PQC199yH0eOjyddNBGRxLV1A3Dj0TGyaaOvK4NZeJtNGzceHUu6aCIiiWvrBuDE5By92fSKY73ZNCcn5xIqkYhI82jrBmDvcB/z+eKKY/P5InuG+xIqkYhI82jrBuDwwVHyRWcuV8A9vM0XncMHR5MumohI4tq6ATi0f4QbXnwZI4M9nJvPMzLYww0vvkyzgERE6IBpoIf2j6jCFxFZQ1tfAYiIyPrUAIiIdCg1ACIiHUoNgIhIh1IDICLSoWLbESwOZjZBmD66HruAUw0sTqOoXLVRuWqjctWmWcsFmyvbE9x9d+XBlmoANsPMjq21JVrSVK7aqFy1Ublq06zlgnjKphCQiEiHUgMgItKhOqkBuCnpAqxD5aqNylUblas2zVouiKFsHTMGICIiK3XSFYCIiJRRAyAi0qHaogEws2vM7Ftm9oCZvXmN583M3hs9f4+ZPaPa98Zcrl+KynOPmX3ZzK4oe+4hM/ummd1lZse2uFyHzOxc9N13mdn11b435nK9saxM95pZ0cx2RM/F8nuZ2QfMbNzM7l3n+aTOrY3KldS5tVG5kjq3NirXlp9b0WfvNbN/MbP7zew+M3vdGq+J7xxz95b+A9LAd4FRoAu4G3hKxWueD3wOMODHgK9W+96Yy/XjwHB0/3mlckWPHwJ2JfR7HQL+oZ73xlmuite/CLh1C36vg8AzgHvXeX7Lz60qy7Xl51aV5dryc6uaciVxbkWffRHwjOj+IPDtray/2uEK4CrgAXcfc/cc8BHgJRWveQnwtx76CrDdzC6q8r2xlcvdv+zuk9HDrwB7GvTdmypXTO9t9Ge/HPhwg757Xe5+FDhznpckcW5tWK6Ezq1qfq/1JPp7VdiScwvA3X/g7ndG96eB+4HHV7wstnOsHRqAxwMnyh6fZPUPuN5rqnlvnOUq92rCVr7EgS+Y2R1mdm2DylRLuZ5pZneb2efM7LIa3xtnuTCzPuAa4BNlh+P6vTaSxLlVq606t6q11edW1ZI8t8zsYuDpwFcrnortHGuHHcFsjWOVc1vXe001761X1Z9tZs8i/Ed6ddnhn3D375vZCPDPZnY86sVsRbnuJMwdMmNmzwc+DVxa5XvjLFfJi4B/d/fyHl1cv9dGkji3qrbF51Y1kji3apHIuWVmA4SNzuvdfary6TXe0pBzrB2uAE4Ce8se7wG+X+VrqnlvnOXCzC4HbgZe4u6nS8fd/fvR7TjwKcLLvS0pl7tPuftMdP+zQNbMdlXz3jjLVeZlVFyix/h7bSSJc6sqCZxbG0ro3KrFlp9bZpYlrPw/6O6fXOMl8Z1jcQxsbOUf4VXMGHAJywMhl1W85gWsHET5WrXvjblc+4AHgB+vON4PDJbd/zJwzRaW60KWFwleBXwv+u0S/b2i120jjOX2b8XvFX3mxaw/qLnl51aV5dryc6vKcm35uVVNuRI8twz4W+AvzvOa2M6xlg8BuXvBzH4H+DzhqPgH3P0+M3tt9Pz7gc8SjqQ/AMwBv3a+925hua4HdgJ/ZWYABQ+z/V0AfCo6lgE+5O7/tIXleinwm2ZWAOaBl3l4xiX9ewH8LPAFd58te3tsv5eZfZhw5souMzsJvB3IlpVpy8+tKsu15edWleXa8nOrynLBFp9bkZ8AXgl808zuio79AWEDHvs5plQQIiIdqh3GAEREpA5qAEREOpQaABGRDqUGQESkQ6kBEBHpUGoARBrIzF5lZo9Luhwi1VADINJYrwLUAEhLaPmFYCJJMbO3Ab9EmJDrFHAHcAD4oJnNA8909/kEiyhyXmoAROpgZgeAnyPM3pghTHJ2B3AMeIO7N3TjEJE4qAEQqc/VwGdKPXwz+/uEyyNSM40BiNRnrVS8Ii1FDYBIfW4DXmRmPVEu9xdEx6cJt/YTaXpKBidSJzN7B+H2gQ8DE8ARwnTCf0KY6VKDwNLU1ACI1MnMBjzc2aoPOApc69H+riKtQIPAIvW7ycyeAvQA/0eVv7QaXQGIiHQoDQKLiHQoNQAiIh1KDYCISIdSAyAi0qHUAIiIdKj/Dx3XQcXKbcPTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "onemillionv2_datasc = dataset.data_sc\n", + "onemillionv2_monocytes_ut = onemillionv2_datasc[(onemillionv2_datasc.obs['cell_type_lowerres']=='CD4T') & \n", + " (onemillionv2_datasc.obs['time']=='UT')]\n", + "onemillionv2_monocytes_ut_df = pd.DataFrame(\n", + " data=onemillionv2_monocytes_ut.X.toarray(),\n", + " columns=onemillionv2_monocytes_ut.var.index,\n", + " index=onemillionv2_monocytes_ut.obs.index\n", + ")\n", + "data_selected_df, zscore_df, zscore_p_df = \\\n", + "get_individual_networks_selected_genepairs(onemillionv2_monocytes_ut_df, \n", + " onemillionv2_monocytes_ut, \n", + " 'assignment', \n", + " ';'.join(['RPS26', 'RUNX3']))\n", + "concated_df = pd.concat([zscore_df.T,\n", + " gt.T],\n", + " axis=1).dropna()\n", + "concated_df['gt'] = [item.split(':')[0].count('1') for item in concated_df[0]]\n", + "print(spearmanr(concated_df['RPS26;RUNX3'], concated_df['gt']))\n", + "sns.regplot(x='gt', y='RPS26;RUNX3', data=concated_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Begin calculating networks for 72 individuals and;\n", + "RPS26;RUNX3\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 72/72 [00:00<00:00, 214.76it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SpearmanrResult(correlation=0.2201691525430256, pvalue=0.06311568667519006)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEGCAYAAABsLkJ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqEklEQVR4nO3dfXRcd33n8ff3zoMe/SDFMkljm0QJ1BBKmtRkScl63R4WQtsk7TZtYbu0tGTtbpcFuktOoLRpG7pdcmi7DduHdU7K2WWXQlvTlrQloWRT46YkhTxgiBsBQU6QA0Z+kG1JI2ke7nf/uDPSjCxnpNG9Gs3M53WOzozuPP08vvp97/3e7+/3M3dHREQ6T9DsBoiISHMoAIiIdCgFABGRDqUAICLSoRQAREQ6VLrZDViJLVu2+GWXXdbsZoiItJQnnnjipLsPLd7eUgHgsssu4/HHH292M0REWoqZPb/UdqWAREQ6lAKAiEiHUgAQEelQCgAiIh1KAUBEpEO1VBWQiEinOTgyzv5Do4xN5Ng+0Mu+3cPs2bk1lvfWGYCIyDp1cGScO+8/wvjkLJt7MoxPznLn/Uc4ODIey/srAIiIrFP7D42SSRm92TRm0W0mZew/NBrL+ysAiIisU2MTOXoyqZptPZkUxyZysby/AoCIyDq1faCXmUKpZttMocS2gd5Y3l8BQERkndq3e5hCycnli7hHt4WSs2/3cCzvrwAgIrJO7dm5lbtuvoqtG7o5O1Ng64Zu7rr5qtiqgFQGKiKyju3ZuTW2Dn8xnQGIiHQoBQARkQ6lACAi0qEUAEREOpQuAousQpLztIgkTWcAIg1Kep4WkaQpAIg0KOl5WkSSpgAg0qCk52kRSZoCgEiDkp6nRSRpCgAiDUp6nhaRpCkAiDQo6XlaRJKmMlCRVUhynhaRpOkMQESkQykAiIh0KAUAEZEOpQAgItKhFABERDqUAoCISIdqWgAws+1m9vdm9oyZHTGzdzWrLSIinaiZ4wCKwH9x9yfNbAPwhJl91t3/uYltEhHpGE07A3D3b7v7k+X7k8AzwKXNao+ISKdZF9cAzOwy4Brgn5rcFBGRjtH0AGBm/cAngXe7+7klHt9rZo+b2eMnTpxY+waKiLSppgYAM8sQdf4fc/e/WOo57n6vu+9y911DQ0Nr20ARkTbWzCogA/4YeMbdf7dZ7RAR6VTNrAJ6HfBW4Ctm9qXytl929083r0kiIuvLwZFx9h8aZWwix/aBXvbtHo5tBtqmBQB3fwSwZn2+iMh6d3BknDvvP0ImZWzuyTA+Ocud9x/hLoglCDT9IrCIiCxt/6FRMimjN5vGLLrNpIz9h0ZjeX8tCCMisk6NTeRIGYyemCJfCsmmArb0Zzk2kYvl/XUGICKyTm3oSvPCmVmKoZMKjGLovHBmlv6ueI7d2/4MIMkLKCIiSXL38h1qbue3r1JbnwFULqCMT87WXEA5ODLe7KaJiNQ1lS9x6eZu0imj5E46ZVy6uZvpfCmW92/rAJD0BRQRkSRtH+glnQoYHupn58UbGR7qJ50K2DbQG8v7t3UAGJvI0ZNJ1WzryaRiu4AiIpKkfbuHKZScXL6Ie3RbKDn7dg/H8v5tHQC2D/QyU6g9VZoplGKLniIiSdqzcyt33XwVWzd0c3amwNYN3dx181WtPxBsLezbPcyd9x8hly/Sk0kxUyjFGj1FRJK2Z+fWxApX2voMIOnoKSLSytr6DACSjZ4iIq2src8ARETkwtr+DEAkSR9+6Gvc98hRpvMl+rIpbrvhct75+pc3u1kiy6IAINKgDz/0Ne55+FkCg3QQVZjd8/CzAAoC0hKUAhJp0H2PHC13/gGBBeXbaLtIK1AAEGnQdL5EsGhFi8CIbZi+SNIUAEQa1JdNES6akyv0aLtIK1AAEGnQbTdcTuhQDENCD8u30XaRVqCLwCINqlzoVRWQtCqLa17ptbBr1y5//PHHm90MEZGWYmZPuPuuxduVAhIR6VAKACIiHUoBQESkQykAiIh0KFUBiazCwZFx9h8aZWwix/aBXvbtHtbssxKrJPcxnQGINOjgyDh33n+E8clZNvdkGJ+c5c77j3BwZLzZTZM2kfQ+pgAg0qD9h0bJpIzebBqz6DaTMvYfGm1206RNJL2PKQCINGhsIkdPpnbah55MimMTuSa1SNpN0vuYAoBIg7YP9DJTqJ34baZQYttAb5NaJO0m6X1MAUCkQft2D1MoObl8EffotlBy9u0ebnbTpE0kvY8pAIg0aM/Ordx67aWcmJzjmeOTnJic49ZrL1UVkMRmz86t3HXzVWzd0M3ZmQJbN3Rz181XxbaPqQxUpEEHR8Y58OQLDG3oYkcmxUyhxIEnX+DV2zYrCEhs9uzcmtj+pDMAkQapCkhanQKASINUBSStrqkBwMw+YmbjZvZ0M9sh0ghVAUmrqxsAzCwws6B8P2tm15rZYEyf/7+AG2N6L5E1pSogaXUvGgDM7EeBbwMvmNktwD8Avw182cxuWu2Hu/sh4PRq30ekGZKu0BBJWr0qoF8DrgZ6gMPAa9z9q2b2UuCTwF8n3D7MbC+wF2DHjh1Jf5xIQ1pnXT2RBXVTQO5+3N2PAt9096+Wtz2/nNfGwd3vdfdd7r5raGhoLT5SZFk0GZy0umVdAyjf/fmqbSkgm1SjRFqBykCl1dULAHspd/Tu/oWq7duBDybVKJFWoDJQaXX1rgE84+6zize6+3Pls4BVMbOPA3uALWZ2DPg1d//j1b5vNS3YIUnZPtDL+OQsvdmFPyOVgUorqXcGcNjMfrJ6g5l1m9lvAg+u9sPd/S3ufom7Z9x9WxKdv3K0khSVgUqrqxcA3gD8nJl91syuLJeCfgXoAq5JvHWrpBytJElloNLqXjQF5O7fAN5kZrcDI8Bx4I3ufmQtGrdaYxM5NvdkarYpRytxSnKiLhFo4prAZpY2s/cB+4BfBB4HPmxm3x3Lpyds+0Avp6bnGD0xxcjxc4yemOLU9JxytCLSEg6OjPOeA4d5amyC75yb5amxCd5z4PCarQn8FHAp8H3levwfBf478Ckz+61YWpCg64cHGZ/Mky+FBAb5Usj4ZJ7rh+OayUJEJDkffOAZzuQKeAgpMzyEM7kCH3zgmVjev14AeJu7v8Pdz1Y2uPvfEOX/1/3gx0dHTzPUnyWbCggdsqmAof4sj45q9gkRWf+OnsoBTiEMmSuGFMIQ8PL21at3DeCJC2yfAd4fSwsSNDaRY0t/F0Mbuue3ubuuAUhsPvzQ17jvkaNM50v0ZVPcdsPlvPP1L292s6RNhKFTDKP7ZuAORQeL6fj7RQOAmR2l9kjfqn53d78illYkRHXakqQPP/Q17nn4WQKDdBDtW/c8/CyAgoCsmLtTKDmFUlj+cVKBUQjLXW5VT5xJxTMTT7132QW8purnOuB3iALBl2JpQYJUpy1Juu+Ro+XOPyCwoHwbbRd5MWHozBZKnJ0pcGJyjmMTOZ47lePYRI7vnJvl9HSeydkC3Zlon4KF/j8VQG82ngBQLwV0CubnA3orcDtRx//D7v7PsbQgQXt2buUuovEAxyZybNNIYInRdL5EetHfYWDRdpFiKaQYOvlSSKEY3S+GTrEUUgqXl8K57KJ+Rk9OMjlbwonSQBu707zsJRtjaWO9FFCGaBK4XwIeAW4pjw1oGarTlqT0ZaOF4CtHaAChR9ulMxTLqZp8OW1TLKdwiqHjvvo8/TXbN3H42Jn5o//Q4exMMbZKxnpzAR0FisDvAd8ErjazqysPuvtfxNIKkRZ02w2Xc8/Dz1IMozLj0KOf2264vNlNkxi5Rx18pXPPlzv9QjEkjKGTfzGf+/rJmt+tfBX2gaePx3KdqV4AeCj6OK4u/1RzQAFAOlblD1BVQO0hLKdrKimb6guyzTI2kSMdQCoIMItONUthyOjJ6Vjev941gLfF8ikibeqdr3+5OvwW5O7MFUPmCiFzxRKzhZBi2LyOvlnqXQP4z4s2OXASeKS8SphIR9N0460hDJ3ZYom5QshsucOPI0eftO2be3j+dA4LnSCIxgGEDlduiaeUvV4t0YZFPxuJSkMfMLM3x9ICkRal6cbXr2IpZGquyMmpSonlNMfPzjKRyzOTL7VE5w+wd/cVbOzJYAGU3LEANvdmeO+bXhHL+9dLAf3GUtvNbJDo+sAnYmmFSAuqnm4coDebJpcvsv/QqM4C1kDl4my+GP0UYq7AWQ+uGx7kjjfu5MCTx/jOudnYS9nrXQRekruftsoVCZEONTaRI2UwemKKfCkkmwrY0p/VVCMJKIULFTj5YjQvTr7YGmmc1bpueJA3vOpiBvviX4a9oQBgZj8ITMTcFpGW0p9N8eyJaVJmpMwolpwXzsxy5VBfs5vWcioVOMXQKZWiyc8qnX4p9GUPnJKVqXcR+CucP+vnIPAt4GeTapRIKzCzKA3hHv2VWHRRTSfHS6t08nPFMBoN61HHXih6R1bgLNcXRk9z4MljHD83G3uhQb0zgB9Z9LsDp9w9niJUkRZ2YmouulPp/8tBYH57B6pMaFYKo6P49VJP36q+MHqauz8zQi5fJHQ4OTXHew4c5rdvvTqWIFDvIvDzS203s83Af3T3/7rqFoi0qHwxJAiMbLBQTFcMo9x0JyhW5eQreXl18vG699A3ODdTiNKMQe2CMIkHADPbDvwq8F3AXwF/AnwA+Jny/XVPddqSlEzKmClEqY3KXO0A2VR7pYCqpyfOF8P535WXT97YmRkCgyAwzCzaz8I1WhAG+CjwOeCTwI3AY8AR4Hvc/XgsLUhQpU47k7KaOu27QEFAVu3lL9nI0ZNTTM4W56uANnRnuHxLf7ObtmLVVTbzc94U26ukUs5XLwAMuvuvl+9/xsy+A7zG3Vsiybn/0CiFUolTUwt/oBt70qrTlljs2z3Mnfcf4eJNaXoy0cyg63m9iepKm0LlSD5cm0nNZHkKpZCJ6TynpvOcns6zqTvDqek8JY/SjSkzQoeXxVRpVrcM1MwGiBaAATgO9JpZH0TjAWJpRUK+Pj7J2Vwh+uICoxg6JyfzFEqTzW6atIH1uN7E4lWlqo/olbJpnpl8iVPTc1HHPrXQwVduT0/nOTU1x7nZ4pKvdwcvOem0MdCb4Y4bd8bSrnoBYBPwBAsBAODJSpuA9XmoU5YvhoREdcXu0VSqZnTMRTpJXrPWm8gXq2atDKP8/EoWGpHVC905N1NY1IlX3Z+/nWO2sPI+pzsdMNifJZsKODtTwB1eccnGtSsDdffLYvmUJnF3qosS3IlK9nS6KzFJqsggLK8eVSmnLJY7+ELoHTMCtlkWp2EqnXllW+UofiKXp9hAwN3YnWawL8tFfVkG+7ui28rvlfv92Zq1zDf3ZtfPSOBWYWYL62mWzwAq20VW6+DIOLcfOMzkbJFiGHJyco7bDxzmQ8us0a5eMrC6g1dOPhmVNMziI/TqI/dT03nOzhRW/N6BwUBVJ35RX9SxV7Zd1B9tH+jNkl28jmgTLSsAmNmT7n5t1e/PlO/+gbv/fiIti0EmFeX+A2y+TC/E265MT5rj7gdHmMgVSAVGOhXgDhPlGu3rr7xofgqD+R93wjAaK1AoqbomDu7OuZkip3NRDr0m9VLOtU/kovszhZWv1VxJwyx05os69r4sg/1ZNnZnSAWt168sKwBUd/7l319hZhcBr02kVTF5+Us2MnL8LGdnolF0gcGmnvgWVJbOVSiFfOPEFIZj2PyEKYbzjZPTvDAx09wGtrhiKWQiV5jPoS8+Sj9d9dNoGqb2iD1Kxwz2LhytX9SXpTebauuMwYpSQGa2EXgZMOrup4C/TaRVMbl+eJAvPHeaVGBkymu2npstxbagsrQPdyf0qB4+9Ooj9oX7pdCjVE25Nr7S7eg4fvlmCqWo456q6tir0zC56LGzM4UVf6+L0zC1efWumu3rKQ3TTPVGAv9f4N3uftLM3gjcB3wVeJmZvcfd/3wtGtmoR0dPM9SfXTRQJ82jo6d5Z7MbJ4mr5NhDjzrtyoXV+VuPqsMqnf5KVVZromokcOjw0oGeBP4165e7c262OF/KuGSOvXyby688DdOVDmo69MXpl4v6uhjsy7KppzXTMM1U7wzganevLEv/a8C/dPfnzGwL8P+AdR0AxiZybOnvYmhD9/w2d9d87S2mcnTuXptHD8OoFC8sPz5/5B76moxg3bv7Cu7+zAjT+SJh6ASBsTGbYe/uKxL93LVSCr2qA5/j9HSB05Va9qqj9olcnkJp5d/1hu40g73ZhRx7Of1SfSF1sD9LX5unYZqpXgAIzGyju58DQuCbAOUzglVXEJnZjcA9QAq4z90/uNr3rLZ9oJfxydmacqqZQoltA/GspykrE4ZR2qQ6zRKWUyle7tQrnXflsXAdl+1WVmv6xBfHOH5uhos39vDm12znunWeYpwtlOZLGU/nKrn1uZpSx9PTec7kGkvDVEoWa4/SozTMYF9m/ohdaZjmq9eJ/wbw92b2B8A/An9uZp8CfhB4cDUfbGYp4A+Afw0cA75oZve7+z+v5n2rVYbq5/LFlhiqv96EYe3R9UKnHT1W8oXUiWF4eV7k6qNx92gt0/Xaia/WdcOD66LDd3cmZ4vn16tPz5138bSRNEwmZfMdd/VF0tpSxy6lYVpMvYFgf2ZmTwL/Hnh5+fnXAx9398+s8rOvA55191EAM/sEcAsQWwBYj0P1k+DlXDZEFyQrna1T7rgXpUp8Uade83jVfWm+UuhM5F5spOlCSqaRNEx/V7qmE6908LW59i76upSGaUd10zju/ixwRwKffSkwVvX7MeBfLH6Sme0F9gLs2LGj4Q+LozurdJyV/HPlCLgywjj6nHLnW9UhV17rVdsX2rXoiUbN75XXOF6+yBjdzt9n/aZI5MLmKmmYxdMGTNV26qtNw5w3wrSqkx/szdKVSSXy75PWsJzJ4N4IbAMeql4gxsx+3t0/sorPXupw4rx93d3vBe4F2LVr14r+Fqqng97QlebbZ2d4/189zR03fjevu3LL/AdWOtjq9EV1R+us71y0rA/uztRc8YIjTOfTMbk803OrS8MMnpdfX9i2uTerNIwsS70y0N8CbiCaAO6Xzez33P1/lB9+B7CaAHAM2F71+zaitYZjs//QKJmU0ZtNky9GZaClsMRHHnmOV126Kc6PkjZWCp0zuSXKGqcWOvbT0wVO5/INTTTY15Uqd+yZ+Xr1gb4sW/prO/b+rrTSMB2omWsC3wRc4+5FM/t14E/MbNjdf4mlj+BX4otE4wkuB14A3gz821W+Z42xiRybezI127ozAcfPaZSmRDNqnqq6SFo7g+PCtjO5PCsdbGrA5t7MfCnj0oOTop9upWHkAr4wepp7Hv46XekgkUWt6gWAtLsXAdz9jJndBNxrZn8OrGpqunJQeQfwGaIy0I+4+5HVvOdiS5WBzhZCLt7YWQN1Oom7Mz23MPf6fEXMEtMITM0tPff6i8mkbL5efXq2yDeXmPLhp77vUm7bfYXSMLJqn/jiGOnA6MlEF+F7s2ly+WJsi1rVCwDfMLN/5e6fA3D3EvB2M/tN4MdX++Hu/mng06t9nwupLgNNmTFTKFEMnTe/Znv9F8u6UgqdszMFTk3N1R6lV6YPqJpKoKE0TDY1f3F0YH4+mK6aUsct/bVpmDf87ueWfK9PPvkC+/Zcuap/rwjAt8/NsLG7tpvuyaRiG8xaLwD8xFIb3f1XzOyPYmlBgqrLQJ87OcVLWmSgTifJF8OlR5pOVdeyN56G2dSTqUnBLAxIWriIOtiXpaeBNEzxAu250HYRiKajNyAoL/JeWeoxCCBlRjoICILo8ZcO9nFiapZseuFsMs7BrPUCwFbgDDBTbvgPAD8KPA+s22mgl6K/ybXj7kznS0uONF185D55gSXwXkx1GmZwUcdenV8f6M2QTmm0qcTHLOqsazru8v1g0f3K81JVj630Iv4v7rmCO+8/wmyhlMhg1noB4M+AHwPOmtn3Es3989+Aq4E/BG6LpRUJqS4D3did4dT0HPc8/HXexct0FtCA0J0z1VP0Ti094dfp6TxzDaRhestpmJp69UWrJg32ZdnYvT6qYdK29NF+uvlNa1uVo2ezaPT5wiJPCwtAGQudbWCUO1+bP6qeP/Iuv3j+PZb4rMp2a6DzjkPSg1nrBYAed6+UZv47ogu1v2NmAfClWFqQoMVloJUI+okvjikAVMkXw/lpeBfKGs+fpndieuVpGIDNS6Zhqo7YV5GGaaYN3WkmZs4/g9nQveppshJT3YEGFi2YlAqspkOdP3otd5jV3V5ldHll8GNlxHiw6PmLO+j515fH1VTetboDh4XXGOujA14Pklx3ut6eWv2N/yDwPgB3D1vhP6OTy0DdnVy+dN4I06UW1DjXQBomHdgFBiTVTvjVzmmYqQvMqXOh7ctRnWKodMbVt9VHt5U8chAspBmWek4nd57y4uoFgIfN7M+AbwMDwMMAZnYJkE+4bau2faCXoyenmJwtMlcskUkF9GVTbBvoa3bTGhZ6VA1TfZF0YfKvuYWqmKk8s3GmYeanEIhWTdrYsz7SMM2WCSAIFgJcGC5852ZGOlg4yq7kgVOLtq0mRyyyGvUCwLuBnwIuAW5w98pqyRcD70+wXbGorAgW5QGjZfxO50JuevX6GwWcL4bzk35Vr4w037GXj9YncgVKDeRhNvVkaueBOa+Tj47Ye7KtlYZZa5UOO50yXjrQw9FTOWzRgjBXbunlsov6CDQOQNa5erOBupnNEg3UehXRiF3c/ak1aNuqPTp6mk3dac7MFAg9ymdt7E7z1NhZ3roGn+/uzBRKSw5CiiphFipjVpOGGejLnreW6eIVlDJtmoaJSyX1EgSQDoKokw+MVCq6TQcB6cBqOvVf+ZGreM+Bw0zNFSmFTiplbOzK8L4feqU6f2kJ9eYC+iPglcDngQ+Y2XXu/oE1aVkMvj4+yeRskUwqmJ9Nc3quyPOnp1f1vqE752YKi/Lr1R38Qi17I2mY7kxw/qRf583D3sWGnvR8JYPUMjOy6YBMyhYqP6i9WFlJz6QDayj1smfnVn7mtS/lvkeOMl0q0ZMK+JnXvrTtphuX5jo4Ms7+Q6OMTeTWfC6gf0m0LGTJzHqBfwBaJgDkiyEhTqnk82cAZlxwpGihFNZcHK2d8GthabxG0zAbu9NRDn2pKXr7Fzp2pWGWLx0EpFNRSiZTvp9NB2RTQeL59IMj4xx48gWGNnSxo1xhduDJF3j1ts0KAhKLgyPj3H7gMJOzRYphyMnJOW4/cJgP3Xr1mkwFkS9P/4C756zFrlC5O6Wqvr4y9XOhGHLvodFF0/bONZSGSQXGQO9C1ctSaZjKj9Iwy7c4JVPp4CspmdUcucdl/6FRJmfznJ0pEnp0nWlTTzq2eVpE7n5whIlcoXzdKcAdJnIF7n5wZE0CwE4z+3L5vgFXlH83oksEr151CxJUKYNbfKyeD51PfHFsqZfM604Hi0obl07FbOzJKA3ToEwqmL+gWjl6z6SC+e3r3dMvnGGyal7/0GEiV+TpF840r1HSVkZPTs8PZoMog+HmjJ5cXRq7ol4AeEUsn9IkmXJqYPFSeYHBNTsGXnS1pMrse9K4ylFLpnLEnopy8ukgum3173f6AvX+F9oust7UqwJ6fqnt5QXd30w0J9C69fKXbOToySnO5grkSyGZlNHflWbbQB8funVdn7y0hEqdeyYV1BzFV+63eyXMhS4DNTJaWmQpl1/Uy7MnppcsNY7DiyalzWyjmb3PzH7fzN5gkf8EjAI/GUsLErRv9zDZdIrvGujhiqF+hjZ0k0mnNB30CmVSAX1daTb1ZNiyoYtLNvWwY7CXy7f0sX2wl4s3dbOlv4tNvRn6utJ0pVNt3/mLrIX3vukVbO7NYEG0BrkF0UJD731TPMmZeimg/wNMAI8STfx2O9FCMLe4+5diaUGCNB308lWO5isVNJlyCeVaVNOIyNL27NzKb996ddMmgxt29+8BMLP7gJPADnefjOXT10BlIqWx0zkKpZXX5LebVLBwoXW+s09Z287XI9LqmjkZXGXqB8pjAY62Uuff6TKpgK501NF3pVNk061RXSMia6NeALjazM6V7xvQU/69Uga6MdHWybJUjuqjka/lTj/V/hdhm22pEuPKdpFWUK8KSENS15HK9AbZVOWovnVq5tvRtoEexiZmzpsvf9tAT7OaJLIi63flig6XDso5+nRQ0+nL+vGBW17Fu/70Kc7NFHEqaxCn+cAtr2p200SWRQGgycwsqrZJB3SlUvMdvo7q1789O7fy9tddHk0Gly/Rl03x9tddrmkgpGUoAKyRdBDQlVlI2aTLUyCozLJ1aTI4aXUKAAmopG+60lGnn00FKrNsQ9VrTgP0ZtPk8kVNBictQwFgFdJBQCZtNTX1qr7pHEutOd2TSXFsItekFomsjAJAHemaWSpr571RR9/Ztg/0Mj45O38GADBTKLFtIJ55WkSSpgAANTNVVtI1GXXyUse+3cPcef8RcvkiPeVrAIWSs2/3cLObJrIsHRMAgsDIWjA/DULlAqzq6KVR1XNNJTFPiwg0d0nItnHpZg3OkeRoBmhJwsGRce68/wiZlLG5J8P45Cx33n+EuyCWIKDSFJEGVf44xydna/44D46MN7tp0iaqK83MottMyth/aDSW91cAEGlQ0n+cImMTOXoytTPyxFlppgAg0qCk/zhFtg/0MlOoXWI0zkozBQCRBiX9xymyb/cwhZKTyxdxj27jrDRrSgAws58wsyNmFprZrma0QWS1kv7jFNmzcyt33XwVWzd0c3amwNYN3dx181UtXwX0NPBvgP1N+nyRVduzcyu3HjtTMxncbTdoMjiJVzNXBEuEuz8DaBI0aWmaDE5a3bofB2Bme4G9ADt27Fjx65McRCGdTZPBSatL7BqAmT1kZk8v8XPLSt7H3e91913uvmtoaGhFbVCdtiRJVUDS6hI7A3D31yf13sulIzRJkiaDk1bX1mWgYxM5iqWQ0RNTjBw/x+iJKYqlUEdoEgtVAUmra1YZ6I+Z2THgeuBvzewzSXxOfzbFC2dmKZaclBnFkvPCmVn6slrrXlZvz86t3HrtpZyYnOOZ45OcmJzj1msv1dmltIymBAB3/0t33+buXe7+End/YxKfM19lZFU/qPpI4nFwZJyPPvY8+VJIYJAvhXz0sed1jUlaRlungCbnigz0pimUQmYLIYVSyEBvmqm5YrObJm3ggw88w5lcAQ8hZYaHcCZX4IMPPNPspoksS1sHgP5siolckUwQ0J0OyAQBE7miUkASi6OncgQWrTVhZgSBEVi0XaQVtHUAUApIROTC1v1AsNWYnCty6eZuTk7lyZdCsqmAizd2KQUksRje0sfXx6cwd8zAHUKHlw31Nbtp0kaSHMza1mcA2wd6SacChof62XnxRoaH+kmnAtVpSyzuuHEnA70ZDCiWQgwY6M1wx407m900aRNJD2Zt6wCgOm1J0p6dW/nQrVdzzY4BLtnUwzU7BvjQrVerDFRik/SiQ22dAtKi3ZK0JGdqFBmbyLG5J1OzLc7pRto6AID+QCVZmmxQkpT0dCNtnQISSdLBkXFuP3CYp745wfGzMzz1zQluP3BYA8EkNm25IphIO7j7wREmcgUcSKcCHJjIFbj7wZFmN03aRLuuCCbS8kZPTkcDwcrjSszAzRk9Od3klkk7absVwUTaRehOsVjCPQoAgUXTQoi0AqWARBo01JehGEaDv5zothhG20VagQKASIM29GQJiI78Kd8G5e0irUApIJEGTc4V2T7YUzPVyJb+rKYakZahACDSoEqN9vBQ//y2XL7I1g3dTWyVyPK1fQro4Mg4b7n3MW64+2Hecu9jqtGW2GiqEWl1bR0Akp5ISTpb0jXaIklr6xRQ9URKAL3ZNLl8kf2HRvVHKrHQVCPSytr6DGBsIkdPpnb1rzgnUhIRaWVtfQawfaCX505NcW6mOF+lsbEnzWUX9dd/scgyaDI4aWVtfQZw/fAg45NRiV5gkC+FjE/muX54sNlNkzaga0zS6to6ADw6epqh/izZVEDokE0FDPVneXT0dLObJm0g6cU6RJLW1imgsYkcW/q7GKqqy3Z3XQOQWCS9WIdI0tr6DGD7QC8zhVLNtjgXU5DOpv1LWl1bBwAN1JEkaf+SVtfWAUADdSRJ2r+k1bX1NQDQQB1ZG97sBog0oK3PAESSpDJQaXUKACINUhmotDoFAJEGaaoRaXUKACINUhmotDoFAJEGqQxUWl1TqoDM7EPATUAe+Abwc+5+JonP0mRdkpQ9O7dyF9G1gGMTObZp/5IWY+5rX8BmZm8AHnb3opndDeDud9R73a5du/zxxx9f9udUqjQyKaMnk2KmUKJQctVqi0hHMbMn3H3X4u1NSQG5+9+5e2Xl7MeAbUl8jqo0REQubD0MBPt54E8v9KCZ7QX2AuzYsWNFb6zJukSk1SWZxk7sDMDMHjKzp5f4uaXqOe8HisDHLvQ+7n6vu+9y911DQ0MraoOqNESklSU92DCxAODur3f3Vy3x8ykAM/tZ4EeAn/aELkSoSkNEWlnSaeymXAMwsxuBO4Cb3T2xfIwm6xKRVpb0YMNmXQP4faAL+KyZATzm7r+QxAdpMjgRaVXbB3oZn5ylN7vQVceZxm5WFdCV7r7d3b+3/JNI5y8i0sqSTmNrJLCIyDqVdBp7PZSBiojIBSSZxtYZgIhIh1IAEBHpUAoAIiIdSgFARKRDKQCIiHSopkwH3SgzOwE83+DLtwAnY2xOXNSulVG7VkbtWpn12i5YXdte6u7nTabWUgFgNczs8aXmw242tWtl1K6VUbtWZr22C5Jpm1JAIiIdSgFARKRDdVIAuLfZDbgAtWtl1K6VUbtWZr22CxJoW8dcAxARkVqddAYgIiJVFABERDpUWwQAM7vRzL5qZs+a2XuXeNzM7MPlx79sZtcu97UJt+uny+35spl93syurnrsOTP7ipl9ycweX+N27TGzs+XP/pKZ3bnc1ybcrtur2vS0mZXMbLD8WCLfl5l9xMzGzezpCzzerH2rXruatW/Va1ez9q167Vrzfav83tvN7O/N7BkzO2Jm71riOcntY+7e0j9ACvgGMAxkgcPAKxc954eABwADXgv803Jfm3C7vh8YKN9/U6Vd5d+fA7Y06fvaA/xNI69Nsl2Lnn8T8PAafF+7gWuBpy/w+JrvW8ts15rvW8ts15rvW8tpVzP2rfJ7XwJcW76/AfjaWvZf7XAGcB3wrLuPunse+ARwy6Ln3AJ81COPAZvN7JJlvjaxdrn75919ovzrY8C2mD57Ve1K6LVxv/dbgI/H9NkX5O6HgNMv8pRm7Ft129WkfWs539eFNPX7WmRN9i0Ad/+2uz9Zvj8JPANcuuhpie1j7RAALgXGqn4/xvlf4IWes5zXJtmuam8nivIVDvydmT1hZntjatNK2nW9mR02swfM7KoVvjbJdmFmvcCNwCerNif1fdXTjH1rpdZq31qutd63lq2Z+5aZXQZcA/zToocS28faYUUwW2Lb4trWCz1nOa9t1LLf28x+gOiP9Iaqza9z92+Z2Vbgs2Y2Uj6KWYt2PUk0d8iUmf0Q8FfAy5b52iTbVXET8I/uXn1El9T3VU8z9q1lW+N9azmasW+tRFP2LTPrJwo673b3c4sfXuIlsexj7XAGcAzYXvX7NuBby3zOcl6bZLsws1cD9wG3uPupynZ3/1b5dhz4S6LTvTVpl7ufc/ep8v1PAxkz27Kc1ybZripvZtEpeoLfVz3N2LeWpQn7Vl1N2rdWYs33LTPLEHX+H3P3v1jiKcntY0lc2FjLH6KzmFHgchYuhFy16Dk/TO1FlC8s97UJt2sH8Czw/Yu29wEbqu5/HrhxDdt1MQuDBK8Dvln+7pr6fZWft4kol9u3Ft9X+T0v48IXNdd831pmu9Z831pmu9Z831pOu5q4bxnwUeD3XuQ5ie1jLZ8Ccveimb0D+AzRVfGPuPsRM/uF8uP/E/g00ZX0Z4Ec8HMv9to1bNedwEXAH5oZQNGj2f5eAvxleVsa+BN3f3AN23Ur8B/MrAjMAG/2aI9r9vcF8GPA37n7dNXLE/u+zOzjRJUrW8zsGPBrQKaqTWu+by2zXWu+by2zXWu+by2zXbDG+1bZ64C3Al8xsy+Vt/0yUQBPfB/TVBAiIh2qHa4BiIhIAxQAREQ6lAKAiEiHUgAQEelQCgAiIh1KAUAkRmb2NjP7rma3Q2Q5FABE4vU2QAFAWkLLDwQTaRYz+1Xgp4km5DoJPAHsAj5mZjPA9e4+08QmirwoBQCRBpjZLuDHiWZvTBNNcvYE8DjwHnePdeEQkSQoAIg05gbgU5UjfDP76ya3R2TFdA1ApDFLTcUr0lIUAEQa8whwk5l1l+dy/+Hy9kmipf1E1j1NBifSIDP7daLlA58HTgAHiaYT/i2imS51EVjWNQUAkQaZWb9HK1v1AoeAvV5e31WkFegisEjj7jWzVwLdwP9W5y+tRmcAIiIdSheBRUQ6lAKAiEiHUgAQEelQCgAiIh1KAUBEpEP9f2bPVnu4Rv72AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "onemillionv2_datasc = dataset.data_sc\n", + "onemillionv2_monocytes_ut = onemillionv2_datasc[(onemillionv2_datasc.obs['cell_type_lowerres']=='CD8T') & \n", + " (onemillionv2_datasc.obs['time']=='UT')]\n", + "onemillionv2_monocytes_ut_df = pd.DataFrame(\n", + " data=onemillionv2_monocytes_ut.X.toarray(),\n", + " columns=onemillionv2_monocytes_ut.var.index,\n", + " index=onemillionv2_monocytes_ut.obs.index\n", + ")\n", + "data_selected_df, zscore_df, zscore_p_df = \\\n", + "get_individual_networks_selected_genepairs(onemillionv2_monocytes_ut_df, \n", + " onemillionv2_monocytes_ut, \n", + " 'assignment', \n", + " ';'.join(['RPS26', 'RUNX3']))\n", + "concated_df = pd.concat([zscore_df.T,\n", + " gt.T],\n", + " axis=1).dropna()\n", + "concated_df['gt'] = [item.split(':')[0].count('1') for item in concated_df[0]]\n", + "print(spearmanr(concated_df['RPS26;RUNX3'], concated_df['gt']))\n", + "sns.regplot(x='gt', y='RPS26;RUNX3', data=concated_df)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### onemillion v3" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# # load onemillion v2 data\n", + "# datasetv3 = DATASET('onemillionv3')\n", + "# datasetv3.load_dataset()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CD4T TEMCD4T NaiveCD8T TEMCD8T NaiveCD4TCD8TCD4T TCMCD8T TCMall_num
LLDeep_0117392487075625170289261599
LLDeep_1300341497339658119450101382
LLDeep_0615688417523550212347191277
LLDeep_09233980205403162491406907
LLDeep_070513114123613221881663947
\n", + "
" + ], + "text/plain": [ + " CD4T TEM CD4T Naive CD8T TEM CD8T Naive CD4T CD8T CD4T TCM \\\n", + "LLDeep_0117 39 248 70 75 625 170 289 \n", + "LLDeep_1300 34 149 73 39 658 119 450 \n", + "LLDeep_0615 68 84 175 23 550 212 347 \n", + "LLDeep_0923 39 80 205 40 316 249 140 \n", + "LLDeep_0705 13 114 123 61 322 188 166 \n", + "\n", + " CD8T TCM all_num \n", + "LLDeep_0117 26 1599 \n", + "LLDeep_1300 10 1382 \n", + "LLDeep_0615 19 1277 \n", + "LLDeep_0923 6 907 \n", + "LLDeep_0705 3 947 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'rs1131017')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA34AAAFNCAYAAABfWL0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAB0mklEQVR4nO3deZxcd3nn+89zTlX13tps2caSF4FA2AQDkRWyoIgkBMPcmABJxpABkoGxScJgsg1ckjjEzM1AwiQxMxDLAQJkQUNYEt3EYLgxQiGBWLZjEwQCm7ZNt7eWpZZ6qa6u5Tz3j3Oqu7pUvXet/X2/XvXqqrPV71RV/6qe81sec3dERERERESkcwXNLoCIiIiIiIjUlwI/ERERERGRDqfAT0REREREpMMp8BMREREREelwCvxEREREREQ6nAI/ERERERGRDqfArwOY2WVm5maWanZZRETKVDeJSKtQfSSiwK9lmNkvmNm/m1nWzJ4wsz81s83NLtdizOwPzGzYzMbN7BEz+60GPvdWM/usmU0lz/3aJbb/1eR1PWtmHzGzrop1bzGzu81sxsw+WvfC1y7fZWb2peT9P2FmP7HItpvN7GNmNprc3lWx7hIzm6y6uZn9ekNORDqO6qYVP/e61U0V2+w2s5yZ/WX9Sr5g+VZSN3WZ2a1m9qSZnTaz/9fMLq5Y/yUzO5m8L/eb2SsacxbSKVQfrfi5l10fmdl1ZvbtpC4aTX5nDFas/0szezw5j++Y2ZsacxbzyriS+sjM7L1mdiq5/YGZWdU2N5rZQ8nr8y0ze2ay/J1Vv6OmzSwys/PqfY515+66NfkG/DrwJHANkAYuA24HjgGZZex/GeBAqsHlfhbQl9y/GDgOvGqZ+66prMAngP8D9AM/ApwFrlxg25cmr++VwBbgCPCeivWvAn4a+FPgo036DHwV+COgB3g1cAY4f4Ft/xz4G6A3ee+/C/ziAtteDpSAy5pxXrq1901106qee93qportvgD8E/CXTfgMrKRu+m/A/cAFQDfwF8BnKtY/t/z6Aj8ATAAXNfqcdGvPm+qjVT33SuqjncB5yf1+4K+A91esvxLoSu7vAZ4Avr/Br+VK6qMbgG8DO5LX/ZvAmyvWvwn4OnAFYMDTga0LHOtdwJ2NPNe6vYbNLsBGvwGDwCTwc1XL+4FR4D8njwPgHcQ/8k8Bnyx/QKsrM2AT8GHgceBR4L8DYbLuF4CvAO8DxoCHgJctULZ3AJ+qWnZLZUVQsfxi4N+B/7bAsQ4AI8Dbk8riL9bwmvUBeeCZFcv+gho/mJJ1fw38fsXjHweeqLHdf2eFgR/wUeBW4IvEP2K+DFy6wmM8E5gBBiqW/VNlBVW1/VPA1RWP3wn80wLb/i7wpWZ/znVrv5vqplW9ZuteNwHXJa/pu1hB4NekuulPgT+oePwfgG8vsO0+IAfsa/ZnXbfWv6k+WtVrtqL6qMbr+nHg9gXWPyt53X5umWVpRn30L8D1FY/fCHyt4nMyDPz4Mp7Xks/TG5r9f7AeN3X1bL4fIr4y+pnKhe4+CXwOeEmy6K3ErVI/CjyNuCL6wALH/BhQBJ4BPB/4SeIrG2U/QHwV5DzgD4APVzd/Jz4BvLzc1G9mIfBzxD9WSJa9w8wmiSuqvsp1NVwIbAUuBa5PuiWeWeS2UJeEZwIld/9OxbL7ia9G1XJlsr5y2wvMbNsiZV2JnwfeTfx63kd8lQwAM/v6Iuf3wYryDbn7xDLPB+KKqPL+cxbY7vXEnweRlVLd1OS6KTm/m4lbOlaj0XXTh4EfNrOnmVlv8vyfq9zAzP7ezHLAvxK3cN69ynOTjUX1Uf3rI8zsR8zsLHFw9mrgT6rWf9DMssAJ4sDv9kXOo1qj66Na9Wt52x3J7TkWd8N9yMx+z8xqxUUvIu7F8OkVnGvranbkudFvwH+iRutTsu49wBeT+9+i4soEcBFQAFJUXMUi/nDOAD0V276GpNWH+CrWgxXrepN9L1ygDF8BXp/cfwnw3RrbGHGl+XtUXImp2uYA8ZWn7nV4zV5U/ZoB/wU4ssD23wWuqXicTs75sqrtVtvid6jicT9x18qdKzjG60iuQlUs+38WKgvwl8RffgPEX1jfBWYWeJ0mgf5mf851a7+b6qZVvWbrWjcRtxq8Pbn/Llbe4tfoummQ+EewE/+g/jdqdJ1KzvNlwK82+3OuW3vcVB+t6jVbUX1Utd3FSZ3zzBrrQuJuo78NpJdZlmbURyVgT8Xj3cl7aMQXEhz4B2Bz8tn4DvBfahznwws9Rzve1OLXfE8B51ntWaYuStZDfOXns+UrIMSVW4m48qp0KfGX6uMV2x4Etlds80T5jrtnk7v9C5Tvr4krQ4DXUuMqlcf+DZgmrtAWctLdc4usr8nMPlcxwPbniYOZwarNBomvUNVSvX35/kLbr9Rw+Y7HVx9PE19pXK6Vns9biV/rB4C/I/6hNVJjuzcAn07KJLJSqpuWUM+6ycyeB/wE8McrLVeFRtdNf0rcKrONuFXjM1S1+CVlKbj754CXmtm1KyiPbFyqj5awDvVRZVkfBT4PHKqxruTuXyFuMfulFRSx0fVRrfp10uNobjpZ9gfufsbdHyZ+/19eeQAz6wF+lg7qOaXAr/m+SnzV6VWVC82sj/iK6D8mi4aJ+5dvrrh1J/+clYaT451Xsd2guy/WbXAxfwMcMLMdwCtZvHtCinhw7EK88oHVnoFysqriwt1f5u79ye2viK/KpMxsd8XhriIeMF3L8WR95bZPuvupRcq6EjsrzqmfuIvGY8nj44uc360V5dtlZgPLOR93P+3uP+/uFybvawDcVblNJ1ZW0nCqm5pbNx0gvgr9PTN7AvgN4NVmdu8i51GtoXVTsu6jSR01A/wvYJ8tPBPeUu+LSJnqo/rXRyst50r/fxtdH9WqX8vbfpu4ZdWrd6ryKuIA9ciSZ9cumt3kqJtDPBNarZmq7mVuBqVfJf7gXZo8Ph94RXL/MuYPWP474i5Cg8RBwdOBH03W/QLwlarnd+AZi5Tvc8QDcv+tYllAPGPSFuJm833E/b3fusAxDgAj6/iaHSJu6eoDfpjFZ6q6hvjK3RVJee9k/qyeKeKr1P+DeOBzNxUzaSWvz4EFjv1RYJy420OG+Or8v6zifL5GPIi8m/hL4wwLz1T1dOIr6iHxF95T1edOfMXxEcCa/fnWrX1vqptW9ZqtS91E3LXsworb+4BPVdYLLVg3/TnxOJhNyeflncCjybo9SX3Vk6z7T8Q/vF7Q7M+5bu1xU320qtdsJfXRzwOXJOW8lHgCls8k67YTTzTVT/zb46XAVPm1rXh9Dixw7GbUR28mbvG9mLhl8TjzZ/X8OPD3xMNmdhCPW3xj1TG+ANzc7M/+et6aXgDdkjcinm3oG8TNz08SNzlvqVgfAL9GfJVignhsyO8n66ors03EXW5Gkn/yfwOuS9atpjJ7XbLNb1aV5/PEV0Imia8svZMFAo06VGZbgb9NKp7vAa+tWHdJUqZLKpb9WvK6jhP/OOmqWPeu5Pwqb+9K1u1IXu9tC5Tjo8zNVDUJHAUuX8X5XEb8ZTWdvMc/UbHuRcTdE8qPf474KlmWeID0S2sc7w7g3c3+XOvW/jfVTSt+vdatbqo67ruoGOPXonXTNuIJG0aJf5B9hWTWTuDZxBO6TCTrjgGvbPbnW7f2uqk+WvHrtez6iHi83Eiy7QhwW7l+IQ6gv5z8744Tz0z6XyqO1Yr1kRFPynM6uf1B5etOHPAfSso9DNxUtf5iksl/mv25X8+bJScnIjWY2X8ivjr2fy+w/qPElfRvN7RgIrKhqW4SkVah+qh91BokKyIJd//LZpdBRKSa6iYRaRWqj9qHJncRERERERHpcOrqKSIiIiIi0uHU4iciIiIiItLhFPiJiIiIiIh0uLpO7mJm1xDnSAmBD7n7e6rWvwJ4NxART5n6Nnf/ynL2reW8887zyy67bF3PQUSa65577nnK3c9vdjnWQnWTSOdR3SQirWqh+qlugZ+ZhcAHgJcQ5wM5ZmaH3f2bFZv9I3DY3d3Mngt8EtizzH3Pcdlll3H33XfX43REpEnM7JFml2GtVDeJdB7VTSLSqhaqn+rZ1XMf8KC7D7l7njhJ4isqN3D3SZ+bXaaPOPHlsvYVERERERGR5aln4HcxMFzxeCRZNo+ZvdLMTgD/APznlewrIiIiIiIiS6tn4Gc1lp2TO8LdP+vue4CfJh7vt+x9AczsejO728zuPnny5GrLKiIiIiIi0rHqGfiNADsrHu8AHltoY3c/CjzdzM5byb7ufpu773X3veef39ZjrEVEREREROqinoHfMWC3mV1uZhngOuBw5QZm9gwzs+T+C4AMcGo5+4qIiIiIiMjy1G1WT3cvmtlbgDuIUzJ8xN2Pm9mbk/W3Aq8GXm9mBWAa+I/JZC81961XWUVERERERDpZXfP4ufvtwO1Vy26tuP9e4L3L3VdERERERERWrq6BXys6cmKUg0eHGB7LsnNLLzfs38WBPdubXSwREWlj+m6RTqbPt0hnqOcYv5Zz5MQoNx0+zuhEjs09aUYnctx0+DhHTow2u2giItKm9N0inUyfb5HOsaECv4NHh0iHRm8mhVn8Nx0aB48ONbtoIiLSpvTdIp1Mn2+RzrGhAr/hsSw96XDesp50yMhYtkklEpFWY2bXmNm3zexBM3tHjfUHzOysmd2X3G5qRjmldei7RTqZPt8inWNDBX47t/QyXSjNWzZdKLFjS2+TSiQircTMQuADwMuAK4DXmNkVNTb9J3d/XnK7uaGFlJaj7xbpZPp8i3SODRX43bB/F4WSk80XcY//FkrODft3NbtoItIa9gEPuvuQu+eBQ8ArmlwmaXH6bpFOps+3SOfYUIHfgT3bufnaK9k+0M3Z6QLbB7q5+dorNTOViJRdDAxXPB5JllX7QTO738w+Z2ZXNqZo0qr03SKdTJ9vkc6x4dI5HNizXZWViCzEaizzqsf3Ape6+6SZvRz4W2D3OQcyux64HuCSSy5Z52JKq9F3i3Qyfb5FOsOGavETEVnCCLCz4vEO4LHKDdx93N0nk/u3A2kzO6/6QO5+m7vvdfe9559/fj3LLCIiIrIkBX4iInOOAbvN7HIzywDXAYcrNzCzC83Mkvv7iOvRUw0vqYiIiMgKbLiuniIiC3H3opm9BbgDCIGPuPtxM3tzsv5W4GeAXzKzIjANXOfu1d1BRURERFqKAj8RkQpJ983bq5bdWnH/fwP/u9HlEhEREVkLdfUUERERERHpcAr8REREREREOpwCPxERERERkQ6nwE9ERERERKTDKfATERERERHpcAr8REREREREOpwCPxERERERkQ6nwE9ERERERKTDKYG7iEgLOHJilINHhxgey7JzSy837N/FgT3bm10sERER6RBq8RMRabIjJ0a56fBxRidybO5JMzqR46bDxzlyYrTZRRMREZEOocBPRKTJDh4dIh0avZkUZvHfdGgcPDrU7KKJSIsxs51m9iUz+5aZHTezG5Pl7zKzR83svuT28maXVURai7p6iog02fBYls096XnLetIhI2PZJpVIRFpYEfh1d7/XzAaAe8zsi8m6P3b39zWxbCLSwtTiJyLSZDu39DJdKM1bNl0osWNLb5NKJCKtyt0fd/d7k/sTwLeAi5tbKhFpBwr8RESa7Ib9uyiUnGy+iHv8t1Bybti/q9lFE5EWZmaXAc8H/jVZ9BYz+7qZfcTMtjSvZCLSihT4iYg02YE927n52ivZPtDN2ekC2we6ufnaKzWrp4gsyMz6gU8Db3P3ceBPgacDzwMeB/7nAvtdb2Z3m9ndJ0+ebFRxRaQFaIyfiEgLOLBnuwI9EVkWM0sTB31/5e6fAXD3JyvW/xnw97X2dffbgNsA9u7d6/UvrYi0CrX4iYiIiLQJMzPgw8C33P2PKpZfVLHZK4FvNLpsItLa1OInIiIi0j5+GHgd8O9mdl+y7J3Aa8zseYADDwM3NKNwItK6FPiJiIiItAl3/wpgNVbd3uiyiEh7UVdPERERERGRDqfAT0REREREpMMp8BMREREREelwCvxEREREREQ6XF0ndzGza4BbgBD4kLu/p2r9zwNvTx5OAr/k7vcn6x4GJoASUHT3vfUsq4iIiIhIJzlyYpSDR4cYHsuyc0svN+zfpZyxG1jdWvzMLAQ+ALwMuIJ4muErqjZ7CPhRd38u8G6ShKIVXuzuz1PQJyIiIiKyfEdOjHLT4eOMTuTY3JNmdCLHTYePc+TEaLOLJk1Sz66e+4AH3X3I3fPAIeAVlRu4+7+4+1jy8GvAjjqWR0RERERkQzh4dIh0aPRmUpjFf9OhcfDoULOLJk1Sz8DvYmC44vFIsmwhbwQ+V/HYgS+Y2T1mdn0dyiciIiIi0pGGx7L0pMN5y3rSISNj2SaVSJqtnmP8aiUX9Zobmr2YOPD7kYrFP+zuj5nZduCLZnbC3Y/W2Pd64HqASy65ZO2lFhERERFpczu39DI6kaM3M/dzf7pQYseW3iaWSpqpni1+I8DOisc7gMeqNzKz5wIfAl7h7qfKy939seTvKPBZ4q6j53D329x9r7vvPf/889ex+CIiIiIi7emG/bsolJxsvoh7/LdQcm7Yv6vZRZMmqWfgdwzYbWaXm1kGuA44XLmBmV0CfAZ4nbt/p2J5n5kNlO8DPwl8o45lFRERERHpGAf2bOfma69k+0A3Z6cLbB/o5uZrr9SsnhtY3bp6unvRzN4C3EGczuEj7n7czN6crL8VuAnYBnzQzGAubcMFwGeTZSngr9398/Uqq4iIiIhIpzmwZ7sCPZlV1zx+7n47cHvVslsr7r8JeFON/YaAq+pZNhERERERkY2inl09RUREREREpAUo8BMREREREelwCvxEREREREQ6nAI/ERERERGRDqfAT0REREREpMMp8BMREREREelwdU3nICIiy3PkxCgHjw4xPJZl55Zebti/S7mXREREZN2oxU9EpMmOnBjlpsPHGZ3IsbknzehEjpsOH+fIidFmF01EREQ6hAI/EZEmO3h0iHRo9GZSmMV/06Fx8OhQs4smIiIiHUKBn4hIkw2PZelJh/OW9aRDRsayTSqRiIiIdBoFfiIiTbZzSy/ThdK8ZdOFEju29DapRCIiItJpFPiJiDTZDft3USg52XwR9/hvoeTcsH9Xs4smIiIiHUKBn4hIBTO7xsy+bWYPmtk7FtnuajMrmdnPrPU5D+zZzs3XXsn2gW7OThfYPtDNzddeqVk9RUREZN0onYOISMLMQuADwEuAEeCYmR1292/W2O69wB3r9dwH9mxXoCciIiJ1o8BPRGTOPuBBdx8CMLNDwCuAb1Zt91+BTwNXN7Z40qqUh1FERFqdunqKiMy5GBiueDySLJtlZhcDrwRubWC5pIUpD6OIiLQDBX4iInOsxjKvevwnwNvdvVRj27kDmV1vZneb2d0nT55cr/JJC1IeRhERaQfq6ikiMmcE2FnxeAfwWNU2e4FDZgZwHvByMyu6+99WbuTutwG3Aezdu7c6eJQOMjyWZXNPet4y5WEUEZFWo8BPRGTOMWC3mV0OPApcB7y2cgN3v7x838w+Cvx9ddAnG8vOLb2MTuTozcx9pSoPo4iItBp19RQRSbh7EXgL8Wyd3wI+6e7HzezNZvbm5pZOWpXyMIqISDtQi5+ISAV3vx24vWpZzYlc3P0XGlEmaW0H9mznZuKxfiNjWXZoVk8REWlBCvxERETWSHkYpVHMbCfwceBCIAJuc/dbzGwr8H+Ay4CHgZ9z97FmlVNEWo+6eoqIiIi0jyLw6+7+bOCFwK+Y2RXAO4B/dPfdwD8mj0VEZinwExEREWkT7v64u9+b3J8gHo98MfAK4GPJZh8DfropBRSRlqXAT0RERKQNmdllwPOBfwUucPfHIQ4OAfU9FpF5FPiJiIiItBkz6wc+DbzN3cdXsN/1Zna3md198uTJ+hVQRFqOAj8RERGRNmJmaeKg76/c/TPJ4ifN7KJk/UXAaK193f02d9/r7nvPP//8xhRYRFqCAj8RERGRNmFmBnwY+Ja7/1HFqsPAG5L7bwD+rtFlE5HWpnQOIiIiIg1kZq9abH1FK14tPwy8Dvh3M7svWfZO4D3AJ83sjcD3gJ9dh6KKSAdR4CciIiLSWJ8C7ktuAFaxzoEFAz93/0rV9pV+fB3KJiIdSoGfiIiISGO9GviPwHOJu2R+wt0fbG6RRKTTKfATERERaSB3/yzwWTPrI86/9z/NbBvwW+7+5eaW7lxHToxy8OgQw2NZdm7p5Yb9uziwR9kiRNqNJncRERERaY4ccBYYB/qA7uYW51xHToxy0+HjjE7k2NyTZnQix02Hj3PkRM1JQ0WkhSnwExEREWkgM3uxmd0G3AO8GLjF3Z/v7nc0uWjnOHh0iHRo9GZSmMV/06Fx8OhQs4smIiukrp4iIiIijfWPwNeBrwBdwOvN7PXlle7+1mYVrNrwWJbNPel5y3rSISNj2SaVSERWq66Bn5ldA9wChMCH3P09Vet/Hnh78nAS+CV3v385+4qIiIi0qf9MPHtny9u5pZfRiRy9mbmfjNOFEju29DaxVCKyGnUL/MwsBD4AvAQYAY6Z2WF3/2bFZg8BP+ruY2b2MuA24AeWua+IiIhI23H3jy60zsxaqjfWDft3cdPh42TzRXrSIdOFEoWSc8P+Xc0umoisUD3H+O0DHnT3IXfPA4eIZ66a5e7/4u5jycOvATuWu6+IiEirOHJilNfc9jV+5L138prbvqaJL2RRZvaVivt/UbX6rgYXZ1EH9mzn5muvZPtAN2enC2wf6Obma6/UrJ4ibaieV5UuBoYrHo8AP7DI9m8EPrfKfUVERJqiPOthOrR5sx7eDPpxLAvpq7h/ZdW6hZKzN82BPdv1WRbpAPVs8atVcdXsz25mLyYO/Mrj/Vay7/VmdreZ3X3y5MlVFVREOoOZvbDZZZCNR7MeyiosNr6vLcb+iUj7qWeL3wiws+LxDuCx6o3M7LnAh4CXufuplewL4O63EY8NZO/evaosRTa2DwIvaHYhZGMZHssSGgydnCRfisiEAef1ZzTroSxms5m9kvgC/GYze1Wy3IBNzSuWiHSyegZ+x4DdZnY58ChwHfDayg3M7BLgM8Dr3P07K9lXRESkFfRnQh48OUVoRmhGseQ8eibHM87vW3pn2ai+DFxbcf+nKtYdbXxxRGQjqFvg5+5FM3sLcAdxSoaPuPtxM3tzsv5W4CZgG/BBMwMouvvehfatV1lFpGPsMrPDC61092sXWieyWsn3V9xWUx6o4BXLRc71/7r7Z5pdCBHZWBYM/Mzs9939nWs5uLvfDtxetezWivtvAt603H1FRJZwEvifzS6EbCwTM0Uu3tzNU5P52a6eFw52MTlTbHbRpHX9NnGPJxGRhlmsxe8aYE2Bn4hIg024+5ebXQjZWMoJrned3z+7LJsvsn2gu4mlEhERmW+xwC80sy0sMK2wu5+uT5FERFbt4WYXYK1GJ3J0pUL6u1KEgboKtgMluJZV2GNmX6+x3AB39+c2ukAi0vkWC/z2APewcGoFfaOJSEtx91dVL1uPbuuNlC9GTOaKnJ7K05uJA8DeTKjxYi3swJ7t3Eyc1mFkLMuOLb3csH+X8p7JYh5i/oQuIiJ1t1jg9013f37DSiIiskZm9v7qRcDrzKwfwN3f2vhSrY67MzVTZGqmSBgYfV0pBrpTdKXCZhdNalCCa1mhvLs/0uxCiMjGUs90DiIijfYq4AjwBeZ6K1xH3HuhbZUiZ3y6wPh0gUwqYKArTV9XSCoMml00SRw5McrBo0MMj2XZqRY/Wdo/N7sAIrLxLPar4ZaGlUJEZH08G3iKeHKq/8/dP0Y84cvHkvttL1+MODU1w/dOZ3n87DTjuQKlyJtdrA3tyIlRbjp8nNGJHJt70oxO5Ljp8HGOnBhtdtGkRbn7W5pdBhHZeBZs8XP3j1YvM7PvuPsz61oiEZFVcvcJ4G1m9v3AX5rZP7D4Ba62Np0vMZ0v8RQzZFIB3ekwvqUCtQY20MGjQ6RDozcTf6X2ZlJk80UOHh1Sq5+IiLSMxfL4TRBP4gJzXaZ6y8vdfbDehRMRWQ13v8fMfgz4ZeArzS5PI+SLEflixPh0AYB0GNCVToLBVEgmpUCwXobHsmzuSc9b1pMOGRnLNqlE0urM7IXu/rVml0NENpbFxvh9FNgE/Ka7PwlgZg+5++WNKJiIyGqZ2WZgN3AX8JfNLU1zFEoRhVI8QyhAGNhsENiVDuhKBZopdJ2U8/iVW/wApgsldmzpbWKppMV9EHhBswshIhvLgpeA3f2/Eo/z+4SZvdXMAuZaAEVEWo6ZZczso8T5/G4D/gx42Mw+YmaZZpat2UpRPEvoqakZHjszzSOnsoyO55gplppdtLZ3w/5dFEpONl/EPf6rPH4iItJqFp3VM+ku9RPAW4AvA90NKZWIyOr8NpAGdibj/TCzAeADwO8kNwEidyZnikzOFOnNpNjSl1aqiFVSHj9ZhV1mdnihle5+bSMLIyIbw5LpHNw9At5vZn8DKK+fiKxaA6a8fxWwz91nB1e5+4SZ/TLwNRT41ZTNF8nmi/R3pdjUqwBwNZTHr701IR3HSeB/1vMJRESqLRr4mdk24LXAnmTRt8xsm7ufqnvJRKSjlKe8T4c2b8r7m2E9f2BFlUFfmbtPmpm6qi+h3ALYkwkZ6E7Tkw4JA40DlM7WoLqp2oS7f7leBxcRqWXBMX5m9mzgG8D3A98BHgCuBv7dzPYstJ+ISC2VU96bxX/ToXHw6NB6Po2b2RYz21p9A6L1fKJONp0vMTqem80VeDZboFDSyyedqUF1U7WH63lwEZFaFmvxezdwo7t/snKhmb0a+H+AV9ezYCLSWRo05f0m4B7mUtBUUovfCrn7bK7AU1Nxioi+rhS9mThfoEgnaEY6Dnd/VfUyM/t9d39n3Z5URDa8xQK/73P3n6le6O6fNrPfr2OZRKQDNWLKe3e/bN0OJucolCLOZPOcycbpIXozcRDYmwmVGkLaVjPScZjZ+6sXAa8zs34Ad39r3Z5cRDasxTL6Tq1ynYjIORox5b2ZvdTMzrlgZWavNbOXrNsTCaXImcgVeHI8x8OnsjxxNsd4rkApUsOqtJcmpeN4FbAVuJu4l8LdQCG5f089n1hENq7FWvy2m9mv1VhuwPl1Ko+IdKgGTXn/e8BP1Vh+J/BZ4Ivr+WQSK/9YzuaLnLI8PemQnqQlMB0udn1RpPmalI7j2cRDaq4BftPdHzWz33X3j9XzSUVkY1ss8PszYGCBdR+qQ1lEpMM1YMr7Xnc/Wb3Q3Z8ws756PrHE5gWBxOMC4+6gKXoyGhcoranR6TiSPKNvM7PvB/7SzP6BxXthiYis2YKBn7v/XiMLIiKyDrrNLOXuxcqFZpYGeppUpg2tUIo4Ox1xdrpAKgjo7Qrp70ppchgRwN3vMbMfA34Z+EqzyyMinW2xdA5/YGZvrrH8V83svfUtlojIqnwG+LPK1r3k/q3JOmmiYhQxPl3gsTPTPHJqitGJeFxgvqhUEbIxmdlmYC9wF/ArzS2NiHS6xboV/F/AbTWW3wL8h/oUR0RkTX4beBJ4xMzuMbN7iPNlnUzWLcnMrjGzb5vZg2b2jhrrX2FmXzez+8zsbjP7kfU8gY2iFDmTuSJPTcwwMpZl+HSWU5Mz5AqlZhdNpO7MLGNmHyWun24jHl7zsJl9xMwyy9j/I2Y2ambfqFj2LjN7NKmb7jOzl69nmYvK5SnS9hYb4+fufs5/ubtHpnm7RaQFJV0832Fmvwc8I1n8oLtPL2d/MwuBDwAvAUaAY2Z22N2/WbHZPwKH3d3N7LnAJ4E963YSG1Rll9AwsGRymBS96ZAg0FeOdJzfBtLAzmS8H2Y2QFz//E5yW8xHgf8NfLxq+R+7+/vWt6ixqXyJ8ekc2/oz81JfiEj7WOw/N2tmu939gcqFZrYbWNaPKBGRZkgCvX9fxa77iAPFIQAzOwS8ApgN/Nx9smL7PpQYft2VWwMnc0XMjO50nDi+L5MiVBAoneFVwD53n80S7+4TZvbLwNdYIvBz96Nmdll9i3iuQiniibNxzsOtfRkyKc1HI9JOFvuPvQn4nJn9gpl9X3L7ReAfknUiIp3mYmC44vFIsmweM3ulmZ0grg//c60Dmdn1SVfQu0+ePGeiUVkmd2c6X+KpiRm+dzrLk+M5JmeKRMoXKO0tqgz6ypILS2v5cL8l6Yr+ETPbUmuD9aibsvkiI2NZTk7MKHenSBtZMPBz988BPw28mLhLwUeBA8Cr3f32+hdNRGRlzGyt/Y9qNSed86vG3T/r7nuI68h31zqQu9/m7nvdfe/55yv16Xpwd6ZmioyO53jkdJbHz04zNpXXuEBpR25mW8xsa/UNWO1guj8Fng48D3gc+J81n3gd66aJXIHh01nOZPO4KwAUaXWL/khy928Ab2hQWURE1uprZjYCfB74vLs/vML9R4CdFY93AI8ttHHS3erpZnaeuz+14tLKqpVbAqfzJcayzI4L7EnHYwPVJVRa3CbgHpZ5sWk53P3J8n0z+zPg71dXtJWJ3Dk9lWciV2RLX4b+Lo3/E2lV+u8UkY7h7nvN7FLgZcCfmNnFxLmxPgd82d1nljjEMWC3mV0OPApcB7y2cgMzewbw3WRylxcAGeDUOp+KrFDluECYIZMK6E6H9ClxvLQgd79svY9pZhe5++PJw1cC31hs+5U4cmKUD3zpQb43luWiwR6uu3on+3ZtnbdNoRQxOp7jbDpka29G/3ciLUiBn4h0FHd/hDhv361J4vYXAdcA/93MTrr7gulo3L1oZm8B7gBC4CPufryc09TdbwVeDbzezArEE139R1cfp5aTL0bki3HewFQQJLOEhnSnQ7UGyjmKpYiZYkRfg1qrzOylwIC7f6pq+WuBk+7+xSX2/wTx8Jvzkl4OvwscMLPnEbcYPgzcsB5lPXJilJsOHycwGOxOcWpqhlvufIAb2X1O8AcwUyjx+NlputMhWxQAirSUBWs4M3sN8AV315VsEWlL7l4A7kxuJC2AS+1zO3B71bJbK+6/F3jv+pZU6qkYRUzkIiZyBQBSQUA6ZfSk40CwO60fphuJuzNTjJgpRMwUS8wUIwqlCDPj8sZ1U/w94KdqLL8T+CywaODn7q+psfjD61Cucxw8OkQ6NLpSIcVSRE86ZLpQ4tCx4ZqBX1kuCQB7MnEAqP8zkeZbrIa7FPib5Ir5PxJ3lbpLV7ZFpF25+6PNLoM0XzGKKOZhOh9PCpMKAnq74m6h3ekApartLOXWvFwhDvJmilErTETS6+7nTKnp7k+YWV8zCrSQ4bEsm3vSVE7e2Z0OeGJ8eZm94rG4cQC4ra9LKSBEmmjBwM/d3wO8J0ko+hPEU5bfambfIp444Y7KgcQiIiLtqBhFjE/H3ULDwOjNpOjriieKURDYXmZb84oRM4W51rwW1G1mKXcvVi5MLrb3NKlMNe3c0svoRI6u1FyLXa4QceHgyoo5nS/xaGGawe4UW3ozBOpyLdJwS152cfeJZOryG9z9+cB/B84HPl730omIrEGrXTmX1leKnIlcgSfO5vje6SyjE3HewBZoIZIaiqWIqZkipyZneOzMNA+fyvLYmWlOTc4wOVNs1aAP4DPAn1XWUcn9W5N1LeOG/bsolJxsvojjTBdKFCPnuqt3Lr1zFXfn7HSBkbFpJmeKS+8gIutqxZ3Z3f2bwDdZID+MiEizmdkPAR8C+oFLzOwq4AZ3/+XmlkzaSeVMoYEZfV0p+rvUHbRZFhqbtx7uGjrNobuHeWpyhp1berlh/y4O7Nm+LsdewG8TX0h/xMweSZZdQjxO73fq+cQrdWDPdm4GPvClBxkey3LhArN6rkQximcAnVD3T5GG0qyeItKJ/hh4KXAYwN3vN7P9zS2StLPI45bAiVwBM6M7HcSBYCalLmt14h63Lk3n6zs2766h09xy5wOkAmNzT5rRiRw3HT7OzVC34C/p4vkOM/s94BnJ4gfdfXkD5xrswJ7tPP/SLZyaXCojzsqUu39u6kmzpTetCyoidVbXwM/MrgFuIZ4W/UPJuMHK9XuAPwdeAPyWu7+vYt3DwARQAoruvreeZRWRzuLuw1U/IkrNKstyHDkxysGjQzz01OS6XFGX+qlMHn/K8nSnA+59eIyPf/URRs5kuWRrXyNajDpSKXKm8kWyMyWmC6WGdLE9dGyYYqnEmWyJJ8ZzZMKAwZ4UB48O1f09TAK9f6/rk7Q4d+dMNs/UTJFt/Rl6M2qTEKmXxdI5LPqLw91PL7bezELgA8BLgBHgmJkdTrqKlp0G3gr89AKHebG7P7XY84iI1DCcdPd0M8sQ1zPfanKZFlTOk5UOjcHu9JJ5sqR1uDtfPnFytsWoNxPy6Jks7/zsv/PfXvosfvRZ20mnAlKBkQkDtQ4myt02C6WIYskpJDNvNmNM3iOnp5iYLmCBEQZGMXKemshTKE00vCwbWaEU8cTZHP1dKbb1dynfpkgdLHZZ5SnigK08+rbyP9CBXUscex9xt4UhADM7BLyCeHxgfBD3UWDUzBZMqCwisgpvJu5tcDFxPfYF4FeaWqJFlPNk9WZS5IvLz5MlreHQsWFSQZwXEKA7FTLtJT76L4/w3J2b521bziHYnQrp7QrnzZTYaaLIKUZO5E4puZ8vRuRLEfnWSKkAQL4YgUFghmGYQWRxWeul1oyeEpucKTJdKLG1L8NAd7rZxRHpKIsFfv8LOAD8M/AJ4CsrzOF3MTBc8XgE+IEV7O/AF8zMgYPuftsK9hWRjc3c/eebXYjlKufJqrSSPFnSXI+Px1PUV1ro/avMITiWhXQY0JsJ6cmEZMKAVNh+k1y4O/mk5a5YcnLFErlCiVLUGoHdUtKhMV2AYhLoGRAEkAnr2uL0NTMbIU6P9Xl3f7ieT9ZuSpFzcmKGqZk4ANTkLyLrY7E8fjdaPEDmAPA64H+Z2ReAP3X3h5Zx7Fo15kq+BX7Y3R8zs+3AF83shLsfPedJzK4Hrge45JJLVnB4Eelg/2JmDwH/B/i0u59pcnkWVc6TVTm2ZTV5sqQ5Lhrs4dTUzGyLHyz//SuUIs5OR5ydLgAQBkYmFZAJAzKpgHQYdxMNzJraTbTcJTNXKJErlnCPy1qKvFUSoq/a1t4MZ6fnN755BOf1d9XtOd19r5ldCrwM+BMzuxj4CvA54Mvuvr6zqLSpbD5u/RtIcv+p+6fI2iw6gjZp4fuSmf0bcB3wbuAB4M+WcewRoDLJyw7gseUWzN0fS/6OmtlnibuOnhP4JS2BtwHs3bu3fb95RGTduPtuM9tHXG/9lpl9Ezjk7n/Z5KLVdMP+Xdx0+DjZfJHQbE15sqTxrrt6J7fc+QDThRLd6YBcIVr1+1eKkoljFpiLyMziFimLuyQGgRGazf4g9uT6apBsF3ncIldyJ/K4+2Xkc9tAPGNp5BAk3R2DIN7XgVIp3redA7slmcXnnozxc4/fh3rPMOnujxDn7bs1Sdz+IuAa4L+b2Ul31zAY4s/v+HSByVyRLX0ZNvWo+6fIai02uUsf8Zi8/0icsP0zwAvcfXihfaocA3ab2eXAo8Q/wF67nB2T5w7cfSK5/5PAzct8XhER3P0u4C4z+33gj4CPAS0Z+JXzZB08OsTDT01ygWb1bCv7dm3lRnZz6NgwT4xP13VWVvc4tCsHb2uZq7ZU1Qmn5Mmylp7/dv1N5YtcMNjFWLZAMXIyYcCFg10NTTDu7gXgzuRG0gIoFSJ3Tk3OMJErcF5/F93pzh0fK1Ivi7X4jRK37n0CeJD44t/VZnY1gLt/ZrEDu3vRzN4C3EGczuEj7n7czN6crL/VzC4E7gYGgcjM3gZcAZwHfDa52pYC/trdP7/qsxSRDcXMBoFXEl9wejpQ7jXQsg7s2c6BPdsZGcvWdVIJqY99u7YqUG9T5a66O7f2zk62k80X2T7Q3bQyufujTXvyFpcvRjx2ZpqB7jRb+9T9U2QlFgv8/oY42NuT3Co5cQvgotz9duD2qmW3Vtx/grgLaLVx4Kqlji8isoD7gb8Fbnb3rza5LCLSwma76uZLZMKA6UKJQsm5Yf9Sk5dLM03kCkzNFNnSm2GwJ6Xk7yLLsNjkLr/QwHKIiKynXSuchVhENqjZrrp3D3NqcoYdW3q5Yf+uuidvr2Rmfe4+1bAn7BCRO6emZjg7XWBTb5rBbgWAIotZcH5cM/uTivs3Vq37aP2KJCKyOhX11mEzO+fWzLKJSOtr9NUiM/uhZPKpbyWPrzKzDza4GG2vGEWcmpxh+PQ0Z7MFojZJJSLSaIt19dxfcf8NxMmQy55bn+KIiKzJXyR/39fUUsiGc9fQaQ4dG+bx8Wku0uQ8beWuodPccucDpAJjc0+a0YkcNx0+zs3QiFa/PwZeChwGcPf7zWz/4rvIQopRNNsCuLU/Q3/XopPXi2w4i/1H2AL3RURakrvfk/z9crPLIhvHXUOnee8dJ5jKF4kiZyyb5713TPH2l+5R8NcGDh0bJhUYPZkQM6M3kyKbL3Lw6FBDunu6+3BV98QNNq/q+itGEaPjOSYzKc7rz5AKlQBeBBbp6gkEZrbFzLZV3N9qZluJZ+kUEWlJZrbbzD5lZt80s6Hyrdnlks5029HvMj5dwKM4D55HMD5d4Laj32120WQZHh+fpjs9/+dQTzpkZCzbiKcfNrMfAtzMMmb2GyTdPmXtsvkij56ZZqqBqTlEWtliLX6bgHuYa+27t2KdOk+LSCv7c+B3ibtRvRj4RdRzQepk+Mz0bAJwAEsypw+fmW5uwWRZyukcejJz17SnCyV2bOltxNO/mXgozcXACPAF4Fca8cQbRSlynhzP0d+VYmufWv9kY1ss8PtRd3+kYSUREVk/Pe7+j2ZmST32LjP7J+JgUERkVpPTOZi7/3wjnmijm5wpMpUvsbknzaae9OyFGpGNZLHA77PACxpVkEY5cmKUg0eHGB7LsrMJUzaLSEPkzCwAHjCztwCPAvpHl7rYuaWXR05NgTtm4A6Rw6VbG9JiJGvU5HQO/2JmDwH/B/i0u59pxJNuVO7xGNzxXIFNPWkGuxUAysay3MldOsKRE6PcdPg46bApM3eJSOO8DegF3gq8G/gx4tmJRdbd9S/aFU/uMlOkVHLCwBjsSXP9i5QAvF3s27WVH3j6Ni4/r6+hz+vuu81sH3Ad8FtJaodD7v6XDS3IBlOKnNNTec5OF9jcowTwsnEsFvhdbGbvX2ilu7+1DuWpq4NHh0iH8YxdQMNn7hKRxnD3Y8ndSeLxfSJ1s2/XVt7+0j0cOjbME+PTXKh0DrIC7n4XcJeZ/T7wR8DHAAV+DVCKKhLA96QVAErHWyzwmyae3KVjDI9l2dyTnresgTN3iWx49e5qbWZ/zsKTT7m7v3HdnqwOfv/2b3E2mycMjK5USCYVkEkFdCW3TCokkzIyYUBXKkyWBVXbhYTqutRw+3ZtVaAnK2Zmg8AriVv8nk48zGZfUwu1AVXm/9vUm2awWwGgdKbFAr9T7v6xhpWkAXZu6WV0Ijfb4gcNnblLZENrUFfrv6+x7BLirp8tn4bmr772CFP5tafwigPHgExYHRSWH4ez67tSAemK9dUBZ/kYXbPLagSkyTb6oSSyYvcDfwvc7O5fbXJZNrxiFHFqcobx6QLb+jPzfi+KdILFPtH5hpWiQW7Yv4ubDh8nmy/Skw4bPXOXyIbWiK7W7v7p8n0z2wW8E9gPvAf48Lo8SR39+LMv4KnJGWYKJWaKETPFiHwxIl+auz9TjOutxZQiJ5svkW1wHuh0aOe0RM4PDsMaQehcAJqp2PfcY4TxMdJz23elAk3NLu1ul7srRVaLKZQinjgbNxRs6UvTlWr564Yiy7Jg4OfuL2xkQRrhwJ7t3Az86Ze/y/DpuKvZLx14usb3iTRAo7pam9mzgd8Cng/8IfBmd2+L7L3vf83zGRnLki9Gi24XuSdBYBIYzgaHpXOWz8wLHGuvL68rb1u5TWXAGS3x87RQcgqlIpMz6/iiLCEwZlsiawWTc11kq1ow00FVq2i4YEB6TitoKiBQ66asgZn9ibu/DThsZuf8Z7n7tY0vlVTL5otk80X6ulJs6c2QSelCk7S3DdeGfWDPdl749G08liTWTQUBoxM5+jIpejOhuiqJ1Ekjulqb2d8Ae4H3Ab8KlIDB8v+1u59etydrosCM7nRId7qxV6FLkc8LLmeKEYXZ+/MDx3O3Kc1vwSzMD0hnirUC2WgZQTDkChG5wuLbrbd0aBXBYe3xlpmKlsqaraBVAWnNVs6KIDQdmr6jOsdfJH/f19RSyLJMzRSZminS351ia6+SwEv72nCBX7ViFDGZi5jMFQnM6M2E9HUpCGxV7///vsOHvvIQU/kSfZmQN/3I5bz1J57Z7GLJMjSoq/XVxJO7/Abw68my8j+yA+rXvQZhEHfV7c007jndnUJpfsA52ypZSFo5SxH5op8TQJb3yVfvv0hraXldcYnmzbh1s8QUJaDQkNciMOaN26wcc1k93rJWK+i5AeYSrZxJt1pNFrT+3P2e5O+Xm10WWb7JXJGpmRKbetJsVhJ4aUMrCvzM7Fp3P1yvwjRb5M7kTJHJGQWBrej9/993uOXOBwkMUkHcWnTLnQ8CKPhrA+Wu1gePDjEylq1LkmR3v2zdDiYtwczimUwb3MWqFHlFILhwa2a5++x3npzk2MOnOZsr0J9JsXt7P1v6M3PB5TndbquC02T9YuFm5JArRuSWaAVdb6nA5o+7DMsBp9UMHuNWzoVmpp1/jK50QDqsbCGNl2+U1k0z2w38D+AKoLu83N11kapFuTtnsnkmcgU292Y0A6i0lQUDPzN7VfUi4ANmlgJw98/Us2DNpiCw9XzoKw8lQV/8AzCwuMX2Q195SIFfmziwZ7vG1EpbCAOjJxPSkwmB9KLb3jV0mrse/h6pwHjapm5yhYjvPjXFjc992opSPJRbN+cHmKVzWymrusjWbsE8d8xnddfc8vMsNVlQMXKK+RLZdZhxdrkM5rVszh9vORdwZsJ4vGbl7LO1xmTOb/E8d31XKmh41+nEnwO/C/wx8GLivKP6kdEGSpHPzgC6tS9DX9eG70QndbDeabAW+5R+Evg8MMpcJdQH/BRxl6mODvwqKQhsDVP5EtUX/QNjXaa/FxFZrUPHhimWSpzJliiUItJhQH9XyKFjwysK/Oa1bnbVscBVak0WVA4MZ4PGQmU32/ndbmcK547LnNft9pyW0nj/xXrTOszu30hhYBz9by/m4s09jXrKHnf/RzMzd38EeJeZ/RNxMChtoFCKeHI8R3c6ZGtfplkXEKQD1SMN1mKB3w8ST4F+DLjV3d3MDrj7L67qmTpEdRBYvtLYlQ5nrzhKffRl4nFhlV3qI4+XS3uodwJ3kWZ45PQUE9MFLDCCwChGzthUgWI01eyiLUszJgtyd4rl7rTlgLFwbsB57rjMuW6381sw5wLOuRbPc7vZLjVZUClyuhr7PZ4zswB4wMzeAjwKqFJsQ7lCicfOTNObSbG5N60AUNasHmmwFkvncMzMXgL8V+BOM3s7LDr8YMOJ3JnOl5imBNPx4P7A4u5B3emQ3kxIWjM/rZs3/cjl3HLngxSjiMDioC/yeLm0vgYlcD9Hp49NlubLFyMwZlM8mEHJfMkgYyMzM9KhkQ4D+hr4vJE7hXndYeeCw0IpYktfhk09i3ftXWdvA3qBtwLvBn4MeMNSO5nZR4D/Cxh19+cky7YC/we4DHgY+Dl3H6tHoWVh5RQQPZmQLb1qAZTVq0carEU7JLt7BNxiZp8i7n8uS4jcZ6f9PQWkwyAeJ5JcTdXsaKtXHsenWT3bUyMSuG/0scnSHOnQmClCFDlmUE7HnQlV37eauKdOSFc6ZKBqnZlx+XmNDEPji+zJ3Uni8X3L9VHgfwMfr1j2DuAf3f09ZvaO5PHb16OcsnLT+RLT+WkFgLJq9UiDtayRqO7+KPBzq36WDaxQiihMR4wnLYKpIKA7HWiM4Cq99SeeqUCvTTUogbvGJkvDXbatn5GxKabyc2P8+jIpdmxpbBAh7cPM/pyFe1G5u79xsf3d/aiZXVa1+BXAgeT+x4AjKPBrunIA2NcVdwHtSikAlOWpRxqsRQM/M3sDcCPwrGTRt4D3u/vHF95LFlOMIiZnotkxgn1dKQa6U7oSJB2vEQnc0dhkaYLrrt7JLXc+wHmZFN3pgFwhzgN43dU7m100aV1/X2PZJcRdP1f7g+ACd38cwN0fNzONFWwh5d5gvZkUW/oUAMrS6pEGa7F0Dq8nroB+DbiX+Or5C4A/NDMU/K1d5M5ErsBErjA7dXhfJkVPOlRSUOk4jUjgrrHJ0gz7dm3lRnZz6NgwT4xPc+FgD9ddvXNFM3rKxuLuny7fN7NdwDuB/cQXrj5cz+c2s+uB6wEuueSSej6V1FAeA6gWQFmO9U6DtViL3y8Dr3T3hyuW3WlmrwYOMb9fuaxRKXImc0Umc0XMjO50QG86RU8m1Eyh0hEakcAdNDZZmmPfrq0K9GRFzOzZwG8Bzwf+EHizuxfXcMgnzeyipLXvIuIu7+dw99uA2wD27t2rC2NNUtkCONiTmtcbRqReFvuUDVYFfQC4+8NmNli/IomXZwvNl2AqzitUmXA2EwakQ9P4QGk7jUzgrrHJItKqzOxvgL3A+4BfBUrAYPl73d1Pr+Kwh4lnBH1P8vfv1qWwUlflFsB0GDDQnWKgO62JAKVuFgv8ple5TtZZKfKkYphbFif6DdjUk6a/S1eJRMo0NllE2sDVxN3QfwP49WRZ+de+A4v2gTezTxBP5HKemY0QJ3x/D/BJM3sj8D3gZ9e/2FIvhVLE6ak8Y9kCA90pNvekSSklmKyzxSKGZ5vZ12ssN5aokKT+3J2ZQonRQokxXSUSATQ2WUTag7tftsb9X7PAqh9fy3EX8sTZHA+enOSCgS79zqgzd2d8usBErshgd4rNvRm95rJuFg38GlYKWZPKq0Td6YCedEhPJtSAYdmINDZZRGSd/d19j/I/PneC3kzI9128iat2buaqHZt45gUDCkrqxN05Ww4Ae9Js6tHFfVm7xQK/NPHUwP9cudDMXgQ8VtdSyarUGhvYkwkZ6ErTk1EQKM1TKEXkixHThRLpIGBTb3rpnVZnzWOTzewa4BbiKdU/5O7vqVr/88zlxpoEfsnd719TqUVEWtiDo5MAZPMl/vWh0/zrQ/EQxJ50yPft2MTzdsTBoALB9Re5cyabZ3y6oABQ1myxwO9PiKcXrjadrPupOpRH1lHlTKGpIKAnE8azhWZSqjSkbkqRky9G5AolsoUS+WKE+9zEcZt66hb0wRrHJptZCHwAeAkwAhwzs8Pu/s2KzR4CftTdx8zsZcSz4/3AGsosHeCuodMcOjbM4+PTXKR0DtJh/vBnr+KNL7qcI98+yf3DZ7h/5AyPnckxXShx10OnuSsJBHszIc+5WIFgPZQDwLPThRV1AT1yYpSDR4cYHsuys06zaUv7WCzwu8zdzxnj5+53m9ll9SuS1EMxipjIRUzkwCxPbyakryvOGahKWVYrX4yYKcbBXb4UUSg6xShqZpHWOjZ5H/Cguw8BmNkh4BXAbODn7v9Ssf3XgB2rL650gruGTnPLnQ+QCozB7hSnpma45c4HuJHdCv5k2czsWnc/3OxyLOSiTT385BUX8JNXXADA6HiO+0fOcv/wGf5t+AyPn82RzSsQrLfKLqCbe+MWwIVmeT9yYpSbDh8nHRqbe9KMTuS46fBxbgYFfxvUYoFf9yLreta7INI47j6bPwagKx3Sk45bA7tTrZs8Xletmi9XKDE1UyRXjM5pyWsRax2bfDEwXPF4hMVb894IfK7WCiVJ3jgOHRsmFRg96bhLfU86ZLpQ4tCxYQV+UpOZvap6EfABM0sBuPtnGl+qldk+2M1LrujmJSsIBNU1dP1E7pyeyjORK7KlL1NzhveDR4dIhzabI7A3kyKbL3Lw6JB+P21QiwV+x8zsv7j7n1UuTKYJvqe+xZJGmimUmCmUZh+nw4CudEBXGMZ/U0HTcwbqqlVzRJEzU4yYyhfJzpSa3Zq3HGsdm1zrg14zujWzFxMHfj9Sa72SJG8cj49PM9g9/+u0Ox3wxPjaMx+ZGWE5txtO5My74JLMVrvm55GG+yTweeIk6+V6p494GI0DLR/4VasVCN43cpavD5/hPnUNrZtCKWJ0PMfZdMi2vgzd6bk5HYbHsmyuGl7Rkw4ZGcs2upjSIhYL/N4GfDaZyKAc6O0FMsArl3PwZUySsAf4c+Lp1n/L3d+33H2lfgqliEIpYpK4RbCcM7A7FY8P7E43PhDUVavGiCJnulAimy+RK5QolFo+0Kv2J6xtbPIIsLPi8Q5qBIxm9lzgQ8DL3P3UagoqneOiwR5OTc3QkwkxDDOYzpd42uYeutIhUeREPhe0mRkGmIERT8LVmwkxg8jjKCAMjFRgNfN4uTvuzPbO8OTYpeR58qWImUJEMYpwj6OIFm2h38h+kDjv3jHgVnd3Mzvg7r/Y5HKtm+2D3fzkFd3ndA29r2KM4EJdQ6/asYnnKRBckZlCicfOTNObSbGlL01XKmTnll5GJ3Kzv50ApgsldmzpbWJJpZkWDPzc/Ungh5Kr2s9JFv+Du9+5nAMvc5KE08BbgZ9exb7SIOWcgTOFEmenC5jZbNqI7uRWb7pqVV+5QomJXNz9N2rvH4drHZt8DNhtZpcDjwLXAa+t3MDMLiG+Gv86d//O2oss7SQMLAnKAtKhkU4F/NKBXbzzs//OyckZSpETBkZ/V4rf+7HdXLx5/UdGmMXBZeXj0Jj9gdydDs8ZrOFJQOgOlf/ikTvFyCmWIkpRfD9fjNq9Hmh57n7MzF4C/FfilDNvZ4HeBZ2iukXw5MQM94+c4b7vzbUIqmvo2mXzRbL5In1dKf7zD1/Gu//hW2Tzxdku6IWSc8N+pePeqBZr8QPA3b8EfGkVx17OJAmjwKiZ/YeV7ivNMy9tBBBY/OOnKxXQm4nHC653i6CuWq2v0mzLXpHpfIlS1DG/N9Y0Ntndi2b2FuAO4t4GH3H342b25mT9rcBNwDbgg8nnvOjue9dccmkpYWCkw4B0GJAJA9IpoytVezKsrlRIYAblbphuNfsMN5OZrSi360wx/oFYiuJbeRKnDqorms7dI+AWM/sU8MfNLk+jnT/QxU88+wJ+4tnL7xrakw75vosHuWrnZrUILmFqpsjTt/fzqz+xm0N3DfPY2Wl2aH6EDW/JwG8NVjpJwnrtKw0WVbQIjk8XCMzozYT0dqXoTa/PZDE37N/FTYeP66rVGpQiZyoft+qVg/YOtOaxye5+O3B71bJbK+6/CXjTOpRVmiwdxher0qmAIBlLFwSQCoIV/Zg8eHSIwZ40F26au7bQ7l3Ru1IhNeaKIIrilsNyd9I27RLeUtz9UeDnml2OZluoa2jlZDHThRJ3PTzGXQ+PAWoRXI6rdm7mqp2b6U6HDPak6VNe5w2tnoHfsidJWMu+mjmv9UTuTM4UmUxmDU2HAd3pkEzSKpgJgxUHgwf2bOdm4h9YI2NZXbVapnLS9Gy+SK6wIcb4vI01jk2WzlTZRT2TCmZb89bDRuqKHgRGdxDO605aipxcocRMMttvIek2qu6iizOzNwA3As9KFn0LeL+7f7x5pWodi80aev/IWR49M71ki+Du7f01x8luRLlCPHY/MKO3K6Q/SenV7Mn7pLHqGfgta5KEte6rmfNaX3mymEqpICCTqriF8XiZxSqgA3u2K9BbhHs8A2cuSZqeSyZ32EjWOjZZOoslvQ/61rH3QS07t/Ty8KlJxqeL5EsRmTBgsCfFZdv66/J8rSYMjL6uFH1d85fnixG5YomZQtxCqAlm5pjZ64kvVP0acC/xBe8XAH+YzNSq4K/KYmME5wWC1S2C6ho6T+TOZK7IZK44LwisHEojnaue7/KSkyTUaV9pA8UoopiPyObnLw8DIzAjCIzA4vGDgRnp0GYDRF29i5UDvWy+xHQS7OlHVWwNY5OlDcXj1+KLSKlk8pW4h0FjujT94K6t3PXw6aTOgnwpYnQiz2uu3tg5/MoX9sotg+5ONl9iKl9kpnDuBcEN5peBV7r7wxXL7jSzVwOHAAV+S6geI3hyYmZ2xtD7hivGCC4SCG70FsHKIDAVBPR3pxjoTq1bbwhpPXUL/JYzSYKZXQjcDQwCkZm9DbjC3cdr7VuvskrrKEVOCYdFhqClgoDudDCbeD6T2jgVVHmcXnlyHXWl6hxHToxy8OgQDz01yYWDPVx39U4l/15AYJbMKBx3I292rtGvDp3m/P4ME7m5Fr+B7hRfHTrNW5tWqtZjVm4ZjH96FEvRbPfQXLG0Ubqjlw1WBX0AuPvDZjbYhPK0vfMHunjJFRfMaxFUILh8xSjiTDbP2ekCA90ptvRmNnzraCeqa7vuMiZJeIK4G+ey9hWBuHKanInmjSHsycRjTipbCcvTrrezUuQUSlEc6CX986XzHDkxyk2Hj5MOjcHuNKemZrjlzge4kd0bPvgzsyR1TDwmLxWubHbKRhgey3JefxfnD8xNKuvuHTnGbz2lkh4c5S6iUeRkO3O24VqmV7lOlqlWIFgOAu8fXl7X0I0YCLo749MFpmaKbO7JMNiT0jjADqIOvdL2CqWIwnTE+HThnHXlLl/pMEhm7LMkaTKzSZSDJCdW+S/MJUIuB5BAkgjZZxM0V3KPu0zMTWow9/zlrmflfSrzaDk+bzxedX6tDv/hI4mDR4dIh0ZvJkW+GM3OXHvo2PCGC/xSwVzqhHLA1+o/OpRuZn0ESf7D/q5UnDaoUGIyVyTbmb0bnm1m5+QcJf560nTVdVCra+hKxwhupECwFDmnpmY4O11gsCceA7iRelh1KgV+0tFKUZJzcLG+oyJNVmtWyO50wBPjnX/hvzwBS3xLtWUrvdLNrL/4cxH/2CwHgdmki3uHjA18drMLsNEtGAgOq2topWIUcXoqz+mpfJzXNJlvoTyGV+MB24sCPxGRJqvVYpQrRFw4uGTO+baUScVpFXoyYUdMJ650M/VVGQRC3Msjnpo+mk0s34bSwAXu/s+VC83sRSx/BnRZR4tNFqOuobHyLO1TFcsyqYCB7jQDXam6zZws60eBn4hIk1W2GIVmTBdKFCPnuqt3Lr1zizOz2UCvOx3QnapfWoVmUrqZxinnYCwPqYyi+S2Cq0ljc9fQaQ7dPcxTkzPsbEzg/ifAO2ssn07W/VQ9n1yWtthkMV8fOcvIWO1A8DkXD3LVjnL6iOYHgncNnebQsWEeH5/mojpMHJYvRpyanOFMNs9gd5rBnnRb9tzYKBT4iYg0WWWL0cNPTXJBm8/qGQZGTyakL5OiN9P+LXrS2oJg/myh2Xw8Pf1UvrSsWULvGjrNLXc+QCowNvekGZ3IcdPh49wM9Qz+LnP3c8b4ufvdZnZZvZ5UVq9WIPj1kTP8W9VkMcceHuNYi7QIVn62B7tTdZ04rBQ5Y8msoIM9aTYpAGxJCvxERFpAucVoZCzbll3XymP14kTACvakecrdQkuRMzlTZHKmyMwiMyIfOjZMKrlYUe5Wms0XOXh0qJ6BX/ci6zqzj3eHOX+gix9/9gX8eI0xggu1CHanA77v4k0NaxGc/Wyn45mQGzFxWOQ+mxaiLxPS363k8K1E74SIiKyKmdGdDuhNp+jvbs+JWaRzhYGxKWl5yBcjsvkiuUI8PrByltDHx6cZ7J7/c6gnHdY7HccxM/sv7v5nlQvN7I3APfV8YqmPhSaLuX/4LPePnGFkbJpcIZrXIljvQLDWZ7tRE4e5z114SYcBg91pBro1DrDZFPiJiMiylfNm9mbCjh2vJ50nnoEwA8z/QTqdL3HRYA+npmboyczlh2xAOo63AZ81s59nLtDbC2SAV9bziaUxFgsE7xs+w6Nn6h8Izn6203Of7WZMHFYoRZyamuF0Nj87i3NPOmz6+MeNSIGftJV6D1KW+rpr6DSfuneEJ8ZzjZpAQdZBJhXQ35WiJxO2XPJ0kZUys3gWwu40xVLEm37kcn7n8Dd4ciKHe9xS2N+V4nf+wxV1K4O7Pwn8kJm9GHhOsvgf3P3Ouj2pNFWtQPDrI2e4r44tgtddvZP33nGCJ8dzlCInTMbD/sqBZ9TlHJfi7kzNFJmaKQIkkzSlGOjWeMBGUeAnbeOuodO8944TTOWLRMkg4vfeMcXbX7pHwV8bKA8y70oFjZxAQVapHOz1daWUp2kZjpwY5eDRIYbHsrqo0UZSYUB/d4pUYJjH45Nwo1E/Qd39S8CXGvR00kJqjRFcTiD4nKdt4nk7N3PVzk0864KB5QWCBmbx31ZSKMU5AseyBbqSvIBdqYCuVKhk8XWiwE/axm1Hv8v4dIHAjMAMj2B8usBtR7+rwK8NVA4yb+AECrJCfV0pNvWk6U6rZW+5jpwY5abDx0mHDZ0VUtbJwaNDDPakuXDTXPc31U3SaIsFgpVdQ+9+ZIy7Hzm3RbBWIHjo2DD9XSnO7++aXVbvyV1Ww92T3JxzkzAFZnQlKYB6MuGG/U5a74uKCvykbQyfmSYwZscUmQGRM3ym/oOUZe2aNIGCLCJTcWW1KxWQCQON2VuFg0eHyBdLnJoski9FZJLuSwoc2sPwWJbNPel5y1Q3SbNVB4JPTc5w//AZ7h+JA8HldA197GyWTVWf7UZN7rJWkTvTSW7OsSykgoDuTEBvJkVPOtwQXUPrcVFRgZ+INER5kHl/19zVyAZMoCAVwmAumbq6cK6f7zw5zniuSIARmlEsOaem8hRL480umizDzi29jE7k5k05r7pJWs15/bVbBP+tIn1EdSAYGIxPF2fHaHenAnLFxk/ush6KUcRkLmIyF48PDAMjFQZ0p4Lk3DpvsrGDR4dIhzZbN61HTykFftI2dm7p5ZFTU+COGbhD5HDpVn05t4Prrt7JLXc+wHShRH9gTBdKFErODft3NbtoHa08UUV/d0oTs9RJoeRE7pTccY97I5hBvrR08nBpvhv27+Kmw8fJ5ouzec5UN0mrq90iGLcGlscIRg65YkSumIepeIhfOhVwxUWDHH/s7PLHCLagUuSUohIzhRJnpwsAdKVDulIB6SAgnbK2Dwbr0RthwwV+oxM5vvnYOKcmZzBLBnBb/M9gGOWcw4HN3Tebv86IZwUzm7s/t128bfmYQXkh8ZWXynXVx6H6uCs8zrwy1Chfu7v+Rbt4998fJ1uIcOJz600HXP8ifTm3g327tnIju/nUvSM8OZ5jhybAqJvA4mTUSqbeOKVorh4vX5SS9nBgz3ZuJr66PjKWVd0kbSluEdzOjz87/tyWA8EvfvNJ7h85w0wx/u2UL0bc8c0nueObT65+spgWNVOIA8FK5V4uvZkU3emgrb4P69EbYcMFfl954Cl+7ZP3N7sYTREHgcn9JOiNr0zbbABJRZBbfhyYzQ9MFzoOiwTLyXHmylEVdFc8DiqD2oogNztTZDqpuAAcmC5G3Hr0u/z1se9VlCt+3iB54rmyzw+Kky3nnevs4/L9Bc4Vqi4OLOM4tc61+rVbKIiPn68q4F/gce33Zu61CMpPXj5mxWu2kuPMXYtIXu+q48y+DlWv2X964aU8/fx+vm/HJmR9mMWT5vQkuZE0G1rjhRbXSeUWP70D7eXAnu0K9KSjVAeC5a6h1WMEqyeL6aRAEOJAN1+MODtdwMzoTiaM6UrHY9wrxwoWS1E8gWCLtBLWozfChgv8NrLyj5L4gVetaU+Rw8OnNAC/3bzkigv4s9fvbXYx2loYxK16fRm16jVbOox/KATJhQ93iHAyod4TEWmuWvmPf+0lz1xwsphODgS9YsKYSmFglCq6aaTDgFQYX7ouTyoYJgFhYHMX/g0jCOKJZ+ox2Uw9eiNsuMDvVS/Ywcu/7yIeS2aCjJIxGRB/IMrBUfk+5cd48hdIHkfObMwUsfBxkl0WP07yuNZxKOcWqnGc6vLNe1x9Ll7ef/65zR675nEqypwcZHZ5+XHV88ydX9Xj5FyXe5z4/Zk7zoe/8hAwv+tq+fX9Ty+8dPb1rAxwK8t0zntzzntR9ZonCyu3r37sFfvNe80qHq/kOLNlrH4NK5bPvi41XsNoweMs8Nos8ZmIn2vhz1blezDvs7TEuapFanVSQUBvVxzstVuXlU72zAsGeeipSSZylbN6prn8vP5mF01ENrBy/txUYAx2pzg1NcMtdz7Ajexm366tS44R7PRAsKxU1Te/UIqo6jG6LGEQB4tzv6jmelCVWxFnf3uVfyMRB5LpMM5jmA7jSdjKveR+6Bnn8cKnbyOVTGazVhsu8KtWOXau4o60oI/+y8PgPq8JPooczPiFH7qsaeWSldnUk2ZbRU4hWVw6DOhLxupt1DxGra7cHefCTSlNDiIiLaMyfy4wWz/VyuO30BjB+0fObJgWwbUqVbYIzUoeLxJIlnAKpYhsfuFtzhvoYlCBn2wkOzf38MjpLERVs3puab9piUUW05UO6cvEg9HVOtr6NDmItBIzexiYIP6pWXT3NferP3JilA986UG+N5ad7S7YSgnApbZa+XOXm8dvoUCwnEJCgWB7UuAnbeP6/U/nvXecYCpfJIrilr/BTJrr9z+92UUTWTdP29TTMgPLZfk0OYi0mBe7+1PrcaByEunAqNldUFpXOX9uT0VvkVxhdXn8qgPBU5Mz3LdUi2Aq4DkXx4Hgc3ds4lkXDih/bJMp8JO2sW/XVt7+0j0cOjbME+PTXKirjtKBFPSJSCspJ5HuSoUUS9Gi3QWltVTmz+1OB+QKEcXIue7qnWs+9rYaLYJfTyaKuX/4DMNj0+SK5waCV168ieftjINBtQgurTw5z+hkjku39mlyF9lY9u3aqi8aERGRhTnwBTNz4KC737aWg5WTSFfOf7Hc7oLSXPt2beWaJy7gk/eMMF0o0ZMO+bnv31GX31Hn9XfxY3u282N75rcIzpssphhxzyNj3FMjELxqx2a1CFapnJxnU3ea0YkcNx0+zs2w6uBPgZ+IiIhI5/hhd3/MzLYDXzSzE+5+tLzSzK4Hrge45JJLljxYOYl0V2rt3QWlse4aOs3nv/kkW/sysy1+n//mkzzrwsG6X0RfqEXw/uGKMYIKBBdVOTmPmdGbSZHNFzl4dEiBn4iIiMhG5+6PJX9HzeyzwD7gaMX624DbAPbu3Vs9BeE5yrPWlqIi6dDWtbug1NdKZvWst4VaBOdNFqNAcJ5ak/P0pENGxlafv1qBn7SVWolI1fVTREQEzKwPCNx9Irn/k8DNazlmedbaD3zpQYbHshpf30YeH58mNBgem6FQikiHAVt60y3RTbe6RfDU5MxsMvnKMYIbORC8aLCHR89MMTlTolCK6EqFDPakuGzb6nPEKvCTtnHX0Ol5s3qOZfO8944p3v7SPfoCahN3DZ3mU/eO8MR4jp2a8l5EZL1dAHzW4uTPKeCv3f3zaz3ogT3bef6lWzg1ObPWQ0kD9aVDHj6VJUoeF6OImbMzXLatt6nlqmVbjRbB5QaCV+1IJovpsEDw+Ts38fVHzxAYBAb5UsToRJ7XXL3637wK/KRt3Hb0u4xPFwjMCMzwCManC9x29LsK/NpAeZByVypgc8/6DFIWEZE57j4EXNXsckhryBZKs0FfWZQsb3W1AsGvj5zlvpEz3Pe9jdEi+G/DZ9nam2YqX27xCxjoTvHVodO8dZXHVOAnbWP4zHR81SOZ7t4MiJzhM83vsiBLq8cgZREREantqYnaLbQLLW9l2/q7ePGe7by4xhjB+xZrEXzaIFft3NyWLYKPj0+zpS/D1j4jFQaEgeHuGuMnIq2vHoOURUREpLbiAlP3LLS8nSw0RvD+4apA8HtnuOd7Z4D2axG8aLCHU1Mzs5PzAEwXSuzYsvquugr8pG3s3NLLI6emwB0zcIfI4dKty/sHMDNCM8LQSAVxd9FUYHHLYSJyiNxxB8eJovhxKXIidyIH9w6oMZugXIH1d81VsmutwERERKS20KBU4ydLaOcua3cLjRG8f/gM94+c5Xuns23XInjd1Tu55c4HmC6U6A+MbL5EoeTcsH/Xqo+pwE/axvUv2hVP7jJTpFRywsAY7Elz/Yvm/gHCwEiHAekwIJMKSIdGGBipIG4iXy9R5JSSgLAYxX9LkVMsRbOPi5FjUBGkbuyAsboCmy6svQITERGR2i7d1sdDT01R+evDkuWdbsExgtWBYEWLYFcq4DktFAju27WVG9nNoWPDnJzMccnWvjVPirfhAr8jJ0b54JHv8sjpKaUDaDP7dm3lp696Gn9zzwjZqEQmFfCaq3dy7fOfVpfgbjFBYAQYFa3vy1KKnEIpSm5OvhjNPu505QrsU/eO8OR4jh2a1VNERNqYmWGz9+O/5Wu8ZmDM9SoyO3f78qP4fnlF+U+8bzyhHUlPpLjXUZQ8hzP/grJX9FoC+JUXP53f/btvMJWP8OTQfZmAN+/fRZj0fKrctxh17m+R6jGCp6fySRA4N1nMTK2uoU0OBPft2sq+XVs5b6CLwe70mo+3oQK/IydGuenwccIABrtTnJqa4ZY7H+BGdiv4ayHlFrs4mJvrmvkvDzzF4a8/RtHj1r5i5HzynhH2Xb6tbYKHMDDCIKS7KmIsV+TllsN8MWKmVEoCQ++47qWddTYiIhuP2bkXWsu9XCoDinLAU14/u6wi6KlcVxn4zG07/zlt3n7nlsPxeYGSE5epPNwjqFXGBY5z7jkmw0UadKF5Lbb1ddGTSVGMihSjiFQQ0JNJsX2wu2arXxQ5hSia7bVUKEbkihH5YtRxv0O29mVqdw2tnjW0hVsEV2NDBX4Hjw6RDo3udEihGNGTDpkulDh0bFiBXxNYMsYukwrIhAFd6YCuVLhgq937vvBtxrKF2StdcYtZnvd87lttE/gtJB5/yOy592RCIL6y4+7MFCNmChEzxRL5UlwJtxulcxARaV8DXSn6u1IEVjvok9Zz8OgQgz1pLtzUM7tssdm0g8DoCmp3ZXKPg8FcocR0oUSxlMx9kMyF0O7DWaq7hp6eyscTxYyc4f7huGtodYtgIwLBu4ZOc+jYMKOTOS5t9a6eZnYNcAsQAh9y9/dUrbdk/cuBLPAL7n5vsu5hYAIoAUV337vW8gyPZdnck553/aY7HfDEuNIB1NvcmLtgNtDLpFb2z/HA6ORs0FcWeby8k5nFFyviVsI4GIwiJ1csMZ0vJYN9Wz8QVDoHEZH21Q4tXDJf+XdvpdXOpm1mpMN4HoWBBboclnstlYewxBPjxV1Ic4X2ajXc2pc5p2toecbQ8hjBegeC5QvmqcDY1L0+F8zrFviZWQh8AHgJMAIcM7PD7v7Nis1eBuxObj8A/Gnyt+zF7v7UepVp55ZeRidy87rZ5QoRFw72LLKXrEa6ogWvLxOSWocrILVmplpseScLgjhw6s2k2AbzxgrmChG5Qqnlrr4pnYOIiEjj7NzSy8OnJhmfLpIvRWTCgMGeFJdt66/L88XDWazmhf1y76XpfNxiONNm3UcXDAQXGSO41kCwHhfM69nitw940N2HAMzsEPAKoDLwewXwcY/f+a+Z2WYzu8jdH69HgW7Yv4ubDh8n8iKpwMgV4hkYr7t6Zz2ebsOIW6QCetIhXamQrlSgK4MNlknNb0Gd7R5ajLuHTudLlKqbSxtM6RxEREQa5wd3beWuh08nYxohX4oYncjzmqsbP7ypsvfSFuZ+p0zkikzNFFvuYvVSFgoE709mDl2PFsF6XDCvZ+B3MTBc8XiE+a15C21zMfA48ZjcL5iZAwfd/ba1FujAnu3cDHzwyHf53ukpLtSsnitSvpKTDgNSgZEKA7pS8U39/VtLre6h0/kSkzNFsvliU4JApXMQERFpnK8OnWagK2Q8V6TgcfA32J3iq0OneWuTy1b5O2VbX4bpQjyh3UyxNXstLWW1XUNnZw3dsZk9F80PBNstgXutSKD6XVxsmx9298fMbDvwRTM74e5Hz3kSs+uB6wEuueSSJQt1YM92Xvj0bTx2RuP6ltKVDulOBbP/mI1KlbCQAKg1kq295lNqnp5MSE8mxD0zO1lMeZxgIyrYdknnsIyxyXuAPwdeAPyWu7+v8aUUERFZ3HeeHGcqXyIdBLM5hafyJR54crzZRZsnCIy+rhR9XfHjcmvg1EyxbeYxqFYrEPz6yBn+bXj+ZDH3fu8M9y7QIvgz338xHzjy3bZJ4D4CVPah3AE8ttxt3L38d9TMPkvcdfScwC9pCbwNYO/eve11eaDFZJIgrzcT0p0KW6675rMuHODEExPnJCJ91oUDzSpSW6q8yrYpaQ3MFeLWwKmZ+rYG7tu1lZdceQHb+rvq9hxrscyxyaeBtwI/3fgSioiILE8hmQSh/HvOLJ4cLt/ikyPMaw0EJmeKjE3l2zIALNval+HAs7Zz4Fkr6xq6c0sPkzMlTk7O8PTz+/mlH316y87qeQzYbWaXA48C1wGvrdrmMPCWZPzfDwBn3f1xM+sDAnefSO7/JHBzHcu6IYXJBCH9Xam2GJf39mv28Jufup+J3Fw+moHuFG+/Zk+zi9b2yhXsef1dFJJ0EdOFEtmZUkcndK1hybHJ7j4KjJrZf2hOEUVERJaWSQWzvXrKLX44K55Vvdn6u1L0ZUImZ4pM5IrkCqVmF2nNljtG8MGTU7P77N/ds+ZeUnUL/Ny9aGZvAe4g7jL1EXc/bmZvTtbfCtxOnMrhQeJ0Dr+Y7H4B8Nlk3FgK+Gt3/3y9yrpRhMnMQN2ZMBmbVztXS6s6sGc7f/gzV3Hw6BAjY9mW7SrY7tJhnHajrysF/XFrYDZfYmqm2NZX25ZpOWOTl2Wl3dBFRETW0+7tA5x44ixnp4tEyRi/TT0pdm9vv55SZsZAd5qB7jQzxRJnswUmZ4rNLta6WSwQvH/4DI+cznL15Wufk6Suefzc/Xbi4K5y2a0V9x34lRr7DQFX1bNsG0VXOqQ3HY/tqkxj0e5au5NCZym3Bm7ty5AvRmTzcZ/7dpuKeZmWMzZ5WdQNXUREmqk8q2cYGGmLcx+P50r8YJtPatiVCtk+GLK5GDGRiwPAZs9cvt7KgWBfJsX3TmXJFUt85t4RLhrsbtmuntIEqSCgOxPQm0nR0wITsqynIydG53X1fGpiht/81P384c9cpVa/BonTRmTY3DuXRL48ScxMIWq7WbhqWM7YZBERkZb31aHTbB/InJPHrxVm9VwPmVTAtv4utvZlODtdYCxb6KgL0pUJ3Lf2Zjg9lW/dBO7SGJU59HoyYdt131yJ937+BGPZAmGSSsIdxrIF3vv5Ewr8mmAuifzcsnLOwMmZIvliW3YLXc7YZBERkZY3PJYlU5UnLhMGa8oD14rMjM29Gfq6UpyazJPNd0YX0HZL4C51EJjRlQ7oToVJF7yNk0Nv6KmpJAnp3OxUbs7QU1NL7CmN0pWKLz5s7s1QKEVkZ0pMF0ptk5NnOWOTzexC4G5gEIjM7G3AFe7eWvNji4jIhjbQleI7T04QeTxmoVgqMTI2zTMvaL8xfsuRDgMu3NTNRK7A6al823f/bLcE7rJO0mFAf1cqadHbOIGetLd0GLCpN5iXMmJqptjy3Y+XMTb5CeIuoCIiIi1rIlegMnODAyWPl3eyge40vZkUp6fybX2u9Ujg3l7zuW4g6TBgc2+Gp23uYefWXrb0ZehOmno3qsu39RJ5PLbM3YkiJ/J4ubS+7nTItv4uNlf2DRUREZG6ODmZJ7R4Nk8j/htavLzThYFx/kAXF2/poSfTnsOgrrt6J8XImS6UcHey+eKaE7gr8GsRYWD0d6U4b6CLS7b2snNrL1uTYE9i73jZs9ncm8YCKLljAWzuTfOOlz272UUTERERaTlhYHQlw4O6Up016d9ydKVCLtrUwwWD3aTD9gp79u3ayo0/tpttfV2M5wpsH+jm5muv1Kye7cjM6EoF9GY6f1KW9XJgz3bepzx+IiIiIku6fFsvD56cwqK5BO6RwzPO23g9pfq6UvR1pZjIFTiTLbRNXuJ9u7ayb9dWzhvoYrA7vebjbbjA78iJUT545Ls8cnqKiwZ7uO7qnexrUD6TdBjQnQ7jYC8dEmywqy7r4cCe7Qr0RERERJbwjpc9m9/41P2zee7CwNjctbF7SpWTwOcKJcZzBSZznTED6HJtqMDvyIlRbjp8nDCAwe4Up6ZmuOXOB7iR3XUJ/gKz2cTpvZmw7ZqYRURERKQ9Hdiznde/8FI+9JWHmCqV6AkDXv/CS3UBHZKZ8UM29ZQ4NZknVyg1u0g13TV0mkPHhhmdzHHp1r4193TbUIHfwaNDpEOjOx1SKEb0pEOmCyUOHRtet8AvHcbdN/u6UpqBU6TKkROjHDw6xPBYlp3qqisiIlI3R06M8ql7H+X8gS4uSX7zfureR3nujs367k10pUKetrmHbL7IWLbATAsFgJUJ3Dd1pxmdyK05gfuGaoIaHsvOmxIVoDsd8MT49KqPmQoC+rtT8T9VMinLtv6uDT8Dp0i1cov76ESOzT1zFdiRE6PNLpqIiEjHKTd49GZSswnA06Fx8OhQs4vWcnozKS7e3MPTNvfQ35Vqid/wtRK4r/X921Atfju39DI6kZs3U2auEHHhYM+yj2EWvwE96XhSlkxqQ8XOIqtW+QUEcSWbzRc5eHRIVx5FRETW2fBYls098ycEWWsC8E5X7gJaLEVM5IpM5IoUo+ZMBFOPBO4bKmq5Yf8uCqU4D4YT58UoRs51V+9cdL9MKmBTT5qLNvVw2bZeLtzUzabetII+kRWo1eKuLyAREZH62Lmll+mqrotrTQC+UaTCgC19GXZu7eG8ga6mzNNx0WAPucL8oFMJ3FfgwJ7t3HztlZzf381Ersi2vi5u/LFzJ3Yp59Qrd9/csSXuvtmTUfdNkdXauaWXpyZnGDo5yYknxhk6OclTkzP6AhIREamDG/bvYny6wANPTvCtx8/ywJMTjE8X1pQAfKMxMwa70+zY0sPWvkxD44B6JHDfUF09IQ7+Xvj0bTx2Zm5cX2VOvXITr4isrx/ctZW7Hj5NYBAY5EsRJyfzvHZfY9KpiIiIbDQOYPFvXSx5LCtmZmzuzdCbSfHU5ExDZgHdt2srN7KbQ8eGOTmZ4xLN6rl6mVQwO06vO6WceiL19tWh02wfyDA+XSRfisiEAYM9Kb46dJq3NrtwIiIiHebg0aHZoUplGlu/NplUwNM29zCeK3B6Mk/k9Q2llcB9HXSnQ3UvE2mw4bEs2/q6OK+/e3aZu2uMn4hIi1Mqnvb0wOgE2ZkihcjJhAHnD3TR35XS9+46GOxO05eJc4LXMwm88vjJhqYvn/ZVnlW3PKsnaJC5iLQGfbcsrJyKJx3avFQ8a8klJvV35MQoE7kikTthYBQj57EzObb1p7lsW3+zi9cRwsDYPtDNYHeJsWye6fz6dv9UHj/Z0JQHrr3Nm1V3nQYpi4isVad9t5jZNWb2bTN70MzesdbjHTw6RL5Y4omzOb795ARPnM2RL5aUC67FHTw6xJbeuGugR2CA45ye0uQu6607HXLRpjgHYE9m/eYJqUcePwV+0jaUiLS9lWfV3T7QzdnpAtsHurn52it1xVhEmqqTvlvMLAQ+ALwMuAJ4jZldsZZjfufJcU5N5SmWnNCMYsk5NZXngSfH16PIUifDY1nO6+/iaZt6SIVGyePungNdob5366QyAFyPiSIfH5+mOz0/VFtrGix19ZS2oUSk7e/Anu36whGRltJh3y37gAfdfQjAzA4BrwC+udoDFkrx5BXlSfDMIIqcfEnzQ7ay8vCKwZ40g8nnO5svsn2ge4k9Za260yFP29zD5EyRsak8hdLqEsBfNNjDqamZeTmQlcdPNgwlIhURkfXWYd8tFwPDFY9HkmWrlkkF4BC543g8i6Eny6VlaXhF8/V3pdi5tZftg92r+n+pRx4//ddK21AlJiIi663Dvltq5aaa1zRnZteb2d1mdvfJkyeXPODu7QOcN5AhFRilyEkFxnkDGXZvH1ivMksdaHhF6+jvSrFjSy/nD3SRCpYfeu3btZUbf2w32/q6GM+tz3u44bp6auau9nVgz3ZuJh6PMTKWZYfePxERWaMO+24ZAXZWPN4BPFa5gbvfBtwGsHfv3iX7a96wfxc3HT7OhZtS9KRDpguldg6MNxQNr2gtA0kKiPFcgTPZwrJyACqP3xpoSuL2p0pMRETWWwd9txwDdpvZ5cCjwHXAa9dywA4LjEWaKgiMzb0ZBrvTjGXzjOfingaNsqECv8qZuwB6Mymy+SIHjw6pAhORplJvBBFZK3cvmtlbgDuAEPiIux9f63E7KDAWaQlBYGzr72KwJ83YVJ7Jmfolga+0oQK/Dpu5S0Q6hHojiMh6cffbgdubXQ4RWVo6DNg+2M1gocSpqTwzhfVNAl9tQwV+O7f08tBTk0zkiuRLUZzPpDvF5ef1N7toIrKBHTw6RKFU4tTkXN002JNSb4Q2ceTEKO/53Ld46FR8EXHXeX28/Zo9eu9ERGRZutMhF69DCoilbKhZPX9w11ZOTubJlyICg3wp4uRknh/ctbXZRRORDeyB0QmemshTjJwwMIqR89REngdGJ5pdNFnCkROj/Man7ufBk1O4O+7OA6OT/Oan7ufIidFmF09ERNpIPANoD9v6VzYD6HJtqMDvq0On2T6QIRMGRA6ZMGD7QIavDp1udtFEZAPLFyMwCMwwjMAMLFkuLe3g0SEmZ4qEZoRBkNyMiVw8flxERGQlzIxNPWl2bu1hW18XYVArS8vqbKiunsNjWbb1dXFef/fsMnfXGD8Raap0aEwXIIocMyhP8JUJ16+yl/oYHstSipzQ5t4rMyiWIn23iIjIqpkZm3rTDHSnKK3TzJ8bqsVv55ZepqsGTU4XSuzY0tukEomIwDMvGGRbX4ZUaJTcSYXGtr4Muy8YbHbRZAk7t/QSBkbld7I7pIJA3y0iIrJmQWCkw/UJ2TZU4HfD/l0USk42H+fMyOaLSkIqIk13w/5dZFIhF27q5lkXDHDhpm4yqVB1Uxu4Yf8u+rviq7GlKEpuzkB3Su+fiIi0lA0V+B3Ys52br72S7QPdnJ0usH2gm5uvvVIzr4lIU6lual8H9mznfT9zFc84vw8zw8zYvb2fP/yZq/T+iYhIS9lQY/xASUhFpDWpbmpfeu9ERKQd1LXFz8yuMbNvm9mDZvaOGuvNzN6frP+6mb1gufuKiIiIiIjI8tQt8DOzEPgA8DLgCuA1ZnZF1WYvA3Ynt+uBP13BviIiIiIiIrIM9Wzx2wc86O5D7p4HDgGvqNrmFcDHPfY1YLOZXbTMfUVERERERGQZ6hn4XQwMVzweSZYtZ5vl7CsiIiIiIiLLUM/Ar1bm4ersgwtts5x94wOYXW9md5vZ3SdPnlxhEUVERERERDpfPQO/EWBnxeMdwGPL3GY5+wLg7re5+15333v++eevudAiIiIiIiKdpp6B3zFgt5ldbmYZ4DrgcNU2h4HXJ7N7vhA46+6PL3NfERERERERWYa65fFz96KZvQW4AwiBj7j7cTN7c7L+VuB24OXAg0AW+MXF9q1XWUVERERERDqZudccOteWzOwk8MgyNz8PeKqOxWk2nV970/nNudTd27oft+qmeXR+7U3nN2ej1U2g97+ddfK5gc6vWs36qaMCv5Uws7vdfW+zy1EvOr/2pvPbuDr9tdH5tTed38bW6a9PJ59fJ58b6PyWq55j/ERERERERKQFKPATERERERHpcBs58Lut2QWoM51fe9P5bVyd/tro/Nqbzm9j6/TXp5PPr5PPDXR+y7Jhx/iJiIiIiIhsFBu5xU9ERERERGRD6OjAz8yuMbNvm9mDZvaOGuvNzN6frP+6mb2gGeVcrWWc3wEzO2tm9yW3m5pRztUys4+Y2aiZfWOB9e3+/i11fm37/pnZTjP7kpl9y8yOm9mNNbZp6/dvrVQ/tfXnW3VTm753oPppKaqb2v7zrfqpTd+/htRN7t6RN+LE798FdgEZ4H7giqptXg58DjDghcC/Nrvc63x+B4C/b3ZZ13CO+4EXAN9YYH3bvn/LPL+2ff+Ai4AXJPcHgO900v/fOrw+qp/a+/OtuqlN37uk/KqfFn5tVDe1/+db9VObvn+NqJs6ucVvH/Cguw+5ex44BLyiaptXAB/32NeAzWZ2UaMLukrLOb+25u5HgdOLbNLO799yzq9tufvj7n5vcn8C+BZwcdVmbf3+rZHqpzamuqm9qX5alOqmNqf6qX01om7q5MDvYmC44vEI5754y9mmVS237D9oZveb2efM7MrGFK1h2vn9W662f//M7DLg+cC/Vq3aCO/fQlQ/xdr+872Adn7vlqsj3jvVT+dQ3RTriM/3Atr5/Vuutn//6lU3pdZcstZlNZZVT2G6nG1a1XLKfi9wqbtPmtnLgb8Fdte7YA3Uzu/fcrT9+2dm/cCngbe5+3j16hq7dNL7txjVTx3w+V5EO793y9ER753qp5pUN3XI53sR7fz+LUfbv3/1rJs6ucVvBNhZ8XgH8NgqtmlVS5bd3cfdfTK5fzuQNrPzGlfEumvn929J7f7+mVmauOL6K3f/TI1NOvr9W4Lqpzb/fC+hnd+7JXXCe6f6aUGqmzrg872Edn7/ltTu71+966ZODvyOAbvN7HIzywDXAYertjkMvD6ZIeeFwFl3f7zRBV2lJc/PzC40M0vu7yN+v081vKT1087v35La+f1Lyv1h4Fvu/kcLbNbR798SVD+18ed7Gdr5vVtSu793qp8WpbqpzT/fy9DO79+S2vn9a0Td1LFdPd29aGZvAe4gnsXpI+5+3MzenKy/FbideHacB4Es8IvNKu9KLfP8fgb4JTMrAtPAde7eNs35ZvYJ4tmZzjOzEeB3gTS0//sHyzq/dn7/fhh4HfDvZnZfsuydwCXQGe/fWqh+au/Pt+qm9n3vEqqfFqC6qf0/36qf2vr9q3vdZO3zWoiIiIiIiMhqdHJXTxEREREREUGBn4iIiIiISMdT4CciIiIiItLhFPiJiIiIiIh0OAV+IiIiIiIiHU6BnzScmf2smR03s8jM9lYs32ZmXzKzSTP731X7fN7M7k/2u9XMwmT5fjO718yKZvYzVfu8wcweSG5vqFj+FjN70MzcKpJ6mtlvmtl9ye0bZlYys631eyVEpJWobhKRVqS6SdaLAj+pG4vV+ox9A3gVcLRqeQ74HeA3auzzc+5+FfAc4HzgZ5Pl3wN+AfjrqufeSpzb5QeAfcDvmtmWZPU/Az8BPFK5j7v/obs/z92fB/zfwJfd/fTSZyoi7UR1k4i0ItVNUm8dm8BdmsPMLgM+B3wJ+EHgjJmdDzhxotQ/dvdvJdvO29fdp4CvmNkzqo/r7uPJ3RSQSY6Huz+cHCuq2uWlwBfLFZCZfRG4BviEu/9breev8hrgE8s5ZxFpfaqbRKQVqW6SRlKLn9TDs4CPA28Ciu7+HHf/PuDP13JQM7sDGAUmgE8tsfnFwHDF45Fk2XKep5e4svv0KoopIq1LdZOItCLVTdIQCvykHh5x968BQ8AuM/tfZnYNML7Efoty95cCFwFdwI8tsXmty1K+zKf6KeCf1V1BpOOobhKRVqS6SRpCgZ/UwxSAu48BVwFHgF8BPrTWA7t7DjgMvGKJTUeAnRWPdwCPLfNprkPdFUQ6keomEWlFqpukIRT4Sd0kMz8F7v5p4sHHL1jlcfrN7KLkfgp4OXBiid3uAH7SzLYkg5N/Mlm21HNtAn4U+LvVlFVEWp/qJhFpRaqbpN4U+Ek9XQwcMbP7gI8Sz/iEmb3SzEaIBzH/Q9IHnWTdw8AfAb9gZiNmdgXQBxw2s68D9xP3V7812f7q5Fg/Cxw0s+MASXeDdwPHktvNFQOW35rsswP4uplVXlF7JfCFZMC0iHQm1U0i0opUN0ldmftyu++KiIiIiIhIO1KLn4iIiIiISIdT4CciIiIiItLhFPiJiIiIiIh0OAV+IiIiIiIiHU6Bn4iIiIiISIdT4CciIiIiItLhFPiJiIiIiIh0OAV+IiIiIiIiHe7/B+zH/HCL8wclAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "onemillionv3 = datasetv3.data_sc.obs.copy()\n", + "onemillionv3_celltype_df = pd.read_csv(\n", + " './1M_v3_20201106_azimuth.tsv',\n", + " sep='\\t', index_col=0\n", + ")\n", + "onemillionv3 = pd.concat([onemillionv3, onemillionv3_celltype_df], axis=1)\n", + "onemillionv3 = onemillionv3[onemillionv3['timepoint']=='UT']\n", + "onemillionv3_l1_cellratio_df = onemillionv3.groupby(['assignment', 'predicted.celltype.l1']).size().to_frame()\n", + "# display(onemillionv3_l1_cellratio_df.head())\n", + "onemillionv3_celltyperatio = onemillionv3.groupby(['assignment', 'predicted.celltype.l2']).size().to_frame()\n", + "# display(onemillionv3_celltyperatio.head())\n", + "onemillionv3_allcells = onemillionv3['assignment'].value_counts()\n", + "\n", + "# caluclate the individual CD4T TEM and NAIVE ratio\n", + "individual_ratio = pd.DataFrame()\n", + "for individual in onemillionv3['assignment'].unique():\n", + " tem_num = onemillionv3_celltyperatio.loc[individual, \"CD4 TEM\"].values[0]\n", + " naive_num = onemillionv3_celltyperatio.loc[individual, \"CD4 Naive\"].values[0]\n", + " cd8t_tem_num = onemillionv3_celltyperatio.loc[individual, \"CD8 TEM\"].values[0]\n", + " tcm_num = onemillionv3_celltyperatio.loc[individual, \"CD4 TCM\"].values[0]\n", + " cd8t_tcm_num = onemillionv3_celltyperatio.loc[individual, \"CD8 TCM\"].values[0]\n", + " cd8t_naive_num = onemillionv3_celltyperatio.loc[individual, \"CD8 Naive\"].values[0]\n", + " cd4t_num = onemillionv3_l1_cellratio_df.loc[individual, 'CD4 T'].values[0]\n", + " cd8t_num = onemillionv3_l1_cellratio_df.loc[individual, 'CD8 T'].values[0]\n", + " all_num = onemillionv3_allcells.loc[individual]\n", + " individual_ratio[individual] = [tem_num, naive_num, \n", + " cd8t_tem_num, cd8t_naive_num,\n", + " cd4t_num, cd8t_num,\n", + " tcm_num, cd8t_tcm_num, all_num]\n", + "\n", + "individual_ratio_dfv3 = individual_ratio.T\n", + "individual_ratio_dfv3 = individual_ratio_dfv3.rename({0: 'CD4T TEM', 1:'CD4T Naive', \n", + " 2: 'CD8T TEM', 3: 'CD8T Naive',\n", + " 4: 'CD4T', 5: 'CD8T',\n", + " 6: 'CD4T TCM', 7: 'CD8T TCM',\n", + " 8: 'all_num'}, \n", + " axis=1)\n", + "display(individual_ratio_dfv3.head())\n", + "\n", + "\n", + "common_individuals = list(set(individual_ratio_dfv3.index) & set(gt.columns))\n", + "common_individuals_individual_ratio_dfv3 = individual_ratio_dfv3.loc[common_individuals]\n", + "common_individuals_individual_ratio_dfv3['gt'] = [float(gt[col].values[0].split(':')[1]) for col in \n", + " common_individuals_individual_ratio_dfv3.index]\n", + "common_individuals_individual_ratio_dfv3['chemistry'] = 'v2'\n", + "\n", + "fig, axes = plt.subplots(1, 3, figsize=(15, 5))\n", + "ax1, ax2, ax3 = axes\n", + "cd4ydata = (common_individuals_individual_ratio_dfv3['CD4T TEM']) / common_individuals_individual_ratio_dfv3['CD4T']\n", + "sns.regplot(x=common_individuals_individual_ratio_dfv3['gt'],\n", + " y=cd4ydata, \n", + " ax=ax1)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_dfv3['gt'],\n", + " cd4ydata)\n", + "ax1.set_title('Oelen v3 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax1.set_ylabel('CD4 TEM / CD4T')\n", + "ax1.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_dfv3['CD4T Naive']) / common_individuals_individual_ratio_dfv3['CD4T']\n", + "sns.regplot(x=common_individuals_individual_ratio_dfv3['gt'],\n", + " y= cd8tydata, \n", + " ax=ax2)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_dfv3['gt'],\n", + " cd8tydata)\n", + "ax2.set_title('Oelen v3 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax2.set_ylabel('CD4 Naive / CD4T')\n", + "ax2.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_dfv3['CD4T Naive']) / common_individuals_individual_ratio_dfv3['CD4T TEM']\n", + "sns.regplot(x=common_individuals_individual_ratio_dfv3['gt'],\n", + " y= cd8tydata, \n", + " ax=ax3)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_dfv3['gt'],\n", + " cd8tydata)\n", + "ax3.set_title('Oelen v3 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax3.set_ylabel('CD4 Naive / CD4T TEM')\n", + "ax3.set_xlabel(\"rs1131017\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'rs1131017')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAFNCAYAAABSRs15AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACUFklEQVR4nOzdeZxcV3Xo+9+quXoeNVjqltRS28J2bCxL8ighCIMhDMHhXYzJQALPJoELSe7lQiYncXITuCQ3OA+I7RAgIw4QTBRiMBBjJGuwJI8gW3ZLraFbU89jzVXr/XGqWtWtHqWurml9P5+yqs45Vb2rXb3rrLP3XktUFWOMMcYYY4wxxc+V7wYYY4wxxhhjjFkcFuAZY4wxxhhjTImwAM8YY4wxxhhjSoQFeMYYY4wxxhhTIizAM8YYY4wxxpgSYQGeMcYYY4wxxpQIC/CKkIisFREVEU++22KMMdYnGWMKkfVNplxZgJcnIvIBEfmJiIRE5JyI/I2I1OW7XbMRkf8jIl0iMiIiJ0Xk93L4s35WRI6kfz8/EpE1MxznF5G/S7dnVESeE5G3Zu33icg3ReREupPfkas2z0ZE7k63cVxEvi0iDTMct0xEviYiZ0RkWET2iMhNMxz7lfR72pDb1ptyYH3Sgn92g4g8mv6bPikid89x/G+lf6/DIvJlEfFn7VsrIo+JyGD6mM8v9Qlpug0/Sv//PyIib5zj+E0isktExkTkvIh8fMr+j4vI8fTv52URuTK378CUKuubFvyzrW+aoW9KnwuG0/vGROT7uX8H+WEBXh6IyP8APgN8AqgFbgbWAD8QEV8+2zaHvwM2qmoNcCtwt4jcOZ8nLqRDEJEm4FvAHwANwCHgX2c43AN0Aa/D+V3+AfB1EVmbdcxTwC8C5+bbhsUkItcADwG/BCwHQsAXZzi8CjgI3Ijz3v8e+E8RqZrymrcD63PVZlNerE+6JF8AYjh/0+8H/ib9tz7dz3oL8CngZ4G1QBvwx1mHfBHoAVYCr8Xpz37jMtu3UF8DngMagd8DvikizdMdmO6jv4fTrzUCG4DvZ+3/EPBB4Odw+rS3A325bLwpTdY3XRLrm2bom9LeoapV6dubc9fsPFNVuy3hDagBxoD/NmV7Fc4f0a+lH7tw/uiOAf3A14GG9L61gAKe9ONanM7kLHAa+FPAnd73AZwA5y+AQeA48NYZ2vYp4JtTtj0A/PU0x64CfgL8rxleawfQDXwSJ7D6xwX8ju4B9mY9rgTCOJ3lfJ7/IvAL02zvBnYs8P+XAh8DOnFOUD4LuBb4Gn8G/EvW4/U4nW/1PJ8/AtyY9diD09ldl27fhnx/ru1WvDfrky7pd1aZ/hu+MmvbPwKfnuH4fwH+LOvxzwLnsh6/DLwt6/FngYfm2ZavAg8CPwBGgR8Daxb4fq4Eotl9ErAb+PAMx//ZTL+/9OekC/jZfH+27VbcN+ubLul3Zn3TLL8/4ATwxnx/tpfiZiN4S+9WIIAzQjVBVceA7wJvSm/6GPDzOFdLrsDpbL4ww2v+PZDAuVJxA/Bm4ENZ+28CXgGagP8D/J2IyDSv8zXgbSJSAyAibuC/4XQApLd9SkTGcDqjyux901iBMwq1BrhHRFpFZGiWW2YawTXAC1m/m3GcjnvaK1DZRGQ5TodweK5jF+DdwGZgE/Au4NfSP+v2Od7P7TO8n2OkO+B5vJ/XAj7gaNbm3wJ2qeqLi/DejLE+ae4+aaorgaSqvpq17QVm7qMm9QHp+8tFpDH9+AHgLhGpEJFVwFtxrkLP1/uBP8H5fT4P/HNmh4i8OMv7y8wkuAboVNXReb6fm4EBEdkrIj0i8h8i0pretzp9uzY9Re24iPyxiNj5hlko65usb1rMvinjn0WkV0S+LyLXL+C9FJd8R5jldiM9VXCGfZ8GfpC+/zJZV0BxhsfjOKM3a0lfkcIZgo8Cwaxj3wf8KH3/A8DRrH0V6eeumKENTwG/nL7/JuDYNMcITsf4x8wwCoVzRSoGBC7hd/R3TLnaBOwBPjDH87zAD5nh6hKXPoJ3R9bj3wD+a4Gv8V9MudqEc+Vw1rbgXL38CfA7WdtacIK92qz22Qie3S75Zn3SJf3Otk39nQH/L/DkDMcfm9KPeNPveW368WuAZ3BOPBXnyrfMsy1fBR7JelwFJIGWBbyfXwL2T9n2v4GvznD8q8AQsAXnBPyvgT3pfbem38N/AnXpz8arwP+b78+63YrrZn3TJf3OrG+aoW9K778NCKb/3/4OzohpXb4/67m42RW1pdcHNM0wx3olF9YprAEezVzNwOnAkjgdVLY1OH+QZ7OOfQhYlnXMxNozVQ2l705a05XlX3A6PIC7meaKkzqew5k2+cdT92fpVdXILPtnMoYT3GSrwRnin1b66vA/4nSSH72Enzmbrqz7J3GuEC7EpbyfIPAfOB3bn2ft+hxwv6oOL7ANxszE+qQ5iMh35cKi/Pez8L/pqcdn7o+m+67HcUYpKnGudNfjrDuar4k+Sp3RjQEW1k8t9P2EgUdV9WD69/nHwK0iUpveB/B/VHVIVU/g/P9/2wLaYwxY3zQn65suMlvfhKruUdWwqobS51ZDOEFxybEAb+ntw7mCNGmxrYhU4gx9/1d6UxfO3O+6rFtAVU9Peb2u9Os1ZR1Xo6pzTmecwTeAHSKyGmdq4mxTCjzMnuhDsx+kpxyMzXJ7f/rQw8D1Wc+rTP+caaddpqdP/B1OZ/4Lqhqf4z0uVEvW/VbgTPrnbpvj/WQ6janvpw3w41xpmu79+IFv44zy3Ttl988CnxUnm1Xmi2jfLNM1jJmL9Ulz9Emq+la9sCj/n3H+dj0i0p71ctcz89TwSX1A+v55Ve3HmZbVAnxeVaPpbV9hYQHRRB8lTkKmBi70U4dneX8PZrWvTUSq5/l+XmTy7zJzX3Cmt8Wm7DfmUljfZH3TYvZN09FZ9hW3fA8hluMN+F/AeeAOnKtJa4HHgGcBf/qY3wKeJL0gFWgG3pW+v5bJi4b/HWeedA1O0L4eeF163weAp6b8/Fmn9eHMbf8B8FzWNhdOsFGP88ewFWeR8sdmeI0dQPcl/n6agWHgF3CG2D/DlCH6Kcc/COwHqmbY70+/TjfOfPsA6SkG6d/PiVleW3G+ROpxOqojwD0LfD/X4CRK2YZzFeyfyJq2MOVYL87I3bcz/3+n7F+GM1c/c1OcOefBhbTJbnbLvlmfdEm/s0dw1uFU4kz7GQaumeHYO3BGBq5Ot/cJsqah4yRx+hTOSWAd8Cjwz1N+PztmeO2vpvuX23HW6/4VWUmqFvB+9uMklwjgnKwOAc0zHPsGnHVOr01/Xv4K2J21/x+A7wDVOOvxjgAfzPfn3G7Fd7O+6ZJ+Z9Y3TdM34Vygvy3dlgBOZtZeoDHfn/Oc/O3kuwHlesNJIf1TnOHk8zjTBOqz9ruA38a5GjqKM0/6z9L7pnZYtcDf4AQwwzgZFu9K77uUDuuX0sd8Ykp7voczvD6Gc5Xod5lhLvbldljAG3FOCsI4HffarH2/C3w3fX9Nuq2RdLsyt/dnHX8ifUz2bW163x9kd1bTtEO5kEWzH/hL0hm3Fvh+7gZOAeM4XzANWfseBB5M339d+meGpryfbbO0z9bg2e2yb9YnLfj31YBzIWY8/bd9d9a+1nSbWrO2/Xb69zqCcxXcn7Xvtel+bhBn2tk3gGXpfavTv+9pT0KYnKluDNgFrLuE97M23YZw+v/xG7P2bQPGphz/6zizDAZxLkq1ZO2rwTnJHMUZNblvpv8vdrPbXDfrmxb8+7K+aZq+Cedi+4vp30s/zsX7zfn+fOfqlhnFMKYsiVPk8uOq+vIM+xVoV9Wj0+03xphcEpFfxLn6/jsz7P8qzsnh7y9pw4wxZc36psK2pNXojSk0WspFLo0xRU9V/ynfbTDGmKmsbypslmTFGGOMMcYYY0qETdE0xhhjjDHGmBJhI3jGGGOMMcYYUyIswDPGGGOMMcaYElF0SVaampp07dq1+W6GMWYRPfPMM32q2pzvdlwu65+MKT2l0D9Z32RM6Zmtbyq6AG/t2rUcOnQo380wxiwiETmZ7zYsBuufjCk9pdA/Wd9kTOmZrW+yKZrGGGOMMcYYUyIswDPGGGOMMcaYEmEBnjHGGGOMMcaUCAvwjDHGGGOMMaZEWIBnjDHGGGOMMSXCAjxjjDHGGGOMKREW4BljjDHGGGNMichZHTwR+TLwdqBHVa+dZr8ADwBvA0LAB1T12Vy1xxizNJ480sNDuzrpGgzRUl/Bvdvb2LFxWb6bZcyisM+3MaYQWd9ksuVyBO+rwB2z7H8r0J6+3QP8TQ7bYoxZAk8e6eG+nYfpGY1QF/TSMxrhvp2HefJIT76bZsxls8+3MaYQWd9kpspZgKequ4CBWQ55F/AP6tgP1InIyly1xxiTew/t6sTrFip8HkScf71u4aFdnflumjGXzT7fxphCZH2TmSqfa/BWAV1Zj7vT2y4iIveIyCEROdTb27skjTPGLFzXYIig1z1pW9DrpnswlKcWGbN47PNtjClE1jeZqfIZ4Mk023S6A1X1YVXdrKqbm5ubc9wsY8ylaqmvIBxPTtoWjidZXV+RpxYZs3js822MKUTWN5mp8hngdQMtWY9XA2fy1BZjzCK4d3sb8aQSiiVQdf6NJ5V7t7flu2nGXDb7fBtjCpH1TWaqfAZ4O4FfFsfNwLCqns1je4wxl2nHxmXc/85rWFYdYDgcZ1l1gPvfeU3BZfISkTtE5BUROSoin5rhmB0i8ryIHBaRHy91G03hKZbPtzGmvFjfZKbKZZmErwE7gCYR6Qb+EPACqOqDwGM4JRKO4pRJ+NVctcUYs3R2bFxW0F8qIuIGvgC8CWcmwUER2amqL2UdUwd8EbhDVU+JSOG+IbOkCv3zbYwpT9Y3mWw5C/BU9X1z7FfgI7n6+cYYM4OtwFFV7QQQkUdwsvq+lHXM3cC3VPUUgKouWq5pq1VkjDHGmFzK5xRNY4zJh/lk8L0SqBeRJ0XkGRH55cX4wVaryBhjjDG5lrMRvHyyK+TGmFnMJ4OvB7gR+FkgCOwTkf2q+upFLyZyD3APQGtr66w/OLtWEUCFz0MoluChXZ3WRxljjDFmUZTcCJ5dITfGzGE+GXy7ge+p6riq9gG7gOune7GFlHGxWkXGGGOMybWSC/Cyr5CLOP963cJDuzrz3TRjTGE4CLSLyDoR8QF34WT1zfbvwDYR8YhIBXAT8PLl/mCrVWSMARCRL4tIj4j8dIb9n0hn8X1eRH4qIkkRaUjvOyEiP0nvO7S0LTfGFIOSC/DsCrkxZjaqmgA+CjyOE7R9XVUPi8iHReTD6WNeBr4HvAgcAL6kqtOeiC2E1SoyxqR9Fbhjpp2q+llVfa2qvhb4HeDHqjqQdcjr0/s357aZxphiVHJr8FrqK+gZjUyscQG7Qm6MmUxVH8Mp1ZK97cEpjz8LfHYxf+6Ojcu4H2emQfdgiNW2RtiYsqSqu0Rk7TwPfx/wtRw2xxhTYkouwLt3exuf+OYLnB4Mk0il8LhcVAc8/MHPXZ3vphljjNUqMsbMW3qK+B04sw4yFPi+iCjwkKo+nJfGGWMKVskFeJBOhycgIiAXp8czxhhjjCkC7wD2TJmeeZuqnhGRZcAPROSIqu6a+sSFZPg1xpSWkgvwHtrVSW3Qy8ra4MQ2S0NuzNKxMiXGGLNo7mLK9ExVPZP+t0dEHgW24mT6ZcpxDwMPA2zevNmudRtTRkoyyUoimaKzd4wj50bo7B0jkUxZkhVjloCVKTHGmMUhIrXA63Cy+ma2VYpIdeY+8GbgshNAGWNKS8kFeFU+N6eHIiSSiluERFI5PRSh0uee+8nGmMtiZUqMMWZuIvI1YB9wlYh0i8gHszP5pr0b+L6qjmdtWw48JSIv4GT4/U9V/d7StdwYUwxKboqmiKTvpG8AmrXdGJMzXYMh6oLeSdusTIkxxkymqu+bxzFfxSmnkL2tE7g+N60yxpSKkgvwRqMJVtUF6BuLEUum8LldrKjxMxZN5LtpZp5sDVfxsjIlxhhjjDH5VXIBXuYEs625amJbKJZgWXUgj60y85VZw+V1y6Q1XPeDBXlF4N7tbdy38zBj0TgVXjeRRMoKeRtjTBGwi6vGlI6SW4N37/Y24kklFEug6vxrJ5jFw9ZwFbfb25v47Te2UxvwMRyOs6w6wP3vvMZOEowxpoBZgixjSkvJjeDt2LiM+3EChe7BEKvtKlRRsTVcxUlVGQrFGQrHua6ljv/73jpW1Qfxeyy5kTHGFLrsi6sAFT6PlZgypoiVXIAHTpBnHVJxsjVcxWc0EmdwPE4ilcp3U4wxxlwCu7hqTGkpuSmaprjdu72NkXCcjvOjvHx2mI7zo4yE4zbFtgBF4km6B0P0jkYtuDPGmCLWUl9BOJ6ctM0urhpTvCzAMwVHASRd2kLSj03BSKaUvrEoZ4bCxBIW2BljTLGz/AXGlJaSnKJpitdDuzqpDXpZWRuc2GbrAAqDqjIcjjMUipNSC7uNMaZUWP4CY0qLBXimoHQNhnALdPaOTdQxbKry2TqAPBuLJhgYi81rKuaBzgEeOdhF71iE1oZKO0kwxpgiYPkLjCkdNkXTFJRqv4fTQxESKcXtEhIp5fRQhCq/XYvIh0g8yZmhMD0jkXkHdw880UH/eJRaS7VtjDHGGLPkLMAzBUUzU/8065a93SyJRDLF+ZEIZ4bCRKYsvJ/NIwe78LiEoNdtdQyNMcYYY/LAhkVMQRmLJVlVF6BvLDYxRXNFlZ/x2PyDDHN5RiJxBsZil7TO7uxImFgiSfdgGAVcAo2VXkvGYowxxhizRCzAMwUlUwevrblqYlsolmBZdSCPrSoP8WSKvrEo4csJplMpBkOJCw8VesfirK61yQLGGGOMMUvBzrpMQbFUzfkxHIpzejB8ecEdMByd/vkD4cS0240xxhhjzOKyAM8UlB0bl/GeTavoHY3y8rlRekejvGfTKsvslSPRRJLTQ2H6x6OLUvogGp9+KuZC1vEZY4wxxphLZ1M0TUF58kgP33z2NM3Vflq9bsLxJN989jTXra6zIG8RpVLKQCjGaCSxqAlsRCD75TKPRWTRfoYxxhhjjJlZTkfwROQOEXlFRI6KyKem2V8vIo+KyIsickBErs1le0zhe2hXJ163k33RsjAuPlVlOBSnazDESDi+6NlJA57JgVzm5Su8FuBlPHmkh/c9vJ/bP/ME73t4v5WQMMYYY8yiylmAJyJu4AvAW4GrgfeJyNVTDvtd4HlVvQ74ZeCBXLXHFIeuwRBBr3vStqDXbYXOF8FoJE7XgDMdM5nKTdmJK5fXUu13kwnnXAJ1QQ/XrqrPyc8rNk8e6eG+nYfpGY1QZ3UCjTHGGJMDuRzB2wocVdVOVY0BjwDvmnLM1cB/AajqEWCtiCzPYZtMgWupryA8Zb1WOJ5kdX1FnlpU/GKJFGeHw/SORudVrPxy3LWlhaqAl9X1Qa5eWc26pkpqgj5LkpNmI9TGGGOMybVcBnirgK6sx93pbdleAO4EEJGtwBpg9dQXEpF7ROSQiBzq7e3NUXNNIbh3exvD4TgdPaMcOTdCR88ow+G4BQiXIJlS+sainB66/OyY87W1rYGPv6Gdxko/I+E4y6oD3P/Oa2z9ZJqNUBtjjDEm13KZZGW6RTdT54V9GnhARJ4HfgI8B1yUT11VHwYeBti8eXNu5paZgiEA6qwXQ2XaD5KZWSyRYjgcZzyaWJTMmAu1ta2BrW0NrKoP4ve4535CGcnUeazwXeh6bYTaGGOMMYsplwFeN9CS9Xg1cCb7AFUdAX4VQJw0e8fTN1OmHtrVSU3Qy4ra4MS2UCzBQ7s6bRRoDqFYguFwfMlG68zC3bu9jft2HiYUSxBMZ4m1Oo/GGGOMWUy5DPAOAu0isg44DdwF3J19gIjUAaH0Gr0PAbvSQZ8pU12DIeqC3knbbArbzKKJJGORBOPRZM7X15nLt2PjMu7HuZDRPRhidX0F925vs4sXxhhjjFk0OQvwVDUhIh8FHgfcwJdV9bCIfDi9/0HgNcA/iEgSeAn4YK7aY4pDS30Fx/vGGI0kiCVT+NwuqgMe1jVV5btpBSOZUsYiCUajcWIJC+qKzY6NyyygM8YYY0zO5LTQuao+Bjw2ZduDWff3Ae25bIMpLre0NXDgxAAucVLsx5Ipesdi3L21Id9Ny6tUShmPOSN14Xhy0evXGWOMWToi8mXg7UCPql5UA1hEdgD/zoVlK99S1fvT++7AKSvlBr6kqp9eijYbY4pHTgudG7NQ+zoHWFbtw+d2kVLwuV0sq/axr3Mg303Li0g8Sc9IhJMDIXpHo4RiCQvujDGm+H0VuGOOY3ar6mvTt0xwN58aw8aYMpfTETxjFqprMERjpZ+mqsDENlUtuzV4Y9EEI+E4kbglTMmFua6Az3b13BhjLpeq7hKRtZfw1IkawwAikqkx/NIiNs8YU+QswDMFpZzX4EXiScajpZMwJZZIFWSZhKwr4G/CyfZ7UER2qurUE6Tdqvr2JW+gMcY4bhGRF3AykP9PVT3M9DWGb5ruySJyD3APQGtra46baowpJDZF0xSUW9oa6B2LEUumJq3Bu6WtNNfgxZMphkIxugZCnBkKMxyOF3VwNx5N8F8vn+cPdx5m6//+L04PhfPdpOlMXAFPZ/DNXAE3xphC8SywRlWvB/4/4Nvp7fOpMexsVH1YVTer6ubm5ubctNIYU5BsBM8UlMwavJHwhRG8mqCHfZ0DfCzfjVsEqkoknmI8liAcSxJPFm8wlzEcirP3WB+7Ovp49tQg8eSFc43Hf3qOX7t9XR5bN635XgGf7uq5McbkXHbJKFV9TES+KCJNzKPGsDHGWIBnCkoprsFTVcLxJGNRJ6hLpoo/SUrfWJSnOvrYfbSPF7qGyH5LXrewZW0D77z+Cu64dkX+Gjmz+VwBz1w9HxORt+FcPZ82469NgzLGLDYRWQGcV1UVka04M676gSHmqDFsjDEW4JmC0lJfQc9ohArfhY9mOJ5kdX1FHlu1cKrKeMxZUxeKlUZZg3PDEXZ39LKro4/DZ0Ym7Qt4Xdy0rpHt7U3c1NZAhc/DqvpgQa7BYx5XwGe6eq6qfVNfTFUfBh4G2Lx5c/H/jzbG5JyIfA3YATSJSDfwh4AXJspJvQf4dRFJAGHgLnW+SKatMZyHt2CMKWAW4JmCcu/2Nu7beZhQLEHQ6yYcTxJPKvdub8t30+aUmX4ZiScZjSSKei1dxqn+ELuP9rLr1T46esYm7avye7hlvRPUbV5Tj99bkMHcdA4yxxXwWa6eG2PMZVPV982x//PA52fYd1GNYWOMyWYBnikoOzYu437goV2ddA+GWF1fwb3b29ixcVm+m3aRZEqJxJPOLZEilkgV/UidqnKsd5xdHb3sfrWPkwOTp8bWV3i5bUMT29qbuKGlDo+7+PI0qeq0V8BF5MPp/bNdPTfGGGOMKWgW4JmCVWhn06mUEkumCMWShGIJYoniH6EDSKly5OyoE9R19HF2ODJpf3OVn23tTWy7solrr6jF7ZpuCVtxme4KeDqwy9yf8eq5McYYY0whswDPFJQnj/Rw387DeN1CXdBLz2iE+3Ye5n7IyyieqjISSTAaiZdMQAfO6ONPTg+z69VenjraR99YbNL+K+oCbG9vZlt7ExtXVCNS/EGdMcYYY0w5sADPFJSHdnXidctEkpUKn4dQLMFDuzqXJMBLpZTxWIJoIjUxBbMUsl6CU3PvuVND7O7oY8/RPobC8Un71zZWTAR1bc2VFtQZY4wxxhQhC/BMQekaDFEX9E7aFvS6c1YmQVWJJlJE4ymiiSTjJZLxMiMST3LwxCC7O3rZ19nPeDQ5af9Vy6ud6ZftTbQ0FFemUmOMMcYYczEL8ExByXWZhFjCCeQi6YAuntSSCugAxqMJ9ncOsPtoLwc6B4hkTS0V4NpVNdyeHqlbUROY+YWMMcYYY0zRsQDPFJTFLJMQT6aIprNbZgK7UpluOdVwOM7eY/3s7ujlmZODxJMX3qdL4IaWOrZd2cxt6xtprPLnsaXGGGOMMSaXLMAzBWXHxmW8p3uILz11nPFYkkqfmw/dvm7O9XfxZCaIuxDQlUIdutn0j0V56qgT1D3fNUR27Op1CzeuqWd7ezO3rm+kZsq0V2OMMcYYU5oswDMF5ckjPXzz2dM0V/tpTY/gffPZ01y3uo5bNzQRjicn6s0lVUkklWRKSZXYNMuZnBuJsLujj92v9nL4zMikUhIBj4utbQ1sb2/mpnUNVPrtz9sYY4wxptzYGaApKA/t6sTjgoDHTUrB53aRSCZ44L86aG0szyQgXQMhdnf0saujl1fPj03aV+l3c0tbI9vbm9m8tp6A152nVhpjjDHGmEJgAZ7Ji0QyRSKlxJMp4snMvyk6+8aoCXiIJy9Mr/R5XJwdDuextUtLVensG2f3q05Qd6J/cgbRuqCXWzc4Qd0NrXV43a48tdQYY4wxxhQaC/BMzmQHccmUEkuvk5stc+XKmiDdg+OMx5LEkym8bheVPjer6yuXuPVLS1U5cm50YqTuzFBk0v6mKh/b0pkvf2ZVLW6X1agzxhhjjDEXswDPzEnVCc7iSSWeSBFPpUAhpaAoqqDp41Qhpersu4R1cTe01PJC99DE2rJEKkUknuId19Uu6nsqBMmU8tPTw86auo4+eseik/avrA2wvb2Jbe3NbFxZjcsKjxtjjDHGmDlYgGcmSaZH3GJJp/h3ZtRtqWrF/bijD4FJyUMkvf2Xbl27JG3IpXgyxfNdQ+x6tY89R/sYCscn7V/bWMG29ia2tzfT1lyJWFBnjDHGGGMWwAK8EqaqE+vbnKmRzpTJZEoRAbdLLoy4pSCp+S/63TUYwu0Cr+vCurJUKkXXYGiWZxW2aDzJoZOD7OroY9+xfsaiiUn725dVsf3KJrZtaC7bRDLGGGOMMWZxWIBXJFIppyxAaso0SCc4c4K2ZDpQS6RSE/+a/AjFEjzdOcCujj6ePt5PJH7h/4UA11xRw7b09MsVtYH8NTQHDnQO8MjBLnrHIrQ2VHLv9rY56xgaY4wxxpjFUXYBXvY6sUxAlFJFAVd6VMslggAictGIVuZRMh1UJVJKIpkiqYoguAQ8Lhdut+DOml6XygRngKYuPM6sVVOygrZUZl2bpttM2dR5a6kLcnIgBOlRRk2v9VtTH8x30+Y0Eo6zr7OfXa/2cejkAPHkhf9nLoHXttSxrb2J2zc00Vjlz2NLc+dA5wAPPNGBxyXUBr30jEa4b+dh7gcL8owxxhhjlkBJB3h9Y1FGI850uHxPPTTzc8/29Xzm8SOMxxKkUorLJdT4vNyzfX2+mzatgfEYTx11kqQ83zVEMnXhc+Z1CzeuqWdbezO3rm+kNujNY0uXxiMHu/C4hKDXjYhQ4fMQiiV4aFenBXjGGGOMMUugpAM8vcRMjiZ/trY18Mm3bOSRg12cGwmzoibIXVta2NrWkO+mTTg/EpnIfPnT08OTEsIEPC62rmtgW3szN7c1UOkv6T+xi5wdCVMTmPyeg1433UW8htIYY6YSkTtn26+q31qqthhjzFTldfZpisLWtoaCCugAugZCTlB3tI9Xzo1O2lfpd3NLWyPb2pvZsraegNedp1bm38qaIP3jUYJZv4NwPMnqekseY0rDk0d6eGhXJ12DIVrqK2yNafn6JvB8+gbO8uoMBSzAM8bkTU4DPBG5A3gAcANfUtVPT9lfC/wT0Jpuy1+o6ldy2SZj5kNVOd43zq70SN3xvvFJ+2uDXm5b38i2K5vY1FqP1+2a4ZXKy11bWnjgiQ7C8SQetxCKJ4knlXu3t+W7acZctieP9HDfzsN43UKdrTEtd78AvBe4Dvh34GuqejS/TTLGGEfOAjwRcQNfAN4EdAMHRWSnqr6UddhHgJdU9R0i0gy8IiL/rKqxXLXLmJmoKq+cH2XXq05Qd3ooPGl/Y5WP2zc0sb29ietW1+F2WY26qba2NfBx2nnkYBd9YxFaLIumKSEP7erE63bWlgK2xrSMqeqjwKMiUgm8C/hLEWkEfk9Vf5zf1hljyl0uR/C2AkdVtRNARB7B6QSzAzwFqsWp5lwFDACJqS9kTK4kU8rhM8Ps6ujjqY4+ekajk/avrA2kyxk08ZqVNbis8PicMlNsV9UH8XvKd7qqKT1dgyHqpiRLsjWmZS8CDAMjOLORSqvujTGmKOUywFsFdGU97gZumnLM54GdwBmgGnivql5UvE1E7gHuAWhtbc1JY035SCRTPNc1xFMdfTx1tI/BUHzS/jUNFWy7sont7c2sb65ELKgzxgAt9RX0jEYmRvDA1piWKxF5PfA+nIvZPwQeUNVDC3j+l4G3Az2qeu00+98PfDL9cAz4dVV9Ib3vBDAKJIGEqm6+jLdijClBuQzwpjsrnprS8i04C5TfAKwHfiAiu1V1ZNKTVB8GHgbYvHmzpcU0CxZLpDh4YoDdHX3sPdbPWHTyQPGGZVVsT4/UrWmszFMrS4MVOjel6t7tbdy38zChWIKg103Y1piWs/8CXgSeAvzAL4vIL2d2qurH5nj+V3Eucv/DDPuPA69T1UEReSvOOVD2RfLXq2rfJbZ9WpZAyJjSkcsArxtoyXq8GmekLtuvAp9Wp5bBURE5DmwEDuSwXaZMhGNJnj7uFB5/+vgA4Xhy0v6rV9aw/UonqFtZW/iF1IuBFTo3pWzHxmXcj7MWr3swxGo7CS5nv8bFF63nTVV3icjaWfbvzXq4H+ccKmcsgZAxpSWXAd5BoF1E1gGngbuAu6cccwr4WWC3iCwHrgI6c9gmU+JGI3H2HetnV0cfB08MEE9e+P51CVzfUse2DU3c3t5EU5U/jy0tTVbo3JS6HRuX2WfZoKpfnWmfiCz2udUHge9m/3jg+yKiwEPpWU6XxRIIGVNachbgqWpCRD4KPI5TJuHLqnpYRD6c3v8g8CfAV0XkJzhTOj+52FMOTOkbGI+x56iT+fK5riGSqQtBnccl3Limnm3tTdy2vonaCu8sr2Rm4hLBJYIIuFyCWwRX+r7X7cLnduF2Cb1jEeorfJPWLVoSClNKbBqbARCRp1T19vT9f1TVX8rafQDYtEg/5/U4Ad7tWZtvU9UzIrIMZ2nLEVXdNc1z552/wBIIGVNacloHT1UfAx6bsu3BrPtngDfnsg2mNPWMRHjqaB+7Ovr4SffwpHkyfo+Lresa2N7exE1tjVT5c/oxLwkigicdrHnczr9et+BxOf/ON9FMa0OlJaGYB1W15D1FyKaxmSzZi7WvmbJvUf64ReQ64EvAW1W1P7M9fe6EqvaIyKM4iV4uCvAWkr/AEggZU1rszNcUje7BELvThcePnBudtK/S5+bmNqfw+Na1DQS8lp5/KpcIHrfgc7vwpAM4r9uFxyV4FqlQ+1IloRCRm1V1/6K+6BKKJlL0j8dorvLj8yzO797knk1jM1lmC5guOxmciLQC3wJ+SVVfzdpeCbhUdTR9/83A/Zf78yyBkDGlxQI8U7BUlRP9IXa92svujj46+8Yn7a8JeLhtg5MkZVNrvZ0oMzmImzwa51qSwuxLmITiiyzSFKh8icaTnB4K01DpozZoU4eLgU1jM1nqROTdgCt9/870dgFq53qyiHwN2AE0iUg38IeAFyZmOt0HNAJfTI/2Z8ohLMcpsA7OOdy/qOr3LvfNWAIhY0qLBXimoKgqr54fY1eHE9R1D4Yn7W+s9HH7hia2XdnE9avrliRoKSRul+D3uPF5XLjkwtRKj1vwuly4CuD3YUko5k9V6R+LEoolaK7yL9pIqskNm8ZmsvwYeGfW/Xdk7btouuRUqvq+OfZ/CPjQNNs7gevn38z5s77bmNJhAZ7Ju2RKeenMyERQ1zManbR/RU2AbekadVdfUYOrDNYueVwufB5nBC6zNs7vcVkAcEGbiOycaaeqvnOmfYUoHEvSPRimscpHdcBG8wqVTWMzWf5DVb+V70YYY8x0ZgzwROTPVPV3l7Ixpnwkkime7xpi99E+nuroYzAUn7S/pT7I9iub2dbeRPuyqpJMSCEiBLwu/B73xAic2+UEdIUwElfgeoG/zHcjFlNKld7RKKFYkqYqf9mNThcDm8Zmsvw+zho5Y4wpOLON4N0BWIBnFk0skeLQyQF2d/Sx71g/I5HEpP0bmqvYli48vraxcoZXKX4+j4vaoJdKn8cCuUs3qqo/zncjcmE8miAST9Jc7Z80FdAUBpvGZowxptDNdvbgFpF6Zkj3q6oDuWmSKSXhWJKnjw+wu6OX/Z0DhOPJSfuvXlnD7enpl6vqgnlqZe65XULQ56ba7yXoswyfi+DE5TxZRO4AHsCp0fklVf30DMdtAfYD71XVb17Oz1yIZEo5NxyhOuClsdJnFwKMKTwbReTFabYLoKp63VI3yBhjMmYL8DYCzzB9gKeALTow0xqLJNjb2c/uV3s5eHKQWCI1sc8lcN3qWra1N3P7hiaaq/15bGluuUSo8Lup8nsIet0lOc00X1T1ThHZDpxX1VdE5HbgZuBlVf3P2Z4rIm7gC8CbgG7goIjsVNWXpjnuM8DjOXkT8zAaiU+M5lnpD2MKynEmJ1YxxpiCMVuA95Kq3rBkLTFFbSgU46mj/TzV0cuzp4ZIpC6UAfK4hE2tdWxrb+a2DY3UVfjy2NLcEhEqLajLORH5HE5xX4+IPA78LPBd4LdEZIeqfmKWp28Fjqaz0SEijwDvAl6actx/B/4N2LLIzV+QeDLFmaEwtUEvDZU++0wZUxhiqnoy340wxpjp2AIPc8l6R6PpwuO9/OT0MFkxHX6Pi81r69nW3sytbY1UBUr7o+YSoSbopSbgsUyXS+NNwLVAEDgNrFLVkIh8GngOmC3AWwV0ZT3uBm7KPkBEVgHvBt5AngO8jOFwnFAsybIaP36PjeYZk2d78t0AY4yZyWxn3Q8sWStM0Tg9FJ4I6l4+OzppX4XPzc1tjWxvb2LLugaCZTClzOt2URPwUh2whClLTFVVRSQz/zdzeSGFU3h4NjNNO8/2OeCTqpqca8RMRO4B7gFobW2d40dfHmc0L0J9hbekR8KNKXSq+tF8t8EYY2YyY4Cnql+duk1EXlXVK3PaIlNQVJUT/SF2p2vUHesdn7S/JuDh1vVOkpQb19Tj85TH6FXA66Ym6KXKX9ojkwXsP0VkNxAAvgR8XUT2A69j7iLD3UBL1uPVwJkpx2wGHkkHd03A20Qkoarfnvpiqvow8DDA5s2bpwaKi05VGRiPMR5L0lzlL5u/uULx5JEeHtrVSddgiBYrk2CMMaYAzVYHb5QLV7Uzl7ArMttVtSbXjTP5oap09Iyxu6OPXa/20jUYnrS/odLH7RucoO761bVlNSWxKuChNui1KXJ5pqqfFJFbnLu6X0TW40yp/BIwV7bLg0C7iKzDmd55F3D3lNdfl7kvIl8FvjNdcJdP0XiS00NhGip91AatOPpSePJID/ftPIzXLdQFvfSMRrhv52HuBwvyyoyI3Kyq+/PdDmOMmc5sww9fBWqBT6jqeQAROZ594mNKR0qVw6dH2H3UGak7PxKdtH95jZ9t7U1sb2/m6itqcJVRogcRocLnpq7CArtCoqr7RKQuXcoA4G9VdXgez0uIyEdxsmO6gS+r6mER+XB6/4O5a/XiUlX6x6KEYgmaq/xldbElHx7a1YnXLRP1CSt8HkKxBA/t6rQAr/x8EdiU70YYY8x0Zpui+d9F5EbgayLybeDzXLxOxRSxZEp5oWuIXR19PHW0j4Hx2KT9q+uDbG9vYvuVzbQvqyqr7H1et4tKv4cKnxu/x1VW770YiIgPZ1rkz+OkKxdgjYg8CnxYVWOzPB1VfQx4bMq2aQM7Vf3AIjQ5p8IxZzSvscpv04ZzqGswRN2U0dKg1033YChPLTLGGGMuNuuZgKo+IyJvBD4K/BhnvYspYrFEimdPDbLr1T72HutjJJKYtL+tuZLt7U1sa29mbWNFWQU2bpdQ5fdQHfDauqbC9/uAF2hR1VEAEanGqW/3B+lbWUmmlJ6RCKGAh8ZKP25L+rPoWuor6BmNTIzgAYTjSVbXV+SxVSZP2kRk50w7VfWdS9kYY4zJNuelXlVNAX8tIt8ArC5eEQrHkxw4PsDujj72d/YTiiUn7X/Nymq2bXCCulX1wTy1Mn+8bhe1FV6q/Z6yCmiL3J3AVlWdGDpR1VER+Q1gP2UY4GWMRRJEYimaqn2TAhFz+e7d3sZ9Ow8TiiUIet2E40niSeXe7W35bppZer3AX+a7EcYYM51Zv/1FpBEn+cDG9KaXRaRRVftz3jJzWcYiCfZ19rO7o4+DJwaIJlIT+1wCP7Oqlm3tzWxrb6K52p/Hlk52oHOARw52cXYkzMqaIHdtaWFrW0NOfpbP46KuwmdT2opTKju4y1DVMREp+6nkiVSKc8MRqgNeGit9VsJjkezYuIz7cdbidQ+GWG1ZNMvZqKr+ON+NMMaY6cyWRfM1wBM4iQiew1njsgX4XRF5g6oeWZommvkaCsXYc7Sf3R29PHtqiERW5XG3S9jUWse29mZu29BIfQHW0DrQOcADT3TgcQk1AQ/941EeeKKDj9O+qEFehc9DTdBjoxvFTUWknulr2qWm2VaWRiNxIvEkzdV+AmVQl3Ip7Ni4zAI6A3Ai3w0wJpuVcDHZZjvD/RPg46r69eyNIvILwP8GfiGXDTPz0zsaZc/RPnZ19PFi9xBZMR0+j4sta+rZ1t7ELesbqQ4Udir1Rw524XHJRIH0zBSoRw52XXaA5/O4qPZ7qfC78VqmwVJQCzzD/IqWlzWnOHqY2qCXhkqfTUM2ZhGo6p0ish04r6qviMjtwM3Ay6r6n3lunikzVsLFTDVbgPczqvqeqRtV9d9E5M9y2CYzhzNDYXZ39LG7o5eXzo5O2hf0urm5rYFt7c3ctK6BoK94rtqfHQlTE5j8kQx4XZwbCc/wjLm5XUJDpa/gg1uzMKq6Nt9tKDbD4TihmI3mGbMYRORzwFbAIyKPAz8LfBf4LRHZoaqfyGf7THmxEi5mqtkCvPFL3Gdy4GT/OLs6+tj9ah9He8cm7asOeLh1fSPb2pvYvKahaDNArqwJ0j8enRjBA4jEU6youbTEL1UBD02Vflt/VIJE5C1Atap+c8r2u4FeVf1BflpW2OLJFGeHI9QFvdRVeG00z5hL9ybgWiAInAZWqWpIRD6Ns6zFAjyzZKyEi5lqtgBvmYj89jTbBWjOUXtMmqrS0TOWHqnr49TA5D/S+govt7c3sW1DE69tqSuJAsd3bWnhgSc6CMeTBLwuIvEUiZRy15aWBb2Ox+WyDIKl74+Bd0yz/QngUcACvBmoKoOhGKF4kuYqf9FeEDImz1RVVUQya34zU8NTgP1RmSVlJVzMVLOdAf8tUD3Dvi/loC1lL6XKS2dGJoK6cyORSfuXVfvZ1t7EtvYmrrmituTqXG1ta+DjtPPIwS7OjYRZscAsmiJOcpb6CssaWAYqVLV36kZVPScilfloULGJxp3i6A0VPmorbAqzMQv0nyKyG6c+8JeAr4vIfuB1wK68tsyUHSvhYqaaMcBT1T9eyoaUq2RKeaF7iN2v9vHU0T76x2OT9q+uD3L7hia2X9nEVcurS35K1da2hktKqBLwumms8uH32NqiMhEQEY+qJrI3iogXZ8qUmQdVpX88SiieoLnKXxIzAYxZCqr6SRG5xbmr+0VkPfBunGDvm7M/25jFZSVczFSzlUn4P0Cnqj44ZftvAStU9ZO5blypiiVSPHtqkKc6+thzrJ/hcHzS/rbmSrZtaGL7lc2sbawo+aDucnjdLuorrZZdGfoW8Lci8lFVHQdIj9z9dXqfWYBwLEn3YJjGKktIZMx8qeo+EakTkS3pTX+rqsN5bZQpW1bCxWSb7az47TgLiKd6AHgRsABvASLxJAdODLD71T72d/YzHktO2r9xRTXb2pvY3t7MqnobgJiL3+umLuil0gK7cvX7wJ8CJ0XkZHpbK/B3wB/krVVFLKVK72iUUCxJU5W/5KaAG7OYRMQHPAz8PHAcJz/BGhF5FPiwqsZmeToi8mWc86weVb3oXEucK7sPAG8DQsAHVPXZ9L470vvcwJdU9dOL9b4AekYj1AS8lm3XmCI229mxqupFBYNVNSU2pDQvY9EET3f2s6ujjwPHB4gmLvw6BfiZ1bXOmroNTSyrCeSvoUWk0u+hNmhfPOUuPTXzUyLyx8CG9OajqnrpNTUMAOPRBJG4E+TZBRRjZvT7gBdoUdVRABGpBr6Ac5FprgtNXwU+D/zDDPvfCrSnbzcBfwPcJCLu9M94E9ANHBSRnar60mW9myzxpHJmKExdhY96y7ZrTFGa7ds7JCLtqtqRvVFE2oF5nUTNdZVJRD4BvD+rLa8BmlV1YJ7tLzjDoTh7jzmFx589NUg8eaHmstslvLalju3tTdy2oYmGSl8eW1pcKv0e6iq8tsbOTJIO6H6S73aUmmRKOT8SsVIjxszsTmCrqk6kuFbVURH5DWA/cwR4qrpLRNbOcsi7gH9QVQX2p6eCrgTW4lzM6gQQkUfSxy5agJcxFIoRiiVorvbbd68xRWa2AO8+4Lsi8qfAM+ltm4HfAX5zrheez1UmVf0s8Nn08e8AfqsYg7u+sShPdfSx+2gfL3QNkboQ0+F1C1vWNrC9vYlb1jfa+pYF8nlcNFb6i6pguzGlYiySIBJL0Vjls9E8YyZLZQd3Gao6JiI63RMWaBXQlfW4O71tuu03LcLPm1YskeLMkNXONKbYzJZF87si8vM4xTr/e3rzT4FfUNX5XDHfysKuMr0P+No82513Z4fD7O7oY9erfbx0dmTSvoDXxc3rGtl+ZRM3rWu04OQSiAgNFT5qgh77QjEXmS6DpsmNRCrF+ZEIlX4PjZU+y7RpjENFpB5nxcVUFy1vuQTTva7Osv3iFxC5B7gHoLW19ZIbYrUzjSk+s16SVdWfAr9yia8976tMIlIB3AF89BJ/1pI41R9iV0cvuzr6ONozNmlfld/Dresb2dbexOY19fhtjdglEREq/W7qK3x47UTSzGy/iHQD3wO+p6on8tyekjceTRCOJam3unnGANTizG6ad8C1QN1AS9bj1cAZwDfD9osbofowTiIYNm/efNltstqZxhSPXM65WUin9w5gz0zTMxfrKtRCqSrHesfZ1dHL7o4+TvZPno1RX+Hltg1O4fEbWursyvZlcIlQHXASqNjv0cxFVTeLyBqcRASfE5FVwFPAd4Efq2o0rw0sUal03byxWIJl1X67CGPKlqquzfGP2Al8ND376SZgWFXPikgv0C4i64DTwF3A3Tluy4RM7czx9No86wOMKUy5DPBmuvo0nbuYZXrmYl+Fmk1KlSNnRyeCurPDkUn7l1X7ub3dCequvaLWUolfJrdLqA16qQ547XdpFkRVTwIPAg+mC5xvw5kJ8Kci0quqP5fXBpawaDzJ6cEwDVU+amxdsSlDIvIWoFpVvzll+91Ar6r+YI7nfw3YATSlZyP8IU5WTtL1hx/DKZFwFKdMwq+m9yVE5KPA4zgJ7L6sqocX8a3NS8T6AGMK2myFzt8HfF9V+y/xtQ8yj6tMIlILvA74xUv8OZctmVJe7B5id0cfTx3to29scvmaK+oCbG9vZlt7ExtXVNuasEXgdbuorfBS7bc1dubyqWoceCJ9Iz2iZ3IopUrfaJSw1c0z5emPcWYfTfUE8Cgwa4Cnqu+bY78CH5lh32M4AWBeZfqAUDRJU5WtzzWmkMw2grcG+Eb6yvh/4Ux9OpDudOY001UmEflwev+D6UPfjRNIjl/qm7gU8WSK504Nsaujlz1H+xkOxyftb2uq5PYNTWy7som2pkoLQhaJFSg3S0FVT+e7DeUiUzevNuilJuC1kgqmXFSoau/Ujap6TkQq89GgfAnFEnQPJmms8lmmcGMKxGxZND8NfDpduPONwK/hTIV6GSexweOqen62F5/uKlNWYJd5/FWcgp85F4knOXhikN0dvezr7Gc8mpy0/6rl1U7h8fYmWhoqlqJJZSPocxKnWIFyY0pPMqUMjMcYCsWpq/BSG7R06qbkBabL5pu+KB7MU5vyJqVK72iUUCxp2XaNKQBzDqOo6ijOdINHAUTkapzEBv8AvCWnrVsE49EE+zsH2N3Ry4HjA0QSF7IXC3DtqtqJoG55TSB/DS1RPo+LhkofFT4bsTO5IyKVSz0LwFwspU6gNxZN0FTlL8kLOk8e6eGhXZ10DYZoqa/g3u1t7Ni4LN/NMkvvW8DfishHM31PeuTur9P7ytJEtt1KH7VBG80zJl8WfNadLlT+EvCXi9+cxaGqfOOZbnY+f4anj/cTT16YVeoSuKG1nm3tTdy+oYmGSl8eW1q63C6hrsI6eJNbInIr8CWgCmgVkeuBe1X1N/LbsvIWS6Q4OxyhqcSmbD15pIdPfPMFRiMJEqkUfaNRPvHNF/jse663IK/8/D7wp8BJETmZ3tYK/B3wB3lrVQFIqdI/FmU0Ei/ZCz3GFLqSHFYREf5h3wl+etopQO51CzeuqWd7ezO3rm+kxoKOnKrye2i0pAtmafwVzkyCnQCq+oKIbM9vkww4F9p6R6NEEykaK30lMWXzM987wmAojtsleNwuVGEwFOcz3ztiAV6ZSU/N/JSI/DGwIb35qKqG89isghJLpDgzFKYq4KGhwqZtGrOUSjLAA3j3DatZUdPHLW2N3NTWYFMEl4DbJTRW+amyBCpmCalq15TgITnTsWbpjYTjxJMpllUHiv6iT2ffOC5x6nYCiICK0tlns4PLVTqg+0m+21HIxiIJQtGkrc81ZgnNViahYbYnzlSUvFB88PZ1vPP6KxiNxOc+2Fy2qoCHxkobtTNLris9TVNFxAd8DHg5z20yU4RjSc4MhWmutulaxpSjzPrc0UiChkqfZdI2Jsdm+wvrwylWnskQlX3mrkBbrhplikeFz0NdhddO2ky+fBh4AFiF0199nxlqR5n8iieddXn1FV7qKopz7fO6xgqO9o4jKXVG7xRSChuaLOtyuZkug6aZWzyZ4vxIhIDXTWOVD7/Hzh2MyYXZArz/D9gB7AG+Bjw13xp4pvRZ2QNTIERV35/vRpj50awsm/UVxXcV/1NvfQ3/85svMBZNkEypk0zK7+VTb31Nvptmlt5+EenGKRv1PVU9kef2FJVIPMnpQVufZ0yuzPgXpaofB14LfAP4JeA5Efk/IrJuidpmCpDP42JlbZCVtUEL7kwh2Csi3xeRD4pIXb4bY+YnlnCu4ncPhhiPFs8gyI6Ny/iL91zPDS31rKgJcENLPX9hGTTLkqpuBj6efvg5ETkoIn8lIm8WEX8+21ZMxiIJugfDDIVi2BiCMYtn1sun6RG7H4nIc8BdwJ8AHcDfLkHbTAFxiVBf4aMm6LEF0qZgqGq7iGzF6Z9+T0ReAh5R1X/Kc9PMPGQCPa/bRVOVn6Cv8C8a7di4zAI6A4CqngQeBB5MFzjfBtwB/KmI9Krqz+W1gUUisz5vJJygocpnidqMWQSzJVmpBN4FvBdoxincuUlVu5aobaZAVPg8NFUt3RQKKyRsFkJVDwAHROTPgP8L/D1gAV4Rcdbnhanye2iotOlapvioahx4In1DRFblt0XFJ5FK0TMSYdjrprHSloAYczlm+xbtAf4XsBenqHknsEVE7hSRO5eicSa/XCI0V/tZURtY0uDuvp2H6RmNUBf00jMa4b6dh3nySM+S/HxTXESkRkR+RUS+i9NXnQW2zuN5d4jIKyJyVEQ+Nc3+d4nIiyLyvIgcEpHbc9B8M8VY1JmuNThu07VMcVPV0/luQ7GKxp2suz0jERLJVL6bY0xRmm0c/Bs42TI3pm/ZFGdEz5SooM9Nc5V/ya+kP7SrE69bJuoWVvg8hGIJHtrVaaN4ZjovAN8G7lfVffN5goi4gS8Ab8LJvHlQRHaq6ktZh/0XsFNVVUSuA77Oxf2gyYGUKoMhJ516faWX6oA3300yxuTBWDTBeCxJbdBLXdCLy8owGTNvMwZ4qvqBJWyHKRAiQkOlj9pgfk6qugZD1E352UGvm+7BUF7aYwpe2yVk990KHFXVTgAReQRnOvpEgKeqY1nHV+Jc1DJLKJFK0TsaZTgcp6nK6ueZwiYilapqFe8XmaoyFIoxZhd8jFmQGYdnRORzWfc/PmXfV3PXpMv35JEe3vfwft75+af47X99gQOdBV2TvWD4vW5W1QXzFtwBtNRXEI4nJ20Lx5Osrrc6U+aCrP5pp4hcdJvj6auA7LXE3eltU3/Gu0XkCPCfwK8tRrvNwsUSKc4Mhekbi9p0LVNwROTWdHKnl9OPrxeRL+a5WSUnc8GnezBEZMo5gjHmYrPNv9uedf9Xpuy7LgdtWRTZa7hqAx76x6M88ESHBXmzyIzaraoL4vPkN7nBvdvbiCeVUCyBqvNvPKncu70tr+0yBecf0//+Bc4a4am32Uw3z+eiETpVfVRVNwI/j5NBePoXE7knvU7vUG9v7zyabi7FSDhO12CY/rEoyZQNqJqC8VfAW4B+AFV9gcnnT2YRZS74nB+JELcLPsbMaLY1eDLD/YKWvYYrnkwR9LoJx5M8crCLrW0N+W5ewfG6XSyr8eP3FMb0px0bl3E/zv/H7sEQqy2LppmGqj6T/vfHl/D0bqAl6/Fq4MwsP2uXiKwXkSZV7Ztm/8PAwwCbN2+2yCOHVJXhcNwplF7po8ama5kCoKpdU8oH2RBTjo1HE4RiSWoCHuorfLY+z5gpZgvwXCJSjzPKl7mf+QsqjGhgGtOt4Qp4XZwbCeepRYWrNuilodJXcHXtrM6UmS8RaQf+HLgaCGS2q+psQ74HgXYRWQecxqmhd/eU190AHEsnWdkE+EhfoTf5l0wpfaNRRiMJGip8RVE/z5SsLhG5FVAR8QEfIz1d0+RW9gWfugofNQGr02tMxmwBXi3wDBeCumez9hXsVeqW+gp6RiMTWRgBIvEUK2qCeWxVYfG6XTRXW9ICUxK+AvwhzjSp1wO/yhwzDlQ1ISIfBR7HuVj1ZVU9LCIfTu9/EPgF4JdFJA6EgfdeQjIXk2PReJKzw2EqfE79vHxPMTdl6cPAAzjreLuB7wMfyWuLykwypfSPRRkKxagNeqkNei3QM2VvtgDvdap6cslaskju3d7GfTsPE4ol8LqEcDxJIqXctaVl7ieXgZqglwabzmBKR1BV/0tEJN1f/ZGI7MYJ+makqo8Bj03Z9mDW/c8An8lFg83iC8UShGIJqgPOrAS39W9m6Yiqvj/fjTBOoDcw7pRYaazyTbrQb0y5me3T/yiwaakasliy13Cd7B9nWXWAu7a0lP36O5/HZanGTSmKiIgL6EiPyp0GCnp+75NHevibJ49xYmCclTVB658W0Wgkzng0QX2Fj5qgTdcyS2KviBwH/hX4N1UdynN7yl48meLccIRKvzOy713ier7GFIL5JlkpKpk1XL2jUUYj8Xw3J69EhPoKm7JgStZvAhU4617+BHgDF2f9LRiZLL9uF9RkZfn9OO0W5C2SlCr941FGInHqKqxulsktVW0Xka04a3l/L10y4RFV/ac8N63sZRKxlMs50JNHenhoVyddgyFaLEFd2ZstwFslIn89005V/VgO2mMWUaFlyDRmsanqwfTdMZz1dwUtk+U34HUTT1iW31yKJy8USm+s9FsiFpMzqnoAOCAifwb8X+DvAQvwCoDqhWmb9ZU+qvylOW0zc/HQ6xbqgl56RiPct/Mw94MFeWVqtk96GCfJiilCVX4PTVV+W2tnSpKIfIWZkz2pqn5wKdszX5ksv9kNtyy/uRVLpDg7HCboc9NQ6bMLXmZRiUgN8G6cEbz1OMtbts7jeXfgJGdxA19S1U9P2f8JILO2zwO8BmhW1QEROQGM4pRjSKjq5sV5N6UrnkzRMxJhxOv0A6W2XOWhXZ3EEkn6xxLEkil8bhfVAQ8P7eq0AK9MzRbg9avq3y9ZS8yiEBEaq6w+lCl535lmWyvOlM2C/ebOZPnNPrmwLL9LIxxLcjoWpsrvod7W5ZjF8wLwbeB+Vd03nyeIiBv4AvAmnMybB0Vkp6q+lDlGVT8LfDZ9/DuA31LVgayXef10dTnN7CLxJGeGwlT6nfp5pZJ599XzI4xEErgQ3CIkkkr/eIxEciTfTTN5MluAF1uyVphF4fO4WFYdKPoOy+aRm7mo6r9l7otIG/C7wHbg08Df5atdc8lk+U1pAo9LiMRTluV3iY1FE4zHkk6gV+HFY4GeuTxtl1BCZStwVFU7AUTkEeBdwEszHP8+4GuX3kQz1Xg0wXg0QVW6UHqxX/CJJ52PYGbWlgikUkosadV9ytWMn2hVvXkpG2IuT12Fj1V1wZII7u7beZie0cikeeRPHunJd9NMgRGR14jIPwH/ATwFXK2qf6OqBXtxasfGZdz/zmtYVhVwUnlX+vn4GyzBylJTVUYjcboGw/SPRUmm7CTILIyIfC59d6eIXHSb4+mrgK6sx93pbdP9nArgDuDfsjYr8H0ReUZE7rm0d2AAxiIJugfD9BV5P+DzuECdJFOKklIFpejPCc2lK83VpmWk1IqWZ5JQZOrXVPg8hGIJm0duJhGRbwCbgb8AfgtnLUpNJkvalKlMBWX7lc1UBTzUVXhxlXhWt0KnqgyH44xFEzRU+izjplmIf0z/+xeX8Nzp/vBnii7eAeyZ0qfdpqpnRGQZ8AMROaKquy76IU7wdw9Aa2vrJTSzPKgqI+E4Y5EENUEvdUFv0eUvaF9WzYn+MUbCF9bg1VR6WdtYle+mmTyxAK9IiQi1QS/1FaWV+jeThCJb0OumezCUpxaZArUF54TofwL/I70t84egQFs+GjUfPz0zzHse3EdjlY9b2xq5ZX0jm1rr7UprHiVTmi6rkyjJBAxm8anqM+l/f3wJT+8GsudlrwbOzHDsXUyZnqmqZ9L/9ohIJqnLRQGeqj4MPAywefPm4h2eWiIpVYZCMUYjceqCxVVLMzP9f0WtZyI7czyp3Lu9YL8KTY7NGuCJiEdVE+n7VcBGoHO+V8fnyhKVPmYH8DnAC/Sp6usW0P6yVMrFOzNJKDIjeADheJLV9RV5bJUpNKq6Nt9tuFQHjjvdZ/9YjP948Sz/8eJZAl4Xm9c0cNuGRm5e10hthY0k5UMmAYMlYjHzJSLtwJ8DVwOBzHZVne3M+iDQLiLrgNM4Qdzd07x2LfA64BeztlUCLlUdTd9/M3D/IrwVk5ZMObU0h8Nx6iq9RZG0bsfGZdyPMwuqezDEastfUPZmDPBE5APAX4pIP/BxnIxPx4ErReR/qeqsC37nkyVKROqALwJ3qOqp9HQDM4NAiab3zZa5ChWKJewqlClJH9rWxq3rG/n358+w91gfh8+MEImneOpoH08d7cMlcM0VNdy6volb1zfS0mAXN5ZaJhFLbZFO1zJL6ivAHwJ/Bbwepx7nrB8YVU2IyEeBx3EugH9ZVQ+LyIfT+x9MH/pu4PuqOp719OXAo+mRJQ/wL6r6vUV8PyYtkUrRNxplOBSnodJHZYHX0NuxcZkFdGaCzJT8SUR+gtNZVeOkAb5BVY+JyHLgB6p63awvLHIL8Eeq+pb0498BUNU/zzrmN4ArVPX359vgzZs366FDh+Z1rDPlJj7fly5YXrerKDqXxZLJomlXocqHiDxTCrWc5ts/ZUaKAIZCMfZ3DrCvs5+DJwaIxFOTjm2pD3Lr+kZuXd/E1VfU4LZgY0mV2jpns3Cz9U/pfTeKyE9U9WfS23ar6ralbeXsFnLudHooTDSezHGLio/f66ahwkfQZ32BKQyz9U2zRQzJdI2VPhEZU9VjAKp6fp5zkqfLEnXTlGOuBLwi8iROIPmAqv7DfF68HJTqOru52FUoU07qKnzcce0K7rh2BbFEiue6Btl7tJ+9x/rpH4/RNRjmXw9186+HuqkNerm5rYFb1zexeU29nWgsgXgyxZmhMLVBLw2VvrLqi828RETEBXSkR+VOA/YFVoKi8SRnh8NU+DzUV3rxe6z/NYVrtgDvlIj8OU7gdURE/hL4FvBG4Ow8Xns+WaI8wI3AzwJBYJ+I7FfVVye9UBlmgvJ5nKvG1oEYM73LXSNciHweFzeta+SmdY18/I1Kx/kx9hzrY++xfjp7xxkOx3n88HkeP3wer1vY1FrvrNtra6Spyp/v5pe04XCcUCxpo3lmqt8EKoCPAX8CvAH4lXw2yORWKJYgFEtQ5fdQV0LF0k1pmS3A+0XgI8Aw8CmcOiy/A5wCPjCP155PlqhunMQq48C4iOwCrgcmBXjllAlKRKgLeqkrs1E7YxbictcIFwOXCFetqOaqFdX82m3rODccYe+xPvYd6+f57mHiSeXp4wM8fXwA6OCqFdXpqZyNtDVVWv+RA5nRvLoKX9nNrDDTU9WD6btjOOvvTJkYiyYYiyao9DvF0i3QM4VkxgBPVUdwMkNlfDN9m6/5ZIn6d+DzIuIBfDhTOP9qAT+jpNionTHz9j+Aq5hhjTBT0oqXghW1Ae7ctJo7N61mLJLgwIkB9hzt48CJAcajSV45N8or50b5yp4TrKgJTAR7162uxWPZIBfVUCjGeDRho3llTES+wsy161RVP7iU7TH5Mx5NEIolqQk4gZ4lZTKFYK4yCb+Cc3X8qvSml4G/ns86uflkiVLVl0Xke8CLQAqnlMJPL/3tFCcbtTNmwS53jXBRqwp4eMPGZbxh4zISyRQvdg+zt7OfvUf7OTcS4dxIhG89d5pvPXeaSr+brWsbuG1DE1vXNlAVKI9kTbmWGc2rCXppsJO6cvSdaba14kzZtKi/zKgqw+E4Y9FE0dXQM6VptjIJv4zTUf028CzOmrpNwGdFhHkGeY8Bj03Z9uCUx58FPrvglpcIG7Uz5pJc7hrhkuFxu9i0pp5Na+r5yI71HO8bZ++xfvYc6+eVc6OMR5P86JVefvRKL26XcP3q2okSDCtqA3P/ADOrkXCccCxJU5Xfkt6UEVX9t8x9EWkDfhfYDnwa+Lt8tcvkV3YNvfpKL9VFUEPPlKbZLuX+BvBuVT2Rte0JEfkF4BHAsl1eBhu1M+ayXO4a4ZIkIrQ1V9HWXMUv3ryG/rEo+zqdjJzPnBwknlSePTXEs6eG+PyPjtLWXDkxlfPK5dW4rC+6JPFkirPDYaoDXhorbTSvXIjIa4DfA27AuVD94UziJ1PeEqkUvaNOoNdQ6aPCZzMnzNKa7RNXMyW4A0BVT4hITe6aVPps1M6Yy7MIa4TLQmOVn7dfdwVvv+4KwrEkh04OsvdYH/s7BxgOx+nsHaezd5x/2n+Kxkoft6SDvU2t9ZYw4BKMRuJE4kkaq+yErtSJyDeAzcBfAL8FJIGazAXbYs7maxZPLJHi3HDEauiZJTfbN1D4EveZGZRrXTtjcuFy1giXo6DPzbb2Jra1N5FMKS+fHWHPUacEQ9dgmP7xGN958SzfefEsAa+LzWsanBIM6xqprbBpRvMVTzondB6Xiwq/mwqfm4DHbaN6pWcLTpKV/4mT9AkulIdSoC0fjTKFKVNDL+hzU1/hs+RMJudmC/BeIyIvTrNdsI5rwXweF01VlnHNmMWwGGuEy5nbJVy7qpZrV9Vy7+vWc2ogxL5j/ew91sfhMyNE4imeOtrHU0f7cAlcc0UNt6xv4rb1jbQ0VOS7+UUhkUoxEk4xEo4jIgS9bqoCHip9brvAVwJUdW2+22CKTziWJBwLW2kFk3OzBnhL1ooSZqN2xuSErRFeRK0NFbQ2VPDeLS0Mh+LsP97PnqP9HDo5QCSe4ienR/jJ6REe3tVJS30wvW6viauvqMFtI1NzUtWJ4sgel8uSLxhT5jKlFez80OTKbAGeF1iuqnuyN4rINi4uWG6m4fe6aary2Vo7YxafrRHOkdoKL2+5ZgVvuWYFsUSKZ08NTiRq6R+L0TUY5l8PdfOvh7qpDXq5ua2BW9Y3smVNg60vmYdM8oWRSMK+H4wpY6pqNTVNzswW4H0OJ+3vVOH0vnfkoD0lwSVCfYXP1q0Ykzu2RngJ+Dwubm5r5Oa2Rn7zZ5VXz4+x51gf+471c6x3nOFwnMcPn+fxw+fxuoVNrfXOur22Rpqq/PlufkGLxpOcHnTq6NVX+Gwk1Jgy5WThjdBQ6aM2aOeNZnHMFuCtVdWL1uCp6iERWZu7JhW3Cp+HpiofHrfNq75UTx7p4aFdnXQNhmipr+De7W3s2Lgs380yhcXWCC8xEeGqFdVctaKaX7ttHedGIuw92s++Y3083z1MPKk8fXyAp48PAB1ctaJ6ogRDW1OlTUGawUg4zmgkQXXAQ13Qa98dRUREPJmyCCJSBWwEOos5g+aXdncyHktyQ0stq+qC9ne7RFSV/rEo4ZiThddr/YC5TLMFeLNVwA0udkOKnUuEhiofNbau4rI8eaSH+3Yexut26gT2jEa4b+dh7gcL8kw2WyOcZytqAty5aRV3blrFWCTBgRMD7Dnax4ETA4xHk7xybpRXzo3ylT0nWF7j59Z0kpbrVtdaEDOFqk4EerVBL3VBr2XdLHAi8gHgL0WkHyeb7xeA48CVIvK/VPVr+WzfpUillAd/fIy+sRgAK2sDbFnbwJa19dzQWmelP5ZAKJYgPJikLuil1voBcxlm+2s9KCL/r6r+bfZGEfkg8Exum1Vc/F43y6r9dsVlETy0qxOvWya+SCp8HkKxBA/t6rQAz2SzNcIFpCrg4Q0bl/GGjctIJFO82D3M3mPOur1zIxHOj0R59LnTPPrcaSr9braubeDW9U3ctK6BqoCdNGZk1uSMhONU+j1UBzy2Lqdw/Q+cEi3VwAvADap6TESWAz8Aii7AG48l2NbezJOv9DAYinN2OMLOF86w84UzuF3CNVfUsGVtPVvWNrBhWRUuG93LCVVlMBRjJBKnLuijJuixkVSzYLN9s/4m8KiIvJ8LAd1mwAe8O8ftKhp1FT7LgLSIugZD1E2Zgx70uukeDOWpRaZAfQ5bI1yQPG4Xm9bUs2lNPR95/XqO942z91g/e47188q5UcajSX70Si8/eqUXt0u4fnXtRFbOFbWzTRwpHylVRiNxRiNxqvweGqv8tkav8CRVtQ/oE5ExVT0GoKrni/V8oDrg5a/e+1q6BkO8dHqYgycGOXhigJ+eGSGZUl7sHubF7mH+7qkT1Fd4uXFNPVvXNXDjmnrqK3z5bn7JSaaU/vEow+G4Zd41CzZjgKeq54FbReT1wLXpzf+pqk8sScsKnNftsqxHOdBSX0HPaGTSVJBwPMnqequ9ZSaxNcJFQERoa66irbmKX7x5Df1j0YmMnM+cHCSeVJ49NcSzp4b4/I+O0dZcObFu78rl1TZCAIyl06lXBTxU+NwEvVZHr0CcEpE/xxnBOyIifwl8C3gjcDavLbtMLhHal1fTvryau29qZTya4PmuoYmA7+xwhMFQnB++3MMPX+4BoH1Z1cTo3jVX1Ng07EWUybw7HI7TUOmzqbJmXub8lKjqj4AfLUFbikZt0EtDpc++ZHPg3u1t3LfzMKFYgqDXTTieJJ5U7t1ueTPMJLZGuAg1Vvl5+3VX8PbrriAcT3LoxCB7j/Wxv3OA4XCczt5xOnvH+af9p2is9HFLOtjb1Fpf1gWBU+k1eiPhOB6Xi7pKr633zr9fBD4CDAOfAu4Afgc4BXwgf81afJV+D7dtaOK2DU2oKqeHwhPB3vOnhogkUnT0jNHRM8a/HOiiwufmhpY6NqfX711RZ13yYoglUpwbjhDwummo9NkAg5mVqGq+27Agmzdv1kOHDs3r2N7RKKOR+KL9bBu1WxqZLJrdgyFWWxbNsiAiz6jq5gUc/zXgiRnWCL9ZVd+72G2cj/n2T5F4kjNDVs0hI5lSXj47wp6jfezrHODUwOQp2QGvi81rGrh1fSO3tDVaCRqc76PGKruavxQW2j8VooWcO50eChONJ+d1bCyR4qdnhjl4fICDJwfp7B2/6JjV9UE2p6dzXt9SR9DOoRZF0OemvsICvXI2W99kAd48iDgZHetsrZ0xOXEJAd5y4FEgxjRrhFX13OK3cm4W4C2OroHQRJKWw2eGSWV9TbkErrmihlvWN3Hr+kZaG8p7+rad5OXeTP2TiPwKTgbNq9KbXgb+WlX/YSnbNx+5CvCm6huL8szJQQ4cH+CZk4OMRBKT9nvdwrWraieyc1oJlcuX6QP2H+u3ElNlxgK8y1Dh89BQ6Svr6UHG5NqlXiGfskb48HzXCIvIHcADgBv4kqp+esr+9wOfTD8cA35dVV+Y63UtwFt8w6E4+4/3s+doP4dODhCJpybtX10fnFi3d80VtWWbjCTgdVMd8FDh85Tt7yBXpuufROSXgd8Cfht4FqcG5ybgs8ADhRbkLVWAly2ZUjp6Rjl43JnO+dLZkUkXawAaK31sXlvP5jUNbF5Tb6Pzl+hA5wB//aMO/B4XlT7PxPKW+995jQV5JcwCvEvgdbtoqvIT9NlVUWNybSmnQImIG3gVeBPQDRwE3qeqL2UdcyvwsqoOishbgT9S1Zvmem0L8HIrlkjx7KlB9qVH9/rHY5P21wQ83LK+kVvWN7JlTUNZ9t8igs/jIuBxEfC6qfBZUpbLNUOAtx+4S1VPTNm+FnhEVW9euhbOLR8B3lRjkQTPdg1OBHw9o9FJ+wW4ckU1W9bWs3VtA69ZWWMXK+bpt//1BfrHoxNJmFwuiMaTLK8J8rV7CuqjaBbRbOdONnl/GpZExZiSthU4qqqdACLyCPAuYCLAU9W9WcfvB1YvaQvNtHweFze3NXJzWyMff6PScX6Mvcf62HOsn87ecUYiCR4/fJ7HD5/H6xY2tdY76/bWN9JU5c9385eEqhKNJ4nGkwynk7LUBr1WS2vx1UwN7gBU9YSI1Mz15HnMItgB/DtO8XSAb6nq/fN5bqGqCnjY3t7M9vZmVJVTAyEOnhjk0IkBnu8eJpZI8cq5UV45N8o/7T9Fpd/Nja31E8laltdYGZWZnB0JU5OuKaqqJJPgdgkn+scYjyao9Nvpfrmx/+NZfB5n1M7WMhhT0lYBXVmPu4HZRuc+CHx3pp0icg9wD0Bra+titM/Mg0uEq1ZUc9WKan71tnWcG4mw92g/+4718Xz3MPGk8vTxAZ4+PsBf/bCDq1ZUT0zlLKd1P4lUiv7xKCORuM1KWVyzDcHPOjyfnkXwBbJmEYjIzuxZBGm7VfXtl/jcgiYirGmsZE1jJe+5cTWxRIoXuy+UYjjRH2I8mmRXRx+7OvoAaG2omCjFcP3qWvx2rjZhZU1wYgQvIxJPsbw6yPmRCD6Py0oslBn7P43T0dRXeKkNWhIVY8rAdH/k085VT6/x+yBw+0wvpqoPAw+DMw1qMRpoFm5FTYA7N63izk2rGIsmOHh8gD3H+nn6eD/j0eTEyMBX9pxgRU1gogTD9atry6JmVzyZ4uxwmKDPTZXfQ6XPg8umv12O14jIRbU4cfqXuer6zDmLIEfPLVg+j4vNaxvYvLaBX2c9PSMRDp0c5OCJQZ45OchYNMGpgRCnBkL827On8XlcXLeqli3rnNG9NQ0VZX3+dteWFj7z+BHOj0RIphS3S6j0e/jIjg3AhRIL/sxaXa+7LPq9clb2AV7Q56apyo/XPujGlItuoCXr8WrgzNSDROQ64EvAW1W1f4naZhZBld/D6zcu4/Ubl5FIpnjx9DB7jzrr9s6NRDg3EuHR507z6HOnqfS72bq2gVvXN3HTugaqAqX9tRiOJQnHkvRJjIDXRYXXg8ctuF2Cz+2yoG/+XnMZz53vLIJbROQFnP7pf6rq4QU8t6gtqwnwtp9Zydt+ZiXJlHLk3Iizdu/kAK+cGyWWSHHo5CCHTg7yN8Cyaj+b1zjTOW9cU0d1udaJFBBh+suYMDF9G8DvdVMT8FDlt+nbpai0v8lm4RKhvtJHbbBMOwFjytdBoF1E1gGngbuAu7MPEJFW4FvAL6nqq0vfRLNYPG4Xm1rr2dRaz0dev57jfePsPdbPnmP9vHJulPFokh+90suPXunF7RKuX12bnsrZxIra0l3zo6oTwV42j8uF2y24xFnD43e7J2WR9nlclvjC4QWWq+qe7I0iso1pLhhNMZ9ZBM8Ca1R1TETeBnwbaJ/nczNtKYnp426XcM0VtVxzRS0fuG0tI+E4z54anJjO2TcWo2c0ymM/PcdjPz2HS2DjihonWcu6Bq5cXl3yn9lHDnZR5ffQnLXWOBxP8sjBLra2NUz7nGg8SW88ycB4jCq/h+qA1zLGl5CyDPBs1M6Y8qWqCRH5KPA4TpKCL6vqYRH5cHr/g8B9QCPwxfSVzUSxFzo2znT8tuYq2pqr+MWb19A/FmVfpzOy98zJQeJJ5dlTQzx7aojP/+gYbc2VE+v2rlxejasMrnInUikSWZUoxkhcdEzQ56Ym4C33xA2fA353mu3h9L53zPLcOWcRqOpI1v3HROSLItI0n+dmPa8kp4/XBL3suGoZO65ahqpyoj/EgeMDHDoxwIunnfW3L50d4aWzI/z9vpPUBDxsaq2fmM5ZigmXspOsZAS8Ls6NzJ2tOZlShsNxhsNxgj431QEvlZZ9t+iVVe/sEqGhykdNuQ7dG2MA54QJeGzKtgez7n8I+NBSt8ssrcYqP2+/7greft0VhONJDp1wSjDs6+xnOByns3eczt5x/mn/KRorfRPr9m5oqSvrBA+Zkb+A101DZdkWWV+rqhetwVPVQ+lSCbOZzyyCFcB5VVUR2Qq4gH5gaK7nlhMRYV1TJeuaKnnvlhbC8SQvdA1xKD261zUYZiSS4MlXe3ny1V4A1jVVTiRr+ZlVtSUxajVTkpUVNcEFvU7mb9vrdlFb4aXapm8WrbIJ8Cp8HpqqfLao1BhjzEWCXjfb2pvY1t5EMqW8fHaEPUf72Nc5wKmBEP3jMb7z4lm+8+JZAumEELeub+TmtgbqKnz5bn5eZOo5BrxuaoJeAh5XOX3HzjZ/d9az6nnOIngP8OsiksAZFbxLncLF0z738t9OaQh63ROlVADODUc4dHKAA8cHefbUIKFYkuN94xzvG+frh7rxe1xc31LH1nTAt7o+WJQBzV1bWnjgiQ7C8SQBr4tIPEUipdy1pWXuJ08jnkzRNxplcDxGhc9Zp2cZeItLyRc6D8USNFT6ynfBrTFFYCkLneeSFTovTV0DIfZ19rPnaD+HzwyTyvradAlcc0UNt6xv4tb1jbQ2VOSvoQXA7RI8bhcel+ASJ3mLO1142Z21zeOSojmRnqHQ+deAJ1T1b6ds/yDwZlV971K2cS6FUOg83xLJFC+dHUnX3hvklfOjFx2zoibAlrVOspZNrXVFNQ35QOcAjxzs4txImBU1Qe7a0jLj+rtL4XW7qAl4qQp4Sn5NY7GY7dyppAO8sWii3K4oGlOULMAzxWI4FOfp406SloMnBojEU5P2t9QHJ5K0XH1FjZ0IzUBE8HlcBDwuKnweAl5XwQZ8MwR4y4FHgRjwTHrzZsAHvFtVzy1tK2dnAd7FhkIxnjl5IVnLYCg+ab/bJVy9smZiOmf78qqyWIc7FxGh0u+swy3T6dkFo2wDPFOcnjzSw0O7OukaDNFSX8G929vYsXFZvptlcsgCPFOMYokUz55y1u3tPdZP/3hs0v7aoJeb2xq4ZX0jW9Y02BSnOWQHeDJpu7OGXsQZRXC7nODQ53YtSWmHWU+inFqZ16YfHlbVJ3LamEs0n74p8917vH+MFdWLPwJUyFKqdPaOc/DEAAdPDPLT08MkUpPPj2uDXjavqZ8Y4WuoLM+p2dkCXje1wbJPuJQ3eQvwROQO4AGceeJfUtVPT9m/A/h34Hh607dU9f7ZXtMCvNL25JEe7tt5GK9bCHrdhONJ4knl/ndeY0FeCbMAzxS7lCod58fYd6yfPcf6ONY7Pmm/1y1saq3n1vWN3LK+sSQz+eVLZtqnKz0d1O0SvO7Mvy5ccqHsw6WMEpZC/zRX35T93esWIRxPkkgpH39De9kEedlCsQTPdw1N1N47MxS56JgNzVVsWeeM7l1zRU1ZZ2b3uFzUBJ1SCzZrYenM1jflLOQWETfwBeBNOGl9D4rITlV9acqhu1X17blqhykuD+3qxOsWKnzOR7PC5yEUS/DQrk4L8IwxBcslwlUrqrlqRTUfuG0t50Yi7D3az75jfTzf7aRuf/r4AE8fH+CvftjBVcuruXWDk5WzramyYKcnFoOUKqmkwjxmFbpEqAl6bfRliuzv3lgiNXGBdbY6aqWswufh1vVN3Lq+CYDTg+GJZC3PdQ0Siac42jvG0d4xvnagi6DXzWtb6pzpnOsaWFW3sOyVxS6RSjEwHmMwFKfS74zq+T02YyGfcjmmuhU4qqqdACLyCPAuYGqAZ8yErsEQdVOKzwe9broHQ3lqkTHGLNyKmgB3blrFnZtWMRZNcPD4AHuP9bP/eD/j0SSvnB/llfOjfGXPCZbX+NMnk41ct7q2rEcCci2lSjJVXEtTlsJ0373zraNWDlbVB1lVv4p3vXYV8WSKw2dG0rX3BjnaO0Y4nmRfp1NiBeCKugBb1jp1925oqS+b6dmqylgkwVgkQYXPQ23QWzbvvdDkMsBbBXRlPe4GbprmuFtE5AWcQp3/09L9lreW+gp6RiMTI3gA4XiS1fXlnZnOGFMYMpnqzo6EWTnPTHVVfg+v37iM129cRiKZ4sXTw+w96qzbOzcS4fxIlEefO82jz52m0u9m69oGbl3fxE3rGqgK2NqWxXSgc4BvPNPN+dGIrfHOMt1376XUUSsHXreL17bU8dqWOu7ZDgPjMQ6l1+4dOjnIcDjOmaEI//78Gf79+TN4XMK1q2onkrWsby6PEftQLEEolsCfWadnxdOXVC6/Oab7vzj1stmzwBpVHRORtwHfBtoveiGRe4B7AFpbWxe5maaQ3Lu9jft2HiYUS0xag3fv9rZ8N80YU+YOdA7wmcePMB5NkEwpg+MxPvP4OJ98y8Z5T2PzuF1saq1nU2s9H3n9ejr7xieStBw5N8p4NMmPXunlR6/04nYJ16+uncjKuaJ2ttJrZi4HOgd44IkOfB4XdUEvPaMR7tt5mPuh7IO87O/e7DV4l1pHrZw0VPp48zUrePM1KybW4maStRw+4yRreb5riOe7hvjb3cdpqPRNJGu5cU19ydfRjMaT9MSTE+v0qvwey26/BHKWZEVEbgH+SFXfkn78OwCq+uezPOcEsFlV+2Y6xpKslL5MJq/uwRCr7QprWSiFJAZgSVZK3Yf+/hAn+8dxuZyMjqqQSilrGiv50q9c/se3fyzKvs4B9h7r45mTg8STk7+f25oqJ9btXbm82lK2L9Bv/+sL9I9HqfR7JqbBhmIJllUH+No9N8/4vFLonxaSRfNE/xjLyyyLZq6MRRM8d2ooHfANcH4kOmm/AO3Lq9iytoGtaxvKprSK3+um0ucm6HPbWr3LkJckK8BBoF1E1gGngbuAu6c0bAVwXlVVRLYCLqA/h20yRWDHxmUW0BljCk7XYAhXOmU/OOn7EaVrkdYIN1b5eft1K3n7dSsJx5McOuGUYNjX2c9wOE5n3zidfeP80/5TNFb6uGW9E+xtaq3H57Er4nM5OxKmZsqUV1vjfUHmu7dc6uAthSq/h23tTWxrb0JV6RoMT0znfL5riGgixavnx3j1/Bj//PQpKn1ubmitZ+s6pxTDiprSHLWPxpPOZ2zcycBZ6XdT6fdYXb1FlLMAT1UTIvJR4HGcMglfVtXDIvLh9P4HgfcAvy4iCSAM3KXFVpjPGGOMWWRBr3vixDCZUl4+O8Keo33s6xzg1ECI/vEY33nxLN958SwBj4vNaxu4dX0jN7c1lPyUr0u1siaYHsG7EAzbGm+zVESE1oYKWhsquHPTamKJFD85Pewkazk5yPG+ccZjSZ462sdTR52JbC31QbasbWDz2npe21JXkgFQIpViOJxiOBzH7XJKZAV9bip8nrIYzcyVnK7eVtXHgMembHsw6/7ngc/nsg3GGGPMYmipC3JyIAQpvTBFU2FNfW4TUbjTSRquXVXLva9bT9dAiL3pdXuHzwwTSaQmTgoFuOaKGm7d4GTlbG2w4CXjri0tPPBEB+F4Eo9LbI23ySufx8WNa5x1eAC9o9GJ0b1nTg0yGknQNRima/A033ruNF63cN3quolkLWsbK0ouaUkypYxFE4xFE0AUv9dNRTrgK8XgNpdyWug8F2wNnjGlpxTWuICtwSt1E0lWYglSKcXlEip9ngUlWVlsw6E4Tx/vZ8+xfg6eGCAST03a31IfnEjSUi7re2aTyaLZMxqZ9xrvUuifFnLuZFM08y+ZUl45NzqRrOXIuRGmVvdoqvJNlGLY1FpPzZQyF6XG43IR9Lmp9LsJei0jJ8zeN1mAZ4zJu1I4gQIL8MpBpkzCuZEwK+ZZJmGpxBIpnj01yL5OZ3Svfyw2aX9NwMMt6xu5ZX0jW9Y0lG19quqAl+Zq/7yPL4X+yQK84jYaifPsqSEOHncCvt6xyclaXAJXraieCPg2rijtizkuEQJeJ9Dze11lO7pnAZ4xpqCVwgkUWIBnCkdKlVfPj7LvmDO619k7Pmm/1y3c0FrPbemAr6lq/gFPsbMAb3YW4BU2VeXkQGgi2Huhe+iijLtVfg83pksxbFnbsKDPezFyieD3uvC5Xfg86ZvbVfKjfPnKommMMcaYPHCJsHFFDRtX1PCrt63j3EiEvUedjJzPdzknhAeOD3Dg+AB/9cMOrlpePVGCoa2pPAoxG1OMRIS1jZWsbazk/9ncQiSe5MXuYQ6eGODQiUFODoQYiyb48au9/PjVXgDWNlZMJGu5fnVdyWXdTakSjiUJM/nChMflwuMWfB4Xfo8Lv8ddcu99JhbgGWOMMSVuRU2AOzet4s5NqxiLJjh4fIC9x/rZf7yf8WiSV86P8sr5Ub6y5wTLa/zcur6J29Y3ct3q2pIqSpxZg3d+NEKL1Vk1JSDgdbN1XQNb1zlTxc+PRDh4YpBDJwZ45uQg47EkJ/pDnOgP8Y1nuvF7XFy/upbN6dp7LQ3Bkr2gk0ilSKScWTMZbpdMBHqZwM9bQn1chk3RNMbkXSlMgQKbommKTyKZ4sXTw+w96qzbOzcSmbS/0u9m69oGbl3fxE3rGqgKFO914QOdAzzwRAc+j4tqv2cii+b977xm1iCvFPonm6JZnhLJFC+fHeXgSWc656vnRpl61r+8xj8xureptZ4qf/H+jV8qt8sZ5XOJTNz3uV14XM7jQg2AbYqmMcYYYy7icbvY1Oqc2H3k9evp7BufKK7+8tlRxqNJfvRKLz96pRe3S7hudW06K2cjK2tzWx5isT1ysAtPus6WiFDh8xCKJXhoV6eN4pmS5HG7+JnVtfzM6lp+7bZ1DIfiPHNqcCI758B4jPMj0Ymami6Bq1fWsGWdk6zlyuXVuAo0uFlMyZQzxXMmbpfgEnGme7pdeNMjf4W8zs8CPGOMMcYgIqxvrmJ9cxW/ePMa+sei7OscYO+xPp45OUg8qTx3aojnTg3xhR8do62pklvWN3LbhsaiOBE8OxKmZsoIZNDrpnswlKcWGbO0aiu8vGHjMt6wcRmqSmffuJOs5eQgP+keJpFSfnpmhJ+eGeEre05QE8gka3ECvsYySsaULZlSkijxJJPW+YkIHpfgcgletzP1058O/vId+FmAZ4wxxpiLNFb5eft1K3n7dSsJx5McOjE4Mbo3HI7T2TdOZ984//z0KRorfdySHtm7oaUOfwGmLV9ZE6R/PEql/8J6m3A8yep6KwZvyk/2BZ27trYSjiV5vmvISdZycpDuwTAjkcTECD7A+ubKiemc115RWzYJS2aiqk4G0yRE4zBGAnB+txcSuzhr/HxuF64lLF1hAZ4xxiwxJ6Wzm1RKSaaUVHottIjgFkGEiRpGmfUSma+FlCqpFCRVKbY11KZ4Bb1utrU3sa29iWRKefnsCHuP9bPnaB9dg2H6x2MT07wCHhc3rq3ntvVN3NzWQF2FL9/NB+CuLS088EQH4XgSj0sm1uDdu70t300zJu+CPvdEnUyAM0PhiWQtz54aIhxPcqx3nGO94zxysIuA18VrW+omRvdW1ZVuspaFUlWi8eRFa1ndLsHrdqVvzn23yxkFXOxkVpZkxRiTd6WQxAAur39S1QV/OSaSqXSg50whSaQDxkQqRTLlbJ94/ayfo5oOFBULEs1l6xoIsfeYk6Tl8JlhUlkfKQGuuaLGWbe3oYnWhvyOlmWyaPaMRlg9zyyapdA/WZIVczniyRQvnRnhQHrt3tGesYuOWVkbmAj2bmito8JnY0gL5XG5aG2cfx9phc6NMQWtFE6goHj7p1R6FDGVDvwuBIAXgsDMSbtbBJfrwqLzSa8zJXgk63V0yv7sf1VBL8rtlv26FogWi+FQnKePO8XVD54YIBJPTdq/uj7IresbuW19E1dfUTMxUr2UrND57CzAM3MZGI/xzMnBidp7Q+H4pP0el3DNFTUTAd/6ZVUFv0a3ULQ1V837WMuiaYwxZkYul+Ci8L98M4FoMitAdKa4XtgHzlTXzL5ESiftAwsYc6m2wsubr1nBm69ZQSyR4rmuQacEQ2c//WMxugfDfP1QN18/1E1t0MvNbQ3csr6RLWsaCPoKb92eMeZiDZU+3nT1ct509XJSqhztGePQiUEOnBjg8JkREinlhe5hXuge5ktPHae+wjuRrGXz2nrqC2TadimzAM8YY0xRyASii/HFlRmVzKyBTKSUZFInjVxOjD6qM8U1e6TTAsS5+TwublrXyE3rGvlNVV49P8beY33sOdZPZ+84w+E4jx8+z+OHz+N1Cze01k+UYGgq8Wx9InIH8ADgBr6kqp+esv/9wCfTD8eAX1fVF9L7TgCjQBJIFPvooiluLhGuXF7NlcurufumVsajCZ7vGuJAenTv7HCEwVCcH77cww9f7gGgfVkVW9bWs2VdA9esrFn09WfGAjxjjDFlyElowyVPEdQpQWAm8U0imV7/mD4ukVRiiRSJVGrW1yt1IsJVK6q5akU1v3rbOs6NRNh71MnI+ULXEPGkcuD4AAeOD/C5H3Zw1fLq9Lq9RtqaKksqeYOIuIEvAG8CuoGDIrJTVV/KOuw48DpVHRSRtwIPAzdl7X+9qvYtWaONmadKv4fbNjRx24YmVJXTQ2EOHB/k0MkBnj81RCSRoqNnjI6eMf7lQBcVPjc3tF5I1lJs9TULlQV4xhhjzAJNBIjznNqaSjlTS5MpJZZMEUukiCdTJJLO6GG5jQiuqAlw56ZV3LlpFWPRBAePD7D3WD9PHx9gLJrglfOjvHJ+lK/sPcHyGj+3rm/i1vWNXL+6thSu9m8FjqpqJ4CIPAK8C5gI8FR1b9bx+4HVS9pCYxaBiLC6voLV9RXcuWkVsUSKn54Znqi919k7TiiWZM/RfvYc7QecdbqZYO/6ljqCBVhypRhYgGeMMcbM05NHenhoVyddgyFa5pmFES5ML/W6ITDNCUtqShbUTOCXTKkTCJZwEFjl9/D6jct4/cZlJJIpXjw97KzbO9bPuZEI50eiPPrcaR597jSVfjdb1zZw6/omblrXQFWgKE9jVgFdWY+7mTw6N9UHge9mPVbg+yKiwEOq+vDiN9GYxefzuNjUWs+m1nruBfrGohw64SRreebkICORBN2DYboHnb93r1v4mVW1bF7bwNa19awrsdH8XCrKntEYY4xZak8e6eG+nYfxuoW6oJee0Qj37TzM/TCvIG82Lpfgm5guOv0V68yoXzwzAphS4onUpAQyxc7jvnAC+JHXr+d43/hECYYj50YZjyYnCi+7XcJ1q2sn1u0V0dSu6c5Qp/2fKCKvxwnwbs/afJuqnhGRZcAPROSIqu6a5rn3APcAtLa2zrtxlT43vvQoaSZZUeYGk6c125pUczmaqvzcce0K7rh2BcmU8ur50YmA76WzI8STyrOnhnj21BAP74LGKh+b08lablxTT23Qm++3ULAswDPGGGPm4aFdnXjdMlHfqcLnIRRL8NCuzssO8ObD53Hh81w8PTGaSBKOJYnEU0QTyYkT8WInIrQ1V9HWXMUv3ryG/rEo+zoH2Husj2dPDTlZOk8N8dypIb7wo2O0NVVySzrYu2pFdSGnZe8GWrIerwbOTD1IRK4DvgS8VVX7M9tV9Uz63x4ReRRnyudFAV56ZO9hcMokzLdxl1qYPpOwaNK/6bWpmbWqkxs4+e5EcqOsZEZZ7+WS2mSKh9slvGZlDa9ZWcMv3bKGsUiCZ08NcjAd8PWMRukfi00kZhLgqhXVTrKWtQ28ZmV+yq4UKgvwjDFlZx4Z7DYCXwE2Ab+nqn+x9K00haZrMETdlCvGQa+b7sFQnlrk8Hvc+D0XRv3iyRTheJJIPEkkVjoJXhqr/Lz9upW8/bqVhONJnjkxyN5j/ezv7GcoHKezb5zOvnH++elTNFb6JoK9Ta310wbGeXQQaBeRdcBp4C7g7uwDRKQV+BbwS6r6atb2SsClqqPp+28G7l+yls/C7RLc6WnIuZDKSl6k6dqa2TU0MzHg1G3ZSZAyz5t6HHohyMyMVqb0ws8yS68q4GH7lc1sv7IZVeXUQIgDJwY5dGKAF7qHiSVSHDk3ypFzo/zj/lNU+t1OKYY1zvq9ZTWBfL+FvLIAzxhTVuaZwW4A+Bjw80vfQlOoWuor6BmNTIzgAYTjSVbXV+SxVRfzul143S5qAk4wGk04gV44niQcT5bECWvQ6+b29iZub28imVJePjvC3mP97DnaR9dgmP7xGN958SzfefEsAa+LzWucenu3tDVQHcjvtC5VTYjIR4HHcS4yfVlVD4vIh9P7HwTuAxqBL6bXHGXKISwHHk1v8wD/oqrfy8PbWHKuSaMzSztSk/mbyZRMmXjMhUAx82c1dfQxmbW2NpnSsk2sdDlEhDWNlaxprOT/uXE10XiSF08Pc/DEAAdPDHKyP8R4NMmuV/vY9aqTXHZNQwVb1jmje9etqsVf4MlaDnQO8MjBLvrGowta3z0TKbYP2ObNm/XQoUOzHnOpi+CNMfkhIs8sVS0nEbkF+CNVfUv68e8AqOqfT3PsHwFj8x3Bm0//ZIpX9hq8oNdNOJ4knlTuf+c1RfMdo6pE4inGYwlC0WTJjO5l6xoIsfeYU4Lhp6eHJ51sC3Dd6lreft0VfGjbunklbFjK/ilXrG8qPKmUEk8nVEqqU4czkU6qFE+XW1mIf9x7gq8/0004niTodfPfblzNL926NjeNLzA9IxFnKudJJ1nLeDQ5ab/P4+L61ReStbQ2VBRUspYDnQM88EQHHpdQG/TO+7tltr6p5EbwcrkI3hhTEhaawc4YwPkOeU/3EF966jjjsSSVPjcfun1dUX23iAhBn5ugzw1VEIkniSYuJG6JlUDSlpaGCt7bUMF7t7QwHIrz9IkB9h7t48CJASLxFC90D/PyuVGeONJjF4BN3rhcgt/lxj/DmbiqEk+ms+qmnAAwM4U0lkwRT14YBfzHvSf4+/0ncQm4Xc6o/d/vPwlQFkHespoAP3fdSn7uupUTI/qH0gHfkbOjxBKp9Fq+Qf4GWFbtZ3N67d6NrfV5z8b7yMEuPC7nwqGILMr67pIL8PK9CN4YU/DmncFuXi92iZnqTPF58kgP33z2NM3VflrTI3jffPY0162uK9rvl4DXfVHZhnAsyWgkznis+Kdz1lZ4efPVy3nz1cvZ09HH//3hq8STSm3QYxeATUETEXwewcfM60cT6RIq33y2G5eAx5U+ViCRSvGNZ7v5ldvWFf1Fm4Vwu4RrV9Vy7apaPnDbWobDcZ49OTgxwtc/FqNnNMpjPznHYz85h0vgNStrJpK1XLm8esmTtZwdCVMzJci83PXdJRfgFeoieDN/NsXW5Ni8MtjN16VmqjPFp1wuIGZG+BLJFMPhOKORREmcIP7bs6ep8nuo9HvwpssAlOL/P1M+PG4XHjeE4ik8Lpk07dDtEsLxFGsaK4jEU8RTqXSGUmd0MKVMjNyXwt/3TGqD3ok6m6rK8b7xicycPzk9TDypHD4zwuEzI3x170lqAh5uXFPP5nSx9aYqf87buLImSPfgOOOxJImU4nO7qA54WNdUdcmvWXIBXrEsgjfTsym2ZgnMmcHOmOl0DYZwC3T2jhFLpvC5XTRV+Ur2AqLH7aKxyk99hY/RaIKRcJx4snjX7OXiKrkxhaDS58woyB54SqmzfWJa9gz1NcEJ9KKJ1MSIYHbtw1KqdZhdeuW9W1oIx5O80DU0EfB1D4YZiSQmam0CtDVVTozuXbuqNicZeW9oqeXF00PpKbZCLJmidyzG3VsbLvk1Sy7Au3d7G/ftPEwolpi0CP7e7W35bpqZh3K5Qm7yZz4Z7ERkBXAIqAFSIvKbwNWqOpKvdpv8q/K5Odo7jlsEtwiJpHJ6KMKG5sp8Ny2nXOmF/7VBL4n0iWA04WTljMaTc79AgVhZE6R/PEql/8IJml0ANqXgQ7ev44EnjpJIpXCJE9yl1Nk+H5nMu7OJJ52EMJnEMKWQFTTodXNzWyM3tzUCcG44woETAxw8McBzp4YIxZIT5Vf+9VA3AY+L61vqJgK+1fXBRUnW8lzXMI2VXsaiF0bwaoIe9nUO8LFLfM2SC/B2bFzG/TiBQvdgiNU2xa+o2BRbsxRU9THgsSnbHsy6fw5n6qYxEya+yIULKzmVgsrGlmvOlDAXlelZS5lpnCORRMGf4N21pYXPPH6EnpEISVU8Lmca1B/83NX5bpoxl+Vjb7wS4KIEUJnti8EJAplxJDCRTBHLStaUSd5UTFbUBnjn9VfwzuuvIJFM8dLZkYnRvVfPjxFJpHj6+ABPHx8AjrGiJjAR7N3QWkflTBlz5nB2JExdhY/6Cpko56CqhbsGb65iwlnHbQH2A+9V1W9e7s/dsXGZBXRFyqbYGmMK1Wg0waq6AH1jsYkpmitq/IxFE/luWt5kpnHWVfgYCccZicQXnN59yQmI859Lz65kTIH52BuvXNSAbqEyF38qfBe2JVNKKJYgHE8SS0zO/FnoPG4X162u47rVdXzw9nUMhmI8k07WcujEAIOhOOdGIvzHi2f5jxfP4nYJ11xxIVnLhmVVuOZ58S8zuyCYlfDqcs99cxbgzbOYcOa4z+BMlzJlzqbYGmMKVUt9Bcf7xiZtiyZSl7UQvlS4XUJ9pY+6Ci8j4QRD4VjBBXqPHOyiyu9heU3AkqyYklOICercLqE64KU6cGFmVjSRTK/3u1AAPhJPFXzgV1/h442vWc4bX7OclCrHesacYO/kAD89PUIipbzYPcyL3cP83VMnqAt62bzWSdayeU09DZW+GV/7ri0tPPBEB+F4Ep/HtSjnvrkcwdsKHFXVTgAReQR4F/DSlOP+O/BvwJYctsUUCZtia4wpVLe0NfD08f6JwtnxZJJwPMndW608RoaIUFvhpSboYSzqXLmPxFIFUVDdkqyYUlVMCer8Hjd+z+RpnqmUEo47/WkkHdwUcsDnEqF9eTXty6u5+6ZWQrEEz50a4tCJQQ6cGODscIShcJwfvtzDD1/uAWBDcxVb1jmje9dcUTNpzePWtgY+TjuPHOyifzy6KOe+uQzw5iwmLCKrgHcDb8ACPJNmU2yNMYXouz89x9RzDlVnez6nRhUikclX7kOxBGORRF5r61mSFVOqij1BncslVKZLmGRkEjqNxxKEosmCLuVQ4fNw24YmbtvQBMDpwTAHTwxw8MQgz3UNEomnONo7xtHeMb52oIug180NrU6yls1rG1hVF2RrWwNb2xpoa16cGSG5DPDmU0z4c8AnVTU52yJ1KyRsjDEm3472jKGkv9wEUOdL7WjP2KzPM84JUIXPQzKljEbiDIeXfq3eRJKV0QgpdaaPVfktyYopfqVYwuVCQicPWuWM8I1Hk4xHC78u56r6IKvqV/HzN6wilkhx+MzwRLKWY73jhONJ9h7rZ++xfuf4uiCb19azdW0Dy2sCl5ysJVsuA7z5FBPeDDySDu6agLeJSEJVv519kBUSNsYYk2+J9EmFTvxn8nYzN7dLqKvwUR3w0j8eZSyShwQ1mZpeKtNeiTam2FT7PbxybhQVZ1ZBIpWkayDMVSuq8920RSEiExeJGit9jEYSjESKoy6nz+PihtZ6bmit557tbfSPRTmUlaxlJJLg9FCY08+H+ffnz/B73/4p16ys4RNvuapgp2jOWUxYVScKdIjIV4HvTA3ujDHGmEIgOn3WRbH4bsHcLmFZdYDaYJLRSILxaCLnI3qWZMWUqtFwjBRMdFCa7qtGw7E8tio3XC5nnW9thZdQLMFIOEEoVjyZjBur/LzlmhW85ZoVpFTpOD/Gt549zY9e6SGR7gOP9ozyiW++wGffc/0l902LX449TVUTQKaY8MvA1zPFhDMFhY0xxphi4fdO/5U503YzN7/HTVOVn5b6ikmZ9nLh7EiYwJT/V5ZkxZSCc6PRBW0vFRU+DytqA7Q2VNBQ6ZuzWHuhcYlw1YpqjvWOoap4XOB1C4gwGIrzme8dueTXzmkdvLmKCU/Z/oFctsUYY4y5HJV+D+H4xVfEF2O9RLlzuYTmaj/VAQ99Y1FiicWfemVJVkypmmmmYhHMYFwUHreLugofdRU+IulMnJF4inA8f0mdFqJrMIRLwOVyTdTOU1E6+8Yv+TXtW8kYY4yZh6ZKH4PjMVLp6U8CuMTZbhZHwOtmVV2QkXCCgVBsUU/OLMmKKVUz/ZUUfmiz+AJeN4F0wfBUSgnFk4SiCUKxws7EmUwxUU5GxPl+8bgvfZWwBXjGGGPMPIgIIoLPLUg6mUEypcyWBdosXKaWXoXfTf9YbFHX18STKaIJ5yQvkVT8njIZ4jCmDLnSF3Gq/B5UlfFYkoGxWEHU5czWEPRwfiw+8TgTh66svPRp68U1WdUYY4zJk9FoglV1ATwuIZlSPC5hVV2AsWjxLPAvJl63ixW1AZbVBPC4Lv905eHdnYRjSXxuIeB14fO4GI8mL2udizGmOIg4wd7q+iC1QW9BXZiLJacfWYxcxlR1G8Ezxhhj5qGlvoKe0cikQrShWIJl1YE8tqr0Vfk9VHjd9I/HGP3/27vfGLmq847j32dmZ3ZnvWvvru0F/1kSFpwaQ2VAjkNUZKwUBZuqsWhNY16UQBXZIBD0RVBpJYhkXjRWUSraRLEtSirUFqpCU6zW4KYtrhtUR4DB1A6m2ToBb3BiG6//7q7339MX9649HnY9d2d3Zu+9/n2k0c7ce+6dc+bcfTRnzrnn9A+WP2Ac5+9zMcMIe2EneZ+LSJzFpwkTH5mMMbupnuaGHMfPTu0IgUr19I2dh096K4936sETERGJYMOKTgaHnd6BIdyDv4PDzoYVndOdtdQbnYRlfkuBfJ2+uoiM2nngCOPdqrWwtVDbzCRIvi5zfgbO2U315+/bm24WTKIJXBiqWQn14ImIiESwcnE7G4Etuw7S3dPLwtZGNqzo1BpqNTQ6CcvJvkF6egcnNAlLR0uBD4/3YiNOJhN8eRpxuHaOZtGEoKGwZddBDvX00qFrOzG27DrI3OZ6jpw+R/FSklmDp9bcMH0ZS4i6bIZZhQyzCjnODQ1zsm+QM/217dVrqMucH45ZHNIaJ9HoVANPREQkopWL2/Wld5qZGS2NeWbU101oEpb1K65h044D9A4MMexONmO01Od4fPV1Vc5x/O08cIRH//4dTvUN4cAvevr4yeGTPPPVm3S9x9yhnl7mNNUzPOJ8Es7ymzFozGdUdxNUX5elvTlLa+MIJ3oHOXNuqCbLLNx67Wz+7cDRT22/4/rK60/jHERERCRxJjoJy/LONv7ojsXcML+FK2c2cFNHK0+vXaovwcATr+zjZHgf0Ohov5N9Qzzxyr7py5RE0tHayLEz5zjRN0guk6GhLkM2YwwMBw13mbhcNsPc5vpg+OaM+qovoH7szCAzG7Ln//cyBq2Ndfzy1KfXXY0qlT14GmYgIiJyeZjIJCzLO9v4zSVXMLe5vka5G5uZrQKeAbLAs+7+rZL9Fu6/E+gF7nP3PVGOrUR3T1/4xkUbvWi7xNaGFZ1s+Ju3AbBw6LFhtM3IsWXXQX3/nYRsJliyZVZjjr6BYU71D3K2CrMmHz7VxxUzG7hyplEfDst0d7p7eis+Z+p68HYeOMKT2/Zz5HQ/LYUcR0738+S2/foVQ0REJKWKJ2Gp9q/tk2VmWeC7wGpgCXCPmZWutr4aWBQ+1gPfm8CxE6aFspNr5eJ2mhvqyBUt3zK/pYHZM+on1UCQixXyWa6Y2UBHWyMtjfkpWbpl1LyZBfoHL14SoW9wmIWtld8fHO8oWIEtuw6SyxqN+TrMgr+5rLFl18HpzpqIiIhUUUMuy8LWAm0z8rFa56rEcqDL3Q+6+wDwIrCmJM0a4HkP7AZazGxexGMnrJALvg66X3gUb5d4W9TezLyWAouvnEnn3CaaG3KTbiDI2HLZDG0z8nS0FbhiZsOUzL657vMdDI04fYPDUzZDc+r+cw/19FIo+bALuax+xRARkUnZeeAI92zdza2b/oN7tu7WyJCYGp2EZUF8l1RYABwqet0dbouSJsqxE/bgbddgXBihOfr8wduumeyppQa0hEvtmRkz6uuY31JgfkuBQr7yht7yzjYe/dIiZs+o52TfIO3NDWz8yvWTGl6bunvwRheibcxfKJp+xRARkckYHf6fy9pFw/83gu5xial8XYYFLQVO9A5yom9iSypU2Vhdi6WZGy9NlGODE5itJxjeyVVXXXXJDD1y++cAePZHP+PswDAz8lm+fuvV57dLvGkJl+nVkMsyb1aBvoFhTvQN0DcwPOFzLO9sY3lnG51zm6YkT6lr4G1Y0cmT2/bTOzBEIZelb3BYv2KISGxoEqhkKh7+D9CYr6N3YEiTGMScmdE6I08hn+Xo6XO88dNj/MPb3fzqdP90/v91Ax1FrxcCH0dMk49wLADuvhXYCrBs2bKyrdtHbv+cGnQJpiVcpl8hn6WQLzAwNMKp/kFO99dmmYWxxHLswmSsXNzOxq9cT3tzw5R1c4qITIWdB47w2Et7eeejHn55so93PurhsZf2aqhfAmj4f7I15LJ0/eo033m9i0/OnpvuSdjeBBaZ2dVmlgfWAdtK0mwD7rXALcBJdz8c8VgRmUb5ugxzmoJlFlob82Qztb8fOHU9eKBfMUQknja9doDj4UK0DgyPjDB4doBNrx1QzIo5Df9Pvq3/9TPqc5lp74V19yEzexjYQbDUwXPuvt/MHgj3bwa2EyyR0EWwTML9lzq2ZpkXkciymWAEQUtjjrMDw5zqG6R/cOLDNyuRygaeJJuGsEladR05w7CHExgY4DDswXaJt9Hh/0dP93O6f4hzQyNkM8aapfOnO2sS0aGeXloKuYu2TVcvrLtvJ2jEFW/bXPTcgYeiHisi8WVmNNXX0VRfd3745pn+IUaqOHwzdUM0Jdm0jqGk2dBoMC+eqq54u8TWysXtrL15AT29g/QPDZPPBgsJv7TnF4pPCdHR2khfya/n6oUVkVoqHr45u6m+aut2qoEnsaJ1DCXNsmGDrnStqWxsl+uSYv998DgLWwssmTeLa9qbmdPUoPiUIJpKXkTiIpMxZhVydLQ1Mre5nvopWE/vovNP6dlEJkkTGUiaXTu3iQwXd+Blwu0Sf4pPyaZJ2EQkjpobciwI19ObKroHT2JFExlImj2++jq+8dJezpwbYnjEyWaCcfmPr75uurMmESg+JZ8mYRORuGqYwl489eBJrGgIjaTZysXtPL12KTd1tHLlzAZu6mjl6bVL9YUzIRSfREQkCdSDJ7GycnE7Gwnuxevu6WWhZtGUlFEPQnIpPomISBKogSexoy/AUm1mtgp4hmAdqWfd/Vsl+y3cfyfBGlT3ufuemmdUYkfxSURE4k5DNEXksmJmWeC7wGpgCXCPmS0pSbYaWBQ+1gPfq2kmRURERCqkBp6IXG6WA13uftDdB4AXgTUladYAz3tgN9BiZvNqnVERERGRiVIDT0QuNwuAQ0Wvu8NtE00jIiIiEjtq4InI5WasZcW9gjRBQrP1ZvaWmb119OjRSWdOREREZDKq2sAzs1Vm9oGZdZnZ42PsX2Nm75nZu+EXpFurmR8REYLeuI6i1wuBjytIA4C7b3X3Ze6+bO7cuVOaUREREZGJqloDL+JEBv8OLHX3G4E/AJ6tVn5EREJvAovM7GozywPrgG0labYB91rgFuCkux+udUZFREREJqqayyScn8gAwMxGJzL4yWgCdz9TlH4G4wyBEhGZKu4+ZGYPAzsIlkl4zt33m9kD4f7NwHaCJRK6CJZJuH+68isiIiIyEdVs4I01ScEXShOZ2V3AnwLtwG9VMT8iIgC4+3aCRlzxts1Fzx14qNb5EhEREZmsajbwIk1S4O4/AH5gZiuAp4DbP3Uis/UEa1EBnDGzDyLmYQ5wLGLaJFL5kk3lu+Az1cxIrbz99tvHzOzDiMlV/8mm8iXbZRWfFJsuovIlm8p3wbixqZoNvMiTFAC4+y4zu8bM5rj7sZJ9W4GtE82Amb3l7ssmelxSqHzJpvKlj7tHnmUl7Z+PypdsKl+6KDZdoPIlm8oXTTVn0Sw7kYGZXWtmFj6/GcgDn1QxTyIiIiIiIqlVtR68iBMZ/C7BTHWDQB/w1fDeFxEREREREZmgag7RjDKRwSZgUxWzMOFhnQmj8iWbynd5S/vno/Ilm8p3+Ur7Z6PyJZvKF4Gpw0xERERERCQdqnkPnoiIiIiIiNRQKhp4ZrbKzD4wsy4ze3yM/WZmfxHufy+c0CUxIpRvpZmdNLN3w8eT05HPSpjZc2Z2xMz2jbM/6XVXrnyJrTsAM+sws9fN7H0z229mj46RJtF1OBmKTYm/vhWfElp/ik3lKT4l+vpWbEpo3UGN4pO7J/pBMIHL/wGdBLNw7gWWlKS5E3iVYG2+W4AfT3e+p7h8K4F/nu68Vli+FcDNwL5x9ie27iKWL7F1F+Z/HnBz+LwZ+N80/f9N8rNRbEr+9a34lND6U2wq+/koPiX7+lZsSmjdhfmvenxKQw/ecqDL3Q+6+wDwIrCmJM0a4HkP7AZazGxerTNaoSjlSyx33wUcv0SSJNddlPIlmrsfdvc94fPTwPvAgpJkia7DSVBsSjjFp+RSbCpL8SnBFJuSrRbxKQ0NvAXAoaLX3Xz6Q4qSJq6i5v2LZrbXzF41s+trk7WaSHLdRZWKujOzzwI3AT8u2XU51OFYFJsCqbi+x5Hk+osq8fWn2DQmxadA4q/vcSS57qJKRd1VKz5VdZmEGrExtpVODRolTVxFyfse4DPufsbM7gT+CVhU7YzVSJLrLopU1J2ZNQEvA3/o7qdKd49xSJrqcDyKTSm5vi8hyfUXReLrT7FpXIpPKbi+LyHJdRdFKuqumvEpDT143UBH0euFwMcVpImrsnl391PufiZ8vh3Imdmc2mWxqpJcd2Wloe7MLEcQoP7W3f9xjCSprsNLUGxKwfVdRpLrr6yk159i0yUpPiX8+i4jyXVXVhrqrtrxKQ0NvDeBRWZ2tZnlgXXAtpI024B7wxlpbgFOuvvhWme0QmXLZ2ZXmpmFz5cT1OsnNc9pdSS57spKet2Fef8r4H13//Y4yVJdh5eg2JTw6zuCJNdfWUmuP8WmshSfEnx9R5Dkuisr6XVXi/iU+CGa7j5kZg8DOwhmTXrO3feb2QPh/s3AdoLZaLqAXuD+6crvREUs31rgQTMbAvqAde6eiK54M3uBYDakOWbWDXwTyEHy6w4ilS+xdRf6DeD3gf8xs3fDbX8CXAXpqMNKKTYl//pWfEp0/Sk2XYLiU7Kvb8Wm5NZdqOrxyZL1eYiIiIiIiMh40jBEU0RERERERFADT0REREREJDXUwBMREREREUkJNfBERERERERSQg08ERERERGRlFADT6rCzO42s/1mNmJmy4q2zzaz183sjJl9p+SY18xsb3jcZjPLhttXmNkeMxsys7Ulx3zNzH4aPr5WtP1hM+syM7eixS/N7DEzezd87DOzYTNrq94nISJxo/gkInGk2CRTRQ08mRQLjHUd7QN+B9hVsr0feAL4xhjH/J67LwVuAOYCd4fbPwLuA/6u5L3bCNZG+QKwHPimmbWGu98Abgc+LD7G3f/M3W909xuBPwb+092Ply+piCSN4pOIxJFik1Rb4hc6l9ozs88CrwKvA18ETpjZXMAJFhP9c3d/P0x70bHufhb4kZldW3pedz8VPq0D8uH5cPefh+caKTnkDuCHo0HGzH4IrAJecPd3xnr/EvcAL0Qps4gkg+KTiMSRYpPUknrwpFK/BjwPfB0Ycvcb3P3Xge9P5qRmtgM4ApwGXiqTfAFwqOh1d7gtyvs0EgS0lyvIpojEm+KTiMSRYpPUhBp4UqkP3X03cBDoNLO/NLNVwKkyx12Su98BzAPqgS+VST7WT0we8a1+G3hDQwxEUknxSUTiSLFJakINPKnUWQB37wGWAjuBh4BnJ3tid+8HtgFryiTtBjqKXi8EPo74NuvQEAORtFJ8EpE4UmySmlADTyYlnGUp4+4vE9wAfHOF52kys3nh8zrgTuBAmcN2AF82s9bwBuEvh9vKvdcs4DbglUryKiLJoPgkInGk2CTVpgaeTNYCYKeZvQv8NcHsSpjZXWbWTXAj8b+E48MJ9/0c+DZwn5l1m9kSYAawzczeA/YSjCXfHKb/fHiuu4EtZrYfIBwi8BTwZvjYWHTT8CPhMQuB98ys+Nexu4B/DW9aFpH0UnwSkThSbJKqMveow25FREREREQkztSDJyIiIiIikhJq4ImIiIiIiKSEGngiIiIiIiIpoQaeiIiIiIhISqiBJyIiIiIikhJq4ImIiIiIiKSEGngiIiIiIiIpoQaeiIiIiIhISvw/9uxeb/+L/rYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(1, 3, figsize=(15, 5))\n", + "ax1, ax2, ax3 = axes\n", + "cd4ydata = (common_individuals_individual_ratio_dfv3['CD8T TEM']) / common_individuals_individual_ratio_dfv3['CD8T']\n", + "sns.regplot(x=common_individuals_individual_ratio_dfv3['gt'],\n", + " y=cd4ydata, \n", + " ax=ax1)\n", + "r, p = stats.spearmanr(common_individuals_individual_ratio_dfv3['gt'],\n", + " cd4ydata)\n", + "ax1.set_title('Oelen v3 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax1.set_ylabel('CD8 TEM / CD4T')\n", + "ax1.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_dfv3['CD8T Naive']) / common_individuals_individual_ratio_dfv3['CD8T']\n", + "sns.regplot(x=common_individuals_individual_ratio_dfv3['gt'],\n", + " y= cd8tydata, \n", + " ax=ax2)\n", + "r, p = stats.spearmanr(common_individuals_individual_ratio_dfv3['gt'],\n", + " cd8tydata)\n", + "ax2.set_title('Oelen v3 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax2.set_ylabel('CD8 Naive / CD8T')\n", + "ax2.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_dfv3['CD8T Naive']) / common_individuals_individual_ratio_dfv3['CD8T TEM']\n", + "sns.regplot(x=common_individuals_individual_ratio_dfv3['gt'],\n", + " y= cd8tydata, \n", + " ax=ax3)\n", + "r, p = stats.spearmanr(common_individuals_individual_ratio_dfv3['gt'],\n", + " cd8tydata)\n", + "ax3.set_title('Oelen v3 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax3.set_ylabel('CD8 Naive / CD8T TEM')\n", + "ax3.set_xlabel(\"rs1131017\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(104, 11) (72, 11) (32, 11)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CD4T TEMCD4T NaiveCD8T TEMCD8T NaiveCD4TCD8TCD4T TCMCD8T TCMall_numgtchemistry
LLDeep_10351715236546251084242810061.0v2
LLDeep_09603689113135861433742615460.0v2
LLDeep_1004655444095834624371614931.0v2
LLDeep_091819341197249136168145981.0v2
LLDeep_006751101122897532315463014291.0v2
\n", + "
" + ], + "text/plain": [ + " CD4T TEM CD4T Naive CD8T TEM CD8T Naive CD4T CD8T CD4T TCM \\\n", + "LLDeep_1035 17 152 36 54 625 108 424 \n", + "LLDeep_0960 36 89 113 13 586 143 374 \n", + "LLDeep_1004 65 54 440 9 583 462 437 \n", + "LLDeep_0918 19 34 119 7 249 136 168 \n", + "LLDeep_0067 51 101 122 89 753 231 546 \n", + "\n", + " CD8T TCM all_num gt chemistry \n", + "LLDeep_1035 28 1006 1.0 v2 \n", + "LLDeep_0960 26 1546 0.0 v2 \n", + "LLDeep_1004 16 1493 1.0 v2 \n", + "LLDeep_0918 14 598 1.0 v2 \n", + "LLDeep_0067 30 1429 1.0 v2 " + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "concate_v2_v3 = pd.concat([common_individuals_individual_ratio_df,\n", + " common_individuals_individual_ratio_dfv3],\n", + " axis=0)\n", + "print(concate_v2_v3.shape,common_individuals_individual_ratio_df.shape, common_individuals_individual_ratio_dfv3.shape)\n", + "concate_v2_v3.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEWCAYAAABsY4yMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0cUlEQVR4nO3de5wcVZnw8d/Tl7llZpJAZgiShJAVGQiCYUdFhBgQBbyA7KIvrDe8kd3VFZR3FXRFjbvrBbyuvpiIdwV2jaK4KyorDBEFJSC3LGGR4ZIAYUIYMjOZW1+e94+qmqnu6a7unu7qW57v59Of7j7VVXW6p+Y5VeecOkdUFWOMMc0nUusMGGOMCYcFeGOMaVIW4I0xpklZgDfGmCZlAd4YY5qUBXhjjGlSFuD3AyKyUkRURGK1zosxpnoswDcIETlfRO4TkXER2SUiV4rIolrnK4iIXCEiD4nIqIhsF5G3Ffj8ASLycxHZKyJPisiHytz/D0TkKREZEZH/FZF3l7O9Eve9UkRudv9e20Xk1IDPnux+dq+IPJq1bIWIjGU9VEQuDv1LZObjRSJyp/t97hSRFwV8tlVEvuX+7rtE5INZy18vIve73+X3InKUb9nb3e2PiMhOEfmcnZiUQVXtUecP4GLgaeB0IA6sBH4B3AG0FLH+SkCBWJXz/UmgD+dE4qXAMHBCwOc/DdwIdACLgZeXuf/VQKv7ug/YBfxlkeuW9VsBtwFfANqBvwaeA3ryfPYlwFuBC4BHC2z3MCAFrKzi37EFeAz4ANAKvN99n/PYc/+Ov3X/hke6v/vp7rLDgRHgRCAGXAr82fu9gb8DTnL3eQhwJ3BJNY/bZnrUPAP2KPAHgm5gDHhTVnonMAS8030fAS4BHgb2AP8BHOAuywjwwELgm8BTwBPAPwNRd9n5wK3AFW5AfgQ4I0/eLgE2Z6V9GfhKns9fD1wc8F0/BfywhN/m68AVWWk/Az6Y47NHuN/3TXm2dT7wO+CLwLPAP5fxN3sBMAV0+dJ+C/xtgfVOLSLAfxy4uYS8DLgB94/AXvf3OaDE7/Nq9zgRX9rjXtDO8fkngFdn/V2vdV+/D/gv37IIMAG8Ms+2Pgj8fL5/i/39YVU09e8EoA34iT9RVceAG4BXuUnvB94AvAJ4Hk5w/lqebX4XSALPB9bg/AP7qy9eCjwILAE+B3xTRCTHdq4BXiMi3QAiEgXeBFyd/UERaQdeDGwL+K5/BM4TkXcGfMbvauD/eHkTkcXud7nWt9//JyLjwHacAP+LgO29FBgEeoF/EZETReS5gMeJebazGhhU1VFf2j1uernehvP3K3Wdd+IcF0ngK96CAt/vEvdjq4F71Y24rnvJ8X3cv8HzcL6vx//dxX2Q9f7oPHlfS/AxYwJYgK9/S4BnVDWZY9lT7nKA9cBHVXWnqk4BnwDOya6/FJGDgDOAi1R1n6oO4Zy1nuv72GOq+g1VTeEEk4OBg7J3rqqPAXfhFCwApwDjqnp7jrx+Hecf/Ve5vqSIPB/YBKwDLhGRd7jprSIyLSILc6z2W5wrk5Pc9+cAt6nqk748/j3Q5X7mJzhn1vk8qar/pqpJVZ1Q1VtVdVHA49Y82+nEOVv22+vmY95E5CScv8PmElf9vqrer6r7gI8Bb3ILYwp8v8+465fyfTp9y3N99kbgFSKyTkRagI/gVMd05Pi+7wD6ca4mzTxYgK9/zwBL8jQ0HewuBzgUuM47+wIewKmrzQ7Mh+LU4z/l++xGnLNWzy7vhaqOuy87ye1q4Dz39d+Q++z9cpwztDdlnQX6vQu4UVW3AKcBn3L/wY8H/qSq2QEGd1vXZu3/hzk+l3KD8TKcOt58dgQsy0tEtvkaQE/CqVLrzvpYNzA6d+2SvB34sXv1Vgr/93oM5++/JM9ncynl+4z5ls/5rKpux/keX2X2BOV/gJ3+jYjIG4DP4FQPPoOZFwvw9e82nLPOv/InisgCnDPx37hJO3D+GfxnYG2q+kTW9na421vi+1y3qs63+uBHwDoRWQacTVaAF5FPuvl8taqOBGwnhlN9gKo+gtOg/DngKmBDwHrX4FypHIpTxfLjAvv4i4DlGYWPiJyUowfLWFYwR1VXq2qn+/gtTpXCKhHxn+EeSxlVDW4V1xspvXoGYLnv9QoggXtiUOD7fcRdZxtwTFY13THk+D6qOowTuI/1JWd8d1XdrKpHq+qBOG0Kh+J0GPC+6+nAN4DXq+p98/i+xlPrRgB7FH4AHyJ3L5q7mO0l8gGcBrVD3fc9wFnu65VkNrL+DKcxtBunkP8L4BXusvOBW7P2r8DzA/J3A86l95+y0i8FHgIOLuI7vgzYh1PdE8UJRP8NpIHXFFj3f9z9X+dL68Wpdup0t3eau/2z8mxjzvcu8292O07VQhtOwfcc+XvRRNzPnYFzht1GVg8VnKuTx/A1dGb9bVfm2fYAztnxUTjVID8Cri7xu3i9aC7E6UXzPoJ70XwGuAWnF00fTsA/3bf8L92/SQ/w7/784FTz7QHW1uJ/rdkeNc+APYr8QzlVGPfj9Dh4GqdaZbFveQSnx8GDOJfDDwP/6i7LDvALgSvdf/y9wJ+Ac91l8wnwb3U/84851pvCuWz3Hh8J2M5Zbl5GcKqYPugGx73AmoD1Pubu642+tB43yDznbu8+4D0B26h0gF/pBtcJ929yqm/ZScCY7/06N//+x0DW9n4FfCrHfk4CHgXiefIxwGwvmhHg5zhXb6V+nzU4XRYncE4s1viWvRnY5nvfCnzL3d/TZPVqwumlNYrTW2kjsMC37GacKzn/MXNDrf//GvUh7o9qjGlAIvJPwG5V3Zhn+QDwA1W9qqoZM3XB7hAzpoGp6j/XOg+mflkjqzHGNCmrojHGmCZlZ/DGGNOk6qoOfsmSJbpy5cpaZ8MYYxrGnXfe+Yyq9uRaVlcBfuXKlWzdurXW2TDGmIYhIo/lW2ZVNMYY06QswBtjTJOyAG+MMU3KArwxxjQpC/DGGNOk6qoXjTH1ZmD7EBu3DLJjeJzliztYv3YV6/p6C69oTB0I9QxeRBaJyGZ3VvkHRORlYe7PmEoa2D7EZddvY2h0kkXtcYZGJ7ns+m0MbB+qddaMKUrYVTRfBn6pqn04g/4/EPL+jKmYjVsGiUeFjpYYIs5zPCps3DJY66wZU5TQqmjciZjX4oyzjapOA9Nh7c+YStsxPM6i9nhGWns8ys7h8TxrGFNfwjyDXwXsBr4tIn8SkavcaeYyiMgFIrJVRLbu3r07xOwYU5rlizuYSKQy0iYSKZYtnjM/tDF1KcwAHwOOA65U1TU406Vdkv0hVd2kqv2q2t/Tk3M4BWNqYv3aVSRSyvh0ElXnOZFS1q9dVeusGVOUMAP8TmCnqv7Bfb8ZJ+Ab0xDW9fWy4czV9Ha1sXciQW9XGxvOXG29aEzDCK0OXlV3icgOETlCVR8EXokzObIxDWNdX68FdNOwwu4H/w/AD0WkBRgE3hHy/owxxrhCDfCqejfQH+Y+jDHG5GZDFRhjTJOyAG+MMU3KArwxxjQpC/DGGNOkLMAbY0yTsgBvjDFNygK8McY0KQvwxhjTpCzAG2NMk7IAb4wxTcoCvDHGNKmiAryInCgi73Bf94jIYeFmyxhjTLkKBngR+TjwYeBSNykO/CDMTBljjClfMWfwZwNn4szIhKo+CXSFmSljjDHlKybAT6uqAgqQa15VY4wx9aeYAP8fIrIRWCQi7wH+G/hGuNkyxhhTroITfqjqFSLyKmAEOAK4TFVvDD1nxhhjylIwwIvIB4AfWVA3xpjGUkwVTTfwKxH5rYi8V0QOCjtTxhhjylcwwKvqJ1V1NfBe4HnALSLy36HnzBhjTFlKuZN1CNgF7AF6w8mOMcaYSinmRqe/E5EB4DfAEuA9qnpM2BkzxhhTnoKNrMChwEWqenfIeTHGGFNBeQO8iHSr6gjwOff9Af7lqvpsyHkzxhhThqAz+KuB1wF34tzFKr5lCqwqtHEReRQYBVJAUlX7551TY4wxJckb4FX1de5zuSNHnqyqz5S5DWOMMSUqpg4eEVkMHA60eWmquiWsTBljjClfMXeyvhu4EFgG3A0cD9wGnFLE9hX4tYgosFFVN+XY/gXABQArVqwoOuPGGGOCFdMP/kLgxcBjqnoysAbYXeT2X66qxwFnAO8VkbXZH1DVTarar6r9PT09xebbGGNMAcUE+ElVnQQQkVZV3Y4z6FhB7tjxqOoQcB3wkvlm1BhjTGmKqYPfKSKLgJ8CN4rIMPBkoZXcceMjqjrqvn41sKGMvBpTdQPbh9i4ZZAdw+MsX9zB+rWrWNdnN3KbxlDMcMFnuy8/ISI3AwuBXxax7YOA60TE28/VqlrMesbUhYHtQ1x2/TbiUWFRe5yh0Ukuu34bG8CCvGkIRfWi8ajqLSV8dhA4tuQcGVMnNm4ZJB4VOlqcf5OOlhjj00k2bhm0AG8aQtCdrKPkvsEpBrSoakmFgzGNZsfwOIva4xlp7fEoO4fHa5QjY0qTt5FVVbtUtdt97sIZKvhfcEaU/HK1MmhMrSxf3MFEIpWRNpFIsWxxR41yZExpihlNcpGIfAK4B+gCXqyqF4edMWNqbf3aVSRSyvh0ElXnOZFS1q8tOEqHMXUhb4AXkSUi8mngLiAJrFHVf1LVPVXLnTE1tK6vlw1nrqa3q429Ewl6u9rYcOZqq383DSOoHv0xnBuavg2MA+9ye8QAoKpfCDdrxtTeur5eC+imYQUF+MtxGlXBqZoxxhjTQIJGk/xEFfNhjDGmwkqZk9UYY0wDsQBvjDFNygK8McY0qZICvIh8L6yMGGOMqaygoQquz04CTnZHlkRVzwwxX8YYY8oU1E1yGfA/wFXMjknTD3y+CvkyxhhTpqAqmn7gTuCjwF5VHQAmVPWWUkaVNMYYUxtB/eDTwBdF5Efu81DQ540xxtSXYib82Am8UUReC+wNP0vGGGMqoWCAF5EXAn3u26vDzY4xxphKCepFsxD4GbAcuBenkfWFIvI4cJaqjlQni8YYY+YjqJH1U8BW4HBVPVtV3wC8ALgDZ+IPY4wxdSyoiuZU4Bi3sRUAVU2JyEeA+0LPmTHGmLIEncFPq2oyO9FNmwovS8YYYyoh6Ay+TUTWkDnpNu771vCyZIwxphKCAvwuIN+sTbtCyIsxxpgKCrrRaV0V82GMMabCgrpJvgUQVf1+Vvp7gH2qWlSfeBGJ4vTGeUJVX1dOZnMZ2D7Exi2D7BgeZ/niDtavXWVzaBpjDMGNrBcDP82R/u/usmJdCDxQwueLNrB9iMuu38bQ6CSL2uMMjU5y2fXbGNg+FMbujDGmoQQF+KiqjmYnujc4xYvZuIgsA16LMyJlxW3cMkg8KnS0xBBxnuNRYeOWwTB2Z4wxDSUowMdFZEF2ooh0AS1Fbv9LwIeAdL4PiMgFIrJVRLbu3r27yM06dgyP0x6PZqS1x6PsHB4vaTvGGNOMggL8N4HNIrLSS3BfX+suCyQirwOGVPXOoM+p6iZV7VfV/p6enqIy7Vm+uIOJRCojbSKRYtnijpK2Y0w+A9uHOG/T7Zz42Zs4b9PtVv1nGkreAK+qV+CMRXOLiOwRkWeAW4D/VNXLi9j2y4EzReRRnELhFBH5QQXyPGP92lUkUsr4dBJV5zmRUtavXVXJ3Zj9lLXxmEYXOCerqn5dVQ8FDgUOU9VDVfXKYjasqpeq6jJVXQmcC9ykqm8pO8c+6/p6Oee4Q9g9OsUDu0bZPTrFOccdYr1oTEVYG49pdEVNuq2qY8DxIeelZAPbh9h81xP0dLVy5NIuerpa2XzXE3aGZSrC2nhMoysqwLs+O9+dqOpAGH3g7QzLhMnaeEyjKyXA1x07wzJhWr92FXsnEjw0NMr2XSM8NDTK3omEtfGYhhE4o5OIfBtQnAHGVojIt7xlqvrOkPNW0PLFHQyNTtLRMvs17AzLVJIAKKgqqMwZec+YelZoyr7v+F6fCHw3vKyUbv3aVVx2/TbGp5O0x6NMJFLWi8ZUzMYtg3S3x1m6sH0mbXw6ycYtg9aQbxpCYIBX1Vu81yIy6n9fD9b19bIB5x9x5/A4y2wsGlNBO4bHWdSeedO2VQGaRlJw0m2f6dByUYZ1fb0W0E0orArQNLqiG1lVte66SRoTJruRzjS6wAAvIjHf604R6ReRA8LPljG1t66vlw1nrqa3q429Ewl6u9rYcOZqu2I0DSNoPPjzgc+LyB6cIX+/BjwCvEBEPqSq11Qni8FsPHgTJqsCNI0sqA7+YuAIoAu4B1ijqg+LyEHAjUDNA7w3Vkg8KhljhWwA+6c0xuz3gqpoUqr6jKo+Aoyp6sMAqvp0dbJWmN3Jaowx+QWdwT8uIp/GOYPfLiKfB34CnAo8VY3MFWLd2IwxJr+gM/i3ACPATuBM4DbgUuAg4PzQc1YEGyvEGGPyy3sG707N92lf0mb3UTfsTlYTNmvEN42sUDfJt4vIXSKyz31sFZG3VStzhVg3NhMmm/DDNLqgbpJvAy4CPgjchTPu0nHA5SKCqn6vKjkswLqxmbD4G/EBOlpiNhaNaShBZ/B/D5ytqjer6l5VfU5VbwL+2l1mTFOz4ahNowsK8N2q+mh2opvWHVaGjKkX1ohvGl1QgJ+Y5zJjmoKNRWPCNrB9iPM23c6Jn72J8zbdXvH2naB+8EeKyL050gWwI9w0PRuO2oSpGnfiBwb4iuzBmAZmjfgmLNVoxA8K8HHgIFX9nT9RRE4CnqzI3o0xZj9VjTvxg+rgvwSM5kifcJcZY4yZp2o04gcF+JWqOqcOXlW3AisrlgNjjNkPVaMRPyjAtwUsaw9YZowxpoBq3IkfVAd/h4i8R1W/4U8UkXcBdxbasIi0AVuAVnc/m1X14+Vk1hhjmknYjfhBAf4i4DoReTOzAb0faAHOLmLbU8ApqjomInHgVhG5QVVvLyfDxlSTDTZmGlnQaJJPAyeIyMnA0W7yf7nDFRSkqgqMuW/j7kPLyKsxVWUzhplGF3QGD4Cq3gzcPJ+Ni0gU5+z/+cDXVPUPOT5zAXABwIoVK+azG2NCYYONmUYXOFxwuVQ1paovApYBLxGRo3N8ZpOq9qtqf09PT5jZMaYkNtiYaXShBniPqj4HDACnV2N/xlSCDTZmGl3eAC8ivxKRD4hI33w2LCI9IrLIfd2OM5fr9nnl0pgasMHGTKMLOoN/OzAMfMKd1elKETlLRDqL3PbBwM3ugGV3ADeq6n+WmV9jqsZmDDONTpzOLgU+JBIBXgqcAbwSZ7iCX6vq5yqZmf7+ft26dWslN2mMMU1NRO5U1f5cywr2ogFQ1TRwm/u4TESWAKdVLovGGGMqragAn01VnwF+WOG8GGOMqaCq9KIxxhhTffM6g68ndiu5McbkljfAi8gHg1ZU1S9UPjulsVvJjTEmv6AqmiuAtwAHAp1AV9aj5vy3kos4z/GosHHLYK2zZowxNRdURXMccC7wWpzxZK4BfqPF9KuskmpMeWWMMY0qaDTJu4G7gUtE5ATgPODfROTDqnp9dbIXbPniDoZGJ2cGgwK7ldxUlrXxmEZWsBeNiPQAa4AXAjuBobAzVSy7ldyEyWvjGRqdzGjjGdheN/8CxgQKGovmHSLyS+BHgABvUtVX1dOEHXYruQmTtfGYRhdUB/9N4D7gcZy7Vl8tIjMLVfXMcLNWnLCnvDL7L2vjMY0uKMCfXLVcGFOHrI3HNLqgAP8nVR3JtUBEbOol0/TWr13FP26+hyeGJ0im08QiEbraYnzstUfVOmumSYTdiB/UyDrgvRCR32Qt+2nFcmBMHVMAAREBsUmFTeVUoxE/KMCL7/UBAcuMaUobtwyysD3O4b1d9C3t5vDeLha2x62R1VRENRrxgwK85nmd670xTcfmZDVhqsbxFVQH3+uORyO+17jvbXZs0/SskdWEqRrHV9AZ/Ddwxpzp9L323l9VsRyUaWD7EOdtup0TP3sT52263W5CMRVjN9KZMFXj+Ao6g9+jql+t2J5CYKNJmjCt6+tlA05d6c7hcZbZUAWmgqpxfOWdk1VE7lLV4yq2pyKUOifreZtun3OJMz6dpLerjWsuOD6MLBpjTF0pe07WerVjeJypRJJHntlHWiEicOCCONPJdK2zZowxNRcU4I8RkVw3OgmgqtodUp6Kp8ruscTM27TC7rEEyxZFA1Yyxpj9Q1CAv09V11QtJ/Pw7D4nuPs75asv3Rhj9mcNPen2VCpNPALeGGgiEI846cYYs78LCvA/KmfDIrJcRG4WkQdEZJuIXFjO9nJZ0BIFEVpjUdriUVpjzvsFLVZFY4wxeQO8qv5rmdtOAher6pHA8cB7RaSiozS9+8TDSKWViURq5pFKK+8+8bBK7sYYYxpSaFU0qvqUqt7lvh4FHgAOqeQ+jlm2iM6WKBG3iiYi0NkS5Zhliyq5G2OMaUhV6SYpIitxpv37Q45lFwAXAKxYUdooxBu3DNLT3cahWf3gN24ZtJtRjDH7vZLO4EXke6XuQEQ6gR8DF+UaX15VN6lqv6r29/SUNsSNDQZljDH55T2DF5Hrs5OAk0VkERQ3ZZ+IxHGC+w9V9Sdl5DMnGwzKhC3sCRmMCVPQGfwyYAT4AvB59zHqex1InAlcvwk8oKpfKD+rc9lgUCZM1ZiQwZgwBQX4fuBO4KPAXlUdACZU9RZVvaWIbb8ceCtwiojc7T5eU3aOfdb19bLhzNX0drWxdyJBb1cbG85cbWdYpiKqMSGDMWHKW0WjqmngiyLyI/d5KOjzOda/lSrM/LSur5fj/+JAnh6ZJBoR4tEIz4xNEY9GiEeFWMR5FrFJqExpdgyPExUY3D3GdCpNSzTCks4Wa+MxDaNgwFbVncAbReS1wN7wszQ/qbSSSmvegcZikQixqDgP93Xce4429A29JiSdLVEeGhojrc4QGMlUip3DExze21nrrBlTlIIBXkReCPS5b68ONzulG9g+xJUDD/Pos/s4uLudc1+8nJesyp5CFpLpNMk0kGOYGhEhFpkN/vGoEItGiLlXBNGInf3vj/ZNp0j5RtNWIKVOujGNIKgXzULgZ8By4F6c6pYXisjjwFm5ujxWm9cIFo1Ad1uMPfum+PJND3Ehh+cM8vmoKomUkkgBzP3njYjMnOk7BYFV/+wPdu2dLCndmHoTdAb/KWArcIpbH4+IRIFPA/8C/EP42QvmNYK1xaMkkmna41EmEimuvWNHSQG+kLQq08ng6p9oVIi7wd+r/olGnCuDiF0BNKSkOxmOv/xWnU03pt4FBfhTgWO84A6gqikR+QhwX+g5K8KO4XEWtcfx/7u1xSPsGpmoaj686p+pPMsjIk6wj7rPWW0AsYhdBdSjqEBSnaCenW5MIwgK8NOqmsxOVNWkiOSLZVXl3ejU5rubdTKRZml3ew1zNVdalfRMFVBu0YjM9ALyzvy9doBoRIiKXQlU2+G9XWzfNZpxAiFuujGNICjAt4nIGuZ2dRSgNbwsFW/92lVcdv020pokFhEmE2mSaeXcFy+vddZKVqgXEMw2BnsFgHc1EHWvAiIi1iZQQWccvZQHnx7NOIMXcdKNaQRBAX4Xzl2s+ZbVnDcr+ZUDD/PYs/tYGtCLphlkNgbnF41kVgXFclwdWCFQ2G2Dz9Lb1croZHKmH3xXW4zbBp/l/bXOnDFFCLrRaV0V8zFv3o1OTz5X3Xr3ejZzNUD+qwF/8M9uGLarAMeO4XGWdLbS09U2k6aqdqOTaRhB3STfAoiqfj8r/T3APlWtiz7xxfaDN5lm7gvII5rVBuC/CvAKhWZng9mZRhdURXMxsDZH+r8DN1MHNz1Vqh+8mcu5Ckjl7RnkvzksGvH3CGqenkFeG8/4dHKmC64NZmcaSVCAj7ozMWVQ1RF3GOCaq1Y/eDNXMe0B2dVATk8gJz0SgajbfbReCwKvjWfjlkF2Do+zzIYLNg0mKMDHRWSBqu7zJ4pIF9ASbraKs2N4nFhEeOjpMSLiVCtEBPbsm+Z7tz1KV1uc7raY89wem3m/oDVGpE6DSjMpVA3k8e4TiHjdQ30NxP7G4VpY19drAd00rKAA/01gs4j8nao+CjNT733NXVZzyxd38LA70l+27/z+sbzrCdDVFqO7PU5XWyyzIMgoEGJ0t8XpbnM+t6A1ZuPShMC7T4BU8M1iuQaKi7rdQ73CvV6vBoyphaBeNFeIyBhwizvtngL7gM+o6pXVymCQ9WtXcel193HgAqfGaDqpJNPKygM7iEWFkYkko1NJRiYSJNOznZkVGJlMMjI55z6uQAJ0ukHfCf5OYeAVFhnvfc+dbVYwlGtmuIiAnkGQeTXgrxLKbigu9u/xgWvv4vp7d5FKK9GIcOYxS/niucdV4isZEzrRIsbVcAO85KqTr6T+/n7dunVrSet4vWiC+sGrKpOJNCOTCUYnnYDvBX4vzUvPeD+ZIJGqzLgjC1qjGVcD2YVCrqqkrra4FQwh8a4I/PcMeFcAEXGWX/Lje/j5vXNv+Tj7RQdbkDd1Q0TuVNX+nMuKCfDuRl6lqjdWNGdZ5hPgASYTqVD6wasqk8k0oxMJRiaTjE46zyMTXiHgvs9RcFSsYGiJzqlK6m6L09We9d6f3hrbL7oxhu2Uz+efuOyOj546M4RENJp5h7FVE5lqCgrwRc/QBHwWCDXA1xsRoT0epT0epbe7tHUnE6mZqwCvQPAKh7EpL90pJEYnk+x1n7OHKtg3nWLfdIqnSpxqpaMlOqcqySso/FcLs1cUzrNNflKc0ckcEwu4/FcFs+MKzV4tRGX/uI/A1F4pAd6UoC0epS0epaertGF7phKpmauFmcA/MfdqYXSmgHDSprIKhvHpFOPTKXaVOGp/ezw6p5qoO0eDtHe10G0FwxzF3EkMZDQQzwwql1U4eA9j5iMwwIvIt3HaJAVYISLf8pap6jtDztt+qTUepWeeBcPolL8twSsEEnnSk4xOJZhMZAahiUSKiUSKp0dKGzC0LR6ZbWNweyAtbMvRSymr8GiJ1W/BsLgjzvD43DP1xR2VuQ0klVZSFB5bSCSzKsgrFLyH12YQjQjift55nl3f7J8KncF/x/f6ROC74WXFlKM1HqU1HmVJZ2kFw3QyPfeqYCqzcBiZmHvlMJEVlSYTaSYTUwyNllgwxCJzrw7ydl+dfd3qGyI6LB8+rY9/+tl9GX35YxEnvZpUlaRq4JwDxfAHfu8+kIhbQERnSgPvSdx1yChQnDaG+r9JzTgCA7yqzrQyicio/71pDi2xCEs6W0suGBKpdEbAn2lozuqVlF21NJ41n+lkMs3kaOkFQ0ssktHAnKtNwV9YeOltJRQMD+4amXOjVjLtpDfindKq6oxtr5DyRrmvwPSyEXGuKiIRMuYu8J5FnHIjIt5rmbm68Pp4ZBckpjJKqYOfDi0XpuHEoxEOWNDCAQtKu6k5mUozMplkzGuAnsxqgPY3TPuqlrInup5OpnlmbJpnxko7LFtikYyAP6cqyVeF9P0/5L5Z7gd/fJy3nrCypP02s7QqaVUKNDmUxGufmCko3C6sXgEivqEugJmCw6uusslxHEUHeFU9PsyMzJeNJtlYYmUUDGNuddHoVCJntVH2VcTIZIJ9U3MLhj1j0+wpsWDwS6SUj/30/jlXB9lXEd1tcdriEavGmAevfWK+Vxje/QyQecXgLJu9mvCqqvx/oVwdnMX3IiJeoeNctcy0f7hVV6UUMAPbh9i4ZZAdw+MsD2Gso8B+8CIS86btc2926gMGVfXZght2GmRfBwyp6tHFZKbUfvD+0ST9MzpdeIqNJmkcqbTOXBXMdFv1N0D7rh5m2x6SjE2VdpdzPvGo+O5u9q4OvLuf597L0OXe/NYej1rB0MD8N8yJ5Gj4Rrjtz89w+Y0PEo8Ina0xJpNpEillw5mrSwry8+oHLyLnA58XkT3AhThj0DwCvEBEPqSq1xTY73eArwLfKzqnJbLRJE0h0YiwsCPOwhJ7vqTSyqu+uCXv8je86HkzVw97fVVOY5PJjDPAREp5dt80z+4r7YohFpHAq4N8bQwdLVYw1ANVJeVv68jhu7c9RlSE1lgUROhoiTE+nWTjlsGKncUXGg/+CKALuAdYo6oPi8hBODc8BQZ4Vd3iDk4Wmh3D4yxqd/5xo1EBdYYEGBqdZHGHUwXgLzEBFEV19jLMa3hy0pwF/vc6815nGoSyl3nbMc0jGhGWdreyK0d30aXdrbz/lYfnXC+VVvZNJbManBPsnUgyNpXnTmj35jffcEkk08rweCJnN81C+faPidTVFmNhnl5J/t5KC6xgqLqnRiaICuwYniKRStMai7Kks6WiM4YFBfiUqj4DPCMiY6r6MICqPl3JA0FELgAuAFixYkVJ6/pn3Im5eRqfTnLogQtYXGIdb6X4CwKn8Wm2MJj9TGYBkfbW8X/G92amYMnaT8Z+3e2gkFZ3m0A6nbkdK5iKFxTg84lGxBljqD3OIbQXva+0KuNTKfZOZjU0uz2S9ma0N8xWLY1OJjIKhtQ8C4aIMLcqKfvOZ98oqzb0dvkWtMR4bM8+pyE5IiTTyhPPTXJ4b2fF9hEU4B8XkU/jnMFvF5HPAz8BTgWeqlQGVHUTsAmcOvhS1q3HGXdEZht0IjTOge8FetXZgintS5tzNeOmk2OZV6hlXw3Nbmu2IJwpBOuwoLn3idy3AedLL0dEhM62GJ1tpd1cnlZlfDo1t6E5Y0C92TujZwuHzIIhrbB3IsHeidILhs7WPHc652l47nK/535fMOQ6c6Oy/wtBR9NbgPcCe4FLgNOBS4HHgfMrloMyrOvr5Zydz3HVrY+wbzrFgpYo7z7xMJugYR68qzKR2hVM6bTOXnm4BcBsITBbEGQ8e6UIzLz3lvur1Ga68pWSnzwfz5deCxFxGug6W2McvLD49VSVfdOpOVcLs/csuENluF1X/Q3UKd8PkNb5D73tHwNptsooeLykziaak2FfIsVB3a0MjyfcKpoISztb53QJLkfQePAjwKd9SZvdR90Y2D7E5rueoKerlRXuGfzmu57gmGWLLMg3oEhEQi9cvEJkphpLIeUGf/UVDIVieDQiGVcjjUZ8BcPShW1Fr6eqTLjjJfnbEmbaGAK6r1ZyToZcVwvZ4yPV+5wMB3e3s3M4Y8I8ppJpDltSnSoaROTtOD1ojnCTHgC+oqoFe8aIyDXAOmCJiOwEPq6qFZ0JyutF4816H0YrtGkulSpEDj1wQcZ79RUaQVcfqbSSyrU8jZte34WFuL09OlpiLO0uvWDInHvBa2jOHDgvuwE6u2DwtgGTJeW9szWWGfjnjK46d0iMMOdkWLN8Ifc+8ZzbnRKmU2l2j03zNy+pXA/AoG6SbwMuAj4I3IVTeB4HXC4iFAryqnpexXKZh78Xjac9Hq1oK7QxxXAGBINomYWHvxBIp+cWAM5rZ3kq3ZgFw0ElDL3tzcng3eW8d+Y+hdmrgzFf1dLsZ+bOyTA25dzf8NTe0goGb7KefHMyLMyeya3IORn+tGMvna1RRidTJIGIKAvbY9w2+CzvLymH+QWdwf89cLY3H6vrJhH5a+BaQuzfXix/LxrPRCLFssUdNcyVMfMn3tyzJa6XEfSzgn8qrW6/bPcqI515VVHP/HMylFIwQI45GaaSjGbd8TySo/tq9tDb+6ZS7Jua35wMXqEwUwj4qpAefHqEqWR65gxeEMamUjz0dOUa8YOOo+6s4A6Aqj4qIiX+1OFYv3YV/7j5Hp4YniCZThOLOOOMfOy1R9U6a8ZUlVf1VOogm16w964Ykun0zHPKf+WQduY7rvcCwa+SczLMXCVk3MPg9UwKnpOhmKG3UwqCIgLTFZoNDoIDfNAceJWfH2+eJhMpplNpt/4zzWShwbWNMTO8gmE2EASXEF6gn6lG8qqMfNVKKV9aqT2X6sF852SYTqYzR0/NcbUwOuUWEBNJHt49lnlvC8w09FdKUIA/UkTuzZEuQO06mvt85oYHmEikiUciiDg/zkQizWdueMAaWU3ZOlqic4Y39tL3V5GI0FJCo6PX+OyvOkqpomlIpNOkvAIjpSTTFRyOsgZaYhEO7GzlwCKH3n7NV347Z8IdcM7mKyUwwFduN+F4ZM+4U3/lGzJU08oje6yR1ZTvtKN6ue7uuff0nXaUnTwUa6bxuYhCwd/A7E17mPJdMSTTSjKVzuiH38imcwR3cKqIKiUowMeBg1T1d/5EETkJeLJiOSiT84dPoeqNCQ2xaH31dzWN6YGnRomQOcx5xE03lVdsA7NXTeT1MHICv3MFkHJfN0L1UL7rlWqdwX8J+EiO9Al32esrl4356e1qZcfwbHOA9/d8Xol1Z8bk8siecWJRIRqZ7e6WSqftCrHGiq0mUs08+3d6FmlGo7G3rJEaj0sRFOBXquqcOnhV3Rr2KJHF0jx1dvnSjTH7DxEhHi2uZ5ET6J0rgERKZ95n9yxqNEEBPug2teKHyQvR7n0J3FGCM6podu8rbcAkY3JZtWQBD+wahVRmneiRSyt3K7mpD85csIVLgmQqnbONIKN3UZnVQ5WsYA4K8HeIyHtU9RsZOxd5F3BnBfNQFucPk3kJbUwlLGrP/e+RL900v1g0UtRNaF7AT6bTOdsIkmlFyDM9YAUjfFBeLwKuE5E3MxvQ+4EW4OzKZWH+Vi1ZwENDY4jqTDfJtMLhPQsKr2xMAbc/MlxSujEer52ghfzDFUQkd4NqJYe+ybt3VX1aVU8APgk86j4+qaovU9VdlcvC/H349D464hESqTSTiTSJVJqOeIQPn95X66yZJpDvIrs5m+NMteUbq8ZfI1H2Pgp9QFVvBm6u2B4rrDUeZdq9/IlFIrSWeq+2McbUQDKVuzo5X/p8VK6oqIGNWwZJpZXpVJpk2hluM5VWNm4ZrHXWjDEmUL4wXslWxIZuLdr25F5GJpMITsuzKjw7nmDbkyUO+2aMMVWWr6NNJbvkN3SA96a2yv49KjnllTHGhCFvL5oK7qOhq2jyjUnRLGNVGGOaVzUa8Rs6wOcbwKje5l40xphs+aKUncG72uO5f4qOPOnGGFMv8s3oV2Cmv5I0dIB/4SGL6YhnfoWOeISjD1lcoxwZY0xxqtHI2tAB/mWrDmAikZ65pBGcCT9etqpys5Kb/dPA9qG8yxr6n8bUjXxNhZVsQmzoY/UX9z0157beiDjpxszXwPYhLrt+W95bxhd3xKubIdOUrJG1AG9cbm8USW+QHhuv25Rj45ZB4lHJeyY1OpmsboZMU8p3AlGVsWgaQSqdJuUOMKY4zym1ESVNeXYMj9MeMOTFtHXDNRUQyzNsZL70+Qg1wIvI6SLyoIj8WUQuqfT28w3KU8nBesz+Z/niDiYC5sW0PlqmEjTPgZQvfT5Ci4QiEgW+BpwBHAWcJyJHVXIf6TxnUvnSjSnG+rWrSARMjNkSsxMIU76ICLGIUyUjOM/O+8Y4g38J8GdVHVTVaeBa4KxK7iASyfMD2Y1Opgzr+nrZcOZqcsXxiEBXq41Yasq3askCQIhHI7TGI8SjEUDc9MoIM8AfAuzwvd/ppmUQkQtEZKuIbN29e3dJOzjswA5AiEcitMYixCPOD+SkGzN/6/p6efHKA1na3cqClijxqLCgJUpvVyuHH9Rd6+yZJvDh0/tY3BFHcIYIFpweWpWczyLMAJ/rNHrOda+qblLVflXt7+npKWkHl5xxJIs64kgEUqpIBBZ1xLnkjCPnm2djZqxfu4qWWJSlC9s44qAuli5soyUWZf3aVbXOmmkC6/p6ufycY1mzYjEHL2xnzYrFXH7Osazr663YPsIcTXInsNz3fhnwZCV3sK6vlyvOOZaNWwbZOTzOssUdrF+7qqI/kNl/revrZQPY8WVCs66vN9TjSbSS98X6NywSA/4XeCXwBHAH8Dequi3fOv39/bp169ZQ8mOMMc1IRO5U1f5cy0I7g1fVpIi8D/gVEAW+FRTcjTHGVFaoE36o6i+AX4S5D2OMMblZh15jjGlSFuCNMaZJWYA3xpgmFVovmvkQkd3AY/NcfQnwTAWzUymWr9JYvkpj+SpNM+brUFXNeRNRXQX4cojI1nxdhWrJ8lUay1dpLF+l2d/yZVU0xhjTpCzAG2NMk2qmAL+p1hnIw/JVGstXaSxfpdmv8tU0dfDGGGMyNdMZvDHGGB8L8MYY06TqPsAXmtdVHF9xl98rIscVu27I+Xqzm597ReT3InKsb9mjInKfiNwtIhUdPrOIfK0Tkb3uvu8WkcuKXTfkfP2jL0/3i0hKRA5wl4X5e31LRIZE5P48y2t1fBXKV62Or0L5qtXxVShftTq+lovIzSLygIhsE5ELc3wmvGNMVev2gTMK5cPAKqAFuAc4KuszrwFuwJlg5HjgD8WuG3K+TgAWu6/P8PLlvn8UWFKj32sd8J/zWTfMfGV9/vXATWH/Xu621wLHAffnWV7146vIfFX9+CoyX1U/vorJVw2Pr4OB49zXXThDqFcthtX7GXwx87qeBXxPHbcDi0Tk4CLXDS1fqvp7VR12396OM+FJ2Mr5zjX9vbKcB1xToX0HUtUtwLMBH6nF8VUwXzU6vor5vfKp6e+VpZrH11Oqepf7ehR4gLlTl4Z2jNV7gC9mXtd8nylqTtgQ8+X3LpwS2qPAr0XkThG5oEJ5KiVfLxORe0TkBhFZXeK6YeYLEekATgd+7EsO6/cqRi2Or1JV6/gqVrWPr6LV8vgSkZXAGuAPWYtCO8ZCHQ++AoqZ1zXfZ4qaE3aeit62iJyM8w94oi/55ar6pIj0AjeKyHb3DKQa+boLZ+yKMRF5DfBT4PAi1w0zX57XA79TVf/ZWFi/VzFqcXwVrcrHVzFqcXyVoibHl4h04hQqF6nqSPbiHKtU5Bir9zP4YuZ1zfeZMOeELWrbInIMcBVwlqru8dJV9Un3eQi4DudSrCr5UtURVR1zX/8CiIvIkmLWDTNfPueSdfkc4u9VjFocX0WpwfFVUI2Or1JU/fgSkThOcP+hqv4kx0fCO8bCaFio1APnCmMQOIzZRobVWZ95LZkNFH8sdt2Q87UC+DNwQlb6AqDL9/r3wOlVzNdSZm9wewnwuPvb1fT3cj+3EKcedUE1fi/fPlaSv9Gw6sdXkfmq+vFVZL6qfnwVk69aHV/ud/8e8KWAz4R2jFXsxw3rgdPC/L84rckfddP+Fvhb3w/4NXf5fUB/0LpVzNdVwDBwt/vY6qavcv9Q9wDbapCv97n7vQence6EoHWrlS/3/fnAtVnrhf17XQM8BSRwzpjeVSfHV6F81er4KpSvWh1fgfmq4fF1Ik61yr2+v9VrqnWM2VAFxhjTpOq9Dt4YY8w8WYA3xpgmZQHeGGOalAV4Y4xpUhbgjTGmSVmAN01PRN7ojuSXFpF+X/qB7kh/YyLy1ax1funebr9NRL4uIlE3fa2I3CUiSRE5J2udt4vIQ+7j7b7097mjAap704+XnneEQ2MqwQK8aRrusKu5jun7gb8Csm8/nwQ+BvzfHOu8SVWPBY4GeoA3uumP4/Snvjpr3wcAHwdeinODz8dFZLG7+HfAqcBj/nVU9XJVfZGqvgi4FLhFM2+hN6Ys9T4WjTGB3AGcbgBuBl4GPCciPTg3l3xLVb+oqg+4n81YV1X3AbeKyPOzt6uz44XEcO4iVDf9UXdb6axVTgNu9AK0iNyIM6jVNar6p1z7z1K1EQ7N/sPO4E0zOALndvB3A0lVPVpVXwh8u5yNisivgCFgFNhc4OPzHvkvzwiHxpTNArxpBo+pM472ILBKRP5NRE4HskftK4mqnoYzYUMrcEqBj5cz8l+uEQ6NKZsFeNMM9gGoMwHGscAA8F6c8VrKoqqTwPUUnmihnJH/5oxwaEwlWIA3TcPtoRJR1R/jNJ4eV2CVfNvpdGfUQURiOAM+bS+w2q+AV4vIYrdx9dVuWqF9LQReAfxsPnk1JogFeNNMDgEGRORu4Ds4PVMQkbNFZCdOI+x/uXXruMseBb4AnC8iO0XkKJxhY68XkXtxRhkcAr7ufv7F7rbeCGwUkW0AbvXKp4A73McGX4Pr+911lgH3ioj/yuJs4Ndug68xFWWjSRpjTJOyM3hjjGlSFuCNMaZJWYA3xpgmZQHeGGOalAV4Y4xpUhbgjTGmSVmAN8aYJvX/AREN/VFlZr8jAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax1 = plt.subplots()\n", + "cd4ydata = (concate_v2_v3['CD8T Naive'] + \\\n", + " concate_v2_v3['CD4T Naive']\n", + " ) / (\n", + " concate_v2_v3['CD8T TEM'] + \\\n", + " concate_v2_v3['CD4T TEM']\n", + ")\n", + "sns.regplot(x=concate_v2_v3['gt'],\n", + " y=cd4ydata, \n", + " ax=ax1)\n", + "r, p = stats.spearmanr(concate_v2_v3['gt'],\n", + " cd4ydata)\n", + "ax1.set_title('Oelen v2 & v3 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax1.set_ylabel('CD8+CD4 TEM / CD8+CD4 Naive')\n", + "ax1.set_xlabel(\"rs1131017\")\n", + "\n", + "plt.savefig('TEM_naive_CD4_CD8_v2_v3_rs1131017.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/05_coeqtl_interpretation/LDTRAIT.ipynb b/05_coeqtl_interpretation/LDTRAIT.ipynb new file mode 100644 index 0000000..659b6fa --- /dev/null +++ b/05_coeqtl_interpretation/LDTRAIT.ipynb @@ -0,0 +1,944 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import requests\n", + "from tqdm import tqdm\n", + "import os\n", + "from io import StringIO\n", + "from pathlib import Path" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "savedir = Path(\"./annotated_coeqtl_snps/ldtrait\")\n", + "\n", + "celltypesnps = {}\n", + "merged_dict = pd.read_excel('/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/summary/coeQTLs_6majorcelltypes.filtered.xlsx',\n", + " sheet_name=None)\n", + "for celltype in merged_dict.keys():\n", + " celltypesnps[celltype] = list(merged_dict[celltype]['SNP'].unique())\n", + "allcelltypes_snps = list(set([ele for l in celltypesnps.values() for ele in l]))" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "72" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(allcelltypes_snps)" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 17%|█▋ | 12/72 [05:53<34:19, 34.33s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs62480001\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 18%|█▊ | 13/72 [06:52<39:48, 40.48s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs817352\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 19%|█▉ | 14/72 [07:11<33:43, 34.89s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs80164297\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 24%|██▎ | 17/72 [09:23<37:43, 41.16s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs11772922\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 26%|██▋ | 19/72 [10:43<35:14, 39.89s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs3758833\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 29%|██▉ | 21/72 [11:39<28:28, 33.49s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs11047696\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 31%|███ | 22/72 [12:09<27:15, 32.70s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs9971029\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 32%|███▏ | 23/72 [12:35<24:55, 30.53s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs4949655\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 42%|████▏ | 30/72 [16:56<26:11, 37.41s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs6007595\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 43%|████▎ | 31/72 [17:27<24:21, 35.64s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs7309189\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 44%|████▍ | 32/72 [18:20<27:11, 40.79s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs9657360\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 49%|████▊ | 35/72 [19:43<20:09, 32.70s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs731835\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 53%|█████▎ | 38/72 [26:08<51:53, 91.57s/it] " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs260503\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 58%|█████▊ | 42/72 [28:04<22:59, 46.00s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs13140099\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 60%|█████▉ | 43/72 [28:34<19:51, 41.10s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs2235910\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 71%|███████ | 51/72 [42:19<40:20, 115.26s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs1628955\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 74%|███████▎ | 53/72 [43:55<25:05, 79.24s/it] " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs12443580\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 82%|████████▏ | 59/72 [48:18<09:34, 44.16s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs150458741\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 85%|████████▍ | 61/72 [49:39<07:29, 40.88s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs62423804\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▌ | 62/72 [50:16<06:36, 39.69s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs2267989\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 89%|████████▉ | 64/72 [50:56<03:58, 29.82s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs7605964\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 99%|█████████▊| 71/72 [54:21<00:24, 24.54s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no GWAS: rs1261896\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 72/72 [54:53<00:00, 45.75s/it]\n" + ] + } + ], + "source": [ + "# curl -k -H \"Content-Type: application/json\" -X POST -d '{\"snps\": \"rs3\\nrs4\", \"pop\": \"YRI\", \"r2_d\": \"r2\", \"r2_d_threshold\": \"0.1\", \"window\": \"500000\", \"genome_build\": \"grch37\"}' 'https://ldlink.nci.nih.gov/LDlinkRest/ldtrait?token=faketoken123'\n", + "# snp = \"rs10276099\"\n", + "for snp in tqdm(allcelltypes_snps):\n", + " if os.path.exists(savedir/f'{snp}.tsv'):\n", + " continue\n", + " else:\n", + " params = {\"snps\": snp, \n", + " \"pop\": \"CEU\", \n", + " \"r2_d\": \"r2\", \n", + " \"r2_d_threshold\": \"0.8\", \n", + " \"window\": \"500000\", \n", + " \"genome_build\": \"grch37\"}\n", + " r = requests.request(headers={\"Content-Type\": \"application/json\"},\n", + " method='POST',\n", + " json=params, \n", + " url=f'https://ldlink.nci.nih.gov/LDlinkRest/ldtrait?token={token}')\n", + " try:\n", + " if \"No entries in the GWAS Catalog are identified using the LDtrait search criteria.\" in r.text:\n", + " print('no GWAS:', snp)\n", + " continue\n", + " else:\n", + " r_df = pd.read_csv(StringIO(r.text), sep='\\t')\n", + " r_df.to_csv(savedir/f'{snp}.tsv', sep='\\t', index=False)\n", + " except:\n", + " print('failed entry:', snp)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 72/72 [00:00<00:00, 298.96it/s]\n" + ] + } + ], + "source": [ + "allsnps_inld_gwas_df = pd.DataFrame()\n", + "for snp in tqdm(allcelltypes_snps):\n", + " if os.path.exists(savedir/f'{snp}.tsv'):\n", + " df = pd.read_csv(savedir/f'{snp}.tsv', sep='\\t')\n", + " if 'error' not in df.iloc[0].values[0]:\n", + " allsnps_inld_gwas_df = pd.concat([allsnps_inld_gwas_df, df],\n", + " axis=0)\n", + " \n", + "allsnps_inld_gwas_df.to_csv(savedir/'summary.tsv', sep='\\t', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "allsnps_inld_gwas_df = pd.read_csv(savedir/'summary.tsv', sep='\\t')\n", + "magma_df = pd.read_csv(savedir/'coeqtl_with_gwas_and_magma.tsv', sep='\\t')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
VARIABLEcelltypeSNPgeneTYPENGENESBETABETA_STDSEP...non_effect_allelecurrent_buildfrequencysample_sizezscorepvalueeffect_sizestandard_errorimputation_statusn_cases
0B_rs1131017_RPS26Brs1131017RPS26SET38-0.199320-0.0089520.125420.943980...Ghg380.580808546120.1389370.8895000.0022000.015600original17008.0
1B_rs1131017_RPS26Brs1131017RPS26SET380.2013200.0090420.129050.059382...Ghg380.580808532931.7356820.0826200.0239020.013700original19099.0
2B_rs1131017_RPS26Brs1131017RPS26SET370.1636100.0072560.126080.097201...Ghg380.58080829344-2.3486640.018841-0.0105690.004363originalNaN
3B_rs1131017_RPS26Brs1131017RPS26SET38-0.010395-0.0004670.116680.535490...Ghg380.58080815954-0.3241820.745800-0.0099500.025700original7387.0
4B_rs1131017_RPS26Brs1131017RPS26SET380.2823500.0126770.117060.007937...Ghg380.580808337159-1.5978830.110069-0.0002100.000132originalNaN
\n", + "

5 rows × 44 columns

\n", + "
" + ], + "text/plain": [ + " VARIABLE celltype SNP gene TYPE NGENES BETA \\\n", + "0 B_rs1131017_RPS26 B rs1131017 RPS26 SET 38 -0.199320 \n", + "1 B_rs1131017_RPS26 B rs1131017 RPS26 SET 38 0.201320 \n", + "2 B_rs1131017_RPS26 B rs1131017 RPS26 SET 37 0.163610 \n", + "3 B_rs1131017_RPS26 B rs1131017 RPS26 SET 38 -0.010395 \n", + "4 B_rs1131017_RPS26 B rs1131017 RPS26 SET 38 0.282350 \n", + "\n", + " BETA_STD SE P ... non_effect_allele current_build \\\n", + "0 -0.008952 0.12542 0.943980 ... G hg38 \n", + "1 0.009042 0.12905 0.059382 ... G hg38 \n", + "2 0.007256 0.12608 0.097201 ... G hg38 \n", + "3 -0.000467 0.11668 0.535490 ... G hg38 \n", + "4 0.012677 0.11706 0.007937 ... G hg38 \n", + "\n", + " frequency sample_size zscore pvalue effect_size standard_error \\\n", + "0 0.580808 54612 0.138937 0.889500 0.002200 0.015600 \n", + "1 0.580808 53293 1.735682 0.082620 0.023902 0.013700 \n", + "2 0.580808 29344 -2.348664 0.018841 -0.010569 0.004363 \n", + "3 0.580808 15954 -0.324182 0.745800 -0.009950 0.025700 \n", + "4 0.580808 337159 -1.597883 0.110069 -0.000210 0.000132 \n", + "\n", + " imputation_status n_cases \n", + "0 original 17008.0 \n", + "1 original 19099.0 \n", + "2 original NaN \n", + "3 original 7387.0 \n", + "4 original NaN \n", + "\n", + "[5 rows x 44 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "magma_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "VARIABLE B_rs1131017_RPS26\n", + "celltype B\n", + "SNP rs1131017\n", + "gene RPS26\n", + "TYPE SET\n", + "NGENES 38\n", + "BETA -0.19932\n", + "BETA_STD -0.008952\n", + "SE 0.12542\n", + "P 0.94398\n", + "prefix results/current/magma/AD\n", + "trait AD\n", + "FDR 0.973479\n", + "Tag IGAP_Alzheimer\n", + "PUBMED_Paper_Link http://www.ncbi.nlm.nih.gov/pubmed/24162737\n", + "Phenotype Alzheimer\n", + "RSID rs10876864\n", + "RSALIAS rs57455456\n", + "CHR 12\n", + "POS1 56435929\n", + "POS2 56401085\n", + "DIST -34844\n", + "R2 0.991789\n", + "D 0.240643\n", + "DPRIME 0.995886\n", + "MAJOR A\n", + "MINOR G\n", + "MAF 0.408549\n", + "CMMB 0.155229\n", + "CM 71.092406\n", + "panel_variant_id chr12_56007301_G_A_b38\n", + "chromosome chr12\n", + "position 56007301\n", + "effect_allele A\n", + "non_effect_allele G\n", + "current_build hg38\n", + "frequency 0.580808\n", + "sample_size 54612\n", + "zscore 0.138937\n", + "pvalue 0.8895\n", + "effect_size 0.0022\n", + "standard_error 0.0156\n", + "imputation_status original\n", + "n_cases 17008.0\n", + "Name: 0, dtype: object" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "magma_df.iloc[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.041321, 'Inflammatory Bowel Disease'],\n", + " [0.030935, 'Non-cancer illness code, self-reported: psoriasis'],\n", + " [0.0090688,\n", + " 'Non-cancer illness code, self-reported: schizophrenia'],\n", + " [0.0042454,\n", + " 'Overall breast cancer in Europeans, imputed genotype'],\n", + " [0.032584, 'Diagnoses - main ICD10: G40 Epilepsy'],\n", + " [0.0013766,\n", + " 'Estrogen-receptor-negative breast cancer in Europeans, imputed genotype'],\n", + " [0.025212,\n", + " 'Non-cancer illness code, self-reported: high cholesterol']],\n", + " dtype=object)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "magma_df[(magma_df['SNP']=='rs4147638') & (magma_df['P']<0.05)][['P', 'Phenotype']].values" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
QueryGWAS TraitRS NumberPosition (GRCh37)AllelesR2D'Risk AlleleEffect Size (95% CI)Beta or ORP-value
0rs2954654Type 2 diabetesrs2294120chr8:146003567A=0.52, G=0.480.8462950.9578950.4558792997592680.044300.029-0.062.000000e-08
1rs4840568Albumin-globulin ratiors2409780chr8:11337587C=0.237, T=0.7630.8971561.000000NR0.046040.035-0.0571.000000e-16
2rs4840568Non-albumin protein levelsrs2409780chr8:11337587C=0.237, T=0.7630.8971561.000000NR0.044560.034-0.0551.000000e-15
3rs4840568Rheumatoid arthritisrs2618444chr8:11338370A=0.763, C=0.2370.8971561.000000NR0.100500.072-0.1297.000000e-12
4rs4840568Systemic lupus erythematosusrs2618444chr8:11338370A=0.763, C=0.2370.8971561.000000NR1.360001.22-1.517.000000e-09
\n", + "
" + ], + "text/plain": [ + " Query GWAS Trait RS Number Position (GRCh37) \\\n", + "0 rs2954654 Type 2 diabetes rs2294120 chr8:146003567 \n", + "1 rs4840568 Albumin-globulin ratio rs2409780 chr8:11337587 \n", + "2 rs4840568 Non-albumin protein levels rs2409780 chr8:11337587 \n", + "3 rs4840568 Rheumatoid arthritis rs2618444 chr8:11338370 \n", + "4 rs4840568 Systemic lupus erythematosus rs2618444 chr8:11338370 \n", + "\n", + " Alleles R2 D' Risk Allele \\\n", + "0 A=0.52, G=0.48 0.846295 0.957895 0.455879299759268 \n", + "1 C=0.237, T=0.763 0.897156 1.000000 NR \n", + "2 C=0.237, T=0.763 0.897156 1.000000 NR \n", + "3 A=0.763, C=0.237 0.897156 1.000000 NR \n", + "4 A=0.763, C=0.237 0.897156 1.000000 NR \n", + "\n", + " Effect Size (95% CI) Beta or OR P-value \n", + "0 0.04430 0.029-0.06 2.000000e-08 \n", + "1 0.04604 0.035-0.057 1.000000e-16 \n", + "2 0.04456 0.034-0.055 1.000000e-15 \n", + "3 0.10050 0.072-0.129 7.000000e-12 \n", + "4 1.36000 1.22-1.51 7.000000e-09 " + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "allsnps_inld_gwas_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "allsnps_inld_gwas_df.to_excel('./coeqtl_mapping/output/snps_in_ld_with_gwas_catelogue.xlsx')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/05_coeqtl_interpretation/LD_description.R b/05_coeqtl_interpretation/LD_description.R new file mode 100644 index 0000000..8e1d5e4 --- /dev/null +++ b/05_coeqtl_interpretation/LD_description.R @@ -0,0 +1,164 @@ +#install.packages("LDlinkR") + +library('LDlinkR') + +cells <- c("B", "CD4T", "CD8T", "NK", "DC", "monocyte") + +output_file <- c() + +# To run this scipt file with LD structure of given population is needed. After all the significant SNPs aremacthed with other SNPs in hight LD. ALternatively, we could also use LD package, which make the mapping of LD as well. +outPath <- '/groups/umcg-lld/tmp01/projects/1MCellRNAseq/GRN_reconstruction/ongoing/coeqtl_mapping/output/filtered_results/' + +for (cell in cells){ + name <- paste(outPath, "UT_", cell, '/coeqtls_fullresults.sig.tsv.gz', sep="") + tab <- read.table(name, sep='\t', header=T ) + # SNP <- as.data.frame(tab[,'SNP']) + # colnames(SNP) <- "SNP" + SNP <- (tab[,'SNP']) + output_file <- c(SNP, output_file) +} + +length(output_file) + +output_file <- unique(output_file) +length(output_file) + +LD_Score <- LDexpress(output_file[1], + pop = "CEU", + tissue = "ALL", + r2d = "r2", + r2d_threshold = 0.8, + p_threshold = 0.1, + win_size = 500000, + token = "d1bfc9a7a30b", + file = FALSE +) + +for (i in output_file[63:length(output_file)] ){ +print(i) +LD_Score_ind <- LDexpress(i, + pop = "CEU", + tissue = "ALL", + r2d = "r2", + r2d_threshold = 0.8, + p_threshold = 0.1, + win_size = 500000, + token = "d1bfc9a7a30b", + file = FALSE +) +LD_Score <- rbind(LD_Score_ind,LD_Score) +} + +LD_Score_subset <- subset(LD_Score, select = c('Query',"RS_ID","R2" )) +dim(LD_Score_subset) +LD_Score_subset <- LD_Score_subset[!duplicated(LD_Score_subset$RS_ID),] +dim(LD_Score_subset) + + +write.table(LD_Score,'/groups/umcg-franke-scrna/tmp01/projects/sc-eqtlgen-consortium-pipeline/ongoing/wg3-QTL-mapping/GRN_downstream_analysis/sign_LD_SNPs_18_12.txt', quote = F, col.names = F, row.names = F, sep='\t') + +write.table(LD_Score_subset,'/groups/umcg-franke-scrna/tmp01/projects/sc-eqtlgen-consortium-pipeline/ongoing/wg3-QTL-mapping/GRN_downstream_analysis/sign_LD_SNPs_subset_18_12.txt', quote = F, col.names = F, row.names = F, sep='\t') + +######### LDtrait + + + +LD_Score <- LDtrait(output_file[2], + pop = "CEU", + r2d = "r2", + r2d_threshold = 0.8, + token = "d1bfc9a7a30b", + file = FALSE +) +LD_Score + +for (i in output_file){ + print(i) + LD_Score_ind <- LDtrait(i, + pop = "CEU", + r2d = "r2", + r2d_threshold = 0.8, + token = "d1bfc9a7a30b", + file = FALSE + ) + LD_Score <- rbind(LD_Score_ind,LD_Score) +} + +LD_Score_ind <- LDtrait(output_file[1:49], + pop = "CEU", + r2d = "r2", + r2d_threshold = 0.8, + token = "d1bfc9a7a30b", + file = FALSE +) + +LD_Score_ind2 <- LDtrait(output_file[50:72], + pop = "CEU", + r2d = "r2", + r2d_threshold = 0.8, + token = "d1bfc9a7a30b", + file = FALSE +) +LD_Score <- rbind(LD_Score_ind,LD_Score_ind2) + +# for (i in output_file){ +# print(i) +# if(i %in% LD_Score$Query){ +# print('SNP is analyzed') +# } else { +# +# tryCatch({ +# LD_Score_ind <- LDtrait(i, +# pop = "CEU", +# r2d = "r2", +# r2d_threshold = 0.8, +# token = "d1bfc9a7a30b", +# file = FALSE +# ) +# LD_Score <- rbind(LD_Score_ind,LD_Score) +# }, error = function(e){ +# output_file <- output_file[-i] +# print(length(output_file)) +# }) +# } +# } + +# LD_Score_subset <- subset(LD_Score, select = c('Query',"RS_ID","R2" )) +# dim(LD_Score_subset) +# LD_Score_subset <- LD_Score_subset[!duplicated(LD_Score_subset$RS_ID),] +# dim(LD_Score_subset) + + +write.table(LD_Score,'/groups/umcg-franke-scrna/tmp01/projects/sc-eqtlgen-consortium-pipeline/ongoing/wg3-QTL-mapping/GRN_downstream_analysis/sign_LD_SNPs_23_01.txt', quote = F, col.names = F, row.names = F, sep='\t') + + +#write.table(output_file,'/groups/umcg-franke-scrna/tmp01/projects/sc-eqtlgen-consortium-pipeline/ongoing/wg3-QTL-mapping/GRN_downstream_analysis/sign_SNPs_17_12.txt', quote = F, col.names = F, row.names = F, sep='\t') + + + +expand_ld_table <- function(ld){ + # double the ld table, so we can easily select just from the left or right + ld_copy <- ld[, c('CHR_B', 'BP_B', 'SNP_B', 'CHR_A', 'BP_A', 'SNP_A', 'R2')] + colnames(ld_copy) <- c('CHR_A', 'BP_A', 'SNP_A', 'CHR_B', 'BP_B', 'SNP_B', 'R2') + ld <- rbind(ld, ld_copy) + # add each SNP in max LD with itself by copying the unique snps on the left and right + ld_left <- ld[, c('CHR_A', 'BP_A', 'SNP_A')] + ld_right <- ld[, c('CHR_B', 'BP_B', 'SNP_B')] + colnames(ld_right) <- c('CHR_A', 'BP_A', 'SNP_A') + ld_left_right <- rbind(ld_left, ld_right) + ld_left_right <- unique(ld_left_right) + ld_self <- cbind(ld_left_right, ld_left_right) + colnames(ld_self) <- c('CHR_A', 'BP_A', 'SNP_A', 'CHR_B', 'BP_B', 'SNP_B') + # ld with itself is off course 1 + ld_self$R2 <- 1 + # add to existing ld table + ld <- rbind(ld, ld_self) + return(ld) +} +# location of the LD file +ld_loc <- '/groups/umcg-bios/tmp01/projects/1M_cells_scRNAseq/ongoing/LD_DB/genotypes_eur/EUR.chrAll.phase3_shapeit2_mvncall_integrated_v5b.20130502.genotypes.positions_plus_RSID.plink1.ldwindow10000.r2_075.ld' +# make the ld table a bit easier to work with +#ld_loc <- read.table(ld_loc, sep='\t') +ld <- expand_ld_table(ld_loc) +# confine the ld table to eQTL snps on the left <- subset here to what SNPs you need the LD of, with the other SNPs +ld <- ld[ld$SNP_A %in% eqtls$V1, ] \ No newline at end of file diff --git a/05_coeqtl_interpretation/MS1_Libraries.r b/05_coeqtl_interpretation/MS1_Libraries.r new file mode 100644 index 0000000..9018e46 --- /dev/null +++ b/05_coeqtl_interpretation/MS1_Libraries.r @@ -0,0 +1,10 @@ +### Libraries for all the project scripts +library(stringr, quietly = TRUE, verbose = FALSE) +library(dplyr) +library(data.table) +library(tidyverse) +library('reshape2') +library(caret) +library('gprofiler2') +library('coloc') +library('biomaRt') diff --git a/05_coeqtl_interpretation/R1_TRANSFAC_enrichment.ipynb b/05_coeqtl_interpretation/R1_TRANSFAC_enrichment.ipynb new file mode 100644 index 0000000..9b30961 --- /dev/null +++ b/05_coeqtl_interpretation/R1_TRANSFAC_enrichment.ipynb @@ -0,0 +1,3005 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 161, + "id": "8839a2ee-257d-4182-8c82-01d012d8f888", + "metadata": {}, + "outputs": [], + "source": [ + "### Execute TRANFAC enrichment analysis based on co-eqtl results" + ] + }, + { + "cell_type": "markdown", + "id": "26bafe98-a70d-4052-ba5d-fca1b4115633", + "metadata": { + "tags": [] + }, + "source": [ + "# Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "id": "946a1c00-83e8-4260-9093-e79e373c1fe0", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "source('MS1_Libraries.r')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cb04a3b3-e6f5-4458-8b8e-c925813cee89", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "6b9b799d-d266-4fc8-a49b-ebb550fa64fd", + "metadata": {}, + "source": [ + "# Parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "id": "35c8b11a-e882-4bbb-9706-6c13b9c522f1", + "metadata": {}, + "outputs": [], + "source": [ + "### Path to input data" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "id": "c517df12-ff3c-492e-a0a3-53d7cbdb945d", + "metadata": {}, + "outputs": [], + "source": [ + "path<-\"\"\n", + "outdir<-\"\"" + ] + }, + { + "cell_type": "markdown", + "id": "309ead5e-4bbd-4370-8089-5dfa0c53a194", + "metadata": {}, + "source": [ + "# Data " + ] + }, + { + "cell_type": "markdown", + "id": "759d077f-409c-4e52-857c-47af7be21134", + "metadata": {}, + "source": [ + "## Enrichment Data Input" + ] + }, + { + "cell_type": "code", + "execution_count": 165, + "id": "8dfbd479-4b4a-4abd-828b-c668708fa7e9", + "metadata": {}, + "outputs": [], + "source": [ + "### Exemplary data input load for a cell-type" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "id": "4bbb56ca-273c-42dd-857c-be3d358ded78", + "metadata": {}, + "outputs": [], + "source": [ + "cell_type_var = \"CD4T\"\n", + "# c(\"CD4T\",\"CD8T\",\"monocyte\",\"NK\",\"B\",\"DC\")" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "id": "54fb40a9-c9c6-4f88-9ab8-fc98fa60d279", + "metadata": {}, + "outputs": [], + "source": [ + "for(cell_type in cell_type_var){\n", + "\n", + " coeqtls <- fread(paste0(path, \"UT_\",cell_type, \n", + " \"_coeqtls_fullresults_fixed.all.tsv.gz\"))\n", + " coeqtls$gene1<-gsub(\";.*\",\"\",coeqtls$Gene)\n", + " coeqtls$gene2<-gsub(\".*;\",\"\",coeqtls$Gene)\n", + " coeqtls$second_gene<-ifelse(coeqtls$gene1 == coeqtls$eqtlgen, coeqtls$gene2,\n", + " coeqtls$gene1)\n", + " coeqtls$gene1<-NULL\n", + " coeqtls$gene2<-NULL\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "id": "7e950293-2939-4bd8-905d-729dd8c1a278", + "metadata": {}, + "outputs": [], + "source": [ + "#unique(coeqtls$eqtlgene)" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "id": "78dd2696-0f6c-40a8-93c4-0f1d6b3b99a0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "372" + ], + "text/latex": [ + "372" + ], + "text/markdown": [ + "372" + ], + "text/plain": [ + "[1] 372" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(coeqtls[(coeqtls$eqtlgene == 'RPS26') & (coeqtls$gene2_isSig == TRUE),c('eqtlgene', 'second_gene')])\n", + "\n", + "# validity check --> 372 significant co-egenes for RPS26" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "id": "1535e95a-ec90-42e9-a5a7-de98dea38ea8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "742" + ], + "text/latex": [ + "742" + ], + "text/markdown": [ + "742" + ], + "text/plain": [ + "[1] 742" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(coeqtls[(coeqtls$eqtlgene == 'RPS26'),c('eqtlgene', 'second_gene')])\n", + "# overall 742 --> those that would not haven been tested" + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "id": "599506b1-e79b-4c3a-9c38-b32dd14bf5ad", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 38
snp_genepairGeneGeneChrGenePosGeneStrandGeneSymbolSNPSNPChrSNPPosSNPAllelesmultipletestPeqtlgenesnp_eqtlgenesnp_beta_shape1snp_beta_shape2snp_pvalbetasnp_qvalgene2_pthresholdgene2_isSigsecond_gene
<chr><chr><int><int><lgl><chr><chr><int><int><chr><dbl><chr><chr><dbl><dbl><dbl><dbl><dbl><lgl><chr>
rs11587831_C1orf86;NUDT22C1orf86;NUDT2212115903NAC1orf86;NUDT22rs1158783112110848T/G0.6354470C1orf86rs11587831_C1orf861.197903127.5550.50449890.70122734.539067e-05FALSENUDT22
rs11587831_C1orf86;SDHC C1orf86;SDHC 12115903NAC1orf86;SDHC rs1158783112110848T/G0.9144163C1orf86rs11587831_C1orf861.197903127.5550.50449890.70122734.539067e-05FALSESDHC
\n" + ], + "text/latex": [ + "A data.table: 2 × 38\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " snp\\_genepair & Gene & GeneChr & GenePos & GeneStrand & GeneSymbol & SNP & SNPChr & SNPPos & SNPAlleles & ⋯ & multipletestP & eqtlgene & snp\\_eqtlgene & snp\\_beta\\_shape1 & snp\\_beta\\_shape2 & snp\\_pvalbeta & snp\\_qval & gene2\\_pthreshold & gene2\\_isSig & second\\_gene\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t rs11587831\\_C1orf86;NUDT22 & C1orf86;NUDT22 & 1 & 2115903 & NA & C1orf86;NUDT22 & rs11587831 & 1 & 2110848 & T/G & ⋯ & 0.6354470 & C1orf86 & rs11587831\\_C1orf86 & 1.197903 & 127.555 & 0.5044989 & 0.7012273 & 4.539067e-05 & FALSE & NUDT22\\\\\n", + "\t rs11587831\\_C1orf86;SDHC & C1orf86;SDHC & 1 & 2115903 & NA & C1orf86;SDHC & rs11587831 & 1 & 2110848 & T/G & ⋯ & 0.9144163 & C1orf86 & rs11587831\\_C1orf86 & 1.197903 & 127.555 & 0.5044989 & 0.7012273 & 4.539067e-05 & FALSE & SDHC \\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 38\n", + "\n", + "| snp_genepair <chr> | Gene <chr> | GeneChr <int> | GenePos <int> | GeneStrand <lgl> | GeneSymbol <chr> | SNP <chr> | SNPChr <int> | SNPPos <int> | SNPAlleles <chr> | ⋯ ⋯ | multipletestP <dbl> | eqtlgene <chr> | snp_eqtlgene <chr> | snp_beta_shape1 <dbl> | snp_beta_shape2 <dbl> | snp_pvalbeta <dbl> | snp_qval <dbl> | gene2_pthreshold <dbl> | gene2_isSig <lgl> | second_gene <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| rs11587831_C1orf86;NUDT22 | C1orf86;NUDT22 | 1 | 2115903 | NA | C1orf86;NUDT22 | rs11587831 | 1 | 2110848 | T/G | ⋯ | 0.6354470 | C1orf86 | rs11587831_C1orf86 | 1.197903 | 127.555 | 0.5044989 | 0.7012273 | 4.539067e-05 | FALSE | NUDT22 |\n", + "| rs11587831_C1orf86;SDHC | C1orf86;SDHC | 1 | 2115903 | NA | C1orf86;SDHC | rs11587831 | 1 | 2110848 | T/G | ⋯ | 0.9144163 | C1orf86 | rs11587831_C1orf86 | 1.197903 | 127.555 | 0.5044989 | 0.7012273 | 4.539067e-05 | FALSE | SDHC |\n", + "\n" + ], + "text/plain": [ + " snp_genepair Gene GeneChr GenePos GeneStrand\n", + "1 rs11587831_C1orf86;NUDT22 C1orf86;NUDT22 1 2115903 NA \n", + "2 rs11587831_C1orf86;SDHC C1orf86;SDHC 1 2115903 NA \n", + " GeneSymbol SNP SNPChr SNPPos SNPAlleles ⋯ multipletestP eqtlgene\n", + "1 C1orf86;NUDT22 rs11587831 1 2110848 T/G ⋯ 0.6354470 C1orf86 \n", + "2 C1orf86;SDHC rs11587831 1 2110848 T/G ⋯ 0.9144163 C1orf86 \n", + " snp_eqtlgene snp_beta_shape1 snp_beta_shape2 snp_pvalbeta snp_qval \n", + "1 rs11587831_C1orf86 1.197903 127.555 0.5044989 0.7012273\n", + "2 rs11587831_C1orf86 1.197903 127.555 0.5044989 0.7012273\n", + " gene2_pthreshold gene2_isSig second_gene\n", + "1 4.539067e-05 FALSE NUDT22 \n", + "2 4.539067e-05 FALSE SDHC " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(coeqtls,2)" + ] + }, + { + "cell_type": "markdown", + "id": "e1a2e697-badf-4802-ad22-26a5ac2a9101", + "metadata": {}, + "source": [ + "## ReMap Results for comparison" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "id": "128f1402-b5bf-411d-b812-5dbed446f4a8", + "metadata": {}, + "outputs": [], + "source": [ + "## Load supplementary table (with ReMap Results to compare):\n", + "# \"supptable15.TFenrichment_co-eGenes.xlsx - Sheet1.csv\"" + ] + }, + { + "cell_type": "code", + "execution_count": 174, + "id": "4c21cd7a-c9da-4c2b-8877-bac38c095960", + "metadata": {}, + "outputs": [], + "source": [ + "old_enrichments = read.csv( paste0(path, \"supptable15.TFenrichment_co-eGenes.xlsx - Sheet1.csv\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "id": "8b28f114-298e-4170-9e98-0644683d93fd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "963" + ], + "text/latex": [ + "963" + ], + "text/markdown": [ + "963" + ], + "text/plain": [ + "[1] 963" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(old_enrichments)" + ] + }, + { + "cell_type": "code", + "execution_count": 176, + "id": "f159bb08-15b4-4a74-86a0-dd723fcc83b0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 13
Cell.typeeQTL..SNP.eGene.TFTF.is.a.co.eGene.enrichment.p.valueX..TF.overlap...co.eGeneX..TF.overlap...backgroundX..no.TF.overlap...co.eGeneX..background.gene...not.co.eGeneenrichment.fdreQTL.SNPSNP.overlaps.TF.Names.of.overlapping.SNPs
<chr><chr><chr><lgl><dbl><int><int><int><int><dbl><chr><lgl><chr>
1CD4Trs111454690_HLA-DRB5CDK8 FALSE9.630369e-061452778 85151.640373e-03rs111454690FALSE
2CD4Trs111454690_HLA-DRB5SNRNP70FALSE1.209254e-09118 649106446.179288e-07rs111454690FALSE
\n" + ], + "text/latex": [ + "A data.frame: 2 × 13\n", + "\\begin{tabular}{r|lllllllllllll}\n", + " & Cell.type & eQTL..SNP.eGene. & TF & TF.is.a.co.eGene. & enrichment.p.value & X..TF.overlap...co.eGene & X..TF.overlap...background & X..no.TF.overlap...co.eGene & X..background.gene...not.co.eGene & enrichment.fdr & eQTL.SNP & SNP.overlaps.TF. & Names.of.overlapping.SNPs\\\\\n", + " & & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t1 & CD4T & rs111454690\\_HLA-DRB5 & CDK8 & FALSE & 9.630369e-06 & 14 & 5 & 2778 & 8515 & 1.640373e-03 & rs111454690 & FALSE & \\\\\n", + "\t2 & CD4T & rs111454690\\_HLA-DRB5 & SNRNP70 & FALSE & 1.209254e-09 & 11 & 8 & 649 & 10644 & 6.179288e-07 & rs111454690 & FALSE & \\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 13\n", + "\n", + "| | Cell.type <chr> | eQTL..SNP.eGene. <chr> | TF <chr> | TF.is.a.co.eGene. <lgl> | enrichment.p.value <dbl> | X..TF.overlap...co.eGene <int> | X..TF.overlap...background <int> | X..no.TF.overlap...co.eGene <int> | X..background.gene...not.co.eGene <int> | enrichment.fdr <dbl> | eQTL.SNP <chr> | SNP.overlaps.TF. <lgl> | Names.of.overlapping.SNPs <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| 1 | CD4T | rs111454690_HLA-DRB5 | CDK8 | FALSE | 9.630369e-06 | 14 | 5 | 2778 | 8515 | 1.640373e-03 | rs111454690 | FALSE | |\n", + "| 2 | CD4T | rs111454690_HLA-DRB5 | SNRNP70 | FALSE | 1.209254e-09 | 11 | 8 | 649 | 10644 | 6.179288e-07 | rs111454690 | FALSE | |\n", + "\n" + ], + "text/plain": [ + " Cell.type eQTL..SNP.eGene. TF TF.is.a.co.eGene. enrichment.p.value\n", + "1 CD4T rs111454690_HLA-DRB5 CDK8 FALSE 9.630369e-06 \n", + "2 CD4T rs111454690_HLA-DRB5 SNRNP70 FALSE 1.209254e-09 \n", + " X..TF.overlap...co.eGene X..TF.overlap...background\n", + "1 14 5 \n", + "2 11 8 \n", + " X..no.TF.overlap...co.eGene X..background.gene...not.co.eGene enrichment.fdr\n", + "1 2778 8515 1.640373e-03 \n", + "2 649 10644 6.179288e-07 \n", + " eQTL.SNP SNP.overlaps.TF. Names.of.overlapping.SNPs\n", + "1 rs111454690 FALSE \n", + "2 rs111454690 FALSE " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(old_enrichments,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "id": "c7fc8d4c-f820-4793-b58d-b194e56d6b4c", + "metadata": {}, + "outputs": [], + "source": [ + "## Check out some results of ReMap mentioned in paper" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "id": "4b439eaa-c15a-4917-9ae8-4df0afd7475a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "0.0132347204977557" + ], + "text/latex": [ + "0.0132347204977557" + ], + "text/markdown": [ + "0.0132347204977557" + ], + "text/plain": [ + "[1] 0.01323472" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "max(old_enrichments$enrichment.p.value)" + ] + }, + { + "cell_type": "code", + "execution_count": 179, + "id": "7899b194-8054-4a2a-b9d7-3e051f7bc380", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "0.0498313855060291" + ], + "text/latex": [ + "0.0498313855060291" + ], + "text/markdown": [ + "0.0498313855060291" + ], + "text/plain": [ + "[1] 0.04983139" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "max(old_enrichments$enrichment.fdr)\n", + "# check to use same cut-off for TRANSFAC --> 0.05" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "id": "384f4ce7-13c5-4230-a0d7-5aaa262d1112", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'rs111454690_HLA-DRB5'
  2. 'rs1131017_RPS26'
  3. 'rs4147638_SMDT1'
  4. 'rs7605824_SH3YL1'
  5. 'rs7632486_CMTM8'
  6. 'rs9271520_HLA-DQA2'
  7. 'rs1131017_RPS26_positive'
  8. 'rs1131017_RPS26_negative'
  9. 'rs6708265_PASK'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'rs111454690\\_HLA-DRB5'\n", + "\\item 'rs1131017\\_RPS26'\n", + "\\item 'rs4147638\\_SMDT1'\n", + "\\item 'rs7605824\\_SH3YL1'\n", + "\\item 'rs7632486\\_CMTM8'\n", + "\\item 'rs9271520\\_HLA-DQA2'\n", + "\\item 'rs1131017\\_RPS26\\_positive'\n", + "\\item 'rs1131017\\_RPS26\\_negative'\n", + "\\item 'rs6708265\\_PASK'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'rs111454690_HLA-DRB5'\n", + "2. 'rs1131017_RPS26'\n", + "3. 'rs4147638_SMDT1'\n", + "4. 'rs7605824_SH3YL1'\n", + "5. 'rs7632486_CMTM8'\n", + "6. 'rs9271520_HLA-DQA2'\n", + "7. 'rs1131017_RPS26_positive'\n", + "8. 'rs1131017_RPS26_negative'\n", + "9. 'rs6708265_PASK'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"rs111454690_HLA-DRB5\" \"rs1131017_RPS26\" \n", + "[3] \"rs4147638_SMDT1\" \"rs7605824_SH3YL1\" \n", + "[5] \"rs7632486_CMTM8\" \"rs9271520_HLA-DQA2\" \n", + "[7] \"rs1131017_RPS26_positive\" \"rs1131017_RPS26_negative\"\n", + "[9] \"rs6708265_PASK\" " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(old_enrichments[,c( 'eQTL..SNP.eGene.')])" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "id": "6810f798-9fa5-4aea-9954-b517aa0b49b8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "9" + ], + "text/latex": [ + "9" + ], + "text/markdown": [ + "9" + ], + "text/plain": [ + "[1] 9" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(unique(old_enrichments[,c( 'eQTL..SNP.eGene.')])) # subtract positive and negative case for RPS26 --> yields the 7 mentioned in paper for which there were significant TF enrichments" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "id": "528cc4ad-2052-42b3-a6a4-b47bcfaa2bbb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'rs1131017_RPS26'
  2. 'rs4147638_SMDT1'
  3. 'rs7605824_SH3YL1'
  4. 'rs9271520_HLA-DQA2'
  5. 'rs1131017_RPS26_positive'
  6. 'rs1131017_RPS26_negative'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'rs1131017\\_RPS26'\n", + "\\item 'rs4147638\\_SMDT1'\n", + "\\item 'rs7605824\\_SH3YL1'\n", + "\\item 'rs9271520\\_HLA-DQA2'\n", + "\\item 'rs1131017\\_RPS26\\_positive'\n", + "\\item 'rs1131017\\_RPS26\\_negative'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'rs1131017_RPS26'\n", + "2. 'rs4147638_SMDT1'\n", + "3. 'rs7605824_SH3YL1'\n", + "4. 'rs9271520_HLA-DQA2'\n", + "5. 'rs1131017_RPS26_positive'\n", + "6. 'rs1131017_RPS26_negative'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"rs1131017_RPS26\" \"rs4147638_SMDT1\" \n", + "[3] \"rs7605824_SH3YL1\" \"rs9271520_HLA-DQA2\" \n", + "[5] \"rs1131017_RPS26_positive\" \"rs1131017_RPS26_negative\"" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(old_enrichments[old_enrichments$SNP.overlaps.TF. == TRUE,c('eQTL..SNP.eGene.')]) # results in the 4 pairs mentioned in paper" + ] + }, + { + "cell_type": "code", + "execution_count": 183, + "id": "1e28ceb8-6515-4561-ac51-f1ab0860ad36", + "metadata": {}, + "outputs": [], + "source": [ + "## rs1131017–RPS26 examples: RMB39, TCF7, LEF1, KLF6, CD74, MAF" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "id": "0a75dc32-fc85-4e53-ad4a-fa630f0460d4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 7 × 13
Cell.typeeQTL..SNP.eGene.TFTF.is.a.co.eGene.enrichment.p.valueX..TF.overlap...co.eGeneX..TF.overlap...backgroundX..no.TF.overlap...co.eGeneX..background.gene...not.co.eGeneenrichment.fdreQTL.SNPSNP.overlaps.TF.Names.of.overlapping.SNPs
<chr><chr><chr><lgl><dbl><int><int><int><int><dbl><chr><lgl><chr>
19CD4T rs1131017_RPS26MAF TRUE3.654557e-06 92280174795465.187441e-05rs1131017TRUErs1131017
34CD4T rs1131017_RPS26RBM39TRUE2.128100e-06244128604152523.295330e-05rs1131017TRUErs10876864,rs1131017,rs7297175
50CD4T rs1131017_RPS26TCF7 TRUE7.468026e-03134238337979143.052929e-02rs1131017TRUErs1131017
84CD4T rs1131017_RPS26LEF1 TRUE4.859147e-05153219352977644.598193e-04rs1131017TRUErs10876864,rs1131017
116CD4T rs1131017_RPS26KLF6 TRUE1.597304e-03139233338579088.236538e-03rs1131017TRUErs10876864,rs1131017,rs7297175
119CD4T rs1131017_RPS26CD74 TRUE3.954534e-06172200391573785.461532e-05rs1131017TRUErs1131017
730monocyters1131017_RPS26CD74 TRUE7.422301e-03 63 69352660283.134542e-02rs1131017TRUErs1131017
\n" + ], + "text/latex": [ + "A data.frame: 7 × 13\n", + "\\begin{tabular}{r|lllllllllllll}\n", + " & Cell.type & eQTL..SNP.eGene. & TF & TF.is.a.co.eGene. & enrichment.p.value & X..TF.overlap...co.eGene & X..TF.overlap...background & X..no.TF.overlap...co.eGene & X..background.gene...not.co.eGene & enrichment.fdr & eQTL.SNP & SNP.overlaps.TF. & Names.of.overlapping.SNPs\\\\\n", + " & & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t19 & CD4T & rs1131017\\_RPS26 & MAF & TRUE & 3.654557e-06 & 92 & 280 & 1747 & 9546 & 5.187441e-05 & rs1131017 & TRUE & rs1131017 \\\\\n", + "\t34 & CD4T & rs1131017\\_RPS26 & RBM39 & TRUE & 2.128100e-06 & 244 & 128 & 6041 & 5252 & 3.295330e-05 & rs1131017 & TRUE & rs10876864,rs1131017,rs7297175\\\\\n", + "\t50 & CD4T & rs1131017\\_RPS26 & TCF7 & TRUE & 7.468026e-03 & 134 & 238 & 3379 & 7914 & 3.052929e-02 & rs1131017 & TRUE & rs1131017 \\\\\n", + "\t84 & CD4T & rs1131017\\_RPS26 & LEF1 & TRUE & 4.859147e-05 & 153 & 219 & 3529 & 7764 & 4.598193e-04 & rs1131017 & TRUE & rs10876864,rs1131017 \\\\\n", + "\t116 & CD4T & rs1131017\\_RPS26 & KLF6 & TRUE & 1.597304e-03 & 139 & 233 & 3385 & 7908 & 8.236538e-03 & rs1131017 & TRUE & rs10876864,rs1131017,rs7297175\\\\\n", + "\t119 & CD4T & rs1131017\\_RPS26 & CD74 & TRUE & 3.954534e-06 & 172 & 200 & 3915 & 7378 & 5.461532e-05 & rs1131017 & TRUE & rs1131017 \\\\\n", + "\t730 & monocyte & rs1131017\\_RPS26 & CD74 & TRUE & 7.422301e-03 & 63 & 69 & 3526 & 6028 & 3.134542e-02 & rs1131017 & TRUE & rs1131017 \\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 7 × 13\n", + "\n", + "| | Cell.type <chr> | eQTL..SNP.eGene. <chr> | TF <chr> | TF.is.a.co.eGene. <lgl> | enrichment.p.value <dbl> | X..TF.overlap...co.eGene <int> | X..TF.overlap...background <int> | X..no.TF.overlap...co.eGene <int> | X..background.gene...not.co.eGene <int> | enrichment.fdr <dbl> | eQTL.SNP <chr> | SNP.overlaps.TF. <lgl> | Names.of.overlapping.SNPs <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| 19 | CD4T | rs1131017_RPS26 | MAF | TRUE | 3.654557e-06 | 92 | 280 | 1747 | 9546 | 5.187441e-05 | rs1131017 | TRUE | rs1131017 |\n", + "| 34 | CD4T | rs1131017_RPS26 | RBM39 | TRUE | 2.128100e-06 | 244 | 128 | 6041 | 5252 | 3.295330e-05 | rs1131017 | TRUE | rs10876864,rs1131017,rs7297175 |\n", + "| 50 | CD4T | rs1131017_RPS26 | TCF7 | TRUE | 7.468026e-03 | 134 | 238 | 3379 | 7914 | 3.052929e-02 | rs1131017 | TRUE | rs1131017 |\n", + "| 84 | CD4T | rs1131017_RPS26 | LEF1 | TRUE | 4.859147e-05 | 153 | 219 | 3529 | 7764 | 4.598193e-04 | rs1131017 | TRUE | rs10876864,rs1131017 |\n", + "| 116 | CD4T | rs1131017_RPS26 | KLF6 | TRUE | 1.597304e-03 | 139 | 233 | 3385 | 7908 | 8.236538e-03 | rs1131017 | TRUE | rs10876864,rs1131017,rs7297175 |\n", + "| 119 | CD4T | rs1131017_RPS26 | CD74 | TRUE | 3.954534e-06 | 172 | 200 | 3915 | 7378 | 5.461532e-05 | rs1131017 | TRUE | rs1131017 |\n", + "| 730 | monocyte | rs1131017_RPS26 | CD74 | TRUE | 7.422301e-03 | 63 | 69 | 3526 | 6028 | 3.134542e-02 | rs1131017 | TRUE | rs1131017 |\n", + "\n" + ], + "text/plain": [ + " Cell.type eQTL..SNP.eGene. TF TF.is.a.co.eGene. enrichment.p.value\n", + "19 CD4T rs1131017_RPS26 MAF TRUE 3.654557e-06 \n", + "34 CD4T rs1131017_RPS26 RBM39 TRUE 2.128100e-06 \n", + "50 CD4T rs1131017_RPS26 TCF7 TRUE 7.468026e-03 \n", + "84 CD4T rs1131017_RPS26 LEF1 TRUE 4.859147e-05 \n", + "116 CD4T rs1131017_RPS26 KLF6 TRUE 1.597304e-03 \n", + "119 CD4T rs1131017_RPS26 CD74 TRUE 3.954534e-06 \n", + "730 monocyte rs1131017_RPS26 CD74 TRUE 7.422301e-03 \n", + " X..TF.overlap...co.eGene X..TF.overlap...background\n", + "19 92 280 \n", + "34 244 128 \n", + "50 134 238 \n", + "84 153 219 \n", + "116 139 233 \n", + "119 172 200 \n", + "730 63 69 \n", + " X..no.TF.overlap...co.eGene X..background.gene...not.co.eGene\n", + "19 1747 9546 \n", + "34 6041 5252 \n", + "50 3379 7914 \n", + "84 3529 7764 \n", + "116 3385 7908 \n", + "119 3915 7378 \n", + "730 3526 6028 \n", + " enrichment.fdr eQTL.SNP SNP.overlaps.TF. Names.of.overlapping.SNPs \n", + "19 5.187441e-05 rs1131017 TRUE rs1131017 \n", + "34 3.295330e-05 rs1131017 TRUE rs10876864,rs1131017,rs7297175\n", + "50 3.052929e-02 rs1131017 TRUE rs1131017 \n", + "84 4.598193e-04 rs1131017 TRUE rs10876864,rs1131017 \n", + "116 8.236538e-03 rs1131017 TRUE rs10876864,rs1131017,rs7297175\n", + "119 5.461532e-05 rs1131017 TRUE rs1131017 \n", + "730 3.134542e-02 rs1131017 TRUE rs1131017 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "old_enrichments[(old_enrichments$eQTL..SNP.eGene. %in% c('rs1131017_RPS26')) & (old_enrichments$TF.is.a.co.eGene. == TRUE) & ((old_enrichments$SNP.overlaps.TF. == TRUE)),]" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "id": "973e7d59-4d0d-4aaa-90a6-5ec718d3cdc7", + "metadata": {}, + "outputs": [], + "source": [ + "# MAF and CD74 only negative effect directions" + ] + }, + { + "cell_type": "code", + "execution_count": 186, + "id": "41107400-6b96-4024-939d-bffa6790c377", + "metadata": {}, + "outputs": [], + "source": [ + "# TMEM176A nothing found with remap" + ] + }, + { + "cell_type": "markdown", + "id": "5c479bb0-aeee-4286-8107-70eaebb4968e", + "metadata": {}, + "source": [ + "# Run TRANSFAC enrichment for all cell-types" + ] + }, + { + "cell_type": "code", + "execution_count": 213, + "id": "7ee02d44-c7a6-4c44-8957-794c603da722", + "metadata": {}, + "outputs": [], + "source": [ + "### Set parameters for function" + ] + }, + { + "cell_type": "code", + "execution_count": 214, + "id": "5b6b137d-6865-4bea-bf5d-94bdbf71c96b", + "metadata": {}, + "outputs": [], + "source": [ + "p_val_thres = 0.05" + ] + }, + { + "cell_type": "code", + "execution_count": 215, + "id": "aea1119e-9ccb-40e4-a43c-ad3022bf4281", + "metadata": {}, + "outputs": [], + "source": [ + "correction_var = 'fdr'" + ] + }, + { + "cell_type": "code", + "execution_count": 216, + "id": "52ba5757-2a17-4a25-9975-f73fe9d49888", + "metadata": {}, + "outputs": [], + "source": [ + "### Decide on whether to restrict the background set\n", + "restrict_background_set = FALSE\n", + "\n", + "# set to TRUE for adaption" + ] + }, + { + "cell_type": "code", + "execution_count": 217, + "id": "5fd364b9-2b0d-40a6-aadc-6c32925e8a33", + "metadata": {}, + "outputs": [], + "source": [ + "### Run enrichments" + ] + }, + { + "cell_type": "code", + "execution_count": 218, + "id": "33a0acf7-c544-4278-b8e0-60506109d9aa", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC with 58 co-eQTLs\"\n", + "[1] \"rs7935082_MS4A7\"\n", + "[1] 6054\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs9271520_HLA-DQA2\"\n", + "[1] 6054\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T with 500 co-eQTLs\"\n", + "[1] \"rs111454690_HLA-DRB5\"\n", + "[1] 11300\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs1131017_RPS26\"\n", + "[1] 11300\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs2741159_KRT1\"\n", + "[1] 11300\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs4147638_SMDT1\"\n", + "[1] 11300\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs7605824_SH3YL1\"\n", + "[1] 11300\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs7632486_CMTM8\"\n", + "[1] 11300\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs9022_CLN8\"\n", + "[1] 11300\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs9271520_HLA-DQA2\"\n", + "[1] 11300\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n", + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "Detected custom background input, domain scope is set to 'custom'\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T with 420 co-eQTLs\"\n", + "[1] \"rs1131017_RPS26\"\n", + "[1] 9579\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs4147638_SMDT1\"\n", + "[1] 9579\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs6708265_PASK\"\n", + "[1] 9579\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs7605824_SH3YL1\"\n", + "[1] 9579\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs9271520_HLA-DQA2\"\n", + "[1] 9579\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs9306156_PRMT2\"\n", + "[1] 9579\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte with 281 co-eQTLs\"\n", + "[1] \"rs111454690_HLA-DRB5\"\n", + "[1] 9557\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs1131017_RPS26\"\n", + "[1] 9557\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs11577318_CD52\"\n", + "[1] 9557\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs3758833_CTSC\"\n", + "[1] 9557\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs4782899_DNAAF1\"\n", + "[1] 9557\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs5756736_LGALS2\"\n", + "[1] 9557\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs7806458_TMEM176A\"\n", + "[1] 9557\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs7806458_TMEM176B\"\n", + "[1] 9557\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs9271520_HLA-DQA2\"\n", + "[1] 9557\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK with 123 co-eQTLs\"\n", + "[1] \"rs1131017_RPS26\"\n", + "[1] 7271\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs12151742_GNLY\"\n", + "[1] 7271\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"rs62480001_MYOM2\"\n", + "[1] 7271\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n", + "No results to show\n", + "Please make sure that the organism is correct or set significant = FALSE\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B with 35 co-eQTLs\"\n", + "[1] \"rs1131017_RPS26\"\n", + "[1] 1729\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Detected custom background input, domain scope is set to 'custom'\n", + "\n" + ] + } + ], + "source": [ + "enrichment<-NULL\n", + "enrichment_summary<-NULL\n", + "coegenes_counts_total<-NULL\n", + "for(cell_type in c(\"DC\",\"CD4T\",\"CD8T\",\"monocyte\",\"NK\",\"B\" )){\n", + " # Read in the data\n", + " coeqtls <- fread(paste0(path, \"UT_\",cell_type, \n", + " \"_coeqtls_fullresults_fixed.all.tsv.gz\"))\n", + " coeqtls$gene1<-gsub(\";.*\",\"\",coeqtls$Gene)\n", + " coeqtls$gene2<-gsub(\".*;\",\"\",coeqtls$Gene)\n", + " coeqtls$second_gene<-ifelse(coeqtls$gene1 == coeqtls$eqtlgen, coeqtls$gene2,\n", + " coeqtls$gene1)\n", + " coeqtls$gene1<-NULL\n", + " coeqtls$gene2<-NULL\n", + " \n", + " # Take all tested genes as background\n", + " background_genes <- union(coeqtls$eqtlgen,coeqtls$second_gene)\n", + " \n", + " coeqtls_sign<-coeqtls[coeqtls$gene2_isSig,]\n", + " \n", + " print(paste(cell_type,\"with\",nrow(coeqtls_sign),\"co-eQTLs\"))\n", + " \n", + " # Identify all eQTLs with at least 5 coeGenes\n", + " coegene_count<-coeqtls_sign%>%\n", + " group_by(snp_eqtlgene)%>%\n", + " summarise(count_coeGenes=n())%>%\n", + " filter(count_coeGenes>4)\n", + " \n", + " coegene_count$cell_type<-cell_type\n", + " coegenes_counts_total<-rbind(coegenes_counts_total,\n", + " coegene_count)\n", + " \n", + " enrichment_found<-0\n", + " #Perform GO enrichemt separately for each eQTL\n", + " for(eqtl in coegene_count$snp_eqtlgene){\n", + " print(eqtl)\n", + " \n", + " # Optional restricted background set\n", + " if(restrict_background_set == TRUE){\n", + " background_genes = unique(c(coeqtls$eqtlgene[coeqtls$snp_eqtlgene == eqtl], coeqtls$second_gene[coeqtls$snp_eqtlgene == eqtl]))\n", + " }\n", + " print(length(background_genes))\n", + " \n", + " # Run enrichment analysis with background set\n", + " enrich_out <- gost(\n", + " coeqtls_sign$second_gene[coeqtls_sign$snp_eqtlgene == eqtl],\n", + " organism = \"hsapiens\",\n", + " ordered_query = FALSE,\n", + " multi_query = FALSE,\n", + " significant = TRUE,\n", + " exclude_iea = FALSE,\n", + " measure_underrepresentation = FALSE,\n", + " evcodes = FALSE,\n", + " correction_method = correction_var,\n", + " user_threshold = p_val_thres,\n", + " custom_bg = background_genes,\n", + " sources = 'TF' # only do transfac enrichment\n", + " )\n", + " \n", + " #if(nrow(enrich_out$result[enrich_out$result$source == 'TF',])>0){\n", + " if(!is.null(enrich_out)){\n", + " # Save if a enrichment was found\n", + " enrichment_found<-enrichment_found+1\n", + " \n", + " # Save result dataframe\n", + " res<-enrich_out$result[enrich_out$result$source == 'TF',]\n", + " res$cell_type<-cell_type\n", + " res$snp_eGene<-eqtl\n", + " enrichment<-rbind(enrichment,\n", + " res)\n", + " }\n", + "\n", + " }\n", + " \n", + " enrichment_summary<-rbind(enrichment_summary,\n", + " data.frame(cell_type,\n", + " n_eqtls_freq=nrow(coegene_count),\n", + " n_enrich=enrichment_found,\n", + " freq_enrich=enrichment_found/nrow(coegene_count)))\n", + " \n", + " \n", + " \n", + " #Check for CD4T specificallly for RPS26 the positive & negative coeGenes separately\n", + " if(cell_type==\"CD4T\"){\n", + " eqtl<-\"rs1131017_RPS26\"\n", + " \n", + " #Test positive coeGenes (MAF not correctly flipped here)\n", + " enrich_out <-gost(\n", + " coeqtls_sign$second_gene[coeqtls_sign$snp_eqtlgene == eqtl &\n", + " coeqtls_sign$MetaPZ < 0],\n", + " organism = \"hsapiens\",\n", + " ordered_query = FALSE,\n", + " multi_query = FALSE,\n", + " significant = TRUE,\n", + " exclude_iea = FALSE,\n", + " measure_underrepresentation = FALSE,\n", + " evcodes = FALSE,\n", + " correction_method = correction_var,\n", + " user_threshold = p_val_thres,\n", + " custom_bg = background_genes,\n", + " sources = 'TF' # only do transfac enrichment\n", + " )\n", + " \n", + " \n", + " \n", + " \n", + " if(!is.null(enrich_out)){\n", + " \n", + " # Save if a enrichment was found\n", + " enrichment_found<-enrichment_found+1\n", + " \n", + " # Save result dataframe\n", + " res<- enrich_out$result[enrich_out$result$source == 'TF',]\n", + " res$cell_type<-cell_type\n", + " res$snp_eGene<-paste0(eqtl,\"_positive\")\n", + " enrichment<-rbind(enrichment,\n", + " res)\n", + " }\n", + " \n", + " #Test negative coeGenes (MAF not correctly flipped here)\n", + " enrich_out <-gost(\n", + " coeqtls_sign$second_gene[coeqtls_sign$snp_eqtlgene == eqtl &\n", + " coeqtls_sign$MetaPZ > 0],\n", + " organism = \"hsapiens\",\n", + " ordered_query = FALSE,\n", + " multi_query = FALSE,\n", + " significant = TRUE,\n", + " exclude_iea = FALSE,\n", + " measure_underrepresentation = FALSE,\n", + " evcodes = FALSE,\n", + " correction_method = correction_var,\n", + " user_threshold = p_val_thres,\n", + " custom_bg = background_genes,\n", + " sources = 'TF' # only do transfac enrichment\n", + " )\n", + " \n", + " if(!is.null(enrich_out)){\n", + " \n", + " # Save if a enrichment was found\n", + " enrichment_found<-enrichment_found+1\n", + " \n", + " # Save result dataframe\n", + " res<-enrich_out$result[enrich_out$result$source == 'TF',]\n", + " res$cell_type<-cell_type\n", + " res$snp_eGene<-paste0(eqtl,\"_negative\")\n", + " enrichment<-rbind(enrichment,\n", + " res)\n", + " }\n", + " }\n", + " \n", + " \n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": 219, + "id": "2161ef04-9fdc-4e14-b318-089eb91db546", + "metadata": {}, + "outputs": [], + "source": [ + "### Inspect result" + ] + }, + { + "cell_type": "code", + "execution_count": 220, + "id": "0ae39aef-8d0c-4f59-821e-d1672811783e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 16
querysignificantp_valueterm_sizequery_sizeintersection_sizeprecisionrecallterm_idsourceterm_nameeffective_domain_sizesource_orderparentscell_typesnp_eGene
<chr><lgl><dbl><int><int><int><dbl><dbl><chr><chr><chr><int><int><list><chr><chr>
1query_1TRUE0.0496108262342 27 220.81481480.009393681TF:M00665 TFFactor: Sp3; motif: ASMCTTGGGSRGGG 57057882TF:M00000DC rs7935082_MS4A7
2query_1TRUE0.0496108262303 27 220.81481480.009552757TF:M03582 TFFactor: TWIST; motif: CACCTGG 57058844TF:M00000DC rs7935082_MS4A7
3query_1TRUE0.00397838934473511630.46438750.047287496TF:M11438 TFFactor: SAP-1; motif: NTCGTAAATGCN 101671882TF:M00000CD4Trs1131017_RPS26
4query_1TRUE0.0225375693025 20 160.80000000.005289256TF:M08413 TFFactor: TEF-3:C/EBPdelta; motif: RGWATGYNRTTRCGYAAY 101678434TF:M00000CD4Trs7605824_SH3YL1
5query_1TRUE0.0024708673285191 950.49738220.028919330TF:M10785 TFFactor: hoxa9; motif: RTCGTWANNN 101673774TF:M00000CD4Trs1131017_RPS26_positive
6query_1TRUE0.0033394381184191 460.24083770.038851351TF:M04696_1TFFactor: YY1; motif: GCCGCCATNTTGNNNNNGGNCN; match class: 1101679013TF:M04696CD4Trs1131017_RPS26_positive
\n" + ], + "text/latex": [ + "A data.frame: 6 × 16\n", + "\\begin{tabular}{r|llllllllllllllll}\n", + " & query & significant & p\\_value & term\\_size & query\\_size & intersection\\_size & precision & recall & term\\_id & source & term\\_name & effective\\_domain\\_size & source\\_order & parents & cell\\_type & snp\\_eGene\\\\\n", + " & & & & & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t1 & query\\_1 & TRUE & 0.049610826 & 2342 & 27 & 22 & 0.8148148 & 0.009393681 & TF:M00665 & TF & Factor: Sp3; motif: ASMCTTGGGSRGGG & 5705 & 7882 & TF:M00000 & DC & rs7935082\\_MS4A7 \\\\\n", + "\t2 & query\\_1 & TRUE & 0.049610826 & 2303 & 27 & 22 & 0.8148148 & 0.009552757 & TF:M03582 & TF & Factor: TWIST; motif: CACCTGG & 5705 & 8844 & TF:M00000 & DC & rs7935082\\_MS4A7 \\\\\n", + "\t3 & query\\_1 & TRUE & 0.003978389 & 3447 & 351 & 163 & 0.4643875 & 0.047287496 & TF:M11438 & TF & Factor: SAP-1; motif: NTCGTAAATGCN & 10167 & 1882 & TF:M00000 & CD4T & rs1131017\\_RPS26 \\\\\n", + "\t4 & query\\_1 & TRUE & 0.022537569 & 3025 & 20 & 16 & 0.8000000 & 0.005289256 & TF:M08413 & TF & Factor: TEF-3:C/EBPdelta; motif: RGWATGYNRTTRCGYAAY & 10167 & 8434 & TF:M00000 & CD4T & rs7605824\\_SH3YL1 \\\\\n", + "\t5 & query\\_1 & TRUE & 0.002470867 & 3285 & 191 & 95 & 0.4973822 & 0.028919330 & TF:M10785 & TF & Factor: hoxa9; motif: RTCGTWANNN & 10167 & 3774 & TF:M00000 & CD4T & rs1131017\\_RPS26\\_positive\\\\\n", + "\t6 & query\\_1 & TRUE & 0.003339438 & 1184 & 191 & 46 & 0.2408377 & 0.038851351 & TF:M04696\\_1 & TF & Factor: YY1; motif: GCCGCCATNTTGNNNNNGGNCN; match class: 1 & 10167 & 9013 & TF:M04696 & CD4T & rs1131017\\_RPS26\\_positive\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 6 × 16\n", + "\n", + "| | query <chr> | significant <lgl> | p_value <dbl> | term_size <int> | query_size <int> | intersection_size <int> | precision <dbl> | recall <dbl> | term_id <chr> | source <chr> | term_name <chr> | effective_domain_size <int> | source_order <int> | parents <list> | cell_type <chr> | snp_eGene <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| 1 | query_1 | TRUE | 0.049610826 | 2342 | 27 | 22 | 0.8148148 | 0.009393681 | TF:M00665 | TF | Factor: Sp3; motif: ASMCTTGGGSRGGG | 5705 | 7882 | TF:M00000 | DC | rs7935082_MS4A7 |\n", + "| 2 | query_1 | TRUE | 0.049610826 | 2303 | 27 | 22 | 0.8148148 | 0.009552757 | TF:M03582 | TF | Factor: TWIST; motif: CACCTGG | 5705 | 8844 | TF:M00000 | DC | rs7935082_MS4A7 |\n", + "| 3 | query_1 | TRUE | 0.003978389 | 3447 | 351 | 163 | 0.4643875 | 0.047287496 | TF:M11438 | TF | Factor: SAP-1; motif: NTCGTAAATGCN | 10167 | 1882 | TF:M00000 | CD4T | rs1131017_RPS26 |\n", + "| 4 | query_1 | TRUE | 0.022537569 | 3025 | 20 | 16 | 0.8000000 | 0.005289256 | TF:M08413 | TF | Factor: TEF-3:C/EBPdelta; motif: RGWATGYNRTTRCGYAAY | 10167 | 8434 | TF:M00000 | CD4T | rs7605824_SH3YL1 |\n", + "| 5 | query_1 | TRUE | 0.002470867 | 3285 | 191 | 95 | 0.4973822 | 0.028919330 | TF:M10785 | TF | Factor: hoxa9; motif: RTCGTWANNN | 10167 | 3774 | TF:M00000 | CD4T | rs1131017_RPS26_positive |\n", + "| 6 | query_1 | TRUE | 0.003339438 | 1184 | 191 | 46 | 0.2408377 | 0.038851351 | TF:M04696_1 | TF | Factor: YY1; motif: GCCGCCATNTTGNNNNNGGNCN; match class: 1 | 10167 | 9013 | TF:M04696 | CD4T | rs1131017_RPS26_positive |\n", + "\n" + ], + "text/plain": [ + " query significant p_value term_size query_size intersection_size\n", + "1 query_1 TRUE 0.049610826 2342 27 22 \n", + "2 query_1 TRUE 0.049610826 2303 27 22 \n", + "3 query_1 TRUE 0.003978389 3447 351 163 \n", + "4 query_1 TRUE 0.022537569 3025 20 16 \n", + "5 query_1 TRUE 0.002470867 3285 191 95 \n", + "6 query_1 TRUE 0.003339438 1184 191 46 \n", + " precision recall term_id source\n", + "1 0.8148148 0.009393681 TF:M00665 TF \n", + "2 0.8148148 0.009552757 TF:M03582 TF \n", + "3 0.4643875 0.047287496 TF:M11438 TF \n", + "4 0.8000000 0.005289256 TF:M08413 TF \n", + "5 0.4973822 0.028919330 TF:M10785 TF \n", + "6 0.2408377 0.038851351 TF:M04696_1 TF \n", + " term_name \n", + "1 Factor: Sp3; motif: ASMCTTGGGSRGGG \n", + "2 Factor: TWIST; motif: CACCTGG \n", + "3 Factor: SAP-1; motif: NTCGTAAATGCN \n", + "4 Factor: TEF-3:C/EBPdelta; motif: RGWATGYNRTTRCGYAAY \n", + "5 Factor: hoxa9; motif: RTCGTWANNN \n", + "6 Factor: YY1; motif: GCCGCCATNTTGNNNNNGGNCN; match class: 1\n", + " effective_domain_size source_order parents cell_type\n", + "1 5705 7882 TF:M00000 DC \n", + "2 5705 8844 TF:M00000 DC \n", + "3 10167 1882 TF:M00000 CD4T \n", + "4 10167 8434 TF:M00000 CD4T \n", + "5 10167 3774 TF:M00000 CD4T \n", + "6 10167 9013 TF:M04696 CD4T \n", + " snp_eGene \n", + "1 rs7935082_MS4A7 \n", + "2 rs7935082_MS4A7 \n", + "3 rs1131017_RPS26 \n", + "4 rs7605824_SH3YL1 \n", + "5 rs1131017_RPS26_positive\n", + "6 rs1131017_RPS26_positive" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(enrichment)" + ] + }, + { + "cell_type": "code", + "execution_count": 221, + "id": "724fe97f-5620-4d55-9d2f-154c00f7bcd8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 4
cell_typen_eqtls_freqn_enrichfreq_enrich
<chr><int><dbl><dbl>
1DC 210.5000000
2CD4T 820.2500000
3CD8T 600.0000000
4monocyte910.1111111
5NK 320.6666667
6B 111.0000000
\n" + ], + "text/latex": [ + "A data.frame: 6 × 4\n", + "\\begin{tabular}{r|llll}\n", + " & cell\\_type & n\\_eqtls\\_freq & n\\_enrich & freq\\_enrich\\\\\n", + " & & & & \\\\\n", + "\\hline\n", + "\t1 & DC & 2 & 1 & 0.5000000\\\\\n", + "\t2 & CD4T & 8 & 2 & 0.2500000\\\\\n", + "\t3 & CD8T & 6 & 0 & 0.0000000\\\\\n", + "\t4 & monocyte & 9 & 1 & 0.1111111\\\\\n", + "\t5 & NK & 3 & 2 & 0.6666667\\\\\n", + "\t6 & B & 1 & 1 & 1.0000000\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 6 × 4\n", + "\n", + "| | cell_type <chr> | n_eqtls_freq <int> | n_enrich <dbl> | freq_enrich <dbl> |\n", + "|---|---|---|---|---|\n", + "| 1 | DC | 2 | 1 | 0.5000000 |\n", + "| 2 | CD4T | 8 | 2 | 0.2500000 |\n", + "| 3 | CD8T | 6 | 0 | 0.0000000 |\n", + "| 4 | monocyte | 9 | 1 | 0.1111111 |\n", + "| 5 | NK | 3 | 2 | 0.6666667 |\n", + "| 6 | B | 1 | 1 | 1.0000000 |\n", + "\n" + ], + "text/plain": [ + " cell_type n_eqtls_freq n_enrich freq_enrich\n", + "1 DC 2 1 0.5000000 \n", + "2 CD4T 8 2 0.2500000 \n", + "3 CD8T 6 0 0.0000000 \n", + "4 monocyte 9 1 0.1111111 \n", + "5 NK 3 2 0.6666667 \n", + "6 B 1 1 1.0000000 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(enrichment_summary)" + ] + }, + { + "cell_type": "code", + "execution_count": 223, + "id": "90e7aea5-2e69-4412-89b7-cbd605fb836d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 6 × 3
snp_eqtlgenecount_coeGenescell_type
<chr><int><chr>
rs7935082_MS4A7 30DC
rs9271520_HLA-DQA2 13DC
rs111454690_HLA-DRB5 19CD4T
rs1131017_RPS26 372CD4T
rs2741159_KRT1 8CD4T
rs4147638_SMDT1 19CD4T
\n" + ], + "text/latex": [ + "A tibble: 6 × 3\n", + "\\begin{tabular}{lll}\n", + " snp\\_eqtlgene & count\\_coeGenes & cell\\_type\\\\\n", + " & & \\\\\n", + "\\hline\n", + "\t rs7935082\\_MS4A7 & 30 & DC \\\\\n", + "\t rs9271520\\_HLA-DQA2 & 13 & DC \\\\\n", + "\t rs111454690\\_HLA-DRB5 & 19 & CD4T\\\\\n", + "\t rs1131017\\_RPS26 & 372 & CD4T\\\\\n", + "\t rs2741159\\_KRT1 & 8 & CD4T\\\\\n", + "\t rs4147638\\_SMDT1 & 19 & CD4T\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A tibble: 6 × 3\n", + "\n", + "| snp_eqtlgene <chr> | count_coeGenes <int> | cell_type <chr> |\n", + "|---|---|---|\n", + "| rs7935082_MS4A7 | 30 | DC |\n", + "| rs9271520_HLA-DQA2 | 13 | DC |\n", + "| rs111454690_HLA-DRB5 | 19 | CD4T |\n", + "| rs1131017_RPS26 | 372 | CD4T |\n", + "| rs2741159_KRT1 | 8 | CD4T |\n", + "| rs4147638_SMDT1 | 19 | CD4T |\n", + "\n" + ], + "text/plain": [ + " snp_eqtlgene count_coeGenes cell_type\n", + "1 rs7935082_MS4A7 30 DC \n", + "2 rs9271520_HLA-DQA2 13 DC \n", + "3 rs111454690_HLA-DRB5 19 CD4T \n", + "4 rs1131017_RPS26 372 CD4T \n", + "5 rs2741159_KRT1 8 CD4T \n", + "6 rs4147638_SMDT1 19 CD4T " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(coegenes_counts_total)" + ] + }, + { + "cell_type": "code", + "execution_count": 225, + "id": "a7788afe-58c2-41bf-bd53-bec13a912a46", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "0.0496108257480342" + ], + "text/latex": [ + "0.0496108257480342" + ], + "text/markdown": [ + "0.0496108257480342" + ], + "text/plain": [ + "[1] 0.04961083" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "max(enrichment$p_value) # set to same level" + ] + }, + { + "cell_type": "code", + "execution_count": 226, + "id": "ba254471-a07d-4b06-9280-970d02582110", + "metadata": {}, + "outputs": [], + "source": [ + "### Evaluate amount of enrichments found per cell-type with set p-value threshold" + ] + }, + { + "cell_type": "code", + "execution_count": 227, + "id": "6729f307-8da0-4700-9b99-d4cc8f9b2fce", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A grouped_df: 5 × 2
cell_typen
<chr><int>
B 3
CD4T 54
DC 2
monocyte40
NK 21
\n" + ], + "text/latex": [ + "A grouped\\_df: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cell\\_type & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t B & 3\\\\\n", + "\t CD4T & 54\\\\\n", + "\t DC & 2\\\\\n", + "\t monocyte & 40\\\\\n", + "\t NK & 21\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 5 × 2\n", + "\n", + "| cell_type <chr> | n <int> |\n", + "|---|---|\n", + "| B | 3 |\n", + "| CD4T | 54 |\n", + "| DC | 2 |\n", + "| monocyte | 40 |\n", + "| NK | 21 |\n", + "\n" + ], + "text/plain": [ + " cell_type n \n", + "1 B 3\n", + "2 CD4T 54\n", + "3 DC 2\n", + "4 monocyte 40\n", + "5 NK 21" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "enrichment %>% group_by(cell_type) %>% count()" + ] + }, + { + "cell_type": "code", + "execution_count": 228, + "id": "7d3dbfdc-2862-4ead-be5a-7645b8a170ef", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "120" + ], + "text/latex": [ + "120" + ], + "text/markdown": [ + "120" + ], + "text/plain": [ + "[1] 120" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(enrichment)" + ] + }, + { + "cell_type": "code", + "execution_count": 230, + "id": "8a481a49-f784-45a6-b640-e33cf122469f", + "metadata": {}, + "outputs": [], + "source": [ + "### Save the enrichment result" + ] + }, + { + "cell_type": "code", + "execution_count": 231, + "id": "f5e929c8-3fd4-4023-8483-3ef1bb3335d8", + "metadata": {}, + "outputs": [], + "source": [ + "enrichment$parents = NULL" + ] + }, + { + "cell_type": "code", + "execution_count": 232, + "id": "3db92875-75a3-436f-b26c-e116bb15e0ab", + "metadata": {}, + "outputs": [], + "source": [ + "write.csv(enrichment, paste0(path, \"transfac_results/TRANSFAC_Enrichments.csv\"))" + ] + }, + { + "cell_type": "markdown", + "id": "a1c57807-ebfa-4ef6-ad86-4022bcee0fe0", + "metadata": {}, + "source": [ + "# Compare to previous enrichment results with Remap" + ] + }, + { + "cell_type": "code", + "execution_count": 233, + "id": "08a4064d-3059-422a-9406-0cac4c75830b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 13
Cell.typeeQTL..SNP.eGene.TFTF.is.a.co.eGene.enrichment.p.valueX..TF.overlap...co.eGeneX..TF.overlap...backgroundX..no.TF.overlap...co.eGeneX..background.gene...not.co.eGeneenrichment.fdreQTL.SNPSNP.overlaps.TF.Names.of.overlapping.SNPs
<chr><chr><chr><lgl><dbl><int><int><int><int><dbl><chr><lgl><chr>
1CD4Trs111454690_HLA-DRB5CDK8 FALSE9.630369e-061452778 85151.640373e-03rs111454690FALSE
2CD4Trs111454690_HLA-DRB5SNRNP70FALSE1.209254e-09118 649106446.179288e-07rs111454690FALSE
\n" + ], + "text/latex": [ + "A data.frame: 2 × 13\n", + "\\begin{tabular}{r|lllllllllllll}\n", + " & Cell.type & eQTL..SNP.eGene. & TF & TF.is.a.co.eGene. & enrichment.p.value & X..TF.overlap...co.eGene & X..TF.overlap...background & X..no.TF.overlap...co.eGene & X..background.gene...not.co.eGene & enrichment.fdr & eQTL.SNP & SNP.overlaps.TF. & Names.of.overlapping.SNPs\\\\\n", + " & & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t1 & CD4T & rs111454690\\_HLA-DRB5 & CDK8 & FALSE & 9.630369e-06 & 14 & 5 & 2778 & 8515 & 1.640373e-03 & rs111454690 & FALSE & \\\\\n", + "\t2 & CD4T & rs111454690\\_HLA-DRB5 & SNRNP70 & FALSE & 1.209254e-09 & 11 & 8 & 649 & 10644 & 6.179288e-07 & rs111454690 & FALSE & \\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 13\n", + "\n", + "| | Cell.type <chr> | eQTL..SNP.eGene. <chr> | TF <chr> | TF.is.a.co.eGene. <lgl> | enrichment.p.value <dbl> | X..TF.overlap...co.eGene <int> | X..TF.overlap...background <int> | X..no.TF.overlap...co.eGene <int> | X..background.gene...not.co.eGene <int> | enrichment.fdr <dbl> | eQTL.SNP <chr> | SNP.overlaps.TF. <lgl> | Names.of.overlapping.SNPs <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| 1 | CD4T | rs111454690_HLA-DRB5 | CDK8 | FALSE | 9.630369e-06 | 14 | 5 | 2778 | 8515 | 1.640373e-03 | rs111454690 | FALSE | |\n", + "| 2 | CD4T | rs111454690_HLA-DRB5 | SNRNP70 | FALSE | 1.209254e-09 | 11 | 8 | 649 | 10644 | 6.179288e-07 | rs111454690 | FALSE | |\n", + "\n" + ], + "text/plain": [ + " Cell.type eQTL..SNP.eGene. TF TF.is.a.co.eGene. enrichment.p.value\n", + "1 CD4T rs111454690_HLA-DRB5 CDK8 FALSE 9.630369e-06 \n", + "2 CD4T rs111454690_HLA-DRB5 SNRNP70 FALSE 1.209254e-09 \n", + " X..TF.overlap...co.eGene X..TF.overlap...background\n", + "1 14 5 \n", + "2 11 8 \n", + " X..no.TF.overlap...co.eGene X..background.gene...not.co.eGene enrichment.fdr\n", + "1 2778 8515 1.640373e-03 \n", + "2 649 10644 6.179288e-07 \n", + " eQTL.SNP SNP.overlaps.TF. Names.of.overlapping.SNPs\n", + "1 rs111454690 FALSE \n", + "2 rs111454690 FALSE " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(old_enrichments,2)" + ] + }, + { + "cell_type": "markdown", + "id": "238a1fe5-72cf-4dd4-96b2-c25e18fa41e5", + "metadata": {}, + "source": [ + "## Compare amount of enrichments" + ] + }, + { + "cell_type": "code", + "execution_count": 234, + "id": "8058ccda-a072-443d-9b29-66fef671cd7c", + "metadata": {}, + "outputs": [], + "source": [ + "amount_enrichments_old = old_enrichments %>% group_by(Cell.type, eQTL..SNP.eGene.) %>% count()" + ] + }, + { + "cell_type": "code", + "execution_count": 235, + "id": "baac2391-4638-4e42-923e-912226128e43", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A grouped_df: 6 × 3
Cell.typeeQTL..SNP.eGene.n
<chr><chr><int>
B rs1131017_RPS26 82
CD4Trs111454690_HLA-DRB5 14
CD4Trs1131017_RPS26 134
CD4Trs1131017_RPS26_negative 93
CD4Trs1131017_RPS26_positive125
CD4Trs4147638_SMDT1 14
\n" + ], + "text/latex": [ + "A grouped\\_df: 6 × 3\n", + "\\begin{tabular}{lll}\n", + " Cell.type & eQTL..SNP.eGene. & n\\\\\n", + " & & \\\\\n", + "\\hline\n", + "\t B & rs1131017\\_RPS26 & 82\\\\\n", + "\t CD4T & rs111454690\\_HLA-DRB5 & 14\\\\\n", + "\t CD4T & rs1131017\\_RPS26 & 134\\\\\n", + "\t CD4T & rs1131017\\_RPS26\\_negative & 93\\\\\n", + "\t CD4T & rs1131017\\_RPS26\\_positive & 125\\\\\n", + "\t CD4T & rs4147638\\_SMDT1 & 14\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 6 × 3\n", + "\n", + "| Cell.type <chr> | eQTL..SNP.eGene. <chr> | n <int> |\n", + "|---|---|---|\n", + "| B | rs1131017_RPS26 | 82 |\n", + "| CD4T | rs111454690_HLA-DRB5 | 14 |\n", + "| CD4T | rs1131017_RPS26 | 134 |\n", + "| CD4T | rs1131017_RPS26_negative | 93 |\n", + "| CD4T | rs1131017_RPS26_positive | 125 |\n", + "| CD4T | rs4147638_SMDT1 | 14 |\n", + "\n" + ], + "text/plain": [ + " Cell.type eQTL..SNP.eGene. n \n", + "1 B rs1131017_RPS26 82\n", + "2 CD4T rs111454690_HLA-DRB5 14\n", + "3 CD4T rs1131017_RPS26 134\n", + "4 CD4T rs1131017_RPS26_negative 93\n", + "5 CD4T rs1131017_RPS26_positive 125\n", + "6 CD4T rs4147638_SMDT1 14" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(amount_enrichments_old)" + ] + }, + { + "cell_type": "code", + "execution_count": 236, + "id": "6f219e98-8ec6-45fa-b145-7b8086806dd9", + "metadata": {}, + "outputs": [], + "source": [ + "colnames(amount_enrichments_old) = c('cell_type', 'snp_eGene', 'ReMap_amount')" + ] + }, + { + "cell_type": "code", + "execution_count": 237, + "id": "9bcc8ddb-a123-4fe6-b1bb-8e6a5d451519", + "metadata": {}, + "outputs": [], + "source": [ + "transfac_enrichments = enrichment %>% group_by(cell_type, snp_eGene) %>% count()" + ] + }, + { + "cell_type": "code", + "execution_count": 238, + "id": "ce779ce7-e46a-466f-be5b-1cab27eadd2c", + "metadata": {}, + "outputs": [], + "source": [ + "colnames(transfac_enrichments)= c('cell_type', 'snp_eGene', 'TRANSFAC_amount')" + ] + }, + { + "cell_type": "code", + "execution_count": 239, + "id": "06ae3596-604f-4ebc-b6e9-66150ffb9559", + "metadata": {}, + "outputs": [], + "source": [ + "overview = merge(amount_enrichments_old, transfac_enrichments, all.x = TRUE, all.y = TRUE)" + ] + }, + { + "cell_type": "code", + "execution_count": 240, + "id": "7b372d6d-1e65-4750-9414-6cd3b5294a05", + "metadata": {}, + "outputs": [], + "source": [ + "### Result of comparisoon" + ] + }, + { + "cell_type": "code", + "execution_count": 245, + "id": "6754a2a0-cdef-4126-9042-5820a8f65f62", + "metadata": {}, + "outputs": [], + "source": [ + "overview[is.na(overview)]= 0" + ] + }, + { + "cell_type": "code", + "execution_count": 246, + "id": "6fc4ba13-519b-4ccd-bf51-967295a82d06", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 19 × 4
cell_typesnp_eGeneReMap_amountTRANSFAC_amount
<chr><chr><dbl><dbl>
5CD4T rs1131017_RPS26_positive12551
16monocyters1131017_RPS26 14540
18NK rs1131017_RPS26 13220
1B rs1131017_RPS26 82 3
14DC rs7935082_MS4A7 0 2
3CD4T rs1131017_RPS26 134 1
4CD4T rs1131017_RPS26_negative 93 1
7CD4T rs7605824_SH3YL1 58 1
19NK rs12151742_GNLY 0 1
2CD4T rs111454690_HLA-DRB5 14 0
6CD4T rs4147638_SMDT1 14 0
8CD4T rs7632486_CMTM8 4 0
9CD4T rs9271520_HLA-DQA2 5 0
10CD8T rs1131017_RPS26 62 0
11CD8T rs4147638_SMDT1 78 0
12CD8T rs6708265_PASK 3 0
13CD8T rs7605824_SH3YL1 9 0
15monocyters111454690_HLA-DRB5 1 0
17monocyters9271520_HLA-DQA2 4 0
\n" + ], + "text/latex": [ + "A data.frame: 19 × 4\n", + "\\begin{tabular}{r|llll}\n", + " & cell\\_type & snp\\_eGene & ReMap\\_amount & TRANSFAC\\_amount\\\\\n", + " & & & & \\\\\n", + "\\hline\n", + "\t5 & CD4T & rs1131017\\_RPS26\\_positive & 125 & 51\\\\\n", + "\t16 & monocyte & rs1131017\\_RPS26 & 145 & 40\\\\\n", + "\t18 & NK & rs1131017\\_RPS26 & 132 & 20\\\\\n", + "\t1 & B & rs1131017\\_RPS26 & 82 & 3\\\\\n", + "\t14 & DC & rs7935082\\_MS4A7 & 0 & 2\\\\\n", + "\t3 & CD4T & rs1131017\\_RPS26 & 134 & 1\\\\\n", + "\t4 & CD4T & rs1131017\\_RPS26\\_negative & 93 & 1\\\\\n", + "\t7 & CD4T & rs7605824\\_SH3YL1 & 58 & 1\\\\\n", + "\t19 & NK & rs12151742\\_GNLY & 0 & 1\\\\\n", + "\t2 & CD4T & rs111454690\\_HLA-DRB5 & 14 & 0\\\\\n", + "\t6 & CD4T & rs4147638\\_SMDT1 & 14 & 0\\\\\n", + "\t8 & CD4T & rs7632486\\_CMTM8 & 4 & 0\\\\\n", + "\t9 & CD4T & rs9271520\\_HLA-DQA2 & 5 & 0\\\\\n", + "\t10 & CD8T & rs1131017\\_RPS26 & 62 & 0\\\\\n", + "\t11 & CD8T & rs4147638\\_SMDT1 & 78 & 0\\\\\n", + "\t12 & CD8T & rs6708265\\_PASK & 3 & 0\\\\\n", + "\t13 & CD8T & rs7605824\\_SH3YL1 & 9 & 0\\\\\n", + "\t15 & monocyte & rs111454690\\_HLA-DRB5 & 1 & 0\\\\\n", + "\t17 & monocyte & rs9271520\\_HLA-DQA2 & 4 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 19 × 4\n", + "\n", + "| | cell_type <chr> | snp_eGene <chr> | ReMap_amount <dbl> | TRANSFAC_amount <dbl> |\n", + "|---|---|---|---|---|\n", + "| 5 | CD4T | rs1131017_RPS26_positive | 125 | 51 |\n", + "| 16 | monocyte | rs1131017_RPS26 | 145 | 40 |\n", + "| 18 | NK | rs1131017_RPS26 | 132 | 20 |\n", + "| 1 | B | rs1131017_RPS26 | 82 | 3 |\n", + "| 14 | DC | rs7935082_MS4A7 | 0 | 2 |\n", + "| 3 | CD4T | rs1131017_RPS26 | 134 | 1 |\n", + "| 4 | CD4T | rs1131017_RPS26_negative | 93 | 1 |\n", + "| 7 | CD4T | rs7605824_SH3YL1 | 58 | 1 |\n", + "| 19 | NK | rs12151742_GNLY | 0 | 1 |\n", + "| 2 | CD4T | rs111454690_HLA-DRB5 | 14 | 0 |\n", + "| 6 | CD4T | rs4147638_SMDT1 | 14 | 0 |\n", + "| 8 | CD4T | rs7632486_CMTM8 | 4 | 0 |\n", + "| 9 | CD4T | rs9271520_HLA-DQA2 | 5 | 0 |\n", + "| 10 | CD8T | rs1131017_RPS26 | 62 | 0 |\n", + "| 11 | CD8T | rs4147638_SMDT1 | 78 | 0 |\n", + "| 12 | CD8T | rs6708265_PASK | 3 | 0 |\n", + "| 13 | CD8T | rs7605824_SH3YL1 | 9 | 0 |\n", + "| 15 | monocyte | rs111454690_HLA-DRB5 | 1 | 0 |\n", + "| 17 | monocyte | rs9271520_HLA-DQA2 | 4 | 0 |\n", + "\n" + ], + "text/plain": [ + " cell_type snp_eGene ReMap_amount TRANSFAC_amount\n", + "5 CD4T rs1131017_RPS26_positive 125 51 \n", + "16 monocyte rs1131017_RPS26 145 40 \n", + "18 NK rs1131017_RPS26 132 20 \n", + "1 B rs1131017_RPS26 82 3 \n", + "14 DC rs7935082_MS4A7 0 2 \n", + "3 CD4T rs1131017_RPS26 134 1 \n", + "4 CD4T rs1131017_RPS26_negative 93 1 \n", + "7 CD4T rs7605824_SH3YL1 58 1 \n", + "19 NK rs12151742_GNLY 0 1 \n", + "2 CD4T rs111454690_HLA-DRB5 14 0 \n", + "6 CD4T rs4147638_SMDT1 14 0 \n", + "8 CD4T rs7632486_CMTM8 4 0 \n", + "9 CD4T rs9271520_HLA-DQA2 5 0 \n", + "10 CD8T rs1131017_RPS26 62 0 \n", + "11 CD8T rs4147638_SMDT1 78 0 \n", + "12 CD8T rs6708265_PASK 3 0 \n", + "13 CD8T rs7605824_SH3YL1 9 0 \n", + "15 monocyte rs111454690_HLA-DRB5 1 0 \n", + "17 monocyte rs9271520_HLA-DQA2 4 0 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "overview[order(overview$TRANSFAC_amount, decreasing = TRUE),]" + ] + }, + { + "cell_type": "code", + "execution_count": 247, + "id": "c04f7c9b-1e74-401d-bcf4-569919447df6", + "metadata": {}, + "outputs": [], + "source": [ + "write.csv(overview, paste0(path, \"transfac_results/TRANSFAC_ReMap_comparison.csv\"))" + ] + }, + { + "cell_type": "markdown", + "id": "80ddea9d-1cc5-4ce3-b595-e15d06593b83", + "metadata": {}, + "source": [ + "## Compare the TFs" + ] + }, + { + "cell_type": "code", + "execution_count": 254, + "id": "8dce9b80-35b0-4f3e-9023-9912c1348657", + "metadata": {}, + "outputs": [], + "source": [ + "# Paper: six TFs—RBM39, TCF7, LEF1, KLF6, CD74 and MAF—whose binding sites were enriched in the promoter region of the rs1131017–RPS26\n" + ] + }, + { + "cell_type": "code", + "execution_count": 280, + "id": "fce20036-c368-467e-9f62-07dd7cf63b6e", + "metadata": {}, + "outputs": [], + "source": [ + "enrichment$tf = str_extract(enrichment$term_name, '.*;')" + ] + }, + { + "cell_type": "code", + "execution_count": 281, + "id": "8ffb3678-a8e1-4648-bcfc-d9fc3d1b30c3", + "metadata": {}, + "outputs": [], + "source": [ + "enrichment$tf = str_replace(enrichment$tf, 'Factor: ', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 282, + "id": "9b91aee3-698d-488c-8e7f-d68cc00bdb17", + "metadata": {}, + "outputs": [], + "source": [ + "enrichment$tf = str_replace(enrichment$tf, ';', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 283, + "id": "ea937e43-2fdf-47c3-8f1a-e9919889e5f5", + "metadata": {}, + "outputs": [], + "source": [ + "enrichment$tf = str_replace(enrichment$tf , 'motif.*', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 284, + "id": "0855320a-54d6-422c-9991-d2d9329c3fb8", + "metadata": {}, + "outputs": [], + "source": [ + "enrichment$tf = str_replace(enrichment$tf , '-', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 285, + "id": "9f0f674c-8690-4e2c-84e2-949048f3e891", + "metadata": {}, + "outputs": [], + "source": [ + "enrichment$tf = toupper(enrichment$tf)" + ] + }, + { + "cell_type": "code", + "execution_count": 286, + "id": "891df001-7839-41b9-96f5-6b2521e3b6eb", + "metadata": {}, + "outputs": [], + "source": [ + "enrichment$tf = str_replace(enrichment$tf , ' ', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 292, + "id": "2873020c-ae31-4cfb-bb8b-953da1a03c61", + "metadata": {}, + "outputs": [], + "source": [ + "enrichment$tf = str_replace(enrichment$tf, 'CETS-1', 'ETS1')\n", + "enrichment$tf = str_replace(enrichment$tf, 'C/EBPBETA|C/EBPBETA|C/EBPbeta|C/EBPBETA|GCMA:CEBPB', 'CEBPB')\n", + "enrichment$tf = str_replace(enrichment$tf, 'C/EBPDELTA|C/EBPDELTA|TEF3:CEBPD', 'CEBPD')\n", + "enrichment$tf = str_replace(enrichment$tf, 'C/EBPGAMMA', 'CEBPG')\n", + "enrichment$tf = str_replace(enrichment$tf, 'ELK1:HOXB13', 'ELK1')\n", + "enrichment$tf = str_replace(enrichment$tf, 'GTF2IRD1ISOFORM2', 'GTF2I')\n", + "enrichment$tf = str_replace(enrichment$tf, 'MEIS1:ELF1', 'ELF1')\n", + "enrichment$tf = str_replace(enrichment$tf, 'PU.1', 'SPI1')\n", + "enrichment$tf = str_replace(enrichment$tf, 'TEF3:ERG', 'ERG')" + ] + }, + { + "cell_type": "code", + "execution_count": 293, + "id": "f2c5345b-0fdd-40fb-a982-96794b5f6440", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 16
querysignificantp_valueterm_sizequery_sizeintersection_sizeprecisionrecallterm_idsourceterm_nameeffective_domain_sizesource_ordercell_typesnp_eGenetf
<chr><lgl><dbl><int><int><int><dbl><dbl><chr><chr><chr><int><int><chr><chr><chr>
1query_1TRUE0.04961083234227220.81481480.009393681TF:M00665TFFactor: Sp3; motif: ASMCTTGGGSRGGG57057882DCrs7935082_MS4A7SP3
2query_1TRUE0.04961083230327220.81481480.009552757TF:M03582TFFactor: TWIST; motif: CACCTGG 57058844DCrs7935082_MS4A7TWIST
\n" + ], + "text/latex": [ + "A data.frame: 2 × 16\n", + "\\begin{tabular}{r|llllllllllllllll}\n", + " & query & significant & p\\_value & term\\_size & query\\_size & intersection\\_size & precision & recall & term\\_id & source & term\\_name & effective\\_domain\\_size & source\\_order & cell\\_type & snp\\_eGene & tf\\\\\n", + " & & & & & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t1 & query\\_1 & TRUE & 0.04961083 & 2342 & 27 & 22 & 0.8148148 & 0.009393681 & TF:M00665 & TF & Factor: Sp3; motif: ASMCTTGGGSRGGG & 5705 & 7882 & DC & rs7935082\\_MS4A7 & SP3 \\\\\n", + "\t2 & query\\_1 & TRUE & 0.04961083 & 2303 & 27 & 22 & 0.8148148 & 0.009552757 & TF:M03582 & TF & Factor: TWIST; motif: CACCTGG & 5705 & 8844 & DC & rs7935082\\_MS4A7 & TWIST\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 16\n", + "\n", + "| | query <chr> | significant <lgl> | p_value <dbl> | term_size <int> | query_size <int> | intersection_size <int> | precision <dbl> | recall <dbl> | term_id <chr> | source <chr> | term_name <chr> | effective_domain_size <int> | source_order <int> | cell_type <chr> | snp_eGene <chr> | tf <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| 1 | query_1 | TRUE | 0.04961083 | 2342 | 27 | 22 | 0.8148148 | 0.009393681 | TF:M00665 | TF | Factor: Sp3; motif: ASMCTTGGGSRGGG | 5705 | 7882 | DC | rs7935082_MS4A7 | SP3 |\n", + "| 2 | query_1 | TRUE | 0.04961083 | 2303 | 27 | 22 | 0.8148148 | 0.009552757 | TF:M03582 | TF | Factor: TWIST; motif: CACCTGG | 5705 | 8844 | DC | rs7935082_MS4A7 | TWIST |\n", + "\n" + ], + "text/plain": [ + " query significant p_value term_size query_size intersection_size\n", + "1 query_1 TRUE 0.04961083 2342 27 22 \n", + "2 query_1 TRUE 0.04961083 2303 27 22 \n", + " precision recall term_id source term_name \n", + "1 0.8148148 0.009393681 TF:M00665 TF Factor: Sp3; motif: ASMCTTGGGSRGGG\n", + "2 0.8148148 0.009552757 TF:M03582 TF Factor: TWIST; motif: CACCTGG \n", + " effective_domain_size source_order cell_type snp_eGene tf \n", + "1 5705 7882 DC rs7935082_MS4A7 SP3 \n", + "2 5705 8844 DC rs7935082_MS4A7 TWIST" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(enrichment,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 299, + "id": "6ff9d9b7-e3b8-46d7-93ae-8b2f765f381a", + "metadata": {}, + "outputs": [], + "source": [ + "colnames(enrichment) = paste0('TRANSFAC_', colnames(enrichment))" + ] + }, + { + "cell_type": "code", + "execution_count": 296, + "id": "b940e752-4002-4c52-b066-bb3c2ff83e36", + "metadata": {}, + "outputs": [], + "source": [ + "### Merge with ReMap REsults" + ] + }, + { + "cell_type": "code", + "execution_count": 298, + "id": "60ff3520-ffac-4660-bb4b-9744db63c309", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 13
Cell.typeeQTL..SNP.eGene.TFTF.is.a.co.eGene.enrichment.p.valueX..TF.overlap...co.eGeneX..TF.overlap...backgroundX..no.TF.overlap...co.eGeneX..background.gene...not.co.eGeneenrichment.fdreQTL.SNPSNP.overlaps.TF.Names.of.overlapping.SNPs
<chr><chr><chr><lgl><dbl><int><int><int><int><dbl><chr><lgl><chr>
1CD4Trs111454690_HLA-DRB5CDK8 FALSE9.630369e-061452778 85151.640373e-03rs111454690FALSE
2CD4Trs111454690_HLA-DRB5SNRNP70FALSE1.209254e-09118 649106446.179288e-07rs111454690FALSE
\n" + ], + "text/latex": [ + "A data.frame: 2 × 13\n", + "\\begin{tabular}{r|lllllllllllll}\n", + " & Cell.type & eQTL..SNP.eGene. & TF & TF.is.a.co.eGene. & enrichment.p.value & X..TF.overlap...co.eGene & X..TF.overlap...background & X..no.TF.overlap...co.eGene & X..background.gene...not.co.eGene & enrichment.fdr & eQTL.SNP & SNP.overlaps.TF. & Names.of.overlapping.SNPs\\\\\n", + " & & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t1 & CD4T & rs111454690\\_HLA-DRB5 & CDK8 & FALSE & 9.630369e-06 & 14 & 5 & 2778 & 8515 & 1.640373e-03 & rs111454690 & FALSE & \\\\\n", + "\t2 & CD4T & rs111454690\\_HLA-DRB5 & SNRNP70 & FALSE & 1.209254e-09 & 11 & 8 & 649 & 10644 & 6.179288e-07 & rs111454690 & FALSE & \\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 13\n", + "\n", + "| | Cell.type <chr> | eQTL..SNP.eGene. <chr> | TF <chr> | TF.is.a.co.eGene. <lgl> | enrichment.p.value <dbl> | X..TF.overlap...co.eGene <int> | X..TF.overlap...background <int> | X..no.TF.overlap...co.eGene <int> | X..background.gene...not.co.eGene <int> | enrichment.fdr <dbl> | eQTL.SNP <chr> | SNP.overlaps.TF. <lgl> | Names.of.overlapping.SNPs <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| 1 | CD4T | rs111454690_HLA-DRB5 | CDK8 | FALSE | 9.630369e-06 | 14 | 5 | 2778 | 8515 | 1.640373e-03 | rs111454690 | FALSE | |\n", + "| 2 | CD4T | rs111454690_HLA-DRB5 | SNRNP70 | FALSE | 1.209254e-09 | 11 | 8 | 649 | 10644 | 6.179288e-07 | rs111454690 | FALSE | |\n", + "\n" + ], + "text/plain": [ + " Cell.type eQTL..SNP.eGene. TF TF.is.a.co.eGene. enrichment.p.value\n", + "1 CD4T rs111454690_HLA-DRB5 CDK8 FALSE 9.630369e-06 \n", + "2 CD4T rs111454690_HLA-DRB5 SNRNP70 FALSE 1.209254e-09 \n", + " X..TF.overlap...co.eGene X..TF.overlap...background\n", + "1 14 5 \n", + "2 11 8 \n", + " X..no.TF.overlap...co.eGene X..background.gene...not.co.eGene enrichment.fdr\n", + "1 2778 8515 1.640373e-03 \n", + "2 649 10644 6.179288e-07 \n", + " eQTL.SNP SNP.overlaps.TF. Names.of.overlapping.SNPs\n", + "1 rs111454690 FALSE \n", + "2 rs111454690 FALSE " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(old_enrichments,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 300, + "id": "1e378133-c45d-4ca4-bfe0-b6b89e2dd7f2", + "metadata": {}, + "outputs": [], + "source": [ + "colnames(old_enrichments) = paste0('ReMap', colnames(old_enrichments))" + ] + }, + { + "cell_type": "code", + "execution_count": 301, + "id": "2f103548-f736-4a81-ba6c-af85ac4da9c4", + "metadata": {}, + "outputs": [], + "source": [ + "combined = merge(enrichment, old_enrichments, by.x = c('TRANSFAC_cell_type', 'TRANSFAC_snp_eGene', 'TRANSFAC_tf'), by.y = c('ReMapCell.type', 'ReMapeQTL..SNP.eGene.', 'ReMapTF'))" + ] + }, + { + "cell_type": "code", + "execution_count": 303, + "id": "2b4a65ee-ecf1-4d93-9718-88b5f9f49d20", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "31" + ], + "text/latex": [ + "31" + ], + "text/markdown": [ + "31" + ], + "text/plain": [ + "[1] 31" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(combined)" + ] + }, + { + "cell_type": "code", + "execution_count": 306, + "id": "0ae3f173-266e-4720-bea0-fbd297c726d5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'CEBPD'
  2. 'CEBPB'
  3. 'ELK1'
  4. 'FLI1'
  5. 'HOXA9'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'CEBPD'\n", + "\\item 'CEBPB'\n", + "\\item 'ELK1'\n", + "\\item 'FLI1'\n", + "\\item 'HOXA9'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'CEBPD'\n", + "2. 'CEBPB'\n", + "3. 'ELK1'\n", + "4. 'FLI1'\n", + "5. 'HOXA9'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"CEBPD\" \"CEBPB\" \"ELK1\" \"FLI1\" \"HOXA9\"" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(combined$TRANSFAC_tf)" + ] + }, + { + "cell_type": "code", + "execution_count": 304, + "id": "4924d056-d88a-4dcc-b21d-4f42f2365c10", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 31 × 26
TRANSFAC_cell_typeTRANSFAC_snp_eGeneTRANSFAC_tfTRANSFAC_queryTRANSFAC_significantTRANSFAC_p_valueTRANSFAC_term_sizeTRANSFAC_query_sizeTRANSFAC_intersection_sizeTRANSFAC_precisionReMapTF.is.a.co.eGene.ReMapenrichment.p.valueReMapX..TF.overlap...co.eGeneReMapX..TF.overlap...backgroundReMapX..no.TF.overlap...co.eGeneReMapX..background.gene...not.co.eGeneReMapenrichment.fdrReMapeQTL.SNPReMapSNP.overlaps.TF.ReMapNames.of.overlapping.SNPs
<chr><chr><chr><chr><lgl><dbl><int><int><int><dbl><lgl><dbl><int><int><int><int><dbl><chr><lgl><chr>
B rs1131017_RPS26 CEBPDquery_1TRUE0.028703406 501 35 230.6571429FALSE3.034184e-06 34 11096 6321.107477e-04rs1131017 TRUErs1131017,rs7297175
CD4T rs1131017_RPS26_positiveCEBPBquery_1TRUE0.0287429232503191 700.3664921FALSE2.421193e-05159 417460 38332.877279e-04rs1131017 TRUErs7297175
CD4T rs1131017_RPS26_positiveCEBPBquery_1TRUE0.0416186101598191 490.2565445FALSE2.421193e-05159 417460 38332.877279e-04rs1131017 TRUErs7297175
CD4T rs1131017_RPS26_positiveCEBPBquery_1TRUE0.0179414172826191 780.4083770FALSE2.421193e-05159 417460 38332.877279e-04rs1131017 TRUErs7297175
CD4T rs1131017_RPS26_positiveCEBPDquery_1TRUE0.0416186101464191 460.2408377FALSE7.264122e-05133 675970 53237.423933e-04rs1131017 TRUErs1131017,rs7297175
CD4T rs1131017_RPS26_positiveELK1 query_1TRUE0.00714231644671911130.5916230FALSE7.289311e-04 941064030 72635.173386e-03rs1131017 TRUErs10876864
CD4T rs1131017_RPS26_positiveFLI1 query_1TRUE0.0241723822207191 640.3350785FALSE9.006657e-03131 696433 48604.002088e-02rs1131017 TRUErs1131017
CD4T rs1131017_RPS26_positiveFLI1 query_1TRUE0.0472674403060191 800.4188482FALSE9.006657e-03131 696433 48604.002088e-02rs1131017 TRUErs1131017
CD4T rs1131017_RPS26_positiveFLI1 query_1TRUE0.0416186102325191 650.3403141FALSE9.006657e-03131 696433 48604.002088e-02rs1131017 TRUErs1131017
CD4T rs1131017_RPS26_positiveHOXA9query_1TRUE0.0024708673285191 950.4973822FALSE1.610430e-05 20180 372109212.083458e-04rs1131017FALSE
CD4T rs1131017_RPS26_positiveHOXA9query_1TRUE0.007142316 732191 310.1623037FALSE1.610430e-05 20180 372109212.083458e-04rs1131017FALSE
CD4T rs1131017_RPS26_positiveHOXA9query_1TRUE0.0041884941124191 430.2251309FALSE1.610430e-05 20180 372109212.083458e-04rs1131017FALSE
CD4T rs7605824_SH3YL1 CEBPDquery_1TRUE0.0225375693025 20 160.8000000FALSE2.865087e-03 17 35970 53233.327408e-02rs7605824FALSE
monocyters1131017_RPS26 CEBPBquery_1TRUE0.0363126933140126 650.5158730FALSE4.198463e-03106 266655 28991.968270e-02rs1131017 TRUErs7297175
monocyters1131017_RPS26 CEBPBquery_1TRUE0.0299266251416126 370.2936508FALSE4.198463e-03106 266655 28991.968270e-02rs1131017 TRUErs7297175
monocyters1131017_RPS26 CEBPBquery_1TRUE0.0096387362201126 550.4365079FALSE4.198463e-03106 266655 28991.968270e-02rs1131017 TRUErs7297175
monocyters1131017_RPS26 CEBPBquery_1TRUE0.0096387362479126 590.4682540FALSE4.198463e-03106 266655 28991.968270e-02rs1131017 TRUErs7297175
monocyters1131017_RPS26 CEBPBquery_1TRUE0.0229334981622126 420.3333333FALSE4.198463e-03106 266655 28991.968270e-02rs1131017 TRUErs7297175
monocyters1131017_RPS26 CEBPDquery_1TRUE0.0490653262296126 510.4047619FALSE1.611238e-05 97 355295 42591.960339e-04rs1131017 TRUErs1131017,rs7297175
monocyters1131017_RPS26 CEBPDquery_1TRUE0.0269720581316126 360.2857143FALSE1.611238e-05 97 355295 42591.960339e-04rs1131017 TRUErs1131017,rs7297175
monocyters1131017_RPS26 CEBPDquery_1TRUE0.0286798732564126 570.4523810FALSE1.611238e-05 97 355295 42591.960339e-04rs1131017 TRUErs1131017,rs7297175
monocyters1131017_RPS26 ELK1 query_1TRUE0.0286798734261126 820.6507937FALSE8.317368e-05 71 613550 60048.019198e-04rs1131017 TRUErs10876864
monocyters1131017_RPS26 ELK1 query_1TRUE0.0490653263932126 760.6031746FALSE8.317368e-05 71 613550 60048.019198e-04rs1131017 TRUErs10876864
monocyters1131017_RPS26 ELK1 query_1TRUE0.0447944722973126 620.4920635FALSE8.317368e-05 71 613550 60048.019198e-04rs1131017 TRUErs10876864
monocyters1131017_RPS26 FLI1 query_1TRUE0.0360456111951126 460.3650794FALSE4.430257e-04 97 355648 39063.144252e-03rs1131017 TRUErs1131017
NK rs1131017_RPS26 CEBPBquery_1TRUE0.0066039321894 94 480.5106383FALSE1.566936e-03 80 165050 22178.428465e-03rs1131017 TRUErs7297175
NK rs1131017_RPS26 CEBPBquery_1TRUE0.0311549711076 94 300.3191489FALSE1.566936e-03 80 165050 22178.428465e-03rs1131017 TRUErs7297175
NK rs1131017_RPS26 CEBPBquery_1TRUE0.0169969931249 94 340.3617021FALSE1.566936e-03 80 165050 22178.428465e-03rs1131017 TRUErs7297175
NK rs1131017_RPS26 CEBPBquery_1TRUE0.0077297871684 94 430.4574468FALSE1.566936e-03 80 165050 22178.428465e-03rs1131017 TRUErs7297175
NK rs1131017_RPS26 CEBPDquery_1TRUE0.033634713 981 94 280.2978723FALSE5.531751e-07 78 184147 31208.833515e-06rs1131017 TRUErs1131017,rs7297175
NK rs1131017_RPS26 CEBPDquery_1TRUE0.0303782481957 94 450.4787234FALSE5.531751e-07 78 184147 31208.833515e-06rs1131017 TRUErs1131017,rs7297175
\n" + ], + "text/latex": [ + "A data.frame: 31 × 26\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " TRANSFAC\\_cell\\_type & TRANSFAC\\_snp\\_eGene & TRANSFAC\\_tf & TRANSFAC\\_query & TRANSFAC\\_significant & TRANSFAC\\_p\\_value & TRANSFAC\\_term\\_size & TRANSFAC\\_query\\_size & TRANSFAC\\_intersection\\_size & TRANSFAC\\_precision & ⋯ & ReMapTF.is.a.co.eGene. & ReMapenrichment.p.value & ReMapX..TF.overlap...co.eGene & ReMapX..TF.overlap...background & ReMapX..no.TF.overlap...co.eGene & ReMapX..background.gene...not.co.eGene & ReMapenrichment.fdr & ReMapeQTL.SNP & ReMapSNP.overlaps.TF. & ReMapNames.of.overlapping.SNPs\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t B & rs1131017\\_RPS26 & CEBPD & query\\_1 & TRUE & 0.028703406 & 501 & 35 & 23 & 0.6571429 & ⋯ & FALSE & 3.034184e-06 & 34 & 1 & 1096 & 632 & 1.107477e-04 & rs1131017 & TRUE & rs1131017,rs7297175\\\\\n", + "\t CD4T & rs1131017\\_RPS26\\_positive & CEBPB & query\\_1 & TRUE & 0.028742923 & 2503 & 191 & 70 & 0.3664921 & ⋯ & FALSE & 2.421193e-05 & 159 & 41 & 7460 & 3833 & 2.877279e-04 & rs1131017 & TRUE & rs7297175 \\\\\n", + "\t CD4T & rs1131017\\_RPS26\\_positive & CEBPB & query\\_1 & TRUE & 0.041618610 & 1598 & 191 & 49 & 0.2565445 & ⋯ & FALSE & 2.421193e-05 & 159 & 41 & 7460 & 3833 & 2.877279e-04 & rs1131017 & TRUE & rs7297175 \\\\\n", + "\t CD4T & rs1131017\\_RPS26\\_positive & CEBPB & query\\_1 & TRUE & 0.017941417 & 2826 & 191 & 78 & 0.4083770 & ⋯ & FALSE & 2.421193e-05 & 159 & 41 & 7460 & 3833 & 2.877279e-04 & rs1131017 & TRUE & rs7297175 \\\\\n", + "\t CD4T & rs1131017\\_RPS26\\_positive & CEBPD & query\\_1 & TRUE & 0.041618610 & 1464 & 191 & 46 & 0.2408377 & ⋯ & FALSE & 7.264122e-05 & 133 & 67 & 5970 & 5323 & 7.423933e-04 & rs1131017 & TRUE & rs1131017,rs7297175\\\\\n", + "\t CD4T & rs1131017\\_RPS26\\_positive & ELK1 & query\\_1 & TRUE & 0.007142316 & 4467 & 191 & 113 & 0.5916230 & ⋯ & FALSE & 7.289311e-04 & 94 & 106 & 4030 & 7263 & 5.173386e-03 & rs1131017 & TRUE & rs10876864 \\\\\n", + "\t CD4T & rs1131017\\_RPS26\\_positive & FLI1 & query\\_1 & TRUE & 0.024172382 & 2207 & 191 & 64 & 0.3350785 & ⋯ & FALSE & 9.006657e-03 & 131 & 69 & 6433 & 4860 & 4.002088e-02 & rs1131017 & TRUE & rs1131017 \\\\\n", + "\t CD4T & rs1131017\\_RPS26\\_positive & FLI1 & query\\_1 & TRUE & 0.047267440 & 3060 & 191 & 80 & 0.4188482 & ⋯ & FALSE & 9.006657e-03 & 131 & 69 & 6433 & 4860 & 4.002088e-02 & rs1131017 & TRUE & rs1131017 \\\\\n", + "\t CD4T & rs1131017\\_RPS26\\_positive & FLI1 & query\\_1 & TRUE & 0.041618610 & 2325 & 191 & 65 & 0.3403141 & ⋯ & FALSE & 9.006657e-03 & 131 & 69 & 6433 & 4860 & 4.002088e-02 & rs1131017 & TRUE & rs1131017 \\\\\n", + "\t CD4T & rs1131017\\_RPS26\\_positive & HOXA9 & query\\_1 & TRUE & 0.002470867 & 3285 & 191 & 95 & 0.4973822 & ⋯ & FALSE & 1.610430e-05 & 20 & 180 & 372 & 10921 & 2.083458e-04 & rs1131017 & FALSE & \\\\\n", + "\t CD4T & rs1131017\\_RPS26\\_positive & HOXA9 & query\\_1 & TRUE & 0.007142316 & 732 & 191 & 31 & 0.1623037 & ⋯ & FALSE & 1.610430e-05 & 20 & 180 & 372 & 10921 & 2.083458e-04 & rs1131017 & FALSE & \\\\\n", + "\t CD4T & rs1131017\\_RPS26\\_positive & HOXA9 & query\\_1 & TRUE & 0.004188494 & 1124 & 191 & 43 & 0.2251309 & ⋯ & FALSE & 1.610430e-05 & 20 & 180 & 372 & 10921 & 2.083458e-04 & rs1131017 & FALSE & \\\\\n", + "\t CD4T & rs7605824\\_SH3YL1 & CEBPD & query\\_1 & TRUE & 0.022537569 & 3025 & 20 & 16 & 0.8000000 & ⋯ & FALSE & 2.865087e-03 & 17 & 3 & 5970 & 5323 & 3.327408e-02 & rs7605824 & FALSE & \\\\\n", + "\t monocyte & rs1131017\\_RPS26 & CEBPB & query\\_1 & TRUE & 0.036312693 & 3140 & 126 & 65 & 0.5158730 & ⋯ & FALSE & 4.198463e-03 & 106 & 26 & 6655 & 2899 & 1.968270e-02 & rs1131017 & TRUE & rs7297175 \\\\\n", + "\t monocyte & rs1131017\\_RPS26 & CEBPB & query\\_1 & TRUE & 0.029926625 & 1416 & 126 & 37 & 0.2936508 & ⋯ & FALSE & 4.198463e-03 & 106 & 26 & 6655 & 2899 & 1.968270e-02 & rs1131017 & TRUE & rs7297175 \\\\\n", + "\t monocyte & rs1131017\\_RPS26 & CEBPB & query\\_1 & TRUE & 0.009638736 & 2201 & 126 & 55 & 0.4365079 & ⋯ & FALSE & 4.198463e-03 & 106 & 26 & 6655 & 2899 & 1.968270e-02 & rs1131017 & TRUE & rs7297175 \\\\\n", + "\t monocyte & rs1131017\\_RPS26 & CEBPB & query\\_1 & TRUE & 0.009638736 & 2479 & 126 & 59 & 0.4682540 & ⋯ & FALSE & 4.198463e-03 & 106 & 26 & 6655 & 2899 & 1.968270e-02 & rs1131017 & TRUE & rs7297175 \\\\\n", + "\t monocyte & rs1131017\\_RPS26 & CEBPB & query\\_1 & TRUE & 0.022933498 & 1622 & 126 & 42 & 0.3333333 & ⋯ & FALSE & 4.198463e-03 & 106 & 26 & 6655 & 2899 & 1.968270e-02 & rs1131017 & TRUE & rs7297175 \\\\\n", + "\t monocyte & rs1131017\\_RPS26 & CEBPD & query\\_1 & TRUE & 0.049065326 & 2296 & 126 & 51 & 0.4047619 & ⋯ & FALSE & 1.611238e-05 & 97 & 35 & 5295 & 4259 & 1.960339e-04 & rs1131017 & TRUE & rs1131017,rs7297175\\\\\n", + "\t monocyte & rs1131017\\_RPS26 & CEBPD & query\\_1 & TRUE & 0.026972058 & 1316 & 126 & 36 & 0.2857143 & ⋯ & FALSE & 1.611238e-05 & 97 & 35 & 5295 & 4259 & 1.960339e-04 & rs1131017 & TRUE & rs1131017,rs7297175\\\\\n", + "\t monocyte & rs1131017\\_RPS26 & CEBPD & query\\_1 & TRUE & 0.028679873 & 2564 & 126 & 57 & 0.4523810 & ⋯ & FALSE & 1.611238e-05 & 97 & 35 & 5295 & 4259 & 1.960339e-04 & rs1131017 & TRUE & rs1131017,rs7297175\\\\\n", + "\t monocyte & rs1131017\\_RPS26 & ELK1 & query\\_1 & TRUE & 0.028679873 & 4261 & 126 & 82 & 0.6507937 & ⋯ & FALSE & 8.317368e-05 & 71 & 61 & 3550 & 6004 & 8.019198e-04 & rs1131017 & TRUE & rs10876864 \\\\\n", + "\t monocyte & rs1131017\\_RPS26 & ELK1 & query\\_1 & TRUE & 0.049065326 & 3932 & 126 & 76 & 0.6031746 & ⋯ & FALSE & 8.317368e-05 & 71 & 61 & 3550 & 6004 & 8.019198e-04 & rs1131017 & TRUE & rs10876864 \\\\\n", + "\t monocyte & rs1131017\\_RPS26 & ELK1 & query\\_1 & TRUE & 0.044794472 & 2973 & 126 & 62 & 0.4920635 & ⋯ & FALSE & 8.317368e-05 & 71 & 61 & 3550 & 6004 & 8.019198e-04 & rs1131017 & TRUE & rs10876864 \\\\\n", + "\t monocyte & rs1131017\\_RPS26 & FLI1 & query\\_1 & TRUE & 0.036045611 & 1951 & 126 & 46 & 0.3650794 & ⋯ & FALSE & 4.430257e-04 & 97 & 35 & 5648 & 3906 & 3.144252e-03 & rs1131017 & TRUE & rs1131017 \\\\\n", + "\t NK & rs1131017\\_RPS26 & CEBPB & query\\_1 & TRUE & 0.006603932 & 1894 & 94 & 48 & 0.5106383 & ⋯ & FALSE & 1.566936e-03 & 80 & 16 & 5050 & 2217 & 8.428465e-03 & rs1131017 & TRUE & rs7297175 \\\\\n", + "\t NK & rs1131017\\_RPS26 & CEBPB & query\\_1 & TRUE & 0.031154971 & 1076 & 94 & 30 & 0.3191489 & ⋯ & FALSE & 1.566936e-03 & 80 & 16 & 5050 & 2217 & 8.428465e-03 & rs1131017 & TRUE & rs7297175 \\\\\n", + "\t NK & rs1131017\\_RPS26 & CEBPB & query\\_1 & TRUE & 0.016996993 & 1249 & 94 & 34 & 0.3617021 & ⋯ & FALSE & 1.566936e-03 & 80 & 16 & 5050 & 2217 & 8.428465e-03 & rs1131017 & TRUE & rs7297175 \\\\\n", + "\t NK & rs1131017\\_RPS26 & CEBPB & query\\_1 & TRUE & 0.007729787 & 1684 & 94 & 43 & 0.4574468 & ⋯ & FALSE & 1.566936e-03 & 80 & 16 & 5050 & 2217 & 8.428465e-03 & rs1131017 & TRUE & rs7297175 \\\\\n", + "\t NK & rs1131017\\_RPS26 & CEBPD & query\\_1 & TRUE & 0.033634713 & 981 & 94 & 28 & 0.2978723 & ⋯ & FALSE & 5.531751e-07 & 78 & 18 & 4147 & 3120 & 8.833515e-06 & rs1131017 & TRUE & rs1131017,rs7297175\\\\\n", + "\t NK & rs1131017\\_RPS26 & CEBPD & query\\_1 & TRUE & 0.030378248 & 1957 & 94 & 45 & 0.4787234 & ⋯ & FALSE & 5.531751e-07 & 78 & 18 & 4147 & 3120 & 8.833515e-06 & rs1131017 & TRUE & rs1131017,rs7297175\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 31 × 26\n", + "\n", + "| TRANSFAC_cell_type <chr> | TRANSFAC_snp_eGene <chr> | TRANSFAC_tf <chr> | TRANSFAC_query <chr> | TRANSFAC_significant <lgl> | TRANSFAC_p_value <dbl> | TRANSFAC_term_size <int> | TRANSFAC_query_size <int> | TRANSFAC_intersection_size <int> | TRANSFAC_precision <dbl> | ⋯ ⋯ | ReMapTF.is.a.co.eGene. <lgl> | ReMapenrichment.p.value <dbl> | ReMapX..TF.overlap...co.eGene <int> | ReMapX..TF.overlap...background <int> | ReMapX..no.TF.overlap...co.eGene <int> | ReMapX..background.gene...not.co.eGene <int> | ReMapenrichment.fdr <dbl> | ReMapeQTL.SNP <chr> | ReMapSNP.overlaps.TF. <lgl> | ReMapNames.of.overlapping.SNPs <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| B | rs1131017_RPS26 | CEBPD | query_1 | TRUE | 0.028703406 | 501 | 35 | 23 | 0.6571429 | ⋯ | FALSE | 3.034184e-06 | 34 | 1 | 1096 | 632 | 1.107477e-04 | rs1131017 | TRUE | rs1131017,rs7297175 |\n", + "| CD4T | rs1131017_RPS26_positive | CEBPB | query_1 | TRUE | 0.028742923 | 2503 | 191 | 70 | 0.3664921 | ⋯ | FALSE | 2.421193e-05 | 159 | 41 | 7460 | 3833 | 2.877279e-04 | rs1131017 | TRUE | rs7297175 |\n", + "| CD4T | rs1131017_RPS26_positive | CEBPB | query_1 | TRUE | 0.041618610 | 1598 | 191 | 49 | 0.2565445 | ⋯ | FALSE | 2.421193e-05 | 159 | 41 | 7460 | 3833 | 2.877279e-04 | rs1131017 | TRUE | rs7297175 |\n", + "| CD4T | rs1131017_RPS26_positive | CEBPB | query_1 | TRUE | 0.017941417 | 2826 | 191 | 78 | 0.4083770 | ⋯ | FALSE | 2.421193e-05 | 159 | 41 | 7460 | 3833 | 2.877279e-04 | rs1131017 | TRUE | rs7297175 |\n", + "| CD4T | rs1131017_RPS26_positive | CEBPD | query_1 | TRUE | 0.041618610 | 1464 | 191 | 46 | 0.2408377 | ⋯ | FALSE | 7.264122e-05 | 133 | 67 | 5970 | 5323 | 7.423933e-04 | rs1131017 | TRUE | rs1131017,rs7297175 |\n", + "| CD4T | rs1131017_RPS26_positive | ELK1 | query_1 | TRUE | 0.007142316 | 4467 | 191 | 113 | 0.5916230 | ⋯ | FALSE | 7.289311e-04 | 94 | 106 | 4030 | 7263 | 5.173386e-03 | rs1131017 | TRUE | rs10876864 |\n", + "| CD4T | rs1131017_RPS26_positive | FLI1 | query_1 | TRUE | 0.024172382 | 2207 | 191 | 64 | 0.3350785 | ⋯ | FALSE | 9.006657e-03 | 131 | 69 | 6433 | 4860 | 4.002088e-02 | rs1131017 | TRUE | rs1131017 |\n", + "| CD4T | rs1131017_RPS26_positive | FLI1 | query_1 | TRUE | 0.047267440 | 3060 | 191 | 80 | 0.4188482 | ⋯ | FALSE | 9.006657e-03 | 131 | 69 | 6433 | 4860 | 4.002088e-02 | rs1131017 | TRUE | rs1131017 |\n", + "| CD4T | rs1131017_RPS26_positive | FLI1 | query_1 | TRUE | 0.041618610 | 2325 | 191 | 65 | 0.3403141 | ⋯ | FALSE | 9.006657e-03 | 131 | 69 | 6433 | 4860 | 4.002088e-02 | rs1131017 | TRUE | rs1131017 |\n", + "| CD4T | rs1131017_RPS26_positive | HOXA9 | query_1 | TRUE | 0.002470867 | 3285 | 191 | 95 | 0.4973822 | ⋯ | FALSE | 1.610430e-05 | 20 | 180 | 372 | 10921 | 2.083458e-04 | rs1131017 | FALSE | |\n", + "| CD4T | rs1131017_RPS26_positive | HOXA9 | query_1 | TRUE | 0.007142316 | 732 | 191 | 31 | 0.1623037 | ⋯ | FALSE | 1.610430e-05 | 20 | 180 | 372 | 10921 | 2.083458e-04 | rs1131017 | FALSE | |\n", + "| CD4T | rs1131017_RPS26_positive | HOXA9 | query_1 | TRUE | 0.004188494 | 1124 | 191 | 43 | 0.2251309 | ⋯ | FALSE | 1.610430e-05 | 20 | 180 | 372 | 10921 | 2.083458e-04 | rs1131017 | FALSE | |\n", + "| CD4T | rs7605824_SH3YL1 | CEBPD | query_1 | TRUE | 0.022537569 | 3025 | 20 | 16 | 0.8000000 | ⋯ | FALSE | 2.865087e-03 | 17 | 3 | 5970 | 5323 | 3.327408e-02 | rs7605824 | FALSE | |\n", + "| monocyte | rs1131017_RPS26 | CEBPB | query_1 | TRUE | 0.036312693 | 3140 | 126 | 65 | 0.5158730 | ⋯ | FALSE | 4.198463e-03 | 106 | 26 | 6655 | 2899 | 1.968270e-02 | rs1131017 | TRUE | rs7297175 |\n", + "| monocyte | rs1131017_RPS26 | CEBPB | query_1 | TRUE | 0.029926625 | 1416 | 126 | 37 | 0.2936508 | ⋯ | FALSE | 4.198463e-03 | 106 | 26 | 6655 | 2899 | 1.968270e-02 | rs1131017 | TRUE | rs7297175 |\n", + "| monocyte | rs1131017_RPS26 | CEBPB | query_1 | TRUE | 0.009638736 | 2201 | 126 | 55 | 0.4365079 | ⋯ | FALSE | 4.198463e-03 | 106 | 26 | 6655 | 2899 | 1.968270e-02 | rs1131017 | TRUE | rs7297175 |\n", + "| monocyte | rs1131017_RPS26 | CEBPB | query_1 | TRUE | 0.009638736 | 2479 | 126 | 59 | 0.4682540 | ⋯ | FALSE | 4.198463e-03 | 106 | 26 | 6655 | 2899 | 1.968270e-02 | rs1131017 | TRUE | rs7297175 |\n", + "| monocyte | rs1131017_RPS26 | CEBPB | query_1 | TRUE | 0.022933498 | 1622 | 126 | 42 | 0.3333333 | ⋯ | FALSE | 4.198463e-03 | 106 | 26 | 6655 | 2899 | 1.968270e-02 | rs1131017 | TRUE | rs7297175 |\n", + "| monocyte | rs1131017_RPS26 | CEBPD | query_1 | TRUE | 0.049065326 | 2296 | 126 | 51 | 0.4047619 | ⋯ | FALSE | 1.611238e-05 | 97 | 35 | 5295 | 4259 | 1.960339e-04 | rs1131017 | TRUE | rs1131017,rs7297175 |\n", + "| monocyte | rs1131017_RPS26 | CEBPD | query_1 | TRUE | 0.026972058 | 1316 | 126 | 36 | 0.2857143 | ⋯ | FALSE | 1.611238e-05 | 97 | 35 | 5295 | 4259 | 1.960339e-04 | rs1131017 | TRUE | rs1131017,rs7297175 |\n", + "| monocyte | rs1131017_RPS26 | CEBPD | query_1 | TRUE | 0.028679873 | 2564 | 126 | 57 | 0.4523810 | ⋯ | FALSE | 1.611238e-05 | 97 | 35 | 5295 | 4259 | 1.960339e-04 | rs1131017 | TRUE | rs1131017,rs7297175 |\n", + "| monocyte | rs1131017_RPS26 | ELK1 | query_1 | TRUE | 0.028679873 | 4261 | 126 | 82 | 0.6507937 | ⋯ | FALSE | 8.317368e-05 | 71 | 61 | 3550 | 6004 | 8.019198e-04 | rs1131017 | TRUE | rs10876864 |\n", + "| monocyte | rs1131017_RPS26 | ELK1 | query_1 | TRUE | 0.049065326 | 3932 | 126 | 76 | 0.6031746 | ⋯ | FALSE | 8.317368e-05 | 71 | 61 | 3550 | 6004 | 8.019198e-04 | rs1131017 | TRUE | rs10876864 |\n", + "| monocyte | rs1131017_RPS26 | ELK1 | query_1 | TRUE | 0.044794472 | 2973 | 126 | 62 | 0.4920635 | ⋯ | FALSE | 8.317368e-05 | 71 | 61 | 3550 | 6004 | 8.019198e-04 | rs1131017 | TRUE | rs10876864 |\n", + "| monocyte | rs1131017_RPS26 | FLI1 | query_1 | TRUE | 0.036045611 | 1951 | 126 | 46 | 0.3650794 | ⋯ | FALSE | 4.430257e-04 | 97 | 35 | 5648 | 3906 | 3.144252e-03 | rs1131017 | TRUE | rs1131017 |\n", + "| NK | rs1131017_RPS26 | CEBPB | query_1 | TRUE | 0.006603932 | 1894 | 94 | 48 | 0.5106383 | ⋯ | FALSE | 1.566936e-03 | 80 | 16 | 5050 | 2217 | 8.428465e-03 | rs1131017 | TRUE | rs7297175 |\n", + "| NK | rs1131017_RPS26 | CEBPB | query_1 | TRUE | 0.031154971 | 1076 | 94 | 30 | 0.3191489 | ⋯ | FALSE | 1.566936e-03 | 80 | 16 | 5050 | 2217 | 8.428465e-03 | rs1131017 | TRUE | rs7297175 |\n", + "| NK | rs1131017_RPS26 | CEBPB | query_1 | TRUE | 0.016996993 | 1249 | 94 | 34 | 0.3617021 | ⋯ | FALSE | 1.566936e-03 | 80 | 16 | 5050 | 2217 | 8.428465e-03 | rs1131017 | TRUE | rs7297175 |\n", + "| NK | rs1131017_RPS26 | CEBPB | query_1 | TRUE | 0.007729787 | 1684 | 94 | 43 | 0.4574468 | ⋯ | FALSE | 1.566936e-03 | 80 | 16 | 5050 | 2217 | 8.428465e-03 | rs1131017 | TRUE | rs7297175 |\n", + "| NK | rs1131017_RPS26 | CEBPD | query_1 | TRUE | 0.033634713 | 981 | 94 | 28 | 0.2978723 | ⋯ | FALSE | 5.531751e-07 | 78 | 18 | 4147 | 3120 | 8.833515e-06 | rs1131017 | TRUE | rs1131017,rs7297175 |\n", + "| NK | rs1131017_RPS26 | CEBPD | query_1 | TRUE | 0.030378248 | 1957 | 94 | 45 | 0.4787234 | ⋯ | FALSE | 5.531751e-07 | 78 | 18 | 4147 | 3120 | 8.833515e-06 | rs1131017 | TRUE | rs1131017,rs7297175 |\n", + "\n" + ], + "text/plain": [ + " TRANSFAC_cell_type TRANSFAC_snp_eGene TRANSFAC_tf TRANSFAC_query\n", + "1 B rs1131017_RPS26 CEBPD query_1 \n", + "2 CD4T rs1131017_RPS26_positive CEBPB query_1 \n", + "3 CD4T rs1131017_RPS26_positive CEBPB query_1 \n", + "4 CD4T rs1131017_RPS26_positive CEBPB query_1 \n", + "5 CD4T rs1131017_RPS26_positive CEBPD query_1 \n", + "6 CD4T rs1131017_RPS26_positive ELK1 query_1 \n", + "7 CD4T rs1131017_RPS26_positive FLI1 query_1 \n", + "8 CD4T rs1131017_RPS26_positive FLI1 query_1 \n", + "9 CD4T rs1131017_RPS26_positive FLI1 query_1 \n", + "10 CD4T rs1131017_RPS26_positive HOXA9 query_1 \n", + "11 CD4T rs1131017_RPS26_positive HOXA9 query_1 \n", + "12 CD4T rs1131017_RPS26_positive HOXA9 query_1 \n", + "13 CD4T rs7605824_SH3YL1 CEBPD query_1 \n", + "14 monocyte rs1131017_RPS26 CEBPB query_1 \n", + "15 monocyte rs1131017_RPS26 CEBPB query_1 \n", + "16 monocyte rs1131017_RPS26 CEBPB query_1 \n", + "17 monocyte rs1131017_RPS26 CEBPB query_1 \n", + "18 monocyte rs1131017_RPS26 CEBPB query_1 \n", + "19 monocyte rs1131017_RPS26 CEBPD query_1 \n", + "20 monocyte rs1131017_RPS26 CEBPD query_1 \n", + "21 monocyte rs1131017_RPS26 CEBPD query_1 \n", + "22 monocyte rs1131017_RPS26 ELK1 query_1 \n", + "23 monocyte rs1131017_RPS26 ELK1 query_1 \n", + "24 monocyte rs1131017_RPS26 ELK1 query_1 \n", + "25 monocyte rs1131017_RPS26 FLI1 query_1 \n", + "26 NK rs1131017_RPS26 CEBPB query_1 \n", + "27 NK rs1131017_RPS26 CEBPB query_1 \n", + "28 NK rs1131017_RPS26 CEBPB query_1 \n", + "29 NK rs1131017_RPS26 CEBPB query_1 \n", + "30 NK rs1131017_RPS26 CEBPD query_1 \n", + "31 NK rs1131017_RPS26 CEBPD query_1 \n", + " TRANSFAC_significant TRANSFAC_p_value TRANSFAC_term_size TRANSFAC_query_size\n", + "1 TRUE 0.028703406 501 35 \n", + "2 TRUE 0.028742923 2503 191 \n", + "3 TRUE 0.041618610 1598 191 \n", + "4 TRUE 0.017941417 2826 191 \n", + "5 TRUE 0.041618610 1464 191 \n", + "6 TRUE 0.007142316 4467 191 \n", + "7 TRUE 0.024172382 2207 191 \n", + "8 TRUE 0.047267440 3060 191 \n", + "9 TRUE 0.041618610 2325 191 \n", + "10 TRUE 0.002470867 3285 191 \n", + "11 TRUE 0.007142316 732 191 \n", + "12 TRUE 0.004188494 1124 191 \n", + "13 TRUE 0.022537569 3025 20 \n", + "14 TRUE 0.036312693 3140 126 \n", + "15 TRUE 0.029926625 1416 126 \n", + "16 TRUE 0.009638736 2201 126 \n", + "17 TRUE 0.009638736 2479 126 \n", + "18 TRUE 0.022933498 1622 126 \n", + "19 TRUE 0.049065326 2296 126 \n", + "20 TRUE 0.026972058 1316 126 \n", + "21 TRUE 0.028679873 2564 126 \n", + "22 TRUE 0.028679873 4261 126 \n", + "23 TRUE 0.049065326 3932 126 \n", + "24 TRUE 0.044794472 2973 126 \n", + "25 TRUE 0.036045611 1951 126 \n", + "26 TRUE 0.006603932 1894 94 \n", + "27 TRUE 0.031154971 1076 94 \n", + "28 TRUE 0.016996993 1249 94 \n", + "29 TRUE 0.007729787 1684 94 \n", + "30 TRUE 0.033634713 981 94 \n", + "31 TRUE 0.030378248 1957 94 \n", + " TRANSFAC_intersection_size TRANSFAC_precision ⋯ ReMapTF.is.a.co.eGene.\n", + "1 23 0.6571429 ⋯ FALSE \n", + "2 70 0.3664921 ⋯ FALSE \n", + "3 49 0.2565445 ⋯ FALSE \n", + "4 78 0.4083770 ⋯ FALSE \n", + "5 46 0.2408377 ⋯ FALSE \n", + "6 113 0.5916230 ⋯ FALSE \n", + "7 64 0.3350785 ⋯ FALSE \n", + "8 80 0.4188482 ⋯ FALSE \n", + "9 65 0.3403141 ⋯ FALSE \n", + "10 95 0.4973822 ⋯ FALSE \n", + "11 31 0.1623037 ⋯ FALSE \n", + "12 43 0.2251309 ⋯ FALSE \n", + "13 16 0.8000000 ⋯ FALSE \n", + "14 65 0.5158730 ⋯ FALSE \n", + "15 37 0.2936508 ⋯ FALSE \n", + "16 55 0.4365079 ⋯ FALSE \n", + "17 59 0.4682540 ⋯ FALSE \n", + "18 42 0.3333333 ⋯ FALSE \n", + "19 51 0.4047619 ⋯ FALSE \n", + "20 36 0.2857143 ⋯ FALSE \n", + "21 57 0.4523810 ⋯ FALSE \n", + "22 82 0.6507937 ⋯ FALSE \n", + "23 76 0.6031746 ⋯ FALSE \n", + "24 62 0.4920635 ⋯ FALSE \n", + "25 46 0.3650794 ⋯ FALSE \n", + "26 48 0.5106383 ⋯ FALSE \n", + "27 30 0.3191489 ⋯ FALSE \n", + "28 34 0.3617021 ⋯ FALSE \n", + "29 43 0.4574468 ⋯ FALSE \n", + "30 28 0.2978723 ⋯ FALSE \n", + "31 45 0.4787234 ⋯ FALSE \n", + " ReMapenrichment.p.value ReMapX..TF.overlap...co.eGene\n", + "1 3.034184e-06 34 \n", + "2 2.421193e-05 159 \n", + "3 2.421193e-05 159 \n", + "4 2.421193e-05 159 \n", + "5 7.264122e-05 133 \n", + "6 7.289311e-04 94 \n", + "7 9.006657e-03 131 \n", + "8 9.006657e-03 131 \n", + "9 9.006657e-03 131 \n", + "10 1.610430e-05 20 \n", + "11 1.610430e-05 20 \n", + "12 1.610430e-05 20 \n", + "13 2.865087e-03 17 \n", + "14 4.198463e-03 106 \n", + "15 4.198463e-03 106 \n", + "16 4.198463e-03 106 \n", + "17 4.198463e-03 106 \n", + "18 4.198463e-03 106 \n", + "19 1.611238e-05 97 \n", + "20 1.611238e-05 97 \n", + "21 1.611238e-05 97 \n", + "22 8.317368e-05 71 \n", + "23 8.317368e-05 71 \n", + "24 8.317368e-05 71 \n", + "25 4.430257e-04 97 \n", + "26 1.566936e-03 80 \n", + "27 1.566936e-03 80 \n", + "28 1.566936e-03 80 \n", + "29 1.566936e-03 80 \n", + "30 5.531751e-07 78 \n", + "31 5.531751e-07 78 \n", + " ReMapX..TF.overlap...background ReMapX..no.TF.overlap...co.eGene\n", + "1 1 1096 \n", + "2 41 7460 \n", + "3 41 7460 \n", + "4 41 7460 \n", + "5 67 5970 \n", + "6 106 4030 \n", + "7 69 6433 \n", + "8 69 6433 \n", + "9 69 6433 \n", + "10 180 372 \n", + "11 180 372 \n", + "12 180 372 \n", + "13 3 5970 \n", + "14 26 6655 \n", + "15 26 6655 \n", + "16 26 6655 \n", + "17 26 6655 \n", + "18 26 6655 \n", + "19 35 5295 \n", + "20 35 5295 \n", + "21 35 5295 \n", + "22 61 3550 \n", + "23 61 3550 \n", + "24 61 3550 \n", + "25 35 5648 \n", + "26 16 5050 \n", + "27 16 5050 \n", + "28 16 5050 \n", + "29 16 5050 \n", + "30 18 4147 \n", + "31 18 4147 \n", + " ReMapX..background.gene...not.co.eGene ReMapenrichment.fdr ReMapeQTL.SNP\n", + "1 632 1.107477e-04 rs1131017 \n", + "2 3833 2.877279e-04 rs1131017 \n", + "3 3833 2.877279e-04 rs1131017 \n", + "4 3833 2.877279e-04 rs1131017 \n", + "5 5323 7.423933e-04 rs1131017 \n", + "6 7263 5.173386e-03 rs1131017 \n", + "7 4860 4.002088e-02 rs1131017 \n", + "8 4860 4.002088e-02 rs1131017 \n", + "9 4860 4.002088e-02 rs1131017 \n", + "10 10921 2.083458e-04 rs1131017 \n", + "11 10921 2.083458e-04 rs1131017 \n", + "12 10921 2.083458e-04 rs1131017 \n", + "13 5323 3.327408e-02 rs7605824 \n", + "14 2899 1.968270e-02 rs1131017 \n", + "15 2899 1.968270e-02 rs1131017 \n", + "16 2899 1.968270e-02 rs1131017 \n", + "17 2899 1.968270e-02 rs1131017 \n", + "18 2899 1.968270e-02 rs1131017 \n", + "19 4259 1.960339e-04 rs1131017 \n", + "20 4259 1.960339e-04 rs1131017 \n", + "21 4259 1.960339e-04 rs1131017 \n", + "22 6004 8.019198e-04 rs1131017 \n", + "23 6004 8.019198e-04 rs1131017 \n", + "24 6004 8.019198e-04 rs1131017 \n", + "25 3906 3.144252e-03 rs1131017 \n", + "26 2217 8.428465e-03 rs1131017 \n", + "27 2217 8.428465e-03 rs1131017 \n", + "28 2217 8.428465e-03 rs1131017 \n", + "29 2217 8.428465e-03 rs1131017 \n", + "30 3120 8.833515e-06 rs1131017 \n", + "31 3120 8.833515e-06 rs1131017 \n", + " ReMapSNP.overlaps.TF. ReMapNames.of.overlapping.SNPs\n", + "1 TRUE rs1131017,rs7297175 \n", + "2 TRUE rs7297175 \n", + "3 TRUE rs7297175 \n", + "4 TRUE rs7297175 \n", + "5 TRUE rs1131017,rs7297175 \n", + "6 TRUE rs10876864 \n", + "7 TRUE rs1131017 \n", + "8 TRUE rs1131017 \n", + "9 TRUE rs1131017 \n", + "10 FALSE \n", + "11 FALSE \n", + "12 FALSE \n", + "13 FALSE \n", + "14 TRUE rs7297175 \n", + "15 TRUE rs7297175 \n", + "16 TRUE rs7297175 \n", + "17 TRUE rs7297175 \n", + "18 TRUE rs7297175 \n", + "19 TRUE rs1131017,rs7297175 \n", + "20 TRUE rs1131017,rs7297175 \n", + "21 TRUE rs1131017,rs7297175 \n", + "22 TRUE rs10876864 \n", + "23 TRUE rs10876864 \n", + "24 TRUE rs10876864 \n", + "25 TRUE rs1131017 \n", + "26 TRUE rs7297175 \n", + "27 TRUE rs7297175 \n", + "28 TRUE rs7297175 \n", + "29 TRUE rs7297175 \n", + "30 TRUE rs1131017,rs7297175 \n", + "31 TRUE rs1131017,rs7297175 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "combined" + ] + }, + { + "cell_type": "code", + "execution_count": 305, + "id": "7ad1c204-f2d5-40ff-8f73-02871ed2a498", + "metadata": {}, + "outputs": [], + "source": [ + "write.csv(combined, paste0(path, \"transfac_results/TRANSFAC_ReMap_matches.csv\"))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "23af7863-6d69-4dd0-be60-8689305884dc", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "4.1.1" + }, + "toc-autonumbering": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/05_coeqtl_interpretation/R2_Coloc.ipynb b/05_coeqtl_interpretation/R2_Coloc.ipynb new file mode 100644 index 0000000..e0825b2 --- /dev/null +++ b/05_coeqtl_interpretation/R2_Coloc.ipynb @@ -0,0 +1,76277 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "3cfdb633-0fe4-4885-aecc-4ee2fc1a2fd0", + "metadata": {}, + "outputs": [], + "source": [ + "### Run colocalization analysis on output of eqtl and co-eqtl pipeline \n", + "### As GWAS input data we use the data from \n", + "\n", + "### 1) The GTEX Resource: https://zenodo.org/record/3629742#.Y1uTM3ZByUm (contains 114 publicly available GWAS traits, harmonized and imputed to GTEx v8 reference)\n", + "\n", + "### 2) Additional GWAS input data to test for T1D from: \n", + "### Chiou J, Geusz RJ, Okino M, Han JY, Miller M, Melton R, Beebe E,\n", + "### Benaglio P, Huang S, Korgaonkar K, Heller S, Kleger A, Preissl S, Gorkin DU,\n", + "### Sander M, Gaulton KJ. Cell type-specific genetic risk mechanisms of type 1\n", + "### diabetes" + ] + }, + { + "cell_type": "markdown", + "id": "cc324fd4-05dc-460b-850e-e1143db23937", + "metadata": { + "jp-MarkdownHeadingCollapsed": true, + "tags": [] + }, + "source": [ + "# Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "7e6756d6-e249-4d48-8ae3-b91ab6376a30", + "metadata": {}, + "outputs": [], + "source": [ + "### Load the necessary libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4bce754a-b96b-4c84-9cf5-60e9a54b707e", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Attaching package: ‘dplyr’\n", + "\n", + "\n", + "The following objects are masked from ‘package:stats’:\n", + "\n", + " filter, lag\n", + "\n", + "\n", + "The following objects are masked from ‘package:base’:\n", + "\n", + " intersect, setdiff, setequal, union\n", + "\n", + "\n", + "\n", + "Attaching package: ‘data.table’\n", + "\n", + "\n", + "The following objects are masked from ‘package:dplyr’:\n", + "\n", + " between, first, last\n", + "\n", + "\n", + "── \u001b[1mAttaching packages\u001b[22m ─────────────────────────────────────── tidyverse 1.3.1 ──\n", + "\n", + "\u001b[32m✔\u001b[39m \u001b[34mggplot2\u001b[39m 3.3.6 \u001b[32m✔\u001b[39m \u001b[34mreadr \u001b[39m 2.1.2\n", + "\u001b[32m✔\u001b[39m \u001b[34mtibble \u001b[39m 3.1.7 \u001b[32m✔\u001b[39m \u001b[34mpurrr \u001b[39m 0.3.4\n", + "\u001b[32m✔\u001b[39m \u001b[34mtidyr \u001b[39m 1.2.0 \u001b[32m✔\u001b[39m \u001b[34mforcats\u001b[39m 0.5.1\n", + "\n", + "── \u001b[1mConflicts\u001b[22m ────────────────────────────────────────── tidyverse_conflicts() ──\n", + "\u001b[31m✖\u001b[39m \u001b[34mdata.table\u001b[39m::\u001b[32mbetween()\u001b[39m masks \u001b[34mdplyr\u001b[39m::between()\n", + "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mfilter()\u001b[39m masks \u001b[34mstats\u001b[39m::filter()\n", + "\u001b[31m✖\u001b[39m \u001b[34mdata.table\u001b[39m::\u001b[32mfirst()\u001b[39m masks \u001b[34mdplyr\u001b[39m::first()\n", + "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mlag()\u001b[39m masks \u001b[34mstats\u001b[39m::lag()\n", + "\u001b[31m✖\u001b[39m \u001b[34mdata.table\u001b[39m::\u001b[32mlast()\u001b[39m masks \u001b[34mdplyr\u001b[39m::last()\n", + "\u001b[31m✖\u001b[39m \u001b[34mpurrr\u001b[39m::\u001b[32mtranspose()\u001b[39m masks \u001b[34mdata.table\u001b[39m::transpose()\n", + "\n", + "\n", + "Attaching package: ‘reshape2’\n", + "\n", + "\n", + "The following object is masked from ‘package:tidyr’:\n", + "\n", + " smiths\n", + "\n", + "\n", + "The following objects are masked from ‘package:data.table’:\n", + "\n", + " dcast, melt\n", + "\n", + "\n", + "Loading required package: lattice\n", + "\n", + "\n", + "Attaching package: ‘caret’\n", + "\n", + "\n", + "The following object is masked from ‘package:purrr’:\n", + "\n", + " lift\n", + "\n", + "\n", + "This is a new update to coloc.\n", + "\n", + "\n", + "Attaching package: ‘coloc’\n", + "\n", + "\n", + "The following object is masked from ‘package:caret’:\n", + "\n", + " sensitivity\n", + "\n", + "\n" + ] + } + ], + "source": [ + "source('MS1_Libraries.r')" + ] + }, + { + "cell_type": "markdown", + "id": "1d94372e-0e6d-4dfc-b43f-564c5cd0322a", + "metadata": { + "tags": [] + }, + "source": [ + "# Parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "2ff55a9c-b32c-4075-8860-43f959e1b3e4", + "metadata": {}, + "outputs": [], + "source": [ + "## Define path to stored data" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f1b11f33-ed28-444b-8dc6-7b2d6df14520", + "metadata": {}, + "outputs": [], + "source": [ + "path = \"\"\n", + "outdir = \"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "450dcaec-a669-4a0d-9899-19d46e2660dc", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_data_path = \"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "0104b5db-350f-4435-85da-be5ea1db359c", + "metadata": {}, + "outputs": [], + "source": [ + "## Define cell-types for which colocalization analysis should be executed" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "bb521835-3c8b-4298-b6ea-bb81067dee55", + "metadata": {}, + "outputs": [], + "source": [ + "cell_type_var = c(\"CD4T\",\"CD8T\",\"monocyte\",\"NK\",\"B\",\"DC\")\n", + "# c(\"CD4T\",\"CD8T\",\"monocyte\",\"NK\",\"B\",\"DC\")" + ] + }, + { + "cell_type": "markdown", + "id": "d05e2060-86ba-42e8-9306-2b406341b315", + "metadata": { + "tags": [] + }, + "source": [ + "# Data " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6d1110c1-b170-4689-b643-50209a1db99a", + "metadata": {}, + "outputs": [], + "source": [ + "### Load the required data" + ] + }, + { + "cell_type": "markdown", + "id": "9c7a12ef-e9a5-4f80-97b2-ba354e0ebbfa", + "metadata": { + "tags": [] + }, + "source": [ + "## eQTL/ co-eQTL data" + ] + }, + { + "cell_type": "markdown", + "id": "d3dcf33a-9c6c-4fee-a53f-0989ef9457ff", + "metadata": { + "tags": [] + }, + "source": [ + "### eqtl data " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "2378dbb5-21cc-441d-b971-592895acdcd7", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_all_effect = data.frame()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "896fb460-a23d-4783-aba7-051b8958f82f", + "metadata": {}, + "outputs": [], + "source": [ + "for(i in cell_type_var){\n", + " data1 = fread(paste0(path, \"GRN_review/\", i, \"_ciseQTLs_1MB_-AllEffects.txt.gz\"))\n", + " ## add seperate HLA_DQA + SMDT1 data\n", + " data2 = fread(paste0(path, \"coloc_data_HLA_DQA_SMDT1/\", i, \"_ciseQTLs_1MB_HLA_DQA_SMDT1_-AllEffects.txt.gz\"))\n", + " \n", + " data = rbind(data1,data2)\n", + " data$cell_type = paste0(i, '1MB')\n", + " eqtl_all_effect = rbind(data, eqtl_all_effect)\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "bd2b32e4-cdbe-4b7b-9854-c669319fccbc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 22
GeneGeneChrGenePosGeneStrandGeneSymbolSNPSNPChrSNPPosSNPAllelesSNPEffectAlleleMetaPNMetaPZMetaBetaMetaSEMetaI2NrDatasetsDatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2)cell_type
<chr><int><int><lgl><chr><chr><int><int><chr><chr><int><dbl><dbl><dbl><dbl><int><chr><chr><chr><chr>
ENSG0000019772812 56435637NARPS26 rs1258226012 55436509G/AA1710.7348370.0809620.110177040.179883;0.114471;-0.067275;-0.1753341.154256;0.957471;-0.365841;-0.81948143;72;32;24DC1MB
ENSG00000026297 6167342992NARNASET2rs9365940 6166343144A/GG1710.6016340.0891240.148136040.06959;0.013057;0.034956;0.129805 0.443421;0.108859;0.18993;0.60453 43;72;32;24DC1MB
\n" + ], + "text/latex": [ + "A data.table: 2 × 22\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " Gene & GeneChr & GenePos & GeneStrand & GeneSymbol & SNP & SNPChr & SNPPos & SNPAlleles & SNPEffectAllele & ⋯ & MetaPN & MetaPZ & MetaBeta & MetaSE & MetaI2 & NrDatasets & DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2) & DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2) & DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) & cell\\_type\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t ENSG00000197728 & 12 & 56435637 & NA & RPS26 & rs12582260 & 12 & 55436509 & G/A & A & ⋯ & 171 & 0.734837 & 0.080962 & 0.110177 & 0 & 4 & 0.179883;0.114471;-0.067275;-0.175334 & 1.154256;0.957471;-0.365841;-0.819481 & 43;72;32;24 & DC1MB\\\\\n", + "\t ENSG00000026297 & 6 & 167342992 & NA & RNASET2 & rs9365940 & 6 & 166343144 & A/G & G & ⋯ & 171 & 0.601634 & 0.089124 & 0.148136 & 0 & 4 & 0.06959;0.013057;0.034956;0.129805 & 0.443421;0.108859;0.18993;0.60453 & 43;72;32;24 & DC1MB\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 22\n", + "\n", + "| Gene <chr> | GeneChr <int> | GenePos <int> | GeneStrand <lgl> | GeneSymbol <chr> | SNP <chr> | SNPChr <int> | SNPPos <int> | SNPAlleles <chr> | SNPEffectAllele <chr> | ⋯ ⋯ | MetaPN <int> | MetaPZ <dbl> | MetaBeta <dbl> | MetaSE <dbl> | MetaI2 <dbl> | NrDatasets <int> | DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2) <chr> | DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2) <chr> | DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) <chr> | cell_type <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| ENSG00000197728 | 12 | 56435637 | NA | RPS26 | rs12582260 | 12 | 55436509 | G/A | A | ⋯ | 171 | 0.734837 | 0.080962 | 0.110177 | 0 | 4 | 0.179883;0.114471;-0.067275;-0.175334 | 1.154256;0.957471;-0.365841;-0.819481 | 43;72;32;24 | DC1MB |\n", + "| ENSG00000026297 | 6 | 167342992 | NA | RNASET2 | rs9365940 | 6 | 166343144 | A/G | G | ⋯ | 171 | 0.601634 | 0.089124 | 0.148136 | 0 | 4 | 0.06959;0.013057;0.034956;0.129805 | 0.443421;0.108859;0.18993;0.60453 | 43;72;32;24 | DC1MB |\n", + "\n" + ], + "text/plain": [ + " Gene GeneChr GenePos GeneStrand GeneSymbol SNP SNPChr\n", + "1 ENSG00000197728 12 56435637 NA RPS26 rs12582260 12 \n", + "2 ENSG00000026297 6 167342992 NA RNASET2 rs9365940 6 \n", + " SNPPos SNPAlleles SNPEffectAllele ⋯ MetaPN MetaPZ MetaBeta MetaSE \n", + "1 55436509 G/A A ⋯ 171 0.734837 0.080962 0.110177\n", + "2 166343144 A/G G ⋯ 171 0.601634 0.089124 0.148136\n", + " MetaI2 NrDatasets\n", + "1 0 4 \n", + "2 0 4 \n", + " DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)\n", + "1 0.179883;0.114471;-0.067275;-0.175334 \n", + "2 0.06959;0.013057;0.034956;0.129805 \n", + " DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)\n", + "1 1.154256;0.957471;-0.365841;-0.819481 \n", + "2 0.443421;0.108859;0.18993;0.60453 \n", + " DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) cell_type\n", + "1 43;72;32;24 DC1MB \n", + "2 43;72;32;24 DC1MB " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(eqtl_all_effect,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "7f01102d-2452-4dcf-9d8e-54494ee095b6", + "metadata": {}, + "outputs": [], + "source": [ + "### Inspect the data" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "528fbe24-6082-4a53-a662-73732825b7f5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A grouped_df: 6 × 2
cell_typen
<chr><int>
B1MB 20172
CD4T1MB 20173
CD8T1MB 20173
DC1MB 20167
monocyte1MB20173
NK1MB 20173
\n" + ], + "text/latex": [ + "A grouped\\_df: 6 × 2\n", + "\\begin{tabular}{ll}\n", + " cell\\_type & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t B1MB & 20172\\\\\n", + "\t CD4T1MB & 20173\\\\\n", + "\t CD8T1MB & 20173\\\\\n", + "\t DC1MB & 20167\\\\\n", + "\t monocyte1MB & 20173\\\\\n", + "\t NK1MB & 20173\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 6 × 2\n", + "\n", + "| cell_type <chr> | n <int> |\n", + "|---|---|\n", + "| B1MB | 20172 |\n", + "| CD4T1MB | 20173 |\n", + "| CD8T1MB | 20173 |\n", + "| DC1MB | 20167 |\n", + "| monocyte1MB | 20173 |\n", + "| NK1MB | 20173 |\n", + "\n" + ], + "text/plain": [ + " cell_type n \n", + "1 B1MB 20172\n", + "2 CD4T1MB 20173\n", + "3 CD8T1MB 20173\n", + "4 DC1MB 20167\n", + "5 monocyte1MB 20173\n", + "6 NK1MB 20173" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "eqtl_all_effect %>% group_by(cell_type) %>% count()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "2cd3492f-5c90-4496-8059-4a8121398873", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "20173" + ], + "text/latex": [ + "20173" + ], + "text/markdown": [ + "20173" + ], + "text/plain": [ + "[1] 20173" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(unique(eqtl_all_effect$SNP))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "54fa721e-1e1e-4fdf-bb53-6788c728c97a", + "metadata": {}, + "outputs": [], + "source": [ + "#unique(eqtl_all_effect[(eqtl_all_effect$GeneSymbol == 'RPS26'),c('GeneSymbol', 'cell_type', 'MetaPN')])" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "4dc95d9c-99f3-449f-96e6-a7d8f0a91ef0", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_all_effect$SNP = paste0(eqtl_all_effect$SNP, '_', eqtl_all_effect$SNPAlleles) # assuming ordered by 1) reference / 2) effect allele " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "156fb3f8-4234-404a-ae17-69f4d5714b66", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'RPS26'
  2. 'RNASET2'
  3. 'TMEM176A'
  4. 'HLA-DQA2'
  5. 'SMDT1'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'RPS26'\n", + "\\item 'RNASET2'\n", + "\\item 'TMEM176A'\n", + "\\item 'HLA-DQA2'\n", + "\\item 'SMDT1'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'RPS26'\n", + "2. 'RNASET2'\n", + "3. 'TMEM176A'\n", + "4. 'HLA-DQA2'\n", + "5. 'SMDT1'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"RPS26\" \"RNASET2\" \"TMEM176A\" \"HLA-DQA2\" \"SMDT1\" " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(eqtl_all_effect$GeneSymbol)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dee9629e-3013-4f89-9f4f-fd8398edf678", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "3e9fdf6d-f7d1-4a7c-a735-cac5d2765b1a", + "metadata": { + "tags": [] + }, + "source": [ + "### Co-EQTL Data" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "de6547ab-156f-40f3-a444-8c3e3036df53", + "metadata": {}, + "outputs": [], + "source": [ + "output_all_effect = data.frame()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "9f46a48f-051a-4403-ba1c-cdc910e80dce", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T\"\n", + "[1] \"chr12-batch-1-AllEffects.txt.gz\"\n", + "[1] \"chr12-batch-2-AllEffects.txt.gz\"\n", + "[1] \"chr12-batch-3-AllEffects.txt.gz\"\n", + "[1] \"chr12-batch-4-AllEffects.txt.gz\"\n", + "[1] \"chr22-batch-1-AllEffects.txt.gz\"\n", + "[1] \"chr6-batch-1-AllEffects.txt.gz\"\n", + "[1] \"CD8T\"\n", + "[1] \"chr12-batch-1-AllEffects.txt.gz\"\n", + "[1] \"chr12-batch-2-AllEffects.txt.gz\"\n", + "[1] \"chr12-batch-3-AllEffects.txt.gz\"\n", + "[1] \"chr22-batch-1-AllEffects.txt.gz\"\n", + "[1] \"chr6-batch-1-AllEffects.txt.gz\"\n", + "[1] \"monocyte\"\n", + "[1] \"chr12-batch-1-AllEffects.txt.gz\"\n", + "[1] \"chr12-batch-2-AllEffects.txt.gz\"\n", + "[1] \"chr6-batch-1-AllEffects.txt.gz\"\n", + "[1] \"chr7-batch-1-AllEffects.txt.gz\"\n", + "[1] \"NK\"\n", + "[1] \"chr12-batch-1-AllEffects.txt.gz\"\n", + "[1] \"B\"\n", + "[1] \"chr12-batch-1-AllEffects.txt.gz\"\n", + "[1] \"DC\"\n", + "[1] \"chr12-batch-1-AllEffects.txt.gz\"\n", + "[1] \"chr6-batch-1-AllEffects.txt.gz\"\n" + ] + } + ], + "source": [ + "for(cell_type in cell_type_var){\n", + " print(cell_type)\n", + " # for each cell-type query files that should be loaded\n", + " files_to_load = list.files(paste0(path, \"output/\",cell_type, \"/noduplicated/output/\"))\n", + " #print(files_to_load)\n", + " \n", + " # read in the different files per cell-type\n", + " for(i in files_to_load){\n", + " print(i)\n", + " data = fread(paste0(path, \"output/\", cell_type, \"/noduplicated/output/\", i))\n", + " data$batch = i\n", + " \n", + " ## Add the cell-type information\n", + " data$cell_type = cell_type\n", + " \n", + " output_all_effect = rbind(data, output_all_effect)\n", + " }\n", + " \n", + "}\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "7317efc8-5104-491c-836d-bd58be3a5708", + "metadata": {}, + "outputs": [], + "source": [ + "### Inspect the data" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "ce22566f-9ff5-4d35-874f-96646375af85", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 22
GeneGeneChrGenePosGeneStrandGeneSymbolSNPSNPChrSNPPosSNPAllelesSNPEffectAlleleMetaPNMetaPZMetaBetaMetaSENrDatasetsDatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2)batchcell_type
<chr><int><int><lgl><chr><chr><int><int><chr><chr><int><dbl><dbl><dbl><int><chr><chr><chr><chr><chr>
CDKN2D;HLA-DQA2 632709119NACDKN2D;HLA-DQA2 rs1144709631709349C/TT59 0.069875 0.0157410.2252742-;0.08039;-0.112611;- -;0.472978;-0.498951;--;37;22;-chr6-batch-1-AllEffects.txt.gzDC
FAM129C;HLA-DQA2632709119NAFAM129C;HLA-DQA2rs1144709631709349C/TT59-0.271313-0.0620110.2285602-;-0.084633;0.052223;--;-0.505195;0.224816;--;38;21;-chr6-batch-1-AllEffects.txt.gzDC
\n" + ], + "text/latex": [ + "A data.table: 2 × 22\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " Gene & GeneChr & GenePos & GeneStrand & GeneSymbol & SNP & SNPChr & SNPPos & SNPAlleles & SNPEffectAllele & ⋯ & MetaPN & MetaPZ & MetaBeta & MetaSE & NrDatasets & DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2) & DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2) & DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) & batch & cell\\_type\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t CDKN2D;HLA-DQA2 & 6 & 32709119 & NA & CDKN2D;HLA-DQA2 & rs1144709 & 6 & 31709349 & C/T & T & ⋯ & 59 & 0.069875 & 0.015741 & 0.225274 & 2 & -;0.08039;-0.112611;- & -;0.472978;-0.498951;- & -;37;22;- & chr6-batch-1-AllEffects.txt.gz & DC\\\\\n", + "\t FAM129C;HLA-DQA2 & 6 & 32709119 & NA & FAM129C;HLA-DQA2 & rs1144709 & 6 & 31709349 & C/T & T & ⋯ & 59 & -0.271313 & -0.062011 & 0.228560 & 2 & -;-0.084633;0.052223;- & -;-0.505195;0.224816;- & -;38;21;- & chr6-batch-1-AllEffects.txt.gz & DC\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 22\n", + "\n", + "| Gene <chr> | GeneChr <int> | GenePos <int> | GeneStrand <lgl> | GeneSymbol <chr> | SNP <chr> | SNPChr <int> | SNPPos <int> | SNPAlleles <chr> | SNPEffectAllele <chr> | ⋯ ⋯ | MetaPN <int> | MetaPZ <dbl> | MetaBeta <dbl> | MetaSE <dbl> | NrDatasets <int> | DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2) <chr> | DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2) <chr> | DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) <chr> | batch <chr> | cell_type <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| CDKN2D;HLA-DQA2 | 6 | 32709119 | NA | CDKN2D;HLA-DQA2 | rs1144709 | 6 | 31709349 | C/T | T | ⋯ | 59 | 0.069875 | 0.015741 | 0.225274 | 2 | -;0.08039;-0.112611;- | -;0.472978;-0.498951;- | -;37;22;- | chr6-batch-1-AllEffects.txt.gz | DC |\n", + "| FAM129C;HLA-DQA2 | 6 | 32709119 | NA | FAM129C;HLA-DQA2 | rs1144709 | 6 | 31709349 | C/T | T | ⋯ | 59 | -0.271313 | -0.062011 | 0.228560 | 2 | -;-0.084633;0.052223;- | -;-0.505195;0.224816;- | -;38;21;- | chr6-batch-1-AllEffects.txt.gz | DC |\n", + "\n" + ], + "text/plain": [ + " Gene GeneChr GenePos GeneStrand GeneSymbol SNP \n", + "1 CDKN2D;HLA-DQA2 6 32709119 NA CDKN2D;HLA-DQA2 rs1144709\n", + "2 FAM129C;HLA-DQA2 6 32709119 NA FAM129C;HLA-DQA2 rs1144709\n", + " SNPChr SNPPos SNPAlleles SNPEffectAllele ⋯ MetaPN MetaPZ MetaBeta \n", + "1 6 31709349 C/T T ⋯ 59 0.069875 0.015741\n", + "2 6 31709349 C/T T ⋯ 59 -0.271313 -0.062011\n", + " MetaSE NrDatasets\n", + "1 0.225274 2 \n", + "2 0.228560 2 \n", + " DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)\n", + "1 -;0.08039;-0.112611;- \n", + "2 -;-0.084633;0.052223;- \n", + " DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)\n", + "1 -;0.472978;-0.498951;- \n", + "2 -;-0.505195;0.224816;- \n", + " DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2)\n", + "1 -;37;22;- \n", + "2 -;38;21;- \n", + " batch cell_type\n", + "1 chr6-batch-1-AllEffects.txt.gz DC \n", + "2 chr6-batch-1-AllEffects.txt.gz DC " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(output_all_effect,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "ec8d11de-369a-4a33-9114-be8d68ce3ce5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'T'
  2. 'G'
  3. 'A'
  4. 'C'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'T'\n", + "\\item 'G'\n", + "\\item 'A'\n", + "\\item 'C'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'T'\n", + "2. 'G'\n", + "3. 'A'\n", + "4. 'C'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"T\" \"G\" \"A\" \"C\"" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(output_all_effect$SNPEffectAllele)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "e5eb30eb-a888-4e34-a0f2-adc7c2ebd75b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'DC'
  2. 'B'
  3. 'NK'
  4. 'monocyte'
  5. 'CD8T'
  6. 'CD4T'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'DC'\n", + "\\item 'B'\n", + "\\item 'NK'\n", + "\\item 'monocyte'\n", + "\\item 'CD8T'\n", + "\\item 'CD4T'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'DC'\n", + "2. 'B'\n", + "3. 'NK'\n", + "4. 'monocyte'\n", + "5. 'CD8T'\n", + "6. 'CD4T'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"DC\" \"B\" \"NK\" \"monocyte\" \"CD8T\" \"CD4T\" " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(output_all_effect$cell_type)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "70e0d362-7144-4d2b-bbae-715e30588cbf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 6
  2. 12
  3. 7
  4. 22
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 6\n", + "\\item 12\n", + "\\item 7\n", + "\\item 22\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 6\n", + "2. 12\n", + "3. 7\n", + "4. 22\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] 6 12 7 22" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(output_all_effect$GeneChr)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "f7443a38-f285-4dd1-aefe-514bd4beaac5", + "metadata": {}, + "outputs": [], + "source": [ + "# Extract eGene - based on chromosome and matches \n", + "\n", + "# Match with chromosome\n", + "output_all_effect$eGene[output_all_effect$GeneChr == 12] = str_extract(output_all_effect$Gene[output_all_effect$GeneChr == 12], 'RPS26' )\n", + "output_all_effect$eGene[output_all_effect$GeneChr == 6] = str_extract(output_all_effect$Gene[output_all_effect$GeneChr == 6], 'HLA-DQA2|RNASET2' )\n", + "output_all_effect$eGene[output_all_effect$GeneChr == 22] = str_extract(output_all_effect$Gene[output_all_effect$GeneChr == 22], 'SMDT1' )\n", + "output_all_effect$eGene[output_all_effect$GeneChr == 7] = str_extract(output_all_effect$Gene[output_all_effect$GeneChr == 7], 'TMEM176A' )" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "442e0b24-ea36-48ad-9bee-14dc50444a6f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'HLA-DQA2'
  2. 'RPS26'
  3. 'TMEM176A'
  4. 'RNASET2'
  5. 'SMDT1'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'HLA-DQA2'\n", + "\\item 'RPS26'\n", + "\\item 'TMEM176A'\n", + "\\item 'RNASET2'\n", + "\\item 'SMDT1'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'HLA-DQA2'\n", + "2. 'RPS26'\n", + "3. 'TMEM176A'\n", + "4. 'RNASET2'\n", + "5. 'SMDT1'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"HLA-DQA2\" \"RPS26\" \"TMEM176A\" \"RNASET2\" \"SMDT1\" " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(output_all_effect$eGene)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "9d8219f6-9bc2-45c2-8492-eb3805bf6e24", + "metadata": {}, + "outputs": [], + "source": [ + "#output_all_effect[is.na(output_all_effect$eGene) ,]" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "93e61558-78c1-4b44-a96d-d5b3b7eaf013", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in cbind(parts$left, ellip_h, parts$right, deparse.level = 0L):\n", + "“number of rows of result is not a multiple of vector length (arg 2)”\n", + "Warning message in cbind(parts$left, ellip_h, parts$right, deparse.level = 0L):\n", + "“number of rows of result is not a multiple of vector length (arg 2)”\n", + "Warning message in cbind(parts$left, ellip_h, parts$right, deparse.level = 0L):\n", + "“number of rows of result is not a multiple of vector length (arg 2)”\n", + "Warning message in cbind(parts$left, ellip_h, parts$right, deparse.level = 0L):\n", + "“number of rows of result is not a multiple of vector length (arg 2)”\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "
A data.table: 0 × 23
GeneGeneChrGenePosGeneStrandGeneSymbolSNPSNPChrSNPPosSNPAllelesSNPEffectAlleleMetaPZMetaBetaMetaSENrDatasetsDatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2)batchcell_typeeGene
<chr><int><int><lgl><chr><chr><int><int><chr><chr><dbl><dbl><dbl><int><chr><chr><chr><chr><chr><chr>
\n" + ], + "text/latex": [ + "A data.table: 0 × 23\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " Gene & GeneChr & GenePos & GeneStrand & GeneSymbol & SNP & SNPChr & SNPPos & SNPAlleles & SNPEffectAllele & ⋯ & MetaPZ & MetaBeta & MetaSE & NrDatasets & DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2) & DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2) & DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) & batch & cell\\_type & eGene\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 0 × 23\n", + "\n", + "| Gene <chr> | GeneChr <int> | GenePos <int> | GeneStrand <lgl> | GeneSymbol <chr> | SNP <chr> | SNPChr <int> | SNPPos <int> | SNPAlleles <chr> | SNPEffectAllele <chr> | ⋯ ⋯ | MetaPZ <dbl> | MetaBeta <dbl> | MetaSE <dbl> | NrDatasets <int> | DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2) <chr> | DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2) <chr> | DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) <chr> | batch <chr> | cell_type <chr> | eGene <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "\n" + ], + "text/plain": [ + " Gene GeneChr GenePos GeneStrand GeneSymbol SNP SNPChr SNPPos SNPAlleles\n", + " SNPEffectAllele ⋯ MetaPZ MetaBeta MetaSE NrDatasets\n", + " DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)\n", + " DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)\n", + " DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) batch cell_type\n", + " eGene" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "output_all_effect[is.na(output_all_effect$eGene),] # check whether everything could be matched" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d678822f-2057-427b-8936-d86c0472ced9", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "887b0f03-e247-4a4b-80eb-2d452edfaabf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "7" + ], + "text/latex": [ + "7" + ], + "text/markdown": [ + "7" + ], + "text/plain": [ + "[1] 7" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(unique(output_all_effect$batch))" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "9165d3b1-1278-4842-bece-c91c974d353d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "604" + ], + "text/latex": [ + "604" + ], + "text/markdown": [ + "604" + ], + "text/plain": [ + "[1] 604" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(unique(output_all_effect$Gene))" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "164fea7a-f29a-4b1e-8471-e43b7efb6257", + "metadata": {}, + "outputs": [], + "source": [ + "### Check out the duplicates values from different batches and remove" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "764089ce-89d3-4279-b280-edc53f5926ec", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A grouped_df: 4 × 3
GeneSNPn
<chr><chr><int>
RPS26;SMDT122:429112572
RPS26;SMDT1rs1001586 2
RPS26;SMDT1rs1001587 2
RPS26;SMDT1rs1003619 2
\n" + ], + "text/latex": [ + "A grouped\\_df: 4 × 3\n", + "\\begin{tabular}{lll}\n", + " Gene & SNP & n\\\\\n", + " & & \\\\\n", + "\\hline\n", + "\t RPS26;SMDT1 & 22:42911257 & 2\\\\\n", + "\t RPS26;SMDT1 & rs1001586 & 2\\\\\n", + "\t RPS26;SMDT1 & rs1001587 & 2\\\\\n", + "\t RPS26;SMDT1 & rs1003619 & 2\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 4 × 3\n", + "\n", + "| Gene <chr> | SNP <chr> | n <int> |\n", + "|---|---|---|\n", + "| RPS26;SMDT1 | 22:42911257 | 2 |\n", + "| RPS26;SMDT1 | rs1001586 | 2 |\n", + "| RPS26;SMDT1 | rs1001587 | 2 |\n", + "| RPS26;SMDT1 | rs1003619 | 2 |\n", + "\n" + ], + "text/plain": [ + " Gene SNP n\n", + "1 RPS26;SMDT1 22:42911257 2\n", + "2 RPS26;SMDT1 rs1001586 2\n", + "3 RPS26;SMDT1 rs1001587 2\n", + "4 RPS26;SMDT1 rs1003619 2" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(output_all_effect[output_all_effect$GeneSymbol == 'RPS26;SMDT1',] %>% group_by(Gene, SNP) %>% count() %>% filter(n>=2),4)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "9e9a32fa-8020-4c2a-ac74-1c5e55f302fe", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 7 × 18
GeneGeneChrGenePosGeneStrandGeneSymbolSNPSNPChrSNPPosSNPAllelesSNPEffectAlleleSNPEffectAlleleFreqMetaPMetaPNMetaPZMetaBetaMetaSEbatchcell_type
<chr><int><int><lgl><chr><chr><int><int><chr><chr><dbl><dbl><int><dbl><dbl><dbl><chr><chr>
RPS26;SMDT11256435637NARPS26;SMDT1rs100475321255618447A/TT0.6279070.4738383172-0.716248-0.0797740.111378chr12-batch-3-AllEffects.txt.gzCD8T
RPS26;SMDT11256435637NARPS26;SMDT1rs100475321255618447A/TT0.6279070.4738383172-0.716248-0.0797740.111378chr12-batch-2-AllEffects.txt.gzCD8T
RPS26;SMDT11256435637NARPS26;SMDT1rs100475321255618447A/TT0.6279070.4738383172-0.716248-0.0797740.111378chr12-batch-1-AllEffects.txt.gzCD8T
RPS26;SMDT11256435637NARPS26;SMDT1rs100475321255618447A/TT0.6300580.8095858173-0.240960-0.0268270.111335chr12-batch-4-AllEffects.txt.gzCD4T
RPS26;SMDT11256435637NARPS26;SMDT1rs100475321255618447A/TT0.6300580.8095858173-0.240960-0.0268270.111335chr12-batch-3-AllEffects.txt.gzCD4T
RPS26;SMDT11256435637NARPS26;SMDT1rs100475321255618447A/TT0.6300580.8095858173-0.240960-0.0268270.111335chr12-batch-2-AllEffects.txt.gzCD4T
RPS26;SMDT11256435637NARPS26;SMDT1rs100475321255618447A/TT0.6300580.8095858173-0.240960-0.0268270.111335chr12-batch-1-AllEffects.txt.gzCD4T
\n" + ], + "text/latex": [ + "A data.table: 7 × 18\n", + "\\begin{tabular}{llllllllllllllllll}\n", + " Gene & GeneChr & GenePos & GeneStrand & GeneSymbol & SNP & SNPChr & SNPPos & SNPAlleles & SNPEffectAllele & SNPEffectAlleleFreq & MetaP & MetaPN & MetaPZ & MetaBeta & MetaSE & batch & cell\\_type\\\\\n", + " & & & & & & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t RPS26;SMDT1 & 12 & 56435637 & NA & RPS26;SMDT1 & rs10047532 & 12 & 55618447 & A/T & T & 0.627907 & 0.4738383 & 172 & -0.716248 & -0.079774 & 0.111378 & chr12-batch-3-AllEffects.txt.gz & CD8T\\\\\n", + "\t RPS26;SMDT1 & 12 & 56435637 & NA & RPS26;SMDT1 & rs10047532 & 12 & 55618447 & A/T & T & 0.627907 & 0.4738383 & 172 & -0.716248 & -0.079774 & 0.111378 & chr12-batch-2-AllEffects.txt.gz & CD8T\\\\\n", + "\t RPS26;SMDT1 & 12 & 56435637 & NA & RPS26;SMDT1 & rs10047532 & 12 & 55618447 & A/T & T & 0.627907 & 0.4738383 & 172 & -0.716248 & -0.079774 & 0.111378 & chr12-batch-1-AllEffects.txt.gz & CD8T\\\\\n", + "\t RPS26;SMDT1 & 12 & 56435637 & NA & RPS26;SMDT1 & rs10047532 & 12 & 55618447 & A/T & T & 0.630058 & 0.8095858 & 173 & -0.240960 & -0.026827 & 0.111335 & chr12-batch-4-AllEffects.txt.gz & CD4T\\\\\n", + "\t RPS26;SMDT1 & 12 & 56435637 & NA & RPS26;SMDT1 & rs10047532 & 12 & 55618447 & A/T & T & 0.630058 & 0.8095858 & 173 & -0.240960 & -0.026827 & 0.111335 & chr12-batch-3-AllEffects.txt.gz & CD4T\\\\\n", + "\t RPS26;SMDT1 & 12 & 56435637 & NA & RPS26;SMDT1 & rs10047532 & 12 & 55618447 & A/T & T & 0.630058 & 0.8095858 & 173 & -0.240960 & -0.026827 & 0.111335 & chr12-batch-2-AllEffects.txt.gz & CD4T\\\\\n", + "\t RPS26;SMDT1 & 12 & 56435637 & NA & RPS26;SMDT1 & rs10047532 & 12 & 55618447 & A/T & T & 0.630058 & 0.8095858 & 173 & -0.240960 & -0.026827 & 0.111335 & chr12-batch-1-AllEffects.txt.gz & CD4T\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 7 × 18\n", + "\n", + "| Gene <chr> | GeneChr <int> | GenePos <int> | GeneStrand <lgl> | GeneSymbol <chr> | SNP <chr> | SNPChr <int> | SNPPos <int> | SNPAlleles <chr> | SNPEffectAllele <chr> | SNPEffectAlleleFreq <dbl> | MetaP <dbl> | MetaPN <int> | MetaPZ <dbl> | MetaBeta <dbl> | MetaSE <dbl> | batch <chr> | cell_type <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| RPS26;SMDT1 | 12 | 56435637 | NA | RPS26;SMDT1 | rs10047532 | 12 | 55618447 | A/T | T | 0.627907 | 0.4738383 | 172 | -0.716248 | -0.079774 | 0.111378 | chr12-batch-3-AllEffects.txt.gz | CD8T |\n", + "| RPS26;SMDT1 | 12 | 56435637 | NA | RPS26;SMDT1 | rs10047532 | 12 | 55618447 | A/T | T | 0.627907 | 0.4738383 | 172 | -0.716248 | -0.079774 | 0.111378 | chr12-batch-2-AllEffects.txt.gz | CD8T |\n", + "| RPS26;SMDT1 | 12 | 56435637 | NA | RPS26;SMDT1 | rs10047532 | 12 | 55618447 | A/T | T | 0.627907 | 0.4738383 | 172 | -0.716248 | -0.079774 | 0.111378 | chr12-batch-1-AllEffects.txt.gz | CD8T |\n", + "| RPS26;SMDT1 | 12 | 56435637 | NA | RPS26;SMDT1 | rs10047532 | 12 | 55618447 | A/T | T | 0.630058 | 0.8095858 | 173 | -0.240960 | -0.026827 | 0.111335 | chr12-batch-4-AllEffects.txt.gz | CD4T |\n", + "| RPS26;SMDT1 | 12 | 56435637 | NA | RPS26;SMDT1 | rs10047532 | 12 | 55618447 | A/T | T | 0.630058 | 0.8095858 | 173 | -0.240960 | -0.026827 | 0.111335 | chr12-batch-3-AllEffects.txt.gz | CD4T |\n", + "| RPS26;SMDT1 | 12 | 56435637 | NA | RPS26;SMDT1 | rs10047532 | 12 | 55618447 | A/T | T | 0.630058 | 0.8095858 | 173 | -0.240960 | -0.026827 | 0.111335 | chr12-batch-2-AllEffects.txt.gz | CD4T |\n", + "| RPS26;SMDT1 | 12 | 56435637 | NA | RPS26;SMDT1 | rs10047532 | 12 | 55618447 | A/T | T | 0.630058 | 0.8095858 | 173 | -0.240960 | -0.026827 | 0.111335 | chr12-batch-1-AllEffects.txt.gz | CD4T |\n", + "\n" + ], + "text/plain": [ + " Gene GeneChr GenePos GeneStrand GeneSymbol SNP SNPChr\n", + "1 RPS26;SMDT1 12 56435637 NA RPS26;SMDT1 rs10047532 12 \n", + "2 RPS26;SMDT1 12 56435637 NA RPS26;SMDT1 rs10047532 12 \n", + "3 RPS26;SMDT1 12 56435637 NA RPS26;SMDT1 rs10047532 12 \n", + "4 RPS26;SMDT1 12 56435637 NA RPS26;SMDT1 rs10047532 12 \n", + "5 RPS26;SMDT1 12 56435637 NA RPS26;SMDT1 rs10047532 12 \n", + "6 RPS26;SMDT1 12 56435637 NA RPS26;SMDT1 rs10047532 12 \n", + "7 RPS26;SMDT1 12 56435637 NA RPS26;SMDT1 rs10047532 12 \n", + " SNPPos SNPAlleles SNPEffectAllele SNPEffectAlleleFreq MetaP MetaPN\n", + "1 55618447 A/T T 0.627907 0.4738383 172 \n", + "2 55618447 A/T T 0.627907 0.4738383 172 \n", + "3 55618447 A/T T 0.627907 0.4738383 172 \n", + "4 55618447 A/T T 0.630058 0.8095858 173 \n", + "5 55618447 A/T T 0.630058 0.8095858 173 \n", + "6 55618447 A/T T 0.630058 0.8095858 173 \n", + "7 55618447 A/T T 0.630058 0.8095858 173 \n", + " MetaPZ MetaBeta MetaSE batch cell_type\n", + "1 -0.716248 -0.079774 0.111378 chr12-batch-3-AllEffects.txt.gz CD8T \n", + "2 -0.716248 -0.079774 0.111378 chr12-batch-2-AllEffects.txt.gz CD8T \n", + "3 -0.716248 -0.079774 0.111378 chr12-batch-1-AllEffects.txt.gz CD8T \n", + "4 -0.240960 -0.026827 0.111335 chr12-batch-4-AllEffects.txt.gz CD4T \n", + "5 -0.240960 -0.026827 0.111335 chr12-batch-3-AllEffects.txt.gz CD4T \n", + "6 -0.240960 -0.026827 0.111335 chr12-batch-2-AllEffects.txt.gz CD4T \n", + "7 -0.240960 -0.026827 0.111335 chr12-batch-1-AllEffects.txt.gz CD4T " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "output_all_effect[(output_all_effect$GeneSymbol == 'RPS26;SMDT1') &(output_all_effect$SNP == 'rs10047532') ,c(1:16, 21:22)]" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "5672972f-aa31-4c88-8687-3014ade8a015", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "6484420" + ], + "text/latex": [ + "6484420" + ], + "text/markdown": [ + "6484420" + ], + "text/plain": [ + "[1] 6484420" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(output_all_effect)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "2eff66ab-a2d9-4f2a-8a1a-7fbbd8ab6f9c", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A grouped_df: 21 × 4
eGenebatchcell_typen
<chr><chr><chr><int>
HLA-DQA2chr6-batch-1-AllEffects.txt.gz CD4T 116816
HLA-DQA2chr6-batch-1-AllEffects.txt.gz CD8T 50641
HLA-DQA2chr6-batch-1-AllEffects.txt.gz DC 80196
HLA-DQA2chr6-batch-1-AllEffects.txt.gz monocyte119521
RNASET2 chr6-batch-1-AllEffects.txt.gz CD4T 16152
RNASET2 chr6-batch-1-AllEffects.txt.gz monocyte 7198
RPS26 chr12-batch-1-AllEffects.txt.gzB 74127
RPS26 chr12-batch-1-AllEffects.txt.gzCD4T 789252
RPS26 chr12-batch-1-AllEffects.txt.gzCD8T 621313
RPS26 chr12-batch-1-AllEffects.txt.gzDC 6195
RPS26 chr12-batch-1-AllEffects.txt.gzmonocyte280221
RPS26 chr12-batch-1-AllEffects.txt.gzNK 202989
RPS26 chr12-batch-2-AllEffects.txt.gzCD4T 789252
RPS26 chr12-batch-2-AllEffects.txt.gzCD8T 621313
RPS26 chr12-batch-2-AllEffects.txt.gzmonocyte280221
RPS26 chr12-batch-3-AllEffects.txt.gzCD4T 789252
RPS26 chr12-batch-3-AllEffects.txt.gzCD8T 621313
RPS26 chr12-batch-4-AllEffects.txt.gzCD4T 789252
SMDT1 chr22-batch-1-AllEffects.txt.gzCD4T 59540
SMDT1 chr22-batch-1-AllEffects.txt.gzCD8T 130916
TMEM176Achr7-batch-1-AllEffects.txt.gz monocyte 38740
\n" + ], + "text/latex": [ + "A grouped\\_df: 21 × 4\n", + "\\begin{tabular}{llll}\n", + " eGene & batch & cell\\_type & n\\\\\n", + " & & & \\\\\n", + "\\hline\n", + "\t HLA-DQA2 & chr6-batch-1-AllEffects.txt.gz & CD4T & 116816\\\\\n", + "\t HLA-DQA2 & chr6-batch-1-AllEffects.txt.gz & CD8T & 50641\\\\\n", + "\t HLA-DQA2 & chr6-batch-1-AllEffects.txt.gz & DC & 80196\\\\\n", + "\t HLA-DQA2 & chr6-batch-1-AllEffects.txt.gz & monocyte & 119521\\\\\n", + "\t RNASET2 & chr6-batch-1-AllEffects.txt.gz & CD4T & 16152\\\\\n", + "\t RNASET2 & chr6-batch-1-AllEffects.txt.gz & monocyte & 7198\\\\\n", + "\t RPS26 & chr12-batch-1-AllEffects.txt.gz & B & 74127\\\\\n", + "\t RPS26 & chr12-batch-1-AllEffects.txt.gz & CD4T & 789252\\\\\n", + "\t RPS26 & chr12-batch-1-AllEffects.txt.gz & CD8T & 621313\\\\\n", + "\t RPS26 & chr12-batch-1-AllEffects.txt.gz & DC & 6195\\\\\n", + "\t RPS26 & chr12-batch-1-AllEffects.txt.gz & monocyte & 280221\\\\\n", + "\t RPS26 & chr12-batch-1-AllEffects.txt.gz & NK & 202989\\\\\n", + "\t RPS26 & chr12-batch-2-AllEffects.txt.gz & CD4T & 789252\\\\\n", + "\t RPS26 & chr12-batch-2-AllEffects.txt.gz & CD8T & 621313\\\\\n", + "\t RPS26 & chr12-batch-2-AllEffects.txt.gz & monocyte & 280221\\\\\n", + "\t RPS26 & chr12-batch-3-AllEffects.txt.gz & CD4T & 789252\\\\\n", + "\t RPS26 & chr12-batch-3-AllEffects.txt.gz & CD8T & 621313\\\\\n", + "\t RPS26 & chr12-batch-4-AllEffects.txt.gz & CD4T & 789252\\\\\n", + "\t SMDT1 & chr22-batch-1-AllEffects.txt.gz & CD4T & 59540\\\\\n", + "\t SMDT1 & chr22-batch-1-AllEffects.txt.gz & CD8T & 130916\\\\\n", + "\t TMEM176A & chr7-batch-1-AllEffects.txt.gz & monocyte & 38740\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 21 × 4\n", + "\n", + "| eGene <chr> | batch <chr> | cell_type <chr> | n <int> |\n", + "|---|---|---|---|\n", + "| HLA-DQA2 | chr6-batch-1-AllEffects.txt.gz | CD4T | 116816 |\n", + "| HLA-DQA2 | chr6-batch-1-AllEffects.txt.gz | CD8T | 50641 |\n", + "| HLA-DQA2 | chr6-batch-1-AllEffects.txt.gz | DC | 80196 |\n", + "| HLA-DQA2 | chr6-batch-1-AllEffects.txt.gz | monocyte | 119521 |\n", + "| RNASET2 | chr6-batch-1-AllEffects.txt.gz | CD4T | 16152 |\n", + "| RNASET2 | chr6-batch-1-AllEffects.txt.gz | monocyte | 7198 |\n", + "| RPS26 | chr12-batch-1-AllEffects.txt.gz | B | 74127 |\n", + "| RPS26 | chr12-batch-1-AllEffects.txt.gz | CD4T | 789252 |\n", + "| RPS26 | chr12-batch-1-AllEffects.txt.gz | CD8T | 621313 |\n", + "| RPS26 | chr12-batch-1-AllEffects.txt.gz | DC | 6195 |\n", + "| RPS26 | chr12-batch-1-AllEffects.txt.gz | monocyte | 280221 |\n", + "| RPS26 | chr12-batch-1-AllEffects.txt.gz | NK | 202989 |\n", + "| RPS26 | chr12-batch-2-AllEffects.txt.gz | CD4T | 789252 |\n", + "| RPS26 | chr12-batch-2-AllEffects.txt.gz | CD8T | 621313 |\n", + "| RPS26 | chr12-batch-2-AllEffects.txt.gz | monocyte | 280221 |\n", + "| RPS26 | chr12-batch-3-AllEffects.txt.gz | CD4T | 789252 |\n", + "| RPS26 | chr12-batch-3-AllEffects.txt.gz | CD8T | 621313 |\n", + "| RPS26 | chr12-batch-4-AllEffects.txt.gz | CD4T | 789252 |\n", + "| SMDT1 | chr22-batch-1-AllEffects.txt.gz | CD4T | 59540 |\n", + "| SMDT1 | chr22-batch-1-AllEffects.txt.gz | CD8T | 130916 |\n", + "| TMEM176A | chr7-batch-1-AllEffects.txt.gz | monocyte | 38740 |\n", + "\n" + ], + "text/plain": [ + " eGene batch cell_type n \n", + "1 HLA-DQA2 chr6-batch-1-AllEffects.txt.gz CD4T 116816\n", + "2 HLA-DQA2 chr6-batch-1-AllEffects.txt.gz CD8T 50641\n", + "3 HLA-DQA2 chr6-batch-1-AllEffects.txt.gz DC 80196\n", + "4 HLA-DQA2 chr6-batch-1-AllEffects.txt.gz monocyte 119521\n", + "5 RNASET2 chr6-batch-1-AllEffects.txt.gz CD4T 16152\n", + "6 RNASET2 chr6-batch-1-AllEffects.txt.gz monocyte 7198\n", + "7 RPS26 chr12-batch-1-AllEffects.txt.gz B 74127\n", + "8 RPS26 chr12-batch-1-AllEffects.txt.gz CD4T 789252\n", + "9 RPS26 chr12-batch-1-AllEffects.txt.gz CD8T 621313\n", + "10 RPS26 chr12-batch-1-AllEffects.txt.gz DC 6195\n", + "11 RPS26 chr12-batch-1-AllEffects.txt.gz monocyte 280221\n", + "12 RPS26 chr12-batch-1-AllEffects.txt.gz NK 202989\n", + "13 RPS26 chr12-batch-2-AllEffects.txt.gz CD4T 789252\n", + "14 RPS26 chr12-batch-2-AllEffects.txt.gz CD8T 621313\n", + "15 RPS26 chr12-batch-2-AllEffects.txt.gz monocyte 280221\n", + "16 RPS26 chr12-batch-3-AllEffects.txt.gz CD4T 789252\n", + "17 RPS26 chr12-batch-3-AllEffects.txt.gz CD8T 621313\n", + "18 RPS26 chr12-batch-4-AllEffects.txt.gz CD4T 789252\n", + "19 SMDT1 chr22-batch-1-AllEffects.txt.gz CD4T 59540\n", + "20 SMDT1 chr22-batch-1-AllEffects.txt.gz CD8T 130916\n", + "21 TMEM176A chr7-batch-1-AllEffects.txt.gz monocyte 38740" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "output_all_effect %>% group_by(eGene, batch, cell_type) %>% count()" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "e01d104d-b652-4050-aabf-6e8d9457d806", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A grouped_df: 21 × 4
eGenebatchcell_typen
<chr><chr><chr><int>
HLA-DQA2chr6-batch-1-AllEffects.txt.gz CD4T 16
HLA-DQA2chr6-batch-1-AllEffects.txt.gz CD8T 7
HLA-DQA2chr6-batch-1-AllEffects.txt.gz DC 13
HLA-DQA2chr6-batch-1-AllEffects.txt.gz monocyte 17
RNASET2 chr6-batch-1-AllEffects.txt.gz CD4T 4
RNASET2 chr6-batch-1-AllEffects.txt.gz monocyte 1
RPS26 chr12-batch-1-AllEffects.txt.gzB 35
RPS26 chr12-batch-1-AllEffects.txt.gzCD4T 372
RPS26 chr12-batch-1-AllEffects.txt.gzCD8T 293
RPS26 chr12-batch-1-AllEffects.txt.gzDC 3
RPS26 chr12-batch-1-AllEffects.txt.gzmonocyte132
RPS26 chr12-batch-1-AllEffects.txt.gzNK 96
RPS26 chr12-batch-2-AllEffects.txt.gzCD4T 372
RPS26 chr12-batch-2-AllEffects.txt.gzCD8T 293
RPS26 chr12-batch-2-AllEffects.txt.gzmonocyte132
RPS26 chr12-batch-3-AllEffects.txt.gzCD4T 372
RPS26 chr12-batch-3-AllEffects.txt.gzCD8T 293
RPS26 chr12-batch-4-AllEffects.txt.gzCD4T 372
SMDT1 chr22-batch-1-AllEffects.txt.gzCD4T 20
SMDT1 chr22-batch-1-AllEffects.txt.gzCD8T 44
TMEM176Achr7-batch-1-AllEffects.txt.gz monocyte 11
\n" + ], + "text/latex": [ + "A grouped\\_df: 21 × 4\n", + "\\begin{tabular}{llll}\n", + " eGene & batch & cell\\_type & n\\\\\n", + " & & & \\\\\n", + "\\hline\n", + "\t HLA-DQA2 & chr6-batch-1-AllEffects.txt.gz & CD4T & 16\\\\\n", + "\t HLA-DQA2 & chr6-batch-1-AllEffects.txt.gz & CD8T & 7\\\\\n", + "\t HLA-DQA2 & chr6-batch-1-AllEffects.txt.gz & DC & 13\\\\\n", + "\t HLA-DQA2 & chr6-batch-1-AllEffects.txt.gz & monocyte & 17\\\\\n", + "\t RNASET2 & chr6-batch-1-AllEffects.txt.gz & CD4T & 4\\\\\n", + "\t RNASET2 & chr6-batch-1-AllEffects.txt.gz & monocyte & 1\\\\\n", + "\t RPS26 & chr12-batch-1-AllEffects.txt.gz & B & 35\\\\\n", + "\t RPS26 & chr12-batch-1-AllEffects.txt.gz & CD4T & 372\\\\\n", + "\t RPS26 & chr12-batch-1-AllEffects.txt.gz & CD8T & 293\\\\\n", + "\t RPS26 & chr12-batch-1-AllEffects.txt.gz & DC & 3\\\\\n", + "\t RPS26 & chr12-batch-1-AllEffects.txt.gz & monocyte & 132\\\\\n", + "\t RPS26 & chr12-batch-1-AllEffects.txt.gz & NK & 96\\\\\n", + "\t RPS26 & chr12-batch-2-AllEffects.txt.gz & CD4T & 372\\\\\n", + "\t RPS26 & chr12-batch-2-AllEffects.txt.gz & CD8T & 293\\\\\n", + "\t RPS26 & chr12-batch-2-AllEffects.txt.gz & monocyte & 132\\\\\n", + "\t RPS26 & chr12-batch-3-AllEffects.txt.gz & CD4T & 372\\\\\n", + "\t RPS26 & chr12-batch-3-AllEffects.txt.gz & CD8T & 293\\\\\n", + "\t RPS26 & chr12-batch-4-AllEffects.txt.gz & CD4T & 372\\\\\n", + "\t SMDT1 & chr22-batch-1-AllEffects.txt.gz & CD4T & 20\\\\\n", + "\t SMDT1 & chr22-batch-1-AllEffects.txt.gz & CD8T & 44\\\\\n", + "\t TMEM176A & chr7-batch-1-AllEffects.txt.gz & monocyte & 11\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 21 × 4\n", + "\n", + "| eGene <chr> | batch <chr> | cell_type <chr> | n <int> |\n", + "|---|---|---|---|\n", + "| HLA-DQA2 | chr6-batch-1-AllEffects.txt.gz | CD4T | 16 |\n", + "| HLA-DQA2 | chr6-batch-1-AllEffects.txt.gz | CD8T | 7 |\n", + "| HLA-DQA2 | chr6-batch-1-AllEffects.txt.gz | DC | 13 |\n", + "| HLA-DQA2 | chr6-batch-1-AllEffects.txt.gz | monocyte | 17 |\n", + "| RNASET2 | chr6-batch-1-AllEffects.txt.gz | CD4T | 4 |\n", + "| RNASET2 | chr6-batch-1-AllEffects.txt.gz | monocyte | 1 |\n", + "| RPS26 | chr12-batch-1-AllEffects.txt.gz | B | 35 |\n", + "| RPS26 | chr12-batch-1-AllEffects.txt.gz | CD4T | 372 |\n", + "| RPS26 | chr12-batch-1-AllEffects.txt.gz | CD8T | 293 |\n", + "| RPS26 | chr12-batch-1-AllEffects.txt.gz | DC | 3 |\n", + "| RPS26 | chr12-batch-1-AllEffects.txt.gz | monocyte | 132 |\n", + "| RPS26 | chr12-batch-1-AllEffects.txt.gz | NK | 96 |\n", + "| RPS26 | chr12-batch-2-AllEffects.txt.gz | CD4T | 372 |\n", + "| RPS26 | chr12-batch-2-AllEffects.txt.gz | CD8T | 293 |\n", + "| RPS26 | chr12-batch-2-AllEffects.txt.gz | monocyte | 132 |\n", + "| RPS26 | chr12-batch-3-AllEffects.txt.gz | CD4T | 372 |\n", + "| RPS26 | chr12-batch-3-AllEffects.txt.gz | CD8T | 293 |\n", + "| RPS26 | chr12-batch-4-AllEffects.txt.gz | CD4T | 372 |\n", + "| SMDT1 | chr22-batch-1-AllEffects.txt.gz | CD4T | 20 |\n", + "| SMDT1 | chr22-batch-1-AllEffects.txt.gz | CD8T | 44 |\n", + "| TMEM176A | chr7-batch-1-AllEffects.txt.gz | monocyte | 11 |\n", + "\n" + ], + "text/plain": [ + " eGene batch cell_type n \n", + "1 HLA-DQA2 chr6-batch-1-AllEffects.txt.gz CD4T 16\n", + "2 HLA-DQA2 chr6-batch-1-AllEffects.txt.gz CD8T 7\n", + "3 HLA-DQA2 chr6-batch-1-AllEffects.txt.gz DC 13\n", + "4 HLA-DQA2 chr6-batch-1-AllEffects.txt.gz monocyte 17\n", + "5 RNASET2 chr6-batch-1-AllEffects.txt.gz CD4T 4\n", + "6 RNASET2 chr6-batch-1-AllEffects.txt.gz monocyte 1\n", + "7 RPS26 chr12-batch-1-AllEffects.txt.gz B 35\n", + "8 RPS26 chr12-batch-1-AllEffects.txt.gz CD4T 372\n", + "9 RPS26 chr12-batch-1-AllEffects.txt.gz CD8T 293\n", + "10 RPS26 chr12-batch-1-AllEffects.txt.gz DC 3\n", + "11 RPS26 chr12-batch-1-AllEffects.txt.gz monocyte 132\n", + "12 RPS26 chr12-batch-1-AllEffects.txt.gz NK 96\n", + "13 RPS26 chr12-batch-2-AllEffects.txt.gz CD4T 372\n", + "14 RPS26 chr12-batch-2-AllEffects.txt.gz CD8T 293\n", + "15 RPS26 chr12-batch-2-AllEffects.txt.gz monocyte 132\n", + "16 RPS26 chr12-batch-3-AllEffects.txt.gz CD4T 372\n", + "17 RPS26 chr12-batch-3-AllEffects.txt.gz CD8T 293\n", + "18 RPS26 chr12-batch-4-AllEffects.txt.gz CD4T 372\n", + "19 SMDT1 chr22-batch-1-AllEffects.txt.gz CD4T 20\n", + "20 SMDT1 chr22-batch-1-AllEffects.txt.gz CD8T 44\n", + "21 TMEM176A chr7-batch-1-AllEffects.txt.gz monocyte 11" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "## Inspect amount of co-eGenes\n", + "unique(output_all_effect[,c('Gene', 'eGene', 'batch', 'cell_type')]) %>% group_by(eGene, batch, cell_type) %>% count()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "5533662b-f3d6-4d04-8a4f-a99f4d7fbaf5", + "metadata": {}, + "outputs": [], + "source": [ + "#output_all_effect[,c(21)]" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "26f15d48-8809-407b-a53f-a8fd311b01dc", + "metadata": {}, + "outputs": [], + "source": [ + "output_all_effect = unique(output_all_effect[,-c(21)]) # remove duplicate entries" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "6492e4b4-4e23-4865-a588-2618c08182cd", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A grouped_df: 15 × 3
eGenecell_typen
<chr><chr><int>
HLA-DQA2CD4T 116816
HLA-DQA2CD8T 50641
HLA-DQA2DC 80196
HLA-DQA2monocyte119521
RNASET2 CD4T 16152
RNASET2 monocyte 7198
RPS26 B 74127
RPS26 CD4T 789252
RPS26 CD8T 621313
RPS26 DC 6195
RPS26 monocyte280221
RPS26 NK 202989
SMDT1 CD4T 59540
SMDT1 CD8T 130916
TMEM176Amonocyte 38740
\n" + ], + "text/latex": [ + "A grouped\\_df: 15 × 3\n", + "\\begin{tabular}{lll}\n", + " eGene & cell\\_type & n\\\\\n", + " & & \\\\\n", + "\\hline\n", + "\t HLA-DQA2 & CD4T & 116816\\\\\n", + "\t HLA-DQA2 & CD8T & 50641\\\\\n", + "\t HLA-DQA2 & DC & 80196\\\\\n", + "\t HLA-DQA2 & monocyte & 119521\\\\\n", + "\t RNASET2 & CD4T & 16152\\\\\n", + "\t RNASET2 & monocyte & 7198\\\\\n", + "\t RPS26 & B & 74127\\\\\n", + "\t RPS26 & CD4T & 789252\\\\\n", + "\t RPS26 & CD8T & 621313\\\\\n", + "\t RPS26 & DC & 6195\\\\\n", + "\t RPS26 & monocyte & 280221\\\\\n", + "\t RPS26 & NK & 202989\\\\\n", + "\t SMDT1 & CD4T & 59540\\\\\n", + "\t SMDT1 & CD8T & 130916\\\\\n", + "\t TMEM176A & monocyte & 38740\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 15 × 3\n", + "\n", + "| eGene <chr> | cell_type <chr> | n <int> |\n", + "|---|---|---|\n", + "| HLA-DQA2 | CD4T | 116816 |\n", + "| HLA-DQA2 | CD8T | 50641 |\n", + "| HLA-DQA2 | DC | 80196 |\n", + "| HLA-DQA2 | monocyte | 119521 |\n", + "| RNASET2 | CD4T | 16152 |\n", + "| RNASET2 | monocyte | 7198 |\n", + "| RPS26 | B | 74127 |\n", + "| RPS26 | CD4T | 789252 |\n", + "| RPS26 | CD8T | 621313 |\n", + "| RPS26 | DC | 6195 |\n", + "| RPS26 | monocyte | 280221 |\n", + "| RPS26 | NK | 202989 |\n", + "| SMDT1 | CD4T | 59540 |\n", + "| SMDT1 | CD8T | 130916 |\n", + "| TMEM176A | monocyte | 38740 |\n", + "\n" + ], + "text/plain": [ + " eGene cell_type n \n", + "1 HLA-DQA2 CD4T 116816\n", + "2 HLA-DQA2 CD8T 50641\n", + "3 HLA-DQA2 DC 80196\n", + "4 HLA-DQA2 monocyte 119521\n", + "5 RNASET2 CD4T 16152\n", + "6 RNASET2 monocyte 7198\n", + "7 RPS26 B 74127\n", + "8 RPS26 CD4T 789252\n", + "9 RPS26 CD8T 621313\n", + "10 RPS26 DC 6195\n", + "11 RPS26 monocyte 280221\n", + "12 RPS26 NK 202989\n", + "13 SMDT1 CD4T 59540\n", + "14 SMDT1 CD8T 130916\n", + "15 TMEM176A monocyte 38740" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "output_all_effect %>% group_by(eGene, cell_type) %>% count()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "f8e386d3-c4d7-44a3-b7c8-305b49eedd75", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "
A grouped_df: 0 × 4
GeneSNPcell_typen
<chr><chr><chr><int>
\n" + ], + "text/latex": [ + "A grouped\\_df: 0 × 4\n", + "\\begin{tabular}{llll}\n", + " Gene & SNP & cell\\_type & n\\\\\n", + " & & & \\\\\n", + "\\hline\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 0 × 4\n", + "\n", + "| Gene <chr> | SNP <chr> | cell_type <chr> | n <int> |\n", + "|---|---|---|---|\n", + "\n" + ], + "text/plain": [ + " Gene SNP cell_type n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "output_all_effect %>% group_by(Gene, SNP, cell_type) %>% count() %>% filter(n>=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "768a4df2-0b38-4d59-9573-cc5cfe4cff71", + "metadata": {}, + "outputs": [], + "source": [ + "### Adjust Gene Symbol Format for better extraction and tests later on" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "cc34f225-afa8-49c7-9d5d-37e02066517e", + "metadata": {}, + "outputs": [], + "source": [ + "output_all_effect$GeneSymbol = paste0(output_all_effect$eGene, '___', output_all_effect$GeneSymbol)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "9517168f-a87d-49dc-acba-9f53417f5854", + "metadata": {}, + "outputs": [], + "source": [ + "output_all_effect$GeneSymbol = str_replace(output_all_effect$GeneSymbol, ';', '__')" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "c3ce084d-222f-4287-9b85-1f01486f9c46", + "metadata": {}, + "outputs": [], + "source": [ + "output_all_effect$ident = paste0(output_all_effect$cell_type, '_', output_all_effect$GeneSymbol)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "63c6c906-8f2b-44b3-b9dd-c9842b7cea14", + "metadata": {}, + "outputs": [], + "source": [ + "### Adjust SNP name to only map onto matching ref and effect allele" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "e3033e05-dff4-446f-8264-876b83f0a832", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'Gene'
  2. 'GeneChr'
  3. 'GenePos'
  4. 'GeneStrand'
  5. 'GeneSymbol'
  6. 'SNP'
  7. 'SNPChr'
  8. 'SNPPos'
  9. 'SNPAlleles'
  10. 'SNPEffectAllele'
  11. 'SNPEffectAlleleFreq'
  12. 'MetaP'
  13. 'MetaPN'
  14. 'MetaPZ'
  15. 'MetaBeta'
  16. 'MetaSE'
  17. 'NrDatasets'
  18. 'DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)'
  19. 'DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)'
  20. 'DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2)'
  21. 'cell_type'
  22. 'eGene'
  23. 'ident'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'Gene'\n", + "\\item 'GeneChr'\n", + "\\item 'GenePos'\n", + "\\item 'GeneStrand'\n", + "\\item 'GeneSymbol'\n", + "\\item 'SNP'\n", + "\\item 'SNPChr'\n", + "\\item 'SNPPos'\n", + "\\item 'SNPAlleles'\n", + "\\item 'SNPEffectAllele'\n", + "\\item 'SNPEffectAlleleFreq'\n", + "\\item 'MetaP'\n", + "\\item 'MetaPN'\n", + "\\item 'MetaPZ'\n", + "\\item 'MetaBeta'\n", + "\\item 'MetaSE'\n", + "\\item 'NrDatasets'\n", + "\\item 'DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)'\n", + "\\item 'DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)'\n", + "\\item 'DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2)'\n", + "\\item 'cell\\_type'\n", + "\\item 'eGene'\n", + "\\item 'ident'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'Gene'\n", + "2. 'GeneChr'\n", + "3. 'GenePos'\n", + "4. 'GeneStrand'\n", + "5. 'GeneSymbol'\n", + "6. 'SNP'\n", + "7. 'SNPChr'\n", + "8. 'SNPPos'\n", + "9. 'SNPAlleles'\n", + "10. 'SNPEffectAllele'\n", + "11. 'SNPEffectAlleleFreq'\n", + "12. 'MetaP'\n", + "13. 'MetaPN'\n", + "14. 'MetaPZ'\n", + "15. 'MetaBeta'\n", + "16. 'MetaSE'\n", + "17. 'NrDatasets'\n", + "18. 'DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)'\n", + "19. 'DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)'\n", + "20. 'DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2)'\n", + "21. 'cell_type'\n", + "22. 'eGene'\n", + "23. 'ident'\n", + "\n", + "\n" + ], + "text/plain": [ + " [1] \"Gene\" \n", + " [2] \"GeneChr\" \n", + " [3] \"GenePos\" \n", + " [4] \"GeneStrand\" \n", + " [5] \"GeneSymbol\" \n", + " [6] \"SNP\" \n", + " [7] \"SNPChr\" \n", + " [8] \"SNPPos\" \n", + " [9] \"SNPAlleles\" \n", + "[10] \"SNPEffectAllele\" \n", + "[11] \"SNPEffectAlleleFreq\" \n", + "[12] \"MetaP\" \n", + "[13] \"MetaPN\" \n", + "[14] \"MetaPZ\" \n", + "[15] \"MetaBeta\" \n", + "[16] \"MetaSE\" \n", + "[17] \"NrDatasets\" \n", + "[18] \"DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)\"\n", + "[19] \"DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)\" \n", + "[20] \"DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2)\" \n", + "[21] \"cell_type\" \n", + "[22] \"eGene\" \n", + "[23] \"ident\" " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "colnames(output_all_effect)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "a23eea21-fb9f-49a1-aa64-29129efbb60a", + "metadata": {}, + "outputs": [], + "source": [ + "output_all_effect$SNP = paste0(output_all_effect$SNP, '_', output_all_effect$SNPAlleles) # assuming ordered by 1) reference / 2) effect allele " + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "c1a9eadc-628f-4884-aa76-4b72e1ddc9f6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 23
GeneGeneChrGenePosGeneStrandGeneSymbolSNPSNPChrSNPPosSNPAllelesSNPEffectAlleleMetaPZMetaBetaMetaSENrDatasetsDatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2)cell_typeeGeneident
<chr><int><int><lgl><chr><chr><int><int><chr><chr><dbl><dbl><dbl><int><chr><chr><chr><chr><chr><chr>
CDKN2D;HLA-DQA2 632709119NAHLA-DQA2___CDKN2D__HLA-DQA2 rs1144709_C/T631709349C/TT 0.069875 0.0157410.2252742-;0.08039;-0.112611;- -;0.472978;-0.498951;--;37;22;-DCHLA-DQA2DC_HLA-DQA2___CDKN2D__HLA-DQA2
FAM129C;HLA-DQA2632709119NAHLA-DQA2___FAM129C__HLA-DQA2rs1144709_C/T631709349C/TT-0.271313-0.0620110.2285602-;-0.084633;0.052223;--;-0.505195;0.224816;--;38;21;-DCHLA-DQA2DC_HLA-DQA2___FAM129C__HLA-DQA2
\n" + ], + "text/latex": [ + "A data.table: 2 × 23\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " Gene & GeneChr & GenePos & GeneStrand & GeneSymbol & SNP & SNPChr & SNPPos & SNPAlleles & SNPEffectAllele & ⋯ & MetaPZ & MetaBeta & MetaSE & NrDatasets & DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2) & DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2) & DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) & cell\\_type & eGene & ident\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t CDKN2D;HLA-DQA2 & 6 & 32709119 & NA & HLA-DQA2\\_\\_\\_CDKN2D\\_\\_HLA-DQA2 & rs1144709\\_C/T & 6 & 31709349 & C/T & T & ⋯ & 0.069875 & 0.015741 & 0.225274 & 2 & -;0.08039;-0.112611;- & -;0.472978;-0.498951;- & -;37;22;- & DC & HLA-DQA2 & DC\\_HLA-DQA2\\_\\_\\_CDKN2D\\_\\_HLA-DQA2 \\\\\n", + "\t FAM129C;HLA-DQA2 & 6 & 32709119 & NA & HLA-DQA2\\_\\_\\_FAM129C\\_\\_HLA-DQA2 & rs1144709\\_C/T & 6 & 31709349 & C/T & T & ⋯ & -0.271313 & -0.062011 & 0.228560 & 2 & -;-0.084633;0.052223;- & -;-0.505195;0.224816;- & -;38;21;- & DC & HLA-DQA2 & DC\\_HLA-DQA2\\_\\_\\_FAM129C\\_\\_HLA-DQA2\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 23\n", + "\n", + "| Gene <chr> | GeneChr <int> | GenePos <int> | GeneStrand <lgl> | GeneSymbol <chr> | SNP <chr> | SNPChr <int> | SNPPos <int> | SNPAlleles <chr> | SNPEffectAllele <chr> | ⋯ ⋯ | MetaPZ <dbl> | MetaBeta <dbl> | MetaSE <dbl> | NrDatasets <int> | DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2) <chr> | DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2) <chr> | DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) <chr> | cell_type <chr> | eGene <chr> | ident <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| CDKN2D;HLA-DQA2 | 6 | 32709119 | NA | HLA-DQA2___CDKN2D__HLA-DQA2 | rs1144709_C/T | 6 | 31709349 | C/T | T | ⋯ | 0.069875 | 0.015741 | 0.225274 | 2 | -;0.08039;-0.112611;- | -;0.472978;-0.498951;- | -;37;22;- | DC | HLA-DQA2 | DC_HLA-DQA2___CDKN2D__HLA-DQA2 |\n", + "| FAM129C;HLA-DQA2 | 6 | 32709119 | NA | HLA-DQA2___FAM129C__HLA-DQA2 | rs1144709_C/T | 6 | 31709349 | C/T | T | ⋯ | -0.271313 | -0.062011 | 0.228560 | 2 | -;-0.084633;0.052223;- | -;-0.505195;0.224816;- | -;38;21;- | DC | HLA-DQA2 | DC_HLA-DQA2___FAM129C__HLA-DQA2 |\n", + "\n" + ], + "text/plain": [ + " Gene GeneChr GenePos GeneStrand GeneSymbol \n", + "1 CDKN2D;HLA-DQA2 6 32709119 NA HLA-DQA2___CDKN2D__HLA-DQA2 \n", + "2 FAM129C;HLA-DQA2 6 32709119 NA HLA-DQA2___FAM129C__HLA-DQA2\n", + " SNP SNPChr SNPPos SNPAlleles SNPEffectAllele ⋯ MetaPZ \n", + "1 rs1144709_C/T 6 31709349 C/T T ⋯ 0.069875\n", + "2 rs1144709_C/T 6 31709349 C/T T ⋯ -0.271313\n", + " MetaBeta MetaSE NrDatasets\n", + "1 0.015741 0.225274 2 \n", + "2 -0.062011 0.228560 2 \n", + " DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)\n", + "1 -;0.08039;-0.112611;- \n", + "2 -;-0.084633;0.052223;- \n", + " DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)\n", + "1 -;0.472978;-0.498951;- \n", + "2 -;-0.505195;0.224816;- \n", + " DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) cell_type eGene \n", + "1 -;37;22;- DC HLA-DQA2\n", + "2 -;38;21;- DC HLA-DQA2\n", + " ident \n", + "1 DC_HLA-DQA2___CDKN2D__HLA-DQA2 \n", + "2 DC_HLA-DQA2___FAM129C__HLA-DQA2" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(output_all_effect,2)" + ] + }, + { + "cell_type": "markdown", + "id": "5f9f2db5-8ef3-4c76-948f-c7a8581f06f3", + "metadata": { + "tags": [] + }, + "source": [ + "## GWAS summary statistics" + ] + }, + { + "cell_type": "markdown", + "id": "10a6c2ae-fae1-422b-9cd4-e5868e87a982", + "metadata": { + "tags": [] + }, + "source": [ + "### GTEX data" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "48c257a1-1aa8-4592-bc55-4e5e90ca10bf", + "metadata": {}, + "outputs": [], + "source": [ + "## Get metadata to choose the GWAS traits that should be tested from GTEX" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "befecfe2-e3f9-4afe-91f7-935ed8ad720a", + "metadata": {}, + "outputs": [], + "source": [ + "metadata = fread(paste0(gwas_data_path, \"public_data/gtex_gwas_data/gwas_metadata.txt\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "35aadb35-f2e3-4029-993f-a555842235f7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "114" + ], + "text/latex": [ + "114" + ], + "text/markdown": [ + "114" + ], + "text/plain": [ + "[1] 114" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(metadata)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "3e3a406d-7437-462b-b134-533b27abfc31", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 29
GTEx_GWASTagPUBMED_Paper_LinkPheno_FileSource_FilePortalConsortiumLinkNotesHeaderDeclared_Effect_AlleleGenome_ReferenceBinaryCasesabbreviationnew_abbreviationnew_PhenotypeCategoryDeflationcolor
<chr><chr><chr><chr><chr><chr><chr><chr><chr><chr><chr><chr><int><int><chr><chr><chr><chr><int><chr>
YesADIPOGen_Adiponectin http://www.ncbi.nlm.nih.gov/pubmed/22479202 adipogen.discovery.eur_.meta_.public.release.part1_.txtadipogen.discovery.eur_.meta_.public.release.part1_.txthttp://www.mcgill.ca/genepi/adipogen-consortium ADIPOGen http://www.mcgill.ca/genepi/files/genepi/adipogen.discovery.eur_.meta_.public.release.part1_.txt NANA NAb36/hg180NAANTADPNAdiponectin Cardiometabolic1#004000
YesAstle_et_al_2016_Eosinophil_countshttps://www.ncbi.nlm.nih.gov/pubmed/27863252eo_build37_172275_20161212.tsv.gz eo_build37_172275_20161212.tsv.gz http://www.ebi.ac.uk/gwas/downloads/summary-statisticsAstle_et_al_2016ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/AstleWJ_27863252_GCST004606/eo_build37_172275_20161212.tsv.gzNAVARIANT ID CHR BP REF ALT ALT_MINOR DIRECTION EFFECT SE P MLOG10P ALT_FREQ MA_FREQNAb37/hg190NABECEC Eosinophil_CountBlood 0#C00000
\n" + ], + "text/latex": [ + "A data.table: 2 × 29\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " GTEx\\_GWAS & Tag & PUBMED\\_Paper\\_Link & Pheno\\_File & Source\\_File & Portal & Consortium & Link & Notes & Header & ⋯ & Declared\\_Effect\\_Allele & Genome\\_Reference & Binary & Cases & abbreviation & new\\_abbreviation & new\\_Phenotype & Category & Deflation & color\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t Yes & ADIPOGen\\_Adiponectin & http://www.ncbi.nlm.nih.gov/pubmed/22479202 & adipogen.discovery.eur\\_.meta\\_.public.release.part1\\_.txt & adipogen.discovery.eur\\_.meta\\_.public.release.part1\\_.txt & http://www.mcgill.ca/genepi/adipogen-consortium & ADIPOGen & http://www.mcgill.ca/genepi/files/genepi/adipogen.discovery.eur\\_.meta\\_.public.release.part1\\_.txt & NA & NA & ⋯ & NA & b36/hg18 & 0 & NA & ANT & ADPN & Adiponectin & Cardiometabolic & 1 & \\#004000\\\\\n", + "\t Yes & Astle\\_et\\_al\\_2016\\_Eosinophil\\_counts & https://www.ncbi.nlm.nih.gov/pubmed/27863252 & eo\\_build37\\_172275\\_20161212.tsv.gz & eo\\_build37\\_172275\\_20161212.tsv.gz & http://www.ebi.ac.uk/gwas/downloads/summary-statistics & Astle\\_et\\_al\\_2016 & ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary\\_statistics/AstleWJ\\_27863252\\_GCST004606/eo\\_build37\\_172275\\_20161212.tsv.gz & NA & VARIANT ID CHR BP REF ALT ALT\\_MINOR DIRECTION EFFECT SE P MLOG10P ALT\\_FREQ MA\\_FREQ & ⋯ & NA & b37/hg19 & 0 & NA & BEC & EC & Eosinophil\\_Count & Blood & 0 & \\#C00000\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 29\n", + "\n", + "| GTEx_GWAS <chr> | Tag <chr> | PUBMED_Paper_Link <chr> | Pheno_File <chr> | Source_File <chr> | Portal <chr> | Consortium <chr> | Link <chr> | Notes <chr> | Header <chr> | ⋯ ⋯ | Declared_Effect_Allele <chr> | Genome_Reference <chr> | Binary <int> | Cases <int> | abbreviation <chr> | new_abbreviation <chr> | new_Phenotype <chr> | Category <chr> | Deflation <int> | color <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| Yes | ADIPOGen_Adiponectin | http://www.ncbi.nlm.nih.gov/pubmed/22479202 | adipogen.discovery.eur_.meta_.public.release.part1_.txt | adipogen.discovery.eur_.meta_.public.release.part1_.txt | http://www.mcgill.ca/genepi/adipogen-consortium | ADIPOGen | http://www.mcgill.ca/genepi/files/genepi/adipogen.discovery.eur_.meta_.public.release.part1_.txt | NA | NA | ⋯ | NA | b36/hg18 | 0 | NA | ANT | ADPN | Adiponectin | Cardiometabolic | 1 | #004000 |\n", + "| Yes | Astle_et_al_2016_Eosinophil_counts | https://www.ncbi.nlm.nih.gov/pubmed/27863252 | eo_build37_172275_20161212.tsv.gz | eo_build37_172275_20161212.tsv.gz | http://www.ebi.ac.uk/gwas/downloads/summary-statistics | Astle_et_al_2016 | ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/AstleWJ_27863252_GCST004606/eo_build37_172275_20161212.tsv.gz | NA | VARIANT ID CHR BP REF ALT ALT_MINOR DIRECTION EFFECT SE P MLOG10P ALT_FREQ MA_FREQ | ⋯ | NA | b37/hg19 | 0 | NA | BEC | EC | Eosinophil_Count | Blood | 0 | #C00000 |\n", + "\n" + ], + "text/plain": [ + " GTEx_GWAS Tag \n", + "1 Yes ADIPOGen_Adiponectin \n", + "2 Yes Astle_et_al_2016_Eosinophil_counts\n", + " PUBMED_Paper_Link \n", + "1 http://www.ncbi.nlm.nih.gov/pubmed/22479202 \n", + "2 https://www.ncbi.nlm.nih.gov/pubmed/27863252\n", + " Pheno_File \n", + "1 adipogen.discovery.eur_.meta_.public.release.part1_.txt\n", + "2 eo_build37_172275_20161212.tsv.gz \n", + " Source_File \n", + "1 adipogen.discovery.eur_.meta_.public.release.part1_.txt\n", + "2 eo_build37_172275_20161212.tsv.gz \n", + " Portal Consortium \n", + "1 http://www.mcgill.ca/genepi/adipogen-consortium ADIPOGen \n", + "2 http://www.ebi.ac.uk/gwas/downloads/summary-statistics Astle_et_al_2016\n", + " Link \n", + "1 http://www.mcgill.ca/genepi/files/genepi/adipogen.discovery.eur_.meta_.public.release.part1_.txt \n", + "2 ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/AstleWJ_27863252_GCST004606/eo_build37_172275_20161212.tsv.gz\n", + " Notes\n", + "1 NA \n", + "2 NA \n", + " Header \n", + "1 NA \n", + "2 VARIANT ID CHR BP REF ALT ALT_MINOR DIRECTION EFFECT SE P MLOG10P ALT_FREQ MA_FREQ\n", + " ⋯ Declared_Effect_Allele Genome_Reference Binary Cases abbreviation\n", + "1 ⋯ NA b36/hg18 0 NA ANT \n", + "2 ⋯ NA b37/hg19 0 NA BEC \n", + " new_abbreviation new_Phenotype Category Deflation color \n", + "1 ADPN Adiponectin Cardiometabolic 1 #004000\n", + "2 EC Eosinophil_Count Blood 0 #C00000" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(metadata[order(metadata$Tag, decreasing =FALSE),],2) # File Overview" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "73c3070f-c072-4e65-98e2-7c53356a6d50", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 15 × 3
PhenotypeTagPUBMED_Paper_Link
<chr><chr><chr>
Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Blood clot in the lung UKB_6152_7_diagnosed_by_doctor_Blood_clot_in_the_lung http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=41202
Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Asthma UKB_6152_8_diagnosed_by_doctor_Asthma http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=41202
Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Hayfever, allergic rhinitis or eczemaUKB_6152_9_diagnosed_by_doctor_Hayfever_allergic_rhinitis_or_eczemahttp://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=41202
Myeloid white cell count Astle_et_al_2016_Myeloid_white_cell_count https://www.ncbi.nlm.nih.gov/pubmed/27863252
Red blood cell count Astle_et_al_2016_Red_blood_cell_count https://www.ncbi.nlm.nih.gov/pubmed/27863252
White blood cell count Astle_et_al_2016_White_blood_cell_count https://www.ncbi.nlm.nih.gov/pubmed/27863252
Type 2 Diabetes DIAGRAM_T2D_TRANS_ETHNIC http://www.ncbi.nlm.nih.gov/pubmed/22885922
Asthma GABRIEL_Asthma http://www.ncbi.nlm.nih.gov/pubmed/17611496
Crohn's Disease IBD.EUR.Crohns_Disease http://www.ncbi.nlm.nih.gov/pubmed/26192919
Inflammatory Bowel Disease IBD.EUR.Inflammatory_Bowel_Disease http://www.ncbi.nlm.nih.gov/pubmed/26192919
Multiple Sclerosis IMMUNOBASE_Multiple_sclerosis_hg19 http://www.ncbi.nlm.nih.gov/pubmed/21833088
Rheumatoid Arthritis RA_OKADA_TRANS_ETHNIC http://www.ncbi.nlm.nih.gov/pubmed/24390342
Asthma TAGC_Asthma_EUR https://www.ncbi.nlm.nih.gov/pubmed/29273806
Systolic Blood Pressure ICBP_SystolicPressure https://www.ncbi.nlm.nih.gov/pubmed/21909115
Diastolic Blood Pressure ICBP_DiastolicPressure https://www.ncbi.nlm.nih.gov/pubmed/21909115
\n" + ], + "text/latex": [ + "A data.table: 15 × 3\n", + "\\begin{tabular}{lll}\n", + " Phenotype & Tag & PUBMED\\_Paper\\_Link\\\\\n", + " & & \\\\\n", + "\\hline\n", + "\t Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Blood clot in the lung & UKB\\_6152\\_7\\_diagnosed\\_by\\_doctor\\_Blood\\_clot\\_in\\_the\\_lung & http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=41202\\\\\n", + "\t Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Asthma & UKB\\_6152\\_8\\_diagnosed\\_by\\_doctor\\_Asthma & http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=41202\\\\\n", + "\t Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Hayfever, allergic rhinitis or eczema & UKB\\_6152\\_9\\_diagnosed\\_by\\_doctor\\_Hayfever\\_allergic\\_rhinitis\\_or\\_eczema & http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=41202\\\\\n", + "\t Myeloid white cell count & Astle\\_et\\_al\\_2016\\_Myeloid\\_white\\_cell\\_count & https://www.ncbi.nlm.nih.gov/pubmed/27863252 \\\\\n", + "\t Red blood cell count & Astle\\_et\\_al\\_2016\\_Red\\_blood\\_cell\\_count & https://www.ncbi.nlm.nih.gov/pubmed/27863252 \\\\\n", + "\t White blood cell count & Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count & https://www.ncbi.nlm.nih.gov/pubmed/27863252 \\\\\n", + "\t Type 2 Diabetes & DIAGRAM\\_T2D\\_TRANS\\_ETHNIC & http://www.ncbi.nlm.nih.gov/pubmed/22885922 \\\\\n", + "\t Asthma & GABRIEL\\_Asthma & http://www.ncbi.nlm.nih.gov/pubmed/17611496 \\\\\n", + "\t Crohn's Disease & IBD.EUR.Crohns\\_Disease & http://www.ncbi.nlm.nih.gov/pubmed/26192919 \\\\\n", + "\t Inflammatory Bowel Disease & IBD.EUR.Inflammatory\\_Bowel\\_Disease & http://www.ncbi.nlm.nih.gov/pubmed/26192919 \\\\\n", + "\t Multiple Sclerosis & IMMUNOBASE\\_Multiple\\_sclerosis\\_hg19 & http://www.ncbi.nlm.nih.gov/pubmed/21833088 \\\\\n", + "\t Rheumatoid Arthritis & RA\\_OKADA\\_TRANS\\_ETHNIC & http://www.ncbi.nlm.nih.gov/pubmed/24390342 \\\\\n", + "\t Asthma & TAGC\\_Asthma\\_EUR & https://www.ncbi.nlm.nih.gov/pubmed/29273806 \\\\\n", + "\t Systolic Blood Pressure & ICBP\\_SystolicPressure & https://www.ncbi.nlm.nih.gov/pubmed/21909115 \\\\\n", + "\t Diastolic Blood Pressure & ICBP\\_DiastolicPressure & https://www.ncbi.nlm.nih.gov/pubmed/21909115 \\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 15 × 3\n", + "\n", + "| Phenotype <chr> | Tag <chr> | PUBMED_Paper_Link <chr> |\n", + "|---|---|---|\n", + "| Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Blood clot in the lung | UKB_6152_7_diagnosed_by_doctor_Blood_clot_in_the_lung | http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=41202 |\n", + "| Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Asthma | UKB_6152_8_diagnosed_by_doctor_Asthma | http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=41202 |\n", + "| Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Hayfever, allergic rhinitis or eczema | UKB_6152_9_diagnosed_by_doctor_Hayfever_allergic_rhinitis_or_eczema | http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=41202 |\n", + "| Myeloid white cell count | Astle_et_al_2016_Myeloid_white_cell_count | https://www.ncbi.nlm.nih.gov/pubmed/27863252 |\n", + "| Red blood cell count | Astle_et_al_2016_Red_blood_cell_count | https://www.ncbi.nlm.nih.gov/pubmed/27863252 |\n", + "| White blood cell count | Astle_et_al_2016_White_blood_cell_count | https://www.ncbi.nlm.nih.gov/pubmed/27863252 |\n", + "| Type 2 Diabetes | DIAGRAM_T2D_TRANS_ETHNIC | http://www.ncbi.nlm.nih.gov/pubmed/22885922 |\n", + "| Asthma | GABRIEL_Asthma | http://www.ncbi.nlm.nih.gov/pubmed/17611496 |\n", + "| Crohn's Disease | IBD.EUR.Crohns_Disease | http://www.ncbi.nlm.nih.gov/pubmed/26192919 |\n", + "| Inflammatory Bowel Disease | IBD.EUR.Inflammatory_Bowel_Disease | http://www.ncbi.nlm.nih.gov/pubmed/26192919 |\n", + "| Multiple Sclerosis | IMMUNOBASE_Multiple_sclerosis_hg19 | http://www.ncbi.nlm.nih.gov/pubmed/21833088 |\n", + "| Rheumatoid Arthritis | RA_OKADA_TRANS_ETHNIC | http://www.ncbi.nlm.nih.gov/pubmed/24390342 |\n", + "| Asthma | TAGC_Asthma_EUR | https://www.ncbi.nlm.nih.gov/pubmed/29273806 |\n", + "| Systolic Blood Pressure | ICBP_SystolicPressure | https://www.ncbi.nlm.nih.gov/pubmed/21909115 |\n", + "| Diastolic Blood Pressure | ICBP_DiastolicPressure | https://www.ncbi.nlm.nih.gov/pubmed/21909115 |\n", + "\n" + ], + "text/plain": [ + " Phenotype \n", + "1 Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Blood clot in the lung \n", + "2 Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Asthma \n", + "3 Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Hayfever, allergic rhinitis or eczema\n", + "4 Myeloid white cell count \n", + "5 Red blood cell count \n", + "6 White blood cell count \n", + "7 Type 2 Diabetes \n", + "8 Asthma \n", + "9 Crohn's Disease \n", + "10 Inflammatory Bowel Disease \n", + "11 Multiple Sclerosis \n", + "12 Rheumatoid Arthritis \n", + "13 Asthma \n", + "14 Systolic Blood Pressure \n", + "15 Diastolic Blood Pressure \n", + " Tag \n", + "1 UKB_6152_7_diagnosed_by_doctor_Blood_clot_in_the_lung \n", + "2 UKB_6152_8_diagnosed_by_doctor_Asthma \n", + "3 UKB_6152_9_diagnosed_by_doctor_Hayfever_allergic_rhinitis_or_eczema\n", + "4 Astle_et_al_2016_Myeloid_white_cell_count \n", + "5 Astle_et_al_2016_Red_blood_cell_count \n", + "6 Astle_et_al_2016_White_blood_cell_count \n", + "7 DIAGRAM_T2D_TRANS_ETHNIC \n", + "8 GABRIEL_Asthma \n", + "9 IBD.EUR.Crohns_Disease \n", + "10 IBD.EUR.Inflammatory_Bowel_Disease \n", + "11 IMMUNOBASE_Multiple_sclerosis_hg19 \n", + "12 RA_OKADA_TRANS_ETHNIC \n", + "13 TAGC_Asthma_EUR \n", + "14 ICBP_SystolicPressure \n", + "15 ICBP_DiastolicPressure \n", + " PUBMED_Paper_Link \n", + "1 http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=41202\n", + "2 http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=41202\n", + "3 http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=41202\n", + "4 https://www.ncbi.nlm.nih.gov/pubmed/27863252 \n", + "5 https://www.ncbi.nlm.nih.gov/pubmed/27863252 \n", + "6 https://www.ncbi.nlm.nih.gov/pubmed/27863252 \n", + "7 http://www.ncbi.nlm.nih.gov/pubmed/22885922 \n", + "8 http://www.ncbi.nlm.nih.gov/pubmed/17611496 \n", + "9 http://www.ncbi.nlm.nih.gov/pubmed/26192919 \n", + "10 http://www.ncbi.nlm.nih.gov/pubmed/26192919 \n", + "11 http://www.ncbi.nlm.nih.gov/pubmed/21833088 \n", + "12 http://www.ncbi.nlm.nih.gov/pubmed/24390342 \n", + "13 https://www.ncbi.nlm.nih.gov/pubmed/29273806 \n", + "14 https://www.ncbi.nlm.nih.gov/pubmed/21909115 \n", + "15 https://www.ncbi.nlm.nih.gov/pubmed/21909115 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Extract potentially relevant traits\n", + "tail(unique(metadata[!is.na(str_extract(metadata$Phenotype, 'Diabetes|diabetes|rheomatoid|Rheomatoid|arthritis|Arthritis|Blood|blood|crohn|Crohn|Sclerosis|sclerosis|Fever|fever|Asthma|asthma|bowel|Bowel|white|White')),c('Phenotype', 'Tag', 'PUBMED_Paper_Link')]), 15)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "e335acf0-f3ef-46f1-b2b0-29f35153134c", + "metadata": {}, + "outputs": [], + "source": [ + "## Load data based on selected trait tags" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "46395cc3-3506-46bb-940e-554a2c8ac613", + "metadata": {}, + "outputs": [], + "source": [ + "### Select tags or take all tags - which GWAS to look into\n", + "tag = c('RA_OKADA_TRANS_ETHNIC', 'TAGC_Asthma_EUR', 'IMMUNOBASE_Multiple_sclerosis_hg19', 'IBD.EUR.Inflammatory_Bowel_Disease', 'IBD.EUR.Crohns_Disease', 'Astle_et_al_2016_White_blood_cell_count') # rheomatoid arthritis tag" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "1e1573eb-37cf-4c39-bf54-a06d12c9a81b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'RA_OKADA_TRANS_ETHNIC'
  2. 'TAGC_Asthma_EUR'
  3. 'IMMUNOBASE_Multiple_sclerosis_hg19'
  4. 'IBD.EUR.Inflammatory_Bowel_Disease'
  5. 'IBD.EUR.Crohns_Disease'
  6. 'Astle_et_al_2016_White_blood_cell_count'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'RA\\_OKADA\\_TRANS\\_ETHNIC'\n", + "\\item 'TAGC\\_Asthma\\_EUR'\n", + "\\item 'IMMUNOBASE\\_Multiple\\_sclerosis\\_hg19'\n", + "\\item 'IBD.EUR.Inflammatory\\_Bowel\\_Disease'\n", + "\\item 'IBD.EUR.Crohns\\_Disease'\n", + "\\item 'Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'RA_OKADA_TRANS_ETHNIC'\n", + "2. 'TAGC_Asthma_EUR'\n", + "3. 'IMMUNOBASE_Multiple_sclerosis_hg19'\n", + "4. 'IBD.EUR.Inflammatory_Bowel_Disease'\n", + "5. 'IBD.EUR.Crohns_Disease'\n", + "6. 'Astle_et_al_2016_White_blood_cell_count'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"RA_OKADA_TRANS_ETHNIC\" \n", + "[2] \"TAGC_Asthma_EUR\" \n", + "[3] \"IMMUNOBASE_Multiple_sclerosis_hg19\" \n", + "[4] \"IBD.EUR.Inflammatory_Bowel_Disease\" \n", + "[5] \"IBD.EUR.Crohns_Disease\" \n", + "[6] \"Astle_et_al_2016_White_blood_cell_count\"" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(tag)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "76f80b20-6440-459a-9fb1-6ae0b9fc6f74", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_gtex = data.frame()" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "65fb2716-9d64-4124-931b-f0903909e946", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"RA_OKADA_TRANS_ETHNIC\" \n", + "[2] \"TAGC_Asthma_EUR\" \n", + "[3] \"IMMUNOBASE_Multiple_sclerosis_hg19\" \n", + "[4] \"IBD.EUR.Inflammatory_Bowel_Disease\" \n", + "[5] \"IBD.EUR.Crohns_Disease\" \n", + "[6] \"Astle_et_al_2016_White_blood_cell_count\"\n", + "[1] \"RA_OKADA_TRANS_ETHNIC\" \n", + "[2] \"TAGC_Asthma_EUR\" \n", + "[3] \"IMMUNOBASE_Multiple_sclerosis_hg19\" \n", + "[4] \"IBD.EUR.Inflammatory_Bowel_Disease\" \n", + "[5] \"IBD.EUR.Crohns_Disease\" \n", + "[6] \"Astle_et_al_2016_White_blood_cell_count\"\n", + "[1] \"RA_OKADA_TRANS_ETHNIC\" \n", + "[2] \"TAGC_Asthma_EUR\" \n", + "[3] \"IMMUNOBASE_Multiple_sclerosis_hg19\" \n", + "[4] \"IBD.EUR.Inflammatory_Bowel_Disease\" \n", + "[5] \"IBD.EUR.Crohns_Disease\" \n", + "[6] \"Astle_et_al_2016_White_blood_cell_count\"\n", + "[1] \"RA_OKADA_TRANS_ETHNIC\" \n", + "[2] \"TAGC_Asthma_EUR\" \n", + "[3] \"IMMUNOBASE_Multiple_sclerosis_hg19\" \n", + "[4] \"IBD.EUR.Inflammatory_Bowel_Disease\" \n", + "[5] \"IBD.EUR.Crohns_Disease\" \n", + "[6] \"Astle_et_al_2016_White_blood_cell_count\"\n", + "[1] \"RA_OKADA_TRANS_ETHNIC\" \n", + "[2] \"TAGC_Asthma_EUR\" \n", + "[3] \"IMMUNOBASE_Multiple_sclerosis_hg19\" \n", + "[4] \"IBD.EUR.Inflammatory_Bowel_Disease\" \n", + "[5] \"IBD.EUR.Crohns_Disease\" \n", + "[6] \"Astle_et_al_2016_White_blood_cell_count\"\n", + "[1] \"RA_OKADA_TRANS_ETHNIC\" \n", + "[2] \"TAGC_Asthma_EUR\" \n", + "[3] \"IMMUNOBASE_Multiple_sclerosis_hg19\" \n", + "[4] \"IBD.EUR.Inflammatory_Bowel_Disease\" \n", + "[5] \"IBD.EUR.Crohns_Disease\" \n", + "[6] \"Astle_et_al_2016_White_blood_cell_count\"\n" + ] + } + ], + "source": [ + "# GWAS for selected tags\n", + "for(i in tag){\n", + " print(tag)\n", + " data = fread(paste0(gwas_data_path, \"public_data/gtex_gwas_data/imputed_gwas_hg38_1.1/imputed_\", i, \".txt.gz\"))\n", + " data$tag = i\n", + " gwas_gtex = rbind(data, gwas_gtex)\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "79ff14ab-c98a-4a4f-945a-452a1c16cafb", + "metadata": {}, + "outputs": [], + "source": [ + "### Inspect loaded data" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "fc876108-c448-4983-8414-c8b62a4378db", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'Astle_et_al_2016_White_blood_cell_count'
