-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path05_dim_reduction.R
703 lines (645 loc) · 44.2 KB
/
05_dim_reduction.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
#### Master Script 5: LOL embedding for dimensionality reduction ####
#
# Shubhayu Bhattacharyay, Matthew Wang, Eshan Joshi
# University of Cambridge
# Johns Hopkins University
# email address: [email protected]
#
### Contents:
# I. Initialization
# II. Compile features into formatted matrices for LOL
# III. Create predictor matrices for GCSm detection and perform LOL projection to reduce dimensionality
# IV. Create predictor matrices for GOSE prediction at discharge and perform LOL projection to reduce dimensionality
# V. Create predictor matrices for GOSE prediction at 12 months and perform LOL projection to reduce dimensionality
### I. Initialization
# Load necessary packages
library(tidyverse)
library(lolR)
library(foreach)
library(doParallel)
# Set the number of parallel cores
no.parallel.cores <- 10
registerDoParallel(cores = no.parallel.cores)
# Create directory to store formatted predictor matrices
dir.create("../features/03_formatted_predictor_matrices",showWarnings = FALSE)
### II. Compile features into formatted matrices for LOL
# Acquire list of full bed-corrected imputation files
imp.files <- list.files("../features/02_bed_corrected_imputed_features",glob2rx("bed_corrected_imputation_*.csv"),full.names = T)
# Acquire list of repeated cross-validation splits for each observation window for GCSm and GOSE (discharge and 12m)
GCSm.validation.split.files <- list.files('../validation_sampling','*_h_GCSm_folds.csv',full.names = T)
GOSE.validation.split.files <- list.files('../validation_sampling','*_h_GOSE_folds.csv',full.names = T)
GOSE.12m.validation.split.files <- list.files('../validation_sampling','*_h_GOSE12m_folds.csv',full.names = T)
# Create directory to store full compiled matrices
dir.create("../features/03_formatted_predictor_matrices/full_matrices",showWarnings = FALSE)
# Iterate through each large imputation file
for (curr.imp.file in imp.files){
curr.imp.no <- as.integer(str_match(curr.imp.file, "bed_corrected_imputation_\\s*(.*?)\\s*.csv")[,2])
# Status update on current imputation
print(paste("Imputation no.",curr.imp.no,"out of",length(imp.files),"started."))
# Load current imputation's bed-corrected features
curr.imp.features <- read.csv(curr.imp.file)
# Iterate through different observation window lengths
for (curr.validation.split.file in GCSm.validation.split.files){
curr.obs.window.hours <- as.numeric(str_match(curr.validation.split.file, "validation_sampling/\\s*(.*?)\\s*_h_GCSm_folds.csv")[,2])
# Status update on current observation window length
print(paste("Observation window",sprintf('%05.2f',curr.obs.window.hours),"started."))
# Load current repeated cross-validation splits based on observation window length and extract unique GCS observations
curr.validation.splits <- read.csv(curr.validation.split.file) %>% select(-c(Fold,Repeat,Split)) %>% unique()
# Save unique observations as a 'key' for the corresponding matrix
write.csv(curr.validation.splits,paste0('../features/03_formatted_predictor_matrices/full_matrices/',sprintf('%05.2f',curr.obs.window.hours),'_h_imputation_',curr.imp.no,'_keys.csv'),row.names = F)
# Initialize matrix for storing compiled features based on dimensions dictated by observation window
num.columns <- round(((curr.obs.window.hours*720)+1)*7*6 + 6)
num.rows <- nrow(curr.validation.splits)
curr.validation.split.matrix <- matrix(nrow = num.rows,
ncol = num.columns)
# In the rare case (base R bug), that the number of columns was not properly initialized:
if (ncol(curr.validation.split.matrix) != num.columns){