  2. 'IBD.EUR.Crohns_Disease'
  3. 'IBD.EUR.Inflammatory_Bowel_Disease'
  4. 'IMMUNOBASE_Multiple_sclerosis_hg19'
  5. 'TAGC_Asthma_EUR'
  6. 'RA_OKADA_TRANS_ETHNIC'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count'\n", + "\\item 'IBD.EUR.Crohns\\_Disease'\n", + "\\item 'IBD.EUR.Inflammatory\\_Bowel\\_Disease'\n", + "\\item 'IMMUNOBASE\\_Multiple\\_sclerosis\\_hg19'\n", + "\\item 'TAGC\\_Asthma\\_EUR'\n", + "\\item 'RA\\_OKADA\\_TRANS\\_ETHNIC'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'Astle_et_al_2016_White_blood_cell_count'\n", + "2. 'IBD.EUR.Crohns_Disease'\n", + "3. 'IBD.EUR.Inflammatory_Bowel_Disease'\n", + "4. 'IMMUNOBASE_Multiple_sclerosis_hg19'\n", + "5. 'TAGC_Asthma_EUR'\n", + "6. 'RA_OKADA_TRANS_ETHNIC'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"Astle_et_al_2016_White_blood_cell_count\"\n", + "[2] \"IBD.EUR.Crohns_Disease\" \n", + "[3] \"IBD.EUR.Inflammatory_Bowel_Disease\" \n", + "[4] \"IMMUNOBASE_Multiple_sclerosis_hg19\" \n", + "[5] \"TAGC_Asthma_EUR\" \n", + "[6] \"RA_OKADA_TRANS_ETHNIC\" " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(gwas_gtex$tag)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "c98046ee-6c60-417d-8d6e-7230e56dc161", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 16
variant_idpanel_variant_idchromosomepositioneffect_allelenon_effect_allelecurrent_buildfrequencysample_sizezscorepvalueeffect_sizestandard_errorimputation_statusn_casestag
<chr><chr><chr><int><chr><chr><chr><dbl><int><dbl><dbl><dbl><dbl><chr><dbl><chr>
rs554008981chr1_13550_G_A_b38chr113550AGhg380.017316021734801.20542970.2280375NANAimputedNAAstle_et_al_2016_White_blood_cell_count
rs201055865chr1_14671_G_C_b38chr114671CGhg380.012987011734800.23249890.8161506NANAimputedNAAstle_et_al_2016_White_blood_cell_count
\n" + ], + "text/latex": [ + "A data.table: 2 × 16\n", + "\\begin{tabular}{llllllllllllllll}\n", + " variant\\_id & panel\\_variant\\_id & chromosome & position & effect\\_allele & non\\_effect\\_allele & current\\_build & frequency & sample\\_size & zscore & pvalue & effect\\_size & standard\\_error & imputation\\_status & n\\_cases & tag\\\\\n", + " & & & & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t rs554008981 & chr1\\_13550\\_G\\_A\\_b38 & chr1 & 13550 & A & G & hg38 & 0.01731602 & 173480 & 1.2054297 & 0.2280375 & NA & NA & imputed & NA & Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count\\\\\n", + "\t rs201055865 & chr1\\_14671\\_G\\_C\\_b38 & chr1 & 14671 & C & G & hg38 & 0.01298701 & 173480 & 0.2324989 & 0.8161506 & NA & NA & imputed & NA & Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 16\n", + "\n", + "| variant_id <chr> | panel_variant_id <chr> | chromosome <chr> | position <int> | effect_allele <chr> | non_effect_allele <chr> | current_build <chr> | frequency <dbl> | sample_size <int> | zscore <dbl> | pvalue <dbl> | effect_size <dbl> | standard_error <dbl> | imputation_status <chr> | n_cases <dbl> | tag <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| rs554008981 | chr1_13550_G_A_b38 | chr1 | 13550 | A | G | hg38 | 0.01731602 | 173480 | 1.2054297 | 0.2280375 | NA | NA | imputed | NA | Astle_et_al_2016_White_blood_cell_count |\n", + "| rs201055865 | chr1_14671_G_C_b38 | chr1 | 14671 | C | G | hg38 | 0.01298701 | 173480 | 0.2324989 | 0.8161506 | NA | NA | imputed | NA | Astle_et_al_2016_White_blood_cell_count |\n", + "\n" + ], + "text/plain": [ + " variant_id panel_variant_id chromosome position effect_allele\n", + "1 rs554008981 chr1_13550_G_A_b38 chr1 13550 A \n", + "2 rs201055865 chr1_14671_G_C_b38 chr1 14671 C \n", + " non_effect_allele current_build frequency sample_size zscore pvalue \n", + "1 G hg38 0.01731602 173480 1.2054297 0.2280375\n", + "2 G hg38 0.01298701 173480 0.2324989 0.8161506\n", + " effect_size standard_error imputation_status n_cases\n", + "1 NA NA imputed NA \n", + "2 NA NA imputed NA \n", + " tag \n", + "1 Astle_et_al_2016_White_blood_cell_count\n", + "2 Astle_et_al_2016_White_blood_cell_count" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(gwas_gtex,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "142fc0d1-74ee-409f-a5eb-c528ed408bc3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "1" + ], + "text/latex": [ + "1" + ], + "text/markdown": [ + "1" + ], + "text/plain": [ + "[1] 1" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check whether also non-sign. results included\n", + "max(gwas_gtex$pvalue)" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "id": "c7b5304c-f168-43ec-a856-060ac755e72b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A grouped_df: 6 × 2
effect_allelen
<chr><int>
A 13915259
T 13893494
C 11989998
G 11810065
AT 132012
TA 117094
\n" + ], + "text/latex": [ + "A grouped\\_df: 6 × 2\n", + "\\begin{tabular}{ll}\n", + " effect\\_allele & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t A & 13915259\\\\\n", + "\t T & 13893494\\\\\n", + "\t C & 11989998\\\\\n", + "\t G & 11810065\\\\\n", + "\t AT & 132012\\\\\n", + "\t TA & 117094\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 6 × 2\n", + "\n", + "| effect_allele <chr> | n <int> |\n", + "|---|---|\n", + "| A | 13915259 |\n", + "| T | 13893494 |\n", + "| C | 11989998 |\n", + "| G | 11810065 |\n", + "| AT | 132012 |\n", + "| TA | 117094 |\n", + "\n" + ], + "text/plain": [ + " effect_allele n \n", + "1 A 13915259\n", + "2 T 13893494\n", + "3 C 11989998\n", + "4 G 11810065\n", + "5 AT 132012\n", + "6 TA 117094" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "## check effect allele reporting\n", + "head(gwas_gtex %>% group_by(effect_allele) %>% count() %>% arrange(desc(n)), 6)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "25764286-f953-485e-bfb1-af6f3896e804", + "metadata": {}, + "outputs": [], + "source": [ + "#unique(gwas_gtex$effect_allele)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "fd8d8db3-c616-4740-86d2-bc3fcad9d173", + "metadata": {}, + "outputs": [], + "source": [ + "# Add phenotype info and sample size etc. from metadata" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "77e35774-84ee-4d08-929d-d9f17b3f5141", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 16
variant_idpanel_variant_idchromosomepositioneffect_allelenon_effect_allelecurrent_buildfrequencysample_sizezscorepvalueeffect_sizestandard_errorimputation_statusn_casestag
<chr><chr><chr><int><chr><chr><chr><dbl><int><dbl><dbl><dbl><dbl><chr><dbl><chr>
rs554008981chr1_13550_G_A_b38chr113550AGhg380.017316021734801.20542970.2280375NANAimputedNAAstle_et_al_2016_White_blood_cell_count
rs201055865chr1_14671_G_C_b38chr114671CGhg380.012987011734800.23249890.8161506NANAimputedNAAstle_et_al_2016_White_blood_cell_count
\n" + ], + "text/latex": [ + "A data.table: 2 × 16\n", + "\\begin{tabular}{llllllllllllllll}\n", + " variant\\_id & panel\\_variant\\_id & chromosome & position & effect\\_allele & non\\_effect\\_allele & current\\_build & frequency & sample\\_size & zscore & pvalue & effect\\_size & standard\\_error & imputation\\_status & n\\_cases & tag\\\\\n", + " & & & & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t rs554008981 & chr1\\_13550\\_G\\_A\\_b38 & chr1 & 13550 & A & G & hg38 & 0.01731602 & 173480 & 1.2054297 & 0.2280375 & NA & NA & imputed & NA & Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count\\\\\n", + "\t rs201055865 & chr1\\_14671\\_G\\_C\\_b38 & chr1 & 14671 & C & G & hg38 & 0.01298701 & 173480 & 0.2324989 & 0.8161506 & NA & NA & imputed & NA & Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 16\n", + "\n", + "| variant_id <chr> | panel_variant_id <chr> | chromosome <chr> | position <int> | effect_allele <chr> | non_effect_allele <chr> | current_build <chr> | frequency <dbl> | sample_size <int> | zscore <dbl> | pvalue <dbl> | effect_size <dbl> | standard_error <dbl> | imputation_status <chr> | n_cases <dbl> | tag <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| rs554008981 | chr1_13550_G_A_b38 | chr1 | 13550 | A | G | hg38 | 0.01731602 | 173480 | 1.2054297 | 0.2280375 | NA | NA | imputed | NA | Astle_et_al_2016_White_blood_cell_count |\n", + "| rs201055865 | chr1_14671_G_C_b38 | chr1 | 14671 | C | G | hg38 | 0.01298701 | 173480 | 0.2324989 | 0.8161506 | NA | NA | imputed | NA | Astle_et_al_2016_White_blood_cell_count |\n", + "\n" + ], + "text/plain": [ + " variant_id panel_variant_id chromosome position effect_allele\n", + "1 rs554008981 chr1_13550_G_A_b38 chr1 13550 A \n", + "2 rs201055865 chr1_14671_G_C_b38 chr1 14671 C \n", + " non_effect_allele current_build frequency sample_size zscore pvalue \n", + "1 G hg38 0.01731602 173480 1.2054297 0.2280375\n", + "2 G hg38 0.01298701 173480 0.2324989 0.8161506\n", + " effect_size standard_error imputation_status n_cases\n", + "1 NA NA imputed NA \n", + "2 NA NA imputed NA \n", + " tag \n", + "1 Astle_et_al_2016_White_blood_cell_count\n", + "2 Astle_et_al_2016_White_blood_cell_count" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(gwas_gtex,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "id": "96e09072-54fc-4b4e-b53a-ccfa47810121", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_gtex = merge(gwas_gtex, metadata[,c('Tag', 'Phenotype', 'Sample_Size', 'Cases')], by.x = 'tag', by.y = 'Tag')" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "a26e5fc7-f959-4130-9881-cfdd25967cdc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 19
tagvariant_idpanel_variant_idchromosomepositioneffect_allelenon_effect_allelecurrent_buildfrequencysample_sizezscorepvalueeffect_sizestandard_errorimputation_statusn_casesPhenotypeSample_SizeCases
<chr><chr><chr><chr><int><chr><chr><chr><dbl><int><dbl><dbl><dbl><dbl><chr><dbl><chr><int><int>
Astle_et_al_2016_White_blood_cell_countrs554008981chr1_13550_G_A_b38chr113550AGhg380.017316021734801.20542970.2280375NANAimputedNAWhite blood cell count173480NA
Astle_et_al_2016_White_blood_cell_countrs201055865chr1_14671_G_C_b38chr114671CGhg380.012987011734800.23249890.8161506NANAimputedNAWhite blood cell count173480NA
\n" + ], + "text/latex": [ + "A data.table: 2 × 19\n", + "\\begin{tabular}{lllllllllllllllllll}\n", + " tag & variant\\_id & panel\\_variant\\_id & chromosome & position & effect\\_allele & non\\_effect\\_allele & current\\_build & frequency & sample\\_size & zscore & pvalue & effect\\_size & standard\\_error & imputation\\_status & n\\_cases & Phenotype & Sample\\_Size & Cases\\\\\n", + " & & & & & & & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count & rs554008981 & chr1\\_13550\\_G\\_A\\_b38 & chr1 & 13550 & A & G & hg38 & 0.01731602 & 173480 & 1.2054297 & 0.2280375 & NA & NA & imputed & NA & White blood cell count & 173480 & NA\\\\\n", + "\t Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count & rs201055865 & chr1\\_14671\\_G\\_C\\_b38 & chr1 & 14671 & C & G & hg38 & 0.01298701 & 173480 & 0.2324989 & 0.8161506 & NA & NA & imputed & NA & White blood cell count & 173480 & NA\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 19\n", + "\n", + "| tag <chr> | variant_id <chr> | panel_variant_id <chr> | chromosome <chr> | position <int> | effect_allele <chr> | non_effect_allele <chr> | current_build <chr> | frequency <dbl> | sample_size <int> | zscore <dbl> | pvalue <dbl> | effect_size <dbl> | standard_error <dbl> | imputation_status <chr> | n_cases <dbl> | Phenotype <chr> | Sample_Size <int> | Cases <int> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| Astle_et_al_2016_White_blood_cell_count | rs554008981 | chr1_13550_G_A_b38 | chr1 | 13550 | A | G | hg38 | 0.01731602 | 173480 | 1.2054297 | 0.2280375 | NA | NA | imputed | NA | White blood cell count | 173480 | NA |\n", + "| Astle_et_al_2016_White_blood_cell_count | rs201055865 | chr1_14671_G_C_b38 | chr1 | 14671 | C | G | hg38 | 0.01298701 | 173480 | 0.2324989 | 0.8161506 | NA | NA | imputed | NA | White blood cell count | 173480 | NA |\n", + "\n" + ], + "text/plain": [ + " tag variant_id panel_variant_id \n", + "1 Astle_et_al_2016_White_blood_cell_count rs554008981 chr1_13550_G_A_b38\n", + "2 Astle_et_al_2016_White_blood_cell_count rs201055865 chr1_14671_G_C_b38\n", + " chromosome position effect_allele non_effect_allele current_build frequency \n", + "1 chr1 13550 A G hg38 0.01731602\n", + "2 chr1 14671 C G hg38 0.01298701\n", + " sample_size zscore pvalue effect_size standard_error imputation_status\n", + "1 173480 1.2054297 0.2280375 NA NA imputed \n", + "2 173480 0.2324989 0.8161506 NA NA imputed \n", + " n_cases Phenotype Sample_Size Cases\n", + "1 NA White blood cell count 173480 NA \n", + "2 NA White blood cell count 173480 NA " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(gwas_gtex, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "id": "4045e4fa-091c-4455-9813-df6468451d82", + "metadata": {}, + "outputs": [], + "source": [ + "### Reduce to columns also in other gwas dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "595ed055-cb42-410d-869b-eb9bc32cea94", + "metadata": {}, + "outputs": [], + "source": [ + "columns_var = c('tag','position', 'non_effect_allele', 'frequency', 'pvalue','effect_size', 'Phenotype','Sample_Size',\n", + " 'variant_id', 'sample_size', 'standard_error', 'effect_allele')" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "3c8d5a87-32d7-4889-b816-1a877dcb2d07", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_gtex = gwas_gtex[,c('tag','position', 'non_effect_allele', 'frequency', 'pvalue','effect_size', 'Phenotype','Sample_Size',\n", + " 'variant_id', 'sample_size', 'standard_error', 'effect_allele')]" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "id": "e0ef8f10-fad8-4c09-ab95-f1fcc777f787", + "metadata": {}, + "outputs": [], + "source": [ + "#gwas_gtex[is.na(gwas_gtex$variant_id),]" + ] + }, + { + "cell_type": "markdown", + "id": "a7840027-dcfc-48a1-a0f4-720939add529", + "metadata": { + "tags": [] + }, + "source": [ + "### Additional GWAS input (load T1D GWAS)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "631f4da5-a455-4f95-9ef5-b7b4afbd2c47", + "metadata": {}, + "outputs": [], + "source": [ + "### Load other T1D GWAS database to add to gtex" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "id": "a9b89bfd-8968-4388-84d6-dae3d841643f", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_addition = fread(paste0(path, \"additional_gwas/GCST90014023_buildGRCh38.tsv.gz\"))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "id": "c79a6548-9bd0-4e27-8392-48cf6b2a102a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 10
variant_idp_valuechromosomebase_pair_locationeffect_alleleother_alleleeffect_allele_frequencybetastandard_errorsample_size
<chr><chr><chr><int><chr><chr><dbl><dbl><dbl><int>
rs3678967242.84e-01110177ACA0.3980.0590580.055112363495
rs5555000757.31e-01110352TAT0.3930.0194960.056730363495
\n" + ], + "text/latex": [ + "A data.table: 2 × 10\n", + "\\begin{tabular}{llllllllll}\n", + " variant\\_id & p\\_value & chromosome & base\\_pair\\_location & effect\\_allele & other\\_allele & effect\\_allele\\_frequency & beta & standard\\_error & sample\\_size\\\\\n", + " & & & & & & & & & \\\\\n", + "\\hline\n", + "\t rs367896724 & 2.84e-01 & 1 & 10177 & AC & A & 0.398 & 0.059058 & 0.055112 & 363495\\\\\n", + "\t rs555500075 & 7.31e-01 & 1 & 10352 & TA & T & 0.393 & 0.019496 & 0.056730 & 363495\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 10\n", + "\n", + "| variant_id <chr> | p_value <chr> | chromosome <chr> | base_pair_location <int> | effect_allele <chr> | other_allele <chr> | effect_allele_frequency <dbl> | beta <dbl> | standard_error <dbl> | sample_size <int> |\n", + "|---|---|---|---|---|---|---|---|---|---|\n", + "| rs367896724 | 2.84e-01 | 1 | 10177 | AC | A | 0.398 | 0.059058 | 0.055112 | 363495 |\n", + "| rs555500075 | 7.31e-01 | 1 | 10352 | TA | T | 0.393 | 0.019496 | 0.056730 | 363495 |\n", + "\n" + ], + "text/plain": [ + " variant_id p_value chromosome base_pair_location effect_allele other_allele\n", + "1 rs367896724 2.84e-01 1 10177 AC A \n", + "2 rs555500075 7.31e-01 1 10352 TA T \n", + " effect_allele_frequency beta standard_error sample_size\n", + "1 0.398 0.059058 0.055112 363495 \n", + "2 0.393 0.019496 0.056730 363495 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(gwas_addition,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "53ac048e-f99c-4dde-b2b4-95d93f2a434a", + "metadata": {}, + "outputs": [], + "source": [ + "## Add columns and rename to adjust to other dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "id": "d56cbefb-48ba-41df-a77e-c63d42176500", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_addition$tag = 'chiou_type_1_diabetes_study'" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "id": "8068703a-3174-4fba-aadd-fbd1347216ab", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_addition$position = gwas_addition$base_pair_location" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "a2010569-80c8-4e7e-96ed-354d1779685a", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_addition$non_effect_allele = gwas_addition$other_allele" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "f1c2a40a-7c6a-4fe1-9808-20e478154049", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_addition$frequency = gwas_addition$effect_allele_frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "e3838258-c6cd-439d-bbbd-5cc3ed2f0afe", + "metadata": {}, + "outputs": [], + "source": [ + "#sort(unique(gwas_addition$sample_size))" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "c6cb4ab0-ef62-452a-8598-674dfd6612c7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 5 × 14
variant_idp_valuechromosomebase_pair_locationeffect_alleleother_alleleeffect_allele_frequencybetastandard_errorsample_sizetagpositionnon_effect_allelefrequency
<chr><chr><chr><int><chr><chr><dbl><dbl><dbl><int><chr><int><chr><dbl>
rs11576215711.69e-011 778705CGCCCTTGTGC0.004720-0.6727000.489300115043chiou_type_1_diabetes_study 778705C0.004720
rs11576215713.68e-011 778705CGCCCTTGCGC0.013100-0.2232000.248100115043chiou_type_1_diabetes_study 778705C0.013100
rs111497730 2.97e-011 987345A G0.001130 0.4343250.416662379804chiou_type_1_diabetes_study 987345G0.001130
rs111497730 9.80e-011 987345C G0.000082 0.0924653.691368363495chiou_type_1_diabetes_study 987345G0.000082
rs10751776 2.67e-08124970252C A0.510000 0.0781450.014050520580chiou_type_1_diabetes_study24970252A0.510000
\n" + ], + "text/latex": [ + "A data.table: 5 × 14\n", + "\\begin{tabular}{llllllllllllll}\n", + " variant\\_id & p\\_value & chromosome & base\\_pair\\_location & effect\\_allele & other\\_allele & effect\\_allele\\_frequency & beta & standard\\_error & sample\\_size & tag & position & non\\_effect\\_allele & frequency\\\\\n", + " & & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t rs1157621571 & 1.69e-01 & 1 & 778705 & CGCCCTTGTG & C & 0.004720 & -0.672700 & 0.489300 & 115043 & chiou\\_type\\_1\\_diabetes\\_study & 778705 & C & 0.004720\\\\\n", + "\t rs1157621571 & 3.68e-01 & 1 & 778705 & CGCCCTTGCG & C & 0.013100 & -0.223200 & 0.248100 & 115043 & chiou\\_type\\_1\\_diabetes\\_study & 778705 & C & 0.013100\\\\\n", + "\t rs111497730 & 2.97e-01 & 1 & 987345 & A & G & 0.001130 & 0.434325 & 0.416662 & 379804 & chiou\\_type\\_1\\_diabetes\\_study & 987345 & G & 0.001130\\\\\n", + "\t rs111497730 & 9.80e-01 & 1 & 987345 & C & G & 0.000082 & 0.092465 & 3.691368 & 363495 & chiou\\_type\\_1\\_diabetes\\_study & 987345 & G & 0.000082\\\\\n", + "\t rs10751776 & 2.67e-08 & 1 & 24970252 & C & A & 0.510000 & 0.078145 & 0.014050 & 520580 & chiou\\_type\\_1\\_diabetes\\_study & 24970252 & A & 0.510000\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 5 × 14\n", + "\n", + "| variant_id <chr> | p_value <chr> | chromosome <chr> | base_pair_location <int> | effect_allele <chr> | other_allele <chr> | effect_allele_frequency <dbl> | beta <dbl> | standard_error <dbl> | sample_size <int> | tag <chr> | position <int> | non_effect_allele <chr> | frequency <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| rs1157621571 | 1.69e-01 | 1 | 778705 | CGCCCTTGTG | C | 0.004720 | -0.672700 | 0.489300 | 115043 | chiou_type_1_diabetes_study | 778705 | C | 0.004720 |\n", + "| rs1157621571 | 3.68e-01 | 1 | 778705 | CGCCCTTGCG | C | 0.013100 | -0.223200 | 0.248100 | 115043 | chiou_type_1_diabetes_study | 778705 | C | 0.013100 |\n", + "| rs111497730 | 2.97e-01 | 1 | 987345 | A | G | 0.001130 | 0.434325 | 0.416662 | 379804 | chiou_type_1_diabetes_study | 987345 | G | 0.001130 |\n", + "| rs111497730 | 9.80e-01 | 1 | 987345 | C | G | 0.000082 | 0.092465 | 3.691368 | 363495 | chiou_type_1_diabetes_study | 987345 | G | 0.000082 |\n", + "| rs10751776 | 2.67e-08 | 1 | 24970252 | C | A | 0.510000 | 0.078145 | 0.014050 | 520580 | chiou_type_1_diabetes_study | 24970252 | A | 0.510000 |\n", + "\n" + ], + "text/plain": [ + " variant_id p_value chromosome base_pair_location effect_allele\n", + "1 rs1157621571 1.69e-01 1 778705 CGCCCTTGTG \n", + "2 rs1157621571 3.68e-01 1 778705 CGCCCTTGCG \n", + "3 rs111497730 2.97e-01 1 987345 A \n", + "4 rs111497730 9.80e-01 1 987345 C \n", + "5 rs10751776 2.67e-08 1 24970252 C \n", + " other_allele effect_allele_frequency beta standard_error sample_size\n", + "1 C 0.004720 -0.672700 0.489300 115043 \n", + "2 C 0.013100 -0.223200 0.248100 115043 \n", + "3 G 0.001130 0.434325 0.416662 379804 \n", + "4 G 0.000082 0.092465 3.691368 363495 \n", + "5 A 0.510000 0.078145 0.014050 520580 \n", + " tag position non_effect_allele frequency\n", + "1 chiou_type_1_diabetes_study 778705 C 0.004720 \n", + "2 chiou_type_1_diabetes_study 778705 C 0.013100 \n", + "3 chiou_type_1_diabetes_study 987345 G 0.001130 \n", + "4 chiou_type_1_diabetes_study 987345 G 0.000082 \n", + "5 chiou_type_1_diabetes_study 24970252 A 0.510000 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "gwas_addition[gwas_addition$variant_id %in% c( 'rs111497730', 'rs1157621571', 'rs10751776'),]\n", + "# duplicate variant entries with different effect alleles" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "3fd0971f-5716-41b3-83fa-f4ec92f54598", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A grouped_df: 6 × 2
effect_allelen
<chr><int>
A 17225304
T 17186648
C 13153907
G 12880964
AT 180595
TA 157712
\n" + ], + "text/latex": [ + "A grouped\\_df: 6 × 2\n", + "\\begin{tabular}{ll}\n", + " effect\\_allele & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t A & 17225304\\\\\n", + "\t T & 17186648\\\\\n", + "\t C & 13153907\\\\\n", + "\t G & 12880964\\\\\n", + "\t AT & 180595\\\\\n", + "\t TA & 157712\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 6 × 2\n", + "\n", + "| effect_allele <chr> | n <int> |\n", + "|---|---|\n", + "| A | 17225304 |\n", + "| T | 17186648 |\n", + "| C | 13153907 |\n", + "| G | 12880964 |\n", + "| AT | 180595 |\n", + "| TA | 157712 |\n", + "\n" + ], + "text/plain": [ + " effect_allele n \n", + "1 A 17225304\n", + "2 T 17186648\n", + "3 C 13153907\n", + "4 G 12880964\n", + "5 AT 180595\n", + "6 TA 157712" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "### check out effect allele reporting\n", + "head(gwas_addition %>% group_by(effect_allele) %>% count() %>% arrange(desc(n)))" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "797023d7-dd6c-45b3-9847-66a16af5ed73", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_addition$pvalue = gwas_addition$p_value" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "66c445e3-7099-4526-8295-dd7109b4e759", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_addition$effect_size = gwas_addition$beta" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "577e881d-807d-4574-b8bc-9ed70533fa32", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_addition$Phenotype = 'Type_1_Diabetes'" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "2c51c54c-a4f3-4f5d-99fe-da34884debcb", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_addition$Sample_Size = gwas_addition$sample_size" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "b01da779-4a86-44c0-a46d-3bc2dd257c43", + "metadata": {}, + "outputs": [], + "source": [ + "### Filter on relevant columns\n", + "gwas_addition = gwas_addition[,c('tag','position', 'non_effect_allele', 'frequency', 'pvalue','effect_size', 'Phenotype','Sample_Size',\n", + " 'variant_id', 'sample_size', 'standard_error', 'effect_allele')]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a3cf13c8-8527-4d9b-bf53-aa2357ed1c76", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "f983f6ba-758e-443f-b434-1e34678f9ff3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "62115237" + ], + "text/latex": [ + "62115237" + ], + "text/markdown": [ + "62115237" + ], + "text/plain": [ + "[1] 62115237" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(gwas_addition)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "6a9d1428-d872-4bb4-9dee-770283e29e04", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "60344051" + ], + "text/latex": [ + "60344051" + ], + "text/markdown": [ + "60344051" + ], + "text/plain": [ + "[1] 60344051" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(unique(gwas_addition$variant_id))" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "885eb37c-7dea-4607-9c8e-a845715f534c", + "metadata": {}, + "outputs": [], + "source": [ + "### Combine to dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "id": "eafe1878-a8c4-4e84-b44a-ebac6e9cdabd", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_gtex = rbind(gwas_gtex, gwas_addition)" + ] + }, + { + "cell_type": "markdown", + "id": "85046bcf-c9ad-451f-8a51-7057c9842c30", + "metadata": {}, + "source": [ + "## Adjust format" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "id": "5c96544f-7654-4c1f-a370-365299cadf96", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_gtex$variant_id = paste0(gwas_gtex$variant_id, '_', gwas_gtex$non_effect_allele, '/', gwas_gtex$effect_allele)" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "id": "01322a6f-e35d-490f-abb2-3a0459930590", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 12
tagpositionnon_effect_allelefrequencypvalueeffect_sizePhenotypeSample_Sizevariant_idsample_sizestandard_erroreffect_allele
<chr><int><chr><dbl><chr><dbl><chr><int><chr><int><dbl><chr>
Astle_et_al_2016_White_blood_cell_count13550G0.017316020.228037473787046NAWhite blood cell count173480rs554008981_G/A173480NAA
Astle_et_al_2016_White_blood_cell_count14671G0.012987010.816150563702573NAWhite blood cell count173480rs201055865_G/C173480NAC
\n" + ], + "text/latex": [ + "A data.table: 2 × 12\n", + "\\begin{tabular}{llllllllllll}\n", + " tag & position & non\\_effect\\_allele & frequency & pvalue & effect\\_size & Phenotype & Sample\\_Size & variant\\_id & sample\\_size & standard\\_error & effect\\_allele\\\\\n", + " & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count & 13550 & G & 0.01731602 & 0.228037473787046 & NA & White blood cell count & 173480 & rs554008981\\_G/A & 173480 & NA & A\\\\\n", + "\t Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count & 14671 & G & 0.01298701 & 0.816150563702573 & NA & White blood cell count & 173480 & rs201055865\\_G/C & 173480 & NA & C\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 12\n", + "\n", + "| tag <chr> | position <int> | non_effect_allele <chr> | frequency <dbl> | pvalue <chr> | effect_size <dbl> | Phenotype <chr> | Sample_Size <int> | variant_id <chr> | sample_size <int> | standard_error <dbl> | effect_allele <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| Astle_et_al_2016_White_blood_cell_count | 13550 | G | 0.01731602 | 0.228037473787046 | NA | White blood cell count | 173480 | rs554008981_G/A | 173480 | NA | A |\n", + "| Astle_et_al_2016_White_blood_cell_count | 14671 | G | 0.01298701 | 0.816150563702573 | NA | White blood cell count | 173480 | rs201055865_G/C | 173480 | NA | C |\n", + "\n" + ], + "text/plain": [ + " tag position non_effect_allele frequency \n", + "1 Astle_et_al_2016_White_blood_cell_count 13550 G 0.01731602\n", + "2 Astle_et_al_2016_White_blood_cell_count 14671 G 0.01298701\n", + " pvalue effect_size Phenotype Sample_Size\n", + "1 0.228037473787046 NA White blood cell count 173480 \n", + "2 0.816150563702573 NA White blood cell count 173480 \n", + " variant_id sample_size standard_error effect_allele\n", + "1 rs554008981_G/A 173480 NA A \n", + "2 rs201055865_G/C 173480 NA C " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(gwas_gtex,2)" + ] + }, + { + "cell_type": "markdown", + "id": "28625564-b2e8-4a91-936e-71527147b9f7", + "metadata": { + "tags": [] + }, + "source": [ + "# Adaption of positions (map for different reference genomes)" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "id": "2a923770-3f7f-4617-88a5-ec4e6262a4c0", + "metadata": {}, + "outputs": [], + "source": [ + "# align positions given in eqtl/co-eqtl data and GWAS data" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "id": "fd3c4740-0115-47bf-9ea5-a018c38dabfd", + "metadata": {}, + "outputs": [], + "source": [ + "positions_map = unique(gwas_gtex[,c('variant_id', 'position')])" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "id": "de4b95ae-11a3-4347-a528-77035f1c88d4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 2
variant_idposition
<chr><int>
rs554008981_G/A13550
rs201055865_G/C14671
\n" + ], + "text/latex": [ + "A data.table: 2 × 2\n", + "\\begin{tabular}{ll}\n", + " variant\\_id & position\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t rs554008981\\_G/A & 13550\\\\\n", + "\t rs201055865\\_G/C & 14671\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 2\n", + "\n", + "| variant_id <chr> | position <int> |\n", + "|---|---|\n", + "| rs554008981_G/A | 13550 |\n", + "| rs201055865_G/C | 14671 |\n", + "\n" + ], + "text/plain": [ + " variant_id position\n", + "1 rs554008981_G/A 13550 \n", + "2 rs201055865_G/C 14671 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(positions_map,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "id": "fda68fdc-2da6-4c5a-8059-f5bc92c5b578", + "metadata": {}, + "outputs": [], + "source": [ + "## relevant snps from eqtl and co-eqtl data" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "id": "ad0d117a-8a8a-4dc6-b309-600b9060c19c", + "metadata": {}, + "outputs": [], + "source": [ + "snps = unique(c(unique(output_all_effect$SNP), unique(eqtl_all_effect$SNP)))" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "id": "96606eea-c7fd-4e19-87f3-995a5cdc41f9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'rs1144709_C/T'
  2. 'rs3131380_A/G'
  3. 'rs1144708_C/T'
  4. 'rs2293861_C/T'
  5. 'rs2075788_T/G'
  6. 'rs3132445_G/A'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'rs1144709\\_C/T'\n", + "\\item 'rs3131380\\_A/G'\n", + "\\item 'rs1144708\\_C/T'\n", + "\\item 'rs2293861\\_C/T'\n", + "\\item 'rs2075788\\_T/G'\n", + "\\item 'rs3132445\\_G/A'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'rs1144709_C/T'\n", + "2. 'rs3131380_A/G'\n", + "3. 'rs1144708_C/T'\n", + "4. 'rs2293861_C/T'\n", + "5. 'rs2075788_T/G'\n", + "6. 'rs3132445_G/A'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"rs1144709_C/T\" \"rs3131380_A/G\" \"rs1144708_C/T\" \"rs2293861_C/T\"\n", + "[5] \"rs2075788_T/G\" \"rs3132445_G/A\"" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(snps)" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "id": "201eafc3-953c-4075-b24e-e1abfeec6255", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "20527" + ], + "text/latex": [ + "20527" + ], + "text/markdown": [ + "20527" + ], + "text/plain": [ + "[1] 20527" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(snps)" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "id": "6795059c-8681-4d66-b284-dd987289e5b5", + "metadata": {}, + "outputs": [], + "source": [ + "### Reduce position_mapping to relevant snps" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "id": "2395effd-fd1c-4d25-ac68-e712ab3b5fa5", + "metadata": {}, + "outputs": [], + "source": [ + "positions_map = positions_map[positions_map$variant_id %in% snps,]" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "id": "b13d2c55-b00f-442a-b785-3ea21f475c35", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "15349" + ], + "text/latex": [ + "15349" + ], + "text/markdown": [ + "15349" + ], + "text/plain": [ + "[1] 15349" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(positions_map)" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "id": "92c7a402-b46e-46f3-b36c-0c35b35f186b", + "metadata": {}, + "outputs": [], + "source": [ + "### Check for uniqueness per variant of position" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "id": "6957d036-4155-4cc5-ab66-2da5b78473d0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "
A grouped_df: 0 × 2
variant_idn
<chr><int>
\n" + ], + "text/latex": [ + "A grouped\\_df: 0 × 2\n", + "\\begin{tabular}{ll}\n", + " variant\\_id & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 0 × 2\n", + "\n", + "| variant_id <chr> | n <int> |\n", + "|---|---|\n", + "\n" + ], + "text/plain": [ + " variant_id n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "positions_map %>% group_by(variant_id) %>% count() %>% filter(n > 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "id": "e94f30d0-2c3e-4329-a255-11fbd26a61c0", + "metadata": {}, + "outputs": [], + "source": [ + "### map positions to eqtl and coeqtl data" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "id": "bc7f69be-9a44-492c-b3a5-c45bfe67be8b", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_all_effect = merge(eqtl_all_effect, positions_map, by.x = 'SNP', by.y = 'variant_id')" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "id": "471b72e7-d0ff-46a8-867b-ad655fdc3183", + "metadata": {}, + "outputs": [], + "source": [ + "output_all_effect = merge(output_all_effect, positions_map, by.x = 'SNP', by.y = 'variant_id')" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "id": "e3ac9ce1-bf13-4943-9082-bcd364f48116", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_all_effect$SNPPos = eqtl_all_effect$position" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "id": "a4efa4b8-45eb-4ec5-a87f-a2b264eea305", + "metadata": {}, + "outputs": [], + "source": [ + "output_all_effect$SNPPos = output_all_effect$position" + ] + }, + { + "cell_type": "markdown", + "id": "a43203c0-5ae1-4658-a9be-0ae4292031b9", + "metadata": { + "tags": [] + }, + "source": [ + "# Colocalization for eQTLS" + ] + }, + { + "cell_type": "markdown", + "id": "d48a6eb2-2c29-4489-ab4c-d7e3102ea634", + "metadata": { + "tags": [] + }, + "source": [ + "## Prepare data" + ] + }, + { + "cell_type": "markdown", + "id": "0b833ac8-39a8-4267-b7f5-5d04a4a03d0c", + "metadata": { + "tags": [] + }, + "source": [ + "### EQTL input" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "id": "a02a254e-5445-4f74-9afc-3403662db04c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 23
SNPGeneGeneChrGenePosGeneStrandGeneSymbolSNPChrSNPPosSNPAllelesSNPEffectAlleleMetaPZMetaBetaMetaSEMetaI2NrDatasetsDatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2)cell_typeposition
<chr><chr><int><int><lgl><chr><int><int><chr><chr><dbl><dbl><dbl><dbl><int><chr><chr><chr><chr><int>
rs1001116_C/TENSG000000029337150497491NATMEM176A7151743278C/TT 0.065366 0.0076230.11662204-0.026173;-0.036659;-0.002511;0.2012 -0.166602;-0.305718;-0.013637;0.94274643;72;32;24DC1MB151743278
rs1001116_C/TENSG000000029337150497491NATMEM176A7151743278C/TT-0.334464-0.0388440.11613704-0.14377;0.113441;-0.080077;-0.165963-0.931054;0.948804;-0.435662;-0.77504544;72;32;24B1MB 151743278
\n" + ], + "text/latex": [ + "A data.table: 2 × 23\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " SNP & Gene & GeneChr & GenePos & GeneStrand & GeneSymbol & SNPChr & SNPPos & SNPAlleles & SNPEffectAllele & ⋯ & MetaPZ & MetaBeta & MetaSE & MetaI2 & NrDatasets & DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2) & DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2) & DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) & cell\\_type & position\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t rs1001116\\_C/T & ENSG00000002933 & 7 & 150497491 & NA & TMEM176A & 7 & 151743278 & C/T & T & ⋯ & 0.065366 & 0.007623 & 0.116622 & 0 & 4 & -0.026173;-0.036659;-0.002511;0.2012 & -0.166602;-0.305718;-0.013637;0.942746 & 43;72;32;24 & DC1MB & 151743278\\\\\n", + "\t rs1001116\\_C/T & ENSG00000002933 & 7 & 150497491 & NA & TMEM176A & 7 & 151743278 & C/T & T & ⋯ & -0.334464 & -0.038844 & 0.116137 & 0 & 4 & -0.14377;0.113441;-0.080077;-0.165963 & -0.931054;0.948804;-0.435662;-0.775045 & 44;72;32;24 & B1MB & 151743278\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 23\n", + "\n", + "| SNP <chr> | Gene <chr> | GeneChr <int> | GenePos <int> | GeneStrand <lgl> | GeneSymbol <chr> | SNPChr <int> | SNPPos <int> | SNPAlleles <chr> | SNPEffectAllele <chr> | ⋯ ⋯ | MetaPZ <dbl> | MetaBeta <dbl> | MetaSE <dbl> | MetaI2 <dbl> | NrDatasets <int> | DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2) <chr> | DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2) <chr> | DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) <chr> | cell_type <chr> | position <int> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| rs1001116_C/T | ENSG00000002933 | 7 | 150497491 | NA | TMEM176A | 7 | 151743278 | C/T | T | ⋯ | 0.065366 | 0.007623 | 0.116622 | 0 | 4 | -0.026173;-0.036659;-0.002511;0.2012 | -0.166602;-0.305718;-0.013637;0.942746 | 43;72;32;24 | DC1MB | 151743278 |\n", + "| rs1001116_C/T | ENSG00000002933 | 7 | 150497491 | NA | TMEM176A | 7 | 151743278 | C/T | T | ⋯ | -0.334464 | -0.038844 | 0.116137 | 0 | 4 | -0.14377;0.113441;-0.080077;-0.165963 | -0.931054;0.948804;-0.435662;-0.775045 | 44;72;32;24 | B1MB | 151743278 |\n", + "\n" + ], + "text/plain": [ + " SNP Gene GeneChr GenePos GeneStrand GeneSymbol SNPChr\n", + "1 rs1001116_C/T ENSG00000002933 7 150497491 NA TMEM176A 7 \n", + "2 rs1001116_C/T ENSG00000002933 7 150497491 NA TMEM176A 7 \n", + " SNPPos SNPAlleles SNPEffectAllele ⋯ MetaPZ MetaBeta MetaSE MetaI2\n", + "1 151743278 C/T T ⋯ 0.065366 0.007623 0.116622 0 \n", + "2 151743278 C/T T ⋯ -0.334464 -0.038844 0.116137 0 \n", + " NrDatasets\n", + "1 4 \n", + "2 4 \n", + " DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)\n", + "1 -0.026173;-0.036659;-0.002511;0.2012 \n", + "2 -0.14377;0.113441;-0.080077;-0.165963 \n", + " DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)\n", + "1 -0.166602;-0.305718;-0.013637;0.942746 \n", + "2 -0.931054;0.948804;-0.435662;-0.775045 \n", + " DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) cell_type position \n", + "1 43;72;32;24 DC1MB 151743278\n", + "2 44;72;32;24 B1MB 151743278" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(eqtl_all_effect,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "id": "3d629c05-be8a-40ef-bef2-23a917036d3c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "5" + ], + "text/latex": [ + "5" + ], + "text/markdown": [ + "5" + ], + "text/plain": [ + "[1] 5" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(unique(eqtl_all_effect$Gene)) # 3 Genes" + ] + }, + { + "cell_type": "code", + "execution_count": 115, + "id": "d4b97124-510f-422f-9ba4-13ed003ca869", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_all_effect$ident = paste0(eqtl_all_effect$cell_type, '_', eqtl_all_effect$GeneSymbol)" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "id": "971474e0-b036-454b-bbbe-0cb67e9b2096", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "30" + ], + "text/latex": [ + "30" + ], + "text/markdown": [ + "30" + ], + "text/plain": [ + "[1] 30" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(unique(eqtl_all_effect$ident))" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "id": "b8720e1c-bddf-4955-b48d-4b7f0a980566", + "metadata": {}, + "outputs": [], + "source": [ + "data_input_eqtl = list()" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "id": "1b5708eb-06d3-4dbc-a037-6becd9d43b51", + "metadata": {}, + "outputs": [], + "source": [ + "for( i in unique(eqtl_all_effect$ident)){\n", + " \n", + " D1 = eqtl_all_effect[eqtl_all_effect$ident == i,]\n", + " \n", + " \n", + " ## Prepare input vectors\n", + "\n", + " # Beta\n", + " beta_eqtl = D1$MetaBeta\n", + " names(beta_eqtl) = D1$SNP\n", + "\n", + " # Varbeta \n", + " varbeta_eqtl = (D1$MetaSE)^2\n", + " names(varbeta_eqtl) = D1$SNP\n", + "\n", + " # MAF - not needed? when setting sdY = 1\n", + " MAF_eqtl = D1$SNPEffectAlleleFreq\n", + " names(MAF_eqtl) = D1$SNP\n", + "\n", + " # Position \n", + " position_eqtl = D1$SNPPos\n", + " names(position_eqtl) = D1$SNP\n", + "\n", + " # SNP\n", + " snp_eqtl = D1$SNP\n", + " names(snp_eqtl) = D1$SNP\n", + "\n", + " # Pvalues\n", + " pvalues_eqtl = D1$MetaP\n", + " names(pvalues_eqtl) = D1$SNP\n", + " \n", + " # Sample_size\n", + " sample_size_eqtl = D1$MetaPN # TBD\n", + " \n", + " \n", + " ### Format as input list for colocalization\n", + "\n", + " D1_list = list(beta = beta_eqtl, # regression coefficient\n", + " varbeta = varbeta_eqtl, # variance/ standard deviation of beta?\n", + " N = sample_size_eqtl, # number of samples in dataset 1\n", + " #sdY =1, # population standard deviation of the trait, if quantitative trait\n", + " # if unknown will be approximated based on beta, varbeta, N, MAF\n", + " # can be set to 1, if the trait was standardized to have variance 1\n", + " type = 'quant', # quant or cc to denote quantitative or case-control\n", + " MAF = MAF_eqtl, # minor allele frequency of the variants\n", + " snp = snp_eqtl, # character vector of SNP ids\n", + " position = position_eqtl,\n", + " pvalues = pvalues_eqtl\n", + " )\n", + " data_input_eqtl[[i]] = D1_list\n", + " }\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "id": "dc0f0087-a3da-48a5-81da-09a412240cf6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'DC1MB_TMEM176A'
  2. 'B1MB_TMEM176A'
  3. 'NK1MB_TMEM176A'
  4. 'monocyte1MB_TMEM176A'
  5. 'CD8T1MB_TMEM176A'
  6. 'CD4T1MB_TMEM176A'
  7. 'DC1MB_SMDT1'
  8. 'B1MB_SMDT1'
  9. 'NK1MB_SMDT1'
  10. 'monocyte1MB_SMDT1'
  11. 'CD8T1MB_SMDT1'
  12. 'CD4T1MB_SMDT1'
  13. 'DC1MB_HLA-DQA2'
  14. 'B1MB_HLA-DQA2'
  15. 'NK1MB_HLA-DQA2'
  16. 'monocyte1MB_HLA-DQA2'
  17. 'CD8T1MB_HLA-DQA2'
  18. 'CD4T1MB_HLA-DQA2'
  19. 'DC1MB_RNASET2'
  20. 'B1MB_RNASET2'
  21. 'NK1MB_RNASET2'
  22. 'monocyte1MB_RNASET2'
  23. 'CD8T1MB_RNASET2'
  24. 'CD4T1MB_RNASET2'
  25. 'DC1MB_RPS26'
  26. 'B1MB_RPS26'
  27. 'NK1MB_RPS26'
  28. 'monocyte1MB_RPS26'
  29. 'CD8T1MB_RPS26'
  30. 'CD4T1MB_RPS26'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'DC1MB\\_TMEM176A'\n", + "\\item 'B1MB\\_TMEM176A'\n", + "\\item 'NK1MB\\_TMEM176A'\n", + "\\item 'monocyte1MB\\_TMEM176A'\n", + "\\item 'CD8T1MB\\_TMEM176A'\n", + "\\item 'CD4T1MB\\_TMEM176A'\n", + "\\item 'DC1MB\\_SMDT1'\n", + "\\item 'B1MB\\_SMDT1'\n", + "\\item 'NK1MB\\_SMDT1'\n", + "\\item 'monocyte1MB\\_SMDT1'\n", + "\\item 'CD8T1MB\\_SMDT1'\n", + "\\item 'CD4T1MB\\_SMDT1'\n", + "\\item 'DC1MB\\_HLA-DQA2'\n", + "\\item 'B1MB\\_HLA-DQA2'\n", + "\\item 'NK1MB\\_HLA-DQA2'\n", + "\\item 'monocyte1MB\\_HLA-DQA2'\n", + "\\item 'CD8T1MB\\_HLA-DQA2'\n", + "\\item 'CD4T1MB\\_HLA-DQA2'\n", + "\\item 'DC1MB\\_RNASET2'\n", + "\\item 'B1MB\\_RNASET2'\n", + "\\item 'NK1MB\\_RNASET2'\n", + "\\item 'monocyte1MB\\_RNASET2'\n", + "\\item 'CD8T1MB\\_RNASET2'\n", + "\\item 'CD4T1MB\\_RNASET2'\n", + "\\item 'DC1MB\\_RPS26'\n", + "\\item 'B1MB\\_RPS26'\n", + "\\item 'NK1MB\\_RPS26'\n", + "\\item 'monocyte1MB\\_RPS26'\n", + "\\item 'CD8T1MB\\_RPS26'\n", + "\\item 'CD4T1MB\\_RPS26'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'DC1MB_TMEM176A'\n", + "2. 'B1MB_TMEM176A'\n", + "3. 'NK1MB_TMEM176A'\n", + "4. 'monocyte1MB_TMEM176A'\n", + "5. 'CD8T1MB_TMEM176A'\n", + "6. 'CD4T1MB_TMEM176A'\n", + "7. 'DC1MB_SMDT1'\n", + "8. 'B1MB_SMDT1'\n", + "9. 'NK1MB_SMDT1'\n", + "10. 'monocyte1MB_SMDT1'\n", + "11. 'CD8T1MB_SMDT1'\n", + "12. 'CD4T1MB_SMDT1'\n", + "13. 'DC1MB_HLA-DQA2'\n", + "14. 'B1MB_HLA-DQA2'\n", + "15. 'NK1MB_HLA-DQA2'\n", + "16. 'monocyte1MB_HLA-DQA2'\n", + "17. 'CD8T1MB_HLA-DQA2'\n", + "18. 'CD4T1MB_HLA-DQA2'\n", + "19. 'DC1MB_RNASET2'\n", + "20. 'B1MB_RNASET2'\n", + "21. 'NK1MB_RNASET2'\n", + "22. 'monocyte1MB_RNASET2'\n", + "23. 'CD8T1MB_RNASET2'\n", + "24. 'CD4T1MB_RNASET2'\n", + "25. 'DC1MB_RPS26'\n", + "26. 'B1MB_RPS26'\n", + "27. 'NK1MB_RPS26'\n", + "28. 'monocyte1MB_RPS26'\n", + "29. 'CD8T1MB_RPS26'\n", + "30. 'CD4T1MB_RPS26'\n", + "\n", + "\n" + ], + "text/plain": [ + " [1] \"DC1MB_TMEM176A\" \"B1MB_TMEM176A\" \"NK1MB_TMEM176A\" \n", + " [4] \"monocyte1MB_TMEM176A\" \"CD8T1MB_TMEM176A\" \"CD4T1MB_TMEM176A\" \n", + " [7] \"DC1MB_SMDT1\" \"B1MB_SMDT1\" \"NK1MB_SMDT1\" \n", + "[10] \"monocyte1MB_SMDT1\" \"CD8T1MB_SMDT1\" \"CD4T1MB_SMDT1\" \n", + "[13] \"DC1MB_HLA-DQA2\" \"B1MB_HLA-DQA2\" \"NK1MB_HLA-DQA2\" \n", + "[16] \"monocyte1MB_HLA-DQA2\" \"CD8T1MB_HLA-DQA2\" \"CD4T1MB_HLA-DQA2\" \n", + "[19] \"DC1MB_RNASET2\" \"B1MB_RNASET2\" \"NK1MB_RNASET2\" \n", + "[22] \"monocyte1MB_RNASET2\" \"CD8T1MB_RNASET2\" \"CD4T1MB_RNASET2\" \n", + "[25] \"DC1MB_RPS26\" \"B1MB_RPS26\" \"NK1MB_RPS26\" \n", + "[28] \"monocyte1MB_RPS26\" \"CD8T1MB_RPS26\" \"CD4T1MB_RPS26\" " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "names(data_input_eqtl)" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "id": "199dab4a-3bb1-4c25-86a5-ab71b76ee125", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "List of 8\n", + " $ beta : Named num [1:2992] 0.00762 0.02939 0.02411 -0.06009 0.28133 ...\n", + " ..- attr(*, \"names\")= chr [1:2992] \"rs1001116_C/T\" \"rs1001117_G/A\" \"rs1001760_A/G\" \"rs1004200_A/G\" ...\n", + " $ varbeta : Named num [1:2992] 0.0136 0.0132 0.0128 0.0135 0.0304 ...\n", + " ..- attr(*, \"names\")= chr [1:2992] \"rs1001116_C/T\" \"rs1001117_G/A\" \"rs1001760_A/G\" \"rs1004200_A/G\" ...\n", + " $ N : int [1:2992] 171 171 171 171 147 171 171 171 171 171 ...\n", + " $ type : chr \"quant\"\n", + " $ MAF : Named num [1:2992] 0.313 0.333 0.351 0.316 0.126 ...\n", + " ..- attr(*, \"names\")= chr [1:2992] \"rs1001116_C/T\" \"rs1001117_G/A\" \"rs1001760_A/G\" \"rs1004200_A/G\" ...\n", + " $ snp : Named chr [1:2992] \"rs1001116_C/T\" \"rs1001117_G/A\" \"rs1001760_A/G\" \"rs1004200_A/G\" ...\n", + " ..- attr(*, \"names\")= chr [1:2992] \"rs1001116_C/T\" \"rs1001117_G/A\" \"rs1001760_A/G\" \"rs1004200_A/G\" ...\n", + " $ position: Named int [1:2992] 151743278 151744884 151150662 149826188 151677209 150656640 150846560 150846633 149819792 150814835 ...\n", + " ..- attr(*, \"names\")= chr [1:2992] \"rs1001116_C/T\" \"rs1001117_G/A\" \"rs1001760_A/G\" \"rs1004200_A/G\" ...\n", + " $ pvalues : Named num [1:2992] 0.948 0.798 0.831 0.605 0.107 ...\n", + " ..- attr(*, \"names\")= chr [1:2992] \"rs1001116_C/T\" \"rs1001117_G/A\" \"rs1001760_A/G\" \"rs1004200_A/G\" ...\n" + ] + } + ], + "source": [ + "str(data_input_eqtl[[1]])" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "id": "1e601277-1751-4a84-b43d-eb62da4a6359", + "metadata": {}, + "outputs": [], + "source": [ + "## Check validity of constructed dataset for coloc input" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "id": "c2879899-1cd2-42d0-b8ad-579a44a30a74", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "9.71881330455308e-11" + ], + "text/latex": [ + "9.71881330455308e-11" + ], + "text/markdown": [ + "9.71881330455308e-11" + ], + "text/plain": [ + "[1] 9.718813e-11" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "min(eqtl_all_effect$MetaP[eqtl_all_effect$ident == 'DC1MB_TMEM176A'])" + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "id": "7745eac3-4979-46ab-9607-5d902a13e81f", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.7189e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 0.0046418\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 0.004909\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 0.0067582\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 0.0037104\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.5268e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.4595e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.3059e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 0.011178\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2246e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 0.00063663\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.899e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + } + ], + "source": [ + "for( i in names(data_input_eqtl)){\n", + " print(i)\n", + " check_dataset(data_input_eqtl[[i]], warn.minp = 1e-70)\n", + " }" + ] + }, + { + "cell_type": "markdown", + "id": "74107ad4-fe37-43d3-8a84-6e2ea898daa7", + "metadata": { + "tags": [] + }, + "source": [ + "### GWAS input" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "id": "d0596321-5720-4fc6-8ac2-0723f82502f4", + "metadata": {}, + "outputs": [], + "source": [ + "gwas = gwas_gtex" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "id": "ff419dbb-0bf3-407d-ac38-a0801dee7348", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 12
tagpositionnon_effect_allelefrequencypvalueeffect_sizePhenotypeSample_Sizevariant_idsample_sizestandard_erroreffect_allele
<chr><int><chr><dbl><chr><dbl><chr><int><chr><int><dbl><chr>
Astle_et_al_2016_White_blood_cell_count13550G0.017316020.228037473787046NAWhite blood cell count173480rs554008981_G/A173480NAA
Astle_et_al_2016_White_blood_cell_count14671G0.012987010.816150563702573NAWhite blood cell count173480rs201055865_G/C173480NAC
\n" + ], + "text/latex": [ + "A data.table: 2 × 12\n", + "\\begin{tabular}{llllllllllll}\n", + " tag & position & non\\_effect\\_allele & frequency & pvalue & effect\\_size & Phenotype & Sample\\_Size & variant\\_id & sample\\_size & standard\\_error & effect\\_allele\\\\\n", + " & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count & 13550 & G & 0.01731602 & 0.228037473787046 & NA & White blood cell count & 173480 & rs554008981\\_G/A & 173480 & NA & A\\\\\n", + "\t Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count & 14671 & G & 0.01298701 & 0.816150563702573 & NA & White blood cell count & 173480 & rs201055865\\_G/C & 173480 & NA & C\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 12\n", + "\n", + "| tag <chr> | position <int> | non_effect_allele <chr> | frequency <dbl> | pvalue <chr> | effect_size <dbl> | Phenotype <chr> | Sample_Size <int> | variant_id <chr> | sample_size <int> | standard_error <dbl> | effect_allele <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| Astle_et_al_2016_White_blood_cell_count | 13550 | G | 0.01731602 | 0.228037473787046 | NA | White blood cell count | 173480 | rs554008981_G/A | 173480 | NA | A |\n", + "| Astle_et_al_2016_White_blood_cell_count | 14671 | G | 0.01298701 | 0.816150563702573 | NA | White blood cell count | 173480 | rs201055865_G/C | 173480 | NA | C |\n", + "\n" + ], + "text/plain": [ + " tag position non_effect_allele frequency \n", + "1 Astle_et_al_2016_White_blood_cell_count 13550 G 0.01731602\n", + "2 Astle_et_al_2016_White_blood_cell_count 14671 G 0.01298701\n", + " pvalue effect_size Phenotype Sample_Size\n", + "1 0.228037473787046 NA White blood cell count 173480 \n", + "2 0.816150563702573 NA White blood cell count 173480 \n", + " variant_id sample_size standard_error effect_allele\n", + "1 rs554008981_G/A 173480 NA A \n", + "2 rs201055865_G/C 173480 NA C " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(gwas,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "id": "8f756246-5807-40bb-b05c-7276650c415a", + "metadata": {}, + "outputs": [], + "source": [ + "## Compare variants and pre-filter on variants in EQTL data" + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "id": "a5fc255e-89e7-4aa1-890b-3e979729d1b3", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_input = gwas[gwas$variant_id %in% unique(eqtl_all_effect$SNP),] " + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "id": "45ba3c74-311f-469f-978f-82f236e16f16", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "15158" + ], + "text/latex": [ + "15158" + ], + "text/markdown": [ + "15158" + ], + "text/plain": [ + "[1] 15158" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(unique(gwas_input$variant_id))" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "id": "699e09b6-585b-482f-91f9-8ded84238b34", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A grouped_df: 7 × 2
Phenotypen
<chr><int>
Asthma 8843303
Crohn's Disease 8860907
Inflammatory Bowel Disease 8858738
Multiple Sclerosis 8867478
Rheumatoid Arthritis 8857562
Type_1_Diabetes 62115237
White blood cell count 8871979
\n" + ], + "text/latex": [ + "A grouped\\_df: 7 × 2\n", + "\\begin{tabular}{ll}\n", + " Phenotype & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t Asthma & 8843303\\\\\n", + "\t Crohn's Disease & 8860907\\\\\n", + "\t Inflammatory Bowel Disease & 8858738\\\\\n", + "\t Multiple Sclerosis & 8867478\\\\\n", + "\t Rheumatoid Arthritis & 8857562\\\\\n", + "\t Type\\_1\\_Diabetes & 62115237\\\\\n", + "\t White blood cell count & 8871979\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 7 × 2\n", + "\n", + "| Phenotype <chr> | n <int> |\n", + "|---|---|\n", + "| Asthma | 8843303 |\n", + "| Crohn's Disease | 8860907 |\n", + "| Inflammatory Bowel Disease | 8858738 |\n", + "| Multiple Sclerosis | 8867478 |\n", + "| Rheumatoid Arthritis | 8857562 |\n", + "| Type_1_Diabetes | 62115237 |\n", + "| White blood cell count | 8871979 |\n", + "\n" + ], + "text/plain": [ + " Phenotype n \n", + "1 Asthma 8843303\n", + "2 Crohn's Disease 8860907\n", + "3 Inflammatory Bowel Disease 8858738\n", + "4 Multiple Sclerosis 8867478\n", + "5 Rheumatoid Arthritis 8857562\n", + "6 Type_1_Diabetes 62115237\n", + "7 White blood cell count 8871979" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "gwas %>% group_by(Phenotype) %>% count()" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "id": "a33c6d60-872e-4cf1-828f-2e5cc9ead620", + "metadata": {}, + "outputs": [], + "source": [ + "### Remove NA values in case there are some in the data" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "id": "aa4375cd-db85-472e-ba5a-3616ed3694ae", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_input = gwas_input[!is.na(gwas_input$effect_size),]\n", + "gwas_input = gwas_input[!is.na(gwas_input$standard_error),]" + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "id": "c1274221-9f0e-4a5f-8c43-88e70637e971", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "15155" + ], + "text/latex": [ + "15155" + ], + "text/markdown": [ + "15155" + ], + "text/plain": [ + "[1] 15155" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(unique(gwas_input$variant_id))" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "id": "92259ea2-b6c8-49bc-9539-dbdf9ae605a5", + "metadata": {}, + "outputs": [], + "source": [ + "## Prepare GWAS Input per trait" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "id": "49f1c915-548c-475f-946a-2a03af6caa47", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_input_list = list()" + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "id": "19943e62-5b63-4a24-80e6-d47a87335615", + "metadata": {}, + "outputs": [], + "source": [ + "#length(input$position)" + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "id": "0f5b69f0-3093-4d60-818b-83c0aece3167", + "metadata": {}, + "outputs": [], + "source": [ + "for(i in unique(gwas_input$Phenotype)){\n", + " input = gwas_input[gwas_input$Phenotype == i,]\n", + " \n", + " ## Prepare GWAS Input\n", + " # Beta\n", + " beta_gwas = input$effect_size\n", + " names(beta_gwas) = input$variant_id\n", + "\n", + " # Varbeta \n", + " varbeta_gwas = ( input$standard_error)^2\n", + " names(varbeta_gwas) = input$variant_id\n", + "\n", + " # MAF \n", + " MAF_gwas = input$frequency\n", + " names(MAF_gwas) = input$variant_id\n", + "\n", + " # Position \n", + " position_gwas = input$position\n", + " names(position_gwas) = input$variant_id\n", + "\n", + " # SNP\n", + " snp_gwas = input$variant_id\n", + " names(snp_gwas) = input$variant_id\n", + " \n", + " ### Input Parameters - check with available data\n", + "\n", + " GWAS_list = list(\n", + " beta = beta_gwas, # regression coefficient\n", + " varbeta =varbeta_gwas, # variance/ standard deviation of beta?\n", + " #N = sample_size_gwas, # number of samples in dataset 1\n", + " #sdY = # population standard deviation of the trait, if quantitative trait\n", + " # if unknown will be approximated based on beta, varbeta, N, MAF\n", + " type = 'cc', # quant or cc to denote quantitative or case-control\n", + " #MAF = MAF_gwas, # minor allele frequency of the variants\n", + " # LD = needed?\n", + " snp = snp_gwas, # character vector of SNP ids\n", + " position = position_gwas)\n", + " \n", + " gwas_input_list[[i]] = GWAS_list\n", + " \n", + " }\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 137, + "id": "509e689e-9b79-43c5-9b21-748d5d28c8a7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "List of 5\n", + " $ beta : Named num [1:8682] -0.067465 -0.018547 -0.041826 -0.076376 0.000736 ...\n", + " ..- attr(*, \"names\")= chr [1:8682] \"rs9270493_T/C\" \"rs9270505_A/G\" \"rs9273238_A/G\" \"rs3021302_T/C\" ...\n", + " $ varbeta : Named num [1:8682] 1.83e-05 1.35e-05 1.65e-05 2.32e-05 1.35e-05 ...\n", + " ..- attr(*, \"names\")= chr [1:8682] \"rs9270493_T/C\" \"rs9270505_A/G\" \"rs9273238_A/G\" \"rs3021302_T/C\" ...\n", + " $ type : chr \"cc\"\n", + " $ snp : Named chr [1:8682] \"rs9270493_T/C\" \"rs9270505_A/G\" \"rs9273238_A/G\" \"rs3021302_T/C\" ...\n", + " ..- attr(*, \"names\")= chr [1:8682] \"rs9270493_T/C\" \"rs9270505_A/G\" \"rs9273238_A/G\" \"rs3021302_T/C\" ...\n", + " $ position: Named int [1:8682] 32591333 32591439 32646220 32655373 32655653 32660495 32660630 32660643 32660651 32660921 ...\n", + " ..- attr(*, \"names\")= chr [1:8682] \"rs9270493_T/C\" \"rs9270505_A/G\" \"rs9273238_A/G\" \"rs3021302_T/C\" ...\n" + ] + } + ], + "source": [ + "str(gwas_input_list[[1]])" + ] + }, + { + "cell_type": "code", + "execution_count": 138, + "id": "bc281452-7ec0-4704-ada2-928c9321518e", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"White blood cell count\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(gwas_input_list[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"Crohn's Disease\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(gwas_input_list[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.025e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"Inflammatory Bowel Disease\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(gwas_input_list[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"Multiple Sclerosis\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"Asthma\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(gwas_input_list[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"Type_1_Diabetes\"\n" + ] + } + ], + "source": [ + "for(i in names(gwas_input_list)){\n", + " print(i)\n", + " check_dataset(gwas_input_list[[i]], warn.minp = 1e-70)\n", + " }\n" + ] + }, + { + "cell_type": "markdown", + "id": "bcb4d4e1-916f-42f2-afdf-9686c2cb7faa", + "metadata": { + "tags": [] + }, + "source": [ + "## Run Coloc Analysis" + ] + }, + { + "cell_type": "markdown", + "id": "15782951-2152-4385-b799-340888e5da29", + "metadata": { + "tags": [] + }, + "source": [ + "### Visualize a concrete eQTL and GWAS trait example and save data for further investigation" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "id": "5bb1509e-c609-400a-a91e-e353b979fec1", + "metadata": {}, + "outputs": [], + "source": [ + "### Choose Phenotype to visualize" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "id": "619a6f06-3087-4107-b0e2-c398f4821896", + "metadata": {}, + "outputs": [], + "source": [ + "i = 'Type_1_Diabetes'\n", + "#i = unique(gwas_input$Phenotype)[2]" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "id": "6a84b77c-801b-47d2-87f6-8d087e79116f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "'Type_1_Diabetes'" + ], + "text/latex": [ + "'Type\\_1\\_Diabetes'" + ], + "text/markdown": [ + "'Type_1_Diabetes'" + ], + "text/plain": [ + "[1] \"Type_1_Diabetes\"" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "i" + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "id": "4a226f3d-53d5-4757-aafc-3bc2bd7fb41a", + "metadata": {}, + "outputs": [], + "source": [ + "### Choose eQTL" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "id": "0351f8ae-bcc7-4c14-ba46-6f965d86a335", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_var = 'CD4T1MB_RPS26'" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "id": "a7200673-9ba8-40a2-a952-abfa45bfc678", + "metadata": {}, + "outputs": [], + "source": [ + "### Plot the SNP significance values for the matches" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "id": "56dc908f-440b-45df-b01d-79903f849b9b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"Type_1_Diabetes\"\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeXyU9YHH8d8zk5nJJJP7IuQ+IFwBAgiloBhRC26hthxqbXVFu13tAeu6VrEL\nK7tArdpqrdRdhK21urhAtdhGqgXCWZHbcCUSc9/XJJlkZjKZmf0jboQck0kyR+aZz/sv8/x+\neebLH87rm9/zPL9HstvtAgAAAL5P4e0AAAAAcA2KHQAAgExQ7AAAAGSCYgcAACATFDsAAACZ\noNgBAADIBMUOAABAJih2AAAAMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgB\nAADIBMUOAABAJih2AAAAMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADI\nBMUOAABAJih2AAAAMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUO\nAABAJih2AAAAMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABA\nJih2AAAAMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABAJih2\nAAAAMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABAJih2AAAA\nMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABAJih2AAAAMkGx\nAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABAJih2AAAAMkGxAwAA\nkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABAJih2AAAAMkGxAwAAkAmK\nHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABAJih2AAAAMkGxAwAAkAmKHQAA\ngExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABAJih2AAAAMhHg7QA+oLW19Y033jAa\njd4OAgAAxgStVvvggw+GhYV5O0hfFLuhvfXWW2vXrvV2CgAAMIYEBAQ89thj3k7RF8VuaBaL\nRQixY8eOGTNmeDsLAADwsgsXLjz88MM99WCsodg5Kysra/bs2d5OAQAAvMxkMnk7wqB4eAIA\nAEAmKHYAAAAyQbEDAACQCYodAACATFDsAAAAZIJiBwAAIBMUOwAAAJmg2AEAAMgExQ4AAEAm\nKHYAAAAyQbEDAACQCYodAACATFDsAAAAZIJiBwAAIBMUOwAAAJkI8HYAABhbWlpampqazGaz\nRqOJiIiIiorydiIAcBbFDgC+YLVaL1261NTU1HukoqIiPDw8Ozs7IIBvSwA+gEuxAPCFq1ev\nXt/qeuj1+kuXLnklDwAMF8UOAIQQorOzs76+fsCh5ubmtrY2D+cBgBHg4gIACCFEa2ur49HQ\n0FAhhNVqra+vNxgMdrs9ODg4NjZWpVJ5KiMADIFiBwBCCNHV1eVg1GAwFBcX6/X69vZ2u93e\ne7y4uHjSpEmxsbHuDwgAQ6PYAYCoqakpKytzMKGuru76PtfLarVevnxZCEG3AzAWcI8dAH9X\nW1t79epVq9XqYM6Ara536PLlyx0dHW6IBgDDQ7ED4NfsdntxcfHoT9KzbgcA3kWxA+DX2tvb\nHd9d5ySDwcCiHQCvo9gB8GsuaXU9Ojs7XXUqABgZih0Av+bCzUoaGxtddSoAGBmKHQC/FhIS\n4qrXhdXW1tbU1LjkVAAwMhQ7AH5NoVCkpaW56mwlJSWuOhUAjADFDoC/S0xMTE9PVyhu+D4c\n2SVas9nMnXYAvMgHNyjuLMvf89aevCNnCgrLGvTtnd2qoJCw2JSsabNvuWvl/atuTdF6OyEA\nX5OSkjJu3LimpiaTyRQQEBAeHt7U1FRaWjqCU3V3d7s6HQA4y8eKXcOhTfd9d/OBqhufYusw\ntDTUlF76+C/vvPrs+sXPvLlrQ260lwIC8FUajWb8+PG9P474SQiNRuOiRAAwbL5U7LoLtixZ\nuvGsWegylzywZuUd87IzEqJCAwO6TW1NVcUFJz/as/ON/dcObFy6RHX646en+dI/DcBYExwc\nPILf0ul0FDsAXuRD7adz76YtZ81i3N07ju9ak37jN2dGVvbc2+5++PHHd9678OH3zmx+du/a\n3fcEeSkoABmIjo5Wq9UD7nIXFBSk0WhaWlr6HFcoFBMmTPBIOgAYmA89PHEqP79DiJnrXujb\n6r6kyVjz/NoZQnQcPnzao9kA+Kru7u7y8vJz58598skn58+fLy8v73lprFKpnDx5cp8nKoQQ\nKpVq6tSp2dnZ8fHxkiT1HtdqtdOnTw8PD/doegC4kQ+t2LW1tQkhEhMTHc5KTEwU4kLPXABw\nyGg0XrhwwWg09vzY0dHR0tJSXV09c+bMwMDAyMjIOXPmlJaWNjc3d3d3q9XqqKio1NTUwMBA\nIcSkSZPS09NbW1utVqtWqw0NDb2+5wGAV/hQsUtKShKi+NTRo6b7bw8cbJLp2LHTQojk5GQP\nJgPgi+x2+6VLl3pbXS+j0Xjx4sXZs2dLkhQcHDx16tTBzqBWq2NiYtwcEwCGwYcuxc5YtXqi\nJOq2r1n98om6gbYT6K478fLqNdvrhJS1asV0j+cD4FtaW1vb29sHHGpvb2fdH4Av8qEVO2n2\n+p1P5n3tuQvvr1uQsiV7waK50zISokM0Squ5vbGq+OInh48X1JuFCJ751I71s72dFsBYN1ir\n6x0NCwvzWBgAcAkfKnZC6Bb87MiJrGfWbXj9UGXBwd0FB/tOCEzMfWTTS5sfmj6SbQoA+Beb\nzTbiUQAYm3yq2AkhQqc/9MrBB7eWnjx05HRBUXm93mC0KrW68NjkidlzFuXOS9EN7+Ky1WrN\ny8szmUwO5pw7d04IYbFYRpUcwBgTFORoTyTHowAwNvlasRNCCKHQpc5fljp/mQtOdejQoeXL\nlzsz8+2337711ltd8JEAxobIyEiVSjXg32xqtToiIsLzkQBglHyy2A3IZrP133FqSLm5ufv2\n7XO8Yrdt27b8/Pyh9lkB4GOUSuWkSZMuXrxot9uvPy5J0qRJk5RKpfOnam5urqurMxqNCoUi\nNDR0/PjxPVuiAICH+Vax6zYZTN2SShus6f3GtTec+NUzG37z3vHPGro0cZMXrV639d8fmen0\nHc9KpXLZsiGW/vLy8oQQI2iNAMa46OjonJyckpISvV5vt9slSQoPD09PTw8NDR3sV2w2W0tL\nS2dnZ0+H0+l0hYWFNTU1vRNaWloqKyunTJkSHc1LqwF4mi8Vu678dRm5rzbdtq3kwKPxPYda\nD/xwwdJtn31xJcVYd2n/K987cqws/8S/38RfywCcEBYWNnPmTKvV2tXVpVarHS/UNTY2FhYW\nXv+eMa1W238nPKvVeunSpXnz5rFuB8DDfGgVyrD3lf+uFmH3/tNDX7Q6YT/73GPbPrNIcYv/\n/Y/ny6rLzv9x0+I4qfPcln/8ZaFXowLwMUqlUqvVOm51er3+4sWLfd4e27/V9bDZbFVVVa6M\nCABO8KFid/HkyU4hsm/6ci3u8rvvFgkRuuLl3T9dPiM5PnnG8n/935dXhArb2f/dU+zNqABk\nqLi4uM/deI6xxTEAz/OhYtfY2CiECAkJ6T1SUlIihJh1++1fPrwWuXhxjhCiqKjI4/kAyJjF\nYhluUWMnPACe50PFruex1HNnzvR+V/bsM6VSqa6bpVarPZ4MgOyNYCdLrVbrjiQA4IAPFbsZ\nS5eOF6J2x/oXrph7jsxbsiRCiPN/+9uX97gYT5w4L4TIypronZAA5OnGvyCdEhsb644kAOCA\nDxU7adG/bLg1SHQc+8nNN//jfx4qMdiDv/n8a6sTm99Y++iuK+02YWu/suvRdb9rEOqFD96b\n4e24AOREpVJdfyPIkOLi4tjuBIDn+VCxEyL5+7t2PzY5UDSd+s9/vC09ZtyUm7//B+3cnJCi\nN+6bEq7T6cKn3PdGYfe4u371+g/SvZ0VgNykp6dLktT/eGBgYExMTO+QWq3OyMiYPHmyZ9MB\ngBC+tY+dECLurldPnVm44Yl/276/qL3+yvE/Xzn+xYjN2GHUjLtp9eNbt65bnOBj/ywAPiAy\nMnLKlCmFhYXd3d29B0NDQ6dMmaLVaq1Wq8lkUigU3FoHwIt8rwEFT7nvxbx7N1WeP3H81MWS\nuhZDl0Kri4hLnTR97vw5aaE+tQQJwLfExsZGRUU1NTX1vnkiPDy8Z0ipVAYHB3s3HgD4XrET\nQgghBSfm3HFPzh3ezgHA3yiVSp6KADBm+WixAwBPs9lsRqPRbrcP+Y4KAPAWih0ADMFqtX7+\n+ec1NTVWq1UIoVAo4uLiMjIyRrAHCgC4FcUOAByx2Wznz5+//rUTNputpqamra1t1qxZAQF8\niwIYQ3jWAAAcqaysHPBlYh0dHWVlZZ7PAwAOUOwAwJG6urrBhurr6z2ZBACGRLEDAEdMJtNg\nQ2az2W63ezIMADjG3SEA/J3NZqusrKytre3s7JQkKSQkJDExsXdPE6VSef2OxNeTJGnAd1EA\ngLdQ7AD4NavVeuHChdbW1p4f7XZ7a2tra2trW1tbZmamECI0NLShoWHA3w0NDfVcUABwApdi\nAfi1srKy3lZ3vYqKiubmZiFEUlLSYMtyycnJ7g0HAMNEsQPg12pqagYbqq6uFkKEhYVlZWUp\nFDd8W0qSlJmZGRUV5fZ8ADAcXIoF4L8sFktXV9dgo52dnT3/ER8fHx4eXl1dbTAY7Ha7TqeL\nj4/nzbAAxiCKHQAMTavVZmRkeDsFAAyBS7EA/JdKpdJoNION6nQ6T4YBgNGj2AHwa+PHjx/B\nEACMTRQ7AH4tOTl5wGcg0tLSwsPDPZ8HAEaDe+wA+DWFQpGdnV1TU1NbW9vR0aFQKHo2KI6M\njPR2NAAYNoodAH8nSdL48eO58ApABrgUCwAAIBMUOwAAAJmg2AEAAMgE99gBgCsZDIaysrKW\nlpbu7u7AwMDo6OiUlBSVSuXtXAD8AsUOAFymoaHh0qVLdru950ej0VhRUVFfXz9r1qzAwEDv\nZgPgD7gUCwCu0dXVdeXKld5W18tsNl+5csUrkQD4G4odALhGfX291WodcEiv1xuNRg/nAeCH\nKHYA4BodHR0jHgUAl6DYAQAAyATFDgBcIzg4eMSjAOASFDsAcI24uLiAgIG3GoiIiNBqtR7O\nA8APUewAwDVsNltCQoIkSX2OBwYGTpo0ySuRAPgb9rEDgNGyWCxFRUUNDQ3X73UiSZJWq+3Z\noHiwlTwAcC2+awBgVGw22/nz5w0GQ5/jdrtdpVKlpaUpFFwbAeAhfN0AwKjU1NT0b3U9Wltb\nS0tLPRsHgF+j2AHAqDQ2NjoYra6u7v8uCgBwE4odAIyK2Wx2MGqxWLq6ujwWBoCfo9gBwKgM\n+WAEK3YAPIZiBwCjEhER4WA0ICBAo9F4LAwAP0exA4BRSUhIcLBoFxcX139nOwBwE4odAIyK\nWq2eOXPmgN1Op9Olp6d7PhIAv0WxA4DRCgkJWbBgQWJiolqt7lmf02g0qamps2bNYmtiAJ7E\nNw4AuIBCoZgwYcKECRPsdrvdbmdTYgBeQbEDAFeSJImb6gB4C39TAgAAyATFDgAAQCYodgAA\nADJBsQMAAJAJHp4A4I9aW1sbGxtNJpNKpQoPD4+JieGJBwAyQLED4F9sNtvVq1fr6up6j1RV\nVel0uuzs7MDAwNGfv6WlpaWlxWKxaDSa6OhonU43+nMCgJModgD8S3Fx8fWtrofBYCgoKJgz\nZ85o1u0sFsvFixf1en3vkZKSkvj4+KysLJYDAXgG99gB8CMWi6WqqmrAIYPBUFRUNJqT92l1\nPWpqaq5duzaa0wKA8yh2APxIW1ub3W4fbLS6urq0tHRkZ25paenf6npUVVV1dXWN7LQAMCwU\nOwB+xGq1Op5QVlZmNptHcObBWp0Qwm63t7a2juCcADBcFDsAfkSj0TieYLPZmpqaRnDm7u7u\nEY8CgKtQ7AD4EbPZrFAM8b03shU7x5VxyEIJAC7BU7EA/MWZM2fa2tqGnDZk8xtQcHCwg1GV\nSjWCcwLAcLFiB8AvXLp0yZlWJ4RQKpUjOL/jdT4nPxoARoliB0D+7HZ7fX29k5NHtuecxWJx\nMMo9dgA8g2IHQP6cb3VipCt2ju+iU6vVIzgnAAwXxQ6A/JWUlDg/OTQ0dAQfERERMdhSnyRJ\nERERIzgnAAwXxQ6AzH3++edGo9HJyTExMUFBQSP4FI1Gk5ycPOBQUlKSS95CCwBD4qlYAHJm\nt9srKiqcnBweHj5p0qQRf1ZaWpokSeXl5TabreeIQqFITk5OTU0d8TkBYFgodgDkrLOzs7dm\nOaZWq2fOnDmyJyd6SJKUlpaWmJjY0tLS1dWlVqsjIiLY6ASAJ1HsAMiZ87sNh4aGjqbV9VKp\nVLGxsaM/DwCMAPfYAZAz52+Yo40BkAGKHQA5CwwMdGb7Eq1WGxMT44E8AOBWFDsAMpeWluZ4\nQmBg4MyZM0f2JjEAGFO4xw6AzCUlJZlMpsrKyj7Hg4ODg4ODo6OjY2NjXXJ3XY+Ojo6GhgaT\nyaRUKsPDw6Ojo114cgBwjGIHQP4mTJiQmJhYWVnZ3t6uUCgiIiLGjx/vjudVi4uLy8vLe3+s\nrKwMDg7Ozs7WarUu/ywA6M8Hi11nWf6et/bkHTlTUFjWoG/v7FYFhYTFpmRNm33LXSvvX3Vr\nCt+fAPrRarUTJkxw60eUl5df3+p6dHR0XLhwYe7cuVzqBeABPlbsGg5tuu+7mw9Udd1wtMPQ\n0lBTeunjv7zz6rPrFz/z5q4NudFeCgjAT9nt9rKysgGHjEZjXV1dfHy8hyMB8EO+VOy6C7Ys\nWbrxrFnoMpc8sGblHfOyMxKiQgMDuk1tTVXFBSc/2rPzjf3XDmxcukR1+uOnp/nSPw2ArzMY\nDN3d3YON6vV6ih0AD/Ch9tO5d9OWs2Yx7u4dx3etSdfcMJaRlT33trsffvzxnfcufPi9M5uf\n3bt29z0jed0jAIyIg1Y35CgAuIoP3fNxKj+/Q4iZ617o2+q+pMlY8/zaGUJ0HD582qPZAPg7\njWawL6ahRwHAVXyo2LW1tQkhEhMTHc7qGe+ZCwCeEhQUFBwcPNhodDQ3/gLwBB8qdklJSUKI\nU0ePmhxMMh07dloIkZyc7KFUAPCFCRMmDLhlXUxMTGRkpOfzAPBDPlTsZqxaPVESddvXrH75\nRN1At6t01514efWa7XVCylq1YrrH8wHwcxERETNmzLh+yzqFQpGUlDRlyhQvpgLgV3zo4Qlp\n9vqdT+Z97bkL769bkLIle8GiudMyEqJDNEqrub2xqvjiJ4ePF9SbhQie+dSO9bO9nRaAP4qI\niJg3b15HR4fRaFQqlaGhoQEBPvQ1C8Dn+dQ3jm7Bz46cyHpm3YbXD1UWHNxdcLDvhMDE3Ec2\nvbT5oemD3ugCAF8ymUwVFRUtLS1dXV2BgYHR0dGJiYmjrGKSJOl0Op1O56qQAOA8nyp2QojQ\n6Q+9cvDBraUnDx05XVBUXq83GK1KrS48Nnli9pxFufNSdMO7uGy1WvPy8kwmR/ftlZaWCiFs\nNttoggMYa/R6fUFBQe9GJBaLpb29vba2Nicnh4dYAfgoXyt2QgghFLrU+ctS5y9zwakOHTq0\nfPlyZ2aWlJS44PMAjA1Wq/XixYv9t5czGo2XL1/OycnxSioAGCWfLHYulJubu2/fPscrdtu2\nbcvPz09LS/NYKgDuVlVVZbFYBhzS6/WdnZ1BQexxDsD3+H6xM1V/8sGfj16qbBMhiVMW3rX0\nKwnaoX+pl1KpXLZsiKW/vLw8IQQv8AZkw2KxOF6DNxgMFDsAvsiHil3pgdf/WiLSbn9kcer/\nH2r75MX7Vj6TV2HunaROWrpl7zv/fFOINxIC8A0VFRWO75q12+0eCwMALuRDq1Cnf/O9733v\ne7/58l1h1b//9tIn8irMypicbz78wx8+/M2cWGVXxQdPLH3gnXov5gQw1jU3NzuewHIdAB/l\nQyt2fdhPvPDTPzcLacI/7P/ba7dHSUIIe9Nfv/+VO7dfe2/jy+fu2cy9zwAGNtjddT2Cg4ND\nQlj1B+CTfGjFro/LH3xQJkTwNzZu7Wl1Qggp6vatG5cHC1H4wQefezcdgDFMqVQONiRJ0uTJ\nkz0ZBgBcyHeLXc/uctMWLbrhDYxRixZNFUJcu3bNK6EAjG0Wi6WgoKCjo2OwCeHh4SzXAfBd\nvnsptmdz+KioqBsPx8TEiKEutADwS11dXWfPnjUajYNNUCgUmZmZnowEAK7lc8Wuvfrq1atC\nCBEcP1GIs2VlZUJMum68urpaCJGUlOSdeADGruLiYgetTggRExPDq8AA+DSfK3Yfrr3h9pfC\n/Pzan04a1/uz5cqVYiGCZszgj24A17PZbPX1QzwwL0mSZ8IAgJv4ULGLm754sb7fUenCoWpx\n3/gvfur845t/aBMh99+/jL0KAFzPbDYP+cZnBw9VAIBP8KFid/OGv/51qDltCd94+b+XjF9w\nF70OwA2cWY0LCwvzQBIAcB8fKnbOGDf/vr+f7+0QAMYglUrleEJQUFDPw1cA4Lt8d7sTABgG\npVLp4EqrQqGYPn06r4QG4Ov4FgPgL2JjYwcbSk5O1mq1ngwDAO5AsQPgL9LS0tRqdf/jQUFB\nycnJns8DAC5HsQPgLzQazaxZs8LDw68/GBMTk5OTw/OwAORBZg9PAIAjWq02JyfHaDT2vFUs\nJCREo9F4OxQAuAzFDoDf0Wq13FEHQJa4FAsAACATFDsAAACZoNgBwPDYbDaLxTLkC8oAwPO4\nxw4AnKXX60tKSlpbW+12u0KhiIqKSk9PDwriHYYAxgqKHQA4pa6u7sqVK3a7vedHm83W0NDQ\n3Nw8c+bM0NBQ72YDgB5cigWAoXV1dRUWFva2ul5Wq/Xy5cv9jwOAV1DsAGBojY2NVqt1wCGj\n0XjkyJGCggKDweDhVADQB8UOAIbW2dnpYNRmszU2Np45c6apqcljkQCgP4odAAxNoRj629Jm\ns125cmWwhT0A8ACKHQAMTafTOTPNYrGwaAfAiyh2ADC06OjowMBAZ2b2vIUWALyCYgcAQ1Mo\nFNOmTVOpVEPOlCTJA3kAYEAUOwBwSkhIyNy5c1NSUoKDgx1Mc/KiLQC4A8UOAJylVqvT09Pn\nzp0bEhIy4AStVhsZGenhVADQi2IHAMM2depUjUbT56BKpZo6daozz88CgJvwSjEAGDatVnvT\nTTdVVlY2NjaazWa1Wh0ZGZmUlNS/7QGAJ1HsAGAkVCpVWlpaWlqat4MAwJe4ZAAAACATFDsA\nAACZoNgBAADIBMUOAABAJih2AAAAMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZ\noNgBAADIBMUOAABAJih2AAAAMhHg7QAA4E02m62pqamjo0OSpJCQkIiICEmSvB0KAEaIYgfA\nfzU3N1+5cqWrq6v3SFBQ0NSpU3U6nRdTAcCIcSkWgJ9qa2srKCi4vtUJITo7Oy9cuNDnIAD4\nCoodAD9VUlJis9n6H+/q6qqoqPB8HgAYPYodAH9kt9v1ev1go83NzZ4MAwCuQrED4I+sVuuA\ny3U9LBaLJ8MAgKtQ7AD4I6VSqVAM+gWoVqs9GQYAXIViB8AfSZIUGRk52KiDIQAYyyh2APxU\nenq6Uqnsf1yj0SQlJXk+DwCMHsUOgJ8KDg6eMWOGVqu9/mBoaGhOTo5KpfJWKgAYDTYoBuC/\nwsLC5s2bp9fre988ERoa6u1QADByFDsAfk2SpIiIiIiICG8HAQAX4FIsAACATFDsAAAAZIJi\nBwAAIBMUOwAAAJmg2AEAAMgET8UCgFsYjcaamhqDwSCE0Ol08fHxffbMAwCXo9gBgOtVV1d/\n9tlnNput58empqaKiooJEyaMHz/eu8EAyBuXYgHAxfR6fVFRUW+r62Gz2YqKivR6vbdSAfAH\nFDsAcLHy8nK73d7/uN1uLy8v93weAP6DYgcALtbW1jaCIQAYPYodALiY1WodwRAAjB4PTwDw\nCxaLpbW1tbu7OzAwMCwsTJIk931WYGBgZ2fnYEPu+1wAoNgBkDmbzXbt2rXq6ure+940Gs3E\niROjo6Pd9ImxsbGlpaWDDbnpQwFAcCkWgOxdvny5qqrq+qcZzGbzxYsXGxsb3fSJOp1uwBXB\n4ODg5ORkN30oAAiKHQB5a2lpaWho6H/cbrd/9tln7vjE1tbWixcv9n8qVpKk7OxspVLpjg8F\ngB4UOwBy5mBZzmQy9bwWwlVsNlt3d3dRUdGAo3a7/dq1ay78OADoj3vsAMhZV1fXiEed19jY\nWFZW1t7ePuD2db2am5td8nEAMBiKHQA5Cwhw9C3neNRJZWVln3/+uTMze5b0XPKhADAgLsUC\nkLPw8PDBhgICAnQ63SjPbzAYSkpKnJ/veEkPAEbJB/9w7CzL3/PWnrwjZwoKyxr07Z3dqqCQ\nsNiUrGmzb7lr5f2rbk3RejshgDEjNja2vLx8wHvpUlNTFYrR/nFbW1vrfFdTKpUs1wFwKx/7\nimk4tOm+724+UHXjbTEdhpaGmtJLH//lnVefXb/4mTd3bch11/ZUAHyLJEnTp0+/ePHi9e/y\nkiQpOTk5KSlp9Oc3Go3OTx43bpxbN0YGAF8qdt0FW5Ys3XjWLHSZSx5Ys/KOedkZCVGhgQHd\npramquKCkx/t2fnG/msHNi5dojr98dPTfOmfBsB9NBrNrFmzWlpa9Hp9z5snYmJijEbjpUuX\nOjo6JEkKCQlJTEwc2WVZ54taUFBQenr6CD4CAJznQ+2nc++mLWfNYtzdO47vWpOuuWEsIyt7\n7m13P/z44zvvXfjwe2c2P7t37e57grwUFMBYI0lSZGRkZGRkz49FRUVVVVW9owaDoba2NjMz\nMzExcbhn1ul0A+6Td72AgID4+Pi0tDQ2sQPgbj708MSp/PwOIWaue6Fvq5l74BoAACAASURB\nVPuSJmPN82tnCNFx+PBpj2YD4DOqq6uvb3U9evYrbm1tHe7Z4uPjB6tr48ePv/nmmxcsWLBw\n4cLMzExaHQAP8KFi13OHzFB/UfeMX383DQBcp7KycgRDg9FoNJMnT+7/EEZYWFhmZmZAQIBa\nrea+OgAe40PFrudG51NHj5ocTDIdO3ZaCMHrGAEMxGazdXR0DDY6shdRBAQE9K9uoaGhLNEB\n8DwfKnYzVq2eKIm67WtWv3yirnuACd11J15evWZ7nZCyVq2Y7vF8AMY+x1uT2Gy24Z7QbDYX\nFBRYrdY+xysqKvpf8AUAd/Ohhyek2et3Ppn3tecuvL9uQcqW7AWL5k7LSIgO0Sit5vbGquKL\nnxw+XlBvFiJ45lM71s/2dloAY5FSqVSr1YO9SUyrHfY2mJWVlf1bXY/y8vKEhIThnhAARsOH\nip0QugU/O3Ii65l1G14/VFlwcHfBwb4TAhNzH9n00uaHpgd7Ix4AXzBu3Ljy8vLBhoZ7Ngc3\n9JpMJrPZrNEM9rQXALieTxU7IUTo9IdeOfjg1tKTh46cLigqr9cbjFalVhcemzwxe86i3Hkp\nuuFdXLZarXl5eSaTo/v2SktLxYiu0QAYg1JSUpqbm/vfThcdHR0XFzfcsw22XNeD7w0AHuZr\nxU4IIYRClzp/Wer8ZS441aFDh5YvX+7MzGG9DhLAmBUQEDBr1qySkpLa2lqLxSKE0Gg0iYmJ\nSUlJI3h8NTAwsL29fcAhhUKhVqtHGxcAhsMni91AWkvPl+hFeNrM1LDh/Fpubu6+ffscr9ht\n27YtPz8/LS1tlBEBjBFKpTIzMzMjI6Orq0uSpNHUr9jY2ME2KI6MjOTBWAAeJpti99ETOav2\nihW77XtWDufXlErlsmVDLP3l5eUJIUb/snAAY4okSaO/AS42Nraurq6xsbHPcZVKlZmZOcqT\nA8BwUVYAYFSmTp2akpJy/eJcVFTU7NmzR/CMLQCMkg+t2O1ZKa3aO8Scvau+uEVm2Et3ADAy\nCoUiPT09NTW1s7PTarUGBQWpVCpvhwLgp3yo2AHA2KVQKHQ6nbdTAPB3PnQpdlxKslooYhau\ne/vTupZ+3lguhBDL3/jix999w9txAQAAPMyHit3CFy+de/MHE67+6ttfzf3Bm1csoeHXC1IJ\nIYQq6IYfAQAA/IgPFTshdFO+86tjV078+m7F+z9eOHnBD393ceDdowAAAPyRTxU7IYSQouf9\n4M2zl/c/u6D29QdnTb1zw59KzN7OBAAAMBb4XLETQgihSvzaT/948cI7P0z9dMuyaTPvefFY\nnaO3+gAAAPgD3yx2QgghgrNW/+LwlY9fu1fzlydumfzoAW/nAQAA8C4fLnZCCCFFzPn+jtOX\nD265Ndam0Wg0al7fAwAA/JYc9rELGJ/71B+uPuXtGAAAAN7l4yt2AAAA+H8UOwAAAJmg2AEA\nAMgExQ4AAEAmKHYAAAAyQbEDAACQCYodAACATFDsAAAAZIJiBwAAIBMUOwAAAJmg2AEAAMgE\nxQ4AAEAmKHYAAAAyQbEDAACQCYodAACATFDsAAAAZIJiBwAAIBMUOwAAAJmg2AEAAMgExQ4A\nAEAmKHYAAAAyQbEDAACQiQDnp1rbKy5fLK5uaGjQmzXhMTEx4zOypyTplO4LBwAAAOcNXexM\nlSd279y5608Hjp0tbbPeOKYMTZ21cPHX712zZtVXEwPdFBEAAADOcFTs2i7tfu5fN/1m38UW\nqxBCETRu8tysxJjIyMhQtbm1qbmloeLqxaJTeTtO5e3YtHba8kc3/MdPVk0J9VRyAAAA3GCw\nYle86x/u//HOkw0ifNJtjzx+/6qv534lOzm032XX7taygo8P/Wn322/t3bdl9b7tX1nzq9//\n170Zbg4NAACA/gZ7eOLc3jdrZ/zgtaPltVc+3P7TB++cOUCrE0IEhKXkfO3v//X1D6/Wlh19\n7Qczat7ce86dcQEAADCYwVbscn/1+Wfx8SrnT6RJWPj9lz9a81RNm0tyAQAAYJgGK3ZR8fEj\nOZ0qPj5qFGkAAAAwYsPY7uT/demrKmr0Xerw+KSEcLXrIwEAAGAkhrNBsenaHzaunhMfFpmY\nOWXalMzEyPD4Oas3vltscls6AAAAOM3pYtdx6t9unbVi0+4ztWZ1ZNKU6VOSItWm2jO7N30r\n59ZnT3e4MyMAAACc4GSxs5/Z/N1NJ9tF5MKn3ytqaSq/dOFSeVNL4btPfjVCtJ989jtbztjd\nmxMAAABDcLLYnd31P4V2EbL8pb1bvpGp/eKgdsLdz+395dd1wl74P++wywkAAIB3OVnsqqqq\nhBA5S5bE9hkYt3RpTu84AAAAvMfJYhcXFyeEsNv7X3DtOdYzDgAAAO9xstjN+eY3E4U4l5dX\n22eg5s9554RIWbFijsujAQAAYDicLHbKW/7j7afnKP/8+Iqf/KGw84uDHYV7n/jWP+cF3PTM\nW5sWDGffFAAAALiekxsUH/zJbU8eMOuCWk78fMWkX4YlpCUEGypLqtssQgQlmvavzd1/3eTF\nPz/93G1uSQsAAIBBOVnsmovPnDnz/z9YWquKWnuHOisLzlTeMDm12TXZAAAAMAxOFrtlr9fU\n/NrZcwZGjDQNAAAARszJYqcJHzfOvUEAQHYaGxtramoMBoMkSTqdLiEhISKCv3wBuJGTxQ4A\nMDyFhYXV1dW9PxqNxoaGhujo6ICAAJvNptVqY2JiQkJCvJgQgPwM9jDrteMHys3DPpu57MDx\na6MLBAAyUFNTc32r69XY2FhbW1tfX19WVnb69OnPPvvM89kAyNhgxe78L2+fkLHo0Vf2F7ba\nnDiNVX91/yv/eEvGxNt/ed6V8QDAJ1VWVg49SYjKysry8nJ3hwHgPwYrdrf95LWHkwtf//HS\nSeMSb1r1+PNvvH/8Sp3xxhdP2DprLx/d99uf/9PKOYnjJi/98Y7PUh957SdsdALAz9nt9o6O\nDicnl5eXD/RWHwAYicHusYu86fvbTnz7x3te2vzif+7Z88vTe34phFBqw6OiIiMjQ1Tmtubm\n5qbmVpNVCCGENmnhg5sfX//jb07UeSw5AMiBxWLp7OwMDg72dhAAcuDw4YmQSSv/9c2V61/+\n9E9vv/Png4ePHDtdWF+pr//iAoOkiZ18y82LFt3+9XvvXTolnFdPAIAQQghJkgIDA41Go5Pz\nrVarW/MA8B9OPBWrjJz+jR9O/8YPhRA2c1tTQ0Njq0UTHh0TExmips0BwADGjRtXUlLi5GSN\nRuPWMAD8x/C2O1FoQmMSQ2MS3RQGAGQiKSmptLTUmZvnwsLCKHYAXIUlNwBwPaVSGRgY6My0\nCRMmeCAPAD/hxIpdZ1n+nrf25B05U1BY1qBv7+xWBYWExaZkTZt9y10r7191a4rW/TEBwNfE\nx8d//vnnDiaEhoZOnDiRPYoBuNAQxa7h0Kb7vrv5QFXXDUc7DC0NNaWXPv7LO68+u37xM2/u\n2pAb7caMAOCDkpKSmpub9Xp9n+Ph4eHJyclBQUFaLX8WA3AxR8Wuu2DLkqUbz5qFLnPJA2tW\n3jEvOyMhKjQwoNvU1lRVXHDyoz0739h/7cDGpUtUpz9+ehpvJwOALykUihkzZlRUVFRXV5tM\nJiFEUFBQYmLi+PHjJUnydjoA8uSgjXXu3bTlrFmMu3vH8V1r0m+8tTcjK3vubXc//PjjO+9d\n+PB7ZzY/u3ft7nuC3JwVAHyLQqFISUlJSUmxWq2SJCkU3NYMwL0cfMucys/vEGLmuhf6trov\naTLWPL92hhAdhw+fdks8AJADpVJJqwPgAQ6+aNra2oQQiYmONzfpGe+ZCwAAAO9xUOySkpKE\nEKeOHjU5+H3TsWOnhRDJyckuDgYActDd3d3Q0FBVVVVXV9fV1TX0LwDAKDi4x27GqtUTf761\naPua1ZN3bf/BV+P6Te2uO/Hq99ZsrxNS1qoV092ZEgB8UUVFRUlJSe8bwxQKRUJCQkZGBg9P\nAHATB8VOmr1+55N5X3vuwvvrFqRsyV6waO60jIToEI3Sam5vrCq++Mnh4wX1ZiGCZz61Y/1s\nz0UGAF9QXl5eXFx8/RGbzVZRUWG1WrOysryVCoC8OdyjRLfgZ0dOZD2zbsPrhyoLDu4uONh3\nQmBi7iObXtr80PRg9yUEAN/T3d1dWlo64FB1dXViYmJwMN+bAFxvqM3nQqc/9MrBB7eWnjx0\n5HRBUXm93mC0KrW68NjkidlzFuXOS9HxnBcA9KXX63uvwPbX1NREsQPgDk7tKqzQpc5fljp/\nmbvDAIBMOH5OgqcoALgJ620A4HoqlWrEowAwYqMvdsX7f/3rX/96f/HQMwHAX4SFhTl49DUi\nIsKTYQD4j9EXu3Ov/+hHP/rR6+dcEAYAZEKtVvfsBdpfdHR0aGioh/MA8BNcigUAt0hPT09M\nTOyzbhcTEzNlyhRvRQIgew4enrCaDMbuoc9gGvS5LzfpLMvf89aevCNnCgrLGvTtnd2qoJCw\n2JSsabNvuWvl/atuTdF6OBAADECSpAkTJiQmJjY1NZnNZpVKFRkZqdPpvJ0LgJw5KHbvfidk\n1V7PJXFKw6FN931384GqGx8o6zC0NNSUXvr4L++8+uz6xc+8uWtDbrSXAgLADbRa7VCv3AYA\nl3Fqu5Mxortgy5KlG8+ahS5zyQNrVt4xLzsjISo0MKDb1NZUVVxw8qM9O9/Yf+3AxqVLVKc/\nfnqaL/3TAAAARs9B+0lLSxWiNGdr0SdPpDk4wx/uUd3zB9eGGljn3k1bzprFuLt3HN+1Jl1z\nw1hGVvbc2+5++PHHd9678OH3zmx+du/a3fcEeSIVAADAWOHg4YlZd9wRLcT5Awf1AY4oPPUu\n61P5+R1CzFz3Qt9W9yVNxprn184QouPw4dMeSgUAADBWOCh20i13Lg4U9mMffmT0XB4H2tra\nhBBD3azSM94zFwAAwJ84uhEt8PYH1n3DdCXUUCrE5EFnzXl0+/YlIm2Oy6P1lZSUJETxqaNH\nTfffHjjYJNOxY6eFEMnJyW7PAwAAMLY4fMIg/K6t79011BlSFz/yiOvyODBj1eqJP99atH3N\n6sm7tv/gq3H9onfXnXj1e2u21wkpa9WK6R7JBAAAMHb40KOj0uz1O5/M+9pzF95ftyBlS/aC\nRXOnZSREh2iUVnN7Y1XxxU8OHy+oNwsRPPOpHetnezstAACAp/lQsRNCt+BnR05kPbNuw+uH\nKgsO7i442HdCYGLuI5te2vzQ9GBvxAMAAPAqJ4td8f5ff3Bt4CFJoQ4KjRw/MWfurIwIt/fE\n0OkPvXLwwa2lJw8dOV1QVF6vNxitSq0uPDZ5YvacRbnzUnTDe0ma1WrNy8szmUwO5pSWlgoh\nbDbbaIIDAAC4m5NN7NzrP/rRUG+hUMfP//vN//niQ9luf2GOQpc6f1nq/GUuONWhQ4eWL1/u\nzMySkhIXfB4AAIDbOFnssr+zdWvWhbde2nXRHDNr2fKFUxJ0hqrLR/e9f65BM3XVP9wZVnU8\n791P/vZfaxaV2M9+uCbVrZldKTc3d9++fY5X7LZt25afn5+W5mibZgBjVmdnZ3V1dXt7u91u\nDwoKio+PDwsL83YoAHALJ4td1l132bdsumifv/HkBxtnh32xJ7Fdf2rDklv+40/Hv/PxsY+f\nv/DMHQu3nv7o6Z/99cHXble6LbGp5sKJc1XSuOybZiX1rA1a6//2u9d2H/+sURE3JffeNffM\niXX+cqxSqVy2bIilv7y8PCGEQjG8i7wAxoLa2trCwsLeWylaW1tramqSkpIyMzO9GwwA3MHJ\nstL6P89sOmVMevTFDb2tTgghhd/0b794NNF4atNPd7WF37TxPx6IFqL+ww8vuCms6Pjk+a+l\nJ89c/Hd/d9vs9ImLnzttFN1Fry2ZvGDNxl/u+P2b2198+ttzp9z5i/OO1t8A+A2DwXD16tX+\nN8hWVFTU1NR4JRIAuJWTxe7M8eMmIaZkZ/edr5w+faoQxuPHzwqhycmZLISorq52dcoe1lOb\n7nvyw5puZVh6zuwJoQ0Hn7733/78+g/X/rU5eMY9T7/w6ss/vTdbZ2868C/3bTlndU8EAL6k\noqLCbrcPNuThMADgAU5eijUajUKI+vp6Ifo8GlFbW9s7HhgYKIQIDQ11bcYvdL73i9c+FyLx\n2/97+vffipOa/vTQ7GWvP7ShtSv5e+8f+687dUKIxx6YKTJX7rr6m98c2Phfd7rvcjAAn9De\n3j7YUEdHh9VqVSr5ngAgK06u2E2dOlUIceG3//mx+YbjpuOvvVEghJg2baoQorCwUAjhrltX\nrp050yZE5t8/+a04SQgR9fXHH5zY3NBgzfjuY3f+f9sMv/vRb48TovHYsUK3ZADgSxzvUsQe\nRgDkx8lil/r3a5eHCtuV5/9u4cO/+EP+6aufXT2dv/fFNQuW/eKqTYTdvfbBFGE//8f3y4U0\ne/nXx7slamVlpbihNn7xnzcUSeWkSROEEOXl5W7JAMCXaLXawYYCAgJUKpUnwwCABzi7o/C4\n7/72vcKvr9xy4vTOf16x87oBKfrmjXt/e3+cELWtKWuefz4+9/sT3RH0i0u8xq6uLiF6Xizx\nxXe2Tnf91eGebQysVm6yAxAXF9fc3DzYkIfDAIAHOP+qiIjc/zhy9Vt7dvz2vUNnimpaLaqw\n+Imzc7/50CMrc6IVQggxbtH3nljktqBCZGRkCFFXUlIiRETPkZipixY1iqkx18+qqqoSQiQn\nJ7sxCQDfEBcXV19f39TU1Oe4VqtlZ0oAsjSsd4ApY2bd89Sse55yVxjH4pcumf74iU8PHiwV\ns1KFEEIsejY/v8+k7qKiEiGCZsxgiyoAkiRNmzatrKysqqrKYrEIIRQKRVxcXEZGBtdhAciS\n21/u6kKT7vnOV17cfHXf3s+f+Of0gaeY/vT7vXqh+/Z9Xx/0zhoA/kShUKSlpaWmpppMJpvN\nptVqx8hm4xaLRa/XWywWtVodHh4eEOBL38YAxqzhfZXYmj99/3/+cOB0UZXerAlPmHjT4hX3\nLcuO8NS35MR/+Zv+XxzOaIm6Y+tvFiYsuivIQ5EA+AJJkhw8SOFhdru9pKSkoqKi97FcpVKZ\nmprKLSQARs/5Ymcrf+/Hdz/46rm264799pVN62f96M0/vrQsURr0Fz0p/uYH//Fmb4cAAAeu\nXbvW85B/L6vVWlxcLLg9GMCoOVvsrOc3L7vn1U+7RMiUFY+tuWN6Uoih4tOP/nvbnktnf7Vq\nWdyp0+uz2ecTAIbQ2dnZ84hXfyUlJfHx8dz8B2A0nCx2pvee+/mnXSLszm3n/vxo2he/9O1/\nWPv9bX+X84MPz/9s6x//+e1vadwXEwBkobm5ebC3nNlsNr1eHxMTM+AoADjD2XfF5ucbhEh7\nbGtvqxNCCBGQ9tiWR9OEaD98+Kxb4gGArHR1dTkYNZvNDkYBYEhOFrvGxkYhRFZWVr+RSZOy\nhBANDQ0ujQUAsuT46VeuwwIYJSeLXc/7HCoqKvqN9BzrGQcAOBQRETHYkCRJ4eHhngwDQH6c\nLHazvvIVlRCXtr/wQdsNx9v2v7D9khDq+fNnuSEcAMhMSEjIYHfRJSQkaDTcqwxgVJwsdqGr\n/+mRBCHKd6y86Vsbf5d39FzBuaN5v9v4rZtW7CgXUtI//NOqEPfmBACZmDx5cmxsbJ+D48eP\nz8zkjTkARsvZ7U6CFr/4xxevff1fPip6d9OD7276ckAZv/TFPz6fO1Z2/gSAMU6pVE6dOjUl\nJaWpqam7u1utVkdFRQUFsa06ABdwfoNi7ezH91++493tO/YePF1U02pRhcVnzVm84pFHvjkt\nYmzsTgwAPkOn0+l0Om+nACA3w3qlmCIie8WTL6140l1hAAAAMHJj4mXYAAAAGL1hrdgBAIbN\nZDLV19d3dHQoFIqQkJC4uDilkncwAnCLwYrd/h9l/vCDYZxn6a+vvbLEFYEAQE6qqqquXbtm\ns9l6j5SUlEydOpUt6wC4w2DFzlBTXFw8jPPUGFyRBgDkpLGxsaioqM/Brq6uTz/9dO7cuYGB\ngV5JBUDGBit2K/7XYrENMjYQBdcVAKCP0tLSAY9brdbKyko2rgPgcoMVO0kREMCDFQAwYlar\ntb29fbBRvV7vyTAA/ATlDQDcwmq1Ohjt7u72WBIA/mMExa7gd0888cQTvytwfRgAkA+VSqVQ\nDPodyw12ANxhBNudFO578cW9YsVXXngg2/V5AEAmJEmKiopqaGgYcDQ6OtrJ85jN5qqqKr1e\nb7VaNRpNbGxsXFycJPHGHwADYB87AHCXjIwMvV5vsVj6HA8JCRk/frwzZ9Dr9QUFBb3XbQ0G\nQ1NTU01NzfTp09kMD0B/3GMHAO6i1WpzcnLCwsJ6j0iSFBcXN2PGDAdXaXtZLJaLFy/2vxtP\nr9d/9tlnLs4KQBZYsQMANwoODp41a5bRaOzo6JAkKSQkRK1WO/m7dXV1/Vf7etTW1mZmZgYE\n8B0O4AYj+FJQqjUajVBzDQAAnKTVarVa7XB/y8FuKXa73WAw8PoKAH2MoNh9822TyfVBAAA3\nuv5FZMMdBeCfuMcOAMYox4t8QUFBHksCwFdQ7ABgjHKwrUlYWBg74QHoj2IHAGNUcHBwampq\n/+MBAQFZWVkejwPAB/BEFQCMXampqUFBQaWlpR0dHUIIhUIRFRWVkZExgkcxAPgDih0AjGmx\nsbGxsbEWi8VqtarVamc2wAPgtyh2AOADVCqVSqXydgoAYx1/+QEAAMgExQ4AAEAmKHYAAAAy\nQbEDAACQCYodAACATFDsAAAAZIJiBwAAIBMUOwAAAJmg2AEAAMgExQ4AAEAmKHYAAAAyQbED\nAACQCYodAACATAR4OwAAwGX0en1DQ4PRaFQqlWFhYePGjQsI4Hse8CP8Dw8AcmC32wsLC2tq\nanqP1NfXl5WVZWdnh4aGejEYAE/iUiwAyEFZWdn1ra5HV1dXQUFBd3e3VyIB8DyKHQD4PJvN\nVlFRMeBQV1dX/8IHQK4odgDg8zo7Ox0sy7W1tXkyDAAvotgBgM+zWq0jHgUgJxQ7APB5gYGB\nIx4FICcUOwDweRqNJiwsbLDRmJgYT4YB4EUUOwCQg4kTJyqVyv7Hx40bFxER4fk8ALyCYgcA\ncqDT6WbNmhUeHt57JCAgID09fdKkSV5MBcDD2KAYAGRCp9Pl5OSYzWaj0RgQEBAcHCxJkrdD\nAfAoih0AyIpGo9FoNN5OAcA7uBQLAAAgExQ7AAAAmaDYAQAAyATFDgAAQCYodgAAADJBsQMA\nAJAJih0AAIBMUOwAAABkgmIHAAAgExQ7AAAAmaDYAQAAyATFDgAAQCYCvB1g+DrL8ve8tSfv\nyJmCwrIGfXtntyooJCw2JWva7FvuWnn/qltTtN5OCAAA4A0+VuwaDm2677ubD1R13XC0w9DS\nUFN66eO/vPPqs+sXP/Pmrg250V4KCAAA4DW+VOy6C7YsWbrxrFnoMpc8sGblHfOyMxKiQgMD\nuk1tTVXFBSc/2rPzjf3XDmxcukR1+uOnp/nSPw0AAGD0fKj9dO7dtOWsWYy7e8fxXWvSNTeM\nZWRlz73t7ocff3znvQsffu/M5mf3rt19T5CXggIAAHiFDz08cSo/v0OImete6NvqvqTJWPP8\n2hlCdBw+fNqj2QAAALzPh4pdW1ubECIxMdHhrJ7xnrkAAAD+xIeKXVJSkhDi1NGjJgeTTMeO\nnRZCJCcneygVAADAWOFDxW7GqtUTJVG3fc3ql0/UdQ8wobvuxMur12yvE1LWqhXTPZ4PAADA\nu3zo4Qlp9vqdT+Z97bkL769bkLIle8GiudMyEqJDNEqrub2xqvjiJ4ePF9SbhQie+dSO9bO9\nnRYAAMDTfKjYCaFb8LMjJ7KeWbfh9UOVBQd3FxzsOyEwMfeRTS9tfmh6sDfiAQAAeJVPFTsh\nROj0h145+ODW0pOHjpwuKCqv1xuMVqVWFx6bPDF7zqLceSm64V1ctlqteXl5JpOj+/ZKS0uF\nEDabbTTBAQAA3M3Xip0QQgiFLnX+stT5y1xwqkOHDi1fvtyZmSUlJS74PAAAALfxyWLnQrm5\nufv27XO8Yrdt27b8/Py0tDSPpQIAABgBXyx2lrbq8npzaEJqjFbqP1pf8NdP60Tc9NuzY504\nl1KpXLZsiKW/vLw8IYRC4UNPEAMAAH/kY2Wl/exv7p85LjIhc0J6bGTSLY/tONtvI+Ijz95x\nxx13PHvEG/EAAAC8yKeKXdXv7r39sbcvNFuFFKgLslQd/c0jX53znd8XD7SpHQAAgL/xoWJn\nO/rzn+a1CEXqytfPNre3G1oK3/vp7VGfv/Vg7n1vllq9nQ4AAMDbfKjYXdq/v0KIiPt+ufPh\nnPAAIYVM/Ma/7/9k7/cn1+95KPeBdyrYjQQAAPg3Hyp2ZWVlQoicRYtCvjymTPjGawf3fC+z\n8u3vLH7k3Rq718IBAAB4nQ8VO41GIwZ6ODX26699+Maq+Gv/fe/tP/igwRvJAAAAxgIf2u4k\nJSVFiIKysjIhpt84okj+9u8/bNIv/PFvVtwZ/FCUd+IBAAB4mQ+t2GXMnx8jxOcnTzYOMKie\n9KN3P9g4T3n+hW0HPJ4MAABgLPChYqfM/dY3IoT10N73WgYcD77p3/L++KOpGg/HAgAAGCN8\n6FKsCLjtqd1vLqpRZ5oHmxF528sffjD5dydbxaRsTyYDAAAYA3yp2AlVxuLvZDieIo3PffSp\nXM/EAQAAGFN86FIsAAAAHKHYAQAAyATFDgAAQCYodgAAADJBsQMAAJAJih0AAIBMUOwAAABk\ngmIHAAAgExQ7AAAAmaDYAQAAyATFDgAAQCYodgAAADJBsQMAAJAJih0AAIBMUOwAAABkgmIH\nAAAgExQ7AAAAmaDYAQAAyATFDgAAQCYodgAAADJBsQMAAJAJih0AAIBMUOwAAABkgmIHAAAg\nExQ7AAAAmaDYAQAAyATFDgAAQCYodgAAADJBsQMAAJAJih0AAIBMne4lBQAAIABJREFUUOwA\nAABkgmIHAAAgExQ7AAAAmaDYAQAAyATFDgAAQCYodgAAADJBsQMAAJAJih0AAIBMUOwAAABk\ngmIHAAAgExQ7AAAAmaDYAQAAyATFDgAAQCYodgAAADJBsQMAAJAJih0AAIBMUOwAAABkgmIH\nAAAgExQ7AAAAmaDYAQAAyATFDgAAQCYodgAAADJBsQMAAJAJih0AAIBMUOwAAABkIsDbAQDA\n7ex2e0NDQ2trq9VqDQwMjI2NDQoK8nYoAHA9ih0Amevs7CwoKOjs7Ow9UlJSkpycnJGR4cVU\nAOAOXIoFIGc2m+3TTz+9vtX1KC8vr6io8EokT+ru7jYYDCaTydtBAHgIK3YA5Ky2ttZoNA44\nVFZWlpiYKEmShyN5RkdHx7Vr11paWux2uxAiMDAwJSVl/Pjx3s4FwL1YsQMgZ3q9frAhi8XS\n0dHhyTAeYzAYzpw509zc3NPqhBAmk6mwsLC4uNi7wQC4G8UOgJx1d3ePeNR3FRYWWq3W/sfL\ny8vb29s9nweAx1DsAMiZRqMZ8aiPMhqNbW1tg43W19d7MgwAD6PYAZCzmJiYwYaCg4O1Wq0n\nw3iG40clBrvjEIA8UOwAyFlkZGR0dHT/45IkTZw40fN5PEChcPTFrlQqPZYEgOf9X3t3Guda\nVecLf+2deU5VkkrN83imOhMcGRxosAVt0KsiKg4toBef2zbofdor0lcf7Qvaaj+NtkPTgEi3\nAo1j04+ojcABDuDhTHVOzXVqHlNJKnNl3tnPiwUhZNiVSqVSya7f9wUfTrKysyor2fu/1/Bf\nCOwAQOT27t3b1NSUGu6o1er+/n6j0biDtdo+Wq1WILbT6/WlrAwAlBjSnQCAyLEs29nZ2dra\n6vP5OI5TqVQajUasWU4IIRKJpL6+fnFxMfMpuVxutVpLXyUAKBkEdgCwK0il0urq6p2uRYl0\ndHSEw2Gn05n6oFwu379/v1SK0z6AmFXgLzw4d/wXP/vFUy+cGRyfc3j8wbhMrTPUtPTsO/K2\nd3/w5hvf0SLCydAAAJvAsuz+/fudTqfdbg+Hw1Kp1Gg01tXVyWSyna4aAGyvCgvsHM99/SMf\nv+eZpeibHl0PuB0rs8N/+sO//+BrX7767n97/CtXZZkrDQCwq5jN5qwLRwBAxCopsIsP3nvt\ndV89GyHazms/ccsH33lsf0eDSa+UxsO+taWpwZNP/+LHj/x+8pmvXnet7PSf7tpXSX8aAAAA\nwNZVUPQT/OXX7z0bIbXve+ilx29pf3NW0Y6e/Zf+2ftu/cIXfvzhK2/9zZl7vvbLO35+k3qH\nKgoAAACwIyoo3cmp48fXCTl453fSo7o3KDpu+fYd/YSsP//86ZLWDQAAAGDnVVBgR/fIaWxs\nFCxFnxfYTwcAAABApCoosGtqaiKEnHrxRaHdcsInTpwmhDQ3N5eoVgAAAADlooICu/4bP9TN\nkNUHbvnQd19ejWcpEF99+bsfuuWBVcL03PiBAyWvHwAAAMDOqqDFE8yRL//4i0+96+/P/+ed\nV7Tcu/+Kt1+6r6PBrFNIuIjfuTQ19OrzLw3aI4RoDn7poS8f2enaAgAAAJRaBQV2hGiv+OYL\nL/fcfedXHnxucfDZnw8+m15A2XjVbV+/755PHdDsRPUAAAAAdlRFBXaEEP2BT/3Ts5/8xuzJ\n5144PTgxb/cEQpxEpTXWNHfvP/r2q461aDc3uMxx3FNPPRUOC83bm52dJYQkEomtVBwAAABg\nu1VaYEcIIYTVtl52fetl1xfhUM8999wNN9yQT8mZmZkivB8AAADAtqnIwK6IrrrqqieffFK4\nx+6HP/zh8ePH29raSlYrAAAAgAKIL7Cb+v33fzdJOq/7q2s78igtkUiuv36Drr+nnnqKEMKy\nFbSCGAAAAHYj8QUr5x783Oc+97kHz+10PQAAAABKTHyBHQAAAMAuVUFDsVw4EMqWlzhNmNv+\nqgAAAACUoQoK7H79Md2Nv9zpSgAAiBvHcX6/Px6Pq1QqjQZJQQEqTAUFdgAAsI0SicT09PTS\n0lIybadWq+3u7jYYDDtbMQDIXwXNsWtrayWEHPrGREzQv79/Z6sJAFCZhoeHFxYWUpOxBwKB\ngYEBn8+3g7UCgE2poMDu8DvfaSZk4JlnPVIhLLPTFQUAqDhra2tOpzPz8UQicfHixdLXBwAK\nU0GBHfO2P79aSfgT//V0aKerAgAgMg6HI9dTPp8vEomUsjIAULBKmmOnvOYTd743PKoPzBLS\nl7PU0c8+8MC1pO1o6eoFAFDxhEO3cDisUChKVhkAKFglBXbE+O5v/ObdGxVqvfq220pRGQAA\nEZFIJALPSqUVdbEA2MUqaCgWAAC2i9FozPWUTCZTq9WlrAwAFAyBHQAAkLq6ulyDrS0tLQyD\nZWkAlQGBHQAAEIlE0t/fr1Qq0x5vbm5uamrakSoBQAEwbQIAAAghRKPRHDt2zG63ezwejuPU\narXFYtFqtTtdLwDYBAR2AADwGpZla2tra2trd7oiAFAgDMUCAAAAiAQCOwAAAACRQGAHAAAA\nIBII7AAAAABEAoEdAAAAgEggsAMAAAAQCQR2AAAAACKBwA4AAABAJBDYAQAAAIgEAjsAAAAA\nkUBgBwAAACASCOwAAAAAREK60xUAAAB4QzQaXVpa8ng8HMepVCqLxWKxWBiG2el6AVQGBHYA\nAFAuPB7P4OBgPB6n//T7/Xa73WQy7du3j2UxxASwMfxOAACgLMRisaGhoWRUl7S2tjY1NbUj\nVQKoOAjsAACgLNhstlgslvWp5eVljuNKXB+ASoTADgAAyoLP58v1VCKRWF9fL2VlACoUAjsA\nACgLPM8LPJtIJEpWE4DKhcAOAADKgkqlKvhZAKAQ2AEAQFmoqanJ9ZTRaFQoFKWsDECFQmAH\nAABlQafTNTc3Zz4ulUq7u7tLXx+ASoQ8dgAAUC46OjrUavXc3FwoFCKEMAxjMpk6OzsxDguQ\nJwR2AABQRurq6urq6iKRCMdxCoVCIpHsdI0AKgkCOwAAKDuYUQdQGMyxAwAAABAJBHYAAAAA\nIoHADgAASiqRSGB/MIBtgjl2AABQIisrKwsLC3RzMIZhCCEqlaqmpqa5uRmLJACKAoEdwC4V\njUaDwSDDMFqtVhzXVJ7no9Eoy7IymYwQsr6+TgMInU6HZBnlYGxsbGVlJflPuoFYMBicnZ21\n2+2HDx+mDQcAW4HADmDXCYfDExMTa2tr9J8sy9bW1nZ0dEil5XhC4DjO7XbTGFSv1xsMhrQC\nsVhseXl5ZWUlHA7TWEGpVDIMQxOhUdXV1b29vVhouYOcTmdqVJcmGAxevHhxz549pawSgCiV\n43kcALZPJBI5e/ZsJBJJPpJIJJaXlwOBwKFDh1i2vObdOp3OsbGxWCyWfMRgMOzZs0epVNJ/\n2u32sbGxtAlb4XA47Tgul+vcuXNHjx4tz+B1NxCI6ii73d7d3Y0GAtii8jqJA8B2m56eTo3q\nknw+3/LycunrI8Dj8QwNDaVGdYQQr9c7MDBAIzmv1zsyMpLnNPxQKDQ/P78tFd3FeJ632+0T\nExMjIyPT09N+vz9XyWAwuOGhNiwDABvCvRHA7uJwOASeamxsLGVlhE1PT9Oh1TShUGhpaam5\nuXlubi5rgVzW1tba29uLV8HdLhQKDQ4O0omM1NzcXH19fXd3N10YkSrzkUz5lAEAYeixA9hF\nYrGYQP9W5gjmDorH416vN9ezLpeLEOLxeDZ1zKxdlVCYRCJx4cKF1KiOWl5enp2dzSyv0+mE\nD8iyLNa4AGwdAjuAXUR49WtZrY1NG4HNfJbn+c3mQsP8rSJyOBy5Rk4XFhYym6ahoUH4gDU1\nNWgggK1DYAewi7Asq9frcz2bueB0B22Y+eLUqVObPabRaCy0OrsUz/Nra2vT09MXL15cWFhI\n7dMV6C7lOC4QCKQ9qNfrOzs7cw22arXazs7OotQZYJfD7RHA7tLS0jI4OJj5OMuyTU1Npa9P\nLlKp1GAw5BqNzYwbNiSRSFpaWrZcr10kHA4PDg6mftRTU1NtbW30Y4zH4wKvzfpsU1OTwWBY\nXFz0eDy0R5bnebVabbVaGxsby6rDGKByIbAD2F3MZnNnZ+fU1FTqsgOpVLpnzx61Wr2DFcvU\n3t4+MDCwqeURSQzDpL5QLpfv2bMHU7jyl0gkzp8/nzbYyvP89PS0TCarr69PZpzJKlfKQL1e\nj2R1ANsKgR3ArtPU1GQ2m202WyAQoIOztbW1ZZj032g07tu3b3x8PBqNJh9Uq9XCSTGkUmlN\nTU19fb3f70/uPGGxWNAhtCk2my3X5zwzM1NXV2c0GnOlj1GpVFqtdjtrBwA5IbAD2I1UKlVb\nW9tO12JjZrO5qqrK7Xavr6/TGNTn801OTuYq39TUlJyqteEyTBAgMIWObka3uLiYq0BXV9f2\nVAoANobADgDKmkQiMZvNZrOZ/lN4dh02DSsW4Sl0gUCAZpzJqrDRcwAoCgR2AGJGd1h3uVyx\nWEwmk5lMptbW1vKcahaPx202m9frjcfjKpXKYrFUVVVlFhNY1bvhs5A/uVwu8KxwRkC/358M\nxAGgxBDYAYhNIpFwOp1+vz8UCq2trSUSCfp4LBaz2Wyrq6uHDh0qq8wmhJBAIHDhwoXUcGFp\naclqtfb19aUlyNDpdHRwNvMgBoOh3P6uymU2m3Pt7qrRaIRnZCa/cgBQeshjByAqPp/v5MmT\nw8PD8/PzDocj8xLL8/y5c+fW1tZ2pHpZcRyXFtVRq6urMzMzmeX37t2bOX9Oq9Xu3bt3u6q4\n+wgMxTY3Nwt3+pZnlzDALoEeOwDxiEaj586d27C/hOf5wcHBwvrtotGo1+uNxWJKpdJgMBRl\nqanNZss1tLe4uNjS0pL2LjKZ7MiRI3a73el0JoeYa2pqWBZ3qkXgcDgmJycF9pdbWlrq7+9X\nKpVZy9A5kdtZQQAQgsAOQDxGR0fzHAXjeX54ePjyyy/P/+CJRGJ6enppaSn1LWQyGZ0PV19f\nn7kfVDweDwaDPM+7XC6HwxEKhViWNRgMTU1NqfPnfD5frjflOG59fT1z5hzDMFar1Wq15l9/\nyMf4+Pjy8rJwGZ/Pd/bs2c7OzpGRkczvW1dXl/D8PAGJRILjOIlEghgdoGAI7ADEQ2ChYqZI\nJLKwsJD/bhMTExOZk65isVgsFvP5fHNzc/v27UuGa9FodHJy0m63py2QTCQSa2tra2trnZ2d\nybcW3vJ1sxvClpu1tbWVlZVAIMAwjFarbWho2MrOZpFIhHaXbse2qsvLyxtGddT6+vry8vLh\nw4enpqY8Hg9tZZ1O19bWZjKZCnhrj8czOztLD8WybHV1dXt7u0ajKeBQALscAjsAkdhUVEdN\nTU01Njbm2r4zld/vzzWVnorH4xcuXDh27JhSqYzFYmfPng2FQsJvbTQa6VQ54T0MhJ8tcxMT\nE0tLS8l/BoNBu91eX1/f09Oz2UPRGYf0U2UYxmg0dnZ2FjEPMM/zU1NT+Zd3uVxdXV0HDx6M\nx+PRaFQmkxWc49put4+MjCTvAejqH7fb3d/fj9UwAJuF7m4AkVhdXd3sS3iet9ls+ZTMZ7FF\nIpFYWFgghMzOzgpHdfStR0ZG6P/X1NTkKqbT6Sp3Jv7KykpqVJe0vLw8OjpKCOE4LhAIrK+v\nbziAPjs7OzIykvxUeZ53u91nzpzJtZduAfx+v3DuuqwvIYRIpVK1Wl1wVBeLxcbHxzNT33Ec\nNzo6ipR4AJuFHjsAkdgwlsrK7XbX1dVtWCx1Uy8BdLsCh8ORT+FgMOhwOCwWi16vb2hoyIyB\nJBJJd3d3PocqT3Nzc7meoutFvF4vDekkEkldXV17e3vWxSg0GWHm44lEYnx8/NJLLy1KbfNs\n4lRFibqcTmeugDIUCvl8vnw67RKJhMvlotuTKBSKYDDo9/tZllUqlWq12mKxbMfINUB5wncd\noOLFYrGFhQWBJQgC8pzBlud1keO4RCIhnL021czMjFKp1Ol0XV1dKpVqbm4uFovRpwwGQ1dX\nV+VuC8bzvMDCUkJIaio+juMWFxd9Pt+hQ4cy1w04HI5cIdT6+nogECjKgGwBoU9ROlOFd/4N\nBoMbBnZra2tjY2MCgenk5GRPT49AxzCAmCCwA6hswWBwYGAg/1gqTZ57cFVVVQn0P6UejWVZ\nlmXzXJy7vr5++vRps9nc19fX1NTU2NgYDAbj8bhSqRTB5mCb7dDy+XyLi4vNzc2EkPX1dafT\nGYlE5HK5cMgeCoWKEtjpdDqJRJL/UhWVSlWUfT6EF8BuuDzW6/UODg4Kf9TxeHxkZEQul6tU\nqnA4TMeO85laClCJENgBVDCataTgqI4QYrFY8ilWVVWl1WqF92lNHk2v1wtsIZ/J6XQODw/3\n9/czDCOahZAMwzAMs9nYzm63NzU1TUxM5Lk6lRAikUhoZ1XBSUaSx2lpaZmens58KvMPkUgk\nmZuCFEY4Kt0wZp2ens7nQ6a5G5NjvjKZrLm5uampaSt/AsdxXq83Go3K5fJi5XQE2DoEduUl\nHo9LJJKi30pGIhG/359IJNRqdRGX0cGO8/l8GwZbAhQKRSwWO3/+PJ2cpNPpBJJxHDhw4JVX\nXhG4iGq12vr6ekJIY2PjpgI7QojL5XK73Vk3h91uXq93aWkpEAjwPK/RaOrr66urq4tyZLlc\nvtmY2+/3v/zyy5ua7jY0NES72eRyeX19fUtLS8FJ4FpaWmKx2OLiYmorq9XqtrY2OlK8HblI\nTCaTSqXKOkO0qqpK+F2Wl5fzXz6SOpMvFotNTU2FQqEClidTCwsLs7OzyWPSsLilpSW1DJ2Z\nIJVK0TsIpYTAriyEw+GZmRk6iZhlWaPR2NLSspVkV0mxWGxiYiJ1jo5Wq+3t7a3cqUuQarPx\nUyraPTY8PJx8JBQK2e329vb2tOsTpVAoent76XLOTDU1NT09PSzLrq6uXrx4sYD67EhgNzc3\nl9pHRddzNDY2dnV1bf3gDQ0NWTvAhG12EUNy8DQajdJUcP39/QXHdp2dnfX19U6nkw5ZVlVV\n0UapqanhOC4Wi8nl8uJmD2ZZdt++fefPn0/7w9VqdV9fX65XJRKJ8+fPb+X7TwhZXl6ura0t\nIKPK/Px8WmoYjuOmp6cTiURbWxshxOFwzM/P+/1+nuelUqnFYmlvb99ilypAnhDY7bz19fVz\n584l54zT5V1ut7u3t7e2tnYrR6bnPpqSICkQCJw7d+7IkSMajSaRSPA8jxGEypV/ipO0DaCk\nUqlEIsma+m56elqv12eNsWpraxmGmZqaSnZESSQSk8nU3d1Ns104nc5kEpNU+cy622yuja1z\nuVxZA6/FxUWdTrfFXx8hpLGxcWZmpsQJOzweT3KiXmHUanXWl0skkm06V2i12ksuuWRxcdHt\ndsdiMYVCYTKZGhoaBN6OJkbe+lvb7fbNBnaxWCzrFsaEkLm5ufr6+pWVldQC8Xh8ZWVlbW3t\nyJEjFZ2UESoFArudNzo6mozqknien5iYqK6u3spN3srKSlpUR3EcR6++dBRPoVDU1tZm7sgJ\nZc7tdq+vr+dZuKurS6FQ+P3+SCSyvLwcjUYFAqmlpaVcnWdWq7WmpoYeRyaT0Rn3yWcnJyez\nviqRSDQ1NXm9XoF1AAUnQitY1iRz1OLiYtbAzu/3024YjUZjMBiEh9gkEonFYrHb7UWo62bY\nbLatBHY7Qi6Xt7e3b1gsHo/TfHv5z0EUtrS0tLy8LJFI6NJstVq94UtcLleuuxSe55eXl7Mu\nM4pGoxMTEwcOHNhqjfMWCAToDJx8vqsgJgjsdtj6+nrW2IsQwnGc3W5vbGws+OBOpzPXU6kT\nsyKRyNzc3Nra2qFDh5DtqVLwPD8+Pp5nYblcXlVVJZFItFrt6dOnNxzsE563xzBM1uWQoVBI\nIJdeLBY7ePDgyy+/nCugLGwrqq3I9dMjhNApd6nXwlAoNDo6mjqjS6VS9fX1Cff3dHV1eTye\nAlLEbUVhGQ3LHMdxU1NTKysreS64zhPP8zzP03GSkydPtrS0bBhfCrem2+3O1UfrcrnoSovC\nq5ufSCQyOjqamk9HpVL19vYWZXqPAK/Xm7aWi2EYurKktbVVNOuiyh+u4jtswxxOWzn4piZu\nBwKB6enpYuWD5Xne4/GEw2GGYXQ6HX7SxeL3+5eWloLBIM/zeV6/GYbp6emh/WperzefxRb5\njx4mEgl6rWJZVviCF41GJRJJe3v7xMRE5rNWq1U4d0Y4HKZpUIp475H/nxmPxwcGBtLy0oVC\nofPnz9NZDbleKJfLGxoaco3cbZP858DxPE8nfiQHQMtzCy+e54eGhgrYNG+z5ubmlEolXQOU\ni/A3UKAjnP5mCwjsotEond2YT682x3Hnzp1LOzkkv6vbt3juwoULmfvT8DwfiUTsdrvdbmdZ\n9rLLLsNEwxJAYFfWttJ5Tndn39RLlpeXLRZL/hPYOY5bXl52uVyxWEwmk5lMprq6OqfTOT09\nnXYJrKqq6uvrK3pmskgkQsMUnU4n+vOFx+MZHR0VznmbSafTdXZ20jv1cDica6g0TT6BuNfr\nnZ6e9nq9tGerqqpK+HJIr0kNDQ08z8/MzCSvfwzD1NfXd3Z2EkJCoZDT6XS5XH6/n+M4GnjJ\n5XKe52nUyDAMXf1TlOuTSqXKFYwqlcrUX9/CwkLWT57juJmZmX379gm8S+mHwAQ+HLrdBcdx\nKpVKrVYPDQ2l9kHOzc3V1NT09fUVd3nE1i0tLZUgqqMmJydra2sFPgHhfi+5XC4wQSLzy+Dx\neObm5pIrjtVqtUqlotkcZTKZVCoNhULJO3y9Xt/R0SFcgcXFxay3fIlE4tSpU9XV1R0dHbm+\nIdFodHV1NRAI0BvympqaDUPJ9fV1m83mdrsF+r+TFXj55Zff+ta3MgxDt9FTqVSiP2/vCAR2\nO6zgHE6xWCwSiUil0qyzcWOx2JkzZzY7AMTz/MDAQGdnZ1NT04aFw+HwwMBA6hnE5XKlXrBT\nud3uc+fOXXLJJcn5WDzP2+12GhTK5XKz2WwymfK/BIbD4fHx8dRzvdls7unpEdNpgobmdG/1\nhYWFPGOyNH6/3+PxGI1Gj8eTmsdLWHJ6WTweZxgmc/Klw+EYHh5O9njRjh+PxyOXy3N965I3\nDI2NjbW1tW63m87SMxqNCoUis0GTUjueeZ73+/2nT5/ev3//1odua2trcyXLSJtgJ7BV7oa7\n6JZ+vnzW+RvxePzixYurq6vJVsu6osVut0ul0oKTgBRFLBYLh8NyuVyhUIRCobGxsaKsk8gT\nx3EXL14U+ARUKlVtbW3WTZYtFotOp0sdA03FsqxEIgkGg0qlkgaOs7Ozqb25NDGeQAIXn883\nMDCwd+9egfSTwhGwy+VyuVxSqbSzszNtL0GbzTY+Pp78SqysrExPT+/ZsyfXDy0cDg8ODm4q\n3RLP86+88koikUgu5TaZTHTXmfwPAhtCYLfDVCqVyWTKem2Qy+VZf72BQGByctLj8dATtFKp\nbG1tTfuJ5rMLey5TU1NGo1E4HwodGcl8C4G4IRQKLS4u0jwakUjkwoULqWeElZUVmUzW1dVl\ntVo3rGE0Gj179mzaQLPT6VxfXz969KgIpgm63e7p6enkOoN8MgMLmJmZUalUk5OT+Ud1JpNp\nenp6ZWWFRmlqtbqxsbGhoYEWiMfjWXdtp4uscx12fn5eq9XS7xVNAEEfdzqdaV+GDdGv31vf\n+tZc3Sper9dmsyWT89XX12e9ctAO5sxfn8FgSFt8IHCPlEgk4vG4wLfOZDJJpdKSrfk1Go0c\nx6XN5aKfWFrAkWuy2srKSmtr647s/GGz2SYnJ5NDDbR9izupLh/Ly8tms7m6upp+Pej+HyaT\nyWKx0JvPnp6eRCKRtiyGbqASj8fn5uZybeDx6quvktf77RiGKeBPo5Nrq6urc611y+d+Ph6P\nj42NTU5OGgwGup1uPB7PnDAQj8cvXLigVCrr6uqamppS37GwvgP6wtR/rq2t+f3+7VgvHAwG\n6VlFq9XmsyZGTCr+EigCHR0dbrc77RdO56e73W6TyZR69aJ3bKlnjXA4PDY2FgqFUuf85p8F\nIxNd2CV8y+7xeDbseM+0trZGA7vh4eHMC3ksFhsZGZmenu7v7xf+Hc7NzWWdPhgKhebn5/NZ\nW1fO7Hb7yMhIaoS0laiOmpiYyCewUCgUra2tNTU1Z8+eTX3TYDA4MTHh8/loXjHaz5r1CLFY\nrLGxcWVlJfPCRrc+O3r0aGqMNTY2trKyUsBflEgk5ufnW1tbk/+ko7dKpXJ5eXlhYSFZ0u12\nLy4u9vb2Zt4zMAyzf//+hYWFpaUlOtKaK8evTCbLNWOVdsMIVFUqlXZ1deXK/7d1EolEoVBE\nIhH6mXs8Ho/Hw7Jse3t7suvd6XTm6kbKxPO81+st8c6qPp9vdHQ0bVZx6UO6pImJCYVCkdp5\nZrPZdDrdgQMH6IzSvXv3Njc307BPoVBUV1fTSaISiWTPnj0jIyOZP4Hkn0N/3QXnwYnFYm63\n22w2Zz6V/45whJB4PL5hfzN5Pc0q3dbZZDI1NzcrlcqFhYViLQmKRqNTU1N79+4tytEIIZm9\nvEajsbe3d/f0CyKw22E8z4+NjWWev3iedzqddFlrVVVVa2srnVcxPj6e9ac7Pz9vtVrp1Cia\nR3QrtdowiUYBUR15/VbS4/EIjDWEw+GzZ88eO3YsObcjGo16vV6JRGI0Gunl1uFw5Hq50+ks\nt8DO4XAks/bTrIFms7m5uTnrOHs8Hp+YmCh65rN8ojqWZY8ePSqXyycnJ7OGkjabzWw2WywW\n4TU9SqWypqYma7gWj8dnZ2eTWWfPnz+/lYlTy8vLDocjHA7TnkKBDy2RSIyOjmq12sy5gwzD\nNDc3Nzc3x2IxnudzDeVXVVXlCq+NRuOGUwhqa2tlMtnU1FTyl5Vrt7He3l65XL7h5qdJLMse\nOXJkYmIiMySanJxkWZb2swoskM+qxDkF00b2Nyvrh1nAfm5e4GfOAAAgAElEQVSpwuFw5qxK\nv98/PDx86NAh+k+dTpd1ZMNsNtO0fB6Ph24+sZVN/7IaHByUSqUmk4nmPXY4HE6n0+v1Fv2N\nUoXD4aWlJZvNduDAAYGTcAGcTmcikcjVAR+NRmnGbPrXKRQKtVptNpuzdpNHo9Fz586lfQ4e\nj+fcuXP0/FbEapctBHYlRXvpHQ5HKBSSSqVGo1Gv1wvv8E0IcbvdHo+nr69PYEiOTlmjSc9Z\nlt3iSW3D1xZ2cBqrbThdJhaLvfLKKx0dHRqNZmhoKDVIlUgker1e4E5xO85rAltOBYNBr9fr\n8XjolMdIJBKPx+liAro1XGaEzXHc6urq6upqcuhBoVCYzWaNRqPRaHw+3xaD8oI1NzfTs17W\nyUOUzWazWCwb7tou0DmUjOS2Ph2efuB5FuZ5fmFhobe3N1cB4Unizc3NNpsts2lYlqU/ug2Z\nTCaTyRSJROggKe2gSr1JYximvb2dzqk4evTo4OBgamBBl5iEw+HULhaNRtPb2xsKhXL9pmZm\nZurq6jZcsJyplOOwsVhsbGys6OerbcoLTe9LU9cOJxKJQCBAe4uTfUIqlaqrq8vlctnt9sL6\npDcUj8fpmWQ7Di6A47jh4eHihv6JRCIYDGa9111YWKBbeqQ9LpVKe3t7M2cr5RrPoVm9irKj\nTPlDYFc6kUgkdRV6PB7POr8nK9qxJ3BZIinJq+jKQeFONbpDea6Rjg0XRRbWp007HfPJ4cJx\nXNakGBzHCY8oxePx5557jmEYo9G4b9++aDS6vLycjMmMRuPa2hpdkCWTyegSYOE/NuuWU3q9\nvra2lh4566t4nt/wxJe8bIfD4WQX5g4mEaXDdsKLqWnbCc+/1Ol0AkdIPlXAXltbVFg3MyWX\nyw8ePJg2r1Qmk/X19QlnaUmjUChozGSxWPR6vc1mo125Wq22trY2OQNBq9Vedtll6+vrdrud\n4zitVpvMVR4KhehL1Go1fWuBDdxisVggENDr9ZuaeErvOfMvv0UOh2ObOgglEonwvM/CzM/P\nt7S06PV6nufn5uYWFhaS9ddqtd3d3QaDIRqNpq04FpPtyMt46tQpq9W6Z8+e1AdXVlZyLRqL\nx+NDQ0PNzc1tbW2pt5oCndNLS0srKyv0+lhfX5/PfO4KhcCudEZHRzNXG2wqYZjwnR+dcd/Y\n2CiXy5ubm1P3AM3EsmxdXd3i4mLWZw0GA8dxAjOHqqurZTLZpvqWGIYJBoOnT5/Of7OEgvE8\n73a7T5w4QVI+YY/Hk7bTQLKfg4a5UqlUq9XK5XKpVEqTrkWj0ayRt8/n27CfteCab8dhCSES\niURg/o1UKqXXfuHIkj5rNBo1Gk3WdtTr9Xq9XiaT5Xov2jEWi8VKv4HYpqYfZdJqtceOHXO5\nXLTp6WCQ8Oy6UChEO3KyxlUKhSLrnrxJGo0msztQpVKl3VYJ/wzpNbiqqir/DTC6urpKuQnN\nFrN1CuA47tJLL03m71CpVKmTLwtGJ8nQZQdpHWaBQGBgYKC/v59mAtr6e+0qq6urUqmUruSg\nZ+MNb//m5+fX1tb6+/uTfcwCQSfP86nzUF0uV29vryg35EBgVyI+ny//ycu5eL1egTHWaDQ6\nNze3vLzc399fU1MTDAYF0qLSa4bX683ajTE2NjYxMVFXV9fe3p71mkQTImxqWgydNZhn4aLY\nVN1oprSS5coqMYVCodVqBbqHkxkNpFKpSqXKtaSajpUwDEN3bU+bhKRSqegM6Orq6lw7Pkkk\nktOnT282G19RbH3qNMMwdER1w5KLi4vz8/N0SIgm+evs7NymNN3Cg8i0n6+2tnZhYSFrCJWa\n9EShUHR0dIimJ4NlWY1Gk5x06/f7ixLYUbnyktAJnTvyDRcBgV3+cllfXx8aGrJYLMklUHmy\n2WxGozEtoYQ4ILArBZ7nz58/v/XjJBKJXLlRkmKx2NDQ0LFjx1pbWxOJRNZdC+lWBFKp9PDh\nw7Ozs3TOX1oYlEgklpaWfD7f4cOHs86pslgsBw8epFk56Kwyg8HQ3t4eCoWmpqZKvIcSCGts\nbBSe2ph6LW9oaMg1/JHMeKJWqy+55BI6Ty4ajdJVgcld21taWux2e9Y+uR3c7YphmOnpab1e\nnzVjIs/z9KqgVCppBhO5XE6nK9AlL2mF6Ua9SqWyqqoqkUg4nc5gMLi2thaLxeh8+dTCLpfr\nzJkzhw8f3o68/yaTKVfXu1wup+PmLMv29/cPDQ2l3sjRCYINDQ1+vz8ajSqVSp1OV1bplLco\nbReNkmVdRlRXYgUPoaysrCCwKw/BueO/+NkvnnrhzOD4nMPjD8Zlap2hpqVn35G3vfuDN9/4\njpbyW9G8uLhYrIGnYDC44cKIcDhMM0G0tbWFw2G73Z5anmEYjUZjt9sXFxfX1tai0SjDMCzL\nZh2o8vv9i4uLuTYUNxqNhw8fjsfjNI8u7dszGAy1tbW092v7UjxA/iQSSUNDg/DAUOpk+cbG\nRr/fnzbGxDBMR0dH6pVSKpW2tLRkHUxUKpX9/f0jIyNltWnp2toavSlK/QUl45gN+3fpeL3w\n8lsBHMeNjo5ecsklBbxWWHV1dXV1ddbO5o6OjuQfqFQqjxw5Qldi0Z0nLBYLbfdSzqjLpNfr\nhecJFIZhmGQ2HEqlUpUyoSCUv61nkipPFRbYOZ77+kc+fs8zS2/uDVoPuB0rs8N/+sO//+Br\nX7767n97/CtXZUnws4NyDUsVIM8r5ezsLMMwq6urmROheJ4PBAKpX+jkzIOs7HZ7rsCOSk7P\nSiWXy3P1IkCJcRzn8Xi0Wm2uoXCWZVOHKRmG2bNnj8ViWVlZoTcSer2+oaFhU6sE9Ho9nZFG\nV66srKyUTzdGamS22fH6rbxvIBCw2+3bkR9u79694+PjqbPopFJpR0dH2v4ZDMPQKLDoFSiY\n0+nMmvJtiyQSSXd3d1rAyrJsfX39/Px8cd8LoNxUUmAXH7z32uu+ejZCtJ3XfuKWD77z2P6O\nBpNeKY2HfWtLU4Mnn/7Fjx/5/eQzX73uWtnpP921r4z+tG3NLZQV3Y6zKDPxC7ser66ubmUR\nIhRXIBCoq6ubn5/Pug66rq4uc7K8xWIR2LYoH8kZaYlEQmC6565y8eJFs9lc9DFBqVS6d+/e\n9vZ2t9sdj8dVKlVVVVX5b8ESCoWGh4eLm4VYKpW2trZardasGcva2tqCwWCJJ/tC2dqmaa87\nrtx/+SmCv/z6vWcjpPZ9D730+C3tb86y1NGz/9I/e9+tX/jCjz985a2/OXPP1355x89v2l17\niGQo1vrKwi5CAikYoPQSiYRSqezr6xsdHU27jhoMho6Oju1+9209fgWh2baT2+YWV+aC2TK3\nuLhY9O8Gy7ICW12zLLt//36Hw2G324PBIF22XNwKQAWpr6/f6SpsiwoK7E4dP75OyME7v5Me\n1b1B0XHLt+/43m/uOv/886fJTW/L46Acxz311FPCnVKzs7Nkaxcnmni24JfvrLQJyPngeX6n\nsuxCVjRBWk1NjUajWVhY8Hq9dJZVTU1NfX39ds+Xl0qlm02OsynJnTdTb2boHLKsi4d2VjAY\n3KbAruJsx1lReI0wleyNHhgY2HqyAqhQJpMpba6CaFRQYEdPAo2NjYKlGhsbCTmf9wnjueee\nu+GGG/IpuZUZY/X19RUa2DEMI3D7mwtugssK3XqI/j/dq6D0dbBarZv6BQmsEOrr66NZ9KRS\nqcFgELiQ090myq2/sGRrM8vfdjTNpuYPaLXaCgrsjEYj3RB5pysiBgzDHDhwYKdrsV0qKLBr\namoiZOrUiy+Gb75GmatQ+MSJ04QQ4dn+Ka666qonn3xSuMfut7/97SOPPPLRj350c/VNUVtb\n6/F4BHZqKk8sy/b09GxqyjxFd9MqbCyYLtrleb4EeYx3id7e3h2fbtXa2upyuQRS0TIMI5fL\n6QJJjUZjtVrn5+czY8GmpiZ6ky28+0XymEajsdxyE25fdo+Ko1Qqcy1LZFm2t7c3Eom43e78\nW5BhmE31wdTV1RUxs13+6JaDNESjuaKkUqlwlzbNckD/3+fz0X73/Gdv19bWrq6ubl/+84qT\nTzbKylVBgV3/jR/q/tY3Jh645UN9jz/wPy63ZlQ9vvryDz59ywOrhOm58QN5huISieT6668X\nLrO8vPzII4/k08OfC8MwfX191dXV4+Pjhd1v0VT+WW9wFQrFdizOaGxsbGpqSu5nuikMwygU\nis2uujhy5EhqEGmz2SYnJ1NPdmazORaLpabtUCqVvb29VVVVk5OTJT5B19TUhMNhv99fzudK\nuVy+b9++AgbTi04mkx0+fHh6enp1dZX+BFiWpVnmDQaD1WpVq9VpI8JdXV000TG99ut0utRd\nevPU2dl56tSp8mkjg8GQT0i6S1it1lzrGCwWC82tWFdXd/LkyTzH8bu7uzc1y1Cj0TQ0NBSQ\nFHeLDh48mJli5vz581lDWLVa3dPTk1per9fTTOBOpzNz9YlUKuU4LvmdZ1mW7rtlsVjGxsYw\nSYYQwrJsd3f3TtdiG1VQYMcc+fKPv/jUu/7+/H/eeUXLvfuvePul+zoazDqFhIv4nUtTQ68+\n/9KgPUKI5uCXHvrykZ2ubRZWq1Wj0Zw7d25TiZQYhrFYLB0dHXTX8LTfsNFo7OnpuXDhQloa\nFLrIseBO++bm5i1OqN+zZ8/Zs2fzL2+1WtO6Bmtray0Wi9vtDofDdNCNnrIDgYDP50skEmq1\nuqqqikYD7e3tKysrxc1QlavTUSKRJPO30dyzdMoa3WMqGAzG43GDwSCXy4PBYCwWk0qlFy5c\nKEGyD51OR/fPoOlLWltbdzY/WRqZTNbT09PV1RUOhxmGUSqVG87ty3ObBwEajebAgQNFSQ++\ndSqVKm0rzF2upqZmdXU1M7ajG2DQ/5fJZJm79JI3JyBkWdZgMLS1tRVwD9PV1aVQKGZnZ0sz\nZE+Tw2f9Ye7du3d4eDgttqurq+vp6cn1SzGbzUePHp2fn6eroZVKpcViaWpqisfjbrc7Fosp\nFIqqqiq6QNhsNl922WUul2t9fX11dTVX93kyXyMhhGVZmupoaGhoq3953goe7UljNpt7enoC\ngcDQ0FDqpVChUOzfvz81c6f4FOcTLB3fhYfvvvMrDz63mPUqqWy86rav33fPpw5sevBQyHe/\n+90777zzxIkTV1xxxdaPFgwGJycnXS4X/eTlcrlcLqd3UUqlUqVS0d8V3QNKpVIplcpkKopg\nMJg2872uro5hmHg8vri46HA4wuGwTCarqqpqbm6OxWLDw8Op8QTLsslcXAqFQq/XRyIRGogk\ny9Css01NTVufUL+6ujo6OppP3te6urqurq4tzj0KhUJnzpzJ/35UqVQqlUqaw4/e4MpkMjom\nUl9fn5ypE4lE6C4a6+vrNDt/VVXVZrtvOY6bnZ1dWlpKPb/QhpZIJDTdv9vtLvjSwrJsa2ur\n8Maju1k8Hj99+nQpsyVLpVKdTheNRmmbKhQKk8mU3JkDkujuOMkU7gzDmM1mGmylFuN5fm1t\njd7RaTQas9m8lSGUrNWYnZ1Nm5FJz8y5zmCp8YdEIqHnE3oSo5XUarVTU1Opwyk0u57wYLHH\n43G73fRUYzabtykfR9rHTgiprq4W6O8Mh8OvvvrqpnoK6OY0c3Nzc3NzeYYZUql0z549NEFS\nIpGgw9PhcDgUCtGrm8Viqa6uXl1d9Xq99LY516EsFsuePXuSzeFyufx+P8uyOp0u2R2wRS+9\n9NKVV15533333XHHHVs/WnFVWmBHCCEkEZg9+dwLpwcn5u2eQIiTqLTGmubu/UffftWxFm3x\nJyYXN7Cj4vF4JBKRSqXbet9A+5NoPjmdTlddXc1xHO0ASx1j5Xne5/NFIhGZTEYnORWrAolE\nwmazORwOus8Sz/O0702pVAaDQXo7mLyhLAqHwzE3N0cv4RKJRK/XWywWjUZjs9nW1tY4jpPL\n5Varta6ubkemncXjcRrMZX02EAiEQiGNRhOJRPx+P+2VJITQXczpZ0hfbjQa9Xo9nZ2j1+sN\nBgOm5G/I7/dPTU3RD5akJBxWKpVWq1Wr1dI4jO4nRndksVgs9DLDsmw0Gg0EAisrKz6fj14O\n6ZgXbRG5XF5dXS2TyYxGo0ajEeXO4tuH5/lgMMjzvEql2sHYNxaL0a3haBdgVVVVNBq12+2h\nUIhlWYlEolAo6FmFBkC0g1wqleaqcyKRcDgcdNNFtVpdU1NTxHPd1iUSiWAwSEcb8gmUXS7X\n3Nwcnf2s1+ubmpr0ej3HcfTzofuhcxxnMBgaGhqSB4xEImtra8lOB4lE4nK56A8nHA7Tl6hU\nKqvVWlNTs9nWX11dnZycjMfj9GQok8nMZrPVai3B/BMEdpVtOwI7AAAAqFDlHNjhLh8AAABA\nJBDYAQAAAIgEAjsAAAAAkUBgBwAAACASCOwAAAAARAKBHQAAAIBIILADAAAAEAkEdgAAAAAi\ngcAOAAAAQCQQ2AEAAACIBAI7AAAAAJFAYAcAAAAgEgjsAAAAAEQCgR0AAACASCCwAwAAABAJ\n6U5XoGKMj48rlcpcz8ZisZ/85CctLS0si1hZhBKJxOTkZGdnJ9pXlNC+4ob2FbdEIjE3N/eX\nf/mXMpmsZG86Pj5esvfaLAR2G6PflVtvvXWnKwIAAABZ3H///aV/01KGkvlDYLexm2++OR6P\nh0IhgTIXLlx49NFHr7zyypaWlpJVDEpmbm7uxIkTaF+xQvuKG9pX3Gj7fvSjHz1w4EAp31el\nUt18882lfMd88VAMTzzxBCHkiSee2OmKwLZA+4ob2lfc0L7ihvZNgwkHAAAAACKBwA4AAABA\nJBDYAQAAAIgEAjsAAAAAkUBgBwAAACASCOwAAAAARAKBHQAAAIBIILADAAAAEAkEdgAAAAAi\ngcCuOFQqVfK/ID5oX3FD+4ob2lfc0L5pGJ7nd7oOYsBx3DPPPHP11VdLJJKdrgsUH9pX3NC+\n4ob2FTe0bxoEdgAAAAAigaFYAAAAAJFAYAcAAAAgEgjsAAAAAEQCgR0AAACASCCwAwAAABAJ\nBHYAAAAAIoHADgAAAEAkENgBAAAAiAQCOwAAAACRQGAHAAAAIBII7AAAAABEAoEdAAAAgEgg\nsAMAAAAQCQR2AAAAACKBwA4AAABAJBDYAQAAAIhEJQZ2nn++hsnq2gc9my9GCCFkffSxu2+6\notuqVyp1NZ2X3/ilnw35s7yzCIpVgOK27y77GlSGzTQKIdHFZ7/71++/rKvOqFIZm/Zc8YH/\n+4HnF8Jphcq5UXZdExe3ffETLjf5tcjvb9NmL8UwDNP8hZffdMhybpFKbF++8rh/dHX2v+Vd\nD7g3X4znvSf+5qAqvZBi7xeedYmtWGUobvvupq9Bxci7UfiE7fef79dkKfiwP6VUOTfKbmzi\n4rYvfsLlJr8W+d2tWRr2NfqP/Wb9jZLl3CKV2b6VG9jt/bvRohQLP/9XrYQQtukvvv30hDsU\ncl985jvva2EJIQ2ffiYopmKVorjtu3u+BhUkz0bh46PfeYuKEMJYLr/joeNj9vVI2DN/5sn7\n/vs7PvN4IFmqnBtldzZxcdsXP+Fyk2/7ZjH97SMMIbW3H48lHyrnFqnU9t31gZ3/sfcqCSFt\nn38p9MaD4T99vpMQIrv+Ebd4ilWMnQjsyrnhxNa+fN5t53zoOhUhRH7kq+dDuUuVc6Ps0iYu\navviJ1x2Cg7sEme+1EUI6b7rzBuPlXOLVGz77vbALv7kJ1SEkP1fG3/z4xP3HiaEKG76eUws\nxSrHDgR25dxwomtfPt+2W/ze5QwhpPazz0QESpVzo+zWJi5m++InXH4KDeyiz3zaSghz6O8n\n33isnFukctu3EhdPUAv/+rF9dTqFXF3VuPetN/3N/S+tcAUUmxocDBFiuPTS7je/rOvYsSpC\nIkNDk2IpVmmK0755FivnhhNp+5INGyV84oVTPCE177vpKrnAUcq5UXZ3ExenffM8Wjk33O5s\n30z+39z/2CqRXfXpT3a88WA5t0jltm/lBna+i2eGbYFoLORZGjnxxHduf+uBP/v2meBmi9nt\ndkJIQ0ND+uvoQ/RpURSrNMVp3zyLlXPDibR9yYaNsjgzEyOEOXrpIduzf/+Jt3aY1AqVsWHv\n22/+20dTV5uVc6Ps7iYuTvvmebRybrjd2b4Z7D+7/zcBorr+to9aUx8t4xap3PatxMCO0XS+\n+ws/+M1LQ3Ou4LpzfuT5f73r3e1K3vnCFz/wxRfDmysWCoUIIQqFIv1NlEolISQYDIqlWOUo\nZvvunq9BRcmrUQKBACHErDr72WN//qV/OzHtCkXD3uWRFx695+ajl9z+e+drxcq5UXZrExez\nffETLj95nnvfbPLh+5+NkuoPffr9htSHy7lFKrd9KzGwM3z8n3/7D//Xey/f21ylUpua+t72\n8Xt/e/KnN1oImXv4/t9HNlVMpVIRQiKRSPqbhMNhQoharRZLscpRzPbdPV+DirKJRnH+6ge/\nVH/gvt8NLXmD646ZPz3+5XdYSWT8/lvufjqaUqw8G2W3NnEx2xc/4fKT57k3Ff/qvzwwwJPm\nj9/252+Of8q5RSq3fSsxsMvG/P5bbjASEhwamtlUsZqaGkLI0tJSekn6kMViEUuxylZo++ZZ\nrJwbble0L8nSKFarlRDC8/vu/vWjd1y7t16vUptbj910z5P/8vFqQlZ+/es/EULKu1HQxG8o\ntH3zPFo5N9zubN83if7x/p9MEdL7qduuTIs5yrlFKrd9xRLYFapj/34VId5XX5148+MXT550\nE6LYv79LLMVAQDk33K5tX+OBA02EEM3hS/okqY/rLrmklxDisNkShJR3o6CJBeTZvnkq54bb\nne2byvur+x93EPYtt92yL/2pcm6RCm7fkq/D3R5rv/5wDSFE/ZFfCiVEylIsewaak/klqqmo\nYhWt4PbNs1g5N9xuaF8+W6Nwx2+3EkL2f30knlrQ/x8fryaEWP/Hi6/9u4wbBU2cVHD75nm0\ncm643dm+b1j5/jtkhMivfdCe5YXl3CIV276VF9gFHvv0sQ/f9cBvXxmatvnCQdfC2ImffeW9\n3WpCCGm6/bng5orxfPj4azmjr//O0xPucNg9+cw/JHNGr4upWGUobvvupq9Bxci7URJj3zom\nI0TRc9N3fz+07A2tO2dPPv7ld1gJIaT5c89HXytWzo2yG5u4uO2Ln3C5ybtFXjd2z35CiO7G\nX/qzHK28W6RS27fyAjv/w+8h2TCmt33zVf9mi/E8z3tf/Jv+zF3e9nw+fTO4yi9WCYrbvrvr\na1AhNtEo0fEfXVeTWVJz6G+e96QUK+dG2X1NXNz2xU+43GyiRXie57mXv9BKCKn59B+iWQ7G\n83x5t0hltm/lBXZ8xHb6l/94xwfe3t9Zb1BIFTpz28FrPvblh/5kixdSjPIP/+yuD72lw6KR\nyzXm9rd88Is/veATZ7HyV9z23W1fg4qwqUaJLT/7j7df299UrZbJVFXN/X9+6z3/cTGzV6Cc\nG2W3NXFx2xc/4XKzqRYJ/+6TJkJIy9+c5ISOWc4tUoHty/A8nzX6BgAAAIDKsttXxQIAAACI\nBgI7AAAAAJFAYAcAAAAgEgjsAAAAAEQCgR0AAACASCCwAwAAABAJBHYAAAAAIoHADgAAAEAk\nENgBAAAAiAQCOwAAAACRQGAHAAAAIBII7AAAAABEAoEdAAAAgEggsAMAAAAQCQR2AAAAACKB\nwA4AAABAJBDYAQAAAIgEAjsAAAAAkUBgBwAAACASCOwAAAAARAKBHQAAAIBIILADAAAAEAkE\ndgAAAAAigcAOAAAAQCQQ2AEAAACIBAI7AAAAAJFAYAcAAAAgEgjsAAAAAEQCgR0AAACASCCw\nAwAAABAJBHYAAAAAIoHADgAgD/HH38cwTOeXBopYEgCg2BDYAUCF+uNtRiaFRKmztB265pNf\neXTQt9NVAwDYIQzP8ztdBwCAAvzxNuM7H/JmeULWdduTLz9wrXmb3z/wk2t1n/pDz92DY/9n\n3za/FQBAntBjBwAV7ci3Z3ie5/lE1Ls8+vQPP7lXSWIXH/zM/zmR2OmaAQCUHgI7ABAFRqav\n673msw//6n8fIYQs/O53wztdIwCA0kNgBwBiwnQfPqghhDgcjjcejC0+972/uuHSDotOIVcZ\nG/a846N/+9hg2iAut/Lyg1/84OV9rVadSm1q6j1yzSe+/thpR/z159+8JGLxvisZ3af+QAgZ\nv2d/cprfNf/sySi5iTrYvn8lwzBHvzkbnvzF/77pLR1mjUJpbDzwnr9++EKgmJ8RAIiYdKcr\nAABQRPzFcwPrhBCLxfLaI7EL33331Z//o/P16cTR5dHnH7vn+V89cfznL95/vZU+6P7tZy69\n4ceLyeHbxXHX4vjZZ56Y1oV/8hdbr1VedXj9ueF/eNc3v//C6zHf0uBT/3TLiZHwhT9+tmXr\nFQEAsUOPHQCIAh/z28afvf+2D/zdGUJI03XX7qUPD33z5v/5Ryev67/1h8+OLHoDa1OnfvG3\n19RLIhf/5eOffcJNX7z+Hz96ZDGh2H/bQycmVn3hiN82OfDco1+7+ZhVnv3dGu88wfsffhch\npOfuQf51f7zdmLVqedXhdYM//dHkkbsefWXS5g+6F07+9L8fUBLfM/d875UifVAAIG48AEBF\nevpWQ/bTmqzztqccrxV68Y4GQkjVf/uZI/Wl0TP/q48lhLnqBys8z/P8+sPvYQm59P+dz/1u\nscfeSwjp+F/nko9kBnY5SuZXB55f+acrCCGk+4uvhlLKxV/462ZCyOVClQMAeA167ABAHFi5\nprql/88+/rc/PX36getey3ViO316iRD1+277yJuSn8gOf/bWSwnhT506QwghRH3dx/6bibz6\njQ9/9h8e++PArDtazIrlWYfXNf/FBy9RpvxbcuDAHkKI0+ksZqUAQKQQ2AFARXs93QnPRQJr\nswPP/Ovf3XzgjZ48r9dLCGlsamLSXkYfCng8HCGEEPiHSRMAAAK8SURBVOuHf/rq//eN96hf\n+tan3nmorVpb3Xn5+//6vj/MRIpQw3zr8Jo3Zge+RqFQEEI4jiMAABtBYAcAImYwGAghiwsL\n6ZnY6UNao1Hy2gPK9vd86eGnL9h87pmB449/8xPdi49+/tpD1//z5JZzuOdfBwCArUJgBwAi\nVnv0aAMhwd88+NibBjLjA/c/fIoQ5ujRI2kvYOTG1v63v/8zX/nJf37tSuJ9+vs/Hc91bJlM\nRggJh8PFrgMAQMEQ2AGAmF1x62f2ssT969vf+en7nx9b8a+7Zs7++qvvuf7bwxzRv/f2j9QS\nQgi5cO+7rvrU//PQ704OzdgD0ej62vTJn937yDlCSCKRcwcLRW2tkZDFZ35+fN4fFdrnIr86\nAAAUAfLYAYCYMfu/9NNvH7/6fz438ODt73jw9jeekHfc8sgPb6qm/0j4po7/5L+O/+RraS82\nX//FW/fkPPblN9xgevBfB751Vcu36ANX/8idLeNJfnUAACgC9NgBgLjJD37hD+f++I+ffc+R\nVpNGJlXoa3vf9uG7/u3kqYfeV/d6mf67/+v4I3/3mfdctq/VolWojHVt+9724bseenHgV38p\nkBVYdf19T33vtmv2NRgUkvSFEZuvAwBAETA8v+WZwQAAAABQBtBjBwAAACASCOwAAAAARAKB\nHQAAAIBIILADAAAAEAkEdgAAAAAigcAOAAAAQCQQ2AEAAACIBAI7AAAAAJFAYAcAAAAgEgjs\nAAAAAEQCgR0AAACASCCwAwAAABAJBHYAAAAAIoHADgAAAEAkENgBAAAAiAQCOwAAAACRQGAH\nAAAAIBII7AAAAABEAoEdAAAAgEggsAMAAAAQCQR2AAAAACKBwA4AAABAJBDYAQAAAIgEAjsA\nAAAAkUBgBwAAACASCOwAAAAARAKBHQAAAIBIILADAAAAEIn/H9jH+0wpdR1VAAAAAElFTkSu\nQmCC", + "text/plain": [ + "plot without title" + ] + }, + "metadata": { + "image/png": { + "height": 420, + "width": 420 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# GWAS\n", + "print(i)\n", + "plot_dataset(lapply(gwas_input_list[[i]], function(x){\n", + " x[unique(eqtl_all_effect$SNP[eqtl_all_effect$ident == eqtl_var])]}))" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "id": "d3db5dfe-9564-4ee3-83cb-73d3d26cc6df", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T1MB_RPS26\"\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeXyU1aH/8TNLMslksu8hCyQhYUvYQcSKEbXgT6jKotYqV7CLthau11rFXrlw\nL1irtlIr9V6EW2vtxQJV0UaqhYS1IgHEsCRhSyAhK1km28xklt8fUYSQDFlmyXPm8/6Lec6Z\nmS//zOub53nOeVQOh0MAAABA+dTeDgAAAADXoNgBAABIgmIHAAAgCYodAACAJCh2AAAAkqDY\nAQAASIJiBwAAIAmKHQAAgCQodgAAAJKg2AEAAEiCYgcAACAJih0AAIAkKHYAAACSoNgBAABI\ngmIHAAAgCYodAACAJCh2AAAAkqDYAQAASIJiBwAAIAmKHQAAgCQodgAAAJKg2AEAAEiCYgcA\nACAJih0AAIAkKHYAAACSoNgBAABIgmIHAAAgCYodAACAJCh2AAAAkqDYAQAASIJiBwAAIAmK\nHQAAgCQodgAAAJKg2AEAAEiCYgcAACAJih0AAIAkKHYAAACSoNgBAABIgmIHAAAgCYodAACA\nJCh2AAAAkqDYAQAASIJiBwAAIAmKHQAAgCQodgAAAJKg2AEAAEiCYgcAACAJih0AAIAkKHYA\nAACSoNgBAABIgmIHAAAgCYodAACAJCh2AAAAkqDYAQAASIJiBwAAIAmKHQAAgCQodgAAAJKg\n2AEAAEiCYgcAACAJih0AAIAkKHYAAACSoNgBAABIgmIHAAAgCYodAACAJCh2AAAAkqDYAQAA\nSIJiBwAAIAmKHQAAgCQodgAAAJKg2AEAAEiCYgcAACAJih0AAIAkKHYAAACSoNgBAABIgmIH\nAAAgCYodAACAJCh2AAAAkqDYAQAASIJiBwAAIAmKHQAAgCQodgAAAJKg2AEAAEiCYgcAACAJ\nih0AAIAkKHYAAACSoNgBAABIgmIHAAAgCYodAACAJCh2AAAAkqDYAQAASIJiBwAAIAmKHQAA\ngCQodgAAAJKg2AEAAEiCYgcAACAJih0AAIAktN4OoABNTU1vvfVWe3u7t4MAAIBBITAwcNGi\nRaGhod4O0hXF7vreeeedpUuXejsFAAAYRLRa7eOPP+7tFF1R7K6vo6NDCLFhw4axY8d6OwsA\nAPCyo0ePLlmypLMeDDYUu97KzMycOHGit1MAAAAvM5lM3o7QIxZPAAAASEKBZ+zayvK3vLMl\nd/ehwuKy2sbmNqufPjg0JiVzzMSb75z/4IJbUgK9nRAAAMAbFFbsavNWPfDQ6h0VlquOtrY0\n1FaWHv/s7+++vnL5zOfe3vR8TpSXAgIAAHiNkoqdtXDNrNkrDpuFIX3Ww4vn3z41K21IZEiA\n1moyXqo4U3jg0y0b39p+eseK2bP8Cj57doyS/msAAAADp6D207Z11ZrDZhF394Z9mxan6q4a\nS8vMmnLr3UuefHLj/Tctef/Q6pVbl26+T++loAAAAF6hoMUTB/PzW4UYt+zlrq3uG7q0xS8t\nHStE665dBR7NBgAA4H0KKnZGo1EIkZiY6HRW53jnXAAAAF+ioGKXlJQkhDi4Z4+zzWNMe/cW\nCCGSk5M9lAoAAGCwUFCxG7tgYYZKVK9fvHDt/mprNxOs1fvXLly8vlqoMhfMy/Z4PgAAAO9S\n0OIJ1cTlG5/O/faLRz9cNj1lTdb0GVPGpA2JCtZpbObmuoozxz7fta+wxixE0LhnNiznEREA\nAMDnKKjYCWGY/svd+zOfW/b8m3nlhTs3F+7sOiEgMefRVa+ufiQ7yBvxAAAAvEpRxU4IEZL9\nyGs7F71QeiBvd0FhyfmaxpZ2mybQEBaTnJE1aUbO1BRD3y4u22y23Nxc5w99O3LkiBBicD7r\nFwAA4DKlFTshhBBqw9Bpc4ZOm+OCj8rLy5s7d25vZv75z3++5ZZbXPCVAAAA7qHIYtctu92u\nVvd5LUhOTs62bducn7Fbt25dfn7+9fZZAQAA8DJlFTurqcVkVfkFBuk0Xx9y1O7/7XPP//79\nfadqLbrYkTMWLnvhPx8dF9rbT9RoNHPmXOfUX25urhCiH60RAADAk5RU7Cz5y9JyXr9067pz\nOx6L7zzUtOMn02evO/XV3W/t1ce3v/b93XvL8vf/5+QA7wUF4HtsNltlZWVtba3ZbFar1eHh\n4YmJiYGBgd7OBcC3KOgsVMvW1/73ogi9/18f+arVCcfhFx9fd6pDFTvzPz/4ouxi2RcfrJoZ\nq2o7suZHvyn2alQAvqWpqWn//v2nTp1qbGxsb29vbW0tLy8/cOBAWVmZt6MB8C0KKnbHDhxo\nEyJr8jfn4k68916JECHz1m7+xdyxyfHJY+f++1/WzgsR9sN/2XLGm1EB+BCz2fzll19arV33\nTXc4HGfPnq2urvZKKgC+SUHFrq6uTggRHBx8+ci5c+eEEBNuuy388qGImTPHCyFKSko8ng+A\nbyovL7+21V1WWlrqwSwAfJ2C7rFLTEwU4syRQ4fsD3+rs4/q9XohzH5+flfM8vf39048ADKr\nqampqKhoaWlxOBwGgyEhISEuLq5zqKmpyckb29raLBYLv0wAPENBZ+zGzp6dIETVhuUvnzR3\nHpk6a1a4EF/885/tlye179//hRAiMzPDOyEBSKi4uPj48eONjY1Wq9VmszU1NZ08efL48eMO\nh0MI4eR0XSebzeaRmACgpGKnmvGz52/Ri9a9P//Wt37033nnWhxB97z0xsLE+reWPrbpZLNd\n2JtPbnps2R9rhf9Ni+5P83ZcAHKoqam5ePGik+MBAc4W4atUKk7XAfAYBRU7IZJ/uGnz4yMD\nxKWD//2jW1Oj40Z964d/DZwyPrjkrQdGhRkMhrBRD7xVbI2787dv/jjV21kBSKLbVnflUFRU\nlJO3R0REaDQaJxMAwIUUVeyEiL3z9YOH/vzk7IxglTDVnNz3t3ff+mtBvUMIYW9vbfeLm/zQ\nrz4teP+HmQq6dRDA4NbS0tLTUGtrq8PhiI+PDw3tfld0jUaTnp7utmgA0JXyGlDQqAdeyb1/\nVfkX+/cdPHauuqHFog40hMcOHZE9ZdqkYSEKa6oAFE+lUmVnZ586daqqqurK4xqNJjEx0fmF\nWgBwLeUVOyGEEKqgxPG33zf+dm/nACC9oKCgxsbGnoZUKpUQQqvVjhw5MiEh4coN7Ww2W1lZ\n2aVLl8aNG3f16n0AcBdOcAGAMwkJCT0NxcfHX/633W4/efLktStkW1paTp486a5wAHA1ih0A\nOBMbG3t5y7orRUVFDRky5PLLurq69vb2a6cJIS5dutTW1uaufABwBYVeigUAzxk5cmR4ePjF\nixebm5uFEEFBQQkJCfHx8Z3XYTs5WWPROarX690eFIDPo9gBwPXFxcV1e97uMrvd3u9RAHAV\nLsUCgAsEBgY6GWVtLADPoNgBgAsYDAYno0aj0WNJAPgyih0AuEB9fb2T0draWo8lAeDLKHYA\n4AIWi8XJqM1m81gSAL6MYgcALuD8Ljo2KAbgGRQ7AHCBuLi4K3c/uXbUk2EA+CyKHQC4gE6n\ni46O7nYoMDDwymdUAID7sI8dALjG6NGjVSpVdXX15SMqlSooKGj8+PFeTAXAp1DsAMBlRo0a\nlZ6eXlFR0d7e7ufnFx8f73wbFABwLYodALiSv7//sGHDvJ0CgI/iHjsAAABJUOwAAAAkQbED\nAACQBMUOAABAEhQ7AAAASVDsAAAAJEGxAwAAkATFDgAAQBIUOwAAAElQ7AAAACRBsQMAAJAE\nxQ4AAEASFDsAAABJUOwAAAAkQbEDAACQBMUOAABAEhQ7AAAASVDsAAAAJEGxAwAAkATFDgAA\nQBIUOwAAAElQ7AAAACSh9XYAAPC+mpqaqqqq1tZWtVodHBycmJgYEhLi7VAA0GcUOwA+zeFw\nnDhxoqam5vKRtra2mpqatLS0pKQkLwYDgH7gUiwAn3bhwoUrW10nh8Nx+vRpo9HolUgA0G8U\nOwA+raKioh9DADA4UewA+K6Ojg6TydTTaHNzsyfDAMDAUewAoHsOh8PbEQCgbyh2AHyXVqv1\n8/PraVSv13syDAAMHMUOgO9SqVRxcXE9jcbHx3syDAAMHMUOgE8bOnSowWC49nh8fHxUVJTn\n8wDAQLCPHQCfptVqJ0yYUFZWVlVVZTabhRBBQUFJSUmcrgOgRBQ7AL5Oo9GkpqampqZarVaV\nSqXRaLydCAD6iWIHAF/RavlJBKBs3GMHAAAgCYodAACAJCh2AAAAkqDYAQAASIJiBwAAIAmK\nHQAAgCQodgAAAJKg2AEAAEiCYgcAACAJih0AAIAkKHYAAACSoNgBAABIgmIHAAAgCYodAACA\nJCh2AAAAkqDYAQAASIJiBwAAIAmKHQAAgCQodgAAAJKg2AEAAEiCYgcAACAJih0AAIAkKHYA\nAACSoNgBAABIQuvtAH3XVpa/5Z0tubsPFRaX1TY2t1n99MGhMSmZYybefOf8BxfckhLo7YQA\nAADeoLBiV5u36oGHVu+osFx1tLWlobay9Phnf3/39ZXLZz739qbnc6K8FBAAAMBrlFTsrIVr\nZs1ecdgsDOmzHl48//apWWlDIkMCtFaT8VLFmcIDn27Z+Nb20ztWzJ7lV/DZs2OU9F8DAAAY\nOAW1n7atq9YcNou4uzfs27Q4VXfVWFpm1pRb717y5JMb779pyfuHVq/cunTzfXovBQUAAPAK\nBS2eOJif3yrEuGUvd21139ClLX5p6VghWnftKvBoNgAAAO9TULEzGo1CiMTERKezOsc75wIA\nAPgSBRW7pKQkIcTBPXtMTiaZ9u4tEEIkJyd7KBUAAMBgoaBiN3bBwgyVqF6/eOHa/dXWbiZY\nq/evXbh4fbVQZS6Yl+3xfAAAAN6loMUTqonLNz6d++0Xj364bHrKmqzpM6aMSRsSFazT2MzN\ndRVnjn2+a19hjVmIoHHPbFg+0dtpAQAAPE1BxU4Iw/Rf7t6f+dyy59/MKy/cublwZ9cJAYk5\nj656dfUj2UHeiAcAAOBViip2QoiQ7Ede27nohdIDebsLCkvO1zS2tNs0gYawmOSMrEkzcqam\nGPp2cdlms+Xm5ppMzu7bKy0tFULY7faBBAcAAHA3pRU7IYQQasPQaXOGTpvjgo/Ky8ubO3du\nb2aeO3fOBd8HAADgNoosdi6Uk5Ozbds252fs1q1bl5+fP2zYMI+lAgAA6AflFzvTxc8//tue\n4+VGEZw46qY7Z98wJLAP79ZoNHPmXOfUX25urhBCrVbQCmIAAOCLFFTsSne8+Y9zYthtj84c\n+vUh4+evPDD/udwL5suT/JNmr9n67r9NDvZGQgAAAG9S0Fmogt9///vf//7vv3lW2MU/fXf2\nU7kXzJro8fcs+clPltwzPkZjufDxU7MffrfGizkBAAC8Q0Fn7Lpw7H/5F3+rF6rhP9j+zzdu\ni1QJIRyX/vHDG+5Yf/r9FWuP3Ld6vLcTAgAAeJSCzth1ceLjj8uECPrOihc6W50QQhV52wsr\n5gYJUfzxx2e9mw4AAMDjlFvsOneXGzNjRsSVRyNnzBgthDh9+rRXQgEAAHiPcoudVqsVQkRG\nRl59ODo6WgjR0dHhjUwAAABepLh77JovFhUVCSFEUHyGEIfLysqEGHHF+MWLF4UQSUlJ3okH\nAADgNYordp8sHTnyipfF+flVvxgRd/l1x8mTZ4TQjx2b7vloAAAAXqWgYhebPXNm4zVHVUfz\nLooHEr561fbB2381iuAHH5yj92w4AAAAr1NQsfvW8//4x/XmGId8Z+3/zkqYfie9DgAA+BwF\nFbveiJv2wL9M83YIAAAAr1DuqlgAAABchWIHAAAgCYodAACAJCh2AAAAkqDYAQAASIJiBwAA\nIAmKHQAAgCQodgAAAJKg2AEAAEiCYgcAACAJih0AAIAkKHYAAACSoNgBAABIgmIHAAAgCYod\nAACAJCh2AAAAkqDYAQAASIJiBwAAIAmKHQAAgCQodgAAAJKg2AEAAEiCYgcAACAJih0AAIAk\nKHYAAACSoNgBAABIgmIHAAAgCYodAACAJCh2AAAAktB6OwAAeI3FYqmoqGhoaOjo6NDpdFFR\nUQkJCWo1f/ECUCqKHQAf1dzc/OWXX1osls6XbW1tDQ0NFy9eHDdunL+/v3ezAUD/8IcpAF9k\nt9uPHTt2udVd1traWlRU5JVIADBwFDsAvqiurs5kMnU7dOnSpfb2dg/nAQCXoNgB8EX19fVO\nRpubmz2WBABciGIHwOecPn26qqrKyQSHw+GxMADgQiyeAOBbSktLL1y44HxOYGCgZ8IAgGtx\nxg6AD7HZbOfPn3c+R6/XBwcHeyYPALgWxQ6AD2lubrbZbE4mqFSqkSNHqlQqj0UCABei2AHw\nIVar9bpzOF0HQLkodgB8yHV3HnY4HL0pfwAwOFHsAPiQ4OBgnU7nZIJardZqWVUGQKkodgB8\niEqlGj58uJMJ4eHh3GAHQLkodgB8S3R09IgRI7ptbxqNJjU11fORAMBVKHYAfE58fPzkyZP1\nev2VBwMCArKzsw0Gg7dSAcDAcSsJAF8UFBQ0depUo9HY3NzscDj0ej0XYQFIgGIHwHeFhISE\nhIR4OwUAuAyXYgEAACRBsQMAAJAExQ4AAEASFDsAAABJUOwAAAAkQbEDAACQBMUOAABAEuxj\nB8CnWSyW6urq1tZWtVodHBwcExOj0Wi8HQoA+oliB8B3VVVVFRcX2+32y0fOnj07atSo8PBw\nL6YCgH7jUiwAH9XQ0FBUVHRlqxNCWCyWwsJCk8nkrVQAMBAUOwA+qrS01OFwXHvcZrOdP3/e\n83kAYOAodgB8kcPhaGpq6mm0sbHRk2EAwFUodgB8kc1m6/Z0XSer1erJMADgKhQ7AL5Iq9U6\nWf2q0+k8GQYAXIViB8BHRUVF9WMIAAYzih0AH5Wamurn53ft8aCgoMTERM/nAYCBo9gB8FEB\nAQETJkwIDQ298mB0dPS4cePYoxiAQrFBMQDfpdfrJ0yY0NbW1traqlKpgoODubsOgKJR7AD4\nOr1er9frvZ0CAFyAS7EAAACSoNgBAABIgmIHAAAgCYodAACAJCh2AAAAkqDYAQAASIJiBwAA\nIAkF7mPXVpa/5Z0tubsPFRaX1TY2t1n99MGhMSmZYybefOf8BxfckhLo7YQAAADeoLBiV5u3\n6oGHVu+osFx1tLWlobay9Phnf3/39ZXLZz739qbnc3iANwAA8DlKKnbWwjWzZq84bBaG9FkP\nL55/+9SstCGRIQFaq8l4qeJM4YFPt2x8a/vpHStmz/Ir+OzZMUr6rwEAAAycgtpP29ZVaw6b\nRdzdG/ZtWpx69eMc0zKzptx695Inn9x4/01L3j+0euXWpZvv4wlBAADApyho8cTB/PxWIcYt\ne7lrq/uGLm3xS0vHCtG6a1eBR7MBAAB4n4KKndFoFEIkJiY6ndU53jkXAADAlyio2CUlJQkh\nDu7ZY3IyybR3b4EQIjk52UOpACiM1Wqtqqo6e/bsuXPnGhoaHA6HtxMBgMso6B67sQsWZvzq\nhZL1ixeO3LT+xzfGXhPdWr3/9e8vXl8tVJkL5mV7IyKAQa6qqqq4uNhut18+otPpxo0bp9dz\nUy4AGSio2KkmLt/4dO63Xzz64bLpKWuyps+YMiZtSFSwTmMzN9dVnDn2+a59hTVmIYLGPbNh\n+URvpwUw6NTV1RUVFXU5RWc2mwsKCm688UatVkG/hwDQPUX9kBmm/3L3/sznlj3/Zl554c7N\nhTu7TghIzHl01aurH8kO8kY8AINbcXFxtxdebTZbcXHx6NGjPR8JAFxLUcVOCBGS/chrOxe9\nUHogb3dBYcn5msaWdpsm0BAWk5yRNWlGztQUg4LuGgTgOR0dHRaLpafR+vp6T4YBADdRWrET\nQgihNgydNmfotDku+CibzZabm2syOVuQUVpaKoS48qYcAIpjNpudjNpsNo8lAQD3UWSx605T\n6RfnGkXYsHFDQ/vytry8vLlz5/Zm5rlz5/qXDMBgoNP1tAGmEEKoVCqPJQEA95Gm2H361PgF\nW8W8zY4t8/vytpycnG3btjk/Y7du3br8/Pxhw4YNMCIAL/Lz89NoND2dmQsMDPRwHgBwB2mK\nXT9pNJo5c65zTTc3N1cIoVZz9x6gbEOGDDl//ny3Q2lpaR4OAwDuoKCysmW+yokFW4UQYuuC\nr17O3+LtuAAGm7S0tIiIiGuPJycnR0ZGej4PALicr5+xA+BTxo4dW1NTU15e3tbWJoQIDg5O\nSUkJCwvzdi4AcA0FFbu4lGR/UR5600/Xrnt2dpJ/l9Fti8IXbRNz32p4a64QQvizkx2AbsXE\nxMTExHg7BQC4hYIuxd70yvEjb/94eNFvv3tjzo/fPtkREnYlvZ8QQvjpr3oJAADgQxRU7IQw\njPreb/ee3P+7u9Uf/vSmkdN/8sdjzd6OBAAAMGgoqtgJIYQqauqP3z58YvvK6VVvLpow+o7n\nPzrnbNdRAAAAn6G4YieEEMIv8du/+ODY0Xd/MvTLNXPGjLvvlb3V7BoPAAB8nTKLnRBCiKDM\nhb/edfKzN+7X/f2pm0c+tsPbeQAAALxLwcVOCCFU4ZN+uKHgxM41t8TYdTqdzl/j7UQAAADe\noqDtTnqkTch55q9Fz3g7BgAAgHcp/IwdAAAAvkaxAwAAkATFDgAAQBIUOwAAAElQ7AAAACRB\nsQMAAJAExQ4AAEASFDsAAABJUOwAAAAkQbEDAACQBMUOAABAEhQ7AAAASVDsAAAAJEGxAwAA\nkATFDgAAQBIUOwAAAElQ7AAAACRBsQMAAJAExQ4AAEASFDsAAABJUOwAAAAkQbEDAACQBMUO\nAABAEhQ7AAAASVDsAAAAJEGxAwAAkATFDgAAQBIUOwAAAElQ7AAAACRBsQMAAJAExQ4AAEAS\nFDsAAABJUOwAAAAkQbEDAACQBMUOAABAEhQ7AAAASVDsAAAAJEGxAwAAkATFDgAAQBIUOwAA\nAElQ7AAAACRBsQMAAJCEtvdTbc0XThw7c7G2trbRrAuLjo5OSMsalWTQuC8cAAAAeu/6xc5U\nvn/zxo2bPtqx93Cp0Xb1mCZk6ISbZt51/+LFC25MDHBTRAAAAPSGs2JnPL75xX9f9fttxxps\nQgi1Pm7klMzE6IiIiBB/c9Ol+obaC0XHSg7mbjiYu2HV0jFzH3v+v36+YFSIp5IDAADgKj0V\nuzObfvDgTzceqBVhI2599MkHF9yVc0NWcsg1l12tTWWFn+V9tPnP72zdtmbhtvU3LP7tn/7n\n/jQ3hwYAAMC1elo8cWTr21Vjf/zGnvNVJz9Z/4tFd4zrptUJIbShKeO//S///uYnRVVle974\n8djKt7cecWdcAAAA9KSnM3Y5vz17Kj7er/cfpBty0w/Xfrr4mUqjS3IBAACgj3oqdpHx8f35\nOL/4+MgBpAEAAEC/9WG7k69ZGisuVDZa/MPik4aE+bs+EgAAAPqjLxsUm07/dcXCSfGhEYnp\no8aMSk+MCIuftHDFe2dMbksHAACAXut1sWs9+B+3TJi3avOhKrN/RNKo7FFJEf6mqkObV907\n/paVBa3uzAgAAIBe6GWxcxxa/dCqA80i4qZn3y9puHT++NHj5y81FL/39I3hovnAyu+tOeRw\nb04AAABcRy+L3eFN/1fsEMFzX9265jvpgV8dDBx+94tbf3OXQTiK/+9ddjkBAADwrl4Wu4qK\nCiHE+FmzYroMxM2ePf7yOAAAALynl6tiY2NjhSh3OK694Np5LDY21rW5AEA5rFZrdXW10Wi0\n2+16vT4mJiYoKMjboQD4ol6esZt0zz2JQhzJza3qMlD5t9wjQqTMmzfJ5dEAQAmampoOHDhQ\nUlJSVVVVU1NTWlp68ODB0tJSb+cC4It6Wew0N//Xn5+dpPnbk/N+/tfitq8OthZvferef8vV\nTn7unVXT+7JvCgBIwmKxfPnllxaL5cqDDofj3LlzlZWV3koFwGf18lLszp/f+vQOs0HfsP9X\n80b8JnTIsCFBLeXnLho7hNAnmrYvzdl+xeSZvyp48Va3pAWAwaWiosJqtXY7VFZWFt+/Z/gA\nQH/1stjVnzl06NDXLzqaKkqaLg+1lRceKr9q8tB612QDgMGusbGxp6H29naLxeLvzwN6AHhO\nL4vdnDcrK3/X288MCO9vGgBQFpvN5mTUarVS7AB4Ui+LnS4sLs69QQBAgQICApqbm7sdUqlU\nOp3Ow3kA+DjWPABA/0VHR/c0FBERodFoPBkGAHoqdqf37Thv7vOnmct27Ds9sEAAoCAxMTHh\n4d3cfqLVatPT0z2fB4CP66nYffGb24anzXjste3FTfZefIytsWj7az+6OS3jtt984cp4ADCo\nqVSqrKysxMREtfqbn9PQ0NAJEybo9XovBgPgm3q6x+7Wn7+xZOmK9T+d/cbT8ZPuun/hXTk3\nTpkyYURsoOqbOfa2qqJDn3/+z7yP/rLpo0NVZm3c9B+88XM2OgHgUzQazfDhw1NTU5ubmzuf\nPBEQEODtUAB8VE/FLmLyD9ft/+5Pt7y6+pX/3rLlNwVbfiOE0ASGRUZGREQE+5mN9fX1l+qb\nTJ3rwQKTblq0+snlP70nw+Cx5AAwiGg0mrCwMG+nAODrnK6KDR4x/9/fnr987Zcf/fndv+3c\ntXtvQXFNeWPNV7vWqXQxI2/+1owZt911//2zR4WxDAMAAMCrerHdiSYi+zs/yf7OT4QQdrPx\nUm1tXVOHLiwqOjoi2J82BwAAMFj0ch+7r6h1IdGJIdGJbgoDAACA/uOUGwAAgCR6ccaurSx/\nyztbcncfKiwuq21sbrP66YNDY1Iyx0y8+c75Dy64JSXQ/TEBAABwPdcpdrV5qx54aPWOCstV\nR1tbGmorS49/9vd3X1+5fOZzb296PifKjRm7oGgCAAB0x1mxsxaumTV7xWGzMKTPenjx/Nun\nZqUNiQwJ0FpNxksVZwoPfLpl41vbT+9YMXuWX8Fnz47p2+16/TMYiyYAAMDg4KSNtW1dteaw\nWcTdvWHfpsWpVz/JOi0za8qtdy958smN99+05P1Dq1duXbr5Pndvsj4IizttoIUAACAASURB\nVCYAAMDg4WTxxMH8/FYhxi17uWur+4YubfFLS8cK0bprV4Fb4l3pm6J59NjHrz+75O5bp2Rl\npqWkpHzVMp99/eNjRzfcHSfMh1av3Nrm9jwAAACDi5NiZzQahRCJic43N+kc75zrXoOtaAIA\nAAwuTopdUlKSEOLgnj0mJ+837d1bIIRITk52cbBrDbaiCQAAMLg4KXZjFyzMUInq9YsXrt1f\nbe1mgrV6/9qFi9dXC1XmgnnZbov4tcFWNAEAAAYXJysMVBOXb3w699svHv1w2fSUNVnTZ0wZ\nkzYkKlinsZmb6yrOHPt8177CGrMQQeOe2bB8ovujjl2wMONXL5SsX7xw5Kb1P74x9pro1ur9\nr3/fc0UTAABgcHG6dNQw/Ze792c+t+z5N/PKC3duLtzZdUJAYs6jq15d/Uh2kPsSXjbYiiYA\nAMDgcr09QUKyH3lt56IXSg/k7S4oLDlf09jSbtMEGsJikjOyJs3ImZpi8OBDyQZX0QQAABhc\nerXZm9owdNqcodPmuDtMLwyqogkAADCYKHIXXxcWTZvNlpubazI5W5BRWloqhLDb7S74PgAA\nALcZeLE7s/13H58W6bN/MivNBXk8LS8vb+7cub2Zee7cOXeHAQAAGIiBF7sjbz7xxFYxb7On\nip2p8uj+IxWquKzJE5IMQgghbDX//OMbm/edqlPHjsq5f/F9k2J6fzk2Jydn27Ztzs/YrVu3\nLj8/f9iwYQNMDgAA4FbKuhTb+vlL9969/JNKqxBCG3/rf2376OfjLrwxe9rj/6h3dM5Y/+uX\nN7z8j4+eHBfQu0/UaDRz5lznmm5ubq4QQq3m7j0AADCoOSl2NlNLe3f7EndhsrkujXO2g6se\nePqTSqEJTc1O15Qd3fns/f8x5qkjS/9RHzT2viceujmucc+br24q3PGzB9bkHFs1XuOpXAAA\nAIOCk2L33veCF2z1XJLranv/12+cFSLxu38p+NO9sapLHz0ycc6bjzzfZEn+/od7/+cOgxDi\n8YfHifT5m4p+//sdK/7nDpodAADwKQq6vHj60CGjEOn/8vS9sSohRORdTy7KqK+ttaU99Pgd\nhq/mhN392HfjhKjbu7fYm1EBAAC8wEmxGzZsqBBi/AslHU69e69nkory8nIhRHp6+tcHvvrn\nFUeE0IwYMVwIcf78eQ+lAgAAGCycFLsJt98eJcQXO3Y2ap1RqzwUNSQkRAhhsVi+PhAYGCiE\nEAaD4YpZoaGhQgibzWN3/gEAAAwSToqd6uY7ZgYIx95PPm33XB4n0tLSxNXbyUWPnjFjxozR\n0VfOqqioEEIkJyd7OB0AAIC3OdvuJOC2h5d9x3QypKVUiJE9zpr02Pr1s8SwSS6P1lX87FnZ\nT+7/cufOUjFhqBBCiBkr8/O7TLKWlJwTQj92bHrXtwNA/9nt9oaGhra2NpVKZTabW1paLBaL\nv79/QECAwWAwGAwOh6O9vV2tVoeEhHx1OQEAPM7pPnZhd77w/p3X+4ShMx991HV5nBlx3/du\neGV10batZ5/6t9Tup5g++tPWRmH47gN38bMKwFXq6+uLiorMZnMv50dHR2dmZvr5+bk1FQBc\nS1EbFGf87J+NP3M6oyHy9hd+f9OQGXfqPRQJgOyMRmNhYWGfnhZdW1trMpkmTJjAxuYAPExR\nxe764r+16Eff8nYIADI5e/Zsn1pdp+bm5oqKisTERJXKUwvMAKDXxe7M9t99fLr7IZXaXx8S\nkZAxfsqEtHDJeiIAH2e32xsbG/v33tOnT587dy4yMjI1NZW77gB4Ri+b2JE3n3jiek+h8I+f\n9i+r//uVR7IM15kIAArR0dHhcDj6/XabzVZTU1NfXz9+/Pird2YCALfoZbHL+t4LL2QefefV\nTcfM0RPmzL1p1BBDS8WJPds+PFKrG73gB3eEVuzLfe/zf/7P4hnnHIc/WTzUrZkBwEP8/PxU\nKtVAup0Qwmq1FhUVTZrk/s0DAPi8Xt7Ym3nnnY5PPzjmmLbiwKmC995cu3rl6rVvvneo5J+/\nmGo//tG+mCf+9Nnx/c9O8hcNnz77y3+wOTAAOajV6s5dzweoubm5tbV14J8DAM71stg1/d9z\nqw62Jz32yvMTQ7+5EVgVNvk/fv1YYvvBVb/YZAybvOK/Ho4SouaTT466KSwAeFxqaqpLFkC0\ntbUN/EMAwLleFrtD+/aZhBiVldV1viY7e7QQ7fv2HRZCN378SCHExYsXXZ0SALwlNDR0zJgx\nA9+Ujq1PAHhAL++xa29vF0LU1NQI0eX236qqqsvjAQEB4utnugKALKKioqZNm3bp0qW2trbW\n1tZLly5dfh61Wq0OCwvrvFzb2NjY0NDQ04eweAKAB/Sy2I0ePVqIQ0f/8N+fLX3xBt03x037\n3nirUAgxZsxoIURxcbEQIj2dx3kBkIxGo4mJibnySOcjxa48YrVaDxw4YLFYrn17dHS0Tqe7\n9jgAuFYvLw0M/Zelc0OE/eRL/++mJb/+a35B0amigvytryyePufXRXYRevfSRSnC8cUHH54X\nqolz70pwb2YAcC+LxdLU1NTY2NjW1uZwOGw2m8lk6rJNcZdWJ4TQarWjR4/Warv+wWwwGDIz\nM92bGACEEL1/8kTcQ394v/iu+Wv2F2z8t3kbrxhQRX1rxdY/PBgrRFVTyuKXXorP+WGGO4IC\ngAc0NDScPn26paXl8pHL252oVKrw8PC0tDQnF1XDwsKmTJlSXl5eX19vs9l0Ol10dHRCQgI3\n2AHwjN4/KiI85792F927ZcMf3s87VFLZ1OEXGp8xMeeeRx6dPz5KLYQQcTO+/9QMtwUFAHer\nra09fvx4l13rLr90OBz19fWNjY3Z2dnh4eE9fYhOp0tLS0tLS3NvVgDoTp+eAaaJnnDfMxPu\ne8ZdYQDAa2w2W3Fx8XX3Irbb7UVFRTfccAMPgQUwCHF1AACExWK5ePFiR0dHbyabTKZ+P0AW\nANyqT2fshL3+yw//7687CkoqGs26sCEZk2fOe2BOVjjtEIBS1dfXnzlz5sqb6nqjvb3dydVY\nAPCW3hc7+/n3f3r3otePGK849ofXVi2f8MTbH7w6J5FrEgAUp7q6+sSJE/14I4shAAxOvS12\nti9Wz7nv9S8tInjUvMcX356dFNxy4ctP/3fdluOHf7tgTuzBguVZGrcGBQDXslqtJSUl/Xtv\ncHCwa8MAgEv0stiZ3n/xV19aROgd64787bFhX73puz9Y+sN1/2/8jz/54pcvfPBvf76XzTcB\nKEh9fb3Vau3HG8PDw4OCglyeBwAGrrfPis3PbxFi2OMvXG51QgghtMMeX/PYMCGad+067JZ4\nAOAunY9C7KugoKBRo0a5PAwAuEQvz9jV1dUJIbrbO33EiEwhztXW1ro2FwC4WW/uk9NqtUFB\nQQ6Hw2q16nS6qKgodhsGMJj1stiFhoYKcenChQtCjLh65MKFC1+PA4CChISEXHdOZGQk5+cA\nKEgv/+6ccMMNfkIcX//yx8arjhu3v7z+uBD+06ZNcEM4AHCf0NDQ6/5NqtGwLAyAkvSy2IUs\n/NdHhwhxfsP8yfeu+GPuniOFR/bk/nHFvZPnbTgvVEk/+NcFrBADoDijR4/W6/VOJnA1AoCy\n9Ha7E/3MVz545fRdP/u05L1Vi95b9c2AJn72Kx+8lBPolnQA4E46nW7y5MlffvllQ0PDtaOB\ngYExMTGeTwUA/db7DYoDJz65/cTt763fsHVnQUllU4dfaHzmpJnzHn30njHh7E4MQKHUanV2\ndvbJkydramquPB4QEJCVlcU6CQDK0qdHiqnDs+Y9/eq8p90VBgC8QK1Wjx49OiEhoba2tr29\n3c/PLywsLDY2lhvsAChO354VCwCyCg8P5/GvAJSOqwwAAACS6OmM3fYn0n/ycR8+Z/bvTr82\nyxWBAAAA0D89FbuWyjNnzvThcypbXJEGAAAA/dZTsZv3l44Oex8+R809xgAAAN7VU7FTqbVa\n7r8DAABQEMobAACAJPpR7Ar/+NRTTz31x0LXhwEAAED/9aPYFW975ZVXXtlW7PowAAAA6D8u\nxQIAAEiCYgcAACAJih0AAIAk+vGsWI2/TqcT/mxcBwAAMKj0o9jd82eTyfVBAAAAMDBcigUA\nAJAExQ4AAEASFDsAAABJUOwAAAAkQbEDAACQBMUOAABAEhQ7AAAASVDsAAAAJEGxAwAAkATF\nDgAAQBIUOwAAAElQ7AAAACRBsQMAAJAExQ4AAEASFDsAAABJUOwAAAAkQbEDAACQhNbbAQDA\nC2w2W1NTk8lk8vPzCw0N9ff37+snOByO+vr6urq6jo4OrVYbGRkZFRWlUqnckRYAeoliB8Dn\nVFZWnjlzpqOjo/OlSqUKDQ0dNWqUTqfr5SdYrdZjx441NDRc+ZkhISFZWVn96IgA4CpcigXg\nE+x2e319fUVFRVFRUVFR0eVWJ4RwOByNjY379+8/ceJELz+tqKjoylbXyWg0Hj9+3GWJAaDv\nOGMHQH51dXXFxcUWi8X5tOrqarvdPmbMGOfT2traamtrux1qbGxsbGwMCwvrZ1AAGBjO2AGQ\nXH19/bFjx67b6jrV1ta2tbX1NOpwOGpra0tKSpx8QlNTU58jAoCLcMYOgOROnTrlcDh6P//i\nxYvp6enXHjebzYWFhc3Nzc7fbrPZ+pYPAFyHM3YAZGYymZycgetWt/MdDsexY8eu2+qEEAEB\nAX36OgBwIYodAJmZzea+vkWr7eZSRkNDg9FovO571Wp1ZGRkX78RAFyFYgdAZmp1n3/lYmJi\nrj3YyzvnUlNTe79nCgC4HPfYAZBZUFBQn+b7+/t3e8rNarU6f6NOpxs2bFh8fHyfvg4AXIti\nB0BmarU6MDCwvb29N5O1Wu2ECRO6fXqE8zvnMjMz4+PjeewEAK/jUiwAyaWlpTmfoFarDQbD\nsGHDbrzxxsDAwG7nOHlcmJ+fX1xcHK0OwGBAsQMguejoaOfdTqVSjRo1aujQoRqNpqc5gYGB\nycnJ3Q5lZGT0404+AHAHfowAyC85OXnq1Kk93W9ns9lOnz593Q9JTU0dPny4n5/f5SOBgYFZ\nWVndLrYAAK/gHjsAPkGv1wcEBLS2tnY72tDQYLPZnJyx65SYmJiQkNDS0tLR0aHT6YKCgrgC\nC2BQodgB8BVO9rRzOBwWi6WnG+yupFarQ0JCXJoLAFxGgcWurSx/yztbcncfKiwuq21sbrP6\n6YNDY1Iyx0y8+c75Dy64JeX6v8wAfFG3Ow/3chQAFEFhP2S1easeeGj1joqrH+bd2tJQW1l6\n/LO/v/v6yuUzn3t70/M5UV4KCGDwCgsLa2xs7HZIpVL16XmyADA4KanYWQvXzJq94rBZGNJn\nPbx4/u1Ts9KGRIYEaK0m46WKM4UHPt2y8a3tp3esmD3Lr+CzZ8co6b8GwAPi4+NLS0u7HXI4\nHBUVFcOGDfNsIgBwMQW1n7atq9YcNou4uzfs27Q49epn9qRlZk259e4lTz658f6blrx/aPXK\nrUs336f3UlAAg1NPKyc61dTUUOwAKJ2Ctjs5mJ/fKsS4ZS93bXXf0KUtfmnpWCFad+0q8Gg2\nAApQV1fnZNRisTgZBQBFUFCxMxqNQojExESnszrHO+cCAAD4EgUVu6SkJCHEwT17TE4mmfbu\nLRBC9LRDPAAfZjAYnIw6fxosACiCgord2AULM1Siev3ihWv3V1u7mWCt3r924eL11UKVuWBe\ntsfzARjknD8i4nqXAwBAARS0eEI1cfnGp3O//eLRD5dNT1mTNX3GlDFpQ6KCdRqbubmu4syx\nz3ftK6wxCxE07pkNyyd6Oy2AQcfPzy82Nra6uvraoYCAgPj4eM9HAgDXUlCxE8Iw/Ze792c+\nt+z5N/PKC3duLtzZdUJAYs6jq15d/Uh29w+EBODrRo4cabPZuqyiCAoKGj9+/EA+tqWl5fz5\n801NTTabLTAwMDo6OjExUa1W0CURAJJQVLETQoRkP/LazkUvlB7I211QWHK+prGl3aYJNITF\nJGdkTZqRMzXFwC8pgB6pVKqsrKyWlpbq6mqTyeTv7x8ZGRkRETGQz6yurj558uTl/Y07OjqM\nRmNNTc24ceN4mgUAD1Pkj47aMHTanKHT5rjgo2w2W25ursnkbEFG546mdrvdBd8HYBAwGAzO\nF1L0nslkKioquvapFc3NzadOnRo5cqRLvgUAekmRxc6F8vLy5s6d25uZ586dc3cYAIpTWVnZ\n0199NTU1w4cP56QdAE9S4i9Oh/Hi+RpzyJCh0YGqa0drCv/xZbWIzb4ty9n6t6/l5ORs27bN\n+Rm7devW5efnsyU9IBmr1drW1qZWq/V6fb/vh2tpaelpyG63t7W1hYSE9DcgAPSZwopd8+Hf\n/2jxL949Wm8TImDItx5Z+eovl0y4+ldz98rbF2wV8zY7tszvxQdqNJo5c65zTTc3N1cIwX3Q\ngDQsFsupU6dqa2s7L6FqNJr4+PjU1FSNRuPtaAAwIIoqKxV/vP+2x/98tN4mVAEGfUfFnt8/\neuOk7/3pTHeb2gFAtywWy6FDh2pqai7fGGez2crLy48ePdqPW2n1+h6fSq1SqQIDA/sfFAD6\nTkHFzr7nV7/IbRDqofPfPFzf3NzSUPz+L26LPPvOopwH3i61eTsdAIU4d+5ct3dfNDU1Xbx4\nsa+fFhcXp1J1c1OIECIqKsrPz6/P+QBgABRU7I5v335BiPAHfrNxyfgwrVAFZ3znP7d/vvWH\nI2u2PJLz8LsXWLQKoBdqa2v7MdSToKCgtLS0a48HBgZmZGT09dMAYIAUdI9dWVmZEGL8jBnB\n3xzTDPnOGzu32G++Z/33Zur8d224J777v5wBQAghrFZrR0dHT6PO11H1JCkpyWAwlJWVNTU1\n2e12nU4XGxubkpLCelgAnqeg3x2dTieE+do1DDF3vfHJW403fe9/778t4P38dV7JBkAZnC+P\n6PcaqfDw8PDwcCGE3W5noRUAL1LQD1BKSor4+rzd1dTJ3/3TJ2tvDz7x+3l3/Cyv0fPRACiE\nSqUKDg7uaTQ0NHSAn0+rA+BdCjpjlzZtWrQoPHvgQJ3Ijuo66D/iifc+vjTz1pUvc8oOwFWs\nVmtNTY3RaHQ4HEFBQQkJCcXFxddOU6lUSUlJno8HAC6koD8uNTn3fidc2PK2vt/Q7XjQ5P/I\n/eCJ0ToPxwIwmDU0NHz22WfFxcWVlZVVVVVnzpw5depUVFRUl6WsGo1m1KhRQUFB3soJAC6h\noDN2QnvrM5vfnlHpn27uaUbErWs/+XjkHw80iRFZnkwGYFAymUyFhYU221X7Idnt9rq6uoyM\njPb29tbWVpVKFRISEh8fr9N59M/C+vr6+vr6jo4Of3//qKiogV8FBgChrGIn/NJmfq+bbQWu\npErIeeyZHM/EATDIXbhwoUuru6yqqmrixIkeztOpo6Pj2LFjjY3f3A98/vz56OjoUaNGcYse\ngAHiRwSAtK4sT10YjcZ+PGfCJU6cOHFtsNra2m7v/AOAPqHYAZCW1ersgYM9ncxzq6ampvr6\n+m6Hqqqq+reRHgBcRrEDIK2AgICehjQajVc2EHZyEvG6owBwXRQ7ANKKirpma6SvRUZG9vSM\nV7dyfprQ+SlGALguRS2eAIC+GDJkSFVVVUtLS5fjKpUqMjLSYzE6Ojpqamra2tpUKpXz6ubk\nFCMA9AbFDoC01Gr1uHHjCgoKuty75nA4ioqK/P39IyIi3J2hqqqqpKSkN/fzabXasLAwd+cB\nIDcuxQKQWWtra7crEhwOR0lJibu/vb6+vqioqJerNNLS0rxy2x8AmVDsAMisrq6up6HODYrd\n+u2lpaUOh6PboSu3rPP39x85cmRCQoJbwwDwBfx1CEBmZnOPj6rpHHXfY8TsdrvRaOxp1GAw\npKWlWSwWnU4XHBzM1sQAXIJiB0BmGo2m36MDZLVaezpdJ4To6OjgjjoALsffiABk5qQ8aTSa\n4OBg9321n5+fk/NwHn40LQAfQbEDILOYmBi9Xt/tUHJyslsvgKpUKierbj253woA30GxAyAz\ntVqdnZ197Y10iYmJKSkp7v721NTUbhe6BgUFDRkyxN3fDsAHcY8dAMkFBgZOnjy5rq6usbGx\no6MjMDAwOjraYDB44KuDgoLGjRtXVFR05SbJUVFRmZmZbr29D4DPotgBkJ9KpYqOjo6Ojvb8\nVwcHB0+ePLm5ubm1tVWtVgcHBwcGBno+BgAfQbEDALcLDg5260INAOjEPXYAAACSoNgBAABI\ngmIHAAAgCYodAACAJCh2AAAAkqDYAQAASIJiBwAAIAmKHQAAgCQodgAAAJKg2AEAAEiCYgcA\nACAJih0AAIAkKHYA4FFWq9VsNjscDm8HASAhrbcDAICvqKqqOn/+fGtrqxBCo9FER0enpqbq\ndDpv5wIgD4odAHjCmTNnzp8/f/mlzWarqqqqr6+fOHFiQECAF4MBkAmXYgHA7YxG45Wt7jKL\nxVJSUnLdt7e0tJSXl5eVlVVXV3d0dLghIABJcMYOANyuurq6p6H6+vqOjg4/P79uRzs6OoqK\niurq6i4f0Wg0qampiYmJrk8JQPk4YwcAbtfW1tbTkMPhaG9v72no2LFjV7Y6IYTNZjt16lRl\nZaWLIwKQAsUOANxOrXb2Y9vT6KVLlxobG7sdOnv2LOtqAVyLYgcAbhccHNzTkEaj0ev13Q7V\n19f39C6LxdLS0uKCZADkQrEDALeLj4/XaDTdDiUkJPR0xs75OgmLxeKCZADkQrEDALfT6XSj\nRo26tttFRESkpqb29K6eVlR08vf3d004ABJhVSwAeEJUVNSUKVPKy8ubmpqsVqter4+JiYmJ\niVGpVD29JSIioqKiotshf39/g8HgtrAAlIpiBwAeEhAQkJ6e3vv5UVFRYWFh3a6fSEtLc9II\nAfgsLsUCwOCVlZUVHR195RGNRpORkREXF+etSAAGM87YAcDgpdVqx4wZ09ra2tjYaLPZAgIC\nIiIitFp+ugF0j18HABjsgoKCgoKCvJ0CgAJwKRYAAEASFDsAAABJUOwAAAAkQbEDAACQBMUO\nAABAEhQ7AAAASVDsAAAAJEGxAwAAkATFDgAAQBI8eQIAXM9ut1dVVdXW1lqt1sDAwCFDhoSG\nhno7FAD5UewAwMWqq6uLiorsdnvnS6PRWF1dHRAQkJ2dzZPBALgVl2IBwJUaGhpOnjx5udVd\nZjKZDh8+bDabvZIKgI+g2AGAKxUVFTkcjm6HrFZraWmpBzJcWysB+AguxQKAy1itVpPJ5GRC\nXV1dZmam+769tLS0pqbGbDar1erQ0NDk5OSIiAg3fR2AQYhiBwAu09HRMcAJ/WaxWA4fPtze\n3t750m63NzQ0NDQ0pKenJyUluelLAQw2XIoFAJfx8/Mb4IR+KykpudzqrnTmzJnW1lY3fSmA\nwYZiBwAuo9Vq/f39nUwIDw93x/d2dHTU1dV1O+RwOKqqqtzxpQAGIYodALjS8OHDexpSq9VD\nhw51x5e2t7f3tGJDCNHW1uaOLwUwCFHsAMCVYmJi0tLSrj2u1WrHjh2r1+s9HwmA72DxBAC4\nWHJycnx8fGlpaUNDg81m0+l08fHxsbGxarW7/pbW6/VqtbqnXU4MBoObvhfAYEOxAwDX8/Pz\nc3JN1uW0Wm1sbGxlZeW1Q2q1Oj4+3mNJAHgXl2IBQAbp6enBwcFdDqpUqhEjRgQEBHglEgDP\n44wdAMhAq9VOmDChoqKipqamvb1do9F0blDMdVjAp1DsAEASarU6KSmJ7YgBX8alWAAAAElQ\n7AAAACRBsQMAAJAExQ4AAEASFDsAAABJKHBVbFtZ/pZ3tuTuPlRYXFbb2Nxm9dMHh8akZI6Z\nePOd8x9ccEtKoLcTAgAAeIPCil1t3qoHHlq9o8Jy1dHWlobaytLjn/393ddXLp/53Nubns+J\n8lJAAAAAr1FSsbMWrpk1e8VhszCkz3p48fzbp2alDYkMCdBaTcZLFWcKD3y6ZeNb20/vWDF7\nll/BZ8+OUdJ/DQAAYOAU1H7atq5ac9gs4u7esG/T4lTdVWNpmVlTbr17yZNPbrz/piXvH1q9\ncuvSzffpvRQUAADAKxS0eOJgfn6rEOOWvdy11X1Dl7b4paVjhWjdtavAo9kAAAC8T0HFzmg0\nCiESExOdzuoc75wLAADgSxRU7Dqff3hwzx6Tk0mmvXsLhBDJyckeSgUAADBYKKjYjV2wMEMl\nqtcvXrh2f7W1mwnW6v1rFy5eXy1UmQvmZXs8HwAAgHcpaPGEauLyjU/nfvvFox8um56yJmv6\njClj0oZEBes0NnNzXcWZY5/v2ldYYxYiaNwzG5ZP9HZaAAAAT1NQsRPCMP2Xu/dnPrfs+Tfz\nygt3bi7c2XVCQGLOo6teXf1IdpA34gEAAHiVooqdECIk+5HXdi56ofRA3u6CwpLzNY0t7TZN\noCEsJjkja9KMnKkphr5dXLbZbLm5uSaTs/v2SktLhRB2u30gwQGgk81mu3TpkslkcjgcnS/1\nen1MTIxaraB7YwAMUkordkIIIdSGodPmDJ02xwUflZeXN3fu3N7MPHfunAu+D4APs9lsR44c\naW5uvnbo5MmT8fHxGRkZ1DsAA6HIYudCOTk527Ztc37Gbt26dfn5+cOGDfNYKgDScDgcFy9e\nrKysNJvNFovFyczKysrGxsZJkyZptb7+ywyg3+T7+Tiz/Xcfnxbps38yK60XszUazZw51zn1\nl5ubK4Tgz2gAfVVbW3vixIne38jR3t6+d+/exMTE9PR0twYDICv5ysqRN5944okn3jzi7RwA\nfJzRaDx+/Hhfb891OBwXLlw4deqUm1IBkJt8xQ4ABoWioqLO5RH9UF5e7vwWEQDoloIuxdpM\nLe3d7Uvchcnm/igAcF1tbW0DeXt9fX1CQsIAM1itVpPJpNVqAwICBvhRABRBQcXuve8FL9jq\n7RAA0Bt2u73fp+s6mc3mgby9tbX19OnTDQ0NnTECAgJSUlIG3hQB05zzYAAAIABJREFUDHIK\nKnYAoBhqtVqlUg2k2w1kbWxLS8vhw4dttm8uYJhMpuLi4vb29rS03qwrA6BUCrrHbtiwoUKI\n8S+UdDj17r3ejQkAQgghdDrdQN4eFhbW7/cWFxdf2eouO3/+fLe76AGQhoKK3YTbb48S4osd\nOxu1zqhV3g4KAEKIjIyMfr83LCwsODi4f+9tb283Go09jdbU1PQ3FAAFUFCxU918x8wA4dj7\nyaft3o4CANcVGRk5fPjwfrwxODg4Ozu739/rfDltezu/oIDMlHSPXcBtDy/7julkSEupECN7\nnDXpsfXrZ4lhkzyXCwC6l5iYGB8ff/r06UuXLlmtViGEVqv19/cPDw+PjY1tbW1taWlxOBxm\ns9lkMtnt9oCAgMTExPDwcCefWV5eXldXZ7fb9Xp9UlKSXq///+3deXwkZ3kn8Lf6vtXqQ2rd\ntzQzGo00h2e8tgE7doKBGFiOmOBAgm1Ys0cM7MJiyJKFrAkBsjFsCHFsx3YCttfhCrtci42v\nMfZ4DmtGGl2js9Xq1tH3fVXV/vHa7XZf6pZKUnfp9/3DH6vqVfU7erqrn3pPmqup1WqGYchm\nq6lLpVJB/4kAUF1qKbEjxnf+5U/euVmhzhvvvHM3KgMAUAapVDowMFDwlE6na2xszD4SjUZd\nLtfy8jL9xUQiQefGGgyG1tZWiUQyOjpKE0RCSCAQcLlcEomEroEslUqbmpq6u7t1Ol3mYL4t\n9/ACQE2oqcQOAEC8lpeX5+bmCk6kjcfjxcbGZRI4lmUdDkcgEDh69Ghzc7PD4cgvrFAobDab\ngHUGgGqDxA4AYKckk8n5+Xmv18uyrFQqNZvNPT09Bdcx8Xg8s7Oz23/FUCi0vLzc09MTj8fd\nbnf2KYVCMTQ0tJ1VVACg+uETDgCwI1wu19TUVObHdDrtdDpdLtehQ4caGhpyCtvtdqFed21t\nrbOzc2hoyO12r6+vx2IxmUxmNBqbm5vlcrlQrwIA1QmJHQCA8Px+f3ZWl8Hz/MTEhE6n02g0\n2cdLLFBSqcysWIvFYrFYhLosANSEGlruBACgZiwsLBQ7xfN8Tq8rz/PF5jpsQelZsQAgbvj8\nAwAIr3QLXCAQyP6RYZhtblORzWAwCHUpAKg5SOwAAATGcVzpFrj8s/mj7rasra1NqEsBQM1B\nYgcAIDCJRFJ68mn+JIaOjg61Wr3N12UYpqenx2QybfM6AFC7MHkCAEB4VqvV5XKVOJtzRC6X\nHzt2bHZ2dn19veBSdsU0NTVFo1FCiE6na25u1ul0W6swAIgDEjsAAOF1d3e73e5UKpV/SiaT\ndXV15R9XKBSHDh0aGBiIRCKEEJVKFQ6HQ6GQ1+v1+/3FXshqtZrNZgFrTgiJxWIsy6pUKix6\nB1Bz8KEFABCeQqE4ceLExYsXaXNahlqtPnr0aImESSqVZmY/mEwmk8kUi8VKJHYVNe+VxvO8\nw+Gw2+3JZJIQwjCMyWTq6+vbfh8xAOwaJHYAADtCpVKdOnUqFos5nc5oNKrVam02W87ydeUo\n/SsCZl0zMzNOpzPzI8/zHo8nEAgcP358C9UGgD2BxA4AYAep1eqenp7tXKGhoWFhYaHgNFu9\nXq/Vardz8Qy/35+d1WWk0+mZmZmRkZESv8txHBbPA6gSSOwAAKpRKpXy+XypVEoul3d1dc3N\nzeUUkMlkBw4cEOrl1tfXi53y+XxOp9NisSgUiuzj8Xh8YWHB4/GkUimpVFpfX9/Z2anX64Wq\nEgBsARI7AICqs7i4uLS0lGmlk0gkVqs1kUiEQiGe56VSqdls7u7uFrAfNhaLlTg7PT09MzOj\nVCqHhoboxNtwOPzqq6+m02lagGVZt9vt9XoHBwexjxnAHkJiBwBQXRYWFhYXF7OPcBy3sbHR\n1tY2MjKSTqcVCgXDMMK+qFQqLV2A5/l4PH7u3LkTJ05otdqJiYlMVpddz6mpqauvvhrTaQH2\nCkZFAABUkWQyabfbC55yOBzJZFKpVAqe1RFCyuxC5Xn+8uXLoVCIrsmSL5VKud1uQasGABVA\nYgcAUEV8Pl+x7ch4nvd6vTv0us3NzWU2s0Wj0Zy9bnMUy/kAYBcgsQMAqCJ0Dbmtnd0OuVw+\nNDSUv9dZQfmdsNl2okERAMqExA4AoIqUTq3KTLy2xmg0njx5sru7u76+vnTJ0musYFszgD2E\nxA4AoIoYjcYSLV6bplzbpFAoOjo6RkZGlEplsTIMw5jN5sz2GDmUSqXgW5wBQPmQ2AEAVBGV\nStXS0lLwlM1mE2o54k11d3cXO2Wz2aRS6aFDh/KTP5lMNjg4uOkEWwDYOZiRDgBQXXp7e3me\ndzqd2fvA2my2gYGBXauDzWYLBoMrKys5xw0GQ39/PyFErVafPHlyeXnZ7XbH43GFQmEymdra\n2lQq1a5VEgDyIbEDAKguDMP09/e3trZ6vd5EIkFzpl1rq8vo7+9vbGycm5uLRqM8z6tUqtbW\n1qampkwBmUzW1dXV1dW1yxUDgBKQ2AEAVCONRqPRaPa2DnV1dceOHdvbOgBARTDGDgAAAEAk\n0GIHAPsCz/PRaJRlWZVKlbOZPQCAaCCxAwCR43l+eXnZbrenUil6xGg09vf37/6oNQCAnYau\nWAAQuZmZmbm5uUxWRwjx+/3nz58Ph8N7WCsAgJ2AxA4AxCwQCDidzvzjLMtOT09XerV0Ou33\n+/1+/85t7QUAsB3oigUAMVtfXy92KhgMJhKJElssZEun07Ozs6urq5m15cxmc39/P5ZtA4Cq\nghY7ABCzeDxe4mwsFivnIhzHjY6Oulyu7BWDPR7PhQsXEonEdqsIACAcJHYAIGYSSam7XJmb\nX62srIRCofzjiURiYWFhizUDANgB6IoFADEzGAzFemOlUmmZE2M3NjZKnDpw4MAWK1dSLBaL\nx+MSiUSn02USUI/H43K50um0SqVqbGysr6/PlPf5fH6/P5VKqVQqq9WqVqt3olYAUOWQ2AGA\nmDU1Ndnt9oJzHVpbW0u352WU6M9Np9PpdFomE/JeGgwGZ2ZmMm2EUqm0tbXVZrNdvHgxuyYu\nl0uv1w8PD3Mcd/ny5UAgkDk1Pz/f3t7e3d0tYK0AoCYgsQMAMZPJZENDQ2NjYzm5XWNjY/mb\nnJbosWUYpsz+3DIFg8HR0VGWZTNHWJZdWlqy2+3ZI/yoUCh08eJFnudzlm7heX5paUkmk7W3\ntwtYNwCofkjsAEDkDAbDqVOnXC6X3+9nWVatVjc0NGR3Ym6qrq4uGo0WPKXX6xmGEaimhBBy\n5cqV7KwuIz+rowoO/qMWFxfLb5UEAHFAYgcA4ieTydra2tra2rb26+3t7WtraxzH5Z/q6OjY\nXtXeJJFIBINBoa7GsmwoFKqrqxPqggBQ/fAkBwCwCY1GMzg4mDOQjmGY3t5ei8Ui4AsJvnhK\nOp0W9oIAUOXQYgcAsDmLxXLq1KnV1dVQKMTzvFartdlsgs88FXa4HiFEoVAIe0EAqHJI7AAA\nyqJQKHZ6LoJGo5HL5dnb2m6HUqnU6XSCXAoAagUSO4CieJ73eDxutzuRSCgUivr6+oaGBgxF\nh53DMEyliZ3JZJJKpQVX2uvr6xN2YgcAVD8kdgCFsSw7Njbm8/kyR1ZXV+12+/DwcJm7iwJU\nKhaLFZt+SwiRyWQ5Y+bMZvPhw4cJIXNzcysrK5mZswqFoq+vz2q17mhtAaAKIbEDKGxqaio7\nq6MikcjZs2eNRqNcLjebzWazOb9FhC4qRvcGwOr/UJHSU2JbW1v1ev36+no6nVar1a2trZk3\nWF9fX0dHRzAYTKVSarXaYDBsuWmZ5/lIJBKPx+VyefamFwBQE5DYARQQj8eL7UOVSqVot5fT\n6TQajUNDQ5nJkjzPOxyOpaWlTFeaTqfr6+szGo27U23YW4lEYmVlJZ1Oa7VatVodj8d5npfJ\nZDqdrsy9ywquqJJ91mKxFJuHq1Aotj9F1+v1zszMxGIx+qNUKm1vb+/o6ECXLkCtQGIHUED2\n7kwl+P3+ycnJoaEh+uPs7KzD4cguEA6HR0dHh4eHK1oOF2pOKpU6e/ZsicVKlEplOX2jKpVq\ny2e3z+PxjI2NZa+EzLLswsJCIpEYGBjY0ZcGAKFgGDhAAaUbTrK53e5IJEIICYfDOVkdxfP8\n9PS0kJWDKsPz/EsvvVR6CbpEIjE+Pr66ulr6UkajsVj2JpVKd3TMHM/zMzMzBfe3cDqdJfa3\nAICqgsQOoICKpkfQ5r2C0xKpWCy2tra2vr7u9/vLTxmhVkxMTBTcBCxfse3CMhiGOXDgQMHh\ncb29vTu6KF04HI7H48XOlnh7V4TjuLW1tStXrszMzDgcjpwNfAFg+9AVC1CA0WhUKBRlfuvQ\nr+oSX4qEkImJCfo/Mpmss7Nzy3tbgYACgUA8HtfpdDzPB4NBjuM0Go3RaKx02oHH4ymzZDqd\n9vl8pUfC1dfXHz16dG5uLhAI0PYznU7X1dUl7BYX+TZtcdz+SwSDwfHx8exLzc3N9ff3NzU1\nbf/iAEAhsQMoQCKR9Pf3X758udjO69lo31mZkwfT6fTs7Gw6ne7q6tpuLaFsHMdNTk663e6K\nWkwZhpHJZBKJhOM4lmUFaW0t/QBAGQyGo0ePplKpZDIpl8t3Z/eI0m/gnO3UtiCRSFy8eDFn\nuRaO46amppRKpclk2ub1AYBCVyxAYVar9ciRI5tOZpTJZHRiREVbrS8tLZXzBQ+CSKVSL774\n4vr6eqWZGc/zqVQqkUikUimh+tDLz5DkcrlWq921PcH0en2JpsqK3t4FORyOYhvXzs/Pb/Pi\nAJCBFjuoVW632+VyhcNhQoher29ubhb8od9kMp08eTIWi8Xjca/Xa7fb88v09vbSr2qr1apW\nqzPrRJRG97RoaWkRtsJQ0KVLl4qlFLtv+xnSDpHJZK2trQXf5FqtdvvzNvx+f7FToVBodXXV\nZrNt8yUAgCCxgxo1MzOzsrKS+TEej29sbLS3t/f09Aj+Wmq1Wq1W19fXa7Xa+fn5zAghlUrV\n09PT0NBAf5RIJEeOHLl06VKZuZ0gg5ZgUyzLll71dzc1NDRU85rV3d3dqVTK5XJlH9RqtUeO\nHNn+Onal90mbnJyUyWQ7PY4QYD9AYge1Z3V1NTury7Db7XV1dTv33WCz2RobGyORSCqVUigU\nGo0m59tOo9GcPHlybW3N7/enUime571eb7GrbX/QEpSDtulWg/r6+gMHDux1LUqhc3Kbm5vd\nbncsFpPL5Uaj0Wq1CrI6sVKpLP3MMzs7i8QOYPvw1QK1p2BWlzm1o98NDMPodLoSBSQSSVNT\nE53lF4/HX3rppWIlq7ZLTmTKXIhkJ9C5F3TniaamJrPZvFc1qYjBYDAYDIJf1mKxlOiNJYTE\nYrFYLFbNLZoANQGJHdSeEm0wVbWMqkqlstlsBdekNZlMSOx2R5mbiOwErVZ71VVX7dWrV5uW\nlhaXy0VX8y4mmUwisQPYJsyKhRrD83yJJUjKWZ1kNw0MDOSPOjcajYcOHdqT+uw3HMctLy/v\n1aujtz2bRCIZGRkpvfS3XC7ftfoAiBXuO1BjGIbRaDTFnvvL3Gp910gkksOHDwcCAbfbnUgk\nFAqFyWTCkl27JhQK7WFXbCgU4nlekAFq4qBQKLq7uycnJwueValUGo1ml6sEID5I7KD22Gy2\nubm5Yqd2uTLlqKurQ8frntjDflhCCMuy6XQarVDZGhsbl5eXC46m2Ikp7QD7ELpiofa0trbS\nNYFz6HQ6zKqDbGtra3tbgTL3I9k/GIYZHh7O+fxKpdIDBw5kVg4CgO1Aix3UHolEMjw8vLy8\n7HA4sleDC4fDL7/8cm9vb3Nz8869OsdxDMPQ/jWWZXmer4ahVMlkcnZ21uv1ptNpqVRqMpk6\nOzurrWN6l3EcV3qo/k4rvZfDvqVQKEZGRoLBYCAQSKfTGo3GbDZnf4gSicTKyorf72dZVqVS\nNTQ0NDQ0oEcboEx7/4UEsAUMw7S0tDidzpzjLMtOT0/L5fLtL5Sfg+f55eVll8sVjUYJIXQM\nOE0rFQqFzWbr7Ozcq+aZYDD46quvZva8SqfT6+vrGxsbQ0NDtbLExk6gafceVqCjo2MPX73K\nFVtUxefzjY+PZ3YKCYfDdI+ZoaEhNH8ClANPk1CrXC5XsfVOBd96kuO4ixcvzs3N0ayOEJJI\nJDKNhclk0m63X7hwYU/2reJ5Pjuryz5++fLl0sv9i5tMJivRYLaFFiClUlnmgDmGYXp6egR/\nuhC9VCqVndVl+Hy+YsNqASAHWuygVvl8vmKnotFoIpEovbBCRRwOR4mXo8Lh8OLiYm9vr1Av\nWqbz588X25+eZdmNjY0d7ZiuZgzDmM3mjY2Ngmc7OztVKhXdbUytVkskkkAgEI1G6ZYhUqlU\nJpPxPJ9Op+lEbIvF0tjYyHHc2tpaIBBgWVaj0Vit1lgsRpdno1FQKpUmk6m5uRkTPLfA5XIV\nezpyuVzd3d3VMOwBoMrhQwK1qnRbVCqVEjCxy9k9s5jV1dViiR3Lsl6vNxKJSCQSvV5vNBor\najGiA/ui0ajL5drY2EgmkwzD0OFHpddkDgQCtZLY0ZzJ7/dzHKdUKhsaGra//0F3d7fP58vP\nFTQaTVtbm1QqzZ5G3dLSsukFJRJJS0tLdkmDwdDY2LjNegJV4s1MR0xidjnAppDYQa1SKBRb\nPlsRnudL73GZkUqlUqlUfm+dx+OZnJzMzkR1Ot3g4OCmjTrRaHRhYcHj8RRcjC0SiSwsLJS+\nQrHGvGoTiUTGxsay/87Ly8tNTU0DAwMFM2CWZZ1Op8fjSSaTcrncbDY3NzfnN+doNJqRkZGp\nqans9TXMZvOBAwcwYKuEUChEJ+IoFAqz2azRaHw+X+aIxWLR6/U78bqlx0RWw/LjkUgkGAxy\nHKfRaCp9PAPYHUjsoFaV6GXT6/UCJnYVyb/RBwKBsbGxnO+kcDh85swZWp6uYSuRSNRqdX19\nfX19PZ3x4Pf7L126tM31dfdk2N+m6IrN8XhcLpfTf/KlS5fi8XhOMZfLpVQqu7q6co7H4/HR\n0dHsLNDv96+srIyMjORvSKXX66+66qpQKJRpLsWmVSWwLDs5OZn9yZqdnVUqldnTzxcXF202\n28DAgOBzfkuHZm8Dl0gkJicns4dkqFSqgwcPGo3GPawVQD4kdjUvnU57vd5EIiGXy41Go0ql\n2usa7RKbzbayspLfd8MwjLAD3RiG0Wq1JTaozVCpVPmNRnNzc5vugcbzPMuy4XA4HA7TLbDU\najXHcdvfNaHakhiO4yYnJ9fX1zNHVlZWVCpVflZHLS8vd3R05CQQly9fzm9Djcfj4+PjJ06c\nKNiIotfrd6iRqeYkk0mWZZVKZcG0bGJiwu125xzMzuqo1dVVmUzW19cnYMXo4ib0USf/bH19\nvYCDKyrFsuzo6Ghm7hQVj8cvXrx47NgxvLWysSxLn1Q5jltfXw8Gg5kBqZFIJBQKcRwnk8ms\nVus+X49p5yCxq212u31xcTHz9c8wTFNTU19f335YPYuudDo1NZX9PaRUKgcGBgR/hm5paZme\nnt60WGtra84RjuO2tvlBmZ2/m6q2MUlzc3PZWR1VLKsjhNB8N3uwXSAQoDMe8oXDYb/fX3Dx\naiCEuFyupaUl+taSSCQWi6Wnpyf7UTAYDOZndcWsrKx0dHQI0jTO8/zS0pLdbi/2JCOXy/v7\n+7f/QhTHcX6/Px6PSySSurq6ch5+VlZWcrK6zKXm5+eHh4eFqttOSyaT8/Pz9BMklUrr6+tp\nnzJ9G8TjcY/HQ7dLMZlMFTUTBIPBycnJgn8lKmexgoWFBYlEotPpjEZjW1vbXvWxiBISuxq2\nvLycswQAz/NOp5Nl2X2yx7xcLh8aGorFYplZinV1dTuR1DY3NwcCgdXV1RJlGhsb8xO7ctr5\ndlRVjetPpVIrKyuV/lbOl33pySJI7IqZnZ2ljcEUbU3x+XzHjx/PZDabTv3OxvN8IBAQZEmX\nubm57LplK5iAbofb7Z6enk4mk5kjVqv1wIEDpefbejyeYqd8Ph/Hcfm3HTpNns7dUSqVFoul\ns7Nzb9MXh8MxOzub3SBKMzyGYRoaGqLRaM6HS6fTHTt2bNPRqJFIZGJiYgv3Oo7jgsFgMBi0\n2+0SieSaa67B/nuCQGJXq1iWLTZwfm1tra2tbf/0DqjV6l3ocDx48KDFYnE6neFwmGEYtVrN\nMEwikeB5XqPRNDU1FfyGy/7+2H06nW4PXz1fIBDYwvj3nG/00ldYWlqKRqP9/f34hsgWDAYL\nZk6pVGpmZibT4FTpiExBRnBGo1GHw1HwlEwmu/rqq8sMJcuykUiE53mtVlssS/N6vePj4zlv\noY2NjUAgIJfLaQ+1xWJpaWnJyWZKNETxPJ8/B9/tdl++fDkzdYnupbGxsXH06NG9WgfH7/df\nuXKl4Cme5wtuvhcOh1944YWrr766RFYdj8dfffXV7a+XyXHc6dOnr7/+esxH2T4kdrWK7rdT\n7KzH49k/id2OisfjdKKrSqWyWq2Vtk/sbZ94tQ243MKQQaVS6fV6fT4f7TgzGAylvxd5nl9f\nX3e73QcPHmxoaKCviAmwJfbM9fl8yWSStiRV2p4kyKC3jY2NYsl6Op0OBoOld0/heX5xcdHp\ndGYeohiGsVqtfX19+f+cnPaqjGQySX89Ho/TtvmRkRH66xzHXb58ucQTGsMwOXlkKpWanJzM\nn5CeTCYnJyePHz9e4p+zc6amprbwWzzPnz179i1veUuxAgsLCwKugn727NmTJ08KdbV9C4ld\nrdp0Fbddq4lo0BtxLBajA+NisZjH48mMddNoNH19fSaTqaJr7u3o4Gp7G2whD0gkEjMzM5kf\nyxywSL+Mp6enaZOSRqOhi8/t28aAEkM2eZ6/ePEibayqq6srNnchn0wm2/4IzmAwuLS0VKJA\n/ryNbA6HI78Viib3gUDgqquuym7ti8fjZe4dHIlEpqenh4aGCCFLS0ulxx1qtdqcJ4eNjY1i\nbZnBYDAcDu9QU3ooFLLb7XRcCl3ksq2tjT5ber3eLQ/bpfPzit36SnRSb8Hebu4sGkjsalXp\n7on92Q+VSqX8fj/tFjEajfRuGwqF3G53MpmUSqUMw6TTab/fX6JjpZhoNHrx4sVDhw5VNGqN\n9uyUPyBdWIFA4PTp0wMDA0ql0uPxxONxqVRKp6ft6ARDnufD4XAsFpNKpQaDQS6X+3w+u91e\n4q7NMExzc/Pa2pqA67NkLhWNRq9cueL3+wcHB/dnble65ZiOjorFYn6/XyaTlRmC3t7ebTaF\nJpNJmlOWKFNi6Nv6+nqxvkVCSCKRWFxczJ63W9G4CLocj1Kp3HRUaDgcHh0dVSgUarXaarXq\ndLrS2cn58+cJITzP0wSaYZjMmkf0IPO6TNTS6XSlYxjoFPuFhQW1Wq1Sqfx+f0W/nmNiYuLU\nqVPZXyssy3o8HofDsftPj/T2Qhew1Ov1m36i6dBen89Hn16sVmtjY6O47wNI7GoVnSVQbPlZ\n2lDk9/vtdju9a+t0uvb29upZconneTq0xefz0ZFqKpWqubl5azkHz/MLCwvLy8uZPwj93DIM\nI+wKvRMTEyaTqaK8ubm5ea8SO/L65ps5B+fm5np6elpbWzmO29jYoDtiMQyj1+tbW1tLTz7w\n+/0+n49mzxaLJb9J0ufzTU9PZ5oHaCA2/VpqbW3t7e1ta2s7c+bMDq1Du7Gxsbq62tTUtBMX\nr3J6vb7Yoo850um0SqVKJpOZD45UKq2rq6PtQPSIQqHo6enJ3rRjaxwOR+kkkmGYEo2Cm05U\ndzqd2YldpY+7r7zyikajKSdxyUw6WVxcbG1tLd02lnNHymR4mbd95sj2VzvieT4ajW7hOTZH\nKpU6f/78qVOn6MDiS5cu0eGM27zsFqytrc3NzWXaceVyeVdXV7E9Y+iwy0uXLmWCSJ/znU7n\nkSNHRLw9nWj/YTWN53mv1+t2u+nqdPX19Q0NDTnP3DKZrKOjo9j8iampKZfLld1InkgkPB6P\nzWaj44I1Gg39xl1bW1tbW4tGo3QAU2tr606PuKeb0+d/zUQikStXrly5coV+x1f0RHXlypWc\nB+uce6WApqenDx8+XH750nNp9wTHcVeuXMkfb5RIJNxud2dnZ/6awISQVCp1+fLl7ImT8/Pz\ndXV1dXV1KpXKZDKp1Wq6qHL2V1c5IVCpVHRCscfj2dFvi32b2DU1Ndnt9jKb4uLx+LFjx5LJ\nZCqVUigURqNRJpOxLBsIBOjOEwaDQZDBo5s2IxmNxpzHPLqxGN10btN/Dsdx2fNV6YSn8t9g\nLMuWnoJdkMPhEGVrUCwWW11d1ev1586d27kPaek/ncvlyhkpSGf/ZI/WKEcgEJiZmRHx2hFI\n7HZVMpnMtJ8VG6fMsuz4+LjX680cWV1dtdvtw8PDOfe4zs5OjuMKjlBJp9MFhz6srq7SPEMu\nlzc1NXk8nuxeg0gksrq62tPT09DQsHNddefOnSs9MZ7eGctfZDgajTqdTiGqVpbs0JSjoiUk\ndlOxu/Pi4qLRaDQajYFAIBqNMgxjMBi0Wu34+Hj+N3EgEKDj3mhfaiAQ2EITaTwev3Tp0okT\nJ4Rava+Y7Tdd1CiFQjE4OHj58uXyc7ucIQdSqbTgKKtwOGy322k/F51g1NbWVmZbyKaVoYvZ\n0syMZdn5+fmVlZWKsgraZk/fxru2WHc1bH22E9bW1q5cubKj/zqJRJJOpwu+f1iWnZ2dFeqF\n1tbWent7xbp4HhK7XULHgGd3yVkslv7+/uz8ieM4+vyRnzrQnTSPHz+e80DT3NxceuhxMalU\nym635x/neX52dnZ2dlahULS0tLS3tws7r3N+fr6c5Y4cDgfdoz0Wi0kkkkz7Inl951badUuH\n+Ox0M08OlmVpS8DGxobX643H4+l0mo7eSyaT4rinLy4uJhKJ7DRLr9eXbr3geX4La9RlRCKR\n559/fqf/egXbA/x+v9PppP86rVbb1NRUehpmjTKZTCdPnlw4nkQ+AAAdHElEQVRZWaET6lmW\nLZFGl5mdr6+vZ0//jEQikUhkfX396NGj5XxlqlSq0sPR0ul0IBCor6/nOO7ixYtbWOt7bGzM\n6/XS95VEIhHHx3Ov+P3+nf4DsizrcDhaWloikUggEEgmk/TWSpdNFnZcTTAYtFgsAl6weiCx\n2w2pVOrVV1/NuY263W6Px2O1WmnD2/z8vM/nK/GxCYVCy8vLfr/f7/dzHKdSqeii4TtU52Qy\nubCw4Pf7h4eHK+1Z4Hk+GAzGYjHa2EMflHmen5qaKrNfkuf53/72twVPZXem1NXVWa3WMgcP\nCej06dM8zwt7l6kq+QvObaFPqlK78KWbP8xgcXExezxDNBrd2NhoaWkRcJ+D6qFUKru7u+n/\n5/dqZSvnxpJIJKampvI/BdFoNDOltDSLxbLpnMrx8XGr1arRaLa2g0v29UX8gd0du5MW53wk\nd04gEEBiVzWiS8/+4Ps/+Pnz58emlzb8oWhartHXNXQMHD7+1nd+4LYPXt9RXXtjEkKI3W4v\n+HBMp+Xn77BUTPY+E7FYbKf7rQghPp9vZWUlf0OF7Gp4vV66DlZmlNXExET2IgUVjWvZVPal\nMv2Au2z7g5qrnFgbNnIGWXu93oJfISsrK3q9Xtyj8SwWS7EJsGq1OnsPt2LW1taKfRDo+OBN\nh3M0NTW5XK5iG8RR6XTa5XJtWhkQjV27+Yh4aZUaS+w2nvnKH37k3qdX3jxrPRL2bbgWL7/8\nq//9nS9/4cYv/vMTX7qhutLw3W9SEtDa2lrBxI7juJmZmdXV1cznkGEYk8mU/wgu1iwBaovZ\nbM7pYy224QEhZGVlRdyJHd19dXJyMufjKZVKDx48WE4jfenvxUgksmliR7d7Hh8fr9pxqCBi\nPp8vGo3u1UYgO6qWErv02FdvfsefX0gQXe/NH739A797aqinxWxQydLxoGdlbuzMr3/wj4/+\ncvbpP3/HzfJzL99zuIr+aaXX2KxyxdoFZ2Zmcp6keZ4XdrFKAKFotdr8zsESwz3D4TBdUWyH\n67WXGhsblUrlwsIC7XmXSCQmk6m7u3s3V9WWyWTDw8MXLlwo3W4HIDg69fDgwYN7XRHhVVH2\ns5noD7/y1QsJYnvvQy8+cXv3mx8FewaGTv7Oe+/4zGf+8UPX3fGT8/d++Yd3/8ut1ZOHS6XS\nXR7eUebiYeUoOHkiGo2if0Ssttl13tbW5nA4BG+mbWlpofM56A5OsViM9gNuuuKXRCKx2WwF\nF9BBW7LRaDx69CidtiWXyyuaKVW6qaP87JBhmKGhobNnz+7txsqwD1W6xEGtqKHE7uyzz0YI\nGfnUN3Ozujcoe27/xt3f/sk9F5977hy59a1lXJRl2Z///OfxeLxEmcXFRbK9gbdbHvlbkczy\n5UajsbOzkw5h3v5lC+45i64TUZJKpf39/S6Xq9gCY5vmfBqNpre3dyfGRdlsthIDvziOC4fD\nLMuq1WqlUplKpTiOo1mgXq8vtkGCRqMplkyoVCpxN9dlk0gkW1jeyGazLS4uFrwxms3mii6o\nUCiUSuWeJHYllnkXhFQqFf2Q3Nol4D43VaWGEjvaVF9iHD8hr5+/WHaz/jPPPPPud7+7nJIl\nhuNsqqGhYRcSu6ampp6eHolEQh+7hdoAvuBfvNo2IQVByOVym82mUqlGR0fzEzi6yHvptUA7\nOzsJIT09PT6fr/TzUkVkMlnpdbPp8tqZH+laG5t+BGw2W7EUdvvbKoieUqkcGBiYmprKeauo\nVKqBgYFKr7YnaTTDMMePH9fpdMlkcmlpyeVyCZuEKRSKw4cPX7hwQcBr7rTy95QTAaxjt+fa\n2toImTv7wgvx224qer+Onz59jhDS3t5e3kVvuOGGn/70p6W/gX72s589+uijH/7whyurb5ZK\nd47fGoPBkL2uI21y2E5nE8Mw3d3dBTeYEuvnYZ+jey4ZjcbBwcGpqans+7tGoxkcHNTpdDKZ\nrOAiF4QQi8XS0NBAr3P06NGpqSmhWnY7OjqEXU+Rstlsbrc7f8O3urq6sm8h+5rNZtNoNEtL\nS36/P51O081S29vbt7BXtV6v3/1hdu3t7fSBQaFQ9PX10f3HWJaNRqPnzp0r9ltGo3HTPTMY\nhrFYLH19fUqlsq2tbXl5WdiaFySXy7f5yE03NMpefkHcduereffVUGI3/ME/6P/6X848cPsf\nHHzigf9wTWNe1dNrv/3Ox29/YI0wAx98/5HyLiqVSm+55ZbSZZxO56OPPrqFW1WGRqPRarXb\nnFytVqvj8XixRE2lUtHv1GxGo3Fr36xyudxisbS0tBTshyWE1NfXC7uISc3Z6R6cPZFJ4q1W\na319vdvtpkv26/V6s9lM21QaGxvNZvPU1JTb7c68AaRSaVtbW2dnZ6bdRaVSjYyMxGIxugBe\nKBQquCD2phiGaW9v36E0i2GYw4cPOxyOlZUVOklIqVQ2NTXtUB4pSgaDoZwl6zZls9m2s8B1\npTQaTWdnZ87uGpRUKtXr9SaTqeAALJ1ONzIysri4uLy8nGnek8lkWq1WrVYbjUadTscwjEql\nyjxm9/b2qtXqubm5LTcHMgwjl8vT6bREIsnsgq1QKLRarVwul0qldOc3uVz+8ssvF7wv0cnO\n8XicYRipVDo9PV3w7t3U1EQXva/dRjuJREIXN930/iyXy2kPg/jUUGLHHP/CP37u52//q4v/\n51PXdnx16Nq3nTzc02LRK6VsIuRemRt/5bkXx9YThGhHPv/QF47vdW1zDQwMjI6Obi0VkEgk\nHR0dnZ2dwWBwaWnJ6/XmXEepVA4NDeUPJBoaGnrppZfyn+FK5GRSqbS9vb2jo6N0z4harW5p\nadlO93RNo21awWCQ7snGsizdHsNgMITD4XQ6rdVqTSaTQqGgW6pLJJKVlZXFxcVqvl3K5fK2\ntrbMjzKZrFh3pEwmO3z4MN2pKZlMajSaYp2earWaLk9ttVqj0Wh+21hOfiyVSumGInTUl06n\ns1qtO7oTFMMwbW1tbW1t6XSa5/ntPL/BdhgMhh1t2ZLL5QcPHqyvr08mk1KpdNNAHzp06NKl\nSzmNiFqtli7Y3tXV1dHREQqFaDvlpktmtLS00Nk/0WhUKpXS3RQIIdFoNB6PS6VStVrt9Xrz\n129nGKaxsbG3t7fMd2ZnZ+f8/Hz+8YGBAavVmvkxnU7nb89VV1fX1dUllUqHh4fHxsZqZS6L\nSqXq7++nOwAplUqz2UyT4PX19UAgEI/HQ6FQfkqt0+kOHTq0cztn7q1aa3QJXnr4i5/60oPP\nOAr2napab7jzK/fd+7Ejmy+uWYFvfetbn/rUp06fPn3ttddu5zrBYHBmZiazgj9Noerq6pxO\nJ80G6IoDcrlcr9frdDo6E0KtVtfX1+e0H3g8no2NDXpHqK+vb2pqKjY8nOO4iYkJr9dL39ly\nubylpcVsNo+Pj2cvwiKRSBoaGhobG+vq6opdKgfP8/Pz88vLy5m3EJ1+GAgEttw2qVQq6c2X\nEOJwOOgieZn5jxmZZ9bdbzPT6/UdHR0Wi2ULQ4JYlrXb7Wtra7TrXyKR0KFjyWSS/hslEolC\noaAP4lKp1Ov1xmKx8v+NSqWyq6vL4XBkr+JBW7y6u7vT6TTdSiSRSNBd0bJ/V61WHz58uPQ4\ntm3ieX51ddXlckUiEYlEotfrW1tbTSYT3Z+tzN1FQdycTufS0tLWRmdqtdqDBw/q9fpwOJxK\npZLJpE6n287SLTzPb2xseDyeRCJBF2BvaGjY0aZcp9O5sLCQyajoVKRKN7jLuYhare7t7c3f\nYsHv9y8vLweDQZZltVptQ0NDa2tr5raWSqXoJKpIJFIiHBaLRaPRrK+vlxmyurq6eDxezvpf\nDMPQpzs6w4mugW8wGPR6vVqtTiaTLMsaDIZyVqFjWdbj8dCnUIlEolar9Xp9OUtwl/biiy9e\nd91199133913373NSwmu1hI7QgghXHjxzDPPnxubsa/7wzFWqtYZG9r7h0687YZTHTrhP3VC\nJXZUPB6PxWL0G30Pp91xHLe+vh4MBjmOo5/qrT27JBIJmisolcr6+nqFQsHzPN33LBqN0mUU\nkskknaVIXl9gQi6Xy2QymsLK5XKO42jzjMFg2P7fJJFIrK+vO51OemvTaDQ6nS4YDNKEhtaB\ntgnJZDKlUkmnrdF7By2gUqmampoYhnG73cFgkNbZZDINDg6WmfUKi95kaa96fX19c3MzTYPS\n6XQqlaJ/MaVSmfnT0b9AKpXS6XQmk6nYjtputzsSidBt30wm0/6ZBApVLpFI0KZu+nFLp9M+\nn89utycSCZlMRtMC+jVPeyHNZnOxQSM1h+d5moKoVKott1XzPB+JRFKpFH1K3GaVEokEzW45\njkskEslkUqlUWiyW7OdbeofnOM7j8dBIkawncKVS2draarPZZDIZ3WWb3lfVajXDMPPz8xzH\n0fbypqamzs7OPbnNVgqJXW0TNrEDAACAmlbNiR0GCAMAAACIBBI7AAAAAJFAYgcAAAAgEkjs\nAAAAAEQCiR0AAACASCCxAwAAABAJJHYAAAAAIoHEDgAAAEAkkNgBAAAAiAQSOwAAAACRQGIH\nAAAAIBJI7AAAAABEAokdAAAAgEggsQMAAAAQCSR2AAAAACIh2+sK1Izp6WmVSlXsbCqVeuSR\nRzo6OiQS5MoixHHc7Oxsb28v4itKiK+4Ib7ixnHc0tLSn/zJn8jl8l170enp6V17rUohsdsc\nfa/ccccde10RAAAAKOD+++/f/RfdzVSyfEjsNnfbbbel0+lYLFaizKVLlx577LHrrruuo6Nj\n1yoGu2Zpaen06dOIr1ghvuKG+Iobje+HP/zhI0eO7ObrqtXq2267bTdfsVw8COHJJ58khDz5\n5JN7XRHYEYivuCG+4ob4ihvimwMDDgAAAABEAokdAAAAgEggsQMAAAAQCSR2AAAAACKBxA4A\nAABAJJDYAQAAAIgEEjsAAAAAkUBiBwAAACASSOwAAAAARAKJnTDUanXmvyA+iK+4Ib7ihviK\nG+Kbg+F5fq/rIAYsyz799NM33nijVCrd67qA8BBfcUN8xQ3xFTfENwcSOwAAAACRQFcsAAAA\ngEggsQMAAAAQCSR2AAAAACKBxA4AAABAJJDYAQAAAIgEEjsAAAAAkUBiBwAAACASSOwAAAAA\nRAKJHQAAAIBIILEDAAAAEAkkdgAAAAAigcQOAAAAQCSQ2AEAAACIBBI7AAAAAJFAYgcAAAAg\nEkjsAAAAAESiFhM7/9/fxBR084P+yosRQgiJTD7+xVuv7W80qFT6ht5rPvj574+HCryyCIrV\nAGHju8/eBrWhkqAQknT85lt/+r5/09dkVKuNbYeuff9/eeC55XhOoWoOyr4LsbDxxUe42pQX\nkV/eqStcimEYpv0zv33TJas5IrUYX772+L57Y+F/y9sf8FVejOcDpz87os4tpBz8zG+8YitW\nG4SN7356G9SMsoPCc6u//PSwtkDBh0NZpao5KPsxxMLGFx/halNeRH5xR4HAvsbwRz+JvFGy\nmiNSm/Gt3cRu8C8mBSkWf+4/dhJCJG2//41fz/hiMd+Vp7/53g4JIaTl409HxVSsVggb3/3z\nNqghZQaFT09+82o1IYSxXnP3Q89OrUcScb/9/E/v+3fXf+KJcKZUNQdlf4ZY2PjiI1xtyo1v\nAfPfOM4QYrvr2VTmUDVHpFbju+8Tu9Dj71ERQro+/WLsjYPxlz/dSwiR3/KoTzzFasZeJHbV\nHDixxZcvO3buh96hJoQojv/5xVjxUtUclH0aYkHji49w1dlyYsed/3wfIaT/nvNvHKvmiNRs\nfPd7Ypf+6UfVhJChL0+/+fjMV48RQpS3/ktKLMVqxx4kdtUcONHFly83do5vX8MQQmyffDpR\nolQ1B2W/hljI+OIjXH22mtgln/54IyHM0b+afeNYNUekduNbi5MnqOV/+qPDTXqlQlPfOviW\nWz97/4sudgvF5sbGYoTUnTzZ/+Zf6zt1qp6QxPj4rFiK1Rph4ltmsWoOnEjjSzYNSvz082d5\nQhree+sNihJXqeag7O8QCxPfMq9WzYHbn/HNF/rJ/Y+vEfkNH//jnjcOVnNEaje+tZvYBa+c\nv7waTqZi/pWJ009+8663HPmdb5yPVlpsfX2dENLS0pL7e/QQPS2KYrVGmPiWWayaAyfS+JJN\ng+JYWEgRwpw4eXT1N3/10bf0mDVKtbFl8G23/dlj2bPNqjko+zvEwsS3zKtVc+D2Z3zzrH//\n/p+EifqWOz/cmH20iiNSu/GtxcSO0fa+8zPf+cmL40veaMRtn3jun+55Z7eKdz//ufd/7oV4\nZcVisRghRKlU5r6ISqUihESjUbEUqx1Cxnf/vA1qSllBCYfDhBCL+sInT/3e5//59Lw3lowH\nnBPPP3bvbSeuuuuX7teKVXNQ9muIhYwvPsLVp8x775vNPnz/b5LE9Acff19d9uFqjkjtxrcW\nE7u6j/z9z/7637/nmsH2erXG3HbwrR/56s/OfO+DVkKWHr7/l4mKiqnVakJIIpHIfZF4PE4I\n0Wg0YilWO4SM7/55G9SUCoLi/tF3fqh5/32/GF8JRCMbCy8/8YXrG0li+v7bv/jrZFax6gzK\nfg2xkPHFR7j6lHnvzca/8g8PjPKk/SN3/t6b859qjkjtxrcWE7tCLO+7/d1GQqLj4wsVFWto\naCCErKys5Jakh6xWq1iK1batxrfMYtUcuH0RX1IgKI2NjYQQnj/8xR8/dvfNg80GtcbSeerW\ne3/6Dx8xEeL68Y9fJoRUd1AQ4jdsNb5lXq2aA7c/4/smyafuf2SOkAMfu/O6nJyjmiNSu/EV\nS2K3VT1DQ2pCAq+8MvPm41fOnPERohwa6hNLMSihmgO3b+NrPHKkjRCiPXbVQWn2cf1VVx0g\nhGysrnKEVHdQEOISyoxvmao5cPszvtkCP7r/iQ0iufrO2w/nnqrmiNRwfHd9Hu7O8Pz4Qw2E\nEM0f/rDUgkgFihVegeZMeQvV1FSxmrbl+JZZrJoDtx/iyxcKCvvsXY2EkKGvTKSzC4b+9SMm\nQkjjf3jhtZ+rOCgIccaW41vm1ao5cPszvm9w/e31ckIUNz+4XuAXqzkiNRvf2kvswo9//NSH\n7nngZy+Nz68G41Hv8tTp73/pPf0aQghpu+uZaGXFeD7+7GtrRt/yzV/P+OJx3+zTf51ZMzoi\npmK1Qdj47qe3Qc0oOyjc1NdPyQlRDtz6rV+OOwOxiHvxzBNfuL6REELa/9NzydeKVXNQ9mOI\nhY0vPsLVpuyIvG7q3iFCiP6DPwwVuFp1R6RW41t7iV3o4XeRQhjzW7/2SqjSYjzP84EXPjuc\nv8vboU/nbgZX+8VqgbDx3V9vgxpRQVCS0999R0N+Se3Rzz7nzypWzUHZfyEWNr74CFebCiLC\n8zzP/vYznYSQho//KlngYjzPV3dEajO+tZfY8YnVcz/8m7vf/7bh3uY6pUypt3SN3PRHX3jo\n5dX0VopRocvfv+cPru6xahUKraX76g987nuXguIsVv2Eje9+exvUhIqCknL+5m/uunm4zaSR\ny9X17cO/d8e9/3olv1WgmoOy30IsbHzxEa42FUUk/os/NhNCOj57hi11zWqOSA3Gl+F5vmD2\nDQAAAAC1Zb/PigUAAAAQDSR2AAAAACKBxA4AAABAJJDYAQAAAIgEEjsAAAAAkUBiBwAAACAS\nSOwAAAAARAKJHQAAAIBIILEDAAAAEAkkdgAAAAAigcQOAAAAQCSQ2AEAAACIBBI7AAAAAJFA\nYgcAAAAgEkjsAAAAAEQCiR0AAACASCCxAwAAABAJJHYAAAAAIoHEDgAAAEAkkNgBAAAAiAQS\nOwAAAACRQGIHAAAAIBJI7AAAAABEAokdAAAAgEggsQMAAAAQCSR2AAAAACKBxA4AAABAJJDY\nAQAAAIgEEjsAAAAAkUBiBwAAACASSOwAAAAARAKJHQBAGdJPvJdhmN7PjwpYEgBAaEjsAKBG\nPXWnkckiVemtXUdv+uMvPTYW3OuqAQDsEYbn+b2uAwDAFjx1p/F3HwoUOCHvu/Onv33gZssO\nv374kZv1H/vVwBfHpv7H4R1+KQCAMqHFDgBq2vFvLPA8z/NcMuCc/PXf/fGgiqSuPPiJ/3Ga\n2+uaAQDsPiR2ACAKjNzQdOCmTz78o/92nBCy/ItfXN7rGgEA7D4kdgAgJkz/sREtIWRjY+ON\ngynHM9/+j+8+2WPVKxVqY8uh6z/8Z4+P5XTisq7fPvi5D1xzsLNRr9aY2w4cv+mjX3n83Eb6\n9fNvnhLhuO86Rv+xXxFCpu8dygzzu+nv/XklK6jD6t9exzDMia8txmd/8N9uvbrHolWqjK1H\n3vWnD18KC/k3AgARk+11BQAABMRfeXU0QgixWq2vHUld+tY7b/z0U+7XhxMnnZPPPX7vcz96\n8tl/eeH+WxrpQd/PPnHy3f/oyHTfOqa9jukLTz85r48/8vvbr1VZdXj93OW/fvvX/vb513O+\nlbGf/6/bT0/ELz31yY7tVwQAxA4tdgAgCnwqtDr9m/vvfP9fnCeEtL3j5kF6ePxrt/3np9y8\nfviOv/vNhCMQ9syd/cGf3dQsTVz5h4988kkf/eXIv373UQenHLrzodMza8F4IrQ6O/rMY1++\n7VSjovCrtX7qNB96+O2EkIEvjvGve+ouY8GqlVWH141977uzx+957KXZ1VDUt3zme//uiIoE\nn7732y8J9IcCAHHjAQBq0q/vqCt8W5P33vnzjdcKvXB3CyGk/t9+fyP7V5Pn/+tBCSHMDd9x\n8TzP85GH3yUh5OT/tBd/tdTj7yGE9PzXVzNH8hO7IiXLqwPPu/7XtYQQ0v+5V2JZ5dLP/2k7\nIeSaUpUDAHgNWuwAQBwkCq2pY/h3PvJn3zt37oF3vLbWyeq5cyuEaN575x++afET+bFP3nGS\nEP7s2fOEEEI07/ijf2smr/zlhz75148/NbroSwpZsTLr8Lr23//AVaqsn6VHjhwihLjdbiEr\nBQAihcQOAGra68ud8Gwi7Fkcffqf/uK2I2+05AUCAUJIa1sbk/Nr9FDY72cJIYQ0fuh7r/zf\nv3yX5sWvf+x3j3aZdKbea973p/f9aiEhQA3LrcNr3hgd+BqlUkkIYVmWAABsBokdAIhYXV0d\nIcSxvJy7Ejs9pDMapa8dUHW/6/MP//rSatC3MPrsE1/7aL/jsU/ffPSWv5/d9hru5dcBAGC7\nkNgBgIjZTpxoIST6kwcff1NHZnr0/ofPEsKcOHE85xcYhbFz+G3v+8SXHvk/X76OBH79t9+b\nLnZtuVxOCInH40LXAQBgy5DYAYCYXXvHJwYlxPfju3734/c/N+UKRbwLF3785++65RuXWWJ4\nz11/aCOEEHLpq2+/4WP//aFfnBlfWA8nkxHP/Jnvf/XRVwkhHFd0BwulzWYkxPH0vzxrDyVL\n7XNRXh0AAASAdewAQMyYoc9/7xvP3vifnxl98K7rH7zrjROKntsf/btbTfQHLjj37CP/79lH\nvpzzy5ZbPnfHoaLXvubd7zY/+E+jX7+h4+v0wI3f9RVa8aS8OgAACAAtdgAgboqRz/zq1af+\n5pPvOt5p1splSoPtwFs/dM8/nzn70HubXi8z/MX/9+yjf/GJd/2bw51WnVJtbOo6/NYP3fPQ\nC6M/+pMSqwKrb7nv59++86bDLXVKae7EiMrrAAAgAIbntz0yGAAAAACqAFrsAAAAAEQCiR0A\nAACASCCxAwAAABAJJHYAAAAAIoHEDgAAAEAkkNgBAAAAiAQSOwAAAACRQGIHAAAAIBJI7AAA\nAABEAokdAAAAgEggsQMAAAAQCSR2AAAAACKBxA4AAABAJJDYAQAAAIgEEjsAAAAAkUBiBwAA\nACASSOwAAAAARAKJHQAAAIBIILEDAAAAEAkkdgAAAAAigcQOAAAAQCSQ2AEAAACIBBI7AAAA\nAJFAYgcAAAAgEkjsAAAAAEQCiR0AAACASCCxAwAAABAJJHYAAAAAIvH/ATjbE6mz662AAAAA\nAElFTkSuQmCC", + "text/plain": [ + "plot without title" + ] + }, + "metadata": { + "image/png": { + "height": 420, + "width": 420 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# coeQTL\n", + "print(eqtl_var)\n", + "plot_dataset(data_input_eqtl[[eqtl_var]])" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "id": "a6725532-a9bf-4807-ae71-4fc8919c7078", + "metadata": {}, + "outputs": [], + "source": [ + "### Make combined p-value plot" + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "id": "e6ad562b-367d-4a80-a0ab-661cc859ee91", + "metadata": {}, + "outputs": [], + "source": [ + "input = gwas_input[gwas_input$Phenotype == i,] # GWAS data" + ] + }, + { + "cell_type": "code", + "execution_count": 149, + "id": "87d80cd1-7bfa-4e1d-9073-b1087f01c8c5", + "metadata": {}, + "outputs": [], + "source": [ + "input_eqtl = eqtl_all_effect[eqtl_all_effect$ident == eqtl_var,] # Co-EQTL Input" + ] + }, + { + "cell_type": "code", + "execution_count": 150, + "id": "2348335d-a774-451a-99c2-ef8ab9b65382", + "metadata": {}, + "outputs": [], + "source": [ + "plot_data = merge(input_eqtl[,c('SNP', 'MetaBeta', 'MetaP')], input[,c('variant_id', 'pvalue', 'effect_size')], by.x = 'SNP', by.y = 'variant_id')" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "id": "abb88e62-13c8-4bd3-9149-7db933abab06", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "1341" + ], + "text/latex": [ + "1341" + ], + "text/markdown": [ + "1341" + ], + "text/plain": [ + "[1] 1341" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(plot_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "id": "05ce330b-4d02-42e6-a89e-a21413cbc8a4", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeUBMax8H8N+070WlPRJFVIhc11Ip+74vISo713ovsu9cl2vnSrZIbsJrSday\nVChLonRJ0UIL2vea949pmdIybXOa6fv5q3PmnDO/M3Nm+s7zPOccFpvNJgAAAAAQfCJMFwAA\nAAAA9QPBDgAAAEBIINgBAAAACAkEOwAAAAAhgWAHAAAAICQQ7AAAAACEBIIdAAAAgJBAsAMA\nAAAQEgh2AAAAAEICwQ4AAABASCDYAQAAAAgJBDsAAAAAIYFgBwAAACAkEOwAAAAAhASCHQAA\nAICQQLADAAAAEBIIdgAAAABCAsEOAAAAQEgg2AEAAAAICQQ7AAAAACGBYAcAAAAgJBDsAAAA\nAIQEgh0AAACAkECwAwAAABASCHYAAAAAQgLBDgAAAEBIINgBAAAACAkEOwAAAAAhgWAHAAAA\nICQQ7AAAAACEBIIdAAAAgJBAsAMAAAAQEgh2AAAAAEICwQ4AAABASCDYAQAAAAgJBDsAAAAA\nIYFgBwAAACAkEOwAAAAAhASCHYDgerxAnVWi644PjWlrQoYdusVMrOi1ab/+dSHT9QDwQcy+\nPpJFR73eQr8cpssB3iDYAe+Clrdi1YzKHF+mi64f7JzEsEeXnbcvsxtirt9MnGsX26wMqsN2\ns08NLfuKiYhJSErLKalq6bXr3GvAOMc/dp19GJ1Vb/vRSLzZ0LF0l1str8sryCcJrsv/fFFA\nRERyw1YtMqnpNyc7Nfzm0Q0LJ9qYGeiqN5eTFJOQUVDRMereb+KCzc5eb34UlCxZ34dEyl3H\nViLc25OacqX4sTp8omv8ifhpv1gs4w0hFS7pZa9Wbkn1Bb5Vb4rFYrFEJaTlmqnrdewxYPKS\nnecDE/J5fo2qL5XFYrFExKXllNRbm/QaOmP14ZsfMnhekcUSlZRrpqbXqe+Y+dvPB8XnVfSk\n7OS3//t7yUQbszYazeQkxSVklFpo6Rl0NOs9ZPLcVTuOnL/59nuZ5QvTY4Lvuh/csGDSgF9N\n9TWay0uLi0nIKKq2NOkzcs4W16dfK3yWkrW/v/x319LJ1p30tVTkJSXlVHQMTH8ZYPvHvotP\nPmewS5fTnrV6WgvOn1FHl+4LZ1e8OWhk2AC8ClzWsoaHl/JsH6aLrh8vV+tXsov6KwLrsN2s\nk0OqfxVFm3cYt+1efMHPqz+ar1a6mNn293WopN63VpWQ9R1Kn6nlsrq8gnyRdXeOTnG5er8/\nzavRyvlf7m0e1U6BVdVbLDXk5I/i56rbIVFOkuckjXLrStpeLn60Dp/oGn8iKtov1eneWT8t\n+OUfK8nyC6rN96lmUz+TNZ5/LZbXN6naUn8irjXkYHBGLVYkBZNZ59+XPYaSH26yUhOtci3R\nCZfLrHLN9qdXqeyzdJzpHpFf0e5lvDk+taNipcej/oqXZRaP2NGtuDLF4W6JtXpFgb/QYgfQ\n2BV8f+vh1M+0345n6eUe6XXwa+mHOWhlG0bKE34JZ7efiC7622TGTHMx3lfNDPrLxrTf2svv\nUqts68hOT69R+1Llh0QZsa4OM89/qcmG+SvRbY/r17Kz2C8P/O1TL11+GSGHJs86m1Afm6pI\nXuyN38auD6xFs2Dq62NTbH67k1oyI8Zl0pB1PvEFVaxTi2d54zy53/KHmeVmZwVu69vT0fVN\nCs9tb63tHfsWHfEpV3ccCavHGqGBINgB77r+FVXuh0EYd8tLBU0vSUctmSq2folItWjXc6Tj\nir9OXXvy4ZK9cgM9zRgPNptdmJf54+v7pzeOOY1pr1DyUOHX+6uGTnSJwuAuvvvP5cj93KK/\nu9lObsvziuxPrhOG/O6bUPKesZp1mrrd/eG7L8lZuVnJXz88u+a8ZlIX5aqaamp/SBRGHp26\n4H/fiYikpCpu3anDJ7p+PhG5t/8+9IY7YmRe/+vouxpuZIwHp7aCzMSwm6t6KZY+knbz7NXv\nla9Yo+0XZifHhXhtG6Be+kDh+1OnH1cRkIoLy0//8u7O32PbiJc8UvDp6PJ94UUTQXu33Ewr\nfkTa2O6wd3B0YlpOdlpi1KtbZ3bOH2woX1nzmphK10lrjl0L/JiYnpX2Jdzn2MwuSlz1fTyw\n/mSZZJty97fxa56mFE2JqPVedNTr1efvWblZP2LCXzz837GNM/sZKJaLBarjbG0kiv5+7Xw0\noH4DKDSE2jf2AVT7b4DNfre1c+mXUpsVLwrLPZ56amjp/xzFyZcy2ewK+gTTwv7dON3GRFdZ\nVkJSvkXbnuNXnXmVUklN2bF+J9bNHNHTSFtFQUpcXEapRevO/Wx/P3Q3KrOe9tpnNte/sXrt\nii3+T1As+8O58S25v2blhp+J53q8qs7T3O//PfI8snH+eOtu7XVU5KXERcWk5Jqp6XWyGDlr\n4ym/mJyfiuHHy35+TDXfSENOptVis0UKfwT/u33e6D4memoKMhJiEnKqOm1NzK1G2i/fefJm\n8Nfsyt+IKgQtb1VS3c9JqAo/3Mc249417dGnPvz8qrPZqSGnHZe4JhVN1fGQKJYXtqOHDGcJ\nzSl//25WugJXV+zPqv9EV4SXT0TZ/ZKQKI4KKvZepW9l9AELsZ+WoGq6Ysu+RI8Xc/c9G64u\n26/Ik6q2H7O3F/dj/f75xmthuU+XlOm9Lj6WPu8xL52ptzKo/Fckm12YGuqxcsiKm2Vm3l49\ncvWV9xnll01wH8l90ImO8eDqjg3d3Kn021h12JlP1ffls9lsNjv11NCSN0Np+vWfu8+hcUGw\ng7rg4d9Agku/0uSmvsC37NiSlLNcua7F3Hu5bDa7XMIwnbV5sr44lSfWerJbVPkhJClBB8bp\nVzb0RKLV6P2BqfWw1/wLdmw2O/PxYj3uRQxXh5Q+WEWw+3HEupLXgUO+47wr5UYg8eNlr0mw\nq+G7WfDeZbhWVX0Q3XdF1+ItCt1kVLIF3aXPeF/x/Y5O3M+uZX87rfqV6nxIcOQEre3EefNY\nrWbeSYnc3tiCXe/p04tTjqT1kaIBBQVBy4pnSljNmMw1/q8Gwc5vCXew67H7E097UEWp5bZ/\ndRrXIckaeTaT1xXZ7OvT5bkeVS7ap1druIZQmNZ5aGvGqaHcHwKb48klD/n/plVaeY/dNfiN\nErGzW+l7Me9+HUuEhoauWGhgqpMXTij51v96zsUrm+vB1GsX75SMp2lt52j1c5Kg4GNr3SJ+\nPsMr/6Ob3ajNL7keyHuzZ3jfhR4RlQ3QyY269Fv/0Uf+E6zOTOmeS+d155oOv3Ejoj62m/bm\n8KRJRz5X+jjTL3uNN/vt7NL5V2Pr/c1N9PUtGVUk2b27Kc8rxt64/opr0njWsn5y9VNStYdE\nhp/T5G2v8ohIpO0S179tFKjRETFbtLiocS7n3t5Dr9lElHb5L+eiHWk+edn08id9VKsw+1v4\n7XVOJ0sHFYp0HjFMt17qLRETwX1ItjE2lq7rFtXUuH5PBe+Z6XQ55FuVZ7RWjZ2fz9U7rKCr\nW9I1/Z+PT2zJA8Y2RmF75o8wb9NCTlJcSkFVr3O/aWtOV3Yqcevu3VWL/47n+kRA44RgBw1N\nashCh5IGhh8XXS6nlDyUce3irZJvyU72Dl0qGUqi3n+Ld/i37OyUyAcHRrcqGZGU93LHCtfE\n4qnIQzNXPigekCxlbHfwbuiX1KzMbx8fuziYSBU//93ffzsTXy/7xTc6ffpwN9C8fvmSl/TC\nklQ3HTp36xlv/5dhkV9+ZOVmp36Lfn3rn7ldSloNsh7+ffRFFZtoiJd94kU2u8qzYq9Pl6vF\nZono8Z27xb8ZJLos8nwdk5KVm538JTL0+ePrp3YuntTXqIVUlWemVuzZs2cl/yfbmZhIVLVs\nGS9fvuSaUrGwMKp00Rqr8pBIubt4yp7/CohIzGTVuW29ZOvveeuT9oxl45tz/gw/sudGNn0+\ntvti0Tvefu7SwTI8b8lzXNE1RaRV2g3Y/CC5aLaYxrADrkt4HxFZDXZO6pc3N7c77vQrmSU3\n4I95JjxvIO/ZvUdpXNN6eq2IiEh98PBupaMsE323jzZRU9XrajPGfummg+dvv4yr0dWOYl3P\n+pQGO9UxY/oU/13w+vXb0uXe7RwxaNnhq4ERiRm5+TlpSVGv7rpund69g9WGhxWNSjQ1Ld3R\n0CdPUitYBBoRhloKQTjw2HETtat7yTeXmPWRuKLZae4jS37uivY6GFOyfJk+QZIfdaG0N4Gd\n5e2oyvWg5cEvnPmBK0oHsIh031Wmm6EwaDnX/8Fee2PYdcLXrlg2mx39d0/uhfoeTih+pDYX\nKHn4myb3a8F1Wi3/XvZqL3dS880WuI0uiW3Ktpe+/zxSqVbSnAeUPpfN0aTq1yiSeWIw95vG\nexdbHQ+JJM/JRU1dUl23hHCGNrAbX1esxYFEduELJ8OiSQmrQxeXFLetSQ5w/lLuUiw1v9yJ\nuMHU4y+TKrzcR7V42b6YuvXmgOSqVyw9eeLru7t7uU+eIGIZbwwrXi3j6YYuledYlqxuH4e/\n7kXnVl949ptdFlznjsj1Ofih9HOQdNSm2r0iIlKwOvrx501fnlB6Lrjx1vDavKzAN2ixAz5o\n6bBgaHGEy7/vciaSiIjSr3t4F/8YlRroYKtV4bokM2zqGK4vK6kBtqNVSiefPnnKJiKKffCg\ntDuq8OnvZS68KtL1r8jSVZ49fVrXHeKvwsIyTXQsFo8NT1kf7/yzxmF4705tNJrJS0uIcl6M\nPvvjSheJi4urZGVGX/ZabFbE0LBkqNK3c2O0tU16DRpvv2jtn0fdb72ITq9tF21iYknbJLGU\nlZtVsWg57Ia8lmtlh0Ssq8NMty9ERLK9dp5b2bGCoQ2NB6vzgqVWnCbQXJ/lU4vHBbSwXTZF\nvYrVeJP3n6ujWefxrhG1vkxxFZr1XH37zd01vyhWvVhxU6KYnHo7m8UXP5R2sIrozNq1uF3x\nlIz5et+AU/MttCscUMrO+PzQZbmNab+9IVVeBibt+a5h1n88KO4QEdOf6e4xX7/0uyInp9zq\nCr/87vk6LjU98b9bOweW/qZL9Vm95eZPfcHKys1L/k5IaLCLyEC9QLADfmg2fqFt8TcHO+jE\nyddElHn94s3ivjOFMY7jlSpZV6tly7KXg9DV1SmdyPr6NZWIKDY2lniUm5iYUv1SjUjZ9CWi\nqtq80kVL5L8/Oa5Du/5ztp649jg44mtyenZeRdkmM7P8da6KMfqy12azXWb/YV3yj5adGRfi\n5+1xcv+WFXMnDTTTVdX9dcb+gCReN1qJmmQ16RYtuPtAa7BHvKjkkAg+uIlzfROF/ntcFxpU\nfcXbRkBj2rLJRQ3BWVlFXwbG85f2k6p8lQoUN4wV5qZ+Cbu1d1zr4v0ujL40a/bxr1WuXCs/\n/LYO7ml/MbZ22V2+w4wzdw8MKDPyUd7E7qBvVNzb26d3rbAf2aejlly5N4/9/cEfcysdE1sY\n57Wwt8Ufd+KLKpI0cPzX9+iQFtzLKCiUHWtptMhl52hjDXlZlbb9/zi1vm/pj4BvN2789COM\nzXXwsxv0RwvUHYId8IWE9cKZ7Ysn/jvp8qgw0+vizeJQoTbJcWilXRHVNFDx3H5VKi+vDmOT\n+e/TgwefuCZNO3eu/mP7Yd+02Rcjq9/Nyr+iBeZlL9lsS8fLj88sGmAgX8HLkx0bcGqR9ZA9\n72r6H0lVtbQHmv39+w/e1+zUifuk2KQHD0Jr+NRVqOyQKHktUm/P1uO6j5jequelS+ecG8Vi\nsVgslTK36WKG1OCl89pzz5AeuGxeh8qWrgZLXF69Xf9FZw9NLw002fdOuUdXsQ4vxniw2YXZ\nP6KenJ1rVnL+S3b4yWnjdofxeDyJiMsoqrY0sRg1Z4vrk/AXJ2wNKmpLFW1u1G/a8h0ulx+E\nxCR/jwy4sH1iO65zM/L8r9+u6ADMCj0+pseIg8HF9zhTNHe66ec8Srvc50BOW5u7hVHarKtR\n6WdYzdycq+c7Piam/GeV+9hv0aIFQWOGYAd8YjJnQe/iURoxZ12uXC7Ndfp2DhaVX8w/Jiqq\n7BUxP3/m+qaWVlOTJyLS0OA6iU563IWqLlnmu0CFBEbWw91HuO+92W7I4NbVrvTJ0/1JyTcz\nS3PITq/XsclZnAFH3MPXqsDoy17Lzcp3nLrXOzwp4d3ja+eO/Ll2ieOEgV11Sv8zZj07eCKQ\n1xKKyKmrlza8JSXVoM1Pe+gw7mQX4vz3vQruLlobtTokGimW8fwl/Usb6DSmLZtU1w+nhJER\n9xH+4UN9nEXOklRq2d32sPeJ0aWjCbMCNi4+VdV9PUrHRxbkZiQnRAX7Xjqyekp3DV7OwBFV\naPXL+JVuF1cYl85jJyQkll8u6cE6654zr3wu6nEW1Rnxz2OfrVYVvYhmXbty/Ror98OszE88\nCVnZcsHzR2JiaZ92mfN4oRFCsAN+0Zq2YFRxX8B3j7lLbxTnOhMHh25VNP9kXnP15OrDy7lz\n/jLXv1fz7uYsIiIdS8vSf25Zt467fhaG3oKc967TphzkapyRG+60sGP165Xp+Gs5ee0fg4w1\nFaVEiajgvffdj7w8dYO+7GJiXEH+p7E/dXw3JZQNew6dPOf3TXuc3W8GRngvLG2KiIqIqOlg\nO3Pz0svHvnv9ugaNjm1mr+S+QHHMcfsZZytsRE174zpr6dlvvG21todEo6U6ddnUogYglsnC\nJTa8n3dciZy3bz9wTYqL1+NAQ5Vxu9f1Lt1e+u2NOx7VdRBfxr/zBi479TS+okODJSHBXX3z\n5mVGYeR/vDDj1wGbA4rPA5Y1XXD1yaVZHSvp/Wg2dBTXD+jM50GhpZ+qhMBArm7ejh3LH1HB\nwa9L/jbo3r2ycTPQOCDYAd/IjV44vfgEicyEhKKbXIr2drAzqHK9tMuLJ2y7/f5HTm7ap0eH\np845UTpyV8Jm6viitp1uM+d2K/nWSr2z0Gb0Fo+nEV9Sc3IzvsV9DH3pf+v8/jWzR/cyHHms\nsV/upCA7NSEi0MvZaUwns2kXo7kuXjB4715bXnpBuDsQ6fPlA6efx2Vkp38NvbV7wpBNz3kL\nSQ35squocLUoxN897xWZmlsmcdVis6F/9us8cPqqvefvBLx6F/nlR2ZeXlby5+eX3B+WDrKS\nU1Kq6VdeC0vLkr7C7GfPXle1bDlK4//aN5Tr7frsMa3rL9P/9PD7Lz4tJy8nNeFj4A2XdbZm\nep2mOb9IrvJd4fGQqOzGGBWeFZt00LIGO9NwpPofK7p1RmHwKsPql68UOy/t67s7+6cuOM3V\nriXeuXO9xt5Ws9ZO5Wqv+uS8xbWOZxKwMz/e2jPjFx2tzqMW7Tx5LeBd7Lf03Lzs5C9h94/P\nm7SN64JEBj17ln5u0gL/GtJj0qn3Rb+KWOr9dz18dGCwZhUHuPrUJVztoaH7HFZcevM1PePb\nhzt/2m26XxIsxXtOnaBXds2Ip09LftYpW1oK8g+JpqGKLg6A6tT04gjhm0zLtc1JDjv97afF\nyl53o1JipmuDuK4BkP1yR08eLgHb88CXmu/oD+eq7+NQZMz5Gm6XlwsrcIio993+tPx9Myq9\n3Enwug48jYFTm/+okq1Vrj5e9hdOlXQelvRe1XizZS6hUjGlqf/j6eYPZT1bWtrk1/3vGt68\nIj1wl6UqD2HS4kBi0Rp1PCQq1ACXO6nxJ+Lny51UrY6XOymiM+tWOi+vUBnVXHHm/Z/m3Gc2\ntP3jWQFvK1Ys7eQA4oX84JNct4rJOz+Cp7W0lgVwP1nixcmaVX8zyHTd+KL8je9STg4paTiU\nt738033MoJFBix3wk8GsBf3LdLUojnYcV805niYzN1V0byvRVhNOXF5nxvWAZKcV1+/tHVvp\nTagElmjzjuO23Q2+s9JcvvqFOUz+cFndtYJcJK4/Zf30dj/Pr2ALDfqyd56zakDV3Tn1/m7K\nmCw499fwWtz8odusWZ2L/37q7h5Vo5Vluy6/G3x708jK7+NORERScnKVjzKtQC0OiaZHstWo\ngzf29q/3CzS3mbt6PNeX1vsjWy5UdE1fXonIyFZ7FrCYWt9NN85N16xuuWqpjDn18Ixdu0o6\na0U1rNd7ea3rXK47/Lvn+dvF7XlaU2dXfqIbNBI1+jIBqCs12wXj/rh1rvgEK/VJDoOruyWP\neOtJ5/aMG7ln57GL915ExKeLKOoaW46ZvWrVtM6K5f9ZKpkv8ggd//Rfl9NX7vs/D/2U+CM9\nT1xBWVVVVUVN16hrzz59+vTp3a3uF8lqOCwRUTFxSWk5xWbKLTR19duZmFsNnzzWQqemNy6S\n7b754fPOf27Z737nxcekXAlFtdadrUY5rlg+oeCvjht52EADv+w6jpefKO3YcvjSg1cfv6Zk\nVngtlppttsPK+yEWvr4+Pr7+rz7EfI1PSEhKzROXVVLTbWvc3Xrk9NlTe2nVbrSVocPcvhtn\n3c8lInrq5hax3Imn00+KiWpYr70c9tu7m27nb/g89n8ZHpf440d6rqi0oop263Ym3XrbDB49\nZmDHSnNufR0STQBLTFJGrpl6K0Njc8thE6dPtmpVswun8Ehu2OpFpu7rg4t6xNOubdv3euJG\nk1rc14SISGb8xe+9Xvjc8X0c8OzFm/8iP8V8/Z6amV0gIiWnqKLTtqNZn0Hj7aYNbldPN4YT\n159y6nVfh9MHXS56PwqO/Poto1BaSa1VR3PLYVPmOAxrr/DTbiR4uN0rznUdZ87tjdTQ6LHY\nuCIN8FX6ySGK9l6c/+N6K4Mitpv9/H34eIF670PFY6fMtr8PWtnmp2UA+Cbr7hyDfv/EEBFR\n6z+e/bezW6O/RBxA/YjY0c1wVVABEZHCsHMfrk5WrW4NYBq6YoFv2HnpX16eW7TjVlHrjEjX\n2bMqSHUAjY20zcatg4o6PT8e2eJWl543AAGSdWvH35xUR2Lmq3dNQqoTBAh2wA9vNnRksUQk\n5DW7TDnxX9Hl0VSnrp+rV/VqAI2E2tRdK7pwmunSrm3b97q2tygDECQxzlvPFJ3122rO7kWG\n+CEuENBbDowQ03c8uXtoPY0aAWhwrA6rn+evZroKAL7S/u1hzm9MFwE1hRY74CeWpJKWofnI\nP04/ffbPEOXql284F8eyqtdxw5vGtGWoF3iDmiC86dCEoMUO+KHjhjfsDbwv3uvgV/bBBisG\nAABAWOGsWAAAAAAhga5YAAAAACGBYAcAAAAgJBDsAAAAAIQEgh0AAACAkECwAwAAABASCHYA\nAAAAQgLBDgAAAEBIINgBAAAACAkEOwAAAAAhgWAHAAAAICQQ7AAAAACEBIIdAAAAgJBAsAMA\nAAAQEgh2AAAAAEICwQ4AAABASCDYAQAAAAgJBDsAAAAAIYFgBwAAACAkEOwAAAAAhASCHQAA\nAICQQLADAAAAEBIIdgAAAABCAsEOAAAAQEgg2AEAAAAICQQ7AAAAACGBYAcAAAAgJBDsAAAA\nAIQEgh0AAACAkECwAwAAABASCHYAAAAAQgLBDgAAAEBIINgBAAAACAkxpgsQACkpKadPn87K\nymK6EAAAAGgUpKWl7ezsFBUVmS6kPAS76p07d27RokVMVwEAAACNiJiY2Lx585iuojwEu+rl\n5eURkYuLi6mpKdO1AAAAAMOCg4MdHBw48aCxQbDjlaGhoZmZGdNVAAAAAMOys7OZLqFSOHkC\nAAAAQEgg2AEAAAAICQQ7AAAAACGBYAcAAAAgJBDsAAAAAIQEgh0AAACAkECwAwAAABASCHYA\nAAAAQgLBDgAAAEBIINgBAAAACAkEOwAAAAAhgWAHAAAAICQQ7AAAAACEBIIdAAAAgJBAsAMA\nAAAQEgh2AAAAAEICwQ4AhNn3798DAwPj4+OZLgQAgB8Q7ABAOOXn5y9YsKBFixbm5uYaGhq2\ntrbp6elMFwUA0LDEmC4AAKBBbNmy5dChQ9bW1gMHDvT393dzc5ORkXF2dma6LgCABoRgBwDC\n6ezZs+3bt79165aoqCgR9e3b9/z580ePHuVMAgAIJXTFAoAQYrPZsbGxBgYGJTHOyMgoIyPj\n+/fvla0SFxcXGhqam5vLrxoBAOofgh0ACCEWi2VsbOzr6ztmzJgePXqMGjXq0qVLmpqaqqqq\nPy8cGRnZp08fLS2tDh06qKmpnThxgv8FAwDUCwQ7ABAG7969GzJkiJycXPPmzadNm/bly5cp\nU6akpKRcunTpxYsXV65c+fLly9ixY39eMS8v75dffnn06BFnMjk52dHR8f79+/wtHwCgfmCM\nHQAIvMTExL59+yYmJvbr1y8zM9PV1fXt27dSUlIyMjKdO3eOi4vT0NB49+7d1atX9+3bV27d\ntWvXJiQkcM9hs9lOTk5Pnjzh4x4AANQPtNgBgMA7c+bMly9fzp8/7+Xl5evru2nTphcvXjx/\n/tza2vrx48cfP3708/ObMGFCVFTUt2/fyq17+PBhIhIXFw8ICPDz8xMXFyei4OBgBnYDAKDO\nEOwAQOCFhYUR0YABAziTAwcOJCJpaeno6Gg2m82Z+enTJykpKQUFhXLrZmRkEJGqqmrXrl1/\n/fXXDh06EFFeXh7figcAqEcIdgAg8PT19YkoICCAM+nv709Effr0efXq1aRJk1xdXefOnevl\n5TVixAhOgxw3KSkpIoqLi2vVqlWXLl1evXpFRIqKinzdAQCAeoIxdgAg8CZPnvznn3+OGTNm\nwoQJ6enpnp6eBgYGJ06ccHR0vHDhwoULF4jIysqK0+tazsiRI93c3IgoNjY2NjaWM3PGjBn8\nrB8AoL6gxQ4ABF7Lli29vLwMDAxcXFw8PDwsLS2vX7+elJTEabrjCA8PT0lJ+XndQ4cOSUhI\ncM8RERGZOHFigxcNANAA0GIHAMKgR48ez58/T05OlpCQkJGRISILC4vk5OSzZ89aWFjcvn17\n9uzZ8+fP9/LyKrfiixcvcnNz7ezsCgsLRUREunbtunDhwgsXLnTt2pWJ/QAAqBMBDHaZn3wv\nnrvo9fB5SPinxOS0zHxxGXnFFi0NO5r1GTzWdpxlS2mmKwQAhigpKXH+yAEn9+oAACAASURB\nVMnJefLkyahRo2xtbYnI3t7+ypUrPj4+BQUF5W4pFhkZSUSTJ0/u378/ERUWFi5dupQzEwBA\n4AhYsEv02TRp6tZ7sWXv+ZOR/iPxS9TbJ7cuHNroZL3a1X2dlQpDBQJAI1JYWFjubxaLVW4Z\nIyMjIrpy5Qon2N24cSMvL49zbiwAgMARpGCXH7Jt4KD1L3JIrs3AafZj+3U31tdSVpASy89O\n/RYbEfL0zsUTp70/3Fs/aKB40JNVHQVp1wCgfklKSvbs2fPKlSsnTpywtLS8ffu2t7f3oEGD\nRETKDyz+5ZdfBgwYcOTIkcePH6uqqj548EBVVXXOnDmMlA0AUEcClH4yPTdte5FD6iNd/Nzt\nW0uWeUzf0Ni870iHpUtPTOzlcOX51o2eizwmyDBUKAA0BseOHbOwsHBwcOBM6urqHjp06OfF\nWCzWv//+u3HjxkuXLsXFxQ0bNmz79u0aGhr8LRYAoH4IULAL9PXNIOq0+K/yqa6UpL79rkX7\nr6wKfvAgiCb04Wt5ANC4tGnTJjw8/Pz58x8/fmzbtu3EiRM5J1X8TEFBYffu3bt37+ZzhQAA\n9U6Agl1qaioRaWtrV7mUtrY2UTBnWQBoemJjY+/du5eTk9O7d+927drNnDmT6YoAAPhHgK5j\np6OjQ0SBjx5lV7FQ9uPHQUSkq6vLp6oAoBE5e/asgYGBnZ3drFmzOnbsuGHDBqYrAgDgKwEK\ndqbjxhuwKN7Zfvw+//j8ChbIj/ffN97eOZ5YhuPGmPC9PgBgVlRU1KxZszQ1NT09PW/dutW9\ne/dNmzbdv3+f6boAAPhHgLpiWWZOJ/7wGrAz+Nrini23Gfe0MO+or6UiLylakJOWFBvx5tkD\nv5CEHCLZTitdnMyYrhYA+O3BgwdZWVl79uwZNmwYEbVt27Z169Y3b97s27cv06UBAPCJAAU7\nIrmeOx76G65evO64T0zIfY+Qn36IS2lbOW7au3WGiSwT5QEAo9LT04lIUVGRM6mgoEBEGRkZ\nTNYEAMBfAhXsiEjBZMaB+3bbo576PAwK+e9zQnJ6VoGotJxSC10D464WVt1bytWsc7mgoMDL\nyys7u6pxey9fviSivLy8OlUOAA2sR48eLBZry5Ytrq6usrKyTk5ORPTrr78yXRcAAP8IWrAj\nIiIRuVY9hrXqMaweNuXj4zN8+HBelnRzc7O0tKyHpwSAhtGlS5dFixbt3btXXV2dxWKx2ewB\nAwZMnjyZ6boAAPhHIINdhTg38K7pWlZWVlevXq26xe7w4cO+vr7VXWcFAJj3999/W1tbX7t2\nLScnx9LScurUqbX4WgAAEFyCFezys9Oz81ni0rKSJTfxZif671+97sgVv/eJuZJq7S3GL96+\n2bGTIq9bFBUV5YyzroKXlxcR4d8DgEAYOnTo0KFDa7pWZmZmQEBAWlpa165d8SsOAASXIIWV\nXN/F+vLyKsNPJJTMSrm3oKflYud74YnZhVSYFf/W+8DMnlZrA6tqgAMAKOPx48eGhoY2Njaj\nRo1q3br1pk2bmK4IAKCWBCjYpXseOBlHihOXzCi+iSP7xc55h9/nsdSsN//v1ae4T6/+t8la\njZX5ctucv8MZLRUABEZaWtrYsWMTEhLExcWJSFxcfP369deuXWO6LgCA2hCgYPfm6dNMIuNu\n3aSK54RevvwfkcKYfR5rhpvqauiaDl/7774xClT44t+LEUyWCgAC48mTJ/Hx8bm5uRYWFnZ2\ndhISEkTk4uLCdF0AALUhQGPskpKSiEheXr5kTmRkJBF1sbFpVjKrubV1Z7r44L///iPS53+N\nACBogoODiWjgwIE3b94kopCQEBMTE85MAACBI0AtdpwBzS+fPy8sniMjI0NEnP6TYpyf2wAA\nvJGVlSWi6OjolJQUNpt9584dImKxWEzXBQBQGwIU7EwHDdIk+uri9FdYDmdO94EDmxG9CgjI\nKlkoy9//FREZGhowUyQACJg+ffoQ0du3b1u0aKGsrLxs2TIisrKyYrouAIDaEKBgx7L4fZ2l\nDGU8XtG795x/fCLT2bKjdh0dr/399KK57mFphVSYFuY+d/GZRJLoZTcR/bAAwAsjI6NBgwYR\nkby8vKSkpKSkpJSU1OLFi5muCwCgNgQo2BHpznb3mNdeir4F/jOnb2tVdaPesy9Jm3eW/+/0\nJCMlOTk5JaNJp8Pz1QfvPz6/NdO1AoBgYLFYbm5us2fPzsvLS0xMNDY29vb2NjY2ZrouAIDa\nEKhgR6Q2+FDgc7elgwzkWZSdEOZ348LpS0Hf2URUmJWRJa7ebeqfd4KuzDYUoHNCAIBpSkpK\nR48eTUlJycjICAwMtLCwYLoiAIBaErwEJGs0abfXxE0xr/z9At9Exv9IzxWRlmum1qqdiXmP\nrnoKApZUAaARkZSUZLoEAIA6EbxgR0RELFntzv0mdO7HdB0AAAAAjQcauAAAAACEBIIdAAAA\ngJAQ0K5YAAAAgEqlp6fv3r374cOHUlJSI0eOtLe3FxUVZboofkCwAwAAAKGSnZ3dq1ev4OBg\nFRWV7OxsLy+vR48enTlzhum6+AFdsQAAACBUjh8/HhwcvGXLloSEhMTExLFjx7q6ugYGBjJd\nFz8g2AEAAIBQef78OYvFWrJkCYvFkpKSmj9/PhEFBQUxXRc/INgBAACAUFFRUWGz2TExMZzJ\n6OhozkxGi+ITjLEDAACAumKz2Z6enk+ePGnWrNno0aPbt2/PYDEjR47cs2fP6NGjly5dmpqa\num3bNmVlZUtLSwZL4hsEOwAAAKiT/Pz8gQMH3rt3jzO5ceNGZ2dnOzs7purp2bPngQMHfv/9\ndwcHByLS1NQ8c+aMqqoqU/XwE7piAQAAoE4OHjx47969uXPnfv782d/fv1WrVvPmzUtKSmKw\npHnz5kVFRXl5ed2/f//9+/fW1tYMFsNPCHYAAABQJw8ePJCRkdm/f7+Ojk6PHj2cnJwyMzMZ\nPwtVVVV10KBBVlZWMjIyzFbCTwh2AAAAUCciIiJsNruwsJAzWVBQQEQsFovRopooBDsAAACo\nk759+2ZlZc2aNSs0NPTu3btbtmyRl5c3Nzdnuq6mCCdPAAAAQJ3MmTPn1q1bp0+fPn36NBFJ\nSUmdOnWqefPmTNfVFCHYAQAAQJ2IiopevXrV29v7yZMnSkpKI0aM0NPTY7qoJgrBDgAAAOrB\nwIEDBw4cyHQVTR3G2AEAAAAICQQ7AAAAACGBYAcAAAAgJBDsAAAAAIQEgh0AAACAkMBZsQDQ\nRP348ePUqVORkZGtW7eePn26kpIS0xUBANQVgh0ANEXh4eG9e/dOTEzkTG7fvv3Ro0cGBgbM\nVgUAUEfoigWApmjOnDkpKSnu7u5fv349f/58cnLyvHnzmC4KAKCuEOwAoMnJzc0NCAgYMWLE\nhAkT1NTUJk6cOHToUD8/v7y8PKZLAwCoEwQ7AGhyREREREREuGNcXl4eZyaDVQEA1B3G2AFA\nkyMmJmZhYXHt2rXDhw9bWVndv3/fy8trwIABoqKiTJcGAFAnCHYA0BQdPXrU0tJy/vz5nEk9\nPb0jR44wWxIAQN0h2AFAU9SyZcvQ0FAPD4+IiIg2bdqMHTtWWlqa6aIAAOoKwQ4Amihpaelp\n06YxXQUAQH3CSGEAAAAQZtHR0YMGDZKVlZWVlR08eHB0dDTTFTUgtNgBAACA0EpPT+/SpUtS\nUhJn8ubNm126dImKipKVlWW2sAaCFjsAAAAQWrt27UpKStLT0wsICAgICNDT00tKStq1axfT\ndTUUBDsAAAAQWg8ePCCi/fv3//LLL7/88su+ffuIyNfXl+GyGgyCHQAAAAgtBQUFIgoLC+NM\nvnv3joiUlJSYrKkhYYwdAAAACC17e/tr166tWrUqMDCQiC5dukREM2bMYLquhoJgBwAAAEJr\n5MiREydOdHd39/Dw4MyZOHHiiBEjmK2q4SDYAQAAgDA7f/68o6Pj//73PyIaMWKEtbU10xU1\nIAQ7AAAAEHLW1tbCnedK4OQJAAAAACGBYAcAAAAgJBDsAAAAAIQEgh0AAACAkECwAwAAABAS\nCHYAAAAAQgLBDgAAAEBI4Dp2AFB7eXl5wcHBKSkpJiYmqqqqTJcDANDUocUOAGrp1atXJiYm\n3bp1s7Gxadmy5Z9//sl0RQDQdLHZ7KioqLdv3+bm5jJdC5MQ7ACgNrKyssaOHRsdHb1u3bp/\n/vmnXbt2K1asuHHjBtN1AUBTFBoaam5urqen17FjR21t7fPnzzNdEWMQ7ACgNq5cuRIRESEi\nIuLm5hYZGXnp0iVRUdGSe2wDAPBNZmbmyJEj37x5s3Dhwg0bNsjIyEybNu3Zs2dM18UMjLED\ngBqLi4ubM2cOEWlpabFYrB07drx9+1ZOTu7r169MlwYATU5AQMD79+937dq1fPlyIpo4cWK7\ndu3c3NzMzc2ZLo0BaLEDgBo7dOhQamoqi8XS1dV99uyZg4PDtWvXUlJSunTpwnRpANCEZGdn\nR0VFffr0iYg6dOjAmdm2bVsJCYno6GhGS2MMWuwAoMbevn0rJSXVrVu327dvKykpSUhIEFHz\n5s2XLVvGdGkA0CRkZGQsWbLkxIkTBQUFMjIyROTu7j5gwAAREZGLFy/m5uYaGxszXSMzEOwA\noEh6evq3b990dHRERKpqy8/Nzc3Pz8/Ozn706JGCgkJ+fn5mZiYRHThwQFlZmV/FAkCTtnDh\nwpMnT/br169z5843b94MCQk5c+bMgwcPVFRUXrx4oaGhMX/+fKZrZAa6YgGAkpKSxo8fr6Cg\n0KpVqxYtWhw/fryyJT08PBQVFUvOftXU1Bw/fryoqCgRffz4kU/lAkDTlp2d7erqOnDgwNu3\nb+/cuTMgIEBdXV1bW1tJSenHjx9Tp0719/dvslfWRIsdANDUqVNv3bo1cuTI5s2bX7t2bdas\nWeLi4nZ2duUW+/btm62tbV5enrS0dFZWFhG9e/fu3bt3ffr08fPze/PmDRO1A0CTEx0dnZ+f\nb2ZmxpmUlZVt3779mzdvXr16xWxhjQFa7ACauujoaG9v7+nTp5uamp46dSohIYHNZjs4OLi6\nuhYWFkZERERFRbHZbCI6e/ZsXl4eERUUFBCRmJgYEWloaDg7OxcUFGhoaDC7IwDQROjp6UlL\nS3t7e+fk5BBRdHT08+fPS06eaOIQ7ACausjISCIqLCzcsGGDuLh4mzZtFBQUREVFHR0d9fT0\n2rRpo6enZ2xs/PTp04iICCJisVicC7vn5+cTUXx8/JAhQ0RFRcePH8/sjgBAEyEmJubk5PT8\n+fO2bdsOGjTI2Ng4PT199erVTNfVKCDYATR1RkZGRHT27Fkiatu2bXp6empqqoKCQm5u7rdv\n31asWLFkyZLPnz+PGDHC0NCQs4qxsTFnXB0RFRYWfvnyxdnZuUePHkztAgA0NU5OTocOHZKT\nk/Pz8zMyMvLy8rKxsWG6qEYBY+wAmjoVFZXOnTu/fPmS8/eHDx9ERESSkpKIyM7ObseOHUTU\ntWtXW1vbz58/ExGbzQ4JCSm3EUtLS37XDQBNmIiIyLx58+bNm8d0IY0OWuwAgFRVVcXFxYnI\nz8/P3Nx85cqVnPkjRozg/GFiYkJE8fHxJauIiopyrh1FRBkZGdevX+drxQAAUBEEOwAgXV3d\n/Px8S0vL3Nzchw8fbtu2jTM/LCyM88eFCxeIyMbGRlRUlMViEVFBQQHnxFiOuLg4vlcNAADl\nIdgBAE2ZMoXFYkVHR48ePdrAwEBERERHR8fQ0HDx4sVdunQxNjbesmVL9+7dJ0yYYGJiwjlD\nlojYbLauri7n786dOzNXPgAAFEGwAwCysLBwcXH58ePHpUuXwsPDu3fvfu/ePV9f35kzZyYn\nJ2dnZy9atMjLy0tcXJxzj23OPcSkpKQ4o+569OgxevRohvcBAABw8gQAcEyfPn3SpEnh4eGc\n+09wZh47dqzcYpMnT46MjNyyZQsRZWdny8vLz5gxY+vWrZxr2gEAALPwXQwARSQlJTknSVRt\n9erV8+fPDw0NVVNTa926NWfIHQAANAYIdgBQY0pKSr/++ivTVQBAU/ft27fY2NjWrVvLyckx\nXUtjIYBj7DI/+Z7ZtmDiwB4d9DRbNJOXk2/eQlOvY4+BExdsO+P7Kav6DQAAAIBAS0lJmThx\nooqKiqmpqYqKytq1a0vO62riBKzFLtFn06SpW+/F5paZm5H+I/FL1Nsnty4c2uhkvdrVfZ2V\nCkMFAgAAQIObM2fOhQsXxowZ07lz5+vXr2/ZskVNTW3BggVM18U8QQp2+SHbBg5a/yKH5NoM\nnGY/tl93Y30tZQUpsfzs1G+xESFP71w8cdr7w731gwaKBz1Z1VGQdg0AAAB4lJmZ6eHhMXz4\n8IsXLxLRsmXL2rZte/r0aQQ7Eqhgl+m5aduLHFIf6eLnbt9assxj+obG5n1HOixdemJiL4cr\nz7du9FzkMUGGoUIBAACg4cTFxRUUFHTs2JEzKSUl1aZNm9DQUGaraiQEaIxdoK9vBlGnxX+V\nT3WlJPXtdy0yJcp48CCIr7UBAAAAn+jp6cnKyl67di09PZ2I3r9/HxQUZGxszHRdjYIABbvU\n1FQi0tbWrnIpzuOcZQEAAEDoiIqKbty4MSQkRE9Pr1evXqampllZWRs2bGC6rkZBgIKdjo4O\nEQU+epRdxULZjx8HEVHJfY4AAABA6CxduvTMmTP6+vpRUVF9+vTx9fXt1asX00U1CgIU7EzH\njTdgUbyz/fh9/vH5FSyQH++/b7y9czyxDMeNqf4qqwAAACCYWCzW1KlTnzx5EhMT4+3tjVRX\nQoBOnmCZOZ34w2vAzuBri3u23Gbc08K8o76WirykaEFOWlJsxJtnD/xCEnKIZDutdHEyY7pa\nAAAAAH4ToGBHJNdzx0N/w9WL1x33iQm57xFyv/wCUtpWjpv2bp1hIstEeQAAAACMEqhgR0QK\nJjMO3LfbHvXU52FQyH+fE5LTswpEpeWUWugaGHe1sOreUq5mncsFBQVeXl7Z2VWN24uKiiKi\nwsLCuhQOAACCKCMj4/Lly7Gxse3atRs6dKioqCjTFQFURdCCHRERici16jGsVY9h9bApHx+f\n4cOH87JkZGRkPTwfAAAIjtDQ0AEDBsTExHAmzczM7t27p6ioyGxVAFUQyGBXj6ysrK5evVp1\ni93hw4d9fX319PT4VhUAADAoOTlZSUmJiOzs7BITE48dO2ZmZnbp0qWtW7euWLHi6NGjTBcI\nUCnBD3bZcc9u3nj0NiaV5LWNeg0e9IuWdA3WFhUVHTasmqY/Ly8vIhIREaAziAEAoMby8/O3\nbt26d+/e5ORkVVXVRYsWPX/+3NHRcebMmUTUpUsXb2/v27dvM10mQFUEKNhF3Tt+N5L0bByt\nWxXPSn22e9LY1V7ROSULSegM2uZ5YVk3eSYqBAAAAbZly5aNGzeamJiMHz/+wYMHa9asISJp\n6dLWAikpqZycnMo3AMA8AQp2QUdmzvSkMR4lwS7u7ORBy72+k6hq5+HDe2pRrN+1qy+jby4f\nNE079PKEFowWCwAAAoXNZh84cKBz587Pnj0TExPLysoyMjKKi4s7c+bM8OHDu3XrdvHixYCA\ngHHjxjFdKUBVBCjYlcP2/2vNje/EajvLO+CojTKLiNjf7s7+pb/zhyvr972csLUz0xUCAIDA\n+P79+/fv3ydMmCAmJkZE0tLSZmZmMTExeXl5NjY2nGW0tLR2797NaJkA1RDccWOhN29+IpId\nsX47J9UREUvZZvv64bJE4TdvfmS2OgAAECjKysoqKiqPHj3idLampaU9ffrUwMDg3bt3Gzdu\ndHR03LNnT1hYmJaWFtOVAlRFcFvsOFeX62hh0Zx7rrKFRQf637MPHz4QtWamMAAAEEjLli1b\ntWpVmzZtCgsL4+PjCwoK7OzsNDU1161bx3RpALwS3GDHaSxXVlYuO1tVVZWI8vLymKgJAAB4\n9+zZM2dn57i4OGNj4yVLlqipqTFbzx9//BEfH79v3z42my0lJSUrK3v69OnWrVsj2IEAEbiu\n2LS4dxyyGgZE9OnTp7KPx8XFEZGOjg4TxQEAAI/c3Nx69Ohx/PhxX1/fnTt3dujQ4acvdH4T\nERGJiIiQlJR8+fJlVlbW169fzc3Nt27dWvW1TgEaFYELdrcXtefovf0FEYX7+n7lfjgvLCyC\nSMbUtA1D9QEAQLUKCgo4F4cjoszMTF1d3R8/fjg5OTFbFRG9efPGxMSkU6dORCQtLT1ixIjc\n3Nzw8HCm6wLglQB1xaqZWFsn/zSXFewTR5M0i6Yy/+d6KZXkbW2HyfC3OAAA4J27u3tmZmbz\n5s2dnJwSExMPHjwoJiYWEBDAdF2ko6MTGhqanp4uJydHRCEhISwWC51AIEAEKNj1Xnf3bnXL\npGqN2HdyoGbPwch1AACNl4+PDxENGjRo2bJlRKSurr5kyRLO0Glm2dnZOTg4WFhYjBo16s2b\nN//++++wYcOaN29e/ZoAjQPzn6J6pd5j0vQeTBcBAABVS05OZrFYHh4eRkZGpqamV65cIaIO\nHTowXRfZ29t/+fJl69atL168IKJRo0Y5OzszXRRADQhZsAMAAAFgamrq6emprKy8evXqkpmN\nYYwdEa1evXrJkiUfPnzQ1NRUUVFhuhyAmhG4kycAAEDgLViwQFdX98uXL7q6ukpKSkQ0ceLE\nbt26MV1XERkZGRMTE6Q6EEQIdgAAwG/NmjV78uTJ7NmzFRQUDA0Nd+3adfr0aaaLAhAG6IoF\nAAAGaGhoHD16lOkqAIQNWuwAAAAAhASCHQAAAICQQLADAAAAEBIIdgAAAABCAsEOAAAAQEgg\n2AEAAAAICVzuBABqxtPT8+bNmwUFBX379rW1tRURwe9DAIDGAsEOAGpg5syZx48fJyIWi3Xq\n1ClPT8/Lly+zWCym6wIAACJ0xQIA7x4/fnz8+PERI0Z8+/YtJSXFzs7uf//7H+f27QAA0Bgg\n2AEAr/z9/Ylo7dq1zZs3l5eX37x5MxHt3r172rRp69ati4mJYbpAAICmDl2xAMArWVlZIkpO\nTuZMvnjxgoj8/Pz8/PyIaM+ePT4+Po3nPu4AAE0QWuwAgFc2NjYSEhILFiy4cuWKl5fX1KlT\niWjXrl3Z2dn37t1jsVhz5sxhukYAgCYNwQ4AeGVoaHj48OFPnz6NGjVqyJAhaWlpRkZGy5cv\nl5SU7Nu375gxY4KDgzMyMpguEwCg6UKwA4AacHBwCA8PP3XqlLOzs5KSkpqaWslDaWlpoqKi\n4uLiDJYHANDEYYwdANSMjo6OnZ0dEd2/f//8+fPr168fMGDA48ePr1y50r9/fwkJCaYLBABo\nuhDsAKCW9u/fHxYWtmnTpk2bNhGRoaHhsWPHmC4KAKBJQ7ADgFpSUVEJCgry9vZ+//69np7e\n4MGD0Q8LAMAsBDsAqD1RUdEhQ4YwXQUAABTByRMAAAAAQgLBDgAAAEBIINgBAAAACAkEOwAA\nAAAhgWAHAAAAICQQ7AAAAACEBIIdAAAAgJBAsAMAAAAQEgh2AAAAAEICwQ4AAABASCDYAQAA\nAAgJBDsAAAAAIYFgBwAAACAkEOwAAAAAhASCHQAAAICQQLADAAChkpeXFxcXx3QVAMxAsAMA\nACGRkZExd+5cOTk5LS0tVVXVw4cPM10RAL8h2AEAgJBYsGDB0aNHe/bsuXjx4mbNms2fP//8\n+fNMFwXAVwh2AAAgDDIyMlxdXQcPHnz//v2///47MDBQWVn56NGjTNcFwFcIdgAAIAyioqIK\nCgq6d+/OmVRUVGzXrl1ERASzVQHwGYIdAAAIA319fXFx8du3b+fn5xNRdHT069ev27dvz3Rd\nAHyFYAcAAMJASkpq2bJlfn5+7du3HzlypKmpaUZGxsqVK5muC4CvEOwAAEBIbN68+c8//yws\nLPT29tbX17927Zq1tTXTRQHwlRjTBQAAANQPMTGx33///ffff2e6EADGoMUOAAAAQEgg2AEA\nAAAICQQ7AAAAACGBYAcAAAAgJBDsAAAAAIQEgh0AAACAkECwAwAAABASCHYAAAAAQgIXKAYg\nImKz2UFBQdHR0YaGhh06dGC6HAAAgNpAsAOg+Pj40aNH+/v7cyZHjRrl5uYmJSXFbFUAAAA1\nha5YAJo5c2ZAQMDSpUvd3d2nTJly+fLltWvXMl0UAABAjSHYQVOXnZ3t7e09evTo3bt3T5gw\n4cyZM8bGxpcvX2a6LgAAgBpDsIOmLiUlJS8vT1NTkzPJYrE0NTWTkpKYrQoAAKAWEOygqVNT\nU9PW1vb09IyIiCCigICAhw8fdu3alem6AAAAagzBDoAOHjz49etXQ0NDDQ2NX3/9lc1m//XX\nX0wXBQAAUGMIdgA0YsSIJ0+eTJo0qU2bNrNnzw4JCenUqRPTRZUXGxs7bdq0Fi1aqKqqTpky\nJSYmhumKAACg0cHlTgCooKDg9u3b169fT05O/vDhQ9euXdu0acN0UWVkZmb269fv3bt3vXr1\nIiI3N7egoKDnz5/LysoyXRoAADQiaLEDoKVLl65ZsyY5OZmIvn79OnPmzH/++Yfposq4dOlS\nWFjYnj17Hj58+PDhw/3794eHh1+8eJHpugAAoHFBsIOmjs1mHzp0iMViHThw4NmzZ8uWLSMi\nJycnpusqIywsjIiGDRvGmRw6dCgRhYaGMlkTAAA0PuiKhabu/fv3BQUFRkZGCxYsIKJu3bq5\nuLj8+PGDzWazWCymqyuip6dHRM+ePdPX1yeiwMDAkpm8KygoOHv27MOHD6WkpEaOHNmvX7+G\nKBUAABhUg2BXkBYd+iYiLjExMTlHUklVVVVT39hIR0604YoD4AMFBQUiSkpKKigoEBUVzcjI\nyMrKEhUVbTypjohGjBixdu1aR0dHHx8fFot19uzZFi1ajBo1ivctFBQUDBo06M6dO5zJw4cP\nr1q1atu2bQ1TLwAAMKP6YJcd4+9x4oT79XuPX0SlFpR9TFShVZdeaMiRPwAAIABJREFU1kMn\n2tuP+1WbXzfWzPzke/HcRa+Hz0PCPyUmp2Xmi8vIK7ZoadjRrM/gsbbjLFtK86kQEA7q6urN\nmzdPSEgwMDCwsLDw8vLKyckxMzNjuq4yVFVVb9y4MXv2bGdnZyIyMzM7evSompoa71twdXW9\nc+fOnDlz/vzzz9TU1ClTpuzYscPW1rZDhw4NVjUAAPBbVcEu9a3HzrWbjlx986OAiERk1Nub\nG2qrNm/eXEEiJ+Xb9x+J0e/e/Bfo5RLo5bJpUcfhc9dtWTHOSKFBy0302TRp6tZ7sbll5mak\n/0j8EvX2ya0LhzY6Wa92dV9npdKgZYCQ8fT07N+//8ePHz9+/EhECgoKjfCWYl26dAkMDPz2\n7RsRKSsr13R1Pz8/Fou1Y8cOeXl5eXn51atX+/r6+vv7I9gBAAiTyoJdhPss299OPE0kpXZ9\nHZfajhtq9YuxrsJP3a75KZ9Cnvhc93A753l12/irzr/Y7z97bKJ+w9SaH7Jt4KD1L3JIrs3A\nafZj+3U31tdSVpASy89O/RYbEfL0zsUTp70/3Fs/aKB40JNVHTF8EHhlaWn54cMHFxeXiIiI\nTp06zZw5U1FRkemiKlaLSMchIyPDZrPT09M5u5aWlsaZWZ/FAQAA49gV8xgr1dLmt6OPYrMr\nWaC87JhHR3+zaSk11oPHFWosw32sLBGpj3SJqKyo7A8uI9WJSHase0b9PfH06dOJaPPmzfW3\nSQA+8fX1PXjwoKenJ6cN0sLC4t69e5cuXWrdurWMjMznz5+ZLhAAQPA8fvyYiPbu3ct0IRWo\nrFnLav/H9xoa4rwHREmtXrP33bFf+SW1jkmzUoG+vhlEnRb/Zd9asrIi9O13Ldp/ZVXwgwdB\nNKFPQ1UCIACys7OHDRt29+5dzmTLli0dHBxOnjxpbW1NRDIyMs7Ozjo6OozWCAAA9ayyYKes\noVGbzYlraNSyo6h6qampRKStrV3lUtra2kTBnGUBmrANGzbcvXt39uzZtra2wcHBv//++/Pn\nz4ODgx8/fiwlJdWvXz8tLS2mawQAgHomQAPRdHR0iCICHz3KtrWp9Azc7MePg4hIV1eXj5UB\nNEI3b940MDA4cuQIi8Xq3bt3eHj4wYMHlZWV58yZw3RpUIGEhISgoCAJCYnu3bvLy8szXQ4A\nCCqe7zyRH/3k+vXrt0O+FU2nvzziaNlRr6WR1bzTb7MbqLoyTMeNN2BRvLP9+H3+8fkVlRjv\nv2+8vXM8sQzHjTHhR0kAjVdGRoa8vHzJ1fg4l+tLT09ntCio2OHDh/X09IYMGdKvX7+2bdt6\ne3szXREACCpeW+x+/LvIxvay1JQrn/sbE1HmrcUD57kkEBFFHZkxRLrNh909G7rxj2XmdOIP\nrwE7g68t7tlym3FPC/OO+loq8pKiBTlpSbERb5498AtJyCGS7bTSxalxXYQMgP9+/fXXc+fO\nnTlzZvLkya9fvz558qSamlqbNm2YrgvKCwgI+O2339q1a7ds2bKMjIwtW7ZMmjQpLCxMXV2d\n6dIAQADxdo5F0hFrEaIWC3wL2Ww2m51+bpSURLc1T7/GeM9vxyJSnOSZ2YBneHBJCT6xwKrS\nayFLaVstOBGcUs/PibNiQRDFxsZqamqWfDjExcWvXr3KdFFQgZUrVxJRaGgoZ9Ld3Z2I3Nzc\nmK0KAKogiGfFlvP+3btCIsP27VlEROwnPr45ljsXm6sp02I7k0Orgp89C6fRneqQL3mlYDLj\nwH277VFPfR4Ghfz3OSE5PatAVFpOqYWugXFXC6vuLeV47lwmIqKCggIvL6/s7Ko6k6Oiooio\nsLCwLoUD8Jmmpubbt2+PHDkSEhKipaVlb2/fvn17pouCCiQlJRFRybksnD84MwEAaorHYMf5\nkim+aOunly9/tBncXZmo6JSG4Li4OCJ+BDsiIhKRa9VjWKsew+phUz4+PsOHD+dlycjIyHp4\nPgA+UlJSWrVqFdNVQDW6du16/Pjxv/76a8OGDTk5Ofv37+fMZLouABBIPAY7NTU1os+fP38m\naksZ/v6vpTo5tSMiouTkZCJi/iSulKhXkcmkpNepVY3uGGBlZXX16tWqW+wOHz7s6+urp6dX\nxxIBAH42ffp0Z2fnzZs3Hzx4MDc3NyMjw9bWtkePHkzXBQACicdgZ2hmJkufX5/cdWncWm23\nQ96FffZZSRBRcT+lvn4D3UaMZ3eWdx7nSWM82BfH1mQ1UVHRYcOqafrz8vIiIhGRmnXyAgDw\nQlJS8uHDh3///bevr6+UlNTw4cPt7e2ZLgoABBWPwU5h7GLHVVf2vXce09aZiDQcbk5sRkRE\nITe8Yog6DRmiWfUGAACgEjIyMqtXr169ejXThQCAwOP1GiUSff70vaqy6ei9z6TdY9qaNQM5\nXa//3X2So68/eNZkw4YrsdjFsaxxntUs4zmu6KpdNW66AwAAABB0vF98TkJv6JqTQ9eUnWmw\n5PaHJfVcEgAAAADUhgCNG1NvqStBIqq9Fru9jv/xk9PDiYiGny6aPDOC6XIBAAAA+EyAgl2v\n3W9fus5v+27/5F+t5ruG5SkocZMRJyISlykzCQAAANCE1CDYsb8/P7lysqVJqxZKctJS5Uy+\n3HA1lpAzmrL/cZj/wZEi137r1b7ngjNv0vjwrAAAAACCgedgl3TDsVsP+53nH4TF/kjJyM5h\ni4jk5+Tk5OQUisvJyclJNfSdYouxVLrPd30R6r2x59fjdl069F93PTKHT08NAAAA0KjxGOwK\n/bctOPExT9Fy54vv50YQEQ07k5b80WtNDyVq0Xf3k/gT9XEbCJ6Jaw9Y8783wRcWtHq9bVjH\nThN2P44v4OfzAwAAADRCPAa7N9evRxGpT9u4vLN88SqicnqDNrtv/jXGY9bU/7N3n3FRnXkb\nx//DgChFil26GGwUxYItEiyIRuy9RMUSSxKNMcaS6FpAjSVqoimWjZrEEohGjTUKdlGs2AVF\nAiqKihTpzPNiEh7jKo7KMDD+vq+YM/ecuSab/ey19znnvhdd1VbA5zOt0XPh/kvHvuttvGt8\ni1oj9xZ9AgAAgOJEw2IXGxsrIq4eHgYi6pXi8vLyRETsO3b0kKxjq9froNmJiMKqwfsrIy7u\nC3qnYp6xsbFxKaVOYgAAABQDGt4aV6ZMGZFMQ0NDETE1NRVJe/TokYjV37vISnR0tIiLNoMW\nwLCqz8TfLk/U0bcDAAAUExrO2Kn3glXvC+vk5CQiV6+q5+jUx8zNzbUSDwAAAJrSsNg5+vq6\niETt339LpEbbto4icSs/n7Xn+IFvJn97XqR0/fq1tRoTAAAAL6Lpcieeg0a8Y1Pp2paQGJHG\nn8ztVlnx8M8vfL28P/wtXozdJs4cYK3NlAAAAHghjZefc/k4NO6fXWGr9Fx3ovy3C3/cd/m+\nskq9TqPHvedZVMvYAQAA4DlesZAZ2bb8aGHLjwo3CwAAAF6Dhpdi70VfSszSbhIAAAC8Fg2L\n3f7PalcqZ9+gw5DJSzaEXb5PxwMAACh2NCx2Dl6t65jeO/nHqtljevvUqmht37DD0MmLN4Rd\nouMBAAAUExoWu4af7jl3+8Ht0ztXzx3Xr1Vts7sRf6ycPba3T+2K1vYNOwyZsmRfnHZzAgAA\n4AVe4uEJRZnKddu+V7ftexNElX777P7du3fv3r1z5/6IP1ZF/PGo3kctu2svJgAAAF5E03Xs\n/iUvNSH2b7eTc0REFAavdCIAAAAUGs1n7PJS/zoVtnv3rl27du89evVBtojCpKpHi34TfH19\nfds0r6PFkAAAAHgxDYvdgYm1ui68fD9bRFGmikeLPn+3OdeKxtqNBwAAAE1pWOzuRl2+ny2l\nnfw+Cpw5rmuDSvQ5AACA4kbDW+Oq+3R/+y2r3Bs7v+zbsIq1Tb32gycuWrePRYsBAACKDw2L\nXd3Rvx64mnj/xrHfv58xql21tGM/zf24b6vaFa3tGnQYOmXJxgPXU7WbEwAAAC/wMg+zGpg7\nenUc/sU3wQev3nsQc3Tz99NHtq34166VQWN6eU/YqbWIAAAA0MSrrFKiSr9z/sj+AwcOHDhw\n6MLdnELPBAAAgFeg+XInmQmRB/fs3r1r1649B88lZIiIiIGpXf32bXx9fX3922orIQAAADSi\nYbH788OqHZfeTleJiChMbeq1923r6+vr26ZZrXKltBkPAAAAmtKw2CUlPLKq69fT9+/FiCvQ\n5gAAAIobDYtdx7UPuhuzeB0AAEAxpuHDE6VodQAAAMWchjN20Tu/2RH17LcUBqVMylpXdanX\nyNPZSvNnMQAAAFC4NGxip1d8+GHIC8aUqtJkUOD3Cwa7mb12KgAAALw0DYudW//Zs2uc/XnR\n+vOZFTz9OzavbWOWGn/x4Jatp+8Z1+kx3Nci/vD2TceP/hDgfUN1aneAo1YzAwAA4Bk0LHY1\n2rdXBc04r2oyLXzHtPoWCvVRVdKJqX4tZm073P/YoWPzzk5p03x2xJ5Jc/4c+F1rpfYiAwAA\n4Fk0fHji0bopM06k241cMDW/1YmIwrLhfxaOtE0/MePz9cmWDafNeq+8yN3du89qKSwAAACe\nT8Nid/Lw4QyR2m5uT49XurvXEUk/fPiUiHG9erVE5NatW4WdEgAAAC+kYbFLT08Xkbt37/7P\nO3fu3Ml/v3Tp0iJStmzZQgwIAAAAzWhY7OrUqSMiZ3/8/ljmv45nHP5udaSIuLrWEZErV66I\nSPXq1Qs5JAAAAF5Mw2LnOGhMx7KSd2neu82HLPwtLOLytcsRYSELApr5L7ycJxadxwx0ENWZ\n37fGiqJ+xw5VtZsZAAAAz6DpisKVB/y4+UqH7kFHIlZ90m3VE28oyr89LeTHfpVE7jxyCJg3\nr4rP+y7aCAoAAICCab5VhJXPrAOXuwav/HFz6Mmrtx9lG1lUcanv02Xw0O71yhuIiFT2Hjbe\nW2tBAQAAULCX2gNMWcGz10TPXhO1FQYAAACvTsN77DR3eE6HDh06zDlc2OcFAABAwV5qxk4T\ntyP++OMPKT2osM8LAACAghX6jB0AAAB0g2IHAACgJyh2AAAAeoJiBwAAoCcodgAAAHqi0J+K\nBV7g8ePHmzZtio2NrVGjRseOHQ0N+ZcQAIDCwf+mokhdvXq1TZs2sbGx6pfu7u779u0rV66c\nblNpQ1pa2sWLF01MTGrWrKlUKnUdBwDwRuBSLIpUQEDAnTt3vv3229OnT0+fPv3cuXPjxo3T\ndajCt3btWnt7+0aNGrm6urq5uZ08eVLXiQAAbwSKHYpOamrq0aNHu3XrZmxsvHXrVldX16ZN\nm+7Zs0fXuQpZeHh4QECApaXlvHnzJk2a9Ndff3Xp0iU5OVnXuQAA+q/QL8W2+vLEiYli7VzY\n54UeyM7OVqlUv//++7p169RHzM3NjYyMdJuq0G3cuDEnJ+ePP/6oWbOmiNja2o4ePfrQoUPt\n27fXdTQAgJ4r9Bk7q2oNGjRoUM2qsM8LPWBlZWVsbPz48eNPPvnk6NGjnTt3TklJKVu2rK5z\nFbJbt24plUpn57//342Li4uIxMfH6zQUAOCN8LwZu50fVv9gx0ucp903UV/7FUYg6LHExMSM\njAwjI6MFCxYsWLBARIyMjPLy8nSdq5B5eHisX7/+xx9/HDZsWE5OzurVq0Wkbt26us4FANB/\nzyt2qbejo6Nf4jy3UwsjDfRbdna2iAwcONDR0fHmzZs1a9bcsGHD7du3dZ2rkI0cOfKHH34Y\nPnz4ggULUlJSbt261b1794YNG+o6FwBA/z3vUmy3jdkvZWO3Io2NEqlKlSrVq1cPDg5u0KBB\nUFCQiYnJiRMnWrRooetchczCwuLo0aOjRo0yNja2t7f/8ssvf/75Z12HAgC8EZ43Y6cwMDTk\niVkUuv/+97/t2rXz8/v7ur2Dg8P8+fN1G0kbKlWqtHTpUl2nAAC8cVigGEWqefPmV65cWb16\ndVxcXO3atQcNGmRqaqrrUAAA6AmKHYpa1apVJ02apOsUAADooZe43Kp6cPK/E/u+4+5Y0dKs\nTOmn9N2kvYwAAADQgMYzdol/DPXqsup6thgaGubk5EipMmVy09NzRYzMypU1ltJM/QEAAOiW\nhjN2eUeCPlh1PdvinbmnHvzcSUTEf01K0vXtnzexlIotFxxLWOWvzZQAAAB4IQ2L3flt22JE\nKr83fXw9838+ojRzajdz/cymcb8OH7DoqrYCAgAAQDMaFrvY2FgRcfXwMBBRKERE/t4vwL5j\nRw/JOrZ6Pc0OLyUnJ0fXEQAA0DcaFrsyZcqIiKGhoYiol6d49OiRiIhUqlRJRF5umwq8uXJz\nc+fPn29nZ1eqVCkXFxf1dlsAAKBQaFjs1Buax8TEiIiTk5OIXL2qnqNTHzM3N9dKPOiboKCg\nTz/91MTEpFevXo8fPx40aNAvv/yi61AAAOgJDYudo6+vi0jU/v23RGq0besoErfy81l7jh/4\nZvK350VK169fW6sxoRdUKtWCBQvq1q17/vz5devWnT9/vkqVKnq58wQAADqh6Tp2noNGvGNT\n6dqWkBiRxp/M7VZZ8fDPL3y9vD/8LV6M3SbOHGCtzZTQD3fu3Hn06JG3t7eRkZGIWFpaNmjQ\n4PLly7rOBQCAntB4+TmXj0PjPv777yo9150o/+3CH/ddvq+sUq/T6HHvebKMHV6sUqVK5ubm\nR48ezcvLMzAwSEtLO336dPXq1XWdCwAAPfGKhczItuVHC1t+VLhZoO8MDAxGjx49Z86cBg0a\neHl57d27Ny4uburUqbrOBQCAntCw2B1c+P4h26GDOjesUkq7eaDnZsyYYWhouGTJktOnT1eq\nVGnx4sXDhg3TdSgAAPSEhvfYJRz5YXKvRvY2Hp3Gfb314sNc7YaC/jIyMpo5c+ajR4/u379/\n586djz5i2hcAgEKjYbFr8cn3k3o1qphybstXH3WsU9W+ab8pq0Kvp6m0G+7ZHt8MWxP0QW+/\nJnWcqla0Mjczt65Y1cm1iV/vD4LWhN1M10UkvDxra563AQCgkGlY7Co2GR60Pjw2PnLLorGd\n3MzuHv0laEjL6lXeajV89rrjtzO1m/EJ90JntHZx8Rk4ZemGXccuxty+l5Salvrw3u2YC8d2\nbVg6ZaCPy1utZ4QmFlkeAACA4kPT5U5ERERZztV/zFebz8XHHd8w931fF8WNfcsn9/Wyr+re\n6Zuz2kr4/3Iig/zaTdsbn2VW3W9U0IpNe8PPXY6KiYmJunwufO+mFUGj/KqbZsXvndbOb/Z5\ntqsCAABvnJcqdv8oValhzwnf7bp8+8aBH6e866B4ELkl7FphJ/sfj0NmBJ3KlMqdV549v2Pp\npCGdWzZyq+Hs4ODgXMOtUcvOQyYt3XH+7MrOlSXzZOD0kMdazwMAAFC8vFKxExHJe3Rl549f\nL1myfM/N7MIM9HwnwsLSROqOnR9Qzfg5Q4ydA+aN8RBJ278/omhCAQAAFBsvv47d45v7N/53\nxcr/hhyKTRcR46pevQcOGzqsfeFne0pycrKI2NraFjjK1tZW5Kx6LAAAwJtE82KXdefE7z+u\nXLFy3Z9RyXkiSmvXDsOGDB323ruu1kWz7YSdnZ1I9ImDBzP6tS79vEEZhw5FiIi9vX2RZAIA\nACg+NOxkR6d5dAw6l5gjojBz8gkIGDYsoGvjqs+7IqodHj16unw5++rygJ611i8f3bTS/0TP\nSTiydFjA8gRR1OjRzb1IswEAAOiehsUu/sK55AoNew4aNmxon1bVzBTaDfVsivqTV03Y3nbu\n2a1jmzkEuTXzbuTqbFPe3FiZm5mSGB99/vj+w5F3M0VM605cObm+LhICAADokobFrunMc/Fv\nuZUvmmuuz2XWbM6BIzWmjJ26IjQuct+vkfueHlDa1mfojEWBg91NdREPAABApzSsalVrueX/\nnZUU/9ftpKxSllXsbCyLeuvYsu6Dv943cHZMeOiBiMirsXeTUtNzlWXMLCvau7g18PbxcjB7\nued8c3Nzt2/fnpGRUcCYmJgYEcnLy3ud4AAAANr2MnNwGVG/zZ4c9MPWU3cyVCIiijKVPTsM\nnzJ7Uhfn5z7MoBUGZo5N/B2b+BfCqUJDQzt27KjJyBs3bhTC9wEAAGiNxsUu7cR/WrWaHp4i\nojC2tnO2NU+Ji467c/LXGV137vrPvr3TGpTMq58+Pj5btmwpeMZu2bJlYWFhTk5ORZYKAADg\nFWhY7FQnAwfMCE8R6+aTVv33i07Vy4iIpF/b/J9BAV8eCZ/eP6jDpcD6RfNIRcbts0dOxysq\nuzX0tDMTEZHcu0fXfPfr4WuJBpVq+/QO6NWgouaXY5VKpb//C6b+tm/fLiIGBq+8mDOgXcnJ\nyQcPHkxOTm7UqJGzs7Ou4wAAdEbDYndq/borKjHvuCgkqFPFfw6Weavz3JBHF98atO3Kug2n\nA+t7aitkvrTj87p2nrz7do6IGFZpOWvLts/q/vVduyaj/nygUo9YvnD+yvl/bhtXt2gvDgM6\nExoa2rdv3zt37oiIUqmcMGFCUFCQrkMBAHRDw1mo+Ph4Eann51fxqTcqt2tXL/99Lcs9MaPP\nhN23c5QW1erVf6vsvX2Tev/njxUfjPnzgalHr0nzly7+vLebmer+3k/7BJ3O1X4cQPcePXrU\np0+fnJycb7/9dtOmTU2bNp09e/amTZt0nQsAoBsazthVqlRJJE6lUv3PO+pjlSpVKtxcz/B4\n88LvrovY9t0Y8VPXSor72wbX918xeOqjLPthWw/94GsmIqPeqyvVu6+//O23e6f94KvUeiRA\nx44fP56QkLBs2bIRI0aISIsWLSpUqLBly5YuXbroOhoAQAc0nLFr0KWLrcjp7dvvPPXG7T+2\nnxZx6NatQaFHe1rUyZPJItUHTehaSSEi5TqMG+jy4N69XOcBo3zN/h5j2Xlk38oiiYcOXdF6\nHkD3Hj58KCIVK/49lW5hYWFsbJyUlKTTUAAAndGw2ClbzPplUgPlH+O6ffbblcd/H0y7EjK+\n6yfbDRtO+XlGM+0/WRAXFyci1atX/+fA338+cUREWbPmWyISGxur9TyA7jVo0MDAwGDJkiX3\n79/Py8v78ssv09PTGzVqpOtcAADd0PBS7L7PWk7Ym2lm8vDIl91qfmVh42Rjmhp341ZytoiJ\nbcbOMT47nxjc6suIuS0LP2rZsmVF0rOyskTUS6uUKVNGRMTMzOyJURYWFiKSm8tNdngTVKtW\nbeLEiUFBQZUqVSpVqlR6enqdOnXGjBmj61wAAN3QsNg9iD558uQ/L7IfxV99lP/W47jIk3H/\nGuz4oHCyPcXZ2Vkk4caNGyJW6iMV6nh7J0qdCk+OUj/GYW9vr5UMQLETGBjo5eW1cePGlJSU\npk2bfvDBByYmJroOBQDQDQ2Lnf+K27e/0fScpa1eNU2BqrTzcx935Ny+fTHi6SgiIt7Tw8Ke\nGpRz9eoNERMPj+pPfxzQWx07dtRwAxUAgH7TsNgZW1aurN0gGqjZq3/jBYGXt4RcH/9JtWcP\nydj2U0iSmPXt06FM0WYDAADQuZfZK1bnXD49mvRpgSMelmsz+9vmNt7tuRQFAADeOM97mDXq\n8N7YzJc+W+bNvYejXi/Q66ny9sARI0b41zLWZQigaERFRXXp0sXKyqpixYpDhgxJSEjQdSIA\ngI49r9id+ar1W87eI7/eeeVRnganyU26vPPrES2cXVp/daYw4wF4tvv37/v4+GzdurVhw4Yu\nLi6rVq169913s7KydJ0LAKBLzyt2LT/7boj9lRUftatZ2bZhj3HzVm89fCkh/d8bT+Q9vnPx\n4JYfv/y4ewPbyrXafbTymuPQ7z7TwkInAJ62du3auLi4NWvW7N69+9ChQ9OnTz958uTu3bt1\nnQsAoEvPu8fOuuH7y470/Sh4UeCC74ODv4oI/kpElGUsy5WztrY2N8pMfvDgwf0HjzLUy8WV\nsWs+MHDc5I+6uJg953wACtXFixdF5N1331W/fPfdd6dNm3bx4sUOHTroNBcAQJcKfHjCvGb3\nL9Z2n7z43LZfNvyxb/+BQxFX7sYl3f171TqFccVaLd729m7doXfvdrUttb/1BIB81apVE5Hw\n8HBfX1/1H/L3Yo8AgDeXBk/FKq3dO33g3ukDEcnLTL5/717io2xjy/IVKlibl6LNAbrRp0+f\nuXPndu/evW/fvunp6evXr69WrZq65AEA3lgvt9yJgXHZCrZlK9hqKQwATTk4OGzbtm3UqFHf\nf/+9iHh7e3/77bfm5ua6zgUA0KUStY4dgCc0a9bs7Nmz9+/fNzIyKlu2rK7jAAB0T4Ni9/hm\nWPDPwdsPnIy8cvNeUsrjHCMTc4uKDjVc67do371fj3cc2OQB0J1y5crpOgIAoLh4QbG7Fzqj\nz4DAvfH/XhwrLfXhvdsxF47t2rB0+uRWU9aun+pTXosZAQAAoIGCil1OZJBfu2mnMsWsut97\nAd3beLk525QrW9owJyP5fnx0ZPie4FWrd0btndbOzyji2CRXruoCAADoUgFt7HHIjKBTmVK5\n88rD6wOq/XuTLucabo1adh4ybtyq3s2HbD4ZOD1kzK+92J8VAABAhwpYr+REWFiaSN2x859u\ndf/P2Dlg3hgPkbT9+yO0Eg8AAACaKqDYJScni4itbcGLm6jfV48FoDV5eXnXrl2LiIhIS0vT\ndRYAQDFVQLGzs7MTkRMHD2YU8PmMQ4ciRMTe3r6QgwH4fxcvXmzYsKGLi0vDhg1tbGyWL1+u\n60QAgOKogGLn0aOni0ISlgf0XHwkIecZA3ISjizuGbA8QRQ1enRz11pE4A2XkZHRtWvXixcv\njh079ssvv6xUqdKIESPCwsJ0nQsAUOwU8PCEov7kVRO2t517duvYZg5Bbs28G7k625Q3N1bm\nZqYkxkefP77/cOTdTBHTuhNXTq5fdJGBN0xERMSVK1eCgoImTZokIr1793ZwcFi3bt0777yj\n62gAgOKlwDVKzJrNOXCkxpSxU1eExkXu+zVy39MDStv6DJ1ddQmAAAAgAElEQVSxKHCwu6n2\nEgJvuri4OBGpUaOG+qWtra2pqan6IAAAT3rR4nNl3Qd/vW/g7Jjw0AMRkVdj7yalpucqy5hZ\nVrR3cWvg7ePlYFbAxVwAhcDDw0NEfvnlF39/fyMjo5CQkNTUVPVBAACepNGqwgZmjk38HZv4\nazsMgGeoVavWwIEDV69e7ejoWK5cufPnz1euXHns2LG6zgUAKHaYbwMKU1RU1KpVq37++ef4\n+PhCPO3y5csXLFhgY2OTnZ09ePDg8PDwihUrFuL5AQD64fX3AYve+c2OKKne7gM/50LIA5Rg\ns2fPnjp1ak5OjoiYmJh89913AwYMKJQzGxkZjRs3bty4cYVyNgCAvnr9GbvTKz788MMPV5wu\nhDBACXbw4MEpU6Z4enr+8ccfv/76a9WqVYcPH379+nVd5wIAvEFef8YOgIjIjh07VCrVmjVr\n1I+vmpqatm/fPjQ0tFq1arqOBgB4UxRQ7HIzUtOftS7xUzJyCy8NUHKlpqaKiKWlpfql+o+U\nlBRdZgIAvGEKuBS7qb+5JgZsLrq0QPHVpEkTEfn8889TU1MTExNnzZolIk2bNtV1LgDAG4Sn\nYoHC0atXr/bt269YscLCwqJChQrbt28fNWpUo0aNdJ0LAPAGKeBSrJOTo0hMvdlXj493KuAM\nv/Uy6vVb4YYCSiADA4OtW7euWbNm3759xsbG7777bufOnXUdCgDwZimg2Hm2aVN+/vIze/cl\nTXy//POHGSgKPxVQIhkYGAwaNGjQoEG6DgIAeEMVcClW0cK3VWlRHdq9J73o8gAAAOAVFbTc\nSenW743tlHGpbGqMSK3njmowcvlyP3FqUOjRAAAA8DIKXMfOsv3sze1fdAbHVkOHFl4eAAAA\nvCKeigUAANATFDsAAAA9oeGWYtE7v9kR9ey3FAalTMpaV3Wp18jT2YodygAAAHRFwyZ2esWH\nH4a8YEypKk0GBX6/YLCb2WunAgAAwEvTsNi59Z89u8bZnxetP59ZwdO/Y/PaNmap8RcPbtl6\n+p5xnR7DfS3iD2/fdPzoDwHeN1Sndgc4ajUzAAAAnkHDYlejfXtV0IzzqibTwndMq2/x95rE\nqqQTU/1azNp2uP+xQ8fmnZ3SpvnsiD2T5vw58LvWSu1FBgAAwLNo+PDEo3VTZpxItxu5YGp+\nqxMRhWXD/ywcaZt+Ysbn65MtG06b9V55kbu7d5/VUlgAAAA8n4bF7uThwxkitd3cnh6vdHev\nI5J++PApEeN69WqJyK1btwo7JQAAAF5Iw2KXnp4uInfv3v2fd+7cuZP/funSpUWkbNmyhRgQ\nAAAAmtGw2NWpU0dEzv74/bHMfx3POPzd6kgRcXWtIyJXrlwRkerVqxdySAAAALyYhsXOcdCY\njmUl79K8d5sPWfhbWMTla5cjwkIWBDTzX3g5Tyw6jxnoIKozv2+NFUX9jh2qajczAAAAnkHT\nFYUrD/hx85UO3YOORKz6pNuqJ95QlH97WsiP/SqJ3HnkEDBvXhWf9120ERQAAAAF03yrCCuf\nWQcudw1e+ePm0JNXbz/KNrKo4lLfp8vgod3rlTcQEansPWy8t9aCAgAAoGAvtQeYsoJnr4me\nvSZqKwxQ1K5fv37hwgUbG5t69eopFIoXfwAAgGJMw3vsAH2Tm5sbEBBQvXr1jh071q9fv2nT\npnFxcboOBQDAa3mpGTvJe3Bu67rf9kZcjU/KNLa0cWnYqlsffzcr2iFKnrlz5/73v//t2LFj\njx49zpw589VXXw0cOHDv3r26zgUAwKvTvNjlxW7+qPPApaeTnzj249czJnt+uPb3Rf62XMRC\nyRISEuLo6BgSEmJoaNi/f//ExMQ1a9Y8ePDA2tpa19EAAHhFmha73DOB/r2WnssS89rdRgW0\ncbczT/3r3J7/Lgu+cGpJD/9KJyImu7E9LEqSe/fu2draGhr+/V8Be3t7lUp17949ih0AoOTS\n8Cpqxua5X57LEgvfZWfPBs/55P2+PfsO/2TOr2fOLvW1kMwzc2b/nvnikwDFiKen58mTJw8c\nOCAit2/fXrdunYWFBatrAwBKNE33ig0LSxVxGjV7pNOTc3yGTqOCRjqJpOzff0or8QBtmT17\ntpGRkY+Pj729vaOjY1RU1FdffaVUMvEMACjBNCx2iYmJIlKjRo3/eadmzRoicu/evUKNBWhb\nrVq1zp07N2TIEFtb244dO/7555+DBw/WdSgAAF6LhvfYWVhYiNz/66+/RGr++52//vrrn/eB\nkqVatWo//PCDrlMAAFBoNJyx82zc2EjkwvL5O5L/dTx55/zlF0RKNWniqYVwAAAA0JyGxa5s\nz4+H2ojEruzesOu0NdsPno48fXD7mmldG3ZbGSsKu+Ef9zDXbk4AAAC8gKbLnZi0WvD7gqgO\nn+65umnGwE0z/v8NZZV2C36f51NGK+kAAACgMc0XKC5Tf9zOi202LV8Zsi/i6u1H2UYWVWo0\naNVt6NAurlasTgwAAKBzL7WlmIGVW7cJi7pN0FYYAAAAvDq2eQUAANATFDsAAAA98bxLsTs/\nrP7Bjpc4T7tvor72K4xAAAAAeDXPK3apt6Ojo1/iPLdTCyMNAAAAXtnzil23jdnZeS9xHgO2\n2AQAANCt5xU7hYGhIfffAQAAlCCUNwAAAD3xCsUucs348ePHr4ks/DAAAAB4da9Q7K5sWbBg\nwYItVwo/DAAAAF7dS+08UTw8vhkW/HPw9gMnI6/cvJeU8jjHyMTcoqJDDdf6Ldp379fjHQf2\nrQUAAG+kElbs7oXO6DMgcG981r+OpqU+vHc75sKxXRuWTp/casra9VN9yusoIAAAgM6UpGKX\nExnk127aqUwxq+73XkD3Nl5uzjblypY2zMlIvh8fHRm+J3jV6p1Re6e18zOKODbJtST9NAAA\ngNf3Cu1HWcrY2FhKFfnCdY9DZgSdypTKnVceXh9Qzfhf7znXcGvUsvOQceNW9W4+ZPPJwOkh\nY37tZVLUCQEAAHTpFR6e6PJLRkZGxi9dCj9MwU6EhaWJ1B07/+lW9/+MnQPmjfEQSdu/P6JI\nswEAAOheCVrHLjk5WURsbW0LHKV+Xz0WAADgTVKCip2dnZ2InDh4MKOAQRmHDkWIiL29fRGl\nAgAAKC5KULHz6NHTRSEJywN6Lj6SkPOMATkJRxb3DFieIIoaPbq5F3k+AAAA3SpBj44q6k9e\nNWF727lnt45t5hDk1sy7kauzTXlzY2VuZkpifPT54/sPR97NFDGtO3Hl5Pq6TgsAAFDUSlCx\nEzFrNufAkRpTxk5dERoXue/XyH1PDyht6zN0xqLAwe6muogHAACgUyWq2IlIWffBX+8bODsm\nPPRAROTV2LtJqem5yjJmlhXtXdwaePt4OZi93MXl3Nzc7du3Z2QUdN9eTEyMiOTl5b1OcAAA\nAG0racVOREQMzByb+Ds28S+EU4WGhnbs2FGTkTdu3CiE7wMAANCaElnsCpGPj8+WLVsKnrFb\ntmxZWFiYk5NTkaUCAAB4BSWx2GUn34q9m1nWxrFCGcX/vns38s9zCVLJvbVbRQ3OpVQq/f1f\nMPW3fft2ETEwKEFPEAMAgDdRCSsrKae+7Ve3srVN9beqVbS2azFq5an/WYj4wPQ2bdq0mX5A\nF/EAAAB0qEQVu/g1vVuP+uXsg1xRlDYzyY4/+O3Qpg36/xT9rEXtAAAA3jQlqNjlHfzy8+0P\nxcCx+4pTD1JSUh9e2fx563LXfx7o02dtTK6u0wEAAOhaCSp2F3bu/EvEqs9Xq4bUszQUhblL\np5k7j4e8X+tu8GCf9zb8xWokAADgzVaCit3NmzdFpJ63t/n/H1PadPpuX/Cw6nG/9G81dNNt\nlc7CAQAA6FwJKnbGxsbyrIdTK3b4bvfqHlWi/tu79egd93SRDAAAoDgoQcudODg4iETevHlT\nxP3f7xjY9/1p9/2k5h99283XdHA53cQDAADQsRI0Y+fcpEkFkevh4YnPeLNUzQ837ZjmpTwz\nf9neIk8GAABQHJSgYqf06drJSnJDQzY/fOb7pg3/s/33D+sYF3EsAACAYqIEXYoVw5YTf13r\nfbtU9cznjbBuuXj3jlprwh9JTbeiTAYAAFAMlKRiJ0bOrfo7FzxEUdVn5ESfookDAABQrJSg\nS7EAAAAoCMUOAABAT1DsAAAA9ATFDgAAQE9Q7AAAAPQExQ4AAEBPUOwAAAD0BMUOAABAT1Ds\nAAAA9ATFDgAAQE9Q7AAAAPQExQ4AAEBPUOwAAAD0BMUOAABAT1DsAAAA9ATFDgAAQE9Q7AAA\nAPQExQ4AAEBPUOwAAAD0BMUOAABAT1DsAAAA9ATFDgAAQE9Q7AAAAPQExQ4AAEBPUOwAAAD0\nBMUOAABAT1DsAAAA9ATFDgAAQE9Q7AAAAPQExQ4AAEBPUOwAAAD0BMUOAABAT1DsAAAA9ATF\nDgAAQE9Q7AAAAPQExQ4AAEBPUOwAAAD0BMUOAABAT1DsAAAA9ATFDgAAQE9Q7AAAAPQExQ4A\nAEBPUOwAAAD0BMUOAABAT1DsAAAA9ATFDgAAQE9Q7AAAAPQExQ4AAEBPUOwAAAD0BMUOAABA\nT1DsAAAA9ATFDgAAQE9Q7AAAAPQExQ4AAEBPUOwAAAD0BMUOAABATxjqOgCKtby8vBs3buTk\n5Dg7Oxsa8m8LAADFGjN2eK7w8HBXV9fq1avXrFnT2dl5586duk4EAAAKQrHDsyUmJnbq1Cku\nLm78+PGTJ0/OyMjo0aNHVFSUrnMBAIDn4uIanm3nzp0JCQlr167t37+/iLRp08bHxyckJOSz\nzz7T3pdmZmYuXbr0zz//NDQ09PPzGz58ONd/AQDQHP+riWf766+/RMTV1VX9sk6dOiISGxur\nvW/Mzc318/MLCwszNzfPy8vbunXrnj17fvvtN4VCob0vBQBAn3ApFs/m5uYmIr/88ov65bp1\n60TE3d1de9/466+/hoWFjRkz5sGDBw8ePBg4cODmzZv//PNP7X0jAAB6hmKHZ/Pz82vevPm8\nefNq1apVt27dMWPG1KxZU31ZVktOnDghIuPHjzc0NCxVqtS4cePyDwIAAE1Q7PBshoaG27Zt\nGz9+vIikpqa+//77YWFhpqam2vvGcuXKiUh8fLz6pfoPa2tr7X0jAAB6hnvs8FwWFhbz5s2b\nN29e0Xxdhw4d/vOf/wwYMGDSpElZWVmBgYGmpqZt27Ytmm8HAEAPUOxQXLi7u//www8fffRR\nQECAiFhbW69evdrJyUnXuQAAKDEodihGBg0a1KFDh/DwcENDQy8vL0tLS10nAgCgJCmBxe7x\nzbDgn4O3HzgZeeXmvaSUxzlGJuYWFR1quNZv0b57vx7vOJTRdUK8hvLly7/77ru6TgEAQIlU\nwordvdAZfQYE7o3P+tfRtNSH927HXDi2a8PS6ZNbTVm7fqpPeR0FBAAA0JmSVOxyIoP82k07\nlSlm1f3eC+jexsvN2aZc2dKGORnJ9+OjI8P3BK9avTNq77R2fkYRxya5lqSfBgAA8PpKUPt5\nHDIj6FSmVO688vD6gGrG/3rPuYZbo5adh4wbt6p38yGbTwZODxnzay8THQUFAADQiRK0jt2J\nsLA0kbpj5z/d6v6fsXPAvDEeImn790cUaTYAAADdK0HFLjk5WURsbW0LHKV+Xz0WAADgTVKC\nip2dnZ2InDh4MKOAQRmHDkWIiL29fRGlAgAAKC5KULHz6NHTRSEJywN6Lj6SkPOMATkJRxb3\nDFieIIoaPbppcbN6AACAYqkEPTyhqD951YTtbeee3Tq2mUOQWzPvRq7ONuXNjZW5mSmJ8dHn\nj+8/HHk3U8S07sSVk+vrOi0AAEBRK0HFTsSs2ZwDR2pMGTt1RWhc5L5fI/c9PaC0rc/QGYsC\nB7trcat6AACAYqpEFTsRKes++Ot9A2fHhIceiIi8Gns3KTU9V1nGzLKivYtbA28fLwezl7u4\nnJubu3379oyMgu7bi4mJEZG8vLzXCQ4AAKBtJa3YiYiIgZljE3/HJv6FcKrQ0NCOHTtqMvLG\njRuF8H0AAABaUyKLXSHy8fHZsmVLwTN2y5YtCwsLc3JyKrJUAAAAr0D/il30zm92REn1dh/4\nOWswWqlU+vu/YOpv+/btImJgUIKeIAYAAG8i/Ssrp1d8+OGHH644rescAAAARUz/ih0AAMAb\nqgRdis3NSE1/1rrET8nI1X4UAACAYqgEFbtN/c17hOg6BAAAQLHFpVgAAAA9UYKKnZOTo4jU\nm301u0Abuuo2JkSSkpLGjx9ft27dunXrTpgw4dGjR7pOBADAG6EEFTvPNm3Ki5zZuy/JsCAG\nCl0HfcNlZWW1adNmwYIFaWlpaWlp8+bN8/X1zc7O1nUuAAD0XwkqdooWvq1Ki+rQ7j3puo6C\nAoSEhEREREybNu3atWvXrl37/PPPjx8/vmnTJl3nAgBA/5WgYielW783tlOntmVTYwoa1WDk\n8uXLl49sUESh8LRz586JyHvvvad+OXDgQBE5e/asLjMBAPBmKEFPxYpYtp+9uf2LBjm2Gjq0\nKMLgOWxsbETk8uXL1apVE5FLly7lHwQAAFpVooodSgJ/f//PP/984MCBo0ePVqlUS5cutbS0\nfOG+bQAA4PVR7FDIHBwcgoODhwwZMn36dBFxdHRcsWKFnZ2drnMBAKD/KHYofK1bt46Kirp8\n+bJCoahRo4aRkZGuEwEA8Eag2EErjIyM3NzcdJ0CAIA3S0l6KhYAAAAFoNgBAADoCYodAACA\nnqDYAQAA6AmKHQAAgJ6g2AEAAOgJih0AAICeoNgBAADoCYodAACAnqDYAQAA6AmKHQAAgJ6g\n2AEAAOgJih0AAICeoNgBAADoCUNdB8DLuXr1akREhLW19dtvv21qaqrrOAAAoBih2JUkY8eO\n/frrr/Py8kTE1tZ248aNTZo00XUoAABQXHAptsRYs2bN4sWLW7VqtXnz5iVLlqSkpPTq1Ss9\nPV3XuQAAQHHBjF2JsXXr1tKlS2/atEl9BTYjI2PChAlnzpxh0g4AAKgxY1diJCUlmZqa5t9X\nV6FCBRF5+PChTkMBAIBihGJXYjRq1Oj+/ftLlixRqVQJCQnLli0zNDSsX7++rnMBAIDigmJX\nYkyYMKF69epjxowxMzOrWrXqiRMnZs6cWalSJV3nAgAAxQX32JUYFhYWp06dWrx4cXh4uLW1\ndd++fdu2bavrUAAAoBih2JUk5ubmn3/+ua5TAACAYopLsQAAAHqCYgcAAKAnKHYAAAB6gmIH\nAACgJyh2AAAAeoJiBwAAoCdY7kSvpKSkrF279tq1a05OThUrVjxw4EBubm7r1q27d++uUCh0\nnQ4AAGgXxU5/xMTENGvW7NatW08d/+GHH3r27LlhwwadpAIAAEWGS7FFJysra/78+W+//XaD\nBg0+/vjj+/fv57918ODBd955x9zc3NLSsmHDhj/99FN2dvbLnn/06NF3795dtWrV5s2bRcTA\nwKBhw4aJiYl9+vTZuHHjli1bCvPHAACA4odiV3T69u376aefXrt27eHDh4sWLWrSpElqaqqI\nHD16tGXLlgcOHEhNTX306FFERMSAAQPKly8fHBys+cnz8vIOHjzYtm3bwYMHX716VUR8fX1P\nnz5tYmIye/ZsETl8+LCWfhcAACgmKHZF5NixYyEhIQMGDIiLi4uOjl6yZMm1a9cCAwPPnTs3\nc+bMvLw8lUql/IeIJCcn9+vX78yZMxqeX6FQKBSKnJwcESldurSIZGVlqQ+mpKSISJkyZbT2\n4wAAQLFAsSsip0+fFpGAgABDQ0MRcXd3F5E5c+Z4eHjs3r1b3epyc3MXLlz4xRdfqD+SlZW1\nbt06Dc+vUCh8fHz27Nnz9ddfOzs7K5XK0NDQWrVqHT58eOjQoQqFwtfXVzu/DAAAFBcUuyJS\npUoVEYmKihKRxMTEbt26iYiXl9f06dOVSqVKpVKpVCLi6up6/vx59UcMDAxiY2M1/4qlS5c6\nOjp+9NFH7777bm5uroicO3eudevWERERM2fObNq0aaH/KAAAUKzwVGwR8fb2rlKlyvjx4+Pi\n4qKiou7fv69UKr/++uuGDRtmZWUFBgbm5eWJSN++fRMSEhQKhYGBQW5urnpiT0M2NjYXLlzY\nsGFDVFSUo6Ojl5fXkSNH8vLy3nnnnZo1a2rtlwEAgOKCYldErKysfvvttwEDBkyfPl195Isv\nvmjYsKGIjBs3LjAwUH0wISFBRFQqVW5urp2dnbW1tb+/f1JSkpeX18SJE8uXL1/wt5QuXXrg\nwIH5L11dXbXyY54jKysrLi7O1ta2VKlSRfm9AABAjUuxRadx48YXL148derUwoULReThw4fq\ny69r1qwRkS5dulhaWoqIUqksV67coEGD2rdvP2LEiNDQ0Ojo6AULFnh6ej548EC3P+F5srOz\nx48fb25u7uzsXLZs2UmTJqmvBQMAgKLEjF2RMjIyqlevnoeHx7Zt2xYvXrxly5YyZcpcvHix\nVq1aP/30k4mJSXp6uvrx1djYWEdHx5YtW/7+++9mZmY//vjj4MGD58+fHxQUpOsf8QzTpk1b\nsGBBs2bNqlWrduTIkTlz5piYmOQ/BQIAAIoGM3Y6YGBg8Pvvv0+ZMsXCwkKlUo0ePXr//v0m\nJibyxKIkp06dUqlUQ4cONTMzE5FBgwZZWVmdPHlSl7mfb8WKFe7u7jk5OWvXro2OjhaRwMDA\nR48e6ToXAABvFoqdbpiZmc2aNev06dMXL1785ptvKlSo8NQA9ZH8p2IfPHiQkpLyv8OKg9TU\n1Hv37iUnJx8/fnzChAlbt251cXHJzMwcO3asrqMBAPBm4VJsMeXp6VmtWrWZM2dmZWXZ2dkt\nW7YsJyene/fuus71DGZmZvb29jdv3vT19Z07d+6DBw/S0tLKlCnzxx9/6DoaAABvFoqdjmVk\nZPz000+RkZFVq1bt37+/jY2N+niZMmWCg4N79+49depUETEyMpo8eXLnzp11Gva5Pvvss9Gj\nR4eFhTVu3PjKlStJSUkNGzaMjIzMyclRL8gMAACKAJdidSM9Pf3ChQu3bt3y8PAYNmzYkiVL\nJk6cWKNGjdDQ0Pwx9erVW7FihbrqZWdnL168+Ouvv9Zd5IKMGDHCzMwsMzMzPDw8KSnJ2dn5\nwoUL9evXp9UBAFCUKHZF7fjx44aGhiYmJq6urjY2NlevXvXw8LC0tDQzM8vOzu7fv796DRQR\nSU5O7tOnT0pKysyZM7///nsnJ6cxY8Y82fyKj3nz5qWmpioUChExMjKKjo7OyMhYvHixrnMB\nAPBmodgVqczMTC8vr6fWeDt79my9evUaNWqUlZV169atCxcuqI/v378/Pj7e3Nx8y5Ytjx8/\n3rZtm0qlCg4O1kXwF9iwYYOjo+O5c+dGjhzZunXrt956S0RcXFx0nQsAgDcLxa5INWnS5JnH\nDx48eOTIEfXKJrt27RKRzMzMQYMGiUh8fPyJEyc+/vjjAQMGlCpVSr01xUtJSUmZMGGCs7Nz\nhQoVOnXqdPHixdf6Dc9y+/Zte3t7V1fXZcuWbd++vUePHnl5ea8QFQAAvA6KXdHJzc09c+bM\nM9/KycnJyMhITU0Vkb1798bExHh7e6v3mfD09Fy9erWZmdnBgwezsrI8PT1f6ktVKlXfvn3n\nzZtXpkwZNze37du3t2jRIi4u7vV/zpPq1q174sSJU6dOiUhiYmJISIiFhUW1atVe/8yHDh1a\nsmTJhg0bkpOTX/9sAADoN+5tLzqnT5/Ov3+uAPv27atdu3Z6err65alTpz744AOlUikiZmZm\nH3zwwct+6bZt24YMGbJ8+XKFQrFr1y4/P7+lS5fOnj37FX7C8wQGBjZt2rRRo0Y1atS4efNm\nWlra999/b2Dw//+34bffftuwYYN609tx48apN08rWHZ2dteuXbdt26Z+WaFCha1bt3p5eRVi\nbAAA9AwzdkXn8uXLmgzLzMw0MjKqUaOGiMyaNUupVBobG1tYWIhIu3btypYt+1Jfqr7w2rlz\nZ/WTDb6+viYmJvm38RUWT0/PEydO9OjRw8DA4O233966devw4cPz3/3iiy+6deu2adOm48eP\nz5w5s379+ppsShEYGJjf6kTk3r17HTp0YAtaAAAKQLErOpqXkk6dOvXr109EFi5cWKtWrdTU\nVPX9agMGDHjZL3VwcBCR/L3ILl269PjxY0dHx5c9zwu5ubmtW7cuMjJyx44dHTp0yD8eFxcX\nFBT09ttvJyQkPHz4cOnSpdevX1+wYMELT6h+qNbU1LR8+fLqLTcSExMLvZICAKBPKHZFR/NF\n3a5fvz5ixAgbG5sHDx6cP38+IyMjMzPTz8/P39//Zb+0UaNGHh4es2bNGjBgwKefftqqVatS\npUqpH8soGqdOncrLyxsxYoSVlZWIjBw50tLS8vjx4y/8oPqmurS0tMTExHv37qkP7t27V6tp\nAQAo0bjHruioL4Zq4siRI3Z2dpmZmeqXBgYGc+bM+fTTT1/hS42NjTdt2jRs2LCffvpJROzs\n7DZu3Ojp6fngwYNHjx45ODg8eSecNqj73K1bt9Qvk5OT09LSrK2tX/hB9f2ICoXCyMgoKytL\nfTB/6hEAAPwvZuyKSHZ2tnpzMHlOw1MoFCYmJiJibW2tUqnyW52xsXFeXt78+fPzH6d4WU5O\nTn/++eeDBw9iYmJiY2Pd3d1btWpVrly5atWq2draanthvPr169vb28+cOXPBggUbNmzo0KFD\ndnZ2ly5dXvhBdbFTqVT5rU5Efv7554ULF2oxLgAAJRnFrohcuHAhOjpafTX2mc/GqlSqx48f\nm5iYqO+uE5GPPvpo586dqampZmZmd+/ePXDgwOsEsLKycnBwyMrK6tq164EDB957773PPvvM\nwMCgb9++mlwYfWUmJiYbN260srIaP3587969jx07Nnny5B49ety8ebNBgwZKpVKhUJQqVWrU\nqFFPFjh5/gTnhAkT7ty5o73AAACUXBS7IvLw4UMReXBp0O0AACAASURBVOF1z8ePH+dvCFur\nVi1LS0v1/mMiEhUV9foxIiIizpw5M2XKlNWrV8+ZM2ffvn3Z2dmrV68WkdjY2F27dkVGRmqy\nJstL8fLyunTp0p9//hkcHBwVFRUYGHjr1q233nrr5MmTeXl5IpKdnf3tt9927tz5yU+Zm5s/\n82y5ubn79u0r3IQAAOgHil0RqVu37pP3imli5MiRjRs3rl279t27d0WkVq1arx8jJiZGROrV\nq6d+6eLiYmZmduPGjeHDhzs5Ofn5+bm7u3t7e+ffEqe506dPt23b1tLS0snJaeLEierFlvOV\nKVOmVatW3bp1Uz+lO3z48OzsbBHx8vLq3bu3esyOHTueXIW4gPvwbty48bLxAAB4E1DsioiV\nldXz9hMr2KVLl0TEy8urRYsWrx+jTp06IvLbb7+pp+V27dqVmpp679695cuXqyfPROTgwYMv\n+9hsdHS0t7f3/v37GzdubGpqOnfu3ILPcOTIEfUf4eHhv//+e/7yK08+9BofH/+8j/v4+LxU\nPAAA3hAUu6Lz1EZeL3xI1s7OztDQUKFQqDdd0Hy1lAJ4eHh06dJlzZo1tWvXfueddzp06GBt\nba3e6MzOzs7f31+9APKePXtKly5dtWrVCRMmpKWlvfC0S5YsSUlJ2bt3786dOyMjIwcMGBAS\nEqKupM+UP3M5ZMgQT09P9TyiiLi4uOSPycnJUSgU6pWZn/KyqzQDAPCGoNgVkbCwsOvXrz95\n5IW3sk2bNi07O9vV1TV/hd5CsXbt2smTJ+fk5Fy6dKlDhw7r1q3LyckpVapUTEzMli1bdu7c\nqR7WvHnzSpUqzZs3LyAg4IXnvHjxorW1dbNmzUREoVCo19srYDFhIyMj9R9r1qy5efOm+m9j\nY2P1hGL+GJVKpf6nlF9qjY2NReTatWsv/7sBANB/FLsiol5G7qUMHTrU3t7+/Pnzr3YN93lM\nTU0DAwOvXbuWkJCwadMm9cRhTk5OeHi4iOQ/urFjx45Tp0717t1748aNL7ynzcnJ6eHDh/mP\nd6gfs61WrdrzxhsZGam/Nzs7O38ic9WqVU+OadOmjfyzTHFOTo6IKBQK9Sow7D8BAMAzUeyK\nyKttmfDXX38ZGBjMmjVLk8G3b99+//33a9asWa9evalTp2pyCVVEmjZtKiJ5eXnNmzd3cnJa\nv369iJiYmKi7l5+fn/xzn18BAgIClEplixYtPv744169ei1cuLBx48bu7u7PG1+7dm0zMzMf\nHx8TExMzMzMrK6tSpUp17979yTFLly596jqskZFRx44dRaRy5cqa/DQAAN40FLsikn/BUUP5\nd+Dl5uY+dXPeMyUnJzdv3vyHH34wNjZOSkqaOXNm9+7dNVm4xNTUtFu3biKSl5cXGxur/sik\nSZPU7x49elREnJ2dCz5J48aNN2zYoFQqFy1a9Ouvv7777rvBwcEF3BQ4YcKE1NTU8+fPt2/f\n3sbG5uHDhx9//HGpUqWeHOPg4HDhwoUBAwYYGBiYmJgMGjRo+vTpx44ds7CwUNdNAADwNBVe\nRP2A58yZM1/nJEql8pX/M/L393/h+dX7MXz//fcqlUq9N6uIhIWFaRivbdu26jX2FAqFQqGo\nVKnS6NGj27VrJyJt2rTJy8vT8DxxcXHJycmajAwJCXF1dVUqlXZ2dkFBQVlZWc8bGRwcXL58\nefU/Chsbm507d2oYBgAAbTh06JCILFq0SNdBnoG9YouIUqnMzc19tc9GR0fn5uYWXA3PnTsn\nIv379xcRhULRr1+/77777ty5c97e3i88/+bNm3ft2mVnZ9emTZvIyMgTJ048fvx46dKlRkZG\nffr0Wbx4sea73NrY2Gg4smvXrl27ds3Ly3vhos3dunVr27bt2bNnDQ0N3d3dy5Qpo+FXAADw\npqHYFZGaNWuqu9cruHjxYuPGjcPCwkxNTXNycqKiogwNDZ2cnJ6seupGdenSpfr166s/IiK2\ntraanH/JkiVWVlanTp0qX768SqVq27ZtaGjozZs3K1eu/NTl0UL3wlanZmZmpn7kFgAAFIB7\n7IqIei7tlUVERHh7e48aNcre3r5WrVpvvfWWnZ1daGho/oCePXsaGxt36tRp1qxZn3766Sef\nfFK+fPmIiIjvvvvuzp07Bw4cGD9+/IgRI3755Zf8hYjzXb16tXbt2urLnQqF4u23387JyUlO\nTtZ2qwMAAIWLGbsiYm9v/5pnOHny5MmTJ/Nf3r59u3Xr1vv372/evLmIuLu7//LLL6NHj/7i\niy9ExNTUNDExMSgoSETGjh2rXiVERL7//vtp06Zt2bLFxcUlf8LPxcXl1KlTCQkJlSpVysvL\nCw0NNTQ0fOEDEwAAoLhhxq6IFMq+EU/Jy8t7cueurl273rx58/Tp02PHjk1LSxs5cuT58+eX\nLFmibnVKpbJ8+fIKhSIqKqp27dqenp5nz55Vf3DcuHHJyckeHh4DBgyoV69eaGjoyJEjuZUN\nAIASpwQWu8c3w9YEfdDbr0kdp6oVrczNzK0rVnVybeLX+4OgNWE303Ud7znyW9Rreuo5huvX\nr8fGxopISkpKZmZmqVKl6tate+bMmYoVK37zzTe1a9desWKFeqSBgUFiYqJ65wYDA4OoqKgu\nXbqkpqaKSIcOHdavX29pafnzzz/funXr888/nzdvXqGkBQAARamEXYq9Fzqjz4DAvfFZ/zqa\nlvrw3u2YC8d2bVg6fXKrKWvXT/Upr6OAz7Vx48ZCOY/q30vTqVQqBwcHhUKhPq5UKg8ePHjo\n0KGcnBylUmlgYJB/R112draIZGRkiEheXt4nn3wyc+bMI0eO+Pr6ikjPnj179uyZmZmpbn4A\nAKAkKknFLicyyK/dtFOZYlbd772A7m283JxtypUtbZiTkXw/PjoyfE/wqtU7o/ZOa+dnFHFs\nkmvx+mlXr17VxmktLS2TkpLy215ubq56Jwm1/31OQk2pVDZs2FBEnlr6mFYHAECJVrzaT4Ee\nh8wIOpUplTuvPLw+oNq/G4hzDbdGLTsPGTduVe/mQzafDJweMubXXiY6ClpkjIyM8p+KEBET\nE5PHjx9r8sF+/fqpZxAL2PULAACUOCWo2J0IC0sTqTt2/tOt7v8ZOwfMG7Nk86Sz+/dHSK8W\nGpw0Nzd3+/bt6guUzxMTEyPPn/3SofDwcE9PTxGxsLB49OjR+PHjZ8yYoX7r6NGjV65cyX+0\nwsvLKyIiIn+F5L1798bHx3fv3r1Bgwa6CA4AALSiBBW75ORkefGau7a2tiJn1WM1EBoaqt5X\n/oU02bC1ACoNtm19HoVC0a1bt+DgYBHx8vIaOHBgUlLS5MmTjx8/rh6gLqa1a9fO/0jjxo0b\nN278/vvvq6f0wsPD1edRqVRKpbJy5cqjR4/++OOPX+cXAQCA4qYEFTs7OzuR6BMHD2b0a136\neYMyDh2KkJdYNc7Hx2fLli0Fz9j98ccfq1ev7tu378vl/TdXV9fz58+/2mfr1KmTvxbxV199\n1aRJk+Tk5JUrV44cOdLQ0DAnJyczM1OhULz33nv5HzE1NbWzs8u/UKt+llZdLpctWzZ8+PDX\n+S0AAKB4KkHFzqNHT5cvZ19dHtCz1vrlo5tW+p/oOQlHlg4LWJ4giho9uml475hSqfT39y94\nzK1bt1avXm1kZPQqqf9x6NAhS0vLV/tsfiOsXLlykyZNRKRs2bJ79+797LPPdu3alZSUJCIq\nlSor6/8fFn78+PGVK1fyX+bPF/r5+dHqAADQVyWo2CnqT141YXvbuWe3jm3mEOTWzLuRq7NN\neXNjZW5mSmJ89Pnj+w9H3s0UMa07ceXk+rpO+zQLC4sNGzb06tWrgDH5q5aomZubp6en5+Tk\nqF/a29tfvnw5/10HB4f169eLSERERPPmzdWTc6VLlzY1Nb1///6T5zx9+nRwcHBubm6/fv3q\n1KlTuL8LAAAUHyWo2ImYNZtz4EiNKWOnrgiNi9z3a+S+pweUtvUZOmNR4GB3U13EexH1WnFp\naWm//PKLra1t9erVnZyc5s6du2vXro4dO44aNcrExEREsrKykpKSKlasqP5UdHT0+fPnW7Ro\nYWVl9czTNmjQICMjIzk52cDAwMzMTERUKtWsWbP27Nmzbt06GxsbEfHw8CiqXwkAAHRG8To3\n9etKXmpMeOiBiMirsXeTUtNzlWXMLCvau7g18PbxcjAr/L00Fi9ePHbs2EOHDjVr1qzQTw4A\nAEqWw4cPN2/efNGiRWPGjNF1lqeVqBm7fxiYOTbxd2zyglvjAAAA3iwlcK9YAAAAPAvFDgAA\nQE9Q7AAAAPQExQ4AAEBPUOwAAAD0BMUOAABAT1DsAAAA9ATFDgAAQE9Q7AAAAPQExQ4AAEBP\nUOwAAAD0BMUOAABAT1DsAAAA9ATFDgAAQE9Q7AAAAPSEoa4DlBhXrlwpXbr0a54kOzv7xx//\nr737DGvqbsMA/hwgQILIEgERxYIVB6ICYgVX3dY9qVSlgIitVmnd+mpba6tVq7bWzXBCsc5q\ntSpOHKA4EAfDhayyd1hJ3g8BDCEJxMjw9P596HVxzpPkn7sINyc5J4Ft27ZVU0OlfntCoTA+\nPt7a2hoxvjVkqDpkqDpkqDpkqDqhUPjq1St3d3cOh1PHm8TExNTrklSBYlc78f9pT0/Pxl4I\nAAAA1IudO3cqe5O6F8GGhGJXOzc3t/Lycj6fr/pdRUVFHTp0yMXFpW3btqrf23/Wq1evwsLC\nEKMqkKHqkKHqkKHqkKHqxBlOnTq1a9eudb8Vl8t1c3Orv1W9PRE0oJCQECIKCQlp7IW83xCj\n6pCh6pCh6pCh6pCh6liWIV6SBwAAAGAJFDsAAAAAlkCxAwAAAGAJFDsAAAAAlkCxAwAAAGAJ\nFDsAAAAAlkCxAwAAAGAJFDsAAAAAlkCxAwAAAGAJFLsGxeVyq/4Lbw0xqg4Zqg4Zqg4Zqg4Z\nqo5lGTIikaix1/AfIhAIQkNDBw4cqK6u3threY8hRtUhQ9UhQ9UhQ9UhQ9WxLEMUOwAAAACW\nwEuxAAAAACyBYgcAAADAEih2AAAAACyBYgcAAADAEih2AAAAACyBYgcAAADAEih2AAAAACyB\nYgcAAADAEih2AAAAACyBYgcAAADAEih2AAAAACyBYgcAAADAEih2AAAAACyBYgcAAADAEih2\nAAAAACyBYgcAAADAEih2DajwSdDyKc4fmjTX1tZtad170pKD0fmNvaYmqjwnPuzItpWzxvZq\np6fBMAwzLLBAzihSlaks89G5gO9njXHp1r6VvrYmV69VR+eJvtuvpZTLGEaGsglz4y7t/cFn\ntIudtVlzLU2eQeuOfSb6br+SLCNEZFgXBRe92zIMwzDMxD9r7kWGsuXsGMTINGxPjvQsMqxN\naeLFLV+N/6i9mT6Xq2/RyXnCgt1XXhdLDb3vMYqgYeSGLezGlU5fq/PXF7Mae2VNUNn+MVJJ\nDQ3IlzWIVOXg10hQjDHst/FeUbVRZCjXeU89mSka9t94v1RyEBnWSdHluVaMmpoaEdGEw1I7\nkaFc2dsHyvw+pKG7s6sNIsNaCFPP+trpyAiy2u+X9z9GFLuGUXxljiURqVmMXH8+NpvPz44L\n3TC2rRoRmc8MLar99v8x5cHuVs7jfL7dfvRG7I6RNf/hVUCqchX/4dl5iMfKnSfC7scmZRcV\nZb26c+T74W3UiUjd7oenEoPIUL5Li1xGzV2372z4o1cZRcUF6a/u/rV+SgcOEWn03ZZcNYYM\n66T41qIP1TS6zf+yn4xihwwVEBe7zqufKB5DhrUof7KhF5eIGOPe8/wuP00rLCnOSYg8uXlW\nf+/ggqopNsSIYtcg8oPGaBNRO9/r/Dcbi2/5WhMRZ9TebPm3/M8rCxojr9ghVSWV3F1mQ0T0\n0Zakyk3IUFnCOwvaERH389OVW5BhXZTeW9ZFQ73Tkjv/7h5Ys9ghQ0XqVuyQYS0y/IZziUjT\nftUDvvwpVsSI99g1BMGlM+eKiWzdfXprv9mq5TTbowdR2bm/L8h63xPUAqkqS7N7317NiKik\npKRiCzJUGsPhcIjI1NS0YgMyrAPBw3Ve6x9b+u5ZZa8pazcyVBkyrEXSIb+zfCJTz5+XddWW\nO8WOGFHsGsKzhw/5RHo9e35YfXt7JycDopLo6PjGWdf7DakqLTbybgGRubOzZcUGZFh3An5O\n8qPQHZ7TN8eS7oAF3j0qtiPDWgljNnn9ENl69q7vPpL9GxUZ1sHrfZ91MdPV0uQZtO7cZ8rC\nnddTBJK7kaFixWFXb4uIWo6dMkDW3xaV2BEjil1DSEtLIyJzc3PpHeJN4t2gJKSqHOGLbV+u\niyLdod8t7M1UbEOGdZCxtT/DMIwGz8C8y6AvjwuHLTwYfuoLy8rdyLAWohe/ea+KMPbc+dMA\nnpwRZFgHeXGRj1ILSsv4OUmPw0I2+PTp+vH6yKKq3chQscQXL8qIGIee3VMvrpvex8qIp8XV\nN+/cz23FIckTXtkRI4pdQ+Dz+USkpaUlvUNbW5uIioqKat4GaoNUlZF+5osR8y4UWLgF7vO0\nqNqKDJUlzE14fD/iQdKbyyMgQ8USds1acVV3xvb1g3XlziBDhRgd6xFf/378evSrrKLCjITH\nV/YtHfGBtijj6qIJi65VficiQ8UKCgqIqAX37mynIUv2hz3P4pcW5yY/vnpojZuDo8/ZjIox\ndsSIYtcQuFwuSb6zqUpxcTER8Xjy/pAFBZBqXQmTT8zqP25nrOm4PRcDxreU2IMM66DFnMsi\nkUhYmpf6IvKvX6ZbJZ/f8mmvT/+o/MsdGSqSvNdn8Xnu5N82jjRQMIUMFdKbtuP0xi/G9O7c\nxoDLM7Lo2Hfaj6fDD0wyJnoVsPNsRWjIUDFxPhlHfz/Cm7D5THRSblFh+otbwcv6m1BJzE6P\n5edLJcbe9xhR7BpCy5YtiSgpKUl6h3iTsbFxw6/p/YdU66Ts2X63PhN3xZhNDrwa8rk1p9pO\nZFhnDEfXxLLHSF//i/5TDCnr+Jodj8U7kKF86YfmfHNGbfSWXycZKZxDhkprMd5jtD5RUXT0\nC/EGZKiYiYkJEYlEXZYfOzRvWOdWzbm8FpZOU9ac3DXNkCjl2LFbRMSWGFHsGoKVrS2XKDci\nIrb69rjw8GwiLVvb9o2zrvcbUq1d0YPNo11mBL9uNyPo6qFp7TSk9yND5en17WtHRHFxceKv\nkaF84X//nUnZJ6eaSnxagsHMUCKiI5MYhmGsV9wnQobvAjJUTL9rVwsi0unh2FFdcruuo6MN\nEaWnpgqJ2BIjil1DUB8wfIg20cPAHTckPrmkJGK7/10izpARg2r8woXaIdVaZIWtGNjP92x2\nJ5+jVwMmWajLGEGGysu9di2KKg8AEDJ8F5Ch0rJO7P0rh4jXqZOleAMyrIXDJ5+YEBXevf2k\n2tnEBbdvPyUik1at1IhYE2NjX0jvP6L4csXFrEdtOB+bXVycHR+6sepi1oWNvbqmTMEFipGq\nfIKkUz5duES87l+fT1c0iAzlygic0fuz/wWcDY9+nppXXJyXlvD4ysHvXW2bERFjtSSivHIQ\nGSojW9YFipGhfAVBM51cl+4+fTP6eWpecVHW66dhB1eO+ZBHRGThc+nNZyEgQ8WET3924hBp\ndZiy5Wx0ci6/MONlePCy/iZERG3mXqn8kEA2xIhi11Byry20q/nxc51835+Pn2tI2buHyvtT\npN9vKW/mkKoccT/Zy/9rTm/WeYlRZChHurxP6FQzHrwhstpPeGRYd7KLHTKUKz/gE5nfhoxR\n37UR1f/eRYaKlcZsH96yZpI63RdeyZEYe/9jRLFrQPmPDi6d3MvKWEdTU6fFB70mLjoQldfY\na2qi6lrsREhVNiWKnQgZylGcEvHnpnkT+3Vr30pPW0OTp9+qg9NIr+8O3c0U1hxGhnUkr9iJ\nkKEcJal3jmyaN6GfnXUrPS0NLd0W7boN+myZ363UchnDyFCxsuSLm3yG2VkY8jgcrkEbuyGe\na07E1fwE2Pc8RkYkEsn/BQAAAAAA7w2cPAEAAADAEih2AAAAACyBYgcAAADAEih2AAAAACyB\nYgcAAADAEih2AAAAACyBYgcAAADAEih2AAAAACyBYgcAAADAEih2AAAAACyBYgcAAADAEih2\nAAAAACyBYgcAAADAEih2AAAAACyBYgcAAADAEih2AAAAACyBYgcAAADAEih2AAAAACyBYgcA\nAADAEih2AAAAACyBYgcAAADAEih2AAAAACyBYgcAAADAEih2AAAAACyBYgcAAADAEih2AAAA\nACyBYgcAAADAEih2AAAAACyBYgcAAADAEih2AAAAACyBYgcAAADAEih2AKCy8uCxDMNYL7nf\n2AtRSuKOwTym1RcXixttBU02t5oLS9k9kMu09j7Hb8RVAUAdoNgBwHugPCc+7Mi2lbPG9mqn\np8EwDDMssEDOaOGToOVTnD80aa6trdvSuvekJQej82WMFfy97NsLgr5Ll36sXZ8LZwsz9++8\nLZP8F/7yWNjYSwEARVDsAKDpKw92b99n4perd50If5knUDCYd32Ri/3UH0NuxKXll5QUpD+7\n+ee6zxw++uZSttTgo01LD/xrNG3pTIv6XHdTVxA4jGEYmxXRtY9yXBYtcKGodSuCc+t/XQDw\n1lDsAKDpYzgGVs7jfL7dfvRG7I6RcsdKri7/bP19vprFyPXnY7P5/Oy40A1j26qVPPpl2uKL\nki8iCq5t2xklMpsyYzAO19WZueu0jzn5J7ftT2zslQCAfCh2AND0qU8JiA87un2Vz7iP2ump\ny5sqOPbLnpdE7eYFH14wqL2+tra+9cffBP8xz5ooKXDz4ZyqwaJTuw4kURtXNxe59wU1GU12\nG8oRXN/l/6ixVwIAcqHYAUA9KUu89Ouc0T2tjHW1NLn65p36T10R9LDm63gF0QeXjO/ZzpCn\nxTNqYz/ad19UfvxaB4Zh+m9NVerxBJfOnCsmsnX36S1xHE7LabZHD6Kyc39fKK/YJAo7fSaP\neP0H9GQkb5+61YVhGIe1L/MfBPiO6t7GkKfFa/GB0+Tlf8QUVs5ErezAMIzd6tgaj562a4gm\nw5jOOl9ORCTMi7uwe/m0wQ4dLQx5mly9VjbOkxb43ckSKfWM5CmMO7XWe4T9B8a6WppcPbOO\nfVyXH3hQI9nCx8HLJjh9YCQn2MTNLozu5/8QUcwaW6bSoB05NR+vkv6AAd2IHp46nfBOngYA\n1AcRAICKyoLGEJHV4ntvNpU+2DyoBVPjJ45We++TqRK3LLq5ykFHaobr6OFqS0T9fkuR+1g0\nNCBfek/Mmu5EpOd5RnpH6GwDIuq86knF1w+XdyAil62p1cdSfnMmIltXD0eu1IqaO62O5IuH\nXq5zVCOyXBQhrH7jlz/3lNx+c565jJ+3HGvvf7IU51a7lFNfdOLVvG/ND2eeTHszxY9Y7aSr\nMNjXm5xlLHHg9mxFC7v2pSmR+oh9ecqsGAAaEI7YAcC7J4pe6/bNhQyRrp3ntouPE3MLMp/d\n/nPFoFbqJXG7ps0OqTyTQXjvxxnf3ylkWjh/c+BmXFp+fmrM9b1zuz7zD374Fg+alpZGRObm\nNSqVeJN4NxGVREXFEOnb2JjIupeHwf5xHb/wuxqTmp//b2xY4FwHA8oLXzX9pwciIqK27jMH\ncejlXr/QcslbRQf4Rwipq4eno7jMqht0Hum79cTNh8/TCoqLslOeXNm/oL9xWfyuOT9HvsVT\neyPZf7rrtsfCDlN++uNGXGo2v6Qw/eXto2tGWQpjd3ssPFVxqrDowdoZq8LzGcOP5u+9Efdv\nfn5qzFW/WR3jJINtPT9MlB8wlIg6LH9Y9Tvhgo++ooe3selAJLh/vw5nWwBA42jEUgkALFHj\nAM+1eeZEZDDuYLrkWGnk4o5qRMyA3ysOxV2Z24qIzD4/Xe3oW/ZxV2Mi5Y/YnfM2JKLua2Kk\nd7zc4EBEOjMqDuW93uRERB8suis1Jj5iR4auf2ZWW84xtxZEZDonTPx1fsj4ZkTNpxwrrBoR\nhM1vQ6TW99fXMhZcJXffCA0i2+/erE/5I3YPVtgQcQbtSJbaXn7dtzWRjtuxMpFIJBJd/cqc\niExn/FXtyFrm4QmG1YOtWexqWVj5wXEMEWfaiTqvGAAaFo7YAUAdnfpMm5FkueCWnMnUO3eS\niHhjvT5tIbmZ02O2Z08i0e3b4qNWKZGRyURG46ePaCY5pj9mxmi9t1gfl8slopKSEukdxcXF\nRMTjVbyAmZubS0S6utKvVIo1H+shrj9VyxnrOd6w8jkRUbMxXpONKe/4npDMionSC34HEkh7\nmNdnratuJfj35u5Fnw6wszTW1dZQYxiGYfSm/11OlJCgwhvUMq+FPSUqC/3SQkNDQ0NdXV1d\nXU1NTU2N0XDelEhU+Px5GhFRamRkEpHRBPeR1Z6j4UTPsc3f/sGJiNSbN+cRleXkFKl2PwBQ\nX1DsAOCdE1en1hYW0m+yE28qyMkRvBmT+9qpslq2bElESUlJ0jvEm4yNjcVf6uvrE1FeXp7M\ne2ndurXsTTk5FacVaA6dOb0NlZz1O5BMRET5x/eEZJDeeK+JBpW3SAye3N3Fe33w5ahXGQUl\nAslTJsQt8y1lZGQQEYkEAoFAIBAKhULxW/oq95eWllLVUmWkKOPJKUeQm1tExNHXl/EuPwBo\nClDsAKCORh4ornbA/+WGXnIm9fT0iCjx9Wvpk0DFm5rp66u/GZPbxJRlZWvLJcqNiJA6ZTUu\nPDybSMvWtr34a+OWLRmirKwsmfeSlFjjMm2JiYlU2QeJiNR6eX3ehQRhfgExRJQZ7HeikEzc\nvEZVnXNx45fFR1OEJh+v+CPs8euM/OIygVAkEpWfnCp9VoayxGswmh0qkP0azJ0llm/GZKSY\nWPPJKSc7O1sk0ZEBoMlBsQOAd87UwcGcqOj4nqAMyc3l93cG3CZiHBzsiYjIzN7ejCjz2P4z\nhZJjuSf3nXybTzdQHzB8iDbRw8AdNyQOipVEy2RKpQAABY5JREFUbPe/S8QZMmKQhniLpp2d\nDVHu06cyr6aSeyLgaHb1Df7HsiqfUwUbD09nNXrovydclLDf70IpWc3w6q9Rubfo6dMEIovp\nP62e7NyxtVEzLQ01hijn3PHLqn7Sqknv3lZEmUd+D0pRdOEUU3t7c6LMI3tPV/vctewj/ieq\nH6bkcDik1EHEJ0+eEql369ZFqWUDQMNBsQOAd8/Z07uzGmUf8xk8c+eVpyn5hVkv7h5b9cmo\n9Y8E1HyMz6em4jEXd4/2DCUHzBixOCjieUZhQXr8zQO+wz2D09/qUZuN8/WyJHqxxXXyxgtx\nOSUlOc8u/uI6eUs8kbn7/IlVp3t26tfPmOhuRES5rHvJDPIa+lXg9bi0goL0Zzf2+w71OJhO\nap29PXtLDLWZPnOIFj3f57d1l1+4kHp4enZ/87Iz19RUjygxZN3mS7HpRaX8rNfR/2ydNWiq\nf/JbPS1JjnMWDeBR2lGvvmOW77vyKCG9sISfnRh7/+qRLb7j7Wcdrnh/oYuHl40ape51H7bg\nYPiz9MKCtLjrgXOGzvwzs/rdaZma6hMlhh6+nJBfWocPgX0VEfEvUY9+/WS/PxEAmoB6PjkD\nAP4DZJxEWXJv4wDDmj9xNK08jkme0Vl4fXkP6bdrcR1nTOpERIN3vjk7NXv3UHk/xKqdPJt7\nbaFdjdc7tTr5XpS8fJyIf8rdgMhifli1i9GJz4rtMuVzBxnXsbvDl3rOhX+66lUc8tLou636\nWaqlt1d21pS6D6bVpFmjjYi03P5SlFvtUk9/ZduMZBqzv2qV/IjvnaSnuA41LhBYdHK6UbUZ\nhdexywr4hENk+120MusFgAaFI3YAUB80u339z70Lm2Z/Ym9ppMPR0GpuatPXden+8Nt+Y80k\nxni9f7h8c9/CMfZt9bU1uQYW3UfOD7wV+qleCpG6oaHyp3A2d/k57M7BpZN7WRnraGrqtPig\n18RFB27f+mWAgeSU9nDvaRb0OvjgNUGNe9DqtjL0+u65I7q21tfmaBtYOk5cGhQeusJe+kNl\neaNnTm1JZWVlxB3hNdWs2j6Ow7eXw3bPGd6tnbGOJlffvMsgr/Xn7wS5mtE7YDJiS0T0hV/n\nT3TpaK7P5WjqtGhj02PAZN8tx+7unly1Sm3H/4WGBy0d72hpoM3h6rfuNmKu343QpXZSfZM7\navPfv3oN6mKup6Ve83LSUjIPHzpXpu7s7dH5XTwPAKgXjEj0bj7iBgDg3cg9695p+N7kbmvj\n7y22qq8HefJjjy7LEz4/k7hnWGUZSt3qYjb3uv1PLypOQWCh+LUO7ZdG9vst5fIcU6VvnLTV\npe3cqNEHE45OVXgRYwBoTDhiBwCNKWG31+SVgRfuxf9bUFyY/jLq3HafIdP2JpPGR9Nc663V\nEVHHr36cZpq5/8ddr+vxQdikLOznjdep6+LVrmh1AE2ZRu0jAAD1RpgbfXi13+HV1bca9Fm/\nc27ben3gZsN++HZwiM/aH0O9tw+Ufp0VpKXs/XbXS3OPf3w743AAQJOGf6IA0JjaevsfXuM5\nzNHGwojH0dRp0a7HcO+fz949P9+WU98P3XrWuSJRclNpdXeWWDIKjQxU4crGKjPzusAXJe4a\nggsTAzRxeI8dAEATcGeJpeO6VwoGPgngn3JvGiUUAJouFDsAAAAAlsBLsQAAAAAsgWIHAAAA\nwBIodgAAAAAsgWIHAAAAwBIodgAAAAAsgWIHAAAAwBIodgAAAAAsgWIHAAAAwBIodgAAAAAs\ngWIHAAAAwBIodgAAAAAsgWIHAAAAwBIodgAAAAAsgWIHAAAAwBIodgAAAAAsgWIHAAAAwBIo\ndgAAAAAsgWIHAAAAwBIodgAAAAAsgWIHAAAAwBIodgAAAAAsgWIHAAAAwBIodgAAAAAs8X/q\nmR3/1ObgaQAAAABJRU5ErkJggg==", + "text/plain": [ + "Plot with title “Type_1_Diabetes_( CD4T1MB_RPS26)”" + ] + }, + "metadata": { + "image/png": { + "height": 420, + "width": 420 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "plot(-log10(plot_data$MetaP), -log10(as.numeric(plot_data$pvalue)), xlab = '-log10(pval_eqtl)', ylab = '-log10(pval_gwas)', main = paste0( i,'_', '( ', eqtl_var, ')'), cex = 0.5)" + ] + }, + { + "cell_type": "markdown", + "id": "26a60720-a28b-494a-b199-3fa15b2d54c0", + "metadata": { + "tags": [] + }, + "source": [ + "### Run for all cell-types + genes" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "id": "4015c678-0f7d-40f4-a475-fa94c96fc0f6", + "metadata": {}, + "outputs": [], + "source": [ + "### Execute colocalization analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "id": "83d4a8c5-6ae7-4119-87ba-2ba00d5a0dfa", + "metadata": {}, + "outputs": [], + "source": [ + "#str(gwas_input_list)" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "id": "0fd62bac-0426-473d-8296-5c0c76c7bb5e", + "metadata": {}, + "outputs": [], + "source": [ + "#head(str(data_input_eqtl))" + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "id": "0946f702-8660-4d67-b405-5b9de0a0bed2", + "metadata": {}, + "outputs": [], + "source": [ + "coloc_result_summary = data.frame()" + ] + }, + { + "cell_type": "code", + "execution_count": 157, + "id": "0be5ef22-96c6-40c6-bc9e-c777af459168", + "metadata": {}, + "outputs": [], + "source": [ + "coloc_result_detail = data.frame()" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "id": "640961fc-8540-4daa-93bd-0b1d996a13be", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"White blood cell count\"\n", + "[1] \"DC1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.18e-04 1.44e-05 9.81e-01 1.73e-02 5.24e-04 \n", + "[1] \"PP abf for shared variant: 0.0524%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0046418\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.804000 0.014200 0.178000 0.003150 0.000143 \n", + "[1] \"PP abf for shared variant: 0.0143%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.004909\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.795000 0.014000 0.187000 0.003300 0.000137 \n", + "[1] \"PP abf for shared variant: 0.0137%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.92e-34 5.14e-36 9.82e-01 1.73e-02 5.26e-04 \n", + "[1] \"PP abf for shared variant: 0.0526%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0067582\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.799000 0.014100 0.184000 0.003240 0.000123 \n", + "[1] \"PP abf for shared variant: 0.0123%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0037104\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.822000 0.014500 0.160000 0.002830 0.000112 \n", + "[1] \"PP abf for shared variant: 0.0112%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.88e-03 8.07e-05 9.74e-01 1.33e-02 6.49e-03 \n", + "[1] \"PP abf for shared variant: 0.649%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.68e-07 9.17e-09 9.79e-01 1.34e-02 7.18e-03 \n", + "[1] \"PP abf for shared variant: 0.718%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.17e-04 9.85e-06 9.79e-01 1.34e-02 6.97e-03 \n", + "[1] \"PP abf for shared variant: 0.697%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.30e-10 5.90e-12 9.79e-01 1.34e-02 7.24e-03 \n", + "[1] \"PP abf for shared variant: 0.724%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.06e-18 5.58e-20 9.79e-01 1.34e-02 7.41e-03 \n", + "[1] \"PP abf for shared variant: 0.741%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.46e-31 1.16e-32 9.79e-01 1.34e-02 7.43e-03 \n", + "[1] \"PP abf for shared variant: 0.743%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-58 6.15e-09 2.96e-50 1.00e+00 2.59e-08 \n", + "[1] \"PP abf for shared variant: 2.59e-06%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-58 5.43e-09 2.96e-50 1.00e+00 6.40e-09 \n", + "[1] \"PP abf for shared variant: 6.4e-07%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.38e-50 8.05e-01 5.31e-51 1.79e-01 1.56e-02 \n", + "[1] \"PP abf for shared variant: 1.56%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-57 8.94e-08 2.96e-50 1.00e+00 3.38e-07 \n", + "[1] \"PP abf for shared variant: 3.38e-05%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-54 4.98e-05 2.96e-50 1.00e+00 3.87e-06 \n", + "[1] \"PP abf for shared variant: 0.000387%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.36e-51 2.15e-01 2.26e-50 7.63e-01 2.16e-02 \n", + "[1] \"PP abf for shared variant: 2.16%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.3059e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.563000 0.009020 0.421000 0.006750 0.000195 \n", + "[1] \"PP abf for shared variant: 0.0195%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.011178\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.800000 0.012800 0.184000 0.002960 0.000107 \n", + "[1] \"PP abf for shared variant: 0.0107%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2246e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.224000 0.003580 0.760000 0.012200 0.000352 \n", + "[1] \"PP abf for shared variant: 0.0352%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.00063663\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.757000 0.012100 0.228000 0.003650 0.000159 \n", + "[1] \"PP abf for shared variant: 0.0159%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.07e-04 8.14e-06 9.83e-01 1.58e-02 4.60e-04 \n", + "[1] \"PP abf for shared variant: 0.046%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.81e-14 4.51e-16 9.84e-01 1.58e-02 4.02e-04 \n", + "[1] \"PP abf for shared variant: 0.0402%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-44 6.83e-46 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-47 7.72e-49 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.00e-42 2.33e-43 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.06e-47 4.22e-48 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.83e-46 3.65e-47 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.39e-44 2.51e-45 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000752 0.000080 0.902000 0.096000 0.001270 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0046418\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.734000 0.078100 0.170000 0.018000 0.000727 \n", + "[1] \"PP abf for shared variant: 0.0727%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.004909\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.726000 0.077200 0.178000 0.018900 0.000731 \n", + "[1] \"PP abf for shared variant: 0.0731%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.68e-34 2.85e-35 9.03e-01 9.61e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0067582\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.72900 0.07760 0.17400 0.01850 0.00072 \n", + "[1] \"PP abf for shared variant: 0.072%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0037104\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.75100 0.07990 0.15200 0.01620 0.00069 \n", + "[1] \"PP abf for shared variant: 0.069%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000460 0.000147 0.757000 0.242000 0.001020 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.14e-09 1.32e-09 7.57e-01 2.42e-01 1.00e-03 \n", + "[1] \"PP abf for shared variant: 0.1%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.63e-05 1.16e-05 7.57e-01 2.42e-01 1.02e-03 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.89e-12 1.56e-12 7.57e-01 2.42e-01 1.00e-03 \n", + "[1] \"PP abf for shared variant: 0.1%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.83e-20 5.86e-21 7.57e-01 2.42e-01 1.00e-03 \n", + "[1] \"PP abf for shared variant: 0.1%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.57e-34 2.42e-34 7.57e-01 2.42e-01 9.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0988%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.80e-37 8.78e-33 4.32e-05 1.00e+00 6.66e-08 \n", + "[1] \"PP abf for shared variant: 6.66e-06%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-29 2.88e-25 4.32e-05 1.00e+00 6.76e-08 \n", + "[1] \"PP abf for shared variant: 6.76e-06%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-11 2.55e-07 4.32e-05 1.00e+00 8.63e-05 \n", + "[1] \"PP abf for shared variant: 0.00863%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.86e-31 1.35e-26 4.32e-05 1.00e+00 6.72e-08 \n", + "[1] \"PP abf for shared variant: 6.72e-06%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-16 2.83e-12 4.32e-05 1.00e+00 4.03e-04 \n", + "[1] \"PP abf for shared variant: 0.0403%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-10 2.60e-06 4.32e-05 1.00e+00 9.24e-05 \n", + "[1] \"PP abf for shared variant: 0.00924%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.3059e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.41e-08 5.11e-01 4.14e-08 3.90e-01 9.88e-02 \n", + "[1] \"PP abf for shared variant: 9.88%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.011178\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.45e-08 7.99e-01 2.00e-08 1.89e-01 1.22e-02 \n", + "[1] \"PP abf for shared variant: 1.22%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2246e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.55e-08 1.47e-01 5.35e-08 5.02e-01 3.52e-01 \n", + "[1] \"PP abf for shared variant: 35.2%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.00063663\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.96e-08 7.53e-01 2.45e-08 2.32e-01 1.55e-02 \n", + "[1] \"PP abf for shared variant: 1.55%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.51e-11 2.37e-04 4.87e-08 4.54e-01 5.45e-01 \n", + "[1] \"PP abf for shared variant: 54.5%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.16e-22 2.99e-15 1.10e-08 9.54e-02 9.05e-01 \n", + "[1] \"PP abf for shared variant: 90.5%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-44 7.10e-46 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-47 8.02e-49 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.99e-42 2.42e-43 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.03e-47 4.39e-48 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.81e-46 3.79e-47 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.38e-44 2.61e-45 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.56e-04 7.63e-05 9.07e-01 9.15e-02 8.29e-04 \n", + "[1] \"PP abf for shared variant: 0.0829%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0046418\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.737000 0.074400 0.170000 0.017200 0.000721 \n", + "[1] \"PP abf for shared variant: 0.0721%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.004909\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.730000 0.073600 0.178000 0.018000 0.000704 \n", + "[1] \"PP abf for shared variant: 0.0704%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.69e-34 2.72e-35 9.08e-01 9.15e-02 8.37e-04 \n", + "[1] \"PP abf for shared variant: 0.0837%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0067582\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.733000 0.073900 0.175000 0.017600 0.000679 \n", + "[1] \"PP abf for shared variant: 0.0679%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0037104\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.755000 0.076100 0.153000 0.015400 0.000604 \n", + "[1] \"PP abf for shared variant: 0.0604%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.68e-04 7.09e-05 8.88e-01 1.11e-01 7.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0792%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.05e-09 6.31e-10 8.88e-01 1.11e-01 7.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0784%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.45e-05 5.56e-06 8.88e-01 1.11e-01 7.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0785%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.88e-12 7.35e-13 8.88e-01 1.11e-01 7.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0787%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-20 2.73e-21 8.88e-01 1.11e-01 7.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0788%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.89e-34 1.11e-34 8.88e-01 1.11e-01 7.94e-04 \n", + "[1] \"PP abf for shared variant: 0.0794%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.47e-54 8.12e-33 7.37e-22 9.24e-01 7.58e-02 \n", + "[1] \"PP abf for shared variant: 7.58%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.13e-46 2.67e-25 7.38e-22 9.26e-01 7.37e-02 \n", + "[1] \"PP abf for shared variant: 7.37%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.99e-28 2.50e-07 7.82e-22 9.82e-01 1.80e-02 \n", + "[1] \"PP abf for shared variant: 1.8%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.79e-48 1.23e-26 7.23e-22 9.07e-01 9.33e-02 \n", + "[1] \"PP abf for shared variant: 9.33%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.11e-33 2.65e-12 7.46e-22 9.36e-01 6.40e-02 \n", + "[1] \"PP abf for shared variant: 6.4%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-27 2.29e-06 6.99e-22 8.77e-01 1.23e-01 \n", + "[1] \"PP abf for shared variant: 12.3%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.3059e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.51e-06 5.03e-01 4.21e-06 3.83e-01 1.14e-01 \n", + "[1] \"PP abf for shared variant: 11.4%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.011178\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.79e-06 8.02e-01 2.08e-06 1.90e-01 7.80e-03 \n", + "[1] \"PP abf for shared variant: 0.78%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2246e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.56e-06 1.42e-01 5.36e-06 4.85e-01 3.73e-01 \n", + "[1] \"PP abf for shared variant: 37.3%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.00063663\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.19e-06 7.47e-01 2.52e-06 2.30e-01 2.28e-02 \n", + "[1] \"PP abf for shared variant: 2.28%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.57e-09 3.26e-04 6.91e-06 6.27e-01 3.72e-01 \n", + "[1] \"PP abf for shared variant: 37.2%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.46e-20 2.24e-15 8.59e-07 6.91e-02 9.31e-01 \n", + "[1] \"PP abf for shared variant: 93.1%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-44 2.63e-46 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-47 2.98e-49 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.14e-42 8.98e-44 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.31e-47 1.63e-48 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.05e-46 1.41e-47 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.54e-44 9.69e-46 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.16e-03 3.21e-05 9.87e-01 3.45e-03 8.48e-04 \n", + "[1] \"PP abf for shared variant: 0.0848%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0046418\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.87e-01 3.46e-03 9.62e-03 3.35e-05 2.83e-05 \n", + "[1] \"PP abf for shared variant: 0.00283%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.004909\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.86e-01 3.46e-03 1.03e-02 3.57e-05 3.14e-05 \n", + "[1] \"PP abf for shared variant: 0.00314%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.95e-33 1.39e-35 9.96e-01 3.49e-03 8.51e-04 \n", + "[1] \"PP abf for shared variant: 0.0851%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0067582\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.86e-01 3.46e-03 1.02e-02 3.53e-05 4.00e-05 \n", + "[1] \"PP abf for shared variant: 0.004%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0037104\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.88e-01 3.47e-03 8.88e-03 3.09e-05 2.69e-05 \n", + "[1] \"PP abf for shared variant: 0.00269%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-02 8.15e-05 9.81e-01 7.58e-03 1.10e-03 \n", + "[1] \"PP abf for shared variant: 0.11%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-07 8.08e-10 9.91e-01 7.66e-03 1.10e-03 \n", + "[1] \"PP abf for shared variant: 0.11%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.23e-04 6.37e-06 9.90e-01 7.66e-03 1.11e-03 \n", + "[1] \"PP abf for shared variant: 0.111%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-10 1.01e-12 9.91e-01 7.66e-03 1.11e-03 \n", + "[1] \"PP abf for shared variant: 0.111%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.25e-19 4.06e-21 9.91e-01 7.66e-03 1.11e-03 \n", + "[1] \"PP abf for shared variant: 0.111%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.82e-32 2.96e-34 9.91e-01 7.66e-03 1.11e-03 \n", + "[1] \"PP abf for shared variant: 0.111%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.86e-75 1.39e-06 3.51e-71 7.74e-07 1.00e+00 \n", + "[1] \"PP abf for shared variant: 100%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.08e-75 8.80e-07 3.51e-71 1.26e-06 1.00e+00 \n", + "[1] \"PP abf for shared variant: 100%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.14e-69 8.95e-01 2.21e-71 5.31e-03 9.94e-02 \n", + "[1] \"PP abf for shared variant: 9.94%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-75 4.13e-07 3.51e-71 5.01e-08 1.00e+00 \n", + "[1] \"PP abf for shared variant: 100%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.16e-72 2.04e-03 3.54e-71 1.17e-04 9.98e-01 \n", + "[1] \"PP abf for shared variant: 99.8%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.42e-70 2.12e-01 3.25e-71 1.41e-03 7.87e-01 \n", + "[1] \"PP abf for shared variant: 78.7%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.3059e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.52e-01 4.16e-03 4.36e-02 1.90e-04 7.87e-05 \n", + "[1] \"PP abf for shared variant: 0.00787%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.011178\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.82e-01 4.30e-03 1.33e-02 5.78e-05 3.68e-05 \n", + "[1] \"PP abf for shared variant: 0.00368%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2246e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.955000 0.004180 0.040900 0.000178 0.000069 \n", + "[1] \"PP abf for shared variant: 0.0069%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.00063663\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.75e-01 4.27e-03 2.02e-02 8.79e-05 4.55e-05 \n", + "[1] \"PP abf for shared variant: 0.00455%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.72e-01 4.25e-03 2.37e-02 1.03e-04 5.04e-05 \n", + "[1] \"PP abf for shared variant: 0.00504%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.71e-03 3.81e-05 9.86e-01 4.30e-03 1.05e-03 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-37 1.81e-40 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.23e-41 4.42e-44 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.74e-40 1.06e-42 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-39 2.34e-42 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-41 1.49e-44 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.53e-39 3.46e-42 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000730 0.000103 0.875000 0.123000 0.001350 \n", + "[1] \"PP abf for shared variant: 0.135%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0046418\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.748000 0.105000 0.128000 0.017900 0.000878 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.004909\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.741000 0.104000 0.135000 0.019000 0.000992 \n", + "[1] \"PP abf for shared variant: 0.0992%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.60e-34 3.66e-35 8.76e-01 1.23e-01 1.34e-03 \n", + "[1] \"PP abf for shared variant: 0.134%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0067582\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.745000 0.105000 0.131000 0.018400 0.000809 \n", + "[1] \"PP abf for shared variant: 0.0809%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0037104\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.762000 0.107000 0.114000 0.016000 0.000853 \n", + "[1] \"PP abf for shared variant: 0.0853%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003430 0.000298 0.915000 0.079400 0.001580 \n", + "[1] \"PP abf for shared variant: 0.158%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.74e-08 3.24e-09 9.19e-01 7.97e-02 1.63e-03 \n", + "[1] \"PP abf for shared variant: 0.163%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.74e-04 2.37e-05 9.18e-01 7.97e-02 1.59e-03 \n", + "[1] \"PP abf for shared variant: 0.159%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.45e-11 3.86e-12 9.19e-01 7.97e-02 1.63e-03 \n", + "[1] \"PP abf for shared variant: 0.163%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-19 1.48e-20 9.19e-01 7.97e-02 1.63e-03 \n", + "[1] \"PP abf for shared variant: 0.163%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-32 1.08e-33 9.19e-01 7.97e-02 1.64e-03 \n", + "[1] \"PP abf for shared variant: 0.164%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "7.47e-276 2.96e-33 8.45e-244 3.28e-01 6.72e-01 \n", + "[1] \"PP abf for shared variant: 67.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "2.53e-268 1.00e-25 8.62e-244 3.35e-01 6.65e-01 \n", + "[1] \"PP abf for shared variant: 66.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.28e-247 5.08e-05 1.68e-243 6.63e-01 3.37e-01 \n", + "[1] \"PP abf for shared variant: 33.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.25e-269 4.96e-27 8.57e-244 3.33e-01 6.67e-01 \n", + "[1] \"PP abf for shared variant: 66.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "6.42e-255 2.54e-12 1.97e-243 7.77e-01 2.23e-01 \n", + "[1] \"PP abf for shared variant: 22.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "5.51e-249 2.18e-06 1.66e-243 6.55e-01 3.45e-01 \n", + "[1] \"PP abf for shared variant: 34.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.3059e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.11e-24 5.76e-01 4.25e-24 4.01e-01 2.29e-02 \n", + "[1] \"PP abf for shared variant: 2.29%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.011178\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.92e-24 8.42e-01 1.61e-24 1.51e-01 6.39e-03 \n", + "[1] \"PP abf for shared variant: 0.639%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2246e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.36e-24 2.23e-01 8.00e-24 7.54e-01 2.27e-02 \n", + "[1] \"PP abf for shared variant: 2.27%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.00063663\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.52e-24 8.04e-01 2.01e-24 1.90e-01 5.84e-03 \n", + "[1] \"PP abf for shared variant: 0.584%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.47e-27 5.16e-04 1.06e-23 9.99e-01 1.09e-05 \n", + "[1] \"PP abf for shared variant: 0.00109%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.03e-37 2.86e-14 1.06e-23 1.00e+00 1.03e-14 \n", + "[1] \"PP abf for shared variant: 1.03e-12%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.81e-49 3.90e-45 5.08e-05 2.47e-01 7.53e-01 \n", + "[1] \"PP abf for shared variant: 75.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.86e-52 4.43e-48 5.11e-05 2.48e-01 7.52e-01 \n", + "[1] \"PP abf for shared variant: 75.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.65e-46 1.32e-42 5.06e-05 2.45e-01 7.55e-01 \n", + "[1] \"PP abf for shared variant: 75.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.79e-51 2.39e-47 5.05e-05 2.45e-01 7.55e-01 \n", + "[1] \"PP abf for shared variant: 75.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.17e-50 2.08e-46 5.09e-05 2.47e-01 7.53e-01 \n", + "[1] \"PP abf for shared variant: 75.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.87e-48 1.43e-44 5.08e-05 2.46e-01 7.54e-01 \n", + "[1] \"PP abf for shared variant: 75.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001950 0.000344 0.846000 0.149000 0.001840 \n", + "[1] \"PP abf for shared variant: 0.184%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0046418\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.79300 0.14000 0.05670 0.01000 0.00091 \n", + "[1] \"PP abf for shared variant: 0.091%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.004909\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.790000 0.139000 0.059300 0.010400 0.000961 \n", + "[1] \"PP abf for shared variant: 0.0961%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.25e-34 1.46e-34 8.48e-01 1.50e-01 1.84e-03 \n", + "[1] \"PP abf for shared variant: 0.184%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0067582\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.78900 0.13900 0.05990 0.01060 0.00117 \n", + "[1] \"PP abf for shared variant: 0.117%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0037104\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.79800 0.14100 0.05070 0.00894 0.00132 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.05e-03 5.21e-05 9.79e-01 1.67e-02 6.96e-04 \n", + "[1] \"PP abf for shared variant: 0.0696%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.58e-08 4.42e-10 9.82e-01 1.68e-02 7.15e-04 \n", + "[1] \"PP abf for shared variant: 0.0715%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.28e-04 3.89e-06 9.82e-01 1.68e-02 7.07e-04 \n", + "[1] \"PP abf for shared variant: 0.0707%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.91e-11 4.97e-13 9.82e-01 1.68e-02 7.42e-04 \n", + "[1] \"PP abf for shared variant: 0.0742%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-19 1.80e-21 9.82e-01 1.68e-02 7.58e-04 \n", + "[1] \"PP abf for shared variant: 0.0758%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.22e-33 5.51e-35 9.82e-01 1.68e-02 8.46e-04 \n", + "[1] \"PP abf for shared variant: 0.0846%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-25 4.03e-15 1.37e-11 3.41e-01 6.59e-01 \n", + "[1] \"PP abf for shared variant: 65.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-25 3.07e-15 4.05e-13 2.65e-04 1.00e+00 \n", + "[1] \"PP abf for shared variant: 100%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.29e-16 3.27e-06 3.94e-13 1.46e-06 1.00e+00 \n", + "[1] \"PP abf for shared variant: 100%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-26 2.84e-16 1.38e-12 2.53e-02 9.75e-01 \n", + "[1] \"PP abf for shared variant: 97.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.28e-24 1.59e-13 3.94e-13 4.76e-09 1.00e+00 \n", + "[1] \"PP abf for shared variant: 100%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.83e-18 4.65e-08 3.95e-13 4.38e-06 1.00e+00 \n", + "[1] \"PP abf for shared variant: 100%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.3059e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.72100 0.01480 0.25800 0.00526 0.00146 \n", + "[1] \"PP abf for shared variant: 0.146%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.011178\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.892000 0.018300 0.088200 0.001810 0.000173 \n", + "[1] \"PP abf for shared variant: 0.0173%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2246e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.39400 0.00807 0.58500 0.01200 0.00146 \n", + "[1] \"PP abf for shared variant: 0.146%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.00063663\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.867000 0.017800 0.112000 0.002290 0.000391 \n", + "[1] \"PP abf for shared variant: 0.0391%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.38e-03 2.82e-05 9.77e-01 2.00e-02 2.06e-03 \n", + "[1] \"PP abf for shared variant: 0.206%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.79e-13 2.00e-14 9.78e-01 2.00e-02 2.07e-03 \n", + "[1] \"PP abf for shared variant: 0.207%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-44 4.19e-45 3.38e-01 1.27e-01 5.35e-01 \n", + "[1] \"PP abf for shared variant: 53.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-47 4.70e-48 3.38e-01 1.27e-01 5.35e-01 \n", + "[1] \"PP abf for shared variant: 53.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.58e-42 1.41e-42 3.32e-01 1.25e-01 5.43e-01 \n", + "[1] \"PP abf for shared variant: 54.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.65e-47 2.61e-47 3.38e-01 1.27e-01 5.35e-01 \n", + "[1] \"PP abf for shared variant: 53.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.69e-46 2.23e-46 3.38e-01 1.27e-01 5.35e-01 \n", + "[1] \"PP abf for shared variant: 53.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.93e-44 1.54e-44 3.38e-01 1.27e-01 5.35e-01 \n", + "[1] \"PP abf for shared variant: 53.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.52e-04 7.94e-05 9.03e-01 9.53e-02 8.32e-04 \n", + "[1] \"PP abf for shared variant: 0.0832%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0046418\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.713000 0.075300 0.191000 0.020100 0.000677 \n", + "[1] \"PP abf for shared variant: 0.0677%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.004909\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.705000 0.074400 0.199000 0.021000 0.000738 \n", + "[1] \"PP abf for shared variant: 0.0738%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.68e-34 2.83e-35 9.04e-01 9.53e-02 8.24e-04 \n", + "[1] \"PP abf for shared variant: 0.0824%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0067582\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.708000 0.074700 0.196000 0.020700 0.000682 \n", + "[1] \"PP abf for shared variant: 0.0682%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T1MB_TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0037104\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.733000 0.077300 0.171000 0.018100 0.000635 \n", + "[1] \"PP abf for shared variant: 0.0635%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000254 0.000247 0.506000 0.492000 0.002080 \n", + "[1] \"PP abf for shared variant: 0.208%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.17e-09 2.11e-09 5.06e-01 4.92e-01 2.10e-03 \n", + "[1] \"PP abf for shared variant: 0.21%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.94e-05 1.88e-05 5.06e-01 4.92e-01 2.09e-03 \n", + "[1] \"PP abf for shared variant: 0.209%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.49e-12 2.42e-12 5.06e-01 4.92e-01 2.10e-03 \n", + "[1] \"PP abf for shared variant: 0.21%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.07e-21 8.82e-21 5.06e-01 4.92e-01 2.11e-03 \n", + "[1] \"PP abf for shared variant: 0.211%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T1MB_SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.15e-34 3.06e-34 5.06e-01 4.92e-01 2.05e-03 \n", + "[1] \"PP abf for shared variant: 0.205%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00e+00 4.16e-33 0.00e+00 1.00e+00 2.37e-26 \n", + "[1] \"PP abf for shared variant: 2.37e-24%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00e+00 1.35e-25 0.00e+00 1.00e+00 5.35e-19 \n", + "[1] \"PP abf for shared variant: 5.35e-17%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00e+00 5.38e-07 0.00e+00 1.00e+00 1.25e-07 \n", + "[1] \"PP abf for shared variant: 1.25e-05%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00e+00 6.80e-27 0.00e+00 1.00e+00 1.31e-21 \n", + "[1] \"PP abf for shared variant: 1.31e-19%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00e+00 1.71e-14 0.00e+00 1.00e+00 1.28e-08 \n", + "[1] \"PP abf for shared variant: 1.28e-06%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T1MB_HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00e+00 2.13e-06 0.00e+00 1.00e+00 4.42e-04 \n", + "[1] \"PP abf for shared variant: 0.0442%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.3059e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.47000 0.06140 0.41300 0.05400 0.00148 \n", + "[1] \"PP abf for shared variant: 0.148%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.011178\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.692000 0.090500 0.191000 0.025000 0.000885 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2246e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.17500 0.02290 0.70600 0.09230 0.00354 \n", + "[1] \"PP abf for shared variant: 0.354%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.00063663\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n", + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.652000 0.085300 0.232000 0.030300 0.000999 \n", + "[1] \"PP abf for shared variant: 0.0999%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.69e-04 4.83e-05 8.78e-01 1.15e-01 6.77e-03 \n", + "[1] \"PP abf for shared variant: 0.677%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T1MB_RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.48e-14 3.24e-15 8.82e-01 1.15e-01 2.52e-03 \n", + "[1] \"PP abf for shared variant: 0.252%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "8.79e-101 1.03e-44 8.54e-57 1.00e+00 4.14e-04 \n", + "[1] \"PP abf for shared variant: 0.0414%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.19e-103 1.39e-47 8.54e-57 1.00e+00 1.22e-04 \n", + "[1] \"PP abf for shared variant: 0.0122%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.97e-98 3.47e-42 8.54e-57 1.00e+00 3.65e-04 \n", + "[1] \"PP abf for shared variant: 0.0365%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "6.84e-103 8.01e-47 8.54e-57 1.00e+00 1.54e-04 \n", + "[1] \"PP abf for shared variant: 0.0154%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "4.48e-102 5.25e-46 8.54e-57 1.00e+00 4.13e-04 \n", + "[1] \"PP abf for shared variant: 0.0413%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T1MB_RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in sdY.est(d$varbeta, d$MAF, d$N):\n", + "“estimating sdY from maf and varbeta, please directly supply sdY if known”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "3.64e-100 4.27e-44 8.54e-57 1.00e+00 2.32e-04 \n", + "[1] \"PP abf for shared variant: 0.0232%\"\n" + ] + } + ], + "source": [ + "for(i in names(gwas_input_list)){\n", + " for(ident in names(data_input_eqtl)){\n", + " \n", + " print(i)\n", + " print(ident)\n", + " \n", + " colocalization_result = coloc.abf(\n", + " dataset1=gwas_input_list[[i]], # GWAS\n", + " dataset2=data_input_eqtl[[ident]], # eQTL\n", + " p1 = 1e-04, p2 = 1e-04, p12 = 1e-06) # Parameters\n", + "\n", + " result_summary = data.frame(parameter = names(colocalization_result$summary), value = colocalization_result$summary, trait = i, identifier = ident)\n", + " coloc_result_summary = rbind(coloc_result_summary, result_summary)\n", + "\n", + " result_detail = colocalization_result$results\n", + " result_detail$trait = i\n", + " result_detail$identifier = ident\n", + " coloc_result_detail = rbind(coloc_result_detail, result_detail)\n", + " }\n", + " }\n" + ] + }, + { + "cell_type": "code", + "execution_count": 159, + "id": "b4bf6de5-4153-4343-88c5-d8b6bad40a02", + "metadata": {}, + "outputs": [], + "source": [ + "##\n", + "# HO: locus is not associated with any of the traits\n", + "# H1: locus is only significant in the GWAS \n", + "# H2: the locus is only a significant eQTL \n", + "# H3: locus is associated with both traits due to two independent signals\n", + "# H4: locus is associated with both traits due to a single colocalizing SNP\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "id": "31f724f3-f101-4fab-98e6-67aea4fb713b", + "metadata": {}, + "outputs": [], + "source": [ + "coloc_result_summary_wide = coloc_result_summary %>% dcast(trait + identifier~ parameter, value.var = 'value')" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "id": "5cc7f38f-532b-4387-9d62-d32f62349977", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 7 × 8
traitidentifiernsnpsPP.H0.abfPP.H1.abfPP.H2.abfPP.H3.abfPP.H4.abf
<chr><chr><dbl><dbl><dbl><dbl><dbl><dbl>
8Asthma CD4T1MB_RPS26 381 3.927482e-441.542417e-443.377647e-010.1272990050.5349363254
38Crohn's Disease CD4T1MB_RPS261112 5.377536e-442.610708e-459.525417e-010.0462321330.0012261225
68Inflammatory Bowel DiseaseCD4T1MB_RPS261110 5.543671e-449.686722e-469.819699e-010.0171496250.0008804495
98Multiple Sclerosis CD4T1MB_RPS26 58 2.528911e-393.462667e-429.977730e-010.0013574880.0008695298
128Rheumatoid Arthritis CD4T1MB_RPS26 882 2.866338e-481.432885e-445.077245e-050.2462752590.7536739683
158Type_1_Diabetes CD4T1MB_RPS2613413.644262e-1004.267404e-448.537799e-570.9997675800.0002324201
188White blood cell count CD4T1MB_RPS261078 5.393380e-442.511048e-459.553483e-010.0444773330.0001743428
\n" + ], + "text/latex": [ + "A data.frame: 7 × 8\n", + "\\begin{tabular}{r|llllllll}\n", + " & trait & identifier & nsnps & PP.H0.abf & PP.H1.abf & PP.H2.abf & PP.H3.abf & PP.H4.abf\\\\\n", + " & & & & & & & & \\\\\n", + "\\hline\n", + "\t8 & Asthma & CD4T1MB\\_RPS26 & 381 & 3.927482e-44 & 1.542417e-44 & 3.377647e-01 & 0.127299005 & 0.5349363254\\\\\n", + "\t38 & Crohn's Disease & CD4T1MB\\_RPS26 & 1112 & 5.377536e-44 & 2.610708e-45 & 9.525417e-01 & 0.046232133 & 0.0012261225\\\\\n", + "\t68 & Inflammatory Bowel Disease & CD4T1MB\\_RPS26 & 1110 & 5.543671e-44 & 9.686722e-46 & 9.819699e-01 & 0.017149625 & 0.0008804495\\\\\n", + "\t98 & Multiple Sclerosis & CD4T1MB\\_RPS26 & 58 & 2.528911e-39 & 3.462667e-42 & 9.977730e-01 & 0.001357488 & 0.0008695298\\\\\n", + "\t128 & Rheumatoid Arthritis & CD4T1MB\\_RPS26 & 882 & 2.866338e-48 & 1.432885e-44 & 5.077245e-05 & 0.246275259 & 0.7536739683\\\\\n", + "\t158 & Type\\_1\\_Diabetes & CD4T1MB\\_RPS26 & 1341 & 3.644262e-100 & 4.267404e-44 & 8.537799e-57 & 0.999767580 & 0.0002324201\\\\\n", + "\t188 & White blood cell count & CD4T1MB\\_RPS26 & 1078 & 5.393380e-44 & 2.511048e-45 & 9.553483e-01 & 0.044477333 & 0.0001743428\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 7 × 8\n", + "\n", + "| | trait <chr> | identifier <chr> | nsnps <dbl> | PP.H0.abf <dbl> | PP.H1.abf <dbl> | PP.H2.abf <dbl> | PP.H3.abf <dbl> | PP.H4.abf <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| 8 | Asthma | CD4T1MB_RPS26 | 381 | 3.927482e-44 | 1.542417e-44 | 3.377647e-01 | 0.127299005 | 0.5349363254 |\n", + "| 38 | Crohn's Disease | CD4T1MB_RPS26 | 1112 | 5.377536e-44 | 2.610708e-45 | 9.525417e-01 | 0.046232133 | 0.0012261225 |\n", + "| 68 | Inflammatory Bowel Disease | CD4T1MB_RPS26 | 1110 | 5.543671e-44 | 9.686722e-46 | 9.819699e-01 | 0.017149625 | 0.0008804495 |\n", + "| 98 | Multiple Sclerosis | CD4T1MB_RPS26 | 58 | 2.528911e-39 | 3.462667e-42 | 9.977730e-01 | 0.001357488 | 0.0008695298 |\n", + "| 128 | Rheumatoid Arthritis | CD4T1MB_RPS26 | 882 | 2.866338e-48 | 1.432885e-44 | 5.077245e-05 | 0.246275259 | 0.7536739683 |\n", + "| 158 | Type_1_Diabetes | CD4T1MB_RPS26 | 1341 | 3.644262e-100 | 4.267404e-44 | 8.537799e-57 | 0.999767580 | 0.0002324201 |\n", + "| 188 | White blood cell count | CD4T1MB_RPS26 | 1078 | 5.393380e-44 | 2.511048e-45 | 9.553483e-01 | 0.044477333 | 0.0001743428 |\n", + "\n" + ], + "text/plain": [ + " trait identifier nsnps PP.H0.abf PP.H1.abf \n", + "8 Asthma CD4T1MB_RPS26 381 3.927482e-44 1.542417e-44\n", + "38 Crohn's Disease CD4T1MB_RPS26 1112 5.377536e-44 2.610708e-45\n", + "68 Inflammatory Bowel Disease CD4T1MB_RPS26 1110 5.543671e-44 9.686722e-46\n", + "98 Multiple Sclerosis CD4T1MB_RPS26 58 2.528911e-39 3.462667e-42\n", + "128 Rheumatoid Arthritis CD4T1MB_RPS26 882 2.866338e-48 1.432885e-44\n", + "158 Type_1_Diabetes CD4T1MB_RPS26 1341 3.644262e-100 4.267404e-44\n", + "188 White blood cell count CD4T1MB_RPS26 1078 5.393380e-44 2.511048e-45\n", + " PP.H2.abf PP.H3.abf PP.H4.abf \n", + "8 3.377647e-01 0.127299005 0.5349363254\n", + "38 9.525417e-01 0.046232133 0.0012261225\n", + "68 9.819699e-01 0.017149625 0.0008804495\n", + "98 9.977730e-01 0.001357488 0.0008695298\n", + "128 5.077245e-05 0.246275259 0.7536739683\n", + "158 8.537799e-57 0.999767580 0.0002324201\n", + "188 9.553483e-01 0.044477333 0.0001743428" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "coloc_result_summary_wide[coloc_result_summary_wide$identifier == 'CD4T1MB_RPS26',] # check whether we get same result for CD4T- RPS26 signal" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "id": "cf43ca04-e857-49ea-bc92-0bc42c260d21", + "metadata": {}, + "outputs": [], + "source": [ + "### Save the results" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "id": "aea90368-d79e-4bd6-89fe-0ac8551e584e", + "metadata": {}, + "outputs": [], + "source": [ + "#write.csv(coloc_result_summary, paste0(path, \"/colocalization_results/\", \"EQTL_summary.csv\"))\n", + "#write.table(coloc_result_summary, file = paste0(path, \"/colocalization_results/\", \"EQTL_summary.csv\"), append =TRUE, sep = \",\", row.names = FALSE, col.names =FALSE)\n", + "\n", + "write.table(coloc_result_summary, file = paste0(path, \"/colocalization_results/\", \"EQTL_summary_update.csv\"), append =FALSE, sep = \",\", row.names = FALSE, col.names =TRUE)" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "id": "de723637-f2b7-40ad-bf4c-8584a17e1147", + "metadata": {}, + "outputs": [], + "source": [ + "#write.csv(coloc_result_detail, paste0(path, \"/colocalization_results/\", \"EQTL_detail.csv\"))\n", + "#write.table(coloc_result_detail, file = paste0(path, \"/colocalization_results/\", \"EQTL_detail.csv\"), append =TRUE, sep = \",\", row.names = FALSE, col.names = FALSE)\n", + "\n", + "write.table(coloc_result_detail, file = paste0(path, \"/colocalization_results/\", \"EQTL_detail_update.csv\"), append =FALSE, sep = \",\", row.names = FALSE, col.names = TRUE)" + ] + }, + { + "cell_type": "markdown", + "id": "07b27ab0-855f-40d1-b810-f2d0e71d4ebb", + "metadata": { + "tags": [] + }, + "source": [ + "# Colocalization for co-eQTLS" + ] + }, + { + "cell_type": "markdown", + "id": "1ce117bd-b13b-494f-a008-49422ad25cda", + "metadata": { + "tags": [] + }, + "source": [ + "## Prepare Data" + ] + }, + { + "cell_type": "markdown", + "id": "601b36f9-a8b6-4248-a18f-9ccaf4f62228", + "metadata": { + "tags": [] + }, + "source": [ + "### Co-EQTL input" + ] + }, + { + "cell_type": "code", + "execution_count": 165, + "id": "8d39fe8b-7e1c-4bfe-8bf1-1ea64f1231a8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 24
SNPGeneGeneChrGenePosGeneStrandGeneSymbolSNPChrSNPPosSNPAllelesSNPEffectAlleleMetaBetaMetaSENrDatasetsDatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2)cell_typeeGeneidentposition
<chr><chr><int><int><lgl><chr><int><int><chr><chr><dbl><dbl><int><chr><chr><chr><chr><chr><chr><int>
rs1001116_C/TCAPG;TMEM176A 7150497491NATMEM176A___CAPG__TMEM176A 7151743278C/TT 0.0798290.1219714-0.075203;0.149838;-0.214833;0.318816 -0.422702;1.210238;-1.180776;1.51843734;67;32;24monocyteTMEM176Amonocyte_TMEM176A___CAPG__TMEM176A 151743278
rs1001116_C/TPTAFR;TMEM176A7150497491NATMEM176A___PTAFR__TMEM176A7151743278C/TT-0.1006000.12187340.018313;-0.015859;-0.229843;-0.1202090.102794;-0.127373;-1.265483;-0.5595 34;67;32;24monocyteTMEM176Amonocyte_TMEM176A___PTAFR__TMEM176A151743278
\n" + ], + "text/latex": [ + "A data.table: 2 × 24\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " SNP & Gene & GeneChr & GenePos & GeneStrand & GeneSymbol & SNPChr & SNPPos & SNPAlleles & SNPEffectAllele & ⋯ & MetaBeta & MetaSE & NrDatasets & DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2) & DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2) & DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) & cell\\_type & eGene & ident & position\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t rs1001116\\_C/T & CAPG;TMEM176A & 7 & 150497491 & NA & TMEM176A\\_\\_\\_CAPG\\_\\_TMEM176A & 7 & 151743278 & C/T & T & ⋯ & 0.079829 & 0.121971 & 4 & -0.075203;0.149838;-0.214833;0.318816 & -0.422702;1.210238;-1.180776;1.518437 & 34;67;32;24 & monocyte & TMEM176A & monocyte\\_TMEM176A\\_\\_\\_CAPG\\_\\_TMEM176A & 151743278\\\\\n", + "\t rs1001116\\_C/T & PTAFR;TMEM176A & 7 & 150497491 & NA & TMEM176A\\_\\_\\_PTAFR\\_\\_TMEM176A & 7 & 151743278 & C/T & T & ⋯ & -0.100600 & 0.121873 & 4 & 0.018313;-0.015859;-0.229843;-0.120209 & 0.102794;-0.127373;-1.265483;-0.5595 & 34;67;32;24 & monocyte & TMEM176A & monocyte\\_TMEM176A\\_\\_\\_PTAFR\\_\\_TMEM176A & 151743278\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 24\n", + "\n", + "| SNP <chr> | Gene <chr> | GeneChr <int> | GenePos <int> | GeneStrand <lgl> | GeneSymbol <chr> | SNPChr <int> | SNPPos <int> | SNPAlleles <chr> | SNPEffectAllele <chr> | ⋯ ⋯ | MetaBeta <dbl> | MetaSE <dbl> | NrDatasets <int> | DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2) <chr> | DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2) <chr> | DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) <chr> | cell_type <chr> | eGene <chr> | ident <chr> | position <int> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| rs1001116_C/T | CAPG;TMEM176A | 7 | 150497491 | NA | TMEM176A___CAPG__TMEM176A | 7 | 151743278 | C/T | T | ⋯ | 0.079829 | 0.121971 | 4 | -0.075203;0.149838;-0.214833;0.318816 | -0.422702;1.210238;-1.180776;1.518437 | 34;67;32;24 | monocyte | TMEM176A | monocyte_TMEM176A___CAPG__TMEM176A | 151743278 |\n", + "| rs1001116_C/T | PTAFR;TMEM176A | 7 | 150497491 | NA | TMEM176A___PTAFR__TMEM176A | 7 | 151743278 | C/T | T | ⋯ | -0.100600 | 0.121873 | 4 | 0.018313;-0.015859;-0.229843;-0.120209 | 0.102794;-0.127373;-1.265483;-0.5595 | 34;67;32;24 | monocyte | TMEM176A | monocyte_TMEM176A___PTAFR__TMEM176A | 151743278 |\n", + "\n" + ], + "text/plain": [ + " SNP Gene GeneChr GenePos GeneStrand\n", + "1 rs1001116_C/T CAPG;TMEM176A 7 150497491 NA \n", + "2 rs1001116_C/T PTAFR;TMEM176A 7 150497491 NA \n", + " GeneSymbol SNPChr SNPPos SNPAlleles SNPEffectAllele ⋯\n", + "1 TMEM176A___CAPG__TMEM176A 7 151743278 C/T T ⋯\n", + "2 TMEM176A___PTAFR__TMEM176A 7 151743278 C/T T ⋯\n", + " MetaBeta MetaSE NrDatasets\n", + "1 0.079829 0.121971 4 \n", + "2 -0.100600 0.121873 4 \n", + " DatasetCorrelationCoefficients(ng;onemillionv2;onemillionv3;stemiv2)\n", + "1 -0.075203;0.149838;-0.214833;0.318816 \n", + "2 0.018313;-0.015859;-0.229843;-0.120209 \n", + " DatasetZScores(ng;onemillionv2;onemillionv3;stemiv2)\n", + "1 -0.422702;1.210238;-1.180776;1.518437 \n", + "2 0.102794;-0.127373;-1.265483;-0.5595 \n", + " DatasetSampleSizes(ng;onemillionv2;onemillionv3;stemiv2) cell_type eGene \n", + "1 34;67;32;24 monocyte TMEM176A\n", + "2 34;67;32;24 monocyte TMEM176A\n", + " ident position \n", + "1 monocyte_TMEM176A___CAPG__TMEM176A 151743278\n", + "2 monocyte_TMEM176A___PTAFR__TMEM176A 151743278" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(output_all_effect,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "id": "72350ed2-7925-41ad-9ab3-1a22db5600c5", + "metadata": {}, + "outputs": [], + "source": [ + "data_input_coeqtl = list()" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "id": "6fcdb173-51e9-4f71-a0ca-d70725bbe618", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "monocyte_TMEM176A___CAPG__TMEM176A2990monocyte_TMEM176A___PTAFR__TMEM176A2990monocyte_TMEM176A___MNDA__TMEM176A2990monocyte_TMEM176A___RNASE6__TMEM176A2990monocyte_TMEM176A___TMEM176A__TSPO2990monocyte_TMEM176A___TMEM176A__VMO12968monocyte_TMEM176A___S100A9__TMEM176A2990monocyte_TMEM176A___QPCT__TMEM176A2984monocyte_TMEM176A___BLVRB__TMEM176A2989monocyte_TMEM176A___LYZ__TMEM176A2990monocyte_TMEM176A___CLEC4A__TMEM176A2990CD8T_SMDT1___RPL36__SMDT12645CD8T_SMDT1___RPL5__SMDT12645CD8T_SMDT1___RPL7__SMDT12645CD8T_SMDT1___RPL32__SMDT12645CD8T_SMDT1___EEF1A1__SMDT12645CD8T_SMDT1___RPL38__SMDT12645CD8T_SMDT1___RPL35A__SMDT12645CD8T_SMDT1___RPL3__SMDT12645CD8T_SMDT1___RPS4X__SMDT12645CD8T_SMDT1___RPS3A__SMDT12645CD8T_SMDT1___RPS15A__SMDT12645CD8T_SMDT1___RPS8__SMDT12645CD8T_SMDT1___RPS25__SMDT12645CD8T_SMDT1___RPS12__SMDT12645CD8T_SMDT1___NKG7__SMDT12645CD8T_SMDT1___B2M__SMDT12645CD8T_SMDT1___RPL15__SMDT12645CD8T_SMDT1___PFN1__SMDT12645CD8T_SMDT1___RPS28__SMDT12645CD8T_SMDT1___RPL13A__SMDT12645CD8T_SMDT1___GZMH__SMDT12645CD8T_SMDT1___LTB__SMDT12645CD8T_SMDT1___RPL39__SMDT12645CD8T_SMDT1___RPS14__SMDT12645CD8T_SMDT1___RPL13__SMDT12645CD8T_SMDT1___RPS23__SMDT12645CD8T_SMDT1___RPS29__SMDT12645CD8T_SMDT1___RPL22__SMDT12645CD8T_SMDT1___RPL9__SMDT12645CD8T_SMDT1___RPL12__SMDT12645CD8T_SMDT1___RPL18__SMDT12645CD8T_SMDT1___RPS26__SMDT12645CD8T_SMDT1___MAL__SMDT12573CD8T_SMDT1___PRF1__SMDT12645CD8T_SMDT1___RPS13__SMDT12645CD8T_SMDT1___RPS6__SMDT12645CD8T_SMDT1___RPS18__SMDT12645CD8T_SMDT1___RPL21__SMDT12645CD8T_SMDT1___SMDT1__TMSB4X2645CD8T_SMDT1___RPL14__SMDT12645CD8T_SMDT1___RPL11__SMDT12645CD8T_SMDT1___RPL34__SMDT12645CD8T_SMDT1___RPL10A__SMDT12645CD8T_SMDT1___RPL30__SMDT12645CD4T_SMDT1___RPL3__SMDT12645CD4T_SMDT1___RPS25__SMDT12645CD4T_SMDT1___RPL13A__SMDT12645CD4T_SMDT1___RPS13__SMDT12645CD4T_SMDT1___RPS4X__SMDT12645CD4T_SMDT1___RPS18__SMDT12645CD4T_SMDT1___RPL31__SMDT12645CD4T_SMDT1___RPS15__SMDT12645CD4T_SMDT1___ACTB__SMDT12645CD4T_SMDT1___RPL36__SMDT12645CD4T_SMDT1___RPL35A__SMDT12645CD4T_SMDT1___RPS12__SMDT12645CD4T_SMDT1___RPL11__SMDT12645CD4T_SMDT1___RPL14__SMDT12645CD4T_SMDT1___RPL10__SMDT12645CD4T_SMDT1___RPS3A__SMDT12645CD4T_SMDT1___RPS26__SMDT12645CD4T_SMDT1___CD48__SMDT12645CD4T_SMDT1___RPL7__SMDT12645CD4T_SMDT1___RPS27__SMDT12645DC_HLA-DQA2___CST3__HLA-DQA23996DC_HLA-DQA2___HLA-DQA2__HLA-DRA3996DC_HLA-DQA2___HLA-DPB1__HLA-DQA23996DC_HLA-DQA2___CLIC3__HLA-DQA24151DC_HLA-DQA2___HLA-DQA2__PTPRCAP3981DC_HLA-DQA2___CDKN2D__HLA-DQA24171DC_HLA-DQA2___HLA-DQA2__YBX13996DC_HLA-DQA2___HLA-DQA1__HLA-DQA23996DC_HLA-DQA2___HLA-DQA2__HLA-DQB13996DC_HLA-DQA2___HLA-DQA2__MAP1A4012DC_HLA-DQA2___FAM129C__HLA-DQA24151DC_HLA-DQA2___HLA-DQA2__MT-CO13996DC_HLA-DQA2___HLA-DPA1__HLA-DQA23996monocyte_HLA-DQA2___CST3__HLA-DQA24642monocyte_HLA-DQA2___HLA-DQA1__HLA-DQA24708monocyte_HLA-DQA2___CD74__HLA-DQA24668monocyte_HLA-DQA2___HLA-DQA2__RPS64642monocyte_HLA-DQA2___HLA-DPB1__HLA-DQA24603monocyte_HLA-DQA2___HLA-DPA1__HLA-DQA24603monocyte_HLA-DQA2___HLA-DMA__HLA-DQA24642monocyte_HLA-DQA2___HLA-DQA2__RPS234642monocyte_HLA-DQA2___HLA-DQA2__HLA-DQB14608monocyte_HLA-DQA2___HLA-DQA2__RPL264642monocyte_HLA-DQA2___EEF1A1__HLA-DQA24642monocyte_HLA-DQA2___HLA-DQA2__RPS24642monocyte_HLA-DQA2___HLA-DQA2__RPL104642monocyte_HLA-DQA2___HLA-DMB__HLA-DQA24635monocyte_HLA-DQA2___HLA-DQA2__HLA-DRB14605monocyte_HLA-DQA2___HLA-DQA2__HLA-DRA4603monocyte_HLA-DQA2___HLA-DQA2__RPL54642monocyte_RNASET2___HLA-DRB5__RNASET24595CD8T_HLA-DQA2___CCL5__HLA-DQA24767CD8T_HLA-DQA2___CD74__HLA-DQA24767CD8T_HLA-DQA2___HLA-DQA2__RPS84767CD8T_HLA-DQA2___HLA-DQA2__NKG74767CD8T_HLA-DQA2___HLA-DQA2__RPL344767CD8T_HLA-DQA2___HLA-DQA1__HLA-DQA24651CD8T_HLA-DQA2___CMC1__HLA-DQA24767CD4T_HLA-DQA2___HLA-DQA2__RPS144801CD4T_HLA-DQA2___HLA-DQA2__S100A64801CD4T_HLA-DQA2___HLA-DQA2__RPS284801CD4T_HLA-DQA2___HLA-DPB1__HLA-DQA24801CD4T_HLA-DQA2___HLA-DQA2__RPL34801CD4T_HLA-DQA2___CD52__HLA-DQA24801CD4T_HLA-DQA2___HLA-DQA2__RPS134801CD4T_HLA-DQA2___HLA-DQA2__S100A104801CD4T_HLA-DQA2___HLA-DQA2__SH3BGRL34801CD4T_HLA-DQA2___EEF1B2__HLA-DQA24801CD4T_HLA-DQA2___HLA-DQA2__RPL134801CD4T_HLA-DQA2___B2M__HLA-DQA24801CD4T_HLA-DQA2___GAPDH__HLA-DQA24801CD4T_HLA-DQA2___HLA-DQA2__RPL324801CD4T_HLA-DQA2___HLA-DQA2__RPL74801CD4T_HLA-DQA2___HLA-DQA2__S100A44801CD4T_RNASET2___ITGB1__RNASET23185CD4T_RNASET2___CRIP1__RNASET23185CD4T_RNASET2___B2M__RNASET23185CD4T_RNASET2___ALOX5AP__RNASET23185DC_RPS26___RPS26__RPS81309DC_RPS26___RPL13__RPS261309DC_RPS26___RPL21__RPS261309B_RPS26___RPL11__RPS261349B_RPS26___RPS26__UBE2J11346B_RPS26___RPS23__RPS261349B_RPS26___RPS12__RPS261349B_RPS26___RPS13__RPS261349B_RPS26___RPS26__RPS281349B_RPS26___RPL30__RPS261349B_RPS26___RPL39__RPS261349B_RPS26___RPL21__RPS261349B_RPS26___RPL32__RPS261349B_RPS26___RPL10__RPS261349B_RPS26___RPS2__RPS261349B_RPS26___RPLP2__RPS261349B_RPS26___RPL26__RPS261349B_RPS26___RPS26__RPS61349B_RPS26___EEF1A1__RPS261349B_RPS26___RPS25__RPS261349B_RPS26___RPS26__RPS291349B_RPS26___RPS26__RPS3A1349B_RPS26___RPS26__RPS51349B_RPS26___RPL41__RPS261349B_RPS26___RPL34__RPS261349B_RPS26___RPS19__RPS261349B_RPS26___RPL23__RPS261349B_RPS26___RPL18__RPS261349B_RPS26___RPS21__RPS261349B_RPS26___RPL35A__RPS261349B_RPS26___RPS18__RPS261349B_RPS26___RPL13__RPS261349B_RPS26___RPS26__RPS91349B_RPS26___RPL9__RPS261349B_RPS26___RPS26__RPS271349B_RPS26___RPS26__RPS27A1349B_RPS26___RPL23A__RPS261349B_RPS26___RPS10__RPS261349NK_RPS26___RPL39__RPS261347NK_RPS26___RPL18A__RPS261347NK_RPS26___RPS26__UBA521347NK_RPS26___RPS21__RPS261347NK_RPS26___RPL36__RPS261347NK_RPS26___GNB2L1__RPS261347NK_RPS26___RPL3__RPS261347NK_RPS26___RPL35A__RPS261347NK_RPS26___RPL13A__RPS261347NK_RPS26___RPL28__RPS261347NK_RPS26___RPL5__RPS261347NK_RPS26___RPL12__RPS261347NK_RPS26___RPS26__RPS27A1347NK_RPS26___RPS18__RPS261347NK_RPS26___RPS11__RPS261347NK_RPS26___RPLP0__RPS261347NK_RPS26___RPS26__RPS71347NK_RPS26___RPL35__RPS261347NK_RPS26___ARPC2__RPS261347NK_RPS26___RPL8__RPS261347NK_RPS26___RPL23A__RPS261347NK_RPS26___RPL32__RPS261347NK_RPS26___RPS26__RPS4X1347NK_RPS26___RPS26__SPON21347NK_RPS26___RPL27__RPS261347NK_RPS26___EEF1A1__RPS261347NK_RPS26___RPL10__RPS261347NK_RPS26___RPL13__RPS261347NK_RPS26___RPS15A__RPS261347NK_RPS26___RPL7A__RPS261347NK_RPS26___RPS26__TOMM71347NK_RPS26___RPL37__RPS261347NK_RPS26___PRF1__RPS261347NK_RPS26___RPL19__RPS261347NK_RPS26___RPL26__RPS261347NK_RPS26___RPS26__RPS3A1347NK_RPS26___RPL30__RPS261347NK_RPS26___RPS23__RPS261347NK_RPS26___RPS26__RPS271347NK_RPS26___RPS16__RPS261347NK_RPS26___RPLP2__RPS261347NK_RPS26___RPS10__RPS261347NK_RPS26___RPS26__RPS281347NK_RPS26___RPS12__RPS261347NK_RPS26___RPS24__RPS261347NK_RPS26___RPS26__RPS31347NK_RPS26___RPL21__RPS261347NK_RPS26___FAU__RPS261347NK_RPS26___RPS14__RPS261347NK_RPS26___GLTSCR2__RPS261347NK_RPS26___RPS25__RPS261347NK_RPS26___RPL24__RPS261347NK_RPS26___RPL9__RPS261347NK_RPS26___RPL23__RPS261347NK_RPS26___RPS2__RPS261347NK_RPS26___RPL7__RPS261347NK_RPS26___RPL14__RPS261347NK_RPS26___RPL10A__RPS261347NK_RPS26___RPL11__RPS261347NK_RPS26___RPL34__RPS261347NK_RPS26___RPL15__RPS261347NK_RPS26___RPL38__RPS261347NK_RPS26___GPR183__RPS261347NK_RPS26___RPL41__RPS261347NK_RPS26___RPL4__RPS261347NK_RPS26___RPL31__RPS261347NK_RPS26___RPL18__RPS261347NK_RPS26___RPS26__TPT11347NK_RPS26___RPLP1__RPS261347NK_RPS26___RPS13__RPS261347NK_RPS26___GZMB__RPS261347NK_RPS26___EEF1D__RPS261347NK_RPS26___RPL37A__RPS261347NK_RPS26___RPS15__RPS261347NK_RPS26___RPS26__RPS291347NK_RPS26___KLRC1__RPS261347NK_RPS26___RPL17__RPS261347NK_RPS26___B2M__RPS261347NK_RPS26___RPS26__RPS91347NK_RPS26___MALAT1__RPS261347NK_RPS26___ACTB__RPS261347NK_RPS26___RPS26__RPS61347NK_RPS26___HLA-B__RPS261347NK_RPS26___RPS26__RPS81347NK_RPS26___RPL29__RPS261347NK_RPS26___FGFBP2__RPS261347NK_RPS26___EEF1B2__RPS261347NK_RPS26___RPS26__RPSA1347NK_RPS26___RPL36A__RPS261347NK_RPS26___RPS20__RPS261347NK_RPS26___RPS26__ZEB21296NK_RPS26___RPS26__RPS51347NK_RPS26___RPS19__RPS261347NK_RPS26___NACA__RPS261347NK_RPS26___RPL6__RPS261347NK_RPS26___RPL27A__RPS261347monocyte_RPS26___NRGN__RPS261354monocyte_RPS26___EEF2__RPS261354monocyte_RPS26___NACA__RPS261354monocyte_RPS26___EIF3L__RPS261354monocyte_RPS26___RPS15A__RPS261354monocyte_RPS26___RPL35A__RPS261354monocyte_RPS26___RPL37A__RPS261354monocyte_RPS26___EEF1B2__RPS261354monocyte_RPS26___RPL30__RPS261354monocyte_RPS26___RPL26__RPS261354monocyte_RPS26___RPS26__VCAN1354monocyte_RPS26___RPS26__UQCRH1354monocyte_RPS26___RPS26__SLC7A71354monocyte_RPS26___EPB41L3__RPS261347monocyte_RPS26___RPS26__S100A111354monocyte_RPS26___RPL32__RPS261354monocyte_RPS26___HNRNPA1__RPS261354monocyte_RPS26___QARS__RPS261354monocyte_RPS26___HLA-DPB1__RPS261354monocyte_RPS26___RPS12__RPS261354monocyte_RPS26___RPL24__RPS261354monocyte_RPS26___RPS18__RPS261354monocyte_RPS26___RPS26__RPS91354monocyte_RPS26___RPL3__RPS261354monocyte_RPS26___RPL11__RPS261354monocyte_RPS26___RPL35__RPS261354monocyte_RPS26___RPS26__TPT11354monocyte_RPS26___CSTA__RPS261354monocyte_RPS26___RPS25__RPS261354monocyte_RPS26___EIF3K__RPS261354monocyte_RPS26___RPS26__RPS271354monocyte_RPS26___EIF3H__RPS261354monocyte_RPS26___RPS13__RPS261354monocyte_RPS26___ERP29__RPS261354monocyte_RPS26___RPS26__TNFAIP21354monocyte_RPS26___RPS26__VIM1354monocyte_RPS26___RPL27A__RPS261354monocyte_RPS26___EEF1A1__RPS261354monocyte_RPS26___RPL37__RPS261354monocyte_RPS26___RPL8__RPS261354monocyte_RPS26___RPL7A__RPS261354monocyte_RPS26___RPS26__RPS27A1354monocyte_RPS26___RPL23__RPS261354monocyte_RPS26___RPL27__RPS261354monocyte_RPS26___HLA-DRA__RPS261354monocyte_RPS26___RPL15__RPS261354monocyte_RPS26___RPS26__RPS81354monocyte_RPS26___RPS26__SLC25A61354monocyte_RPS26___RPS26__RPS291354monocyte_RPS26___RPL12__RPS261354monocyte_RPS26___RPS26__RPSA1354monocyte_RPS26___RPL22__RPS261354monocyte_RPS26___RPL39__RPS261354monocyte_RPS26___RPS26__RPS281354monocyte_RPS26___FAU__RPS261354monocyte_RPS26___RPL21__RPS261354monocyte_RPS26___RPL36__RPS261354monocyte_RPS26___HLA-DPA1__RPS261354monocyte_RPS26___RPS26__RPS3A1354monocyte_RPS26___RPS23__RPS261354monocyte_RPS26___RPS20__RPS261354monocyte_RPS26___PABPC1__RPS261354monocyte_RPS26___CST3__RPS261354monocyte_RPS26___EMP3__RPS261354monocyte_RPS26___GNLY__RPS261354monocyte_RPS26___RPS24__RPS261354monocyte_RPS26___EIF3M__RPS261354monocyte_RPS26___RPS19__RPS261354monocyte_RPS26___AP1S2__RPS261354monocyte_RPS26___RPL19__RPS261354monocyte_RPS26___RPLP1__RPS261354monocyte_RPS26___RPS26__SEC11A1354monocyte_RPS26___RPL36A__RPS261354monocyte_RPS26___RPLP2__RPS261354monocyte_RPS26___RPS26__RPS71354monocyte_RPS26___RPL28__RPS261354monocyte_RPS26___RPL5__RPS261354monocyte_RPS26___RPS15__RPS261354monocyte_RPS26___RPL41__RPS261354monocyte_RPS26___ATP5G2__RPS261354monocyte_RPS26___RPL4__RPS261354monocyte_RPS26___RPL18__RPS261354monocyte_RPS26___RPS26__SLC25A51354monocyte_RPS26___RPL18A__RPS261354monocyte_RPS26___RPL9__RPS261354monocyte_RPS26___RPL13__RPS261354monocyte_RPS26___RPS26__RPS51354monocyte_RPS26___RPLP0__RPS261354monocyte_RPS26___RPL10__RPS261354monocyte_RPS26___RPS10__RPS261354monocyte_RPS26___EVI2B__RPS261354monocyte_RPS26___CD48__RPS261354monocyte_RPS26___EIF3E__RPS261354monocyte_RPS26___GAPDH__RPS261354monocyte_RPS26___RPS26__RPS4X1354monocyte_RPS26___LGALS2__RPS261354monocyte_RPS26___CYBA__RPS261354monocyte_RPS26___RPL29__RPS261354monocyte_RPS26___RPS2__RPS261354monocyte_RPS26___RPL6__RPS261354monocyte_RPS26___RPS16__RPS261354monocyte_RPS26___GPX1__RPS261354monocyte_RPS26___LTA4H__RPS261354monocyte_RPS26___RNASE6__RPS261354monocyte_RPS26___FTH1__RPS261354monocyte_RPS26___BTF3__RPS261354monocyte_RPS26___DRAM2__RPS261354monocyte_RPS26___IL18__RPS261347monocyte_RPS26___ATP5A1__RPS261354monocyte_RPS26___RPL38__RPS261354monocyte_RPS26___RPS26__RPS31354monocyte_RPS26___RPL13A__RPS261354monocyte_RPS26___RPS21__RPS261354monocyte_RPS26___RPS26__RPS61354monocyte_RPS26___RPS11__RPS261354monocyte_RPS26___IPO7__RPS261353monocyte_RPS26___GNB2L1__RPS261354monocyte_RPS26___RPL34__RPS261354monocyte_RPS26___RPL7__RPS261354monocyte_RPS26___CXCR4__RPS261354monocyte_RPS26___RPS26__UBA521354monocyte_RPS26___RPL14__RPS261354monocyte_RPS26___CRTAP__RPS261354monocyte_RPS26___H3F3B__RPS261354monocyte_RPS26___RPL10A__RPS261354monocyte_RPS26___CD74__RPS261354monocyte_RPS26___RPS14__RPS261354monocyte_RPS26___C6orf48__RPS261354monocyte_RPS26___GPR183__RPS261354monocyte_RPS26___RPL23A__RPS261354monocyte_RPS26___RPL31__RPS261354monocyte_RPS26___RPS26__TKT1354CD8T_RPS26___RPLP2__RPS261352CD8T_RPS26___RPS26__SCML11344CD8T_RPS26___ACTN1__RPS261347CD8T_RPS26___RPS16__RPS261354CD8T_RPS26___RPS26__ZFAND11354CD8T_RPS26___RPL18__RPS261354CD8T_RPS26___PRF1__RPS261354CD8T_RPS26___EIF3L__RPS261354CD8T_RPS26___EFHD2__RPS261354CD8T_RPS26___RPS26__SELL1354CD8T_RPS26___RPS19__RPS261354CD8T_RPS26___RPL7__RPS261354CD8T_RPS26___B2M__RPS261354CD8T_RPS26___APBA2__RPS261289CD8T_RPS26___EEF1G__RPS261354CD8T_RPS26___FAIM3__RPS261354CD8T_RPS26___EIF3G__RPS261354CD8T_RPS26___APOBEC3C__RPS261354CD8T_RPS26___HLA-DRA__RPS261354CD8T_RPS26___RPS26__TPT11354CD8T_RPS26___C11orf1__RPS261354CD8T_RPS26___LCP1__RPS261354CD8T_RPS26___RPS12__RPS261351CD8T_RPS26___RPL31__RPS261354CD8T_RPS26___GZMM__RPS261354CD8T_RPS26___CFL1__RPS261354CD8T_RPS26___RPS26__RSL1D11354CD8T_RPS26___RPS26__TXN1354CD8T_RPS26___CTSW__RPS261354CD8T_RPS26___CD99__RPS261354CD8T_RPS26___RPS26__RPS31354CD8T_RPS26___FLT3LG__RPS261354CD8T_RPS26___NKG7__RPS261354CD8T_RPS26___RPS26__UQCRB1354CD8T_RPS26___RPS26__YWHAZ1354CD8T_RPS26___CREM__RPS261354CD8T_RPS26___RPS26__S100A41354CD8T_RPS26___RGS10__RPS261354CD8T_RPS26___RPL22__RPS261354CD8T_RPS26___RPS26__RPS91354CD8T_RPS26___LDHB__RPS261354CD8T_RPS26___ATP1A1__RPS261354CD8T_RPS26___CXCR4__RPS261354CD8T_RPS26___RPS26__SYNE11354CD8T_RPS26___FYN__RPS261354CD8T_RPS26___RPLP0__RPS261354CD8T_RPS26___MYL6__RPS261354CD8T_RPS26___PDE3B__RPS261354CD8T_RPS26___RPL23A__RPS261354CD8T_RPS26___MT-CO1__RPS261354CD8T_RPS26___RPS26__ZEB21354CD8T_RPS26___LTB__RPS261354CD8T_RPS26___PTPN7__RPS261354CD8T_RPS26___RPL29__RPS261354CD8T_RPS26___PFN1__RPS261354CD8T_RPS26___IER2__RPS261354CD8T_RPS26___RPL8__RPS261354CD8T_RPS26___RPL37A__RPS261354CD8T_RPS26___RPS18__RPS261354CD8T_RPS26___RPS26__RPS4X1354CD8T_RPS26___CMC1__RPS261354CD8T_RPS26___RPS26__SAT11354CD8T_RPS26___RPS21__RPS261354CD8T_RPS26___GZMB__RPS261354CD8T_RPS26___AKNA__RPS261354CD8T_RPS26___HLA-DPB1__RPS261354CD8T_RPS26___RPS14__RPS261354CD8T_RPS26___NELL2__RPS261354CD8T_RPS26___EEF1D__RPS261354CD8T_RPS26___FLNA__RPS261354CD8T_RPS26___C12orf75__RPS261354CD8T_RPS26___RPL32__RPS261350CD8T_RPS26___HLA-C__RPS261354CD8T_RPS26___HLA-B__RPS261354CD8T_RPS26___METRNL__RPS261303CD8T_RPS26___PFDN5__RPS261354CD8T_RPS26___CAMK4__RPS261354CD8T_RPS26___BHLHE40__RPS261354CD8T_RPS26___IFITM2__RPS261354CD8T_RPS26___RPS26__SLA1354CD8T_RPS26___CD8B__RPS261354CD8T_RPS26___RPL19__RPS261354CD8T_RPS26___NGFRAP1__RPS261293CD8T_RPS26___RPS20__RPS261354CD8T_RPS26___RPS26__TUBA4A1354CD8T_RPS26___RPS26__UBA521354CD8T_RPS26___RPS2__RPS261354CD8T_RPS26___RCAN3__RPS261354CD8T_RPS26___RPS26__RPSA1354CD8T_RPS26___PPP2R5C__RPS261354CD8T_RPS26___RPL28__RPS261354CD8T_RPS26___RPS26__S100A61354CD8T_RPS26___DNAJB6__RPS261354CD8T_RPS26___RAP1B__RPS261354CD8T_RPS26___RPS26__SH3BGRL31354CD8T_RPS26___PABPC1__RPS261354CD8T_RPS26___FBL__RPS261354CD8T_RPS26___CCDC104__RPS261292CD8T_RPS26___CCL5__RPS261354CD8T_RPS26___GAPDH__RPS261354CD8T_RPS26___NPM1__RPS261354CD8T_RPS26___RPL41__RPS261354CD8T_RPS26___MT-CO2__RPS261354CD8T_RPS26___RPS26__TESPA11281CD8T_RPS26___RPS26__S100A101354CD8T_RPS26___PSMA7__RPS261354CD8T_RPS26___PLEK__RPS261354CD8T_RPS26___RPS26__SUB11354CD8T_RPS26___RPL27A__RPS261352CD8T_RPS26___MT-ND5__RPS261354CD8T_RPS26___KLRD1__RPS261354CD8T_RPS26___MYC__RPS261354CD8T_RPS26___RGS1__RPS261354CD8T_RPS26___KLF2__RPS261354CD8T_RPS26___RPS26__SLC25A61354CD8T_RPS26___HNRNPA2B1__RPS261354CD8T_RPS26___ARAP2__RPS261354CD8T_RPS26___HLA-A__RPS261354CD8T_RPS26___RPS26__UBB1354CD8T_RPS26___RPL17__RPS261354CD8T_RPS26___GNB2L1__RPS261354CD8T_RPS26___RPS26__UBC1354CD8T_RPS26___CD74__RPS261354CD8T_RPS26___RPS26__TGFB11354CD8T_RPS26___RPL7A__RPS261354CD8T_RPS26___RPL18A__RPS261354CD8T_RPS26___LYPD3__RPS261338CD8T_RPS26___RPS26__TMSB101354CD8T_RPS26___CLIC1__RPS261354CD8T_RPS26___C12orf57__RPS261354CD8T_RPS26___RPS26__TMEM2431354CD8T_RPS26___RPL9__RPS261353CD8T_RPS26___ID2__RPS261354CD8T_RPS26___RPL10A__RPS261354CD8T_RPS26___CCR7__RPS261354CD8T_RPS26___PPA1__RPS261354CD8T_RPS26___EEF1A1__RPS261352CD8T_RPS26___COX7C__RPS261354CD8T_RPS26___NFKBIA__RPS261354CD8T_RPS26___NDFIP1__RPS261354CD8T_RPS26___RPS15A__RPS261354CD8T_RPS26___RPL39__RPS261354CD8T_RPS26___RPL6__RPS261354CD8T_RPS26___GZMA__RPS261354CD8T_RPS26___ABHD14B__RPS261354CD8T_RPS26___RPL35__RPS261354CD8T_RPS26___RPS26__TPI11354CD8T_RPS26___RPL13__RPS261351CD8T_RPS26___GIMAP7__RPS261354CD8T_RPS26___FAU__RPS261354CD8T_RPS26___RPS13__RPS261353CD8T_RPS26___RPS26__SC5D1354CD8T_RPS26___RPLP1__RPS261354CD8T_RPS26___RPL34__RPS261353CD8T_RPS26___RIC3__RPS261354CD8T_RPS26___RPL24__RPS261354CD8T_RPS26___RPS26__SH3YL11347CD8T_RPS26___CCNG1__RPS261354CD8T_RPS26___RPS26__SRP141354CD8T_RPS26___RPS26__SPON21353CD8T_RPS26___HMGB1__RPS261354CD8T_RPS26___NOSIP__RPS261354CD8T_RPS26___RPL36__RPS261354CD8T_RPS26___RPL11__RPS261354CD8T_RPS26___RPL35A__RPS261354CD8T_RPS26___MYL12B__RPS261354CD8T_RPS26___GNLY__RPS261354CD8T_RPS26___MIR142__RPS261354CD8T_RPS26___EIF3K__RPS261354CD8T_RPS26___RPL13A__RPS261354CD8T_RPS26___RPS26__SRSF31354CD8T_RPS26___GLTSCR2__RPS261354CD8T_RPS26___PTP4A2__RPS261354CD8T_RPS26___FGFBP2__RPS261354CD8T_RPS26___RPS26__RPSAP581354CD8T_RPS26___C6orf48__RPS261354CD8T_RPS26___RPL3__RPS261354CD8T_RPS26___CCDC57__RPS261354CD8T_RPS26___ITGB2__RPS261354CD8T_RPS26___EIF2A__RPS261354CD8T_RPS26___MYO1F__RPS261354CD8T_RPS26___ARF6__RPS261354CD8T_RPS26___CD81__RPS261354CD8T_RPS26___RPS26__TMEM1231354CD8T_RPS26___ALKBH7__RPS261354CD8T_RPS26___LDHA__RPS261354CD8T_RPS26___PIK3IP1__RPS261354CD8T_RPS26___FOXP1__RPS261354CD8T_RPS26___CCL4__RPS261354CD8T_RPS26___NEAT1__RPS261354CD8T_RPS26___KLRF1__RPS261353CD8T_RPS26___BTF3__RPS261354CD8T_RPS26___RPS26__ZFAS11354CD8T_RPS26___RPL5__RPS261354CD8T_RPS26___C1orf21__RPS261354CD8T_RPS26___H3F3B__RPS261354CD8T_RPS26___CALM1__RPS261354CD8T_RPS26___HOPX__RPS261354CD8T_RPS26___CD55__RPS261354CD8T_RPS26___RPS15__RPS261354CD8T_RPS26___RPS11__RPS261354CD8T_RPS26___RPS26__RPS61352CD8T_RPS26___RPS26__SRSF21354CD8T_RPS26___EEF1B2__RPS261354CD8T_RPS26___HLA-DRB1__RPS261354CD8T_RPS26___RPS23__RPS261352CD8T_RPS26___RPL38__RPS261354CD8T_RPS26___PTMA__RPS261354CD8T_RPS26___RPL36A__RPS261354CD8T_RPS26___GNG2__RPS261354CD8T_RPS26___RPS26__TIGIT1354CD8T_RPS26___EIF3H__RPS261354CD8T_RPS26___ACTB__RPS261354CD8T_RPS26___C1QBP__RPS261354CD8T_RPS26___CD27__RPS261354CD8T_RPS26___KLRB1__RPS261354CD8T_RPS26___MAL__RPS261282CD8T_RPS26___RPL21__RPS261352CD8T_RPS26___REL__RPS261354CD8T_RPS26___ARPC2__RPS261354CD8T_RPS26___FTL__RPS261354CD8T_RPS26___RPL23__RPS261354CD8T_RPS26___RPL12__RPS261354CD8T_RPS26___CYBA__RPS261354CD8T_RPS26___RPS26__SEPT71354CD8T_RPS26___RPS26__TCF71354CD8T_RPS26___RPS26__S100A111354CD8T_RPS26___RPS10__RPS261354CD8T_RPS26___FCGR3A__RPS261354CD8T_RPS26___PSMB9__RPS261354CD8T_RPS26___LEF1__RPS261354CD8T_RPS26___PTPRC__RPS261354CD8T_RPS26___RPS26__SRSF71354CD8T_RPS26___EIF1__RPS261354CD8T_RPS26___RPS26__RPS281354CD8T_RPS26___RPS26__RPS291354CD8T_RPS26___ANXA2__RPS261354CD8T_RPS26___LGALS1__RPS261354CD8T_RPS26___RPL26__RPS261354CD8T_RPS26___DDX5__RPS261354CD8T_RPS26___NACA__RPS261354CD8T_RPS26___DOK2__RPS261354CD8T_RPS26___CRIP1__RPS261354CD8T_RPS26___CALR__RPS261354CD8T_RPS26___RPS26__TTC381353CD8T_RPS26___C1orf228__RPS261353CD8T_RPS26___DUSP2__RPS261354CD8T_RPS26___EIF4B__RPS261354CD8T_RPS26___RPL27__RPS261354CD8T_RPS26___RPS26__TRABD2A1353CD8T_RPS26___RPS26__RPS27A1352CD8T_RPS26___PASK__RPS261282CD8T_RPS26___OAZ1__RPS261354CD8T_RPS26___RPS26__RPS3A1353CD8T_RPS26___OXNAD1__RPS261354CD8T_RPS26___RPS26__TOMM71354CD8T_RPS26___RPS26__SRGN1354CD8T_RPS26___HLA-E__RPS261354CD8T_RPS26___RPS26__TYROBP1354CD8T_RPS26___RPS26__YBX31354CD8T_RPS26___CST7__RPS261354CD8T_RPS26___AIF1__RPS261354CD8T_RPS26___IL7R__RPS261354CD8T_RPS26___RHOH__RPS261354CD8T_RPS26___RPS26__RPS71354CD8T_RPS26___RPS26__RPS81354CD8T_RPS26___RPS26__SMDT11354CD8T_RPS26___DBI__RPS261354CD8T_RPS26___RPL37__RPS261354CD8T_RPS26___PRKCQ-AS1__RPS261354CD8T_RPS26___RPS26__SNHG81354CD8T_RPS26___POMP__RPS261354CD8T_RPS26___RPL30__RPS261349CD8T_RPS26___RAB8B__RPS261354CD8T_RPS26___GZMH__RPS261354CD8T_RPS26___EIF3E__RPS261354CD8T_RPS26___RPS24__RPS261354CD8T_RPS26___RPS26__RPS51354CD8T_RPS26___RPL14__RPS261354CD8T_RPS26___ABLIM1__RPS261300CD8T_RPS26___EIF4A1__RPS261354CD8T_RPS26___APOBEC3G__RPS261354CD8T_RPS26___RP11-291B21.2__RPS261300CD8T_RPS26___RPL10__RPS261354CD8T_RPS26___RPS26__RPS271354CD8T_RPS26___RPS26__SERF21354CD8T_RPS26___RPS26__TMSB4X1354CD8T_RPS26___RPS25__RPS261354CD8T_RPS26___EEF2__RPS261354CD8T_RPS26___RPL15__RPS261354CD8T_RPS26___RPL4__RPS261354CD8T_RPS26___RPS26__S1PR51291CD8T_RPS26___CD48__RPS261354CD4T_RPS26___RPS26__TMSB101354CD4T_RPS26___CHCHD2__RPS261354CD4T_RPS26___EMP3__RPS261354CD4T_RPS26___FMNL1__RPS261354CD4T_RPS26___RPS26__RPS27A1352CD4T_RPS26___LEF1__RPS261354CD4T_RPS26___HERPUD1__RPS261354CD4T_RPS26___ANXA1__RPS261354CD4T_RPS26___RPS26__SOD21354CD4T_RPS26___MYL6__RPS261354CD4T_RPS26___GNB2L1__RPS261354CD4T_RPS26___ATP1B3__RPS261354CD4T_RPS26___RPS26__SRSF51354CD4T_RPS26___RPS14__RPS261352CD4T_RPS26___RPL28__RPS261354CD4T_RPS26___EML4__RPS261354CD4T_RPS26___RPS26__SCML11354CD4T_RPS26___MCL1__RPS261354CD4T_RPS26___NOG__RPS261287CD4T_RPS26___PRMT2__RPS261354CD4T_RPS26___CD7__RPS261354CD4T_RPS26___CCR4__RPS261351CD4T_RPS26___RPS26__TMSB4X1354CD4T_RPS26___FAM129A__RPS261354CD4T_RPS26___RPS26__S100A41354CD4T_RPS26___ABLIM1__RPS261354CD4T_RPS26___RPLP2__RPS261352CD4T_RPS26___ALOX5AP__RPS261354CD4T_RPS26___RPS26__TSHZ21354CD4T_RPS26___RPS26__TIGIT1354CD4T_RPS26___ARHGDIB__RPS261354CD4T_RPS26___FAU__RPS261354CD4T_RPS26___RPS26__RPS291354CD4T_RPS26___RPS26__RPS81352CD4T_RPS26___RPS12__RPS261352CD4T_RPS26___RPS26__YBX11354CD4T_RPS26___RPL3__RPS261352CD4T_RPS26___JUND__RPS261354CD4T_RPS26___RPS26__SH3YL11354CD4T_RPS26___RPS26__RPS271354CD4T_RPS26___C12orf75__RPS261354CD4T_RPS26___CYBA__RPS261354CD4T_RPS26___RPS26__TNFRSF181354CD4T_RPS26___MYO1F__RPS261354CD4T_RPS26___RPL12__RPS261352CD4T_RPS26___PTPRC__RPS261354CD4T_RPS26___CD55__RPS261354CD4T_RPS26___RPL11__RPS261352CD4T_RPS26___CREM__RPS261354CD4T_RPS26___RPS26__VMP11354CD4T_RPS26___HMGB1__RPS261354CD4T_RPS26___RPL31__RPS261352CD4T_RPS26___C1orf228__RPS261354CD4T_RPS26___GALM__RPS261354CD4T_RPS26___RPS26__TRABD2A1354CD4T_RPS26___EIF2A__RPS261354CD4T_RPS26___RPL17__RPS261354CD4T_RPS26___RPL4__RPS261354CD4T_RPS26___ANXA5__RPS261354CD4T_RPS26___IDS__RPS261354CD4T_RPS26___ARID5B__RPS261354CD4T_RPS26___IMPDH2__RPS261354CD4T_RPS26___RPS26__TPT11354CD4T_RPS26___RPS26__ST131354CD4T_RPS26___CXCR3__RPS261351CD4T_RPS26___HLA-DRB1__RPS261354CD4T_RPS26___RPL37A__RPS261354CD4T_RPS26___RPS26__SPOCK21354CD4T_RPS26___C15orf48__RPS261295CD4T_RPS26___RPS26__SNRPF1354CD4T_RPS26___H3F3B__RPS261354CD4T_RPS26___FAM134B__RPS261354CD4T_RPS26___ISG20__RPS261354CD4T_RPS26___CFL1__RPS261354CD4T_RPS26___NUCB2__RPS261354CD4T_RPS26___ALKBH7__RPS261354CD4T_RPS26___LINC00493__RPS261354CD4T_RPS26___RPL32__RPS261352CD4T_RPS26___RPS26__VIM1354CD4T_RPS26___RPS26__SNHG81354CD4T_RPS26___CDC42__RPS261354CD4T_RPS26___RPS26__TNFRSF1B1354CD4T_RPS26___NELL2__RPS261354CD4T_RPS26___RPS10__RPS261354CD4T_RPS26___ACTN4__RPS261354CD4T_RPS26___IKZF1__RPS261354CD4T_RPS26___LDHA__RPS261354CD4T_RPS26___RPL41__RPS261352CD4T_RPS26___RPS16__RPS261354CD4T_RPS26___RP11-138A9.1__RPS261354CD4T_RPS26___NAMPT__RPS261354CD4T_RPS26___RPS26__ZFAS11354CD4T_RPS26___CALM2__RPS261354CD4T_RPS26___EIF3E__RPS261354CD4T_RPS26___MT-ND2__RPS261354CD4T_RPS26___RPL8__RPS261354CD4T_RPS26___CD52__RPS261354CD4T_RPS26___EIF3L__RPS261354CD4T_RPS26___H3F3A__RPS261354CD4T_RPS26___ADTRP__RPS261354CD4T_RPS26___MT2A__RPS261354CD4T_RPS26___RPS26__SNRPD21354CD4T_RPS26___RPS26__ZFP361354CD4T_RPS26___CXCR4__RPS261354CD4T_RPS26___DYNLL1__RPS261354CD4T_RPS26___RPS26__SAMSN11354CD4T_RPS26___LMNA__RPS261354CD4T_RPS26___MT-ND5__RPS261354CD4T_RPS26___RPS26__RPS4X1354CD4T_RPS26___RPS26__RUNX31354CD4T_RPS26___HLA-B__RPS261354CD4T_RPS26___RGS1__RPS261354CD4T_RPS26___ERGIC3__RPS261354CD4T_RPS26___RPS26__SELL1354CD4T_RPS26___RPS26__TYMP1354CD4T_RPS26___HLA-DPB1__RPS261354CD4T_RPS26___RPS15A__RPS261352CD4T_RPS26___RPS26__UQCRB1354CD4T_RPS26___RPL10__RPS261352CD4T_RPS26___RPS26__SRGN1354CD4T_RPS26___MT-ND4__RPS261354CD4T_RPS26___ABHD14B__RPS261354CD4T_RPS26___ATP5E__RPS261354CD4T_RPS26___RPS26__RPSAP581354CD4T_RPS26___RPL24__RPS261354CD4T_RPS26___RPS26__RPS31354CD4T_RPS26___MAL__RPS261354CD4T_RPS26___ATP2B4__RPS261354CD4T_RPS26___ARPC1B__RPS261354CD4T_RPS26___PDCD1__RPS261286CD4T_RPS26___RPS15__RPS261354CD4T_RPS26___RPL9__RPS261352CD4T_RPS26___RPS25__RPS261352CD4T_RPS26___RPS26__SAT11354CD4T_RPS26___HLA-E__RPS261354CD4T_RPS26___RPS26__TCF71354CD4T_RPS26___PIK3IP1__RPS261354CD4T_RPS26___LGALS3__RPS261354CD4T_RPS26___MIAT__RPS261354CD4T_RPS26___RPL26__RPS261354CD4T_RPS26___RPS26__SUB11354CD4T_RPS26___CCR7__RPS261354CD4T_RPS26___RPL14__RPS261354CD4T_RPS26___RPL18A__RPS261352CD4T_RPS26___RNF19A__RPS261354CD4T_RPS26___MT-CO3__RPS261354CD4T_RPS26___EEF1A1__RPS261352CD4T_RPS26___EIF3H__RPS261354CD4T_RPS26___FAS__RPS261354CD4T_RPS26___EEF1D__RPS261354CD4T_RPS26___RPLP0__RPS261354CD4T_RPS26___GYPC__RPS261354CD4T_RPS26___RPL30__RPS261354CD4T_RPS26___RPL34__RPS261352CD4T_RPS26___RPS26__TPM41354CD4T_RPS26___LDHB__RPS261354CD4T_RPS26___AIF1__RPS261354CD4T_RPS26___RPL35A__RPS261354CD4T_RPS26___ITGB1__RPS261354CD4T_RPS26___RPS26__TXN1354CD4T_RPS26___FTH1__RPS261354CD4T_RPS26___RPL13__RPS261352CD4T_RPS26___COX7C__RPS261354CD4T_RPS26___HLA-A__RPS261354CD4T_RPS26___LCP1__RPS261354CD4T_RPS26___RPS26__UBB1354CD4T_RPS26___RPL29__RPS261354CD4T_RPS26___ARPC2__RPS261354CD4T_RPS26___RPS26__TMEM1231354CD4T_RPS26___PPP1R15A__RPS261354CD4T_RPS26___IL32__RPS261354CD4T_RPS26___RPL21__RPS261352CD4T_RPS26___RPL37__RPS261354CD4T_RPS26___RPS26__TOMM201354CD4T_RPS26___EIF3F__RPS261354CD4T_RPS26___ERP29__RPS261354CD4T_RPS26___KLF6__RPS261354CD4T_RPS26___GIMAP1__RPS261354CD4T_RPS26___RPS26__TGFBR21354CD4T_RPS26___RNF213__RPS261354CD4T_RPS26___C19orf53__RPS261354CD4T_RPS26___RPS26__SERF21354CD4T_RPS26___RPL23__RPS261354CD4T_RPS26___MIR4435-1HG__RPS261354CD4T_RPS26___RPL6__RPS261354CD4T_RPS26___MZT2B__RPS261354CD4T_RPS26___AK5__RPS261354CD4T_RPS26___NDFIP1__RPS261354CD4T_RPS26___HNRNPA1__RPS261354CD4T_RPS26___RPL7A__RPS261354CD4T_RPS26___RPS26__SRSF71354CD4T_RPS26___RPL22__RPS261354CD4T_RPS26___C1QBP__RPS261354CD4T_RPS26___CXCR6__RPS261332CD4T_RPS26___ARPC3__RPS261354CD4T_RPS26___MRPS21__RPS261354CD4T_RPS26___CD48__RPS261354CD4T_RPS26___PPA1__RPS261354CD4T_RPS26___EBPL__RPS261354CD4T_RPS26___FTL__RPS261354CD4T_RPS26___RPS26__UXT1354CD4T_RPS26___LSM5__RPS261354CD4T_RPS26___KMT2E__RPS261354CD4T_RPS26___MT-CO2__RPS261354CD4T_RPS26___RPS26__TAGLN21354CD4T_RPS26___CDCA7__RPS261350CD4T_RPS26___EEF2__RPS261354CD4T_RPS26___EPB41L4A-AS1__RPS261354CD4T_RPS26___FLNA__RPS261354CD4T_RPS26___RPS26__TATDN11354CD4T_RPS26___HLA-DPA1__RPS261354CD4T_RPS26___C12orf57__RPS261354CD4T_RPS26___RPL19__RPS261352CD4T_RPS26___RPS21__RPS261354CD4T_RPS26___BTG1__RPS261354CD4T_RPS26___C8orf59__RPS261354CD4T_RPS26___CD58__RPS261354CD4T_RPS26___MT-CO1__RPS261354CD4T_RPS26___RPLP1__RPS261352CD4T_RPS26___AKAP13__RPS261354CD4T_RPS26___EIF4B__RPS261354CD4T_RPS26___DDX5__RPS261354CD4T_RPS26___RPS24__RPS261354CD4T_RPS26___ANXA2R__RPS261354CD4T_RPS26___IL8__RPS261354CD4T_RPS26___LINC00152__RPS261354CD4T_RPS26___FOXP3__RPS261332CD4T_RPS26___RGS10__RPS261354CD4T_RPS26___B2M__RPS261354CD4T_RPS26___KLRB1__RPS261354CD4T_RPS26___RPL36A__RPS261354CD4T_RPS26___RPL35__RPS261354CD4T_RPS26___DAP3__RPS261354CD4T_RPS26___C6orf48__RPS261354CD4T_RPS26___RPS26__SVIP1354CD4T_RPS26___HLA-C__RPS261354CD4T_RPS26___RPL10A__RPS261354CD4T_RPS26___RPL23A__RPS261354CD4T_RPS26___PRKCQ-AS1__RPS261354CD4T_RPS26___GIMAP7__RPS261354CD4T_RPS26___ENTPD1__RPS261301CD4T_RPS26___DUSP4__RPS261354CD4T_RPS26___RPS26__RPS71354CD4T_RPS26___RPS26__YWHAB1354CD4T_RPS26___CCR6__RPS261354CD4T_RPS26___MT-ND1__RPS261354CD4T_RPS26___PFN1__RPS261354CD4T_RPS26___ADAM19__RPS261354CD4T_RPS26___CLDND1__RPS261354CD4T_RPS26___PFDN5__RPS261354CD4T_RPS26___FBL__RPS261354CD4T_RPS26___CD37__RPS261354CD4T_RPS26___APEX1__RPS261354CD4T_RPS26___CD74__RPS261354CD4T_RPS26___RPS20__RPS261354CD4T_RPS26___LETMD1__RPS261354CD4T_RPS26___GK__RPS261299CD4T_RPS26___NOSIP__RPS261354CD4T_RPS26___AHNAK__RPS261354CD4T_RPS26___RPS26__SLC7A51354CD4T_RPS26___GLTSCR2__RPS261354CD4T_RPS26___RPL7__RPS261352CD4T_RPS26___HLA-DRA__RPS261354CD4T_RPS26___RPS26__RPS3A1352CD4T_RPS26___RPS26__S100A61354CD4T_RPS26___RPS26__RPS51354CD4T_RPS26___MT-ATP6__RPS261354CD4T_RPS26___RPS26__S100A111354CD4T_RPS26___CCL5__RPS261354CD4T_RPS26___RILPL2__RPS261354CD4T_RPS26___RPS26__SSR21354CD4T_RPS26___RPS26__TNFRSF41354CD4T_RPS26___RPS26__UBC1354CD4T_RPS26___RPS26__S100A101354CD4T_RPS26___MAF__RPS261354CD4T_RPS26___NACA__RPS261354CD4T_RPS26___COMMD6__RPS261354CD4T_RPS26___RPS11__RPS261354CD4T_RPS26___NSMCE1__RPS261354CD4T_RPS26___RPS26__TGFB11354CD4T_RPS26___PRDX1__RPS261354CD4T_RPS26___RPS26__RPS91354CD4T_RPS26___FAM46C__RPS261354CD4T_RPS26___RPL39__RPS261352CD4T_RPS26___RPS23__RPS261352CD4T_RPS26___RPS13__RPS261354CD4T_RPS26___RPS18__RPS261352CD4T_RPS26___RORA__RPS261354CD4T_RPS26___EIF1__RPS261354CD4T_RPS26___RPS2__RPS261354CD4T_RPS26___CD44__RPS261354CD4T_RPS26___RPS26__RPS4Y11354CD4T_RPS26___LGALS1__RPS261354CD4T_RPS26___COX7A2L__RPS261354CD4T_RPS26___RPL15__RPS261354CD4T_RPS26___HADHA__RPS261354CD4T_RPS26___RPS26__SATB11354CD4T_RPS26___RPS26__UGP21354CD4T_RPS26___RPS26__SBDS1354CD4T_RPS26___RPS26__SYNE21354CD4T_RPS26___RPS26__TMA71354CD4T_RPS26___NEAT1__RPS261354CD4T_RPS26___NR3C1__RPS261354CD4T_RPS26___RPS26__RPS281354CD4T_RPS26___CCT8__RPS261354CD4T_RPS26___RPS26__TNFAIP31354CD4T_RPS26___RPS26__SH2D2A1289CD4T_RPS26___NPM1__RPS261354CD4T_RPS26___CLNS1A__RPS261354CD4T_RPS26___RPS26__RSL1D11354CD4T_RPS26___ATP6V0E1__RPS261354CD4T_RPS26___RPL27A__RPS261354CD4T_RPS26___DUSP2__RPS261354CD4T_RPS26___RPL13A__RPS261352CD4T_RPS26___RPS26__ZFP36L21354CD4T_RPS26___EIF3D__RPS261354CD4T_RPS26___RP11-138A9.2__RPS261354CD4T_RPS26___RPL27__RPS261354CD4T_RPS26___APRT__RPS261354CD4T_RPS26___FYN__RPS261354CD4T_RPS26___ANP32B__RPS261354CD4T_RPS26___PPP2R5C__RPS261354CD4T_RPS26___EIF3M__RPS261354CD4T_RPS26___RPL5__RPS261354CD4T_RPS26___CMPK1__RPS261354CD4T_RPS26___RPS26__YWHAZ1354CD4T_RPS26___GIMAP2__RPS261354CD4T_RPS26___COTL1__RPS261354CD4T_RPS26___EIF2S3__RPS261354CD4T_RPS26___HSP90AA1__RPS261354CD4T_RPS26___MT-CYB__RPS261354CD4T_RPS26___HSPB1__RPS261354CD4T_RPS26___CRIP1__RPS261354CD4T_RPS26___RPS26__SMDT11354CD4T_RPS26___RPL18__RPS261354CD4T_RPS26___RPS26__TXK1354CD4T_RPS26___RPL36__RPS261354CD4T_RPS26___GAPDH__RPS261354CD4T_RPS26___ANXA2__RPS261354CD4T_RPS26___CLIC1__RPS261354CD4T_RPS26___CD99__RPS261354CD4T_RPS26___LYRM4__RPS261354CD4T_RPS26___EEF1B2__RPS261354CD4T_RPS26___ACTB__RPS261354CD4T_RPS26___RPS19__RPS261354CD4T_RPS26___EZR__RPS261354CD4T_RPS26___ATP5A1__RPS261354CD4T_RPS26___ATP5O__RPS261354CD4T_RPS26___EIF3K__RPS261354CD4T_RPS26___RPL38__RPS261354CD4T_RPS26___RPS26__SUCLG21354CD4T_RPS26___CD3E__RPS261354CD4T_RPS26___RPS26__RPSA1354CD4T_RPS26___NSA2__RPS261354CD4T_RPS26___CST7__RPS261354CD4T_RPS26___HIGD2A__RPS261354CD4T_RPS26___EEF1G__RPS261354CD4T_RPS26___IGBP1__RPS261354CD4T_RPS26___OAZ1__RPS261354CD4T_RPS26___MYH9__RPS261354CD4T_RPS26___RPS26__UBA521354CD4T_RPS26___ATP2B1__RPS261354CD4T_RPS26___RPS26__RPS61352CD4T_RPS26___RBM39__RPS261354CD4T_RPS26___CCNG1__RPS261354CD4T_RPS26___RPS26__SH3BGRL31354CD4T_RPS26___COX4I1__RPS261354CD4T_RPS26___PMAIP1__RPS261354CD4T_RPS26___RPS26__TOMM71354CD4T_RPS26___RPS26__SNHG71354CD4T_RPS26___FHIT__RPS261354CD4T_RPS26___RPS26__SRSF21354" + ] + } + ], + "source": [ + "for( i in unique(output_all_effect$ident)){\n", + " \n", + " D1 = output_all_effect[output_all_effect$ident == i,]\n", + " cat(i)\n", + " cat(\"\")\n", + " cat(nrow(D1))\n", + " flush.console()\n", + "\n", + " \n", + " ## Prepare input vectors\n", + "\n", + " # Beta\n", + " beta_eqtl = D1$MetaBeta\n", + " names(beta_eqtl) = D1$SNP\n", + "\n", + " # Varbeta \n", + " varbeta_eqtl = (D1$MetaSE)^2\n", + " names(varbeta_eqtl) = D1$SNP\n", + "\n", + " # MAF - not needed\n", + " #MAF_eqtl = D1$SNPEffectAlleleFreq\n", + " #names(MAF_eqtl) = D1$SNP\n", + "\n", + " # Position \n", + " position_eqtl = D1$SNPPos\n", + " names(position_eqtl) = D1$SNP\n", + "\n", + " # SNP\n", + " snp_eqtl = D1$SNP\n", + " names(snp_eqtl) = D1$SNP\n", + "\n", + " # Pvalues\n", + " pvalues_eqtl = D1$MetaP\n", + " names(pvalues_eqtl) = D1$SNP\n", + " \n", + " \n", + " ### Format as input list for colocalization\n", + "\n", + " D1_list = list(beta = beta_eqtl, # regression coefficient\n", + " varbeta = varbeta_eqtl, # variance/ standard deviation of beta?\n", + " #N = sample_size_eqtl, # number of samples in dataset 1\n", + " sdY =1, # population standard deviation of the trait, if quantitative trait\n", + " # if unknown will be approximated based on beta, varbeta, N, MAF\n", + " # can be set to 1, if the trait was standardized to have variance 1\n", + " type = 'quant', # quant or cc to denote quantitative or case-control\n", + " #MAF = MAF_eqtl, # minor allele frequency of the variants\n", + " # LD = needed?\n", + " snp = snp_eqtl, # character vector of SNP ids\n", + " position = position_eqtl,\n", + " pvalues = pvalues_eqtl\n", + " )\n", + " data_input_coeqtl[[i]] = D1_list\n", + " }\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "id": "52a382a8-e828-4fac-b638-d2c1589d0ebf", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "List of 7\n", + " $ beta : Named num [1:2990] 0.0798 0.0956 0.0246 -0.1784 0.057 ...\n", + " ..- attr(*, \"names\")= chr [1:2990] \"rs1001116_C/T\" \"rs1001117_G/A\" \"rs1001760_A/G\" \"rs1004200_A/G\" ...\n", + " $ varbeta : Named num [1:2990] 0.0149 0.0143 0.0137 0.0144 0.0337 ...\n", + " ..- attr(*, \"names\")= chr [1:2990] \"rs1001116_C/T\" \"rs1001117_G/A\" \"rs1001760_A/G\" \"rs1004200_A/G\" ...\n", + " $ sdY : num 1\n", + " $ type : chr \"quant\"\n", + " $ snp : Named chr [1:2990] \"rs1001116_C/T\" \"rs1001117_G/A\" \"rs1001760_A/G\" \"rs1004200_A/G\" ...\n", + " ..- attr(*, \"names\")= chr [1:2990] \"rs1001116_C/T\" \"rs1001117_G/A\" \"rs1001760_A/G\" \"rs1004200_A/G\" ...\n", + " $ position: Named int [1:2990] 151743278 151744884 151150662 149826188 151677209 150656640 150846560 150846633 149819792 150814835 ...\n", + " ..- attr(*, \"names\")= chr [1:2990] \"rs1001116_C/T\" \"rs1001117_G/A\" \"rs1001760_A/G\" \"rs1004200_A/G\" ...\n", + " $ pvalues : Named num [1:2990] 0.513 0.425 0.834 0.137 0.756 ...\n", + " ..- attr(*, \"names\")= chr [1:2990] \"rs1001116_C/T\" \"rs1001117_G/A\" \"rs1001760_A/G\" \"rs1004200_A/G\" ...