curr.validation.split.matrix <- cbind(curr.validation.split.matrix,rep(NA,num.rows))
}
matrix.row.idx <- 0 # Dummy variable to iteratively count matrix row
# Iterate through patients and extract patient-specific motion features
for (curr.UPI in unique(curr.validation.splits$UPI)){
curr.UPI.validation.split <- curr.validation.splits %>% filter(UPI == curr.UPI)
curr.UPI.imp.features <- curr.imp.features %>% filter(UPI == curr.UPI)
# Iterate through observations of chosen patient and reshape patient features into matrix
for (curr.row.of.UPI in 1:nrow(curr.UPI.validation.split)){
matrix.row.idx <- matrix.row.idx + 1
# Filter out features within current observation window
curr.row.UPI.imp.features <- curr.UPI.imp.features %>% filter(HoursFromICUAdmission <= curr.UPI.validation.split$HoursFromICUAdmission[curr.row.of.UPI],
HoursFromICUAdmission >= curr.UPI.validation.split$HoursFromICUAdmission[curr.row.of.UPI] - curr.obs.window.hours) %>%
mutate(RowIdx = round(720*(curr.UPI.validation.split$HoursFromICUAdmission[curr.row.of.UPI] - HoursFromICUAdmission)))
# In the (rare) case that the number of filtered features does not equal the matrix dimensionality:
if (sum(!(1:(curr.obs.window.hours*720) %in% unique(curr.row.UPI.imp.features$RowIdx))) >= 1){
missing.row.indices <- (1:(curr.obs.window.hours*720))[!(1:(curr.obs.window.hours*720) %in% unique(curr.row.UPI.imp.features$RowIdx))]
# If an endpoint is missing, add the next point to the recording
curr.min.recording.idx <- min(curr.row.UPI.imp.features$RecordingIdx)
features.to.append <- curr.UPI.imp.features %>%
filter(RecordingIdx <= (curr.min.recording.idx-1)) %>%
filter(RecordingIdx == max(RecordingIdx)) %>%
mutate(RowIdx = (curr.obs.window.hours*720))
curr.row.UPI.imp.features <- rbind(curr.row.UPI.imp.features,features.to.append)
}
# Arrange filtered feature set for vectorization into matrix row
curr.row.UPI.imp.features <- curr.row.UPI.imp.features %>%
select(RowIdx,Feature,LA,LE,LW,RA,RE,RW) %>%
pivot_longer(cols = -c(RowIdx,Feature), names_to = 'sensor') %>%
relocate(sensor, Feature, RowIdx) %>%
arrange(sensor, Feature, desc(RowIdx)) %>%
distinct(sensor, Feature,RowIdx,.keep_all = T)
# Calculate physical activity score per sensor
curr.physical.activity.scores <- curr.row.UPI.imp.features %>%
filter(Feature == 'SMA') %>%
group_by(sensor) %>%
summarise(value = sum(value >= 0.135)/n()) %>%
arrange(sensor) %>%
mutate(Feature = 'PhysActivity',
RowIdx = 'NotApplicable') %>%
relocate(sensor,Feature,RowIdx,value)
# Append physical activity scores to the filtered feature set dataframe
curr.row.UPI.imp.features <- rbind(curr.row.UPI.imp.features,curr.physical.activity.scores)
# Assign reshaped variables into corresponding matrix row and name matrix column based on sensor placement, feature type, and time before observation
curr.validation.split.matrix[matrix.row.idx,] <- curr.row.UPI.imp.features$value
colnames(curr.validation.split.matrix) <- paste(curr.row.UPI.imp.features$sensor,curr.row.UPI.imp.features$Feature,curr.row.UPI.imp.features$RowIdx,sep = '/')
# Status update on current matrix row
if (matrix.row.idx %% 10 == 0){
print(paste("Matrix row",matrix.row.idx,"out of",nrow(curr.validation.splits),"completed."))
}
}
}
# Save complete feature matrix of current observation window and imputation combination
saveRDS(curr.validation.split.matrix,paste0('../features/03_formatted_predictor_matrices/full_matrices/',sprintf('%05.2f',curr.obs.window.hours),'_h_imputation_',curr.imp.no,'_full_matrix.rds'))
print(paste("Observation window",sprintf('%05.2f',curr.obs.window.hours),"completed."))
}
# Status update on current imputation
print(paste("Imputation no.",curr.imp.no,"out of",length(imp.files),"completed."))
}
### III. Create predictor matrices for GCSm detection and perform LOL projection to reduce dimensionality
# Create directory to store GCSm predictor matrices
dir.create('../features/03_formatted_predictor_matrices/predictor_matrices',showWarnings = F)
# Load patient outcome information
patient.outcomes <- read.csv('../clinical_data/patient_outcomes.csv')
# Acquire list of repeated cross-validation splits for each observation window for GCSm and GOSE
GCSm.validation.split.files <- list.files('../validation_sampling','*_h_GCSm_folds.csv',full.names = T)
# Acquire list of full bed-corrected imputation files to calculate number of imputations
imp.files <- list.files("../features/02_bed_corrected_imputed_features",glob2rx("bed_corrected_imputation_*.csv"),full.names = T)
m.imputations <- length(imp.files)
# Create dataframe combination of sensors and features
sensor.feature.combos <- as.data.frame(expand.grid(sensor = c('LA','LE','LW','RA','RE','RW'),
feature = c('BPW','FDE','HLF_h','HLF_l','MFR','SMA','WVL','PhysActivity'))) %>%
mutate(formatted.feature.name = paste0(sensor,'/',feature,'/'))
# Iterate through through different observation window lengths
for (curr.validation.split.file in GCSm.validation.split.files[length(GCSm.validation.split.files)]){
curr.obs.window.hours <- as.numeric(str_match(curr.validation.split.file, "validation_sampling/\\s*(.*?)\\s*_h_GCSm_folds.csv")[,2])
# Status update on current observation window
print(paste("Observation window",sprintf('%05.2f',curr.obs.window.hours),"started."))
# Load current repeated cross-validation splits based on observation window length
curr.validation.splits <- read.csv(curr.validation.split.file)
# Extract unique repeat/fold combinations and randomly assign (with replacement) an imputation to each one
unique.repeat.fold.combos <- curr.validation.splits %>%
select(Repeat,Fold) %>%
unique() %>%
arrange(Repeat,Fold) %>%
mutate(Imputation = sample(1:m.imputations, nrow(.), replace = T))
# Save imputation key for repeat/fold combinations in current observation window
write.csv(unique.repeat.fold.combos,paste0('../validation_sampling/',sprintf('%05.2f',curr.obs.window.hours),'_h_GCSm_imputation_key.csv'),row.names = F)
# Based on random imputation assignments, find imputations that must be loaded
imps.to.load <- unique(unique.repeat.fold.combos$Imputation)
# Load and save appropriate imputations (and their keys) into a list
curr.obs.window.matrices <- vector(mode = "list")
curr.obs.window.keys <- vector(mode = "list")
for (curr.imp in imps.to.load){
curr.obs.window.matrices[[curr.imp]] <- readRDS(paste0('../features/03_formatted_predictor_matrices/full_matrices/',
sprintf('%05.2f',curr.obs.window.hours),
'_h_imputation_',
curr.imp,
'_full_matrix.rds'))
curr.obs.window.keys[[curr.imp]] <- read.csv(paste0('../features/03_formatted_predictor_matrices/full_matrices/',
sprintf('%05.2f',curr.obs.window.hours),
'_h_imputation_',
curr.imp,
'_keys.csv'))
}
# Iterate through unique combinations of repeats and folds
for (curr.combo.idx in 1:nrow(unique.repeat.fold.combos)){
# Status update on current repeat/fold combination
print(paste("Repeat/Fold combination no.",curr.combo.idx,"out of",nrow(unique.repeat.fold.combos), "started."))
# Extract repeat, fold, and imputation information based on current combination
curr.repeat <- unique.repeat.fold.combos$Repeat[curr.combo.idx]
curr.fold <- unique.repeat.fold.combos$Fold[curr.combo.idx]
curr.imputation <- unique.repeat.fold.combos$Imputation[curr.combo.idx]
# Create directory base for saving all outputs in current repeat/fold combination
curr.combo.directory <- paste0('../features/03_formatted_predictor_matrices/predictor_matrices/',
sprintf('%05.2f',curr.obs.window.hours),
'_h_obs_window/repeat',
sprintf('%02.f',curr.repeat),
'/fold',
sprintf('%02.f',curr.fold))
# Create directory to store current repeat/fold combo information
dir.create(curr.combo.directory,showWarnings = F,recursive = T)
# Separate current cross-validation observation information for training and testing
curr.train.splits <- curr.validation.splits %>%
filter(Fold == curr.fold,
Repeat == curr.repeat,
Split == 'Train')
curr.test.splits <- curr.validation.splits %>%
filter(Fold == curr.fold,
Repeat == curr.repeat,
Split == 'Test')
# Extract full matrix based on the drawn imputation of the current repeat/fold combination
curr.full.matrix <- curr.obs.window.matrices[[curr.imputation]]
curr.full.matrix.key <- curr.obs.window.keys[[curr.imputation]] %>%
mutate(MatrixRowIdx = 1:nrow(.))