\n" + ] + } + ], + "source": [ + "str(data_input_coeqtl[[1]])" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "id": "70b07df3-d05d-4dbc-987c-ce7d4dbd27f6", + "metadata": {}, + "outputs": [], + "source": [ + "## Check validity of input data" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "id": "1d9b4495-f3cb-4f58-9089-ccd8b8413b79", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_TMEM176A___CAPG__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3126e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_TMEM176A___PTAFR__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.51e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_TMEM176A___MNDA__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.5916e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_TMEM176A___RNASE6__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.0913e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_TMEM176A___TMEM176A__TSPO\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.4308e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_TMEM176A___TMEM176A__VMO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.5549e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_TMEM176A___S100A9__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.5296e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_TMEM176A___QPCT__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.8504e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_TMEM176A___BLVRB__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1205e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_TMEM176A___LYZ__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.2197e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_TMEM176A___CLEC4A__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.5652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL36__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.9771e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL5__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.4351e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL7__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.542e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL32__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.466e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___EEF1A1__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.2654e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL38__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.3136e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL35A__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.5856e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL3__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6861e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPS4X__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.7338e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPS3A__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.1192e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPS15A__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2841e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPS8__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.1299e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPS25__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.6863e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPS12__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.439e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___NKG7__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.6053e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___B2M__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.4346e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL15__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.4898e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___PFN1__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.8685e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPS28__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.797e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL13A__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8379e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___GZMH__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.4648e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___LTB__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.146e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL39__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.3898e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPS14__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.5694e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL13__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.0258e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPS23__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7211e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPS29__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.8491e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL22__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.0306e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL9__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.5234e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL12__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.624e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL18__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0996e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 0.00027483\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___MAL__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.2271e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___PRF1__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0438e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPS13__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.1839e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPS6__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.714e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPS18__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.7346e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL21__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.1662e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___SMDT1__TMSB4X\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4439e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL14__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.6327e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL11__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.9188e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL34__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.8118e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL10A__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.5183e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_SMDT1___RPL30__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.5944e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPL3__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.3589e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPS25__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5487e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPL13A__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.6882e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPS13__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.9433e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPS4X__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.8205e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPS18__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.7853e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPL31__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.2754e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPS15__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.0919e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___ACTB__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2599e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPL36__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.2591e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPL35A__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.4759e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPS12__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.2585e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPL11__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.9237e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPL14__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.1292e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPL10__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8366e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPS3A__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.934e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 0.0032661\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___CD48__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3621e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPL7__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0745e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_SMDT1___RPS27__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3074e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_HLA-DQA2___CST3__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6842e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.4402e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.6671e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_HLA-DQA2___CLIC3__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6852e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_HLA-DQA2___HLA-DQA2__PTPRCAP\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.3026e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_HLA-DQA2___CDKN2D__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.5969e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_HLA-DQA2___HLA-DQA2__YBX1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.0931e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.1257e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.2498e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_HLA-DQA2___HLA-DQA2__MAP1A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2736e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_HLA-DQA2___FAM129C__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.2114e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_HLA-DQA2___HLA-DQA2__MT-CO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1338e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.3171e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___CST3__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.568e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.4835e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___CD74__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.6066e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS6\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.5222e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6723e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7523e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___HLA-DMA__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.6043e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS23\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.9636e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1092e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.606e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___EEF1A1__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.7871e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2401e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL10\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.6513e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___HLA-DMB__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.0082e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRB1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.3211e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6324e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.7109e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RNASET2___HLA-DRB5__RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.115e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_HLA-DQA2___CCL5__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.0099e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_HLA-DQA2___CD74__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.8036e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPS8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.763e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__NKG7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.6836e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPL34\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.4533e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.0477e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_HLA-DQA2___CMC1__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.9636e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS14\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.946e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A6\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.3044e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS28\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.2797e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1617e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.4701e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___CD52__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.1462e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS13\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.9209e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A10\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.3433e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__SH3BGRL3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2688e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___EEF1B2__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.6729e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL13\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.0795e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___B2M__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.3005e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___GAPDH__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.6996e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL32\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.7203e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.6142e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A4\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2579e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RNASET2___ITGB1__RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.7852e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RNASET2___CRIP1__RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.3182e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RNASET2___B2M__RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5524e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RNASET2___ALOX5AP__RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_RPS26___RPS26__RPS8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.0253e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_RPS26___RPL13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.4874e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"DC_RPS26___RPL21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.6982e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL11__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1593e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS26__UBE2J1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.0878e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.8367e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS12__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.8633e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1042e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS26__RPS28\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.1644e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL30__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0169e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL39__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.0557e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1352e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL32__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.9479e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL10__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3267e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.2349e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPLP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.3875e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL26__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7757e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS26__RPS6\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.969e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___EEF1A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.2492e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS25__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2778e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS26__RPS29\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0623e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS26__RPS3A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.9434e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS26__RPS5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.1792e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL41__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.2827e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL34__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.6536e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.1408e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.791e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1436e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1123e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL35A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.4516e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2489e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.4825e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS26__RPS9\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.1995e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1034e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS26__RPS27\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0967e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS26__RPS27A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.0103e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPL23A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1639e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"B_RPS26___RPS10__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.4055e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL39__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL18A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__UBA52\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.9873e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL36__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.2665e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___GNB2L1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1076e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL35A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL13A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL28__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.8252e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL12__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.4178e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__RPS27A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS11__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.8421e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPLP0__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.325e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__RPS7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL35__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.1007e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___ARPC2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.0471e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL8__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1883e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL23A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL32__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__RPS4X\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__SPON2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7055e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL27__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.419e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___EEF1A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL10__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS15A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL7A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.6714e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__TOMM7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6965e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL37__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.234e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___PRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1991e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL26__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__RPS3A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL30__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__RPS27\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS16__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.7789e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPLP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS10__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2807e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__RPS28\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS12__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS24__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__RPS3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___FAU__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8904e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS14__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___GLTSCR2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.1598e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS25__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.4326e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL24__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6754e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.0968e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2563e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL14__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL10A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.7373e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL11__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL34__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL15__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.917e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL38__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2433e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___GPR183__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.0676e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL41__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.0058e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL31__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6141e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__TPT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.0455e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPLP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5827e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.9702e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___GZMB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4099e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___EEF1D__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5173e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL37A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.0993e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS15__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0395e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__RPS29\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___KLRC1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.9075e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL17__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.4275e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___B2M__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.3814e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__RPS9\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___MALAT1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.9089e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___ACTB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.9089e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__RPS6\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___HLA-B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.8351e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__RPS8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4043e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL29__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0076e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___FGFBP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.7026e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___EEF1B2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.7114e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__RPSA\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.8859e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL36A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8405e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS20__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.0908e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__ZEB2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.574e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS26__RPS5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.02e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPS19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___NACA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.2336e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL6__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"NK_RPS26___RPL27A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___NRGN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.7437e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___EEF2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.4621e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___NACA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.7611e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___EIF3L__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.3485e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS15A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL35A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.9696e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL37A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___EEF1B2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3916e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL30__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL26__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__VCAN\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.0193e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__UQCRH\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.9605e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__SLC7A7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.2351e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___EPB41L3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.859e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__S100A11\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.3529e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL32__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___HNRNPA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.4422e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___QARS__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1543e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___HLA-DPB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8385e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS12__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL24__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.2547e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__RPS9\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL11__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL35__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8781e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__TPT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___CSTA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4315e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS25__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.3141e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___EIF3K__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.9301e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__RPS27\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___EIF3H__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2896e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___ERP29__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.5663e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__TNFAIP2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2465e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__VIM\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.0947e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL27A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___EEF1A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL37__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL8__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.8144e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL7A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__RPS27A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.0862e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL27__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.5874e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___HLA-DRA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.7195e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL15__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__RPS8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__SLC25A6\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__RPS29\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1687e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL12__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__RPSA\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1173e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL22__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.5779e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL39__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__RPS28\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___FAU__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5435e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL36__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5515e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___HLA-DPA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.4467e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__RPS3A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS20__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.7495e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___PABPC1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.3725e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___CST3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.7382e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___EMP3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.2616e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___GNLY__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.0351e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS24__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___EIF3M__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.7748e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.4586e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___AP1S2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1328e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPLP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__SEC11A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3851e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL36A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.5431e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPLP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__RPS7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL28__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.3305e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS15__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.5394e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL41__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___ATP5G2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1345e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.3936e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__SLC25A5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.8025e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL18A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__RPS5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.2302e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPLP0__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL10__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS10__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.933e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___EVI2B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.886e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___CD48__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.3518e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___EIF3E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2162e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___GAPDH__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1023e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__RPS4X\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___LGALS2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.912e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___CYBA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.4619e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL29__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL6__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS16__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2402e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___GPX1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.2329e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___LTA4H__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RNASE6__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2068e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___FTH1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5593e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___BTF3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.1949e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___DRAM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.1829e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___IL18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.6926e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___ATP5A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.4193e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL38__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.4709e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__RPS3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL13A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.7467e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__RPS6\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS11__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___IPO7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2873e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___GNB2L1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL34__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___CXCR4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2966e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__UBA52\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL14__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.4809e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___CRTAP__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5648e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___H3F3B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.9122e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL10A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___CD74__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.9394e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS14__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___C6orf48__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.443e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___GPR183__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.3884e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL23A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPL31__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"monocyte_RPS26___RPS26__TKT\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6203e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPLP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SCML1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.512e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___ACTN1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8558e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS16__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__ZFAND1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4561e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.9631e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EIF3L__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7485e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EFHD2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.149e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SELL\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___B2M__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___APBA2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.3058e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EEF1G__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.3542e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___FAIM3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.465e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EIF3G__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.7746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___APOBEC3C__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.1694e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___HLA-DRA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.548e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TPT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___C11orf1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.8471e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___LCP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.1464e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS12__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL31__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___GZMM__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.8914e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CFL1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3855e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RSL1D1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8408e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TXN\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1256e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CTSW__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6044e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CD99__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2167e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RPS3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___FLT3LG__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5912e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___NKG7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.837e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__UQCRB\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2818e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__YWHAZ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.3964e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CREM__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3111e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__S100A4\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1381e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RGS10__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5768e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL22__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RPS9\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___LDHB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___ATP1A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.0977e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CXCR4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.4403e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SYNE1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.8506e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___FYN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.137e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPLP0__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.4612e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___MYL6__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PDE3B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.099e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL23A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___MT-CO1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.2099e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__ZEB2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2449e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___LTB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PTPN7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.0346e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL29__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PFN1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___IER2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1556e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL8__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.805e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL37A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RPS4X\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CMC1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.6291e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SAT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.4219e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___GZMB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6129e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___AKNA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.4233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___HLA-DPB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.9277e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS14__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___NELL2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EEF1D__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.5801e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___FLNA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.2951e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___C12orf75__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.42e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL32__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___HLA-C__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___HLA-B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___METRNL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4496e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PFDN5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.0295e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CAMK4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.9693e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___BHLHE40__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1054e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___IFITM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.2604e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SLA\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1484e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CD8B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.1948e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___NGFRAP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2462e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS20__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TUBA4A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8361e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__UBA52\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.8001e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RCAN3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.9651e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RPSA\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PPP2R5C__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3399e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL28__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__S100A6\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___DNAJB6__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.4144e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RAP1B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.077e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SH3BGRL3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.5836e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PABPC1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.231e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___FBL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.8077e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CCDC104__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.9652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CCL5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___GAPDH__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___NPM1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.8054e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL41__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___MT-CO2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.5892e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TESPA1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.8387e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__S100A10\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.4291e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PSMA7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4155e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PLEK__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.7657e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SUB1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7951e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL27A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___MT-ND5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.4281e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___KLRD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.4604e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___MYC__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.6317e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RGS1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.062e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___KLF2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.391e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SLC25A6\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3651e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___HNRNPA2B1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___ARAP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3907e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___HLA-A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__UBB\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2924e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL17__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.1082e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___GNB2L1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__UBC\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.7981e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CD74__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.0411e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TGFB1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.839e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL7A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL18A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___LYPD3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.2696e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TMSB10\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7568e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CLIC1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.5234e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___C12orf57__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7538e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TMEM243\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1526e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___ID2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.0728e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL10A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CCR7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PPA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.4071e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EEF1A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___COX7C__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.5433e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___NFKBIA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.944e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___NDFIP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.6595e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS15A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL39__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL6__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___GZMA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.4252e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___ABHD14B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.2272e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL35__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TPI1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2111e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___GIMAP7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1009e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___FAU__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SC5D\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.7243e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPLP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL34__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RIC3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.8358e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL24__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SH3YL1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.8286e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CCNG1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.9814e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SRP14\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.906e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SPON2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0298e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___HMGB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.7036e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___NOSIP__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.5202e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL36__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL11__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL35A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___MYL12B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.0233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___GNLY__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.8365e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___MIR142__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1648e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EIF3K__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.5308e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL13A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SRSF3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7372e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___GLTSCR2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.5262e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PTP4A2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.9215e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___FGFBP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.9666e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RPSAP58\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1243e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___C6orf48__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CCDC57__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.9666e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___ITGB2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.7619e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EIF2A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8915e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___MYO1F__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.4185e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___ARF6__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.5214e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CD81__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.3139e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TMEM123\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1846e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___ALKBH7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0315e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___LDHA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2712e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PIK3IP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.151e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___FOXP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.1991e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CCL4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.654e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___NEAT1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2048e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___KLRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.9856e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___BTF3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5042e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__ZFAS1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.4349e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___C1orf21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1023e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___H3F3B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CALM1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1052e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___HOPX__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.7747e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CD55__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.4084e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS15__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS11__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7845e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RPS6\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SRSF2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.2025e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EEF1B2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___HLA-DRB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.507e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL38__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PTMA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.1327e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL36A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___GNG2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2555e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TIGIT\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1444e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EIF3H__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.145e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___ACTB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___C1QBP__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.9922e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CD27__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.689e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___KLRB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.1218e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___MAL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___REL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.691e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___ARPC2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___FTL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.7677e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL12__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CYBA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.133e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SEPT7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.6793e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TCF7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.966e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__S100A11\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.0148e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS10__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___FCGR3A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4314e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PSMB9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.645e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___LEF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PTPRC__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SRSF7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.3453e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EIF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.6448e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RPS28\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RPS29\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___ANXA2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.0625e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___LGALS1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.9042e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL26__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___DDX5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5519e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___NACA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___DOK2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.062e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CRIP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.4254e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CALR__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.9449e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TTC38\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1223e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___C1orf228__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.1403e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___DUSP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.7349e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EIF4B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL27__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TRABD2A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0288e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RPS27A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PASK__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.5327e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___OAZ1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RPS3A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___OXNAD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1359e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TOMM7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4281e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SRGN\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___HLA-E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.1541e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TYROBP\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.981e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__YBX3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1331e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CST7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.025e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___AIF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.1062e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___IL7R__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.4995e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RHOH__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.1452e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RPS7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RPS8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.8276e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___DBI__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0352e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL37__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___PRKCQ-AS1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SNHG8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.5389e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___POMP__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.9872e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL30__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RAB8B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.0817e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___GZMH__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.7802e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EIF3E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1259e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS24__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RPS5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL14__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___ABLIM1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.6131e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EIF4A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8946e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___APOBEC3G__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.2129e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RP11-291B21.2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.409e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL10__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__RPS27\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__SERF2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__TMSB4X\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS25__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___EEF2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3126e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL15__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPL4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___RPS26__S1PR5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1943e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD8T_RPS26___CD48__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.8536e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TMSB10\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7937e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CHCHD2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.3173e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EMP3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2218e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___FMNL1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.7187e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPS27A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___LEF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3125e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HERPUD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.267e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ANXA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.2192e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SOD2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5135e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MYL6__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___GNB2L1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ATP1B3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0508e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SRSF5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.1719e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS14__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL28__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EML4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.5207e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SCML1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7087e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MCL1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.4819e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___NOG__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.7003e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___PRMT2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.2646e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CD7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.9486e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CCR4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.5146e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TMSB4X\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___FAM129A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.906e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__S100A4\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ABLIM1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2936e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPLP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ALOX5AP__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.3504e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TSHZ2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.9454e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TIGIT\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.3573e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ARHGDIB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.7204e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___FAU__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPS29\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPS8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS12__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__YBX1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1701e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___JUND__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.279e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SH3YL1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.4835e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPS27\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___C12orf75__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7218e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CYBA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TNFRSF18\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.0096e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MYO1F__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6857e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL12__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___PTPRC__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CD55__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.5944e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL11__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CREM__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.5722e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__VMP1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.6668e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HMGB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3581e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL31__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___C1orf228__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.163e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___GALM__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0575e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TRABD2A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.2691e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EIF2A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.6052e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL17__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ANXA5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7131e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___IDS__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.055e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ARID5B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6325e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___IMPDH2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.024e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TPT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__ST13\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0809e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CXCR3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.5567e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HLA-DRB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.9158e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL37A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SPOCK2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.8428e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___C15orf48__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.226e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SNRPF\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.1448e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___H3F3B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___FAM134B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.6427e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ISG20__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.9172e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CFL1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___NUCB2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1362e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ALKBH7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.1794e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___LINC00493__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.1855e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL32__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__VIM\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.4615e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SNHG8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CDC42__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5049e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TNFRSF1B\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.2924e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___NELL2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.1011e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS10__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ACTN4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7123e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___IKZF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.2081e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___LDHA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2503e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL41__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS16__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RP11-138A9.1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2073e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___NAMPT__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8087e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__ZFAS1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0064e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CALM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.9897e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EIF3E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MT-ND2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.8901e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL8__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CD52__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.4538e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EIF3L__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___H3F3A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.2196e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ADTRP__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MT2A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1117e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SNRPD2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8359e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__ZFP36\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.5316e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CXCR4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.624e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___DYNLL1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.1282e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SAMSN1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.9213e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___LMNA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MT-ND5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.4915e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPS4X\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RUNX3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.355e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HLA-B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RGS1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.3102e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ERGIC3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.423e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SELL\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TYMP\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.9655e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HLA-DPB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.687e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS15A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__UQCRB\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.334e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL10__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SRGN\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MT-ND4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.3822e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ABHD14B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.6804e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ATP5E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1607e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPSAP58\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL24__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPS3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MAL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ATP2B4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.7512e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ARPC1B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.29e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___PDCD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.2067e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS15__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS25__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SAT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HLA-E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TCF7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.7474e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___PIK3IP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.9797e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___LGALS3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.3924e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MIAT__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7934e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL26__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SUB1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CCR7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.3646e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL14__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL18A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RNF19A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5478e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MT-CO3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.7912e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EEF1A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EIF3H__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___FAS__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.7693e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EEF1D__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPLP0__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___GYPC__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.9635e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL30__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL34__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TPM4\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1269e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___LDHB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___AIF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5405e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL35A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ITGB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.3293e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TXN\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.785e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___FTH1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.4687e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___COX7C__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.9501e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HLA-A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___LCP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.1393e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__UBB\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4426e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL29__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ARPC2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TMEM123\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.8648e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___PPP1R15A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.4985e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___IL32__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.6007e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL37__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TOMM20\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.6235e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EIF3F__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.8529e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ERP29__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4196e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___KLF6__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.5548e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___GIMAP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.9335e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TGFBR2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3747e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RNF213__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6662e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___C19orf53__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.3495e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SERF2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MIR4435-1HG__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL6__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MZT2B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.218e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___AK5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.6605e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___NDFIP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.5858e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HNRNPA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL7A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SRSF7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.3122e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL22__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___C1QBP__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.4357e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CXCR6__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.4185e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ARPC3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.0449e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MRPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CD48__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___PPA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.7452e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EBPL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.7052e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___FTL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.3893e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__UXT\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___LSM5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2201e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___KMT2E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6569e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MT-CO2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TAGLN2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.2808e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CDCA7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4164e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EEF2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.345e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EPB41L4A-AS1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1501e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___FLNA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TATDN1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.1792e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HLA-DPA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.443e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___C12orf57__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___BTG1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.8696e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___C8orf59__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.964e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CD58__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.7975e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MT-CO1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPLP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.5612e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___AKAP13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.7772e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EIF4B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.4604e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___DDX5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.6237e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS24__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.487e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ANXA2R__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8144e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___IL8__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.918e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___LINC00152__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___FOXP3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.8638e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RGS10__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___B2M__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___KLRB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2737e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL36A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL35__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___DAP3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4062e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___C6orf48__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SVIP\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.6639e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HLA-C__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL10A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL23A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___PRKCQ-AS1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.5814e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___GIMAP7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.4524e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ENTPD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.3605e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___DUSP4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPS7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__YWHAB\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.391e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CCR6__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.7975e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MT-ND1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2726e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___PFN1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ADAM19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2414e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CLDND1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.189e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___PFDN5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.2756e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___FBL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CD37__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.5931e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___APEX1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.8871e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CD74__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS20__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___LETMD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.1067e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___GK__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1383e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___NOSIP__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1729e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___AHNAK__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.3968e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SLC7A5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.2535e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___GLTSCR2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HLA-DRA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6925e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPS3A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__S100A6\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPS5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MT-ATP6__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.8034e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__S100A11\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CCL5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.9659e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RILPL2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.7165e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SSR2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.3313e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TNFRSF4\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.2807e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__UBC\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__S100A10\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MAF__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.5193e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___NACA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___COMMD6__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.891e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS11__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.8659e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___NSMCE1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.6391e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TGFB1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.659e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___PRDX1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.5827e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPS9\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___FAM46C__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.5817e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL39__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RORA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.9068e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EIF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.9571e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CD44__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.0649e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPS4Y1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.3618e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___LGALS1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.5113e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___COX7A2L__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.6756e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL15__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HADHA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.8011e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SATB1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.8858e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__UGP2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.6699e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SBDS\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4438e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SYNE2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.4397e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TMA7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1543e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___NEAT1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___NR3C1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.8583e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPS28\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CCT8__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.65e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TNFAIP3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.263e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SH2D2A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.7729e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___NPM1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CLNS1A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.0466e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RSL1D1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ATP6V0E1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.2832e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL27A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___DUSP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.4405e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL13A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__ZFP36L2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1642e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EIF3D__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.7672e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RP11-138A9.2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.3794e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL27__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___APRT__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.9849e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___FYN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.5144e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ANP32B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4591e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___PPP2R5C__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.7186e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EIF3M__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.2314e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CMPK1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.5804e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__YWHAZ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.7491e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___GIMAP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___COTL1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.4135e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EIF2S3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HSP90AA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1807e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MT-CYB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 7.3179e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HSPB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.1825e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CRIP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TXK\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.3442e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL36__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___GAPDH__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ANXA2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.8732e-15\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CLIC1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.627e-14\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CD99__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.9832e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___LYRM4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.6923e-07\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EEF1B2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ACTB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EZR__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.1347e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ATP5A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.8326e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ATP5O__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EIF3K__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.1189e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPL38__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SUCLG2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 4.0155e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CD3E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.3999e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPSA\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___NSA2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CST7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.0229e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___HIGD2A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 6.6022e-08\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___EEF1G__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___IGBP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.7011e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___OAZ1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___MYH9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__UBA52\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___ATP2B1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 5.3714e-11\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__RPS6\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RBM39__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.8267e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CCNG1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.8565e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SH3BGRL3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___COX4I1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 3.0583e-10\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___PMAIP1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 9.9735e-09\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__TOMM7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SNHG7\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 8.206e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___FHIT__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___RPS26__SRSF2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.4873e-13\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + } + ], + "source": [ + "for( i in names(data_input_coeqtl)){\n", + " print(i)\n", + " check_dataset(data_input_coeqtl[[i]], warn.minp = 1e-70)\n", + " }" + ] + }, + { + "cell_type": "markdown", + "id": "377709c3-72e8-4616-add2-52cb97dfdae9", + "metadata": { + "tags": [] + }, + "source": [ + "### GWAS input" + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "id": "8cadaeec-80d3-4eed-a455-1604b16395d1", + "metadata": {}, + "outputs": [], + "source": [ + "gwas = gwas_gtex" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "id": "74900a53-29fc-41ad-9704-307172077b0b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 12
tagpositionnon_effect_allelefrequencypvalueeffect_sizePhenotypeSample_Sizevariant_idsample_sizestandard_erroreffect_allele
<chr><int><chr><dbl><chr><dbl><chr><int><chr><int><dbl><chr>
Astle_et_al_2016_White_blood_cell_count13550G0.017316020.228037473787046NAWhite blood cell count173480rs554008981_G/A173480NAA
Astle_et_al_2016_White_blood_cell_count14671G0.012987010.816150563702573NAWhite blood cell count173480rs201055865_G/C173480NAC
\n" + ], + "text/latex": [ + "A data.table: 2 × 12\n", + "\\begin{tabular}{llllllllllll}\n", + " tag & position & non\\_effect\\_allele & frequency & pvalue & effect\\_size & Phenotype & Sample\\_Size & variant\\_id & sample\\_size & standard\\_error & effect\\_allele\\\\\n", + " & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count & 13550 & G & 0.01731602 & 0.228037473787046 & NA & White blood cell count & 173480 & rs554008981\\_G/A & 173480 & NA & A\\\\\n", + "\t Astle\\_et\\_al\\_2016\\_White\\_blood\\_cell\\_count & 14671 & G & 0.01298701 & 0.816150563702573 & NA & White blood cell count & 173480 & rs201055865\\_G/C & 173480 & NA & C\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 12\n", + "\n", + "| tag <chr> | position <int> | non_effect_allele <chr> | frequency <dbl> | pvalue <chr> | effect_size <dbl> | Phenotype <chr> | Sample_Size <int> | variant_id <chr> | sample_size <int> | standard_error <dbl> | effect_allele <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| Astle_et_al_2016_White_blood_cell_count | 13550 | G | 0.01731602 | 0.228037473787046 | NA | White blood cell count | 173480 | rs554008981_G/A | 173480 | NA | A |\n", + "| Astle_et_al_2016_White_blood_cell_count | 14671 | G | 0.01298701 | 0.816150563702573 | NA | White blood cell count | 173480 | rs201055865_G/C | 173480 | NA | C |\n", + "\n" + ], + "text/plain": [ + " tag position non_effect_allele frequency \n", + "1 Astle_et_al_2016_White_blood_cell_count 13550 G 0.01731602\n", + "2 Astle_et_al_2016_White_blood_cell_count 14671 G 0.01298701\n", + " pvalue effect_size Phenotype Sample_Size\n", + "1 0.228037473787046 NA White blood cell count 173480 \n", + "2 0.816150563702573 NA White blood cell count 173480 \n", + " variant_id sample_size standard_error effect_allele\n", + "1 rs554008981_G/A 173480 NA A \n", + "2 rs201055865_G/C 173480 NA C " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(gwas,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "id": "4716b285-ac0a-46b3-acd2-3f07ed14813c", + "metadata": {}, + "outputs": [], + "source": [ + "## Compare variants and pre-filter on variants in coEQTL data" + ] + }, + { + "cell_type": "code", + "execution_count": 174, + "id": "dbcdaf2e-1cde-4eb9-9b48-302d09a5e53c", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_input = gwas[gwas$variant_id %in% unique(output_all_effect$SNP),] " + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "id": "abdcc242-6be2-4c8c-92b5-4c6cd9a06451", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "15346" + ], + "text/latex": [ + "15346" + ], + "text/markdown": [ + "15346" + ], + "text/plain": [ + "[1] 15346" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(unique(gwas_input$variant_id))" + ] + }, + { + "cell_type": "code", + "execution_count": 176, + "id": "3ba5ceed-b6ef-40ba-97b6-f987dea42583", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A grouped_df: 7 × 2
Phenotypen
<chr><int>
Asthma 8843303
Crohn's Disease 8860907
Inflammatory Bowel Disease 8858738
Multiple Sclerosis 8867478
Rheumatoid Arthritis 8857562
Type_1_Diabetes 62115237
White blood cell count 8871979
\n" + ], + "text/latex": [ + "A grouped\\_df: 7 × 2\n", + "\\begin{tabular}{ll}\n", + " Phenotype & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t Asthma & 8843303\\\\\n", + "\t Crohn's Disease & 8860907\\\\\n", + "\t Inflammatory Bowel Disease & 8858738\\\\\n", + "\t Multiple Sclerosis & 8867478\\\\\n", + "\t Rheumatoid Arthritis & 8857562\\\\\n", + "\t Type\\_1\\_Diabetes & 62115237\\\\\n", + "\t White blood cell count & 8871979\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 7 × 2\n", + "\n", + "| Phenotype <chr> | n <int> |\n", + "|---|---|\n", + "| Asthma | 8843303 |\n", + "| Crohn's Disease | 8860907 |\n", + "| Inflammatory Bowel Disease | 8858738 |\n", + "| Multiple Sclerosis | 8867478 |\n", + "| Rheumatoid Arthritis | 8857562 |\n", + "| Type_1_Diabetes | 62115237 |\n", + "| White blood cell count | 8871979 |\n", + "\n" + ], + "text/plain": [ + " Phenotype n \n", + "1 Asthma 8843303\n", + "2 Crohn's Disease 8860907\n", + "3 Inflammatory Bowel Disease 8858738\n", + "4 Multiple Sclerosis 8867478\n", + "5 Rheumatoid Arthritis 8857562\n", + "6 Type_1_Diabetes 62115237\n", + "7 White blood cell count 8871979" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "gwas %>% group_by(Phenotype) %>% count()" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "id": "fab9f20f-d504-4567-bb9c-f8ff115594a6", + "metadata": {}, + "outputs": [], + "source": [ + "### Remove NA values in case there are some" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "id": "be726af0-36b5-4ba2-b124-25427848965b", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_input = gwas_input[!is.na(gwas_input$effect_size),]\n", + "gwas_input = gwas_input[!is.na(gwas_input$standard_error),]" + ] + }, + { + "cell_type": "code", + "execution_count": 179, + "id": "48b55843-d1dd-4f84-a021-44973c85dd2f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "15343" + ], + "text/latex": [ + "15343" + ], + "text/markdown": [ + "15343" + ], + "text/plain": [ + "[1] 15343" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(unique(gwas_input$variant_id))" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "id": "c72cbd85-3436-446d-b1ba-69e796c04425", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "58534" + ], + "text/latex": [ + "58534" + ], + "text/markdown": [ + "58534" + ], + "text/plain": [ + "[1] 58534" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(gwas_input)" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "id": "aa5f7675-33fc-466d-9bf7-bb679fc122b6", + "metadata": {}, + "outputs": [], + "source": [ + "## Prepare GWAS Input per trait" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "id": "23f91313-9598-41f2-bfd9-a6e451fc5e41", + "metadata": {}, + "outputs": [], + "source": [ + "gwas_input_list = list()" + ] + }, + { + "cell_type": "code", + "execution_count": 183, + "id": "fde6b930-24a5-4a00-8750-a606590df679", + "metadata": {}, + "outputs": [], + "source": [ + "for(i in unique(gwas_input$Phenotype)){\n", + " input = gwas_input[gwas_input$Phenotype == i,]\n", + " \n", + " ## Prepare GWAS Input\n", + " # Beta\n", + " beta_gwas = input$effect_size\n", + " names(beta_gwas) = input$variant_id\n", + "\n", + " # Varbeta \n", + " varbeta_gwas = ( input$standard_error)^2\n", + " names(varbeta_gwas) = input$variant_id\n", + "\n", + " # MAF - not needed\n", + " #MAF_gwas = input$frequency\n", + " #names(MAF_gwas) = input$variant_id\n", + "\n", + " # Position \n", + " position_gwas = input$position\n", + " names(position_gwas) = input$variant_id\n", + "\n", + " # SNP\n", + " snp_gwas = input$variant_id\n", + " names(snp_gwas) = input$variant_id\n", + "\n", + " \n", + " ### Input Parameters - check with available data\n", + "\n", + " GWAS_list = list(\n", + " beta = beta_gwas, # regression coefficient\n", + " varbeta =varbeta_gwas, # variance/ standard deviation of beta?\n", + " #N = sample_size_gwas, # number of samples in dataset 1\n", + " #sdY = # population standard deviation of the trait, if quantitative trait\n", + " # if unknown will be approximated based on beta, varbeta, N, MAF\n", + " type = 'cc', # quant or cc to denote quantitative or case-control\n", + " # MAF = MAF_gwas, # minor allele frequency of the variants\n", + " # LD = needed?\n", + " snp = snp_gwas, # character vector of SNP ids\n", + " position = position_gwas)\n", + " \n", + " gwas_input_list[[i]] = GWAS_list\n", + " \n", + " }\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "id": "626e2a63-0f8f-4b96-9f6a-e7d6ec4be081", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"White blood cell count\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(gwas_input_list[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"Crohn's Disease\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(gwas_input_list[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: 1.025e-12\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"Inflammatory Bowel Disease\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(gwas_input_list[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"Multiple Sclerosis\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"Asthma\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(gwas_input_list[[i]], warn.minp = 1e-70):\n", + "“minimum p value is: < 2.22e-16\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"Type_1_Diabetes\"\n" + ] + } + ], + "source": [ + "for(i in names(gwas_input_list)){\n", + " print(i)\n", + " check_dataset(gwas_input_list[[i]], warn.minp = 1e-70)\n", + " }\n" + ] + }, + { + "cell_type": "markdown", + "id": "b121c830-3310-4912-ad82-bb5805090b16", + "metadata": {}, + "source": [ + "## Run Coloc Analysis" + ] + }, + { + "cell_type": "markdown", + "id": "1cf94a2a-f46c-436e-91f5-0ab2527c512b", + "metadata": { + "tags": [] + }, + "source": [ + "### Visualize a concrete co-egene and GWAS trait example and save data for further investigation" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "id": "cb6c3827-5bdc-4315-bb67-513a781c61c5", + "metadata": {}, + "outputs": [], + "source": [ + "### Choose Phenotype to visualize" + ] + }, + { + "cell_type": "code", + "execution_count": 186, + "id": "43bc467e-a622-4cca-8629-d36a59177581", + "metadata": {}, + "outputs": [], + "source": [ + "i = 'Type_1_Diabetes'\n", + "#i = unique(gwas_input$Phenotype)[2]" + ] + }, + { + "cell_type": "code", + "execution_count": 187, + "id": "e1b37f88-e4a9-497e-a35b-3b151cf1a96e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "'Type_1_Diabetes'" + ], + "text/latex": [ + "'Type\\_1\\_Diabetes'" + ], + "text/markdown": [ + "'Type_1_Diabetes'" + ], + "text/plain": [ + "[1] \"Type_1_Diabetes\"" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "i" + ] + }, + { + "cell_type": "code", + "execution_count": 188, + "id": "9ee48e01-0c11-40bb-97c3-bc8434677efa", + "metadata": {}, + "outputs": [], + "source": [ + "### Choose co-egene to visualize" + ] + }, + { + "cell_type": "code", + "execution_count": 189, + "id": "5389727f-479e-40bc-a0ba-5bbd37707306", + "metadata": {}, + "outputs": [], + "source": [ + "co_egene_var = 'CD4T_RPS26___CD48__RPS26'" + ] + }, + { + "cell_type": "code", + "execution_count": 190, + "id": "3f15c780-590b-41b7-b295-b361b2036aff", + "metadata": {}, + "outputs": [], + "source": [ + "### Plot the SNP significance values for the matches" + ] + }, + { + "cell_type": "code", + "execution_count": 191, + "id": "f822c402-35c6-4c11-a565-9661f0267b39", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"Type_1_Diabetes\"\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeXyU9YHH8d8zk5nJJJP7IuQ+IFwBAgiloBhRC26hthxqbXVFu13tAeu6VrEL\nK7tArdpqrdRdhK21urhAtdhGqgXCWZHbcCUSc9/XJJlkZjKZmf0jboQck0kyR+aZz/sv8/x+\neebLH87rm9/zPL9HstvtAgAAAL5P4e0AAAAAcA2KHQAAgExQ7AAAAGSCYgcAACATFDsAAACZ\noNgBAADIBMUOAABAJih2AAAAMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgB\nAADIBMUOAABAJih2AAAAMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADI\nBMUOAABAJih2AAAAMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUO\nAABAJih2AAAAMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABA\nJih2AAAAMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABAJih2\nAAAAMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABAJih2AAAA\nMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABAJih2AAAAMkGx\nAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABAJih2AAAAMkGxAwAA\nkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABAJih2AAAAMkGxAwAAkAmK\nHQAAgExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABAJih2AAAAMkGxAwAAkAmKHQAA\ngExQ7AAAAGSCYgcAACATFDsAAACZoNgBAADIBMUOAABAJih2AAAAMhHg7QA+oLW19Y033jAa\njd4OAgAAxgStVvvggw+GhYV5O0hfFLuhvfXWW2vXrvV2CgAAMIYEBAQ89thj3k7RF8VuaBaL\nRQixY8eOGTNmeDsLAADwsgsXLjz88MM99WCsodg5Kysra/bs2d5OAQAAvMxkMnk7wqB4eAIA\nAEAmKHYAAAAyQbEDAACQCYodAACATFDsAAAAZIJiBwAAIBMUOwAAAJmg2AEAAMgExQ4AAEAm\nKHYAAAAyQbEDAACQCYodAACATFDsAAAAZIJiBwAAIBMUOwAAAJkI8HYAABhbWlpampqazGaz\nRqOJiIiIiorydiIAcBbFDgC+YLVaL1261NTU1HukoqIiPDw8Ozs7IIBvSwA+gEuxAPCFq1ev\nXt/qeuj1+kuXLnklDwAMF8UOAIQQorOzs76+fsCh5ubmtrY2D+cBgBHg4gIACCFEa2ur49HQ\n0FAhhNVqra+vNxgMdrs9ODg4NjZWpVJ5KiMADIFiBwBCCNHV1eVg1GAwFBcX6/X69vZ2u93e\ne7y4uHjSpEmxsbHuDwgAQ6PYAYCoqakpKytzMKGuru76PtfLarVevnxZCEG3AzAWcI8dAH9X\nW1t79epVq9XqYM6Ara536PLlyx0dHW6IBgDDQ7ED4NfsdntxcfHoT9KzbgcA3kWxA+DX2tvb\nHd9d5ySDwcCiHQCvo9gB8GsuaXU9Ojs7XXUqABgZih0Av+bCzUoaGxtddSoAGBmKHQC/FhIS\n4qrXhdXW1tbU1LjkVAAwMhQ7AH5NoVCkpaW56mwlJSWuOhUAjADFDoC/S0xMTE9PVyhu+D4c\n2SVas9nMnXYAvMgHNyjuLMvf89aevCNnCgrLGvTtnd2qoJCw2JSsabNvuWvl/atuTdF6OyEA\nX5OSkjJu3LimpiaTyRQQEBAeHt7U1FRaWjqCU3V3d7s6HQA4y8eKXcOhTfd9d/OBqhufYusw\ntDTUlF76+C/vvPrs+sXPvLlrQ260lwIC8FUajWb8+PG9P474SQiNRuOiRAAwbL5U7LoLtixZ\nuvGsWegylzywZuUd87IzEqJCAwO6TW1NVcUFJz/as/ON/dcObFy6RHX646en+dI/DcBYExwc\nPILf0ul0FDsAXuRD7adz76YtZ81i3N07ju9ak37jN2dGVvbc2+5++PHHd9678OH3zmx+du/a\n3fcEeSkoABmIjo5Wq9UD7nIXFBSk0WhaWlr6HFcoFBMmTPBIOgAYmA89PHEqP79DiJnrXujb\n6r6kyVjz/NoZQnQcPnzao9kA+Kru7u7y8vJz58598skn58+fLy8v73lprFKpnDx5cp8nKoQQ\nKpVq6tSp2dnZ8fHxkiT1HtdqtdOnTw8PD/doegC4kQ+t2LW1tQkhEhMTHc5KTEwU4kLPXABw\nyGg0XrhwwWg09vzY0dHR0tJSXV09c+bMwMDAyMjIOXPmlJaWNjc3d3d3q9XqqKio1NTUwMBA\nIcSkSZPS09NbW1utVqtWqw0NDb2+5wGAV/hQsUtKShKi+NTRo6b7bw8cbJLp2LHTQojk5GQP\nJgPgi+x2+6VLl3pbXS+j0Xjx4sXZs2dLkhQcHDx16tTBzqBWq2NiYtwcEwCGwYcuxc5YtXqi\nJOq2r1n98om6gbYT6K478fLqNdvrhJS1asV0j+cD4FtaW1vb29sHHGpvb2fdH4Av8qEVO2n2\n+p1P5n3tuQvvr1uQsiV7waK50zISokM0Squ5vbGq+OInh48X1JuFCJ751I71s72dFsBYN1ir\n6x0NCwvzWBgAcAkfKnZC6Bb87MiJrGfWbXj9UGXBwd0FB/tOCEzMfWTTS5sfmj6SbQoA+Beb\nzTbiUQAYm3yq2AkhQqc/9MrBB7eWnjx05HRBUXm93mC0KrW68NjkidlzFuXOS9EN7+Ky1WrN\ny8szmUwO5pw7d04IYbFYRpUcwBgTFORoTyTHowAwNvlasRNCCKHQpc5fljp/mQtOdejQoeXL\nlzsz8+2337711ltd8JEAxobIyEiVSjXg32xqtToiIsLzkQBglHyy2A3IZrP133FqSLm5ufv2\n7XO8Yrdt27b8/Pyh9lkB4GOUSuWkSZMuXrxot9uvPy5J0qRJk5RKpfOnam5urqurMxqNCoUi\nNDR0/PjxPVuiAICH+Vax6zYZTN2SShus6f3GtTec+NUzG37z3vHPGro0cZMXrV639d8fmen0\nHc9KpXLZsiGW/vLy8oQQI2iNAMa46OjonJyckpISvV5vt9slSQoPD09PTw8NDR3sV2w2W0tL\nS2dnZ0+H0+l0hYWFNTU1vRNaWloqKyunTJkSHc1LqwF4mi8Vu678dRm5rzbdtq3kwKPxPYda\nD/xwwdJtn31xJcVYd2n/K987cqws/8S/38RfywCcEBYWNnPmTKvV2tXVpVarHS/UNTY2FhYW\nXv+eMa1W238nPKvVeunSpXnz5rFuB8DDfGgVyrD3lf+uFmH3/tNDX7Q6YT/73GPbPrNIcYv/\n/Y/ny6rLzv9x0+I4qfPcln/8ZaFXowLwMUqlUqvVOm51er3+4sWLfd4e27/V9bDZbFVVVa6M\nCABO8KFid/HkyU4hsm/6ci3u8rvvFgkRuuLl3T9dPiM5PnnG8n/935dXhArb2f/dU+zNqABk\nqLi4uM/deI6xxTEAz/OhYtfY2CiECAkJ6T1SUlIihJh1++1fPrwWuXhxjhCiqKjI4/kAyJjF\nYhluUWMnPACe50PFruex1HNnzvR+V/bsM6VSqa6bpVarPZ4MgOyNYCdLrVbrjiQA4IAPFbsZ\nS5eOF6J2x/oXrph7jsxbsiRCiPN/+9uX97gYT5w4L4TIypronZAA5OnGvyCdEhsb644kAOCA\nDxU7adG/bLg1SHQc+8nNN//jfx4qMdiDv/n8a6sTm99Y++iuK+02YWu/suvRdb9rEOqFD96b\n4e24AOREpVJdfyPIkOLi4tjuBIDn+VCxEyL5+7t2PzY5UDSd+s9/vC09ZtyUm7//B+3cnJCi\nN+6bEq7T6cKn3PdGYfe4u371+g/SvZ0VgNykp6dLktT/eGBgYExMTO+QWq3OyMiYPHmyZ9MB\ngBC+tY+dECLurldPnVm44Yl/276/qL3+yvE/Xzn+xYjN2GHUjLtp9eNbt65bnOBj/ywAPiAy\nMnLKlCmFhYXd3d29B0NDQ6dMmaLVaq1Wq8lkUigU3FoHwIt8rwEFT7nvxbx7N1WeP3H81MWS\nuhZDl0Kri4hLnTR97vw5aaE+tQQJwLfExsZGRUU1NTX1vnkiPDy8Z0ipVAYHB3s3HgD4XrET\nQgghBSfm3HFPzh3ezgHA3yiVSp6KADBm+WixAwBPs9lsRqPRbrcP+Y4KAPAWih0ADMFqtX7+\n+ec1NTVWq1UIoVAo4uLiMjIyRrAHCgC4FcUOAByx2Wznz5+//rUTNputpqamra1t1qxZAQF8\niwIYQ3jWAAAcqaysHPBlYh0dHWVlZZ7PAwAOUOwAwJG6urrBhurr6z2ZBACGRLEDAEdMJtNg\nQ2az2W63ezIMADjG3SEA/J3NZqusrKytre3s7JQkKSQkJDExsXdPE6VSef2OxNeTJGnAd1EA\ngLdQ7AD4NavVeuHChdbW1p4f7XZ7a2tra2trW1tbZmamECI0NLShoWHA3w0NDfVcUABwApdi\nAfi1srKy3lZ3vYqKiubmZiFEUlLSYMtyycnJ7g0HAMNEsQPg12pqagYbqq6uFkKEhYVlZWUp\nFDd8W0qSlJmZGRUV5fZ8ADAcXIoF4L8sFktXV9dgo52dnT3/ER8fHx4eXl1dbTAY7Ha7TqeL\nj4/nzbAAxiCKHQAMTavVZmRkeDsFAAyBS7EA/JdKpdJoNION6nQ6T4YBgNGj2AHwa+PHjx/B\nEACMTRQ7AH4tOTl5wGcg0tLSwsPDPZ8HAEaDe+wA+DWFQpGdnV1TU1NbW9vR0aFQKHo2KI6M\njPR2NAAYNoodAH8nSdL48eO58ApABrgUCwAAIBMUOwAAAJmg2AEAAMgE99gBgCsZDIaysrKW\nlpbu7u7AwMDo6OiUlBSVSuXtXAD8AsUOAFymoaHh0qVLdru950ej0VhRUVFfXz9r1qzAwEDv\nZgPgD7gUCwCu0dXVdeXKld5W18tsNl+5csUrkQD4G4odALhGfX291WodcEiv1xuNRg/nAeCH\nKHYA4BodHR0jHgUAl6DYAQAAyATFDgBcIzg4eMSjAOASFDsAcI24uLiAgIG3GoiIiNBqtR7O\nA8APUewAwDVsNltCQoIkSX2OBwYGTpo0ySuRAPgb9rEDgNGyWCxFRUUNDQ3X73UiSZJWq+3Z\noHiwlTwAcC2+awBgVGw22/nz5w0GQ5/jdrtdpVKlpaUpFFwbAeAhfN0AwKjU1NT0b3U9Wltb\nS0tLPRsHgF+j2AHAqDQ2NjoYra6u7v8uCgBwE4odAIyK2Wx2MGqxWLq6ujwWBoCfo9gBwKgM\n+WAEK3YAPIZiBwCjEhER4WA0ICBAo9F4LAwAP0exA4BRSUhIcLBoFxcX139nOwBwE4odAIyK\nWq2eOXPmgN1Op9Olp6d7PhIAv0WxA4DRCgkJWbBgQWJiolqt7lmf02g0qamps2bNYmtiAJ7E\nNw4AuIBCoZgwYcKECRPsdrvdbmdTYgBeQbEDAFeSJImb6gB4C39TAgAAyATFDgAAQCYodgAA\nADJBsQMAAJAJHp4A4I9aW1sbGxtNJpNKpQoPD4+JieGJBwAyQLED4F9sNtvVq1fr6up6j1RV\nVel0uuzs7MDAwNGfv6WlpaWlxWKxaDSa6OhonU43+nMCgJModgD8S3Fx8fWtrofBYCgoKJgz\nZ85o1u0sFsvFixf1en3vkZKSkvj4+KysLJYDAXgG99gB8CMWi6WqqmrAIYPBUFRUNJqT92l1\nPWpqaq5duzaa0wKA8yh2APxIW1ub3W4fbLS6urq0tHRkZ25paenf6npUVVV1dXWN7LQAMCwU\nOwB+xGq1Op5QVlZmNptHcObBWp0Qwm63t7a2juCcADBcFDsAfkSj0TieYLPZmpqaRnDm7u7u\nEY8CgKtQ7AD4EbPZrFAM8b03shU7x5VxyEIJAC7BU7EA/MWZM2fa2tqGnDZk8xtQcHCwg1GV\nSjWCcwLAcLFiB8AvXLp0yZlWJ4RQKpUjOL/jdT4nPxoARoliB0D+7HZ7fX29k5NHtuecxWJx\nMMo9dgA8g2IHQP6cb3VipCt2ju+iU6vVIzgnAAwXxQ6A/JWUlDg/OTQ0dAQfERERMdhSnyRJ\nERERIzgnAAwXxQ6AzH3++edGo9HJyTExMUFBQSP4FI1Gk5ycPOBQUlKSS95CCwBD4qlYAHJm\nt9srKiqcnBweHj5p0qQRf1ZaWpokSeXl5TabreeIQqFITk5OTU0d8TkBYFgodgDkrLOzs7dm\nOaZWq2fOnDmyJyd6SJKUlpaWmJjY0tLS1dWlVqsjIiLY6ASAJ1HsAMiZ87sNh4aGjqbV9VKp\nVLGxsaM/DwCMAPfYAZAz52+Yo40BkAGKHQA5CwwMdGb7Eq1WGxMT44E8AOBWFDsAMpeWluZ4\nQmBg4MyZM0f2JjEAGFO4xw6AzCUlJZlMpsrKyj7Hg4ODg4ODo6OjY2NjXXJ3XY+Ojo6GhgaT\nyaRUKsPDw6Ojo114cgBwjGIHQP4mTJiQmJhYWVnZ3t6uUCgiIiLGjx/vjudVi4uLy8vLe3+s\nrKwMDg7Ozs7WarUu/ywA6M8Hi11nWf6et/bkHTlTUFjWoG/v7FYFhYTFpmRNm33LXSvvX3Vr\nCt+fAPrRarUTJkxw60eUl5df3+p6dHR0XLhwYe7cuVzqBeABPlbsGg5tuu+7mw9Udd1wtMPQ\n0lBTeunjv7zz6rPrFz/z5q4NudFeCgjAT9nt9rKysgGHjEZjXV1dfHy8hyMB8EO+VOy6C7Ys\nWbrxrFnoMpc8sGblHfOyMxKiQgMDuk1tTVXFBSc/2rPzjf3XDmxcukR1+uOnp/nSPw2ArzMY\nDN3d3YON6vV6ih0AD/Ch9tO5d9OWs2Yx7u4dx3etSdfcMJaRlT33trsffvzxnfcufPi9M5uf\n3bt29z0jed0jAIyIg1Y35CgAuIoP3fNxKj+/Q4iZ617o2+q+pMlY8/zaGUJ0HD582qPZAPg7\njWawL6ahRwHAVXyo2LW1tQkhEhMTHc7qGe+ZCwCeEhQUFBwcPNhodDQ3/gLwBB8qdklJSUKI\nU0ePmhxMMh07dloIkZyc7KFUAPCFCRMmDLhlXUxMTGRkpOfzAPBDPlTsZqxaPVESddvXrH75\nRN1At6t01514efWa7XVCylq1YrrH8wHwcxERETNmzLh+yzqFQpGUlDRlyhQvpgLgV3zo4Qlp\n9vqdT+Z97bkL769bkLIle8GiudMyEqJDNEqrub2xqvjiJ4ePF9SbhQie+dSO9bO9nRaAP4qI\niJg3b15HR4fRaFQqlaGhoQEBPvQ1C8Dn+dQ3jm7Bz46cyHpm3YbXD1UWHNxdcLDvhMDE3Ec2\nvbT5oemD3ugCAF8ymUwVFRUtLS1dXV2BgYHR0dGJiYmjrGKSJOl0Op1O56qQAOA8nyp2QojQ\n6Q+9cvDBraUnDx05XVBUXq83GK1KrS48Nnli9pxFufNSdMO7uGy1WvPy8kwmR/ftlZaWCiFs\nNttoggMYa/R6fUFBQe9GJBaLpb29vba2Nicnh4dYAfgoXyt2QgghFLrU+ctS5y9zwakOHTq0\nfPlyZ2aWlJS44PMAjA1Wq/XixYv9t5czGo2XL1/OycnxSioAGCWfLHYulJubu2/fPscrdtu2\nbcvPz09LS/NYKgDuVlVVZbFYBhzS6/WdnZ1BQexxDsD3+H6xM1V/8sGfj16qbBMhiVMW3rX0\nKwnaoX+pl1KpXLZsiKW/vLw8IQQv8AZkw2KxOF6DNxgMFDsAvsiHil3pgdf/WiLSbn9kcer/\nH2r75MX7Vj6TV2HunaROWrpl7zv/fFOINxIC8A0VFRWO75q12+0eCwMALuRDq1Cnf/O9733v\ne7/58l1h1b//9tIn8irMypicbz78wx8+/M2cWGVXxQdPLH3gnXov5gQw1jU3NzuewHIdAB/l\nQyt2fdhPvPDTPzcLacI/7P/ba7dHSUIIe9Nfv/+VO7dfe2/jy+fu2cy9zwAGNtjddT2Cg4ND\nQlj1B+CTfGjFro/LH3xQJkTwNzZu7Wl1Qggp6vatG5cHC1H4wQefezcdgDFMqVQONiRJ0uTJ\nkz0ZBgBcyHeLXc/uctMWLbrhDYxRixZNFUJcu3bNK6EAjG0Wi6WgoKCjo2OwCeHh4SzXAfBd\nvnsptmdz+KioqBsPx8TEiKEutADwS11dXWfPnjUajYNNUCgUmZmZnowEAK7lc8Wuvfrq1atC\nCBEcP1GIs2VlZUJMum68urpaCJGUlOSdeADGruLiYgetTggRExPDq8AA+DSfK3Yfrr3h9pfC\n/Pzan04a1/uz5cqVYiGCZszgj24A17PZbPX1QzwwL0mSZ8IAgJv4ULGLm754sb7fUenCoWpx\n3/gvfur845t/aBMh99+/jL0KAFzPbDYP+cZnBw9VAIBP8KFid/OGv/51qDltCd94+b+XjF9w\nF70OwA2cWY0LCwvzQBIAcB8fKnbOGDf/vr+f7+0QAMYglUrleEJQUFDPw1cA4Lt8d7sTABgG\npVLp4EqrQqGYPn06r4QG4Ov4FgPgL2JjYwcbSk5O1mq1ngwDAO5AsQPgL9LS0tRqdf/jQUFB\nycnJns8DAC5HsQPgLzQazaxZs8LDw68/GBMTk5OTw/OwAORBZg9PAIAjWq02JyfHaDT2vFUs\nJCREo9F4OxQAuAzFDoDf0Wq13FEHQJa4FAsAACATFDsAAACZoNgBwPDYbDaLxTLkC8oAwPO4\nxw4AnKXX60tKSlpbW+12u0KhiIqKSk9PDwriHYYAxgqKHQA4pa6u7sqVK3a7vedHm83W0NDQ\n3Nw8c+bM0NBQ72YDgB5cigWAoXV1dRUWFva2ul5Wq/Xy5cv9jwOAV1DsAGBojY2NVqt1wCGj\n0XjkyJGCggKDweDhVADQB8UOAIbW2dnpYNRmszU2Np45c6apqcljkQCgP4odAAxNoRj629Jm\ns125cmWwhT0A8ACKHQAMTafTOTPNYrGwaAfAiyh2ADC06OjowMBAZ2b2vIUWALyCYgcAQ1Mo\nFNOmTVOpVEPOlCTJA3kAYEAUOwBwSkhIyNy5c1NSUoKDgx1Mc/KiLQC4A8UOAJylVqvT09Pn\nzp0bEhIy4AStVhsZGenhVADQi2IHAMM2depUjUbT56BKpZo6daozz88CgJvwSjEAGDatVnvT\nTTdVVlY2NjaazWa1Wh0ZGZmUlNS/7QGAJ1HsAGAkVCpVWlpaWlqat4MAwJe4ZAAAACATFDsA\nAACZoNgBAADIBMUOAABAJih2AAAAMkGxAwAAkAmKHQAAgExQ7AAAAGSCYgcAACATFDsAAACZ\noNgBAADIBMUOAABAJih2AAAAMhHg7QAA4E02m62pqamjo0OSpJCQkIiICEmSvB0KAEaIYgfA\nfzU3N1+5cqWrq6v3SFBQ0NSpU3U6nRdTAcCIcSkWgJ9qa2srKCi4vtUJITo7Oy9cuNDnIAD4\nCoodAD9VUlJis9n6H+/q6qqoqPB8HgAYPYodAH9kt9v1ev1go83NzZ4MAwCuQrED4I+sVuuA\ny3U9LBaLJ8MAgKtQ7AD4I6VSqVAM+gWoVqs9GQYAXIViB8AfSZIUGRk52KiDIQAYyyh2APxU\nenq6Uqnsf1yj0SQlJXk+DwCMHsUOgJ8KDg6eMWOGVqu9/mBoaGhOTo5KpfJWKgAYDTYoBuC/\nwsLC5s2bp9fre988ERoa6u1QADByFDsAfk2SpIiIiIiICG8HAQAX4FIsAACATFDsAAAAZIJi\nBwAAIBMUOwAAAJmg2AEAAMgET8UCgFsYjcaamhqDwSCE0Ol08fHxffbMAwCXo9gBgOtVV1d/\n9tlnNput58empqaKiooJEyaMHz/eu8EAyBuXYgHAxfR6fVFRUW+r62Gz2YqKivR6vbdSAfAH\nFDsAcLHy8nK73d7/uN1uLy8v93weAP6DYgcALtbW1jaCIQAYPYodALiY1WodwRAAjB4PTwDw\nCxaLpbW1tbu7OzAwMCwsTJIk931WYGBgZ2fnYEPu+1wAoNgBkDmbzXbt2rXq6ure+940Gs3E\niROjo6Pd9ImxsbGlpaWDDbnpQwFAcCkWgOxdvny5qqrq+qcZzGbzxYsXGxsb3fSJOp1uwBXB\n4ODg5ORkN30oAAiKHQB5a2lpaWho6H/cbrd/9tln7vjE1tbWixcv9n8qVpKk7OxspVLpjg8F\ngB4UOwBy5mBZzmQy9bwWwlVsNlt3d3dRUdGAo3a7/dq1ay78OADoj3vsAMhZV1fXiEed19jY\nWFZW1t7ePuD2db2am5td8nEAMBiKHQA5Cwhw9C3neNRJZWVln3/+uTMze5b0XPKhADAgLsUC\nkLPw8PDBhgICAnQ63SjPbzAYSkpKnJ/veEkPAEbJB/9w7CzL3/PWnrwjZwoKyxr07Z3dqqCQ\nsNiUrGmzb7lr5f2rbk3RejshgDEjNja2vLx8wHvpUlNTFYrR/nFbW1vrfFdTKpUs1wFwKx/7\nimk4tOm+724+UHXjbTEdhpaGmtJLH//lnVefXb/4mTd3bch11/ZUAHyLJEnTp0+/ePHi9e/y\nkiQpOTk5KSlp9Oc3Go3OTx43bpxbN0YGAF8qdt0FW5Ys3XjWLHSZSx5Ys/KOedkZCVGhgQHd\npramquKCkx/t2fnG/msHNi5dojr98dPTfOmfBsB9NBrNrFmzWlpa9Hp9z5snYmJijEbjpUuX\nOjo6JEkKCQlJTEwc2WVZ54taUFBQenr6CD4CAJznQ+2nc++mLWfNYtzdO47vWpOuuWEsIyt7\n7m13P/z44zvvXfjwe2c2P7t37e57grwUFMBYI0lSZGRkZGRkz49FRUVVVVW9owaDoba2NjMz\nMzExcbhn1ul0A+6Td72AgID4+Pi0tDQ2sQPgbj708MSp/PwOIWaue6Fvq5l74BoAACAASURB\nVPuSJmPN82tnCNFx+PBpj2YD4DOqq6uvb3U9evYrbm1tHe7Z4uPjB6tr48ePv/nmmxcsWLBw\n4cLMzExaHQAP8KFi13OHzFB/UfeMX383DQBcp7KycgRDg9FoNJMnT+7/EEZYWFhmZmZAQIBa\nrea+OgAe40PFrudG51NHj5ocTDIdO3ZaCMHrGAEMxGazdXR0DDY6shdRBAQE9K9uoaGhLNEB\n8DwfKnYzVq2eKIm67WtWv3yirnuACd11J15evWZ7nZCyVq2Y7vF8AMY+x1uT2Gy24Z7QbDYX\nFBRYrdY+xysqKvpf8AUAd/Ohhyek2et3Ppn3tecuvL9uQcqW7AWL5k7LSIgO0Sit5vbGquKL\nnxw+XlBvFiJ45lM71s/2dloAY5FSqVSr1YO9SUyrHfY2mJWVlf1bXY/y8vKEhIThnhAARsOH\nip0QugU/O3Ii65l1G14/VFlwcHfBwb4TAhNzH9n00uaHpgd7Ix4AXzBu3Ljy8vLBhoZ7Ngc3\n9JpMJrPZrNEM9rQXALieTxU7IUTo9IdeOfjg1tKTh46cLigqr9cbjFalVhcemzwxe86i3Hkp\nuuFdXLZarXl5eSaTo/v2SktLxYiu0QAYg1JSUpqbm/vfThcdHR0XFzfcsw22XNeD7w0AHuZr\nxU4IIYRClzp/Wer8ZS441aFDh5YvX+7MzGG9DhLAmBUQEDBr1qySkpLa2lqLxSKE0Gg0iYmJ\nSUlJI3h8NTAwsL29fcAhhUKhVqtHGxcAhsMni91AWkvPl+hFeNrM1LDh/Fpubu6+ffscr9ht\n27YtPz8/LS1tlBEBjBFKpTIzMzMjI6Orq0uSpNHUr9jY2ME2KI6MjOTBWAAeJpti99ETOav2\nihW77XtWDufXlErlsmVDLP3l5eUJIUb/snAAY4okSaO/AS42Nraurq6xsbHPcZVKlZmZOcqT\nA8BwUVYAYFSmTp2akpJy/eJcVFTU7NmzR/CMLQCMkg+t2O1ZKa3aO8Scvau+uEVm2Et3ADAy\nCoUiPT09NTW1s7PTarUGBQWpVCpvhwLgp3yo2AHA2KVQKHQ6nbdTAPB3PnQpdlxKslooYhau\ne/vTupZ+3lguhBDL3/jix999w9txAQAAPMyHit3CFy+de/MHE67+6ttfzf3Bm1csoeHXC1IJ\nIYQq6IYfAQAA/IgPFTshdFO+86tjV078+m7F+z9eOHnBD393ceDdowAAAPyRTxU7IYSQouf9\n4M2zl/c/u6D29QdnTb1zw59KzN7OBAAAMBb4XLETQgihSvzaT/948cI7P0z9dMuyaTPvefFY\nnaO3+gAAAPgD3yx2QgghgrNW/+LwlY9fu1fzlydumfzoAW/nAQAA8C4fLnZCCCFFzPn+jtOX\nD265Ndam0Wg0al7fAwAA/JYc9rELGJ/71B+uPuXtGAAAAN7l4yt2AAAA+H8UOwAAAJmg2AEA\nAMgExQ4AAEAmKHYAAAAyQbEDAACQCYodAACATFDsAAAAZIJiBwAAIBMUOwAAAJmg2AEAAMgE\nxQ4AAEAmKHYAAAAyQbEDAACQCYodAACATFDsAAAAZIJiBwAAIBMUOwAAAJmg2AEAAMgExQ4A\nAEAmKHYAAAAyQbEDAACQiQDnp1rbKy5fLK5uaGjQmzXhMTEx4zOypyTplO4LBwAAAOcNXexM\nlSd279y5608Hjp0tbbPeOKYMTZ21cPHX712zZtVXEwPdFBEAAADOcFTs2i7tfu5fN/1m38UW\nqxBCETRu8tysxJjIyMhQtbm1qbmloeLqxaJTeTtO5e3YtHba8kc3/MdPVk0J9VRyAAAA3GCw\nYle86x/u//HOkw0ifNJtjzx+/6qv534lOzm032XX7taygo8P/Wn322/t3bdl9b7tX1nzq9//\n170Zbg4NAACA/gZ7eOLc3jdrZ/zgtaPltVc+3P7TB++cOUCrE0IEhKXkfO3v//X1D6/Wlh19\n7Qczat7ce86dcQEAADCYwVbscn/1+Wfx8SrnT6RJWPj9lz9a81RNm0tyAQAAYJgGK3ZR8fEj\nOZ0qPj5qFGkAAAAwYsPY7uT/demrKmr0Xerw+KSEcLXrIwEAAGAkhrNBsenaHzaunhMfFpmY\nOWXalMzEyPD4Oas3vltscls6AAAAOM3pYtdx6t9unbVi0+4ztWZ1ZNKU6VOSItWm2jO7N30r\n59ZnT3e4MyMAAACc4GSxs5/Z/N1NJ9tF5MKn3ytqaSq/dOFSeVNL4btPfjVCtJ989jtbztjd\nmxMAAABDcLLYnd31P4V2EbL8pb1bvpGp/eKgdsLdz+395dd1wl74P++wywkAAIB3OVnsqqqq\nhBA5S5bE9hkYt3RpTu84AAAAvMfJYhcXFyeEsNv7X3DtOdYzDgAAAO9xstjN+eY3E4U4l5dX\n22eg5s9554RIWbFijsujAQAAYDicLHbKW/7j7afnKP/8+Iqf/KGw84uDHYV7n/jWP+cF3PTM\nW5sWDGffFAAAALiekxsUH/zJbU8eMOuCWk78fMWkX4YlpCUEGypLqtssQgQlmvavzd1/3eTF\nPz/93G1uSQsAAIBBOVnsmovPnDnz/z9YWquKWnuHOisLzlTeMDm12TXZAAAAMAxOFrtlr9fU\n/NrZcwZGjDQNAAAARszJYqcJHzfOvUEAQHYaGxtramoMBoMkSTqdLiEhISKCv3wBuJGTxQ4A\nMDyFhYXV1dW9PxqNxoaGhujo6ICAAJvNptVqY2JiQkJCvJgQgPwM9jDrteMHys3DPpu57MDx\na6MLBAAyUFNTc32r69XY2FhbW1tfX19WVnb69OnPPvvM89kAyNhgxe78L2+fkLHo0Vf2F7ba\nnDiNVX91/yv/eEvGxNt/ed6V8QDAJ1VWVg49SYjKysry8nJ3hwHgPwYrdrf95LWHkwtf//HS\nSeMSb1r1+PNvvH/8Sp3xxhdP2DprLx/d99uf/9PKOYnjJi/98Y7PUh957SdsdALAz9nt9o6O\nDicnl5eXD/RWHwAYicHusYu86fvbTnz7x3te2vzif+7Z88vTe34phFBqw6OiIiMjQ1Tmtubm\n5qbmVpNVCCGENmnhg5sfX//jb07UeSw5AMiBxWLp7OwMDg72dhAAcuDw4YmQSSv/9c2V61/+\n9E9vv/Png4ePHDtdWF+pr//iAoOkiZ18y82LFt3+9XvvXTolnFdPAIAQQghJkgIDA41Go5Pz\nrVarW/MA8B9OPBWrjJz+jR9O/8YPhRA2c1tTQ0Njq0UTHh0TExmips0BwADGjRtXUlLi5GSN\nRuPWMAD8x/C2O1FoQmMSQ2MS3RQGAGQiKSmptLTUmZvnwsLCKHYAXIUlNwBwPaVSGRgY6My0\nCRMmeCAPAD/hxIpdZ1n+nrf25B05U1BY1qBv7+xWBYWExaZkTZt9y10r7191a4rW/TEBwNfE\nx8d//vnnDiaEhoZOnDiRPYoBuNAQxa7h0Kb7vrv5QFXXDUc7DC0NNaWXPv7LO68+u37xM2/u\n2pAb7caMAOCDkpKSmpub9Xp9n+Ph4eHJyclBQUFaLX8WA3AxR8Wuu2DLkqUbz5qFLnPJA2tW\n3jEvOyMhKjQwoNvU1lRVXHDyoz0739h/7cDGpUtUpz9+ehpvJwOALykUihkzZlRUVFRXV5tM\nJiFEUFBQYmLi+PHjJUnydjoA8uSgjXXu3bTlrFmMu3vH8V1r0m+8tTcjK3vubXc//PjjO+9d\n+PB7ZzY/u3ft7nuC3JwVAHyLQqFISUlJSUmxWq2SJCkU3NYMwL0cfMucys/vEGLmuhf6trov\naTLWPL92hhAdhw+fdks8AJADpVJJqwPgAQ6+aNra2oQQiYmONzfpGe+ZCwAAAO9xUOySkpKE\nEKeOHjU5+H3TsWOnhRDJyckuDgYActDd3d3Q0FBVVVVXV9fV1TX0LwDAKDi4x27GqtUTf761\naPua1ZN3bf/BV+P6Te2uO/Hq99ZsrxNS1qoV092ZEgB8UUVFRUlJSe8bwxQKRUJCQkZGBg9P\nAHATB8VOmr1+55N5X3vuwvvrFqRsyV6waO60jIToEI3Sam5vrCq++Mnh4wX1ZiGCZz61Y/1s\nz0UGAF9QXl5eXFx8/RGbzVZRUWG1WrOysryVCoC8OdyjRLfgZ0dOZD2zbsPrhyoLDu4uONh3\nQmBi7iObXtr80PRg9yUEAN/T3d1dWlo64FB1dXViYmJwMN+bAFxvqM3nQqc/9MrBB7eWnjx0\n5HRBUXm93mC0KrW68NjkidlzFuXOS9HxnBcA9KXX63uvwPbX1NREsQPgDk7tKqzQpc5fljp/\nmbvDAIBMOH5OgqcoALgJ620A4HoqlWrEowAwYqMvdsX7f/3rX/96f/HQMwHAX4SFhTl49DUi\nIsKTYQD4j9EXu3Ov/+hHP/rR6+dcEAYAZEKtVvfsBdpfdHR0aGioh/MA8BNcigUAt0hPT09M\nTOyzbhcTEzNlyhRvRQIgew4enrCaDMbuoc9gGvS5LzfpLMvf89aevCNnCgrLGvTtnd2qoJCw\n2JSsabNvuWvl/atuTdF6OBAADECSpAkTJiQmJjY1NZnNZpVKFRkZqdPpvJ0LgJw5KHbvfidk\n1V7PJXFKw6FN931384GqGx8o6zC0NNSUXvr4L++8+uz6xc+8uWtDbrSXAgLADbRa7VCv3AYA\nl3Fqu5Mxortgy5KlG8+ahS5zyQNrVt4xLzsjISo0MKDb1NZUVVxw8qM9O9/Yf+3AxqVLVKc/\nfnqaL/3TAAAARs9B+0lLSxWiNGdr0SdPpDk4wx/uUd3zB9eGGljn3k1bzprFuLt3HN+1Jl1z\nw1hGVvbc2+5++PHHd9678OH3zmx+du/a3fcEeSIVAADAWOHg4YlZd9wRLcT5Awf1AY4oPPUu\n61P5+R1CzFz3Qt9W9yVNxprn184QouPw4dMeSgUAADBWOCh20i13Lg4U9mMffmT0XB4H2tra\nhBBD3azSM94zFwAAwJ84uhEt8PYH1n3DdCXUUCrE5EFnzXl0+/YlIm2Oy6P1lZSUJETxqaNH\nTfffHjjYJNOxY6eFEMnJyW7PAwAAMLY4fMIg/K6t79011BlSFz/yiOvyODBj1eqJP99atH3N\n6sm7tv/gq3H9onfXnXj1e2u21wkpa9WK6R7JBAAAMHb40KOj0uz1O5/M+9pzF95ftyBlS/aC\nRXOnZSREh2iUVnN7Y1XxxU8OHy+oNwsRPPOpHetnezstAACAp/lQsRNCt+BnR05kPbNuw+uH\nKgsO7i442HdCYGLuI5te2vzQ9GBvxAMAAPAqJ4td8f5ff3Bt4CFJoQ4KjRw/MWfurIwIt/fE\n0OkPvXLwwa2lJw8dOV1QVF6vNxitSq0uPDZ5YvacRbnzUnTDe0ma1WrNy8szmUwO5pSWlgoh\nbDbbaIIDAAC4m5NN7NzrP/rRUG+hUMfP//vN//niQ9luf2GOQpc6f1nq/GUuONWhQ4eWL1/u\nzMySkhIXfB4AAIDbOFnssr+zdWvWhbde2nXRHDNr2fKFUxJ0hqrLR/e9f65BM3XVP9wZVnU8\n791P/vZfaxaV2M9+uCbVrZldKTc3d9++fY5X7LZt25afn5+W5mibZgBjVmdnZ3V1dXt7u91u\nDwoKio+PDwsL83YoAHALJ4td1l132bdsumifv/HkBxtnh32xJ7Fdf2rDklv+40/Hv/PxsY+f\nv/DMHQu3nv7o6Z/99cHXble6LbGp5sKJc1XSuOybZiX1rA1a6//2u9d2H/+sURE3JffeNffM\niXX+cqxSqVy2bIilv7y8PCGEQjG8i7wAxoLa2trCwsLeWylaW1tramqSkpIyMzO9GwwA3MHJ\nstL6P89sOmVMevTFDb2tTgghhd/0b794NNF4atNPd7WF37TxPx6IFqL+ww8vuCms6Pjk+a+l\nJ89c/Hd/d9vs9ImLnzttFN1Fry2ZvGDNxl/u+P2b2198+ttzp9z5i/OO1t8A+A2DwXD16tX+\nN8hWVFTU1NR4JRIAuJWTxe7M8eMmIaZkZ/edr5w+faoQxuPHzwqhycmZLISorq52dcoe1lOb\n7nvyw5puZVh6zuwJoQ0Hn7733/78+g/X/rU5eMY9T7/w6ss/vTdbZ2868C/3bTlndU8EAL6k\noqLCbrcPNuThMADgAU5eijUajUKI+vp6Ifo8GlFbW9s7HhgYKIQIDQ11bcYvdL73i9c+FyLx\n2/97+vffipOa/vTQ7GWvP7ShtSv5e+8f+687dUKIxx6YKTJX7rr6m98c2Phfd7rvcjAAn9De\n3j7YUEdHh9VqVSr5ngAgK06u2E2dOlUIceG3//mx+YbjpuOvvVEghJg2baoQorCwUAjhrltX\nrp050yZE5t8/+a04SQgR9fXHH5zY3NBgzfjuY3f+f9sMv/vRb48TovHYsUK3ZADgSxzvUsQe\nRgDkx8lil/r3a5eHCtuV5/9u4cO/+EP+6aufXT2dv/fFNQuW/eKqTYTdvfbBFGE//8f3y4U0\ne/nXx7slamVlpbihNn7xnzcUSeWkSROEEOXl5W7JAMCXaLXawYYCAgJUKpUnwwCABzi7o/C4\n7/72vcKvr9xy4vTOf16x87oBKfrmjXt/e3+cELWtKWuefz4+9/sT3RH0i0u8xq6uLiF6Xizx\nxXe2Tnf91eGebQysVm6yAxAXF9fc3DzYkIfDAIAHOP+qiIjc/zhy9Vt7dvz2vUNnimpaLaqw\n+Imzc7/50CMrc6IVQggxbtH3nljktqBCZGRkCFFXUlIiRETPkZipixY1iqkx18+qqqoSQiQn\nJ7sxCQDfEBcXV19f39TU1Oe4VqtlZ0oAsjSsd4ApY2bd89Sse55yVxjH4pcumf74iU8PHiwV\ns1KFEEIsejY/v8+k7qKiEiGCZsxgiyoAkiRNmzatrKysqqrKYrEIIRQKRVxcXEZGBtdhAciS\n21/u6kKT7vnOV17cfHXf3s+f+Of0gaeY/vT7vXqh+/Z9Xx/0zhoA/kShUKSlpaWmpppMJpvN\nptVqx8hm4xaLRa/XWywWtVodHh4eEOBL38YAxqzhfZXYmj99/3/+cOB0UZXerAlPmHjT4hX3\nLcuO8NS35MR/+Zv+XxzOaIm6Y+tvFiYsuivIQ5EA+AJJkhw8SOFhdru9pKSkoqKi97FcpVKZ\nmprKLSQARs/5Ymcrf+/Hdz/46rm264799pVN62f96M0/vrQsURr0Fz0p/uYH//Fmb4cAAAeu\nXbvW85B/L6vVWlxcLLg9GMCoOVvsrOc3L7vn1U+7RMiUFY+tuWN6Uoih4tOP/nvbnktnf7Vq\nWdyp0+uz2ecTAIbQ2dnZ84hXfyUlJfHx8dz8B2A0nCx2pvee+/mnXSLszm3n/vxo2he/9O1/\nWPv9bX+X84MPz/9s6x//+e1vadwXEwBkobm5ebC3nNlsNr1eHxMTM+AoADjD2XfF5ucbhEh7\nbGtvqxNCCBGQ9tiWR9OEaD98+Kxb4gGArHR1dTkYNZvNDkYBYEhOFrvGxkYhRFZWVr+RSZOy\nhBANDQ0ujQUAsuT46VeuwwIYJSeLXc/7HCoqKvqN9BzrGQcAOBQRETHYkCRJ4eHhngwDQH6c\nLHazvvIVlRCXtr/wQdsNx9v2v7D9khDq+fNnuSEcAMhMSEjIYHfRJSQkaDTcqwxgVJwsdqGr\n/+mRBCHKd6y86Vsbf5d39FzBuaN5v9v4rZtW7CgXUtI//NOqEPfmBACZmDx5cmxsbJ+D48eP\nz8zkjTkARsvZ7U6CFr/4xxevff1fPip6d9OD7276ckAZv/TFPz6fO1Z2/gSAMU6pVE6dOjUl\nJaWpqam7u1utVkdFRQUFsa06ABdwfoNi7ezH91++493tO/YePF1U02pRhcVnzVm84pFHvjkt\nYmzsTgwAPkOn0+l0Om+nACA3w3qlmCIie8WTL6140l1hAAAAMHJj4mXYAAAAGL1hrdgBAIbN\nZDLV19d3dHQoFIqQkJC4uDilkncwAnCLwYrd/h9l/vCDYZxn6a+vvbLEFYEAQE6qqqquXbtm\ns9l6j5SUlEydOpUt6wC4w2DFzlBTXFw8jPPUGFyRBgDkpLGxsaioqM/Brq6uTz/9dO7cuYGB\ngV5JBUDGBit2K/7XYrENMjYQBdcVAKCP0tLSAY9brdbKyko2rgPgcoMVO0kREMCDFQAwYlar\ntb29fbBRvV7vyTAA/ATlDQDcwmq1Ohjt7u72WBIA/mMExa7gd0888cQTvytwfRgAkA+VSqVQ\nDPodyw12ANxhBNudFO578cW9YsVXXngg2/V5AEAmJEmKiopqaGgYcDQ6OtrJ85jN5qqqKr1e\nb7VaNRpNbGxsXFycJPHGHwADYB87AHCXjIwMvV5vsVj6HA8JCRk/frwzZ9Dr9QUFBb3XbQ0G\nQ1NTU01NzfTp09kMD0B/3GMHAO6i1WpzcnLCwsJ6j0iSFBcXN2PGDAdXaXtZLJaLFy/2vxtP\nr9d/9tlnLs4KQBZYsQMANwoODp41a5bRaOzo6JAkKSQkRK1WO/m7dXV1/Vf7etTW1mZmZgYE\n8B0O4AYj+FJQqjUajVBzDQAAnKTVarVa7XB/y8FuKXa73WAw8PoKAH2MoNh9822TyfVBAAA3\nuv5FZMMdBeCfuMcOAMYox4t8QUFBHksCwFdQ7ABgjHKwrUlYWBg74QHoj2IHAGNUcHBwampq\n/+MBAQFZWVkejwPAB/BEFQCMXampqUFBQaWlpR0dHUIIhUIRFRWVkZExgkcxAPgDih0AjGmx\nsbGxsbEWi8VqtarVamc2wAPgtyh2AOADVCqVSqXydgoAYx1/+QEAAMgExQ4AAEAmKHYAAAAy\nQbEDAACQCYodAACATFDsAAAAZIJiBwAAIBMUOwAAAJmg2AEAAMgExQ4AAEAmKHYAAAAyQbED\nAACQCYodAACATAR4OwAAwGX0en1DQ4PRaFQqlWFhYePGjQsI4Hse8CP8Dw8AcmC32wsLC2tq\nanqP1NfXl5WVZWdnh4aGejEYAE/iUiwAyEFZWdn1ra5HV1dXQUFBd3e3VyIB8DyKHQD4PJvN\nVlFRMeBQV1dX/8IHQK4odgDg8zo7Ox0sy7W1tXkyDAAvotgBgM+zWq0jHgUgJxQ7APB5gYGB\nIx4FICcUOwDweRqNJiwsbLDRmJgYT4YB4EUUOwCQg4kTJyqVyv7Hx40bFxER4fk8ALyCYgcA\ncqDT6WbNmhUeHt57JCAgID09fdKkSV5MBcDD2KAYAGRCp9Pl5OSYzWaj0RgQEBAcHCxJkrdD\nAfAoih0AyIpGo9FoNN5OAcA7uBQLAAAgExQ7AAAAmaDYAQAAyATFDgAAQCYodgAAADJBsQMA\nAJAJih0AAIBMUOwAAABkgmIHAAAgExQ7AAAAmaDYAQAAyATFDgAAQCYCvB1g+DrL8ve8tSfv\nyJmCwrIGfXtntyooJCw2JWva7FvuWnn/qltTtN5OCAAA4A0+VuwaDm2677ubD1R13XC0w9DS\nUFN66eO/vPPqs+sXP/Pmrg250V4KCAAA4DW+VOy6C7YsWbrxrFnoMpc8sGblHfOyMxKiQgMD\nuk1tTVXFBSc/2rPzjf3XDmxcukR1+uOnp/nSPw0AAGD0fKj9dO7dtOWsWYy7e8fxXWvSNTeM\nZWRlz73t7ocff3znvQsffu/M5mf3rt19T5CXggIAAHiFDz08cSo/v0OImete6NvqvqTJWPP8\n2hlCdBw+fNqj2QAAALzPh4pdW1ubECIxMdHhrJ7xnrkAAAD+xIeKXVJSkhDi1NGjJgeTTMeO\nnRZCJCcneygVAADAWOFDxW7GqtUTJVG3fc3ql0/UdQ8wobvuxMur12yvE1LWqhXTPZ4PAADA\nu3zo4Qlp9vqdT+Z97bkL769bkLIle8GiudMyEqJDNEqrub2xqvjiJ4ePF9SbhQie+dSO9bO9\nnRYAAMDTfKjYCaFb8LMjJ7KeWbfh9UOVBQd3FxzsOyEwMfeRTS9tfmh6sDfiAQAAeJVPFTsh\nROj0h145+ODW0pOHjpwuKCqv1xuMVqVWFx6bPDF7zqLceSm64V1ctlqteXl5JpOj+/ZKS0uF\nEDabbTTBAQAA3M3Xip0QQgiFLnX+stT5y1xwqkOHDi1fvtyZmSUlJS74PAAAALfxyWLnQrm5\nufv27XO8Yrdt27b8/Py0tDSPpQIAABgBXyx2lrbq8npzaEJqjFbqP1pf8NdP60Tc9NuzY504\nl1KpXLZsiKW/vLw8IYRC4UNPEAMAAH/kY2Wl/exv7p85LjIhc0J6bGTSLY/tONtvI+Ijz95x\nxx13PHvEG/EAAAC8yKeKXdXv7r39sbcvNFuFFKgLslQd/c0jX53znd8XD7SpHQAAgL/xoWJn\nO/rzn+a1CEXqytfPNre3G1oK3/vp7VGfv/Vg7n1vllq9nQ4AAMDbfKjYXdq/v0KIiPt+ufPh\nnPAAIYVM/Ma/7/9k7/cn1+95KPeBdyrYjQQAAPg3Hyp2ZWVlQoicRYtCvjymTPjGawf3fC+z\n8u3vLH7k3Rq718IBAAB4nQ8VO41GIwZ6ODX26699+Maq+Gv/fe/tP/igwRvJAAAAxgIf2u4k\nJSVFiIKysjIhpt84okj+9u8/bNIv/PFvVtwZ/FCUd+IBAAB4mQ+t2GXMnx8jxOcnTzYOMKie\n9KN3P9g4T3n+hW0HPJ4MAABgLPChYqfM/dY3IoT10N73WgYcD77p3/L++KOpGg/HAgAAGCN8\n6FKsCLjtqd1vLqpRZ5oHmxF528sffjD5dydbxaRsTyYDAAAYA3yp2AlVxuLvZDieIo3PffSp\nXM/EAQAAGFN86FIsAAAAHKHYAQAAyATFDgAAQCYodgAAADJBsQMAAJAJih0AAIBMUOwAAABk\ngmIHAAAgExQ7AAAAmaDYAQAAyATFDgAAQCYodgAAADJBsQMAAJAJih0AAIBMUOwAAABkgmIH\nAAAgExQ7AAAAmaDYAQAAyATFDgAAQCYodgAAADJBsQMAAJAJih0AAIBMUOwAAABkgmIHAAAg\nExQ7AAAAmaDYAQAAyATFDgAAQCYodgAAADJBsQMAAJAJih0AAIBMne4lBQAAIABJREFUUOwA\nAABkgmIHAAAgExQ7AAAAmaDYAQAAyATFDgAAQCYodgAAADJBsQMAAJAJih0AAIBMUOwAAABk\ngmIHAAAgExQ7AAAAmaDYAQAAyATFDgAAQCYodgAAADJBsQMAAJAJih0AAIBMUOwAAABkgmIH\nAAAgExQ7AAAAmaDYAQAAyATFDgAAQCYodgAAADJBsQMAAJAJih0AAIBMUOwAAABkIsDbAQDA\n7ex2e0NDQ2trq9VqDQwMjI2NDQoK8nYoAHA9ih0Amevs7CwoKOjs7Ow9UlJSkpycnJGR4cVU\nAOAOXIoFIGc2m+3TTz+9vtX1KC8vr6io8EokT+ru7jYYDCaTydtBAHgIK3YA5Ky2ttZoNA44\nVFZWlpiYKEmShyN5RkdHx7Vr11paWux2uxAiMDAwJSVl/Pjx3s4FwL1YsQMgZ3q9frAhi8XS\n0dHhyTAeYzAYzpw509zc3NPqhBAmk6mwsLC4uNi7wQC4G8UOgJx1d3ePeNR3FRYWWq3W/sfL\ny8vb29s9nweAx1DsAMiZRqMZ8aiPMhqNbW1tg43W19d7MgwAD6PYAZCzmJiYwYaCg4O1Wq0n\nw3iG40clBrvjEIA8UOwAyFlkZGR0dHT/45IkTZw40fN5PEChcPTFrlQqPZYEgOf9X3t3Guda\nVecLf+2deU5VkkrN83imOhMcGRxosAVt0KsiKg4toBef2zbofdor0lcf7Qvaaj+NtkPTgEi3\nAo1j04+ojcABDuDhTHVOzXVqHlNJKnNl3tnPiwUhZNiVSqVSya7f9wUfTrKysyor2fu/1/Bf\nCOwAQOT27t3b1NSUGu6o1er+/n6j0biDtdo+Wq1WILbT6/WlrAwAlBjSnQCAyLEs29nZ2dra\n6vP5OI5TqVQajUasWU4IIRKJpL6+fnFxMfMpuVxutVpLXyUAKBkEdgCwK0il0urq6p2uRYl0\ndHSEw2Gn05n6oFwu379/v1SK0z6AmFXgLzw4d/wXP/vFUy+cGRyfc3j8wbhMrTPUtPTsO/K2\nd3/w5hvf0SLCydAAAJvAsuz+/fudTqfdbg+Hw1Kp1Gg01tXVyWSyna4aAGyvCgvsHM99/SMf\nv+eZpeibHl0PuB0rs8N/+sO//+BrX7767n97/CtXZZkrDQCwq5jN5qwLRwBAxCopsIsP3nvt\ndV89GyHazms/ccsH33lsf0eDSa+UxsO+taWpwZNP/+LHj/x+8pmvXnet7PSf7tpXSX8aAAAA\nwNZVUPQT/OXX7z0bIbXve+ilx29pf3NW0Y6e/Zf+2ftu/cIXfvzhK2/9zZl7vvbLO35+k3qH\nKgoAAACwIyoo3cmp48fXCTl453fSo7o3KDpu+fYd/YSsP//86ZLWDQAAAGDnVVBgR/fIaWxs\nFCxFnxfYTwcAAABApCoosGtqaiKEnHrxRaHdcsInTpwmhDQ3N5eoVgAAAADlooICu/4bP9TN\nkNUHbvnQd19ejWcpEF99+bsfuuWBVcL03PiBAyWvHwAAAMDOqqDFE8yRL//4i0+96+/P/+ed\nV7Tcu/+Kt1+6r6PBrFNIuIjfuTQ19OrzLw3aI4RoDn7poS8f2enaAgAAAJRaBQV2hGiv+OYL\nL/fcfedXHnxucfDZnw8+m15A2XjVbV+/755PHdDsRPUAAAAAdlRFBXaEEP2BT/3Ts5/8xuzJ\n5144PTgxb/cEQpxEpTXWNHfvP/r2q461aDc3uMxx3FNPPRUOC83bm52dJYQkEomtVBwAAABg\nu1VaYEcIIYTVtl52fetl1xfhUM8999wNN9yQT8mZmZkivB8AAADAtqnIwK6IrrrqqieffFK4\nx+6HP/zh8ePH29raSlYrAAAAgAKIL7Cb+v33fzdJOq/7q2s78igtkUiuv36Drr+nnnqKEMKy\nFbSCGAAAAHYj8QUr5x783Oc+97kHz+10PQAAAABKTHyBHQAAAMAuVUFDsVw4EMqWlzhNmNv+\nqgAAAACUoQoK7H79Md2Nv9zpSgAAiBvHcX6/Px6Pq1QqjQZJQQEqTAUFdgAAsI0SicT09PTS\n0lIybadWq+3u7jYYDDtbMQDIXwXNsWtrayWEHPrGREzQv79/Z6sJAFCZhoeHFxYWUpOxBwKB\ngYEBn8+3g7UCgE2poMDu8DvfaSZk4JlnPVIhLLPTFQUAqDhra2tOpzPz8UQicfHixdLXBwAK\nU0GBHfO2P79aSfgT//V0aKerAgAgMg6HI9dTPp8vEomUsjIAULBKmmOnvOYTd743PKoPzBLS\nl7PU0c8+8MC1pO1o6eoFAFDxhEO3cDisUChKVhkAKFglBXbE+O5v/ObdGxVqvfq220pRGQAA\nEZFIJALPSqUVdbEA2MUqaCgWAAC2i9FozPWUTCZTq9WlrAwAFAyBHQAAkLq6ulyDrS0tLQyD\nZWkAlQGBHQAAEIlE0t/fr1Qq0x5vbm5uamrakSoBQAEwbQIAAAghRKPRHDt2zG63ezwejuPU\narXFYtFqtTtdLwDYBAR2AADwGpZla2tra2trd7oiAFAgDMUCAAAAiAQCOwAAAACRQGAHAAAA\nIBII7AAAAABEAoEdAAAAgEggsAMAAAAQCQR2AAAAACKBwA4AAABAJBDYAQAAAIgEAjsAAAAA\nkUBgBwAAACASCOwAAAAAREK60xUAAAB4QzQaXVpa8ng8HMepVCqLxWKxWBiG2el6AVQGBHYA\nAFAuPB7P4OBgPB6n//T7/Xa73WQy7du3j2UxxASwMfxOAACgLMRisaGhoWRUl7S2tjY1NbUj\nVQKoOAjsAACgLNhstlgslvWp5eVljuNKXB+ASoTADgAAyoLP58v1VCKRWF9fL2VlACoUAjsA\nACgLPM8LPJtIJEpWE4DKhcAOAADKgkqlKvhZAKAQ2AEAQFmoqanJ9ZTRaFQoFKWsDECFQmAH\nAABlQafTNTc3Zz4ulUq7u7tLXx+ASoQ8dgAAUC46OjrUavXc3FwoFCKEMAxjMpk6OzsxDguQ\nJwR2AABQRurq6urq6iKRCMdxCoVCIpHsdI0AKgkCOwAAKDuYUQdQGMyxAwAAABAJBHYAAAAA\nIoHADgAASiqRSGB/MIBtgjl2AABQIisrKwsLC3RzMIZhCCEqlaqmpqa5uRmLJACKAoEdwC4V\njUaDwSDDMFqtVhzXVJ7no9Eoy7IymYwQsr6+TgMInU6HZBnlYGxsbGVlJflPuoFYMBicnZ21\n2+2HDx+mDQcAW4HADmDXCYfDExMTa2tr9J8sy9bW1nZ0dEil5XhC4DjO7XbTGFSv1xsMhrQC\nsVhseXl5ZWUlHA7TWEGpVDIMQxOhUdXV1b29vVhouYOcTmdqVJcmGAxevHhxz549pawSgCiV\n43kcALZPJBI5e/ZsJBJJPpJIJJaXlwOBwKFDh1i2vObdOp3OsbGxWCyWfMRgMOzZs0epVNJ/\n2u32sbGxtAlb4XA47Tgul+vcuXNHjx4tz+B1NxCI6ii73d7d3Y0GAtii8jqJA8B2m56eTo3q\nknw+3/LycunrI8Dj8QwNDaVGdYQQr9c7MDBAIzmv1zsyMpLnNPxQKDQ/P78tFd3FeJ632+0T\nExMjIyPT09N+vz9XyWAwuOGhNiwDABvCvRHA7uJwOASeamxsLGVlhE1PT9Oh1TShUGhpaam5\nuXlubi5rgVzW1tba29uLV8HdLhQKDQ4O0omM1NzcXH19fXd3N10YkSrzkUz5lAEAYeixA9hF\nYrGYQP9W5gjmDorH416vN9ezLpeLEOLxeDZ1zKxdlVCYRCJx4cKF1KiOWl5enp2dzSyv0+mE\nD8iyLNa4AGwdAjuAXUR49WtZrY1NG4HNfJbn+c3mQsP8rSJyOBy5Rk4XFhYym6ahoUH4gDU1\nNWgggK1DYAewi7Asq9frcz2bueB0B22Y+eLUqVObPabRaCy0OrsUz/Nra2vT09MXL15cWFhI\n7dMV6C7lOC4QCKQ9qNfrOzs7cw22arXazs7OotQZYJfD7RHA7tLS0jI4OJj5OMuyTU1Npa9P\nLlKp1GAw5BqNzYwbNiSRSFpaWrZcr10kHA4PDg6mftRTU1NtbW30Y4zH4wKvzfpsU1OTwWBY\nXFz0eDy0R5bnebVabbVaGxsby6rDGKByIbAD2F3MZnNnZ+fU1FTqsgOpVLpnzx61Wr2DFcvU\n3t4+MDCwqeURSQzDpL5QLpfv2bMHU7jyl0gkzp8/nzbYyvP89PS0TCarr69PZpzJKlfKQL1e\nj2R1ANsKgR3ArtPU1GQ2m202WyAQoIOztbW1ZZj032g07tu3b3x8PBqNJh9Uq9XCSTGkUmlN\nTU19fb3f70/uPGGxWNAhtCk2my3X5zwzM1NXV2c0GnOlj1GpVFqtdjtrBwA5IbAD2I1UKlVb\nW9tO12JjZrO5qqrK7Xavr6/TGNTn801OTuYq39TUlJyqteEyTBAgMIWObka3uLiYq0BXV9f2\nVAoANobADgDKmkQiMZvNZrOZ/lN4dh02DSsW4Sl0gUCAZpzJqrDRcwAoCgR2AGJGd1h3uVyx\nWEwmk5lMptbW1vKcahaPx202m9frjcfjKpXKYrFUVVVlFhNY1bvhs5A/uVwu8KxwRkC/358M\nxAGgxBDYAYhNIpFwOp1+vz8UCq2trSUSCfp4LBaz2Wyrq6uHDh0qq8wmhJBAIHDhwoXUcGFp\naclqtfb19aUlyNDpdHRwNvMgBoOh3P6uymU2m3Pt7qrRaIRnZCa/cgBQeshjByAqPp/v5MmT\nw8PD8/PzDocj8xLL8/y5c+fW1tZ2pHpZcRyXFtVRq6urMzMzmeX37t2bOX9Oq9Xu3bt3u6q4\n+wgMxTY3Nwt3+pZnlzDALoEeOwDxiEaj586d27C/hOf5wcHBwvrtotGo1+uNxWJKpdJgMBRl\nqanNZss1tLe4uNjS0pL2LjKZ7MiRI3a73el0JoeYa2pqWBZ3qkXgcDgmJycF9pdbWlrq7+9X\nKpVZy9A5kdtZQQAQgsAOQDxGR0fzHAXjeX54ePjyyy/P/+CJRGJ6enppaSn1LWQyGZ0PV19f\nn7kfVDweDwaDPM+7XC6HwxEKhViWNRgMTU1NqfPnfD5frjflOG59fT1z5hzDMFar1Wq15l9/\nyMf4+Pjy8rJwGZ/Pd/bs2c7OzpGRkczvW1dXl/D8PAGJRILjOIlEghgdoGAI7ADEQ2ChYqZI\nJLKwsJD/bhMTExOZk65isVgsFvP5fHNzc/v27UuGa9FodHJy0m63py2QTCQSa2tra2trnZ2d\nybcW3vJ1sxvClpu1tbWVlZVAIMAwjFarbWho2MrOZpFIhHaXbse2qsvLyxtGddT6+vry8vLh\nw4enpqY8Hg9tZZ1O19bWZjKZCnhrj8czOztLD8WybHV1dXt7u0ajKeBQALscAjsAkdhUVEdN\nTU01Njbm2r4zld/vzzWVnorH4xcuXDh27JhSqYzFYmfPng2FQsJvbTQa6VQ54T0MhJ8tcxMT\nE0tLS8l/BoNBu91eX1/f09Oz2UPRGYf0U2UYxmg0dnZ2FjEPMM/zU1NT+Zd3uVxdXV0HDx6M\nx+PRaFQmkxWc49put4+MjCTvAejqH7fb3d/fj9UwAJuF7m4AkVhdXd3sS3iet9ls+ZTMZ7FF\nIpFYWFgghMzOzgpHdfStR0ZG6P/X1NTkKqbT6Sp3Jv7KykpqVJe0vLw8OjpKCOE4LhAIrK+v\nbziAPjs7OzIykvxUeZ53u91nzpzJtZduAfx+v3DuuqwvIYRIpVK1Wl1wVBeLxcbHxzNT33Ec\nNzo6ipR4AJuFHjsAkdgwlsrK7XbX1dVtWCx1Uy8BdLsCh8ORT+FgMOhwOCwWi16vb2hoyIyB\nJBJJd3d3PocqT3Nzc7meoutFvF4vDekkEkldXV17e3vWxSg0GWHm44lEYnx8/NJLLy1KbfNs\n4lRFibqcTmeugDIUCvl8vnw67RKJhMvlotuTKBSKYDDo9/tZllUqlWq12mKxbMfINUB5wncd\noOLFYrGFhQWBJQgC8pzBlud1keO4RCIhnL021czMjFKp1Ol0XV1dKpVqbm4uFovRpwwGQ1dX\nV+VuC8bzvMDCUkJIaio+juMWFxd9Pt+hQ4cy1w04HI5cIdT6+nogECjKgGwBoU9ROlOFd/4N\nBoMbBnZra2tjY2MCgenk5GRPT49AxzCAmCCwA6hswWBwYGAg/1gqTZ57cFVVVQn0P6UejWVZ\nlmXzXJy7vr5++vRps9nc19fX1NTU2NgYDAbj8bhSqRTB5mCb7dDy+XyLi4vNzc2EkPX1dafT\nGYlE5HK5cMgeCoWKEtjpdDqJRJL/UhWVSlWUfT6EF8BuuDzW6/UODg4Kf9TxeHxkZEQul6tU\nqnA4TMeO85laClCJENgBVDCataTgqI4QYrFY8ilWVVWl1WqF92lNHk2v1wtsIZ/J6XQODw/3\n9/czDCOahZAMwzAMs9nYzm63NzU1TUxM5Lk6lRAikUhoZ1XBSUaSx2lpaZmens58KvMPkUgk\nmZuCFEY4Kt0wZp2ens7nQ6a5G5NjvjKZrLm5uampaSt/AsdxXq83Go3K5fJi5XQE2DoEduUl\nHo9LJJKi30pGIhG/359IJNRqdRGX0cGO8/l8GwZbAhQKRSwWO3/+PJ2cpNPpBJJxHDhw4JVX\nXhG4iGq12vr6ekJIY2PjpgI7QojL5XK73Vk3h91uXq93aWkpEAjwPK/RaOrr66urq4tyZLlc\nvtmY2+/3v/zyy5ua7jY0NES72eRyeX19fUtLS8FJ4FpaWmKx2OLiYmorq9XqtrY2OlK8HblI\nTCaTSqXKOkO0qqpK+F2Wl5fzXz6SOpMvFotNTU2FQqEClidTCwsLs7OzyWPSsLilpSW1DJ2Z\nIJVK0TsIpYTAriyEw+GZmRk6iZhlWaPR2NLSspVkV0mxWGxiYiJ1jo5Wq+3t7a3cqUuQarPx\nUyraPTY8PJx8JBQK2e329vb2tOsTpVAoent76XLOTDU1NT09PSzLrq6uXrx4sYD67EhgNzc3\nl9pHRddzNDY2dnV1bf3gDQ0NWTvAhG12EUNy8DQajdJUcP39/QXHdp2dnfX19U6nkw5ZVlVV\n0UapqanhOC4Wi8nl8uJmD2ZZdt++fefPn0/7w9VqdV9fX65XJRKJ8+fPb+X7TwhZXl6ura0t\nIKPK/Px8WmoYjuOmp6cTiURbWxshxOFwzM/P+/1+nuelUqnFYmlvb99ilypAnhDY7bz19fVz\n584l54zT5V1ut7u3t7e2tnYrR6bnPpqSICkQCJw7d+7IkSMajSaRSPA8jxGEypV/ipO0DaCk\nUqlEIsma+m56elqv12eNsWpraxmGmZqaSnZESSQSk8nU3d1Ns104nc5kEpNU+cy622yuja1z\nuVxZA6/FxUWdTrfFXx8hpLGxcWZmpsQJOzweT3KiXmHUanXWl0skkm06V2i12ksuuWRxcdHt\ndsdiMYVCYTKZGhoaBN6OJkbe+lvb7fbNBnaxWCzrFsaEkLm5ufr6+pWVldQC8Xh8ZWVlbW3t\nyJEjFZ2UESoFArudNzo6mozqknien5iYqK6u3spN3srKSlpUR3EcR6++dBRPoVDU1tZm7sgJ\nZc7tdq+vr+dZuKurS6FQ+P3+SCSyvLwcjUYFAqmlpaVcnWdWq7WmpoYeRyaT0Rn3yWcnJyez\nviqRSDQ1NXm9XoF1AAUnQitY1iRz1OLiYtbAzu/3024YjUZjMBiEh9gkEonFYrHb7UWo62bY\nbLatBHY7Qi6Xt7e3b1gsHo/TfHv5z0EUtrS0tLy8LJFI6NJstVq94UtcLleuuxSe55eXl7Mu\nM4pGoxMTEwcOHNhqjfMWCAToDJx8vqsgJgjsdtj6+nrW2IsQwnGc3W5vbGws+OBOpzPXU6kT\nsyKRyNzc3Nra2qFDh5DtqVLwPD8+Pp5nYblcXlVVJZFItFrt6dOnNxzsE563xzBM1uWQoVBI\nIJdeLBY7ePDgyy+/nCugLGwrqq3I9dMjhNApd6nXwlAoNDo6mjqjS6VS9fX1Cff3dHV1eTye\nAlLEbUVhGQ3LHMdxU1NTKysreS64zhPP8zzP03GSkydPtrS0bBhfCrem2+3O1UfrcrnoSovC\nq5ufSCQyOjqamk9HpVL19vYWZXqPAK/Xm7aWi2EYurKktbVVNOuiyh+u4jtswxxOWzn4piZu\nBwKB6enpYuWD5Xne4/GEw2GGYXQ6HX7SxeL3+5eWloLBIM/zeV6/GYbp6emh/WperzefxRb5\njx4mEgl6rWJZVviCF41GJRJJe3v7xMRE5rNWq1U4d0Y4HKZpUIp475H/nxmPxwcGBtLy0oVC\nofPnz9NZDbleKJfLGxoaco3cbZP858DxPE8nfiQHQMtzCy+e54eGhgrYNG+z5ubmlEolXQOU\ni/A3UKAjnP5mCwjsotEond2YT682x3Hnzp1LOzkkv6vbt3juwoULmfvT8DwfiUTsdrvdbmdZ\n9rLLLsNEwxJAYFfWttJ5Tndn39RLlpeXLRZL/hPYOY5bXl52uVyxWEwmk5lMprq6OqfTOT09\nnXYJrKqq6uvrK3pmskgkQsMUnU4n+vOFx+MZHR0VznmbSafTdXZ20jv1cDica6g0TT6BuNfr\nnZ6e9nq9tGerqqpK+HJIr0kNDQ08z8/MzCSvfwzD1NfXd3Z2EkJCoZDT6XS5XH6/n+M4GnjJ\n5XKe52nUyDAMXf1TlOuTSqXKFYwqlcrUX9/CwkLWT57juJmZmX379gm8S+mHwAQ+HLrdBcdx\nKpVKrVYPDQ2l9kHOzc3V1NT09fUVd3nE1i0tLZUgqqMmJydra2sFPgHhfi+5XC4wQSLzy+Dx\neObm5pIrjtVqtUqlotkcZTKZVCoNhULJO3y9Xt/R0SFcgcXFxay3fIlE4tSpU9XV1R0dHbm+\nIdFodHV1NRAI0BvympqaDUPJ9fV1m83mdrsF+r+TFXj55Zff+ta3MgxDt9FTqVSiP2/vCAR2\nO6zgHE6xWCwSiUil0qyzcWOx2JkzZzY7AMTz/MDAQGdnZ1NT04aFw+HwwMBA6hnE5XKlXrBT\nud3uc+fOXXLJJcn5WDzP2+12GhTK5XKz2WwymfK/BIbD4fHx8dRzvdls7unpEdNpgobmdG/1\nhYWFPGOyNH6/3+PxGI1Gj8eTmsdLWHJ6WTweZxgmc/Klw+EYHh5O9njRjh+PxyOXy3N965I3\nDI2NjbW1tW63m87SMxqNCoUis0GTUjueeZ73+/2nT5/ev3//1odua2trcyXLSJtgJ7BV7oa7\n6JZ+vnzW+RvxePzixYurq6vJVsu6osVut0ul0oKTgBRFLBYLh8NyuVyhUIRCobGxsaKsk8gT\nx3EXL14U+ARUKlVtbW3WTZYtFotOp0sdA03FsqxEIgkGg0qlkgaOs7Ozqb25NDGeQAIXn883\nMDCwd+9egfSTwhGwy+VyuVxSqbSzszNtL0GbzTY+Pp78SqysrExPT+/ZsyfXDy0cDg8ODm4q\n3RLP86+88koikUgu5TaZTHTXmfwPAhtCYLfDVCqVyWTKem2Qy+VZf72BQGByctLj8dATtFKp\nbG1tTfuJ5rMLey5TU1NGo1E4HwodGcl8C4G4IRQKLS4u0jwakUjkwoULqWeElZUVmUzW1dVl\ntVo3rGE0Gj179mzaQLPT6VxfXz969KgIpgm63e7p6enkOoN8MgMLmJmZUalUk5OT+Ud1JpNp\nenp6ZWWFRmlqtbqxsbGhoYEWiMfjWXdtp4uscx12fn5eq9XS7xVNAEEfdzqdaV+GDdGv31vf\n+tZc3Sper9dmsyWT89XX12e9ctAO5sxfn8FgSFt8IHCPlEgk4vG4wLfOZDJJpdKSrfk1Go0c\nx6XN5aKfWFrAkWuy2srKSmtr647s/GGz2SYnJ5NDDbR9izupLh/Ly8tms7m6upp+Pej+HyaT\nyWKx0JvPnp6eRCKRtiyGbqASj8fn5uZybeDx6quvktf77RiGKeBPo5Nrq6urc611y+d+Ph6P\nj42NTU5OGgwGup1uPB7PnDAQj8cvXLigVCrr6uqamppS37GwvgP6wtR/rq2t+f3+7VgvHAwG\n6VlFq9XmsyZGTCr+EigCHR0dbrc77RdO56e73W6TyZR69aJ3bKlnjXA4PDY2FgqFUuf85p8F\nIxNd2CV8y+7xeDbseM+0trZGA7vh4eHMC3ksFhsZGZmenu7v7xf+Hc7NzWWdPhgKhebn5/NZ\nW1fO7Hb7yMhIaoS0laiOmpiYyCewUCgUra2tNTU1Z8+eTX3TYDA4MTHh8/loXjHaz5r1CLFY\nrLGxcWVlJfPCRrc+O3r0aGqMNTY2trKyUsBflEgk5ufnW1tbk/+ko7dKpXJ5eXlhYSFZ0u12\nLy4u9vb2Zt4zMAyzf//+hYWFpaUlOtKaK8evTCbLNWOVdsMIVFUqlXZ1deXK/7d1EolEoVBE\nIhH6mXs8Ho/Hw7Jse3t7suvd6XTm6kbKxPO81+st8c6qPp9vdHQ0bVZx6UO6pImJCYVCkdp5\nZrPZdDrdgQMH6IzSvXv3Njc307BPoVBUV1fTSaISiWTPnj0jIyOZP4Hkn0N/3QXnwYnFYm63\n22w2Zz6V/45whJB4PL5hfzN5Pc0q3dbZZDI1NzcrlcqFhYViLQmKRqNTU1N79+4tytEIIZm9\nvEajsbe3d/f0CyKw22E8z4+NjWWev3iedzqddFlrVVVVa2srnVcxPj6e9ac7Pz9vtVrp1Cia\nR3QrtdowiUYBUR15/VbS4/EIjDWEw+GzZ88eO3YsObcjGo16vV6JRGI0Gunl1uFw5Hq50+ks\nt8DO4XAks/bTrIFms7m5uTnrOHs8Hp+YmCh65rN8ojqWZY8ePSqXyycnJ7OGkjabzWw2WywW\n4TU9SqWypqYma7gWj8dnZ2eTWWfPnz+/lYlTy8vLDocjHA7TnkKBDy2RSIyOjmq12sy5gwzD\nNDc3Nzc3x2IxnudzDeVXVVXlCq+NRuOGUwhqa2tlMtnU1FTyl5Vrt7He3l65XL7h5qdJLMse\nOXJkYmIiMySanJxkWZb2swoskM+qxDkF00b2Nyvrh1nAfm5e4GfOAAAgAElEQVSpwuFw5qxK\nv98/PDx86NAh+k+dTpd1ZMNsNtO0fB6Ph24+sZVN/7IaHByUSqUmk4nmPXY4HE6n0+v1Fv2N\nUoXD4aWlJZvNduDAAYGTcAGcTmcikcjVAR+NRmnGbPrXKRQKtVptNpuzdpNHo9Fz586lfQ4e\nj+fcuXP0/FbEapctBHYlRXvpHQ5HKBSSSqVGo1Gv1wvv8E0IcbvdHo+nr69PYEiOTlmjSc9Z\nlt3iSW3D1xZ2cBqrbThdJhaLvfLKKx0dHRqNZmhoKDVIlUgker1e4E5xO85rAltOBYNBr9fr\n8XjolMdIJBKPx+liAro1XGaEzXHc6urq6upqcuhBoVCYzWaNRqPRaHw+3xaD8oI1NzfTs17W\nyUOUzWazWCwb7tou0DmUjOS2Ph2efuB5FuZ5fmFhobe3N1cB4Unizc3NNpsts2lYlqU/ug2Z\nTCaTyRSJROggKe2gSr1JYximvb2dzqk4evTo4OBgamBBl5iEw+HULhaNRtPb2xsKhXL9pmZm\nZurq6jZcsJyplOOwsVhsbGys6OerbcoLTe9LU9cOJxKJQCBAe4uTfUIqlaqrq8vlctnt9sL6\npDcUj8fpmWQ7Di6A47jh4eHihv6JRCIYDGa9111YWKBbeqQ9LpVKe3t7M2cr5RrPoVm9irKj\nTPlDYFc6kUgkdRV6PB7POr8nK9qxJ3BZIinJq+jKQeFONbpDea6Rjg0XRRbWp007HfPJ4cJx\nXNakGBzHCY8oxePx5557jmEYo9G4b9++aDS6vLycjMmMRuPa2hpdkCWTyegSYOE/NuuWU3q9\nvra2lh4566t4nt/wxJe8bIfD4WQX5g4mEaXDdsKLqWnbCc+/1Ol0AkdIPlXAXltbVFg3MyWX\nyw8ePJg2r1Qmk/X19QlnaUmjUChozGSxWPR6vc1mo125Wq22trY2OQNBq9Vedtll6+vrdrud\n4zitVpvMVR4KhehL1Go1fWuBDdxisVggENDr9ZuaeErvOfMvv0UOh2ObOgglEonwvM/CzM/P\nt7S06PV6nufn5uYWFhaS9ddqtd3d3QaDIRqNpq04FpPtyMt46tQpq9W6Z8+e1AdXVlZyLRqL\nx+NDQ0PNzc1tbW2pt5oCndNLS0srKyv0+lhfX5/PfO4KhcCudEZHRzNXG2wqYZjwnR+dcd/Y\n2CiXy5ubm1P3AM3EsmxdXd3i4mLWZw0GA8dxAjOHqqurZTLZpvqWGIYJBoOnT5/Of7OEgvE8\n73a7T5w4QVI+YY/Hk7bTQLKfg4a5UqlUq9XK5XKpVEqTrkWj0ayRt8/n27CfteCab8dhCSES\niURg/o1UKqXXfuHIkj5rNBo1Gk3WdtTr9Xq9XiaT5Xov2jEWi8VKv4HYpqYfZdJqtceOHXO5\nXLTp6WCQ8Oy6UChEO3KyxlUKhSLrnrxJGo0msztQpVKl3VYJ/wzpNbiqqir/DTC6urpKuQnN\nFrN1CuA47tJLL03m71CpVKmTLwtGJ8nQZQdpHWaBQGBgYKC/v59mAtr6e+0qq6urUqmUruSg\nZ+MNb//m5+fX1tb6+/uTfcwCQSfP86nzUF0uV29vryg35EBgVyI+ny//ycu5eL1egTHWaDQ6\nNze3vLzc399fU1MTDAYF0qLSa4bX683ajTE2NjYxMVFXV9fe3p71mkQTImxqWgydNZhn4aLY\nVN1oprSS5coqMYVCodVqBbqHkxkNpFKpSqXKtaSajpUwDEN3bU+bhKRSqegM6Orq6lw7Pkkk\nktOnT282G19RbH3qNMMwdER1w5KLi4vz8/N0SIgm+evs7NymNN3Cg8i0n6+2tnZhYSFrCJWa\n9EShUHR0dIimJ4NlWY1Gk5x06/f7ixLYUbnyktAJnTvyDRcBgV3+cllfXx8aGrJYLMklUHmy\n2WxGozEtoYQ4ILArBZ7nz58/v/XjJBKJXLlRkmKx2NDQ0LFjx1pbWxOJRNZdC+lWBFKp9PDh\nw7Ozs3TOX1oYlEgklpaWfD7f4cOHs86pslgsBw8epFk56Kwyg8HQ3t4eCoWmpqZKvIcSCGts\nbBSe2ph6LW9oaMg1/JHMeKJWqy+55BI6Ty4ajdJVgcld21taWux2e9Y+uR3c7YphmOnpab1e\nnzVjIs/z9KqgVCppBhO5XE6nK9AlL2mF6Ua9SqWyqqoqkUg4nc5gMLi2thaLxeh8+dTCLpfr\nzJkzhw8f3o68/yaTKVfXu1wup+PmLMv29/cPDQ2l3sjRCYINDQ1+vz8ajSqVSp1OV1bplLco\nbReNkmVdRlRXYgUPoaysrCCwKw/BueO/+NkvnnrhzOD4nMPjD8Zlap2hpqVn35G3vfuDN9/4\njpbyW9G8uLhYrIGnYDC44cKIcDhMM0G0tbWFw2G73Z5anmEYjUZjt9sXFxfX1tai0SjDMCzL\nZh2o8vv9i4uLuTYUNxqNhw8fjsfjNI8u7dszGAy1tbW092v7UjxA/iQSSUNDg/DAUOpk+cbG\nRr/fnzbGxDBMR0dH6pVSKpW2tLRkHUxUKpX9/f0jIyNltWnp2toavSlK/QUl45gN+3fpeL3w\n8lsBHMeNjo5ecsklBbxWWHV1dXV1ddbO5o6OjuQfqFQqjxw5Qldi0Z0nLBYLbfdSzqjLpNfr\nhecJFIZhmGQ2HEqlUpUyoSCUv61nkipPFRbYOZ77+kc+fs8zS2/uDVoPuB0rs8N/+sO//+Br\nX7767n97/CtXZUnws4NyDUsVIM8r5ezsLMMwq6urmROheJ4PBAKpX+jkzIOs7HZ7rsCOSk7P\nSiWXy3P1IkCJcRzn8Xi0Wm2uoXCWZVOHKRmG2bNnj8ViWVlZoTcSer2+oaFhU6sE9Ho9nZFG\nV66srKyUTzdGamS22fH6rbxvIBCw2+3bkR9u79694+PjqbPopFJpR0dH2v4ZDMPQKLDoFSiY\n0+nMmvJtiyQSSXd3d1rAyrJsfX39/Px8cd8LoNxUUmAXH7z32uu+ejZCtJ3XfuKWD77z2P6O\nBpNeKY2HfWtLU4Mnn/7Fjx/5/eQzX73uWtnpP921r4z+tG3NLZQV3Y6zKDPxC7ser66ubmUR\nIhRXIBCoq6ubn5/Pug66rq4uc7K8xWIR2LYoH8kZaYlEQmC6565y8eJFs9lc9DFBqVS6d+/e\n9vZ2t9sdj8dVKlVVVVX5b8ESCoWGh4eLm4VYKpW2trZardasGcva2tqCwWCJJ/tC2dqmaa87\nrtx/+SmCv/z6vWcjpPZ9D730+C3tb86y1NGz/9I/e9+tX/jCjz985a2/OXPP1355x89v2l17\niGQo1vrKwi5CAikYoPQSiYRSqezr6xsdHU27jhoMho6Oju1+9209fgWh2baT2+YWV+aC2TK3\nuLhY9O8Gy7ICW12zLLt//36Hw2G324PBIF22XNwKQAWpr6/f6SpsiwoK7E4dP75OyME7v5Me\n1b1B0XHLt+/43m/uOv/886fJTW/L46Acxz311FPCnVKzs7Nkaxcnmni24JfvrLQJyPngeX6n\nsuxCVjRBWk1NjUajWVhY8Hq9dJZVTU1NfX39ds+Xl0qlm02OsynJnTdTb2boHLKsi4d2VjAY\n3KbAruJsx1lReI0wleyNHhgY2HqyAqhQJpMpba6CaFRQYEdPAo2NjYKlGhsbCTmf9wnjueee\nu+GGG/IpuZUZY/X19RUa2DEMI3D7mwtugssK3XqI/j/dq6D0dbBarZv6BQmsEOrr66NZ9KRS\nqcFgELiQ090myq2/sGRrM8vfdjTNpuYPaLXaCgrsjEYj3RB5pysiBgzDHDhwYKdrsV0qKLBr\namoiZOrUiy+Gb75GmatQ+MSJ04QQ4dn+Ka666qonn3xSuMfut7/97SOPPPLRj350c/VNUVtb\n6/F4BHZqKk8sy/b09GxqyjxFd9MqbCyYLtrleb4EeYx3id7e3h2fbtXa2upyuQRS0TIMI5fL\n6QJJjUZjtVrn5+czY8GmpiZ6ky28+0XymEajsdxyE25fdo+Ko1Qqcy1LZFm2t7c3Eom43e78\nW5BhmE31wdTV1RUxs13+6JaDNESjuaKkUqlwlzbNckD/3+fz0X73/Gdv19bWrq6ubl/+84qT\nTzbKylVBgV3/jR/q/tY3Jh645UN9jz/wPy63ZlQ9vvryDz59ywOrhOm58QN5huISieT6668X\nLrO8vPzII4/k08OfC8MwfX191dXV4+Pjhd1v0VT+WW9wFQrFdizOaGxsbGpqSu5nuikMwygU\nis2uujhy5EhqEGmz2SYnJ1NPdmazORaLpabtUCqVvb29VVVVk5OTJT5B19TUhMNhv99fzudK\nuVy+b9++AgbTi04mkx0+fHh6enp1dZX+BFiWpVnmDQaD1WpVq9VpI8JdXV000TG99ut0utRd\nevPU2dl56tSp8mkjg8GQT0i6S1it1lzrGCwWC82tWFdXd/LkyTzH8bu7uzc1y1Cj0TQ0NBSQ\nFHeLDh48mJli5vz581lDWLVa3dPTk1per9fTTOBOpzNz9YlUKuU4LvmdZ1mW7rtlsVjGxsYw\nSYYQwrJsd3f3TtdiG1VQYMcc+fKPv/jUu/7+/H/eeUXLvfuvePul+zoazDqFhIv4nUtTQ68+\n/9KgPUKI5uCXHvrykZ2ubRZWq1Wj0Zw7d25TiZQYhrFYLB0dHXTX8LTfsNFo7OnpuXDhQloa\nFLrIseBO++bm5i1OqN+zZ8/Zs2fzL2+1WtO6Bmtray0Wi9vtDofDdNCNnrIDgYDP50skEmq1\nuqqqikYD7e3tKysrxc1QlavTUSKRJPO30dyzdMoa3WMqGAzG43GDwSCXy4PBYCwWk0qlFy5c\nKEGyD51OR/fPoOlLWltbdzY/WRqZTNbT09PV1RUOhxmGUSqVG87ty3ObBwEajebAgQNFSQ++\ndSqVKm0rzF2upqZmdXU1M7ajG2DQ/5fJZJm79JI3JyBkWdZgMLS1tRVwD9PV1aVQKGZnZ0sz\nZE+Tw2f9Ye7du3d4eDgttqurq+vp6cn1SzGbzUePHp2fn6eroZVKpcViaWpqisfjbrc7Fosp\nFIqqqiq6QNhsNl922WUul2t9fX11dTVX93kyXyMhhGVZmupoaGhoq3953goe7UljNpt7enoC\ngcDQ0FDqpVChUOzfvz81c6f4FOcTLB3fhYfvvvMrDz63mPUqqWy86rav33fPpw5sevBQyHe/\n+90777zzxIkTV1xxxdaPFgwGJycnXS4X/eTlcrlcLqd3UUqlUqVS0d8V3QNKpVIplcpkKopg\nMJg2872uro5hmHg8vri46HA4wuGwTCarqqpqbm6OxWLDw8Op8QTLsslcXAqFQq/XRyIRGogk\ny9Css01NTVufUL+6ujo6OppP3te6urqurq4tzj0KhUJnzpzJ/35UqVQqlUqaw4/e4MpkMjom\nUl9fn5ypE4lE6C4a6+vrNDt/VVXVZrtvOY6bnZ1dWlpKPb/QhpZIJDTdv9vtLvjSwrJsa2ur\n8Maju1k8Hj99+nQpsyVLpVKdTheNRmmbKhQKk8mU3JkDkujuOMkU7gzDmM1mGmylFuN5fm1t\njd7RaTQas9m8lSGUrNWYnZ1Nm5FJz8y5zmCp8YdEIqHnE3oSo5XUarVTU1Opwyk0u57wYLHH\n43G73fRUYzabtykfR9rHTgiprq4W6O8Mh8OvvvrqpnoK6OY0c3Nzc3NzeYYZUql0z549NEFS\nIpGgw9PhcDgUCtGrm8Viqa6uXl1d9Xq99LY516EsFsuePXuSzeFyufx+P8uyOp0u2R2wRS+9\n9NKVV15533333XHHHVs/WnFVWmBHCCEkEZg9+dwLpwcn5u2eQIiTqLTGmubu/UffftWxFm3x\nJyYXN7Cj4vF4JBKRSqXbet9A+5NoPjmdTlddXc1xHO0ASx1j5Xne5/NFIhGZTEYnORWrAolE\nwmazORwOus8Sz/O0702pVAaDQXo7mLyhLAqHwzE3N0cv4RKJRK/XWywWjUZjs9nW1tY4jpPL\n5Varta6ubkemncXjcRrMZX02EAiEQiGNRhOJRPx+P+2VJITQXczpZ0hfbjQa9Xo9nZ2j1+sN\nBgOm5G/I7/dPTU3RD5akJBxWKpVWq1Wr1dI4jO4nRndksVgs9DLDsmw0Gg0EAisrKz6fj14O\n6ZgXbRG5XF5dXS2TyYxGo0ajEeXO4tuH5/lgMMjzvEql2sHYNxaL0a3haBdgVVVVNBq12+2h\nUIhlWYlEolAo6FmFBkC0g1wqleaqcyKRcDgcdNNFtVpdU1NTxHPd1iUSiWAwSEcb8gmUXS7X\n3Nwcnf2s1+ubmpr0ej3HcfTzofuhcxxnMBgaGhqSB4xEImtra8lOB4lE4nK56A8nHA7Tl6hU\nKqvVWlNTs9nWX11dnZycjMfj9GQok8nMZrPVai3B/BMEdpVtOwI7AAAAqFDlHNjhLh8AAABA\nJBDYAQAAAIgEAjsAAAAAkUBgBwAAACASCOwAAAAARAKBHQAAAIBIILADAAAAEAkEdgAAAAAi\ngcAOAAAAQCQQ2AEAAACIBAI7AAAAAJFAYAcAAAAgEgjsAAAAAEQCgR0AAACASCCwAwAAABAJ\n6U5XoGKMj48rlcpcz8ZisZ/85CctLS0si1hZhBKJxOTkZGdnJ9pXlNC+4ob2FbdEIjE3N/eX\nf/mXMpmsZG86Pj5esvfaLAR2G6PflVtvvXWnKwIAAABZ3H///aV/01KGkvlDYLexm2++OR6P\nh0IhgTIXLlx49NFHr7zyypaWlpJVDEpmbm7uxIkTaF+xQvuKG9pX3Gj7fvSjHz1w4EAp31el\nUt18882lfMd88VAMTzzxBCHkiSee2OmKwLZA+4ob2lfc0L7ihvZNgwkHAAAAACKBwA4AAABA\nJBDYAQAAAIgEAjsAAAAAkUBgBwAAACASCOwAAAAARAKBHQAAAIBIILADAAAAEAkEdgAAAAAi\ngcCuOFQqVfK/ID5oX3FD+4ob2lfc0L5pGJ7nd7oOYsBx3DPPPHP11VdLJJKdrgsUH9pX3NC+\n4ob2FTe0bxoEdgAAAAAigaFYAAAAAJFAYAcAAAAgEgjsAAAAAEQCgR0AAACASCCwAwAAABAJ\nBHYAAAAAIoHADgAAAEAkENgBAAAAiAQCOwAAAACRQGAHAAAAIBII7AAAAABEAoEdAAAAgEgg\nsAMAAAAQCQR2AAAAACKBwA4AAABAJBDYAQAAAIhEJQZ2nn++hsnq2gc9my9GCCFkffSxu2+6\notuqVyp1NZ2X3/ilnw35s7yzCIpVgOK27y77GlSGzTQKIdHFZ7/71++/rKvOqFIZm/Zc8YH/\n+4HnF8Jphcq5UXZdExe3ffETLjf5tcjvb9NmL8UwDNP8hZffdMhybpFKbF++8rh/dHX2v+Vd\nD7g3X4znvSf+5qAqvZBi7xeedYmtWGUobvvupq9Bxci7UfiE7fef79dkKfiwP6VUOTfKbmzi\n4rYvfsLlJr8W+d2tWRr2NfqP/Wb9jZLl3CKV2b6VG9jt/bvRohQLP/9XrYQQtukvvv30hDsU\ncl985jvva2EJIQ2ffiYopmKVorjtu3u+BhUkz0bh46PfeYuKEMJYLr/joeNj9vVI2DN/5sn7\n/vs7PvN4IFmqnBtldzZxcdsXP+Fyk2/7ZjH97SMMIbW3H48lHyrnFqnU9t31gZ3/sfcqCSFt\nn38p9MaD4T99vpMQIrv+Ebd4ilWMnQjsyrnhxNa+fN5t53zoOhUhRH7kq+dDuUuVc6Ps0iYu\navviJ1x2Cg7sEme+1EUI6b7rzBuPlXOLVGz77vbALv7kJ1SEkP1fG3/z4xP3HiaEKG76eUws\nxSrHDgR25dxwomtfPt+2W/ze5QwhpPazz0QESpVzo+zWJi5m++InXH4KDeyiz3zaSghz6O8n\n33isnFukctu3EhdPUAv/+rF9dTqFXF3VuPetN/3N/S+tcAUUmxocDBFiuPTS7je/rOvYsSpC\nIkNDk2IpVmmK0755FivnhhNp+5INGyV84oVTPCE177vpKrnAUcq5UXZ3ExenffM8Wjk33O5s\n30z+39z/2CqRXfXpT3a88WA5t0jltm/lBna+i2eGbYFoLORZGjnxxHduf+uBP/v2meBmi9nt\ndkJIQ0ND+uvoQ/RpURSrNMVp3zyLlXPDibR9yYaNsjgzEyOEOXrpIduzf/+Jt3aY1AqVsWHv\n22/+20dTV5uVc6Ps7iYuTvvmebRybrjd2b4Z7D+7/zcBorr+to9aUx8t4xap3PatxMCO0XS+\n+ws/+M1LQ3Ou4LpzfuT5f73r3e1K3vnCFz/wxRfDmysWCoUIIQqFIv1NlEolISQYDIqlWOUo\nZvvunq9BRcmrUQKBACHErDr72WN//qV/OzHtCkXD3uWRFx695+ajl9z+e+drxcq5UXZrExez\nffETLj95nnvfbPLh+5+NkuoPffr9htSHy7lFKrd9KzGwM3z8n3/7D//Xey/f21ylUpua+t72\n8Xt/e/KnN1oImXv4/t9HNlVMpVIRQiKRSPqbhMNhQoharRZLscpRzPbdPV+DirKJRnH+6ge/\nVH/gvt8NLXmD646ZPz3+5XdYSWT8/lvufjqaUqw8G2W3NnEx2xc/4fKT57k3Ff/qvzwwwJPm\nj9/252+Of8q5RSq3fSsxsMvG/P5bbjASEhwamtlUsZqaGkLI0tJSekn6kMViEUuxylZo++ZZ\nrJwbble0L8nSKFarlRDC8/vu/vWjd1y7t16vUptbj910z5P/8vFqQlZ+/es/EULKu1HQxG8o\ntH3zPFo5N9zubN83if7x/p9MEdL7qduuTIs5yrlFKrd9xRLYFapj/34VId5XX5148+MXT550\nE6LYv79LLMVAQDk33K5tX+OBA02EEM3hS/okqY/rLrmklxDisNkShJR3o6CJBeTZvnkq54bb\nne2byvur+x93EPYtt92yL/2pcm6RCm7fkq/D3R5rv/5wDSFE/ZFfCiVEylIsewaak/klqqmo\nYhWt4PbNs1g5N9xuaF8+W6Nwx2+3EkL2f30knlrQ/x8fryaEWP/Hi6/9u4wbBU2cVHD75nm0\ncm643dm+b1j5/jtkhMivfdCe5YXl3CIV276VF9gFHvv0sQ/f9cBvXxmatvnCQdfC2ImffeW9\n3WpCCGm6/bng5orxfPj4azmjr//O0xPucNg9+cw/JHNGr4upWGUobvvupq9Bxci7URJj3zom\nI0TRc9N3fz+07A2tO2dPPv7ld1gJIaT5c89HXytWzo2yG5u4uO2Ln3C5ybtFXjd2z35CiO7G\nX/qzHK28W6RS27fyAjv/w+8h2TCmt33zVf9mi/E8z3tf/Jv+zF3e9nw+fTO4yi9WCYrbvrvr\na1AhNtEo0fEfXVeTWVJz6G+e96QUK+dG2X1NXNz2xU+43GyiRXie57mXv9BKCKn59B+iWQ7G\n83x5t0hltm/lBXZ8xHb6l/94xwfe3t9Zb1BIFTpz28FrPvblh/5kixdSjPIP/+yuD72lw6KR\nyzXm9rd88Is/veATZ7HyV9z23W1fg4qwqUaJLT/7j7df299UrZbJVFXN/X9+6z3/cTGzV6Cc\nG2W3NXFx2xc/4XKzqRYJ/+6TJkJIy9+c5ISOWc4tUoHty/A8nzX6BgAAAIDKsttXxQIAAACI\nBgI7AAAAAJFAYAcAAAAgEgjsAAAAAEQCgR0AAACASCCwAwAAABAJBHYAAAAAIoHADgAAAEAk\nENgBAAAAiAQCOwAAAACRQGAHAAAAIBII7AAAAABEAoEdAAAAgEggsAMAAAAQCQR2AAAAACKB\nwA4AAABAJBDYAQAAAIgEAjsAAAAAkUBgBwAAACASCOwAAAAARAKBHQAAAIBIILADAAAAEAkE\ndgAAAAAigcAOAAAAQCQQ2AEAAACIBAI7AAAAAJFAYAcAAAAgEgjsAAAAAEQCgR0AAACASCCw\nAwAAABAJBHYAAAAAIoHADgAgD/HH38cwTOeXBopYEgCg2BDYAUCF+uNtRiaFRKmztB265pNf\neXTQt9NVAwDYIQzP8ztdBwCAAvzxNuM7H/JmeULWdduTLz9wrXmb3z/wk2t1n/pDz92DY/9n\n3za/FQBAntBjBwAV7ci3Z3ie5/lE1Ls8+vQPP7lXSWIXH/zM/zmR2OmaAQCUHgI7ABAFRqav\n673msw//6n8fIYQs/O53wztdIwCA0kNgBwBiwnQfPqghhDgcjjcejC0+972/uuHSDotOIVcZ\nG/a846N/+9hg2iAut/Lyg1/84OV9rVadSm1q6j1yzSe+/thpR/z159+8JGLxvisZ3af+QAgZ\nv2d/cprfNf/sySi5iTrYvn8lwzBHvzkbnvzF/77pLR1mjUJpbDzwnr9++EKgmJ8RAIiYdKcr\nAABQRPzFcwPrhBCLxfLaI7EL33331Z//o/P16cTR5dHnH7vn+V89cfznL95/vZU+6P7tZy69\n4ceLyeHbxXHX4vjZZ56Y1oV/8hdbr1VedXj9ueF/eNc3v//C6zHf0uBT/3TLiZHwhT9+tmXr\nFQEAsUOPHQCIAh/z28afvf+2D/zdGUJI03XX7qUPD33z5v/5Ryev67/1h8+OLHoDa1OnfvG3\n19RLIhf/5eOffcJNX7z+Hz96ZDGh2H/bQycmVn3hiN82OfDco1+7+ZhVnv3dGu88wfsffhch\npOfuQf51f7zdmLVqedXhdYM//dHkkbsefWXS5g+6F07+9L8fUBLfM/d875UifVAAIG48AEBF\nevpWQ/bTmqzztqccrxV68Y4GQkjVf/uZI/Wl0TP/q48lhLnqBys8z/P8+sPvYQm59P+dz/1u\nscfeSwjp+F/nko9kBnY5SuZXB55f+acrCCGk+4uvhlLKxV/462ZCyOVClQMAeA167ABAHFi5\nprql/88+/rc/PX36getey3ViO316iRD1+277yJuSn8gOf/bWSwnhT506QwghRH3dx/6bibz6\njQ9/9h8e++PArDtazIrlWYfXNf/FBy9RpvxbcuDAHkKI0+ksZqUAQKQQ2AFARXs93QnPRQJr\nswPP/Ovf3XzgjZ48r9dLCGlsamLSXkYfCng8HCGEEPiHSRMAAAK8SURBVOuHf/rq//eN96hf\n+tan3nmorVpb3Xn5+//6vj/MRIpQw3zr8Jo3Zge+RqFQEEI4jiMAABtBYAcAImYwGAghiwsL\n6ZnY6UNao1Hy2gPK9vd86eGnL9h87pmB449/8xPdi49+/tpD1//z5JZzuOdfBwCArUJgBwAi\nVnv0aAMhwd88+NibBjLjA/c/fIoQ5ujRI2kvYOTG1v63v/8zX/nJf37tSuJ9+vs/Hc91bJlM\nRggJh8PFrgMAQMEQ2AGAmF1x62f2ssT969vf+en7nx9b8a+7Zs7++qvvuf7bwxzRv/f2j9QS\nQgi5cO+7rvrU//PQ704OzdgD0ej62vTJn937yDlCSCKRcwcLRW2tkZDFZ35+fN4fFdrnIr86\nAAAUAfLYAYCYMfu/9NNvH7/6fz438ODt73jw9jeekHfc8sgPb6qm/0j4po7/5L+O/+RraS82\nX//FW/fkPPblN9xgevBfB751Vcu36ANX/8idLeNJfnUAACgC9NgBgLjJD37hD+f++I+ffc+R\nVpNGJlXoa3vf9uG7/u3kqYfeV/d6mf67/+v4I3/3mfdctq/VolWojHVt+9724bseenHgV38p\nkBVYdf19T33vtmv2NRgUkvSFEZuvAwBAETA8v+WZwQAAAABQBtBjBwAAACASCOwAAAAARAKB\nHQAAAIBIILADAAAAEAkEdgAAAAAigcAOAAAAQCQQ2AEAAACIBAI7AAAAAJFAYAcAAAAgEgjs\nAAAAAEQCgR0AAACASCCwAwAAABAJBHYAAAAAIoHADgAAAEAkENgBAAAAiAQCOwAAAACRQGAH\nAAAAIBII7AAAAABEAoEdAAAAgEggsAMAAAAQCQR2AAAAACKBwA4AAABAJBDYAQAAAIgEAjsA\nAAAAkUBgBwAAACASCOwAAAAARAKBHQAAAIBIILADAAAAEIn/H9jH+0wpdR1VAAAAAElFTkSu\nQmCC", + "text/plain": [ + "plot without title" + ] + }, + "metadata": { + "image/png": { + "height": 420, + "width": 420 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# GWAS\n", + "print(i)\n", + "plot_dataset(lapply(gwas_input_list[[i]], function(x){\n", + " x[unique(output_all_effect$SNP[output_all_effect$ident == co_egene_var])]}))" + ] + }, + { + "cell_type": "code", + "execution_count": 192, + "id": "73ab0379-5bad-493c-aefd-90602502e070", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "'CD4T_RPS26___CD48__RPS26'" + ], + "text/latex": [ + "'CD4T\\_RPS26\\_\\_\\_CD48\\_\\_RPS26'" + ], + "text/markdown": [ + "'CD4T_RPS26___CD48__RPS26'" + ], + "text/plain": [ + "[1] \"CD4T_RPS26___CD48__RPS26\"" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "co_egene_var" + ] + }, + { + "cell_type": "code", + "execution_count": 193, + "id": "1a36ca5a-505b-4580-a3d8-42a5845d3d9e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"CD4T_RPS26___CD48__RPS26\"\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdaWCb1Z3v8fNIsmRblvd9jZfYIYkTnAWSQklDQodwm1AIUCgUSgLt0IHC0N4u\nwJCBO0AXmJZpG5gboKUUBi5JgbR1MmwJBChLFoJJiBOv8r7bsiVL1vLcF+64xoui2Fqso+/n\nVX3O0fP886Lip2f5H0VVVQEAAIDwpwl1AQAAAPAPgh0AAIAkCHYAAACSINgBAABIgmAHAAAg\nCYIdAACAJAh2AAAAkiDYAQAASIJgBwAAIAmCHQAAgCQIdgAAAJIg2AEAAEiCYAcAACAJgh0A\nAIAkCHYAAACSINgBAABIgmAHAAAgCYIdAACAJAh2AAAAkiDYAQAASIJgBwAAIAmCHQAAgCQI\ndgAAAJIg2AEAAEiCYAcAACAJgh0AAIAkCHYAAACSINgBAABIgmAHAAAgCYIdAACAJAh2AAAA\nkiDYAQAASIJgBwAAIAmCHQAAgCQIdgAAAJIg2AEAAEiCYAcAACAJgh0AAIAkCHYAAACSINgB\nAABIgmAHAAAgCYIdAACAJAh2AAAAkiDYAQAASIJgBwAAIAmCHQAAgCQIdgAAAJIg2AEAAEiC\nYAcAACAJgh0AAIAkCHYAAACSINgBAABIgmAHAAAgCYIdAACAJAh2AAAAkiDYAQAASIJgBwAA\nIAmCHQAAgCQIdgAAAJIg2AEAAEiCYAcAACAJgh0AAIAkCHYAAACSINgBAABIgmAHAAAgCYId\nAACAJAh2AAAAkiDYAQAASIJgBwAAIAmCHQAAgCQIdgAAAJIg2AEAAEiCYAcAACAJgh0AAIAk\nCHYAAACSINgBAABIgmAHAAAgCYIdAACAJAh2AAAAkiDYAQAASIJgBwAAIAmCHQAAgCQIdgAA\nAJIg2AEAAEiCYAcAACAJgh0AAIAkCHYAAACSINgBAABIgmAHAAAgCYIdAACAJAh2AAAAkiDY\nAQAASIJgBwAAIAmCHQAAgCQIdgAAAJIg2AEAAEhCF+oCwsDAwMDTTz89PDwc6kIAAMCcEBMT\nc8MNNyQkJIS6kIkIdqf37LPP3n777aGuAgAAzCE6ne473/lOqKuYiGB3ek6nUwjx5JNPLl26\nNNS1AACAEDt69OjWrVtH48FcQ7DzVVlZ2fLly0NdBQAACDG73R7qEqbFyxMAAACSINgBAABI\ngmAHAAAgCYIdAACAJAh2AAAAkiDYAQAASIJgBwAAIAmCHQAAgCQIdgAAAJIg2AEAAEiCYAcA\nACAJgh0AAIAkCHYAAACSINgBAABIgmAHAAAgCV2oCwAAqbS0tLS3t4+MjOh0uuTk5MLCQo2G\nn9AAgoRgBwD+4XK5PvroI7vdPjYyNDTU0tJSUVFhMplCWBiAyMHvSADwj8OHD49PdaPcbvfh\nw4fdbndISgIQaQh2AOAHg4ODVqt1yimPx2M2m4NcD4DIRLADAD/o7Oz0Mtvb2xu0SgBEMoId\nAPiBy+Wa8SwA+AvBDgD8IDY21suswWAIWiUAIhnBDgD8IDMz08tsTk5O0CoBEMkIdgDgB1FR\nUbm5uVNOxcXFpaWlBbkeAJGJPnYA4B/z58/XaDRNTU2qqo6OKIqSlJRUXl4e2sIARA6CHQD4\nTXFxcVFRUWdnp9VqjY6OTk9P1+n4mgUQPHzjAIA/KYqSkZER6ioARCiesQMAAJBE+F+xs7d+\nuOcvB441W4Qpd+H5l2xYlRMT6pIAAABCIYyCXcMbT7xeLwrX37Ru3v8MWT585Jor7q5scowt\n0udteHDXC99byX7bAAAg4oTRrdiDj9188803P3ZwbKD1D1/f8P3KJoc2reKyrbfeuvWyinTt\nSNOe72+4/gVvW/sAAADIKYyu2E2gvvfwPX/pFcr8b+396+PrUxQhhNrz+rdXfXlHzcvbHj3y\ntQcqQl0hAABAUIXRFbsJju/Z0yiE8dJtD42mOiGEkrL+oW2bjEJU79lTF9rqAAAAgi58g11D\nQ4MQYvGaNcnjR1PWrFkkhKipqQlJUQAAAKETvrdiR7t+pqSkfH54dOMep9MZipoARLjh4WGz\n2dzb2+tyufR6fWpqan5+flRUVKjrAhApwi7YDbaeOHFCCCGMWaVCHG5sbBRiwbj51tZWIURe\nXl5oygMQufr6+qqqqtxu9+ifLpfLbDZ3dHRUVFTExNCHCUAwhF2we/X2s84a92f1/v3t9yzI\nHPvb+dlntULELl1aEvzSAEQwt9t9/PjxsVQ3xuFwfPbZZ8uWLQtJVQAiTRgFu4wl69b1TxpV\nju5rFddk/+0v2yvP/NEiTNdeuzE2uMUBiHBdXV0jIyNTTg0MDAwNDcXFxQW5JAARKIyC3Rfv\nff31062x5Fz66G8vzj7vEnIdgODxeDyjj4FMx2q1EuwABEEYBTtfZK6+5purz+QDbre7srLS\nbrd7WXPkyBHB+xgApqGq6qeffjowMOB9TdDqARDJJAt2Z2zfvn2bNm3yZeVzzz33pS99KcDl\nAAg/nZ2dPT093tcYjcbgFAMgwoVjsHNaWs2djviceWkxyuTZzqrXP+kQGUvWl6f7cKy1a9fu\n3r3b+xW77du379+/Pzc3d6YFA5BZZ+dpNjGMi4szmdjAGkAwhFmwGzz82D9uueeFo71uIaJz\nvnjjfb/8ydZl8Z9b8vZ9F125S2x+Ud15hQ8H1Gq1Gzdu9L6msrJSCKHRhG8zZwAB5P2XoRCi\nuLg4OJUAQFiFlZbfX73+O88d7XULJTou1tly4LGbvrDiuj/UukJdGIAIdtpffbw2ASBowijY\neQ787J7KPqGZd8UTh3sHB4f6ql++Z31K3bM3rL3mmYaJraMAIEji4+O9zEZHR+v1+qAVAyDC\nhVGwO7Z3b5MQSdf84qmtFYk6oZhKL/0/ez/c9e2zOnfeuPb6F5o8oS4QgNQ8Ho/VarVarR7P\n575ucnNzvVy0Yx8cAMEURs/YNTY2CiEq1qwZ9wyyNufSx9/c6bngsh3XrTPo33rysqwpXqcA\ngFlxu911dXVtbW2jG0toNJrMzMzi4uLRLatjYmIWLVp07NixCYFPCJGbm8t7VwCCKYyCncFg\nEMIx+Ydx+lcef/Xp/vOv++3V66Nf3r89JLUBkJbH4/n4448tFsv4kdbW1oGBgWXLlo1mu9TU\n1FWrVpnN5p6eHqfTqdVqTSZTfn5+QkJC6AoHEInCKNgVFBQIUdXY2CjEks/PaPK//odXe/rP\n/+5jm79svDElNOUBkFNzc/P4VDfGarWazeaioqLRPw0Gw/z58+fPnx/c6gDgc8LoGbvi1avT\nhKj74IPuKSb1C257ac+2c7UfP7z9jaBXBkBiXtrUdXR0BLMSADitMAp22rWXX5ok3Pt2vdw3\n5bxx5b9WvnLbIkOQywIgt+Hh4emmHA4He4UBmFPC6Fas0F34oxefWdOmL3FMtyL5wkdf3XPW\n7z8YEAvKg1kZAHlptVqXa+pumYqiKApvbAGYQ8Ip2Imo4nXXnaaBu5K99pYfrQ1OOQAigclk\ncjim/jnpvYMdAARfGN2KBYAQyM/Pn+6yXH5+fpCLAQDvCHYA4E1CQsL8+fMnZDtFUYqLi1NS\neAsfwNwSVrdiASAUcnJykpKSWltbBwcHhRBxcXFZWVnsAAtgDiLYAcDpxcbGlpSUhLoKADgN\nbsUCgBBCqKrqcDicTmeoCwGAmeOKHYBI53K56uvr29vbR9uaREdHj+7xSisTAGGHYAcgojmd\nziNHjlit1rERu91eU1NjsVgWLVoUwsIAYAa4FQsgotXX149PdWM6Ozu9bCYGAHMTwQ5A5FJV\n1ct+r2wFCyDsEOwARC6n0znddmFCCJvNFsxiAGD2CHYAIpdG4+070PssAMxBfG0BiFw6nS4m\nJma6WZPJFMxiAGD2CHYAIlpubu6U44qi5OTkBLkYAJglgh2AiJaTk5OVlTVhUFGU0tJSrtgB\nCDv0sQMQ0RRFWbBgQVpaWnt7u9Vq1Wg0JpMpNzfXaDSGujQAOGMEOwAQKSkpKSkpoa4CAGaL\nW7EAAACSINgBAABIgmAHAAAgCYIdAACAJAh2AAAAkiDYAQAASIJgBwAAIAmCHQAAgCQIdgAA\nAJIg2AEAAEiCYAcAACAJgh0AAIAkCHYAAACSINgBAABIgmAHAAAgCYIdAACAJAh2AAAAkiDY\nAQAASIJgBwAAIAmCHQAAgCQIdgAAAJIg2AEAAEiCYAcAACAJgh0AAIAkCHYAAACSINgBAABI\ngmAHAAAgCYIdAACAJAh2AAAAkiDYAQAASIJgBwAAIAmCHQAAgCQIdgAAAJIg2AEAAEiCYAcA\nACAJgh0AAIAkCHYAAACSINgBAABIgmAHAAAgCYIdAACAJAh2AAAAktCFugAACA2Px9PR0TE0\nNKSqqtFoTE9Pj4qKCnVRADArBDsAEWdkZKS6urqnp0dV1bHB2tra0tLSzMzMEBYGALNEsAMQ\nWYaHhw8fPjwyMjJh3O12nzhxwmAwJCUlhaQwAJg9nrEDEFlOnDgxOdWNUlW1oaEhuOUAgD8R\n7ABEkOHh4f7+fi8LBgYGxt+fBYDwQrADEEFsNpv3Baqqulyu4BQDAH5HsAOAv9NoNDodDx8D\nCFcEOwARJC4uzvuClJQURVGCUwwA+B3BDkAEMRgMqamp083qdLri4uJg1gMA/kWwAxBZysrK\njEbj5PGYmJiKioqYmJjglwQA/sKjJAAii16vX758eXNzc3d39/DwsEajiY2NzcvLS0lJCXVp\nADBbBDsAEUer1RYUFBQUFIS6EADwM4IdgIimqurQ0JDL5dLr9VPeogWAMEKwAxC5mpubGxoa\nnE7n6J8xMTHz58/nniyA8MXLEwAiVF1d3alTp8ZSnRBieHi4qqqqq6srhFUBwGwQ7ABEouHh\nYbPZPHlcVdWTJ096PJ7glwQAs0ewAxCJurq6ptsTdmRkxGKxBLkeAPALgh2ASORwOLzM2u32\noFUCAH5EsAMQibRa7YxnAWDOItgBiEQJCQnTTSmK4mUWAOYygh2ASJScnGwymaacyszM1Ov1\nQa4HAPyCYAcgEimKUl5eHhcXN2E8NTW1tLQ0JCUBwOzRoBhAhDIYDCtWrOjq6urt7XW5XAaD\nITU1NSkpKdR1AcDMEewARC5FUdLT09PT00NdCAD4B7diAQAAJEGwAwAAkATBDgAAQBIEOwAA\nAEkQ7AAAACQRhm/F2hr373x2Z+Xbh6qqG7v6B22uqFhTQnpB2eLlF1xyxbVXfqkgJtQVAgAA\nhEKYBbuuffdf840H3mgZ+dyodaivq63h2Pv//cJv7rtr3d3PPH/v2tQQFQgAABAy4RTsXFUP\nXrxh22GHiCu5+PotV1x0bnlxTkp8tM5lt/S01FZ98NrOp57eW/PGtg0XRx18/8eLw+mfBgAA\nMHthlH5su+5/8LBDZH71yXef31Jk+NxccVn5ORd+deuddz519flbXz70wH27bn/xa7EhKhTA\nXGa32zs7O202m0ajSUhISEtL02h42hiAJMLo6+yj/futQpx9x8MTU93fGYq3/Pz2pUJY33rr\nYFBrAxAempqa3n///dra2ra2tpaWluPHj3/wwQeDg4OhrgsA/COMgp3FYhFC5Obmel01Oj+6\nFgDG6ejoqKmpUVV1/KDdbj969KjT6QxVVQDgR2EU7PLy8oQQHx04YPeyyP7OOweFEPn5+UGq\nCkDYaGhomHLc6XS2tLQEtxYACIgwCnZLr7yqVBEdO7Zc9eh7Ha4pFrg63nv0qi07OoRSduXm\nJUGvD8BcNjIyYrPZppvt7+8PZjEAECBh9PKEsvyup35Q+Q8/PfqnO84reLD8vDXnLC7OSTUZ\ntG7HYHdL7acfvvVuVadDCOPZP3ryruWhrhbA3OJyTfV70LdZAAgXYRTshIg77ydvv1d29x33\nPrGvuerNF6venLggOnftTff/8oEblxhDUR6AOUyv1yuKMuEBuzEGw3TvZAFAOAmrYCeEiF9y\n46/evOGhhg/2vX2w6qS5s39o2K2NiUtMzy8tX7Fm7bkFcWF0cxlA8Oh0usTExL6+vilnU1Pp\nag5ABuEW7IQQQmji5q3eOG/1Rj8cyu12V1ZW2u3eXsgYfeDa4/H44XwAQqekpOTw4cNut3vC\neEJCQmZmZkhKAgD/Cstg50f79u3btGmTLyvr6+sDXQyAgIqLizv77LOrq6uHhoZGRxRFycjI\nmD9/vqIooa0NAPwiHIOd09Jq7nTE58xLi5niq7iz6vVPOkTGkvXl6T4ca+3atbt37/Z+xW77\n9u379+8vLCycacEA5or4+PiVK1dardbRnSdMJpNerw91UQDgN2EW7AYPP/aPW+554WivW4jo\nnC/eeN8vf7J1Wfznlrx930VX7hKbX1R3XuHDAbVa7caNp7mnW1lZKYRg0yFAGkaj0WjkHSsA\nEgqrsNLy+6vXf+e5o71uoUTHxTpbDjx20xdWXPeHWtoUAAAAhFWw8xz42T2VfUIz74onDvcO\nDg71Vb98z/qUumdvWHvNMw0TH4YGAACIOGEU7I7t3dskRNI1v3hqa0WiTiim0kv/z94Pd337\nrM6dN669/oUmXloFAACRLYyCXWNjoxCiYs0a09/HtDmXPv7mzptLmp+7bt1NL7VN3XkUAAAg\nIoTRyxMGg0EIx+R3GNK/8virT/eff91vr14f/fL+7SGpDUDYsFqtbW1tVqtVUZS4uLjs7Ozo\n6OhQFwUA/hFGwa6goECIqsbGRiGWfH5Gk//1P7za03/+dx/b/GXjjSmhKQ9AGDCbzXV1dWMb\ni/X09DQ1NZWVldGgGIAcwuhWbPHq1WlC1H3wQfcUk/oFt720Z9u52o8f3v5G0CsDEBa6u7tr\na2snbBfr8XhOnDgxODgYqqoAwI/CKNhp115+aZJw79v18tR7PRpX/mvlK7ctYidvAFMzm81T\njquq2tTUFORiACAQwuhWrNBd+KMXn1nTpi9xTLci+cJHX91z1u8/GBALyoNZGYA5T1VVi8Uy\n3ezAwEAwiwGAAAmnYCeiitddV+x9iZK99pYfrQ1OOQDCiKqqE27Cjufx0DAJgAzC6FYsAMyc\nRqPxsi0sL8YCkAPBDkCkSE9Pn8EUAISRsLoVCwCzMG/evJ6enuHh4QnjOp3ObDY3NTWZTKac\nnJzk5OSQlAcAs8cVOwCRIioqatmyZRkZGYqijB93uVwjIyMOh6O7u/vo0aP19fWhqhAAZokr\ndgAiiF6vX7hwYVlZmdVq7ezsnLLLSUNDQ0JCAtftAIQjrtgBiDharTY+Pr67e6pu50IIIVpb\nW4NZDwD4C8EOQCTyeDyTH7YbMzQ0FMxiAMBfCHYAIpGXnnannQWAOYtgByASabVag2HaHQiN\nRmMwiwEAfyHYAYhQWVlZM5gCgLmMYAcgQhUUFCQmJk4ez8rKSktLC349ADB7tDsBEKE0Gs3S\npUubm5vb2tpsNpuiKHFxcbm5uZmZmaEuDQBmiGAHIHJpNJr8/Pz8/HyPx6MoyoTGxQAQdgh2\nACA0Gp5LASADvssAAAAkQbADAACQBMEOAABAEgQ7AAAASRDsAAAAJEGwAwAAkATBDgAAQBIE\nOwAAAEkQ7AAAACRBsAMAAJAEwQ4AAEASBDsAAABJEOwAAAAkQbADAACQBMEOAABAEgQ7AAAA\nSRDsAAAAJEGwAwAAkATBDgAAQBIEOwAAAEkQ7AAAACRBsAMAAJAEwQ4AAEASBDsAAABJEOwA\nAAAkQbADAACQBMEOAABAEgQ7AAAASRDsAAAAJEGwAwAAkATBDgAAQBIEOwAAAEkQ7AAAACRB\nsAMAAJAEwQ4AAEASBDsAAABJEOwAAAAkQbADAACQBMEOAABAEgQ7AAAASRDsAAAAJEGwAwAA\nkATBDgAAQBIEOwAAAEkQ7AAAACRBsAMAAJAEwQ4AAEASBDsAAABJEOwAAAAkQbADAACQBMEO\nAABAEgQ7AAAASRDsAAAAJEGwAwAAkATBDgAAQBIEOwAAAEkQ7AAAACRBsAMAAJAEwQ4AAEAS\nBDsAAABJEOwAAAAkQbADAACQBMEOAABAEgQ7AAAASRDsAAAAJEGwAwAAkATBDgAAQBIEOwAA\nAEkQ7AAAACRBsAMAAJAEwQ4AAEASBDsAAABJ6EJdwKzZWz/c85cDx5otwpS78PxLNqzKiQl1\nSQAAAKEQRsGu4Y0nXq8XhetvWjfvf4YsHz5yzRV3VzY5xhbp8zY8uOuF7600haJCAACAUAqj\nW7EHH7v55ptvfuzg2EDrH76+4fuVTQ5tWsVlW2+9detlFenakaY9399w/QudIawTAAAgNMLo\nit0E6nsP3/OXXqHM/9bevz6+PkURQqg9r3971Zd31Ly87dEjX3ugItQVAgAABFUYXbGb4Pie\nPY1CGC/d9tBoqhNCKCnrH9q2yShE9Z49daGtDgAAIOjCN9g1NDQIIRavWZM8fjRlzZpFQoia\nmpqQFAUAABA64RvsdDqdECIlJeXzw2lpaUIIp9MZipoAAABCKOyesRtsPXHihBBCGLNKhTjc\n2NgoxIJx862trUKIvLy80JQHAAAQMmEX7F69/ayzxv1ZvX9/+z0LMsf+dn72Wa0QsUuXlgS/\nNAAAgJAKo2CXsWTduv5Jo8rRfa3imuy//WV75Zk/WoTp2ms3xga3OAAAgJALo2D3xXtff/10\nayw5lz7624uzz7vE11zndrsrKyvtdruXNaOvaXg8Hh+PCQAAEBJnEOzcg03HP61t7erq6ncY\nEtPS0rKLyxfmxWkDV9yZy1x9zTdXn8kH9u3bt2nTJl9W1tfXz6wmAACA4Dh9sLM3v/fiU089\n/+c33jncYHF/fk4bP2/Z+eu+cvWWLVd+ITc6QCUG1Nq1a3fv3u39it327dv3799fWFgYtKoA\nAABmwFuwsxx78af/cv9juz/tcwshNLGZZ51TlpuWnJwcr3cM9PT2dTWd+PTkR5VPflT55P23\nL950y73/9sMrF8YHq/Lp1O799Z4aUbLh1ouLfVit1Wo3btzofU1lZaUQQqMJ39YwAAAgIkwX\n7Gqf/9a1333qgy6RuODCm+689sqvrF1Vnh8/6bara6Cx6v19f37xuWd37X7wqt07Vm35jz/8\n36t9SVQBc+SJ227bJTa/6FuwAwAAkMZ0V6GO7Hqmfek/PX7A3P7ZqzvuueHLZ0+R6oQQuoSC\nin/45r888eqJ9sYDj//T0rZndh0JZLkAAACYznRX7Nb+R92prKwo3w9kyDn/24++tuVHbRa/\n1DUFt31o2HX6ZXb36dcAAABIaLpgl5KVNZPDRWVlpZx+1cy8dJ3pyl2BOjgAAEDYm0Efu5H+\nlqa2/hF9YlZeTqLe/yUBAABgJs7kTU97zR+3XbUiKyE5t2Th4oUlucmJWSuu2vZSrbdWIX5U\nWDhPCFHx0EmnVy9cHpxyAAAA5hifg531o3/90rLN9794qN2hT85buGRhXrLe3n7oxfsvr/jS\nfQetgazxb5ZddFGqEB+/8Wa/zhuNEoRaAAAA5h4fg5166IFv3P/BoEg+/8cvn+zrMR87eszc\n01f90g++kCQGP7jvugcPqYGtUwihXPDlddFCfefV14YDfi4AAIDw42OwO/z8f1WrwrTpl7se\nvLQk5m+DMfO/+tNdv/hKnFCr/+uFIHQ5iV5//R2XXvoP8UMN3latuGXHjh07blkR+HoAAADm\nFB9fnmhpaRFCVFx8cfqEicwNGyrEnw+0tLQIsczfxU2UeMlDL19yukXz1t10U6ALAQAAmIN8\nvGKXkZEhhFDVyTdcR8dG5wEAABA6Pga7FZddlivEkcrK9gkTbX+pPCJEwebN3PoEAAAILR+D\nnfaCf3vuxyu0f7lz8w//WG3726C1etf3L/9epW7l3c/ef96Z9E0BAACA//n4jN2bP7zwB284\n4mL73vvZ5gW/SMgpzDEONde3WpxCxOba996+du+4xet+dvCnFwakWgAAAEzLx2DXW3vo0KH/\n+cM50HJyYGzK1lx1qPlzi+f1+qc2AAg/qqr29PT09fW53W6DwZCWlhYXFxfqogBECh+D3cYn\n2tp+7esxo5NmWg0AhDWHw1FVVTU4ODg20tDQkJ2dXVpaqih0TwcQcD4GO0NiZmZgCwGAMKeq\n6ieffDI0NDRhvLW1NSoqqqioKCRVAYgoPgY7AAhX3d3dzc3NFotFVdXY2NisrKycnJxAXD/r\n7u6enOpGNTU15efn63R85QIIrOleZq159w2z44yP5mh8492a2RUEAH5UU1NTVVU1+sSbx+MZ\nGho6derU0aNHPR6P3881MDAw3ZTH47FYLH4/IwBMMF2w+/gX6+cXr7nlV3urB3z59nP3n9j7\nq3+8oLh0/S8+9md5ADBzvb29TU1Nk8f7+vrMZrPfT+dyubzMut1uv58RACaYLthd+MPHt+ZX\nP/HdDQsyc1deeefPn/7Tu591DH9+4wmPrf34gd2/+9k/X7EiN/OsDd998tS8mx7/IY1OAMwR\nra2tM5iaMYPBMONZAPCL6R74SF757e3vff27O3/5wCP/uXPnLw7u/IUQQhuTmJKSnJxsinJY\nent7e3oH7KO/QGPyzr/hgTvv+u5lpbzUD2DOsFqt0005HA6Xy+Xfh95SU1MbGhqmnDIYDCaT\nyY/nAoApef1SMy244l+eueKuRz/583Mv/OXNt95+52B1Z3N/59+61imG9LMu+OKaNeu/cvXV\nGxYmsvUEgLAy3fsTdru9p6fHYrG4XK7Y2FiTyaQoitPpjI6OTkhI0Gq10x3QZDJlZ2dPvhao\nKMr8+fNpdwIgCHz4tapNXnLprUsuvVUI4XFYerq6ugechsTUtLRkk540B2DuMhqNNpttyimD\nwTA5oqmqWltb29zcrKrqlJ/S6XSFhYW5ubnTnbG0tFSv1zc1NY09URcdHT1//vzU1NQZ/QsA\n4Myc2W0IjSE+LTc+bdrvNACYQ7Kzs7u6uqabmjxYW1s75csWY1wu16lTp1RVzcvLm3KBoiiF\nhYX5+fkWi2X0It/oBb8ZFA8AM0BTJQDSSk5Ozs/Pn/wC7Oj4hEGHw9Hc3Oi0ObsAACAASURB\nVCx8UFNTU1dXp6qqVquNj48vKyuLjo4ev0Cr1SYleduCR1XV3t7evr4+h8NhMBhSU1MTExN9\nOTUAeOdDsLM17t/57M7Ktw9VVTd29Q/aXFGxpoT0grLFyy+45Iprr/xSQUzgywSAGSkuLk5I\nSGhubh4cHPR4PEajMSsrKzs7e/JVtL6+vunuwE422gbP5XL19vb+9a9/jYqKUhTF5XJpNJqE\nhIS8vDwvwc7pdFZVVY1vetfU1JSamrpw4UIvD/ABgC9OE+y69t1/zTceeKNl5HOj1qG+rraG\nY+//9wu/ue+udXc/8/y9a3l8BMAclZqa6v0RN5vN1tvb293dPeNTOJ3O0f/h8Xh6enp6enqK\niooKCgqmXHzs2LHJrYy7u7urq6sXLlw44xoAQHgPdq6qBy/esO2wQ8SVXHz9lisuOre8OCcl\nPlrnslt6WmqrPnht51NP7615Y9uGi6MOvv/jxdzVBRBmPB7PyZMn29ra/H7kurq6pKSk+Pj4\nCeMDAwN9fX1TfqSjo6OwsDAmhpsgAGbOSxqz7br/wcMOkfnVJ999fkvR5ztrFpeVn3PhV7fe\needTV5+/9eVDD9y36/YXvxYb4FoBwL8ClOpGtbW1TQ52/f39Xj4yMDBAsAMwG176lXy0f79V\niLPveHhiqvs7Q/GWn9++VAjrW28dDEh5ABAow8PDgUt1Ypr2yN43FvO+KRkAnJaXYDe6Y7WX\nhk1CjM2zuzWAcDPdLdGA8r6x2IS3awHgTHkJdqN9mj46cMDu5fP2d945KISY3DkAAOa2sTce\nphMbGztv3rzY2Bk+ZmI0GicPpqSkTNfWTqfTeW+SAgCn5SXYLb3yqlJFdOzYctWj73VMdXvA\n1fHeo1dt2dEhlLIrNy8JWIkAEAh6vd77ApvNlpqaWlZWNrMOw1lZWZMHo6Oj582bN+X6kpIS\n2p0AmCUvL08oy+966geV//DTo3+647yCB8vPW3PO4uKcVJNB63YMdrfUfvrhW+9WdTqEMJ79\noyfvWh68kgHAH5KSkhRF8d67rqurq6ioaPHixSdOnDjtFb7xioqKJr85MWrevHk6na6hoWHs\ngAaDobi4OCMjw/fjA8CUvPYoiTvvJ2+/V3b3Hfc+sa+56s0Xq96cuCA6d+1N9//ygRuXTHHD\nAQDmtOjo6Ly8vMn7Uoxnt9uFEKmpqatXr+7p6bFarTabrb+/3+l0jibC0Wh4Rg2KhRC5ubnZ\n2dmDg4NOp1Ov17PtGAB/OV3zufglN/7qzRseavhg39sHq06aO/uHht3amLjE9PzS8hVr1p5b\nEOflZi4AzGlFRUUjIyPt7e3TLRi7N6rVatPT0ycvcDqdDodDr9ef9sbuBKMR8Iw+AgCn5VNX\nYU3cvNUb563eGOhiACCoFEWZP39+Z2fn6BZhk3nJXv39/bW1tWMtAYxGY1FRkfctLgAg0Lje\nBiCi6XS6nJycKadiYmKmvEonhOju7v7444/HN3qyWq1VVVUBbYwHAKc1+2BXu/fXv/71r/fW\n+qEYAAiB4uLiyQEuJiZmyZIlGs0UX5Iej6e6unrKty5OnTp1Ru9YAIB/zX6D1yNP3HbbLrH5\nxVsvLvZDPQAQbIqiLFq0KDs7u6ury26363S6xMTEjIyM6ZqP9PX1jYyMTDnldru7u7unbHQC\nAEEw+2AHADJISkrysT/w8PCwl9nRF2kBICS8BDu3fWjYh20L7d42PgQA6Xjf75XGJQBCyEuw\ne+k605W7glcJAMx1HR0d9fX13q/Ymc1mh8NRVFQUFRUVtMIAYBRvxQKAT8xm8/Hjx72nOiGE\n2+1ubW09dOjQdM/hAUDgeAl2hYXzhBAVD510evXC5cGpFABCx26319fX+75+eHi4tpZuAQCC\nzUuwW3bRRalCfPzGm/06bzQ8TgJAet3d3dM1MZ6Ol77HABAgXoKdcsGX10UL9Z1XXzvNjQcA\nkN0M3nX1eDwOhyMQxQDAdLy1O4lef/0dl9o/ix9qEOKsaVetuGXHjotF4Qq/lwYAc8aUnYoD\n9CkAmDGvfewSL3no5UtOd4R56266yX/1AMBcFB8ff6Yf0ev1er0+EMUAwHRoUAxAfm63u6mp\nqaOjY3h4WKvVJiQk5OfnJyYm+n6ElJQUo9FotVp9/0hubi497QAEGbcJAEjO6XQeOnSovr7e\nZrOpqupyuXp6eo4cOXL8+HHfD6IoSnl5eUxMzITxxMTEsrKyybdc09PT8/PzZ1s6AJwhH6/Y\n1e799Z6aqacUjT42Pjm7tOKcZcVJXAAEMNfU1NRMeaWto6Ojs7Nz1apV0dHRvhwnJiZm5cqV\nHR0dvb29LpdLr9enpqampaUpipKYmNjc3GyxWDweT2xsbEZGRlpa2vjPejweu92uKEp0dDSX\n8QAEjo9J7MgTt912ul0o9Fmrv/nAfz5yY3ncrKsCAP9wu92dnZ3Tzaqq+v77719wwQU+vuWg\n1Wqzs7Ozs7MnjMfGxpaWlk75EafTWVNTM9b6JCoqKjc3Nz8/n/cqAASCj8Gu/LqHHio7+uwv\nn//UkbZs46bzF+bEDbUcP7D7T0e6DIuu/NaXE1rerXzpw7/+3y1r6tXDr26ZF9CaAcBXw8PD\n3pvJqap64MCBqKio9PT0wsJCrVbrx7OPjIwcPnx4/GYVTqezvr7eYrGUl5dz6Q6A3/n4k7Hs\nkkvU1175VF297YNTB1964tEH7nvg0SdeOnTyr/ec6zn253fTb/vD+8fe+/EKveh77cc/ed3b\n/tgAEES+tAgebTjX1NT07rvvnnbHsDMy3cayPT09HR0dfjwRAIzyMdgN/Nfd9380nHfLI/cu\nT/j7T0wlceW//vstucMf3X/P85bEldv+7fpUITpfffVogIoFgDN0Rg1H3G73oUOH/HVqVVW9\n3AX2MgUAM+ZjsDv07rt2IRaWl09cr12yZJEQw+++e1gIQ0XFWUKI1tZWf1cJADMTHR19Rk+z\nOZ3Orq4uv5za6XS6XK7pZv17aRAARvn4fTf6FTTVL8z29vax+dFXy2bQxxMAAiYjI+OM1vsr\n2HkPlLw8ASAQfPxmWbRokRDi6O/+8/3Pb3xof/fxp6uEEIsXLxJCVFdXCyFKSkr8XCQAzFxx\ncXFsbKzv651Op1/Oq9PpvJyXn8AAAsHHYDfvm7dviheez37+v87f+u9/3H/wxKkTB/fvemTL\neRv//YRHJHz19hsKhPrxK38yC2X5pq9M7AQAAKETFRW1bNmyrKwsH9efUQr0Li8vb8pxRVFy\nc3P9dRYAGONrR+HMb/zu5eqvXPHgewef+t7mp8ZNKKlf3Lbrd9dmCNE+ULDl5z/PWvvtqZs5\nAUCoREVFLViwoLS0tKmpqaGhwfursjk5Of46b3Z2ts1ma2pqGj+o0WgWLFhgNBr9dRYAGOP7\nVhFJa//t7ROX73zydy/vO3SybcAZlZBVunztZTfedEVFqkYIITLX3Pz9NQErFABmSaPRFBQU\nZGZmHjlyZLp3F9LT0/14xU4IUVJSkpaW1tbWZrPZFEWJj4/Pzs6evDUZAPjFGe0Bpk1b9rUf\nLfvajwJVDAAE3NDQkMFgsNvtqqqOH1cUJSsra7oNJGYjISEhISHB74cFgMnY3BVABKmvr29o\naJgwaDAYioqKUlJSoqKiQlEUAPjNmQU7T+8nf/qvP75x8GRLv8OQmFO6ct3mazaWJ/HSPoAw\nMDAwMDnVCSEcDsfQ0FBmZmbQKwIAP/M92HnML3/3qzf85ohl3NjvfnX/Xctue+aVX27MZctD\nAHOcl+7pbW1txcXFbN4KINz5GuzcHz+w8Wu/+WREmBZu/s6Wi5bkmYaaPnntt9t3Hjv8H1du\nzPjo4F3l/tw5GwD8zmq1TjflcrkcDsdok3UACF8+Bjv7yz/92ScjIuHL24/85ZbCv33o69+6\n/dvb/1fFP7368U8eeuV7z11uCFyZADBr3i/IcbkOgAR83St2//4hIQq/89BYqhNCCKEr/M6D\ntxQKMfjWW4cDUh4A+I2X1nFarVav1wezGAAIBB+DXXd3txCirKxs0syCBWXCf3srAkDAZGdP\nuy2Ox+Ox2+3BLAYAAsHHYDfag2lC+3Qhxsbo0QRgzvPSeVhV1ba2tmAWAwCB4GOwW7ZqVZQQ\nx3Y8vMfyuXHL3od3HBNCv3r1sgAUBwB+5OXlCSFEX19f0CoBgADxMdjFX/XPN+UIYX7yipWX\nb/t95YEjVUcOVP5+2+UrNz9pFkret/75SlNg6wSA2RoYGPAyy61YABLwtd1J7LpHXnmk5iv/\n+7WTL91/w0v3/31Cm7XhkVd+vpZ9DwHMdQ6Hw8vshB3GACAc+d6gOGb5nXuPX/TSjid3vXnw\nZNuAMyohq2zFus033XTZ4iSaBACY+3Q6b994Wi3NOAGEvTPaUkyTVL75B7/c/INAFQMAAZSU\nlDTllmKjHA6H3W6nRzGAsMY2rwAiRUJCgpdmdaqqms3mYNYDAH5HsAMQKRRFWbRokZcF/f39\nQSsGAAJhuluxe28ruXXPGRxnw69rfnWxPwoCgMCJi4vzMutyuYJWCQAEwnTBbqittrb2DI7T\nNuSPagAgoHQ6nVardbvdU84aDGx5DSC8TRfsNv8/p9NzBsfR8DoZgDnO4XC4XK6UlJTOzs4p\nF6Smpga5JADwr+mCnaLR6Xj+DoAc2traGhsbh4eHhRCKomg0Go9n4k/X2NjY3NzcUFQHAH5z\nRu1OACD81NXVNTY2jv2pqqqqqoqijO9InJqaWlZWRis7AOFuBsGu6vfff/oTseSGh68v9389\nAOBPQ0NDUzYxUVXVaDTOmzdPURSTyTTL9nUWi8VsNg8MDLjd7ujo6IyMjNzcXGIigOCbwe3W\n6t2PPPLII7ur/V8MAPhZZ2fndHuFWa1Wk8mUlpY2y1TX1tZ2+PDhrq6ukZERt9tttVrr6uoO\nHz7sdDpnc1gAmAGeowMgs9Hn6mY26+PxT548OTk7Dg0NnTp1apYHB4AzRbADIDONxtu3nPdZ\nX7S1tU1+D2NUZ2cnjfEABBnBDoDM4uPjp5tSFMV7v2JfWK3W6aZUVbXZbLM8PgCckRkEO63e\nYDAY9DwVDGDuy8jImG5/2OzsbJ2OzgAApDKDYHfZc3a73f7cZf4vBgD8TKfTlZeXR0VFTRhP\nTk4uKSmZ/fGNRuN0U4qixMbGzv4UAOA7fq0CkFx8fPy5557b2tra39/vcrmio6PT09NTU1MV\nRZn9wTMzM81m85Qv3qalpXFFEECQ8aUDQH5RUVEFBQUFBQV+P3JsbOz8+fNPnTo1IduNjvv9\ndADgHcEOAGYlJyfHaDSazeb+/n6PxzN6RbCgoIAGxQCCj2AHALOVmJiYmJgYoIMPDAyMpkaX\nyxUTE5OWllZQUMBNXgBT4qsBAOautra26urqsfu8w8PDZrO5s7Nz2bJlBoMhtLUBmIPCMNjZ\nGvfvfHZn5duHqqobu/oHba6oWFNCekHZ4uUXXHLFtVd+qSAm1BUCgD/Y7fYpt7Ww2+3V1dVL\nliwJSVUA5rIwC3Zd++6/5hsPvNEy8rlR61BfV1vDsff/+4Xf3HfXurufef7etakhKhAA/Kaj\no2O6bS16enocDgcX7QBMEE7BzlX14MUbth12iLiSi6/fcsVF55YX56TER+tcdktPS23VB6/t\nfOrpvTVvbNtwcdTB93+8OJz+aQAwmZdtLYQQNpuNYAdggjBKP7Zd9z942CEyv/rku89vKfr8\nt1lxWfk5F3516513PnX1+VtfPvTAfbtuf/FrNAYFAAARJYz2iv1o/36rEGff8fDEVPd3huIt\nP799qRDWt946GNTaAMD/vG9r4WUWQMQKo2BnsViEELm5uV5Xjc6PrgWAcJaZmTldM7zU1NTp\n9sAFEMnCKNjl5eUJIT46cMDuZZH9nXcOCiHy8/ODVBUABIrBYFiwYIFGM/GLOjY2trS0NCQl\nAZjjwugZu6VXXlX6s4dO7thy1VnP7/inL2RMKt3V8d5vbt6yo0MoZVdupg0AgLnGYrGYzeaB\ngYGxDSry8vIm57bx0tPTY2NjxxoUj32KbS0ATCmMgp2y/K6nflD5Dz89+qc7zit4sPy8Necs\nLs5JNRm0bsdgd0vtpx++9W5Vp0MI49k/evKu5aGuFgA+p7W1dXxTuqGhoaGhoc7OzoqKCu/b\nSMTFxS1cuDAoNQIIe2EU7ISIO+8nb79Xdvcd9z6xr7nqzRer3py4IDp37U33//KBG5fwSDGA\nucRms03ZanhoaKimpmbBggUhqQqAfMIq2Akh4pfc+Ks3b3io4YN9bx+sOmnu7B8admtj4hLT\n80vLV6xZe25BXBg9NQggUrS3t09OdaM6Ojrmz5/PrVUAfhFuwU4IIYQmbt7qjfNWb/TDodxu\nd2Vlpd3u7YWMhoYGIcR0/d8B4LSGhoamm/J4PDabzWQyBbMeALIKy2DnR/v27du0aZMvK+vr\n6wNdDAAAwGzIF+xq9/56T40o2XDrxcU+rF67du3u3bu9X7Hbvn37/v37CwsL/VUigEhjNBp7\nenqmnNJoNDExMUGuB4Cs5At2R5647bZdYvOLvgU7rVa7ceNp7ulWVlYKIby3JAAALzIzM5ua\nmqZ8zC4tLc37W7EA4DvCCgAEnNFoLCkpmTweGxs7f/784NcDQFZh9DPRbR8adp1+md0d+FIA\n4Ezl5uYajcbRBsVutzsmJiY9Pb2goID3YQH4URgFu5euM125K9RFAMCMJSUlJSUlhboKADLj\nViwAAIAkwijYFRbOE0JUPHTS6dULl4e2TAAAgBAJo2C37KKLUoX4+I03+3XeaJRQFwoAABAS\nYRTslAu+vC5aqO+8+tpwqEsBAACYg8Lo5QkRvf76Oy61fxY/1CDEWdOuWnHLjh0Xi8IVwasL\nAABgTginYCcSL3no5UtOt2jeuptuCkYxAAAAc0wY3YoFAACANwQ7AAAASRDsAAAAJEGwAwAA\nkATBDgAAQBIEOwAAAEkQ7AAAACRBsAMAAJAEwQ4AAEASBDsAAABJEOwAAAAkQbADAACQBMEO\nAABAEgQ7AAAASRDsAAAAJEGwAwAAkATBDgAAQBIEOwAAAEkQ7AAAACRBsAMAAJAEwQ4AAEAS\nBDsAAABJ6EJdAADAbwYHB7u6uoaHh7VabUJCQnp6ularDXVRAIKHYAcAkjh16lRzc/PYn21t\nbQ0NDeXl5XFxcaErCkBQcSsWAGRgNpvHp7pRdrv9k08+cbvdISkJQPAR7AAg7Kmqajabp5xy\nOBxtbW1BrgdAqBDsACDsWa1Wp9M53ezAwEAwiwEQQgQ7AAh73m+2cisWiBwEOwAIewaDYcaz\nAGRCsAOAsBcdHW0ymaabTUtLC2YxAEKIYAcAMigtLdVopvhKT09PT05ODn49AEKCYAcAMoiP\nj6+oqBjfsk6r1RYUFJx11lkhrApAkNGgGAAkER8fv3LlSpvNNrrzhMlkYtsJINIQ7ABAKrGx\nsbGxsaGuAkBocCsWAABAEgQ7AAAASRDsAAAAJEGwAwAAkATBDgAAQBIEOwAAAEkQ7AAAACRB\nsAMAAJAEwQ4AAEASBDsAAABJEOwAAAAkQbADAACQBMEOAABAEgQ7AAAASRDsAAAAJKELdQEA\nIKfe3t6WlpaRkZGYmJikpKS0tDSdjq9cAIHFtwwA+NnAwMAnn3zicrlG/7RYLB0dHTU1NQsX\nLkxJSQltbQDkxq1YAPCnoaGhI0eOjKW6MS6X69NPPx0aGgpJVQAiBMEOAPzp+PHjqqpOOeXx\neBobG4NcD4CIQrADAL9xu91Wq9XLgv7+/qAVAyACEewAwG9GRka8L5h8ixYA/IhgBwB+o9Vq\nvS+IiooKTiUAIhPBDgD8Rq/Xe49uaWlpQSsGQAQi2AGAPxUWFk43FRUVVVBQEMxiAEQagh0A\n+FNOTk52dvbkcYPBsHz5cr1eH/ySAEQOGhQDgJ+VlZVlZ2c3NDQMDQ253e6YmJjCwsLk5ORQ\n1wVAfgQ7APA/k8lUXl4e6ioARBxuxQIAAEiCYAcAACAJgh0AAIAkCHYAAACSINgBAABIgmAH\nAAAgCYIdAACAJAh2AAAAkiDYAQAASIKdJwAgUFwuV0NDQ3d3t9vt1ul0GRkZ+fn5Gg2/qAEE\nCsEOAAKiq6vr2LFjqqqO/jkyMlJfX9/Y2LhkyZKkpKTQ1gZAVvxwBAD/s1gs41PdGI/Hc/To\nUYfDEZKqAEiPYAcA/ldfXz851Y1SVfXUqVNBrgdAhCDYAYD/9ff3z3gWAGaMYAcAfubxeDwe\nj5cFbrc7aMUAiCgEOwDwM41Go9VqvSzQ6XhxDUBAEOwAwP9SU1O9zKakpAStEgARhWAHAP5X\nVFQ0Xb86rVZbVFQU5HoARAiCHQD4X3R09IoVKwwGw4RxvV6/fPlyvV4fkqoASI/nPAAgIIxG\n4xe+8AWLxdLc3OxwOAwGQ1ZWFq2JAQQUwQ4AAig+Pn7hwoWhrgJApOBWLAAAgCQIdgAAAJIg\n2AEAAEiCYAcAACAJgh0AAIAkCHYAAACSINgBAABIgj52ACAtVVVdLpdGo9Fqtb6s7+vrM5vN\nAwMDbrc7JiYmPT09Pz9fp+O/FEDY4P+uACAhh8NRV1fX1dXldrsVRTGZTAUFBampqV4+0tTU\nVFNTM/bn8PBwY2NjV1dXRUUFe6AB4YJbsQAgm+Hh4YMHD7a3t7vdbiGEqqoWi6WqqspsNk/3\nEavVWltbO3ncZrONT3sA5jiCHQDIprq6emRkZPJ4XV2dzWab8iPt7e2qqk451dnZ6XK5/Fkf\ngIAh2AGAVBwOR19f35RTqqp2dHRMOWW1Wqc7oKqqw8PD/ikOQICF/zN29tYP9/zlwLFmizDl\nLjz/kg2rcmJCXRIAhM501+S8zyqKEphyAARVGAW7hjeeeL1eFK6/ad28/xmyfPjINVfcXdnk\nGFukz9vw4K4XvrfSFIoKASD0vEe06WaNRmN3d/eUUxqNJjY21g+VAQi8MLoVe/Cxm2+++ebH\nDo4NtP7h6xu+X9nk0KZVXLb11lu3XlaRrh1p2vP9Dde/0BnCOgEglOLi4rxkO5Np6t+9WVlZ\nGs3U/0XIyMjwsVsKgJALo2A3gfrew/f8pVco87+197NDf3ziV7964o+Hju+9uUQRPS9ve/RI\nqMsDgNDQ6XSZmZnTTWVkZEw5FRMTU1paOjkRmkymkpISP5cIIGDC6FbsBMf37GkUwnjptofW\np/ztm0hJWf/Qtk3PfeOV6j176h6oKPLhKG63u7Ky0m63e1nT0NAghPB4PLMvGgBmRlXV3t7e\nvr4+t9ttMBjS0tKMRuN0i0tKSmw228DAwPhBrVa7aNEiLx3psrKyjEZjU1PT+AbFubm5013J\nAzAHhW+wG41bi9esSR4/mrJmzSLxyoc1NTVC+BLs9u3bt2nTJl/OV19fP4MqAWD2HA7Hp59+\narFYxkbq6+tjYmIWL14cFxc3eb1Op6uoqGhra+vq6hoeHtZqtYmJiXl5edHR0d5PFB8fv2jR\nIj9XDyCIwjfYjW5yk5KS8vnhtLQ0IYTT6fTtKGvXrt29e7f3K3bbt2/fv39/YWHhDCsFgFlQ\nVbWqqmpwcHDC+PDw8EcffWQymRITE4UQcXFxaWlpYw/DKYqSnZ2dnZ0d7HIBhFTYBbvB1hMn\nTgghhDGrVIjDjY2NQiwYN9/a2iqEyMvL8+1wWq1248aN3tdUVlYKIbgZASAkenp6Jqe6MYOD\ng2OzNTU1CxcuTE5Onm4xAOmFXbB79fazzhr3Z/X+/e33LPj7Y8LOzz6rFSJ26VKe9QUQdmw2\nW3t7u9VqVVXV5XINDw+7XC7fH/B1Op1VVVUrVqzw8vgdALmFUbDLWLJuXf+kUeXovlZxzf/c\nbLC98swfLcJ07bUb6bkEILw0NzfX1NRMt6+XjzweT0NDA8/JARErjILdF+99/fXTrbHkXPro\nby/OPu8Sch2AcNLT03Pq1Cm/HKq/f/JPYACRIoyCnS8yV1/zzdWhLgIAzpTZbPbXoXx+eQyA\nhCQLdgAwt3R2dtbU1IyMjKiqqiiKqqpRUVEJCQl5eXmKogwNDSmKEhMTM6Hn3GwYDAZ/HQpA\n2CHYAUCgHD16tLe3d+zP0efnnE5nd3f3dBuzzt6kLlAAIggtPAAgIBobG8enuuDQ6/UFBQVB\nPimAuYMrdgAQEE1NTX4/Zk5OTnp6ekdHh9vtjoqKslgs47ejSEhIWLBgAbdigUhGsAOAgPD7\nSwwxMTHFxcWj+4ONDVqt1tEGxXFxcVNuLwYgohDsAMD/ZtmObgKNRpORkVFaWjp5Cxyj0Ug7\nYgBjCHYA4H+Komg0Gt83jZissLAwKytrZGQkKioqOjraj7UBkBgvTwBAQCQkJMzm44mJiQaD\nwWQykeoA+I5gBwABsXDhQq1WO7PPGo3G8Q/SAYCPCHYAEBB6vX7VqlUzeADOYDAsXbo0ECUB\nkB7P2AFAoOj1+nPOOcftdvf09DQ2Ng4NDZ32IwaDYdWqVZNfkgAAX/DdAQCBpdVq09PTV6xY\nodOd/rd0eno6qQ7AjPH1AQDBoCjKabOdTqfLz88PWkkA5EOwA4AgiYmJWbVqVV5eXnR0tKIo\nE2ZjY2MrKir0en1IagMgB56xA4DgiYqKKikpKSkpEUK4XK729vbh4eGoqKiEhITExMTJaQ8A\nzgjBDgBCQ6fT5ebmhroKAFLhViwAAIAkCHYAAACSINgBAABIgmAHAAAgCYIdAACAJAh2AAAA\nkiDYAQAASIJgBwAAIAmCHQAAgCQIdgBwBtxut9vtDnUVADA1thQDgNNTVbW1tbW5udlmswkh\nDAZDVlZWQUGBRsPPYwBzCMEOAE7vs88+6+joGPvT4XA0NDT09vaeffbZWq02EGdUVdVqtTqd\nzqioKKPRqChKIM4ymc1m6+7uttvtOp0uMTExOTk5OOcF4BcEOwA4jY6OjvGpbozFYmlsbCwq\nKvL7GTs7O2tra+12++ifBoOhqKgoMzPT7ycaT1XV2tra5uZmVVVHOO/yaQAAIABJREFURxob\nGxMSEhYvXqzX6wN6agD+wk0EABFkZo/Htbe3z2Bqxtra2o4dOzaW6oQQDofjs88+a2pq8vu5\nxmtsbGxqahpLdaMGBgY++eSTCYNj3G53b29va2trd3e30+kMaHkAfMEVOwDy6+3tNZvN/f39\nqqrq9fr09PR58+ZFRUX5+PHR5+qm5HA43G63H+/GulyumpqaKafq6uoyMjICdPHM7XabzeYp\npwYHB7u7u9PS0iaMt7S01NXVuVyu0T81Gk1eXl5hYWHQ7hoDmIwrdgAk19TUdPTo0b6+vtHL\nTiMjI83NzQcPHnQ4HD4ewXtS8W+O6evrG4tKE3g8np6eHj+ea7zBwUEvlzP7+/snjDQ3N588\neXJ8qR6Pp7Gx8dSpUwGqEIAvCHYAZGaz2WprayeP2+32kydP+niQuLi46aZiY2P9+2Ls+Duw\nk/keRs/UdGly1ITbrG63u66ubsqVLS0tVqv1tKcbGRn5/+3dZ5xkZ30n+udUzrmrqmP1dJru\nCT15NJJYjAy2hbEwa4zByNgGCVbc3WvCXrMEr32xFxywr8HrJAMWskkXG4PZS1oQkkACRprU\nMz2dp0N1qq7QlfMJ98UjlUoVTldXV1dXnf59X+ijqTp16ql+TvifJ/yfYDC4tbUVi8Wq9fMC\nQB3QFQsAUubz+arFDaFQiM453XEnPT09gUCg2lt7Kl8Z8V7dfZqBSwgR7+Hd2toKh8OFLuxw\nOCzSvBcKhfR6fbV3OY5bWFjY3Nws1ItWqx0ZGcH0W4CGQIsdAEiZSOuRIAgig+eKWSyWilNf\n3W53V1dX/YWrxGw21/3uXhiNRrVaLbIB7cJ+/vnnM5lMLpcT31Lk3cnJyY2NjeJoO51O37x5\nMxwO77bMAFAOgR0ASFmjhsd5PJ6zZ8+6XC6tVqvRaOx2+4kTJ8bGxho+UUCv15dPU6CsVqvJ\nZGrs1xUwDDM0NLTjZtls9vLly+IBsUgjaDAY3N7eLn9dEIRqU0YAYFfQFQsAUmYwGKr1ospk\nMp1OV/uuzGbz/jWYFRsdHWVZtqQFy2w2Hz9+fF+/1+l0hkKhHRO48DwvnnjFYrFUeysYDFZ7\nK5FIZDIZjUazYzkBQAQCOwCQMrfbvbKywvN8+VtOp1OhaMVroEKhOH36dCgUCoVCuVxOqVTa\n7Xa73b7faUSy2azf769xY5lMVvGvarfbRcJf8ckf2WwWgR3AHrXiRQ0AoFE0Gs3Y2Nj09HRJ\nFGI0GoeHhw+qVLWgwVwzvzEYDFaM1Sried5ut5ekX7Hb7ceOHRP5lHgk3ZpxNkB7wVkEABLn\ndDr1ev3q6mokEmFZVqvVOp3O7u7uxqYpkQDxTCvlOjo6BgcHQ6FQNptVKpU2m23HIYAWi6Va\no6BKpdpVzzgAVITADiRCEATku4dq9Hr96OjoQZei1e02l4pCodDr9SKZTcq53e7V1dV0Ol3+\nVn9/P05hgL1DYAftLRQKeb3eWCzG87xGo3G5XB6Pp7G5vpLJZC6XUygUBoMBNx6QsF1NuWUY\npo4punK5/NSpU7du3SpOQ8MwTH9/f3d39273BgDlENhBG1teXl5aWir8M5PJrKysBIPBM2fO\n1L4MqIhgMLiwsFBoXVCpVLj9gIRZrVaj0RiPx2vZuLOzUzzvXTVarfbChQvBYDAajXIcp9Vq\nOzo6tFptHbsCgHII7KBdxePx4qiuIJlM3rlzZ+/9bltbW1NTU8Wv5HK5ubm5aDRqtVrVarXZ\nbN6/ZQAAmo9hmJMnT05MTOy4JpjT6dzL1BOGYTo6Oqql6wOAvUBgB+1qc3Oz2ltbW1vDw8N7\nibp4nq+2lvnW1tbW1hYhRKFQ9Pf39/b21v0tAK1GrVafP3/e7/evrq4mEomK2wwODvb19TW5\nYABQIwR20K5Ect/zPJ/JZHY1prtEJBIpWfW8HMuyCwsL8Xi8v7+/MJtPEIRgMEhnX2o0mo6O\nDpH14wFakEwmc7vdTqez4jJf3d3diOoAWhkCO5CmPc5yqD3vA23AM5lMo6Ojcrn81q1bxe0c\ny8vLXV1dIyMjmHUB7UUmk506dWptbW1zc5M+RJlMpu7ubpfLddBFAwAxCOygXYlMj5DL5XvM\nX7/bRKmxWOzatWsqlaq8HXFjY0OpVFZcQh6glTEM09vbi8EGAO0F+TmhLd25c0dk7aPOzs49\n5p6tI48Dy7LVeodXV1c5jttLeQAAAGqBwA7aj9/v93q91d41m817bx7TaDRut3uPOyngeT4W\nizVqbwAAANWgKxbaz9raWrW3dDrdmTNnGjKgbWRkJJ/PlyyFWbeZmRmO41QqldVq7evrqy8B\nGAAAgDgEdtB+RBKosizbqGkKcrl8fHw8HA4Hg0GRULJGdDZGPp9PJpM+n+/UqVN19PYCAACI\nQ1cstBlBEARBqPYuz/ON/Tqr1To8PLzHqRglWJa9fft2w4sKAACAwA7aDMMwIqsPFfLJNVaN\nKR5sNluNO8xkMo3q5AUAAChAVyy0H7fbvbi4WPGtfUqy5fF4QqFQtUT8hBCZTDY8PNzZ2bm0\ntLS2tlbLHNhkMokllSQmFAptbGywLKtSqQwGQy6X43leoVBYLBaLxYIF6ACgCRDYQfvp7e0N\nhULRaLTkdavV2t3dvR/fKJfLz5w5s7i46PP5aNCmUChMJpNGoxEEQa/XO51OOh9iYGDA4/HE\nYjGWZWOxmMjsXZEOZdgPHMflcjm5XK5SqQgh2WzW5/PF43FBEBQKBcdxyWSSZVlCiEwmUyqV\nNA7L5XIMwxgMBrvd3tHRIQiC3++nq9frdDqn0ykIwtbWViQSobsqfF1xOh6v1yuXywcGBnp6\nepr+uwHgcEFgB+1HJpOdPn16eXl5c3Mzl8sRQtRqdVdXV19f3/4t8KBQKEZGRoaHh9PpNCFE\nq9VW+y65XG61WgkhSqVSJLDbp15jKJdOpxcWFkKhEA28dDqdzWbb3NwUaVgtWXokmUxubW1p\ntVoaHRZeX15errEMHMfNz88LglBjvt9cLhcOh7PZrFKptFqthVGegiDEYrFMJqPRaIxGYyFf\nYzabXV9fp0vhaTQap9Ppdrux3gnAIYTADtqSTCYbGBgYGBigd1naBtMEDMPUHpCZzWadTlcx\na7FKpXI4HA0tGlSWTCavXbtGm+KoVColstCwCBrT78XS0pLb7RZZNIVaXl5eWVkpTK9hGKaz\ns3N4eHh+fn5zc7PQLsgwTH9/v8fjiUajt27dKvzGVCq1vb29ubk5Pj6+2zVUAKDd4ZyH9ta0\nkK4ODMOMjY1NTEwURxWEEJlMNjY2hhFXzTE7O1vy9z9AHMdFIhHxsZUrKytLS0vFrwiCsLGx\nEQgE8vl8yetLS0vpdDoUCpX/xmg0Oj8/PzY21qjCAzRWOp3e3NykY5cNBoPb7UY/RkMgsAPY\nRyaT6fz588vLy8FgkGVZuVxus9n6+/sNBsNBF63lcBxHB6txHEc7E81m8x73mU6ny8diHqxs\nNivyLsuyJVFdQUlUV+Dz+artbWtra2hoaMcGQoDm29jYmJ+fLzRLh0Ihr9c7PDy8T+OkDxUE\ndgD7S6vV0lYTjuPQSldNMpm8efNm8ci2tbU1t9s9Ojq6l4Fie+88bTjxMCsSiTRwVo0gCIlE\ngo74BGgdkUhkbm6u5FAXBGFubk6n0+GI3SMEdgBNgqiOyuVyKysrgUAgm80qFAqbzdbb2zs5\nOVnelOXz+TQazZEjR+r+rsLcghbBMIzFYhHZQCSlTn2QBxta0OrqarUHGK/Xi8BujxDYAbS9\nXC4nCIJKpWr9WZCpVOr69euFiaUsy/r9/kAgUO0qv7q66vF4yuOzXC7n9XpDoVAul1MqlXa7\nveIKvAaDQSaTtU5w09XVJb5McMNrEIOWoAVFIpFqb8VisWaWRJIQ2AG0K57nvV7v2toaHX0l\nl8s7OjpGRkZauWlwenq6OF0IJdL5yHFcIpEoWVc3kUjcuHGjMOaMZdm1tbWtra1Tp04Zjcbi\nLRUKhdvt3tjYaFDx98Ttdg8NDYlvY7fbqyXfFsEwTMW/oclkElmmpcVls1mWZTUaTSsfz1CH\nQCAgMp+pluzuIA6BHUBbEgRhYmKi+MGX4zifzxcMBi9dutSa4+WTyWQdj+MlF3pBEKampspn\nEuTz+du3b1+8eLGkeW9oaCiRSDS/GUChUNDGOYVCYTabXS5XLTNmDAaDUqmsNk+iIrVa3d3d\nXR4OKhSK0dHRXZW5RWxsbKysrNABlwzD2Gy2oaEhND1KQz6fn5ycFNmgsQtzH04I7ADaEs1G\nW/46y7ITExPnz59vfpF2lEwm6/hUyYU+EolU2086nQ6Hw3a7vfhFuVwuPhF1n7AsOzo6Wseq\ncceOHbt582Z5C5xGo8lmsyWvKxSKs2fPajQanU63vLxMh+jJZDK73T44ONiOzXV37twpTust\nCAJdZubs2bN6vf4ACwYNsbq6Kr6B0+lsTkkkDIEdQFsS6V5MJBLZbFZ8LFe7MBgMJdGJeHSY\nTCZLArtcLncggR0hZGVlpY7AzmaznThxYmZmprjdzul0Hj16NJ1OLy4uxuNxnudVKlVHR8fA\nwAAdltfR0dHR0cGyLF2pttVmjdQoHo9XXKyFZdnZ2dmzZ882v0jQWGtra+Ib9PX1NackEobA\nDqA9CILAcZxMJqP3bJFEHoIgrK+vDwwMNLF0Ndlt9j6ZTDYyMlLyong2kPJ362smbIiSdclq\n53A47rnnnkgkkk6n5XK52Wym0a3RaDx16pTIBxUKResvNZHL5WKxGF1kuaSDdWtrq9qnotEo\nXUht/wsI+yWbze44hK71D+DWh78gQKvLZDKLi4vBYJDjOIZhzGazx+MR/0goFGrBwE6n01ks\nloo9yEqlsru7e21trTCq2mg0joyMlEybIISI98eVv9umQ+9lMpnNZjvoUjRYPp+fm5srngRt\nMplGR0cLtSYeCiOwa3c7ZvNp/Xn9bQGBHUBLSyaT169fL/TKCYIQiUREkgVQ5TNPW8TY2Nj1\n69dL7t8ymezYsWM2m83j8SSTSZZltVpttVu4xWLRarUVGyzVanV5MGQwGKpNGt1vGO9fjOf5\nGzdulNzaY7HYtWvXzp07R/9W4j3Ibdq/fMjRFXdqjNhwyjQEAjuA1hUMBqempuqY/9+yD74a\njeb8+fNerzcYDNIExVar1ePxFO7rJflKytEo8MaNGyV/FrlcfuzYsfJ7P51JEAwGG/tDatHf\n39/8L21ZGxsbFRtsWJZdXFw8ceIEIcRoNFbrjZXJZJg80UZSqdTS0lIoFKIDSCwWy5EjR3aM\n23p6eppTPGlDYAcHbHt7e319PZPJKJVKk8nU2dnZjlP59oPP55uenq7vs6384KtUKgcHBwcH\nB+veg8lkunDhwvLycigUyufzSqWSrsBb7VcfP378ueeea/LyYp2dndLrS92LQCBQ7a1QKCQI\nAsMwbrd7ZWWlYraX7u7uNu1VPyQEQaCzlNRqdTweL3704nl+e3s7HA4fP35co9GIdLjX8hDL\nsmwkEqGZyS0WS2umdjpYCOzgwPh8vpmZmeI+snA4vLq6evToUbfbfYAF2yeZTCaTySgUCr1e\nv2OLGsuy8/PzdX+Xy+Wq+7NtobACLw0IxDeWyWSXLl1aWVmhyZzLu2XpHkpeZxhGLpcbDAaF\nQkHrjuO4Wrp0lUrl0NCQJI/hvRCZm8zzfD6fV6lUSqXyxIkTk5OTJbGd3W5vwTGjQLEsu7S0\n5PP56ABZGmmVh2iCIMzMzLhcrvX19Wq72jFK83q9y8vLhZ3LZLLe3t4jR460bB/FgUBgBweA\n5/krV65UnK7I8/zMzIxer9+xS64Oa2trhVu7XC63Wq09PT3lw/MbLhqNzs/Px+Nx+k+lUunx\neHp7e0U+sr29LZKcXZzD4Tg8UUXtF3SPx1M+6SQQCExPT5fchLq7u8tn48Ieic92LLTGWSyW\nixcvbmxsRCIRjuO0Wi3N5NKUMsKucRx3/fr14k52kfTaLMuKh27iV+OVlZWSRNw8z6+srHAc\nNzw8XO1TgiAEAoFwOEwXMnE4HGazWeRbJACB3QHI5/OZTEYul7dyf9m+unHjhkgSCkEQVldX\njx071sBvFATh8uXLxZ1xHMdtbW1tbW3p9fqTJ0/uX/9vJBKZmJgoXq40n88vLCxks1mRBabq\nzpQxODjY29uL59dapNPpqamp8pVk19fXdTodhvs0lsViKTzblDCZTMXdrCqVCsMTW5AgCLlc\nTi6XF8fod+7c2XGuazGfz2cwGKp9JBAIVJvyn8/nl5eXK761vr7e09NT8RqeyWRu3rxZfLvx\ner0ul2tsbEzCF0kEdk2VSCTm5+cLUxrVarXH4+nu7j7YUjVZIpGIRqPi2zR8AaiJiYlqQ6yS\nyeTVq1fvuuuufRqrMTs7W3ER+tXVVbfbXS21W32zOBmGcblcEr5gNdba2lrFqiGErK6uIrBr\nrN7e3s3NzYrt0C0SxmUymUAgkEqlZDKZ2Wx2OBz5fN7v96fTaZpmyOFwHM6Zudls9s6dOzTj\nEiHEYDB4PB6n07m+vi7Sr1oRbdSo9u7m5ma1wC4cDlc7WwVB2NraokdRLpcLhULpdFomk+l0\nusXFxfIr/9bWlkql2nHh5vaFwK55YrFYyVS+bDY7NzeXTqclfISVq+VCUO0Erg/HceFwWGSD\nfD6/urpaMoiHZdmNjQ06PF+lUtnt9q6urt0O304kEqlUqtq7s7OzPT09er3eYDCEw+Gtra1s\nNpvP59PpdH39sIIgbG9v2+32SCSSz+dp3jjEedWIPD9kMhk6LaOZ5ZE2tVo9Pj4+OTlZnItH\nJpMNDw+XLBbSfNFodHl5ORwOFx6o1tbWlEolx3GFa9Ha2ppGozl58uRu82y3u3Q6fe3ateJa\nSyQSt2/fDgQCfr+/jh2KzJBIp9M8z1eMnsVTOC0tLdH2vBofidfX1/v7+6WaDFmav6o1zc7O\nVjygV1dXXS7Xfgwpa021pFhrbBpS8aiOCgaDxYFdOp2+ceNGoT80mUyGw+GNjY3Tp0/vaqku\n8R7VWCw2NTVV+95qsbKyMjMzU/inTCajk1EEQUilUjzPa7VaqV7Odkv8+YHjOAR2jWU2my9d\nuuT3++mqaHq93ul0Huzad/l8/vbt2xUvEeVjxTKZzMTExMWLFw/VgTE3N1fxol1fVLej8uWe\nqR3/5rvq5eB5PhaLSXXeOq7vTZJOp0UGIvj9/sMT2KlUqh23KawDzbJsYRGtutXS+lV85RIE\nYXJysjwmS6VSt2/f3tWClc1P0FDS78Dz/PT09J07dwqzQRmGsdvtw8PDSOKv1WqrnZVyubyW\nAxV2Sy6Xd3Z2dnZ2HnRBXnDr1q0dR4YUy+VytLFn30rUWnK53Pb2djO/cWtrq2JgRzsfGphp\nvI78oO0CgV2TiOfQqnukPCEkm82GQqFMJqNSqaxWa+vn8HS73SIL2BNCDAaD0+mcn5/3+/00\n3jIajb29vXWn8KglaFYoFIXEGX6/v9r9PhqNxmKx2ifSGo1GmUzW2J7lOpSErcFgMBaLnTt3\n7pDHdk6ns1pytUM7muqg0MOSTganIx+a0JoSCoV2FdVRO677IiUiI0n2SbV5dWq1mq462Kgv\nOtim4n2FwK5JxFtu6r6FLC4uer3e4ocYp9M5Ojraypk8zWaz0WisNj/ObDbTVaeKLyjxeHxq\naiqRSIhntaWt6/l8Xq1WG41GGqXxPJ/L5XaMrtLp9FNPPVVL+ePxeO2BnUKh6OjoEFna/KDk\ncrmFhQWa7v/Qcjqdfr+/PLZTq9V7yZ8Mu5XL5W7evFl8TVhbW7Pb7cePH9/XS1ktgzTK1Z2H\nqMadR6PRXC6nVqvNZvOBX8kP/PFme3t7c3MzmUwyDGM0Gh0OR6NWkZHwWEkEdk1iMBhEYouS\nQCGfz/t8PnqZ0+v1LperYsvK8vLyyspKyYt+v5/n+ZMnTzao4PvizJkz169fL4/tZDJZJpO5\nfv16xVymXq/XbrdbLJaK+/R6vSsrK4VrLr03cxy3uLgoklepDrvtC2jygge1o6v9HPidY0fh\ncNjn89Fpbkajsbu7u+R0oMMf6YO+wWDo7u6uPU/V8ePHC4mLCSEymayjo2NoaAj9sM00OTlZ\nfjUIhUJzc3M0DfU+qS9E26eWHkEQlpaWVldXC7cJpVI5MDDQ1dW1H19XI71e3+Q+h+JH+vn5\n+eImukQiwTBMb2/v6urq3r8oFotVu5u0OwR2TSKXy7u7uysejmq1ujidbDAYnJ6eLr7iLC8v\nDw8Pl5zeLMuWR3WFPUSj0VbOwUi7nssHTPA8L5KenhDi8/kqnoqLi4slf41sNtvweQnUrkZm\n8DxfrW3ywNG/disnUxQEYW5urrjjPhwOr6+vj42NFTLWLiwsFJ9WyWRya2urr6+vxiY3hmH6\n+/s9Hk8mk+F5XqPRtH6k25qqTWbcUTgcrtYf6vP5jhw5sn8DBuoL3x0OR8NLQgiZn58vyRiQ\nz+dnZ2cFQTjAlFh0TORuc5rsBc/zTz75ZLV3aZbThnxRNBpFYAd7NTAwQPMkFb+oVqtPnjxZ\nuJckk8nbt2+XPB7xPD87O6vRaIoHnUSjUZGnqHA43LKB3fr6+vz8fH1jYH0+n81m6+joKE7h\nkU6nvV5v4wq4A5EUmuVYlm3gaN+Ga2YQk8vlwuEw7WOyWCy13FPX1tbKh2NyHDc1NXXx4kWt\nVru1tVXxKu/1ehOJxIkTJ2r8gQzDYIXi+kQikZWVlUgkwvO8SqVyOp0ej2dXAZP4KLdYLLZ/\ngZ3dbq/2eFyNyWTaj2VdkslktZHHi4uLbrf7AJ837HZ7MwO7psHkCWgAmUx24sSJUCgUCARo\nkkaLxdLZ2Vmce8Lr9VYL11ZWVooDO/HuxcZ2PjZQOp2uO6ojhAiCcPv2bUIIwzAqlcrlcnV3\nd9MVxBtaTDG7Gk2sUCgaO5OrgdRqdXOGD6dSqenp6eKkcQzDdHR0jIyMiKcwqPZozvP82tra\n8PCwyEjq7e3tycnJkZERhmHUajWS+e2Hzc1N2qRE/5nL5dbW1gKBwNmzZ2uPxsT7Q/d1QJvZ\nbKbjLMvfYhjGZrOl0+nC+c4wjNPppEdUHd+VTqdXV1eTyaRMJrPb7SXpr0UuYnTN+wNM9bdP\naU0OHMbYQcPY7XaRU1Tk4TUajRavdy5+R2zZNEt37txpSJQjCEI2m/V6vc1sq6N2NdyEprBv\nzWl0fX199X2QZlFWq9W1HGZ0YY+Sh2NBEPx+fyqVOnfuXLX+u1wuJ9IvTzu4xdcy2t7e/ulP\nf0oIUSqVnZ2dLpdLLpdrNBoEeQ2RyWTm5ubKT+dsNjszM3P69Oka9yMeAu73xO2xsTGlUrmx\nsVH4IbTzsdDumEgkksmkXC43mUx1j7ycnZ0tbpDb3t5eXFw8depUoV9FPLtnLbk/909rXr72\niGZ9OuhS7BcEdk2VTqeLm+tsNlvJPUakcVgQBJ7ni5fKlsvl1bZv2UO2ZQec1Y4GIvl8PhQK\nhUKheDyeyWQEQdDpdHa7XaVS0f+ntwE61LcFr4w9PT11LJm1tbW1tLRUmA5iMBiGh4fFx6ks\nLCxUO0oTicTGxka1YuyYPVgQhBofEvL5fOEZQKlUdnd3ezyeA5/u1+62traq1VE4HM5kMjXG\nZA6HY2FhoWJVKpXK/R4FJZPJRkZG+vv7I5EIy7J0nEBxv6fBYChp2mFZlud5pVJZ4xPC4uJi\nxREF169fv/fee+nTkXjO8IPKKE6HPewlG1fLGhsbk/BoWgR2zVOSmsTr9RqNxpMnTxZ3h6nV\napGHs+Kh7nK5/MiRIwsLC+Wblaxjkclk1tfXaap3nU7ndrv3+1opCEIsFqNLLppMpuLRS/va\nsdIcSqVyc3Nzfn6+JF5JpVLlvbS0y7iJpduBQqGwWCx9fX11DMH0er137twpfiWRSNy4caOz\ns/Po0aPl27Ms6/P5xDNKBIPBaoGdSqUSmY6n1WrpwLjd5tmiS4nHYrHx8XE03e1FtXxjVCqV\nqjGw02g0XV1dFUdxDQwMNCf+pqMDd9xsfX19bW2NHnJKpdLlch05cmTHqKtar4IgCFevXu3t\n7XU6nSLXZIZhUqnUxMREJpNRKpVWq7W7u7s5V5W5ublG5RZpHSqVanR0tGXbPhoCgV2T0GQc\nJS/G4/GJiYkLFy4UbjB6vV6kTSsUChXPYezt7RUEYXl5uRBhMAzT1dVVvPKs3++fnp4u3B2j\n0ejm5mZ3d/fIyEhDfle5SCQyMzNTnOPD4XCMjo62bO/wbnEcV7xmlzjaZbyv5akFwzAXLlyg\noVIul6vjUTWTySwtLZW/LgjCxsbG1tbW4OBg8dy98sndFYn8cWjmkWopAGm2arfbvbi4WNMP\neLnt7W2fz9c66x+0I/GwuPagmef5amsbhEKhg032UWx6etrn8xX+mc/n19bWwuHwmTNnql3c\neJ6/ffu2SLtyOp2em5tbWFg4duyYzWar+HdQKBTFB3k0Gl1fXx8fH6+WTTMSiWxubtLoU61W\nC4KQyWRoewHHcQzDyGQyvV7v8XisVqvI781kMsW/t/UxDEPHWlQbodHf39/b23sYFlSU/i9s\nBTzPV5t7RbMz0DXgk8mk+ENw+V2wr6+vq6tre3ubrjxhsViKn5LpoPXyNo/19XW9Xl9xCr0g\nCPQSUN+w+lgsNjExUfKNwWDwxo0bdDSVyFnXLlp2YooIOjpzenp6e3ub3mZ0Ol1/f3/ti3kE\nAgGRvlGO4+bm5mKxGM06FovFJicna+knFb/IDg4ORiKR8sPe6XTSdCe9vb31LR5ACPH7/Qjs\n9kJk7DnDMLUvgRMMBqvleqRvtcKE5WAwWDHKSSaTS0tL1Z6Ta2zx4nl+cnLSarUqFIqSZyGl\nUll+wcnn85OTk3fddVf5E9qdO3dqGXZMp6h3dnaOjo5W3EAQhAau8dAcgiAoFAqR6/Py8rLP\n5+vq6urr65N2az0Cu2ZIJBIiTRczMzM1DhUqvgsKgsBxnEyrd4jdAAAgAElEQVQmUygUFTsR\nstlseYxV4PV6SwI7juOWl5c3NzfpiaFSqbq7u/v6+nbVFXLnzp2K35hIJGhLYWdn5/z8fO07\nhEa5fPly8T9TqdTU1FQ6na5x1ctaxtn4fD6Hw9HR0bG8vFzjIU0vrxzH0VXO5HK50WjUarV0\nZoZarT5//vzCwkIhrFSpVD09PYVpHzKZ7PTp05OTk6FQqJavK9ayiaP3lSAIyWSS4zitVrvH\n7jyXy7W0tFRxAKXD4ah95+LjbuPxeBMCu1gsFgqFcrmcQqGw2WzlTVkibVdbW1vDw8PlgUI6\nnd7c3Ky9DBUHLVQLU7LZ7Pr6Ov0j0xG9tCS7mky2ublpNpvLH2/S6fStW7fEWxla046XqUwm\ns7i4GI1GT548KeHYDoFdM4jfQmqfJUrHYWSz2cXFxWAwyLIswzAmk6m/v99msyWTSdrLZjAY\nWJa9evWqSD9XJpPJ5/OFHgSO427cuFGckCKXyy0tLUUikVOnTtV4AtDFcKq9GwqFuru7Ozo6\nENi1juXl5Y6OjloaV2qM730+n9ForH3V8Gg0eu3atWqHjdlsPn369LFjxziOy2QytMW35GiU\nyWTj4+PLy8u1R5OFDxb+n+O4ZDIpCIJer5dqT40gCF6vd3V1tRArWCyWkZGRuleXVqlUx44d\nK8+7qdfrK465rEZ8lsyuJqFns1lBEHaV3Ybn+enp6eKMHl6v12q1Hj9+vLiDVWQoJ8uy+Xy+\nPJCtb72y2hUPeDUYDGNjY3WkCFheXi4J7Hien5iYkPZjTygU2tzcbJ1e/oaT5iWs1TRk/KnV\narVYLKlU6tq1a4VLsyAI0Wh0YmJCpVIVZl0olUqdTrfj0K7bt28nEgk6hVMulxdHdQU00X+N\n0yfz+bzInTWbza6trZWMvq+myYvYHFo07YjT6aT3LaPRWG3Ae43L4yYSiStXruwqwBJP8fPD\nH/5wbGzM5XKJxx+0WzkQCKTT6UwmU0tkSX8Ry7ILCwuFCZ40wd7w8HBLTXlpiJmZmZJmp0gk\ncvXq1bNnz9ad0MvhcFy4cMHr9YbDYY7jNBpNR0dHT0/PrgZxijfIib/L8/zU1FQwGCw55BwO\nx9jYmEiMTge/yuXyxcXF8jxt4XD4xo0b58+fLwSI4g82uVyOZVmVSlX8jc0cs5FIJK5evVrH\nNbP8NkGX72tQuVoX7ZM96FLsFwR2zVAxZtoV+gTp9/tnZmYq9n0Uz6XN5/O1jDoqPFCKF29r\na0sksEskEqFQiGVZpVIpPtFSEITa2+rOnz+fy+Vo0k6GYWiOmBo/C7uyvr6+vLxc+KfD4Th6\n9Gh5WGO327Va7Y5X/Hw+39h87oIgTE1N0YkU4ltqtdpCF235EnMlGIbp6emhDdXFXYE00o3H\n4+fOnZPMdB/y4nq75a/TwZFnz56te886na7aOK0adXR0VBvCodVqRZ4oWJb98Y9/XPF4CwaD\nly9fvnTpUnmImc1m5+bmCgmBq7XtJRKJZ5999tixY1arlWEYg8Eg0mX8/PPPkxdzGg8NDdEp\nbs3J/l1Q35OwIAjpdJqe7xzHZbPZ2pvb25q0g1cEds1Qd3pJm81mNBqtVqvVal1aWiq+ATdN\ntROA5/mZmZmSSYsiLW21n0i0x02v1xdGuhTP800kEn6/PxqN0ozNNe4TqilpVwgGg6lU6vz5\n8yV3RNrjeeXKFfG4bZ9W6VlYWHA4HLX3rw0MDDgcjo2NjWQymc1mS5olZDLZ6OiowWDwer0V\n79bpdJou0NyAoreGkpUMi0Wj0Ww22+QopJharR4aGpqbmyt/y2AwbG1tWa1WpVIZj8dpj6fR\naGQYJhwOT0xMiFwBcrncwsIC7RQuzAbNZDLPPfdc8VEqsod8Pj8xMSGXy81mMx0DIH7BEQSB\nTuU5c+aMWq1OpVItu+pMMZrE+7CRdo8QArtmUCgU9cV2Nputt7eXEBKPxw8kqiPV+yDKozoi\nerbUfiI5HA6RrpySfKF0tEQ0Gj3Y5OxSkkql1tbWytfD1el0d99995UrV5rfeprJZJLJ5K56\nDE0mU6Gxh2b5oTdak8nU1dVFO/hE1koKBAJSCuzEH6tWV1eVSqVKpbLZbAcS4XV3d6vV6sXF\nxZIB+4FAIBAIMAzDMEzhAqJWq91ud3FO0Gp8Pp9Go9nc3KQ/X6fT8Ty/22cPjuN21YjFsuzU\n1FQul2vH6fOHh7TzkyOwawar1VotHZe4QkvDAeYTKs51XECztOzH12k0muL2uR0VL9GWSCRo\nnwjsUTAYLA/sCCFKpfLuu+++fft2xZCoYmqGRhEP3DmOi0Qi4XA4lUrRuFOhUGi1WrPZbDKZ\nzGZzxXECIhFqNpvleV4yV3/xQW+FNXllMllfX9+RI0eaUqiX5PN5hmGqVXHJEiPZbFa8n72A\n5/niDHC7zWVdt3acT3rYSHjZCYLArjk8Hk8wGKyjlyqTydBekgMcEFBxgN1+TPiSyWQul2tg\nYGDHcev5fJ7nebpgV+FFjuMqZtCt9l0ymUwkB82lS5fC4fDs7GyNO5QY8Sjq2LFj8Xi8/Jik\nt+dq7SjF83vq4PP55ubmaODI83wt64lFo1H6RGSxWMbGxsrnhcjl8mqRKD1C6i5tqzGZTCK9\nsQU8zy8vLzMMU2MSnL2jk1d8Pl/rd1lCEzRt2pyURtCWa8PALrXy1L9+4V+/9cOrt2ZXApF4\nilXqjGan5+iJc6/8xV998E2v8hx8MstSer3+5MmTt2/f3m17RqEn4kCOQoZhBgYGKmYn34+V\nwc6dO1fc1yYIAv35haV1Ozs7A4HA6upqoUmGBoJ0Jtrk5GTtPSY8z4tfPuRyeVdXl8g6p9JG\nI55AIJBMJmUymdFodDgchUAnEolUe9IQuT1zHOd0OoPBYH0X7r20EEciETrJsWSapNlsrtZo\nV+Ms4HbR1dXl9XprvP6srKx0d3c34ZojCMLNmzfryy8N0sMwzL333ru0tFRHbmSFQkEz3aTT\n6VoeEmKx2OLi4sDAQF0lbXVtFtgFnvzDX3/bx55Yf/lzfzIRDmwu3/7pd//fv/noh1/9kX/+\n8u/f5zigAlZltVovXbr0k5/8pI6QqLAaRDNZLJahoaGK/bCEkP1IBrGxsVFI4E5TsRdnnQ2H\nwysrK8UxAcuy6+vr4XD47Nmz6XS6gZO51Go1/YEmk2m/k1G1JrVa/ZOf/KQ4qNVoNMePH6fh\njnhGWYPBUHFxEZqF+KAaZtLp9Pr6ekn/cm9vr9/vr1ikij3R7UuhUIyPj9+6dauWKwnP89Fo\n1OHY96soHR27398CbUGtVl+4cEGhUAwPD3d2dvr9/kgkQpc4r+XjR48epYn6n3322Rpvlysr\nKyaTqQnHefO1U2DH3vr4/a/9g2tZYhi6/zff8as/d9fJwW67SaNgM7HQ+p1bl7/3r//4+HcW\nnviD196vvPLTD51ouZ+mUCiGhoZqX2a0RgaDQa1Wl2Te1+v1HR0dKysr9d1HFQrFyZMnRbJA\n2Wy2hk/4Kr7ELywslK8lUPEMT6VSi4uLjV2mjE5YIYR0dnZWC+z22LHYymQyWTgcLqncTCZz\n8+bNixcvqlQq8Uut2+0OBAIVb9gHOxMtFAqVhGtGo3FsbGx2drY4hGUYZmhoyGazNb2A+8tk\nMt111100luI4LpfLiZw1zTm2pbfAPNRHpVLdc889hX8WZsjRZ4y5uTnx8ZF0vRD6/xaLRWRS\nVIm1tTUEdgcr9dU//Pi1LHG/4bPPfvkdAy+fuTV49OTFn33DQ+9//z++5RUPff3qxz761ff8\ny5t1B1RQEZ2dnSzLLi4uFt/h9jKqwGKxjI+Py+XySCQSCASy2axCobBarR0dHTKZzOl0bm5u\nJhIJnufz+XyNY4cZhjl+/Lh4/n2NRtPb21tHonMRhT8Cx3G7WorH7/fXvTiMXC4v6Wzt6uoq\nDCt0uVx0tfiST9nt9tHR0cXFxUJiW8lQqVRKpbLi6O98Pr+6ujo4OLhjRtnWTDpYMVhxuVwW\ni2Vzc5M2Q+r1+s7OzlZYnHQ/KBSK3t5e+tyysrIiEtg1Jz/zjknU4ZCoNqZTJpNZrdahoaGb\nN2+KfHxkZKRww6Ij2mu8LIt3PrSvNgrsnn/qqSQhp9/756VR3UvUg+/4xHv+6usfmnj66Svk\nza+sYaccx33rW98Svw/RPCONun/39va63e5gMJjJZBQKhVwu39UIfavVmsvleJ7XarVOp9Pt\ndtOYxmKx0AXHiun1+vIMcOl0muf57e3t8l/EMIzFYhkeHq5llaGBgQGZTOb1egv7kcvlHo9H\nqVSurq7WMQGtMKaHRqK1f5Bl2bqnOI2NjcXj8VgsxvO8TqdzuVwlYwrHxsasVuv6+nrxjb+7\nu5thmNHR0ZGREbrUQS6Xi0aj29vbuVyOJlWmLZotMiS8xvmqtDfk2WefrbYBbb+02+3lq5VT\nKpXKarXWNwSTYRir1bp/+VGrDRpTq9VNmyvQOmw2W/GM0WIymaz8YrIfpD0zEWrU09NTsnB5\nCbvd3tPTU3HgnV6vHxwcLCRGIIQYDIbjx49PT0/XchWS2GN5QRsFdnR9hJ1Wt+rp6SFkoual\nHp588snXv/71tWxZx3DOapRKZWF5vlqmqhWjy63W973FGeASicT8/HwkEqH/VKlUHo+nxqXD\nKIZhjhw50tPTE4lEaOJQi8VCH5u6urromjy7Kl7h5KzjZFMqlfXNcrDb7Tv+Pd1ut9vtrviW\nTCbT6/U0Di5fS5sQIrIQajOZTKbyru1yBoNBPBil10qFQjEyMjI9PV2yJcMwR48elcvlKpWq\n2uyKau3TDMOcOXNmn3LoUBWnAR1aRqPR5XJV/IN7PJ7mLJhrsVha4eyAZlKr1Z2dnYVnabfb\nLb5kETU8PGw2m9fW1uLxuCAIWq3WZrP19PRUbFx3OBx333233++nbdLBYLBa2zBdI0R62iiw\n6+3tJeTO8z/6UebB11RezpIQknnmmSuEkMLSQju57777vvGNb4i32H3zm998/PHH3/rWt+6u\nvLXZ7dSzulfsLmEwGM6cOZPP59PpNM34VV9vplKprBgYWa1Wt9tde/o9hUJRCIx22xGm0Whc\nLleNqa2KmUym/U5p0dnZ2Qq3rq6urmg0uuMjrMlkUiqVImMDCj10LpdLpVItLi4WnqHMZvPA\nwABt6XE4HIXUaCWcTmcsFitp0KURodlsriX6rI9KpSoMnQRqdHRUJpMVpxqRyWQej6dp7Zc9\nPT3r6+v7McW+ldE1MARBkGpzkbjR0dH6BrA6nU46PaIWCoWisBSsRqOptkZ5tSf2dtdGgd2p\nN/3ayJ/98dyn3/FrY1/+9H++x1VWdHbrx3/zznd8eoswR9/0xvHadiqXyx944AHxbTY2Nh5/\n/PF9mvxvMpnKh3lVY7VaG/uEoVQq9y+pAW282djY2LE7Ui6XHz9+vBA0aDQak8lU+wK7PT09\nPT09Gxsbu8omo1Kpzpw5U/v29XG5XLOzs3V0yNZ+VOzIbDY7HI5jx45NTk6K3Evo8ql0vctq\no9qLBxpbrdZz587l8/l8Pl9yIHk8Hr/fX/6UrFKpBgYG5HK51+sNBALpdJomsunr66NP7RaL\npY4AfUc6ne7EiRPSzlxVB7q0Wn9///b2Nl3D3mazNWd0HaVSqcbHxycnJ4uHPzIMI5fLmxDt\nabXaXC5X8Szr6uqKRCL7lNDYZrONj48TQjiOW19f397ephcu2kqaTqf3OPSwldcxc7lczZ+W\n1NPTEwqFCt1TBRaLRbwLuH21UWDHnPvwP37gW7/wpxP/6733ej5+8t6fuXhisNthVMu5bDy4\nfmfyuaefveXPEqI//cHPfvjcQZe2VjKZrL+/v9rzRDGVSjU2NtaEIjWKTCYbGRnxeDyhUMjn\n86VSKY7j6BWHZn9lGEaj0dCzqyR57NGjR69fv15+cS+/ZrndbhqOXLhw4fr16+U9gFarVaFQ\nFCfakMlk3d3du1rfom4ymWxsbGxqaqr2jzAM09XVNTAwkEqlIpEIy7JqtbriSprkxQ7xwqJJ\n5WiaEkKI3W4/f/78yspKxVzZDMMMDw/TW8vg4CD93pJtdDpd+XWw4rOBUqk8c+bMzMxM8cXU\nbDaPjo7SFasGBgYqZpCy2WzVsqXUiGEYtVqt1WrlcjlNW2M0Gukk7rr3KW0ajabQttF8ZrP5\n0qVLW1tbxeNclUrlysqKz+fb1eRcej0RyeWu0+noAFD6OEFnmPn9fq/Xm8lkaBY0o9Hodrut\nVmsikbhx40bDV1KRy+WDg4OF/+/r6yvpXmJZ9urVq+UxpVKpZFlWJGKTy+UOh6Orq8tkMrEs\nm8/n6WCbwkeYF6nVapvNFg6Ha1whQyaT6XQ6QRBSqVTdISN9ei8eDNc0Mpns1KlTKysrGxsb\n9IhSqVTd3d19fX1SSkJerHVD+8piNx/7yHt//zNPrlXsO9X03PfwH37yY28fb2hu0U996lPv\nfe97n3nmmXvvvbeR+y2ytLQkkpqEYRiHwzE2NnaoxhqnUqmFhYXt7W36Z9FqtR6Px2Qyra+v\nR6NRQRDo+IySyeqxWGxjYyMWi8nlcjrktjmjhcT5/f75+fnCXUqhUHg8HpfLFY1G5XK5Vqvl\nOC6ZTKrVao1GQ5cbL9mDIAjT09PFI6KUSmVXVxedwikIgtfrXVpaKj6EGIbp7OwcHh4uv3gF\nAgFaHrq9Wq0eGRkp/kvG4/Hp6eni6z6dCLzb5pxUKkUnnRgMhhpHEeRyuevXr4s3ltBfRBN3\na7Vao9FIG/y0Wq1Op0MMJzHpdPrKlSsibXjFV0iWZSORSCKRSKfTRqMxm81yHGexWMxm826X\nwaVrl4VCoVwuR2cFGQyGTCbDsqxWq7Xb7bTBL5/PJxKJXC6Xy+XS6TQ9zZVKpcPhyGQyxfmS\ndDrd2NjYjrmv8/n8nTt3CjPuabL0I0eOyOXyeDxO04bL5XK9Xm8wGBQKRT6fVygURqOx/AbB\ncVwoFGJZ1mQylSy1nMvlZmZmqg1+0Gq1HR0dHR0dOp2ucAllWXZ1ddXv99M4uNoNi85GOsCn\nBRGFwG7vu3r22Wdf8YpXfPKTn3zPe96z9701VrsFdoQQQvjE8uUnf3jl1pzXH0mkObnWYHH2\njZw8/zP33eUxND4Ab0JgRwjJZDLBYDCZTOZyOblcrlAoaJeETqdzOBytEJ0cCI7j6PThA1mb\nvIEEQYjH49lslrYh7ceTIs/zoVCIpvSkiQzFDxv6WK9Sqao9MMTj8WQyyTCMyWRqcgYQv9+/\ntLREB7/SaxSda6zVamu5NYL0cBy3sbGRSqV0Ol0+n89kMiqVyuFwmM3mlgrlWZbleV6pVNJS\n0Wcbekoajcbai8rzPG193NdnlVQqRfMaymQyjuM4jtNoNLX3yCeTSUEQaG5LjuNYllUoFIfk\n4aqVA7u2DBdkhv67H+i/e4ehcW1Go9HsalLqIUEfTA+6FA1Aw6N9/QqZTEYfsmvcXqFQiEd+\nRqOx2tIj+21XA6XhMJDL5W0x/aXknNLpdPUNjKYz7htUqKrqLh4ljYuz9EizgxkAAADgEEJg\nBwAAACARCOwAAAAAJAKBHQAAAIBEILADAAAAkAgEdgAAAAASgcAOAAAAQCIQ2AEAAABIBAI7\nAAAAAIlAYAcAAAAgEQjsAAAAACQCgR0AAACARCCwAwAAAJAIBHYAAAAAEoHADgAAAEAiFAdd\ngLYxOzur0WiqvZvP5z/3uc95PB6ZDLGyBPE8v7CwMDQ0hPqVJNSvtKF+pY3n+ZWVld/+7d9W\nKpVN+9LZ2dmmfdduIbDbGT1WHnrooYMuCAAAAFTw6KOPNv9LmxlK1g6B3c4efPBBlmXT6bTI\nNjdv3vziF7/4ile8wuPxNK1g0DQrKyvPPPMM6leqUL/ShvqVNlq/b33rW8fHx5v5vVqt9sEH\nH2zmN9ZKgEb4yle+Qgj5yle+ctAFgX2B+pU21K+0oX6lDfVbAgMOAAAAACQCgR0AAACARCCw\nAwAAAJAIBHYAAAAAEoHADgAAAEAiENgBAAAASAQCOwAAAACJQGAHAAAAIBEI7AAAAAAkAoFd\nY2i12sJ/QXpQv9KG+pU21K+0oX5LMIIgHHQZpIDjuCeeeOLVr361XC4/6LJA46F+pQ31K22o\nX2lD/ZZAYAcAAAAgEeiKBQAAAJAIBHYAAAAAEoHADgAAAEAiENgBAAAASAQCOwAAAACJQGAH\nAAAAIBEI7AAAAAAkAoEdAAAAgEQgsAMAAACQCAR2AAAAABKBwA4AAABAIhDYAQAAAEgEAjsA\nAAAAiUBgBwAAACARCOwAAAAAJAKBHQAAAIBEtGNgF/n71zAV3f+ZyO43I4QQkpz+0kfefO+I\ny6TRGJ1D97zpg1+YjFf4Zgls1gYaW7+H7DBoD7upFEJyaz/41O/8yt3DnRat1tJ77N43/l+f\nfno1U7JRK1fKoavixtYvTuFWU1uNfOdhQ+WtGIZh+t7/45ftspVrpB3rV2g/4b97deXf8guf\nDu9+M0GIPvO7p7WlG6mPv/8H21LbrD00tn4P02HQNmquFIH3fed9p/QVNnwsXrRVK1fKYazi\nxtYvTuFWU1uNfPuhChX7AtNvfD350patXCPtWb/tG9gd/6PphmyWefq/9BNCZL2/9InvzYXT\n6fD8E3/+Bo+MENL9zidSUtqsXTS2fg/PYdBGaqwUgZ3+80taQgjTcc97PvvUjD+ZzUS8V7/x\nyf/0qnd9OVHYqpUr5XBWcWPrF6dwq6m1fitY/MQ5hhD3I0/lCy+1co20a/0e+sAu/qVf1hBC\njrzv2fRLL2Z++r4hQojygcfD0tmsbRxEYNfKFSe1+hVqrrvgZ1+rJYSozv3BRLr6Vq1cKYe0\nihtavziFW07dgR1/9YPDhJCRD1196bVWrpG2rd/DHtix3/hNLSHk5EdnX/763MfPEkLUb/6X\nvFQ2ax8HENi1csVJrn6FWutu7a/uYQgh7nc/kRXZqpUr5bBWcSPrF6dw66k3sMs98U4XIcyZ\nP1146bVWrpH2rd92nDxBrf7Tb5zoNKpVOmvP8f/w5t999NlNro7N7ty6lSbEfPHiyMs/NnzX\nXVZCspOTC1LZrN00pn5r3KyVK06i9Ut2rJTMMz98XiDE+YY336cS2UsrV8rhruLG1G+Ne2vl\nijuc9Vsu/vVHv7RFlPe987cGX3qxlWukfeu3fQO72PzV275ELp+OrE8985U/f+Q/jP/sJ66m\ndruZ3+8nhHR3d5d+jr5E35bEZu2mMfVb42atXHESrV+yY6WsLS3lCWHOXzzj+8Gf/uZ/GLTr\n1FpL9/GfefD3vlg826yVK+VwV3Fj6rfGvbVyxR3O+i3j/8KjX08Q7QMPv9VV/GoL10j71m87\nBnaMfugX3/83X392cmU7lQx6p57+pw/94oBGCP7wA2/8wI8yu9ssnU4TQtRqdemXaDQaQkgq\nlZLKZu2jkfV7eA6DtlJTpSQSCUKIQ3vt3Xf9/Af/+ZnF7XQuE92Y+uEXP/bg+QuPfCf4wmat\nXCmHtYobWb84hVtPjdfel1t47NEf5Ijt1975K+bil1u5Rtq3ftsxsDO/7e+/+Rf/xy/fc7zP\nqtXZe8de+baPf/Py59/UQcjKY49+J7urzbRaLSEkm82WfkkmkyGE6HQ6qWzWPhpZv4fnMGgr\nu6iU4L/9zVd1b/zktyfXo6lkYOmnX/7wq1wkO/voOz7yvVzRZq1ZKYe1ihtZvziFW0+N195i\nwnP/8OkbAul728M///L4p5VrpH3rtx0Du0ocv/KO11sISU1OLu1qM6fTSQhZX18v3ZK+1NHR\nIZXN2lu99VvjZq1ccYeifkmFSnG5XIQQQTjxka998T33H+8yaXWO/rve/LFv/MPbbIRsfu1r\nPyWEtHaloIpfUm/91ri3Vq64w1m/L5P7/qOfu0PI6NsffkVJzNHKNdK+9SuVwK5egydPagmJ\nPvfc3Mtfn798OUyI+uTJYalsBiJaueIObf1axsd7CSH6sxfG5MWvGy9cGCWEBHw+npDWrhRU\nsYga67dGrVxxh7N+i0X/7dEvB4js0sPvOFH6VivXSBvXb9Pn4e6P0Nfe4iSE6H79q2IJkSps\nVjkDzeXaEtW01WZtre76rXGzVq64w1C/QqVK4Z56xEUIOfmHU2zxhvF/f5uNEOL6zz964d8t\nXCmo4oK667fGvbVyxR3O+n3J5l+/SkmI6v7P+Ct8sJVrpG3rt/0Cu8SX3nnXWz706W/+ZHLR\nF8uktldnnvnC7//yiI4QQnofeTK1u80EIfPUCzmjH/jz782FM5nwwhN/UcgZnZTSZu2hsfV7\nmA6DtlFzpfAzf3aXkhD10Td/6juTG9F0Mrh8+csffpWLEEL6/s+ncy9s1sqVchiruLH1i1O4\n1dRcIy+a+dhJQojxTV+NV9hba9dIu9Zv+wV28cdeRyph7K/8k+fiu91MEAQh+qPfPVW+ytux\n95UuBtf+m7WDxtbv4ToM2sQuKiU3+3evdZZvqT/zu09HijZr5Uo5fFXc2PrFKdxqdlEjgiAI\n3I/f308Icb7zu7kKOxMEobVrpD3rt/0COyHru/LVv3zPG3/m1FCXWa1QGx1HTr/mNz782Z/6\n2Ho2o+K3v/ChX7s02KFXqfSOgUu/+oHP34xJc7PW19j6PWyHQVvYVaXkN37wl4/cf6rXplMq\ntda+Uz//0Mf+fb68VaCVK+WwVXFj6xencKvZVY1kvv1bdkKI53cvc2L7bOUaacP6ZQRBqBh9\nAwAAAEB7OeyzYgEAAAAkA4EdAAAAgEQgsAMAAACQCAR2AAAAABKBwA4AAABAIhDYAQAAAEgE\nAjsAAAAAiUBgBwAAACARCOwAAAAAJAKBHQAAAIBEILADAAAAkAgEdgAAAAASgcAOAAAAQCIQ\n2AEAAABIBAI7AAAAAIlAYAcAAAAgEQjsAAAAACQCgR0AAACARCCwAwAAAJAIBHYAAAAAEoHA\nDgAAAEAiENgBAAAASAQCOwAAAACJQGAHAAAAIBEI7EOJftMAAAZASURBVAAAAAAkAoEdAAAA\ngEQgsAMAAACQCAR2AAAAABKBwA4AAABAIhDYAQAAAEgEAjsAAAAAiUBgBwBQA/bLb2AYZuiD\nNxq4JQBAoyGwA4A29f2HLUwRucbYceTMa37r9794K3bQRQMAOCCMIAgHXQYAgDp8/2HLz302\nWuEN5fDD3/jxp+937PP3Jz53v/Ht3z36kVsz/+PEPn8VAECN0GIHAG3t3CeWBEEQBD4X3Zj+\n3t/+1nENyc9/5l3/4xn+oEsGANB8COwAQBIYpalz9DXvfuzf/vs5Qsjqt799+6BLBADQfAjs\nAEBKmJGzp/WEkEAg8NKL+bUn/+q/vP7iYIdRrdJauo+96q2/96VbJZ243OaPP/OBX71nrN9l\n1OrsvaPnXvObf/ilKwH2xfdfPiVi7ZOvYIxv/y4hZPZjJwvD/F7z95GyLXdRBt9fv4JhmPN/\nspxZ+Nf//uZLgw69WmPpGX/d7zx2M9HIvxEASJjioAsAANBAwvz1G0lCSEdHxwuv5G9+6hdf\n/b7vB18cTpzbmH76Sx97+t++8tS//OjRB1z0xfA333Xx9f+4Vui+XZvdXpu99sRXFo2Zz/3S\n3ktVUxlefO/2X/zCn/z1D1+M+dZvfet/vuOZqczN77/bs/eCAIDUocUOACRByMd9sz949OE3\n/tFVQkjva+8/Tl+e/JMH/+v3g4Lx1EN/+4OptWgidOf5f/2913TJs/P/8LZ3fyVMP5z89797\nfI1Xn3z4s8/MbcUy2bhv4caTX/zog3e5VJW/ree9zwjxx36BEHL0I7eEF33/EUvFotVUhhfd\n+vzfLZz70Bd/suCLp8Krlz//n8Y1JPbEx/7qJw36QwGAtAkAAG3pew+ZK1/WlEMPfyvwwkY/\nek83IcT6H78QKP5o7up/G5MRwtz3N5uCIAhC8rHXyQi5+P94q39b/ku/TAgZ/G/XC6+UB3ZV\ntqytDIKw+T/vJYSQkQ88ly7ajv3h7/QRQu4RKxwAwAvQYgcA0iBT6W2eUz/7tt/7/JUrn37t\nC7lOfFeurBOie8PDv/6y5CfKs+9+6CIhwvPPXyWEEKJ77W/8Rzt57o/f8u6/+NL3byyHc40s\nWI1leFHfL/3qBU3Rv+Xj48cIIcFgsJGFAgCJQmAHAG3txXQnApdNhJZvPPFPf/Tg+EstedFo\nlBDS09vLlHyMvpSIRDhCCCGut3z+uf/vj1+ne/bP3v5zZ47YDLahe37ldz753aVsA0pYaxle\n8NLowBeo1WpCCMdxBABgJwjsAEDCzGYzIWRtdbU0Ezt9yWCxyF94QTPwug8+9r2bvlh46cZT\nX/6T3xxZ++L77j/zwN8v7DmHe+1lAADYKwR2ACBh7vPnuwlJff0zX3pZRyZ749HHnieEOX/+\nXMkHGJWl/9TP/Mq7fv9z/+ujryDR7/3152er7VupVBJCMplMo8sAAFA3BHYAIGX3PvSu4zIS\n/tojP/fOR5+e2Ywnt5eufe0PXvfAJ25zxPTLj/y6mxBCyM2P/8J9b/+/P/vty5NL/kQulwwt\nXv7Cxx+/Tgjh+aorWKjdbgsha0/8y1PeeE5snYvaygAA0ADIYwcAUsac/ODnP/HUq//rkzc+\n88irPvPIS2+oBt/x+N++2Ub/wcfuPPW5//3U5z5a8mHHAx946FjVfd/z+tfbP/NPN/7sPs+f\n0Rde/XfhShlPaisDAEADoMUOAKRNdfr9373+/b989+vO9dv1SoXa5B595Vs+9M+Xn//sGzpf\n3ObUR/73U4//0bted/eJ/g6DWmvpPHLilW/50Gd/dOPfflskK7D2gU9+668efs2JbrNaXjox\nYvdlAABoAEYQ9jwyGAAAAABaAFrsAAAAACQCgR0AAACARCCwAwAAAJAIBHYAAAAAEoHADgAA\nAEAiENgBAAAASAQCOwAAAACJQGAHAAAAIBEI7AAAAAAkAoEdAAAAgEQgsAMAAACQCAR2AAAA\nABKBwA4AAABAIhDYAQAAAEgEAjsAAAAAiUBgBwAAACARCOwAAAAAJAKBHQAAAIBEILADAAAA\nkAgEdgAAAAASgcAOAAAAQCIQ2AEAAABIBAI7AAAAAIlAYAcAAAAgEQjsAAAAACQCgR0AAACA\nRCCwAwAAAJAIBHYAAAAAEvH/A8g/L8519pEBAAAAAElFTkSuQmCC", + "text/plain": [ + "plot without title" + ] + }, + "metadata": { + "image/png": { + "height": 420, + "width": 420 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# coeQTL\n", + "print(co_egene_var)\n", + "plot_dataset(data_input_coeqtl[[co_egene_var]])" + ] + }, + { + "cell_type": "code", + "execution_count": 194, + "id": "cb6a61f0-beaa-47f5-9e1f-ef3b084f5f4a", + "metadata": {}, + "outputs": [], + "source": [ + "### Make combined p-value plot" + ] + }, + { + "cell_type": "code", + "execution_count": 195, + "id": "de926728-9f29-4d03-8c47-82f61dcadc73", + "metadata": {}, + "outputs": [], + "source": [ + "input = gwas_input[gwas_input$Phenotype == i,] # GWAS data" + ] + }, + { + "cell_type": "code", + "execution_count": 196, + "id": "6f766f43-9b74-4bd6-ac8d-f8e42db0552e", + "metadata": {}, + "outputs": [], + "source": [ + "input_coeqtl = output_all_effect[output_all_effect$ident == co_egene_var,] # Co-EQTL Input" + ] + }, + { + "cell_type": "code", + "execution_count": 197, + "id": "637d3983-e2a2-40d0-80d0-e9f785b9dc0e", + "metadata": {}, + "outputs": [], + "source": [ + "plot_data = merge(input_coeqtl[,c('SNP', 'MetaBeta', 'MetaP')], input[,c('variant_id', 'pvalue', 'effect_size')], by.x = 'SNP', by.y = 'variant_id')" + ] + }, + { + "cell_type": "code", + "execution_count": 198, + "id": "ea5a0ee6-f131-4c91-a8dd-752e31db49f8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "1341" + ], + "text/latex": [ + "1341" + ], + "text/markdown": [ + "1341" + ], + "text/plain": [ + "[1] 1341" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(plot_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 199, + "id": "838d67ad-1437-488d-8ca9-3210c226bf71", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdZ0AT2RoG4BN6LyJNujRFBBQEFSwsWEGvFbsoYq/ruvbey9q7rhVF7IqKDaVY\nEdRFVBRBUECkKVVCS+6PCIQeNGSS4X1+ZSYzyZfJJHlzzswZBpvNJgAAAAAg+sSoLgAAAAAA\n+APBDgAAAIAmEOwAAAAAaALBDgAAAIAmEOwAAAAAaALBDgAAAIAmEOwAAAAAaALBDgAAAIAm\nEOwAAAAAaALBDgAAAIAmEOwAAAAAaALBDgAAAIAmEOwAAAAAaALBDgAAAIAmEOwAAAAAaALB\nDgAAAIAmEOwAAAAAaALBDgAAAIAmEOwAAAAAaALBDgAAAIAmEOwAAAAAaALBDgAAAIAmEOwA\nAAAAaALBDgAAAIAmEOwAAAAAaALBDgAAAIAmEOwAAAAAaALBDgAAAIAmEOwAAAAAaALBDgAA\nAIAmEOwAAAAAaALBDgAAAIAmEOwAAAAAaALBDgAAAIAmEOwAAAAAaALBDgAAAIAmEOwAAAAA\naALBDgAAAIAmEOyABh7O0GKUs9sYK0yPRjPst2ttJX5um9YrXrGorgcAgO+SdnaV/vk9ZzTz\nUSHV5TQQgt0viJhnyGiY5lOCqS6aP9iF6dEPLh/e8Jenm72xqiTXSzRZGPEbj8s87l55i4lJ\nSEnLKqio6xi1aufUa6j3/C2nQhML+PY6hMTrlZYVL9lw3u9sQQFJ85m3+UUpIYQQhX6LZls1\n9AuEnfP+5oGVM4e72prpazVTkJaQklNqrmfh0GP4jDWHA15/Ly1fkt+7RHagt6EY9+PJjL5S\ndl9jf6KrvZafr0hSVkFFq6WVk/v4JftuxubzvCKDIS6toKppZPPH4OkbzkSkFte4qbPeXN3+\n53BXWxNtVQVpSSk5FQ0dIzNL2y5uI6cu2rj/zM033yotz8pLigz027Nyxohena2NtZspykpK\nSMkpqxtYdR0wZa1P2Ncan6V87W8vz22ZO9LFxlinuaK0tEJzPTPrjr1Gzd954ennfHYDtlVj\nE849kNuPuDv7F493d2xrpKEiLy0hISWnpK5v0bH36Pk7/d/lNOq2xI5aTnfSkrEanJsJB+bu\nfC9M+zAP2NBg4X8ZNHArq00Oorpo/ni5xLiWl2i8IPw3HrfgmFv9W1G8WZuh6++lllZf/cF0\nzYrFbDd8+I1K+P5odYla0abimQz++p0tKBAFgVP0yso1+jusuEErl6TcWzOwlRKjrrdYxu3Y\n97Ln+r1dooqMiyO0q6wrPepy2b2N/Ynm6bVI6rjticz/hRWJktWkMx8qvxlZoaudNcXrXEt8\n2OVKq1wbJV33s1hO9Isrqenl5b/+d4ylcq1vrPGClw3YVo1IiPfAMnkvt7vrSdT+dGIa3dc/\nyeL3himHHZVb3MYOZZUp9/dN58P2FRi02IHIKP325vziHtY9Nj7Lq3KP056vFft0xEITSsqj\nv7RTG44m/rxtNX6ifR0/QFX9iPjH1brHssv1tDgw8/JKGlJR7btEJck+EyaeSWnIA1OgOPnG\nrCErwhv0+jlyXh0a7Trrbk75jKQjI9yWB6WW1rHOLzzL68Mje8wL/VFldkH4+j8cvX1eZwt5\nk4Yo7IFFIYsG/Hk9sY4CWGnBiwfOuV1Dm5ngNJkdtaWX9x8/v+Oy/Tfuj+ZjjY0Nwe4X2P2T\nUCUfR3O3vNTQ9JJxoDtVxfKXmIxGK8cB3gv+OX7taewlL7VGeprB59lsNqv4x/evH8JuHFo8\nuLVS+V2sr/cXuQ8/koCDuwQu5sj++0U/b3cYNdKU5xXZn3yGuf0dnFb+njFUbcZs8At9l5JV\nUFSQ9TX22bXDS0e0V6vrj/uv7xKs+ANjZlz9RgghMjI1/9cX8Cd68Hk2m81mMbO+RAWs76XF\nVeqH4yce1vG7w1mRzS7JS3l3d/sQE8nye0o/HZi38/3PiYgda2/mlt0j29Zz363IxPTcQmZu\nesJ/t09umt7XXLG2VguJ5nYjlh66Fv4xPa8gN+V90KGJ7VW46vu4e8WxNO7lswNneSwNy/45\nJabZZfaBgP8+fysoKvie9P5F6NVDqyb2MFOm/GdG6PdAjuATxz9VTGn23hwYk5n/4/vHBzsH\n6FXM/3rmxO2i6is3gqa+o6oPHeUq9fP2q8MHnvA3gDaqX2zpg0rq+xlgs9+ta1exi5oseMGq\ncn/OcfeKT7zyyEs/2Owa+gRzo8+tGudqpa8mLyWtqGHq6LHo5H/ZtdTETH50dPnE/zla6DZX\nkpGUlFPRaNmux6i/9wYm/ODTqw6azBXs+NoVW/a9UIYZe9rDgPtDp9D/ZCrX/XV1nhZ9i3lw\ncf+q6R4uHVrrNVeUkRSXkFFQ1TSy6TZg0qrjj5IKqxUjiM1+ZnA9H0y3Y7m/8LA/sb5Hntsw\nbVBXKyNNJTkpCSkFdT1TK3vnAV7zNh27GfmVWfsbUYeIeYbl1VVPQnX47jdElful6Q46Hlt9\nq7PZOVEnvP/0yfg59Zu7RJni6I2d5DhLtBi9/W/bihVq6AirUP8nuiHqei1JO5y47+txMJPH\nFdlFYX9WOjCi7E35vM2+YqbRwoiq3zVsNivn7fmFbgtuVpp5Z8mAJVc+5FddNs1vAPe7Jz74\nPFcv19s1NhVfa+r9Tn6qv0uSCiKyB+Ye68X1cJW+x1J2O3Ld1Z27h4KfsKNWkXPcvSzZEZVx\n1wt4W4t6CHZ8wcPPQNqRHhXJTWtGcOUjDbJPceU6jan3ithsdpWEYT1pzUhjSVKVRMuRvglV\nDyjIjtg91Li2v4ZShoN2hefw4VULLtix2ewfD+cYcS9iviSq4s46gt33/S61bAcORctpV5Ir\nP5UgNntDgl0D383SD0f669TVRuKwJfEX3qK3qy3KH0F/7jPeV/yw0Yb72XW87uTWv9Jv7xIc\nhRHLbDhvHsNw4t3s+A3CF+zY/mO53lvGgFM/eF2Rzb4+TpHrXrXpQWw2m83+bynXsQjWv32M\naP5xd+69yfXfikO8Hs/Sqai809YGhH2BEpk9MHiKesW9dhtjK+5J2dW54h55r4DqGYgvsKNW\nFbepQ/mamtPu/2aJAkN5G3mToT5y5rDyHPT19JEAJtedOdcu3C0/obqlp7dz9SRBIg8t842r\nfr5PyUdfz4FrXnLdUfx6W/8/Zp6Pq+0M7aKES7N6DtofI1qdmbKOc6c5cE2/v3Ejjh+Pm/t6\n34gR+z/Xej/Vm73BD5t5au50/2S+v7npwcHlx5hIOzhY87xi8o3r/3FNtp30Vw8F/pRU7y6R\n/2jxyPX/FRNCxEz/9NnuqkSEUFIc93tr0rat7O8+oqYm1x+TyG0TF1+OyqzzRMG6sUtKuDrd\nlPT1lctuxwQFJZff0dbVInrb9P/Zm2goSEvKKKkbtesxdumJ8LRfOBSLz0RnD+wyZVrFeeYR\nO2dtC477XsDMTni4a+qWx2XzxcynT3Ot8wSQxtE0d9SWDg7lYTuV6ztQ2FGdLOmBp//3peHz\nK/7eyfb3rfg/kXdqQMWHxGbtu7L5lZqOCCFaPdfeep/JZGbHh+weZMh1PIh0jyNpZSt93N6x\nIhbKtPXcE/g2JafgR+bHh0cmWMmU3yPf69jvNucLtMWOzWaH/c3991hs2Pny5vQ6Wuyyjo6y\ndp+67uStxy+j41O+FxQxczITX90+OLU9139I00XPuVYR3Gav/6zYhj/sldHl+5JU+9kXXyVl\nFxQxs1Li3z5/eP34pjkj/rDotzup4e/Q9XEVP4bWa6J5X/GapzzXtmw+I5jH9X5zl2Czs+56\nG3J+/ySsljxjstlstlC12LGY2VUPXVLodTiF941QvYcrnnNH3KYOVQ4WE1c2tHUZNP7PVbt9\nb79IbtCxGEn7u3M11KiPv1HekV9yfhhXw4CUlBSpjtHcaUVIZl2P3/hEaQ8s/nx1TsdmtR7q\nJ6ZiO+1SfNEvbATeYEet5vthri6fnkdrOwRHyCDY8QWPPwMJWxzK92MJl/1ffs7O9avIdeJO\neyp+dSsnDMWBZ7nOcy+45c3VbE+67/n5QQtfUPEZEnPYUqnRmRUxj+tbyGnHL/y+cxN0sEvc\nzn2cCfljX3mq+pUBSkJnteDeFlxxS3Cbvd5g1/CHLfUdVP5vXm3UpW986rPJPcx1+I/rgYz6\n1/jpx9G+3G8a7x0uv7lLZFwc+XN0CRm7tVE/fwqFJNjVSELLZU21gSxq2QgleV/fBe7gPiad\nEEbbVeVxOz9sZXu5Wp+JIa/fdcI/9xJ5yAfM11u6KVesqdB1T2zFDpVxwLXeV0UIIUrOBz7+\n1ub7PaK2B7JyIo+MNpMh1Ui2HLL3+fdGPYoRO2r1h748rOLs/7br3v/KZhU8dMUKksGEGe5l\nEa7k/pGT8YQQQvKun79VNsqlTO8Jo3RqXJfI9RszmGvXlek1alDzismwp2FsQghJDgmp6Axg\nhf1daeBVMbt/4itWeRYW9rsvSLBYrEodjAwGj/0RBR/vHlw6oX8XGxNtVUVZKXHOxui660vF\nIl++fKllZUo3+y88rJi5efmBK5mnB+vqWjn18fCavWzzAb/bLxLzfrWLNj09vfw2Q01NtY5F\nq2A35jAYte0SyT4TJvqmEEKIvNOm0wstazi0QaioOi658zpwaUfluhe7OJTz1ksoaLVynXMh\ntqLfSkxv0pY5rcqm5OxXBD85Pr2bbo1HZrLzP4cemedq3WNHVJ0D6uc+39LPZX5I2ZmEEsYT\n/c5PN6740BUWVlldqePfF199yclLj7m9qXfFn6OcoCVrb/5GF9vvEqE9sDT51l+dDKwnnIph\nVr+z+OOF6bb6drOvfqaue7sJ7qhqas3Kb6elpVW9Wzgh2AmUqsfMUWX7ETvi6LFXhJAf1y/c\nLPsUKw329lCpZV0dA4PKzdb6+lynwBd8/ZpDCCHJycmER0Xp6dn1LyVEKqcvMXX1ZrUuWq7k\nw7GhbVr1nLLu6LWHkXFfs/KYxTVlmx8/qo56VIbSzf4rD9t+8nyX8q9d9o8vUY9unT+2a+2C\nqSN62+qr63cev+tJBq8PWouG/FLKamhwd4Q14BXxopZdInLPas7oEko9t/nMNKt7/FNh8P3R\nur6OXheSfy2CKLYZfzJwd69KB3ApWnnuCU748ubOiS0LvAZ0tdRRqLIV2N9C5k+t9eBS1peA\nmV26zb+b+rMiaTPvc8EH3DS4l1FSqnzImMXsI5sGtdVWlG9u2nP+8RV/VGSZzBs3qPsTKTp7\nIPv9pv/13xb2nTMlZzXh2MO49Pwf3z6Hn5nt8PPIkdyXuwa7rXtF1cAbTXBHZXN93bEb9U8C\nHyHYCZaUy8yJrcsmYo4decD6EXDhZlmo0Bzh7V5rw3Q9DVQ8t19VKC6m8G90w30KCeEa5IlY\nt2tX/94bu3Ps5Avx9b/M2j+wIrPZyx/WwPvyw5Oze5kp1rB5mMlPjs92cdv2rqHfT+rqFT3Q\n7G/fvvO+po0N9ymJGSEhbxv41HWobZco3xY5dyYbcV3FyWjR84qlC08PZDAYDEbzGcH8q4gn\ng8+z2Szm94Snp6balh+5yHx/bOzQrdE8vjFiknLK6gZW3QZOWevz9P2Lo6PMamoSEm9m0WPs\nvI1HLodEJWV9i39ydsPwVlyHvBc/vn6npney4O2/gzv9b09k2TC4yvaLbz46PFC3yg6loKvL\n3XAja2tnUfFh0LS357qaR2pSEnXfNSKzBwbt3Pq8fDOZ/+VzaJxjy+Zysqp6dsN3nFnUvuye\n0tf/bLspkICBHZUQwv1tp6GhQUQCgp2gWU2Z0aWszz7p1JErlytynbHnhG61D+aflJBQ+W/a\n58+JFROympqKhBCirc113RrZoWfrGrIseEZzIjIKQrfu576Waiu3vi3rXenTRb+n5Z9TRgu3\nTQGvkrMKOKOUcB++VgdKN/svPqyi5Zgdt95npL17eO30/s3L/vQe1ttOr+J7suDZnqPhvJbw\nk4KWVkWzR0ZGA9r8dN37cf+uRh3efo9P4+b/0i4hLBjSKgYOo/bdOjqo4kDVgier5hyv6/IE\nFYd5lRblZ6UlRAZf2r9ktIN2TUeDVyWuZNjRY6HvhQVtK+ax09LSqy6XEbLcxXHilbLuPnG9\n/x18GLTOuaZ91tbOjutvTZV/OJX+K0nJy1PXGy4qe2BqdHTFRVEZFpZtuH+djdq0qfgE5719\ny/Ul1Lia+o76PT29oue70nm8wgzBTuB0xs4YWNYy/O381Lk3ynKd1YQJHepo/vlxzeciVx9e\n4d0zl7l+Xu0d7BmEEKLXvXvFV0vB7X99PotI23GdCj/4jB29h+uvsUL/xTMt61+vUreLwchl\n8/u0baEsI04IKf1wK/AjL0/dqJtdQoIryFc7EuQ3300pNXNH95FT/l697bDfzfC4WzMr/pgm\nxMU19GA7e/uKwUTfvXrVgPYXk8kLuYeHTfrXa/ypGhtRc1/7TJp7KpO3R/3VXULINB+6dXmX\nip+SvDurNj743SOo8s9N6/3X8bAar7jOkJLi/uFq1qzS4QwlH8+O79xrzZOsn9Py1jP8n16a\nZFlLN4Kq+0Cuf6I/nke8rdg908LDuXrPLC2pfGtEZA+UlOR6a9jRb95yf9jj37wpqJiq9MUh\nEE12R42MfFV+28zBobYjpYQNDydYQL0adg5dceis6idIiHfZmVx1warjbmj3Wnc75huzMCch\ndO/QllwfbSnXf8vHPP+wpQPXPTKmA9acexr7JZtZmJeRHPfmxaNbvjuXTBroaPa/g8I+3ElJ\nQXZq7LMbhxYNasU9vCUh6n3//Vjp5LDazoqNWW1VMV/MeNTxiOS8gtyUN7f+GWxa6Y+Z5vQH\ntTxao272dO7Rkxmtpt/4mF1Y+ay3hj/sm02uNr08F273vfP4ZfTHL9/yi4p+fP8U4TfVuuIA\nZUWvgAa/RW9WlR9DQAznRTRkVVbCSfdKXRiMZu09N517+P5rDrOImZ0a9+z6v8tGtlcTJ6Tb\n7rJrbf/mLlEjITkrtvL5lQV3vLj3N9meR1N5W7E2Py9gIKluM2DWxqP+j6OTMnILiwq+f3l7\n7zBXlxohxGzxq4rVcp5t6alR8c+SodVzy/P6xjHPvjqGq4VEqePfF6NScvMyPtzZ1JtrcAxJ\nx+1xvG+sxiAae+CLxdydCPLtJp14/DHzx4/vnyMqjrEjhBCiMyu0cUYoxo5adUeN3WhXfrfa\npDuNNDA03yHY8UVDfwber7au0jYn3e9E9UF0qiaMWkhYL4vgOiOc+XKjIw8DcDruTqn2hPWq\nNKhP7QafaeDj8nKaPYeY1h8bwqp+jGsd7iRyeRuejoGrM9jVgh+b/cXiWrpuyr8ZG/ywlYZQ\nqZnKmKs8Db1f2bO5FU1+DtsbePGKvPAt3dV56B+o9We1DjXuEjUSymDHZn/YbM99wLjp/Gel\nvK1Ys8pXpqqdYt9jXP8li8/8j6e1dP56wv1k6RdGtqj7IyZnt+pFTdfvEjBR2AMTD/ZQrP1Z\nysh02v6BiitPNMUdNfuYW3kLgOKoy9WuYyas0BVLCbNJM3pWOtxAeZD30HrO8bSauLqma1uJ\nGw47enm5Ldcd0jYLrt/bMaTWi1CJLPFmlkPXB0beXWjPw7cfh9X8I0vsashFksajV4xrVX1+\nDY/QqJu93ZRFvepu3Of7uylnNeP0P/1/Yej9DpMmtSu7Hebnl9CgleXt5gVG3lk9oParehNC\nCJFRUGhQH9Mv7BJCyGTqEg+uT/+H/WvPfqt96XqJycnXMApaZRKaf6y+cXpci/qWq1fzwcdD\nT3q2qqUPTFzbZUVAwPJ2vBxb1chEYQ/UneR3fVk3zTrOoRVrZj/v8qXZJhRceYI0wR3128Uz\nd8o6inXGTK791EahQ3WypIeG/7//cW0U11EfWlMCi2tYqJar0bfVayYnJaWgbtJp6ILjL7Jq\n+fNW+OWpz5qpg52tDTVV5KUkpOSbaRuaW9l1dR87d8O/Vx7FZP7K+OUCa7FjiIlLSsspqWkb\nmFl3ch00fu7Gk8Gfax2IvM4Bin+8v7hyTLdWWopSEtIKavpWrp4r/N7mVm7Zqr3FrtE3+493\n55ePdrbUU5WT5PqbVfUvL+8PyypIjbp/dveyKYNdOlqbG2qpykmIS8oqqRtadu43YdmRB0m/\nPm7910N/lH/xtVsXW/8K1bGyom/sWz5t6B82JjoaynKS4hIyCmq6rTq4ekxbdeh6VGbF5Xd/\nc5eokZC22LHZrNeruNvwGZbLI1k8rVgz1o/kiBvH/1k02aOXo42ZbnMlOSkJMXEpOWV1fcvO\nfT0X7r4RXW0E/V9sCOEoSg49vMizV7uWWipykpIySuoGVs5DZ227+jZb6PquhH8PzH57fc8C\nz76d2hg0V5KTFBeTlFVU023l0HPk3G0XX2UKcoDipr6jph5wLQ/ZliurXQdYiDHYojIwC93k\nHXNT9grgHMJutDAiboNt9T9hD2doddmb+nPCdsOHiIUm1ZYBEJiCwClmPQ4mEUIIaTn/WUy1\nKwIBANBD3MYO5osiSgkhRKnf6Vj/ker1rSE00BUreOzivJSXp2dvvP3zxEQxu8mTakh1AMJG\n1nXVuj4/u5w+7l/r+zv9MAAAQqvg9sbtnFRHJOyXbBkhOqmOINgJ2OuVlgyGmJRii/ajj8b8\nHB5NfcyKqUZ1rwYgJDTHbFnQntNMl3tt/c5Xv3qJMgAA4ZV0eN3Jn9cPM5yydba5aDW9CHo0\nHKhMwtj72FZ3pfoXBBAKjDZLnpcsoboKAIBGpDsrtHAW1UX8MrTYUYIhraJjbj9g/omwZwfd\n1OpfvvFcGMKon+XK18L0yMAXeIN+B7ZeQ/G4xbbxdTEab3/+bk8ab6imCC12AmW58jV7Je+L\nO+35yt7TaMUAAAAAzeCsWAAAAACaQFcsAAAAAE0g2AEAAADQBIIdAAAAAE0g2AEAAADQBIId\nAAAAAE0g2AEAAADQBIIdAAAAAE0g2AEAAADQBIIdAAAAAE0g2AEAAADQBIIdAAAAAE0g2AEA\nAADQBIIdAAAAAE0g2AEAAADQBIIdAAAAAE0g2AEAAADQBIIdAAAAAE0g2AEAAADQBIIdAAAA\nAE0g2AEAAADQBIIdAAAAAE0g2AEAAADQBIIdAAAAAE0g2AEAAADQBIIdAAAAAE0g2AEAAADQ\nBIIdAAAAAE0g2AEAAADQBIIdAAAAAE0g2AEAAADQBIIdAAAAAE0g2AEAAADQhATVBYiA7Ozs\nEydOFBQUUF0IAAAACAVZWVlPT09lZWWqC6kKwa5+p0+fnj17NtVVAAAAgBCRkJCYNm0a1VVU\nhWBXv+LiYkLIkSNHrK2tqa4FAAAAKBYZGTlhwgROPBA2CHa8Mjc3t7W1pboKAAAAoBiTyaS6\nhFrh5AkAAAAAmkCwAwAAAKAJBDsAAAAAmkCwAwAAAKAJBDsAAAAAmkCwAwAAAKAJBDsAAAAA\nmkCwAwAAAKAJBDsAAAAAmkCwAwAAAKAJBDsAAAAAmkCwAwAAAKAJBDsAAAAAmkCwAwAAAKAJ\nBDsAAAAAmkCwAwAAAKAJBDsAgEb0+fPn58+f5+bmUl0IADQJCHYAAI3iy5cvPXv2NDAwsLOz\n09TUXL9+PdUVAQD9SVBdAAAAPY0aNSo0NNTLy8vc3Pzs2bNLliwxMDAYNWoU1XUBAJ2hxQ4A\ngP8SExODg4O9vb2PHDkyf/78oKAgZWVlHx8fqusCAJpDsAMA4LP8/PyQkBBCSOvWrTlzlJSU\ndHV1k5KSKK0LAOgPXbEAAHzDZrNXrFixefPmwsJCQsjy5ctv376dnZ2tra39/v37oUOHUl0g\nANAcgh0AwK9LS0tbuHDh1atXCwsLu3TpYmtru27duvJ7c3Nzb926JSUlVVRUxGAwJkyYQGGp\nANAUINgBAPyi4uLi/v37h4WFdenSRVFR8e7du3fv3q2+mKKiYuvWrR8/fnzq1CkXFxfB1wkA\nTQeOsQMA+EXBwcFhYWFLly4NDQ29cePG+fPnS0tLCSGSkpKHDx8uX6y4uPjBgwfm5ubPnz+n\nrlgAaBIQ7AAAftG7d+8IIb169eJMmpubc27Y2Nj88ccfhBBxcXFCSH5+PpPJTEtLU1dXp6hS\nAGgqEOwAAH6RsbExIeTJkyecydevX3NuhIeHe3h4SEhIcBrwJCQk3NzcMjMzcfIEADQ2HGMH\nAPCLnJ2dLSwsFi1aFB4erqysfPbsWTExMRaLRQjh7nUtLCwMDg6ePXv25MmTqSsWAJoEBDsA\ngF8kKyt77dq1adOmXbx4kcViWVtbKygoPHr0qPqSLBbr3bt3paWlEhL41gWARoSuWACAX9ey\nZctbt27l5eV9//798ePHYWFhvXr1OnbsGKcrVlxcvE2bNvHx8RMnTrx9+/aBAweorhcAaE4E\ng92PT8En188Y3rtTG6MWGqqKCorNNFoYWXbqPXzG+pPBnwqoLg8Amh5ZWVkVFZXExMSSkhJ7\ne/tx48aNHTu2pKTE1NQ0IyPD0NBw7969MjIywcHBVFcKADQnYsEuPWi1q5mZs+eSvWdvP32b\nkJKelZef9z09JeHN09tn9y7xdDYzdV0dlEF1mQDQFLVs2VJGRubmzZuFhYUMBoMQkpCQ0KZN\nG0II58A7AIDGJkpHe5REre/dZ8WLQqJg0nus15AeDm2NddSUZCRKmDmZyXFRYXcvHD1xK/be\nij69JSOeLrIUpZcGADQgKSm5aNGiFStWmJqampiYMBgMJpPp5ub2/v37DRs2MJlMzhgoAACN\nR4TSz4+Lq9e/KCRaA4488vNqKV3pPmPztvZ/DJgwd+7R4U4Trjxft+ri7PPD5CgqFACarCVL\nlqipqe3bt+/Fixempqbx8fF//fXXX3/9RQjp168fzooFgMYmQsEuPDg4nxCbOf9UTXUVpI29\ntszedWVRZEhIBBnWVaDlAQAQcXHx6dOnT58+nTMZFxd36dKlnJyczp079+nTh9raAKApEKFg\nl5OTQwjR1dWtcyldXV1CIjnLAgAIVnh4eEREhJqaWs+ePVVUVIyNjf/++4YO1pYAACAASURB\nVG+qiwKAJkSEgp2enh4hceEPHjBHucrUthDz4cMIQoi+vr4AKwMAYLFYnp6ep06d4kyqq6uf\nP3++W7du1FYFAE2NCJ0Vaz3Uw4xBUg97eex8nFpSwwIlqY93engdTiUM86GDrQReHwA0Zfv3\n7z916tTgwYODg4OPHTtWWlo6cuRIJpNJdV0A0LSIUIsdw3bx0fkBvTZFXpvjaLC+rWM3e0tj\nneaK0uKlhbkZyXGvn4U8ikorJETeZuGRxbZUVwsATcutW7cUFRV9fX2lpKS6deuWnp4+f/78\nyMhIBwcHqksDgCZEhIIdIQqOG0Mfmy+Zs/zfoKSo++ej7lddQEbX2Xv1jnXjreSpKA8AmrC8\nvDxZWVkpKSnOpJKSEmcmpUUBQJMjUsGOEKJkNX73fc8NCWFBoRFRMZ/TsvIKSsVlFVQ09M3a\n2nVzdjBQaFjncmlpaUBAQN3dJS9fviSEFBcX/1blAEBrnTt3Dg4O3rRp059//vnp06fdu3fL\nyMi0b9+e6roAoGkRtWBHCCFETMGwUz/DTv348FBBQUH9+/fnZUlfX9/u3bvz4SkBgI4WLlx4\n5cqVhQsXLlq0iM1mMxiMffv2qaqqUl0XADQtIhnsasRiscTEGnwuiLOzs7+/f90tdvv27QsO\nDq5vnBUAaNIUFRUjIiIOHjwYHh6upqY2atQoHF0HAIInWsGuhJnHLGFIyspLi5fNYqc/3rVk\n+f4rjz6kF0lrtu7mMWfDGm8bZV4fUVxcvF+/epr+AgICCCG/kBoBoEmRlZWdM2cOi8V6+vRp\nYmKigoIC50KxAAACI0phpSh4jrGiYvP+R9PKZ2Xfm+HYfc7he+/TmSzCKkh9c2v3REfnZeEY\nYQAAqJCYmGhvb+/o6Dh06FBLS8thw4YVFRVRXRQANCEiFOzyLu4+9oUoD/9zvPbPOewXm6bt\n+1DM0HRZc/W/T18+/Xd1tYsm48fL9VO2v6e0VABoosaNG/fy5UvOKbGSkpLnzp1buXIl1UUB\nQBMiQsHudVjYD0LaduhQftmJt5cvxxCiNHjn+aX9rfW19a37Lzu3c7ASYb04dyGOylIBoCnK\nzs4OCgpisViqqqpeXl5WVlaEkEOHDlFdFwA0ISJ0jF1GRgYhRFFRsXxOfHw8IaS9q2vFeWfN\nXFzakQshMTExhBgLvkYAaMK+ffvGZrNlZWVfvnypqqrKZrNVVVW/fftWWFgoLS1NdXUA0CSI\nUIsd57TUl8+fs8rmyMnJEUIkJSW5liofHhQAQLAMDQ3FxMTYbHZWVhYhJCgoKC8vj81mf/r0\nierSAKCpEKFgZ92nTwtCvh5Z/E90IWeOQ+/eqoT89+RJQflCBY8f/0cIMTc3o6ZIAGi6GAyG\nmZkZk8k0MTFRV1d3cXEhhEhJSRkaGlJdGgA0FSIU7Bjd/l7eXY7kP1zQpcuUg0HxeWz5gVsO\neOh+OzF7ql90LouwcqP9ps45mU6knDyHox8WAARv/fr1hBBpaWkJCQk1NbXS0tJZs2ahIwEA\nBEaEgh0h+pP9zk9rLUMyww9O+aOlupZFl8mXZO3bKcacGGGhoqCgoGIx4sT7Eq2+u/6d3pLq\nWgGgKRo4cODp06f19PS+fv0qLi6+cuXKdevWUV0UADQhInTyBCGEaPbdG/7cafm8lYdvxeSm\nRT+6Ef3o5z2sgvwCaa0OHnM3bJjjoiNiLwsA6GPkyJEjR47ECRMAQAnRS0DyFiO2BgxfnfTf\n40fhr+NTv+cVickqqGoatrKy72RnpCRSTZAAQFdIdQBACdELdoQQQhjyuu16DGvXg+o6AAAA\nAIQHGrgAAAAAaALBDgAAAIAmRLQrFgAAAEReYWHhnj177ty5Qwjp1avXjBkzMDzQb0KwAwAA\nAAqwWCx3d/fAwEAVFRVCyJ07d27evHn79m0xMXQn/jpsOwAAAKDA1atXAwMDp0+fnp6enp6e\nPn369MDAQH9/f6rrEm0IdgAAAECB58+fE0Jmz54tISEhISExe/ZsQkhERATVdYk2BDsAAACg\nQPPmzQkhSUlJnMnExMTymfDLcIwdAAAA8Flubu7JkydjY2Nbtmw5ZswYzlF0VfTt23fx4sXj\nx49fuHAhIWTjxo2ysrJ9+/YVeLG0gmAHAAAA/PTx40cnJ6eUlBTO5Nq1a0NCQlq1alVlMTMz\ns+PHj0+ZMmXq1KmEEFVV1ePHj5uZmQm6XHpBVywAAADw07Rp09LT048fP56cnOzr65uVlTV5\n8uQal/Tw8Pj48eOdO3fu3LkTHx/v4eEh4FLpBy12AAAAwDelpaUPHz7s27evp6cnIWTEiBFX\nr169fPlyYWFhjddQVlFR6dEDlwjlG7TYAQAAAN8wGAwGg1FaWlo+h3ObwWBQV1QTghY7AAAA\n4BsxMbHu3bvfvHlz3759rq6uoaGhV65c6datGy4pIRgIdgAAAMBP+/bt69q16/Tp0zmTurq6\nBw8epLakpgPBDgAAAPhJT0/v7du3Z8+ejYuLMzIyGjZsmLy8PNVFNRUIdgAAAMBnsrKy48aN\no7qKpggnTwAAAADQBIIdAAAAAE0g2AEAAADQBIIdAAAAAE0g2AEAAADQBM6KBQCgQEpKio+P\nT1JSkoWFxdixY+Xk5KiuCADoAMEOAEDQHj9+3Lt379zcXM7k5s2bnzx5oqmpSW1VAEAD6IoF\nABC08ePHi4mJBQQEfP36de/evQkJCX///TfVRQEAHSDYAQAI1NevX2NiYjw9Pfv06aOpqTlt\n2jQHB4eQkBCq6wIAOkCwAwAQKHFxcUJIcXFx+Zzi4mLOTACA34Rj7AAABEpdXd3KyurEiROd\nO3e2tbW9cOHC8+fPvb29qa4LAOgAwQ4AQNBOnDjRq1evMWPGcCatrKw2b95MbUkAQA8IdgAA\ngmZjYxMTE3P+/PnExMQ2bdoMGjRIQgLfxgDAB/gqAQCggLKyMrpfAYDvcPIEAAAACJ3Y2Fhn\nZ2c5OTkFBYVBgwZ9/fqV6opEA1rsAAAAQLh8+/atffv25YN4X758OTw8PC4uTkpKitrChB9a\n7AAAAEC4LF26NDc3t02bNuHh4aGhodra2klJSf/++y/VdYkABDsAAAAQLk+ePCGEnDp1ys7O\nrkuXLitXriSE3Llzh+KyRAGCHQAAAAgXRUVFQsjr1685kzExMYSQZs2aUVmTiMAxdgAAACBc\nxowZ8+DBg/Hjx9+8eTM/P9/f358QMmHCBKrrEgEIdgAAACBcJk6ceOnSpVu3bvn6+nLmTJky\nxdHRkdqqRAKCHQAAAAidmzdv3rhxIyAgQFpaetCgQU5OTlRXJBoQ7AAAAEAYubm5ubm5UV2F\niMHJEwAAAAA0gWAHAAAAQBMIdgAAAAA0gWAHAAAAQBMIdgAAAAA0gWAHAAAAQBMIdgAAAAA0\ngXHsAKDJKS4ujoyMzM7OtrKyUldXp7ocAAC+QYsdADQt//33n5WVVYcOHVxdXQ0MDDZv3kx1\nRQBQPzab/fHjx7dv3xYXF1Ndi1BDsAOAJqSgoGDIkCGJiYnLly8/ePBgq1atFixYcOPGDarr\nAoC6REZGtm/f3tjYuE2bNvr6+hcvXqS6IuGFYAcATciLFy/i4uI0NTX379+/Z8+eYcOGiYuL\nnz9/nuq6AKBWubm5AwYMiImJmTNnzooVK8TFxUeNGhUZGUl1XUIKx9gBQBMSEhJCCPny5Uun\nTp0+fPiwcOFCaWnpr1+/Ul0XANQqJCQkISFhz54906dPJ4QMGDCgXbt2fn5+1tbWVJcmjNBi\nBwBNyN27dwkhdnZ2165di42NNTY2LiwsxM8DgDBLTEwkhLRp04YzaWFhISYmxpnZIGlpaWlp\naXwuTvgg2AFAE/Lx40dNTc2HDx8qKysrKSnFxcURQtzd3amuCwBq1bZtW0LImTNnWCxW+Q3O\nTB6Fh4fb2Nhoampqamra2NiEh4c3Vq1CAMEOAERbZmZmUlISjwvr6+tnZmYSQiQlJctnfvr0\nqaSkpFGKA4Df5ujo2Ldv30OHDpmamrZv337cuHH6+vqTJk3icfXU1FR3d/fY2NipU6dOnTo1\nNjbW3d09NTW1UWumEIIdAIiqd+/eOTk5NW/eXE9Pz8TEhNPNWjdra+uSkhJ1dfV58+apqqpy\nZo4ZM0ZZWfnmzZuNXC8A/AoGg3Hu3Llly5bJy8vn5OR4eXk9evSo/PNbrytXrqSlpR07dmzf\nvn379u07duxYWlra1atXG7VmCuHkCQAQSXl5ef369fv8+fP48eMVFRWPHTvm7u6+d+/e8ePH\ni4uL17aWkpISISQ/P3/t2rWEEAaDwWazJSQkfvz4MXDgwMzMTHl5ecG9BgDgjby8/OrVq1ev\nXv0L6yYkJBBCbG1tOZOcG/Hx8fyrTrigxQ4ARFJwcHBsbOzmzZvXr18fFBSUm5tbVFQ0ceJE\nOzu79PR0Qsjnz58/fPhQWlrKvZa2tjYh5OzZs1paWoQQNptNCJGVlSWEFBYWXrhwgYJXAgCN\nqXXr1oSQ8ia6K1euEEIsLCyorKkxIdgBgEji/OHW0NCws7OLiorS1tZmMBht27aNjIwcPXq0\nra2tgYGBmZmZoaHhtWvXytdyd3dXVFT09vbmHGnHkZuby2AwCNdXPwDQxpAhQywsLObOnevo\n6Ojo6PjXX39ZWFgMHjyY6roaC4IdAIgkzh9uLy+v5ORkZWXlwsJCNpstKyvbvXv3wMDA6Ojo\nGTNmLF68uKSkxMPD482bN5y1jIyMzp49Ky4uzrkqkZiYmLKyMilrunv8+HFGRgZ1rwkA+E9O\nTu7u3buenp4fP378+PGjp6fn3bt35eTkqK6rsSDYAYBI6t69e4sWLZhMJoPBkJGRycrKkpGR\nefbsWU5ODovF2rRp0+7du9etW+fv789kMv38/MpX7NOnT1xcnJmZGSGExWJlZ2eX35Wamsr7\nqXYAICpatGhx/PjxlJSUlJSU48ePt2jRguqKGhGCHQCIJHFxcSMjIzk5OUlJybS0NCcnJ86B\n1ZwLDdnY2HAWa9u2LYPB+PTpE/e6MjIy5YNgcXKhhIQEIaRZs2b+/v75+fkCfSUAAPyDYAcA\nosrQ0LCoqOjatWtycnKhoaHz588nhHAi2rlz5zi9q5wb1ccy5RxPzTkrlslkiomJMRgMMTGx\n0tLSpjA2PQDQFYIdAIiqMWPGlJaWzpw5c9q0ae3atWMwGFpaWu/evXN1dd2zZ4+FhYW9vT1n\nLFNvb+8q644dO5aUHVpHCGGxWJKSkgUFBaqqqoaGhgJ+IQAA/IJgBwCiqlevXvv3709NTd2y\nZcvLly+dnJweP35sYGBw6dKlBQsWsNnstLS0MWPGPHjwoPpYpiYmJg4ODowy4uLiRUVF+fn5\nmzdv5pwhCwAgihDsAECETZ48+evXr//999+nT59CQ0ONjIwIIYqKihs3bnz37l1CQsKJEyf0\n9fWrr8hgMM6ePevk5MRms9lsdnFxsZmZ2fXr16u37QEAiBBceQIARJuMjIy1tfUvrGhgYBAS\nEhIXF5eWltamTRvOuCcAACINwQ4Ami4Gg2FiYmJiYkJ1IQDQuEpLSzmjmhsZGdVx1UEaEMGu\n2B+fgk+unzG8d6c2Ri00VBUVFJtptDCy7NR7+Iz1J4M/FVBdHgAAAAiTkJCQVq1amZqampqa\ntmrVKiQkhOqKGpGItdilB60eMWbdveSiSnPz876npyS8eXr77N5Vi12W+Pgtd25OUYEAAAAg\nRJKTkwcOHEgI4ZxTdfjw4YEDB0ZFReno6FBdWqMQpWBXErW+d58VLwqJgknvsV5Deji0NdZR\nU5KRKGHmZCbHRYXdvXD0xK3Yeyv69JaMeLrIUpReGgAAADQGf3//79+/X716tX///oSQzp07\nDxgwwN/ff+rUqVSX1ihEKP38uLh6/YtCojXgyCM/r5bSle4zNm9r/8eACXPnHh3uNOHK83Wr\nLs4+P4y214EDAAAA3nz+/JkQYmlpyZnkDFfOmUlLInSMXXhwcD4hNnP+qZrqKkgbe22ZbU1I\nfkhIhEBrAwAAAGHEiXRnzpzhTPr6+pKyeEdLItRil5OTQwjR1dWtcyldXV1CIjnLAgAAQNM2\nZMiQrVu3Ll261M/PjxDy+vXrdu3aDR48mOq6GosItdjp6ekRQsIfPGDWsRDz4cMIQkiNA5IC\nAABAEyMtLX337t2ZM2cWFhYWFRXNnDnz7t270tK19f2JPBFqsbMe6mG2eUPMYS+P1n6Hp3fW\nrFZ6SerjvRO9DqcShvnQwVZUlAgAAADCRk1NbdeuXVRXISAiFOwYtouPzg/otSny2hxHg/Vt\nHbvZWxrrNFeUFi8tzM1Ijnv9LORRVFohIfI2C48stqW6WgAAAABBE6FgR4iC48bQx+ZL5iz/\nNygp6v75qPtVF5DRdfZevWPdeCt5KsoDAAAAoJRIBTtCiJLV+N33PTckhAWFRkTFfE7Lyiso\nFZdVUNHQN2tr183ZwUChYUcNlpaWBgQEMJl1HbeXkJBACGGxWL9TOAAAQHWfPn26detWXl6e\nk5OTg4MD1eWAyBO1YEcIIURMwbBTP8NO/fjwUEFBQZwRC+vFucYcAAAAv/j6+np7excU/Lwa\n5qRJkw4ePEhtSSDqRDLY8ZGzs7O/v3/dLXb79u0LDg42MjISWFUAAEB7KSkpkyZNatGixc6d\nO9XU1NauXXvo0CEXFxcPD4/aVvnx44ekpKSkpKQg6wTRIvrBjvnl2c0bD94k5RBFXQunvn06\n6sg2YG1xcfF+/epp+gsICCCEiImJ0NAwAAAg7B49epSfn79u3To3NzdCiI+Pj5qa2t27d2sM\ndk+ePJk1a9bz588lJCT69Omza9cuAwMDgZcMIkCEgl3CvX8D44mRq7eLYdmsnGdbRwxZEpBY\nWL6QlF6f9RfP/tVBkYoKAQAAeFVYWEgIkZX92RohLS0tJibGmVlFfHx8nz59SkpKxowZk52d\nfe3atYSEhLCwMBkZGYFWDKJAhFqhIvZPnDhx4v6Ka4V9OTWyz7yAxEJx9XYDJ8yYMWFgOw3x\nosSb8/qMPZtGYZ0AAAD169Spk4SExJo1a6KjozMyMv7888/S0tIuXbpUX/LkyZOcPHfixIkr\nV66sWbPm1atXISEhgq8ZhJ8IBbsq2I//WXrjG2GYTroV/fzSv7t3/3vp+dtbE00YJPPKip0v\nqS4PAACgLi1btly3bt3z588tLCzU1dUPHTrUs2dPLy+v6kt++PCBwWA4OjpyJjnh78OHDwIt\nF0SE6Aa7tzdvfiJE/n8rNriqMTizGGquG1b0lyfk/c2bH6mtDgAAoD7z589/9OjR33//PXXq\nVF9f35s3b4qLi1dfzNzcnM1m37t3jzMZGBjImSnQWkFEiNAxdlVwRpez7NatGfdctW7d2pCr\nz2JjYwlpSU1hAAAAvOrUqVOnTp3qXmbMmDGbNm1yc3OTkZFRUFBIT0/v0KFD9+7dBVIgiBjR\nDXYSEhKEEDU1tcqz1dXVCSHFxcVU1AQAAE3KjRs3/Pz8cnJyHBwcZs2apaCg0BjPsm3btvz8\nfGlpaSaTWVBQICEhsX37dgx6AjUSua7Y3C/vOOS1zQghnz59qnz/ly9fCCF6enpUFAcAAKIr\nOTn50aNHX79+5XH5lStXuru7nzlz5u7du0uWLOnQoUNeXh7fq0pNTd2zZ0+vXr1yc3MLCwsf\nPXrEYrGOHj3K9ycCehC5YHdndmuOLhteEELeBwdX+gQWR0fHESJnbW1CUX0AACBy8vPzhw8f\nrqur6+TkpKOjM2HChKKiorpXSUxMXLt2raOjY2pqan5+/j///PPu3bvt27fzvbbXr1+z2exB\ngwZxhibu3LmzgYFBVFQU358I6EGEumI1rVxcsqrNZUQGfSEjWvyc+nHV51IOURw1qp+cYIsD\nAADR9eeff549e3bo0KFOTk537tw5evSourr6xo0b61glIiKitLR0xowZnEOC5s6du2rVqrCw\nML7XxumCKk9yGRkZKSkp7dq14/sTAT2IULDrsjwwsL5lcnT+t/NY7xaOfZHrAACAJywWy8/P\nr3v37ufOnSOEzJgxo3379r6+vnUHOxUVFUJIWtrPcVNzcnIKCgo4M/nLxMTE0dFx//79eXl5\nLVu29PX1ZTKZnp6efH8ioAcRCna80Oo0Ylw9JxcBAABwycnJyc3NNTMz40yKiYmZmJj4+/uX\nlpbWOPgIh52dnba29qpVqyQkJHR0dHbs2FFSUtK/f3++lycmJnb27Nnx48cfP36cEKKkpLRn\nz57GeCKgB5oFOwAAgIZRUVExMDAICAhISUnR1taOj48PCgpq27ZtHamOEKKoqOjn5zd8+PDp\n06cTQsTFxefNm1fjZV5/n46Ozp07d1JSUjIyMszMzKSlpRvjWYAeEOwAAKCp27x587Bhw0xN\nTY2NjT98+FBYWLhhw4Z61+ratev79+9DQ0Ozs7Pt7e1NTBr3tD1tbW1tbe1GfQqgAQQ7AABo\n6jw8PFRUVLZt25aQkODi4rJgwQInJydeVlRUVHRzc2vs8gB4h2AHAABAevbs2bNnT6qrAPhd\nIjeOHQAAAADUDMEOAAAAgCYQ7AAAAABoAsEOAAAAgCYQ7AAAAABoAsEOAAAAgCYw3AkAQA2y\ns7P37t37+vVrDQ0NLy8vKysrqisCAKgfgh0AQFWpqam2trbJyckMBoPNZu/Zs+fMmTNDhw6l\nui4AgHqgKxYAoKolS5Z8+fLl2LFjRUVFUVFROjo6U6ZMKS0tpbouAIB6INgBAFT15MkTS0vL\ncePGSUhIWFpaent7f/v2LTo6Ojo6esGCBWPHjt26dWtubi7VZQIAVIWuWACAquTl5dPS0lgs\nlpiYGCEkKyuLEPLkyZPp06cXFxcTQnx8fHbt2hUeHq6hoUFxrQAAXNBiBwBQVZ8+fT59+uTt\n7R0SErJ3794DBw5YWFgsXrxYQ0MjIiKCyWQeOnQoMTFxyZIlVFcKAFAJgh0AQFVLlixxc3M7\nduxY9+7dZ8yY0bx583Xr1mVkZHh7e9va2kpLS0+cONHS0vLRo0dUVwoAUAm6YgEAqpKSkrp+\n/frDhw8jIyO1tbV79+6dlpZGCMnLy+MswGaz8/LyVFVVKS0TAKAqBDsAgJo5OTk5OTlxbhsa\nGrZq1erAgQNmZmaWlpYnT56Mj48fMWIEtRUCAFSBYAcAwJMzZ864u7tPnjyZM+nq6rps2TJq\nSwIAqALBDgCAJzY2Nu/evQsICPjy5YuNjU337t2prggAoCoEOwAAXikoKHh4eFBdBQBArXBW\nLAAAAABNINgBAAAA0ASCHQAAAABNINgBAAAA0ASCHQAAAABNINgBAAAA0ASCHQAAAABNINgB\nAAAA0ASCHQAAAABNINgBAAAA0ASCHQAAAABNINgBAAAA0ASCHQAAAABNINgBAAAA0ASCHQAA\nAABNINgBAEDT8vXr18LCQqqrAGgUCHYAANBUnDt3Tk9PT1tbW15efsSIEenp6VRXBMBnElQX\nAAAAIAghISEjR47U0tKaNWtWfHz82bNnMzMzb9++zWAwqC4NgG8Q7AAAoEk4dOiQmJjYkydP\n9PT0CCFTpkw5ePBgbGysqakp1aUB8A26YgEAoEn4+PFjixYtOKmOEOLg4EAIiYuLo7QoAD5D\nsAMAgCahVatWiYmJkZGRhBA2mx0QEEAIad26NdV1AfATgh0AADQJc+fOlZKS6ty5c//+/a2t\nrS9cuDBq1CgDAwOq6wLgJwQ7AABoEtq2bXvv3j07O7vAwMCsrKxFixYdOnSI6qIA+AwnTwAA\nQFPRuXPnkJAQqqsAaERosQMAAACgCQQ7AAAAAJpAsAMAAACgCQQ7AAAAAJpAsAMAAACgCQQ7\nAAAAAJpAsAMAAACgCQQ7AAAAAJrAAMUAglZSUvLs2bPU1FRLS0tTU1OqywEAAPpAsAMQqNjY\n2MGDB7969YoQwmAwvLy8Dh06JCaGtnMAAOAD/JwACNSIESOio6OXL1/u6+vr7u5+5MiRHTt2\nUF0UAADQBIIdgOAkJiZGRERMnjx51apVI0aMuHjxora29qVLl6iuCwAAaALBDkBwMjMzCSEt\nWrTgTEpKSqqrq3NmAgAA/D4EOwDBad26tZycnI+PT0pKCiHkxo0bb968sbOzo7ouAACgCQQ7\nAMGRlpbetm1bdHS0vr6+lpaWu7u7kpLSmjVrqK4LAABoAsEOQKAmT54cGBg4aNAgc3PzWbNm\nRUVFGRoaUl2U0MnIyJg8eXKLFi2aNWs2aNCgDx8+UF0RAIBowHAnAAIVGxu7bt26hw8fEkIY\nDEZBQQHVFQmdkpKS/v37P3nyxN7eXlFR0d/f/9mzZ//991/z5s2pLg0AQNihxQ5AcLKzszt2\n7BgUFFRcXFxcXBwSEmJvb5+dnU11XcLl3r17T548Wbx4cVhYWGBg4KlTp5KTk48fP051XQAA\nIgDBDkBwdu3alZmZqaend+fOnfv377ds2fL79+9btmyhui7h8vbtW0JIv379OJOcG5yZAABQ\nNwQ7AMEJCQkhhGzdurVHjx7Ozs579+4tnwkcWVlZL1++JIQsW7aMc2hdeHg4IcTIyIjiygAA\nREEDjrErzU18+zruS3p6elahtIq6unoL47YWegrijVccAM2oqKgQQqKjozmTUVFRhBBFRUUq\naxImSUlJ9vb2nLFgAgMDW7Vq1bdv34cPHyoqKo4cOZLq6gAARED9wY6Z9Pj80aN+1+89fJGQ\nU1r5PnElw/ZOLu7DvbyGdtaVaaQSq/rxKfjC6QsBoc+j3n9Kz8r9USIpp6isYWBuadu175BR\nQ7sbyAqoEICGmjBhwsWLF1euXBkREcFgMK5fv04IGTduHNV1CYv58+enpqb6+PhYW1uPGzfu\nxYsX169fb9269f79+42NjamuDgBAFLBrl/363OKBlqo/m+TE5LRa23fr4TZw2BjPMR4D+rp2\n62CuKcvg3Cmuajlw8bk32XU8Gl+k3V/loiNVx8uR0nFZdT+dv0/KJ2FkXwAAIABJREFU+d1d\ns2YNfx8WmqYqLU/9+vWjuiIhYmBg0LFjx/LJWbNmEUISEhIoLAkAoDrOyAY7duygupAa1NZi\nF+c3adSso2HpRKXVH95zRw11d+7YVl+pWrdrSfanqKdB18/7nr7ov97D/3BHr12nDg1vpH/W\nJVHre/dZ8aKQKJj0Hus1pIdDW2MdNSUZiRJmTmZyXFTY3QtHT9yKvbeiT2/JiKeLLDGSCwij\n06dPjx49+vr166Wlpb179x4wYADVFQkRWVnZ3Nzc8smioiLOTOoqAgAQNbUEvvNDZAxcZx14\nkMzkMSEykx4cmOVqIDPkPL8yZ1X5fkPkCSFaA47E1VYUM/bIAC1CiPwQv3z+PTFa7AAEY86c\nOYSQmTNnPnr0aPfu3dLS0ra2tlWWKSgouHz58u7du+/fv89isSipEwCaOFFssXPe9fGDtrYk\n7wFRWsdp8s67XgtTcn4zadYqPDg4nxCbOf94tZSurQhjry2zd11ZFBkSEkGGdW2sSgCgUaxd\nu/bFixe7d+/evXs3IcTAwMDHx4d7gZiYmL59+8bFxXEmu3btGhAQIC8vT0GtAABCqbbhTtQa\nlOrKSWprq/1OOXXJyckhhOjq6ta5FOd+zrIAIFLk5eWDg4MDAwN37Nhx4cKF6Ojo1q1bcy/g\n6emZmJi4ffv20NDQmTNnhoaGLl68mKpqAQCEkAgdiKanp0dIXPiDB8xRrrWegct8+DCCEKKv\nry/AygCAXxgMhouLi4uLS/W7vn//HhYWNmHCBE6PbZcuXYKDg2/evLlz585GKubNmzcxMTH6\n+vrt27dnMBiN9CwAAHzE8wDFJYlPr1+/ficq8+d03sv93t0tjQwsnKedeMNspOoqsR7qYcYg\nqYe9PHY+Ti2pqcTUxzs9vA6nEob50MFWgigJAAQnPz+fzWYrKSmVz1FWVs7Pz2+M52IymQMH\nDrS0tBw0aJCdnV3Xrl3T0tIa44kAAPiL1xa77+dmu466LDP6yueebQkhP27P6T3tSBohhCTs\nH+8maxK71bGxG/8YtouPzg/otSny2hxHg/VtHbvZWxrrNFeUFi8tzM1Ijnv9LORRVFohIfI2\nC48stm3kYgBA0HR1dfX19X18fIYNG9a+ffuLFy8+efJk4MCBjfFcixcvvnLlyujRo93c3MLC\nwnbu3Dl58uTLly83xnMBAPATb+dYZOx3ESNEY0Yw5xy0vNMDZaQ6LA37mnRreisGIcojLv5o\nvBM8uGVHHp3hXOtYyDK6zjOORvJ7ND2cFQsgJO7cuSMlVTGSpYaGRiONcmdoaGhjY1N+1u2A\nAQOkpKSYTF5HCQAAehPFs2Kr+PDuHYsQ89atGYQQwn4aFFzYfdMce001MsfTau+iyGfP3pNB\nNr+VMHmjZDV+933PDQlhQaERUTGf07LyCkrFZRVUNPTN2tp1c3YwUGjY1W9LS0sDAgKYzLo6\nkxMSEgghLBbrdwoHgN/Xo0eP169fHz58OCkpycLCYtq0ac2aNWuMJ8rMzLSwsCg/rk5HR6eo\nqCgnJ0ddXb0xng4AgF94DHYZGRmEEGVlZUIIIZ9evvxu0tdBjZCfpzREfvnyhRBBBDtCCCFi\nCoad+hl26seHhwoKCurfvz8vS8bHx/Ph+QDg95iamm7evLmxn8XW1jY4OPjZs2f29vaxsbGX\nLl0yMDBAqgMA4cdjsNPU1CTk8+fPnwkxJfmPH7+SsVncihBCSFZWFhGGy5hnJ/wXn0VUjGwM\nlRuymrOzs7+/f90tdvv27QsODjYyMvrNEgFAVGzdutXR0bFjx45aWlppaWlsNhsH2AGASOAx\n2Jnb2sqTz6+Obbk0dJmu795brK47nTkHunD6Kam/QPfdee2GXiSDz7MvDGnIauLi4v361dP0\nFxAQQAgRE2tYJy8AiK727dtHRkb+888/7969c3FxmTVrVocOHaguCgCgfjwGO6Uhc7wXXdn5\n4fBg08OEEO0JN4erEkIIiboRkESIjZtbi8arEQBA4MzMzA4dOkR1FQAADcPrGCVSXTcH+zdf\nfeDeZ6LbaezSpb05Xa8xgU8LjY37Thpp3ngllrkwhDH0Yj3LXBz682DnBjfdAQAAAIg63gef\nkzJyX3rMfWnlmWZ/3on9k88lAQAAAMCvEKHjxrQM9KWImLrTHN9Xqd+rOdGfEEL6n/g5efJ/\nVJcLAAAAIGAiFOyctr556TPd9N2ukZ2dp/tEFyupcJOTJIQQSblKkwAAAABNSAOCHfvb82ML\nR3a3MtRQUZCVqWKkIEYCULAYveth9OM9A8SuzXJq7Tjj5OtcATwrAAAAgGjgOdhl3PDu0Mlr\n05mQ6OTv2fnMQraYWElhYWFhIUtSQUFBQaaxrxRbhtHcYbrPi7e3Vjl+/dezfZuey6/HFwro\nqQEAAACEGo/BjvV4/YyjH4uVu2968e30/wghpN/J3KyPAUs7qRCNP7Y+TT3Kj8tA8ExSt9fS\nq68jz84wfLW+n6XNsK0PU0sF+fwAAAAAQojHYPf6+vUEQrTGrprXTrFsFXEFoz5r/NZ0Tjo/\nacyOmMYqsHby5h7bQqKfHhgufXte19ZT7wm+AgAAAABhwmOw+/z5MyHE0tpajBDOSHEsFosQ\nQvT797cmRU9P+FGQ7AghDFW7yUci3t5f312DJS0tLS0lTkkZAAAAAEKAx0PjZGVlCSmUkJAg\nhMjLyxOSn52dTYjqz6vIkri4OELMGrPQOki0cF546d1Cip4dAAAAQEjw2GLHuRYs57qwRkZG\nhJCYGE4bHWeeoqJio5QHAAAAALziMdgZ9uxpRkhsSMgXQsx79TIkJOnI0rV3n4XuWbz/NSEy\ntrYWjVomAAAAANSH1+FO2o+b0l1H84P/xQRCOv61abAW43vgsp4O3WZeSibSbReuGdOsMasE\nAAAAgHrxPPyc2Z9BSWVXhdX2OBPefP+24/ffZYprt/vf9Llj2wtqGDsAAAAAqMUvBjJJ3T9m\nbftjFn9rAQAAAIDfwGNXbHpcdEZR41YCAAAAAL+Fx2AXssBCU03fzn3C4l1ng99lIuMBAAAA\nCB0eg52Bg2sb+fTnN45umD3cubVGM/0O7t6Ld54NjkbGAwAAABASPAa7Dn/ffZXyLeXlrROb\n5o5ysVBIi7hxZMOc4c4WGs30O7hPWLLrflLj1gkAAAAA9WjAyRMMWS2b/7N3n2FRnHsbwP+7\nC+wiS+/SpRkRUAFrRFFAUKzYY0Wj0Wg0xETFRA2xxhKNXdTYophAVFAEjTQFQRALFjSiVBFE\nlN62vB82L0eN4oK7LKz378O5dmceZu7NOdd17jwz88ygKV0GTfmOhNUFN+POnz9//nxkZFzq\n2QOpZ0u7fjVgtPRiAgAAAMD7iLuO3WsEFYU5/yoo4xERMZjNOhAAAAAASIz4M3aCity02PPn\no6Kizl+88qCknojRrr2j62ffeXp6enp8aifFkAAAAADwfmIWu/gln4zanPG8noihbOjoOuHf\nNtdZjy3deAAAAAAgLjGLXdHDjOf1xLHw+mr1T/6jnPXR5wAAAABaGzFvjbNyG93XWpP/OPLn\niS6GWkZdB09fsuV4NBYtBgAAAGg9xCx2Xb78M/5B8fPHSaf3BM717lCZdHT91xMHdtLTMnH2\nmbns1z/iH1VINycAAAAAvEdTHmZlqpr3GDbrh+0hlx48K8m6cmrPj3MG6eVG7V+zYFy/7yKl\nFhEAAAAAxNGcVUqE1U9vJ8bFx8fHx1++U8STeCYAAAAAaAbxlzupLUy/dOH8+aioqAuXbhXW\nEBERU8XEabCHp6en59BB0koIAAAAAGIRs9j9Pb/9sB0F1UIiIoaKUdfBnoM8PT09Pfp8oq0k\nzXgAAAAAIC4xi93LwlLNLl5jPf9djFgXbQ4AAACgtRGz2A07UjKajcXrAAAAAFoxMR+eUEKr\nAwAAAGjlxJyxy4zcfu7h23cxmErt1LTa23Tt3s1SU/xnMQAAAABAssRsYtf3zZ8f+p4xSoa9\npq3es2m6PfeDUwEAAABAk4lZ7OwnrV1re/P3LcG3a3W7DR32aScjbkX+3Uth4defse3GzPJU\nz0+IOHn1yl6/fo+Faef9zKWaGQAAAADeQsxiZzt4sHBN4G1hrxXJ51Y4qTNEW4UvU5Z7ua46\nkzAp6XLShpvLPD5dm3ph6bq/p+52Z0kvMgAAAAC8jZgPT5QeXxaYUm0yZ9PyhlZHRAwNl5Wb\n5xhXpwR+H1ym4bJi1RQdoqLz529KKSwAAAAAvJuYxe5aQkINUSd7+zfHsxwc7IiqExLSiNhd\nu35CRE+ePJF0SgAAAAB4LzGLXXV1NREVFRX9Z8/Tp08b9nM4HCJSU1OTYEAAAAAAEI+Yxc7O\nzo6Ibh7ck1T72vaahN2H0omoc2c7Irp//z4RWVlZSTgkAAAAALyfmMXOfNqCYWokuLdhyKcz\nNv8Vm5rxT0ZqbOgmvz5DN2cISH3EgqlmJLxxOjyHGE7DfNpLNzMAAAAAvIW4KwobTD546r7P\n6DWJqQe+8T3wyg6GTt8VoQc/0yd6Wmrmt2GDodtsG2kEBQAAAIDGif+qCE23VfEZo0L2HzwV\nc+1BQWm9orqhjZPbyOkzR3fVYRIRGfT7fFE/qQUFAAAAgMY16R1gLN1u45Z0G7dEWmEAAAAA\noPnEvMdOfAnrfHx8fNYlSPq4AAAAANC4Js3YiaMg9ezZs8SZJunjAgAAAEDjJD5jBwAAAACy\ngWIHAAAAICdQ7AAAAADkBIodAAAAgJxAsQMAAACQExJ/KhZAniUlJV2+fJnL5Xp5eZmbm8s6\nDgAAwGtQ7ADENXv27L1794o+Kysr7927d9KkSbKN1DplZ2fn5eXZ2trq6OjIOgsAwMcFl2IB\nxPLHH3/s3bvXx8cnOTn57Nmz7du3nz179pMnT2Sdq3UpKSkZNmyYubn5p59+amBg8NVXX/H5\nfFmHAgD4iKDYAYjlwoULDAZjxowZf//9d05OzqJFi6qqqhIS8I6V13zxxRfh4eFTpkzZunVr\n//79t23btmHDBlmHAgD4iEj8UuzAn1NSlpCWpaSPCyBbtbW1RDRy5EjRVw6HQ0R1dXWyzNTK\nVFdXnzx5csSIEYcOHSKiOXPmdOzY8dixY0uW4P3SAAAtROIzdpodnJ2dnTtoSvq4ALJVX18v\nFAqtra2jo6N37NghEAiIyMHBQda5WpGioiIej2dtbS36qqioaGFhgavVAAAt6V0zdpHzread\na8JxvLc/3OYliUAArVNlZSWLxfrnn38GDBhARAwGg4hKSkpknasVMTU11dTUPH369OLFi7W1\nte/cuZOUlNSjRw9Z5wIA+Ii8q9hVFGRmZjbhOAUVkkgD0GrV19dzudxdu3aJljthMpnr1q3D\npdhXMRiMdevWzZ4928LCwsLCIiMjQygUrl69Wta5AAA+Iu8qdr5/1NcLmnAcJksSaQBaLVdX\n18jIyLS0tB9++CEvL2/ixIkqKirOzs6yztW6zJo1y8DAYPv27bm5uT4+PgEBAU5OTrIOBQDw\nEXlXsWMwFRTwxCxAA39///Dw8I0bN27cuJGIFBQU9u3bp6mJu0nfNGzYsGHDhsk6BQDARwoL\nFAOIhc1mX7p06fjx41evXtXU1Bw7dqydnZ2sQwEAALwGxQ5AXCwWa9KkSXjbBAAAtFpNuNwq\nLLn225KJ/R3M9TS4ypw3TDwpvYwAAAAAIAaxZ+yKz87sMfLAo3pSUFDg8XikpKzMr67mEyly\ntdXYxMHUHwAAAIBsiTljJ0hcM+/Ao3r1/uvTSn4fTkQ09HD5y0cR3/fSIL0Bm5IKDwyVZkoA\nAAAAeC8xi93tM2eyiAym/Lioq+r//wmLa+H9U/BPvfP+nDV5ywNpBQQAAAAA8YhZ7HJycoio\ns6Mjk4jBICISvVGJTIcNc6S6pEPBaHbwkeDz+UKhUNYpAAAA3kLMYqesrExECgoKRKSiokJE\npaWlRESkr69PRE17TQVAm5SRkeHt7c3lctXU1MaMGSP61x0AAIDWQ8xnHiwtLYmuZWVlEdlZ\nWFgQ3X7w4AFRD6KsrCwiUlVVlWJIANkrLi52d3cvLCz09vaura0NDQ29d+9eSkqK6F96AAAA\nWgMxZ+zMPT1tiB7GxT0hsh00yJwob//3qy5cjd8esOs2EcfJqZNUYwLI2vHjx/Pz848cORIW\nFhYVFbVhw4Y7d+5ERETIOhcAAMD/iLuOXbdpX/Q30v8nLDSLqOc3630NGC/+/sGzR7/5f+UT\n237JT5O1pJkSQOYyMjKIyN3dXfTVw8OjYSMAAEArIfbyczZfx+R9/e9nw7HHU3R2bT4YnfGc\nZdh1+Jf+U7phGTuQc1ZWVkR0+fLlESNGiD4QkbW1tYxjAQAAvKKZhUzReMBXmwd8JdksAK3Y\n+PHj165dO2HChNGjR9fU1Jw6dcrKysrb21vWuQAAAP5HzEuxlzbPXvtHSkGddMMAtF6GhoaR\nkZHdunU7duzYqVOnBgwYcPbsWTw1BAAArYqYxa4wcW/AuO6mRo7D/beF333Bl24ogFapW7du\nCQkJZWVlFRUVUVFRNjY2sk4EAADwGjGLnes3e5aO665Xfivsl6+G2bU37f3ZsgMxjyplskpr\nVXbs4TXzxnv1srNor6epylXV0mtv0bmX1/h5aw7HZlfLIhJ8TFRUVNhstqxTAAAAvIWYxU6v\n16w1wck5+elhWxYOt+cWXTm2ZsYAK0PrgbPWHr9aUCvdjK94FhPobmPjNnXZjhNRSXezCp69\nrKisePGsIOtOUtSJHcumutlYuwfGFLdYHgAAAIDWQ9zlToiIiKXdeeiCX07dys+7emL9bE8b\nxuPooICJPUzbOwzfflNaCf+Hl77Gy3vFxfw6rpXX3DX7Tl5MvpXxMCsr62HGreSLJ/etmetl\npVKXf3GFt9fa2zzpxwEAAABoXZpU7P6fkr7L2O92R2UUPI4/uGyIGaMkPSz2H0kn+4+q0MA1\nabVkMGL/zdvndiydMWJAd3tbSzMzM0tb++4DRsxYuuPc7Zv7RxhQ7bXVP4ZWST0PAAAAQOvS\nrGJHRCQovR95cNuvvwZdyK6XZKB3S4mNrSTqsnCjX4d33eDEtvTbsMCRqDIuLrVlQgEAAAC0\nGk1fx64qO+6P3/bt/y30ck41EbHb9xg/9fOZnw+WfLY3lJWVEZGxsXGjo4yNjYluisYCAAAA\nfEzEL3Z1T1NOH9y/b//xvx+WCYhYWp19Pp8x8/MpQzprtcxrJ0xMTIgyUy5dqvnMnfOuQTWX\nL6cSkampaYtkAgAAAGg9xOxkV1Y4Dltzq5hHxOBauPn5ff6536ie7Vt2yQfHMWNtfl77IMhv\n7CfBQV/21v9PdF5h4o7P/YIKiWE7xtehRbMBAAAAyJ6YxS7/zq0yXZex0z7/fOaEgR24DOmG\nejuGU8CB7yIGrb8ZvrCP2Rr7Pv26d7Y00lFls/i15cX5mbevxiWkF9USqXRZsj/ASRYJAQAA\nAGRJzGLX+6db+db2Oi1zzfWduH3WxSfaLlu4fF9MXnr0n+nRbw7gGLvNDNyyerqDiiziAQAA\nAMiUmFWt/Sf2DZ/rXubnFrysU9IwNDHSUJJSrndRc5i+LXrq2qzkmPjU9Ac5RS8rqvksZa6G\nnqmNvXM/tx5m3KY958vn8yMiImpqahoZk5WVRUQCgeBDggMAAABIW1Pm4Goe/rU2YM3e8LSn\nNUIiIoayQTefWcvWLh1p+c6HGaSCyTXvNdS811AJHComJmbYsGHijHz8+LEEzgcAAAAgNWIX\nu8qUlQMH/phcTsRga5lYGquW52XmPb32Z+CoyKiV0RdXOLfNq59ubm5hYWGNz9jt3LkzNjbW\nwsKixVIBAAAANIOYxU54bfXkwORy0vp06YHffhhupUxEVP3PqZXT/H5OTP5x0hqfe6udWuaR\nipqCm4nX8xkG9i7dTLhERMQvunJ4958J/xQz9Tu5jfcb56wn/uVYFos1dOh7pv4iIiKIiMls\n9mLOAAD/EggEly9fzs7OtrW17d69u6zjAIC8EbPYpQUfvy8k1WFbQtcM1/v/jcrWI9aHlt61\nnnbm/vET11c7dZNWyAaVVzeMGhFwvoBHRAqGA1aFnVncJXe3d6+5f5cIRSOCNm/cv/HvM/5d\nWvbiMADA+xUUFAwdOvTatWuir+7u7idPnuRyubJNBQDyRMxZqPz8fCLq6uWl98YOA2/vrg37\npYyfEjjhu/MFPJZ6h65O1mrPopeOX3l237wFf5eoOI5bunHH1u/H23OFzy9+O2HNdb704wAA\nNM2sWbPS0tICAgLCw8O/+OKLv//+e/HixbIOBQByRcwZO319faI8oVD4nz2ibfr6+pLN9RZV\npzbvfkRkPPGP1KOj9BnPz0x3Grpv+vLSOtPPwy/v9eQS0dwpXchqdHDGrl0XV+z1ZEk9EgCA\nuGpra6OiokaNGrV69Woi8vHxSU1NDQ8P37Fjh6yjAYD8EHPGznnkSGOi6xERT9/YUXA24jqR\nma+vs8SjvenhtWtlRFbTvhulzyAibR//qTYlz57xLSfP9fz/KxkaI+ZMNCAqvnz5vtTzAAA0\nQWVlZX19va6ubsMWPT29ly9fvu3fmAEAmknMYsdyXXVsqTPrrL/v4r/uV/27sfJ+6KJR30Qo\nuCz7PbCP9J8syMvLIyIrK6v/3/Dvx1e2ELE6drQmopycHKnnAQBoAi0tLSsrq9DQ0PT0dCKK\ni4uLiYlxcXFhMGTyLh8AkE9iXoqNXjzgu4u13HYvEn/27fiLupGFkUpF3uMnZfVE7YxrIhe4\nRb4yeODPqesHSD6qmpoaUXVdXR2RaGkVZWVlIqLX7zxWV1cnIj4fN9kBQGuzc+fOwYMHOzg4\ncLncioqKdu3abdmyRdahAECuiFnsSjIbnuMiqi/Nf1DasKsqL/1a3muDzUskk+0NlpaWRIWP\nHz8m0hRt0bXr16+Y7HRfHSV6jMPU1FQqGQAAms/Dw+PGjRs7duwQLXeyYMECMzMzWYcCALki\nZrEbuq+gYLu4x+RoNjdNowy9vRz8E29FR2dRN3MiIur3Y2zsG4N4Dx48Jmrn6Gj15p8DAMie\nnZ3dzp07ZZ0CAOSWmMWOrWFgIN0gYug4blLPTaszwkIfLfqmw9uH1Jw5GvqSuBMn+Ci3bDYA\nAAAAmWvKu2JlzubbKy+/bXTEC22Ptbs+Neo3uF0LRQIAAABoNd71MOvDhIs5tU0+Wm32xYSH\nHxbowxj2nfrFF18M/YQtyxAA8DF78eLFl19+aWhoqKamNnjw4Nu3b8s6EQB8RN5V7G784m5t\n2W/Otsj7pQIxDsN/mRG57QtXSxv3X25IMh4AQFsiEAh8fX137txpYmLSp0+fv//+u3///i3y\nah4AAKJ3F7sBi3fPML2/7yvvjgbGLmP8NxwKT7hXWP36MpqCqqd3L4Ud/Pnr0c7GBp94f7X/\nH/OZuxdLYaETAIC24cqVKzExMQsWLLh69eq5c+fCwsKeP3++Z88eWecCgI/Fu+6x03KZvTNx\n4lchW1Zv2hMS8ktqyC9ExFLW0NbW0tJSVawtKykpeV5SWiNaLk7Z5NOpq/0Dvhppg5dZA8BH\n7N69e0Q0ZMgQ0VdPT09FRUXRRgCAFtDowxOqHUf/cGR0wNZbZ46dOBsdF3859X5R3suif1et\nY7D1PnHt26+fu8/48d6dNKT/6gkAgFauQ4cORJScnOzh4UFEaWlp9fX1oo0AAC1AjKdiWVoO\nw+c5DJ9HRILasufPnhWX1rM1dHR1tVSV0OYAAP6nd+/eDg4OK1euvHPnjra29vHjx5WVladO\nnSrrXADwsWjacidMtpqusZqusZTCAAC0bRwO5/Tp03PmzDlx4oRQKLS1tf311187deok61wA\n8LFoU+vYAQC0eubm5ufOnauoqKiurtbV1X3/HwAASI4Yxa4qOzbk95CI+Gvp97OfvSyv4im2\nU1XXM7Pt7OQ6ePRnY/qb4SUPAACv43K5XC6eJgOAlvaeYvcsJnDC5NUX8+te21pZ8eJZQdad\npKgTO34MGLjsSPByNx0pZgQAAAAAMTRW7Hjpa7y8V6TVEtfKa4rfaI8e9pZG2mocBV5N2fP8\nzPTkCyEHDkU+vLjC20sxNWlpZ1zVBQAAAJClRtpYVWjgmrRaMhixPyHYr8PrL+mytLXvPmDE\nDH//A+M/nXHq2uofQxf8OQ7vZwUAAACQoUbWK0mJja0k6rJw45ut7n/Yln4bFjgSVcbFpUol\nHgAAAACIq5FiV1ZWRkTGxo0vbiLaLxoLANB2FBQUXLly5dmzZ7IOAgAgMY0UOxMTEyJKuXSp\nppG/r7l8OZWITE1NJRwMAEBaKisrP/vsMyMjo969exsYGMyaNau+vl7WoQAAJKCRYuc4ZqwN\ngwqD/MZuTSzkvWUArzBx61i/oEJi2I7xdZBaRAAAyfL39z927NjIkSM3b97s6ekZFBS0YsUK\nWYcCAJCARh6eYDgFHPguYtD6m+EL+5itse/Tr3tnSyMdVTaLX1tenJ95+2pcQnpRLZFKlyX7\nA5xaLjIAwAcQCATHjx93dXUNDQ0logULFnTt2vX3339fs2aNrKMBAHyoRtco4fZZF59ou2zh\n8n0xeenRf6ZHvzmAY+w2M3DL6ukOKtJLCAAgSWVlZeXl5R07dhR9ZTKZNjY2p0+f5vP5LBZL\nttkAAD7Q+xafU3OYvi166tqs5Jj41PQHOUUvK6r5LGWuhp6pjb1zP7ceZtxGLuYCALQ6Ghoa\npqam586dKyws1NfXz8rKiomJ6dy5M1odAMgBsVYVZnLNew017zVU2mEAAFrCunXrJk6caGVl\nZWNjc+/evZqamqNHj8o6FACABGC+DQBajkAgOH/+/M6dO6Oiovh8vqxiTJgwISIiomfPnmVl\nZf3794+JifHy8pJVGAAACfrw94BlRm4/95CsvOd5WUogDwDIrWfPnnl5eaWlpYm+dunSJSoq\nSk9PTyZhvL29vb29ZXJqAADp+fAZu+v75s+fP3/fdQmEAQBxHQ7/AAAgAElEQVR5Nm/evOvX\nry9btiw2Nnb58uU3b96cO3eurEMBAMiVD5+xAwB4P4FAEBkZ6eHhsWrVKiLq169fSkqK6IIs\nnloAAJCURoodv6ai+m3rEr+hRma3yQBA28Hj8WpqatTV1Ru2aGho1NTU1NfXo9gBAEhKI8Xu\n5CTVMaEtlwQA5JmSkpKzs/PZs2f//vvvgQMHxsbGhoWFdevWjcPhyDoaAID8wFOxANBCduzY\nwWQyPTw8FBUVBwwYQEQ7d+6UdSgAALnSyIydhYU5UVbXtQ+uLrJo5Ah/jVMc95dkQwGAPOrS\npcu9e/d27tz58OFDS0vLuXPnmpiYyDoUAIBcaaTYdfPw0NkYdONi9Msls3XePYzJkHwqAJBP\nxsbGeCUrAID0NHIpluHqOZBDwsvnL1S3XB4AAAAAaKbGljvhuE9ZOLzmnlpFFtEn7xzlPCco\nyIssnCUeDQAAAACaotF17DQGrz01+H1HMB84c6bk8gAAAABAM+GpWAAAAAA5gWIHAAAAICfE\nfKVYZuT2cw/fvovBVGqnptXepmv3bpaaeEMZAAAAgKyI2cSu75s//31voVAy7DVt9Z5N0+25\nH5wKAAAAAJpMzGJnP2ntWtubv28Jvl2r223osE87GXEr8u9eCgu//oxtN2aWp3p+QsTJq1f2\n+vV7LEw772cu1cwAAAAA8BZiFjvbwYOFawJvC3utSD63wkn93zWJhS9Tlnu5rjqTMCnpctKG\nm8s8Pl2bemHpur+n7nbHO70BAAAAWpiYD0+UHl8WmFJtMmfT8oZWR0QMDZeVm+cYV6cEfh9c\npuGyYtUUHaKi8+dvSiksAAAAALybmMXuWkJCDVEne/s3x7McHOyIqhMS0ojYXbt+QkRPnjyR\ndEoAAAAAeC8xi111dTURFRUV/WfP06dPG/ZzOBwiUlNTk2BAAAAAABCPmMXOzs6OiG4e3JNU\n+9r2moTdh9KJqHNnOyK6f/8+EVlZWUk4JAAAAAC8n5jFznzagmFqJLi3YcinMzb/FZua8U9G\namzoJr8+QzdnCEh9xIKpZiS8cTo8hxhOw3zaSzczAAAAALyFuCsKG0w+eOq+z+g1iakHvvE9\n8MoOhk7fFaEHP9Mnelpq5rdhg6HbbBtpBAUAAACAxon/qghNt1XxGaNC9h88FXPtQUFpvaK6\noY2T28jpM0d31WESERn0+3xRP6kFBQAAAIDGNekdYCzdbuOWdBu3RFphAOBD3b9//8GDB2Zm\nZg4ODrLOAgAALU3Me+wAoLWrrq4ePXp0x44dhw0b5ujo6O7uXlJSIutQAADQopo0Y0eCklvh\nx/+6mPog/2UtW8PIxmWg74Sh9ppohwCyFxAQEBoaOnHiRG9v78TExF27ds2dOzc4OFjWuQAA\noOWIX+wEOae+GjF1x/WyV7Yd3BYY0G3+kdNbhhoz3vmHANASQkNDu3XrdvToUQaDMWnSpOzs\n7NOnT9fX1ysqKso6GgAAtBBxix3/xuqh43bcqiPVTr5z/TwcTFQrcm9d+G1nyJ20X8cM1U9J\nDbDH62EBZEYoFBYXF3ft2pXB+PdfskxNTWtqasrLy7W0tGSbDQAAWoyYV1FrTq3/+VYdqXvu\nvHkzZN03syeOnTjrm3V/3ri5w1Odam+sW3u69v0HAQBpYTAY3bp1i4mJuXHjBhE9evTo1KlT\nFhYWaHUAAB8Vcd8VGxtbQWQxd+0ci1fn+BQs5q6ZY0FUHheXJpV4ACCujRs31tTUODs7m5qa\nduzYsbCwcMuWLbIOBQAALUrMYldcXExEtra2/9nTsaMtET179kyisQCgqXr27Hn9+vVJkyYZ\nGxv7+vomJiYOGzZM1qEAAKBFiXmPnbq6OtHz3Nxcoo6v78nNzf3//QAgW3Z2dgcPHpR1CgAA\nkBkxZ+y69eypSHQnaOO5ste2l0VuDLpDpNSrVzcphAMAAAAA8YlZ7NTGfj3TiChn/2iXUSsO\nR1y6nn79UsThFaNcfPfnEMNk1tdjVKWbEwAAAADeQ9zlTtoN3HR600Ofby88OBk49WTg/3aw\nDL03nd7gpiyVdAAAAAAgNvEXKFZ28o+863EyaH9odOqDgtJ6RXVDW+eBvjNnjuysidWJAQAA\nAGSuSa8UY2ra+363xfc7aYUBAAAAgObDa14BAAAA5ASKHQAAAICceNel2Mj5VvPONeE43tsf\nbvOSRCAAAAAAaJ53FbuKgszMzCYcp6BCEmkAAAAAoNneVex8/6ivFzThOEyWJNIAAAAAQLO9\nq9gxmAoKuP8OAAAAoA1BeQMAAACQE80odumHFy1atOhwuuTDAAAAAEDzNaPY3Q/btGnTprD7\nkg8DAAAAAM3XpDdPtA5V2bEhv4dExF9Lv5/97GV5FU+xnaq6npltZyfXwaM/G9PfDO+tBQAA\ngI9SGyt2z2ICJ0xefTG/7rWtlRUvnhVk3UmKOrHjx4CBy44EL3fTkVFAAAAAAJlpS8WOl77G\ny3tFWi1xrbym+I326GFvaaStxlHg1ZQ9z89MT74QcuBQ5MOLK7y9FFOTlnZuSz8NAAAA4MM1\no/2wlNhsNim1+MJ1VaGBa9JqyWDE/oRgvw7s1/ZZ2tp3HzBihr//gfGfzjh1bfWPoQv+HNeu\npRMCAAAAyFIzHp4Yeaympqbm2EjJh2lcSmxsJVGXhRvfbHX/w7b027DAkagyLi61RbMBAAAA\nyF4bWseurKyMiIyNjRsdJdovGgsAAADwMWlDxc7ExISIUi5dqmlkUM3ly6lEZGpq2kKpAAAA\nAFqLNlTsHMeMtWFQYZDf2K2Jhby3DOAVJm4d6xdUSAzbMb4OLZ4PAAAAQLba0KOjDKeAA99F\nDFp/M3xhH7M19n36de9saaSjymbxa8uL8zNvX41LSC+qJVLpsmR/gJOs0wIAAAC0tDZU7Ii4\nfdbFJ9ouW7h8X0xeevSf6dFvDuAYu80M3LJ6uoOKLOIBAAAAyFSbKnZEpOYwfVv01LVZyTHx\nqekPcopeVlTzWcpcDT1TG3vnfm49zLhNu7jM5/MjIiJqahq7by8rK4uIBALBhwQHAAAAkLa2\nVuyIiIjJNe811LzXUAkcKiYmZtiwYeKMfPz4sQTOBwAAACA1bbLYSZCbm1tYWFjjM3Y7d+6M\njY21sLBosVQAAAAAzdAWi1192ZOcolo1I3NdZcZ/9xal/32rkPQd3O31xDgWi8UaOvQ9U38R\nERFExGS2oSeIAQAA4GPUxspKedquz7oYaBlZWXfQ0zJxnbs/7T8LEcf/6OHh4fFjvCziAQAA\nAMhQmyp2+YfHu889drOETwwOt119/qVdM3s7Tzqa+bZF7QAAAAA+Nm2o2Aku/fx9xAtimo/e\nl1ZSXl7x4v6p7921H/0+1W3CkSy+rNMBAAAAyFobKnZ3IiNziTQn/HJgRlcNBWKo2gz/KfJq\n6OxPikKmu005kYvVSAAAAODj1oaKXXZ2NhF17ddP9X/bWEbDd0eHfG6Vd2zSwJknC4QyCwcA\nAAAgc22o2LHZbHrbw6l6PrvPHxpj+PC38e5fnnsmi2QAAAAArUEbWu7EzMyMKD07O5vI4fU9\nTNOJR88/f/npV7t8PVWma8smHgAAAICMtaEZO8tevXSJHiUnF79lp1LH+SfPrejBurFx58UW\nTwYAAADQGrShYsdyGzVck/gxoadevHW/isvKiNPz7dgtHAsAAACglWhDl2JJYcCSP4/0K1Cy\nqn3XCK0BW8+f++Rwcil1tG/JZAAAAACtQFsqdqRoOXCSZeNDGO3d5ixxa5k4AAAAAK1KG7oU\nCwAAAACNQbEDAAAAkBModgAAAAByAsUOAAAAQE6g2AEAAADICRQ7AAAAADmBYgcAAAAgJ1Ds\nAAAAAOQEih0AAACAnECxAwAAAJATKHYAAAAAcgLFDgAAAEBOoNgBAAAAyAkUOwAAAAA5gWIH\nAAAAICdQ7AAAAADkBIodAAAAgJxAsQMAAACQEyh2AAAAAHICxQ4AAABATqDYAQAAAMgJFDsA\nAAAAOYFiBwAAACAnUOwAAAAA5ASKHQAAAICcQLEDAAAAkBModgAAAAByAsUOAAAAQE6g2AEA\nAADICRQ7AAAAADmBYgcAAAAgJ1DsAAAAAOQEih0AAACAnECxAwAAAJATKHYAAAAAcgLFDgAA\nAEBOoNgBAAAAyAkUOwAAAAA5gWIHAAAAICdQ7AAAAADkBIodAAAAgJxAsQMAAACQEyh2AAAA\nAHICxQ4AAABATqDYAQAAAMgJFDsAAAAAOYFiBwAAACAnUOwAAAAA5ASKHQAAAICcQLEDAAAA\nkBModgAAAAByAsUOAAAAQE6g2AEAAADICRQ7AAAAADmBYgcAAAAgJ1DsAAAAAOQEih1IXnV1\ndXp6ekFBgayDAAAAfFxQ7EDCfvnlFz09PQcHh/bt23t5eT158kTWiQAAAD4WKHYgSSEhIf7+\n/hYWFj/99NPUqVMvXLgwceJEWYcCAAD4WCjIOgDIlcOHD3O53Li4OE1NTSJSVlbevXt3VlaW\nubm5rKORUCg8fPjw6dOnKysrXV1dFy5cqKKiIutQAAAAkoRiB5KUk5NjZGQkanVE1LlzZ9HG\n1lDsZs+eHRQUxOFwOBzO+fPn//zzz6SkJA6HI+tcAAAAEoNLsSBJ9vb2Dx8+TE5OJqLa2trQ\n0FAGgyGqd7J148aNoKCgYcOGFRcXl5SUBAYG3rx5MygoSNa5AAAAJAnFDiQpICCAzWb37du3\nd+/eFhYWMTEx/v7+Wlpass5FKSkpRDR//nwVFRUGg7Fo0SImkynaCAAAIDdQ7ECSPvnkk8TE\nxMGDB+fl5bVv337btm3r1q2TdSgiIm1tbSLKz88XfX369KlAIBBtBAAAkBu4xw4kzNHR8dSp\nU7JO8SZXV1dtbe1vv/22rKxMU1Nz48aNDAZj+PDhss4FAAAgSSh28FHQ0dEJDg6eMmXKV199\nRUQcDmfTpk39+/eXdS4AAABJQrGDj4W7u/uDBw+SkpKqqqq6d+9uYGAg60QAAAAS1gaLXVV2\nbMjvIRHx19LvZz97WV7FU2ynqq5nZtvZyXXw6M/G9DdTlnVCaK24XK67u7usUwAAAEhLGyt2\nz2ICJ0xefTG/7rWtlRUvnhVk3UmKOrHjx4CBy44EL3fTkVFAAAAAAJlpS8WOl77Gy3tFWi1x\nrbym+I326GFvaaStxlHg1ZQ9z89MT74QcuBQ5MOLK7y9FFOTlnZuSz8NAAAA4MO1ofZTFRq4\nJq2WDEbsTwj268B+bZ+lrX33ASNm+PsfGP/pjFPXVv8YuuDPce1kFBQAAABAJtrQOnYpsbGV\nRF0Wbnyz1f0P29JvwwJHosq4uNQWzQYAAAAge22o2JWVlRGRsbFxo6NE+0VjAQAAAD4mbajY\nmZiYEFHKpUs1jQyquXw5lYhMTU1bKBUAAABAa9GGip3jmLE2DCoM8hu7NbGQ95YBvMLErWP9\nggqJYTvG16HF8wEAAADIVht6eILhFHDgu4hB62+GL+xjtsa+T7/unS2NdFTZLH5teXF+5u2r\ncQnpRbVEKl2W7A9wknVaAAAAgJbWhoodEbfPuvhE22ULl++LyUuP/jM9+s0BHGO3mYFbVk93\nUJFFPAAAAACZalPFjojUHKZvi566Nis5Jj41/UFO0cuKaj5LmauhZ2pj79zPrYcZt2kXl/l8\nfkRERE1NY/ftZWVlEZFAIPiQ4AAAAADS1taKHRERMbnmvYaa9xoqgUPFxMQMGzZMnJGPHz+W\nwPkAAAAApKZNFjsJcnNzCwsLa3zGbufOnbGxsRYWFi2WCgAAAKAZ5K/YZUZuP/eQrLzneVmK\nMZrFYg0d+p6pv4iICCJiMtvQE8QAAADwMZK/snJ93/z58+fvuy7rHAAAAAAtTP6KHQAAAMBH\nqg1diuXXVFS/bV3iN9TwpR8FAAAAoBVqQ8Xu5CTVMaGyDgEAAADQauFSLAAAAICcaEPFzsLC\nnIi6rn1Q36gTo2QbE1qxmpqatWvXuri42NnZzZo1Kz8/X9aJAAAAJKkNFbtuHh46RDcuRr9U\naAyTIeug0GpNmjQpICDg6dOnDAYjKCioV69eL168kHUoAAAAiWlDxY7h6jmQQ8LL5y9UyzoK\ntEWpqamhoaGTJ0/Oysq6ffv2oUOHcnNzd+7cKetcAAAAEtOGih1x3KcsHD58kFpFVmOjnOcE\nBQUFzXFuoVDQZty6dYuIJk2axGKxiOizzz5TUFC4efOmrHMBAABITBt6KpZIY/DaU4PfN8h8\n4MyZLREG2hojIyMiunfvnqenJxH9888/PB5PtBEAAEA+tKliB/AB+vTpY2FhERAQkJubq6Oj\ns2fPHgUFhQkTJsg6FwAAgMSg2MHHgsvlnjx5csqUKZs2bSIibW3tgwcPdu/eXda5AAAAJAbF\nDj4ijo6OaWlpmZmZ5eXlnTp1UlZWlnUiAAAASUKxg48Li8WysbGRdQoAAACpaEtPxQIAAABA\nI1DsAAAAAOQEih0AAACAnECxAwAAAJATKHYAAAAAcgLFDgAAAEBOoNgBAAAAyAkUOwAAAAA5\ngWIHAAAAICdQ7AAAAADkBIodAAAAgJxAsQMAAACQEyh2AAAAAHICxQ4AAABATijIOgBIXU5O\nTlJSEofD6du3r6ampqzjAAAAgLRgxk7Obdiwwdraety4ccOHD7eysjp9+rSsEwEAAIC0oNjJ\ns7i4uMWLF9vb2//555/79+9XVlaeMmVKQUGBrHMBAACAVOBSrDw7c+aMUCg8ceKEpaUlEamq\nqo4dOzY2NnbChAmyjgYAAACShxk7efbixQsi0tXVFX0VfRBtBAAAAPmDYifPevToQUSrVq3i\n8XhlZWWbNm1q2AgAAADyB8VOnk2bNq13794bNmxQVVXV1tY+c+bM7NmznZycZJ0LAAAApAL3\n2MkzRUXF6OjoXbt2xcfHs9nsESNGjB07VtahAAAAQFpQ7OQcm81euHDhwoULZR0EAAAApA6X\nYgEAAADkBIodAAAAgJxAsQMAAACQEyh2AAAAAHICxQ4AAABATqDYAQAAAMgJLHcih0pLS/fs\n2XP79m1jY2M/Pz8rK6sWOCmPxwsODr5+/bquru748ePNzc1b4KQAAADwKhQ7efPkyRMXF5cn\nT56Ivm7evPn06dODBg2S6kmrqqpcXV2vXbsm+hoYGHjixImhQ4dK9aQAAADwBlyKlY20tLSx\nY8fa29sPGTIkKirqrWN+//13FxcXfX19KysrV1fXyZMnr1+//vnz540f+bvvvnv69OnBgwer\nq6uvXLmirq4+c+ZMKfyC16xateratWvLli3Lzc2Njo7W1NScPn16XV2dtM8LAAAAr0Kxk4Er\nV6706NHj1KlTAoEgNjbWy8vr8OHDb4zZvXv3pEmTsrOza2trMzMzL126dPTo0SVLlujo6Dg5\nOZWXl7/r4AkJCS4uLlOnTuVwOD179pw2bVpeXl52drZUf1FcXJyxsfGqVauMjY3d3NwWLFjw\n/Pnz9PR0qZ4UAAAA3oBiJwNLly5VVla+fv36nTt3Hj16ZGFh8e23374xZuXKldbW1j/88ENp\naamxsTERMRgMNTU1IkpLS3N3d3/XwZWVlV+tfaLPHA5HKr/k/zGZTD6fLxQKRV/5fL5oo1RP\nCgAAAG/A//XKwI0bN3r37m1nZ0dE+vr6I0aMKCoqys/Pbxjw7NmzwsJCT0/PtLQ0IsrLyyMi\noVDo4uJCREpKSikpKfX19W89+KBBg+7evfv1118nJSXt2rXrt99+69q1q76+vlR/0YABAwoK\nCr7++uuMjIzw8PAtW7bo6+uLfiAAAAC0GDw8IQMGBgaPHz/m8/ksFouI/vnnH0VFRR0dnYYB\n2traXC735s2bDbepMZlMZWXlixcvEpGurm5+fn5OTo6lpeV/Dy663W3Lli1btmwhIhMTkyNH\njkj7Fy1dujQmJmbr1q1bt24lIlVV1dDQUCUlJWmfFwAAAF6FYicDEyZMWLly5dChQ318fK5e\nvXrmzJlx48ax2eyGAUwmc9q0adu3b2/oRgKBwNXVNTo6uq6urqioiMlkdujQ4a0HV1FRiYuL\nu3Dhwp07d4yMjHx8fNq1ayftX8ThcGJjY8PCwtLS0vT09Hx9fQ0NDaV9UgAAAHgDip0MLFu2\n7MmTJ/v27Tt37hwR+fj47Nq1640xGzZsqKur27t3b8MW0WAiqq+vHzNmDIPBeNfxGQyGp6en\np6dnw5aysrINGzZcunSJw+GMGjVqxowZoslCCWIymZ6eno6OjiYmJgoK+N8VAACADOAeOxlQ\nUFDYs2dPbm5ubGzso0ePwsPDNTU13xjD4XD27Nnj6OiooaERFRU1cOBAUVtiMBhTp049ceKE\n+Kerqqrq3bv3qlWr7t27d+XKldmzZ0+fPl2Sv4eovLx8xowZqqqqHTp00NLS2rRpk2SPDwAA\nAOJAsZOZ9u3b9+vXz8LCopEx69atKy0tHTlyZFlZmbKyMhEdOXLk4MGDjUzX/VdQUNCdO3fW\nr19fWFhYWFg4evToI0eONCwmLBFffvnlgQMHPD09Fy9ebGZmtmjRogULFvzxxx85OTkSPAsA\nAAA0DsWuVfPy8oqOju7bt++zZ8+6d+9+5syZzz77rKkHuXbtGpPJ/Oqrr4iIw+HMmTNHtFFS\nISsrK48dO+bj43Pu3Ll169YtX76cyWT++uuv48aNs7a2/vnnnyV1IgAAAGgc7oVq7fr379+/\nf/8POYKurq5AIMjNzbW2tiYi0WLFurq6EolHRDk5OXw+38nJiYgKCgo+//xzBQUFZWXlffv2\nrV+/fsmSJd27d//AnwAAAADiwIyd/Bs5ciSTyRwxYkRQUNCGDRsWLVqkp6fn6uoqqeNbWlqy\n2eyIiIja2tr4+PjS0lImk+ni4jJ69Og//vhDKBSGh4dL6lwAAADQCMzYtTFCofDkyZOJiYkq\nKiojR47s0qXLe//k008/3b59+7fffjtr1iwiMjIy+vbbb+/du9e1a1cVFZUPCfPy5cv09HR1\ndfXFixcHBgZaW1urqqoSUV1d3bJly4hIV1eXwWC8fPnyQ84CAAAAYsKMXevC4/GePn36+PHj\nhtdzvUogEAwdOtTX13fTpk2BgYFOTk7btm0T57Bz5szJzs6OiopauXJlVVXVwoUL+/bta21t\n3bCESjNs3rzZyMjI1dXV0dHx5MmTAQEBXC5X9LSEi4uLk5MTj8dbtWqVUCjs3r17s88CAAAA\n4kOxaxXq6+utrKwYDIaioqKhoWGHDh0sLCwiIiLeGHbgwIGzZ89269bN2NhYSUmJw+H4+/vn\n5uaKcwptbW0jI6O1a9eqq6tv27Zt48aNQqFw/PjxoveVNdXZs2cXLVpkbW3966+/Llmy5OHD\nh6GhodevXy8vL//iiy+Sk5O1tLRUVVXXr1/fs2dPPz+/ZpwCAAAAmgrFrlUwNjbOzMx8dUt2\ndravr+/du3df3RgXF8dkMtPS0rhcrre3NxHxeLzffvtNzLOEhYXV1tYeO3Zs3rx533zzze7d\nu8vKyqKiopoR+MSJE0wm88KFC/Pnzx80aJChoeH9+/e9vLzy8/N37tx5/PhxX19fLy+vzZs3\nx8bGKioqNuMUAAAA0FQodrInekvYf7fX1NR06dLFyspq3LhxW7duLSwsFAgEAoHAzc1t2bJl\nFRUVampqRBQSEiLmiQoLC4nI3Nxc9FX0QbSxqZ4+faqurq6rq/vLL7+4ubk9evSIiGJjY83N\nzdPT08ePHx8cHDxt2rTg4GB9ff0uXbocPHjwrReXAQAAQIJQ7GSvkWbG4/EyMzP/+OOPhQsX\n2tjYiNYlvnLlyuTJkxMTE0tKSojo9u3bDx48EOdE3bp1I6Lt27cLhUIej7dz586GjU3VpUuX\nkpKS4ODg7777jog6dOjAYDAGDRrE4/FGjRpFRCdPnhwxYsTDhw979uxZWFg4ffr0HTt2NONE\n73Lnzp09e/b89ttvzbuUDAAAIJ+E8D7Tpk0jop9++klKx1+1alUj/wWpq6srKChoa2urqKi8\n8YJXxv+bOHGiOCeqq6sTPcegr6+vra1NRN7e3gKBoBmZCwsLDQwMRDFEqebNmycUClVUVBQU\nFIRCYdeuXfX09AoLC4VCYXl5ua2trZ6eXjNO9Fbff/89k/nvv5Ow2exDhw417MrLy1uwYIG7\nu/ukSZPi4+MldUYAAIAGly9fJqItW7bIOshbYMZO9uLj4xvZW1payuPxnj9/XllZyefzbWxs\nXt0r+m/x4sWL4pxIUVExOjp65cqVNjY2jo6OGzZsOHnyZJPeTtZAT08vNTV17Nix9P+vtd26\ndSufz+fz+aJId+/e7d27t56eHhFxuVwPD4+ioqK3XnFuqgsXLqxatUogEIi+1tbW+vn5ZWVl\nEdGjR486d+68devWtLS048eP9+vX79ChQx9+RgAAgLYCxU428vPzq6urRZ8bOsq7KCgoODs7\ni+aoXp3eEwqFK1euZLFYxcXFfD5fnPOqqKisWLEiPj7+4sWLixYtYrPZzf0FZGRkdOLECWVl\n5crKyuTk5L/++qtv3741NTWWlpYMBsPMzCw9Pb2urk6UMy0tTVVVVUdHp9mna/DTTz8RkYKC\ngo6OjrGxMYvF4vP5QUFBRCS69TAiIuL58+ePHz+2tLRcsGCBmP9kAAAA5ACKXUubNWsWi8Uy\nNjZu166dpqbmunXrRE8eNILH47m6ugqFQiLS0NBQVFRkMBii94OdPXtWNE8mmrJ6r8rKSsku\nF3zgwAEGg3HgwIExY8ZcuXJFSUnp5MmTRPT5559nZmb27t172bJlbm5uiYmJM2bMaLh++iHS\n09OJiMfjFRcX5+XliXpbbGwsEaWkpDg6OoqeFzYxMZk8eXJpaen9+/c//KQAAABtAopdi1qy\nZElQUFDDFN3Lly+XLl363mJHRJs3bxa1ov3795uamrJYrH/++YeIbt68aWlpqaCg0L59+8aP\nkJGRMWDAAFVVVU1NTWdn5+TkZCIqKCgQcxm8dxk/fgilHkoAACAASURBVHxGRsaECRN69uw5\nZ86cnJycTp06EZG/v//y5cvv3r27Zs2ahISEefPmrVu37kNORES3b9/29/dvKKYKCgoNb85Q\nUFAgIi0traKiIh6PJ9r45MkT0cYPPC8AAEBbgVeKtaitW7cSEZPJbNeuXUVFhWijiopKZWUl\ng8HQ19d/+vTpG3/CYDDc3d21tLTOnTtXU1Nz4sQJ0XYlJaUhQ4ZUVVVFRUVNmTJFWVm5kfOW\nl5f7+Pjk5ORMnDiRw+EEBwd7enqamJjcuXOHiGxtbffu3dvst8fa2NgcO3bsjY1MJvPHH3/8\n/vvvs7OzjY2NORxO8w4uwufzp06d+vvvv7+6kcfjNXQ4Ua8dMWLEsmXLxo4dO3HixPT09P37\n9/fs2bPhIQ8AAAC5h2LXompra4lIIBA0tDoiqqysJCKhUFhcXMxgMLS0tGbPnv3XX3+Vlpay\nWKy8vLwLFy4Qkb6+fnh4eF1d3e3bt5OTk0+fPi169GHKlCnbt29v/LyRkZGZmZk7d+6cM2cO\nEXl4eIwfP/7Bgwdz585VUlI6ePDg8OHDb968aWpqKtnfq6ioaGVl9eHH2bBhw++//85kMt91\nP+KVK1dMTU3Ly8uZTObJkydFl4MdHBze6IIAAADyDcWuRTEYDOG71+kVzT9xOJz09PSysjIN\nDY3x48d7eHjcunVLW1vbw8NDXV2diNzd3YmotrY2MzPT2NhYtExx40SvtejZs6fo64sXL4io\nR48eo0aN4nK5bm5uw4cPDwkJ8ff3l8SvlLyQkBAFBQXRP5+GD6/Kzs7+71+NGTOmQ4cOLZEP\nAACgdUCxa1HvfQCWiPLz8588ecLlcl+8eLFixYq7d+8GBwf/dxibzRbdzSaOjh07ElFkZGTX\nrl2JKDo6moiSkpJEHVE0USfm4xdiqqys/Omnn06cOPHixYsePXqsXbu2eSshE1FdXd2dO3d4\nPJ7oAdj/tjoiYrPZotlQIlJWVq6trRUIBGvXrv3++++b/xsAAADaGjw80XLe2kjeSigUcrlc\n0X1pJ06cyMjI+MBTe3l5OTo6BgQE9O/f38vLS/Sui4Y8opc3WFhYfOBZXjVt2rT169erqKj0\n7NkzLi6uf//+Dx8+bN6hYmJiampqiIjP5yspKb11jKjVsVgsBQWF6urqLl26sFisqqqqqqqq\nZv8EAACANgfFruWI1loT05o1awoKCkQXT8PDwz/w1BwO59y5c5MmTbp165ZovWwRNTW1hhvX\nTExMPvAsDTIyMkJCQiZNmpSYmNipUycVFZXy8vJ+/folJSU172gNn0UL44kYGxs3PEoiIhQK\nRW21vLxcKBSyWKx27do190cAAAC0PSh2LWfv3r3iD165cmVdXZ1oFq2srOytY4RCYV5e3tOn\nT8WZCzQ0NDxy5EhJScn69etF9/lNnz5dU1OzYTUQibwWQuTu3btENGTIkClTpvzyyy8WFhZK\nSkqFhYUDBw68d+9eU48mevxCQ0Nj5MiRqqqqoo0cDuf06dNHjx4VfVVWVmYwGKKGymAw/vnn\nH4FA0OyLvwAAAG0Uil3LadK1yOzsbGdnZ9GMlJ2d3X8H7N27V1VV1cTExNDQkM1mT5gw4fnz\n5+IcuaHAOTo6ZmVlXbp0SfRVgsuCiPro+fPnT58+PXXq1BMnTtTX1/v4+FRVVb33Ad7/srW1\nJaLS0lIi8vX1Fa3nV1NT4+Tk1DCXWV1d3fBUiuiDkZFRVFSUhH4QAABA24Bi13JEy5qI78GD\nB6IpqAkTJvTv3//VV2Nt3bp19uzZDQcUCATBwcFDhgwR560STk5ORMRgMBYuXGhkZNSlSxci\nYjKZPj4+rw67cOGCh4eHhYXFwIEDIyIimpTcwcGhV69eBw8eJKKioqK+ffuyWKzFixfr6uo2\nY8bOyMiIxWKJVns5dOiQ6P45UWbRB3V1dTs7Oy0tLVtbWwUFBWNj4/Pnz+fm5mpqajb1XAAA\nAG0ail0LOXr0aCMLnTTCwMBARUUlLi5u1KhRoi21tbUBAQFExGQy9+/f36dPH9H25ORkIyOj\n3bt3N35AHx8fZ2dnUZiCggLRYwfLli179bmEsLCwQYMGXblyRU9PLyUlZciQIW/czdY4FosV\nEhLSr18/Ijp37hyLxQoODtbR0SkuLra0tGzCjyciImVl5eHDhz99+nTy5Mlbt241NDTk8/n9\n+/fv37//kCFDPDw8SktLhULhgAEDiouLBQLBwYMHPTw8GAxGU08EAADQ5gnhfaZNm0ZEP/30\n04ccRDRP1gwsFuu3335TVFRks9miQ6WkpBCRgoKCiYlJcXGxrq7uG3/i6upaW1vbSJiampqZ\nM2c2vA1CVVV18+bNAoGgYUDnzp319fXz8vKEQuHTp0+NjY0tLS2b+pN5PF6fPn0YDIaPj8+X\nX36pq6urqKiYnJzc1OMIhcLi4mJPT09RWiaTOWPGjPr6etGu2trawMDA9u3bKygoODo6hoWF\nNeP4AAAA4hM9hrhlyxZZB3kLzNi1ENGawM3A5/OnT59eX1/fsE6b6FkKHo+Xm5trb2//7Nmz\nN/4kPj7ez8+vkWOy2WwzM7OamprOnTv7+fkZGhr6+/vv2rVLtLe+vv7evXtubm5GRkZEpK+v\n7+np+ejRo1ffliEOFosVGho6evToyMjIHTt2qKmphYSEdO/evUkHEdHW1o6KisrIyLhw4UJ2\ndva+fftEL4clIiUlpR9++CE/P7+2tvbGjRtDhw5txvEBAADkAxYobiGKiooffhAlJSVvb++G\nxx2IqKCg4NUBDWuXHD9+fO7cuQKBQFdX19rauri4WFtbW3RHmsjWrVsdHBxSU1MVFRWrq6vt\n7Ox+/fXXuXPniqLq6+tnZGQIBAImkykUCu/evauhoaGiotLUwPr6+n/88UdtbW1ZWdl/Zxab\nytbWVvQgxVuJHqoAAAD4mKHYtZCSkpIPP0h9fX1YWFgjAxrebCEQCBruvRNhMpm2traLFy+e\nMmXKy5cvi4uLfX19RXVTWVnZ2dn55MmTfD6/qKjo1KlTlpaWly5d8vb27tOnz/HjxzMyMnr2\n7FlUVKSsrBwSEpKbm9upU6cRI0aI2VbZbPaHtzoAAAB4LxS7FiJ6d0JL4nK5r148FQgE9+7d\nmzZt2sWLFw8fPqyrq5uQkFBXV6ekpFRRUXH16lVLS8sLFy6MHTu2vLxc9Cfnz58/f/686HNS\nUpKhoaGCgkJ9fb1oS+fOnePi4hqWwQMAAACZw9Ur+SRaCoTNZjdsUVJSEl2sPHLkyNdff62h\noXH79m1DQ8PevXvr6+tnZ2dbWFhMnjy5Xbt2p06dSk9Pb1j9pOFuNqFQ2NDq7Ozsbt++vWjR\nopb9WQAAANCYNjhjV5UdG/J7SET8tfT72c9ellfxFNupquuZ2XZ2ch08+rMx/c2UZZ3wbXR1\ndRtmwloAh8MpLS1VVn7tn0XDhdotW7ZoaGioqqqWlJRcuXKFwWBwOJzIyEgiWrVq1fDhw4ko\nJydHdBwdHR0mk1lSUiKa/+NyuQoKCnfu3NHR0bl48WKL/SIAAAB4rzY2Y/csJtDdxsZt6rId\nJ6KS7mYVPHtZUVnx4llB1p2kqBM7lk11s7F2D4wplnXMt5g+fXpLnq6qqorNZjc0OXr9Lasa\nGhpPnz6NjY0VfRUKhQ1XihMSEkQf7t+/T0QKCgp5eXne3t6i2+kYDIanp2dlZaW3t/fz589f\nPSYAAADIXFuaseOlr/HyXpFWS1wrryl+oz162FsaaatxFHg1Zc/zM9OTL4QcOBT58OIKby/F\n1KSlnVvXT8vLy2vhMzYsj/JfoocnXFxc/rvrwoULiYmJHTp0YLPZtbW1FRUVHA7nypUrojd6\nMRiMlJQUAwMDHo8nFAqbt3YJAAAASEnraj+NqgoNXJNWSwYj9icE+3Vgv7bP0ta++4ARM/z9\nD4z/dMapa6t/DF3w57h2Mgr6VsHBwbKO8JqZM2c2zOe1a9euqqpK9Fm0qvCrI2tqam7dutXw\nNTc3V/SfTCazYek7AAAAaA3aULFLiY2tJOqycOObre5/2JZ+Gxb8emrpzbi4VBrnKsZB+Xx+\nRERE44+sZmVl0Ss3qDVPwyMILaN79+4pKSnC119ipqur27CaccN1WCKaPn16eXn54cOHRV9/\n/PHH4uLibt26xcbGHj58+NWDCAQCLpdbV1dXV1e3ZcuW9u3bS/2XAAAAgNjaULETvXDB2Ni4\n0VHGxsZEN0VjxRATEzNs2DBxRn7gtdSePXuePXv2Q44gjoYFirW0tLS0tJ4/f96wS01NberU\nqRs3bhR9fbXL7tixo+Ezi8Vavny56PO0adM2btx49+5dfX399u3bh4eHHzly5MGDB2ZmZvPm\nzWt4dy0AAAC0Em2o2JmYmBBlply6VPOZO+ddg2ouX04lIlNTU/EO6ubmFhYW1viM3dmzZw8d\nOjRx4sSm5X3d+vXrW6DYNejZs2fDEnQiZWVlDa2OiObMmfPWC6lv1FwdHR1X13+nPidOnPiB\n/xAAAABAqtpQsXMcM9bm57UPgvzGfhIc9GVv/f9E5xUm7vjcL6iQGLZjfB3EOyiLxXrv20Wf\nPHly6NChD3wnWKdOnVxcXFJSUj7kIO/VcL04MDBQIBBwOJy3dlYVFZXt27fv27evYV06ES6X\n+9dff0k1IQAAAEhPGyp2DKeAA99FDFp/M3xhH7M19n36de9saaSjymbxa8uL8zNvX41LSC+q\nJVLpsmR/gJOs076JwWCEh4dPmTLljYm0/w5TVlYeMGDAixcvrly5Iv6NfVpaWkwms6qqqrq6\nWigUiv6QxWJt2rTp22+/ffU4DAajoKCAyWSWlpb26NEjPT1dtHHixIlHjx79gJ8I8H/t3XlY\nVHX7x/F72AdBQMUNUUwtXHDfEtJMcyEVNVOSXAJcKk2t1Ex/tvhUlmVaPu4Ibmmamj1auaCl\noIlohiuiuYGaioDs6/z+ABWGYVNmBg/v1x9dF+d858w993VLH87MOQMAMLInKNiJ2LjPPXDo\nmZmTZ6/cH31y3+aT+7QXWNXr7v/Jgk9fb1nmb6s3hFq1au3atSsuLu7SpUvh4eGNGzfu2LGj\nmZlZenp6lSpVkpOTbW1t83+TvUajiY2NjY+Pr1+//rlz51xdXS0sLETkzJkz+/bt8/LyqlWr\n1vr1662trT09PW1tbXMflZGRcfr0aRsbm6ysrEaNGllYWLzzzjsZGRk+Pj6JiYlLly51cXHJ\nXalWqyMiIrKzs+/cuVOrVi2D9wMAAJQzldaFk0+EnKTLR/YfCD95/uqt+KTUbFO1jX3N+k+7\nte/WvVMDm/K/5fLChQsnT54cEhKidR8QAABQCYWGhnp4eCxYsGDSpEnGrkXbE3XG7j4TG5dn\n+7s8W8JH4wAAACqXJ+wrxQAAAFAUgh0AAIBCEOwAAAAUgmAHAACgEAQ7AAAAhSDYAQAAKATB\nDgAAQCEIdgAAAApBsAMAAFAIgh0AAIBCEOwAAAAUgmAHAACgEAQ7AAAAhSDYAQAAKATBDgAA\nQCHMjF3AEyMyMtLKyuoxD5KZmRkUFNSgQQMTEyK1geTk5Fy4cKFx48b03DBouOHRc8Oj5waW\nk5Nz5cqV0aNHm5ubG7sWEZHIyEhjl1Akgl3JcsfIz8/P2IUAAFB5LVu2zNglFFBBUqYWgl3J\nfHx8srKyUlNTH/9QERER33//vYeHR4MGDR7/aCiNK1euhISE0HODoeGGR88Nj54bWG7Dhw8f\n3rJlS2PXkketVvv4+Bi7Cl00MKBNmzaJyKZNm4xdSCVCzw2MhhsePTc8em5gNLz0+HAAAACA\nQhDsAAAAFIJgBwAAoBAEOwAAAIUg2AEAACgEwQ4AAEAhCHYAAAAKQbADAABQCIIdAACAQhDs\nDEqtVj/4LwyDnhsYDTc8em549NzAaHjpqTQajbFrqESys7ODg4N79Ohhampq7FoqC3puYDTc\n8Oi54dFzA6PhpUewAwAAUAjeigUAAFAIgh0AAIBCEOwAAAAUgmAHAACgEAQ7AAAAhSDYAQAA\nKATBDgAAQCEIdgAAAApBsAMAAFAIgh0AAIBCEOwAAAAUgmAHAACgEAQ7AAAAhSDYAQAAKATB\nDgAAQCEIdgAAAApBsDOU5LMbZg5zf7pWVSsr25qNu7zy/vpTicauScHil/ZU6dRnZbyxa1OC\nrPgLIVsWzx43sHNDOzOVSqXqE5RUxFImv5yUrudMfjnJjD29O/CTcV4erZvUtbeyUNvVbeo+\nZMqSgzeydCxmyMtFaXvOkJdEAwNICJnaWq3desvm7+y7a+zKlCpuSQ/dA997RZyxa1OAzLVe\n2n0NTNS1kMkvN6XsOZNfPlILtTuXqlq3r/9KKbCUIS8npe45Q14CztgZQPqBma/NO5Fq4txv\n3p7zcampcVHBXw1sYJJ+ev6I6ftSjV2dkjWfc1Z74n/ztzd2VQqgMndo5D5o/EdLth46v7Rf\nkcuY/HJUyp7nYvIfl8qiRvNevrOXbQ85cT4mLiXl7pXwLZ/0rW+qufvHtNHzIx8uZMjLTal7\nnoshL5q+EiMeSNzgZSUiDaeEpj7cmPbnlMYiYt5/NX9h6EPun3Q6/uWjnGVu8BLRffaIydeT\nYnrO5OtT+vEPXEVEnl0Yc38TQ65nOnrOkJeEM3Z6l73/191pIm6jx3exerjVstMbvm1FMnf/\nslfXRzaAJx6TD4WxaNO1s42IpKen521hyPWtcM9RIoKd3l08eTJVxK5jx6cLbm/SqZODSPqp\nUxeMU1dlcG3Nay3q2FpaWDvUa/7csKnLQm9kG7ukSoTJNx4mXz/OHzueJOLk7u6St4Eh17tC\nPb+PIS8SwU7vbt26JSJOTk7aO3I35e6GXtyLOnb6ZlJGZmp8zJmQTV+Nf67lC/OOpRi7qsqC\nyTceJl8Pci4tfuuLCLHt/fHULqq8bQy5funq+X0MeZEIdnqXmpoqIpaWlto7rKysRCQlhUnU\nA1WVxp7v/Pen0FNX7qYk37l65o81MzyfstLcOTDt5WkH04xdXeXA5BsDk68nt39903PS3iRn\nn6A1fs4PtjLk+qS75wx5iQh2eqdWq0XnBwTS0tJExNra2vA1KZ/diKU7v37Tq0vz+g5q6+rO\nTbuO+GznkXWvOIpcCVz2Gx/WMAQm3xiYfD3Iub593PODlp2vPWjlvsDBNfPtYcj1peieM+Ql\nItjpXc2aNUUkJiZGe0fuJkdHR8PXVDnVGOw7wF4k5dSpS8YupVJg8isKJv9xZF5c6/PckOWR\ndYYGHdj0emPzAjsZcr0otue6MeT5EOz0rpGbm1okISzsfMHtUUeOxIlYurk1MU5dgH4x+Xji\npfy9YIDHqI3XGo7acOD7EQ3NtPcz5OWvpJ6jRAQ7vTPt3reXlcjJoKWH8r35nx62ZNVxEfNe\nnj2ZWwO5u331/+JFrJs1czF2KZUCk19RMPmP5m7IrB7dpvwW12z81gOBrzib6ljCkJezUvS8\niAcy5PkY+0Z6lUHa7xNcRMTEuf9Xe87HpaXFXQj+emADExFxGhOcbOzqlChpw5hO3jNW7Dx8\n6p+b99JS7l47F7J+ttfT1iIizuP3p5R8BJRWcTfLZfL1o+ieM/nlJTtmx/gWahHrNu/suV3c\nQoa83JSy5wx5iQh2BpFwcGqrwl8m2GwKXyaoH4mBL+n8M0ZVvevcMJ3faYqyiVvRu6i/Fbt9\nd+PhOia//JSm50x+eYn6vF1R3RaxG7cn31KGvJyUsucMeYl4K9Ygqnp8GRK+fsbQzo0cq1hY\nVKnxVOch09Yd/XN+dwdjV6ZMNsMDwrd8M+nlbq0a17WzNLO0rdGwdc/XPgg4fHrf9A42xq6u\nMmHyDYvJNwKG3LAY8hKpNBqNsWsAAABAOeCMHQAAgEIQ7AAAABSCYAcAAKAQBDsAAACFINgB\nAAAoBMEOAABAIQh2AAAACkGwAwAAUAiCHQAAgEIQ7AAAABSCYAcAAKAQBDsAAACFINgBAAAo\nBMEOAABAIQh2AAAACkGwAwAAUAiCHQAAgEIQ7AAAABSCYAcAAKAQBDsAAACFINgBAAAoBMEO\nAABAIQh2AAAACkGwAwAAUAiCHQAAgEIQ7AAAABSCYAcAAKAQBDsAAACFINgBAAAoBMEOAABA\nIQh2AAAACkGwA/DYsjYOVKlUjd8/YexCyiR66YvWqrpv7kszWgUVtm+FC7uxoodaVW/s7lQj\nVgWgFAh2AJ4AWfEXQrYsnj1uYOeGdmYqlUrVJyipiKXJZzfMHOb+dK2qVla2NRt3eeX99acS\ndSxL+uWDj/Zmd50x4wUrfRauFHVGfzzWJWbV1PlncoxdCoDiEOwAVHxZG0c3eW7IW3OWbz9y\n+V52MQvvhU7zaDf8s02Hom4lpqcn3b54+McvXmv/7Lv747QWnv5mxrp/q4+YMcZZn3VXdElB\nfVQqleusUyUvNfeY9p6HRHwxa2OC/usC8MgIdgAqPpW5QyP3QeM/WrL10Pml/Ypcln5g5mvz\nTqSaOPebt+d8XGpqXFTwVwMbmKSfnj9i+r78byJmH1y8LEJTZ9ioFzldV2pO3iNeME/8efHa\naGNXAqBoBDsAFZ/psMALIVuXfDh+0LMN7UyLWpW0bf7KyyINJ23c/F7PJvZWVvaNX3h34w+T\nGovEBC3YHP9gYcqO5etipL63j0eRx0Jh1Yf69DbPDl2+6rSxKwFQJIIdAD3JjN7/7YQBHRs5\n2lpaqO2dmj0/fNaGk4Xfx0s6tf79wR0bVrO2tK5ev92AKWsiEi/Mba9SqZ5fdLNMz5e9/9fd\naSJuo8d3yXcezrLTG75tRTJ3/7I3K2+TJmTnr/fE+vnuHVX5H39zkYdKpWo/93Li34FT+rep\nX83a0rrGU52GzvwhMvn+mojZz6hUqlZzzhd69lvLe1moVLXH7ckSEcm5F7V3xcwRL7Zv6lzN\n2kJtV9fV/ZX3AsLvasr0ioqSHLVj7ljPdk852lpaqO3qNH3Oe+a6vwt1NvnMxg9e7vRU9SIa\nG73AQ2X7+i4RifzUTXVfz6XxhZ/vPvvu3VuLnNyx82q5vAwA+qABgMeUucFLRBpN/+vhpoy/\nF/SsoSr0G8eyydifb+Z7ZMrhD9tX0Vqj7uDr7SYi3b67UeRzSe/ARO09kZ+2ERE7v1+1dwS/\n4SAizT88m/fzyZnPiIjHopsFl934zl1E3Lx9O6i1Kqraac6x1NxFl7/oYCLiMi0sp+CDL3/Z\nMf/2w5OcdPy+NW88dtfd4vtWshs73mxmXfjYFk+P+fnWw1WpYXM62Rbb2GvfuOsosceSuOIK\nO/hWbRFTzzX3ylIxAAPijB2A8qc5Ndfn3b13NLat/BbvOxOdkBR78eiPs3rWNU2PWj7ijU33\nr2TI+euzUZ+EJ6tquL+77nDUrcTEm5Ghqye2vLhq48lHeNJbt26JiJNToUiVuyl3t4ikR0RE\niti7utbSdZSTG1dFNX0z4EDkzcTEf8+HBE1s7yD3jnw48vO/NSIiDUaP6Wkul1cHBGflf9Sp\nwFVhOdLS169Dbpg1dWjeb8qi7YdP/nMrKS0l7sbZP9a+97xj5oXlE7489ggv7aHrq0Z6Lz6T\n88ywz384FHUzLjU9+fblo1s/7e+Sc36F79QdeZcKa/6eO+rDI4mqas9OXn0o6t/ExJuRBwLG\nNY3K39h6k0M0iYG9ReSZmScf/D9h73j74p7e1fUZkewTJ0pxtQUA4zBiqASgEIVO8Byc5CQi\nDoPW386/LOPY9KYmIqru/807FffHxLoiUuf1nQXOvsX95O0oUvYzdrvHVhORNp9Gau+4/FV7\nEakyKu9U3rVvOonIU9OOay3LPWMn1bx/jC1QzjafGiJSe0JI7s+JmwbbiFQdti35wZLskMn1\nRUy6fntNR8EPJKzxNBNx+/hhfWU/Y/f3LFcR855Lr2ttzwqdUk+kis+2TI1Go9EceNtJRGqP\n+l+BM2uxm1+uVrCxhYNdCYVlrR+kEjEfsb3UFQMwLM7YASilHa9ZqfJzee/PIlbeDA+PEbEe\n6P9qjfybzdu+4ddRRHP0aO5ZqxvHjl0XqT54pKdN/mX2XqMG2D1CfWq1WkTS09O1d6SlpYmI\ntXXeG5gJCQkiYmur/U5lrqoDfXPjz4NyBvoNrnb/NYmIjZf/UEe599PKTbF5KzL2Bqy7KlZ9\n/F+r9+BR2f8eXjHt1e6tXBxtrcxMVCqVSmU38pcskatXH+MDarEHQ86JZAa/5WxmZmZmampq\nampiYmJiojJz/yZaJPmff26JiNw8dixGpPrLo/sVeI3VhvgNrProTy4iYlq1qrVIZnx8yuMd\nB4C+EOwAlLvc6FTP2Vn7Q3a5m5Li47MfLivyvdOyqlmzpojExMRo78jd5OjomPujvb29iNy7\nd0/nUerVq6d7U3x83mUFFr3HjKwv6b8FrLsuIiKJP63cdEfsBvsPcbj/iOiNQ9t4jJ238feI\nK3eS0rPzXzKRmzIf0Z07d0RENNnZ2dnZ2Tk5OTm5H+m7vz8jI0MelKqjizpeXNlkJySkiJjb\n2+v4lB+AioBgB6CU+q1LK3DC//JXnYtYaWdnJyLR165pXwSau8nG3t704bIik1hZNXJzU4sk\nhIVpXbIadeRInIilm1uT3J8da9ZUidy9e1fnUWKiC92mLTo6Wu7nQRERk87+r7eQ7JCAwEgR\nid0YsD1Zavn4939wzcWh+dO33sip9cKsH0LOXLuTmJaZnaPRaLJ+Hq59VUZZ5dZQ/Y3gbN3v\nwYS/7/JwmY4uRhd+cWUTFxenyZeRAVQ4BDsA5a52+/ZOIik/rdxwJ//mrBPLAo+KqNq3byci\nInXatasjErtt7a/J+Zcl/Lzm50f5dgPT7n17WYmcDFp6KN9JsfSwJauOi5j38uxplrvFolUr\nV5GEc+d03k0lYXvg1riCG1Ztu3v/NeVx9fVzN5GTq1Ye0VxdG7A3QxqN8n/e7P7elHPnroo4\nj/x8zlD3pvWq21iamahE4nf/9PvjftNqrS5doKlkdgAABSZJREFUGonEbvnvhhvF3Tildrt2\nTiKxW1bvLPC9a3FbVm0veJrS3NxcynQS8ezZcyKmrVu3KFPZAAyHYAeg/Ln7jW1uInHbxr84\nZtkf524kJt+9dHzbhy/1n3c6W6p6jX+1du4yj9G+TVRyPXCU5/QNYf/cSU66feHwuil9/Tbe\nfqRntRk0xd9F5NJC76Ff742KT0+Pv7hvvvfQhRdEnEZPHvLgcs9m3bo5ihwPC8vSdZTYDf69\n3w4KjbqVlHT74qG1U3r7rr8tJs3H+nXJt6j+yDG9LOWfNQGLlgccyZG2fn5tHr7trK5d204k\netMXC/afv52SkXr32qldi8b1HL7q+iO9rPw6TJjW3VpubfXv6jVzzR+nr95OTk+Niz5/4sCW\nhVMGtxu3Oe/zhR6+/q4mcnP16D7vrT9y8XZy0q2o0KAJvcf8GFvwcJa1a9uLRAdv/v1qYkYp\nvgT2SljYvyJtu3XT/flEABWAni/OAFAJ6LiIMv2vr7tXK/wbx6KR77b8V3Qmh85sq/1xLXWH\nUa80E5EXlz28OjVuRe+ifokVuHg24eDUVoXe77RsNmVf/tvHaVJ3jHYQcZ4cUuBmdLlXxbYY\n9np7HfexC0/Ves3JP3rb5Z3yMuu6uOBVqhlHZze30DqGqu4r4wZUF7H0+V9xfSvZzZ1vu9mI\nTl5rH1SZGvZJJ+1V6vaFbhCY8vPI6gXWFHsfu7uBL5mLuH18qiz1AjAoztgB0AeL1u/s+mvv\nN2+81M6lehVzM8uqtV27es9Ye+RowMA6+ZZZd/nP74fXTPVq18DeykLt4Nym3+SgP4Nftbsh\nYlqtWtkv4azq8WVI+PoZQzs3cqxiYVGlxlOdh0xbd/TP+d0d8q+y6jt2hLNc27j+YHahI1i2\nnh0cumKiZ8t69lbmVg4uHYbM2HAkeFY77S+VtR4wZnhNyczMFLWn//A6BfaZt//o95AVE/q2\nbuhYxUJt79Sip/+8PeEbvOtIOajluTDs1N5vJw/xaOpkrza3qFKjvmvb7kOnLNx2fMXQB1Va\ndfi/4CMbZgzu4OJgZa62r9fac2LAoeAZrbTyprr/gl++9e/ZwsnO0rTw7aS1xG7+fnemqftY\n3+bl8ToA6IVKoymfr7gBgPKR8NvoZn1XX28998Jf0xvp60nOfta2xcyrr/8avbLP/TB0c5FH\nnYmh7T6/lHcJggJdmNu+yYxj3b678fuE2mV+cMwijwYTIwasv7p1eLE3MQZgTJyxA2BMV1f4\nD50dtPevC/8mpSXfvhyxe8n4XiNWXxezZ0d46y3ViUjTtz8bUTt27WfLr+nxSZQkM+TLr0Ol\n5fQ53qQ6oCIzK3kJAOhNTsKpzXMCNs8puNXhuXnLJjbQ6xPb9PnPRy9uGj/3s+CxS3pov88K\nbTdWf7T8spPvrinNOR0AVGj8EwVgTA3Grtr8qV+fDq7O1a3NLarUaNi279gvfzu+Z7Kbub6f\nut643Sma6xUl1YW/76IqVr+gx7iz8WOr4783VRO9vBc3JgYqOD5jBwAVQPj7Lh2+uFLMgpcC\nU3eMrhghFEDFRbADAABQCN6KBQAAUAiCHQAAgEIQ7AAAABSCYAcAAKAQBDsAAACFINgBAAAo\nBMEOAABAIQh2AAAACkGwAwAAUAiCHQAAgEIQ7AAAABSCYAcAAKAQBDsAAACFINgBAAAoBMEO\nAABAIQh2AAAACkGwAwAAUAiCHQAAgEIQ7AAAABSCYAcAAKAQBDsAAACFINgBAAAoBMEOAABA\nIf4fbymF3Vna8+IAAAAASUVORK5CYII=", + "text/plain": [ + "Plot with title “Type_1_Diabetes_( CD4T_RPS26___CD48__RPS26)”" + ] + }, + "metadata": { + "image/png": { + "height": 420, + "width": 420 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "plot(-log10(plot_data$MetaP), -log10(as.numeric(plot_data$pvalue)), xlab = '-log10(pval_eqtl)', ylab = '-log10(pval_gwas)', main = paste0( i,'_', '( ', co_egene_var, ')'), cex = 0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 200, + "id": "e87aa6ca-0ceb-43e7-b9c1-81631a4fe718", + "metadata": {}, + "outputs": [], + "source": [ + "### Save the used data" + ] + }, + { + "cell_type": "code", + "execution_count": 201, + "id": "f78910dd-11b2-4658-9626-1367194152ed", + "metadata": {}, + "outputs": [], + "source": [ + "colnames(input) = paste0('gwas_', colnames(input))" + ] + }, + { + "cell_type": "code", + "execution_count": 202, + "id": "1fdf4a68-37a3-46a4-9909-e8c622282a96", + "metadata": {}, + "outputs": [], + "source": [ + "save_data = merge(input_coeqtl, input, by.x = 'SNP', by.y = 'gwas_variant_id')" + ] + }, + { + "cell_type": "code", + "execution_count": 203, + "id": "6a437b34-8c74-4c9e-8b71-af494017b24d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.table: 2 × 35
SNPGeneGeneChrGenePosGeneStrandGeneSymbolSNPChrSNPPosSNPAllelesSNPEffectAllelegwas_positiongwas_non_effect_allelegwas_frequencygwas_pvaluegwas_effect_sizegwas_Phenotypegwas_Sample_Sizegwas_sample_sizegwas_standard_errorgwas_effect_allele
<chr><chr><int><int><lgl><chr><int><int><chr><chr><int><chr><dbl><chr><dbl><chr><int><int><dbl><chr>
rs10128982_A/CCD48;RPS261256435637NARPS26___CD48__RPS261255895415A/CC55895415A0.2011.32e-01-0.029132Type_1_Diabetes4055374055370.019325C
rs1020848_G/C CD48;RPS261256435637NARPS26___CD48__RPS261256669675G/CC56669675G0.6727.26e-02-0.027293Type_1_Diabetes5205805205800.015202C
\n" + ], + "text/latex": [ + "A data.table: 2 × 35\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " SNP & Gene & GeneChr & GenePos & GeneStrand & GeneSymbol & SNPChr & SNPPos & SNPAlleles & SNPEffectAllele & ⋯ & gwas\\_position & gwas\\_non\\_effect\\_allele & gwas\\_frequency & gwas\\_pvalue & gwas\\_effect\\_size & gwas\\_Phenotype & gwas\\_Sample\\_Size & gwas\\_sample\\_size & gwas\\_standard\\_error & gwas\\_effect\\_allele\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t rs10128982\\_A/C & CD48;RPS26 & 12 & 56435637 & NA & RPS26\\_\\_\\_CD48\\_\\_RPS26 & 12 & 55895415 & A/C & C & ⋯ & 55895415 & A & 0.201 & 1.32e-01 & -0.029132 & Type\\_1\\_Diabetes & 405537 & 405537 & 0.019325 & C\\\\\n", + "\t rs1020848\\_G/C & CD48;RPS26 & 12 & 56435637 & NA & RPS26\\_\\_\\_CD48\\_\\_RPS26 & 12 & 56669675 & G/C & C & ⋯ & 56669675 & G & 0.672 & 7.26e-02 & -0.027293 & Type\\_1\\_Diabetes & 520580 & 520580 & 0.015202 & C\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.table: 2 × 35\n", + "\n", + "| SNP <chr> | Gene <chr> | GeneChr <int> | GenePos <int> | GeneStrand <lgl> | GeneSymbol <chr> | SNPChr <int> | SNPPos <int> | SNPAlleles <chr> | SNPEffectAllele <chr> | ⋯ ⋯ | gwas_position <int> | gwas_non_effect_allele <chr> | gwas_frequency <dbl> | gwas_pvalue <chr> | gwas_effect_size <dbl> | gwas_Phenotype <chr> | gwas_Sample_Size <int> | gwas_sample_size <int> | gwas_standard_error <dbl> | gwas_effect_allele <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| rs10128982_A/C | CD48;RPS26 | 12 | 56435637 | NA | RPS26___CD48__RPS26 | 12 | 55895415 | A/C | C | ⋯ | 55895415 | A | 0.201 | 1.32e-01 | -0.029132 | Type_1_Diabetes | 405537 | 405537 | 0.019325 | C |\n", + "| rs1020848_G/C | CD48;RPS26 | 12 | 56435637 | NA | RPS26___CD48__RPS26 | 12 | 56669675 | G/C | C | ⋯ | 56669675 | G | 0.672 | 7.26e-02 | -0.027293 | Type_1_Diabetes | 520580 | 520580 | 0.015202 | C |\n", + "\n" + ], + "text/plain": [ + " SNP Gene GeneChr GenePos GeneStrand GeneSymbol \n", + "1 rs10128982_A/C CD48;RPS26 12 56435637 NA RPS26___CD48__RPS26\n", + "2 rs1020848_G/C CD48;RPS26 12 56435637 NA RPS26___CD48__RPS26\n", + " SNPChr SNPPos SNPAlleles SNPEffectAllele ⋯ gwas_position\n", + "1 12 55895415 A/C C ⋯ 55895415 \n", + "2 12 56669675 G/C C ⋯ 56669675 \n", + " gwas_non_effect_allele gwas_frequency gwas_pvalue gwas_effect_size\n", + "1 A 0.201 1.32e-01 -0.029132 \n", + "2 G 0.672 7.26e-02 -0.027293 \n", + " gwas_Phenotype gwas_Sample_Size gwas_sample_size gwas_standard_error\n", + "1 Type_1_Diabetes 405537 405537 0.019325 \n", + "2 Type_1_Diabetes 520580 520580 0.015202 \n", + " gwas_effect_allele\n", + "1 C \n", + "2 C " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(save_data,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 204, + "id": "cf0a3db2-f1dc-4d61-867b-374bc73297af", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "1341" + ], + "text/latex": [ + "1341" + ], + "text/markdown": [ + "1341" + ], + "text/plain": [ + "[1] 1341" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(save_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 205, + "id": "f99deed4-a2d6-4476-88cb-2dbab6fe8a90", + "metadata": {}, + "outputs": [], + "source": [ + "write.table(save_data, file = paste0(path, \"/colocalization_results/\", \"COEQTL_example_input_\", i, \".csv\"), append =FALSE, sep = \",\", row.names = FALSE, col.names = TRUE)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "799ec02d-42a5-40f0-85b6-5937a0f8beb2", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "7844b5ce-dd7b-4829-816d-49a60fe75e83", + "metadata": { + "tags": [] + }, + "source": [ + "### Run for all cell-types + genes" + ] + }, + { + "cell_type": "code", + "execution_count": 206, + "id": "1c4ab74c-52b6-4eda-ad71-a4af86209fe4", + "metadata": {}, + "outputs": [], + "source": [ + "### Execute colocalization analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 207, + "id": "a4d2d946-4103-46db-b393-9b611a50e06a", + "metadata": {}, + "outputs": [], + "source": [ + "coloc_result_summary = data.frame()" + ] + }, + { + "cell_type": "code", + "execution_count": 208, + "id": "298af684-fbeb-400b-8065-5680ae2e73b5", + "metadata": {}, + "outputs": [], + "source": [ + "coloc_result_detail = data.frame()" + ] + }, + { + "cell_type": "code", + "execution_count": 209, + "id": "25836456-ad19-4974-9a21-b45639c96a5e", + "metadata": {}, + "outputs": [], + "source": [ + "save_detail = FALSE" + ] + }, + { + "cell_type": "code", + "execution_count": 210, + "id": "5a35eae8-58ec-4c05-b593-aedced3701a1", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_TMEM176A___CAPG__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.026100 0.000460 0.956000 0.016900 0.000609 \n", + "[1] \"PP abf for shared variant: 0.0609%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_TMEM176A___PTAFR__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07630 0.00135 0.90600 0.01600 0.00047 \n", + "[1] \"PP abf for shared variant: 0.047%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_TMEM176A___MNDA__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.5916e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.513000 0.009040 0.470000 0.008280 0.000273 \n", + "[1] \"PP abf for shared variant: 0.0273%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_TMEM176A___RNASE6__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.18200 0.00320 0.80100 0.01410 0.00045 \n", + "[1] \"PP abf for shared variant: 0.045%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_TMEM176A___TMEM176A__TSPO\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.233000 0.004120 0.749000 0.013200 0.000513 \n", + "[1] \"PP abf for shared variant: 0.0513%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_TMEM176A___TMEM176A__VMO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.5549e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.514000 0.009020 0.469000 0.008230 0.000286 \n", + "[1] \"PP abf for shared variant: 0.0286%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_TMEM176A___S100A9__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.232000 0.004090 0.750000 0.013200 0.000446 \n", + "[1] \"PP abf for shared variant: 0.0446%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_TMEM176A___QPCT__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.8504e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.449000 0.007920 0.533000 0.009390 0.000383 \n", + "[1] \"PP abf for shared variant: 0.0383%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_TMEM176A___BLVRB__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1205e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.37500 0.00661 0.60700 0.01070 0.00042 \n", + "[1] \"PP abf for shared variant: 0.042%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_TMEM176A___LYZ__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.014600 0.000257 0.968000 0.017100 0.000552 \n", + "[1] \"PP abf for shared variant: 0.0552%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_TMEM176A___CLEC4A__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.5652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.53400 0.00941 0.44900 0.00791 0.00027 \n", + "[1] \"PP abf for shared variant: 0.027%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL36__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.062900 0.000864 0.918000 0.012500 0.006000 \n", + "[1] \"PP abf for shared variant: 0.6%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL5__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.62600 0.00860 0.35800 0.00491 0.00163 \n", + "[1] \"PP abf for shared variant: 0.163%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.30000 0.00413 0.68200 0.00933 0.00421 \n", + "[1] \"PP abf for shared variant: 0.421%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL32__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.056500 0.000777 0.923000 0.012600 0.006570 \n", + "[1] \"PP abf for shared variant: 0.657%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___EEF1A1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.58000 0.00796 0.40500 0.00554 0.00201 \n", + "[1] \"PP abf for shared variant: 0.201%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL38__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.25100 0.00345 0.73200 0.01000 0.00312 \n", + "[1] \"PP abf for shared variant: 0.312%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL35A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.19100 0.00262 0.79000 0.01080 0.00585 \n", + "[1] \"PP abf for shared variant: 0.585%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL3__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.45400 0.00624 0.53000 0.00725 0.00259 \n", + "[1] \"PP abf for shared variant: 0.259%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPS4X__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.50800 0.00697 0.47700 0.00652 0.00226 \n", + "[1] \"PP abf for shared variant: 0.226%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPS3A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.53800 0.00739 0.44700 0.00612 0.00167 \n", + "[1] \"PP abf for shared variant: 0.167%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPS15A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.37800 0.00520 0.60400 0.00826 0.00378 \n", + "[1] \"PP abf for shared variant: 0.378%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPS8__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.45500 0.00626 0.52900 0.00724 0.00252 \n", + "[1] \"PP abf for shared variant: 0.252%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPS25__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.53100 0.00729 0.45400 0.00622 0.00186 \n", + "[1] \"PP abf for shared variant: 0.186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPS12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.066700 0.000916 0.914000 0.012500 0.005610 \n", + "[1] \"PP abf for shared variant: 0.561%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___NKG7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.44700 0.00614 0.53700 0.00735 0.00276 \n", + "[1] \"PP abf for shared variant: 0.276%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___B2M__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.17000 0.00233 0.81200 0.01110 0.00512 \n", + "[1] \"PP abf for shared variant: 0.512%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL15__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.17600 0.00242 0.80500 0.01100 0.00596 \n", + "[1] \"PP abf for shared variant: 0.596%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___PFN1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.13900 0.00192 0.84200 0.01150 0.00513 \n", + "[1] \"PP abf for shared variant: 0.513%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPS28__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.34400 0.00472 0.64000 0.00876 0.00286 \n", + "[1] \"PP abf for shared variant: 0.286%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL13A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.31900 0.00439 0.66300 0.00906 0.00442 \n", + "[1] \"PP abf for shared variant: 0.442%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___GZMH__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14700 0.00202 0.83400 0.01140 0.00538 \n", + "[1] \"PP abf for shared variant: 0.538%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___LTB__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.19000 0.00261 0.79100 0.01080 0.00592 \n", + "[1] \"PP abf for shared variant: 0.592%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL39__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.35500 0.00487 0.62800 0.00859 0.00380 \n", + "[1] \"PP abf for shared variant: 0.38%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPS14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.38300 0.00526 0.60000 0.00821 0.00314 \n", + "[1] \"PP abf for shared variant: 0.314%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.35000 0.00481 0.63300 0.00865 0.00392 \n", + "[1] \"PP abf for shared variant: 0.392%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPS23__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.09140 0.00126 0.88900 0.01210 0.00622 \n", + "[1] \"PP abf for shared variant: 0.622%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPS29__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.26600 0.00366 0.71600 0.00979 0.00414 \n", + "[1] \"PP abf for shared variant: 0.414%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL22__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.65600 0.00901 0.33000 0.00451 0.00134 \n", + "[1] \"PP abf for shared variant: 0.134%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL9__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.35900 0.00493 0.62400 0.00853 0.00381 \n", + "[1] \"PP abf for shared variant: 0.381%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.53200 0.00731 0.45200 0.00619 0.00226 \n", + "[1] \"PP abf for shared variant: 0.226%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.50800 0.00697 0.47600 0.00651 0.00267 \n", + "[1] \"PP abf for shared variant: 0.267%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.00027483\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.793000 0.010900 0.193000 0.002660 0.000165 \n", + "[1] \"PP abf for shared variant: 0.0165%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___MAL__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.36300 0.00462 0.62100 0.00786 0.00354 \n", + "[1] \"PP abf for shared variant: 0.354%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___PRF1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.48400 0.00665 0.50100 0.00686 0.00173 \n", + "[1] \"PP abf for shared variant: 0.173%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPS13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.033300 0.000457 0.947000 0.012900 0.006530 \n", + "[1] \"PP abf for shared variant: 0.653%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPS6__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.33100 0.00454 0.65200 0.00892 0.00381 \n", + "[1] \"PP abf for shared variant: 0.381%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPS18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.034000 0.000467 0.946000 0.012900 0.006450 \n", + "[1] \"PP abf for shared variant: 0.645%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL21__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.13100 0.00180 0.85000 0.01160 0.00582 \n", + "[1] \"PP abf for shared variant: 0.582%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___SMDT1__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.38e-03 6.02e-05 9.75e-01 1.33e-02 7.04e-03 \n", + "[1] \"PP abf for shared variant: 0.704%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.17500 0.00241 0.80600 0.01100 0.00546 \n", + "[1] \"PP abf for shared variant: 0.546%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL11__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.014700 0.000202 0.965000 0.013200 0.007110 \n", + "[1] \"PP abf for shared variant: 0.711%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL34__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.13200 0.00182 0.84900 0.01160 0.00543 \n", + "[1] \"PP abf for shared variant: 0.543%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL10A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.27900 0.00384 0.70400 0.00963 0.00341 \n", + "[1] \"PP abf for shared variant: 0.341%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_SMDT1___RPL30__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.10700 0.00146 0.87400 0.01190 0.00589 \n", + "[1] \"PP abf for shared variant: 0.589%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPL3__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.035200 0.000483 0.947000 0.013000 0.003970 \n", + "[1] \"PP abf for shared variant: 0.397%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPS25__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.53300 0.00732 0.45200 0.00619 0.00172 \n", + "[1] \"PP abf for shared variant: 0.172%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPL13A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.16200 0.00223 0.82000 0.01120 0.00447 \n", + "[1] \"PP abf for shared variant: 0.447%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPS13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08930 0.00123 0.89100 0.01220 0.00602 \n", + "[1] \"PP abf for shared variant: 0.602%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPS4X__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.65000 0.00893 0.33500 0.00459 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPS18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.51900 0.00713 0.46600 0.00639 0.00140 \n", + "[1] \"PP abf for shared variant: 0.14%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPL31__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.62400 0.00857 0.36100 0.00495 0.00141 \n", + "[1] \"PP abf for shared variant: 0.141%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPS15__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.44900 0.00617 0.53500 0.00733 0.00244 \n", + "[1] \"PP abf for shared variant: 0.244%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___ACTB__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.16400 0.00226 0.81800 0.01120 0.00409 \n", + "[1] \"PP abf for shared variant: 0.409%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPL36__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.60200 0.00827 0.38300 0.00524 0.00182 \n", + "[1] \"PP abf for shared variant: 0.182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPL35A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.012800 0.000176 0.967000 0.013200 0.006900 \n", + "[1] \"PP abf for shared variant: 0.69%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPS12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.65000 0.00892 0.33500 0.00459 0.00145 \n", + "[1] \"PP abf for shared variant: 0.145%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPL11__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.42300 0.00581 0.56000 0.00767 0.00296 \n", + "[1] \"PP abf for shared variant: 0.296%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPL14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.46700 0.00642 0.51600 0.00707 0.00279 \n", + "[1] \"PP abf for shared variant: 0.279%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPL10__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07600 0.00104 0.90800 0.01240 0.00295 \n", + "[1] \"PP abf for shared variant: 0.295%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPS3A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.19200 0.00264 0.79200 0.01090 0.00187 \n", + "[1] \"PP abf for shared variant: 0.187%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0032661\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.791000 0.010900 0.195000 0.002680 0.000161 \n", + "[1] \"PP abf for shared variant: 0.0161%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___CD48__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.58400 0.00802 0.40100 0.00549 0.00175 \n", + "[1] \"PP abf for shared variant: 0.175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPL7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.51200 0.00703 0.47200 0.00646 0.00252 \n", + "[1] \"PP abf for shared variant: 0.252%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_SMDT1___RPS27__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.67300 0.00925 0.31200 0.00427 0.00116 \n", + "[1] \"PP abf for shared variant: 0.116%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_HLA-DQA2___CST3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.13e-50 9.43e-01 3.49e-51 4.03e-02 1.65e-02 \n", + "[1] \"PP abf for shared variant: 1.65%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.07e-50 9.36e-01 3.58e-51 4.13e-02 2.30e-02 \n", + "[1] \"PP abf for shared variant: 2.3%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.07e-50 9.36e-01 3.61e-51 4.16e-02 2.24e-02 \n", + "[1] \"PP abf for shared variant: 2.24%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_HLA-DQA2___CLIC3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.79e-50 9.44e-01 1.35e-51 4.57e-02 1.02e-02 \n", + "[1] \"PP abf for shared variant: 1.02%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__PTPRCAP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.12e-50 9.42e-01 3.48e-51 4.02e-02 1.76e-02 \n", + "[1] \"PP abf for shared variant: 1.76%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_HLA-DQA2___CDKN2D__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.5969e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.74e-50 9.28e-01 1.59e-51 5.35e-02 1.87e-02 \n", + "[1] \"PP abf for shared variant: 1.87%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__YBX1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.0931e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.12e-50 9.42e-01 4.18e-51 4.84e-02 9.30e-03 \n", + "[1] \"PP abf for shared variant: 0.93%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.01e-50 9.29e-01 3.72e-51 4.29e-02 2.79e-02 \n", + "[1] \"PP abf for shared variant: 2.79%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.01e-50 9.29e-01 3.81e-51 4.39e-02 2.75e-02 \n", + "[1] \"PP abf for shared variant: 2.75%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__MAP1A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.80e-50 9.45e-01 1.24e-51 4.17e-02 1.30e-02 \n", + "[1] \"PP abf for shared variant: 1.3%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_HLA-DQA2___FAM129C__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.79e-50 9.44e-01 1.33e-51 4.49e-02 1.06e-02 \n", + "[1] \"PP abf for shared variant: 1.06%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__MT-CO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1338e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.11e-50 9.41e-01 3.79e-51 4.38e-02 1.50e-02 \n", + "[1] \"PP abf for shared variant: 1.5%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.94e-50 9.21e-01 4.02e-51 4.63e-02 3.28e-02 \n", + "[1] \"PP abf for shared variant: 3.28%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___CST3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.78e-50 9.41e-01 1.31e-51 4.42e-02 1.48e-02 \n", + "[1] \"PP abf for shared variant: 1.48%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.57e-50 8.69e-01 3.01e-51 1.01e-01 2.98e-02 \n", + "[1] \"PP abf for shared variant: 2.98%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___CD74__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.73e-50 9.22e-01 1.79e-51 6.05e-02 1.76e-02 \n", + "[1] \"PP abf for shared variant: 1.76%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.71e-50 9.16e-01 1.96e-51 6.59e-02 1.78e-02 \n", + "[1] \"PP abf for shared variant: 1.78%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.65e-50 8.95e-01 1.88e-51 6.31e-02 4.18e-02 \n", + "[1] \"PP abf for shared variant: 4.18%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.67e-50 9.03e-01 2.20e-51 7.41e-02 2.34e-02 \n", + "[1] \"PP abf for shared variant: 2.34%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DMA__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.72e-50 9.21e-01 1.87e-51 6.30e-02 1.62e-02 \n", + "[1] \"PP abf for shared variant: 1.62%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS23\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-50 9.00e-01 1.87e-51 6.28e-02 3.70e-02 \n", + "[1] \"PP abf for shared variant: 3.7%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.70e-50 9.15e-01 2.13e-51 7.19e-02 1.36e-02 \n", + "[1] \"PP abf for shared variant: 1.36%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.78e-50 9.39e-01 1.50e-51 5.08e-02 9.98e-03 \n", + "[1] \"PP abf for shared variant: 0.998%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___EEF1A1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.27e-50 7.66e-01 2.76e-51 9.20e-02 1.42e-01 \n", + "[1] \"PP abf for shared variant: 14.2%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.73e-50 9.23e-01 1.45e-51 4.86e-02 2.83e-02 \n", + "[1] \"PP abf for shared variant: 2.83%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.67e-50 9.02e-01 2.33e-51 7.85e-02 1.99e-02 \n", + "[1] \"PP abf for shared variant: 1.99%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DMB__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.67e-50 9.02e-01 2.57e-51 8.68e-02 1.08e-02 \n", + "[1] \"PP abf for shared variant: 1.08%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-50 8.99e-01 2.54e-51 8.56e-02 1.59e-02 \n", + "[1] \"PP abf for shared variant: 1.59%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.70e-50 9.11e-01 2.18e-51 7.36e-02 1.51e-02 \n", + "[1] \"PP abf for shared variant: 1.51%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.79e-50 9.42e-01 1.41e-51 4.76e-02 1.02e-02 \n", + "[1] \"PP abf for shared variant: 1.02%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RNASET2___HLA-DRB5__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.91e-50 9.85e-01 2.06e-52 6.88e-03 8.13e-03 \n", + "[1] \"PP abf for shared variant: 0.813%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_HLA-DQA2___CCL5__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-50 8.99e-01 2.61e-51 8.80e-02 1.33e-02 \n", + "[1] \"PP abf for shared variant: 1.33%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_HLA-DQA2___CD74__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-50 8.91e-01 1.88e-51 6.33e-02 4.54e-02 \n", + "[1] \"PP abf for shared variant: 4.54%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.80e-50 9.46e-01 1.34e-51 4.51e-02 9.04e-03 \n", + "[1] \"PP abf for shared variant: 0.904%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__NKG7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.62e-50 8.86e-01 2.77e-51 9.34e-02 2.08e-02 \n", + "[1] \"PP abf for shared variant: 2.08%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPL34\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.73e-50 9.23e-01 1.76e-51 5.93e-02 1.73e-02 \n", + "[1] \"PP abf for shared variant: 1.73%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.77e-50 9.38e-01 1.29e-51 4.35e-02 1.85e-02 \n", + "[1] \"PP abf for shared variant: 1.85%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_HLA-DQA2___CMC1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-50 8.93e-01 2.30e-51 7.74e-02 2.98e-02 \n", + "[1] \"PP abf for shared variant: 2.98%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS14\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.75e-50 9.29e-01 1.87e-51 6.31e-02 7.76e-03 \n", + "[1] \"PP abf for shared variant: 0.776%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.76e-50 9.34e-01 1.72e-51 5.81e-02 7.60e-03 \n", + "[1] \"PP abf for shared variant: 0.76%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.80e-50 9.46e-01 1.37e-51 4.61e-02 7.88e-03 \n", + "[1] \"PP abf for shared variant: 0.788%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.69e-50 9.09e-01 2.46e-51 8.30e-02 7.69e-03 \n", + "[1] \"PP abf for shared variant: 0.769%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.74e-50 9.27e-01 1.93e-51 6.52e-02 7.75e-03 \n", + "[1] \"PP abf for shared variant: 0.775%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___CD52__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.78e-50 9.39e-01 1.57e-51 5.31e-02 7.82e-03 \n", + "[1] \"PP abf for shared variant: 0.782%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.76e-50 9.33e-01 1.75e-51 5.90e-02 8.05e-03 \n", + "[1] \"PP abf for shared variant: 0.805%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.76e-50 9.34e-01 1.70e-51 5.75e-02 7.96e-03 \n", + "[1] \"PP abf for shared variant: 0.796%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-50 8.94e-01 2.87e-51 9.70e-02 8.66e-03 \n", + "[1] \"PP abf for shared variant: 0.866%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___EEF1B2__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.78e-50 9.38e-01 1.58e-51 5.32e-02 8.43e-03 \n", + "[1] \"PP abf for shared variant: 0.843%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.76e-50 9.34e-01 1.73e-51 5.86e-02 7.92e-03 \n", + "[1] \"PP abf for shared variant: 0.792%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___B2M__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.77e-50 9.38e-01 1.61e-51 5.45e-02 7.73e-03 \n", + "[1] \"PP abf for shared variant: 0.773%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___GAPDH__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.75e-50 9.31e-01 1.78e-51 6.02e-02 8.62e-03 \n", + "[1] \"PP abf for shared variant: 0.862%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL32\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.70e-50 9.12e-01 2.37e-51 7.99e-02 7.72e-03 \n", + "[1] \"PP abf for shared variant: 0.772%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.77e-50 9.37e-01 1.63e-51 5.50e-02 8.00e-03 \n", + "[1] \"PP abf for shared variant: 0.8%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.75e-50 9.31e-01 1.78e-51 6.00e-02 8.83e-03 \n", + "[1] \"PP abf for shared variant: 0.883%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RNASET2___ITGB1__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008400 0.000135 0.975000 0.015600 0.000482 \n", + "[1] \"PP abf for shared variant: 0.0482%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RNASET2___CRIP1__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.087000 0.001390 0.897000 0.014400 0.000422 \n", + "[1] \"PP abf for shared variant: 0.0422%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RNASET2___B2M__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.039000 0.000625 0.945000 0.015100 0.000446 \n", + "[1] \"PP abf for shared variant: 0.0446%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RNASET2___ALOX5AP__RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.098100 0.001570 0.886000 0.014200 0.000419 \n", + "[1] \"PP abf for shared variant: 0.0419%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_RPS26___RPS26__RPS8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.0253e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.698000 0.003970 0.296000 0.001680 0.000111 \n", + "[1] \"PP abf for shared variant: 0.0111%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.564000 0.003210 0.431000 0.002450 0.000122 \n", + "[1] \"PP abf for shared variant: 0.0122%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"DC_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.623000 0.003540 0.372000 0.002110 0.000102 \n", + "[1] \"PP abf for shared variant: 0.0102%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.282000 0.013100 0.673000 0.031200 0.000304 \n", + "[1] \"PP abf for shared variant: 0.0304%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS26__UBE2J1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 8.0878e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.607000 0.028100 0.349000 0.016200 0.000317 \n", + "[1] \"PP abf for shared variant: 0.0317%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.098300 0.004560 0.857000 0.039800 0.000211 \n", + "[1] \"PP abf for shared variant: 0.0211%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.552000 0.025600 0.404000 0.018700 0.000308 \n", + "[1] \"PP abf for shared variant: 0.0308%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1042e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.537000 0.024900 0.418000 0.019400 0.000365 \n", + "[1] \"PP abf for shared variant: 0.0365%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS26__RPS28\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.1644e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.731000 0.033900 0.224000 0.010400 0.000359 \n", + "[1] \"PP abf for shared variant: 0.0359%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.00e-04 3.25e-05 9.55e-01 4.43e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL39__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.0557e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.674000 0.031300 0.281000 0.013000 0.000345 \n", + "[1] \"PP abf for shared variant: 0.0345%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.009500 0.000441 0.946000 0.043900 0.000189 \n", + "[1] \"PP abf for shared variant: 0.0189%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.171000 0.007960 0.784000 0.036400 0.000222 \n", + "[1] \"PP abf for shared variant: 0.0222%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004750 0.000221 0.951000 0.044100 0.000182 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.552000 0.025600 0.403000 0.018700 0.000325 \n", + "[1] \"PP abf for shared variant: 0.0325%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.402000 0.018700 0.554000 0.025700 0.000276 \n", + "[1] \"PP abf for shared variant: 0.0276%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL26__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.7757e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.574000 0.026700 0.381000 0.017700 0.000334 \n", + "[1] \"PP abf for shared variant: 0.0334%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.112000 0.005220 0.843000 0.039100 0.000222 \n", + "[1] \"PP abf for shared variant: 0.0222%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.470000 0.021800 0.485000 0.022500 0.000294 \n", + "[1] \"PP abf for shared variant: 0.0294%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS25__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2778e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.562000 0.026100 0.393000 0.018200 0.000321 \n", + "[1] \"PP abf for shared variant: 0.0321%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS26__RPS29\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0623e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.733000 0.034000 0.223000 0.010300 0.000353 \n", + "[1] \"PP abf for shared variant: 0.0353%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.039500 0.001840 0.916000 0.042500 0.000193 \n", + "[1] \"PP abf for shared variant: 0.0193%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.077600 0.003600 0.878000 0.040800 0.000214 \n", + "[1] \"PP abf for shared variant: 0.0214%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.253000 0.011700 0.703000 0.032600 0.000259 \n", + "[1] \"PP abf for shared variant: 0.0259%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.65e-05 3.55e-06 9.55e-01 4.44e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1408e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.748000 0.034700 0.207000 0.009630 0.000339 \n", + "[1] \"PP abf for shared variant: 0.0339%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.791e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5490 0.0255 0.4060 0.0188 0.0003 \n", + "[1] \"PP abf for shared variant: 0.03%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1436e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.697000 0.032400 0.258000 0.012000 0.000341 \n", + "[1] \"PP abf for shared variant: 0.0341%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1123e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.781000 0.036300 0.175000 0.008110 0.000363 \n", + "[1] \"PP abf for shared variant: 0.0363%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.204000 0.009480 0.751000 0.034900 0.000227 \n", + "[1] \"PP abf for shared variant: 0.0227%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.199000 0.009230 0.757000 0.035100 0.000249 \n", + "[1] \"PP abf for shared variant: 0.0249%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-05 7.93e-07 9.55e-01 4.44e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.177000 0.008200 0.779000 0.036200 0.000223 \n", + "[1] \"PP abf for shared variant: 0.0223%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.027800 0.001290 0.928000 0.043100 0.000184 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.13e-05 1.45e-06 9.55e-01 4.44e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.157000 0.007300 0.798000 0.037100 0.000228 \n", + "[1] \"PP abf for shared variant: 0.0228%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPL23A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1639e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.743000 0.034500 0.212000 0.009860 0.000349 \n", + "[1] \"PP abf for shared variant: 0.0349%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"B_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.065500 0.003040 0.890000 0.041300 0.000198 \n", + "[1] \"PP abf for shared variant: 0.0198%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.77e-08 8.23e-10 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.88e-12 8.75e-14 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.095200 0.004430 0.860000 0.040000 0.000211 \n", + "[1] \"PP abf for shared variant: 0.0211%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.21e-08 1.49e-09 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.83e-06 8.53e-08 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.34e-05 3.41e-06 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.22e-17 1.50e-18 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.02e-11 3.73e-12 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.96e-12 2.31e-13 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.83e-11 3.18e-12 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-05 5.42e-07 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-03 6.18e-05 9.54e-01 4.44e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.69e-11 7.85e-13 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.30e-15 1.53e-16 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03210 0.00150 0.92300 0.04300 0.00019 \n", + "[1] \"PP abf for shared variant: 0.019%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.070100 0.003260 0.885000 0.041200 0.000195 \n", + "[1] \"PP abf for shared variant: 0.0195%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-10 1.03e-11 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-06 5.75e-08 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.011300 0.000527 0.944000 0.043900 0.000181 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.91e-07 2.28e-08 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-17 4.92e-19 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.47e-11 1.61e-12 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.20e-11 1.96e-12 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__SPON2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.013700 0.000637 0.942000 0.043800 0.000245 \n", + "[1] \"PP abf for shared variant: 0.0245%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.09e-05 9.72e-07 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.61e-19 7.50e-21 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.42e-13 1.59e-14 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.63e-12 3.08e-13 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.55e-13 2.12e-14 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-06 6.78e-08 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.231000 0.010700 0.725000 0.033700 0.000249 \n", + "[1] \"PP abf for shared variant: 0.0249%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.19e-05 5.54e-07 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___PRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1991e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.487000 0.022600 0.469000 0.021800 0.000315 \n", + "[1] \"PP abf for shared variant: 0.0315%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.78e-09 1.29e-10 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.66e-12 1.70e-13 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.95e-09 9.10e-11 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-12 4.70e-14 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-15 5.90e-17 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.10e-18 1.44e-19 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.10e-04 1.91e-05 9.55e-01 4.44e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.81e-10 2.70e-11 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-04 4.76e-06 9.55e-01 4.44e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.38e-10 2.04e-11 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.03e-13 9.44e-15 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.00e-08 4.66e-10 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.00e-15 9.32e-17 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-13 5.07e-15 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.30e-04 4.33e-05 9.54e-01 4.44e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.86e-13 1.79e-14 9.55e-01 4.45e-02 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.41400 0.01930 0.54100 0.02520 0.00027 \n", + "[1] \"PP abf for shared variant: 0.027%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.34e-07 1.55e-08 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.022800 0.001060 0.933000 0.043400 0.000181 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.19e-08 1.48e-09 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.46e-04 1.15e-05 9.55e-01 4.44e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.63e-18 3.55e-19 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.12e-07 9.88e-09 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-09 9.57e-11 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.90e-06 8.85e-08 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.41e-10 1.59e-11 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.72e-15 7.98e-17 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.19e-06 1.02e-07 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.23e-05 1.04e-06 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___GPR183__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.331000 0.015400 0.624000 0.029000 0.000262 \n", + "[1] \"PP abf for shared variant: 0.0262%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.09e-16 2.37e-17 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.010100 0.000471 0.945000 0.044000 0.000180 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-08 7.01e-10 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.31e-06 1.54e-07 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.42e-05 2.52e-06 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.08e-05 9.68e-07 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.40e-07 2.98e-08 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___GZMB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4099e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.446000 0.020700 0.509000 0.023700 0.000289 \n", + "[1] \"PP abf for shared variant: 0.0289%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___EEF1D__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5173e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.791000 0.036800 0.164000 0.007650 0.000345 \n", + "[1] \"PP abf for shared variant: 0.0345%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.17e-03 5.43e-05 9.54e-01 4.44e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.46e-07 3.94e-08 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.98e-13 2.32e-14 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___KLRC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.100000 0.004650 0.855000 0.039800 0.000214 \n", + "[1] \"PP abf for shared variant: 0.0214%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL17__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.4275e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.698000 0.032500 0.257000 0.011900 0.000471 \n", + "[1] \"PP abf for shared variant: 0.0471%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-06 6.99e-08 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.14e-08 5.30e-10 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___MALAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.019300 0.000899 0.936000 0.043600 0.000218 \n", + "[1] \"PP abf for shared variant: 0.0218%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003080 0.000144 0.952000 0.044300 0.000177 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.96e-11 2.77e-12 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___HLA-B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8351e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.658000 0.030600 0.297000 0.013800 0.000344 \n", + "[1] \"PP abf for shared variant: 0.0344%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.64e-07 3.09e-08 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.10e-05 3.30e-06 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___FGFBP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.322000 0.015000 0.633000 0.029500 0.000279 \n", + "[1] \"PP abf for shared variant: 0.0279%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.009330 0.000434 0.946000 0.044000 0.000182 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.78e-04 2.69e-05 9.55e-01 4.44e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.00e-03 4.67e-05 9.54e-01 4.44e-02 1.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.047900 0.002230 0.907000 0.042200 0.000199 \n", + "[1] \"PP abf for shared variant: 0.0199%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__ZEB2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.574e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.745000 0.034600 0.210000 0.009760 0.000339 \n", + "[1] \"PP abf for shared variant: 0.0339%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.10e-06 3.77e-07 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.89e-15 3.67e-16 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___NACA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.2336e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.646000 0.030100 0.309000 0.014400 0.000334 \n", + "[1] \"PP abf for shared variant: 0.0334%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.52e-10 3.50e-11 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"NK_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.76e-11 2.68e-12 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___NRGN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7437e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.53600 0.02500 0.41900 0.01950 0.00034 \n", + "[1] \"PP abf for shared variant: 0.034%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.289000 0.013500 0.666000 0.031000 0.000291 \n", + "[1] \"PP abf for shared variant: 0.0291%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001630 0.000076 0.954000 0.044400 0.000179 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.80e-06 8.38e-08 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.33e-16 2.02e-17 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-06 5.07e-08 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-09 7.95e-11 9.55e-01 4.45e-02 1.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0185%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.015500 0.000723 0.940000 0.043800 0.000188 \n", + "[1] \"PP abf for shared variant: 0.0188%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.01e-09 4.20e-10 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-14 5.19e-16 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__VCAN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.466000 0.021700 0.489000 0.022800 0.000283 \n", + "[1] \"PP abf for shared variant: 0.0283%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__UQCRH\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.55e-05 7.21e-07 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC7A7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.014100 0.000656 0.941000 0.043800 0.000189 \n", + "[1] \"PP abf for shared variant: 0.0189%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___EPB41L3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.25600 0.01190 0.70000 0.03260 0.00025 \n", + "[1] \"PP abf for shared variant: 0.025%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007640 0.000355 0.948000 0.044100 0.000180 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.32e-14 2.01e-15 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___HNRNPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.015300 0.000712 0.940000 0.043800 0.000188 \n", + "[1] \"PP abf for shared variant: 0.0188%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___QARS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.284000 0.013200 0.671000 0.031300 0.000302 \n", + "[1] \"PP abf for shared variant: 0.0302%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___HLA-DPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.34e-06 2.02e-07 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.16e-15 2.40e-16 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.82e-06 3.64e-07 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.94e-15 1.37e-16 9.55e-01 4.45e-02 1.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0187%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.42e-08 6.61e-10 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-09 8.68e-11 9.55e-01 4.45e-02 1.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.78e-12 2.69e-13 9.55e-01 4.45e-02 1.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.021200 0.000987 0.934000 0.043500 0.000196 \n", + "[1] \"PP abf for shared variant: 0.0196%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.39e-10 4.37e-11 9.55e-01 4.45e-02 1.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0185%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___CSTA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.69e-04 4.05e-05 9.54e-01 4.44e-02 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.49e-07 1.16e-08 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.141000 0.006550 0.815000 0.037900 0.000261 \n", + "[1] \"PP abf for shared variant: 0.0261%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-12 7.39e-14 9.55e-01 4.45e-02 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002540 0.000118 0.953000 0.044400 0.000178 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.56e-15 3.06e-16 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___ERP29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.350000 0.016300 0.605000 0.028200 0.000277 \n", + "[1] \"PP abf for shared variant: 0.0277%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__TNFAIP2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.340000 0.015800 0.615000 0.028600 0.000401 \n", + "[1] \"PP abf for shared variant: 0.0401%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__VIM\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.016300 0.000760 0.939000 0.043700 0.000189 \n", + "[1] \"PP abf for shared variant: 0.0189%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.68e-12 3.57e-13 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.79e-20 2.70e-21 9.55e-01 4.45e-02 1.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0187%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.98e-11 9.21e-13 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.42e-05 6.63e-07 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.87e-10 1.80e-11 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.83e-09 2.25e-10 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-04 4.97e-06 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001870 0.000087 0.953000 0.044400 0.000180 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.15e-04 2.86e-05 9.55e-01 4.44e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-13 9.80e-15 9.55e-01 4.45e-02 1.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0187%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-15 4.87e-17 9.55e-01 4.45e-02 1.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC25A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.95e-09 4.17e-10 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-04 9.52e-06 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.29e-11 2.93e-12 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__RPSA\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1173e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.370000 0.017200 0.586000 0.027300 0.000267 \n", + "[1] \"PP abf for shared variant: 0.0267%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.27e-07 2.92e-08 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.52e-10 1.18e-11 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-07 6.99e-09 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003240 0.000151 0.952000 0.044300 0.000181 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.73e-09 3.60e-10 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.98e-06 2.32e-07 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___HLA-DPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.024700 0.001150 0.931000 0.043300 0.000206 \n", + "[1] \"PP abf for shared variant: 0.0206%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-11 6.05e-13 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.73e-11 3.60e-12 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.36e-05 2.96e-06 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___PABPC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.13e-04 1.92e-05 9.55e-01 4.45e-02 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___CST3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7382e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.576000 0.026800 0.379000 0.017600 0.000378 \n", + "[1] \"PP abf for shared variant: 0.0378%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___EMP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.036400 0.001700 0.919000 0.042800 0.000196 \n", + "[1] \"PP abf for shared variant: 0.0196%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___GNLY__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.270000 0.012600 0.685000 0.031900 0.000269 \n", + "[1] \"PP abf for shared variant: 0.0269%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.91e-15 1.36e-16 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___EIF3M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.31900 0.01480 0.63700 0.02960 0.00025 \n", + "[1] \"PP abf for shared variant: 0.025%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.15e-03 5.35e-05 9.54e-01 4.44e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___AP1S2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.26500 0.01240 0.69000 0.03210 0.00025 \n", + "[1] \"PP abf for shared variant: 0.025%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.77e-10 8.26e-12 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.95e-09 3.24e-10 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__SEC11A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.015400 0.000719 0.940000 0.043800 0.000207 \n", + "[1] \"PP abf for shared variant: 0.0207%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.69e-04 1.72e-05 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.34e-11 3.88e-12 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-08 7.33e-10 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.73e-11 3.60e-12 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.76e-07 1.28e-08 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.65e-07 2.16e-08 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-07 7.66e-09 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___ATP5G2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.009720 0.000453 0.946000 0.044000 0.000182 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.83e-06 4.58e-07 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.76e-09 3.15e-10 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC25A5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.016600 0.000774 0.939000 0.043700 0.000187 \n", + "[1] \"PP abf for shared variant: 0.0187%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.34e-13 2.95e-14 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.45e-16 3.93e-17 9.55e-01 4.45e-02 1.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-17 6.72e-19 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.41e-06 6.55e-08 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.42e-07 1.13e-08 9.55e-01 4.45e-02 1.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.43e-16 1.13e-17 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-04 9.61e-06 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___EVI2B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.369000 0.017200 0.586000 0.027300 0.000261 \n", + "[1] \"PP abf for shared variant: 0.0261%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.050600 0.002360 0.905000 0.042100 0.000199 \n", + "[1] \"PP abf for shared variant: 0.0199%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.025700 0.001200 0.930000 0.043300 0.000191 \n", + "[1] \"PP abf for shared variant: 0.0191%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.41e-04 4.38e-05 9.54e-01 4.44e-02 1.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0185%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-12 5.19e-14 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___LGALS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.219000 0.010200 0.736000 0.034300 0.000233 \n", + "[1] \"PP abf for shared variant: 0.0233%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.325000 0.015100 0.630000 0.029300 0.000314 \n", + "[1] \"PP abf for shared variant: 0.0314%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.57e-11 2.59e-12 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-14 6.91e-16 9.55e-01 4.45e-02 1.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.56e-11 3.52e-12 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.71e-06 1.26e-07 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___GPX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.041500 0.001930 0.914000 0.042500 0.000201 \n", + "[1] \"PP abf for shared variant: 0.0201%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___LTA4H__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.538000 0.025000 0.418000 0.019400 0.000346 \n", + "[1] \"PP abf for shared variant: 0.0346%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RNASE6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.262000 0.012200 0.694000 0.032300 0.000296 \n", + "[1] \"PP abf for shared variant: 0.0296%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___FTH1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.103000 0.004780 0.853000 0.039700 0.000209 \n", + "[1] \"PP abf for shared variant: 0.0209%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___BTF3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.010900 0.000507 0.944000 0.044000 0.000183 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___DRAM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1829e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.549000 0.025600 0.406000 0.018900 0.000353 \n", + "[1] \"PP abf for shared variant: 0.0353%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___IL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001100 0.000051 0.954000 0.044400 0.000177 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___ATP5A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008720 0.000406 0.947000 0.044100 0.000219 \n", + "[1] \"PP abf for shared variant: 0.0219%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.17e-07 3.34e-08 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.16e-11 4.26e-12 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-13 6.74e-15 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.314000 0.014600 0.641000 0.029900 0.000257 \n", + "[1] \"PP abf for shared variant: 0.0257%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-14 6.70e-16 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.63e-12 4.49e-13 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___IPO7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.093000 0.004330 0.862000 0.040100 0.000215 \n", + "[1] \"PP abf for shared variant: 0.0215%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-07 7.30e-09 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.91e-12 3.22e-13 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.00e-13 1.86e-14 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___CXCR4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2966e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.505000 0.023500 0.451000 0.021000 0.000343 \n", + "[1] \"PP abf for shared variant: 0.0343%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.56e-08 1.66e-09 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.18e-05 5.50e-07 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___CRTAP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.015300 0.000711 0.940000 0.043800 0.000188 \n", + "[1] \"PP abf for shared variant: 0.0188%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.395000 0.018400 0.560000 0.026100 0.000387 \n", + "[1] \"PP abf for shared variant: 0.0387%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.82e-09 1.78e-10 9.55e-01 4.45e-02 1.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002350 0.000109 0.953000 0.044400 0.000180 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-09 7.30e-11 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.348000 0.016200 0.607000 0.028300 0.000287 \n", + "[1] \"PP abf for shared variant: 0.0287%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___GPR183__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.050100 0.002330 0.905000 0.042100 0.000193 \n", + "[1] \"PP abf for shared variant: 0.0193%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.90e-10 2.75e-11 9.55e-01 4.45e-02 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.08e-11 9.66e-13 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"monocyte_RPS26___RPS26__TKT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.25e-04 1.05e-05 9.55e-01 4.45e-02 1.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0185%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.39e-15 1.58e-16 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SCML1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.127000 0.005910 0.828000 0.038500 0.000221 \n", + "[1] \"PP abf for shared variant: 0.0221%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___ACTN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.68e-04 4.04e-05 9.55e-01 4.44e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.33e-15 3.88e-16 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__ZFAND1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4561e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.410000 0.019100 0.545000 0.025400 0.000315 \n", + "[1] \"PP abf for shared variant: 0.0315%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.09e-15 1.90e-16 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PRF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.013600 0.000633 0.942000 0.043800 0.000186 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.03e-05 1.41e-06 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EFHD2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.048300 0.002250 0.907000 0.042200 0.000194 \n", + "[1] \"PP abf for shared variant: 0.0194%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SELL\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-10 7.03e-12 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.35e-16 3.42e-17 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.28e-14 2.92e-15 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.00e-13 2.33e-14 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___APBA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.092500 0.004290 0.863000 0.040000 0.000203 \n", + "[1] \"PP abf for shared variant: 0.0203%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EEF1G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.31e-04 2.01e-05 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___FAIM3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.070800 0.003300 0.885000 0.041200 0.000197 \n", + "[1] \"PP abf for shared variant: 0.0197%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EIF3G__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.53100 0.02470 0.42400 0.01970 0.00039 \n", + "[1] \"PP abf for shared variant: 0.039%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___APOBEC3C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.353000 0.016400 0.602000 0.028000 0.000292 \n", + "[1] \"PP abf for shared variant: 0.0292%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.016100 0.000751 0.939000 0.043700 0.000185 \n", + "[1] \"PP abf for shared variant: 0.0185%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.74e-14 1.27e-15 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___C11orf1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.8471e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.644000 0.030000 0.312000 0.014500 0.000327 \n", + "[1] \"PP abf for shared variant: 0.0327%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___LCP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.80e-04 2.24e-05 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-17 1.23e-18 9.55e-01 4.44e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.30e-17 2.00e-18 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___GZMM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.400000 0.018600 0.555000 0.025800 0.000266 \n", + "[1] \"PP abf for shared variant: 0.0266%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CFL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.32e-06 1.55e-07 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RSL1D1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.63e-04 3.55e-05 9.55e-01 4.44e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TXN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.292000 0.013600 0.663000 0.030900 0.000269 \n", + "[1] \"PP abf for shared variant: 0.0269%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CTSW__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.250000 0.011600 0.706000 0.032800 0.000296 \n", + "[1] \"PP abf for shared variant: 0.0296%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CD99__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.69e-05 1.25e-06 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-18 6.09e-20 9.55e-01 4.45e-02 1.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0187%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___FLT3LG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.19e-04 1.48e-05 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___NKG7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.48e-05 1.62e-06 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__UQCRB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.051400 0.002390 0.904000 0.042100 0.000196 \n", + "[1] \"PP abf for shared variant: 0.0196%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__YWHAZ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.3964e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.613000 0.028600 0.342000 0.015900 0.000433 \n", + "[1] \"PP abf for shared variant: 0.0433%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CREM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.337000 0.015700 0.618000 0.028800 0.000305 \n", + "[1] \"PP abf for shared variant: 0.0305%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-04 7.97e-06 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RGS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.58e-06 1.67e-07 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-09 1.07e-10 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.16e-12 1.00e-13 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___LDHB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.78e-14 3.16e-15 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___ATP1A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 9.0977e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.726000 0.033800 0.229000 0.010600 0.000352 \n", + "[1] \"PP abf for shared variant: 0.0352%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CXCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.220000 0.010300 0.735000 0.034200 0.000233 \n", + "[1] \"PP abf for shared variant: 0.0233%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SYNE1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.165000 0.007680 0.790000 0.036800 0.000227 \n", + "[1] \"PP abf for shared variant: 0.0227%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___FYN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.137e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.631000 0.029400 0.324000 0.015100 0.000315 \n", + "[1] \"PP abf for shared variant: 0.0315%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.80e-06 8.36e-08 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___MYL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.99e-10 9.25e-12 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PDE3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-04 6.19e-06 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-19 5.12e-21 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___MT-CO1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.63e-05 2.62e-06 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__ZEB2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01200 0.00056 0.94300 0.04390 0.00018 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___LTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.99e-08 1.39e-09 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PTPN7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.368000 0.017100 0.587000 0.027300 0.000294 \n", + "[1] \"PP abf for shared variant: 0.0294%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.19e-12 5.53e-14 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PFN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-10 7.71e-12 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___IER2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1556e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.68300 0.03180 0.27200 0.01270 0.00035 \n", + "[1] \"PP abf for shared variant: 0.035%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.51e-05 3.50e-06 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-09 5.80e-11 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.96e-20 1.38e-21 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.64e-15 2.62e-16 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CMC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-03 4.73e-05 9.54e-01 4.44e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SAT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-04 5.74e-06 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.91e-13 1.82e-14 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___GZMB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03000 0.00140 0.92500 0.04310 0.00019 \n", + "[1] \"PP abf for shared variant: 0.019%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___AKNA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.4233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.67300 0.03130 0.28300 0.01320 0.00041 \n", + "[1] \"PP abf for shared variant: 0.041%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___HLA-DPB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.9277e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.568000 0.026500 0.387000 0.018000 0.000346 \n", + "[1] \"PP abf for shared variant: 0.0346%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.15e-20 2.40e-21 9.55e-01 4.45e-02 1.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0173%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___NELL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.81e-08 1.31e-09 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EEF1D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.77e-04 1.75e-05 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___FLNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.038200 0.001780 0.917000 0.042700 0.000192 \n", + "[1] \"PP abf for shared variant: 0.0192%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___C12orf75__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.040700 0.001890 0.915000 0.042600 0.000193 \n", + "[1] \"PP abf for shared variant: 0.0193%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.99e-16 9.26e-18 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___HLA-C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.58e-11 1.20e-12 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___HLA-B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-14 4.73e-16 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___METRNL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4496e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.725000 0.033600 0.231000 0.010700 0.000412 \n", + "[1] \"PP abf for shared variant: 0.0412%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PFDN5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.029700 0.001380 0.926000 0.043100 0.000186 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CAMK4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.91e-07 1.82e-08 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___BHLHE40__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.015200 0.000709 0.940000 0.043800 0.000196 \n", + "[1] \"PP abf for shared variant: 0.0196%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___IFITM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.2604e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.576000 0.026800 0.379000 0.017700 0.000397 \n", + "[1] \"PP abf for shared variant: 0.0397%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SLA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.086300 0.004020 0.869000 0.040500 0.000197 \n", + "[1] \"PP abf for shared variant: 0.0197%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CD8B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.38e-04 1.11e-05 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-18 7.73e-20 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___NGFRAP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.069600 0.003230 0.886000 0.041100 0.000197 \n", + "[1] \"PP abf for shared variant: 0.0197%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.79e-14 3.63e-15 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TUBA4A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.062100 0.002890 0.893000 0.041600 0.000196 \n", + "[1] \"PP abf for shared variant: 0.0196%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.58e-05 1.67e-06 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.19e-19 1.02e-20 9.55e-01 4.45e-02 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RCAN3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.14e-06 3.79e-07 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.74e-13 2.21e-14 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PPP2R5C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.75e-04 1.75e-05 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.34e-11 3.42e-12 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.65e-08 4.03e-09 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___DNAJB6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.098600 0.004590 0.857000 0.039900 0.000203 \n", + "[1] \"PP abf for shared variant: 0.0203%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RAP1B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.077e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.750000 0.034900 0.205000 0.009530 0.000402 \n", + "[1] \"PP abf for shared variant: 0.0402%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.04e-05 9.48e-07 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PABPC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002770 0.000129 0.953000 0.044300 0.000179 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___FBL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008300 0.000387 0.947000 0.044100 0.000179 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CCDC104__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.9652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.646000 0.030000 0.309000 0.014300 0.000335 \n", + "[1] \"PP abf for shared variant: 0.0335%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CCL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.72e-09 4.06e-10 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-08 5.82e-10 9.55e-01 4.45e-02 1.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0173%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___NPM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.92e-06 2.75e-07 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.59e-18 2.13e-19 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___MT-CO2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.053600 0.002500 0.902000 0.042000 0.000213 \n", + "[1] \"PP abf for shared variant: 0.0213%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TESPA1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.021700 0.001010 0.934000 0.043300 0.000189 \n", + "[1] \"PP abf for shared variant: 0.0189%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.011000 0.000513 0.944000 0.044000 0.000189 \n", + "[1] \"PP abf for shared variant: 0.0189%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PSMA7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.339000 0.015800 0.616000 0.028700 0.000275 \n", + "[1] \"PP abf for shared variant: 0.0275%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PLEK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.308000 0.014300 0.648000 0.030200 0.000263 \n", + "[1] \"PP abf for shared variant: 0.0263%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SUB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.50e-04 1.63e-05 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.48e-16 3.95e-17 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___MT-ND5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.4281e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.540000 0.025100 0.416000 0.019300 0.000298 \n", + "[1] \"PP abf for shared variant: 0.0298%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___KLRD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.006960 0.000324 0.948000 0.044200 0.000181 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___MYC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007060 0.000329 0.948000 0.044100 0.000178 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RGS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.31100 0.01450 0.64400 0.03000 0.00026 \n", + "[1] \"PP abf for shared variant: 0.026%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___KLF2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.391e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.538000 0.025000 0.417000 0.019400 0.000345 \n", + "[1] \"PP abf for shared variant: 0.0345%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SLC25A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14900 0.00696 0.80600 0.03750 0.00027 \n", + "[1] \"PP abf for shared variant: 0.027%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___HNRNPA2B1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.586000 0.027300 0.369000 0.017200 0.000316 \n", + "[1] \"PP abf for shared variant: 0.0316%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___ARAP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.3907e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.77400 0.03600 0.18100 0.00844 0.00036 \n", + "[1] \"PP abf for shared variant: 0.036%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___HLA-A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.67e-16 1.24e-17 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__UBB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-05 8.08e-07 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL17__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.80e-05 2.70e-06 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-12 4.78e-14 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__UBC\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.10e-06 3.77e-07 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-05 5.24e-07 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TGFB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.198000 0.009220 0.757000 0.035300 0.000236 \n", + "[1] \"PP abf for shared variant: 0.0236%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.23e-09 1.04e-10 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.03e-18 1.41e-19 9.55e-01 4.45e-02 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___LYPD3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.370000 0.017200 0.585000 0.027200 0.000275 \n", + "[1] \"PP abf for shared variant: 0.0275%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TMSB10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-04 6.82e-06 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CLIC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.21600 0.01010 0.73900 0.03440 0.00026 \n", + "[1] \"PP abf for shared variant: 0.026%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___C12orf57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.088800 0.004130 0.867000 0.040300 0.000204 \n", + "[1] \"PP abf for shared variant: 0.0204%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TMEM243\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.09e-03 9.71e-05 9.53e-01 4.44e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.16e-15 1.93e-16 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___ID2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.185000 0.008600 0.770000 0.035900 0.000251 \n", + "[1] \"PP abf for shared variant: 0.0251%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.29e-15 2.00e-16 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CCR7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.34e-10 2.95e-11 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004370 0.000204 0.951000 0.044300 0.000194 \n", + "[1] \"PP abf for shared variant: 0.0194%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.25e-25 1.98e-26 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___COX7C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.374000 0.017400 0.581000 0.027000 0.000339 \n", + "[1] \"PP abf for shared variant: 0.0339%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___NFKBIA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 7.944e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.664000 0.030900 0.291000 0.013500 0.000363 \n", + "[1] \"PP abf for shared variant: 0.0363%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___NDFIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.032000 0.001490 0.923000 0.043000 0.000217 \n", + "[1] \"PP abf for shared variant: 0.0217%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.67e-17 4.04e-18 9.55e-01 4.45e-02 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.91e-15 8.87e-17 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-09 5.65e-11 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___GZMA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.45e-07 1.61e-08 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___ABHD14B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.331000 0.015400 0.624000 0.029100 0.000261 \n", + "[1] \"PP abf for shared variant: 0.0261%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.77e-10 8.23e-12 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TPI1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.441000 0.020500 0.515000 0.024000 0.000337 \n", + "[1] \"PP abf for shared variant: 0.0337%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.12e-19 4.24e-20 9.55e-01 4.44e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___GIMAP7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.144000 0.006720 0.811000 0.037800 0.000211 \n", + "[1] \"PP abf for shared variant: 0.0211%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.80e-10 2.24e-11 9.55e-01 4.45e-02 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-15 1.00e-16 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SC5D\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.431000 0.020100 0.524000 0.024400 0.000426 \n", + "[1] \"PP abf for shared variant: 0.0426%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-10 8.47e-12 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.13e-17 1.46e-18 9.55e-01 4.45e-02 1.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RIC3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-03 8.12e-05 9.54e-01 4.44e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.46e-11 2.08e-12 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SH3YL1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.76e-05 1.28e-06 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CCNG1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.9814e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.665000 0.031000 0.290000 0.013500 0.000428 \n", + "[1] \"PP abf for shared variant: 0.0428%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SRP14\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-04 5.65e-06 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SPON2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0298e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.611000 0.028400 0.345000 0.016000 0.000375 \n", + "[1] \"PP abf for shared variant: 0.0375%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___HMGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.90e-04 3.21e-05 9.55e-01 4.44e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___NOSIP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-06 4.70e-08 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.00e-16 1.40e-17 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-18 4.98e-20 9.55e-01 4.45e-02 1.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-19 1.03e-20 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___MYL12B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.0233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.546000 0.025400 0.409000 0.019000 0.000335 \n", + "[1] \"PP abf for shared variant: 0.0335%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___GNLY__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.028900 0.001340 0.926000 0.043100 0.000193 \n", + "[1] \"PP abf for shared variant: 0.0193%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___MIR142__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1648e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.745000 0.034700 0.210000 0.009780 0.000351 \n", + "[1] \"PP abf for shared variant: 0.0351%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007650 0.000356 0.948000 0.044100 0.000191 \n", + "[1] \"PP abf for shared variant: 0.0191%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.31e-17 1.07e-18 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.300000 0.014000 0.655000 0.030500 0.000245 \n", + "[1] \"PP abf for shared variant: 0.0245%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-05 4.92e-07 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PTP4A2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.414000 0.019300 0.542000 0.025200 0.000336 \n", + "[1] \"PP abf for shared variant: 0.0336%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___FGFBP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.9666e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.70000 0.03260 0.25500 0.01190 0.00038 \n", + "[1] \"PP abf for shared variant: 0.038%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RPSAP58\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-04 4.73e-06 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.60e-08 2.14e-09 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.98e-25 1.85e-26 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CCDC57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.23e-06 1.04e-07 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___ITGB2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.450000 0.021000 0.505000 0.023500 0.000289 \n", + "[1] \"PP abf for shared variant: 0.0289%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EIF2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.088300 0.004110 0.867000 0.040400 0.000237 \n", + "[1] \"PP abf for shared variant: 0.0237%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___MYO1F__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.4185e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.68100 0.03170 0.27400 0.01270 0.00034 \n", + "[1] \"PP abf for shared variant: 0.034%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___ARF6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.144000 0.006710 0.811000 0.037800 0.000218 \n", + "[1] \"PP abf for shared variant: 0.0218%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CD81__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.25000 0.01160 0.70500 0.03280 0.00029 \n", + "[1] \"PP abf for shared variant: 0.029%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TMEM123\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004220 0.000196 0.951000 0.044300 0.000178 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___ALKBH7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004230 0.000197 0.951000 0.044300 0.000178 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___LDHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-03 4.69e-05 9.54e-01 4.44e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PIK3IP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.97e-05 1.38e-06 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___FOXP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.03e-04 3.74e-05 9.55e-01 4.44e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CCL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.05e-05 4.21e-06 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___NEAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.012800 0.000595 0.943000 0.043900 0.000188 \n", + "[1] \"PP abf for shared variant: 0.0188%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___KLRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.9856e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.611000 0.028400 0.345000 0.016000 0.000324 \n", + "[1] \"PP abf for shared variant: 0.0324%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___BTF3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5042e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.726000 0.033800 0.230000 0.010700 0.000348 \n", + "[1] \"PP abf for shared variant: 0.0348%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__ZFAS1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.26700 0.01240 0.68800 0.03200 0.00024 \n", + "[1] \"PP abf for shared variant: 0.024%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.99e-15 9.25e-17 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___C1orf21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1023e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.591000 0.027500 0.365000 0.017000 0.000314 \n", + "[1] \"PP abf for shared variant: 0.0314%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.62e-10 1.22e-11 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CALM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.115000 0.005350 0.840000 0.039100 0.000209 \n", + "[1] \"PP abf for shared variant: 0.0209%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___HOPX__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.348000 0.016200 0.607000 0.028200 0.000413 \n", + "[1] \"PP abf for shared variant: 0.0413%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CD55__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.035800 0.001670 0.919000 0.042800 0.000193 \n", + "[1] \"PP abf for shared variant: 0.0193%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.37e-15 2.04e-16 9.55e-01 4.45e-02 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.16e-04 4.27e-05 9.54e-01 4.44e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.45e-16 1.61e-17 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008870 0.000413 0.946000 0.044100 0.000198 \n", + "[1] \"PP abf for shared variant: 0.0198%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.56e-11 2.12e-12 9.55e-01 4.45e-02 1.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0173%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___HLA-DRB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.507e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.71500 0.03330 0.24000 0.01120 0.00036 \n", + "[1] \"PP abf for shared variant: 0.036%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-17 6.79e-19 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-13 5.03e-15 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PTMA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002950 0.000137 0.952000 0.044300 0.000177 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-10 8.27e-12 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___GNG2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.238000 0.011100 0.717000 0.033400 0.000236 \n", + "[1] \"PP abf for shared variant: 0.0236%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TIGIT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.023400 0.001090 0.932000 0.043400 0.000184 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.14e-07 3.32e-08 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.83e-10 1.78e-11 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___C1QBP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.55e-04 4.45e-05 9.54e-01 4.44e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CD27__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.689e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.589000 0.027400 0.366000 0.017000 0.000322 \n", + "[1] \"PP abf for shared variant: 0.0322%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___KLRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002170 0.000101 0.953000 0.044400 0.000177 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___MAL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-09 6.87e-11 9.56e-01 4.43e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.00e-16 3.26e-17 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___REL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.691e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.583000 0.027100 0.372000 0.017300 0.000304 \n", + "[1] \"PP abf for shared variant: 0.0304%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.00e-11 9.32e-13 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___FTL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.412000 0.019200 0.543000 0.025300 0.000316 \n", + "[1] \"PP abf for shared variant: 0.0316%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.56e-08 7.27e-10 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.16e-13 1.47e-14 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.90e-07 2.28e-08 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SEPT7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.133000 0.006190 0.822000 0.038300 0.000222 \n", + "[1] \"PP abf for shared variant: 0.0222%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TCF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.145000 0.006730 0.811000 0.037700 0.000236 \n", + "[1] \"PP abf for shared variant: 0.0236%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.466000 0.021700 0.489000 0.022800 0.000322 \n", + "[1] \"PP abf for shared variant: 0.0322%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.87e-09 2.27e-10 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___FCGR3A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.082100 0.003820 0.873000 0.040600 0.000278 \n", + "[1] \"PP abf for shared variant: 0.0278%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PSMB9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 8.645e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.670000 0.031200 0.286000 0.013300 0.000422 \n", + "[1] \"PP abf for shared variant: 0.0422%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___LEF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.33e-09 1.08e-10 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PTPRC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.64e-08 2.16e-09 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.374000 0.017400 0.582000 0.027100 0.000319 \n", + "[1] \"PP abf for shared variant: 0.0319%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-03 4.69e-05 9.54e-01 4.44e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.53e-16 3.97e-17 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.44e-13 1.60e-14 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___ANXA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.086700 0.004040 0.869000 0.040400 0.000212 \n", + "[1] \"PP abf for shared variant: 0.0212%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___LGALS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.075000 0.003490 0.880000 0.041000 0.000197 \n", + "[1] \"PP abf for shared variant: 0.0197%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.47e-14 1.62e-15 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___DDX5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5519e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.523000 0.024400 0.432000 0.020100 0.000326 \n", + "[1] \"PP abf for shared variant: 0.0326%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.61e-11 3.08e-12 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___DOK2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.350000 0.016300 0.606000 0.028200 0.000298 \n", + "[1] \"PP abf for shared variant: 0.0298%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CRIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.14e-06 1.93e-07 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CALR__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.9449e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.518000 0.024100 0.437000 0.020300 0.000301 \n", + "[1] \"PP abf for shared variant: 0.0301%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TTC38\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1223e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.528000 0.024600 0.427000 0.019900 0.000341 \n", + "[1] \"PP abf for shared variant: 0.0341%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___C1orf228__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.026200 0.001220 0.929000 0.043300 0.000191 \n", + "[1] \"PP abf for shared variant: 0.0191%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___DUSP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.005280 0.000246 0.950000 0.044200 0.000179 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EIF4B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.77e-09 1.76e-10 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-09 5.70e-11 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TRABD2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.04e-06 2.35e-07 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.69e-16 2.65e-17 9.55e-01 4.45e-02 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PASK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.15e-07 2.39e-08 9.56e-01 4.43e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___OAZ1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.42e-10 6.60e-12 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.09e-17 3.30e-18 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___OXNAD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1359e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.590000 0.027500 0.365000 0.017000 0.000504 \n", + "[1] \"PP abf for shared variant: 0.0504%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.043500 0.002020 0.912000 0.042500 0.000192 \n", + "[1] \"PP abf for shared variant: 0.0192%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SRGN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.23e-16 1.50e-17 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___HLA-E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.37e-03 6.37e-05 9.54e-01 4.44e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TYROBP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007550 0.000352 0.948000 0.044100 0.000188 \n", + "[1] \"PP abf for shared variant: 0.0188%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__YBX3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1331e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.755000 0.035200 0.200000 0.009320 0.000353 \n", + "[1] \"PP abf for shared variant: 0.0353%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CST7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.17e-07 3.81e-08 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___AIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.97e-04 1.38e-05 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___IL7R__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.72e-03 8.03e-05 9.54e-01 4.44e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RHOH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.027900 0.001300 0.927000 0.043200 0.000193 \n", + "[1] \"PP abf for shared variant: 0.0193%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.81e-16 1.77e-17 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.90e-18 2.28e-19 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.016800 0.000782 0.939000 0.043700 0.000185 \n", + "[1] \"PP abf for shared variant: 0.0185%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___DBI__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008050 0.000375 0.947000 0.044100 0.000179 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.72e-11 8.01e-13 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___PRKCQ-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.00e-09 9.31e-11 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SNHG8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.24e-07 1.97e-08 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___POMP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.453000 0.021100 0.502000 0.023400 0.000297 \n", + "[1] \"PP abf for shared variant: 0.0297%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.82e-15 3.64e-16 9.55e-01 4.44e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RAB8B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.0817e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.653000 0.030400 0.302000 0.014100 0.000348 \n", + "[1] \"PP abf for shared variant: 0.0348%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___GZMH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.137000 0.006360 0.819000 0.038100 0.000249 \n", + "[1] \"PP abf for shared variant: 0.0249%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.10e-05 4.24e-06 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.81e-10 1.31e-11 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-19 7.04e-21 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.58e-17 1.20e-18 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___ABLIM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004290 0.000199 0.951000 0.044100 0.000178 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EIF4A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.8946e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.582000 0.027100 0.373000 0.017400 0.000366 \n", + "[1] \"PP abf for shared variant: 0.0366%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___APOBEC3G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.26e-04 1.52e-05 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RP11-291B21.2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.87e-05 8.68e-07 9.55e-01 4.43e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.20e-19 1.49e-20 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.63e-18 1.69e-19 9.55e-01 4.45e-02 1.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0185%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__SERF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.24e-09 1.51e-10 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.27e-10 2.45e-11 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.79e-18 2.23e-19 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.012100 0.000564 0.943000 0.043900 0.000181 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.82e-14 2.24e-15 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-11 6.11e-13 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___RPS26__S1PR5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1943e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.772000 0.004360 0.222000 0.001250 0.000131 \n", + "[1] \"PP abf for shared variant: 0.0131%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD8T_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.61e-05 3.08e-06 9.55e-01 4.45e-02 1.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0173%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TMSB10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.056800 0.002640 0.899000 0.041800 0.000194 \n", + "[1] \"PP abf for shared variant: 0.0194%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CHCHD2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.147000 0.006820 0.809000 0.037700 0.000247 \n", + "[1] \"PP abf for shared variant: 0.0247%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EMP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.19e-04 4.28e-05 9.54e-01 4.44e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___FMNL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.228000 0.010600 0.727000 0.033800 0.000275 \n", + "[1] \"PP abf for shared variant: 0.0275%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.89e-24 8.79e-26 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___LEF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.96e-07 2.78e-08 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HERPUD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.267e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.480000 0.022300 0.476000 0.022100 0.000329 \n", + "[1] \"PP abf for shared variant: 0.0329%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ANXA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-05 7.57e-07 9.55e-01 4.45e-02 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SOD2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.016800 0.000783 0.939000 0.043700 0.000186 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MYL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.23e-17 1.04e-18 9.55e-01 4.45e-02 1.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0185%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-13 6.12e-15 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ATP1B3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.233000 0.010900 0.722000 0.033600 0.000233 \n", + "[1] \"PP abf for shared variant: 0.0233%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.426000 0.019800 0.529000 0.024600 0.000308 \n", + "[1] \"PP abf for shared variant: 0.0308%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-25 5.01e-27 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.57e-11 1.20e-12 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EML4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.84e-04 1.79e-05 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SCML1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002530 0.000118 0.953000 0.044400 0.000199 \n", + "[1] \"PP abf for shared variant: 0.0199%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MCL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-06 1.03e-07 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___NOG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.080100 0.003710 0.875000 0.040500 0.000215 \n", + "[1] \"PP abf for shared variant: 0.0215%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___PRMT2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.38e-03 6.41e-05 9.54e-01 4.44e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CD7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.59e-05 1.21e-06 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.398000 0.018500 0.557000 0.025900 0.000312 \n", + "[1] \"PP abf for shared variant: 0.0312%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.32e-11 6.15e-13 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___FAM129A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-06 4.69e-08 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.91e-15 8.91e-17 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ABLIM1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.2936e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.550000 0.025600 0.405000 0.018900 0.000297 \n", + "[1] \"PP abf for shared variant: 0.0297%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.62e-25 1.22e-26 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ALOX5AP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003690 0.000172 0.952000 0.044300 0.000179 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TSHZ2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-03 5.61e-05 9.54e-01 4.44e-02 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TIGIT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.14e-06 4.26e-07 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ARHGDIB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.39e-05 1.11e-06 9.55e-01 4.45e-02 1.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0185%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.23e-10 1.04e-11 9.55e-01 4.45e-02 1.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0173%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.32e-20 6.16e-22 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.53e-28 7.13e-30 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.90e-28 4.61e-29 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__YBX1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.24e-05 1.04e-06 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.46e-25 3.94e-26 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___JUND__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.279e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.351000 0.016300 0.605000 0.028100 0.000279 \n", + "[1] \"PP abf for shared variant: 0.0279%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SH3YL1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.19e-07 1.95e-08 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.88e-26 8.77e-28 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___C12orf75__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.010700 0.000500 0.944000 0.044000 0.000563 \n", + "[1] \"PP abf for shared variant: 0.0563%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.65e-11 2.63e-12 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF18\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.015900 0.000741 0.939000 0.043700 0.000184 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MYO1F__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003760 0.000175 0.952000 0.044300 0.000181 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.63e-24 3.09e-25 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___PTPRC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.11e-09 3.31e-10 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CD55__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.430000 0.020000 0.525000 0.024500 0.000284 \n", + "[1] \"PP abf for shared variant: 0.0284%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.24e-25 4.30e-26 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CREM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000258 0.000012 0.955000 0.044500 0.000175 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__VMP1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.220000 0.010300 0.735000 0.034200 0.000239 \n", + "[1] \"PP abf for shared variant: 0.0239%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HMGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.31e-06 3.40e-07 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.12e-25 1.92e-26 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___C1orf228__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.329000 0.015300 0.627000 0.029200 0.000252 \n", + "[1] \"PP abf for shared variant: 0.0252%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___GALM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.249000 0.011600 0.707000 0.032900 0.000234 \n", + "[1] \"PP abf for shared variant: 0.0234%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TRABD2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.053400 0.002490 0.902000 0.042000 0.000195 \n", + "[1] \"PP abf for shared variant: 0.0195%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EIF2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001780 0.000083 0.954000 0.044400 0.000184 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL17__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.32e-14 1.08e-15 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.49e-16 1.62e-17 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ANXA5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.019300 0.000897 0.936000 0.043600 0.000180 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___IDS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.31e-04 3.87e-05 9.55e-01 4.44e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ARID5B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.110000 0.005130 0.845000 0.039300 0.000233 \n", + "[1] \"PP abf for shared variant: 0.0233%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___IMPDH2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.87e-06 4.60e-07 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.38e-14 2.97e-15 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__ST13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.00e-07 4.19e-08 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CXCR3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008900 0.000414 0.946000 0.044100 0.000212 \n", + "[1] \"PP abf for shared variant: 0.0212%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HLA-DRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-06 7.70e-08 9.55e-01 4.45e-02 1.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0185%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.47e-15 1.15e-16 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SPOCK2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.031100 0.001450 0.924000 0.043000 0.000193 \n", + "[1] \"PP abf for shared variant: 0.0193%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___C15orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.164000 0.007620 0.791000 0.036700 0.000224 \n", + "[1] \"PP abf for shared variant: 0.0224%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SNRPF\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1448e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.613000 0.028500 0.343000 0.015900 0.000402 \n", + "[1] \"PP abf for shared variant: 0.0402%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-14 6.11e-16 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___FAM134B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.210000 0.009780 0.745000 0.034700 0.000265 \n", + "[1] \"PP abf for shared variant: 0.0265%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ISG20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007460 0.000347 0.948000 0.044100 0.000183 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CFL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.50e-10 2.10e-11 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___NUCB2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.084400 0.003930 0.871000 0.040500 0.000208 \n", + "[1] \"PP abf for shared variant: 0.0208%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ALKBH7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002460 0.000114 0.953000 0.044400 0.000184 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___LINC00493__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.114000 0.005300 0.841000 0.039200 0.000219 \n", + "[1] \"PP abf for shared variant: 0.0219%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-25 4.98e-27 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__VIM\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.006230 0.000290 0.949000 0.044200 0.000185 \n", + "[1] \"PP abf for shared variant: 0.0185%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SNHG8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-11 4.79e-13 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CDC42__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007920 0.000369 0.947000 0.044100 0.000180 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF1B\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.035700 0.001660 0.920000 0.042800 0.000219 \n", + "[1] \"PP abf for shared variant: 0.0219%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___NELL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.051100 0.002380 0.904000 0.042100 0.000187 \n", + "[1] \"PP abf for shared variant: 0.0187%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.58e-18 7.35e-20 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ACTN4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002280 0.000106 0.953000 0.044400 0.000178 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___IKZF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.12900 0.00600 0.82600 0.03850 0.00021 \n", + "[1] \"PP abf for shared variant: 0.021%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___LDHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.304000 0.014100 0.652000 0.030300 0.000253 \n", + "[1] \"PP abf for shared variant: 0.0253%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.56e-17 1.19e-18 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.72e-09 4.52e-10 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RP11-138A9.1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.411000 0.019100 0.544000 0.025300 0.000283 \n", + "[1] \"PP abf for shared variant: 0.0283%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___NAMPT__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.8087e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.455000 0.021200 0.500000 0.023300 0.000335 \n", + "[1] \"PP abf for shared variant: 0.0335%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFAS1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-05 9.53e-07 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CALM2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.10e-05 3.77e-06 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-15 6.98e-17 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MT-ND2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.183000 0.008520 0.772000 0.035900 0.000291 \n", + "[1] \"PP abf for shared variant: 0.0291%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.42e-15 3.92e-16 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CD52__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.07e-04 2.36e-05 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.73e-08 4.53e-09 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___H3F3A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.24e-05 1.97e-06 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ADTRP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.18e-08 1.48e-09 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MT2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.160000 0.007430 0.796000 0.037000 0.000283 \n", + "[1] \"PP abf for shared variant: 0.0283%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SNRPD2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.055700 0.002600 0.900000 0.041900 0.000211 \n", + "[1] \"PP abf for shared variant: 0.0211%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFP36\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.42e-05 4.39e-06 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CXCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-05 1.23e-06 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___DYNLL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001700 0.000079 0.954000 0.044400 0.000182 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SAMSN1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.46e-05 1.61e-06 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___LMNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-09 6.68e-11 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MT-ND5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-07 8.08e-09 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-21 4.77e-23 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RUNX3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.131000 0.006090 0.824000 0.038400 0.000252 \n", + "[1] \"PP abf for shared variant: 0.0252%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HLA-B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.84e-18 1.79e-19 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RGS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-05 5.00e-07 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ERGIC3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.423e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.448000 0.020900 0.507000 0.023600 0.000305 \n", + "[1] \"PP abf for shared variant: 0.0305%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SELL\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.88e-08 1.34e-09 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TYMP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.044300 0.002060 0.911000 0.042400 0.000205 \n", + "[1] \"PP abf for shared variant: 0.0205%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HLA-DPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.131000 0.006100 0.824000 0.038400 0.000227 \n", + "[1] \"PP abf for shared variant: 0.0227%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-22 8.11e-24 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__UQCRB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.99e-04 1.39e-05 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.37e-23 3.43e-24 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SRGN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.48e-21 3.48e-22 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MT-ND4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.348000 0.016200 0.607000 0.028300 0.000318 \n", + "[1] \"PP abf for shared variant: 0.0318%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ABHD14B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.41e-04 2.52e-05 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ATP5E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004020 0.000187 0.951000 0.044300 0.000183 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPSAP58\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-10 4.93e-12 9.55e-01 4.45e-02 1.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0173%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.57e-13 3.06e-14 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.91e-22 3.68e-23 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MAL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.32e-09 1.54e-10 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ATP2B4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.045000 0.002090 0.910000 0.042400 0.000194 \n", + "[1] \"PP abf for shared variant: 0.0194%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ARPC1B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.525000 0.024400 0.430000 0.020000 0.000389 \n", + "[1] \"PP abf for shared variant: 0.0389%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___PDCD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003970 0.000184 0.952000 0.044100 0.000180 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.96e-21 4.64e-22 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-26 8.28e-28 9.55e-01 4.45e-02 1.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0173%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.92e-22 1.36e-23 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SAT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.59e-13 1.67e-14 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HLA-E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.25e-08 1.51e-09 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TCF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.85e-05 3.19e-06 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___PIK3IP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.44e-04 1.14e-05 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___LGALS3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.237000 0.011100 0.718000 0.033400 0.000237 \n", + "[1] \"PP abf for shared variant: 0.0237%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MIAT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.017800 0.000831 0.937000 0.043600 0.000186 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.29e-21 2.00e-22 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SUB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.02e-08 1.87e-09 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CCR7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.020600 0.000961 0.935000 0.043500 0.000192 \n", + "[1] \"PP abf for shared variant: 0.0192%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.30e-17 1.07e-18 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.58e-23 2.13e-24 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RNF19A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.01e-03 9.38e-05 9.53e-01 4.44e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MT-CO3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.11e-07 1.91e-08 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-24 6.78e-26 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-11 7.93e-13 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___FAS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.200000 0.009300 0.756000 0.035200 0.000231 \n", + "[1] \"PP abf for shared variant: 0.0231%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EEF1D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.85e-10 4.12e-11 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.15e-10 3.79e-11 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___GYPC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.64e-06 4.02e-07 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-22 7.58e-24 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-24 7.96e-26 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TPM4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.028800 0.001340 0.927000 0.043100 0.000194 \n", + "[1] \"PP abf for shared variant: 0.0194%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___LDHB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.61e-12 4.01e-13 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___AIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.09e-05 3.77e-06 9.55e-01 4.45e-02 1.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.35e-23 2.02e-24 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ITGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.57e-07 1.66e-08 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TXN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.60e-07 2.14e-08 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___FTH1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.027400 0.001270 0.928000 0.043200 0.000188 \n", + "[1] \"PP abf for shared variant: 0.0188%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.04e-26 9.49e-28 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___COX7C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.111000 0.005150 0.845000 0.039300 0.000209 \n", + "[1] \"PP abf for shared variant: 0.0209%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HLA-A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.54e-18 2.58e-19 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___LCP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001630 0.000076 0.954000 0.044400 0.000184 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__UBB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-03 7.75e-05 9.54e-01 4.44e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.01e-23 1.87e-24 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.91e-17 4.61e-18 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TMEM123\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.067900 0.003160 0.887000 0.041300 0.000204 \n", + "[1] \"PP abf for shared variant: 0.0204%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___PPP1R15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.459000 0.021400 0.496000 0.023100 0.000284 \n", + "[1] \"PP abf for shared variant: 0.0284%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___IL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.12e-04 3.78e-05 9.55e-01 4.44e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.35e-26 2.49e-27 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.05e-16 1.88e-17 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TOMM20\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.420000 0.019600 0.535000 0.024900 0.000356 \n", + "[1] \"PP abf for shared variant: 0.0356%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EIF3F__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.32e-04 4.34e-05 9.54e-01 4.44e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ERP29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004240 0.000197 0.951000 0.044300 0.000205 \n", + "[1] \"PP abf for shared variant: 0.0205%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___KLF6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-05 7.44e-07 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___GIMAP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.42e-04 3.92e-05 9.54e-01 4.44e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TGFBR2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.063000 0.002930 0.892000 0.041500 0.000206 \n", + "[1] \"PP abf for shared variant: 0.0206%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RNF213__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.318000 0.014800 0.637000 0.029700 0.000251 \n", + "[1] \"PP abf for shared variant: 0.0251%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___C19orf53__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.50400 0.02340 0.45100 0.02100 0.00046 \n", + "[1] \"PP abf for shared variant: 0.046%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SERF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-10 4.78e-12 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.66e-15 1.70e-16 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MIR4435-1HG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.43e-10 2.53e-11 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-15 8.12e-17 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MZT2B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.99e-04 2.32e-05 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___AK5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.087700 0.004080 0.868000 0.040400 0.000269 \n", + "[1] \"PP abf for shared variant: 0.0269%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___NDFIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.267000 0.012500 0.688000 0.032000 0.000428 \n", + "[1] \"PP abf for shared variant: 0.0428%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HNRNPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.79e-08 8.32e-10 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-20 1.03e-21 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-04 1.24e-05 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.00e-19 3.73e-20 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___C1QBP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.027900 0.001300 0.927000 0.043200 0.000187 \n", + "[1] \"PP abf for shared variant: 0.0187%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CXCR6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.351000 0.016300 0.605000 0.028100 0.000277 \n", + "[1] \"PP abf for shared variant: 0.0277%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ARPC3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.124000 0.005790 0.831000 0.038700 0.000209 \n", + "[1] \"PP abf for shared variant: 0.0209%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MRPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.3464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.486000 0.022600 0.469000 0.021800 0.000304 \n", + "[1] \"PP abf for shared variant: 0.0304%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-15 8.47e-17 9.55e-01 4.45e-02 1.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0173%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___PPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.09e-06 9.74e-08 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EBPL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.40900 0.01900 0.54600 0.02540 0.00029 \n", + "[1] \"PP abf for shared variant: 0.029%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___FTL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.213000 0.009920 0.742000 0.034600 0.000235 \n", + "[1] \"PP abf for shared variant: 0.0235%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__UXT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.56e-08 7.26e-10 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___LSM5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.71e-04 1.73e-05 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___KMT2E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.6569e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.537000 0.025000 0.418000 0.019500 0.000389 \n", + "[1] \"PP abf for shared variant: 0.0389%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MT-CO2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-07 7.90e-09 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TAGLN2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.492000 0.022900 0.463000 0.021600 0.000294 \n", + "[1] \"PP abf for shared variant: 0.0294%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CDCA7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4164e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.558000 0.026000 0.397000 0.018500 0.000384 \n", + "[1] \"PP abf for shared variant: 0.0384%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-06 7.31e-08 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EPB41L4A-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.90e-06 8.84e-08 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___FLNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.64e-08 3.09e-09 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TATDN1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.028300 0.001320 0.927000 0.043200 0.000182 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HLA-DPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.066600 0.003100 0.889000 0.041400 0.000199 \n", + "[1] \"PP abf for shared variant: 0.0199%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___C12orf57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.26e-13 1.52e-14 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.98e-23 9.20e-25 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.81e-20 8.41e-22 9.55e-01 4.45e-02 1.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0173%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___BTG1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.15e-04 1.93e-05 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___C8orf59__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.032500 0.001510 0.923000 0.043000 0.000197 \n", + "[1] \"PP abf for shared variant: 0.0197%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CD58__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007440 0.000346 0.948000 0.044100 0.000195 \n", + "[1] \"PP abf for shared variant: 0.0195%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MT-CO1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.55e-17 7.21e-19 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.57e-06 2.59e-07 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___AKAP13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03510 0.00163 0.92000 0.04280 0.00020 \n", + "[1] \"PP abf for shared variant: 0.02%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EIF4B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.73e-07 1.74e-08 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___DDX5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.56e-05 1.66e-06 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.029400 0.001370 0.926000 0.043100 0.000189 \n", + "[1] \"PP abf for shared variant: 0.0189%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ANXA2R__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.285000 0.013300 0.670000 0.031200 0.000244 \n", + "[1] \"PP abf for shared variant: 0.0244%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___IL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.275000 0.012800 0.681000 0.031700 0.000281 \n", + "[1] \"PP abf for shared variant: 0.0281%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___LINC00152__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-08 7.57e-10 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___FOXP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.045600 0.002110 0.910000 0.042000 0.000204 \n", + "[1] \"PP abf for shared variant: 0.0204%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RGS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.45e-09 4.40e-10 9.55e-01 4.45e-02 1.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-21 6.77e-23 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___KLRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.97e-05 4.64e-06 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-16 4.96e-18 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-14 6.80e-16 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___DAP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.41e-04 3.45e-05 9.55e-01 4.44e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-11 6.86e-13 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SVIP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.404000 0.018800 0.551000 0.025700 0.000295 \n", + "[1] \"PP abf for shared variant: 0.0295%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HLA-C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.51e-15 1.17e-16 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.59e-27 1.67e-28 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.92e-18 8.94e-20 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___PRKCQ-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-07 1.03e-08 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___GIMAP7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03240 0.00151 0.92300 0.04300 0.00019 \n", + "[1] \"PP abf for shared variant: 0.019%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ENTPD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.145000 0.006710 0.811000 0.037600 0.000215 \n", + "[1] \"PP abf for shared variant: 0.0215%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___DUSP4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.38e-10 1.58e-11 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-14 9.55e-16 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__YWHAB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002280 0.000106 0.953000 0.044400 0.000180 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CCR6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.186000 0.008680 0.769000 0.035800 0.000241 \n", + "[1] \"PP abf for shared variant: 0.0241%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MT-ND1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.93e-03 8.99e-05 9.53e-01 4.44e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___PFN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.95e-17 4.17e-18 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ADAM19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.28800 0.01340 0.66600 0.03100 0.00173 \n", + "[1] \"PP abf for shared variant: 0.173%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CLDND1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.298000 0.013900 0.658000 0.030600 0.000275 \n", + "[1] \"PP abf for shared variant: 0.0275%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___PFDN5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.27e-07 4.32e-08 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___FBL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-09 4.87e-11 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CD37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.224000 0.010400 0.731000 0.034100 0.000266 \n", + "[1] \"PP abf for shared variant: 0.0266%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___APEX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.321000 0.014900 0.634000 0.029500 0.000268 \n", + "[1] \"PP abf for shared variant: 0.0268%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.56e-08 1.19e-09 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.69e-22 4.05e-23 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___LETMD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-03 5.65e-05 9.54e-01 4.44e-02 1.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0192%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___GK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002530 0.000117 0.953000 0.044200 0.000181 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___NOSIP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.29e-07 3.86e-08 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___AHNAK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.012800 0.000596 0.942000 0.043900 0.000664 \n", + "[1] \"PP abf for shared variant: 0.0664%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SLC7A5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.495000 0.023000 0.460000 0.021400 0.000466 \n", + "[1] \"PP abf for shared variant: 0.0466%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.76e-10 3.15e-11 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-20 8.48e-22 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000666 0.000031 0.955000 0.044400 0.000179 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.51e-28 3.50e-29 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.88e-13 2.74e-14 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.70e-25 1.72e-26 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MT-ATP6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.73e-05 1.74e-06 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.73e-18 1.27e-19 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CCL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.08e-06 1.44e-07 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RILPL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.220000 0.010200 0.735000 0.034200 0.000245 \n", + "[1] \"PP abf for shared variant: 0.0245%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SSR2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.57e-05 1.66e-06 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003360 0.000156 0.952000 0.044300 0.000177 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__UBC\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.75e-09 2.21e-10 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.16e-14 3.80e-15 9.55e-01 4.45e-02 1.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MAF__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.11e-05 5.17e-07 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.19e-10 1.49e-11 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___COMMD6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.84e-04 2.25e-05 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.50e-07 3.96e-08 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___NSMCE1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004790 0.000223 0.951000 0.044300 0.000178 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TGFB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.02e-05 2.34e-06 9.55e-01 4.45e-02 2.08e-04 \n", + "[1] \"PP abf for shared variant: 0.0208%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___PRDX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.081600 0.003800 0.874000 0.040700 0.000198 \n", + "[1] \"PP abf for shared variant: 0.0198%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.39e-20 2.97e-21 9.55e-01 4.45e-02 1.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0173%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___FAM46C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.027900 0.001300 0.927000 0.043200 0.000184 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.39e-22 3.90e-23 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-21 7.18e-23 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.74e-27 3.14e-28 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.39e-23 6.47e-25 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RORA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.384000 0.017900 0.571000 0.026600 0.000279 \n", + "[1] \"PP abf for shared variant: 0.0279%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.33e-04 1.55e-05 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.40e-19 1.58e-20 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CD44__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-05 7.60e-07 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS4Y1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.445000 0.020700 0.510000 0.023700 0.000419 \n", + "[1] \"PP abf for shared variant: 0.0419%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___LGALS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.69e-05 7.86e-07 9.55e-01 4.45e-02 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___COX7A2L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.051600 0.002400 0.904000 0.042100 0.000196 \n", + "[1] \"PP abf for shared variant: 0.0196%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.36e-21 1.10e-22 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HADHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.082800 0.003850 0.873000 0.040600 0.000201 \n", + "[1] \"PP abf for shared variant: 0.0201%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SATB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.181000 0.008420 0.774000 0.036100 0.000232 \n", + "[1] \"PP abf for shared variant: 0.0232%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__UGP2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.035800 0.001670 0.920000 0.042800 0.000186 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SBDS\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.258000 0.012000 0.698000 0.032500 0.000274 \n", + "[1] \"PP abf for shared variant: 0.0274%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SYNE2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.005550 0.000258 0.950000 0.044200 0.000187 \n", + "[1] \"PP abf for shared variant: 0.0187%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TMA7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0710 0.0033 0.8840 0.0412 0.0002 \n", + "[1] \"PP abf for shared variant: 0.02%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___NEAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-09 6.85e-11 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___NR3C1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.050500 0.002350 0.905000 0.042100 0.000191 \n", + "[1] \"PP abf for shared variant: 0.0191%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.59e-27 3.07e-28 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CCT8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.020700 0.000961 0.935000 0.043500 0.000217 \n", + "[1] \"PP abf for shared variant: 0.0217%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFAIP3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.047100 0.002190 0.908000 0.042300 0.000191 \n", + "[1] \"PP abf for shared variant: 0.0191%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SH2D2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.384000 0.017800 0.571000 0.026500 0.000295 \n", + "[1] \"PP abf for shared variant: 0.0295%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___NPM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.84e-11 1.79e-12 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CLNS1A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004890 0.000228 0.950000 0.044200 0.000182 \n", + "[1] \"PP abf for shared variant: 0.0182%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RSL1D1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.28e-08 1.06e-09 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ATP6V0E1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.045700 0.002130 0.910000 0.042300 0.000192 \n", + "[1] \"PP abf for shared variant: 0.0192%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-26 5.91e-28 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___DUSP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.416000 0.019400 0.539000 0.025100 0.000273 \n", + "[1] \"PP abf for shared variant: 0.0273%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.67e-27 7.76e-29 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFP36L2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.052100 0.002430 0.903000 0.042100 0.000193 \n", + "[1] \"PP abf for shared variant: 0.0193%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EIF3D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.27e-04 1.05e-05 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RP11-138A9.2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.086600 0.004030 0.869000 0.040400 0.000207 \n", + "[1] \"PP abf for shared variant: 0.0207%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.11e-19 1.92e-20 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___APRT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007260 0.000338 0.948000 0.044100 0.000234 \n", + "[1] \"PP abf for shared variant: 0.0234%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___FYN__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003890 0.000181 0.951000 0.044300 0.000179 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ANP32B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.081200 0.003780 0.874000 0.040700 0.000245 \n", + "[1] \"PP abf for shared variant: 0.0245%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___PPP2R5C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.037300 0.001730 0.918000 0.042700 0.000187 \n", + "[1] \"PP abf for shared variant: 0.0187%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EIF3M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.70e-04 2.66e-05 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-27 1.04e-28 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CMPK1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.62e-05 2.15e-06 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__YWHAZ\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.142000 0.006610 0.813000 0.037900 0.000278 \n", + "[1] \"PP abf for shared variant: 0.0278%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___GIMAP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.23e-08 1.97e-09 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___COTL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.26e-06 2.45e-07 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EIF2S3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.93e-11 3.69e-12 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HSP90AA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1807e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.474000 0.022100 0.481000 0.022400 0.000289 \n", + "[1] \"PP abf for shared variant: 0.0289%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MT-CYB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.81e-04 8.41e-06 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HSPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.27800 0.01300 0.67700 0.03150 0.00024 \n", + "[1] \"PP abf for shared variant: 0.024%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CRIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.46e-10 2.08e-11 9.55e-01 4.45e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.94e-09 1.37e-10 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.91e-18 4.62e-19 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TXK\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.20e-05 1.96e-06 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.12e-16 9.86e-18 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.59e-14 2.60e-15 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ANXA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.83e-06 8.50e-08 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CLIC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.61e-05 1.68e-06 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CD99__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.063800 0.002970 0.892000 0.041500 0.000196 \n", + "[1] \"PP abf for shared variant: 0.0196%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___LYRM4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.263000 0.012300 0.692000 0.032200 0.000258 \n", + "[1] \"PP abf for shared variant: 0.0258%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.13e-20 9.90e-22 9.55e-01 4.45e-02 1.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0186%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.44e-20 4.39e-21 9.55e-01 4.45e-02 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.03e-10 1.41e-11 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EZR__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002670 0.000124 0.953000 0.044400 0.000183 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ATP5A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.29e-04 4.33e-05 9.54e-01 4.44e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ATP5O__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-08 5.64e-10 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.079100 0.003680 0.876000 0.040800 0.000206 \n", + "[1] \"PP abf for shared variant: 0.0206%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.00e-19 4.68e-21 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SUCLG2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.87e-04 1.34e-05 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CD3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.050000 0.002330 0.905000 0.042100 0.000217 \n", + "[1] \"PP abf for shared variant: 0.0217%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.02e-20 1.41e-21 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___NSA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.19e-07 5.52e-09 9.55e-01 4.45e-02 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CST7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.055400 0.002580 0.900000 0.041900 0.000195 \n", + "[1] \"PP abf for shared variant: 0.0195%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___HIGD2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.143000 0.006640 0.813000 0.037800 0.000285 \n", + "[1] \"PP abf for shared variant: 0.0285%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___EEF1G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.03e-09 1.41e-10 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___IGBP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003380 0.000157 0.952000 0.044300 0.000189 \n", + "[1] \"PP abf for shared variant: 0.0189%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___OAZ1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.91e-19 1.36e-20 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___MYH9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.581000 0.027000 0.374000 0.017400 0.000473 \n", + "[1] \"PP abf for shared variant: 0.0473%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.54e-08 3.04e-09 9.55e-01 4.45e-02 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___ATP2B1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-03 5.41e-05 9.54e-01 4.44e-02 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.41e-28 6.58e-30 9.55e-01 4.45e-02 1.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0187%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RBM39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.006150 0.000286 0.949000 0.044200 0.000196 \n", + "[1] \"PP abf for shared variant: 0.0196%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___CCNG1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002620 0.000122 0.953000 0.044400 0.000179 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.77e-16 1.76e-17 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___COX4I1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.005870 0.000274 0.949000 0.044200 0.000179 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___PMAIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.051800 0.002410 0.904000 0.042100 0.000194 \n", + "[1] \"PP abf for shared variant: 0.0194%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.79e-11 1.76e-12 9.55e-01 4.45e-02 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SNHG7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.78e-07 2.23e-08 9.55e-01 4.45e-02 1.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0181%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___FHIT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.68e-10 1.72e-11 9.55e-01 4.45e-02 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"White blood cell count\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.09e-05 9.74e-07 9.55e-01 4.45e-02 1.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_TMEM176A___CAPG__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02350 0.00250 0.87900 0.09350 0.00125 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_TMEM176A___PTAFR__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06970 0.00741 0.83300 0.08850 0.00157 \n", + "[1] \"PP abf for shared variant: 0.157%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_TMEM176A___MNDA__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.5916e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.46600 0.04960 0.43700 0.04640 0.00111 \n", + "[1] \"PP abf for shared variant: 0.111%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_TMEM176A___RNASE6__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.16600 0.01770 0.73700 0.07830 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_TMEM176A___TMEM176A__TSPO\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2130 0.0227 0.6900 0.0733 0.0012 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_TMEM176A___TMEM176A__VMO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.5549e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.46700 0.04920 0.43600 0.04590 0.00141 \n", + "[1] \"PP abf for shared variant: 0.141%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_TMEM176A___S100A9__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.21200 0.02250 0.69100 0.07340 0.00116 \n", + "[1] \"PP abf for shared variant: 0.116%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_TMEM176A___QPCT__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.8504e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.40700 0.04320 0.49600 0.05260 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_TMEM176A___BLVRB__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1205e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.34100 0.03620 0.56200 0.05970 0.00116 \n", + "[1] \"PP abf for shared variant: 0.116%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_TMEM176A___LYZ__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01340 0.00142 0.88900 0.09450 0.00125 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_TMEM176A___CLEC4A__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.5652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.486000 0.051700 0.417000 0.044300 0.000946 \n", + "[1] \"PP abf for shared variant: 0.0946%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL36__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002860 0.000913 0.754000 0.241000 0.001030 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL5__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08740 0.02800 0.66900 0.21400 0.00125 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04190 0.01340 0.71500 0.22900 0.00107 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL32__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00344 0.00110 0.75400 0.24100 0.00102 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___EEF1A1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.10000 0.03200 0.65700 0.21000 0.00113 \n", + "[1] \"PP abf for shared variant: 0.113%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL38__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01900 0.00608 0.73800 0.23600 0.00104 \n", + "[1] \"PP abf for shared variant: 0.104%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL35A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02540 0.00812 0.73200 0.23400 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL3__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04230 0.01350 0.71500 0.22800 0.00109 \n", + "[1] \"PP abf for shared variant: 0.109%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPS4X__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.09530 0.03050 0.66200 0.21100 0.00114 \n", + "[1] \"PP abf for shared variant: 0.114%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPS3A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.09650 0.03090 0.66000 0.21100 0.00113 \n", + "[1] \"PP abf for shared variant: 0.113%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPS15A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02960 0.00947 0.72700 0.23300 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPS8__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0337 0.0108 0.7230 0.2310 0.0011 \n", + "[1] \"PP abf for shared variant: 0.11%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPS25__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.09340 0.02990 0.66300 0.21200 0.00112 \n", + "[1] \"PP abf for shared variant: 0.112%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPS12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001490 0.000475 0.755000 0.242000 0.001020 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___NKG7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05050 0.01610 0.70600 0.22600 0.00107 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___B2M__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01030 0.00330 0.74700 0.23900 0.00104 \n", + "[1] \"PP abf for shared variant: 0.104%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL15__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02100 0.00672 0.73600 0.23500 0.00109 \n", + "[1] \"PP abf for shared variant: 0.109%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___PFN1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00699 0.00223 0.75000 0.24000 0.00106 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPS28__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02410 0.00769 0.73300 0.23400 0.00106 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL13A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02830 0.00906 0.72900 0.23300 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___GZMH__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00704 0.00225 0.75000 0.24000 0.00103 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___LTB__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01330 0.00426 0.74400 0.23800 0.00107 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL39__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02010 0.00642 0.73700 0.23600 0.00104 \n", + "[1] \"PP abf for shared variant: 0.104%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPS14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02730 0.00873 0.73000 0.23300 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01760 0.00562 0.73900 0.23600 0.00104 \n", + "[1] \"PP abf for shared variant: 0.104%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPS23__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00817 0.00261 0.74900 0.23900 0.00103 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPS29__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01220 0.00389 0.74500 0.23800 0.00103 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL22__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07830 0.02500 0.67900 0.21700 0.00112 \n", + "[1] \"PP abf for shared variant: 0.112%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL9__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03290 0.01050 0.72400 0.23100 0.00106 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07550 0.02410 0.68100 0.21800 0.00116 \n", + "[1] \"PP abf for shared variant: 0.116%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06270 0.02000 0.69400 0.22200 0.00109 \n", + "[1] \"PP abf for shared variant: 0.109%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.00027483\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.59100 0.18900 0.16500 0.05280 0.00167 \n", + "[1] \"PP abf for shared variant: 0.167%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___MAL__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03600 0.01140 0.72200 0.23000 0.00108 \n", + "[1] \"PP abf for shared variant: 0.108%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___PRF1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.09590 0.03060 0.66100 0.21100 0.00113 \n", + "[1] \"PP abf for shared variant: 0.113%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPS13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001430 0.000458 0.756000 0.242000 0.001020 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPS6__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01650 0.00527 0.74000 0.23700 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPS18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001670 0.000534 0.755000 0.241000 0.001020 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL21__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01070 0.00341 0.74600 0.23900 0.00103 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___SMDT1__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000395 0.000126 0.757000 0.242000 0.001020 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01720 0.00549 0.74000 0.23600 0.00104 \n", + "[1] \"PP abf for shared variant: 0.104%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL11__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001870 0.000596 0.755000 0.241000 0.001020 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL34__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00681 0.00218 0.75000 0.24000 0.00103 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL10A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01060 0.00338 0.74600 0.23900 0.00104 \n", + "[1] \"PP abf for shared variant: 0.104%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_SMDT1___RPL30__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01490 0.00478 0.74200 0.23700 0.00106 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPL3__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002380 0.000762 0.755000 0.241000 0.001080 \n", + "[1] \"PP abf for shared variant: 0.108%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPS25__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07870 0.02520 0.67800 0.21700 0.00111 \n", + "[1] \"PP abf for shared variant: 0.111%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPL13A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00895 0.00286 0.74800 0.23900 0.00103 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPS13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00594 0.00190 0.75100 0.24000 0.00103 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPS4X__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.15600 0.04990 0.60100 0.19200 0.00124 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPS18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.13200 0.04210 0.62500 0.20000 0.00125 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPL31__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.12400 0.03980 0.63200 0.20200 0.00114 \n", + "[1] \"PP abf for shared variant: 0.114%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPS15__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0565 0.0181 0.7000 0.2240 0.0011 \n", + "[1] \"PP abf for shared variant: 0.11%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___ACTB__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00641 0.00205 0.75100 0.24000 0.00109 \n", + "[1] \"PP abf for shared variant: 0.109%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPL36__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04630 0.01480 0.71100 0.22700 0.00107 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPL35A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000714 0.000228 0.756000 0.242000 0.001020 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPS12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.15200 0.04870 0.60500 0.19300 0.00119 \n", + "[1] \"PP abf for shared variant: 0.119%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPL11__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03410 0.01090 0.72300 0.23100 0.00108 \n", + "[1] \"PP abf for shared variant: 0.108%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPL14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03830 0.01220 0.71900 0.23000 0.00115 \n", + "[1] \"PP abf for shared variant: 0.115%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPL10__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01460 0.00467 0.74200 0.23700 0.00119 \n", + "[1] \"PP abf for shared variant: 0.119%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPS3A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05080 0.01620 0.70600 0.22600 0.00142 \n", + "[1] \"PP abf for shared variant: 0.142%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0032661\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.58300 0.18600 0.17400 0.05550 0.00179 \n", + "[1] \"PP abf for shared variant: 0.179%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___CD48__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05080 0.01620 0.70600 0.22600 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPL7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08550 0.02730 0.67100 0.21500 0.00113 \n", + "[1] \"PP abf for shared variant: 0.113%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_SMDT1___RPS27__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14800 0.04720 0.60900 0.19500 0.00116 \n", + "[1] \"PP abf for shared variant: 0.116%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_HLA-DQA2___CST3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.58e-05 3.65e-01 2.74e-05 6.32e-01 3.24e-03 \n", + "[1] \"PP abf for shared variant: 0.324%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-05 2.68e-01 3.16e-05 7.30e-01 2.35e-03 \n", + "[1] \"PP abf for shared variant: 0.235%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.11e-06 1.87e-01 3.51e-05 8.11e-01 1.61e-03 \n", + "[1] \"PP abf for shared variant: 0.161%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_HLA-DQA2___CLIC3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-05 3.58e-01 2.79e-05 6.38e-01 3.30e-03 \n", + "[1] \"PP abf for shared variant: 0.33%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__PTPRCAP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.34e-05 5.35e-01 2.01e-05 4.60e-01 4.63e-03 \n", + "[1] \"PP abf for shared variant: 0.463%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_HLA-DQA2___CDKN2D__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.5969e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.04e-05 4.72e-01 2.27e-05 5.24e-01 4.06e-03 \n", + "[1] \"PP abf for shared variant: 0.406%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__YBX1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.0931e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-05 6.11e-01 1.66e-05 3.83e-01 5.58e-03 \n", + "[1] \"PP abf for shared variant: 0.558%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.98e-05 4.57e-01 2.33e-05 5.39e-01 3.80e-03 \n", + "[1] \"PP abf for shared variant: 0.38%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.41e-06 1.48e-01 3.68e-05 8.50e-01 1.32e-03 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__MAP1A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.26e-05 5.18e-01 2.09e-05 4.78e-01 4.51e-03 \n", + "[1] \"PP abf for shared variant: 0.451%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_HLA-DQA2___FAM129C__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-05 3.34e-01 2.90e-05 6.63e-01 2.79e-03 \n", + "[1] \"PP abf for shared variant: 0.279%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__MT-CO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1338e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.31e-05 5.33e-01 2.00e-05 4.62e-01 4.49e-03 \n", + "[1] \"PP abf for shared variant: 0.449%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.26e-06 1.68e-01 3.59e-05 8.31e-01 1.45e-03 \n", + "[1] \"PP abf for shared variant: 0.145%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___CST3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-06 2.59e-02 4.21e-05 9.74e-01 2.00e-04 \n", + "[1] \"PP abf for shared variant: 0.02%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.64e-08 3.78e-04 4.32e-05 1.00e+00 4.48e-06 \n", + "[1] \"PP abf for shared variant: 0.000448%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___CD74__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-08 3.95e-04 4.32e-05 1.00e+00 4.47e-06 \n", + "[1] \"PP abf for shared variant: 0.000447%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.94e-07 4.48e-03 4.30e-05 9.95e-01 3.47e-05 \n", + "[1] \"PP abf for shared variant: 0.00347%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.49e-08 8.07e-04 4.32e-05 9.99e-01 7.45e-06 \n", + "[1] \"PP abf for shared variant: 0.000745%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-08 4.12e-04 4.32e-05 1.00e+00 3.33e-06 \n", + "[1] \"PP abf for shared variant: 0.000333%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DMA__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.65e-08 1.77e-03 4.32e-05 9.98e-01 1.40e-05 \n", + "[1] \"PP abf for shared variant: 0.0014%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS23\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.99e-06 4.59e-02 4.12e-05 9.54e-01 4.59e-04 \n", + "[1] \"PP abf for shared variant: 0.0459%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.41e-06 1.25e-01 3.78e-05 8.74e-01 9.96e-04 \n", + "[1] \"PP abf for shared variant: 0.0996%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.68e-06 1.78e-01 3.55e-05 8.21e-01 1.42e-03 \n", + "[1] \"PP abf for shared variant: 0.142%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___EEF1A1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.09e-07 1.18e-02 4.27e-05 9.88e-01 1.02e-04 \n", + "[1] \"PP abf for shared variant: 0.0102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.22e-07 1.90e-02 4.24e-05 9.81e-01 1.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0179%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.74e-06 8.65e-02 3.95e-05 9.13e-01 7.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0785%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DMB__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.47e-06 5.72e-02 4.07e-05 9.42e-01 4.35e-04 \n", + "[1] \"PP abf for shared variant: 0.0435%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.84e-07 4.25e-03 4.30e-05 9.96e-01 4.11e-05 \n", + "[1] \"PP abf for shared variant: 0.00411%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-07 3.08e-03 4.31e-05 9.97e-01 4.52e-05 \n", + "[1] \"PP abf for shared variant: 0.00452%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.77e-06 1.80e-01 3.54e-05 8.19e-01 1.62e-03 \n", + "[1] \"PP abf for shared variant: 0.162%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RNASET2___HLA-DRB5__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.33e-06 1.50e-01 3.01e-05 8.49e-01 1.18e-03 \n", + "[1] \"PP abf for shared variant: 0.118%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_HLA-DQA2___CCL5__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.90e-06 6.71e-02 4.03e-05 9.32e-01 5.71e-04 \n", + "[1] \"PP abf for shared variant: 0.0571%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_HLA-DQA2___CD74__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-05 2.52e-01 3.23e-05 7.46e-01 2.11e-03 \n", + "[1] \"PP abf for shared variant: 0.211%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.56e-06 1.98e-01 3.46e-05 8.00e-01 1.66e-03 \n", + "[1] \"PP abf for shared variant: 0.166%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__NKG7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.83e-06 4.24e-02 4.14e-05 9.57e-01 4.25e-04 \n", + "[1] \"PP abf for shared variant: 0.0425%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPL34\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.56e-06 1.05e-01 3.87e-05 8.94e-01 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.36e-06 1.47e-01 3.69e-05 8.52e-01 1.17e-03 \n", + "[1] \"PP abf for shared variant: 0.117%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_HLA-DQA2___CMC1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.36e-06 1.01e-01 3.89e-05 8.98e-01 1.04e-03 \n", + "[1] \"PP abf for shared variant: 0.104%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS14\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.16e-06 5.00e-02 4.11e-05 9.49e-01 7.12e-04 \n", + "[1] \"PP abf for shared variant: 0.0712%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-06 4.97e-02 4.11e-05 9.50e-01 4.30e-04 \n", + "[1] \"PP abf for shared variant: 0.043%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.27e-06 1.91e-01 3.49e-05 8.07e-01 1.69e-03 \n", + "[1] \"PP abf for shared variant: 0.169%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.77e-06 1.80e-01 3.54e-05 8.19e-01 1.66e-03 \n", + "[1] \"PP abf for shared variant: 0.166%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-05 2.37e-01 3.29e-05 7.60e-01 2.41e-03 \n", + "[1] \"PP abf for shared variant: 0.241%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___CD52__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.16e-06 5.00e-02 4.10e-05 9.48e-01 2.06e-03 \n", + "[1] \"PP abf for shared variant: 0.206%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-05 2.53e-01 3.22e-05 7.44e-01 2.80e-03 \n", + "[1] \"PP abf for shared variant: 0.28%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.96e-06 4.54e-02 4.13e-05 9.54e-01 3.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0392%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.25e-06 7.51e-02 4.00e-05 9.24e-01 8.90e-04 \n", + "[1] \"PP abf for shared variant: 0.089%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___EEF1B2__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.93e-06 9.08e-02 3.93e-05 9.08e-01 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.06e-06 1.17e-01 3.81e-05 8.81e-01 1.60e-03 \n", + "[1] \"PP abf for shared variant: 0.16%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___B2M__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-06 5.29e-02 4.09e-05 9.46e-01 9.70e-04 \n", + "[1] \"PP abf for shared variant: 0.097%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___GAPDH__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.44e-06 2.18e-01 3.37e-05 7.79e-01 2.79e-03 \n", + "[1] \"PP abf for shared variant: 0.279%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL32\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.38e-06 1.01e-01 3.88e-05 8.97e-01 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-05 3.47e-01 2.81e-05 6.50e-01 2.72e-03 \n", + "[1] \"PP abf for shared variant: 0.272%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-06 3.69e-02 4.16e-05 9.63e-01 3.72e-04 \n", + "[1] \"PP abf for shared variant: 0.0372%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RNASET2___ITGB1__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.93e-10 4.65e-03 5.76e-08 5.40e-01 4.56e-01 \n", + "[1] \"PP abf for shared variant: 45.6%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RNASET2___CRIP1__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.58e-09 4.33e-02 4.74e-08 4.42e-01 5.14e-01 \n", + "[1] \"PP abf for shared variant: 51.4%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RNASET2___B2M__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.01e-09 1.90e-02 4.89e-08 4.57e-01 5.24e-01 \n", + "[1] \"PP abf for shared variant: 52.4%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RNASET2___ALOX5AP__RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.88e-09 5.55e-02 5.33e-08 4.99e-01 4.45e-01 \n", + "[1] \"PP abf for shared variant: 44.5%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_RPS26___RPS26__RPS8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.0253e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.669000 0.031900 0.285000 0.013600 0.000569 \n", + "[1] \"PP abf for shared variant: 0.0569%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.539000 0.025700 0.414000 0.019800 0.000756 \n", + "[1] \"PP abf for shared variant: 0.0756%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"DC_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.596000 0.028500 0.357000 0.017000 0.000672 \n", + "[1] \"PP abf for shared variant: 0.0672%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2810 0.0136 0.6710 0.0325 0.0010 \n", + "[1] \"PP abf for shared variant: 0.1%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS26__UBE2J1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 8.0878e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.604000 0.029100 0.350000 0.016900 0.000732 \n", + "[1] \"PP abf for shared variant: 0.0732%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.09800 0.00474 0.85500 0.04140 0.00115 \n", + "[1] \"PP abf for shared variant: 0.115%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.549000 0.026600 0.404000 0.019500 0.000693 \n", + "[1] \"PP abf for shared variant: 0.0693%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1042e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.535000 0.025900 0.418000 0.020200 0.000739 \n", + "[1] \"PP abf for shared variant: 0.0739%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS28\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.1644e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.728000 0.035200 0.226000 0.010900 0.000615 \n", + "[1] \"PP abf for shared variant: 0.0615%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.98e-04 3.38e-05 9.52e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL39__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.0557e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.671000 0.032500 0.282000 0.013700 0.000702 \n", + "[1] \"PP abf for shared variant: 0.0702%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.009470 0.000458 0.943000 0.045600 0.001220 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.17100 0.00827 0.78200 0.03780 0.00106 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004740 0.000229 0.948000 0.045900 0.001250 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.550000 0.026600 0.403000 0.019500 0.000762 \n", + "[1] \"PP abf for shared variant: 0.0762%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.400000 0.019400 0.553000 0.026700 0.000913 \n", + "[1] \"PP abf for shared variant: 0.0913%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL26__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.7757e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.572000 0.027700 0.381000 0.018400 0.000702 \n", + "[1] \"PP abf for shared variant: 0.0702%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.11200 0.00542 0.84100 0.04070 0.00115 \n", + "[1] \"PP abf for shared variant: 0.115%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.468000 0.022700 0.485000 0.023500 0.000807 \n", + "[1] \"PP abf for shared variant: 0.0807%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS25__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2778e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.560000 0.027100 0.393000 0.019000 0.000694 \n", + "[1] \"PP abf for shared variant: 0.0694%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS29\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0623e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.729000 0.035300 0.225000 0.010900 0.000662 \n", + "[1] \"PP abf for shared variant: 0.0662%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03940 0.00191 0.91300 0.04420 0.00119 \n", + "[1] \"PP abf for shared variant: 0.119%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07730 0.00374 0.87500 0.04240 0.00119 \n", + "[1] \"PP abf for shared variant: 0.119%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.25200 0.01220 0.70100 0.03390 0.00112 \n", + "[1] \"PP abf for shared variant: 0.112%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.63e-05 3.69e-06 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1408e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.744000 0.036000 0.209000 0.010100 0.000534 \n", + "[1] \"PP abf for shared variant: 0.0534%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.791e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.54700 0.02650 0.40600 0.01960 0.00068 \n", + "[1] \"PP abf for shared variant: 0.068%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1436e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.694000 0.033600 0.260000 0.012600 0.000561 \n", + "[1] \"PP abf for shared variant: 0.0561%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1123e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.777000 0.037600 0.176000 0.008510 0.000439 \n", + "[1] \"PP abf for shared variant: 0.0439%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.20300 0.00985 0.74900 0.03630 0.00108 \n", + "[1] \"PP abf for shared variant: 0.108%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.19800 0.00958 0.75500 0.03650 0.00101 \n", + "[1] \"PP abf for shared variant: 0.101%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-05 8.23e-07 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.17600 0.00852 0.77700 0.03760 0.00106 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02770 0.00134 0.92500 0.04470 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.12e-05 1.51e-06 9.53e-01 4.61e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.15700 0.00758 0.79600 0.03850 0.00114 \n", + "[1] \"PP abf for shared variant: 0.114%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPL23A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1639e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.74000 0.03580 0.21400 0.01030 0.00048 \n", + "[1] \"PP abf for shared variant: 0.048%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"B_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06530 0.00316 0.88700 0.04290 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.76e-08 8.54e-10 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.88e-12 9.08e-14 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.09490 0.00459 0.85800 0.04150 0.00120 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.20e-08 1.55e-09 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.83e-06 8.85e-08 9.53e-01 4.61e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.32e-05 3.54e-06 9.53e-01 4.61e-02 1.31e-03 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.21e-17 1.55e-18 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.99e-11 3.87e-12 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.95e-12 2.40e-13 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.81e-11 3.30e-12 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-05 5.62e-07 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-03 6.42e-05 9.51e-01 4.60e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.68e-11 8.15e-13 9.53e-01 4.61e-02 1.30e-03 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.29e-15 1.59e-16 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03200 0.00155 0.92100 0.04460 0.00122 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06990 0.00338 0.88300 0.04270 0.00120 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.20e-10 1.06e-11 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-06 5.97e-08 9.53e-01 4.61e-02 1.31e-03 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.011300 0.000547 0.941000 0.045600 0.001290 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.89e-07 2.37e-08 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-17 5.10e-19 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.46e-11 1.67e-12 9.53e-01 4.61e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.19e-11 2.03e-12 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__SPON2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.013600 0.000661 0.939000 0.045400 0.001280 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.08e-05 1.01e-06 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.61e-19 7.78e-21 9.53e-01 4.61e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.41e-13 1.65e-14 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.61e-12 3.20e-13 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.54e-13 2.20e-14 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-06 7.03e-08 9.53e-01 4.61e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.23000 0.01110 0.72300 0.03500 0.00116 \n", + "[1] \"PP abf for shared variant: 0.116%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.19e-05 5.75e-07 9.53e-01 4.61e-02 1.37e-03 \n", + "[1] \"PP abf for shared variant: 0.137%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___PRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1991e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.485000 0.023500 0.468000 0.022700 0.000974 \n", + "[1] \"PP abf for shared variant: 0.0974%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.77e-09 1.34e-10 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.64e-12 1.76e-13 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.95e-09 9.44e-11 9.53e-01 4.61e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-12 4.88e-14 9.53e-01 4.61e-02 1.30e-03 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.26e-15 6.12e-17 9.53e-01 4.61e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.09e-18 1.50e-19 9.53e-01 4.61e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.08e-04 1.98e-05 9.52e-01 4.61e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.79e-10 2.80e-11 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-04 4.94e-06 9.52e-01 4.61e-02 1.33e-03 \n", + "[1] \"PP abf for shared variant: 0.133%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.37e-10 2.12e-11 9.53e-01 4.61e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.02e-13 9.79e-15 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.97e-09 4.83e-10 9.53e-01 4.61e-02 1.36e-03 \n", + "[1] \"PP abf for shared variant: 0.136%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.00e-15 9.67e-17 9.53e-01 4.61e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-13 5.26e-15 9.53e-01 4.61e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.27e-04 4.49e-05 9.52e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.85e-13 1.86e-14 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.412000 0.020000 0.541000 0.026200 0.000897 \n", + "[1] \"PP abf for shared variant: 0.0897%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.33e-07 1.61e-08 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02280 0.00110 0.93000 0.04500 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.18e-08 1.54e-09 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.46e-04 1.19e-05 9.52e-01 4.61e-02 1.36e-03 \n", + "[1] \"PP abf for shared variant: 0.136%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.60e-18 3.68e-19 9.53e-01 4.61e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.12e-07 1.03e-08 9.53e-01 4.61e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-09 9.93e-11 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.90e-06 9.19e-08 9.53e-01 4.61e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.40e-10 1.65e-11 9.53e-01 4.61e-02 1.40e-03 \n", + "[1] \"PP abf for shared variant: 0.14%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-15 8.28e-17 9.53e-01 4.61e-02 1.33e-03 \n", + "[1] \"PP abf for shared variant: 0.133%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-06 1.06e-07 9.53e-01 4.61e-02 1.30e-03 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-05 1.08e-06 9.53e-01 4.61e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___GPR183__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.330000 0.016000 0.623000 0.030100 0.000967 \n", + "[1] \"PP abf for shared variant: 0.0967%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.08e-16 2.46e-17 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.010100 0.000489 0.943000 0.045600 0.001240 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-08 7.27e-10 9.53e-01 4.61e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.30e-06 1.60e-07 9.53e-01 4.61e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.41e-05 2.62e-06 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.07e-05 1.00e-06 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.38e-07 3.09e-08 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___GZMB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4099e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.444000 0.021500 0.509000 0.024600 0.000924 \n", + "[1] \"PP abf for shared variant: 0.0924%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___EEF1D__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5173e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.788000 0.038100 0.166000 0.008020 0.000456 \n", + "[1] \"PP abf for shared variant: 0.0456%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-03 5.64e-05 9.51e-01 4.60e-02 1.38e-03 \n", + "[1] \"PP abf for shared variant: 0.138%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.44e-07 4.09e-08 9.53e-01 4.61e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.97e-13 2.40e-14 9.53e-01 4.61e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___KLRC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.09970 0.00483 0.85300 0.04130 0.00131 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL17__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.4275e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.695000 0.033700 0.258000 0.012500 0.000672 \n", + "[1] \"PP abf for shared variant: 0.0672%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-06 7.25e-08 9.53e-01 4.61e-02 1.35e-03 \n", + "[1] \"PP abf for shared variant: 0.135%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.14e-08 5.50e-10 9.53e-01 4.61e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___MALAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.019300 0.000933 0.933000 0.045200 0.001230 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003080 0.000149 0.950000 0.046000 0.001270 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.94e-11 2.88e-12 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___HLA-B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8351e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.655000 0.031700 0.298000 0.014400 0.000767 \n", + "[1] \"PP abf for shared variant: 0.0767%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.62e-07 3.21e-08 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.07e-05 3.43e-06 9.53e-01 4.61e-02 1.31e-03 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___FGFBP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.32100 0.01550 0.63200 0.03060 0.00102 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.009310 0.000451 0.943000 0.045700 0.001340 \n", + "[1] \"PP abf for shared variant: 0.134%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.77e-04 2.79e-05 9.52e-01 4.61e-02 1.32e-03 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.00e-03 4.84e-05 9.52e-01 4.61e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04770 0.00231 0.90500 0.04380 0.00138 \n", + "[1] \"PP abf for shared variant: 0.138%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__ZEB2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.574e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.743000 0.034000 0.212000 0.009720 0.000551 \n", + "[1] \"PP abf for shared variant: 0.0551%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.08e-06 3.91e-07 9.53e-01 4.61e-02 1.34e-03 \n", + "[1] \"PP abf for shared variant: 0.134%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.87e-15 3.81e-16 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___NACA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.2336e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.644000 0.031200 0.310000 0.015000 0.000595 \n", + "[1] \"PP abf for shared variant: 0.0595%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.50e-10 3.63e-11 9.53e-01 4.61e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"NK_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.74e-11 2.78e-12 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___NRGN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7437e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.53400 0.02590 0.41900 0.02030 0.00085 \n", + "[1] \"PP abf for shared variant: 0.085%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.288000 0.014000 0.665000 0.032300 0.000973 \n", + "[1] \"PP abf for shared variant: 0.0973%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001630 0.000079 0.951000 0.046200 0.001280 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.80e-06 8.72e-08 9.52e-01 4.62e-02 1.36e-03 \n", + "[1] \"PP abf for shared variant: 0.136%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.32e-16 2.10e-17 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-06 5.28e-08 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-09 8.26e-11 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.015500 0.000752 0.937000 0.045500 0.001280 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.99e-09 4.36e-10 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.11e-14 5.40e-16 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__VCAN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.464000 0.022500 0.489000 0.023700 0.000818 \n", + "[1] \"PP abf for shared variant: 0.0818%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__UQCRH\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-05 7.50e-07 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC7A7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.014100 0.000682 0.938000 0.045500 0.001270 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___EPB41L3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.25500 0.01230 0.69800 0.03380 0.00107 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00761 0.00037 0.94500 0.04590 0.00130 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.31e-14 2.09e-15 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___HNRNPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01530 0.00074 0.93700 0.04550 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___QARS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.28300 0.01370 0.67000 0.03250 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___HLA-DPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.32e-06 2.10e-07 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.14e-15 2.50e-16 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.80e-06 3.78e-07 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.93e-15 1.42e-16 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.41e-08 6.87e-10 9.52e-01 4.62e-02 1.30e-03 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-09 9.02e-11 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.76e-12 2.80e-13 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02110 0.00103 0.93100 0.04520 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.36e-10 4.55e-11 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___CSTA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.66e-04 4.21e-05 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.48e-07 1.20e-08 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14000 0.00681 0.81200 0.03940 0.00112 \n", + "[1] \"PP abf for shared variant: 0.112%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.58e-12 7.68e-14 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002540 0.000123 0.950000 0.046100 0.001240 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.54e-15 3.18e-16 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___ERP29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.34900 0.01690 0.60400 0.02930 0.00091 \n", + "[1] \"PP abf for shared variant: 0.091%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__TNFAIP2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.33900 0.01640 0.61300 0.02980 0.00182 \n", + "[1] \"PP abf for shared variant: 0.182%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__VIM\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01630 0.00079 0.93600 0.04540 0.00125 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.66e-12 3.72e-13 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.77e-20 2.80e-21 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-11 9.57e-13 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.42e-05 6.90e-07 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.86e-10 1.87e-11 9.52e-01 4.62e-02 1.33e-03 \n", + "[1] \"PP abf for shared variant: 0.133%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.81e-09 2.34e-10 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-04 5.17e-06 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-03 9.04e-05 9.51e-01 4.61e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.13e-04 2.98e-05 9.52e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-13 1.02e-14 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-15 5.07e-17 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC25A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.93e-09 4.33e-10 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.04e-04 9.90e-06 9.52e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.27e-11 3.05e-12 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPSA\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1173e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.368000 0.017900 0.585000 0.028400 0.000858 \n", + "[1] \"PP abf for shared variant: 0.0858%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.25e-07 3.03e-08 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.52e-10 1.22e-11 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-07 7.27e-09 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003230 0.000157 0.949000 0.046100 0.001310 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.70e-09 3.74e-10 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.96e-06 2.41e-07 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___HLA-DPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02460 0.00119 0.92800 0.04500 0.00124 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-11 6.29e-13 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.70e-11 3.74e-12 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.34e-05 3.08e-06 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___PABPC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000412 0.000020 0.952000 0.046200 0.001260 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___CST3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7382e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.573000 0.027800 0.380000 0.018400 0.000846 \n", + "[1] \"PP abf for shared variant: 0.0846%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___EMP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03630 0.00176 0.91600 0.04450 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___GNLY__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.26900 0.01310 0.68400 0.03320 0.00111 \n", + "[1] \"PP abf for shared variant: 0.111%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.90e-15 1.41e-16 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___EIF3M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.318000 0.015400 0.635000 0.030800 0.000998 \n", + "[1] \"PP abf for shared variant: 0.0998%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.15e-03 5.56e-05 9.51e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___AP1S2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.264000 0.012800 0.689000 0.033400 0.000986 \n", + "[1] \"PP abf for shared variant: 0.0986%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.77e-10 8.59e-12 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.93e-09 3.37e-10 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__SEC11A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.015400 0.000747 0.937000 0.045500 0.001230 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.68e-04 1.79e-05 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.32e-11 4.04e-12 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-08 7.62e-10 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.71e-11 3.74e-12 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.75e-07 1.33e-08 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.64e-07 2.25e-08 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.64e-07 7.97e-09 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___ATP5G2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.009690 0.000471 0.943000 0.045800 0.001240 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.80e-06 4.76e-07 9.52e-01 4.62e-02 1.31e-03 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.74e-09 3.27e-10 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC25A5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.016600 0.000805 0.936000 0.045400 0.001240 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.32e-13 3.07e-14 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.42e-16 4.09e-17 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-17 6.99e-19 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-06 6.81e-08 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.41e-07 1.17e-08 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.42e-16 1.18e-17 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-04 9.99e-06 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___EVI2B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.368000 0.017900 0.585000 0.028400 0.000899 \n", + "[1] \"PP abf for shared variant: 0.0899%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05040 0.00245 0.90200 0.04380 0.00127 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02570 0.00125 0.92700 0.04500 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.38e-04 4.55e-05 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.11e-12 5.40e-14 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___LGALS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.21900 0.01060 0.73400 0.03560 0.00107 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.324000 0.015700 0.629000 0.030500 0.000975 \n", + "[1] \"PP abf for shared variant: 0.0975%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.55e-11 2.69e-12 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-14 7.18e-16 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.54e-11 3.66e-12 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.70e-06 1.31e-07 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___GPX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04140 0.00201 0.91100 0.04420 0.00126 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___LTA4H__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.535000 0.026000 0.418000 0.020300 0.000785 \n", + "[1] \"PP abf for shared variant: 0.0785%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RNASE6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.26100 0.01270 0.69200 0.03360 0.00111 \n", + "[1] \"PP abf for shared variant: 0.111%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___FTH1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.10200 0.00497 0.85000 0.04130 0.00116 \n", + "[1] \"PP abf for shared variant: 0.116%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___BTF3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.010900 0.000528 0.942000 0.045700 0.001250 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___DRAM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1829e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.547000 0.026600 0.406000 0.019700 0.000801 \n", + "[1] \"PP abf for shared variant: 0.0801%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___IL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-03 5.29e-05 9.52e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___ATP5A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008690 0.000422 0.944000 0.045800 0.001410 \n", + "[1] \"PP abf for shared variant: 0.141%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.15e-07 3.47e-08 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.13e-11 4.43e-12 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-13 7.01e-15 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.313000 0.015200 0.640000 0.031100 0.000949 \n", + "[1] \"PP abf for shared variant: 0.0949%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-14 6.97e-16 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.61e-12 4.66e-13 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___IPO7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.09270 0.00450 0.86000 0.04170 0.00141 \n", + "[1] \"PP abf for shared variant: 0.141%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.56e-07 7.59e-09 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.89e-12 3.34e-13 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.99e-13 1.94e-14 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___CXCR4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2966e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.50300 0.02440 0.45000 0.02180 0.00111 \n", + "[1] \"PP abf for shared variant: 0.111%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.55e-08 1.72e-09 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.18e-05 5.72e-07 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___CRTAP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.015200 0.000739 0.937000 0.045500 0.001240 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.394000 0.019100 0.559000 0.027100 0.000896 \n", + "[1] \"PP abf for shared variant: 0.0896%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.80e-09 1.85e-10 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002340 0.000114 0.950000 0.046100 0.001250 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.56e-09 7.59e-11 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.34700 0.01680 0.60600 0.02940 0.00094 \n", + "[1] \"PP abf for shared variant: 0.094%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___GPR183__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04990 0.00242 0.90300 0.04380 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.88e-10 2.86e-11 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.07e-11 1.00e-12 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__TKT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.25e-04 1.09e-05 9.52e-01 4.62e-02 1.37e-03 \n", + "[1] \"PP abf for shared variant: 0.137%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.38e-15 1.64e-16 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SCML1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.12700 0.00613 0.82600 0.03990 0.00114 \n", + "[1] \"PP abf for shared variant: 0.114%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___ACTN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.65e-04 4.19e-05 9.52e-01 4.61e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.30e-15 4.03e-16 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__ZFAND1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4561e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.408000 0.019800 0.545000 0.026400 0.000829 \n", + "[1] \"PP abf for shared variant: 0.0829%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.08e-15 1.98e-16 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PRF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.013500 0.000658 0.939000 0.045600 0.001290 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.02e-05 1.47e-06 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EFHD2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04810 0.00234 0.90400 0.04390 0.00132 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SELL\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-10 7.31e-12 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.33e-16 3.56e-17 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.26e-14 3.04e-15 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.98e-13 2.42e-14 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___APBA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.09240 0.00420 0.86300 0.03920 0.00119 \n", + "[1] \"PP abf for shared variant: 0.119%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EEF1G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.30e-04 2.09e-05 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___FAIM3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07060 0.00343 0.88200 0.04280 0.00126 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EIF3G__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.52900 0.02570 0.42400 0.02060 0.00079 \n", + "[1] \"PP abf for shared variant: 0.079%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___APOBEC3C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.351000 0.017100 0.601000 0.029200 0.000983 \n", + "[1] \"PP abf for shared variant: 0.0983%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.016100 0.000781 0.936000 0.045400 0.001270 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.73e-14 1.32e-15 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___C11orf1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.8471e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.641000 0.031100 0.312000 0.015100 0.000659 \n", + "[1] \"PP abf for shared variant: 0.0659%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___LCP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.79e-04 2.32e-05 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.63e-17 1.27e-18 9.53e-01 4.61e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.28e-17 2.08e-18 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___GZMM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.399000 0.019400 0.554000 0.026900 0.000929 \n", + "[1] \"PP abf for shared variant: 0.0929%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CFL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.31e-06 1.61e-07 9.52e-01 4.62e-02 1.38e-03 \n", + "[1] \"PP abf for shared variant: 0.138%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RSL1D1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.60e-04 3.69e-05 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TXN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.29100 0.01410 0.66100 0.03210 0.00103 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CTSW__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.24900 0.01210 0.70400 0.03410 0.00144 \n", + "[1] \"PP abf for shared variant: 0.144%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CD99__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.68e-05 1.30e-06 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-18 6.33e-20 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___FLT3LG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.18e-04 1.54e-05 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___NKG7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.47e-05 1.69e-06 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__UQCRB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05130 0.00249 0.90100 0.04370 0.00125 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__YWHAZ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.3964e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.611000 0.029700 0.342000 0.016600 0.000775 \n", + "[1] \"PP abf for shared variant: 0.0775%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CREM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.336000 0.016300 0.617000 0.029900 0.000961 \n", + "[1] \"PP abf for shared variant: 0.0961%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-04 8.29e-06 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RGS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.57e-06 1.73e-07 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-09 1.11e-10 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-12 1.04e-13 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___LDHB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.76e-14 3.28e-15 9.52e-01 4.62e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___ATP1A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 9.0977e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.724000 0.035100 0.230000 0.011100 0.000549 \n", + "[1] \"PP abf for shared variant: 0.0549%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CXCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.21900 0.01070 0.73300 0.03560 0.00103 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SYNE1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.16400 0.00798 0.78800 0.03830 0.00112 \n", + "[1] \"PP abf for shared variant: 0.112%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___FYN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.137e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.628000 0.030500 0.325000 0.015800 0.000646 \n", + "[1] \"PP abf for shared variant: 0.0646%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.79e-06 8.69e-08 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___MYL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.98e-10 9.62e-12 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PDE3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-04 6.43e-06 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-19 5.32e-21 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___MT-CO1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.61e-05 2.72e-06 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__ZEB2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.012000 0.000582 0.941000 0.045600 0.001280 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___LTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.98e-08 1.45e-09 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PTPN7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.367000 0.017800 0.586000 0.028400 0.000953 \n", + "[1] \"PP abf for shared variant: 0.0953%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.18e-12 5.75e-14 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PFN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-10 8.02e-12 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___IER2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1556e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.680000 0.033000 0.273000 0.013200 0.000672 \n", + "[1] \"PP abf for shared variant: 0.0672%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.49e-05 3.64e-06 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-09 6.03e-11 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.95e-20 1.43e-21 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.62e-15 2.73e-16 9.52e-01 4.62e-02 1.38e-03 \n", + "[1] \"PP abf for shared variant: 0.138%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CMC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-03 4.92e-05 9.51e-01 4.62e-02 1.36e-03 \n", + "[1] \"PP abf for shared variant: 0.136%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SAT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-04 5.97e-06 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.90e-13 1.89e-14 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___GZMB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02990 0.00145 0.92300 0.04480 0.00132 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___AKNA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.4233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.670000 0.032500 0.283000 0.013800 0.000558 \n", + "[1] \"PP abf for shared variant: 0.0558%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___HLA-DPB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.9277e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.565000 0.027500 0.388000 0.018800 0.000727 \n", + "[1] \"PP abf for shared variant: 0.0727%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.14e-20 2.49e-21 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___NELL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.81e-08 1.36e-09 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EEF1D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.76e-04 1.82e-05 9.52e-01 4.62e-02 1.30e-03 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___FLNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03810 0.00185 0.91400 0.04440 0.00129 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___C12orf75__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04060 0.00197 0.91200 0.04430 0.00130 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.98e-16 9.61e-18 9.53e-01 4.61e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___HLA-C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.57e-11 1.25e-12 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___HLA-B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-14 4.92e-16 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___METRNL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4496e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.72300 0.03320 0.23300 0.01070 0.00068 \n", + "[1] \"PP abf for shared variant: 0.068%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PFDN5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02960 0.00144 0.92300 0.04480 0.00135 \n", + "[1] \"PP abf for shared variant: 0.135%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CAMK4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.90e-07 1.89e-08 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___BHLHE40__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.015200 0.000737 0.937000 0.045500 0.001360 \n", + "[1] \"PP abf for shared variant: 0.136%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___IFITM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.2604e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.573000 0.027800 0.380000 0.018400 0.000747 \n", + "[1] \"PP abf for shared variant: 0.0747%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SLA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08600 0.00418 0.86600 0.04210 0.00126 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CD8B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.37e-04 1.15e-05 9.52e-01 4.62e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-18 8.03e-20 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___NGFRAP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06950 0.00318 0.88600 0.04050 0.00125 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.76e-14 3.77e-15 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TUBA4A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06190 0.00301 0.89100 0.04320 0.00122 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.57e-05 1.73e-06 9.52e-01 4.62e-02 1.35e-03 \n", + "[1] \"PP abf for shared variant: 0.135%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-19 1.06e-20 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RCAN3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.11e-06 3.94e-07 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.73e-13 2.30e-14 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PPP2R5C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.74e-04 1.82e-05 9.52e-01 4.62e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.32e-11 3.55e-12 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.62e-08 4.19e-09 9.52e-01 4.62e-02 1.31e-03 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___DNAJB6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.09830 0.00477 0.85400 0.04150 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RAP1B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.077e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.747000 0.036300 0.206000 0.010000 0.000552 \n", + "[1] \"PP abf for shared variant: 0.0552%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.03e-05 9.85e-07 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PABPC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002760 0.000134 0.950000 0.046100 0.001290 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___FBL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008280 0.000402 0.944000 0.045800 0.001250 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CCDC104__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.9652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.64500 0.02950 0.31100 0.01420 0.00059 \n", + "[1] \"PP abf for shared variant: 0.059%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CCL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.69e-09 4.22e-10 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-08 6.05e-10 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___NPM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.90e-06 2.86e-07 9.52e-01 4.62e-02 1.31e-03 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.57e-18 2.22e-19 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___MT-CO2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05340 0.00259 0.89900 0.04360 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TESPA1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.021700 0.000983 0.934000 0.042300 0.001300 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.011000 0.000533 0.942000 0.045700 0.001270 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PSMA7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.338000 0.016400 0.615000 0.029800 0.000961 \n", + "[1] \"PP abf for shared variant: 0.0961%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PLEK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.30700 0.01490 0.64600 0.03140 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SUB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000349 0.000017 0.952000 0.046200 0.001290 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.45e-16 4.10e-17 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___MT-ND5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.4281e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.537000 0.026100 0.416000 0.020200 0.000756 \n", + "[1] \"PP abf for shared variant: 0.0756%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___KLRD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.006940 0.000337 0.946000 0.045900 0.001270 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___MYC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007040 0.000342 0.945000 0.045900 0.001240 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RGS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.310000 0.015000 0.643000 0.031200 0.000971 \n", + "[1] \"PP abf for shared variant: 0.0971%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___KLF2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.391e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.53500 0.02600 0.41700 0.02030 0.00104 \n", + "[1] \"PP abf for shared variant: 0.104%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SLC25A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14900 0.00723 0.80400 0.03900 0.00104 \n", + "[1] \"PP abf for shared variant: 0.104%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___HNRNPA2B1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.584000 0.028300 0.369000 0.017900 0.000752 \n", + "[1] \"PP abf for shared variant: 0.0752%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___ARAP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.3907e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.77100 0.03740 0.18300 0.00886 0.00050 \n", + "[1] \"PP abf for shared variant: 0.05%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___HLA-A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-16 1.29e-17 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__UBB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.73e-05 8.40e-07 9.52e-01 4.62e-02 1.30e-03 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL17__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.78e-05 2.81e-06 9.52e-01 4.62e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-12 4.97e-14 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__UBC\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.08e-06 3.92e-07 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-05 5.45e-07 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TGFB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.19700 0.00958 0.75500 0.03670 0.00109 \n", + "[1] \"PP abf for shared variant: 0.109%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-09 1.08e-10 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.03e-18 1.47e-19 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___LYPD3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.369000 0.017800 0.584000 0.028200 0.000902 \n", + "[1] \"PP abf for shared variant: 0.0902%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TMSB10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-04 7.09e-06 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CLIC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.21500 0.01040 0.73700 0.03580 0.00124 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___C12orf57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0885 0.0043 0.8640 0.0419 0.0012 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TMEM243\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002080 0.000101 0.950000 0.046100 0.001270 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.15e-15 2.01e-16 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___ID2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.18400 0.00894 0.76800 0.03730 0.00128 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.28e-15 2.08e-16 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CCR7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.32e-10 3.07e-11 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004360 0.000212 0.948000 0.046000 0.001340 \n", + "[1] \"PP abf for shared variant: 0.134%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.24e-25 2.05e-26 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___COX7C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.373000 0.018100 0.580000 0.028100 0.000951 \n", + "[1] \"PP abf for shared variant: 0.0951%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___NFKBIA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 7.944e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.662000 0.032100 0.292000 0.014100 0.000685 \n", + "[1] \"PP abf for shared variant: 0.0685%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___NDFIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03190 0.00155 0.92100 0.04470 0.00125 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.65e-17 4.20e-18 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.90e-15 9.22e-17 9.52e-01 4.62e-02 1.30e-03 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-09 5.87e-11 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___GZMA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.44e-07 1.67e-08 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___ABHD14B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.330000 0.016000 0.623000 0.030200 0.000956 \n", + "[1] \"PP abf for shared variant: 0.0956%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.76e-10 8.55e-12 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TPI1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.43900 0.02130 0.51400 0.02490 0.00133 \n", + "[1] \"PP abf for shared variant: 0.133%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.09e-19 4.40e-20 9.53e-01 4.61e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___GIMAP7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14400 0.00699 0.80900 0.03930 0.00112 \n", + "[1] \"PP abf for shared variant: 0.112%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.79e-10 2.33e-11 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.14e-15 1.04e-16 9.53e-01 4.61e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SC5D\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.430000 0.020900 0.523000 0.025400 0.000862 \n", + "[1] \"PP abf for shared variant: 0.0862%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.81e-10 8.81e-12 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.12e-17 1.51e-18 9.53e-01 4.61e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RIC3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-03 8.44e-05 9.51e-01 4.61e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.45e-11 2.16e-12 9.52e-01 4.62e-02 1.31e-03 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SH3YL1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.75e-05 1.33e-06 9.53e-01 4.61e-02 1.32e-03 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CCNG1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.9814e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.663000 0.032200 0.291000 0.014100 0.000669 \n", + "[1] \"PP abf for shared variant: 0.0669%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SRP14\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-04 5.87e-06 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SPON2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0298e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.608000 0.029500 0.345000 0.016700 0.000696 \n", + "[1] \"PP abf for shared variant: 0.0696%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___HMGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.88e-04 3.34e-05 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___NOSIP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-06 4.89e-08 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.99e-16 1.45e-17 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-18 5.18e-20 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-19 1.07e-20 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___MYL12B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.0233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.54400 0.02640 0.40900 0.01980 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___GNLY__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02880 0.00140 0.92400 0.04480 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___MIR142__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1648e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.742000 0.036000 0.212000 0.010300 0.000469 \n", + "[1] \"PP abf for shared variant: 0.0469%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007630 0.000371 0.945000 0.045900 0.001320 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.30e-17 1.12e-18 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.299000 0.014500 0.654000 0.031700 0.000964 \n", + "[1] \"PP abf for shared variant: 0.0964%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-05 5.11e-07 9.52e-01 4.62e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PTP4A2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.412000 0.020000 0.541000 0.026200 0.000977 \n", + "[1] \"PP abf for shared variant: 0.0977%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___FGFBP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.9666e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.697000 0.033800 0.256000 0.012400 0.000595 \n", + "[1] \"PP abf for shared variant: 0.0595%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPSAP58\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-04 4.92e-06 9.52e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.59e-08 2.23e-09 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.97e-25 1.93e-26 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CCDC57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-06 1.08e-07 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___ITGB2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.448000 0.021800 0.505000 0.024500 0.000824 \n", + "[1] \"PP abf for shared variant: 0.0824%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EIF2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08800 0.00427 0.86500 0.04200 0.00120 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___MYO1F__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.4185e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.679000 0.032900 0.274000 0.013300 0.000647 \n", + "[1] \"PP abf for shared variant: 0.0647%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___ARF6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14400 0.00697 0.80900 0.03930 0.00112 \n", + "[1] \"PP abf for shared variant: 0.112%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CD81__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.24900 0.01210 0.70400 0.03410 0.00113 \n", + "[1] \"PP abf for shared variant: 0.113%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TMEM123\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004210 0.000204 0.948000 0.046000 0.001260 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___ALKBH7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004210 0.000205 0.948000 0.046000 0.001250 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___LDHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-03 4.88e-05 9.51e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PIK3IP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.96e-05 1.44e-06 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___FOXP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.01e-04 3.89e-05 9.52e-01 4.62e-02 1.30e-03 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CCL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.02e-05 4.38e-06 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___NEAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.012700 0.000619 0.940000 0.045600 0.001260 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___KLRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.9856e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.608000 0.029500 0.345000 0.016700 0.000769 \n", + "[1] \"PP abf for shared variant: 0.0769%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___BTF3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5042e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.722000 0.035100 0.231000 0.011200 0.000528 \n", + "[1] \"PP abf for shared variant: 0.0528%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__ZFAS1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.26600 0.01290 0.68700 0.03330 0.00101 \n", + "[1] \"PP abf for shared variant: 0.101%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.98e-15 9.62e-17 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___C1orf21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1023e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.588000 0.028600 0.365000 0.017700 0.000721 \n", + "[1] \"PP abf for shared variant: 0.0721%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.61e-10 1.27e-11 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CALM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.11500 0.00556 0.83800 0.04070 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___HOPX__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3470 0.0169 0.6060 0.0294 0.0011 \n", + "[1] \"PP abf for shared variant: 0.11%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CD55__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03570 0.00173 0.91700 0.04450 0.00127 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.36e-15 2.12e-16 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.14e-04 4.44e-05 9.52e-01 4.62e-02 1.30e-03 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.44e-16 1.67e-17 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008840 0.000429 0.944000 0.045800 0.001320 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.55e-11 2.21e-12 9.52e-01 4.62e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___HLA-DRB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.507e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.712000 0.034500 0.241000 0.011700 0.000696 \n", + "[1] \"PP abf for shared variant: 0.0696%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-17 7.05e-19 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-13 5.23e-15 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PTMA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002940 0.000143 0.950000 0.046100 0.001290 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.77e-10 8.60e-12 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___GNG2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.23700 0.01150 0.71600 0.03470 0.00108 \n", + "[1] \"PP abf for shared variant: 0.108%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TIGIT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02330 0.00113 0.92900 0.04510 0.00126 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.12e-07 3.46e-08 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.81e-10 1.85e-11 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___C1QBP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.52e-04 4.62e-05 9.52e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CD27__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.689e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.587000 0.028500 0.366000 0.017800 0.000734 \n", + "[1] \"PP abf for shared variant: 0.0734%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___KLRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002170 0.000105 0.950000 0.046100 0.001290 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___MAL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-09 6.71e-11 9.55e-01 4.33e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.98e-16 3.38e-17 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___REL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.691e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.580000 0.028200 0.373000 0.018100 0.000672 \n", + "[1] \"PP abf for shared variant: 0.0672%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.00e-11 9.69e-13 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___FTL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.410000 0.019900 0.543000 0.026300 0.000968 \n", + "[1] \"PP abf for shared variant: 0.0968%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.56e-08 7.56e-10 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.15e-13 1.53e-14 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.89e-07 2.37e-08 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SEPT7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.13300 0.00643 0.82000 0.03980 0.00130 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TCF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14400 0.00699 0.80800 0.03920 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.46400 0.02250 0.48900 0.02370 0.00111 \n", + "[1] \"PP abf for shared variant: 0.111%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.86e-09 2.36e-10 9.52e-01 4.62e-02 1.35e-03 \n", + "[1] \"PP abf for shared variant: 0.135%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___FCGR3A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08180 0.00397 0.87000 0.04220 0.00230 \n", + "[1] \"PP abf for shared variant: 0.23%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PSMB9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 8.645e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.66600 0.03230 0.28700 0.01390 0.00139 \n", + "[1] \"PP abf for shared variant: 0.139%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___LEF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.32e-09 1.13e-10 9.52e-01 4.62e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PTPRC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.63e-08 2.25e-09 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.37200 0.01810 0.58100 0.02820 0.00104 \n", + "[1] \"PP abf for shared variant: 0.104%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.00e-03 4.88e-05 9.51e-01 4.62e-02 1.31e-03 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.50e-16 4.13e-17 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.43e-13 1.66e-14 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___ANXA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08640 0.00420 0.86600 0.04200 0.00124 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___LGALS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07480 0.00363 0.87800 0.04260 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.46e-14 1.68e-15 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___DDX5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5519e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.521000 0.025300 0.432000 0.020900 0.000785 \n", + "[1] \"PP abf for shared variant: 0.0785%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.59e-11 3.20e-12 9.52e-01 4.62e-02 1.39e-03 \n", + "[1] \"PP abf for shared variant: 0.139%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___DOK2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.34800 0.01690 0.60400 0.02930 0.00111 \n", + "[1] \"PP abf for shared variant: 0.111%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CRIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.13e-06 2.00e-07 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CALR__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.9449e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.516000 0.025000 0.437000 0.021200 0.000793 \n", + "[1] \"PP abf for shared variant: 0.0793%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TTC38\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1223e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.52600 0.02550 0.42700 0.02070 0.00109 \n", + "[1] \"PP abf for shared variant: 0.109%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___C1orf228__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02610 0.00127 0.92600 0.04490 0.00129 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___DUSP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.005270 0.000256 0.947000 0.046000 0.001280 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EIF4B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.76e-09 1.83e-10 9.52e-01 4.62e-02 1.31e-03 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-09 5.92e-11 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TRABD2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.03e-06 2.44e-07 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.67e-16 2.75e-17 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PASK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.15e-07 2.33e-08 9.55e-01 4.33e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___OAZ1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.41e-10 6.86e-12 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.07e-17 3.42e-18 9.53e-01 4.61e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___OXNAD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1359e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.58700 0.02850 0.36500 0.01770 0.00154 \n", + "[1] \"PP abf for shared variant: 0.154%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04340 0.00210 0.90900 0.04410 0.00127 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SRGN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.22e-16 1.56e-17 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___HLA-E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.36e-03 6.63e-05 9.51e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TYROBP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007530 0.000365 0.945000 0.045900 0.001270 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__YBX3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1331e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.752000 0.036500 0.201000 0.009770 0.000547 \n", + "[1] \"PP abf for shared variant: 0.0547%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CST7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.15e-07 3.96e-08 9.52e-01 4.62e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___AIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.96e-04 1.44e-05 9.52e-01 4.62e-02 1.37e-03 \n", + "[1] \"PP abf for shared variant: 0.137%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___IL7R__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.72e-03 8.34e-05 9.51e-01 4.61e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RHOH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02790 0.00135 0.92500 0.04490 0.00126 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.80e-16 1.85e-17 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.88e-18 2.37e-19 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.016700 0.000812 0.936000 0.045400 0.001320 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___DBI__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00803 0.00039 0.94400 0.04580 0.00126 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.72e-11 8.33e-13 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___PRKCQ-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.99e-09 9.68e-11 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SNHG8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.23e-07 2.05e-08 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___POMP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.451000 0.021900 0.502000 0.024300 0.000796 \n", + "[1] \"PP abf for shared variant: 0.0796%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.80e-15 3.77e-16 9.53e-01 4.60e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RAB8B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.0817e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.651000 0.031600 0.302000 0.014700 0.000634 \n", + "[1] \"PP abf for shared variant: 0.0634%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___GZMH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.13600 0.00661 0.81600 0.03960 0.00136 \n", + "[1] \"PP abf for shared variant: 0.136%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.07e-05 4.40e-06 9.52e-01 4.62e-02 1.37e-03 \n", + "[1] \"PP abf for shared variant: 0.137%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.80e-10 1.36e-11 9.52e-01 4.62e-02 1.37e-03 \n", + "[1] \"PP abf for shared variant: 0.137%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-19 7.32e-21 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.58e-17 1.25e-18 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___ABLIM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004280 0.000196 0.951000 0.043600 0.001280 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EIF4A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.8946e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.57900 0.02810 0.37300 0.01810 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___APOBEC3G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.25e-04 1.58e-05 9.52e-01 4.62e-02 1.31e-03 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RP11-291B21.2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.87e-05 8.57e-07 9.55e-01 4.38e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.19e-19 1.55e-20 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.62e-18 1.76e-19 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SERF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.23e-09 1.57e-10 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.25e-10 2.55e-11 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.78e-18 2.32e-19 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.012100 0.000586 0.940000 0.045600 0.001290 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.80e-14 2.33e-15 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-11 6.35e-13 9.52e-01 4.62e-02 1.31e-03 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__S1PR5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1943e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.740000 0.033800 0.215000 0.009830 0.000759 \n", + "[1] \"PP abf for shared variant: 0.0759%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD8T_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.59e-05 3.20e-06 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TMSB10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05660 0.00275 0.89600 0.04350 0.00124 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CHCHD2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14600 0.00709 0.80700 0.03910 0.00114 \n", + "[1] \"PP abf for shared variant: 0.114%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EMP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.17e-04 4.45e-05 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___FMNL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.22700 0.01100 0.72500 0.03520 0.00114 \n", + "[1] \"PP abf for shared variant: 0.114%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.88e-24 9.13e-26 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___LEF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.95e-07 2.89e-08 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HERPUD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.267e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.478000 0.023200 0.475000 0.023100 0.000776 \n", + "[1] \"PP abf for shared variant: 0.0776%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ANXA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.62e-05 7.87e-07 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SOD2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.016800 0.000814 0.936000 0.045400 0.001230 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MYL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-17 1.08e-18 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-13 6.36e-15 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ATP1B3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.23300 0.01130 0.72000 0.03490 0.00103 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.424000 0.020600 0.529000 0.025700 0.000828 \n", + "[1] \"PP abf for shared variant: 0.0828%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-25 5.21e-27 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.56e-11 1.24e-12 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EML4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.83e-04 1.86e-05 9.52e-01 4.62e-02 1.30e-03 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SCML1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002530 0.000123 0.950000 0.046100 0.001250 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MCL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-06 1.08e-07 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___NOG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08010 0.00362 0.87600 0.03960 0.00119 \n", + "[1] \"PP abf for shared variant: 0.119%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___PRMT2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.37e-03 6.66e-05 9.51e-01 4.62e-02 1.31e-03 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CD7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.58e-05 1.25e-06 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.396000 0.019200 0.556000 0.027000 0.000899 \n", + "[1] \"PP abf for shared variant: 0.0899%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.32e-11 6.40e-13 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___FAM129A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-06 4.88e-08 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.91e-15 9.26e-17 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ABLIM1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.2936e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.547000 0.026600 0.406000 0.019700 0.000695 \n", + "[1] \"PP abf for shared variant: 0.0695%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.61e-25 1.27e-26 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ALOX5AP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003680 0.000179 0.949000 0.046100 0.001260 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TSHZ2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-03 5.83e-05 9.51e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TIGIT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.11e-06 4.42e-07 9.52e-01 4.62e-02 1.30e-03 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ARHGDIB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.38e-05 1.16e-06 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.23e-10 1.08e-11 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.32e-20 6.40e-22 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.53e-28 7.41e-30 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.87e-28 4.79e-29 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__YBX1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.23e-05 1.08e-06 9.52e-01 4.62e-02 1.31e-03 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.43e-25 4.09e-26 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___JUND__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.279e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.34900 0.01690 0.60400 0.02930 0.00147 \n", + "[1] \"PP abf for shared variant: 0.147%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SH3YL1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.17e-07 2.03e-08 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.88e-26 9.12e-28 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___C12orf75__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01070 0.00052 0.94200 0.04570 0.00135 \n", + "[1] \"PP abf for shared variant: 0.135%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.63e-11 2.73e-12 9.52e-01 4.62e-02 1.32e-03 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF18\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01590 0.00077 0.93700 0.04550 0.00127 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MYO1F__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003750 0.000182 0.949000 0.046000 0.001260 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.61e-24 3.21e-25 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___PTPRC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.08e-09 3.44e-10 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CD55__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.428000 0.020800 0.525000 0.025500 0.000856 \n", + "[1] \"PP abf for shared variant: 0.0856%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.21e-25 4.47e-26 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CREM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.57e-04 1.25e-05 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__VMP1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.21900 0.01070 0.73300 0.03560 0.00108 \n", + "[1] \"PP abf for shared variant: 0.108%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HMGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.28e-06 3.54e-07 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.11e-25 1.99e-26 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___C1orf228__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.32700 0.01590 0.62500 0.03030 0.00097 \n", + "[1] \"PP abf for shared variant: 0.097%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___GALM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.24800 0.01200 0.70500 0.03420 0.00107 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TRABD2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05320 0.00258 0.89900 0.04360 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EIF2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-03 8.62e-05 9.51e-01 4.61e-02 1.22e-03 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL17__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.32e-14 1.12e-15 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.48e-16 1.69e-17 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ANXA5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.019200 0.000933 0.933000 0.045300 0.001230 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___IDS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.28e-04 4.02e-05 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ARID5B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.11000 0.00533 0.84300 0.04090 0.00115 \n", + "[1] \"PP abf for shared variant: 0.115%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___IMPDH2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.85e-06 4.78e-07 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.36e-14 3.09e-15 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__ST13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.97e-07 4.36e-08 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CXCR3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00888 0.00043 0.94400 0.04570 0.00126 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HLA-DRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-06 8.01e-08 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.46e-15 1.20e-16 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SPOCK2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03100 0.00151 0.92200 0.04470 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___C15orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.16400 0.00752 0.79100 0.03620 0.00110 \n", + "[1] \"PP abf for shared variant: 0.11%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SNRPF\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1448e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.61000 0.02960 0.34300 0.01660 0.00101 \n", + "[1] \"PP abf for shared variant: 0.101%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-14 6.35e-16 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___FAM134B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.20900 0.01020 0.74300 0.03610 0.00116 \n", + "[1] \"PP abf for shared variant: 0.116%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ISG20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007440 0.000361 0.945000 0.045900 0.001350 \n", + "[1] \"PP abf for shared variant: 0.135%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CFL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.49e-10 2.18e-11 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___NUCB2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08410 0.00409 0.86800 0.04210 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ALKBH7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002450 0.000119 0.950000 0.046100 0.001280 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___LINC00493__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.11400 0.00551 0.83900 0.04070 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-25 5.17e-27 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__VIM\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.006220 0.000302 0.946000 0.045900 0.001260 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SNHG8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-11 4.98e-13 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CDC42__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007890 0.000383 0.945000 0.045800 0.001260 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF1B\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03560 0.00173 0.91700 0.04450 0.00126 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___NELL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05090 0.00247 0.90200 0.04380 0.00120 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-18 7.65e-20 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ACTN4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00228 0.00011 0.95000 0.04610 0.00126 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___IKZF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.12800 0.00624 0.82400 0.04000 0.00112 \n", + "[1] \"PP abf for shared variant: 0.112%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___LDHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.30300 0.01470 0.65000 0.03160 0.00102 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.55e-17 1.24e-18 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.69e-09 4.70e-10 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RP11-138A9.1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.409000 0.019900 0.544000 0.026400 0.000847 \n", + "[1] \"PP abf for shared variant: 0.0847%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___NAMPT__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.8087e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.45000 0.02190 0.50200 0.02440 0.00106 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFAS1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.04e-05 9.90e-07 9.52e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CALM2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.08e-05 3.92e-06 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.49e-15 7.25e-17 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MT-ND2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.18200 0.00886 0.77000 0.03740 0.00106 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.40e-15 4.08e-16 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CD52__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.06e-04 2.46e-05 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.70e-08 4.71e-09 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___H3F3A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.23e-05 2.05e-06 9.52e-01 4.62e-02 1.32e-03 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ADTRP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.17e-08 1.54e-09 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MT2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.15900 0.00773 0.79300 0.03850 0.00122 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SNRPD2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05560 0.00270 0.89700 0.04350 0.00119 \n", + "[1] \"PP abf for shared variant: 0.119%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFP36\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.40e-05 4.56e-06 9.52e-01 4.62e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CXCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.63e-05 1.28e-06 9.52e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___DYNLL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.69e-03 8.21e-05 9.51e-01 4.61e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SAMSN1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.45e-05 1.67e-06 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___LMNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.43e-09 6.95e-11 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MT-ND5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.73e-07 8.40e-09 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-21 4.96e-23 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RUNX3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.13000 0.00633 0.82200 0.03990 0.00120 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HLA-B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.83e-18 1.86e-19 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RGS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-05 5.19e-07 9.52e-01 4.62e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ERGIC3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.423e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.446000 0.021700 0.506000 0.024600 0.000818 \n", + "[1] \"PP abf for shared variant: 0.0818%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SELL\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.87e-08 1.40e-09 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TYMP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04420 0.00215 0.90800 0.04410 0.00122 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HLA-DPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.13100 0.00634 0.82200 0.03990 0.00115 \n", + "[1] \"PP abf for shared variant: 0.115%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-22 8.43e-24 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__UQCRB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.98e-04 1.45e-05 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.35e-23 3.57e-24 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SRGN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.46e-21 3.62e-22 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MT-ND4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.347000 0.016800 0.606000 0.029400 0.000913 \n", + "[1] \"PP abf for shared variant: 0.0913%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ABHD14B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.39e-04 2.62e-05 9.52e-01 4.62e-02 1.37e-03 \n", + "[1] \"PP abf for shared variant: 0.137%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ATP5E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004010 0.000195 0.948000 0.046000 0.001260 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPSAP58\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-10 5.13e-12 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.55e-13 3.18e-14 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.89e-22 3.83e-23 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MAL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.31e-09 1.60e-10 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ATP2B4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04480 0.00218 0.90800 0.04410 0.00125 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ARPC1B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.52300 0.02540 0.43000 0.02090 0.00084 \n", + "[1] \"PP abf for shared variant: 0.084%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___PDCD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003970 0.000181 0.951000 0.043300 0.001250 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.93e-21 4.82e-22 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.77e-26 8.61e-28 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.92e-22 1.41e-23 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SAT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.58e-13 1.74e-14 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HLA-E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.24e-08 1.57e-09 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TCF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.83e-05 3.32e-06 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___PIK3IP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.43e-04 1.18e-05 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___LGALS3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.23700 0.01150 0.71600 0.03480 0.00103 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MIAT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.017800 0.000864 0.935000 0.045400 0.001270 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.28e-21 2.08e-22 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SUB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.01e-08 1.95e-09 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CCR7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.020600 0.000999 0.932000 0.045200 0.001270 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.30e-17 1.11e-18 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.57e-23 2.22e-24 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RNF19A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.01e-03 9.75e-05 9.50e-01 4.61e-02 1.32e-03 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MT-CO3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.10e-07 1.99e-08 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-24 7.05e-26 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-11 8.24e-13 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___FAS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.19900 0.00966 0.75400 0.03660 0.00110 \n", + "[1] \"PP abf for shared variant: 0.11%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EEF1D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.82e-10 4.28e-11 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.12e-10 3.94e-11 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___GYPC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.62e-06 4.18e-07 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.62e-22 7.88e-24 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-24 8.27e-26 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TPM4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02870 0.00139 0.92400 0.04480 0.00124 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___LDHB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.59e-12 4.17e-13 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___AIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.06e-05 3.91e-06 9.52e-01 4.62e-02 1.30e-03 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.33e-23 2.10e-24 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ITGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.56e-07 1.73e-08 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TXN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.59e-07 2.23e-08 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___FTH1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02730 0.00132 0.92500 0.04490 0.00126 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.03e-26 9.87e-28 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___COX7C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.11000 0.00535 0.84200 0.04090 0.00122 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HLA-A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.53e-18 2.68e-19 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___LCP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001630 0.000079 0.951000 0.046200 0.001260 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__UBB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-03 8.06e-05 9.51e-01 4.61e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.00e-23 1.94e-24 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.88e-17 4.80e-18 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TMEM123\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06770 0.00329 0.88500 0.04290 0.00119 \n", + "[1] \"PP abf for shared variant: 0.119%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___PPP1R15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.457000 0.022200 0.496000 0.024100 0.000836 \n", + "[1] \"PP abf for shared variant: 0.0836%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___IL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.10e-04 3.93e-05 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.33e-26 2.59e-27 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.03e-16 1.96e-17 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TOMM20\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.419000 0.020300 0.534000 0.025900 0.000883 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EIF3F__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.29e-04 4.51e-05 9.52e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ERP29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004230 0.000205 0.948000 0.046000 0.001200 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___KLF6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-05 7.74e-07 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___GIMAP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.40e-04 4.08e-05 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TGFBR2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06280 0.00305 0.89000 0.04320 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RNF213__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.317000 0.015400 0.636000 0.030900 0.000929 \n", + "[1] \"PP abf for shared variant: 0.0929%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___C19orf53__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.502000 0.024400 0.451000 0.021900 0.000819 \n", + "[1] \"PP abf for shared variant: 0.0819%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SERF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-10 4.97e-12 9.52e-01 4.62e-02 1.33e-03 \n", + "[1] \"PP abf for shared variant: 0.133%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.65e-15 1.77e-16 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MIR4435-1HG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.42e-10 2.63e-11 9.52e-01 4.62e-02 1.36e-03 \n", + "[1] \"PP abf for shared variant: 0.136%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-15 8.44e-17 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MZT2B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.98e-04 2.42e-05 9.52e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___AK5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08740 0.00424 0.86500 0.04200 0.00115 \n", + "[1] \"PP abf for shared variant: 0.115%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___NDFIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.26700 0.01290 0.68600 0.03330 0.00106 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HNRNPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-08 8.65e-10 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-20 1.07e-21 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-04 1.29e-05 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.98e-19 3.87e-20 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___C1QBP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02790 0.00135 0.92500 0.04490 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CXCR6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.349000 0.016800 0.604000 0.029000 0.000916 \n", + "[1] \"PP abf for shared variant: 0.0916%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ARPC3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.12400 0.00602 0.82900 0.04020 0.00119 \n", + "[1] \"PP abf for shared variant: 0.119%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MRPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.3464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.48400 0.02350 0.46900 0.02280 0.00078 \n", + "[1] \"PP abf for shared variant: 0.078%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.81e-15 8.80e-17 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___PPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.09e-06 1.01e-07 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EBPL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.40800 0.01980 0.54500 0.02650 0.00102 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___FTL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.21200 0.01030 0.74000 0.03590 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__UXT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.56e-08 7.55e-10 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___LSM5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.70e-04 1.79e-05 9.52e-01 4.62e-02 1.32e-03 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___KMT2E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.6569e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.53400 0.02590 0.41900 0.02030 0.00107 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MT-CO2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.69e-07 8.22e-09 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TAGLN2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.490000 0.023800 0.463000 0.022500 0.000812 \n", + "[1] \"PP abf for shared variant: 0.0812%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CDCA7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4164e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.556000 0.027000 0.397000 0.019200 0.000723 \n", + "[1] \"PP abf for shared variant: 0.0723%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-06 7.60e-08 9.53e-01 4.62e-02 1.22e-03 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EPB41L4A-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.89e-06 9.19e-08 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___FLNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.62e-08 3.21e-09 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TATDN1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02820 0.00137 0.92400 0.04490 0.00122 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HLA-DPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06640 0.00322 0.88600 0.04300 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___C12orf57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.25e-13 1.58e-14 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-23 9.56e-25 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.80e-20 8.74e-22 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___BTG1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.13e-04 2.01e-05 9.52e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___C8orf59__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03240 0.00157 0.92000 0.04470 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CD58__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00742 0.00036 0.94500 0.04590 0.00132 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MT-CO1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-17 7.50e-19 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.55e-06 2.69e-07 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___AKAP13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03500 0.00170 0.91700 0.04450 0.00135 \n", + "[1] \"PP abf for shared variant: 0.135%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EIF4B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.72e-07 1.80e-08 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___DDX5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.55e-05 1.72e-06 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02930 0.00142 0.92300 0.04480 0.00122 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ANXA2R__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.28400 0.01380 0.66900 0.03250 0.00104 \n", + "[1] \"PP abf for shared variant: 0.104%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___IL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.27400 0.01330 0.67900 0.03300 0.00106 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___LINC00152__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.62e-08 7.87e-10 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___FOXP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04550 0.00218 0.90700 0.04350 0.00145 \n", + "[1] \"PP abf for shared variant: 0.145%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RGS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.42e-09 4.57e-10 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-21 7.04e-23 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___KLRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.94e-05 4.83e-06 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-16 5.15e-18 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-14 7.07e-16 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___DAP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.39e-04 3.59e-05 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-11 7.13e-13 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SVIP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.40200 0.01950 0.55000 0.02670 0.00086 \n", + "[1] \"PP abf for shared variant: 0.086%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HLA-C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.50e-15 1.21e-16 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.58e-27 1.74e-28 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.91e-18 9.29e-20 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___PRKCQ-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-07 1.07e-08 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___GIMAP7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03230 0.00157 0.92000 0.04470 0.00124 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ENTPD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14400 0.00679 0.81000 0.03800 0.00115 \n", + "[1] \"PP abf for shared variant: 0.115%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___DUSP4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.37e-10 1.64e-11 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-14 9.93e-16 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__YWHAB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00228 0.00011 0.95000 0.04610 0.00130 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CCR6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.18600 0.00902 0.76700 0.03720 0.00106 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MT-ND1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.93e-03 9.35e-05 9.51e-01 4.61e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___PFN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.92e-17 4.33e-18 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ADAM19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.28700 0.01390 0.66600 0.03230 0.00112 \n", + "[1] \"PP abf for shared variant: 0.112%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CLDND1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.297000 0.014400 0.656000 0.031800 0.000988 \n", + "[1] \"PP abf for shared variant: 0.0988%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___PFDN5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.24e-07 4.49e-08 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___FBL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-09 5.07e-11 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CD37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.22300 0.01080 0.73000 0.03540 0.00102 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___APEX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.320000 0.015500 0.633000 0.030700 0.000959 \n", + "[1] \"PP abf for shared variant: 0.0959%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.55e-08 1.24e-09 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.66e-22 4.21e-23 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___LETMD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-03 5.87e-05 9.51e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___GK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002530 0.000116 0.952000 0.043600 0.001300 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___NOSIP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.27e-07 4.01e-08 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___AHNAK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01280 0.00062 0.94000 0.04560 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SLC7A5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.493000 0.023900 0.460000 0.022300 0.000766 \n", + "[1] \"PP abf for shared variant: 0.0766%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.74e-10 3.27e-11 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-20 8.81e-22 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.64e-04 3.23e-05 9.52e-01 4.62e-02 1.37e-03 \n", + "[1] \"PP abf for shared variant: 0.137%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.49e-28 3.63e-29 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.86e-13 2.84e-14 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.69e-25 1.79e-26 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MT-ATP6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.72e-05 1.80e-06 9.52e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.72e-18 1.32e-19 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CCL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.07e-06 1.49e-07 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RILPL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.21900 0.01060 0.73400 0.03560 0.00104 \n", + "[1] \"PP abf for shared variant: 0.104%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SSR2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.56e-05 1.73e-06 9.52e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003350 0.000163 0.949000 0.046100 0.001270 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__UBC\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.74e-09 2.30e-10 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.14e-14 3.95e-15 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MAF__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.11e-05 5.38e-07 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.18e-10 1.55e-11 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___COMMD6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.82e-04 2.34e-05 9.52e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.48e-07 4.11e-08 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___NSMCE1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004770 0.000232 0.948000 0.046000 0.001240 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TGFB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.01e-05 2.43e-06 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___PRDX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08140 0.00395 0.87100 0.04230 0.00120 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.37e-20 3.09e-21 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___FAM46C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02780 0.00135 0.92500 0.04490 0.00124 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.36e-22 4.06e-23 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-21 7.46e-23 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.72e-27 3.26e-28 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.39e-23 6.73e-25 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RORA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.38200 0.01850 0.57100 0.02770 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.32e-04 1.61e-05 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.39e-19 1.64e-20 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CD44__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-05 7.90e-07 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS4Y1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.44300 0.02150 0.51000 0.02470 0.00084 \n", + "[1] \"PP abf for shared variant: 0.084%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___LGALS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.68e-05 8.17e-07 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___COX7A2L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0514 0.0025 0.9010 0.0437 0.0012 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.35e-21 1.14e-22 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HADHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08250 0.00401 0.87000 0.04220 0.00116 \n", + "[1] \"PP abf for shared variant: 0.116%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SATB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.18000 0.00875 0.77200 0.03750 0.00109 \n", + "[1] \"PP abf for shared variant: 0.109%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__UGP2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03570 0.00173 0.91700 0.04450 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SBDS\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.25700 0.01250 0.69600 0.03380 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SYNE2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.005530 0.000269 0.947000 0.046000 0.001240 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TMA7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07080 0.00343 0.88200 0.04280 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___NEAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-09 7.13e-11 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___NR3C1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05040 0.00244 0.90200 0.04380 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.57e-27 3.19e-28 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CCT8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02060 0.00100 0.93200 0.04520 0.00123 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFAIP3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04700 0.00228 0.90600 0.04400 0.00120 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SH2D2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.38400 0.01740 0.57200 0.02600 0.00102 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___NPM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.83e-11 1.86e-12 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CLNS1A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004870 0.000237 0.948000 0.046000 0.001230 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RSL1D1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.27e-08 1.10e-09 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ATP6V0E1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04550 0.00221 0.90700 0.04400 0.00118 \n", + "[1] \"PP abf for shared variant: 0.118%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-26 6.14e-28 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___DUSP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.41500 0.02010 0.53800 0.02610 0.00117 \n", + "[1] \"PP abf for shared variant: 0.117%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-27 8.07e-29 9.53e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFP36L2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05200 0.00252 0.90100 0.04370 0.00122 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EIF3D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000226 0.000011 0.952000 0.046200 0.001280 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RP11-138A9.2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08630 0.00419 0.86600 0.04200 0.00118 \n", + "[1] \"PP abf for shared variant: 0.118%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.10e-19 1.99e-20 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___APRT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007240 0.000351 0.945000 0.045900 0.001450 \n", + "[1] \"PP abf for shared variant: 0.145%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___FYN__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003880 0.000188 0.949000 0.046000 0.001270 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ANP32B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08090 0.00393 0.87200 0.04230 0.00127 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___PPP2R5C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03710 0.00180 0.91500 0.04440 0.00122 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EIF3M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.69e-04 2.76e-05 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-27 1.08e-28 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CMPK1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.60e-05 2.24e-06 9.52e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__YWHAZ\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14200 0.00687 0.81100 0.03940 0.00129 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___GIMAP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.22e-08 2.05e-09 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___COTL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.24e-06 2.54e-07 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EIF2S3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.91e-11 3.84e-12 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HSP90AA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1807e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.472000 0.022900 0.480000 0.023300 0.000793 \n", + "[1] \"PP abf for shared variant: 0.0793%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MT-CYB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.80e-04 8.74e-06 9.52e-01 4.62e-02 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HSPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.277000 0.013500 0.676000 0.032800 0.000992 \n", + "[1] \"PP abf for shared variant: 0.0992%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CRIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.45e-10 2.16e-11 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.93e-09 1.42e-10 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.88e-18 4.80e-19 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TXK\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.19e-05 2.03e-06 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.11e-16 1.03e-17 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.57e-14 2.71e-15 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ANXA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-06 8.84e-08 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CLIC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.60e-05 1.75e-06 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CD99__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06360 0.00309 0.88900 0.04310 0.00120 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___LYRM4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.262000 0.012700 0.691000 0.033500 0.000983 \n", + "[1] \"PP abf for shared variant: 0.0983%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.12e-20 1.03e-21 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.41e-20 4.57e-21 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.02e-10 1.47e-11 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EZR__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002660 0.000129 0.950000 0.046100 0.001270 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ATP5A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000926 0.000045 0.952000 0.046200 0.001250 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ATP5O__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-08 5.86e-10 9.52e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07890 0.00383 0.87400 0.04240 0.00118 \n", + "[1] \"PP abf for shared variant: 0.118%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.00e-19 4.86e-21 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SUCLG2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.86e-04 1.39e-05 9.52e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CD3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04990 0.00242 0.90300 0.04380 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.02e-20 1.46e-21 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___NSA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.18e-07 5.74e-09 9.53e-01 4.62e-02 1.24e-03 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CST7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05520 0.00268 0.89700 0.04360 0.00124 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___HIGD2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14200 0.00690 0.81000 0.03930 0.00116 \n", + "[1] \"PP abf for shared variant: 0.116%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___EEF1G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.03e-09 1.47e-10 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___IGBP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003370 0.000163 0.949000 0.046100 0.001280 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___OAZ1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.90e-19 1.41e-20 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___MYH9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.579000 0.028100 0.374000 0.018200 0.000819 \n", + "[1] \"PP abf for shared variant: 0.0819%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.52e-08 3.16e-09 9.53e-01 4.62e-02 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___ATP2B1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-03 5.62e-05 9.51e-01 4.62e-02 1.32e-03 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.41e-28 6.84e-30 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RBM39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.006130 0.000298 0.946000 0.045900 0.001240 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___CCNG1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002610 0.000127 0.950000 0.046100 0.001280 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.76e-16 1.83e-17 9.53e-01 4.62e-02 1.27e-03 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___COX4I1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.005860 0.000284 0.947000 0.045900 0.001250 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___PMAIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05160 0.00251 0.90100 0.04370 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.78e-11 1.83e-12 9.52e-01 4.62e-02 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SNHG7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.77e-07 2.31e-08 9.52e-01 4.62e-02 1.29e-03 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___FHIT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.67e-10 1.78e-11 9.53e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Crohn's Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.09e-05 1.01e-06 9.52e-01 4.62e-02 1.26e-03 \n", + "[1] \"PP abf for shared variant: 0.126%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_TMEM176A___CAPG__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02360 0.00238 0.88400 0.08910 0.00084 \n", + "[1] \"PP abf for shared variant: 0.084%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_TMEM176A___PTAFR__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.070000 0.007060 0.838000 0.084500 0.000917 \n", + "[1] \"PP abf for shared variant: 0.0917%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_TMEM176A___MNDA__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.5916e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.468000 0.047200 0.439000 0.044300 0.000796 \n", + "[1] \"PP abf for shared variant: 0.0796%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_TMEM176A___RNASE6__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.167000 0.016800 0.741000 0.074700 0.000826 \n", + "[1] \"PP abf for shared variant: 0.0826%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_TMEM176A___TMEM176A__TSPO\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.213000 0.021500 0.695000 0.070100 0.000862 \n", + "[1] \"PP abf for shared variant: 0.0862%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_TMEM176A___TMEM176A__VMO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.5549e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.468000 0.046800 0.440000 0.044000 0.000792 \n", + "[1] \"PP abf for shared variant: 0.0792%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_TMEM176A___S100A9__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.212000 0.021300 0.696000 0.070200 0.000879 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_TMEM176A___QPCT__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.8504e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.409000 0.041200 0.499000 0.050200 0.000776 \n", + "[1] \"PP abf for shared variant: 0.0776%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_TMEM176A___BLVRB__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1205e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.33900 0.03420 0.56900 0.05730 0.00097 \n", + "[1] \"PP abf for shared variant: 0.097%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_TMEM176A___LYZ__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.013200 0.001330 0.894000 0.090200 0.000851 \n", + "[1] \"PP abf for shared variant: 0.0851%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_TMEM176A___CLEC4A__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.5652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.488000 0.049200 0.420000 0.042300 0.000751 \n", + "[1] \"PP abf for shared variant: 0.0751%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL36__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003500 0.000437 0.885000 0.111000 0.000791 \n", + "[1] \"PP abf for shared variant: 0.0791%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL5__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.108000 0.013500 0.780000 0.097500 0.000834 \n", + "[1] \"PP abf for shared variant: 0.0834%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.051300 0.006410 0.837000 0.105000 0.000795 \n", + "[1] \"PP abf for shared variant: 0.0795%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL32__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004220 0.000527 0.884000 0.110000 0.000787 \n", + "[1] \"PP abf for shared variant: 0.0787%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___EEF1A1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.12200 0.01520 0.76600 0.09570 0.00079 \n", + "[1] \"PP abf for shared variant: 0.079%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL38__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.023300 0.002920 0.865000 0.108000 0.000805 \n", + "[1] \"PP abf for shared variant: 0.0805%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL35A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.031000 0.003870 0.857000 0.107000 0.000795 \n", + "[1] \"PP abf for shared variant: 0.0795%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL3__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.052200 0.006520 0.836000 0.104000 0.000809 \n", + "[1] \"PP abf for shared variant: 0.0809%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPS4X__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.116000 0.014500 0.773000 0.096500 0.000834 \n", + "[1] \"PP abf for shared variant: 0.0834%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPS3A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.118000 0.014800 0.770000 0.096200 0.000865 \n", + "[1] \"PP abf for shared variant: 0.0865%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPS15A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.036100 0.004510 0.852000 0.106000 0.000789 \n", + "[1] \"PP abf for shared variant: 0.0789%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPS8__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.041500 0.005180 0.847000 0.106000 0.000805 \n", + "[1] \"PP abf for shared variant: 0.0805%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPS25__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.115000 0.014400 0.773000 0.096600 0.000807 \n", + "[1] \"PP abf for shared variant: 0.0807%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPS12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001830 0.000229 0.886000 0.111000 0.000784 \n", + "[1] \"PP abf for shared variant: 0.0784%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___NKG7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.062400 0.007790 0.826000 0.103000 0.000806 \n", + "[1] \"PP abf for shared variant: 0.0806%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___B2M__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.012700 0.001590 0.876000 0.109000 0.000788 \n", + "[1] \"PP abf for shared variant: 0.0788%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL15__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.025700 0.003210 0.863000 0.108000 0.000805 \n", + "[1] \"PP abf for shared variant: 0.0805%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___PFN1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008660 0.001080 0.880000 0.110000 0.000786 \n", + "[1] \"PP abf for shared variant: 0.0786%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPS28__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.029900 0.003740 0.858000 0.107000 0.000816 \n", + "[1] \"PP abf for shared variant: 0.0816%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL13A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.034600 0.004330 0.854000 0.107000 0.000788 \n", + "[1] \"PP abf for shared variant: 0.0788%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___GZMH__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008760 0.001090 0.879000 0.110000 0.000788 \n", + "[1] \"PP abf for shared variant: 0.0788%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___LTB__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.016400 0.002050 0.872000 0.109000 0.000794 \n", + "[1] \"PP abf for shared variant: 0.0794%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL39__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02470 0.00309 0.86400 0.10800 0.00079 \n", + "[1] \"PP abf for shared variant: 0.079%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPS14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.033900 0.004240 0.854000 0.107000 0.000786 \n", + "[1] \"PP abf for shared variant: 0.0786%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.021700 0.002710 0.867000 0.108000 0.000787 \n", + "[1] \"PP abf for shared variant: 0.0787%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPS23__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.010000 0.001250 0.878000 0.110000 0.000792 \n", + "[1] \"PP abf for shared variant: 0.0792%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPS29__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.014900 0.001860 0.873000 0.109000 0.000793 \n", + "[1] \"PP abf for shared variant: 0.0793%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL22__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.096900 0.012100 0.791000 0.098900 0.000789 \n", + "[1] \"PP abf for shared variant: 0.0789%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL9__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04060 0.00507 0.84800 0.10600 0.00080 \n", + "[1] \"PP abf for shared variant: 0.08%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.092300 0.011500 0.796000 0.099400 0.000827 \n", + "[1] \"PP abf for shared variant: 0.0827%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.076300 0.009530 0.812000 0.101000 0.000802 \n", + "[1] \"PP abf for shared variant: 0.0802%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.00027483\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.694000 0.086800 0.194000 0.024200 0.000845 \n", + "[1] \"PP abf for shared variant: 0.0845%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___MAL__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.044700 0.005540 0.844000 0.105000 0.000804 \n", + "[1] \"PP abf for shared variant: 0.0804%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___PRF1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.11700 0.01470 0.77100 0.09630 0.00082 \n", + "[1] \"PP abf for shared variant: 0.082%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPS13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001770 0.000221 0.886000 0.111000 0.000785 \n", + "[1] \"PP abf for shared variant: 0.0785%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPS6__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.020200 0.002530 0.868000 0.108000 0.000796 \n", + "[1] \"PP abf for shared variant: 0.0796%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPS18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002040 0.000254 0.886000 0.111000 0.000790 \n", + "[1] \"PP abf for shared variant: 0.079%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL21__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.013100 0.001630 0.875000 0.109000 0.000791 \n", + "[1] \"PP abf for shared variant: 0.0791%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___SMDT1__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.81e-04 6.01e-05 8.88e-01 1.11e-01 7.90e-04 \n", + "[1] \"PP abf for shared variant: 0.079%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.020900 0.002620 0.867000 0.108000 0.000792 \n", + "[1] \"PP abf for shared variant: 0.0792%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL11__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002260 0.000282 0.886000 0.111000 0.000794 \n", + "[1] \"PP abf for shared variant: 0.0794%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL34__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008440 0.001050 0.880000 0.110000 0.000801 \n", + "[1] \"PP abf for shared variant: 0.0801%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL10A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.013100 0.001640 0.875000 0.109000 0.000796 \n", + "[1] \"PP abf for shared variant: 0.0796%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_SMDT1___RPL30__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.018200 0.002280 0.870000 0.109000 0.000806 \n", + "[1] \"PP abf for shared variant: 0.0806%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPL3__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002900 0.000362 0.885000 0.111000 0.000838 \n", + "[1] \"PP abf for shared variant: 0.0838%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPS25__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.095600 0.011900 0.793000 0.099000 0.000823 \n", + "[1] \"PP abf for shared variant: 0.0823%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPL13A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.010900 0.001370 0.877000 0.110000 0.000793 \n", + "[1] \"PP abf for shared variant: 0.0793%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPS13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007240 0.000905 0.881000 0.110000 0.000790 \n", + "[1] \"PP abf for shared variant: 0.079%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPS4X__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.188000 0.023500 0.700000 0.087400 0.000813 \n", + "[1] \"PP abf for shared variant: 0.0813%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPS18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.159000 0.019800 0.730000 0.091100 0.000895 \n", + "[1] \"PP abf for shared variant: 0.0895%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPL31__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.151000 0.018900 0.737000 0.092100 0.000795 \n", + "[1] \"PP abf for shared variant: 0.0795%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPS15__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06910 0.00863 0.81900 0.10200 0.00088 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___ACTB__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007790 0.000974 0.880000 0.110000 0.000798 \n", + "[1] \"PP abf for shared variant: 0.0798%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPL36__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.056400 0.007050 0.832000 0.104000 0.000792 \n", + "[1] \"PP abf for shared variant: 0.0792%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPL35A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000869 0.000109 0.887000 0.111000 0.000788 \n", + "[1] \"PP abf for shared variant: 0.0788%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPS12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.184000 0.023000 0.704000 0.088000 0.000782 \n", + "[1] \"PP abf for shared variant: 0.0782%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPL11__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.041800 0.005220 0.846000 0.106000 0.000791 \n", + "[1] \"PP abf for shared variant: 0.0791%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPL14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.047100 0.005880 0.841000 0.105000 0.000786 \n", + "[1] \"PP abf for shared variant: 0.0786%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPL10__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.017700 0.002210 0.870000 0.109000 0.000984 \n", + "[1] \"PP abf for shared variant: 0.0984%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPS3A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06120 0.00765 0.82700 0.10300 0.00117 \n", + "[1] \"PP abf for shared variant: 0.117%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0032661\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.685000 0.085600 0.203000 0.025300 0.000841 \n", + "[1] \"PP abf for shared variant: 0.0841%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___CD48__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06240 0.00779 0.82600 0.10300 0.00080 \n", + "[1] \"PP abf for shared variant: 0.08%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPL7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.104000 0.013000 0.784000 0.098000 0.000819 \n", + "[1] \"PP abf for shared variant: 0.0819%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_SMDT1___RPS27__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.179000 0.022300 0.709000 0.088600 0.000794 \n", + "[1] \"PP abf for shared variant: 0.0794%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_HLA-DQA2___CST3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.20e-22 3.54e-01 5.56e-22 6.13e-01 3.30e-02 \n", + "[1] \"PP abf for shared variant: 3.3%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.36e-22 2.60e-01 6.43e-22 7.10e-01 3.00e-02 \n", + "[1] \"PP abf for shared variant: 3%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.64e-22 1.81e-01 7.08e-22 7.82e-01 3.78e-02 \n", + "[1] \"PP abf for shared variant: 3.78%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_HLA-DQA2___CLIC3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.65e-22 2.93e-01 4.72e-22 5.19e-01 1.88e-01 \n", + "[1] \"PP abf for shared variant: 18.8%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__PTPRCAP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.57e-22 5.04e-01 3.93e-22 4.33e-01 6.27e-02 \n", + "[1] \"PP abf for shared variant: 6.27%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_HLA-DQA2___CDKN2D__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.5969e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.18e-22 4.61e-01 4.65e-22 5.13e-01 2.59e-02 \n", + "[1] \"PP abf for shared variant: 2.59%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__YBX1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.0931e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.17e-22 5.70e-01 3.25e-22 3.58e-01 7.19e-02 \n", + "[1] \"PP abf for shared variant: 7.19%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.94e-22 4.35e-01 4.64e-22 5.12e-01 5.28e-02 \n", + "[1] \"PP abf for shared variant: 5.28%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-22 1.45e-01 7.53e-22 8.32e-01 2.33e-02 \n", + "[1] \"PP abf for shared variant: 2.33%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__MAP1A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.54e-22 5.01e-01 4.19e-22 4.62e-01 3.68e-02 \n", + "[1] \"PP abf for shared variant: 3.68%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_HLA-DQA2___FAM129C__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.79e-22 3.08e-01 5.55e-22 6.12e-01 7.94e-02 \n", + "[1] \"PP abf for shared variant: 7.94%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__MT-CO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1338e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.60e-22 5.08e-01 3.99e-22 4.40e-01 5.23e-02 \n", + "[1] \"PP abf for shared variant: 5.23%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-22 1.61e-01 7.21e-22 7.96e-01 4.36e-02 \n", + "[1] \"PP abf for shared variant: 4.36%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___CST3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.53e-23 1.92e-02 5.76e-22 7.20e-01 2.61e-01 \n", + "[1] \"PP abf for shared variant: 26.1%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-25 3.34e-04 7.04e-22 8.82e-01 1.17e-01 \n", + "[1] \"PP abf for shared variant: 11.7%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___CD74__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.86e-25 3.59e-04 7.24e-22 9.08e-01 9.19e-02 \n", + "[1] \"PP abf for shared variant: 9.19%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.24e-24 4.07e-03 7.19e-22 9.02e-01 9.37e-02 \n", + "[1] \"PP abf for shared variant: 9.37%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.79e-25 7.27e-04 7.17e-22 9.00e-01 9.97e-02 \n", + "[1] \"PP abf for shared variant: 9.97%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.80e-25 3.52e-04 6.80e-22 8.52e-01 1.48e-01 \n", + "[1] \"PP abf for shared variant: 14.8%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DMA__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-24 1.30e-03 5.86e-22 7.33e-01 2.66e-01 \n", + "[1] \"PP abf for shared variant: 26.6%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS23\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.21e-23 4.04e-02 6.68e-22 8.37e-01 1.22e-01 \n", + "[1] \"PP abf for shared variant: 12.2%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.57e-23 1.08e-01 5.99e-22 7.51e-01 1.41e-01 \n", + "[1] \"PP abf for shared variant: 14.1%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.28e-22 1.61e-01 5.91e-22 7.41e-01 9.84e-02 \n", + "[1] \"PP abf for shared variant: 9.84%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___EEF1A1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.73e-24 1.10e-02 7.33e-22 9.20e-01 6.89e-02 \n", + "[1] \"PP abf for shared variant: 6.89%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.29e-23 1.62e-02 6.64e-22 8.33e-01 1.51e-01 \n", + "[1] \"PP abf for shared variant: 15.1%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.46e-23 6.86e-02 5.76e-22 7.22e-01 2.10e-01 \n", + "[1] \"PP abf for shared variant: 21%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DMB__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.82e-23 4.79e-02 6.29e-22 7.88e-01 1.64e-01 \n", + "[1] \"PP abf for shared variant: 16.4%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.16e-24 3.97e-03 7.40e-22 9.29e-01 6.68e-02 \n", + "[1] \"PP abf for shared variant: 6.68%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.14e-24 2.69e-03 6.93e-22 8.69e-01 1.28e-01 \n", + "[1] \"PP abf for shared variant: 12.8%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-22 1.50e-01 5.46e-22 6.83e-01 1.66e-01 \n", + "[1] \"PP abf for shared variant: 16.6%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RNASET2___HLA-DRB5__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-22 1.50e-01 6.76e-22 8.49e-01 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_HLA-DQA2___CCL5__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.06e-23 6.35e-02 7.02e-22 8.82e-01 5.49e-02 \n", + "[1] \"PP abf for shared variant: 5.49%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_HLA-DQA2___CD74__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.87e-22 2.35e-01 5.55e-22 6.96e-01 6.90e-02 \n", + "[1] \"PP abf for shared variant: 6.9%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-22 1.76e-01 5.67e-22 7.11e-01 1.13e-01 \n", + "[1] \"PP abf for shared variant: 11.3%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__NKG7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.20e-23 4.01e-02 7.22e-22 9.06e-01 5.36e-02 \n", + "[1] \"PP abf for shared variant: 5.36%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPL34\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.03e-23 1.01e-01 6.81e-22 8.54e-01 4.47e-02 \n", + "[1] \"PP abf for shared variant: 4.47%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-22 1.41e-01 6.51e-22 8.18e-01 4.11e-02 \n", + "[1] \"PP abf for shared variant: 4.11%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_HLA-DQA2___CMC1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.64e-23 9.60e-02 6.81e-22 8.55e-01 4.94e-02 \n", + "[1] \"PP abf for shared variant: 4.94%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS14\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.44e-23 4.31e-02 6.53e-22 8.18e-01 1.38e-01 \n", + "[1] \"PP abf for shared variant: 13.8%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.74e-23 4.70e-02 7.16e-22 8.99e-01 5.40e-02 \n", + "[1] \"PP abf for shared variant: 5.4%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.36e-22 1.70e-01 5.73e-22 7.18e-01 1.12e-01 \n", + "[1] \"PP abf for shared variant: 11.2%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.26e-22 1.58e-01 5.74e-22 7.19e-01 1.23e-01 \n", + "[1] \"PP abf for shared variant: 12.3%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.77e-22 2.22e-01 5.65e-22 7.09e-01 6.88e-02 \n", + "[1] \"PP abf for shared variant: 6.88%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___CD52__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.63e-23 4.56e-02 6.88e-22 8.63e-01 9.15e-02 \n", + "[1] \"PP abf for shared variant: 9.15%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-22 2.24e-01 5.23e-22 6.55e-01 1.21e-01 \n", + "[1] \"PP abf for shared variant: 12.1%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.52e-23 4.42e-02 7.40e-22 9.30e-01 2.61e-02 \n", + "[1] \"PP abf for shared variant: 2.61%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.49e-23 6.90e-02 6.77e-22 8.49e-01 8.22e-02 \n", + "[1] \"PP abf for shared variant: 8.22%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___EEF1B2__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.37e-23 8.00e-02 6.37e-22 7.99e-01 1.21e-01 \n", + "[1] \"PP abf for shared variant: 12.1%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.02e-23 1.01e-01 6.04e-22 7.58e-01 1.42e-01 \n", + "[1] \"PP abf for shared variant: 14.2%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___B2M__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.80e-23 4.78e-02 6.80e-22 8.53e-01 9.97e-02 \n", + "[1] \"PP abf for shared variant: 9.97%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___GAPDH__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.53e-22 1.92e-01 5.47e-22 6.86e-01 1.22e-01 \n", + "[1] \"PP abf for shared variant: 12.2%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL32\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.73e-23 8.45e-02 5.96e-22 7.47e-01 1.69e-01 \n", + "[1] \"PP abf for shared variant: 16.9%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.53e-22 3.18e-01 4.75e-22 5.96e-01 8.54e-02 \n", + "[1] \"PP abf for shared variant: 8.54%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.51e-23 3.15e-02 6.56e-22 8.22e-01 1.46e-01 \n", + "[1] \"PP abf for shared variant: 14.6%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RNASET2___ITGB1__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.79e-08 5.29e-03 6.77e-06 6.14e-01 3.80e-01 \n", + "[1] \"PP abf for shared variant: 38%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RNASET2___CRIP1__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.44e-07 4.96e-02 5.62e-06 5.09e-01 4.42e-01 \n", + "[1] \"PP abf for shared variant: 44.2%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RNASET2___B2M__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.52e-07 2.30e-02 6.11e-06 5.54e-01 4.23e-01 \n", + "[1] \"PP abf for shared variant: 42.3%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RNASET2___ALOX5AP__RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.61e-07 7.86e-02 7.81e-06 7.11e-01 2.11e-01 \n", + "[1] \"PP abf for shared variant: 21.1%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_RPS26___RPS26__RPS8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.0253e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.689000 0.011500 0.294000 0.004910 0.000358 \n", + "[1] \"PP abf for shared variant: 0.0358%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.556000 0.009300 0.427000 0.007130 0.000452 \n", + "[1] \"PP abf for shared variant: 0.0452%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"DC_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.615000 0.010300 0.368000 0.006150 0.000389 \n", + "[1] \"PP abf for shared variant: 0.0389%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.290000 0.005050 0.692000 0.012000 0.000725 \n", + "[1] \"PP abf for shared variant: 0.0725%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS26__UBE2J1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 8.0878e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.622000 0.010800 0.360000 0.006250 0.000379 \n", + "[1] \"PP abf for shared variant: 0.0379%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.101000 0.001760 0.881000 0.015300 0.000811 \n", + "[1] \"PP abf for shared variant: 0.0811%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.566000 0.009850 0.416000 0.007230 0.000421 \n", + "[1] \"PP abf for shared variant: 0.0421%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1042e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.551000 0.009590 0.431000 0.007490 0.000448 \n", + "[1] \"PP abf for shared variant: 0.0448%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS28\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.1644e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.750000 0.013000 0.233000 0.004040 0.000279 \n", + "[1] \"PP abf for shared variant: 0.0279%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.19e-04 1.25e-05 9.81e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL39__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.0557e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.692000 0.012000 0.291000 0.005060 0.000373 \n", + "[1] \"PP abf for shared variant: 0.0373%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.009770 0.000170 0.972000 0.016900 0.000876 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.176000 0.003060 0.806000 0.014000 0.000744 \n", + "[1] \"PP abf for shared variant: 0.0744%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004890 0.000085 0.977000 0.017000 0.000885 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.567000 0.009850 0.416000 0.007230 0.000421 \n", + "[1] \"PP abf for shared variant: 0.0421%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.413000 0.007180 0.570000 0.009900 0.000599 \n", + "[1] \"PP abf for shared variant: 0.0599%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL26__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.7757e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.590000 0.010300 0.393000 0.006830 0.000419 \n", + "[1] \"PP abf for shared variant: 0.0419%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.116000 0.002010 0.867000 0.015100 0.000817 \n", + "[1] \"PP abf for shared variant: 0.0817%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.483000 0.008400 0.500000 0.008680 0.000491 \n", + "[1] \"PP abf for shared variant: 0.0491%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS25__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2778e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.577000 0.010000 0.405000 0.007040 0.000425 \n", + "[1] \"PP abf for shared variant: 0.0425%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS29\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0623e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.75100 0.01310 0.23100 0.00402 0.00029 \n", + "[1] \"PP abf for shared variant: 0.029%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.040600 0.000707 0.941000 0.016400 0.000853 \n", + "[1] \"PP abf for shared variant: 0.0853%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.079700 0.001390 0.902000 0.015700 0.000852 \n", + "[1] \"PP abf for shared variant: 0.0852%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.260000 0.004510 0.723000 0.012600 0.000755 \n", + "[1] \"PP abf for shared variant: 0.0755%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.86e-05 1.37e-06 9.82e-01 1.71e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1408e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.767000 0.013300 0.216000 0.003750 0.000266 \n", + "[1] \"PP abf for shared variant: 0.0266%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.791e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.564000 0.009810 0.418000 0.007270 0.000419 \n", + "[1] \"PP abf for shared variant: 0.0419%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1436e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.715000 0.012400 0.267000 0.004650 0.000306 \n", + "[1] \"PP abf for shared variant: 0.0306%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1123e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.801000 0.013900 0.181000 0.003150 0.000224 \n", + "[1] \"PP abf for shared variant: 0.0224%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.210000 0.003650 0.772000 0.013400 0.000755 \n", + "[1] \"PP abf for shared variant: 0.0755%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.204000 0.003550 0.778000 0.013500 0.000706 \n", + "[1] \"PP abf for shared variant: 0.0706%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.75e-05 3.05e-07 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.182000 0.003160 0.801000 0.013900 0.000753 \n", + "[1] \"PP abf for shared variant: 0.0753%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.028600 0.000497 0.953000 0.016600 0.000866 \n", + "[1] \"PP abf for shared variant: 0.0866%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.22e-05 5.60e-07 9.82e-01 1.71e-02 8.90e-04 \n", + "[1] \"PP abf for shared variant: 0.089%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.162000 0.002810 0.821000 0.014300 0.000791 \n", + "[1] \"PP abf for shared variant: 0.0791%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPL23A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1639e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.763000 0.013300 0.220000 0.003830 0.000249 \n", + "[1] \"PP abf for shared variant: 0.0249%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"B_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.067300 0.001170 0.915000 0.015900 0.000847 \n", + "[1] \"PP abf for shared variant: 0.0847%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-08 3.14e-10 9.82e-01 1.70e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.93e-12 3.35e-14 9.82e-01 1.70e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.097800 0.001690 0.884000 0.015300 0.000847 \n", + "[1] \"PP abf for shared variant: 0.0847%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.30e-08 5.71e-10 9.82e-01 1.70e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.88e-06 3.26e-08 9.82e-01 1.70e-02 9.13e-04 \n", + "[1] \"PP abf for shared variant: 0.0913%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.54e-05 1.30e-06 9.82e-01 1.70e-02 9.53e-04 \n", + "[1] \"PP abf for shared variant: 0.0953%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.31e-17 5.72e-19 9.82e-01 1.70e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.24e-11 1.43e-12 9.82e-01 1.70e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.10e-12 8.83e-14 9.82e-01 1.70e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.02e-11 1.22e-12 9.82e-01 1.70e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-05 2.07e-07 9.82e-01 1.70e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.37e-03 2.36e-05 9.81e-01 1.70e-02 8.97e-04 \n", + "[1] \"PP abf for shared variant: 0.0897%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-11 3.00e-13 9.82e-01 1.70e-02 9.48e-04 \n", + "[1] \"PP abf for shared variant: 0.0948%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.39e-15 5.86e-17 9.82e-01 1.70e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.033000 0.000572 0.949000 0.016400 0.000863 \n", + "[1] \"PP abf for shared variant: 0.0863%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07210 0.00125 0.91000 0.01570 0.00086 \n", + "[1] \"PP abf for shared variant: 0.086%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.27e-10 3.92e-12 9.82e-01 1.70e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-06 2.20e-08 9.82e-01 1.70e-02 9.45e-04 \n", + "[1] \"PP abf for shared variant: 0.0945%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.011700 0.000202 0.970000 0.016800 0.000958 \n", + "[1] \"PP abf for shared variant: 0.0958%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.04e-07 8.73e-09 9.82e-01 1.70e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-17 1.88e-19 9.82e-01 1.70e-02 8.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0877%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.57e-11 6.17e-13 9.82e-01 1.70e-02 8.98e-04 \n", + "[1] \"PP abf for shared variant: 0.0898%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.32e-11 7.48e-13 9.82e-01 1.70e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__SPON2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.014100 0.000243 0.968000 0.016700 0.000938 \n", + "[1] \"PP abf for shared variant: 0.0938%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-05 3.71e-07 9.82e-01 1.70e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-19 2.86e-21 9.82e-01 1.70e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.52e-13 6.08e-15 9.82e-01 1.70e-02 8.91e-04 \n", + "[1] \"PP abf for shared variant: 0.0891%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.81e-12 1.18e-13 9.82e-01 1.70e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.68e-13 8.10e-15 9.82e-01 1.70e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-06 2.59e-08 9.82e-01 1.70e-02 9.16e-04 \n", + "[1] \"PP abf for shared variant: 0.0916%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.237000 0.004100 0.745000 0.012900 0.000768 \n", + "[1] \"PP abf for shared variant: 0.0768%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-05 2.12e-07 9.82e-01 1.70e-02 1.01e-03 \n", + "[1] \"PP abf for shared variant: 0.101%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___PRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1991e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.500000 0.008650 0.483000 0.008350 0.000531 \n", + "[1] \"PP abf for shared variant: 0.0531%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.86e-09 4.94e-11 9.82e-01 1.70e-02 8.90e-04 \n", + "[1] \"PP abf for shared variant: 0.089%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.76e-12 6.50e-14 9.82e-01 1.70e-02 8.90e-04 \n", + "[1] \"PP abf for shared variant: 0.089%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.01e-09 3.48e-11 9.82e-01 1.70e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-12 1.80e-14 9.82e-01 1.70e-02 9.48e-04 \n", + "[1] \"PP abf for shared variant: 0.0948%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-15 2.25e-17 9.82e-01 1.70e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.18e-18 5.51e-20 9.82e-01 1.70e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.21e-04 7.29e-06 9.82e-01 1.70e-02 9.57e-04 \n", + "[1] \"PP abf for shared variant: 0.0957%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.97e-10 1.03e-11 9.82e-01 1.70e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-04 1.82e-06 9.82e-01 1.70e-02 9.65e-04 \n", + "[1] \"PP abf for shared variant: 0.0965%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.51e-10 7.80e-12 9.82e-01 1.70e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.08e-13 3.61e-15 9.82e-01 1.70e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-08 1.78e-10 9.82e-01 1.70e-02 9.90e-04 \n", + "[1] \"PP abf for shared variant: 0.099%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-15 3.56e-17 9.82e-01 1.70e-02 9.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0976%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-13 1.94e-15 9.82e-01 1.70e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.56e-04 1.65e-05 9.81e-01 1.70e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.97e-13 6.86e-15 9.82e-01 1.70e-02 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.425000 0.007360 0.557000 0.009630 0.000564 \n", + "[1] \"PP abf for shared variant: 0.0564%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.43e-07 5.93e-09 9.82e-01 1.70e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.023500 0.000406 0.959000 0.016600 0.000870 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.28e-08 5.67e-10 9.82e-01 1.70e-02 9.00e-04 \n", + "[1] \"PP abf for shared variant: 0.09%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.53e-04 4.38e-06 9.82e-01 1.70e-02 1.07e-03 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.84e-18 1.36e-19 9.82e-01 1.70e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-07 3.78e-09 9.82e-01 1.70e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.12e-09 3.66e-11 9.82e-01 1.70e-02 8.94e-04 \n", + "[1] \"PP abf for shared variant: 0.0894%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.96e-06 3.38e-08 9.82e-01 1.70e-02 8.99e-04 \n", + "[1] \"PP abf for shared variant: 0.0899%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.51e-10 6.07e-12 9.82e-01 1.70e-02 1.03e-03 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.76e-15 3.05e-17 9.82e-01 1.70e-02 9.68e-04 \n", + "[1] \"PP abf for shared variant: 0.0968%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.25e-06 3.89e-08 9.82e-01 1.70e-02 1.01e-03 \n", + "[1] \"PP abf for shared variant: 0.101%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-05 3.96e-07 9.82e-01 1.70e-02 9.47e-04 \n", + "[1] \"PP abf for shared variant: 0.0947%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___GPR183__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.340000 0.005890 0.642000 0.011100 0.000622 \n", + "[1] \"PP abf for shared variant: 0.0622%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.23e-16 9.06e-18 9.82e-01 1.70e-02 8.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0892%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.010400 0.000180 0.972000 0.016800 0.000879 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.55e-08 2.68e-10 9.82e-01 1.70e-02 8.95e-04 \n", + "[1] \"PP abf for shared variant: 0.0895%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.40e-06 5.88e-08 9.82e-01 1.70e-02 9.21e-04 \n", + "[1] \"PP abf for shared variant: 0.0921%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.57e-05 9.64e-07 9.82e-01 1.70e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.14e-05 3.70e-07 9.82e-01 1.70e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.58e-07 1.14e-08 9.82e-01 1.70e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___GZMB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4099e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.458000 0.007920 0.525000 0.009070 0.000533 \n", + "[1] \"PP abf for shared variant: 0.0533%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___EEF1D__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5173e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.812000 0.014000 0.171000 0.002950 0.000213 \n", + "[1] \"PP abf for shared variant: 0.0213%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-03 2.08e-05 9.81e-01 1.70e-02 1.02e-03 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.70e-07 1.51e-08 9.82e-01 1.70e-02 8.99e-04 \n", + "[1] \"PP abf for shared variant: 0.0899%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.12e-13 8.86e-15 9.82e-01 1.70e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___KLRC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.103000 0.001780 0.879000 0.015200 0.000936 \n", + "[1] \"PP abf for shared variant: 0.0936%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL17__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.4275e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.717000 0.012400 0.266000 0.004590 0.000365 \n", + "[1] \"PP abf for shared variant: 0.0365%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-06 2.67e-08 9.82e-01 1.70e-02 9.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0979%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.17e-08 2.03e-10 9.82e-01 1.70e-02 8.93e-04 \n", + "[1] \"PP abf for shared variant: 0.0893%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___MALAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.019900 0.000344 0.962000 0.016600 0.000897 \n", + "[1] \"PP abf for shared variant: 0.0897%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.17e-03 5.49e-05 9.79e-01 1.69e-02 9.21e-04 \n", + "[1] \"PP abf for shared variant: 0.0921%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.13e-11 1.06e-12 9.82e-01 1.70e-02 8.98e-04 \n", + "[1] \"PP abf for shared variant: 0.0898%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___HLA-B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8351e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.675000 0.011700 0.307000 0.005310 0.000344 \n", + "[1] \"PP abf for shared variant: 0.0344%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.83e-07 1.18e-08 9.82e-01 1.70e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.29e-05 1.26e-06 9.82e-01 1.70e-02 9.52e-04 \n", + "[1] \"PP abf for shared variant: 0.0952%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___FGFBP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.331000 0.005720 0.652000 0.011300 0.000741 \n", + "[1] \"PP abf for shared variant: 0.0741%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.009590 0.000166 0.972000 0.016800 0.000992 \n", + "[1] \"PP abf for shared variant: 0.0992%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.95e-04 1.03e-05 9.81e-01 1.70e-02 9.58e-04 \n", + "[1] \"PP abf for shared variant: 0.0958%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-03 1.78e-05 9.81e-01 1.70e-02 8.98e-04 \n", + "[1] \"PP abf for shared variant: 0.0898%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.049200 0.000851 0.933000 0.016100 0.000958 \n", + "[1] \"PP abf for shared variant: 0.0958%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__ZEB2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.574e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.765000 0.012600 0.218000 0.003610 0.000249 \n", + "[1] \"PP abf for shared variant: 0.0249%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.33e-06 1.44e-07 9.82e-01 1.70e-02 1.01e-03 \n", + "[1] \"PP abf for shared variant: 0.101%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.11e-15 1.40e-16 9.82e-01 1.70e-02 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___NACA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.2336e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.663000 0.011500 0.319000 0.005520 0.000347 \n", + "[1] \"PP abf for shared variant: 0.0347%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.73e-10 1.34e-11 9.82e-01 1.70e-02 9.18e-04 \n", + "[1] \"PP abf for shared variant: 0.0918%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"NK_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.92e-11 1.02e-12 9.82e-01 1.70e-02 9.08e-04 \n", + "[1] \"PP abf for shared variant: 0.0908%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___NRGN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7437e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.550000 0.009620 0.432000 0.007540 0.000504 \n", + "[1] \"PP abf for shared variant: 0.0504%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.297000 0.005190 0.685000 0.012000 0.000649 \n", + "[1] \"PP abf for shared variant: 0.0649%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.68e-03 2.93e-05 9.80e-01 1.71e-02 9.20e-04 \n", + "[1] \"PP abf for shared variant: 0.092%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.85e-06 3.23e-08 9.82e-01 1.71e-02 1.02e-03 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.46e-16 7.78e-18 9.82e-01 1.71e-02 8.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0877%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-06 1.96e-08 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.75e-09 3.07e-11 9.82e-01 1.71e-02 8.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.016000 0.000279 0.966000 0.016900 0.000913 \n", + "[1] \"PP abf for shared variant: 0.0913%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.26e-09 1.62e-10 9.82e-01 1.71e-02 8.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.15e-14 2.00e-16 9.82e-01 1.71e-02 8.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__VCAN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.478000 0.008360 0.504000 0.008800 0.000507 \n", + "[1] \"PP abf for shared variant: 0.0507%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__UQCRH\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-05 2.78e-07 9.82e-01 1.71e-02 8.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC7A7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.014500 0.000253 0.967000 0.016900 0.000902 \n", + "[1] \"PP abf for shared variant: 0.0902%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___EPB41L3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.263000 0.004550 0.720000 0.012400 0.000696 \n", + "[1] \"PP abf for shared variant: 0.0696%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007850 0.000137 0.974000 0.017000 0.000953 \n", + "[1] \"PP abf for shared variant: 0.0953%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.44e-14 7.77e-16 9.82e-01 1.71e-02 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___HNRNPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.015700 0.000275 0.966000 0.016900 0.000867 \n", + "[1] \"PP abf for shared variant: 0.0867%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___QARS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.292000 0.005090 0.691000 0.012100 0.000707 \n", + "[1] \"PP abf for shared variant: 0.0707%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___HLA-DPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.46e-06 7.79e-08 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.30e-15 9.26e-17 9.82e-01 1.71e-02 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.04e-06 1.40e-07 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.02e-15 5.28e-17 9.82e-01 1.71e-02 8.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0874%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-08 2.55e-10 9.82e-01 1.71e-02 9.38e-04 \n", + "[1] \"PP abf for shared variant: 0.0938%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.92e-09 3.35e-11 9.82e-01 1.71e-02 8.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0874%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.94e-12 1.04e-13 9.82e-01 1.71e-02 8.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0875%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.021800 0.000381 0.960000 0.016800 0.000869 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.65e-10 1.69e-11 9.82e-01 1.71e-02 8.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0875%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___CSTA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.93e-04 1.56e-05 9.81e-01 1.71e-02 9.12e-04 \n", + "[1] \"PP abf for shared variant: 0.0912%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.56e-07 4.47e-09 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.145000 0.002530 0.837000 0.014600 0.000787 \n", + "[1] \"PP abf for shared variant: 0.0787%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-12 2.85e-14 9.82e-01 1.71e-02 8.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.62e-03 4.57e-05 9.79e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.75e-15 1.18e-16 9.82e-01 1.71e-02 8.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___ERP29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.359000 0.006280 0.623000 0.010900 0.000611 \n", + "[1] \"PP abf for shared variant: 0.0611%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__TNFAIP2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.349000 0.006100 0.633000 0.011000 0.000752 \n", + "[1] \"PP abf for shared variant: 0.0752%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__VIM\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.016800 0.000293 0.965000 0.016900 0.000879 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.89e-12 1.38e-13 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.95e-20 1.04e-21 9.82e-01 1.71e-02 8.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0874%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.03e-11 3.55e-13 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-05 2.56e-07 9.82e-01 1.71e-02 9.15e-04 \n", + "[1] \"PP abf for shared variant: 0.0915%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.98e-10 6.96e-12 9.82e-01 1.71e-02 9.65e-04 \n", + "[1] \"PP abf for shared variant: 0.0965%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.96e-09 8.67e-11 9.82e-01 1.71e-02 8.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0877%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-04 1.92e-06 9.82e-01 1.71e-02 8.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0892%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.92e-03 3.35e-05 9.80e-01 1.71e-02 9.10e-04 \n", + "[1] \"PP abf for shared variant: 0.091%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000632 0.000011 0.981000 0.017100 0.000885 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.16e-13 3.78e-15 9.82e-01 1.71e-02 8.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0874%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-15 1.88e-17 9.82e-01 1.71e-02 8.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC25A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.20e-09 1.61e-10 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-04 3.67e-06 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.47e-11 1.13e-12 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPSA\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1173e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.380000 0.006630 0.603000 0.010500 0.000585 \n", + "[1] \"PP abf for shared variant: 0.0585%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.44e-07 1.13e-08 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.59e-10 4.53e-12 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-07 2.70e-09 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.33e-03 5.81e-05 9.79e-01 1.71e-02 9.50e-04 \n", + "[1] \"PP abf for shared variant: 0.095%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.94e-09 1.39e-10 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.11e-06 8.94e-08 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___HLA-DPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.025400 0.000443 0.957000 0.016700 0.000875 \n", + "[1] \"PP abf for shared variant: 0.0875%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.34e-11 2.33e-13 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.94e-11 1.39e-12 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.54e-05 1.14e-06 9.82e-01 1.71e-02 8.95e-04 \n", + "[1] \"PP abf for shared variant: 0.0895%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___PABPC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.25e-04 7.42e-06 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___CST3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7382e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.591000 0.010300 0.391000 0.006830 0.000435 \n", + "[1] \"PP abf for shared variant: 0.0435%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___EMP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.037400 0.000654 0.945000 0.016500 0.000871 \n", + "[1] \"PP abf for shared variant: 0.0871%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___GNLY__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.277000 0.004840 0.705000 0.012300 0.000699 \n", + "[1] \"PP abf for shared variant: 0.0699%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.99e-15 5.23e-17 9.82e-01 1.71e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___EIF3M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.327000 0.005720 0.655000 0.011400 0.000638 \n", + "[1] \"PP abf for shared variant: 0.0638%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.18e-03 2.06e-05 9.81e-01 1.71e-02 9.07e-04 \n", + "[1] \"PP abf for shared variant: 0.0907%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___AP1S2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.272000 0.004760 0.710000 0.012400 0.000667 \n", + "[1] \"PP abf for shared variant: 0.0667%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-10 3.19e-12 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.15e-09 1.25e-10 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__SEC11A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.015900 0.000277 0.966000 0.016900 0.000888 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.79e-04 6.62e-06 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.57e-11 1.50e-12 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.62e-08 2.83e-10 9.82e-01 1.71e-02 8.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.95e-11 1.39e-12 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.83e-07 4.95e-09 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.78e-07 8.35e-09 9.82e-01 1.71e-02 8.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.69e-07 2.96e-09 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___ATP5G2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.009990 0.000175 0.972000 0.017000 0.000880 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-05 1.77e-07 9.82e-01 1.71e-02 9.53e-04 \n", + "[1] \"PP abf for shared variant: 0.0953%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.95e-09 1.21e-10 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC25A5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.017100 0.000299 0.965000 0.016900 0.000879 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.52e-13 1.14e-14 9.82e-01 1.71e-02 8.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.68e-16 1.52e-17 9.82e-01 1.71e-02 8.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0874%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-17 2.59e-19 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-06 2.53e-08 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.49e-07 4.35e-09 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.50e-16 4.37e-18 9.82e-01 1.71e-02 8.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0877%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.12e-04 3.71e-06 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___EVI2B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.379000 0.006630 0.603000 0.010500 0.000588 \n", + "[1] \"PP abf for shared variant: 0.0588%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.052000 0.000909 0.930000 0.016200 0.000964 \n", + "[1] \"PP abf for shared variant: 0.0964%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.026500 0.000462 0.956000 0.016700 0.000864 \n", + "[1] \"PP abf for shared variant: 0.0864%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.67e-04 1.69e-05 9.81e-01 1.71e-02 8.94e-04 \n", + "[1] \"PP abf for shared variant: 0.0894%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.15e-12 2.00e-14 9.82e-01 1.71e-02 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___LGALS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.225000 0.003940 0.757000 0.013200 0.000717 \n", + "[1] \"PP abf for shared variant: 0.0717%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.334000 0.005830 0.648000 0.011300 0.000648 \n", + "[1] \"PP abf for shared variant: 0.0648%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.72e-11 1.00e-12 9.82e-01 1.71e-02 8.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.52e-14 2.66e-16 9.82e-01 1.71e-02 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.77e-11 1.36e-12 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.79e-06 4.87e-08 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___GPX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.042700 0.000746 0.939000 0.016400 0.000893 \n", + "[1] \"PP abf for shared variant: 0.0893%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___LTA4H__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.551000 0.009630 0.431000 0.007530 0.000485 \n", + "[1] \"PP abf for shared variant: 0.0485%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RNASE6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.26900 0.00469 0.71300 0.01250 0.00085 \n", + "[1] \"PP abf for shared variant: 0.085%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___FTH1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.106000 0.001840 0.876000 0.015300 0.000809 \n", + "[1] \"PP abf for shared variant: 0.0809%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___BTF3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.011200 0.000196 0.971000 0.017000 0.000881 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___DRAM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1829e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.564000 0.009860 0.418000 0.007310 0.000436 \n", + "[1] \"PP abf for shared variant: 0.0436%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___IL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-03 1.95e-05 9.81e-01 1.70e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___ATP5A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008960 0.000157 0.973000 0.017000 0.001310 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.37e-07 1.29e-08 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.41e-11 1.64e-12 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.49e-13 2.60e-15 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.322000 0.005630 0.660000 0.011500 0.000638 \n", + "[1] \"PP abf for shared variant: 0.0638%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-14 2.59e-16 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.90e-12 1.73e-13 9.82e-01 1.71e-02 8.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___IPO7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.095600 0.001670 0.886000 0.015500 0.000932 \n", + "[1] \"PP abf for shared variant: 0.0932%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.61e-07 2.82e-09 9.82e-01 1.71e-02 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.10e-12 1.24e-13 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.11e-13 7.19e-15 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___CXCR4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2966e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.518000 0.009060 0.464000 0.008100 0.000563 \n", + "[1] \"PP abf for shared variant: 0.0563%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.66e-08 6.39e-10 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-05 2.12e-07 9.82e-01 1.71e-02 9.03e-04 \n", + "[1] \"PP abf for shared variant: 0.0903%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___CRTAP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.015700 0.000274 0.966000 0.016900 0.000876 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.40600 0.00709 0.57600 0.01010 0.00063 \n", + "[1] \"PP abf for shared variant: 0.063%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.92e-09 6.85e-11 9.82e-01 1.71e-02 8.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0874%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.41e-03 4.21e-05 9.80e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.61e-09 2.82e-11 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.357000 0.006250 0.625000 0.010900 0.000595 \n", + "[1] \"PP abf for shared variant: 0.0595%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___GPR183__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.051500 0.000899 0.931000 0.016300 0.000844 \n", + "[1] \"PP abf for shared variant: 0.0844%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.07e-10 1.06e-11 9.82e-01 1.71e-02 8.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.13e-11 3.73e-13 9.82e-01 1.71e-02 8.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0877%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"monocyte_RPS26___RPS26__TKT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.32e-04 4.05e-06 9.82e-01 1.71e-02 1.09e-03 \n", + "[1] \"PP abf for shared variant: 0.109%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.48e-15 6.07e-17 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SCML1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.131000 0.002250 0.852000 0.014700 0.000793 \n", + "[1] \"PP abf for shared variant: 0.0793%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___ACTN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.92e-04 1.54e-05 9.81e-01 1.70e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.56e-15 1.50e-16 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__ZFAND1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4561e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.421000 0.007360 0.561000 0.009800 0.000551 \n", + "[1] \"PP abf for shared variant: 0.0551%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.20e-15 7.34e-17 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PRF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.014000 0.000244 0.968000 0.016900 0.000907 \n", + "[1] \"PP abf for shared variant: 0.0907%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.11e-05 5.44e-07 9.82e-01 1.71e-02 8.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0892%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EFHD2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.049600 0.000867 0.932000 0.016300 0.000885 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SELL\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.55e-10 2.71e-12 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.56e-16 1.32e-17 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.45e-14 1.13e-15 9.82e-01 1.71e-02 8.90e-04 \n", + "[1] \"PP abf for shared variant: 0.089%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.14e-13 8.98e-15 9.82e-01 1.71e-02 8.99e-04 \n", + "[1] \"PP abf for shared variant: 0.0899%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___APBA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.095100 0.001570 0.888000 0.014600 0.000836 \n", + "[1] \"PP abf for shared variant: 0.0836%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EEF1G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.43e-04 7.75e-06 9.82e-01 1.71e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___FAIM3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.072800 0.001270 0.909000 0.015900 0.000901 \n", + "[1] \"PP abf for shared variant: 0.0901%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EIF3G__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.545000 0.009530 0.437000 0.007630 0.000494 \n", + "[1] \"PP abf for shared variant: 0.0494%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___APOBEC3C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.362000 0.006330 0.620000 0.010800 0.000627 \n", + "[1] \"PP abf for shared variant: 0.0627%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.016600 0.000290 0.965000 0.016900 0.000895 \n", + "[1] \"PP abf for shared variant: 0.0895%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.81e-14 4.91e-16 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___C11orf1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.8471e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.661000 0.011500 0.322000 0.005620 0.000357 \n", + "[1] \"PP abf for shared variant: 0.0357%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___LCP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.94e-04 8.62e-06 9.81e-01 1.71e-02 8.95e-04 \n", + "[1] \"PP abf for shared variant: 0.0895%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.71e-17 4.72e-19 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.42e-17 7.72e-19 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___GZMM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.411000 0.007180 0.571000 0.009970 0.000587 \n", + "[1] \"PP abf for shared variant: 0.0587%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CFL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.41e-06 5.96e-08 9.82e-01 1.71e-02 1.02e-03 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RSL1D1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.84e-04 1.37e-05 9.81e-01 1.71e-02 9.05e-04 \n", + "[1] \"PP abf for shared variant: 0.0905%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TXN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.300000 0.005250 0.682000 0.011900 0.000705 \n", + "[1] \"PP abf for shared variant: 0.0705%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CTSW__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.256000 0.004480 0.726000 0.012700 0.000756 \n", + "[1] \"PP abf for shared variant: 0.0756%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CD99__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.77e-05 4.84e-07 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.34e-18 2.35e-20 9.82e-01 1.71e-02 8.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0874%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___FLT3LG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.28e-04 5.72e-06 9.82e-01 1.71e-02 9.02e-04 \n", + "[1] \"PP abf for shared variant: 0.0902%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___NKG7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.58e-05 6.25e-07 9.82e-01 1.71e-02 8.95e-04 \n", + "[1] \"PP abf for shared variant: 0.0895%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__UQCRB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.052800 0.000923 0.929000 0.016200 0.000907 \n", + "[1] \"PP abf for shared variant: 0.0907%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__YWHAZ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.3964e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.630000 0.011000 0.353000 0.006160 0.000457 \n", + "[1] \"PP abf for shared variant: 0.0457%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CREM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.346000 0.006050 0.636000 0.011100 0.000673 \n", + "[1] \"PP abf for shared variant: 0.0673%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.76e-04 3.08e-06 9.82e-01 1.71e-02 8.95e-04 \n", + "[1] \"PP abf for shared variant: 0.0895%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RGS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.68e-06 6.43e-08 9.82e-01 1.71e-02 8.93e-04 \n", + "[1] \"PP abf for shared variant: 0.0893%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.36e-09 4.12e-11 9.82e-01 1.71e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-12 3.88e-14 9.82e-01 1.71e-02 8.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___LDHB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.97e-14 1.22e-15 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___ATP1A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 9.0977e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.746000 0.013000 0.237000 0.004130 0.000278 \n", + "[1] \"PP abf for shared variant: 0.0278%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CXCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.226000 0.003950 0.756000 0.013200 0.000733 \n", + "[1] \"PP abf for shared variant: 0.0733%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SYNE1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.16900 0.00296 0.81300 0.01420 0.00081 \n", + "[1] \"PP abf for shared variant: 0.081%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___FYN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.137e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.648000 0.011300 0.335000 0.005850 0.000366 \n", + "[1] \"PP abf for shared variant: 0.0366%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.85e-06 3.22e-08 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___MYL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.04e-10 3.57e-12 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PDE3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.37e-04 2.39e-06 9.82e-01 1.71e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-19 1.97e-21 9.82e-01 1.71e-02 8.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___MT-CO1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.78e-05 1.01e-06 9.82e-01 1.71e-02 8.93e-04 \n", + "[1] \"PP abf for shared variant: 0.0893%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__ZEB2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.012400 0.000216 0.970000 0.016900 0.000917 \n", + "[1] \"PP abf for shared variant: 0.0917%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___LTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.07e-08 5.36e-10 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PTPN7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.378000 0.006610 0.604000 0.010500 0.000645 \n", + "[1] \"PP abf for shared variant: 0.0645%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-12 2.13e-14 9.82e-01 1.71e-02 8.95e-04 \n", + "[1] \"PP abf for shared variant: 0.0895%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PFN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-10 2.98e-12 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___IER2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1556e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.701000 0.012300 0.281000 0.004910 0.000335 \n", + "[1] \"PP abf for shared variant: 0.0335%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.72e-05 1.35e-06 9.82e-01 1.71e-02 8.91e-04 \n", + "[1] \"PP abf for shared variant: 0.0891%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.28e-09 2.24e-11 9.82e-01 1.71e-02 8.98e-04 \n", + "[1] \"PP abf for shared variant: 0.0898%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.04e-20 5.32e-22 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.79e-15 1.01e-16 9.82e-01 1.71e-02 1.02e-03 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CMC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-03 1.82e-05 9.81e-01 1.71e-02 9.99e-04 \n", + "[1] \"PP abf for shared variant: 0.0999%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SAT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-04 2.22e-06 9.82e-01 1.71e-02 8.95e-04 \n", + "[1] \"PP abf for shared variant: 0.0895%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.02e-13 7.03e-15 9.82e-01 1.71e-02 8.98e-04 \n", + "[1] \"PP abf for shared variant: 0.0898%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___GZMB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.030800 0.000539 0.951000 0.016600 0.000886 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___AKNA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.4233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.690000 0.012100 0.292000 0.005100 0.000338 \n", + "[1] \"PP abf for shared variant: 0.0338%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___HLA-DPB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.9277e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.583000 0.010200 0.399000 0.006970 0.000447 \n", + "[1] \"PP abf for shared variant: 0.0447%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.30e-20 9.26e-22 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___NELL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.89e-08 5.05e-10 9.82e-01 1.71e-02 8.98e-04 \n", + "[1] \"PP abf for shared variant: 0.0898%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EEF1D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.87e-04 6.77e-06 9.82e-01 1.71e-02 9.25e-04 \n", + "[1] \"PP abf for shared variant: 0.0925%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___FLNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.039300 0.000686 0.943000 0.016500 0.000976 \n", + "[1] \"PP abf for shared variant: 0.0976%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___C12orf75__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.041800 0.000731 0.940000 0.016400 0.000940 \n", + "[1] \"PP abf for shared variant: 0.094%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-16 3.56e-18 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___HLA-C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.65e-11 4.64e-13 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___HLA-B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-14 1.82e-16 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___METRNL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4496e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.744000 0.012400 0.239000 0.003990 0.000314 \n", + "[1] \"PP abf for shared variant: 0.0314%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PFDN5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.030500 0.000533 0.951000 0.016600 0.001000 \n", + "[1] \"PP abf for shared variant: 0.1%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CAMK4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.02e-07 7.03e-09 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___BHLHE40__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.015600 0.000273 0.966000 0.016900 0.000957 \n", + "[1] \"PP abf for shared variant: 0.0957%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___IFITM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.2604e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.591000 0.010300 0.391000 0.006830 0.000497 \n", + "[1] \"PP abf for shared variant: 0.0497%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SLA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08870 0.00155 0.89300 0.01560 0.00090 \n", + "[1] \"PP abf for shared variant: 0.09%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CD8B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.44e-04 4.27e-06 9.82e-01 1.71e-02 9.23e-04 \n", + "[1] \"PP abf for shared variant: 0.0923%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-18 2.98e-20 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___NGFRAP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.071600 0.001180 0.911000 0.015000 0.000857 \n", + "[1] \"PP abf for shared variant: 0.0857%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.00e-14 1.40e-15 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TUBA4A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.063900 0.001120 0.918000 0.016000 0.000897 \n", + "[1] \"PP abf for shared variant: 0.0897%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.68e-05 6.43e-07 9.82e-01 1.71e-02 1.02e-03 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.25e-19 3.93e-21 9.82e-01 1.71e-02 8.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RCAN3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.37e-06 1.46e-07 9.82e-01 1.71e-02 8.91e-04 \n", + "[1] \"PP abf for shared variant: 0.0891%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.88e-13 8.52e-15 9.82e-01 1.71e-02 8.90e-04 \n", + "[1] \"PP abf for shared variant: 0.089%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PPP2R5C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.86e-04 6.74e-06 9.82e-01 1.71e-02 9.26e-04 \n", + "[1] \"PP abf for shared variant: 0.0926%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.54e-11 1.32e-12 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.89e-08 1.55e-09 9.82e-01 1.71e-02 9.36e-04 \n", + "[1] \"PP abf for shared variant: 0.0936%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___DNAJB6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.101000 0.001770 0.881000 0.015400 0.000936 \n", + "[1] \"PP abf for shared variant: 0.0936%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RAP1B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.077e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.770000 0.013500 0.213000 0.003710 0.000271 \n", + "[1] \"PP abf for shared variant: 0.0271%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.09e-05 3.66e-07 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PABPC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.85e-03 4.97e-05 9.79e-01 1.71e-02 9.12e-04 \n", + "[1] \"PP abf for shared variant: 0.0912%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___FBL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008530 0.000149 0.973000 0.017000 0.000889 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CCDC104__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.9652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.664000 0.011000 0.320000 0.005290 0.000341 \n", + "[1] \"PP abf for shared variant: 0.0341%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CCL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.96e-09 1.57e-10 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.29e-08 2.25e-10 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___NPM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.08e-06 1.06e-07 9.82e-01 1.71e-02 9.43e-04 \n", + "[1] \"PP abf for shared variant: 0.0943%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.71e-18 8.24e-20 9.82e-01 1.71e-02 8.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0877%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___MT-CO2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.055100 0.000963 0.927000 0.016200 0.000891 \n", + "[1] \"PP abf for shared variant: 0.0891%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TESPA1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.022300 0.000366 0.961000 0.015700 0.000938 \n", + "[1] \"PP abf for shared variant: 0.0938%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.011300 0.000198 0.971000 0.017000 0.000881 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PSMA7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.349000 0.006090 0.634000 0.011100 0.000614 \n", + "[1] \"PP abf for shared variant: 0.0614%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PLEK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.316000 0.005520 0.666000 0.011600 0.000676 \n", + "[1] \"PP abf for shared variant: 0.0676%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SUB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.60e-04 6.29e-06 9.82e-01 1.71e-02 9.16e-04 \n", + "[1] \"PP abf for shared variant: 0.0916%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.71e-16 1.52e-17 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___MT-ND5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.4281e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.554000 0.009680 0.428000 0.007480 0.000451 \n", + "[1] \"PP abf for shared variant: 0.0451%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___KLRD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007160 0.000125 0.975000 0.017000 0.000890 \n", + "[1] \"PP abf for shared variant: 0.089%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___MYC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007250 0.000127 0.975000 0.017000 0.000877 \n", + "[1] \"PP abf for shared variant: 0.0877%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RGS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.319000 0.005580 0.663000 0.011600 0.000663 \n", + "[1] \"PP abf for shared variant: 0.0663%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___KLF2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.391e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.552000 0.009640 0.430000 0.007520 0.000472 \n", + "[1] \"PP abf for shared variant: 0.0472%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SLC25A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.154000 0.002680 0.829000 0.014500 0.000746 \n", + "[1] \"PP abf for shared variant: 0.0746%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___HNRNPA2B1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.602000 0.010500 0.381000 0.006650 0.000423 \n", + "[1] \"PP abf for shared variant: 0.0423%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___ARAP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.3907e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.794000 0.013900 0.188000 0.003290 0.000242 \n", + "[1] \"PP abf for shared variant: 0.0242%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___HLA-A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.74e-16 4.79e-18 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__UBB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-05 3.12e-07 9.82e-01 1.71e-02 9.57e-04 \n", + "[1] \"PP abf for shared variant: 0.0957%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL17__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.96e-05 1.04e-06 9.82e-01 1.71e-02 9.28e-04 \n", + "[1] \"PP abf for shared variant: 0.0928%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-12 1.84e-14 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__UBC\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.33e-06 1.46e-07 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-05 2.02e-07 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TGFB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.204000 0.003560 0.779000 0.013600 0.000733 \n", + "[1] \"PP abf for shared variant: 0.0733%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-09 4.00e-11 9.82e-01 1.71e-02 8.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.12e-18 5.45e-20 9.82e-01 1.71e-02 8.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___LYPD3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.380000 0.006540 0.602000 0.010400 0.000623 \n", + "[1] \"PP abf for shared variant: 0.0623%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TMSB10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-04 2.63e-06 9.82e-01 1.71e-02 9.09e-04 \n", + "[1] \"PP abf for shared variant: 0.0909%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CLIC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.222000 0.003880 0.760000 0.013300 0.000744 \n", + "[1] \"PP abf for shared variant: 0.0744%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___C12orf57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.091300 0.001590 0.891000 0.015600 0.000859 \n", + "[1] \"PP abf for shared variant: 0.0859%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TMEM243\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.14e-03 3.75e-05 9.80e-01 1.71e-02 9.06e-04 \n", + "[1] \"PP abf for shared variant: 0.0906%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.27e-15 7.46e-17 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___ID2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.190000 0.003320 0.792000 0.013800 0.000849 \n", + "[1] \"PP abf for shared variant: 0.0849%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.41e-15 7.70e-17 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CCR7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.51e-10 1.14e-11 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.49e-03 7.85e-05 9.77e-01 1.71e-02 9.99e-04 \n", + "[1] \"PP abf for shared variant: 0.0999%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.37e-25 7.61e-27 9.82e-01 1.71e-02 8.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0877%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___COX7C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.384000 0.006720 0.598000 0.010400 0.000657 \n", + "[1] \"PP abf for shared variant: 0.0657%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___NFKBIA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 7.944e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.682000 0.011900 0.300000 0.005250 0.000374 \n", + "[1] \"PP abf for shared variant: 0.0374%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___NDFIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.032900 0.000575 0.949000 0.016600 0.000923 \n", + "[1] \"PP abf for shared variant: 0.0923%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.92e-17 1.56e-18 9.82e-01 1.71e-02 8.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0877%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.96e-15 3.42e-17 9.82e-01 1.71e-02 9.26e-04 \n", + "[1] \"PP abf for shared variant: 0.0926%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-09 2.18e-11 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___GZMA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.55e-07 6.20e-09 9.82e-01 1.71e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___ABHD14B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.340000 0.005950 0.642000 0.011200 0.000641 \n", + "[1] \"PP abf for shared variant: 0.0641%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-10 3.17e-12 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TPI1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.453000 0.007910 0.530000 0.009250 0.000585 \n", + "[1] \"PP abf for shared variant: 0.0585%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.38e-19 1.63e-20 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___GIMAP7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.148000 0.002590 0.834000 0.014600 0.000797 \n", + "[1] \"PP abf for shared variant: 0.0797%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.94e-10 8.63e-12 9.82e-01 1.71e-02 8.97e-04 \n", + "[1] \"PP abf for shared variant: 0.0897%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-15 3.85e-17 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SC5D\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.443000 0.007740 0.539000 0.009420 0.000644 \n", + "[1] \"PP abf for shared variant: 0.0644%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.87e-10 3.27e-12 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.22e-17 5.62e-19 9.82e-01 1.71e-02 8.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0877%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RIC3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.79e-03 3.13e-05 9.80e-01 1.71e-02 9.19e-04 \n", + "[1] \"PP abf for shared variant: 0.0919%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.59e-11 8.01e-13 9.82e-01 1.71e-02 9.46e-04 \n", + "[1] \"PP abf for shared variant: 0.0946%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SH3YL1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.83e-05 4.90e-07 9.82e-01 1.70e-02 9.49e-04 \n", + "[1] \"PP abf for shared variant: 0.0949%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CCNG1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.9814e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.683000 0.011900 0.299000 0.005230 0.000368 \n", + "[1] \"PP abf for shared variant: 0.0368%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SRP14\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-04 2.18e-06 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SPON2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0298e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.627000 0.010900 0.356000 0.006200 0.000387 \n", + "[1] \"PP abf for shared variant: 0.0387%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___HMGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.09e-04 1.24e-05 9.81e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___NOSIP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-06 1.81e-08 9.82e-01 1.71e-02 9.08e-04 \n", + "[1] \"PP abf for shared variant: 0.0908%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.08e-16 5.39e-18 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-18 1.92e-20 9.82e-01 1.71e-02 8.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0874%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.28e-19 3.98e-21 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___MYL12B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.0233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.561000 0.009800 0.422000 0.007360 0.000498 \n", + "[1] \"PP abf for shared variant: 0.0498%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___GNLY__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.029700 0.000518 0.952000 0.016600 0.000867 \n", + "[1] \"PP abf for shared variant: 0.0867%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___MIR142__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1648e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.765000 0.013400 0.218000 0.003810 0.000267 \n", + "[1] \"PP abf for shared variant: 0.0267%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007870 0.000137 0.974000 0.017000 0.000981 \n", + "[1] \"PP abf for shared variant: 0.0981%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.37e-17 4.14e-19 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.308000 0.005390 0.674000 0.011800 0.000635 \n", + "[1] \"PP abf for shared variant: 0.0635%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-05 1.90e-07 9.82e-01 1.71e-02 9.18e-04 \n", + "[1] \"PP abf for shared variant: 0.0918%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PTP4A2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.425000 0.007420 0.557000 0.009730 0.000603 \n", + "[1] \"PP abf for shared variant: 0.0603%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___FGFBP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.9666e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.719000 0.012600 0.264000 0.004610 0.000298 \n", + "[1] \"PP abf for shared variant: 0.0298%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPSAP58\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-04 1.83e-06 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.73e-08 8.26e-10 9.82e-01 1.71e-02 8.99e-04 \n", + "[1] \"PP abf for shared variant: 0.0899%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.09e-25 7.14e-27 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CCDC57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-06 4.00e-08 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___ITGB2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.462000 0.008080 0.520000 0.009080 0.000507 \n", + "[1] \"PP abf for shared variant: 0.0507%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EIF2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.090700 0.001580 0.891000 0.015600 0.000873 \n", + "[1] \"PP abf for shared variant: 0.0873%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___MYO1F__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.4185e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.700000 0.012200 0.283000 0.004940 0.000351 \n", + "[1] \"PP abf for shared variant: 0.0351%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___ARF6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.148000 0.002590 0.834000 0.014600 0.000768 \n", + "[1] \"PP abf for shared variant: 0.0768%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CD81__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.25700 0.00449 0.72500 0.01270 0.00079 \n", + "[1] \"PP abf for shared variant: 0.079%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TMEM123\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.34e-03 7.58e-05 9.78e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___ALKBH7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.34e-03 7.59e-05 9.78e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___LDHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-03 1.81e-05 9.81e-01 1.71e-02 8.98e-04 \n", + "[1] \"PP abf for shared variant: 0.0898%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PIK3IP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.05e-05 5.33e-07 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___FOXP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.26e-04 1.44e-05 9.81e-01 1.71e-02 9.50e-04 \n", + "[1] \"PP abf for shared variant: 0.095%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CCL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.30e-05 1.62e-06 9.82e-01 1.71e-02 9.27e-04 \n", + "[1] \"PP abf for shared variant: 0.0927%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___NEAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.013100 0.000230 0.969000 0.016900 0.000927 \n", + "[1] \"PP abf for shared variant: 0.0927%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___KLRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.9856e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.627000 0.010900 0.356000 0.006200 0.000402 \n", + "[1] \"PP abf for shared variant: 0.0402%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___BTF3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5042e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.745000 0.013000 0.238000 0.004150 0.000282 \n", + "[1] \"PP abf for shared variant: 0.0282%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__ZFAS1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.274000 0.004790 0.708000 0.012400 0.000689 \n", + "[1] \"PP abf for shared variant: 0.0689%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.04e-15 3.57e-17 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___C1orf21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1023e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.606000 0.010600 0.376000 0.006570 0.000407 \n", + "[1] \"PP abf for shared variant: 0.0407%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.69e-10 4.70e-12 9.82e-01 1.71e-02 8.91e-04 \n", + "[1] \"PP abf for shared variant: 0.0891%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CALM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.118000 0.002060 0.864000 0.015100 0.000914 \n", + "[1] \"PP abf for shared variant: 0.0914%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___HOPX__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.358000 0.006250 0.624000 0.010900 0.000747 \n", + "[1] \"PP abf for shared variant: 0.0747%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CD55__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.036800 0.000643 0.945000 0.016500 0.000909 \n", + "[1] \"PP abf for shared variant: 0.0909%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.49e-15 7.85e-17 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.42e-04 1.65e-05 9.81e-01 1.71e-02 9.25e-04 \n", + "[1] \"PP abf for shared variant: 0.0925%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.55e-16 6.18e-18 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.009110 0.000159 0.973000 0.017000 0.001020 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.69e-11 8.19e-13 9.82e-01 1.71e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___HLA-DRB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.507e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.734000 0.012800 0.249000 0.004340 0.000321 \n", + "[1] \"PP abf for shared variant: 0.0321%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-17 2.61e-19 9.82e-01 1.71e-02 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.11e-13 1.94e-15 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PTMA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003030 0.000053 0.979000 0.017100 0.000910 \n", + "[1] \"PP abf for shared variant: 0.091%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.83e-10 3.19e-12 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___GNG2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.244000 0.004270 0.738000 0.012900 0.000734 \n", + "[1] \"PP abf for shared variant: 0.0734%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TIGIT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.024000 0.000420 0.958000 0.016700 0.000902 \n", + "[1] \"PP abf for shared variant: 0.0902%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.34e-07 1.28e-08 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.93e-10 6.87e-12 9.82e-01 1.71e-02 8.91e-04 \n", + "[1] \"PP abf for shared variant: 0.0891%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___C1QBP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.82e-04 1.72e-05 9.81e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CD27__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.689e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.605000 0.010600 0.378000 0.006590 0.000431 \n", + "[1] \"PP abf for shared variant: 0.0431%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___KLRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002230 0.000039 0.980000 0.017100 0.000927 \n", + "[1] \"PP abf for shared variant: 0.0927%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___MAL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.52e-09 2.49e-11 9.83e-01 1.60e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.19e-16 1.25e-17 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___REL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.691e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.598000 0.010400 0.384000 0.006710 0.000465 \n", + "[1] \"PP abf for shared variant: 0.0465%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-11 3.60e-13 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___FTL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.423000 0.007390 0.559000 0.009770 0.000601 \n", + "[1] \"PP abf for shared variant: 0.0601%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.61e-08 2.80e-10 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.25e-13 5.68e-15 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.04e-07 8.81e-09 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SEPT7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.13700 0.00239 0.84500 0.01480 0.00082 \n", + "[1] \"PP abf for shared variant: 0.082%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TCF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.149000 0.002590 0.834000 0.014600 0.000838 \n", + "[1] \"PP abf for shared variant: 0.0838%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.478000 0.008360 0.504000 0.008800 0.000526 \n", + "[1] \"PP abf for shared variant: 0.0526%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.01e-09 8.75e-11 9.82e-01 1.71e-02 9.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0986%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___FCGR3A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08440 0.00147 0.89700 0.01570 0.00097 \n", + "[1] \"PP abf for shared variant: 0.097%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PSMB9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 8.645e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.687000 0.012000 0.296000 0.005160 0.000422 \n", + "[1] \"PP abf for shared variant: 0.0422%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___LEF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.39e-09 4.18e-11 9.82e-01 1.71e-02 8.94e-04 \n", + "[1] \"PP abf for shared variant: 0.0894%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PTPRC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.77e-08 8.34e-10 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.384000 0.006700 0.598000 0.010500 0.000693 \n", + "[1] \"PP abf for shared variant: 0.0693%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-03 1.81e-05 9.81e-01 1.71e-02 9.59e-04 \n", + "[1] \"PP abf for shared variant: 0.0959%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.77e-16 1.53e-17 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.53e-13 6.17e-15 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___ANXA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.089100 0.001560 0.893000 0.015600 0.000916 \n", + "[1] \"PP abf for shared variant: 0.0916%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___LGALS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.077100 0.001350 0.905000 0.015800 0.000834 \n", + "[1] \"PP abf for shared variant: 0.0834%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.57e-14 6.24e-16 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___DDX5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5519e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.538000 0.009390 0.445000 0.007770 0.000464 \n", + "[1] \"PP abf for shared variant: 0.0464%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.79e-11 1.19e-12 9.82e-01 1.71e-02 1.05e-03 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___DOK2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.35900 0.00628 0.62300 0.01090 0.00064 \n", + "[1] \"PP abf for shared variant: 0.064%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CRIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.25e-06 7.43e-08 9.82e-01 1.71e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CALR__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.9449e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.532000 0.009290 0.451000 0.007870 0.000499 \n", + "[1] \"PP abf for shared variant: 0.0499%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TTC38\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1223e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.542000 0.009470 0.440000 0.007670 0.000521 \n", + "[1] \"PP abf for shared variant: 0.0521%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___C1orf228__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.026900 0.000470 0.955000 0.016700 0.000927 \n", + "[1] \"PP abf for shared variant: 0.0927%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___DUSP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.43e-03 9.49e-05 9.77e-01 1.71e-02 9.18e-04 \n", + "[1] \"PP abf for shared variant: 0.0918%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EIF4B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.88e-09 6.78e-11 9.82e-01 1.71e-02 9.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0981%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.26e-09 2.20e-11 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TRABD2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.19e-06 9.05e-08 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.85e-16 1.02e-17 9.82e-01 1.71e-02 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PASK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.30e-07 8.65e-09 9.83e-01 1.60e-02 9.08e-04 \n", + "[1] \"PP abf for shared variant: 0.0908%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___OAZ1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-10 2.55e-12 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.29e-17 1.27e-18 9.82e-01 1.71e-02 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___OXNAD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1359e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.606000 0.010600 0.377000 0.006580 0.000504 \n", + "[1] \"PP abf for shared variant: 0.0504%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.044700 0.000781 0.937000 0.016400 0.000921 \n", + "[1] \"PP abf for shared variant: 0.0921%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SRGN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.32e-16 5.80e-18 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___HLA-E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.41e-03 2.46e-05 9.81e-01 1.71e-02 8.91e-04 \n", + "[1] \"PP abf for shared variant: 0.0891%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TYROBP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007760 0.000136 0.974000 0.017000 0.000893 \n", + "[1] \"PP abf for shared variant: 0.0893%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__YBX3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1331e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.77500 0.01350 0.20700 0.00362 0.00026 \n", + "[1] \"PP abf for shared variant: 0.026%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CST7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.40e-07 1.47e-08 9.82e-01 1.71e-02 9.00e-04 \n", + "[1] \"PP abf for shared variant: 0.09%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___AIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.06e-04 5.34e-06 9.82e-01 1.71e-02 1.01e-03 \n", + "[1] \"PP abf for shared variant: 0.101%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___IL7R__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001770 0.000031 0.980000 0.017100 0.000887 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RHOH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.028700 0.000502 0.953000 0.016600 0.000917 \n", + "[1] \"PP abf for shared variant: 0.0917%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.92e-16 6.85e-18 9.82e-01 1.71e-02 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.03e-18 8.79e-20 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.017300 0.000301 0.965000 0.016800 0.000914 \n", + "[1] \"PP abf for shared variant: 0.0914%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___DBI__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008280 0.000145 0.974000 0.017000 0.000906 \n", + "[1] \"PP abf for shared variant: 0.0906%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.77e-11 3.09e-13 9.82e-01 1.71e-02 8.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___PRKCQ-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-09 3.59e-11 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SNHG8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.36e-07 7.61e-09 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___POMP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.46500 0.00813 0.51700 0.00903 0.00051 \n", + "[1] \"PP abf for shared variant: 0.051%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.04e-15 1.40e-16 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RAB8B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.0817e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.671000 0.011700 0.312000 0.005440 0.000339 \n", + "[1] \"PP abf for shared variant: 0.0339%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___GZMH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.140000 0.002450 0.842000 0.014700 0.000816 \n", + "[1] \"PP abf for shared variant: 0.0816%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.35e-05 1.63e-06 9.82e-01 1.71e-02 1.01e-03 \n", + "[1] \"PP abf for shared variant: 0.101%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.89e-10 5.04e-12 9.82e-01 1.71e-02 1.02e-03 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.55e-19 2.72e-21 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-17 4.64e-19 9.82e-01 1.71e-02 8.91e-04 \n", + "[1] \"PP abf for shared variant: 0.0891%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___ABLIM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.41e-03 7.34e-05 9.78e-01 1.63e-02 9.34e-04 \n", + "[1] \"PP abf for shared variant: 0.0934%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EIF4A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.8946e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.59700 0.01040 0.38500 0.00672 0.00046 \n", + "[1] \"PP abf for shared variant: 0.046%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___APOBEC3G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.35e-04 5.85e-06 9.82e-01 1.71e-02 9.40e-04 \n", + "[1] \"PP abf for shared variant: 0.094%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RP11-291B21.2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.92e-05 3.20e-07 9.83e-01 1.64e-02 8.90e-04 \n", + "[1] \"PP abf for shared variant: 0.089%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.29e-19 5.75e-21 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.73e-18 6.52e-20 9.82e-01 1.71e-02 8.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0877%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__SERF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.33e-09 5.83e-11 9.82e-01 1.71e-02 9.05e-04 \n", + "[1] \"PP abf for shared variant: 0.0905%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.41e-10 9.46e-12 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.92e-18 8.60e-20 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.012400 0.000218 0.969000 0.016900 0.000932 \n", + "[1] \"PP abf for shared variant: 0.0932%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.95e-14 8.65e-16 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-11 2.36e-13 9.82e-01 1.71e-02 9.40e-04 \n", + "[1] \"PP abf for shared variant: 0.094%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___RPS26__S1PR5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1943e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.76200 0.01260 0.22200 0.00366 0.00030 \n", + "[1] \"PP abf for shared variant: 0.03%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD8T_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.79e-05 1.19e-06 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TMSB10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.058400 0.001020 0.924000 0.016100 0.000912 \n", + "[1] \"PP abf for shared variant: 0.0912%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CHCHD2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.151000 0.002630 0.831000 0.014500 0.000846 \n", + "[1] \"PP abf for shared variant: 0.0846%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EMP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.45e-04 1.65e-05 9.81e-01 1.71e-02 8.99e-04 \n", + "[1] \"PP abf for shared variant: 0.0899%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___FMNL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.234000 0.004100 0.748000 0.013100 0.000769 \n", + "[1] \"PP abf for shared variant: 0.0769%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.94e-24 3.39e-26 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___LEF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.13e-07 1.07e-08 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HERPUD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.267e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.493000 0.008610 0.490000 0.008550 0.000533 \n", + "[1] \"PP abf for shared variant: 0.0533%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ANXA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.67e-05 2.92e-07 9.82e-01 1.71e-02 8.94e-04 \n", + "[1] \"PP abf for shared variant: 0.0894%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SOD2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.017300 0.000302 0.965000 0.016800 0.000880 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MYL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-17 4.00e-19 9.82e-01 1.71e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-13 2.36e-15 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ATP1B3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.24000 0.00419 0.74200 0.01300 0.00071 \n", + "[1] \"PP abf for shared variant: 0.071%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.437000 0.007640 0.545000 0.009520 0.000533 \n", + "[1] \"PP abf for shared variant: 0.0533%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.11e-25 1.93e-27 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-11 4.62e-13 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EML4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.94e-04 6.89e-06 9.82e-01 1.71e-02 9.43e-04 \n", + "[1] \"PP abf for shared variant: 0.0943%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SCML1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.60e-03 4.55e-05 9.79e-01 1.71e-02 8.95e-04 \n", + "[1] \"PP abf for shared variant: 0.0895%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MCL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.28e-06 3.99e-08 9.82e-01 1.71e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___NOG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.082400 0.001360 0.901000 0.014800 0.000828 \n", + "[1] \"PP abf for shared variant: 0.0828%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___PRMT2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.42e-03 2.47e-05 9.80e-01 1.71e-02 9.39e-04 \n", + "[1] \"PP abf for shared variant: 0.0939%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CD7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-05 4.65e-07 9.82e-01 1.71e-02 8.93e-04 \n", + "[1] \"PP abf for shared variant: 0.0893%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.409000 0.007120 0.574000 0.009990 0.000584 \n", + "[1] \"PP abf for shared variant: 0.0584%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.36e-11 2.37e-13 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___FAM129A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-06 1.81e-08 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-15 3.44e-17 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ABLIM1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.2936e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.564000 0.009860 0.418000 0.007300 0.000426 \n", + "[1] \"PP abf for shared variant: 0.0426%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.69e-25 4.70e-27 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ALOX5AP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.79e-03 6.63e-05 9.78e-01 1.71e-02 9.01e-04 \n", + "[1] \"PP abf for shared variant: 0.0901%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TSHZ2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-03 2.16e-05 9.81e-01 1.71e-02 9.09e-04 \n", + "[1] \"PP abf for shared variant: 0.0909%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TIGIT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.39e-06 1.64e-07 9.82e-01 1.71e-02 9.26e-04 \n", + "[1] \"PP abf for shared variant: 0.0926%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ARHGDIB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.46e-05 4.30e-07 9.82e-01 1.71e-02 8.96e-04 \n", + "[1] \"PP abf for shared variant: 0.0896%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-10 4.01e-12 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.36e-20 2.37e-22 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-28 2.75e-30 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-27 1.78e-29 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__YBX1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.30e-05 4.02e-07 9.82e-01 1.71e-02 9.60e-04 \n", + "[1] \"PP abf for shared variant: 0.096%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.69e-25 1.52e-26 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___JUND__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.279e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.36000 0.00629 0.62200 0.01090 0.00062 \n", + "[1] \"PP abf for shared variant: 0.062%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SH3YL1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.30e-07 7.52e-09 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.94e-26 3.38e-28 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___C12orf75__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.011000 0.000193 0.971000 0.016900 0.001320 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.81e-11 1.01e-12 9.82e-01 1.71e-02 9.59e-04 \n", + "[1] \"PP abf for shared variant: 0.0959%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF18\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.016400 0.000286 0.966000 0.016900 0.000903 \n", + "[1] \"PP abf for shared variant: 0.0903%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MYO1F__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.86e-03 6.75e-05 9.78e-01 1.71e-02 8.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0892%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.82e-24 1.19e-25 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___PTPRC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.30e-09 1.28e-10 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CD55__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.441000 0.007710 0.541000 0.009450 0.000555 \n", + "[1] \"PP abf for shared variant: 0.0555%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.49e-25 1.66e-26 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CREM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.65e-04 4.63e-06 9.82e-01 1.71e-02 9.01e-04 \n", + "[1] \"PP abf for shared variant: 0.0901%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__VMP1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.226000 0.003950 0.756000 0.013200 0.000713 \n", + "[1] \"PP abf for shared variant: 0.0713%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HMGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.51e-06 1.31e-07 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.23e-25 7.39e-27 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___C1orf228__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.338000 0.005900 0.645000 0.011300 0.000617 \n", + "[1] \"PP abf for shared variant: 0.0617%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___GALM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.255000 0.004460 0.727000 0.012700 0.000747 \n", + "[1] \"PP abf for shared variant: 0.0747%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TRABD2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.054900 0.000959 0.927000 0.016200 0.000846 \n", + "[1] \"PP abf for shared variant: 0.0846%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EIF2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001830 0.000032 0.980000 0.017100 0.000881 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL17__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.39e-14 4.17e-16 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.58e-16 6.26e-18 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ANXA5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.019800 0.000346 0.962000 0.016800 0.000872 \n", + "[1] \"PP abf for shared variant: 0.0872%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___IDS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.54e-04 1.49e-05 9.81e-01 1.71e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ARID5B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.113000 0.001980 0.869000 0.015200 0.000822 \n", + "[1] \"PP abf for shared variant: 0.0822%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___IMPDH2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-05 1.77e-07 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.56e-14 1.15e-15 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__ST13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.25e-07 1.62e-08 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CXCR3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.009150 0.000159 0.973000 0.016900 0.000907 \n", + "[1] \"PP abf for shared variant: 0.0907%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HLA-DRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-06 2.97e-08 9.82e-01 1.71e-02 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.54e-15 4.44e-17 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SPOCK2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.032000 0.000559 0.950000 0.016600 0.000879 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___C15orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.169000 0.002810 0.814000 0.013500 0.000766 \n", + "[1] \"PP abf for shared variant: 0.0766%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SNRPF\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1448e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.629000 0.011000 0.353000 0.006170 0.000422 \n", + "[1] \"PP abf for shared variant: 0.0422%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-14 2.36e-16 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___FAM134B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.21600 0.00377 0.76600 0.01340 0.00073 \n", + "[1] \"PP abf for shared variant: 0.073%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ISG20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007670 0.000134 0.974000 0.017000 0.000976 \n", + "[1] \"PP abf for shared variant: 0.0976%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CFL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.63e-10 8.08e-12 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___NUCB2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.086700 0.001520 0.895000 0.015600 0.000867 \n", + "[1] \"PP abf for shared variant: 0.0867%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ALKBH7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.52e-03 4.41e-05 9.79e-01 1.71e-02 9.12e-04 \n", + "[1] \"PP abf for shared variant: 0.0912%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___LINC00493__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.117000 0.002040 0.865000 0.015100 0.000871 \n", + "[1] \"PP abf for shared variant: 0.0871%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-25 1.92e-27 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__VIM\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.006410 0.000112 0.976000 0.017000 0.000913 \n", + "[1] \"PP abf for shared variant: 0.0913%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SNHG8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-11 1.85e-13 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CDC42__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008140 0.000142 0.974000 0.017000 0.000898 \n", + "[1] \"PP abf for shared variant: 0.0898%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF1B\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.036700 0.000641 0.945000 0.016500 0.000947 \n", + "[1] \"PP abf for shared variant: 0.0947%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___NELL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.052500 0.000918 0.929000 0.016200 0.000845 \n", + "[1] \"PP abf for shared variant: 0.0845%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.62e-18 2.84e-20 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ACTN4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002350 0.000041 0.980000 0.017100 0.000891 \n", + "[1] \"PP abf for shared variant: 0.0891%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___IKZF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.132000 0.002310 0.850000 0.014800 0.000782 \n", + "[1] \"PP abf for shared variant: 0.0782%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___LDHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.312000 0.005450 0.670000 0.011700 0.000689 \n", + "[1] \"PP abf for shared variant: 0.0689%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.63e-17 4.59e-19 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.99e-09 1.75e-10 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RP11-138A9.1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.422000 0.007370 0.560000 0.009790 0.000559 \n", + "[1] \"PP abf for shared variant: 0.0559%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___NAMPT__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.8087e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.464000 0.008120 0.518000 0.009040 0.000704 \n", + "[1] \"PP abf for shared variant: 0.0704%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFAS1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-05 3.67e-07 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CALM2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.33e-05 1.46e-06 9.82e-01 1.71e-02 8.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0892%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-15 2.69e-17 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MT-ND2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.188000 0.003290 0.794000 0.013900 0.000769 \n", + "[1] \"PP abf for shared variant: 0.0769%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.66e-15 1.51e-16 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CD52__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.21e-04 9.11e-06 9.81e-01 1.71e-02 8.96e-04 \n", + "[1] \"PP abf for shared variant: 0.0896%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.00e-07 1.75e-09 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___H3F3A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.36e-05 7.61e-07 9.82e-01 1.71e-02 9.50e-04 \n", + "[1] \"PP abf for shared variant: 0.095%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ADTRP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.27e-08 5.71e-10 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MT2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.16400 0.00287 0.81800 0.01430 0.00102 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SNRPD2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.057300 0.001000 0.925000 0.016100 0.000853 \n", + "[1] \"PP abf for shared variant: 0.0853%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFP36\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.69e-05 1.69e-06 9.82e-01 1.71e-02 9.14e-04 \n", + "[1] \"PP abf for shared variant: 0.0914%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CXCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.71e-05 4.74e-07 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___DYNLL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-03 3.05e-05 9.80e-01 1.71e-02 9.04e-04 \n", + "[1] \"PP abf for shared variant: 0.0904%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SAMSN1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.55e-05 6.21e-07 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___LMNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-09 2.58e-11 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MT-ND5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-07 3.12e-09 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-21 1.84e-23 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RUNX3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.134000 0.002350 0.848000 0.014800 0.000835 \n", + "[1] \"PP abf for shared variant: 0.0835%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HLA-B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.94e-18 6.89e-20 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RGS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-05 1.93e-07 9.82e-01 1.71e-02 9.25e-04 \n", + "[1] \"PP abf for shared variant: 0.0925%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ERGIC3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.423e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.460000 0.008040 0.522000 0.009120 0.000535 \n", + "[1] \"PP abf for shared variant: 0.0535%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SELL\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.96e-08 5.18e-10 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TYMP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.045600 0.000796 0.936000 0.016400 0.000857 \n", + "[1] \"PP abf for shared variant: 0.0857%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HLA-DPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.135000 0.002350 0.847000 0.014800 0.000833 \n", + "[1] \"PP abf for shared variant: 0.0833%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.79e-22 3.12e-24 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__UQCRB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.07e-04 5.36e-06 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.58e-23 1.32e-24 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SRGN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.69e-21 1.34e-22 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MT-ND4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.357000 0.006250 0.625000 0.010900 0.000634 \n", + "[1] \"PP abf for shared variant: 0.0634%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ABHD14B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.56e-04 9.71e-06 9.81e-01 1.71e-02 1.01e-03 \n", + "[1] \"PP abf for shared variant: 0.101%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ATP5E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.14e-03 7.23e-05 9.78e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPSAP58\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-10 1.90e-12 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.75e-13 1.18e-14 9.82e-01 1.71e-02 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.13e-22 1.42e-23 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MAL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.41e-09 5.95e-11 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ATP2B4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.046200 0.000807 0.936000 0.016300 0.000891 \n", + "[1] \"PP abf for shared variant: 0.0891%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ARPC1B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.539000 0.009420 0.443000 0.007740 0.000507 \n", + "[1] \"PP abf for shared variant: 0.0507%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___PDCD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004080 0.000067 0.979000 0.016100 0.000882 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-20 1.79e-22 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.83e-26 3.19e-28 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.01e-22 5.24e-24 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SAT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.69e-13 6.45e-15 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HLA-E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.34e-08 5.84e-10 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TCF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.05e-05 1.23e-06 9.82e-01 1.71e-02 9.24e-04 \n", + "[1] \"PP abf for shared variant: 0.0924%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___PIK3IP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.51e-04 4.38e-06 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___LGALS3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.244000 0.004260 0.738000 0.012900 0.000689 \n", + "[1] \"PP abf for shared variant: 0.0689%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MIAT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.018300 0.000321 0.964000 0.016800 0.000923 \n", + "[1] \"PP abf for shared variant: 0.0923%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.41e-21 7.71e-23 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SUB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.13e-08 7.22e-10 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CCR7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.021200 0.000371 0.961000 0.016800 0.000904 \n", + "[1] \"PP abf for shared variant: 0.0904%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.37e-17 4.13e-19 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.71e-23 8.22e-25 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RNF19A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.07e-03 3.62e-05 9.80e-01 1.71e-02 9.56e-04 \n", + "[1] \"PP abf for shared variant: 0.0956%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MT-CO3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.23e-07 7.39e-09 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-24 2.61e-26 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.75e-11 3.06e-13 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___FAS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.205000 0.003590 0.777000 0.013600 0.000737 \n", + "[1] \"PP abf for shared variant: 0.0737%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EEF1D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.09e-10 1.59e-11 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.37e-10 1.46e-11 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___GYPC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.88e-06 1.55e-07 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.67e-22 2.92e-24 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.76e-24 3.07e-26 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TPM4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.029600 0.000516 0.952000 0.016600 0.000867 \n", + "[1] \"PP abf for shared variant: 0.0867%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___LDHB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.85e-12 1.55e-13 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___AIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.31e-05 1.45e-06 9.82e-01 1.71e-02 9.43e-04 \n", + "[1] \"PP abf for shared variant: 0.0943%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.47e-23 7.80e-25 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ITGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.67e-07 6.42e-09 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TXN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.73e-07 8.26e-09 9.82e-01 1.71e-02 8.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0892%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___FTH1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.028100 0.000491 0.954000 0.016700 0.000902 \n", + "[1] \"PP abf for shared variant: 0.0902%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-26 3.66e-28 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___COX7C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.11400 0.00198 0.86800 0.01520 0.00091 \n", + "[1] \"PP abf for shared variant: 0.091%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HLA-A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.70e-18 9.96e-20 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___LCP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.68e-03 2.93e-05 9.80e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__UBB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-03 2.99e-05 9.80e-01 1.71e-02 9.19e-04 \n", + "[1] \"PP abf for shared variant: 0.0919%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.12e-23 7.20e-25 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-16 1.78e-18 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TMEM123\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.069800 0.001220 0.912000 0.015900 0.000834 \n", + "[1] \"PP abf for shared variant: 0.0834%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___PPP1R15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.471000 0.008230 0.511000 0.008930 0.000526 \n", + "[1] \"PP abf for shared variant: 0.0526%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___IL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.35e-04 1.46e-05 9.81e-01 1.71e-02 9.06e-04 \n", + "[1] \"PP abf for shared variant: 0.0906%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.50e-26 9.60e-28 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.16e-16 7.27e-18 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TOMM20\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.432000 0.007540 0.551000 0.009610 0.000573 \n", + "[1] \"PP abf for shared variant: 0.0573%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EIF3F__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.58e-04 1.67e-05 9.81e-01 1.71e-02 8.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0877%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ERP29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.36e-03 7.62e-05 9.78e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___KLF6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.64e-05 2.87e-07 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___GIMAP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.66e-04 1.51e-05 9.81e-01 1.71e-02 9.02e-04 \n", + "[1] \"PP abf for shared variant: 0.0902%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TGFBR2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.064800 0.001130 0.917000 0.016000 0.000872 \n", + "[1] \"PP abf for shared variant: 0.0872%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RNF213__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.327000 0.005710 0.656000 0.011500 0.000635 \n", + "[1] \"PP abf for shared variant: 0.0635%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___C19orf53__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.51700 0.00904 0.46500 0.00812 0.00048 \n", + "[1] \"PP abf for shared variant: 0.048%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SERF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-10 1.84e-12 9.82e-01 1.71e-02 9.55e-04 \n", + "[1] \"PP abf for shared variant: 0.0955%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.76e-15 6.57e-17 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MIR4435-1HG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.58e-10 9.76e-12 9.82e-01 1.71e-02 9.90e-04 \n", + "[1] \"PP abf for shared variant: 0.099%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.79e-15 3.13e-17 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MZT2B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.13e-04 8.97e-06 9.81e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___AK5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.090100 0.001570 0.892000 0.015600 0.000856 \n", + "[1] \"PP abf for shared variant: 0.0856%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___NDFIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.275000 0.004800 0.707000 0.012300 0.000844 \n", + "[1] \"PP abf for shared variant: 0.0844%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HNRNPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.84e-08 3.21e-10 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.28e-20 3.98e-22 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.74e-04 4.78e-06 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.22e-19 1.44e-20 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___C1QBP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.028700 0.000502 0.953000 0.016600 0.000885 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CXCR6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.360000 0.006140 0.622000 0.010600 0.000627 \n", + "[1] \"PP abf for shared variant: 0.0627%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ARPC3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.128000 0.002230 0.854000 0.014900 0.000807 \n", + "[1] \"PP abf for shared variant: 0.0807%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MRPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.3464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.499000 0.008720 0.483000 0.008440 0.000484 \n", + "[1] \"PP abf for shared variant: 0.0484%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.87e-15 3.27e-17 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___PPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-06 3.76e-08 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EBPL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.42000 0.00734 0.56200 0.00982 0.00058 \n", + "[1] \"PP abf for shared variant: 0.058%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___FTL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.219000 0.003820 0.763000 0.013300 0.000928 \n", + "[1] \"PP abf for shared variant: 0.0928%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__UXT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-08 2.80e-10 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___LSM5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.81e-04 6.66e-06 9.81e-01 1.71e-02 9.80e-04 \n", + "[1] \"PP abf for shared variant: 0.098%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___KMT2E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.6569e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.551000 0.009630 0.431000 0.007530 0.000504 \n", + "[1] \"PP abf for shared variant: 0.0504%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MT-CO2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-07 3.05e-09 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TAGLN2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.505000 0.008820 0.477000 0.008340 0.000503 \n", + "[1] \"PP abf for shared variant: 0.0503%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CDCA7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4164e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.573000 0.009980 0.409000 0.007120 0.000476 \n", + "[1] \"PP abf for shared variant: 0.0476%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.61e-06 2.82e-08 9.82e-01 1.71e-02 8.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EPB41L4A-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.95e-06 3.41e-08 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___FLNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.82e-08 1.19e-09 9.82e-01 1.71e-02 8.93e-04 \n", + "[1] \"PP abf for shared variant: 0.0893%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TATDN1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.029100 0.000508 0.953000 0.016600 0.000862 \n", + "[1] \"PP abf for shared variant: 0.0862%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HLA-DPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.068500 0.001200 0.914000 0.016000 0.000849 \n", + "[1] \"PP abf for shared variant: 0.0849%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___C12orf57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.35e-13 5.85e-15 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.03e-23 3.55e-25 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-20 3.24e-22 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___BTG1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.26e-04 7.44e-06 9.82e-01 1.71e-02 9.02e-04 \n", + "[1] \"PP abf for shared variant: 0.0902%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___C8orf59__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.033400 0.000584 0.949000 0.016600 0.000860 \n", + "[1] \"PP abf for shared variant: 0.086%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CD58__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.007640 0.000134 0.974000 0.017000 0.000987 \n", + "[1] \"PP abf for shared variant: 0.0987%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MT-CO1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-17 2.78e-19 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.72e-06 9.99e-08 9.82e-01 1.71e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___AKAP13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.036100 0.000630 0.946000 0.016500 0.000986 \n", + "[1] \"PP abf for shared variant: 0.0986%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EIF4B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.83e-07 6.69e-09 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___DDX5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.66e-05 6.39e-07 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.030200 0.000529 0.952000 0.016600 0.000869 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ANXA2R__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.293000 0.005110 0.690000 0.012000 0.000692 \n", + "[1] \"PP abf for shared variant: 0.0692%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___IL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.282000 0.004930 0.700000 0.012200 0.000665 \n", + "[1] \"PP abf for shared variant: 0.0665%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___LINC00152__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.67e-08 2.92e-10 9.82e-01 1.71e-02 8.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0877%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___FOXP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.046900 0.000803 0.935000 0.016000 0.001020 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RGS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.71e-09 1.70e-10 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-21 2.61e-23 9.82e-01 1.71e-02 8.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___KLRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-04 1.79e-06 9.82e-01 1.71e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-16 1.91e-18 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-14 2.62e-16 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___DAP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.62e-04 1.33e-05 9.81e-01 1.71e-02 8.94e-04 \n", + "[1] \"PP abf for shared variant: 0.0894%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-11 2.65e-13 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SVIP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.415000 0.007250 0.567000 0.009910 0.000544 \n", + "[1] \"PP abf for shared variant: 0.0544%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HLA-C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.58e-15 4.50e-17 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.69e-27 6.44e-29 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-18 3.45e-20 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___PRKCQ-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.28e-07 3.99e-09 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___GIMAP7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.033300 0.000581 0.949000 0.016600 0.000868 \n", + "[1] \"PP abf for shared variant: 0.0868%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ENTPD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14900 0.00249 0.83400 0.01390 0.00081 \n", + "[1] \"PP abf for shared variant: 0.081%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___DUSP4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.48e-10 6.08e-12 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.11e-14 3.68e-16 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__YWHAB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002350 0.000041 0.980000 0.017100 0.000944 \n", + "[1] \"PP abf for shared variant: 0.0944%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CCR6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.191000 0.003350 0.791000 0.013800 0.000741 \n", + "[1] \"PP abf for shared variant: 0.0741%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MT-ND1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.98e-03 3.47e-05 9.80e-01 1.71e-02 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___PFN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.20e-17 1.61e-18 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ADAM19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.296000 0.005170 0.686000 0.012000 0.000788 \n", + "[1] \"PP abf for shared variant: 0.0788%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CLDND1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.306000 0.005340 0.676000 0.011800 0.000646 \n", + "[1] \"PP abf for shared variant: 0.0646%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___PFDN5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.53e-07 1.67e-08 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___FBL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-09 1.88e-11 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CD37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.230000 0.004020 0.752000 0.013100 0.000704 \n", + "[1] \"PP abf for shared variant: 0.0704%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___APEX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.330000 0.005760 0.653000 0.011400 0.000649 \n", + "[1] \"PP abf for shared variant: 0.0649%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.63e-08 4.59e-10 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.93e-22 1.56e-23 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___LETMD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-03 2.18e-05 9.81e-01 1.71e-02 8.91e-04 \n", + "[1] \"PP abf for shared variant: 0.0891%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___GK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.60e-03 4.33e-05 9.80e-01 1.63e-02 9.49e-04 \n", + "[1] \"PP abf for shared variant: 0.0949%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___NOSIP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.52e-07 1.49e-08 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___AHNAK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01320 0.00023 0.96900 0.01690 0.00107 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SLC7A5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.508000 0.008880 0.474000 0.008280 0.000547 \n", + "[1] \"PP abf for shared variant: 0.0547%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.95e-10 1.21e-11 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.87e-20 3.27e-22 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000685 0.000012 0.981000 0.017100 0.001020 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.72e-28 1.35e-29 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.04e-13 1.06e-14 9.82e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.80e-25 6.64e-27 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MT-ATP6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.83e-05 6.69e-07 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.81e-18 4.91e-20 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CCL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.17e-06 5.54e-08 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RILPL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.226000 0.003950 0.756000 0.013200 0.000708 \n", + "[1] \"PP abf for shared variant: 0.0708%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SSR2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.67e-05 6.41e-07 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.45e-03 6.04e-05 9.79e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__UBC\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.89e-09 8.54e-11 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.39e-14 1.47e-15 9.82e-01 1.71e-02 8.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MAF__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.14e-05 2.00e-07 9.82e-01 1.71e-02 8.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0889%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.28e-10 5.73e-12 9.82e-01 1.71e-02 8.96e-04 \n", + "[1] \"PP abf for shared variant: 0.0896%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___COMMD6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.97e-04 8.69e-06 9.81e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.74e-07 1.53e-08 9.82e-01 1.71e-02 8.98e-04 \n", + "[1] \"PP abf for shared variant: 0.0898%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___NSMCE1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.92e-03 8.59e-05 9.77e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TGFB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.16e-05 9.02e-07 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___PRDX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.083900 0.001470 0.898000 0.015700 0.000851 \n", + "[1] \"PP abf for shared variant: 0.0851%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.56e-20 1.15e-21 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___FAM46C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.028700 0.000501 0.953000 0.016600 0.000874 \n", + "[1] \"PP abf for shared variant: 0.0874%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.62e-22 1.50e-23 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.58e-21 2.77e-23 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.93e-27 1.21e-28 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.43e-23 2.50e-25 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RORA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.394000 0.006880 0.589000 0.010300 0.000582 \n", + "[1] \"PP abf for shared variant: 0.0582%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.42e-04 5.98e-06 9.82e-01 1.71e-02 8.98e-04 \n", + "[1] \"PP abf for shared variant: 0.0898%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.49e-19 6.10e-21 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CD44__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.68e-05 2.93e-07 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS4Y1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.457000 0.007990 0.525000 0.009170 0.000593 \n", + "[1] \"PP abf for shared variant: 0.0593%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___LGALS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-05 3.03e-07 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___COX7A2L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.053000 0.000927 0.929000 0.016200 0.000850 \n", + "[1] \"PP abf for shared variant: 0.085%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.43e-21 4.24e-23 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HADHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.085100 0.001490 0.897000 0.015700 0.000812 \n", + "[1] \"PP abf for shared variant: 0.0812%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SATB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.186000 0.003250 0.796000 0.013900 0.000747 \n", + "[1] \"PP abf for shared variant: 0.0747%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__UGP2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.036800 0.000642 0.945000 0.016500 0.000862 \n", + "[1] \"PP abf for shared variant: 0.0862%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SBDS\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.265000 0.004620 0.718000 0.012500 0.000723 \n", + "[1] \"PP abf for shared variant: 0.0723%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SYNE2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.70e-03 9.96e-05 9.76e-01 1.70e-02 9.31e-04 \n", + "[1] \"PP abf for shared variant: 0.0931%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TMA7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.072900 0.001270 0.909000 0.015900 0.000908 \n", + "[1] \"PP abf for shared variant: 0.0908%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___NEAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-09 2.64e-11 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___NR3C1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.051900 0.000907 0.930000 0.016200 0.000856 \n", + "[1] \"PP abf for shared variant: 0.0856%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.77e-27 1.18e-28 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CCT8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.021200 0.000371 0.961000 0.016800 0.000883 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFAIP3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.048400 0.000846 0.934000 0.016300 0.000842 \n", + "[1] \"PP abf for shared variant: 0.0842%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SH2D2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.395000 0.006510 0.588000 0.009710 0.000573 \n", + "[1] \"PP abf for shared variant: 0.0573%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___NPM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.94e-11 6.89e-13 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CLNS1A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.02e-03 8.78e-05 9.77e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RSL1D1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.34e-08 4.09e-10 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ATP6V0E1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.047000 0.000820 0.935000 0.016300 0.000844 \n", + "[1] \"PP abf for shared variant: 0.0844%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-26 2.28e-28 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___DUSP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.428000 0.007470 0.555000 0.009690 0.000552 \n", + "[1] \"PP abf for shared variant: 0.0552%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-27 2.99e-29 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFP36L2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.053600 0.000936 0.928000 0.016200 0.000858 \n", + "[1] \"PP abf for shared variant: 0.0858%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EIF3D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.33e-04 4.07e-06 9.82e-01 1.71e-02 9.09e-04 \n", + "[1] \"PP abf for shared variant: 0.0909%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RP11-138A9.2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.089000 0.001550 0.893000 0.015600 0.000851 \n", + "[1] \"PP abf for shared variant: 0.0851%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.23e-19 7.39e-21 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___APRT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00746 0.00013 0.97400 0.01700 0.00093 \n", + "[1] \"PP abf for shared variant: 0.093%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___FYN__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.00e-03 6.98e-05 9.78e-01 1.71e-02 9.11e-04 \n", + "[1] \"PP abf for shared variant: 0.0911%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ANP32B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.083400 0.001460 0.898000 0.015700 0.000986 \n", + "[1] \"PP abf for shared variant: 0.0986%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___PPP2R5C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.038300 0.000669 0.944000 0.016500 0.000853 \n", + "[1] \"PP abf for shared variant: 0.0853%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EIF3M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.86e-04 1.02e-05 9.81e-01 1.71e-02 8.99e-04 \n", + "[1] \"PP abf for shared variant: 0.0899%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-27 4.00e-29 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CMPK1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.75e-05 8.29e-07 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__YWHAZ\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.146000 0.002550 0.836000 0.014600 0.000832 \n", + "[1] \"PP abf for shared variant: 0.0832%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___GIMAP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.35e-08 7.59e-10 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___COTL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.40e-06 9.44e-08 9.82e-01 1.71e-02 8.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EIF2S3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.15e-11 1.42e-12 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HSP90AA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1807e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.487000 0.008510 0.495000 0.008650 0.000497 \n", + "[1] \"PP abf for shared variant: 0.0497%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MT-CYB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-04 3.24e-06 9.82e-01 1.71e-02 8.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HSPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.286000 0.004990 0.696000 0.012200 0.000653 \n", + "[1] \"PP abf for shared variant: 0.0653%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CRIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.58e-10 8.01e-12 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.02e-09 5.28e-11 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-17 1.78e-19 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TXK\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.32e-05 7.55e-07 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-16 3.80e-18 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.75e-14 1.00e-15 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ANXA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.88e-06 3.28e-08 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CLIC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.71e-05 6.48e-07 9.82e-01 1.71e-02 8.88e-04 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CD99__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06560 0.00115 0.91600 0.01600 0.00084 \n", + "[1] \"PP abf for shared variant: 0.084%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___LYRM4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.270000 0.004720 0.712000 0.012400 0.000672 \n", + "[1] \"PP abf for shared variant: 0.0672%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.19e-20 3.82e-22 9.82e-01 1.71e-02 8.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0874%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.70e-20 1.69e-21 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.11e-10 5.44e-12 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EZR__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002750 0.000048 0.979000 0.017100 0.000897 \n", + "[1] \"PP abf for shared variant: 0.0897%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ATP5A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.55e-04 1.67e-05 9.81e-01 1.71e-02 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ATP5O__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-08 2.18e-10 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08130 0.00142 0.90100 0.01570 0.00082 \n", + "[1] \"PP abf for shared variant: 0.082%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-19 1.80e-21 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SUCLG2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.95e-04 5.16e-06 9.82e-01 1.71e-02 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CD3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.051400 0.000898 0.931000 0.016300 0.000850 \n", + "[1] \"PP abf for shared variant: 0.085%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.11e-20 5.43e-22 9.82e-01 1.71e-02 8.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0883%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___NSA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-07 2.13e-09 9.82e-01 1.71e-02 8.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0881%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CST7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.056900 0.000994 0.925000 0.016200 0.000890 \n", + "[1] \"PP abf for shared variant: 0.089%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___HIGD2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.147000 0.002560 0.835000 0.014600 0.000845 \n", + "[1] \"PP abf for shared variant: 0.0845%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___EEF1G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.12e-09 5.45e-11 9.82e-01 1.71e-02 8.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0885%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___IGBP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.47e-03 6.06e-05 9.78e-01 1.71e-02 9.32e-04 \n", + "[1] \"PP abf for shared variant: 0.0932%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___OAZ1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.99e-19 5.23e-21 9.82e-01 1.71e-02 8.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___MYH9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.597000 0.010400 0.386000 0.006740 0.000476 \n", + "[1] \"PP abf for shared variant: 0.0476%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.72e-08 1.17e-09 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___ATP2B1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.19e-03 2.09e-05 9.81e-01 1.71e-02 9.47e-04 \n", + "[1] \"PP abf for shared variant: 0.0947%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-28 2.54e-30 9.82e-01 1.71e-02 8.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0873%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RBM39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.006320 0.000110 0.976000 0.017000 0.000912 \n", + "[1] \"PP abf for shared variant: 0.0912%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___CCNG1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.69e-03 4.71e-05 9.79e-01 1.71e-02 9.25e-04 \n", + "[1] \"PP abf for shared variant: 0.0925%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.88e-16 6.77e-18 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___COX4I1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.006040 0.000106 0.976000 0.017000 0.000884 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___PMAIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.053200 0.000930 0.929000 0.016200 0.000855 \n", + "[1] \"PP abf for shared variant: 0.0855%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.90e-11 6.81e-13 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SNHG7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.91e-07 8.58e-09 9.82e-01 1.71e-02 9.19e-04 \n", + "[1] \"PP abf for shared variant: 0.0919%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___FHIT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.79e-10 6.62e-12 9.82e-01 1.71e-02 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Inflammatory Bowel Disease\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-05 3.76e-07 9.82e-01 1.71e-02 8.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0886%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_TMEM176A___CAPG__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.246000 0.000863 0.750000 0.002630 0.000661 \n", + "[1] \"PP abf for shared variant: 0.0661%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_TMEM176A___PTAFR__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.506000 0.001780 0.489000 0.001710 0.000813 \n", + "[1] \"PP abf for shared variant: 0.0813%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_TMEM176A___MNDA__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.5916e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.935000 0.003280 0.061700 0.000215 0.000126 \n", + "[1] \"PP abf for shared variant: 0.0126%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_TMEM176A___RNASE6__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.728000 0.002550 0.269000 0.000940 0.000265 \n", + "[1] \"PP abf for shared variant: 0.0265%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_TMEM176A___TMEM176A__TSPO\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.804000 0.002820 0.192000 0.000671 0.000212 \n", + "[1] \"PP abf for shared variant: 0.0212%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_TMEM176A___TMEM176A__VMO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.5549e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.941000 0.003280 0.055700 0.000193 0.000146 \n", + "[1] \"PP abf for shared variant: 0.0146%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_TMEM176A___S100A9__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.836000 0.002940 0.160000 0.000559 0.000204 \n", + "[1] \"PP abf for shared variant: 0.0204%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_TMEM176A___QPCT__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.8504e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.30e-01 3.24e-03 6.64e-02 2.31e-04 8.66e-05 \n", + "[1] \"PP abf for shared variant: 0.00866%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_TMEM176A___BLVRB__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1205e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.903000 0.003170 0.093600 0.000327 0.000125 \n", + "[1] \"PP abf for shared variant: 0.0125%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_TMEM176A___LYZ__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.156000 0.000549 0.839000 0.002940 0.000736 \n", + "[1] \"PP abf for shared variant: 0.0736%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_TMEM176A___CLEC4A__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.5652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.24e-01 3.24e-03 7.24e-02 2.53e-04 9.19e-05 \n", + "[1] \"PP abf for shared variant: 0.00919%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL36__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.067500 0.000522 0.924000 0.007140 0.001030 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL5__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.693000 0.005370 0.299000 0.002310 0.000378 \n", + "[1] \"PP abf for shared variant: 0.0378%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.53500 0.00414 0.45700 0.00353 0.00055 \n", + "[1] \"PP abf for shared variant: 0.055%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL32__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.078600 0.000609 0.913000 0.007050 0.001030 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___EEF1A1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.740000 0.005730 0.252000 0.001950 0.000348 \n", + "[1] \"PP abf for shared variant: 0.0348%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL38__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.326000 0.002520 0.666000 0.005140 0.000793 \n", + "[1] \"PP abf for shared variant: 0.0793%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL35A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.415000 0.003220 0.576000 0.004450 0.000675 \n", + "[1] \"PP abf for shared variant: 0.0675%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL3__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.511000 0.003950 0.481000 0.003720 0.000634 \n", + "[1] \"PP abf for shared variant: 0.0634%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPS4X__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.743000 0.005750 0.249000 0.001920 0.000333 \n", + "[1] \"PP abf for shared variant: 0.0333%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPS3A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.725000 0.005610 0.267000 0.002070 0.000338 \n", + "[1] \"PP abf for shared variant: 0.0338%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPS15A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.442000 0.003420 0.550000 0.004250 0.000639 \n", + "[1] \"PP abf for shared variant: 0.0639%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPS8__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.46100 0.00357 0.53100 0.00410 0.00064 \n", + "[1] \"PP abf for shared variant: 0.064%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPS25__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.71300 0.00552 0.27900 0.00216 0.00036 \n", + "[1] \"PP abf for shared variant: 0.036%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPS12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.034500 0.000267 0.957000 0.007400 0.001060 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___NKG7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.56100 0.00434 0.43100 0.00333 0.00051 \n", + "[1] \"PP abf for shared variant: 0.051%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___B2M__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.203000 0.001570 0.788000 0.006090 0.000887 \n", + "[1] \"PP abf for shared variant: 0.0887%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL15__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.355000 0.002750 0.637000 0.004920 0.000739 \n", + "[1] \"PP abf for shared variant: 0.0739%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___PFN1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.137000 0.001060 0.854000 0.006600 0.000961 \n", + "[1] \"PP abf for shared variant: 0.0961%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPS28__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.365000 0.002820 0.627000 0.004840 0.000738 \n", + "[1] \"PP abf for shared variant: 0.0738%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL13A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.428000 0.003310 0.564000 0.004360 0.000674 \n", + "[1] \"PP abf for shared variant: 0.0674%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___GZMH__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.148000 0.001150 0.843000 0.006520 0.000955 \n", + "[1] \"PP abf for shared variant: 0.0955%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___LTB__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.242000 0.001870 0.750000 0.005800 0.000857 \n", + "[1] \"PP abf for shared variant: 0.0857%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL39__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.332000 0.002570 0.659000 0.005100 0.000768 \n", + "[1] \"PP abf for shared variant: 0.0768%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPS14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.396000 0.003070 0.595000 0.004600 0.000686 \n", + "[1] \"PP abf for shared variant: 0.0686%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.301000 0.002330 0.691000 0.005340 0.000788 \n", + "[1] \"PP abf for shared variant: 0.0788%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPS23__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.178000 0.001380 0.813000 0.006290 0.000927 \n", + "[1] \"PP abf for shared variant: 0.0927%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPS29__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.229000 0.001770 0.763000 0.005890 0.000882 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL22__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.662000 0.005120 0.330000 0.002550 0.000409 \n", + "[1] \"PP abf for shared variant: 0.0409%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL9__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.453000 0.003500 0.539000 0.004170 0.000641 \n", + "[1] \"PP abf for shared variant: 0.0641%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.673000 0.005210 0.319000 0.002460 0.000416 \n", + "[1] \"PP abf for shared variant: 0.0416%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.636000 0.004920 0.356000 0.002750 0.000437 \n", + "[1] \"PP abf for shared variant: 0.0437%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.00027483\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.82e-01 7.60e-03 1.05e-02 8.05e-05 7.42e-05 \n", + "[1] \"PP abf for shared variant: 0.00742%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___MAL__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.45900 0.00355 0.53300 0.00411 0.00070 \n", + "[1] \"PP abf for shared variant: 0.07%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___PRF1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.732000 0.005670 0.260000 0.002010 0.000348 \n", + "[1] \"PP abf for shared variant: 0.0348%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPS13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.033900 0.000262 0.957000 0.007400 0.001060 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPS6__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.292000 0.002260 0.700000 0.005410 0.000797 \n", + "[1] \"PP abf for shared variant: 0.0797%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPS18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.040500 0.000314 0.951000 0.007350 0.001070 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL21__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.215000 0.001670 0.776000 0.006000 0.000879 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___SMDT1__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-02 8.28e-05 9.81e-01 7.58e-03 1.09e-03 \n", + "[1] \"PP abf for shared variant: 0.109%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.321000 0.002480 0.670000 0.005180 0.000869 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL11__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.051300 0.000397 0.940000 0.007270 0.001050 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL34__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.136000 0.001050 0.855000 0.006610 0.000958 \n", + "[1] \"PP abf for shared variant: 0.0958%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL10A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.200000 0.001550 0.791000 0.006110 0.000894 \n", + "[1] \"PP abf for shared variant: 0.0894%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_SMDT1___RPL30__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.299000 0.002310 0.692000 0.005350 0.000793 \n", + "[1] \"PP abf for shared variant: 0.0793%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPL3__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.062400 0.000483 0.929000 0.007180 0.001060 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPS25__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.690000 0.005340 0.302000 0.002330 0.000376 \n", + "[1] \"PP abf for shared variant: 0.0376%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPL13A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.194000 0.001500 0.797000 0.006160 0.000899 \n", + "[1] \"PP abf for shared variant: 0.0899%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPS13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.13700 0.00106 0.85500 0.00660 0.00102 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPS4X__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.842000 0.006510 0.151000 0.001160 0.000224 \n", + "[1] \"PP abf for shared variant: 0.0224%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPS18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.805000 0.006230 0.187000 0.001450 0.000294 \n", + "[1] \"PP abf for shared variant: 0.0294%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPL31__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.787000 0.006090 0.205000 0.001580 0.000309 \n", + "[1] \"PP abf for shared variant: 0.0309%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPS15__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.619000 0.004790 0.372000 0.002880 0.000476 \n", + "[1] \"PP abf for shared variant: 0.0476%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___ACTB__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.188000 0.001460 0.803000 0.006210 0.000904 \n", + "[1] \"PP abf for shared variant: 0.0904%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPL36__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.549000 0.004250 0.442000 0.003420 0.000538 \n", + "[1] \"PP abf for shared variant: 0.0538%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPL35A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.019600 0.000152 0.972000 0.007510 0.001080 \n", + "[1] \"PP abf for shared variant: 0.108%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPS12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.828000 0.006410 0.164000 0.001260 0.000229 \n", + "[1] \"PP abf for shared variant: 0.0229%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPL11__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.485000 0.003750 0.507000 0.003920 0.000598 \n", + "[1] \"PP abf for shared variant: 0.0598%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPL14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.491000 0.003800 0.501000 0.003870 0.000589 \n", + "[1] \"PP abf for shared variant: 0.0589%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPL10__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.286000 0.002220 0.705000 0.005450 0.000834 \n", + "[1] \"PP abf for shared variant: 0.0834%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPS3A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.625000 0.004840 0.367000 0.002830 0.000471 \n", + "[1] \"PP abf for shared variant: 0.0471%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0032661\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.80e-01 7.59e-03 1.18e-02 9.04e-05 6.85e-05 \n", + "[1] \"PP abf for shared variant: 0.00685%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___CD48__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.569000 0.004400 0.423000 0.003270 0.000541 \n", + "[1] \"PP abf for shared variant: 0.0541%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPL7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.72200 0.00559 0.27000 0.00209 0.00038 \n", + "[1] \"PP abf for shared variant: 0.038%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_SMDT1___RPS27__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.832000 0.006440 0.160000 0.001240 0.000307 \n", + "[1] \"PP abf for shared variant: 0.0307%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_HLA-DQA2___CST3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.40e-69 9.69e-01 1.61e-71 4.31e-03 2.67e-02 \n", + "[1] \"PP abf for shared variant: 2.67%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.36e-69 9.59e-01 1.60e-71 4.21e-03 3.65e-02 \n", + "[1] \"PP abf for shared variant: 3.65%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.31e-69 9.44e-01 1.71e-71 4.37e-03 5.12e-02 \n", + "[1] \"PP abf for shared variant: 5.12%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_HLA-DQA2___CLIC3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.31e-69 9.45e-01 1.79e-71 4.60e-03 5.00e-02 \n", + "[1] \"PP abf for shared variant: 5%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__PTPRCAP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.34e-69 9.53e-01 1.48e-71 3.78e-03 4.32e-02 \n", + "[1] \"PP abf for shared variant: 4.32%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_HLA-DQA2___CDKN2D__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.5969e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.13e-69 8.92e-01 2.30e-71 5.54e-03 1.03e-01 \n", + "[1] \"PP abf for shared variant: 10.3%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__YBX1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.0931e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.37e-69 9.62e-01 1.78e-71 4.74e-03 3.30e-02 \n", + "[1] \"PP abf for shared variant: 3.3%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.13e-69 8.93e-01 1.68e-71 3.75e-03 1.03e-01 \n", + "[1] \"PP abf for shared variant: 10.3%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.34e-69 9.52e-01 1.72e-71 4.48e-03 4.38e-02 \n", + "[1] \"PP abf for shared variant: 4.38%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__MAP1A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.19e-69 9.11e-01 1.83e-71 4.37e-03 8.46e-02 \n", + "[1] \"PP abf for shared variant: 8.46%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_HLA-DQA2___FAM129C__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.14e-69 8.97e-01 1.77e-71 4.07e-03 9.88e-02 \n", + "[1] \"PP abf for shared variant: 9.88%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__MT-CO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1338e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.99e-69 8.53e-01 1.94e-71 4.10e-03 1.43e-01 \n", + "[1] \"PP abf for shared variant: 14.3%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.19e-69 9.11e-01 1.81e-71 4.33e-03 8.43e-02 \n", + "[1] \"PP abf for shared variant: 8.43%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___CST3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.89e-69 8.26e-01 1.96e-71 3.89e-03 1.70e-01 \n", + "[1] \"PP abf for shared variant: 17%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.09e-70 2.02e-01 3.62e-71 2.38e-03 7.95e-01 \n", + "[1] \"PP abf for shared variant: 79.5%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___CD74__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.14e-69 8.97e-01 2.19e-71 5.28e-03 9.82e-02 \n", + "[1] \"PP abf for shared variant: 9.82%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.24e-69 6.39e-01 7.33e-70 2.07e-01 1.54e-01 \n", + "[1] \"PP abf for shared variant: 15.4%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.24e-69 6.40e-01 2.87e-71 4.65e-03 3.55e-01 \n", + "[1] \"PP abf for shared variant: 35.5%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.89e-69 5.40e-01 3.38e-71 5.10e-03 4.55e-01 \n", + "[1] \"PP abf for shared variant: 45.5%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DMA__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.99e-69 8.53e-01 3.00e-71 7.17e-03 1.39e-01 \n", + "[1] \"PP abf for shared variant: 13.9%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS23\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.49e-69 7.11e-01 3.54e-71 7.28e-03 2.82e-01 \n", + "[1] \"PP abf for shared variant: 28.2%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.41e-69 9.74e-01 1.96e-71 5.39e-03 2.07e-02 \n", + "[1] \"PP abf for shared variant: 2.07%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.14e-69 8.97e-01 2.25e-71 5.43e-03 9.77e-02 \n", + "[1] \"PP abf for shared variant: 9.77%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___EEF1A1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.60e-69 7.42e-01 2.39e-71 4.28e-03 2.54e-01 \n", + "[1] \"PP abf for shared variant: 25.4%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.29e-69 9.38e-01 8.59e-71 2.41e-02 3.82e-02 \n", + "[1] \"PP abf for shared variant: 3.82%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.34e-69 9.54e-01 4.21e-71 1.17e-02 3.46e-02 \n", + "[1] \"PP abf for shared variant: 3.46%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DMB__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.38e-69 9.64e-01 2.90e-71 8.00e-03 2.78e-02 \n", + "[1] \"PP abf for shared variant: 2.78%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.84e-69 8.09e-01 5.39e-71 1.36e-02 1.78e-01 \n", + "[1] \"PP abf for shared variant: 17.8%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.20e-69 9.14e-01 3.11e-71 8.09e-03 7.77e-02 \n", + "[1] \"PP abf for shared variant: 7.77%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.37e-69 9.62e-01 6.57e-71 1.85e-02 1.98e-02 \n", + "[1] \"PP abf for shared variant: 1.98%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RNASET2___HLA-DRB5__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.44e-69 9.81e-01 1.15e-71 3.11e-03 1.60e-02 \n", + "[1] \"PP abf for shared variant: 1.6%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_HLA-DQA2___CCL5__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.97e-69 8.48e-01 3.19e-71 7.65e-03 1.45e-01 \n", + "[1] \"PP abf for shared variant: 14.5%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_HLA-DQA2___CD74__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.42e-69 9.75e-01 2.60e-71 7.24e-03 1.78e-02 \n", + "[1] \"PP abf for shared variant: 1.78%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.19e-69 9.09e-01 2.03e-71 4.94e-03 8.61e-02 \n", + "[1] \"PP abf for shared variant: 8.61%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__NKG7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.11e-69 8.88e-01 2.05e-71 4.78e-03 1.07e-01 \n", + "[1] \"PP abf for shared variant: 10.7%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPL34\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.22e-69 9.18e-01 2.09e-71 5.20e-03 7.65e-02 \n", + "[1] \"PP abf for shared variant: 7.65%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.91e-69 8.30e-01 1.88e-71 3.70e-03 1.67e-01 \n", + "[1] \"PP abf for shared variant: 16.7%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_HLA-DQA2___CMC1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.37e-69 9.62e-01 2.01e-71 5.41e-03 3.25e-02 \n", + "[1] \"PP abf for shared variant: 3.25%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS14\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.54e-69 7.25e-01 2.43e-71 4.22e-03 2.70e-01 \n", + "[1] \"PP abf for shared variant: 27%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.74e-70 7.83e-02 3.44e-71 6.01e-04 9.21e-01 \n", + "[1] \"PP abf for shared variant: 92.1%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.16e-69 9.00e-01 1.77e-71 4.08e-03 9.58e-02 \n", + "[1] \"PP abf for shared variant: 9.58%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.32e-69 9.46e-01 1.98e-71 5.16e-03 4.90e-02 \n", + "[1] \"PP abf for shared variant: 4.9%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-69 7.53e-01 2.68e-71 5.22e-03 2.42e-01 \n", + "[1] \"PP abf for shared variant: 24.2%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___CD52__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.30e-69 9.43e-01 2.28e-71 5.98e-03 5.14e-02 \n", + "[1] \"PP abf for shared variant: 5.14%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.79e-69 7.95e-01 2.15e-71 4.12e-03 2.01e-01 \n", + "[1] \"PP abf for shared variant: 20.1%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.11e-69 8.87e-01 2.66e-71 6.52e-03 1.06e-01 \n", + "[1] \"PP abf for shared variant: 10.6%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.93e-69 8.35e-01 3.02e-71 7.03e-03 1.58e-01 \n", + "[1] \"PP abf for shared variant: 15.8%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___EEF1B2__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.12e-69 8.91e-01 1.96e-71 4.55e-03 1.04e-01 \n", + "[1] \"PP abf for shared variant: 10.4%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.12e-69 8.90e-01 2.47e-71 6.01e-03 1.04e-01 \n", + "[1] \"PP abf for shared variant: 10.4%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___B2M__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.20e-69 9.12e-01 2.37e-71 5.94e-03 8.24e-02 \n", + "[1] \"PP abf for shared variant: 8.24%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___GAPDH__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.20e-69 9.13e-01 2.40e-71 6.05e-03 8.10e-02 \n", + "[1] \"PP abf for shared variant: 8.1%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL32\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.88e-69 8.21e-01 2.72e-71 6.04e-03 1.73e-01 \n", + "[1] \"PP abf for shared variant: 17.3%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.71e-69 7.73e-01 2.18e-71 4.00e-03 2.23e-01 \n", + "[1] \"PP abf for shared variant: 22.3%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.13e-69 8.93e-01 2.07e-71 4.89e-03 1.02e-01 \n", + "[1] \"PP abf for shared variant: 10.2%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RNASET2___ITGB1__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.34e-01 4.08e-03 6.19e-02 2.70e-04 9.48e-05 \n", + "[1] \"PP abf for shared variant: 0.00948%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RNASET2___CRIP1__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.73e-01 4.26e-03 2.28e-02 9.95e-05 4.69e-05 \n", + "[1] \"PP abf for shared variant: 0.00469%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RNASET2___B2M__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.65e-01 4.22e-03 3.07e-02 1.34e-04 6.41e-05 \n", + "[1] \"PP abf for shared variant: 0.00641%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RNASET2___ALOX5AP__RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.63e-01 4.21e-03 3.25e-02 1.42e-04 5.98e-05 \n", + "[1] \"PP abf for shared variant: 0.00598%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_RPS26___RPS26__RPS8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.0253e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.70e-01 1.30e-03 2.83e-02 3.76e-05 4.43e-05 \n", + "[1] \"PP abf for shared variant: 0.00443%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.886000 0.001190 0.112000 0.000150 0.000118 \n", + "[1] \"PP abf for shared variant: 0.0118%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"DC_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.884000 0.001190 0.114000 0.000152 0.000118 \n", + "[1] \"PP abf for shared variant: 0.0118%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.781000 0.001070 0.217000 0.000295 0.000234 \n", + "[1] \"PP abf for shared variant: 0.0234%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS26__UBE2J1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 8.0878e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.68e-01 1.32e-03 3.09e-02 4.19e-05 3.87e-05 \n", + "[1] \"PP abf for shared variant: 0.00387%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.594000 0.000814 0.404000 0.000549 0.000386 \n", + "[1] \"PP abf for shared variant: 0.0386%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.30e-01 1.27e-03 6.90e-02 9.37e-05 7.44e-05 \n", + "[1] \"PP abf for shared variant: 0.00744%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1042e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.65e-01 1.32e-03 3.38e-02 4.57e-05 5.39e-05 \n", + "[1] \"PP abf for shared variant: 0.00539%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS26__RPS28\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.1644e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.70e-01 1.33e-03 2.83e-02 3.84e-05 4.22e-05 \n", + "[1] \"PP abf for shared variant: 0.00422%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.29e-02 1.76e-05 9.85e-01 1.34e-03 8.62e-04 \n", + "[1] \"PP abf for shared variant: 0.0862%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL39__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.0557e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.69e-01 1.33e-03 3.00e-02 4.04e-05 6.07e-05 \n", + "[1] \"PP abf for shared variant: 0.00607%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.165000 0.000226 0.833000 0.001130 0.000730 \n", + "[1] \"PP abf for shared variant: 0.073%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.631000 0.000863 0.368000 0.000500 0.000349 \n", + "[1] \"PP abf for shared variant: 0.0349%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.21e-02 7.13e-05 9.46e-01 1.29e-03 8.46e-04 \n", + "[1] \"PP abf for shared variant: 0.0846%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.38e-01 1.28e-03 6.06e-02 8.23e-05 7.63e-05 \n", + "[1] \"PP abf for shared variant: 0.00763%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.797000 0.001090 0.202000 0.000274 0.000198 \n", + "[1] \"PP abf for shared variant: 0.0198%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL26__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.7757e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.39e-01 1.29e-03 5.90e-02 7.99e-05 9.79e-05 \n", + "[1] \"PP abf for shared variant: 0.00979%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.434000 0.000594 0.565000 0.000768 0.000511 \n", + "[1] \"PP abf for shared variant: 0.0511%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.896000 0.001230 0.102000 0.000139 0.000109 \n", + "[1] \"PP abf for shared variant: 0.0109%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS25__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2778e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.20e-01 1.26e-03 7.86e-02 1.07e-04 7.97e-05 \n", + "[1] \"PP abf for shared variant: 0.00797%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS26__RPS29\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0623e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.59e-01 1.31e-03 3.91e-02 5.30e-05 5.55e-05 \n", + "[1] \"PP abf for shared variant: 0.00555%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.316000 0.000432 0.682000 0.000928 0.000642 \n", + "[1] \"PP abf for shared variant: 0.0642%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.691000 0.000947 0.307000 0.000413 0.000644 \n", + "[1] \"PP abf for shared variant: 0.0644%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.624000 0.000854 0.375000 0.000509 0.000364 \n", + "[1] \"PP abf for shared variant: 0.0364%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.84e-03 2.52e-06 9.96e-01 1.35e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1408e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.74e-01 1.33e-03 2.45e-02 3.33e-05 3.48e-05 \n", + "[1] \"PP abf for shared variant: 0.00348%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.791e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.913000 0.001250 0.085100 0.000116 0.000096 \n", + "[1] \"PP abf for shared variant: 0.0096%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1436e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.940000 0.001290 0.058200 0.000079 0.000070 \n", + "[1] \"PP abf for shared variant: 0.007%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1123e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.78e-01 1.34e-03 2.01e-02 2.73e-05 2.73e-05 \n", + "[1] \"PP abf for shared variant: 0.00273%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.680000 0.000931 0.318000 0.000433 0.000296 \n", + "[1] \"PP abf for shared variant: 0.0296%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.756000 0.001040 0.242000 0.000329 0.000267 \n", + "[1] \"PP abf for shared variant: 0.0267%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-03 2.44e-06 9.96e-01 1.36e-03 8.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0874%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.710000 0.000972 0.289000 0.000393 0.000271 \n", + "[1] \"PP abf for shared variant: 0.0271%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.148000 0.000202 0.850000 0.001160 0.000746 \n", + "[1] \"PP abf for shared variant: 0.0746%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.26e-04 8.57e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.537000 0.000735 0.461000 0.000627 0.000416 \n", + "[1] \"PP abf for shared variant: 0.0416%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPL23A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1639e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.48e-01 1.30e-03 5.08e-02 6.89e-05 6.14e-05 \n", + "[1] \"PP abf for shared variant: 0.00614%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"B_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.372000 0.000509 0.626000 0.000852 0.000588 \n", + "[1] \"PP abf for shared variant: 0.0588%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.28e-07 1.75e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.61e-11 3.58e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.312000 0.000427 0.686000 0.000933 0.000612 \n", + "[1] \"PP abf for shared variant: 0.0612%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.92e-07 2.64e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.97e-05 1.09e-07 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.95e-04 6.78e-07 9.97e-01 1.36e-03 8.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0878%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.96e-16 6.79e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.15e-10 5.69e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.69e-10 2.31e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.72e-10 2.36e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.35e-04 7.32e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-02 1.65e-05 9.86e-01 1.34e-03 8.65e-04 \n", + "[1] \"PP abf for shared variant: 0.0865%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-10 1.41e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-14 1.78e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.396000 0.000542 0.602000 0.000819 0.000539 \n", + "[1] \"PP abf for shared variant: 0.0539%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.331000 0.000453 0.667000 0.000907 0.000591 \n", + "[1] \"PP abf for shared variant: 0.0591%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.66e-09 5.02e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.29e-06 1.13e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.11e-02 9.73e-05 9.27e-01 1.26e-03 8.16e-04 \n", + "[1] \"PP abf for shared variant: 0.0816%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.08e-06 4.22e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.14e-17 2.93e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.24e-11 7.17e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.58e-10 6.27e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__SPON2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.147000 0.000201 0.851000 0.001150 0.001080 \n", + "[1] \"PP abf for shared variant: 0.108%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.83e-04 3.88e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.37e-18 5.99e-21 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-12 2.26e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.69e-11 9.16e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-12 1.79e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.31e-05 4.53e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.605000 0.000828 0.393000 0.000535 0.000375 \n", + "[1] \"PP abf for shared variant: 0.0375%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.65e-05 1.32e-07 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___PRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1991e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.33e-01 1.28e-03 6.53e-02 8.82e-05 1.15e-04 \n", + "[1] \"PP abf for shared variant: 0.0115%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-08 1.41e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.74e-11 5.12e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.99e-08 2.72e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.93e-10 2.64e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.86e-14 5.28e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.83e-17 6.61e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.98e-03 1.37e-05 9.88e-01 1.34e-03 8.62e-04 \n", + "[1] \"PP abf for shared variant: 0.0862%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.45e-08 3.35e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.06e-04 6.93e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.22e-08 1.13e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.12e-12 2.90e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.71e-08 6.45e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.81e-14 5.22e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.36e-12 5.97e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-03 2.94e-06 9.96e-01 1.35e-03 8.68e-04 \n", + "[1] \"PP abf for shared variant: 0.0868%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.32e-13 8.65e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.873000 0.001200 0.125000 0.000170 0.000131 \n", + "[1] \"PP abf for shared variant: 0.0131%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-05 2.00e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.411000 0.000562 0.587000 0.000799 0.000532 \n", + "[1] \"PP abf for shared variant: 0.0532%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.98e-06 2.70e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.095000 0.000130 0.903000 0.001230 0.000814 \n", + "[1] \"PP abf for shared variant: 0.0814%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.10e-16 5.61e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.27e-07 5.85e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.26e-08 4.46e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.84e-06 1.07e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.87e-09 1.08e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.96e-15 1.09e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.29e-05 7.24e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.82e-05 1.07e-07 9.98e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___GPR183__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.82900 0.00114 0.16900 0.00023 0.00018 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.55e-15 3.49e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.137000 0.000187 0.861000 0.001170 0.000755 \n", + "[1] \"PP abf for shared variant: 0.0755%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.15e-08 7.06e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-05 2.69e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-04 2.02e-07 9.98e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.99e-04 1.23e-06 9.97e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.86e-06 8.02e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___GZMB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4099e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.30e-01 1.27e-03 6.87e-02 9.32e-05 8.50e-05 \n", + "[1] \"PP abf for shared variant: 0.0085%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___EEF1D__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5173e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.85e-01 1.35e-03 1.37e-02 1.86e-05 2.20e-05 \n", + "[1] \"PP abf for shared variant: 0.0022%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.017500 0.000024 0.980000 0.001330 0.000859 \n", + "[1] \"PP abf for shared variant: 0.0859%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.10e-06 5.62e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.11e-11 1.25e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___KLRC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.596000 0.000817 0.402000 0.000546 0.000408 \n", + "[1] \"PP abf for shared variant: 0.0408%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL17__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.4275e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.73e-01 1.33e-03 2.53e-02 3.41e-05 5.19e-05 \n", + "[1] \"PP abf for shared variant: 0.00519%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.06e-05 9.67e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.99e-08 5.47e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___MALAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.489000 0.000669 0.509000 0.000689 0.000810 \n", + "[1] \"PP abf for shared variant: 0.081%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.56e-02 7.62e-05 9.42e-01 1.28e-03 8.42e-04 \n", + "[1] \"PP abf for shared variant: 0.0842%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.06e-09 4.19e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___HLA-B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8351e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.59e-01 1.31e-03 3.92e-02 5.30e-05 6.18e-05 \n", + "[1] \"PP abf for shared variant: 0.00618%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.55e-05 3.49e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.47e-04 3.39e-07 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___FGFBP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.864000 0.001180 0.134000 0.000181 0.000239 \n", + "[1] \"PP abf for shared variant: 0.0239%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.077900 0.000107 0.920000 0.001250 0.000806 \n", + "[1] \"PP abf for shared variant: 0.0806%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002920 0.000004 0.995000 0.001350 0.000867 \n", + "[1] \"PP abf for shared variant: 0.0867%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.11e-03 2.88e-06 9.96e-01 1.35e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.429000 0.000588 0.569000 0.000773 0.000572 \n", + "[1] \"PP abf for shared variant: 0.0572%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__ZEB2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.574e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.84e-01 1.27e-03 1.47e-02 1.87e-05 2.57e-05 \n", + "[1] \"PP abf for shared variant: 0.00257%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-04 2.98e-07 9.98e-01 1.36e-03 8.71e-04 \n", + "[1] \"PP abf for shared variant: 0.0871%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.37e-14 1.87e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___NACA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.2336e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.73e-01 1.33e-03 2.54e-02 3.44e-05 3.65e-05 \n", + "[1] \"PP abf for shared variant: 0.00365%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-08 2.87e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"NK_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.77e-10 1.20e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___NRGN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7437e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.878000 0.001200 0.120000 0.000163 0.000199 \n", + "[1] \"PP abf for shared variant: 0.0199%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.717000 0.000982 0.281000 0.000382 0.000260 \n", + "[1] \"PP abf for shared variant: 0.026%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.71e-03 1.19e-05 9.89e-01 1.35e-03 8.66e-04 \n", + "[1] \"PP abf for shared variant: 0.0866%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-05 1.55e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.08e-16 1.11e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.15e-06 8.42e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-09 2.94e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.46e-02 6.11e-05 9.53e-01 1.30e-03 8.37e-04 \n", + "[1] \"PP abf for shared variant: 0.0837%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-08 1.74e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.68e-14 6.41e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__VCAN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.77000 0.00105 0.22800 0.00031 0.00022 \n", + "[1] \"PP abf for shared variant: 0.022%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__UQCRH\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.93e-05 4.01e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC7A7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.11e-02 4.26e-05 9.67e-01 1.32e-03 8.49e-04 \n", + "[1] \"PP abf for shared variant: 0.0849%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___EPB41L3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.833000 0.001140 0.165000 0.000225 0.000178 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.076000 0.000104 0.922000 0.001250 0.000813 \n", + "[1] \"PP abf for shared variant: 0.0813%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.36e-14 8.71e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___HNRNPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.169000 0.000231 0.829000 0.001130 0.000730 \n", + "[1] \"PP abf for shared variant: 0.073%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___QARS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.784000 0.001070 0.214000 0.000291 0.000214 \n", + "[1] \"PP abf for shared variant: 0.0214%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___HLA-DPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.91e-05 3.98e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.43e-15 1.29e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.91e-05 1.08e-07 9.98e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.26e-15 4.46e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.07e-08 4.21e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-09 2.88e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.81e-12 9.32e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.167000 0.000229 0.831000 0.001130 0.000728 \n", + "[1] \"PP abf for shared variant: 0.0728%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-09 1.64e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___CSTA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.68e-03 2.30e-06 9.96e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.98e-06 4.08e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.331000 0.000454 0.667000 0.000907 0.000586 \n", + "[1] \"PP abf for shared variant: 0.0586%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.48e-12 3.39e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.84e-02 3.89e-05 9.69e-01 1.32e-03 8.50e-04 \n", + "[1] \"PP abf for shared variant: 0.085%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.89e-15 1.22e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___ERP29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.709000 0.000971 0.289000 0.000393 0.000296 \n", + "[1] \"PP abf for shared variant: 0.0296%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__TNFAIP2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.735000 0.001010 0.263000 0.000357 0.000391 \n", + "[1] \"PP abf for shared variant: 0.0391%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__VIM\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.33e-02 4.56e-05 9.64e-01 1.31e-03 8.45e-04 \n", + "[1] \"PP abf for shared variant: 0.0845%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.15e-11 1.25e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.40e-20 8.77e-23 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.50e-11 6.16e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.83e-05 6.61e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.62e-09 2.22e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.82e-09 9.34e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-04 2.23e-07 9.98e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.94e-03 9.50e-06 9.91e-01 1.35e-03 8.64e-04 \n", + "[1] \"PP abf for shared variant: 0.0864%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.76e-03 5.14e-06 9.94e-01 1.35e-03 8.67e-04 \n", + "[1] \"PP abf for shared variant: 0.0867%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.34e-13 3.21e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.26e-15 1.73e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC25A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.18e-07 1.62e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.43e-04 8.80e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-10 2.98e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPSA\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1173e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.769000 0.001050 0.230000 0.000312 0.000252 \n", + "[1] \"PP abf for shared variant: 0.0252%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.43e-06 1.02e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.24e-09 4.44e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-07 3.02e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.009490 0.000013 0.988000 0.001340 0.000862 \n", + "[1] \"PP abf for shared variant: 0.0862%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.96e-08 2.68e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.29e-05 4.51e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___HLA-DPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.082000 0.000112 0.916000 0.001250 0.000803 \n", + "[1] \"PP abf for shared variant: 0.0803%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.56e-11 7.62e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.78e-10 6.54e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.55e-04 4.86e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___PABPC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.14e-04 1.11e-06 9.97e-01 1.36e-03 8.71e-04 \n", + "[1] \"PP abf for shared variant: 0.0871%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___CST3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7382e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.894000 0.001220 0.105000 0.000142 0.000116 \n", + "[1] \"PP abf for shared variant: 0.0116%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___EMP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.151000 0.000207 0.847000 0.001150 0.000765 \n", + "[1] \"PP abf for shared variant: 0.0765%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___GNLY__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.838000 0.001150 0.160000 0.000217 0.000216 \n", + "[1] \"PP abf for shared variant: 0.0216%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.28e-15 5.86e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___EIF3M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.895000 0.001230 0.104000 0.000141 0.000117 \n", + "[1] \"PP abf for shared variant: 0.0117%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.19e-02 1.62e-05 9.86e-01 1.34e-03 8.60e-04 \n", + "[1] \"PP abf for shared variant: 0.086%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___AP1S2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.611000 0.000837 0.387000 0.000526 0.000362 \n", + "[1] \"PP abf for shared variant: 0.0362%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.76e-10 7.89e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.58e-08 4.90e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__SEC11A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.128000 0.000175 0.870000 0.001180 0.000776 \n", + "[1] \"PP abf for shared variant: 0.0776%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-03 3.61e-06 9.95e-01 1.35e-03 8.68e-04 \n", + "[1] \"PP abf for shared variant: 0.0868%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.60e-10 4.94e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.45e-08 4.72e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.94e-10 1.36e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.17e-07 5.70e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-06 1.64e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.83e-07 6.62e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___ATP5G2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.55e-02 7.59e-05 9.42e-01 1.28e-03 8.27e-04 \n", + "[1] \"PP abf for shared variant: 0.0827%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-05 3.62e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.67e-08 3.65e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC25A5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.26e-02 4.46e-05 9.65e-01 1.31e-03 8.43e-04 \n", + "[1] \"PP abf for shared variant: 0.0843%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.39e-13 1.29e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.00e-15 1.37e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.01e-17 1.10e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.26e-06 8.57e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.93e-07 4.02e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.33e-16 5.93e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.85e-04 5.27e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___EVI2B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.842000 0.001150 0.156000 0.000212 0.000152 \n", + "[1] \"PP abf for shared variant: 0.0152%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.426000 0.000583 0.572000 0.000777 0.000587 \n", + "[1] \"PP abf for shared variant: 0.0587%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.154000 0.000211 0.844000 0.001150 0.000776 \n", + "[1] \"PP abf for shared variant: 0.0776%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.39e-03 1.91e-06 9.96e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.41e-12 3.30e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___LGALS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.447000 0.000612 0.551000 0.000750 0.000492 \n", + "[1] \"PP abf for shared variant: 0.0492%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.634000 0.000868 0.365000 0.000495 0.000383 \n", + "[1] \"PP abf for shared variant: 0.0383%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.82e-11 1.07e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-14 2.43e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.07e-10 2.84e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.55e-05 2.12e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___GPX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.139000 0.000190 0.859000 0.001170 0.000763 \n", + "[1] \"PP abf for shared variant: 0.0763%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___LTA4H__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.34e-01 1.28e-03 6.49e-02 8.80e-05 7.94e-05 \n", + "[1] \"PP abf for shared variant: 0.00794%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RNASE6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.693000 0.000949 0.305000 0.000414 0.000372 \n", + "[1] \"PP abf for shared variant: 0.0372%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___FTH1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.577000 0.000790 0.422000 0.000573 0.000432 \n", + "[1] \"PP abf for shared variant: 0.0432%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___BTF3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.093400 0.000128 0.904000 0.001230 0.000794 \n", + "[1] \"PP abf for shared variant: 0.0794%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___DRAM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1829e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.12e-01 1.25e-03 8.67e-02 1.18e-04 9.31e-05 \n", + "[1] \"PP abf for shared variant: 0.00931%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___IL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-02 1.84e-05 9.84e-01 1.34e-03 8.62e-04 \n", + "[1] \"PP abf for shared variant: 0.0862%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___ATP5A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.050400 0.000069 0.947000 0.001290 0.000907 \n", + "[1] \"PP abf for shared variant: 0.0907%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-05 1.92e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-09 1.45e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.94e-13 9.51e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.689000 0.000943 0.310000 0.000421 0.000300 \n", + "[1] \"PP abf for shared variant: 0.03%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.49e-14 7.52e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.38e-11 1.89e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___IPO7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.395000 0.000541 0.603000 0.000820 0.000591 \n", + "[1] \"PP abf for shared variant: 0.0591%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.84e-07 3.89e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.02e-10 8.25e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.42e-12 8.79e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___CXCR4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2966e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.885000 0.001210 0.114000 0.000154 0.000159 \n", + "[1] \"PP abf for shared variant: 0.0159%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-07 1.43e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.27e-05 7.21e-08 9.98e-01 1.36e-03 8.72e-04 \n", + "[1] \"PP abf for shared variant: 0.0872%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___CRTAP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.84e-02 6.62e-05 9.49e-01 1.29e-03 8.31e-04 \n", + "[1] \"PP abf for shared variant: 0.0831%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.836000 0.001140 0.162000 0.000220 0.000218 \n", + "[1] \"PP abf for shared variant: 0.0218%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.30e-09 5.89e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.66e-03 1.05e-05 9.90e-01 1.35e-03 8.63e-04 \n", + "[1] \"PP abf for shared variant: 0.0863%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-08 1.92e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.846000 0.001160 0.153000 0.000207 0.000150 \n", + "[1] \"PP abf for shared variant: 0.015%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___GPR183__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.447000 0.000612 0.551000 0.000750 0.000491 \n", + "[1] \"PP abf for shared variant: 0.0491%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.73e-10 1.20e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.97e-11 4.07e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"monocyte_RPS26___RPS26__TKT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.44e-03 3.34e-06 9.95e-01 1.35e-03 9.08e-04 \n", + "[1] \"PP abf for shared variant: 0.0908%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.39e-14 1.90e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SCML1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.701000 0.000951 0.298000 0.000401 0.000293 \n", + "[1] \"PP abf for shared variant: 0.0293%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___ACTN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.14e-02 2.93e-05 9.76e-01 1.33e-03 8.54e-04 \n", + "[1] \"PP abf for shared variant: 0.0854%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.88e-13 3.95e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__ZFAND1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4561e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.896000 0.001230 0.103000 0.000140 0.000106 \n", + "[1] \"PP abf for shared variant: 0.0106%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.36e-14 7.34e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PRF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.66e-02 6.38e-05 9.51e-01 1.29e-03 8.36e-04 \n", + "[1] \"PP abf for shared variant: 0.0836%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.50e-04 4.80e-07 9.97e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EFHD2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.372000 0.000510 0.626000 0.000851 0.000607 \n", + "[1] \"PP abf for shared variant: 0.0607%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SELL\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.03e-08 4.15e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.88e-15 2.57e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.59e-13 1.04e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.87e-12 2.56e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___APBA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.732000 0.000925 0.266000 0.000334 0.000248 \n", + "[1] \"PP abf for shared variant: 0.0248%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EEF1G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-03 1.58e-06 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___FAIM3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.376000 0.000515 0.622000 0.000846 0.000562 \n", + "[1] \"PP abf for shared variant: 0.0562%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EIF3G__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.15e-01 1.25e-03 8.33e-02 1.13e-04 9.41e-05 \n", + "[1] \"PP abf for shared variant: 0.00941%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___APOBEC3C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.884000 0.001210 0.114000 0.000155 0.000123 \n", + "[1] \"PP abf for shared variant: 0.0123%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.224000 0.000306 0.774000 0.001050 0.000765 \n", + "[1] \"PP abf for shared variant: 0.0765%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.14e-13 8.40e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___C11orf1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.8471e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.71e-01 1.33e-03 2.76e-02 3.74e-05 3.87e-05 \n", + "[1] \"PP abf for shared variant: 0.00387%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___LCP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.63e-03 7.71e-06 9.92e-01 1.35e-03 8.66e-04 \n", + "[1] \"PP abf for shared variant: 0.0866%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.31e-16 3.16e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.64e-16 2.24e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___GZMM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.777000 0.001060 0.222000 0.000302 0.000220 \n", + "[1] \"PP abf for shared variant: 0.022%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CFL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.34e-05 5.94e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RSL1D1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-03 2.83e-06 9.96e-01 1.35e-03 8.68e-04 \n", + "[1] \"PP abf for shared variant: 0.0868%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TXN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.631000 0.000864 0.367000 0.000499 0.000338 \n", + "[1] \"PP abf for shared variant: 0.0338%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CTSW__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.646000 0.000885 0.352000 0.000478 0.000404 \n", + "[1] \"PP abf for shared variant: 0.0404%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CD99__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.66e-04 5.01e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-18 1.99e-21 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___FLT3LG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.08e-03 1.24e-05 9.89e-01 1.35e-03 8.63e-04 \n", + "[1] \"PP abf for shared variant: 0.0863%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___NKG7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.01e-04 8.23e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__UQCRB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.272000 0.000373 0.726000 0.000987 0.000671 \n", + "[1] \"PP abf for shared variant: 0.0671%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__YWHAZ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.3964e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.51e-01 1.30e-03 4.72e-02 6.39e-05 6.37e-05 \n", + "[1] \"PP abf for shared variant: 0.00637%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CREM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.816000 0.001120 0.182000 0.000248 0.000184 \n", + "[1] \"PP abf for shared variant: 0.0184%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.29e-03 1.77e-06 9.96e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RGS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-05 1.51e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.65e-08 1.05e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.68e-12 5.04e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___LDHB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.53e-12 2.10e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___ATP1A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 9.0977e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.46e-01 1.29e-03 5.28e-02 7.16e-05 6.97e-05 \n", + "[1] \"PP abf for shared variant: 0.00697%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CXCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.764000 0.001050 0.234000 0.000318 0.000231 \n", + "[1] \"PP abf for shared variant: 0.0231%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SYNE1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.413000 0.000566 0.585000 0.000795 0.000576 \n", + "[1] \"PP abf for shared variant: 0.0576%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___FYN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.137e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.70e-01 1.33e-03 2.82e-02 3.81e-05 4.11e-05 \n", + "[1] \"PP abf for shared variant: 0.00411%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.35e-06 5.96e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___MYL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.85e-09 8.02e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PDE3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.72e-03 2.36e-06 9.96e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-19 2.18e-22 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___MT-CO1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.90e-04 3.97e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__ZEB2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.082300 0.000113 0.916000 0.001250 0.000803 \n", + "[1] \"PP abf for shared variant: 0.0803%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___LTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-06 1.91e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PTPN7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.876000 0.001200 0.122000 0.000166 0.000130 \n", + "[1] \"PP abf for shared variant: 0.013%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.09e-12 4.24e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PFN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.54e-10 6.22e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___IER2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1556e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.60e-01 1.31e-03 3.83e-02 5.18e-05 5.79e-05 \n", + "[1] \"PP abf for shared variant: 0.00579%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.00e-04 2.74e-07 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.76e-08 2.41e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.87e-20 9.40e-23 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.80e-14 1.34e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CMC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.36e-02 1.87e-05 9.84e-01 1.34e-03 8.60e-04 \n", + "[1] \"PP abf for shared variant: 0.086%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SAT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.47e-03 4.75e-06 9.94e-01 1.35e-03 8.67e-04 \n", + "[1] \"PP abf for shared variant: 0.0867%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.19e-12 2.99e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___GZMB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.275000 0.000377 0.723000 0.000983 0.000681 \n", + "[1] \"PP abf for shared variant: 0.0681%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___AKNA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.4233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.73e-01 1.33e-03 2.56e-02 3.48e-05 3.31e-05 \n", + "[1] \"PP abf for shared variant: 0.00331%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___HLA-DPB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.9277e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.17e-01 1.26e-03 8.15e-02 1.11e-04 8.85e-05 \n", + "[1] \"PP abf for shared variant: 0.00885%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.56e-18 4.88e-21 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___NELL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.39e-07 3.27e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EEF1D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.76e-03 2.41e-06 9.96e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___FLNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.232000 0.000318 0.766000 0.001040 0.000677 \n", + "[1] \"PP abf for shared variant: 0.0677%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___C12orf75__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.258000 0.000353 0.740000 0.001010 0.000665 \n", + "[1] \"PP abf for shared variant: 0.0665%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-15 2.17e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___HLA-C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-09 1.72e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___HLA-B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-12 1.66e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___METRNL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4496e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.59e-01 1.24e-03 3.98e-02 5.07e-05 7.19e-05 \n", + "[1] \"PP abf for shared variant: 0.00719%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PFDN5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.337000 0.000462 0.661000 0.000899 0.000588 \n", + "[1] \"PP abf for shared variant: 0.0588%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CAMK4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-06 2.43e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___BHLHE40__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.097300 0.000133 0.901000 0.001220 0.000831 \n", + "[1] \"PP abf for shared variant: 0.0831%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___IFITM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.2604e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.914000 0.001250 0.084200 0.000113 0.000251 \n", + "[1] \"PP abf for shared variant: 0.0251%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SLA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.527000 0.000721 0.472000 0.000642 0.000425 \n", + "[1] \"PP abf for shared variant: 0.0425%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CD8B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.94e-03 2.65e-06 9.96e-01 1.35e-03 8.72e-04 \n", + "[1] \"PP abf for shared variant: 0.0872%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.52e-17 2.08e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___NGFRAP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.608000 0.000779 0.390000 0.000496 0.000391 \n", + "[1] \"PP abf for shared variant: 0.0391%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.61e-12 2.21e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TUBA4A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.460000 0.000630 0.538000 0.000732 0.000483 \n", + "[1] \"PP abf for shared variant: 0.0483%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.67e-04 5.03e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.39e-19 4.64e-22 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RCAN3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.96e-05 5.42e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.84e-12 5.25e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PPP2R5C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.64e-03 2.24e-06 9.96e-01 1.36e-03 8.68e-04 \n", + "[1] \"PP abf for shared variant: 0.0868%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.61e-10 3.58e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.38e-07 3.26e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___DNAJB6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.567000 0.000777 0.431000 0.000586 0.000395 \n", + "[1] \"PP abf for shared variant: 0.0395%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RAP1B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.077e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.58e-01 1.31e-03 4.10e-02 5.55e-05 6.75e-05 \n", + "[1] \"PP abf for shared variant: 0.00675%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.33e-04 4.55e-07 9.97e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PABPC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.41e-02 1.93e-05 9.84e-01 1.34e-03 8.64e-04 \n", + "[1] \"PP abf for shared variant: 0.0864%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___FBL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.67e-02 6.39e-05 9.51e-01 1.29e-03 8.31e-04 \n", + "[1] \"PP abf for shared variant: 0.0831%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CCDC104__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.9652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.53e-01 1.22e-03 4.59e-02 5.82e-05 5.23e-05 \n", + "[1] \"PP abf for shared variant: 0.00523%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CCL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.05e-07 1.10e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.58e-06 9.00e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___NPM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.31e-05 3.16e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.63e-18 1.04e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___MT-CO2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.287000 0.000393 0.711000 0.000967 0.000663 \n", + "[1] \"PP abf for shared variant: 0.0663%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TESPA1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.092000 0.000116 0.906000 0.001140 0.000803 \n", + "[1] \"PP abf for shared variant: 0.0803%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.369000 0.000505 0.629000 0.000855 0.000622 \n", + "[1] \"PP abf for shared variant: 0.0622%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PSMA7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.868000 0.001190 0.130000 0.000177 0.000139 \n", + "[1] \"PP abf for shared variant: 0.0139%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PLEK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.826000 0.001130 0.172000 0.000234 0.000188 \n", + "[1] \"PP abf for shared variant: 0.0188%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SUB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-03 1.82e-06 9.96e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-15 3.03e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___MT-ND5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.4281e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.863000 0.001180 0.136000 0.000184 0.000143 \n", + "[1] \"PP abf for shared variant: 0.0143%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___KLRD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.38e-02 4.62e-05 9.64e-01 1.31e-03 8.47e-04 \n", + "[1] \"PP abf for shared variant: 0.0847%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___MYC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.37e-02 7.35e-05 9.44e-01 1.28e-03 8.27e-04 \n", + "[1] \"PP abf for shared variant: 0.0827%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RGS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.756000 0.001040 0.242000 0.000330 0.000226 \n", + "[1] \"PP abf for shared variant: 0.0226%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___KLF2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.391e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.56e-01 1.31e-03 4.26e-02 5.74e-05 8.87e-05 \n", + "[1] \"PP abf for shared variant: 0.00887%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SLC25A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.21e-01 1.26e-03 7.78e-02 1.06e-04 8.07e-05 \n", + "[1] \"PP abf for shared variant: 0.00807%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___HNRNPA2B1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.45e-01 1.29e-03 5.38e-02 7.30e-05 6.99e-05 \n", + "[1] \"PP abf for shared variant: 0.00699%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___ARAP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.3907e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.77e-01 1.34e-03 2.12e-02 2.87e-05 3.89e-05 \n", + "[1] \"PP abf for shared variant: 0.00389%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___HLA-A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.17e-15 2.98e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__UBB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.22e-05 7.14e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL17__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-04 1.70e-07 9.98e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.84e-12 3.89e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__UBC\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.22e-05 5.77e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.67e-04 3.65e-07 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TGFB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.603000 0.000826 0.395000 0.000537 0.000356 \n", + "[1] \"PP abf for shared variant: 0.0356%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.26e-09 5.83e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.70e-18 6.44e-21 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___LYPD3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.877000 0.001180 0.122000 0.000162 0.000123 \n", + "[1] \"PP abf for shared variant: 0.0123%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TMSB10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.66e-04 5.01e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CLIC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.747000 0.001020 0.251000 0.000341 0.000292 \n", + "[1] \"PP abf for shared variant: 0.0292%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___C12orf57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.220000 0.000301 0.778000 0.001060 0.000685 \n", + "[1] \"PP abf for shared variant: 0.0685%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TMEM243\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.67e-02 2.29e-05 9.81e-01 1.33e-03 8.67e-04 \n", + "[1] \"PP abf for shared variant: 0.0867%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.90e-14 2.60e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___ID2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.552000 0.000756 0.446000 0.000606 0.000441 \n", + "[1] \"PP abf for shared variant: 0.0441%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.99e-14 6.83e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CCR7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-08 1.48e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.45e-02 7.46e-05 9.43e-01 1.28e-03 8.40e-04 \n", + "[1] \"PP abf for shared variant: 0.084%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.04e-25 1.10e-27 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___COX7C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.880000 0.001210 0.118000 0.000160 0.000127 \n", + "[1] \"PP abf for shared variant: 0.0127%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___NFKBIA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 7.944e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.915000 0.001250 0.083000 0.000111 0.000305 \n", + "[1] \"PP abf for shared variant: 0.0305%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___NDFIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.286000 0.000392 0.712000 0.000968 0.000645 \n", + "[1] \"PP abf for shared variant: 0.0645%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-16 1.92e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-14 2.23e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-08 1.66e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___GZMA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.19e-07 9.85e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___ABHD14B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.679000 0.000929 0.320000 0.000435 0.000290 \n", + "[1] \"PP abf for shared variant: 0.029%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.97e-10 4.06e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TPI1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.854000 0.001170 0.145000 0.000196 0.000215 \n", + "[1] \"PP abf for shared variant: 0.0215%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-17 2.81e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___GIMAP7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.722000 0.000989 0.276000 0.000376 0.000268 \n", + "[1] \"PP abf for shared variant: 0.0268%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.53e-10 1.03e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.82e-14 3.87e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SC5D\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.910000 0.001250 0.088000 0.000117 0.000338 \n", + "[1] \"PP abf for shared variant: 0.0338%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-09 1.42e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.59e-17 4.91e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RIC3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-02 2.99e-05 9.76e-01 1.33e-03 8.53e-04 \n", + "[1] \"PP abf for shared variant: 0.0853%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.49e-10 2.04e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SH3YL1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.58e-04 7.64e-07 9.97e-01 1.36e-03 8.71e-04 \n", + "[1] \"PP abf for shared variant: 0.0871%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CCNG1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.9814e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.62e-01 1.32e-03 3.62e-02 4.89e-05 6.87e-05 \n", + "[1] \"PP abf for shared variant: 0.00687%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SRP14\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.22e-03 5.78e-06 9.94e-01 1.35e-03 8.67e-04 \n", + "[1] \"PP abf for shared variant: 0.0867%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SPON2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0298e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.24e-01 1.25e-03 7.43e-02 9.99e-05 8.62e-05 \n", + "[1] \"PP abf for shared variant: 0.00862%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___HMGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.24e-02 4.43e-05 9.65e-01 1.31e-03 8.49e-04 \n", + "[1] \"PP abf for shared variant: 0.0849%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___NOSIP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.36e-05 3.23e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.98e-15 6.81e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-18 1.68e-21 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-18 1.92e-21 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___MYL12B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.0233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.924000 0.001260 0.074800 0.000101 0.000112 \n", + "[1] \"PP abf for shared variant: 0.0112%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___GNLY__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.102000 0.000139 0.896000 0.001220 0.000784 \n", + "[1] \"PP abf for shared variant: 0.0784%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___MIR142__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1648e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.78e-01 1.34e-03 2.03e-02 2.75e-05 2.89e-05 \n", + "[1] \"PP abf for shared variant: 0.00289%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.29e-02 7.24e-05 9.45e-01 1.28e-03 9.52e-04 \n", + "[1] \"PP abf for shared variant: 0.0952%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.97e-17 6.80e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.585000 0.000801 0.413000 0.000562 0.000369 \n", + "[1] \"PP abf for shared variant: 0.0369%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.75e-05 3.77e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PTP4A2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.856000 0.001170 0.143000 0.000194 0.000161 \n", + "[1] \"PP abf for shared variant: 0.0161%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___FGFBP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.9666e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.61e-01 1.32e-03 3.76e-02 5.09e-05 5.16e-05 \n", + "[1] \"PP abf for shared variant: 0.00516%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPSAP58\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.39e-04 8.75e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.13e-07 5.65e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.94e-22 2.66e-25 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CCDC57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.29e-04 1.76e-07 9.98e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___ITGB2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.39e-01 1.29e-03 5.95e-02 8.09e-05 6.32e-05 \n", + "[1] \"PP abf for shared variant: 0.00632%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EIF2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.412000 0.000564 0.587000 0.000798 0.000524 \n", + "[1] \"PP abf for shared variant: 0.0524%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___MYO1F__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.4185e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.58e-01 1.31e-03 4.05e-02 5.49e-05 5.95e-05 \n", + "[1] \"PP abf for shared variant: 0.00595%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___ARF6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.427000 0.000584 0.572000 0.000778 0.000507 \n", + "[1] \"PP abf for shared variant: 0.0507%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CD81__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.827000 0.001130 0.172000 0.000233 0.000174 \n", + "[1] \"PP abf for shared variant: 0.0174%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TMEM123\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.65e-02 3.64e-05 9.71e-01 1.32e-03 8.49e-04 \n", + "[1] \"PP abf for shared variant: 0.0849%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___ALKBH7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.95e-02 4.04e-05 9.68e-01 1.32e-03 8.47e-04 \n", + "[1] \"PP abf for shared variant: 0.0847%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___LDHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-02 1.82e-05 9.84e-01 1.34e-03 8.59e-04 \n", + "[1] \"PP abf for shared variant: 0.0859%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PIK3IP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.92e-03 2.63e-06 9.96e-01 1.35e-03 8.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0876%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___FOXP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.11e-02 4.26e-05 9.67e-01 1.31e-03 9.07e-04 \n", + "[1] \"PP abf for shared variant: 0.0907%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CCL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.36e-04 7.33e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___NEAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.092900 0.000127 0.905000 0.001230 0.000796 \n", + "[1] \"PP abf for shared variant: 0.0796%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___KLRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.9856e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.41e-01 1.29e-03 5.72e-02 7.74e-05 9.80e-05 \n", + "[1] \"PP abf for shared variant: 0.0098%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___BTF3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5042e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.78e-01 1.34e-03 2.05e-02 2.78e-05 3.03e-05 \n", + "[1] \"PP abf for shared variant: 0.00303%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__ZFAS1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.702000 0.000962 0.296000 0.000402 0.000277 \n", + "[1] \"PP abf for shared variant: 0.0277%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.62e-14 3.58e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___C1orf21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1023e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.45e-01 1.29e-03 5.32e-02 7.21e-05 7.24e-05 \n", + "[1] \"PP abf for shared variant: 0.00724%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.11e-09 9.74e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CALM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.626000 0.000857 0.372000 0.000506 0.000352 \n", + "[1] \"PP abf for shared variant: 0.0352%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___HOPX__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.80000 0.00110 0.19700 0.00026 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CD55__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.236000 0.000323 0.762000 0.001040 0.000685 \n", + "[1] \"PP abf for shared variant: 0.0685%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.61e-15 9.05e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.52e-03 4.83e-06 9.94e-01 1.35e-03 8.67e-04 \n", + "[1] \"PP abf for shared variant: 0.0867%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.08e-15 6.96e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.058400 0.000080 0.939000 0.001280 0.000855 \n", + "[1] \"PP abf for shared variant: 0.0855%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.13e-09 9.77e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___HLA-DRB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.507e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.78e-01 1.34e-03 2.03e-02 2.73e-05 4.76e-05 \n", + "[1] \"PP abf for shared variant: 0.00476%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.70e-17 3.69e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.43e-13 6.06e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PTMA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.90e-02 3.97e-05 9.69e-01 1.32e-03 8.48e-04 \n", + "[1] \"PP abf for shared variant: 0.0848%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.20e-09 4.38e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___GNG2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.717000 0.000981 0.282000 0.000383 0.000263 \n", + "[1] \"PP abf for shared variant: 0.0263%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TIGIT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.244000 0.000335 0.753000 0.001020 0.000671 \n", + "[1] \"PP abf for shared variant: 0.0671%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.81e-05 3.85e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.80e-09 3.83e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___C1QBP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.69e-02 2.31e-05 9.81e-01 1.33e-03 8.56e-04 \n", + "[1] \"PP abf for shared variant: 0.0856%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CD27__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.689e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.914000 0.001250 0.084200 0.000114 0.000107 \n", + "[1] \"PP abf for shared variant: 0.0107%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___KLRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.08e-02 5.59e-05 9.57e-01 1.30e-03 8.47e-04 \n", + "[1] \"PP abf for shared variant: 0.0847%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___MAL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.14e-08 1.45e-11 9.98e-01 1.25e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.68e-15 5.03e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___REL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.691e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.59e-01 1.31e-03 3.97e-02 5.38e-05 5.15e-05 \n", + "[1] \"PP abf for shared variant: 0.00515%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.38e-10 3.26e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___FTL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.835000 0.001140 0.163000 0.000222 0.000163 \n", + "[1] \"PP abf for shared variant: 0.0163%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.78e-08 7.92e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.18e-11 1.62e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.91e-06 1.08e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SEPT7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.516000 0.000706 0.482000 0.000656 0.000480 \n", + "[1] \"PP abf for shared variant: 0.048%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TCF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.611000 0.000837 0.387000 0.000526 0.000393 \n", + "[1] \"PP abf for shared variant: 0.0393%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.913000 0.001250 0.085800 0.000116 0.000108 \n", + "[1] \"PP abf for shared variant: 0.0108%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.94e-08 9.51e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___FCGR3A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.322000 0.000441 0.676000 0.000915 0.001000 \n", + "[1] \"PP abf for shared variant: 0.1%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PSMB9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 8.645e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.49e-01 1.30e-03 4.91e-02 6.58e-05 1.43e-04 \n", + "[1] \"PP abf for shared variant: 0.0143%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___LEF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.05e-08 6.91e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PTPRC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.78e-07 5.18e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.885000 0.001210 0.113000 0.000154 0.000142 \n", + "[1] \"PP abf for shared variant: 0.0142%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-02 1.44e-05 9.87e-01 1.34e-03 8.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0873%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.50e-15 1.30e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-12 1.51e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___ANXA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.645000 0.000883 0.354000 0.000481 0.000327 \n", + "[1] \"PP abf for shared variant: 0.0327%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___LGALS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.407000 0.000557 0.591000 0.000804 0.000544 \n", + "[1] \"PP abf for shared variant: 0.0544%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-13 2.39e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___DDX5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5519e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.56e-01 1.31e-03 4.26e-02 5.77e-05 5.98e-05 \n", + "[1] \"PP abf for shared variant: 0.00598%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.19e-09 2.99e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___DOK2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.820000 0.001120 0.178000 0.000242 0.000194 \n", + "[1] \"PP abf for shared variant: 0.0194%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CRIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.51e-04 4.81e-07 9.97e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CALR__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.9449e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.883000 0.001210 0.115000 0.000157 0.000118 \n", + "[1] \"PP abf for shared variant: 0.0118%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TTC38\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1223e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.886000 0.001210 0.112000 0.000152 0.000158 \n", + "[1] \"PP abf for shared variant: 0.0158%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___C1orf228__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.128000 0.000176 0.870000 0.001180 0.000771 \n", + "[1] \"PP abf for shared variant: 0.0771%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___DUSP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.112000 0.000153 0.886000 0.001210 0.000785 \n", + "[1] \"PP abf for shared variant: 0.0785%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EIF4B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.98e-08 4.08e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-08 1.53e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TRABD2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-05 2.10e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.90e-16 1.22e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PASK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.55e-05 1.95e-08 9.98e-01 1.25e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___OAZ1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.43e-09 8.81e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-16 1.84e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___OXNAD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1359e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.60e-01 1.32e-03 3.79e-02 4.98e-05 2.19e-04 \n", + "[1] \"PP abf for shared variant: 0.0219%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.371000 0.000507 0.628000 0.000854 0.000556 \n", + "[1] \"PP abf for shared variant: 0.0556%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SRGN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.82e-13 9.34e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___HLA-E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.59e-03 4.91e-06 9.94e-01 1.35e-03 8.68e-04 \n", + "[1] \"PP abf for shared variant: 0.0868%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TYROBP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.033600 0.000046 0.964000 0.001310 0.000855 \n", + "[1] \"PP abf for shared variant: 0.0855%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__YBX3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1331e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.71e-01 1.33e-03 2.71e-02 3.66e-05 5.36e-05 \n", + "[1] \"PP abf for shared variant: 0.00536%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CST7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.32e-05 3.18e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___AIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.41e-03 1.01e-05 9.90e-01 1.35e-03 8.66e-04 \n", + "[1] \"PP abf for shared variant: 0.0866%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___IL7R__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.40e-03 1.15e-05 9.89e-01 1.35e-03 8.63e-04 \n", + "[1] \"PP abf for shared variant: 0.0863%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RHOH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.417000 0.000571 0.581000 0.000790 0.000542 \n", + "[1] \"PP abf for shared variant: 0.0542%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.61e-16 7.68e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.68e-17 6.41e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.079400 0.000109 0.918000 0.001250 0.000824 \n", + "[1] \"PP abf for shared variant: 0.0824%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___DBI__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.079000 0.000108 0.919000 0.001250 0.000805 \n", + "[1] \"PP abf for shared variant: 0.0805%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-11 3.13e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___PRKCQ-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.85e-07 2.53e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SNHG8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-05 1.46e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___POMP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.829000 0.001140 0.169000 0.000230 0.000157 \n", + "[1] \"PP abf for shared variant: 0.0157%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.29e-13 1.77e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RAB8B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.0817e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.77e-01 1.34e-03 2.20e-02 2.98e-05 3.59e-05 \n", + "[1] \"PP abf for shared variant: 0.00359%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___GZMH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.566000 0.000774 0.433000 0.000588 0.000458 \n", + "[1] \"PP abf for shared variant: 0.0458%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-03 2.23e-06 9.96e-01 1.36e-03 8.68e-04 \n", + "[1] \"PP abf for shared variant: 0.0868%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.69e-09 2.32e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.68e-17 7.78e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.05e-16 4.17e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___ABLIM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.92e-02 3.74e-05 9.69e-01 1.23e-03 8.46e-04 \n", + "[1] \"PP abf for shared variant: 0.0846%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EIF4A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.8946e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.40e-01 1.29e-03 5.82e-02 7.87e-05 1.02e-04 \n", + "[1] \"PP abf for shared variant: 0.0102%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___APOBEC3G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.21e-03 4.39e-06 9.95e-01 1.35e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RP11-291B21.2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.39e-05 5.62e-08 9.98e-01 1.27e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-18 2.55e-21 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.69e-18 6.41e-21 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__SERF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.09e-08 2.87e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-08 1.74e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.74e-17 6.49e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.109000 0.000149 0.889000 0.001210 0.000784 \n", + "[1] \"PP abf for shared variant: 0.0784%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.05e-13 8.29e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.76e-11 6.52e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___RPS26__S1PR5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1943e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.73e-01 1.25e-03 2.58e-02 3.24e-05 6.67e-05 \n", + "[1] \"PP abf for shared variant: 0.00667%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD8T_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.024900 0.000034 0.973000 0.001320 0.000850 \n", + "[1] \"PP abf for shared variant: 0.085%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TMSB10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.310000 0.000424 0.688000 0.000936 0.000623 \n", + "[1] \"PP abf for shared variant: 0.0623%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CHCHD2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.655000 0.000897 0.343000 0.000466 0.000372 \n", + "[1] \"PP abf for shared variant: 0.0372%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EMP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.78e-03 5.17e-06 9.94e-01 1.35e-03 8.67e-04 \n", + "[1] \"PP abf for shared variant: 0.0867%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___FMNL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.705000 0.000965 0.293000 0.000397 0.000519 \n", + "[1] \"PP abf for shared variant: 0.0519%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-23 2.87e-26 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___LEF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-06 2.88e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HERPUD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.267e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.862000 0.001180 0.136000 0.000185 0.000149 \n", + "[1] \"PP abf for shared variant: 0.0149%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ANXA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.96e-05 5.43e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SOD2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.221000 0.000302 0.777000 0.001060 0.000701 \n", + "[1] \"PP abf for shared variant: 0.0701%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MYL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.94e-17 4.02e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.28e-11 5.86e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ATP1B3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.882000 0.001210 0.116000 0.000158 0.000120 \n", + "[1] \"PP abf for shared variant: 0.012%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.56e-01 1.31e-03 4.27e-02 5.78e-05 6.82e-05 \n", + "[1] \"PP abf for shared variant: 0.00682%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.29e-24 1.77e-27 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.79e-10 1.07e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EML4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.29e-03 7.24e-06 9.92e-01 1.35e-03 8.71e-04 \n", + "[1] \"PP abf for shared variant: 0.0871%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SCML1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-02 1.68e-05 9.85e-01 1.34e-03 9.24e-04 \n", + "[1] \"PP abf for shared variant: 0.0924%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MCL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.08e-05 2.84e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___NOG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.297000 0.000378 0.701000 0.000887 0.000624 \n", + "[1] \"PP abf for shared variant: 0.0624%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___PRMT2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-02 1.47e-05 9.87e-01 1.34e-03 8.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0874%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CD7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.95e-05 9.52e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.856000 0.001160 0.142000 0.000192 0.000142 \n", + "[1] \"PP abf for shared variant: 0.0142%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.56e-11 4.88e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___FAM129A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.99e-06 8.20e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.87e-15 9.40e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ABLIM1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.2936e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.894000 0.001220 0.105000 0.000142 0.000107 \n", + "[1] \"PP abf for shared variant: 0.0107%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-24 1.85e-27 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ALOX5AP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.93e-02 2.65e-05 9.78e-01 1.33e-03 8.58e-04 \n", + "[1] \"PP abf for shared variant: 0.0858%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TSHZ2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.85e-03 3.90e-06 9.95e-01 1.35e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TIGIT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.85e-05 2.53e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ARHGDIB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.12e-05 4.28e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.78e-08 5.18e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.57e-17 3.52e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.07e-26 8.31e-29 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.88e-26 8.06e-29 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__YBX1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.63e-05 7.71e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.67e-24 1.05e-26 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___JUND__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.279e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.851000 0.001170 0.147000 0.000200 0.000154 \n", + "[1] \"PP abf for shared variant: 0.0154%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SH3YL1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.78e-06 9.28e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-25 2.19e-28 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___C12orf75__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.094000 0.000129 0.902000 0.001210 0.002850 \n", + "[1] \"PP abf for shared variant: 0.285%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.30e-10 4.51e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF18\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.67e-02 7.77e-05 9.41e-01 1.28e-03 8.27e-04 \n", + "[1] \"PP abf for shared variant: 0.0827%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MYO1F__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-02 1.38e-05 9.88e-01 1.34e-03 8.62e-04 \n", + "[1] \"PP abf for shared variant: 0.0862%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.89e-19 2.58e-22 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___PTPRC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.90e-07 6.71e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CD55__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.858000 0.001170 0.141000 0.000191 0.000160 \n", + "[1] \"PP abf for shared variant: 0.016%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-22 2.14e-25 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CREM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.41e-03 4.67e-06 9.94e-01 1.35e-03 8.68e-04 \n", + "[1] \"PP abf for shared variant: 0.0868%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__VMP1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.710000 0.000973 0.288000 0.000392 0.000278 \n", + "[1] \"PP abf for shared variant: 0.0278%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HMGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-05 2.01e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.96e-24 1.23e-26 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___C1orf228__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.755000 0.001030 0.243000 0.000331 0.000228 \n", + "[1] \"PP abf for shared variant: 0.0228%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___GALM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.691000 0.000946 0.307000 0.000418 0.000285 \n", + "[1] \"PP abf for shared variant: 0.0285%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TRABD2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.120000 0.000165 0.878000 0.001190 0.000770 \n", + "[1] \"PP abf for shared variant: 0.077%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EIF2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.86e-02 3.91e-05 9.69e-01 1.32e-03 9.12e-04 \n", + "[1] \"PP abf for shared variant: 0.0912%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL17__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.28e-12 9.97e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.69e-15 1.05e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ANXA5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.430000 0.000589 0.568000 0.000772 0.000513 \n", + "[1] \"PP abf for shared variant: 0.0513%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___IDS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.54e-03 6.22e-06 9.93e-01 1.35e-03 8.68e-04 \n", + "[1] \"PP abf for shared variant: 0.0868%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ARID5B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.382000 0.000523 0.616000 0.000834 0.000875 \n", + "[1] \"PP abf for shared variant: 0.0875%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___IMPDH2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.62e-04 2.21e-07 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.16e-12 1.12e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__ST13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-05 2.88e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CXCR3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.48e-02 3.36e-05 9.73e-01 1.31e-03 1.10e-03 \n", + "[1] \"PP abf for shared variant: 0.11%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HLA-DRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-06 2.87e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.17e-12 2.97e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SPOCK2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.183000 0.000251 0.815000 0.001110 0.000750 \n", + "[1] \"PP abf for shared variant: 0.075%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___C15orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.689000 0.000886 0.310000 0.000396 0.000288 \n", + "[1] \"PP abf for shared variant: 0.0288%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SNRPF\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1448e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.916000 0.001250 0.083000 0.000112 0.000149 \n", + "[1] \"PP abf for shared variant: 0.0149%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.09e-14 5.60e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___FAM134B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.568000 0.000778 0.430000 0.000585 0.000440 \n", + "[1] \"PP abf for shared variant: 0.044%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ISG20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.15e-02 9.79e-05 9.26e-01 1.26e-03 8.22e-04 \n", + "[1] \"PP abf for shared variant: 0.0822%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CFL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.59e-10 1.18e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___NUCB2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.169000 0.000231 0.829000 0.001130 0.000735 \n", + "[1] \"PP abf for shared variant: 0.0735%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ALKBH7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-02 3.03e-05 9.76e-01 1.33e-03 8.95e-04 \n", + "[1] \"PP abf for shared variant: 0.0895%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___LINC00493__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.557000 0.000763 0.441000 0.000600 0.000411 \n", + "[1] \"PP abf for shared variant: 0.0411%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.94e-22 8.13e-25 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__VIM\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.25e-02 3.08e-05 9.75e-01 1.33e-03 8.59e-04 \n", + "[1] \"PP abf for shared variant: 0.0859%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SNHG8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.85e-11 5.28e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CDC42__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.142000 0.000195 0.856000 0.001160 0.000775 \n", + "[1] \"PP abf for shared variant: 0.0775%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF1B\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.238000 0.000326 0.760000 0.001030 0.000699 \n", + "[1] \"PP abf for shared variant: 0.0699%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___NELL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.452000 0.000619 0.546000 0.000743 0.000494 \n", + "[1] \"PP abf for shared variant: 0.0494%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.79e-16 9.30e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ACTN4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.010200 0.000014 0.988000 0.001340 0.000862 \n", + "[1] \"PP abf for shared variant: 0.0862%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___IKZF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.573000 0.000784 0.425000 0.000578 0.000410 \n", + "[1] \"PP abf for shared variant: 0.041%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___LDHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.871000 0.001190 0.127000 0.000173 0.000137 \n", + "[1] \"PP abf for shared variant: 0.0137%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.14e-16 2.93e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-07 2.49e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RP11-138A9.1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.873000 0.001190 0.126000 0.000171 0.000133 \n", + "[1] \"PP abf for shared variant: 0.0133%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___NAMPT__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.8087e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.911000 0.001250 0.087600 0.000118 0.000151 \n", + "[1] \"PP abf for shared variant: 0.0151%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFAS1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.36e-05 8.71e-08 9.98e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CALM2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.09e-04 8.34e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-13 1.84e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MT-ND2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.843000 0.001150 0.155000 0.000211 0.000171 \n", + "[1] \"PP abf for shared variant: 0.0171%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.59e-12 3.55e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CD52__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.15e-03 1.57e-06 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.32e-07 8.65e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___H3F3A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-04 1.39e-07 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ADTRP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.19e-07 8.48e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MT2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.551000 0.000755 0.447000 0.000607 0.000468 \n", + "[1] \"PP abf for shared variant: 0.0468%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SNRPD2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.362000 0.000496 0.635000 0.000863 0.000730 \n", + "[1] \"PP abf for shared variant: 0.073%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFP36\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-03 1.39e-06 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CXCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-03 2.01e-06 9.96e-01 1.36e-03 8.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0884%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___DYNLL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.65e-03 4.99e-06 9.94e-01 1.35e-03 8.68e-04 \n", + "[1] \"PP abf for shared variant: 0.0868%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SAMSN1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.26e-04 1.73e-07 9.98e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___LMNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-08 1.42e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MT-ND5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.14e-05 1.57e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.32e-20 5.92e-23 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RUNX3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.421000 0.000577 0.577000 0.000784 0.000531 \n", + "[1] \"PP abf for shared variant: 0.0531%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HLA-B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.40e-17 6.03e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RGS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.62e-05 3.58e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ERGIC3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.423e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.46e-01 1.30e-03 5.24e-02 7.09e-05 8.76e-05 \n", + "[1] \"PP abf for shared variant: 0.00876%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SELL\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.94e-07 6.77e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TYMP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.243000 0.000332 0.755000 0.001030 0.000670 \n", + "[1] \"PP abf for shared variant: 0.067%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HLA-DPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.413000 0.000566 0.585000 0.000795 0.000531 \n", + "[1] \"PP abf for shared variant: 0.0531%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-19 1.43e-22 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__UQCRB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.19e-03 8.48e-06 9.92e-01 1.35e-03 8.65e-04 \n", + "[1] \"PP abf for shared variant: 0.0865%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.81e-22 7.95e-25 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SRGN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.10e-20 6.99e-23 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MT-ND4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.789000 0.001080 0.209000 0.000284 0.000203 \n", + "[1] \"PP abf for shared variant: 0.0203%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ABHD14B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.66e-03 5.02e-06 9.94e-01 1.35e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ATP5E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.72e-03 1.06e-05 9.90e-01 1.35e-03 8.66e-04 \n", + "[1] \"PP abf for shared variant: 0.0866%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPSAP58\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.08e-08 2.84e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-12 2.26e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.07e-20 4.20e-23 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MAL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.28e-08 1.75e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ATP2B4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.137000 0.000187 0.861000 0.001170 0.000755 \n", + "[1] \"PP abf for shared variant: 0.0755%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ARPC1B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.870000 0.001190 0.128000 0.000174 0.000162 \n", + "[1] \"PP abf for shared variant: 0.0162%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___PDCD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.64e-02 7.03e-05 9.42e-01 1.17e-03 8.28e-04 \n", + "[1] \"PP abf for shared variant: 0.0828%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-19 2.18e-22 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.51e-22 3.43e-25 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-21 1.66e-24 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SAT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.42e-11 6.05e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HLA-E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.78e-07 6.55e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TCF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.95e-04 2.67e-07 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___PIK3IP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-03 3.03e-06 9.96e-01 1.35e-03 8.80e-04 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___LGALS3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.692000 0.000947 0.307000 0.000417 0.000287 \n", + "[1] \"PP abf for shared variant: 0.0287%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MIAT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.23e-02 7.17e-05 9.45e-01 1.29e-03 8.29e-04 \n", + "[1] \"PP abf for shared variant: 0.0829%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.22e-18 4.40e-21 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SUB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.90e-07 2.61e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CCR7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.34e-02 8.69e-05 9.34e-01 1.27e-03 8.26e-04 \n", + "[1] \"PP abf for shared variant: 0.0826%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.21e-16 1.26e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.26e-20 3.10e-23 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RNF19A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-02 1.68e-05 9.85e-01 1.34e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MT-CO3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.56e-06 4.88e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.26e-22 1.73e-25 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.55e-11 8.96e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___FAS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.612000 0.000838 0.386000 0.000525 0.000352 \n", + "[1] \"PP abf for shared variant: 0.0352%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EEF1D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.12e-09 7.01e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.20e-09 8.50e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___GYPC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-04 2.43e-07 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.31e-21 8.64e-24 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.68e-22 1.05e-24 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TPM4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.252000 0.000344 0.746000 0.001010 0.000742 \n", + "[1] \"PP abf for shared variant: 0.0742%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___LDHB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.67e-09 5.02e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___AIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.41e-04 6.04e-07 9.97e-01 1.36e-03 9.59e-04 \n", + "[1] \"PP abf for shared variant: 0.0959%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.30e-22 1.27e-24 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ITGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.88e-06 2.57e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TXN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.21e-05 4.40e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___FTH1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.165000 0.000226 0.833000 0.001130 0.000736 \n", + "[1] \"PP abf for shared variant: 0.0736%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.06e-25 8.29e-28 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___COX7C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.533000 0.000729 0.466000 0.000633 0.000422 \n", + "[1] \"PP abf for shared variant: 0.0422%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HLA-A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.47e-17 1.30e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___LCP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.95e-02 2.67e-05 9.78e-01 1.33e-03 8.56e-04 \n", + "[1] \"PP abf for shared variant: 0.0856%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__UBB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008020 0.000011 0.990000 0.001350 0.000899 \n", + "[1] \"PP abf for shared variant: 0.0899%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.83e-19 9.35e-22 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.05e-16 4.18e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TMEM123\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.369000 0.000505 0.629000 0.000853 0.000763 \n", + "[1] \"PP abf for shared variant: 0.0763%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___PPP1R15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.724000 0.000991 0.275000 0.000373 0.000263 \n", + "[1] \"PP abf for shared variant: 0.0263%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___IL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.61e-03 3.57e-06 9.95e-01 1.35e-03 8.68e-04 \n", + "[1] \"PP abf for shared variant: 0.0868%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.45e-24 6.09e-27 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.68e-13 6.41e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TOMM20\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.748000 0.001020 0.250000 0.000340 0.000247 \n", + "[1] \"PP abf for shared variant: 0.0247%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EIF3F__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.77e-03 3.80e-06 9.95e-01 1.35e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ERP29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.037200 0.000051 0.960000 0.001300 0.001320 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___KLF6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.50e-04 6.16e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___GIMAP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.74e-03 3.75e-06 9.95e-01 1.35e-03 8.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0877%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TGFBR2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.255000 0.000349 0.743000 0.001010 0.000689 \n", + "[1] \"PP abf for shared variant: 0.0689%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RNF213__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.774000 0.001060 0.225000 0.000305 0.000224 \n", + "[1] \"PP abf for shared variant: 0.0224%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___C19orf53__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.924000 0.001260 0.074700 0.000101 0.000114 \n", + "[1] \"PP abf for shared variant: 0.0114%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SERF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.57e-10 7.63e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-12 1.64e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MIR4435-1HG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.36e-09 3.24e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-14 1.51e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MZT2B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.55e-03 6.23e-06 9.93e-01 1.35e-03 8.66e-04 \n", + "[1] \"PP abf for shared variant: 0.0866%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___AK5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.431000 0.000590 0.566000 0.000762 0.001360 \n", + "[1] \"PP abf for shared variant: 0.136%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___NDFIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.577000 0.000791 0.419000 0.000555 0.001960 \n", + "[1] \"PP abf for shared variant: 0.196%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HNRNPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.48e-07 7.50e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.90e-17 2.61e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.42e-02 1.94e-05 9.84e-01 1.34e-03 8.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0874%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.44e-18 6.08e-21 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___C1QBP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.225000 0.000308 0.773000 0.001050 0.000685 \n", + "[1] \"PP abf for shared variant: 0.0685%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CXCR6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.803000 0.001080 0.196000 0.000261 0.000192 \n", + "[1] \"PP abf for shared variant: 0.0192%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ARPC3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.464000 0.000635 0.535000 0.000727 0.000495 \n", + "[1] \"PP abf for shared variant: 0.0495%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MRPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.3464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.910000 0.001250 0.088700 0.000120 0.000102 \n", + "[1] \"PP abf for shared variant: 0.0102%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.46e-14 1.29e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___PPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-04 1.53e-07 9.98e-01 1.36e-03 8.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0879%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EBPL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.876000 0.001200 0.122000 0.000166 0.000176 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___FTL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.786000 0.001080 0.212000 0.000289 0.000200 \n", + "[1] \"PP abf for shared variant: 0.02%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__UXT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.33e-06 5.93e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___LSM5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.20e-03 4.38e-06 9.95e-01 1.35e-03 9.06e-04 \n", + "[1] \"PP abf for shared variant: 0.0906%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___KMT2E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.6569e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.39e-01 1.29e-03 5.99e-02 8.04e-05 1.64e-04 \n", + "[1] \"PP abf for shared variant: 0.0164%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MT-CO2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.92e-06 1.08e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TAGLN2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.21e-01 1.26e-03 7.78e-02 1.06e-04 9.27e-05 \n", + "[1] \"PP abf for shared variant: 0.00927%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CDCA7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4164e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.828000 0.001120 0.170000 0.000227 0.000391 \n", + "[1] \"PP abf for shared variant: 0.0391%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-04 2.18e-07 9.98e-01 1.36e-03 9.19e-04 \n", + "[1] \"PP abf for shared variant: 0.0919%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EPB41L4A-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.42e-05 1.95e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___FLNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.84e-07 2.52e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TATDN1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.411000 0.000563 0.587000 0.000798 0.000522 \n", + "[1] \"PP abf for shared variant: 0.0522%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HLA-DPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.143000 0.000196 0.855000 0.001160 0.000752 \n", + "[1] \"PP abf for shared variant: 0.0752%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___C12orf57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-11 2.25e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.93e-20 2.64e-23 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.96e-18 8.16e-21 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___BTG1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.45e-03 1.02e-05 9.90e-01 1.35e-03 8.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0874%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___C8orf59__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.102000 0.000140 0.896000 0.001220 0.000794 \n", + "[1] \"PP abf for shared variant: 0.0794%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CD58__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.61e-02 3.57e-05 9.72e-01 1.32e-03 8.53e-04 \n", + "[1] \"PP abf for shared variant: 0.0853%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MT-CO1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.16e-16 2.96e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.55e-05 2.13e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___AKAP13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.133000 0.000182 0.865000 0.001180 0.000780 \n", + "[1] \"PP abf for shared variant: 0.078%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EIF4B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.56e-06 6.25e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___DDX5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.69e-04 1.05e-06 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.275000 0.000376 0.723000 0.000984 0.000652 \n", + "[1] \"PP abf for shared variant: 0.0652%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ANXA2R__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.882000 0.001210 0.117000 0.000158 0.000134 \n", + "[1] \"PP abf for shared variant: 0.0134%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___IL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.865000 0.001180 0.133000 0.000181 0.000139 \n", + "[1] \"PP abf for shared variant: 0.0139%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___LINC00152__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.24e-08 3.06e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___FOXP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.352000 0.000472 0.646000 0.000860 0.000691 \n", + "[1] \"PP abf for shared variant: 0.0691%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RGS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-08 1.79e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.26e-21 9.94e-24 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___KLRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.92e-04 9.48e-07 9.97e-01 1.36e-03 9.10e-04 \n", + "[1] \"PP abf for shared variant: 0.091%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-14 1.40e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.84e-11 2.52e-14 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___DAP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.88e-03 6.68e-06 9.93e-01 1.35e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.93e-10 2.64e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SVIP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.19e-01 1.26e-03 7.94e-02 1.08e-04 8.32e-05 \n", + "[1] \"PP abf for shared variant: 0.00832%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HLA-C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.14e-15 9.78e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-25 2.19e-28 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.80e-18 1.34e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___PRKCQ-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-06 2.06e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___GIMAP7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.167000 0.000229 0.831000 0.001130 0.000760 \n", + "[1] \"PP abf for shared variant: 0.076%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ENTPD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.449000 0.000609 0.550000 0.000741 0.000518 \n", + "[1] \"PP abf for shared variant: 0.0518%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___DUSP4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.77e-09 3.79e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.64e-12 2.25e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__YWHAB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.80e-03 1.21e-05 9.89e-01 1.35e-03 8.63e-04 \n", + "[1] \"PP abf for shared variant: 0.0863%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CCR6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.723000 0.000991 0.275000 0.000373 0.000321 \n", + "[1] \"PP abf for shared variant: 0.0321%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MT-ND1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.104000 0.000143 0.894000 0.001220 0.000808 \n", + "[1] \"PP abf for shared variant: 0.0808%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___PFN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.92e-16 2.63e-19 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ADAM19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.856000 0.001170 0.143000 0.000193 0.000200 \n", + "[1] \"PP abf for shared variant: 0.02%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CLDND1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.615000 0.000841 0.384000 0.000522 0.000369 \n", + "[1] \"PP abf for shared variant: 0.0369%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___PFDN5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.44e-06 3.34e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___FBL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.95e-08 8.15e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CD37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.612000 0.000838 0.386000 0.000524 0.000403 \n", + "[1] \"PP abf for shared variant: 0.0403%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___APEX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.818000 0.001120 0.180000 0.000245 0.000198 \n", + "[1] \"PP abf for shared variant: 0.0198%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-07 1.54e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.62e-21 7.69e-24 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___LETMD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.66e-03 1.19e-05 9.89e-01 1.35e-03 8.96e-04 \n", + "[1] \"PP abf for shared variant: 0.0896%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___GK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.91e-03 1.01e-05 9.90e-01 1.26e-03 8.65e-04 \n", + "[1] \"PP abf for shared variant: 0.0865%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___NOSIP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-05 2.81e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___AHNAK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.098000 0.000134 0.899000 0.001220 0.001440 \n", + "[1] \"PP abf for shared variant: 0.144%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SLC7A5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.928000 0.001270 0.071000 0.000096 0.000123 \n", + "[1] \"PP abf for shared variant: 0.0123%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.45e-09 7.47e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-19 2.38e-22 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.15e-02 4.32e-05 9.66e-01 1.31e-03 8.50e-04 \n", + "[1] \"PP abf for shared variant: 0.085%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.94e-27 4.02e-30 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.24e-12 5.80e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-23 1.45e-26 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MT-ATP6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.27e-03 3.10e-06 9.96e-01 1.35e-03 8.68e-04 \n", + "[1] \"PP abf for shared variant: 0.0868%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-17 1.85e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CCL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.22e-06 8.52e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RILPL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.621000 0.000850 0.378000 0.000514 0.000350 \n", + "[1] \"PP abf for shared variant: 0.035%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SSR2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.45e-04 4.72e-07 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.95e-02 4.04e-05 9.68e-01 1.32e-03 8.52e-04 \n", + "[1] \"PP abf for shared variant: 0.0852%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__UBC\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.02e-08 6.87e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-13 2.02e-16 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MAF__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.94e-05 8.13e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.52e-09 7.56e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___COMMD6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008050 0.000011 0.990000 0.001350 0.000973 \n", + "[1] \"PP abf for shared variant: 0.0973%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.78e-06 3.80e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___NSMCE1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.101000 0.000138 0.897000 0.001220 0.000790 \n", + "[1] \"PP abf for shared variant: 0.079%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TGFB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.04e-04 1.10e-06 9.97e-01 1.36e-03 8.90e-04 \n", + "[1] \"PP abf for shared variant: 0.089%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___PRDX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.432000 0.000592 0.566000 0.000769 0.000519 \n", + "[1] \"PP abf for shared variant: 0.0519%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-17 1.47e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___FAM46C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.143000 0.000196 0.855000 0.001160 0.000751 \n", + "[1] \"PP abf for shared variant: 0.0751%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.39e-20 1.01e-22 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.23e-20 5.80e-23 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.81e-25 2.48e-28 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-22 2.20e-25 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RORA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.756000 0.001030 0.243000 0.000330 0.000262 \n", + "[1] \"PP abf for shared variant: 0.0262%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.15e-03 1.12e-05 9.90e-01 1.35e-03 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.80e-18 1.20e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CD44__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.96e-04 4.05e-07 9.97e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS4Y1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.839000 0.001150 0.158000 0.000209 0.000797 \n", + "[1] \"PP abf for shared variant: 0.0797%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___LGALS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.69e-05 3.68e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___COX7A2L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.268000 0.000367 0.730000 0.000993 0.000654 \n", + "[1] \"PP abf for shared variant: 0.0654%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-18 2.81e-21 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HADHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.470000 0.000644 0.528000 0.000718 0.000478 \n", + "[1] \"PP abf for shared variant: 0.0478%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SATB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.689000 0.000944 0.309000 0.000420 0.000289 \n", + "[1] \"PP abf for shared variant: 0.0289%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__UGP2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.566000 0.000776 0.432000 0.000587 0.000391 \n", + "[1] \"PP abf for shared variant: 0.0391%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SBDS\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.696000 0.000953 0.302000 0.000411 0.000288 \n", + "[1] \"PP abf for shared variant: 0.0288%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SYNE2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.27e-02 8.58e-05 9.35e-01 1.27e-03 8.33e-04 \n", + "[1] \"PP abf for shared variant: 0.0833%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TMA7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.303000 0.000415 0.695000 0.000945 0.000625 \n", + "[1] \"PP abf for shared variant: 0.0625%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___NEAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.32e-07 1.81e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___NR3C1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.325000 0.000445 0.673000 0.000915 0.000616 \n", + "[1] \"PP abf for shared variant: 0.0616%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.68e-24 2.30e-27 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CCT8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.382000 0.000523 0.615000 0.000828 0.001450 \n", + "[1] \"PP abf for shared variant: 0.145%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFAIP3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.525000 0.000719 0.473000 0.000644 0.000424 \n", + "[1] \"PP abf for shared variant: 0.0424%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SH2D2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.879000 0.001110 0.119000 0.000149 0.000143 \n", + "[1] \"PP abf for shared variant: 0.0143%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___NPM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.09e-10 4.23e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CLNS1A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.70e-02 3.69e-05 9.71e-01 1.32e-03 8.49e-04 \n", + "[1] \"PP abf for shared variant: 0.0849%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RSL1D1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.69e-08 1.33e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ATP6V0E1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.684000 0.000936 0.315000 0.000428 0.000312 \n", + "[1] \"PP abf for shared variant: 0.0312%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.23e-24 5.80e-27 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___DUSP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.803000 0.001100 0.195000 0.000265 0.000185 \n", + "[1] \"PP abf for shared variant: 0.0185%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.00e-23 6.84e-26 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFP36L2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.254000 0.000348 0.744000 0.001010 0.000664 \n", + "[1] \"PP abf for shared variant: 0.0664%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EIF3D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.76e-03 3.77e-06 9.95e-01 1.35e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RP11-138A9.2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.599000 0.000820 0.400000 0.000543 0.000414 \n", + "[1] \"PP abf for shared variant: 0.0414%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.80e-17 2.46e-20 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___APRT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.154000 0.000211 0.844000 0.001150 0.000766 \n", + "[1] \"PP abf for shared variant: 0.0766%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___FYN__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-02 2.19e-05 9.82e-01 1.34e-03 8.57e-04 \n", + "[1] \"PP abf for shared variant: 0.0857%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ANP32B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.404000 0.000553 0.594000 0.000808 0.000618 \n", + "[1] \"PP abf for shared variant: 0.0618%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___PPP2R5C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.170000 0.000233 0.828000 0.001130 0.000726 \n", + "[1] \"PP abf for shared variant: 0.0726%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EIF3M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-02 1.67e-05 9.86e-01 1.34e-03 8.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0882%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.24e-26 3.06e-29 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CMPK1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.57e-03 3.51e-06 9.95e-01 1.35e-03 8.68e-04 \n", + "[1] \"PP abf for shared variant: 0.0868%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__YWHAZ\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.537000 0.000736 0.461000 0.000626 0.000469 \n", + "[1] \"PP abf for shared variant: 0.0469%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___GIMAP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.57e-06 3.51e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___COTL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.94e-05 2.65e-08 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EIF2S3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.32e-10 1.28e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HSP90AA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1807e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.818000 0.001120 0.180000 0.000245 0.000177 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MT-CYB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-03 3.04e-06 9.96e-01 1.35e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HSPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.895000 0.001230 0.103000 0.000140 0.000107 \n", + "[1] \"PP abf for shared variant: 0.0107%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CRIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-09 1.71e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.98e-08 6.82e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.23e-15 3.06e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TXK\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-03 1.41e-06 9.97e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.45e-15 3.36e-18 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.01e-12 4.12e-15 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ANXA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.59e-06 4.92e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CLIC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.11e-04 1.25e-06 9.97e-01 1.36e-03 8.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0875%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CD99__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.403000 0.000551 0.596000 0.000810 0.000533 \n", + "[1] \"PP abf for shared variant: 0.0533%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___LYRM4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.728000 0.000997 0.270000 0.000367 0.000266 \n", + "[1] \"PP abf for shared variant: 0.0266%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.49e-20 3.41e-23 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.25e-19 7.19e-22 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.54e-09 1.31e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EZR__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.97e-03 8.18e-06 9.92e-01 1.35e-03 8.65e-04 \n", + "[1] \"PP abf for shared variant: 0.0865%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ATP5A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.55e-03 1.03e-05 9.90e-01 1.35e-03 8.64e-04 \n", + "[1] \"PP abf for shared variant: 0.0864%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ATP5O__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-07 1.69e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.470000 0.000643 0.528000 0.000717 0.000598 \n", + "[1] \"PP abf for shared variant: 0.0598%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.17e-18 4.34e-21 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SUCLG2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.87e-03 3.93e-06 9.95e-01 1.35e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CD3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.525000 0.000719 0.473000 0.000642 0.000512 \n", + "[1] \"PP abf for shared variant: 0.0512%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.97e-18 8.17e-21 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___NSA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.53e-07 8.94e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CST7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.353000 0.000484 0.645000 0.000877 0.000638 \n", + "[1] \"PP abf for shared variant: 0.0638%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___HIGD2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.609000 0.000834 0.389000 0.000528 0.000408 \n", + "[1] \"PP abf for shared variant: 0.0408%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___EEF1G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.98e-08 5.45e-11 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___IGBP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.01e-02 5.49e-05 9.58e-01 1.30e-03 8.54e-04 \n", + "[1] \"PP abf for shared variant: 0.0854%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___OAZ1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.91e-19 8.09e-22 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___MYH9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.923000 0.001260 0.075500 0.000101 0.000225 \n", + "[1] \"PP abf for shared variant: 0.0225%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-07 2.95e-10 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___ATP2B1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.32e-03 7.28e-06 9.92e-01 1.35e-03 8.66e-04 \n", + "[1] \"PP abf for shared variant: 0.0866%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-28 2.05e-31 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RBM39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.092400 0.000127 0.905000 0.001230 0.000880 \n", + "[1] \"PP abf for shared variant: 0.088%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___CCNG1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.41e-02 4.67e-05 9.64e-01 1.31e-03 8.52e-04 \n", + "[1] \"PP abf for shared variant: 0.0852%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-14 1.40e-17 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___COX4I1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.117000 0.000160 0.881000 0.001200 0.000786 \n", + "[1] \"PP abf for shared variant: 0.0786%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___PMAIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.317000 0.000435 0.681000 0.000925 0.000633 \n", + "[1] \"PP abf for shared variant: 0.0633%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.03e-10 4.15e-13 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SNHG7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-06 1.50e-09 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___FHIT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.46e-10 1.16e-12 9.98e-01 1.36e-03 8.70e-04 \n", + "[1] \"PP abf for shared variant: 0.087%\"\n", + "[1] \"Multiple Sclerosis\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.69e-04 1.05e-06 9.97e-01 1.36e-03 8.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0869%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_TMEM176A___CAPG__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02470 0.00348 0.85100 0.12000 0.00136 \n", + "[1] \"PP abf for shared variant: 0.136%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_TMEM176A___PTAFR__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06980 0.00981 0.80600 0.11300 0.00128 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_TMEM176A___MNDA__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.5916e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.48200 0.06780 0.39400 0.05540 0.00104 \n", + "[1] \"PP abf for shared variant: 0.104%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_TMEM176A___RNASE6__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.16600 0.02330 0.71000 0.09980 0.00122 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_TMEM176A___TMEM176A__TSPO\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.22900 0.03210 0.64700 0.09100 0.00118 \n", + "[1] \"PP abf for shared variant: 0.118%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_TMEM176A___TMEM176A__VMO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.5549e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.49800 0.07000 0.37700 0.05300 0.00132 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_TMEM176A___S100A9__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.26100 0.03660 0.61500 0.08650 0.00113 \n", + "[1] \"PP abf for shared variant: 0.113%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_TMEM176A___QPCT__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.8504e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.46800 0.06570 0.40800 0.05730 0.00113 \n", + "[1] \"PP abf for shared variant: 0.113%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_TMEM176A___BLVRB__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1205e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.34600 0.04860 0.53000 0.07450 0.00109 \n", + "[1] \"PP abf for shared variant: 0.109%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_TMEM176A___LYZ__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0128 0.0018 0.8630 0.1210 0.0013 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_TMEM176A___CLEC4A__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.5652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.502000 0.070600 0.374000 0.052500 0.000971 \n", + "[1] \"PP abf for shared variant: 0.0971%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL36__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02300 0.00199 0.89600 0.07770 0.00155 \n", + "[1] \"PP abf for shared variant: 0.155%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL5__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3670 0.0318 0.5530 0.0479 0.0011 \n", + "[1] \"PP abf for shared variant: 0.11%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.22300 0.01940 0.69600 0.06040 0.00122 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL32__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02860 0.00248 0.89000 0.07720 0.00157 \n", + "[1] \"PP abf for shared variant: 0.157%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___EEF1A1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.40400 0.03500 0.51500 0.04470 0.00105 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL38__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1320 0.0114 0.7870 0.0683 0.0014 \n", + "[1] \"PP abf for shared variant: 0.14%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL35A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.17800 0.01550 0.74100 0.06420 0.00136 \n", + "[1] \"PP abf for shared variant: 0.136%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL3__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.20900 0.01810 0.71000 0.06160 0.00125 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPS4X__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.32800 0.02840 0.59100 0.05130 0.00107 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPS3A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.37000 0.03210 0.54900 0.04760 0.00107 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPS15A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.19500 0.01690 0.72400 0.06280 0.00132 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPS8__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1860 0.0161 0.7330 0.0636 0.0013 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPS25__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.36400 0.03160 0.55600 0.04820 0.00102 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPS12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.010000 0.000867 0.909000 0.078800 0.001510 \n", + "[1] \"PP abf for shared variant: 0.151%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___NKG7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2740 0.0238 0.6450 0.0559 0.0012 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___B2M__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07160 0.00621 0.84700 0.07350 0.00146 \n", + "[1] \"PP abf for shared variant: 0.146%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL15__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14100 0.01220 0.77800 0.06750 0.00144 \n", + "[1] \"PP abf for shared variant: 0.144%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___PFN1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04560 0.00396 0.87300 0.07570 0.00150 \n", + "[1] \"PP abf for shared variant: 0.15%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPS28__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.13600 0.01180 0.78300 0.06790 0.00134 \n", + "[1] \"PP abf for shared variant: 0.134%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL13A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.18800 0.01630 0.73100 0.06340 0.00135 \n", + "[1] \"PP abf for shared variant: 0.135%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___GZMH__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04160 0.00361 0.87700 0.07610 0.00147 \n", + "[1] \"PP abf for shared variant: 0.147%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___LTB__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08220 0.00713 0.83700 0.07260 0.00146 \n", + "[1] \"PP abf for shared variant: 0.146%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL39__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.13300 0.01150 0.78600 0.06820 0.00141 \n", + "[1] \"PP abf for shared variant: 0.141%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPS14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.16600 0.01440 0.75300 0.06530 0.00134 \n", + "[1] \"PP abf for shared variant: 0.134%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.12700 0.01100 0.79200 0.06870 0.00143 \n", + "[1] \"PP abf for shared variant: 0.143%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPS23__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06470 0.00561 0.85400 0.07410 0.00149 \n", + "[1] \"PP abf for shared variant: 0.149%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPS29__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07680 0.00666 0.84200 0.07300 0.00145 \n", + "[1] \"PP abf for shared variant: 0.145%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL22__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.37000 0.03210 0.54900 0.04760 0.00113 \n", + "[1] \"PP abf for shared variant: 0.113%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL9__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.20000 0.01730 0.71900 0.06240 0.00133 \n", + "[1] \"PP abf for shared variant: 0.133%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.35000 0.03040 0.56900 0.04940 0.00111 \n", + "[1] \"PP abf for shared variant: 0.111%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.31300 0.02720 0.60600 0.05250 0.00115 \n", + "[1] \"PP abf for shared variant: 0.115%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.00027483\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.756000 0.065600 0.163000 0.014100 0.000652 \n", + "[1] \"PP abf for shared variant: 0.0652%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___MAL__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.20300 0.01730 0.71700 0.06100 0.00128 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___PRF1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4200 0.0365 0.4990 0.0433 0.0010 \n", + "[1] \"PP abf for shared variant: 0.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPS13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01220 0.00106 0.90700 0.07860 0.00159 \n", + "[1] \"PP abf for shared variant: 0.159%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPS6__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.11400 0.00989 0.80500 0.06980 0.00142 \n", + "[1] \"PP abf for shared variant: 0.142%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPS18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01340 0.00116 0.90500 0.07850 0.00157 \n", + "[1] \"PP abf for shared variant: 0.157%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL21__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08190 0.00710 0.83700 0.07260 0.00147 \n", + "[1] \"PP abf for shared variant: 0.147%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___SMDT1__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.003400 0.000295 0.915000 0.079400 0.001570 \n", + "[1] \"PP abf for shared variant: 0.157%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.11300 0.00979 0.80600 0.06990 0.00139 \n", + "[1] \"PP abf for shared variant: 0.139%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL11__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01740 0.00151 0.90100 0.07820 0.00157 \n", + "[1] \"PP abf for shared variant: 0.157%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL34__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04980 0.00432 0.86900 0.07540 0.00152 \n", + "[1] \"PP abf for shared variant: 0.152%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL10A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07050 0.00612 0.84800 0.07360 0.00147 \n", + "[1] \"PP abf for shared variant: 0.147%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_SMDT1___RPL30__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.11700 0.01010 0.80200 0.06960 0.00143 \n", + "[1] \"PP abf for shared variant: 0.143%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPL3__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01170 0.00101 0.90700 0.07870 0.00137 \n", + "[1] \"PP abf for shared variant: 0.137%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPS25__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.31700 0.02750 0.60200 0.05220 0.00109 \n", + "[1] \"PP abf for shared variant: 0.109%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPL13A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05470 0.00475 0.86400 0.07500 0.00144 \n", + "[1] \"PP abf for shared variant: 0.144%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPS13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0461 0.0040 0.8730 0.0757 0.0015 \n", + "[1] \"PP abf for shared variant: 0.15%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPS4X__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.45200 0.03920 0.46700 0.04050 0.00106 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPS18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.37400 0.03240 0.54600 0.04730 0.00098 \n", + "[1] \"PP abf for shared variant: 0.098%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPL31__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.434000 0.037700 0.485000 0.042100 0.000986 \n", + "[1] \"PP abf for shared variant: 0.0986%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPS15__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2270 0.0197 0.6920 0.0600 0.0012 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___ACTB__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01690 0.00147 0.90200 0.07830 0.00122 \n", + "[1] \"PP abf for shared variant: 0.122%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPL36__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.25000 0.02160 0.66900 0.05810 0.00124 \n", + "[1] \"PP abf for shared variant: 0.124%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPL35A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.004640 0.000402 0.914000 0.079300 0.001460 \n", + "[1] \"PP abf for shared variant: 0.146%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPS12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.503000 0.043600 0.416000 0.036100 0.000908 \n", + "[1] \"PP abf for shared variant: 0.0908%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPL11__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.16500 0.01430 0.75400 0.06540 0.00127 \n", + "[1] \"PP abf for shared variant: 0.127%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPL14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.21000 0.01820 0.70900 0.06150 0.00128 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPL10__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05380 0.00466 0.86500 0.07510 0.00114 \n", + "[1] \"PP abf for shared variant: 0.114%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPS3A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.14300 0.01240 0.77600 0.06730 0.00117 \n", + "[1] \"PP abf for shared variant: 0.117%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0032661\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.746000 0.064700 0.173000 0.015000 0.000947 \n", + "[1] \"PP abf for shared variant: 0.0947%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___CD48__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.26500 0.02300 0.65400 0.05680 0.00121 \n", + "[1] \"PP abf for shared variant: 0.121%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPL7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.32400 0.02810 0.59500 0.05160 0.00106 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_SMDT1___RPS27__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.401000 0.034800 0.518000 0.044900 0.000977 \n", + "[1] \"PP abf for shared variant: 0.0977%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_HLA-DQA2___CST3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.87e-243 7.40e-01 2.70e-244 1.05e-01 1.54e-01 \n", + "[1] \"PP abf for shared variant: 15.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.63e-243 6.44e-01 3.92e-244 1.53e-01 2.03e-01 \n", + "[1] \"PP abf for shared variant: 20.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.26e-243 4.99e-01 5.03e-244 1.96e-01 3.05e-01 \n", + "[1] \"PP abf for shared variant: 30.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_HLA-DQA2___CLIC3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.38e-243 5.46e-01 4.22e-244 1.64e-01 2.90e-01 \n", + "[1] \"PP abf for shared variant: 29%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__PTPRCAP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.67e-243 6.61e-01 2.55e-244 9.84e-02 2.40e-01 \n", + "[1] \"PP abf for shared variant: 24%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_HLA-DQA2___CDKN2D__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.5969e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.94e-243 7.66e-01 2.93e-244 1.15e-01 1.19e-01 \n", + "[1] \"PP abf for shared variant: 11.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__YBX1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.0931e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "2.12e-243 8.37e-01 2.40e-244 9.43e-02 6.83e-02 \n", + "[1] \"PP abf for shared variant: 6.83%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.57e-243 6.22e-01 3.35e-244 1.30e-01 2.48e-01 \n", + "[1] \"PP abf for shared variant: 24.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.47e-243 5.81e-01 5.04e-244 1.97e-01 2.21e-01 \n", + "[1] \"PP abf for shared variant: 22.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__MAP1A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.62e-243 6.43e-01 3.00e-244 1.16e-01 2.41e-01 \n", + "[1] \"PP abf for shared variant: 24.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_HLA-DQA2___FAM129C__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.15e-243 4.54e-01 4.30e-244 1.66e-01 3.79e-01 \n", + "[1] \"PP abf for shared variant: 37.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__MT-CO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1338e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.79e-243 7.08e-01 2.87e-244 1.12e-01 1.80e-01 \n", + "[1] \"PP abf for shared variant: 18%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "7.76e-244 3.07e-01 5.49e-244 2.13e-01 4.80e-01 \n", + "[1] \"PP abf for shared variant: 48%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___CST3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "6.87e-245 2.72e-02 7.60e-244 2.94e-01 6.78e-01 \n", + "[1] \"PP abf for shared variant: 67.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "3.87e-246 1.53e-03 8.98e-244 3.49e-01 6.49e-01 \n", + "[1] \"PP abf for shared variant: 64.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___CD74__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "4.14e-246 1.64e-03 8.47e-244 3.29e-01 6.69e-01 \n", + "[1] \"PP abf for shared variant: 66.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "8.03e-245 3.18e-02 8.56e-244 3.33e-01 6.36e-01 \n", + "[1] \"PP abf for shared variant: 63.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "8.94e-246 3.54e-03 7.74e-244 3.00e-01 6.97e-01 \n", + "[1] \"PP abf for shared variant: 69.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.48e-246 5.86e-04 7.42e-244 2.87e-01 7.12e-01 \n", + "[1] \"PP abf for shared variant: 71.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DMA__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "3.71e-246 1.47e-03 8.46e-244 3.29e-01 6.70e-01 \n", + "[1] \"PP abf for shared variant: 67%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS23\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "2.01e-244 7.98e-02 6.99e-244 2.71e-01 6.50e-01 \n", + "[1] \"PP abf for shared variant: 65%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "8.38e-244 3.32e-01 6.50e-244 2.54e-01 4.14e-01 \n", + "[1] \"PP abf for shared variant: 41.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "7.99e-244 3.17e-01 6.03e-244 2.34e-01 4.49e-01 \n", + "[1] \"PP abf for shared variant: 44.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___EEF1A1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "2.21e-244 8.76e-02 8.89e-244 3.47e-01 5.66e-01 \n", + "[1] \"PP abf for shared variant: 56.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "3.65e-244 1.45e-01 8.30e-244 3.24e-01 5.31e-01 \n", + "[1] \"PP abf for shared variant: 53.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "4.95e-244 1.96e-01 7.60e-244 2.96e-01 5.08e-01 \n", + "[1] \"PP abf for shared variant: 50.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DMB__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.11e-244 4.41e-02 7.70e-244 2.98e-01 6.57e-01 \n", + "[1] \"PP abf for shared variant: 65.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.82e-245 7.22e-03 7.08e-244 2.74e-01 7.19e-01 \n", + "[1] \"PP abf for shared variant: 71.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "7.83e-246 3.10e-03 8.94e-244 3.48e-01 6.49e-01 \n", + "[1] \"PP abf for shared variant: 64.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.04e-243 4.14e-01 6.22e-244 2.43e-01 3.43e-01 \n", + "[1] \"PP abf for shared variant: 34.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RNASET2___HLA-DRB5__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "2.36e-243 9.33e-01 1.49e-244 5.88e-02 7.73e-03 \n", + "[1] \"PP abf for shared variant: 0.773%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_HLA-DQA2___CCL5__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "2.85e-244 1.13e-01 1.40e-243 5.53e-01 3.34e-01 \n", + "[1] \"PP abf for shared variant: 33.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_HLA-DQA2___CD74__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.40e-243 5.53e-01 6.31e-244 2.48e-01 1.99e-01 \n", + "[1] \"PP abf for shared variant: 19.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "7.85e-244 3.11e-01 1.01e-243 3.96e-01 2.93e-01 \n", + "[1] \"PP abf for shared variant: 29.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__NKG7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "2.66e-244 1.05e-01 1.93e-243 7.62e-01 1.33e-01 \n", + "[1] \"PP abf for shared variant: 13.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPL34\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "5.97e-244 2.37e-01 1.39e-243 5.47e-01 2.16e-01 \n", + "[1] \"PP abf for shared variant: 21.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "9.81e-244 3.89e-01 4.90e-244 1.90e-01 4.21e-01 \n", + "[1] \"PP abf for shared variant: 42.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_HLA-DQA2___CMC1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "6.81e-244 2.70e-01 1.11e-243 4.35e-01 2.95e-01 \n", + "[1] \"PP abf for shared variant: 29.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS14\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "2.47e-244 9.79e-02 1.62e-243 6.39e-01 2.63e-01 \n", + "[1] \"PP abf for shared variant: 26.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.97e-244 7.81e-02 5.25e-244 2.01e-01 7.21e-01 \n", + "[1] \"PP abf for shared variant: 72.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "5.79e-244 2.29e-01 7.01e-244 2.73e-01 4.98e-01 \n", + "[1] \"PP abf for shared variant: 49.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "6.45e-244 2.56e-01 1.16e-243 4.59e-01 2.86e-01 \n", + "[1] \"PP abf for shared variant: 28.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "6.91e-244 2.74e-01 6.36e-244 2.47e-01 4.79e-01 \n", + "[1] \"PP abf for shared variant: 47.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___CD52__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "2.48e-244 9.83e-02 1.98e-243 7.84e-01 1.17e-01 \n", + "[1] \"PP abf for shared variant: 11.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "5.35e-244 2.12e-01 5.28e-244 2.04e-01 5.84e-01 \n", + "[1] \"PP abf for shared variant: 58.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "1.05e-243 4.14e-01 6.19e-244 2.42e-01 3.44e-01 \n", + "[1] \"PP abf for shared variant: 34.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "3.65e-244 1.45e-01 8.20e-244 3.20e-01 5.36e-01 \n", + "[1] \"PP abf for shared variant: 53.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___EEF1B2__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "2.29e-244 9.09e-02 8.05e-244 3.13e-01 5.96e-01 \n", + "[1] \"PP abf for shared variant: 59.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "4.95e-244 1.96e-01 1.37e-243 5.40e-01 2.64e-01 \n", + "[1] \"PP abf for shared variant: 26.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___B2M__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "2.37e-244 9.39e-02 1.02e-243 4.00e-01 5.06e-01 \n", + "[1] \"PP abf for shared variant: 50.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___GAPDH__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "6.47e-244 2.56e-01 7.27e-244 2.84e-01 4.60e-01 \n", + "[1] \"PP abf for shared variant: 46%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL32\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "3.69e-244 1.46e-01 1.59e-243 6.28e-01 2.26e-01 \n", + "[1] \"PP abf for shared variant: 22.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "7.10e-244 2.81e-01 5.32e-244 2.06e-01 5.13e-01 \n", + "[1] \"PP abf for shared variant: 51.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + "8.88e-245 3.52e-02 7.82e-244 3.03e-01 6.62e-01 \n", + "[1] \"PP abf for shared variant: 66.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RNASET2___ITGB1__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.99e-26 8.48e-03 1.05e-23 9.91e-01 5.65e-04 \n", + "[1] \"PP abf for shared variant: 0.0565%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RNASET2___CRIP1__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.33e-25 8.80e-02 9.59e-24 9.05e-01 7.11e-03 \n", + "[1] \"PP abf for shared variant: 0.711%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RNASET2___B2M__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.19e-25 3.96e-02 1.02e-23 9.59e-01 1.65e-03 \n", + "[1] \"PP abf for shared variant: 0.165%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RNASET2___ALOX5AP__RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-24 9.95e-02 9.47e-24 8.93e-01 7.26e-03 \n", + "[1] \"PP abf for shared variant: 0.726%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_RPS26___RPS26__RPS8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.0253e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.85e-05 1.93e-01 1.57e-05 7.13e-02 7.36e-01 \n", + "[1] \"PP abf for shared variant: 73.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.40e-05 2.20e-01 3.27e-05 1.57e-01 6.23e-01 \n", + "[1] \"PP abf for shared variant: 62.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"DC_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.10e-05 2.05e-01 2.38e-05 1.12e-01 6.83e-01 \n", + "[1] \"PP abf for shared variant: 68.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.27e-06 3.14e-02 1.48e-05 6.50e-02 9.04e-01 \n", + "[1] \"PP abf for shared variant: 90.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS26__UBE2J1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 8.0878e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.77e-05 3.89e-01 4.32e-05 2.12e-01 3.99e-01 \n", + "[1] \"PP abf for shared variant: 39.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.37e-06 2.18e-02 3.80e-05 1.82e-01 7.96e-01 \n", + "[1] \"PP abf for shared variant: 79.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.35e-05 2.17e-01 3.09e-05 1.48e-01 6.34e-01 \n", + "[1] \"PP abf for shared variant: 63.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1042e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.67e-05 1.83e-01 2.78e-05 1.32e-01 6.84e-01 \n", + "[1] \"PP abf for shared variant: 68.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS26__RPS28\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.1644e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.57e-05 3.79e-01 2.20e-05 1.05e-01 5.17e-01 \n", + "[1] \"PP abf for shared variant: 51.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.42e-08 1.71e-04 4.67e-05 2.26e-01 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL39__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.0557e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.40e-05 3.20e-01 2.53e-05 1.21e-01 5.59e-01 \n", + "[1] \"PP abf for shared variant: 55.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.29e-07 1.65e-03 3.28e-05 1.55e-01 8.43e-01 \n", + "[1] \"PP abf for shared variant: 84.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.37e-06 4.18e-02 3.81e-05 1.83e-01 7.75e-01 \n", + "[1] \"PP abf for shared variant: 77.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.85e-07 9.26e-04 3.70e-05 1.77e-01 8.22e-01 \n", + "[1] \"PP abf for shared variant: 82.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.62e-05 2.31e-01 3.28e-05 1.58e-01 6.11e-01 \n", + "[1] \"PP abf for shared variant: 61.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.76e-06 4.38e-02 1.19e-05 5.05e-02 9.06e-01 \n", + "[1] \"PP abf for shared variant: 90.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL26__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.7757e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.79e-05 1.90e-01 2.45e-05 1.15e-01 6.95e-01 \n", + "[1] \"PP abf for shared variant: 69.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.69e-06 1.84e-02 2.76e-05 1.29e-01 8.52e-01 \n", + "[1] \"PP abf for shared variant: 85.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.50e-05 1.75e-01 3.54e-05 1.71e-01 6.54e-01 \n", + "[1] \"PP abf for shared variant: 65.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS25__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2778e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.36e-05 1.18e-01 1.60e-05 7.21e-02 8.10e-01 \n", + "[1] \"PP abf for shared variant: 81%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS26__RPS29\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0623e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.71e-05 3.85e-01 2.17e-05 1.03e-01 5.11e-01 \n", + "[1] \"PP abf for shared variant: 51.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.25e-06 1.12e-02 5.20e-05 2.53e-01 7.36e-01 \n", + "[1] \"PP abf for shared variant: 73.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-06 1.03e-02 2.33e-05 1.08e-01 8.82e-01 \n", + "[1] \"PP abf for shared variant: 88.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.12e-06 2.06e-02 1.14e-05 4.77e-02 9.32e-01 \n", + "[1] \"PP abf for shared variant: 93.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.94e-09 1.47e-05 3.67e-05 1.75e-01 8.25e-01 \n", + "[1] \"PP abf for shared variant: 82.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1408e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-04 5.10e-01 2.53e-05 1.23e-01 3.67e-01 \n", + "[1] \"PP abf for shared variant: 36.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.791e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.90e-05 2.45e-01 3.55e-05 1.71e-01 5.83e-01 \n", + "[1] \"PP abf for shared variant: 58.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1436e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.04e-05 3.02e-01 2.11e-05 9.94e-02 5.99e-01 \n", + "[1] \"PP abf for shared variant: 59.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1123e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.81e-05 4.40e-01 1.83e-05 8.70e-02 4.72e-01 \n", + "[1] \"PP abf for shared variant: 47.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.64e-06 2.32e-02 1.70e-05 7.60e-02 9.01e-01 \n", + "[1] \"PP abf for shared variant: 90.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-05 5.49e-02 4.16e-05 2.01e-01 7.44e-01 \n", + "[1] \"PP abf for shared variant: 74.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.57e-10 3.78e-06 4.24e-05 2.04e-01 7.96e-01 \n", + "[1] \"PP abf for shared variant: 79.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.20e-06 4.60e-02 4.04e-05 1.94e-01 7.60e-01 \n", + "[1] \"PP abf for shared variant: 76%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-06 5.45e-03 3.63e-05 1.73e-01 8.21e-01 \n", + "[1] \"PP abf for shared variant: 82.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-09 5.80e-06 3.54e-05 1.69e-01 8.31e-01 \n", + "[1] \"PP abf for shared variant: 83.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.85e-06 1.92e-02 1.94e-05 8.83e-02 8.92e-01 \n", + "[1] \"PP abf for shared variant: 89.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPL23A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1639e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.44e-05 4.72e-01 2.53e-05 1.23e-01 4.05e-01 \n", + "[1] \"PP abf for shared variant: 40.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"B_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-06 1.08e-02 2.92e-05 1.37e-01 8.52e-01 \n", + "[1] \"PP abf for shared variant: 85.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.57e-13 4.29e-09 4.63e-05 2.24e-01 7.76e-01 \n", + "[1] \"PP abf for shared variant: 77.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.79e-17 3.89e-13 3.96e-05 1.90e-01 8.10e-01 \n", + "[1] \"PP abf for shared variant: 81%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.36e-06 1.18e-02 2.12e-05 9.73e-02 8.91e-01 \n", + "[1] \"PP abf for shared variant: 89.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-12 7.00e-09 4.17e-05 2.00e-01 8.00e-01 \n", + "[1] \"PP abf for shared variant: 80%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.53e-11 2.27e-07 2.36e-05 1.09e-01 8.91e-01 \n", + "[1] \"PP abf for shared variant: 89.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.19e-09 5.97e-06 1.55e-05 6.84e-02 9.32e-01 \n", + "[1] \"PP abf for shared variant: 93.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.39e-21 6.94e-18 4.13e-05 1.98e-01 8.02e-01 \n", + "[1] \"PP abf for shared variant: 80.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.93e-15 1.96e-11 4.68e-05 2.26e-01 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.38e-16 1.19e-12 4.59e-05 2.22e-01 7.78e-01 \n", + "[1] \"PP abf for shared variant: 77.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.09e-15 1.54e-11 4.31e-05 2.08e-01 7.92e-01 \n", + "[1] \"PP abf for shared variant: 79.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.90e-10 2.45e-06 4.02e-05 1.93e-01 8.07e-01 \n", + "[1] \"PP abf for shared variant: 80.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.44e-08 2.22e-04 3.19e-05 1.51e-01 8.49e-01 \n", + "[1] \"PP abf for shared variant: 84.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.81e-16 1.40e-12 1.59e-05 7.02e-02 9.30e-01 \n", + "[1] \"PP abf for shared variant: 93%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.73e-19 8.64e-16 5.01e-05 2.43e-01 7.57e-01 \n", + "[1] \"PP abf for shared variant: 75.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.36e-06 6.81e-03 3.91e-05 1.87e-01 8.06e-01 \n", + "[1] \"PP abf for shared variant: 80.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.52e-06 7.58e-03 1.91e-05 8.66e-02 9.06e-01 \n", + "[1] \"PP abf for shared variant: 90.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-14 5.44e-11 4.72e-05 2.28e-01 7.72e-01 \n", + "[1] \"PP abf for shared variant: 77.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.08e-11 1.04e-07 1.61e-05 7.13e-02 9.29e-01 \n", + "[1] \"PP abf for shared variant: 92.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.38e-07 6.88e-04 1.15e-05 4.77e-02 9.52e-01 \n", + "[1] \"PP abf for shared variant: 95.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.17e-11 1.09e-07 4.23e-05 2.04e-01 7.96e-01 \n", + "[1] \"PP abf for shared variant: 79.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.02e-22 3.01e-18 5.45e-05 2.65e-01 7.35e-01 \n", + "[1] \"PP abf for shared variant: 73.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-15 5.79e-12 3.19e-05 1.51e-01 8.49e-01 \n", + "[1] \"PP abf for shared variant: 84.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.87e-15 9.36e-12 4.26e-05 2.05e-01 7.95e-01 \n", + "[1] \"PP abf for shared variant: 79.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__SPON2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.23e-07 2.11e-03 2.91e-05 1.37e-01 8.61e-01 \n", + "[1] \"PP abf for shared variant: 86.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.80e-10 4.90e-06 4.48e-05 2.16e-01 7.84e-01 \n", + "[1] \"PP abf for shared variant: 78.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.73e-24 3.36e-20 3.99e-05 1.91e-01 8.09e-01 \n", + "[1] \"PP abf for shared variant: 80.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-17 6.56e-14 3.67e-05 1.75e-01 8.25e-01 \n", + "[1] \"PP abf for shared variant: 82.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.16e-16 1.58e-12 4.56e-05 2.20e-01 7.80e-01 \n", + "[1] \"PP abf for shared variant: 78%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-17 1.03e-13 4.31e-05 2.07e-01 7.93e-01 \n", + "[1] \"PP abf for shared variant: 79.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.57e-11 1.78e-07 2.34e-05 1.08e-01 8.92e-01 \n", + "[1] \"PP abf for shared variant: 89.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.31e-06 2.15e-02 1.35e-05 5.81e-02 9.20e-01 \n", + "[1] \"PP abf for shared variant: 92%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-10 5.99e-07 9.61e-06 3.84e-02 9.62e-01 \n", + "[1] \"PP abf for shared variant: 96.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___PRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1991e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.37e-05 6.85e-02 1.30e-05 5.61e-02 8.75e-01 \n", + "[1] \"PP abf for shared variant: 87.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-13 5.44e-10 3.74e-05 1.79e-01 8.21e-01 \n", + "[1] \"PP abf for shared variant: 82.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-16 7.23e-13 3.78e-05 1.81e-01 8.19e-01 \n", + "[1] \"PP abf for shared variant: 81.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.48e-14 3.74e-10 3.65e-05 1.74e-01 8.26e-01 \n", + "[1] \"PP abf for shared variant: 82.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.73e-17 8.63e-14 1.63e-05 7.23e-02 9.28e-01 \n", + "[1] \"PP abf for shared variant: 92.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.46e-20 3.23e-16 4.87e-05 2.36e-01 7.64e-01 \n", + "[1] \"PP abf for shared variant: 76.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.58e-22 7.91e-19 4.88e-05 2.36e-01 7.64e-01 \n", + "[1] \"PP abf for shared variant: 76.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.30e-09 2.65e-05 1.24e-05 5.23e-02 9.48e-01 \n", + "[1] \"PP abf for shared variant: 94.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.57e-14 1.28e-10 4.23e-05 2.03e-01 7.97e-01 \n", + "[1] \"PP abf for shared variant: 79.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-09 7.31e-06 1.37e-05 5.88e-02 9.41e-01 \n", + "[1] \"PP abf for shared variant: 94.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-14 8.89e-11 3.88e-05 1.86e-01 8.14e-01 \n", + "[1] \"PP abf for shared variant: 81.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.24e-18 4.62e-14 4.35e-05 2.10e-01 7.90e-01 \n", + "[1] \"PP abf for shared variant: 79%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-13 6.09e-10 1.16e-05 4.86e-02 9.51e-01 \n", + "[1] \"PP abf for shared variant: 95.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.28e-20 1.14e-16 1.09e-05 4.48e-02 9.55e-01 \n", + "[1] \"PP abf for shared variant: 95.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.51e-18 2.75e-14 4.83e-05 2.34e-01 7.66e-01 \n", + "[1] \"PP abf for shared variant: 76.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.72e-08 2.36e-04 4.84e-05 2.34e-01 7.65e-01 \n", + "[1] \"PP abf for shared variant: 76.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.11e-17 1.06e-13 5.23e-05 2.54e-01 7.46e-01 \n", + "[1] \"PP abf for shared variant: 74.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.42e-05 7.11e-02 1.83e-05 8.32e-02 8.46e-01 \n", + "[1] \"PP abf for shared variant: 84.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-11 7.30e-08 4.18e-05 2.01e-01 7.99e-01 \n", + "[1] \"PP abf for shared variant: 79.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.89e-07 4.45e-03 3.63e-05 1.73e-01 8.22e-01 \n", + "[1] \"PP abf for shared variant: 82.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-12 5.03e-09 3.02e-05 1.42e-01 8.58e-01 \n", + "[1] \"PP abf for shared variant: 85.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-09 8.25e-06 6.40e-06 2.22e-02 9.78e-01 \n", + "[1] \"PP abf for shared variant: 97.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.87e-22 1.94e-18 4.85e-05 2.35e-01 7.65e-01 \n", + "[1] \"PP abf for shared variant: 76.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.15e-12 4.58e-08 4.12e-05 1.98e-01 8.02e-01 \n", + "[1] \"PP abf for shared variant: 80.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.83e-14 3.41e-10 3.17e-05 1.50e-01 8.50e-01 \n", + "[1] \"PP abf for shared variant: 85%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.08e-11 3.04e-07 3.05e-05 1.44e-01 8.56e-01 \n", + "[1] \"PP abf for shared variant: 85.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.19e-15 1.59e-11 8.92e-06 3.49e-02 9.65e-01 \n", + "[1] \"PP abf for shared variant: 96.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.43e-20 1.22e-16 1.35e-05 5.83e-02 9.42e-01 \n", + "[1] \"PP abf for shared variant: 94.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.87e-11 9.37e-08 8.19e-06 3.13e-02 9.69e-01 \n", + "[1] \"PP abf for shared variant: 96.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.41e-10 1.70e-06 1.46e-05 6.37e-02 9.36e-01 \n", + "[1] \"PP abf for shared variant: 93.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___GPR183__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-05 9.31e-02 3.45e-05 1.65e-01 7.42e-01 \n", + "[1] \"PP abf for shared variant: 74.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-20 9.85e-17 3.70e-05 1.77e-01 8.23e-01 \n", + "[1] \"PP abf for shared variant: 82.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.09e-07 2.04e-03 3.82e-05 1.83e-01 8.15e-01 \n", + "[1] \"PP abf for shared variant: 81.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.20e-13 2.60e-09 3.30e-05 1.56e-01 8.44e-01 \n", + "[1] \"PP abf for shared variant: 84.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.39e-11 3.69e-07 2.14e-05 9.77e-02 9.02e-01 \n", + "[1] \"PP abf for shared variant: 90.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.19e-09 1.09e-05 3.85e-05 1.84e-01 8.16e-01 \n", + "[1] \"PP abf for shared variant: 81.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.64e-10 4.82e-06 4.43e-05 2.14e-01 7.86e-01 \n", + "[1] \"PP abf for shared variant: 78.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.74e-11 1.37e-07 4.09e-05 1.96e-01 8.04e-01 \n", + "[1] \"PP abf for shared variant: 80.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___GZMB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4099e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.12e-05 1.06e-01 2.38e-05 1.11e-01 7.82e-01 \n", + "[1] \"PP abf for shared variant: 78.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___EEF1D__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5173e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.56e-05 4.78e-01 1.85e-05 8.80e-02 4.34e-01 \n", + "[1] \"PP abf for shared variant: 43.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-08 5.78e-05 9.45e-06 3.76e-02 9.62e-01 \n", + "[1] \"PP abf for shared variant: 96.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.59e-11 1.29e-07 2.92e-05 1.37e-01 8.63e-01 \n", + "[1] \"PP abf for shared variant: 86.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.53e-17 1.26e-13 4.85e-05 2.35e-01 7.65e-01 \n", + "[1] \"PP abf for shared variant: 76.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___KLRC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-06 5.49e-03 9.35e-06 3.72e-02 9.57e-01 \n", + "[1] \"PP abf for shared variant: 95.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL17__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.4275e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.72e-05 1.86e-01 1.29e-05 5.69e-02 7.57e-01 \n", + "[1] \"PP abf for shared variant: 75.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.93e-11 9.65e-08 1.23e-05 5.19e-02 9.48e-01 \n", + "[1] \"PP abf for shared variant: 94.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.17e-13 2.09e-09 3.50e-05 1.67e-01 8.33e-01 \n", + "[1] \"PP abf for shared variant: 83.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___MALAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.53e-07 4.26e-03 4.13e-05 1.98e-01 7.97e-01 \n", + "[1] \"PP abf for shared variant: 79.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.49e-08 3.24e-04 2.00e-05 9.11e-02 9.09e-01 \n", + "[1] \"PP abf for shared variant: 90.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.94e-15 9.70e-12 3.11e-05 1.47e-01 8.53e-01 \n", + "[1] \"PP abf for shared variant: 85.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___HLA-B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8351e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.43e-05 3.21e-01 2.80e-05 1.35e-01 5.44e-01 \n", + "[1] \"PP abf for shared variant: 54.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.81e-11 1.40e-07 4.04e-05 1.94e-01 8.06e-01 \n", + "[1] \"PP abf for shared variant: 80.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-09 5.48e-06 1.48e-05 6.44e-02 9.36e-01 \n", + "[1] \"PP abf for shared variant: 93.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___FGFBP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.17e-05 5.85e-02 2.28e-05 1.06e-01 8.36e-01 \n", + "[1] \"PP abf for shared variant: 83.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.97e-08 4.98e-04 1.01e-05 4.09e-02 9.59e-01 \n", + "[1] \"PP abf for shared variant: 95.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.58e-09 4.29e-05 1.42e-05 6.14e-02 9.39e-01 \n", + "[1] \"PP abf for shared variant: 93.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.09e-08 1.54e-04 2.94e-05 1.38e-01 8.62e-01 \n", + "[1] \"PP abf for shared variant: 86.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.32e-07 3.16e-03 1.20e-05 5.04e-02 9.46e-01 \n", + "[1] \"PP abf for shared variant: 94.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__ZEB2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.574e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.11e-04 5.53e-01 2.91e-05 1.43e-01 3.04e-01 \n", + "[1] \"PP abf for shared variant: 30.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.83e-11 3.92e-07 9.24e-06 3.66e-02 9.63e-01 \n", + "[1] \"PP abf for shared variant: 96.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.30e-19 2.15e-15 5.21e-05 2.53e-01 7.47e-01 \n", + "[1] \"PP abf for shared variant: 74.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___NACA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.2336e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.55e-05 2.77e-01 2.56e-05 1.22e-01 6.01e-01 \n", + "[1] \"PP abf for shared variant: 60.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.62e-14 8.10e-11 2.06e-05 9.38e-02 9.06e-01 \n", + "[1] \"PP abf for shared variant: 90.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"NK_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-15 7.38e-12 2.45e-05 1.14e-01 8.86e-01 \n", + "[1] \"PP abf for shared variant: 88.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___NRGN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7437e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.43e-05 1.22e-01 1.87e-05 8.54e-02 7.93e-01 \n", + "[1] \"PP abf for shared variant: 79.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.43e-05 1.21e-01 5.55e-05 2.71e-01 6.07e-01 \n", + "[1] \"PP abf for shared variant: 60.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.65e-08 1.82e-04 2.13e-05 9.75e-02 9.02e-01 \n", + "[1] \"PP abf for shared variant: 90.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.68e-11 8.38e-08 8.90e-06 3.48e-02 9.65e-01 \n", + "[1] \"PP abf for shared variant: 96.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.43e-20 1.21e-16 5.35e-05 2.60e-01 7.40e-01 \n", + "[1] \"PP abf for shared variant: 74%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.04e-11 2.52e-07 4.42e-05 2.13e-01 7.87e-01 \n", + "[1] \"PP abf for shared variant: 78.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-13 5.05e-10 5.66e-05 2.76e-01 7.24e-01 \n", + "[1] \"PP abf for shared variant: 72.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.65e-07 1.82e-03 2.21e-05 1.01e-01 8.97e-01 \n", + "[1] \"PP abf for shared variant: 89.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.19e-13 2.59e-09 5.50e-05 2.68e-01 7.32e-01 \n", + "[1] \"PP abf for shared variant: 73.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.86e-19 2.93e-15 5.02e-05 2.43e-01 7.57e-01 \n", + "[1] \"PP abf for shared variant: 75.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__VCAN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.62e-05 1.31e-01 2.70e-05 1.28e-01 7.41e-01 \n", + "[1] \"PP abf for shared variant: 74.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__UQCRH\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.26e-10 4.13e-06 5.10e-05 2.47e-01 7.53e-01 \n", + "[1] \"PP abf for shared variant: 75.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC7A7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.35e-07 1.67e-03 2.23e-05 1.03e-01 8.96e-01 \n", + "[1] \"PP abf for shared variant: 89.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___EPB41L3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-05 7.93e-02 4.31e-05 2.08e-01 7.12e-01 \n", + "[1] \"PP abf for shared variant: 71.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-07 5.33e-04 1.32e-05 5.67e-02 9.43e-01 \n", + "[1] \"PP abf for shared variant: 94.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.32e-18 1.16e-14 5.13e-05 2.49e-01 7.51e-01 \n", + "[1] \"PP abf for shared variant: 75.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___HNRNPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.55e-06 7.76e-03 9.54e-05 4.72e-01 5.20e-01 \n", + "[1] \"PP abf for shared variant: 52%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___QARS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.69e-06 2.85e-02 1.34e-05 5.77e-02 9.14e-01 \n", + "[1] \"PP abf for shared variant: 91.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___HLA-DPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.11e-10 1.05e-06 4.65e-05 2.25e-01 7.75e-01 \n", + "[1] \"PP abf for shared variant: 77.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.80e-19 1.40e-15 5.19e-05 2.52e-01 7.48e-01 \n", + "[1] \"PP abf for shared variant: 74.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.60e-10 1.80e-06 4.39e-05 2.12e-01 7.88e-01 \n", + "[1] \"PP abf for shared variant: 78.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-19 9.30e-16 6.05e-05 2.95e-01 7.05e-01 \n", + "[1] \"PP abf for shared variant: 70.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.52e-13 1.26e-09 1.70e-05 7.55e-02 9.24e-01 \n", + "[1] \"PP abf for shared variant: 92.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.17e-13 5.83e-10 5.98e-05 2.92e-01 7.08e-01 \n", + "[1] \"PP abf for shared variant: 70.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.53e-16 1.76e-12 5.83e-05 2.84e-01 7.16e-01 \n", + "[1] \"PP abf for shared variant: 71.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.44e-07 4.22e-03 3.72e-05 1.78e-01 8.18e-01 \n", + "[1] \"PP abf for shared variant: 81.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.59e-14 2.79e-10 5.68e-05 2.77e-01 7.23e-01 \n", + "[1] \"PP abf for shared variant: 72.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___CSTA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.12e-08 1.06e-04 2.32e-05 1.07e-01 8.93e-01 \n", + "[1] \"PP abf for shared variant: 89.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.17e-11 5.87e-08 4.51e-05 2.18e-01 7.82e-01 \n", + "[1] \"PP abf for shared variant: 78.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.52e-06 2.26e-02 2.61e-05 1.22e-01 8.56e-01 \n", + "[1] \"PP abf for shared variant: 85.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.00e-17 4.50e-13 5.42e-05 2.63e-01 7.37e-01 \n", + "[1] \"PP abf for shared variant: 73.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-07 6.18e-04 4.63e-05 2.24e-01 7.76e-01 \n", + "[1] \"PP abf for shared variant: 77.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.87e-19 1.93e-15 5.63e-05 2.74e-01 7.26e-01 \n", + "[1] \"PP abf for shared variant: 72.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___ERP29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-05 1.11e-01 3.80e-05 1.83e-01 7.06e-01 \n", + "[1] \"PP abf for shared variant: 70.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__TNFAIP2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.75e-06 3.88e-02 1.39e-05 6.02e-02 9.01e-01 \n", + "[1] \"PP abf for shared variant: 90.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__VIM\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.88e-07 2.94e-03 3.38e-05 1.61e-01 8.36e-01 \n", + "[1] \"PP abf for shared variant: 83.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.17e-16 1.59e-12 3.95e-05 1.89e-01 8.11e-01 \n", + "[1] \"PP abf for shared variant: 81.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.70e-24 1.85e-20 6.10e-05 2.98e-01 7.02e-01 \n", + "[1] \"PP abf for shared variant: 70.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-15 5.16e-12 4.98e-05 2.41e-01 7.59e-01 \n", + "[1] \"PP abf for shared variant: 75.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.56e-10 1.78e-06 2.39e-05 1.11e-01 8.89e-01 \n", + "[1] \"PP abf for shared variant: 88.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.43e-15 2.72e-11 1.34e-05 5.75e-02 9.42e-01 \n", + "[1] \"PP abf for shared variant: 94.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-13 1.33e-09 5.26e-05 2.55e-01 7.45e-01 \n", + "[1] \"PP abf for shared variant: 74.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.92e-09 1.96e-05 3.50e-05 1.67e-01 8.33e-01 \n", + "[1] \"PP abf for shared variant: 83.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.71e-08 2.35e-04 2.40e-05 1.11e-01 8.88e-01 \n", + "[1] \"PP abf for shared variant: 88.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.61e-08 1.31e-04 4.05e-05 1.95e-01 8.05e-01 \n", + "[1] \"PP abf for shared variant: 80.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-17 6.66e-14 6.05e-05 2.95e-01 7.05e-01 \n", + "[1] \"PP abf for shared variant: 70.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.05e-20 3.03e-16 5.53e-05 2.69e-01 7.31e-01 \n", + "[1] \"PP abf for shared variant: 73.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC25A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.32e-13 2.16e-09 4.61e-05 2.23e-01 7.77e-01 \n", + "[1] \"PP abf for shared variant: 77.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.10e-09 4.55e-05 4.25e-05 2.05e-01 7.95e-01 \n", + "[1] \"PP abf for shared variant: 79.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.97e-15 1.48e-11 4.51e-05 2.18e-01 7.82e-01 \n", + "[1] \"PP abf for shared variant: 78.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPSA\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1173e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.80e-05 8.99e-02 2.81e-05 1.33e-01 7.77e-01 \n", + "[1] \"PP abf for shared variant: 77.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.65e-11 1.33e-07 4.05e-05 1.94e-01 8.06e-01 \n", + "[1] \"PP abf for shared variant: 80.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-14 6.08e-11 4.60e-05 2.22e-01 7.78e-01 \n", + "[1] \"PP abf for shared variant: 77.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.60e-12 3.80e-08 4.83e-05 2.34e-01 7.66e-01 \n", + "[1] \"PP abf for shared variant: 76.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.89e-08 2.44e-04 1.44e-05 6.25e-02 9.37e-01 \n", + "[1] \"PP abf for shared variant: 93.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.62e-13 1.81e-09 4.48e-05 2.16e-01 7.84e-01 \n", + "[1] \"PP abf for shared variant: 78.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.07e-10 1.03e-06 3.97e-05 1.90e-01 8.10e-01 \n", + "[1] \"PP abf for shared variant: 81%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___HLA-DPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.15e-07 4.57e-03 3.44e-05 1.64e-01 8.32e-01 \n", + "[1] \"PP abf for shared variant: 83.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.26e-16 3.13e-12 4.61e-05 2.23e-01 7.77e-01 \n", + "[1] \"PP abf for shared variant: 77.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.91e-15 1.95e-11 4.83e-05 2.34e-01 7.66e-01 \n", + "[1] \"PP abf for shared variant: 76.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.08e-09 1.04e-05 3.13e-05 1.48e-01 8.52e-01 \n", + "[1] \"PP abf for shared variant: 85.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___PABPC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-08 8.53e-05 3.94e-05 1.89e-01 8.11e-01 \n", + "[1] \"PP abf for shared variant: 81.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___CST3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7382e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.88e-05 1.94e-01 2.44e-05 1.15e-01 6.91e-01 \n", + "[1] \"PP abf for shared variant: 69.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___EMP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-06 5.81e-03 2.93e-05 1.38e-01 8.56e-01 \n", + "[1] \"PP abf for shared variant: 85.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___GNLY__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-05 5.99e-02 3.02e-05 1.43e-01 7.97e-01 \n", + "[1] \"PP abf for shared variant: 79.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-19 5.52e-16 3.62e-05 1.73e-01 8.27e-01 \n", + "[1] \"PP abf for shared variant: 82.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___EIF3M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-05 6.02e-02 2.39e-05 1.11e-01 8.29e-01 \n", + "[1] \"PP abf for shared variant: 82.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.15e-08 1.57e-04 2.61e-05 1.22e-01 8.78e-01 \n", + "[1] \"PP abf for shared variant: 87.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___AP1S2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.52e-05 7.62e-02 3.93e-05 1.89e-01 7.35e-01 \n", + "[1] \"PP abf for shared variant: 73.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.82e-15 4.41e-11 4.75e-05 2.30e-01 7.70e-01 \n", + "[1] \"PP abf for shared variant: 77%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.48e-13 1.74e-09 4.78e-05 2.31e-01 7.69e-01 \n", + "[1] \"PP abf for shared variant: 76.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__SEC11A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.13e-07 3.56e-03 4.34e-05 2.09e-01 7.87e-01 \n", + "[1] \"PP abf for shared variant: 78.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.43e-08 7.13e-05 3.69e-05 1.76e-01 8.24e-01 \n", + "[1] \"PP abf for shared variant: 82.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.36e-15 2.18e-11 4.99e-05 2.42e-01 7.58e-01 \n", + "[1] \"PP abf for shared variant: 75.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.28e-13 4.14e-09 5.03e-05 2.44e-01 7.56e-01 \n", + "[1] \"PP abf for shared variant: 75.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.68e-15 1.84e-11 4.55e-05 2.20e-01 7.80e-01 \n", + "[1] \"PP abf for shared variant: 78%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.36e-11 6.81e-08 4.72e-05 2.28e-01 7.72e-01 \n", + "[1] \"PP abf for shared variant: 77.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.42e-11 1.21e-07 4.97e-05 2.41e-01 7.59e-01 \n", + "[1] \"PP abf for shared variant: 75.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.25e-12 3.62e-08 4.21e-05 2.02e-01 7.98e-01 \n", + "[1] \"PP abf for shared variant: 79.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___ATP5G2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.67e-07 1.84e-03 3.57e-05 1.70e-01 8.28e-01 \n", + "[1] \"PP abf for shared variant: 82.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-10 7.19e-07 1.40e-05 6.05e-02 9.40e-01 \n", + "[1] \"PP abf for shared variant: 94%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.13e-13 1.57e-09 4.42e-05 2.13e-01 7.87e-01 \n", + "[1] \"PP abf for shared variant: 78.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC25A5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.09e-07 3.04e-03 3.43e-05 1.63e-01 8.34e-01 \n", + "[1] \"PP abf for shared variant: 83.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.66e-17 1.83e-13 5.51e-05 2.68e-01 7.32e-01 \n", + "[1] \"PP abf for shared variant: 73.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.25e-20 2.62e-16 5.94e-05 2.90e-01 7.10e-01 \n", + "[1] \"PP abf for shared variant: 71%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.03e-22 3.51e-18 4.65e-05 2.25e-01 7.75e-01 \n", + "[1] \"PP abf for shared variant: 77.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.28e-11 3.14e-07 4.26e-05 2.05e-01 7.95e-01 \n", + "[1] \"PP abf for shared variant: 79.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-11 6.08e-08 4.80e-05 2.32e-01 7.68e-01 \n", + "[1] \"PP abf for shared variant: 76.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.38e-20 6.89e-17 5.42e-05 2.63e-01 7.37e-01 \n", + "[1] \"PP abf for shared variant: 73.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.32e-09 4.16e-05 3.85e-05 1.84e-01 8.16e-01 \n", + "[1] \"PP abf for shared variant: 81.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___EVI2B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-05 9.29e-02 2.92e-05 1.38e-01 7.69e-01 \n", + "[1] \"PP abf for shared variant: 76.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.83e-07 2.41e-03 8.62e-06 3.35e-02 9.64e-01 \n", + "[1] \"PP abf for shared variant: 96.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-06 9.83e-03 7.09e-05 3.48e-01 6.42e-01 \n", + "[1] \"PP abf for shared variant: 64.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.38e-08 1.69e-04 3.43e-05 1.63e-01 8.37e-01 \n", + "[1] \"PP abf for shared variant: 83.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.08e-17 3.04e-13 5.21e-05 2.53e-01 7.47e-01 \n", + "[1] \"PP abf for shared variant: 74.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___LGALS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.78e-06 3.89e-02 2.60e-05 1.21e-01 8.40e-01 \n", + "[1] \"PP abf for shared variant: 84%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.36e-05 6.80e-02 2.60e-05 1.22e-01 8.10e-01 \n", + "[1] \"PP abf for shared variant: 81%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.90e-15 1.45e-11 4.97e-05 2.41e-01 7.59e-01 \n", + "[1] \"PP abf for shared variant: 75.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.02e-19 4.01e-15 5.17e-05 2.51e-01 7.49e-01 \n", + "[1] \"PP abf for shared variant: 74.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.76e-15 1.88e-11 4.75e-05 2.30e-01 7.70e-01 \n", + "[1] \"PP abf for shared variant: 77%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-10 5.67e-07 3.99e-05 1.92e-01 8.08e-01 \n", + "[1] \"PP abf for shared variant: 80.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___GPX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.13e-07 4.56e-03 2.01e-05 9.13e-02 9.04e-01 \n", + "[1] \"PP abf for shared variant: 90.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___LTA4H__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.52e-05 7.57e-02 1.15e-05 4.89e-02 8.75e-01 \n", + "[1] \"PP abf for shared variant: 87.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RNASE6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.93e-06 1.97e-02 1.04e-05 4.25e-02 9.38e-01 \n", + "[1] \"PP abf for shared variant: 93.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___FTH1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.00e-06 2.00e-02 3.32e-05 1.58e-01 8.22e-01 \n", + "[1] \"PP abf for shared variant: 82.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___BTF3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.09e-07 2.05e-03 3.55e-05 1.69e-01 8.29e-01 \n", + "[1] \"PP abf for shared variant: 82.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___DRAM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1829e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.09e-05 1.55e-01 2.23e-05 1.04e-01 7.41e-01 \n", + "[1] \"PP abf for shared variant: 74.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___IL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.90e-08 2.45e-04 4.27e-05 2.06e-01 7.94e-01 \n", + "[1] \"PP abf for shared variant: 79.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___ATP5A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.14e-08 4.57e-04 9.92e-06 4.00e-02 9.60e-01 \n", + "[1] \"PP abf for shared variant: 96%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.10e-11 1.55e-07 4.14e-05 1.99e-01 8.01e-01 \n", + "[1] \"PP abf for shared variant: 80.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.51e-15 2.25e-11 4.70e-05 2.27e-01 7.73e-01 \n", + "[1] \"PP abf for shared variant: 77.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.30e-18 3.65e-14 4.81e-05 2.33e-01 7.67e-01 \n", + "[1] \"PP abf for shared variant: 76.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.84e-05 9.22e-02 3.73e-05 1.79e-01 7.29e-01 \n", + "[1] \"PP abf for shared variant: 72.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.13e-19 3.06e-15 4.07e-05 1.95e-01 8.05e-01 \n", + "[1] \"PP abf for shared variant: 80.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.70e-16 2.85e-12 5.65e-05 2.75e-01 7.25e-01 \n", + "[1] \"PP abf for shared variant: 72.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___IPO7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.15e-06 5.75e-03 1.06e-05 4.37e-02 9.51e-01 \n", + "[1] \"PP abf for shared variant: 95.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.32e-12 4.16e-08 5.07e-05 2.46e-01 7.54e-01 \n", + "[1] \"PP abf for shared variant: 75.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.41e-16 1.71e-12 4.72e-05 2.28e-01 7.72e-01 \n", + "[1] \"PP abf for shared variant: 77.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.92e-17 9.62e-14 4.60e-05 2.22e-01 7.78e-01 \n", + "[1] \"PP abf for shared variant: 77.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___CXCR4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2966e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.38e-05 6.88e-02 1.20e-05 5.14e-02 8.80e-01 \n", + "[1] \"PP abf for shared variant: 88%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.58e-12 7.92e-09 4.26e-05 2.05e-01 7.95e-01 \n", + "[1] \"PP abf for shared variant: 79.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.58e-10 1.79e-06 2.90e-05 1.36e-01 8.64e-01 \n", + "[1] \"PP abf for shared variant: 86.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___CRTAP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.79e-07 3.39e-03 4.18e-05 2.01e-01 7.96e-01 \n", + "[1] \"PP abf for shared variant: 79.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.67e-05 8.34e-02 2.33e-05 1.08e-01 8.08e-01 \n", + "[1] \"PP abf for shared variant: 80.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.39e-13 1.20e-09 5.99e-05 2.92e-01 7.08e-01 \n", + "[1] \"PP abf for shared variant: 70.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.16e-08 4.58e-04 3.72e-05 1.78e-01 8.22e-01 \n", + "[1] \"PP abf for shared variant: 82.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.68e-14 3.84e-10 4.68e-05 2.26e-01 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.38e-05 1.19e-01 4.10e-05 1.98e-01 6.83e-01 \n", + "[1] \"PP abf for shared variant: 68.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___GPR183__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.14e-06 1.07e-02 3.87e-05 1.85e-01 8.04e-01 \n", + "[1] \"PP abf for shared variant: 80.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.42e-14 1.71e-10 5.54e-05 2.70e-01 7.30e-01 \n", + "[1] \"PP abf for shared variant: 73%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.14e-15 5.67e-12 5.22e-05 2.54e-01 7.46e-01 \n", + "[1] \"PP abf for shared variant: 74.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"monocyte_RPS26___RPS26__TKT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.44e-09 1.22e-05 1.03e-05 4.21e-02 9.58e-01 \n", + "[1] \"PP abf for shared variant: 95.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.41e-19 7.03e-16 3.96e-05 1.90e-01 8.10e-01 \n", + "[1] \"PP abf for shared variant: 81%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SCML1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.66e-06 2.33e-02 3.03e-05 1.43e-01 8.34e-01 \n", + "[1] \"PP abf for shared variant: 83.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___ACTN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.52e-08 1.76e-04 3.87e-05 1.85e-01 8.14e-01 \n", + "[1] \"PP abf for shared variant: 81.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.14e-19 1.57e-15 3.60e-05 1.71e-01 8.28e-01 \n", + "[1] \"PP abf for shared variant: 82.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__ZFAND1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4561e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.75e-05 1.37e-01 3.60e-05 1.73e-01 6.89e-01 \n", + "[1] \"PP abf for shared variant: 68.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.52e-19 7.61e-16 3.56e-05 1.69e-01 8.31e-01 \n", + "[1] \"PP abf for shared variant: 83.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PRF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.21e-07 1.61e-03 2.23e-05 1.02e-01 8.96e-01 \n", + "[1] \"PP abf for shared variant: 89.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-09 5.18e-06 3.27e-05 1.55e-01 8.45e-01 \n", + "[1] \"PP abf for shared variant: 84.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EFHD2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.19e-06 5.97e-03 2.24e-05 1.03e-01 8.91e-01 \n", + "[1] \"PP abf for shared variant: 89.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SELL\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.63e-15 3.31e-11 4.19e-05 2.01e-01 7.98e-01 \n", + "[1] \"PP abf for shared variant: 79.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.85e-20 1.92e-16 5.00e-05 2.42e-01 7.58e-01 \n", + "[1] \"PP abf for shared variant: 75.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-18 1.10e-14 3.36e-05 1.60e-01 8.40e-01 \n", + "[1] \"PP abf for shared variant: 84%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-17 7.71e-14 2.95e-05 1.39e-01 8.61e-01 \n", + "[1] \"PP abf for shared variant: 86.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___APBA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.43e-06 1.22e-02 2.27e-05 1.04e-01 8.83e-01 \n", + "[1] \"PP abf for shared variant: 88.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EEF1G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.67e-08 8.35e-05 3.70e-05 1.77e-01 8.23e-01 \n", + "[1] \"PP abf for shared variant: 82.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___FAIM3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-06 5.11e-03 1.27e-05 5.43e-02 9.41e-01 \n", + "[1] \"PP abf for shared variant: 94.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EIF3G__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-05 1.10e-01 1.61e-05 7.21e-02 8.17e-01 \n", + "[1] \"PP abf for shared variant: 81.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___APOBEC3C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-05 5.49e-02 1.85e-05 8.40e-02 8.61e-01 \n", + "[1] \"PP abf for shared variant: 86.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.38e-07 2.19e-03 2.55e-05 1.19e-01 8.79e-01 \n", + "[1] \"PP abf for shared variant: 87.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-18 6.34e-15 4.42e-05 2.13e-01 7.87e-01 \n", + "[1] \"PP abf for shared variant: 78.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___C11orf1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.8471e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.37e-05 2.19e-01 2.04e-05 9.50e-02 6.86e-01 \n", + "[1] \"PP abf for shared variant: 68.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___LCP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-08 7.55e-05 3.00e-05 1.42e-01 8.58e-01 \n", + "[1] \"PP abf for shared variant: 85.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.32e-21 6.62e-18 4.80e-05 2.32e-01 7.68e-01 \n", + "[1] \"PP abf for shared variant: 76.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-21 1.03e-17 4.58e-05 2.21e-01 7.79e-01 \n", + "[1] \"PP abf for shared variant: 77.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___GZMM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-05 5.51e-02 1.51e-05 6.66e-02 8.78e-01 \n", + "[1] \"PP abf for shared variant: 87.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CFL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.11e-11 1.56e-07 8.96e-06 3.52e-02 9.65e-01 \n", + "[1] \"PP abf for shared variant: 96.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RSL1D1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.11e-08 1.05e-04 2.64e-05 1.23e-01 8.77e-01 \n", + "[1] \"PP abf for shared variant: 87.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TXN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.77e-06 2.89e-02 1.30e-05 5.58e-02 9.15e-01 \n", + "[1] \"PP abf for shared variant: 91.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CTSW__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.90e-06 3.45e-02 1.93e-05 8.77e-02 8.78e-01 \n", + "[1] \"PP abf for shared variant: 87.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CD99__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.76e-10 4.88e-06 3.46e-05 1.65e-01 8.35e-01 \n", + "[1] \"PP abf for shared variant: 83.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.29e-23 4.15e-19 6.06e-05 2.96e-01 7.04e-01 \n", + "[1] \"PP abf for shared variant: 70.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___FLT3LG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.81e-09 4.41e-05 2.64e-05 1.23e-01 8.77e-01 \n", + "[1] \"PP abf for shared variant: 87.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___NKG7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-09 5.48e-06 3.01e-05 1.42e-01 8.58e-01 \n", + "[1] \"PP abf for shared variant: 85.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__UQCRB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.00e-06 5.02e-03 1.76e-05 7.90e-02 9.16e-01 \n", + "[1] \"PP abf for shared variant: 91.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__YWHAZ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.3964e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-05 1.33e-01 1.41e-05 6.25e-02 8.05e-01 \n", + "[1] \"PP abf for shared variant: 80.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CREM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.62e-05 8.11e-02 2.95e-05 1.40e-01 7.79e-01 \n", + "[1] \"PP abf for shared variant: 77.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.55e-09 2.78e-05 3.10e-05 1.46e-01 8.54e-01 \n", + "[1] \"PP abf for shared variant: 85.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RGS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-10 6.52e-07 3.48e-05 1.66e-01 8.34e-01 \n", + "[1] \"PP abf for shared variant: 83.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.91e-14 3.95e-10 3.30e-05 1.56e-01 8.44e-01 \n", + "[1] \"PP abf for shared variant: 84.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-16 5.64e-13 5.00e-05 2.42e-01 7.58e-01 \n", + "[1] \"PP abf for shared variant: 75.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___LDHB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.34e-18 1.17e-14 3.30e-05 1.57e-01 8.43e-01 \n", + "[1] \"PP abf for shared variant: 84.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___ATP1A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 9.0977e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.38e-05 3.19e-01 1.90e-05 8.91e-02 5.92e-01 \n", + "[1] \"PP abf for shared variant: 59.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CXCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-05 5.48e-02 3.58e-05 1.71e-01 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SYNE1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.76e-06 1.38e-02 1.32e-05 5.66e-02 9.30e-01 \n", + "[1] \"PP abf for shared variant: 93%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___FYN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.137e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.04e-05 2.52e-01 2.47e-05 1.17e-01 6.31e-01 \n", + "[1] \"PP abf for shared variant: 63.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.38e-11 4.19e-07 4.46e-05 2.15e-01 7.85e-01 \n", + "[1] \"PP abf for shared variant: 78.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___MYL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.03e-15 3.52e-11 3.38e-05 1.61e-01 8.39e-01 \n", + "[1] \"PP abf for shared variant: 83.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PDE3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.82e-09 2.41e-05 3.47e-05 1.65e-01 8.35e-01 \n", + "[1] \"PP abf for shared variant: 83.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.10e-24 3.05e-20 5.31e-05 2.58e-01 7.42e-01 \n", + "[1] \"PP abf for shared variant: 74.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___MT-CO1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.92e-09 9.58e-06 3.25e-05 1.54e-01 8.46e-01 \n", + "[1] \"PP abf for shared variant: 84.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__ZEB2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.37e-07 1.19e-03 1.86e-05 8.39e-02 9.15e-01 \n", + "[1] \"PP abf for shared variant: 91.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___LTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-12 5.36e-09 3.43e-05 1.63e-01 8.37e-01 \n", + "[1] \"PP abf for shared variant: 83.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PTPN7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.58e-06 3.79e-02 1.20e-05 5.07e-02 9.11e-01 \n", + "[1] \"PP abf for shared variant: 91.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.00e-17 2.00e-13 3.22e-05 1.52e-01 8.48e-01 \n", + "[1] \"PP abf for shared variant: 84.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PFN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.83e-15 3.42e-11 3.94e-05 1.89e-01 8.11e-01 \n", + "[1] \"PP abf for shared variant: 81.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___IER2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1556e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.83e-05 2.92e-01 2.22e-05 1.05e-01 6.04e-01 \n", + "[1] \"PP abf for shared variant: 60.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.83e-09 1.41e-05 3.59e-05 1.71e-01 8.29e-01 \n", + "[1] \"PP abf for shared variant: 82.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.72e-14 1.86e-10 2.85e-05 1.34e-01 8.66e-01 \n", + "[1] \"PP abf for shared variant: 86.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.39e-24 6.96e-21 4.49e-05 2.17e-01 7.83e-01 \n", + "[1] \"PP abf for shared variant: 78.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.68e-20 2.84e-16 9.62e-06 3.85e-02 9.62e-01 \n", + "[1] \"PP abf for shared variant: 96.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CMC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-08 5.60e-05 1.05e-05 4.30e-02 9.57e-01 \n", + "[1] \"PP abf for shared variant: 95.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SAT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.16e-09 2.08e-05 3.22e-05 1.52e-01 8.47e-01 \n", + "[1] \"PP abf for shared variant: 84.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-17 6.14e-14 3.00e-05 1.41e-01 8.59e-01 \n", + "[1] \"PP abf for shared variant: 85.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___GZMB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.20e-07 4.10e-03 2.53e-05 1.18e-01 8.78e-01 \n", + "[1] \"PP abf for shared variant: 87.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___AKNA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.4233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.53e-05 2.77e-01 2.13e-05 1.00e-01 6.23e-01 \n", + "[1] \"PP abf for shared variant: 62.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___HLA-DPB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.9277e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.21e-05 1.60e-01 2.07e-05 9.60e-02 7.44e-01 \n", + "[1] \"PP abf for shared variant: 74.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.80e-24 8.98e-21 3.33e-05 1.58e-01 8.42e-01 \n", + "[1] \"PP abf for shared variant: 84.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___NELL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.15e-13 4.08e-09 2.77e-05 1.30e-01 8.70e-01 \n", + "[1] \"PP abf for shared variant: 87%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EEF1D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.87e-09 3.94e-05 2.00e-05 9.07e-02 9.09e-01 \n", + "[1] \"PP abf for shared variant: 90.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___FLNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.57e-07 1.79e-03 8.57e-06 3.32e-02 9.65e-01 \n", + "[1] \"PP abf for shared variant: 96.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___C12orf75__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.14e-07 2.57e-03 1.15e-05 4.82e-02 9.49e-01 \n", + "[1] \"PP abf for shared variant: 94.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.57e-21 3.78e-17 3.63e-05 1.73e-01 8.27e-01 \n", + "[1] \"PP abf for shared variant: 82.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___HLA-C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.20e-16 4.60e-12 3.40e-05 1.62e-01 8.38e-01 \n", + "[1] \"PP abf for shared variant: 83.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___HLA-B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.37e-19 2.19e-15 4.11e-05 1.98e-01 8.02e-01 \n", + "[1] \"PP abf for shared variant: 80.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___METRNL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4496e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.02e-05 4.01e-01 2.38e-05 1.14e-01 4.85e-01 \n", + "[1] \"PP abf for shared variant: 48.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PFDN5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.78e-07 1.39e-03 8.67e-06 3.37e-02 9.65e-01 \n", + "[1] \"PP abf for shared variant: 96.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CAMK4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-11 7.32e-08 3.58e-05 1.70e-01 8.30e-01 \n", + "[1] \"PP abf for shared variant: 83%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___BHLHE40__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-07 1.10e-03 1.36e-05 5.87e-02 9.40e-01 \n", + "[1] \"PP abf for shared variant: 94%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___IFITM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.2604e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.76e-05 1.88e-01 2.38e-05 1.12e-01 7.00e-01 \n", + "[1] \"PP abf for shared variant: 70%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SLA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-06 6.05e-03 1.22e-05 5.14e-02 9.43e-01 \n", + "[1] \"PP abf for shared variant: 94.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CD8B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.03e-09 2.52e-05 2.02e-05 9.21e-02 9.08e-01 \n", + "[1] \"PP abf for shared variant: 90.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.01e-23 3.01e-19 3.46e-05 1.65e-01 8.35e-01 \n", + "[1] \"PP abf for shared variant: 83.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___NGFRAP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.89e-06 9.44e-03 2.40e-05 1.11e-01 8.79e-01 \n", + "[1] \"PP abf for shared variant: 87.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.81e-18 1.40e-14 3.44e-05 1.64e-01 8.36e-01 \n", + "[1] \"PP abf for shared variant: 83.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TUBA4A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-06 5.58e-03 1.60e-05 7.08e-02 9.24e-01 \n", + "[1] \"PP abf for shared variant: 92.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.07e-10 1.53e-06 8.19e-06 3.12e-02 9.69e-01 \n", + "[1] \"PP abf for shared variant: 96.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.26e-23 6.29e-20 5.48e-05 2.67e-01 7.33e-01 \n", + "[1] \"PP abf for shared variant: 73.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RCAN3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.83e-10 1.41e-06 3.32e-05 1.58e-01 8.42e-01 \n", + "[1] \"PP abf for shared variant: 84.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-17 8.32e-14 3.35e-05 1.59e-01 8.41e-01 \n", + "[1] \"PP abf for shared variant: 84.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PPP2R5C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.66e-09 3.83e-05 1.95e-05 8.83e-02 9.12e-01 \n", + "[1] \"PP abf for shared variant: 91.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.89e-15 1.45e-11 3.77e-05 1.80e-01 8.20e-01 \n", + "[1] \"PP abf for shared variant: 82%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.64e-12 8.20e-09 1.81e-05 8.14e-02 9.19e-01 \n", + "[1] \"PP abf for shared variant: 91.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___DNAJB6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.52e-07 4.26e-03 7.38e-06 2.72e-02 9.69e-01 \n", + "[1] \"PP abf for shared variant: 96.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RAP1B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.077e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.89e-05 4.95e-01 2.49e-05 1.21e-01 3.85e-01 \n", + "[1] \"PP abf for shared variant: 38.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.49e-10 3.75e-06 3.52e-05 1.67e-01 8.32e-01 \n", + "[1] \"PP abf for shared variant: 83.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PABPC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.78e-08 3.39e-04 2.33e-05 1.08e-01 8.92e-01 \n", + "[1] \"PP abf for shared variant: 89.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___FBL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.94e-07 1.47e-03 3.35e-05 1.59e-01 8.39e-01 \n", + "[1] \"PP abf for shared variant: 83.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CCDC104__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.9652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.93e-05 3.46e-01 3.19e-05 1.55e-01 4.99e-01 \n", + "[1] \"PP abf for shared variant: 49.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CCL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.35e-13 1.68e-09 3.67e-05 1.75e-01 8.25e-01 \n", + "[1] \"PP abf for shared variant: 82.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.39e-13 2.20e-09 3.35e-05 1.59e-01 8.41e-01 \n", + "[1] \"PP abf for shared variant: 84.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___NPM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-10 5.09e-07 1.64e-05 7.29e-02 9.27e-01 \n", + "[1] \"PP abf for shared variant: 92.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.60e-22 1.30e-18 5.41e-05 2.63e-01 7.37e-01 \n", + "[1] \"PP abf for shared variant: 73.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___MT-CO2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.43e-06 7.16e-03 2.41e-05 1.12e-01 8.81e-01 \n", + "[1] \"PP abf for shared variant: 88.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TESPA1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.27e-07 1.63e-03 1.40e-05 6.08e-02 9.38e-01 \n", + "[1] \"PP abf for shared variant: 93.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.96e-07 1.98e-03 3.40e-05 1.61e-01 8.37e-01 \n", + "[1] \"PP abf for shared variant: 83.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PSMA7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-05 7.93e-02 2.85e-05 1.35e-01 7.86e-01 \n", + "[1] \"PP abf for shared variant: 78.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PLEK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.11e-06 4.05e-02 1.69e-05 7.59e-02 8.84e-01 \n", + "[1] \"PP abf for shared variant: 88.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SUB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.24e-09 4.12e-05 2.25e-05 1.03e-01 8.97e-01 \n", + "[1] \"PP abf for shared variant: 89.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.05e-20 2.03e-16 4.57e-05 2.21e-01 7.79e-01 \n", + "[1] \"PP abf for shared variant: 77.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___MT-ND5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.4281e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.15e-05 1.57e-01 2.37e-05 1.11e-01 7.32e-01 \n", + "[1] \"PP abf for shared variant: 73.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___KLRD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-07 1.10e-03 3.01e-05 1.42e-01 8.57e-01 \n", + "[1] \"PP abf for shared variant: 85.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___MYC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.40e-07 1.70e-03 4.56e-05 2.20e-01 7.78e-01 \n", + "[1] \"PP abf for shared variant: 77.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RGS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-05 6.01e-02 2.45e-05 1.14e-01 8.26e-01 \n", + "[1] \"PP abf for shared variant: 82.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___KLF2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.391e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.11e-05 2.06e-01 3.11e-05 1.49e-01 6.45e-01 \n", + "[1] \"PP abf for shared variant: 64.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SLC25A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.84e-06 3.42e-02 3.68e-05 1.76e-01 7.90e-01 \n", + "[1] \"PP abf for shared variant: 79%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___HNRNPA2B1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.24e-05 1.12e-01 1.37e-05 6.01e-02 8.28e-01 \n", + "[1] \"PP abf for shared variant: 82.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___ARAP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.3907e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-04 5.28e-01 2.29e-05 1.11e-01 3.61e-01 \n", + "[1] \"PP abf for shared variant: 36.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___HLA-A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.15e-20 5.76e-17 4.12e-05 1.98e-01 8.02e-01 \n", + "[1] \"PP abf for shared variant: 80.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__UBB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-10 1.15e-06 1.26e-05 5.36e-02 9.46e-01 \n", + "[1] \"PP abf for shared variant: 94.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL17__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-09 5.80e-06 1.91e-05 8.64e-02 9.14e-01 \n", + "[1] \"PP abf for shared variant: 91.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.24e-17 2.12e-13 3.95e-05 1.89e-01 8.11e-01 \n", + "[1] \"PP abf for shared variant: 81.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__UBC\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.38e-10 1.69e-06 3.99e-05 1.91e-01 8.09e-01 \n", + "[1] \"PP abf for shared variant: 80.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.03e-10 2.51e-06 4.27e-05 2.05e-01 7.95e-01 \n", + "[1] \"PP abf for shared variant: 79.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TGFB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.12e-06 3.56e-02 2.70e-05 1.27e-01 8.38e-01 \n", + "[1] \"PP abf for shared variant: 83.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-13 5.46e-10 4.68e-05 2.26e-01 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-22 8.70e-19 5.48e-05 2.66e-01 7.33e-01 \n", + "[1] \"PP abf for shared variant: 73.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___LYPD3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.90e-06 4.45e-02 1.40e-05 6.08e-02 8.95e-01 \n", + "[1] \"PP abf for shared variant: 89.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TMSB10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.93e-09 1.97e-05 2.57e-05 1.19e-01 8.80e-01 \n", + "[1] \"PP abf for shared variant: 88%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CLIC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.24e-06 4.12e-02 2.79e-05 1.31e-01 8.27e-01 \n", + "[1] \"PP abf for shared variant: 82.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___C12orf57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.72e-06 8.59e-03 1.67e-05 7.44e-02 9.17e-01 \n", + "[1] \"PP abf for shared variant: 91.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TMEM243\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.64e-08 2.82e-04 2.58e-05 1.20e-01 8.80e-01 \n", + "[1] \"PP abf for shared variant: 88%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.89e-19 9.47e-16 4.35e-05 2.10e-01 7.90e-01 \n", + "[1] \"PP abf for shared variant: 79%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___ID2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.41e-06 1.71e-02 1.40e-05 6.06e-02 9.22e-01 \n", + "[1] \"PP abf for shared variant: 92.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-19 7.50e-16 3.34e-05 1.59e-01 8.41e-01 \n", + "[1] \"PP abf for shared variant: 84.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CCR7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.32e-14 1.16e-10 3.49e-05 1.66e-01 8.34e-01 \n", + "[1] \"PP abf for shared variant: 83.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.39e-08 2.70e-04 1.17e-05 4.91e-02 9.51e-01 \n", + "[1] \"PP abf for shared variant: 95.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.31e-29 1.15e-25 5.19e-05 2.52e-01 7.48e-01 \n", + "[1] \"PP abf for shared variant: 74.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___COX7C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.32e-06 3.16e-02 9.70e-06 3.92e-02 9.29e-01 \n", + "[1] \"PP abf for shared variant: 92.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___NFKBIA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 7.944e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.38e-05 2.69e-01 2.26e-05 1.07e-01 6.24e-01 \n", + "[1] \"PP abf for shared variant: 62.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___NDFIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.31e-07 3.65e-03 2.10e-05 9.62e-02 9.00e-01 \n", + "[1] \"PP abf for shared variant: 90%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.77e-21 2.39e-17 5.26e-05 2.55e-01 7.45e-01 \n", + "[1] \"PP abf for shared variant: 74.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.89e-20 1.95e-16 1.95e-05 8.85e-02 9.11e-01 \n", + "[1] \"PP abf for shared variant: 91.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.02e-14 2.51e-10 3.95e-05 1.89e-01 8.11e-01 \n", + "[1] \"PP abf for shared variant: 81.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___GZMA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-11 6.56e-08 3.63e-05 1.73e-01 8.27e-01 \n", + "[1] \"PP abf for shared variant: 82.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___ABHD14B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.78e-06 4.39e-02 1.64e-05 7.31e-02 8.83e-01 \n", + "[1] \"PP abf for shared variant: 88.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.23e-15 3.62e-11 3.91e-05 1.87e-01 8.13e-01 \n", + "[1] \"PP abf for shared variant: 81.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TPI1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.53e-05 1.27e-01 2.91e-05 1.38e-01 7.35e-01 \n", + "[1] \"PP abf for shared variant: 73.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.33e-23 1.66e-19 3.48e-05 1.66e-01 8.34e-01 \n", + "[1] \"PP abf for shared variant: 83.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___GIMAP7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.40e-06 2.20e-02 2.47e-05 1.15e-01 8.63e-01 \n", + "[1] \"PP abf for shared variant: 86.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.58e-14 7.92e-11 3.15e-05 1.49e-01 8.51e-01 \n", + "[1] \"PP abf for shared variant: 85.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.14e-20 4.07e-16 3.62e-05 1.73e-01 8.27e-01 \n", + "[1] \"PP abf for shared variant: 82.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SC5D\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.01e-05 1.50e-01 3.60e-05 1.73e-01 6.76e-01 \n", + "[1] \"PP abf for shared variant: 67.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.08e-15 4.04e-11 4.24e-05 2.04e-01 7.96e-01 \n", + "[1] \"PP abf for shared variant: 79.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-21 8.90e-18 5.44e-05 2.64e-01 7.36e-01 \n", + "[1] \"PP abf for shared variant: 73.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RIC3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.89e-08 1.94e-04 2.12e-05 9.72e-02 9.03e-01 \n", + "[1] \"PP abf for shared variant: 90.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.37e-16 3.69e-12 1.58e-05 6.96e-02 9.30e-01 \n", + "[1] \"PP abf for shared variant: 93%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SH3YL1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.50e-10 2.25e-06 1.56e-05 6.88e-02 9.31e-01 \n", + "[1] \"PP abf for shared variant: 93.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CCNG1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.9814e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.53e-05 2.26e-01 1.88e-05 8.70e-02 6.87e-01 \n", + "[1] \"PP abf for shared variant: 68.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SRP14\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.85e-09 2.43e-05 3.82e-05 1.83e-01 8.17e-01 \n", + "[1] \"PP abf for shared variant: 81.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SPON2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0298e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.88e-05 1.94e-01 2.13e-05 9.93e-02 7.07e-01 \n", + "[1] \"PP abf for shared variant: 70.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___HMGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.47e-08 1.23e-04 3.41e-05 1.62e-01 8.38e-01 \n", + "[1] \"PP abf for shared variant: 83.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___NOSIP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.69e-11 1.35e-07 2.55e-05 1.18e-01 8.82e-01 \n", + "[1] \"PP abf for shared variant: 88.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-20 6.12e-17 3.90e-05 1.87e-01 8.13e-01 \n", + "[1] \"PP abf for shared variant: 81.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.67e-23 3.34e-19 5.96e-05 2.91e-01 7.09e-01 \n", + "[1] \"PP abf for shared variant: 70.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.53e-24 4.27e-20 3.68e-05 1.76e-01 8.24e-01 \n", + "[1] \"PP abf for shared variant: 82.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___MYL12B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.0233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.51e-05 1.26e-01 1.79e-05 8.18e-02 7.93e-01 \n", + "[1] \"PP abf for shared variant: 79.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___GNLY__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.53e-07 4.76e-03 3.06e-05 1.44e-01 8.51e-01 \n", + "[1] \"PP abf for shared variant: 85.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___MIR142__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1648e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.05e-05 4.52e-01 2.34e-05 1.12e-01 4.35e-01 \n", + "[1] \"PP abf for shared variant: 43.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.19e-07 5.96e-04 1.47e-05 6.44e-02 9.35e-01 \n", + "[1] \"PP abf for shared variant: 93.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.90e-22 4.95e-18 4.10e-05 1.97e-01 8.03e-01 \n", + "[1] \"PP abf for shared variant: 80.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.61e-05 8.04e-02 3.48e-05 1.66e-01 7.53e-01 \n", + "[1] \"PP abf for shared variant: 75.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.38e-10 1.19e-06 2.15e-05 9.84e-02 9.02e-01 \n", + "[1] \"PP abf for shared variant: 90.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PTP4A2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-05 6.22e-02 1.60e-05 7.14e-02 8.66e-01 \n", + "[1] \"PP abf for shared variant: 86.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___FGFBP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.9666e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.38e-05 3.19e-01 2.23e-05 1.05e-01 5.76e-01 \n", + "[1] \"PP abf for shared variant: 57.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPSAP58\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.97e-09 2.48e-05 4.67e-05 2.26e-01 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.42e-12 7.09e-09 2.94e-05 1.39e-01 8.61e-01 \n", + "[1] \"PP abf for shared variant: 86.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.68e-29 8.42e-26 4.04e-05 1.94e-01 8.06e-01 \n", + "[1] \"PP abf for shared variant: 80.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CCDC57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.84e-11 4.42e-07 3.79e-05 1.81e-01 8.19e-01 \n", + "[1] \"PP abf for shared variant: 81.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___ITGB2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.76e-05 1.38e-01 3.05e-05 1.45e-01 7.17e-01 \n", + "[1] \"PP abf for shared variant: 71.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EIF2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-06 1.07e-02 2.10e-05 9.62e-02 8.93e-01 \n", + "[1] \"PP abf for shared variant: 89.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___MYO1F__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.4185e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.54e-05 1.77e-01 1.36e-05 6.05e-02 7.62e-01 \n", + "[1] \"PP abf for shared variant: 76.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___ARF6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.80e-06 2.90e-02 3.26e-05 1.55e-01 8.16e-01 \n", + "[1] \"PP abf for shared variant: 81.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CD81__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.16e-06 1.58e-02 8.83e-06 3.46e-02 9.50e-01 \n", + "[1] \"PP abf for shared variant: 95%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TMEM123\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-07 8.55e-04 3.86e-05 1.85e-01 8.14e-01 \n", + "[1] \"PP abf for shared variant: 81.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___ALKBH7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-07 8.32e-04 3.74e-05 1.79e-01 8.20e-01 \n", + "[1] \"PP abf for shared variant: 82%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___LDHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.01e-08 1.51e-04 2.85e-05 1.34e-01 8.66e-01 \n", + "[1] \"PP abf for shared variant: 86.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PIK3IP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-09 5.19e-06 3.34e-05 1.59e-01 8.41e-01 \n", + "[1] \"PP abf for shared variant: 84.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___FOXP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-08 6.09e-05 1.45e-05 6.30e-02 9.37e-01 \n", + "[1] \"PP abf for shared variant: 93.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CCL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.75e-09 8.73e-06 1.84e-05 8.30e-02 9.17e-01 \n", + "[1] \"PP abf for shared variant: 91.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___NEAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.95e-07 9.77e-04 1.44e-05 6.27e-02 9.36e-01 \n", + "[1] \"PP abf for shared variant: 93.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___KLRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.9856e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.17e-05 1.58e-01 1.74e-05 7.92e-02 7.62e-01 \n", + "[1] \"PP abf for shared variant: 76.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___BTF3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5042e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.34e-05 3.17e-01 1.89e-05 8.87e-02 5.94e-01 \n", + "[1] \"PP abf for shared variant: 59.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__ZFAS1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.45e-06 3.72e-02 1.91e-05 8.65e-02 8.76e-01 \n", + "[1] \"PP abf for shared variant: 87.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.98e-20 3.99e-16 3.84e-05 1.84e-01 8.16e-01 \n", + "[1] \"PP abf for shared variant: 81.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___C1orf21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1023e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.34e-05 1.67e-01 2.01e-05 9.28e-02 7.40e-01 \n", + "[1] \"PP abf for shared variant: 74%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.38e-15 4.69e-11 3.42e-05 1.63e-01 8.37e-01 \n", + "[1] \"PP abf for shared variant: 83.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CALM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.14e-06 5.71e-03 8.31e-06 3.19e-02 9.62e-01 \n", + "[1] \"PP abf for shared variant: 96.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___HOPX__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-05 5.38e-02 1.85e-05 8.38e-02 8.62e-01 \n", + "[1] \"PP abf for shared variant: 86.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CD55__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.55e-07 3.28e-03 1.68e-05 7.48e-02 9.22e-01 \n", + "[1] \"PP abf for shared variant: 92.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.25e-19 1.12e-15 4.91e-05 2.38e-01 7.62e-01 \n", + "[1] \"PP abf for shared variant: 76.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.85e-08 9.25e-05 1.93e-05 8.72e-02 9.13e-01 \n", + "[1] \"PP abf for shared variant: 91.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-20 6.72e-17 3.72e-05 1.78e-01 8.22e-01 \n", + "[1] \"PP abf for shared variant: 82.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-07 7.71e-04 1.64e-05 7.29e-02 9.26e-01 \n", + "[1] \"PP abf for shared variant: 92.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.53e-15 7.63e-12 3.20e-05 1.51e-01 8.49e-01 \n", + "[1] \"PP abf for shared variant: 84.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___HLA-DRB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.507e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.90e-05 2.45e-01 1.55e-05 7.06e-02 6.84e-01 \n", + "[1] \"PP abf for shared variant: 68.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.07e-22 4.03e-18 5.29e-05 2.57e-01 7.43e-01 \n", + "[1] \"PP abf for shared variant: 74.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.72e-18 2.36e-14 4.18e-05 2.01e-01 7.99e-01 \n", + "[1] \"PP abf for shared variant: 79.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PTMA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.74e-08 3.37e-04 2.18e-05 9.98e-02 9.00e-01 \n", + "[1] \"PP abf for shared variant: 90%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.03e-15 3.51e-11 3.78e-05 1.81e-01 8.19e-01 \n", + "[1] \"PP abf for shared variant: 81.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___GNG2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.52e-06 2.76e-02 1.65e-05 7.34e-02 8.99e-01 \n", + "[1] \"PP abf for shared variant: 89.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TIGIT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.28e-07 2.64e-03 2.10e-05 9.62e-02 9.01e-01 \n", + "[1] \"PP abf for shared variant: 90.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.67e-11 1.34e-07 3.57e-05 1.70e-01 8.30e-01 \n", + "[1] \"PP abf for shared variant: 83%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-14 6.49e-11 3.24e-05 1.54e-01 8.46e-01 \n", + "[1] \"PP abf for shared variant: 84.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___C1QBP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.44e-08 2.22e-04 4.44e-05 2.14e-01 7.86e-01 \n", + "[1] \"PP abf for shared variant: 78.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CD27__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.689e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.81e-05 1.41e-01 1.69e-05 7.67e-02 7.83e-01 \n", + "[1] \"PP abf for shared variant: 78.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___KLRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.83e-08 1.92e-04 1.68e-05 7.48e-02 9.25e-01 \n", + "[1] \"PP abf for shared variant: 92.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___MAL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.16e-14 3.08e-10 3.97e-05 1.91e-01 8.09e-01 \n", + "[1] \"PP abf for shared variant: 80.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.13e-20 1.57e-16 4.28e-05 2.06e-01 7.94e-01 \n", + "[1] \"PP abf for shared variant: 79.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___REL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.691e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.99e-05 1.49e-01 1.74e-05 7.93e-02 7.71e-01 \n", + "[1] \"PP abf for shared variant: 77.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.21e-16 4.10e-12 3.92e-05 1.88e-01 8.12e-01 \n", + "[1] \"PP abf for shared variant: 81.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___FTL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.21e-06 4.60e-02 1.19e-05 5.06e-02 9.03e-01 \n", + "[1] \"PP abf for shared variant: 90.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.00e-13 3.00e-09 3.67e-05 1.75e-01 8.25e-01 \n", + "[1] \"PP abf for shared variant: 82.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.49e-17 7.44e-14 4.49e-05 2.17e-01 7.83e-01 \n", + "[1] \"PP abf for shared variant: 78.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.93e-11 9.63e-08 3.75e-05 1.79e-01 8.21e-01 \n", + "[1] \"PP abf for shared variant: 82.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SEPT7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.79e-06 1.89e-02 2.33e-05 1.08e-01 8.73e-01 \n", + "[1] \"PP abf for shared variant: 87.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TCF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.33e-06 1.66e-02 1.86e-05 8.40e-02 8.99e-01 \n", + "[1] \"PP abf for shared variant: 89.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.78e-05 1.39e-01 2.85e-05 1.35e-01 7.26e-01 \n", + "[1] \"PP abf for shared variant: 72.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.92e-14 2.96e-10 1.16e-05 4.85e-02 9.51e-01 \n", + "[1] \"PP abf for shared variant: 95.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___FCGR3A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.41e-06 1.20e-02 2.56e-05 1.19e-01 8.69e-01 \n", + "[1] \"PP abf for shared variant: 86.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PSMB9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 8.645e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.83e-05 2.42e-01 1.96e-05 9.14e-02 6.67e-01 \n", + "[1] \"PP abf for shared variant: 66.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___LEF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.14e-14 3.57e-10 2.93e-05 1.38e-01 8.62e-01 \n", + "[1] \"PP abf for shared variant: 86.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PTPRC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.26e-12 1.13e-08 4.65e-05 2.25e-01 7.75e-01 \n", + "[1] \"PP abf for shared variant: 77.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.56e-06 3.28e-02 1.01e-05 4.12e-02 9.26e-01 \n", + "[1] \"PP abf for shared variant: 92.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.41e-08 7.05e-05 1.34e-05 5.73e-02 9.43e-01 \n", + "[1] \"PP abf for shared variant: 94.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.50e-20 1.75e-16 3.93e-05 1.88e-01 8.12e-01 \n", + "[1] \"PP abf for shared variant: 81.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.64e-17 8.21e-14 4.57e-05 2.21e-01 7.79e-01 \n", + "[1] \"PP abf for shared variant: 77.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___ANXA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-06 5.24e-03 1.05e-05 4.29e-02 9.52e-01 \n", + "[1] \"PP abf for shared variant: 95.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___LGALS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.72e-06 1.36e-02 3.19e-05 1.51e-01 8.35e-01 \n", + "[1] \"PP abf for shared variant: 83.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.56e-18 7.81e-15 4.29e-05 2.07e-01 7.93e-01 \n", + "[1] \"PP abf for shared variant: 79.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___DDX5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5519e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.87e-05 1.93e-01 3.09e-05 1.48e-01 6.58e-01 \n", + "[1] \"PP abf for shared variant: 65.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.31e-16 2.66e-12 7.68e-06 2.87e-02 9.71e-01 \n", + "[1] \"PP abf for shared variant: 97.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___DOK2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-05 6.14e-02 2.10e-05 9.67e-02 8.42e-01 \n", + "[1] \"PP abf for shared variant: 84.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CRIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-10 7.21e-07 3.33e-05 1.58e-01 8.42e-01 \n", + "[1] \"PP abf for shared variant: 84.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CALR__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.9449e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-05 1.02e-01 1.63e-05 7.31e-02 8.25e-01 \n", + "[1] \"PP abf for shared variant: 82.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TTC38\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1223e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-05 7.54e-02 1.19e-05 5.06e-02 8.74e-01 \n", + "[1] \"PP abf for shared variant: 87.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___C1orf228__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.43e-07 2.72e-03 1.93e-05 8.73e-02 9.10e-01 \n", + "[1] \"PP abf for shared variant: 91%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___DUSP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-07 6.23e-04 2.24e-05 1.03e-01 8.96e-01 \n", + "[1] \"PP abf for shared variant: 89.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EIF4B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.22e-14 2.11e-10 1.07e-05 4.38e-02 9.56e-01 \n", + "[1] \"PP abf for shared variant: 95.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.59e-14 2.79e-10 4.36e-05 2.10e-01 7.90e-01 \n", + "[1] \"PP abf for shared variant: 79%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TRABD2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-10 1.02e-06 3.88e-05 1.86e-01 8.14e-01 \n", + "[1] \"PP abf for shared variant: 81.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.10e-20 1.55e-16 5.20e-05 2.53e-01 7.47e-01 \n", + "[1] \"PP abf for shared variant: 74.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PASK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.32e-11 6.60e-08 2.45e-05 1.14e-01 8.86e-01 \n", + "[1] \"PP abf for shared variant: 88.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___OAZ1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.16e-15 2.58e-11 3.48e-05 1.66e-01 8.34e-01 \n", + "[1] \"PP abf for shared variant: 83.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.88e-21 1.94e-17 5.23e-05 2.54e-01 7.46e-01 \n", + "[1] \"PP abf for shared variant: 74.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___OXNAD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1359e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.69e-05 2.85e-01 3.39e-05 1.64e-01 5.51e-01 \n", + "[1] \"PP abf for shared variant: 55.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.64e-07 3.32e-03 1.39e-05 6.01e-02 9.37e-01 \n", + "[1] \"PP abf for shared variant: 93.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SRGN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.28e-20 6.39e-17 3.78e-05 1.81e-01 8.19e-01 \n", + "[1] \"PP abf for shared variant: 81.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___HLA-E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.97e-08 2.49e-04 3.46e-05 1.65e-01 8.35e-01 \n", + "[1] \"PP abf for shared variant: 83.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TYROBP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.40e-07 1.20e-03 3.01e-05 1.42e-01 8.57e-01 \n", + "[1] \"PP abf for shared variant: 85.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__YBX3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1331e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.71e-05 4.35e-01 2.15e-05 1.03e-01 4.62e-01 \n", + "[1] \"PP abf for shared variant: 46.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CST7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.27e-11 1.14e-07 2.66e-05 1.24e-01 8.76e-01 \n", + "[1] \"PP abf for shared variant: 87.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___AIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.14e-09 1.57e-05 1.01e-05 4.09e-02 9.59e-01 \n", + "[1] \"PP abf for shared variant: 95.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___IL7R__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.76e-08 3.38e-04 3.74e-05 1.79e-01 8.21e-01 \n", + "[1] \"PP abf for shared variant: 82.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RHOH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.94e-07 2.47e-03 1.64e-05 7.27e-02 9.25e-01 \n", + "[1] \"PP abf for shared variant: 92.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.01e-20 1.01e-16 5.04e-05 2.45e-01 7.55e-01 \n", + "[1] \"PP abf for shared variant: 75.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-22 1.02e-18 3.99e-05 1.91e-01 8.08e-01 \n", + "[1] \"PP abf for shared variant: 80.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.74e-07 1.87e-03 2.09e-05 9.56e-02 9.03e-01 \n", + "[1] \"PP abf for shared variant: 90.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___DBI__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.99e-07 9.97e-04 2.35e-05 1.08e-01 8.91e-01 \n", + "[1] \"PP abf for shared variant: 89.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.74e-16 4.87e-12 5.41e-05 2.63e-01 7.37e-01 \n", + "[1] \"PP abf for shared variant: 73.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___PRKCQ-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.00e-14 4.50e-10 4.30e-05 2.07e-01 7.93e-01 \n", + "[1] \"PP abf for shared variant: 79.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SNHG8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.75e-11 8.74e-08 3.94e-05 1.89e-01 8.11e-01 \n", + "[1] \"PP abf for shared variant: 81.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___POMP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-05 1.09e-01 2.38e-05 1.11e-01 7.80e-01 \n", + "[1] \"PP abf for shared variant: 78%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.70e-19 1.85e-15 4.52e-05 2.18e-01 7.82e-01 \n", + "[1] \"PP abf for shared variant: 78.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RAB8B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.0817e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.66e-05 2.33e-01 2.08e-05 9.73e-02 6.70e-01 \n", + "[1] \"PP abf for shared variant: 67%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___GZMH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.00e-06 2.00e-02 2.39e-05 1.11e-01 8.69e-01 \n", + "[1] \"PP abf for shared variant: 86.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.56e-10 4.78e-06 1.00e-05 4.06e-02 9.59e-01 \n", + "[1] \"PP abf for shared variant: 95.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.67e-15 1.34e-11 9.09e-06 3.58e-02 9.64e-01 \n", + "[1] \"PP abf for shared variant: 96.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.12e-24 3.06e-20 3.86e-05 1.85e-01 8.15e-01 \n", + "[1] \"PP abf for shared variant: 81.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.98e-22 4.49e-18 3.32e-05 1.58e-01 8.42e-01 \n", + "[1] \"PP abf for shared variant: 84.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___ABLIM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.31e-08 3.65e-04 1.62e-05 7.18e-02 9.28e-01 \n", + "[1] \"PP abf for shared variant: 92.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EIF4A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.8946e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.28e-05 1.14e-01 1.41e-05 6.24e-02 8.23e-01 \n", + "[1] \"PP abf for shared variant: 82.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___APOBEC3G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.53e-09 2.77e-05 1.62e-05 7.18e-02 9.28e-01 \n", + "[1] \"PP abf for shared variant: 92.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RP11-291B21.2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.19e-10 3.60e-06 3.68e-05 1.76e-01 8.24e-01 \n", + "[1] \"PP abf for shared variant: 82.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-23 8.17e-20 4.88e-05 2.36e-01 7.64e-01 \n", + "[1] \"PP abf for shared variant: 76.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.04e-22 1.02e-18 5.35e-05 2.60e-01 7.40e-01 \n", + "[1] \"PP abf for shared variant: 74%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__SERF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.22e-14 4.11e-10 2.42e-05 1.12e-01 8.88e-01 \n", + "[1] \"PP abf for shared variant: 88.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.95e-14 9.73e-11 3.53e-05 1.68e-01 8.32e-01 \n", + "[1] \"PP abf for shared variant: 83.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.41e-22 1.20e-18 4.80e-05 2.32e-01 7.68e-01 \n", + "[1] \"PP abf for shared variant: 76.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.19e-07 1.09e-03 1.70e-05 7.60e-02 9.23e-01 \n", + "[1] \"PP abf for shared variant: 92.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.39e-18 1.19e-14 4.74e-05 2.29e-01 7.71e-01 \n", + "[1] \"PP abf for shared variant: 77.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.30e-16 1.15e-12 1.67e-05 7.43e-02 9.26e-01 \n", + "[1] \"PP abf for shared variant: 92.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___RPS26__S1PR5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1943e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.85e-05 4.92e-01 2.65e-05 1.29e-01 3.79e-01 \n", + "[1] \"PP abf for shared variant: 37.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD8T_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-09 1.14e-05 3.31e-05 1.57e-01 8.43e-01 \n", + "[1] \"PP abf for shared variant: 84.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TMSB10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.95e-07 4.47e-03 1.41e-05 6.13e-02 9.34e-01 \n", + "[1] \"PP abf for shared variant: 93.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CHCHD2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.91e-06 1.45e-02 1.60e-05 7.09e-02 9.15e-01 \n", + "[1] \"PP abf for shared variant: 91.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EMP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.75e-08 1.37e-04 2.85e-05 1.34e-01 8.66e-01 \n", + "[1] \"PP abf for shared variant: 86.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___FMNL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.61e-06 3.30e-02 2.09e-05 9.56e-02 8.71e-01 \n", + "[1] \"PP abf for shared variant: 87.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.75e-29 4.37e-25 4.43e-05 2.13e-01 7.87e-01 \n", + "[1] \"PP abf for shared variant: 78.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___LEF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.44e-11 1.22e-07 3.90e-05 1.87e-01 8.13e-01 \n", + "[1] \"PP abf for shared variant: 81.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HERPUD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.267e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.28e-05 1.14e-01 2.22e-05 1.03e-01 7.83e-01 \n", + "[1] \"PP abf for shared variant: 78.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ANXA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.76e-10 2.88e-06 3.39e-05 1.61e-01 8.39e-01 \n", + "[1] \"PP abf for shared variant: 83.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SOD2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.05e-07 4.02e-03 4.49e-05 2.17e-01 7.79e-01 \n", + "[1] \"PP abf for shared variant: 77.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MYL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.73e-22 4.37e-18 3.74e-05 1.79e-01 8.21e-01 \n", + "[1] \"PP abf for shared variant: 82.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.29e-18 2.64e-14 3.84e-05 1.84e-01 8.16e-01 \n", + "[1] \"PP abf for shared variant: 81.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ATP1B3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.79e-06 4.89e-02 3.01e-05 1.42e-01 8.09e-01 \n", + "[1] \"PP abf for shared variant: 80.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.27e-05 1.63e-01 4.00e-05 1.94e-01 6.43e-01 \n", + "[1] \"PP abf for shared variant: 64.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.39e-30 2.19e-26 3.90e-05 1.87e-01 8.13e-01 \n", + "[1] \"PP abf for shared variant: 81.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.32e-15 6.59e-12 4.90e-05 2.37e-01 7.63e-01 \n", + "[1] \"PP abf for shared variant: 76.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EML4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.04e-09 3.02e-05 1.50e-05 6.58e-02 9.34e-01 \n", + "[1] \"PP abf for shared variant: 93.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SCML1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-07 5.09e-04 3.83e-05 1.83e-01 8.16e-01 \n", + "[1] \"PP abf for shared variant: 81.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MCL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.71e-11 4.36e-07 3.75e-05 1.79e-01 8.21e-01 \n", + "[1] \"PP abf for shared variant: 82.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___NOG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.77e-06 1.88e-02 4.10e-05 1.97e-01 7.84e-01 \n", + "[1] \"PP abf for shared variant: 78.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___PRMT2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.57e-08 1.28e-04 1.78e-05 7.98e-02 9.20e-01 \n", + "[1] \"PP abf for shared variant: 92%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CD7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.30e-10 4.65e-06 3.43e-05 1.63e-01 8.37e-01 \n", + "[1] \"PP abf for shared variant: 83.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.79e-05 8.94e-02 2.45e-05 1.15e-01 7.96e-01 \n", + "[1] \"PP abf for shared variant: 79.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.70e-16 2.85e-12 4.12e-05 1.98e-01 8.02e-01 \n", + "[1] \"PP abf for shared variant: 80.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___FAM129A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.01e-11 2.00e-07 3.80e-05 1.82e-01 8.18e-01 \n", + "[1] \"PP abf for shared variant: 81.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.85e-20 3.92e-16 3.92e-05 1.88e-01 8.12e-01 \n", + "[1] \"PP abf for shared variant: 81.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ABLIM1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.2936e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.26e-05 1.63e-01 2.34e-05 1.10e-01 7.27e-01 \n", + "[1] \"PP abf for shared variant: 72.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-29 6.65e-26 4.85e-05 2.35e-01 7.65e-01 \n", + "[1] \"PP abf for shared variant: 76.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ALOX5AP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-07 5.45e-04 2.81e-05 1.32e-01 8.68e-01 \n", + "[1] \"PP abf for shared variant: 86.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TSHZ2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.18e-08 1.59e-04 2.52e-05 1.17e-01 8.83e-01 \n", + "[1] \"PP abf for shared variant: 88.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TIGIT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.96e-10 9.79e-07 2.05e-05 9.33e-02 9.07e-01 \n", + "[1] \"PP abf for shared variant: 90.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ARHGDIB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.64e-10 3.82e-06 3.05e-05 1.44e-01 8.56e-01 \n", + "[1] \"PP abf for shared variant: 85.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.26e-15 4.13e-11 3.54e-05 1.68e-01 8.31e-01 \n", + "[1] \"PP abf for shared variant: 83.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.76e-25 3.38e-21 4.88e-05 2.36e-01 7.64e-01 \n", + "[1] \"PP abf for shared variant: 76.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.49e-33 3.75e-29 4.67e-05 2.26e-01 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.85e-32 2.43e-28 4.68e-05 2.26e-01 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__YBX1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.02e-10 1.51e-06 1.29e-05 5.50e-02 9.45e-01 \n", + "[1] \"PP abf for shared variant: 94.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.52e-29 1.76e-25 3.97e-05 1.91e-01 8.09e-01 \n", + "[1] \"PP abf for shared variant: 80.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___JUND__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.279e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.75e-05 8.77e-02 2.90e-05 1.37e-01 7.75e-01 \n", + "[1] \"PP abf for shared variant: 77.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SH3YL1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.92e-11 9.60e-08 4.38e-05 2.11e-01 7.89e-01 \n", + "[1] \"PP abf for shared variant: 78.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.89e-31 4.94e-27 5.01e-05 2.43e-01 7.57e-01 \n", + "[1] \"PP abf for shared variant: 75.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___C12orf75__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.00e-07 9.98e-04 1.76e-05 7.85e-02 9.20e-01 \n", + "[1] \"PP abf for shared variant: 92%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.22e-16 4.11e-12 1.39e-05 6.01e-02 9.40e-01 \n", + "[1] \"PP abf for shared variant: 94%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF18\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.98e-07 1.99e-03 2.35e-05 1.09e-01 8.89e-01 \n", + "[1] \"PP abf for shared variant: 88.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MYO1F__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-07 6.35e-04 3.22e-05 1.52e-01 8.47e-01 \n", + "[1] \"PP abf for shared variant: 84.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.40e-28 1.70e-24 4.89e-05 2.37e-01 7.63e-01 \n", + "[1] \"PP abf for shared variant: 76.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___PTPRC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.31e-13 1.66e-09 4.46e-05 2.15e-01 7.85e-01 \n", + "[1] \"PP abf for shared variant: 78.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CD55__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.03e-05 1.01e-01 2.45e-05 1.14e-01 7.84e-01 \n", + "[1] \"PP abf for shared variant: 78.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.10e-29 2.05e-25 4.24e-05 2.04e-01 7.96e-01 \n", + "[1] \"PP abf for shared variant: 79.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CREM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.47e-09 3.73e-05 2.77e-05 1.30e-01 8.70e-01 \n", + "[1] \"PP abf for shared variant: 87%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__VMP1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.00e-05 5.01e-02 3.32e-05 1.58e-01 7.92e-01 \n", + "[1] \"PP abf for shared variant: 79.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HMGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.45e-10 1.73e-06 4.51e-05 2.18e-01 7.82e-01 \n", + "[1] \"PP abf for shared variant: 78.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.14e-29 1.07e-25 4.95e-05 2.40e-01 7.60e-01 \n", + "[1] \"PP abf for shared variant: 76%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___C1orf228__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.49e-05 7.45e-02 2.82e-05 1.33e-01 7.92e-01 \n", + "[1] \"PP abf for shared variant: 79.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___GALM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.78e-06 1.89e-02 1.07e-05 4.40e-02 9.37e-01 \n", + "[1] \"PP abf for shared variant: 93.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TRABD2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.16e-06 1.08e-02 3.64e-05 1.74e-01 8.15e-01 \n", + "[1] \"PP abf for shared variant: 81.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EIF2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-07 7.32e-04 7.84e-05 3.86e-01 6.13e-01 \n", + "[1] \"PP abf for shared variant: 61.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL17__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.15e-18 5.76e-15 4.74e-05 2.29e-01 7.71e-01 \n", + "[1] \"PP abf for shared variant: 77.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-20 6.22e-17 3.41e-05 1.62e-01 8.38e-01 \n", + "[1] \"PP abf for shared variant: 83.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ANXA5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.36e-07 4.18e-03 4.05e-05 1.95e-01 8.01e-01 \n", + "[1] \"PP abf for shared variant: 80.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___IDS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.10e-08 1.55e-04 3.56e-05 1.70e-01 8.30e-01 \n", + "[1] \"PP abf for shared variant: 83%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ARID5B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.10e-06 2.55e-02 3.91e-05 1.88e-01 7.87e-01 \n", + "[1] \"PP abf for shared variant: 78.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___IMPDH2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.33e-10 2.16e-06 4.18e-05 2.01e-01 7.99e-01 \n", + "[1] \"PP abf for shared variant: 79.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.21e-18 1.61e-14 4.81e-05 2.33e-01 7.67e-01 \n", + "[1] \"PP abf for shared variant: 76.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__ST13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.37e-11 1.69e-07 3.58e-05 1.71e-01 8.29e-01 \n", + "[1] \"PP abf for shared variant: 82.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CXCR3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.98e-07 1.49e-03 3.16e-05 1.50e-01 8.49e-01 \n", + "[1] \"PP abf for shared variant: 84.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HLA-DRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.70e-11 4.35e-07 5.02e-05 2.44e-01 7.56e-01 \n", + "[1] \"PP abf for shared variant: 75.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-19 5.66e-16 4.38e-05 2.11e-01 7.89e-01 \n", + "[1] \"PP abf for shared variant: 78.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SPOCK2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-06 8.49e-03 5.03e-05 2.44e-01 7.47e-01 \n", + "[1] \"PP abf for shared variant: 74.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___C15orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.82e-06 3.41e-02 3.27e-05 1.56e-01 8.10e-01 \n", + "[1] \"PP abf for shared variant: 81%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SNRPF\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1448e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.12e-05 2.56e-01 2.77e-05 1.32e-01 6.11e-01 \n", + "[1] \"PP abf for shared variant: 61.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.53e-19 3.26e-15 4.75e-05 2.30e-01 7.70e-01 \n", + "[1] \"PP abf for shared variant: 77%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___FAM134B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-05 5.28e-02 3.73e-05 1.79e-01 7.68e-01 \n", + "[1] \"PP abf for shared variant: 76.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ISG20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.25e-08 4.62e-04 1.17e-05 4.92e-02 9.50e-01 \n", + "[1] \"PP abf for shared variant: 95%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CFL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.00e-14 9.99e-11 4.24e-05 2.04e-01 7.96e-01 \n", + "[1] \"PP abf for shared variant: 79.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___NUCB2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.42e-06 1.21e-02 2.44e-05 1.13e-01 8.75e-01 \n", + "[1] \"PP abf for shared variant: 87.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ALKBH7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.75e-08 2.88e-04 2.23e-05 1.03e-01 8.97e-01 \n", + "[1] \"PP abf for shared variant: 89.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___LINC00493__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.95e-06 9.76e-03 1.44e-05 6.26e-02 9.28e-01 \n", + "[1] \"PP abf for shared variant: 92.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.28e-30 2.14e-26 3.82e-05 1.83e-01 8.17e-01 \n", + "[1] \"PP abf for shared variant: 81.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__VIM\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-07 8.13e-04 2.47e-05 1.15e-01 8.84e-01 \n", + "[1] \"PP abf for shared variant: 88.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SNHG8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.85e-16 2.42e-12 4.50e-05 2.17e-01 7.83e-01 \n", + "[1] \"PP abf for shared variant: 78.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CDC42__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.39e-07 1.19e-03 2.85e-05 1.34e-01 8.65e-01 \n", + "[1] \"PP abf for shared variant: 86.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF1B\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.78e-07 2.39e-03 1.23e-05 5.21e-02 9.45e-01 \n", + "[1] \"PP abf for shared variant: 94.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___NELL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.13e-06 1.07e-02 3.77e-05 1.80e-01 8.09e-01 \n", + "[1] \"PP abf for shared variant: 80.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.33e-23 3.66e-19 4.43e-05 2.14e-01 7.86e-01 \n", + "[1] \"PP abf for shared variant: 78.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ACTN4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.24e-08 4.12e-04 3.44e-05 1.64e-01 8.36e-01 \n", + "[1] \"PP abf for shared variant: 83.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___IKZF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.38e-06 3.69e-02 4.71e-05 2.28e-01 7.35e-01 \n", + "[1] \"PP abf for shared variant: 73.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___LDHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.61e-06 4.31e-02 1.83e-05 8.29e-02 8.74e-01 \n", + "[1] \"PP abf for shared variant: 87.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-21 6.75e-18 5.05e-05 2.45e-01 7.55e-01 \n", + "[1] \"PP abf for shared variant: 75.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.00e-13 2.00e-09 3.93e-05 1.88e-01 8.12e-01 \n", + "[1] \"PP abf for shared variant: 81.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RP11-138A9.1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.86e-05 1.43e-01 3.69e-05 1.78e-01 6.79e-01 \n", + "[1] \"PP abf for shared variant: 67.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___NAMPT__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.8087e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.13e-05 1.06e-01 2.23e-05 1.04e-01 7.90e-01 \n", + "[1] \"PP abf for shared variant: 79%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFAS1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.00e-10 4.50e-06 4.20e-05 2.02e-01 7.98e-01 \n", + "[1] \"PP abf for shared variant: 79.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CALM2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.80e-09 1.40e-05 3.30e-05 1.57e-01 8.43e-01 \n", + "[1] \"PP abf for shared variant: 84.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.79e-20 2.90e-16 3.69e-05 1.76e-01 8.24e-01 \n", + "[1] \"PP abf for shared variant: 82.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MT-ND2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.90e-05 9.48e-02 7.96e-05 3.93e-01 5.12e-01 \n", + "[1] \"PP abf for shared variant: 51.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.45e-19 1.73e-15 3.91e-05 1.88e-01 8.12e-01 \n", + "[1] \"PP abf for shared variant: 81.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CD52__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.68e-08 8.42e-05 3.17e-05 1.50e-01 8.50e-01 \n", + "[1] \"PP abf for shared variant: 85%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.19e-12 2.09e-08 4.11e-05 1.98e-01 8.02e-01 \n", + "[1] \"PP abf for shared variant: 80.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___H3F3A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.92e-10 3.46e-06 1.56e-05 6.86e-02 9.31e-01 \n", + "[1] \"PP abf for shared variant: 93.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ADTRP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-12 6.18e-09 3.71e-05 1.77e-01 8.23e-01 \n", + "[1] \"PP abf for shared variant: 82.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MT2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.05e-06 1.53e-02 1.52e-05 6.66e-02 9.18e-01 \n", + "[1] \"PP abf for shared variant: 91.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SNRPD2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-06 1.32e-02 4.25e-05 2.05e-01 7.82e-01 \n", + "[1] \"PP abf for shared variant: 78.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFP36\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-09 1.09e-05 2.21e-05 1.01e-01 8.99e-01 \n", + "[1] \"PP abf for shared variant: 89.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CXCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-09 6.14e-06 4.44e-05 2.14e-01 7.86e-01 \n", + "[1] \"PP abf for shared variant: 78.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___DYNLL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.93e-08 2.46e-04 2.77e-05 1.30e-01 8.70e-01 \n", + "[1] \"PP abf for shared variant: 87%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SAMSN1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.36e-09 6.82e-06 3.77e-05 1.80e-01 8.20e-01 \n", + "[1] \"PP abf for shared variant: 82%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___LMNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.91e-14 2.95e-10 3.93e-05 1.88e-01 8.12e-01 \n", + "[1] \"PP abf for shared variant: 81.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MT-ND5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.49e-12 4.24e-08 4.67e-05 2.26e-01 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.78e-26 2.39e-22 4.46e-05 2.15e-01 7.85e-01 \n", + "[1] \"PP abf for shared variant: 78.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RUNX3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.12e-06 1.56e-02 1.96e-05 8.91e-02 8.95e-01 \n", + "[1] \"PP abf for shared variant: 89.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HLA-B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.00e-22 9.99e-19 4.97e-05 2.41e-01 7.59e-01 \n", + "[1] \"PP abf for shared variant: 75.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RGS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-10 1.11e-06 1.97e-05 8.94e-02 9.11e-01 \n", + "[1] \"PP abf for shared variant: 91.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ERGIC3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.423e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.44e-05 2.72e-01 6.06e-05 2.99e-01 4.29e-01 \n", + "[1] \"PP abf for shared variant: 42.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SELL\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.17e-12 5.87e-09 3.89e-05 1.86e-01 8.14e-01 \n", + "[1] \"PP abf for shared variant: 81.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TYMP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.61e-06 8.07e-03 3.31e-05 1.57e-01 8.35e-01 \n", + "[1] \"PP abf for shared variant: 83.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HLA-DPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.60e-06 1.30e-02 1.63e-05 7.23e-02 9.15e-01 \n", + "[1] \"PP abf for shared variant: 91.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.08e-27 4.54e-23 4.98e-05 2.41e-01 7.59e-01 \n", + "[1] \"PP abf for shared variant: 75.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__UQCRB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.18e-08 5.90e-05 3.77e-05 1.80e-01 8.19e-01 \n", + "[1] \"PP abf for shared variant: 81.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.68e-27 1.84e-23 4.77e-05 2.31e-01 7.69e-01 \n", + "[1] \"PP abf for shared variant: 76.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SRGN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.70e-25 1.85e-21 4.73e-05 2.29e-01 7.71e-01 \n", + "[1] \"PP abf for shared variant: 77.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MT-ND4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.35e-05 1.18e-01 4.07e-05 1.96e-01 6.86e-01 \n", + "[1] \"PP abf for shared variant: 68.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ABHD14B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.79e-09 2.89e-05 1.02e-05 4.15e-02 9.58e-01 \n", + "[1] \"PP abf for shared variant: 95.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ATP5E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-07 7.52e-04 3.56e-05 1.69e-01 8.30e-01 \n", + "[1] \"PP abf for shared variant: 83%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPSAP58\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.87e-15 1.93e-11 3.49e-05 1.66e-01 8.34e-01 \n", + "[1] \"PP abf for shared variant: 83.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.59e-17 1.79e-13 5.21e-05 2.53e-01 7.47e-01 \n", + "[1] \"PP abf for shared variant: 74.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.53e-26 1.77e-22 4.27e-05 2.05e-01 7.95e-01 \n", + "[1] \"PP abf for shared variant: 79.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MAL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-13 7.49e-10 4.32e-05 2.08e-01 7.92e-01 \n", + "[1] \"PP abf for shared variant: 79.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ATP2B4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.83e-07 4.91e-03 1.99e-05 9.03e-02 9.05e-01 \n", + "[1] \"PP abf for shared variant: 90.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ARPC1B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.98e-05 9.91e-02 1.59e-05 7.11e-02 8.30e-01 \n", + "[1] \"PP abf for shared variant: 83%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___PDCD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.16e-07 1.08e-03 5.18e-05 2.51e-01 7.48e-01 \n", + "[1] \"PP abf for shared variant: 74.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.19e-25 2.59e-21 4.97e-05 2.41e-01 7.59e-01 \n", + "[1] \"PP abf for shared variant: 75.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.52e-31 3.26e-27 3.50e-05 1.67e-01 8.33e-01 \n", + "[1] \"PP abf for shared variant: 83.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-26 7.01e-23 4.58e-05 2.21e-01 7.79e-01 \n", + "[1] \"PP abf for shared variant: 77.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SAT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-17 9.10e-14 4.84e-05 2.34e-01 7.66e-01 \n", + "[1] \"PP abf for shared variant: 76.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HLA-E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.64e-12 8.22e-09 4.83e-05 2.34e-01 7.66e-01 \n", + "[1] \"PP abf for shared variant: 76.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TCF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-09 6.67e-06 1.86e-05 8.37e-02 9.16e-01 \n", + "[1] \"PP abf for shared variant: 91.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___PIK3IP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.44e-09 4.72e-05 3.70e-05 1.77e-01 8.23e-01 \n", + "[1] \"PP abf for shared variant: 82.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___LGALS3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-05 5.66e-02 3.41e-05 1.62e-01 7.81e-01 \n", + "[1] \"PP abf for shared variant: 78.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MIAT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.60e-07 1.80e-03 1.89e-05 8.54e-02 9.13e-01 \n", + "[1] \"PP abf for shared variant: 91.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.17e-25 1.08e-21 4.83e-05 2.34e-01 7.66e-01 \n", + "[1] \"PP abf for shared variant: 76.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SUB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-12 8.55e-09 4.07e-05 1.95e-01 8.05e-01 \n", + "[1] \"PP abf for shared variant: 80.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CCR7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.24e-07 2.62e-03 2.37e-05 1.10e-01 8.88e-01 \n", + "[1] \"PP abf for shared variant: 88.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-21 5.62e-18 4.67e-05 2.26e-01 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-27 1.14e-23 4.77e-05 2.31e-01 7.69e-01 \n", + "[1] \"PP abf for shared variant: 76.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RNF19A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.17e-08 1.59e-04 1.50e-05 6.58e-02 9.34e-01 \n", + "[1] \"PP abf for shared variant: 93.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MT-CO3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-11 1.03e-07 4.79e-05 2.32e-01 7.68e-01 \n", + "[1] \"PP abf for shared variant: 76.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.26e-29 3.63e-25 4.76e-05 2.30e-01 7.70e-01 \n", + "[1] \"PP abf for shared variant: 77%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.06e-16 3.53e-12 3.96e-05 1.90e-01 8.10e-01 \n", + "[1] \"PP abf for shared variant: 81%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___FAS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.05e-06 3.52e-02 2.65e-05 1.24e-01 8.40e-01 \n", + "[1] \"PP abf for shared variant: 84%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EEF1D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.75e-14 1.87e-10 4.05e-05 1.94e-01 8.06e-01 \n", + "[1] \"PP abf for shared variant: 80.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.86e-14 1.93e-10 4.52e-05 2.18e-01 7.82e-01 \n", + "[1] \"PP abf for shared variant: 78.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___GYPC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.76e-10 1.88e-06 4.15e-05 2.00e-01 8.00e-01 \n", + "[1] \"PP abf for shared variant: 80%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.27e-27 3.63e-23 4.27e-05 2.05e-01 7.95e-01 \n", + "[1] \"PP abf for shared variant: 79.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.18e-29 3.59e-25 4.01e-05 1.92e-01 8.08e-01 \n", + "[1] \"PP abf for shared variant: 80.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TPM4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-06 5.66e-03 3.64e-05 1.74e-01 8.20e-01 \n", + "[1] \"PP abf for shared variant: 82%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___LDHB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.31e-16 2.15e-12 4.78e-05 2.31e-01 7.69e-01 \n", + "[1] \"PP abf for shared variant: 76.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___AIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.39e-09 6.97e-06 1.65e-05 7.31e-02 9.27e-01 \n", + "[1] \"PP abf for shared variant: 92.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.99e-27 9.95e-24 4.37e-05 2.11e-01 7.89e-01 \n", + "[1] \"PP abf for shared variant: 78.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ITGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-11 7.22e-08 3.86e-05 1.85e-01 8.15e-01 \n", + "[1] \"PP abf for shared variant: 81.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TXN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.61e-11 8.06e-08 3.35e-05 1.59e-01 8.41e-01 \n", + "[1] \"PP abf for shared variant: 84.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___FTH1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.75e-07 2.87e-03 1.95e-05 8.82e-02 9.09e-01 \n", + "[1] \"PP abf for shared variant: 90.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.23e-31 4.61e-27 4.32e-05 2.08e-01 7.92e-01 \n", + "[1] \"PP abf for shared variant: 79.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___COX7C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.11e-06 5.55e-03 8.46e-06 3.27e-02 9.62e-01 \n", + "[1] \"PP abf for shared variant: 96.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HLA-A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.90e-22 1.45e-18 5.00e-05 2.43e-01 7.57e-01 \n", + "[1] \"PP abf for shared variant: 75.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___LCP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.76e-08 3.38e-04 3.95e-05 1.89e-01 8.10e-01 \n", + "[1] \"PP abf for shared variant: 81%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__UBB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.70e-08 1.85e-04 2.12e-05 9.69e-02 9.03e-01 \n", + "[1] \"PP abf for shared variant: 90.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-27 1.03e-23 4.90e-05 2.37e-01 7.63e-01 \n", + "[1] \"PP abf for shared variant: 76.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.49e-21 2.24e-17 4.32e-05 2.08e-01 7.92e-01 \n", + "[1] \"PP abf for shared variant: 79.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TMEM123\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.04e-06 1.52e-02 3.96e-05 1.90e-01 7.95e-01 \n", + "[1] \"PP abf for shared variant: 79.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___PPP1R15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.79e-05 8.94e-02 1.90e-05 8.68e-02 8.24e-01 \n", + "[1] \"PP abf for shared variant: 82.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___IL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.24e-08 1.12e-04 2.64e-05 1.23e-01 8.77e-01 \n", + "[1] \"PP abf for shared variant: 87.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.26e-30 1.13e-26 4.04e-05 1.94e-01 8.06e-01 \n", + "[1] \"PP abf for shared variant: 80.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.07e-20 1.04e-16 4.90e-05 2.37e-01 7.63e-01 \n", + "[1] \"PP abf for shared variant: 76.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TOMM20\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-05 7.49e-02 1.88e-05 8.57e-02 8.39e-01 \n", + "[1] \"PP abf for shared variant: 83.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EIF3F__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.56e-08 2.78e-04 5.69e-05 2.77e-01 7.22e-01 \n", + "[1] \"PP abf for shared variant: 72.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ERP29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.69e-07 2.85e-03 1.28e-04 6.34e-01 3.63e-01 \n", + "[1] \"PP abf for shared variant: 36.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___KLF6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.00e-10 3.00e-06 3.59e-05 1.71e-01 8.29e-01 \n", + "[1] \"PP abf for shared variant: 82.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___GIMAP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.77e-08 1.38e-04 3.14e-05 1.48e-01 8.51e-01 \n", + "[1] \"PP abf for shared variant: 85.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TGFBR2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.75e-06 8.75e-03 2.47e-05 1.15e-01 8.76e-01 \n", + "[1] \"PP abf for shared variant: 87.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RNF213__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.49e-05 7.46e-02 2.97e-05 1.40e-01 7.85e-01 \n", + "[1] \"PP abf for shared variant: 78.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___C19orf53__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.04e-05 2.02e-01 3.53e-05 1.70e-01 6.28e-01 \n", + "[1] \"PP abf for shared variant: 62.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SERF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.61e-15 8.03e-12 1.49e-05 6.54e-02 9.35e-01 \n", + "[1] \"PP abf for shared variant: 93.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-19 7.99e-16 4.18e-05 2.01e-01 7.99e-01 \n", + "[1] \"PP abf for shared variant: 79.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MIR4435-1HG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.59e-15 3.29e-11 1.16e-05 4.84e-02 9.52e-01 \n", + "[1] \"PP abf for shared variant: 95.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.65e-20 4.32e-16 4.74e-05 2.29e-01 7.71e-01 \n", + "[1] \"PP abf for shared variant: 77.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MZT2B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-08 1.14e-04 4.37e-05 2.11e-01 7.89e-01 \n", + "[1] \"PP abf for shared variant: 78.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___AK5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.38e-06 2.69e-02 5.31e-05 2.58e-01 7.15e-01 \n", + "[1] \"PP abf for shared variant: 71.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___NDFIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.17e-05 5.85e-02 2.99e-05 1.41e-01 8.00e-01 \n", + "[1] \"PP abf for shared variant: 80%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HNRNPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.87e-13 3.43e-09 3.67e-05 1.75e-01 8.25e-01 \n", + "[1] \"PP abf for shared variant: 82.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.15e-24 5.74e-21 4.94e-05 2.39e-01 7.61e-01 \n", + "[1] \"PP abf for shared variant: 76.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-08 5.20e-05 3.73e-05 1.78e-01 8.22e-01 \n", + "[1] \"PP abf for shared variant: 82.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.16e-23 1.58e-19 3.77e-05 1.80e-01 8.20e-01 \n", + "[1] \"PP abf for shared variant: 82%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___C1QBP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.08e-07 4.54e-03 3.01e-05 1.42e-01 8.54e-01 \n", + "[1] \"PP abf for shared variant: 85.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CXCR6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-05 6.05e-02 2.07e-05 9.49e-02 8.45e-01 \n", + "[1] \"PP abf for shared variant: 84.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ARPC3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.53e-06 1.77e-02 2.35e-05 1.09e-01 8.73e-01 \n", + "[1] \"PP abf for shared variant: 87.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MRPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.3464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.85e-05 1.92e-01 3.65e-05 1.76e-01 6.31e-01 \n", + "[1] \"PP abf for shared variant: 63.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.31e-20 3.15e-16 3.31e-05 1.57e-01 8.43e-01 \n", + "[1] \"PP abf for shared variant: 84.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___PPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.54e-11 4.27e-07 3.90e-05 1.87e-01 8.13e-01 \n", + "[1] \"PP abf for shared variant: 81.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EBPL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.43e-05 1.72e-01 4.52e-05 2.20e-01 6.08e-01 \n", + "[1] \"PP abf for shared variant: 60.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___FTL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-05 8.90e-02 6.17e-05 3.02e-01 6.08e-01 \n", + "[1] \"PP abf for shared variant: 60.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__UXT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.35e-13 3.17e-09 3.89e-05 1.86e-01 8.14e-01 \n", + "[1] \"PP abf for shared variant: 81.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___LSM5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.71e-09 2.35e-05 1.21e-05 5.11e-02 9.49e-01 \n", + "[1] \"PP abf for shared variant: 94.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___KMT2E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.6569e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.56e-05 2.28e-01 3.45e-05 1.67e-01 6.05e-01 \n", + "[1] \"PP abf for shared variant: 60.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MT-CO2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.91e-12 4.95e-08 5.58e-05 2.71e-01 7.28e-01 \n", + "[1] \"PP abf for shared variant: 72.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TAGLN2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.42e-05 1.21e-01 2.21e-05 1.03e-01 7.76e-01 \n", + "[1] \"PP abf for shared variant: 77.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CDCA7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4164e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.44e-05 1.72e-01 2.39e-05 1.12e-01 7.15e-01 \n", + "[1] \"PP abf for shared variant: 71.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-10 1.09e-06 1.33e-04 6.61e-01 3.39e-01 \n", + "[1] \"PP abf for shared variant: 33.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EPB41L4A-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.65e-11 4.32e-07 4.35e-05 2.10e-01 7.90e-01 \n", + "[1] \"PP abf for shared variant: 79%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___FLNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.26e-12 1.13e-08 3.25e-05 1.54e-01 8.46e-01 \n", + "[1] \"PP abf for shared variant: 84.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TATDN1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.26e-06 6.29e-03 4.12e-05 1.98e-01 7.96e-01 \n", + "[1] \"PP abf for shared variant: 79.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HLA-DPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.03e-06 1.01e-02 2.70e-05 1.27e-01 8.63e-01 \n", + "[1] \"PP abf for shared variant: 86.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___C12orf57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.61e-17 8.06e-14 4.73e-05 2.29e-01 7.71e-01 \n", + "[1] \"PP abf for shared variant: 77.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.96e-28 4.48e-24 4.33e-05 2.09e-01 7.91e-01 \n", + "[1] \"PP abf for shared variant: 79.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.37e-25 3.18e-21 3.37e-05 1.60e-01 8.40e-01 \n", + "[1] \"PP abf for shared variant: 84%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___BTG1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-08 8.56e-05 3.95e-05 1.89e-01 8.11e-01 \n", + "[1] \"PP abf for shared variant: 81.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___C8orf59__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-06 8.48e-03 4.81e-05 2.33e-01 7.59e-01 \n", + "[1] \"PP abf for shared variant: 75.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CD58__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-07 5.08e-04 1.29e-05 5.51e-02 9.44e-01 \n", + "[1] \"PP abf for shared variant: 94.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MT-CO1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.04e-22 4.02e-18 4.96e-05 2.40e-01 7.60e-01 \n", + "[1] \"PP abf for shared variant: 76%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.25e-10 1.13e-06 3.87e-05 1.85e-01 8.15e-01 \n", + "[1] \"PP abf for shared variant: 81.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___AKAP13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.83e-07 1.92e-03 1.00e-05 4.06e-02 9.57e-01 \n", + "[1] \"PP abf for shared variant: 95.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EIF4B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-11 7.34e-08 3.77e-05 1.80e-01 8.20e-01 \n", + "[1] \"PP abf for shared variant: 82%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___DDX5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-09 7.28e-06 3.91e-05 1.87e-01 8.13e-01 \n", + "[1] \"PP abf for shared variant: 81.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.37e-06 6.84e-03 4.30e-05 2.07e-01 7.86e-01 \n", + "[1] \"PP abf for shared variant: 78.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ANXA2R__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.82e-06 3.41e-02 1.59e-05 7.05e-02 8.95e-01 \n", + "[1] \"PP abf for shared variant: 89.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___IL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.90e-05 9.49e-02 4.68e-05 2.27e-01 6.78e-01 \n", + "[1] \"PP abf for shared variant: 67.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___LINC00152__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.78e-13 4.39e-09 5.16e-05 2.50e-01 7.50e-01 \n", + "[1] \"PP abf for shared variant: 75%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___FOXP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.09e-07 2.04e-03 8.14e-06 3.10e-02 9.67e-01 \n", + "[1] \"PP abf for shared variant: 96.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RGS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.96e-13 1.98e-09 4.00e-05 1.92e-01 8.08e-01 \n", + "[1] \"PP abf for shared variant: 80.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.83e-26 3.91e-22 5.14e-05 2.50e-01 7.50e-01 \n", + "[1] \"PP abf for shared variant: 75%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___KLRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.82e-09 1.91e-05 3.66e-05 1.74e-01 8.25e-01 \n", + "[1] \"PP abf for shared variant: 82.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.15e-21 2.57e-17 4.62e-05 2.23e-01 7.77e-01 \n", + "[1] \"PP abf for shared variant: 77.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.35e-19 3.68e-15 4.81e-05 2.33e-01 7.67e-01 \n", + "[1] \"PP abf for shared variant: 76.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___DAP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.81e-08 1.40e-04 3.61e-05 1.72e-01 8.27e-01 \n", + "[1] \"PP abf for shared variant: 82.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.51e-16 2.76e-12 3.58e-05 1.71e-01 8.29e-01 \n", + "[1] \"PP abf for shared variant: 82.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SVIP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.81e-05 1.41e-01 3.79e-05 1.83e-01 6.77e-01 \n", + "[1] \"PP abf for shared variant: 67.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HLA-C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.29e-19 6.47e-16 4.94e-05 2.39e-01 7.61e-01 \n", + "[1] \"PP abf for shared variant: 76.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.69e-31 8.44e-28 4.50e-05 2.17e-01 7.83e-01 \n", + "[1] \"PP abf for shared variant: 78.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.90e-23 4.95e-19 4.93e-05 2.39e-01 7.61e-01 \n", + "[1] \"PP abf for shared variant: 76.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___PRKCQ-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.38e-12 4.69e-08 4.04e-05 1.94e-01 8.06e-01 \n", + "[1] \"PP abf for shared variant: 80.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___GIMAP7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-06 6.17e-03 3.51e-05 1.67e-01 8.27e-01 \n", + "[1] \"PP abf for shared variant: 82.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ENTPD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.13e-06 1.56e-02 1.75e-05 7.82e-02 9.06e-01 \n", + "[1] \"PP abf for shared variant: 90.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___DUSP4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-14 6.53e-11 3.68e-05 1.76e-01 8.24e-01 \n", + "[1] \"PP abf for shared variant: 82.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.90e-19 4.95e-15 4.61e-05 2.23e-01 7.77e-01 \n", + "[1] \"PP abf for shared variant: 77.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__YWHAB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.68e-08 1.84e-04 1.54e-05 6.76e-02 9.32e-01 \n", + "[1] \"PP abf for shared variant: 93.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CCR6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.83e-06 4.92e-02 4.04e-05 1.94e-01 7.57e-01 \n", + "[1] \"PP abf for shared variant: 75.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MT-ND1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-07 8.25e-04 8.15e-05 4.01e-01 5.98e-01 \n", + "[1] \"PP abf for shared variant: 59.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___PFN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.07e-21 2.04e-17 4.35e-05 2.10e-01 7.90e-01 \n", + "[1] \"PP abf for shared variant: 79%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ADAM19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.40e-06 3.20e-02 1.23e-05 5.23e-02 9.16e-01 \n", + "[1] \"PP abf for shared variant: 91.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CLDND1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-05 8.14e-02 3.57e-05 1.71e-01 7.47e-01 \n", + "[1] \"PP abf for shared variant: 74.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___PFDN5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.50e-11 2.25e-07 4.64e-05 2.24e-01 7.76e-01 \n", + "[1] \"PP abf for shared variant: 77.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___FBL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.98e-14 1.99e-10 3.63e-05 1.73e-01 8.27e-01 \n", + "[1] \"PP abf for shared variant: 82.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CD37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-05 5.46e-02 3.55e-05 1.70e-01 7.76e-01 \n", + "[1] \"PP abf for shared variant: 77.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___APEX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-05 5.26e-02 2.06e-05 9.44e-02 8.53e-01 \n", + "[1] \"PP abf for shared variant: 85.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-12 6.19e-09 4.62e-05 2.23e-01 7.77e-01 \n", + "[1] \"PP abf for shared variant: 77.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.91e-26 1.95e-22 4.30e-05 2.07e-01 7.93e-01 \n", + "[1] \"PP abf for shared variant: 79.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___LETMD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.66e-08 2.83e-04 4.45e-05 2.15e-01 7.85e-01 \n", + "[1] \"PP abf for shared variant: 78.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___GK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.85e-08 1.93e-04 1.45e-05 6.32e-02 9.37e-01 \n", + "[1] \"PP abf for shared variant: 93.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___NOSIP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.08e-11 1.54e-07 3.55e-05 1.69e-01 8.31e-01 \n", + "[1] \"PP abf for shared variant: 83.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___AHNAK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.34e-07 3.67e-03 5.39e-05 2.62e-01 7.34e-01 \n", + "[1] \"PP abf for shared variant: 73.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SLC7A5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.58e-05 2.29e-01 4.18e-05 2.03e-01 5.68e-01 \n", + "[1] \"PP abf for shared variant: 56.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.46e-14 1.23e-10 3.48e-05 1.66e-01 8.34e-01 \n", + "[1] \"PP abf for shared variant: 83.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.75e-25 4.37e-21 4.59e-05 2.22e-01 7.78e-01 \n", + "[1] \"PP abf for shared variant: 77.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.21e-09 3.10e-05 8.89e-06 3.48e-02 9.65e-01 \n", + "[1] \"PP abf for shared variant: 96.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.54e-32 1.77e-28 4.50e-05 2.17e-01 7.83e-01 \n", + "[1] \"PP abf for shared variant: 78.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.33e-17 1.16e-13 3.78e-05 1.81e-01 8.19e-01 \n", + "[1] \"PP abf for shared variant: 81.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-29 7.24e-26 3.74e-05 1.79e-01 8.21e-01 \n", + "[1] \"PP abf for shared variant: 82.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MT-ATP6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-09 1.03e-05 5.28e-05 2.57e-01 7.43e-01 \n", + "[1] \"PP abf for shared variant: 74.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.26e-22 6.30e-19 4.41e-05 2.13e-01 7.87e-01 \n", + "[1] \"PP abf for shared variant: 78.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CCL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-10 7.38e-07 4.57e-05 2.21e-01 7.79e-01 \n", + "[1] \"PP abf for shared variant: 77.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RILPL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.77e-05 8.84e-02 5.86e-05 2.86e-01 6.25e-01 \n", + "[1] \"PP abf for shared variant: 62.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SSR2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-09 7.85e-06 4.20e-05 2.02e-01 7.98e-01 \n", + "[1] \"PP abf for shared variant: 79.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-07 6.52e-04 3.69e-05 1.76e-01 8.23e-01 \n", + "[1] \"PP abf for shared variant: 82.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__UBC\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-13 1.05e-09 4.22e-05 2.03e-01 7.97e-01 \n", + "[1] \"PP abf for shared variant: 79.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.08e-18 2.04e-14 4.78e-05 2.31e-01 7.69e-01 \n", + "[1] \"PP abf for shared variant: 76.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MAF__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.10e-10 2.05e-06 3.53e-05 1.68e-01 8.32e-01 \n", + "[1] \"PP abf for shared variant: 83.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-14 5.20e-11 3.11e-05 1.47e-01 8.53e-01 \n", + "[1] \"PP abf for shared variant: 85.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___COMMD6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-08 1.05e-04 4.14e-05 1.99e-01 8.01e-01 \n", + "[1] \"PP abf for shared variant: 80.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.58e-11 1.29e-07 2.90e-05 1.36e-01 8.64e-01 \n", + "[1] \"PP abf for shared variant: 86.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___NSMCE1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.16e-07 1.08e-03 4.29e-05 2.06e-01 7.93e-01 \n", + "[1] \"PP abf for shared variant: 79.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TGFB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.98e-09 9.88e-06 3.76e-05 1.80e-01 8.20e-01 \n", + "[1] \"PP abf for shared variant: 82%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___PRDX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.09e-06 1.05e-02 2.23e-05 1.03e-01 8.87e-01 \n", + "[1] \"PP abf for shared variant: 88.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.40e-24 1.20e-20 3.59e-05 1.71e-01 8.29e-01 \n", + "[1] \"PP abf for shared variant: 82.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___FAM46C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.27e-07 4.63e-03 3.08e-05 1.45e-01 8.50e-01 \n", + "[1] \"PP abf for shared variant: 85%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.34e-26 2.17e-22 4.94e-05 2.39e-01 7.60e-01 \n", + "[1] \"PP abf for shared variant: 76%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.66e-26 3.83e-22 4.75e-05 2.30e-01 7.70e-01 \n", + "[1] \"PP abf for shared variant: 77%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.57e-31 1.29e-27 3.65e-05 1.74e-01 8.26e-01 \n", + "[1] \"PP abf for shared variant: 82.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.29e-28 3.64e-24 5.01e-05 2.43e-01 7.57e-01 \n", + "[1] \"PP abf for shared variant: 75.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RORA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.46e-05 1.23e-01 3.57e-05 1.72e-01 7.06e-01 \n", + "[1] \"PP abf for shared variant: 70.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.18e-08 5.89e-05 3.38e-05 1.61e-01 8.39e-01 \n", + "[1] \"PP abf for shared variant: 83.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.28e-23 6.42e-20 3.61e-05 1.72e-01 8.28e-01 \n", + "[1] \"PP abf for shared variant: 82.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CD44__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.52e-10 3.76e-06 4.40e-05 2.12e-01 7.88e-01 \n", + "[1] \"PP abf for shared variant: 78.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS4Y1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.51e-05 1.26e-01 2.82e-05 1.34e-01 7.41e-01 \n", + "[1] \"PP abf for shared variant: 74.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___LGALS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.60e-10 3.80e-06 4.30e-05 2.07e-01 7.93e-01 \n", + "[1] \"PP abf for shared variant: 79.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___COX7A2L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.31e-06 1.15e-02 4.04e-05 1.94e-01 7.94e-01 \n", + "[1] \"PP abf for shared variant: 79.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-25 5.66e-22 4.59e-05 2.21e-01 7.78e-01 \n", + "[1] \"PP abf for shared variant: 77.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HADHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.93e-06 1.97e-02 4.14e-05 1.99e-01 7.81e-01 \n", + "[1] \"PP abf for shared variant: 78.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SATB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.41e-06 3.20e-02 2.73e-05 1.28e-01 8.40e-01 \n", + "[1] \"PP abf for shared variant: 84%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__UGP2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.49e-06 7.44e-03 3.82e-05 1.83e-01 8.09e-01 \n", + "[1] \"PP abf for shared variant: 80.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SBDS\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.80e-06 2.40e-02 1.29e-05 5.53e-02 9.21e-01 \n", + "[1] \"PP abf for shared variant: 92.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SYNE2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.72e-07 1.36e-03 4.65e-05 2.25e-01 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TMA7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-06 5.12e-03 1.27e-05 5.43e-02 9.41e-01 \n", + "[1] \"PP abf for shared variant: 94.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___NEAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.00e-14 3.50e-10 4.54e-05 2.19e-01 7.81e-01 \n", + "[1] \"PP abf for shared variant: 78.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___NR3C1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.68e-06 8.41e-03 3.01e-05 1.42e-01 8.50e-01 \n", + "[1] \"PP abf for shared variant: 85%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.70e-31 1.35e-27 3.91e-05 1.88e-01 8.12e-01 \n", + "[1] \"PP abf for shared variant: 81.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CCT8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.72e-07 4.86e-03 4.40e-05 2.12e-01 7.83e-01 \n", + "[1] \"PP abf for shared variant: 78.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFAIP3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.68e-06 1.84e-02 7.08e-05 3.47e-01 6.34e-01 \n", + "[1] \"PP abf for shared variant: 63.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SH2D2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.20e-05 1.60e-01 4.67e-05 2.27e-01 6.13e-01 \n", + "[1] \"PP abf for shared variant: 61.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___NPM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-15 6.98e-12 3.48e-05 1.65e-01 8.35e-01 \n", + "[1] \"PP abf for shared variant: 83.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CLNS1A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.10e-07 1.55e-03 6.03e-05 2.94e-01 7.04e-01 \n", + "[1] \"PP abf for shared variant: 70.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RSL1D1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.00e-12 5.01e-09 4.20e-05 2.02e-01 7.98e-01 \n", + "[1] \"PP abf for shared variant: 79.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ATP6V0E1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.53e-06 2.26e-02 9.01e-05 4.45e-01 5.32e-01 \n", + "[1] \"PP abf for shared variant: 53.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.54e-31 3.27e-27 4.92e-05 2.39e-01 7.61e-01 \n", + "[1] \"PP abf for shared variant: 76.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___DUSP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.35e-05 1.17e-01 2.96e-05 1.40e-01 7.42e-01 \n", + "[1] \"PP abf for shared variant: 74.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.87e-32 4.44e-28 5.08e-05 2.47e-01 7.53e-01 \n", + "[1] \"PP abf for shared variant: 75.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFP36L2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.90e-06 9.49e-03 3.29e-05 1.56e-01 8.35e-01 \n", + "[1] \"PP abf for shared variant: 83.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EIF3D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.83e-09 2.91e-05 2.46e-05 1.14e-01 8.86e-01 \n", + "[1] \"PP abf for shared variant: 88.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RP11-138A9.2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-06 1.05e-02 2.10e-05 9.59e-02 8.94e-01 \n", + "[1] \"PP abf for shared variant: 89.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.92e-23 9.59e-20 4.46e-05 2.15e-01 7.85e-01 \n", + "[1] \"PP abf for shared variant: 78.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___APRT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.95e-07 2.47e-03 6.46e-05 3.16e-01 6.81e-01 \n", + "[1] \"PP abf for shared variant: 68.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___FYN__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.23e-08 4.61e-04 2.26e-05 1.04e-01 8.96e-01 \n", + "[1] \"PP abf for shared variant: 89.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ANP32B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.67e-06 1.33e-02 2.87e-05 1.35e-01 8.52e-01 \n", + "[1] \"PP abf for shared variant: 85.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___PPP2R5C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.72e-06 8.61e-03 4.24e-05 2.04e-01 7.87e-01 \n", + "[1] \"PP abf for shared variant: 78.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EIF3M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.72e-08 8.62e-05 2.89e-05 1.36e-01 8.64e-01 \n", + "[1] \"PP abf for shared variant: 86.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.43e-32 4.71e-28 4.05e-05 1.94e-01 8.06e-01 \n", + "[1] \"PP abf for shared variant: 80.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CMPK1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.08e-09 1.04e-05 4.30e-05 2.07e-01 7.93e-01 \n", + "[1] \"PP abf for shared variant: 79.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__YWHAZ\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.64e-06 2.32e-02 2.65e-05 1.24e-01 8.53e-01 \n", + "[1] \"PP abf for shared variant: 85.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___GIMAP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-12 8.55e-09 3.87e-05 1.85e-01 8.15e-01 \n", + "[1] \"PP abf for shared variant: 81.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___COTL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.09e-10 1.05e-06 3.81e-05 1.82e-01 8.18e-01 \n", + "[1] \"PP abf for shared variant: 81.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EIF2S3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.88e-15 1.94e-11 4.68e-05 2.26e-01 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HSP90AA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1807e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.44e-05 1.72e-01 3.40e-05 1.63e-01 6.65e-01 \n", + "[1] \"PP abf for shared variant: 66.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MT-CYB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.32e-08 6.59e-05 6.98e-05 3.42e-01 6.58e-01 \n", + "[1] \"PP abf for shared variant: 65.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HSPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.77e-05 8.86e-02 4.28e-05 2.07e-01 7.04e-01 \n", + "[1] \"PP abf for shared variant: 70.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CRIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.69e-14 8.44e-11 3.62e-05 1.73e-01 8.27e-01 \n", + "[1] \"PP abf for shared variant: 82.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.34e-13 6.72e-10 4.37e-05 2.10e-01 7.90e-01 \n", + "[1] \"PP abf for shared variant: 79%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.57e-22 2.28e-18 4.40e-05 2.12e-01 7.88e-01 \n", + "[1] \"PP abf for shared variant: 78.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TXK\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-09 1.03e-05 4.69e-05 2.27e-01 7.73e-01 \n", + "[1] \"PP abf for shared variant: 77.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.79e-21 4.39e-17 3.96e-05 1.90e-01 8.10e-01 \n", + "[1] \"PP abf for shared variant: 81%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-18 1.11e-14 3.80e-05 1.82e-01 8.18e-01 \n", + "[1] \"PP abf for shared variant: 81.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ANXA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.85e-11 4.43e-07 4.63e-05 2.24e-01 7.76e-01 \n", + "[1] \"PP abf for shared variant: 77.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CLIC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-09 6.48e-06 3.43e-05 1.63e-01 8.37e-01 \n", + "[1] \"PP abf for shared variant: 83.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CD99__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.50e-06 1.25e-02 3.49e-05 1.66e-01 8.21e-01 \n", + "[1] \"PP abf for shared variant: 82.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___LYRM4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-05 7.30e-02 3.81e-05 1.83e-01 7.44e-01 \n", + "[1] \"PP abf for shared variant: 74.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-24 6.53e-21 5.87e-05 2.86e-01 7.13e-01 \n", + "[1] \"PP abf for shared variant: 71.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.42e-24 2.21e-20 4.47e-05 2.16e-01 7.84e-01 \n", + "[1] \"PP abf for shared variant: 78.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-14 7.31e-11 4.62e-05 2.23e-01 7.77e-01 \n", + "[1] \"PP abf for shared variant: 77.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EZR__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.30e-08 4.15e-04 2.96e-05 1.39e-01 8.60e-01 \n", + "[1] \"PP abf for shared variant: 86%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ATP5A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.13e-08 2.06e-04 4.24e-05 2.04e-01 7.96e-01 \n", + "[1] \"PP abf for shared variant: 79.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ATP5O__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.59e-13 2.30e-09 3.62e-05 1.73e-01 8.27e-01 \n", + "[1] \"PP abf for shared variant: 82.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.74e-06 1.87e-02 4.13e-05 1.99e-01 7.82e-01 \n", + "[1] \"PP abf for shared variant: 78.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.56e-24 2.28e-20 4.33e-05 2.09e-01 7.91e-01 \n", + "[1] \"PP abf for shared variant: 79.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SUCLG2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-08 7.52e-05 5.00e-05 2.42e-01 7.57e-01 \n", + "[1] \"PP abf for shared variant: 75.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CD3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.36e-06 1.18e-02 4.26e-05 2.05e-01 7.83e-01 \n", + "[1] \"PP abf for shared variant: 78.3%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.39e-24 6.96e-21 4.40e-05 2.12e-01 7.88e-01 \n", + "[1] \"PP abf for shared variant: 78.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___NSA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.76e-12 2.88e-08 4.63e-05 2.24e-01 7.76e-01 \n", + "[1] \"PP abf for shared variant: 77.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CST7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-06 5.22e-03 1.70e-05 7.56e-02 9.19e-01 \n", + "[1] \"PP abf for shared variant: 91.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___HIGD2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.05e-06 2.53e-02 2.87e-05 1.35e-01 8.40e-01 \n", + "[1] \"PP abf for shared variant: 84%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___EEF1G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-13 6.10e-10 3.84e-05 1.84e-01 8.16e-01 \n", + "[1] \"PP abf for shared variant: 81.6%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___IGBP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.68e-08 3.84e-04 2.17e-05 9.92e-02 9.00e-01 \n", + "[1] \"PP abf for shared variant: 90%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___OAZ1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-23 7.18e-20 4.71e-05 2.28e-01 7.72e-01 \n", + "[1] \"PP abf for shared variant: 77.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___MYH9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.90e-05 3.45e-01 4.31e-05 2.11e-01 4.44e-01 \n", + "[1] \"PP abf for shared variant: 44.4%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.32e-12 1.66e-08 4.84e-05 2.35e-01 7.65e-01 \n", + "[1] \"PP abf for shared variant: 76.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___ATP2B1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.91e-08 9.56e-05 1.57e-05 6.92e-02 9.31e-01 \n", + "[1] \"PP abf for shared variant: 93.1%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.14e-33 4.57e-29 6.17e-05 3.02e-01 6.98e-01 \n", + "[1] \"PP abf for shared variant: 69.8%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RBM39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.31e-07 1.16e-03 3.57e-05 1.70e-01 8.29e-01 \n", + "[1] \"PP abf for shared variant: 82.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___CCNG1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.01e-08 3.00e-04 2.18e-05 1.00e-01 8.99e-01 \n", + "[1] \"PP abf for shared variant: 89.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-20 7.23e-17 3.67e-05 1.75e-01 8.25e-01 \n", + "[1] \"PP abf for shared variant: 82.5%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___COX4I1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.41e-07 1.21e-03 3.90e-05 1.87e-01 8.12e-01 \n", + "[1] \"PP abf for shared variant: 81.2%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___PMAIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-06 9.86e-03 3.43e-05 1.63e-01 8.27e-01 \n", + "[1] \"PP abf for shared variant: 82.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.36e-15 6.79e-12 3.42e-05 1.63e-01 8.37e-01 \n", + "[1] \"PP abf for shared variant: 83.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SNHG7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-11 5.60e-08 2.24e-05 1.03e-01 8.97e-01 \n", + "[1] \"PP abf for shared variant: 89.7%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___FHIT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.77e-14 8.84e-11 4.58e-05 2.21e-01 7.79e-01 \n", + "[1] \"PP abf for shared variant: 77.9%\"\n", + "[1] \"Rheumatoid Arthritis\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.39e-10 4.19e-06 3.83e-05 1.83e-01 8.17e-01 \n", + "[1] \"PP abf for shared variant: 81.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_TMEM176A___CAPG__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05570 0.00983 0.79300 0.14000 0.00200 \n", + "[1] \"PP abf for shared variant: 0.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_TMEM176A___PTAFR__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.15400 0.02720 0.69400 0.12300 0.00157 \n", + "[1] \"PP abf for shared variant: 0.157%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_TMEM176A___MNDA__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.5916e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.63400 0.11200 0.21500 0.03790 0.00128 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_TMEM176A___RNASE6__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.33100 0.05830 0.51800 0.09140 0.00151 \n", + "[1] \"PP abf for shared variant: 0.151%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_TMEM176A___TMEM176A__TSPO\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.39300 0.06930 0.45600 0.08050 0.00155 \n", + "[1] \"PP abf for shared variant: 0.155%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_TMEM176A___TMEM176A__VMO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.5549e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.6240 0.1100 0.2250 0.0396 0.0022 \n", + "[1] \"PP abf for shared variant: 0.22%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_TMEM176A___S100A9__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.38000 0.06700 0.46900 0.08270 0.00204 \n", + "[1] \"PP abf for shared variant: 0.204%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_TMEM176A___QPCT__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.8504e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5760 0.1020 0.2730 0.0481 0.0014 \n", + "[1] \"PP abf for shared variant: 0.14%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_TMEM176A___BLVRB__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1205e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.55300 0.09760 0.29600 0.05220 0.00129 \n", + "[1] \"PP abf for shared variant: 0.129%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_TMEM176A___LYZ__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03710 0.00654 0.81100 0.14300 0.00182 \n", + "[1] \"PP abf for shared variant: 0.182%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_TMEM176A___CLEC4A__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.5652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.64800 0.11400 0.20100 0.03550 0.00117 \n", + "[1] \"PP abf for shared variant: 0.117%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL36__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.018200 0.000312 0.964000 0.016500 0.000702 \n", + "[1] \"PP abf for shared variant: 0.0702%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL5__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.373000 0.006390 0.609000 0.010400 0.000468 \n", + "[1] \"PP abf for shared variant: 0.0468%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.226000 0.003870 0.757000 0.012900 0.000565 \n", + "[1] \"PP abf for shared variant: 0.0565%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL32__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.022100 0.000377 0.960000 0.016400 0.000693 \n", + "[1] \"PP abf for shared variant: 0.0693%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___EEF1A1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.415000 0.007100 0.568000 0.009710 0.000455 \n", + "[1] \"PP abf for shared variant: 0.0455%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL38__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.112000 0.001920 0.870000 0.014900 0.000635 \n", + "[1] \"PP abf for shared variant: 0.0635%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL35A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.15000 0.00257 0.83200 0.01420 0.00062 \n", + "[1] \"PP abf for shared variant: 0.062%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL3__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.218000 0.003730 0.764000 0.013100 0.000573 \n", + "[1] \"PP abf for shared variant: 0.0573%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPS4X__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.428000 0.007330 0.554000 0.009480 0.000444 \n", + "[1] \"PP abf for shared variant: 0.0444%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPS3A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.399000 0.006830 0.583000 0.009970 0.000463 \n", + "[1] \"PP abf for shared variant: 0.0463%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPS15A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.16000 0.00273 0.82300 0.01410 0.00062 \n", + "[1] \"PP abf for shared variant: 0.062%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPS8__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.176000 0.003020 0.806000 0.013800 0.000598 \n", + "[1] \"PP abf for shared variant: 0.0598%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPS25__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.400000 0.006840 0.583000 0.009960 0.000452 \n", + "[1] \"PP abf for shared variant: 0.0452%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPS12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.008350 0.000143 0.974000 0.016700 0.000694 \n", + "[1] \"PP abf for shared variant: 0.0694%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___NKG7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.253000 0.004330 0.730000 0.012500 0.000538 \n", + "[1] \"PP abf for shared variant: 0.0538%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___B2M__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06130 0.00105 0.92100 0.01570 0.00066 \n", + "[1] \"PP abf for shared variant: 0.066%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL15__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.131000 0.002230 0.852000 0.014600 0.000629 \n", + "[1] \"PP abf for shared variant: 0.0629%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___PFN1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.042100 0.000720 0.940000 0.016100 0.000668 \n", + "[1] \"PP abf for shared variant: 0.0668%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPS28__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.129000 0.002200 0.854000 0.014600 0.000616 \n", + "[1] \"PP abf for shared variant: 0.0616%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL13A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.159000 0.002720 0.823000 0.014100 0.000618 \n", + "[1] \"PP abf for shared variant: 0.0618%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___GZMH__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.039900 0.000682 0.943000 0.016100 0.000668 \n", + "[1] \"PP abf for shared variant: 0.0668%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___LTB__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.079000 0.001350 0.904000 0.015400 0.000655 \n", + "[1] \"PP abf for shared variant: 0.0655%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL39__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.111000 0.001910 0.871000 0.014900 0.000638 \n", + "[1] \"PP abf for shared variant: 0.0638%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPS14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.151000 0.002590 0.831000 0.014200 0.000597 \n", + "[1] \"PP abf for shared variant: 0.0597%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.10200 0.00174 0.88100 0.01510 0.00064 \n", + "[1] \"PP abf for shared variant: 0.064%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPS23__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.051800 0.000886 0.931000 0.015900 0.000680 \n", + "[1] \"PP abf for shared variant: 0.068%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPS29__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.067200 0.001150 0.915000 0.015600 0.000668 \n", + "[1] \"PP abf for shared variant: 0.0668%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL22__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.348000 0.005950 0.635000 0.010900 0.000491 \n", + "[1] \"PP abf for shared variant: 0.0491%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL9__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.181000 0.003100 0.802000 0.013700 0.000586 \n", + "[1] \"PP abf for shared variant: 0.0586%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.338000 0.005780 0.645000 0.011000 0.000503 \n", + "[1] \"PP abf for shared variant: 0.0503%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.296000 0.005070 0.687000 0.011700 0.000527 \n", + "[1] \"PP abf for shared variant: 0.0527%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.00027483\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.898000 0.015400 0.084600 0.001450 0.000183 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___MAL__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.188000 0.003150 0.795000 0.013300 0.000579 \n", + "[1] \"PP abf for shared variant: 0.0579%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___PRF1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.415000 0.007100 0.568000 0.009710 0.000443 \n", + "[1] \"PP abf for shared variant: 0.0443%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPS13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.009190 0.000157 0.973000 0.016600 0.000694 \n", + "[1] \"PP abf for shared variant: 0.0694%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPS6__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.096300 0.001650 0.886000 0.015200 0.000647 \n", + "[1] \"PP abf for shared variant: 0.0647%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPS18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.010200 0.000174 0.972000 0.016600 0.000716 \n", + "[1] \"PP abf for shared variant: 0.0716%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL21__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.066300 0.001130 0.916000 0.015700 0.000667 \n", + "[1] \"PP abf for shared variant: 0.0667%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___SMDT1__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-03 4.51e-05 9.80e-01 1.68e-02 7.16e-04 \n", + "[1] \"PP abf for shared variant: 0.0716%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.099200 0.001700 0.883000 0.015100 0.000653 \n", + "[1] \"PP abf for shared variant: 0.0653%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL11__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.012900 0.000221 0.970000 0.016600 0.000720 \n", + "[1] \"PP abf for shared variant: 0.072%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL34__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.042000 0.000719 0.941000 0.016100 0.000670 \n", + "[1] \"PP abf for shared variant: 0.067%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL10A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.061200 0.001050 0.921000 0.015800 0.000662 \n", + "[1] \"PP abf for shared variant: 0.0662%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_SMDT1___RPL30__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.100000 0.001710 0.882000 0.015100 0.000653 \n", + "[1] \"PP abf for shared variant: 0.0653%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPL3__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.013100 0.000224 0.969000 0.016600 0.000711 \n", + "[1] \"PP abf for shared variant: 0.0711%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPS25__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.339000 0.005810 0.643000 0.011000 0.000508 \n", + "[1] \"PP abf for shared variant: 0.0508%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPL13A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.057800 0.000988 0.925000 0.015800 0.000682 \n", + "[1] \"PP abf for shared variant: 0.0682%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPS13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.037500 0.000641 0.945000 0.016200 0.000693 \n", + "[1] \"PP abf for shared variant: 0.0693%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPS4X__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.530000 0.009060 0.453000 0.007750 0.000384 \n", + "[1] \"PP abf for shared variant: 0.0384%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPS18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.449000 0.007670 0.534000 0.009130 0.000443 \n", + "[1] \"PP abf for shared variant: 0.0443%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPL31__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.467000 0.007990 0.515000 0.008810 0.000427 \n", + "[1] \"PP abf for shared variant: 0.0427%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPS15__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.299000 0.005120 0.684000 0.011700 0.000528 \n", + "[1] \"PP abf for shared variant: 0.0528%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___ACTB__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.019400 0.000331 0.963000 0.016500 0.000681 \n", + "[1] \"PP abf for shared variant: 0.0681%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPL36__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.225000 0.003850 0.758000 0.013000 0.000573 \n", + "[1] \"PP abf for shared variant: 0.0573%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPL35A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.16e-03 7.11e-05 9.78e-01 1.67e-02 7.11e-04 \n", + "[1] \"PP abf for shared variant: 0.0711%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPS12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.530000 0.009060 0.453000 0.007750 0.000389 \n", + "[1] \"PP abf for shared variant: 0.0389%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPL11__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.166000 0.002830 0.817000 0.014000 0.000608 \n", + "[1] \"PP abf for shared variant: 0.0608%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPL14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.205000 0.003500 0.778000 0.013300 0.000573 \n", + "[1] \"PP abf for shared variant: 0.0573%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPL10__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.080800 0.001380 0.902000 0.015400 0.000703 \n", + "[1] \"PP abf for shared variant: 0.0703%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPS3A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.210000 0.003580 0.773000 0.013200 0.000633 \n", + "[1] \"PP abf for shared variant: 0.0633%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0032661\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.89200 0.01530 0.09100 0.00156 0.00016 \n", + "[1] \"PP abf for shared variant: 0.016%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___CD48__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.252000 0.004310 0.730000 0.012500 0.000544 \n", + "[1] \"PP abf for shared variant: 0.0544%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPL7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.349000 0.005980 0.633000 0.010800 0.000493 \n", + "[1] \"PP abf for shared variant: 0.0493%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_SMDT1___RPS27__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.53700 0.00919 0.44600 0.00762 0.00037 \n", + "[1] \"PP abf for shared variant: 0.037%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_HLA-DQA2___CST3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.72e-11 6.91e-01 1.13e-12 2.58e-02 2.84e-01 \n", + "[1] \"PP abf for shared variant: 28.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.32e-11 5.89e-01 1.06e-12 2.29e-02 3.88e-01 \n", + "[1] \"PP abf for shared variant: 38.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.15e-11 2.91e-01 7.21e-13 1.13e-02 6.98e-01 \n", + "[1] \"PP abf for shared variant: 69.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_HLA-DQA2___CLIC3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.92e-11 7.40e-01 1.34e-12 3.16e-02 2.28e-01 \n", + "[1] \"PP abf for shared variant: 22.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__PTPRCAP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.20e-11 8.12e-01 1.32e-12 3.19e-02 1.56e-01 \n", + "[1] \"PP abf for shared variant: 15.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_HLA-DQA2___CDKN2D__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.5969e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.08e-11 5.27e-01 1.11e-12 2.37e-02 4.49e-01 \n", + "[1] \"PP abf for shared variant: 44.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__YBX1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.0931e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.68e-11 9.32e-01 1.39e-12 3.49e-02 3.33e-02 \n", + "[1] \"PP abf for shared variant: 3.33%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.70e-11 6.85e-01 1.16e-12 2.65e-02 2.89e-01 \n", + "[1] \"PP abf for shared variant: 28.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.31e-12 2.11e-01 6.20e-13 7.91e-03 7.81e-01 \n", + "[1] \"PP abf for shared variant: 78.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__MAP1A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.26e-11 3.18e-01 7.87e-13 1.33e-02 6.68e-01 \n", + "[1] \"PP abf for shared variant: 66.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_HLA-DQA2___FAM129C__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.11e-11 2.80e-01 8.59e-13 1.47e-02 7.05e-01 \n", + "[1] \"PP abf for shared variant: 70.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__MT-CO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1338e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.54e-11 8.97e-01 1.34e-12 3.32e-02 7.02e-02 \n", + "[1] \"PP abf for shared variant: 7.02%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.83e-11 4.65e-01 1.01e-12 2.05e-02 5.15e-01 \n", + "[1] \"PP abf for shared variant: 51.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___CST3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.17e-11 8.04e-01 4.07e-12 1.02e-01 9.40e-02 \n", + "[1] \"PP abf for shared variant: 9.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.59e-11 6.56e-01 3.26e-12 8.01e-02 2.64e-01 \n", + "[1] \"PP abf for shared variant: 26.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___CD74__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.60e-12 2.18e-01 1.04e-12 1.88e-02 7.63e-01 \n", + "[1] \"PP abf for shared variant: 76.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-11 6.74e-01 1.03e-11 2.61e-01 6.46e-02 \n", + "[1] \"PP abf for shared variant: 6.46%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.87e-11 7.28e-01 3.68e-12 9.16e-02 1.80e-01 \n", + "[1] \"PP abf for shared variant: 18%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.76e-11 6.99e-01 6.00e-12 1.51e-01 1.51e-01 \n", + "[1] \"PP abf for shared variant: 15.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DMA__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.38e-11 3.51e-01 2.08e-12 4.68e-02 6.02e-01 \n", + "[1] \"PP abf for shared variant: 60.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS23\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.04e-11 7.72e-01 3.58e-12 8.93e-02 1.39e-01 \n", + "[1] \"PP abf for shared variant: 13.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.26e-11 8.28e-01 1.52e-12 3.73e-02 1.35e-01 \n", + "[1] \"PP abf for shared variant: 13.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.73e-11 6.92e-01 1.69e-12 4.02e-02 2.68e-01 \n", + "[1] \"PP abf for shared variant: 26.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___EEF1A1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.05e-12 7.73e-02 7.79e-13 1.06e-02 9.12e-01 \n", + "[1] \"PP abf for shared variant: 91.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.96e-11 4.97e-01 1.69e-12 3.83e-02 4.65e-01 \n", + "[1] \"PP abf for shared variant: 46.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-11 4.99e-01 1.61e-12 3.60e-02 4.65e-01 \n", + "[1] \"PP abf for shared variant: 46.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DMB__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.50e-11 8.89e-01 2.38e-12 5.98e-02 5.16e-02 \n", + "[1] \"PP abf for shared variant: 5.16%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.46e-11 8.78e-01 3.83e-12 9.68e-02 2.56e-02 \n", + "[1] \"PP abf for shared variant: 2.56%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-11 3.68e-01 1.52e-12 3.25e-02 6.00e-01 \n", + "[1] \"PP abf for shared variant: 60%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.02e-11 7.65e-01 1.78e-12 4.33e-02 1.92e-01 \n", + "[1] \"PP abf for shared variant: 19.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RNASET2___HLA-DRB5__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.77e-11 9.56e-01 1.23e-12 3.12e-02 1.31e-02 \n", + "[1] \"PP abf for shared variant: 1.31%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_HLA-DQA2___CCL5__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-13 3.22e-03 4.03e-13 2.45e-04 9.97e-01 \n", + "[1] \"PP abf for shared variant: 99.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_HLA-DQA2___CD74__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.26e-11 3.19e-01 1.49e-12 3.13e-02 6.49e-01 \n", + "[1] \"PP abf for shared variant: 64.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.38e-12 3.50e-02 4.47e-13 1.69e-03 9.63e-01 \n", + "[1] \"PP abf for shared variant: 96.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__NKG7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-13 2.80e-03 4.20e-13 6.89e-04 9.97e-01 \n", + "[1] \"PP abf for shared variant: 99.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPL34\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.63e-13 6.67e-03 4.02e-13 2.70e-04 9.93e-01 \n", + "[1] \"PP abf for shared variant: 99.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.79e-11 4.54e-01 1.22e-12 2.58e-02 5.20e-01 \n", + "[1] \"PP abf for shared variant: 52%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_HLA-DQA2___CMC1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.27e-13 1.34e-02 4.54e-13 1.66e-03 9.85e-01 \n", + "[1] \"PP abf for shared variant: 98.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS14\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.16e-13 2.07e-02 4.29e-13 1.08e-03 9.78e-01 \n", + "[1] \"PP abf for shared variant: 97.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-12 3.90e-02 5.21e-13 3.64e-03 9.57e-01 \n", + "[1] \"PP abf for shared variant: 95.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.13e-11 5.40e-01 1.00e-12 2.10e-02 4.39e-01 \n", + "[1] \"PP abf for shared variant: 43.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.52e-13 1.65e-02 4.17e-13 7.33e-04 9.83e-01 \n", + "[1] \"PP abf for shared variant: 98.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.64e-12 1.43e-01 6.81e-13 8.78e-03 8.48e-01 \n", + "[1] \"PP abf for shared variant: 84.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___CD52__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-13 3.66e-03 4.01e-13 2.16e-04 9.96e-01 \n", + "[1] \"PP abf for shared variant: 99.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-11 5.20e-01 1.45e-12 3.22e-02 4.48e-01 \n", + "[1] \"PP abf for shared variant: 44.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.98e-12 1.52e-01 6.67e-13 8.52e-03 8.40e-01 \n", + "[1] \"PP abf for shared variant: 84%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.52e-12 1.91e-01 7.89e-13 1.20e-02 7.97e-01 \n", + "[1] \"PP abf for shared variant: 79.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___EEF1B2__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.81e-11 4.58e-01 9.79e-13 1.96e-02 5.22e-01 \n", + "[1] \"PP abf for shared variant: 52.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.38e-12 1.11e-01 5.92e-13 6.18e-03 8.83e-01 \n", + "[1] \"PP abf for shared variant: 88.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___B2M__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-11 2.64e-01 8.43e-13 1.42e-02 7.21e-01 \n", + "[1] \"PP abf for shared variant: 72.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___GAPDH__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.56e-12 1.41e-01 6.91e-13 9.03e-03 8.50e-01 \n", + "[1] \"PP abf for shared variant: 85%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL32\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.20e-13 8.13e-03 4.10e-13 4.69e-04 9.91e-01 \n", + "[1] \"PP abf for shared variant: 99.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.70e-11 6.85e-01 1.58e-12 3.74e-02 2.78e-01 \n", + "[1] \"PP abf for shared variant: 27.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.76e-12 1.71e-01 7.10e-13 9.82e-03 8.19e-01 \n", + "[1] \"PP abf for shared variant: 81.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RNASET2___ITGB1__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.019900 0.000407 0.958000 0.019600 0.001890 \n", + "[1] \"PP abf for shared variant: 0.189%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RNASET2___CRIP1__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.19500 0.00400 0.78300 0.01600 0.00163 \n", + "[1] \"PP abf for shared variant: 0.163%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RNASET2___B2M__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.09440 0.00193 0.88400 0.01810 0.00185 \n", + "[1] \"PP abf for shared variant: 0.185%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RNASET2___ALOX5AP__RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.22000 0.00451 0.75800 0.01550 0.00156 \n", + "[1] \"PP abf for shared variant: 0.156%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_RPS26___RPS26__RPS8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.0253e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5760 0.2260 0.0843 0.0322 0.0813 \n", + "[1] \"PP abf for shared variant: 8.13%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3600 0.1410 0.1270 0.0464 0.3250 \n", + "[1] \"PP abf for shared variant: 32.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"DC_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.393 0.154 0.107 0.039 0.306 \n", + "[1] \"PP abf for shared variant: 30.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2490 0.0979 0.2220 0.0837 0.3470 \n", + "[1] \"PP abf for shared variant: 34.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS26__UBE2J1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 8.0878e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.505 0.198 0.106 0.040 0.151 \n", + "[1] \"PP abf for shared variant: 15.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0757 0.0297 0.2460 0.0911 0.5570 \n", + "[1] \"PP abf for shared variant: 55.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4660 0.1830 0.0987 0.0366 0.2150 \n", + "[1] \"PP abf for shared variant: 21.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1042e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4890 0.1920 0.1170 0.0445 0.1580 \n", + "[1] \"PP abf for shared variant: 15.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS26__RPS28\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.1644e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5780 0.2270 0.0677 0.0256 0.1020 \n", + "[1] \"PP abf for shared variant: 10.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000548 0.000215 0.281000 0.104000 0.614000 \n", + "[1] \"PP abf for shared variant: 61.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL39__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.0557e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5800 0.2280 0.0787 0.0301 0.0835 \n", + "[1] \"PP abf for shared variant: 8.35%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01140 0.00448 0.28400 0.10500 0.59500 \n", + "[1] \"PP abf for shared variant: 59.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1210 0.0476 0.2240 0.0827 0.5250 \n", + "[1] \"PP abf for shared variant: 52.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00339 0.00133 0.26400 0.09740 0.63400 \n", + "[1] \"PP abf for shared variant: 63.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4460 0.1750 0.1160 0.0433 0.2200 \n", + "[1] \"PP abf for shared variant: 22%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2790 0.1100 0.1830 0.0681 0.3610 \n", + "[1] \"PP abf for shared variant: 36.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL26__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.7757e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4590 0.1800 0.1150 0.0432 0.2030 \n", + "[1] \"PP abf for shared variant: 20.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0692 0.0272 0.2140 0.0777 0.6120 \n", + "[1] \"PP abf for shared variant: 61.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3730 0.1470 0.1260 0.0464 0.3070 \n", + "[1] \"PP abf for shared variant: 30.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS25__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2778e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4300 0.1690 0.1230 0.0459 0.2320 \n", + "[1] \"PP abf for shared variant: 23.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS26__RPS29\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0623e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5660 0.2220 0.0711 0.0268 0.1140 \n", + "[1] \"PP abf for shared variant: 11.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0276 0.0108 0.2640 0.0977 0.6000 \n", + "[1] \"PP abf for shared variant: 60%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0782 0.0307 0.2860 0.1070 0.4980 \n", + "[1] \"PP abf for shared variant: 49.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1560 0.0612 0.1980 0.0727 0.5120 \n", + "[1] \"PP abf for shared variant: 51.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.59e-05 2.59e-05 2.99e-01 1.11e-01 5.90e-01 \n", + "[1] \"PP abf for shared variant: 59%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1408e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.6060 0.2380 0.0630 0.0241 0.0686 \n", + "[1] \"PP abf for shared variant: 6.86%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.791e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4390 0.1720 0.1330 0.0502 0.2060 \n", + "[1] \"PP abf for shared variant: 20.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1436e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5150 0.2020 0.0801 0.0297 0.1720 \n", + "[1] \"PP abf for shared variant: 17.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1123e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.6180 0.2430 0.0522 0.0198 0.0668 \n", + "[1] \"PP abf for shared variant: 6.68%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1470 0.0577 0.2130 0.0787 0.5040 \n", + "[1] \"PP abf for shared variant: 50.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2270 0.0891 0.1550 0.0561 0.4730 \n", + "[1] \"PP abf for shared variant: 47.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.73e-05 6.78e-06 3.25e-01 1.22e-01 5.52e-01 \n", + "[1] \"PP abf for shared variant: 55.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1410 0.0553 0.2170 0.0802 0.5070 \n", + "[1] \"PP abf for shared variant: 50.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01540 0.00603 0.22600 0.08200 0.67100 \n", + "[1] \"PP abf for shared variant: 67.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.60e-05 1.02e-05 2.93e-01 1.09e-01 5.98e-01 \n", + "[1] \"PP abf for shared variant: 59.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0950 0.0373 0.2220 0.0814 0.5650 \n", + "[1] \"PP abf for shared variant: 56.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPL23A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1639e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5550 0.2180 0.0753 0.0283 0.1230 \n", + "[1] \"PP abf for shared variant: 12.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"B_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0462 0.0181 0.2580 0.0954 0.5830 \n", + "[1] \"PP abf for shared variant: 58.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.14e-09 3.59e-09 2.50e-01 9.16e-02 6.58e-01 \n", + "[1] \"PP abf for shared variant: 65.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-12 5.70e-13 2.70e-01 9.96e-02 6.30e-01 \n", + "[1] \"PP abf for shared variant: 63%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0459 0.0180 0.2210 0.0802 0.6350 \n", + "[1] \"PP abf for shared variant: 63.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.62e-08 6.34e-09 2.36e-01 8.59e-02 6.78e-01 \n", + "[1] \"PP abf for shared variant: 67.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.93e-06 7.56e-07 3.52e-01 1.33e-01 5.15e-01 \n", + "[1] \"PP abf for shared variant: 51.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.35e-05 1.71e-05 2.87e-01 1.06e-01 6.07e-01 \n", + "[1] \"PP abf for shared variant: 60.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-17 8.08e-18 2.90e-01 1.08e-01 6.02e-01 \n", + "[1] \"PP abf for shared variant: 60.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.56e-11 1.40e-11 2.33e-01 8.45e-02 6.83e-01 \n", + "[1] \"PP abf for shared variant: 68.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.70e-12 1.45e-12 3.11e-01 1.16e-01 5.72e-01 \n", + "[1] \"PP abf for shared variant: 57.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-11 8.41e-12 1.85e-01 6.49e-02 7.50e-01 \n", + "[1] \"PP abf for shared variant: 75%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-05 4.56e-06 3.12e-01 1.17e-01 5.71e-01 \n", + "[1] \"PP abf for shared variant: 57.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000835 0.000327 0.267000 0.098400 0.633000 \n", + "[1] \"PP abf for shared variant: 63.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.01e-12 3.53e-12 2.74e-01 1.01e-01 6.25e-01 \n", + "[1] \"PP abf for shared variant: 62.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-15 4.96e-16 2.18e-01 7.86e-02 7.03e-01 \n", + "[1] \"PP abf for shared variant: 70.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02350 0.00923 0.29000 0.10800 0.56900 \n", + "[1] \"PP abf for shared variant: 56.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0427 0.0167 0.2170 0.0788 0.6440 \n", + "[1] \"PP abf for shared variant: 64.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-10 5.69e-11 2.89e-01 1.07e-01 6.04e-01 \n", + "[1] \"PP abf for shared variant: 60.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.35e-07 2.88e-07 2.74e-01 1.01e-01 6.25e-01 \n", + "[1] \"PP abf for shared variant: 62.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00774 0.00303 0.22300 0.08060 0.68600 \n", + "[1] \"PP abf for shared variant: 68.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.48e-07 9.74e-08 2.41e-01 8.76e-02 6.72e-01 \n", + "[1] \"PP abf for shared variant: 67.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.73e-18 1.07e-18 1.81e-01 6.34e-02 7.56e-01 \n", + "[1] \"PP abf for shared variant: 75.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.42e-12 2.91e-12 1.70e-01 5.88e-02 7.72e-01 \n", + "[1] \"PP abf for shared variant: 77.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.60e-11 1.02e-11 2.70e-01 9.95e-02 6.31e-01 \n", + "[1] \"PP abf for shared variant: 63.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__SPON2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00994 0.00390 0.30700 0.11500 0.56400 \n", + "[1] \"PP abf for shared variant: 56.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-05 5.22e-06 2.81e-01 1.04e-01 6.15e-01 \n", + "[1] \"PP abf for shared variant: 61.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.56e-19 6.11e-20 2.94e-01 1.09e-01 5.97e-01 \n", + "[1] \"PP abf for shared variant: 59.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.53e-13 6.02e-14 2.29e-01 8.29e-02 6.88e-01 \n", + "[1] \"PP abf for shared variant: 68.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.87e-12 1.52e-12 2.68e-01 9.86e-02 6.34e-01 \n", + "[1] \"PP abf for shared variant: 63.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-13 5.90e-14 1.98e-01 7.04e-02 7.31e-01 \n", + "[1] \"PP abf for shared variant: 73.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-06 4.45e-07 3.32e-01 1.25e-01 5.43e-01 \n", + "[1] \"PP abf for shared variant: 54.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1340 0.0524 0.2210 0.0816 0.5110 \n", + "[1] \"PP abf for shared variant: 51.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.69e-06 3.41e-06 3.42e-01 1.29e-01 5.29e-01 \n", + "[1] \"PP abf for shared variant: 52.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___PRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1991e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.413 0.162 0.149 0.056 0.221 \n", + "[1] \"PP abf for shared variant: 22.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-09 4.15e-10 2.16e-01 7.76e-02 7.06e-01 \n", + "[1] \"PP abf for shared variant: 70.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-12 8.24e-13 2.75e-01 1.01e-01 6.24e-01 \n", + "[1] \"PP abf for shared variant: 62.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-09 5.23e-10 2.61e-01 9.59e-02 6.43e-01 \n", + "[1] \"PP abf for shared variant: 64.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.50e-13 3.72e-13 4.17e-01 1.59e-01 4.24e-01 \n", + "[1] \"PP abf for shared variant: 42.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.73e-16 3.42e-16 3.10e-01 1.16e-01 5.74e-01 \n", + "[1] \"PP abf for shared variant: 57.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.90e-18 7.44e-19 2.90e-01 1.08e-01 6.03e-01 \n", + "[1] \"PP abf for shared variant: 60.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000442 0.000173 0.294000 0.109000 0.597000 \n", + "[1] \"PP abf for shared variant: 59.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.27e-10 1.67e-10 3.21e-01 1.20e-01 5.59e-01 \n", + "[1] \"PP abf for shared variant: 55.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.29e-05 2.07e-05 2.65e-01 9.76e-02 6.37e-01 \n", + "[1] \"PP abf for shared variant: 63.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.45e-10 2.14e-10 3.30e-01 1.24e-01 5.46e-01 \n", + "[1] \"PP abf for shared variant: 54.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-13 4.92e-14 2.66e-01 9.80e-02 6.36e-01 \n", + "[1] \"PP abf for shared variant: 63.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.00e-09 1.96e-09 2.85e-01 1.06e-01 6.09e-01 \n", + "[1] \"PP abf for shared variant: 60.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.96e-15 7.67e-16 3.09e-01 1.15e-01 5.76e-01 \n", + "[1] \"PP abf for shared variant: 57.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.80e-14 3.06e-14 3.16e-01 1.18e-01 5.66e-01 \n", + "[1] \"PP abf for shared variant: 56.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000268 0.000105 0.185000 0.065000 0.750000 \n", + "[1] \"PP abf for shared variant: 75%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.74e-14 3.43e-14 1.68e-01 5.80e-02 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3230 0.1270 0.1630 0.0607 0.3270 \n", + "[1] \"PP abf for shared variant: 32.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.11e-07 1.22e-07 3.12e-01 1.17e-01 5.72e-01 \n", + "[1] \"PP abf for shared variant: 57.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02030 0.00794 0.29800 0.11100 0.56200 \n", + "[1] \"PP abf for shared variant: 56.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.61e-08 1.02e-08 3.37e-01 1.27e-01 5.36e-01 \n", + "[1] \"PP abf for shared variant: 53.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000834 0.000327 0.645000 0.252000 0.102000 \n", + "[1] \"PP abf for shared variant: 10.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.55e-18 2.18e-18 3.21e-01 1.20e-01 5.58e-01 \n", + "[1] \"PP abf for shared variant: 55.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.55e-08 2.18e-08 1.81e-01 6.35e-02 7.55e-01 \n", + "[1] \"PP abf for shared variant: 75.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-09 5.88e-10 2.84e-01 1.05e-01 6.11e-01 \n", + "[1] \"PP abf for shared variant: 61.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.08e-07 3.17e-07 2.21e-01 7.95e-02 7.00e-01 \n", + "[1] \"PP abf for shared variant: 70%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.48e-10 1.36e-10 4.97e-01 1.92e-01 3.11e-01 \n", + "[1] \"PP abf for shared variant: 31.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.24e-16 3.23e-16 2.66e-01 9.80e-02 6.36e-01 \n", + "[1] \"PP abf for shared variant: 63.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.33e-06 1.31e-06 2.78e-01 1.03e-01 6.19e-01 \n", + "[1] \"PP abf for shared variant: 61.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.31e-06 3.65e-06 2.09e-01 7.47e-02 7.17e-01 \n", + "[1] \"PP abf for shared variant: 71.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___GPR183__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2410 0.0944 0.1780 0.0657 0.4210 \n", + "[1] \"PP abf for shared variant: 42.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.23e-16 8.73e-17 2.38e-01 8.64e-02 6.76e-01 \n", + "[1] \"PP abf for shared variant: 67.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00739 0.00290 0.27900 0.10300 0.60800 \n", + "[1] \"PP abf for shared variant: 60.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.77e-09 2.26e-09 2.07e-01 7.40e-02 7.19e-01 \n", + "[1] \"PP abf for shared variant: 71.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.73e-06 6.78e-07 2.55e-01 9.36e-02 6.51e-01 \n", + "[1] \"PP abf for shared variant: 65.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-05 6.82e-06 1.97e-01 6.98e-02 7.33e-01 \n", + "[1] \"PP abf for shared variant: 73.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-05 6.98e-06 3.13e-01 1.17e-01 5.70e-01 \n", + "[1] \"PP abf for shared variant: 57%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.09e-07 1.60e-07 2.54e-01 9.30e-02 6.53e-01 \n", + "[1] \"PP abf for shared variant: 65.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___GZMB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4099e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3620 0.1420 0.1650 0.0622 0.2680 \n", + "[1] \"PP abf for shared variant: 26.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___EEF1D__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5173e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.6350 0.2490 0.0442 0.0168 0.0548 \n", + "[1] \"PP abf for shared variant: 5.48%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001080 0.000425 0.435000 0.167000 0.397000 \n", + "[1] \"PP abf for shared variant: 39.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.15e-07 1.63e-07 2.20e-01 7.93e-02 7.01e-01 \n", + "[1] \"PP abf for shared variant: 70.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.80e-13 1.49e-13 3.33e-01 1.25e-01 5.42e-01 \n", + "[1] \"PP abf for shared variant: 54.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___KLRC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0905 0.0355 0.3710 0.1420 0.3610 \n", + "[1] \"PP abf for shared variant: 36.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL17__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.4275e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5880 0.2310 0.0872 0.0336 0.0600 \n", + "[1] \"PP abf for shared variant: 6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-06 6.51e-07 4.60e-01 1.77e-01 3.64e-01 \n", + "[1] \"PP abf for shared variant: 36.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.25e-09 1.67e-09 2.14e-01 7.67e-02 7.10e-01 \n", + "[1] \"PP abf for shared variant: 71%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___MALAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01650 0.00648 0.33100 0.12500 0.52200 \n", + "[1] \"PP abf for shared variant: 52.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002450 0.000962 0.314000 0.117000 0.565000 \n", + "[1] \"PP abf for shared variant: 56.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.70e-11 1.84e-11 3.30e-01 1.24e-01 5.46e-01 \n", + "[1] \"PP abf for shared variant: 54.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___HLA-B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8351e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5130 0.2010 0.0898 0.0336 0.1620 \n", + "[1] \"PP abf for shared variant: 16.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.02e-07 1.97e-07 3.19e-01 1.20e-01 5.61e-01 \n", + "[1] \"PP abf for shared variant: 56.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.96e-05 1.16e-05 2.22e-01 8.01e-02 6.98e-01 \n", + "[1] \"PP abf for shared variant: 69.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___FGFBP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2790 0.1090 0.2090 0.0787 0.3240 \n", + "[1] \"PP abf for shared variant: 32.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00731 0.00287 0.32500 0.12200 0.54200 \n", + "[1] \"PP abf for shared variant: 54.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000312 0.000123 0.256000 0.093900 0.650000 \n", + "[1] \"PP abf for shared variant: 65%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000292 0.000115 0.171000 0.059500 0.769000 \n", + "[1] \"PP abf for shared variant: 76.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0415 0.0163 0.3540 0.1340 0.4540 \n", + "[1] \"PP abf for shared variant: 45.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__ZEB2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.574e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5990 0.2350 0.0623 0.0236 0.0799 \n", + "[1] \"PP abf for shared variant: 7.99%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-05 4.07e-06 4.04e-01 1.54e-01 4.42e-01 \n", + "[1] \"PP abf for shared variant: 44.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.84e-15 7.21e-16 1.73e-01 6.01e-02 7.67e-01 \n", + "[1] \"PP abf for shared variant: 76.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___NACA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.2336e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5380 0.2110 0.0932 0.0353 0.1230 \n", + "[1] \"PP abf for shared variant: 12.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.53e-10 2.95e-10 3.10e-01 1.16e-01 5.74e-01 \n", + "[1] \"PP abf for shared variant: 57.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"NK_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.97e-11 1.56e-11 2.88e-01 1.07e-01 6.05e-01 \n", + "[1] \"PP abf for shared variant: 60.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___NRGN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7437e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3850 0.1510 0.1370 0.0509 0.2770 \n", + "[1] \"PP abf for shared variant: 27.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1710 0.0671 0.1780 0.0646 0.5200 \n", + "[1] \"PP abf for shared variant: 52%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000826 0.000324 0.243000 0.088700 0.667000 \n", + "[1] \"PP abf for shared variant: 66.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-06 4.72e-07 2.93e-01 1.09e-01 5.98e-01 \n", + "[1] \"PP abf for shared variant: 59.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-16 4.21e-17 1.75e-01 6.10e-02 7.64e-01 \n", + "[1] \"PP abf for shared variant: 76.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.25e-07 2.06e-07 2.34e-01 8.52e-02 6.81e-01 \n", + "[1] \"PP abf for shared variant: 68.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.14e-10 1.23e-10 1.58e-01 5.42e-02 7.88e-01 \n", + "[1] \"PP abf for shared variant: 78.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00573 0.00225 0.20400 0.07280 0.71600 \n", + "[1] \"PP abf for shared variant: 71.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.81e-09 7.12e-10 1.62e-01 5.59e-02 7.82e-01 \n", + "[1] \"PP abf for shared variant: 78.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.45e-15 1.75e-15 2.21e-01 7.97e-02 6.99e-01 \n", + "[1] \"PP abf for shared variant: 69.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__VCAN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2570 0.1010 0.1430 0.0516 0.4470 \n", + "[1] \"PP abf for shared variant: 44.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__UQCRH\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.92e-06 1.54e-06 1.74e-01 6.05e-02 7.66e-01 \n", + "[1] \"PP abf for shared variant: 76.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC7A7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00425 0.00167 0.17700 0.06200 0.75500 \n", + "[1] \"PP abf for shared variant: 75.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___EPB41L3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2130 0.0837 0.2200 0.0821 0.4010 \n", + "[1] \"PP abf for shared variant: 40.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00642 0.00252 0.28700 0.10700 0.59800 \n", + "[1] \"PP abf for shared variant: 59.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.98e-15 3.53e-15 1.65e-01 5.69e-02 7.79e-01 \n", + "[1] \"PP abf for shared variant: 77.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___HNRNPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01230 0.00484 0.23900 0.08750 0.65600 \n", + "[1] \"PP abf for shared variant: 65.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___QARS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2190 0.0859 0.2000 0.0745 0.4200 \n", + "[1] \"PP abf for shared variant: 42%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___HLA-DPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-06 8.69e-07 2.45e-01 8.94e-02 6.66e-01 \n", + "[1] \"PP abf for shared variant: 66.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-15 5.00e-16 1.72e-01 5.98e-02 7.68e-01 \n", + "[1] \"PP abf for shared variant: 76.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.67e-06 1.83e-06 2.66e-01 9.81e-02 6.36e-01 \n", + "[1] \"PP abf for shared variant: 63.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.89e-16 1.92e-16 1.53e-01 5.21e-02 7.95e-01 \n", + "[1] \"PP abf for shared variant: 79.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.17e-09 1.64e-09 1.88e-01 6.63e-02 7.46e-01 \n", + "[1] \"PP abf for shared variant: 74.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.14e-10 1.23e-10 1.54e-01 5.25e-02 7.94e-01 \n", + "[1] \"PP abf for shared variant: 79.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-12 3.96e-13 1.56e-01 5.32e-02 7.91e-01 \n", + "[1] \"PP abf for shared variant: 79.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01590 0.00625 0.23600 0.08620 0.65500 \n", + "[1] \"PP abf for shared variant: 65.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.75e-10 6.89e-11 1.57e-01 5.39e-02 7.89e-01 \n", + "[1] \"PP abf for shared variant: 78.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___CSTA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.31e-04 9.09e-05 1.76e-01 6.13e-02 7.63e-01 \n", + "[1] \"PP abf for shared variant: 76.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-07 6.29e-08 2.72e-01 1.00e-01 6.28e-01 \n", + "[1] \"PP abf for shared variant: 62.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0564 0.0221 0.1810 0.0644 0.6760 \n", + "[1] \"PP abf for shared variant: 67.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.47e-13 1.36e-13 1.66e-01 5.73e-02 7.77e-01 \n", + "[1] \"PP abf for shared variant: 77.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001770 0.000697 0.258000 0.094900 0.645000 \n", + "[1] \"PP abf for shared variant: 64.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.28e-15 5.01e-16 1.61e-01 5.55e-02 7.83e-01 \n", + "[1] \"PP abf for shared variant: 78.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___ERP29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2160 0.0848 0.1810 0.0667 0.4510 \n", + "[1] \"PP abf for shared variant: 45.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__TNFAIP2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2160 0.0850 0.1910 0.0706 0.4370 \n", + "[1] \"PP abf for shared variant: 43.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__VIM\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00459 0.00180 0.17600 0.06160 0.75600 \n", + "[1] \"PP abf for shared variant: 75.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.25e-12 2.45e-12 2.54e-01 9.31e-02 6.53e-01 \n", + "[1] \"PP abf for shared variant: 65.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.60e-21 3.77e-21 1.53e-01 5.22e-02 7.95e-01 \n", + "[1] \"PP abf for shared variant: 79.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.56e-12 2.18e-12 1.86e-01 6.57e-02 7.48e-01 \n", + "[1] \"PP abf for shared variant: 74.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.49e-06 2.16e-06 2.16e-01 7.79e-02 7.06e-01 \n", + "[1] \"PP abf for shared variant: 70.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.79e-10 7.03e-11 2.48e-01 9.08e-02 6.61e-01 \n", + "[1] \"PP abf for shared variant: 66.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.75e-10 3.83e-10 1.62e-01 5.58e-02 7.82e-01 \n", + "[1] \"PP abf for shared variant: 78.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.32e-05 9.12e-06 1.67e-01 5.78e-02 7.75e-01 \n", + "[1] \"PP abf for shared variant: 77.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00079 0.00031 0.21100 0.07580 0.71200 \n", + "[1] \"PP abf for shared variant: 71.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000310 0.000122 0.238000 0.086900 0.674000 \n", + "[1] \"PP abf for shared variant: 67.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.51e-14 1.38e-14 1.53e-01 5.22e-02 7.94e-01 \n", + "[1] \"PP abf for shared variant: 79.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-16 7.32e-17 1.56e-01 5.36e-02 7.90e-01 \n", + "[1] \"PP abf for shared variant: 79%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC25A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.70e-09 2.24e-09 2.79e-01 1.03e-01 6.18e-01 \n", + "[1] \"PP abf for shared variant: 61.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.34e-05 2.88e-05 1.99e-01 7.08e-02 7.30e-01 \n", + "[1] \"PP abf for shared variant: 73%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.46e-11 9.66e-12 1.99e-01 7.09e-02 7.30e-01 \n", + "[1] \"PP abf for shared variant: 73%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__RPSA\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1173e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2810 0.1100 0.2060 0.0776 0.3250 \n", + "[1] \"PP abf for shared variant: 32.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.81e-07 1.89e-07 2.58e-01 9.50e-02 6.47e-01 \n", + "[1] \"PP abf for shared variant: 64.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.58e-10 6.22e-11 2.78e-01 1.03e-01 6.19e-01 \n", + "[1] \"PP abf for shared variant: 61.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.13e-08 1.23e-08 1.64e-01 5.66e-02 7.79e-01 \n", + "[1] \"PP abf for shared variant: 77.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001210 0.000477 0.207000 0.074000 0.718000 \n", + "[1] \"PP abf for shared variant: 71.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.43e-09 9.53e-10 1.85e-01 6.53e-02 7.49e-01 \n", + "[1] \"PP abf for shared variant: 74.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-06 1.04e-06 2.42e-01 8.83e-02 6.70e-01 \n", + "[1] \"PP abf for shared variant: 67%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___HLA-DPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00969 0.00380 0.20700 0.07400 0.70600 \n", + "[1] \"PP abf for shared variant: 70.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.64e-12 2.22e-12 2.13e-01 7.65e-02 7.10e-01 \n", + "[1] \"PP abf for shared variant: 71%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.76e-11 1.48e-11 2.41e-01 8.79e-02 6.71e-01 \n", + "[1] \"PP abf for shared variant: 67.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.38e-05 1.33e-05 2.25e-01 8.13e-02 6.94e-01 \n", + "[1] \"PP abf for shared variant: 69.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___PABPC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-04 4.31e-05 1.75e-01 6.11e-02 7.64e-01 \n", + "[1] \"PP abf for shared variant: 76.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___CST3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7382e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3940 0.1550 0.1170 0.0429 0.2920 \n", + "[1] \"PP abf for shared variant: 29.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___EMP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01790 0.00702 0.22100 0.07990 0.67500 \n", + "[1] \"PP abf for shared variant: 67.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___GNLY__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2150 0.0844 0.2110 0.0787 0.4110 \n", + "[1] \"PP abf for shared variant: 41.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.12e-16 2.40e-16 1.63e-01 5.63e-02 7.81e-01 \n", + "[1] \"PP abf for shared variant: 78.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___EIF3M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2840 0.1120 0.1960 0.0736 0.3350 \n", + "[1] \"PP abf for shared variant: 33.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000741 0.000291 0.282000 0.105000 0.612000 \n", + "[1] \"PP abf for shared variant: 61.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___AP1S2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1390 0.0547 0.1720 0.0617 0.5730 \n", + "[1] \"PP abf for shared variant: 57.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.41e-11 2.52e-11 2.01e-01 7.18e-02 7.27e-01 \n", + "[1] \"PP abf for shared variant: 72.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.15e-09 1.24e-09 2.30e-01 8.33e-02 6.87e-01 \n", + "[1] \"PP abf for shared variant: 68.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__SEC11A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01100 0.00433 0.23900 0.08740 0.65800 \n", + "[1] \"PP abf for shared variant: 65.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.45e-04 9.64e-05 2.27e-01 8.21e-02 6.91e-01 \n", + "[1] \"PP abf for shared variant: 69.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.40e-11 1.33e-11 2.22e-01 8.01e-02 6.98e-01 \n", + "[1] \"PP abf for shared variant: 69.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.35e-09 1.71e-09 1.83e-01 6.43e-02 7.53e-01 \n", + "[1] \"PP abf for shared variant: 75.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.92e-11 1.93e-11 2.77e-01 1.03e-01 6.20e-01 \n", + "[1] \"PP abf for shared variant: 62%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.90e-08 2.32e-08 1.65e-01 5.69e-02 7.78e-01 \n", + "[1] \"PP abf for shared variant: 77.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-07 5.64e-08 1.91e-01 6.74e-02 7.42e-01 \n", + "[1] \"PP abf for shared variant: 74.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.66e-08 2.22e-08 1.96e-01 6.95e-02 7.35e-01 \n", + "[1] \"PP abf for shared variant: 73.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___ATP5G2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00527 0.00207 0.23000 0.08370 0.67900 \n", + "[1] \"PP abf for shared variant: 67.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.52e-06 1.38e-06 1.94e-01 6.89e-02 7.37e-01 \n", + "[1] \"PP abf for shared variant: 73.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.90e-09 1.14e-09 2.04e-01 7.30e-02 7.23e-01 \n", + "[1] \"PP abf for shared variant: 72.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC25A5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00446 0.00175 0.17500 0.06130 0.75700 \n", + "[1] \"PP abf for shared variant: 75.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.32e-13 5.19e-14 1.65e-01 5.69e-02 7.78e-01 \n", + "[1] \"PP abf for shared variant: 77.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-16 5.83e-17 1.56e-01 5.33e-02 7.91e-01 \n", + "[1] \"PP abf for shared variant: 79.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.01e-18 2.75e-18 2.30e-01 8.35e-02 6.86e-01 \n", + "[1] \"PP abf for shared variant: 68.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.71e-07 2.64e-07 2.06e-01 7.36e-02 7.20e-01 \n", + "[1] \"PP abf for shared variant: 72%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.35e-08 1.71e-08 1.57e-01 5.38e-02 7.89e-01 \n", + "[1] \"PP abf for shared variant: 78.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.80e-17 2.28e-17 1.73e-01 6.04e-02 7.66e-01 \n", + "[1] \"PP abf for shared variant: 76.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.18e-05 2.04e-05 1.75e-01 6.11e-02 7.64e-01 \n", + "[1] \"PP abf for shared variant: 76.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___EVI2B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2630 0.1030 0.1770 0.0655 0.3920 \n", + "[1] \"PP abf for shared variant: 39.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0629 0.0247 0.3100 0.1170 0.4850 \n", + "[1] \"PP abf for shared variant: 48.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01400 0.00551 0.25500 0.09370 0.63200 \n", + "[1] \"PP abf for shared variant: 63.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.00e-04 7.85e-05 1.65e-01 5.68e-02 7.78e-01 \n", + "[1] \"PP abf for shared variant: 77.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.05e-13 1.20e-13 1.82e-01 6.40e-02 7.54e-01 \n", + "[1] \"PP abf for shared variant: 75.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___LGALS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0906 0.0356 0.1680 0.0594 0.6470 \n", + "[1] \"PP abf for shared variant: 64.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1610 0.0634 0.1660 0.0595 0.5500 \n", + "[1] \"PP abf for shared variant: 55%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-11 4.41e-12 1.61e-01 5.55e-02 7.83e-01 \n", + "[1] \"PP abf for shared variant: 78.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.63e-15 1.03e-15 1.56e-01 5.32e-02 7.91e-01 \n", + "[1] \"PP abf for shared variant: 79.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.43e-11 9.53e-12 1.94e-01 6.90e-02 7.37e-01 \n", + "[1] \"PP abf for shared variant: 73.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.32e-06 5.20e-07 2.35e-01 8.54e-02 6.80e-01 \n", + "[1] \"PP abf for shared variant: 68%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___GPX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0183 0.0072 0.2090 0.0753 0.6900 \n", + "[1] \"PP abf for shared variant: 69%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___LTA4H__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4560 0.1790 0.1250 0.0472 0.1930 \n", + "[1] \"PP abf for shared variant: 19.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RNASE6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2160 0.0850 0.1920 0.0712 0.4350 \n", + "[1] \"PP abf for shared variant: 43.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___FTH1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0802 0.0315 0.2380 0.0877 0.5630 \n", + "[1] \"PP abf for shared variant: 56.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___BTF3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00802 0.00315 0.24200 0.08860 0.65800 \n", + "[1] \"PP abf for shared variant: 65.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___DRAM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1829e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4140 0.1630 0.1160 0.0429 0.2640 \n", + "[1] \"PP abf for shared variant: 26.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___IL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000726 0.000285 0.271000 0.100000 0.627000 \n", + "[1] \"PP abf for shared variant: 62.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___ATP5A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00857 0.00337 0.32500 0.12200 0.54000 \n", + "[1] \"PP abf for shared variant: 54%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.55e-07 2.18e-07 2.91e-01 1.08e-01 6.01e-01 \n", + "[1] \"PP abf for shared variant: 60.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.56e-11 2.18e-11 2.73e-01 1.01e-01 6.26e-01 \n", + "[1] \"PP abf for shared variant: 62.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.38e-14 2.51e-14 2.25e-01 8.13e-02 6.94e-01 \n", + "[1] \"PP abf for shared variant: 69.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1770 0.0694 0.1690 0.0610 0.5240 \n", + "[1] \"PP abf for shared variant: 52.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.68e-15 2.62e-15 1.88e-01 6.64e-02 7.46e-01 \n", + "[1] \"PP abf for shared variant: 74.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.96e-12 7.68e-13 1.63e-01 5.62e-02 7.81e-01 \n", + "[1] \"PP abf for shared variant: 78.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___IPO7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0590 0.0232 0.2890 0.1080 0.5210 \n", + "[1] \"PP abf for shared variant: 52.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.82e-08 1.50e-08 1.72e-01 6.00e-02 7.68e-01 \n", + "[1] \"PP abf for shared variant: 76.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.35e-12 2.10e-12 3.27e-01 1.23e-01 5.50e-01 \n", + "[1] \"PP abf for shared variant: 55%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.71e-13 1.06e-13 2.86e-01 1.06e-01 6.08e-01 \n", + "[1] \"PP abf for shared variant: 60.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___CXCR4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2966e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3930 0.1540 0.1440 0.0541 0.2540 \n", + "[1] \"PP abf for shared variant: 25.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-08 4.78e-09 1.96e-01 6.97e-02 7.34e-01 \n", + "[1] \"PP abf for shared variant: 73.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.56e-06 2.18e-06 2.15e-01 7.75e-02 7.07e-01 \n", + "[1] \"PP abf for shared variant: 70.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___CRTAP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00565 0.00222 0.20100 0.07170 0.72000 \n", + "[1] \"PP abf for shared variant: 72%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3190 0.1250 0.1510 0.0558 0.3480 \n", + "[1] \"PP abf for shared variant: 34.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.43e-10 2.53e-10 1.54e-01 5.25e-02 7.94e-01 \n", + "[1] \"PP abf for shared variant: 79.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000863 0.000339 0.204000 0.072700 0.723000 \n", + "[1] \"PP abf for shared variant: 72.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.66e-10 3.40e-10 2.63e-01 9.67e-02 6.41e-01 \n", + "[1] \"PP abf for shared variant: 64.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2420 0.0952 0.1780 0.0657 0.4190 \n", + "[1] \"PP abf for shared variant: 41.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___GPR183__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0456 0.0179 0.2490 0.0917 0.5960 \n", + "[1] \"PP abf for shared variant: 59.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-10 4.83e-11 1.64e-01 5.67e-02 7.79e-01 \n", + "[1] \"PP abf for shared variant: 77.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.33e-12 1.70e-12 1.59e-01 5.45e-02 7.87e-01 \n", + "[1] \"PP abf for shared variant: 78.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"monocyte_RPS26___RPS26__TKT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.96e-04 7.69e-05 3.53e-01 1.33e-01 5.13e-01 \n", + "[1] \"PP abf for shared variant: 51.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-15 6.53e-16 1.90e-01 6.73e-02 7.42e-01 \n", + "[1] \"PP abf for shared variant: 74.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SCML1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1130 0.0441 0.2560 0.0955 0.4920 \n", + "[1] \"PP abf for shared variant: 49.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___ACTN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000817 0.000320 0.293000 0.109000 0.597000 \n", + "[1] \"PP abf for shared variant: 59.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-14 4.55e-15 2.88e-01 1.07e-01 6.04e-01 \n", + "[1] \"PP abf for shared variant: 60.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__ZFAND1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4561e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3220 0.1260 0.1620 0.0605 0.3290 \n", + "[1] \"PP abf for shared variant: 32.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.25e-15 1.67e-15 2.41e-01 8.81e-02 6.70e-01 \n", + "[1] \"PP abf for shared variant: 67%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PRF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00566 0.00222 0.20700 0.07430 0.71000 \n", + "[1] \"PP abf for shared variant: 71%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-05 1.05e-05 2.51e-01 9.20e-02 6.57e-01 \n", + "[1] \"PP abf for shared variant: 65.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EFHD2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0406 0.0159 0.2690 0.1000 0.5740 \n", + "[1] \"PP abf for shared variant: 57.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SELL\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-10 5.89e-11 3.32e-01 1.25e-01 5.43e-01 \n", + "[1] \"PP abf for shared variant: 54.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-16 8.71e-17 1.93e-01 6.83e-02 7.39e-01 \n", + "[1] \"PP abf for shared variant: 73.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.77e-14 2.27e-14 2.51e-01 9.19e-02 6.57e-01 \n", + "[1] \"PP abf for shared variant: 65.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.27e-13 8.93e-14 1.99e-01 7.10e-02 7.30e-01 \n", + "[1] \"PP abf for shared variant: 73%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___APBA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0932 0.0366 0.2830 0.1060 0.4810 \n", + "[1] \"PP abf for shared variant: 48.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EEF1G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000140 0.000055 0.192000 0.068200 0.739000 \n", + "[1] \"PP abf for shared variant: 73.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___FAIM3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0512 0.0201 0.2500 0.0923 0.5860 \n", + "[1] \"PP abf for shared variant: 58.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EIF3G__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.430 0.169 0.131 0.049 0.222 \n", + "[1] \"PP abf for shared variant: 22.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___APOBEC3C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3040 0.1200 0.1810 0.0678 0.3270 \n", + "[1] \"PP abf for shared variant: 32.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01600 0.00628 0.28300 0.10500 0.58900 \n", + "[1] \"PP abf for shared variant: 58.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.00e-14 7.86e-15 2.99e-01 1.11e-01 5.90e-01 \n", + "[1] \"PP abf for shared variant: 59%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___C11orf1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.8471e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5240 0.2060 0.0969 0.0367 0.1370 \n", + "[1] \"PP abf for shared variant: 13.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___LCP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000414 0.000162 0.254000 0.093100 0.652000 \n", + "[1] \"PP abf for shared variant: 65.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-17 5.72e-18 2.60e-01 9.57e-02 6.44e-01 \n", + "[1] \"PP abf for shared variant: 64.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-17 6.97e-18 2.04e-01 7.31e-02 7.22e-01 \n", + "[1] \"PP abf for shared variant: 72.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___GZMM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2620 0.1030 0.1430 0.0519 0.4410 \n", + "[1] \"PP abf for shared variant: 44.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CFL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.06e-06 1.20e-06 4.09e-01 1.56e-01 4.35e-01 \n", + "[1] \"PP abf for shared variant: 43.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RSL1D1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000256 0.000100 0.194000 0.069000 0.736000 \n", + "[1] \"PP abf for shared variant: 73.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TXN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1610 0.0632 0.1910 0.0697 0.5150 \n", + "[1] \"PP abf for shared variant: 51.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CTSW__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1550 0.0610 0.1900 0.0693 0.5240 \n", + "[1] \"PP abf for shared variant: 52.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CD99__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.74e-05 1.08e-05 2.48e-01 9.10e-02 6.61e-01 \n", + "[1] \"PP abf for shared variant: 66.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-19 8.56e-20 1.53e-01 5.23e-02 7.94e-01 \n", + "[1] \"PP abf for shared variant: 79.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___FLT3LG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000363 0.000142 0.305000 0.114000 0.581000 \n", + "[1] \"PP abf for shared variant: 58.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___NKG7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.31e-05 1.30e-05 2.77e-01 1.02e-01 6.21e-01 \n", + "[1] \"PP abf for shared variant: 62.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__UQCRB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0326 0.0128 0.2830 0.1050 0.5670 \n", + "[1] \"PP abf for shared variant: 56.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__YWHAZ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.3964e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5030 0.1980 0.1130 0.0431 0.1420 \n", + "[1] \"PP abf for shared variant: 14.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CREM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2690 0.1060 0.1720 0.0635 0.3900 \n", + "[1] \"PP abf for shared variant: 39%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.19e-04 4.68e-05 2.33e-01 8.48e-02 6.82e-01 \n", + "[1] \"PP abf for shared variant: 68.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RGS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-06 5.00e-07 2.02e-01 7.20e-02 7.26e-01 \n", + "[1] \"PP abf for shared variant: 72.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.48e-09 1.37e-09 2.85e-01 1.06e-01 6.09e-01 \n", + "[1] \"PP abf for shared variant: 60.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.00e-13 1.96e-13 1.71e-01 5.97e-02 7.69e-01 \n", + "[1] \"PP abf for shared variant: 76.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___LDHB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-13 4.82e-14 2.39e-01 8.73e-02 6.73e-01 \n", + "[1] \"PP abf for shared variant: 67.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___ATP1A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 9.0977e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5330 0.2090 0.0699 0.0258 0.1630 \n", + "[1] \"PP abf for shared variant: 16.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CXCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1780 0.0699 0.2430 0.0914 0.4170 \n", + "[1] \"PP abf for shared variant: 41.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SYNE1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0805 0.0316 0.1730 0.0613 0.6540 \n", + "[1] \"PP abf for shared variant: 65.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___FYN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.137e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5110 0.2010 0.0989 0.0373 0.1520 \n", + "[1] \"PP abf for shared variant: 15.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.63e-07 2.21e-07 1.79e-01 6.28e-02 7.58e-01 \n", + "[1] \"PP abf for shared variant: 75.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___MYL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.23e-10 1.27e-10 2.71e-01 1.00e-01 6.29e-01 \n", + "[1] \"PP abf for shared variant: 62.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PDE3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.29e-04 5.07e-05 2.50e-01 9.16e-02 6.58e-01 \n", + "[1] \"PP abf for shared variant: 65.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.31e-20 9.07e-21 1.60e-01 5.48e-02 7.86e-01 \n", + "[1] \"PP abf for shared variant: 78.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___MT-CO1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.95e-05 1.16e-05 2.16e-01 7.79e-02 7.06e-01 \n", + "[1] \"PP abf for shared variant: 70.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__ZEB2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00835 0.00328 0.24700 0.09070 0.65000 \n", + "[1] \"PP abf for shared variant: 65%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___LTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.47e-08 1.76e-08 3.02e-01 1.13e-01 5.85e-01 \n", + "[1] \"PP abf for shared variant: 58.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PTPN7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3220 0.1260 0.1930 0.0728 0.2860 \n", + "[1] \"PP abf for shared variant: 28.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.03e-13 1.58e-13 1.84e-01 6.50e-02 7.51e-01 \n", + "[1] \"PP abf for shared variant: 75.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PFN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.98e-11 2.35e-11 1.77e-01 6.18e-02 7.62e-01 \n", + "[1] \"PP abf for shared variant: 76.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___IER2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1556e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5450 0.2140 0.0777 0.0292 0.1340 \n", + "[1] \"PP abf for shared variant: 13.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.46e-05 9.68e-06 1.91e-01 6.77e-02 7.41e-01 \n", + "[1] \"PP abf for shared variant: 74.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.19e-09 4.68e-10 2.68e-01 9.91e-02 6.32e-01 \n", + "[1] \"PP abf for shared variant: 63.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.21e-21 3.62e-21 1.73e-01 6.02e-02 7.67e-01 \n", + "[1] \"PP abf for shared variant: 76.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.06e-15 2.38e-15 4.38e-01 1.68e-01 3.93e-01 \n", + "[1] \"PP abf for shared variant: 39.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CMC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000904 0.000355 0.390000 0.149000 0.460000 \n", + "[1] \"PP abf for shared variant: 46%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SAT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.14e-04 4.48e-05 3.10e-01 1.16e-01 5.74e-01 \n", + "[1] \"PP abf for shared variant: 57.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-13 8.07e-14 2.31e-01 8.37e-02 6.86e-01 \n", + "[1] \"PP abf for shared variant: 68.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___GZMB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0274 0.0108 0.2530 0.0934 0.6150 \n", + "[1] \"PP abf for shared variant: 61.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___AKNA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.4233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5590 0.2200 0.0832 0.0316 0.1060 \n", + "[1] \"PP abf for shared variant: 10.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___HLA-DPB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.9277e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4320 0.1700 0.1160 0.0431 0.2390 \n", + "[1] \"PP abf for shared variant: 23.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-19 4.73e-20 2.96e-01 1.10e-01 5.93e-01 \n", + "[1] \"PP abf for shared variant: 59.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___NELL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.48e-08 9.74e-09 2.20e-01 7.93e-02 7.01e-01 \n", + "[1] \"PP abf for shared variant: 70.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EEF1D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-04 7.74e-05 2.28e-01 8.25e-02 6.89e-01 \n", + "[1] \"PP abf for shared variant: 68.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___FLNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0325 0.0128 0.2320 0.0846 0.6380 \n", + "[1] \"PP abf for shared variant: 63.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___C12orf75__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0308 0.0121 0.2660 0.0987 0.5920 \n", + "[1] \"PP abf for shared variant: 59.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-16 6.47e-17 2.10e-01 7.53e-02 7.15e-01 \n", + "[1] \"PP abf for shared variant: 71.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___HLA-C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.52e-11 1.77e-11 2.95e-01 1.10e-01 5.95e-01 \n", + "[1] \"PP abf for shared variant: 59.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___HLA-B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-14 4.11e-15 3.27e-01 1.23e-01 5.50e-01 \n", + "[1] \"PP abf for shared variant: 55%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___METRNL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4496e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5600 0.2200 0.0719 0.0270 0.1220 \n", + "[1] \"PP abf for shared variant: 12.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PFDN5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0323 0.0127 0.4080 0.1560 0.3910 \n", + "[1] \"PP abf for shared variant: 39.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CAMK4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-07 8.57e-08 1.88e-01 6.66e-02 7.45e-01 \n", + "[1] \"PP abf for shared variant: 74.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___BHLHE40__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01000 0.00393 0.24200 0.08830 0.65600 \n", + "[1] \"PP abf for shared variant: 65.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___IFITM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.2604e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4730 0.1860 0.1180 0.0444 0.1790 \n", + "[1] \"PP abf for shared variant: 17.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SLA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0674 0.0265 0.3270 0.1240 0.4550 \n", + "[1] \"PP abf for shared variant: 45.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CD8B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.64e-04 6.45e-05 2.61e-01 9.60e-02 6.43e-01 \n", + "[1] \"PP abf for shared variant: 64.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-18 6.51e-19 2.04e-01 7.28e-02 7.23e-01 \n", + "[1] \"PP abf for shared variant: 72.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___NGFRAP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0696 0.0273 0.2930 0.1100 0.5010 \n", + "[1] \"PP abf for shared variant: 50.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-13 4.38e-14 2.53e-01 9.27e-02 6.55e-01 \n", + "[1] \"PP abf for shared variant: 65.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TUBA4A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0548 0.0215 0.2640 0.0981 0.5620 \n", + "[1] \"PP abf for shared variant: 56.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.54e-05 1.39e-05 3.04e-01 1.14e-01 5.82e-01 \n", + "[1] \"PP abf for shared variant: 58.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.75e-20 1.86e-20 1.65e-01 5.72e-02 7.77e-01 \n", + "[1] \"PP abf for shared variant: 77.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RCAN3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.28e-06 1.68e-06 2.08e-01 7.47e-02 7.17e-01 \n", + "[1] \"PP abf for shared variant: 71.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.86e-13 1.51e-13 2.19e-01 7.90e-02 7.02e-01 \n", + "[1] \"PP abf for shared variant: 70.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PPP2R5C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.83e-04 7.17e-05 2.26e-01 8.17e-02 6.92e-01 \n", + "[1] \"PP abf for shared variant: 69.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.07e-11 1.21e-11 1.94e-01 6.87e-02 7.38e-01 \n", + "[1] \"PP abf for shared variant: 73.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.02e-08 1.19e-08 2.09e-01 7.49e-02 7.16e-01 \n", + "[1] \"PP abf for shared variant: 71.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___DNAJB6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1210 0.0476 0.2160 0.0795 0.5350 \n", + "[1] \"PP abf for shared variant: 53.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RAP1B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.077e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5670 0.2230 0.0639 0.0239 0.1230 \n", + "[1] \"PP abf for shared variant: 12.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.24e-05 8.80e-06 2.57e-01 9.45e-02 6.48e-01 \n", + "[1] \"PP abf for shared variant: 64.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PABPC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001510 0.000593 0.228000 0.082500 0.688000 \n", + "[1] \"PP abf for shared variant: 68.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___FBL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00432 0.00170 0.23500 0.08570 0.67300 \n", + "[1] \"PP abf for shared variant: 67.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CCDC104__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.9652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5190 0.2040 0.0799 0.0297 0.1680 \n", + "[1] \"PP abf for shared variant: 16.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CCL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.17e-08 4.60e-09 3.21e-01 1.21e-01 5.58e-01 \n", + "[1] \"PP abf for shared variant: 55.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.15e-08 1.24e-08 3.32e-01 1.25e-01 5.43e-01 \n", + "[1] \"PP abf for shared variant: 54.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___NPM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.62e-06 1.03e-06 2.32e-01 8.43e-02 6.84e-01 \n", + "[1] \"PP abf for shared variant: 68.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-18 4.12e-19 1.69e-01 5.85e-02 7.73e-01 \n", + "[1] \"PP abf for shared variant: 77.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___MT-CO2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0375 0.0147 0.2500 0.0919 0.6060 \n", + "[1] \"PP abf for shared variant: 60.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TESPA1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01150 0.00453 0.22600 0.08210 0.67600 \n", + "[1] \"PP abf for shared variant: 67.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01820 0.00715 0.29700 0.11100 0.56600 \n", + "[1] \"PP abf for shared variant: 56.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PSMA7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2640 0.1040 0.1850 0.0689 0.3780 \n", + "[1] \"PP abf for shared variant: 37.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PLEK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2350 0.0923 0.1940 0.0721 0.4070 \n", + "[1] \"PP abf for shared variant: 40.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SUB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-04 5.92e-05 2.17e-01 7.84e-02 7.04e-01 \n", + "[1] \"PP abf for shared variant: 70.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.82e-16 1.11e-16 1.81e-01 6.35e-02 7.56e-01 \n", + "[1] \"PP abf for shared variant: 75.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___MT-ND5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.4281e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3700 0.1450 0.1350 0.0499 0.3010 \n", + "[1] \"PP abf for shared variant: 30.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___KLRD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00394 0.00155 0.20000 0.07130 0.72300 \n", + "[1] \"PP abf for shared variant: 72.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___MYC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00402 0.00158 0.24900 0.09140 0.65400 \n", + "[1] \"PP abf for shared variant: 65.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RGS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2180 0.0858 0.1820 0.0670 0.4470 \n", + "[1] \"PP abf for shared variant: 44.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___KLF2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.391e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.449 0.176 0.130 0.049 0.196 \n", + "[1] \"PP abf for shared variant: 19.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SLC25A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3470 0.1360 0.1590 0.0595 0.2980 \n", + "[1] \"PP abf for shared variant: 29.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___HNRNPA2B1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4940 0.1940 0.1090 0.0411 0.1620 \n", + "[1] \"PP abf for shared variant: 16.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___ARAP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.3907e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.6120 0.2400 0.0522 0.0197 0.0759 \n", + "[1] \"PP abf for shared variant: 7.59%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___HLA-A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-16 6.29e-17 2.49e-01 9.12e-02 6.60e-01 \n", + "[1] \"PP abf for shared variant: 66%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__UBB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.15e-06 2.81e-06 1.80e-01 6.33e-02 7.56e-01 \n", + "[1] \"PP abf for shared variant: 75.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL17__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-05 6.54e-06 1.87e-01 6.58e-02 7.48e-01 \n", + "[1] \"PP abf for shared variant: 74.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.82e-13 1.50e-13 1.73e-01 6.04e-02 7.66e-01 \n", + "[1] \"PP abf for shared variant: 76.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__UBC\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.26e-06 1.67e-06 2.15e-01 7.74e-02 7.07e-01 \n", + "[1] \"PP abf for shared variant: 70.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.49e-06 3.33e-06 3.00e-01 1.12e-01 5.87e-01 \n", + "[1] \"PP abf for shared variant: 58.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TGFB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1240 0.0486 0.1890 0.0684 0.5700 \n", + "[1] \"PP abf for shared variant: 57%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.92e-10 2.32e-10 1.67e-01 5.78e-02 7.75e-01 \n", + "[1] \"PP abf for shared variant: 77.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.58e-19 2.59e-19 1.65e-01 5.72e-02 7.77e-01 \n", + "[1] \"PP abf for shared variant: 77.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___LYPD3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3250 0.1280 0.2080 0.0789 0.2610 \n", + "[1] \"PP abf for shared variant: 26.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TMSB10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.75e-05 1.87e-05 1.91e-01 6.75e-02 7.42e-01 \n", + "[1] \"PP abf for shared variant: 74.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CLIC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1740 0.0683 0.2090 0.0773 0.4720 \n", + "[1] \"PP abf for shared variant: 47.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___C12orf57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0348 0.0136 0.1920 0.0684 0.6920 \n", + "[1] \"PP abf for shared variant: 69.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TMEM243\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001360 0.000535 0.251000 0.092100 0.655000 \n", + "[1] \"PP abf for shared variant: 65.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.79e-15 7.05e-16 2.23e-01 8.08e-02 6.96e-01 \n", + "[1] \"PP abf for shared variant: 69.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___ID2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1140 0.0448 0.2200 0.0808 0.5410 \n", + "[1] \"PP abf for shared variant: 54.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.84e-15 1.90e-15 2.20e-01 7.95e-02 7.00e-01 \n", + "[1] \"PP abf for shared variant: 70%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CCR7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.77e-10 3.05e-10 2.50e-01 9.16e-02 6.58e-01 \n", + "[1] \"PP abf for shared variant: 65.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00370 0.00145 0.36900 0.14000 0.48500 \n", + "[1] \"PP abf for shared variant: 48.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-25 4.22e-26 1.73e-01 6.03e-02 7.67e-01 \n", + "[1] \"PP abf for shared variant: 76.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___COX7C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3440 0.1350 0.1810 0.0685 0.2710 \n", + "[1] \"PP abf for shared variant: 27.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___NFKBIA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 7.944e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4990 0.1960 0.0977 0.0367 0.1710 \n", + "[1] \"PP abf for shared variant: 17.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___NDFIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0284 0.0111 0.2850 0.1060 0.5690 \n", + "[1] \"PP abf for shared variant: 56.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.94e-17 7.61e-18 1.68e-01 5.81e-02 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.49e-15 5.87e-16 2.65e-01 9.77e-02 6.37e-01 \n", + "[1] \"PP abf for shared variant: 63.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.57e-10 3.36e-10 2.52e-01 9.23e-02 6.56e-01 \n", + "[1] \"PP abf for shared variant: 65.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___GZMA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.96e-08 3.91e-08 1.70e-01 5.92e-02 7.70e-01 \n", + "[1] \"PP abf for shared variant: 77%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___ABHD14B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1800 0.0706 0.1850 0.0676 0.4970 \n", + "[1] \"PP abf for shared variant: 49.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.24e-11 1.66e-11 1.65e-01 5.69e-02 7.78e-01 \n", + "[1] \"PP abf for shared variant: 77.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TPI1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3000 0.1180 0.1590 0.0587 0.3650 \n", + "[1] \"PP abf for shared variant: 36.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-18 5.09e-19 2.60e-01 9.57e-02 6.44e-01 \n", + "[1] \"PP abf for shared variant: 64.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___GIMAP7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1180 0.0462 0.2630 0.0986 0.4740 \n", + "[1] \"PP abf for shared variant: 47.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-10 4.25e-11 1.66e-01 5.76e-02 7.76e-01 \n", + "[1] \"PP abf for shared variant: 77.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.16e-15 8.50e-16 2.44e-01 8.92e-02 6.67e-01 \n", + "[1] \"PP abf for shared variant: 66.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SC5D\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3720 0.1460 0.2120 0.0812 0.1890 \n", + "[1] \"PP abf for shared variant: 18.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.68e-11 3.80e-11 2.23e-01 8.08e-02 6.96e-01 \n", + "[1] \"PP abf for shared variant: 69.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.35e-18 2.10e-18 1.55e-01 5.29e-02 7.92e-01 \n", + "[1] \"PP abf for shared variant: 79.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RIC3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001460 0.000574 0.299000 0.111000 0.588000 \n", + "[1] \"PP abf for shared variant: 58.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-11 7.16e-12 2.18e-01 7.85e-02 7.04e-01 \n", + "[1] \"PP abf for shared variant: 70.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SH3YL1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.82e-05 1.11e-05 3.66e-01 1.39e-01 4.95e-01 \n", + "[1] \"PP abf for shared variant: 49.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CCNG1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.9814e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5490 0.2160 0.0875 0.0332 0.1140 \n", + "[1] \"PP abf for shared variant: 11.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SRP14\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-04 5.29e-05 2.99e-01 1.11e-01 5.89e-01 \n", + "[1] \"PP abf for shared variant: 58.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SPON2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0298e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.450 0.177 0.105 0.039 0.229 \n", + "[1] \"PP abf for shared variant: 22.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___HMGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000965 0.000379 0.307000 0.115000 0.576000 \n", + "[1] \"PP abf for shared variant: 57.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___NOSIP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.93e-07 3.51e-07 3.20e-01 1.20e-01 5.60e-01 \n", + "[1] \"PP abf for shared variant: 56%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.78e-16 1.09e-16 2.69e-01 9.94e-02 6.32e-01 \n", + "[1] \"PP abf for shared variant: 63.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.83e-19 7.20e-20 1.54e-01 5.26e-02 7.93e-01 \n", + "[1] \"PP abf for shared variant: 79.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-19 6.16e-20 2.00e-01 7.13e-02 7.29e-01 \n", + "[1] \"PP abf for shared variant: 72.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___MYL12B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.0233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4460 0.1750 0.1300 0.0491 0.2000 \n", + "[1] \"PP abf for shared variant: 20%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___GNLY__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01370 0.00539 0.19200 0.06830 0.72000 \n", + "[1] \"PP abf for shared variant: 72%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___MIR142__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1648e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.6030 0.2370 0.0607 0.0231 0.0770 \n", + "[1] \"PP abf for shared variant: 7.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00570 0.00224 0.31000 0.11600 0.56500 \n", + "[1] \"PP abf for shared variant: 56.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.11e-18 2.79e-18 1.62e-01 5.59e-02 7.82e-01 \n", + "[1] \"PP abf for shared variant: 78.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1370 0.0537 0.1600 0.0570 0.5920 \n", + "[1] \"PP abf for shared variant: 59.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.65e-06 1.43e-06 1.87e-01 6.59e-02 7.47e-01 \n", + "[1] \"PP abf for shared variant: 74.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PTP4A2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3100 0.1220 0.1650 0.0613 0.3420 \n", + "[1] \"PP abf for shared variant: 34.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___FGFBP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.9666e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5470 0.2150 0.0723 0.0270 0.1390 \n", + "[1] \"PP abf for shared variant: 13.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RPSAP58\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.30e-05 2.08e-05 2.35e-01 8.56e-02 6.79e-01 \n", + "[1] \"PP abf for shared variant: 67.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.14e-08 1.23e-08 2.58e-01 9.49e-02 6.47e-01 \n", + "[1] \"PP abf for shared variant: 64.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.47e-25 1.76e-25 3.35e-01 1.26e-01 5.39e-01 \n", + "[1] \"PP abf for shared variant: 53.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CCDC57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.50e-06 9.81e-07 3.16e-01 1.18e-01 5.65e-01 \n", + "[1] \"PP abf for shared variant: 56.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___ITGB2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4210 0.1650 0.1240 0.0462 0.2430 \n", + "[1] \"PP abf for shared variant: 24.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EIF2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0553 0.0217 0.2480 0.0918 0.5830 \n", + "[1] \"PP abf for shared variant: 58.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___MYO1F__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.4185e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5480 0.2150 0.0815 0.0308 0.1240 \n", + "[1] \"PP abf for shared variant: 12.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___ARF6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0799 0.0314 0.1790 0.0640 0.6450 \n", + "[1] \"PP abf for shared variant: 64.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CD81__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2450 0.0961 0.2630 0.1000 0.2960 \n", + "[1] \"PP abf for shared variant: 29.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TMEM123\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002530 0.000995 0.224000 0.081200 0.691000 \n", + "[1] \"PP abf for shared variant: 69.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___ALKBH7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002510 0.000985 0.237000 0.086200 0.674000 \n", + "[1] \"PP abf for shared variant: 67.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___LDHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000892 0.000350 0.268000 0.098800 0.632000 \n", + "[1] \"PP abf for shared variant: 63.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PIK3IP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.22e-05 2.05e-05 3.06e-01 1.15e-01 5.79e-01 \n", + "[1] \"PP abf for shared variant: 57.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___FOXP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00104 0.00041 0.37200 0.14100 0.48500 \n", + "[1] \"PP abf for shared variant: 48.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CCL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.27e-05 2.07e-05 2.35e-01 8.55e-02 6.80e-01 \n", + "[1] \"PP abf for shared variant: 68%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___NEAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01110 0.00436 0.22700 0.08230 0.67500 \n", + "[1] \"PP abf for shared variant: 67.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___KLRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.9856e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.483 0.190 0.104 0.039 0.184 \n", + "[1] \"PP abf for shared variant: 18.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___BTF3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5042e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5950 0.2340 0.0680 0.0259 0.0779 \n", + "[1] \"PP abf for shared variant: 7.79%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__ZFAS1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1710 0.0671 0.1910 0.0701 0.5010 \n", + "[1] \"PP abf for shared variant: 50.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-15 6.99e-16 2.54e-01 9.32e-02 6.53e-01 \n", + "[1] \"PP abf for shared variant: 65.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___C1orf21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1023e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4710 0.1850 0.1070 0.0401 0.1960 \n", + "[1] \"PP abf for shared variant: 19.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.43e-10 9.53e-11 3.02e-01 1.13e-01 5.86e-01 \n", + "[1] \"PP abf for shared variant: 58.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CALM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1290 0.0507 0.2860 0.1080 0.4250 \n", + "[1] \"PP abf for shared variant: 42.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___HOPX__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3220 0.1260 0.2150 0.0821 0.2540 \n", + "[1] \"PP abf for shared variant: 25.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CD55__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0277 0.0109 0.2490 0.0916 0.6210 \n", + "[1] \"PP abf for shared variant: 62.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.26e-16 3.64e-16 1.66e-01 5.75e-02 7.76e-01 \n", + "[1] \"PP abf for shared variant: 77.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000428 0.000168 0.208000 0.074700 0.716000 \n", + "[1] \"PP abf for shared variant: 71.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.33e-16 1.31e-16 2.58e-01 9.48e-02 6.47e-01 \n", + "[1] \"PP abf for shared variant: 64.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00658 0.00258 0.27400 0.10100 0.61600 \n", + "[1] \"PP abf for shared variant: 61.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-10 6.52e-11 3.09e-01 1.16e-01 5.75e-01 \n", + "[1] \"PP abf for shared variant: 57.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___HLA-DRB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.507e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5930 0.2330 0.0759 0.0291 0.0686 \n", + "[1] \"PP abf for shared variant: 6.86%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.57e-18 1.40e-18 1.75e-01 6.11e-02 7.64e-01 \n", + "[1] \"PP abf for shared variant: 76.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.73e-14 1.86e-14 2.08e-01 7.46e-02 7.17e-01 \n", + "[1] \"PP abf for shared variant: 71.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PTMA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00268 0.00105 0.24100 0.08810 0.66700 \n", + "[1] \"PP abf for shared variant: 66.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.75e-10 6.88e-11 2.71e-01 1.00e-01 6.29e-01 \n", + "[1] \"PP abf for shared variant: 62.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___GNG2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1760 0.0689 0.2280 0.0850 0.4430 \n", + "[1] \"PP abf for shared variant: 44.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TIGIT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02330 0.00914 0.26900 0.09950 0.59900 \n", + "[1] \"PP abf for shared variant: 59.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.89e-07 3.88e-07 2.95e-01 1.10e-01 5.95e-01 \n", + "[1] \"PP abf for shared variant: 59.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.91e-10 1.14e-10 2.16e-01 7.77e-02 7.07e-01 \n", + "[1] \"PP abf for shared variant: 70.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___C1QBP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000700 0.000275 0.287000 0.107000 0.606000 \n", + "[1] \"PP abf for shared variant: 60.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CD27__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.689e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4430 0.1740 0.1150 0.0428 0.2260 \n", + "[1] \"PP abf for shared variant: 22.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___KLRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00296 0.00116 0.26900 0.09920 0.62800 \n", + "[1] \"PP abf for shared variant: 62.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___MAL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.45e-10 3.70e-10 2.37e-01 8.61e-02 6.77e-01 \n", + "[1] \"PP abf for shared variant: 67.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.61e-16 1.42e-16 2.17e-01 7.82e-02 7.05e-01 \n", + "[1] \"PP abf for shared variant: 70.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___REL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.691e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5220 0.2050 0.1160 0.0444 0.1120 \n", + "[1] \"PP abf for shared variant: 11.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.62e-11 6.34e-12 2.55e-01 9.35e-02 6.52e-01 \n", + "[1] \"PP abf for shared variant: 65.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___FTL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2950 0.1160 0.1870 0.0701 0.3310 \n", + "[1] \"PP abf for shared variant: 33.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.99e-09 2.75e-09 1.91e-01 6.75e-02 7.42e-01 \n", + "[1] \"PP abf for shared variant: 74.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.51e-13 9.85e-14 3.12e-01 1.17e-01 5.71e-01 \n", + "[1] \"PP abf for shared variant: 57.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.26e-07 1.67e-07 2.75e-01 1.02e-01 6.24e-01 \n", + "[1] \"PP abf for shared variant: 62.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SEPT7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0879 0.0345 0.2220 0.0813 0.5740 \n", + "[1] \"PP abf for shared variant: 57.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TCF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1100 0.0430 0.2520 0.0938 0.5020 \n", + "[1] \"PP abf for shared variant: 50.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3630 0.1430 0.1490 0.0557 0.2900 \n", + "[1] \"PP abf for shared variant: 29%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.43e-09 1.74e-09 3.76e-01 1.43e-01 4.82e-01 \n", + "[1] \"PP abf for shared variant: 48.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___FCGR3A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0446 0.0175 0.2390 0.0877 0.6110 \n", + "[1] \"PP abf for shared variant: 61.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PSMB9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 8.645e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5180 0.2040 0.1030 0.0392 0.1360 \n", + "[1] \"PP abf for shared variant: 13.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___LEF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.63e-09 1.42e-09 2.61e-01 9.62e-02 6.43e-01 \n", + "[1] \"PP abf for shared variant: 64.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PTPRC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.54e-08 9.96e-09 2.55e-01 9.38e-02 6.51e-01 \n", + "[1] \"PP abf for shared variant: 65.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3720 0.1460 0.1680 0.0633 0.2510 \n", + "[1] \"PP abf for shared variant: 25.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000976 0.000383 0.263000 0.096800 0.639000 \n", + "[1] \"PP abf for shared variant: 63.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.40e-16 2.51e-16 2.56e-01 9.42e-02 6.49e-01 \n", + "[1] \"PP abf for shared variant: 64.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-13 4.85e-14 2.00e-01 7.14e-02 7.28e-01 \n", + "[1] \"PP abf for shared variant: 72.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___ANXA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1000 0.0393 0.2970 0.1120 0.4510 \n", + "[1] \"PP abf for shared variant: 45.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___LGALS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0561 0.0220 0.2170 0.0791 0.6250 \n", + "[1] \"PP abf for shared variant: 62.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.75e-14 6.86e-15 2.15e-01 7.72e-02 7.08e-01 \n", + "[1] \"PP abf for shared variant: 70.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___DDX5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5519e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4370 0.1720 0.1320 0.0499 0.2090 \n", + "[1] \"PP abf for shared variant: 20.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.32e-11 3.66e-11 5.20e-01 2.01e-01 2.79e-01 \n", + "[1] \"PP abf for shared variant: 27.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___DOK2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2520 0.0991 0.1840 0.0683 0.3960 \n", + "[1] \"PP abf for shared variant: 39.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CRIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.79e-06 2.67e-06 3.19e-01 1.20e-01 5.62e-01 \n", + "[1] \"PP abf for shared variant: 56.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CALR__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.9449e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3720 0.1460 0.1410 0.0525 0.2890 \n", + "[1] \"PP abf for shared variant: 28.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TTC38\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1223e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3890 0.1530 0.1390 0.0521 0.2660 \n", + "[1] \"PP abf for shared variant: 26.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___C1orf228__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01380 0.00543 0.25000 0.09170 0.63900 \n", + "[1] \"PP abf for shared variant: 63.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___DUSP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00515 0.00202 0.31400 0.11800 0.56200 \n", + "[1] \"PP abf for shared variant: 56.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EIF4B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.79e-09 1.10e-09 2.62e-01 9.65e-02 6.42e-01 \n", + "[1] \"PP abf for shared variant: 64.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.47e-10 2.93e-10 2.56e-01 9.41e-02 6.50e-01 \n", + "[1] \"PP abf for shared variant: 65%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TRABD2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.84e-06 7.22e-07 1.94e-01 6.89e-02 7.37e-01 \n", + "[1] \"PP abf for shared variant: 73.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-16 4.85e-17 1.67e-01 5.80e-02 7.75e-01 \n", + "[1] \"PP abf for shared variant: 77.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PASK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.98e-07 2.74e-07 3.18e-01 1.19e-01 5.63e-01 \n", + "[1] \"PP abf for shared variant: 56.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___OAZ1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.24e-10 8.79e-11 2.97e-01 1.11e-01 5.93e-01 \n", + "[1] \"PP abf for shared variant: 59.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.79e-17 7.01e-18 1.75e-01 6.10e-02 7.64e-01 \n", + "[1] \"PP abf for shared variant: 76.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___OXNAD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1359e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5110 0.2010 0.1590 0.0617 0.0675 \n", + "[1] \"PP abf for shared variant: 6.75%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0364 0.0143 0.3160 0.1190 0.5150 \n", + "[1] \"PP abf for shared variant: 51.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SRGN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.41e-16 1.73e-16 3.37e-01 1.27e-01 5.36e-01 \n", + "[1] \"PP abf for shared variant: 53.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___HLA-E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000471 0.000185 0.182000 0.063700 0.754000 \n", + "[1] \"PP abf for shared variant: 75.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TYROBP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00372 0.00146 0.20800 0.07470 0.71200 \n", + "[1] \"PP abf for shared variant: 71.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__YBX3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1331e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5960 0.2340 0.0592 0.0224 0.0888 \n", + "[1] \"PP abf for shared variant: 8.88%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CST7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.32e-06 5.19e-07 2.87e-01 1.07e-01 6.06e-01 \n", + "[1] \"PP abf for shared variant: 60.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___AIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000347 0.000136 0.459000 0.176000 0.364000 \n", + "[1] \"PP abf for shared variant: 36.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___IL7R__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000838 0.000329 0.219000 0.079100 0.701000 \n", + "[1] \"PP abf for shared variant: 70.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RHOH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0305 0.0120 0.3090 0.1160 0.5320 \n", + "[1] \"PP abf for shared variant: 53.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.01e-17 3.15e-17 1.62e-01 5.59e-02 7.82e-01 \n", + "[1] \"PP abf for shared variant: 78.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.59e-18 1.41e-18 2.44e-01 8.91e-02 6.67e-01 \n", + "[1] \"PP abf for shared variant: 66.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00887 0.00348 0.23200 0.08460 0.67100 \n", + "[1] \"PP abf for shared variant: 67.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___DBI__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00542 0.00213 0.27900 0.10300 0.61000 \n", + "[1] \"PP abf for shared variant: 61%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.36e-12 1.32e-12 1.57e-01 5.38e-02 7.89e-01 \n", + "[1] \"PP abf for shared variant: 78.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___PRKCQ-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-09 6.85e-10 3.27e-01 1.23e-01 5.50e-01 \n", + "[1] \"PP abf for shared variant: 55%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SNHG8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.09e-07 1.21e-07 3.08e-01 1.15e-01 5.76e-01 \n", + "[1] \"PP abf for shared variant: 57.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___POMP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.292 0.115 0.140 0.051 0.402 \n", + "[1] \"PP abf for shared variant: 40.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.43e-15 2.13e-15 2.86e-01 1.06e-01 6.07e-01 \n", + "[1] \"PP abf for shared variant: 60.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RAB8B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.0817e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5900 0.2320 0.0685 0.0261 0.0838 \n", + "[1] \"PP abf for shared variant: 8.38%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___GZMH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1030 0.0406 0.2170 0.0795 0.5600 \n", + "[1] \"PP abf for shared variant: 56%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.87e-05 3.48e-05 4.40e-01 1.69e-01 3.92e-01 \n", + "[1] \"PP abf for shared variant: 39.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.76e-10 6.91e-11 3.12e-01 1.17e-01 5.71e-01 \n", + "[1] \"PP abf for shared variant: 57.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.94e-19 7.61e-20 3.34e-01 1.26e-01 5.41e-01 \n", + "[1] \"PP abf for shared variant: 54.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.19e-17 8.62e-18 2.55e-01 9.37e-02 6.51e-01 \n", + "[1] \"PP abf for shared variant: 65.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___ABLIM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00264 0.00104 0.25000 0.09180 0.65400 \n", + "[1] \"PP abf for shared variant: 65.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EIF4A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.8946e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4850 0.1900 0.1080 0.0407 0.1760 \n", + "[1] \"PP abf for shared variant: 17.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___APOBEC3G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000267 0.000105 0.282000 0.105000 0.613000 \n", + "[1] \"PP abf for shared variant: 61.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RP11-291B21.2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.68e-06 2.23e-06 1.82e-01 6.41e-02 7.53e-01 \n", + "[1] \"PP abf for shared variant: 75.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-19 5.79e-20 2.41e-01 8.79e-02 6.71e-01 \n", + "[1] \"PP abf for shared variant: 67.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.81e-19 2.68e-19 1.59e-01 5.47e-02 7.86e-01 \n", + "[1] \"PP abf for shared variant: 78.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__SERF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-09 8.57e-10 2.16e-01 7.77e-02 7.06e-01 \n", + "[1] \"PP abf for shared variant: 70.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.66e-10 2.62e-10 2.75e-01 1.02e-01 6.23e-01 \n", + "[1] \"PP abf for shared variant: 62.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.72e-18 1.07e-18 2.67e-01 9.86e-02 6.34e-01 \n", + "[1] \"PP abf for shared variant: 63.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00902 0.00354 0.29700 0.11100 0.57900 \n", + "[1] \"PP abf for shared variant: 57.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.96e-14 1.16e-14 2.78e-01 1.03e-01 6.20e-01 \n", + "[1] \"PP abf for shared variant: 62%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.00e-12 2.36e-12 2.13e-01 7.65e-02 7.11e-01 \n", + "[1] \"PP abf for shared variant: 71.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___RPS26__S1PR5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1943e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.5890 0.2310 0.0681 0.0259 0.0858 \n", + "[1] \"PP abf for shared variant: 8.58%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD8T_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.69e-04 6.65e-05 3.31e-01 1.25e-01 5.44e-01 \n", + "[1] \"PP abf for shared variant: 54.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TMSB10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0419 0.0164 0.2710 0.1010 0.5700 \n", + "[1] \"PP abf for shared variant: 57%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CHCHD2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1310 0.0514 0.2900 0.1100 0.4180 \n", + "[1] \"PP abf for shared variant: 41.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EMP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000420 0.000165 0.209000 0.074800 0.716000 \n", + "[1] \"PP abf for shared variant: 71.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___FMNL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1820 0.0714 0.2030 0.0749 0.4690 \n", + "[1] \"PP abf for shared variant: 46.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-24 4.88e-25 2.65e-01 9.77e-02 6.37e-01 \n", + "[1] \"PP abf for shared variant: 63.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___LEF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.60e-07 1.02e-07 1.86e-01 6.54e-02 7.49e-01 \n", + "[1] \"PP abf for shared variant: 74.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HERPUD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.267e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3830 0.1500 0.1570 0.0591 0.2500 \n", + "[1] \"PP abf for shared variant: 25%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ANXA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.20e-06 2.04e-06 1.81e-01 6.36e-02 7.55e-01 \n", + "[1] \"PP abf for shared variant: 75.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SOD2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01360 0.00536 0.27300 0.10100 0.60700 \n", + "[1] \"PP abf for shared variant: 60.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MYL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.32e-18 1.70e-18 1.60e-01 5.49e-02 7.85e-01 \n", + "[1] \"PP abf for shared variant: 78.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.72e-13 6.75e-14 3.33e-01 1.25e-01 5.42e-01 \n", + "[1] \"PP abf for shared variant: 54.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ATP1B3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1950 0.0764 0.2300 0.0861 0.4130 \n", + "[1] \"PP abf for shared variant: 41.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3600 0.1420 0.1600 0.0602 0.2770 \n", + "[1] \"PP abf for shared variant: 27.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.06e-26 3.56e-26 2.51e-01 9.22e-02 6.56e-01 \n", + "[1] \"PP abf for shared variant: 65.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.76e-11 6.90e-12 3.10e-01 1.16e-01 5.74e-01 \n", + "[1] \"PP abf for shared variant: 57.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EML4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000438 0.000172 0.274000 0.101000 0.625000 \n", + "[1] \"PP abf for shared variant: 62.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SCML1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00138 0.00054 0.21800 0.07850 0.70200 \n", + "[1] \"PP abf for shared variant: 70.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MCL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.56e-06 6.14e-07 2.50e-01 9.15e-02 6.59e-01 \n", + "[1] \"PP abf for shared variant: 65.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___NOG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0408 0.0160 0.2060 0.0741 0.6630 \n", + "[1] \"PP abf for shared variant: 66.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___PRMT2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001000 0.000393 0.274000 0.101000 0.624000 \n", + "[1] \"PP abf for shared variant: 62.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CD7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.55e-06 3.36e-06 1.91e-01 6.74e-02 7.42e-01 \n", + "[1] \"PP abf for shared variant: 74.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2950 0.1160 0.1600 0.0593 0.3700 \n", + "[1] \"PP abf for shared variant: 37%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.77e-12 1.87e-12 1.74e-01 6.06e-02 7.66e-01 \n", + "[1] \"PP abf for shared variant: 76.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___FAM129A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.45e-07 2.53e-07 2.06e-01 7.35e-02 7.21e-01 \n", + "[1] \"PP abf for shared variant: 72.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.66e-16 3.40e-16 1.83e-01 6.42e-02 7.53e-01 \n", + "[1] \"PP abf for shared variant: 75.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ABLIM1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.2936e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3990 0.1570 0.1180 0.0435 0.2830 \n", + "[1] \"PP abf for shared variant: 28.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.18e-25 4.65e-26 2.30e-01 8.34e-02 6.87e-01 \n", + "[1] \"PP abf for shared variant: 68.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ALOX5AP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001900 0.000748 0.231000 0.083700 0.683000 \n", + "[1] \"PP abf for shared variant: 68.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TSHZ2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000383 0.000151 0.180000 0.063300 0.756000 \n", + "[1] \"PP abf for shared variant: 75.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TIGIT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.51e-06 9.87e-07 1.89e-01 6.66e-02 7.45e-01 \n", + "[1] \"PP abf for shared variant: 74.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ARHGDIB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.62e-06 1.82e-06 1.58e-01 5.42e-02 7.88e-01 \n", + "[1] \"PP abf for shared variant: 78.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.98e-10 1.56e-10 3.25e-01 1.22e-01 5.53e-01 \n", + "[1] \"PP abf for shared variant: 55.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-20 4.00e-21 3.37e-01 1.27e-01 5.36e-01 \n", + "[1] \"PP abf for shared variant: 53.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.26e-28 4.94e-29 3.35e-01 1.26e-01 5.38e-01 \n", + "[1] \"PP abf for shared variant: 53.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.67e-28 3.01e-28 3.22e-01 1.21e-01 5.57e-01 \n", + "[1] \"PP abf for shared variant: 55.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__YBX1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.81e-06 3.07e-06 1.84e-01 6.48e-02 7.51e-01 \n", + "[1] \"PP abf for shared variant: 75.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.19e-25 2.43e-25 2.38e-01 8.69e-02 6.75e-01 \n", + "[1] \"PP abf for shared variant: 67.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___JUND__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.279e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.287 0.113 0.197 0.074 0.330 \n", + "[1] \"PP abf for shared variant: 33%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SH3YL1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.77e-07 1.09e-07 2.88e-01 1.07e-01 6.05e-01 \n", + "[1] \"PP abf for shared variant: 60.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.84e-27 3.87e-27 2.62e-01 9.65e-02 6.41e-01 \n", + "[1] \"PP abf for shared variant: 64.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___C12orf75__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01490 0.00585 0.43300 0.16600 0.38000 \n", + "[1] \"PP abf for shared variant: 38%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.23e-11 1.27e-11 2.65e-01 9.76e-02 6.38e-01 \n", + "[1] \"PP abf for shared variant: 63.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF18\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00696 0.00273 0.21100 0.07580 0.70300 \n", + "[1] \"PP abf for shared variant: 70.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MYO1F__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001290 0.000505 0.187000 0.066000 0.745000 \n", + "[1] \"PP abf for shared variant: 74.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.10e-24 2.00e-24 3.38e-01 1.27e-01 5.35e-01 \n", + "[1] \"PP abf for shared variant: 53.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___PTPRC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.95e-09 2.34e-09 3.23e-01 1.21e-01 5.56e-01 \n", + "[1] \"PP abf for shared variant: 55.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CD55__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3230 0.1270 0.1460 0.0537 0.3500 \n", + "[1] \"PP abf for shared variant: 35%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.07e-25 3.56e-25 3.31e-01 1.24e-01 5.45e-01 \n", + "[1] \"PP abf for shared variant: 54.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CREM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.02e-04 7.95e-05 2.75e-01 1.02e-01 6.23e-01 \n", + "[1] \"PP abf for shared variant: 62.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__VMP1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1810 0.0712 0.1740 0.0632 0.5100 \n", + "[1] \"PP abf for shared variant: 51%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HMGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.91e-06 7.51e-07 1.79e-01 6.26e-02 7.59e-01 \n", + "[1] \"PP abf for shared variant: 75.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.67e-25 1.05e-25 3.01e-01 1.12e-01 5.86e-01 \n", + "[1] \"PP abf for shared variant: 58.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___C1orf228__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2160 0.0849 0.1640 0.0598 0.4750 \n", + "[1] \"PP abf for shared variant: 47.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___GALM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1890 0.0743 0.1730 0.0631 0.5000 \n", + "[1] \"PP abf for shared variant: 50%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TRABD2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01760 0.00691 0.17400 0.06100 0.74000 \n", + "[1] \"PP abf for shared variant: 74%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EIF2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001470 0.000577 0.279000 0.103000 0.615000 \n", + "[1] \"PP abf for shared variant: 61.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL17__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-14 7.29e-15 3.35e-01 1.26e-01 5.39e-01 \n", + "[1] \"PP abf for shared variant: 53.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.39e-16 2.12e-16 2.52e-01 9.23e-02 6.56e-01 \n", + "[1] \"PP abf for shared variant: 65.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ANXA5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01530 0.00601 0.31000 0.11600 0.55300 \n", + "[1] \"PP abf for shared variant: 55.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___IDS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000463 0.000182 0.215000 0.077400 0.707000 \n", + "[1] \"PP abf for shared variant: 70.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ARID5B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0609 0.0239 0.2070 0.0749 0.6330 \n", + "[1] \"PP abf for shared variant: 63.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___IMPDH2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.88e-06 2.70e-06 2.88e-01 1.07e-01 6.04e-01 \n", + "[1] \"PP abf for shared variant: 60.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.89e-14 1.92e-14 3.30e-01 1.24e-01 5.45e-01 \n", + "[1] \"PP abf for shared variant: 54.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__ST13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-06 4.40e-07 2.73e-01 1.01e-01 6.26e-01 \n", + "[1] \"PP abf for shared variant: 62.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CXCR3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00315 0.00124 0.20000 0.07150 0.72400 \n", + "[1] \"PP abf for shared variant: 72.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HLA-DRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.10e-07 1.22e-07 1.56e-01 5.35e-02 7.90e-01 \n", + "[1] \"PP abf for shared variant: 79%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.31e-15 9.07e-16 3.36e-01 1.27e-01 5.37e-01 \n", + "[1] \"PP abf for shared variant: 53.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SPOCK2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01970 0.00775 0.21700 0.07850 0.67700 \n", + "[1] \"PP abf for shared variant: 67.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___C15orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1160 0.0454 0.2300 0.0852 0.5230 \n", + "[1] \"PP abf for shared variant: 52.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SNRPF\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1448e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4390 0.1720 0.1070 0.0398 0.2410 \n", + "[1] \"PP abf for shared variant: 24.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.70e-15 1.85e-15 1.96e-01 6.97e-02 7.34e-01 \n", + "[1] \"PP abf for shared variant: 73.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___FAM134B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1240 0.0485 0.1730 0.0621 0.5930 \n", + "[1] \"PP abf for shared variant: 59.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ISG20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00622 0.00244 0.32000 0.12000 0.55200 \n", + "[1] \"PP abf for shared variant: 55.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CFL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.14e-10 4.48e-11 1.76e-01 6.13e-02 7.63e-01 \n", + "[1] \"PP abf for shared variant: 76.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___NUCB2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0265 0.0104 0.1860 0.0660 0.7110 \n", + "[1] \"PP abf for shared variant: 71.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ALKBH7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00206 0.00081 0.23500 0.08540 0.67700 \n", + "[1] \"PP abf for shared variant: 67.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___LINC00493__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0855 0.0336 0.2720 0.1020 0.5080 \n", + "[1] \"PP abf for shared variant: 50.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-25 5.67e-26 3.37e-01 1.27e-01 5.35e-01 \n", + "[1] \"PP abf for shared variant: 53.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__VIM\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00263 0.00103 0.21700 0.07820 0.70100 \n", + "[1] \"PP abf for shared variant: 70.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SNHG8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.14e-12 1.63e-12 2.06e-01 7.38e-02 7.20e-01 \n", + "[1] \"PP abf for shared variant: 72%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CDC42__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00860 0.00338 0.27800 0.10300 0.60700 \n", + "[1] \"PP abf for shared variant: 60.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF1B\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0272 0.0107 0.2420 0.0889 0.6310 \n", + "[1] \"PP abf for shared variant: 63.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___NELL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0381 0.0150 0.2670 0.0989 0.5810 \n", + "[1] \"PP abf for shared variant: 58.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.43e-18 5.62e-19 3.35e-01 1.26e-01 5.39e-01 \n", + "[1] \"PP abf for shared variant: 53.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ACTN4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001060 0.000415 0.219000 0.078800 0.701000 \n", + "[1] \"PP abf for shared variant: 70.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___IKZF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0971 0.0381 0.2070 0.0753 0.5830 \n", + "[1] \"PP abf for shared variant: 58.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___LDHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2790 0.1100 0.2110 0.0797 0.3200 \n", + "[1] \"PP abf for shared variant: 32%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.32e-17 5.19e-18 2.62e-01 9.64e-02 6.42e-01 \n", + "[1] \"PP abf for shared variant: 64.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.08e-09 3.57e-09 2.76e-01 1.02e-01 6.21e-01 \n", + "[1] \"PP abf for shared variant: 62.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RP11-138A9.1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3140 0.1230 0.1520 0.0559 0.3560 \n", + "[1] \"PP abf for shared variant: 35.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___NAMPT__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.8087e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4290 0.1690 0.1800 0.0691 0.1530 \n", + "[1] \"PP abf for shared variant: 15.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFAS1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.38e-06 2.90e-06 1.97e-01 6.99e-02 7.33e-01 \n", + "[1] \"PP abf for shared variant: 73.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CALM2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.59e-05 2.20e-05 2.31e-01 8.40e-02 6.84e-01 \n", + "[1] \"PP abf for shared variant: 68.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.13e-15 8.35e-16 3.18e-01 1.19e-01 5.62e-01 \n", + "[1] \"PP abf for shared variant: 56.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MT-ND2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1610 0.0633 0.2400 0.0899 0.4450 \n", + "[1] \"PP abf for shared variant: 44.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-14 4.05e-15 3.33e-01 1.25e-01 5.42e-01 \n", + "[1] \"PP abf for shared variant: 54.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CD52__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.53e-04 6.02e-05 1.79e-01 6.27e-02 7.58e-01 \n", + "[1] \"PP abf for shared variant: 75.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.72e-08 2.25e-08 2.27e-01 8.21e-02 6.91e-01 \n", + "[1] \"PP abf for shared variant: 69.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___H3F3A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-05 5.30e-06 2.01e-01 7.16e-02 7.28e-01 \n", + "[1] \"PP abf for shared variant: 72.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ADTRP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.65e-08 1.43e-08 2.65e-01 9.75e-02 6.38e-01 \n", + "[1] \"PP abf for shared variant: 63.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MT2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1130 0.0445 0.2640 0.0990 0.4790 \n", + "[1] \"PP abf for shared variant: 47.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SNRPD2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0405 0.0159 0.2530 0.0936 0.5960 \n", + "[1] \"PP abf for shared variant: 59.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFP36\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.42e-05 3.31e-05 2.63e-01 9.68e-02 6.40e-01 \n", + "[1] \"PP abf for shared variant: 64%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CXCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.77e-05 1.09e-05 3.11e-01 1.17e-01 5.72e-01 \n", + "[1] \"PP abf for shared variant: 57.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___DYNLL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000489 0.000192 0.182000 0.063900 0.754000 \n", + "[1] \"PP abf for shared variant: 75.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SAMSN1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.53e-05 6.02e-06 1.91e-01 6.75e-02 7.42e-01 \n", + "[1] \"PP abf for shared variant: 74.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___LMNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.75e-10 3.83e-10 2.23e-01 8.07e-02 6.96e-01 \n", + "[1] \"PP abf for shared variant: 69.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MT-ND5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.36e-07 5.35e-08 3.23e-01 1.21e-01 5.56e-01 \n", + "[1] \"PP abf for shared variant: 55.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.41e-22 3.30e-22 3.14e-01 1.18e-01 5.69e-01 \n", + "[1] \"PP abf for shared variant: 56.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RUNX3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0738 0.0290 0.2000 0.0723 0.6250 \n", + "[1] \"PP abf for shared variant: 62.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HLA-B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.19e-18 8.60e-19 2.77e-01 1.02e-01 6.21e-01 \n", + "[1] \"PP abf for shared variant: 62.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RGS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.46e-06 1.36e-06 1.90e-01 6.70e-02 7.43e-01 \n", + "[1] \"PP abf for shared variant: 74.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ERGIC3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.423e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.439 0.172 0.140 0.053 0.196 \n", + "[1] \"PP abf for shared variant: 19.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SELL\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.78e-08 1.09e-08 2.68e-01 9.89e-02 6.33e-01 \n", + "[1] \"PP abf for shared variant: 63.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TYMP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02530 0.00994 0.23500 0.08580 0.64400 \n", + "[1] \"PP abf for shared variant: 64.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HLA-DPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0752 0.0295 0.2170 0.0793 0.5990 \n", + "[1] \"PP abf for shared variant: 59.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-22 5.09e-23 3.36e-01 1.27e-01 5.37e-01 \n", + "[1] \"PP abf for shared variant: 53.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__UQCRB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000296 0.000116 0.279000 0.104000 0.617000 \n", + "[1] \"PP abf for shared variant: 61.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.97e-23 1.56e-23 2.54e-01 9.31e-02 6.53e-01 \n", + "[1] \"PP abf for shared variant: 65.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SRGN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.87e-21 1.52e-21 2.44e-01 8.93e-02 6.66e-01 \n", + "[1] \"PP abf for shared variant: 66.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MT-ND4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2230 0.0876 0.1780 0.0656 0.4450 \n", + "[1] \"PP abf for shared variant: 44.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ABHD14B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000352 0.000138 0.324000 0.122000 0.554000 \n", + "[1] \"PP abf for shared variant: 55.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ATP5E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00107 0.00042 0.17200 0.05980 0.76700 \n", + "[1] \"PP abf for shared variant: 76.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPSAP58\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.04e-10 8.02e-11 3.26e-01 1.22e-01 5.52e-01 \n", + "[1] \"PP abf for shared variant: 55.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.96e-13 7.71e-14 1.91e-01 6.76e-02 7.41e-01 \n", + "[1] \"PP abf for shared variant: 74.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.00e-22 2.75e-22 3.10e-01 1.16e-01 5.74e-01 \n", + "[1] \"PP abf for shared variant: 57.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MAL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.37e-09 5.37e-10 2.06e-01 7.39e-02 7.20e-01 \n", + "[1] \"PP abf for shared variant: 72%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ATP2B4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01910 0.00748 0.20500 0.07370 0.69400 \n", + "[1] \"PP abf for shared variant: 69.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ARPC1B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3690 0.1450 0.1340 0.0497 0.3020 \n", + "[1] \"PP abf for shared variant: 30.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___PDCD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00313 0.00123 0.25900 0.09520 0.64100 \n", + "[1] \"PP abf for shared variant: 64.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.10e-21 2.40e-21 2.91e-01 1.08e-01 6.01e-01 \n", + "[1] \"PP abf for shared variant: 60.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.54e-26 1.39e-26 3.38e-01 1.27e-01 5.35e-01 \n", + "[1] \"PP abf for shared variant: 53.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.26e-22 4.95e-23 2.10e-01 7.53e-02 7.15e-01 \n", + "[1] \"PP abf for shared variant: 71.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SAT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.73e-13 1.07e-13 3.30e-01 1.24e-01 5.46e-01 \n", + "[1] \"PP abf for shared variant: 54.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HLA-E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-08 7.75e-09 2.87e-01 1.07e-01 6.06e-01 \n", + "[1] \"PP abf for shared variant: 60.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TCF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.52e-05 9.91e-06 1.83e-01 6.45e-02 7.52e-01 \n", + "[1] \"PP abf for shared variant: 75.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___PIK3IP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.76e-04 6.92e-05 2.45e-01 8.97e-02 6.65e-01 \n", + "[1] \"PP abf for shared variant: 66.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___LGALS3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1700 0.0669 0.1710 0.0620 0.5290 \n", + "[1] \"PP abf for shared variant: 52.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MIAT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00683 0.00268 0.20300 0.07270 0.71400 \n", + "[1] \"PP abf for shared variant: 71.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.36e-21 1.32e-21 3.36e-01 1.27e-01 5.37e-01 \n", + "[1] \"PP abf for shared variant: 53.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SUB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-08 8.24e-09 2.02e-01 7.21e-02 7.26e-01 \n", + "[1] \"PP abf for shared variant: 72.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CCR7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00841 0.00330 0.19800 0.07040 0.72000 \n", + "[1] \"PP abf for shared variant: 72%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-17 6.83e-18 3.15e-01 1.18e-01 5.68e-01 \n", + "[1] \"PP abf for shared variant: 56.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.64e-23 1.43e-23 3.36e-01 1.27e-01 5.38e-01 \n", + "[1] \"PP abf for shared variant: 53.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RNF19A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001200 0.000472 0.286000 0.106000 0.606000 \n", + "[1] \"PP abf for shared variant: 60.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MT-CO3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.26e-07 8.89e-08 2.60e-01 9.55e-02 6.45e-01 \n", + "[1] \"PP abf for shared variant: 64.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-24 4.40e-25 3.27e-01 1.23e-01 5.50e-01 \n", + "[1] \"PP abf for shared variant: 55%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.18e-12 3.21e-12 1.84e-01 6.47e-02 7.51e-01 \n", + "[1] \"PP abf for shared variant: 75.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___FAS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1270 0.0498 0.1980 0.0722 0.5530 \n", + "[1] \"PP abf for shared variant: 55.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EEF1D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.09e-10 2.00e-10 2.16e-01 7.76e-02 7.07e-01 \n", + "[1] \"PP abf for shared variant: 70.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.60e-10 1.80e-10 2.47e-01 9.02e-02 6.63e-01 \n", + "[1] \"PP abf for shared variant: 66.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___GYPC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.68e-06 3.02e-06 2.83e-01 1.05e-01 6.11e-01 \n", + "[1] \"PP abf for shared variant: 61.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-22 5.66e-23 3.10e-01 1.16e-01 5.74e-01 \n", + "[1] \"PP abf for shared variant: 57.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-24 7.72e-25 3.35e-01 1.26e-01 5.39e-01 \n", + "[1] \"PP abf for shared variant: 53.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TPM4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02380 0.00936 0.24600 0.09050 0.63000 \n", + "[1] \"PP abf for shared variant: 63%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___LDHB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.82e-12 2.68e-12 3.36e-01 1.26e-01 5.38e-01 \n", + "[1] \"PP abf for shared variant: 53.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___AIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.87e-05 2.30e-05 2.78e-01 1.03e-01 6.20e-01 \n", + "[1] \"PP abf for shared variant: 62%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.38e-23 1.33e-23 2.93e-01 1.09e-01 5.98e-01 \n", + "[1] \"PP abf for shared variant: 59.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ITGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.08e-07 8.18e-08 2.02e-01 7.19e-02 7.27e-01 \n", + "[1] \"PP abf for shared variant: 72.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TXN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.15e-07 2.02e-07 3.29e-01 1.24e-01 5.48e-01 \n", + "[1] \"PP abf for shared variant: 54.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___FTH1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01870 0.00736 0.24400 0.08960 0.64000 \n", + "[1] \"PP abf for shared variant: 64%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-26 6.69e-27 3.03e-01 1.13e-01 5.84e-01 \n", + "[1] \"PP abf for shared variant: 58.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___COX7C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1020 0.0400 0.2450 0.0911 0.5220 \n", + "[1] \"PP abf for shared variant: 52.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HLA-A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.41e-18 1.34e-18 2.93e-01 1.09e-01 5.97e-01 \n", + "[1] \"PP abf for shared variant: 59.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___LCP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001280 0.000501 0.259000 0.095300 0.644000 \n", + "[1] \"PP abf for shared variant: 64.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__UBB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000864 0.000339 0.250000 0.091600 0.657000 \n", + "[1] \"PP abf for shared variant: 65.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.08e-23 1.21e-23 3.38e-01 1.27e-01 5.35e-01 \n", + "[1] \"PP abf for shared variant: 53.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.74e-17 1.47e-17 1.87e-01 6.60e-02 7.47e-01 \n", + "[1] \"PP abf for shared variant: 74.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TMEM123\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0437 0.0171 0.2350 0.0859 0.6190 \n", + "[1] \"PP abf for shared variant: 61.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___PPP1R15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2280 0.0894 0.1490 0.0538 0.4800 \n", + "[1] \"PP abf for shared variant: 48%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___IL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000316 0.000124 0.202000 0.072100 0.725000 \n", + "[1] \"PP abf for shared variant: 72.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.72e-26 2.25e-26 3.22e-01 1.21e-01 5.57e-01 \n", + "[1] \"PP abf for shared variant: 55.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.09e-16 1.21e-16 3.37e-01 1.27e-01 5.36e-01 \n", + "[1] \"PP abf for shared variant: 53.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TOMM20\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2450 0.0961 0.1490 0.0541 0.4560 \n", + "[1] \"PP abf for shared variant: 45.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EIF3F__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000322 0.000126 0.192000 0.067900 0.740000 \n", + "[1] \"PP abf for shared variant: 74%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ERP29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00347 0.00136 0.35900 0.13600 0.50100 \n", + "[1] \"PP abf for shared variant: 50.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___KLF6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.95e-05 7.64e-06 2.87e-01 1.07e-01 6.07e-01 \n", + "[1] \"PP abf for shared variant: 60.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___GIMAP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000325 0.000127 0.213000 0.076400 0.710000 \n", + "[1] \"PP abf for shared variant: 71%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TGFBR2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0355 0.0139 0.2130 0.0771 0.6600 \n", + "[1] \"PP abf for shared variant: 66%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RNF213__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2270 0.0890 0.1780 0.0654 0.4410 \n", + "[1] \"PP abf for shared variant: 44.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___C19orf53__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3910 0.1530 0.1380 0.0517 0.2660 \n", + "[1] \"PP abf for shared variant: 26.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SERF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.88e-11 2.31e-11 2.67e-01 9.87e-02 6.34e-01 \n", + "[1] \"PP abf for shared variant: 63.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.77e-15 1.48e-15 3.34e-01 1.26e-01 5.40e-01 \n", + "[1] \"PP abf for shared variant: 54%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MIR4435-1HG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.63e-10 1.03e-10 2.73e-01 1.01e-01 6.26e-01 \n", + "[1] \"PP abf for shared variant: 62.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.61e-16 3.38e-16 2.42e-01 8.82e-02 6.70e-01 \n", + "[1] \"PP abf for shared variant: 67%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MZT2B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000296 0.000116 0.259000 0.095200 0.645000 \n", + "[1] \"PP abf for shared variant: 64.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___AK5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0660 0.0259 0.2620 0.0973 0.5490 \n", + "[1] \"PP abf for shared variant: 54.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___NDFIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1730 0.0680 0.2410 0.0906 0.4270 \n", + "[1] \"PP abf for shared variant: 42.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HNRNPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.28e-08 8.97e-09 2.86e-01 1.06e-01 6.07e-01 \n", + "[1] \"PP abf for shared variant: 60.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.67e-20 6.57e-21 3.37e-01 1.27e-01 5.36e-01 \n", + "[1] \"PP abf for shared variant: 53.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000282 0.000111 0.319000 0.120000 0.561000 \n", + "[1] \"PP abf for shared variant: 56.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.10e-19 2.00e-19 1.96e-01 6.98e-02 7.34e-01 \n", + "[1] \"PP abf for shared variant: 73.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___C1QBP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01870 0.00733 0.26700 0.09860 0.60900 \n", + "[1] \"PP abf for shared variant: 60.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CXCR6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2640 0.1040 0.1550 0.0566 0.4210 \n", + "[1] \"PP abf for shared variant: 42.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ARPC3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0763 0.0299 0.2050 0.0745 0.6140 \n", + "[1] \"PP abf for shared variant: 61.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MRPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.3464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3770 0.1480 0.1490 0.0559 0.2700 \n", + "[1] \"PP abf for shared variant: 27%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.12e-15 1.62e-15 2.84e-01 1.06e-01 6.10e-01 \n", + "[1] \"PP abf for shared variant: 61%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___PPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.24e-06 8.81e-07 3.15e-01 1.18e-01 5.66e-01 \n", + "[1] \"PP abf for shared variant: 56.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EBPL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3210 0.1260 0.1690 0.0631 0.3210 \n", + "[1] \"PP abf for shared variant: 32.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___FTL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2000 0.0784 0.1820 0.0667 0.4730 \n", + "[1] \"PP abf for shared variant: 47.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__UXT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.99e-08 7.82e-09 3.32e-01 1.25e-01 5.43e-01 \n", + "[1] \"PP abf for shared variant: 54.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___LSM5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000295 0.000116 0.326000 0.123000 0.551000 \n", + "[1] \"PP abf for shared variant: 55.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___KMT2E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.6569e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4680 0.1840 0.1420 0.0542 0.1530 \n", + "[1] \"PP abf for shared variant: 15.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MT-CO2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.43e-07 5.60e-08 3.09e-01 1.16e-01 5.75e-01 \n", + "[1] \"PP abf for shared variant: 57.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TAGLN2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4130 0.1620 0.1360 0.0512 0.2380 \n", + "[1] \"PP abf for shared variant: 23.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CDCA7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4164e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3550 0.1400 0.1300 0.0479 0.3270 \n", + "[1] \"PP abf for shared variant: 32.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.00e-06 7.86e-07 2.89e-01 1.07e-01 6.04e-01 \n", + "[1] \"PP abf for shared variant: 60.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EPB41L4A-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.11e-06 4.34e-07 2.42e-01 8.85e-02 6.69e-01 \n", + "[1] \"PP abf for shared variant: 66.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___FLNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.26e-08 8.88e-09 1.88e-01 6.64e-02 7.46e-01 \n", + "[1] \"PP abf for shared variant: 74.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TATDN1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02140 0.00841 0.29400 0.11000 0.56600 \n", + "[1] \"PP abf for shared variant: 56.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HLA-DPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02120 0.00834 0.18400 0.06490 0.72200 \n", + "[1] \"PP abf for shared variant: 72.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___C12orf57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.45e-13 9.64e-14 3.19e-01 1.20e-01 5.61e-01 \n", + "[1] \"PP abf for shared variant: 56.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.89e-23 7.43e-24 3.37e-01 1.27e-01 5.37e-01 \n", + "[1] \"PP abf for shared variant: 53.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.43e-20 1.74e-20 3.29e-01 1.24e-01 5.48e-01 \n", + "[1] \"PP abf for shared variant: 54.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___BTG1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000303 0.000119 0.294000 0.109000 0.596000 \n", + "[1] \"PP abf for shared variant: 59.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___C8orf59__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01230 0.00485 0.20200 0.07220 0.70900 \n", + "[1] \"PP abf for shared variant: 70.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CD58__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00337 0.00132 0.22500 0.08140 0.68900 \n", + "[1] \"PP abf for shared variant: 68.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MT-CO1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.27e-18 3.64e-18 2.85e-01 1.06e-01 6.09e-01 \n", + "[1] \"PP abf for shared variant: 60.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.83e-06 7.20e-07 1.96e-01 6.95e-02 7.35e-01 \n", + "[1] \"PP abf for shared variant: 73.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___AKAP13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01850 0.00728 0.23200 0.08460 0.65800 \n", + "[1] \"PP abf for shared variant: 65.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EIF4B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.26e-07 1.28e-07 2.51e-01 9.19e-02 6.57e-01 \n", + "[1] \"PP abf for shared variant: 65.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___DDX5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.46e-05 1.36e-05 2.83e-01 1.05e-01 6.12e-01 \n", + "[1] \"PP abf for shared variant: 61.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01950 0.00768 0.27300 0.10100 0.59900 \n", + "[1] \"PP abf for shared variant: 59.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ANXA2R__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2760 0.1080 0.2200 0.0834 0.3120 \n", + "[1] \"PP abf for shared variant: 31.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___IL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2310 0.0906 0.2210 0.0829 0.3750 \n", + "[1] \"PP abf for shared variant: 37.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___LINC00152__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.28e-09 1.29e-09 1.58e-01 5.41e-02 7.88e-01 \n", + "[1] \"PP abf for shared variant: 78.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___FOXP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0459 0.0180 0.3280 0.1240 0.4840 \n", + "[1] \"PP abf for shared variant: 48.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RGS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.92e-09 7.53e-10 1.60e-01 5.50e-02 7.85e-01 \n", + "[1] \"PP abf for shared variant: 78.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.17e-22 2.42e-22 2.33e-01 8.48e-02 6.82e-01 \n", + "[1] \"PP abf for shared variant: 68.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___KLRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.25e-05 2.46e-05 2.29e-01 8.31e-02 6.88e-01 \n", + "[1] \"PP abf for shared variant: 68.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.63e-17 3.39e-17 3.27e-01 1.23e-01 5.50e-01 \n", + "[1] \"PP abf for shared variant: 55%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.15e-14 4.52e-15 3.37e-01 1.27e-01 5.36e-01 \n", + "[1] \"PP abf for shared variant: 53.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___DAP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000508 0.000199 0.214000 0.077000 0.708000 \n", + "[1] \"PP abf for shared variant: 70.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-11 6.15e-12 2.38e-01 8.68e-02 6.75e-01 \n", + "[1] \"PP abf for shared variant: 67.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SVIP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3190 0.1250 0.1630 0.0608 0.3320 \n", + "[1] \"PP abf for shared variant: 33.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HLA-C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.08e-16 3.17e-16 1.99e-01 7.08e-02 7.30e-01 \n", + "[1] \"PP abf for shared variant: 73%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.91e-27 1.14e-27 3.15e-01 1.18e-01 5.66e-01 \n", + "[1] \"PP abf for shared variant: 56.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.52e-19 3.35e-19 2.31e-01 8.38e-02 6.85e-01 \n", + "[1] \"PP abf for shared variant: 68.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___PRKCQ-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-07 5.13e-08 2.31e-01 8.39e-02 6.85e-01 \n", + "[1] \"PP abf for shared variant: 68.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___GIMAP7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01970 0.00773 0.21400 0.07720 0.68100 \n", + "[1] \"PP abf for shared variant: 68.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ENTPD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0791 0.0310 0.2130 0.0775 0.5990 \n", + "[1] \"PP abf for shared variant: 59.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___DUSP4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.61e-10 1.02e-10 2.22e-01 8.04e-02 6.97e-01 \n", + "[1] \"PP abf for shared variant: 69.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-14 6.50e-15 3.25e-01 1.22e-01 5.52e-01 \n", + "[1] \"PP abf for shared variant: 55.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__YWHAB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001010 0.000397 0.224000 0.081200 0.693000 \n", + "[1] \"PP abf for shared variant: 69.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CCR6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1610 0.0631 0.2180 0.0809 0.4770 \n", + "[1] \"PP abf for shared variant: 47.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MT-ND1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00196 0.00077 0.29500 0.11000 0.59200 \n", + "[1] \"PP abf for shared variant: 59.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___PFN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.72e-17 1.07e-17 1.63e-01 5.63e-02 7.80e-01 \n", + "[1] \"PP abf for shared variant: 78%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ADAM19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3280 0.1290 0.1850 0.0696 0.2890 \n", + "[1] \"PP abf for shared variant: 28.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CLDND1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1460 0.0572 0.1680 0.0605 0.5680 \n", + "[1] \"PP abf for shared variant: 56.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___PFDN5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.87e-07 1.13e-07 1.94e-01 6.90e-02 7.37e-01 \n", + "[1] \"PP abf for shared variant: 73.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___FBL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-09 6.06e-10 3.06e-01 1.14e-01 5.80e-01 \n", + "[1] \"PP abf for shared variant: 58%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CD37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1310 0.0514 0.1870 0.0679 0.5630 \n", + "[1] \"PP abf for shared variant: 56.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___APEX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2420 0.0952 0.1910 0.0709 0.4010 \n", + "[1] \"PP abf for shared variant: 40.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-08 4.24e-09 2.20e-01 7.95e-02 7.00e-01 \n", + "[1] \"PP abf for shared variant: 70%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.92e-22 1.93e-22 2.30e-01 8.34e-02 6.87e-01 \n", + "[1] \"PP abf for shared variant: 68.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___LETMD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000719 0.000282 0.255000 0.093600 0.651000 \n", + "[1] \"PP abf for shared variant: 65.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___GK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001030 0.000406 0.197000 0.070200 0.731000 \n", + "[1] \"PP abf for shared variant: 73.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___NOSIP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-06 4.23e-07 2.74e-01 1.01e-01 6.24e-01 \n", + "[1] \"PP abf for shared variant: 62.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___AHNAK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01040 0.00408 0.33500 0.12600 0.52400 \n", + "[1] \"PP abf for shared variant: 52.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SLC7A5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4700 0.1850 0.1100 0.0411 0.1940 \n", + "[1] \"PP abf for shared variant: 19.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.63e-10 2.21e-10 2.12e-01 7.61e-02 7.12e-01 \n", + "[1] \"PP abf for shared variant: 71.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-20 4.28e-21 2.61e-01 9.59e-02 6.44e-01 \n", + "[1] \"PP abf for shared variant: 64.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000943 0.000371 0.550000 0.214000 0.234000 \n", + "[1] \"PP abf for shared variant: 23.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.19e-28 1.25e-28 2.04e-01 7.29e-02 7.23e-01 \n", + "[1] \"PP abf for shared variant: 72.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.27e-13 1.68e-13 2.14e-01 7.69e-02 7.09e-01 \n", + "[1] \"PP abf for shared variant: 70.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.34e-25 1.71e-25 2.87e-01 1.07e-01 6.06e-01 \n", + "[1] \"PP abf for shared variant: 60.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MT-ATP6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.12e-05 1.23e-05 3.15e-01 1.18e-01 5.66e-01 \n", + "[1] \"PP abf for shared variant: 56.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-18 5.23e-19 2.16e-01 7.79e-02 7.06e-01 \n", + "[1] \"PP abf for shared variant: 70.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CCL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.54e-07 3.35e-07 1.69e-01 5.87e-02 7.72e-01 \n", + "[1] \"PP abf for shared variant: 77.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RILPL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1250 0.0489 0.2090 0.0766 0.5410 \n", + "[1] \"PP abf for shared variant: 54.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SSR2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.33e-05 9.17e-06 2.55e-01 9.38e-02 6.51e-01 \n", + "[1] \"PP abf for shared variant: 65.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00275 0.00108 0.22600 0.08180 0.68900 \n", + "[1] \"PP abf for shared variant: 68.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__UBC\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.28e-09 1.29e-09 2.58e-01 9.47e-02 6.48e-01 \n", + "[1] \"PP abf for shared variant: 64.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-14 8.04e-15 1.67e-01 5.79e-02 7.75e-01 \n", + "[1] \"PP abf for shared variant: 77.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MAF__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.00e-06 2.36e-06 2.16e-01 7.77e-02 7.06e-01 \n", + "[1] \"PP abf for shared variant: 70.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.35e-10 9.23e-11 2.92e-01 1.09e-01 6.00e-01 \n", + "[1] \"PP abf for shared variant: 60%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___COMMD6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000345 0.000135 0.288000 0.107000 0.605000 \n", + "[1] \"PP abf for shared variant: 60.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.44e-07 1.35e-07 1.91e-01 6.74e-02 7.42e-01 \n", + "[1] \"PP abf for shared variant: 74.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___NSMCE1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00366 0.00144 0.29800 0.11100 0.58600 \n", + "[1] \"PP abf for shared variant: 58.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TGFB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.99e-05 1.96e-05 2.64e-01 9.73e-02 6.39e-01 \n", + "[1] \"PP abf for shared variant: 63.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___PRDX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0598 0.0235 0.2640 0.0981 0.5550 \n", + "[1] \"PP abf for shared variant: 55.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-19 4.18e-20 3.26e-01 1.22e-01 5.52e-01 \n", + "[1] \"PP abf for shared variant: 55.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___FAM46C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01670 0.00655 0.21700 0.07850 0.68100 \n", + "[1] \"PP abf for shared variant: 68.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.10e-22 2.40e-22 3.28e-01 1.23e-01 5.49e-01 \n", + "[1] \"PP abf for shared variant: 54.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-21 4.28e-22 3.06e-01 1.14e-01 5.80e-01 \n", + "[1] \"PP abf for shared variant: 58%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.49e-27 3.33e-27 2.80e-01 1.04e-01 6.16e-01 \n", + "[1] \"PP abf for shared variant: 61.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.89e-24 3.10e-24 2.77e-01 1.03e-01 6.20e-01 \n", + "[1] \"PP abf for shared variant: 62%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RORA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2270 0.0892 0.1550 0.0562 0.4720 \n", + "[1] \"PP abf for shared variant: 47.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000397 0.000156 0.304000 0.114000 0.581000 \n", + "[1] \"PP abf for shared variant: 58.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.39e-19 1.72e-19 2.76e-01 1.02e-01 6.21e-01 \n", + "[1] \"PP abf for shared variant: 62.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CD44__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.14e-05 4.47e-06 2.92e-01 1.09e-01 5.99e-01 \n", + "[1] \"PP abf for shared variant: 59.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS4Y1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3730 0.1470 0.1730 0.0655 0.2410 \n", + "[1] \"PP abf for shared variant: 24.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___LGALS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.85e-06 1.51e-06 1.62e-01 5.57e-02 7.82e-01 \n", + "[1] \"PP abf for shared variant: 78.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___COX7A2L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0287 0.0113 0.2370 0.0866 0.6370 \n", + "[1] \"PP abf for shared variant: 63.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.01e-21 7.91e-22 3.37e-01 1.27e-01 5.37e-01 \n", + "[1] \"PP abf for shared variant: 53.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HADHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0598 0.0235 0.2310 0.0848 0.6010 \n", + "[1] \"PP abf for shared variant: 60.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SATB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1520 0.0597 0.1990 0.0729 0.5170 \n", + "[1] \"PP abf for shared variant: 51.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__UGP2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0469 0.0184 0.2720 0.1010 0.5620 \n", + "[1] \"PP abf for shared variant: 56.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SBDS\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1950 0.0764 0.1590 0.0575 0.5120 \n", + "[1] \"PP abf for shared variant: 51.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SYNE2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00541 0.00213 0.23800 0.08670 0.66800 \n", + "[1] \"PP abf for shared variant: 66.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TMA7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0448 0.0176 0.2260 0.0824 0.6290 \n", + "[1] \"PP abf for shared variant: 62.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___NEAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-09 4.81e-10 3.26e-01 1.23e-01 5.51e-01 \n", + "[1] \"PP abf for shared variant: 55.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___NR3C1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0396 0.0156 0.2280 0.0832 0.6340 \n", + "[1] \"PP abf for shared variant: 63.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.05e-27 3.16e-27 3.32e-01 1.25e-01 5.43e-01 \n", + "[1] \"PP abf for shared variant: 54.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CCT8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01870 0.00734 0.30900 0.11600 0.54900 \n", + "[1] \"PP abf for shared variant: 54.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFAIP3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0400 0.0157 0.2600 0.0964 0.5870 \n", + "[1] \"PP abf for shared variant: 58.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SH2D2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.3190 0.1250 0.1510 0.0558 0.3480 \n", + "[1] \"PP abf for shared variant: 34.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___NPM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.38e-11 1.33e-11 2.04e-01 7.31e-02 7.23e-01 \n", + "[1] \"PP abf for shared variant: 72.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CLNS1A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002450 0.000963 0.223000 0.080500 0.693000 \n", + "[1] \"PP abf for shared variant: 69.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RSL1D1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.50e-09 3.73e-09 2.20e-01 7.93e-02 7.01e-01 \n", + "[1] \"PP abf for shared variant: 70.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ATP6V0E1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0534 0.0210 0.2770 0.1030 0.5460 \n", + "[1] \"PP abf for shared variant: 54.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.56e-27 3.75e-27 3.35e-01 1.26e-01 5.39e-01 \n", + "[1] \"PP abf for shared variant: 53.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___DUSP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2590 0.1020 0.1550 0.0564 0.4280 \n", + "[1] \"PP abf for shared variant: 42.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-27 4.76e-28 3.38e-01 1.27e-01 5.35e-01 \n", + "[1] \"PP abf for shared variant: 53.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFP36L2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0309 0.0121 0.2240 0.0815 0.6510 \n", + "[1] \"PP abf for shared variant: 65.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EIF3D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.94e-04 7.61e-05 2.76e-01 1.02e-01 6.21e-01 \n", + "[1] \"PP abf for shared variant: 62.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RP11-138A9.2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0743 0.0292 0.2850 0.1070 0.5050 \n", + "[1] \"PP abf for shared variant: 50.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.39e-19 1.33e-19 3.15e-01 1.18e-01 5.68e-01 \n", + "[1] \"PP abf for shared variant: 56.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___APRT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00755 0.00296 0.28000 0.10400 0.60600 \n", + "[1] \"PP abf for shared variant: 60.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___FYN__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001790 0.000704 0.216000 0.077700 0.704000 \n", + "[1] \"PP abf for shared variant: 70.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ANP32B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0646 0.0254 0.2340 0.0861 0.5900 \n", + "[1] \"PP abf for shared variant: 59%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___PPP2R5C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01950 0.00768 0.21200 0.07640 0.68400 \n", + "[1] \"PP abf for shared variant: 68.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EIF3M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000564 0.000222 0.294000 0.109000 0.596000 \n", + "[1] \"PP abf for shared variant: 59.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-27 6.42e-28 2.48e-01 9.07e-02 6.62e-01 \n", + "[1] \"PP abf for shared variant: 66.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CMPK1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.00e-05 1.57e-05 3.19e-01 1.20e-01 5.61e-01 \n", + "[1] \"PP abf for shared variant: 56.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__YWHAZ\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0880 0.0346 0.2330 0.0857 0.5590 \n", + "[1] \"PP abf for shared variant: 55.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___GIMAP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.97e-08 1.95e-08 3.14e-01 1.18e-01 5.68e-01 \n", + "[1] \"PP abf for shared variant: 56.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___COTL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.23e-06 8.74e-07 2.00e-01 7.11e-02 7.29e-01 \n", + "[1] \"PP abf for shared variant: 72.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EIF2S3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.91e-11 1.93e-11 2.73e-01 1.01e-01 6.26e-01 \n", + "[1] \"PP abf for shared variant: 62.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HSP90AA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1807e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2990 0.1170 0.1460 0.0536 0.3840 \n", + "[1] \"PP abf for shared variant: 38.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MT-CYB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-04 4.54e-05 2.60e-01 9.55e-02 6.45e-01 \n", + "[1] \"PP abf for shared variant: 64.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HSPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.2240 0.0878 0.2070 0.0772 0.4040 \n", + "[1] \"PP abf for shared variant: 40.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CRIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-10 6.39e-11 1.80e-01 6.33e-02 7.56e-01 \n", + "[1] \"PP abf for shared variant: 75.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-09 8.66e-10 2.83e-01 1.05e-01 6.12e-01 \n", + "[1] \"PP abf for shared variant: 61.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.02e-18 3.54e-18 3.33e-01 1.25e-01 5.42e-01 \n", + "[1] \"PP abf for shared variant: 54.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TXK\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.33e-05 1.70e-05 2.70e-01 9.98e-02 6.30e-01 \n", + "[1] \"PP abf for shared variant: 63%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-16 4.81e-17 2.80e-01 1.04e-01 6.16e-01 \n", + "[1] \"PP abf for shared variant: 61.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.84e-14 2.69e-14 3.10e-01 1.16e-01 5.74e-01 \n", + "[1] \"PP abf for shared variant: 57.4%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ANXA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.95e-07 1.95e-07 1.68e-01 5.84e-02 7.73e-01 \n", + "[1] \"PP abf for shared variant: 77.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CLIC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.67e-05 1.83e-05 2.79e-01 1.03e-01 6.17e-01 \n", + "[1] \"PP abf for shared variant: 61.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CD99__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0529 0.0208 0.2250 0.0823 0.6190 \n", + "[1] \"PP abf for shared variant: 61.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___LYRM4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1650 0.0650 0.1950 0.0716 0.5030 \n", + "[1] \"PP abf for shared variant: 50.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.71e-21 1.46e-21 1.54e-01 5.27e-02 7.93e-01 \n", + "[1] \"PP abf for shared variant: 79.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.78e-20 1.88e-20 2.26e-01 8.17e-02 6.93e-01 \n", + "[1] \"PP abf for shared variant: 69.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.25e-10 8.84e-11 3.09e-01 1.16e-01 5.76e-01 \n", + "[1] \"PP abf for shared variant: 57.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EZR__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000813 0.000319 0.175000 0.061200 0.762000 \n", + "[1] \"PP abf for shared variant: 76.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ATP5A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000588 0.000231 0.242000 0.088400 0.669000 \n", + "[1] \"PP abf for shared variant: 66.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ATP5O__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-08 4.42e-09 2.26e-01 8.17e-02 6.93e-01 \n", + "[1] \"PP abf for shared variant: 69.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0860 0.0338 0.2960 0.1120 0.4720 \n", + "[1] \"PP abf for shared variant: 47.2%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.40e-20 3.30e-20 3.05e-01 1.14e-01 5.81e-01 \n", + "[1] \"PP abf for shared variant: 58.1%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SUCLG2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000183 0.000072 0.258000 0.094800 0.647000 \n", + "[1] \"PP abf for shared variant: 64.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CD3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0538 0.0211 0.2640 0.0980 0.5630 \n", + "[1] \"PP abf for shared variant: 56.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.75e-20 1.08e-20 3.32e-01 1.25e-01 5.43e-01 \n", + "[1] \"PP abf for shared variant: 54.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___NSA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.68e-08 2.23e-08 2.31e-01 8.38e-02 6.85e-01 \n", + "[1] \"PP abf for shared variant: 68.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CST7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0424 0.0166 0.2580 0.0954 0.5880 \n", + "[1] \"PP abf for shared variant: 58.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___HIGD2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.1020 0.0402 0.2400 0.0889 0.5290 \n", + "[1] \"PP abf for shared variant: 52.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___EEF1G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.63e-09 1.03e-09 2.57e-01 9.44e-02 6.49e-01 \n", + "[1] \"PP abf for shared variant: 64.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___IGBP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.002430 0.000953 0.304000 0.114000 0.579000 \n", + "[1] \"PP abf for shared variant: 57.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___OAZ1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.12e-20 3.19e-20 1.69e-01 5.85e-02 7.73e-01 \n", + "[1] \"PP abf for shared variant: 77.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___MYH9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.4750 0.1870 0.1220 0.0464 0.1690 \n", + "[1] \"PP abf for shared variant: 16.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.38e-08 9.35e-09 2.02e-01 7.20e-02 7.26e-01 \n", + "[1] \"PP abf for shared variant: 72.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___ATP2B1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000584 0.000229 0.246000 0.090000 0.663000 \n", + "[1] \"PP abf for shared variant: 66.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.26e-29 8.89e-30 1.52e-01 5.15e-02 7.97e-01 \n", + "[1] \"PP abf for shared variant: 79.7%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RBM39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00504 0.00198 0.33100 0.12400 0.53800 \n", + "[1] \"PP abf for shared variant: 53.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___CCNG1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001950 0.000765 0.307000 0.115000 0.575000 \n", + "[1] \"PP abf for shared variant: 57.5%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.61e-16 1.81e-16 2.82e-01 1.05e-01 6.13e-01 \n", + "[1] \"PP abf for shared variant: 61.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___COX4I1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00582 0.00229 0.28300 0.10500 0.60300 \n", + "[1] \"PP abf for shared variant: 60.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___PMAIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0377 0.0148 0.2400 0.0881 0.6190 \n", + "[1] \"PP abf for shared variant: 61.9%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.64e-11 1.43e-11 1.90e-01 6.72e-02 7.43e-01 \n", + "[1] \"PP abf for shared variant: 74.3%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SNHG7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.43e-07 5.63e-08 1.93e-01 6.85e-02 7.38e-01 \n", + "[1] \"PP abf for shared variant: 73.8%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___FHIT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-10 4.43e-11 1.74e-01 6.05e-02 7.66e-01 \n", + "[1] \"PP abf for shared variant: 76.6%\"\n", + "[1] \"Asthma\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.09e-05 8.22e-06 3.07e-01 1.15e-01 5.78e-01 \n", + "[1] \"PP abf for shared variant: 57.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_TMEM176A___CAPG__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.022600 0.002380 0.881000 0.092900 0.000823 \n", + "[1] \"PP abf for shared variant: 0.0823%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_TMEM176A___PTAFR__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.068700 0.007250 0.835000 0.088100 0.000912 \n", + "[1] \"PP abf for shared variant: 0.0912%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_TMEM176A___MNDA__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.5916e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.45100 0.04760 0.45300 0.04770 0.00077 \n", + "[1] \"PP abf for shared variant: 0.077%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_TMEM176A___RNASE6__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.162000 0.017100 0.742000 0.078200 0.000821 \n", + "[1] \"PP abf for shared variant: 0.0821%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_TMEM176A___TMEM176A__TSPO\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.202000 0.021300 0.702000 0.074100 0.000813 \n", + "[1] \"PP abf for shared variant: 0.0813%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_TMEM176A___TMEM176A__VMO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.5549e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.448000 0.046700 0.457000 0.047600 0.000977 \n", + "[1] \"PP abf for shared variant: 0.0977%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_TMEM176A___S100A9__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.204000 0.021500 0.700000 0.073800 0.000788 \n", + "[1] \"PP abf for shared variant: 0.0788%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_TMEM176A___QPCT__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.8504e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.384000 0.040500 0.520000 0.054700 0.000793 \n", + "[1] \"PP abf for shared variant: 0.0793%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_TMEM176A___BLVRB__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1205e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.324000 0.034200 0.580000 0.061100 0.000891 \n", + "[1] \"PP abf for shared variant: 0.0891%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_TMEM176A___LYZ__TMEM176A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.012900 0.001360 0.891000 0.094000 0.000888 \n", + "[1] \"PP abf for shared variant: 0.0888%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_TMEM176A___CLEC4A__TMEM176A\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.5652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.471000 0.049700 0.432000 0.045600 0.000761 \n", + "[1] \"PP abf for shared variant: 0.0761%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL36__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00157 0.00152 0.50400 0.49000 0.00211 \n", + "[1] \"PP abf for shared variant: 0.211%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL5__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05090 0.04950 0.45500 0.44200 0.00228 \n", + "[1] \"PP abf for shared variant: 0.228%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02470 0.02400 0.48100 0.46800 0.00247 \n", + "[1] \"PP abf for shared variant: 0.247%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL32__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00186 0.00181 0.50400 0.49000 0.00210 \n", + "[1] \"PP abf for shared variant: 0.21%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___EEF1A1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05750 0.05590 0.44800 0.43600 0.00257 \n", + "[1] \"PP abf for shared variant: 0.257%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL38__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01070 0.01040 0.49500 0.48100 0.00231 \n", + "[1] \"PP abf for shared variant: 0.231%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL35A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01410 0.01370 0.49200 0.47800 0.00227 \n", + "[1] \"PP abf for shared variant: 0.227%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL3__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02490 0.02420 0.48100 0.46700 0.00247 \n", + "[1] \"PP abf for shared variant: 0.247%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPS4X__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05990 0.05820 0.44600 0.43300 0.00282 \n", + "[1] \"PP abf for shared variant: 0.282%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPS3A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05460 0.05310 0.45100 0.43800 0.00355 \n", + "[1] \"PP abf for shared variant: 0.355%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPS15A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01590 0.01550 0.49000 0.47600 0.00225 \n", + "[1] \"PP abf for shared variant: 0.225%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPS8__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01900 0.01840 0.48700 0.47300 0.00236 \n", + "[1] \"PP abf for shared variant: 0.236%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPS25__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05460 0.05300 0.45100 0.43800 0.00314 \n", + "[1] \"PP abf for shared variant: 0.314%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPS12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000834 0.000810 0.505000 0.491000 0.002090 \n", + "[1] \"PP abf for shared variant: 0.209%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___NKG7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0283 0.0275 0.4780 0.4640 0.0024 \n", + "[1] \"PP abf for shared variant: 0.24%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___B2M__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00581 0.00565 0.50000 0.48600 0.00215 \n", + "[1] \"PP abf for shared variant: 0.215%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL15__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01200 0.01170 0.49400 0.48000 0.00236 \n", + "[1] \"PP abf for shared variant: 0.236%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___PFN1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00402 0.00391 0.50200 0.48800 0.00211 \n", + "[1] \"PP abf for shared variant: 0.211%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPS28__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01380 0.01340 0.49200 0.47800 0.00251 \n", + "[1] \"PP abf for shared variant: 0.251%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL13A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01530 0.01490 0.49100 0.47700 0.00215 \n", + "[1] \"PP abf for shared variant: 0.215%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___GZMH__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00410 0.00398 0.50200 0.48800 0.00209 \n", + "[1] \"PP abf for shared variant: 0.209%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___LTB__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00791 0.00769 0.49800 0.48400 0.00231 \n", + "[1] \"PP abf for shared variant: 0.231%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL39__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01090 0.01060 0.49500 0.48100 0.00217 \n", + "[1] \"PP abf for shared variant: 0.217%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPS14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.01570 0.01530 0.49000 0.47700 0.00217 \n", + "[1] \"PP abf for shared variant: 0.217%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00952 0.00925 0.49700 0.48300 0.00214 \n", + "[1] \"PP abf for shared variant: 0.214%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPS23__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00447 0.00434 0.50200 0.48700 0.00225 \n", + "[1] \"PP abf for shared variant: 0.225%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPS29__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00666 0.00648 0.49900 0.48500 0.00212 \n", + "[1] \"PP abf for shared variant: 0.212%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL22__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04420 0.04290 0.46200 0.44900 0.00233 \n", + "[1] \"PP abf for shared variant: 0.233%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL9__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0186 0.0181 0.4870 0.4740 0.0022 \n", + "[1] \"PP abf for shared variant: 0.22%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04290 0.04170 0.46300 0.45000 0.00225 \n", + "[1] \"PP abf for shared variant: 0.225%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03520 0.03420 0.47100 0.45700 0.00248 \n", + "[1] \"PP abf for shared variant: 0.248%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.00027483\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.37700 0.36700 0.12700 0.12400 0.00468 \n", + "[1] \"PP abf for shared variant: 0.468%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___MAL__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02040 0.01980 0.48600 0.47100 0.00263 \n", + "[1] \"PP abf for shared variant: 0.263%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___PRF1__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.05840 0.05670 0.44700 0.43500 0.00258 \n", + "[1] \"PP abf for shared variant: 0.258%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPS13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000782 0.000760 0.505000 0.491000 0.002090 \n", + "[1] \"PP abf for shared variant: 0.209%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPS6__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00909 0.00884 0.49700 0.48300 0.00224 \n", + "[1] \"PP abf for shared variant: 0.224%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPS18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000888 0.000863 0.505000 0.491000 0.002110 \n", + "[1] \"PP abf for shared variant: 0.211%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL21__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00581 0.00565 0.50000 0.48600 0.00226 \n", + "[1] \"PP abf for shared variant: 0.226%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___SMDT1__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000215 0.000209 0.506000 0.492000 0.002110 \n", + "[1] \"PP abf for shared variant: 0.211%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00985 0.00957 0.49600 0.48200 0.00221 \n", + "[1] \"PP abf for shared variant: 0.221%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL11__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.001010 0.000985 0.505000 0.491000 0.002120 \n", + "[1] \"PP abf for shared variant: 0.212%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL34__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00375 0.00364 0.50200 0.48800 0.00212 \n", + "[1] \"PP abf for shared variant: 0.212%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL10A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00581 0.00564 0.50000 0.48600 0.00210 \n", + "[1] \"PP abf for shared variant: 0.21%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_SMDT1___RPL30__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00861 0.00837 0.49700 0.48300 0.00225 \n", + "[1] \"PP abf for shared variant: 0.225%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPL3__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00139 0.00135 0.50400 0.49000 0.00307 \n", + "[1] \"PP abf for shared variant: 0.307%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPS25__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.04450 0.04320 0.46100 0.44800 0.00314 \n", + "[1] \"PP abf for shared variant: 0.314%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPL13A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00529 0.00514 0.50100 0.48700 0.00215 \n", + "[1] \"PP abf for shared variant: 0.215%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPS13__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00327 0.00318 0.50300 0.48900 0.00213 \n", + "[1] \"PP abf for shared variant: 0.213%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPS4X__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.09340 0.09080 0.41200 0.40000 0.00363 \n", + "[1] \"PP abf for shared variant: 0.363%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPS18__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0763 0.0741 0.4280 0.4160 0.0048 \n", + "[1] \"PP abf for shared variant: 0.48%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPL31__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07290 0.07090 0.43300 0.42100 0.00296 \n", + "[1] \"PP abf for shared variant: 0.296%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPS15__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.03610 0.03510 0.47000 0.45700 0.00261 \n", + "[1] \"PP abf for shared variant: 0.261%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___ACTB__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00548 0.00533 0.50000 0.48600 0.00235 \n", + "[1] \"PP abf for shared variant: 0.235%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPL36__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02550 0.02480 0.48000 0.46700 0.00217 \n", + "[1] \"PP abf for shared variant: 0.217%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPL35A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000409 0.000397 0.506000 0.491000 0.002130 \n", + "[1] \"PP abf for shared variant: 0.213%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPS12__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.08800 0.08550 0.41800 0.40600 0.00276 \n", + "[1] \"PP abf for shared variant: 0.276%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPL11__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02030 0.01970 0.48600 0.47200 0.00233 \n", + "[1] \"PP abf for shared variant: 0.233%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPL14__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0221 0.0215 0.4840 0.4700 0.0022 \n", + "[1] \"PP abf for shared variant: 0.22%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPL10__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00811 0.00789 0.49500 0.48100 0.00746 \n", + "[1] \"PP abf for shared variant: 0.746%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPS3A__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02730 0.02650 0.47500 0.46200 0.00936 \n", + "[1] \"PP abf for shared variant: 0.936%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPS26__SMDT1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 0.0032661\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.37100 0.36100 0.13300 0.12900 0.00622 \n", + "[1] \"PP abf for shared variant: 0.622%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___CD48__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02940 0.02850 0.47700 0.46300 0.00218 \n", + "[1] \"PP abf for shared variant: 0.218%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPL7__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0517 0.0502 0.4540 0.4410 0.0026 \n", + "[1] \"PP abf for shared variant: 0.26%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_SMDT1___RPS27__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.09520 0.09260 0.41100 0.39900 0.00274 \n", + "[1] \"PP abf for shared variant: 0.274%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_HLA-DQA2___CST3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.7380 0.0000 0.2340 0.0277 \n", + "[1] \"PP abf for shared variant: 2.77%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.6220 0.0000 0.3640 0.0147 \n", + "[1] \"PP abf for shared variant: 1.47%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.3930 0.0000 0.5810 0.0254 \n", + "[1] \"PP abf for shared variant: 2.54%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_HLA-DQA2___CLIC3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.4860 0.0000 0.4820 0.0317 \n", + "[1] \"PP abf for shared variant: 3.17%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__PTPRCAP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.7190 0.0000 0.2580 0.0238 \n", + "[1] \"PP abf for shared variant: 2.38%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_HLA-DQA2___CDKN2D__HLA-DQA2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.5969e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00000 0.76700 0.00000 0.22300 0.00959 \n", + "[1] \"PP abf for shared variant: 0.959%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__YBX1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.0931e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.7410 0.0000 0.1850 0.0738 \n", + "[1] \"PP abf for shared variant: 7.38%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.6640 0.0000 0.2810 0.0556 \n", + "[1] \"PP abf for shared variant: 5.56%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00000 0.43700 0.00000 0.55300 0.00954 \n", + "[1] \"PP abf for shared variant: 0.954%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__MAP1A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.6980 0.0000 0.2860 0.0157 \n", + "[1] \"PP abf for shared variant: 1.57%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_HLA-DQA2___FAM129C__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.5240 0.0000 0.4660 0.0104 \n", + "[1] \"PP abf for shared variant: 1.04%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_HLA-DQA2___HLA-DQA2__MT-CO1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1338e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.7210 0.0000 0.2560 0.0226 \n", + "[1] \"PP abf for shared variant: 2.26%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.3630 0.0000 0.6250 0.0117 \n", + "[1] \"PP abf for shared variant: 1.17%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___CST3__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000000 0.039200 0.000000 0.960000 0.000602 \n", + "[1] \"PP abf for shared variant: 0.0602%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000000 0.001270 0.000000 0.999000 0.000101 \n", + "[1] \"PP abf for shared variant: 0.0101%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___CD74__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00e+00 1.59e-03 0.00e+00 9.98e-01 8.81e-05 \n", + "[1] \"PP abf for shared variant: 0.00881%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000000 0.026100 0.000000 0.973000 0.000485 \n", + "[1] \"PP abf for shared variant: 0.0485%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000000 0.004520 0.000000 0.995000 0.000315 \n", + "[1] \"PP abf for shared variant: 0.0315%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DPA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000000 0.001110 0.000000 0.999000 0.000119 \n", + "[1] \"PP abf for shared variant: 0.0119%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DMA__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000000 0.002080 0.000000 0.998000 0.000199 \n", + "[1] \"PP abf for shared variant: 0.0199%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS23\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000000 0.102000 0.000000 0.897000 0.000839 \n", + "[1] \"PP abf for shared variant: 0.0839%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DQB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00000 0.01480 0.00000 0.98500 0.00045 \n", + "[1] \"PP abf for shared variant: 0.045%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00000 0.34100 0.00000 0.65600 0.00277 \n", + "[1] \"PP abf for shared variant: 0.277%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___EEF1A1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00000 0.03810 0.00000 0.96000 0.00173 \n", + "[1] \"PP abf for shared variant: 0.173%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPS2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00000 0.08120 0.00000 0.91700 0.00185 \n", + "[1] \"PP abf for shared variant: 0.185%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00000 0.12100 0.00000 0.87700 0.00224 \n", + "[1] \"PP abf for shared variant: 0.224%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DMB__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00000 0.06740 0.00000 0.93200 0.00103 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000000 0.012600 0.000000 0.986000 0.000968 \n", + "[1] \"PP abf for shared variant: 0.0968%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__HLA-DRA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000000 0.002130 0.000000 0.997000 0.000497 \n", + "[1] \"PP abf for shared variant: 0.0497%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_HLA-DQA2___HLA-DQA2__RPL5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000 0.188 0.000 0.802 0.010 \n", + "[1] \"PP abf for shared variant: 1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RNASET2___HLA-DRB5__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00000 0.89100 0.00000 0.09940 0.00931 \n", + "[1] \"PP abf for shared variant: 0.931%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_HLA-DQA2___CCL5__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000000 0.028500 0.000000 0.971000 0.000747 \n", + "[1] \"PP abf for shared variant: 0.0747%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_HLA-DQA2___CD74__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.4610 0.0000 0.4980 0.0402 \n", + "[1] \"PP abf for shared variant: 4.02%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.2920 0.0000 0.6980 0.0102 \n", + "[1] \"PP abf for shared variant: 1.02%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__NKG7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00000 0.03350 0.00000 0.96300 0.00346 \n", + "[1] \"PP abf for shared variant: 0.346%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA2__RPL34\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.1370 0.0000 0.8530 0.0102 \n", + "[1] \"PP abf for shared variant: 1.02%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_HLA-DQA2___HLA-DQA1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00000 0.45200 0.00000 0.53800 0.00993 \n", + "[1] \"PP abf for shared variant: 0.993%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_HLA-DQA2___CMC1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.00000 0.10400 0.00000 0.88800 0.00881 \n", + "[1] \"PP abf for shared variant: 0.881%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS14\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.0691 0.0000 0.8680 0.0633 \n", + "[1] \"PP abf for shared variant: 6.33%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000 0.149 0.000 0.832 0.019 \n", + "[1] \"PP abf for shared variant: 1.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.2420 0.0000 0.7180 0.0401 \n", + "[1] \"PP abf for shared variant: 4.01%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DPB1__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.2030 0.0000 0.7300 0.0674 \n", + "[1] \"PP abf for shared variant: 6.74%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.3470 0.0000 0.6160 0.0368 \n", + "[1] \"PP abf for shared variant: 3.68%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___CD52__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.0396 0.0000 0.9480 0.0127 \n", + "[1] \"PP abf for shared variant: 1.27%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPS13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.3150 0.0000 0.6590 0.0263 \n", + "[1] \"PP abf for shared variant: 2.63%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.4190 0.0000 0.5290 0.0523 \n", + "[1] \"PP abf for shared variant: 5.23%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000 0.138 0.000 0.756 0.106 \n", + "[1] \"PP abf for shared variant: 10.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___EEF1B2__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.1170 0.0000 0.8630 0.0198 \n", + "[1] \"PP abf for shared variant: 1.98%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.000 0.138 0.000 0.755 0.107 \n", + "[1] \"PP abf for shared variant: 10.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___B2M__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.0941 0.0000 0.8490 0.0568 \n", + "[1] \"PP abf for shared variant: 5.68%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___GAPDH__HLA-DQA2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.2560 0.0000 0.6590 0.0844 \n", + "[1] \"PP abf for shared variant: 8.44%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL32\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.0998 0.0000 0.7940 0.1060 \n", + "[1] \"PP abf for shared variant: 10.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__RPL7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.3540 0.0000 0.6360 0.0102 \n", + "[1] \"PP abf for shared variant: 1.02%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_HLA-DQA2___HLA-DQA2__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.0000 0.0534 0.0000 0.9270 0.0198 \n", + "[1] \"PP abf for shared variant: 1.98%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RNASET2___ITGB1__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.006240 0.000817 0.873000 0.114000 0.005550 \n", + "[1] \"PP abf for shared variant: 0.555%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RNASET2___CRIP1__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.06520 0.00853 0.81400 0.10600 0.00560 \n", + "[1] \"PP abf for shared variant: 0.56%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RNASET2___B2M__RNASET2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.02880 0.00377 0.85000 0.11100 0.00605 \n", + "[1] \"PP abf for shared variant: 0.605%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RNASET2___ALOX5AP__RNASET2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 0.07280 0.00952 0.80600 0.10500 0.00586 \n", + "[1] \"PP abf for shared variant: 0.586%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_RPS26___RPS26__RPS8\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.0253e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.63e-57 5.42e-01 3.27e-57 3.82e-01 7.53e-02 \n", + "[1] \"PP abf for shared variant: 7.53%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.58e-57 4.19e-01 4.20e-57 4.91e-01 9.04e-02 \n", + "[1] \"PP abf for shared variant: 9.04%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"DC_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.53e-57 4.13e-01 3.32e-57 3.87e-01 2.00e-01 \n", + "[1] \"PP abf for shared variant: 20%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.34e-57 1.57e-01 5.77e-57 6.74e-01 1.69e-01 \n", + "[1] \"PP abf for shared variant: 16.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS26__UBE2J1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 8.0878e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.63e-57 3.08e-01 1.99e-57 2.28e-01 4.64e-01 \n", + "[1] \"PP abf for shared variant: 46.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.84e-58 4.49e-02 6.38e-57 7.45e-01 2.10e-01 \n", + "[1] \"PP abf for shared variant: 21%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.53e-57 4.14e-01 3.90e-57 4.55e-01 1.31e-01 \n", + "[1] \"PP abf for shared variant: 13.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS13__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1042e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.62e-57 4.24e-01 4.35e-57 5.09e-01 6.74e-02 \n", + "[1] \"PP abf for shared variant: 6.74%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS26__RPS28\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.1644e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.42e-57 6.34e-01 2.68e-57 3.13e-01 5.27e-02 \n", + "[1] \"PP abf for shared variant: 5.27%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-60 2.41e-04 4.77e-57 5.55e-01 4.45e-01 \n", + "[1] \"PP abf for shared variant: 44.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL39__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.0557e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.17e-57 6.05e-01 3.20e-57 3.75e-01 1.97e-02 \n", + "[1] \"PP abf for shared variant: 1.97%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.10e-59 5.97e-03 8.41e-57 9.84e-01 9.70e-03 \n", + "[1] \"PP abf for shared variant: 0.97%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.83e-58 5.65e-02 3.31e-57 3.82e-01 5.61e-01 \n", + "[1] \"PP abf for shared variant: 56.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.35e-59 2.75e-03 8.34e-57 9.76e-01 2.14e-02 \n", + "[1] \"PP abf for shared variant: 2.14%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.29e-57 3.85e-01 4.06e-57 4.74e-01 1.42e-01 \n", + "[1] \"PP abf for shared variant: 14.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.45e-57 2.87e-01 5.77e-57 6.75e-01 3.85e-02 \n", + "[1] \"PP abf for shared variant: 3.85%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL26__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.7757e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.21e-57 3.76e-01 3.31e-57 3.86e-01 2.38e-01 \n", + "[1] \"PP abf for shared variant: 23.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.07e-58 4.76e-02 5.77e-57 6.73e-01 2.80e-01 \n", + "[1] \"PP abf for shared variant: 28%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.08e-57 3.61e-01 5.00e-57 5.84e-01 5.49e-02 \n", + "[1] \"PP abf for shared variant: 5.49%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS25__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2778e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.44e-57 4.03e-01 4.14e-57 4.84e-01 1.13e-01 \n", + "[1] \"PP abf for shared variant: 11.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS26__RPS29\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0623e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.55e-57 6.50e-01 2.49e-57 2.91e-01 5.93e-02 \n", + "[1] \"PP abf for shared variant: 5.93%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.87e-59 9.21e-03 2.69e-57 3.08e-01 6.83e-01 \n", + "[1] \"PP abf for shared variant: 68.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.64e-58 4.27e-02 7.79e-57 9.12e-01 4.53e-02 \n", + "[1] \"PP abf for shared variant: 4.53%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-57 1.58e-01 7.01e-57 8.21e-01 2.15e-02 \n", + "[1] \"PP abf for shared variant: 2.15%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.71e-61 4.34e-05 8.50e-57 9.95e-01 4.97e-03 \n", + "[1] \"PP abf for shared variant: 0.497%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS19__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1408e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.93e-57 5.77e-01 1.84e-57 2.13e-01 2.10e-01 \n", + "[1] \"PP abf for shared variant: 21%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL23__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.791e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.63e-57 3.08e-01 2.53e-57 2.93e-01 3.99e-01 \n", + "[1] \"PP abf for shared variant: 39.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL18__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1436e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.84e-57 5.67e-01 2.98e-57 3.49e-01 8.44e-02 \n", + "[1] \"PP abf for shared variant: 8.44%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1123e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.72e-57 6.70e-01 1.92e-57 2.23e-01 1.07e-01 \n", + "[1] \"PP abf for shared variant: 10.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-57 1.22e-01 6.78e-57 7.93e-01 8.49e-02 \n", + "[1] \"PP abf for shared variant: 8.49%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-57 1.49e-01 6.50e-57 7.61e-01 9.04e-02 \n", + "[1] \"PP abf for shared variant: 9.04%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.67e-62 8.98e-06 7.67e-57 8.98e-01 1.02e-01 \n", + "[1] \"PP abf for shared variant: 10.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.36e-58 7.45e-02 4.58e-57 5.32e-01 3.94e-01 \n", + "[1] \"PP abf for shared variant: 39.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.38e-58 1.61e-02 8.27e-57 9.68e-01 1.57e-02 \n", + "[1] \"PP abf for shared variant: 1.57%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.56e-61 1.83e-05 8.53e-57 9.99e-01 9.11e-04 \n", + "[1] \"PP abf for shared variant: 0.0911%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.89e-58 9.23e-02 7.54e-57 8.83e-01 2.50e-02 \n", + "[1] \"PP abf for shared variant: 2.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPL23A__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1639e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.80e-57 5.62e-01 1.85e-57 2.14e-01 2.24e-01 \n", + "[1] \"PP abf for shared variant: 22.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"B_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.65e-58 3.10e-02 7.83e-57 9.17e-01 5.24e-02 \n", + "[1] \"PP abf for shared variant: 5.24%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.00e-65 1.05e-08 8.54e-57 1.00e+00 3.63e-04 \n", + "[1] \"PP abf for shared variant: 0.0363%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.87e-69 9.22e-13 8.54e-57 1.00e+00 1.43e-04 \n", + "[1] \"PP abf for shared variant: 0.0143%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.59e-58 5.38e-02 7.46e-57 8.73e-01 7.36e-02 \n", + "[1] \"PP abf for shared variant: 7.36%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-64 2.01e-08 8.54e-57 1.00e+00 2.97e-04 \n", + "[1] \"PP abf for shared variant: 0.0297%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.76e-63 1.03e-06 8.54e-57 1.00e+00 2.31e-04 \n", + "[1] \"PP abf for shared variant: 0.0231%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.68e-61 4.31e-05 8.50e-57 9.95e-01 4.70e-03 \n", + "[1] \"PP abf for shared variant: 0.47%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.39e-73 1.63e-17 8.54e-57 1.00e+00 3.37e-04 \n", + "[1] \"PP abf for shared variant: 0.0337%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.37e-67 3.95e-11 8.54e-57 9.99e-01 5.07e-04 \n", + "[1] \"PP abf for shared variant: 0.0507%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.75e-68 2.04e-12 8.54e-57 1.00e+00 4.99e-04 \n", + "[1] \"PP abf for shared variant: 0.0499%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.47e-67 4.06e-11 8.54e-57 1.00e+00 2.18e-04 \n", + "[1] \"PP abf for shared variant: 0.0218%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.47e-62 7.58e-06 8.54e-57 1.00e+00 2.18e-04 \n", + "[1] \"PP abf for shared variant: 0.0218%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.71e-60 6.69e-04 7.41e-57 8.66e-01 1.33e-01 \n", + "[1] \"PP abf for shared variant: 13.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-67 1.19e-11 8.54e-57 1.00e+00 1.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0178%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.17e-71 2.55e-15 8.54e-57 1.00e+00 2.10e-04 \n", + "[1] \"PP abf for shared variant: 0.021%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-58 1.75e-02 7.51e-57 8.78e-01 1.04e-01 \n", + "[1] \"PP abf for shared variant: 10.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.99e-58 4.67e-02 7.77e-57 9.09e-01 4.41e-02 \n", + "[1] \"PP abf for shared variant: 4.41%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-66 1.23e-10 8.54e-57 1.00e+00 3.57e-04 \n", + "[1] \"PP abf for shared variant: 0.0357%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.19e-63 6.08e-07 8.54e-57 1.00e+00 3.22e-04 \n", + "[1] \"PP abf for shared variant: 0.0322%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.65e-59 7.79e-03 8.44e-57 9.88e-01 3.93e-03 \n", + "[1] \"PP abf for shared variant: 0.393%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.56e-63 3.00e-07 8.51e-57 9.97e-01 3.48e-03 \n", + "[1] \"PP abf for shared variant: 0.348%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.55e-74 7.66e-18 8.54e-57 1.00e+00 3.16e-04 \n", + "[1] \"PP abf for shared variant: 0.0316%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.58e-67 3.02e-11 8.54e-57 1.00e+00 3.17e-04 \n", + "[1] \"PP abf for shared variant: 0.0317%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.01e-67 2.35e-11 8.51e-57 9.96e-01 4.08e-03 \n", + "[1] \"PP abf for shared variant: 0.408%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__SPON2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.79e-59 7.95e-03 8.20e-57 9.59e-01 3.26e-02 \n", + "[1] \"PP abf for shared variant: 3.26%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-61 1.36e-05 8.47e-57 9.91e-01 8.54e-03 \n", + "[1] \"PP abf for shared variant: 0.854%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.33e-76 9.75e-20 8.54e-57 1.00e+00 6.01e-05 \n", + "[1] \"PP abf for shared variant: 0.00601%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.56e-69 1.83e-13 8.54e-57 1.00e+00 3.67e-04 \n", + "[1] \"PP abf for shared variant: 0.0367%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.99e-68 3.50e-12 8.54e-57 1.00e+00 4.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0483%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-69 2.68e-13 8.54e-57 1.00e+00 3.46e-04 \n", + "[1] \"PP abf for shared variant: 0.0346%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.75e-63 9.08e-07 8.52e-57 9.98e-01 2.09e-03 \n", + "[1] \"PP abf for shared variant: 0.209%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-57 1.52e-01 7.01e-57 8.21e-01 2.76e-02 \n", + "[1] \"PP abf for shared variant: 2.76%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.12e-62 7.16e-06 8.54e-57 1.00e+00 3.05e-04 \n", + "[1] \"PP abf for shared variant: 0.0305%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___PRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1991e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.07e-57 3.59e-01 5.02e-57 5.87e-01 5.37e-02 \n", + "[1] \"PP abf for shared variant: 5.37%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.44e-65 1.69e-09 8.54e-57 1.00e+00 3.58e-04 \n", + "[1] \"PP abf for shared variant: 0.0358%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-68 2.41e-12 8.54e-57 1.00e+00 2.93e-04 \n", + "[1] \"PP abf for shared variant: 0.0293%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.19e-66 8.42e-10 8.54e-57 1.00e+00 3.84e-04 \n", + "[1] \"PP abf for shared variant: 0.0384%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.50e-69 6.44e-13 8.54e-57 1.00e+00 1.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0183%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.74e-72 3.20e-16 8.53e-57 9.99e-01 7.64e-04 \n", + "[1] \"PP abf for shared variant: 0.0764%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.73e-74 2.03e-18 8.54e-57 1.00e+00 3.63e-04 \n", + "[1] \"PP abf for shared variant: 0.0363%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.23e-60 2.62e-04 8.43e-57 9.86e-01 1.33e-02 \n", + "[1] \"PP abf for shared variant: 1.33%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.14e-66 3.67e-10 8.54e-57 1.00e+00 1.65e-04 \n", + "[1] \"PP abf for shared variant: 0.0165%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.50e-61 6.44e-05 8.53e-57 9.99e-01 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-66 1.64e-10 8.54e-57 1.00e+00 3.89e-05 \n", + "[1] \"PP abf for shared variant: 0.00389%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.40e-70 9.84e-14 8.54e-57 1.00e+00 4.36e-04 \n", + "[1] \"PP abf for shared variant: 0.0436%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.44e-65 7.54e-09 8.54e-57 1.00e+00 1.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0175%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-71 1.21e-15 8.54e-57 1.00e+00 2.19e-04 \n", + "[1] \"PP abf for shared variant: 0.0219%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.47e-70 4.07e-14 8.53e-57 9.99e-01 7.38e-04 \n", + "[1] \"PP abf for shared variant: 0.0738%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.53e-60 5.31e-04 7.98e-57 9.34e-01 6.57e-02 \n", + "[1] \"PP abf for shared variant: 6.57%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-69 2.52e-13 8.54e-57 1.00e+00 4.59e-04 \n", + "[1] \"PP abf for shared variant: 0.0459%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.37e-57 2.78e-01 5.42e-57 6.34e-01 8.82e-02 \n", + "[1] \"PP abf for shared variant: 8.82%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.67e-63 1.95e-07 8.54e-57 1.00e+00 2.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0289%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.70e-59 1.14e-02 8.24e-57 9.65e-01 2.37e-02 \n", + "[1] \"PP abf for shared variant: 2.37%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.88e-64 2.20e-08 8.54e-57 1.00e+00 2.17e-04 \n", + "[1] \"PP abf for shared variant: 0.0217%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.53e-60 1.79e-04 8.54e-57 1.00e+00 2.38e-04 \n", + "[1] \"PP abf for shared variant: 0.0238%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.77e-74 5.58e-18 8.54e-57 1.00e+00 2.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0283%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-63 1.58e-07 8.28e-57 9.69e-01 3.11e-02 \n", + "[1] \"PP abf for shared variant: 3.11%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-65 1.28e-09 8.54e-57 1.00e+00 1.48e-04 \n", + "[1] \"PP abf for shared variant: 0.0148%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.92e-63 9.27e-07 8.53e-57 9.98e-01 1.73e-03 \n", + "[1] \"PP abf for shared variant: 0.173%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.12e-66 2.48e-10 8.54e-57 1.00e+00 3.39e-05 \n", + "[1] \"PP abf for shared variant: 0.00339%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.24e-72 9.65e-16 8.54e-57 1.00e+00 2.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0277%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-62 1.74e-06 8.54e-57 1.00e+00 2.26e-04 \n", + "[1] \"PP abf for shared variant: 0.0226%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.15e-61 1.35e-05 8.54e-57 9.99e-01 5.25e-04 \n", + "[1] \"PP abf for shared variant: 0.0525%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___GPR183__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-57 1.72e-01 4.57e-57 5.32e-01 2.96e-01 \n", + "[1] \"PP abf for shared variant: 29.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.55e-72 2.99e-16 8.54e-57 1.00e+00 4.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0483%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.41e-59 5.17e-03 8.15e-57 9.54e-01 4.07e-02 \n", + "[1] \"PP abf for shared variant: 4.07%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.45e-65 7.55e-09 8.54e-57 1.00e+00 3.31e-04 \n", + "[1] \"PP abf for shared variant: 0.0331%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-62 1.80e-06 8.54e-57 1.00e+00 3.27e-04 \n", + "[1] \"PP abf for shared variant: 0.0327%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.30e-61 3.86e-05 8.53e-57 9.99e-01 7.41e-04 \n", + "[1] \"PP abf for shared variant: 0.0741%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.70e-62 1.02e-05 7.34e-57 8.58e-01 1.42e-01 \n", + "[1] \"PP abf for shared variant: 14.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-63 2.68e-07 8.53e-57 9.99e-01 7.58e-04 \n", + "[1] \"PP abf for shared variant: 0.0758%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___GZMB__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4099e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-57 2.41e-01 3.52e-57 4.09e-01 3.50e-01 \n", + "[1] \"PP abf for shared variant: 35%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___EEF1D__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5173e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.37e-57 7.46e-01 2.05e-57 2.39e-01 1.44e-02 \n", + "[1] \"PP abf for shared variant: 1.44%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.79e-60 5.61e-04 8.52e-57 9.98e-01 1.31e-03 \n", + "[1] \"PP abf for shared variant: 0.131%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.23e-63 3.79e-07 8.54e-57 1.00e+00 4.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0477%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.59e-69 3.03e-13 8.54e-57 1.00e+00 2.65e-04 \n", + "[1] \"PP abf for shared variant: 0.0265%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___KLRC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.45e-58 6.38e-02 7.91e-57 9.26e-01 1.04e-02 \n", + "[1] \"PP abf for shared variant: 1.04%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL17__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.4275e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.45e-57 6.38e-01 2.89e-57 3.38e-01 2.45e-02 \n", + "[1] \"PP abf for shared variant: 2.45%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.17e-63 9.57e-07 8.54e-57 1.00e+00 3.18e-04 \n", + "[1] \"PP abf for shared variant: 0.0318%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.49e-65 7.60e-09 8.51e-57 9.96e-01 3.79e-03 \n", + "[1] \"PP abf for shared variant: 0.379%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___MALAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.97e-59 1.17e-02 7.77e-57 9.09e-01 7.92e-02 \n", + "[1] \"PP abf for shared variant: 7.92%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-59 1.45e-03 8.21e-57 9.61e-01 3.74e-02 \n", + "[1] \"PP abf for shared variant: 3.74%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.98e-67 3.50e-11 8.54e-57 1.00e+00 2.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0274%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___HLA-B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8351e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.16e-57 4.87e-01 3.21e-57 3.75e-01 1.39e-01 \n", + "[1] \"PP abf for shared variant: 13.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.65e-63 4.27e-07 8.50e-57 9.95e-01 4.82e-03 \n", + "[1] \"PP abf for shared variant: 0.482%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.98e-61 4.66e-05 8.54e-57 1.00e+00 4.21e-04 \n", + "[1] \"PP abf for shared variant: 0.0421%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___FGFBP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-57 2.04e-01 6.47e-57 7.57e-01 3.92e-02 \n", + "[1] \"PP abf for shared variant: 3.92%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.43e-59 6.35e-03 8.44e-57 9.88e-01 5.39e-03 \n", + "[1] \"PP abf for shared variant: 0.539%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.26e-60 3.82e-04 8.41e-57 9.84e-01 1.55e-02 \n", + "[1] \"PP abf for shared variant: 1.55%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.52e-60 5.29e-04 8.49e-57 9.94e-01 5.34e-03 \n", + "[1] \"PP abf for shared variant: 0.534%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-58 2.40e-02 8.28e-57 9.69e-01 6.88e-03 \n", + "[1] \"PP abf for shared variant: 0.688%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__ZEB2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.574e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.56e-57 5.34e-01 1.78e-57 2.06e-01 2.60e-01 \n", + "[1] \"PP abf for shared variant: 26%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.44e-62 5.20e-06 8.52e-57 9.98e-01 2.33e-03 \n", + "[1] \"PP abf for shared variant: 0.233%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.56e-71 4.16e-15 8.53e-57 9.99e-01 6.98e-04 \n", + "[1] \"PP abf for shared variant: 0.0698%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___NACA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.2336e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.53e-57 4.13e-01 2.53e-57 2.93e-01 2.94e-01 \n", + "[1] \"PP abf for shared variant: 29.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.67e-66 3.13e-10 8.53e-57 9.99e-01 6.71e-04 \n", + "[1] \"PP abf for shared variant: 0.0671%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"NK_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.74e-67 3.21e-11 8.54e-57 1.00e+00 4.21e-04 \n", + "[1] \"PP abf for shared variant: 0.0421%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___NRGN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7437e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.64e-57 4.26e-01 4.37e-57 5.11e-01 6.35e-02 \n", + "[1] \"PP abf for shared variant: 6.35%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.99e-58 7.02e-02 1.89e-57 2.14e-01 7.16e-01 \n", + "[1] \"PP abf for shared variant: 71.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.31e-60 9.73e-04 7.54e-57 8.81e-01 1.18e-01 \n", + "[1] \"PP abf for shared variant: 11.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-62 1.23e-06 8.54e-57 9.99e-01 5.18e-04 \n", + "[1] \"PP abf for shared variant: 0.0518%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-72 1.71e-16 8.53e-57 9.99e-01 8.11e-04 \n", + "[1] \"PP abf for shared variant: 0.0811%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.51e-63 5.28e-07 8.53e-57 9.99e-01 6.35e-04 \n", + "[1] \"PP abf for shared variant: 0.0635%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.89e-66 1.04e-09 8.53e-57 9.99e-01 6.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0675%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.79e-59 9.12e-03 8.25e-57 9.66e-01 2.53e-02 \n", + "[1] \"PP abf for shared variant: 2.53%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.17e-65 6.05e-09 8.53e-57 9.99e-01 6.49e-04 \n", + "[1] \"PP abf for shared variant: 0.0649%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.19e-71 2.57e-15 8.53e-57 9.99e-01 9.95e-04 \n", + "[1] \"PP abf for shared variant: 0.0995%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__VCAN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-57 2.42e-01 4.32e-57 5.03e-01 2.55e-01 \n", + "[1] \"PP abf for shared variant: 25.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__UQCRH\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.45e-62 7.55e-06 7.83e-57 9.16e-01 8.43e-02 \n", + "[1] \"PP abf for shared variant: 8.43%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC7A7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.08e-59 1.06e-02 8.41e-57 9.84e-01 5.04e-03 \n", + "[1] \"PP abf for shared variant: 0.504%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___EPB41L3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.40e-58 7.49e-02 2.53e-57 2.90e-01 6.35e-01 \n", + "[1] \"PP abf for shared variant: 63.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.08e-59 3.60e-03 8.04e-57 9.41e-01 5.53e-02 \n", + "[1] \"PP abf for shared variant: 5.53%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.27e-70 2.65e-14 8.53e-57 9.99e-01 6.20e-04 \n", + "[1] \"PP abf for shared variant: 0.062%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___HNRNPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.30e-59 2.69e-03 1.93e-57 2.18e-01 7.80e-01 \n", + "[1] \"PP abf for shared variant: 78%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___QARS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-57 1.76e-01 6.82e-57 7.99e-01 2.50e-02 \n", + "[1] \"PP abf for shared variant: 2.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___HLA-DPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.25e-62 2.63e-06 8.53e-57 9.99e-01 1.30e-03 \n", + "[1] \"PP abf for shared variant: 0.13%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.50e-71 2.93e-15 8.54e-57 1.00e+00 4.65e-04 \n", + "[1] \"PP abf for shared variant: 0.0465%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.68e-62 3.14e-06 8.53e-57 9.99e-01 8.96e-04 \n", + "[1] \"PP abf for shared variant: 0.0896%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-71 2.46e-15 8.54e-57 1.00e+00 4.72e-04 \n", + "[1] \"PP abf for shared variant: 0.0472%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.42e-65 8.68e-09 8.54e-57 1.00e+00 3.64e-04 \n", + "[1] \"PP abf for shared variant: 0.0364%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-65 1.52e-09 8.53e-57 9.99e-01 5.65e-04 \n", + "[1] \"PP abf for shared variant: 0.0565%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.67e-68 4.30e-12 8.53e-57 9.99e-01 6.10e-04 \n", + "[1] \"PP abf for shared variant: 0.061%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.23e-59 8.47e-03 6.66e-57 7.78e-01 2.14e-01 \n", + "[1] \"PP abf for shared variant: 21.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.67e-66 5.47e-10 8.53e-57 9.99e-01 6.23e-04 \n", + "[1] \"PP abf for shared variant: 0.0623%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___CSTA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.74e-60 5.55e-04 7.64e-57 8.93e-01 1.06e-01 \n", + "[1] \"PP abf for shared variant: 10.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.83e-64 1.15e-07 8.53e-57 9.99e-01 8.15e-04 \n", + "[1] \"PP abf for shared variant: 0.0815%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.84e-58 8.00e-02 7.08e-57 8.29e-01 9.13e-02 \n", + "[1] \"PP abf for shared variant: 9.13%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.87e-69 1.04e-12 8.54e-57 1.00e+00 4.66e-04 \n", + "[1] \"PP abf for shared variant: 0.0466%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.22e-60 7.29e-04 3.79e-57 4.38e-01 5.61e-01 \n", + "[1] \"PP abf for shared variant: 56.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.50e-71 2.92e-15 8.53e-57 9.99e-01 8.52e-04 \n", + "[1] \"PP abf for shared variant: 0.0852%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___ERP29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.19e-57 1.40e-01 2.93e-57 3.38e-01 5.23e-01 \n", + "[1] \"PP abf for shared variant: 52.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__TNFAIP2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-57 2.13e-01 6.62e-57 7.75e-01 1.21e-02 \n", + "[1] \"PP abf for shared variant: 1.21%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__VIM\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.61e-59 8.91e-03 7.72e-57 9.04e-01 8.76e-02 \n", + "[1] \"PP abf for shared variant: 8.76%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.62e-68 1.89e-12 8.54e-57 1.00e+00 3.22e-04 \n", + "[1] \"PP abf for shared variant: 0.0322%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.80e-76 4.45e-20 8.53e-57 9.99e-01 6.16e-04 \n", + "[1] \"PP abf for shared variant: 0.0616%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.48e-68 8.76e-12 8.53e-57 9.99e-01 7.58e-04 \n", + "[1] \"PP abf for shared variant: 0.0758%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.59e-62 6.55e-06 8.36e-57 9.79e-01 2.11e-02 \n", + "[1] \"PP abf for shared variant: 2.11%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.68e-66 1.97e-10 8.54e-57 1.00e+00 4.99e-04 \n", + "[1] \"PP abf for shared variant: 0.0499%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.67e-65 3.13e-09 8.53e-57 9.99e-01 6.09e-04 \n", + "[1] \"PP abf for shared variant: 0.0609%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.59e-61 6.55e-05 8.33e-57 9.75e-01 2.52e-02 \n", + "[1] \"PP abf for shared variant: 2.52%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.99e-60 8.18e-04 7.45e-57 8.72e-01 1.28e-01 \n", + "[1] \"PP abf for shared variant: 12.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.54e-60 2.97e-04 8.52e-57 9.98e-01 1.96e-03 \n", + "[1] \"PP abf for shared variant: 0.196%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-69 1.49e-13 8.53e-57 9.99e-01 6.56e-04 \n", + "[1] \"PP abf for shared variant: 0.0656%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.60e-72 6.55e-16 8.53e-57 9.99e-01 6.93e-04 \n", + "[1] \"PP abf for shared variant: 0.0693%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC25A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.08e-65 5.95e-09 8.54e-57 1.00e+00 3.47e-04 \n", + "[1] \"PP abf for shared variant: 0.0347%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.96e-61 9.32e-05 8.51e-57 9.97e-01 3.20e-03 \n", + "[1] \"PP abf for shared variant: 0.32%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.24e-67 2.63e-11 8.54e-57 1.00e+00 2.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0292%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__RPSA\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1173e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.15e-57 1.35e-01 2.70e-57 3.10e-01 5.55e-01 \n", + "[1] \"PP abf for shared variant: 55.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-63 1.94e-07 8.53e-57 9.99e-01 7.28e-04 \n", + "[1] \"PP abf for shared variant: 0.0728%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.17e-66 1.37e-10 8.54e-57 1.00e+00 4.45e-04 \n", + "[1] \"PP abf for shared variant: 0.0445%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.15e-64 1.07e-07 8.53e-57 9.99e-01 7.13e-04 \n", + "[1] \"PP abf for shared variant: 0.0713%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.77e-59 2.07e-03 8.48e-57 9.93e-01 5.23e-03 \n", + "[1] \"PP abf for shared variant: 0.523%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.97e-65 3.48e-09 8.53e-57 9.99e-01 6.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0677%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-62 2.52e-06 7.91e-57 9.25e-01 7.47e-02 \n", + "[1] \"PP abf for shared variant: 7.47%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___HLA-DPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.38e-58 1.61e-02 7.08e-57 8.28e-01 1.56e-01 \n", + "[1] \"PP abf for shared variant: 15.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-68 1.72e-12 8.53e-57 9.99e-01 1.11e-03 \n", + "[1] \"PP abf for shared variant: 0.111%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.30e-67 2.69e-11 8.53e-57 9.99e-01 8.33e-04 \n", + "[1] \"PP abf for shared variant: 0.0833%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.99e-61 3.50e-05 8.53e-57 9.99e-01 5.63e-04 \n", + "[1] \"PP abf for shared variant: 0.0563%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___PABPC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-60 1.87e-04 6.51e-57 7.59e-01 2.40e-01 \n", + "[1] \"PP abf for shared variant: 24%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___CST3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7382e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.98e-57 4.66e-01 3.94e-57 4.60e-01 7.37e-02 \n", + "[1] \"PP abf for shared variant: 7.37%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___EMP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.83e-58 2.14e-02 8.00e-57 9.36e-01 4.21e-02 \n", + "[1] \"PP abf for shared variant: 4.21%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___GNLY__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-57 1.77e-01 6.72e-57 7.86e-01 3.70e-02 \n", + "[1] \"PP abf for shared variant: 3.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-71 1.58e-15 8.53e-57 9.99e-01 6.27e-04 \n", + "[1] \"PP abf for shared variant: 0.0627%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___EIF3M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.55e-58 1.12e-01 2.61e-57 3.00e-01 5.88e-01 \n", + "[1] \"PP abf for shared variant: 58.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.95e-60 6.96e-04 8.25e-57 9.66e-01 3.36e-02 \n", + "[1] \"PP abf for shared variant: 3.36%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___AP1S2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-57 1.24e-01 4.64e-57 5.41e-01 3.36e-01 \n", + "[1] \"PP abf for shared variant: 33.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.33e-67 6.24e-11 8.53e-57 9.99e-01 7.18e-04 \n", + "[1] \"PP abf for shared variant: 0.0718%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.02e-65 2.36e-09 8.53e-57 9.99e-01 8.21e-04 \n", + "[1] \"PP abf for shared variant: 0.0821%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__SEC11A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.79e-59 4.43e-03 3.87e-57 4.48e-01 5.48e-01 \n", + "[1] \"PP abf for shared variant: 54.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-60 1.72e-04 7.67e-57 8.97e-01 1.03e-01 \n", + "[1] \"PP abf for shared variant: 10.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-67 1.64e-11 8.53e-57 9.99e-01 1.07e-03 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.67e-65 7.81e-09 8.53e-57 9.98e-01 1.51e-03 \n", + "[1] \"PP abf for shared variant: 0.151%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.41e-67 2.83e-11 8.53e-57 9.99e-01 5.94e-04 \n", + "[1] \"PP abf for shared variant: 0.0594%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-63 1.71e-07 8.53e-57 9.99e-01 7.47e-04 \n", + "[1] \"PP abf for shared variant: 0.0747%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.93e-63 2.26e-07 8.53e-57 9.99e-01 1.17e-03 \n", + "[1] \"PP abf for shared variant: 0.117%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.76e-64 9.08e-08 8.54e-57 9.99e-01 5.47e-04 \n", + "[1] \"PP abf for shared variant: 0.0547%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___ATP5G2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.63e-59 6.59e-03 8.40e-57 9.84e-01 9.45e-03 \n", + "[1] \"PP abf for shared variant: 0.945%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.04e-62 5.90e-06 8.50e-57 9.95e-01 4.91e-03 \n", + "[1] \"PP abf for shared variant: 0.491%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.94e-65 2.27e-09 8.54e-57 9.99e-01 5.17e-04 \n", + "[1] \"PP abf for shared variant: 0.0517%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__SLC25A5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.86e-59 1.04e-02 7.36e-57 8.60e-01 1.29e-01 \n", + "[1] \"PP abf for shared variant: 12.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.78e-69 2.08e-13 8.53e-57 9.99e-01 9.80e-04 \n", + "[1] \"PP abf for shared variant: 0.098%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.00e-72 5.85e-16 8.53e-57 9.99e-01 6.44e-04 \n", + "[1] \"PP abf for shared variant: 0.0644%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.88e-74 2.20e-18 8.53e-57 9.99e-01 1.03e-03 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.91e-63 4.58e-07 8.42e-57 9.85e-01 1.46e-02 \n", + "[1] \"PP abf for shared variant: 1.46%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.69e-63 1.98e-07 8.53e-57 9.99e-01 1.06e-03 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.48e-73 9.92e-17 8.53e-57 9.99e-01 8.67e-04 \n", + "[1] \"PP abf for shared variant: 0.0867%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.14e-60 1.33e-04 8.40e-57 9.83e-01 1.68e-02 \n", + "[1] \"PP abf for shared variant: 1.68%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___EVI2B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.83e-57 2.14e-01 4.38e-57 5.10e-01 2.76e-01 \n", + "[1] \"PP abf for shared variant: 27.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.02e-58 3.54e-02 8.02e-57 9.39e-01 2.56e-02 \n", + "[1] \"PP abf for shared variant: 2.56%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.44e-59 5.20e-03 2.06e-57 2.34e-01 7.61e-01 \n", + "[1] \"PP abf for shared variant: 76.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.95e-60 5.79e-04 8.48e-57 9.93e-01 6.44e-03 \n", + "[1] \"PP abf for shared variant: 0.644%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.36e-69 3.93e-13 8.53e-57 9.99e-01 9.08e-04 \n", + "[1] \"PP abf for shared variant: 0.0908%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___LGALS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.18e-57 1.39e-01 6.81e-57 7.97e-01 6.45e-02 \n", + "[1] \"PP abf for shared variant: 6.45%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.00e-57 2.35e-01 5.76e-57 6.74e-01 9.18e-02 \n", + "[1] \"PP abf for shared variant: 9.18%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.04e-67 2.39e-11 8.53e-57 9.99e-01 8.58e-04 \n", + "[1] \"PP abf for shared variant: 0.0858%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.03e-71 9.40e-15 8.53e-57 9.99e-01 6.90e-04 \n", + "[1] \"PP abf for shared variant: 0.069%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-67 2.41e-11 8.53e-57 9.99e-01 9.12e-04 \n", + "[1] \"PP abf for shared variant: 0.0912%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.56e-63 1.12e-06 8.53e-57 9.99e-01 6.90e-04 \n", + "[1] \"PP abf for shared variant: 0.069%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___GPX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.58e-58 1.84e-02 7.68e-57 8.98e-01 8.32e-02 \n", + "[1] \"PP abf for shared variant: 8.32%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___LTA4H__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.45e-57 4.04e-01 3.94e-57 4.60e-01 1.36e-01 \n", + "[1] \"PP abf for shared variant: 13.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RNASE6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-57 1.73e-01 6.71e-57 7.86e-01 4.19e-02 \n", + "[1] \"PP abf for shared variant: 4.19%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___FTH1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.39e-58 5.14e-02 7.52e-57 8.80e-01 6.86e-02 \n", + "[1] \"PP abf for shared variant: 6.86%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___BTF3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.78e-59 5.59e-03 8.34e-57 9.76e-01 1.82e-02 \n", + "[1] \"PP abf for shared variant: 1.82%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___DRAM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1829e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.34e-57 3.91e-01 3.81e-57 4.44e-01 1.65e-01 \n", + "[1] \"PP abf for shared variant: 16.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___IL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.95e-60 4.63e-04 5.15e-57 5.99e-01 4.00e-01 \n", + "[1] \"PP abf for shared variant: 40%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___ATP5A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.90e-59 5.74e-03 7.71e-57 9.02e-01 9.22e-02 \n", + "[1] \"PP abf for shared variant: 9.22%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.02e-63 3.54e-07 8.51e-57 9.96e-01 3.58e-03 \n", + "[1] \"PP abf for shared variant: 0.358%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-67 1.81e-11 8.53e-57 9.99e-01 9.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0974%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-70 3.09e-14 8.53e-57 9.99e-01 1.06e-03 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-57 1.41e-01 4.15e-57 4.82e-01 3.77e-01 \n", + "[1] \"PP abf for shared variant: 37.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.63e-71 3.08e-15 8.54e-57 1.00e+00 4.93e-04 \n", + "[1] \"PP abf for shared variant: 0.0493%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.83e-68 4.48e-12 8.53e-57 9.99e-01 8.03e-04 \n", + "[1] \"PP abf for shared variant: 0.0803%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___IPO7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.79e-58 6.78e-02 7.70e-57 9.01e-01 3.08e-02 \n", + "[1] \"PP abf for shared variant: 3.08%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.40e-64 7.49e-08 8.51e-57 9.96e-01 4.06e-03 \n", + "[1] \"PP abf for shared variant: 0.406%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.71e-68 4.35e-12 8.54e-57 1.00e+00 3.13e-04 \n", + "[1] \"PP abf for shared variant: 0.0313%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.05e-70 5.92e-14 8.53e-57 9.99e-01 1.07e-03 \n", + "[1] \"PP abf for shared variant: 0.107%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___CXCR4__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.2966e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.65e-57 4.27e-01 4.70e-57 5.50e-01 2.31e-02 \n", + "[1] \"PP abf for shared variant: 2.31%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.38e-64 1.61e-08 8.53e-57 9.99e-01 6.29e-04 \n", + "[1] \"PP abf for shared variant: 0.0629%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.42e-62 4.01e-06 4.94e-57 5.75e-01 4.25e-01 \n", + "[1] \"PP abf for shared variant: 42.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___CRTAP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.65e-59 1.01e-02 8.25e-57 9.65e-01 2.46e-02 \n", + "[1] \"PP abf for shared variant: 2.46%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.51e-57 2.94e-01 5.65e-57 6.62e-01 4.40e-02 \n", + "[1] \"PP abf for shared variant: 4.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.88e-65 3.37e-09 8.54e-57 1.00e+00 4.53e-04 \n", + "[1] \"PP abf for shared variant: 0.0453%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-59 1.53e-03 8.42e-57 9.86e-01 1.24e-02 \n", + "[1] \"PP abf for shared variant: 1.24%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.69e-66 3.15e-10 8.53e-57 9.99e-01 1.03e-03 \n", + "[1] \"PP abf for shared variant: 0.103%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-57 2.03e-01 5.31e-57 6.20e-01 1.77e-01 \n", + "[1] \"PP abf for shared variant: 17.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___GPR183__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.84e-58 2.15e-02 7.64e-57 8.94e-01 8.42e-02 \n", + "[1] \"PP abf for shared variant: 8.42%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.86e-66 3.35e-10 8.53e-57 9.99e-01 6.24e-04 \n", + "[1] \"PP abf for shared variant: 0.0624%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-67 1.19e-11 8.54e-57 1.00e+00 3.02e-04 \n", + "[1] \"PP abf for shared variant: 0.0302%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"monocyte_RPS26___RPS26__TKT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.59e-61 8.89e-05 8.50e-57 9.96e-01 4.10e-03 \n", + "[1] \"PP abf for shared variant: 0.41%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.13e-72 1.07e-15 8.53e-57 9.99e-01 5.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0592%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SCML1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.84e-58 6.84e-02 7.31e-57 8.55e-01 7.68e-02 \n", + "[1] \"PP abf for shared variant: 7.68%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___ACTN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.94e-60 4.62e-04 8.50e-57 9.96e-01 3.79e-03 \n", + "[1] \"PP abf for shared variant: 0.379%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-71 2.18e-15 8.54e-57 1.00e+00 7.63e-05 \n", + "[1] \"PP abf for shared variant: 0.00763%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__ZFAND1\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4561e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.38e-57 1.61e-01 2.62e-57 3.01e-01 5.37e-01 \n", + "[1] \"PP abf for shared variant: 53.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-71 1.43e-15 8.54e-57 1.00e+00 2.34e-04 \n", + "[1] \"PP abf for shared variant: 0.0234%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PRF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.49e-59 7.59e-03 8.43e-57 9.87e-01 5.85e-03 \n", + "[1] \"PP abf for shared variant: 0.585%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.41e-61 1.65e-05 8.51e-57 9.97e-01 2.95e-03 \n", + "[1] \"PP abf for shared variant: 0.295%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EFHD2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.88e-58 2.20e-02 8.29e-57 9.71e-01 7.29e-03 \n", + "[1] \"PP abf for shared variant: 0.729%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SELL\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.20e-67 8.43e-11 8.54e-57 1.00e+00 1.17e-04 \n", + "[1] \"PP abf for shared variant: 0.0117%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.62e-72 4.24e-16 8.53e-57 9.99e-01 5.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0581%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-70 1.87e-14 8.54e-57 1.00e+00 2.46e-04 \n", + "[1] \"PP abf for shared variant: 0.0246%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.96e-69 2.29e-13 8.54e-57 9.99e-01 5.29e-04 \n", + "[1] \"PP abf for shared variant: 0.0529%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___APBA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.23e-58 4.95e-02 7.10e-57 8.31e-01 1.20e-01 \n", + "[1] \"PP abf for shared variant: 12%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EEF1G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.62e-60 3.07e-04 8.50e-57 9.95e-01 4.69e-03 \n", + "[1] \"PP abf for shared variant: 0.469%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___FAIM3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.55e-58 4.15e-02 7.98e-57 9.35e-01 2.40e-02 \n", + "[1] \"PP abf for shared variant: 2.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EIF3G__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.7746e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.07e-57 3.60e-01 3.79e-57 4.42e-01 1.98e-01 \n", + "[1] \"PP abf for shared variant: 19.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___APOBEC3C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.08e-57 2.44e-01 6.24e-57 7.31e-01 2.51e-02 \n", + "[1] \"PP abf for shared variant: 2.51%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.19e-59 6.08e-03 8.46e-57 9.91e-01 3.20e-03 \n", + "[1] \"PP abf for shared variant: 0.32%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.35e-71 6.27e-15 8.53e-57 9.99e-01 9.43e-04 \n", + "[1] \"PP abf for shared variant: 0.0943%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___C11orf1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.8471e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.27e-57 5.00e-01 3.33e-57 3.89e-01 1.11e-01 \n", + "[1] \"PP abf for shared variant: 11.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___LCP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.03e-60 2.38e-04 8.53e-57 9.99e-01 9.99e-04 \n", + "[1] \"PP abf for shared variant: 0.0999%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.65e-74 4.27e-18 8.53e-57 9.99e-01 1.14e-03 \n", + "[1] \"PP abf for shared variant: 0.114%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.28e-73 2.67e-17 8.54e-57 1.00e+00 3.52e-04 \n", + "[1] \"PP abf for shared variant: 0.0352%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___GZMM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.22e-57 2.60e-01 5.70e-57 6.66e-01 7.39e-02 \n", + "[1] \"PP abf for shared variant: 7.39%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CFL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.85e-62 2.17e-06 8.54e-57 1.00e+00 1.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0177%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RSL1D1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.21e-60 4.92e-04 8.43e-57 9.87e-01 1.21e-02 \n", + "[1] \"PP abf for shared variant: 1.21%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TXN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.72e-57 2.02e-01 6.43e-57 7.52e-01 4.57e-02 \n", + "[1] \"PP abf for shared variant: 4.57%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CTSW__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-57 1.53e-01 7.09e-57 8.30e-01 1.69e-02 \n", + "[1] \"PP abf for shared variant: 1.69%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CD99__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-61 1.27e-05 8.53e-57 9.99e-01 5.90e-04 \n", + "[1] \"PP abf for shared variant: 0.059%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.95e-75 9.31e-19 8.53e-57 9.99e-01 6.59e-04 \n", + "[1] \"PP abf for shared variant: 0.0659%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___FLT3LG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.77e-61 1.14e-04 8.51e-57 9.97e-01 2.87e-03 \n", + "[1] \"PP abf for shared variant: 0.287%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___NKG7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-61 1.46e-05 8.53e-57 9.99e-01 1.04e-03 \n", + "[1] \"PP abf for shared variant: 0.104%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__UQCRB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-58 2.00e-02 4.76e-57 5.54e-01 4.26e-01 \n", + "[1] \"PP abf for shared variant: 42.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__YWHAZ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.3964e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.31e-57 5.05e-01 4.12e-57 4.82e-01 1.28e-02 \n", + "[1] \"PP abf for shared variant: 1.28%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CREM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-57 1.93e-01 6.09e-57 7.13e-01 9.42e-02 \n", + "[1] \"PP abf for shared variant: 9.42%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.83e-61 9.17e-05 8.52e-57 9.98e-01 2.17e-03 \n", + "[1] \"PP abf for shared variant: 0.217%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RGS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-62 2.17e-06 8.32e-57 9.74e-01 2.57e-02 \n", + "[1] \"PP abf for shared variant: 2.57%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.38e-66 1.10e-09 8.54e-57 1.00e+00 1.47e-04 \n", + "[1] \"PP abf for shared variant: 0.0147%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-68 1.46e-12 8.54e-57 9.99e-01 5.47e-04 \n", + "[1] \"PP abf for shared variant: 0.0547%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___LDHB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-70 2.18e-14 8.54e-57 1.00e+00 1.39e-04 \n", + "[1] \"PP abf for shared variant: 0.0139%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___ATP1A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 9.0977e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.20e-57 6.09e-01 2.43e-57 2.83e-01 1.08e-01 \n", + "[1] \"PP abf for shared variant: 10.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CXCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.51e-58 7.62e-02 3.27e-57 3.77e-01 5.47e-01 \n", + "[1] \"PP abf for shared variant: 54.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SYNE1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.43e-58 9.88e-02 6.87e-57 8.04e-01 9.74e-02 \n", + "[1] \"PP abf for shared variant: 9.74%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___FYN__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.137e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.03e-57 4.71e-01 3.15e-57 3.67e-01 1.62e-01 \n", + "[1] \"PP abf for shared variant: 16.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.85e-63 9.20e-07 8.53e-57 9.99e-01 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___MYL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.81e-67 6.81e-11 8.54e-57 1.00e+00 3.38e-04 \n", + "[1] \"PP abf for shared variant: 0.0338%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PDE3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.84e-61 6.84e-05 8.50e-57 9.95e-01 5.21e-03 \n", + "[1] \"PP abf for shared variant: 0.521%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.58e-76 3.02e-20 8.53e-57 9.99e-01 1.01e-03 \n", + "[1] \"PP abf for shared variant: 0.101%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___MT-CO1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.92e-61 3.42e-05 8.49e-57 9.94e-01 5.84e-03 \n", + "[1] \"PP abf for shared variant: 0.584%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__ZEB2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.79e-59 6.78e-03 8.37e-57 9.80e-01 1.33e-02 \n", + "[1] \"PP abf for shared variant: 1.33%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___LTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.26e-64 1.48e-08 8.54e-57 1.00e+00 2.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0286%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PTPN7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-57 2.46e-01 5.94e-57 6.95e-01 5.94e-02 \n", + "[1] \"PP abf for shared variant: 5.94%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.34e-69 5.08e-13 8.53e-57 9.99e-01 6.29e-04 \n", + "[1] \"PP abf for shared variant: 0.0629%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PFN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.92e-67 8.10e-11 8.54e-57 1.00e+00 3.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0386%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___IER2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.1556e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.73e-57 5.53e-01 3.44e-57 4.03e-01 4.39e-02 \n", + "[1] \"PP abf for shared variant: 4.39%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.17e-61 4.89e-05 8.54e-57 1.00e+00 3.35e-04 \n", + "[1] \"PP abf for shared variant: 0.0335%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.47e-66 6.40e-10 8.54e-57 1.00e+00 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.50e-77 5.27e-21 8.53e-57 9.99e-01 1.09e-03 \n", + "[1] \"PP abf for shared variant: 0.109%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.12e-71 3.65e-15 8.54e-57 1.00e+00 1.44e-04 \n", + "[1] \"PP abf for shared variant: 0.0144%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CMC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.84e-60 6.83e-04 8.41e-57 9.85e-01 1.45e-02 \n", + "[1] \"PP abf for shared variant: 1.45%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SAT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.03e-61 5.89e-05 8.53e-57 9.99e-01 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.92e-69 2.25e-13 8.54e-57 1.00e+00 3.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0377%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___GZMB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-58 1.26e-02 8.40e-57 9.83e-01 4.11e-03 \n", + "[1] \"PP abf for shared variant: 0.411%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___AKNA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.4233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.47e-57 5.23e-01 2.88e-57 3.36e-01 1.41e-01 \n", + "[1] \"PP abf for shared variant: 14.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___HLA-DPB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.9277e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.36e-57 3.94e-01 3.70e-57 4.31e-01 1.75e-01 \n", + "[1] \"PP abf for shared variant: 17.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.13e-77 1.07e-20 8.53e-57 9.99e-01 6.59e-04 \n", + "[1] \"PP abf for shared variant: 0.0659%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___NELL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.16e-64 1.36e-08 8.54e-57 1.00e+00 1.67e-04 \n", + "[1] \"PP abf for shared variant: 0.0167%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EEF1D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.36e-60 1.59e-04 8.53e-57 9.99e-01 1.28e-03 \n", + "[1] \"PP abf for shared variant: 0.128%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___FLNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-58 2.55e-02 8.28e-57 9.70e-01 4.62e-03 \n", + "[1] \"PP abf for shared variant: 0.462%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___C12orf75__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.90e-58 2.22e-02 8.24e-57 9.65e-01 1.28e-02 \n", + "[1] \"PP abf for shared variant: 1.28%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.89e-73 5.73e-17 8.53e-57 9.99e-01 7.47e-04 \n", + "[1] \"PP abf for shared variant: 0.0747%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___HLA-C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.99e-68 1.05e-11 8.54e-57 1.00e+00 2.33e-04 \n", + "[1] \"PP abf for shared variant: 0.0233%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___HLA-B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.72e-71 4.36e-15 8.54e-57 9.99e-01 5.42e-04 \n", + "[1] \"PP abf for shared variant: 0.0542%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___METRNL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4496e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.62e-57 6.58e-01 2.65e-57 3.10e-01 3.14e-02 \n", + "[1] \"PP abf for shared variant: 3.14%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PFDN5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.34e-59 9.76e-03 8.44e-57 9.88e-01 1.98e-03 \n", + "[1] \"PP abf for shared variant: 0.198%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CAMK4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-63 1.86e-07 8.53e-57 9.99e-01 1.46e-03 \n", + "[1] \"PP abf for shared variant: 0.146%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___BHLHE40__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.69e-59 1.02e-02 8.42e-57 9.86e-01 4.31e-03 \n", + "[1] \"PP abf for shared variant: 0.431%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___IFITM2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 5.2604e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.24e-57 4.96e-01 4.02e-57 4.70e-01 3.34e-02 \n", + "[1] \"PP abf for shared variant: 3.34%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SLA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.93e-58 4.60e-02 7.98e-57 9.34e-01 2.03e-02 \n", + "[1] \"PP abf for shared variant: 2.03%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CD8B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.11e-60 1.31e-04 8.51e-57 9.96e-01 3.52e-03 \n", + "[1] \"PP abf for shared variant: 0.352%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-75 2.31e-19 8.54e-57 1.00e+00 9.34e-05 \n", + "[1] \"PP abf for shared variant: 0.00934%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___NGFRAP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.06e-58 3.58e-02 7.44e-57 8.70e-01 9.40e-02 \n", + "[1] \"PP abf for shared variant: 9.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.53e-70 4.13e-14 8.54e-57 1.00e+00 1.27e-04 \n", + "[1] \"PP abf for shared variant: 0.0127%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TUBA4A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.48e-58 2.90e-02 6.13e-57 7.15e-01 2.56e-01 \n", + "[1] \"PP abf for shared variant: 25.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-61 1.87e-05 8.54e-57 1.00e+00 2.66e-04 \n", + "[1] \"PP abf for shared variant: 0.0266%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-75 1.23e-19 8.53e-57 9.99e-01 7.14e-04 \n", + "[1] \"PP abf for shared variant: 0.0714%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RCAN3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.51e-62 4.10e-06 8.54e-57 1.00e+00 3.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0392%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.49e-69 1.75e-13 8.54e-57 1.00e+00 2.27e-04 \n", + "[1] \"PP abf for shared variant: 0.0227%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PPP2R5C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.94e-60 2.27e-04 8.49e-57 9.94e-01 6.11e-03 \n", + "[1] \"PP abf for shared variant: 0.611%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.64e-67 3.09e-11 8.53e-57 9.99e-01 5.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0582%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.91e-64 5.75e-08 8.54e-57 1.00e+00 3.50e-04 \n", + "[1] \"PP abf for shared variant: 0.035%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___DNAJB6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.85e-58 6.85e-02 7.74e-57 9.07e-01 2.49e-02 \n", + "[1] \"PP abf for shared variant: 2.49%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RAP1B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.077e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.64e-57 6.61e-01 2.28e-57 2.66e-01 7.32e-02 \n", + "[1] \"PP abf for shared variant: 7.32%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.81e-62 7.98e-06 8.54e-57 1.00e+00 2.70e-04 \n", + "[1] \"PP abf for shared variant: 0.027%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PABPC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-59 1.46e-03 8.37e-57 9.80e-01 1.82e-02 \n", + "[1] \"PP abf for shared variant: 1.82%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___FBL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.10e-59 4.80e-03 8.12e-57 9.51e-01 4.44e-02 \n", + "[1] \"PP abf for shared variant: 4.44%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CCDC104__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.9652e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.64e-57 4.26e-01 2.30e-57 2.66e-01 3.07e-01 \n", + "[1] \"PP abf for shared variant: 30.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CCL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.46e-65 2.88e-09 8.54e-57 1.00e+00 1.62e-04 \n", + "[1] \"PP abf for shared variant: 0.0162%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.72e-65 4.36e-09 8.54e-57 1.00e+00 7.42e-05 \n", + "[1] \"PP abf for shared variant: 0.00742%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___NPM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.94e-62 3.44e-06 8.53e-57 9.99e-01 6.25e-04 \n", + "[1] \"PP abf for shared variant: 0.0625%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.11e-74 1.30e-18 8.53e-57 9.99e-01 9.19e-04 \n", + "[1] \"PP abf for shared variant: 0.0919%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___MT-CO2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.03e-58 2.38e-02 5.06e-57 5.89e-01 3.88e-01 \n", + "[1] \"PP abf for shared variant: 38.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TESPA1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-58 1.29e-02 7.76e-57 9.08e-01 7.93e-02 \n", + "[1] \"PP abf for shared variant: 7.93%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.69e-59 4.33e-03 8.45e-57 9.90e-01 5.89e-03 \n", + "[1] \"PP abf for shared variant: 0.589%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PSMA7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.68e-57 1.96e-01 6.09e-57 7.12e-01 9.13e-02 \n", + "[1] \"PP abf for shared variant: 9.13%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PLEK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.79e-57 2.10e-01 5.95e-57 6.95e-01 9.51e-02 \n", + "[1] \"PP abf for shared variant: 9.51%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SUB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-60 1.52e-04 8.52e-57 9.97e-01 2.58e-03 \n", + "[1] \"PP abf for shared variant: 0.258%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.19e-72 3.74e-16 8.53e-57 9.99e-01 6.59e-04 \n", + "[1] \"PP abf for shared variant: 0.0659%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___MT-ND5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.4281e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.72e-57 3.18e-01 3.05e-57 3.53e-01 3.29e-01 \n", + "[1] \"PP abf for shared variant: 32.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___KLRD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.18e-59 3.72e-03 8.40e-57 9.84e-01 1.26e-02 \n", + "[1] \"PP abf for shared variant: 1.26%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___MYC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.01e-59 3.53e-03 7.11e-57 8.30e-01 1.66e-01 \n", + "[1] \"PP abf for shared variant: 16.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RGS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-57 1.49e-01 4.50e-57 5.24e-01 3.28e-01 \n", + "[1] \"PP abf for shared variant: 32.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___KLF2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.391e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.69e-57 4.32e-01 4.72e-57 5.53e-01 1.51e-02 \n", + "[1] \"PP abf for shared variant: 1.51%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SLC25A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.04e-58 1.06e-01 6.27e-57 7.32e-01 1.62e-01 \n", + "[1] \"PP abf for shared variant: 16.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___HNRNPA2B1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.67e-57 4.30e-01 3.96e-57 4.63e-01 1.08e-01 \n", + "[1] \"PP abf for shared variant: 10.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___ARAP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.3907e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.90e-57 6.91e-01 2.12e-57 2.47e-01 6.13e-02 \n", + "[1] \"PP abf for shared variant: 6.13%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___HLA-A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.78e-73 5.60e-17 8.53e-57 9.99e-01 1.02e-03 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__UBB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-61 1.18e-05 8.53e-57 9.99e-01 8.53e-04 \n", + "[1] \"PP abf for shared variant: 0.0853%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL17__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.35e-61 3.92e-05 8.53e-57 9.99e-01 9.65e-04 \n", + "[1] \"PP abf for shared variant: 0.0965%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.18e-69 3.73e-13 8.54e-57 1.00e+00 3.22e-04 \n", + "[1] \"PP abf for shared variant: 0.0322%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__UBC\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.07e-62 4.77e-06 8.33e-57 9.75e-01 2.47e-02 \n", + "[1] \"PP abf for shared variant: 2.47%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.46e-62 5.22e-06 8.52e-57 9.98e-01 1.78e-03 \n", + "[1] \"PP abf for shared variant: 0.178%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TGFB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.13e-58 1.07e-01 7.19e-57 8.42e-01 5.12e-02 \n", + "[1] \"PP abf for shared variant: 5.12%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-65 1.22e-09 8.54e-57 1.00e+00 4.71e-04 \n", + "[1] \"PP abf for shared variant: 0.0471%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.91e-75 4.58e-19 8.53e-57 9.99e-01 1.20e-03 \n", + "[1] \"PP abf for shared variant: 0.12%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___LYPD3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-57 2.51e-01 5.41e-57 6.32e-01 1.17e-01 \n", + "[1] \"PP abf for shared variant: 11.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TMSB10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.11e-61 8.33e-05 7.92e-57 9.27e-01 7.32e-02 \n", + "[1] \"PP abf for shared variant: 7.32%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CLIC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.15e-58 1.07e-01 7.40e-57 8.66e-01 2.63e-02 \n", + "[1] \"PP abf for shared variant: 2.63%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___C12orf57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.19e-58 4.90e-02 6.61e-57 7.73e-01 1.78e-01 \n", + "[1] \"PP abf for shared variant: 17.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TMEM243\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-59 1.20e-03 8.52e-57 9.98e-01 8.37e-04 \n", + "[1] \"PP abf for shared variant: 0.0837%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-71 1.64e-15 8.53e-57 9.99e-01 6.57e-04 \n", + "[1] \"PP abf for shared variant: 0.0657%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___ID2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.68e-58 1.02e-01 7.53e-57 8.82e-01 1.67e-02 \n", + "[1] \"PP abf for shared variant: 1.67%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.38e-71 1.62e-15 8.54e-57 1.00e+00 4.04e-04 \n", + "[1] \"PP abf for shared variant: 0.0404%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CCR7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.10e-66 2.46e-10 8.54e-57 1.00e+00 1.48e-04 \n", + "[1] \"PP abf for shared variant: 0.0148%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.47e-59 2.89e-03 8.37e-57 9.80e-01 1.67e-02 \n", + "[1] \"PP abf for shared variant: 1.67%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-81 1.41e-25 8.53e-57 9.99e-01 8.94e-04 \n", + "[1] \"PP abf for shared variant: 0.0894%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___COX7C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.49e-57 2.92e-01 5.85e-57 6.85e-01 2.29e-02 \n", + "[1] \"PP abf for shared variant: 2.29%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___NFKBIA__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 7.944e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.62e-57 5.41e-01 3.29e-57 3.84e-01 7.51e-02 \n", + "[1] \"PP abf for shared variant: 7.51%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___NDFIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-58 1.87e-02 7.47e-57 8.74e-01 1.08e-01 \n", + "[1] \"PP abf for shared variant: 10.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.09e-73 2.45e-17 8.53e-57 9.99e-01 9.54e-04 \n", + "[1] \"PP abf for shared variant: 0.0954%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.06e-72 8.27e-16 8.54e-57 1.00e+00 3.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0374%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.25e-66 4.97e-10 8.54e-57 1.00e+00 2.16e-04 \n", + "[1] \"PP abf for shared variant: 0.0216%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___GZMA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.64e-63 1.92e-07 8.54e-57 1.00e+00 2.91e-04 \n", + "[1] \"PP abf for shared variant: 0.0291%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___ABHD14B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.87e-57 2.20e-01 5.88e-57 6.87e-01 9.33e-02 \n", + "[1] \"PP abf for shared variant: 9.33%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.28e-67 7.35e-11 8.53e-57 9.99e-01 5.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0573%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TPI1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.34e-57 2.74e-01 5.69e-57 6.66e-01 5.97e-02 \n", + "[1] \"PP abf for shared variant: 5.97%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.18e-75 2.55e-19 8.53e-57 9.99e-01 7.17e-04 \n", + "[1] \"PP abf for shared variant: 0.0717%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___GIMAP7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.98e-58 5.83e-02 4.15e-57 4.82e-01 4.60e-01 \n", + "[1] \"PP abf for shared variant: 46%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.55e-66 2.99e-10 8.54e-57 1.00e+00 3.67e-04 \n", + "[1] \"PP abf for shared variant: 0.0367%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.02e-72 9.40e-16 8.54e-57 1.00e+00 4.41e-04 \n", + "[1] \"PP abf for shared variant: 0.0441%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SC5D\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.89e-57 3.39e-01 5.41e-57 6.33e-01 2.82e-02 \n", + "[1] \"PP abf for shared variant: 2.82%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.10e-67 8.31e-11 8.53e-57 9.99e-01 5.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0583%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-73 1.86e-17 8.53e-57 9.99e-01 7.47e-04 \n", + "[1] \"PP abf for shared variant: 0.0747%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RIC3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.38e-60 8.64e-04 8.52e-57 9.97e-01 1.88e-03 \n", + "[1] \"PP abf for shared variant: 0.188%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-67 1.77e-11 8.54e-57 9.99e-01 5.43e-04 \n", + "[1] \"PP abf for shared variant: 0.0543%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SH3YL1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-61 1.54e-05 8.53e-57 9.99e-01 7.18e-04 \n", + "[1] \"PP abf for shared variant: 0.0718%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CCNG1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 4.9814e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.57e-57 5.35e-01 3.29e-57 3.85e-01 8.01e-02 \n", + "[1] \"PP abf for shared variant: 8.01%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SRP14\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.91e-61 4.57e-05 8.35e-57 9.77e-01 2.28e-02 \n", + "[1] \"PP abf for shared variant: 2.28%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SPON2\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.0298e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.91e-57 4.58e-01 4.28e-57 5.01e-01 4.06e-02 \n", + "[1] \"PP abf for shared variant: 4.06%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___HMGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.83e-60 3.31e-04 8.46e-57 9.91e-01 8.77e-03 \n", + "[1] \"PP abf for shared variant: 0.877%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___NOSIP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.02e-63 5.88e-07 8.54e-57 1.00e+00 1.31e-04 \n", + "[1] \"PP abf for shared variant: 0.0131%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.06e-73 1.06e-16 8.54e-57 1.00e+00 2.51e-04 \n", + "[1] \"PP abf for shared variant: 0.0251%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.20e-75 4.92e-19 8.53e-57 9.99e-01 8.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0875%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.87e-76 1.04e-19 8.54e-57 1.00e+00 2.34e-04 \n", + "[1] \"PP abf for shared variant: 0.0234%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___MYL12B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.0233e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.72e-57 4.36e-01 4.70e-57 5.50e-01 1.36e-02 \n", + "[1] \"PP abf for shared variant: 1.36%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___GNLY__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-58 1.73e-02 8.03e-57 9.40e-01 4.25e-02 \n", + "[1] \"PP abf for shared variant: 4.25%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___MIR142__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1648e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.12e-57 5.99e-01 2.22e-57 2.59e-01 1.42e-01 \n", + "[1] \"PP abf for shared variant: 14.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.35e-59 3.92e-03 7.82e-57 9.15e-01 8.14e-02 \n", + "[1] \"PP abf for shared variant: 8.14%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.98e-74 9.34e-18 8.54e-57 1.00e+00 3.29e-04 \n", + "[1] \"PP abf for shared variant: 0.0329%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.72e-57 2.01e-01 6.37e-57 7.45e-01 5.36e-02 \n", + "[1] \"PP abf for shared variant: 5.36%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.48e-62 6.42e-06 8.22e-57 9.62e-01 3.82e-02 \n", + "[1] \"PP abf for shared variant: 3.82%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PTP4A2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.73e-57 3.19e-01 5.51e-57 6.45e-01 3.55e-02 \n", + "[1] \"PP abf for shared variant: 3.55%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___FGFBP2__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.9666e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.79e-57 5.60e-01 3.04e-57 3.55e-01 8.46e-02 \n", + "[1] \"PP abf for shared variant: 8.46%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RPSAP58\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.28e-61 5.01e-05 7.63e-57 8.92e-01 1.07e-01 \n", + "[1] \"PP abf for shared variant: 10.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.38e-64 1.62e-08 8.53e-57 9.99e-01 6.70e-04 \n", + "[1] \"PP abf for shared variant: 0.067%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.90e-81 2.23e-25 8.54e-57 1.00e+00 2.54e-04 \n", + "[1] \"PP abf for shared variant: 0.0254%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CCDC57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.02e-63 1.06e-06 8.48e-57 9.93e-01 6.98e-03 \n", + "[1] \"PP abf for shared variant: 0.698%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___ITGB2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.02e-57 3.54e-01 5.03e-57 5.88e-01 5.75e-02 \n", + "[1] \"PP abf for shared variant: 5.75%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EIF2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.90e-58 4.56e-02 6.23e-57 7.27e-01 2.27e-01 \n", + "[1] \"PP abf for shared variant: 22.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___MYO1F__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.4185e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.09e-57 5.96e-01 3.03e-57 3.54e-01 5.06e-02 \n", + "[1] \"PP abf for shared variant: 5.06%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___ARF6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.19e-58 7.25e-02 6.31e-57 7.37e-01 1.90e-01 \n", + "[1] \"PP abf for shared variant: 19%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CD81__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.53e-57 1.79e-01 6.81e-57 7.98e-01 2.33e-02 \n", + "[1] \"PP abf for shared variant: 2.33%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TMEM123\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.76e-59 2.06e-03 8.47e-57 9.92e-01 5.71e-03 \n", + "[1] \"PP abf for shared variant: 0.571%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___ALKBH7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-59 2.13e-03 8.43e-57 9.87e-01 1.06e-02 \n", + "[1] \"PP abf for shared variant: 1.06%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___LDHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.31e-60 5.04e-04 8.51e-57 9.97e-01 2.60e-03 \n", + "[1] \"PP abf for shared variant: 0.26%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PIK3IP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-61 1.52e-05 8.54e-57 1.00e+00 4.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0474%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___FOXP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.04e-60 4.73e-04 8.51e-57 9.97e-01 2.49e-03 \n", + "[1] \"PP abf for shared variant: 0.249%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CCL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.53e-61 4.14e-05 8.53e-57 9.99e-01 5.83e-04 \n", + "[1] \"PP abf for shared variant: 0.0583%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___NEAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.69e-59 9.00e-03 8.45e-57 9.89e-01 1.90e-03 \n", + "[1] \"PP abf for shared variant: 0.19%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___KLRF1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.9856e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.99e-57 4.67e-01 4.25e-57 4.98e-01 3.51e-02 \n", + "[1] \"PP abf for shared variant: 3.51%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___BTF3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5042e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.70e-57 5.51e-01 2.30e-57 2.67e-01 1.82e-01 \n", + "[1] \"PP abf for shared variant: 18.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__ZFAS1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-57 1.80e-01 5.67e-57 6.62e-01 1.57e-01 \n", + "[1] \"PP abf for shared variant: 15.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.67e-72 8.98e-16 8.54e-57 1.00e+00 3.24e-04 \n", + "[1] \"PP abf for shared variant: 0.0324%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___C1orf21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1023e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.67e-57 4.30e-01 4.26e-57 4.98e-01 7.25e-02 \n", + "[1] \"PP abf for shared variant: 7.25%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.19e-66 1.40e-10 8.54e-57 1.00e+00 1.72e-04 \n", + "[1] \"PP abf for shared variant: 0.0172%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CALM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.84e-58 8.01e-02 7.52e-57 8.80e-01 3.96e-02 \n", + "[1] \"PP abf for shared variant: 3.96%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___HOPX__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.25e-57 2.63e-01 6.21e-57 7.27e-01 9.86e-03 \n", + "[1] \"PP abf for shared variant: 0.986%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CD55__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.58e-58 1.85e-02 7.98e-57 9.34e-01 4.71e-02 \n", + "[1] \"PP abf for shared variant: 4.71%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.53e-71 1.79e-15 8.53e-57 9.99e-01 8.96e-04 \n", + "[1] \"PP abf for shared variant: 0.0896%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.02e-60 4.71e-04 8.52e-57 9.97e-01 2.18e-03 \n", + "[1] \"PP abf for shared variant: 0.218%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.90e-73 9.25e-17 8.54e-57 1.00e+00 2.70e-04 \n", + "[1] \"PP abf for shared variant: 0.027%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.89e-59 3.39e-03 7.08e-57 8.28e-01 1.69e-01 \n", + "[1] \"PP abf for shared variant: 16.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.40e-68 1.10e-11 8.54e-57 1.00e+00 7.83e-05 \n", + "[1] \"PP abf for shared variant: 0.00783%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___HLA-DRB1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 6.507e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.31e-57 6.21e-01 3.08e-57 3.61e-01 1.82e-02 \n", + "[1] \"PP abf for shared variant: 1.82%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.05e-74 3.57e-18 8.53e-57 9.99e-01 1.06e-03 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.47e-70 2.90e-14 8.53e-57 9.99e-01 6.18e-04 \n", + "[1] \"PP abf for shared variant: 0.0618%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PTMA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.18e-59 1.38e-03 8.50e-57 9.95e-01 3.28e-03 \n", + "[1] \"PP abf for shared variant: 0.328%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.54e-67 7.66e-11 8.54e-57 1.00e+00 2.82e-04 \n", + "[1] \"PP abf for shared variant: 0.0282%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___GNG2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-57 1.31e-01 5.84e-57 6.82e-01 1.87e-01 \n", + "[1] \"PP abf for shared variant: 18.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TIGIT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.73e-59 1.02e-02 7.80e-57 9.12e-01 7.77e-02 \n", + "[1] \"PP abf for shared variant: 7.77%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.62e-63 3.07e-07 8.50e-57 9.95e-01 5.21e-03 \n", + "[1] \"PP abf for shared variant: 0.521%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.74e-67 1.02e-10 8.53e-57 9.99e-01 5.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0579%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___C1QBP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.70e-60 5.51e-04 7.01e-57 8.19e-01 1.80e-01 \n", + "[1] \"PP abf for shared variant: 18%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CD27__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.689e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.99e-57 4.67e-01 3.81e-57 4.45e-01 8.78e-02 \n", + "[1] \"PP abf for shared variant: 8.78%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___KLRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.70e-60 1.14e-03 8.40e-57 9.84e-01 1.50e-02 \n", + "[1] \"PP abf for shared variant: 1.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___MAL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.24e-66 7.30e-10 8.54e-57 1.00e+00 2.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0292%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.88e-72 2.20e-16 8.53e-57 9.99e-01 8.06e-04 \n", + "[1] \"PP abf for shared variant: 0.0806%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___REL__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.691e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.58e-57 4.19e-01 3.40e-57 3.97e-01 1.84e-01 \n", + "[1] \"PP abf for shared variant: 18.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.77e-68 5.59e-12 8.53e-57 9.99e-01 7.15e-04 \n", + "[1] \"PP abf for shared variant: 0.0715%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___FTL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.56e-57 3.00e-01 5.09e-57 5.94e-01 1.06e-01 \n", + "[1] \"PP abf for shared variant: 10.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.78e-65 7.94e-09 8.54e-57 1.00e+00 2.59e-04 \n", + "[1] \"PP abf for shared variant: 0.0259%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.56e-70 1.00e-13 8.53e-57 9.99e-01 8.61e-04 \n", + "[1] \"PP abf for shared variant: 0.0861%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.85e-63 2.16e-07 8.54e-57 1.00e+00 4.45e-04 \n", + "[1] \"PP abf for shared variant: 0.0445%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SEPT7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.29e-58 7.37e-02 7.81e-57 9.14e-01 1.20e-02 \n", + "[1] \"PP abf for shared variant: 1.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TCF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.76e-58 9.09e-02 7.53e-57 8.81e-01 2.77e-02 \n", + "[1] \"PP abf for shared variant: 2.77%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.14e-57 3.68e-01 5.20e-57 6.09e-01 2.31e-02 \n", + "[1] \"PP abf for shared variant: 2.31%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.54e-65 2.97e-09 8.54e-57 1.00e+00 2.01e-04 \n", + "[1] \"PP abf for shared variant: 0.0201%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___FCGR3A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.87e-58 4.53e-02 8.06e-57 9.44e-01 1.11e-02 \n", + "[1] \"PP abf for shared variant: 1.11%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PSMB9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 8.645e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.07e-57 5.93e-01 3.19e-57 3.73e-01 3.34e-02 \n", + "[1] \"PP abf for shared variant: 3.34%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___LEF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.04e-65 1.21e-09 8.54e-57 1.00e+00 8.86e-05 \n", + "[1] \"PP abf for shared variant: 0.00886%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PTPRC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.77e-64 2.07e-08 8.53e-57 9.99e-01 6.07e-04 \n", + "[1] \"PP abf for shared variant: 0.0607%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SRSF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.19e-57 2.56e-01 6.13e-57 7.17e-01 2.69e-02 \n", + "[1] \"PP abf for shared variant: 2.69%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.27e-60 5.00e-04 8.48e-57 9.93e-01 6.59e-03 \n", + "[1] \"PP abf for shared variant: 0.659%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.55e-72 4.15e-16 8.54e-57 1.00e+00 4.21e-04 \n", + "[1] \"PP abf for shared variant: 0.0421%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.08e-69 1.27e-13 8.53e-57 9.99e-01 8.27e-04 \n", + "[1] \"PP abf for shared variant: 0.0827%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___ANXA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.00e-58 5.86e-02 7.88e-57 9.23e-01 1.83e-02 \n", + "[1] \"PP abf for shared variant: 1.83%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___LGALS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.87e-58 3.36e-02 7.92e-57 9.27e-01 3.99e-02 \n", + "[1] \"PP abf for shared variant: 3.99%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.61e-71 1.01e-14 8.53e-57 9.99e-01 8.18e-04 \n", + "[1] \"PP abf for shared variant: 0.0818%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___DDX5__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.5519e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.99e-57 3.50e-01 3.76e-57 4.38e-01 2.12e-01 \n", + "[1] \"PP abf for shared variant: 21.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.97e-67 5.82e-11 8.54e-57 1.00e+00 3.80e-05 \n", + "[1] \"PP abf for shared variant: 0.0038%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___DOK2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.09e-57 2.44e-01 5.82e-57 6.80e-01 7.54e-02 \n", + "[1] \"PP abf for shared variant: 7.54%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CRIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-62 1.80e-06 8.47e-57 9.92e-01 8.06e-03 \n", + "[1] \"PP abf for shared variant: 0.806%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CALR__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.9449e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.48e-57 4.08e-01 4.74e-57 5.55e-01 3.78e-02 \n", + "[1] \"PP abf for shared variant: 3.78%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TTC38\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1223e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.58e-57 4.19e-01 4.58e-57 5.36e-01 4.55e-02 \n", + "[1] \"PP abf for shared variant: 4.55%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___C1orf228__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-58 1.47e-02 8.13e-57 9.51e-01 3.40e-02 \n", + "[1] \"PP abf for shared variant: 3.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___DUSP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.20e-59 2.57e-03 8.45e-57 9.90e-01 7.85e-03 \n", + "[1] \"PP abf for shared variant: 0.785%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EIF4B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.28e-65 2.67e-09 8.54e-57 1.00e+00 1.71e-04 \n", + "[1] \"PP abf for shared variant: 0.0171%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.38e-66 6.30e-10 8.54e-57 1.00e+00 4.79e-04 \n", + "[1] \"PP abf for shared variant: 0.0479%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TRABD2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.04e-62 2.39e-06 8.54e-57 1.00e+00 4.72e-04 \n", + "[1] \"PP abf for shared variant: 0.0472%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-72 1.69e-16 8.53e-57 9.99e-01 1.02e-03 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PASK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.87e-63 2.19e-07 8.54e-57 1.00e+00 2.13e-04 \n", + "[1] \"PP abf for shared variant: 0.0213%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___OAZ1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.34e-67 5.08e-11 8.54e-57 1.00e+00 2.62e-04 \n", + "[1] \"PP abf for shared variant: 0.0262%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.24e-73 3.79e-17 8.53e-57 9.99e-01 6.62e-04 \n", + "[1] \"PP abf for shared variant: 0.0662%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___OXNAD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1359e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.42e-57 5.17e-01 4.01e-57 4.70e-01 1.30e-02 \n", + "[1] \"PP abf for shared variant: 1.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.32e-58 2.72e-02 8.05e-57 9.42e-01 3.07e-02 \n", + "[1] \"PP abf for shared variant: 3.07%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SRGN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-72 1.28e-16 8.54e-57 1.00e+00 3.46e-05 \n", + "[1] \"PP abf for shared variant: 0.00346%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___HLA-E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.21e-60 6.10e-04 8.25e-57 9.66e-01 3.37e-02 \n", + "[1] \"PP abf for shared variant: 3.37%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TYROBP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.08e-59 4.78e-03 8.46e-57 9.91e-01 4.27e-03 \n", + "[1] \"PP abf for shared variant: 0.427%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__YBX3\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1331e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.76e-57 6.74e-01 2.35e-57 2.75e-01 5.05e-02 \n", + "[1] \"PP abf for shared variant: 5.05%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CST7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.14e-63 3.67e-07 8.54e-57 1.00e+00 2.17e-04 \n", + "[1] \"PP abf for shared variant: 0.0217%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___AIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.52e-60 1.79e-04 8.38e-57 9.81e-01 1.84e-02 \n", + "[1] \"PP abf for shared variant: 1.84%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___IL7R__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.07e-60 8.27e-04 8.47e-57 9.91e-01 7.79e-03 \n", + "[1] \"PP abf for shared variant: 0.779%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RHOH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.58e-58 1.85e-02 8.33e-57 9.75e-01 6.64e-03 \n", + "[1] \"PP abf for shared variant: 0.664%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.75e-72 2.05e-16 8.53e-57 9.99e-01 6.12e-04 \n", + "[1] \"PP abf for shared variant: 0.0612%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-74 1.58e-18 8.53e-57 9.99e-01 7.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0769%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.58e-59 1.00e-02 8.42e-57 9.86e-01 3.49e-03 \n", + "[1] \"PP abf for shared variant: 0.349%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___DBI__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.55e-59 2.98e-03 8.09e-57 9.47e-01 5.04e-02 \n", + "[1] \"PP abf for shared variant: 5.04%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.41e-68 9.85e-12 8.54e-57 9.99e-01 5.44e-04 \n", + "[1] \"PP abf for shared variant: 0.0544%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___PRKCQ-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-65 1.19e-09 8.53e-57 9.99e-01 9.40e-04 \n", + "[1] \"PP abf for shared variant: 0.094%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SNHG8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.47e-63 2.89e-07 8.54e-57 1.00e+00 3.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0373%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___POMP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.59e-57 3.04e-01 5.07e-57 5.92e-01 1.04e-01 \n", + "[1] \"PP abf for shared variant: 10.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.36e-71 1.60e-15 8.53e-57 9.99e-01 9.98e-04 \n", + "[1] \"PP abf for shared variant: 0.0998%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RAB8B__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.0817e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.61e-57 5.39e-01 3.34e-57 3.91e-01 6.99e-02 \n", + "[1] \"PP abf for shared variant: 6.99%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___GZMH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.38e-58 7.47e-02 7.72e-57 9.04e-01 2.15e-02 \n", + "[1] \"PP abf for shared variant: 2.15%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.39e-61 6.31e-05 8.54e-57 1.00e+00 3.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0387%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.54e-66 1.81e-10 8.54e-57 1.00e+00 6.84e-05 \n", + "[1] \"PP abf for shared variant: 0.00684%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.32e-76 3.89e-20 8.54e-57 1.00e+00 1.38e-04 \n", + "[1] \"PP abf for shared variant: 0.0138%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.52e-74 7.63e-18 8.53e-57 9.99e-01 6.37e-04 \n", + "[1] \"PP abf for shared variant: 0.0637%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___ABLIM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.26e-59 2.65e-03 8.43e-57 9.87e-01 1.05e-02 \n", + "[1] \"PP abf for shared variant: 1.05%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EIF4A1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.8946e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.77e-57 4.41e-01 4.55e-57 5.32e-01 2.69e-02 \n", + "[1] \"PP abf for shared variant: 2.69%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___APOBEC3G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.46e-60 1.70e-04 8.53e-57 9.99e-01 8.37e-04 \n", + "[1] \"PP abf for shared variant: 0.0837%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RP11-291B21.2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.01e-62 1.06e-05 8.51e-57 9.96e-01 3.50e-03 \n", + "[1] \"PP abf for shared variant: 0.35%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-76 1.20e-20 8.53e-57 9.99e-01 1.32e-03 \n", + "[1] \"PP abf for shared variant: 0.132%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-74 1.84e-18 8.53e-57 9.99e-01 8.14e-04 \n", + "[1] \"PP abf for shared variant: 0.0814%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__SERF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.34e-65 1.57e-09 8.54e-57 1.00e+00 1.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0185%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.98e-66 2.32e-10 8.54e-57 1.00e+00 2.34e-04 \n", + "[1] \"PP abf for shared variant: 0.0234%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-74 1.64e-18 8.53e-57 9.99e-01 8.60e-04 \n", + "[1] \"PP abf for shared variant: 0.086%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.25e-59 6.14e-03 7.28e-57 8.51e-01 1.42e-01 \n", + "[1] \"PP abf for shared variant: 14.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.72e-70 3.18e-14 8.54e-57 1.00e+00 3.73e-04 \n", + "[1] \"PP abf for shared variant: 0.0373%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.39e-68 7.48e-12 8.54e-57 1.00e+00 2.19e-04 \n", + "[1] \"PP abf for shared variant: 0.0219%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___RPS26__S1PR5\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1943e-05\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.94e-57 6.95e-01 2.40e-57 2.81e-01 2.35e-02 \n", + "[1] \"PP abf for shared variant: 2.35%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD8T_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.48e-61 2.91e-05 8.50e-57 9.95e-01 4.91e-03 \n", + "[1] \"PP abf for shared variant: 0.491%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TMSB10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.26e-58 2.65e-02 6.85e-57 8.00e-01 1.74e-01 \n", + "[1] \"PP abf for shared variant: 17.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CHCHD2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.75e-58 6.73e-02 5.86e-57 6.84e-01 2.49e-01 \n", + "[1] \"PP abf for shared variant: 24.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EMP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.10e-60 4.80e-04 8.51e-57 9.97e-01 2.77e-03 \n", + "[1] \"PP abf for shared variant: 0.277%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___FMNL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-57 1.46e-01 7.23e-57 8.46e-01 7.40e-03 \n", + "[1] \"PP abf for shared variant: 0.74%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS27A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.41e-81 9.84e-25 8.54e-57 1.00e+00 4.37e-04 \n", + "[1] \"PP abf for shared variant: 0.0437%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___LEF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.63e-63 3.08e-07 8.54e-57 1.00e+00 3.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0392%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HERPUD1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.267e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.44e-57 2.86e-01 3.90e-57 4.54e-01 2.61e-01 \n", + "[1] \"PP abf for shared variant: 26.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ANXA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.45e-62 9.90e-06 7.71e-57 9.01e-01 9.86e-02 \n", + "[1] \"PP abf for shared variant: 9.86%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SOD2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.79e-59 4.44e-03 3.96e-57 4.59e-01 5.37e-01 \n", + "[1] \"PP abf for shared variant: 53.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MYL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-73 1.73e-17 8.54e-57 1.00e+00 4.97e-04 \n", + "[1] \"PP abf for shared variant: 0.0497%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___GNB2L1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.67e-70 7.81e-14 8.49e-57 9.95e-01 5.39e-03 \n", + "[1] \"PP abf for shared variant: 0.539%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ATP1B3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.10e-57 1.29e-01 5.88e-57 6.87e-01 1.84e-01 \n", + "[1] \"PP abf for shared variant: 18.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.02e-57 2.37e-01 4.56e-57 5.31e-01 2.32e-01 \n", + "[1] \"PP abf for shared variant: 23.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.96e-82 3.46e-26 8.54e-57 9.99e-01 5.29e-04 \n", + "[1] \"PP abf for shared variant: 0.0529%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL28__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-67 1.24e-11 8.53e-57 9.99e-01 7.15e-04 \n", + "[1] \"PP abf for shared variant: 0.0715%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EML4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.12e-60 1.31e-04 6.63e-57 7.74e-01 2.26e-01 \n", + "[1] \"PP abf for shared variant: 22.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SCML1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.04e-60 8.24e-04 4.75e-57 5.52e-01 4.47e-01 \n", + "[1] \"PP abf for shared variant: 44.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MCL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.70e-63 1.02e-06 6.45e-57 7.53e-01 2.47e-01 \n", + "[1] \"PP abf for shared variant: 24.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___NOG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.27e-58 2.66e-02 4.42e-57 5.13e-01 4.61e-01 \n", + "[1] \"PP abf for shared variant: 46.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___PRMT2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.85e-60 6.86e-04 8.42e-57 9.86e-01 1.36e-02 \n", + "[1] \"PP abf for shared variant: 1.36%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CD7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-61 1.87e-05 8.48e-57 9.92e-01 7.56e-03 \n", + "[1] \"PP abf for shared variant: 0.756%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.93e-57 2.26e-01 4.16e-57 4.84e-01 2.89e-01 \n", + "[1] \"PP abf for shared variant: 28.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TMSB4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.78e-68 6.77e-12 8.54e-57 1.00e+00 2.49e-04 \n", + "[1] \"PP abf for shared variant: 0.0249%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___FAM129A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.42e-63 5.18e-07 8.54e-57 1.00e+00 3.05e-04 \n", + "[1] \"PP abf for shared variant: 0.0305%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.40e-72 9.84e-16 8.54e-57 1.00e+00 2.59e-04 \n", + "[1] \"PP abf for shared variant: 0.0259%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ABLIM1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.2936e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.19e-57 3.73e-01 3.54e-57 4.12e-01 2.15e-01 \n", + "[1] \"PP abf for shared variant: 21.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPLP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-82 2.52e-26 8.53e-57 9.99e-01 1.23e-03 \n", + "[1] \"PP abf for shared variant: 0.123%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ALOX5AP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.48e-59 1.73e-03 6.72e-57 7.85e-01 2.13e-01 \n", + "[1] \"PP abf for shared variant: 21.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TSHZ2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.94e-60 6.96e-04 7.81e-57 9.14e-01 8.52e-02 \n", + "[1] \"PP abf for shared variant: 8.52%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TIGIT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.06e-62 7.10e-06 8.39e-57 9.83e-01 1.73e-02 \n", + "[1] \"PP abf for shared variant: 1.73%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ARHGDIB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-61 2.04e-05 8.52e-57 9.98e-01 1.75e-03 \n", + "[1] \"PP abf for shared variant: 0.175%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___FAU__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.73e-67 1.02e-10 8.54e-57 1.00e+00 1.28e-04 \n", + "[1] \"PP abf for shared variant: 0.0128%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS29\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.47e-77 9.92e-21 8.54e-57 1.00e+00 2.96e-04 \n", + "[1] \"PP abf for shared variant: 0.0296%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-84 1.23e-28 8.54e-57 1.00e+00 1.47e-04 \n", + "[1] \"PP abf for shared variant: 0.0147%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.58e-84 6.53e-28 8.54e-57 1.00e+00 3.75e-04 \n", + "[1] \"PP abf for shared variant: 0.0375%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__YBX1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.86e-62 1.15e-05 8.53e-57 9.99e-01 1.13e-03 \n", + "[1] \"PP abf for shared variant: 0.113%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.39e-81 5.14e-25 8.54e-57 1.00e+00 1.39e-04 \n", + "[1] \"PP abf for shared variant: 0.0139%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___JUND__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.279e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-57 1.43e-01 3.01e-57 3.47e-01 5.10e-01 \n", + "[1] \"PP abf for shared variant: 51%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SH3YL1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.57e-63 3.01e-07 8.53e-57 9.99e-01 6.50e-04 \n", + "[1] \"PP abf for shared variant: 0.065%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS27\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.36e-83 8.62e-27 8.53e-57 9.99e-01 6.98e-04 \n", + "[1] \"PP abf for shared variant: 0.0698%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___C12orf75__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.93e-59 6.95e-03 8.44e-57 9.88e-01 5.13e-03 \n", + "[1] \"PP abf for shared variant: 0.513%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CYBA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.13e-67 3.66e-11 8.54e-57 1.00e+00 1.59e-04 \n", + "[1] \"PP abf for shared variant: 0.0159%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF18\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.86e-59 8.03e-03 6.78e-57 7.92e-01 2.00e-01 \n", + "[1] \"PP abf for shared variant: 20%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MYO1F__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.69e-59 1.98e-03 8.07e-57 9.44e-01 5.36e-02 \n", + "[1] \"PP abf for shared variant: 5.36%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL12__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.95e-80 4.62e-24 8.54e-57 1.00e+00 3.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0378%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___PTPRC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.35e-65 3.92e-09 8.54e-57 1.00e+00 3.00e-04 \n", + "[1] \"PP abf for shared variant: 0.03%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CD55__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.27e-57 2.66e-01 4.83e-57 5.64e-01 1.70e-01 \n", + "[1] \"PP abf for shared variant: 17%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.14e-81 6.02e-25 8.54e-57 1.00e+00 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CREM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-60 1.45e-04 8.48e-57 9.93e-01 6.88e-03 \n", + "[1] \"PP abf for shared variant: 0.688%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__VMP1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.79e-58 1.03e-01 7.23e-57 8.46e-01 5.15e-02 \n", + "[1] \"PP abf for shared variant: 5.15%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HMGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.32e-62 3.89e-06 8.48e-57 9.93e-01 6.72e-03 \n", + "[1] \"PP abf for shared variant: 0.672%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL31__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.73e-82 9.05e-26 8.53e-57 9.99e-01 1.05e-03 \n", + "[1] \"PP abf for shared variant: 0.105%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___C1orf228__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.80e-57 2.10e-01 6.22e-57 7.28e-01 6.18e-02 \n", + "[1] \"PP abf for shared variant: 6.18%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___GALM__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-57 1.56e-01 6.48e-57 7.58e-01 8.65e-02 \n", + "[1] \"PP abf for shared variant: 8.65%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TRABD2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.59e-58 3.04e-02 7.66e-57 8.97e-01 7.29e-02 \n", + "[1] \"PP abf for shared variant: 7.29%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EIF2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.85e-60 3.34e-04 1.94e-57 2.19e-01 7.80e-01 \n", + "[1] \"PP abf for shared variant: 78%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL17__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.49e-70 1.74e-14 8.54e-57 1.00e+00 2.43e-04 \n", + "[1] \"PP abf for shared variant: 0.0243%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.23e-73 6.12e-17 8.54e-57 1.00e+00 2.07e-05 \n", + "[1] \"PP abf for shared variant: 0.00207%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ANXA5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.40e-59 1.10e-02 8.15e-57 9.55e-01 3.45e-02 \n", + "[1] \"PP abf for shared variant: 3.45%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___IDS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.05e-60 3.57e-04 7.95e-57 9.30e-01 6.95e-02 \n", + "[1] \"PP abf for shared variant: 6.95%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ARID5B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.55e-58 5.33e-02 7.68e-57 8.99e-01 4.76e-02 \n", + "[1] \"PP abf for shared variant: 4.76%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___IMPDH2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.90e-62 5.73e-06 8.38e-57 9.82e-01 1.84e-02 \n", + "[1] \"PP abf for shared variant: 1.84%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TPT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.65e-70 3.10e-14 8.54e-57 1.00e+00 4.41e-04 \n", + "[1] \"PP abf for shared variant: 0.0441%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__ST13\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.28e-63 3.84e-07 8.54e-57 1.00e+00 1.96e-04 \n", + "[1] \"PP abf for shared variant: 0.0196%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CXCR3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.34e-59 5.08e-03 8.39e-57 9.82e-01 1.31e-02 \n", + "[1] \"PP abf for shared variant: 1.31%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HLA-DRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.15e-62 1.34e-06 8.53e-57 9.99e-01 5.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0585%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL37A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-71 1.23e-15 8.54e-57 1.00e+00 2.22e-04 \n", + "[1] \"PP abf for shared variant: 0.0222%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SPOCK2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.77e-59 7.93e-03 3.43e-57 3.95e-01 5.97e-01 \n", + "[1] \"PP abf for shared variant: 59.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___C15orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.56e-58 8.85e-02 6.72e-57 7.86e-01 1.26e-01 \n", + "[1] \"PP abf for shared variant: 12.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SNRPF\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 3.1448e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.20e-57 4.91e-01 3.79e-57 4.43e-01 6.57e-02 \n", + "[1] \"PP abf for shared variant: 6.57%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___H3F3B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.68e-71 9.00e-15 8.54e-57 1.00e+00 3.18e-04 \n", + "[1] \"PP abf for shared variant: 0.0318%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___FAM134B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-57 1.23e-01 6.72e-57 7.86e-01 9.02e-02 \n", + "[1] \"PP abf for shared variant: 9.02%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ISG20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.89e-59 4.56e-03 8.49e-57 9.95e-01 7.43e-04 \n", + "[1] \"PP abf for shared variant: 0.0743%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CFL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.57e-66 3.01e-10 8.54e-57 1.00e+00 4.90e-04 \n", + "[1] \"PP abf for shared variant: 0.049%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___NUCB2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.10e-58 4.80e-02 6.15e-57 7.17e-01 2.35e-01 \n", + "[1] \"PP abf for shared variant: 23.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ALKBH7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.14e-59 1.34e-03 8.51e-57 9.96e-01 2.34e-03 \n", + "[1] \"PP abf for shared variant: 0.234%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___LINC00493__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.72e-58 7.87e-02 7.63e-57 8.93e-01 2.79e-02 \n", + "[1] \"PP abf for shared variant: 2.79%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.31e-82 5.04e-26 8.54e-57 1.00e+00 8.95e-05 \n", + "[1] \"PP abf for shared variant: 0.00895%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__VIM\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.99e-59 2.33e-03 4.25e-57 4.93e-01 5.05e-01 \n", + "[1] \"PP abf for shared variant: 50.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SNHG8\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.68e-68 6.65e-12 8.54e-57 1.00e+00 3.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0378%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CDC42__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-59 2.58e-03 6.89e-57 8.05e-01 1.92e-01 \n", + "[1] \"PP abf for shared variant: 19.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF1B\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.93e-58 2.26e-02 8.10e-57 9.48e-01 2.93e-02 \n", + "[1] \"PP abf for shared variant: 2.93%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___NELL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.75e-58 3.21e-02 7.90e-57 9.24e-01 4.36e-02 \n", + "[1] \"PP abf for shared variant: 4.36%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.35e-75 1.09e-18 8.54e-57 1.00e+00 1.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0189%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ACTN4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.18e-59 1.38e-03 8.19e-57 9.59e-01 3.96e-02 \n", + "[1] \"PP abf for shared variant: 3.96%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___IKZF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.04e-58 3.56e-02 3.54e-57 4.09e-01 5.56e-01 \n", + "[1] \"PP abf for shared variant: 55.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___LDHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.74e-57 2.04e-01 6.44e-57 7.53e-01 4.30e-02 \n", + "[1] \"PP abf for shared variant: 4.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL41__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.17e-74 3.71e-18 8.53e-57 9.99e-01 1.17e-03 \n", + "[1] \"PP abf for shared variant: 0.117%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS16__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.12e-65 4.82e-09 8.54e-57 1.00e+00 3.46e-04 \n", + "[1] \"PP abf for shared variant: 0.0346%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RP11-138A9.1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.68e-57 1.96e-01 4.35e-57 5.06e-01 2.97e-01 \n", + "[1] \"PP abf for shared variant: 29.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___NAMPT__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.8087e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.90e-57 3.39e-01 4.73e-57 5.52e-01 1.08e-01 \n", + "[1] \"PP abf for shared variant: 10.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFAS1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.79e-62 1.15e-05 8.47e-57 9.91e-01 8.78e-03 \n", + "[1] \"PP abf for shared variant: 0.878%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CALM2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.62e-61 4.24e-05 8.27e-57 9.68e-01 3.21e-02 \n", + "[1] \"PP abf for shared variant: 3.21%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EIF3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.19e-72 8.42e-16 8.54e-57 1.00e+00 1.05e-04 \n", + "[1] \"PP abf for shared variant: 0.0105%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MT-ND2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.24e-58 3.80e-02 1.62e-57 1.82e-01 7.80e-01 \n", + "[1] \"PP abf for shared variant: 78%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.68e-71 4.31e-15 8.54e-57 1.00e+00 1.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0176%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CD52__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.85e-60 3.33e-04 8.42e-57 9.86e-01 1.41e-02 \n", + "[1] \"PP abf for shared variant: 1.41%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EIF3L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.28e-64 5.02e-08 8.53e-57 9.99e-01 9.89e-04 \n", + "[1] \"PP abf for shared variant: 0.0989%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___H3F3A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.81e-61 2.12e-05 8.24e-57 9.64e-01 3.59e-02 \n", + "[1] \"PP abf for shared variant: 3.59%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ADTRP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.72e-65 1.14e-08 8.14e-57 9.52e-01 4.75e-02 \n", + "[1] \"PP abf for shared variant: 4.75%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MT2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.54e-58 1.00e-01 6.95e-57 8.13e-01 8.68e-02 \n", + "[1] \"PP abf for shared variant: 8.68%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SNRPD2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-58 1.87e-02 4.13e-57 4.78e-01 5.03e-01 \n", + "[1] \"PP abf for shared variant: 50.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFP36\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.42e-61 5.18e-05 8.22e-57 9.62e-01 3.77e-02 \n", + "[1] \"PP abf for shared variant: 3.77%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CXCR4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.71e-62 9.03e-06 5.64e-57 6.58e-01 3.42e-01 \n", + "[1] \"PP abf for shared variant: 34.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___DYNLL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.69e-60 1.02e-03 7.27e-57 8.50e-01 1.49e-01 \n", + "[1] \"PP abf for shared variant: 14.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SAMSN1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-61 1.93e-05 8.47e-57 9.92e-01 8.22e-03 \n", + "[1] \"PP abf for shared variant: 0.822%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___LMNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.65e-66 5.45e-10 6.82e-57 7.96e-01 2.04e-01 \n", + "[1] \"PP abf for shared variant: 20.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MT-ND5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.87e-64 1.16e-07 8.28e-57 9.69e-01 3.09e-02 \n", + "[1] \"PP abf for shared variant: 3.09%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS4X\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.61e-78 6.57e-22 8.54e-57 1.00e+00 3.08e-04 \n", + "[1] \"PP abf for shared variant: 0.0308%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RUNX3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.80e-58 7.97e-02 7.10e-57 8.30e-01 9.03e-02 \n", + "[1] \"PP abf for shared variant: 9.03%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HLA-B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.50e-74 1.76e-18 8.53e-57 9.99e-01 7.31e-04 \n", + "[1] \"PP abf for shared variant: 0.0731%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RGS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.22e-62 7.28e-06 8.53e-57 9.98e-01 1.55e-03 \n", + "[1] \"PP abf for shared variant: 0.155%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ERGIC3__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.423e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.79e-57 2.10e-01 2.64e-57 3.05e-01 4.85e-01 \n", + "[1] \"PP abf for shared variant: 48.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SELL\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-64 1.64e-08 8.13e-57 9.52e-01 4.83e-02 \n", + "[1] \"PP abf for shared variant: 4.83%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TYMP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.28e-58 2.67e-02 7.86e-57 9.20e-01 5.33e-02 \n", + "[1] \"PP abf for shared variant: 5.33%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HLA-DPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.82e-58 7.99e-02 6.58e-57 7.69e-01 1.51e-01 \n", + "[1] \"PP abf for shared variant: 15.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.24e-78 1.45e-22 8.54e-57 1.00e+00 1.96e-04 \n", + "[1] \"PP abf for shared variant: 0.0196%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__UQCRB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-60 1.47e-04 8.02e-57 9.39e-01 6.12e-02 \n", + "[1] \"PP abf for shared variant: 6.12%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.85e-79 4.51e-23 8.54e-57 1.00e+00 4.30e-04 \n", + "[1] \"PP abf for shared variant: 0.043%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SRGN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.72e-77 5.53e-21 8.54e-57 1.00e+00 2.19e-04 \n", + "[1] \"PP abf for shared variant: 0.0219%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MT-ND4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-57 1.41e-01 3.16e-57 3.65e-01 4.95e-01 \n", + "[1] \"PP abf for shared variant: 49.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ABHD14B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.61e-60 1.89e-04 8.48e-57 9.93e-01 6.44e-03 \n", + "[1] \"PP abf for shared variant: 0.644%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ATP5E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.11e-59 2.47e-03 7.23e-57 8.45e-01 1.53e-01 \n", + "[1] \"PP abf for shared variant: 15.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPSAP58\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.48e-67 5.24e-11 8.53e-57 9.99e-01 9.67e-04 \n", + "[1] \"PP abf for shared variant: 0.0967%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.94e-69 3.45e-13 8.54e-57 9.99e-01 5.33e-04 \n", + "[1] \"PP abf for shared variant: 0.0533%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.67e-78 5.47e-22 8.54e-57 1.00e+00 1.40e-04 \n", + "[1] \"PP abf for shared variant: 0.014%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MAL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-65 2.18e-09 8.53e-57 9.99e-01 1.17e-03 \n", + "[1] \"PP abf for shared variant: 0.117%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ATP2B4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.14e-58 2.51e-02 7.55e-57 8.83e-01 9.19e-02 \n", + "[1] \"PP abf for shared variant: 9.19%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ARPC1B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.95e-57 3.46e-01 5.03e-57 5.88e-01 6.56e-02 \n", + "[1] \"PP abf for shared variant: 6.56%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___PDCD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.94e-60 8.12e-04 3.24e-57 3.73e-01 6.26e-01 \n", + "[1] \"PP abf for shared variant: 62.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.59e-77 5.38e-21 8.54e-57 9.99e-01 5.50e-04 \n", + "[1] \"PP abf for shared variant: 0.055%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL9__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.89e-83 9.24e-27 8.54e-57 1.00e+00 7.65e-05 \n", + "[1] \"PP abf for shared variant: 0.00765%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS25__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-78 1.77e-22 8.54e-57 1.00e+00 3.54e-04 \n", + "[1] \"PP abf for shared variant: 0.0354%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SAT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-69 1.70e-13 8.53e-57 9.99e-01 6.92e-04 \n", + "[1] \"PP abf for shared variant: 0.0692%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HLA-E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.81e-64 2.12e-08 8.53e-57 9.99e-01 6.28e-04 \n", + "[1] \"PP abf for shared variant: 0.0628%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TCF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.22e-61 4.94e-05 8.06e-57 9.43e-01 5.69e-02 \n", + "[1] \"PP abf for shared variant: 5.69%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___PIK3IP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.00e-60 1.17e-04 7.95e-57 9.30e-01 6.97e-02 \n", + "[1] \"PP abf for shared variant: 6.97%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___LGALS3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.56e-58 1.12e-01 6.89e-57 8.06e-01 8.16e-02 \n", + "[1] \"PP abf for shared variant: 8.16%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MIAT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.09e-59 8.30e-03 5.54e-57 6.45e-01 3.47e-01 \n", + "[1] \"PP abf for shared variant: 34.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL26__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.49e-77 2.91e-21 8.54e-57 1.00e+00 2.55e-04 \n", + "[1] \"PP abf for shared variant: 0.0255%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SUB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-64 1.24e-08 8.53e-57 9.99e-01 6.17e-04 \n", + "[1] \"PP abf for shared variant: 0.0617%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CCR7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.89e-59 1.16e-02 7.27e-57 8.50e-01 1.39e-01 \n", + "[1] \"PP abf for shared variant: 13.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL14__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-73 1.44e-17 8.54e-57 1.00e+00 3.63e-04 \n", + "[1] \"PP abf for shared variant: 0.0363%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL18A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.91e-79 3.41e-23 8.54e-57 1.00e+00 2.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0276%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RNF19A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.39e-60 9.82e-04 6.93e-57 8.10e-01 1.89e-01 \n", + "[1] \"PP abf for shared variant: 18.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MT-CO3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.54e-63 2.97e-07 8.40e-57 9.83e-01 1.68e-02 \n", + "[1] \"PP abf for shared variant: 1.68%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EEF1A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.40e-81 5.15e-25 8.53e-57 9.99e-01 8.48e-04 \n", + "[1] \"PP abf for shared variant: 0.0848%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EIF3H__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.64e-68 8.94e-12 8.52e-57 9.98e-01 1.84e-03 \n", + "[1] \"PP abf for shared variant: 0.184%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___FAS__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.97e-58 1.05e-01 7.17e-57 8.39e-01 5.64e-02 \n", + "[1] \"PP abf for shared variant: 5.64%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EEF1D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.83e-66 3.31e-10 8.53e-57 9.99e-01 7.99e-04 \n", + "[1] \"PP abf for shared variant: 0.0799%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPLP0__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.69e-66 4.32e-10 8.53e-57 9.99e-01 5.67e-04 \n", + "[1] \"PP abf for shared variant: 0.0567%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___GYPC__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.45e-62 4.04e-06 7.58e-57 8.87e-01 1.13e-01 \n", + "[1] \"PP abf for shared variant: 11.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL30__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.00e-79 7.02e-23 8.53e-57 9.99e-01 5.97e-04 \n", + "[1] \"PP abf for shared variant: 0.0597%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL34__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.75e-81 1.02e-24 8.54e-57 1.00e+00 1.93e-04 \n", + "[1] \"PP abf for shared variant: 0.0193%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TPM4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.00e-58 1.18e-02 8.09e-57 9.47e-01 4.09e-02 \n", + "[1] \"PP abf for shared variant: 4.09%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___LDHB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.67e-68 6.64e-12 8.54e-57 1.00e+00 2.69e-04 \n", + "[1] \"PP abf for shared variant: 0.0269%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___AIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.85e-61 4.51e-05 8.17e-57 9.56e-01 4.38e-02 \n", + "[1] \"PP abf for shared variant: 4.38%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL35A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-79 2.52e-23 8.54e-57 1.00e+00 1.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0185%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ITGB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.51e-63 1.77e-07 8.53e-57 9.99e-01 8.43e-04 \n", + "[1] \"PP abf for shared variant: 0.0843%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TXN\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.99e-63 2.33e-07 8.52e-57 9.98e-01 1.86e-03 \n", + "[1] \"PP abf for shared variant: 0.186%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___FTH1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-58 1.56e-02 7.94e-57 9.29e-01 5.50e-02 \n", + "[1] \"PP abf for shared variant: 5.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.92e-83 1.16e-26 8.54e-57 1.00e+00 2.41e-04 \n", + "[1] \"PP abf for shared variant: 0.0241%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___COX7C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.56e-58 7.68e-02 7.60e-57 8.89e-01 3.40e-02 \n", + "[1] \"PP abf for shared variant: 3.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HLA-A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.28e-74 2.67e-18 8.53e-57 9.99e-01 7.06e-04 \n", + "[1] \"PP abf for shared variant: 0.0706%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___LCP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.73e-60 7.88e-04 8.33e-57 9.75e-01 2.39e-02 \n", + "[1] \"PP abf for shared variant: 2.39%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__UBB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.68e-60 9.00e-04 6.95e-57 8.12e-01 1.87e-01 \n", + "[1] \"PP abf for shared variant: 18.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.38e-79 2.78e-23 8.54e-57 1.00e+00 2.77e-04 \n", + "[1] \"PP abf for shared variant: 0.0277%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ARPC2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.42e-73 5.18e-17 8.54e-57 9.99e-01 5.12e-04 \n", + "[1] \"PP abf for shared variant: 0.0512%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TMEM123\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.20e-58 3.75e-02 7.94e-57 9.29e-01 3.35e-02 \n", + "[1] \"PP abf for shared variant: 3.35%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___PPP1R15A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.87e-57 3.36e-01 4.51e-57 5.27e-01 1.37e-01 \n", + "[1] \"PP abf for shared variant: 13.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___IL32__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.09e-60 4.79e-04 8.37e-57 9.80e-01 1.93e-02 \n", + "[1] \"PP abf for shared variant: 1.93%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-82 2.31e-26 8.54e-57 9.99e-01 5.51e-04 \n", + "[1] \"PP abf for shared variant: 0.0551%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.58e-72 1.85e-16 8.53e-57 9.99e-01 6.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0686%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TOMM20\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-57 3.12e-01 5.26e-57 6.15e-01 7.33e-02 \n", + "[1] \"PP abf for shared variant: 7.33%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EIF3F__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.20e-60 2.58e-04 3.44e-57 3.97e-01 6.03e-01 \n", + "[1] \"PP abf for shared variant: 60.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ERP29__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.55e-60 7.67e-04 1.80e-57 2.03e-01 7.96e-01 \n", + "[1] \"PP abf for shared variant: 79.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___KLF6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.66e-62 7.79e-06 8.53e-57 9.98e-01 1.73e-03 \n", + "[1] \"PP abf for shared variant: 0.173%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___GIMAP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.47e-60 4.07e-04 5.72e-57 6.66e-01 3.34e-01 \n", + "[1] \"PP abf for shared variant: 33.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TGFBR2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.90e-58 3.39e-02 7.79e-57 9.12e-01 5.40e-02 \n", + "[1] \"PP abf for shared variant: 5.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RNF213__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.17e-57 1.37e-01 4.48e-57 5.21e-01 3.42e-01 \n", + "[1] \"PP abf for shared variant: 34.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___C19orf53__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.95e-57 3.45e-01 4.45e-57 5.19e-01 1.36e-01 \n", + "[1] \"PP abf for shared variant: 13.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SERF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.84e-67 3.33e-11 8.53e-57 9.99e-01 5.87e-04 \n", + "[1] \"PP abf for shared variant: 0.0587%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.36e-71 1.59e-15 8.54e-57 1.00e+00 4.67e-04 \n", + "[1] \"PP abf for shared variant: 0.0467%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MIR4435-1HG__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.03e-66 3.54e-10 8.54e-57 1.00e+00 9.32e-05 \n", + "[1] \"PP abf for shared variant: 0.00932%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.95e-72 2.29e-16 8.53e-57 9.99e-01 1.18e-03 \n", + "[1] \"PP abf for shared variant: 0.118%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MZT2B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.41e-60 2.82e-04 8.39e-57 9.82e-01 1.78e-02 \n", + "[1] \"PP abf for shared variant: 1.78%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___AK5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.01e-58 2.35e-02 3.17e-57 3.65e-01 6.11e-01 \n", + "[1] \"PP abf for shared variant: 61.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___NDFIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-57 1.94e-01 6.19e-57 7.24e-01 8.14e-02 \n", + "[1] \"PP abf for shared variant: 8.14%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HNRNPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.75e-65 6.73e-09 8.44e-57 9.89e-01 1.13e-02 \n", + "[1] \"PP abf for shared variant: 1.13%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL7A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.44e-77 1.11e-20 8.53e-57 9.99e-01 6.59e-04 \n", + "[1] \"PP abf for shared variant: 0.0659%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-60 1.24e-04 8.13e-57 9.51e-01 4.86e-02 \n", + "[1] \"PP abf for shared variant: 4.86%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL22__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.42e-75 4.01e-19 8.54e-57 1.00e+00 2.01e-04 \n", + "[1] \"PP abf for shared variant: 0.0201%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___C1QBP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.13e-58 1.32e-02 6.56e-57 7.66e-01 2.21e-01 \n", + "[1] \"PP abf for shared variant: 22.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CXCR6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-57 1.84e-01 4.65e-57 5.42e-01 2.74e-01 \n", + "[1] \"PP abf for shared variant: 27.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ARPC3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.81e-58 6.80e-02 7.56e-57 8.84e-01 4.78e-02 \n", + "[1] \"PP abf for shared variant: 4.78%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MRPS21__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.3464e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.96e-57 2.29e-01 2.97e-57 3.43e-01 4.28e-01 \n", + "[1] \"PP abf for shared variant: 42.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CD48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.27e-72 9.69e-16 8.54e-57 1.00e+00 4.36e-05 \n", + "[1] \"PP abf for shared variant: 0.00436%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___PPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-62 1.24e-06 8.30e-57 9.71e-01 2.88e-02 \n", + "[1] \"PP abf for shared variant: 2.88%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EBPL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-57 1.49e-01 2.51e-57 2.88e-01 5.63e-01 \n", + "[1] \"PP abf for shared variant: 56.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___FTL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.94e-58 8.13e-02 3.16e-57 3.64e-01 5.55e-01 \n", + "[1] \"PP abf for shared variant: 55.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__UXT\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.41e-65 7.50e-09 8.36e-57 9.79e-01 2.12e-02 \n", + "[1] \"PP abf for shared variant: 2.12%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___LSM5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.96e-60 2.30e-04 8.36e-57 9.79e-01 2.07e-02 \n", + "[1] \"PP abf for shared variant: 2.07%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___KMT2E__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.6569e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.42e-57 4.00e-01 4.33e-57 5.07e-01 9.34e-02 \n", + "[1] \"PP abf for shared variant: 9.34%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MT-CO2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.92e-64 5.76e-08 4.60e-57 5.34e-01 4.66e-01 \n", + "[1] \"PP abf for shared variant: 46.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TAGLN2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.50e-57 2.93e-01 4.34e-57 5.06e-01 2.01e-01 \n", + "[1] \"PP abf for shared variant: 20.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CDCA7__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.4164e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.79e-57 4.43e-01 3.87e-57 4.52e-01 1.05e-01 \n", + "[1] \"PP abf for shared variant: 10.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EEF2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.06e-63 2.41e-07 1.49e-57 1.66e-01 8.34e-01 \n", + "[1] \"PP abf for shared variant: 83.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EPB41L4A-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.70e-63 7.85e-07 8.53e-57 9.99e-01 7.25e-04 \n", + "[1] \"PP abf for shared variant: 0.0725%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___FLNA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.78e-64 4.42e-08 8.46e-57 9.91e-01 9.11e-03 \n", + "[1] \"PP abf for shared variant: 0.911%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TATDN1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-58 1.70e-02 7.74e-57 9.06e-01 7.72e-02 \n", + "[1] \"PP abf for shared variant: 7.72%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HLA-DPA1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.82e-58 4.48e-02 7.47e-57 8.74e-01 8.16e-02 \n", + "[1] \"PP abf for shared variant: 8.16%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___C12orf57__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.97e-69 2.31e-13 8.54e-57 1.00e+00 1.80e-04 \n", + "[1] \"PP abf for shared variant: 0.018%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-79 1.22e-23 8.54e-57 1.00e+00 1.39e-04 \n", + "[1] \"PP abf for shared variant: 0.0139%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS21__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.12e-77 9.51e-21 8.54e-57 1.00e+00 8.01e-05 \n", + "[1] \"PP abf for shared variant: 0.00801%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___BTG1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-60 2.40e-04 7.25e-57 8.47e-01 1.53e-01 \n", + "[1] \"PP abf for shared variant: 15.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___C8orf59__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-58 1.49e-02 5.55e-57 6.47e-01 3.38e-01 \n", + "[1] \"PP abf for shared variant: 33.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CD58__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.94e-59 3.44e-03 8.08e-57 9.46e-01 5.03e-02 \n", + "[1] \"PP abf for shared variant: 5.03%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MT-CO1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.62e-74 8.93e-18 8.54e-57 9.99e-01 5.57e-04 \n", + "[1] \"PP abf for shared variant: 0.0557%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPLP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.01e-62 2.36e-06 7.27e-57 8.50e-01 1.50e-01 \n", + "[1] \"PP abf for shared variant: 15%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___AKAP13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.04e-58 2.39e-02 8.28e-57 9.70e-01 6.34e-03 \n", + "[1] \"PP abf for shared variant: 0.634%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EIF4B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.73e-63 2.03e-07 8.53e-57 9.99e-01 8.11e-04 \n", + "[1] \"PP abf for shared variant: 0.0811%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___DDX5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.58e-61 1.85e-05 8.02e-57 9.38e-01 6.15e-02 \n", + "[1] \"PP abf for shared variant: 6.15%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS24__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.64e-59 1.13e-02 4.86e-57 5.65e-01 4.24e-01 \n", + "[1] \"PP abf for shared variant: 42.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ANXA2R__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.29e-57 1.52e-01 6.40e-57 7.48e-01 1.00e-01 \n", + "[1] \"PP abf for shared variant: 10%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___IL8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.42e-58 8.69e-02 2.65e-57 3.04e-01 6.09e-01 \n", + "[1] \"PP abf for shared variant: 60.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___LINC00152__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.07e-64 1.25e-08 8.51e-57 9.97e-01 3.50e-03 \n", + "[1] \"PP abf for shared variant: 0.35%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___FOXP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.81e-58 3.29e-02 8.24e-57 9.65e-01 2.21e-03 \n", + "[1] \"PP abf for shared variant: 0.221%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RGS10__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.83e-65 6.83e-09 8.51e-57 9.96e-01 3.94e-03 \n", + "[1] \"PP abf for shared variant: 0.394%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___B2M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.54e-78 8.83e-22 8.54e-57 1.00e+00 4.65e-04 \n", + "[1] \"PP abf for shared variant: 0.0465%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___KLRB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.78e-61 5.60e-05 8.53e-57 9.99e-01 1.16e-03 \n", + "[1] \"PP abf for shared variant: 0.116%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL36A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.15e-73 4.85e-17 8.53e-57 9.99e-01 6.14e-04 \n", + "[1] \"PP abf for shared variant: 0.0614%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL35__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.06e-71 9.44e-15 8.54e-57 1.00e+00 2.58e-04 \n", + "[1] \"PP abf for shared variant: 0.0258%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___DAP3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.87e-60 3.37e-04 7.03e-57 8.22e-01 1.78e-01 \n", + "[1] \"PP abf for shared variant: 17.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___C6orf48__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.25e-68 4.97e-12 8.54e-57 1.00e+00 1.51e-04 \n", + "[1] \"PP abf for shared variant: 0.0151%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SVIP\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.15e-57 2.52e-01 4.95e-57 5.78e-01 1.70e-01 \n", + "[1] \"PP abf for shared variant: 17%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HLA-C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.48e-72 7.58e-16 8.53e-57 9.99e-01 9.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0985%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL10A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.62e-83 1.90e-27 8.54e-57 1.00e+00 4.86e-04 \n", + "[1] \"PP abf for shared variant: 0.0486%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL23A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.45e-75 1.69e-19 8.53e-57 9.99e-01 1.25e-03 \n", + "[1] \"PP abf for shared variant: 0.125%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___PRKCQ-AS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-63 1.20e-07 8.51e-57 9.96e-01 3.51e-03 \n", + "[1] \"PP abf for shared variant: 0.351%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___GIMAP7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.64e-58 1.92e-02 8.17e-57 9.56e-01 2.44e-02 \n", + "[1] \"PP abf for shared variant: 2.44%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ENTPD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.92e-58 8.11e-02 7.43e-57 8.69e-01 4.97e-02 \n", + "[1] \"PP abf for shared variant: 4.97%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___DUSP4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-66 1.47e-10 8.54e-57 1.00e+00 2.19e-04 \n", + "[1] \"PP abf for shared variant: 0.0219%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.62e-71 6.58e-15 8.53e-57 9.99e-01 8.50e-04 \n", + "[1] \"PP abf for shared variant: 0.085%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__YWHAB\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.23e-59 1.44e-03 8.45e-57 9.89e-01 9.67e-03 \n", + "[1] \"PP abf for shared variant: 0.967%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CCR6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.17e-58 7.23e-02 4.20e-57 4.88e-01 4.40e-01 \n", + "[1] \"PP abf for shared variant: 44%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MT-ND1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.31e-60 3.88e-04 2.03e-57 2.30e-01 7.70e-01 \n", + "[1] \"PP abf for shared variant: 77%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___PFN1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.35e-73 5.09e-17 8.54e-57 1.00e+00 2.85e-04 \n", + "[1] \"PP abf for shared variant: 0.0285%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ADAM19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-57 1.88e-01 5.13e-57 5.98e-01 2.14e-01 \n", + "[1] \"PP abf for shared variant: 21.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CLDND1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-57 1.23e-01 3.62e-57 4.19e-01 4.58e-01 \n", + "[1] \"PP abf for shared variant: 45.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___PFDN5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.28e-63 6.18e-07 8.53e-57 9.99e-01 6.00e-04 \n", + "[1] \"PP abf for shared variant: 0.06%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___FBL__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.21e-66 4.94e-10 8.41e-57 9.85e-01 1.51e-02 \n", + "[1] \"PP abf for shared variant: 1.51%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CD37__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.72e-58 1.14e-01 5.35e-57 6.24e-01 2.62e-01 \n", + "[1] \"PP abf for shared variant: 26.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___APEX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-57 1.94e-01 5.04e-57 5.88e-01 2.18e-01 \n", + "[1] \"PP abf for shared variant: 21.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CD74__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.17e-64 1.37e-08 8.53e-57 9.99e-01 6.22e-04 \n", + "[1] \"PP abf for shared variant: 0.0622%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS20__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.52e-78 1.78e-22 8.53e-57 9.99e-01 1.02e-03 \n", + "[1] \"PP abf for shared variant: 0.102%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___LETMD1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.46e-60 4.05e-04 4.13e-57 4.78e-01 5.22e-01 \n", + "[1] \"PP abf for shared variant: 52.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___GK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.47e-59 1.73e-03 8.39e-57 9.83e-01 1.57e-02 \n", + "[1] \"PP abf for shared variant: 1.57%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___NOSIP__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.84e-63 4.50e-07 8.54e-57 1.00e+00 4.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0476%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___AHNAK__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.91e-59 8.09e-03 6.31e-57 7.36e-01 2.56e-01 \n", + "[1] \"PP abf for shared variant: 25.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SLC7A5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.98e-57 3.48e-01 4.58e-57 5.35e-01 1.17e-01 \n", + "[1] \"PP abf for shared variant: 11.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___GLTSCR2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.57e-66 1.83e-10 8.54e-57 1.00e+00 9.00e-05 \n", + "[1] \"PP abf for shared variant: 0.009%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.44e-77 1.11e-20 8.54e-57 1.00e+00 3.78e-04 \n", + "[1] \"PP abf for shared variant: 0.0378%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HLA-DRA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.60e-60 5.39e-04 8.51e-57 9.97e-01 2.70e-03 \n", + "[1] \"PP abf for shared variant: 0.27%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS3A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.21e-84 3.76e-28 8.54e-57 9.99e-01 5.01e-04 \n", + "[1] \"PP abf for shared variant: 0.0501%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.63e-69 3.08e-13 8.54e-57 1.00e+00 4.36e-04 \n", + "[1] \"PP abf for shared variant: 0.0436%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS5\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.66e-81 1.94e-25 8.54e-57 1.00e+00 1.40e-04 \n", + "[1] \"PP abf for shared variant: 0.014%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MT-ATP6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.25e-61 1.47e-05 4.71e-57 5.47e-01 4.53e-01 \n", + "[1] \"PP abf for shared variant: 45.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A11\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-74 1.42e-18 8.54e-57 9.99e-01 5.18e-04 \n", + "[1] \"PP abf for shared variant: 0.0518%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CCL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.58e-62 1.84e-06 8.53e-57 9.99e-01 9.22e-04 \n", + "[1] \"PP abf for shared variant: 0.0922%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RILPL2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.23e-58 6.12e-02 2.32e-57 2.65e-01 6.74e-01 \n", + "[1] \"PP abf for shared variant: 67.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SSR2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.63e-61 1.91e-05 8.51e-57 9.97e-01 3.45e-03 \n", + "[1] \"PP abf for shared variant: 0.345%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFRSF4\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.40e-59 1.64e-03 8.24e-57 9.65e-01 3.33e-02 \n", + "[1] \"PP abf for shared variant: 3.33%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__UBC\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.81e-65 2.13e-09 8.53e-57 9.99e-01 7.42e-04 \n", + "[1] \"PP abf for shared variant: 0.0742%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__S100A10\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.50e-70 6.44e-14 8.54e-57 1.00e+00 3.15e-04 \n", + "[1] \"PP abf for shared variant: 0.0315%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MAF__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.75e-62 6.73e-06 8.51e-57 9.96e-01 3.95e-03 \n", + "[1] \"PP abf for shared variant: 0.395%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___NACA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-66 1.99e-10 8.54e-57 1.00e+00 3.15e-04 \n", + "[1] \"PP abf for shared variant: 0.0315%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___COMMD6__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.38e-60 2.79e-04 8.43e-57 9.86e-01 1.32e-02 \n", + "[1] \"PP abf for shared variant: 1.32%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS11__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.36e-63 3.94e-07 8.54e-57 1.00e+00 2.13e-04 \n", + "[1] \"PP abf for shared variant: 0.0213%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___NSMCE1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.73e-59 3.20e-03 7.95e-57 9.30e-01 6.67e-02 \n", + "[1] \"PP abf for shared variant: 6.67%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TGFB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.21e-61 2.59e-05 8.49e-57 9.94e-01 6.04e-03 \n", + "[1] \"PP abf for shared variant: 0.604%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___PRDX1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.28e-58 3.84e-02 5.58e-57 6.51e-01 3.11e-01 \n", + "[1] \"PP abf for shared variant: 31.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS9\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.09e-76 3.61e-20 8.54e-57 1.00e+00 7.79e-05 \n", + "[1] \"PP abf for shared variant: 0.00779%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___FAM46C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.09e-58 1.27e-02 7.22e-57 8.45e-01 1.43e-01 \n", + "[1] \"PP abf for shared variant: 14.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.41e-78 3.99e-22 8.53e-57 9.99e-01 7.08e-04 \n", + "[1] \"PP abf for shared variant: 0.0708%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS23__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.22e-78 9.63e-22 8.54e-57 1.00e+00 3.99e-04 \n", + "[1] \"PP abf for shared variant: 0.0399%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS13__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.66e-83 3.11e-27 8.54e-57 1.00e+00 1.22e-04 \n", + "[1] \"PP abf for shared variant: 0.0122%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.98e-80 2.32e-24 8.53e-57 9.99e-01 1.14e-03 \n", + "[1] \"PP abf for shared variant: 0.114%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RORA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.43e-57 2.85e-01 5.79e-57 6.78e-01 3.73e-02 \n", + "[1] \"PP abf for shared variant: 3.73%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EIF1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-60 1.24e-04 6.34e-57 7.39e-01 2.61e-01 \n", + "[1] \"PP abf for shared variant: 26.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.29e-75 1.51e-19 8.54e-57 1.00e+00 1.07e-04 \n", + "[1] \"PP abf for shared variant: 0.0107%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CD44__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.43e-62 8.70e-06 8.42e-57 9.86e-01 1.36e-02 \n", + "[1] \"PP abf for shared variant: 1.36%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS4Y1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.71e-57 3.18e-01 5.37e-57 6.28e-01 5.42e-02 \n", + "[1] \"PP abf for shared variant: 5.42%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___LGALS1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.69e-62 1.13e-05 8.06e-57 9.44e-01 5.65e-02 \n", + "[1] \"PP abf for shared variant: 5.65%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___COX7A2L__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-58 1.40e-02 2.97e-57 3.41e-01 6.45e-01 \n", + "[1] \"PP abf for shared variant: 64.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL15__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.30e-77 1.53e-21 8.54e-57 1.00e+00 3.24e-04 \n", + "[1] \"PP abf for shared variant: 0.0324%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HADHA__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.40e-58 5.15e-02 7.14e-57 8.35e-01 1.13e-01 \n", + "[1] \"PP abf for shared variant: 11.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SATB1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.01e-58 1.05e-01 7.10e-57 8.30e-01 6.41e-02 \n", + "[1] \"PP abf for shared variant: 6.41%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__UGP2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.22e-58 1.43e-02 5.95e-57 6.94e-01 2.92e-01 \n", + "[1] \"PP abf for shared variant: 29.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SBDS\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.52e-57 1.78e-01 6.61e-57 7.74e-01 4.82e-02 \n", + "[1] \"PP abf for shared variant: 4.82%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SYNE2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.64e-59 1.92e-03 5.02e-57 5.84e-01 4.14e-01 \n", + "[1] \"PP abf for shared variant: 41.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TMA7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.67e-58 4.29e-02 7.78e-57 9.11e-01 4.63e-02 \n", + "[1] \"PP abf for shared variant: 4.63%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___NEAT1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.98e-66 9.35e-10 8.54e-57 1.00e+00 2.35e-04 \n", + "[1] \"PP abf for shared variant: 0.0235%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___NR3C1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.11e-58 2.47e-02 7.17e-57 8.38e-01 1.38e-01 \n", + "[1] \"PP abf for shared variant: 13.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS28\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.74e-83 3.21e-27 8.54e-57 1.00e+00 1.10e-04 \n", + "[1] \"PP abf for shared variant: 0.011%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CCT8__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.20e-59 1.08e-02 6.84e-57 7.99e-01 1.90e-01 \n", + "[1] \"PP abf for shared variant: 19%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TNFAIP3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.09e-59 9.47e-03 2.14e-57 2.43e-01 7.48e-01 \n", + "[1] \"PP abf for shared variant: 74.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SH2D2A\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.29e-57 1.51e-01 3.22e-57 3.73e-01 4.77e-01 \n", + "[1] \"PP abf for shared variant: 47.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___NPM1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.43e-67 1.68e-11 8.51e-57 9.97e-01 3.18e-03 \n", + "[1] \"PP abf for shared variant: 0.318%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CLNS1A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.03e-59 1.20e-03 2.97e-57 3.41e-01 6.58e-01 \n", + "[1] \"PP abf for shared variant: 65.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RSL1D1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.33e-64 1.56e-08 8.49e-57 9.95e-01 5.30e-03 \n", + "[1] \"PP abf for shared variant: 0.53%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ATP6V0E1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.48e-59 8.76e-03 1.92e-57 2.17e-01 7.74e-01 \n", + "[1] \"PP abf for shared variant: 77.4%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL27A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 6.14e-83 7.20e-27 8.54e-57 9.99e-01 5.44e-04 \n", + "[1] \"PP abf for shared variant: 0.0544%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___DUSP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.05e-57 2.40e-01 4.17e-57 4.86e-01 2.75e-01 \n", + "[1] \"PP abf for shared variant: 27.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL13A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.93e-84 4.61e-28 8.53e-57 9.99e-01 1.00e-03 \n", + "[1] \"PP abf for shared variant: 0.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__ZFP36L2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.34e-58 1.57e-02 4.04e-57 4.68e-01 5.17e-01 \n", + "[1] \"PP abf for shared variant: 51.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EIF3D__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.60e-61 1.12e-04 8.22e-57 9.63e-01 3.73e-02 \n", + "[1] \"PP abf for shared variant: 3.73%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RP11-138A9.2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.65e-58 4.27e-02 6.14e-57 7.17e-01 2.40e-01 \n", + "[1] \"PP abf for shared variant: 24%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL27__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.71e-75 2.00e-19 8.54e-57 1.00e+00 4.93e-04 \n", + "[1] \"PP abf for shared variant: 0.0493%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___APRT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.29e-59 2.68e-03 3.72e-57 4.29e-01 5.68e-01 \n", + "[1] \"PP abf for shared variant: 56.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___FYN__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.86e-59 2.18e-03 8.48e-57 9.93e-01 5.25e-03 \n", + "[1] \"PP abf for shared variant: 0.525%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ANP32B__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.93e-58 4.60e-02 7.68e-57 8.99e-01 5.55e-02 \n", + "[1] \"PP abf for shared variant: 5.55%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___PPP2R5C__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.35e-58 1.58e-02 7.75e-57 9.07e-01 7.75e-02 \n", + "[1] \"PP abf for shared variant: 7.75%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EIF3M__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.71e-60 3.17e-04 8.48e-57 9.92e-01 7.28e-03 \n", + "[1] \"PP abf for shared variant: 0.728%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL5__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.27e-84 8.52e-28 8.54e-57 1.00e+00 1.28e-04 \n", + "[1] \"PP abf for shared variant: 0.0128%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CMPK1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.48e-61 2.91e-05 8.51e-57 9.97e-01 3.00e-03 \n", + "[1] \"PP abf for shared variant: 0.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__YWHAZ\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.18e-58 8.40e-02 7.59e-57 8.89e-01 2.72e-02 \n", + "[1] \"PP abf for shared variant: 2.72%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___GIMAP2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.03e-64 2.38e-08 8.47e-57 9.91e-01 8.62e-03 \n", + "[1] \"PP abf for shared variant: 0.862%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___COTL1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.82e-62 3.31e-06 8.53e-57 9.99e-01 9.62e-04 \n", + "[1] \"PP abf for shared variant: 0.0962%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EIF2S3__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.38e-67 6.30e-11 8.54e-57 1.00e+00 2.81e-04 \n", + "[1] \"PP abf for shared variant: 0.0281%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HSP90AA1__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 1.1807e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.32e-57 2.71e-01 3.68e-57 4.28e-01 3.00e-01 \n", + "[1] \"PP abf for shared variant: 30%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MT-CYB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.26e-61 3.82e-05 2.30e-57 2.61e-01 7.39e-01 \n", + "[1] \"PP abf for shared variant: 73.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HSPB1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.05e-57 1.23e-01 3.74e-57 4.34e-01 4.43e-01 \n", + "[1] \"PP abf for shared variant: 44.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CRIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.39e-66 2.80e-10 8.53e-57 9.99e-01 6.93e-04 \n", + "[1] \"PP abf for shared variant: 0.0693%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SMDT1\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.37e-65 1.60e-09 8.33e-57 9.75e-01 2.47e-02 \n", + "[1] \"PP abf for shared variant: 2.47%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL18__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.69e-74 4.32e-18 8.54e-57 9.99e-01 5.40e-04 \n", + "[1] \"PP abf for shared variant: 0.054%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TXK\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.02e-61 1.19e-05 3.78e-57 4.38e-01 5.62e-01 \n", + "[1] \"PP abf for shared variant: 56.2%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL36__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.87e-73 4.53e-17 8.53e-57 9.99e-01 1.06e-03 \n", + "[1] \"PP abf for shared variant: 0.106%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___GAPDH__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.69e-70 3.15e-14 8.54e-57 1.00e+00 2.51e-04 \n", + "[1] \"PP abf for shared variant: 0.0251%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ANXA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.83e-63 1.03e-06 7.80e-57 9.12e-01 8.76e-02 \n", + "[1] \"PP abf for shared variant: 8.76%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CLIC1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.01e-61 1.18e-05 8.42e-57 9.86e-01 1.39e-02 \n", + "[1] \"PP abf for shared variant: 1.39%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CD99__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.12e-58 2.48e-02 6.59e-57 7.69e-01 2.06e-01 \n", + "[1] \"PP abf for shared variant: 20.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___LYRM4__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.62e-57 1.90e-01 6.56e-57 7.68e-01 4.21e-02 \n", + "[1] \"PP abf for shared variant: 4.21%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EEF1B2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-76 1.93e-20 8.54e-57 1.00e+00 3.51e-04 \n", + "[1] \"PP abf for shared variant: 0.0351%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ACTB__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.00e-76 3.51e-20 8.53e-57 9.99e-01 6.74e-04 \n", + "[1] \"PP abf for shared variant: 0.0674%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS19__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 7.06e-67 8.26e-11 8.53e-57 9.99e-01 9.37e-04 \n", + "[1] \"PP abf for shared variant: 0.0937%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EZR__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.27e-59 1.49e-03 7.52e-57 8.79e-01 1.19e-01 \n", + "[1] \"PP abf for shared variant: 11.9%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ATP5A1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 3.57e-60 4.18e-04 6.30e-57 7.35e-01 2.65e-01 \n", + "[1] \"PP abf for shared variant: 26.5%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ATP5O__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.45e-65 6.39e-09 8.54e-57 1.00e+00 2.49e-04 \n", + "[1] \"PP abf for shared variant: 0.0249%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EIF3K__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.51e-58 2.94e-02 5.52e-57 6.43e-01 3.27e-01 \n", + "[1] \"PP abf for shared variant: 32.7%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPL38__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.97e-76 3.48e-20 8.54e-57 1.00e+00 2.76e-04 \n", + "[1] \"PP abf for shared variant: 0.0276%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SUCLG2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.60e-61 1.01e-04 5.34e-57 6.22e-01 3.78e-01 \n", + "[1] \"PP abf for shared variant: 37.8%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CD3E__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.70e-58 1.99e-02 5.79e-57 6.74e-01 3.06e-01 \n", + "[1] \"PP abf for shared variant: 30.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPSA\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.31e-76 1.53e-20 8.54e-57 1.00e+00 2.27e-04 \n", + "[1] \"PP abf for shared variant: 0.0227%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___NSA2__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.32e-64 6.23e-08 8.53e-57 9.99e-01 8.18e-04 \n", + "[1] \"PP abf for shared variant: 0.0818%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CST7__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.53e-58 2.97e-02 8.07e-57 9.45e-01 2.58e-02 \n", + "[1] \"PP abf for shared variant: 2.58%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___HIGD2A__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.67e-58 1.02e-01 7.54e-57 8.83e-01 1.55e-02 \n", + "[1] \"PP abf for shared variant: 1.55%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___EEF1G__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.60e-65 1.87e-09 8.45e-57 9.89e-01 1.05e-02 \n", + "[1] \"PP abf for shared variant: 1.05%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___IGBP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.20e-59 1.41e-03 5.14e-57 5.98e-01 4.01e-01 \n", + "[1] \"PP abf for shared variant: 40.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___OAZ1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.82e-75 2.13e-19 8.54e-57 1.00e+00 2.72e-04 \n", + "[1] \"PP abf for shared variant: 0.0272%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___MYH9__RPS26\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message in check_dataset(d = dataset2, 2):\n", + "“minimum p value is: 2.8842e-06\n", + "If this is what you expected, this is not a problem.\n", + "If this is not as small as you expected, please check the 02_data vignette.”\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 4.23e-57 4.96e-01 3.84e-57 4.49e-01 5.49e-02 \n", + "[1] \"PP abf for shared variant: 5.49%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__UBA52\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.65e-64 1.94e-08 8.53e-57 9.99e-01 8.57e-04 \n", + "[1] \"PP abf for shared variant: 0.0857%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___ATP2B1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 5.09e-60 5.95e-04 8.29e-57 9.70e-01 2.93e-02 \n", + "[1] \"PP abf for shared variant: 2.93%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__RPS6\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.21e-84 1.41e-28 8.54e-57 1.00e+00 4.11e-04 \n", + "[1] \"PP abf for shared variant: 0.0411%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RBM39__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.06e-59 1.24e-03 2.22e-57 2.52e-01 7.46e-01 \n", + "[1] \"PP abf for shared variant: 74.6%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___CCNG1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.52e-59 1.78e-03 8.39e-57 9.83e-01 1.56e-02 \n", + "[1] \"PP abf for shared variant: 1.56%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SH3BGRL3\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.59e-72 1.86e-16 8.54e-57 1.00e+00 2.90e-04 \n", + "[1] \"PP abf for shared variant: 0.029%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___COX4I1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.14e-59 2.51e-03 6.29e-57 7.34e-01 2.63e-01 \n", + "[1] \"PP abf for shared variant: 26.3%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___PMAIP1__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 1.89e-58 2.21e-02 5.97e-57 6.97e-01 2.81e-01 \n", + "[1] \"PP abf for shared variant: 28.1%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__TOMM7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 8.90e-68 1.04e-11 8.54e-57 1.00e+00 1.36e-04 \n", + "[1] \"PP abf for shared variant: 0.0136%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SNHG7\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.86e-63 3.35e-07 8.54e-57 1.00e+00 4.39e-04 \n", + "[1] \"PP abf for shared variant: 0.0439%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___FHIT__RPS26\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 2.09e-66 2.45e-10 8.53e-57 9.99e-01 7.36e-04 \n", + "[1] \"PP abf for shared variant: 0.0736%\"\n", + "[1] \"Type_1_Diabetes\"\n", + "[1] \"CD4T_RPS26___RPS26__SRSF2\"\n", + "PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf \n", + " 9.49e-62 1.11e-05 8.50e-57 9.95e-01 4.54e-03 \n", + "[1] \"PP abf for shared variant: 0.454%\"\n" + ] + } + ], + "source": [ + "for(i in names(gwas_input_list)){\n", + " for(ident in names(data_input_coeqtl)){ \n", + " print(i)\n", + " print(ident)\n", + " \n", + " colocalization_result = coloc.abf(\n", + " dataset1=gwas_input_list[[i]], # GWAS\n", + " dataset2=data_input_coeqtl[[ident]], # co-EQTL\n", + " p1 = 1e-04, p2 = 1e-04, p12 = 1e-06)\n", + "\n", + " result_summary = data.frame(parameter = names(colocalization_result$summary), value = colocalization_result$summary, trait = i, identifier = ident)\n", + " coloc_result_summary = rbind(coloc_result_summary, result_summary)\n", + "\n", + " result_detail = colocalization_result$results\n", + " result_detail$trait = i\n", + " result_detail$identifier = ident\n", + " if(save_detail == TRUE){\n", + " coloc_result_detail = rbind(coloc_result_detail, result_detail)\n", + " }\n", + " }\n", + " }\n" + ] + }, + { + "cell_type": "code", + "execution_count": 211, + "id": "34f503fc-e9fb-4b9d-ae38-347c072d1e39", + "metadata": {}, + "outputs": [], + "source": [ + "##\n", + "# HO: locus is not associated with any of the traits\n", + "# H1: locus is only significant in the GWAS\n", + "# H2: locus is only a significant eQTL\n", + "# H3: locus is associated with both traits due to two independent signals \n", + "# H4: locus is associated with both traits due to a single colocalizing SNP\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 212, + "id": "6dc83030-8b12-4070-a46d-43b2b6f9e8fb", + "metadata": {}, + "outputs": [], + "source": [ + "### Check out example results" + ] + }, + { + "cell_type": "code", + "execution_count": 213, + "id": "783f870c-8553-4970-adee-42c3e3b43ce3", + "metadata": {}, + "outputs": [], + "source": [ + "coloc_result_summary_wide = coloc_result_summary %>% dcast(trait + identifier~ parameter, value.var = 'value')" + ] + }, + { + "cell_type": "code", + "execution_count": 214, + "id": "12931a1a-9795-4142-b5b3-c238100719b7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 8
traitidentifiernsnpsPP.H0.abfPP.H1.abfPP.H2.abfPP.H3.abfPP.H4.abf
<chr><chr><dbl><dbl><dbl><dbl><dbl><dbl>
1AsthmaB_RPS26___EEF1A1__RPS263810.3734713000.146671230.12603560.046423250.3073986
2AsthmaB_RPS26___RPL10__RPS26 3810.0033930680.001332540.26406700.097367110.6338403
\n" + ], + "text/latex": [ + "A data.frame: 2 × 8\n", + "\\begin{tabular}{r|llllllll}\n", + " & trait & identifier & nsnps & PP.H0.abf & PP.H1.abf & PP.H2.abf & PP.H3.abf & PP.H4.abf\\\\\n", + " & & & & & & & & \\\\\n", + "\\hline\n", + "\t1 & Asthma & B\\_RPS26\\_\\_\\_EEF1A1\\_\\_RPS26 & 381 & 0.373471300 & 0.14667123 & 0.1260356 & 0.04642325 & 0.3073986\\\\\n", + "\t2 & Asthma & B\\_RPS26\\_\\_\\_RPL10\\_\\_RPS26 & 381 & 0.003393068 & 0.00133254 & 0.2640670 & 0.09736711 & 0.6338403\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 8\n", + "\n", + "| | trait <chr> | identifier <chr> | nsnps <dbl> | PP.H0.abf <dbl> | PP.H1.abf <dbl> | PP.H2.abf <dbl> | PP.H3.abf <dbl> | PP.H4.abf <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| 1 | Asthma | B_RPS26___EEF1A1__RPS26 | 381 | 0.373471300 | 0.14667123 | 0.1260356 | 0.04642325 | 0.3073986 |\n", + "| 2 | Asthma | B_RPS26___RPL10__RPS26 | 381 | 0.003393068 | 0.00133254 | 0.2640670 | 0.09736711 | 0.6338403 |\n", + "\n" + ], + "text/plain": [ + " trait identifier nsnps PP.H0.abf PP.H1.abf PP.H2.abf\n", + "1 Asthma B_RPS26___EEF1A1__RPS26 381 0.373471300 0.14667123 0.1260356\n", + "2 Asthma B_RPS26___RPL10__RPS26 381 0.003393068 0.00133254 0.2640670\n", + " PP.H3.abf PP.H4.abf\n", + "1 0.04642325 0.3073986\n", + "2 0.09736711 0.6338403" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(coloc_result_summary_wide,2) " + ] + }, + { + "cell_type": "code", + "execution_count": 215, + "id": "6b9417a8-2111-46f3-a6fc-4041c16c2ab6", + "metadata": {}, + "outputs": [], + "source": [ + "### Save the results - Summary" + ] + }, + { + "cell_type": "code", + "execution_count": 216, + "id": "f86ae713-e427-498f-815a-cccea9297b02", + "metadata": {}, + "outputs": [], + "source": [ + "write.table(coloc_result_summary, file = paste0(path, \"/colocalization_results/\", \"COEQTL_summary_update.csv\"), append =FALSE, sep = \",\", row.names = FALSE, col.names = TRUE)" + ] + }, + { + "cell_type": "code", + "execution_count": 217, + "id": "5359ac4d-3fc8-4df2-8dc3-4915ebe18b0c", + "metadata": {}, + "outputs": [], + "source": [ + "### Save the results - Detail" + ] + }, + { + "cell_type": "code", + "execution_count": 218, + "id": "dd75cdb3-703b-415d-910c-69bd8a58abbc", + "metadata": {}, + "outputs": [], + "source": [ + "if(save_detail == TRUE){\n", + " write.table(coloc_result_detail, file = paste0(path, \"/colocalization_results/\", \"COEQTL_detail_update.csv\"), append =FALSE, sep = \",\", row.names = FALSE, col.names =TRUE)\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "31ddb938-63d2-43b7-9f00-2f3966c8613f", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "55e34797-c096-428a-8ff2-ec99e4b0b59e", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "4.1.1" + }, + "toc-autonumbering": true + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/05_coeqtl_interpretation/R3_Coloc_Evaluation.ipynb b/05_coeqtl_interpretation/R3_Coloc_Evaluation.ipynb new file mode 100644 index 0000000..1272ac4 --- /dev/null +++ b/05_coeqtl_interpretation/R3_Coloc_Evaluation.ipynb @@ -0,0 +1,5000 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "253ab18f-d2dc-4dee-a9db-5255571056d6", + "metadata": {}, + "outputs": [], + "source": [ + "### Evaluate colocalization results\n", + "### Load the results saved in R2 script and check out some summaries" + ] + }, + { + "cell_type": "markdown", + "id": "802f0d1c-925e-480b-a547-865cc6d997b2", + "metadata": { + "tags": [] + }, + "source": [ + "# Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d187711e-139c-4eaf-bcaf-5795174c795d", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "Attaching package: ‘dplyr’\n", + "\n", + "\n", + "The following objects are masked from ‘package:stats’:\n", + "\n", + " filter, lag\n", + "\n", + "\n", + "The following objects are masked from ‘package:base’:\n", + "\n", + " intersect, setdiff, setequal, union\n", + "\n", + "\n", + "\n", + "Attaching package: ‘data.table’\n", + "\n", + "\n", + "The following objects are masked from ‘package:dplyr’:\n", + "\n", + " between, first, last\n", + "\n", + "\n", + "── \u001b[1mAttaching packages\u001b[22m ─────────────────────────────────────── tidyverse 1.3.1 ──\n", + "\n", + "\u001b[32m✔\u001b[39m \u001b[34mggplot2\u001b[39m 3.3.6 \u001b[32m✔\u001b[39m \u001b[34mreadr \u001b[39m 2.1.2\n", + "\u001b[32m✔\u001b[39m \u001b[34mtibble \u001b[39m 3.1.7 \u001b[32m✔\u001b[39m \u001b[34mpurrr \u001b[39m 0.3.4\n", + "\u001b[32m✔\u001b[39m \u001b[34mtidyr \u001b[39m 1.2.0 \u001b[32m✔\u001b[39m \u001b[34mforcats\u001b[39m 0.5.1\n", + "\n", + "── \u001b[1mConflicts\u001b[22m ────────────────────────────────────────── tidyverse_conflicts() ──\n", + "\u001b[31m✖\u001b[39m \u001b[34mdata.table\u001b[39m::\u001b[32mbetween()\u001b[39m masks \u001b[34mdplyr\u001b[39m::between()\n", + "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mfilter()\u001b[39m masks \u001b[34mstats\u001b[39m::filter()\n", + "\u001b[31m✖\u001b[39m \u001b[34mdata.table\u001b[39m::\u001b[32mfirst()\u001b[39m masks \u001b[34mdplyr\u001b[39m::first()\n", + "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mlag()\u001b[39m masks \u001b[34mstats\u001b[39m::lag()\n", + "\u001b[31m✖\u001b[39m \u001b[34mdata.table\u001b[39m::\u001b[32mlast()\u001b[39m masks \u001b[34mdplyr\u001b[39m::last()\n", + "\u001b[31m✖\u001b[39m \u001b[34mpurrr\u001b[39m::\u001b[32mtranspose()\u001b[39m masks \u001b[34mdata.table\u001b[39m::transpose()\n", + "\n", + "\n", + "Attaching package: ‘reshape2’\n", + "\n", + "\n", + "The following object is masked from ‘package:tidyr’:\n", + "\n", + " smiths\n", + "\n", + "\n", + "The following objects are masked from ‘package:data.table’:\n", + "\n", + " dcast, melt\n", + "\n", + "\n", + "Loading required package: lattice\n", + "\n", + "\n", + "Attaching package: ‘caret’\n", + "\n", + "\n", + "The following object is masked from ‘package:purrr’:\n", + "\n", + " lift\n", + "\n", + "\n", + "This is a new update to coloc.\n", + "\n", + "\n", + "Attaching package: ‘coloc’\n", + "\n", + "\n", + "The following object is masked from ‘package:caret’:\n", + "\n", + " sensitivity\n", + "\n", + "\n" + ] + } + ], + "source": [ + "source('MS1_Libraries.r')" + ] + }, + { + "cell_type": "markdown", + "id": "e59e15e0-23cd-457b-b704-05dbfe404876", + "metadata": {}, + "source": [ + "# Parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "535e2290-2e3b-4cca-880f-8ce2d00f55b7", + "metadata": {}, + "outputs": [], + "source": [ + "path<-\"\"\n", + "outdir<-\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "bfac0756-8f6a-4388-93a1-3e76a178b56e", + "metadata": {}, + "outputs": [], + "source": [ + "cell_type_var = c(\"CD4T\",\"CD8T\",\"monocyte\",\"NK\",\"B\",\"DC\")\n", + "# c(\"CD4T\",\"CD8T\",\"monocyte\",\"NK\",\"B\",\"DC\")" + ] + }, + { + "cell_type": "markdown", + "id": "96ec5300-7663-481d-b632-a0d23a9f5093", + "metadata": {}, + "source": [ + "# Data " + ] + }, + { + "cell_type": "markdown", + "id": "9333eff6-72ae-4d8f-85a0-6030d4a6320c", + "metadata": { + "tags": [] + }, + "source": [ + "## Summaries" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "9cbb9461-52d2-43e6-8027-9f2afb401615", + "metadata": {}, + "outputs": [], + "source": [ + "### EQTL coloclaization summaries" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "8bb77e4e-8642-4bdc-a5d0-0c194374034b", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_summary = read.table(paste0(path, '/colocalization_results/EQTL_summary_update.csv'), row.names = NULL, sep = \",\", header = TRUE)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "40f8a037-6668-41f4-b681-605a7a89e211", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_summary$X = NULL" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "060ad489-167f-46a5-b56d-15d87c406773", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "1260" + ], + "text/latex": [ + "1260" + ], + "text/markdown": [ + "1260" + ], + "text/plain": [ + "[1] 1260" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(eqtl_summary)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "204331e6-b4ee-4b70-adc6-7c3d617bf01f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 4
parametervaluetraitidentifier
<chr><dbl><chr><chr>
1nsnps 2.46200e+03White blood cell countDC1MB_TMEM176A
2PP.H0.abf8.18261e-04White blood cell countDC1MB_TMEM176A
\n" + ], + "text/latex": [ + "A data.frame: 2 × 4\n", + "\\begin{tabular}{r|llll}\n", + " & parameter & value & trait & identifier\\\\\n", + " & & & & \\\\\n", + "\\hline\n", + "\t1 & nsnps & 2.46200e+03 & White blood cell count & DC1MB\\_TMEM176A\\\\\n", + "\t2 & PP.H0.abf & 8.18261e-04 & White blood cell count & DC1MB\\_TMEM176A\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 4\n", + "\n", + "| | parameter <chr> | value <dbl> | trait <chr> | identifier <chr> |\n", + "|---|---|---|---|---|\n", + "| 1 | nsnps | 2.46200e+03 | White blood cell count | DC1MB_TMEM176A |\n", + "| 2 | PP.H0.abf | 8.18261e-04 | White blood cell count | DC1MB_TMEM176A |\n", + "\n" + ], + "text/plain": [ + " parameter value trait identifier \n", + "1 nsnps 2.46200e+03 White blood cell count DC1MB_TMEM176A\n", + "2 PP.H0.abf 8.18261e-04 White blood cell count DC1MB_TMEM176A" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(eqtl_summary,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "c2a206a2-6df9-4748-a5e8-9faf15dce2fa", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'White blood cell count'
  2. 'Crohn\\'s Disease'
  3. 'Inflammatory Bowel Disease'
  4. 'Multiple Sclerosis'
  5. 'Rheumatoid Arthritis'
  6. 'Asthma'
  7. 'Type_1_Diabetes'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'White blood cell count'\n", + "\\item 'Crohn\\textbackslash{}'s Disease'\n", + "\\item 'Inflammatory Bowel Disease'\n", + "\\item 'Multiple Sclerosis'\n", + "\\item 'Rheumatoid Arthritis'\n", + "\\item 'Asthma'\n", + "\\item 'Type\\_1\\_Diabetes'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'White blood cell count'\n", + "2. 'Crohn\\'s Disease'\n", + "3. 'Inflammatory Bowel Disease'\n", + "4. 'Multiple Sclerosis'\n", + "5. 'Rheumatoid Arthritis'\n", + "6. 'Asthma'\n", + "7. 'Type_1_Diabetes'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"White blood cell count\" \"Crohn's Disease\" \n", + "[3] \"Inflammatory Bowel Disease\" \"Multiple Sclerosis\" \n", + "[5] \"Rheumatoid Arthritis\" \"Asthma\" \n", + "[7] \"Type_1_Diabetes\" " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(eqtl_summary$trait)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "ac50d287-9b5d-4556-ada8-6048d1d16386", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_summary = unique(eqtl_summary)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "0c57ec7e-f676-4fce-b0d4-65c2dffb2960", + "metadata": {}, + "outputs": [], + "source": [ + "duplicates = eqtl_summary %>% group_by(parameter, trait, identifier) %>% count() %>% filter(n>= 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "83f668f5-507d-4ea9-9423-ceca78858a10", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [], + "text/latex": [], + "text/markdown": [], + "text/plain": [ + "character(0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(duplicates$trait)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "909e941b-5c5c-4d46-88ed-66327f54c6e3", + "metadata": {}, + "outputs": [], + "source": [ + "# Co-EQTL colocalization summaries" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "74c85e40-2a30-4306-ad8e-778bd62b3a52", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_summary = read.table(paste0(path, '/colocalization_results/COEQTL_summary_update.csv'), row.names = NULL, sep = \",\", header = TRUE)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "2e60f497-0d9c-4ccf-b00e-be12c19c998e", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_summary$X = NULL" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "62aede66-8929-4efd-b76e-5145490f3fde", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "44688" + ], + "text/latex": [ + "44688" + ], + "text/markdown": [ + "44688" + ], + "text/plain": [ + "[1] 44688" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(coeqtl_summary)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "414849c2-215a-414f-af15-a5dbc9b32016", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 4
parametervaluetraitidentifier
<chr><dbl><chr><chr>
1nsnps 2.461000e+03White blood cell countmonocyte_TMEM176A___CAPG__TMEM176A
2PP.H0.abf2.606173e-02White blood cell countmonocyte_TMEM176A___CAPG__TMEM176A
\n" + ], + "text/latex": [ + "A data.frame: 2 × 4\n", + "\\begin{tabular}{r|llll}\n", + " & parameter & value & trait & identifier\\\\\n", + " & & & & \\\\\n", + "\\hline\n", + "\t1 & nsnps & 2.461000e+03 & White blood cell count & monocyte\\_TMEM176A\\_\\_\\_CAPG\\_\\_TMEM176A\\\\\n", + "\t2 & PP.H0.abf & 2.606173e-02 & White blood cell count & monocyte\\_TMEM176A\\_\\_\\_CAPG\\_\\_TMEM176A\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 4\n", + "\n", + "| | parameter <chr> | value <dbl> | trait <chr> | identifier <chr> |\n", + "|---|---|---|---|---|\n", + "| 1 | nsnps | 2.461000e+03 | White blood cell count | monocyte_TMEM176A___CAPG__TMEM176A |\n", + "| 2 | PP.H0.abf | 2.606173e-02 | White blood cell count | monocyte_TMEM176A___CAPG__TMEM176A |\n", + "\n" + ], + "text/plain": [ + " parameter value trait \n", + "1 nsnps 2.461000e+03 White blood cell count\n", + "2 PP.H0.abf 2.606173e-02 White blood cell count\n", + " identifier \n", + "1 monocyte_TMEM176A___CAPG__TMEM176A\n", + "2 monocyte_TMEM176A___CAPG__TMEM176A" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(coeqtl_summary,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "bbe38511-c264-4bc6-a756-9752bcadf19d", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_summary = unique(coeqtl_summary)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "a9c7f658-f3d3-4f73-81d8-0bc498bf0b4b", + "metadata": {}, + "outputs": [], + "source": [ + "duplicates = coeqtl_summary %>% group_by(parameter, trait, identifier) %>% count() %>% filter(n>= 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "289a0d48-77c4-4db7-ac5c-32d61bd7f4d6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [], + "text/latex": [], + "text/markdown": [], + "text/plain": [ + "character(0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(duplicates$trait)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "8925b1ae-e0fe-4c96-8c61-d4003d06a2fb", + "metadata": {}, + "outputs": [], + "source": [ + "#unique(duplicates$parameter)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "f2ade7f4-16e7-4018-9b14-f1f4c85c6b0f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "
A grouped_df: 0 × 4
parametertraitidentifiern
<chr><chr><chr><int>
\n" + ], + "text/latex": [ + "A grouped\\_df: 0 × 4\n", + "\\begin{tabular}{llll}\n", + " parameter & trait & identifier & n\\\\\n", + " & & & \\\\\n", + "\\hline\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 0 × 4\n", + "\n", + "| parameter <chr> | trait <chr> | identifier <chr> | n <int> |\n", + "|---|---|---|---|\n", + "\n" + ], + "text/plain": [ + " parameter trait identifier n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(duplicates,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "e035efd4-9848-4a64-919f-7a48b79bcafd", + "metadata": {}, + "outputs": [], + "source": [ + "### Extract egene" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "dc53ab43-4ab9-4f52-8c35-458e10b23406", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_summary$egene = str_extract(coeqtl_summary$identifier, '.*___')\n", + "coeqtl_summary$egene = str_replace(coeqtl_summary$egene, '___', '')" + ] + }, + { + "cell_type": "markdown", + "id": "b5e259ac-c2b6-4888-ae21-a4e6b4dabec0", + "metadata": { + "tags": [] + }, + "source": [ + "# Evaluate summaries" + ] + }, + { + "cell_type": "markdown", + "id": "a3c11cc1-129a-4313-a4b9-5e57278343d9", + "metadata": { + "tags": [] + }, + "source": [ + "## For EQTLs" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "f357d86b-10c4-403b-a79d-907ea09f4947", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 4
parametervaluetraitidentifier
<chr><dbl><chr><chr>
1nsnps 2.46200e+03White blood cell countDC1MB_TMEM176A
2PP.H0.abf8.18261e-04White blood cell countDC1MB_TMEM176A
\n" + ], + "text/latex": [ + "A data.frame: 2 × 4\n", + "\\begin{tabular}{r|llll}\n", + " & parameter & value & trait & identifier\\\\\n", + " & & & & \\\\\n", + "\\hline\n", + "\t1 & nsnps & 2.46200e+03 & White blood cell count & DC1MB\\_TMEM176A\\\\\n", + "\t2 & PP.H0.abf & 8.18261e-04 & White blood cell count & DC1MB\\_TMEM176A\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 4\n", + "\n", + "| | parameter <chr> | value <dbl> | trait <chr> | identifier <chr> |\n", + "|---|---|---|---|---|\n", + "| 1 | nsnps | 2.46200e+03 | White blood cell count | DC1MB_TMEM176A |\n", + "| 2 | PP.H0.abf | 8.18261e-04 | White blood cell count | DC1MB_TMEM176A |\n", + "\n" + ], + "text/plain": [ + " parameter value trait identifier \n", + "1 nsnps 2.46200e+03 White blood cell count DC1MB_TMEM176A\n", + "2 PP.H0.abf 8.18261e-04 White blood cell count DC1MB_TMEM176A" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(eqtl_summary,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "28ebc623-2ba4-4382-95cb-d8b652ba881e", + "metadata": {}, + "outputs": [], + "source": [ + "## Extract amount of SNPS" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "79bafba6-9302-49ff-b9a3-caa818c18655", + "metadata": {}, + "outputs": [], + "source": [ + "n_snps = eqtl_summary[eqtl_summary$parameter == 'nsnps',]\n", + "n_snps$overlapping_snps = n_snps$value\n", + "n_snps$parameter = NULL\n", + "n_snps$value = NULL" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "e5e7f024-b1fb-4e22-8828-cc3cf531de98", + "metadata": {}, + "outputs": [], + "source": [ + "#eqtl_summary = eqtl_summary[eqtl_summary$parameter != 'nsnps',]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "77624013-cc23-4fdb-bce3-b867be56b8ca", + "metadata": {}, + "outputs": [], + "source": [ + "## Extract cell-type, gene etc" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "d64fe822-3b10-476b-a132-a49ce34e5449", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_summary$cell_type = str_replace(eqtl_summary$identifier, '_.*', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "ad06f965-dc2e-42c2-aa1c-19ae04cfdadf", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_summary$gene = str_replace(eqtl_summary$identifier, '.*_', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "d5a3d03e-50d1-4429-a6ec-dd636f510609", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'DC1MB'
  2. 'B1MB'
  3. 'NK1MB'
  4. 'monocyte1MB'
  5. 'CD8T1MB'
  6. 'CD4T1MB'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'DC1MB'\n", + "\\item 'B1MB'\n", + "\\item 'NK1MB'\n", + "\\item 'monocyte1MB'\n", + "\\item 'CD8T1MB'\n", + "\\item 'CD4T1MB'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'DC1MB'\n", + "2. 'B1MB'\n", + "3. 'NK1MB'\n", + "4. 'monocyte1MB'\n", + "5. 'CD8T1MB'\n", + "6. 'CD4T1MB'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"DC1MB\" \"B1MB\" \"NK1MB\" \"monocyte1MB\" \"CD8T1MB\" \n", + "[6] \"CD4T1MB\" " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(eqtl_summary$cell_type)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "c7e6fc78-ac1a-451f-bc14-e6dce54f61cb", + "metadata": {}, + "outputs": [], + "source": [ + "## Add number of SNPS" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "7d80cf0c-4730-44b8-b678-50f3e5958a29", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_summary = merge(eqtl_summary, n_snps, by.x = c('trait', 'identifier'), by.y = c('trait', 'identifier'))" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "a5e3f9ca-c3d2-445e-ba82-ed242f6a01a3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 7
traitidentifierparametervaluecell_typegeneoverlapping_snps
<chr><chr><chr><dbl><chr><chr><dbl>
1AsthmaB1MB_HLA-DQA2nsnps 3.880000e+02B1MBHLA-DQA2388
2AsthmaB1MB_HLA-DQA2PP.H0.abf1.212062e-25B1MBHLA-DQA2388
\n" + ], + "text/latex": [ + "A data.frame: 2 × 7\n", + "\\begin{tabular}{r|lllllll}\n", + " & trait & identifier & parameter & value & cell\\_type & gene & overlapping\\_snps\\\\\n", + " & & & & & & & \\\\\n", + "\\hline\n", + "\t1 & Asthma & B1MB\\_HLA-DQA2 & nsnps & 3.880000e+02 & B1MB & HLA-DQA2 & 388\\\\\n", + "\t2 & Asthma & B1MB\\_HLA-DQA2 & PP.H0.abf & 1.212062e-25 & B1MB & HLA-DQA2 & 388\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 7\n", + "\n", + "| | trait <chr> | identifier <chr> | parameter <chr> | value <dbl> | cell_type <chr> | gene <chr> | overlapping_snps <dbl> |\n", + "|---|---|---|---|---|---|---|---|\n", + "| 1 | Asthma | B1MB_HLA-DQA2 | nsnps | 3.880000e+02 | B1MB | HLA-DQA2 | 388 |\n", + "| 2 | Asthma | B1MB_HLA-DQA2 | PP.H0.abf | 1.212062e-25 | B1MB | HLA-DQA2 | 388 |\n", + "\n" + ], + "text/plain": [ + " trait identifier parameter value cell_type gene \n", + "1 Asthma B1MB_HLA-DQA2 nsnps 3.880000e+02 B1MB HLA-DQA2\n", + "2 Asthma B1MB_HLA-DQA2 PP.H0.abf 1.212062e-25 B1MB HLA-DQA2\n", + " overlapping_snps\n", + "1 388 \n", + "2 388 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(eqtl_summary,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "b4dcc4f2-deb6-49d5-b737-6dab933a6f21", + "metadata": {}, + "outputs": [], + "source": [ + "### Maximum probability per identifier and trait" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "6fbce627-914d-4a99-a610-34fa11114dbd", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[1m\u001b[22m`summarise()` has grouped output by 'trait', 'identifier', 'cell_type'. You can\n", + "override using the `.groups` argument.\n" + ] + } + ], + "source": [ + "max_prob = eqtl_summary[eqtl_summary$parameter != 'nsnps',] %>% group_by(trait, identifier, cell_type, gene) %>% summarise(value = max(value))" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "e44b29b1-259b-4774-a6ba-3b32e7ffe47a", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_summary_filtered = merge(eqtl_summary, max_prob)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "79ab3696-b199-4999-a43b-40f08288fc43", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[1m\u001b[22m`summarise()` has grouped output by 'parameter'. You can override using the\n", + "`.groups` argument.\n" + ] + } + ], + "source": [ + "overview_h_amounts = eqtl_summary_filtered %>% group_by(parameter, trait) %>% summarise(n = n(), mean_value = mean(value), amount_greater_0.9 = sum(value > 0.9), amount_greater_0.75 = sum(value > 0.75),amount_greater_0.5 = sum(value > 0.5))" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "42d9bc14-d39c-4514-8db8-c6a25d0ba778", + "metadata": {}, + "outputs": [], + "source": [ + "## Add snp information" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "418546a6-526f-4478-a6d5-75bd891fad4d", + "metadata": {}, + "outputs": [], + "source": [ + "n_snps = n_snps %>% group_by(trait) %>% summarise(average_overlapping_snps = mean(overlapping_snps), min_overlapping_snps = min(overlapping_snps), max_overlapping_snps = max(overlapping_snps))" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "a6fd814e-abfd-4b2a-9857-23600340fe97", + "metadata": {}, + "outputs": [], + "source": [ + "#n_snps = unique(n_snps[,c('trait', 'overlapping_snps')])" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "410c5391-6f89-4699-a0da-20eda9e82d37", + "metadata": {}, + "outputs": [], + "source": [ + "overview_h_amounts = merge(overview_h_amounts, n_snps, by.x = c('trait'), by.y = c('trait'))" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "bc03666e-598c-4ea1-a03f-042cd0136e4c", + "metadata": {}, + "outputs": [], + "source": [ + "#head(n_snps,3)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "2f7826aa-c5cf-4ddc-9745-1c1b72236235", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 5 × 10
traitparameternmean_valueamount_greater_0.9amount_greater_0.75amount_greater_0.5average_overlapping_snpsmin_overlapping_snpsmax_overlapping_snps
<chr><chr><int><dbl><int><int><int><dbl><dbl><dbl>
26White blood cell countPP.H0.abf 70.7627689 0 6 71736.267 5172639
27White blood cell countPP.H1.abf 10.8050249 0 1 11736.267 5172639
28White blood cell countPP.H2.abf170.95843541617171736.267 5172639
29White blood cell countPP.H3.abf 50.9526789 4 5 51736.267 5172639
23Type_1_Diabetes PP.H3.abf120.99982131212122284.00013413161
\n" + ], + "text/latex": [ + "A data.frame: 5 × 10\n", + "\\begin{tabular}{r|llllllllll}\n", + " & trait & parameter & n & mean\\_value & amount\\_greater\\_0.9 & amount\\_greater\\_0.75 & amount\\_greater\\_0.5 & average\\_overlapping\\_snps & min\\_overlapping\\_snps & max\\_overlapping\\_snps\\\\\n", + " & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t26 & White blood cell count & PP.H0.abf & 7 & 0.7627689 & 0 & 6 & 7 & 1736.267 & 517 & 2639\\\\\n", + "\t27 & White blood cell count & PP.H1.abf & 1 & 0.8050249 & 0 & 1 & 1 & 1736.267 & 517 & 2639\\\\\n", + "\t28 & White blood cell count & PP.H2.abf & 17 & 0.9584354 & 16 & 17 & 17 & 1736.267 & 517 & 2639\\\\\n", + "\t29 & White blood cell count & PP.H3.abf & 5 & 0.9526789 & 4 & 5 & 5 & 1736.267 & 517 & 2639\\\\\n", + "\t23 & Type\\_1\\_Diabetes & PP.H3.abf & 12 & 0.9998213 & 12 & 12 & 12 & 2284.000 & 1341 & 3161\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 5 × 10\n", + "\n", + "| | trait <chr> | parameter <chr> | n <int> | mean_value <dbl> | amount_greater_0.9 <int> | amount_greater_0.75 <int> | amount_greater_0.5 <int> | average_overlapping_snps <dbl> | min_overlapping_snps <dbl> | max_overlapping_snps <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|\n", + "| 26 | White blood cell count | PP.H0.abf | 7 | 0.7627689 | 0 | 6 | 7 | 1736.267 | 517 | 2639 |\n", + "| 27 | White blood cell count | PP.H1.abf | 1 | 0.8050249 | 0 | 1 | 1 | 1736.267 | 517 | 2639 |\n", + "| 28 | White blood cell count | PP.H2.abf | 17 | 0.9584354 | 16 | 17 | 17 | 1736.267 | 517 | 2639 |\n", + "| 29 | White blood cell count | PP.H3.abf | 5 | 0.9526789 | 4 | 5 | 5 | 1736.267 | 517 | 2639 |\n", + "| 23 | Type_1_Diabetes | PP.H3.abf | 12 | 0.9998213 | 12 | 12 | 12 | 2284.000 | 1341 | 3161 |\n", + "\n" + ], + "text/plain": [ + " trait parameter n mean_value amount_greater_0.9\n", + "26 White blood cell count PP.H0.abf 7 0.7627689 0 \n", + "27 White blood cell count PP.H1.abf 1 0.8050249 0 \n", + "28 White blood cell count PP.H2.abf 17 0.9584354 16 \n", + "29 White blood cell count PP.H3.abf 5 0.9526789 4 \n", + "23 Type_1_Diabetes PP.H3.abf 12 0.9998213 12 \n", + " amount_greater_0.75 amount_greater_0.5 average_overlapping_snps\n", + "26 6 7 1736.267 \n", + "27 1 1 1736.267 \n", + "28 17 17 1736.267 \n", + "29 5 5 1736.267 \n", + "23 12 12 2284.000 \n", + " min_overlapping_snps max_overlapping_snps\n", + "26 517 2639 \n", + "27 517 2639 \n", + "28 517 2639 \n", + "29 517 2639 \n", + "23 1341 3161 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(overview_h_amounts[order(overview_h_amounts$trait, decreasing = TRUE),],5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "12afd501-1018-4ffd-a512-7ebca28dd146", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "61d3bee9-9b7d-4477-a8fe-8ad131aa3b8e", + "metadata": {}, + "outputs": [], + "source": [ + "### Inspect interesting hypothesis" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "e88a2cfb-7f69-4f17-805e-87f8f4896b76", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_var = 'PP.H4.abf'" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "5dd1d320-92d1-48f6-a318-c8e90f782c6e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 29 × 7
traitidentifiervaluecell_typegeneparameteroverlapping_snps
<chr><chr><dbl><chr><chr><chr><dbl>
1Asthma B1MB_HLA-DQA2 0.9997353B1MB HLA-DQA2PP.H4.abf 388
3Asthma B1MB_RPS26 0.5349101B1MB RPS26 PP.H4.abf 381
6Asthma CD4T1MB_HLA-DQA2 0.9999956CD4T1MB HLA-DQA2PP.H4.abf 388
8Asthma CD4T1MB_RPS26 0.5349363CD4T1MB RPS26 PP.H4.abf 381
11Asthma CD8T1MB_HLA-DQA2 1.0000000CD8T1MB HLA-DQA2PP.H4.abf 388
13Asthma CD8T1MB_RPS26 0.5350001CD8T1MB RPS26 PP.H4.abf 381
16Asthma DC1MB_HLA-DQA2 0.6589821DC1MB HLA-DQA2PP.H4.abf 388
18Asthma DC1MB_RPS26 0.5349096DC1MB RPS26 PP.H4.abf 381
21Asthma monocyte1MB_HLA-DQA20.9746826monocyte1MBHLA-DQA2PP.H4.abf 388
23Asthma monocyte1MB_RPS26 0.5349095monocyte1MBRPS26 PP.H4.abf 381
26Asthma NK1MB_HLA-DQA2 0.9999953NK1MB HLA-DQA2PP.H4.abf 388
28Asthma NK1MB_RPS26 0.5429194NK1MB RPS26 PP.H4.abf 381
37Crohn's Disease CD4T1MB_RNASET2 0.9046377CD4T1MB RNASET2 PP.H4.abf2707
42Crohn's Disease CD8T1MB_RNASET2 0.5453104CD8T1MB RNASET2 PP.H4.abf2707
67Inflammatory Bowel DiseaseCD4T1MB_RNASET2 0.9309073CD4T1MB RNASET2 PP.H4.abf2704
91Multiple Sclerosis B1MB_HLA-DQA2 0.9999979B1MB HLA-DQA2PP.H4.abf 50
96Multiple Sclerosis CD4T1MB_HLA-DQA2 0.7868654CD4T1MB HLA-DQA2PP.H4.abf 50
101Multiple Sclerosis CD8T1MB_HLA-DQA2 0.9978392CD8T1MB HLA-DQA2PP.H4.abf 50
106Multiple Sclerosis DC1MB_HLA-DQA2 0.9999978DC1MB HLA-DQA2PP.H4.abf 50
111Multiple Sclerosis monocyte1MB_HLA-DQA20.9999995monocyte1MBHLA-DQA2PP.H4.abf 50
121Rheumatoid Arthritis B1MB_HLA-DQA2 0.6648626B1MB HLA-DQA2PP.H4.abf 834
123Rheumatoid Arthritis B1MB_RPS26 0.7520723B1MB RPS26 PP.H4.abf 882
128Rheumatoid Arthritis CD4T1MB_RPS26 0.7536740CD4T1MB RPS26 PP.H4.abf 882
133Rheumatoid Arthritis CD8T1MB_RPS26 0.7532601CD8T1MB RPS26 PP.H4.abf 882
136Rheumatoid Arthritis DC1MB_HLA-DQA2 0.6717926DC1MB HLA-DQA2PP.H4.abf 834
138Rheumatoid Arthritis DC1MB_RPS26 0.7534094DC1MB RPS26 PP.H4.abf 882
141Rheumatoid Arthritis monocyte1MB_HLA-DQA20.6669792monocyte1MBHLA-DQA2PP.H4.abf 834
143Rheumatoid Arthritis monocyte1MB_RPS26 0.7551725monocyte1MBRPS26 PP.H4.abf 882
148Rheumatoid Arthritis NK1MB_RPS26 0.7545729NK1MB RPS26 PP.H4.abf 882
\n" + ], + "text/latex": [ + "A data.frame: 29 × 7\n", + "\\begin{tabular}{r|lllllll}\n", + " & trait & identifier & value & cell\\_type & gene & parameter & overlapping\\_snps\\\\\n", + " & & & & & & & \\\\\n", + "\\hline\n", + "\t1 & Asthma & B1MB\\_HLA-DQA2 & 0.9997353 & B1MB & HLA-DQA2 & PP.H4.abf & 388\\\\\n", + "\t3 & Asthma & B1MB\\_RPS26 & 0.5349101 & B1MB & RPS26 & PP.H4.abf & 381\\\\\n", + "\t6 & Asthma & CD4T1MB\\_HLA-DQA2 & 0.9999956 & CD4T1MB & HLA-DQA2 & PP.H4.abf & 388\\\\\n", + "\t8 & Asthma & CD4T1MB\\_RPS26 & 0.5349363 & CD4T1MB & RPS26 & PP.H4.abf & 381\\\\\n", + "\t11 & Asthma & CD8T1MB\\_HLA-DQA2 & 1.0000000 & CD8T1MB & HLA-DQA2 & PP.H4.abf & 388\\\\\n", + "\t13 & Asthma & CD8T1MB\\_RPS26 & 0.5350001 & CD8T1MB & RPS26 & PP.H4.abf & 381\\\\\n", + "\t16 & Asthma & DC1MB\\_HLA-DQA2 & 0.6589821 & DC1MB & HLA-DQA2 & PP.H4.abf & 388\\\\\n", + "\t18 & Asthma & DC1MB\\_RPS26 & 0.5349096 & DC1MB & RPS26 & PP.H4.abf & 381\\\\\n", + "\t21 & Asthma & monocyte1MB\\_HLA-DQA2 & 0.9746826 & monocyte1MB & HLA-DQA2 & PP.H4.abf & 388\\\\\n", + "\t23 & Asthma & monocyte1MB\\_RPS26 & 0.5349095 & monocyte1MB & RPS26 & PP.H4.abf & 381\\\\\n", + "\t26 & Asthma & NK1MB\\_HLA-DQA2 & 0.9999953 & NK1MB & HLA-DQA2 & PP.H4.abf & 388\\\\\n", + "\t28 & Asthma & NK1MB\\_RPS26 & 0.5429194 & NK1MB & RPS26 & PP.H4.abf & 381\\\\\n", + "\t37 & Crohn's Disease & CD4T1MB\\_RNASET2 & 0.9046377 & CD4T1MB & RNASET2 & PP.H4.abf & 2707\\\\\n", + "\t42 & Crohn's Disease & CD8T1MB\\_RNASET2 & 0.5453104 & CD8T1MB & RNASET2 & PP.H4.abf & 2707\\\\\n", + "\t67 & Inflammatory Bowel Disease & CD4T1MB\\_RNASET2 & 0.9309073 & CD4T1MB & RNASET2 & PP.H4.abf & 2704\\\\\n", + "\t91 & Multiple Sclerosis & B1MB\\_HLA-DQA2 & 0.9999979 & B1MB & HLA-DQA2 & PP.H4.abf & 50\\\\\n", + "\t96 & Multiple Sclerosis & CD4T1MB\\_HLA-DQA2 & 0.7868654 & CD4T1MB & HLA-DQA2 & PP.H4.abf & 50\\\\\n", + "\t101 & Multiple Sclerosis & CD8T1MB\\_HLA-DQA2 & 0.9978392 & CD8T1MB & HLA-DQA2 & PP.H4.abf & 50\\\\\n", + "\t106 & Multiple Sclerosis & DC1MB\\_HLA-DQA2 & 0.9999978 & DC1MB & HLA-DQA2 & PP.H4.abf & 50\\\\\n", + "\t111 & Multiple Sclerosis & monocyte1MB\\_HLA-DQA2 & 0.9999995 & monocyte1MB & HLA-DQA2 & PP.H4.abf & 50\\\\\n", + "\t121 & Rheumatoid Arthritis & B1MB\\_HLA-DQA2 & 0.6648626 & B1MB & HLA-DQA2 & PP.H4.abf & 834\\\\\n", + "\t123 & Rheumatoid Arthritis & B1MB\\_RPS26 & 0.7520723 & B1MB & RPS26 & PP.H4.abf & 882\\\\\n", + "\t128 & Rheumatoid Arthritis & CD4T1MB\\_RPS26 & 0.7536740 & CD4T1MB & RPS26 & PP.H4.abf & 882\\\\\n", + "\t133 & Rheumatoid Arthritis & CD8T1MB\\_RPS26 & 0.7532601 & CD8T1MB & RPS26 & PP.H4.abf & 882\\\\\n", + "\t136 & Rheumatoid Arthritis & DC1MB\\_HLA-DQA2 & 0.6717926 & DC1MB & HLA-DQA2 & PP.H4.abf & 834\\\\\n", + "\t138 & Rheumatoid Arthritis & DC1MB\\_RPS26 & 0.7534094 & DC1MB & RPS26 & PP.H4.abf & 882\\\\\n", + "\t141 & Rheumatoid Arthritis & monocyte1MB\\_HLA-DQA2 & 0.6669792 & monocyte1MB & HLA-DQA2 & PP.H4.abf & 834\\\\\n", + "\t143 & Rheumatoid Arthritis & monocyte1MB\\_RPS26 & 0.7551725 & monocyte1MB & RPS26 & PP.H4.abf & 882\\\\\n", + "\t148 & Rheumatoid Arthritis & NK1MB\\_RPS26 & 0.7545729 & NK1MB & RPS26 & PP.H4.abf & 882\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 29 × 7\n", + "\n", + "| | trait <chr> | identifier <chr> | value <dbl> | cell_type <chr> | gene <chr> | parameter <chr> | overlapping_snps <dbl> |\n", + "|---|---|---|---|---|---|---|---|\n", + "| 1 | Asthma | B1MB_HLA-DQA2 | 0.9997353 | B1MB | HLA-DQA2 | PP.H4.abf | 388 |\n", + "| 3 | Asthma | B1MB_RPS26 | 0.5349101 | B1MB | RPS26 | PP.H4.abf | 381 |\n", + "| 6 | Asthma | CD4T1MB_HLA-DQA2 | 0.9999956 | CD4T1MB | HLA-DQA2 | PP.H4.abf | 388 |\n", + "| 8 | Asthma | CD4T1MB_RPS26 | 0.5349363 | CD4T1MB | RPS26 | PP.H4.abf | 381 |\n", + "| 11 | Asthma | CD8T1MB_HLA-DQA2 | 1.0000000 | CD8T1MB | HLA-DQA2 | PP.H4.abf | 388 |\n", + "| 13 | Asthma | CD8T1MB_RPS26 | 0.5350001 | CD8T1MB | RPS26 | PP.H4.abf | 381 |\n", + "| 16 | Asthma | DC1MB_HLA-DQA2 | 0.6589821 | DC1MB | HLA-DQA2 | PP.H4.abf | 388 |\n", + "| 18 | Asthma | DC1MB_RPS26 | 0.5349096 | DC1MB | RPS26 | PP.H4.abf | 381 |\n", + "| 21 | Asthma | monocyte1MB_HLA-DQA2 | 0.9746826 | monocyte1MB | HLA-DQA2 | PP.H4.abf | 388 |\n", + "| 23 | Asthma | monocyte1MB_RPS26 | 0.5349095 | monocyte1MB | RPS26 | PP.H4.abf | 381 |\n", + "| 26 | Asthma | NK1MB_HLA-DQA2 | 0.9999953 | NK1MB | HLA-DQA2 | PP.H4.abf | 388 |\n", + "| 28 | Asthma | NK1MB_RPS26 | 0.5429194 | NK1MB | RPS26 | PP.H4.abf | 381 |\n", + "| 37 | Crohn's Disease | CD4T1MB_RNASET2 | 0.9046377 | CD4T1MB | RNASET2 | PP.H4.abf | 2707 |\n", + "| 42 | Crohn's Disease | CD8T1MB_RNASET2 | 0.5453104 | CD8T1MB | RNASET2 | PP.H4.abf | 2707 |\n", + "| 67 | Inflammatory Bowel Disease | CD4T1MB_RNASET2 | 0.9309073 | CD4T1MB | RNASET2 | PP.H4.abf | 2704 |\n", + "| 91 | Multiple Sclerosis | B1MB_HLA-DQA2 | 0.9999979 | B1MB | HLA-DQA2 | PP.H4.abf | 50 |\n", + "| 96 | Multiple Sclerosis | CD4T1MB_HLA-DQA2 | 0.7868654 | CD4T1MB | HLA-DQA2 | PP.H4.abf | 50 |\n", + "| 101 | Multiple Sclerosis | CD8T1MB_HLA-DQA2 | 0.9978392 | CD8T1MB | HLA-DQA2 | PP.H4.abf | 50 |\n", + "| 106 | Multiple Sclerosis | DC1MB_HLA-DQA2 | 0.9999978 | DC1MB | HLA-DQA2 | PP.H4.abf | 50 |\n", + "| 111 | Multiple Sclerosis | monocyte1MB_HLA-DQA2 | 0.9999995 | monocyte1MB | HLA-DQA2 | PP.H4.abf | 50 |\n", + "| 121 | Rheumatoid Arthritis | B1MB_HLA-DQA2 | 0.6648626 | B1MB | HLA-DQA2 | PP.H4.abf | 834 |\n", + "| 123 | Rheumatoid Arthritis | B1MB_RPS26 | 0.7520723 | B1MB | RPS26 | PP.H4.abf | 882 |\n", + "| 128 | Rheumatoid Arthritis | CD4T1MB_RPS26 | 0.7536740 | CD4T1MB | RPS26 | PP.H4.abf | 882 |\n", + "| 133 | Rheumatoid Arthritis | CD8T1MB_RPS26 | 0.7532601 | CD8T1MB | RPS26 | PP.H4.abf | 882 |\n", + "| 136 | Rheumatoid Arthritis | DC1MB_HLA-DQA2 | 0.6717926 | DC1MB | HLA-DQA2 | PP.H4.abf | 834 |\n", + "| 138 | Rheumatoid Arthritis | DC1MB_RPS26 | 0.7534094 | DC1MB | RPS26 | PP.H4.abf | 882 |\n", + "| 141 | Rheumatoid Arthritis | monocyte1MB_HLA-DQA2 | 0.6669792 | monocyte1MB | HLA-DQA2 | PP.H4.abf | 834 |\n", + "| 143 | Rheumatoid Arthritis | monocyte1MB_RPS26 | 0.7551725 | monocyte1MB | RPS26 | PP.H4.abf | 882 |\n", + "| 148 | Rheumatoid Arthritis | NK1MB_RPS26 | 0.7545729 | NK1MB | RPS26 | PP.H4.abf | 882 |\n", + "\n" + ], + "text/plain": [ + " trait identifier value cell_type \n", + "1 Asthma B1MB_HLA-DQA2 0.9997353 B1MB \n", + "3 Asthma B1MB_RPS26 0.5349101 B1MB \n", + "6 Asthma CD4T1MB_HLA-DQA2 0.9999956 CD4T1MB \n", + "8 Asthma CD4T1MB_RPS26 0.5349363 CD4T1MB \n", + "11 Asthma CD8T1MB_HLA-DQA2 1.0000000 CD8T1MB \n", + "13 Asthma CD8T1MB_RPS26 0.5350001 CD8T1MB \n", + "16 Asthma DC1MB_HLA-DQA2 0.6589821 DC1MB \n", + "18 Asthma DC1MB_RPS26 0.5349096 DC1MB \n", + "21 Asthma monocyte1MB_HLA-DQA2 0.9746826 monocyte1MB\n", + "23 Asthma monocyte1MB_RPS26 0.5349095 monocyte1MB\n", + "26 Asthma NK1MB_HLA-DQA2 0.9999953 NK1MB \n", + "28 Asthma NK1MB_RPS26 0.5429194 NK1MB \n", + "37 Crohn's Disease CD4T1MB_RNASET2 0.9046377 CD4T1MB \n", + "42 Crohn's Disease CD8T1MB_RNASET2 0.5453104 CD8T1MB \n", + "67 Inflammatory Bowel Disease CD4T1MB_RNASET2 0.9309073 CD4T1MB \n", + "91 Multiple Sclerosis B1MB_HLA-DQA2 0.9999979 B1MB \n", + "96 Multiple Sclerosis CD4T1MB_HLA-DQA2 0.7868654 CD4T1MB \n", + "101 Multiple Sclerosis CD8T1MB_HLA-DQA2 0.9978392 CD8T1MB \n", + "106 Multiple Sclerosis DC1MB_HLA-DQA2 0.9999978 DC1MB \n", + "111 Multiple Sclerosis monocyte1MB_HLA-DQA2 0.9999995 monocyte1MB\n", + "121 Rheumatoid Arthritis B1MB_HLA-DQA2 0.6648626 B1MB \n", + "123 Rheumatoid Arthritis B1MB_RPS26 0.7520723 B1MB \n", + "128 Rheumatoid Arthritis CD4T1MB_RPS26 0.7536740 CD4T1MB \n", + "133 Rheumatoid Arthritis CD8T1MB_RPS26 0.7532601 CD8T1MB \n", + "136 Rheumatoid Arthritis DC1MB_HLA-DQA2 0.6717926 DC1MB \n", + "138 Rheumatoid Arthritis DC1MB_RPS26 0.7534094 DC1MB \n", + "141 Rheumatoid Arthritis monocyte1MB_HLA-DQA2 0.6669792 monocyte1MB\n", + "143 Rheumatoid Arthritis monocyte1MB_RPS26 0.7551725 monocyte1MB\n", + "148 Rheumatoid Arthritis NK1MB_RPS26 0.7545729 NK1MB \n", + " gene parameter overlapping_snps\n", + "1 HLA-DQA2 PP.H4.abf 388 \n", + "3 RPS26 PP.H4.abf 381 \n", + "6 HLA-DQA2 PP.H4.abf 388 \n", + "8 RPS26 PP.H4.abf 381 \n", + "11 HLA-DQA2 PP.H4.abf 388 \n", + "13 RPS26 PP.H4.abf 381 \n", + "16 HLA-DQA2 PP.H4.abf 388 \n", + "18 RPS26 PP.H4.abf 381 \n", + "21 HLA-DQA2 PP.H4.abf 388 \n", + "23 RPS26 PP.H4.abf 381 \n", + "26 HLA-DQA2 PP.H4.abf 388 \n", + "28 RPS26 PP.H4.abf 381 \n", + "37 RNASET2 PP.H4.abf 2707 \n", + "42 RNASET2 PP.H4.abf 2707 \n", + "67 RNASET2 PP.H4.abf 2704 \n", + "91 HLA-DQA2 PP.H4.abf 50 \n", + "96 HLA-DQA2 PP.H4.abf 50 \n", + "101 HLA-DQA2 PP.H4.abf 50 \n", + "106 HLA-DQA2 PP.H4.abf 50 \n", + "111 HLA-DQA2 PP.H4.abf 50 \n", + "121 HLA-DQA2 PP.H4.abf 834 \n", + "123 RPS26 PP.H4.abf 882 \n", + "128 RPS26 PP.H4.abf 882 \n", + "133 RPS26 PP.H4.abf 882 \n", + "136 HLA-DQA2 PP.H4.abf 834 \n", + "138 RPS26 PP.H4.abf 882 \n", + "141 HLA-DQA2 PP.H4.abf 834 \n", + "143 RPS26 PP.H4.abf 882 \n", + "148 RPS26 PP.H4.abf 882 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "eqtl_summary_filtered[(eqtl_summary_filtered$parameter == parameter_var) ,]" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "511df027-bdf8-45d0-9e06-c789a47a810a", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_var = 'PP.H3.abf'" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "663e5826-d961-4933-ba17-d2096e8b1b37", + "metadata": {}, + "outputs": [], + "source": [ + "#trait = c('Rheumatoid Arthritis', 'Type_1_Diabetes', 'Crohn\\'s Disease')" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "3656aff9-7838-4c4e-86c8-a2fcfe9b558c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 38 × 7
traitidentifiervaluecell_typegeneparameteroverlapping_snps
<chr><chr><dbl><chr><chr><chr><dbl>
31Crohn's Disease B1MB_HLA-DQA2 0.9999567B1MB HLA-DQA2PP.H3.abf4698
36Crohn's Disease CD4T1MB_HLA-DQA2 0.9998617CD4T1MB HLA-DQA2PP.H3.abf4698
41Crohn's Disease CD8T1MB_HLA-DQA2 0.9995537CD8T1MB HLA-DQA2PP.H3.abf4698
46Crohn's Disease DC1MB_HLA-DQA2 0.9999567DC1MB HLA-DQA2PP.H3.abf4698
51Crohn's Disease monocyte1MB_HLA-DQA20.9999567monocyte1MBHLA-DQA2PP.H3.abf4698
56Crohn's Disease NK1MB_HLA-DQA2 0.9998702NK1MB HLA-DQA2PP.H3.abf4698
57Crohn's Disease NK1MB_RNASET2 0.5016812NK1MB RNASET2 PP.H3.abf2707
61Inflammatory Bowel DiseaseB1MB_HLA-DQA2 0.9263285B1MB HLA-DQA2PP.H3.abf4700
66Inflammatory Bowel DiseaseCD4T1MB_HLA-DQA2 0.8770284CD4T1MB HLA-DQA2PP.H3.abf4700
71Inflammatory Bowel DiseaseCD8T1MB_HLA-DQA2 0.9360076CD8T1MB HLA-DQA2PP.H3.abf4700
72Inflammatory Bowel DiseaseCD8T1MB_RNASET2 0.6274067CD8T1MB RNASET2 PP.H3.abf2704
76Inflammatory Bowel DiseaseDC1MB_HLA-DQA2 0.9242179DC1MB HLA-DQA2PP.H3.abf4700
81Inflammatory Bowel Diseasemonocyte1MB_HLA-DQA20.9066889monocyte1MBHLA-DQA2PP.H3.abf4700
86Inflammatory Bowel DiseaseNK1MB_HLA-DQA2 0.9820401NK1MB HLA-DQA2PP.H3.abf4700
87Inflammatory Bowel DiseaseNK1MB_RNASET2 0.4851461NK1MB RNASET2 PP.H3.abf2704
126Rheumatoid Arthritis CD4T1MB_HLA-DQA2 0.6547936CD4T1MB HLA-DQA2PP.H3.abf 834
127Rheumatoid Arthritis CD4T1MB_RNASET2 1.0000000CD4T1MB RNASET2 PP.H3.abf2031
131Rheumatoid Arthritis CD8T1MB_HLA-DQA2 0.7767070CD8T1MB HLA-DQA2PP.H3.abf 834
132Rheumatoid Arthritis CD8T1MB_RNASET2 0.9994734CD8T1MB RNASET2 PP.H3.abf2031
146Rheumatoid Arthritis NK1MB_HLA-DQA2 0.6625783NK1MB HLA-DQA2PP.H3.abf 834
147Rheumatoid Arthritis NK1MB_RNASET2 0.7544265NK1MB RNASET2 PP.H3.abf2031
151Type_1_Diabetes B1MB_HLA-DQA2 1.0000000B1MB HLA-DQA2PP.H3.abf1344
153Type_1_Diabetes B1MB_RPS26 0.9998778B1MB RPS26 PP.H3.abf1341
156Type_1_Diabetes CD4T1MB_HLA-DQA2 0.9995561CD4T1MB HLA-DQA2PP.H3.abf1344
158Type_1_Diabetes CD4T1MB_RPS26 0.9997676CD4T1MB RPS26 PP.H3.abf1341
161Type_1_Diabetes CD8T1MB_HLA-DQA2 1.0000000CD8T1MB HLA-DQA2PP.H3.abf1344
163Type_1_Diabetes CD8T1MB_RPS26 0.9995874CD8T1MB RPS26 PP.H3.abf1341
166Type_1_Diabetes DC1MB_HLA-DQA2 1.0000000DC1MB HLA-DQA2PP.H3.abf1344
168Type_1_Diabetes DC1MB_RPS26 0.9995863DC1MB RPS26 PP.H3.abf1341
171Type_1_Diabetes monocyte1MB_HLA-DQA21.0000000monocyte1MBHLA-DQA2PP.H3.abf1344
173Type_1_Diabetes monocyte1MB_RPS26 0.9998459monocyte1MBRPS26 PP.H3.abf1341
176Type_1_Diabetes NK1MB_HLA-DQA2 0.9999993NK1MB HLA-DQA2PP.H3.abf1344
178Type_1_Diabetes NK1MB_RPS26 0.9996350NK1MB RPS26 PP.H3.abf1341
181White blood cell count B1MB_HLA-DQA2 1.0000000B1MB HLA-DQA2PP.H3.abf 517
186White blood cell count CD4T1MB_HLA-DQA2 0.7634488CD4T1MB HLA-DQA2PP.H3.abf 517
191White blood cell count CD8T1MB_HLA-DQA2 0.9999464CD8T1MB HLA-DQA2PP.H3.abf 517
196White blood cell count DC1MB_HLA-DQA2 1.0000000DC1MB HLA-DQA2PP.H3.abf 517
201White blood cell count monocyte1MB_HLA-DQA20.9999996monocyte1MBHLA-DQA2PP.H3.abf 517
\n" + ], + "text/latex": [ + "A data.frame: 38 × 7\n", + "\\begin{tabular}{r|lllllll}\n", + " & trait & identifier & value & cell\\_type & gene & parameter & overlapping\\_snps\\\\\n", + " & & & & & & & \\\\\n", + "\\hline\n", + "\t31 & Crohn's Disease & B1MB\\_HLA-DQA2 & 0.9999567 & B1MB & HLA-DQA2 & PP.H3.abf & 4698\\\\\n", + "\t36 & Crohn's Disease & CD4T1MB\\_HLA-DQA2 & 0.9998617 & CD4T1MB & HLA-DQA2 & PP.H3.abf & 4698\\\\\n", + "\t41 & Crohn's Disease & CD8T1MB\\_HLA-DQA2 & 0.9995537 & CD8T1MB & HLA-DQA2 & PP.H3.abf & 4698\\\\\n", + "\t46 & Crohn's Disease & DC1MB\\_HLA-DQA2 & 0.9999567 & DC1MB & HLA-DQA2 & PP.H3.abf & 4698\\\\\n", + "\t51 & Crohn's Disease & monocyte1MB\\_HLA-DQA2 & 0.9999567 & monocyte1MB & HLA-DQA2 & PP.H3.abf & 4698\\\\\n", + "\t56 & Crohn's Disease & NK1MB\\_HLA-DQA2 & 0.9998702 & NK1MB & HLA-DQA2 & PP.H3.abf & 4698\\\\\n", + "\t57 & Crohn's Disease & NK1MB\\_RNASET2 & 0.5016812 & NK1MB & RNASET2 & PP.H3.abf & 2707\\\\\n", + "\t61 & Inflammatory Bowel Disease & B1MB\\_HLA-DQA2 & 0.9263285 & B1MB & HLA-DQA2 & PP.H3.abf & 4700\\\\\n", + "\t66 & Inflammatory Bowel Disease & CD4T1MB\\_HLA-DQA2 & 0.8770284 & CD4T1MB & HLA-DQA2 & PP.H3.abf & 4700\\\\\n", + "\t71 & Inflammatory Bowel Disease & CD8T1MB\\_HLA-DQA2 & 0.9360076 & CD8T1MB & HLA-DQA2 & PP.H3.abf & 4700\\\\\n", + "\t72 & Inflammatory Bowel Disease & CD8T1MB\\_RNASET2 & 0.6274067 & CD8T1MB & RNASET2 & PP.H3.abf & 2704\\\\\n", + "\t76 & Inflammatory Bowel Disease & DC1MB\\_HLA-DQA2 & 0.9242179 & DC1MB & HLA-DQA2 & PP.H3.abf & 4700\\\\\n", + "\t81 & Inflammatory Bowel Disease & monocyte1MB\\_HLA-DQA2 & 0.9066889 & monocyte1MB & HLA-DQA2 & PP.H3.abf & 4700\\\\\n", + "\t86 & Inflammatory Bowel Disease & NK1MB\\_HLA-DQA2 & 0.9820401 & NK1MB & HLA-DQA2 & PP.H3.abf & 4700\\\\\n", + "\t87 & Inflammatory Bowel Disease & NK1MB\\_RNASET2 & 0.4851461 & NK1MB & RNASET2 & PP.H3.abf & 2704\\\\\n", + "\t126 & Rheumatoid Arthritis & CD4T1MB\\_HLA-DQA2 & 0.6547936 & CD4T1MB & HLA-DQA2 & PP.H3.abf & 834\\\\\n", + "\t127 & Rheumatoid Arthritis & CD4T1MB\\_RNASET2 & 1.0000000 & CD4T1MB & RNASET2 & PP.H3.abf & 2031\\\\\n", + "\t131 & Rheumatoid Arthritis & CD8T1MB\\_HLA-DQA2 & 0.7767070 & CD8T1MB & HLA-DQA2 & PP.H3.abf & 834\\\\\n", + "\t132 & Rheumatoid Arthritis & CD8T1MB\\_RNASET2 & 0.9994734 & CD8T1MB & RNASET2 & PP.H3.abf & 2031\\\\\n", + "\t146 & Rheumatoid Arthritis & NK1MB\\_HLA-DQA2 & 0.6625783 & NK1MB & HLA-DQA2 & PP.H3.abf & 834\\\\\n", + "\t147 & Rheumatoid Arthritis & NK1MB\\_RNASET2 & 0.7544265 & NK1MB & RNASET2 & PP.H3.abf & 2031\\\\\n", + "\t151 & Type\\_1\\_Diabetes & B1MB\\_HLA-DQA2 & 1.0000000 & B1MB & HLA-DQA2 & PP.H3.abf & 1344\\\\\n", + "\t153 & Type\\_1\\_Diabetes & B1MB\\_RPS26 & 0.9998778 & B1MB & RPS26 & PP.H3.abf & 1341\\\\\n", + "\t156 & Type\\_1\\_Diabetes & CD4T1MB\\_HLA-DQA2 & 0.9995561 & CD4T1MB & HLA-DQA2 & PP.H3.abf & 1344\\\\\n", + "\t158 & Type\\_1\\_Diabetes & CD4T1MB\\_RPS26 & 0.9997676 & CD4T1MB & RPS26 & PP.H3.abf & 1341\\\\\n", + "\t161 & Type\\_1\\_Diabetes & CD8T1MB\\_HLA-DQA2 & 1.0000000 & CD8T1MB & HLA-DQA2 & PP.H3.abf & 1344\\\\\n", + "\t163 & Type\\_1\\_Diabetes & CD8T1MB\\_RPS26 & 0.9995874 & CD8T1MB & RPS26 & PP.H3.abf & 1341\\\\\n", + "\t166 & Type\\_1\\_Diabetes & DC1MB\\_HLA-DQA2 & 1.0000000 & DC1MB & HLA-DQA2 & PP.H3.abf & 1344\\\\\n", + "\t168 & Type\\_1\\_Diabetes & DC1MB\\_RPS26 & 0.9995863 & DC1MB & RPS26 & PP.H3.abf & 1341\\\\\n", + "\t171 & Type\\_1\\_Diabetes & monocyte1MB\\_HLA-DQA2 & 1.0000000 & monocyte1MB & HLA-DQA2 & PP.H3.abf & 1344\\\\\n", + "\t173 & Type\\_1\\_Diabetes & monocyte1MB\\_RPS26 & 0.9998459 & monocyte1MB & RPS26 & PP.H3.abf & 1341\\\\\n", + "\t176 & Type\\_1\\_Diabetes & NK1MB\\_HLA-DQA2 & 0.9999993 & NK1MB & HLA-DQA2 & PP.H3.abf & 1344\\\\\n", + "\t178 & Type\\_1\\_Diabetes & NK1MB\\_RPS26 & 0.9996350 & NK1MB & RPS26 & PP.H3.abf & 1341\\\\\n", + "\t181 & White blood cell count & B1MB\\_HLA-DQA2 & 1.0000000 & B1MB & HLA-DQA2 & PP.H3.abf & 517\\\\\n", + "\t186 & White blood cell count & CD4T1MB\\_HLA-DQA2 & 0.7634488 & CD4T1MB & HLA-DQA2 & PP.H3.abf & 517\\\\\n", + "\t191 & White blood cell count & CD8T1MB\\_HLA-DQA2 & 0.9999464 & CD8T1MB & HLA-DQA2 & PP.H3.abf & 517\\\\\n", + "\t196 & White blood cell count & DC1MB\\_HLA-DQA2 & 1.0000000 & DC1MB & HLA-DQA2 & PP.H3.abf & 517\\\\\n", + "\t201 & White blood cell count & monocyte1MB\\_HLA-DQA2 & 0.9999996 & monocyte1MB & HLA-DQA2 & PP.H3.abf & 517\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 38 × 7\n", + "\n", + "| | trait <chr> | identifier <chr> | value <dbl> | cell_type <chr> | gene <chr> | parameter <chr> | overlapping_snps <dbl> |\n", + "|---|---|---|---|---|---|---|---|\n", + "| 31 | Crohn's Disease | B1MB_HLA-DQA2 | 0.9999567 | B1MB | HLA-DQA2 | PP.H3.abf | 4698 |\n", + "| 36 | Crohn's Disease | CD4T1MB_HLA-DQA2 | 0.9998617 | CD4T1MB | HLA-DQA2 | PP.H3.abf | 4698 |\n", + "| 41 | Crohn's Disease | CD8T1MB_HLA-DQA2 | 0.9995537 | CD8T1MB | HLA-DQA2 | PP.H3.abf | 4698 |\n", + "| 46 | Crohn's Disease | DC1MB_HLA-DQA2 | 0.9999567 | DC1MB | HLA-DQA2 | PP.H3.abf | 4698 |\n", + "| 51 | Crohn's Disease | monocyte1MB_HLA-DQA2 | 0.9999567 | monocyte1MB | HLA-DQA2 | PP.H3.abf | 4698 |\n", + "| 56 | Crohn's Disease | NK1MB_HLA-DQA2 | 0.9998702 | NK1MB | HLA-DQA2 | PP.H3.abf | 4698 |\n", + "| 57 | Crohn's Disease | NK1MB_RNASET2 | 0.5016812 | NK1MB | RNASET2 | PP.H3.abf | 2707 |\n", + "| 61 | Inflammatory Bowel Disease | B1MB_HLA-DQA2 | 0.9263285 | B1MB | HLA-DQA2 | PP.H3.abf | 4700 |\n", + "| 66 | Inflammatory Bowel Disease | CD4T1MB_HLA-DQA2 | 0.8770284 | CD4T1MB | HLA-DQA2 | PP.H3.abf | 4700 |\n", + "| 71 | Inflammatory Bowel Disease | CD8T1MB_HLA-DQA2 | 0.9360076 | CD8T1MB | HLA-DQA2 | PP.H3.abf | 4700 |\n", + "| 72 | Inflammatory Bowel Disease | CD8T1MB_RNASET2 | 0.6274067 | CD8T1MB | RNASET2 | PP.H3.abf | 2704 |\n", + "| 76 | Inflammatory Bowel Disease | DC1MB_HLA-DQA2 | 0.9242179 | DC1MB | HLA-DQA2 | PP.H3.abf | 4700 |\n", + "| 81 | Inflammatory Bowel Disease | monocyte1MB_HLA-DQA2 | 0.9066889 | monocyte1MB | HLA-DQA2 | PP.H3.abf | 4700 |\n", + "| 86 | Inflammatory Bowel Disease | NK1MB_HLA-DQA2 | 0.9820401 | NK1MB | HLA-DQA2 | PP.H3.abf | 4700 |\n", + "| 87 | Inflammatory Bowel Disease | NK1MB_RNASET2 | 0.4851461 | NK1MB | RNASET2 | PP.H3.abf | 2704 |\n", + "| 126 | Rheumatoid Arthritis | CD4T1MB_HLA-DQA2 | 0.6547936 | CD4T1MB | HLA-DQA2 | PP.H3.abf | 834 |\n", + "| 127 | Rheumatoid Arthritis | CD4T1MB_RNASET2 | 1.0000000 | CD4T1MB | RNASET2 | PP.H3.abf | 2031 |\n", + "| 131 | Rheumatoid Arthritis | CD8T1MB_HLA-DQA2 | 0.7767070 | CD8T1MB | HLA-DQA2 | PP.H3.abf | 834 |\n", + "| 132 | Rheumatoid Arthritis | CD8T1MB_RNASET2 | 0.9994734 | CD8T1MB | RNASET2 | PP.H3.abf | 2031 |\n", + "| 146 | Rheumatoid Arthritis | NK1MB_HLA-DQA2 | 0.6625783 | NK1MB | HLA-DQA2 | PP.H3.abf | 834 |\n", + "| 147 | Rheumatoid Arthritis | NK1MB_RNASET2 | 0.7544265 | NK1MB | RNASET2 | PP.H3.abf | 2031 |\n", + "| 151 | Type_1_Diabetes | B1MB_HLA-DQA2 | 1.0000000 | B1MB | HLA-DQA2 | PP.H3.abf | 1344 |\n", + "| 153 | Type_1_Diabetes | B1MB_RPS26 | 0.9998778 | B1MB | RPS26 | PP.H3.abf | 1341 |\n", + "| 156 | Type_1_Diabetes | CD4T1MB_HLA-DQA2 | 0.9995561 | CD4T1MB | HLA-DQA2 | PP.H3.abf | 1344 |\n", + "| 158 | Type_1_Diabetes | CD4T1MB_RPS26 | 0.9997676 | CD4T1MB | RPS26 | PP.H3.abf | 1341 |\n", + "| 161 | Type_1_Diabetes | CD8T1MB_HLA-DQA2 | 1.0000000 | CD8T1MB | HLA-DQA2 | PP.H3.abf | 1344 |\n", + "| 163 | Type_1_Diabetes | CD8T1MB_RPS26 | 0.9995874 | CD8T1MB | RPS26 | PP.H3.abf | 1341 |\n", + "| 166 | Type_1_Diabetes | DC1MB_HLA-DQA2 | 1.0000000 | DC1MB | HLA-DQA2 | PP.H3.abf | 1344 |\n", + "| 168 | Type_1_Diabetes | DC1MB_RPS26 | 0.9995863 | DC1MB | RPS26 | PP.H3.abf | 1341 |\n", + "| 171 | Type_1_Diabetes | monocyte1MB_HLA-DQA2 | 1.0000000 | monocyte1MB | HLA-DQA2 | PP.H3.abf | 1344 |\n", + "| 173 | Type_1_Diabetes | monocyte1MB_RPS26 | 0.9998459 | monocyte1MB | RPS26 | PP.H3.abf | 1341 |\n", + "| 176 | Type_1_Diabetes | NK1MB_HLA-DQA2 | 0.9999993 | NK1MB | HLA-DQA2 | PP.H3.abf | 1344 |\n", + "| 178 | Type_1_Diabetes | NK1MB_RPS26 | 0.9996350 | NK1MB | RPS26 | PP.H3.abf | 1341 |\n", + "| 181 | White blood cell count | B1MB_HLA-DQA2 | 1.0000000 | B1MB | HLA-DQA2 | PP.H3.abf | 517 |\n", + "| 186 | White blood cell count | CD4T1MB_HLA-DQA2 | 0.7634488 | CD4T1MB | HLA-DQA2 | PP.H3.abf | 517 |\n", + "| 191 | White blood cell count | CD8T1MB_HLA-DQA2 | 0.9999464 | CD8T1MB | HLA-DQA2 | PP.H3.abf | 517 |\n", + "| 196 | White blood cell count | DC1MB_HLA-DQA2 | 1.0000000 | DC1MB | HLA-DQA2 | PP.H3.abf | 517 |\n", + "| 201 | White blood cell count | monocyte1MB_HLA-DQA2 | 0.9999996 | monocyte1MB | HLA-DQA2 | PP.H3.abf | 517 |\n", + "\n" + ], + "text/plain": [ + " trait identifier value cell_type \n", + "31 Crohn's Disease B1MB_HLA-DQA2 0.9999567 B1MB \n", + "36 Crohn's Disease CD4T1MB_HLA-DQA2 0.9998617 CD4T1MB \n", + "41 Crohn's Disease CD8T1MB_HLA-DQA2 0.9995537 CD8T1MB \n", + "46 Crohn's Disease DC1MB_HLA-DQA2 0.9999567 DC1MB \n", + "51 Crohn's Disease monocyte1MB_HLA-DQA2 0.9999567 monocyte1MB\n", + "56 Crohn's Disease NK1MB_HLA-DQA2 0.9998702 NK1MB \n", + "57 Crohn's Disease NK1MB_RNASET2 0.5016812 NK1MB \n", + "61 Inflammatory Bowel Disease B1MB_HLA-DQA2 0.9263285 B1MB \n", + "66 Inflammatory Bowel Disease CD4T1MB_HLA-DQA2 0.8770284 CD4T1MB \n", + "71 Inflammatory Bowel Disease CD8T1MB_HLA-DQA2 0.9360076 CD8T1MB \n", + "72 Inflammatory Bowel Disease CD8T1MB_RNASET2 0.6274067 CD8T1MB \n", + "76 Inflammatory Bowel Disease DC1MB_HLA-DQA2 0.9242179 DC1MB \n", + "81 Inflammatory Bowel Disease monocyte1MB_HLA-DQA2 0.9066889 monocyte1MB\n", + "86 Inflammatory Bowel Disease NK1MB_HLA-DQA2 0.9820401 NK1MB \n", + "87 Inflammatory Bowel Disease NK1MB_RNASET2 0.4851461 NK1MB \n", + "126 Rheumatoid Arthritis CD4T1MB_HLA-DQA2 0.6547936 CD4T1MB \n", + "127 Rheumatoid Arthritis CD4T1MB_RNASET2 1.0000000 CD4T1MB \n", + "131 Rheumatoid Arthritis CD8T1MB_HLA-DQA2 0.7767070 CD8T1MB \n", + "132 Rheumatoid Arthritis CD8T1MB_RNASET2 0.9994734 CD8T1MB \n", + "146 Rheumatoid Arthritis NK1MB_HLA-DQA2 0.6625783 NK1MB \n", + "147 Rheumatoid Arthritis NK1MB_RNASET2 0.7544265 NK1MB \n", + "151 Type_1_Diabetes B1MB_HLA-DQA2 1.0000000 B1MB \n", + "153 Type_1_Diabetes B1MB_RPS26 0.9998778 B1MB \n", + "156 Type_1_Diabetes CD4T1MB_HLA-DQA2 0.9995561 CD4T1MB \n", + "158 Type_1_Diabetes CD4T1MB_RPS26 0.9997676 CD4T1MB \n", + "161 Type_1_Diabetes CD8T1MB_HLA-DQA2 1.0000000 CD8T1MB \n", + "163 Type_1_Diabetes CD8T1MB_RPS26 0.9995874 CD8T1MB \n", + "166 Type_1_Diabetes DC1MB_HLA-DQA2 1.0000000 DC1MB \n", + "168 Type_1_Diabetes DC1MB_RPS26 0.9995863 DC1MB \n", + "171 Type_1_Diabetes monocyte1MB_HLA-DQA2 1.0000000 monocyte1MB\n", + "173 Type_1_Diabetes monocyte1MB_RPS26 0.9998459 monocyte1MB\n", + "176 Type_1_Diabetes NK1MB_HLA-DQA2 0.9999993 NK1MB \n", + "178 Type_1_Diabetes NK1MB_RPS26 0.9996350 NK1MB \n", + "181 White blood cell count B1MB_HLA-DQA2 1.0000000 B1MB \n", + "186 White blood cell count CD4T1MB_HLA-DQA2 0.7634488 CD4T1MB \n", + "191 White blood cell count CD8T1MB_HLA-DQA2 0.9999464 CD8T1MB \n", + "196 White blood cell count DC1MB_HLA-DQA2 1.0000000 DC1MB \n", + "201 White blood cell count monocyte1MB_HLA-DQA2 0.9999996 monocyte1MB\n", + " gene parameter overlapping_snps\n", + "31 HLA-DQA2 PP.H3.abf 4698 \n", + "36 HLA-DQA2 PP.H3.abf 4698 \n", + "41 HLA-DQA2 PP.H3.abf 4698 \n", + "46 HLA-DQA2 PP.H3.abf 4698 \n", + "51 HLA-DQA2 PP.H3.abf 4698 \n", + "56 HLA-DQA2 PP.H3.abf 4698 \n", + "57 RNASET2 PP.H3.abf 2707 \n", + "61 HLA-DQA2 PP.H3.abf 4700 \n", + "66 HLA-DQA2 PP.H3.abf 4700 \n", + "71 HLA-DQA2 PP.H3.abf 4700 \n", + "72 RNASET2 PP.H3.abf 2704 \n", + "76 HLA-DQA2 PP.H3.abf 4700 \n", + "81 HLA-DQA2 PP.H3.abf 4700 \n", + "86 HLA-DQA2 PP.H3.abf 4700 \n", + "87 RNASET2 PP.H3.abf 2704 \n", + "126 HLA-DQA2 PP.H3.abf 834 \n", + "127 RNASET2 PP.H3.abf 2031 \n", + "131 HLA-DQA2 PP.H3.abf 834 \n", + "132 RNASET2 PP.H3.abf 2031 \n", + "146 HLA-DQA2 PP.H3.abf 834 \n", + "147 RNASET2 PP.H3.abf 2031 \n", + "151 HLA-DQA2 PP.H3.abf 1344 \n", + "153 RPS26 PP.H3.abf 1341 \n", + "156 HLA-DQA2 PP.H3.abf 1344 \n", + "158 RPS26 PP.H3.abf 1341 \n", + "161 HLA-DQA2 PP.H3.abf 1344 \n", + "163 RPS26 PP.H3.abf 1341 \n", + "166 HLA-DQA2 PP.H3.abf 1344 \n", + "168 RPS26 PP.H3.abf 1341 \n", + "171 HLA-DQA2 PP.H3.abf 1344 \n", + "173 RPS26 PP.H3.abf 1341 \n", + "176 HLA-DQA2 PP.H3.abf 1344 \n", + "178 RPS26 PP.H3.abf 1341 \n", + "181 HLA-DQA2 PP.H3.abf 517 \n", + "186 HLA-DQA2 PP.H3.abf 517 \n", + "191 HLA-DQA2 PP.H3.abf 517 \n", + "196 HLA-DQA2 PP.H3.abf 517 \n", + "201 HLA-DQA2 PP.H3.abf 517 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "eqtl_summary_filtered[(eqtl_summary_filtered$parameter == parameter_var) ,]" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "2583253d-247b-439f-978c-6bdfd8067b16", + "metadata": {}, + "outputs": [], + "source": [ + "### Save eqtl summary for supplementary" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "50a4382c-24d8-419e-985c-146799b862eb", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_supp = eqtl_summary" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "0b4ff2b7-8343-48cf-a977-871cedea631c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 7
traitidentifierparametervaluecell_typegeneoverlapping_snps
<chr><chr><chr><dbl><chr><chr><dbl>
1AsthmaB1MB_HLA-DQA2nsnps 3.880000e+02B1MBHLA-DQA2388
2AsthmaB1MB_HLA-DQA2PP.H0.abf1.212062e-25B1MBHLA-DQA2388
\n" + ], + "text/latex": [ + "A data.frame: 2 × 7\n", + "\\begin{tabular}{r|lllllll}\n", + " & trait & identifier & parameter & value & cell\\_type & gene & overlapping\\_snps\\\\\n", + " & & & & & & & \\\\\n", + "\\hline\n", + "\t1 & Asthma & B1MB\\_HLA-DQA2 & nsnps & 3.880000e+02 & B1MB & HLA-DQA2 & 388\\\\\n", + "\t2 & Asthma & B1MB\\_HLA-DQA2 & PP.H0.abf & 1.212062e-25 & B1MB & HLA-DQA2 & 388\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 7\n", + "\n", + "| | trait <chr> | identifier <chr> | parameter <chr> | value <dbl> | cell_type <chr> | gene <chr> | overlapping_snps <dbl> |\n", + "|---|---|---|---|---|---|---|---|\n", + "| 1 | Asthma | B1MB_HLA-DQA2 | nsnps | 3.880000e+02 | B1MB | HLA-DQA2 | 388 |\n", + "| 2 | Asthma | B1MB_HLA-DQA2 | PP.H0.abf | 1.212062e-25 | B1MB | HLA-DQA2 | 388 |\n", + "\n" + ], + "text/plain": [ + " trait identifier parameter value cell_type gene \n", + "1 Asthma B1MB_HLA-DQA2 nsnps 3.880000e+02 B1MB HLA-DQA2\n", + "2 Asthma B1MB_HLA-DQA2 PP.H0.abf 1.212062e-25 B1MB HLA-DQA2\n", + " overlapping_snps\n", + "1 388 \n", + "2 388 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(eqtl_supp,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "533f9da1-2a30-4b9a-a067-aafa9bd4e634", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_supp = eqtl_supp[(eqtl_supp$parameter %in% c('PP.H3.abf','PP.H4.abf' )) ,]" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "124508a4-1019-407b-9dc8-f66cb4abaf92", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_supp$identifier = NULL" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "bdd4eeaf-fbf4-4d16-8828-025858231946", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_supp$egene = eqtl_supp$gene\n", + "eqtl_supp$gene = NULL" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "eb687509-1146-44a3-be0b-795ada02ef07", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_supp$coloc_hypothesis = eqtl_supp$parameter\n", + "eqtl_supp$parameter = NULL" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "a68b4cb1-ef86-45e0-9f62-9718162a2cfe", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_supp$cell_type = str_replace(eqtl_supp$cell_type, '1MB', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "76b55b08-401d-4871-b45d-8bb75859e7da", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_supp$pp_value = eqtl_supp$value\n", + "eqtl_supp$value = NULL" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "08ee4113-b4e3-41b8-8ec4-93e353f1c5bb", + "metadata": {}, + "outputs": [], + "source": [ + "eqtl_supp$amount_overlapping_snps = eqtl_supp$overlapping_snps \n", + "eqtl_supp$overlapping_snps = NULL" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "fb8814c1-663a-4b8f-bd46-9d81eab02035", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 3 × 6
traitcell_typeegenecoloc_hypothesispp_valueamount_overlapping_snps
<chr><chr><chr><chr><dbl><dbl>
5AsthmaBHLA-DQA2PP.H3.abf0.0002647404 388
6AsthmaBHLA-DQA2PP.H4.abf0.9997352596 388
11AsthmaBRNASET2 PP.H3.abf0.00180531811133
\n" + ], + "text/latex": [ + "A data.frame: 3 × 6\n", + "\\begin{tabular}{r|llllll}\n", + " & trait & cell\\_type & egene & coloc\\_hypothesis & pp\\_value & amount\\_overlapping\\_snps\\\\\n", + " & & & & & & \\\\\n", + "\\hline\n", + "\t5 & Asthma & B & HLA-DQA2 & PP.H3.abf & 0.0002647404 & 388\\\\\n", + "\t6 & Asthma & B & HLA-DQA2 & PP.H4.abf & 0.9997352596 & 388\\\\\n", + "\t11 & Asthma & B & RNASET2 & PP.H3.abf & 0.0018053181 & 1133\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 3 × 6\n", + "\n", + "| | trait <chr> | cell_type <chr> | egene <chr> | coloc_hypothesis <chr> | pp_value <dbl> | amount_overlapping_snps <dbl> |\n", + "|---|---|---|---|---|---|---|\n", + "| 5 | Asthma | B | HLA-DQA2 | PP.H3.abf | 0.0002647404 | 388 |\n", + "| 6 | Asthma | B | HLA-DQA2 | PP.H4.abf | 0.9997352596 | 388 |\n", + "| 11 | Asthma | B | RNASET2 | PP.H3.abf | 0.0018053181 | 1133 |\n", + "\n" + ], + "text/plain": [ + " trait cell_type egene coloc_hypothesis pp_value \n", + "5 Asthma B HLA-DQA2 PP.H3.abf 0.0002647404\n", + "6 Asthma B HLA-DQA2 PP.H4.abf 0.9997352596\n", + "11 Asthma B RNASET2 PP.H3.abf 0.0018053181\n", + " amount_overlapping_snps\n", + "5 388 \n", + "6 388 \n", + "11 1133 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(eqtl_supp,3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8fdbde2f-a449-4270-be11-8a4f9857a123", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 64, + "id": "e67d6835-f0e1-4696-b12f-b0eb7de6b573", + "metadata": {}, + "outputs": [], + "source": [ + "write.table(eqtl_supp, file = paste0(path, \"/colocalization_results/\", \"Coloc_EQTL_supp_table.csv\"), append =FALSE, sep = \",\", row.names = FALSE, col.names =TRUE)" + ] + }, + { + "cell_type": "markdown", + "id": "b8b5a092-17bc-4e53-b279-4fdf271ee30c", + "metadata": { + "tags": [] + }, + "source": [ + "## For Co-EQTLs" + ] + }, + { + "cell_type": "markdown", + "id": "3bff68b2-5251-4f43-88ef-8dad37dcd0f5", + "metadata": {}, + "source": [ + "### General summaries" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "14c7f569-6d8d-4286-a74a-4e9b8a2dd6c1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 5
parametervaluetraitidentifieregene
<chr><dbl><chr><chr><chr>
1nsnps 2.461000e+03White blood cell countmonocyte_TMEM176A___CAPG__TMEM176Amonocyte_TMEM176A
2PP.H0.abf2.606173e-02White blood cell countmonocyte_TMEM176A___CAPG__TMEM176Amonocyte_TMEM176A
\n" + ], + "text/latex": [ + "A data.frame: 2 × 5\n", + "\\begin{tabular}{r|lllll}\n", + " & parameter & value & trait & identifier & egene\\\\\n", + " & & & & & \\\\\n", + "\\hline\n", + "\t1 & nsnps & 2.461000e+03 & White blood cell count & monocyte\\_TMEM176A\\_\\_\\_CAPG\\_\\_TMEM176A & monocyte\\_TMEM176A\\\\\n", + "\t2 & PP.H0.abf & 2.606173e-02 & White blood cell count & monocyte\\_TMEM176A\\_\\_\\_CAPG\\_\\_TMEM176A & monocyte\\_TMEM176A\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 5\n", + "\n", + "| | parameter <chr> | value <dbl> | trait <chr> | identifier <chr> | egene <chr> |\n", + "|---|---|---|---|---|---|\n", + "| 1 | nsnps | 2.461000e+03 | White blood cell count | monocyte_TMEM176A___CAPG__TMEM176A | monocyte_TMEM176A |\n", + "| 2 | PP.H0.abf | 2.606173e-02 | White blood cell count | monocyte_TMEM176A___CAPG__TMEM176A | monocyte_TMEM176A |\n", + "\n" + ], + "text/plain": [ + " parameter value trait \n", + "1 nsnps 2.461000e+03 White blood cell count\n", + "2 PP.H0.abf 2.606173e-02 White blood cell count\n", + " identifier egene \n", + "1 monocyte_TMEM176A___CAPG__TMEM176A monocyte_TMEM176A\n", + "2 monocyte_TMEM176A___CAPG__TMEM176A monocyte_TMEM176A" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(coeqtl_summary,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "e3201d61-d405-45c2-ae35-97452c21af24", + "metadata": {}, + "outputs": [], + "source": [ + "## extract amount of SNPs info" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "06bb4100-9486-4566-9d1e-b622f04b53f3", + "metadata": {}, + "outputs": [], + "source": [ + "n_snps = coeqtl_summary[coeqtl_summary$parameter == 'nsnps',]" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "id": "4a5940e1-a100-4e9f-a90e-a95bddf3d371", + "metadata": {}, + "outputs": [], + "source": [ + "n_snps$overlapping_snps = n_snps$value\n", + "n_snps$parameter = NULL\n", + "n_snps$value = NULL" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "2e06514d-3f8c-45ab-8ebe-cba6301ba0e9", + "metadata": {}, + "outputs": [], + "source": [ + "## Extract relevant columsn" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "id": "c7f7ddde-d16b-42b5-a9b2-b8dd5fd9a615", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_summary = coeqtl_summary[coeqtl_summary$parameter != 'nsnps',]" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "13dbdd66-9c1b-483e-9307-b5fc88370e57", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_summary$cell_type = str_replace(coeqtl_summary$identifier, '_.*', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "9baece63-8981-49e2-b3f0-e94e15165618", + "metadata": {}, + "outputs": [], + "source": [ + "#tail(coeqtl_summary,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "id": "cee1a263-8956-421f-ad12-6be2337287d3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'monocyte'
  2. 'CD8T'
  3. 'CD4T'
  4. 'DC'
  5. 'B'
  6. 'NK'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'monocyte'\n", + "\\item 'CD8T'\n", + "\\item 'CD4T'\n", + "\\item 'DC'\n", + "\\item 'B'\n", + "\\item 'NK'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'monocyte'\n", + "2. 'CD8T'\n", + "3. 'CD4T'\n", + "4. 'DC'\n", + "5. 'B'\n", + "6. 'NK'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"monocyte\" \"CD8T\" \"CD4T\" \"DC\" \"B\" \"NK\" " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(coeqtl_summary$cell_type)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "e368cc1e-8bbd-49d2-9bb9-c67c52744dc4", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_summary$gene = str_extract(coeqtl_summary$identifier, '_.*')\n", + "coeqtl_summary$gene = str_replace(coeqtl_summary$gene, '.*___', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "id": "0953053b-c925-494d-b0e6-de02fa3335f1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "604" + ], + "text/latex": [ + "604" + ], + "text/markdown": [ + "604" + ], + "text/plain": [ + "[1] 604" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(unique(coeqtl_summary$gene))" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "id": "c0cfee92-8655-4048-92ec-b416594996a9", + "metadata": {}, + "outputs": [], + "source": [ + "### Add number of snps" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "34f0729b-889f-4901-9d7f-e94d4788877f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 4
traitidentifieregeneoverlapping_snps
<chr><chr><chr><dbl>
1White blood cell countmonocyte_TMEM176A___CAPG__TMEM176A monocyte_TMEM176A2461
7White blood cell countmonocyte_TMEM176A___PTAFR__TMEM176Amonocyte_TMEM176A2461
\n" + ], + "text/latex": [ + "A data.frame: 2 × 4\n", + "\\begin{tabular}{r|llll}\n", + " & trait & identifier & egene & overlapping\\_snps\\\\\n", + " & & & & \\\\\n", + "\\hline\n", + "\t1 & White blood cell count & monocyte\\_TMEM176A\\_\\_\\_CAPG\\_\\_TMEM176A & monocyte\\_TMEM176A & 2461\\\\\n", + "\t7 & White blood cell count & monocyte\\_TMEM176A\\_\\_\\_PTAFR\\_\\_TMEM176A & monocyte\\_TMEM176A & 2461\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 4\n", + "\n", + "| | trait <chr> | identifier <chr> | egene <chr> | overlapping_snps <dbl> |\n", + "|---|---|---|---|---|\n", + "| 1 | White blood cell count | monocyte_TMEM176A___CAPG__TMEM176A | monocyte_TMEM176A | 2461 |\n", + "| 7 | White blood cell count | monocyte_TMEM176A___PTAFR__TMEM176A | monocyte_TMEM176A | 2461 |\n", + "\n" + ], + "text/plain": [ + " trait identifier egene \n", + "1 White blood cell count monocyte_TMEM176A___CAPG__TMEM176A monocyte_TMEM176A\n", + "7 White blood cell count monocyte_TMEM176A___PTAFR__TMEM176A monocyte_TMEM176A\n", + " overlapping_snps\n", + "1 2461 \n", + "7 2461 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(n_snps,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "id": "e692030d-cd63-4a82-9165-b3e3ffc90c44", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_summary = merge(coeqtl_summary, n_snps, by.x = c('trait', 'identifier', 'egene'), by.y = c('trait', 'identifier', 'egene'))" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "id": "9eb0ffa6-70a6-45f9-96a3-ee526c66a888", + "metadata": {}, + "outputs": [], + "source": [ + "### Check out maximum probabilities" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "52fe9faa-5c7b-4ebc-8917-c7f256ca1d6e", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[1m\u001b[22m`summarise()` has grouped output by 'trait', 'identifier', 'cell_type', 'gene',\n", + "'overlapping_snps'. You can override using the `.groups` argument.\n" + ] + } + ], + "source": [ + "max_value = coeqtl_summary %>% group_by(trait, identifier, cell_type, gene, overlapping_snps, egene) %>% summarise(value = max(value))" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "98b9eb7f-7dce-4c8d-86bb-5939ba75a195", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_summary_filtered = merge(coeqtl_summary, max_value)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "d465a856-bf99-46eb-b6d1-105e08447328", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 8
traitidentifieregenevaluecell_typegeneoverlapping_snpsparameter
<chr><chr><chr><dbl><chr><chr><dbl><chr>
1AsthmaB_RPS26___EEF1A1__RPS26B_RPS260.3734713BEEF1A1__RPS26381PP.H0.abf
2AsthmaB_RPS26___RPL10__RPS26 B_RPS260.6338403BRPL10__RPS26 381PP.H4.abf
\n" + ], + "text/latex": [ + "A data.frame: 2 × 8\n", + "\\begin{tabular}{r|llllllll}\n", + " & trait & identifier & egene & value & cell\\_type & gene & overlapping\\_snps & parameter\\\\\n", + " & & & & & & & & \\\\\n", + "\\hline\n", + "\t1 & Asthma & B\\_RPS26\\_\\_\\_EEF1A1\\_\\_RPS26 & B\\_RPS26 & 0.3734713 & B & EEF1A1\\_\\_RPS26 & 381 & PP.H0.abf\\\\\n", + "\t2 & Asthma & B\\_RPS26\\_\\_\\_RPL10\\_\\_RPS26 & B\\_RPS26 & 0.6338403 & B & RPL10\\_\\_RPS26 & 381 & PP.H4.abf\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 8\n", + "\n", + "| | trait <chr> | identifier <chr> | egene <chr> | value <dbl> | cell_type <chr> | gene <chr> | overlapping_snps <dbl> | parameter <chr> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| 1 | Asthma | B_RPS26___EEF1A1__RPS26 | B_RPS26 | 0.3734713 | B | EEF1A1__RPS26 | 381 | PP.H0.abf |\n", + "| 2 | Asthma | B_RPS26___RPL10__RPS26 | B_RPS26 | 0.6338403 | B | RPL10__RPS26 | 381 | PP.H4.abf |\n", + "\n" + ], + "text/plain": [ + " trait identifier egene value cell_type gene \n", + "1 Asthma B_RPS26___EEF1A1__RPS26 B_RPS26 0.3734713 B EEF1A1__RPS26\n", + "2 Asthma B_RPS26___RPL10__RPS26 B_RPS26 0.6338403 B RPL10__RPS26 \n", + " overlapping_snps parameter\n", + "1 381 PP.H0.abf\n", + "2 381 PP.H4.abf" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(coeqtl_summary_filtered,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "c2c75a27-e6cd-453d-a301-94440f25406d", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[1m\u001b[22m`summarise()` has grouped output by 'parameter', 'trait'. You can override\n", + "using the `.groups` argument.\n" + ] + } + ], + "source": [ + "overview_h_amounts = coeqtl_summary_filtered %>% group_by(parameter, trait, egene ) %>% summarise(n = n(), mean_value = mean(value), amount_greater_0.9 = sum(value > 0.9), amount_greater_0.75 = sum(value > 0.75),amount_greater_0.5 = sum(value > 0.5), max_overlap_snps = max(overlapping_snps), min_overlap_snps = min(overlapping_snps), mean_overlap_snps = mean(overlapping_snps))" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "fd026fa0-f255-41a3-aa9a-7d028d97c351", + "metadata": {}, + "outputs": [], + "source": [ + "overview_h_amounts = overview_h_amounts[order(overview_h_amounts$trait),]" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "54f14012-d8b9-4463-b114-96e3231963cc", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[1m\u001b[22m`summarise()` has grouped output by 'egene'. You can override using the\n", + "`.groups` argument.\n" + ] + } + ], + "source": [ + "amount_coegenes_per_e_gene = overview_h_amounts %>% group_by(egene, trait) %>% summarise(total_n = sum(n))" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "8d0b44db-5ef6-4821-be87-ca2740bf2803", + "metadata": {}, + "outputs": [], + "source": [ + "overview_h_amounts = merge(overview_h_amounts, amount_coegenes_per_e_gene)" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "1cfdbc1e-9270-4158-a9f3-fac044fdfbe9", + "metadata": {}, + "outputs": [], + "source": [ + "#### Inspect the results for eGenes" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "53698756-d176-4716-a5bb-5c46cda6e69e", + "metadata": {}, + "outputs": [], + "source": [ + "### All RPS26 - co-egene examples" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "d6bca892-26b6-40fe-8da0-164cf7437ce7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 15 × 12
traitegeneparameternmean_valueamount_greater_0.9amount_greater_0.75amount_greater_0.5max_overlap_snpsmin_overlap_snpsmean_overlap_snpstotal_n
<chr><chr><chr><int><dbl><int><int><int><dbl><dbl><dbl><int>
2Asthma B_RPS26 PP.H4.abf 200.5448488 0 0 16 381 381 381.0000 35
8Asthma CD4T_RPS26 PP.H4.abf3530.6166249 0 28323 381 368 380.7734372
14Asthma CD8T_RPS26 PP.H4.abf2410.6293361 0 31212 381 367 380.6307293
24Asthma monocyte_RPS26PP.H4.abf1270.6724475 0 40114 381 379 380.9685132
28Asthma NK_RPS26 PP.H4.abf 840.6149269 0 7 78 379 379 379.0000 96
105Rheumatoid ArthritisB_RPS26 PP.H4.abf 330.7385906 4 19 31 878 876 877.9394 35
111Rheumatoid ArthritisCD4T_RPS26 PP.H4.abf3700.804494041325368 882 835 881.1541372
118Rheumatoid ArthritisCD8T_RPS26 PP.H4.abf2890.830353864247286 882 831 880.4567293
123Rheumatoid ArthritisDC_RPS26 PP.H4.abf 30.6804751 0 0 3 855 855 855.0000 3
127Rheumatoid Arthritismonocyte_RPS26PP.H4.abf1320.795428715 98132 882 879 881.9545132
131Rheumatoid ArthritisNK_RPS26 PP.H4.abf 940.843598428 88 94 879 879 879.0000 96
134Type_1_Diabetes B_RPS26 PP.H4.abf 40.5270015 0 0 2133513321334.2500 35
138Type_1_Diabetes CD4T_RPS26 PP.H4.abf 340.6080222 0 6 28134112731337.0882372
143Type_1_Diabetes CD8T_RPS26 PP.H4.abf 20.5419573 0 0 2134113411341.0000293
155Type_1_Diabetes monocyte_RPS26PP.H4.abf 90.6295441 0 2 9134113341340.2222132
\n" + ], + "text/latex": [ + "A data.frame: 15 × 12\n", + "\\begin{tabular}{r|llllllllllll}\n", + " & trait & egene & parameter & n & mean\\_value & amount\\_greater\\_0.9 & amount\\_greater\\_0.75 & amount\\_greater\\_0.5 & max\\_overlap\\_snps & min\\_overlap\\_snps & mean\\_overlap\\_snps & total\\_n\\\\\n", + " & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t2 & Asthma & B\\_RPS26 & PP.H4.abf & 20 & 0.5448488 & 0 & 0 & 16 & 381 & 381 & 381.0000 & 35\\\\\n", + "\t8 & Asthma & CD4T\\_RPS26 & PP.H4.abf & 353 & 0.6166249 & 0 & 28 & 323 & 381 & 368 & 380.7734 & 372\\\\\n", + "\t14 & Asthma & CD8T\\_RPS26 & PP.H4.abf & 241 & 0.6293361 & 0 & 31 & 212 & 381 & 367 & 380.6307 & 293\\\\\n", + "\t24 & Asthma & monocyte\\_RPS26 & PP.H4.abf & 127 & 0.6724475 & 0 & 40 & 114 & 381 & 379 & 380.9685 & 132\\\\\n", + "\t28 & Asthma & NK\\_RPS26 & PP.H4.abf & 84 & 0.6149269 & 0 & 7 & 78 & 379 & 379 & 379.0000 & 96\\\\\n", + "\t105 & Rheumatoid Arthritis & B\\_RPS26 & PP.H4.abf & 33 & 0.7385906 & 4 & 19 & 31 & 878 & 876 & 877.9394 & 35\\\\\n", + "\t111 & Rheumatoid Arthritis & CD4T\\_RPS26 & PP.H4.abf & 370 & 0.8044940 & 41 & 325 & 368 & 882 & 835 & 881.1541 & 372\\\\\n", + "\t118 & Rheumatoid Arthritis & CD8T\\_RPS26 & PP.H4.abf & 289 & 0.8303538 & 64 & 247 & 286 & 882 & 831 & 880.4567 & 293\\\\\n", + "\t123 & Rheumatoid Arthritis & DC\\_RPS26 & PP.H4.abf & 3 & 0.6804751 & 0 & 0 & 3 & 855 & 855 & 855.0000 & 3\\\\\n", + "\t127 & Rheumatoid Arthritis & monocyte\\_RPS26 & PP.H4.abf & 132 & 0.7954287 & 15 & 98 & 132 & 882 & 879 & 881.9545 & 132\\\\\n", + "\t131 & Rheumatoid Arthritis & NK\\_RPS26 & PP.H4.abf & 94 & 0.8435984 & 28 & 88 & 94 & 879 & 879 & 879.0000 & 96\\\\\n", + "\t134 & Type\\_1\\_Diabetes & B\\_RPS26 & PP.H4.abf & 4 & 0.5270015 & 0 & 0 & 2 & 1335 & 1332 & 1334.2500 & 35\\\\\n", + "\t138 & Type\\_1\\_Diabetes & CD4T\\_RPS26 & PP.H4.abf & 34 & 0.6080222 & 0 & 6 & 28 & 1341 & 1273 & 1337.0882 & 372\\\\\n", + "\t143 & Type\\_1\\_Diabetes & CD8T\\_RPS26 & PP.H4.abf & 2 & 0.5419573 & 0 & 0 & 2 & 1341 & 1341 & 1341.0000 & 293\\\\\n", + "\t155 & Type\\_1\\_Diabetes & monocyte\\_RPS26 & PP.H4.abf & 9 & 0.6295441 & 0 & 2 & 9 & 1341 & 1334 & 1340.2222 & 132\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 15 × 12\n", + "\n", + "| | trait <chr> | egene <chr> | parameter <chr> | n <int> | mean_value <dbl> | amount_greater_0.9 <int> | amount_greater_0.75 <int> | amount_greater_0.5 <int> | max_overlap_snps <dbl> | min_overlap_snps <dbl> | mean_overlap_snps <dbl> | total_n <int> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| 2 | Asthma | B_RPS26 | PP.H4.abf | 20 | 0.5448488 | 0 | 0 | 16 | 381 | 381 | 381.0000 | 35 |\n", + "| 8 | Asthma | CD4T_RPS26 | PP.H4.abf | 353 | 0.6166249 | 0 | 28 | 323 | 381 | 368 | 380.7734 | 372 |\n", + "| 14 | Asthma | CD8T_RPS26 | PP.H4.abf | 241 | 0.6293361 | 0 | 31 | 212 | 381 | 367 | 380.6307 | 293 |\n", + "| 24 | Asthma | monocyte_RPS26 | PP.H4.abf | 127 | 0.6724475 | 0 | 40 | 114 | 381 | 379 | 380.9685 | 132 |\n", + "| 28 | Asthma | NK_RPS26 | PP.H4.abf | 84 | 0.6149269 | 0 | 7 | 78 | 379 | 379 | 379.0000 | 96 |\n", + "| 105 | Rheumatoid Arthritis | B_RPS26 | PP.H4.abf | 33 | 0.7385906 | 4 | 19 | 31 | 878 | 876 | 877.9394 | 35 |\n", + "| 111 | Rheumatoid Arthritis | CD4T_RPS26 | PP.H4.abf | 370 | 0.8044940 | 41 | 325 | 368 | 882 | 835 | 881.1541 | 372 |\n", + "| 118 | Rheumatoid Arthritis | CD8T_RPS26 | PP.H4.abf | 289 | 0.8303538 | 64 | 247 | 286 | 882 | 831 | 880.4567 | 293 |\n", + "| 123 | Rheumatoid Arthritis | DC_RPS26 | PP.H4.abf | 3 | 0.6804751 | 0 | 0 | 3 | 855 | 855 | 855.0000 | 3 |\n", + "| 127 | Rheumatoid Arthritis | monocyte_RPS26 | PP.H4.abf | 132 | 0.7954287 | 15 | 98 | 132 | 882 | 879 | 881.9545 | 132 |\n", + "| 131 | Rheumatoid Arthritis | NK_RPS26 | PP.H4.abf | 94 | 0.8435984 | 28 | 88 | 94 | 879 | 879 | 879.0000 | 96 |\n", + "| 134 | Type_1_Diabetes | B_RPS26 | PP.H4.abf | 4 | 0.5270015 | 0 | 0 | 2 | 1335 | 1332 | 1334.2500 | 35 |\n", + "| 138 | Type_1_Diabetes | CD4T_RPS26 | PP.H4.abf | 34 | 0.6080222 | 0 | 6 | 28 | 1341 | 1273 | 1337.0882 | 372 |\n", + "| 143 | Type_1_Diabetes | CD8T_RPS26 | PP.H4.abf | 2 | 0.5419573 | 0 | 0 | 2 | 1341 | 1341 | 1341.0000 | 293 |\n", + "| 155 | Type_1_Diabetes | monocyte_RPS26 | PP.H4.abf | 9 | 0.6295441 | 0 | 2 | 9 | 1341 | 1334 | 1340.2222 | 132 |\n", + "\n" + ], + "text/plain": [ + " trait egene parameter n mean_value\n", + "2 Asthma B_RPS26 PP.H4.abf 20 0.5448488 \n", + "8 Asthma CD4T_RPS26 PP.H4.abf 353 0.6166249 \n", + "14 Asthma CD8T_RPS26 PP.H4.abf 241 0.6293361 \n", + "24 Asthma monocyte_RPS26 PP.H4.abf 127 0.6724475 \n", + "28 Asthma NK_RPS26 PP.H4.abf 84 0.6149269 \n", + "105 Rheumatoid Arthritis B_RPS26 PP.H4.abf 33 0.7385906 \n", + "111 Rheumatoid Arthritis CD4T_RPS26 PP.H4.abf 370 0.8044940 \n", + "118 Rheumatoid Arthritis CD8T_RPS26 PP.H4.abf 289 0.8303538 \n", + "123 Rheumatoid Arthritis DC_RPS26 PP.H4.abf 3 0.6804751 \n", + "127 Rheumatoid Arthritis monocyte_RPS26 PP.H4.abf 132 0.7954287 \n", + "131 Rheumatoid Arthritis NK_RPS26 PP.H4.abf 94 0.8435984 \n", + "134 Type_1_Diabetes B_RPS26 PP.H4.abf 4 0.5270015 \n", + "138 Type_1_Diabetes CD4T_RPS26 PP.H4.abf 34 0.6080222 \n", + "143 Type_1_Diabetes CD8T_RPS26 PP.H4.abf 2 0.5419573 \n", + "155 Type_1_Diabetes monocyte_RPS26 PP.H4.abf 9 0.6295441 \n", + " amount_greater_0.9 amount_greater_0.75 amount_greater_0.5 max_overlap_snps\n", + "2 0 0 16 381 \n", + "8 0 28 323 381 \n", + "14 0 31 212 381 \n", + "24 0 40 114 381 \n", + "28 0 7 78 379 \n", + "105 4 19 31 878 \n", + "111 41 325 368 882 \n", + "118 64 247 286 882 \n", + "123 0 0 3 855 \n", + "127 15 98 132 882 \n", + "131 28 88 94 879 \n", + "134 0 0 2 1335 \n", + "138 0 6 28 1341 \n", + "143 0 0 2 1341 \n", + "155 0 2 9 1341 \n", + " min_overlap_snps mean_overlap_snps total_n\n", + "2 381 381.0000 35 \n", + "8 368 380.7734 372 \n", + "14 367 380.6307 293 \n", + "24 379 380.9685 132 \n", + "28 379 379.0000 96 \n", + "105 876 877.9394 35 \n", + "111 835 881.1541 372 \n", + "118 831 880.4567 293 \n", + "123 855 855.0000 3 \n", + "127 879 881.9545 132 \n", + "131 879 879.0000 96 \n", + "134 1332 1334.2500 35 \n", + "138 1273 1337.0882 372 \n", + "143 1341 1341.0000 293 \n", + "155 1334 1340.2222 132 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "overview_h_amounts[(overview_h_amounts$egene %in% c('CD4T_RPS26', 'CD8T_RPS26', 'monocyte_RPS26', 'DC_RPS26', 'NK_RPS26','B_RPS26')) & (overview_h_amounts$parameter %in% c('PP.H4.abf')),]" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "8892fdf4-cb58-4887-847f-cc1aa744ae37", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 7 × 12
traitegeneparameternmean_valueamount_greater_0.9amount_greater_0.75amount_greater_0.5max_overlap_snpsmin_overlap_snpsmean_overlap_snpstotal_n
<chr><chr><chr><int><dbl><int><int><int><dbl><dbl><dbl><int>
110Rheumatoid ArthritisCD4T_RPS26 PP.H3.abf 20.6476383 0 0 2 882 882 882.000372
133Type_1_Diabetes B_RPS26 PP.H3.abf 240.7354662 7 12 20133513351335.000 35
139Type_1_Diabetes CD4T_RPS26 PP.H3.abf3360.9025018234282329134112741339.973372
144Type_1_Diabetes CD8T_RPS26 PP.H3.abf2660.9176685204223258134112681339.011293
150Type_1_Diabetes DC_RPS26 PP.H3.abf 10.4908023 0 0 0129712971297.000 3
154Type_1_Diabetes monocyte_RPS26PP.H3.abf1220.9210668 92109119134113341340.934132
159Type_1_Diabetes NK_RPS26 PP.H3.abf 910.9621223 81 87 90133413341334.000 96
\n" + ], + "text/latex": [ + "A data.frame: 7 × 12\n", + "\\begin{tabular}{r|llllllllllll}\n", + " & trait & egene & parameter & n & mean\\_value & amount\\_greater\\_0.9 & amount\\_greater\\_0.75 & amount\\_greater\\_0.5 & max\\_overlap\\_snps & min\\_overlap\\_snps & mean\\_overlap\\_snps & total\\_n\\\\\n", + " & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t110 & Rheumatoid Arthritis & CD4T\\_RPS26 & PP.H3.abf & 2 & 0.6476383 & 0 & 0 & 2 & 882 & 882 & 882.000 & 372\\\\\n", + "\t133 & Type\\_1\\_Diabetes & B\\_RPS26 & PP.H3.abf & 24 & 0.7354662 & 7 & 12 & 20 & 1335 & 1335 & 1335.000 & 35\\\\\n", + "\t139 & Type\\_1\\_Diabetes & CD4T\\_RPS26 & PP.H3.abf & 336 & 0.9025018 & 234 & 282 & 329 & 1341 & 1274 & 1339.973 & 372\\\\\n", + "\t144 & Type\\_1\\_Diabetes & CD8T\\_RPS26 & PP.H3.abf & 266 & 0.9176685 & 204 & 223 & 258 & 1341 & 1268 & 1339.011 & 293\\\\\n", + "\t150 & Type\\_1\\_Diabetes & DC\\_RPS26 & PP.H3.abf & 1 & 0.4908023 & 0 & 0 & 0 & 1297 & 1297 & 1297.000 & 3\\\\\n", + "\t154 & Type\\_1\\_Diabetes & monocyte\\_RPS26 & PP.H3.abf & 122 & 0.9210668 & 92 & 109 & 119 & 1341 & 1334 & 1340.934 & 132\\\\\n", + "\t159 & Type\\_1\\_Diabetes & NK\\_RPS26 & PP.H3.abf & 91 & 0.9621223 & 81 & 87 & 90 & 1334 & 1334 & 1334.000 & 96\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 7 × 12\n", + "\n", + "| | trait <chr> | egene <chr> | parameter <chr> | n <int> | mean_value <dbl> | amount_greater_0.9 <int> | amount_greater_0.75 <int> | amount_greater_0.5 <int> | max_overlap_snps <dbl> | min_overlap_snps <dbl> | mean_overlap_snps <dbl> | total_n <int> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| 110 | Rheumatoid Arthritis | CD4T_RPS26 | PP.H3.abf | 2 | 0.6476383 | 0 | 0 | 2 | 882 | 882 | 882.000 | 372 |\n", + "| 133 | Type_1_Diabetes | B_RPS26 | PP.H3.abf | 24 | 0.7354662 | 7 | 12 | 20 | 1335 | 1335 | 1335.000 | 35 |\n", + "| 139 | Type_1_Diabetes | CD4T_RPS26 | PP.H3.abf | 336 | 0.9025018 | 234 | 282 | 329 | 1341 | 1274 | 1339.973 | 372 |\n", + "| 144 | Type_1_Diabetes | CD8T_RPS26 | PP.H3.abf | 266 | 0.9176685 | 204 | 223 | 258 | 1341 | 1268 | 1339.011 | 293 |\n", + "| 150 | Type_1_Diabetes | DC_RPS26 | PP.H3.abf | 1 | 0.4908023 | 0 | 0 | 0 | 1297 | 1297 | 1297.000 | 3 |\n", + "| 154 | Type_1_Diabetes | monocyte_RPS26 | PP.H3.abf | 122 | 0.9210668 | 92 | 109 | 119 | 1341 | 1334 | 1340.934 | 132 |\n", + "| 159 | Type_1_Diabetes | NK_RPS26 | PP.H3.abf | 91 | 0.9621223 | 81 | 87 | 90 | 1334 | 1334 | 1334.000 | 96 |\n", + "\n" + ], + "text/plain": [ + " trait egene parameter n mean_value\n", + "110 Rheumatoid Arthritis CD4T_RPS26 PP.H3.abf 2 0.6476383 \n", + "133 Type_1_Diabetes B_RPS26 PP.H3.abf 24 0.7354662 \n", + "139 Type_1_Diabetes CD4T_RPS26 PP.H3.abf 336 0.9025018 \n", + "144 Type_1_Diabetes CD8T_RPS26 PP.H3.abf 266 0.9176685 \n", + "150 Type_1_Diabetes DC_RPS26 PP.H3.abf 1 0.4908023 \n", + "154 Type_1_Diabetes monocyte_RPS26 PP.H3.abf 122 0.9210668 \n", + "159 Type_1_Diabetes NK_RPS26 PP.H3.abf 91 0.9621223 \n", + " amount_greater_0.9 amount_greater_0.75 amount_greater_0.5 max_overlap_snps\n", + "110 0 0 2 882 \n", + "133 7 12 20 1335 \n", + "139 234 282 329 1341 \n", + "144 204 223 258 1341 \n", + "150 0 0 0 1297 \n", + "154 92 109 119 1341 \n", + "159 81 87 90 1334 \n", + " min_overlap_snps mean_overlap_snps total_n\n", + "110 882 882.000 372 \n", + "133 1335 1335.000 35 \n", + "139 1274 1339.973 372 \n", + "144 1268 1339.011 293 \n", + "150 1297 1297.000 3 \n", + "154 1334 1340.934 132 \n", + "159 1334 1334.000 96 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "overview_h_amounts[(overview_h_amounts$egene %in% c('CD4T_RPS26', 'CD8T_RPS26', 'monocyte_RPS26', 'DC_RPS26', 'NK_RPS26','B_RPS26')) & (overview_h_amounts$parameter %in% c( 'PP.H3.abf')),]" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "c484189b-0860-452d-a2c8-0b3fd0e92493", + "metadata": {}, + "outputs": [], + "source": [ + "### All HLA-DQA2 - co-egene examples" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "1b9cd94a-04fd-4e2d-abb8-9bb3fffcc2f9", + "metadata": {}, + "outputs": [], + "source": [ + "#unique(overview_h_amounts$egene )" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "id": "efef7428-1374-453c-a65d-9c68313bde68", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 24 × 12
traitegeneparameternmean_valueamount_greater_0.9amount_greater_0.75amount_greater_0.5max_overlap_snpsmin_overlap_snpsmean_overlap_snpstotal_n
<chr><chr><chr><int><dbl><int><int><int><dbl><dbl><dbl><int>
3Asthma CD4T_HLA-DQA2 PP.H4.abf130.8605121 51113 387 387 387.000016
11Asthma CD8T_HLA-DQA2 PP.H4.abf 70.8719882 5 5 7 386 386 386.0000 7
18Asthma DC_HLA-DQA2 PP.H4.abf 50.6734167 0 1 5 358 348 351.800013
20Asthma monocyte_HLA-DQA2PP.H4.abf 40.7193509 1 2 4 388 388 388.000017
32Crohn's Disease CD4T_HLA-DQA2 PP.H3.abf160.8674851 81416452545254525.000016
39Crohn's Disease CD8T_HLA-DQA2 PP.H3.abf 70.8685034 2 6 7449143834475.5714 7
45Crohn's Disease DC_HLA-DQA2 PP.H3.abf 90.6909695 0 3 9393037583810.666713
47Crohn's Disease monocyte_HLA-DQA2PP.H3.abf170.9558094141717443643314363.823517
57Inflammatory Bowel DiseaseCD4T_HLA-DQA2 PP.H3.abf160.7763020 1 916452745274527.000016
63Inflammatory Bowel DiseaseCD8T_HLA-DQA2 PP.H3.abf 70.8173129 1 5 7449343854477.5714 7
69Inflammatory Bowel DiseaseDC_HLA-DQA2 PP.H3.abf 90.6542293 0 3 9393237603812.444413
71Inflammatory Bowel Diseasemonocyte_HLA-DQA2PP.H3.abf170.8218316 41217443843334365.823517
82Multiple Sclerosis CD4T_HLA-DQA2 PP.H4.abf 10.9211400 1 1 1 50 50 50.000016
96Multiple Sclerosis monocyte_HLA-DQA2PP.H4.abf 10.7952340 0 1 1 50 50 50.000017
106Rheumatoid Arthritis CD4T_HLA-DQA2 PP.H4.abf100.5554058 0 0 7 819 819 819.000016
108Rheumatoid Arthritis CD4T_HLA-DQA2 PP.H3.abf 50.6100632 0 1 4 819 819 819.000016
114Rheumatoid Arthritis CD8T_HLA-DQA2 PP.H4.abf 10.4211959 0 0 0 801 801 801.0000 7
115Rheumatoid Arthritis CD8T_HLA-DQA2 PP.H3.abf 50.5385873 0 1 3 817 817 817.0000 7
122Rheumatoid Arthritis DC_HLA-DQA2 PP.H4.abf 10.4800992 0 0 0 706 706 706.000013
125Rheumatoid Arthritis monocyte_HLA-DQA2PP.H4.abf160.6159706 0 014 817 815 815.812517
135Type_1_Diabetes CD4T_HLA-DQA2 PP.H3.abf160.7585537 2 916131913191319.000016
142Type_1_Diabetes CD8T_HLA-DQA2 PP.H3.abf 70.7726785 2 4 6131712821312.0000 7
148Type_1_Diabetes DC_HLA-DQA2 PP.H3.abf 30.5865191 0 0 3111511151115.000013
152Type_1_Diabetes monocyte_HLA-DQA2PP.H3.abf170.9371937131617130012891292.470617
\n" + ], + "text/latex": [ + "A data.frame: 24 × 12\n", + "\\begin{tabular}{r|llllllllllll}\n", + " & trait & egene & parameter & n & mean\\_value & amount\\_greater\\_0.9 & amount\\_greater\\_0.75 & amount\\_greater\\_0.5 & max\\_overlap\\_snps & min\\_overlap\\_snps & mean\\_overlap\\_snps & total\\_n\\\\\n", + " & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t3 & Asthma & CD4T\\_HLA-DQA2 & PP.H4.abf & 13 & 0.8605121 & 5 & 11 & 13 & 387 & 387 & 387.0000 & 16\\\\\n", + "\t11 & Asthma & CD8T\\_HLA-DQA2 & PP.H4.abf & 7 & 0.8719882 & 5 & 5 & 7 & 386 & 386 & 386.0000 & 7\\\\\n", + "\t18 & Asthma & DC\\_HLA-DQA2 & PP.H4.abf & 5 & 0.6734167 & 0 & 1 & 5 & 358 & 348 & 351.8000 & 13\\\\\n", + "\t20 & Asthma & monocyte\\_HLA-DQA2 & PP.H4.abf & 4 & 0.7193509 & 1 & 2 & 4 & 388 & 388 & 388.0000 & 17\\\\\n", + "\t32 & Crohn's Disease & CD4T\\_HLA-DQA2 & PP.H3.abf & 16 & 0.8674851 & 8 & 14 & 16 & 4525 & 4525 & 4525.0000 & 16\\\\\n", + "\t39 & Crohn's Disease & CD8T\\_HLA-DQA2 & PP.H3.abf & 7 & 0.8685034 & 2 & 6 & 7 & 4491 & 4383 & 4475.5714 & 7\\\\\n", + "\t45 & Crohn's Disease & DC\\_HLA-DQA2 & PP.H3.abf & 9 & 0.6909695 & 0 & 3 & 9 & 3930 & 3758 & 3810.6667 & 13\\\\\n", + "\t47 & Crohn's Disease & monocyte\\_HLA-DQA2 & PP.H3.abf & 17 & 0.9558094 & 14 & 17 & 17 & 4436 & 4331 & 4363.8235 & 17\\\\\n", + "\t57 & Inflammatory Bowel Disease & CD4T\\_HLA-DQA2 & PP.H3.abf & 16 & 0.7763020 & 1 & 9 & 16 & 4527 & 4527 & 4527.0000 & 16\\\\\n", + "\t63 & Inflammatory Bowel Disease & CD8T\\_HLA-DQA2 & PP.H3.abf & 7 & 0.8173129 & 1 & 5 & 7 & 4493 & 4385 & 4477.5714 & 7\\\\\n", + "\t69 & Inflammatory Bowel Disease & DC\\_HLA-DQA2 & PP.H3.abf & 9 & 0.6542293 & 0 & 3 & 9 & 3932 & 3760 & 3812.4444 & 13\\\\\n", + "\t71 & Inflammatory Bowel Disease & monocyte\\_HLA-DQA2 & PP.H3.abf & 17 & 0.8218316 & 4 & 12 & 17 & 4438 & 4333 & 4365.8235 & 17\\\\\n", + "\t82 & Multiple Sclerosis & CD4T\\_HLA-DQA2 & PP.H4.abf & 1 & 0.9211400 & 1 & 1 & 1 & 50 & 50 & 50.0000 & 16\\\\\n", + "\t96 & Multiple Sclerosis & monocyte\\_HLA-DQA2 & PP.H4.abf & 1 & 0.7952340 & 0 & 1 & 1 & 50 & 50 & 50.0000 & 17\\\\\n", + "\t106 & Rheumatoid Arthritis & CD4T\\_HLA-DQA2 & PP.H4.abf & 10 & 0.5554058 & 0 & 0 & 7 & 819 & 819 & 819.0000 & 16\\\\\n", + "\t108 & Rheumatoid Arthritis & CD4T\\_HLA-DQA2 & PP.H3.abf & 5 & 0.6100632 & 0 & 1 & 4 & 819 & 819 & 819.0000 & 16\\\\\n", + "\t114 & Rheumatoid Arthritis & CD8T\\_HLA-DQA2 & PP.H4.abf & 1 & 0.4211959 & 0 & 0 & 0 & 801 & 801 & 801.0000 & 7\\\\\n", + "\t115 & Rheumatoid Arthritis & CD8T\\_HLA-DQA2 & PP.H3.abf & 5 & 0.5385873 & 0 & 1 & 3 & 817 & 817 & 817.0000 & 7\\\\\n", + "\t122 & Rheumatoid Arthritis & DC\\_HLA-DQA2 & PP.H4.abf & 1 & 0.4800992 & 0 & 0 & 0 & 706 & 706 & 706.0000 & 13\\\\\n", + "\t125 & Rheumatoid Arthritis & monocyte\\_HLA-DQA2 & PP.H4.abf & 16 & 0.6159706 & 0 & 0 & 14 & 817 & 815 & 815.8125 & 17\\\\\n", + "\t135 & Type\\_1\\_Diabetes & CD4T\\_HLA-DQA2 & PP.H3.abf & 16 & 0.7585537 & 2 & 9 & 16 & 1319 & 1319 & 1319.0000 & 16\\\\\n", + "\t142 & Type\\_1\\_Diabetes & CD8T\\_HLA-DQA2 & PP.H3.abf & 7 & 0.7726785 & 2 & 4 & 6 & 1317 & 1282 & 1312.0000 & 7\\\\\n", + "\t148 & Type\\_1\\_Diabetes & DC\\_HLA-DQA2 & PP.H3.abf & 3 & 0.5865191 & 0 & 0 & 3 & 1115 & 1115 & 1115.0000 & 13\\\\\n", + "\t152 & Type\\_1\\_Diabetes & monocyte\\_HLA-DQA2 & PP.H3.abf & 17 & 0.9371937 & 13 & 16 & 17 & 1300 & 1289 & 1292.4706 & 17\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 24 × 12\n", + "\n", + "| | trait <chr> | egene <chr> | parameter <chr> | n <int> | mean_value <dbl> | amount_greater_0.9 <int> | amount_greater_0.75 <int> | amount_greater_0.5 <int> | max_overlap_snps <dbl> | min_overlap_snps <dbl> | mean_overlap_snps <dbl> | total_n <int> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| 3 | Asthma | CD4T_HLA-DQA2 | PP.H4.abf | 13 | 0.8605121 | 5 | 11 | 13 | 387 | 387 | 387.0000 | 16 |\n", + "| 11 | Asthma | CD8T_HLA-DQA2 | PP.H4.abf | 7 | 0.8719882 | 5 | 5 | 7 | 386 | 386 | 386.0000 | 7 |\n", + "| 18 | Asthma | DC_HLA-DQA2 | PP.H4.abf | 5 | 0.6734167 | 0 | 1 | 5 | 358 | 348 | 351.8000 | 13 |\n", + "| 20 | Asthma | monocyte_HLA-DQA2 | PP.H4.abf | 4 | 0.7193509 | 1 | 2 | 4 | 388 | 388 | 388.0000 | 17 |\n", + "| 32 | Crohn's Disease | CD4T_HLA-DQA2 | PP.H3.abf | 16 | 0.8674851 | 8 | 14 | 16 | 4525 | 4525 | 4525.0000 | 16 |\n", + "| 39 | Crohn's Disease | CD8T_HLA-DQA2 | PP.H3.abf | 7 | 0.8685034 | 2 | 6 | 7 | 4491 | 4383 | 4475.5714 | 7 |\n", + "| 45 | Crohn's Disease | DC_HLA-DQA2 | PP.H3.abf | 9 | 0.6909695 | 0 | 3 | 9 | 3930 | 3758 | 3810.6667 | 13 |\n", + "| 47 | Crohn's Disease | monocyte_HLA-DQA2 | PP.H3.abf | 17 | 0.9558094 | 14 | 17 | 17 | 4436 | 4331 | 4363.8235 | 17 |\n", + "| 57 | Inflammatory Bowel Disease | CD4T_HLA-DQA2 | PP.H3.abf | 16 | 0.7763020 | 1 | 9 | 16 | 4527 | 4527 | 4527.0000 | 16 |\n", + "| 63 | Inflammatory Bowel Disease | CD8T_HLA-DQA2 | PP.H3.abf | 7 | 0.8173129 | 1 | 5 | 7 | 4493 | 4385 | 4477.5714 | 7 |\n", + "| 69 | Inflammatory Bowel Disease | DC_HLA-DQA2 | PP.H3.abf | 9 | 0.6542293 | 0 | 3 | 9 | 3932 | 3760 | 3812.4444 | 13 |\n", + "| 71 | Inflammatory Bowel Disease | monocyte_HLA-DQA2 | PP.H3.abf | 17 | 0.8218316 | 4 | 12 | 17 | 4438 | 4333 | 4365.8235 | 17 |\n", + "| 82 | Multiple Sclerosis | CD4T_HLA-DQA2 | PP.H4.abf | 1 | 0.9211400 | 1 | 1 | 1 | 50 | 50 | 50.0000 | 16 |\n", + "| 96 | Multiple Sclerosis | monocyte_HLA-DQA2 | PP.H4.abf | 1 | 0.7952340 | 0 | 1 | 1 | 50 | 50 | 50.0000 | 17 |\n", + "| 106 | Rheumatoid Arthritis | CD4T_HLA-DQA2 | PP.H4.abf | 10 | 0.5554058 | 0 | 0 | 7 | 819 | 819 | 819.0000 | 16 |\n", + "| 108 | Rheumatoid Arthritis | CD4T_HLA-DQA2 | PP.H3.abf | 5 | 0.6100632 | 0 | 1 | 4 | 819 | 819 | 819.0000 | 16 |\n", + "| 114 | Rheumatoid Arthritis | CD8T_HLA-DQA2 | PP.H4.abf | 1 | 0.4211959 | 0 | 0 | 0 | 801 | 801 | 801.0000 | 7 |\n", + "| 115 | Rheumatoid Arthritis | CD8T_HLA-DQA2 | PP.H3.abf | 5 | 0.5385873 | 0 | 1 | 3 | 817 | 817 | 817.0000 | 7 |\n", + "| 122 | Rheumatoid Arthritis | DC_HLA-DQA2 | PP.H4.abf | 1 | 0.4800992 | 0 | 0 | 0 | 706 | 706 | 706.0000 | 13 |\n", + "| 125 | Rheumatoid Arthritis | monocyte_HLA-DQA2 | PP.H4.abf | 16 | 0.6159706 | 0 | 0 | 14 | 817 | 815 | 815.8125 | 17 |\n", + "| 135 | Type_1_Diabetes | CD4T_HLA-DQA2 | PP.H3.abf | 16 | 0.7585537 | 2 | 9 | 16 | 1319 | 1319 | 1319.0000 | 16 |\n", + "| 142 | Type_1_Diabetes | CD8T_HLA-DQA2 | PP.H3.abf | 7 | 0.7726785 | 2 | 4 | 6 | 1317 | 1282 | 1312.0000 | 7 |\n", + "| 148 | Type_1_Diabetes | DC_HLA-DQA2 | PP.H3.abf | 3 | 0.5865191 | 0 | 0 | 3 | 1115 | 1115 | 1115.0000 | 13 |\n", + "| 152 | Type_1_Diabetes | monocyte_HLA-DQA2 | PP.H3.abf | 17 | 0.9371937 | 13 | 16 | 17 | 1300 | 1289 | 1292.4706 | 17 |\n", + "\n" + ], + "text/plain": [ + " trait egene parameter n mean_value\n", + "3 Asthma CD4T_HLA-DQA2 PP.H4.abf 13 0.8605121 \n", + "11 Asthma CD8T_HLA-DQA2 PP.H4.abf 7 0.8719882 \n", + "18 Asthma DC_HLA-DQA2 PP.H4.abf 5 0.6734167 \n", + "20 Asthma monocyte_HLA-DQA2 PP.H4.abf 4 0.7193509 \n", + "32 Crohn's Disease CD4T_HLA-DQA2 PP.H3.abf 16 0.8674851 \n", + "39 Crohn's Disease CD8T_HLA-DQA2 PP.H3.abf 7 0.8685034 \n", + "45 Crohn's Disease DC_HLA-DQA2 PP.H3.abf 9 0.6909695 \n", + "47 Crohn's Disease monocyte_HLA-DQA2 PP.H3.abf 17 0.9558094 \n", + "57 Inflammatory Bowel Disease CD4T_HLA-DQA2 PP.H3.abf 16 0.7763020 \n", + "63 Inflammatory Bowel Disease CD8T_HLA-DQA2 PP.H3.abf 7 0.8173129 \n", + "69 Inflammatory Bowel Disease DC_HLA-DQA2 PP.H3.abf 9 0.6542293 \n", + "71 Inflammatory Bowel Disease monocyte_HLA-DQA2 PP.H3.abf 17 0.8218316 \n", + "82 Multiple Sclerosis CD4T_HLA-DQA2 PP.H4.abf 1 0.9211400 \n", + "96 Multiple Sclerosis monocyte_HLA-DQA2 PP.H4.abf 1 0.7952340 \n", + "106 Rheumatoid Arthritis CD4T_HLA-DQA2 PP.H4.abf 10 0.5554058 \n", + "108 Rheumatoid Arthritis CD4T_HLA-DQA2 PP.H3.abf 5 0.6100632 \n", + "114 Rheumatoid Arthritis CD8T_HLA-DQA2 PP.H4.abf 1 0.4211959 \n", + "115 Rheumatoid Arthritis CD8T_HLA-DQA2 PP.H3.abf 5 0.5385873 \n", + "122 Rheumatoid Arthritis DC_HLA-DQA2 PP.H4.abf 1 0.4800992 \n", + "125 Rheumatoid Arthritis monocyte_HLA-DQA2 PP.H4.abf 16 0.6159706 \n", + "135 Type_1_Diabetes CD4T_HLA-DQA2 PP.H3.abf 16 0.7585537 \n", + "142 Type_1_Diabetes CD8T_HLA-DQA2 PP.H3.abf 7 0.7726785 \n", + "148 Type_1_Diabetes DC_HLA-DQA2 PP.H3.abf 3 0.5865191 \n", + "152 Type_1_Diabetes monocyte_HLA-DQA2 PP.H3.abf 17 0.9371937 \n", + " amount_greater_0.9 amount_greater_0.75 amount_greater_0.5 max_overlap_snps\n", + "3 5 11 13 387 \n", + "11 5 5 7 386 \n", + "18 0 1 5 358 \n", + "20 1 2 4 388 \n", + "32 8 14 16 4525 \n", + "39 2 6 7 4491 \n", + "45 0 3 9 3930 \n", + "47 14 17 17 4436 \n", + "57 1 9 16 4527 \n", + "63 1 5 7 4493 \n", + "69 0 3 9 3932 \n", + "71 4 12 17 4438 \n", + "82 1 1 1 50 \n", + "96 0 1 1 50 \n", + "106 0 0 7 819 \n", + "108 0 1 4 819 \n", + "114 0 0 0 801 \n", + "115 0 1 3 817 \n", + "122 0 0 0 706 \n", + "125 0 0 14 817 \n", + "135 2 9 16 1319 \n", + "142 2 4 6 1317 \n", + "148 0 0 3 1115 \n", + "152 13 16 17 1300 \n", + " min_overlap_snps mean_overlap_snps total_n\n", + "3 387 387.0000 16 \n", + "11 386 386.0000 7 \n", + "18 348 351.8000 13 \n", + "20 388 388.0000 17 \n", + "32 4525 4525.0000 16 \n", + "39 4383 4475.5714 7 \n", + "45 3758 3810.6667 13 \n", + "47 4331 4363.8235 17 \n", + "57 4527 4527.0000 16 \n", + "63 4385 4477.5714 7 \n", + "69 3760 3812.4444 13 \n", + "71 4333 4365.8235 17 \n", + "82 50 50.0000 16 \n", + "96 50 50.0000 17 \n", + "106 819 819.0000 16 \n", + "108 819 819.0000 16 \n", + "114 801 801.0000 7 \n", + "115 817 817.0000 7 \n", + "122 706 706.0000 13 \n", + "125 815 815.8125 17 \n", + "135 1319 1319.0000 16 \n", + "142 1282 1312.0000 7 \n", + "148 1115 1115.0000 13 \n", + "152 1289 1292.4706 17 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "overview_h_amounts[(overview_h_amounts$egene %in% c('CD4T_HLA-DQA2' , 'CD8T_HLA-DQA2', 'monocyte_HLA-DQA2', 'DC_HLA-DQA2')) & (overview_h_amounts$parameter %in% c('PP.H4.abf', 'PP.H3.abf')),]" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "id": "553b946a-6572-4f74-873b-fc2638551e85", + "metadata": {}, + "outputs": [], + "source": [ + "### All SMDT1 - co-egene examples" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "id": "e575afe8-2da1-4b46-ac20-6a8fd81b0c49", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "
A data.frame: 0 × 12
traitegeneparameternmean_valueamount_greater_0.9amount_greater_0.75amount_greater_0.5max_overlap_snpsmin_overlap_snpsmean_overlap_snpstotal_n
<chr><chr><chr><int><dbl><int><int><int><dbl><dbl><dbl><int>
\n" + ], + "text/latex": [ + "A data.frame: 0 × 12\n", + "\\begin{tabular}{llllllllllll}\n", + " trait & egene & parameter & n & mean\\_value & amount\\_greater\\_0.9 & amount\\_greater\\_0.75 & amount\\_greater\\_0.5 & max\\_overlap\\_snps & min\\_overlap\\_snps & mean\\_overlap\\_snps & total\\_n\\\\\n", + " & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 0 × 12\n", + "\n", + "| trait <chr> | egene <chr> | parameter <chr> | n <int> | mean_value <dbl> | amount_greater_0.9 <int> | amount_greater_0.75 <int> | amount_greater_0.5 <int> | max_overlap_snps <dbl> | min_overlap_snps <dbl> | mean_overlap_snps <dbl> | total_n <int> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "\n" + ], + "text/plain": [ + " trait egene parameter n mean_value amount_greater_0.9 amount_greater_0.75\n", + " amount_greater_0.5 max_overlap_snps min_overlap_snps mean_overlap_snps\n", + " total_n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "overview_h_amounts[(overview_h_amounts$egene %in% c('CD4T_SMDT1', 'CD8T_SMDT1')) & (overview_h_amounts$parameter %in% c('PP.H4.abf', 'PP.H3.abf')),]" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "id": "3ce6e5c0-f029-4051-b125-af8d6047ccf9", + "metadata": {}, + "outputs": [], + "source": [ + "### All TMEM176A - co-egene examples" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "id": "4f8fac25-b1a9-4daa-80d4-a7a36464bcbc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\n", + "
A data.frame: 0 × 12
traitegeneparameternmean_valueamount_greater_0.9amount_greater_0.75amount_greater_0.5max_overlap_snpsmin_overlap_snpsmean_overlap_snpstotal_n
<chr><chr><chr><int><dbl><int><int><int><dbl><dbl><dbl><int>
\n" + ], + "text/latex": [ + "A data.frame: 0 × 12\n", + "\\begin{tabular}{llllllllllll}\n", + " trait & egene & parameter & n & mean\\_value & amount\\_greater\\_0.9 & amount\\_greater\\_0.75 & amount\\_greater\\_0.5 & max\\_overlap\\_snps & min\\_overlap\\_snps & mean\\_overlap\\_snps & total\\_n\\\\\n", + " & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 0 × 12\n", + "\n", + "| trait <chr> | egene <chr> | parameter <chr> | n <int> | mean_value <dbl> | amount_greater_0.9 <int> | amount_greater_0.75 <int> | amount_greater_0.5 <int> | max_overlap_snps <dbl> | min_overlap_snps <dbl> | mean_overlap_snps <dbl> | total_n <int> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "\n" + ], + "text/plain": [ + " trait egene parameter n mean_value amount_greater_0.9 amount_greater_0.75\n", + " amount_greater_0.5 max_overlap_snps min_overlap_snps mean_overlap_snps\n", + " total_n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "overview_h_amounts[(overview_h_amounts$egene %in% c('monocyte_TMEM176A')) & (overview_h_amounts$parameter %in% c('PP.H4.abf', 'PP.H3.abf')),]" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "id": "0fc7ba1c-6fb4-4def-b2e5-206deaa3a101", + "metadata": {}, + "outputs": [], + "source": [ + "### All RNASET2 - co-egene examples" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "id": "78c7efed-46e2-4e17-a2f6-970497c695c9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 12
traitegeneparameternmean_valueamount_greater_0.9amount_greater_0.75amount_greater_0.5max_overlap_snpsmin_overlap_snpsmean_overlap_snpstotal_n
<chr><chr><chr><int><dbl><int><int><int><dbl><dbl><dbl><int>
33Crohn's Disease CD4T_RNASET2 PP.H3.abf20.51937700012707270727074
34Crohn's Disease CD4T_RNASET2 PP.H4.abf20.51935360022707270727074
48Crohn's Disease monocyte_RNASET2PP.H3.abf10.84856680114390439043901
58Inflammatory Bowel DiseaseCD4T_RNASET2 PP.H3.abf40.59688400042704270427044
72Inflammatory Bowel Diseasemonocyte_RNASET2PP.H3.abf10.84852870114391439143911
109Rheumatoid Arthritis CD4T_RNASET2 PP.H3.abf40.93696643442031203120314
\n" + ], + "text/latex": [ + "A data.frame: 6 × 12\n", + "\\begin{tabular}{r|llllllllllll}\n", + " & trait & egene & parameter & n & mean\\_value & amount\\_greater\\_0.9 & amount\\_greater\\_0.75 & amount\\_greater\\_0.5 & max\\_overlap\\_snps & min\\_overlap\\_snps & mean\\_overlap\\_snps & total\\_n\\\\\n", + " & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t33 & Crohn's Disease & CD4T\\_RNASET2 & PP.H3.abf & 2 & 0.5193770 & 0 & 0 & 1 & 2707 & 2707 & 2707 & 4\\\\\n", + "\t34 & Crohn's Disease & CD4T\\_RNASET2 & PP.H4.abf & 2 & 0.5193536 & 0 & 0 & 2 & 2707 & 2707 & 2707 & 4\\\\\n", + "\t48 & Crohn's Disease & monocyte\\_RNASET2 & PP.H3.abf & 1 & 0.8485668 & 0 & 1 & 1 & 4390 & 4390 & 4390 & 1\\\\\n", + "\t58 & Inflammatory Bowel Disease & CD4T\\_RNASET2 & PP.H3.abf & 4 & 0.5968840 & 0 & 0 & 4 & 2704 & 2704 & 2704 & 4\\\\\n", + "\t72 & Inflammatory Bowel Disease & monocyte\\_RNASET2 & PP.H3.abf & 1 & 0.8485287 & 0 & 1 & 1 & 4391 & 4391 & 4391 & 1\\\\\n", + "\t109 & Rheumatoid Arthritis & CD4T\\_RNASET2 & PP.H3.abf & 4 & 0.9369664 & 3 & 4 & 4 & 2031 & 2031 & 2031 & 4\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 6 × 12\n", + "\n", + "| | trait <chr> | egene <chr> | parameter <chr> | n <int> | mean_value <dbl> | amount_greater_0.9 <int> | amount_greater_0.75 <int> | amount_greater_0.5 <int> | max_overlap_snps <dbl> | min_overlap_snps <dbl> | mean_overlap_snps <dbl> | total_n <int> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| 33 | Crohn's Disease | CD4T_RNASET2 | PP.H3.abf | 2 | 0.5193770 | 0 | 0 | 1 | 2707 | 2707 | 2707 | 4 |\n", + "| 34 | Crohn's Disease | CD4T_RNASET2 | PP.H4.abf | 2 | 0.5193536 | 0 | 0 | 2 | 2707 | 2707 | 2707 | 4 |\n", + "| 48 | Crohn's Disease | monocyte_RNASET2 | PP.H3.abf | 1 | 0.8485668 | 0 | 1 | 1 | 4390 | 4390 | 4390 | 1 |\n", + "| 58 | Inflammatory Bowel Disease | CD4T_RNASET2 | PP.H3.abf | 4 | 0.5968840 | 0 | 0 | 4 | 2704 | 2704 | 2704 | 4 |\n", + "| 72 | Inflammatory Bowel Disease | monocyte_RNASET2 | PP.H3.abf | 1 | 0.8485287 | 0 | 1 | 1 | 4391 | 4391 | 4391 | 1 |\n", + "| 109 | Rheumatoid Arthritis | CD4T_RNASET2 | PP.H3.abf | 4 | 0.9369664 | 3 | 4 | 4 | 2031 | 2031 | 2031 | 4 |\n", + "\n" + ], + "text/plain": [ + " trait egene parameter n mean_value\n", + "33 Crohn's Disease CD4T_RNASET2 PP.H3.abf 2 0.5193770 \n", + "34 Crohn's Disease CD4T_RNASET2 PP.H4.abf 2 0.5193536 \n", + "48 Crohn's Disease monocyte_RNASET2 PP.H3.abf 1 0.8485668 \n", + "58 Inflammatory Bowel Disease CD4T_RNASET2 PP.H3.abf 4 0.5968840 \n", + "72 Inflammatory Bowel Disease monocyte_RNASET2 PP.H3.abf 1 0.8485287 \n", + "109 Rheumatoid Arthritis CD4T_RNASET2 PP.H3.abf 4 0.9369664 \n", + " amount_greater_0.9 amount_greater_0.75 amount_greater_0.5 max_overlap_snps\n", + "33 0 0 1 2707 \n", + "34 0 0 2 2707 \n", + "48 0 1 1 4390 \n", + "58 0 0 4 2704 \n", + "72 0 1 1 4391 \n", + "109 3 4 4 2031 \n", + " min_overlap_snps mean_overlap_snps total_n\n", + "33 2707 2707 4 \n", + "34 2707 2707 4 \n", + "48 4390 4390 1 \n", + "58 2704 2704 4 \n", + "72 4391 4391 1 \n", + "109 2031 2031 4 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "overview_h_amounts[(overview_h_amounts$egene %in% c('CD4T_RNASET2', 'monocyte_RNASET2')) & (overview_h_amounts$parameter %in% c('PP.H4.abf', 'PP.H3.abf')),]" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "id": "fab6e933-d042-4133-af29-44c80e4ce21b", + "metadata": {}, + "outputs": [], + "source": [ + "#overview_h_amounts[order(overview_h_amounts$trait),]" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "id": "e768d157-0704-486a-983f-7f8e56920126", + "metadata": {}, + "outputs": [], + "source": [ + "### Save supplementary table" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "id": "b7704adf-ab97-4153-9ef8-7fd8a28014c2", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_supp = coeqtl_summary" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "id": "6d779b12-1651-4484-af1d-84d2bc4f9b37", + "metadata": {}, + "outputs": [], + "source": [ + "#coeqtl_supp[is.na(coeqtl_supp$co_egene),]" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "id": "749e9031-ce6b-44db-9d6d-371a0977c721", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 8
traitidentifieregeneparametervaluecell_typegeneoverlapping_snps
<chr><chr><chr><chr><dbl><chr><chr><dbl>
1AsthmaB_RPS26___EEF1A1__RPS26B_RPS26PP.H0.abf0.3734713BEEF1A1__RPS26381
2AsthmaB_RPS26___EEF1A1__RPS26B_RPS26PP.H1.abf0.1466712BEEF1A1__RPS26381
\n" + ], + "text/latex": [ + "A data.frame: 2 × 8\n", + "\\begin{tabular}{r|llllllll}\n", + " & trait & identifier & egene & parameter & value & cell\\_type & gene & overlapping\\_snps\\\\\n", + " & & & & & & & & \\\\\n", + "\\hline\n", + "\t1 & Asthma & B\\_RPS26\\_\\_\\_EEF1A1\\_\\_RPS26 & B\\_RPS26 & PP.H0.abf & 0.3734713 & B & EEF1A1\\_\\_RPS26 & 381\\\\\n", + "\t2 & Asthma & B\\_RPS26\\_\\_\\_EEF1A1\\_\\_RPS26 & B\\_RPS26 & PP.H1.abf & 0.1466712 & B & EEF1A1\\_\\_RPS26 & 381\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 8\n", + "\n", + "| | trait <chr> | identifier <chr> | egene <chr> | parameter <chr> | value <dbl> | cell_type <chr> | gene <chr> | overlapping_snps <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| 1 | Asthma | B_RPS26___EEF1A1__RPS26 | B_RPS26 | PP.H0.abf | 0.3734713 | B | EEF1A1__RPS26 | 381 |\n", + "| 2 | Asthma | B_RPS26___EEF1A1__RPS26 | B_RPS26 | PP.H1.abf | 0.1466712 | B | EEF1A1__RPS26 | 381 |\n", + "\n" + ], + "text/plain": [ + " trait identifier egene parameter value cell_type\n", + "1 Asthma B_RPS26___EEF1A1__RPS26 B_RPS26 PP.H0.abf 0.3734713 B \n", + "2 Asthma B_RPS26___EEF1A1__RPS26 B_RPS26 PP.H1.abf 0.1466712 B \n", + " gene overlapping_snps\n", + "1 EEF1A1__RPS26 381 \n", + "2 EEF1A1__RPS26 381 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(coeqtl_supp,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "id": "c67011d0-0a18-45d5-8486-39952c05c04b", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_supp = coeqtl_supp[(coeqtl_supp$parameter %in% c('PP.H3.abf','PP.H4.abf' )) ,]" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "id": "0fea5320-e597-4b9e-a4e0-acff27541522", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_supp$identifier = NULL" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "id": "49fd8e2d-6c83-4406-88fe-52f5cf93e3eb", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_supp$egene = str_replace(coeqtl_supp$egene, '.*_', '')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6ca781c3-4e3b-4b58-b8f8-c0b0ebbdc16e", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 108, + "id": "a8ee389d-0557-425e-81e3-602b7372c41a", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_supp$co_egene = coeqtl_supp$gene\n", + "coeqtl_supp$gene = NULL\n", + "coeqtl_supp$co_egene = str_replace(coeqtl_supp$co_egene, coeqtl_supp$egene, '')\n", + "coeqtl_supp$co_egene = str_replace(coeqtl_supp$co_egene, '__', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "id": "2e94abd9-f085-482c-9cac-0dba5e2778bc", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_supp$coloc_hypothesis = coeqtl_supp$parameter\n", + "coeqtl_supp$parameter = NULL" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "id": "ede70c26-c4a2-431a-a0a2-111d9a9e27dc", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_supp$cell_type = str_replace(coeqtl_supp$cell_type, '1MB', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "id": "d25696dd-ab8d-4e66-9f30-e2547e01203e", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_supp$pp_value = coeqtl_supp$value\n", + "coeqtl_supp$value = NULL" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "id": "49195825-a93d-42f0-8192-2662fb1210c2", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_supp$amount_overlapping_snps = coeqtl_supp$overlapping_snps \n", + "coeqtl_supp$overlapping_snps = NULL" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "id": "616b1427-8a33-47e2-9b02-5c47dc6ee1a6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 3 × 7
traitegenecell_typeco_egenecoloc_hypothesispp_valueamount_overlapping_snps
<chr><chr><chr><chr><chr><dbl><dbl>
4AsthmaRPS26BEEF1A1PP.H3.abf0.04642325381
5AsthmaRPS26BEEF1A1PP.H4.abf0.30739863381
9AsthmaRPS26BRPL10 PP.H3.abf0.09736711381
\n" + ], + "text/latex": [ + "A data.frame: 3 × 7\n", + "\\begin{tabular}{r|lllllll}\n", + " & trait & egene & cell\\_type & co\\_egene & coloc\\_hypothesis & pp\\_value & amount\\_overlapping\\_snps\\\\\n", + " & & & & & & & \\\\\n", + "\\hline\n", + "\t4 & Asthma & RPS26 & B & EEF1A1 & PP.H3.abf & 0.04642325 & 381\\\\\n", + "\t5 & Asthma & RPS26 & B & EEF1A1 & PP.H4.abf & 0.30739863 & 381\\\\\n", + "\t9 & Asthma & RPS26 & B & RPL10 & PP.H3.abf & 0.09736711 & 381\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 3 × 7\n", + "\n", + "| | trait <chr> | egene <chr> | cell_type <chr> | co_egene <chr> | coloc_hypothesis <chr> | pp_value <dbl> | amount_overlapping_snps <dbl> |\n", + "|---|---|---|---|---|---|---|---|\n", + "| 4 | Asthma | RPS26 | B | EEF1A1 | PP.H3.abf | 0.04642325 | 381 |\n", + "| 5 | Asthma | RPS26 | B | EEF1A1 | PP.H4.abf | 0.30739863 | 381 |\n", + "| 9 | Asthma | RPS26 | B | RPL10 | PP.H3.abf | 0.09736711 | 381 |\n", + "\n" + ], + "text/plain": [ + " trait egene cell_type co_egene coloc_hypothesis pp_value \n", + "4 Asthma RPS26 B EEF1A1 PP.H3.abf 0.04642325\n", + "5 Asthma RPS26 B EEF1A1 PP.H4.abf 0.30739863\n", + "9 Asthma RPS26 B RPL10 PP.H3.abf 0.09736711\n", + " amount_overlapping_snps\n", + "4 381 \n", + "5 381 \n", + "9 381 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(coeqtl_supp,3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "773b7f6e-3d4c-474b-8894-b0c903d45cf1", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 114, + "id": "9dc5dd51-e271-40f0-aa52-ddca64539cd1", + "metadata": {}, + "outputs": [], + "source": [ + "write.table(coeqtl_supp, file = paste0(path, \"/colocalization_results/\", \"Coloc_COEQTL_supp_table.csv\"), append =FALSE, sep = \",\", row.names = FALSE, col.names =TRUE)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7bb01b2b-7374-40f2-9373-a70e15748a32", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "53c973ec-70fa-4c5a-af44-59dcc8f24931", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1d9c3785-33d1-41c5-94f7-6780f6004305", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8e8f8e2d-26e4-488a-b766-6524f22e52da", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "bc7c75df-5623-4f72-825b-c13e25887317", + "metadata": {}, + "source": [ + "### Get certain co-eqtl examples (RA - RPS26 H4 coegenes)" + ] + }, + { + "cell_type": "code", + "execution_count": 115, + "id": "730e0957-f42d-4007-aa35-08d3b568cda4", + "metadata": {}, + "outputs": [], + "source": [ + "## 41 co-eGenes for Rheumatoid Arthritis with strong colocalization signal" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "id": "0c725133-2476-4726-8b6a-1628bbe02929", + "metadata": {}, + "outputs": [], + "source": [ + "coeqtl_summary_filtered$gene = str_replace(coeqtl_summary_filtered$gene, '_', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "id": "da16bf8c-95d2-4e10-8c62-21dc3580c04d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "152" + ], + "text/latex": [ + "152" + ], + "text/markdown": [ + "152" + ], + "text/plain": [ + "[1] 152" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(coeqtl_summary_filtered[(coeqtl_summary_filtered$trait == 'Rheumatoid Arthritis' ) & (coeqtl_summary_filtered$value > 0.9 )& (coeqtl_summary_filtered$parameter == 'PP.H4.abf' ),])" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "id": "53fb50d0-478c-428b-b011-922383bd7353", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 8
traitidentifieregenevaluecell_typegeneoverlapping_snpsparameter
<chr><chr><chr><dbl><chr><chr><dbl><chr>
1AsthmaB_RPS26___EEF1A1__RPS26B_RPS260.3734713BEEF1A1_RPS26381PP.H0.abf
2AsthmaB_RPS26___RPL10__RPS26 B_RPS260.6338403BRPL10_RPS26 381PP.H4.abf
3AsthmaB_RPS26___RPL11__RPS26 B_RPS260.3473292BRPL11_RPS26 381PP.H4.abf
4AsthmaB_RPS26___RPL13__RPS26 B_RPS260.5521870BRPL13_RPS26 381PP.H4.abf
5AsthmaB_RPS26___RPL18__RPS26 B_RPS260.5154468BRPL18_RPS26 381PP.H0.abf
6AsthmaB_RPS26___RPL21__RPS26 B_RPS260.5951100BRPL21_RPS26 381PP.H4.abf
\n" + ], + "text/latex": [ + "A data.frame: 6 × 8\n", + "\\begin{tabular}{r|llllllll}\n", + " & trait & identifier & egene & value & cell\\_type & gene & overlapping\\_snps & parameter\\\\\n", + " & & & & & & & & \\\\\n", + "\\hline\n", + "\t1 & Asthma & B\\_RPS26\\_\\_\\_EEF1A1\\_\\_RPS26 & B\\_RPS26 & 0.3734713 & B & EEF1A1\\_RPS26 & 381 & PP.H0.abf\\\\\n", + "\t2 & Asthma & B\\_RPS26\\_\\_\\_RPL10\\_\\_RPS26 & B\\_RPS26 & 0.6338403 & B & RPL10\\_RPS26 & 381 & PP.H4.abf\\\\\n", + "\t3 & Asthma & B\\_RPS26\\_\\_\\_RPL11\\_\\_RPS26 & B\\_RPS26 & 0.3473292 & B & RPL11\\_RPS26 & 381 & PP.H4.abf\\\\\n", + "\t4 & Asthma & B\\_RPS26\\_\\_\\_RPL13\\_\\_RPS26 & B\\_RPS26 & 0.5521870 & B & RPL13\\_RPS26 & 381 & PP.H4.abf\\\\\n", + "\t5 & Asthma & B\\_RPS26\\_\\_\\_RPL18\\_\\_RPS26 & B\\_RPS26 & 0.5154468 & B & RPL18\\_RPS26 & 381 & PP.H0.abf\\\\\n", + "\t6 & Asthma & B\\_RPS26\\_\\_\\_RPL21\\_\\_RPS26 & B\\_RPS26 & 0.5951100 & B & RPL21\\_RPS26 & 381 & PP.H4.abf\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 6 × 8\n", + "\n", + "| | trait <chr> | identifier <chr> | egene <chr> | value <dbl> | cell_type <chr> | gene <chr> | overlapping_snps <dbl> | parameter <chr> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| 1 | Asthma | B_RPS26___EEF1A1__RPS26 | B_RPS26 | 0.3734713 | B | EEF1A1_RPS26 | 381 | PP.H0.abf |\n", + "| 2 | Asthma | B_RPS26___RPL10__RPS26 | B_RPS26 | 0.6338403 | B | RPL10_RPS26 | 381 | PP.H4.abf |\n", + "| 3 | Asthma | B_RPS26___RPL11__RPS26 | B_RPS26 | 0.3473292 | B | RPL11_RPS26 | 381 | PP.H4.abf |\n", + "| 4 | Asthma | B_RPS26___RPL13__RPS26 | B_RPS26 | 0.5521870 | B | RPL13_RPS26 | 381 | PP.H4.abf |\n", + "| 5 | Asthma | B_RPS26___RPL18__RPS26 | B_RPS26 | 0.5154468 | B | RPL18_RPS26 | 381 | PP.H0.abf |\n", + "| 6 | Asthma | B_RPS26___RPL21__RPS26 | B_RPS26 | 0.5951100 | B | RPL21_RPS26 | 381 | PP.H4.abf |\n", + "\n" + ], + "text/plain": [ + " trait identifier egene value cell_type gene \n", + "1 Asthma B_RPS26___EEF1A1__RPS26 B_RPS26 0.3734713 B EEF1A1_RPS26\n", + "2 Asthma B_RPS26___RPL10__RPS26 B_RPS26 0.6338403 B RPL10_RPS26 \n", + "3 Asthma B_RPS26___RPL11__RPS26 B_RPS26 0.3473292 B RPL11_RPS26 \n", + "4 Asthma B_RPS26___RPL13__RPS26 B_RPS26 0.5521870 B RPL13_RPS26 \n", + "5 Asthma B_RPS26___RPL18__RPS26 B_RPS26 0.5154468 B RPL18_RPS26 \n", + "6 Asthma B_RPS26___RPL21__RPS26 B_RPS26 0.5951100 B RPL21_RPS26 \n", + " overlapping_snps parameter\n", + "1 381 PP.H0.abf\n", + "2 381 PP.H4.abf\n", + "3 381 PP.H4.abf\n", + "4 381 PP.H4.abf\n", + "5 381 PP.H0.abf\n", + "6 381 PP.H4.abf" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(coeqtl_summary_filtered)" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "id": "62fe9449-5c40-4497-9544-5b9c08615d4a", + "metadata": {}, + "outputs": [], + "source": [ + "coloc_examples_rheomatoid_arthritis = coeqtl_summary_filtered[(coeqtl_summary_filtered$trait == 'Rheumatoid Arthritis' ) & (coeqtl_summary_filtered$value > 0.9 )& (coeqtl_summary_filtered$parameter == 'PP.H4.abf' ),]" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "id": "7cd4a65c-a3a2-4d98-8d09-c0a89072db99", + "metadata": {}, + "outputs": [], + "source": [ + "#coloc_examples_rheomatoid_arthritis = coeqtl_summary_filtered[(coeqtl_summary_filtered$trait == 'Rheumatoid Arthritis' ) & (coeqtl_summary_filtered$value > 0.9 )& (coeqtl_summary_filtered$parameter == 'PP.H4.abf' ) & (coeqtl_summary_filtered$egene == 'CD4T_RPS26' ),]" + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "id": "64ca6b9a-3593-4431-9d98-be89635b311f", + "metadata": {}, + "outputs": [], + "source": [ + "analyze = coloc_examples_rheomatoid_arthritis %>% group_by( gene) %>% count()" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "id": "e9a5b7c1-f312-4d0f-9acc-8e237aa16f30", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 21 × 8
traitidentifieregenevaluecell_typegeneoverlapping_snpsparameter
<chr><chr><chr><dbl><chr><chr><dbl><chr>
194Asthma CD4T_RPS26___HLA-DPB1__RPS26 CD4T_RPS26 0.5988243CD4T HLA-DPB1_RPS26 381PP.H4.abf
550Asthma CD8T_RPS26___HLA-DPB1__RPS26 CD8T_RPS26 0.4321920CD8T HLA-DPB1_RPS26 381PP.H0.abf
860Asthma monocyte_RPS26___HLA-DPB1__RPS26monocyte_RPS260.6660012monocyteHLA-DPB1_RPS26 381PP.H4.abf
1258Crohn's Disease CD4T_RPS26___HLA-DPB1__RPS26 CD4T_RPS26 0.8220487CD4T HLA-DPB1_RPS261112PP.H2.abf
1614Crohn's Disease CD8T_RPS26___HLA-DPB1__RPS26 CD8T_RPS26 0.5654940CD8T HLA-DPB1_RPS261112PP.H0.abf
1924Crohn's Disease monocyte_RPS26___HLA-DPB1__RPS26monocyte_RPS260.9525225monocyteHLA-DPB1_RPS261112PP.H2.abf
2322Inflammatory Bowel DiseaseCD4T_RPS26___HLA-DPB1__RPS26 CD4T_RPS26 0.8474188CD4T HLA-DPB1_RPS261110PP.H2.abf
2678Inflammatory Bowel DiseaseCD8T_RPS26___HLA-DPB1__RPS26 CD8T_RPS26 0.5830098CD8T HLA-DPB1_RPS261110PP.H0.abf
2988Inflammatory Bowel Diseasemonocyte_RPS26___HLA-DPB1__RPS26monocyte_RPS260.9819645monocyteHLA-DPB1_RPS261110PP.H2.abf
3386Multiple Sclerosis CD4T_RPS26___HLA-DPB1__RPS26 CD4T_RPS26 0.5847966CD4T HLA-DPB1_RPS26 58PP.H2.abf
3742Multiple Sclerosis CD8T_RPS26___HLA-DPB1__RPS26 CD8T_RPS26 0.9170029CD8T HLA-DPB1_RPS26 58PP.H0.abf
4052Multiple Sclerosis monocyte_RPS26___HLA-DPB1__RPS26monocyte_RPS260.9977439monocyteHLA-DPB1_RPS26 58PP.H2.abf
4450Rheumatoid Arthritis CD4T_RPS26___HLA-DPB1__RPS26 CD4T_RPS26 0.9147419CD4T HLA-DPB1_RPS26 882PP.H4.abf
4806Rheumatoid Arthritis CD8T_RPS26___HLA-DPB1__RPS26 CD8T_RPS26 0.7436868CD8T HLA-DPB1_RPS26 882PP.H4.abf
5116Rheumatoid Arthritis monocyte_RPS26___HLA-DPB1__RPS26monocyte_RPS260.7753756monocyteHLA-DPB1_RPS26 882PP.H4.abf
5514Type_1_Diabetes CD4T_RPS26___HLA-DPB1__RPS26 CD4T_RPS26 0.7693859CD4T HLA-DPB1_RPS261341PP.H3.abf
5870Type_1_Diabetes CD8T_RPS26___HLA-DPB1__RPS26 CD8T_RPS26 0.4314387CD8T HLA-DPB1_RPS261341PP.H3.abf
6180Type_1_Diabetes monocyte_RPS26___HLA-DPB1__RPS26monocyte_RPS260.9986931monocyteHLA-DPB1_RPS261341PP.H3.abf
6578White blood cell count CD4T_RPS26___HLA-DPB1__RPS26 CD4T_RPS26 0.8243175CD4T HLA-DPB1_RPS261078PP.H2.abf
6934White blood cell count CD8T_RPS26___HLA-DPB1__RPS26 CD8T_RPS26 0.5682385CD8T HLA-DPB1_RPS261078PP.H0.abf
7244White blood cell count monocyte_RPS26___HLA-DPB1__RPS26monocyte_RPS260.9553423monocyteHLA-DPB1_RPS261078PP.H2.abf
\n" + ], + "text/latex": [ + "A data.frame: 21 × 8\n", + "\\begin{tabular}{r|llllllll}\n", + " & trait & identifier & egene & value & cell\\_type & gene & overlapping\\_snps & parameter\\\\\n", + " & & & & & & & & \\\\\n", + "\\hline\n", + "\t194 & Asthma & CD4T\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & CD4T\\_RPS26 & 0.5988243 & CD4T & HLA-DPB1\\_RPS26 & 381 & PP.H4.abf\\\\\n", + "\t550 & Asthma & CD8T\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & CD8T\\_RPS26 & 0.4321920 & CD8T & HLA-DPB1\\_RPS26 & 381 & PP.H0.abf\\\\\n", + "\t860 & Asthma & monocyte\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & monocyte\\_RPS26 & 0.6660012 & monocyte & HLA-DPB1\\_RPS26 & 381 & PP.H4.abf\\\\\n", + "\t1258 & Crohn's Disease & CD4T\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & CD4T\\_RPS26 & 0.8220487 & CD4T & HLA-DPB1\\_RPS26 & 1112 & PP.H2.abf\\\\\n", + "\t1614 & Crohn's Disease & CD8T\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & CD8T\\_RPS26 & 0.5654940 & CD8T & HLA-DPB1\\_RPS26 & 1112 & PP.H0.abf\\\\\n", + "\t1924 & Crohn's Disease & monocyte\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & monocyte\\_RPS26 & 0.9525225 & monocyte & HLA-DPB1\\_RPS26 & 1112 & PP.H2.abf\\\\\n", + "\t2322 & Inflammatory Bowel Disease & CD4T\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & CD4T\\_RPS26 & 0.8474188 & CD4T & HLA-DPB1\\_RPS26 & 1110 & PP.H2.abf\\\\\n", + "\t2678 & Inflammatory Bowel Disease & CD8T\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & CD8T\\_RPS26 & 0.5830098 & CD8T & HLA-DPB1\\_RPS26 & 1110 & PP.H0.abf\\\\\n", + "\t2988 & Inflammatory Bowel Disease & monocyte\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & monocyte\\_RPS26 & 0.9819645 & monocyte & HLA-DPB1\\_RPS26 & 1110 & PP.H2.abf\\\\\n", + "\t3386 & Multiple Sclerosis & CD4T\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & CD4T\\_RPS26 & 0.5847966 & CD4T & HLA-DPB1\\_RPS26 & 58 & PP.H2.abf\\\\\n", + "\t3742 & Multiple Sclerosis & CD8T\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & CD8T\\_RPS26 & 0.9170029 & CD8T & HLA-DPB1\\_RPS26 & 58 & PP.H0.abf\\\\\n", + "\t4052 & Multiple Sclerosis & monocyte\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & monocyte\\_RPS26 & 0.9977439 & monocyte & HLA-DPB1\\_RPS26 & 58 & PP.H2.abf\\\\\n", + "\t4450 & Rheumatoid Arthritis & CD4T\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & CD4T\\_RPS26 & 0.9147419 & CD4T & HLA-DPB1\\_RPS26 & 882 & PP.H4.abf\\\\\n", + "\t4806 & Rheumatoid Arthritis & CD8T\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & CD8T\\_RPS26 & 0.7436868 & CD8T & HLA-DPB1\\_RPS26 & 882 & PP.H4.abf\\\\\n", + "\t5116 & Rheumatoid Arthritis & monocyte\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & monocyte\\_RPS26 & 0.7753756 & monocyte & HLA-DPB1\\_RPS26 & 882 & PP.H4.abf\\\\\n", + "\t5514 & Type\\_1\\_Diabetes & CD4T\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & CD4T\\_RPS26 & 0.7693859 & CD4T & HLA-DPB1\\_RPS26 & 1341 & PP.H3.abf\\\\\n", + "\t5870 & Type\\_1\\_Diabetes & CD8T\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & CD8T\\_RPS26 & 0.4314387 & CD8T & HLA-DPB1\\_RPS26 & 1341 & PP.H3.abf\\\\\n", + "\t6180 & Type\\_1\\_Diabetes & monocyte\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & monocyte\\_RPS26 & 0.9986931 & monocyte & HLA-DPB1\\_RPS26 & 1341 & PP.H3.abf\\\\\n", + "\t6578 & White blood cell count & CD4T\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & CD4T\\_RPS26 & 0.8243175 & CD4T & HLA-DPB1\\_RPS26 & 1078 & PP.H2.abf\\\\\n", + "\t6934 & White blood cell count & CD8T\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & CD8T\\_RPS26 & 0.5682385 & CD8T & HLA-DPB1\\_RPS26 & 1078 & PP.H0.abf\\\\\n", + "\t7244 & White blood cell count & monocyte\\_RPS26\\_\\_\\_HLA-DPB1\\_\\_RPS26 & monocyte\\_RPS26 & 0.9553423 & monocyte & HLA-DPB1\\_RPS26 & 1078 & PP.H2.abf\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 21 × 8\n", + "\n", + "| | trait <chr> | identifier <chr> | egene <chr> | value <dbl> | cell_type <chr> | gene <chr> | overlapping_snps <dbl> | parameter <chr> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| 194 | Asthma | CD4T_RPS26___HLA-DPB1__RPS26 | CD4T_RPS26 | 0.5988243 | CD4T | HLA-DPB1_RPS26 | 381 | PP.H4.abf |\n", + "| 550 | Asthma | CD8T_RPS26___HLA-DPB1__RPS26 | CD8T_RPS26 | 0.4321920 | CD8T | HLA-DPB1_RPS26 | 381 | PP.H0.abf |\n", + "| 860 | Asthma | monocyte_RPS26___HLA-DPB1__RPS26 | monocyte_RPS26 | 0.6660012 | monocyte | HLA-DPB1_RPS26 | 381 | PP.H4.abf |\n", + "| 1258 | Crohn's Disease | CD4T_RPS26___HLA-DPB1__RPS26 | CD4T_RPS26 | 0.8220487 | CD4T | HLA-DPB1_RPS26 | 1112 | PP.H2.abf |\n", + "| 1614 | Crohn's Disease | CD8T_RPS26___HLA-DPB1__RPS26 | CD8T_RPS26 | 0.5654940 | CD8T | HLA-DPB1_RPS26 | 1112 | PP.H0.abf |\n", + "| 1924 | Crohn's Disease | monocyte_RPS26___HLA-DPB1__RPS26 | monocyte_RPS26 | 0.9525225 | monocyte | HLA-DPB1_RPS26 | 1112 | PP.H2.abf |\n", + "| 2322 | Inflammatory Bowel Disease | CD4T_RPS26___HLA-DPB1__RPS26 | CD4T_RPS26 | 0.8474188 | CD4T | HLA-DPB1_RPS26 | 1110 | PP.H2.abf |\n", + "| 2678 | Inflammatory Bowel Disease | CD8T_RPS26___HLA-DPB1__RPS26 | CD8T_RPS26 | 0.5830098 | CD8T | HLA-DPB1_RPS26 | 1110 | PP.H0.abf |\n", + "| 2988 | Inflammatory Bowel Disease | monocyte_RPS26___HLA-DPB1__RPS26 | monocyte_RPS26 | 0.9819645 | monocyte | HLA-DPB1_RPS26 | 1110 | PP.H2.abf |\n", + "| 3386 | Multiple Sclerosis | CD4T_RPS26___HLA-DPB1__RPS26 | CD4T_RPS26 | 0.5847966 | CD4T | HLA-DPB1_RPS26 | 58 | PP.H2.abf |\n", + "| 3742 | Multiple Sclerosis | CD8T_RPS26___HLA-DPB1__RPS26 | CD8T_RPS26 | 0.9170029 | CD8T | HLA-DPB1_RPS26 | 58 | PP.H0.abf |\n", + "| 4052 | Multiple Sclerosis | monocyte_RPS26___HLA-DPB1__RPS26 | monocyte_RPS26 | 0.9977439 | monocyte | HLA-DPB1_RPS26 | 58 | PP.H2.abf |\n", + "| 4450 | Rheumatoid Arthritis | CD4T_RPS26___HLA-DPB1__RPS26 | CD4T_RPS26 | 0.9147419 | CD4T | HLA-DPB1_RPS26 | 882 | PP.H4.abf |\n", + "| 4806 | Rheumatoid Arthritis | CD8T_RPS26___HLA-DPB1__RPS26 | CD8T_RPS26 | 0.7436868 | CD8T | HLA-DPB1_RPS26 | 882 | PP.H4.abf |\n", + "| 5116 | Rheumatoid Arthritis | monocyte_RPS26___HLA-DPB1__RPS26 | monocyte_RPS26 | 0.7753756 | monocyte | HLA-DPB1_RPS26 | 882 | PP.H4.abf |\n", + "| 5514 | Type_1_Diabetes | CD4T_RPS26___HLA-DPB1__RPS26 | CD4T_RPS26 | 0.7693859 | CD4T | HLA-DPB1_RPS26 | 1341 | PP.H3.abf |\n", + "| 5870 | Type_1_Diabetes | CD8T_RPS26___HLA-DPB1__RPS26 | CD8T_RPS26 | 0.4314387 | CD8T | HLA-DPB1_RPS26 | 1341 | PP.H3.abf |\n", + "| 6180 | Type_1_Diabetes | monocyte_RPS26___HLA-DPB1__RPS26 | monocyte_RPS26 | 0.9986931 | monocyte | HLA-DPB1_RPS26 | 1341 | PP.H3.abf |\n", + "| 6578 | White blood cell count | CD4T_RPS26___HLA-DPB1__RPS26 | CD4T_RPS26 | 0.8243175 | CD4T | HLA-DPB1_RPS26 | 1078 | PP.H2.abf |\n", + "| 6934 | White blood cell count | CD8T_RPS26___HLA-DPB1__RPS26 | CD8T_RPS26 | 0.5682385 | CD8T | HLA-DPB1_RPS26 | 1078 | PP.H0.abf |\n", + "| 7244 | White blood cell count | monocyte_RPS26___HLA-DPB1__RPS26 | monocyte_RPS26 | 0.9553423 | monocyte | HLA-DPB1_RPS26 | 1078 | PP.H2.abf |\n", + "\n" + ], + "text/plain": [ + " trait identifier egene \n", + "194 Asthma CD4T_RPS26___HLA-DPB1__RPS26 CD4T_RPS26 \n", + "550 Asthma CD8T_RPS26___HLA-DPB1__RPS26 CD8T_RPS26 \n", + "860 Asthma monocyte_RPS26___HLA-DPB1__RPS26 monocyte_RPS26\n", + "1258 Crohn's Disease CD4T_RPS26___HLA-DPB1__RPS26 CD4T_RPS26 \n", + "1614 Crohn's Disease CD8T_RPS26___HLA-DPB1__RPS26 CD8T_RPS26 \n", + "1924 Crohn's Disease monocyte_RPS26___HLA-DPB1__RPS26 monocyte_RPS26\n", + "2322 Inflammatory Bowel Disease CD4T_RPS26___HLA-DPB1__RPS26 CD4T_RPS26 \n", + "2678 Inflammatory Bowel Disease CD8T_RPS26___HLA-DPB1__RPS26 CD8T_RPS26 \n", + "2988 Inflammatory Bowel Disease monocyte_RPS26___HLA-DPB1__RPS26 monocyte_RPS26\n", + "3386 Multiple Sclerosis CD4T_RPS26___HLA-DPB1__RPS26 CD4T_RPS26 \n", + "3742 Multiple Sclerosis CD8T_RPS26___HLA-DPB1__RPS26 CD8T_RPS26 \n", + "4052 Multiple Sclerosis monocyte_RPS26___HLA-DPB1__RPS26 monocyte_RPS26\n", + "4450 Rheumatoid Arthritis CD4T_RPS26___HLA-DPB1__RPS26 CD4T_RPS26 \n", + "4806 Rheumatoid Arthritis CD8T_RPS26___HLA-DPB1__RPS26 CD8T_RPS26 \n", + "5116 Rheumatoid Arthritis monocyte_RPS26___HLA-DPB1__RPS26 monocyte_RPS26\n", + "5514 Type_1_Diabetes CD4T_RPS26___HLA-DPB1__RPS26 CD4T_RPS26 \n", + "5870 Type_1_Diabetes CD8T_RPS26___HLA-DPB1__RPS26 CD8T_RPS26 \n", + "6180 Type_1_Diabetes monocyte_RPS26___HLA-DPB1__RPS26 monocyte_RPS26\n", + "6578 White blood cell count CD4T_RPS26___HLA-DPB1__RPS26 CD4T_RPS26 \n", + "6934 White blood cell count CD8T_RPS26___HLA-DPB1__RPS26 CD8T_RPS26 \n", + "7244 White blood cell count monocyte_RPS26___HLA-DPB1__RPS26 monocyte_RPS26\n", + " value cell_type gene overlapping_snps parameter\n", + "194 0.5988243 CD4T HLA-DPB1_RPS26 381 PP.H4.abf\n", + "550 0.4321920 CD8T HLA-DPB1_RPS26 381 PP.H0.abf\n", + "860 0.6660012 monocyte HLA-DPB1_RPS26 381 PP.H4.abf\n", + "1258 0.8220487 CD4T HLA-DPB1_RPS26 1112 PP.H2.abf\n", + "1614 0.5654940 CD8T HLA-DPB1_RPS26 1112 PP.H0.abf\n", + "1924 0.9525225 monocyte HLA-DPB1_RPS26 1112 PP.H2.abf\n", + "2322 0.8474188 CD4T HLA-DPB1_RPS26 1110 PP.H2.abf\n", + "2678 0.5830098 CD8T HLA-DPB1_RPS26 1110 PP.H0.abf\n", + "2988 0.9819645 monocyte HLA-DPB1_RPS26 1110 PP.H2.abf\n", + "3386 0.5847966 CD4T HLA-DPB1_RPS26 58 PP.H2.abf\n", + "3742 0.9170029 CD8T HLA-DPB1_RPS26 58 PP.H0.abf\n", + "4052 0.9977439 monocyte HLA-DPB1_RPS26 58 PP.H2.abf\n", + "4450 0.9147419 CD4T HLA-DPB1_RPS26 882 PP.H4.abf\n", + "4806 0.7436868 CD8T HLA-DPB1_RPS26 882 PP.H4.abf\n", + "5116 0.7753756 monocyte HLA-DPB1_RPS26 882 PP.H4.abf\n", + "5514 0.7693859 CD4T HLA-DPB1_RPS26 1341 PP.H3.abf\n", + "5870 0.4314387 CD8T HLA-DPB1_RPS26 1341 PP.H3.abf\n", + "6180 0.9986931 monocyte HLA-DPB1_RPS26 1341 PP.H3.abf\n", + "6578 0.8243175 CD4T HLA-DPB1_RPS26 1078 PP.H2.abf\n", + "6934 0.5682385 CD8T HLA-DPB1_RPS26 1078 PP.H0.abf\n", + "7244 0.9553423 monocyte HLA-DPB1_RPS26 1078 PP.H2.abf" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "coeqtl_summary_filtered[coeqtl_summary_filtered$gene == 'HLA-DPB1_RPS26',]" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "id": "83e33803-4c43-41b2-9afe-11c33feb3eaa", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A grouped_df: 141 × 2
genen
<chr><int>
AIF1_RPS26 2
C12orf75_RPS262
COX7C_RPS26 2
NACA_RPS26 2
RPL11_RPS26 2
RPL4_RPS26 2
RPS10_RPS26 2
RPS24_RPS26 2
RPS26_TIGIT 2
RPS26_TOMM7 2
RPS26_UBB 2
ABHD14B_RPS26 1
ABLIM1_RPS26 1
ACTB_RPS26 1
ADAM19_RPS26 1
AKAP13_RPS26 1
ANXA2_RPS26 1
APOBEC3G_RPS261
ARPC2_RPS26 1
ATP2B1_RPS26 1
ATP2B4_RPS26 1
ATP5A1_RPS26 1
B2M_RPS26 1
BHLHE40_RPS26 1
C12orf57_RPS261
C1orf228_RPS261
CALM1_RPS26 1
CCL4_RPS26 1
CD48_RPS26 1
CD55_RPS26 1
RPS26_RPS27A 1
RPS26_RPS3 1
RPS26_RPS4X 1
RPS26_RPS5 1
RPS26_RPS9 1
RPS26_RPSA 1
RPS26_S100A11 1
RPS26_S100A6 1
RPS26_SBDS 1
RPS26_SERF2 1
RPS26_SH3YL1 1
RPS26_SLA 1
RPS26_SMDT1 1
RPS26_SRSF2 1
RPS26_SRSF7 1
RPS26_SYNE1 1
RPS26_TCF7 1
RPS26_TESPA1 1
RPS26_TKT 1
RPS26_TMA7 1
RPS26_TMSB10 1
RPS26_TNFAIP2 1
RPS26_TNFRSF1B1
RPS26_TUBA4A 1
RPS26_TXN 1
RPS26_UBA52 1
RPS26_UQCRB 1
RPS26_YBX1 1
RPS26_YWHAB 1
RPS26_ZEB2 1
\n" + ], + "text/latex": [ + "A grouped\\_df: 141 × 2\n", + "\\begin{tabular}{ll}\n", + " gene & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t AIF1\\_RPS26 & 2\\\\\n", + "\t C12orf75\\_RPS26 & 2\\\\\n", + "\t COX7C\\_RPS26 & 2\\\\\n", + "\t NACA\\_RPS26 & 2\\\\\n", + "\t RPL11\\_RPS26 & 2\\\\\n", + "\t RPL4\\_RPS26 & 2\\\\\n", + "\t RPS10\\_RPS26 & 2\\\\\n", + "\t RPS24\\_RPS26 & 2\\\\\n", + "\t RPS26\\_TIGIT & 2\\\\\n", + "\t RPS26\\_TOMM7 & 2\\\\\n", + "\t RPS26\\_UBB & 2\\\\\n", + "\t ABHD14B\\_RPS26 & 1\\\\\n", + "\t ABLIM1\\_RPS26 & 1\\\\\n", + "\t ACTB\\_RPS26 & 1\\\\\n", + "\t ADAM19\\_RPS26 & 1\\\\\n", + "\t AKAP13\\_RPS26 & 1\\\\\n", + "\t ANXA2\\_RPS26 & 1\\\\\n", + "\t APOBEC3G\\_RPS26 & 1\\\\\n", + "\t ARPC2\\_RPS26 & 1\\\\\n", + "\t ATP2B1\\_RPS26 & 1\\\\\n", + "\t ATP2B4\\_RPS26 & 1\\\\\n", + "\t ATP5A1\\_RPS26 & 1\\\\\n", + "\t B2M\\_RPS26 & 1\\\\\n", + "\t BHLHE40\\_RPS26 & 1\\\\\n", + "\t C12orf57\\_RPS26 & 1\\\\\n", + "\t C1orf228\\_RPS26 & 1\\\\\n", + "\t CALM1\\_RPS26 & 1\\\\\n", + "\t CCL4\\_RPS26 & 1\\\\\n", + "\t CD48\\_RPS26 & 1\\\\\n", + "\t CD55\\_RPS26 & 1\\\\\n", + "\t ⋮ & ⋮\\\\\n", + "\t RPS26\\_RPS27A & 1\\\\\n", + "\t RPS26\\_RPS3 & 1\\\\\n", + "\t RPS26\\_RPS4X & 1\\\\\n", + "\t RPS26\\_RPS5 & 1\\\\\n", + "\t RPS26\\_RPS9 & 1\\\\\n", + "\t RPS26\\_RPSA & 1\\\\\n", + "\t RPS26\\_S100A11 & 1\\\\\n", + "\t RPS26\\_S100A6 & 1\\\\\n", + "\t RPS26\\_SBDS & 1\\\\\n", + "\t RPS26\\_SERF2 & 1\\\\\n", + "\t RPS26\\_SH3YL1 & 1\\\\\n", + "\t RPS26\\_SLA & 1\\\\\n", + "\t RPS26\\_SMDT1 & 1\\\\\n", + "\t RPS26\\_SRSF2 & 1\\\\\n", + "\t RPS26\\_SRSF7 & 1\\\\\n", + "\t RPS26\\_SYNE1 & 1\\\\\n", + "\t RPS26\\_TCF7 & 1\\\\\n", + "\t RPS26\\_TESPA1 & 1\\\\\n", + "\t RPS26\\_TKT & 1\\\\\n", + "\t RPS26\\_TMA7 & 1\\\\\n", + "\t RPS26\\_TMSB10 & 1\\\\\n", + "\t RPS26\\_TNFAIP2 & 1\\\\\n", + "\t RPS26\\_TNFRSF1B & 1\\\\\n", + "\t RPS26\\_TUBA4A & 1\\\\\n", + "\t RPS26\\_TXN & 1\\\\\n", + "\t RPS26\\_UBA52 & 1\\\\\n", + "\t RPS26\\_UQCRB & 1\\\\\n", + "\t RPS26\\_YBX1 & 1\\\\\n", + "\t RPS26\\_YWHAB & 1\\\\\n", + "\t RPS26\\_ZEB2 & 1\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 141 × 2\n", + "\n", + "| gene <chr> | n <int> |\n", + "|---|---|\n", + "| AIF1_RPS26 | 2 |\n", + "| C12orf75_RPS26 | 2 |\n", + "| COX7C_RPS26 | 2 |\n", + "| NACA_RPS26 | 2 |\n", + "| RPL11_RPS26 | 2 |\n", + "| RPL4_RPS26 | 2 |\n", + "| RPS10_RPS26 | 2 |\n", + "| RPS24_RPS26 | 2 |\n", + "| RPS26_TIGIT | 2 |\n", + "| RPS26_TOMM7 | 2 |\n", + "| RPS26_UBB | 2 |\n", + "| ABHD14B_RPS26 | 1 |\n", + "| ABLIM1_RPS26 | 1 |\n", + "| ACTB_RPS26 | 1 |\n", + "| ADAM19_RPS26 | 1 |\n", + "| AKAP13_RPS26 | 1 |\n", + "| ANXA2_RPS26 | 1 |\n", + "| APOBEC3G_RPS26 | 1 |\n", + "| ARPC2_RPS26 | 1 |\n", + "| ATP2B1_RPS26 | 1 |\n", + "| ATP2B4_RPS26 | 1 |\n", + "| ATP5A1_RPS26 | 1 |\n", + "| B2M_RPS26 | 1 |\n", + "| BHLHE40_RPS26 | 1 |\n", + "| C12orf57_RPS26 | 1 |\n", + "| C1orf228_RPS26 | 1 |\n", + "| CALM1_RPS26 | 1 |\n", + "| CCL4_RPS26 | 1 |\n", + "| CD48_RPS26 | 1 |\n", + "| CD55_RPS26 | 1 |\n", + "| ⋮ | ⋮ |\n", + "| RPS26_RPS27A | 1 |\n", + "| RPS26_RPS3 | 1 |\n", + "| RPS26_RPS4X | 1 |\n", + "| RPS26_RPS5 | 1 |\n", + "| RPS26_RPS9 | 1 |\n", + "| RPS26_RPSA | 1 |\n", + "| RPS26_S100A11 | 1 |\n", + "| RPS26_S100A6 | 1 |\n", + "| RPS26_SBDS | 1 |\n", + "| RPS26_SERF2 | 1 |\n", + "| RPS26_SH3YL1 | 1 |\n", + "| RPS26_SLA | 1 |\n", + "| RPS26_SMDT1 | 1 |\n", + "| RPS26_SRSF2 | 1 |\n", + "| RPS26_SRSF7 | 1 |\n", + "| RPS26_SYNE1 | 1 |\n", + "| RPS26_TCF7 | 1 |\n", + "| RPS26_TESPA1 | 1 |\n", + "| RPS26_TKT | 1 |\n", + "| RPS26_TMA7 | 1 |\n", + "| RPS26_TMSB10 | 1 |\n", + "| RPS26_TNFAIP2 | 1 |\n", + "| RPS26_TNFRSF1B | 1 |\n", + "| RPS26_TUBA4A | 1 |\n", + "| RPS26_TXN | 1 |\n", + "| RPS26_UBA52 | 1 |\n", + "| RPS26_UQCRB | 1 |\n", + "| RPS26_YBX1 | 1 |\n", + "| RPS26_YWHAB | 1 |\n", + "| RPS26_ZEB2 | 1 |\n", + "\n" + ], + "text/plain": [ + " gene n\n", + "1 AIF1_RPS26 2\n", + "2 C12orf75_RPS26 2\n", + "3 COX7C_RPS26 2\n", + "4 NACA_RPS26 2\n", + "5 RPL11_RPS26 2\n", + "6 RPL4_RPS26 2\n", + "7 RPS10_RPS26 2\n", + "8 RPS24_RPS26 2\n", + "9 RPS26_TIGIT 2\n", + "10 RPS26_TOMM7 2\n", + "11 RPS26_UBB 2\n", + "12 ABHD14B_RPS26 1\n", + "13 ABLIM1_RPS26 1\n", + "14 ACTB_RPS26 1\n", + "15 ADAM19_RPS26 1\n", + "16 AKAP13_RPS26 1\n", + "17 ANXA2_RPS26 1\n", + "18 APOBEC3G_RPS26 1\n", + "19 ARPC2_RPS26 1\n", + "20 ATP2B1_RPS26 1\n", + "21 ATP2B4_RPS26 1\n", + "22 ATP5A1_RPS26 1\n", + "23 B2M_RPS26 1\n", + "24 BHLHE40_RPS26 1\n", + "25 C12orf57_RPS26 1\n", + "26 C1orf228_RPS26 1\n", + "27 CALM1_RPS26 1\n", + "28 CCL4_RPS26 1\n", + "29 CD48_RPS26 1\n", + "30 CD55_RPS26 1\n", + "⋮ ⋮ ⋮\n", + "112 RPS26_RPS27A 1\n", + "113 RPS26_RPS3 1\n", + "114 RPS26_RPS4X 1\n", + "115 RPS26_RPS5 1\n", + "116 RPS26_RPS9 1\n", + "117 RPS26_RPSA 1\n", + "118 RPS26_S100A11 1\n", + "119 RPS26_S100A6 1\n", + "120 RPS26_SBDS 1\n", + "121 RPS26_SERF2 1\n", + "122 RPS26_SH3YL1 1\n", + "123 RPS26_SLA 1\n", + "124 RPS26_SMDT1 1\n", + "125 RPS26_SRSF2 1\n", + "126 RPS26_SRSF7 1\n", + "127 RPS26_SYNE1 1\n", + "128 RPS26_TCF7 1\n", + "129 RPS26_TESPA1 1\n", + "130 RPS26_TKT 1\n", + "131 RPS26_TMA7 1\n", + "132 RPS26_TMSB10 1\n", + "133 RPS26_TNFAIP2 1\n", + "134 RPS26_TNFRSF1B 1\n", + "135 RPS26_TUBA4A 1\n", + "136 RPS26_TXN 1\n", + "137 RPS26_UBA52 1\n", + "138 RPS26_UQCRB 1\n", + "139 RPS26_YBX1 1\n", + "140 RPS26_YWHAB 1\n", + "141 RPS26_ZEB2 1" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "analyze[order(analyze$n, decreasing = TRUE),]" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "id": "c63c24c3-091a-4fde-ace2-60db188bf889", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "141" + ], + "text/latex": [ + "141" + ], + "text/markdown": [ + "141" + ], + "text/plain": [ + "[1] 141" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(unique(coloc_examples_rheomatoid_arthritis$gene))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e881916b-4910-47dd-85db-e5827ca216fc", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 127, + "id": "c0d63942-e313-4d77-b2ec-36a1e9ae7857", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "152" + ], + "text/latex": [ + "152" + ], + "text/markdown": [ + "152" + ], + "text/plain": [ + "[1] 152" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(coloc_examples_rheomatoid_arthritis %>% group_by(cell_type, gene) %>% count())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0a2253b6-6e05-4d98-98da-336a9eb2fc4d", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 128, + "id": "a0327199-e95c-4ddd-9cbb-32935629a723", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 8
traitidentifieregenevaluecell_typegeneoverlapping_snpsparameter
<chr><chr><chr><dbl><chr><chr><dbl><chr>
5255Rheumatoid ArthritisNK_RPS26___RPL23__RPS26 NK_RPS26 0.9777943NK RPL23_RPS26 879PP.H4.abf
4839Rheumatoid ArthritisCD8T_RPS26___NACA__RPS26 CD8T_RPS260.9713088CD8TNACA_RPS26 882PP.H4.abf
4995Rheumatoid ArthritisCD8T_RPS26___RPS26__UBA52 CD8T_RPS260.9687585CD8TRPS26_UBA52 882PP.H4.abf
5249Rheumatoid ArthritisNK_RPS26___RPL15__RPS26 NK_RPS26 0.9687209NK RPL15_RPS26 879PP.H4.abf
4764Rheumatoid ArthritisCD8T_RPS26___DNAJB6__RPS26CD8T_RPS260.9685069CD8TDNAJB6_RPS26882PP.H4.abf
4428Rheumatoid ArthritisCD4T_RPS26___FOXP3__RPS26 CD4T_RPS260.9669022CD4TFOXP3_RPS26 870PP.H4.abf
\n" + ], + "text/latex": [ + "A data.frame: 6 × 8\n", + "\\begin{tabular}{r|llllllll}\n", + " & trait & identifier & egene & value & cell\\_type & gene & overlapping\\_snps & parameter\\\\\n", + " & & & & & & & & \\\\\n", + "\\hline\n", + "\t5255 & Rheumatoid Arthritis & NK\\_RPS26\\_\\_\\_RPL23\\_\\_RPS26 & NK\\_RPS26 & 0.9777943 & NK & RPL23\\_RPS26 & 879 & PP.H4.abf\\\\\n", + "\t4839 & Rheumatoid Arthritis & CD8T\\_RPS26\\_\\_\\_NACA\\_\\_RPS26 & CD8T\\_RPS26 & 0.9713088 & CD8T & NACA\\_RPS26 & 882 & PP.H4.abf\\\\\n", + "\t4995 & Rheumatoid Arthritis & CD8T\\_RPS26\\_\\_\\_RPS26\\_\\_UBA52 & CD8T\\_RPS26 & 0.9687585 & CD8T & RPS26\\_UBA52 & 882 & PP.H4.abf\\\\\n", + "\t5249 & Rheumatoid Arthritis & NK\\_RPS26\\_\\_\\_RPL15\\_\\_RPS26 & NK\\_RPS26 & 0.9687209 & NK & RPL15\\_RPS26 & 879 & PP.H4.abf\\\\\n", + "\t4764 & Rheumatoid Arthritis & CD8T\\_RPS26\\_\\_\\_DNAJB6\\_\\_RPS26 & CD8T\\_RPS26 & 0.9685069 & CD8T & DNAJB6\\_RPS26 & 882 & PP.H4.abf\\\\\n", + "\t4428 & Rheumatoid Arthritis & CD4T\\_RPS26\\_\\_\\_FOXP3\\_\\_RPS26 & CD4T\\_RPS26 & 0.9669022 & CD4T & FOXP3\\_RPS26 & 870 & PP.H4.abf\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 6 × 8\n", + "\n", + "| | trait <chr> | identifier <chr> | egene <chr> | value <dbl> | cell_type <chr> | gene <chr> | overlapping_snps <dbl> | parameter <chr> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| 5255 | Rheumatoid Arthritis | NK_RPS26___RPL23__RPS26 | NK_RPS26 | 0.9777943 | NK | RPL23_RPS26 | 879 | PP.H4.abf |\n", + "| 4839 | Rheumatoid Arthritis | CD8T_RPS26___NACA__RPS26 | CD8T_RPS26 | 0.9713088 | CD8T | NACA_RPS26 | 882 | PP.H4.abf |\n", + "| 4995 | Rheumatoid Arthritis | CD8T_RPS26___RPS26__UBA52 | CD8T_RPS26 | 0.9687585 | CD8T | RPS26_UBA52 | 882 | PP.H4.abf |\n", + "| 5249 | Rheumatoid Arthritis | NK_RPS26___RPL15__RPS26 | NK_RPS26 | 0.9687209 | NK | RPL15_RPS26 | 879 | PP.H4.abf |\n", + "| 4764 | Rheumatoid Arthritis | CD8T_RPS26___DNAJB6__RPS26 | CD8T_RPS26 | 0.9685069 | CD8T | DNAJB6_RPS26 | 882 | PP.H4.abf |\n", + "| 4428 | Rheumatoid Arthritis | CD4T_RPS26___FOXP3__RPS26 | CD4T_RPS26 | 0.9669022 | CD4T | FOXP3_RPS26 | 870 | PP.H4.abf |\n", + "\n" + ], + "text/plain": [ + " trait identifier egene value \n", + "5255 Rheumatoid Arthritis NK_RPS26___RPL23__RPS26 NK_RPS26 0.9777943\n", + "4839 Rheumatoid Arthritis CD8T_RPS26___NACA__RPS26 CD8T_RPS26 0.9713088\n", + "4995 Rheumatoid Arthritis CD8T_RPS26___RPS26__UBA52 CD8T_RPS26 0.9687585\n", + "5249 Rheumatoid Arthritis NK_RPS26___RPL15__RPS26 NK_RPS26 0.9687209\n", + "4764 Rheumatoid Arthritis CD8T_RPS26___DNAJB6__RPS26 CD8T_RPS26 0.9685069\n", + "4428 Rheumatoid Arthritis CD4T_RPS26___FOXP3__RPS26 CD4T_RPS26 0.9669022\n", + " cell_type gene overlapping_snps parameter\n", + "5255 NK RPL23_RPS26 879 PP.H4.abf\n", + "4839 CD8T NACA_RPS26 882 PP.H4.abf\n", + "4995 CD8T RPS26_UBA52 882 PP.H4.abf\n", + "5249 NK RPL15_RPS26 879 PP.H4.abf\n", + "4764 CD8T DNAJB6_RPS26 882 PP.H4.abf\n", + "4428 CD4T FOXP3_RPS26 870 PP.H4.abf" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(coloc_examples_rheomatoid_arthritis[order(coloc_examples_rheomatoid_arthritis$value, decreasing = TRUE),],6)" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "id": "65a31f3a-08d3-49b7-b722-cf610b6c8639", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A grouped_df: 5 × 2
egenen
<chr><int>
B_RPS26 4
CD4T_RPS26 41
CD8T_RPS26 64
monocyte_RPS2615
NK_RPS26 28
\n" + ], + "text/latex": [ + "A grouped\\_df: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " egene & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t B\\_RPS26 & 4\\\\\n", + "\t CD4T\\_RPS26 & 41\\\\\n", + "\t CD8T\\_RPS26 & 64\\\\\n", + "\t monocyte\\_RPS26 & 15\\\\\n", + "\t NK\\_RPS26 & 28\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A grouped_df: 5 × 2\n", + "\n", + "| egene <chr> | n <int> |\n", + "|---|---|\n", + "| B_RPS26 | 4 |\n", + "| CD4T_RPS26 | 41 |\n", + "| CD8T_RPS26 | 64 |\n", + "| monocyte_RPS26 | 15 |\n", + "| NK_RPS26 | 28 |\n", + "\n" + ], + "text/plain": [ + " egene n \n", + "1 B_RPS26 4\n", + "2 CD4T_RPS26 41\n", + "3 CD8T_RPS26 64\n", + "4 monocyte_RPS26 15\n", + "5 NK_RPS26 28" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "coloc_examples_rheomatoid_arthritis %>% group_by(egene) %>% count()" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "id": "ec24cb29-579b-4e4f-b17b-4a2035091438", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "152" + ], + "text/latex": [ + "152" + ], + "text/markdown": [ + "152" + ], + "text/plain": [ + "[1] 152" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(coloc_examples_rheomatoid_arthritis)" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "id": "30b932e7-cbb0-423d-b183-ce4e04d4e7bb", + "metadata": {}, + "outputs": [], + "source": [ + "### Mapp positions for coegenes" + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "id": "5ce1bbeb-d244-44f4-870d-ab98915db9b5", + "metadata": {}, + "outputs": [], + "source": [ + "coloc_examples_rheomatoid_arthritis$cogene = str_replace(coloc_examples_rheomatoid_arthritis$gene, 'RPS26', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "id": "c2f1cb78-40a2-47da-8987-920eef2b7774", + "metadata": {}, + "outputs": [], + "source": [ + "coloc_examples_rheomatoid_arthritis$cogene = str_replace(coloc_examples_rheomatoid_arthritis$cogene, '__', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "id": "746db8c7-a868-474c-900c-c93c75701808", + "metadata": {}, + "outputs": [], + "source": [ + "coloc_examples_rheomatoid_arthritis$cogene = str_replace(coloc_examples_rheomatoid_arthritis$cogene, '_', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "id": "0e0962a6-9bf5-4bfa-a04e-c723e96e39be", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. 'RPL11'
  2. 'RPL35A'
  3. 'RPL41'
  4. 'RPLP2'
  5. 'ABHD14B'
  6. 'ADAM19'
  7. 'AIF1'
  8. 'AKAP13'
  9. 'ATP2B1'
  10. 'ATP2B4'
  11. 'C12orf75'
  12. 'CD58'
  13. 'CHCHD2'
  14. 'COX7C'
  15. 'CST7'
  16. 'CYBA'
  17. 'EML4'
  18. 'ENTPD1'
  19. 'FOXP3'
  20. 'FTH1'
  21. 'GALM'
  22. 'GK'
  23. 'H3F3A'
  24. 'HLA-DPB1'
  25. 'HLA-DRA'
  26. 'IGBP1'
  27. 'ISG20'
  28. 'LINC00493'
  29. 'LSM5'
  30. 'MIAT'
  31. 'MIR4435-1HG'
  32. 'MT2A'
  33. 'PRMT2'
  34. 'RGS1'
  35. 'RNF19A'
  36. 'SBDS'
  37. 'SERF2'
  38. 'TCF7'
  39. 'TIGIT'
  40. 'TMA7'
  41. 'TMSB10'
  42. 'TNFRSF1B'
  43. 'UBB'
  44. 'YBX1'
  45. 'YWHAB'
  46. 'ABLIM1'
  47. 'ANXA2'
  48. 'APOBEC3G'
  49. 'BHLHE40'
  50. 'C12orf57'
  51. 'C1orf228'
  52. 'CALM1'
  53. 'CCL4'
  54. 'CD55'
  55. 'CD81'
  56. 'CD8B'
  57. 'CFL1'
  58. 'CMC1'
  59. 'DNAJB6'
  60. 'EEF1D'
  61. 'EEF2'
  62. 'EIF1'
  63. 'EIF3E'
  64. 'EIF3K'
  65. 'EIF4B'
  66. 'FAIM3'
  67. 'FLNA'
  68. 'FOXP1'
  69. 'FTL'
  70. 'GLTSCR2'
  71. 'ID2'
  72. 'KLRB1'
  73. 'NACA'
  74. 'NDFIP1'
  75. 'NEAT1'
  76. 'NPM1'
  77. 'PFDN5'
  78. 'PPA1'
  79. 'PPP2R5C'
  80. 'PTPN7'
  81. 'RHOH'
  82. 'RIC3'
  83. 'RPL17'
  84. 'RPL24'
  85. 'RPL39'
  86. 'RPL4'
  87. 'RPS10'
  88. 'RPS11'
  89. 'RPS24'
  90. 'RPS4X'
  91. 'S100A6'
  92. 'SH3YL1'
  93. 'SLA'
  94. 'SMDT1'
  95. 'SRSF2'
  96. 'SRSF7'
  97. 'SYNE1'
  98. 'TESPA1'
  99. 'TOMM7'
  100. 'TUBA4A'
  101. 'TXN'
  102. 'UBA52'
  103. 'UQCRB'
  104. 'ZEB2'
  105. 'ATP5A1'
  106. 'CD48'
  107. 'EIF3L'
  108. 'FAU'
  109. 'GPX1'
  110. 'IPO7'
  111. 'QARS'
  112. 'RNASE6'
  113. 'RPL7A'
  114. 'RPS9'
  115. 'S100A11'
  116. 'TKT'
  117. 'TNFAIP2'
  118. 'ACTB'
  119. 'ARPC2'
  120. 'B2M'
  121. 'EEF1B2'
  122. 'GNB2L1'
  123. 'KLRC1'
  124. 'RPL15'
  125. 'RPL18'
  126. 'RPL23'
  127. 'RPL29'
  128. 'RPL30'
  129. 'RPL34'
  130. 'RPL35'
  131. 'RPL37'
  132. 'RPL37A'
  133. 'RPL38'
  134. 'RPL6'
  135. 'RPLP0'
  136. 'RPS16'
  137. 'RPS20'
  138. 'RPS27A'
  139. 'RPS3'
  140. 'RPS5'
  141. 'RPSA'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'RPL11'\n", + "\\item 'RPL35A'\n", + "\\item 'RPL41'\n", + "\\item 'RPLP2'\n", + "\\item 'ABHD14B'\n", + "\\item 'ADAM19'\n", + "\\item 'AIF1'\n", + "\\item 'AKAP13'\n", + "\\item 'ATP2B1'\n", + "\\item 'ATP2B4'\n", + "\\item 'C12orf75'\n", + "\\item 'CD58'\n", + "\\item 'CHCHD2'\n", + "\\item 'COX7C'\n", + "\\item 'CST7'\n", + "\\item 'CYBA'\n", + "\\item 'EML4'\n", + "\\item 'ENTPD1'\n", + "\\item 'FOXP3'\n", + "\\item 'FTH1'\n", + "\\item 'GALM'\n", + "\\item 'GK'\n", + "\\item 'H3F3A'\n", + "\\item 'HLA-DPB1'\n", + "\\item 'HLA-DRA'\n", + "\\item 'IGBP1'\n", + "\\item 'ISG20'\n", + "\\item 'LINC00493'\n", + "\\item 'LSM5'\n", + "\\item 'MIAT'\n", + "\\item 'MIR4435-1HG'\n", + "\\item 'MT2A'\n", + "\\item 'PRMT2'\n", + "\\item 'RGS1'\n", + "\\item 'RNF19A'\n", + "\\item 'SBDS'\n", + "\\item 'SERF2'\n", + "\\item 'TCF7'\n", + "\\item 'TIGIT'\n", + "\\item 'TMA7'\n", + "\\item 'TMSB10'\n", + "\\item 'TNFRSF1B'\n", + "\\item 'UBB'\n", + "\\item 'YBX1'\n", + "\\item 'YWHAB'\n", + "\\item 'ABLIM1'\n", + "\\item 'ANXA2'\n", + "\\item 'APOBEC3G'\n", + "\\item 'BHLHE40'\n", + "\\item 'C12orf57'\n", + "\\item 'C1orf228'\n", + "\\item 'CALM1'\n", + "\\item 'CCL4'\n", + "\\item 'CD55'\n", + "\\item 'CD81'\n", + "\\item 'CD8B'\n", + "\\item 'CFL1'\n", + "\\item 'CMC1'\n", + "\\item 'DNAJB6'\n", + "\\item 'EEF1D'\n", + "\\item 'EEF2'\n", + "\\item 'EIF1'\n", + "\\item 'EIF3E'\n", + "\\item 'EIF3K'\n", + "\\item 'EIF4B'\n", + "\\item 'FAIM3'\n", + "\\item 'FLNA'\n", + "\\item 'FOXP1'\n", + "\\item 'FTL'\n", + "\\item 'GLTSCR2'\n", + "\\item 'ID2'\n", + "\\item 'KLRB1'\n", + "\\item 'NACA'\n", + "\\item 'NDFIP1'\n", + "\\item 'NEAT1'\n", + "\\item 'NPM1'\n", + "\\item 'PFDN5'\n", + "\\item 'PPA1'\n", + "\\item 'PPP2R5C'\n", + "\\item 'PTPN7'\n", + "\\item 'RHOH'\n", + "\\item 'RIC3'\n", + "\\item 'RPL17'\n", + "\\item 'RPL24'\n", + "\\item 'RPL39'\n", + "\\item 'RPL4'\n", + "\\item 'RPS10'\n", + "\\item 'RPS11'\n", + "\\item 'RPS24'\n", + "\\item 'RPS4X'\n", + "\\item 'S100A6'\n", + "\\item 'SH3YL1'\n", + "\\item 'SLA'\n", + "\\item 'SMDT1'\n", + "\\item 'SRSF2'\n", + "\\item 'SRSF7'\n", + "\\item 'SYNE1'\n", + "\\item 'TESPA1'\n", + "\\item 'TOMM7'\n", + "\\item 'TUBA4A'\n", + "\\item 'TXN'\n", + "\\item 'UBA52'\n", + "\\item 'UQCRB'\n", + "\\item 'ZEB2'\n", + "\\item 'ATP5A1'\n", + "\\item 'CD48'\n", + "\\item 'EIF3L'\n", + "\\item 'FAU'\n", + "\\item 'GPX1'\n", + "\\item 'IPO7'\n", + "\\item 'QARS'\n", + "\\item 'RNASE6'\n", + "\\item 'RPL7A'\n", + "\\item 'RPS9'\n", + "\\item 'S100A11'\n", + "\\item 'TKT'\n", + "\\item 'TNFAIP2'\n", + "\\item 'ACTB'\n", + "\\item 'ARPC2'\n", + "\\item 'B2M'\n", + "\\item 'EEF1B2'\n", + "\\item 'GNB2L1'\n", + "\\item 'KLRC1'\n", + "\\item 'RPL15'\n", + "\\item 'RPL18'\n", + "\\item 'RPL23'\n", + "\\item 'RPL29'\n", + "\\item 'RPL30'\n", + "\\item 'RPL34'\n", + "\\item 'RPL35'\n", + "\\item 'RPL37'\n", + "\\item 'RPL37A'\n", + "\\item 'RPL38'\n", + "\\item 'RPL6'\n", + "\\item 'RPLP0'\n", + "\\item 'RPS16'\n", + "\\item 'RPS20'\n", + "\\item 'RPS27A'\n", + "\\item 'RPS3'\n", + "\\item 'RPS5'\n", + "\\item 'RPSA'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'RPL11'\n", + "2. 'RPL35A'\n", + "3. 'RPL41'\n", + "4. 'RPLP2'\n", + "5. 'ABHD14B'\n", + "6. 'ADAM19'\n", + "7. 'AIF1'\n", + "8. 'AKAP13'\n", + "9. 'ATP2B1'\n", + "10. 'ATP2B4'\n", + "11. 'C12orf75'\n", + "12. 'CD58'\n", + "13. 'CHCHD2'\n", + "14. 'COX7C'\n", + "15. 'CST7'\n", + "16. 'CYBA'\n", + "17. 'EML4'\n", + "18. 'ENTPD1'\n", + "19. 'FOXP3'\n", + "20. 'FTH1'\n", + "21. 'GALM'\n", + "22. 'GK'\n", + "23. 'H3F3A'\n", + "24. 'HLA-DPB1'\n", + "25. 'HLA-DRA'\n", + "26. 'IGBP1'\n", + "27. 'ISG20'\n", + "28. 'LINC00493'\n", + "29. 'LSM5'\n", + "30. 'MIAT'\n", + "31. 'MIR4435-1HG'\n", + "32. 'MT2A'\n", + "33. 'PRMT2'\n", + "34. 'RGS1'\n", + "35. 'RNF19A'\n", + "36. 'SBDS'\n", + "37. 'SERF2'\n", + "38. 'TCF7'\n", + "39. 'TIGIT'\n", + "40. 'TMA7'\n", + "41. 'TMSB10'\n", + "42. 'TNFRSF1B'\n", + "43. 'UBB'\n", + "44. 'YBX1'\n", + "45. 'YWHAB'\n", + "46. 'ABLIM1'\n", + "47. 'ANXA2'\n", + "48. 'APOBEC3G'\n", + "49. 'BHLHE40'\n", + "50. 'C12orf57'\n", + "51. 'C1orf228'\n", + "52. 'CALM1'\n", + "53. 'CCL4'\n", + "54. 'CD55'\n", + "55. 'CD81'\n", + "56. 'CD8B'\n", + "57. 'CFL1'\n", + "58. 'CMC1'\n", + "59. 'DNAJB6'\n", + "60. 'EEF1D'\n", + "61. 'EEF2'\n", + "62. 'EIF1'\n", + "63. 'EIF3E'\n", + "64. 'EIF3K'\n", + "65. 'EIF4B'\n", + "66. 'FAIM3'\n", + "67. 'FLNA'\n", + "68. 'FOXP1'\n", + "69. 'FTL'\n", + "70. 'GLTSCR2'\n", + "71. 'ID2'\n", + "72. 'KLRB1'\n", + "73. 'NACA'\n", + "74. 'NDFIP1'\n", + "75. 'NEAT1'\n", + "76. 'NPM1'\n", + "77. 'PFDN5'\n", + "78. 'PPA1'\n", + "79. 'PPP2R5C'\n", + "80. 'PTPN7'\n", + "81. 'RHOH'\n", + "82. 'RIC3'\n", + "83. 'RPL17'\n", + "84. 'RPL24'\n", + "85. 'RPL39'\n", + "86. 'RPL4'\n", + "87. 'RPS10'\n", + "88. 'RPS11'\n", + "89. 'RPS24'\n", + "90. 'RPS4X'\n", + "91. 'S100A6'\n", + "92. 'SH3YL1'\n", + "93. 'SLA'\n", + "94. 'SMDT1'\n", + "95. 'SRSF2'\n", + "96. 'SRSF7'\n", + "97. 'SYNE1'\n", + "98. 'TESPA1'\n", + "99. 'TOMM7'\n", + "100. 'TUBA4A'\n", + "101. 'TXN'\n", + "102. 'UBA52'\n", + "103. 'UQCRB'\n", + "104. 'ZEB2'\n", + "105. 'ATP5A1'\n", + "106. 'CD48'\n", + "107. 'EIF3L'\n", + "108. 'FAU'\n", + "109. 'GPX1'\n", + "110. 'IPO7'\n", + "111. 'QARS'\n", + "112. 'RNASE6'\n", + "113. 'RPL7A'\n", + "114. 'RPS9'\n", + "115. 'S100A11'\n", + "116. 'TKT'\n", + "117. 'TNFAIP2'\n", + "118. 'ACTB'\n", + "119. 'ARPC2'\n", + "120. 'B2M'\n", + "121. 'EEF1B2'\n", + "122. 'GNB2L1'\n", + "123. 'KLRC1'\n", + "124. 'RPL15'\n", + "125. 'RPL18'\n", + "126. 'RPL23'\n", + "127. 'RPL29'\n", + "128. 'RPL30'\n", + "129. 'RPL34'\n", + "130. 'RPL35'\n", + "131. 'RPL37'\n", + "132. 'RPL37A'\n", + "133. 'RPL38'\n", + "134. 'RPL6'\n", + "135. 'RPLP0'\n", + "136. 'RPS16'\n", + "137. 'RPS20'\n", + "138. 'RPS27A'\n", + "139. 'RPS3'\n", + "140. 'RPS5'\n", + "141. 'RPSA'\n", + "\n", + "\n" + ], + "text/plain": [ + " [1] \"RPL11\" \"RPL35A\" \"RPL41\" \"RPLP2\" \"ABHD14B\" \n", + " [6] \"ADAM19\" \"AIF1\" \"AKAP13\" \"ATP2B1\" \"ATP2B4\" \n", + " [11] \"C12orf75\" \"CD58\" \"CHCHD2\" \"COX7C\" \"CST7\" \n", + " [16] \"CYBA\" \"EML4\" \"ENTPD1\" \"FOXP3\" \"FTH1\" \n", + " [21] \"GALM\" \"GK\" \"H3F3A\" \"HLA-DPB1\" \"HLA-DRA\" \n", + " [26] \"IGBP1\" \"ISG20\" \"LINC00493\" \"LSM5\" \"MIAT\" \n", + " [31] \"MIR4435-1HG\" \"MT2A\" \"PRMT2\" \"RGS1\" \"RNF19A\" \n", + " [36] \"SBDS\" \"SERF2\" \"TCF7\" \"TIGIT\" \"TMA7\" \n", + " [41] \"TMSB10\" \"TNFRSF1B\" \"UBB\" \"YBX1\" \"YWHAB\" \n", + " [46] \"ABLIM1\" \"ANXA2\" \"APOBEC3G\" \"BHLHE40\" \"C12orf57\" \n", + " [51] \"C1orf228\" \"CALM1\" \"CCL4\" \"CD55\" \"CD81\" \n", + " [56] \"CD8B\" \"CFL1\" \"CMC1\" \"DNAJB6\" \"EEF1D\" \n", + " [61] \"EEF2\" \"EIF1\" \"EIF3E\" \"EIF3K\" \"EIF4B\" \n", + " [66] \"FAIM3\" \"FLNA\" \"FOXP1\" \"FTL\" \"GLTSCR2\" \n", + " [71] \"ID2\" \"KLRB1\" \"NACA\" \"NDFIP1\" \"NEAT1\" \n", + " [76] \"NPM1\" \"PFDN5\" \"PPA1\" \"PPP2R5C\" \"PTPN7\" \n", + " [81] \"RHOH\" \"RIC3\" \"RPL17\" \"RPL24\" \"RPL39\" \n", + " [86] \"RPL4\" \"RPS10\" \"RPS11\" \"RPS24\" \"RPS4X\" \n", + " [91] \"S100A6\" \"SH3YL1\" \"SLA\" \"SMDT1\" \"SRSF2\" \n", + " [96] \"SRSF7\" \"SYNE1\" \"TESPA1\" \"TOMM7\" \"TUBA4A\" \n", + "[101] \"TXN\" \"UBA52\" \"UQCRB\" \"ZEB2\" \"ATP5A1\" \n", + "[106] \"CD48\" \"EIF3L\" \"FAU\" \"GPX1\" \"IPO7\" \n", + "[111] \"QARS\" \"RNASE6\" \"RPL7A\" \"RPS9\" \"S100A11\" \n", + "[116] \"TKT\" \"TNFAIP2\" \"ACTB\" \"ARPC2\" \"B2M\" \n", + "[121] \"EEF1B2\" \"GNB2L1\" \"KLRC1\" \"RPL15\" \"RPL18\" \n", + "[126] \"RPL23\" \"RPL29\" \"RPL30\" \"RPL34\" \"RPL35\" \n", + "[131] \"RPL37\" \"RPL37A\" \"RPL38\" \"RPL6\" \"RPLP0\" \n", + "[136] \"RPS16\" \"RPS20\" \"RPS27A\" \"RPS3\" \"RPS5\" \n", + "[141] \"RPSA\" " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(coloc_examples_rheomatoid_arthritis$cogene)" + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "id": "2d8a881d-640d-4d98-8b42-2aa34b9c4d2d", + "metadata": {}, + "outputs": [], + "source": [ + "### Retrieve gene positions an map to the data" + ] + }, + { + "cell_type": "code", + "execution_count": 137, + "id": "3fbadfc4-a9cf-40b7-956a-ebc825d536f4", + "metadata": {}, + "outputs": [], + "source": [ + "mart = useEnsembl(biomart = \"genes\", dataset = \"hsapiens_gene_ensembl\")" + ] + }, + { + "cell_type": "code", + "execution_count": 138, + "id": "3b843643-ee9d-43e1-97f6-6c8aab485c7f", + "metadata": {}, + "outputs": [], + "source": [ + "geneSet = unique(coloc_examples_rheomatoid_arthritis$cogene)" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "id": "0f5db24f-2b50-4f0a-a46a-0d3ef60fc4c5", + "metadata": {}, + "outputs": [], + "source": [ + "resultTable = biomaRt::getBM(attributes = c(\"start_position\",\"end_position\",\"description\", 'hgnc_symbol', 'chromosome_name'), \n", + " filters = \"hgnc_symbol\", \n", + " values = geneSet, \n", + " mart = mart) " + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "id": "87c93488-8c93-4e9f-ba07-0ef60310fe2e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "170" + ], + "text/latex": [ + "170" + ], + "text/markdown": [ + "170" + ], + "text/plain": [ + "[1] 170" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(resultTable)" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "id": "a3029f51-434b-4993-bc58-fa412e6ae2fa", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "132" + ], + "text/latex": [ + "132" + ], + "text/markdown": [ + "132" + ], + "text/plain": [ + "[1] 132" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "length(unique(resultTable$hgnc_symbol))" + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "id": "1e7dae2b-02e8-4209-8c0c-b38baec966c5", + "metadata": {}, + "outputs": [], + "source": [ + "### Filter out duplicate mappings" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "id": "18effb38-a5c8-4001-a1eb-6c9d0805b6bb", + "metadata": {}, + "outputs": [], + "source": [ + "filter = resultTable %>% group_by(hgnc_symbol) %>% count() %>% filter(n >= 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "id": "f49e9ca8-6519-4952-9263-4369e56540d8", + "metadata": {}, + "outputs": [], + "source": [ + "filter = filter$hgnc_symbol" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "id": "90076d21-ce15-4c7e-baa6-7a1b8165331f", + "metadata": {}, + "outputs": [], + "source": [ + "resultTable = resultTable[!resultTable$hgnc_symbol %in% filter,]" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "id": "db8d7392-bf41-4d9c-b44f-d102e0f571b8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
  1. '3'
  2. '10'
  3. '7'
  4. '5'
  5. '15'
  6. '22'
  7. '2'
  8. '12'
  9. '1'
  10. '14'
  11. '11'
  12. '20'
  13. '16'
  14. '19'
  15. '17'
  16. '8'
  17. 'X'
  18. '21'
  19. '4'
  20. '18'
  21. '9'
  22. '6'
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item '3'\n", + "\\item '10'\n", + "\\item '7'\n", + "\\item '5'\n", + "\\item '15'\n", + "\\item '22'\n", + "\\item '2'\n", + "\\item '12'\n", + "\\item '1'\n", + "\\item '14'\n", + "\\item '11'\n", + "\\item '20'\n", + "\\item '16'\n", + "\\item '19'\n", + "\\item '17'\n", + "\\item '8'\n", + "\\item 'X'\n", + "\\item '21'\n", + "\\item '4'\n", + "\\item '18'\n", + "\\item '9'\n", + "\\item '6'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. '3'\n", + "2. '10'\n", + "3. '7'\n", + "4. '5'\n", + "5. '15'\n", + "6. '22'\n", + "7. '2'\n", + "8. '12'\n", + "9. '1'\n", + "10. '14'\n", + "11. '11'\n", + "12. '20'\n", + "13. '16'\n", + "14. '19'\n", + "15. '17'\n", + "16. '8'\n", + "17. 'X'\n", + "18. '21'\n", + "19. '4'\n", + "20. '18'\n", + "21. '9'\n", + "22. '6'\n", + "\n", + "\n" + ], + "text/plain": [ + " [1] \"3\" \"10\" \"7\" \"5\" \"15\" \"22\" \"2\" \"12\" \"1\" \"14\" \"11\" \"20\" \"16\" \"19\" \"17\"\n", + "[16] \"8\" \"X\" \"21\" \"4\" \"18\" \"9\" \"6\" " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "unique(resultTable$chromosome_name)" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "id": "5cd66cd4-be5b-4aee-b318-94482723a064", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 5
start_positionend_positiondescriptionhgnc_symbolchromosome_name
<int><int><chr><chr><chr>
1 51968510 51983409abhydrolase domain containing 14B [Source:HGNC Symbol;Acc:HGNC:28235]ABHD14B3
2114431112114768061actin binding LIM protein 1 [Source:HGNC Symbol;Acc:HGNC:78] ABLIM1 10
\n" + ], + "text/latex": [ + "A data.frame: 2 × 5\n", + "\\begin{tabular}{r|lllll}\n", + " & start\\_position & end\\_position & description & hgnc\\_symbol & chromosome\\_name\\\\\n", + " & & & & & \\\\\n", + "\\hline\n", + "\t1 & 51968510 & 51983409 & abhydrolase domain containing 14B {[}Source:HGNC Symbol;Acc:HGNC:28235{]} & ABHD14B & 3 \\\\\n", + "\t2 & 114431112 & 114768061 & actin binding LIM protein 1 {[}Source:HGNC Symbol;Acc:HGNC:78{]} & ABLIM1 & 10\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 5\n", + "\n", + "| | start_position <int> | end_position <int> | description <chr> | hgnc_symbol <chr> | chromosome_name <chr> |\n", + "|---|---|---|---|---|---|\n", + "| 1 | 51968510 | 51983409 | abhydrolase domain containing 14B [Source:HGNC Symbol;Acc:HGNC:28235] | ABHD14B | 3 |\n", + "| 2 | 114431112 | 114768061 | actin binding LIM protein 1 [Source:HGNC Symbol;Acc:HGNC:78] | ABLIM1 | 10 |\n", + "\n" + ], + "text/plain": [ + " start_position end_position\n", + "1 51968510 51983409 \n", + "2 114431112 114768061 \n", + " description \n", + "1 abhydrolase domain containing 14B [Source:HGNC Symbol;Acc:HGNC:28235]\n", + "2 actin binding LIM protein 1 [Source:HGNC Symbol;Acc:HGNC:78] \n", + " hgnc_symbol chromosome_name\n", + "1 ABHD14B 3 \n", + "2 ABLIM1 10 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(resultTable,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "id": "c507579c-c4a1-4b4a-9e3c-edeabfca3da3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 9
traitidentifieregenevaluecell_typegeneoverlapping_snpsparametercogene
<chr><chr><chr><dbl><chr><chr><dbl><chr><chr>
4259Rheumatoid ArthritisB_RPS26___RPL11__RPS26 B_RPS260.9035670BRPL11_RPS26 878PP.H4.abfRPL11
4269Rheumatoid ArthritisB_RPS26___RPL35A__RPS26B_RPS260.9008136BRPL35A_RPS26878PP.H4.abfRPL35A
\n" + ], + "text/latex": [ + "A data.frame: 2 × 9\n", + "\\begin{tabular}{r|lllllllll}\n", + " & trait & identifier & egene & value & cell\\_type & gene & overlapping\\_snps & parameter & cogene\\\\\n", + " & & & & & & & & & \\\\\n", + "\\hline\n", + "\t4259 & Rheumatoid Arthritis & B\\_RPS26\\_\\_\\_RPL11\\_\\_RPS26 & B\\_RPS26 & 0.9035670 & B & RPL11\\_RPS26 & 878 & PP.H4.abf & RPL11 \\\\\n", + "\t4269 & Rheumatoid Arthritis & B\\_RPS26\\_\\_\\_RPL35A\\_\\_RPS26 & B\\_RPS26 & 0.9008136 & B & RPL35A\\_RPS26 & 878 & PP.H4.abf & RPL35A\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 2 × 9\n", + "\n", + "| | trait <chr> | identifier <chr> | egene <chr> | value <dbl> | cell_type <chr> | gene <chr> | overlapping_snps <dbl> | parameter <chr> | cogene <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|\n", + "| 4259 | Rheumatoid Arthritis | B_RPS26___RPL11__RPS26 | B_RPS26 | 0.9035670 | B | RPL11_RPS26 | 878 | PP.H4.abf | RPL11 |\n", + "| 4269 | Rheumatoid Arthritis | B_RPS26___RPL35A__RPS26 | B_RPS26 | 0.9008136 | B | RPL35A_RPS26 | 878 | PP.H4.abf | RPL35A |\n", + "\n" + ], + "text/plain": [ + " trait identifier egene value cell_type\n", + "4259 Rheumatoid Arthritis B_RPS26___RPL11__RPS26 B_RPS26 0.9035670 B \n", + "4269 Rheumatoid Arthritis B_RPS26___RPL35A__RPS26 B_RPS26 0.9008136 B \n", + " gene overlapping_snps parameter cogene\n", + "4259 RPL11_RPS26 878 PP.H4.abf RPL11 \n", + "4269 RPL35A_RPS26 878 PP.H4.abf RPL35A" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(coloc_examples_rheomatoid_arthritis,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 149, + "id": "5fbdf162-b458-4ec4-91a0-630ddebe2724", + "metadata": {}, + "outputs": [], + "source": [ + "coloc_examples_rheomatoid_arthritis = merge(coloc_examples_rheomatoid_arthritis, resultTable, by.x = 'cogene', by.y = 'hgnc_symbol', all.x = TRUE)" + ] + }, + { + "cell_type": "code", + "execution_count": 150, + "id": "56c5705e-36df-4c78-8f2b-cb3b74de65f7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 13
cogenetraitidentifieregenevaluecell_typegeneoverlapping_snpsparameterstart_positionend_positiondescriptionchromosome_name
<chr><chr><chr><chr><dbl><chr><chr><dbl><chr><int><int><chr><chr>
5AIF1 Rheumatoid ArthritisCD4T_RPS26___AIF1__RPS26 CD4T_RPS26 0.9269214CD4T AIF1_RPS26 882PP.H4.abfNANANANA
6AIF1 Rheumatoid ArthritisCD8T_RPS26___AIF1__RPS26 CD8T_RPS26 0.9590870CD8T AIF1_RPS26 882PP.H4.abfNANANANA
13ATP5A1 Rheumatoid Arthritismonocyte_RPS26___ATP5A1__RPS26monocyte_RPS260.9595247monocyteATP5A1_RPS26 882PP.H4.abfNANANANA
14B2M Rheumatoid ArthritisNK_RPS26___B2M__RPS26 NK_RPS26 0.9481042NK B2M_RPS26 879PP.H4.abfNANANANA
19C1orf228Rheumatoid ArthritisCD8T_RPS26___C1orf228__RPS26 CD8T_RPS26 0.9100051CD8T C1orf228_RPS26881PP.H4.abfNANANANA
21CCL4 Rheumatoid ArthritisCD8T_RPS26___CCL4__RPS26 CD8T_RPS26 0.9169790CD8T CCL4_RPS26 882PP.H4.abfNANANANA
\n" + ], + "text/latex": [ + "A data.frame: 6 × 13\n", + "\\begin{tabular}{r|lllllllllllll}\n", + " & cogene & trait & identifier & egene & value & cell\\_type & gene & overlapping\\_snps & parameter & start\\_position & end\\_position & description & chromosome\\_name\\\\\n", + " & & & & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t5 & AIF1 & Rheumatoid Arthritis & CD4T\\_RPS26\\_\\_\\_AIF1\\_\\_RPS26 & CD4T\\_RPS26 & 0.9269214 & CD4T & AIF1\\_RPS26 & 882 & PP.H4.abf & NA & NA & NA & NA\\\\\n", + "\t6 & AIF1 & Rheumatoid Arthritis & CD8T\\_RPS26\\_\\_\\_AIF1\\_\\_RPS26 & CD8T\\_RPS26 & 0.9590870 & CD8T & AIF1\\_RPS26 & 882 & PP.H4.abf & NA & NA & NA & NA\\\\\n", + "\t13 & ATP5A1 & Rheumatoid Arthritis & monocyte\\_RPS26\\_\\_\\_ATP5A1\\_\\_RPS26 & monocyte\\_RPS26 & 0.9595247 & monocyte & ATP5A1\\_RPS26 & 882 & PP.H4.abf & NA & NA & NA & NA\\\\\n", + "\t14 & B2M & Rheumatoid Arthritis & NK\\_RPS26\\_\\_\\_B2M\\_\\_RPS26 & NK\\_RPS26 & 0.9481042 & NK & B2M\\_RPS26 & 879 & PP.H4.abf & NA & NA & NA & NA\\\\\n", + "\t19 & C1orf228 & Rheumatoid Arthritis & CD8T\\_RPS26\\_\\_\\_C1orf228\\_\\_RPS26 & CD8T\\_RPS26 & 0.9100051 & CD8T & C1orf228\\_RPS26 & 881 & PP.H4.abf & NA & NA & NA & NA\\\\\n", + "\t21 & CCL4 & Rheumatoid Arthritis & CD8T\\_RPS26\\_\\_\\_CCL4\\_\\_RPS26 & CD8T\\_RPS26 & 0.9169790 & CD8T & CCL4\\_RPS26 & 882 & PP.H4.abf & NA & NA & NA & NA\\\\\n", + "\\end{tabular}\n" + ], + "text/markdown": [ + "\n", + "A data.frame: 6 × 13\n", + "\n", + "| | cogene <chr> | trait <chr> | identifier <chr> | egene <chr> | value <dbl> | cell_type <chr> | gene <chr> | overlapping_snps <dbl> | parameter <chr> | start_position <int> | end_position <int> | description <chr> | chromosome_name <chr> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| 5 | AIF1 | Rheumatoid Arthritis | CD4T_RPS26___AIF1__RPS26 | CD4T_RPS26 | 0.9269214 | CD4T | AIF1_RPS26 | 882 | PP.H4.abf | NA | NA | NA | NA |\n", + "| 6 | AIF1 | Rheumatoid Arthritis | CD8T_RPS26___AIF1__RPS26 | CD8T_RPS26 | 0.9590870 | CD8T | AIF1_RPS26 | 882 | PP.H4.abf | NA | NA | NA | NA |\n", + "| 13 | ATP5A1 | Rheumatoid Arthritis | monocyte_RPS26___ATP5A1__RPS26 | monocyte_RPS26 | 0.9595247 | monocyte | ATP5A1_RPS26 | 882 | PP.H4.abf | NA | NA | NA | NA |\n", + "| 14 | B2M | Rheumatoid Arthritis | NK_RPS26___B2M__RPS26 | NK_RPS26 | 0.9481042 | NK | B2M_RPS26 | 879 | PP.H4.abf | NA | NA | NA | NA |\n", + "| 19 | C1orf228 | Rheumatoid Arthritis | CD8T_RPS26___C1orf228__RPS26 | CD8T_RPS26 | 0.9100051 | CD8T | C1orf228_RPS26 | 881 | PP.H4.abf | NA | NA | NA | NA |\n", + "| 21 | CCL4 | Rheumatoid Arthritis | CD8T_RPS26___CCL4__RPS26 | CD8T_RPS26 | 0.9169790 | CD8T | CCL4_RPS26 | 882 | PP.H4.abf | NA | NA | NA | NA |\n", + "\n" + ], + "text/plain": [ + " cogene trait identifier egene \n", + "5 AIF1 Rheumatoid Arthritis CD4T_RPS26___AIF1__RPS26 CD4T_RPS26 \n", + "6 AIF1 Rheumatoid Arthritis CD8T_RPS26___AIF1__RPS26 CD8T_RPS26 \n", + "13 ATP5A1 Rheumatoid Arthritis monocyte_RPS26___ATP5A1__RPS26 monocyte_RPS26\n", + "14 B2M Rheumatoid Arthritis NK_RPS26___B2M__RPS26 NK_RPS26 \n", + "19 C1orf228 Rheumatoid Arthritis CD8T_RPS26___C1orf228__RPS26 CD8T_RPS26 \n", + "21 CCL4 Rheumatoid Arthritis CD8T_RPS26___CCL4__RPS26 CD8T_RPS26 \n", + " value cell_type gene overlapping_snps parameter start_position\n", + "5 0.9269214 CD4T AIF1_RPS26 882 PP.H4.abf NA \n", + "6 0.9590870 CD8T AIF1_RPS26 882 PP.H4.abf NA \n", + "13 0.9595247 monocyte ATP5A1_RPS26 882 PP.H4.abf NA \n", + "14 0.9481042 NK B2M_RPS26 879 PP.H4.abf NA \n", + "19 0.9100051 CD8T C1orf228_RPS26 881 PP.H4.abf NA \n", + "21 0.9169790 CD8T CCL4_RPS26 882 PP.H4.abf NA \n", + " end_position description chromosome_name\n", + "5 NA NA NA \n", + "6 NA NA NA \n", + "13 NA NA NA \n", + "14 NA NA NA \n", + "19 NA NA NA \n", + "21 NA NA NA " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head(coloc_examples_rheomatoid_arthritis[is.na(coloc_examples_rheomatoid_arthritis$chromosome_name),])" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "id": "5ff8f920-e5f3-4a88-8658-380368b1ee69", + "metadata": {}, + "outputs": [], + "source": [ + "#head(coloc_examples_rheomatoid_arthritis,4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "71e571e3-a131-4ff4-b10b-ca361e795c60", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 152, + "id": "7f584316-cf94-4cf6-8480-1fd1dc05cc53", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "152" + ], + "text/latex": [ + "152" + ], + "text/markdown": [ + "152" + ], + "text/plain": [ + "[1] 152" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nrow(coloc_examples_rheomatoid_arthritis)" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "id": "095b56c8-4aee-4d32-9c52-75c0d363877e", + "metadata": {}, + "outputs": [], + "source": [ + "write.table(coloc_examples_rheomatoid_arthritis, file = paste0(path, \"/colocalization_results/\", \"CD4T_RPS26_Rheomatoid_Arthritis_Colocalization_CoeGenes.csv\"), append =FALSE, sep = \",\", row.names = FALSE, col.names =TRUE)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "77eeb1ed-b252-4e30-a6ed-94bb73f2fdd1", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0e18e4ba-3e2f-4809-9933-ca9fe8d0cab3", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "4.1.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/05_coeqtl_interpretation/README.md b/05_coeqtl_interpretation/README.md new file mode 100644 index 0000000..de5e6c7 --- /dev/null +++ b/05_coeqtl_interpretation/README.md @@ -0,0 +1,33 @@ +# 05_coeqtl_interpretation + +*enrichment_GO_terms.R* : checks GO enrichment among co-eGenes + +*enrichment_GO_terms_reduced_background.R* : alternative version of *enrichment_GO_terms.R* with a more specific background, including only genes tested for the respective SNP-eGene combination + +*enrichment_TFs_Remap_preprocessing.R*: filters TFBS annotations from Remap2022 for blood-related cell lines + +*enrichment_TFs_Remap.R* : checks enrichment of TFBS among co-eGenes using Remap 2022 annotations in three steps: 1) checks for each cell type and coeGene cluster the enrichment (FDR corrected), 2) checks if the enriched TF is itself part of the coeGenes, 3) checks if the SNP or a SNP in LD is part of the TF + +*general_stats.R*: shows general distribution of co-eQTLs (coeGenes per eQTL, distribution of direction of effect) + +*magma_coeqtl.Rmd*: R-markdown to perform MAGMA analysis for GWAS enrichment separately for each set of coeGenes that share the same eQTL (for all eQTLs with at least 5 coeGenes) + +*plot_CD4T_mono_network.R*: Create network of all co-eQTLs from CD4+ T cells and/or Monocytes (nodes: eQTLs and coeGenes), color edges by direction of effect + +*plot_CD4T_mono_RPS26_subnetwork.R*: Part of the co-eQTL network from *plot_CD4T_mono_network.R* connected with rs1131017-RPS26 + +*snipe.R*: help functions to query SNiPA website for SNPs in high LD with query SNPs, used in *enrichment_TFs_Remap.R* + +*LDTRAIT.ipynb*: Add GWAS annotation to SNP / SNP in LD + +*TEM_NAIVE.ipynb*: Examine the impact of rs1131017 on the ratio between TEM and naive T cells + +*MS1_Libraries.r*: libraries used for R1_TRANSFAC_enrichment.ipynb, R2_Coloc.ipynb, R3_Coloc_Evaluation.ipynb scripts + +*R1_TRANFAC_enrichment.ipynb*: checks TRANSFAC enrichment among co-eGenes and compares them to the Remap enrichment results + +*R2_Coloc.ipynb*: runs colocalization analysis on the output of the eqtl and co-eqtl pipeline + +*R3_Coloc_Evaluation.ipynb*: investigates and summarizes the results from the colocalization analysis of script R2_Coloc.ipynb + + diff --git a/05_coeqtl_interpretation/TEM_NAIVE.ipynb b/05_coeqtl_interpretation/TEM_NAIVE.ipynb new file mode 100644 index 0000000..314c2f6 --- /dev/null +++ b/05_coeqtl_interpretation/TEM_NAIVE.ipynb @@ -0,0 +1,1437 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import re\n", + "from itertools import combinations\n", + "from pathlib import Path\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import scanpy as sc\n", + "from scipy.stats import spearmanr\n", + "from scipy.stats import t, norm\n", + "from tqdm import tqdm\n", + "import argparse\n", + "from scipy.stats import rankdata\n", + "from collections import namedtuple\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from scipy import stats\n", + "%matplotlib inline\n", + "\n", + "\n", + "def get_time(x):\n", + " if x == 'UT':\n", + " return x\n", + " else:\n", + " pattern = re.compile(r'\\d+h')\n", + " return re.findall(pattern, x)[0]\n", + "\n", + "\n", + "class DATASET:\n", + " def __init__(self, datasetname):\n", + " self.name = datasetname\n", + " self.path_prefix = Path(\"./seurat_objects\")\n", + " self.information = self.get_information()\n", + " def get_information(self):\n", + " if self.name == 'onemillionv2':\n", + " self.path = '1M_v2_mediumQC_ctd_rnanormed_demuxids_20201029.sct.h5ad'\n", + " self.individual_id_col = 'assignment'\n", + " self.timepoint_id_col = 'time'\n", + " self.celltype_id = 'cell_type_lowerres'\n", + " self.chosen_condition = {'UT': 'UT',\n", + " 'stimulated': '3h'}\n", + " elif self.name == 'onemillionv3':\n", + " self.path = '1M_v3_mediumQC_ctd_rnanormed_demuxids_20201106.SCT.h5ad'\n", + " self.individual_id_col = 'assignment'\n", + " self.timepoint_id_col = 'time'\n", + " self.celltype_id = 'cell_type_lowerres'\n", + " self.chosen_condition = {'UT': 'UT',\n", + " 'stimulated': '3h'}\n", + " elif self.name == 'stemiv2':\n", + " self.path = 'cardio.integrated.20210301.stemiv2.h5ad'\n", + " self.individual_id_col = 'assignment.final'\n", + " self.timepoint_id_col = 'timepoint.final'\n", + " self.celltype_id = 'cell_type_lowerres'\n", + " self.chosen_condition = {'UT': 't8w',\n", + " 'stimulated': 'Baseline'}\n", + " elif self.name == 'ng':\n", + " self.path = 'pilot3_seurat3_200420_sct_azimuth.h5ad'\n", + " self.individual_id_col = 'snumber'\n", + " self.celltype_id = 'cell_type_mapped_to_onemillion'\n", + " else:\n", + " raise IOError(\"Dataset name not understood.\")\n", + " def load_dataset(self):\n", + " self.get_information()\n", + " print(f'Loading dataset {self.name} from {self.path_prefix} {self.path}')\n", + " self.data_sc = sc.read_h5ad(self.path_prefix / self.path)\n", + " if self.name.startswith('onemillion'):\n", + " self.data_sc.obs['time'] = [get_time(item) for item in self.data_sc.obs['timepoint']]\n", + " elif self.name == 'ng':\n", + " celltype_maping = {'CD4 T': 'CD4T', 'CD8 T': 'CD8T', 'Mono': 'monocyte', 'DC': 'DC', 'NK': 'NK',\n", + " 'other T': 'otherT', 'other': 'other', 'B': 'B'}\n", + " self.data_sc.obs['cell_type_mapped_to_onemillion'] = [celltype_maping.get(name) for name in\n", + " self.data_sc.obs['predicted.celltype.l1']]\n", + "\n", + "def corr_to_z(coef, num):\n", + " t_statistic = coef * np.sqrt((num - 2) / (1 - coef ** 2))\n", + " prob = t.cdf(t_statistic, num - 2)\n", + " z_score = norm.ppf(prob)\n", + " positive_coef_probs = 1 - prob\n", + " positive_coef_probs[coef < 0] = 0\n", + " negative_coef_probs = prob\n", + " negative_coef_probs[coef > 0] = 0\n", + " probs = negative_coef_probs + positive_coef_probs\n", + " return z_score, probs\n", + "\n", + "\n", + "def get_individual_networks_selected_genepairs(data_df, data_sc, individual_colname, genepair):\n", + "# data_df = pd.DataFrame(data=data_sc.X.toarray(),\n", + "# index=data_sc.obs.index,\n", + "# columns=data_sc.var.index)\n", + " gene1, gene2 = genepair.split(';')\n", + " sorted_genepair = [';'.join(sorted([gene1, gene2]))]\n", + " coef_df = pd.DataFrame(index=sorted_genepair)\n", + " coef_p_df = pd.DataFrame(index=sorted_genepair)\n", + " zscore_df = pd.DataFrame(index=sorted_genepair)\n", + " zscore_p_df = pd.DataFrame(index=sorted_genepair)\n", + " data_selected_df = data_df[[gene1, gene2]]\n", + " print(\n", + " f\"Begin calculating networks for {len(data_sc.obs[individual_colname].unique())} individuals and;\\n{genepair}\"\n", + " )\n", + " for ind_id in tqdm(data_sc.obs[individual_colname].unique()):\n", + " cell_num = data_sc.obs[data_sc.obs[individual_colname] == ind_id].shape[0]\n", + " if cell_num > 10:\n", + " individual_df = data_selected_df.loc[data_sc.obs[individual_colname] == ind_id]\n", + " individual_coefs, individual_coef_ps = spearmanr(individual_df.values, axis=0)\n", + " if data_selected_df.shape[1] == 2:\n", + " individual_coefs_flatten = pd.DataFrame(data = [individual_coefs],\n", + " index = sorted_genepair)\n", + " individual_coef_ps_flatten = \\\n", + " pd.DataFrame(data=[individual_coef_ps],\n", + " index=sorted_genepair)\n", + " else:\n", + " individual_coefs_flatten = pd.DataFrame(\n", + " data=individual_coefs[np.triu_indices_from(individual_coefs, 1)],\n", + " index=selected_genes_sorted_genepairs).loc[sorted_genepair]\n", + " individual_coef_ps_flatten = \\\n", + " pd.DataFrame(data=individual_coef_ps[np.triu_indices_from(individual_coefs, 1)],\n", + " index=selected_genes_sorted_genepairs).loc[sorted_genepair]\n", + " coef_df[ind_id] = individual_coefs_flatten\n", + " coef_p_df[ind_id] = individual_coef_ps_flatten\n", + " try:\n", + "# print(individual_coefs_flatten.values, cell_num)\n", + " individual_zscores_flatten, individual_zscore_ps_flatten = corr_to_z(\n", + " individual_coefs_flatten.values, \n", + " cell_num\n", + " )\n", + " zscore_df[ind_id] = individual_zscores_flatten\n", + " zscore_p_df[ind_id] = individual_zscore_ps_flatten\n", + " except:\n", + " continue\n", + " else:\n", + " print(\"Deleted this individual because of low cell number\", cell_num)\n", + " return data_selected_df, zscore_df, zscore_p_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### One million data" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# load the GT data\n", + "gt = pd.read_csv('./coeqtl_interpretation/rs1131017_TEM_ratio/rs1131017.vcf',\n", + " skiprows=6, sep='\\t')\n", + "change_colnames = lambda col:'_'.join(col.split('_')[1:]) if 'LLDeep' in col else col\n", + "gt = gt.rename({col:change_colnames(col) for col in gt.columns}, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
#CHROMPOSIDREFALTQUALFILTERINFOFORMATLLDeep_1191...s21s43s24s23s45s26s25s28s27s29
01256435929rs1131017CG...GT:DS0/0:0.0...1/1:2.01/1:2.01/1:2.00/1:1.01/1:2.00/1:1.00/0:0.01/1:2.00/0:0.060000000000000051/1:2.0
\n", + "

1 rows × 182 columns

\n", + "
" + ], + "text/plain": [ + " #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT LLDeep_1191 \\\n", + "0 12 56435929 rs1131017 C G . . . GT:DS 0/0:0.0 \n", + "\n", + " ... s21 s43 s24 s23 s45 s26 s25 \\\n", + "0 ... 1/1:2.0 1/1:2.0 1/1:2.0 0/1:1.0 1/1:2.0 0/1:1.0 0/0:0.0 \n", + "\n", + " s28 s27 s29 \n", + "0 1/1:2.0 0/0:0.06000000000000005 1/1:2.0 \n", + "\n", + "[1 rows x 182 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gt.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### CD4T+CD8T" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# # load onemillion v2 data\n", + "# dataset = DATASET('onemillionv2')\n", + "# dataset.load_dataset()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
assignmentpredicted.celltype.l1
LLDeep_0022B0
CD4 T0
CD8 T0
DC0
Mono0
\n", + "
" + ], + "text/plain": [ + " 0\n", + "assignment predicted.celltype.l1 \n", + "LLDeep_0022 B 0\n", + " CD4 T 0\n", + " CD8 T 0\n", + " DC 0\n", + " Mono 0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
assignmentpredicted.celltype.l2
LLDeep_0022ASDC0
B intermediate0
B memory0
B naive0
CD14 Mono0
\n", + "
" + ], + "text/plain": [ + " 0\n", + "assignment predicted.celltype.l2 \n", + "LLDeep_0022 ASDC 0\n", + " B intermediate 0\n", + " B memory 0\n", + " B naive 0\n", + " CD14 Mono 0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CD4T TEMCD4T NaiveCD8T TEMCD8T NaiveCD4TCD8TCD4T TCMCD8T TCMall_num
LLDeep_13702085741322489858827
LLDeep_0434424179593989209406291496
LLDeep_13191101322234922236546191504
LLDeep_02692158807211881018529
LLDeep_0471272428114570103254101241
\n", + "
" + ], + "text/plain": [ + " CD4T TEM CD4T Naive CD8T TEM CD8T Naive CD4T CD8T CD4T TCM \\\n", + "LLDeep_1370 20 85 74 13 224 89 85 \n", + "LLDeep_0434 42 417 95 93 989 209 406 \n", + "LLDeep_1319 110 132 223 4 922 236 546 \n", + "LLDeep_0269 21 58 80 7 211 88 101 \n", + "LLDeep_0471 27 242 81 14 570 103 254 \n", + "\n", + " CD8T TCM all_num \n", + "LLDeep_1370 8 827 \n", + "LLDeep_0434 29 1496 \n", + "LLDeep_1319 19 1504 \n", + "LLDeep_0269 8 529 \n", + "LLDeep_0471 10 1241 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'rs1131017')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA34AAAFNCAYAAABfWL0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACF8klEQVR4nO3deZxkd13v/9entt579p4Js2QyMDBJEIQ7CYsYRwQNgmGR601QFpVfwlVMUEFwATX684JwhXB/aBLDIhclYgTvXA2LEMYxSsgGAUKGZOgs3ZOZ9Cw903vX9vn9cU5VV1dX71Vddarez8ejHt196tSpb3VVf/t8zvf7/XzM3REREREREZHmFat3A0RERERERKS2FPiJiIiIiIg0OQV+IiIiIiIiTU6Bn4iIiIiISJNT4CciIiIiItLkFPiJiIiIiIg0OQV+TcTMdpuZm1mi3m0REVGfJCKNQv2RiAK/hmNmbzGz75rZhJmdMLO/MrP19W7XQszsQ2b2iJmNmtkRM3tTDZ/rp8LnmDCzr5vZ+Qvs+3Yzu9fMps3sU2X3/aKZjZXcJsJ/CP+lVm2fp41vMLPHzWzczP7JzDYusO+fhJ+NrJn9Udl9B8wsX/aa3lzzFyBNT33Ssp97o5l9IfybftzM3rDAvs82sy+b2Skzm1NUt+zveczMcmb2v2r7Cua0YXfY106Ev8uXLbDvT4b7njOzx+bZ5zozezT8/TxkZs+sWeOl6ag/WvZzL6c/erOZ3WdmI2Y2aGZ/XhokL+dYtbLM/sjM7ANmdjq8/bmZWcn9Lzazu8P35Ttm9pKS+15pZnea2dnwc/bXZtZT69e3FhT4NRAz+23gA8C7gHXAC4HzgX81s1Q927aIceDnCNr8ZuAGM3vxUh5oy7jyZmabgc8D7wU2AvcCf7/AQ54E/hT4RPkd7v637t5duAG/BvQD9y+1PatlZhcDNwFvBLYCE8BfLvCQo8DvAP8yz/1Plr4md/+bqjZYWo76pBX5GJAm+Jv+ReCvwr/1SjLA54BfrXRnWR+1FZgE/mGV7VuuzwLfAjYBvw/cZmZb5tl3nKC/fVelO83srQSv9ZVAN/Aq4FS1GyzNSf3RiiynP+oE3gFsBl4A/BTwzhUeq1aW0x9dDbwGeC7wHIL+5hoIgljgIPBBYD3w58D/NbMN4WPXEZw/Pg24ENgR7ht97q5bA9yAXmAM+IWy7d3AEPAr4c8x4D3AD4HTBCcNG8P7dgMOJMKf1wEfB44Dxwg+xPHwvrcAdwIfAoaBR4FXzNO29wC3lW27AfjoPPsfBH57nvsOAIPAu4ETwP9exu/oauA/S37uIjgR2rfI4/4U+NQi+3wd+MNltMWBawmCxVMEHUJsme/5nwF/V/Lz0wk61Z5FHvcZ4I8q/V7r/TnWrXlu6pNW9DvrCv+Gn1my7X8D71/kcc8AfJF93hz2N7bEtnwKuBH4V2AU+Dfg/GW+nmcC06V9EvDvwNsWedzLgMfKtsWAAeCn6v3Z1i16N/VHK/qdrag/Ktn3t4D/W6VjrXl/BPwncHXJz78K3BV+/yrgwbL9HwZ+dZ5jvQ74br3/Dqpx04hf43gx0E4wolXk7mPAF4GXh5uuJbiC8RMEVyKGCa7CVPI3QJbgpOJ5wE8Dby25/wXADwiu7vw58PHSYfASnwV+1sx6AcwsDvwC8HflO5pZB3AJ8OACr3UbwYjd+cDVZrYrHE6f71aYTnAx8EDhIO4+TtC5r+qKkwXTRS8DPr3Mh74W2A88H3g18Cvh8V6yyOspTCcofz0/JOxYV/hS+szsqXAa1YfNrGuFxxEB9UlL6ZPKPRPIufvDJdseYJV9VOjNwKc9PAtZol8E/oTg9/lt4G8Ld4RTm+Z7fYWZBxcD/e4+WnLMlb6eHeHt2WY2EPZTf2xmOg+RpVB/tPb90WUl7axG37bW/dGsc6yyfS28lTLg2fMcq/R3EWla4No4NgOn3D1b4b7jQGHt2TXA2919EMCCtV5PmNkbSx9gZluBVwDr3X0SGDezDxOMmt0U7va4u/91uP/fEEwz3EpwlanI3R83s/sJOtNPAy8FJtz9rgptvZHgj+vLC7zWPMHo2nT48xMEQ+2L6QZOlm07B6x23vWbgH9390eX+bgPuPsZ4IyZfQS4CrjF3e9k6a/nXNm2lb6eI8CPhl/PJ/iH9heE0xpEVkB90vJV82+6yMx2EZzIVpwSuoB/cffD4TF+HzhnZjvdfcDdn7OEx8/3erYvsx0QBH0QnFz/CMHv9ysEoxt/vYLjSWtRf7R8K+6PzOyXCS5sFwLhavRta90fle9/DugOg/f/BJ5mZlcBtwFvIJh11Vl+EDN7OcGFtxcsoY0NT1faGscpYPM887nPY2YdxPnAFwpXQoCHgBxBZ1TqfCAJHC/Z9yagr2SfYufl7hPht93ztO/vCAIbCP5AKl3J+iDB1ZJfWOSq9El3n1rg/vmMEUz3KNVLMG1gNd5EECgt10DJ948TXF1cjqq9Hnc/4e7fd/d8GMD+DvD65R5HpIT6pEWY2RdtJvHKL1LbPurOFVycKvZR4cjIGZbXT1Xz9UyGX//c3c+6+2ME7//PruBY0nrUHy2iWv2Rmb0GeD/B1NbC77UafcFa90fl+/cCYx44TTBT67eAp4DLga8SXIgqMrMXEryXry8b7YwsBX6N4xsEc5dfV7oxnK73CuBr4aYBgj/G9SW3dnc/Vna8gfB4m0v263X3lU45+gfggJntIJjiOKtTM7M/Dtv50+4+ssixZnV44TSG8ux1Y2UdGATD7M8teVwXwRWaFQ+/m9mPEXQ8t63g4TtLvt9FkEwGM/vxRV7Pj4ePKX89e4A2gnnmq+XMncYgshzqkxbpk9z9FT6TgOVvCf52E2a2t+Rwz2X1U4RWenGq2EeZWTfB9LFCP/XgAq/vxvBhDwJ7bHY2u5W+nh8QTGVfzlRVkQL1R2vQH5nZ5QQj8D/n7t8tuasafdta90ezzrHK93X3f3P3S9x9I0GSvWcBd5e08XkE6zF/xd2/RrNY7qJA3Wp3IxilKVx5SBIsRL6dINNkW7jPbwKHCBfFAluAV4ff72b2wuX/Q7DAuJcgyH868BPhfW8huIJc+vwOPGOB9n2RYGHut8q2/y7wCHDeEl7jAVaYhCR8reeAnyeY6/8BwoW68+yfCPf7HwSLkNsLv5uSfW4mWDdT/ti3UJacoMLv6mvABoLO7Agli4iX+HouBkaAHydYOP0Z4NYF9k+Gr+HvCBahtzOzEP0AQfBpYXu+Dnyy3p9p3aJ9U5+0ot/ZrQRrfrqAHwv7rIvn2dfCv+OLwtfaXvi9luzzYoKsgHOSPoWPOTDPsT8V9i8vAVLAhylJjrWM13MXQYKLdoIT2rPAlnn2jYX7vYJgFkQ7kCq5/9PAPxNMD9sR9psVkynoplv5Tf3Rin5ny+mPXkqQEOeylRyrAfujtxGM+G4nuMD/ICWJYAjWdSbD9/8jwH+U3Pfs8LP23+r9ua/2re4N0K3sDQnWcHyPYFrMUwRTDzaU3B8jGJr+AcHw9g+BPwvvK+/U1gF/RTB0fY4gBe6V4X0r6dTeGO7zrgqPmyYYVi/cfm+eY6yqUyPIFnck/P0cAnaX3Pd7wBdLfv6jsG2ltz8qub897DTmZJkjKBnxtwu0w5nJ6nka+J+EQdgyX88bCObvjxP8E9pYct+NwI0lP3+qwut5S3jfbxFkJZsguJL5v1gkO6huui3lpj5p2b+vjcA/hX/TTwBvKLlvV9iWXWW/n9LbY2XHu4kKmf0IAqdRYNM87fgUM1n0xoDDwAUreD27CfrayfA9flnJfT9OMHWq9HdZ/noOldzfS3DyOBr2U+9jiVlKddPNXf3RCn5fy+mPvk6Q7Ka0nV9c4rEasT8ygqQ8Z8Lbn5f2NwRB7Lnw9vdAX8l9nyRYa1n6u3hwue1txJuFL1BESpjZV4Dr3P2hee53YK+7H13blomIgJn9EsHV9t+d5/5PEZxA/sGaNkxEWo76o+hQVk+RCtz9p+vdBhGR+bj7Z+rdBhERUH8UJUruIiIiIiIi0uQ01VNERERERKTJacRPRERERESkySnwExERERERaXJNldxl8+bNvnv37no3Q0Sq6L777jvl7lvq3Y7VUN8k0nzUN4lIo5qvf2qqwG/37t3ce++99W6GiFSRmT1e7zaslvomkeajvklEGtV8/ZOmeoqIiIiIiDQ5BX4iIiIiIiJNToGfiIiIiIhIk1PgJyIiIiIi0uQU+ImIiIiIiDQ5BX4iIiIiIiJNToGfiIiIiIhIk2uqOn7S/A4dGeKmw/0MDE+wc0Mn11y2hwP7+urdLJFV02dbRERESlX73KCmI35mdrmZ/cDMjprZeyrcv8/MvmFm02b2zrL71pvZbWZ2xMweMrMX1bKt0vgOHRnifQcfZGh0ivUdSYZGp3jfwQc5dGSo3k0TWRV9tkVkOczsE2Y2ZGbfq3DfO83MzWxzPdomItVRi3ODmgV+ZhYHPga8ArgIuMrMLirb7QxwLfChCoe4AfiSu+8Dngs8VKu2SjTcdLifZNzoTCUwC74m48ZNh/vr3TSRVdFnW0SW6VPA5eUbzWwn8HLgibVukIhUVy3ODWo54ncpcNTd+909DdwKvLp0B3cfcvd7gEzpdjPrBS4DPh7ul3b3szVsq0TAwPAEHcn4rG0dyTiDwxN1apFIdeizLSLL4e6HCS6el/sw8DuAr22LRKTaanFuUMvAbzswUPLzYLhtKfYAJ4FPmtm3zOwWM+uqdgMlWnZu6GQyk5u1bTKTY8eGzjq1SKQ69NkWkdUysyuAY+7+QL3bIiKrV4tzg1oGflZh21KvQCWA5wN/5e7PA8aBOWsEAczsajO718zuPXny5MpaKpFwzWV7yOSciXQW9+BrJudcc9meejdNZFX02RaR1TCzTuD3gfctYV+dN4lEQC3ODWoZ+A0CO0t+3gE8uYzHDrr7N8OfbyMIBOdw95vdfb+779+yZcuKGyuN78C+Pq6/4mL6eto5N5mhr6ed66+4WJkPJfL02RaRVXo6cAHwgJk9RnDOdb+ZbSvfUedNItFQi3ODWpZzuAfYa2YXAMeAK4E3LOWB7n7CzAbM7Fnu/gPgp4Dv166pEhUH9vXpZFiakj7bIrJS7v5doNiBhMHffnc/VbdGiciqVfvcoGaBn7tnzeztwJeBOPAJd3/QzN4W3n9jeCXqXqAXyJvZO4CL3H0E+A3gb80sBfQDv1yrtoqIiKyG6jDKWjKzzwIHgM1mNgj8obt/vL6tEpFGV9MC7u5+O3B72bYbS74/QTAdodJjvw3sr2X7REREVqtQaykZt1m1lq4HBX9SE+5+1SL3716jpohIhNS0gLuIiEizUx1GERGJAgV+IiIiq6A6jCIiEgUK/ERERFZBdRhFRCQKFPiJiIisguowiohIFNQ0uUsjUuY1ERGppgP7+rieYK3f4PAEO/S/RUREGlBLBX7KvCYiIrWgOowiItLoWmqqpzKviYiIiIhIK2qpwE+Z10REREREpBW11FTPnRs6GRqdojM187KVeU1ERFZL68dFRKTRtdSInzKviYhItRXWjw+NTs1aP37oyFC9myYiIlLUUoHfgX19XH/FxfT1tHNuMkNfTzvXX3GxrsqKiMiK3XS4n0wux4lzU/zgqVFOnJsik8tp/biIiDSUlprqCcq8JiIi1fXI0CjnJjLEYkY8ZmTzzqnRNJncaL2bJkukqboi0gpaasRPRESk2tLZPBjEzDCMmBlYuF0anqbqikirUOAnIiKyCsm4AZDPO+5OPu8ApMLt0thU6klEWoUCPxERkVV45tZeNnWlSMSNnDuJuLGpK8Xerb31bposgUo9iUirUOAnIiKyCtdctodUIs62de08a2sP29a1k0rElTE6InZu6GQyk5u1TaWeRKQZKfATERFZBWWMjjaVehKRVtFyWT1FRESqTRmjo+vAvj6uJ1jrNzg8wQ5l9RSRJqXAT0RERFqaAncRaQWa6ikiIiIiItLkFPiJiIiIiIg0OQV+IiIlzOxyM/uBmR01s/cssN8lZpYzs9evZftEREREVkKBn4hIyMziwMeAVwAXAVeZ2UXz7PcB4Mtr20IRERGRlVFyFxGRGZcCR929H8DMbgVeDXy/bL/fAP4RuGRtmyeN6tCRIW463M/A8AQ7lRVSREQakEb8RERmbAcGSn4eDLcVmdl24LXAjWvYLmlgh44M8b6DDzI0OsX6jiRDo1O87+CDHDoyVO+miYiIFCnwExGZYRW2ednPHwHe7e65BQ9kdrWZ3Wtm9548ebJa7ZMGdNPhfpJxozOVwCz4mowbNx3ur3fTREREimoa+C2WJMHM9pnZN8xs2szeWeH+uJl9y8z+uZbtFBEJDQI7S37eATxZts9+4FYzewx4PfCXZvaa8gO5+83uvt/d92/ZsqVGzZVGMDA8QUcyPmtbRzLO4PBEnVokIiIyV80CvyUmSTgDXAt8aJ7DXAc8VKs2ioiUuQfYa2YXmFkKuBI4WLqDu1/g7rvdfTdwG/Br7v5Pa95SaRg7N3QymZk9ADyZybFjQ2edWiTNzsw+YWZDZva9km0fNLMjZvYdM/uCma2vYxNFpAHVcsSvmCTB3dNAIUlCkbsPufs9QKb8wWa2A3glcEsN2ygiUuTuWeDtBNk6HwI+5+4PmtnbzOxt9W2dNKprLttDJudMpLO4B18zOeeay/bUu2nSvD4FXF627V+BZ7v7c4CHgd9d60aJSGOrZVbPSkkSXrCMx38E+B2gp4ptEhFZkLvfDtxetq1iIhd3f8tatEka24F9fVxPsNZvcHiCHcrqKTXm7ofNbHfZtq+U/HgXwVR0EZGiWgZ+S0mSUPmBZq8Chtz9PjM7sMi+VwNXA+zatWuZTRQREVm9A/v6FOhJI/kV4O8r3aHzJpHWVcupnktJkjCfHwOuCJMn3Aq81Mw+U2lHJVAQERERCZjZ7wNZ4G8r3a/zJpHWVcvAb9EkCfNx99919x1h8oQrgTvc/Zdq11QRERGRaDOzNwOvAn7R3Zc0y0pEWkfNpnq6e9bMCkkS4sAnCkkSwvtvNLNtwL1AL5A3s3cAF7n7SK3aJSIiItJszOxy4N3AT7i7aomIyBy1XOO3aJIEdz9BMAV0oWMcAg7VoHkiIiIiHDoyxE2H+xkYnmBnBJLzmNlngQPAZjMbBP6QIItnG/CvZgZwl7srG7GIFNU08BMRERFpZIeODPG+gw+SjBvrO5IMjU7xvoMPcj00bPDn7ldV2PzxNW+IiESKAj8RERFpWTcd7icZNzpTwSlRZyrBRDrLTYf7GzbwE1mqqI1mS23VMrmLiIiISEMbGJ6gIxmfta0jGWdwWMvkJNoKo9lDo1OzRrMPHRmqd9OkThT4iYiISMvauaGTyUxu1rbJTI4dGzrr1CKR6igdzTYLvibjxk2H++vdNKkTBX4iIiLSsq65bA+ZnDORzuIefM3knGsu21PvpomsikazpZwCPxEREWlZB/b1cf0VF9PX0865yQx9Pe1cf8XFWgclkafRbCmn5C4iIiLS0g7s61OgJ03nmsv28L6DDzKRztKRjDOZyWk0u8Up8BMRaQDKvCYiItV0YF8f1xOs9RscnmCH/re0PAV+IiJ1FsU6YiIi0vg0mi2ltMZPRKTOlHlNREREak2Bn4hInSnzmoiIiNSaAj8RkTpT5jURERGpNQV+IiJ1pjpiIiIiUmsK/ERE6kx1xERERKTWlNVTRKQBKPOaiIiI1JJG/ERERERERJqcAj8REREREZEmp8BPRERERESkySnwExERERERaXIK/ERERERERJqcAj8REREREZEmp8BPRERERESkyamOn4iIiIjM69CRIW463M/A8AQ7N3RyzWV7VHdUJII04iciIiIiFR06MsT7Dj7I0OgU6zuSDI1O8b6DD3LoyFC9myYiy6TAT0REREQquulwP8m40ZlKYBZ8TcaNmw7317tpIrJMCvxEREREpKKB4Qk6kvFZ2zqScQaHJ+rUIhFZqZoGfmZ2uZn9wMyOmtl7Kty/z8y+YWbTZvbOku07zezrZvaQmT1oZtfVsp0iIiIiMtfODZ2cHp+m/+QYR06M0H9yjNPj0+zY0FnvponIMtUsuYuZxYGPAS8HBoF7zOygu3+/ZLczwLXAa8oengV+293vN7Me4D4z+9eyx4qIiIhEjpm9bqH73f3zizz+E8CrgCF3f3a4bSPw98Bu4DHgF9x9eLVtfdGejdz92BliBjGDdC7P0Giaqy7ZuNpDi8gaq2VWz0uBo+7eD2BmtwKvBorBm7sPAUNm9srSB7r7ceB4+P2omT0EbC99rLQmZRYTEZEmcBvw7fAGYCX3ObBg4Ad8Cvj/gE+XbHsP8DV3f384y+o9wLtX29Bv9J9hS3eK0aks6VyeVDxGT3uCb/Sf4drVHlxE1lQtA7/twEDJz4PAC5Z7EDPbDTwP+GZ1miVRVcgslozbrMxi14OCPxERiZKfB/4b8Bzg/wCfdfejS32wux8Oz49KvRo4EH7/N8AhqhD4DQxPsLm7jS097aXPrzV+EaEL5lKqlmv8rMI2X9YBzLqBfwTe4e4j8+xztZnda2b3njx5cgXNlKhQZjEREWkG7v4Fd78S+Angh8D/NLM7zewnVnHYreGMqcLMqaqc3e/c0MlkJjdr22QmpzV+EaBSHFKuloHfILCz5OcdwJNLfbCZJQmCvr9daK67u9/s7vvdff+WLVtW3FhpfMosJiIiTWYKOAeMAF1A+8K7r95yL5hfc9keMjlnIp3FPfiayTnXXLan1k2VVdIFcylXy8DvHmCvmV1gZingSuDgUh5oZgZ8HHjI3f+ihm2UCNFVRxERaQZm9pNmdjNwH/CTwA3u/jx3//IqDvuUmZ0XHv88oOKwznIvmB/Y18f1V1xMX0875yYz9PW0c/0VF2u6YATogrmUq9kaP3fPmtnbgS8DceAT7v6gmb0tvP9GM9sG3Av0AnkzewdwEcGc9zcC3zWzb4eH/D13v71W7ZXGd81le3jfwQeZSGfpSMaZzOR01VFEGoLW0cgyfQ34DnAn0Aa8yczeVLjT3VeSN+Ug8Gbg/eHX/1OFdgJB8KfPc/Ts3NDJ0OgUnamZ031dMG9ttUzuQhio3V627caS708QTAEtdyeV1whKCzuwr4/rCaYuDA5PsEMnVyLSAJR4SlbgV1hm3oNSZvZZgkQum81sEPhDgoDvc2b2q8ATwH+tQjslwq65bA+/8dn7GU/nyHtQjqMrFee9r7yo3k2TOqlp4CdSbbrqKCKNpnQdDUBnKsFEOstNh/vVX0lF7v6p+e4zs0XPzdz9qnnu+qmVtkmaz3cGzxaDPoC8w3g6x3cGz6pvalEK/CRSNJ0q2vT+STMaGJ5gfUdy1jato4mWte6bzOxOd39J+P3/dvc3ltx9N/D8mj25tIxb7nyUeMxoi82k9Mjm89xy56Nc+7Jn1rFlUi+1TO4iUlVKSxxtev+kWSnxVLTVqW/qKvn+4rL7tNRFqmI8nSNW9mmKWbBdWpMCP4kMpSWOtrV4/8zshVU7mMgSKd19tNXpf8tC6/tWvPavVg4dGeKqm+/iJR+4g6tuvksX7CKiKxUvTvMsyHuwXVqTAj+JjIHhCbK5PP0nxzhyYoT+k2Nkc3lNp4qINUor/ZfVPJjIUijdfbTVKeX9ejN7rZn9fPj968LbzwPravnEy6XZGtH11pdcQN6D6Z15z4dfg+3SmhT4SWR0p+IcOztFNufEzcjmnGNnp3TlKiI0HU5aQcMN1cii6tQ3/RtwBfCq8PufC2+vAg7X8omXS7Ntouvalz2T6176DDqScbL54ILGdS99htb3tTAld5HIMAsnqhszKyC8ZLs0tDWqw7jHzA7Od6e7X1HNJxMBlXOIujrViP2/7v75Wj5BtSh5UbRd+7JnKtCTonkDPzP7M3f/vbVsjMhCRqezbOxMcmo8XaxHs7krxdh0tt5NkyVYozqMJ4H/uZoDmNnlwA1AHLjF3d9fdv+rgT8B8kAWeIe737ma5wRlPI0ylXOItjrViP0DIBKBn4qAizSPhUb8LgcU+EnD6GlL8Mi5KZLxGGbgDmcmMuzta6t302SJ1qAO46i7/9tKH2xmceBjwMuBQeAeMzvo7t8v2e1rwEF3dzN7DvA5YN9qGn3oyBDvuu0BRqeyZPN5To1O867bHuCDr3+uAocI0IhI9KlG7PzqNCIqIjWwUOAXN7MNzJNW2N3P1KZJIpW5h6tnCotovGy7CDy2ysdfChx1934AM7sVeDVQDPzcfaxk/y6qsKzrA186wvBEhnjMSMRjuMPwRIYPfOmITkYjQCMisgL7zOw7FbYb4O7+nLVu0HzqNCIqIjWwUOC3D7iPyoGfA7rUI2tqLJ1j+/p2To2lSefypOIxtnW3qR6NFLn768q3LXPa+nZgoOTnQeAFFY75WuB/AH3AK1fQ1Fn6T40TM4iF61XNwM3pPzW+2kPLGtCIiKzAowTJXCJBI6IizWGhwO/77v68NWuJyCIKV9X3bOkubptIZ+nraa9jq6SRmNlHyzcBbzSzbgB3v3axQ1TYNmdEz92/AHzBzC4jWO/3sgptuRq4GmDXrl2Ltj2Xd7L5HO5B4GdAIq7ERVGgERFZgbS7P17vRkjz0/pxKaWsnhIZuqouS/A64BDwFWaCuCsJZi8sxSCws+TnHcCT8+3s7ofN7OlmttndT5XddzNwM8D+/fsXnA66pSvJ4LnpkscGX8/rSs7zCGk0GhGRZfqPejdAmp/Wj0u5her43bBmrRBZAhVJliW4EDhFkJzqq+7+NwQJX/4m/H4x9wB7zewCM0sRBI2zykOY2TMsrCFiZs8HUsDp1TS6pyNF3GZG+swgbsF2EWk+7v72erdhOQ4dGeKqm+/iJR+4g6tuvkvF2yOisH7cIVg/zsz6cWlN8474ufunyreZ2cPurmIgUje6qi4LcfdR4B1m9l+Az5jZv7DwBa7yx2fN7O3AlwnKOXzC3R80s7eF998I/DzwJjPLAJPAf/NVZhganc6yqSsVlCoJG7xJpUpEpAGoTmV0af24lFuojt8oM2tbClOmOgvb3b231o0TEVkJd7/PzF4K/BqwrBp77n47cHvZthtLvv8A8IFqtLNApUqiT+toZDnM7IXufle927EUqlMp0jwWuhL+KeCfgL3u3uPuPcAT4fcK+kSkYZnZemA/cDfw6/VtzeJmlSop3FCpkqgojIgMjU7NGhHRdDhZwF/WuwFLNTA8QUcyPmub6lRGwwWbOsk75POOu5PPO3kPtktrmjfwc/ffIFjn91kzu9bMYlShXpWISK2YWcrMPkVQz+9m4K+Bx8zsE+GavYZUKFWSiBs5dxJxY/v6dpUqiYjSERGz4Gsybtx0uL/eTRNZtZ0bOpnMzO6LVKcyGt7zigtZ35nEYpBzx2KwvjPJe15xYb2bJnWy4NoXd7+PmTTl/wYob76INLI/AJLATnd/nrv/KLCLYFr7e+vZsIXs3NBJIh5jz5Zu9m3rZc+WbhLxmE6sIkIjIrICe8zs4Hy3ejeu1DWX7SGTcybSWdyDr8qoHQ0H9vXxpheeTyoeI++Qisd40wvP1xTdFrZoOQd3zwMfNbN/AFTXT0Qa2euAS929eMbt7qNm9mvAXTRo8HfNZXt4520PcOzsJLm8E48Z3W0J3vvKi+rdNFmCQo3Rwhoo0IiILOok8D/r3YilUJ3K6Dp0ZIjb7j/Glp42doVlsG67/xjP2bFe71+LWjDwM7NNwBuAfeGmh8xsk7uvKnW5iEiN5EuDvgJ3HzOzhp6qbgAerutzq1hJXhqTaozKCoy6+7/VuxFLpYza0aTEPFJu3qmeZnYh8D3gvwAPA48AlwDfNbN98z1ORKSO3Mw2mNnG8huQr3fj5nPT4X56O5Ls3drDheetY+/WHno7klojFhGqMSor8Fi9GyDNT9PQpdxCI35/Alzn7p8r3WhmPw/8vwS1rEREGsk64D6oOGDWsCN+A8MTrO9Iztqmf87RohGRaFvrchzu/rrybWb2Z+7+ezV7Umk5moYu5RYK/H7E3V9fvtHd/9HM/qyGbRIRWRF3313vNqzEzg2dPHpqjNGpLOlcnlQ8Rk97ggs2d9e7aSJNrx4Fys3so+WbgDeaWTeAu19bkyeWlqJp6FJuoaye4yu8T0SkLszsZ8xszgUrM3uDmb28Hm1aihft2cjJsTTpXJ6YQTqX5+RYmhft2Vjvpok0vTqV43gdsBG4l2CWwr1AJvz+vlo+sbQOTUOXcguN+PWZ2W9V2G7Alhq1R0RkNf4Y+LkK2+8AvgD869o2Z2m+0X+Gvp4UI5MzI369HQm+0X8GXfYXqa06TbW+kGBJzeXAu9z9mJn9obv/TS2fVFqPpqFHW7WnoS804vfXQE+FWzdwy1IObmaXm9kPzOyomb2nwv37zOwbZjZtZu9czmNFRCrodPeT5Rvd/QTQVYf2LMnA8ASbutrYs6WbZ23tYc+WbjZ1tWmNn8gaqEeBcncfdfd3EJR0+Ex4DrRgbWURaS2FaehDo1OzpqEfOjK04mPOO+Ln7n+84qMCZhYHPga8HBgE7jGzg+7+/ZLdzgDXAq9ZwWNFRMq1m1nC3bOlG80sCXTUqU2LKl2An8k54Exnc5y3roNsLk8irvNBkVqp5zood7/PzF4K/BpwZ82fUEQioxblOBYq5/DnZva2Ctt/08w+sIRjXwocdfd+d08DtwKvLt3B3Yfc/R6Cee3LeqyIRM+hI0NcdfNdvOQDd3DVzXet6qrVPD4P/LWZFUf3wu9vDO9rSNdctodMzplIZ3EPvk5n87zuedt54swEA2cmGBqd4txkhnS2YatSiERSPddBmdl6YD9wN/DrVTrmb5rZg2b2PTP7rJm1V+O4IrK2alGOY6E1fq8Cnl1h+w3Ad4B3L3Ls7cBAyc+DwAuW2K7VPFZEGtAaZc77A+BPgcfN7PFw2y7g48B7q/Uk1XZgXx/XE1zde+zUGFt7O7jykp1cGiZ3yeTyZHJ5xggGMuMxoyMVpzOVoCMZJx5TuXeR1VjrdVBmlgJuJpjx9ChB/oTzzewLwNvCi94rOe52gplUF7n7pJl9DrgS+FQ12i0ia6cW5TgWCvzc3edcWnb3vJkt5SxjNXW0lvxYM7sauBpg165dSzy8iKy1WkxZKBdO8XyPmf0x8Ixw81F3n6zKE9RQ4cRzcHhi0VG9XN4Zm8oyNhUEgm3JOB3JOJ2pOO1lVwdFpCH9AZAEdrr7KICZ9RAsc3kvq7tQlQA6zCwDdAJPrrKtIlIHtZiGvlDgN2Fme939kdKNZrYXWMpJ1CCws+TnHSy981nyY939ZoKrZuzfv79hCzSLtLq1zJwXBnrfrfqBG9R0Jsd0JsfZCYhZMBrYnozTnozRllAgKNKAXgdc6u7FDtDdR83s14C7WGHgF2YH/RDwBMG52lfc/Sul++iCeWupdlZIWTuls4EGhyfYUYX3b6HA733AF83sT5mpKbMf+F3gHUs49j3AXjO7ADhGMNXgDUts12oeKyINqBZTFmSuvDvj01nGp4PRQDMjlYiRisdoT8boSMaVLEak/vKlQV+Bu4+Z2YovYpvZBoKcCBcAZ4F/MLNfcvfPlDyHLpi3iDVaYiE1VO1p6Atl9fyimb0GeBfwG+Hm7wE/7+6LXkl396yZvR34MhAHPuHuDxYSxrj7jWa2jaBoaS+QN7N3EMxLH6n02JW+yFK68iFSH2uROa9SRs+oKPRNj54aY1vZGr/VcPfiiODoVLAtGY/RGa4RbE/GWNrsfRGpIg+DtEp/fKvJ4PQy4NFCWRsz+zzwYuAzCz5qETp3iqa1WGIh0bLQiB/u/j3gzSs9uLvfDtxetu3Gku9PEEzjXNJjV0tXPkTqpxZTFiq4y8wGgS8BX3L3x6p58Fop7Zt625OcHp/mhjse4Tr2ViX4K5fJ5Tk3mefcZKY4NbQjFadTo4Eia2UdwWyq1eRDqOQJ4IVm1kkw1fOnCC6wr5jOnaJrLZdYSDQsGPg1G135EKmvWmfOc/f9ZnY+8ArgI2GGuzuBLwL/5u7TNXvyVSjtm9LZfHFE9NZ7BmoS+JUqnxqaSsTCRDEaDRSpFXffXaPjftPMbgPuB7LAtwinda6Uzp2iS0sspFxLBX668hF9mm4ii3H3xwnq9t0YFm7/ceBy4E/N7KS7v7KuDaygUt/UnoxxYmTtk5Gms3nSWY0GitSSmf0M0OPut5VtfwNw0t3/daXHdvc/BP5wlU0s0rlTdK3FEguJloUKuF9lZpvWsjG1tnNDJ5OZ3KxtuvIRHYXpJkOjU7Omm9SgCLg0CXfPuPsd7v477n4pYSa7RlOpb5rK5NnW21GnFgUKo4GnRqeLheRPj00zPp0lk1MheZFV+GPg3ypsvwO4fo3bsiCdO0XXgX19XH/FxfT1tHNuMkNfTzvXX3GxLpi3sIVG/M4nyAaVBL5GMFXqbnePbAYoXfmINk03kdVy92P1bkMlpX1T3IzJTI5s3rnykp2LP3gNla4NhKCQfFsiTlsiRioRoy0Ra9lRQc1GkGXqLCRgKeXuJ8ysqx4Nmo/OnaKt1kssJFrm/Q/t7u9395cCPws8APwKcL+Z/Z2ZvcnMtq5VI6tFVz6ibWB4go6y4tSabiLNoLRvGp3KsKmrjeteWpvELtWUyzsT6SzDE2meGpmaNSo4mc4R4euEy6LZCLIC7WY25+J7eLG9vkP9ZQ7s6+P1z9/OydFpHjoxysnRaV7//O06dxKJoEXX+Ln7KPCF8IaZXUSQOOHTwM/UtHU1oCsf0aVFytH30a8+zC13Psp4OkdXKs5bX3IB177smTV7PjPrcvfxmj1BFRX6psHhCdLZ6E6jnC9jaEcyTrJJRwNvOtxPJpfj9FiWdC5PKh6jtyOh2QiykM8Df21mby/0UeFI30fD+xrGoSND3Hb/Mbb0tLErHPG77f5jPGfHen2+RSJm2f+F3f377v4/3T1yQZ9E2zWX7SGTC0YY3IOvmm4SHR/96sPccMdRJjM5ErEgaL/hjqN89KsPV/25zOzFZvZ94KHw5+ea2V9W/YlkQaVrBAfOTPDE6QmGRqY4O5FmIp0l2yTrBB8ZGuXUaJps3onHjGzeOTWa5pGh0Xo3TRrXHwBPAY+b2X1mdh/wGHAyvK9hlC6zMAu+JuPGTYf76900EVmmlsrqKdG2RnXgpEZuufNRYgaJWHC9KWaQzee55c5HazHq92GCGQkHAdz9ATO7rNpPIsuTzecZm85DSVGNwjrBjmQwMphKRG9UMJ3Nk3Mnl3PcoVABI8ojt1Jb7p4F3mNmfww8I9x81N3XPpXvIpTVU6R5KPCTSNFU3egaTwcjfaViFmyvBXcfKKtBV5snqpJCcpBHT42xrbeDKy/Z2fBr/KqhsE5wIp2F8ZlAsD0Zoz0ZJI5p9FqCec+TL1nOWFja6K7ATxYWBnrfrXc7FqJlFiLNY6FyDhsXuq1lI0Uk+rpS8VknxwB5D7bXwICZvRhwM0uZ2TsJp302otLkIL3tSU6PT3PDHY9wd/+ZejdtzRUCwTPjaZ48O8kTZyY4OdrYJSRiFiNuwYUMI/gaNzCL3uilSDktsxBpHguN+J0CBoFs+HPpJVcH9BcvIkv21pdcwA13HCWbzxOzIOjLe7C9Bt4G3ABsJ+jHvgL8ei2eqBpK19Cks/liyvRb7xloiVG/heTyzuhUhtGpmRIS7cl4cTQwGY8Rj9V3RDCViDGZNmIxwywY8cvnPZLTVmVtmFkinO7Z8LTMQqR5LBT4/S/gAPAfwGeBO6Ncw09E6uvalz2TR0+NcfA7J8jkgiQYVzxnW62yepq7/2ItDlwLldbQtCdjnBhpuOU+dZfLBwljxqdnzpnjMSMZD2oJJmJGIh4jGTdS8bWZJrq3r4fHTo8xMlmS1bMrye5N3TV/bomsu8xsEPgS8CV3f6zO7VmQllmINIeF6vhdB/wo8A/AG4Fvmdmfm1lNLs+LSHM7dGSI+544x+5NnTz7ab3s3tTJfU+cq1Wts/80s6+Y2a+a2fpaPEE17dzQyWRm9hLEqUyebb0NVc6rYeXyzlQmx8hkhjPjaYZGpjg2PMmjp8YZODPB0OgU5yYzTGVqU1vwmsv2kM05ubzjHnzNaiqcLMDd9wPXhT9+xMzuMbMPm9lPm1lbPdsmIs1rwXkoHvg68DvAjcAvAy9bi4aJSHNZy5Tg7r6XICX6xcD9ZvbPZvZLVX+iKilfQzOZyZHNO1desrPeTYu8TC7P2FSW02PTPHl2Jhh8KiwrMZnOVaWshAMYwQijhT+LLMDdH3f3G939NcCLgf9LcI7172b2L3VtnIg0pXmneoaFRF8N/DdgC0FB0ee7+8AatU1EmshapwR397uBu83sz4C/AP4G+ExNnmyVCmtoPviVH/DUuUnOW9fJL75gV8uv76uVTC5PJpdnvKSshJmRiBmpRIxUPEZHaukZRW863M+6jiTnrZsZoZ1IZ1XAXZbM3TPAHeENM9te3xaJSDNaaI3fEPAIwfq+owQXMC8xs0sA3P3ztW+eiDSLtUwJbma9wGuBK4GnA18ALq36E1XRgX19vPO273BqPMOp8XP82RcfYtu6drb1trM1vG1b11b8uatN1Xiqyd3J5DwICIHhiSAYDDJ1GrFYUIMyHgvWDibiVlxbqDpnUm3ufqzebRCR5rPQmcM/EAR7+8JbKScYAYycQq2sgeEJdiozlciaueayPbzv4INMpLPFrJU1TAn+APBPwPXu/o1aPEG1TWdzxcyVACNTWUamxnj4qbGK+/e2J8JgsJ2tvTMBYSFYVGC4eu5OzgEc8pCm8pTQzV1tDJ6dKJacSMVjdLcn2L2pm0wuTyJmDV+LUGQhOncSaQ7znhm4+1vWsB1rolArKxk31nckGRqd4n0HH+R6UAcmUmNrnBJ8T9SyEH/j6Gmet3M9Pzw5xvqOFPt3b6CrLcGJkSmeGpni+LngayaIRIqB4SNDlQPDnjAwLASFhYBwW287W9e1063AsGqet3Md3zl2NhgdNEjn8pwaS/PKZ/cwcCYY9UvEZkYJY4WRxPBrLGbELdhu4TEgGGm0Ym3AoFxEK3N38k7FBD0O5N1xD8tpuAc/E5TWyOWdnHsQwzs4M8cqPAZg16b6FCU3sy53H6/Lky9C507RpqBdSi20xu8j7v6O8Pvr3P2Gkvs+FcXAsDS5BEBnKqF1GCJrqNYpwUv6rYNmNufs0N2vqNmTr0LpidWGzhSTmRyHHj7JdS/dyxtesKu4X96dsxMZTpyb4sTIFCfCYDAIDqc5MTJFOhuMSo1OZRmdGuPoPIFhd1siDAIrBIa97XS3KzBcqm8NnGNTV5Kx6RyZXJ5kPEZ3W5xvDZzjjeE+2XyebBXqz5sZRhAcxspGEa2QXAaK+1hYgrcYCJUEOYWHexgIzXwfBETFwDQMSAvPZ0YQqIZBbPlzOV4SfM0EbIVArBC4mVnlIM5nvpY/ppbqMSprZi8GbgG6gV1m9lzgGnf/tTVvzDx07hRdCtql3EL/2S8r+f7NBMWQC55Tm+bUltZhiNTXGlx5/N/h1w9V86C1ttQC7jEzNnal2NiV4qKn9c45jrszPJEJgsEwKDxeCArDn6fD6GNsOsvRk2McPVk5MOxqi88KBLcWA8M2toUjhpq+GDg+Msn6zhQbOmd+H47XpA6jh4EQDrka5w4tTHWt9fO0uA8DPwMcBHD3B8zssoUfsrZ07hRdCtql3EKBn83zfWStZXIJEZltLa48uvt94dd/q8oB10i1CrhbSWB44XkLB4ZBMDjJiZHpmVHDc1NMhYHh+HSOH54c54cnK88+60rFi8Hg1jAg3FoyatjT3jqB4Xm9HRw7Oz5nxG/7+q56N00iwN0Hyv5WcvPtWw86d4ouBe1SbqHAL2ZmGwhq/RW+L/RM8Zq3rAbWOLmEiJRYyyuPZrYX+B/ARUB7Ybu7N+Qfe6UTq1oUcJ8dGM69390ZmcxyfGSSp0ami+sKS9cYTmXCwDCdo//kOP3zBIadqfishDOlaw239rbT20SBYfkav0wuz+nxPK/6kXX1bpo0voFwuqebWQq4Fniozm2aRedO0aWgPfqqPVNqocBvHXAfM8He/SX3RXLexxonlxCREmt85fGTwB8STKP6SeCXaeCZC6UnVnGzuhVwNzPWdSZZ15lk37a59xcCwxMlgWAh+UwQKE4WA8OJdI7+U+P0n6ocGHYk48WAcGs4Sli6zrC3IzqB4bcGzrGxM8l4embErys1e42fyDzeRrCUZjswCHwF+PW6tqiMzp2iS0F7tNViptRCgd9PuPvjKzpqA6t1cgkRqWyNrzx2uPvXzMzCfuyPzOzfCYLBhlN6YvXYqTG29nZw5SU7G66Ae2lg+KxtPXPud3dGprJzk86UJKOZzASz2CYzOR49Nc6j8wSG7cnYrBHCmdHDYORwXUeyYQLD4yOTbOhKsbGr9mv8pOmYu/9ivRuxmAP7+th/wUYmprO0JeO0J2P1bpIsgYL2aKvFTKmFAr8vAM9f0VFFRMqs8ZXHKTOLAY+Y2duBY0BD/6crXJQaHJ4oZuaMGjNjXUeSdR0LB4blQWEhGc2JkSkm0kFgOJXJ89jpCR47XXlEuD0Rm7WmMPi+rTi1dP0aBobn9XZwenyajuTMKohaTNWVpvSfZvYo8PfAP7r72Tq3Z165vDM2nWVsOgsEyaY6UnE6U3E6UwniLV5upFFpwCO6ajFTaqnJXUREVmWNrzy+A+gkWC/zJ8BLCbITSx2VBobP3Fo5MBybzobTSKdnppGeC7OTnptivBAYZvM8fnqCx+cJDNsSsZKAcO4aww2d1QsMr7xkJzfc8QiTmRztyRhTmXxdpurKyt3df4Zb7x3g1Nj0mtY6c/e9ZnYpcCXw+2b2feBWd/9MzZ98lfLujE9nGZ/OAtO0JeN0hKOB7Yl4y9edFFmtWsyUWijw225mH53vTne/drGDm9nlBHPX48At7v7+svstvP9ngQngLe5+f3jfbwJvJVhP+F3gl919arHnFJHGtVZXHt39nvDbMYL1fRIBZkZPe5Ke9sqBIcBYOGJ4/NwUT43OrDV86lwQKBZGI6azeR4/M8HjZ+YPDCtlIy2MGC4nMLx0z0auYy+33jPAiZFJtjXoVF2p7O7+M9xwxyMkYvWpdebudwN3m9mfAX8B/A3Q8IFfuelMjunMTELSVCJGWyJOWxgIphKaHiqyHLWYKbVQ4DdJkNxlRcwsDnwMeDnBguV7zOygu3+/ZLdXAHvD2wuAvwJeYGbbCa7UX+Tuk2b2OYKrYZ9aaXukOaxBHTipoVq/f2b2SeZPPuXu/qtVezKpi+72BN3t3Ty9r7vi/WMlU0lPzMpIGkwrLQ0MnzgzwRPzBIapRIytPW3FhDNby9YYbuhKzSqgfumejQr0IurWewZIxIJpi2a2prXOzKwXeC3BOc7TCZbZXFrTJ10j6WyedDbPaHjJPhGLBaOBqbgCQZElqMVMqYUCv9Pu/jcrPnLQcR11934AM7sVeDVQGvi9Gvi0uztwl5mtN7NCkvEE0GFmGYIpW0+uoi3SBNaiDpzUzhq9f/9cYdsugqmfSypDs4SZCr8IvDv8cQz47+7+wEobLNW1aGA4nZ1V4P5EMSPpFEMjU4xMBYFhOptnYHiSgeHKCVqScZuVjTSTzXPkxCgjUxmetq6DX3zBLl749E01e51SPcdHJultn306tIa1zh4A/gm43t2/UY0Dmtl64Bbg2QQXwn6lWsdejWw+z9h0vnjxJR4z2pNBENiRUiAoUkm1Z0otFPilV3ns7cBAyc+DBKN6i+2z3d3vNbMPAU8QjDx+xd2/ssr2SMStZR04qb61eP/c/R8L35vZHuD3gMuA9wMfX+zxS5yp8ChB1uNhM3sFcDNz+zZpUN1tCbq3dPP0LZUDw/HpkhHDc9OzSlacODcTGGZyzuDwJIMVAsPhiQy/90/fY3NXivM3d4XBYdus7KSbumePGEr9FJPzpGauDa1hrbM94cXvaroB+JK7vz6sDdiQRdty+ZI1guOQjMfoTMXpakvQnoxkueiGpJlSUmrewM/dX7jKY1f6j1beuVXcJywW/2rgAuAs8A9m9kuVFjub2dXA1QC7du1aVYOlsa1xHTipAncnncsznc3z2OlxetoSZHN5EvHgym4t3j8zuxD4feB5wAeBt7l7dokPX3Smgrv/Z8n+dwE7qtFuaQxdbQn2bOlmzzyB4UQ6Oysb6fFzUxz89jGmc3PP3U+Npzk1XvkaajJu9PXMZCItXWe4bV07G7tSypK4RorJedI5UvHYmtQ6M7OPuPs7gINmNufD4+5XrPC4vQQXu94SHifN6i/kr4lMLs+5yTznJjPEY0ZbIkwUk4wrEFwhzZSScguN+K3WIFCa0mwHc6drzrfPy4BH3f0kgJl9HngxFRY7u/vNBFfc2b9/fyQLy8vSrHEdOFmBdDbPdDbHdDYI9tLZPIWL2Vt72jk9Pk13W+3ePzP7B2A/8CHgN4Ec0FtI0uHuZxY5xFJmKpT6VeCLK22vRE9nKsEFmxNcsLmruO0f7hucd/9f2L9jVumKc5MZIBgxPHZ2kmNnK08lTcSMvjATaemU0kJ20k3dbQoMq6SYnOfeAU6PTa9VrbP/HX79UJWPuwc4CXzSzJ5LkKvhOnevXDCzQeXyzkQ6y0QYsiZiMTpSM4FgMq5poUuhmVJSrpaB3z3AXjO7gKCG1pXAG8r2OQi8Pbyq/gLgnLsfN7MngBeaWSfBVM+fAu6tYVslAq65bA/vvO0Bjp2dJJd34jGjuy3Be195Ub2b1pLyeWcqm2M6ky9+zS8wY6k05X13zGp1Vf0SgpkF7wR+O9xWODt2gpOihSxlpkKwo9lPEgR+L5nnfs1GEN72E0+f9fNkJjd7jWGYeOb4SLDGcHgiCAyzeefJs1M8ebZyMut4zOjrmZk+et66mVqGCgxXbq2uHrv7feHXf6vyoRMENZh/w92/aWY3AO8B3lvYIYp9UzafZ3RqbqKYtmSctkRMI4Lz0EwpKbeswM/MrnD3g0vZ192zYeHkLxMkSfiEuz9oZm8L778RuJ2glMNRgnIOvxze900zuw24H8gC3yIc1ZPWZgAeTCHETcUm10jplM3pTJ6pTI5MbnlFxgtX1W+7f5CnRqZqclXd3Xev8hBLmamAmT2HIHnCK9z99Dxt0WwEmaMjGWf3pi52b+qqeP9kJsdQSSbSYnA4GnwtBIa5vHP8XLBfJeWBYSEbaWFK6WYFhkX1LOdgZnuB/wFcBLQXtrv7Sq+IDQKD7v7N8OfbCAK/ombomyoliulMJehuS9CejFWtRmfUaaaUlJs38DOz15VvAj5mZgkAd//8Ygd399sJgrvSbTeWfO/Ar8/z2D8E/nCx55DWcdPhfhJxIx4zch58TcRNUxaqKJvLk87lyeScTC5PNvy63CBvPpfu2cjLL97Kpu62qhyvBhadqWBmu4DPA29094fXvonSaNa3xzk7lau4fbk6knHO39TF+fMEhlPhiGFpgfsT52ayk54J1xQuFhjGjGCN4bq2sqmkwfdbelonMKxnOQfgkwTnOh8GfpLgAviKf/HufsLMBszsWe7+A4IZU99f7HFRl8s7o1MZRqcyxCx4LztScTqT8eKa8lZ0zWV7eNdtD3BseJJsPk8iFqOnXTOlWtlCI36fA74EDDHTCXUBP0cwG2LRwE+kmh4ZGuXcRIZYLAj6snnn1GiaTG603k2LpHzew7V4ueJIXjZfnQAvqpY4U+F9wCbgL8Oryll331+vNkv9WSxGsJy00vbqal8kMJzO5HhqdDoMDmfXMDwxMlUMDPNOsdYhnJtznJjBlp62mYCwp2Qq6bp2tnS3Nc0JdZ3LOXS4+9fMzNz9ceCPzOzfWd2F798A/jbM6NlPOJuqVeS9JFsoM9lCO1OtORroAEbwum3tpjNLY1oo8HsRQQr0e4Ab3d3N7IC7t1QHIo0jnc2DUUyBbgZ582C7LKqQeGUqE3zV762yJcxUeCvw1rVoS8yMmBmO407FNZRmRjJupOIxEvEYhUGawv75cGp03iHnTj7vJffpFKAaCtMvl7q9ltqScXZt7GTXxspTudLZfHGkMAgIJzkRfn1qZJrTJYFhMNV0mgcGKweGm7vbSkYJZ08l7euJTmBY53IOU2YWAx4JLzodA1Y1zOju3yZIclU1h44M8bGvH+WJ4QnO6+3gykt2cumejdV8ipopzRYas6B2YEcyTlsyRluiuQPBmw73s64jyXnrOorblNyltS1UzuEeM3s5wZWjO8zs3ehCgdRRMm5MZoKRKrPgxBYgFW/eTnsl3IORvHQuyKpZuDXCSf7d/We47f5BToxMrVk9oeWsTW4Ei51s5vOzA7bVnlwXjpcPg0EvBIjueH4mQCwNIIGZAJOZALM0qAz2CXZq9ZHkRpJKxBYNDIdGK6wxHJni+MgUZ8bS4XsOQ6PTDI1OM9+I4ebucBrpurmB4ZaetobJzFiPcg4l3kFQZ+9a4E+AlwJvXosnXqpCSYCYQW97gtPj09xwxyNcx97IBH8FeS9kCw1GA4sXzsIEMal4jFQ8RqxJpjkruYuUWzC5i7vngRvCRCsfXpsmiVT2zK29PHpqjNGpLOlcnlQ8Rk97kgs2V6631QoKQd50Js90LsisWa31eNVWSKDQlojVLIFCNdYmN7pYzIhVMa1RtY9XibuTyzvOzAWbwijmzD7BtpnvZwLNfN7J5p1sPlh3WhqINoK2hDGdnduWtkT0Th5TiRg7NnTOewGiEBg+NTIdBoezs5OeGpueExh+91jlwHBTV9vMGsOSOoZbe9vp6127wLBO5RyA4CJ7+O0YDTols1ASoC0RJ5vL05GMM5nJces9A5EL/Mq5O+lsMHNobGqm3GsyHiOViBUzhkY1a6iSu0i5JWX1dPdjwC/UuC0iC7rmsj287+CDbFuXKP7jWcOrsg2hdD3edDZ4/Y1y8ruYYgKFZE0TKGhtcgMyCxIxVVs+72TyefL5mVHKXC4IEgtBJM6saa65fPWnuL7hkl188huPV9zebBYLDDO5PEOjMwXuS2sYnjg3xenx6XB0GU6OTXNybJrvHhuZcxwDNnWn5iSd2RquMezraSeVqF5geOmejbzg6Ztm1WesJTP7JPPPonJ3/9U1acgSFEaN8iWtbU/GODFSuQZlMygkNRufDn6Oh/+72lPBNNFGGa1eTOG8aSKdbdnzJpltwcDPzN4MXAc8K9z0EPBRd/90rRsmUu7Avj6uJ7j6ODg8saZXZdeau5PJhSUUMjMF0aMS5FVyfGSSuMHjp8fJ5J1UPMbm7lS1p5xobXILicWMttjyr8QXRiCzhVuYzTYXBoaF21K98cW7AfjcfYNMZnJ0JOP8wn/ZUdzeSpLxGNvXd7B9fUfF+zO5PCdHp+fUMCz8fGosCAwdODWW5tRYmu89OTcwhJLAsCQg3FoyaljNwLAG/rnCtl0EUz8banipMGrUlphp1lQmz7beyu9xM8rlnbHpbLF8RDIejAQW1gmW/m4aSSudN8nSLFTO4U0EHdBvEdTTM4KioB80MxT8ST0c2NfXVB1WNiydUFyPl8uTDU9Am01XMs7jZyaIW5iVNeccOzvFM7ZU7wq71ibLUhRGIBc6V8vnPSxtMjO9FIIPUyaXJ5P1WWsX3/ji3S0Z6C1XMh7jaes7eNo8gWE2l+fk2HRJNtLJWaUrTo5OF0eeTo+lOT2W5sH5AsOuFFtLgsJtJVNK6x0Yuvs/Fr43sz3A7wGXEVy4+ni92lVJYdQol8+SjBtTmTzZvHPlJTsXf3CTKowIFgrKF5LGtCVmpog2SnKjZjtvktVZaMTv14DXuvtjJdvuMLOfB24FFPiJLEMmFxQ+T5ckXmnGAG9ehcxpxswkTKfqGdW0NlmqIRYz2mMLr+0pTDXN5JxDDw3xyf98jGPngqyH/21/dLIeNpJEPMZ56zpmZSEsVQgMy9cYBiOG0wyNTs0EhuNpTo+n+f7xys8VBIYlawzXdfDcHeu4ZPdGutqWtBJmVczsQuD3gecBHwTe5u7ZhR+19gqjRh/7+lEGhifYFrGsnmthJmnMzLZUIkZnKlFMHpOIxVqmNqY0roV6tt6yoA8Ad3/MzHpr1ySR6CucEE5ng2BvKq0aeePpLFt72zg7kSlO9dzW21acOlNtUVubfOjIEDcd7mdgeGLNMp7K6hSmmn7j6BB/9M8PMjadJZd3zk5k+OBXjvCB1z2HF+/dHE4nDUYIc8Xvo7M+t5GUBoY/WmHAKZd3To6VrDEsjByOTBazlM4NDGfXgj30zgM1D/zM7B8ISi58CPhNgkKQvYULYe5+pqYNWCF9YpcuyKidnrM9GY+FU0TjtCeDLKLNXFJCGstCPdtCq3abd0WvyBK5BydvmVnTNGdO8GS2Qq2s8zd1FafATKSz9PW0V/V5org2uZAuPRm3mmU8ldp5/xcfKpY5cCCbc9KZPB/6yg/40sXb5n1cod+YzuSYCsuuKBhcnXjMiuv+KikEhk+NTPHUuZnspI8MjTJwZpJ0Ls+7//E7/PefeHqt//YuIfi4vBP47XBbyVwIGib7xqEjQ/zm577N6FSWVCLG+PQof/bFh3j983fwsou2sqWnTSNZy1CYJjrG3JIShXqsqTCrqEi1LRT4XWhm36mw3WigDkmk1gprfabDE7NCp91S0zSroFgrK5OjO2Y1yS4W1bXJhXTphZTbNcp4KjVy9OQYpZd6CgHg0ZNjCz4uFa4H6g5Hl8rLswT9jUYGq2lWYLgj2HZ3/xn+/eGhYimcex47w0NPnuOjVz2/Zn9/7r67JgeugZsO988kQ0rnits/8Z+P8Yn/fIxk3Hja+g52rO9g+4YOdmwIkvvs2NDJ5u6URrMWUVpSolTMbNbIYFsivqIAW7NJpNSCgd+atUJkiWrZgbnPBHiZ8ISrEOTJ6hVqZd12/yBPjUzVKrtYJNcmq8hutOXCuKz0/NZ9ZvtSWZggIlhXmAyPU5L8Sf1STXz4qz9gPDPz+8w7jEzn+IN/+i53vuen6tiyxjAwPMGW7jY6U4lgnXqucAE0+IBncs7jpyd4/PTc/qo9GWZ53dDBzg2dYUAY3NZ1JBUULiDvzmQ6x2RJsF2aTTQVj5GML7xuULNJpNxCgV8S2Oru/1G60cx+HHiypq0SqaAaHVguLAKdz1Ncb1OaVVNX1mvr0j0befnFW9nYVbOrwJFcm6wiu9GWMCNTqDpvFBdCJarwGTcLCmeXp4vP5724hrjQfykYXJmnRmfWYRXeMnc4dm6qTi1qLIX+aWNXimz4GZvM5NjQmeK3fvqZHBueZPDsJIPDE8H3w5OcHJ3GCco+/PDkOD88OT7nuF1tcXas7yyOEhZv6zvpbq99cp0oKs8mCmGW4piRjMdIxI1kLJhJkIybZpPIHAv9ZX2EIL1wucnwvp+rQXtE5rVQB/YTz9oyqy6Xe1C+OVe4Op53Mtl81Qs3y1zZXJ7T42lOjk4zFN6C74NU7KfG0vz0RVt5/88/pxZPH8m1ySqyG23P6OvmoROjQbzns7fXSixmdKTidKRmAsLCtPSpTI7JTI7pjPq81dCvLjBfOYc3XLqLXRs72bVx7gWq6UyOJ89NMRAGg8eGJxkYnuTY2UnOjAeB9vh0jh88NcoPnhqd8/h1HclZweD29Z3FKaSln3mZqftb6cJP/6kx4gZPnp0kk8uTjMfY1JXiidPjjE9niceC8kpGMLU0prWaTW+hwG+3u89Z4+fu95rZ7to1SSRQqHGXyQdJUx47PU4Mn9WBbehM8uipMR49NfdqolRfLu+cKQnqTo5OBV/HpovbhsfTLLb88djZmsVgkVybrCK70bZvWxD4Vdq+lkpLUKwPt5XWCi0tKSMz2hMxpsLfSWmw17lAKY9aMLMr3P3gmj7pEqyknENbMs4Fm7u4YPPcOq3j01mOnZ0sjhQGo4QTDA5PMjIVJDw5N5nh3GSmYo3GTV2pMCAMRwvDqaTb13coIUqZrlSCx0+PE4sFQV027xw/N8X5m7p4amTuiHY8ZiTiwWhhIdFMIgwO4woMm8JCgd9CqfYqF9iRluXuuAdz0nMl3+fDr54n3O6YGTEL1lEUpl2aBWfmufAxlUbnOpLxOR3YUyNBlkhZvbwHaeiHwmDuVMloXSGoOzU2vWhQV6q3PcGWnja29LTR19NOX08b52/q5Dk71tfqZUR2bbKK7EbX146cJG5hUhef6c++duRkvZsWnLjFoYOZICaXd6azueK6wekWnyb6kmds4qsV3qufubh2f49m9rryTcDHzCwB4O6fr9mTr8CBfX087/wNnB6bXvWxutoSPHNrD8/c2jPnvpHJDMfOBtNFS6eQDg5PMhGudSuU4Xhg8NysxxqwpaeNnaVBYRgQnreuvWEKqq+p8HwsU7LgOBZurySXd3L5HNOZ+Q8ZMwtHB4PvC4FhIhb8fi3cHjcrTp0O7jet6WwACwV+95jZ/+Puf1260cx+Fbivts2SpcjnPTzRCP6AC3/GwVITL35PyfZgPy9+Hwv/MAuBmjM7UMuF0ybzpffnfdb+a7YubuYFlH3VfJzFuDsjk9liUHdy1hTMIKA7OTpNdhlRXVdbnL6e9iCw626jrxDg9QY/b+lpq1j8el1Hkk3dbdV8eaW0NlnW3Hg6R8xmJ3OJWbC9EcVjwZT5ztTMtmJG0WxQXmIyk2uZzMWnxjL0tscZncrhBO/duo4EJ0bm1mCros8BXwKGmCnj0EWwjMaBhgr81kpvR5LejiQXnjd7Sba7MzyRKRklDILBwojhdDaPQ3F5wX1PnJ31+JjBeetmso7uKEk408zlKIYnM3NqL3q4faWCi/oOK7hWFCsJBgvflweScTPi8SBQXGkmU5nfQoHfO4AvmNkvMhPo7QdSwGtr3K6aOXRkiL869EMePzPOees6uOrSnbzo6ZuDK7Q2M8+5cMXWyr6HyoFW8PPswMQpC7zCgGtWsFYhMKukEJwVjtGK6zbGMzm29rYxPJEpmeqZYiLTmCdXa8XdGZvOzgnoZn0/Nr2s6V0dyXgxkJsZsZv9fWkikqW6u/8Mt90/yImRqVqllf4IWpssa6wtEWMinQvO3sO+OuPQmYrOCMOsjKJhhtnpbI6pdD5YL5ht3kDw+MgkW3vb2bbOikl03L3WWXVfBLwfuAe40d3dzA64+y/X8kmjyszY2JViY1eKH9mxbtZ9eXdOj6WLI4OF27Gzkxw/N0kmF1y8PnY22Hb3o7OP3czlKNLZPPEYxGMzfVEun6/bdO984SQYyM0JSStLxmPFYNEKgWEsqH2YiMeKI4uxcHusZF+Za94zN3d/Cnixmf0k8Oxw87+4+x1r0rIaKGSFjMegpz3BqbFpPvzVR8jnWXCuujSGQgHwnSWZDiczOfq6ajZ61BDGp7Mza+hGpiuur5vKLL0TTyViM6NzhWCuOxip6+tpZ0t3G11t8ap3mnf3n+GGOx6hLRGrZVpprU2WNbexI8FEOjcnucvGjmhnJixkE10XlpbIlJSVaKZMooX/LaVJQ2qdVdfd7zGzlwO/QVBy5t2wxDNhmSVmVrwo+bxdG2bdl8s7Q6NTM1NHC+sJz05y4txUsLRkoXIUiViwfrA4StjJzvDn9REoR5GMG9PZYKZWYQABIBVv7HaXWk0fUzqqOGt00YDC9nC/UoXBoMI01sJjSt/v+WbbuZd9T2HwaGa/YiBLOLhU1pbC/XmnmKywWmssF/2v5O5fB76+6mdqAIWskO3JOJlsvpg979Z7BhT4RUBpAfD2ZKyYWezKS3bWu2krNpXJlY3UzV1ft5zpYsm4sbl02mVPG1t62tnSkypOy+xtT9Tln9Wt9wyQiBkdySCorFFaaa1NlrUXi7GlO8np8Qx5D6aVbepKYrHojPgtRTKsG1Z6ra1QViJYK5gL++VoBYPF/y3pHKl4bM2y6rp7HrjBzG4DPlzTJ2tR8Zhx3roOzlvXwSW7Z9+XyeU5cW6qOGW0YjmK7BLLUZSMFu7Y0EFPe3LO/vWwe1M3g8PjjKdzxZlSXakEOza0Rm6EwgjjUkcXG9nmnjZ6q/C5ivblyGUqFEkuffvbkzFOjDRslncpUSgAfus9A5wYmVxSZrF6SmfzM2UMxtIzI3Qlt0IGs6WIx4zN3Sn6etpKgrv2WVMw13cm51y5ahTHRybpLavNVIMi5VqbLGuuUOds27qZEaKJdJa+noWuQzSH2WUlgpOSdDbPZDqYHhqFxDHF/y33DnB6bHrNs+q6+zHgF9bkyVbo0JEhPvb1ozwxPMF5Df6/d6mS8Rg7N3ayc4nlKArrCU8vsRxFoVh9sJYwTDizxuUoChc1NqcSTXPBXFanpQK/wj/n0oQTU5k823o1EBAVl+7Z2BD/bLK5PKfG0sXadENla+tOjk5zdhmLp2MGG7tSs4K5zeGIXSGw29CZivQi58J0qu62mVGQGkynegcRXZt86MgQNx3uZ2B4olbrH6VGVIdxtlQiFqbVDwLBfN6ZyuaYTAdJYxqxnMSlezbygqdvqlh+oFbM7M3AdcCzwk0PAR9190+vWSOWoLBMJmZBpubT49PccMcjXMfehvh/XAsLlaOYSGdnpo2enZlCeuzsJOfC//uFchTfP165HEVhlDAIDGdqFFa7HEXULphL7bVU4Ff455z3LImY6cqHVJTLO6fHZme9LK1Td2p0mjPj6SVPHDBgQ1dqbvbLkpG6zd3Nm1WsoHSqbnfManJyHNW1yYUTq2Tcarn+UWpEdRgXFitmEQ1OOXJ5ZzITBIJTmVzDjwjWgpm9ieBC1W8B9xP8q3g+8EEzo5GCv8IymbZEnGxOy2Q6Uwn2bu1hb4VyFKNTmZnkMmV1CsfLylF8Z55yFIVRwh2F9YSrLEfRKBfMpTG0VOBX+Of8l4d+yBNnxnXlowXl3RkeTy+YAfP0+PJq1a3rSFZMlFLYtrm7jWQr1g8qc+mejVx+Yiv/cP8gA8OTdKXivPUlF9Tk5Dhqa5MLJ1aFE+MarX+UNRD9lSS1F48Z3W0JutuCz3s2l2cqnB7aQoHgrwGvdffHSrbdYWY/D9wKNEzgV1gmU/p/UctkKutpT3LheZXLUZydzDB4ZmnlKO6vUI5i27r2cJSwc9Z6wr6e9qa/cCzV01KBXyn9c24+hY61kP2ykCyldH3dqbH0slKS94QFyGcFdSUFybf0tFV9akazurv/DF/6/lNs7m6juy3BZCbHbfcf4zk71rd8cFM4sSpVg/WPUiMasV2dRDxGdzxWDARzeWcqkwvrCuaYzuSbsYRRb1nQB4C7P2ZmvRX2r5vCMplCqQvQMpnlMjM2dKbY0Dm3HIW7cyosRzGreP3wJE+WlKN48uwUT56d4u7Hhmc9Phk3nhbWKNy+voOdG2fKUWzqTjXsun+pj5YK/A4dGeJdtz3AyGSGbD4Y+fnAl8d598/s06hfg3N3RqayZaNzhWBuZrQuk1v6yUFXKl6hTl07W7pnMmCu5SLsZrdGWT0jqXBiVVobsdbp5KV6bjrcTzqb4/RYlnQuTyoeo6c9oc/2CsVjRldbopg9tFBcfiKdYyKdbcg1giuw0HBZQw2lFZbJ5PJZknEtk6k2W045inCEcGB4YnY5ijMTPH5m7oXCtrAcxUzW0c7i9xs6G78chQQXzW+9Z4ChsSnO39i16mUELRX4feBLRxieyBAziMcNdxiZzHDzv/cr8KuzsensTAbM0dkZMAvr6qaW8c++PRGbmWrZMzcDZl9PG11tLfXxr7s1yuoZSUoOEm0PPzXCyFSWGEFx4WzOOT2eJpubm9hBlq+0uPzGrhTZXJ6JcI3gZDoX1dHAC81sTs1RgqVeDfWHX1gm87GvH2VgeELLZNbQQuUosrk8x89NFUcJg+BwgoGSchTT2Tz9J8fpr1SOIhWfGSUsmz7aKOUoWl2h/nEiZqxrr85skpqe+ZrZ5cANQBy4xd3fX3a/hff/LDABvMXd7w/vWw/cQpCgwYFfcfdvrKY9/afGiYVFEp2wgKI5AzrxrKnJdI6hCqUMSpOmTCyjVl2BGSRjxo89fTPP3bV+1nTMnjrVqpP5rVFWz0hScpBoK8w0KBTXNQsyWaaXMQNBli4Rj9Ebj9HbniyOBhYyhk5n88XCyg3uwno3YDkO7Ovjeedv4PTYdL2bIqHEAuUo0tk8x8LRwW/88DTffOwMo1MZ3CEbLncZT+d4+KkxHn5qbM7je9sTYRDYOSsD6Y4NnZoJtYZqMVOqZoGfmcWBjwEvBwYJ6msddPfvl+z2CmBveHsB8FfhVwgCwi+5++vNLAXo7LABTWdynBybW8qgdLRubHrpteoSsaAAeXnWy76eNm489EOOnZsq7uuFKQ6nx3nvz11Ui5cnVbQWWT2j7MC+PgV6EZVKxIojT2ZB34Sj9b9roHQ0cANBwD2RCaaETmcauoZgEtjq7v9RutHMfhx4cjUHDs+/7gWOufurVnMsiaZUIsYFm7s4OTLNXY+eZnw6Sz7vxGPG+o4Eb3rhbtZ3pYrrCgfOzC5HMTKV5fvHR/n+8bk1Cjd2pYIgsHT66IYOnraunbakgsJqqsVMqVqO+F0KHHX3fgAzuxV4NVAa+L0a+LQHl+fuMrP1ZnYeMA5cBrwFwN3TQHq1DbpgUydHT44H/5XDf855h/M3aIFyJelsnlNj82e/HBqdWlYB8pjBpq4g42XplMuZenXtCxYg/6ODD87Z5lBxXrs0nkI9odvuH+SpkSmNaknT2NvXww9OjHB2MkPeg75ufUeSvX1z071LbcUqZAydzOSYyuQbLWPoR4Dfq7B9Mrzv51Zx7OsIagI2VJIYWXs3/3s/I5MZYjErLnEancryz989zi1v3j9n/7GpLINnJ8J1hJMl9QonGJ8OZmadGU9zZinlKEoykJ63rl3ZzVegMFOqoySgXu1MqVoGftuBgZKfB5kZzVton+1AFjgJfNLMnktQiPk6d58zSdnMrgauBti1a9eCDXrPKy7kNz57P2PTuWCqJ9CZjHH1ZU9fzutqCtlcnlPjaU7NU3x8aHSK4YmlFyA3gqtApSN1s0fs2tnYtboC5PPNmtJsqui4dM9GXn7xVjZ1t9W7KSJV86I9G7n7sTPEY0bSgguK56ayvEhroOouEY/RE4/R0x78HEzBzTOdCTKGTmZyy8r0XEW73X3OGj93v9fMdq/0oGa2A3gl8P8S1AiUFjYwPFFc4gSLL3Hqbk+wb1sv+7bNLUdxbnKmRuHg8EQx0cyx4UmmVliOYvv6Drb2qhzFfMpnSk2kVz9TqpaBX6V3sbx3nW+fBEEh099w92+a2Q3Ae4D3ztnZ/WbgZoD9+/cv2nvHYlZshAPWhB+2XN45M54OgrixaYZGStbXhdMyz4wtvQA5wIbOZHH93JaeNvp622dKG/S2sbkrteLiotI67u4/w233D3JiZIqdGvGTJvGN/jP0tMUZmcqSCUf8etsTfKP/DNfWu3EySyxmtMeCqaHBbEuYyuQYn84WRzTWSPsC961mGtJHgN8Bqj7crGXzrcvMWN+ZYn1nimdvr1yOYibJzEQxA+mTZ5dWjuK8dYUSFB3FEcOdKkdRnCl16z0DnBybYleDZ/UcBEpz/e5g7rz1+fZxYNDdvxluv40g8FuVD3zpCOPTOVJxK071nEznIpXVM+/O2YlMMVnKqbL1dEEB8uXVquttT9DX087mnqCMQfk0zC3djVGrLm6VR/cSLdInxGNGzAwziolrjOAzsVAuAwuv9pVeUcvlnVzeyeZ9zRIhFLJTtSViqnUmTeXhp0YYT+dIxmLFNX7j6RyPPKWsnlHQnoxz1w9Pc9PhfgaGJ9bqotQ9Zvb/uPtfl240s18lmOW0bGb2KmDI3e8zswML7LfkmVKletuTxYQ67sGJmntwUl+eWTW438MlNR7uC4TbjeA8jJL7C/+hnGBb4X9bvvAc4XnNzDZN91nMzvUdwXKY/Mz642ovcSotR/GjO9fPui+Xd06OTgcjhCXlKAaHJzl+brJYjuKJMxM8MV85iuJawtnrClulHMWlezZy6Z6NbO5po7cK2VZrGfjdA+w1swuAY8CVwBvK9jkIvD1c//cC4Jy7HwcwswEze5a7/wD4KWavDVyRRs/q6e6MTGZnZ8CssMYuu4ygrqstXqxJ11c6Yleytq49Iotxz9/YSf/pue/VrgoZrRqJWZDiPRZjVicVM4iHAVk8ZsTCwK5U4f5EeH8t5PM+6x9zoQnGTHsLwWGu5B/xrNdYMnhf+s8+H/6jB7jt/kHy+TxDI2mO5Z1UPEZvh2qdSfRlcsGFlFz42S/8DSmrZzQcOjLE+w4+SDJua3lR6h3AF8zsF5kJ9PYDKeC1KzzmjwFXmNnPEowo9prZZ9z9l0p3Wu5MqXIWXoAMf1phU6ujUhBa+B/kHvzPyrvj+WB7Qd7nDy5nB6vR/hu++rKn8yf//CATmXxdljjFY8a2de1sW9fO/t2z78vm8pwYmSopRREEhoPDEwyNlJSjODVO/6m55Sg6U/HidNFglLCTneHPvR0qRzGfmgV+7p41s7cDXyYo5/AJd3/QzN4W3n8jcDtBKYejBOUcfrnkEL8B/G2Y0bO/7L7IcfeSWnVzM18WgrzlFKZtT8bYWhrUzSlG3jarIHTU7dnSVTHw27Olq6bPaxYEXoUAzMyIGSRiMeLxIOQpDdhKR9hiRsNfkYrFjNii/7yD+1fzaXrs9DjnJsJF5jEjm3dOjabJ5OZmDWtFh44MrfWIg1RJ4YRz5ueZ7dL4bjrcTzJuxf+X1UiZvhh3fwp4sZn9JEHZKoB/cfc7VnHM3wV+FyAc8XtnedDXbGodhJaOaJbOrikEirm8Fy+e5ioEkXn3eq0hLUqH6+8gCJCXc55ZS4l4LMwIunA5itKi9cfOTnJ6LMj1OLGEchTbw4L1xYQzGzqa6rx4JWr66t39doLgrnTbjSXfO/Dr8zz22wRXv6qmllk9x6ezM6NzI7PX0xWSpUxllv7H1hYWIJ8V1JWM1vX1tNPVFm/4oKKa7jx6elnbl6J0+mQ8ZiTjMZLxGImYkYhbENw14TrQekhn81C2yDxv3jD/hOqpTiMOUiVmRjxGcZQhmI7d+Bd9JDAwPMH6shGC1aZMXyp3/zrw9Zo/kaxIMGMH4qsMKnMlyyoKAWMuDAqDZRd5sjknk8tXNVB8/xcfIlN2uIwH2z//6z9WteeptkI5igs2z72wP5nOFdcTHjs7MWvE8OwSy1FUWk/YKuUoWirsfc8rLuSdtz3A6FSGXN6JxYzeVHLRIe+pTG6e9XQzUzLHl1GAPBmfW6tu5mswgterAuRzTM0TIFTaXhilS8TDYC4Ww2JB0FE+eidrIxk3JjPBVdBirTMI1ty2uHqMOEj1BHX8jFjcZtbR5L0h1kbL4nZu6GRodGrWSMBqU6bXm7sfAg7VuRkSCi4gL+1/XSEQLKzDz+dnAsScezFAXIqz85Tcmm97FHSk4jyjr5tn9HXPua9iOYpw+mh5OYrvHqtcjqK0YH1hPWEzlaNoqcDvwL4+PvT65/KXh37IE2fG2dbbwc8/fzvbN3TwrSeGOTmWnhXMFW7LrVW3ubs8oGufNRVzoVp1sjIbw6yiiXDUTqN0jeeZW3t59NQYo1NZ0rk8qXiMnvYkF2ye23m3mnqOOMjq7e3r4bHTY4xMzny2e7uS7N6kz3YUXHPZHt538EEm0lk6knEmM6tPmS6yUsG6/4VHntydTC4IEDNZZzqXI50NRg1bOenNUspRzGQfnSwWsJ/KzC5H8a0K5Si29raHo4SdbF/fwc6N0SxH0VKBHwTrmXraE/S0J3n8zDjvrVAUfN7HWhBgFIK5LT2pYlBXCOw2dK6uVl0rixdH4mLEYkFik8L3iViM7evaOHZues7jdqxvZ31nqg4tluUonFxtW5fQyVWZZhxxaCX6bEfbgX19XE8w8j44PMEOrbGVBmdmpBJGiliQDoiZC4fuQa3KbM4LiVPnPn6N2tkoFitHcXo8PVOsPqxRODg8uxzF8XNTHD83xT1l5SgSMeO8de3hesXZGUg397Q13EBPywV+p8am+dqRoYr3behMzs6AWfZ1U3ebgrpVKiQ9ScSDr6lwTV1bIrZoHcD/97XP4b9/5l4mszPdWEfC+NPX/Eitmy1VoJOr+WnEIdr02Y6+A/v69H5JUzAz2hJx2hLwmh89jy98+/icfX7uOdvo620nVxg1zAXr7bP51ltzbxYsv9rc3cZzFyhHUTpSeOzsJMfPTRWn4w6EU0vLtSViPK1kPWEjlKNoucDvoqf18oYX7KIrFZ+VPGVzd1vTzN9tBMHVqBipeIy2ZPA1FY+tuiRBKhlnKpstpiVOtcBC3GbUuhNRKlPgEH0KHESk0Xz4yucD93PwOyfI5Z14zLjiOdvC7XMVppBmcnkyuTzT2TzTmdYMCKGsHEXZfaXlKGYFhcOTPDUyVSxH8eipcR6dpxzF7CQzMxlIa1mOwpop3fT+/fv93nvvXXS/qUyOJ8/OjcxlZZLxGO3JOO3JYPQuZkYyXv3EKa/4yGEefmo0rNNDWEYBnrm1hy++47KqPpdUX2nmytJRreuvuHjBE2Yzu8/dq5rhd60ttW8SkehQ3yStIpsLRgUz+SAQTOfyQZmIJoohqimdzfPkucmS6aMzGUhPheUoFtLbniiODBaCwYu3r+PZ29fR3ba0Mbv5+qeWG/H76Fcf5q//vZ/xdI6OZJxf+C87eOOLd9e7WQ2vWOYgbiTD+nWJmNGWiK3ZUPXRoTFyXigsDjjkPNgujU+ZK0VERKInEY+RiEMHcWgPtuXzzlQ2SCqTzgbBYCbnCgYJMj3v3tTF7k0VylFkcjxZVp+wUjmKkeOjPFRWjuKNLzyfP3nNs+ccczlaKvD76Fcf5oY7jmI48RhMZ3P8zV2PAyj4CwVzw4MRvGR8ZrpmI5Q9yBY6k0JTwuAvq04mEgaGJ4gb9J8cK2Y+3NydUubKkAq4i4hItdXqf0ssFlzILc+tl87mmcrmmMrkmEq37jTR+XQk4zy9r5unz1OOYmbaaBAQ/uCpUZ48O0ne4d8fOcmhI0Orev9aKvC75c5HiRnELRasMTIgn+dz9w22bOAXjwXBXVsimKrZnoiveh1ercQNsj5T/610uzS+nrYEjwyNFbO3ZvPOsbNT7K3Q+bUaFXAXEZFqq8f/llQiRioRo7c9WKeWyeWZyuTCgFBTRBfS3Z7gWdt6eNa2HgDu7j/D94+P8LR17XSk4mRyvur3r6UCv/F0jvJ6umbBsGszC7JoxkiGXxPxIJtmIvw5Kp6xpZuHnxrDmVnjZ+F2aXzFjr7Q33vZ9hamabAi9aURd2lGjfC/pbBUqKBQbmK6MEU0vLVy/cH53HrPAIlYkBchEY/RnrRVv38tFfh1pYKEEqUjRO7BsGvUmQVr7gpTM5OJILCrRibNRvGeV1zIO297gLHpbDE7VXdbgve84sJ6N02WYCydY/v6dk6NpYtTPbd1tzGebu4LL0uhabDRp8AhujTiLs1qYHiC9WUZIjuS8br+b5kpNzH73Hsmi2iOyXCEsNUdH5mkt312qLba96+lAr+3vuQCbrjjKO55zIKgL+/wC/9lR72btmypcB1eWzhNM1U+lNmEDuzr40Ovf65S3kdUoUj5npIR2ol0lr6e9jq2qjFoGmy0KXCItkYYFWl0urARTYX/u4XPNgSz3HZs6KxjqyorjAwWslbm8s5kJsdEOtuyawXP6+3g9Pj0rAGq1b5/LRX4XfuyZwJEMqtnoWRCRypORzLesoXkVSsrulSkfH6aBhttChyirRFHRRrJoSNDvOu2BxidypLN5zk1Os27bnuAD77+ufp8N7go/98tzOoqBILT2RyT6Rzj6RzTTb5Eq+DKS3Zywx2PMJnJ0R0zJtKrf/9aKvCDIPi7+iee3rB1/GKFwueFW5UKnzeLj371YW6581HG0zm6UnHe+pILigG9NLaoFCk3s8uBG4A4cIu7v7/s/n3AJ4HnA7/v7h9a7XNqGmy0KXCItiiNitTDB750hOGJTDFfgDsMT2T4wJeONFz/LbMd2NfH6wfPzjlviuL7Vpgeur4zqCs4mQkCwclMjly+OS+SXrpnI9exl1vvGeDk2BS7Nnat+ryp5QK/RlOYslmYtpmMULKVtVYoxxEzSMSCf8w33HEUQMFfRDT6iK2ZxYGPAS8HBoF7zOygu3+/ZLczwLXAa6r1vJoGG207N3TygxMjnJ3MkHeIGazvSPKsbb31bposQZRHRdZC/6lxYhZcmIYgKZ6b039qvM4tk8UcOjLEbfcfY0tPG7vCz/Zt9x/jOTvWN/T/4sUk4jF64jF6wsyhxRISTRgIXrpnI5fu2cjmnrZiptTVUJSxxpLxGL0dSfp62zl/Uxc7NnSyubuN7raEgr5F3HLno7g7ubyTzgZf3Z1b7ny03k2T5nEpcNTd+909DdwKvLp0B3cfcvd7gEy1nvSay/aQyTkT6SzuwVedeEbHtt4UZyaCoA+CteNnJjJs600t/EBpCAf29XH9FRfT19POuckMfT3tXH/FxZE+Ma62XN6ZDmuzTWeb68S6mZVOQzcLvibjxk2H++vdtKoqlI8onFtv39DBpq42OlOJ4gWLqLq7/wy/9fcPcPlHDnPVzXdx6MjQqo7XciN+h44M8ZeHfsjjZ8Y5r7eDKy/ZyaV7Ntbs+UrX5rUnYpEqn9BoRqeylP6rKSx/Gp3K1qU90pS2AwMlPw8CL6j1k0ZlGqxU9rUjJynMxncPRkQK2yUaGn02Qj1t6UoyeG66+HPhf+95XasffZDaatVp6IVpoetI4u5MZ/PFaaHTEaojeHf/GW644xESMWNde3USh7VU4FfIvBaPQW97gtPj09xwxyNcx96qBX/JeIy2ZIyOZLxYd0OqIxYzcnnHyspxaP2jVFGlD9OK/kOY2dXA1QC7du1adH+deEbXeDpHMm7EbKa/z3teazSlKfR0pIiPTJOHYhHdWLhdGpvWrwblIwpLqjZAMRAcn86GyVIaN1vorfcMkMnmOJvOcfzcJG2JOD3tiVUlDmupqGTWkDdhQcSYces9A4s/uIJELEg7u6mrjaet72D3pi52buykr6ednvakgr4q60oF6WzdZ26l20WqYBDYWfLzDuDJlRzI3W929/3uvn/Lli1VaZw0pq5UnGzZVLhs3tU3SVMYnc6yY0MHnck4ibjRmYyzY0MHY9OabdPotIxgrkIguKm7jZ0bO9m1sZMtPW10tydIxBrrvP2x02OcncyQzTlxM7I55/R4mkeeGlnxMVtqxK8w5F16+b49GePEyNIyfKbCmnntyWD6ptbkra2nrWtnbHqM0qUFMQu2i1TJPcBeM7sAOAZcCbyhvk2SRvdT+7bwhW8fL/7sDniwXSTqlHwqupopq2etVEoUU5gWOpXJka/jtNBMLnjuWMwwgqA1n3fSuZW3qaUCv50bOnn01BgjkxnSuTzJeIyuVJwdG7rm7Bszoy1ZEugl4ppSWGdmRsyMZNyCrGJOOPVT74tUh7tnzeztwJcJyjl8wt0fNLO3hfffaGbbgHuBXiBvZu8ALnL3lV+Ck0g7MZJmfUeCkalsMatnb3uCEyPpejdNlkgFyud3zWV7eNdtD3BseJJsPk8iFqOnPcF7X3lRvZsmi2jWrJ61VCinVro+cKKwPnCN6wemEjEm0rli8XozMIdUx8oHnloq8HvRno3c/dgZjGCdWCaX58xEntf86Hp62pPFunnJuGmaZgManc7OrXXW26bpJlJV7n47cHvZthtLvj9BMAVUBAhmk+zY0DnrIpS7N30ChWZRWP+fjBvrO6qTQKHZOIAFF2CxFS58ljVXusQJoDOVYCKdXdUasVZSuj4QIJ/3oH5gWEOw1usDN3QkOTeRmfl7C5OHbe5a+fralgr8vtF/hr6eFOcmMsXAobcjwYPHR9nS01bv5skidm7o5LHTY7O2pXN5dm/qnucRIiK1pwQK0aaT44XddLifdR1JzlvXUdym3080DAxPEDfoPzlWPO/d3J3SRakVisWMrrYEXW1BX1HzQvIWzHBLxizMHG2rnunWUoHfwPAEm7ra2Nw9My9dV2Wj40V7NvLNR08X1/hlcsEf2lWXLJ4xUaTRaapZdKkAeLS1asr7pdLvJ7q6U3EeGQpyIziQzeUYHJ5kb58umFdD+frA6WyOqXS+ausDx9NZtva2MTyRIZPL05ZY/Uy3lprPuHNDJ5Nl83N1VTY6bv/uccr/htyD7SJRVphqNjQ6NWuq2WoLtcraUAHwaNO5wcL0+4mu8XSOQh6QwhhRzlGpmRppS8RZ15lk27p2zt/UydPWd7ChM0VbMr6iUbrzejvmTCdN5/Kr+ttrqRE/XZWNtqMnxwslhIoc+OHJ8Tq1SKQ6NNUs+lSHMbqUvGRhOneKrqHRaRIxghG/cH1Y3ILtUlvl9QNL1wdOZXKks4uvD3zeznV859hZYhYkDUvn8gyNprnqkpXXHq/piJ+ZXW5mPzCzo2b2ngr3m5l9NLz/O2b2/LL742b2LTP752q0R1dlo60wd9pLbgDZas+pFlljA8MTdCRn13zTVCqRtaPkJfPTuVO0xczCDPVx2hJxYsqEXheF9YGbu9vYsaGT8zd1sbW3nd6O5Lzl4b41cI7utji5PKRzwXlwb3ucb/SfWXE7ajbiZ2Zx4GPAywmKIt9jZgfd/fslu70C2BveXgD8Vfi14DrgIYK06VWhq7LRVSjhUGm7SJQpOYhI/Sh5yeJ07hRNF2zq5JGhMTK5XHHGVMxgb9/cMmaytuJliWIq1Q98/Mw4E9M5EvGZ5C5jUzkeGRpd8fPWcsTvUuCou/e7exq4FXh12T6vBj7tgbuA9WZ2HoCZ7QBeCdxSwzZKhCTnqaM433aRqLjmsj1kcs5EOot78FVTqUTWRjONuJvZTjP7upk9ZGYPmtl19W6T1M/P/sh5lE+KynuwXRpLKhGbsz4wk8uTB7I5Zzrr4c++pGmi86ll4LcdGCj5eTDcttR9PgL8DrDgqzOzq83sXjO79+TJk6tqsDS2+WZ0aqanRJ2mUonUT5MlL8kCv+3uFwIvBH7dzLRYsUV9o/8MXW3x4tRlB7raVjdVUGqvsD7QoJiRlfD7XD6oSLBStUzuUmkYprylFfcxs1cBQ+5+n5kdWOhJ3P1m4GaA/fv3L/qbUMr06IrFjAQ+a5FyzILtIlGnqVQi9dFMyUvc/ThwPPx+1MweIrig/v0FH7gInTtF04NPnmNsOjfrZHtsOseDT56rW5tk6cwMY3bwZOH2larliN8gsLPk5x3Ak0vc58eAK8zsMYIpoi81s8+stkFKmR5tF2zqBIxkLEZbIkYyFgMs3C4iUj+Hjgxx1c138ZIP3MFVN9+l/ysR0qwj7ma2G3ge8M3VHEfnTtFVKNtQnhRP5Ryiwd3njJg5qxvxq2Xgdw+w18wuMLMUcCVwsGyfg8CbwuyeLwTOuftxd/9dd9/h7rvDx93h7r+02gaVpkw3C74m48ZNh/tXe2hZA+95xYWs70xiMci5YzFY35nkPa+4sN5NE1k1BQ7RpRPj5tEsKwfMrBv4R+Ad7j5Sdt+ylsjcdLifdDbHiXNT/OCpUU6cmyKdzencKQJy86yFmW+7NBYzK5ZyKCTmiVmDjvi5exZ4O/Blgsycn3P3B83sbWb2tnC324F+4Cjw18Cv1ao90FwLuFvRgX19fOj1z+V5Ozewrbed5+3cwIde/9zIX5UVUeAQbbqoGG3N9vdnZkmCoO9v3f3z5fe7+83uvt/d92/ZsmXR4z381Ainx9Nkc07cjGzOOT2e5pGnRhZ9rIisXDJuxGOzZ7rFY0YqvvLAr6YF3N39doLgrnTbjSXfO/DrixzjEHCoGu1RyvTo0zooaUYq4B5tA8MTrO9Iztqmi4rR0Ux/fxYMBXwceMjd/6Iax8zkgtGhwnp6s6AYdTqnUSORWnrm1l4ePTXG6FSWdC5PKh6jpz3JBZu7V3zMmhZwbzTXXLaHc5MZHhka5ciJER4ZGuXcZCaSC7hFpHloNkK0NVlWyJbTZH9/Pwa8kSA3wrfD28+u5oCpRAwc8u44Tt6DNIOpREudQoqsuWsu20MqEWfbunaetbWHbevaSSXiq4pbWu6v1gA8XBjpldOKioisJQUO0aY6jNHWTH9/7n6nu5u7P8fdfzS83b74I+e3t6+HzT0pEjEjl3cSMWNzT4q9fT3VarbUyHwn+S138h9RtUg8VdOpno3mpsP99HYk2bauo7gtqtM5RKR5NFM6+VZ0YF8f1xP8jxkcnmCH0t1Hiv7+Flb4/Wxbl9DvJ2Keta2HIydG55QDeNY2Be1RUe0lTi0V+GkdRvR99KsPc8udjzKeztGVivPWl1zAtS97Zr2bJbIqChyiT+uPo0t/fwvT7ye63n35Pt512wOMTmXJ5vMkYjF62hO8+/J99W6a1ElLBX5K7hJtH/3qw3zka49QyEI8MpXlI197BEDBn0SeAgeR+tHf38L0+4mmA/v6+ODrn6ugXYpaKvDTdI5ou/Hf+smXrcvMe7BdgV80HDoyxE2H+xkYnmCn/gGJiIjUlIJ2KdVSgZ+mK0TbRGHxfWnk5yXbpaEVamUl4zarVtb1oL9BERGRGtAF12ir9vvXUoEf6MpHlJmBVygbZErNGgnNVCtLRESk0emCa7TV4v1rucBPVz6ia/u6dgbPTs0J/rava69Pg2RZlFxJRERk7dx0uJ90NsfpsdIC4AldcI2IWlwwb6lSHoeODPHO2x7gWwPDPDUyxbcGhnnnbQ9w6MhQvZsmS/Cnr/kRetvixMIRvphBb1ucP33Nj9S3YbIkzVQrS0REpNE9/NQIp8fTZHNO3Ixszjk9nuaRp0bq3TRZgoHhCTqS8VnbVnvBvKVG/N7/xYc4O5EhbkbcDM/D2YkM7//iQ7ryEQEH9vXx0auerzWaEaXkSiLSqDQbaGH6/URTJhdMkYqFV8zNIJ930rkK62ak4dSiGkFLBX6Pnp4gZrP/ADzvPHpaU82iQms0o0vJlUSkEWkd1ML0+4muVCLG+HSWqVwOJ8iNF7NguzS+Wlwwb6nAT0TqS4G7iDQaJZ5amH4/0bWlu43h8TQYWCHyC7dL4zuwr4/XD57lljsfZTydoysV560vuWBVf3ctFfLv2dxF3iHvjuPk3cl7sF1ERERaTy3W0TQT/X6iy90xM1KxGG2JGKlYDDPDK6VIl4Zz6MgQt91/jC09bVy4rYctPW3cdv+xVeUmaanA792X72NDZxIDsrk8BmzoTPLuy/fVu2myRIeODHHVzXfxkg/cwVU336XEPCIisipKPLWwnRs6OTU2Tf/JMY6cGKH/5Binxqb1+4mAsXSODZ0JMvk8U9k8mXyeDZ0JxtOqfxwFpaPtZsHXZNy46XD/io/ZUoHfgX19fPD1z+V5uzZw3roOnrdrAx98/XM1VSEiCusMhkanZq0zUPAnIiIrdc1lexiZzPDIU6M8dPwcjzw1yshkRomnQi/as5GTY2nSuTwxg3Quz8mxNC/as7HeTZNF9LQlGJ7IkozHaE/GSMZjDE9k6W7TSq8oUFbPKtAao+hSPRoREakFh2AdlBlY+LMA8I3+M/T1pBiZnPnf29uR4Bv9Z7i23o2TBRWndBY+0F62XRqasnpKS3v4qRFGprLEsFn1aLI51aMREZGVuelwP+s6kpy3rqO4TclLZgwMT7Cpq43N3e3Fbe6uNX4RMJbOsX19O6fCEdtUPMa27jZN9YwIZfWUlpbJObm8k8NxD8pxAKpHIyIiKzYwPMH6juSsbUpeMqMWow6yNgrv3Z4t3cVtE+ksfT3tCzxKGkUtymC11Bo/iTYPs7DmPZitUPxeUxZERGSFlNxlYddctodMzplIZ3EPvq521EHWht676PvO4FkefPIcT56b4sEnz/GdwbOrOl7LBX7KChldZkY8FhQfLRQhjcfCNRkiIiIroJPjhR3Y18f1V1xMX0875yYz9PW0c/0VF2sabATovYu2j371YW644yiTmRyJWHBB6oY7jvLRrz684mO21FTPQlbIZNxmZYW8HvRHEAGpRIzJtBGLG2bgDvm8k0q03PULERGpklpMp2o2SowXXXrvouuWOx8lZpCIBee5MYNsPs8tdz7KtS975oqO2VKBX2k9DIDOVEILuCNkb18Pj50em51ZrCvJ7k3diz9YRERkHjo5FpFGM57OEcOZzuaKuS3ixqqS87RU4KcF3NFWyG60bV2iatmNZG0dOjLETYf7GRieYKeuqouIiIhU1JaIMZHOYRCUmXHIOHSmVj7TraXmyGkBd7Rprnq0FaZaD41OzZpqrXW2IiIiIrNt7AjG55wg6POy7SvRUiN+taiHIWtL03GiS1OtRURERJYoFmNLd5LT4xnyHqzx29SVxGIrH7eraeBnZpcDNwBx4BZ3f3/Z/Rbe/7PABPAWd7/fzHYCnwa2AXngZne/YbXtObCvj9cPnuWWOx9lPJ2jKxXnrS+5QCedEaKpgtGlqdbSzNQ3iUgjUt8UXYU6jNvWzcxMXG0dxppN9TSzOPAx4BXARcBVZnZR2W6vAPaGt6uBvwq3Z4HfdvcLgRcCv17hsct26MgQt91/jC09bVy4rYctPW3cdv8xTTWLCE0VjDZNtZZmpb5JRBqR+qZoq0WpmVqu8bsUOOru/e6eBm4FXl22z6uBT3vgLmC9mZ3n7sfd/X4Adx8FHgK2r7ZBpVPNzIKvybhx0+H+1R5a1oDev2hTrSxpVuqbpJGY2eVm9gMzO2pm76l3e6R+1DdFWy1yW9Ryqud2YKDk50HgBUvYZztwvLDBzHYDzwO+WelJzOxqgtFCdu3atWCDNNUs2vT+RZtqZUmzUt8kjaJkttXLCc6p7jGzg+7+/fq2TOpBfVP0VTu3RS0DP6uwzZezj5l1A/8IvMPdRyo9ibvfDNwMsH///vLjz1KYK1tILgGaahYlev+iT8l5pBmpb5IGUpxtBWBmhdlWCvxakPomKVfLqZ6DwM6Sn3cATy51HzNLEgR9f+vun69GgzTVLNr0/olII1LfJA1kvplU0oLUN0m5WgZ+9wB7zewCM0sBVwIHy/Y5CLzJAi8Ezrn78TDb58eBh9z9L6rVINWBiza9fyLSiNQ3SQNZdLaVmV1tZvea2b0nT55co2ZJPahvknI1m+rp7lkzezvwZYJyDp9w9wfN7G3h/TcCtxOUcjhKUM7hl8OH/xjwRuC7ZvbtcNvvufvtq22XpppFm94/EWlE6pukQSw622o5S2Qk+tQ3Sama1vELA7Xby7bdWPK9A79e4XF3UvmqlYhITa20/uiaN1REZK7ibCvgGMFsqzfUt0ki0ihqOdVTRCRSVll/VESkrtw9CxRmWz0EfM7dH6xvq0SkUdR0xE9EJGKWkhGvWH8UuMvMivVH1765IiKzVZptJSICGvETESm1lIx4S8qapwQKIiIi0kgU+ImIzFh1/dHiBveb3X2/u+/fsmVLVRonIiIislIK/EREZqyq/qiIiIhIo1LgJyIyY8X1R9e6oSIiIiLLoeQuIiKhVdYfFREREWlYFiSmaw5mdhJ4fIm7bwZO1bA59abXF216fTPOd/dIL5JT3zSLXl+06fXNaLW+CfT+R1kzvzbQ6ytXsX9qqsBvOczsXnffX+921IpeX7Tp9bWuZv/d6PVFm15fa2v2308zv75mfm2g17dUWuMnIiIiIiLS5BT4iYiIiIiINLlWDvxurncDakyvL9r0+lpXs/9u9PqiTa+vtTX776eZX18zvzbQ61uSll3jJyIiIiIi0ipaecRPRERERESkJTR14Gdml5vZD8zsqJm9p8L9ZmYfDe//jpk9vx7tXKklvL4DZnbOzL4d3t5Xj3aulJl9wsyGzOx789wf9fdvsdcX2ffPzHaa2dfN7CEze9DMrquwT6Tfv9VS/xTpz7f6poi+d6D+aTHqmyL/+Vb/FNH3b036JndvyhtB8eUfAnuAFPAAcFHZPj8LfBEw4IXAN+vd7iq/vgPAP9e7rat4jZcBzwe+N8/9kX3/lvj6Ivv+AecBzw+/7wEebqa/vyr8ftQ/Rfvzrb4pou9d2H71T/P/btQ3Rf/zrf4pou/fWvRNzTzidylw1N373T0N3Aq8umyfVwOf9sBdwHozO2+tG7pCS3l9kebuh4EzC+wS5fdvKa8vstz9uLvfH34/CjwEbC/bLdLv3yqpf4ow9U3Rpv5pQeqbIk79U3StRd/UzIHfdmCg5OdB5v7ylrJPo1pq219kZg+Y2RfN7OK1adqaifL7t1SRf//MbDfwPOCbZXe1wvs3H/VPgch/vucR5fduqZrivVP/NIf6pkBTfL7nEeX3b6ki//7Vqm9KrLpljcsqbCtPYbqUfRrVUtp+P3C+u4+Z2c8C/wTsrXXD1lCU37+liPz7Z2bdwD8C73D3kfK7Kzykmd6/hah/aoLP9wKi/N4tRVO8d+qfKlLf1CSf7wVE+f1bisi/f7Xsm5p5xG8Q2Fny8w7gyRXs06gWbbu7j7j7WPj97UDSzDavXRNrLsrv36Ki/v6ZWZKg4/pbd/98hV2a+v1bhPqniH++FxHl925RzfDeqX+al/qmJvh8LyLK79+iov7+1bpvaubA7x5gr5ldYGYp4ErgYNk+B4E3hRlyXgicc/fja93QFVr09ZnZNjOz8PtLCd7v02ve0tqJ8vu3qCi/f2G7Pw485O5/Mc9uTf3+LUL9U4Q/30sQ5fduUVF/79Q/LUh9U8Q/30sQ5fdvUVF+/9aib2raqZ7unjWztwNfJsji9Al3f9DM3hbefyNwO0F2nKPABPDL9Wrvci3x9b0e+O9mlgUmgSvdPTLD+Wb2WYLsTJvNbBD4QyAJ0X//YEmvL8rv348BbwS+a2bfDrf9HrALmuP9Ww31T9H+fKtviu57F1L/NA/1TdH/fKt/ivT7V/O+yaLzuxAREREREZGVaOapniIiIiIiIoICPxERERERkaanwE9ERERERKTJKfATERERERFpcgr8REREREREmpwCP1lzZvZfzexBM8ub2f6S7ZvM7OtmNmZm/1/ZY75kZg+Ej7vRzOLh9svM7H4zy5rZ68se82YzeyS8vblk+9vN7KiZuZUU9TSzd5nZt8Pb98wsZ2Yba/ebEJFGor5JRBqR+iapFgV+UjMWqPQZ+x7wOuBw2fYp4L3AOys85hfc/bnAs4EtwH8Ntz8BvAX4u7Ln3khQ2+UFwKXAH5rZhvDu/wBeBjxe+hh3/6C7/6i7/yjwu8C/ufuZxV+piESJ+iYRaUTqm6TWmraAu9SHme0Gvgh8HXgRcNbMtgBOUCj1w+7+ULjvrMe6+zhwp5k9o/y47j4SfpsAUuHxcPfHwmPlyx7yM8C/FjogM/tX4HLgs+7+rUrPX+Yq4LNLec0i0vjUN4lII1LfJGtJI35SC88CPg28Fci6+7Pd/UeAT67moGb2ZWAIGAVuW2T37cBAyc+D4balPE8nQWf3jytopog0LvVNItKI1DfJmlDgJ7XwuLvfBfQDe8zsf5nZ5cDIIo9bkLv/DHAe0Aa8dJHdK12W8iU+1c8B/6HpCiJNR32TiDQi9U2yJhT4SS2MA7j7MPBc4BDw68Atqz2wu08BB4FXL7LrILCz5OcdwJNLfJor0XQFkWakvklEGpH6JlkTCvykZsLMTzF3/0eCxcfPX+Fxus3svPD7BPCzwJFFHvZl4KfNbEO4OPmnw22LPdc64CeA/7OStopI41PfJCKNSH2T1JoCP6ml7cAhM/s28CmCjE+Y2WvNbJBgEfO/hHPQCe97DPgL4C1mNmhmFwFdwEEz+w7wAMF89RvD/S8Jj/VfgZvM7EGAcLrBnwD3hLfrSxYsXxs+ZgfwHTMrvaL2WuAr4YJpEWlO6ptEpBGpb5KaMvelTt8VERERERGRKNKIn4iIiIiISJNT4CciIiIiItLkFPiJiIiIiIg0OQV+IiIiIiIiTU6Bn4iIiIiISJNT4CciIiIiItLkFPiJiIiIiIg0OQV+IiIiIiIiTe7/B2LT3j7Wqe9OAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "onemillionv2 = dataset.data_sc.obs.copy()\n", + "onemillionv2_celltype_df = pd.read_csv(\n", + " './1M_v2_20201029_azimuth.tsv',\n", + " sep='\\t', index_col=0\n", + ")\n", + "onemillionv2 = pd.concat([onemillionv2, onemillionv2_celltype_df], axis=1)\n", + "onemillionv2 = onemillionv2[onemillionv2['timepoint']=='UT']\n", + "onemillionv2_l1_cellratio_df = onemillionv2.groupby(['assignment', 'predicted.celltype.l1']).size().to_frame()\n", + "display(onemillionv2_l1_cellratio_df.head())\n", + "onemillionv2_celltyperatio = onemillionv2.groupby(['assignment', 'predicted.celltype.l2']).size().to_frame()\n", + "display(onemillionv2_celltyperatio.head())\n", + "onemillionv2_allcells = onemillionv2['assignment'].value_counts()\n", + "\n", + "# caluclate the individual CD4T TEM and NAIVE ratio\n", + "individual_ratio = pd.DataFrame()\n", + "for individual in onemillionv2['assignment'].unique():\n", + " tem_num = onemillionv2_celltyperatio.loc[individual, \"CD4 TEM\"].values[0]\n", + " naive_num = onemillionv2_celltyperatio.loc[individual, \"CD4 Naive\"].values[0]\n", + " cd8t_tem_num = onemillionv2_celltyperatio.loc[individual, \"CD8 TEM\"].values[0]\n", + " tcm_num = onemillionv2_celltyperatio.loc[individual, \"CD4 TCM\"].values[0]\n", + " cd8t_tcm_num = onemillionv2_celltyperatio.loc[individual, \"CD8 TCM\"].values[0]\n", + " cd8t_naive_num = onemillionv2_celltyperatio.loc[individual, \"CD8 Naive\"].values[0]\n", + " cd4t_num = onemillionv2_l1_cellratio_df.loc[individual, 'CD4 T'].values[0]\n", + " cd8t_num = onemillionv2_l1_cellratio_df.loc[individual, 'CD8 T'].values[0]\n", + " all_num = onemillionv2_allcells.loc[individual]\n", + " individual_ratio[individual] = [tem_num, naive_num, \n", + " cd8t_tem_num, cd8t_naive_num,\n", + " cd4t_num, cd8t_num,\n", + " tcm_num, cd8t_tcm_num, all_num]\n", + "\n", + "individual_ratio_df = individual_ratio.T\n", + "individual_ratio_df = individual_ratio_df.rename({0: 'CD4T TEM', 1:'CD4T Naive', \n", + " 2: 'CD8T TEM', 3: 'CD8T Naive',\n", + " 4: 'CD4T', 5: 'CD8T',\n", + " 6: 'CD4T TCM', 7: 'CD8T TCM',\n", + " 8: 'all_num'}, \n", + " axis=1)\n", + "display(individual_ratio_df.head())\n", + "\n", + "\n", + "common_individuals = list(set(individual_ratio_df.index) & set(gt.columns))\n", + "common_individuals_individual_ratio_df = individual_ratio_df.loc[common_individuals]\n", + "common_individuals_individual_ratio_df['gt'] = [float(gt[col].values[0].split(':')[1]) for col in \n", + " common_individuals_individual_ratio_df.index]\n", + "common_individuals_individual_ratio_df['chemistry'] = 'v2'\n", + "\n", + "fig, axes = plt.subplots(1, 3, figsize=(15, 5))\n", + "ax1, ax2, ax3 = axes\n", + "cd4ydata = (common_individuals_individual_ratio_df['CD4T TEM']) / common_individuals_individual_ratio_df['CD4T']\n", + "sns.regplot(x=common_individuals_individual_ratio_df['gt'],\n", + " y=cd4ydata, \n", + " ax=ax1)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_df['gt'],\n", + " cd4ydata)\n", + "ax1.set_title('Oelen v2 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax1.set_ylabel('CD4 TEM / CD4T')\n", + "ax1.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_df['CD4T Naive']) / common_individuals_individual_ratio_df['CD4T']\n", + "sns.regplot(x=common_individuals_individual_ratio_df['gt'],\n", + " y= cd8tydata, \n", + " ax=ax2)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_df['gt'],\n", + " cd8tydata)\n", + "ax2.set_title('Oelen v2 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax2.set_ylabel('CD4 Naive / CD4T')\n", + "ax2.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_df['CD4T Naive']) / common_individuals_individual_ratio_df['CD4T TEM']\n", + "sns.regplot(x=common_individuals_individual_ratio_df['gt'],\n", + " y= cd8tydata, \n", + " ax=ax3)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_df['gt'],\n", + " cd8tydata)\n", + "ax3.set_title('Oelen v2 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax3.set_ylabel('CD4 Naive / CD4T TEM')\n", + "ax3.set_xlabel(\"rs1131017\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'rs1131017')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAFNCAYAAABSRs15AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACDo0lEQVR4nO3de3xcd33n/9dnbrrLli+Kg2PHFpg6hB8p1EmhP5q6UNqEFiglu02gtHTLJmzLAm1hQ9slbdP+2mShW0ILjVNKKd2WtDU37zYhvaTG0CabhIApISYOcoLsJJYty9ZlJM3lfH5/nDPSaCyNZEmjmTN6Px+PsUbnnJn5jmf0nfmc7/f7+Zi7IyIiIiIiIvGXqHcDREREREREZGUowBMREREREWkSCvBERERERESahAI8ERERERGRJqEAT0REREREpEkowBMREREREWkSCvBiwMx2mJmbWarebRERqaQ+SkQakfomWasU4K0SM3ubmf27mWXN7Dkz+xMzW1/vdlVjZh8ys6NmNmpmR8zsZ2v4WK+OHiNrZv9iZpfOc1yLmf2ZmT0dtetrZnZt2f6Mme03s6eiTn1vrdpcjZm9OWrjuJl93sw2VDl2R/Scs9H/wY+U7ft1Mxsru0yYWWBmm6L9G8zsb8zsdHT5KzPrXo3nKM1FfdQFP/YGM/tc9Df+tJm9ucqxLzaz+6K/0XmLz5rZLjObNLP/VZtWz69aPzTHse8zs29G/+/HzOx98xz3Q1E//Lu1a7k0O/VNF/zYK9Y3mdk7zewRM5sys0/WtOHzuMC+6T1m1m9mI2b2jJn94VzB/VromxTgrQIz+1XgduB9wDrg5cClwD+aWaaebVvAOPA6wjb/HHCHmf3AYm441x9UlWM3AZ8FPgBsAB4B/maew1PAAPBDUbs+APytme0oO+YrwM8Azy22DSvJzC4H9gFvBS4CssDHqtzk08DXgI3AbwD7zWwzgLv/nrt3li6E76OD7n46uu3vAj1AH/D86PF+a8WflDQ19VFL8lEgR/g39xbgT6K//bnkgb8FfmER9/nwMtu1VPP2Q3Mw4GcJ+55rgHea2fWzDjBLA3cA/7dmLZamp75pSVayb3qG8HvGJ5bZpuW4kL7pfwMvc/du4MXAFcC7yg9YM32Tu+tSwwvQDYwB/7FieycwCPyn6PcE8H7gO8AQ4R/chmjfDsCBVPT7OuDPgGeBE4R/fMlo39sIA5wPAcPAMeDaedr2fmB/xbY7gI/Mc/wB4Ffn2bcXOA7cTBhY/eUF/B/dCPxb2e8dwASwe5G3/wbwpjm2Hwf2XuDr5YSdQT9wGvggkLjA+/g94K/Lfn8+YWfbNcexLwSmyvcBXwbeMcexFr0/fq5s273AL5b9/kvAffV+3+sSn4v6qCX9n3VEf9MvLNv2l8BtC9zuBYDPs+/66P/0t4D/dQFt+SRwJ/CPwCjwJeDSC3w+i+6H5rn9R4A/muO1+x9R+3633u9zXeJ3Ud+0pP+zFe+bov2/C3zyAttS176JMCD8J+Bjc7x2Td83aQSv9n4AaCUcoZrm7mOEX85fE216F/CThCNTzyPsXD46z33+BVAg/IN8KfCjwNvL9n8/8G1gE+Gb+M/MzOa4n08Dry1N6TOzJPAfgb+uPNDM2oArgceqPNcthCNwlwI3mtl2Mztb5VKaNnA5cLh0J+4+TthRz3fGqbxdFxF2ANXadaHeCOwBXga8AfhP0WO9coHn88p5ns93iDrcOR7rcqDf3UfLth1m7uf+g4Rn5D5Ttu2jwE+YWY+Z9QBvInxfiSyW+qiF+6hKLwSK7v5E2bb5/m4XFD2/W4FfXcrtCc/S/w7h/+fXgb8qu+9vVHl+pZkFF9IPVbbdCPumx8q2XUrYb966xOcjAuqb6t43rYBV75ssXCIzQniS/grCGVWlfWumb9Ki09rbBJx298Ic+54Fvi+6fhPwTnc/DmBmvwV818zeWn6DKKC5Fljv7hPAuJn9IeEoWOlN/LS7/2l0/F8QTg+8iIopi+7+tJk9Stgxfgp4FZB19wfnaOudhH9U91V5rgHwm+4+Ff3+XWB9leNLOoFTFdvOAV3VbhQNs/8V8BfufmQRj7NYt7v7GeCMmX0YuAH4uLt/hcU/n3MV2+Z7PvMdu3WOY3+O8IzhWNm2R4EM4VlLgH+m+nRQkUrqoy7chfyNL8bvAH/m7gNzf5dc0N+7+yEAM/sN4JyZbXP3AXd/ySJufyH9UKXfIhxB+fOybR8BPuDuY0t8PiKgvml9lePns9J903Ktet/k7n8N/LWZ7SKcSn6ybPea6Zs0gld7p4FN88ypvjjaD+FZm8+Vzl4AjwNFwo6l3KVAGni27Nh9QG/ZMdMdkbtno6ud87TvrwkDGIA3M/fZpw8SzmX+jx6Nb8/jlLtPVtk/nzHCqRjlugmH9OdkZgnCaQc54J1LeMxqBsquP014RvBCXMjzWdSx0RnA/0B49rHc3wFPEHbe3YQjn6ueoEFiTX3UAszsXptJdPQWltBnVbnv7wV+BPjDC71tmek+KzoBdIYL67eW9HzM7J2EX6B+vPTF1MxeRzidar511CKLpb5pAbXsm1ZIXfqm6PGOEo6afgzWXt+kAK/2HiCcP/xT5RvNrIPwTNI/R5sGCOd6ry+7tLr7iYr7G4jub1PZcd3uvtTh978D9prZJYRTE2d1UGb221E7f9TdRxa4r1mdVzTFYKzK5S3RoY8RDqOXbtdBuG5tzukM0XSJPyPsvN/k7vlFP9vF2VZ2fTvhImPM7AcXeD4/OM/z6QNaCAOxSo8BfWZWfnbtCs5/7j9F2DEerNh+BbDP3cejzvNO4LUX8mRlzVMftUAf5e7X+kyyo78i/FtORWeIS+b6u12MvYTrhL5rZs8B7wXeFI0OLNZ0n2VmnYRTvUr91mNVnt+d0c0W2w9NM7P/RLiW5dWlkZPIq4E9FmY7fA74aeA9ZvaFC3g+IqC+qd5900pY9b6pQorw+ySstb5ppRf16XL+BfhvhEPE1xCePdoB3EM4va4lOuaXCb+8Xxr9vhl4Q3R9B7MXCX+BcDFvN2GQ/nzgh6J9bwO+UvH4DrygSvvuJVwE+7WK7b8GHAUuXsRz3AscX+L/z2bCIfc3Ec63vx14sMrxdwIPAp3z7G+J7uc44fz6VsDK/n+eqnLfTvih0UPYMR0BbrzA53M5MEK4LqWDcETt7irHP0i4qLuV8EPiLLC54ph/AG6d47b/AvwR0BZdPgb8a73f87rE66I+akn/Z3cTrsPpAP7fqA+7fJ5jLfr7flH0XFvL/l/bCdfflC4fAvaX9wHRbfbOc9+fjPqbVxJO1/5DypJWXcDzWbAfKjv2LYQjHZfNsa+r4vn8TdSmDfV+n+sSv4v6piX9n61I3xTtT0Xbfp9w1lRr6f+y7P9n7zz3XY++6e1Ab3T9RYSB4P+Mfl9TfVPdG7BWLoQpaL9JmB3yJOG0gJ6y/QngVwgX944STrX7vWhfZQe1DvgTwgDmHGH62OujfUvpoN4aHfO+OW43RThEXrr8+jz3sawOinCK0pHo/+cgsKNs368D90bXL43aNVnRrreUHf9UdEz5ZUe07wPAX1VphzOTRXMI+AOiDFsX+HzeTDiHfpzwA2VD2b47gTvLft8RPeeJ6PX/kYr72kq0KHyOx9lJmBZ4iHCE74vArnq/33WJ30V91AX/f20APh/9jX8XeHPZvu1RW7ZX/P+UX56a535/i7IsmsAl0f/3xnmO/yQzmerGgEPAziU8n3n7IcKTVWNlvx8jTK9e/v9+Z5X2NW2mOl1qf1HfdMH/XyvWN0X9UeX+34r2NWLf9OfRe2Sc8LvgB4HWKu1r2r6pNKohsiaY2T8A73b3x+fZ74QB0pOr2zIRkfOZ2c8Qnn3/tXn2f5Lwy+F/X9WGiciapr6psSmLpqwp7v6j9W6DiMhiubuSJolIw1Hf1NiUZEVERERERKRJaIqmiIiIiIhIk9AInoiIiIiISJNQgCciIiIiItIkYpdkZdOmTb5jx456N0NEVtBXv/rV0+6+ud7tWC71TyLNpxn6J/VNIs2nWt9UswDPzD4B/AQw6O4vnmO/ERabfC2QBd7m7o8udL87duzgkUceWenmikgdmdnT9W7DSlD/JNJ8mqF/Ut8k0nyq9U21nKL5SeCaKvuvBXZFlxsJC0+KiIiIiIjIEtUswHP3Q8CZKoe8AfiUhx4E1pvZxbVqj4iIiIiISLOrZ5KVrcBA2e/Ho20iIiIiIiKyBPUM8GyObXMW5TOzG83sETN75NSpUzVuloiIiIiISDzVM8A7Dmwr+/0S4Jm5DnT3u9x9j7vv2bw51omsREREREREaqaeAd4B4Gct9HLgnLs/W8f2iIiIiIiIxFotyyR8GtgLbDKz48BvAmkAd78TuIewRMKThGUSfr5WbREREREREVkLahbgufsNC+x34Jdq9fgiUh8Hjwyy71A/A8NZtvW0c9PVfezd3VvvZs1iZtcQ1uFMAh9399sq9u8FvgAcizZ91t1vXc02SmOKw/tbRNYe9U1Srp5TNEWkyRw8MsgtBx5jcHSS9W1pBkcnueXAYxw8Mljvpk0zsyTwUcJanC8CbjCzF81x6Jfd/Xuji4I7icX7W0TWHvVNUkkBnoismH2H+kknjfZMCrPwZzpp7DvUX++mlbsKeNLd+909B9xNWJdTpKqYvL9FZI1R3ySVajZFU2SpNM0gvgaGs6xvS8/a1pZOcnw4W6cWzWmuGpzfP8dxrzCzw4TZfd/r7o/NdWdmdiNwI8D27dtXuKnSSAaGsyQN+k+NkSsGZJIJNnVmGu39LSJrTEw+e2UVaQRPGsrBI4O8d/9hvjYwzMmRSb42MMx79x/WNIOY2NbTzkS+OGvbRL7IJT3tdWrRnBZTg/NR4FJ3vwL4I+Dz892ZyrisHZ2ZJCfOTlIoOkkzCkXnxNlJOjLJejdNRNawmHz2yipSgCcN5bZ7H+dsNo8HkDTDAzibzXPbvY/Xu2myCDdd3Ue+6GRzBdzDn/mic9PVffVuWrkFa3C6+4i7j0XX7wHSZrZp9ZoojcgsOjdgZZfy7SIidRCTz15ZRQrwpKEcG8qSMEgkDDMjkTASFm6Xxrd3dy+3vv5yertaOTeRp7erlVtff3mjTbF9GNhlZjvNLANcT1iXc5qZbbHoW7uZXUXYVw6tekuloYxOFdi6vpVUwigGTiphbF3fythUod5NE5E1LCafvbKKtAZPRFbU3t29Df2h4u4FM3sncB9hmYRPuPtjZvaOaP+dwHXAfzGzAjABXB+VdpE1bFtPO4Ojk/Rt7pzels0V6O1qrWOrREQa/7NXVpcCPGkofZs6ODo4hrljBu4QOOza3FHvpskixSFJTjTt8p6KbXeWXf9j4I9Xu13S2G66uo9bDjxGNlegLZ1kIl/UNCgREWk4TTlF8+CRQW6460Feefv93HDXg0rQESM3X7ObnvY0BhSKAQb0tKe5+Zrd9W6aLIJq8Ugz0zQoERGJg6YbwSt9wUwnbdYXzFtBH8IxsHd3Lx+87gr2Hern+HCWSxp0BEjmVl6LB6A9kyKbK7DvUL9eQ2kKmgYlIiKNrulG8FTssXlowVP8DAxnaUvPThmvWjwiIiIiq6fpAjx9wYw31cGLN9XiEREREamvpgvw9AUz3lQHL95Ui0dERESkvpouwNMXzHg7NpSlGDhTxYDJQsBUMaAYuOrgxYSSUIiIiIjUV9MlWdm7u5dbQUk6YipfCM5be+fRdokHJaEQERERqZ+mC/BAXzBjzZg7u4qtdkNERERWl5l9AvgJYNDdX1zluCuBB4Gfdvf9q9U+EYmHppuiKfEWzJM6c77tIiIiTeSTwDXVDjCzJHA7cN9qNEhE4kcBnjSUZGLuobr5touIiDQLdz8EnFngsP8KfAZQemkRmVNTTtGU+OrIJBmZLMyakenRdhERkeU4eGSQfYf6GRjOsi2Ga/TNbCvwRuBVwJV1bo6INCiN4ElDufx56+hsSeIwfelsSXL589bVuWUiIhJnB48McsuBxxgcnWR9W5rB0UluOfBY3Oqsfhi42d2LCx1oZjea2SNm9sipU6dq3zIRaRgawZOG8oq+DTz01BnSSSNh4dq7iXzAK/o21LtpskhxP0MuIs1p36F+0kmjPRN+9WnPpMjmCuw71B+nPmoPcLeZAWwCXmtmBXf/fOWB7n4XcBfAnj17tJJdZA3RCJ40lAf6z7C5M0MmmSBwyCQTbO7M8ED/QksSpBEcPDLIe/cf5msDw5wcmeRrA8O8d//huJ0hF5EmNDCcpS09e7p/WzrJ8eH41Fl1953uvsPddwD7gV+cK7gTkbVNI3jSUAaGs2zqbGFzV+v0NneP1QfwWnbbvY8zPJ4j8HB6baHo5As5brv38TidIReRJrStp53B0cnpETyAiXyRS3ra69iq2czs08BeYJOZHQd+E0gDuPuddWyaiMSIAjxpKHH4AJb5PXlqnKKHZQtLiXKKDt85NV7PZomIcNPVfdxy4DGyuQJt6SQT+SL5onPT1X31bto0d7/hAo59Ww2bIiIxpima0lBuurqPfNHJ5gq4hz8b7QNY5lcsFSw0ZkV5BRUyFJE627u7l1tffzm9Xa2cm8jT29XKra+/XLMLRKTpaARPGsre3b3cSrgY/vhwlkuUpCNWUkkjX4zmZxrhz2i7iEi97d3dq88TEWl6GsGThqUxn/h5/qYOSrGcRy9g0sLtIiIiIlJ7CvCkoSgLY7y9/9rLaM8ksSjIM4P2TJL3X3tZfRsmskIOHhnkhrse5JW3388Ndz2ovklERBpOU07RVB2u+Lrt3sc5m82TNCNphgdwNptXFsYYaU0nyRedQhCQSiRorUhLLhJXpULZ6aTNKpR9K6h/EhGRhtF0I3ilD+DB0clZH8A6yxoPx4ayJAwSCcPMSCTCgufHhlQmIQ72Heqnuy3Nrou6uOzidey6qIvutjT7DvXXu2kiy1ZeKNss/JlOmt7fIiLSUGoa4JnZNWb2bTN70szeP8f+HjP7nJl9w8weMrMXL/cx9QEsUj/NUEhYZD56f4uISBzULMAzsyTwUeBa4EXADWb2oorDfh34uru/BPhZ4I7lPq4+gOOtb1MHgUPgjuME7gQebpfGt62nndNjU/SfGuPIcyP0nxrj9NiU6hhKU9jW085Evjhrm+p0iohIo6nlCN5VwJPu3u/uOeBu4A0Vx7wI+GcAdz8C7DCzi5bzoPoAjrebr9lNT3saAwrFAAN62tPcfM3uejdNFuEVfRs4NZYjVwxIGOSKAafGcryib0O9myaybKrTKSIicVDLAG8rMFD2+/FoW7nDwE8BmNlVwKXAJZV3ZGY3mtkjZvbIqVOnqj6oPoDjbe/uXj543RW8dHsPF69r46Xbe/jgdVcogUFMPNB/ht6uDJlkgsAhk0zQ25Xhgf4z9W6ayLKpULaIiMRBLbNozlXZuLK02W3AHWb2deDfga8BhfNu5H4XcBfAnj17qpZHU6Hs+FMh2vgaGM6SSc4+b5RJJjRFWpqG+icREWl0tQzwjgPbyn6/BHim/AB3HwF+HsDMDDgWXZZFH8Ai9dHVkuLo4BjJhJFMGIXAOXF2kl29nfVumoiIiMiaUMspmg8Du8xsp5llgOuBA+UHmNn6aB/A24FDUdAnIjHkHg2we9mlfLuIiIiI1FTNRvDcvWBm7wTuA5LAJ9z9MTN7R7T/TuAy4FNmVgS+BfzCSjy2Cp2L1MdYrkhPe4qh8TyBQ8JgY0ea8Vxx4RuLiIiIyLLVcoom7n4PcE/FtjvLrj8A7FrJxywVOk8nbVah81tBQV5MKECPr85MkufOTZJOJDADdxjOFnjB5pZ6N01ERKRp6buTlKtpofN6UKHzeCsF6IOjk7MC9INHBuvdNFmEcCktYYql0qV8u4iIiKwofXeSSk0X4KnQebztO9RPvljkuXOTfPvkKM+dmyRfLCpAj4nRqQJb17eSShjFwEkljK3rWxmbOi85roiIiKwADW5IpZpO0ayHbT3tDI5O0p6ZeWoqdB4fRwdHOZfNkyjLwnh6NEe+OFrvpskilP7++jbPZM3M5gr0drXWsVUiIiLNa2A4y/q29KxtGtxY25puBE+FzuMtVwjAIGGGYSTMwKLt0vD097ewg0cGueGuB3nl7fdzw10PagqNiIgsy7aedibys5OZaXBjbWu6AG/v7l5uff3l9Ha1cm4iT29XK7e+/nItNI2JdDKc2jeZLzKRLzKZL1IMnExSa7jiQH9/1WmdhIiIrDSdXJVKTTdFE1ToPM42d7ZwNpunvGqaAZs6lYUxLvT3N7/ydRIA7ZkU2VyBfYf69X8mIiJLsnd3L7cSfsYcH85yibJornlNGeBJfJkZZkYmadNp9ouBKwujNAWtkxARkVrQyVUp13RTNCXelIVRmpnWSYiIiEitNeUInoo9xte2nnaOnR6btW2qELBzU+c8txCJj5uu7uOWA4+RzRVoSyeZyBe1TiJm9PkiIiKNrulG8JTEIN5e0beBU2M5csWAhEGuGHBqLMcr+jbUu2nSRMzsGjP7tpk9aWbvr3LclWZWNLPrVuJxlYQm3vT5IrVmZp8ws0Ez++Y8+99iZt+ILv9mZlesdhtFpPE13QiekhjE2wP9Z+jtyjAyUSBXDMgkE3S3pXig/wzvqnfjZFGKgU+PUKWSjXcOycySwEeB1wDHgYfN7IC7f2uO424H7lvJx9c6ifjad6ifXKHI0NhM/9TVmtLni6ykTwJ/DHxqnv3HgB9y92Ezuxa4C/j+VWqbiMRE0wV4SmIQbwPDWTZ2tLCpc6Ywtrvr9WtwuULARK7IeK7AZLTGbGtPW6N2MFcBT7p7P4CZ3Q28AfhWxXH/FfgMcOXqNk8a1RMnRxiZLJDASJpRKDpD4zkKxZF6N02ahLsfMrMdVfb/W9mvDwKX1LxRIhI7Dfr9a+m29bQzODo5PYIHSmIQJ3r94iEInImoVuFErki+GKtC9FuBgbLfj1NxBtzMtgJvBF6FAjyJ5IthAZdEIszqaxb+LeSKXu1mIrXyC8C99W6EiDSexps/tUw3Xd3HyESeoydHefzZcxw9OcrIRF5JDGJCxTob11ShyNlsjmfOTvD0mSwnRyYZmcjHLbiDsLRipcpv6B8Gbnb34hzHzr4zsxvN7BEze+TUqVMr0T5pUJlUgiBwJgtFJvNFJgtFgsDJpJruo1QanJn9MGGAd3OVY9Q3iaxRTTeCB9E3NQtrqmHnf3OTxqVinY3D3ZnMB2RzBbLxG6Wr5jiwrez3S4BnKo7ZA9wd1V/cBLzWzAru/vnKO3P3uwjXwbBnzx51N01sc2cLw+M58PBzxRywcLvIajGzlwAfB65196H5jlPfJLJ2NV2At+9QP+va0ly8rm16m5KsxIuSUNRPKUHKRC6cflkMLvw7wUP9Z7j74QFOjU2yfUNHIwboDwO7zGwncAK4Hnhz+QHuvrN03cw+CfyfuYI7WVvcHTMjkzDMwB2K7rjru7OsDjPbDnwWeKu7P1Hv9ohIY2q6AE9JVkQWr3yUbiJfJFdY3ijdQ/1nuOP+o6QSxrqyNPK3QsMEee5eMLN3EmbHTAKfcPfHzOwd0f4769pAaVhjuSJb17dyOirlkkkm2NLZwnhuwZm8IotiZp8G9gKbzOw48JtAGqb7pluAjcDHohkGBXffU5/WikijaroAT0k6RKoLAiebL5KdCqdeBis4+nD3wwOkEkZbOomZNWyZEne/B7inYtucgZ27v2012iSNb1tPO08Njc3alisG7NjYWacWSbNx9xsW2P924O2r1BwRiammC/BuurqPWw48Nl2HayJfVJKOmDl4ZJB9h/oZGM6yTWvwVkSpjEE2X2AyH9RsStmzIxMkDQaGp8gXA1pSSTZ1ZjSCLk3hFX0beOipMyQMEhYGd4OjOW64ckO9myYiIjKt6VJ/7d3dy62vv5zerlbOTeTp7Wrl1tdfrgAhJg4eGeSWA48xODrJ+rIpfgePDNa7abHi7kzkigyNTTFwJsvx4SxD41NM5Io1XS/UkU5ycmSKQtGn64SdODtJRyZZs8cUWS0P9J9hc2eGTDJB4JBJJtjcmeGB/jP1bpqIiMi0phvBAyXpiLN9h/pJJ216im2jTvFrRPliQHaq9qN0VVlUgcCYKUbgUUZbATRCHWcDw1k2dbawuat1epu7a4RaREQaSlMGePoCFV9KkrN4pbV0E7mwJlcjlDEYzxW4qLuF4Ww+mqKZYEt3C2NThXo3rSGURqjTSZs1Qt1ISWhkflrjLSIicdB0UzQ1xS/etvW0M5GfnZFOX6BCxcAZmypwZjzHs+fCYuODI5OMTjZOsfGLu9tIJhJs62nne7Z007e5k1QyodcvUj5CXUpCk04a+w7117tpsgg3Xd1HvhiWEnEPf2qNt4iINJqmC/D0BSre9AVqtsl8kTPjOY4PZ3l6aJzBkUnOZnM1X0u3VNdfuY1C4Ezki3r95jAwnKUtPXs9okao40NrvEVEJA6aboqmpvjF297dvVx3/Cwf/8oxxnNFOjJJ3v7KnWvmC1SuEDBZKDK5jELj9XRV3wbezS7ufniA02OTbGvMQud1oyl+8ac13iIi0uiaLsDTF6h4O3hkkP2PnmBzVwvbozIX+x89wUsuWd90X6qCwJkqBEzmi0wWikzlgxWtSVcvV/Vt4Kq+DWztaaMlpeyZ5VTGRURERGqt6QI8fYGKt2bOopkrBEwVikzmw5+5QmOsm5PVs3d3L7cSvs+PD2e5REmgRERE1ryVThDZdAGevkDFW7NMsS2NzpUHdHGbbim1oSl+IiIiUlKLDNtNF+CBvkDFWVyn2BYDD6da5sO1cxqdExEREZGF1GL2Wk2zaJrZNWb2bTN70szeP8f+dWb2v83ssJk9ZmY/X8v2SOOLSxbNUsmC02NTDJwJM1yeHJnk3ERewZ2IiIiILEotMmzXbATPzJLAR4HXAMeBh83sgLt/q+ywXwK+5e6vM7PNwLfN7K/cPVerdklja9QptuXr5xqlqLiIiIiIxFstZq/VcormVcCT7t4PYGZ3A28AygM8B7rMzIBO4AxQqGGbJAbqPcU2CJxcMSBXDJjKB0zkihQCBXSLlc0VeOp0ln998jQ/8ZLn0dORqXeTRERERBpSLRJE1jLA2woMlP1+HPj+imP+GDgAPAN0AT/t7vomLasqCDysPZcPmMgXmcoX692kWMgXAwbOZDl2epxjp8fpPz3OU6ezPDcyOX3MpRs7uPqFm+vYSpGVtdKZzqS5mNlPVdvv7p9drbaISDzUYvZaLQM8m2NbZRrBHwO+DrwKeD7wj2b2ZXcfmXVHZjcCNwJs3759wQfWB7DMx72U3TKccjmVDzTdcgGBO8+dm5wO5EqXgeGJqplBe7taGJvSgLw0j1pkOpOms5/we83Xo9/Lvws5oABPRM6z0rPXahngHQe2lf1+CeFIXbmfB25zdweeNLNjwG7gofKD3P0u4C6APXv2VM01rw9gKXEPp1pOFcKpllOFcMjbm6CYeK0MZ3McOzXOsaFxjp2KRuWGxpnMzx8Ed7Qk6dvUwY5NHdM/d27s4LLndavQuTSVZq7TKSvmTcBPAy8BvgB82t2frG+TRGStqWWA9zCwy8x2AieA64E3VxzzXeDVwJfN7CLge4D+5TyoPoDjb6kjsIViwGQhTIIyVQjIFQIFc/OYyBVnj8hFAd3Zify8t0knjUs3dLBzcwc7N7ZHPzvY3NVCuIw29FD/GX7rwLc4NTbJ9g0dGkGXptEsdTqldtz9c8DnzKyDMO/AH5jZRuA33P1L9W2diKwVNQvw3L1gZu8E7gOSwCfc/TEze0e0/07gd4BPmtm/E05juNndTy/ncfUBHG+LHYEtBj49xbKUDEWJUM5XKAYMDE/QfyociSv9fPbc5Ly3MWBrTxs7NoYjcqVAbmtPG8nEXDOvZzzUf4Y77j9KKmGs0wi6NJm41umUupgEzgEjwHagtb7NEZG1pKaFzt39HuCeim13ll1/BvjRlXxMfQDH21wjsONTeT528Du8ZNt6ctHInIK52QJ3To5MTgdwx06HyU8GzmQpVFknt7Ezw86NHezcFF76Nndw6YZ2WtJLm1p598MDpBJGWzqJmWkEXZpKLTKdSXMxsx8GbiDMJP5PwB3u/kh9WyUia01NA7x60AdwvH33zDjr2tIUAydwxx2SCeO7Z8Y5m1V5RICz2dyszJXHouyVE1Wyf3ZkktNBXOmyY1MH6ypGu5fr2ZEJultndysaQZdm0ah1OqWh/DPwDeArQAvws2b2s6Wd7v6uejVMRNaOpgvw9u7u5brjZ/n4V44xnivSkUny9lfu1AdwgwmCMJtlPggoFp18EJAvOpu7Whkam6KtbARpMh+wpbutjq2tj4lcMRqNK5UgCK8PZ6uvk9u+of28YK63Yp1crVzc3cbQ+OzXTyPosynLb7zVu06nNLz/xPkZw0VEVlXTBXgHjwyy/9ETbO5qYXs0grf/0RO85JL1+lCuE3cnXwzXzE3mwyQo85UmuH7PNu64/ygT+SKt6QST+YBC4Fx/5bY5j28GhWLA8bMT01krS6NzC62Te976NnZsag/XyW3qZOemdi7paV9wnVwtXX/lzOuXShpZjaDPoiy/Is3N3T853z4za7rvXCLSmJqus1EWzfoolSTIF51i0SlEI3L5YhigLTab5VV9G3g3u7j74QGeG5lgS3cb11+5jav6NtT4GdSeu3NydCosQ1CWvXLgTJZ8sco6uY7MTAmCKHvlpRs7Zo2SNYry1+/02CTblEVzFvVPIs3NzL7i7q+Mrv+lu7+1bPdDwMvq0zIRWUuaLsBTFs2VUxp5KwZhwBYEUAgCitHauMDDfe5cUBC3kKv6NsQ+oDuXzdN/eoxjp7Ozsldmc9XXye2omFq5c2MH69pXdp1crZVev609baqDV0H9k0jT6yi7fnnFvgWnV5jZJ4CfAAbd/cVz7DfgDuC1QBZ4m7s/uvTmikgzaroAT1k0F68QjbiVRtsKxYB84ARRgpNileyLEprIF3k6qiFXXhy82jq5VMLYvrF9Ontl3+bVXSfXDMzs5e7+YL3bcaHUP4k0vWofnIv5UP0k8MfAp+bZfy2wK7p8P/An0U8RkWlNF+Api2Y48lYIwgCtGHg44hZA0cMpk2GZgZUbcVsLioFzfDg7K3PlsdPjPHt2ct5PbAMuXt86U4JgUzi1cltPG6lkYjWb34w+RgynOql/ij8lyZEFrDezNwKJ6PpPRdsNWLfQjd39kJntqHLIG4BPefgB/qCZrTezi9392eU2XESaR9MFeM2axtp9JlgLomCtWAx/L5UUKAQz699kadydwdGpmTVyUUC30Dq5DR0Zdkbr43ZuDEsQ7NjUmOvkpH6atX9aK5QkRxbhS8Dry66/rmzfoRW4/63AQNnvx6NtCvBEZFrTBXiw+mmsSyNmpbptAGaQMMMAMyPwcH9pHVt5qOABOOFtHWYdmy8Gmi5ZI+cm8jxVMSL31Olxxqusk2vPJNkxXRh8phzB+vbMKrZcgD4zOzDfTnd//Xz76k1p9uNLSXLibxVGYP+3u392Je+wwlzz+Of8gmBmNwI3Amzfvr2GTZJGoNkFUm7eAM/Mfs/df301G9MIpteflY+URevSij4TxBXLpkAGmurY0CbzRZ4eys4alTt2epyh8fkLp6cSYT256eyVm9rp29TJRd1aJ9cgTgF/UO9GyNqiJDnxtkojsP8dqGWAdxworxt0CfDMXAe6+13AXQB79uzRF5UmptkFUqnaCN41QCwDvNJZjKfPjPO8dW38zPdfyg+8YOPMAaXv5x4GcIWiArVmUAycE8MT00XBSyNzz5ydqLqy/eJ1recVBtc6uYY36u5fqncjlkJnWeNLSXLirUlGYA8A7zSzuwmTq5zT+jtpkve2rKBqAV7SzHqYJ62vu5+pTZOWp/wsRndLipMjk9x+3xHend8V+9T7a8VD/We4++EBnh2Z4OI56uC5O6dGp84L5L67wDq5nvb0dBmCvujnjo0dtGW0Ti6Gnqp3A5ZCZ1njTUly4m2VRmB3m9k35thugLv7S6rd2Mw+DewFNpnZceA3gTThje8E7iEskfAkYZmEn1+5pktcaXaBVKoW4O0Gvsr8870b8hOt/CxGvhhMfwjf/fCAArwYeKj/DLffd4TxqQLFwDkzNsXv3jPKq3dfRIBPlyMYn5p/nVxrOnHeiNzOTR30aJ1c03D3nzKzq4GT7v5tM3sl8HLgcXf/+zo3b146yxpvSpITb6s0AnuM2YlVLoi737DAfgd+aan3L81JswukUrUA71vu/tJVa8kKGRjOkjToPzXGVKFIOpmgpz3NcyMT9W6aVDGVL/L0mSx/8I/f5mxUQ86BokN+qsgXDp+/xCBZWie3sX26ltzOTR1c1N1KQuvkmpqZfRi4CkiZ2X3Aq4F7gV82s73u/r56tm8+Ossaf0qSE1+rNAKbc/enV/IORRai2QVSqemyaHa1pDg6OEYyYSQTRiFwTo5McenGjno3TYjWyZ2dOC975TNnJ1goUegr+jbSt7mDHRvD7JXbNrST1jq5teo1wIuBNuAEsNXds2Z2G/A1oCEDPJ1lFamfVRqB/deVvDORxdDsAqlULcC7Y9VasYKmi3eXgoXpn0qgsprcndNjOfpPj3HsdHY6oHt6aLzqOrn5pAz+vze+uAYtlZhyd3czKxV9LL2pAsICww1JZ1lF6qvWI7Du/s6a3blIFZpdIOWqBXhfNrNPEKbfvQ34Q+AVwOPA+9z9qdo378KN5YpsXd/K6bEcU4UgmqKZIZuff82WLM/oZL6s/EBYjuCpoXFGJwvz3qY1nWDHxlIJgijpyeYO3vynDzJVOD8ATCY15VJm+Xsz+zLQCnwc+FszexD4IVammHBN6CyriIiI1Fq1AO/PgU8D64AHo99vBX4U+ATwqpq3bglKU6D6NneGRcIDZyJfpLejpd5Ni72pfJHvngkDuPIMlqfH5q8nl0wY23rawoyVZdkrt6ybe51ceyZFrpCfVdbAou0SD6UsqKfGJtm+oaMmAYy732xmrwiv+oNm9nzgjYTB3v4VfbAVprOsIs3LzF7u7g/Wux0isrZV+9bc5e5/AmBmv+jupaLCf2ZmDTsFoXwKVDphTOSLFALn+iu3LXxjAcJ1cs+cnTivMPiJBdbJXdTdMp3opBTIXeg6uUs3dJBKjDM2VSRfDEdgO1uSbF2vNZRx8FD/Ge64/yiphLGuxmUA3P0BM1tvZldGm/7U3c+t6IOIVFAdQ1nAx4CX1bsRIrK2VQvwAjN7IeEIXruZ7XH3R8zsBUDDFg4rnwL19NA4vV2t59VRk1BpndxTQ+P0n5oJ5J4+kyVXCOa93bq2dFRDbiZ75Y6NHXS0LH+U7fort3HH/UfZ1JmiNZ1gMh8oQI+Rux8eIJUw2tJJzKxmZQDMLAPcBfwkYVpyAy41s88B73D3+YeVRZZIdQxFRCQOqn0j/2/A/yZMWvCTwK+Z2RVAN/Cfa9+0pStNgTo1OsXoZL7ezWkIY5OFMIAbGufYqWiK5ULr5FIJLt3Uwc6N4fq4nRvb6dvcSU97GqtRGYKr+jbwbnZx98MDPDcywZY5Cp1L43p2ZILu1tndSo3KAPx3wuK/29x9FMDMuoCPAh+ILvMys2sIE0klgY+7+20V+98A/A5h/1cA3uPuX1npJyHxojqGsgh9ZnZgvp3u/vrVbIyIrE3zBnju/s/A95Rt+oqZbQKG3V0ZSxpUrhDw3TPZWWvknjo9zuDo1Ly3SVi4dnFWYfDNHVw8zzq51aK8p8uXSiRIJcOSIbNeSg//f93BLBz+wqBy8WPSwtvObDIsER5qZlS+Oy7d0MHTZ8YYnSiQKwa0pJJ0t6XYsbFzpZ/aTwFXuft05Ojuo2b2i4RrhucN8MwsSRgIvgY4DjxsZgfc/Vtlh/0zcCDK1PkS4G+B3Sv9JCReVMdQFuEU8AcLHiUiUkNV59SZ2Ubgzcx8sXkc+GvgTI3bJQsoBs6z5yYqArksx4ezVdfJ9Xa1zCoKvnNjuE4uk2qMzPLla7i6W1MMjU9xx/1HeTe7NIpXoVTrMZVIkDCmryeTRjpppBMJEonVDdBf+YKNfPX+4en25IoBg6M5brhyxV+7oDy4K3H3MTNb6NzAVcCT7t4PYGZ3A28ApgM8dx8rO74DnW8QVMdQFmXU3b9U70aIyNo2b4BnZpcB9wP3ERYONuBK4NfN7FXufmR1mri2uTtnxnOzioIfOz3O00NZpqqsk+tuTc0ekYuyWHauwDq5WipfwwVM1wq7++GBpgjwzCwcFUsa6YSRSiZI2syoWMJs1qhp+ahbONJmJCw6bpWDt8V4oP8MmzszjE6GI3iZZIKu1hQP9J/hXSv7UG5mPXDeICKE0yqr2QoMlP1+HPj+yoPM7I3A7wO9wI8vsZ3SRG66uo/37T/MieEJCkFAKhG+vz/w4y+qd9OkcTxV7waIiFT7tv87wLvd/W/LN5rZm4D/D3hTLRu2Fo1NFXiqIpA7dnqckSrr5FpSYT25HZvaZ9WU29CRqdk6uVqaaw1XazrBcyMTdWpRdaWALJEIR6xKv5dG15IJm57mWLo0s4HhLJs6W9jc1Tq9zd1rMYVtHfBV5g7wFhptW9Rt3P1zwOfM7GrC/vBH5rwzsxuBGwG2b9++wENL3DmAhSdrMA3tymzu/lNRn3HS3b9tZq8EXg487u5/X+fmicgaUS3A+3/c/brKje7+GTP7vRq2qenlCgED0Tq5UlHw/lMLr5O7ZHqdXDs7N3Wyc1M7F69ra6qg4eLuNobGp6ZH8AAm8wFbuttW5fGTCSOdTIRr1gCi0bKkGalkuK8UwCVKX/Jk2mpNYXP3Hcu4+XGgPC3rJcAzVR7rkJk938w2ufvpOfbfRZjRkz179iz4fV9p9uNr36F+1rWluXjdTH+kJCtSzsw+TDgNPGVm9wGvBu4FftnM9rr7++rZPhFZG6oFeONL3CeRwJ1nz05Oj8SV1ssNLGKd3I5NYdbKnZs72bmxnUs3djTMOrlaKpVJmMgXV7xMQvnIWioRTnEsTZfMJBPTgZ0s3WpNYTOzHyOs1bm/YvubgVPu/o9Vbv4wsMvMdgIngOsJ1xqX388LgO9ESVZeBmSAoeW2W2n2401JVmQRXgO8GGgj7F+2unvWzG4jXO6iAE9Eaq5agNdrZr8yx3YDNteoPbHk7gxn8/SfGuPYUJZjp8JyBE+fHmeyyjq5rop1cn1RPbnO1sZeJ1dLSymTUArMZqZIRglHkglSZQGdRttWxypNYftt4HVzbL8f+Bwwb4Dn7gUzeyfh+uIk8Al3f8zM3hHtv5NwCvrPmlkemAB+2t2X/VSUZj/elGRFFsGjE0OlD/9SvxEAzX+WVkQaQrVI4k+Brnn2fbwGbYmF8akCTw1FI3KnZqZXVlsnl0kluHRD+6zslTs2drCpM57r5FZL+bfpdDJBSyoaZUvadOCWSSb0f9hAVnEKW7u7n6rc6O7PmVnHQjd293uAeyq23Vl2/Xbg9pVoaDmNAMXbTVf3ccuBx8jmCtMJoPJF56ar++rdNGkcf29mXwZaCb8r/a2ZPQj8EHCori0TkTWjWh28317unS+imPD7gLeUteUyYLO7170MQ74Y1pOrTHhycqT6Ormt69vOy175vPXNtU6ulsrLJKxrTXN2IsdHDz7JlnWtGuGIgVUMYFrNLOXus86smFmacGpUQ9IIULzt3d3LrYQnMo4PZ7lEayilgrvfbGavCK/6g2b2fOCNhMHe/uq3FhFZGdXKJPwPoL/8rHa0/ZeBLe5+c7U7XkwxYXf/IPDB6PjXAb+82sFd4M6z5yZnZa/sPz3O8eEJilUWym3qzNA3XRS8kx0b27l0QzstZclB5MIkE8bfffU4LakEnS0pzIyWdFJT2GJkFQOYzwJ/ambvdPdxgGjk7iPRvoakEaD427u7V32RVOXuD5jZejO7Mtr0p+5+rq6NEpE1pdoUzZ8gXChc6Q7gG0DVAI9FFBOucAPw6QXuc1nOjOdmjcb1nx7n6aFxJvPzr5PrbEnNrI+b/tlOV2t63tvIwtLJBJlUgkzpZzT98uToJOvb0rOmXWoKW3ysYgDz34HfBZ42s6ejbduBPwM+sNIPtlI0AiTS3MwsQ5hV9yeBY4R5Cy41s88B73D3XB2bJyJrRLUAz939vMjH3QNb3KKnRRUTBjCzduAa4J2LuN9F+cbxs/zf/jM8/uwIx4bGOXZqnLMT+XmPTyeNSzfODuR2btI6ueUqlR0oBXQtUVA3X5FuTWGLt9UKYKKpme83s98GXhBtftLdG7NgYhmNAIk0tf8OpIFt7j4KYGZdhDOaPkADn4ASkeZRLcDLmtkudz9avtHMdhFmlVvIhRQgfh3wr/NNz1xKIeFf/9y/880TI+dtTxg8b451clu1Tm7JkgmjJZUkk0qQSs4U9l5K2QFNYYu/1QxgooDu31flwUREFvZTwFXuPj3txN1HzewXgQdRgCciq6BagHcLcK+Z/S7w1WjbHuDXgPcs4r4vpJjw9VSZnnmhhYQBXnhRF4MjU1y6sZ0dG6MyBJs7tE5uBSQTRms6SUsqQWs6SesK/n9qCpuIiMRYUB7clbj7mJnVqGqMiMhs1bJo3mtmP0lYlPO/Rpu/CbzJ3RdzxnzBYsIAZraOMH3wz1xY06v7H296CcPZPKOT80/LlOoSZqSS4UhcKmFkooAunaxtKR9NYZOFzJVBMy4OHhlk36F+BoazbNMJDJFm42bWw9yzmOZf8C8isoKqVtR2928CP7eUO15kMWEI0wf/QykT3kpJ1TgIaTZmRms6QVs6OT3dUlNWpYE9aGbHgS8CX3T3p+rcnkU5eGSQ9+0/zOhkgUIQcHp0ivftP8wHr7tCQZ5Ic1hHOOvpQpapiIisqKoB3nItVEw4+v2TwCdr2Q45X8KMlnSC1lQymmapguESH+6+x8wuBa4FPmxmW4GvAPcCX3L3+QtW1tHtXzzCcDZPMmGkkgncYTib5/YvHlGAJ9IE3H3Hcu9jETWE1wH/izBzcAr4kLv/+XIfV0SaR00DPGksLekk7ekkbZlw/ZwCOokzd38auBO4Mypw/oOE2Xh/18xOufuP17WBc+g/PU7CwhMsAGbg5vSfXtEJDCJSJ2b2Y0CXu++v2P5m4JS7/+MCt1+whjDwS8C33P11ZrYZ+LaZ/ZVKMIhISbVC5zcQTp0cWsX2yApKWJgMpS2TpCOT1LRVaVrungfujy5EI3oiIqvttwkzg1e6H/gcUDXAY3E1hB3oikpWdQJngFiuSRaR2qg2gncp8HfRmfF/Jpz69JC7aw55g0olErRmEtMZLltSyhYqa5O7n6h3G+ayc2M7T54axwIPR+8cAocXbFKdR5Em0e7upyo3uvtzZtaxiNsvpobwHwMHCDOTdwE/PVfdYhFZu6pl0bwNuC0q0PkjwH8inAr1OGFig/vc/eTqNFPmMj1Cl07SmmmegE5ZBqVZvf/ay3jv/sOMTRUoBk4yYaxvSfP+ay+rd9NEZGW0zpXlNzpZ3raI2y8mOcuPAV8HXgU8H/hHM/uyu88q/nuhNYT12SvSPBacs+fuo+7+OXe/yd1fCvwusBn4VM1bt0QHjwxyw10P8vo//gq/8jeHeah/zvrpsdWSTrKpq4XtG9rZsq6Vde3ppgrubjnwGIOjk6xvSzM4OsktBx7j4JHBejdNGtgiz4zX3d7dvXzouit46bYetnS38tJtPXxIGTRFmslngT8t75Oi63dG+xaymBrCPw981kNPAseA3ZV35O53ufsed9+zefPmqg+qz16R5nLBSVaihb7fAv5g5ZuzfKVOKp001rWmGBqf4o77j/JudnFV34Z6N++CJaP6c+lkgkwqQXu6udfS7TvUTzpptGfCt2Z7JkU2V2DfoX59CZbzmNkPAB8nXIey3cyuAG5y91+sb8vmpzqPIk3tvxOeCH/azJ6Otm0H/gz4wCJuv5gawt8FXg182cwuAr4H6F9Oo/XZK9Jcmi6LZnknlS8GtKWTTOSL3P3wQGwCvJZ0mBQlzHbZHCNzizUwnGV9W3rWtrZ0kuPD2Tq1SBrcHxJOVzoA4O6Hzezq+jZJmpmmsUk10dTM95vZbwMviDY/6e4Ti739ImoI/w7wSTP7d8IpnTe7++nltFufvfGnvknKNV2AN1cn1ZpO8NzIovrWumnLJGnPpNZ8tsttPe0Mjk5On0UEmMgXuaRHSShkbu4+UFHyo1ivtkhzK58hUj6N7VbQFymZJQro/n2Jt61aQ9jdnwF+dFkNrKDP3nhT3ySV5o0kzGxDtctqNvJCbOtpZyI/+/vdZD5gS/di1javrkwqwYaODNs3tHPxujbWtaXXdHAHcNPVfeSLTjZXwD38mS86N13dV++mSWMaiKZpupllzOy9wOP1btRCpgpFjg9nGRqbYjKveDQuymeImIU/00lj36FlzY4Tqbubru5jZCLP0ZOjPP7sOY6eHGVkIq/P3phQ3ySVqo3gnSZc7FvKBFV+ityBhvyrv+nqPm458BjZXIF0wpjIFykEzvVXblv4xjWWTIRZL1tT4fTLTGptB3Nz2bu7l1sJO6vjw1ku0TQDqe4dwB2EqcWPA/9AWAS4oblDrhCQKwScm8iTSiToaEnS0ZKiNb22pmXHiaaxyULmyqAZFw5gYGZg56fulMalvkkqVQvw/gjYC/wr8GngK3GogVceIDw9NE5vVyvXX7mtbuvvMqkEnS2pNbmebqmUhEIugLn7W+rdiOUqBAHnJmaCvZZ0gkwy/NmSSpJMzJU5XVabprHJIjxoZscJy0l90d2fqnN7FmXfoX7WtaW5eN3MbCclWYkP9U1SqVodvHdbuLBlL/BW4I/M7B+AP3H3Y6vUviUpBQinRqcYncyv6mMnzGjLaJROZJX8m5kdA/4G+Iy7n61ze5atEAQUpgLGy7alk4lonW7YtyQU8NVF+QyRUgIvTSGXcu6+x8wuBa4FPmxmW4GvAPcCX3L3qbo2cB4aAYq3m67u4337D3NieIJCEJBKJOhqTfGBH39RvZsmdVI1yUo0YvcvZvY1wlS9vwMcBf50FdoWG8lEGNR1tqRoSyepSPggIjXi7rvM7CrC/uk3zOxbwN3u/r/q3LQVlS8G5CcCRibymBktqUQY7KWTtKQS6nNWiaaQy2K4+9OEde/ujAqc/yBwDfC7ZnbK3X+8rg2cg0aA4m8yXyRXDAgcAg+0vnuNmzfAiwpzvgH4acLC5p8FXubuA6vUtobWkk7Sng5H6bRmRqR+3P0h4CEz+z3gfwJ/ATRVgFfO3ZnMF6c/vM2MdNJoSSVpTSdoa/JamfWmKeRyIdw9D9wfXYhG9BqORqfj7bZ7H2ciH5BOJDAL13lP5ANuu/dx9VdrVLURvEHC0bpPA08Srre90syuBHD3z9a+eY0jmTDaooCuPZPSmpgaUi0XWSwz6wbeSDiC93zgc8BVdW3UKnN3cgUnVwgYnQy3ae2vSGNy9xP1bsNcNDodb8eGsiSM6en7ZuCBc2xIU2zXqmoB3t8RBnW7o0s5JxzRa2oapVt9quUiF+gw8HngVnd/oM5taRi5QsCZQg7Gw/V7pWQtLakweYvW8C2dTkBJs9LotEjzqJZk5W2r2I6GoFG6+tt3qJ98scjQWIFcMSCTTNDdllImL5lPXxyy+9ZTvhiQLwaMMZO5PZ1MkE4myKTCSzppZJJay7cQnYCKv9UO0M2sw93HFz5SZOn6NnVwdHAMc5+eohk47NrcUe+mSZ1UK3T+4bLr767Y98naNWl1ZVIJ1rdneN76Ni7d2EFvdytdrWkFd3VydHCU06M5CoGTTBiFwDk9muPo4Gi9myYNpKx/OmBm513q2bY4yBcDsrkCZ7M5BkcmOTE8wbHT4wycyTI4MsnZbI6JXBHFzrOpmHC8lQL0wdHJWQH6wSODK/5YZvYDUdKnx6PfrzCzj634A62gg0cGueGuB3nl7fdzw10P1uT/RWrj5mt209OexoBCMcCAnvY0N19TOQFP1opqUzSvLrv+c4TFhEteUpvmrI7SCF1HRskIGk2uEICF5SYgnEceWLi+SKTMX0Y/P1TXVjSZ0mgfUSJ3MyOTChO3tKXDJC5reZRPqeTjrTxAB2jPpGpZ6+0PgR8DDgC4+2Ezu7r6TepHo9Pxtnd3L299+aV8/CvHyOecTCrBW19+qV67NaxagGfzXI8dM6M1naCjJUWHpl42tHTSmMhDEMxMMwDIJPWayQx3/2r080v1bkszc3em8kWm8kXOwnSJhtY1GvAplXy8rXaA7u4DFX8fDZu3fpWDX1lhB48Msv/RE2zuamF7lAV1/6MneMkl6/X6rVHVhq8SZtZjZhvLrm8wsw1ALDKOtKQTbOpqYfuGdi5e10a3pl42vBde1M3GjgyppFF0J5U0NnZk2HVRd72bJg3IzHaZ2X4z+5aZ9Zcu9W5XsyqVaDibzfHsuQmeGsryzNkJzmZzTOabf0rnTVf3kS862VwB9/CnUsnHx7aediYqaoPVMEAfMLMfANzMMmb2XqLpmo1oYDhLW0UyOY1Ox4emj0ulaiN464CvMjN692jZvlh8ine3phc+SBpKqRbPlnUp1eKRxfhz4DcJp0P9MPDzNPiMg4NHBvmTg9/hqTPjXNzdxvVXbuOqvg31btaSVNbkS5jNjO5lEk1XokGp5ONtlWu9vYNwactW4DjwD8Av1eKBVoJGp+NN08elUrUA74fc/elVa4kI+gIlF6zN3f/ZzCzqr37LzL5MGPQ1nNI6l2QCultTDI1Pccf9R3k3u2Ib5JULolGtbK4A4zOZiVszYcmZZljzrFTy8bXKny/m7m+pxR3Xggqdx5sCdKlULcD7HPCy1WqISIm+QMkFmDSzBHDUzN4JnAAa9s1TmkbTmk6SLwTTX6TufnigKQK8SsXAGZsqMDYVlmhIJ6P1e5kkralEUwR8Ei+r+Pnyb2Z2DPgb4DPufnY1HnSpdHI13hSgS6XFJlkREWlE7wHagXcBvwO8ijDrb0MqTaMpn+Pemk7w3MhE3dq0mkpZOkcn80BUhD0VFWFPqwi7NA9332VmVwHXA78RlUy4293/V52bNi+dXI0vBehSqVqAt9XMPjLfTnd/Vw3aIyKyaO7+cHR1jHD9XUMrTaNpLUtmMJkP2NLdVsdW1c90Efap2UXYW9IJWpJJ0imbLsouEjfu/hDwkJn9HvA/gb8AGjbAk3hTgC7lqgV4E4RJVkREGoqZ/TnzJ3tyd/+F1WzPYpWm0QReIJUwJvMBhcC5/spt9W5aw5gO+pgJ+hJRPb5U0kgnEmSiUg3KiiyNysy6gTcSjuA9n3DZy1V1bZSIrBnVArwhd/+LVWuJiMji/Z85tm0nnLLZsKkbS9No/uTgd3j6zDhbYp5Fc7UEUbZO8rO3p5NhsBeO8tn0lM+1VJtPGtZh4PPAre7+QJ3bIiIN7uCRQfYd6mdgOMu2FZhiWy3Ayy35XkVEasjdP1O6bmZ9wK8DVwO3AX9Wr3Ytxt7dvbz8+Rt55uzaWHdXS6XRvnIWjfalk0YqEf7MpML1fSsR+K30h7A0rT5v9sKQ0lDUN8VXKcN2Ommsb0szODrJLQce41ZY8ms4b4Dn7i9fakNLzOwawjowSeDj7n7bHMfsBT4MpIHT7v5Dy31cEWl+ZnYZ8BvAS4EPAu9w90L1W0mzc3em8kWm8ufvK63nSyZs+pJKGKmkLapmXy0+hKW5mNmH3f09wAEzOy/Ac/fXr36rpNmpb4q38kL1AO2ZFNlcgX2H+lc+wFsuM0sCHwVeQ1jk82EzO+Du3yo7Zj3wMeAad/+umeldKDoLJQsys78D9gAfAn4ZKALdpREadz9Tv9ZJo5prxK9keuQvYSQSM9M9UwkjYeG2fYf6yReLDI0VyBUDMskE3W2pZX0IS9P5y+jnh+raCllTahEgyOqpRaH6mgV4hIuJn3T3fgAzuxt4A/CtsmPeDHzW3b8L4O6DK/HAChDiS2ehZJGuJEyy8l7gV6Ntpfl3Dqj4j1yQ6ZG/efabGUeeG2F0Ik8iYSQsDBhPjUyRKwQUA1fSF8Hdvxr9/FK92yJrRy0CBFk9tShUXzXAM7NUacqTmXUCu4H+RZ4d3woMlP1+HPj+imNeCKTN7CDQBdzh7p9aZNvnpAAh3nQWShbD3Xcs5/YLTR83s7cAN0e/jgH/xd0PL+cxS/700Hf40D88gbvT2ZLmZZeu5/su7eGi7la2dLeyuatFgUIDcndyhQCM6bV8ZoA5k/mAp4fGp49NmGHG9MhfaVQwVf7TSpeZ4+Z6zPBx9H5YKfd/6yR3fbmf42cnanoC2Mx2Ab8PvAhoLW139wVPPml5i1yobT3tHDs9xujkzOyCrtYUOzd11rtpsgi1KFQ/b4BnZm8D/sDMhoB3E063PAa80Mz+m7t/eoH7nusTqXI+egr4PuDVQBvwgJk96O5PVLTlRuBGgO3bt1d90H2H+skVZk+h6WrVFJq40FkoqbXFTB8n7Ot+yN2Hzexa4C7OP0F1wQ4eGeTOL/UzVQinCZ7J5vinxwf5p8dnJi8kDDZ1toQB37pWLupu4aKumeu9Xa1kUqoLVw/ppDFVgCBwzKCUQiOTnP1xF7iDQzH8Z95RwUplU4zP25dKhPUB08nErMAvEQWcyYSRtJm1hQmbOzB0d8wMdyfwsK3FwAmb7NEx0bHRc/Eg/BmUPa4RBriGRUFv9Byi27kz6xO/dHufdf9lD1R2+Hn7y/+Poq8WTtT+YOaYytt5xf3+3+8Mccf9R8mkEqtxAvjPgd8E/hD4YcI6nQtG6vVc3qLZT/H1ir4NPPTUmeiEEeSKAafGcrz5KmVojoNaFKqvNoL3q8D3EI6sHQZe6u7fMbOLgH8EFgrwjgPlxZ0uAZ6Z45jT7j4OjJvZIeAKYFaA5+53EX7BYs+ePVWzUj1xcoSRyQIJwg+7QtEZGs9RKI4s0FxpBDoLJatgwenj7v5vZcc/SNh/Ldu+Q/0kDNIJoxD49JdwA/LRF9XAYXB0isHRKf79xLk572djRyYM/LpbZweC0e9t6YatFBFrOzZ2cnx4nPFckXwxIJ1M0JFJcUlPx4rcf7Wki4UgoDA19/rB+ZRGCUvBaNG96mM0u7sfHiCVMNrSScys1jNE2tz9n83M3P1p4LfM7MuEQV81dVneotlP8fZA/xl6uzKMTMxeH/xA/xneVe/GyaKsdKH6agFe0d1PA6fNbMzdvwPg7icXOV3kYWCXme0EThAW+3xzxTFfAP7YzFJAhvAM+R9e4HOYJV8MP7xK013MwjN8ueLa/VCLE52FklWwmOnj5X4BuHclHvjo4CjnsnnMIJ2ycNQkcDrb0nz6P7+cU6NTPDcyycmRyejnFCej30+NTlEarBgazzE0nuNbz47O+Tjr2tJs6Z4d9F3U3RIFgq10ttRy+XXzuv7Kbdxx/1E2ZVK0phMNX6i+fNRN4NmRCbpbZ7/3azhDZNLMEsBRM3sn4fegxXx7q8vyFi2PiLeB4SwbO1rY1Dk9Gxh31+ynNazap/x3zez3CTuPI2b2B8BngR8Bnl3ojt29EHVq9xHOI/+Euz9mZu+I9t/p7o+b2ReBbwAB4Vzzby7nCWVSCSZyRQIvm0LjaEpTTOgslCzWMtYIL2b6eOkxfpgwwHtllXYsegp5aQ1XwgwnPAFVtHBtVyaVYGtPG1t72ua8bTFwTo2GAd+z5yajwG+Kk6OTPHduksHRKYpRBHhuIs+5iTzfPjl3ANjRkowCwNaZQHBddL2rle62lNZ9zeGqvg28m13c/fAAz41MqFB9zFzc3cbQ+BQdLTPfB5abyKCK9wDtwLuA3wFeBfzcIm5Xl+UtWh4Rb7VI0iHxVi3A+xngl4BzwPuBa4BfA74LvG0xd+7u9wD3VGy7s+L3DxLWsFoRu3q7eGpobHaA0JFmx0ZN8YsDnYWSxVjmGuHFTB/HzF4CfBy41t2H5ruzC5lCnk4aE/lo3VCVNVxzSSaMLevC6ZhXzDFgVAycM+O56RG/0gjgc6VgcDTM9ggwPlXkO6fG+c6p8fPvCGhNJ8qCv2j0b3oqaCs97ek1GwBe1bdBAV1MXX/lNm6/7wiDI5MU3UklwiUAH/jxF634Y7n7w9HVMcL1d4tVl+UtChDi7aar+3jf/sOcGJ6gEAQ1fW9LPFQrdD5CmAGqZH90aWilTDRb1qVWLBONrB59yMgiLWeN8ILTx81sO+GMhbdWnhVfjhde1M2x02OMTOTJrfAarmTC2NzVwuauFl68dd15+92d4Wy+LACc4uS5yekRwJMjU0zkiwBRVsgsTw/NfWIlk0rQ29UyMwq4LpoKGiWD2dCRUSZQaVxlyWFWegKrmf0589+tu/svLHAXdVneUossfrK6HGay/NbgvS3xslCZhJ8jPDv+PdGmx4GPLHeudy3VIhONrB59yMgiLXmN8GKmjwO3ABuBj0X3V3D3PcttdOn9fdG6JKmEreoaLjNjQ0eGDR0ZLru4+7z97s7oZGFm5C8KBE+em5kKOjpZAMKppseHJzg+PDHnY6WiYLN89K88GczmzhZSSU2bl9V198MDJA2SZgTuJC0sWbHC68z+zxzbthNO2Vww+1G9lrfou1O87TvUz7q2NBevm5nirzWUa1u1Mgk/S9gh/QrwKOG88JcBH4xSLDd0kKc3dDzpQ0YWablrhKtOH3f3twNvX9EWM/P+/pOD3+HpM+MNtYbLzOhuS9PdluaFF3XNecz4VGGOBDBhMDg4MslwNg9AIXCePReuFZzLTCmIskygFUlhtG5aVtpTQ2OMTUVZthO1ybLt7p8pXTezPuDXgauB24A/W+R9rPryFtB3pzjTGkqpVG0E7xeBN7r7U2Xb7jezNwF3Aw0b4Elz0PQCqWLZa4TrZe/uXl7+/I08c3bu0a9G1tGSom9zJ32b517TPJkvMliW+GV6KuhI+PvQeA6oLAUx95frDR0ZtszKAjo7E6hKQciFKs+ybVH5iFpk2Tazy4DfAF5KGIS9o5QQSqQWtLxFKlUL8LorgjsA3P0pMzt/fo/ICjh4ZJD37j/M2FSBYuCcHpvivfsP86HrrtCZRZkW1zXCza41nWT7xna2b5z7S0WuEDA4OjP6V5kI5vTYTCmIM+M5zlQpBdHdmpoO9spH/0rTQTtbVQpCZsukEkzlwyzbiRpl2TazvwP2AB8CfhkoAt1lRewXyvIrcsG0vEUqVfsErHZ6OX6nniUWbrv3cc5m8yQtLFTvAZzN5rnt3scV4MkscVwjvNZlUgku6Wmf96xyoRhweixXFvxN8ty5cETw5MgkgyNTFKIIcGSywMjkGE+cHJvzvjpakrMCvtJoYCko7G5dWimIh/rPcPfDAzw7MsHFDTTFVhZ26YYOTpwdZ3yqSD7wWmXZvpJwAsp7CZNBwUzpAwf0jVtWnJa3SKVqAd5lZvaNObYb6qCkRo4NZcMi52WF6j1wjs2TzU/WpjivEZb5pZKJmVIQc+wP3BkamykFcd5I4MjkrFIQ/afG6V9kKYjy6aBb1s1dCuKh/jPccf9RUgmjuzXF0PgUd9x/lHezS0FeDJQK1W/uTtPVkqrJKIe771ixOxO5AFpDKeWqBnir1goRkQujNcJrUMIWLgVxdiI/XfahfCSw9Hs2t7hSEOmkzV77193KP31rkGIQ0JpKgTM9FeruhwcU4MVAqVD93331OIOjkxrlEJGmVS3ASwMXufu/lm80sx9kjqLAIiuhb1MHRwfHMPdw9M7DhAy7Ni+/Tpg0Fa0RlvOYGT3tGXraM1x28fn7S6UgypO/VGYFLZWCyBe9SimIMFlMOmGkksbpsSk++W9PzVoL2NulUhCN6Kq+Dbz6RRexuaul3k0REamZagHehwnT+1aaiPa9rgbtkTXu5mt28779hxmdLFAoBqQSCXra09x8ze56N00ai9YIywUrLwWxa55SENlcYWb0rywT6HPnJvnOqbHpNYAA+cDJR79/6oGnZ91PwmBjR8tMEfiK0UCVghARkVqpFuDtcPfz1uC5+yNmtqN2TVq+j/zTE3z8K8cYzxXpyCR5+yt38q4feWG9myWLsHd3L299+aV8/CvHyOecTCrBW19+qabQSCWtEZaaaM+k2Lkpxc5N588aeKj/DB/+5yeAMICbyAfkigEv2NxJIXCeG5nkzFgOJ5x5cGpsilNj85eC6GlPh0lfumaKwJfXBWzLqBREHJlZqlQWwcw6gd1AvzJoishqqRbgtVbZ17bSDVkpH/mnJ7jj/idJGKQSYR2QO+5/EkBBXgwcPDLI/kdPsLmrhe3R+pb9j57gJZesV5An5bRGWFbdVX0beA8v5O6HB3huZIJLN3Scl0UzVwg4NTp7/V/5dNBTozOlIIazeYazeR5foBTElrLRv+nEMOta6WxRKYhGY2ZvA/7AzIYIs/x+FDgGvNDM/pu7f7qe7RORtaHap8PDZvaf3f1Pyzea2S8AX61ts5bu4185FgV34dSXhEEhCPj4V44pwIuBfYf6yRWKDI0VyBUDMskEXa0p9h3qV4An5bRGWOpqvtLYmVSCrT1tbO2Z+zxoMXBOjU1x8tz5mUCfW6FSEKVt3W1LKwUhy/KrhKVbuoDDwEvd/TtmdhHwj4ACPKmJg0cG2Xeon4HhLNuUQGjNqxbgvQf4nJm9hZmAbg+QAd5Y43Yt2XiuSOWyhoSF26XxPXFyhJHJAgnCOniFojM0nqNQnHuKk6xZH0ZrhGWVrUSZhGTC2BIFYHMJ3DkznpupATidBXRmJHDqAktBVK79KyWD6enIkFAAuNKK7n4aOG1mY+7+HQB3P9nowbYChPg6eGSQWw48RjpprG9LMzg6yS0HHuNW0Gu4Rs0b4Ln7SeAHzOyHgRdHm//e3e9flZYtUUcmyXiugHsR97COmhl0ZDSVJQ7yxfDMdXkdvCBwcsX5zpfLGhXbNcISX3c/PEAqYbSlw7VxtSiTkDBjU2cLmzpbuPx55+93d85N5Gdq/52byQQ6GNUCvOBSEF0tXLRudvB3UXcrmzpbSCYaOyhpQN81s98nHME7YmZ/AHwW+BHg2bq2rAoFCPG271A/6aTRHn3Xbc+kyOYKmv20hi0Y9bj7vwD/sgptWRGv3r2Zz319pg91BzzcLo0vk0owkSsSlJVJwFG2OakUyzXCEm/PjkzQ3Tr7Y7M1neC5kdVL3GpmrG/PsL49w+4t5+93d8amwkygz56bPK8W4ODIJCOLKgURjjZu7izLBNrVGgWC4Wjg5q4W0ioFUelngF8CzgHvB64Bfg34LvC2+jWrOgUI8TYwnGV9W3rWtrZ0kuPDc5/ckebXdMNaz43kWN+WYmSyQODh9Mzu1hTPjeTq3TRZhF29XTw1NMbIxMwavO6ONDs2dta7adJYYrlGWOLt4u42hsanpkfwIBwl29LdOOcUzIyu1jRdrWle0Dt3v5nNFaaLwVcWgj85MslwNg+E6wVLawPDeKXisYCNnZmZqZ/rKhLBrMFSEO4+Avx+2ab90aWhKUCIt2097QyOTk4H6BAmGbykp72OrZJ6aroAb2A4yyU97bMWlru7OqmYuOnqPt63/zDFwHF3ioFTKDo3Xa3M9zLLe4jhGmGJt+uv3MYd9x9lIl+kNZ1gMh9QCJzrr9xW76ZdkPZMir7NnfRtnjsAnMwXGRyZ4uToZFk9wJlgcCgqBeHA6bEcp8dyfPOZuddJb+jIzFr/txZKQZjZzxFm0PyeaNPjwEfc/VP1a1V1ChDi7aar+7jlwGNkc4XpqeN5fXda05ouwFMnFX9T+SK5YkDgEHjAVF4JcmS2uK4Rlni7qm8D72bXdJmELd1t55VJaAat6STbN7azfePcn5v5YsBgVAriZEXw91xFKYgz4znOjOeqloIoH/2bCQTDALCzNV5fU8zsZwlPQP0K8CjhQOfLgA+aGY0a5N10dR/v3X+YE2cnKBQDkgmjoyXF+6/ZjbsrG2uD27u7l1sJp9oejwY6lCRnbYtXz7kIOosRb7d/8QjjuTBBDoRr8MZzRW7/4hF1VHKeuK0Rlvi7qm9D0wV0FyqdTLB1fRtb189fCuL02NR0IpiTs9YCTjE4OjmdUKtUCuLo4DylIDLJcN1fVxQAViSDWdeWbrTg4xeBN7r7U2Xb7jezNwF3Aw0Z4EEYieLh527pMjSW49jpcdLJBJlUouynkUkmGu3/fk3bu7tX35NkWtMFeDqLEW9PDo5R9PCDxgxwKHq4XaRZJMxIJxME7riHv5d/T0okjISBYTjhMaVjy4VZgm3678Ww6czB09cJ64KmkjadEdGd6fst3U9JaVp0IXCCaJp06bFL7QgqGyJSJpmw6VG4uQTuDI/nwvV9C5WCyC1QCiKVmJn6GQWC5WsBN6x+KYjuiuAOAHd/ysy6V7MhF2LfoX6629JsWddGrhDg7rMyxOaLAflicN7t0smwb0kno+AvGQZ/KSXfEamrpgvwQGcx4qww/Y2TmZ9etl2kCWRSCbZtiO+08en1sbOCQMKz/1EJcHem9xcCJ4iuB2V/4qVAFMLbVe5LmJFI2HR34NFjl7qD0mNLvCTM2NjZwsYqpSDOTuSnk79ULQVRCHj6TJanz8xfCqK3a6YIfL4YcHRwjGyuyPM3d9biBHC1lKqrl271Ag0MZ0ka9J8aY6pQJJ1M0NOeXjBDbBj4wQSzl1KYGamETY/6paMgMJNMTJdBEpHaacoAT+IraVCIRgoqt4tIYzAzUkkj1SD5MQrFgKI7QQCFIJj+WQycoocjkgoG48PM6GnP0LNAKYhS8peTo7MTwVSWgjhxdoITZ2cHKu2ZZK1qvV1mZufV6CQ8b9Gwa0U6M0mePDVO0oykGYWic3JkikuXeCLK3ckXfc5Rv1QiQTplpBLRiF90PZ00TfkUWSEK8KShvGBzJ0+cHJvO0GbR5QXzZHsTEUklE2UfZtWjzmIwM+20EDiFYpgJszQiWSgGCgQbXHkpiF0Xdc15TDZXmFX64blzk9z32EmyuQJFh0wyUatab5et1B2tpunAqjy+cmbP314hhSCgkAM4P4FaKfhrSSW11k9kGRTgSUN5/7WX8d79hxmbKlAMnGTC6GxJ8f5rY/mZuSYdPDLIvkP9DAxn2aY1sNJgkomZtYjz8Sj4C6eflQV90c2CAIru5AuB1iM2qPZMip2bUuzc1DG97eATp9jc1U4ykSAVvQdqUOstDVzk7v9avtHMfhB4ZiUfaCWNThXYur6V02M5pgpBOEWzM0M2V1jVdpSCv4ncTPCn6Z4iF04BnjSUvbt7+dB1VyhJTkwdPDLILQceI5001relazUFSqSmzGz6S+RCSsknSiODpWmhpSAwKBsxlPoqFarvaJkZEapBGaUPA78+x/aJaN/rVvLBVkqpxFTf5s5ZSVZ6O1rq3bRFTfdUkheR2RTgScNRkpz42neon3TSputQ1mgKlEjdLHWE2qMEM+VBYDHw6aQxzkzSGE0VrY3yQvWphNWqjNIOdz9vDZ67P2JmO1bygVZSeYmppIX/N4XAuf7KbfVuWlXTI34V0z0TZqSjKZ4tySTpVDjVU4GfrBUK8ERkxQwMZ1nflp61rQZToETqYjkj1GZG0lhwemi50lTRUtBXLDq5YhBeolEWWbxSofq/++pxBkcnazVDZO7aEKG5CwdWMLNrgDsIF5R+3N1vm+e4K4EHgZ929/0X2tBy5SWmnhoa46KuNq6/cltsaz4G7kzli0zlYYyZaaapRFjHL5UMp30mEzOjfxfytynS6BTgiciKKU3zKY3gQU2mQInUxb5D/eQKRYbGCuSKAZlkgq7WVM1GqGemis69vxitE8wVA6by4U+tC6zuqr4NvPpFF7G5q2ZTDx82s//s7n9avtHMfgH46kI3NrMk8FHgNcDx6P4OuPu35jjuduC+lWp4afbMibMTTOXPT4DSDMIRv/OnekLpJIyRjIK/8vV+iWgdYCOv+dP6dylX0wBvobNQZrYX+AJwLNr0WXe/tZZtEpHaKZ/m05ZO1moKlEhdPHFyhJHJAglmUskPjecoFEfq0p4wYUyS1nRy1rhRoVgK9pzJQpGpfEAhmPtLray49wCfM7O3MBPQ7QEywBsXcfurgCfdvR/AzO4G3gB8q+K4/wp8BrhyBdosRCPm7hQCmJrnmFQiHP1LJiys01lWrzOZiIJAs0Ulc1pJWv8ulWoW4C32LBTwZXf/iVq1Q0RWT/k0HyXJkWaTL4YjY6Wz+GYQBE6u2FgjZqnSWqMMrCOcMj1VKDI+VWQiX9T0zhpy95PAD5jZDwMvjjb/vbvfv8i72AoMlP1+HPj+8gPMbCthsPgqFOCtqkIQUFjkuZJEqV5oFBSmo5+l6ys5Gqj171KpliN4iz0LJSJNRElypFllUgkmckUCd8zAo4KdmVTjJ25oSSVpKatMny8GFIpOPgh/FoJwXV++6Ar+VoC7/wvwL0u46Vzf+itfkA8DN7t7sVp9ODO7EbgRYPv27Qs+cGmK37GhMbbEfA1eIwjcyRWcHHNHhOWJYDLROsBSQHiho38Dw1mSBv2nxqanj2/qzGj9e4Py6TqsYd87vc46cC7qrraMd/FqGeAteBYq8gozO0xYH+a97v5YDdskIiKyJLt6u3hqaIyRiZk1eN0daXZs7Kx30y5YuL4I2ioKw7uHiVwm8wFThXCKtdb1rarjQHnqyks4v37eHuDuKLjbBLzWzAru/vnyg9z9LuAugD179lR9Acun+HW3pBkan+KO+4/ybnYpyKuR8kQwlUq1/9LJBIkEJG1mJHCuILCrJcXRwbHpqaGFwDlxdpJdvfHrm+KsslxOsRTAuc/etwoZkmsZ4C3mLNSjwKXuPmZmrwU+D+w6744u8CyUiEij0kL4+CqtMd2yLtW0a0zNrGy0byYj7lShyGQ+HOVTMpeaehjYZWY7gRPA9cCbyw9w952l62b2SeD/VAZ3F6p8il+uEEy/v+9+eEABXh1Uq/1XrrQWMFcohiVXAiCaXeDuFIOAQjGYXico5yv9XxeCcN1yKSALAvDzwpbzBQ7FYhjQNdLsh1oGeAuehXL3kbLr95jZx8xsk7ufrjhu0WehQF+gRKQxaSF8vO3d3cv3ff04B77xHMXASSaM179ky5p47SqneMJMFs+pQjjaN5lTMpflcveCmb2TMDtmEviEuz9mZu+I9t9Zi8edq8RNazrBcyMTtXg4WSHFwCnijOWKXNTdwnA2T74YkE4m2NSeYWSywHfPhNM0S8lfSqOC6URieopoMtpXbcpvrZSXgynVAnXCUSIzi36CYZjNPI9SvOpO2VTz8Pal25T2l25PtG46KAugC0FjBWYrpZYB3oJnocxsC3DS3d3MrgISwNByHvTgkUHeu/8wY1MFioFzemyK9+4/zIeuu2JNfAiLSOPSQvh4+8g/PcEXDj9LaXZNMXC+cPhZdm56gnf9yAvr27g6mJXFMxrtyxcDJvJFJvMK+JbK3e8B7qnYNmdg5+5vW4nHnKvEzWQ+YEv3okr3SZ1d3N3G0PgU28pKEk3ki/R2zJQDCdwJFhgVTE5nAw2DwMR0gGWz7yfwcOQquu7R9fJAyWwmCCsFZ+UCD++jGYOrRlCzleHuXgBKZ6EeB/62dBaqdCYKuA74ZrQG7yPA9b7MV/q2ex/nbDaPB+GcZQ/gbDbPbfc+vpy7FRFZtoHhLG0VRc1UCD4+7vxSP5VLJwIPt0sonUzQ3Zqmt6uV7Rvb2bahnc1dLXS1pkknGz8ZzVp109V95IvOyZEJzmVznMnmyOaKvOZFFzE+VdCX8AZ3/ZXbKATORL6IE/4sBM71V25b+MZlioGTKwRkcwXGJguMTOQ5N5HnbDY3fRmZyDM2VSCbKzCVL0ajYOdn5vWydWeFICBfnH0pNunIWaOoaR28hc5CufsfA3+8ko95bCgb1iUpS2PtgXNsSF+gRKS+VAg+3rLzFH+eb7uUkrkk6IoSw5WSuEwVAiZz4bo+jfLVX6nEzX/+y0emy4EAfPAfvs0H/+HbpBJGd1uadW1p1rWl6G4Nr3dHl3VtabpbU9Pb1rWl6cgk6zLlby26qm8D72YXdz88wHMjE2zpVhbUta6mAZ6IiMxQIXhZ68qTuHS3ztTom8yFUzsn8kWd1a+Tvbt7uezibp45O8G5ifysQK8QOGfGc5wZzy36/pIJiwLC84O/7rY061pTZUFjuE1B4dJd1bdBAZ1Ma7oAr29TB0cHx7CyOkWBw67NHfVumoiscSoEH29Jg7lqmif1fXRZSgHfOtK4O5P5MNibKhSZyitb52o68M5XcuLsBJO5AhP5IiMTBc5N5BmZDKfqTU/Zm8jP7JvIc24y/FkeFBaXGBSWgsHywG+uIFFBocj8mi7Au/ma3bxv/2FGJwsUigGpRIKe9jQ3X7O73k0TEVEh+Bh74UVdHHludFbibIu2y8owM9oySdoyM2tVc4WAyUKYuGUqHyyYOl6WzyxMBtWeSbFl3eIKL7v7rKCwdBmZLAWG4ZqusxUBY2VQOJzNM5ydozjcPMqDwvLgb66RwmaePvpQ/xnufniAZ0cmuFhTNGOn9PqdjpLlLPfkb9MFeHt39/LB667QGXIREVlRs04gBuEJxK7WlE4g1lgmlSCTSkxP6QwCny7NkM2FgZ/U31KDwsl8MB0Ins3OBISlUcLyEcJS0LiSQeF5o4JzTSdt8KDwof4z3HH/0XCtZGtKhepjpvz1W6kSSk0X4IHOkIuIyMrTCcTGkEjMjPKtbw+/4GdzBSbzAZNRVj+Jh/IR26UEhbNHCPOzRg9Lo4RnazhSGCabOT9QDEcO03S0rE5QePfDA6QSNp2lWYXq46X89SudKFluCaWmDPBERKoxs2uAOwgLCX/c3W+r2L8b+HPgZcBvuPuHVr+V0oh0ArHxJBNGV2t6OlNnoTiTsEW1+JrPcoPCUuBXvqbwXMVI4UoHhbNHCGeCwsr1hEsNCp8dmaC7dfZXehWqj4+5Xr/lllBSgCcia4qZJYGPAq8BjgMPm9kBd/9W2WFngHcBP7nSj3/wyCD7DvUzMJxdkXn2IjJbKpmgK5mgK5rSmSvMFF+fyGk651q0rKBw1gjhzEhhKQis1fTR89YTzhkohpctXa2cyeZm1VlVofr4KBWqL3/9lltCSQGeiKw1VwFPuns/gJndDbwBmA7w3H0QGDSzH1/JBz54ZJD37j/M2FSBYuCcHpvivfsP86HrrlCQJ1IjpTV869rS08WXRRYyKyjsXm5QWODcRG6OrKQFzk7klh0URqWfSZiRnk7razx/cyd/98hAxZTSaE3hKk0flYVdf+U27rj/KBP5IplUYkVKKCnAE5G1ZiswUPb7ceD7V+OBb7v3cc5m8yTNSJrhAZzN5rnt3scV4ImsAjMjpboWUiNLDgoLQcUIYfWg8NxknlxhZupx6ZxF4E6h7ATGwSdOcfCJU3M+bvlIYXngt64tNWdA2N2WoqMlRUJB4YorL1Q/ND61Iuu7FeBJw9EUNqmxuT6dlnxK38xuBG4E2L59e9Vjjw1lSViYJCK8LXjgHBta+jx7ERGJL7MwuUZbevFBIYRT+OYKCqd/rxglHJkszAoKlzpSWFovWAr+utsq6hYqKFySUqH6vs2dK3J/CvCkoRw8MsgtBx4jnVy5VLEiFY4D28p+vwR4Zql35u53AXcB7NmzR3O/RESk5iqDwof6z/D333iuah28sE5heZKZstHBqERFaW3hfCOFSw4KW8uzjKbOCwbXelCoOnjS1PYd6iedDFPEAiuSKlakwsPALjPbCZwArgfevBoP3LepgydOjpIvFnHCocSEwQsvWpkzdiIiS1WaPXNsaIwtXSqUHSeLrYNXCgovuoCRwsmykcKz5UFhWYKZWftWKCicGSGsPlJY2h7noPCh/jPcft8RxqcKBO6cHp3iffsP88FlrM9XgCcNZWA4y/q29Kxty00VK1LO3Qtm9k7gPsIyCZ9w98fM7B3R/jvNbAvwCNANBGb2HuBF7j6ynMe+9sVb+PbJ0en5oB5drn3xluXcrYgskpYAzO3gkUHet/8wo5MF8sWAM2M5br9vnJt/bLeCvBioZR281nSS1iUGhdVKUUxPKY1GDSuDwrNR0LhYCwWFc00pbZSg8K4v9zMykSeRMFLJBB4Fxbd/8YgCPGkO23raGRydnB7Bg+WnihWp5O73APdUbLuz7PpzhFM3V9QD/Wfo7WphdLJArhiQSSboak3xQP8Z3rXSDyYisyiL7fxu/+IRhrN5kokwCU3gMDKR564v9yvAi4FnRyZIGgwMT5EvBqSTCXra03Wrg7eiQeHkzLYwQCxMTyedWtGgMDVdi7C7Yspo+chhLYLCgeFofb4ZhoXr883pPz2+5PtUgCcN5aar+7jlwGNkc4XpM1DLTRUr0igGhrNs6mxhc9fMh567a4RaZBXcdu/jDI/nCDwcOS8UnXwhpyy2QP/p8ekvmIFHaffNGVDfFAsd6SRPn8mSMCNhRqHonByZ4tIN8Tk5vtSgcNaawslCxXTSmbWGI9HI4eQKjxR2t6XqEhQuRAGeNJS9u3u5lXAt3vHh7IqkihVpFBqhFqmfJ0+NU1ZuDAeKDt85tfSz5CINoRQ8GDN5or1se5MqBYW9S1xTWB4UzpmRdIWnj3aXl6EoCwrXt6YZGs8ReEAyYeAQAC/YpELn0kT27u5VQCdNSSPUIvVTmKfAeV6Fz9m5sZ0nT41jQbgyOPDwi+ylPW31bhrAeQW53ed+zRJm09NME2a4hzGORfcxM0oZPkd3pxhdLwkCxx2c8Gcwz2M1kvFcgYu6WxjO5memaHZmyOYK9W5aw1mpkcKz0TTRWUHhZGF6KumSRgodikXHgM6WJO+/9rIlPksFeCIiq2bv7l6uO36Wj3/lGOO5Ih2ZJG9/5U6d0IgRJemQZvT+ay+bXp9YKDrJhNHVkuZXXvM99LRnoiBpZpSoPGiKNoU/y44rj8kSZtO38VnH2+zbXsCIUzFwAvfpIC6VsAu6/WK5O8UgDARLAV8Q/XSfCTYteo7TtwtKx85x2yiIDLcvP4C8uLuNoSi9fslEvkhvR8uy71uWPlI4MkdAeN5I4WSBU6NTnCsL/jJJozVKmLNUCvBERFbJwSOD7H/0BJu7WtgejeDtf/QEL7lkvYKEGFCdTmlWe3f38qHrrojV8ohkwkhS+ymIZuGIYK2+MJcHkGHQGgWCQfi7w3QgWYi2FYLZgeH1V27jjvuPMpEv0ppOMJkPKATO9Vdum/+BpaYuJCj8lb85zND4FC2pBMlEgnTSmMgXl1UiTAGeiMgqUZ3HeNPrF2+l0aO5touWR9TLUgPIYuDTo5g/+bKtnDib5ZP/9tT07JC3/cAOXve9z5s1aliMAsdC2W0Dn3/Kq6yOZ0cm6G5NYRiZVAJYfokwBXgiIqtEdR7jTa9fvCUTULYsZtZ2kbhJJsL1hhDOLvjC4Wfp7W6dXt/9hcPP8n2XblhU0B6OCgYEAdMjifliQL4YUCieP2IoK6s0xbatbFrmchOwKcATEVklyqIZb3r94m1XbxdHnhudNYpn0XaROFvu7IIwWKy+5qs08ldKOjM9AhhAPigFguHPOCSmaSTlU2wzqcSKJGDTeSsRkVVy09V95ItONlfAPfypLJrxcdPVfYxM5Dl6cpTHnz3H0ZOjjEzk9frFxLUv3nJe1nizcHsjMbNrzOzbZvakmb1/jv1vMbNvRJd/M7Mr6tFOaRwDw9lZoz+w8rMLEolw+mBpbVlHS4qu1jTr2tNs6mxhy7pWLulpZ8emDi7d2MHz1rexuauFnvYMna0p2jJJ0slETRLhxN1VfRt496t2sbGjhXMTeXq7Wrn19Zcva8q0RvBEZEUpy+D8lEUz/hyiLIJhSkCdp46PB/rP0NvVwuhkgVwxIJNM0NWa4oH+M7yr3o2LmFkS+CjwGuA48LCZHXD3b5Uddgz4IXcfNrNrgbuA71/91kqjaLTZBaURwbkyQbo7udLUz6KTD8KpoPlCOAK4Vl3Vt4Gr+jbQt7lzRe5PAZ6IrBhlGaxOWTTjbd+hfta1pbl43UxtMCVZiY+B4SybOlvY3DWT1c7dG20N5VXAk+7eD2BmdwNvAKYDPHf/t7LjHwQuWdUWSsOJU41VM6MllaRljgikPPjLFwNyxYB80SkUA4qqV3lBFOCJyIpRlsHq9h3qJ1coMjQ2ewRB/z/xoCQr8batp52nhsYYmZj5++tuS7Fj48qcMV8hW4GBst+PU3107heAe2vaIml4e3f3civEqszFXKoFf+WJX0pBXykAVAKY8ynAE5EVoy/A1T1xcoSRyQIJjKQZhaIzNJ6jUBypd9NkERptGpRcmFf0beChp86QMEgY5IoBg6M5brhyQ72bVm6uBUpzfns1sx8mDPBeOc/+G4EbAbZv375S7ZMG1exlLqpN+yxl+wxH/8KgrxQMrlUK8ERkxegLcHX5Yvg9LRGltjYLM5Plijr7GAc3Xd3H+/Yf5sTwBIUgIJUIR2A/8OMvqnfTZBEe6D/D5s5MQ6/BIxyxK69OfQnwTOVBZvYS4OPAte4+NNcduftdhOvz2LNnjzqZJreW17+nkwnSSWhjdvBXKg5fyvBZLKsBmG+w0b+H+s9w98MDnB6fWpHXTwGeiKyYOK0DqIdMKsFErkjgjhm4A850YVNpfEqyEl8xWYP3MLDLzHYCJ4DrgTeXH2Bm24HPAm919ydWv4nSaA4eGeS9+w8zNlWgGDinx6Z47/7DfOi6K9ZMkDcXMyOdNMJBv7nLQExP+yx4NOUzYKoQrGrg91D/Ge64/yipxMrlL6jpt4qFUv2WHXelmRXN7LpatkdEamvv7l5uff3l9Ha1rliq32ayq7eLTV0ZUgmjGDiphLGpK6M6XDFRSrKyq7eL3Vu62dXbxbq2NPsO9de7abII23ramcgXZ21rtBkG7l4A3gncBzwO/K27P2Zm7zCzd0SH3QJsBD5mZl83s0fq1FxpELfd+zhns3k8gKQZHsDZbJ7b7n283k1reOlkgvZMinXtaTZ3tfC89W3s2NjO1p42ertbp8s8tKST04XlV9rdDw+QShht6SRmYR6DdNKW9dlSsxG8Rab6LR13O2FnJiIx1+zrAJajNMK5ZV1KI5wxNDCcJWnQf2pseorfps5Mo40AyTziMsPA3e8B7qnYdmfZ9bcDb1/tdknjOjaUxd2ZKss0mbRwu1y4WcleWmbvyxcDcoVgOstnKePncrJ8PjsyQXfr7JBsufkLajlFc8FUv5H/CnwGuLKGbRERqbtmyXS2VnW1pDg6OBYt9jcKgXPi7CS7ehsqC6PMQ39/0qwKxYDKpdxFB9ZwkpFaCdf7nT8BcjlZPi/ubmNofGpWsfrlzi6oZYC3YKpfM9sKvBF4FQrwRGQN0AhnfE1/SJc+q71iuzQ8/f3Nby0n6Yi7+cI4hXerp1qWz1Jmz9Iav9KoXyEIg7/rr9zGHfcfZSJfDNfqr8DsgloGeItJ9fth4GZ3L5rNP69VqX5FRKTexnJFtq5v5fRYbnqK5pbOFsZzxYVvLNLADh4Z5JYDj5FOrlySB1k9851j0rmnxpBKJkjNk+UzX3Qu+t5WulpT/Pm/PcXJkckVmV1QywBvMal+9wB3R8HdJuC1ZlZw98+XH6RUv2uLziKKSCMqlQHp2zwzJTObK9BblpVRJI72HeonXywyNDa7CPy+Q/36/BWpETMjkzIyqQQ/fsXz+PErnrdi913LLJrTqX7NLEOY6vdA+QHuvtPdd7j7DmA/8IuVwZ2sLaWziIOjk7POIh48MljvponIGnfT1X3ki042V8A9/NmISTpELtTRwVFOj+YoBD69vvT0aI6jg6P1bposQnKeSXDzbZfmV7MAb5GpfkVm2Xeon3QyTBG7UqliRURWwt7dvXzf9nU8NZTlm8+M8NRQlu/bvk4jHBJ7uUJA0Z2pQsBkPqwDVnQnV9Aqrjh44UVd562Lsmi7rE01LXS+UKrfiu1vq2VbJB4GhrOsb0vP2rbcVLEiIivhI//0BJ//+rPTi8mLgfP5rz/Lzk1P8K4feWFd2yayHLlCkcos74GH26Xx3XzNbt63/zCjkwUKQUAqkaCrNcXN1+yud9OkTmpa6FzkQsWhEK2IrE0fPfid8zKFebRdJM7y8wzUzbddGsve3b289eWXkkklcMI1XW99+aWaXRAjB48McsNdD/LK2+/nhrseXPbSJAV40lC0xkVEGtXUPNPV5tsuEhelUh9WdinfLo3t4JFB9j96gs1dLVy2pYvNXS3sf/SE8hfERC3yTyjAk4ayd3cvt77+cnq7Wjk3kae3q5VbX3+5zkKJiIjUSGdLiqRBqWKVWZigo7Olpit5ZIUof0G87TvUz+nRSb5zapxvPjPCd06Nc3p0clmvn/5ypeGoEK2IiMjqefsrd/KH/3QUiAoWe/jz7a/cWc9mySINDGdJGvSfGpsuc7GpM6P8BTHx6HeHmCrM3pbNB3ztu0NLvk+N4ImIiCxCd+vc50Tn2y4SFy+5ZD3dbbPfx91tKV5yyfr6NEguSGcmyYmzkxSKTtKMQtE5cXaSjkxy4RtL3VUGdyWT82xfDAV4IiIii3D589axoT1NIprGljDY0J7m8uetq2/DRJZp36F+2jNJ2jPJaKpfeF1T/OLBpufWMmsR5fR2WXN02lFEZBUdPDLIvkP9DAxn2dbTzk1X92lKckzcdHUftxx4jJ6ODG3pJBP5opJAxYz+/uZ2dHCUM2M53MAdCkGRiVz4/pbGNzpVYOv6Vk6P5aanaG7pbmFsvqEhaXoawRMRWSW1yJQlq2fv7l6ue9lWTo1O8fhzo5waneK6l21VgBAT+vub3/hUgYAwuCP6GUTbpfFt62knV5ydzTdXDFRiag1TgCciskqU6SzeDh4Z5C8ffJpcIcBwcoWAv3zwaQUIMaG/v/mVRuoqyyQUNIIXC6/o28DJkSnGo1HX8VyRkyNTvKJvQ72bJoswXzC2nCBNAZ6IyCoZGM7Slp696L0tnVSms5i4/YtHGBrLMVUMKAQwVQwYGstx+xeP1Ltpsgj6+5tfMmFzlklIJLSGKw7u/eZz4LNfPzzaLg0vnUpQ+Zdm0falUoAnIrJKtvW0M5Evzto2kS9qGk1MHB0cnXMa29HB0Xo2SxZJf3/z69vUgZmRTiZoSSdIJxOYGX2bOurdNFmE/tPjOLP7Jo+2S+PbubGdZMJoSSZoTSVoSSZIJoydG5feNynAExFZJTdd3Ue+6GRzBdzDn0rSER+l2WpmM5fy7dLY9Pc3v5uv2U1PexoDCsUAA3ra09x8ze56N00WIV8IqOyGPNouje/9117G+vY0loCiO5aA9e1p3n/tZUu+TwV4IiKrZO/uXm59/eX0drVybiJPb1crt77+ciXpiIlUKaLzskv5dmlo+vub397dvXzwuit46fYeLl7Xxku39/DB667Q/01MzHeOSeee4mHv7l4+dN0VvHRbD1u6W3npth4+tMy/P5VJEBFZRXt39+pLU0y9oLeTI8+NzvrSZNF2iQf9/c1P/zfxpQAv/lb6708BnoiIyCJc++ItfPvk6PQ6FwinaV774i31a5TIClGNQJH6Wem/P03RFBERWYQH+s/Q29VCRyZJOml0ZJL0drXwQP+ZejdNZFlUI1Ckfmrx96cAT0REZBEGhrNs6myhb3Mnu7d007e5k02dLUqzL7GnGoEi9VOLvz9N0ZSGo2kiUmtmdg1wB5AEPu7ut1Xst2j/a4Es8DZ3f3TVGyoNZVtPO8dOjzE6WSBXDMgkE3S1pti5SWvw4iIOny/16J8GhrOsb0vP2qYagSKrY2A4S9Kg/9TY9GfLps7Msv7+NIInDUXTRKTWzCwJfBS4FngRcIOZvajisGuBXdHlRuBPVrWR0pBe0beBU2M5csWAhEGuGHBqLMcr+jbUu2myCHH4fKlX/6QagSL109WS4sTZSQqBk0wYhcA5cXaSzpalj8MpwJOGomkisgquAp509353zwF3A2+oOOYNwKc89CCw3swuXu2GSmMJ1+BlyCQTBA6ZZILerozW4MVETD5f6tI/qUZgvCXmqdQy33ZpLD5doZ5ZJXjcl54HVQGeNJSB4Sxt6eSsbZomIitsKzBQ9vvxaNuFHgOAmd1oZo+Y2SOnTp1a0YZKYxkYzrKxY/YavI0dWoMXFzH5fFmx/ulC+ibVCIy3dDJBZSxn0XZpfGO5IlvXt5JKGkV3Uklj6/pWxnPFhW88D63Bk4ayraedwdFJ2jMzb01NE5EVNtc5zcrTZIs5JtzofhdwF8CePXtUdqiJqX+Kt5i8fivWP11o36Q6ePHVt6mDo4NjJBOGGbhDMXD6NnXUu2myCKW+qW/zzHrubK5Ab1frku9Tob00FE0TkVVwHNhW9vslwDNLOEbWGPVP8RaT10/9k1ywm6/ZTU97GgMKxQADetrT3HzN7no3TRahFn2TAjxpKJomIqvgYWCXme00swxwPXCg4pgDwM9a6OXAOXd/drUbKo1F/VO8xeT1U/8kF2zv7l4+eN0VvHR7Dxeva+Ol23v44HVXNNp7W+ZRi75JUzSl4WiaiNSSuxfM7J3AfYRpyD/h7o+Z2Tui/XcC9xCmIH+SMA35z9ervdJY1D/FW6O/fuqfZKka/b0t1a3066cAT0TWHHe/h/BLUvm2O8uuO/BLq90uERH1TyKyXJqiKSIiIiIi0iQU4ImIiIiIiDQJBXgiIiIiIiJNQgGeiIiIiIhIk1CAJyIiIiIi0iQU4ImIiIiIiDQJBXgiIiIiIiJNwsJyKvFhZqeApxd5+CbgdA2bU296fvGm5zfjUnffXMvGrAb1T7Po+cWbnt+M2PdP6ptm0fOLNz2/GfP2TbEL8C6EmT3i7nvq3Y5a0fOLNz2/ta3Z/3/0/OJNz2/tavb/Gz2/eNPzWxxN0RQREREREWkSCvBERERERESaRLMHeHfVuwE1pucXb3p+a1uz///o+cWbnt/a1ez/N3p+8abntwhNvQZPRERERERkLWn2ETwREREREZE1oykCPDO7xsy+bWZPmtn759hvZvaRaP83zOxl9WjnUi3i+e01s3Nm9vXocks92rkUZvYJMxs0s2/Osz/ur91Czy+2rx2AmW0zs38xs8fN7DEze/ccx8T6NVwO9U2xf3+rf4rp66e+aWHqn2L9/lbfFNPXDlapf3L3WF+AJPAdoA/IAIeBF1Uc81rgXsCAlwP/t97tXuHntxf4P/Vu6xKf39XAy4BvzrM/tq/dIp9fbF+7qP0XAy+LrncBTzTT398y/2/UN8X//a3+Kaavn/qmBf9/1D/F+/2tvimmr13U/pr3T80wgncV8KS797t7DrgbeEPFMW8APuWhB4H1Znbxajd0iRbz/GLL3Q8BZ6ocEufXbjHPL9bc/Vl3fzS6Pgo8DmytOCzWr+EyqG+KOfVP8aW+aUHqn2JMfVO8rUb/1AwB3lZgoOz345z/n7SYYxrVYtv+CjM7bGb3mtnlq9O0VRHn126xmuK1M7MdwEuB/1uxay28hnNR3xRqivf3POL8+i1W7F8/9U1zUv8Uiv37ex5xfu0Wqyleu1r1T6llt6z+bI5tlalBF3NMo1pM2x8FLnX3MTN7LfB5YFetG7ZK4vzaLUZTvHZm1gl8BniPu49U7p7jJs30Gs5HfVOTvL+riPPrtxixf/3UN81L/VMTvL+riPNrtxhN8drVsn9qhhG848C2st8vAZ5ZwjGNasG2u/uIu49F1+8B0ma2afWaWFNxfu0W1AyvnZmlCTuov3L3z85xSFO/hlWob2qC9/cC4vz6LSjur5/6pqrUP8X8/b2AOL92C2qG167W/VMzBHgPA7vMbKeZZYDrgQMVxxwAfjbKSPNy4Jy7P7vaDV2iBZ+fmW0xM4uuX0X4ug6tektrI86v3YLi/tpFbf8z4HF3/5/zHNbUr2EV6pti/v5ehDi/fguK8+unvmlB6p9i/P5ehDi/dguK+2u3Gv1T7KdounvBzN4J3EeYNekT7v6Ymb0j2n8ncA9hNpongSzw8/Vq74Va5PO7DvgvZlYAJoDr3T0WQ/Fm9mnCbEibzOw48JtAGuL/2sGinl9sX7vI/wu8Ffh3M/t6tO3Xge3QHK/hUqlviv/7W/1TrF8/9U1VqH+K9/tbfVN8X7tIzfsni9f/h4iIiIiIiMynGaZoioiIiIiICArwREREREREmoYCPBERERERkSahAE9ERERERKRJKMATERERERFpEgrwpCbM7D+Y2WNmFpjZnrLtG83sX8xszMz+uOI2XzSzw9Ht7jSzZLT9ajN71MwKZnZdxW1+zsyORpefK9v+TjN70szcyopfmtn7zOzr0eWbZlY0sw21+58QkUaj/klEGpH6JlkpCvBkWSw01/vom8BPAYcqtk8CHwDeO8dt/qO7XwG8GNgM/Ido+3eBtwF/XfHYGwhro3w/cBXwm2bWE+3+V+BHgKfLb+PuH3T373X37wV+DfiSu59Z+JmKSNyofxKRRqS+SWot9oXOZfWZ2Q7gXuBfgFcAZ81sM+CExUT/0N0fj46ddVt3Hwe+YmYvqLxfdx+JrqaATHR/uPtT0X0FFTf5MeAfS52Mmf0jcA3waXf/2lyPX+EG4NOLec4iEg/qn0SkEalvktWkETxZqu8BPgW8HSi4+4vd/f8B/nw5d2pm9wGDwCiwf4HDtwIDZb8fj7Yt5nHaCTu0zyyhmSLS2NQ/iUgjUt8kq0IBnizV0+7+INAP9JnZH5nZNcDIAreryt1/DLgYaAFetcDhc51i8kU+1OuAf9UUA5GmpP5JRBqR+iZZFQrwZKnGAdx9GLgCOAj8EvDx5d6xu08CB4A3LHDocWBb2e+XAM8s8mGuR1MMRJqV+icRaUTqm2RVKMCTZYmyLCXc/TOEC4BftsT76TSzi6PrKeC1wJEFbnYf8KNm1hMtEP7RaNtCj7UO+CHgC0tpq4jEg/onEWlE6puk1hTgyXJtBQ6a2deBTxJmV8LM3mhmxwkXEv99ND+caN9TwP8E3mZmx83sRUAHcMDMvgEcJpxLfmd0/JXRff0HYJ+ZPQYQTRH4HeDh6HJr2aLhd0W3uQT4hpmVnx17I/AP0aJlEWle6p9EpBGpb5KaMvfFTrsVERERERGRRqYRPBERERERkSahAE9ERERERKRJKMATERERERFpEgrwREREREREmoQCPBERERERkSahAE9ERERERKRJKMATERERERFpEgrwREREREREmsT/D3T2BGUMqlJ+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(1, 3, figsize=(15, 5))\n", + "ax1, ax2, ax3 = axes\n", + "cd4ydata = (common_individuals_individual_ratio_df['CD8T TEM']) / common_individuals_individual_ratio_df['CD8T']\n", + "sns.regplot(x=common_individuals_individual_ratio_df['gt'],\n", + " y=cd4ydata, \n", + " ax=ax1)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_df['gt'],\n", + " cd4ydata)\n", + "ax1.set_title('Oelen v2 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax1.set_ylabel('CD8 TEM / CD8T')\n", + "ax1.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_df['CD8T Naive']) / common_individuals_individual_ratio_df['CD8T']\n", + "sns.regplot(x=common_individuals_individual_ratio_df['gt'],\n", + " y= cd8tydata, \n", + " ax=ax2)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_df['gt'],\n", + " cd8tydata)\n", + "ax2.set_title('Oelen v2 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax2.set_ylabel('CD8 Naive / CD8T')\n", + "ax2.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_df['CD8T Naive']) / common_individuals_individual_ratio_df['CD8T TEM']\n", + "sns.regplot(x=common_individuals_individual_ratio_df['gt'],\n", + " y= cd8tydata, \n", + " ax=ax3)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_df['gt'],\n", + " cd8tydata)\n", + "ax3.set_title('Oelen v2 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax3.set_ylabel('CD8 Naive / CD8T TEM')\n", + "ax3.set_xlabel(\"rs1131017\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'rs1131017')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqsElEQVR4nO3deZwcdZ3/8dd7rtyBYCYQBYnxyorKsdH1zMYbdAVZj1U8YD3IrvpTV9YV8Scq7q663ntJUPDYFTzw4ueKyiqHBx4BIYjEKwIJBBIgIcckmZmez++Pqp6p6emu6Znp6pmefj8fj35097eqvvWZmZpPf/tb3/qWIgIzM2sfHdMdgJmZNZcTv5lZm3HiNzNrM078ZmZtxonfzKzNOPGbmbUZJ35rCEkrJIWkrumOxczyOfHbMElnSLpJUp+kuyR9UtKh0x1XHkkflvQ7SXskbZL0qgL39Yx0H32SrpR0dI315ki6UNJtaVy/lHTSZOoqkqTT0hj3SfqGpMNy1l2RxtmXxv3MzDJJeqek2yXtlvRFSYszyw+T9CVJ96SPL2SXW/M58RsAks4CPgi8DTgEeAJwNHCFpJ7pjG0c+4Dnk8R8OvAJSU+qZ8OJfDuRtBT4GvAu4DBgA/ClGqt3AVuAP0/jehfwZUkrJlFXISQdA6wHXgkcDvQB/5mzySXAL4EHAO8ELpXUmy57VVrPk4EHAvOAf8ts+4/AEmAl8NB0f+9p0I9ikxERfrT5A1gM7AVeUlG+ENgOvDp93wGcDfwBuBf4MnBYumwFEEBX+v4Q4EJgG3AHyT9/Z7rsDOBHwIeBncAfgZNqxHY2cGlF2SeAf62x/mXAWTWWrQW2Am8H7gL+awK/ozOBn2TeLwD2A6vq3H4j8MIG1RXAm4DNwD3Ah4COCf7N/xm4OPP+oUA/sKjKuo8ADmaXAT8E/iZ9fSnwtsyyJwEHgPnp+8uB12eWvwH47nQf9+38cIvfIPlHnUvSCh0WEXtJ/mmflRa9CXgBSUv2gSRJ+z9q1Pk5YBB4GHA88GzgtZnlfwb8BlgK/AtwoSRVqecS4LnlrgFJncBLgIsrV5Q0D3gccHPOz3oESSv7aOBMSQ+WtCvncVq63THAjeVKImIfyQfgMTn7Ksd1OEnyLMc16boyTgVWAycApwCvTvf1lHF+nqfUiOEPJIn/EVX2dQywOSL2ZMpuzMSr9EHm/Rzg4en7/wD+QtISSUuAF5IcVzZNnPgNkuR7T0QMVlm2LV0OsA54Z0RsjYiDJF/XX1TZZZImupOAt0TEvojYDnwMeGlmtdsi4lMRUSL5kFhO0gUwSkTcBlxP8oED8HSgLyJ+WiXW80kS0ndzftYh4N0RcTAi9kfE7RFxaM6j/AGzELi/oq77gUU5+0JSN/AF4HMRsWkqdVX4YETcFxG3Ax8HXgYQET8a5+f50SRiGG/dy4HXpucBDiH5RgUwP32+Hugh+ZZ4L1Aiv1vJCubEb5B0Fyyt0ee9PF0OSSv56+XWI3ALyT9xZcI+GugGtmXWXQ8sy6xzV/lFRPSlLxfWiO9i0sQGnEb11v6HgEeTdFflzTy4IyIO5CyvZS9Jl1jWYmBPlXXLMXUA/0XSkn7jVOqqYkvm9W0k38AmYiIxjLfuRSTfzK4i+VZzZVq+NX3+CvBbkg+KxSTfbv57gvFaAznxG8C1JH24f5ktlLSApOX+/bRoC0lffLYFOTci7qiob0ta39LMeosjYiJdGVlfAdZKOpKki2NU4pf03jTOZ0fE7nHqGvWhkHb17M15vDxd9Wbg2Mx2C0j6xat2K6XdVheSfCi+MCIGMosnVFcNR2VePxi4M63rqeP8PE+tEcNKku6Z31bZ183ASknZbwPHluONiKGIeHdErIiII9PyO9JHed316be/vSTfzJ47gZ/VGm26TzL4MTMewD8AdwMnkrTWVwDfJvmaPidd5+9IWnVHp+97gVPS1ysYfXL3myQnYReTNDAeCvx5uuwM4EcV+w/gYTnxXQ5cAfyyovwdwO+A5XX8jGuBrZP8/fSSdG+8kOR8yAeBn+asfz7wU2DhROtKfz+35tQdJB/GS0g+ADYBZ07w5zkG2A08leTk8n8DX8xZ/6ckJ+Pnknz47gJ602WHpX9fAY8CfpWNh+QbwL+RjPaZR9LN8+PpPubb+THtAfgxcx7Aa9J/2v3ph8B6YElmeQfwVpKTsntIvrL/c7qsMvEfAnyS5Ov+/SRDAV+aLptM4n9lus7bqmx3kKQ7ovw4p0Ydk0786fbPTJPsfpIPwBWZZecAl6evj07jOlAR18vrrOtdwBdy4siO6rkX+AjpiKkJ/jynAbeTDIn9JukIrXTZ+cD5mfcr0jj3p3//Z2aWPSIt6yPpdnprxX4eAvy/NNb7gO8AD5/u472dH0r/MGY2Q0j6HvDmiLilxvIgSZy/b25kNlv48nqzGSYinj3dMdjs5pO7ZmZtxl09ZmZtxi1+M7M20xJ9/EuXLo0VK1ZMdxhmZi3luuuuuycieivLWyLxr1ixgg0bNkx3GGZmLUXSbdXK3dVjZtZmnPjNzNqME7+ZWZspLPFLmivp55JulHRzOpFW+TZsVyi5Xd4V6fzcZmbWJEW2+A8CT4+IY4HjgBMlPYHkjkrfj4iHk0w0dXaBMZiZWYXCRvVEcmXY3vRtd/oIkrsFrU3LP0cy8dPbMWshV23azvprNrNlZx9HLZnPujUrWbtq2fgbms0AhfbxS+qUdAPJfVuviIifAYdHxDaA9Lnqf4ukMyVtkLRhx44dRYZpNiFXbdrOuZfdzPY9Bzh0Xjfb9xzg3Mtu5qpN26c7NLO6FJr4I6IUEccBRwKPl/ToCWx7QUSsjojVvb1jrj8wmzbrr9lMd6eY39OFlDx3d4r112ye7tDM6tKUUT0RsYukS+dE4G5JywHSZzeTrKVs2dnHvO7OUWXzujvZurOvxhZmM0uRo3p6JR2avp7HyI0nLgNOT1c7neQGEGYt46gl89k/UBpVtn+gxJFL5tfYwmxmKbLFvxy4UtJG4BckffzfAj4APEvS74Bnpe/NWsa6NSsZKAV9/YNEJM8DpWDdmpXTHZpZXYoc1bMROL5K+b3AM4rar1nR1q5axnkkff1bd/ZxpEf1WItpiUnazGaatauWOdFby/KUDWZmbcaJ38yszTjxm5m1GSd+M7M248RvZtZmnPjNzNqME7+ZWZtx4jczazNO/GZmbcaJ38yszTjxm5m1GSd+M7M248RvZtZm6kr8kp4i6a/T172SHlJsWGZmVpRxE7+kdwNvB96RFnUD/11kUGZmVpx6WvynAicD+wAi4k5gUZFBmZlZcepJ/P0REUAASFpQbEhmZlakehL/lyWtBw6V9Drgf4FPFRuWmZkVZdxbL0bEhyU9C9gNPBI4NyKuKDwyMzMrxLiJX9LfAV9xsjczmx3q6epZDHxX0g8lvUHS4UUHZWZmxRk38UfEeyPiGOANwAOBqyX9b+GRmZlZISZy5e524C7gXmBZMeGYmVnR6rmA628lXQV8H1gKvC4iHlvHdkdJulLSLZJulvTmtPw9ku6QdEP6eO5UfwgzM6vfuCd3gaOBt0TEDROsexA4KyKul7QIuE5S+QTxxyLiwxOsz8zMGqBm4pe0OCJ2A/+Svj8suzwi7surOCK2AdvS13sk3QI8aMoRm5nZlOR19VycPl8HbEifr8u8r5ukFcDxwM/SojdK2ijpIklLamxzpqQNkjbs2LFjIrszM7McSmZjKHAH0kLgauCfIuJr6XDQe0imgHgfsDwiXp1Xx+rVq2PDhgl91piZtT1J10XE6sryevr4SVvlDwfmlssi4po6tusGvgp8ISK+lm53d2b5p4Bv1RODmZk1Rj1X7r4WeDNwJHAD8ATgWuDp42wn4ELgloj4aKZ8edr/D8nMn7+aVORmZjYp9bT43ww8DvhpRDxN0irgvXVs92TglcBNkm5Iy84BXibpOJKunluBdROM2czMpqCexH8gIg5IQtKciNgk6ZHjbRQRPwJUZdG3JxylmZk1TD2Jf6ukQ4FvAFdI2gncWWRQZmZWnHqmZT41ffkeSVcChwDfKTQqMzMrTF2jesoi4uqiAjEzs+bIu3J3D8kJ2Gw/faTb9ETEhD40zMxsZqiZvCNi1A3V0/l2Xk8yCufrBcdlZmYFqWd2zkMlvQe4EVgEPC4izio6MDMzK0ZeV89S4Czgr4CLgOMj4v5mBWZmZsXI66e/DdgBfAboA16TXIybyF6Na2ZmrSMv8X+I5GQuJF08ZmY2C+Sd3H1PE+MwM7Mmmcg9d83MbBZw4jczazNO/GZmbWZCiV/S54sKxMzMmiNvHP9llUXA09KZOomIkwuMy8zMCpI3nPNI4NfApxmZs2c18JEmxGVmZgXJ6+pZDVwHvBO4PyKuAvZHxNWepdPMrHXljeMfAj4m6Svp8/a89c3MrDXUcyOWrcCLJT0P8Fw9ZmYtbtzEL+kxwKr07cXFhmNmZkXLG9VzCPBN4ChgI8nJ3cdIuh04JSJ2NydEMzNrpLyTu+8DNgAPj4hTI+IFwCOAXwD/1ITYzMysAHldPc8EHpue5AUgIkqSzgFuKjwyMzMrRF6Lvz8iBisL07KDxYVkZmZFymvxz5V0PKNvtk76fk5xIZmZWZHyEv9dQK27bN01XsWSjgI+DxwBDAEXRMQnJB0GfAlYAdwKvCQidk4gZjMzm4K8C7jWTrHuQeCsiLhe0iLgOklXAGcA34+ID0g6GzgbePsU92VmZnWq2ccv6RWSXlml/HWSThuv4ojYFhHXp6/3ALcADwJOAT6XrvY54AWTiNvMzCYp7+TuWcA3qpR/KV1WN0krgOOBnwGHR8Q2SD4cgGU1tjlT0gZJG3bs2DGR3ZmZWY68xN+ZttRHSS/c6q53B5IWAl8F3jKRi74i4oKIWB0Rq3t7e+vdzMzMxpGX+LslLagsTPvre+qpXFI3SdL/QkR8LS2+W9LydPlyYPvEQjYzs6nIS/wXApem3TTAcJfNF9NluSQpXe+WiMiODroMOD19fTrJtBBmZtYkeaN6PixpL3B12l0TwD7gAxHxyTrqfjLwSuAmSTekZecAHwC+LOk1wO3Ai6cQv5mZTVDu7JwRcT5wfpr4Va3PP2fbHzH24q+yZ9QfopmZNVJdN1uPiL3AEwqOxczMmqCuxJ/6YGFRmJlZ00wk8ZuZ2SyQ28cv6TMkJ3UFPFjSReVlEfHqgmMzM7MCjHfrxc9mXj+FkakWzMysRY03qufq8mtJe7LvzcysNU2kj7+/sCjMzKxp6k78EeHhnGZms0Bu4pfUlXm9UNLq9EYqZmbWovLm4z+DZEK130o6CdhIMpb/Rkkva1J8ZmbWYHknd88CHgksAm4Ejo+IP0g6HLgCuKQJ8ZmZWYPlJf5SRNwD3CNpb0T8ASAi7k4m3jQzs1aUl/hvl/R+khb/JkkfAb4GPBPY1ozgzMys8fJO7r4C2A1sBU4GrgXeARxOcsN0MzNrQXnz8e8G3p8pujR9mJlZCxtvOOfpkq6XtC99bJD0qmYFZ2ZmjVezxZ8m+LcAbwWuJ5mo7QTgQ5KIiM83JUIzM2uovBb/64FTI+LKiLg/InZFxA+AF6bLzMysBeUl/sURcWtlYVq2uKiAzMysWHmJf/8kl5mZ2QyWN47/TyRtrFIuYGVB8ZiZWcFyE3/TojAzs6bJS/zdwOER8eNsoaSnAncWGpWZmRUmr4//48CeKuX702VmZtaC8hL/iogY08cfERuAFeNVLOkiSdsl/SpT9h5Jd0i6IX08d1JRm5nZpOUl/rk5y+bVUfdngROrlH8sIo5LH9+uox4zM2ugvMT/C0mvqyyU9BrguvEqjohrgPumEJuZmRUg7+TuW4CvS3o5I4l+NdADnDqFfb4xnQ5iA3BWROycQl1mZjZBNVv8EXF3RDwJeC9wa/p4b0Q8MSLumuT+Pgk8FDiOZE7/j9RaUdKZ6aRwG3bs2DHJ3ZmZWaW8Fj8AEXElcGUjdhYRd5dfS/oU8K2cdS8ALgBYvXp1NGL/ZmY2zrTMjSZpeebtqcCvaq1rZmbFGLfFP1mSLgHWAkslbQXeDayVdBwQJF1H64rav5mZVZc3H/93ge8Al0fEpolWHBEvq1J84UTrMTOzxsrr6jkd2Am8J70L1yclnSJpYZNiMzOzAuTdc/cukouwPiupA/gz4CTgHyTtB74XEf/SlCjNzKxh6urjj4gh4Nr0ca6kpcBzigzMzMyKMamTuxFxD/CFBsdiZmZN0NThnGZmNv2c+M3M2kzecM635m0YER9tfDhmZla0vD7+DwM3AJcDB0nutWtmZi0uL/GfALwUeB7J7JyXAN+PCM+bY2bWwvJm57whIs6OiONIrrg9Bfi1pJObFZyZmTXeuCd3JfUCxwOPAbYC24sOyszMipN3cvevgb8iuQXjpcBLIsJJ38ysxeX18V8I3ATcTnKV7rOlkfO7EeEuHzOzFpSX+J/WtCjMzKxp8hL/LyNid7UFkh5cUDxmZlawvJO7V5VfSPp+xbJvFBGMmZkVLy/xZy/YOixnmZmZtZC8xB81Xld7b2ZmLSKvj39ZOl+PMq9J3/cWHpmZWRu7atN21l+zmS07+zhqyXzWrVnJ2lXLGlJ3Xov/U8AiYGHmdfn9pxuydzMzG+OqTds597Kb2b7nAIfO62b7ngOce9nNXLWpMZdS5bX4742If2/IXszMrG7rr9lMd6eY35Ok6Pk9XfT1D7L+ms0NafXntfhfPeXazcxswrbs7GNed+eosnndnWzd2deQ+n0jFjOzGeaoJfPZP1AaVbZ/oMSRS+Y3pP68xP9YSburPPZIqnphl5mZTd26NSsZKAV9/YNEJM8DpWDdmpUNqT+vj/+miDi+IXsxM7O6rV21jPNI+vq37uzjyAaP6slL/FMi6SLgL4DtEfHotOww4EvACuBWkhk/dxYVg5lZq1q7alnDEn2lvK6er0yx7s8CJ1aUnU1yF6+HA99P35uZWRPl3YHrn6dScURcA9xXUXwK8Ln09eeAF0xlH2ZmNnHNHtVzeERsA0ifa36PkXSmpA2SNuzYsaNpAZqZzXYzdjhnRFwQEasjYnVvr2eIMDNrlAklfkmfn+L+7pa0PK1rOb5/r5lZ0+Xdc/eyyiLgaZIOhUnfevEy4HTgA+nzNydRh5mZTUHecM4jgV+TTMgWJIl/NfCReiqWdAmwFlgqaSvwbpKE/2VJryG5l++LJx25mZlNSl7iXw28GXgn8LaIuEHS/oi4up6KI+JlNRY9Y4IxmplZA9VM/BExBHxM0lfS5+1565uZWWsYN5FHxFbgxZKeB9xffEhmZlakcRO/pMcAq9K3FxcbjpmZFS1vVM8hJKNujgI2kpzcfYyk24FTIsIzdJqZtaC8Fv/7gA3A09P+fiR1Au8H/gn4P8WHZzYzFXk/VLOi5SX+ZwKPLSd9gIgoSToHuKnwyMxmqPL9ULs7Nep+qOeBk7+1hLwrd/sjYrCyMC07WFxIZjNb9n6oUvLc3SnWX7N5ukMzq0tei3+upONJ+vazBMwpLiSzmW3Lzj4Ondc9qqyR90M1K1pe4r8L+GjOMrO2dNSS+Wzfc4D5PSP/Po28H6pZ0fIu4FrbxDjMWsa6NSv5+0tv5I5d+ykNBZ0dYuGcLt71vEdNd2hmdanZxy/pFZJeWaX8dZJOKzYss5lNAAERATG2P9RsJsvr6jkLWFOl/EvAlczwi7k83M6Ksv6azSye180Rh8wbLuvrH2T9NZt9jFlLyBvV0xkReyoL0wu3uqusP2OUh9tt33Ng1HC7qzZ5+n+bui07+5jX3TmqzCd3rZXkJf5uSQsqCyUtAnqKC2nqPNzOinTUkvnsHyiNKvPJXWsleYn/QuBSSSvKBenrL6bLZiy3yKxI69asZKAU9PUPEpE8D5SCdWtWTndoZnXJG9XzYUl7gaslLSS5Gcs+4AMR8clmBTgZHm5nRVq7ahnnkXyz3LqzjyN9DslaTO7snBFxPnB+mvhVrc9/Jlq3ZiXnXnYzff2DzOvuZP9AyS0ya6i1q5Y50VuhihygUtfN1iNiL/CEhuyxCdauWsZ5Jx/DskVzuX//AMsWzeW8k4/xP6qZtYSiB6hM5I5aHwSuaMhem8AtMjNrVdkBKgDze7oaOmS4rha/mZk1T9EDVHJb/JI+Q3JSV8CDJV1UXhYRr25IBGZmNspRS+bzx3v2sufAIP2lIXo6O1g0t4uHLF3YkPrH6+r5bOb1U4DPNWSvZmZW0xNXHsbPb72PDkGHoL80xI69/Zz2+MMaUv94o3quLr+WtCf73szMinHt5vtYtqiH3ftHWvyL53Vx7eb7eFMD6p/Iyd3+BuzPzMzGsWVnHw9YMIelC+cOl0VEc/r4syKiZYZzmpm1sqOWzOfWe/eOafGveEBj+vhzR/VI6sq8XihptaQpdzJJulXSTZJukLRhqvWZmc0mT1x5GNv39NNfGhru49++p58nrmxMH3/efPxnAHdL+q2kk4CNJGP5b5T0sgbs+2kRcVxErG5AXWZms8a1m++jd2EPPZ0dDAX0dHbQu7CHazff15D6x5uP/5HAIuBG4PiI+IOkw0ku5LqkIRGYtSDf78GKtGVnH0sXzqF3UTF9/HldPaWIuCci/gjsjYg/pDu/uwH7DeB7kq6TdGa1FSSdKWmDpA07duxowC7NGsP3e7CiFT31d17iv13S+yX9O7BJ0kckPVnSu4FtU9zvkyPiBOAk4A2SxtzpKyIuiIjVEbG6t7d3irszaxzf78GKVvTU33mJ/xXAbmArcDJwLfAO4HDgjKnsNCLuTJ+3A18HHj+V+syaacvOPgZLQ2zesZdNd+1m8469DJaGfL8Ha5iiJ5rMm49/N/D+TNGl6WNK0rt6dUTEnvT1s4HzplqvWbMs7Onk9zv20SnRKTFYCu7YdYCH9Y65YZ3ZpEQET31EL099RC+dHWp4/ePN1XM68GaSk7wAtwD/GhGfn8I+Dwe+Lqm8/4sj4jtTqM+sqdJjN5nBqvw/GZlym/UigqFIngOIgCCIyK6TlI28hqEIYghKEZSGYrieoYjkkS6LCH6++T4uvX4rd+0+0PABBDUTv6RXAW8B3gpcT3KInwB8SBKTTf4RsRk4djLbms0Eew4O8qBD53LP3v7hi2uOWDyHvQcHpzs0q2JoKE2qaYItJ+Th90OZxJtJ4EPZ5B4MlyWJPsbd71T8fPN9fOIHv2NOV8eoAQTnQUOSf16L//XAqRFxa6bsB5JeSHLf3am0+s1aVvnWnit7R66i7OsfZFlm6J1N3oQTdUWruTJpt6Iv/mILXR1iXnfn8ACCRs7Hn5f4F1ckfQAi4lZJi6e854J5nLUVxbf2HK1a4s0m61HdIWkXR3b9pMuD4dcG23bvZ/Hc0em5WfPx75/ksmlXHmfd3alCviZZe1u7ahkv2rqLT//oj+zrL7Ggp5PXPuUhLXVsuVU9sy1fPI87du1j38ESA0PR8Ll68hL/n0jaWKVcwIxu2qy/ZjP9gyXu3Tv6JgaN+ppk7e2qTdv51A83s6+/xFDA3oODfOqHm3nskYdO+fiqPGlYTrLJspE+5mxyzq6XTdDlvuhqLXCb2Y4/6hA23rGLDkFnh4bn6nnZ44qfj/9PGrKHafDbu3eza/8AQ0PJmfTBUokDgyUGS0PTHZrNAMPJkOrdE8OJtsp2AOd87Ub2HBy5qnIoYM/BEu/46o18801PhbTu7KiO7LpDQ9mRHiOxOCFb2S+33M9h87vp6x9p8S+a25z5+LuBwyPix9lCSU8F7mzAvguzv3+I0tDo0XalIejrd+LPKieaWomu2rrZIYvZwYuRWW/kdXb56JZrtvU5FCMVVA5/q6xzdLwxJuihKsm00SMy7txd/dYU2/b0s/eAR/bMVhHBQCnoLw0xUBpiYHBo1Pv+wfS5NMTAYCTrpO/7M++TR4xevxSj6rh52/0ADJYCCeiEOV0dTenj/zhwTpXy/emy5zckggIMZFv2Yjg5DNTR4s+2BivH6I5dt/r7bOIp1wlUTYi1Axmpq7xNebPKr/XVWo3jjSd269JaQWkoTaxVkmp/rSQ6OER/KZN4BzPrVdkmu15/RQIeKMWoZD0dBAwOJRcJPnxZ8X38KyJiTB9/RGyQtKIhey9IR4foGAqGYDhbCpDg9nuTT0wnQpusTFtiTHmrq7dVO1CRWPurJNLh7QZHt2oHMmX9pcgsH9vybcVBPt2doqezg+7yo0t0d3YMl/Wk74fLujpGbdPT1cG3N25j1/6B9J67GmkINihP5SX+vEHJ8xqy94L0Luhm6/0HR5UFsGReF4ND7u6xqZnf08m+/lLV8smot1U7ujuhsmU60oodtc2o96O7HGrtp9V0iEwCLSdYZd5rOKGOTrgjCTn7fmQdjdqmu6KenuHXGrVOI67g/t9b7mZ5zxx29Q0wMBR0dYojFs6petxNRl7i/4Wk10XEp7KFkl4DXNeQvRdk0bweOncfZIiRLo8OYMHcnukMy2aIcqs22zUwbqs2k0SHajRDB0pD/OP/3FLRqh3beh7dUm7dVm22FZvXqi0nxHJyrpYweyqS9PA2o5L56OTck9ZVxFw202354nls3blvVNnBwSEesrT4rp63kMyp83JGEv1qoAc4tSF7L8ieg4McuWQe9+zt5+Bgie7ODpbM76av3yfepktpaGzf6eiTW7VbtZVdDmNOiuW0aiv7csvbFKG/FPygoDn5K1u1oxJvV/VWbWX3QWWLtd5W7ejWc+NatVZbteGcO/b2c9rjCx7Omd5w5UmSngY8Oi3+n4j4QUP2XKDsJfX9g0NEBPsHSixbMGe6Q2uaiGBwKKqe2BpOnJUt0CpJdGCw+gmxbCs2t1Wb7qeVW7WVXQO33Vt7ZMVzH33EcKt2VBdAmpx7qiTn4VZwm7VqrbZfbrmfByzoHnMBVzOGcwIQEVcCVzZgX02zbs1K3nbpjdyxcz8DpSE6O8SCOV28Ye3DCt1vuVWbTbSj+mAzSbTa6INqrdrKVnD14WHNa9UWSZBJimO/5vd0je0aGH0irbL1OrJNT8U247VquzqVnFSr4ukfubrmz/D3z3lkzWVm9dq2ez/dnR3ASJ9+T2dzhnO2tIMDJQ4ODhFAqRTo4CAbt+5i14GB0SfRclq11RJ0tk94NrRquzqySTBn9EGVRDvmxFamVVvtRNtsadUeOreTXQfGnmQ7dO7kTu7a7FTuDtPw+/G3KZ+TXNDdya339lEeijJYKrF15/6mDOdsWR/8zib2HCyNGnJ3sBRc/Ist0xZTWYeo2p+abbVmk2Y5uVYuzw4XGzs8rL5Wbl6r1mo7+6RH8X+/cRODmQOsS0n5TCIJwfDfOO9PXW1ZefvycqH0uVyYlI0sH73tmPqq7HN4DxqpozJhZuPL7m9MHfX8TOlztQsCx5NXX/l3NRLX1P6vBsrD0VMBlIKmjOppWb+5a0/Nq1CXLuzJHY3Q3aVRLdN6WrXZlnJeou3pap1W7WxXrTVWTmzD7ysSX7K+mNPdwdzuDvb1J98oBczt7mD+nE4OmdddNWEyKlGNxDBmPaonmMoYskmyWovSJ19b2527qs+DWat8omZl4s8bqf/ldU9sWhw2VrZlNJzA0iTbUVlWJcENl3ckLdnsNjA2gY7ZtgEJcf3Vf2BvZvqPAPb2D/GfV/6ek4970JTrN6t1iq5Rp+5mZeK3+pUTbrY7oDLJdpTL0vUqE3Blcu2QRm3bIdExi77p/ObuvRMqN5tpZmXi7xBVT7S2aupJWrbVW8cdAjIJeXjdTIu4nNRHEnKmDncJTFitRlcLntu3GUqqfu6hUf+uszLxz+nqYP/A2A6fnq7mJLlsou7oyCbk0Qk3+zxqG83OlrKZ1UcUOx/UrEz83Z3VE39XR8e422aTrzIJeUyS7hh53dkxsk5nh69qNLOpKfpb5axM/IM1BtQPRXDEIXPH9EG728PMZpJOMWq4cLa8EWZl4u+rMdZ1/8AQ83tm5Y9sZrPI8kPmsWXn2KGbyw9pzMTI4/d9mJlZU0WN6eNrlU/UtCR+SSdK+o2k30s6ezpiMDObqXbsG6BTpKP3kudOJeWN0PR+D0mdwH8AzwK2ksz7f1lE/LrZsZiZzVSdHaIzMyCl1MCbSE1Hi//xwO8jYnNE9ANfBE5p5A56apwBqVVuZjaTrFy6gKFI769NMJTeX3vl0gUNqX86Ev+DgOxsaVvTslEknSlpg6QNO3bsmNAO/vTow5hTMWZ/Tpf406MbcxMDa2+1mg9uVlijvP3EVSyZ353caL00hIAl87t5+4mrGlL/dCT+av8fYwYuRcQFEbE6Ilb39vZOaAfr1qzk8MXzeGjvAh79wMU8tHcBhy+ex7o1Kycbs9mwFxy3fELlZhO1dtUyPvSiYzn+wUtYfsg8jn/wEj70omNZu2pZQ+qfjrGNW4GjMu+PBO5s5A7WrlrGecD6azazdWcfRy6Zz7o1Kxv2S7P29rGXngBcz2Ub76I0FHR2iJMfe0RabtYYa1ctKyxnKeqdjLpRO5S6gN8CzwDuAH4BnBYRN9faZvXq1bFhw4YmRWhmNjtIui4iVleWN73FHxGDkt4IfBfoBC7KS/pmZtZY03IZa0R8G/j2dOzbzKzd+cpdM7M248RvZtZmnPjNzNpM00f1TIakHcBtk9x8KXBPA8NpFMc1MY5rYhzXxMzUuGBqsR0dEWMuhGqJxD8VkjZUG8403RzXxDiuiXFcEzNT44JiYnNXj5lZm3HiNzNrM+2Q+C+Y7gBqcFwT47gmxnFNzEyNCwqIbdb38ZuZ2Wjt0OI3M7MMJ34zszbT0ol/vHv3KvGv6fKNkk6od9uC43p5Gs9GST+RdGxm2a2SbpJ0g6SGTklaR1xrJd2f7vsGSefWu23Bcb0tE9OvJJUkHZYuK+T3JekiSdsl/arG8uk6tsaLa7qOrfHimq5ja7y4mn5spXUfJelKSbdIulnSm6usU9wxFhEt+SCZ2fMPwEqgB7gReFTFOs8FLie5+csTgJ/Vu23BcT0JWJK+PqkcV/r+VmDpNP2+1gLfmsy2RcZVsf7zgR804fe1BjgB+FWN5U0/tuqMq+nHVp1xNf3Yqieu6Ti20rqXAyekrxeRTFXftPzVyi3+eu7dewrw+Uj8FDhU0vI6ty0sroj4SUTsTN/+lORmNEWbys88rb+vCi8DLmnQvmuKiGuA+3JWmY5ja9y4punYquf3Vcu0/r4qNOXYAoiIbRFxffp6D3ALY29BW9gx1sqJv55799Zap677/hYYV9ZrSD7VywL4nqTrJJ3ZoJgmEtcTJd0o6XJJx0xw2yLjQtJ84ETgq5nion5f45mOY2uimnVs1avZx1bdpvPYkrQCOB74WcWiwo6xaZmPv0HquXdvrXXquu/vJNVdt6SnkfxzPiVT/OSIuFPSMuAKSZvSVksz4rqeZG6PvZKeC3wDeHid2xYZV9nzgR9HRLYFV9TvazzTcWzVrcnHVj2m49iaiGk5tiQtJPmweUtE7K5cXGWThhxjrdzir+fevbXWKfK+v3XVLemxwKeBUyLi3nJ5RNyZPm8Hvk7yta4pcUXE7ojYm77+NtAtaWk92xYZV8ZLqfgqXuDvazzTcWzVZRqOrXFN07E1EU0/tiR1kyT9L0TE16qsUtwxVsSJi2Y8SL6tbAYewsgJjmMq1nkeo0+O/LzebQuO68HA74EnVZQvABZlXv8EOLGJcR3ByEV9jwduT3930/r7Stc7hKSvdkEzfl9pnSuofbKy6cdWnXE1/diqM66mH1v1xDWNx5aAzwMfz1mnsGOsZbt6osa9eyX9Tbr8fJLbOz6X5B+hD/jrvG2bGNe5wAOA/5QEMBjJ7HuHA19Py7qAiyPiO02M60XA30oaBPYDL43kSJvu3xfAqcD3ImJfZvPCfl+SLiEZibJU0lbg3UB3JqamH1t1xtX0Y6vOuJp+bNUZFzT52Eo9GXglcJOkG9Kyc0g+uAs/xjxlg5lZm2nlPn4zM5sEJ34zszbjxG9m1mac+M3M2owTv5lZm3Hit7Yl6cXpzIhDklZnyh+Qzpy4V9K/V2zznXTagZslnS+pMy1fI+l6SYOSXlSxzemSfpc+Ts+UvzGdXTHSi5nK5TVnjDRrBCd+m/XS6W2rHeu/Av4SqLwM/wDwLuDvq2zzkog4Fng00Au8OC2/HTgDuLhi34eRjB3/M5ILl94taUm6+MfAM4HbsttExIci4riIOA54B3B1jJ5KwGxKWvYCLrM86cRXlwNXAk8EdknqJZnT5KKI+FhE3JKuO2rb9EKeH0l6WGW9MTKfShfJVZORlt+a1jVUsclzgCvKiVvSFSSTgV0SEb+stv8KTZsx0tqHW/w2mz2S5LL415JcwfroiHgM8JmpVCrpu8B2YA9w6TirT3omxRozRppNmRO/zWa3RTKP+WZgpaR/k3QiUDkL4oRExHNIbqQxB3j6OKtPZSbFajNGmk2ZE7/NZvsAIrkxybHAVcAbSGaunJKIOABcxvg3wJjKTIpjZow0awQnfpv10hEzHRHxVZKTtieMs0mtehamd0BCUhfJBFqbxtnsu8CzJS1JT+o+Oy0bb1+HAH8OfHMysZrlceK3dvAg4Kp0FsTPkoyUQdKp6YyNTwT+J+27J112K/BR4AxJWyU9imR63sskbSSZCnc7cH66/uPSul4MrJd0M0DaTfM+4Bfp47zMid43pdscCWyUlP0mUm3GSLOG8OycZmZtxi1+M7M248RvZtZmnPjNzNqME7+ZWZtx4jczazNO/GZmbcaJ38yszfx/Z9Y5qMl2l/AAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "cd8tydata = (common_individuals_individual_ratio_df['CD8T TEM'] + \\\n", + " common_individuals_individual_ratio_df['CD4T TEM']) / (\n", + " common_individuals_individual_ratio_df['CD8T Naive'] + \\\n", + " common_individuals_individual_ratio_df['CD4T Naive']\n", + ")\n", + "fig, ax = plt.subplots()\n", + "sns.regplot(x=common_individuals_individual_ratio_df['gt'],\n", + " y= cd8tydata, \n", + " ax=ax)\n", + "r, p = stats.spearmanr(common_individuals_individual_ratio_df['gt'],\n", + " cd8tydata)\n", + "ax.set_title('Oelen v2 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax.set_ylabel('CD8+CD4 TEM / CD8+CD4 Naive')\n", + "ax.set_xlabel(\"rs1131017\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Begin calculating networks for 72 individuals and;\n", + "RPS26;RUNX3\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 72/72 [00:00<00:00, 207.95it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SpearmanrResult(correlation=0.29651955126400936, pvalue=0.011433091246178868)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEGCAYAAABsLkJ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAApcElEQVR4nO3de5hkV1nv8e9bl753z/RcOgnMDElrYCCQCE5yROM4IEfC/XhEBRRFwQzeAnrgAUQChqMPPng8woNKciLPOXq4HO5EBUGI4xgJl0lIQmIGCJ2EmUDSPTM90/euy37PH3tXd3V193RVde3edfl9nqepql23RWXPWmu/a613mbsjIiKdJ5V0AUREJBlqAEREOpQaABGRDqUGQESkQ6kBEBHpUJmkC1CLXbt2+cUXX5x0MUREWsodd9xxyt13Vx5vqQbg4osv5tixY0kXQ0SkpZjZw2sdVwhIRKRDqQEQEelQagBERDqUGgARkQ6lBkBEpEO11CwgkWZz5Pg4Nx4d48TkHHuH+zh8cJRD+0eSLpZIVXQFIFKnI8fHuf6W+xifXmB7b5bx6QWuv+U+jhwfT7poIlVRAyBSpxuPjpFNG31dGczC22zauPHoWNJFE6mKGgCROp2YnKM3m15xrDeb5uTkXEIlEqmNGgCROu0d7mM+X1xxbD5fZM9wX0IlEqlNYg2Ame01s38xs/vN7D4ze11SZRGpx+GDo+SLzlyugHt4my86hw+OJl00kaokeQVQAP6buz8Z+DHgt83sKQmWR6Qmh/aPcMOLL2NksIdz83lGBnu44cWXaRaQtIzEpoG6+w+AH0T3p83sfuDxwH8kVSaRWh3aP6IKX1pWU4wBmNnFwNOBr67x3LVmdszMjk1MTGx52URE2lXiDYCZDQCfAF7v7lOVz7v7Te5+wN0P7N69Kp21iIjUKdEGwMyyhJX/B939k0mWRUSk0yQ2BmBmBvwNcL+7/3lS5RDZDKWCkLjFeY4leQXwE8ArgWeb2V3R3/MTLI9ITZQKQuIW9zmWWAPg7re5u7n75e7+I9HfZ5Mqj0itlApC4hb3OZb4ILBIq1IqCIlb3OeYGgCROikVhMQt7nNMDYBInZQKQuIW9znW9hvCaJaGxOXQ/hFuIIzTnpycY4/OL2mwuM8xc/eGfNBWOHDggB87dqzq15dG0LNpozebZj5fJF905WsRkY5iZne4+4HK4219BVA+gg7Q15VhLlfgxqNjagBEpCXEGcVo6wbgxOQc23uzK45ploY0kkKMEqfyKEb5OoAboCHnWVsPAmuWhsRJC8EkbloHsAmapSFx0kIwiZvWAWyCNuyQOGkhmMQt7ihGW48BgDbskPjsHe5jfHphaZIBKMQojXX44Chv+PjdPHJ2nmLgpFPGQHeGt72gMZsntvUVgEicDh8c5dTMIvc+co5vPnKOex85x6mZRYUYpaEMwMHdwaPHDaIGQKRO95w8y9R8YcWxqfkC95w8m0yBpO3ceHSMod4sl14wyJMv2salFwwy1JvVILBI0m6+7UEyaaMnm6Y3m6YnmyaTNm6+7cGkiyZtQoPAIk1qNlckVXE9nrLwuEgjKBmcSJPq70oTVGRSCTw8LtIIcU9lVwMgUqfXXH0JgUMhCAg8iG7D4yKNEPdU9rafBioSl+ue80QgHAuYzRXp70rzmqsvWTou0khxpO1s62ygIiKtrFEZjdfLBqoQkIhIk1IuIBGRDhX3NFCNAYiINKm9w308eGqG6YUCuWJAVzrFYE+GS3YNNOTzdQUgItKknjm6g4mZHLliQMogVwyYmMnxzNEdDfl8XQGIbII2hJE43T52hpHBLqbml68Ahnoz3D52husa8PlqAETqFPduTSInJufY2d/NroGepWPurjEAkaRpz2mJ297hPr716BRn5/MEHqYa2d6b5UkXDjXk8zUGIFInbQgjcbtwqIszc/mllCOBw5m5PBcOdTXk83UFIFKnuHtnIl86PlHT8VolegVgZh8ws3EzuzfJcojUI+7emcj0QqGm47VKOgT0v4FrEi6DSF2+dHyClIU9f4Ol+43qnYmkonzjZst/5cc3K9EQkLsfNbOLkyyDSL1mc0WyaSNly/2owAPtByAN09+VZmqhsCoTXKNSjid9BbAhM7vWzI6Z2bGJCfWspHloPwCJ22WP28aOvixmYRtgBjv6slz2uG0N+fymbwDc/SZ3P+DuB3bv3p10cUSWvObqSygUnYV8kfl8kYV8kULRtR+ANMzhg6MM9GS5ZFc/T33cEJfs6megJ6sNYUSSdvme7Qz1royiDvVmuHzP9mQKJG1HG8JskpbqS1xuPDrGroFu9u3oXzqmhWDSaIf2j8R2PiU9DfTDwO3Ak8zspJm9upGfX1qqPz69sGKp/pHj4438GulQWggmrS7RBsDdX+7uF7l71t33uPvfNPLz495MQTrb3uE+5vMrZ/zM54vsGe5LqEQitWnrMQD10CROhw+Oki86c7kC7uFtvugNG6CTzuPu5AoBs4sFzs7lGJ9a4OTkHJOzuVi+r63HAOLeTEE626H9I9xAeKV5cnKOPRpjkhoUigGLhfAvXwzIFQIKgbPWPu19MS0ub+sG4JmjO/jqg6eX5mrni+F0vVdctS/ZgknbiHOATtpHMQh79ouFYljp5wMKQZB0sdq7AfjcvY9ihMv0Pbq16Ph1z3liomWT9qBZZlIuCJxcMSBXDMgXAvJFj3r2yVf2a2nrBmDs1CzplNGVWh7qKAYBY6dmEyyVtAttCNO5Wq2iX09bNwAicdKGMJ0hVwgr+sV8sWUr+vW0dQNwyc4+HpiYxQIPc2l4mKvlh3dpmp5s3onJObb3Zlcc0yyz1lYeq1/IByzkiwRrDMq2i7aeBvrm5z2Z7X1ZLAVFdywF2/uyvPl5T066aNIGtA6gtRWKAXO5ApOzOR49t8D3Ts/x8OlZfnBunjOzOeZyhbau/KHNrwAO7R/hz156habpSSwOHxzl+lvuYy5XoDebZj4KEWgdQPMphXFyhWCph1+sTOXagdq6AQBN05P4HNo/wktPnuXm2x5kNlekvyvNa66+ROdbQkoDs/liOChbKA3SFteeWy8d0ACIxOXI8XE+fucj7B7sZl90BfDxOx/h8j3b1QjEqBh4uHAqmoET3nrbDMxuJTUAInXSLKD4uIe9+UKxrLKPevUK3TSOGgCROmkW0OaVwjSl2Hw+UCW/ldQAiNRp73Af49MLS1cAoFlAawkCJx+EPfh8Ke9N1Ltv91k2jZIrBEwt5BnqyW784hqoARCpk2YBrZQvDcAWShW+YvPVKAbOmdkcE9OLjE8vMj69EN5OLTIxvcgjZ+eZWSzQ35Xm8j3bGzqTUQ2ASJ06cRZQaQC2NNOm/L5m2qzm7kwtFJiYXuSxqYWlSn6irKI/NZOrKuRlZg1PN6IGQKRO7ToLyN2XKvdCsXxqpWLzleZzxaWKfCLqtYf3o1789CKLheqvgAa6M4wMdrN7sJuRwW6OPTTJYqHIQE+G3myGrkyqoRMN2r4BeO8Xv72qh6ZMoNIIrT4LqHI6ZXmPXsKQ1qmZ8kp9ZYhmYnqR6YVC1Z/XlUkxElXspQp+ZLCHkaHlx+XjSQAv/19fYedAF5lUikw6TNzQyIkGbd0AvPeL3+Y9tz5AyiCTCgfo3nPrAwBqBGTTWmEWUKEUqgnCSr4QLPfsO3kANvCKuPvUcqX+WHQ7OZuj2l8oZbBrYLlyv2Cop6ySDyv6od5wa9paXDTUy8nJWeZyRfKBN3xTqw0bADNLAbh7YGZdwFOBh9z9TENKEKObb3swqvzDljNlUAgCbr7tQTUAsmnNMguoMi7f6Stg3Z3phcJSb325kl/uyU/MLNYUzhruyzIyuFyph5V8qefew47+LtKp2ir3ajx97zbueeQsKYN0ysgVAyZmcrziqh0N+fzzNgBm9l+AG4HAzF4L/AEwCzzRzH7T3f++IaWIyWyuSKYi3V3KwuMim3X44CjXffhOZnJFAg/PrYGuNG97wVMa/l3lUykLHb4waj5fZGKqbLbMUvx9uRe/UEPcvb87HYZiysMzQz1L93cPdNNVWZFskW+cOMfO/iyzi8tXAEO9GW4fO8N1Dfj8ja4A3g5cAfQCdwNXuvu3zOwJwCeApm4A+rvCgbnyhjnw8LjIZt1z8izTi8WlMEHgML1Y5J6TZ2seA3B3CoGHK1+DgGJ0WyiGxzplKmWhGHBqJrfUc39sanHVzJmpGuLu2bQtxdmXY+89K3rxlXH3ZvKDqXm293Wxa2B5DMDdt24MwN0fBTCz77n7t6JjD5dCQ83sNVdfwntufYBCEJCy8B9o4OFxkc16/7+OLW01WuLR8coQY6mCL0Z/S+GaoHPmygfunJ3Lr5oO+VhZmObMTG1x95393WtW7qVj23qzNcfdm8lFQ72cnl1koHu5um1kmLGqMQB3D4BfLzuWBmLap75xSv8INQtI4jAX7QVQWWHN5Yucmllc6rmXKv125u7MLBaWK/WplVMhJ6K/Qg2/w/bebBSO6V4Rfy/97RzojiXu3kxeduVe3nPrd5jPFxlIWcMXG27UAFxLWNEvuPvXyo7vBd7VkBLE7LrnPFEVvtStUAxnzgRRDz4Ilnvy5zM1n9+iEm6NhXxxxVTIiemFFYOqj00vsJCv/iqmrytdFnNfGaK5IKrsk4q7N5OrRndwzaMX8LE7T3Jicr7hiw03agDud/eFyoPu/lB0FSDSkkqDqsVShV70FRV9segU/fyzaLIpWKvOy7ZYvVUoBpyaza0aWB2fqj/uXj7Pfel+WU9+oLt54+7N5GtjZ/j03d8nXwgwwu0q/+4rDzdsseFG/xXuNrO3uPtHSwfMrAf4Q+AXgUs3XQKRTQgr8JUVeeCOE+4B7ThEYz9OOKBaDBozB36gJ8vk3Oqe/kCDE3ZtRinuXplfptSLfyya715tZKYUd19ZqYe9+NK0yO0tHndvJjf92xhT83nSKSOTTuEOk3N5/vSfjm9JA/AzwPvM7DeA3wQuA/4M+DTw9E1/u0iZ8oHSwKPbINzPuXSsdNydhlXk9XrCjn4yqVlmFovkiwHZdIqB7jSP396/ZWWYWSysmP44Xl65Ty1yamaRfLH632hbFHe/oHy1atmUyF0dEHdvJicm50gZpMwwDDNwc8ZOzTbk88/bALj7d4HnmdkbgePAo8Bz3f2+Rny5mV0DvAdIAze7e0uMK8hqQRCGTAIPK+3AoxBKVIGXKm93lm49el/pWKutTC0N0O0ayNCTTbGQD8cLXnbl3oZ8/mK+yMRMZThmuec+Mb3IXA1rWnqz6aVe++6y+Hupst892E1PVpHdTrLRQrAM8Ebg1cBvAc8H3mtmv1WaElqvaAzhL4H/DJwEvm5mt7j7f2zmc6U+QRCGTYIVve2ol1322FnufS/1xDeIlberq0Z38Dou5SNfP8GjU/NcONTLy67cy1WjG6/SLAbOqZmVvfbxiumRZ2sYSM6mbcNUBP3daYVmWsze7b08fGYOC5xUiqizBD+8a2umgX4D+FfgR939HHCTmb0Q+IyZfdLd/2AT330V8IC7jwGY2UeAlwBqAOrkUeVdLOuFl8fDS730UuVdDBoXD+905b+gu3N2Pr9qOmT5wqbTs4tVx90N2DHQFfXUe1iRTCwaWN3elyWlyr3tXHvwh/jTzx9nLleg6E46ZWzvzvLm5z25IZ+/UQPwKne/o/yAu/+DmX2JcCB4Mx4PnCh7fBL4T5UvMrNrCaejsm/fvk1+ZfOrrMTLK+zKMErg4eubIR7eSWaj+e63ffsU/++OEyzki7jD+PRilLfFaprvPtSTWZ4tM7Sy1757qJtd/V1Lq0Cls1w1uoM3PXc/H7/zJI9NLbBnuG/rNoSprPzLjs8Db93kd6/VXVn1r8bdbwJuAjhw4EDT1nBeXiHDUiUNy5V1GB8vux9V8oUgwB0KQWeGUppJrhCsWp06XtGLXzeXVGlco+y/YU82tTSvfTn+vrIXr7h75zGzpcHd8DFL4TmLHkP4fE82Tcqs6hXStdhoDOBBVlbKVvbY3f2HNvHdJwkXlJXsAb6/ic+rSSmuXd7TLvWuiWLdpQq9dFssVeQtPHDZyUpb742XLWJayu8+VXvcfS0GpFLw/l/+UUai+e6Ku7eeygo6lTLON/kpZeEMHcNIR681W76fMov+wqye1Z4TR46P8+df/DbZtLG9N7vlO4IdqHicAn4BeAPh+MBmfB241MwuAR4BXga8YpOfucqR4+PceHSMh07PcuFQDy+/ci9Xju5UT7vNuDvn5vMrp0NWTI88NVNb3H24v2tVhsgLygZZf/H9t1N5LeCAOfzQ7sbka5f1lfeYw8fLFfFShZtaWfmWV+xLlfbSNMvoeBNNc41706GNQkCnYWlPgFcSzgi6C3jBZmfruHvBzH4H+DzhNNAPNGp6acmR4+Ncf8t9ZNPGYHeGUzOL/M8vfYfXOVXN1JDmMZcrVOR0r0gFPL1IroYUwIM95Vvv9ayaHrlroJvsBnH3VNoorjHH3pqoAmkmZkY6qpTLK+9SRZ1eqqhXVtxrVdLlIZN2FvemQxuFgLKESeB+D7gNeEm0NqAh3P2zwGcb9XmVylvPXCGgN9q39SNfP6EGoInkCgETMyt77pXZImcXq5/v3pNJrZjnvirPzFA3vQ2IuwfrXE6sd7wdrOhBl4U3ynvdmbSRSRmZVGpFr7sTKuxGi3vToY1CQA8CBeAvgO8BV5jZFaUn3f2TDSlFTNZqPXuyKR6dmk+oRJ2nPO6+cs77cp6ZtdIprCedMnYPrJWKYLknP9iTbNy92ao5i3rOwKredfh8+JcuxaxTtnR/RThFlfiWO3xwlOtvuY+5XGGpA7uV2UC/SBjWvCL6K+dAUzcAe4f7eOj0DFPzBRYLxUSW6rczd2dqvrB6Z6ayVASnZ3M1pULe0d913lQEw33xbL1Xj6RKEQ4shj3ttC1X2KlU2PNOp2zpNc3yW0l9Du0f4QbCaMbJybktnwb6qoZ8S0KeObqDrz10JrpMhXwx4PRswAufti3porWE+VxxRRKx8emFikp+kcUa4+7lWSLLp0KWUhFsFHdvKuVz4iqP1/NxFoVO0mH4JJsOK/BsOrVUmatC7zyH9o80rMKvtNEYwO9XHHLgFHCbuz8YS4ka6PaxM+we6GJ6YfkKoL8rzTdOnOOVSRcuYfliwKmZlRtlL02JjB5P15ACuCuTWjljplTJDy3f722zrTjD0Iqvmid9vjBJqZLPplNk0uFtdum2hRo/aQsbhYAG1zh2MfBWM3uHu3+k8UVqnBOTc+waCAcCc4UgWqTlbT8GEHgYd6+cDlkeppmcrW3rvVKemfJwTPnA6lBv581339GX5bHp3IpjDuzsy9KdTS+HY6JwTVcmRVc61XG/kzSvjUJAf7TWcTPbQTg+0NQNwFoj6Av5gAuHehMs1ea4O9MLhaXeevlq1aWt92YWa4q7D/dl19i4Y3lgdUd/88Tdm0UmlWKwZ3UDADDc383jt7fuOSado65tedz9jLVAN6Z8BD1t4X6ajUzXG4f5fHHVzkzlMffxqQUWaoi793enl+e5V/TcR4Z62D2grfcqlcI06bJB1UwUqinF5s2Ms/N50lbabKY0px0mZhaT/r8gbaS0mPXE5Bx7t3IQeD1m9mxgsiEliFH5CPpDp2a4oIZ0vXEoFANOzeSW88xMLa7qydcSd8+mbVXa391li5pGBrtXXP10ujUr9lSKVCrs0ZeOV7sSNFcIwoo/Ggw2CxuCWhakiZxP+WLWLU8FYWbfZPU8hx2EOXt+ddPfvoXiXpoTuDM5m6uIta/cOPtMnXH3FZt3lK1W3aat99aUSYUDrJm00RUNrnZlGj/IGniwIrVEKbuIuxoAaYxEU0EAL6x47MBpd2/MfmQxK289h3qynJ5d5D23fofXcWlNVwHuHm69t06vfTzaeq+WFMDDfdmlqY+V2SIVd99YJpUim1mePVMZntkKQbD29xTXOS5Sq0RTQbj7w2sdN7PtwG+7+x83pBQxqTYVxEK+uCqJ2ERF/H0+X30qgr6u9LohmdJgq+Lu1SlV9F3pFNloFk1XOtUUCbvyxbCnb6X/icYCSsdFNivRVBBmthd4G/A4wo3gPwS8E/iV6H5TOzE5x7aesPKfyxXIF4NwMdjMIn/46XuXFjdN1Rh3L58xs2I6ZBSPH+hW3L0Wa82N745CNs18FZRKGWl3ilEKcYC00RSNk7SHpFNB/C3hlpCfAK4BvgLcBzzN3R9tSAlitHe4j7GJ6TWn6n35u6dXHUsZ7OxfK8/Mcux9u+LudVsrbJNNp8jUkB+9mezuz3Ly3MoZP0WHi/qz67xDpDaJpoIAdrj7O6L7nzezx4Ar3b0l5rmVUkFU2jfcyzOeMLyqct810N3UPc5WUV7RdzVZ2KaRBnu7SJ1bxC0cADYL9wIY7O1KumjSRhJLBQFgZsMsZzd5FOgzs34I1wPEUqoGuX3sDNt6MkzO5ZfmaQ/1ZNjR3811P31p0sVreSkzspkwXNMV3WZT7VfRr2d6scDeHb2cmsmRKwZ0pVPsGuhiZrH6kKJIkjZqALYBd7AyvdWd0a0DjQlExeQ749NMLxToyqRwwm0cZxcLPHymJSYxNQ0zI1uWyqA0pbLTc9eUBuhGy3b/mssVGBnsSbBUItXbaBbQxVtUjljkCgFE+cyD6BK9aK6FOutIp2xF5d5Vml7Z4RX9eg4fHOWNH7+bRybnKQRBlB4iw9te8JSkiyZSlbaerpJNG/P5aBP36AoAoCvdGSGK8ynNtOnKLMfpVdHXzgFKG6VY/AsORRqpqgbAzO5092eUPb4/uvuX7v6+WErWAE+8YIgHT81E6aCDKB10hj3DnbEhzFLopjTrJpNaetyKs26azY1Hx9jWm+WibcuJ3xq5SlMEmiAXUHnlHz1+spntBH6sIaWISWkO7YXbMi2TDK5epQHZrnSK7mzUu1dFH6u4V2mKJJoLqJKZDQGXAmPufhr4x02XIEbNlgyuETQg2zz2DvctXWGWZgEN9mS4ZNfAxm8WqUKiuYDM7P8Cr3f3U2b2XOBm4FvApWb2Bnf/2KZLELPSHNoTZ+Zaaol+ZfimVNErhUTzqNxyNFcMmJjJ8YqrWreDIc0l0VxAwBXufiq6/3bgJ939ITPbBXwJaPoGoNmlzJYGYrU9YGu5fewMI4NdTM0vXwEM9Wa4fewM1yVdOGkLieYCAlJmNuTuU0AAfA8guiJo6xlEjVaK0WfTRnc6vZTgTDNvWteJyTl29neza2B53r+7awxAGibpXEB/BPyLmf0l8O/Ax8zsM8CzgX9qSAnaTGVF35XRXPp2FXfvTCTRXEDu/lEzuxP4DeCJ0eufCXzY3T/fkBK0qPIY/coQjir6ThF370ykXBxrTDYM47j7A8CbYvjullG5aEoVvUD8vTORuKeBbliLmdlzzezVZvaEiuO/Xu+XmtnPm9l9ZhaY2YF6P6fRLBqQHejJsHOgm8dt7+Xinf3s3dHHyFAP2/u66OvKqPKXVbQCWOJQPg3UzKL6x7jx6FhDPv+8NZmZ/QnwVuBpwK1m9rtlT//OJr73XuC/Akc38Rmbkkml6O/OMNzXxchQD48f7uXinX3sGe5jZLCHbb1ZerLpjslsKbUr9c7GpxdW9M6OHB9PumjSJk5MztGbTa84tpXTQF8EPN3dC2b2DuBDZjbq7r/HygyhNXH3+4EtXaXa15UmncrQnQkHZpX3XzYr7kU6InFPNNgolpFx9wKAu58lbBCGzOxjQEvterFzoJvtfV30dqVV+UtDxN07Ezl8cJR80ZnLFXD3aGvbrZsG+l0z+yl3/1cAdy8Crzaz/w783PneaGZfBC5c46m3uvtnqi2gmV0LXAuwb9++at+2JM5EStLZ9g738dDpmVULwS7eqVQQ0hhJbwn582sddPc/NLO/Pt8b3f05dZdq5efcBNwEcODAgZrG2uIeQZfOtlYqiPHpHC+/UqkgpHHi3BJyoxDQCGWhHjN7lpm9x8x+H5iIpUQNFPcIunS228fOMNSTphg4iwWnGDhDPWluH2vqnVJFlmzUAHwU6Acwsx8hzP3zPeAK4K/q/VIz+1kzO0m4qOwfzSyWRWUnJucoFAPGJmY4/ugUYxMzFIqBYrTSEN8Zn2ZmoUg2naInG64NmVko8p3x6aSLJlKVjUJAve7+/ej+LwMfcPf/YWYp4K56v9TdPwV8qt73V2ugK823x2cIosBRvlhkfnKeJ44oRiublysEFN0pFsPd5kqT2rTlqLSKja4AyqfLPJswAyju3hJn+KnZ3FLlXxJ4eFxkswIPCDw8pxyW77fGPw+RDa8AbjWzjwI/AIaBWwHM7CKg6WvR0zNrF3G94yK1SFmKtAU4LF0BGBBeIIs0v40agNcDvwhcBFzt7vno+IWEK4Sb2npThrRsXxqhK5NiPmekUoZZ2AgEgWvTHmkZG2UDdTNbANLAU4FHouPf2IKybVo2Bfk1rsaz+vcpDXDpyODqdQD9Wa0DkJaxUS6gvwZ+D9gJvNPM3rYlpWqQC7f11nRcpBaHD46STae5cFsPT7pgkAu39ZBNp5UOWlrGRiGgnyTcFrJoZn3AvwHvjL9YjeHAyEDX0mBwymBXf0tlsJAmpnTQ0uo2agByUfoH3H3OtjJ7WwOUEildUNbjn8sVGBnsOc+7RKoX5ypNkbhtFA3fb2b3RH/fLHv8TTO7ZysKuBlxJ1ISEWllG10BPHlLShETXaKLSKuLM6HlRrOAHl7ruJmlgZcBaz7fTHSJLiKtKtEtIc1syMzeYmbvM7OfsdDvAmPAL2z620VEZF1xJ7TcKAT0d8AkcDvwGuCNhNlBX+LudzWkBCIisqYTk3Ns782uOLaVW0KOuvvTAMzsZuAUsM/dle5QRCRmSW8JWUr9UNoN7EFV/iIiWyPpLSGvMLOp6L4BvdFjI8wUMdSQUoiIyCqJbgnp7unzPS/S6bTntMQtyS0hRWQdpSl649MLK6boHTk+nnTRRKqiBkCkTtpzWlqdGgCROp2YnKM3uzJK2sgpeiJxUwMgUqe9w33M54srjjVyip5I3NQAiNRJyQal1akBEKnTof0j3PDiyxgZ7OHcfJ6RwR5uePFlmgUkLWOjdQAich5KNiitTFcAIiIdSg2AiEiHUgMgItKh1ACIiHQoDQKLbIJyAUkrS6QBMLN3Ay8CcsB3gV9z97NxfJf+gUpc4t6uTyRuSYWA/hl4qrtfDnwbeEscX6JkXRIn5QKSVpdIA+DuX3D3QvTwK8CeOL5H/0AlTsoFJK2uGQaBfx343HpPmtm1ZnbMzI5NTEzU9MH6BypxUi4gaXWxNQBm9kUzu3eNv5eUveatQAH44Hqf4+43ufsBdz+we/fumsqgf6ASJ+UCklYX2yCwuz/nfM+b2a8CLwR+2t09jjIcPjjK9bfcx1yuQG82zXy+qH+g0jBxb9cnErekZgFdA7wJ+Cl3jy0eo3+gEjflApJWltQ6gPcB3cA/mxnAV9z9tXF8kf6BioisLZEGwN1/OInvFRGRZc0wC0hERBKgBkBEpEOpARAR6VBqAEREOpQaABGRDqUGQESkQ6kBEBHpUGoAREQ6lBoAEZEOpQZARKRDqQEQEelQagBERDpUUtlARdrCkePj3Hh0jBOTc+xVunFpMboCEKnTkePjvOHjd/ONE5M8NrXAN05M8oaP382R4+NJF02kKmoAROr0rs/dz9m5PB5A2gwP4Oxcnnd97v6kiyZSFYWAROr04Ok5UgaplAFgBh44D56ObZM7kYbSFYCISIdSAyBSp9Fd/QQOgTuOE7gTeHhcpBWoARCp05uu2c9wXxYDCsUAA4b7srzpmv1JF02kKmoAROp0aP8I737pFTx93zAXbevl6fuGefdLr9A0UGkZGgQW2YRD+0dU4UvL0hWAiEiHUgMgItKh1ACIiHQoNQAiIh1KDYCISIdSAyAi0qHUAIiIdKhEGgAze6eZ3WNmd5nZF8zscUmUQ0SkkyV1BfBud7/c3X8E+Afg+oTKISLSsRJpANx9quxhP+BJlENEpJMllgrCzP4Y+BXgHPCs87zuWuBagH379m1N4UREOoC5x9P5NrMvAheu8dRb3f0zZa97C9Dj7m/f6DMPHDjgx44da2ApRUTan5nd4e4HKo/HdgXg7s+p8qUfAv4R2LABEBGRxklqFtClZQ9fDBxPohwiIp0sqTGAd5nZk4AAeBh4bULlEBHpWIk0AO7+c0l8r4iILGv7DWGOHB/nxqNjnJicY+9wH4cPjmoDDxER2jwVxJHj41x/y32MTy+wvTfL+PQC199yH0eOjyddNBGRxLV1A3Dj0TGyaaOvK4NZeJtNGzceHUu6aCIiiWvrBuDE5By92fSKY73ZNCcn5xIqkYhI82jrBmDvcB/z+eKKY/P5InuG+xIqkYhI82jrBuDwwVHyRWcuV8A9vM0XncMHR5MumohI4tq6ATi0f4QbXnwZI4M9nJvPMzLYww0vvkyzgERE6IBpoIf2j6jCFxFZQ1tfAYiIyPrUAIiIdCg1ACIiHUoNgIhIh1IDICLSoWLbESwOZjZBmD66HruAUw0sTqOoXLVRuWqjctWmWcsFmyvbE9x9d+XBlmoANsPMjq21JVrSVK7aqFy1Ublq06zlgnjKphCQiEiHUgMgItKhOqkBuCnpAqxD5aqNylUblas2zVouiKFsHTMGICIiK3XSFYCIiJRRAyAi0qHaogEws2vM7Ftm9oCZvXmN583M3hs9f4+ZPaPa98Zcrl+KynOPmX3ZzK4oe+4hM/ummd1lZse2uFyHzOxc9N13mdn11b435nK9saxM95pZ0cx2RM/F8nuZ2QfMbNzM7l3n+aTOrY3KldS5tVG5kjq3NirXlp9b0WfvNbN/MbP7zew+M3vdGq+J7xxz95b+A9LAd4FRoAu4G3hKxWueD3wOMODHgK9W+96Yy/XjwHB0/3mlckWPHwJ2JfR7HQL+oZ73xlmuite/CLh1C36vg8AzgHvXeX7Lz60qy7Xl51aV5dryc6uaciVxbkWffRHwjOj+IPDtray/2uEK4CrgAXcfc/cc8BHgJRWveQnwtx76CrDdzC6q8r2xlcvdv+zuk9HDrwB7GvTdmypXTO9t9Ge/HPhwg757Xe5+FDhznpckcW5tWK6Ezq1qfq/1JPp7VdiScwvA3X/g7ndG96eB+4HHV7wstnOsHRqAxwMnyh6fZPUPuN5rqnlvnOUq92rCVr7EgS+Y2R1mdm2DylRLuZ5pZneb2efM7LIa3xtnuTCzPuAa4BNlh+P6vTaSxLlVq606t6q11edW1ZI8t8zsYuDpwFcrnortHGuHHcFsjWOVc1vXe001761X1Z9tZs8i/Ed6ddnhn3D375vZCPDPZnY86sVsRbnuJMwdMmNmzwc+DVxa5XvjLFfJi4B/d/fyHl1cv9dGkji3qrbF51Y1kji3apHIuWVmA4SNzuvdfary6TXe0pBzrB2uAE4Ce8se7wG+X+VrqnlvnOXCzC4HbgZe4u6nS8fd/fvR7TjwKcLLvS0pl7tPuftMdP+zQNbMdlXz3jjLVeZlVFyix/h7bSSJc6sqCZxbG0ro3KrFlp9bZpYlrPw/6O6fXOMl8Z1jcQxsbOUf4VXMGHAJywMhl1W85gWsHET5WrXvjblc+4AHgB+vON4PDJbd/zJwzRaW60KWFwleBXwv+u0S/b2i120jjOX2b8XvFX3mxaw/qLnl51aV5dryc6vKcm35uVVNuRI8twz4W+AvzvOa2M6xlg8BuXvBzH4H+DzhqPgH3P0+M3tt9Pz7gc8SjqQ/AMwBv3a+925hua4HdgJ/ZWYABQ+z/V0AfCo6lgE+5O7/tIXleinwm2ZWAOaBl3l4xiX9ewH8LPAFd58te3tsv5eZfZhw5souMzsJvB3IlpVpy8+tKsu15edWleXa8nOrynLBFp9bkZ8AXgl808zuio79AWEDHvs5plQQIiIdqh3GAEREpA5qAEREOpQaABGRDqUGQESkQ6kBEBHpUGoARBrIzF5lZo9Luhwi1VADINJYrwLUAEhLaPmFYCJJMbO3Ab9EmJDrFHAHcAD4oJnNA8909/kEiyhyXmoAROpgZgeAnyPM3pghTHJ2B3AMeIO7N3TjEJE4qAEQqc/VwGdKPXwz+/uEyyNSM40BiNRnrVS8Ii1FDYBIfW4DXmRmPVEu9xdEx6cJt/YTaXpKBidSJzN7B+H2gQ8DE8ARwnTCf0KY6VKDwNLU1ACI1MnMBjzc2aoPOApc69H+riKtQIPAIvW7ycyeAvQA/0eVv7QaXQGIiHQoDQKLiHQoNQAiIh1KDYCISIdSAyAi0qHUAIiIdKj/Dx3XQcXKbcPTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "onemillionv2_datasc = dataset.data_sc\n", + "onemillionv2_monocytes_ut = onemillionv2_datasc[(onemillionv2_datasc.obs['cell_type_lowerres']=='CD4T') & \n", + " (onemillionv2_datasc.obs['time']=='UT')]\n", + "onemillionv2_monocytes_ut_df = pd.DataFrame(\n", + " data=onemillionv2_monocytes_ut.X.toarray(),\n", + " columns=onemillionv2_monocytes_ut.var.index,\n", + " index=onemillionv2_monocytes_ut.obs.index\n", + ")\n", + "data_selected_df, zscore_df, zscore_p_df = \\\n", + "get_individual_networks_selected_genepairs(onemillionv2_monocytes_ut_df, \n", + " onemillionv2_monocytes_ut, \n", + " 'assignment', \n", + " ';'.join(['RPS26', 'RUNX3']))\n", + "concated_df = pd.concat([zscore_df.T,\n", + " gt.T],\n", + " axis=1).dropna()\n", + "concated_df['gt'] = [item.split(':')[0].count('1') for item in concated_df[0]]\n", + "print(spearmanr(concated_df['RPS26;RUNX3'], concated_df['gt']))\n", + "sns.regplot(x='gt', y='RPS26;RUNX3', data=concated_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Begin calculating networks for 72 individuals and;\n", + "RPS26;RUNX3\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 72/72 [00:00<00:00, 214.76it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SpearmanrResult(correlation=0.2201691525430256, pvalue=0.06311568667519006)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEGCAYAAABsLkJ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqEklEQVR4nO3dfXRcd33n8ff3zoMe/SDFMkljm0QJ1BBKmtRkScl63R4WQtsk7TZtYbu0tGTtbpcFuktOoLRpG7pdcmi7DduHdU7K2WWXQlvTlrQloWRT46YkhTxgiBsBQU6QA0Z+kG1JI2ke7nf/uDPSjCxnpNG9Gs3M53WOzozuPP08vvp97/3e7+/3M3dHREQ6T9DsBoiISHMoAIiIdCgFABGRDqUAICLSoRQAREQ6VLrZDViJLVu2+GWXXdbsZoiItJQnnnjipLsPLd7eUgHgsssu4/HHH292M0REWoqZPb/UdqWAREQ6lAKAiEiHUgAQEelQCgAiIh1KAUBEpEO1VBWQiEinOTgyzv5Do4xN5Ng+0Mu+3cPs2bk1lvfWGYCIyDp1cGScO+8/wvjkLJt7MoxPznLn/Uc4ODIey/srAIiIrFP7D42SSRm92TRm0W0mZew/NBrL+ysAiIisU2MTOXoyqZptPZkUxyZysby/AoCIyDq1faCXmUKpZttMocS2gd5Y3l8BQERkndq3e5hCycnli7hHt4WSs2/3cCzvrwAgIrJO7dm5lbtuvoqtG7o5O1Ng64Zu7rr5qtiqgFQGKiKyju3ZuTW2Dn8xnQGIiHQoBQARkQ6lACAi0qEUAEREOpQuAousQpLztIgkTWcAIg1Kep4WkaQpAIg0KOl5WkSSpgAg0qCk52kRSZoCgEiDkp6nRSRpCgAiDUp6nhaRpCkAiDQo6XlaRJKmMlCRVUhynhaRpOkMQESkQykAiIh0KAUAEZEOpQAgItKhFABERDqUAoCISIdqWgAws+1m9vdm9oyZHTGzdzWrLSIinaiZ4wCKwH9x9yfNbAPwhJl91t3/uYltEhHpGE07A3D3b7v7k+X7k8AzwKXNao+ISKdZF9cAzOwy4Brgn5rcFBGRjtH0AGBm/cAngXe7+7klHt9rZo+b2eMnTpxY+waKiLSppgYAM8sQdf4fc/e/WOo57n6vu+9y911DQ0Nr20ARkTbWzCogA/4YeMbdf7dZ7RAR6VTNrAJ6HfBW4Ctm9qXytl929083r0kiIuvLwZFx9h8aZWwix/aBXvbtHo5tBtqmBQB3fwSwZn2+iMh6d3BknDvvP0ImZWzuyTA+Ocud9x/hLoglCDT9IrCIiCxt/6FRMimjN5vGLLrNpIz9h0ZjeX8tCCMisk6NTeRIGYyemCJfCsmmArb0Zzk2kYvl/XUGICKyTm3oSvPCmVmKoZMKjGLovHBmlv6ueI7d2/4MIMkLKCIiSXL38h1qbue3r1JbnwFULqCMT87WXEA5ODLe7KaJiNQ1lS9x6eZu0imj5E46ZVy6uZvpfCmW92/rAJD0BRQRkSRtH+glnQoYHupn58UbGR7qJ50K2DbQG8v7t3UAGJvI0ZNJ1WzryaRiu4AiIpKkfbuHKZScXL6Ie3RbKDn7dg/H8v5tHQC2D/QyU6g9VZoplGKLniIiSdqzcyt33XwVWzd0c3amwNYN3dx181WtPxBsLezbPcyd9x8hly/Sk0kxUyjFGj1FRJK2Z+fWxApX2voMIOnoKSLSytr6DACSjZ4iIq2src8ARETkwtr+DEAkSR9+6Gvc98hRpvMl+rIpbrvhct75+pc3u1kiy6IAINKgDz/0Ne55+FkCg3QQVZjd8/CzAAoC0hKUAhJp0H2PHC13/gGBBeXbaLtIK1AAEGnQdL5EsGhFi8CIbZi+SNIUAEQa1JdNES6akyv0aLtIK1AAEGnQbTdcTuhQDENCD8u30XaRVqCLwCINqlzoVRWQtCqLa17ptbBr1y5//PHHm90MEZGWYmZPuPuuxduVAhIR6VAKACIiHUoBQESkQykAiIh0KFUBiazCwZFx9h8aZWwix/aBXvbtHtbssxKrJPcxnQGINOjgyDh33n+E8clZNvdkGJ+c5c77j3BwZLzZTZM2kfQ+pgAg0qD9h0bJpIzebBqz6DaTMvYfGm1206RNJL2PKQCINGhsIkdPpnbah55MimMTuSa1SNpN0vuYAoBIg7YP9DJTqJ34baZQYttAb5NaJO0m6X1MAUCkQft2D1MoObl8EffotlBy9u0ebnbTpE0kvY8pAIg0aM/Ordx67aWcmJzjmeOTnJic49ZrL1UVkMRmz86t3HXzVWzd0M3ZmQJbN3Rz181XxbaPqQxUpEEHR8Y58OQLDG3oYkcmxUyhxIEnX+DV2zYrCEhs9uzcmtj+pDMAkQapCkhanQKASINUBSStrqkBwMw+YmbjZvZ0M9sh0ghVAUmrqxsAzCwws6B8P2tm15rZYEyf/7+AG2N6L5E1pSogaXUvGgDM7EeBbwMvmNktwD8Avw182cxuWu2Hu/sh4PRq30ekGZKu0BBJWr0qoF8DrgZ6gMPAa9z9q2b2UuCTwF8n3D7MbC+wF2DHjh1Jf5xIQ1pnXT2RBXVTQO5+3N2PAt9096+Wtz2/nNfGwd3vdfdd7r5raGhoLT5SZFk0GZy0umVdAyjf/fmqbSkgm1SjRFqBykCl1dULAHspd/Tu/oWq7duBDybVKJFWoDJQaXX1rgE84+6zize6+3Pls4BVMbOPA3uALWZ2DPg1d//j1b5vNS3YIUnZPtDL+OQsvdmFPyOVgUorqXcGcNjMfrJ6g5l1m9lvAg+u9sPd/S3ufom7Z9x9WxKdv3K0khSVgUqrqxcA3gD8nJl91syuLJeCfgXoAq5JvHWrpBytJElloNLqXjQF5O7fAN5kZrcDI8Bx4I3ufmQtGrdaYxM5NvdkarYpRytxSnKiLhFo4prAZpY2s/cB+4BfBB4HPmxm3x3Lpyds+0Avp6bnGD0xxcjxc4yemOLU9JxytCLSEg6OjPOeA4d5amyC75yb5amxCd5z4PCarQn8FHAp8H3levwfBf478Ckz+61YWpCg64cHGZ/Mky+FBAb5Usj4ZJ7rh+OayUJEJDkffOAZzuQKeAgpMzyEM7kCH3zgmVjev14AeJu7v8Pdz1Y2uPvfEOX/1/3gx0dHTzPUnyWbCggdsqmAof4sj45q9gkRWf+OnsoBTiEMmSuGFMIQ8PL21at3DeCJC2yfAd4fSwsSNDaRY0t/F0Mbuue3ubuuAUhsPvzQ17jvkaNM50v0ZVPcdsPlvPP1L292s6RNhKFTDKP7ZuAORQeL6fj7RQOAmR2l9kjfqn53d78illYkRHXakqQPP/Q17nn4WQKDdBDtW/c8/CyAgoCsmLtTKDmFUlj+cVKBUQjLXW5VT5xJxTMTT7132QW8purnOuB3iALBl2JpQYJUpy1Juu+Ro+XOPyCwoHwbbRd5MWHozBZKnJ0pcGJyjmMTOZ47lePYRI7vnJvl9HSeydkC3Zlon4KF/j8VQG82ngBQLwV0CubnA3orcDtRx//D7v7PsbQgQXt2buUuovEAxyZybNNIYInRdL5EetHfYWDRdpFiKaQYOvlSSKEY3S+GTrEUUgqXl8K57KJ+Rk9OMjlbwonSQBu707zsJRtjaWO9FFCGaBK4XwIeAW4pjw1oGarTlqT0ZaOF4CtHaAChR9ulMxTLqZp8OW1TLKdwiqHjvvo8/TXbN3H42Jn5o//Q4exMMbZKxnpzAR0FisDvAd8ErjazqysPuvtfxNIKkRZ02w2Xc8/Dz1IMozLj0KOf2264vNlNkxi5Rx18pXPPlzv9QjEkjKGTfzGf+/rJmt+tfBX2gaePx3KdqV4AeCj6OK4u/1RzQAFAOlblD1BVQO0hLKdrKimb6guyzTI2kSMdQCoIMItONUthyOjJ6Vjev941gLfF8ikibeqdr3+5OvwW5O7MFUPmCiFzxRKzhZBi2LyOvlnqXQP4z4s2OXASeKS8SphIR9N0460hDJ3ZYom5QshsucOPI0eftO2be3j+dA4LnSCIxgGEDlduiaeUvV4t0YZFPxuJSkMfMLM3x9ICkRal6cbXr2IpZGquyMmpSonlNMfPzjKRyzOTL7VE5w+wd/cVbOzJYAGU3LEANvdmeO+bXhHL+9dLAf3GUtvNbJDo+sAnYmmFSAuqnm4coDebJpcvsv/QqM4C1kDl4my+GP0UYq7AWQ+uGx7kjjfu5MCTx/jOudnYS9nrXQRekruftsoVCZEONTaRI2UwemKKfCkkmwrY0p/VVCMJKIULFTj5YjQvTr7YGmmc1bpueJA3vOpiBvviX4a9oQBgZj8ITMTcFpGW0p9N8eyJaVJmpMwolpwXzsxy5VBfs5vWcioVOMXQKZWiyc8qnX4p9GUPnJKVqXcR+CucP+vnIPAt4GeTapRIKzCzKA3hHv2VWHRRTSfHS6t08nPFMBoN61HHXih6R1bgLNcXRk9z4MljHD83G3uhQb0zgB9Z9LsDp9w9niJUkRZ2YmouulPp/8tBYH57B6pMaFYKo6P49VJP36q+MHqauz8zQi5fJHQ4OTXHew4c5rdvvTqWIFDvIvDzS203s83Af3T3/7rqFoi0qHwxJAiMbLBQTFcMo9x0JyhW5eQreXl18vG699A3ODdTiNKMQe2CMIkHADPbDvwq8F3AXwF/AnwA+Jny/XVPddqSlEzKmClEqY3KXO0A2VR7pYCqpyfOF8P535WXT97YmRkCgyAwzCzaz8I1WhAG+CjwOeCTwI3AY8AR4Hvc/XgsLUhQpU47k7KaOu27QEFAVu3lL9nI0ZNTTM4W56uANnRnuHxLf7ObtmLVVTbzc94U26ukUs5XLwAMuvuvl+9/xsy+A7zG3Vsiybn/0CiFUolTUwt/oBt70qrTlljs2z3Mnfcf4eJNaXoy0cyg63m9iepKm0LlSD5cm0nNZHkKpZCJ6TynpvOcns6zqTvDqek8JY/SjSkzQoeXxVRpVrcM1MwGiBaAATgO9JpZH0TjAWJpRUK+Pj7J2Vwh+uICoxg6JyfzFEqTzW6atIH1uN7E4lWlqo/olbJpnpl8iVPTc1HHPrXQwVduT0/nOTU1x7nZ4pKvdwcvOem0MdCb4Y4bd8bSrnoBYBPwBAsBAODJSpuA9XmoU5YvhoREdcXu0VSqZnTMRTpJXrPWm8gXq2atDKP8/EoWGpHVC905N1NY1IlX3Z+/nWO2sPI+pzsdMNifJZsKODtTwB1eccnGtSsDdffLYvmUJnF3qosS3IlK9nS6KzFJqsggLK8eVSmnLJY7+ELoHTMCtlkWp2EqnXllW+UofiKXp9hAwN3YnWawL8tFfVkG+7ui28rvlfv92Zq1zDf3ZtfPSOBWYWYL62mWzwAq20VW6+DIOLcfOMzkbJFiGHJyco7bDxzmQ8us0a5eMrC6g1dOPhmVNMziI/TqI/dT03nOzhRW/N6BwUBVJ35RX9SxV7Zd1B9tH+jNkl28jmgTLSsAmNmT7n5t1e/PlO/+gbv/fiIti0EmFeX+A2y+TC/E265MT5rj7gdHmMgVSAVGOhXgDhPlGu3rr7xofgqD+R93wjAaK1AoqbomDu7OuZkip3NRDr0m9VLOtU/kovszhZWv1VxJwyx05os69r4sg/1ZNnZnSAWt168sKwBUd/7l319hZhcBr02kVTF5+Us2MnL8LGdnolF0gcGmnvgWVJbOVSiFfOPEFIZj2PyEKYbzjZPTvDAx09wGtrhiKWQiV5jPoS8+Sj9d9dNoGqb2iD1Kxwz2LhytX9SXpTebauuMwYpSQGa2EXgZMOrup4C/TaRVMbl+eJAvPHeaVGBkymu2npstxbagsrQPdyf0qB4+9Ooj9oX7pdCjVE25Nr7S7eg4fvlmCqWo456q6tir0zC56LGzM4UVf6+L0zC1efWumu3rKQ3TTPVGAv9f4N3uftLM3gjcB3wVeJmZvcfd/3wtGtmoR0dPM9SfXTRQJ82jo6d5Z7MbJ4mr5NhDjzrtyoXV+VuPqsMqnf5KVVZromokcOjw0oGeBP4165e7c262OF/KuGSOvXyby688DdOVDmo69MXpl4v6uhjsy7KppzXTMM1U7wzganevLEv/a8C/dPfnzGwL8P+AdR0AxiZybOnvYmhD9/w2d9d87S2mcnTuXptHD8OoFC8sPz5/5B76moxg3bv7Cu7+zAjT+SJh6ASBsTGbYe/uKxL93LVSCr2qA5/j9HSB05Va9qqj9olcnkJp5d/1hu40g73ZhRx7Of1SfSF1sD9LX5unYZqpXgAIzGyju58DQuCbAOUzglVXEJnZjcA9QAq4z90/uNr3rLZ9oJfxydmacqqZQoltA/GspykrE4ZR2qQ6zRKWUyle7tQrnXflsXAdl+1WVmv6xBfHOH5uhos39vDm12znunWeYpwtlOZLGU/nKrn1uZpSx9PTec7kGkvDVEoWa4/SozTMYF9m/ohdaZjmq9eJ/wbw92b2B8A/An9uZp8CfhB4cDUfbGYp4A+Afw0cA75oZve7+z+v5n2rVYbq5/LFlhiqv96EYe3R9UKnHT1W8oXUiWF4eV7k6qNx92gt0/Xaia/WdcOD66LDd3cmZ4vn16tPz5138bSRNEwmZfMdd/VF0tpSxy6lYVpMvYFgf2ZmTwL/Hnh5+fnXAx9398+s8rOvA55191EAM/sEcAsQWwBYj0P1k+DlXDZEFyQrna1T7rgXpUp8Uade83jVfWm+UuhM5F5spOlCSqaRNEx/V7qmE6908LW59i76upSGaUd10zju/ixwRwKffSkwVvX7MeBfLH6Sme0F9gLs2LGj4Q+LozurdJyV/HPlCLgywjj6nHLnW9UhV17rVdsX2rXoiUbN75XXOF6+yBjdzt9n/aZI5MLmKmmYxdMGTNV26qtNw5w3wrSqkx/szdKVSSXy75PWsJzJ4N4IbAMeql4gxsx+3t0/sorPXupw4rx93d3vBe4F2LVr14r+Fqqng97QlebbZ2d4/189zR03fjevu3LL/AdWOtjq9EV1R+us71y0rA/uztRc8YIjTOfTMbk803OrS8MMnpdfX9i2uTerNIwsS70y0N8CbiCaAO6Xzez33P1/lB9+B7CaAHAM2F71+zaitYZjs//QKJmU0ZtNky9GZaClsMRHHnmOV126Kc6PkjZWCp0zuSXKGqcWOvbT0wVO5/INTTTY15Uqd+yZ+Xr1gb4sW/prO/b+rrTSMB2omWsC3wRc4+5FM/t14E/MbNjdf4mlj+BX4otE4wkuB14A3gz821W+Z42xiRybezI127ozAcfPaZSmRDNqnqq6SFo7g+PCtjO5PCsdbGrA5t7MfCnj0oOTop9upWHkAr4wepp7Hv46XekgkUWt6gWAtLsXAdz9jJndBNxrZn8OrGpqunJQeQfwGaIy0I+4+5HVvOdiS5WBzhZCLt7YWQN1Oom7Mz23MPf6fEXMEtMITM0tPff6i8mkbL5efXq2yDeXmPLhp77vUm7bfYXSMLJqn/jiGOnA6MlEF+F7s2ly+WJsi1rVCwDfMLN/5e6fA3D3EvB2M/tN4MdX++Hu/mng06t9nwupLgNNmTFTKFEMnTe/Znv9F8u6UgqdszMFTk3N1R6lV6YPqJpKoKE0TDY1f3F0YH4+mK6aUsct/bVpmDf87ueWfK9PPvkC+/Zcuap/rwjAt8/NsLG7tpvuyaRiG8xaLwD8xFIb3f1XzOyPYmlBgqrLQJ87OcVLWmSgTifJF8OlR5pOVdeyN56G2dSTqUnBLAxIWriIOtiXpaeBNEzxAu250HYRiKajNyAoL/JeWeoxCCBlRjoICILo8ZcO9nFiapZseuFsMs7BrPUCwFbgDDBTbvgPAD8KPA+s22mgl6K/ybXj7kznS0uONF185D55gSXwXkx1GmZwUcdenV8f6M2QTmm0qcTHLOqsazru8v1g0f3K81JVj630Iv4v7rmCO+8/wmyhlMhg1noB4M+AHwPOmtn3Es3989+Aq4E/BG6LpRUJqS4D3did4dT0HPc8/HXexct0FtCA0J0z1VP0Ti094dfp6TxzDaRhestpmJp69UWrJg32ZdnYvT6qYdK29NF+uvlNa1uVo2ezaPT5wiJPCwtAGQudbWCUO1+bP6qeP/Iuv3j+PZb4rMp2a6DzjkPSg1nrBYAed6+UZv47ogu1v2NmAfClWFqQoMVloJUI+okvjikAVMkXw/lpeBfKGs+fpndieuVpGIDNS6Zhqo7YV5GGaaYN3WkmZs4/g9nQveppshJT3YEGFi2YlAqspkOdP3otd5jV3V5ldHll8GNlxHiw6PmLO+j515fH1VTetboDh4XXGOujA14Pklx3ut6eWv2N/yDwPgB3D1vhP6OTy0DdnVy+dN4I06UW1DjXQBomHdgFBiTVTvjVzmmYqQvMqXOh7ctRnWKodMbVt9VHt5U8chAspBmWek4nd57y4uoFgIfN7M+AbwMDwMMAZnYJkE+4bau2faCXoyenmJwtMlcskUkF9GVTbBvoa3bTGhZ6VA1TfZF0YfKvuYWqmKk8s3GmYeanEIhWTdrYsz7SMM2WCSAIFgJcGC5852ZGOlg4yq7kgVOLtq0mRyyyGvUCwLuBnwIuAW5w98pqyRcD70+wXbGorAgW5QGjZfxO50JuevX6GwWcL4bzk35Vr4w037GXj9YncgVKDeRhNvVkaueBOa+Tj47Ye7KtlYZZa5UOO50yXjrQw9FTOWzRgjBXbunlsov6CDQOQNa5erOBupnNEg3UehXRiF3c/ak1aNuqPTp6mk3dac7MFAg9ymdt7E7z1NhZ3roGn+/uzBRKSw5CiiphFipjVpOGGejLnreW6eIVlDJtmoaJSyX1EgSQDoKokw+MVCq6TQcB6cBqOvVf+ZGreM+Bw0zNFSmFTiplbOzK8L4feqU6f2kJ9eYC+iPglcDngQ+Y2XXu/oE1aVkMvj4+yeRskUwqmJ9Nc3quyPOnp1f1vqE752YKi/Lr1R38Qi17I2mY7kxw/qRf583D3sWGnvR8JYPUMjOy6YBMyhYqP6i9WFlJz6QDayj1smfnVn7mtS/lvkeOMl0q0ZMK+JnXvrTtphuX5jo4Ms7+Q6OMTeTWfC6gf0m0LGTJzHqBfwBaJgDkiyEhTqnk82cAZlxwpGihFNZcHK2d8GthabxG0zAbu9NRDn2pKXr7Fzp2pWGWLx0EpFNRSiZTvp9NB2RTQeL59IMj4xx48gWGNnSxo1xhduDJF3j1ts0KAhKLgyPj3H7gMJOzRYphyMnJOW4/cJgP3Xr1mkwFkS9P/4C756zFrlC5O6Wqvr4y9XOhGHLvodFF0/bONZSGSQXGQO9C1ctSaZjKj9Iwy7c4JVPp4CspmdUcucdl/6FRJmfznJ0pEnp0nWlTTzq2eVpE7n5whIlcoXzdKcAdJnIF7n5wZE0CwE4z+3L5vgFXlH83oksEr151CxJUKYNbfKyeD51PfHFsqZfM604Hi0obl07FbOzJKA3ToEwqmL+gWjl6z6SC+e3r3dMvnGGyal7/0GEiV+TpF840r1HSVkZPTs8PZoMog+HmjJ5cXRq7ol4AeEUsn9IkmXJqYPFSeYHBNTsGXnS1pMrse9K4ylFLpnLEnopy8ukgum3173f6AvX+F9oust7UqwJ6fqnt5QXd30w0J9C69fKXbOToySnO5grkSyGZlNHflWbbQB8funVdn7y0hEqdeyYV1BzFV+63eyXMhS4DNTJaWmQpl1/Uy7MnppcsNY7DiyalzWyjmb3PzH7fzN5gkf8EjAI/GUsLErRv9zDZdIrvGujhiqF+hjZ0k0mnNB30CmVSAX1daTb1ZNiyoYtLNvWwY7CXy7f0sX2wl4s3dbOlv4tNvRn6utJ0pVNt3/mLrIX3vukVbO7NYEG0BrkF0UJD731TPMmZeimg/wNMAI8STfx2O9FCMLe4+5diaUGCNB308lWO5isVNJlyCeVaVNOIyNL27NzKb996ddMmgxt29+8BMLP7gJPADnefjOXT10BlIqWx0zkKpZXX5LebVLBwoXW+s09Z287XI9LqmjkZXGXqB8pjAY62Uuff6TKpgK501NF3pVNk061RXSMia6NeALjazM6V7xvQU/69Uga6MdHWybJUjuqjka/lTj/V/hdhm22pEuPKdpFWUK8KSENS15HK9AbZVOWovnVq5tvRtoEexiZmzpsvf9tAT7OaJLIi63flig6XDso5+nRQ0+nL+vGBW17Fu/70Kc7NFHEqaxCn+cAtr2p200SWRQGgycwsqrZJB3SlUvMdvo7q1789O7fy9tddHk0Gly/Rl03x9tddrmkgpGUoAKyRdBDQlVlI2aTLUyCozLJ1aTI4aXUKAAmopG+60lGnn00FKrNsQ9VrTgP0ZtPk8kVNBictQwFgFdJBQCZtNTX1qr7pHEutOd2TSXFsItekFomsjAJAHemaWSpr571RR9/Ztg/0Mj45O38GADBTKLFtIJ55WkSSpgAANTNVVtI1GXXyUse+3cPcef8RcvkiPeVrAIWSs2/3cLObJrIsHRMAgsDIWjA/DULlAqzq6KVR1XNNJTFPiwg0d0nItnHpZg3OkeRoBmhJwsGRce68/wiZlLG5J8P45Cx33n+EuyCWIKDSFJEGVf44xydna/44D46MN7tp0iaqK83MottMyth/aDSW91cAEGlQ0n+cImMTOXoytTPyxFlppgAg0qCk/zhFtg/0MlOoXWI0zkozBQCRBiX9xymyb/cwhZKTyxdxj27jrDRrSgAws58wsyNmFprZrma0QWS1kv7jFNmzcyt33XwVWzd0c3amwNYN3dx181UtXwX0NPBvgP1N+nyRVduzcyu3HjtTMxncbTdoMjiJVzNXBEuEuz8DaBI0aWmaDE5a3bofB2Bme4G9ADt27Fjx65McRCGdTZPBSatL7BqAmT1kZk8v8XPLSt7H3e91913uvmtoaGhFbVCdtiRJVUDS6hI7A3D31yf13sulIzRJkiaDk1bX1mWgYxM5iqWQ0RNTjBw/x+iJKYqlUEdoEgtVAUmra1YZ6I+Z2THgeuBvzewzSXxOfzbFC2dmKZaclBnFkvPCmVn6slrrXlZvz86t3HrtpZyYnOOZ45OcmJzj1msv1dmltIymBAB3/0t33+buXe7+End/YxKfM19lZFU/qPpI4nFwZJyPPvY8+VJIYJAvhXz0sed1jUlaRlungCbnigz0pimUQmYLIYVSyEBvmqm5YrObJm3ggw88w5lcAQ8hZYaHcCZX4IMPPNPspoksS1sHgP5siolckUwQ0J0OyAQBE7miUkASi6OncgQWrTVhZgSBEVi0XaQVtHUAUApIROTC1v1AsNWYnCty6eZuTk7lyZdCsqmAizd2KQUksRje0sfXx6cwd8zAHUKHlw31Nbtp0kaSHMza1mcA2wd6SacChof62XnxRoaH+kmnAtVpSyzuuHEnA70ZDCiWQgwY6M1wx407m900aRNJD2Zt6wCgOm1J0p6dW/nQrVdzzY4BLtnUwzU7BvjQrVerDFRik/SiQ22dAtKi3ZK0JGdqFBmbyLG5J1OzLc7pRto6AID+QCVZmmxQkpT0dCNtnQISSdLBkXFuP3CYp745wfGzMzz1zQluP3BYA8EkNm25IphIO7j7wREmcgUcSKcCHJjIFbj7wZFmN03aRLuuCCbS8kZPTkcDwcrjSszAzRk9Od3klkk7absVwUTaRehOsVjCPQoAgUXTQoi0AqWARBo01JehGEaDv5zothhG20VagQKASIM29GQJiI78Kd8G5e0irUApIJEGTc4V2T7YUzPVyJb+rKYakZahACDSoEqN9vBQ//y2XL7I1g3dTWyVyPK1fQro4Mg4b7n3MW64+2Hecu9jqtGW2GiqEWl1bR0Akp5ISTpb0jXaIklr6xRQ9URKAL3ZNLl8kf2HRvVHKrHQVCPSytr6DGBsIkdPpnb1rzgnUhIRaWVtfQawfaCX505NcW6mOF+lsbEnzWUX9dd/scgyaDI4aWVtfQZw/fAg45NRiV5gkC+FjE/muX54sNlNkzaga0zS6to6ADw6epqh/izZVEDokE0FDPVneXT0dLObJm0g6cU6RJLW1imgsYkcW/q7GKqqy3Z3XQOQWCS9WIdI0tr6DGD7QC8zhVLNtjgXU5DOpv1LWl1bBwAN1JEkaf+SVtfWAUADdSRJ2r+k1bX1NQDQQB1ZG97sBog0oK3PAESSpDJQaXUKACINUhmotDoFAJEGaaoRaXUKACINUhmotDoFAJEGqQxUWl1TqoDM7EPATUAe+Abwc+5+JonP0mRdkpQ9O7dyF9G1gGMTObZp/5IWY+5rX8BmZm8AHnb3opndDeDud9R73a5du/zxxx9f9udUqjQyKaMnk2KmUKJQctVqi0hHMbMn3H3X4u1NSQG5+9+5e2Xl7MeAbUl8jqo0REQubD0MBPt54E8v9KCZ7QX2AuzYsWNFb6zJukSk1SWZxk7sDMDMHjKzp5f4uaXqOe8HisDHLvQ+7n6vu+9y911DQ0MraoOqNESklSU92DCxAODur3f3Vy3x8ykAM/tZ4EeAn/aELkSoSkNEWlnSaeymXAMwsxuBO4Cb3T2xfIwm6xKRVpb0YMNmXQP4faAL+KyZATzm7r+QxAdpMjgRaVXbB3oZn5ylN7vQVceZxm5WFdCV7r7d3b+3/JNI5y8i0sqSTmNrJLCIyDqVdBp7PZSBiojIBSSZxtYZgIhIh1IAEBHpUAoAIiIdSgFARKRDKQCIiHSopkwH3SgzOwE83+DLtwAnY2xOXNSulVG7VkbtWpn12i5YXdte6u7nTabWUgFgNczs8aXmw242tWtl1K6VUbtWZr22C5Jpm1JAIiIdSgFARKRDdVIAuLfZDbgAtWtl1K6VUbtWZr22CxJoW8dcAxARkVqddAYgIiJVFABERDpUWwQAM7vRzL5qZs+a2XuXeNzM7MPlx79sZtcu97UJt+uny+35spl93syurnrsOTP7ipl9ycweX+N27TGzs+XP/pKZ3bnc1ybcrtur2vS0mZXMbLD8WCLfl5l9xMzGzezpCzzerH2rXruatW/Va1ez9q167Vrzfav83tvN7O/N7BkzO2Jm71riOcntY+7e0j9ACvgGMAxkgcPAKxc954eABwADXgv803Jfm3C7vh8YKN9/U6Vd5d+fA7Y06fvaA/xNI69Nsl2Lnn8T8PAafF+7gWuBpy/w+JrvW8ts15rvW8ts15rvW8tpVzP2rfJ7XwJcW76/AfjaWvZf7XAGcB3wrLuPunse+ARwy6Ln3AJ81COPAZvN7JJlvjaxdrn75919ovzrY8C2mD57Ve1K6LVxv/dbgI/H9NkX5O6HgNMv8pRm7Ft129WkfWs539eFNPX7WmRN9i0Ad/+2uz9Zvj8JPANcuuhpie1j7RAALgXGqn4/xvlf4IWes5zXJtmuam8nivIVDvydmT1hZntjatNK2nW9mR02swfM7KoVvjbJdmFmvcCNwCerNif1fdXTjH1rpdZq31qutd63lq2Z+5aZXQZcA/zToocS28faYUUwW2Lb4trWCz1nOa9t1LLf28x+gOiP9Iaqza9z92+Z2Vbgs2Y2Uj6KWYt2PUk0d8iUmf0Q8FfAy5b52iTbVXET8I/uXn1El9T3VU8z9q1lW+N9azmasW+tRFP2LTPrJwo673b3c4sfXuIlsexj7XAGcAzYXvX7NuBby3zOcl6bZLsws1cD9wG3uPupynZ3/1b5dhz4S6LTvTVpl7ufc/ep8v1PAxkz27Kc1ybZripvZtEpeoLfVz3N2LeWpQn7Vl1N2rdWYs33LTPLEHX+H3P3v1jiKcntY0lc2FjLH6KzmFHgchYuhFy16Dk/TO1FlC8s97UJt2sH8Czw/Yu29wEbqu5/HrhxDdt1MQuDBK8Dvln+7pr6fZWft4kol9u3Ft9X+T0v48IXNdd831pmu9Z831pmu9Z831pOu5q4bxnwUeD3XuQ5ie1jLZ8Ccveimb0D+AzRVfGPuPsRM/uF8uP/E/g00ZX0Z4Ec8HMv9to1bNedwEXAH5oZQNGj2f5eAvxleVsa+BN3f3AN23Ur8B/MrAjMAG/2aI9r9vcF8GPA37n7dNXLE/u+zOzjRJUrW8zsGPBrQKaqTWu+by2zXWu+by2zXWu+by2zXbDG+1bZ64C3Al8xsy+Vt/0yUQBPfB/TVBAiIh2qHa4BiIhIAxQAREQ6lAKAiEiHUgAQEelQCgAiIh1KAUAkRmb2NjP7rma3Q2Q5FABE4vU2QAFAWkLLDwQTaRYz+1Xgp4km5DoJPAHsAj5mZjPA9e4+08QmirwoBQCRBpjZLuDHiWZvTBNNcvYE8DjwHnePdeEQkSQoAIg05gbgU5UjfDP76ya3R2TFdA1ApDFLTcUr0lIUAEQa8whwk5l1l+dy/+Hy9kmipf1E1j1NBifSIDP7daLlA58HTgAHiaYT/i2imS51EVjWNQUAkQaZWb9HK1v1AoeAvV5e31WkFegisEjj7jWzVwLdwP9W5y+tRmcAIiIdSheBRUQ6lAKAiEiHUgAQEelQCgAiIh1KAUBEpEP9f2bPVnu4Rv72AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "onemillionv2_datasc = dataset.data_sc\n", + "onemillionv2_monocytes_ut = onemillionv2_datasc[(onemillionv2_datasc.obs['cell_type_lowerres']=='CD8T') & \n", + " (onemillionv2_datasc.obs['time']=='UT')]\n", + "onemillionv2_monocytes_ut_df = pd.DataFrame(\n", + " data=onemillionv2_monocytes_ut.X.toarray(),\n", + " columns=onemillionv2_monocytes_ut.var.index,\n", + " index=onemillionv2_monocytes_ut.obs.index\n", + ")\n", + "data_selected_df, zscore_df, zscore_p_df = \\\n", + "get_individual_networks_selected_genepairs(onemillionv2_monocytes_ut_df, \n", + " onemillionv2_monocytes_ut, \n", + " 'assignment', \n", + " ';'.join(['RPS26', 'RUNX3']))\n", + "concated_df = pd.concat([zscore_df.T,\n", + " gt.T],\n", + " axis=1).dropna()\n", + "concated_df['gt'] = [item.split(':')[0].count('1') for item in concated_df[0]]\n", + "print(spearmanr(concated_df['RPS26;RUNX3'], concated_df['gt']))\n", + "sns.regplot(x='gt', y='RPS26;RUNX3', data=concated_df)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### onemillion v3" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# # load onemillion v2 data\n", + "# datasetv3 = DATASET('onemillionv3')\n", + "# datasetv3.load_dataset()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CD4T TEMCD4T NaiveCD8T TEMCD8T NaiveCD4TCD8TCD4T TCMCD8T TCMall_num
LLDeep_0117392487075625170289261599
LLDeep_1300341497339658119450101382
LLDeep_0615688417523550212347191277
LLDeep_09233980205403162491406907
LLDeep_070513114123613221881663947
\n", + "
" + ], + "text/plain": [ + " CD4T TEM CD4T Naive CD8T TEM CD8T Naive CD4T CD8T CD4T TCM \\\n", + "LLDeep_0117 39 248 70 75 625 170 289 \n", + "LLDeep_1300 34 149 73 39 658 119 450 \n", + "LLDeep_0615 68 84 175 23 550 212 347 \n", + "LLDeep_0923 39 80 205 40 316 249 140 \n", + "LLDeep_0705 13 114 123 61 322 188 166 \n", + "\n", + " CD8T TCM all_num \n", + "LLDeep_0117 26 1599 \n", + "LLDeep_1300 10 1382 \n", + "LLDeep_0615 19 1277 \n", + "LLDeep_0923 6 907 \n", + "LLDeep_0705 3 947 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'rs1131017')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA34AAAFNCAYAAABfWL0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAB0mklEQVR4nO3deZxcd3nn+89zTlX13tps2caSF4FA2AQDkRWyoIgkBMPcmABJxpABkoGxScJgsg1ckjjEzM1AwiQxMxDLAQJkQUNYEt3EYLgxQiGBWLZjEwQCm7ZNt7eWpZZ6qa6u5Tz3j3Oqu7pUvXet/X2/XvXqqrPV71RV/6qe81sec3dERERERESkcwXNLoCIiIiIiIjUlwI/ERERERGRDqfAT0REREREpMMp8BMREREREelwCvxEREREREQ6nAI/ERERERGRDqfArwOY2WVm5maWanZZRETKVDeJSKtQfSSiwK9lmNkvmNm/m1nWzJ4wsz81s83NLtdizOwPzGzYzMbN7BEz+60GPvdWM/usmU0lz/3aJbb/1eR1PWtmHzGzrop1bzGzu81sxsw+WvfC1y7fZWb2peT9P2FmP7HItpvN7GNmNprc3lWx7hIzm6y6uZn9ekNORDqO6qYVP/e61U0V2+w2s5yZ/WX9Sr5g+VZSN3WZ2a1m9qSZnTaz/9fMLq5Y/yUzO5m8L/eb2SsacxbSKVQfrfi5l10fmdl1ZvbtpC4aTX5nDFas/0szezw5j++Y2ZsacxbzyriS+sjM7L1mdiq5/YGZWdU2N5rZQ8nr8y0ze2ay/J1Vv6OmzSwys/PqfY515+66NfkG/DrwJHANkAYuA24HjgGZZex/GeBAqsHlfhbQl9y/GDgOvGqZ+66prMAngP8D9AM/ApwFrlxg25cmr++VwBbgCPCeivWvAn4a+FPgo036DHwV+COgB3g1cAY4f4Ft/xz4G6A3ee+/C/ziAtteDpSAy5pxXrq1901106qee93qportvgD8E/CXTfgMrKRu+m/A/cAFQDfwF8BnKtY/t/z6Aj8ATAAXNfqcdGvPm+qjVT33SuqjncB5yf1+4K+A91esvxLoSu7vAZ4Avr/Br+VK6qMbgG8DO5LX/ZvAmyvWvwn4OnAFYMDTga0LHOtdwJ2NPNe6vYbNLsBGvwGDwCTwc1XL+4FR4D8njwPgHcQ/8k8Bnyx/QKsrM2AT8GHgceBR4L8DYbLuF4CvAO8DxoCHgJctULZ3AJ+qWnZLZUVQsfxi4N+B/7bAsQ4AI8Dbk8riL9bwmvUBeeCZFcv+gho/mJJ1fw38fsXjHweeqLHdf2eFgR/wUeBW4IvEP2K+DFy6wmM8E5gBBiqW/VNlBVW1/VPA1RWP3wn80wLb/i7wpWZ/znVrv5vqplW9ZuteNwHXJa/pu1hB4NekuulPgT+oePwfgG8vsO0+IAfsa/ZnXbfWv6k+WtVrtqL6qMbr+nHg9gXWPyt53X5umWVpRn30L8D1FY/fCHyt4nMyDPz4Mp7Xks/TG5r9f7AeN3X1bL4fIr4y+pnKhe4+CXwOeEmy6K3ErVI/CjyNuCL6wALH/BhQBJ4BPB/4SeIrG2U/QHwV5DzgD4APVzd/Jz4BvLzc1G9mIfBzxD9WSJa9w8wmiSuqvsp1NVwIbAUuBa5PuiWeWeS2UJeEZwIld/9OxbL7ia9G1XJlsr5y2wvMbNsiZV2JnwfeTfx63kd8lQwAM/v6Iuf3wYryDbn7xDLPB+KKqPL+cxbY7vXEnweRlVLd1OS6KTm/m4lbOlaj0XXTh4EfNrOnmVlv8vyfq9zAzP7ezHLAvxK3cN69ynOTjUX1Uf3rI8zsR8zsLHFw9mrgT6rWf9DMssAJ4sDv9kXOo1qj66Na9Wt52x3J7TkWd8N9yMx+z8xqxUUvIu7F8OkVnGvranbkudFvwH+iRutTsu49wBeT+9+i4soEcBFQAFJUXMUi/nDOAD0V276GpNWH+CrWgxXrepN9L1ygDF8BXp/cfwnw3RrbGHGl+XtUXImp2uYA8ZWn7nV4zV5U/ZoB/wU4ssD23wWuqXicTs75sqrtVtvid6jicT9x18qdKzjG60iuQlUs+38WKgvwl8RffgPEX1jfBWYWeJ0mgf5mf851a7+b6qZVvWbrWjcRtxq8Pbn/Llbe4tfoummQ+EewE/+g/jdqdJ1KzvNlwK82+3OuW3vcVB+t6jVbUX1Utd3FSZ3zzBrrQuJuo78NpJdZlmbURyVgT8Xj3cl7aMQXEhz4B2Bz8tn4DvBfahznwws9Rzve1OLXfE8B51ntWaYuStZDfOXns+UrIMSVW4m48qp0KfGX6uMV2x4Etlds80T5jrtnk7v9C5Tvr4krQ4DXUuMqlcf+DZgmrtAWctLdc4usr8nMPlcxwPbniYOZwarNBomvUNVSvX35/kLbr9Rw+Y7HVx9PE19pXK6Vns9biV/rB4C/I/6hNVJjuzcAn07KJLJSqpuWUM+6ycyeB/wE8McrLVeFRtdNf0rcKrONuFXjM1S1+CVlKbj754CXmtm1KyiPbFyqj5awDvVRZVkfBT4PHKqxruTuXyFuMfulFRSx0fVRrfp10uNobjpZ9gfufsbdHyZ+/19eeQAz6wF+lg7qOaXAr/m+SnzV6VWVC82sj/iK6D8mi4aJ+5dvrrh1J/+clYaT451Xsd2guy/WbXAxfwMcMLMdwCtZvHtCinhw7EK88oHVnoFysqriwt1f5u79ye2viK/KpMxsd8XhriIeMF3L8WR95bZPuvupRcq6EjsrzqmfuIvGY8nj44uc360V5dtlZgPLOR93P+3uP+/uFybvawDcVblNJ1ZW0nCqm5pbNx0gvgr9PTN7AvgN4NVmdu8i51GtoXVTsu6jSR01A/wvYJ8tPBPeUu+LSJnqo/rXRyst50r/fxtdH9WqX8vbfpu4ZdWrd6ryKuIA9ciSZ9cumt3kqJtDPBNarZmq7mVuBqVfJf7gXZo8Ph94RXL/MuYPWP474i5Cg8RBwdOBH03W/QLwlarnd+AZi5Tvc8QDcv+tYllAPGPSFuJm833E/b3fusAxDgAj6/iaHSJu6eoDfpjFZ6q6hvjK3RVJee9k/qyeKeKr1P+DeOBzNxUzaSWvz4EFjv1RYJy420OG+Or8v6zifL5GPIi8m/hL4wwLz1T1dOIr6iHxF95T1edOfMXxEcCa/fnWrX1vqptW9ZqtS91E3LXsworb+4BPVdYLLVg3/TnxOJhNyeflncCjybo9SX3Vk6z7T8Q/vF7Q7M+5bu1xU320qtdsJfXRzwOXJOW8lHgCls8k67YTTzTVT/zb46XAVPm1rXh9Dixw7GbUR28mbvG9mLhl8TjzZ/X8OPD3xMNmdhCPW3xj1TG+ANzc7M/+et6aXgDdkjcinm3oG8TNz08SNzlvqVgfAL9GfJVignhsyO8n66ors03EXW5Gkn/yfwOuS9atpjJ7XbLNb1aV5/PEV0Imia8svZMFAo06VGZbgb9NKp7vAa+tWHdJUqZLKpb9WvK6jhP/OOmqWPeu5Pwqb+9K1u1IXu9tC5Tjo8zNVDUJHAUuX8X5XEb8ZTWdvMc/UbHuRcTdE8qPf474KlmWeID0S2sc7w7g3c3+XOvW/jfVTSt+vdatbqo67ruoGOPXonXTNuIJG0aJf5B9hWTWTuDZxBO6TCTrjgGvbPbnW7f2uqk+WvHrtez6iHi83Eiy7QhwW7l+IQ6gv5z8744Tz0z6XyqO1Yr1kRFPynM6uf1B5etOHPAfSso9DNxUtf5iksl/mv25X8+bJScnIjWY2X8ivjr2fy+w/qPElfRvN7RgIrKhqW4SkVah+qh91BokKyIJd//LZpdBRKSa6iYRaRWqj9qHJncRERERERHpcOrqKSIiIiIi0uHU4iciIiIiItLhFPiJiIiIiIh0uLpO7mJm1xDnSAmBD7n7e6rWvwJ4NxART5n6Nnf/ynL2reW8887zyy67bF3PQUSa65577nnK3c9vdjnWQnWTSOdR3SQirWqh+qlugZ+ZhcAHgJcQ5wM5ZmaH3f2bFZv9I3DY3d3Mngt8EtizzH3Pcdlll3H33XfX43REpEnM7JFml2GtVDeJdB7VTSLSqhaqn+rZ1XMf8KC7D7l7njhJ4isqN3D3SZ+bXaaPOPHlsvYVERERERGR5aln4HcxMFzxeCRZNo+ZvdLMTgD/APznlewrIiIiIiIiS6tn4Gc1lp2TO8LdP+vue4CfJh7vt+x9AczsejO728zuPnny5GrLKiIiIiIi0rHqGfiNADsrHu8AHltoY3c/CjzdzM5byb7ufpu773X3veef39ZjrEVEREREROqinoHfMWC3mV1uZhngOuBw5QZm9gwzs+T+C4AMcGo5+4qIiIiIiMjy1G1WT3cvmtlbgDuIUzJ8xN2Pm9mbk/W3Aq8GXm9mBWAa+I/JZC81961XWUVERERERDpZXfP4ufvtwO1Vy26tuP9e4L3L3VdERERERERWrq6BXys6cmKUg0eHGB7LsnNLLzfs38WBPdubXSwREWlj+m6RTqbPt0hnqOcYv5Zz5MQoNx0+zuhEjs09aUYnctx0+DhHTow2u2giItKm9N0inUyfb5HOsaECv4NHh0iHRm8mhVn8Nx0aB48ONbtoIiLSpvTdIp1Mn2+RzrGhAr/hsSw96XDesp50yMhYtkklEpFWY2bXmNm3zexBM3tHjfUHzOysmd2X3G5qRjmldei7RTqZPt8inWNDBX47t/QyXSjNWzZdKLFjS2+TSiQircTMQuADwMuAK4DXmNkVNTb9J3d/XnK7uaGFlJaj7xbpZPp8i3SODRX43bB/F4WSk80XcY//FkrODft3NbtoItIa9gEPuvuQu+eBQ8ArmlwmaXH6bpFOps+3SOfYUIHfgT3bufnaK9k+0M3Z6QLbB7q5+dorNTOViJRdDAxXPB5JllX7QTO738w+Z2ZXNqZo0qr03SKdTJ9vkc6x4dI5HNizXZWViCzEaizzqsf3Ape6+6SZvRz4W2D3OQcyux64HuCSSy5Z52JKq9F3i3Qyfb5FOsOGavETEVnCCLCz4vEO4LHKDdx93N0nk/u3A2kzO6/6QO5+m7vvdfe9559/fj3LLCIiIrIkBX4iInOOAbvN7HIzywDXAYcrNzCzC83Mkvv7iOvRUw0vqYiIiMgKbLiuniIiC3H3opm9BbgDCIGPuPtxM3tzsv5W4GeAXzKzIjANXOfu1d1BRURERFqKAj8RkQpJ983bq5bdWnH/fwP/u9HlEhEREVkLdfUUERERERHpcAr8REREREREOpwCPxERERERkQ6nwE9ERERERKTDKfATERERERHpcAr8REREREREOpwCPxERERERkQ6nwE9ERERERKTDKYG7iEgLOHJilINHhxgey7JzSy837N/FgT3bm10sERER6RBq8RMRabIjJ0a56fBxRidybO5JMzqR46bDxzlyYrTZRRMREZEOocBPRKTJDh4dIh0avZkUZvHfdGgcPDrU7KKJSIsxs51m9iUz+5aZHTezG5Pl7zKzR83svuT28maXVURai7p6iog02fBYls096XnLetIhI2PZJpVIRFpYEfh1d7/XzAaAe8zsi8m6P3b39zWxbCLSwtTiJyLSZDu39DJdKM1bNl0osWNLb5NKJCKtyt0fd/d7k/sTwLeAi5tbKhFpBwr8RESa7Ib9uyiUnGy+iHv8t1Bybti/q9lFE5EWZmaXAc8H/jVZ9BYz+7qZfcTMtjSvZCLSihT4iYg02YE927n52ivZPtDN2ekC2we6ufnaKzWrp4gsyMz6gU8Db3P3ceBPgacDzwMeB/7nAvtdb2Z3m9ndJ0+ebFRxRaQFaIyfiEgLOLBnuwI9EVkWM0sTB31/5e6fAXD3JyvW/xnw97X2dffbgNsA9u7d6/UvrYi0CrX4iYiIiLQJMzPgw8C33P2PKpZfVLHZK4FvNLpsItLa1OInIiIi0j5+GHgd8O9mdl+y7J3Aa8zseYADDwM3NKNwItK6FPiJiIiItAl3/wpgNVbd3uiyiEh7UVdPERERERGRDqfAT0REREREpMMp8BMREREREelwCvxEREREREQ6XF0ndzGza4BbgBD4kLu/p2r9zwNvTx5OAr/k7vcn6x4GJoASUHT3vfUsq4iIiIhIJzlyYpSDR4cYHsuyc0svN+zfpZyxG1jdWvzMLAQ+ALwMuIJ4muErqjZ7CPhRd38u8G6ShKIVXuzuz1PQJyIiIiKyfEdOjHLT4eOMTuTY3JNmdCLHTYePc+TEaLOLJk1Sz66e+4AH3X3I3fPAIeAVlRu4+7+4+1jy8GvAjjqWR0RERERkQzh4dIh0aPRmUpjFf9OhcfDoULOLJk1Sz8DvYmC44vFIsmwhbwQ+V/HYgS+Y2T1mdn0dyiciIiIi0pGGx7L0pMN5y3rSISNj2SaVSJqtnmP8aiUX9Zobmr2YOPD7kYrFP+zuj5nZduCLZnbC3Y/W2Pd64HqASy65ZO2lFhERERFpczu39DI6kaM3M/dzf7pQYseW3iaWSpqpni1+I8DOisc7gMeqNzKz5wIfAl7h7qfKy939seTvKPBZ4q6j53D329x9r7vvPf/889ex+CIiIiIi7emG/bsolJxsvoh7/LdQcm7Yv6vZRZMmqWfgdwzYbWaXm1kGuA44XLmBmV0CfAZ4nbt/p2J5n5kNlO8DPwl8o45lFRERERHpGAf2bOfma69k+0A3Z6cLbB/o5uZrr9SsnhtY3bp6unvRzN4C3EGczuEj7n7czN6crL8VuAnYBnzQzGAubcMFwGeTZSngr9398/Uqq4iIiIhIpzmwZ7sCPZlV1zx+7n47cHvVslsr7r8JeFON/YaAq+pZNhERERERkY2inl09RUREREREpAUo8BMREREREelwCvxEREREREQ6nAI/ERERERGRDqfAT0REREREpMMp8BMREREREelwdU3nICIiy3PkxCgHjw4xPJZl55Zebti/S7mXREREZN2oxU9EpMmOnBjlpsPHGZ3IsbknzehEjpsOH+fIidFmF01EREQ6hAI/EZEmO3h0iHRo9GZSmMV/06Fx8OhQs4smIiIiHUKBn4hIkw2PZelJh/OW9aRDRsayTSqRiIiIdBoFfiIiTbZzSy/ThdK8ZdOFEju29DapRCIiItJpFPiJiDTZDft3USg52XwR9/hvoeTcsH9Xs4smIiIiHUKBn4hIBTO7xsy+bWYPmtk7FtnuajMrmdnPrPU5D+zZzs3XXsn2gW7OThfYPtDNzddeqVk9RUREZN0onYOISMLMQuADwEuAEeCYmR1292/W2O69wB3r9dwH9mxXoCciIiJ1o8BPRGTOPuBBdx8CMLNDwCuAb1Zt91+BTwNXN7Z40qqUh1FERFqdunqKiMy5GBiueDySLJtlZhcDrwRubWC5pIUpD6OIiLQDBX4iInOsxjKvevwnwNvdvVRj27kDmV1vZneb2d0nT55cr/JJC1IeRhERaQfq6ikiMmcE2FnxeAfwWNU2e4FDZgZwHvByMyu6+99WbuTutwG3Aezdu7c6eJQOMjyWZXNPet4y5WEUEZFWo8BPRGTOMWC3mV0OPApcB7y2cgN3v7x838w+Cvx9ddAnG8vOLb2MTuTozcx9pSoPo4iItBp19RQRSbh7EXgL8Wyd3wI+6e7HzezNZvbm5pZOWpXyMIqISDtQi5+ISAV3vx24vWpZzYlc3P0XGlEmaW0H9mznZuKxfiNjWXZoVk8REWlBCvxERETWSHkYpVHMbCfwceBCIAJuc/dbzGwr8H+Ay4CHgZ9z97FmlVNEWo+6eoqIiIi0jyLw6+7+bOCFwK+Y2RXAO4B/dPfdwD8mj0VEZinwExEREWkT7v64u9+b3J8gHo98MfAK4GPJZh8DfropBRSRlqXAT0RERKQNmdllwPOBfwUucPfHIQ4OAfU9FpF5FPiJiIiItBkz6wc+DbzN3cdXsN/1Zna3md198uTJ+hVQRFqOAj8RERGRNmJmaeKg76/c/TPJ4ifN7KJk/UXAaK193f02d9/r7nvPP//8xhRYRFqCAj8RERGRNmFmBnwY+Ja7/1HFqsPAG5L7bwD+rtFlE5HWpnQOIiIiIg1kZq9abH1FK14tPwy8Dvh3M7svWfZO4D3AJ83sjcD3gJ9dh6KKSAdR4CciIiLSWJ8C7ktuAFaxzoEFAz93/0rV9pV+fB3KJiIdSoGfiIiISGO9GviPwHOJu2R+wt0fbG6RRKTTKfATERERaSB3/yzwWTPrI86/9z/NbBvwW+7+5eaW7lxHToxy8OgQw2NZdm7p5Yb9uziwR9kiRNqNJncRERERaY4ccBYYB/qA7uYW51xHToxy0+HjjE7k2NyTZnQix02Hj3PkRM1JQ0WkhSnwExEREWkgM3uxmd0G3AO8GLjF3Z/v7nc0uWjnOHh0iHRo9GZSmMV/06Fx8OhQs4smIiukrp4iIiIijfWPwNeBrwBdwOvN7PXlle7+1mYVrNrwWJbNPel5y3rSISNj2SaVSERWq66Bn5ldA9wChMCH3P09Vet/Hnh78nAS+CV3v385+4qIiIi0qf9MPHtny9u5pZfRiRy9mbmfjNOFEju29DaxVCKyGnUL/MwsBD4AvAQYAY6Z2WF3/2bFZg8BP+ruY2b2MuA24AeWua+IiIhI23H3jy60zsxaqjfWDft3cdPh42TzRXrSIdOFEoWSc8P+Xc0umoisUD3H+O0DHnT3IXfPA4eIZ66a5e7/4u5jycOvATuWu6+IiEirOHJilNfc9jV+5L138prbvqaJL2RRZvaVivt/UbX6rgYXZ1EH9mzn5muvZPtAN2enC2wf6Obma6/UrJ4ibaieV5UuBoYrHo8AP7DI9m8EPrfKfUVERJqiPOthOrR5sx7eDPpxLAvpq7h/ZdW6hZKzN82BPdv1WRbpAPVs8atVcdXsz25mLyYO/Mrj/Vay7/VmdreZ3X3y5MlVFVREOoOZvbDZZZCNR7MeyiosNr6vLcb+iUj7qWeL3wiws+LxDuCx6o3M7LnAh4CXufuplewL4O63EY8NZO/evaosRTa2DwIvaHYhZGMZHssSGgydnCRfisiEAef1ZzTroSxms5m9kvgC/GYze1Wy3IBNzSuWiHSyegZ+x4DdZnY58ChwHfDayg3M7BLgM8Dr3P07K9lXRESkFfRnQh48OUVoRmhGseQ8eibHM87vW3pn2ai+DFxbcf+nKtYdbXxxRGQjqFvg5+5FM3sLcAdxSoaPuPtxM3tzsv5W4CZgG/BBMwMouvvehfatV1lFpGPsMrPDC61092sXWieyWsn3V9xWUx6o4BXLRc71/7r7Z5pdCBHZWBYM/Mzs9939nWs5uLvfDtxetezWivtvAt603H1FRJZwEvifzS6EbCwTM0Uu3tzNU5P52a6eFw52MTlTbHbRpHX9NnGPJxGRhlmsxe8aYE2Bn4hIg024+5ebXQjZWMoJrned3z+7LJsvsn2gu4mlEhERmW+xwC80sy0sMK2wu5+uT5FERFbt4WYXYK1GJ3J0pUL6u1KEgboKtgMluJZV2GNmX6+x3AB39+c2ukAi0vkWC/z2APewcGoFfaOJSEtx91dVL1uPbuuNlC9GTOaKnJ7K05uJA8DeTKjxYi3swJ7t3Eyc1mFkLMuOLb3csH+X8p7JYh5i/oQuIiJ1t1jg9013f37DSiIiskZm9v7qRcDrzKwfwN3f2vhSrY67MzVTZGqmSBgYfV0pBrpTdKXCZhdNalCCa1mhvLs/0uxCiMjGUs90DiIijfYq4AjwBeZ6K1xH3HuhbZUiZ3y6wPh0gUwqYKArTV9XSCoMml00SRw5McrBo0MMj2XZqRY/Wdo/N7sAIrLxLPar4ZaGlUJEZH08G3iKeHKq/8/dP0Y84cvHkvttL1+MODU1w/dOZ3n87DTjuQKlyJtdrA3tyIlRbjp8nNGJHJt70oxO5Ljp8HGOnBhtdtGkRbn7W5pdBhHZeBZs8XP3j1YvM7PvuPsz61oiEZFVcvcJ4G1m9v3AX5rZP7D4Ba62Np0vMZ0v8RQzZFIB3ekwvqUCtQY20MGjQ6RDozcTf6X2ZlJk80UOHh1Sq5+IiLSMxfL4TRBP4gJzXaZ6y8vdfbDehRMRWQ13v8fMfgz4ZeArzS5PI+SLEflixPh0AYB0GNCVToLBVEgmpUCwXobHsmzuSc9b1pMOGRnLNqlE0urM7IXu/rVml0NENpbFxvh9FNgE/Ka7PwlgZg+5++WNKJiIyGqZ2WZgN3AX8JfNLU1zFEoRhVI8QyhAGNhsENiVDuhKBZopdJ2U8/iVW/wApgsldmzpbWKppMV9EHhBswshIhvLgpeA3f2/Eo/z+4SZvdXMAuZaAEVEWo6ZZczso8T5/G4D/gx42Mw+YmaZZpat2UpRPEvoqakZHjszzSOnsoyO55gplppdtLZ3w/5dFEpONl/EPf6rPH4iItJqFp3VM+ku9RPAW4AvA90NKZWIyOr8NpAGdibj/TCzAeADwO8kNwEidyZnikzOFOnNpNjSl1aqiFVSHj9ZhV1mdnihle5+bSMLIyIbw5LpHNw9At5vZn8DKK+fiKxaA6a8fxWwz91nB1e5+4SZ/TLwNRT41ZTNF8nmi/R3pdjUqwBwNZTHr701IR3HSeB/1vMJRESqLRr4mdk24LXAnmTRt8xsm7ufqnvJRKSjlKe8T4c2b8r7m2E9f2BFlUFfmbtPmpm6qi+h3ALYkwkZ6E7Tkw4JA40DlM7WoLqp2oS7f7leBxcRqWXBMX5m9mzgG8D3A98BHgCuBv7dzPYstJ+ISC2VU96bxX/ToXHw6NB6Po2b2RYz21p9A6L1fKJONp0vMTqem80VeDZboFDSyyedqUF1U7WH63lwEZFaFmvxezdwo7t/snKhmb0a+H+AV9ezYCLSWRo05f0m4B7mUtBUUovfCrn7bK7AU1Nxioi+rhS9mThfoEgnaEY6Dnd/VfUyM/t9d39n3Z5URDa8xQK/73P3n6le6O6fNrPfr2OZRKQDNWLKe3e/bN0OJucolCLOZPOcycbpIXozcRDYmwmVGkLaVjPScZjZ+6sXAa8zs34Ad39r3Z5cRDasxTL6Tq1ynYjIORox5b2ZvdTMzrlgZWavNbOXrNsTCaXImcgVeHI8x8OnsjxxNsd4rkApUsOqtJcmpeN4FbAVuJu4l8LdQCG5f089n1hENq7FWvy2m9mv1VhuwPl1Ko+IdKgGTXn/e8BP1Vh+J/BZ4Ivr+WQSK/9YzuaLnLI8PemQnqQlMB0udn1RpPmalI7j2cRDaq4BftPdHzWz33X3j9XzSUVkY1ss8PszYGCBdR+qQ1lEpMM1YMr7Xnc/Wb3Q3Z8ws756PrHE5gWBxOMC4+6gKXoyGhcoranR6TiSPKNvM7PvB/7SzP6BxXthiYis2YKBn7v/XiMLIiKyDrrNLOXuxcqFZpYGeppUpg2tUIo4Ox1xdrpAKgjo7Qrp70ppchgRwN3vMbMfA34Z+EqzyyMinW2xdA5/YGZvrrH8V83svfUtlojIqnwG+LPK1r3k/q3JOmmiYhQxPl3gsTPTPHJqitGJeFxgvqhUEbIxmdlmYC9wF/ArzS2NiHS6xboV/F/AbTWW3wL8h/oUR0RkTX4beBJ4xMzuMbN7iPNlnUzWLcnMrjGzb5vZg2b2jhrrX2FmXzez+8zsbjP7kfU8gY2iFDmTuSJPTcwwMpZl+HSWU5Mz5AqlZhdNpO7MLGNmHyWun24jHl7zsJl9xMwyy9j/I2Y2ambfqFj2LjN7NKmb7jOzl69nmYvK5SnS9hYb4+fufs5/ubtHpnm7RaQFJV0832Fmvwc8I1n8oLtPL2d/MwuBDwAvAUaAY2Z22N2/WbHZPwKH3d3N7LnAJ4E963YSG1Rll9AwsGRymBS96ZAg0FeOdJzfBtLAzmS8H2Y2QFz//E5yW8xHgf8NfLxq+R+7+/vWt6ixqXyJ8ekc2/oz81JfiEj7WOw/N2tmu939gcqFZrYbWNaPKBGRZkgCvX9fxa77iAPFIQAzOwS8ApgN/Nx9smL7PpQYft2VWwMnc0XMjO50nDi+L5MiVBAoneFVwD53n80S7+4TZvbLwNdYIvBz96Nmdll9i3iuQiniibNxzsOtfRkyKc1HI9JOFvuPvQn4nJn9gpl9X3L7ReAfknUiIp3mYmC44vFIsmweM3ulmZ0grg//c60Dmdn1SVfQu0+ePGeiUVkmd2c6X+KpiRm+dzrLk+M5JmeKRMoXKO0tqgz6ypILS2v5cL8l6Yr+ETPbUmuD9aibsvkiI2NZTk7MKHenSBtZMPBz988BPw28mLhLwUeBA8Cr3f32+hdNRGRlzGyt/Y9qNSed86vG3T/r7nuI68h31zqQu9/m7nvdfe/55yv16Xpwd6ZmioyO53jkdJbHz04zNpXXuEBpR25mW8xsa/UNWO1guj8Fng48D3gc+J81n3gd66aJXIHh01nOZPO4KwAUaXWL/khy928Ab2hQWURE1uprZjYCfB74vLs/vML9R4CdFY93AI8ttHHS3erpZnaeuz+14tLKqpVbAqfzJcayzI4L7EnHYwPVJVRa3CbgHpZ5sWk53P3J8n0z+zPg71dXtJWJ3Dk9lWciV2RLX4b+Lo3/E2lV+u8UkY7h7nvN7FLgZcCfmNnFxLmxPgd82d1nljjEMWC3mV0OPApcB7y2cgMzewbw3WRylxcAGeDUOp+KrFDluECYIZMK6E6H9ClxvLQgd79svY9pZhe5++PJw1cC31hs+5U4cmKUD3zpQb43luWiwR6uu3on+3ZtnbdNoRQxOp7jbDpka29G/3ciLUiBn4h0FHd/hDhv361J4vYXAdcA/93MTrr7gulo3L1oZm8B7gBC4CPufryc09TdbwVeDbzezArEE139R1cfp5aTL0bki3HewFQQJLOEhnSnQ7UGyjmKpYiZYkRfg1qrzOylwIC7f6pq+WuBk+7+xSX2/wTx8Jvzkl4OvwscMLPnEbcYPgzcsB5lPXJilJsOHycwGOxOcWpqhlvufIAb2X1O8AcwUyjx+NlputMhWxQAirSUBWs4M3sN8AV315VsEWlL7l4A7kxuJC2AS+1zO3B71bJbK+6/F3jv+pZU6qkYRUzkIiZyBQBSQUA6ZfSk40CwO60fphuJuzNTjJgpRMwUS8wUIwqlCDPj8sZ1U/w94KdqLL8T+CywaODn7q+psfjD61Cucxw8OkQ6NLpSIcVSRE86ZLpQ4tCx4ZqBX1kuCQB7MnEAqP8zkeZbrIa7FPib5Ir5PxJ3lbpLV7ZFpF25+6PNLoM0XzGKKOZhOh9PCpMKAnq74m6h3ekApartLOXWvFwhDvJmilErTETS6+7nTKnp7k+YWV8zCrSQ4bEsm3vSVE7e2Z0OeGJ8eZm94rG4cQC4ra9LKSBEmmjBwM/d3wO8J0ko+hPEU5bfambfIp444Y7KgcQiIiLtqBhFjE/H3ULDwOjNpOjriieKURDYXmZb84oRM4W51rwW1G1mKXcvVi5MLrb3NKlMNe3c0svoRI6u1FyLXa4QceHgyoo5nS/xaGGawe4UW3ozBOpyLdJwS152cfeJZOryG9z9+cB/B84HPl730omIrEGrXTmX1leKnIlcgSfO5vje6SyjE3HewBZoIZIaiqWIqZkipyZneOzMNA+fyvLYmWlOTc4wOVNs1aAP4DPAn1XWUcn9W5N1LeOG/bsolJxsvojjTBdKFCPnuqt3Lr1zFXfn7HSBkbFpJmeKS+8gIutqxZ3Z3f2bwDdZID+MiEizmdkPAR8C+oFLzOwq4AZ3/+XmlkzaSeVMoYEZfV0p+rvUHbRZFhqbtx7uGjrNobuHeWpyhp1berlh/y4O7Nm+LsdewG8TX0h/xMweSZZdQjxO73fq+cQrdWDPdm4GPvClBxkey3LhArN6rkQximcAnVD3T5GG0qyeItKJ/hh4KXAYwN3vN7P9zS2StLPI45bAiVwBM6M7HcSBYCalLmt14h63Lk3n6zs2766h09xy5wOkAmNzT5rRiRw3HT7OzVC34C/p4vkOM/s94BnJ4gfdfXkD5xrswJ7tPP/SLZyaXCojzsqUu39u6kmzpTetCyoidVbXwM/MrgFuIZ4W/UPJuMHK9XuAPwdeAPyWu7+vYt3DwARQAoruvreeZRWRzuLuw1U/IkrNKstyHDkxysGjQzz01OS6XFGX+qlMHn/K8nSnA+59eIyPf/URRs5kuWRrXyNajDpSKXKm8kWyMyWmC6WGdLE9dGyYYqnEmWyJJ8ZzZMKAwZ4UB48O1f09TAK9f6/rk7Q4d+dMNs/UTJFt/Rl6M2qTEKmXxdI5LPqLw91PL7bezELgA8BLgBHgmJkdTrqKlp0G3gr89AKHebG7P7XY84iI1DCcdPd0M8sQ1zPfanKZFlTOk5UOjcHu9JJ5sqR1uDtfPnFytsWoNxPy6Jks7/zsv/PfXvosfvRZ20mnAlKBkQkDtQ4myt02C6WIYskpJDNvNmNM3iOnp5iYLmCBEQZGMXKemshTKE00vCwbWaEU8cTZHP1dKbb1dynfpkgdLHZZ5SnigK08+rbyP9CBXUscex9xt4UhADM7BLyCeHxgfBD3UWDUzBZMqCwisgpvJu5tcDFxPfYF4FeaWqJFlPNk9WZS5IvLz5MlreHQsWFSQZwXEKA7FTLtJT76L4/w3J2b521bziHYnQrp7QrnzZTYaaLIKUZO5E4puZ8vRuRLEfnWSKkAQL4YgUFghmGYQWRxWeul1oyeEpucKTJdKLG1L8NAd7rZxRHpKIsFfv8LOAD8M/AJ4CsrzOF3MTBc8XgE+IEV7O/AF8zMgYPuftsK9hWRjc3c/eebXYjlKufJqrSSPFnSXI+Px1PUV1ro/avMITiWhXQY0JsJ6cmEZMKAVNh+k1y4O/mk5a5YcnLFErlCiVLUGoHdUtKhMV2AYhLoGRAEkAnr2uL0NTMbIU6P9Xl3f7ieT9ZuSpFzcmKGqZk4ANTkLyLrY7E8fjdaPEDmAPA64H+Z2ReAP3X3h5Zx7Fo15kq+BX7Y3R8zs+3AF83shLsfPedJzK4Hrge45JJLVnB4Eelg/2JmDwH/B/i0u59pcnkWVc6TVTm2ZTV5sqQ5Lhrs4dTUzGyLHyz//SuUIs5OR5ydLgAQBkYmFZAJAzKpgHQYdxMNzJraTbTcJTNXKJErlnCPy1qKvFUSoq/a1t4MZ6fnN755BOf1d9XtOd19r5ldCrwM+BMzuxj4CvA54Mvuvr6zqLSpbD5u/RtIcv+p+6fI2iw6gjZp4fuSmf0bcB3wbuAB4M+WcewRoDLJyw7gseUWzN0fS/6OmtlnibuOnhP4JS2BtwHs3bu3fb95RGTduPtuM9tHXG/9lpl9Ezjk7n/Z5KLVdMP+Xdx0+DjZfJHQbE15sqTxrrt6J7fc+QDThRLd6YBcIVr1+1eKkoljFpiLyMziFimLuyQGgRGazf4g9uT6apBsF3ncIldyJ/K4+2Xkc9tAPGNp5BAk3R2DIN7XgVIp3redA7slmcXnnozxc4/fh3rPMOnujxDn7bs1Sdz+IuAa4L+b2Ul31zAY4s/v+HSByVyRLX0ZNvWo+6fIai02uUsf8Zi8/0icsP0zwAvcfXihfaocA3ab2eXAo8Q/wF67nB2T5w7cfSK5/5PAzct8XhER3P0u4C4z+33gj4CPAS0Z+JXzZB08OsTDT01ygWb1bCv7dm3lRnZz6NgwT4xP13VWVvc4tCsHb2uZq7ZU1Qmn5Mmylp7/dv1N5YtcMNjFWLZAMXIyYcCFg10NTTDu7gXgzuRG0gIoFSJ3Tk3OMJErcF5/F93pzh0fK1Ivi7X4jRK37n0CeJD44t/VZnY1gLt/ZrEDu3vRzN4C3EGczuEj7n7czN6crL/VzC4E7gYGgcjM3gZcAZwHfDa52pYC/trdP7/qsxSRDcXMBoFXEl9wejpQ7jXQsg7s2c6BPdsZGcvWdVIJqY99u7YqUG9T5a66O7f2zk62k80X2T7Q3bQyufujTXvyFpcvRjx2ZpqB7jRb+9T9U2QlFgv8/oY42NuT3Co5cQvgotz9duD2qmW3Vtx/grgLaLVx4Kqlji8isoD7gb8Fbnb3rza5LCLSwma76uZLZMKA6UKJQsm5Yf9Sk5dLM03kCkzNFNnSm2GwJ6Xk7yLLsNjkLr/QwHKIiKynXSuchVhENqjZrrp3D3NqcoYdW3q5Yf+uuidvr2Rmfe4+1bAn7BCRO6emZjg7XWBTb5rBbgWAIotZcH5cM/uTivs3Vq37aP2KJCKyOhX11mEzO+fWzLKJSOtr9NUiM/uhZPKpbyWPrzKzDza4GG2vGEWcmpxh+PQ0Z7MFojZJJSLSaIt19dxfcf8NxMmQy55bn+KIiKzJXyR/39fUUsiGc9fQaQ4dG+bx8Wku0uQ8beWuodPccucDpAJjc0+a0YkcNx0+zs3QiFa/PwZeChwGcPf7zWz/4rvIQopRNNsCuLU/Q3/XopPXi2w4i/1H2AL3RURakrvfk/z9crPLIhvHXUOnee8dJ5jKF4kiZyyb5713TPH2l+5R8NcGDh0bJhUYPZkQM6M3kyKbL3Lw6FBDunu6+3BV98QNNq/q+itGEaPjOSYzKc7rz5AKlQBeBBbp6gkEZrbFzLZV3N9qZluJZ+kUEWlJZrbbzD5lZt80s6Hyrdnlks5029HvMj5dwKM4D55HMD5d4Laj32120WQZHh+fpjs9/+dQTzpkZCzbiKcfNrMfAtzMMmb2GyTdPmXtsvkij56ZZqqBqTlEWtliLX6bgHuYa+27t2KdOk+LSCv7c+B3ibtRvRj4RdRzQepk+Mz0bAJwAEsypw+fmW5uwWRZyukcejJz17SnCyV2bOltxNO/mXgozcXACPAF4Fca8cQbRSlynhzP0d+VYmufWv9kY1ss8PtRd3+kYSUREVk/Pe7+j2ZmST32LjP7J+JgUERkVpPTOZi7/3wjnmijm5wpMpUvsbknzaae9OyFGpGNZLHA77PACxpVkEY5cmKUg0eHGB7LsrMJUzaLSEPkzCwAHjCztwCPAvpHl7rYuaWXR05NgTtm4A6Rw6VbG9JiJGvU5HQO/2JmDwH/B/i0u59pxJNuVO7xGNzxXIFNPWkGuxUAysay3MldOsKRE6PcdPg46bApM3eJSOO8DegF3gq8G/gx4tmJRdbd9S/aFU/uMlOkVHLCwBjsSXP9i5QAvF3s27WVH3j6Ni4/r6+hz+vuu81sH3Ad8FtJaodD7v6XDS3IBlOKnNNTec5OF9jcowTwsnEsFvhdbGbvX2ilu7+1DuWpq4NHh0iH8YxdQMNn7hKRxnD3Y8ndSeLxfSJ1s2/XVt7+0j0cOjbME+PTXKh0DrIC7n4XcJeZ/T7wR8DHAAV+DVCKKhLA96QVAErHWyzwmyae3KVjDI9l2dyTnresgTN3iWx49e5qbWZ/zsKTT7m7v3HdnqwOfv/2b3E2mycMjK5USCYVkEkFdCW3TCokkzIyYUBXKkyWBVXbhYTqutRw+3ZtVaAnK2Zmg8AriVv8nk48zGZfUwu1AVXm/9vUm2awWwGgdKbFAr9T7v6xhpWkAXZu6WV0Ijfb4gcNnblLZENrUFfrv6+x7BLirp8tn4bmr772CFP5tafwigPHgExYHRSWH4ez67tSAemK9dUBZ/kYXbPLagSkyTb6oSSyYvcDfwvc7O5fbXJZNrxiFHFqcobx6QLb+jPzfi+KdILFPtH5hpWiQW7Yv4ubDh8nmy/Skw4bPXOXyIbWiK7W7v7p8n0z2wW8E9gPvAf48Lo8SR39+LMv4KnJGWYKJWaKETPFiHwxIl+auz9TjOutxZQiJ5svkW1wHuh0aOe0RM4PDsMaQehcAJqp2PfcY4TxMdJz23elAk3NLu1ul7srRVaLKZQinjgbNxRs6UvTlWr564Yiy7Jg4OfuL2xkQRrhwJ7t3Az86Ze/y/DpuKvZLx14usb3iTRAo7pam9mzgd8Cng/8IfBmd2+L7L3vf83zGRnLki9Gi24XuSdBYBIYzgaHpXOWz8wLHGuvL68rb1u5TWXAGS3x87RQcgqlIpMz6/iiLCEwZlsiawWTc11kq1ow00FVq2i4YEB6TitoKiBQ66asgZn9ibu/DThsZuf8Z7n7tY0vlVTL5otk80X6ulJs6c2QSelCk7S3DdeGfWDPdl749G08liTWTQUBoxM5+jIpejOhuiqJ1Ekjulqb2d8Ae4H3Ab8KlIDB8v+1u59etydrosCM7nRId7qxV6FLkc8LLmeKEYXZ+/MDx3O3Kc1vwSzMD0hnirUC2WgZQTDkChG5wuLbrbd0aBXBYe3xlpmKlsqaraBVAWnNVs6KIDQdmr6jOsdfJH/f19RSyLJMzRSZminS351ia6+SwEv72nCBX7ViFDGZi5jMFQnM6M2E9HUpCGxV7///vsOHvvIQU/kSfZmQN/3I5bz1J57Z7GLJMjSoq/XVxJO7/Abw68my8j+yA+rXvQZhEHfV7c007jndnUJpfsA52ypZSFo5SxH5op8TQJb3yVfvv0hraXldcYnmzbh1s8QUJaDQkNciMOaN26wcc1k93rJWK+i5AeYSrZxJt1pNFrT+3P2e5O+Xm10WWb7JXJGpmRKbetJsVhJ4aUMrCvzM7Fp3P1yvwjRb5M7kTJHJGQWBrej9/993uOXOBwkMUkHcWnTLnQ8CKPhrA+Wu1gePDjEylq1LkmR3v2zdDiYtwczimUwb3MWqFHlFILhwa2a5++x3npzk2MOnOZsr0J9JsXt7P1v6M3PB5TndbquC02T9YuFm5JArRuSWaAVdb6nA5o+7DMsBp9UMHuNWzoVmpp1/jK50QDqsbCGNl2+U1k0z2w38D+AKoLu83N11kapFuTtnsnkmcgU292Y0A6i0lQUDPzN7VfUi4ANmlgJw98/Us2DNpiCw9XzoKw8lQV/8AzCwuMX2Q195SIFfmziwZ7vG1EpbCAOjJxPSkwmB9KLb3jV0mrse/h6pwHjapm5yhYjvPjXFjc992opSPJRbN+cHmKVzWymrusjWbsE8d8xnddfc8vMsNVlQMXKK+RLZdZhxdrkM5rVszh9vORdwZsJ4vGbl7LO1xmTOb/E8d31XKmh41+nEnwO/C/wx8GLivKP6kdEGSpHPzgC6tS9DX9eG70QndbDeabAW+5R+Evg8MMpcJdQH/BRxl6mODvwqKQhsDVP5EtUX/QNjXaa/FxFZrUPHhimWSpzJliiUItJhQH9XyKFjwysK/Oa1bnbVscBVak0WVA4MZ4PGQmU32/ndbmcK547LnNft9pyW0nj/xXrTOszu30hhYBz9by/m4s09jXrKHnf/RzMzd38EeJeZ/RNxMChtoFCKeHI8R3c6ZGtfplkXEKQD1SMN1mKB3w8ST4F+DLjV3d3MDrj7L67qmTpEdRBYvtLYlQ5nrzhKffRl4nFhlV3qI4+XS3uodwJ3kWZ45PQUE9MFLDCCwChGzthUgWI01eyiLUszJgtyd4rl7rTlgLFwbsB57rjMuW6381sw5wLOuRbPc7vZLjVZUClyuhr7PZ4zswB4wMzeAjwKqFJsQ7lCicfOTNObSbG5N60AUNasHmmwFkvncMzMXgL8V+BOM3s7LDr8YMOJ3JnOl5imBNPx4P7A4u5B3emQ3kxIWjM/rZs3/cjl3HLngxSjiMDioC/yeLm0vgYlcD9Hp49NlubLFyMwZlM8mEHJfMkgYyMzM9KhkQ4D+hr4vJE7hXndYeeCw0IpYktfhk09i3ftXWdvA3qBtwLvBn4MeMNSO5nZR4D/Cxh19+cky7YC/we4DHgY+Dl3H6tHoWVh5RQQPZmQLb1qAZTVq0carEU7JLt7BNxiZp8i7n8uS4jcZ6f9PQWkwyAeJ5JcTdXsaKtXHsenWT3bUyMSuG/0scnSHOnQmClCFDlmUE7HnQlV37eauKdOSFc6ZKBqnZlx+XmNDEPji+zJ3Uni8X3L9VHgfwMfr1j2DuAf3f09ZvaO5PHb16OcsnLT+RLT+WkFgLJq9UiDtayRqO7+KPBzq36WDaxQiihMR4wnLYKpIKA7HWiM4Cq99SeeqUCvTTUogbvGJkvDXbatn5GxKabyc2P8+jIpdmxpbBAh7cPM/pyFe1G5u79xsf3d/aiZXVa1+BXAgeT+x4AjKPBrunIA2NcVdwHtSikAlOWpRxqsRQM/M3sDcCPwrGTRt4D3u/vHF95LFlOMIiZnotkxgn1dKQa6U7oSJB2vEQnc0dhkaYLrrt7JLXc+wHmZFN3pgFwhzgN43dU7m100aV1/X2PZJcRdP1f7g+ACd38cwN0fNzONFWwh5d5gvZkUW/oUAMrS6pEGa7F0Dq8nroB+DbiX+Or5C4A/NDMU/K1d5M5ErsBErjA7dXhfJkVPOlRSUOk4jUjgrrHJ0gz7dm3lRnZz6NgwT4xPc+FgD9ddvXNFM3rKxuLuny7fN7NdwDuB/cQXrj5cz+c2s+uB6wEuueSSej6V1FAeA6gWQFmO9U6DtViL3y8Dr3T3hyuW3WlmrwYOMb9fuaxRKXImc0Umc0XMjO50QG86RU8m1Eyh0hEakcAdNDZZmmPfrq0K9GRFzOzZwG8Bzwf+EHizuxfXcMgnzeyipLXvIuIu7+dw99uA2wD27t2rC2NNUtkCONiTmtcbRqReFvuUDVYFfQC4+8NmNli/IomXZwvNl2AqzitUmXA2EwakQ9P4QGk7jUzgrrHJItKqzOxvgL3A+4BfBUrAYPl73d1Pr+Kwh4lnBH1P8vfv1qWwUlflFsB0GDDQnWKgO62JAKVuFgv8ple5TtZZKfKkYphbFif6DdjUk6a/S1eJRMo0NllE2sDVxN3QfwP49WRZ+de+A4v2gTezTxBP5HKemY0QJ3x/D/BJM3sj8D3gZ9e/2FIvhVLE6ak8Y9kCA90pNvekSSklmKyzxSKGZ5vZ12ssN5aokKT+3J2ZQonRQokxXSUSATQ2WUTag7tftsb9X7PAqh9fy3EX8sTZHA+enOSCgS79zqgzd2d8usBErshgd4rNvRm95rJuFg38GlYKWZPKq0Td6YCedEhPJtSAYdmINDZZRGSd/d19j/I/PneC3kzI9128iat2buaqHZt45gUDCkrqxN05Ww4Ae9Js6tHFfVm7xQK/NPHUwP9cudDMXgQ8VtdSyarUGhvYkwkZ6ErTk1EQKM1TKEXkixHThRLpIGBTb3rpnVZnzWOTzewa4BbiKdU/5O7vqVr/88zlxpoEfsnd719TqUVEWtiDo5MAZPMl/vWh0/zrQ/EQxJ50yPft2MTzdsTBoALB9Re5cyabZ3y6oABQ1myxwO9PiKcXrjadrPupOpRH1lHlTKGpIKAnE8azhWZSqjSkbkqRky9G5AolsoUS+WKE+9zEcZt66hb0wRrHJptZCHwAeAkwAhwzs8Pu/s2KzR4CftTdx8zsZcSz4/3AGsosHeCuodMcOjbM4+PTXKR0DtJh/vBnr+KNL7qcI98+yf3DZ7h/5AyPnckxXShx10OnuSsJBHszIc+5WIFgPZQDwLPThRV1AT1yYpSDR4cYHsuys06zaUv7WCzwu8zdzxnj5+53m9ll9SuS1EMxipjIRUzkwCxPbyakryvOGahKWVYrX4yYKcbBXb4UUSg6xShqZpHWOjZ5H/Cguw8BmNkh4BXAbODn7v9Ssf3XgB2rL650gruGTnPLnQ+QCozB7hSnpma45c4HuJHdCv5k2czsWnc/3OxyLOSiTT385BUX8JNXXADA6HiO+0fOcv/wGf5t+AyPn82RzSsQrLfKLqCbe+MWwIVmeT9yYpSbDh8nHRqbe9KMTuS46fBxbgYFfxvUYoFf9yLreta7INI47j6bPwagKx3Sk45bA7tTrZs8Xletmi9XKDE1UyRXjM5pyWsRax2bfDEwXPF4hMVb894IfK7WCiVJ3jgOHRsmFRg96bhLfU86ZLpQ4tCxYQV+UpOZvap6EfABM0sBuPtnGl+qldk+2M1LrujmJSsIBNU1dP1E7pyeyjORK7KlL1NzhveDR4dIhzabI7A3kyKbL3Lw6JB+P21QiwV+x8zsv7j7n1UuTKYJvqe+xZJGmimUmCmUZh+nw4CudEBXGMZ/U0HTcwbqqlVzRJEzU4yYyhfJzpSa3Zq3HGsdm1zrg14zujWzFxMHfj9Sa72SJG8cj49PM9g9/+u0Ox3wxPjaMx+ZGWE5txtO5My74JLMVrvm55GG+yTweeIk6+V6p494GI0DLR/4VasVCN43cpavD5/hPnUNrZtCKWJ0PMfZdMi2vgzd6bk5HYbHsmyuGl7Rkw4ZGcs2upjSIhYL/N4GfDaZyKAc6O0FMsArl3PwZUySsAf4c+Lp1n/L3d+33H2lfgqliEIpYpK4RbCcM7A7FY8P7E43PhDUVavGiCJnulAimy+RK5QolFo+0Kv2J6xtbPIIsLPi8Q5qBIxm9lzgQ8DL3P3UagoqneOiwR5OTc3QkwkxDDOYzpd42uYeutIhUeREPhe0mRkGmIERT8LVmwkxg8jjKCAMjFRgNfN4uTvuzPbO8OTYpeR58qWImUJEMYpwj6OIFm2h38h+kDjv3jHgVnd3Mzvg7r/Y5HKtm+2D3fzkFd3ndA29r2KM4EJdQ6/asYnnKRBckZlCicfOTNObSbGlL01XKmTnll5GJ3Kzv50ApgsldmzpbWJJpZkWDPzc/Ungh5Kr2s9JFv+Du9+5nAMvc5KE08BbgZ9exb7SIOWcgTOFEmenC5jZbNqI7uRWb7pqVV+5QomJXNz9N2rvH4drHZt8DNhtZpcDjwLXAa+t3MDMLiG+Gv86d//O2oss7SQMLAnKAtKhkU4F/NKBXbzzs//OyckZSpETBkZ/V4rf+7HdXLx5/UdGmMXBZeXj0Jj9gdydDs8ZrOFJQOgOlf/ikTvFyCmWIkpRfD9fjNq9Hmh57n7MzF4C/FfilDNvZ4HeBZ2iukXw5MQM94+c4b7vzbUIqmvo2mXzRbL5In1dKf7zD1/Gu//hW2Tzxdku6IWSc8N+pePeqBZr8QPA3b8EfGkVx17OJAmjwKiZ/YeV7ivNMy9tBBBY/OOnKxXQm4nHC653i6CuWq2v0mzLXpHpfIlS1DG/N9Y0Ntndi2b2FuAO4t4GH3H342b25mT9rcBNwDbgg8nnvOjue9dccmkpYWCkw4B0GJAJA9IpoytVezKsrlRIYAblbphuNfsMN5OZrSi360wx/oFYiuJbeRKnDqorms7dI+AWM/sU8MfNLk+jnT/QxU88+wJ+4tnL7xrakw75vosHuWrnZrUILmFqpsjTt/fzqz+xm0N3DfPY2Wl2aH6EDW/JwG8NVjpJwnrtKw0WVbQIjk8XCMzozYT0dqXoTa/PZDE37N/FTYeP66rVGpQiZyoft+qVg/YOtOaxye5+O3B71bJbK+6/CXjTOpRVmiwdxher0qmAIBlLFwSQCoIV/Zg8eHSIwZ40F26au7bQ7l3Ru1IhNeaKIIrilsNyd9I27RLeUtz9UeDnml2OZluoa2jlZDHThRJ3PTzGXQ+PAWoRXI6rdm7mqp2b6U6HDPak6VNe5w2tnoHfsidJWMu+mjmv9UTuTM4UmUxmDU2HAd3pkEzSKpgJgxUHgwf2bOdm4h9YI2NZXbVapnLS9Gy+SK6wIcb4vI01jk2WzlTZRT2TCmZb89bDRuqKHgRGdxDO605aipxcocRMMttvIek2qu6iizOzNwA3As9KFn0LeL+7f7x5pWodi80aev/IWR49M71ki+Du7f01x8luRLlCPHY/MKO3K6Q/SenV7Mn7pLHqGfgta5KEte6rmfNaX3mymEqpICCTqriF8XiZxSqgA3u2K9BbhHs8A2cuSZqeSyZ32EjWOjZZOoslvQ/61rH3QS07t/Ty8KlJxqeL5EsRmTBgsCfFZdv66/J8rSYMjL6uFH1d85fnixG5YomZQtxCqAlm5pjZ64kvVP0acC/xBe8XAH+YzNSq4K/KYmME5wWC1S2C6ho6T+TOZK7IZK44LwisHEojnaue7/KSkyTUaV9pA8UoopiPyObnLw8DIzAjCIzA4vGDgRnp0GYDRF29i5UDvWy+xHQS7OlHVWwNY5OlDcXj1+KLSKlk8pW4h0FjujT94K6t3PXw6aTOgnwpYnQiz2uu3tg5/MoX9sotg+5ONl9iKl9kpnDuBcEN5peBV7r7wxXL7jSzVwOHAAV+S6geI3hyYmZ2xtD7hivGCC4SCG70FsHKIDAVBPR3pxjoTq1bbwhpPXUL/JYzSYKZXQjcDQwCkZm9DbjC3cdr7VuvskrrKEVOCYdFhqClgoDudDCbeD6T2jgVVHmcXnlyHXWl6hxHToxy8OgQDz01yYWDPVx39U4l/15AYJbMKBx3I292rtGvDp3m/P4ME7m5Fr+B7hRfHTrNW5tWqtZjVm4ZjH96FEvRbPfQXLG0Ubqjlw1WBX0AuPvDZjbYhPK0vfMHunjJFRfMaxFUILh8xSjiTDbP2ekCA90ptvRmNnzraCeqa7vuMiZJeIK4G+ey9hWBuHKanInmjSHsycRjTipbCcvTrrezUuQUSlEc6CX986XzHDkxyk2Hj5MOjcHuNKemZrjlzge4kd0bPvgzsyR1TDwmLxWubHbKRhgey3JefxfnD8xNKuvuHTnGbz2lkh4c5S6iUeRkO3O24VqmV7lOlqlWIFgOAu8fXl7X0I0YCLo749MFpmaKbO7JMNiT0jjADqIOvdL2CqWIwnTE+HThnHXlLl/pMEhm7LMkaTKzSZSDJCdW+S/MJUIuB5BAkgjZZxM0V3KPu0zMTWow9/zlrmflfSrzaDk+bzxedX6tDv/hI4mDR4dIh0ZvJkW+GM3OXHvo2PCGC/xSwVzqhHLA1+o/OpRuZn0ESf7D/q5UnDaoUGIyVyTbmb0bnm1m5+QcJf560nTVdVCra+hKxwhupECwFDmnpmY4O11gsCceA7iRelh1KgV+0tFKUZJzcLG+oyJNVmtWyO50wBPjnX/hvzwBS3xLtWUrvdLNrL/4cxH/2CwHgdmki3uHjA18drMLsNEtGAgOq2topWIUcXoqz+mpfJzXNJlvoTyGV+MB24sCPxGRJqvVYpQrRFw4uGTO+baUScVpFXoyYUdMJ650M/VVGQRC3Msjnpo+mk0s34bSwAXu/s+VC83sRSx/BnRZR4tNFqOuobHyLO1TFcsyqYCB7jQDXam6zZws60eBn4hIk1W2GIVmTBdKFCPnuqt3Lr1zizOz2UCvOx3QnapfWoVmUrqZxinnYCwPqYyi+S2Cq0ljc9fQaQ7dPcxTkzPsbEzg/ifAO2ssn07W/VQ9n1yWtthkMV8fOcvIWO1A8DkXD3LVjnL6iOYHgncNnebQsWEeH5/mojpMHJYvRpyanOFMNs9gd5rBnnRb9tzYKBT4iYg0WWWL0cNPTXJBm8/qGQZGTyakL5OiN9P+LXrS2oJg/myh2Xw8Pf1UvrSsWULvGjrNLXc+QCowNvekGZ3IcdPh49wM9Qz+LnP3c8b4ufvdZnZZvZ5UVq9WIPj1kTP8W9VkMcceHuNYi7QIVn62B7tTdZ04rBQ5Y8msoIM9aTYpAGxJCvxERFpAucVoZCzbll3XymP14kTACvakecrdQkuRMzlTZHKmyMwiMyIfOjZMKrlYUe5Wms0XOXh0qJ6BX/ci6zqzj3eHOX+gix9/9gX8eI0xggu1CHanA77v4k0NaxGc/Wyn45mQGzFxWOQ+mxaiLxPS363k8K1E74SIiKyKmdGdDuhNp+jvbs+JWaRzhYGxKWl5yBcjsvkiuUI8PrByltDHx6cZ7J7/c6gnHdY7HccxM/sv7v5nlQvN7I3APfV8YqmPhSaLuX/4LPePnGFkbJpcIZrXIljvQLDWZ7tRE4e5z114SYcBg91pBro1DrDZFPiJiMiylfNm9mbCjh2vJ50nnoEwA8z/QTqdL3HRYA+npmboyczlh2xAOo63AZ81s59nLtDbC2SAV9bziaUxFgsE7xs+w6Nn6h8Izn6203Of7WZMHFYoRZyamuF0Nj87i3NPOmz6+MeNSIGftJV6D1KW+rpr6DSfuneEJ8ZzjZpAQdZBJhXQ35WiJxO2XPJ0kZUys3gWwu40xVLEm37kcn7n8Dd4ciKHe9xS2N+V4nf+wxV1K4O7Pwn8kJm9GHhOsvgf3P3Ouj2pNFWtQPDrI2e4r44tgtddvZP33nGCJ8dzlCInTMbD/sqBZ9TlHJfi7kzNFJmaKQIkkzSlGOjWeMBGUeAnbeOuodO8944TTOWLRMkg4vfeMcXbX7pHwV8bKA8y70oFjZxAQVapHOz1daWUp2kZjpwY5eDRIYbHsrqo0UZSYUB/d4pUYJjH45Nwo1E/Qd39S8CXGvR00kJqjRFcTiD4nKdt4nk7N3PVzk0864KB5QWCBmbx31ZSKMU5AseyBbqSvIBdqYCuVKhk8XWiwE/axm1Hv8v4dIHAjMAMj2B8usBtR7+rwK8NVA4yb+AECrJCfV0pNvWk6U6rZW+5jpwY5abDx0mHDZ0VUtbJwaNDDPakuXDTXPc31U3SaIsFgpVdQ+9+ZIy7Hzm3RbBWIHjo2DD9XSnO7++aXVbvyV1Ww92T3JxzkzAFZnQlKYB6MuGG/U5a74uKCvykbQyfmSYwZscUmQGRM3ym/oOUZe2aNIGCLCJTcWW1KxWQCQON2VuFg0eHyBdLnJoski9FZJLuSwoc2sPwWJbNPel5y1Q3SbNVB4JPTc5w//AZ7h+JA8HldA197GyWTVWf7UZN7rJWkTvTSW7OsSykgoDuTEBvJkVPOtwQXUPrcVFRgZ+INER5kHl/19zVyAZMoCAVwmAumbq6cK6f7zw5zniuSIARmlEsOaem8hRL480umizDzi29jE7k5k05r7pJWs15/bVbBP+tIn1EdSAYGIxPF2fHaHenAnLFxk/ush6KUcRkLmIyF48PDAMjFQZ0p4Lk3DpvsrGDR4dIhzZbN61HTykFftI2dm7p5ZFTU+COGbhD5HDpVn05t4Prrt7JLXc+wHShRH9gTBdKFErODft3NbtoHa08UUV/d0oTs9RJoeRE7pTccY97I5hBvrR08nBpvhv27+Kmw8fJ5ouzec5UN0mrq90iGLcGlscIRg65YkSumIepeIhfOhVwxUWDHH/s7PLHCLagUuSUohIzhRJnpwsAdKVDulIB6SAgnbK2Dwbr0RthwwV+oxM5vvnYOKcmZzBLBnBb/M9gGOWcw4HN3Tebv86IZwUzm7s/t128bfmYQXkh8ZWXynXVx6H6uCs8zrwy1Chfu7v+Rbt4998fJ1uIcOJz600HXP8ifTm3g327tnIju/nUvSM8OZ5jhybAqJvA4mTUSqbeOKVorh4vX5SS9nBgz3ZuJr66PjKWVd0kbSluEdzOjz87/tyWA8EvfvNJ7h85w0wx/u2UL0bc8c0nueObT65+spgWNVOIA8FK5V4uvZkU3emgrb4P69EbYcMFfl954Cl+7ZP3N7sYTREHgcn9JOiNr0zbbABJRZBbfhyYzQ9MFzoOiwTLyXHmylEVdFc8DiqD2oogNztTZDqpuAAcmC5G3Hr0u/z1se9VlCt+3iB54rmyzw+Kky3nnevs4/L9Bc4Vqi4OLOM4tc61+rVbKIiPn68q4F/gce33Zu61CMpPXj5mxWu2kuPMXYtIXu+q48y+DlWv2X964aU8/fx+vm/HJmR9mMWT5vQkuZE0G1rjhRbXSeUWP70D7eXAnu0K9KSjVAeC5a6h1WMEqyeL6aRAEOJAN1+MODtdwMzoTiaM6UrHY9wrxwoWS1E8gWCLtBLWozfChgv8NrLyj5L4gVetaU+Rw8OnNAC/3bzkigv4s9fvbXYx2loYxK16fRm16jVbOox/KATJhQ93iHAyod4TEWmuWvmPf+0lz1xwsphODgS9YsKYSmFglCq6aaTDgFQYX7ouTyoYJgFhYHMX/g0jCOKJZ+ox2Uw9eiNsuMDvVS/Ywcu/7yIeS2aCjJIxGRB/IMrBUfk+5cd48hdIHkfObMwUsfBxkl0WP07yuNZxKOcWqnGc6vLNe1x9Ll7ef/65zR675nEqypwcZHZ5+XHV88ydX9Xj5FyXe5z4/Zk7zoe/8hAwv+tq+fX9Ty+8dPb1rAxwK8t0zntzzntR9ZonCyu3r37sFfvNe80qHq/kOLNlrH4NK5bPvi41XsNoweMs8Nos8ZmIn2vhz1blezDvs7TEuapFanVSQUBvVxzstVuXlU72zAsGeeipSSZylbN6prn8vP5mF01ENrBy/txUYAx2pzg1NcMtdz7Ajexm366tS44R7PRAsKxU1Te/UIqo6jG6LGEQB4tzv6jmelCVWxFnf3uVfyMRB5LpMM5jmA7jSdjKveR+6Bnn8cKnbyOVTGazVhsu8KtWOXau4o60oI/+y8PgPq8JPooczPiFH7qsaeWSldnUk2ZbRU4hWVw6DOhLxupt1DxGra7cHefCTSlNDiIiLaMyfy4wWz/VyuO30BjB+0fObJgWwbUqVbYIzUoeLxJIlnAKpYhsfuFtzhvoYlCBn2wkOzf38MjpLERVs3puab9piUUW05UO6cvEg9HVOtr6NDmItBIzexiYIP6pWXT3NferP3JilA986UG+N5ad7S7YSgnApbZa+XOXm8dvoUCwnEJCgWB7UuAnbeP6/U/nvXecYCpfJIrilr/BTJrr9z+92UUTWTdP29TTMgPLZfk0OYi0mBe7+1PrcaByEunAqNldUFpXOX9uT0VvkVxhdXn8qgPBU5Mz3LdUi2Aq4DkXx4Hgc3ds4lkXDih/bJMp8JO2sW/XVt7+0j0cOjbME+PTXKirjtKBFPSJSCspJ5HuSoUUS9Gi3QWltVTmz+1OB+QKEcXIue7qnWs+9rYaLYJfTyaKuX/4DMNj0+SK5waCV168ieftjINBtQgurTw5z+hkjku39mlyF9lY9u3aqi8aERGRhTnwBTNz4KC737aWg5WTSFfOf7Hc7oLSXPt2beWaJy7gk/eMMF0o0ZMO+bnv31GX31Hn9XfxY3u282N75rcIzpssphhxzyNj3FMjELxqx2a1CFapnJxnU3ea0YkcNx0+zs2w6uBPgZ+IiIhI5/hhd3/MzLYDXzSzE+5+tLzSzK4Hrge45JJLljxYOYl0V2rt3QWlse4aOs3nv/kkW/sysy1+n//mkzzrwsG6X0RfqEXw/uGKMYIKBBdVOTmPmdGbSZHNFzl4dEiBn4iIiMhG5+6PJX9HzeyzwD7gaMX624DbAPbu3Vs9BeE5yrPWlqIi6dDWtbug1NdKZvWst4VaBOdNFqNAcJ5ak/P0pENGxlafv1qBn7SVWolI1fVTREQEzKwPCNx9Irn/k8DNazlmedbaD3zpQYbHshpf30YeH58mNBgem6FQikiHAVt60y3RTbe6RfDU5MxsMvnKMYIbORC8aLCHR89MMTlTolCK6EqFDPakuGzb6nPEKvCTtnHX0Ol5s3qOZfO8944p3v7SPfoCahN3DZ3mU/eO8MR4jp2a8l5EZL1dAHzW4uTPKeCv3f3zaz3ogT3bef6lWzg1ObPWQ0kD9aVDHj6VJUoeF6OImbMzXLatt6nlqmVbjRbB5QaCV+1IJovpsEDw+Ts38fVHzxAYBAb5UsToRJ7XXL3637wK/KRt3Hb0u4xPFwjMCMzwCManC9x29LsK/NpAeZByVypgc8/6DFIWEZE57j4EXNXsckhryBZKs0FfWZQsb3W1AsGvj5zlvpEz3Pe9jdEi+G/DZ9nam2YqX27xCxjoTvHVodO8dZXHVOAnbWP4zHR81SOZ7t4MiJzhM83vsiBLq8cgZREREantqYnaLbQLLW9l2/q7ePGe7by4xhjB+xZrEXzaIFft3NyWLYKPj0+zpS/D1j4jFQaEgeHuGuMnIq2vHoOURUREpLbiAlP3LLS8nSw0RvD+4apA8HtnuOd7Z4D2axG8aLCHU1Mzs5PzAEwXSuzYsvquugr8pG3s3NLLI6emwB0zcIfI4dKty/sHMDNCM8LQSAVxd9FUYHHLYSJyiNxxB8eJovhxKXIidyIH9w6oMZugXIH1d81VsmutwERERKS20KBU4ydLaOcua3cLjRG8f/gM94+c5Xuns23XInjd1Tu55c4HmC6U6A+MbL5EoeTcsH/Xqo+pwE/axvUv2hVP7jJTpFRywsAY7Elz/Yvm/gHCwEiHAekwIJMKSIdGGBipIG4iXy9R5JSSgLAYxX9LkVMsRbOPi5FjUBGkbuyAsboCmy6svQITERGR2i7d1sdDT01R+evDkuWdbsExgtWBYEWLYFcq4DktFAju27WVG9nNoWPDnJzMccnWvjVPirfhAr8jJ0b54JHv8sjpKaUDaDP7dm3lp696Gn9zzwjZqEQmFfCaq3dy7fOfVpfgbjFBYAQYFa3vy1KKnEIpSm5OvhjNPu505QrsU/eO8OR4jh2a1VNERNqYmWGz9+O/5Wu8ZmDM9SoyO3f78qP4fnlF+U+8bzyhHUlPpLjXUZQ8hzP/grJX9FoC+JUXP53f/btvMJWP8OTQfZmAN+/fRZj0fKrctxh17m+R6jGCp6fySRA4N1nMTK2uoU0OBPft2sq+XVs5b6CLwe70mo+3oQK/IydGuenwccIABrtTnJqa4ZY7H+BGdiv4ayHlFrs4mJvrmvkvDzzF4a8/RtHj1r5i5HzynhH2Xb6tbYKHMDDCIKS7KmIsV+TllsN8MWKmVEoCQ++47qWddTYiIhuP2bkXWsu9XCoDinLAU14/u6wi6KlcVxn4zG07/zlt3n7nlsPxeYGSE5epPNwjqFXGBY5z7jkmw0UadKF5Lbb1ddGTSVGMihSjiFQQ0JNJsX2wu2arXxQ5hSia7bVUKEbkihH5YtRxv0O29mVqdw2tnjW0hVsEV2NDBX4Hjw6RDo3udEihGNGTDpkulDh0bFiBXxNYMsYukwrIhAFd6YCuVLhgq937vvBtxrKF2StdcYtZnvd87lttE/gtJB5/yOy592RCIL6y4+7MFCNmChEzxRL5UlwJtxulcxARaV8DXSn6u1IEVjvok9Zz8OgQgz1pLtzUM7tssdm0g8DoCmp3ZXKPg8FcocR0oUSxlMx9kMyF0O7DWaq7hp6eyscTxYyc4f7huGtodYtgIwLBu4ZOc+jYMKOTOS5t9a6eZnYNcAsQAh9y9/dUrbdk/cuBLPAL7n5vsu5hYAIoAUV337vW8gyPZdnck553/aY7HfDEuNIB1NvcmLtgNtDLpFb2z/HA6ORs0FcWeby8k5nFFyviVsI4GIwiJ1csMZ0vJYN9Wz8QVDoHEZH21Q4tXDJf+XdvpdXOpm1mpMN4HoWBBboclnstlYewxBPjxV1Ic4X2ajXc2pc5p2toecbQ8hjBegeC5QvmqcDY1L0+F8zrFviZWQh8AHgJMAIcM7PD7v7Nis1eBuxObj8A/Gnyt+zF7v7UepVp55ZeRidy87rZ5QoRFw72LLKXrEa6ogWvLxOSWocrILVmplpseScLgjhw6s2k2AbzxgrmChG5Qqnlrr4pnYOIiEjj7NzSy8OnJhmfLpIvRWTCgMGeFJdt66/L88XDWazmhf1y76XpfNxiONNm3UcXDAQXGSO41kCwHhfM69nitw940N2HAMzsEPAKoDLwewXwcY/f+a+Z2WYzu8jdH69HgW7Yv4ubDh8n8iKpwMgV4hkYr7t6Zz2ebsOIW6QCetIhXamQrlSgK4MNlknNb0Gd7R5ajLuHTudLlKqbSxtM6RxEREQa5wd3beWuh08nYxohX4oYncjzmqsbP7ypsvfSFuZ+p0zkikzNFFvuYvVSFgoE709mDl2PFsF6XDCvZ+B3MTBc8XiE+a15C21zMfA48ZjcL5iZAwfd/ba1FujAnu3cDHzwyHf53ukpLtSsnitSvpKTDgNSgZEKA7pS8U39/VtLre6h0/kSkzNFsvliU4JApXMQERFpnK8OnWagK2Q8V6TgcfA32J3iq0OneWuTy1b5O2VbX4bpQjyh3UyxNXstLWW1XUNnZw3dsZk9F80PBNstgXutSKD6XVxsmx9298fMbDvwRTM74e5Hz3kSs+uB6wEuueSSJQt1YM92Xvj0bTx2RuP6ltKVDulOBbP/mI1KlbCQAKg1kq295lNqnp5MSE8mxD0zO1lMeZxgIyrYdknnsIyxyXuAPwdeAPyWu7+v8aUUERFZ3HeeHGcqXyIdBLM5hafyJR54crzZRZsnCIy+rhR9XfHjcmvg1EyxbeYxqFYrEPz6yBn+bXj+ZDH3fu8M9y7QIvgz338xHzjy3bZJ4D4CVPah3AE8ttxt3L38d9TMPkvcdfScwC9pCbwNYO/eve11eaDFZJIgrzcT0p0KW6675rMuHODEExPnJCJ91oUDzSpSW6q8yrYpaQ3MFeLWwKmZ+rYG7tu1lZdceQHb+rvq9hxrscyxyaeBtwI/3fgSioiILE8hmQSh/HvOLJ4cLt/ikyPMaw0EJmeKjE3l2zIALNval+HAs7Zz4Fkr6xq6c0sPkzMlTk7O8PTz+/mlH316y87qeQzYbWaXA48C1wGvrdrmMPCWZPzfDwBn3f1xM+sDAnefSO7/JHBzHcu6IYXJBCH9Xam2GJf39mv28Jufup+J3Fw+moHuFG+/Zk+zi9b2yhXsef1dFJJ0EdOFEtmZUkcndK1hybHJ7j4KjJrZf2hOEUVERJaWSQWzvXrKLX44K55Vvdn6u1L0ZUImZ4pM5IrkCqVmF2nNljtG8MGTU7P77N/ds+ZeUnUL/Ny9aGZvAe4g7jL1EXc/bmZvTtbfCtxOnMrhQeJ0Dr+Y7H4B8Nlk3FgK+Gt3/3y9yrpRhMnMQN2ZMBmbVztXS6s6sGc7f/gzV3Hw6BAjY9mW7SrY7tJhnHajrysF/XFrYDZfYmqm2NZX25ZpOWOTl2Wl3dBFRETW0+7tA5x44ixnp4tEyRi/TT0pdm9vv55SZsZAd5qB7jQzxRJnswUmZ4rNLta6WSwQvH/4DI+cznL15Wufk6Suefzc/Xbi4K5y2a0V9x34lRr7DQFX1bNsG0VXOqQ3HY/tqkxj0e5au5NCZym3Bm7ty5AvRmTzcZ/7dpuKeZmWMzZ5WdQNXUREmqk8q2cYGGmLcx+P50r8YJtPatiVCtk+GLK5GDGRiwPAZs9cvt7KgWBfJsX3TmXJFUt85t4RLhrsbtmuntIEqSCgOxPQm0nR0wITsqynIydG53X1fGpiht/81P384c9cpVa/BonTRmTY3DuXRL48ScxMIWq7WbhqWM7YZBERkZb31aHTbB/InJPHrxVm9VwPmVTAtv4utvZlODtdYCxb6KgL0pUJ3Lf2Zjg9lW/dBO7SGJU59HoyYdt131yJ937+BGPZAmGSSsIdxrIF3vv5Ewr8mmAuifzcsnLOwMmZIvliW3YLXc7YZBERkZY3PJYlU5UnLhMGa8oD14rMjM29Gfq6UpyazJPNd0YX0HZL4C51EJjRlQ7oToVJF7yNk0Nv6KmpJAnp3OxUbs7QU1NL7CmN0pWKLz5s7s1QKEVkZ0pMF0ptk5NnOWOTzexC4G5gEIjM7G3AFe7eWvNji4jIhjbQleI7T04QeTxmoVgqMTI2zTMvaL8xfsuRDgMu3NTNRK7A6al823f/bLcE7rJO0mFAf1cqadHbOIGetLd0GLCpN5iXMmJqptjy3Y+XMTb5CeIuoCIiIi1rIlegMnODAyWPl3eyge40vZkUp6fybX2u9Ujg3l7zuW4g6TBgc2+Gp23uYefWXrb0ZehOmno3qsu39RJ5PLbM3YkiJ/J4ubS+7nTItv4uNlf2DRUREZG6ODmZJ7R4Nk8j/htavLzThYFx/kAXF2/poSfTnsOgrrt6J8XImS6UcHey+eKaE7gr8GsRYWD0d6U4b6CLS7b2snNrL1uTYE9i73jZs9ncm8YCKLljAWzuTfOOlz272UUTERERaTlhYHQlw4O6Up016d9ydKVCLtrUwwWD3aTD9gp79u3ayo0/tpttfV2M5wpsH+jm5muv1Kye7cjM6EoF9GY6f1KW9XJgz3bepzx+IiIiIku6fFsvD56cwqK5BO6RwzPO23g9pfq6UvR1pZjIFTiTLbRNXuJ9u7ayb9dWzhvoYrA7vebjbbjA78iJUT545Ls8cnqKiwZ7uO7qnexrUD6TdBjQnQ7jYC8dEmywqy7r4cCe7Qr0RERERJbwjpc9m9/41P2zee7CwNjctbF7SpWTwOcKJcZzBSZznTED6HJtqMDvyIlRbjp8nDCAwe4Up6ZmuOXOB7iR3XUJ/gKz2cTpvZmw7ZqYRURERKQ9Hdiznde/8FI+9JWHmCqV6AkDXv/CS3UBHZKZ8UM29ZQ4NZknVyg1u0g13TV0mkPHhhmdzHHp1r4193TbUIHfwaNDpEOjOx1SKEb0pEOmCyUOHRtet8AvHcbdN/u6UpqBU6TKkROjHDw6xPBYlp3qqisiIlI3R06M8ql7H+X8gS4uSX7zfureR3nujs367k10pUKetrmHbL7IWLbATAsFgJUJ3Dd1pxmdyK05gfuGaoIaHsvOmxIVoDsd8MT49KqPmQoC+rtT8T9VMinLtv6uDT8Dp0i1cov76ESOzT1zFdiRE6PNLpqIiEjHKTd49GZSswnA06Fx8OhQs4vWcnozKS7e3MPTNvfQ35Vqid/wtRK4r/X921Atfju39DI6kZs3U2auEHHhYM+yj2EWvwE96XhSlkxqQ8XOIqtW+QUEcSWbzRc5eHRIVx5FRETW2fBYls098ycEWWsC8E5X7gJaLEVM5IpM5IoUo+ZMBFOPBO4bKmq5Yf8uCqU4D4YT58UoRs51V+9cdL9MKmBTT5qLNvVw2bZeLtzUzabetII+kRWo1eKuLyAREZH62Lmll+mqrotrTQC+UaTCgC19GXZu7eG8ga6mzNNx0WAPucL8oFMJ3FfgwJ7t3HztlZzf381Ersi2vi5u/LFzJ3Yp59Qrd9/csSXuvtmTUfdNkdXauaWXpyZnGDo5yYknxhk6OclTkzP6AhIREamDG/bvYny6wANPTvCtx8/ywJMTjE8X1pQAfKMxMwa70+zY0sPWvkxD44B6JHDfUF09IQ7+Xvj0bTx2Zm5cX2VOvXITr4isrx/ctZW7Hj5NYBAY5EsRJyfzvHZfY9KpiIiIbDQOYPFvXSx5LCtmZmzuzdCbSfHU5ExDZgHdt2srN7KbQ8eGOTmZ4xLN6rl6mVQwO06vO6WceiL19tWh02wfyDA+XSRfisiEAYM9Kb46dJq3NrtwIiIiHebg0aHZoUplGlu/NplUwNM29zCeK3B6Mk/k9Q2llcB9HXSnQ3UvE2mw4bEs2/q6OK+/e3aZu2uMn4hIi1Mqnvb0wOgE2ZkihcjJhAHnD3TR35XS9+46GOxO05eJc4LXMwm88vjJhqYvn/ZVnlW3PKsnaJC5iLQGfbcsrJyKJx3avFQ8a8klJvV35MQoE7kikTthYBQj57EzObb1p7lsW3+zi9cRwsDYPtDNYHeJsWye6fz6dv9UHj/Z0JQHrr3Nm1V3nQYpi4isVad9t5jZNWb2bTN70MzesdbjHTw6RL5Y4omzOb795ARPnM2RL5aUC67FHTw6xJbeuGugR2CA45ye0uQu6607HXLRpjgHYE9m/eYJqUcePwV+0jaUiLS9lWfV3T7QzdnpAtsHurn52it1xVhEmqqTvlvMLAQ+ALwMuAJ4jZldsZZjfufJcU5N5SmWnNCMYsk5NZXngSfH16PIUifDY1nO6+/iaZt6SIVGyePungNdob5366QyAFyPiSIfH5+mOz0/VFtrGix19ZS2oUSk7e/Anu36whGRltJh3y37gAfdfQjAzA4BrwC+udoDFkrx5BXlSfDMIIqcfEnzQ7ay8vCKwZ40g8nnO5svsn2ge4k9Za260yFP29zD5EyRsak8hdLqEsBfNNjDqamZeTmQlcdPNgwlIhURkfXWYd8tFwPDFY9HkmWrlkkF4BC543g8i6Eny6VlaXhF8/V3pdi5tZftg92r+n+pRx4//ddK21AlJiIi663Dvltq5aaa1zRnZteb2d1mdvfJkyeXPODu7QOcN5AhFRilyEkFxnkDGXZvH1ivMksdaHhF6+jvSrFjSy/nD3SRCpYfeu3btZUbf2w32/q6GM+tz3u44bp6auau9nVgz3ZuJh6PMTKWZYfePxERWaMO+24ZAXZWPN4BPFa5gbvfBtwGsHfv3iX7a96wfxc3HT7OhZtS9KRDpguldg6MNxQNr2gtA0kKiPFcgTPZwrJyACqP3xpoSuL2p0pMRETWWwd9txwDdpvZ5cCjwHXAa9dywA4LjEWaKgiMzb0ZBrvTjGXzjOfingaNsqECv8qZuwB6Mymy+SIHjw6pAhORplJvBBFZK3cvmtlbgDuAEPiIux9f63E7KDAWaQlBYGzr72KwJ83YVJ7Jmfolga+0oQK/Dpu5S0Q6hHojiMh6cffbgdubXQ4RWVo6DNg+2M1gocSpqTwzhfVNAl9tQwV+O7f08tBTk0zkiuRLUZzPpDvF5ef1N7toIrKBHTw6RKFU4tTkXN002JNSb4Q2ceTEKO/53Ld46FR8EXHXeX28/Zo9eu9ERGRZutMhF69DCoilbKhZPX9w11ZOTubJlyICg3wp4uRknh/ctbXZRRORDeyB0QmemshTjJwwMIqR89REngdGJ5pdNFnCkROj/Man7ufBk1O4O+7OA6OT/Oan7ufIidFmF09ERNpIPANoD9v6VzYD6HJtqMDvq0On2T6QIRMGRA6ZMGD7QIavDp1udtFEZAPLFyMwCMwwjMAMLFkuLe3g0SEmZ4qEZoRBkNyMiVw8flxERGQlzIxNPWl2bu1hW18XYVArS8vqbKiunsNjWbb1dXFef/fsMnfXGD8Raap0aEwXIIocMyhP8JUJ16+yl/oYHstSipzQ5t4rMyiWIn23iIjIqpkZm3rTDHSnKK3TzJ8bqsVv55ZepqsGTU4XSuzY0tukEomIwDMvGGRbX4ZUaJTcSYXGtr4Muy8YbHbRZAk7t/QSBkbld7I7pIJA3y0iIrJmQWCkw/UJ2TZU4HfD/l0USk42H+fMyOaLSkIqIk13w/5dZFIhF27q5lkXDHDhpm4yqVB1Uxu4Yf8u+rviq7GlKEpuzkB3Su+fiIi0lA0V+B3Ys52br72S7QPdnJ0usH2gm5uvvVIzr4lIU6lual8H9mznfT9zFc84vw8zw8zYvb2fP/yZq/T+iYhIS9lQY/xASUhFpDWpbmpfeu9ERKQd1LXFz8yuMbNvm9mDZvaOGuvNzN6frP+6mb1gufuKiIiIiIjI8tQt8DOzEPgA8DLgCuA1ZnZF1WYvA3Ynt+uBP13BviIiIiIiIrIM9Wzx2wc86O5D7p4HDgGvqNrmFcDHPfY1YLOZXbTMfUVERERERGQZ6hn4XQwMVzweSZYtZ5vl7CsiIiIiIiLLUM/Ar1bm4ersgwtts5x94wOYXW9md5vZ3SdPnlxhEUVERERERDpfPQO/EWBnxeMdwGPL3GY5+wLg7re5+15333v++eevudAiIiIiIiKdpp6B3zFgt5ldbmYZ4DrgcNU2h4HXJ7N7vhA46+6PL3NfERERERERWYa65fFz96KZvQW4AwiBj7j7cTN7c7L+VuB24OXAg0AW+MXF9q1XWUVERERERDqZudccOteWzOwk8MgyNz8PeKqOxWk2nV970/nNudTd27oft+qmeXR+7U3nN2ej1U2g97+ddfK5gc6vWs36qaMCv5Uws7vdfW+zy1EvOr/2pvPbuDr9tdH5tTed38bW6a9PJ59fJ58b6PyWq55j/ERERERERKQFKPATERERERHpcBs58Lut2QWoM51fe9P5bVyd/tro/Nqbzm9j6/TXp5PPr5PPDXR+y7Jhx/iJiIiIiIhsFBu5xU9ERERERGRD6OjAz8yuMbNvm9mDZvaOGuvNzN6frP+6mb2gGeVcrWWc3wEzO2tm9yW3m5pRztUys4+Y2aiZfWOB9e3+/i11fm37/pnZTjP7kpl9y8yOm9mNNbZp6/dvrVQ/tfXnW3VTm753oPppKaqb2v7zrfqpTd+/htRN7t6RN+LE798FdgEZ4H7giqptXg58DjDghcC/Nrvc63x+B4C/b3ZZ13CO+4EXAN9YYH3bvn/LPL+2ff+Ai4AXJPcHgO900v/fOrw+qp/a+/OtuqlN37uk/KqfFn5tVDe1/+db9VObvn+NqJs6ucVvH/Cguw+5ex44BLyiaptXAB/32NeAzWZ2UaMLukrLOb+25u5HgdOLbNLO799yzq9tufvj7n5vcn8C+BZwcdVmbf3+rZHqpzamuqm9qX5alOqmNqf6qX01om7q5MDvYmC44vEI5754y9mmVS237D9oZveb2efM7MrGFK1h2vn9W662f//M7DLg+cC/Vq3aCO/fQlQ/xdr+872Adn7vlqsj3jvVT+dQ3RTriM/3Atr5/Vuutn//6lU3pdZcstZlNZZVT2G6nG1a1XLKfi9wqbtPmtnLgb8Fdte7YA3Uzu/fcrT9+2dm/cCngbe5+3j16hq7dNL7txjVTx3w+V5EO793y9ER753qp5pUN3XI53sR7fz+LUfbv3/1rJs6ucVvBNhZ8XgH8NgqtmlVS5bd3cfdfTK5fzuQNrPzGlfEumvn929J7f7+mVmauOL6K3f/TI1NOvr9W4Lqpzb/fC+hnd+7JXXCe6f6aUGqmzrg872Edn7/ltTu71+966ZODvyOAbvN7HIzywDXAYertjkMvD6ZIeeFwFl3f7zRBV2lJc/PzC40M0vu7yN+v081vKT1087v35La+f1Lyv1h4Fvu/kcLbNbR798SVD+18ed7Gdr5vVtSu793qp8WpbqpzT/fy9DO79+S2vn9a0Td1LFdPd29aGZvAe4gnsXpI+5+3MzenKy/FbideHacB4Es8IvNKu9KLfP8fgb4JTMrAtPAde7eNs35ZvYJ4tmZzjOzEeB3gTS0//sHyzq/dn7/fhh4HfDvZnZfsuydwCXQGe/fWqh+au/Pt+qm9n3vEqqfFqC6qf0/36qf2vr9q3vdZO3zWoiIiIiIiMhqdHJXTxEREREREUGBn4iIiIiISMdT4CciIiIiItLhFPiJiIiIiIh0OAV+IiIiIiIiHU6BnzScmf2smR03s8jM9lYs32ZmXzKzSTP731X7fN7M7k/2u9XMwmT5fjO718yKZvYzVfu8wcweSG5vqFj+FjN70MzcKpJ6mtlvmtl9ye0bZlYys631eyVEpJWobhKRVqS6SdaLAj+pG4vV+ox9A3gVcLRqeQ74HeA3auzzc+5+FfAc4HzgZ5Pl3wN+AfjrqufeSpzb5QeAfcDvmtmWZPU/Az8BPFK5j7v/obs/z92fB/zfwJfd/fTSZyoi7UR1k4i0ItVNUm8dm8BdmsPMLgM+B3wJ+EHgjJmdDzhxotQ/dvdvJdvO29fdp4CvmNkzqo/r7uPJ3RSQSY6Huz+cHCuq2uWlwBfLFZCZfRG4BviEu/9breev8hrgE8s5ZxFpfaqbRKQVqW6SRlKLn9TDs4CPA28Ciu7+HHf/PuDP13JQM7sDGAUmgE8tsfnFwHDF45Fk2XKep5e4svv0KoopIq1LdZOItCLVTdIQCvykHh5x968BQ8AuM/tfZnYNML7Efoty95cCFwFdwI8tsXmty1K+zKf6KeCf1V1BpOOobhKRVqS6SRpCgZ/UwxSAu48BVwFHgF8BPrTWA7t7DjgMvGKJTUeAnRWPdwCPLfNprkPdFUQ6keomEWlFqpukIRT4Sd0kMz8F7v5p4sHHL1jlcfrN7KLkfgp4OXBiid3uAH7SzLYkg5N/Mlm21HNtAn4U+LvVlFVEWp/qJhFpRaqbpN4U+Ek9XQwcMbP7gI8Sz/iEmb3SzEaIBzH/Q9IHnWTdw8AfAb9gZiNmdgXQBxw2s68D9xP3V7812f7q5Fg/Cxw0s+MASXeDdwPHktvNFQOW35rsswP4uplVXlF7JfCFZMC0iHQm1U0i0opUN0ldmftyu++KiIiIiIhIO1KLn4iIiIiISIdT4CciIiIiItLhFPiJiIiIiIh0OAV+IiIiIiIiHU6Bn4iIiIiISIdT4CciIiIiItLhFPiJiIiIiIh0OAV+IiIiIiIiHe7/B+zH/HCL8wclAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "onemillionv3 = datasetv3.data_sc.obs.copy()\n", + "onemillionv3_celltype_df = pd.read_csv(\n", + " './1M_v3_20201106_azimuth.tsv',\n", + " sep='\\t', index_col=0\n", + ")\n", + "onemillionv3 = pd.concat([onemillionv3, onemillionv3_celltype_df], axis=1)\n", + "onemillionv3 = onemillionv3[onemillionv3['timepoint']=='UT']\n", + "onemillionv3_l1_cellratio_df = onemillionv3.groupby(['assignment', 'predicted.celltype.l1']).size().to_frame()\n", + "# display(onemillionv3_l1_cellratio_df.head())\n", + "onemillionv3_celltyperatio = onemillionv3.groupby(['assignment', 'predicted.celltype.l2']).size().to_frame()\n", + "# display(onemillionv3_celltyperatio.head())\n", + "onemillionv3_allcells = onemillionv3['assignment'].value_counts()\n", + "\n", + "# caluclate the individual CD4T TEM and NAIVE ratio\n", + "individual_ratio = pd.DataFrame()\n", + "for individual in onemillionv3['assignment'].unique():\n", + " tem_num = onemillionv3_celltyperatio.loc[individual, \"CD4 TEM\"].values[0]\n", + " naive_num = onemillionv3_celltyperatio.loc[individual, \"CD4 Naive\"].values[0]\n", + " cd8t_tem_num = onemillionv3_celltyperatio.loc[individual, \"CD8 TEM\"].values[0]\n", + " tcm_num = onemillionv3_celltyperatio.loc[individual, \"CD4 TCM\"].values[0]\n", + " cd8t_tcm_num = onemillionv3_celltyperatio.loc[individual, \"CD8 TCM\"].values[0]\n", + " cd8t_naive_num = onemillionv3_celltyperatio.loc[individual, \"CD8 Naive\"].values[0]\n", + " cd4t_num = onemillionv3_l1_cellratio_df.loc[individual, 'CD4 T'].values[0]\n", + " cd8t_num = onemillionv3_l1_cellratio_df.loc[individual, 'CD8 T'].values[0]\n", + " all_num = onemillionv3_allcells.loc[individual]\n", + " individual_ratio[individual] = [tem_num, naive_num, \n", + " cd8t_tem_num, cd8t_naive_num,\n", + " cd4t_num, cd8t_num,\n", + " tcm_num, cd8t_tcm_num, all_num]\n", + "\n", + "individual_ratio_dfv3 = individual_ratio.T\n", + "individual_ratio_dfv3 = individual_ratio_dfv3.rename({0: 'CD4T TEM', 1:'CD4T Naive', \n", + " 2: 'CD8T TEM', 3: 'CD8T Naive',\n", + " 4: 'CD4T', 5: 'CD8T',\n", + " 6: 'CD4T TCM', 7: 'CD8T TCM',\n", + " 8: 'all_num'}, \n", + " axis=1)\n", + "display(individual_ratio_dfv3.head())\n", + "\n", + "\n", + "common_individuals = list(set(individual_ratio_dfv3.index) & set(gt.columns))\n", + "common_individuals_individual_ratio_dfv3 = individual_ratio_dfv3.loc[common_individuals]\n", + "common_individuals_individual_ratio_dfv3['gt'] = [float(gt[col].values[0].split(':')[1]) for col in \n", + " common_individuals_individual_ratio_dfv3.index]\n", + "common_individuals_individual_ratio_dfv3['chemistry'] = 'v2'\n", + "\n", + "fig, axes = plt.subplots(1, 3, figsize=(15, 5))\n", + "ax1, ax2, ax3 = axes\n", + "cd4ydata = (common_individuals_individual_ratio_dfv3['CD4T TEM']) / common_individuals_individual_ratio_dfv3['CD4T']\n", + "sns.regplot(x=common_individuals_individual_ratio_dfv3['gt'],\n", + " y=cd4ydata, \n", + " ax=ax1)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_dfv3['gt'],\n", + " cd4ydata)\n", + "ax1.set_title('Oelen v3 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax1.set_ylabel('CD4 TEM / CD4T')\n", + "ax1.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_dfv3['CD4T Naive']) / common_individuals_individual_ratio_dfv3['CD4T']\n", + "sns.regplot(x=common_individuals_individual_ratio_dfv3['gt'],\n", + " y= cd8tydata, \n", + " ax=ax2)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_dfv3['gt'],\n", + " cd8tydata)\n", + "ax2.set_title('Oelen v3 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax2.set_ylabel('CD4 Naive / CD4T')\n", + "ax2.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_dfv3['CD4T Naive']) / common_individuals_individual_ratio_dfv3['CD4T TEM']\n", + "sns.regplot(x=common_individuals_individual_ratio_dfv3['gt'],\n", + " y= cd8tydata, \n", + " ax=ax3)\n", + "r, p = stats.pearsonr(common_individuals_individual_ratio_dfv3['gt'],\n", + " cd8tydata)\n", + "ax3.set_title('Oelen v3 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax3.set_ylabel('CD4 Naive / CD4T TEM')\n", + "ax3.set_xlabel(\"rs1131017\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'rs1131017')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAFNCAYAAABSRs15AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACUFklEQVR4nOzdeZxcV3Xo+9+quXoeNVjqltRS28J2bCxL8ighCIMhDMHhXYzJQALPJoELSe7lQiYncXITuCQ3OA+I7RAgIw4QTBRiMBBjJGuwJI8gW3ZLraFbU89jzVXr/XGqWtWtHqWurml9P5+yqs45Vb2rXb3rrLP3XktUFWOMMcYYY4wxxc+V7wYYY4wxxhhjjFkcFuAZY4wxxhhjTImwAM8YY4wxxhhjSoQFeMYYY4wxxhhTIizAM8YYY4wxxpgSYQGeMcYYY4wxxpQIC/CKkIisFREVEU++22KMMdYnGWMKkfVNplxZgJcnIvIBEfmJiIRE5JyI/I2I1OW7XbMRkf8jIl0iMiIiJ0Xk93L4s35WRI6kfz8/EpE1MxznF5G/S7dnVESeE5G3Zu33icg3ReREupPfkas2z0ZE7k63cVxEvi0iDTMct0xEviYiZ0RkWET2iMhNMxz7lfR72pDb1ptyYH3Sgn92g4g8mv6bPikid89x/G+lf6/DIvJlEfFn7VsrIo+JyGD6mM8v9Qlpug0/Sv//PyIib5zj+E0isktExkTkvIh8fMr+j4vI8fTv52URuTK378CUKuubFvyzrW+aoW9KnwuG0/vGROT7uX8H+WEBXh6IyP8APgN8AqgFbgbWAD8QEV8+2zaHvwM2qmoNcCtwt4jcOZ8nLqRDEJEm4FvAHwANwCHgX2c43AN0Aa/D+V3+AfB1EVmbdcxTwC8C5+bbhsUkItcADwG/BCwHQsAXZzi8CjgI3Ijz3v8e+E8RqZrymrcD63PVZlNerE+6JF8AYjh/0+8H/ib9tz7dz3oL8CngZ4G1QBvwx1mHfBHoAVYCr8Xpz37jMtu3UF8DngMagd8DvikizdMdmO6jv4fTrzUCG4DvZ+3/EPBB4Odw+rS3A325bLwpTdY3XRLrm2bom9LeoapV6dubc9fsPFNVuy3hDagBxoD/NmV7Fc4f0a+lH7tw/uiOAf3A14GG9L61gAKe9ONanM7kLHAa+FPAnd73AZwA5y+AQeA48NYZ2vYp4JtTtj0A/PU0x64CfgL8rxleawfQDXwSJ7D6xwX8ju4B9mY9rgTCOJ3lfJ7/IvAL02zvBnYs8P+XAh8DOnFOUD4LuBb4Gn8G/EvW4/U4nW/1PJ8/AtyY9diD09ldl27fhnx/ru1WvDfrky7pd1aZ/hu+MmvbPwKfnuH4fwH+LOvxzwLnsh6/DLwt6/FngYfm2ZavAg8CPwBGgR8Daxb4fq4Eotl9ErAb+PAMx//ZTL+/9OekC/jZfH+27VbcN+ubLul3Zn3TLL8/4ATwxnx/tpfiZiN4S+9WIIAzQjVBVceA7wJvSm/6GPDzOFdLrsDpbL4ww2v+PZDAuVJxA/Bm4ENZ+28CXgGagP8D/J2IyDSv8zXgbSJSAyAibuC/4XQApLd9SkTGcDqjyux901iBMwq1BrhHRFpFZGiWW2YawTXAC1m/m3GcjnvaK1DZRGQ5TodweK5jF+DdwGZgE/Au4NfSP+v2Od7P7TO8n2OkO+B5vJ/XAj7gaNbm3wJ2qeqLi/DejLE+ae4+aaorgaSqvpq17QVm7qMm9QHp+8tFpDH9+AHgLhGpEJFVwFtxrkLP1/uBP8H5fT4P/HNmh4i8OMv7y8wkuAboVNXReb6fm4EBEdkrIj0i8h8i0pretzp9uzY9Re24iPyxiNj5hlko65usb1rMvinjn0WkV0S+LyLXL+C9FJd8R5jldiM9VXCGfZ8GfpC+/zJZV0BxhsfjOKM3a0lfkcIZgo8Cwaxj3wf8KH3/A8DRrH0V6eeumKENTwG/nL7/JuDYNMcITsf4x8wwCoVzRSoGBC7hd/R3TLnaBOwBPjDH87zAD5nh6hKXPoJ3R9bj3wD+a4Gv8V9MudqEc+Vw1rbgXL38CfA7WdtacIK92qz22Qie3S75Zn3SJf3Otk39nQH/L/DkDMcfm9KPeNPveW368WuAZ3BOPBXnyrfMsy1fBR7JelwFJIGWBbyfXwL2T9n2v4GvznD8q8AQsAXnBPyvgT3pfbem38N/AnXpz8arwP+b78+63YrrZn3TJf3OrG+aoW9K778NCKb/3/4OzohpXb4/67m42RW1pdcHNM0wx3olF9YprAEezVzNwOnAkjgdVLY1OH+QZ7OOfQhYlnXMxNozVQ2l705a05XlX3A6PIC7meaKkzqew5k2+cdT92fpVdXILPtnMoYT3GSrwRnin1b66vA/4nSSH72Enzmbrqz7J3GuEC7EpbyfIPAfOB3bn2ft+hxwv6oOL7ANxszE+qQ5iMh35cKi/Pez8L/pqcdn7o+m+67HcUYpKnGudNfjrDuar4k+Sp3RjQEW1k8t9P2EgUdV9WD69/nHwK0iUpveB/B/VHVIVU/g/P9/2wLaYwxY3zQn65suMlvfhKruUdWwqobS51ZDOEFxybEAb+ntw7mCNGmxrYhU4gx9/1d6UxfO3O+6rFtAVU9Peb2u9Os1ZR1Xo6pzTmecwTeAHSKyGmdq4mxTCjzMnuhDsx+kpxyMzXJ7f/rQw8D1Wc+rTP+caaddpqdP/B1OZ/4Lqhqf4z0uVEvW/VbgTPrnbpvj/WQ6janvpw3w41xpmu79+IFv44zy3Ttl988CnxUnm1Xmi2jfLNM1jJmL9Ulz9Emq+la9sCj/n3H+dj0i0p71ctcz89TwSX1A+v55Ve3HmZbVAnxeVaPpbV9hYQHRRB8lTkKmBi70U4dneX8PZrWvTUSq5/l+XmTy7zJzX3Cmt8Wm7DfmUljfZH3TYvZN09FZ9hW3fA8hluMN+F/AeeAOnKtJa4HHgGcBf/qY3wKeJL0gFWgG3pW+v5bJi4b/HWeedA1O0L4eeF163weAp6b8/Fmn9eHMbf8B8FzWNhdOsFGP88ewFWeR8sdmeI0dQPcl/n6agWHgF3CG2D/DlCH6Kcc/COwHqmbY70+/TjfOfPsA6SkG6d/PiVleW3G+ROpxOqojwD0LfD/X4CRK2YZzFeyfyJq2MOVYL87I3bcz/3+n7F+GM1c/c1OcOefBhbTJbnbLvlmfdEm/s0dw1uFU4kz7GQaumeHYO3BGBq5Ot/cJsqah4yRx+hTOSWAd8Cjwz1N+PztmeO2vpvuX23HW6/4VWUmqFvB+9uMklwjgnKwOAc0zHPsGnHVOr01/Xv4K2J21/x+A7wDVOOvxjgAfzPfn3G7Fd7O+6ZJ+Z9Y3TdM34Vygvy3dlgBOZtZeoDHfn/Oc/O3kuwHlesNJIf1TnOHk8zjTBOqz9ruA38a5GjqKM0/6z9L7pnZYtcDf4AQwwzgZFu9K77uUDuuX0sd8Ykp7voczvD6Gc5Xod5lhLvbldljAG3FOCsI4HffarH2/C3w3fX9Nuq2RdLsyt/dnHX8ifUz2bW163x9kd1bTtEO5kEWzH/hL0hm3Fvh+7gZOAeM4XzANWfseBB5M339d+meGpryfbbO0z9bg2e2yb9YnLfj31YBzIWY8/bd9d9a+1nSbWrO2/Xb69zqCcxXcn7Xvtel+bhBn2tk3gGXpfavTv+9pT0KYnKluDNgFrLuE97M23YZw+v/xG7P2bQPGphz/6zizDAZxLkq1ZO2rwTnJHMUZNblvpv8vdrPbXDfrmxb8+7K+aZq+Cedi+4vp30s/zsX7zfn+fOfqlhnFMKYsiVPk8uOq+vIM+xVoV9Wj0+03xphcEpFfxLn6/jsz7P8qzsnh7y9pw4wxZc36psK2pNXojSk0WspFLo0xRU9V/ynfbTDGmKmsbypslmTFGGOMMcYYY0qETdE0xhhjjDHGmBJhI3jGGGOMMcYYUyIswDPGGGOMMcaYElF0SVaampp07dq1+W6GMWYRPfPMM32q2pzvdlwu65+MKT2l0D9Z32RM6Zmtbyq6AG/t2rUcOnQo380wxiwiETmZ7zYsBuufjCk9pdA/Wd9kTOmZrW+yKZrGGGOMMcYYUyIswDPGGGOMMcaYEmEBnjHGGGOMMcaUCAvwjDHGGGOMMaZEWIBnjDHGGGOMMSXCAjxjjDHGGGOMKREW4BljjDHGGGNMichZHTwR+TLwdqBHVa+dZr8ADwBvA0LAB1T12Vy1xxizNJ480sNDuzrpGgzRUl/Bvdvb2LFxWb6bZcyisM+3MaYQWd9ksuVyBO+rwB2z7H8r0J6+3QP8TQ7bYoxZAk8e6eG+nYfpGY1QF/TSMxrhvp2HefJIT76bZsxls8+3MaYQWd9kpspZgKequ4CBWQ55F/AP6tgP1InIyly1xxiTew/t6sTrFip8HkScf71u4aFdnflumjGXzT7fxphCZH2TmSqfa/BWAV1Zj7vT2y4iIveIyCEROdTb27skjTPGLFzXYIig1z1pW9DrpnswlKcWGbN47PNtjClE1jeZqfIZ4Mk023S6A1X1YVXdrKqbm5ubc9wsY8ylaqmvIBxPTtoWjidZXV+RpxYZs3js822MKUTWN5mp8hngdQMtWY9XA2fy1BZjzCK4d3sb8aQSiiVQdf6NJ5V7t7flu2nGXDb7fBtjCpH1TWaqfAZ4O4FfFsfNwLCqns1je4wxl2nHxmXc/85rWFYdYDgcZ1l1gPvfeU3BZfISkTtE5BUROSoin5rhmB0i8ryIHBaRHy91G03hKZbPtzGmvFjfZKbKZZmErwE7gCYR6Qb+EPACqOqDwGM4JRKO4pRJ+NVctcUYs3R2bFxW0F8qIuIGvgC8CWcmwUER2amqL2UdUwd8EbhDVU+JSOG+IbOkCv3zbYwpT9Y3mWw5C/BU9X1z7FfgI7n6+cYYM4OtwFFV7QQQkUdwsvq+lHXM3cC3VPUUgKouWq5pq1VkjDHGmFzK5xRNY4zJh/lk8L0SqBeRJ0XkGRH55cX4wVaryBhjjDG5lrMRvHyyK+TGmFnMJ4OvB7gR+FkgCOwTkf2q+upFLyZyD3APQGtr66w/OLtWEUCFz0MoluChXZ3WRxljjDFmUZTcCJ5dITfGzGE+GXy7ge+p6riq9gG7gOune7GFlHGxWkXGGGOMybWSC/Cyr5CLOP963cJDuzrz3TRjTGE4CLSLyDoR8QF34WT1zfbvwDYR8YhIBXAT8PLl/mCrVWSMARCRL4tIj4j8dIb9n0hn8X1eRH4qIkkRaUjvOyEiP0nvO7S0LTfGFIOSC/DsCrkxZjaqmgA+CjyOE7R9XVUPi8iHReTD6WNeBr4HvAgcAL6kqtOeiC2E1SoyxqR9Fbhjpp2q+llVfa2qvhb4HeDHqjqQdcjr0/s357aZxphiVHJr8FrqK+gZjUyscQG7Qm6MmUxVH8Mp1ZK97cEpjz8LfHYxf+6Ojcu4H2emQfdgiNW2RtiYsqSqu0Rk7TwPfx/wtRw2xxhTYkouwLt3exuf+OYLnB4Mk0il8LhcVAc8/MHPXZ3vphljjNUqMsbMW3qK+B04sw4yFPi+iCjwkKo+nJfGGWMKVskFeJBOhycgIiAXp8czxhhjjCkC7wD2TJmeeZuqnhGRZcAPROSIqu6a+sSFZPg1xpSWkgvwHtrVSW3Qy8ra4MQ2S0NuzNKxMiXGGLNo7mLK9ExVPZP+t0dEHgW24mT6ZcpxDwMPA2zevNmudRtTRkoyyUoimaKzd4wj50bo7B0jkUxZkhVjloCVKTHGmMUhIrXA63Cy+ma2VYpIdeY+8GbgshNAGWNKS8kFeFU+N6eHIiSSiluERFI5PRSh0uee+8nGmMtiZUqMMWZuIvI1YB9wlYh0i8gHszP5pr0b+L6qjmdtWw48JSIv4GT4/U9V/d7StdwYUwxKboqmiKTvpG8AmrXdGJMzXYMh6oLeSdusTIkxxkymqu+bxzFfxSmnkL2tE7g+N60yxpSKkgvwRqMJVtUF6BuLEUum8LldrKjxMxZN5LtpZp5sDVfxsjIlxhhjjDH5VXIBXuYEs625amJbKJZgWXUgj60y85VZw+V1y6Q1XPeDBXlF4N7tbdy38zBj0TgVXjeRRMoKeRtjTBGwi6vGlI6SW4N37/Y24kklFEug6vxrJ5jFw9ZwFbfb25v47Te2UxvwMRyOs6w6wP3vvMZOEowxpoBZgixjSkvJjeDt2LiM+3EChe7BEKvtKlRRsTVcxUlVGQrFGQrHua6ljv/73jpW1Qfxeyy5kTHGFLrsi6sAFT6PlZgypoiVXIAHTpBnHVJxsjVcxWc0EmdwPE4ilcp3U4wxxlwCu7hqTGkpuSmaprjdu72NkXCcjvOjvHx2mI7zo4yE4zbFtgBF4km6B0P0jkYtuDPGmCLWUl9BOJ6ctM0urhpTvCzAMwVHASRd2kLSj03BSKaUvrEoZ4bCxBIW2BljTLGz/AXGlJaSnKJpitdDuzqpDXpZWRuc2GbrAAqDqjIcjjMUipNSC7uNMaZUWP4CY0qLBXimoHQNhnALdPaOTdQxbKry2TqAPBuLJhgYi81rKuaBzgEeOdhF71iE1oZKO0kwxpgiYPkLjCkdNkXTFJRqv4fTQxESKcXtEhIp5fRQhCq/XYvIh0g8yZmhMD0jkXkHdw880UH/eJRaS7VtjDHGGLPkLMAzBUUzU/8065a93SyJRDLF+ZEIZ4bCRKYsvJ/NIwe78LiEoNdtdQyNMcYYY/LAhkVMQRmLJVlVF6BvLDYxRXNFlZ/x2PyDDHN5RiJxBsZil7TO7uxImFgiSfdgGAVcAo2VXkvGYowxxhizRCzAMwUlUwevrblqYlsolmBZdSCPrSoP8WSKvrEo4csJplMpBkOJCw8VesfirK61yQLGGGOMMUvBzrpMQbFUzfkxHIpzejB8ecEdMByd/vkD4cS0240xxhhjzOKyAM8UlB0bl/GeTavoHY3y8rlRekejvGfTKsvslSPRRJLTQ2H6x6OLUvogGp9+KuZC1vEZY4wxxphLZ1M0TUF58kgP33z2NM3Vflq9bsLxJN989jTXra6zIG8RpVLKQCjGaCSxqAlsRCD75TKPRWTRfoYxxhhjjJlZTkfwROQOEXlFRI6KyKem2V8vIo+KyIsickBErs1le0zhe2hXJ163k33RsjAuPlVlOBSnazDESDi+6NlJA57JgVzm5Su8FuBlPHmkh/c9vJ/bP/ME73t4v5WQMMYYY8yiylmAJyJu4AvAW4GrgfeJyNVTDvtd4HlVvQ74ZeCBXLXHFIeuwRBBr3vStqDXbYXOF8FoJE7XgDMdM5nKTdmJK5fXUu13kwnnXAJ1QQ/XrqrPyc8rNk8e6eG+nYfpGY1QZ3UCjTHGGJMDuRzB2wocVdVOVY0BjwDvmnLM1cB/AajqEWCtiCzPYZtMgWupryA8Zb1WOJ5kdX1FnlpU/GKJFGeHw/SORudVrPxy3LWlhaqAl9X1Qa5eWc26pkpqgj5LkpNmI9TGGGOMybVcBnirgK6sx93pbdleAO4EEJGtwBpg9dQXEpF7ROSQiBzq7e3NUXNNIbh3exvD4TgdPaMcOTdCR88ow+G4BQiXIJlS+sainB66/OyY87W1rYGPv6Gdxko/I+E4y6oD3P/Oa2z9ZJqNUBtjjDEm13KZZGW6RTdT54V9GnhARJ4HfgI8B1yUT11VHwYeBti8eXNu5paZgiEA6qwXQ2XaD5KZWSyRYjgcZzyaWJTMmAu1ta2BrW0NrKoP4ve4535CGcnUeazwXeh6bYTaGGOMMYsplwFeN9CS9Xg1cCb7AFUdAX4VQJw0e8fTN1OmHtrVSU3Qy4ra4MS2UCzBQ7s6bRRoDqFYguFwfMlG68zC3bu9jft2HiYUSxBMZ4m1Oo/GGGOMWUy5DPAOAu0isg44DdwF3J19gIjUAaH0Gr0PAbvSQZ8pU12DIeqC3knbbArbzKKJJGORBOPRZM7X15nLt2PjMu7HuZDRPRhidX0F925vs4sXxhhjjFk0OQvwVDUhIh8FHgfcwJdV9bCIfDi9/0HgNcA/iEgSeAn4YK7aY4pDS30Fx/vGGI0kiCVT+NwuqgMe1jVV5btpBSOZUsYiCUajcWIJC+qKzY6NyyygM8YYY0zO5LTQuao+Bjw2ZduDWff3Ae25bIMpLre0NXDgxAAucVLsx5Ipesdi3L21Id9Ny6tUShmPOSN14Xhy0evXGWOMWToi8mXg7UCPql5UA1hEdgD/zoVlK99S1fvT++7AKSvlBr6kqp9eijYbY4pHTgudG7NQ+zoHWFbtw+d2kVLwuV0sq/axr3Mg303Li0g8Sc9IhJMDIXpHo4RiCQvujDGm+H0VuGOOY3ar6mvTt0xwN58aw8aYMpfTETxjFqprMERjpZ+mqsDENlUtuzV4Y9EEI+E4kbglTMmFua6Az3b13BhjLpeq7hKRtZfw1IkawwAikqkx/NIiNs8YU+QswDMFpZzX4EXiScajpZMwJZZIFWSZhKwr4G/CyfZ7UER2qurUE6Tdqvr2JW+gMcY4bhGRF3AykP9PVT3M9DWGb5ruySJyD3APQGtra46baowpJDZF0xSUW9oa6B2LEUumJq3Bu6WtNNfgxZMphkIxugZCnBkKMxyOF3VwNx5N8F8vn+cPdx5m6//+L04PhfPdpOlMXAFPZ/DNXAE3xphC8SywRlWvB/4/4Nvp7fOpMexsVH1YVTer6ubm5ubctNIYU5BsBM8UlMwavJHwhRG8mqCHfZ0DfCzfjVsEqkoknmI8liAcSxJPFm8wlzEcirP3WB+7Ovp49tQg8eSFc43Hf3qOX7t9XR5bN635XgGf7uq5McbkXHbJKFV9TES+KCJNzKPGsDHGWIBnCkoprsFTVcLxJGNRJ6hLpoo/SUrfWJSnOvrYfbSPF7qGyH5LXrewZW0D77z+Cu64dkX+Gjmz+VwBz1w9HxORt+FcPZ82469NgzLGLDYRWQGcV1UVka04M676gSHmqDFsjDEW4JmC0lJfQc9ohArfhY9mOJ5kdX1FHlu1cKrKeMxZUxeKlUZZg3PDEXZ39LKro4/DZ0Ym7Qt4Xdy0rpHt7U3c1NZAhc/DqvpgQa7BYx5XwGe6eq6qfVNfTFUfBh4G2Lx5c/H/jzbG5JyIfA3YATSJSDfwh4AXJspJvQf4dRFJAGHgLnW+SKatMZyHt2CMKWAW4JmCcu/2Nu7beZhQLEHQ6yYcTxJPKvdub8t30+aUmX4ZiScZjSSKei1dxqn+ELuP9rLr1T46esYm7avye7hlvRPUbV5Tj99bkMHcdA4yxxXwWa6eG2PMZVPV982x//PA52fYd1GNYWOMyWYBnikoOzYu437goV2ddA+GWF1fwb3b29ixcVm+m3aRZEqJxJPOLZEilkgV/UidqnKsd5xdHb3sfrWPkwOTp8bWV3i5bUMT29qbuKGlDo+7+PI0qeq0V8BF5MPp/bNdPTfGGGOMKWgW4JmCVWhn06mUEkumCMWShGIJYoniH6EDSKly5OyoE9R19HF2ODJpf3OVn23tTWy7solrr6jF7ZpuCVtxme4KeDqwy9yf8eq5McYYY0whswDPFJQnj/Rw387DeN1CXdBLz2iE+3Ye5n7IyyieqjISSTAaiZdMQAfO6ONPTg+z69VenjraR99YbNL+K+oCbG9vZlt7ExtXVCNS/EGdMcYYY0w5sADPFJSHdnXidctEkpUKn4dQLMFDuzqXJMBLpZTxWIJoIjUxBbMUsl6CU3PvuVND7O7oY8/RPobC8Un71zZWTAR1bc2VFtQZY4wxxhQhC/BMQekaDFEX9E7aFvS6c1YmQVWJJlJE4ymiiSTjJZLxMiMST3LwxCC7O3rZ19nPeDQ5af9Vy6ud6ZftTbQ0FFemUmOMMcYYczEL8ExByXWZhFjCCeQi6YAuntSSCugAxqMJ9ncOsPtoLwc6B4hkTS0V4NpVNdyeHqlbUROY+YWMMcYYY0zRsQDPFJTFLJMQT6aIprNbZgK7UpluOdVwOM7eY/3s7ujlmZODxJMX3qdL4IaWOrZd2cxt6xtprPLnsaXGGGOMMSaXLMAzBWXHxmW8p3uILz11nPFYkkqfmw/dvm7O9XfxZCaIuxDQlUIdutn0j0V56qgT1D3fNUR27Op1CzeuqWd7ezO3rm+kZsq0V2OMMcYYU5oswDMF5ckjPXzz2dM0V/tpTY/gffPZ01y3uo5bNzQRjicn6s0lVUkklWRKSZXYNMuZnBuJsLujj92v9nL4zMikUhIBj4utbQ1sb2/mpnUNVPrtz9sYY4wxptzYGaApKA/t6sTjgoDHTUrB53aRSCZ44L86aG0szyQgXQMhdnf0saujl1fPj03aV+l3c0tbI9vbm9m8tp6A152nVhpjjDHGmEJgAZ7Ji0QyRSKlxJMp4snMvyk6+8aoCXiIJy9Mr/R5XJwdDuextUtLVensG2f3q05Qd6J/cgbRuqCXWzc4Qd0NrXV43a48tdQYY4wxxhQaC/BMzmQHccmUEkuvk5stc+XKmiDdg+OMx5LEkym8bheVPjer6yuXuPVLS1U5cm50YqTuzFBk0v6mKh/b0pkvf2ZVLW6X1agzxhhjjDEXswDPzEnVCc7iSSWeSBFPpUAhpaAoqqDp41Qhpersu4R1cTe01PJC99DE2rJEKkUknuId19Uu6nsqBMmU8tPTw86auo4+eseik/avrA2wvb2Jbe3NbFxZjcsKjxtjjDHGmDlYgGcmSaZH3GJJp/h3ZtRtqWrF/bijD4FJyUMkvf2Xbl27JG3IpXgyxfNdQ+x6tY89R/sYCscn7V/bWMG29ia2tzfT1lyJWFBnjDHGGGMWwAK8EqaqE+vbnKmRzpTJZEoRAbdLLoy4pSCp+S/63TUYwu0Cr+vCurJUKkXXYGiWZxW2aDzJoZOD7OroY9+xfsaiiUn725dVsf3KJrZtaC7bRDLGGGOMMWZxWIBXJFIppyxAaso0SCc4c4K2ZDpQS6RSE/+a/AjFEjzdOcCujj6ePt5PJH7h/4UA11xRw7b09MsVtYH8NTQHDnQO8MjBLnrHIrQ2VHLv9rY56xgaY4wxxpjFUXYBXvY6sUxAlFJFAVd6VMslggAictGIVuZRMh1UJVJKIpkiqYoguAQ8Lhdut+DOml6XygRngKYuPM6sVVOygrZUZl2bpttM2dR5a6kLcnIgBOlRRk2v9VtTH8x30+Y0Eo6zr7OfXa/2cejkAPHkhf9nLoHXttSxrb2J2zc00Vjlz2NLc+dA5wAPPNGBxyXUBr30jEa4b+dh7gcL8owxxhhjlkBJB3h9Y1FGI850uHxPPTTzc8/29Xzm8SOMxxKkUorLJdT4vNyzfX2+mzatgfEYTx11kqQ83zVEMnXhc+Z1CzeuqWdbezO3rm+kNujNY0uXxiMHu/C4hKDXjYhQ4fMQiiV4aFenBXjGGGOMMUugpAM8vcRMjiZ/trY18Mm3bOSRg12cGwmzoibIXVta2NrWkO+mTTg/EpnIfPnT08OTEsIEPC62rmtgW3szN7c1UOkv6T+xi5wdCVMTmPyeg1433UW8htIYY6YSkTtn26+q31qqthhjzFTldfZpisLWtoaCCugAugZCTlB3tI9Xzo1O2lfpd3NLWyPb2pvZsraegNedp1bm38qaIP3jUYJZv4NwPMnqekseY0rDk0d6eGhXJ12DIVrqK2yNafn6JvB8+gbO8uoMBSzAM8bkTU4DPBG5A3gAcANfUtVPT9lfC/wT0Jpuy1+o6ldy2SZj5kNVOd43zq70SN3xvvFJ+2uDXm5b38i2K5vY1FqP1+2a4ZXKy11bWnjgiQ7C8SQetxCKJ4knlXu3t+W7acZctieP9HDfzsN43UKdrTEtd78AvBe4Dvh34GuqejS/TTLGGEfOAjwRcQNfAN4EdAMHRWSnqr6UddhHgJdU9R0i0gy8IiL/rKqxXLXLmJmoKq+cH2XXq05Qd3ooPGl/Y5WP2zc0sb29ietW1+F2WY26qba2NfBx2nnkYBd9YxFaLIumKSEP7erE63bWlgK2xrSMqeqjwKMiUgm8C/hLEWkEfk9Vf5zf1hljyl0uR/C2AkdVtRNARB7B6QSzAzwFqsWp5lwFDACJqS9kTK4kU8rhM8Ps6ujjqY4+ekajk/avrA2kyxk08ZqVNbis8PicMlNsV9UH8XvKd7qqKT1dgyHqpiRLsjWmZS8CDAMjOLORSqvujTGmKOUywFsFdGU97gZumnLM54GdwBmgGnivql5UvE1E7gHuAWhtbc1JY035SCRTPNc1xFMdfTx1tI/BUHzS/jUNFWy7sont7c2sb65ELKgzxgAt9RX0jEYmRvDA1piWKxF5PfA+nIvZPwQeUNVDC3j+l4G3Az2qeu00+98PfDL9cAz4dVV9Ib3vBDAKJIGEqm6+jLdijClBuQzwpjsrnprS8i04C5TfAKwHfiAiu1V1ZNKTVB8GHgbYvHmzpcU0CxZLpDh4YoDdHX3sPdbPWHTyQPGGZVVsT4/UrWmszFMrS4MVOjel6t7tbdy38zChWIKg103Y1piWs/8CXgSeAvzAL4vIL2d2qurH5nj+V3Eucv/DDPuPA69T1UEReSvOOVD2RfLXq2rfJbZ9WpZAyJjSkcsArxtoyXq8GmekLtuvAp9Wp5bBURE5DmwEDuSwXaZMhGNJnj7uFB5/+vgA4Xhy0v6rV9aw/UonqFtZW/iF1IuBFTo3pWzHxmXcj7MWr3swxGo7CS5nv8bFF63nTVV3icjaWfbvzXq4H+ccKmcsgZAxpSWXAd5BoF1E1gGngbuAu6cccwr4WWC3iCwHrgI6c9gmU+JGI3H2HetnV0cfB08MEE9e+P51CVzfUse2DU3c3t5EU5U/jy0tTVbo3JS6HRuX2WfZoKpfnWmfiCz2udUHge9m/3jg+yKiwEPpWU6XxRIIGVNachbgqWpCRD4KPI5TJuHLqnpYRD6c3v8g8CfAV0XkJzhTOj+52FMOTOkbGI+x56iT+fK5riGSqQtBnccl3Limnm3tTdy2vonaCu8sr2Rm4hLBJYIIuFyCWwRX+r7X7cLnduF2Cb1jEeorfJPWLVoSClNKbBqbARCRp1T19vT9f1TVX8rafQDYtEg/5/U4Ad7tWZtvU9UzIrIMZ2nLEVXdNc1z552/wBIIGVNacloHT1UfAx6bsu3BrPtngDfnsg2mNPWMRHjqaB+7Ovr4SffwpHkyfo+Lresa2N7exE1tjVT5c/oxLwkigicdrHnczr9et+BxOf/ON9FMa0OlJaGYB1W15D1FyKaxmSzZi7WvmbJvUf64ReQ64EvAW1W1P7M9fe6EqvaIyKM4iV4uCvAWkr/AEggZU1rszNcUje7BELvThcePnBudtK/S5+bmNqfw+Na1DQS8lp5/KpcIHrfgc7vwpAM4r9uFxyV4FqlQ+1IloRCRm1V1/6K+6BKKJlL0j8dorvLj8yzO797knk1jM1lmC5guOxmciLQC3wJ+SVVfzdpeCbhUdTR9/83A/Zf78yyBkDGlxQI8U7BUlRP9IXa92svujj46+8Yn7a8JeLhtg5MkZVNrvZ0oMzmImzwa51qSwuxLmITiiyzSFKh8icaTnB4K01DpozZoU4eLgU1jM1nqROTdgCt9/870dgFq53qyiHwN2AE0iUg38IeAFyZmOt0HNAJfTI/2Z8ohLMcpsA7OOdy/qOr3LvfNWAIhY0qLBXimoKgqr54fY1eHE9R1D4Yn7W+s9HH7hia2XdnE9avrliRoKSRul+D3uPF5XLjkwtRKj1vwuly4CuD3YUko5k9V6R+LEoolaK7yL9pIqskNm8ZmsvwYeGfW/Xdk7btouuRUqvq+OfZ/CPjQNNs7gevn38z5s77bmNJhAZ7Ju2RKeenMyERQ1zManbR/RU2AbekadVdfUYOrDNYueVwufB5nBC6zNs7vcVkAcEGbiOycaaeqvnOmfYUoHEvSPRimscpHdcBG8wqVTWMzWf5DVb+V70YYY8x0ZgzwROTPVPV3l7Ixpnwkkime7xpi99E+nuroYzAUn7S/pT7I9iub2dbeRPuyqpJMSCEiBLwu/B73xAic2+UEdIUwElfgeoG/zHcjFlNKld7RKKFYkqYqf9mNThcDm8Zmsvw+zho5Y4wpOLON4N0BWIBnFk0skeLQyQF2d/Sx71g/I5HEpP0bmqvYli48vraxcoZXKX4+j4vaoJdKn8cCuUs3qqo/zncjcmE8miAST9Jc7Z80FdAUBpvGZowxptDNdvbgFpF6Zkj3q6oDuWmSKSXhWJKnjw+wu6OX/Z0DhOPJSfuvXlnD7enpl6vqgnlqZe65XULQ56ba7yXoswyfi+DE5TxZRO4AHsCp0fklVf30DMdtAfYD71XVb17Oz1yIZEo5NxyhOuClsdJnFwKMKTwbReTFabYLoKp63VI3yBhjMmYL8DYCzzB9gKeALTow0xqLJNjb2c/uV3s5eHKQWCI1sc8lcN3qWra1N3P7hiaaq/15bGluuUSo8Lup8nsIet0lOc00X1T1ThHZDpxX1VdE5HbgZuBlVf3P2Z4rIm7gC8CbgG7goIjsVNWXpjnuM8DjOXkT8zAaiU+M5lnpD2MKynEmJ1YxxpiCMVuA95Kq3rBkLTFFbSgU46mj/TzV0cuzp4ZIpC6UAfK4hE2tdWxrb+a2DY3UVfjy2NLcEhEqLajLORH5HE5xX4+IPA78LPBd4LdEZIeqfmKWp28Fjqaz0SEijwDvAl6actx/B/4N2LLIzV+QeDLFmaEwtUEvDZU++0wZUxhiqnoy340wxpjp2AIPc8l6R6PpwuO9/OT0MFkxHX6Pi81r69nW3sytbY1UBUr7o+YSoSbopSbgsUyXS+NNwLVAEDgNrFLVkIh8GngOmC3AWwV0ZT3uBm7KPkBEVgHvBt5AngO8jOFwnFAsybIaP36PjeYZk2d78t0AY4yZyWxn3Q8sWStM0Tg9FJ4I6l4+OzppX4XPzc1tjWxvb2LLugaCZTClzOt2URPwUh2whClLTFVVRSQz/zdzeSGFU3h4NjNNO8/2OeCTqpqca8RMRO4B7gFobW2d40dfHmc0L0J9hbekR8KNKXSq+tF8t8EYY2YyY4Cnql+duk1EXlXVK3PaIlNQVJUT/SF2p2vUHesdn7S/JuDh1vVOkpQb19Tj85TH6FXA66Ym6KXKX9ojkwXsP0VkNxAAvgR8XUT2A69j7iLD3UBL1uPVwJkpx2wGHkkHd03A20Qkoarfnvpiqvow8DDA5s2bpwaKi05VGRiPMR5L0lzlL5u/uULx5JEeHtrVSddgiBYrk2CMMaYAzVYHb5QLV7Uzl7ArMttVtSbXjTP5oap09Iyxu6OPXa/20jUYnrS/odLH7RucoO761bVlNSWxKuChNui1KXJ5pqqfFJFbnLu6X0TW40yp/BIwV7bLg0C7iKzDmd55F3D3lNdfl7kvIl8FvjNdcJdP0XiS00NhGip91AatOPpSePJID/ftPIzXLdQFvfSMRrhv52HuBwvyyoyI3Kyq+/PdDmOMmc5sww9fBWqBT6jqeQAROZ594mNKR0qVw6dH2H3UGak7PxKdtH95jZ9t7U1sb2/m6itqcJVRogcRocLnpq7CArtCoqr7RKQuXcoA4G9VdXgez0uIyEdxsmO6gS+r6mER+XB6/4O5a/XiUlX6x6KEYgmaq/xldbElHx7a1YnXLRP1CSt8HkKxBA/t6rQAr/x8EdiU70YYY8x0Zpui+d9F5EbgayLybeDzXLxOxRSxZEp5oWuIXR19PHW0j4Hx2KT9q+uDbG9vYvuVzbQvqyqr7H1et4tKv4cKnxu/x1VW770YiIgPZ1rkz+OkKxdgjYg8CnxYVWOzPB1VfQx4bMq2aQM7Vf3AIjQ5p8IxZzSvscpv04ZzqGswRN2U0dKg1033YChPLTLGGGMuNuuZgKo+IyJvBD4K/BhnvYspYrFEimdPDbLr1T72HutjJJKYtL+tuZLt7U1sa29mbWNFWQU2bpdQ5fdQHfDauqbC9/uAF2hR1VEAEanGqW/3B+lbWUmmlJ6RCKGAh8ZKP25L+rPoWuor6BmNTIzgAYTjSVbXV+SxVSZP2kRk50w7VfWdS9kYY4zJNuelXlVNAX8tIt8ArC5eEQrHkxw4PsDujj72d/YTiiUn7X/Nymq2bXCCulX1wTy1Mn+8bhe1FV6q/Z6yCmiL3J3AVlWdGDpR1VER+Q1gP2UY4GWMRRJEYimaqn2TAhFz+e7d3sZ9Ow8TiiUIet2E40niSeXe7W35bppZer3AX+a7EcYYM51Zv/1FpBEn+cDG9KaXRaRRVftz3jJzWcYiCfZ19rO7o4+DJwaIJlIT+1wCP7Oqlm3tzWxrb6K52p/Hlk52oHOARw52cXYkzMqaIHdtaWFrW0NOfpbP46KuwmdT2opTKju4y1DVMREp+6nkiVSKc8MRqgNeGit9VsJjkezYuIz7cdbidQ+GWG1ZNMvZqKr+ON+NMMaY6cyWRfM1wBM4iQiew1njsgX4XRF5g6oeWZommvkaCsXYc7Sf3R29PHtqiERW5XG3S9jUWse29mZu29BIfQHW0DrQOcADT3TgcQk1AQ/941EeeKKDj9O+qEFehc9DTdBjoxvFTUWknulr2qWm2VaWRiNxIvEkzdV+AmVQl3Ip7Ni4zAI6A3Ai3w0wJpuVcDHZZjvD/RPg46r69eyNIvILwP8GfiGXDTPz0zsaZc/RPnZ19PFi9xBZMR0+j4sta+rZ1t7ELesbqQ4Udir1Rw524XHJRIH0zBSoRw52XXaA5/O4qPZ7qfC78VqmwVJQCzzD/IqWlzWnOHqY2qCXhkqfTUM2ZhGo6p0ish04r6qviMjtwM3Ay6r6n3lunikzVsLFTDVbgPczqvqeqRtV9d9E5M9y2CYzhzNDYXZ39LG7o5eXzo5O2hf0urm5rYFt7c3ctK6BoK94rtqfHQlTE5j8kQx4XZwbCc/wjLm5XUJDpa/gg1uzMKq6Nt9tKDbD4TihmI3mGbMYRORzwFbAIyKPAz8LfBf4LRHZoaqfyGf7THmxEi5mqtkCvPFL3Gdy4GT/OLs6+tj9ah9He8cm7asOeLh1fSPb2pvYvKahaDNArqwJ0j8enRjBA4jEU6youbTEL1UBD02Vflt/VIJE5C1Atap+c8r2u4FeVf1BflpW2OLJFGeHI9QFvdRVeG00z5hL9ybgWiAInAZWqWpIRD6Ns6zFAjyzZKyEi5lqtgBvmYj89jTbBWjOUXtMmqrS0TOWHqnr49TA5D/S+govt7c3sW1DE69tqSuJAsd3bWnhgSc6CMeTBLwuIvEUiZRy15aWBb2Ox+WyDIKl74+Bd0yz/QngUcACvBmoKoOhGKF4kuYqf9FeEDImz1RVVUQya34zU8NTgP1RmSVlJVzMVLOdAf8tUD3Dvi/loC1lL6XKS2dGJoK6cyORSfuXVfvZ1t7EtvYmrrmituTqXG1ta+DjtPPIwS7OjYRZscAsmiJOcpb6CssaWAYqVLV36kZVPScilfloULGJxp3i6A0VPmorbAqzMQv0nyKyG6c+8JeAr4vIfuB1wK68tsyUHSvhYqaaMcBT1T9eyoaUq2RKeaF7iN2v9vHU0T76x2OT9q+uD3L7hia2X9nEVcurS35K1da2hktKqBLwumms8uH32NqiMhEQEY+qJrI3iogXZ8qUmQdVpX88SiieoLnKXxIzAYxZCqr6SRG5xbmr+0VkPfBunGDvm7M/25jFZSVczFSzlUn4P0Cnqj44ZftvAStU9ZO5blypiiVSPHtqkKc6+thzrJ/hcHzS/rbmSrZtaGL7lc2sbawo+aDucnjdLuorrZZdGfoW8Lci8lFVHQdIj9z9dXqfWYBwLEn3YJjGKktIZMx8qeo+EakTkS3pTX+rqsN5bZQpW1bCxWSb7az47TgLiKd6AHgRsABvASLxJAdODLD71T72d/YzHktO2r9xRTXb2pvY3t7MqnobgJiL3+umLuil0gK7cvX7wJ8CJ0XkZHpbK/B3wB/krVVFLKVK72iUUCxJU5W/5KaAG7OYRMQHPAz8PHAcJz/BGhF5FPiwqsZmeToi8mWc86weVb3oXEucK7sPAG8DQsAHVPXZ9L470vvcwJdU9dOL9b4AekYj1AS8lm3XmCI229mxqupFBYNVNSU2pDQvY9EET3f2s6ujjwPHB4gmLvw6BfiZ1bXOmroNTSyrCeSvoUWk0u+hNmhfPOUuPTXzUyLyx8CG9OajqnrpNTUMAOPRBJG4E+TZBRRjZvT7gBdoUdVRABGpBr6Ac5FprgtNXwU+D/zDDPvfCrSnbzcBfwPcJCLu9M94E9ANHBSRnar60mW9myzxpHJmKExdhY96y7ZrTFGa7ds7JCLtqtqRvVFE2oF5nUTNdZVJRD4BvD+rLa8BmlV1YJ7tLzjDoTh7jzmFx589NUg8eaHmstslvLalju3tTdy2oYmGSl8eW1pcKv0e6iq8tsbOTJIO6H6S73aUmmRKOT8SsVIjxszsTmCrqk6kuFbVURH5DWA/cwR4qrpLRNbOcsi7gH9QVQX2p6eCrgTW4lzM6gQQkUfSxy5agJcxFIoRiiVorvbbd68xRWa2AO8+4Lsi8qfAM+ltm4HfAX5zrheez1UmVf0s8Nn08e8AfqsYg7u+sShPdfSx+2gfL3QNkboQ0+F1C1vWNrC9vYlb1jfa+pYF8nlcNFb6i6pguzGlYiySIBJL0Vjls9E8YyZLZQd3Gao6JiI63RMWaBXQlfW4O71tuu03LcLPm1YskeLMkNXONKbYzJZF87si8vM4xTr/e3rzT4FfUNX5XDHfysKuMr0P+No82513Z4fD7O7oY9erfbx0dmTSvoDXxc3rGtl+ZRM3rWu04OQSiAgNFT5qgh77QjEXmS6DpsmNRCrF+ZEIlX4PjZU+y7RpjENFpB5nxcVUFy1vuQTTva7Osv3iFxC5B7gHoLW19ZIbYrUzjSk+s16SVdWfAr9yia8976tMIlIB3AF89BJ/1pI41R9iV0cvuzr6ONozNmlfld/Dresb2dbexOY19fhtjdglEREq/W7qK3x47UTSzGy/iHQD3wO+p6on8tyekjceTRCOJam3unnGANTizG6ad8C1QN1AS9bj1cAZwDfD9osbofowTiIYNm/efNltstqZxhSPXM65WUin9w5gz0zTMxfrKtRCqSrHesfZ1dHL7o4+TvZPno1RX+Hltg1O4fEbWursyvZlcIlQHXASqNjv0cxFVTeLyBqcRASfE5FVwFPAd4Efq2o0rw0sUal03byxWIJl1X67CGPKlqquzfGP2Al8ND376SZgWFXPikgv0C4i64DTwF3A3Tluy4RM7czx9No86wOMKUy5DPBmuvo0nbuYZXrmYl+Fmk1KlSNnRyeCurPDkUn7l1X7ub3dCequvaLWUolfJrdLqA16qQ547XdpFkRVTwIPAg+mC5xvw5kJ8Kci0quqP5fXBpawaDzJ6cEwDVU+amxdsSlDIvIWoFpVvzll+91Ar6r+YI7nfw3YATSlZyP8IU5WTtL1hx/DKZFwFKdMwq+m9yVE5KPA4zgJ7L6sqocX8a3NS8T6AGMK2myFzt8HfF9V+y/xtQ8yj6tMIlILvA74xUv8OZctmVJe7B5id0cfTx3to29scvmaK+oCbG9vZlt7ExtXVNuasEXgdbuorfBS7bc1dubyqWoceCJ9Iz2iZ3IopUrfaJSw1c0z5emPcWYfTfUE8Cgwa4Cnqu+bY78CH5lh32M4AWBeZfqAUDRJU5WtzzWmkMw2grcG+Eb6yvh/4Ux9OpDudOY001UmEflwev+D6UPfjRNIjl/qm7gU8WSK504Nsaujlz1H+xkOxyftb2uq5PYNTWy7som2pkoLQhaJFSg3S0FVT+e7DeUiUzevNuilJuC1kgqmXFSoau/Ujap6TkQq89GgfAnFEnQPJmms8lmmcGMKxGxZND8NfDpduPONwK/hTIV6GSexweOqen62F5/uKlNWYJd5/FWcgp85F4knOXhikN0dvezr7Gc8mpy0/6rl1U7h8fYmWhoqlqJJZSPocxKnWIFyY0pPMqUMjMcYCsWpq/BSG7R06qbkBabL5pu+KB7MU5vyJqVK72iUUCxp2XaNKQBzDqOo6ijOdINHAUTkapzEBv8AvCWnrVsE49EE+zsH2N3Ry4HjA0QSF7IXC3DtqtqJoG55TSB/DS1RPo+LhkofFT4bsTO5IyKVSz0LwFwspU6gNxZN0FTlL8kLOk8e6eGhXZ10DYZoqa/g3u1t7Ni4LN/NMkvvW8DfishHM31PeuTur9P7ytJEtt1KH7VBG80zJl8WfNadLlT+EvCXi9+cxaGqfOOZbnY+f4anj/cTT16YVeoSuKG1nm3tTdy+oYmGSl8eW1q63C6hrsI6eJNbInIr8CWgCmgVkeuBe1X1N/LbsvIWS6Q4OxyhqcSmbD15pIdPfPMFRiMJEqkUfaNRPvHNF/jse663IK/8/D7wp8BJETmZ3tYK/B3wB3lrVQFIqdI/FmU0Ei/ZCz3GFLqSHFYREf5h3wl+etopQO51CzeuqWd7ezO3rm+kxoKOnKrye2i0pAtmafwVzkyCnQCq+oKIbM9vkww4F9p6R6NEEykaK30lMWXzM987wmAojtsleNwuVGEwFOcz3ztiAV6ZSU/N/JSI/DGwIb35qKqG89isghJLpDgzFKYq4KGhwqZtGrOUSjLAA3j3DatZUdPHLW2N3NTWYFMEl4DbJTRW+amyBCpmCalq15TgITnTsWbpjYTjxJMpllUHiv6iT2ffOC5x6nYCiICK0tlns4PLVTqg+0m+21HIxiIJQtGkrc81ZgnNViahYbYnzlSUvFB88PZ1vPP6KxiNxOc+2Fy2qoCHxkobtTNLris9TVNFxAd8DHg5z20yU4RjSc4MhWmutulaxpSjzPrc0UiChkqfZdI2Jsdm+wvrwylWnskQlX3mrkBbrhplikeFz0NdhddO2ky+fBh4AFiF0199nxlqR5n8iieddXn1FV7qKopz7fO6xgqO9o4jKXVG7xRSChuaLOtyuZkug6aZWzyZ4vxIhIDXTWOVD7/Hzh2MyYXZArz/D9gB7AG+Bjw13xp4pvRZ2QNTIERV35/vRpj50awsm/UVxXcV/1NvfQ3/85svMBZNkEypk0zK7+VTb31Nvptmlt5+EenGKRv1PVU9kef2FJVIPMnpQVufZ0yuzPgXpaofB14LfAP4JeA5Efk/IrJuidpmCpDP42JlbZCVtUEL7kwh2Csi3xeRD4pIXb4bY+YnlnCu4ncPhhiPFs8gyI6Ny/iL91zPDS31rKgJcENLPX9hGTTLkqpuBj6efvg5ETkoIn8lIm8WEX8+21ZMxiIJugfDDIVi2BiCMYtn1sun6RG7H4nIc8BdwJ8AHcDfLkHbTAFxiVBf4aMm6LEF0qZgqGq7iGzF6Z9+T0ReAh5R1X/Kc9PMPGQCPa/bRVOVn6Cv8C8a7di4zAI6A4CqngQeBB5MFzjfBtwB/KmI9Krqz+W1gUUisz5vJJygocpnidqMWQSzJVmpBN4FvBdoxincuUlVu5aobaZAVPg8NFUt3RQKKyRsFkJVDwAHROTPgP8L/D1gAV4Rcdbnhanye2iotOlapvioahx4In1DRFblt0XFJ5FK0TMSYdjrprHSloAYczlm+xbtAf4XsBenqHknsEVE7hSRO5eicSa/XCI0V/tZURtY0uDuvp2H6RmNUBf00jMa4b6dh3nySM+S/HxTXESkRkR+RUS+i9NXnQW2zuN5d4jIKyJyVEQ+Nc3+d4nIiyLyvIgcEpHbc9B8M8VY1JmuNThu07VMcVPV0/luQ7GKxp2suz0jERLJVL6bY0xRmm0c/Bs42TI3pm/ZFGdEz5SooM9Nc5V/ya+kP7SrE69bJuoWVvg8hGIJHtrVaaN4ZjovAN8G7lfVffN5goi4gS8Ab8LJvHlQRHaq6ktZh/0XsFNVVUSuA77Oxf2gyYGUKoMhJ516faWX6oA3300yxuTBWDTBeCxJbdBLXdCLy8owGTNvMwZ4qvqBJWyHKRAiQkOlj9pgfk6qugZD1E352UGvm+7BUF7aYwpe2yVk990KHFXVTgAReQRnOvpEgKeqY1nHV+Jc1DJLKJFK0TsaZTgcp6nK6ueZwiYilapqFe8XmaoyFIoxZhd8jFmQGYdnRORzWfc/PmXfV3PXpMv35JEe3vfwft75+af47X99gQOdBV2TvWD4vW5W1QXzFtwBtNRXEI4nJ20Lx5Osrrc6U+aCrP5pp4hcdJvj6auA7LXE3eltU3/Gu0XkCPCfwK8tRrvNwsUSKc4Mhekbi9p0LVNwROTWdHKnl9OPrxeRL+a5WSUnc8GnezBEZMo5gjHmYrPNv9uedf9Xpuy7LgdtWRTZa7hqAx76x6M88ESHBXmzyIzaraoL4vPkN7nBvdvbiCeVUCyBqvNvPKncu70tr+0yBecf0//+Bc4a4am32Uw3z+eiETpVfVRVNwI/j5NBePoXE7knvU7vUG9v7zyabi7FSDhO12CY/rEoyZQNqJqC8VfAW4B+AFV9gcnnT2YRZS74nB+JELcLPsbMaLY1eDLD/YKWvYYrnkwR9LoJx5M8crCLrW0N+W5ewfG6XSyr8eP3FMb0px0bl3E/zv/H7sEQqy2LppmGqj6T/vfHl/D0bqAl6/Fq4MwsP2uXiKwXkSZV7Ztm/8PAwwCbN2+2yCOHVJXhcNwplF7po8ama5kCoKpdU8oH2RBTjo1HE4RiSWoCHuorfLY+z5gpZgvwXCJSjzPKl7mf+QsqjGhgGtOt4Qp4XZwbCeepRYWrNuilodJXcHXtrM6UmS8RaQf+HLgaCGS2q+psQ74HgXYRWQecxqmhd/eU190AHEsnWdkE+EhfoTf5l0wpfaNRRiMJGip8RVE/z5SsLhG5FVAR8QEfIz1d0+RW9gWfugofNQGr02tMxmwBXi3wDBeCumez9hXsVeqW+gp6RiMTWRgBIvEUK2qCeWxVYfG6XTRXW9ICUxK+AvwhzjSp1wO/yhwzDlQ1ISIfBR7HuVj1ZVU9LCIfTu9/EPgF4JdFJA6EgfdeQjIXk2PReJKzw2EqfE79vHxPMTdl6cPAAzjreLuB7wMfyWuLykwypfSPRRkKxagNeqkNei3QM2VvtgDvdap6cslaskju3d7GfTsPE4ol8LqEcDxJIqXctaVl7ieXgZqglwabzmBKR1BV/0tEJN1f/ZGI7MYJ+makqo8Bj03Z9mDW/c8An8lFg83iC8UShGIJqgPOrAS39W9m6Yiqvj/fjTBOoDcw7pRYaazyTbrQb0y5me3T/yiwaakasliy13Cd7B9nWXWAu7a0lP36O5/HZanGTSmKiIgL6EiPyp0GCnp+75NHevibJ49xYmCclTVB658W0Wgkzng0QX2Fj5qgTdcyS2KviBwH/hX4N1UdynN7yl48meLccIRKvzOy713ier7GFIL5JlkpKpk1XL2jUUYj8Xw3J69EhPoKm7JgStZvAhU4617+BHgDF2f9LRiZLL9uF9RkZfn9OO0W5C2SlCr941FGInHqKqxulsktVW0Xka04a3l/L10y4RFV/ac8N63sZRKxlMs50JNHenhoVyddgyFaLEFd2ZstwFslIn89005V/VgO2mMWUaFlyDRmsanqwfTdMZz1dwUtk+U34HUTT1iW31yKJy8USm+s9FsiFpMzqnoAOCAifwb8X+DvAQvwCoDqhWmb9ZU+qvylOW0zc/HQ6xbqgl56RiPct/Mw94MFeWVqtk96GCfJiilCVX4PTVV+W2tnSpKIfIWZkz2pqn5wKdszX5ksv9kNtyy/uRVLpDg7HCboc9NQ6bMLXmZRiUgN8G6cEbz1OMtbts7jeXfgJGdxA19S1U9P2f8JILO2zwO8BmhW1QEROQGM4pRjSKjq5sV5N6UrnkzRMxJhxOv0A6W2XOWhXZ3EEkn6xxLEkil8bhfVAQ8P7eq0AK9MzRbg9avq3y9ZS8yiEBEaq6w+lCl535lmWyvOlM2C/ebOZPnNPrmwLL9LIxxLcjoWpsrvod7W5ZjF8wLwbeB+Vd03nyeIiBv4AvAmnMybB0Vkp6q+lDlGVT8LfDZ9/DuA31LVgayXef10dTnN7CLxJGeGwlT6nfp5pZJ599XzI4xEErgQ3CIkkkr/eIxEciTfTTN5MluAF1uyVphF4fO4WFYdKPoOy+aRm7mo6r9l7otIG/C7wHbg08Df5atdc8lk+U1pAo9LiMRTluV3iY1FE4zHkk6gV+HFY4GeuTxtl1BCZStwVFU7AUTkEeBdwEszHP8+4GuX3kQz1Xg0wXg0QVW6UHqxX/CJJ52PYGbWlgikUkosadV9ytWMn2hVvXkpG2IuT12Fj1V1wZII7u7beZie0cikeeRPHunJd9NMgRGR14jIPwH/ATwFXK2qf6OqBXtxasfGZdz/zmtYVhVwUnlX+vn4GyzBylJTVUYjcboGw/SPRUmm7CTILIyIfC59d6eIXHSb4+mrgK6sx93pbdP9nArgDuDfsjYr8H0ReUZE7rm0d2AAxiIJugfD9BV5P+DzuECdJFOKklIFpejPCc2lK83VpmWk1IqWZ5JQZOrXVPg8hGIJm0duJhGRbwCbgb8AfgtnLUpNJkvalKlMBWX7lc1UBTzUVXhxlXhWt0KnqgyH44xFEzRU+izjplmIf0z/+xeX8Nzp/vBnii7eAeyZ0qfdpqpnRGQZ8AMROaKquy76IU7wdw9Aa2vrJTSzPKgqI+E4Y5EENUEvdUFv0eUvaF9WzYn+MUbCF9bg1VR6WdtYle+mmTyxAK9IiQi1QS/1FaWV+jeThCJb0OumezCUpxaZArUF54TofwL/I70t84egQFs+GjUfPz0zzHse3EdjlY9b2xq5ZX0jm1rr7UprHiVTmi6rkyjJBAxm8anqM+l/f3wJT+8GsudlrwbOzHDsXUyZnqmqZ9L/9ohIJqnLRQGeqj4MPAywefPm4h2eWiIpVYZCMUYjceqCxVVLMzP9f0WtZyI7czyp3Lu9YL8KTY7NGuCJiEdVE+n7VcBGoHO+V8fnyhKVPmYH8DnAC/Sp6usW0P6yVMrFOzNJKDIjeADheJLV9RV5bJUpNKq6Nt9tuFQHjjvdZ/9YjP948Sz/8eJZAl4Xm9c0cNuGRm5e10hthY0k5UMmAYMlYjHzJSLtwJ8DVwOBzHZVne3M+iDQLiLrgNM4Qdzd07x2LfA64BeztlUCLlUdTd9/M3D/IrwVk5ZMObU0h8Nx6iq9RZG0bsfGZdyPMwuqezDEastfUPZmDPBE5APAX4pIP/BxnIxPx4ErReR/qeqsC37nkyVKROqALwJ3qOqp9HQDM4NAiab3zZa5ChWKJewqlClJH9rWxq3rG/n358+w91gfh8+MEImneOpoH08d7cMlcM0VNdy6volb1zfS0mAXN5ZaJhFLbZFO1zJL6ivAHwJ/Bbwepx7nrB8YVU2IyEeBx3EugH9ZVQ+LyIfT+x9MH/pu4PuqOp719OXAo+mRJQ/wL6r6vUV8PyYtkUrRNxplOBSnodJHZYHX0NuxcZkFdGaCzJT8SUR+gtNZVeOkAb5BVY+JyHLgB6p63awvLHIL8Eeq+pb0498BUNU/zzrmN4ArVPX359vgzZs366FDh+Z1rDPlJj7fly5YXrerKDqXxZLJomlXocqHiDxTCrWc5ts/ZUaKAIZCMfZ3DrCvs5+DJwaIxFOTjm2pD3Lr+kZuXd/E1VfU4LZgY0mV2jpns3Cz9U/pfTeKyE9U9WfS23ar6ralbeXsFnLudHooTDSezHGLio/f66ahwkfQZ32BKQyz9U2zRQzJdI2VPhEZU9VjAKp6fp5zkqfLEnXTlGOuBLwi8iROIPmAqv7DfF68HJTqOru52FUoU07qKnzcce0K7rh2BbFEiue6Btl7tJ+9x/rpH4/RNRjmXw9186+HuqkNerm5rYFb1zexeU29nWgsgXgyxZmhMLVBLw2VvrLqi828RETEBXSkR+VOA/YFVoKi8SRnh8NU+DzUV3rxe6z/NYVrtgDvlIj8OU7gdURE/hL4FvBG4Ow8Xns+WaI8wI3AzwJBYJ+I7FfVVye9UBlmgvJ5nKvG1oEYM73LXSNciHweFzeta+SmdY18/I1Kx/kx9hzrY++xfjp7xxkOx3n88HkeP3wer1vY1FrvrNtra6Spyp/v5pe04XCcUCxpo3lmqt8EKoCPAX8CvAH4lXw2yORWKJYgFEtQ5fdQV0LF0k1pmS3A+0XgI8Aw8CmcOiy/A5wCPjCP155PlqhunMQq48C4iOwCrgcmBXjllAlKRKgLeqkrs1E7YxbictcIFwOXCFetqOaqFdX82m3rODccYe+xPvYd6+f57mHiSeXp4wM8fXwA6OCqFdXpqZyNtDVVWv+RA5nRvLoKX9nNrDDTU9WD6btjOOvvTJkYiyYYiyao9DvF0i3QM4VkxgBPVUdwMkNlfDN9m6/5ZIn6d+DzIuIBfDhTOP9qAT+jpNionTHz9j+Aq5hhjTBT0oqXghW1Ae7ctJo7N61mLJLgwIkB9hzt48CJAcajSV45N8or50b5yp4TrKgJTAR7162uxWPZIBfVUCjGeDRho3llTES+wsy161RVP7iU7TH5Mx5NEIolqQk4gZ4lZTKFYK4yCb+Cc3X8qvSml4G/ns86uflkiVLVl0Xke8CLQAqnlMJPL/3tFCcbtTNmwS53jXBRqwp4eMPGZbxh4zISyRQvdg+zt7OfvUf7OTcS4dxIhG89d5pvPXeaSr+brWsbuG1DE1vXNlAVKI9kTbmWGc2rCXppsJO6cvSdaba14kzZtKi/zKgqw+E4Y9FE0dXQM6VptjIJv4zTUf028CzOmrpNwGdFhHkGeY8Bj03Z9uCUx58FPrvglpcIG7Uz5pJc7hrhkuFxu9i0pp5Na+r5yI71HO8bZ++xfvYc6+eVc6OMR5P86JVefvRKL26XcP3q2okSDCtqA3P/ADOrkXCccCxJU5Xfkt6UEVX9t8x9EWkDfhfYDnwa+Lt8tcvkV3YNvfpKL9VFUEPPlKbZLuX+BvBuVT2Rte0JEfkF4BHAsl1eBhu1M+ayXO4a4ZIkIrQ1V9HWXMUv3ryG/rEo+zqdjJzPnBwknlSePTXEs6eG+PyPjtLWXDkxlfPK5dW4rC+6JPFkirPDYaoDXhorbTSvXIjIa4DfA27AuVD94UziJ1PeEqkUvaNOoNdQ6aPCZzMnzNKa7RNXMyW4A0BVT4hITe6aVPps1M6Yy7MIa4TLQmOVn7dfdwVvv+4KwrEkh04OsvdYH/s7BxgOx+nsHaezd5x/2n+Kxkoft6SDvU2t9ZYw4BKMRuJE4kkaq+yErtSJyDeAzcBfAL8FJIGazAXbYs7maxZPLJHi3HDEauiZJTfbN1D4EveZGZRrXTtjcuFy1giXo6DPzbb2Jra1N5FMKS+fHWHPUacEQ9dgmP7xGN958SzfefEsAa+LzWsanBIM6xqprbBpRvMVTzondB6Xiwq/mwqfm4DHbaN6pWcLTpKV/4mT9AkulIdSoC0fjTKFKVNDL+hzU1/hs+RMJudmC/BeIyIvTrNdsI5rwXweF01VlnHNmMWwGGuEy5nbJVy7qpZrV9Vy7+vWc2ogxL5j/ew91sfhMyNE4imeOtrHU0f7cAlcc0UNt6xv4rb1jbQ0VOS7+UUhkUoxEk4xEo4jIgS9bqoCHip9brvAVwJUdW2+22CKTziWJBwLW2kFk3OzBnhL1ooSZqN2xuSErRFeRK0NFbQ2VPDeLS0Mh+LsP97PnqP9HDo5QCSe4ienR/jJ6REe3tVJS30wvW6viauvqMFtI1NzUtWJ4sgel8uSLxhT5jKlFez80OTKbAGeF1iuqnuyN4rINi4uWG6m4fe6aary2Vo7YxafrRHOkdoKL2+5ZgVvuWYFsUSKZ08NTiRq6R+L0TUY5l8PdfOvh7qpDXq5ua2BW9Y3smVNg60vmYdM8oWRSMK+H4wpY6pqNTVNzswW4H0OJ+3vVOH0vnfkoD0lwSVCfYXP1q0Ykzu2RngJ+Dwubm5r5Oa2Rn7zZ5VXz4+x51gf+471c6x3nOFwnMcPn+fxw+fxuoVNrfXOur22Rpqq/PlufkGLxpOcHnTq6NVX+Gwk1Jgy5WThjdBQ6aM2aOeNZnHMFuCtVdWL1uCp6iERWZu7JhW3Cp+HpiofHrfNq75UTx7p4aFdnXQNhmipr+De7W3s2Lgs380yhcXWCC8xEeGqFdVctaKaX7ttHedGIuw92s++Y3083z1MPKk8fXyAp48PAB1ctaJ6ogRDW1OlTUGawUg4zmgkQXXAQ13Qa98dRUREPJmyCCJSBWwEOos5g+aXdncyHktyQ0stq+qC9ne7RFSV/rEo4ZiThddr/YC5TLMFeLNVwA0udkOKnUuEhiofNbau4rI8eaSH+3Yexut26gT2jEa4b+dh7gcL8kw2WyOcZytqAty5aRV3blrFWCTBgRMD7Dnax4ETA4xHk7xybpRXzo3ylT0nWF7j59Z0kpbrVtdaEDOFqk4EerVBL3VBr2XdLHAi8gHgL0WkHyeb7xeA48CVIvK/VPVr+WzfpUillAd/fIy+sRgAK2sDbFnbwJa19dzQWmelP5ZAKJYgPJikLuil1voBcxlm+2s9KCL/r6r+bfZGEfkg8Exum1Vc/F43y6r9dsVlETy0qxOvWya+SCp8HkKxBA/t6rQAz2SzNcIFpCrg4Q0bl/GGjctIJFO82D3M3mPOur1zIxHOj0R59LnTPPrcaSr9braubeDW9U3ctK6BqoCdNGZk1uSMhONU+j1UBzy2Lqdw/Q+cEi3VwAvADap6TESWAz8Aii7AG48l2NbezJOv9DAYinN2OMLOF86w84UzuF3CNVfUsGVtPVvWNrBhWRUuG93LCVVlMBRjJBKnLuijJuixkVSzYLN9s/4m8KiIvJ8LAd1mwAe8O8ftKhp1FT7LgLSIugZD1E2Zgx70uukeDOWpRaZAfQ5bI1yQPG4Xm9bUs2lNPR95/XqO942z91g/e47188q5UcajSX70Si8/eqUXt0u4fnXtRFbOFbWzTRwpHylVRiNxRiNxqvweGqv8tkav8CRVtQ/oE5ExVT0GoKrni/V8oDrg5a/e+1q6BkO8dHqYgycGOXhigJ+eGSGZUl7sHubF7mH+7qkT1Fd4uXFNPVvXNXDjmnrqK3z5bn7JSaaU/vEow+G4Zd41CzZjgKeq54FbReT1wLXpzf+pqk8sScsKnNftsqxHOdBSX0HPaGTSVJBwPMnqequ9ZSaxNcJFQERoa66irbmKX7x5Df1j0YmMnM+cHCSeVJ49NcSzp4b4/I+O0dZcObFu78rl1TZCAIyl06lXBTxU+NwEvVZHr0CcEpE/xxnBOyIifwl8C3gjcDavLbtMLhHal1fTvryau29qZTya4PmuoYmA7+xwhMFQnB++3MMPX+4BoH1Z1cTo3jVX1Ng07EWUybw7HI7TUOmzqbJmXub8lKjqj4AfLUFbikZt0EtDpc++ZHPg3u1t3LfzMKFYgqDXTTieJJ5U7t1ueTPMJLZGuAg1Vvl5+3VX8PbrriAcT3LoxCB7j/Wxv3OA4XCczt5xOnvH+af9p2is9HFLOtjb1Fpf1gWBU+k1eiPhOB6Xi7pKr633zr9fBD4CDAOfAu4Afgc4BXwgf81afJV+D7dtaOK2DU2oKqeHwhPB3vOnhogkUnT0jNHRM8a/HOiiwufmhpY6NqfX711RZ13yYoglUpwbjhDwummo9NkAg5mVqGq+27Agmzdv1kOHDs3r2N7RKKOR+KL9bBu1WxqZLJrdgyFWWxbNsiAiz6jq5gUc/zXgiRnWCL9ZVd+72G2cj/n2T5F4kjNDVs0hI5lSXj47wp6jfezrHODUwOQp2QGvi81rGrh1fSO3tDVaCRqc76PGKruavxQW2j8VooWcO50eChONJ+d1bCyR4qdnhjl4fICDJwfp7B2/6JjV9UE2p6dzXt9SR9DOoRZF0OemvsICvXI2W99kAd48iDgZHetsrZ0xOXEJAd5y4FEgxjRrhFX13OK3cm4W4C2OroHQRJKWw2eGSWV9TbkErrmihlvWN3Hr+kZaG8p7+rad5OXeTP2TiPwKTgbNq9KbXgb+WlX/YSnbNx+5CvCm6huL8szJQQ4cH+CZk4OMRBKT9nvdwrWraieyc1oJlcuX6QP2H+u3ElNlxgK8y1Dh89BQ6Svr6UHG5NqlXiGfskb48HzXCIvIHcADgBv4kqp+esr+9wOfTD8cA35dVV+Y63UtwFt8w6E4+4/3s+doP4dODhCJpybtX10fnFi3d80VtWWbjCTgdVMd8FDh85Tt7yBXpuufROSXgd8Cfht4FqcG5ybgs8ADhRbkLVWAly2ZUjp6Rjl43JnO+dLZkUkXawAaK31sXlvP5jUNbF5Tb6Pzl+hA5wB//aMO/B4XlT7PxPKW+995jQV5JcwCvEvgdbtoqvIT9NlVUWNybSmnQImIG3gVeBPQDRwE3qeqL2UdcyvwsqoOishbgT9S1Zvmem0L8HIrlkjx7KlB9qVH9/rHY5P21wQ83LK+kVvWN7JlTUNZ9t8igs/jIuBxEfC6qfBZUpbLNUOAtx+4S1VPTNm+FnhEVW9euhbOLR8B3lRjkQTPdg1OBHw9o9FJ+wW4ckU1W9bWs3VtA69ZWWMXK+bpt//1BfrHoxNJmFwuiMaTLK8J8rV7CuqjaBbRbOdONnl/GpZExZiSthU4qqqdACLyCPAuYCLAU9W9WcfvB1YvaQvNtHweFze3NXJzWyMff6PScX6Mvcf62HOsn87ecUYiCR4/fJ7HD5/H6xY2tdY76/bWN9JU5c9385eEqhKNJ4nGkwynk7LUBr1WS2vx1UwN7gBU9YSI1Mz15HnMItgB/DtO8XSAb6nq/fN5bqGqCnjY3t7M9vZmVJVTAyEOnhjk0IkBnu8eJpZI8cq5UV45N8o/7T9Fpd/Nja31E8laltdYGZWZnB0JU5OuKaqqJJPgdgkn+scYjyao9Nvpfrmx/+NZfB5n1M7WMhhT0lYBXVmPu4HZRuc+CHx3pp0icg9wD0Bra+titM/Mg0uEq1ZUc9WKan71tnWcG4mw92g/+4718Xz3MPGk8vTxAZ4+PsBf/bCDq1ZUT0zlLKd1P4lUiv7xKCORuM1KWVyzDcHPOjyfnkXwBbJmEYjIzuxZBGm7VfXtl/jcgiYirGmsZE1jJe+5cTWxRIoXuy+UYjjRH2I8mmRXRx+7OvoAaG2omCjFcP3qWvx2rjZhZU1wYgQvIxJPsbw6yPmRCD6Py0oslBn7P43T0dRXeKkNWhIVY8rAdH/k085VT6/x+yBw+0wvpqoPAw+DMw1qMRpoFm5FTYA7N63izk2rGIsmOHh8gD3H+nn6eD/j0eTEyMBX9pxgRU1gogTD9atry6JmVzyZ4uxwmKDPTZXfQ6XPg8umv12O14jIRbU4cfqXuer6zDmLIEfPLVg+j4vNaxvYvLaBX2c9PSMRDp0c5OCJQZ45OchYNMGpgRCnBkL827On8XlcXLeqli3rnNG9NQ0VZX3+dteWFj7z+BHOj0RIphS3S6j0e/jIjg3AhRIL/sxaXa+7LPq9clb2AV7Q56apyo/XPujGlItuoCXr8WrgzNSDROQ64EvAW1W1f4naZhZBld/D6zcu4/Ubl5FIpnjx9DB7jzrr9s6NRDg3EuHR507z6HOnqfS72bq2gVvXN3HTugaqAqX9tRiOJQnHkvRJjIDXRYXXg8ctuF2Cz+2yoG/+XnMZz53vLIJbROQFnP7pf6rq4QU8t6gtqwnwtp9Zydt+ZiXJlHLk3Iizdu/kAK+cGyWWSHHo5CCHTg7yN8Cyaj+b1zjTOW9cU0d1udaJFBBh+suYMDF9G8DvdVMT8FDlt+nbpai0v8lm4RKhvtJHbbBMOwFjytdBoF1E1gGngbuAu7MPEJFW4FvAL6nqq0vfRLNYPG4Xm1rr2dRaz0dev57jfePsPdbPnmP9vHJulPFokh+90suPXunF7RKuX12bnsrZxIra0l3zo6oTwV42j8uF2y24xFnD43e7J2WR9nlclvjC4QWWq+qe7I0iso1pLhhNMZ9ZBM8Ca1R1TETeBnwbaJ/nczNtKYnp426XcM0VtVxzRS0fuG0tI+E4z54anJjO2TcWo2c0ymM/PcdjPz2HS2DjihonWcu6Bq5cXl3yn9lHDnZR5ffQnLXWOBxP8sjBLra2NUz7nGg8SW88ycB4jCq/h+qA1zLGl5CyDPBs1M6Y8qWqCRH5KPA4TpKCL6vqYRH5cHr/g8B9QCPwxfSVzUSxFzo2znT8tuYq2pqr+MWb19A/FmVfpzOy98zJQeJJ5dlTQzx7aojP/+gYbc2VE+v2rlxejasMrnInUikSWZUoxkhcdEzQ56Ym4C33xA2fA353mu3h9L53zPLcOWcRqOpI1v3HROSLItI0n+dmPa8kp4/XBL3suGoZO65ahqpyoj/EgeMDHDoxwIunnfW3L50d4aWzI/z9vpPUBDxsaq2fmM5ZigmXspOsZAS8Ls6NzJ2tOZlShsNxhsNxgj431QEvlZZ9t+iVVe/sEqGhykdNuQ7dG2MA54QJeGzKtgez7n8I+NBSt8ssrcYqP2+/7greft0VhONJDp1wSjDs6+xnOByns3eczt5x/mn/KRorfRPr9m5oqSvrBA+Zkb+A101DZdkWWV+rqhetwVPVQ+lSCbOZzyyCFcB5VVUR2Qq4gH5gaK7nlhMRYV1TJeuaKnnvlhbC8SQvdA1xKD261zUYZiSS4MlXe3ny1V4A1jVVTiRr+ZlVtSUxajVTkpUVNcEFvU7mb9vrdlFb4aXapm8WrbIJ8Cp8HpqqfLao1BhjzEWCXjfb2pvY1t5EMqW8fHaEPUf72Nc5wKmBEP3jMb7z4lm+8+JZAumEELeub+TmtgbqKnz5bn5eZOo5BrxuaoJeAh5XOX3HzjZ/d9az6nnOIngP8OsiksAZFbxLncLF0z738t9OaQh63ROlVADODUc4dHKAA8cHefbUIKFYkuN94xzvG+frh7rxe1xc31LH1nTAt7o+WJQBzV1bWnjgiQ7C8SQBr4tIPEUipdy1pWXuJ08jnkzRNxplcDxGhc9Zp2cZeItLyRc6D8USNFT6ynfBrTFFYCkLneeSFTovTV0DIfZ19rPnaD+HzwyTyvradAlcc0UNt6xv4tb1jbQ2VOSvoQXA7RI8bhcel+ASJ3mLO1142Z21zeOSojmRnqHQ+deAJ1T1b6ds/yDwZlV971K2cS6FUOg83xLJFC+dHUnX3hvklfOjFx2zoibAlrVOspZNrXVFNQ35QOcAjxzs4txImBU1Qe7a0jLj+rtL4XW7qAl4qQp4Sn5NY7GY7dyppAO8sWii3K4oGlOULMAzxWI4FOfp406SloMnBojEU5P2t9QHJ5K0XH1FjZ0IzUBE8HlcBDwuKnweAl5XwQZ8MwR4y4FHgRjwTHrzZsAHvFtVzy1tK2dnAd7FhkIxnjl5IVnLYCg+ab/bJVy9smZiOmf78qqyWIc7FxGh0u+swy3T6dkFo2wDPFOcnjzSw0O7OukaDNFSX8G929vYsXFZvptlcsgCPFOMYokUz55y1u3tPdZP/3hs0v7aoJeb2xq4ZX0jW9Y02BSnOWQHeDJpu7OGXsQZRXC7nODQ53YtSWmHWU+inFqZ16YfHlbVJ3LamEs0n74p8917vH+MFdWLPwJUyFKqdPaOc/DEAAdPDPLT08MkUpPPj2uDXjavqZ8Y4WuoLM+p2dkCXje1wbJPuJQ3eQvwROQO4AGceeJfUtVPT9m/A/h34Hh607dU9f7ZXtMCvNL25JEe7tt5GK9bCHrdhONJ4knl/ndeY0FeCbMAzxS7lCod58fYd6yfPcf6ONY7Pmm/1y1saq3n1vWN3LK+sSQz+eVLZtqnKz0d1O0SvO7Mvy5ccqHsw6WMEpZC/zRX35T93esWIRxPkkgpH39De9kEedlCsQTPdw1N1N47MxS56JgNzVVsWeeM7l1zRU1ZZ2b3uFzUBJ1SCzZrYenM1jflLOQWETfwBeBNOGl9D4rITlV9acqhu1X17blqhykuD+3qxOsWKnzOR7PC5yEUS/DQrk4L8IwxBcslwlUrqrlqRTUfuG0t50Yi7D3az75jfTzf7aRuf/r4AE8fH+CvftjBVcuruXWDk5WzramyYKcnFoOUKqmkwjxmFbpEqAl6bfRliuzv3lgiNXGBdbY6aqWswufh1vVN3Lq+CYDTg+GJZC3PdQ0Siac42jvG0d4xvnagi6DXzWtb6pzpnOsaWFW3sOyVxS6RSjEwHmMwFKfS74zq+T02YyGfcjmmuhU4qqqdACLyCPAuYGqAZ8yErsEQdVOKzwe9broHQ3lqkTHGLNyKmgB3blrFnZtWMRZNcPD4AHuP9bP/eD/j0SSvnB/llfOjfGXPCZbX+NMnk41ct7q2rEcCci2lSjJVXEtTlsJ0373zraNWDlbVB1lVv4p3vXYV8WSKw2dG0rX3BjnaO0Y4nmRfp1NiBeCKugBb1jp1925oqS+b6dmqylgkwVgkQYXPQ23QWzbvvdDkMsBbBXRlPe4GbprmuFtE5AWcQp3/09L9lreW+gp6RiMTI3gA4XiS1fXlnZnOGFMYMpnqzo6EWTnPTHVVfg+v37iM129cRiKZ4sXTw+w96qzbOzcS4fxIlEefO82jz52m0u9m69oGbl3fxE3rGqgK2NqWxXSgc4BvPNPN+dGIrfHOMt1376XUUSsHXreL17bU8dqWOu7ZDgPjMQ6l1+4dOjnIcDjOmaEI//78Gf79+TN4XMK1q2onkrWsby6PEftQLEEolsCfWadnxdOXVC6/Oab7vzj1stmzwBpVHRORtwHfBtoveiGRe4B7AFpbWxe5maaQ3Lu9jft2HiYUS0xag3fv9rZ8N80YU+YOdA7wmcePMB5NkEwpg+MxPvP4OJ98y8Z5T2PzuF1saq1nU2s9H3n9ejr7xieStBw5N8p4NMmPXunlR6/04nYJ16+uncjKuaJ2ttJrZi4HOgd44IkOfB4XdUEvPaMR7tt5mPuh7IO87O/e7DV4l1pHrZw0VPp48zUrePM1KybW4maStRw+4yRreb5riOe7hvjb3cdpqPRNJGu5cU19ydfRjMaT9MSTE+v0qvwey26/BHKWZEVEbgH+SFXfkn78OwCq+uezPOcEsFlV+2Y6xpKslL5MJq/uwRCr7QprWSiFJAZgSVZK3Yf+/hAn+8dxuZyMjqqQSilrGiv50q9c/se3fyzKvs4B9h7r45mTg8STk7+f25oqJ9btXbm82lK2L9Bv/+sL9I9HqfR7JqbBhmIJllUH+No9N8/4vFLonxaSRfNE/xjLyyyLZq6MRRM8d2ooHfANcH4kOmm/AO3Lq9iytoGtaxvKprSK3+um0ucm6HPbWr3LkJckK8BBoF1E1gGngbuAu6c0bAVwXlVVRLYCLqA/h20yRWDHxmUW0BljCk7XYAhXOmU/OOn7EaVrkdYIN1b5eft1K3n7dSsJx5McOuGUYNjX2c9wOE5n3zidfeP80/5TNFb6uGW9E+xtaq3H57Er4nM5OxKmZsqUV1vjfUHmu7dc6uAthSq/h23tTWxrb0JV6RoMT0znfL5riGgixavnx3j1/Bj//PQpKn1ubmitZ+s6pxTDiprSHLWPxpPOZ2zcycBZ6XdT6fdYXb1FlLMAT1UTIvJR4HGcMglfVtXDIvLh9P4HgfcAvy4iCSAM3KXFVpjPGGOMWWRBr3vixDCZUl4+O8Keo33s6xzg1ECI/vEY33nxLN958SwBj4vNaxu4dX0jN7c1lPyUr0u1siaYHsG7EAzbGm+zVESE1oYKWhsquHPTamKJFD85Pewkazk5yPG+ccZjSZ462sdTR52JbC31QbasbWDz2npe21JXkgFQIpViOJxiOBzH7XJKZAV9bip8nrIYzcyVnK7eVtXHgMembHsw6/7ngc/nsg3GGGPMYmipC3JyIAQpvTBFU2FNfW4TUbjTSRquXVXLva9bT9dAiL3pdXuHzwwTSaQmTgoFuOaKGm7d4GTlbG2w4CXjri0tPPBEB+F4Eo9LbI23ySufx8WNa5x1eAC9o9GJ0b1nTg0yGknQNRima/A033ruNF63cN3quolkLWsbK0ouaUkypYxFE4xFE0AUv9dNRTrgK8XgNpdyWug8F2wNnjGlpxTWuICtwSt1E0lWYglSKcXlEip9ngUlWVlsw6E4Tx/vZ8+xfg6eGCAST03a31IfnEjSUi7re2aTyaLZMxqZ9xrvUuifFnLuZFM08y+ZUl45NzqRrOXIuRGmVvdoqvJNlGLY1FpPzZQyF6XG43IR9Lmp9LsJei0jJ8zeN1mAZ4zJu1I4gQIL8MpBpkzCuZEwK+ZZJmGpxBIpnj01yL5OZ3Svfyw2aX9NwMMt6xu5ZX0jW9Y0lG19quqAl+Zq/7yPL4X+yQK84jYaifPsqSEOHncCvt6xyclaXAJXraieCPg2rijtizkuEQJeJ9Dze11lO7pnAZ4xpqCVwgkUWIBnCkdKlVfPj7LvmDO619k7Pmm/1y3c0FrPbemAr6lq/gFPsbMAb3YW4BU2VeXkQGgi2Huhe+iijLtVfg83pksxbFnbsKDPezFyieD3uvC5Xfg86ZvbVfKjfPnKommMMcaYPHCJsHFFDRtX1PCrt63j3EiEvUedjJzPdzknhAeOD3Dg+AB/9cMOrlpePVGCoa2pPAoxG1OMRIS1jZWsbazk/9ncQiSe5MXuYQ6eGODQiUFODoQYiyb48au9/PjVXgDWNlZMJGu5fnVdyWXdTakSjiUJM/nChMflwuMWfB4Xfo8Lv8ddcu99JhbgGWOMMSVuRU2AOzet4s5NqxiLJjh4fIC9x/rZf7yf8WiSV86P8sr5Ub6y5wTLa/zcur6J29Y3ct3q2pIqSpxZg3d+NEKL1Vk1JSDgdbN1XQNb1zlTxc+PRDh4YpBDJwZ45uQg47EkJ/pDnOgP8Y1nuvF7XFy/upbN6dp7LQ3Bkr2gk0ilSKScWTMZbpdMBHqZwM9bQn1chk3RNMbkXSlMgQKbommKTyKZ4sXTw+w96qzbOzcSmbS/0u9m69oGbl3fxE3rGqgKFO914QOdAzzwRAc+j4tqv2cii+b977xm1iCvFPonm6JZnhLJFC+fHeXgSWc656vnRpl61r+8xj8xureptZ4qf/H+jV8qt8sZ5XOJTNz3uV14XM7jQg2AbYqmMcYYYy7icbvY1Oqc2H3k9evp7BufKK7+8tlRxqNJfvRKLz96pRe3S7hudW06K2cjK2tzWx5isT1ysAtPus6WiFDh8xCKJXhoV6eN4pmS5HG7+JnVtfzM6lp+7bZ1DIfiPHNqcCI758B4jPMj0Ymami6Bq1fWsGWdk6zlyuXVuAo0uFlMyZQzxXMmbpfgEnGme7pdeNMjf4W8zs8CPGOMMcYgIqxvrmJ9cxW/ePMa+sei7OscYO+xPp45OUg8qTx3aojnTg3xhR8do62pklvWN3LbhsaiOBE8OxKmZsoIZNDrpnswlKcWGbO0aiu8vGHjMt6wcRmqSmffuJOs5eQgP+keJpFSfnpmhJ+eGeEre05QE8gka3ECvsYySsaULZlSkijxJJPW+YkIHpfgcgletzP1058O/vId+FmAZ4wxxpiLNFb5eft1K3n7dSsJx5McOjE4Mbo3HI7T2TdOZ984//z0KRorfdySHtm7oaUOfwGmLV9ZE6R/PEql/8J6m3A8yep6KwZvyk/2BZ27trYSjiV5vmvISdZycpDuwTAjkcTECD7A+ubKiemc115RWzYJS2aiqk4G0yRE4zBGAnB+txcSuzhr/HxuF64lLF1hAZ4xxiwxJ6Wzm1RKSaaUVHottIjgFkGEiRpGmfUSma+FlCqpFCRVKbY11KZ4Bb1utrU3sa29iWRKefnsCHuP9bPnaB9dg2H6x2MT07wCHhc3rq3ntvVN3NzWQF2FL9/NB+CuLS088EQH4XgSj0sm1uDdu70t300zJu+CPvdEnUyAM0PhiWQtz54aIhxPcqx3nGO94zxysIuA18VrW+omRvdW1ZVuspaFUlWi8eRFa1ndLsHrdqVvzn23yxkFXOxkVpZkxRiTd6WQxAAur39S1QV/OSaSqXSg50whSaQDxkQqRTLlbJ94/ayfo5oOFBULEs1l6xoIsfeYk6Tl8JlhUlkfKQGuuaLGWbe3oYnWhvyOlmWyaPaMRlg9zyyapdA/WZIVczniyRQvnRnhQHrt3tGesYuOWVkbmAj2bmito8JnY0gL5XG5aG2cfx9phc6NMQWtFE6goHj7p1R6FDGVDvwuBIAXgsDMSbtbBJfrwqLzSa8zJXgk63V0yv7sf1VBL8rtlv26FogWi+FQnKePO8XVD54YIBJPTdq/uj7IresbuW19E1dfUTMxUr2UrND57CzAM3MZGI/xzMnBidp7Q+H4pP0el3DNFTUTAd/6ZVUFv0a3ULQ1V837WMuiaYwxZkYul+Ci8L98M4FoMitAdKa4XtgHzlTXzL5ESiftAwsYc6m2wsubr1nBm69ZQSyR4rmuQacEQ2c//WMxugfDfP1QN18/1E1t0MvNbQ3csr6RLWsaCPoKb92eMeZiDZU+3nT1ct509XJSqhztGePQiUEOnBjg8JkREinlhe5hXuge5ktPHae+wjuRrGXz2nrqC2TadimzAM8YY0xRyASii/HFlRmVzKyBTKSUZFInjVxOjD6qM8U1e6TTAsS5+TwublrXyE3rGvlNVV49P8beY33sOdZPZ+84w+E4jx8+z+OHz+N1Cze01k+UYGgq8Wx9InIH8ADgBr6kqp+esv/9wCfTD8eAX1fVF9L7TgCjQBJIFPvooiluLhGuXF7NlcurufumVsajCZ7vGuJAenTv7HCEwVCcH77cww9f7gGgfVkVW9bWs2VdA9esrFn09WfGAjxjjDFlyElowyVPEdQpQWAm8U0imV7/mD4ukVRiiRSJVGrW1yt1IsJVK6q5akU1v3rbOs6NRNh71MnI+ULXEPGkcuD4AAeOD/C5H3Zw1fLq9Lq9RtqaKksqeYOIuIEvAG8CuoGDIrJTVV/KOuw48DpVHRSRtwIPAzdl7X+9qvYtWaONmadKv4fbNjRx24YmVJXTQ2EOHB/k0MkBnj81RCSRoqNnjI6eMf7lQBcVPjc3tF5I1lJs9TULlQV4xhhjzAJNBIjznNqaSjlTS5MpJZZMEUukiCdTJJLO6GG5jQiuqAlw56ZV3LlpFWPRBAePD7D3WD9PHx9gLJrglfOjvHJ+lK/sPcHyGj+3rm/i1vWNXL+6thSu9m8FjqpqJ4CIPAK8C5gI8FR1b9bx+4HVS9pCYxaBiLC6voLV9RXcuWkVsUSKn54Znqi919k7TiiWZM/RfvYc7QecdbqZYO/6ljqCBVhypRhYgGeMMcbM05NHenhoVyddgyFa5pmFES5ML/W6ITDNCUtqShbUTOCXTKkTCJZwEFjl9/D6jct4/cZlJJIpXjw97KzbO9bPuZEI50eiPPrcaR597jSVfjdb1zZw6/omblrXQFWgKE9jVgFdWY+7mTw6N9UHge9mPVbg+yKiwEOq+vDiN9GYxefzuNjUWs+m1nruBfrGohw64SRreebkICORBN2DYboHnb93r1v4mVW1bF7bwNa19awrsdH8XCrKntEYY4xZak8e6eG+nYfxuoW6oJee0Qj37TzM/TCvIG82Lpfgm5guOv0V68yoXzwzAphS4onUpAQyxc7jvnAC+JHXr+d43/hECYYj50YZjyYnCi+7XcJ1q2sn1u0V0dSu6c5Qp/2fKCKvxwnwbs/afJuqnhGRZcAPROSIqu6a5rn3APcAtLa2zrtxlT43vvQoaSZZUeYGk6c125pUczmaqvzcce0K7rh2BcmU8ur50YmA76WzI8STyrOnhnj21BAP74LGKh+b08lablxTT23Qm++3ULAswDPGGGPm4aFdnXjdMlHfqcLnIRRL8NCuzssO8ObD53Hh81w8PTGaSBKOJYnEU0QTyYkT8WInIrQ1V9HWXMUv3ryG/rEo+zoH2Husj2dPDTlZOk8N8dypIb7wo2O0NVVySzrYu2pFdSGnZe8GWrIerwbOTD1IRK4DvgS8VVX7M9tV9Uz63x4ReRRnyudFAV56ZO9hcMokzLdxl1qYPpOwaNK/6bWpmbWqkxs4+e5EcqOsZEZZ7+WS2mSKh9slvGZlDa9ZWcMv3bKGsUiCZ08NcjAd8PWMRukfi00kZhLgqhXVTrKWtQ28ZmV+yq4UKgvwjDFlZx4Z7DYCXwE2Ab+nqn+x9K00haZrMETdlCvGQa+b7sFQnlrk8Hvc+D0XRv3iyRTheJJIPEkkVjoJXhqr/Lz9upW8/bqVhONJnjkxyN5j/ezv7GcoHKezb5zOvnH++elTNFb6JoK9Ta310wbGeXQQaBeRdcBp4C7g7uwDRKQV+BbwS6r6atb2SsClqqPp+28G7l+yls/C7RLc6WnIuZDKSl6k6dqa2TU0MzHg1G3ZSZAyz5t6HHohyMyMVqb0ws8yS68q4GH7lc1sv7IZVeXUQIgDJwY5dGKAF7qHiSVSHDk3ypFzo/zj/lNU+t1OKYY1zvq9ZTWBfL+FvLIAzxhTVuaZwW4A+Bjw80vfQlOoWuor6BmNTIzgAYTjSVbXV+SxVRfzul143S5qAk4wGk04gV44niQcT5bECWvQ6+b29iZub28imVJePjvC3mP97DnaR9dgmP7xGN958SzfefEsAa+LzWucenu3tDVQHcjvtC5VTYjIR4HHcS4yfVlVD4vIh9P7HwTuAxqBL6bXHGXKISwHHk1v8wD/oqrfy8PbWHKuSaMzSztSk/mbyZRMmXjMhUAx82c1dfQxmbW2NpnSsk2sdDlEhDWNlaxprOT/uXE10XiSF08Pc/DEAAdPDHKyP8R4NMmuV/vY9aqTXHZNQwVb1jmje9etqsVf4MlaDnQO8MjBLvrGowta3z0TKbYP2ObNm/XQoUOzHnOpi+CNMfkhIs8sVS0nEbkF+CNVfUv68e8AqOqfT3PsHwFj8x3Bm0//ZIpX9hq8oNdNOJ4knlTuf+c1RfMdo6pE4inGYwlC0WTJjO5l6xoIsfeYU4Lhp6eHJ51sC3Dd6lreft0VfGjbunklbFjK/ilXrG8qPKmUEk8nVEqqU4czkU6qFE+XW1mIf9x7gq8/0004niTodfPfblzNL926NjeNLzA9IxFnKudJJ1nLeDQ5ab/P4+L61ReStbQ2VBRUspYDnQM88EQHHpdQG/TO+7tltr6p5EbwcrkI3hhTEhaawc4YwPkOeU/3EF966jjjsSSVPjcfun1dUX23iAhBn5ugzw1VEIkniSYuJG6JlUDSlpaGCt7bUMF7t7QwHIrz9IkB9h7t48CJASLxFC90D/PyuVGeONJjF4BN3rhcgt/lxj/DmbiqEk+ms+qmnAAwM4U0lkwRT14YBfzHvSf4+/0ncQm4Xc6o/d/vPwlQFkHespoAP3fdSn7uupUTI/qH0gHfkbOjxBKp9Fq+Qf4GWFbtZ3N67d6NrfV5z8b7yMEuPC7nwqGILMr67pIL8PK9CN4YU/DmncFuXi92iZnqTPF58kgP33z2NM3VflrTI3jffPY0162uK9rvl4DXfVHZhnAsyWgkznis+Kdz1lZ4efPVy3nz1cvZ09HH//3hq8STSm3QYxeATUETEXwewcfM60cT6RIq33y2G5eAx5U+ViCRSvGNZ7v5ldvWFf1Fm4Vwu4RrV9Vy7apaPnDbWobDcZ49OTgxwtc/FqNnNMpjPznHYz85h0vgNStrJpK1XLm8esmTtZwdCVMzJci83PXdJRfgFeoieDN/NsXW5Ni8MtjN16VmqjPFp1wuIGZG+BLJFMPhOKORREmcIP7bs6ep8nuo9HvwpssAlOL/P1M+PG4XHjeE4ik8Lpk07dDtEsLxFGsaK4jEU8RTqXSGUmd0MKVMjNyXwt/3TGqD3ok6m6rK8b7xicycPzk9TDypHD4zwuEzI3x170lqAh5uXFPP5nSx9aYqf87buLImSPfgOOOxJImU4nO7qA54WNdUdcmvWXIBXrEsgjfTsym2ZgnMmcHOmOl0DYZwC3T2jhFLpvC5XTRV+Ur2AqLH7aKxyk99hY/RaIKRcJx4snjX7OXiKrkxhaDS58woyB54SqmzfWJa9gz1NcEJ9KKJ1MSIYHbtw1KqdZhdeuW9W1oIx5O80DU0EfB1D4YZiSQmam0CtDVVTozuXbuqNicZeW9oqeXF00PpKbZCLJmidyzG3VsbLvk1Sy7Au3d7G/ftPEwolpi0CP7e7W35bpqZh3K5Qm7yZz4Z7ERkBXAIqAFSIvKbwNWqOpKvdpv8q/K5Odo7jlsEtwiJpHJ6KMKG5sp8Ny2nXOmF/7VBL4n0iWA04WTljMaTc79AgVhZE6R/PEql/8IJml0ANqXgQ7ev44EnjpJIpXCJE9yl1Nk+H5nMu7OJJ52EMJnEMKWQFTTodXNzWyM3tzUCcG44woETAxw8McBzp4YIxZIT5Vf+9VA3AY+L61vqJgK+1fXBRUnW8lzXMI2VXsaiF0bwaoIe9nUO8LFLfM2SC/B2bFzG/TiBQvdgiNU2xa+o2BRbsxRU9THgsSnbHsy6fw5n6qYxEya+yIULKzmVgsrGlmvOlDAXlelZS5lpnCORRMGf4N21pYXPPH6EnpEISVU8Lmca1B/83NX5bpoxl+Vjb7wS4KIEUJnti8EJAplxJDCRTBHLStaUSd5UTFbUBnjn9VfwzuuvIJFM8dLZkYnRvVfPjxFJpHj6+ABPHx8AjrGiJjAR7N3QWkflTBlz5nB2JExdhY/6Cpko56CqhbsGb65iwlnHbQH2A+9V1W9e7s/dsXGZBXRFyqbYGmMK1Wg0waq6AH1jsYkpmitq/IxFE/luWt5kpnHWVfgYCccZicQXnN59yQmI859Lz65kTIH52BuvXNSAbqEyF38qfBe2JVNKKJYgHE8SS0zO/FnoPG4X162u47rVdXzw9nUMhmI8k07WcujEAIOhOOdGIvzHi2f5jxfP4nYJ11xxIVnLhmVVuOZ58S8zuyCYlfDqcs99cxbgzbOYcOa4z+BMlzJlzqbYGmMKVUt9Bcf7xiZtiyZSl7UQvlS4XUJ9pY+6Ci8j4QRD4VjBBXqPHOyiyu9heU3AkqyYklOICercLqE64KU6cGFmVjSRTK/3u1AAPhJPFXzgV1/h442vWc4bX7OclCrHesacYO/kAD89PUIipbzYPcyL3cP83VMnqAt62bzWSdayeU09DZW+GV/7ri0tPPBEB+F4Ep/HtSjnvrkcwdsKHFXVTgAReQR4F/DSlOP+O/BvwJYctsUUCZtia4wpVLe0NfD08f6JwtnxZJJwPMndW608RoaIUFvhpSboYSzqXLmPxFIFUVDdkqyYUlVMCer8Hjd+z+RpnqmUEo47/WkkHdwUcsDnEqF9eTXty6u5+6ZWQrEEz50a4tCJQQ6cGODscIShcJwfvtzDD1/uAWBDcxVb1jmje9dcUTNpzePWtgY+TjuPHOyifzy6KOe+uQzw5iwmLCKrgHcDb8ACPJNmU2yNMYXouz89x9RzDlVnez6nRhUikclX7kOxBGORRF5r61mSFVOqij1BncslVKZLmGRkEjqNxxKEosmCLuVQ4fNw24YmbtvQBMDpwTAHTwxw8MQgz3UNEomnONo7xtHeMb52oIug180NrU6yls1rG1hVF2RrWwNb2xpoa16cGSG5DPDmU0z4c8AnVTU52yJ1KyRsjDEm3472jKGkv9wEUOdL7WjP2KzPM84JUIXPQzKljEbiDIeXfq3eRJKV0QgpdaaPVfktyYopfqVYwuVCQicPWuWM8I1Hk4xHC78u56r6IKvqV/HzN6wilkhx+MzwRLKWY73jhONJ9h7rZ++xfuf4uiCb19azdW0Dy2sCl5ysJVsuA7z5FBPeDDySDu6agLeJSEJVv519kBUSNsYYk2+J9EmFTvxn8nYzN7dLqKvwUR3w0j8eZSyShwQ1mZpeKtNeiTam2FT7PbxybhQVZ1ZBIpWkayDMVSuq8920RSEiExeJGit9jEYSjESKoy6nz+PihtZ6bmit557tbfSPRTmUlaxlJJLg9FCY08+H+ffnz/B73/4p16ys4RNvuapgp2jOWUxYVScKdIjIV4HvTA3ujDHGmEIgOn3WRbH4bsHcLmFZdYDaYJLRSILxaCLnI3qWZMWUqtFwjBRMdFCa7qtGw7E8tio3XC5nnW9thZdQLMFIOEEoVjyZjBur/LzlmhW85ZoVpFTpOD/Gt549zY9e6SGR7gOP9ozyiW++wGffc/0l902LX449TVUTQKaY8MvA1zPFhDMFhY0xxphi4fdO/5U503YzN7/HTVOVn5b6ikmZ9nLh7EiYwJT/V5ZkxZSCc6PRBW0vFRU+DytqA7Q2VNBQ6ZuzWHuhcYlw1YpqjvWOoap4XOB1C4gwGIrzme8dueTXzmkdvLmKCU/Z/oFctsUYY4y5HJV+D+H4xVfEF2O9RLlzuYTmaj/VAQ99Y1FiicWfemVJVkypmmmmYhHMYFwUHreLugofdRU+IulMnJF4inA8f0mdFqJrMIRLwOVyTdTOU1E6+8Yv+TXtW8kYY4yZh6ZKH4PjMVLp6U8CuMTZbhZHwOtmVV2QkXCCgVBsUU/OLMmKKVUz/ZUUfmiz+AJeN4F0wfBUSgnFk4SiCUKxws7EmUwxUU5GxPl+8bgvfZWwBXjGGGPMPIgIIoLPLUg6mUEypcyWBdosXKaWXoXfTf9YbFHX18STKaIJ5yQvkVT8njIZ4jCmDLnSF3Gq/B5UlfFYkoGxWEHU5czWEPRwfiw+8TgTh66svPRp68U1WdUYY4zJk9FoglV1ATwuIZlSPC5hVV2AsWjxLPAvJl63ixW1AZbVBPC4Lv905eHdnYRjSXxuIeB14fO4GI8mL2udizGmOIg4wd7q+iC1QW9BXZiLJacfWYxcxlR1G8Ezxhhj5qGlvoKe0cikQrShWIJl1YE8tqr0Vfk9VHjd9I/HGP3/27vfGLmq847j32dmZ3ZnvWvvru0F/1kSFpwaQ2VAjkNUZKwUBZuqsWhNY16UQBXZIBD0RVBpJYhkXjRWUSraRLEtSirUFqpCU6zW4KYtrhtUR4DB1A6m2ToBb3BiG6//7q7339MX9649HnY9d2d3Zu+9/n2k0c7ce+6dc+bcfTRnzrnn9A+WP2Ac5+9zMcMIe2EneZ+LSJzFpwkTH5mMMbupnuaGHMfPTu0IgUr19I2dh096K4936sETERGJYMOKTgaHnd6BIdyDv4PDzoYVndOdtdQbnYRlfkuBfJ2+uoiM2nngCOPdqrWwtVDbzCRIvi5zfgbO2U315+/bm24WTKIJXBiqWQn14ImIiESwcnE7G4Etuw7S3dPLwtZGNqzo1BpqNTQ6CcvJvkF6egcnNAlLR0uBD4/3YiNOJhN8eRpxuHaOZtGEoKGwZddBDvX00qFrOzG27DrI3OZ6jpw+R/FSklmDp9bcMH0ZS4i6bIZZhQyzCjnODQ1zsm+QM/217dVrqMucH45ZHNIaJ9HoVANPREQkopWL2/Wld5qZGS2NeWbU101oEpb1K65h044D9A4MMexONmO01Od4fPV1Vc5x/O08cIRH//4dTvUN4cAvevr4yeGTPPPVm3S9x9yhnl7mNNUzPOJ8Es7ymzFozGdUdxNUX5elvTlLa+MIJ3oHOXNuqCbLLNx67Wz+7cDRT22/4/rK60/jHERERCRxJjoJy/LONv7ojsXcML+FK2c2cFNHK0+vXaovwcATr+zjZHgf0Ohov5N9Qzzxyr7py5RE0tHayLEz5zjRN0guk6GhLkM2YwwMBw13mbhcNsPc5vpg+OaM+qovoH7szCAzG7Ln//cyBq2Ndfzy1KfXXY0qlT14GmYgIiJyeZjIJCzLO9v4zSVXMLe5vka5G5uZrQKeAbLAs+7+rZL9Fu6/E+gF7nP3PVGOrUR3T1/4xkUbvWi7xNaGFZ1s+Ju3AbBw6LFhtM3IsWXXQX3/nYRsJliyZVZjjr6BYU71D3K2CrMmHz7VxxUzG7hyplEfDst0d7p7eis+Z+p68HYeOMKT2/Zz5HQ/LYUcR0738+S2/foVQ0REJKWKJ2Gp9q/tk2VmWeC7wGpgCXCPmZWutr4aWBQ+1gPfm8CxE6aFspNr5eJ2mhvqyBUt3zK/pYHZM+on1UCQixXyWa6Y2UBHWyMtjfkpWbpl1LyZBfoHL14SoW9wmIWtld8fHO8oWIEtuw6SyxqN+TrMgr+5rLFl18HpzpqIiIhUUUMuy8LWAm0z8rFa56rEcqDL3Q+6+wDwIrCmJM0a4HkP7AZazGxexGMnrJALvg66X3gUb5d4W9TezLyWAouvnEnn3CaaG3KTbiDI2HLZDG0z8nS0FbhiZsOUzL657vMdDI04fYPDUzZDc+r+cw/19FIo+bALuax+xRARkUnZeeAI92zdza2b/oN7tu7WyJCYGp2EZUF8l1RYABwqet0dbouSJsqxE/bgbddgXBihOfr8wduumeyppQa0hEvtmRkz6uuY31JgfkuBQr7yht7yzjYe/dIiZs+o52TfIO3NDWz8yvWTGl6bunvwRheibcxfKJp+xRARkckYHf6fy9pFw/83gu5xial8XYYFLQVO9A5yom9iSypU2Vhdi6WZGy9NlGODE5itJxjeyVVXXXXJDD1y++cAePZHP+PswDAz8lm+fuvV57dLvGkJl+nVkMsyb1aBvoFhTvQN0DcwPOFzLO9sY3lnG51zm6YkT6lr4G1Y0cmT2/bTOzBEIZelb3BYv2KISGxoEqhkKh7+D9CYr6N3YEiTGMScmdE6I08hn+Xo6XO88dNj/MPb3fzqdP90/v91Ax1FrxcCH0dMk49wLADuvhXYCrBs2bKyrdtHbv+cGnQJpiVcpl8hn6WQLzAwNMKp/kFO99dmmYWxxHLswmSsXNzOxq9cT3tzw5R1c4qITIWdB47w2Et7eeejHn55so93PurhsZf2aqhfAmj4f7I15LJ0/eo033m9i0/OnpvuSdjeBBaZ2dVmlgfWAdtK0mwD7rXALcBJdz8c8VgRmUb5ugxzmoJlFlob82Qztb8fOHU9eKBfMUQknja9doDj4UK0DgyPjDB4doBNrx1QzIo5Df9Pvq3/9TPqc5lp74V19yEzexjYQbDUwXPuvt/MHgj3bwa2EyyR0EWwTML9lzq2ZpkXkciymWAEQUtjjrMDw5zqG6R/cOLDNyuRygaeJJuGsEladR05w7CHExgY4DDswXaJt9Hh/0dP93O6f4hzQyNkM8aapfOnO2sS0aGeXloKuYu2TVcvrLtvJ2jEFW/bXPTcgYeiHisi8WVmNNXX0VRfd3745pn+IUaqOHwzdUM0Jdm0jqGk2dBoMC+eqq54u8TWysXtrL15AT29g/QPDZPPBgsJv7TnF4pPCdHR2khfya/n6oUVkVoqHr45u6m+aut2qoEnsaJ1DCXNsmGDrnStqWxsl+uSYv998DgLWwssmTeLa9qbmdPUoPiUIJpKXkTiIpMxZhVydLQ1Mre5nvopWE/vovNP6dlEJkkTGUiaXTu3iQwXd+Blwu0Sf4pPyaZJ2EQkjpobciwI19ObKroHT2JFExlImj2++jq+8dJezpwbYnjEyWaCcfmPr75uurMmESg+JZ8mYRORuGqYwl489eBJrGgIjaTZysXtPL12KTd1tHLlzAZu6mjl6bVL9YUzIRSfREQkCdSDJ7GycnE7Gwnuxevu6WWhZtGUlFEPQnIpPomISBKogSexoy/AUm1mtgp4hmAdqWfd/Vsl+y3cfyfBGlT3ufuemmdUYkfxSURE4k5DNEXksmJmWeC7wGpgCXCPmS0pSbYaWBQ+1gPfq2kmRURERCqkBp6IXG6WA13uftDdB4AXgTUladYAz3tgN9BiZvNqnVERERGRiVIDT0QuNwuAQ0Wvu8NtE00jIiIiEjtq4InI5WasZcW9gjRBQrP1ZvaWmb119OjRSWdOREREZDKq2sAzs1Vm9oGZdZnZ42PsX2Nm75nZu+EXpFurmR8REYLeuI6i1wuBjytIA4C7b3X3Ze6+bO7cuVOaUREREZGJqloDL+JEBv8OLHX3G4E/AJ6tVn5EREJvAovM7GozywPrgG0labYB91rgFuCkux+udUZFREREJqqayyScn8gAwMxGJzL4yWgCdz9TlH4G4wyBEhGZKu4+ZGYPAzsIlkl4zt33m9kD4f7NwHaCJRK6CJZJuH+68isiIiIyEdVs4I01ScEXShOZ2V3AnwLtwG9VMT8iIgC4+3aCRlzxts1Fzx14qNb5EhEREZmsajbwIk1S4O4/AH5gZiuAp4DbP3Uis/UEa1EBnDGzDyLmYQ5wLGLaJFL5kk3lu+Az1cxIrbz99tvHzOzDiMlV/8mm8iXbZRWfFJsuovIlm8p3wbixqZoNvMiTFAC4+y4zu8bM5rj7sZJ9W4GtE82Amb3l7ssmelxSqHzJpvKlj7tHnmUl7Z+PypdsKl+6KDZdoPIlm8oXTTVn0Sw7kYGZXWtmFj6/GcgDn1QxTyIiIiIiIqlVtR68iBMZ/C7BTHWDQB/w1fDeFxEREREREZmgag7RjDKRwSZgUxWzMOFhnQmj8iWbynd5S/vno/Ilm8p3+Ur7Z6PyJZvKF4Gpw0xERERERCQdqnkPnoiIiIiIiNRQKhp4ZrbKzD4wsy4ze3yM/WZmfxHufy+c0CUxIpRvpZmdNLN3w8eT05HPSpjZc2Z2xMz2jbM/6XVXrnyJrTsAM+sws9fN7H0z229mj46RJtF1OBmKTYm/vhWfElp/ik3lKT4l+vpWbEpo3UGN4pO7J/pBMIHL/wGdBLNw7gWWlKS5E3iVYG2+W4AfT3e+p7h8K4F/nu68Vli+FcDNwL5x9ie27iKWL7F1F+Z/HnBz+LwZ+N80/f9N8rNRbEr+9a34lND6U2wq+/koPiX7+lZsSmjdhfmvenxKQw/ecqDL3Q+6+wDwIrCmJM0a4HkP7AZazGxerTNaoSjlSyx33wUcv0SSJNddlPIlmrsfdvc94fPTwPvAgpJkia7DSVBsSjjFp+RSbCpL8SnBFJuSrRbxKQ0NvAXAoaLX3Xz6Q4qSJq6i5v2LZrbXzF41s+trk7WaSHLdRZWKujOzzwI3AT8u2XU51OFYFJsCqbi+x5Hk+osq8fWn2DQmxadA4q/vcSS57qJKRd1VKz5VdZmEGrExtpVODRolTVxFyfse4DPufsbM7gT+CVhU7YzVSJLrLopU1J2ZNQEvA3/o7qdKd49xSJrqcDyKTSm5vi8hyfUXReLrT7FpXIpPKbi+LyHJdRdFKuqumvEpDT143UBH0euFwMcVpImrsnl391PufiZ8vh3Imdmc2mWxqpJcd2Wloe7MLEcQoP7W3f9xjCSprsNLUGxKwfVdRpLrr6yk159i0yUpPiX8+i4jyXVXVhrqrtrxKQ0NvDeBRWZ2tZnlgXXAtpI024B7wxlpbgFOuvvhWme0QmXLZ2ZXmpmFz5cT1OsnNc9pdSS57spKet2Fef8r4H13//Y4yVJdh5eg2JTw6zuCJNdfWUmuP8WmshSfEnx9R5Dkuisr6XVXi/iU+CGa7j5kZg8DOwhmTXrO3feb2QPh/s3AdoLZaLqAXuD+6crvREUs31rgQTMbAvqAde6eiK54M3uBYDakOWbWDXwTyEHy6w4ilS+xdRf6DeD3gf8xs3fDbX8CXAXpqMNKKTYl//pWfEp0/Sk2XYLiU7Kvb8Wm5NZdqOrxyZL1eYiIiIiIiMh40jBEU0RERERERFADT0REREREJDXUwBMREREREUkJNfBERERERERSQg08ERERERGRlFADT6rCzO42s/1mNmJmy4q2zzaz183sjJl9p+SY18xsb3jcZjPLhttXmNkeMxsys7Ulx3zNzH4aPr5WtP1hM+syM7eixS/N7DEzezd87DOzYTNrq94nISJxo/gkInGk2CRTRQ08mRQLjHUd7QN+B9hVsr0feAL4xhjH/J67LwVuAOYCd4fbPwLuA/6u5L3bCNZG+QKwHPimmbWGu98Abgc+LD7G3f/M3W909xuBPwb+092Ply+piCSN4pOIxJFik1Rb4hc6l9ozs88CrwKvA18ETpjZXMAJFhP9c3d/P0x70bHufhb4kZldW3pedz8VPq0D8uH5cPefh+caKTnkDuCHo0HGzH4IrAJecPd3xnr/EvcAL0Qps4gkg+KTiMSRYpPUknrwpFK/BjwPfB0Ycvcb3P3Xge9P5qRmtgM4ApwGXiqTfAFwqOh1d7gtyvs0EgS0lyvIpojEm+KTiMSRYpPUhBp4UqkP3X03cBDoNLO/NLNVwKkyx12Su98BzAPqgS+VST7WT0we8a1+G3hDQwxEUknxSUTiSLFJakINPKnUWQB37wGWAjuBh4BnJ3tid+8HtgFryiTtBjqKXi8EPo74NuvQEAORtFJ8EpE4UmySmlADTyYlnGUp4+4vE9wAfHOF52kys3nh8zrgTuBAmcN2AF82s9bwBuEvh9vKvdcs4DbglUryKiLJoPgkInGk2CTVpgaeTNYCYKeZvQv8NcHsSpjZXWbWTXAj8b+E48MJ9/0c+DZwn5l1m9kSYAawzczeA/YSjCXfHKb/fHiuu4EtZrYfIBwi8BTwZvjYWHTT8CPhMQuB98ys+Nexu4B/DW9aFpH0UnwSkThSbJKqMveow25FREREREQkztSDJyIiIiIikhJq4ImIiIiIiKSEGngiIiIiIiIpoQaeiIiIiIhISqiBJyIiIiIikhJq4ImIiIiIiKSEGngiIiIiIiIpoQaeiIiIiIhISvw/9uxeb/+L/rYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(1, 3, figsize=(15, 5))\n", + "ax1, ax2, ax3 = axes\n", + "cd4ydata = (common_individuals_individual_ratio_dfv3['CD8T TEM']) / common_individuals_individual_ratio_dfv3['CD8T']\n", + "sns.regplot(x=common_individuals_individual_ratio_dfv3['gt'],\n", + " y=cd4ydata, \n", + " ax=ax1)\n", + "r, p = stats.spearmanr(common_individuals_individual_ratio_dfv3['gt'],\n", + " cd4ydata)\n", + "ax1.set_title('Oelen v3 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax1.set_ylabel('CD8 TEM / CD4T')\n", + "ax1.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_dfv3['CD8T Naive']) / common_individuals_individual_ratio_dfv3['CD8T']\n", + "sns.regplot(x=common_individuals_individual_ratio_dfv3['gt'],\n", + " y= cd8tydata, \n", + " ax=ax2)\n", + "r, p = stats.spearmanr(common_individuals_individual_ratio_dfv3['gt'],\n", + " cd8tydata)\n", + "ax2.set_title('Oelen v3 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax2.set_ylabel('CD8 Naive / CD8T')\n", + "ax2.set_xlabel(\"rs1131017\")\n", + "\n", + "cd8tydata = (common_individuals_individual_ratio_dfv3['CD8T Naive']) / common_individuals_individual_ratio_dfv3['CD8T TEM']\n", + "sns.regplot(x=common_individuals_individual_ratio_dfv3['gt'],\n", + " y= cd8tydata, \n", + " ax=ax3)\n", + "r, p = stats.spearmanr(common_individuals_individual_ratio_dfv3['gt'],\n", + " cd8tydata)\n", + "ax3.set_title('Oelen v3 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax3.set_ylabel('CD8 Naive / CD8T TEM')\n", + "ax3.set_xlabel(\"rs1131017\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(104, 11) (72, 11) (32, 11)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CD4T TEMCD4T NaiveCD8T TEMCD8T NaiveCD4TCD8TCD4T TCMCD8T TCMall_numgtchemistry
LLDeep_10351715236546251084242810061.0v2
LLDeep_09603689113135861433742615460.0v2
LLDeep_1004655444095834624371614931.0v2
LLDeep_091819341197249136168145981.0v2
LLDeep_006751101122897532315463014291.0v2
\n", + "
" + ], + "text/plain": [ + " CD4T TEM CD4T Naive CD8T TEM CD8T Naive CD4T CD8T CD4T TCM \\\n", + "LLDeep_1035 17 152 36 54 625 108 424 \n", + "LLDeep_0960 36 89 113 13 586 143 374 \n", + "LLDeep_1004 65 54 440 9 583 462 437 \n", + "LLDeep_0918 19 34 119 7 249 136 168 \n", + "LLDeep_0067 51 101 122 89 753 231 546 \n", + "\n", + " CD8T TCM all_num gt chemistry \n", + "LLDeep_1035 28 1006 1.0 v2 \n", + "LLDeep_0960 26 1546 0.0 v2 \n", + "LLDeep_1004 16 1493 1.0 v2 \n", + "LLDeep_0918 14 598 1.0 v2 \n", + "LLDeep_0067 30 1429 1.0 v2 " + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "concate_v2_v3 = pd.concat([common_individuals_individual_ratio_df,\n", + " common_individuals_individual_ratio_dfv3],\n", + " axis=0)\n", + "print(concate_v2_v3.shape,common_individuals_individual_ratio_df.shape, common_individuals_individual_ratio_dfv3.shape)\n", + "concate_v2_v3.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEWCAYAAABsY4yMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0cUlEQVR4nO3de5wcVZnw8d/Tl7llZpJAZgiShJAVGQiCYUdFhBgQBbyA7KIvrDe8kd3VFZR3FXRFjbvrBbyuvpiIdwV2jaK4KyorDBEFJSC3LGGR4ZIAYUIYMjOZW1+e94+qmqnu6a7unu7qW57v59Of7j7VVXW6p+Y5VeecOkdUFWOMMc0nUusMGGOMCYcFeGOMaVIW4I0xpklZgDfGmCZlAd4YY5qUBXhjjGlSFuD3AyKyUkRURGK1zosxpnoswDcIETlfRO4TkXER2SUiV4rIolrnK4iIXCEiD4nIqIhsF5G3Ffj8ASLycxHZKyJPisiHytz/D0TkKREZEZH/FZF3l7O9Eve9UkRudv9e20Xk1IDPnux+dq+IPJq1bIWIjGU9VEQuDv1LZObjRSJyp/t97hSRFwV8tlVEvuX+7rtE5INZy18vIve73+X3InKUb9nb3e2PiMhOEfmcnZiUQVXtUecP4GLgaeB0IA6sBH4B3AG0FLH+SkCBWJXz/UmgD+dE4qXAMHBCwOc/DdwIdACLgZeXuf/VQKv7ug/YBfxlkeuW9VsBtwFfANqBvwaeA3ryfPYlwFuBC4BHC2z3MCAFrKzi37EFeAz4ANAKvN99n/PYc/+Ov3X/hke6v/vp7rLDgRHgRCAGXAr82fu9gb8DTnL3eQhwJ3BJNY/bZnrUPAP2KPAHgm5gDHhTVnonMAS8030fAS4BHgb2AP8BHOAuywjwwELgm8BTwBPAPwNRd9n5wK3AFW5AfgQ4I0/eLgE2Z6V9GfhKns9fD1wc8F0/BfywhN/m68AVWWk/Az6Y47NHuN/3TXm2dT7wO+CLwLPAP5fxN3sBMAV0+dJ+C/xtgfVOLSLAfxy4uYS8DLgB94/AXvf3OaDE7/Nq9zgRX9rjXtDO8fkngFdn/V2vdV+/D/gv37IIMAG8Ms+2Pgj8fL5/i/39YVU09e8EoA34iT9RVceAG4BXuUnvB94AvAJ4Hk5w/lqebX4XSALPB9bg/AP7qy9eCjwILAE+B3xTRCTHdq4BXiMi3QAiEgXeBFyd/UERaQdeDGwL+K5/BM4TkXcGfMbvauD/eHkTkcXud7nWt9//JyLjwHacAP+LgO29FBgEeoF/EZETReS5gMeJebazGhhU1VFf2j1uernehvP3K3Wdd+IcF0ngK96CAt/vEvdjq4F71Y24rnvJ8X3cv8HzcL6vx//dxX2Q9f7oPHlfS/AxYwJYgK9/S4BnVDWZY9lT7nKA9cBHVXWnqk4BnwDOya6/FJGDgDOAi1R1n6oO4Zy1nuv72GOq+g1VTeEEk4OBg7J3rqqPAXfhFCwApwDjqnp7jrx+Hecf/Ve5vqSIPB/YBKwDLhGRd7jprSIyLSILc6z2W5wrk5Pc9+cAt6nqk748/j3Q5X7mJzhn1vk8qar/pqpJVZ1Q1VtVdVHA49Y82+nEOVv22+vmY95E5CScv8PmElf9vqrer6r7gI8Bb3ILYwp8v8+465fyfTp9y3N99kbgFSKyTkRagI/gVMd05Pi+7wD6ca4mzTxYgK9/zwBL8jQ0HewuBzgUuM47+wIewKmrzQ7Mh+LU4z/l++xGnLNWzy7vhaqOuy87ye1q4Dz39d+Q++z9cpwztDdlnQX6vQu4UVW3AKcBn3L/wY8H/qSq2QEGd1vXZu3/hzk+l3KD8TKcOt58dgQsy0tEtvkaQE/CqVLrzvpYNzA6d+2SvB34sXv1Vgr/93oM5++/JM9ncynl+4z5ls/5rKpux/keX2X2BOV/gJ3+jYjIG4DP4FQPPoOZFwvw9e82nLPOv/InisgCnDPx37hJO3D+GfxnYG2q+kTW9na421vi+1y3qs63+uBHwDoRWQacTVaAF5FPuvl8taqOBGwnhlN9gKo+gtOg/DngKmBDwHrX4FypHIpTxfLjAvv4i4DlGYWPiJyUowfLWFYwR1VXq2qn+/gtTpXCKhHxn+EeSxlVDW4V1xspvXoGYLnv9QoggXtiUOD7fcRdZxtwTFY13THk+D6qOowTuI/1JWd8d1XdrKpHq+qBOG0Kh+J0GPC+6+nAN4DXq+p98/i+xlPrRgB7FH4AHyJ3L5q7mO0l8gGcBrVD3fc9wFnu65VkNrL+DKcxtBunkP8L4BXusvOBW7P2r8DzA/J3A86l95+y0i8FHgIOLuI7vgzYh1PdE8UJRP8NpIHXFFj3f9z9X+dL68Wpdup0t3eau/2z8mxjzvcu8292O07VQhtOwfcc+XvRRNzPnYFzht1GVg8VnKuTx/A1dGb9bVfm2fYAztnxUTjVID8Cri7xu3i9aC7E6UXzPoJ70XwGuAWnF00fTsA/3bf8L92/SQ/w7/784FTz7QHW1uJ/rdkeNc+APYr8QzlVGPfj9Dh4GqdaZbFveQSnx8GDOJfDDwP/6i7LDvALgSvdf/y9wJ+Ac91l8wnwb3U/84851pvCuWz3Hh8J2M5Zbl5GcKqYPugGx73AmoD1Pubu642+tB43yDznbu8+4D0B26h0gF/pBtcJ929yqm/ZScCY7/06N//+x0DW9n4FfCrHfk4CHgXiefIxwGwvmhHg5zhXb6V+nzU4XRYncE4s1viWvRnY5nvfCnzL3d/TZPVqwumlNYrTW2kjsMC37GacKzn/MXNDrf//GvUh7o9qjGlAIvJPwG5V3Zhn+QDwA1W9qqoZM3XB7hAzpoGp6j/XOg+mflkjqzHGNCmrojHGmCZlZ/DGGNOk6qoOfsmSJbpy5cpaZ8MYYxrGnXfe+Yyq9uRaVlcBfuXKlWzdurXW2TDGmIYhIo/lW2ZVNMYY06QswBtjTJOyAG+MMU3KArwxxjQpC/DGGNOk6qoXjTH1ZmD7EBu3DLJjeJzliztYv3YV6/p6C69oTB0I9QxeRBaJyGZ3VvkHRORlYe7PmEoa2D7EZddvY2h0kkXtcYZGJ7ns+m0MbB+qddaMKUrYVTRfBn6pqn04g/4/EPL+jKmYjVsGiUeFjpYYIs5zPCps3DJY66wZU5TQqmjciZjX4oyzjapOA9Nh7c+YStsxPM6i9nhGWns8ys7h8TxrGFNfwjyDXwXsBr4tIn8SkavcaeYyiMgFIrJVRLbu3r07xOwYU5rlizuYSKQy0iYSKZYtnjM/tDF1KcwAHwOOA65U1TU406Vdkv0hVd2kqv2q2t/Tk3M4BWNqYv3aVSRSyvh0ElXnOZFS1q9dVeusGVOUMAP8TmCnqv7Bfb8ZJ+Ab0xDW9fWy4czV9Ha1sXciQW9XGxvOXG29aEzDCK0OXlV3icgOETlCVR8EXokzObIxDWNdX68FdNOwwu4H/w/AD0WkBRgE3hHy/owxxrhCDfCqejfQH+Y+jDHG5GZDFRhjTJOyAG+MMU3KArwxxjQpC/DGGNOkLMAbY0yTsgBvjDFNygK8McY0KQvwxhjTpCzAG2NMk7IAb4wxTcoCvDHGNKmiAryInCgi73Bf94jIYeFmyxhjTLkKBngR+TjwYeBSNykO/CDMTBljjClfMWfwZwNn4szIhKo+CXSFmSljjDHlKybAT6uqAgqQa15VY4wx9aeYAP8fIrIRWCQi7wH+G/hGuNkyxhhTroITfqjqFSLyKmAEOAK4TFVvDD1nxhhjylIwwIvIB4AfWVA3xpjGUkwVTTfwKxH5rYi8V0QOCjtTxhhjylcwwKvqJ1V1NfBe4HnALSLy36HnzBhjTFlKuZN1CNgF7AF6w8mOMcaYSinmRqe/E5EB4DfAEuA9qnpM2BkzxhhTnoKNrMChwEWqenfIeTHGGFNBeQO8iHSr6gjwOff9Af7lqvpsyHkzxhhThqAz+KuB1wF34tzFKr5lCqwqtHEReRQYBVJAUlX7551TY4wxJckb4FX1de5zuSNHnqyqz5S5DWOMMSUqpg4eEVkMHA60eWmquiWsTBljjClfMXeyvhu4EFgG3A0cD9wGnFLE9hX4tYgosFFVN+XY/gXABQArVqwoOuPGGGOCFdMP/kLgxcBjqnoysAbYXeT2X66qxwFnAO8VkbXZH1DVTarar6r9PT09xebbGGNMAcUE+ElVnQQQkVZV3Y4z6FhB7tjxqOoQcB3wkvlm1BhjTGmKqYPfKSKLgJ8CN4rIMPBkoZXcceMjqjrqvn41sKGMvBpTdQPbh9i4ZZAdw+MsX9zB+rWrWNdnN3KbxlDMcMFnuy8/ISI3AwuBXxax7YOA60TE28/VqlrMesbUhYHtQ1x2/TbiUWFRe5yh0Ukuu34bG8CCvGkIRfWi8ajqLSV8dhA4tuQcGVMnNm4ZJB4VOlqcf5OOlhjj00k2bhm0AG8aQtCdrKPkvsEpBrSoakmFgzGNZsfwOIva4xlp7fEoO4fHa5QjY0qTt5FVVbtUtdt97sIZKvhfcEaU/HK1MmhMrSxf3MFEIpWRNpFIsWxxR41yZExpihlNcpGIfAK4B+gCXqyqF4edMWNqbf3aVSRSyvh0ElXnOZFS1q8tOEqHMXUhb4AXkSUi8mngLiAJrFHVf1LVPVXLnTE1tK6vlw1nrqa3q429Ewl6u9rYcOZqq383DSOoHv0xnBuavg2MA+9ye8QAoKpfCDdrxtTeur5eC+imYQUF+MtxGlXBqZoxxhjTQIJGk/xEFfNhjDGmwkqZk9UYY0wDsQBvjDFNygK8McY0qZICvIh8L6yMGGOMqaygoQquz04CTnZHlkRVzwwxX8YYY8oU1E1yGfA/wFXMjknTD3y+CvkyxhhTpqAqmn7gTuCjwF5VHQAmVPWWUkaVNMYYUxtB/eDTwBdF5Efu81DQ540xxtSXYib82Am8UUReC+wNP0vGGGMqoWCAF5EXAn3u26vDzY4xxphKCepFsxD4GbAcuBenkfWFIvI4cJaqjlQni8YYY+YjqJH1U8BW4HBVPVtV3wC8ALgDZ+IPY4wxdSyoiuZU4Bi3sRUAVU2JyEeA+0LPmTHGmLIEncFPq2oyO9FNmwovS8YYYyoh6Ay+TUTWkDnpNu771vCyZIwxphKCAvwuIN+sTbtCyIsxxpgKCrrRaV0V82GMMabCgrpJvgUQVf1+Vvp7gH2qWlSfeBGJ4vTGeUJVX1dOZnMZ2D7Exi2D7BgeZ/niDtavXWVzaBpjDMGNrBcDP82R/u/usmJdCDxQwueLNrB9iMuu38bQ6CSL2uMMjU5y2fXbGNg+FMbujDGmoQQF+KiqjmYnujc4xYvZuIgsA16LMyJlxW3cMkg8KnS0xBBxnuNRYeOWwTB2Z4wxDSUowMdFZEF2ooh0AS1Fbv9LwIeAdL4PiMgFIrJVRLbu3r27yM06dgyP0x6PZqS1x6PsHB4vaTvGGNOMggL8N4HNIrLSS3BfX+suCyQirwOGVPXOoM+p6iZV7VfV/p6enqIy7Vm+uIOJRCojbSKRYtnijpK2Y0w+A9uHOG/T7Zz42Zs4b9PtVv1nGkreAK+qV+CMRXOLiOwRkWeAW4D/VNXLi9j2y4EzReRRnELhFBH5QQXyPGP92lUkUsr4dBJV5zmRUtavXVXJ3Zj9lLXxmEYXOCerqn5dVQ8FDgUOU9VDVfXKYjasqpeq6jJVXQmcC9ykqm8pO8c+6/p6Oee4Q9g9OsUDu0bZPTrFOccdYr1oTEVYG49pdEVNuq2qY8DxIeelZAPbh9h81xP0dLVy5NIuerpa2XzXE3aGZSrC2nhMoysqwLs+O9+dqOpAGH3g7QzLhMnaeEyjKyXA1x07wzJhWr92FXsnEjw0NMr2XSM8NDTK3omEtfGYhhE4o5OIfBtQnAHGVojIt7xlqvrOkPNW0PLFHQyNTtLRMvs17AzLVJIAKKgqqMwZec+YelZoyr7v+F6fCHw3vKyUbv3aVVx2/TbGp5O0x6NMJFLWi8ZUzMYtg3S3x1m6sH0mbXw6ycYtg9aQbxpCYIBX1Vu81yIy6n9fD9b19bIB5x9x5/A4y2wsGlNBO4bHWdSeedO2VQGaRlJw0m2f6dByUYZ1fb0W0E0orArQNLqiG1lVte66SRoTJruRzjS6wAAvIjHf604R6ReRA8LPljG1t66vlw1nrqa3q429Ewl6u9rYcOZqu2I0DSNoPPjzgc+LyB6cIX+/BjwCvEBEPqSq11Qni8FsPHgTJqsCNI0sqA7+YuAIoAu4B1ijqg+LyEHAjUDNA7w3Vkg8KhljhWwA+6c0xuz3gqpoUqr6jKo+Aoyp6sMAqvp0dbJWmN3Jaowx+QWdwT8uIp/GOYPfLiKfB34CnAo8VY3MFWLd2IwxJr+gM/i3ACPATuBM4DbgUuAg4PzQc1YEGyvEGGPyy3sG707N92lf0mb3UTfsTlYTNmvEN42sUDfJt4vIXSKyz31sFZG3VStzhVg3NhMmm/DDNLqgbpJvAy4CPgjchTPu0nHA5SKCqn6vKjkswLqxmbD4G/EBOlpiNhaNaShBZ/B/D5ytqjer6l5VfU5VbwL+2l1mTFOz4ahNowsK8N2q+mh2opvWHVaGjKkX1ohvGl1QgJ+Y5zJjmoKNRWPCNrB9iPM23c6Jn72J8zbdXvH2naB+8EeKyL050gWwI9w0PRuO2oSpGnfiBwb4iuzBmAZmjfgmLNVoxA8K8HHgIFX9nT9RRE4CnqzI3o0xZj9VjTvxg+rgvwSM5kifcJcZY4yZp2o04gcF+JWqOqcOXlW3AisrlgNjjNkPVaMRPyjAtwUsaw9YZowxpoBq3IkfVAd/h4i8R1W/4U8UkXcBdxbasIi0AVuAVnc/m1X14+Vk1hhjmknYjfhBAf4i4DoReTOzAb0faAHOLmLbU8ApqjomInHgVhG5QVVvLyfDxlSTDTZmGlnQaJJPAyeIyMnA0W7yf7nDFRSkqgqMuW/j7kPLyKsxVWUzhplGF3QGD4Cq3gzcPJ+Ni0gU5+z/+cDXVPUPOT5zAXABwIoVK+azG2NCYYONmUYXOFxwuVQ1paovApYBLxGRo3N8ZpOq9qtqf09PT5jZMaYkNtiYaXShBniPqj4HDACnV2N/xlSCDTZmGl3eAC8ivxKRD4hI33w2LCI9IrLIfd2OM5fr9nnl0pgasMHGTKMLOoN/OzAMfMKd1elKETlLRDqL3PbBwM3ugGV3ADeq6n+WmV9jqsZmDDONTpzOLgU+JBIBXgqcAbwSZ7iCX6vq5yqZmf7+ft26dWslN2mMMU1NRO5U1f5cywr2ogFQ1TRwm/u4TESWAKdVLovGGGMqragAn01VnwF+WOG8GGOMqaCq9KIxxhhTffM6g68ndiu5McbkljfAi8gHg1ZU1S9UPjulsVvJjTEmv6AqmiuAtwAHAp1AV9aj5vy3kos4z/GosHHLYK2zZowxNRdURXMccC7wWpzxZK4BfqPF9KuskmpMeWWMMY0qaDTJu4G7gUtE5ATgPODfROTDqnp9dbIXbPniDoZGJ2cGgwK7ldxUlrXxmEZWsBeNiPQAa4AXAjuBobAzVSy7ldyEyWvjGRqdzGjjGdheN/8CxgQKGovmHSLyS+BHgABvUtVX1dOEHXYruQmTtfGYRhdUB/9N4D7gcZy7Vl8tIjMLVfXMcLNWnLCnvDL7L2vjMY0uKMCfXLVcGFOHrI3HNLqgAP8nVR3JtUBEbOol0/TWr13FP26+hyeGJ0im08QiEbraYnzstUfVOmumSYTdiB/UyDrgvRCR32Qt+2nFcmBMHVMAAREBsUmFTeVUoxE/KMCL7/UBAcuMaUobtwyysD3O4b1d9C3t5vDeLha2x62R1VRENRrxgwK85nmd670xTcfmZDVhqsbxFVQH3+uORyO+17jvbXZs0/SskdWEqRrHV9AZ/Ddwxpzp9L323l9VsRyUaWD7EOdtup0TP3sT52263W5CMRVjN9KZMFXj+Ao6g9+jql+t2J5CYKNJmjCt6+tlA05d6c7hcZbZUAWmgqpxfOWdk1VE7lLV4yq2pyKUOifreZtun3OJMz6dpLerjWsuOD6MLBpjTF0pe07WerVjeJypRJJHntlHWiEicOCCONPJdK2zZowxNRcU4I8RkVw3OgmgqtodUp6Kp8ruscTM27TC7rEEyxZFA1Yyxpj9Q1CAv09V11QtJ/Pw7D4nuPs75asv3Rhj9mcNPen2VCpNPALeGGgiEI846cYYs78LCvA/KmfDIrJcRG4WkQdEZJuIXFjO9nJZ0BIFEVpjUdriUVpjzvsFLVZFY4wxeQO8qv5rmdtOAher6pHA8cB7RaSiozS9+8TDSKWViURq5pFKK+8+8bBK7sYYYxpSaFU0qvqUqt7lvh4FHgAOqeQ+jlm2iM6WKBG3iiYi0NkS5Zhliyq5G2OMaUhV6SYpIitxpv37Q45lFwAXAKxYUdooxBu3DNLT3cahWf3gN24ZtJtRjDH7vZLO4EXke6XuQEQ6gR8DF+UaX15VN6lqv6r29/SUNsSNDQZljDH55T2DF5Hrs5OAk0VkERQ3ZZ+IxHGC+w9V9Sdl5DMnGwzKhC3sCRmMCVPQGfwyYAT4AvB59zHqex1InAlcvwk8oKpfKD+rc9lgUCZM1ZiQwZgwBQX4fuBO4KPAXlUdACZU9RZVvaWIbb8ceCtwiojc7T5eU3aOfdb19bLhzNX0drWxdyJBb1cbG85cbWdYpiKqMSGDMWHKW0WjqmngiyLyI/d5KOjzOda/lSrM/LSur5fj/+JAnh6ZJBoR4tEIz4xNEY9GiEeFWMR5FrFJqExpdgyPExUY3D3GdCpNSzTCks4Wa+MxDaNgwFbVncAbReS1wN7wszQ/qbSSSmvegcZikQixqDgP93Xce4429A29JiSdLVEeGhojrc4QGMlUip3DExze21nrrBlTlIIBXkReCPS5b68ONzulG9g+xJUDD/Pos/s4uLudc1+8nJesyp5CFpLpNMk0kGOYGhEhFpkN/vGoEItGiLlXBNGInf3vj/ZNp0j5RtNWIKVOujGNIKgXzULgZ8By4F6c6pYXisjjwFm5ujxWm9cIFo1Ad1uMPfum+PJND3Ehh+cM8vmoKomUkkgBzP3njYjMnOk7BYFV/+wPdu2dLCndmHoTdAb/KWArcIpbH4+IRIFPA/8C/EP42QvmNYK1xaMkkmna41EmEimuvWNHSQG+kLQq08ng6p9oVIi7wd+r/olGnCuDiF0BNKSkOxmOv/xWnU03pt4FBfhTgWO84A6gqikR+QhwX+g5K8KO4XEWtcfx/7u1xSPsGpmoaj686p+pPMsjIk6wj7rPWW0AsYhdBdSjqEBSnaCenW5MIwgK8NOqmsxOVNWkiOSLZVXl3ejU5rubdTKRZml3ew1zNVdalfRMFVBu0YjM9ALyzvy9doBoRIiKXQlU2+G9XWzfNZpxAiFuujGNICjAt4nIGuZ2dRSgNbwsFW/92lVcdv020pokFhEmE2mSaeXcFy+vddZKVqgXEMw2BnsFgHc1EHWvAiIi1iZQQWccvZQHnx7NOIMXcdKNaQRBAX4Xzl2s+ZbVnDcr+ZUDD/PYs/tYGtCLphlkNgbnF41kVgXFclwdWCFQ2G2Dz9Lb1croZHKmH3xXW4zbBp/l/bXOnDFFCLrRaV0V8zFv3o1OTz5X3Xr3ejZzNUD+qwF/8M9uGLarAMeO4XGWdLbS09U2k6aqdqOTaRhB3STfAoiqfj8r/T3APlWtiz7xxfaDN5lm7gvII5rVBuC/CvAKhWZng9mZRhdURXMxsDZH+r8DN1MHNz1Vqh+8mcu5Ckjl7RnkvzksGvH3CGqenkFeG8/4dHKmC64NZmcaSVCAj7ozMWVQ1RF3GOCaq1Y/eDNXMe0B2dVATk8gJz0SgajbfbReCwKvjWfjlkF2Do+zzIYLNg0mKMDHRWSBqu7zJ4pIF9ASbraKs2N4nFhEeOjpMSLiVCtEBPbsm+Z7tz1KV1uc7raY89wem3m/oDVGpE6DSjMpVA3k8e4TiHjdQ30NxP7G4VpY19drAd00rKAA/01gs4j8nao+CjNT733NXVZzyxd38LA70l+27/z+sbzrCdDVFqO7PU5XWyyzIMgoEGJ0t8XpbnM+t6A1ZuPShMC7T4BU8M1iuQaKi7rdQ73CvV6vBoyphaBeNFeIyBhwizvtngL7gM+o6pXVymCQ9WtXcel193HgAqfGaDqpJNPKygM7iEWFkYkko1NJRiYSJNOznZkVGJlMMjI55z6uQAJ0ukHfCf5OYeAVFhnvfc+dbVYwlGtmuIiAnkGQeTXgrxLKbigu9u/xgWvv4vp7d5FKK9GIcOYxS/niucdV4isZEzrRIsbVcAO85KqTr6T+/n7dunVrSet4vWiC+sGrKpOJNCOTCUYnnYDvBX4vzUvPeD+ZIJGqzLgjC1qjGVcD2YVCrqqkrra4FQwh8a4I/PcMeFcAEXGWX/Lje/j5vXNv+Tj7RQdbkDd1Q0TuVNX+nMuKCfDuRl6lqjdWNGdZ5hPgASYTqVD6wasqk8k0oxMJRiaTjE46zyMTXiHgvs9RcFSsYGiJzqlK6m6L09We9d6f3hrbL7oxhu2Uz+efuOyOj546M4RENJp5h7FVE5lqCgrwRc/QBHwWCDXA1xsRoT0epT0epbe7tHUnE6mZqwCvQPAKh7EpL90pJEYnk+x1n7OHKtg3nWLfdIqnSpxqpaMlOqcqySso/FcLs1cUzrNNflKc0ckcEwu4/FcFs+MKzV4tRGX/uI/A1F4pAd6UoC0epS0epaertGF7phKpmauFmcA/MfdqYXSmgHDSprIKhvHpFOPTKXaVOGp/ezw6p5qoO0eDtHe10G0FwxzF3EkMZDQQzwwql1U4eA9j5iMwwIvIt3HaJAVYISLf8pap6jtDztt+qTUepWeeBcPolL8twSsEEnnSk4xOJZhMZAahiUSKiUSKp0dKGzC0LR6ZbWNweyAtbMvRSymr8GiJ1W/BsLgjzvD43DP1xR2VuQ0klVZSFB5bSCSzKsgrFLyH12YQjQjift55nl3f7J8KncF/x/f6ROC74WXFlKM1HqU1HmVJZ2kFw3QyPfeqYCqzcBiZmHvlMJEVlSYTaSYTUwyNllgwxCJzrw7ydl+dfd3qGyI6LB8+rY9/+tl9GX35YxEnvZpUlaRq4JwDxfAHfu8+kIhbQERnSgPvSdx1yChQnDaG+r9JzTgCA7yqzrQyicio/71pDi2xCEs6W0suGBKpdEbAn2lozuqVlF21NJ41n+lkMs3kaOkFQ0ssktHAnKtNwV9YeOltJRQMD+4amXOjVjLtpDfindKq6oxtr5DyRrmvwPSyEXGuKiIRMuYu8J5FnHIjIt5rmbm68Pp4ZBckpjJKqYOfDi0XpuHEoxEOWNDCAQtKu6k5mUozMplkzGuAnsxqgPY3TPuqlrInup5OpnlmbJpnxko7LFtikYyAP6cqyVeF9P0/5L5Z7gd/fJy3nrCypP02s7QqaVUKNDmUxGufmCko3C6sXgEivqEugJmCw6uusslxHEUHeFU9PsyMzJeNJtlYYmUUDGNuddHoVCJntVH2VcTIZIJ9U3MLhj1j0+wpsWDwS6SUj/30/jlXB9lXEd1tcdriEavGmAevfWK+Vxje/QyQecXgLJu9mvCqqvx/oVwdnMX3IiJeoeNctcy0f7hVV6UUMAPbh9i4ZZAdw+MsD2Gso8B+8CIS86btc2926gMGVfXZght2GmRfBwyp6tHFZKbUfvD+0ST9MzpdeIqNJmkcqbTOXBXMdFv1N0D7rh5m2x6SjE2VdpdzPvGo+O5u9q4OvLuf597L0OXe/NYej1rB0MD8N8yJ5Gj4Rrjtz89w+Y0PEo8Ina0xJpNpEillw5mrSwry8+oHLyLnA58XkT3AhThj0DwCvEBEPqSq1xTY73eArwLfKzqnJbLRJE0h0YiwsCPOwhJ7vqTSyqu+uCXv8je86HkzVw97fVVOY5PJjDPAREp5dt80z+4r7YohFpHAq4N8bQwdLVYw1ANVJeVv68jhu7c9RlSE1lgUROhoiTE+nWTjlsGKncUXGg/+CKALuAdYo6oPi8hBODc8BQZ4Vd3iDk4Wmh3D4yxqd/5xo1EBdYYEGBqdZHGHUwXgLzEBFEV19jLMa3hy0pwF/vc6815nGoSyl3nbMc0jGhGWdreyK0d30aXdrbz/lYfnXC+VVvZNJbManBPsnUgyNpXnTmj35jffcEkk08rweCJnN81C+faPidTVFmNhnl5J/t5KC6xgqLqnRiaICuwYniKRStMai7Kks6WiM4YFBfiUqj4DPCMiY6r6MICqPl3JA0FELgAuAFixYkVJ6/pn3Im5eRqfTnLogQtYXGIdb6X4CwKn8Wm2MJj9TGYBkfbW8X/G92amYMnaT8Z+3e2gkFZ3m0A6nbkdK5iKFxTg84lGxBljqD3OIbQXva+0KuNTKfZOZjU0uz2S9ma0N8xWLY1OJjIKhtQ8C4aIMLcqKfvOZ98oqzb0dvkWtMR4bM8+pyE5IiTTyhPPTXJ4b2fF9hEU4B8XkU/jnMFvF5HPAz8BTgWeqlQGVHUTsAmcOvhS1q3HGXdEZht0IjTOge8FetXZgintS5tzNeOmk2OZV6hlXw3Nbmu2IJwpBOuwoLn3idy3AedLL0dEhM62GJ1tpd1cnlZlfDo1t6E5Y0C92TujZwuHzIIhrbB3IsHeidILhs7WPHc652l47nK/535fMOQ6c6Oy/wtBR9NbgPcCe4FLgNOBS4HHgfMrloMyrOvr5Zydz3HVrY+wbzrFgpYo7z7xMJugYR68qzKR2hVM6bTOXnm4BcBsITBbEGQ8e6UIzLz3lvur1Ga68pWSnzwfz5deCxFxGug6W2McvLD49VSVfdOpOVcLs/csuENluF1X/Q3UKd8PkNb5D73tHwNptsooeLykziaak2FfIsVB3a0MjyfcKpoISztb53QJLkfQePAjwKd9SZvdR90Y2D7E5rueoKerlRXuGfzmu57gmGWLLMg3oEhEQi9cvEJkphpLIeUGf/UVDIVieDQiGVcjjUZ8BcPShW1Fr6eqTLjjJfnbEmbaGAK6r1ZyToZcVwvZ4yPV+5wMB3e3s3M4Y8I8ppJpDltSnSoaROTtOD1ojnCTHgC+oqoFe8aIyDXAOmCJiOwEPq6qFZ0JyutF4816H0YrtGkulSpEDj1wQcZ79RUaQVcfqbSSyrU8jZte34WFuL09OlpiLO0uvWDInHvBa2jOHDgvuwE6u2DwtgGTJeW9szWWGfjnjK46d0iMMOdkWLN8Ifc+8ZzbnRKmU2l2j03zNy+pXA/AoG6SbwMuAj4I3IVTeB4HXC4iFAryqnpexXKZh78Xjac9Hq1oK7QxxXAGBINomYWHvxBIp+cWAM5rZ3kq3ZgFw0ElDL3tzcng3eW8d+Y+hdmrgzFf1dLsZ+bOyTA25dzf8NTe0goGb7KefHMyLMyeya3IORn+tGMvna1RRidTJIGIKAvbY9w2+CzvLymH+QWdwf89cLY3H6vrJhH5a+BaQuzfXix/LxrPRCLFssUdNcyVMfMn3tyzJa6XEfSzgn8qrW6/bPcqI515VVHP/HMylFIwQI45GaaSjGbd8TySo/tq9tDb+6ZS7Jua35wMXqEwUwj4qpAefHqEqWR65gxeEMamUjz0dOUa8YOOo+6s4A6Aqj4qIiX+1OFYv3YV/7j5Hp4YniCZThOLOOOMfOy1R9U6a8ZUlVf1VOogm16w964Ykun0zHPKf+WQduY7rvcCwa+SczLMXCVk3MPg9UwKnpOhmKG3UwqCIgLTFZoNDoIDfNAceJWfH2+eJhMpplNpt/4zzWShwbWNMTO8gmE2EASXEF6gn6lG8qqMfNVKKV9aqT2X6sF852SYTqYzR0/NcbUwOuUWEBNJHt49lnlvC8w09FdKUIA/UkTuzZEuQO06mvt85oYHmEikiUciiDg/zkQizWdueMAaWU3ZOlqic4Y39tL3V5GI0FJCo6PX+OyvOkqpomlIpNOkvAIjpSTTFRyOsgZaYhEO7GzlwCKH3n7NV347Z8IdcM7mKyUwwFduN+F4ZM+4U3/lGzJU08oje6yR1ZTvtKN6ue7uuff0nXaUnTwUa6bxuYhCwd/A7E17mPJdMSTTSjKVzuiH38imcwR3cKqIKiUowMeBg1T1d/5EETkJeLJiOSiT84dPoeqNCQ2xaH31dzWN6YGnRomQOcx5xE03lVdsA7NXTeT1MHICv3MFkHJfN0L1UL7rlWqdwX8J+EiO9Al32esrl4356e1qZcfwbHOA9/d8Xol1Z8bk8siecWJRIRqZ7e6WSqftCrHGiq0mUs08+3d6FmlGo7G3rJEaj0sRFOBXquqcOnhV3Rr2KJHF0jx1dvnSjTH7DxEhHi2uZ5ET6J0rgERKZ95n9yxqNEEBPug2teKHyQvR7n0J3FGCM6podu8rbcAkY3JZtWQBD+wahVRmneiRSyt3K7mpD85csIVLgmQqnbONIKN3UZnVQ5WsYA4K8HeIyHtU9RsZOxd5F3BnBfNQFucPk3kJbUwlLGrP/e+RL900v1g0UtRNaF7AT6bTOdsIkmlFyDM9YAUjfFBeLwKuE5E3MxvQ+4EW4OzKZWH+Vi1ZwENDY4jqTDfJtMLhPQsKr2xMAbc/MlxSujEer52ghfzDFUQkd4NqJYe+ybt3VX1aVU8APgk86j4+qaovU9VdlcvC/H349D464hESqTSTiTSJVJqOeIQPn95X66yZJpDvIrs5m+NMteUbq8ZfI1H2Pgp9QFVvBm6u2B4rrDUeZdq9/IlFIrSWeq+2McbUQDKVuzo5X/p8VK6oqIGNWwZJpZXpVJpk2hluM5VWNm4ZrHXWjDEmUL4wXslWxIZuLdr25F5GJpMITsuzKjw7nmDbkyUO+2aMMVWWr6NNJbvkN3SA96a2yv49KjnllTHGhCFvL5oK7qOhq2jyjUnRLGNVGGOaVzUa8Rs6wOcbwKje5l40xphs+aKUncG72uO5f4qOPOnGGFMv8s3oV2Cmv5I0dIB/4SGL6YhnfoWOeISjD1lcoxwZY0xxqtHI2tAB/mWrDmAikZ65pBGcCT9etqpys5Kb/dPA9qG8yxr6n8bUjXxNhZVsQmzoY/UX9z0157beiDjpxszXwPYhLrt+W95bxhd3xKubIdOUrJG1AG9cbm8USW+QHhuv25Rj45ZB4lHJeyY1OpmsboZMU8p3AlGVsWgaQSqdJuUOMKY4zym1ESVNeXYMj9MeMOTFtHXDNRUQyzNsZL70+Qg1wIvI6SLyoIj8WUQuqfT28w3KU8nBesz+Z/niDiYC5sW0PlqmEjTPgZQvfT5Ci4QiEgW+BpwBHAWcJyJHVXIf6TxnUvnSjSnG+rWrSARMjNkSsxMIU76ICLGIUyUjOM/O+8Y4g38J8GdVHVTVaeBa4KxK7iASyfMD2Y1Opgzr+nrZcOZqcsXxiEBXq41Yasq3askCQIhHI7TGI8SjEUDc9MoIM8AfAuzwvd/ppmUQkQtEZKuIbN29e3dJOzjswA5AiEcitMYixCPOD+SkGzN/6/p6efHKA1na3cqClijxqLCgJUpvVyuHH9Rd6+yZJvDh0/tY3BFHcIYIFpweWpWczyLMAJ/rNHrOda+qblLVflXt7+npKWkHl5xxJIs64kgEUqpIBBZ1xLnkjCPnm2djZqxfu4qWWJSlC9s44qAuli5soyUWZf3aVbXOmmkC6/p6ufycY1mzYjEHL2xnzYrFXH7Osazr663YPsIcTXInsNz3fhnwZCV3sK6vlyvOOZaNWwbZOTzOssUdrF+7qqI/kNl/revrZQPY8WVCs66vN9TjSbSS98X6NywSA/4XeCXwBHAH8Dequi3fOv39/bp169ZQ8mOMMc1IRO5U1f5cy0I7g1fVpIi8D/gVEAW+FRTcjTHGVFaoE36o6i+AX4S5D2OMMblZh15jjGlSFuCNMaZJWYA3xpgmFVovmvkQkd3AY/NcfQnwTAWzUymWr9JYvkpj+SpNM+brUFXNeRNRXQX4cojI1nxdhWrJ8lUay1dpLF+l2d/yZVU0xhjTpCzAG2NMk2qmAL+p1hnIw/JVGstXaSxfpdmv8tU0dfDGGGMyNdMZvDHGGB8L8MYY06TqPsAXmtdVHF9xl98rIscVu27I+Xqzm597ReT3InKsb9mjInKfiNwtIhUdPrOIfK0Tkb3uvu8WkcuKXTfkfP2jL0/3i0hKRA5wl4X5e31LRIZE5P48y2t1fBXKV62Or0L5qtXxVShftTq+lovIzSLygIhsE5ELc3wmvGNMVev2gTMK5cPAKqAFuAc4KuszrwFuwJlg5HjgD8WuG3K+TgAWu6/P8PLlvn8UWFKj32sd8J/zWTfMfGV9/vXATWH/Xu621wLHAffnWV7146vIfFX9+CoyX1U/vorJVw2Pr4OB49zXXThDqFcthtX7GXwx87qeBXxPHbcDi0Tk4CLXDS1fqvp7VR12396OM+FJ2Mr5zjX9vbKcB1xToX0HUtUtwLMBH6nF8VUwXzU6vor5vfKp6e+VpZrH11Oqepf7ehR4gLlTl4Z2jNV7gC9mXtd8nylqTtgQ8+X3LpwS2qPAr0XkThG5oEJ5KiVfLxORe0TkBhFZXeK6YeYLEekATgd+7EsO6/cqRi2Or1JV6/gqVrWPr6LV8vgSkZXAGuAPWYtCO8ZCHQ++AoqZ1zXfZ4qaE3aeit62iJyM8w94oi/55ar6pIj0AjeKyHb3DKQa+boLZ+yKMRF5DfBT4PAi1w0zX57XA79TVf/ZWFi/VzFqcXwVrcrHVzFqcXyVoibHl4h04hQqF6nqSPbiHKtU5Bir9zP4YuZ1zfeZMOeELWrbInIMcBVwlqru8dJV9Un3eQi4DudSrCr5UtURVR1zX/8CiIvIkmLWDTNfPueSdfkc4u9VjFocX0WpwfFVUI2Or1JU/fgSkThOcP+hqv4kx0fCO8bCaFio1APnCmMQOIzZRobVWZ95LZkNFH8sdt2Q87UC+DNwQlb6AqDL9/r3wOlVzNdSZm9wewnwuPvb1fT3cj+3EKcedUE1fi/fPlaSv9Gw6sdXkfmq+vFVZL6qfnwVk69aHV/ud/8e8KWAz4R2jFXsxw3rgdPC/L84rckfddP+Fvhb3w/4NXf5fUB/0LpVzNdVwDBwt/vY6qavcv9Q9wDbapCv97n7vQence6EoHWrlS/3/fnAtVnrhf17XQM8BSRwzpjeVSfHV6F81er4KpSvWh1fgfmq4fF1Ik61yr2+v9VrqnWM2VAFxhjTpOq9Dt4YY8w8WYA3xpgmZQHeGGOalAV4Y4xpUhbgjTGmSVmAN01PRN7ojuSXFpF+X/qB7kh/YyLy1ax1funebr9NRL4uIlE3fa2I3CUiSRE5J2udt4vIQ+7j7b7097mjAap704+XnneEQ2MqwQK8aRrusKu5jun7gb8Csm8/nwQ+BvzfHOu8SVWPBY4GeoA3uumP4/Snvjpr3wcAHwdeinODz8dFZLG7+HfAqcBj/nVU9XJVfZGqvgi4FLhFM2+hN6Ys9T4WjTGB3AGcbgBuBl4GPCciPTg3l3xLVb+oqg+4n81YV1X3AbeKyPOzt6uz44XEcO4iVDf9UXdb6axVTgNu9AK0iNyIM6jVNar6p1z7z1K1EQ7N/sPO4E0zOALndvB3A0lVPVpVXwh8u5yNisivgCFgFNhc4OPzHvkvzwiHxpTNArxpBo+pM472ILBKRP5NRE4HskftK4mqnoYzYUMrcEqBj5cz8l+uEQ6NKZsFeNMM9gGoMwHGscAA8F6c8VrKoqqTwPUUnmihnJH/5oxwaEwlWIA3TcPtoRJR1R/jNJ4eV2CVfNvpdGfUQURiOAM+bS+w2q+AV4vIYrdx9dVuWqF9LQReAfxsPnk1JogFeNNMDgEGRORu4Ds4PVMQkbNFZCdOI+x/uXXruMseBb4AnC8iO0XkKJxhY68XkXtxRhkcAr7ufv7F7rbeCGwUkW0AbvXKp4A73McGX4Pr+911lgH3ioj/yuJs4Ndug68xFWWjSRpjTJOyM3hjjGlSFuCNMaZJWYA3xpgmZQHeGGOalAV4Y4xpUhbgjTGmSVmAN8aYJvX/AREN/VFlZr8jAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax1 = plt.subplots()\n", + "cd4ydata = (concate_v2_v3['CD8T Naive'] + \\\n", + " concate_v2_v3['CD4T Naive']\n", + " ) / (\n", + " concate_v2_v3['CD8T TEM'] + \\\n", + " concate_v2_v3['CD4T TEM']\n", + ")\n", + "sns.regplot(x=concate_v2_v3['gt'],\n", + " y=cd4ydata, \n", + " ax=ax1)\n", + "r, p = stats.spearmanr(concate_v2_v3['gt'],\n", + " cd4ydata)\n", + "ax1.set_title('Oelen v2 & v3 r={:.2f}, p={:.2g}'.format(r, p))\n", + "ax1.set_ylabel('CD8+CD4 TEM / CD8+CD4 Naive')\n", + "ax1.set_xlabel(\"rs1131017\")\n", + "\n", + "plt.savefig('TEM_naive_CD4_CD8_v2_v3_rs1131017.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/05_coeqtl_interpretation/enrichment_GO_terms.R b/05_coeqtl_interpretation/enrichment_GO_terms.R new file mode 100644 index 0000000..8c497b8 --- /dev/null +++ b/05_coeqtl_interpretation/enrichment_GO_terms.R @@ -0,0 +1,163 @@ +# ------------------------------------------------------------------------------ +# This scripts runs GO enrichment analysis of significant co-eQTLs results +# (one analysis per co-eGene group associated with the same eQTL). +# It consists of three functions and requires all cell-type specific eQTL results +# 'coeqtls_fullresults_fixed.all.tsv.gz' (with all genes tested) and +# significant results 'coeqtls_fullresults_fixed.sig.tsv.gz' to run it. +# ------------------------------------------------------------------------------ + +################################################################# +## Libraries ## +################################################################# + +library(enrichplot) +library(stringr) +library(ggplot2) +library(clusterProfiler) + +################################################################## +## Function for enrichment of subset of genes ## +################################################################## + +# enrich_small function run enrichment analysis of test_genes with background set of genes, +# store it to the table and also as a dotplot to output pdf file. + +enrich_small <- function(test_genes, background_genes, mark_gene, cell_type){ + + enrich_out <-enrichGO(gene=c(test_genes), + OrgDb='org.Hs.eg.db', + keyType="SYMBOL", + pvalueCutoff = 0.05, + #pAdjustMethod = "none", + universe = background_genes, + ont="all", + minGSSize=5) + + enrich_out_df <- data.frame(enrich_out) + + # save the data if GO terms found + if(nrow(enrich_out_df)>0){ + enrich_out_df$id<-mark_gene + dotplot(enrich_out, showCategory=15) + ggtitle(paste(cell_type, mark_gene)) + ggsave(paste(outdir, cell_type, "_", mark_gene, ".pdf", sep=''), width = 10, height = 8) + } + return(enrich_out_df) +} + +# enrichment_for_zscore_subsets function split the table of co-eQTL results +# based on the Zscore and run enrichment analysis for these subsets. +# Also, it creates hubs of genes and run GO enrichmentfor particular gene hub. +# All the results are stored to the one datatable, visualized into pdf and saved +# and separated files. + +enrichment_for_zscore_subsets <- function(tab_all, tab_sign, zscore_id, cell_type){ + + background_genes <- unique(c(str_split_fixed(tab_all$Gene, ";", 2))) + + #Identify eQTL gene and "second gene" + test_genes <- str_split_fixed(tab_sign$Gene, ";", 2) + tab_sign$gene1 <- test_genes[,1] + tab_sign$gene2 <- test_genes[,2] + tab_sign$eqtlgene<- str_split_fixed(tab_sign$snp_eqtlgene, "_", 2)[,2] + tab_sign$secondgene<- with(tab_sign,ifelse(gene1==eqtlgene,gene2,gene1)) + tab_sign$gene1 <- NULL + tab_sign$gene2 <- NULL + print(paste(cell_type, dim(tab_sign)[1])) + + #Perform enrichment analysis over all coeQTL genes together (and all eQTL / second genes) + + all_genes <- enrich_small(test_genes, background_genes, mark_gene=paste(zscore_id, 'all', sep="_"),cell_type) + gene1_genes <- enrich_small(tab_sign$eqtlgene, background_genes, mark_gene=paste(zscore_id, 'eqtlgene'),cell_type) + gene2_genes <- enrich_small(tab_sign$secondgene, background_genes, mark_gene=paste(zscore_id, 'secondgene'),cell_type) + enrichment<-rbind(all_genes,gene1_genes,gene2_genes) + + count_hubs <- as.data.frame(table(tab_sign$eqtlgene)) + count_hubs$Var1<-as.character(count_hubs$Var1) + count_hubs <- count_hubs[order(count_hubs$Freq, decreasing = T),] + + #Filter all hub genes to contain more than 5 second genes + count_hubs<-count_hubs[count_hubs$Freq>5,] + + for(hub in seq_len(nrow(count_hubs))){ + hub_gene <- count_hubs$Var1[hub] + second_genes<-tab_sign$secondgene[tab_sign$eqtlgene == hub_gene] + hub_enrich <- enrich_small(second_genes, background_genes, + mark_gene=paste( hub_gene, count_hubs$Freq[hub],zscore_id, sep="_"),cell_type) + enrichment<-rbind(enrichment,hub_enrich) + } + + #Save cell type in the table + enrichment$cell_type <- cell_type + + #Save results + name_GO<- paste(outdir, "GO_", zscore_id, cell_type, ".tsv", sep='') + write.table(enrichment, name_GO, sep='\t', quote=F, row.names = F, col.names = T) + +} + +# enrichment_function load the input files and apply previously described functions +# to selected genes. + +enrichment_function <- function(path, cell_type, outdir){ + + coeqtls<-fread(paste0(path,"UT_",cell_type,"/coeqtls_fullresults_fixed.all.tsv.gz")) + + #Load eqtls on which this is based on + eqtls<-fread(paste0("coeqtl_mapping/input/snp_selection/eqtl/UT_", + cell_type,"_eQTLProbesFDR0.05-ProbeLevel_withAF.tsv")) + eqtls$SNPpair<-paste0(eqtls$SNPName,"_",eqtls$genename) + coeqtls<-merge(coeqtls,eqtls[,c("SNPpair","SNPType","AlleleAssessed","OverallZScore", + "AF","alt_allele")], + by.x="snp_eqtlgene",by.y="SNPpair") + + #Swap the Z score + coeqtls$MetaPZ<-ifelse(coeqtls$AF>=0.5,coeqtls$MetaPZ*(-1), + coeqtls$MetaPZ) + + tab_all <- coeqtls + + coeqtls_sign<-fread(paste0(path,"UT_",cell_type,"/coeqtls_fullresults_fixed.sig.tsv.gz")) + + #Load eqtls on which this is based on + eqtls_sign<-fread(paste0("coeqtl_mapping/input/snp_selection/eqtl/UT_", + cell_type,"_eQTLProbesFDR0.05-ProbeLevel_withAF.tsv")) + eqtls_sign$SNPpair<-paste0(eqtls_sign$SNPName,"_",eqtls_sign$genename) + coeqtls_sign<-merge(coeqtls_sign,eqtls_sign[,c("SNPpair","SNPType","AlleleAssessed","OverallZScore", + "AF","alt_allele")], + by.x="snp_eqtlgene",by.y="SNPpair") + + #Swap the Z score + coeqtls_sign$MetaPZ<-ifelse(coeqtls_sign$AF>=0.5,coeqtls_sign$MetaPZ*(-1), + coeqtls_sign$MetaPZ) + tab_sign <- coeqtls_sign + + enrichment_for_zscore_subsets(tab_all, tab_sign, zscore_id="All_Zscores",cell_type) + enrichment_for_zscore_subsets(tab_all[tab_all$MetaPZ >0, ], tab_sign[tab_sign$MetaPZ >0, ], zscore_id="Positive_Zscores",cell_type) + enrichment_for_zscore_subsets(tab_all[tab_all$MetaPZ < 0, ], tab_sign[tab_sign$MetaPZ <0, ], zscore_id="Negative_Zscores",cell_type) + +} + +################################################################## +## Analysis ## +################################################################## + + +for(ct in c("CD8T","CD4T", + "monocyte","NK","B","DC")){ + enrichment_function(path, cell_type=ct, outdir) +} + +# Path where coeQTL results are stored +path <- '/path/to/coeQTLt/results/' +# Path where results of GO enrich will be stored +outdir <- '/path/to/outputs/' +# for tests +cell_type ="CD8T" + +# +# run_mono <- enrichment_function(path, cell_type="monocyte", outdir) +# run_cd8t <- enrichment_function(path, cell_type="CD8T", outdir) +# run_cd4t <- enrichment_function(path, cell_type="CD4T", outdir) +# run_b <- enrichment_function(path, cell_type="B", outdir) +# run_dc <- enrichment_function(path, cell_type="DC", outdir) +# run_nk <- enrichment_function(path, cell_type="NK", outdir) diff --git a/05_coeqtl_interpretation/enrichment_GO_terms_reduced_background.R b/05_coeqtl_interpretation/enrichment_GO_terms_reduced_background.R new file mode 100644 index 0000000..06120e9 --- /dev/null +++ b/05_coeqtl_interpretation/enrichment_GO_terms_reduced_background.R @@ -0,0 +1,167 @@ +# ------------------------------------------------------------------------------ +# Check for each co-eQTL with at least 5 co-eGenes if there is any enrichment +# using all genes correlated with the respective eGene as background +# ------------------------------------------------------------------------------ + +library(data.table) +library(dplyr) +library(clusterProfiler) + +path<-"coeqtl_mapping/output/filtered_results/" +outdir<-"coeqtl_interpretation/go_enrichment/" + +#Run the GO enrichment for each cell type +enrichment<-NULL +enrichment_summary<-NULL +coegenes_counts_total<-NULL +for(cell_type in c("CD4T","CD8T","monocyte","NK","B","DC")){ + + coeqtls <- fread(paste0(path, "UT_",cell_type, + "/coeqtls_fullresults_fixed.all.tsv.gz")) + coeqtls$gene1<-gsub(";.*","",coeqtls$Gene) + coeqtls$gene2<-gsub(".*;","",coeqtls$Gene) + coeqtls$second_gene<-ifelse(coeqtls$gene1 == coeqtls$eqtlgen, coeqtls$gene2, + coeqtls$gene1) + coeqtls$gene1<-NULL + coeqtls$gene2<-NULL + + # Take all tested genes as background + background_genes <- union(coeqtls$eqtlgen,coeqtls$second_gene) + coeqtls_sign<-coeqtls[coeqtls$gene2_isSig,] + + print(paste(cell_type,"with",nrow(coeqtls_sign),"co-eQTLs")) + print(paste("Size of the combined background set:", + length(background_genes))) + + # Identify all eQTLs with at least 5 coeGenes + coegene_count<-coeqtls_sign%>% + group_by(snp_eqtlgene)%>% + summarize(count_coeGenes=n())%>% + filter(count_coeGenes>4) + + coegene_count$cell_type<-cell_type + coegenes_counts_total<-rbind(coegenes_counts_total, + coegene_count) + + #Size of the reduced background set + coeqtls_reduced_background<-coeqtls%>% + filter(snp_eqtlgene %in% coegene_count$snp_eqtlgene)%>% + group_by(snp_eqtlgene)%>% + summarize(count_secondgene=n()) + + print("Size of the reduced gene sets") + print(summary(coeqtls_reduced_background$count_secondgene)) + + enrichment_found<-0 + #Perform GO enrichemt separately for each eQTL + for(eqtl in coegene_count$snp_eqtlgene){ + + # Run enrichment analysis with background set + enrich_out <-enrichGO(gene=coeqtls_sign$second_gene[coeqtls_sign$snp_eqtlgene == eqtl], + OrgDb='org.Hs.eg.db', + keyType="SYMBOL", + pvalueCutoff = 0.05, + pAdjustMethod = "BH", + universe = coeqtls$second_gene[coeqtls$snp_eqtlgene == eqtl], + ont="all", + minGSSize=5) + + if(nrow(enrich_out@result)>0){ + + # Save if a enrichment was found + enrichment_found<-enrichment_found+1 + + # Save result dataframe + res<-enrich_out@result + res$cell_type<-cell_type + res$snp_eGene<-eqtl + enrichment<-rbind(enrichment, + res[,c("cell_type","snp_eGene","ONTOLOGY","ID", + "Description","pvalue","p.adjust","GeneRatio","BgRatio")]) + } + + } + + enrichment_summary<-rbind(enrichment_summary, + data.frame(cell_type, + n_eqtls_freq=nrow(coegene_count), + n_enrich=enrichment_found, + freq_enrich=enrichment_found/nrow(coegene_count))) + + + #Check for CD4T specificallly for RPS26 the positive & negative coeGenes separately + if(cell_type=="CD4T"){ + eqtl<-"rs1131017_RPS26" + + #Test positive coeGenes (MAF not correctly flipped here) + enrich_out <-enrichGO(gene=coeqtls_sign$second_gene[coeqtls_sign$snp_eqtlgene == eqtl & + coeqtls_sign$MetaPZ < 0], + OrgDb='org.Hs.eg.db', + keyType="SYMBOL", + pvalueCutoff = 0.05, + pAdjustMethod = "BH", + universe = coeqtls$second_gene[coeqtls$snp_eqtlgene == eqtl], + ont="all", + minGSSize=5) + + if(nrow(enrich_out@result)>0){ + + # Save if a enrichment was found + enrichment_found<-enrichment_found+1 + + # Save result dataframe + res<-enrich_out@result + res$cell_type<-cell_type + res$snp_eGene<-paste0(eqtl,"_positive") + enrichment<-rbind(enrichment, + res[,c("cell_type","snp_eGene","ONTOLOGY","ID", + "Description","pvalue","p.adjust","GeneRatio","BgRatio")]) + } + + #Test negative coeGenes (MAF not correctly flipped here) + enrich_out <-enrichGO(gene=coeqtls_sign$second_gene[coeqtls_sign$snp_eqtlgene == eqtl & + coeqtls_sign$MetaPZ > 0], + OrgDb='org.Hs.eg.db', + keyType="SYMBOL", + pvalueCutoff = 0.05, + pAdjustMethod = "BH", + universe = coeqtls$second_gene[coeqtls$snp_eqtlgene == eqtl], + ont="all", + minGSSize=5) + + if(nrow(enrich_out@result)>0){ + + # Save if a enrichment was found + enrichment_found<-enrichment_found+1 + + # Save result dataframe + res<-enrich_out@result + res$cell_type<-cell_type + res$snp_eGene<-paste0(eqtl,"_negative") + enrichment<-rbind(enrichment, + res[,c("cell_type","snp_eGene","ONTOLOGY","ID", + "Description","pvalue","p.adjust","GeneRatio","BgRatio")]) + } + } +} + + +#Format p-values +enrichment$pvalue<-format(enrichment$pvalue,digits=3) +enrichment$p.adjust<-format(enrichment$p.adjust,digits=3) +write.table(enrichment, + file=paste0(outdir,"GOenrichment_coeGenes_allcelltypes_otherbackground.tsv"), + sep="\t",quote=FALSE,row.names=FALSE) + +#Check general statistics (per eQTL - cell type) +sum(enrichment_summary$n_eqtls_freq) +sum(enrichment_summary$n_enrich) + +#Check general statistics (per eQTL, combining all cell types) +enriched_eqtls<-setdiff(unique(enrichment$snp_eGene), + c("rs1131017_RPS26_positive","rs1131017_RPS26_negative")) +length(enriched_eqtls) + +coegenes_counts_total<-as.data.frame(coegenes_counts_total) +length(unique(coegenes_counts_total$snp_eqtlgene)) +setdiff(unique(coegenes_counts_total$snp_eqtlgene),enriched_eqtls) diff --git a/05_coeqtl_interpretation/enrichment_TFs_Remap.R b/05_coeqtl_interpretation/enrichment_TFs_Remap.R new file mode 100644 index 0000000..1683cae --- /dev/null +++ b/05_coeqtl_interpretation/enrichment_TFs_Remap.R @@ -0,0 +1,258 @@ +# ------------------------------------------------------------------------------ +# Check enrichment of TFBS among co-eGenes using Remap 2022 annotations +# - Check for each cell type and coeGene cluster the enrichment (FDR correction) +# - Check if the enriched TF is itself part of the coeGenes +# - Check if the SNP or a SNP in LD is part of the TF +# +# Input: TFBS from Remap2022 (filtered for blood cell types in script +# enrichment_TFs_Remap_preprocessing.R), +# gene annotation file, +# coeQTL results (complete result with all tested genes to +# define also the background) +# Output: signficant enrichment results with information about overlap +# between TF and co-eQTL SNP +# ------------------------------------------------------------------------------ + +library(rtracklayer) +library(data.table) + +source("snipe.R") + +peaks<-import("tfbs_enrichment_remap/remap2022_nr_macs2_hg19_v1_0_blood_related.bed") + +# Split name into TF and measured cell lines +ann <- t(matrix(unlist(strsplit(values(peaks)[,"name"], ":", fixed=T)), nrow=2)) +colnames(ann) <- c("TF", "conditions") +ann <- as.data.frame(ann,stringsAsFactors=FALSE) + +values(peaks)<-ann + +#Update seqlevel style to match between genotypes +seqlevelsStyle(peaks)<-"NCBI" +peaks<-keepStandardChromosomes(peaks, pruning.mode="coarse") + +#Get number of unique TFs +tfs<-as.character(unique(ann$TF)) + +################################################################################ +# Part 1: check if certain TFs are enriched within the co-eGenes +################################################################################ + +gene_annot<-import("tfbs_enrichment_remap/genes.gtf") +gene_annot<-gene_annot[gene_annot$type =="gene",] +gene_annot<-keepStandardChromosomes(gene_annot, pruning.mode="coarse") + +#Read coeQTL file (all tests) +tf_enrichment_combined<-NULL +total_set_tested_eqtls<-NULL +for(ct in c("CD4T","CD8T","monocyte","NK","DC","B")){ + + coeqtls<-fread(paste0("coeqtl_mapping/output/filtered_results/UT_",ct, + "/coeqtls_fullresults_fixed.all.tsv.gz")) + coeqtls$gene1<-gsub(";.*","",coeqtls$Gene) + coeqtls$gene2<-gsub(".*;","",coeqtls$Gene) + coeqtls$eqtlgene<-gsub(".*_","",coeqtls$snp_eqtlgene) + coeqtls$gene2<-ifelse(coeqtls$gene1 == coeqtls$eqtlgen, coeqtls$gene2, + coeqtls$gene1) + coeqtls$gene1<-NULL + tested_genes<-unique(c(coeqtls$eqtlgene,coeqtls$gene2)) + + #Remove trailing .1 (R issue) of missing genes + missing_genes<-tested_genes[! tested_genes %in% gene_annot$gene_name] + tested_genes[! tested_genes %in% gene_annot$gene_name]<-gsub("\\.1$","",missing_genes) + tested_genes<-unique(tested_genes) + print(paste("Annotation found for x% of the genes:", + mean(tested_genes %in% gene_annot$gene_name))) + + #Read gene position file and determine TSS + gene_pos<-gene_annot[gene_annot$gene_name %in% tested_genes,] + mcols(gene_pos)<-data.frame(gene_name=gene_pos$gene_name) + + #Get TSS for the genes + gene_tss<-promoters(gene_pos,upstream=2000,downstream=2000) + + #Check for each TF in ReMap overlap with all gene TSS + tfbs_ann <- sapply(tfs, function(x) overlapsAny(gene_tss, + peaks[peaks$TF == x])) + rownames(tfbs_ann)<-gene_tss$gene_name + + #Filter for TFs with at least one found binding + tfbs_ann<-tfbs_ann[,colSums(tfbs_ann)>0] + + #Collapse genes with multiple annotations (hit if at least a hit in one annotation) + tfbs_ann<- apply(tfbs_ann, 2, tapply, rownames(tfbs_ann), + max, na.rm=T) + #Convert it back into a logical matrix + tfbs_ann<-matrix(as.logical(tfbs_ann),ncol=ncol(tfbs_ann), + dimnames=list(rownames(tfbs_ann),colnames(tfbs_ann))) + + #Get significant coeQTLs + coeqtls_sign<-coeqtls[coeqtls$gene2_isSig,] + occ_eqtl<-as.data.frame(table(coeqtls_sign$snp_eqtlgene)) + occ_eqtl<-occ_eqtl[occ_eqtl$Freq>=5,] + occ_eqtl$cell_type<-ct + total_set_tested_eqtls<-rbind(total_set_tested_eqtls, + occ_eqtl) + + #Perform Fisher's test for the enrichment + fisher_all_eqtl<-NULL + for(eqtl in occ_eqtl$Var1){ + + #Filter significant gene2s with existing promoter annotation + sign_gene2<-coeqtls_sign$gene2[coeqtls_sign$snp_eqtlgene==eqtl] + sign_gene2<-intersect(sign_gene2,rownames(tfbs_ann)) + + #Iterate over each TF + fisher_res<-NULL + for(tf in colnames(tfbs_ann)){ + + counts<-data.frame(tf_binding=c(sum(tfbs_ann[sign_gene2,tf]),sum(tfbs_ann[,tf])), + tf_nonbinding=c(sum(!tfbs_ann[sign_gene2,tf]),sum(!tfbs_ann[,tf]))) + + res_fisher<-fisher.test(counts,alternative="greater") + + fisher_res<-rbind(fisher_res, + data.frame(celltype=ct, + eqtl, + tf, + is_coeGene = tf %in% sign_gene2, + fisher_pval=res_fisher$p.value, + tf_coeqtl=counts$tf_binding[1], + notf_coeqtl=counts$tf_nonbinding[1], + tf_background=counts$tf_binding[2], + notf_background=counts$tf_nonbinding[2])) + } + + #Multiple testing correction per eQTL + fisher_res$fisher_fdr<-p.adjust(fisher_res$fisher_pval,method="BH") + + fisher_all_eqtl<-rbind(fisher_all_eqtl,fisher_res) + } + + #Check for CD4T specificallly for RPS26 the positive & negative coeGenes separately + if(ct=="CD4T"){ + eqtl<-"rs1131017_RPS26" + + #Test positive coeGenes (MAF not correctly flipped here) + sign_gene2<-coeqtls_sign$gene2[coeqtls_sign$snp_eqtlgene==eqtl + & coeqtls_sign$MetaPZ < 0] + sign_gene2<-intersect(sign_gene2,rownames(tfbs_ann)) + + #Iterate over each TF + fisher_res<-NULL + for(tf in colnames(tfbs_ann)){ + + counts<-data.frame(tf_binding=c(sum(tfbs_ann[sign_gene2,tf]),sum(tfbs_ann[,tf])), + tf_nonbinding=c(sum(!tfbs_ann[sign_gene2,tf]),sum(!tfbs_ann[,tf]))) + + res_fisher<-fisher.test(counts,alternative="greater") + + fisher_res<-rbind(fisher_res, + data.frame(celltype=ct, + eqtl=paste0(eqtl,"_positive"), + tf, + is_coeGene = tf %in% sign_gene2, + fisher_pval=res_fisher$p.value, + tf_coeqtl=counts$tf_binding[1], + notf_coeqtl=counts$tf_nonbinding[1], + tf_background=counts$tf_binding[2], + notf_background=counts$tf_nonbinding[2])) + } + + #Multiple testing correction per eQTL + fisher_res$fisher_fdr<-p.adjust(fisher_res$fisher_pval,method="BH") + fisher_all_eqtl<-rbind(fisher_all_eqtl,fisher_res) + + #Test negative coeGenes (MAF not correctly flipped here) + sign_gene2<-coeqtls_sign$gene2[coeqtls_sign$snp_eqtlgene==eqtl + & coeqtls_sign$MetaPZ > 0] + sign_gene2<-intersect(sign_gene2,rownames(tfbs_ann)) + + #Iterate over each TF + fisher_res<-NULL + for(tf in colnames(tfbs_ann)){ + + counts<-data.frame(tf_binding=c(sum(tfbs_ann[sign_gene2,tf]),sum(tfbs_ann[,tf])), + tf_nonbinding=c(sum(!tfbs_ann[sign_gene2,tf]),sum(!tfbs_ann[,tf]))) + + res_fisher<-fisher.test(counts,alternative="greater") + + fisher_res<-rbind(fisher_res, + data.frame(celltype=ct, + eqtl=paste0(eqtl,"_negative"), + tf, + is_coeGene = tf %in% sign_gene2, + fisher_pval=res_fisher$p.value, + tf_coeqtl=counts$tf_binding[1], + notf_coeqtl=counts$tf_nonbinding[1], + tf_background=counts$tf_binding[2], + notf_background=counts$tf_nonbinding[2])) + } + + #Multiple testing correction per eQTL + fisher_res$fisher_fdr<-p.adjust(fisher_res$fisher_pval,method="BH") + + fisher_all_eqtl<-rbind(fisher_all_eqtl,fisher_res) + + } + + tf_enrichment_combined<-rbind(tf_enrichment_combined, + fisher_all_eqtl[fisher_all_eqtl$fisher_fdr<0.05,]) + +} + +table(tf_enrichment_combined$eqtl,tf_enrichment_combined$celltype) +tf_enrichment_combined[tf_enrichment_combined$is_coeGene,] + +################################################################################ +# Part 2: check if the SNP (a SNP in high LD) is in the TF peak +################################################################################ + +tf_enrichment_combined$eqtlsnp<-gsub("_.*","",tf_enrichment_combined$eqtl) + +#Get all SNPs in LD with the enriched eQTL SNP +enriched_snps<-unique(tf_enrichment_combined$eqtlsnp) + +proxies <- snipa.get.ld.by.snp(enriched_snps, + rsquare=0.9, + population=c('eur')) + +snp_grange<-makeGRangesFromDataFrame(proxies,seqnames.field="CHR", + start.field = "POS2",end.field = "POS2") +snp_grange$snp_name<-proxies$RSID +snp_grange$eqtl_snp<-proxies$QRSID + +#Iterate over each SNP to check the overlap with the TF +tf_enrichment_combined$snp_tf_overlap<-FALSE +tf_enrichment_combined$snp_name_overlap<-"" +for(i in 1:nrow(tf_enrichment_combined)){ + + #SNPs in high LD with the eQTL SNP + snp_subset<-snp_grange[snp_grange$eqtl_snp == tf_enrichment_combined$eqtlsnp[i]] + + #All peaks of the respective TF + peaks_tf<-peaks[peaks$TF == tf_enrichment_combined$tf[i]] + + overlap_snp<-overlapsAny(snp_subset,peaks_tf) + + tf_enrichment_combined$snp_tf_overlap[i]<-any(overlap_snp) + tf_enrichment_combined$snp_name_overlap[i]<-paste0(snp_subset$snp_name[overlap_snp],collapse=",") +} + +#Save LD information and result table +write.table(tf_enrichment_combined, + file="tfbs_enrichment_remap/tf_remap_enrichment_results.tsv", + sep="\t",quote=FALSE,row.names=FALSE) +write.table(proxies, + file="tfbs_enrichment_remap/ld_proxies_with_position.tsv", + sep="\t",quote=FALSE,row.names=FALSE) + +#Filter for SNPs which overlap with the TF +tf_enrichment_overlap<-tf_enrichment_combined[tf_enrichment_combined$snp_tf_overlap,] + +table(tf_enrichment_combined$eqtl,tf_enrichment_combined$celltype) +table(tf_enrichment_overlap$eqtl,tf_enrichment_overlap$celltype) +tfs_coegenes<-tf_enrichment_overlap[tf_enrichment_overlap$is_coeGene,c("celltype","eqtl","tf")] +tfs_coegenes[,c("celltype","eqtl","tf")] + + diff --git a/05_coeqtl_interpretation/enrichment_TFs_Remap_preprocessing.R b/05_coeqtl_interpretation/enrichment_TFs_Remap_preprocessing.R new file mode 100644 index 0000000..3560fb5 --- /dev/null +++ b/05_coeqtl_interpretation/enrichment_TFs_Remap_preprocessing.R @@ -0,0 +1,54 @@ +# ------------------------------------------------------------------------------ +# Preparation of enrichment of TFBS among co-eGenes using Remap annotations: +# filter Remap file for blood related cell lines +# (due to size of file this takes some time) +# Input: bed file from Remap 2022 (from https://remap.univ-amu.fr/download_page) +# Output: bed file filtered for blood cell lines +# ------------------------------------------------------------------------------ + +library(rtracklayer) + +#Read peak file from Remap2022 +peaks<-import("tfbs_enrichment_remap/remap2022_nr_macs2_hg19_v1_0.bed.gz") + +# Filter blood related cell lines +ann <- t(matrix(unlist(strsplit(values(peaks)[,"name"], ":", fixed=T)), nrow=2)) +colnames(ann) <- c("TF", "conditions") +ann <- as.data.frame(ann,stringsAsFactors=FALSE) + +conditions<-data.frame(condition=unique(unlist(strsplit(ann$conditions,","))), + blood_related=FALSE) +conditions<-conditions[order(conditions$condition),] + +blood_related_terms<-c("ALL","AML", + "B-cell","BJAB","BL41","blood", + "CLL","DC","erythroid", + "erythroid-progenitor","GM", + "Jurkat","K-562","Kasumi", + "LCL","leukemia","lymphoblast","lymphocyte", + "macrophage","MM1-S","monocyte", + "neutrophil","P493","peripheral-blood", + "SEM","T-cell","Th1","Th17","THP-1","U-937", + "monocyte") + +for(term in blood_related_terms){ + conditions[grep(term, conditions$condition),"blood_related"] <- TRUE +} + +write.table(conditions,file="tfbs_enrichment_remap/conditions_remap2022.tsv", + quote=FALSE,sep="\t") + +conditions<-conditions[conditions$blood_related,] + +ann$blood_related<-FALSE +for(term in blood_related_terms){ + ann[grep(term, ann$conditions),"blood_related"] <- TRUE +} + +values(peaks)<-ann +peaks<-peaks[peaks$blood_related] +peaks$blood_related<-NULL + +#Put back into name column as only this column is exported from rtracklayer +peaks$name<-paste0(peaks$TF,":",peaks$conditions) +export(peaks,"tfbs_enrichment_remap/remap2022_nr_macs2_hg19_v1_0_blood_related.bed") diff --git a/05_coeqtl_interpretation/general_stats.R b/05_coeqtl_interpretation/general_stats.R new file mode 100644 index 0000000..1806307 --- /dev/null +++ b/05_coeqtl_interpretation/general_stats.R @@ -0,0 +1,51 @@ +# ----------------------------------------------------------------------------- +# Count number of second genes per eQTL (across all cell types) +# And the distribution of effect sizes across cell types +# Input: significnat coeQTL results for all cell types +# Output: printed summary statistics +# ----------------------------------------------------------------------------- + +library(data.table) +library(dplyr) + +coeqtl_dir<-"coeqtl_mapping/output/filtered_results/" + +all_counts<-NULL +for(cell_type in c("CD4T","CD8T","monocyte","B","NK","DC")){ + + # Read coeQTL results + coeqtls<-fread(paste0(coeqtl_dir,"UT_", + cell_type,"/coeqtls_fullresults_fixed_withAF.sig.tsv")) + + # Correct MAF + coeqtls$MetaPZ<-ifelse(coeqtls$AF>0.5,(-1)*coeqtls$MetaPZ,coeqtls$MetaPZ) + + count_second_genes<-coeqtls%>% + group_by(snp_eqtlgene)%>% + summarise(num_second_genes=n(), + pos_dir=sum(MetaPZ>0), + neg_dir=sum(MetaPZ<0)) + + count_second_genes$ct<-cell_type + all_counts<-rbind(all_counts,count_second_genes) +} + +# Get some general statistics about number of coeGenes per eQTL +# summary(all_counts$num_second_genes) +# sum(all_counts$num_second_genes>4) +# mean(all_counts$num_second_genes>4) +unique_eqtls<-length(unique(all_counts$snp_eqtlgene)) +unique_eqtls_second<-length(unique(all_counts$snp_eqtlgene[all_counts$num_second_genes>=5])) +unique_eqtls_second/unique_eqtls + +# Get general proportion of positive / negative co-eGenes +count_direction<-all_counts%>% + group_by(ct)%>% + summarise(pos_dir=sum(pos_dir), + neg_dir=sum(neg_dir), + frac_pos=sum(pos_dir)/sum(num_second_genes)) + +# Filter again for all genes with at least 5 genes +all_counts_filtered<-all_counts[all_counts$num_second_genes >= 5,] +all_counts_filtered$frac_pos<- all_counts_filtered$pos_dir / all_counts_filtered$num_second_genes + diff --git a/05_coeqtl_interpretation/magma_coeqtl.Rmd b/05_coeqtl_interpretation/magma_coeqtl.Rmd new file mode 100644 index 0000000..80d014e --- /dev/null +++ b/05_coeqtl_interpretation/magma_coeqtl.Rmd @@ -0,0 +1,591 @@ +--- +title: "GWAS signals in co-eQTL genes" +author: "Matthias Heinig" +date: "30.03.2022" +output: html_document +knit: ( + function(inputFile, encoding) { + outname <- gsub(".Rmd$", paste0("_", format(Sys.time(), "%Y%m%d"), ".html"), basename(inputFile)); + print(outname); + rmarkdown::render( + input = inputFile, + encoding = encoding, + output_file = file.path("../results/", outname)) } + ) +--- + +```{r setup, include=FALSE, message=FALSE, warning=FALSE} + +################################################################################ +# Script to perform GWAS enrichment analysis for coeGenes that share the same +# eQTL (for all eQTLs with at least 5 coeGenes) +# Additionally to the R packages, the tool MAGMA needs to be downloaded +# (https://ctg.cncr.nl/software/magma) +# +# Input: co-eQTL results (combined in one file with cell type column), +# file with all tested genes in co-eQTL analysis as background, +# GWAS summary statistics processed by the GTEx consortium +# (https://zenodo.org/record/3518299) +# Output: file with MAGMA enrichment results +############################################################################### + +.libPaths(c("~/packages/R/x86_64-redhat-linux-gnu-library/3.6/", .libPaths())) +knitr::opts_chunk$set(echo = TRUE, fig.width=8, fig.height=7) +knitr::opts_knit$set(root.dir=normalizePath("..")) +knitr::opts_knit$set(tidy=TRUE) + +## knitr::opts_chunk$set(dev='pdf') +library(ggplot2) +library(ggpubr) +library(dplyr) +library(tidyverse) +library(DT) # interactive html tables +library(knitr) +library(kableExtra) +library(Rgraphviz) # plot networks +library(Homo.sapiens) # annotation data +library(scales) +library(RColorBrewer) + +theme_set(theme_bw()) +``` + + + +## Implementation of the MAGMA gene set approach + +```{r, echo=FALSE} +## define a wrapper function to call magma +magma.run <- function(...) { #function + args <- list(...) + cmd <- "./packages/magma/magma" + for (arg in names(args)) { + val <- args[[arg]] + if (!is.null(val)) { + cmd = paste0(cmd, " --", arg, " ", val) + } + } + cat(cmd, "\n") + system(cmd, ignore.stdout = TRUE) +} + +## define a wrapper for preprocessing +preprocess.for.magma <- function(input.file, prefix, gene.loc.file, p.column, snp.column, chr.column, pos.column, sample.size) { + ## files are very big, so we will do the parsing and reformating with awk and sed + outdir <- dirname(prefix) + dir.create(outdir, recursive=TRUE, showWarnings = FALSE) + + cat.cmd <- "cat" + sed.cmd <- "sed" ## gsed needed on mac os + if (length(grep(".gz$", input.file)) > 0) { + cat.cmd <- "zcat" ## gzcat needed on mac os will fix later + } + + system("pwd") + cat(input.file, "\n") + + ## Rename the header column to P and SNP (from p and snptestid) + cmd <- paste0(cat.cmd, " ", input.file, " | head -n 1 ") + if (snp.column != "SNP") { + cmd <- paste0(cmd, " | ", + sed.cmd, " 's/\\bSNP\\b/__old__SNP/g' | ", ## rename old SNP column (if exists) + sed.cmd, " 's/\\b", snp.column, "\\b/SNP/g' ") ## rename new SNP column + } + if (p.column != "P") { + cmd <- paste0(cmd, " |", + sed.cmd, " 's/\\bP\\s+/__old__P/g' | ", ## rename old Pvalue column (if exists) + sed.cmd, " 's/\\b", p.column, "\\b/P/g'") ## rename P val col + } + # cmd <- paste0(cmd, " > ", prefix, "_P.txt") + # cat(cmd, "\n") + # system(cmd) + # cmd <- paste0(cat.cmd, " ", input.file, "| tail -n +2 >> ", prefix, "_P.txt") + # cat(cmd, "\n") + # system(cmd) + + ## Annotate the SNPs of our GWAS to genes. SNP locations are formated: + ## rsid, chrom, bp + ## find the indices of the rsid, chrom and bp + cn <- colnames(read.csv(input.file, sep="\t", nrow=2)) + col.idx <- match(c(snp.column, chr.column, pos.column), cn) + if (any(is.na(col.idx))) { + cat("colname(s)", c(snp.column, chr.column, pos.column)[is.na(col.idx)], "not found in", cn, "\n") + stop() + } + col.idx <- paste0("$", col.idx) + cmd <- paste0(cat.cmd, " ", input.file, " | tail -n +2 ", " | awk 'BEGIN{OFS=\"\t\"}{gsub(/chr/, \"\", ", col.idx[2], "); print ", + paste(col.idx, collapse=", "), "}' | sed 's/$chr//g' > ", prefix, "_snppos.txt") + cat(cmd, "\n") + system(cmd) + + ## annotate SNPs to genes + magma.run(annotate="", `snp-loc`=paste0(prefix, "_snppos.txt"), `gene-loc`=gene.loc.file, out=prefix) + + ## unzip the file if needed + if (length(grep(".gz$", input.file)) > 0) { + new.input <- paste0(prefix, "_P.txt") + cmd <- paste(cat.cmd, input.file, ">", new.input) + system(cmd) + input.file <- new.input + } + + ## run the gene level analysis + if (is.na(as.numeric(sample.size))) { + sample.size <- paste0("ncol=", sample.size) + } else { + sample.size <- paste0("N=", sample.size) + } + pval.arg <- paste0(input.file, " ", sample.size, " use=", paste(snp.column, p.column, sep=",")) + magma.run(bfile="data/current/references/magma/g1000_eur", pval=pval.arg, `gene-annot`=paste0(prefix, ".genes.annot"), out=prefix) +} +``` + + +Gene annotations for magma are based on entrez ids. So we check if all symbols present in the PPI data can be mapped to entrez ids. +```{r, message=FALSE} +symbol2entrez <- select(Homo.sapiens, columns=c("SYMBOL","ENTREZID"), keys=keys(Homo.sapiens, keytype="SYMBOL"), keytype="SYMBOL") +alias2entrez <- select(Homo.sapiens, columns=c("ALIAS","ENTREZID"), keys=keys(Homo.sapiens, keytype="ALIAS"), keytype="ALIAS") +colnames(alias2entrez)[1] <- "SYMBOL" +name2entrez <- unique(rbind(symbol2entrez, alias2entrez)) + +write.table(name2entrez, file="results/current/name2entrez.txt", sep="\t", quote=F, row.names=F) +``` + + + + +## Run the analysis systematically on many GWAS + +```{r, echo=FALSE} +run.magma.on.gwas.list <- function(magma.params, set.file, out.suffix, rerun=TRUE, ...) { + magma.res <- NULL + for (i in 1:nrow(magma.params)) { + ## print(magma.params[i,]) + prefix <- magma.params[i,"prefix"] + gsa.file <- paste0(prefix, out.suffix, ".gsa.out") + if (rerun || !file.exists(gsa.file)) { + with(magma.params[i,], { + print(genome.build) + if (genome.build == "hg19") { + gene.loc.file <- "data/current/references/magma/NCBI37.3.gene.loc" + } else if (genome.build == "hg38") { + gene.loc.file <- "data/current/references/magma/NCBI38.gene.loc" + } else { + cat("Only genome build hg19 and hg38 currently available!!\n") + next + } + gene.level.file <- paste0(prefix, ".genes.raw") + if (!file.exists(gene.level.file)) { + preprocess.for.magma(input.file, prefix, gene.loc.file, p.column, snp.column, chrom.column, pos.column, sample.size) + } + magma.run(`gene-results`=gene.level.file, `set-annot`=set.file, out=paste0(prefix, out.suffix), ...) # model="condition-hide=Average direction=greater", + }) + } + enrichment <- read.table(gsa.file, stringsAsFactors=F, header=TRUE, comment="#") + enrichment <- data.frame(enrichment, + prefix, + trait=basename(prefix), + FDR=p.adjust(enrichment$P, "BH"), + stringsAsFactors=FALSE) + magma.res <- rbind(magma.res, enrichment) + } + write.table(magma.res, file=paste0("magma_enrichment", out.suffix, ".txt"), sep="\t", quote=F) + return(magma.res) +} +``` + +Overview of GWAS input data: + +```{r, message=FALSE, echo=FALSE} +gwas.info <- read_tsv("data/current/gtex_gwas_data/gwas_metadata.txt") + +gwas.magma.params <- dplyr::rename(gwas.info[,c("new_abbreviation", "Sample_Size", "Tag")], prefix=new_abbreviation, sample.size=Sample_Size) +gwas.magma.params$input.file <- paste0("data/current/gtex_gwas_data/imputed_gwas_hg38_1.1/imputed_", gwas.magma.params$Tag, ".txt.gz") +gwas.magma.params$prefix <- paste0("results/current/magma/", gwas.magma.params$prefix) +## add genome build, "snp.column" "p.column" "chrom.column" "pos.column" +gwas.magma.params <- data.frame(gwas.magma.params, genome.build="hg38", snp.column="variant_id", p.column="pvalue", chrom.column="chromosome", pos.column="position", stringsAsFactors = FALSE) + +## also add the T1D GWAS +t1d <- data.frame(prefix="results/current/magma/T1D_Onengut", sample.size=18932, Tag="T1D_Onengut", input.file="data/current/other_gwas/25751624-GCST005536-EFO_0001359.h.tsv.gz", genome.build="hg38", snp.column="hm_rsid", p.column="p_value", chrom.column="chromosome", pos.column="base_pair_location", stringsAsFactors = FALSE) + +gwas.magma.params <- rbind(gwas.magma.params, t1d) + +datatable(gwas.magma.params) +``` + + + +```{r, echo=FALSE} +grep.cmd <- "grep" +## on my mac need to use gnu grep (faster) +if (system("hostname", intern=TRUE) == "MB080512") { + grep.cmd <- "/opt/homebrew/bin/ggrep" +} +``` + + +```{r, echo=FALSE} + +get.gene.pvalues <- function(prefix, sets, name2entrez=NULL) { + af.zscores <- read.table(paste0(prefix, ".genes.out"), header=T, stringsAsFactors=FALSE) + af.zscores <- dplyr::rename(af.zscores, Nsamples=N) + expr.cl <- sapply(sets, function(set) af.zscores$GENE %in% set) + merged <- cbind(af.zscores, expr.cl) + + merged <- cbind(merged, leverage=NA, FDR=p.adjust(merged$P, "BH")) + if (!is.null(name2entrez)) { + merged <- merge(merged, name2entrez, by.x="GENE", by.y="ENTREZID") + } + return(merged) +} + +## To get back to the SNP level we use the annotation files of magma. We select all genes in the interaction network. In a first step we reduce the size of the GWAS data. +get.snp.pvalues <- function(prefix, selected.entrez, grep.cmd="grep", snp.col="variant_id", redo=FALSE) { + efile <- paste0(prefix, "_entrez_with_ppi.txt") + sfile <- paste0(prefix, "_snps_with_ppi.txt") + pfile <- paste0(prefix, "_P_with_ppi.txt") + if (!file.exists(pfile) || redo) { + cat(selected.entrez, file=efile, sep="\n") + cmd <- paste0(grep.cmd, " -F -w -f ", efile, " ", prefix, ".genes.annot | cut -d '\t' -f 2- | tr '\\t' '\\n' | grep -v NA | sort -u > ", sfile) + print(cmd) + system(cmd) + cmd <- paste0(grep.cmd, " -F -w -f ", sfile, " ", prefix, "_P.txt > ", pfile) + system(cmd) + print(cmd) + snp_pval <- read.table(pfile, sep="\t", stringsAsFactors = FALSE) + colnames(snp_pval) <- colnames(read.csv(paste0(prefix, "_P.txt"), sep="\t", nrows=3)) + + if (snp.col != "variant_id") { + colnames(snp_pval) <- gsub(snp.col, "variant_id", colnames(snp_pval)) + } + + #In the next step we read in the mapping of genes to SNPs + ann <- readLines(paste0(prefix, ".genes.annot")) + ann <- bind_rows(lapply(strsplit(ann, "\t"), function(x) { + if (length(x) > 1) { + snp <- x[-1] + } else { + snp <- NA + } + data.frame(gene=x[1], snp, stringsAsFactors = FALSE) + })) + ann <- ann[!is.na(ann$snp),] + ann <- ann[ann$snp != "NA",] + ann <- ann[ann$snp != ".",] + + # Annotate SNPs with genes and gene symbols + snp_pval <- merge(snp_pval, ann, by.x="variant_id", by.y="snp") + write.table(snp_pval, file=pfile, sep="\t", quote=F, row.names=F) + } else { + snp_pval <- read.csv(pfile, sep="\t", stringsAsFactors = FALSE) + } + return(snp_pval) +} + +get.drivers <- function(prefix, sets, name2entrez=NULL, grep.cmd="grep", redo=FALSE, pval.col="pvalue", snp.col="variant_id") { + selected.entrez <- unique(unlist(sets)) + gene_pvals <- get.gene.pvalues(prefix, sets, name2entrez) + snp_pval <- get.snp.pvalues(prefix, selected.entrez, grep.cmd=grep.cmd, snp.col=snp.col) + if (pval.col != "pvalue") { + colnames(snp_pval) <- gsub(pval.col, "pvalue", colnames(snp_pval)) + } + browser() + minp <- group_by(snp_pval, gene) %>% summarise(variant_id=variant_id[which.min(pvalue)], minp=min(pvalue)) + pvals <- merge(gene_pvals, minp, by.x="GENE", by.y="gene") + return(pvals) +} +``` + +```{r, echo=FALSE} +get_gwas_region <- function(prefix, chrom, start, end, awk.cmd="awk", cat.cmd="cat", redo=FALSE, chr.column="chromosome", pos.column="position") { + out.file <- paste0(prefix, "_P_", chrom, "_", start, "_", end, ".txt") + if (!file.exists(out.file) || redo) { + input.file <- paste0(prefix, "_P.txt") + ## find the indices of the chrom and bp + cn <- colnames(read.csv(input.file, sep="\t", nrow=2)) + col.idx <- match(c(chr.column, pos.column), cn) + if (any(is.na(col.idx))) { + cat("colname(s)", c(chr.column, pos.column)[is.na(col.idx)], "not found in", cn, "\n") + stop() + } + col.idx <- paste0("$", col.idx) + ## build an awk script to filter the file + cmd <- paste0(cat.cmd, " ", input.file, " | tail -n +2 ", " | ", awk.cmd, + " 'BEGIN{OFS=\"\t\"}{gsub(/chr/, \"\", ", col.idx[1], "); ", ## replace chr prefix of chrom names + "if (", col.idx[1], ' == "', chrom, '" && ', ## match chrom name + col.idx[2], " > ", start, " && ", col.idx[2], " < ", end, ")", ## match position + "{print $0;}}' >> ", out.file) + cat(cmd, "\n") + ## write header to out file + system(paste0("head -n 1 ", input.file, " > ", out.file)) + ## then extract the region + system(cmd) + } + + gwas_pvals <- read_tsv(out.file) + return(gwas_pvals) +} + +## convenience function that works with the gwas input parameter table +get_gwas_region_for_study <- function(prefix, magma.params, chrom, start, end, ...) { + idx <- which(magma.params$prefix == prefix) + get_gwas_region(prefix, chrom, start, end, chr.column=magma.params[idx,"chrom.column"], pos.column=magma.params[idx,"pos.column"]) +} +``` + +## Run for co-eQTLs + +Define new sets + +```{r, message=FALSE, eval=FALSE} +## these are the new communities +coeqtl <- read_tsv("data/current/PPI/coeqtls_supptable6.tsv") +pval_cols <- c("MetaP_CD4T", "MetaP_CD8T", "MetaP_monocyte", "MetaP_DC", "MetaP_NK", "MetaP_B") +x <- coeqtl %>% separate(`SNP-eGene-co-eGene`, into=c("SNP", "eGene", "coeGene"), sep="_") + +coeqtl <- coeqtl %>% + pivot_longer(names_to="celltype", cols=pval_cols, values_to="pvalue") %>% + filter(!is.na(pvalue)) %>% + mutate(celltype=gsub("MetaP_", "", celltype)) %>% + separate(`SNP-eGene-co-eGene`, into=c("SNP", "eGene", "coeGene"), sep="_") %>% + mutate(set_id=paste(celltype, SNP, eGene, sep="_")) +``` + + +```{r, message=FALSE} +coeqtl <- read_tsv("data/current/PPI/coeqtls_merged.txt") +coeqtl <- coeqtl %>% + dplyr::rename(eGene=eqtlgene, coeGene=gene2) %>% + mutate(set_id=paste(celltype, SNP, eGene, sep="_")) +coeqtl <- coeqtl %>% inner_join(name2entrez, by=c("coeGene"="SYMBOL")) +``` + + +Define the gene sets + +```{r} +csets <- with(coeqtl, tapply(ENTREZID, set_id, as.list)) +``` + + +Also add the gene set of Tcell specific negative coeqtl of RPS26 +```{r} +RPS26_CD4T <- coeqtl %>% filter(eGene == "RPS26" & MetaPZ< 0 & celltype == "CD4T") %>% distinct() +csets[["CD4T_rs1131017_RPS26downCD4T"]] <- as.list(unique(RPS26_CD4T$ENTREZID)) +``` + +Remove sets that are smaller than 5 genes +```{r} +csets <- csets[sapply(csets, length) >= 5] +``` + + +```{r} +comm.setfile <- "results/current/coeqtl_gene_sets.txt" +for (set in names(csets)) { + cat(set, "\t", paste(csets[[set]], collapse="\t"), "\n", sep="", file=comm.setfile, append=(set != names(csets)[1])) +} +``` + + +Run the GWAS enrichments on this set +```{r} +magma.res.coeqtl <- run.magma.on.gwas.list(gwas.magma.params, set.file=comm.setfile, "_gwas_by_coeqtl", rerun=FALSE) +write_tsv(magma.res.coeqtl, "results/current/magma_gtex_gwas_by_coeqtl.txt") +``` + +```{r} +magma.res.coeqtl %>% filter(FDR < 0.1) +``` + + +```{r} +info_cols <- c("Tag", "PUBMED_Paper_Link", "new_abbreviation", "Phenotype") +magma.res.coeqtl %>% filter(FDR < 0.1 & VARIABLE == "CD4T_rs1131017_RPS26downCD4T") %>% inner_join(dplyr::select(gwas.info, !!info_cols), by=c("trait"="new_abbreviation")) +``` + + +Also get the gwas P-values for all of the co-eQTL SNPs + +```{r} +cat(unique(coeqtl$SNP), sep="\n", file="results/current/coeqtl_snp_list.txt") +``` + +Check which SNPs are missing from the GWAS +```{r} +infile <- paste0(gwas.magma.params$prefix[1], "_P.txt") +cmd <- paste0("awk 'NR==FNR {key[$1]; next} !($1 in key)' ", infile, " results/current/coeqtl_snp_list.txt") +missing_snps <- system(cmd, intern=TRUE) +``` + +Actually it is not clear if all GWAS always contain the same SNPs. So we extract LD proxxies for all co-eQTL to be on the safe side. + +```{r} +proxies <- read_tsv("data/current/PPI/proxySearch.results.csv") +cat(unique(proxies$RSID), sep="\n", file="results/current/coeqtl_snp_list_with_proxies.txt") +``` + +```{r} +for (prefix in gwas.magma.params$prefix) { + outfile <- paste0(prefix, "_coeqtl_snps_P.txt") + cmd <- paste0("head -n 1 ", prefix, "_P.txt > ", outfile) + system(cmd) + cmd <- paste0("fgrep -w -f results/current/coeqtl_snp_list_with_proxies.txt ", prefix, "_P.txt >> ", outfile) + print(cmd) + system(cmd) +} +``` + +```{r, message=FALSE, warning=FALSE} +coeqtl_gwas <- bind_rows(lapply(1:nrow(gwas.magma.params), function(x) { + cnames <- c(variant_id="snp.column", chromosome="chrom.column", position="pos.column", pvalue="p.column") + cols <- gwas.magma.params[x,cnames] + more_cols <- c("prefix") + tab <- read_tsv(paste0(gwas.magma.params$prefix[x], "_coeqtl_snps_P.txt")) %>% mutate(prefix=gwas.magma.params$prefix[x]) + tab <- tab[,c(as.character(cols), more_cols)] + colnames(tab) <- c(names(cnames), more_cols) + if (is.numeric(tab$chromosome)) { + tab$chromosome <- as.character(tab$chromosome) + } + return(tab) + })) +``` + + + + +Check if there is enrichment and association for the same trait - for that: combine the gwas and the magma data using the best proxy (the snp itself if included) +```{r} +coeqtl_with_gwas_and_magma <- magma.res.coeqtl %>% + separate(col=VARIABLE, into=c("celltype", "SNP", "gene"), sep="_", remove=FALSE) %>% + inner_join(dplyr::select(gwas.info, !!info_cols), by=c("trait"="new_abbreviation")) %>% + inner_join(proxies, by=c("SNP"="QRSID")) %>% + inner_join(coeqtl_gwas, by=c(prefix="prefix", RSID="variant_id")) %>% + group_by(VARIABLE, trait) %>% + arrange(-R2, abs(DIST)) %>% dplyr::slice(1) +write_tsv(coeqtl_with_gwas_and_magma, "results/current/coeqtl_with_gwas_and_magma.tsv") +``` + + + +Summarise the findings globally +```{r} +coeqtl_with_gwas_and_magma %>% ungroup() %>% filter(FDR < 0.05 & pvalue < 5e-8) %>% group_by(celltype, SNP, gene) %>% summarise(ntraits=length(unique(trait))) +``` + +Look at the RPS26 locus in more detail: CD4T specific coeQTL with negative effect size +```{r} +coeqtl_with_gwas_and_magma %>% ungroup() %>% filter(FDR < 0.05 & VARIABLE == "CD4T_rs1131017_RPS26downCD4T" & pvalue < 5e-8) %>% dplyr::select(VARIABLE, magma_FDR=FDR, Tag, RSID, R2, pvalue) +``` + +Look at the RPS26 locus in more detail: CD4T coeQTL with any effect size +```{r} +coeqtl_with_gwas_and_magma %>% ungroup() %>% filter(FDR < 0.05 & VARIABLE == "CD4T_rs1131017_RPS26" & pvalue < 5e-8) %>% dplyr::select(VARIABLE, magma_FDR=FDR, Tag, RSID, R2, pvalue) +``` + + +Also run with a restricted background set of genes (all tested for coeQTLs) +```{r} +bg_file_symbols <- "data/current/PPI/coeqtls_tested_genes.txt" +bg_file <- "results/current/coeqtls_tested_genes.txt" +background <- scan(bg_file, what=character()) +background <- filter(symbol2entrez, SYMBOL %in% background) +cat(background$ENTREZID, sep="\n", file=bg_file) +``` + + +```{r} +magma.res.coeqtl <- run.magma.on.gwas.list(gwas.magma.params, set.file=comm.setfile, "_gwas_by_coeqtl_with_bg", rerun=FALSE, settings=paste0(" gene-include=", bg_file)) +write_tsv(magma.res.coeqtl, "results/current/magma_gtex_gwas_by_coeqtl_with_bg.txt") +``` + + +Check if there is enrichment and association for the same trait - for that: combine the gwas and the magma data using the best proxy (the snp itself if included) +```{r} +coeqtl_with_gwas_and_magma <- magma.res.coeqtl %>% + separate(col=VARIABLE, into=c("celltype", "SNP", "gene"), sep="_", remove=FALSE) %>% + inner_join(dplyr::select(gwas.info, !!info_cols), by=c("trait"="new_abbreviation")) %>% + inner_join(proxies, by=c("SNP"="QRSID")) %>% + inner_join(coeqtl_gwas, by=c(prefix="prefix", RSID="variant_id")) %>% + group_by(VARIABLE, trait) %>% + arrange(-R2, abs(DIST)) %>% dplyr::slice(1) +write_tsv(coeqtl_with_gwas_and_magma, "results/current/coeqtl_with_gwas_and_magma_with_bg.tsv") +``` + + + +Summarise the findings globally +```{r} +coeqtl_with_gwas_and_magma %>% ungroup() %>% filter(FDR < 0.05 & pvalue < 5e-8) %>% group_by(celltype, SNP, gene) %>% summarise(ntraits=length(unique(trait))) +``` + +Look at the RPS26 locus in more detail: CD4T specific coeQTL with negative effect size +```{r} +coeqtl_with_gwas_and_magma %>% ungroup() %>% filter(FDR < 0.05 & VARIABLE == "CD4T_rs1131017_RPS26downCD4T" & pvalue < 5e-8) %>% dplyr::select(VARIABLE, magma_FDR=FDR, Tag, RSID, R2, pvalue) +``` + + + + +Also run the same analysis without the HLA genes +```{r} +csets <- with(coeqtl %>% filter(!str_detect(coeGene, "HLA") ), tapply(ENTREZID, set_id, as.list)) +``` + + +Also add the gene set of Tcell specific negative coeqtl of RPS26 +```{r} +RPS26_CD4T <- coeqtl %>% filter(eGene == "RPS26" & MetaPZ< 0 & celltype == "CD4T" & !str_detect(coeGene, "HLA")) %>% distinct() +csets[["CD4T_rs1131017_RPS26downCD4T"]] <- as.list(unique(RPS26_CD4T$ENTREZID)) +``` + +Remove sets that are smaller than 5 genes +```{r} +csets <- csets[sapply(csets, length) >= 5] +``` + + +```{r} +comm.setfile <- "results/current/coeqtl_gene_sets_no_HLA.txt" +for (set in names(csets)) { + cat(set, "\t", paste(csets[[set]], collapse="\t"), "\n", sep="", file=comm.setfile, append=(set != names(csets)[1])) +} +``` + + +Run the GWAS enrichments on this set +```{r} +magma.res.coeqtl <- run.magma.on.gwas.list(gwas.magma.params, set.file=comm.setfile, "_gwas_by_coeqtl_no_HLA", rerun=FALSE) +write_tsv(magma.res.coeqtl, "results/current/magma_gtex_gwas_by_coeqtl_no_HLA.txt") +``` + + +Check if there is enrichment and association for the same trait - for that: combine the gwas and the magma data using the best proxy (the snp itself if included) +```{r} +coeqtl_with_gwas_and_magma <- magma.res.coeqtl %>% + separate(col=VARIABLE, into=c("celltype", "SNP", "gene"), sep="_", remove=FALSE) %>% + inner_join(dplyr::select(gwas.info, !!info_cols), by=c("trait"="new_abbreviation")) %>% + inner_join(proxies, by=c("SNP"="QRSID")) %>% + inner_join(coeqtl_gwas, by=c(prefix="prefix", RSID="variant_id")) %>% + group_by(VARIABLE, trait) %>% + arrange(-R2, abs(DIST)) %>% dplyr::slice(1) +write_tsv(coeqtl_with_gwas_and_magma, "results/current/coeqtl_with_gwas_and_magma_no_HLA.tsv") +``` + + + +Summarise the findings globally +```{r} +coeqtl_with_gwas_and_magma %>% ungroup() %>% filter(FDR < 0.1 & pvalue < 5e-8) %>% group_by(celltype, SNP, gene) %>% summarise(ntraits=length(unique(trait))) +``` + +Look at the RPS26 locus in more detail: CD4T specific coeQTL with negative effect size +```{r} +coeqtl_with_gwas_and_magma %>% ungroup() %>% filter(FDR < 0.1 & VARIABLE == "CD4T_rs1131017_RPS26downCD4T" & pvalue < 5e-8) %>% dplyr::select(VARIABLE, magma_FDR=FDR, Tag, RSID, R2, effect_allele, pvalue) +``` + + + + + + diff --git a/05_coeqtl_interpretation/plot_CD4T_mono_RPS26_subnetwork.R b/05_coeqtl_interpretation/plot_CD4T_mono_RPS26_subnetwork.R new file mode 100644 index 0000000..0705549 --- /dev/null +++ b/05_coeqtl_interpretation/plot_CD4T_mono_RPS26_subnetwork.R @@ -0,0 +1,139 @@ +# ------------------------------------------------------------------------------ +# Create network of co-eQTLs connected with rs1131017-RPS26 in CD4+ T cells +# and/or Monocytes, color edges by direction of effect, +# annotate them with GO terms for transcription initiation +# and lympocyte activity and transfer it to cytoscape for final layouting +# Input: coeQTL results from CD4+ T cells and Monocytes +# Output: cytoscape graph +# ------------------------------------------------------------------------------ + +library(data.table) +library(igraph) #to plot the graph +library(dplyr) +library(ggplot2) +library(AnnotationHub) # for GO annotation +library(GO.db) # for GO annotation +library(RCy3) # to move igraph object to cytoscape + +theme_set(theme_bw()) + +# Load current set of coeQTL +coeqtls_CD4T<-fread("coeqtl_mapping/CD4T/coeqtls_fullresults_fixed_withAF.sig.tsv") +coeqtls_mono<-fread("coeqtl_mapping/monocyte/coeqtls_fullresults_fixed_withAF.sig.tsv") + +#Correct for the direction of effect +coeqtls_CD4T$MetaPZ<-ifelse(coeqtls_CD4T$AF>0.5,(-1)*coeqtls_CD4T$MetaPZ, + coeqtls_CD4T$MetaPZ) +coeqtls_mono$MetaPZ<-ifelse(coeqtls_mono$AF>0.5,(-1)*coeqtls_mono$MetaPZ, + coeqtls_mono$MetaPZ) + +coeqtls<-rbind(coeqtls_CD4T,coeqtls_mono) + +#Get gene1 and gene2 correctly sorted +coeqtls$gene1<-gsub(";.*","",coeqtls$Gene) +coeqtls$gene2<-gsub(".*;","",coeqtls$Gene) +coeqtls$eqtlgene<-gsub(".*_","",coeqtls$snp_eqtlgene) +coeqtls$gene2<-ifelse(coeqtls$gene1 == coeqtls$eqtlgen, coeqtls$gene2, + coeqtls$gene1) +coeqtls$gene1<-coeqtls$eqtlgene +coeqtls$direction<-ifelse(coeqtls$MetaPZ>0,"positive","negative") + +#Set the direction is NA for the ones without matching direction +coeqtls<-unique(coeqtls[,c("snp_genepair","snp_eqtlgene","gene2","direction")]) +non_matching_dir<-intersect(coeqtls$snp_genepair[coeqtls$direction=="positive"], + coeqtls$snp_genepair[coeqtls$direction=="negative"]) +coeqtls$direction[coeqtls$snp_genepair %in% non_matching_dir]<-"not_maching" + +#Remove duplicate entries for non-matching directions +coeqtls<-unique(coeqtls[,c("snp_genepair","snp_eqtlgene","gene2","direction")]) +coeqtls$type<-ifelse(coeqtls$snp_genepair %in% coeqtls_CD4T$snp_genepair, + ifelse(coeqtls$snp_genepair %in% coeqtls_mono$snp_genepair, + "both","CD4T"),"mono") +# Filter for RPS26 +coeqtls<-coeqtls[coeqtls$snp_eqtlgene=="rs1131017_RPS26",] + +#Check how much the correlation structure matches for overlapping examples +corr_RPS26_cd4t<-fread("coeqtl_interpretation/correlation_structure_coeqtl_rps26.tsv") +corr_RPS26_mono<-fread("coeqtl_interpretation/correlation_structure_coeqtl_rps26monocyte.tsv") +corr_comp<-merge(corr_RPS26_cd4t,corr_RPS26_mono,by=c("Var1","Var2")) + +g<-ggplot(corr_comp,aes(x=value.x,y=value.y))+ + geom_point()+geom_abline()+ + xlab("Correlation CD4T")+ylab("Correlation Monocytes") +print(g) +ggsave("coeqtl_interpretation/plots_filtered/correlation_structure_RPS26_compare_cts.png") + +#Load interaction structure +corr_RPS26<-rbind(corr_RPS26_cd4t,corr_RPS26_mono) +corr_RPS26<-corr_RPS26%>% + group_by(Var1,Var2)%>% + summarise(value=max(value))%>% + as.data.frame() + +#First thing, show only strong associations +corr_RPS26<-corr_RPS26[corr_RPS26$value>0.2,] +corr_RPS26$value<-NULL +colnames(corr_RPS26)<-c("snp_eqtlgene","gene2") +corr_RPS26$direction<-"correlation" + +#Edges +# edges_combined<-rbind(coeqtls[,c("snp_eqtlgene","gene2","direction")], +# corr_RPS26) +edges_combined<-coeqtls[,c("snp_eqtlgene","gene2","direction")] + +# Graph object +graph_object <- graph_from_edgelist(as.matrix(edges_combined[,1:2]), + directed=FALSE) + +#Color SNPs and genes differently +V(graph_object)$node_type<-ifelse(startsWith(names(V(graph_object)),"rs"), + "eQTL","gene2") + +#Get for nodes also to which type of network they belong +nodes_cd4t<-unique(unlist(coeqtls[coeqtls$type %in% c("CD4T","both"), + c("snp_eqtlgene","gene2")])) +nodes_mono<-unique(unlist(coeqtls[coeqtls$type %in% c("mono","both"), + c("snp_eqtlgene","gene2")])) +nodes_both<-intersect(nodes_cd4t,nodes_mono) + +V(graph_object)$coeqtl<-ifelse(names(V(graph_object)) %in% nodes_both, + "both", + ifelse(names(V(graph_object)) %in% nodes_cd4t, + "CD4T","mono")) + +#Color edges +E(graph_object)$direction<-edges_combined$direction + +# Check how many are associated with transcription initiation (GO:0006413) +# and T cell activiation (GO:0042110) / lympocyte activity (GO:0046649) +# or any of its offspring + +ah <- AnnotationHub() +orgs <- subset(ah, ah$rdataclass == "OrgDb") +orgdb <- query(orgs, "Homo sapiens")[[1]] + +go_transcriptinit <- AnnotationDbi::select(orgdb, c("GO:0006413",GOBPOFFSPRING[["GO:0006413"]]), + "SYMBOL", "GO") +go_tcell <- AnnotationDbi::select(orgdb, c("GO:0046649",GOBPOFFSPRING[["GO:0046649"]]), + "SYMBOL", "GO") + +#intersect(go_transcriptinit$hgnc_symbol,go_tcell$hgnc_symbol) +V(graph_object)$GO<-ifelse(names(V(graph_object)) %in% go_transcriptinit$SYMBOL, + ifelse(names(V(graph_object)) %in% go_tcell$SYMBOL, + "both","transcript_init"), + ifelse(names(V(graph_object)) %in% go_tcell$SYMBOL, + "tcell_active","none")) + +coeqtls$enrichment<-ifelse(coeqtls$gene2 %in% go_transcriptinit$SYMBOL, + ifelse(coeqtls$gene2 %in% go_tcell$SYMBOL, + "both","transcript_init"), + ifelse(coeqtls$gene2 %in% go_tcell$SYMBOL, + "tcell_active","none")) +table(coeqtls$enrichment,coeqtls$direction) + +plot(graph_object,vertex.label=NA, vertex.size=3) + +# Import into cytoscape +cytoscapePing() +createNetworkFromIgraph(graph_object,"RPS26_network_function") + diff --git a/05_coeqtl_interpretation/plot_CD4T_mono_network.R b/05_coeqtl_interpretation/plot_CD4T_mono_network.R new file mode 100644 index 0000000..9db284b --- /dev/null +++ b/05_coeqtl_interpretation/plot_CD4T_mono_network.R @@ -0,0 +1,77 @@ +# ------------------------------------------------------------------------------ +# Create network of all co-eQTLs from CD4+ T cells +# and/or Monocytes (displaying only the large connected component) +# and color edges by direction of effect +# Input: coeQTL results from CD4+ T cells and Monocytes +# Output: cytoscape graph +# ------------------------------------------------------------------------------ + +library(data.table) +library(igraph) #to plot the graph +library(RCy3) # to transfer to cytoscape + +# Load current set of coeQTL +coeqtls_CD4T<-fread("coeqtl_mapping/CD4T/coeqtls_fullresults_fixed_withAF.sig.tsv") +coeqtls_mono<-fread("coeqtl_mapping/monocyte/coeqtls_fullresults_fixed_withAF.sig.tsv") + +#Correct for the direction of effect +coeqtls_CD4T$MetaPZ<-ifelse(coeqtls_CD4T$AF>0.5,(-1)*coeqtls_CD4T$MetaPZ, + coeqtls_CD4T$MetaPZ) +coeqtls_mono$MetaPZ<-ifelse(coeqtls_mono$AF>0.5,(-1)*coeqtls_mono$MetaPZ, + coeqtls_mono$MetaPZ) + +coeqtls<-rbind(coeqtls_CD4T,coeqtls_mono) + +#Get gene1 and gene2 correctly sorted +coeqtls$gene1<-gsub(";.*","",coeqtls$Gene) +coeqtls$gene2<-gsub(".*;","",coeqtls$Gene) +coeqtls$eqtlgene<-gsub(".*_","",coeqtls$snp_eqtlgene) +coeqtls$gene2<-ifelse(coeqtls$gene1 == coeqtls$eqtlgen, coeqtls$gene2, + coeqtls$gene1) +coeqtls$gene1<-coeqtls$eqtlgene +coeqtls$direction<-ifelse(coeqtls$MetaPZ>0,"positive","negative") + +#Set the direction is NA for the ones without matching direction +coeqtls<-unique(coeqtls[,c("snp_genepair","snp_eqtlgene","gene2","direction")]) +non_matching_dir<-intersect(coeqtls$snp_genepair[coeqtls$direction=="positive"], + coeqtls$snp_genepair[coeqtls$direction=="negative"]) +coeqtls$direction[coeqtls$snp_genepair %in% non_matching_dir]<-"not_maching" + +#Remove duplicate entries for non-matching directions +coeqtls<-unique(coeqtls[,c("snp_genepair","snp_eqtlgene","gene2","direction")]) +coeqtls$type<-ifelse(coeqtls$snp_genepair %in% coeqtls_CD4T$snp_genepair, + ifelse(coeqtls$snp_genepair %in% coeqtls_mono$snp_genepair, + "both","CD4T"),"mono") + +# Graph object +graph_object <- graph_from_edgelist(as.matrix(coeqtls[,c("snp_eqtlgene","gene2")]), + directed=FALSE) + +#Color SNPs and genes differently +V(graph_object)$node_type<-ifelse(startsWith(names(V(graph_object)),"rs"), + "eQTL","gene2") + +#Get for nodes also to which type of network they belong +nodes_cd4t<-unique(unlist(coeqtls[coeqtls$type %in% c("CD4T","both"), + c("snp_eqtlgene","gene2")])) +nodes_mono<-unique(unlist(coeqtls[coeqtls$type %in% c("mono","both"), + c("snp_eqtlgene","gene2")])) +nodes_both<-intersect(nodes_cd4t,nodes_mono) + +V(graph_object)$coeqtl<-ifelse(names(V(graph_object))%in% nodes_both, + "both", + ifelse(names(V(graph_object)) %in% nodes_cd4t, + "CD4T","mono")) + +#Color edges +E(graph_object)$direction<-coeqtls$direction + +#Remove all the small components +comps<-components(graph_object) +subgraph<-induced_subgraph(graph_object,vids=names(which(comps$membership==1))) +plot(subgraph,vertex.label=NA, vertex.size=3) + +# Transfer results to cytoscape +cytoscapePing() +createNetworkFromIgraph(subgraph,"eqtl_network") + diff --git a/05_coeqtl_interpretation/snipe.R b/05_coeqtl_interpretation/snipe.R new file mode 100644 index 0000000..04b8139 --- /dev/null +++ b/05_coeqtl_interpretation/snipe.R @@ -0,0 +1,248 @@ +# ----------------------------------------------------------------------------- +# Help functions to query the SNiPA website to get SNPs in LD with the query SNPs +# Applied in the script enrichment_TFs_Remap.R +# ----------------------------------------------------------------------------- + +library(rvest) #web scraper by hadley wickham +library(httr) #http package to send GET/POST http methods +library(magrittr) #useful pipe operator + +# SNiPA URIs -------------------------------------------------------------- + +`%+%` <- paste0 #poor man's homemade concat operator + +#define URI's that will be used for HTTP requests +snipa.base <-"https://snipa.helmholtz-muenchen.de/snipa3" +snipa.pairwise.page.uri <- snipa.base %+% "/index.php?task=pairwise_ld" +snipa.ld.form.uri <- snipa.base %+% "/backend/snipaProxySearch.php" +snipa.rand.id.uri <- snipa.base %+% "/backend/snipaTempdir.php" +snipa.get.status.uri <- function(i) snipa.base %+% "/tmpdata/" %+% i %+% "/status.txt" +snipa.get.report.uri <- function(i) snipa.base %+% "/tmpdata/" %+% i %+% "/report.txt" +snipa.get.result.uri <- function(i) snipa.base %+% "/tmpdata/" %+% i %+% "/proxySearch.results.csv" +user.agent <- "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.50 Safari/537.36" + +#split list of snps/genes/regions and query each separately if its length exceeds +#this threshold +paging.length.threshold <- 1000 + + +# Helper Functions -------------------------------------------------------- + +#generate a random ID through Snipa server method +#this is used throughout all snipa operations +snipa.get.rand <- function() { + s <- html_session(snipa.rand.id.uri, + user_agent(user.agent)) + stop_for_status(s) + #Updated due to deprecation of html() + #s %>% html() %>% html_node('p') %>% html_text() + s %>% read_html() %>% html_node('p') %>% html_text() +} + +wait.processing.steps <- function(id, wait=0.5, tryout=10) { + uri <- snipa.get.status.uri(id) + i <- 0 + got <- FALSE + + while (!got || (i < tryout)) { + res <- GET(uri, user_agent(user.agent)) + + stop_for_status(res) + res <- httr::content(res, type='application/json') + if(res$errmessage != '') + stop(res$errmessage) + + if(res$stepnum == res$totalstepnum) + got <- TRUE + + Sys.sleep(wait) + i <- i + 1 + } + + return(got) +} + +#generate a list which is converted to urlencoded POST() parameters +snipa.generate.ld.form.params <- function(snps_sentinels=NULL, + id=NULL, + genomerelease='grch37', + referenceset='1kgpp3v5', + population='eur', + annotation='ensembl80', + snps_input_type='snps', + snps_gene=NULL, + snps_region_chr=NULL, + snps_region_begin=NULL, + snps_region_end=NULL, + rsquare=0.8, + incl_sentinel=1, + incl_funcann=0, + download=1, + dyn_tables=0, + pairwise=1){ + mget(names(formals())) +} + +#submits given query through HTTP POST method to the given URI +snipa.submit.query <- function(params, uri, paging=T) { + + s <- html_session(snipa.pairwise.page.uri) + stop_for_status(s) + scook <- cookies(s) + + #perform "paging" to split long vectors into smaller chunks + if (params$snps_input_type == 'snps') { + if(paging) { + #split vector + long.vec <- params$snps_sentinels + long.vec.split <- split(long.vec, ceiling(seq_along(long.vec)/paging.length.threshold)) + #clone params.list + params$snps_sentinels <- '' + params.list <- replicate(length(long.vec.split), params, simplify = F) + #replace long vectors with split vector chunks + params.list <- Map(function(param, lv){ + param$id <- snipa.get.rand() + snps <- paste(lv, collapse = '\n') + param$snps_sentinels <- snps + param + }, params.list, long.vec.split) + + } else { + #if(params$snps_sentinels > paging.length.threshold) { + if(length(params$snps_sentinels)> paging.length.threshold){ + warning('Number of SNPs is above the threshold! Disable pairwise or decrease the number...') + } + params$id <- snipa.get.rand() + params$snps_sentinels <- paste(params$snps_sentinels, collapse = '\n') + params.list <- list(params) + } + } else { + params$id <- snipa.get.rand() + params.list <- list(params) + } + + #submit each query separately and merge results with rbind + res.list <- lapply(seq_along(params.list), function(i){ + params <- params.list[[i]] + + if (length(params.list) > 1) { + cat(sprintf("Group %d/%d is being processed...", i, length(params.list))) + } + + res <- POST(uri, + body=params, + encode='form', + user_agent(user.agent), + do.call(set_cookies, scook)) + + stop_for_status(res) + res <- httr::content(res, type='application/json') + if(res$errmessage != '') + stop(res$errmessage) + + stopifnot(wait.processing.steps(params$id)) + + res <- GET(snipa.get.result.uri(params$id), + user_agent(user.agent), + do.call(set_cookies, scook)) + + if (res$status_code == 404) { + return(NULL) #probably query returned nothing + } + + stop_for_status(res) + res <- httr::content(res, as='text') + read.delim(text=res, stringsAsFactors = F) + }) + do.call(rbind, res.list) +} + +# Main Functions ---------------------------------------------------------- + +#get LD information for given SNPs +snipa.get.ld.by.snp <- function(snps, #vector of sentinel SNPs + rsquare=0.8, #rsquared threshold + pairwise=F, #pairwise=T returns pairwise LD values for given sentinels + annotation=F, #whether functional annotation of SNPs will be returned + population=c('eur', 'afr', 'amr', 'eas', 'sas'), + ...){ + + if(any(substr(snps, 1, 2) != 'rs')) + stop('All SNPs must have a valid rs ID!') + + #translate arguments to real form variables + params <- snipa.generate.ld.form.params(snps_sentinels = snps, + rsquare=rsquare, + pairwise=as.integer(pairwise), + incl_funcann = as.integer(annotation), + population=match.arg(population), + ...) + + #disable paging if pairwise=T + result <- snipa.submit.query(params, snipa.ld.form.uri, paging = !pairwise) + excluded <- setdiff(snps, result$QRSID) + + if (length(excluded) > 0) { + warning(cat(sprintf('These SNPs are excluded from the result table: %s\n', + paste(excluded, collapse = ',')))) + } + return(result) +} + +snipa.get.ld.by.region <- function(chr, begin, end, + rsquare=0.8, #rsquared threshold + annotation=F, #whether functional annotation of SNPs will be returned + population=c('eur', 'afr', 'amr', 'eas', 'sas'), + ...){ + #strip 'chr' prefix off, if exists + if(substr(chr, 1, 3)=='chr') chr <- substr(chr, 4, nchar(chr)) + + #translate arguments to real form variables + params <- snipa.generate.ld.form.params(snps_region_chr = chr, + snps_region_begin = begin, + snps_region_end = end, + snps_input_type='region', + rsquare=rsquare, + pairwise=0, + incl_funcann = as.integer(annotation), + population=match.arg(population), + ...) + snipa.submit.query(params, snipa.ld.form.uri) +} + +#get LD information for given gene +snipa.get.ld.by.gene <- function(gene, + rsquare=0.8, + annotation=F, #whether functional annotation of SNPs will be returned + gene.id=c('ENSEMBL', 'SYMBOL', 'ENTREZID'), + population=c('eur', 'afr', 'amr', 'eas', 'sas'), + ...){ + + gene.id <- match.arg(gene.id) + + #convert symbol/entrezid to ensembl id + convertIDs <- function(ids, from) { + + #packages needed to convert gene symbols to ensembl ids + library(AnnotationDbi) + library(org.Hs.eg.db) + + suppressWarnings(selRes <- AnnotationDbi::select(org.Hs.eg.db, + keys=ids, + keytype=from, + columns=c(from,'ENSEMBL'))) + return(selRes[match(ids, selRes[, 1] ), 2]) + } + + if(gene.id != 'ENSEMBL') gene <- convertIDs(gene, gene.id) + + #translate arguments to real form variables + params <- snipa.generate.ld.form.params(snps_gene = gene, + snps_input_type = 'gene', + rsquare=rsquare, + pairwise=0, + incl_funcann = as.integer(annotation), + population=match.arg(population), + ...) + snipa.submit.query(params, snipa.ld.form.uri) +} diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..594e071 --- /dev/null +++ b/LICENSE @@ -0,0 +1,25 @@ +BSD 2-Clause License + +Copyright (c) 2022, shuang1330 +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/README.md b/README.md new file mode 100644 index 0000000..839e504 --- /dev/null +++ b/README.md @@ -0,0 +1,51 @@ +# Single cell co-expression QTL analysis + +This repository contains the code to generate the results and figures from + +**Identification of genetic variants that impact gene co-expression relationships using large-scale single-cell data** + +Shuang Li *, Katharina T. Schmid *, Dylan de Vries *\*, Maryna Korshevniuk *\*, Corinna Losert, Roy Oelen, Irene van Blokland, BIOS Consortium, sc-eQTLgen Consortium, Hilde E. Groot, Morris A. Swertz, Pim van der Harst, Harm-Jan Westra, Monique van der Wijst, Matthias Heinig †, Lude Franke † + +\* These authors contributed equally
+** These authors contributed equally
+† These authors contributed equally + +Preprint: https://www.biorxiv.org/content/10.1101/2022.04.20.488925v1 + +## Overview + +The code for the analysis is separated in different steps, each in its own subdirectory including a README file: +* Exploring different different association metrics and other GRN construction tools, including pseudotemporal based ones and combing cells to meta cells [01_association_metrics/](01_association_metrics/) +* Comparing correlation between the different single cell data sets, with bulk data and CRISPR knock-out data; testing potential occurence of Simpson's paradox [02_correlation_evaluation/](02_correlation_evaluation/) +* Comparing correlation between different cell types and between different individuals within one cell type [03_celltype_individual_comparison/](03_celltype_individual_comparison/) +* Running eQTL and coeQTL mapping pipelines followed by replication in bulk and technical evaluation of the co-eQTLs, such as correlation distribution, sub cell type effects and effects of subsampling cells or donors [04_coeqtl_mapping/](04_coeqtl_mapping/) +* Interpretation of co-eQTL results based on GWAS annotation and different enrichment analyses (GO enrichment, TFBS enrichment using Remap database and GWAS enrichment using MAGMA) [05_coeqtl_interpretation/](05_coeqtl_interpretation/) + +## Software requirements + +Most code is implemented in R or python, the required packages are documented in the respective yaml files (`conda_env_R.yml` and `conda_env_python.yml`) and can be used to setup the respective [conda environments](https://docs.conda.io/en/latest/): + +``` +conda env create -f conda_env_R.yml +conda activate r_env +``` + +The following R packages are not part of conda and need to be added afterwards (if the respective code part should be run): + +``` +if (!require("BiocManager")) install.packages('BiocManager') +BiocManager::install("tanaylab/metacell") + +devtools::install_github("heiniglab/scPower") +``` + +Further external tools were used: + +* To calculate the eQTLs See the documentation [here](https://github.com/molgenis/systemsgenetics/wiki/eQTL-mapping-analysis-cookbook-for-RNA-seq-data). +* To calculate the co-eQTLs: [mbQTL](https://github.com/molgenis/systemsgenetics/tree/master/mbQTL). +* To perform GWAS enrichment analysis on the co-eQTL genes: [MAGMA](https://ctg.cncr.nl/software/magma). + + + + + diff --git a/conda_env_R.yml b/conda_env_R.yml new file mode 100644 index 0000000..61dcfa0 --- /dev/null +++ b/conda_env_R.yml @@ -0,0 +1,46 @@ +name: r_env +channels: + - anaconda + - bioconda + - conda-forge + - defaults +dependencies: + - bioconductor-annotationhub + - bioconductor-clusterprofiler + - bioconductor-edger + - bioconductor-enrichplot + - bioconductor-go.db + - bioconductor-homo.sapiens + - bioconductor-rcy3 + - bioconductor-rgraphviz + - bioconductor-rtracklayer + - bioconductor-singlecellexperiment + - bioconductor-sva + - r-base=4.0.2 + - r-corrplot + - r-data.table + - r-dplyr + - r-dt + - r-ggally + - r-ggplot2 + - r-ggpubr + - r-gtools + - r-hmisc + - r-httr + - r-igraph + - r-kableextra + - r-knitr + - r-magrittr + - r-matrix + - r-optparse + - r-propr + - r-rcolorbrewer + - r-reshape2 + - r-reticulate + - r-rvest + - r-scales + - r-seurat + - r-stringr + - r-tidyverse + - r-upsetr + - r-viridis diff --git a/conda_env_python.yml b/conda_env_python.yml new file mode 100644 index 0000000..408bbea --- /dev/null +++ b/conda_env_python.yml @@ -0,0 +1,20 @@ +name: python_env +channels: + - bioconda + - conda-forge + - defaults +dependencies: + - matplotlib=3.2.1 + - numpy=1.18.4 + - pandas=1.0.3 + - pathlib + - python=3.6.10 + - scipy=1.4.1 + - time + - tqdm=4.46.0 + - pip: + - anndata==0.7.3 + - scanpy==1.5.1 + - scvelo==0.2.1 + - seaborn==0.10.1 + - umap-learn==0.4.4