# Separate training and testing keys of current repeat/fold combination and encode outcome (GCS and GOSE) information
curr.train.filt.matrix.key <- inner_join(curr.full.matrix.key,curr.train.splits,
by = c("UPI",
"HoursFromICUAdmission",
"TimeOfDay",
"GCST",
"GCSm",
"GCSe",
"GCSv",
"CoincidesWithAccelRecording")) %>%
mutate(GCSm.gt.1 = as.integer(GCSm > 1),
GCSm.gt.2 = as.integer(GCSm > 2),
GCSm.gt.3 = as.integer(GCSm > 3),
GCSm.gt.4 = as.integer(GCSm > 4),
GCSm.gt.5 = as.integer(GCSm > 5)) %>%
left_join(patient.outcomes %>% select(UPI,GOSEDischarge),by='UPI') %>%
mutate(GOSE.gt.1 = as.integer(GOSEDischarge > 1),
GOSE.gt.2 = as.integer(GOSEDischarge > 2),
GOSE.gt.3 = as.integer(GOSEDischarge > 3),
GOSE.gt.4 = as.integer(GOSEDischarge > 4),
GOSE.gt.5 = as.integer(GOSEDischarge > 5))
curr.test.filt.matrix.key <- inner_join(curr.full.matrix.key,curr.test.splits,
by = c("UPI",
"HoursFromICUAdmission",
"TimeOfDay",
"GCST",
"GCSm",
"GCSe",
"GCSv",
"CoincidesWithAccelRecording")) %>%
mutate(GCSm.gt.1 = as.integer(GCSm > 1),
GCSm.gt.2 = as.integer(GCSm > 2),
GCSm.gt.3 = as.integer(GCSm > 3),
GCSm.gt.4 = as.integer(GCSm > 4),
GCSm.gt.5 = as.integer(GCSm > 5)) %>%
left_join(patient.outcomes %>% select(UPI,GOSEDischarge),by='UPI') %>%
mutate(GOSE.gt.1 = as.integer(GOSEDischarge > 1),
GOSE.gt.2 = as.integer(GOSEDischarge > 2),
GOSE.gt.3 = as.integer(GOSEDischarge > 3),
GOSE.gt.4 = as.integer(GOSEDischarge > 4),
GOSE.gt.5 = as.integer(GOSEDischarge > 5))
# Save current training and testing keys
write.csv(curr.train.filt.matrix.key,file.path(curr.combo.directory,'GCSm_train_key.csv'),row.names = F)
write.csv(curr.test.filt.matrix.key,file.path(curr.combo.directory,'GCSm_test_key.csv'),row.names = F)
# Separate full training and testing matrices and scale columns (each unique combination of feature and sensor type) based on training set
curr.train.matrix <- abs(curr.full.matrix[curr.train.filt.matrix.key$MatrixRowIdx,])
curr.test.matrix <- abs(curr.full.matrix[curr.test.filt.matrix.key$MatrixRowIdx,])
for (curr.sf.combo.idx in 1:nrow(sensor.feature.combos)){
# Get current sensor/feature combo
curr.sf.combo <- sensor.feature.combos$formatted.feature.name[curr.sf.combo.idx]
# Find indices of column names with current combination
curr.sf.col.idx <- which(grepl(curr.sf.combo, colnames(curr.train.matrix), fixed = TRUE))
# Get mean and standard deviation information from training matrix
curr.sf.mean <- mean(curr.train.matrix[,curr.sf.col.idx],na.rm = T)
curr.sf.std <- sd(curr.train.matrix[,curr.sf.col.idx],na.rm = T)
# Transform training and testing sets accordingly
curr.train.matrix[,curr.sf.col.idx] <- (curr.train.matrix[,curr.sf.col.idx] - curr.sf.mean)/curr.sf.std
curr.test.matrix[,curr.sf.col.idx] <- (curr.test.matrix[,curr.sf.col.idx] - curr.sf.mean)/curr.sf.std
}
# Save full testing and training matrices to appropriate directory
saveRDS(curr.train.matrix,file.path(curr.combo.directory,'GCSm_full_train_matrix.rds'))
saveRDS(curr.test.matrix,file.path(curr.combo.directory,'GCSm_full_test_matrix.rds'))
## Full GCSm (ordinal response)
# Train and save LOL projection
curr.full.GCSm.LOL <- lol.project.lol(curr.train.matrix,curr.train.filt.matrix.key$GCSm,r = 20)
saveRDS(curr.full.GCSm.LOL,file.path(curr.combo.directory,'LOL_full_GCSm.rds'))
# Separate LOL-embedded training and testing matrices and save into the directory
curr.full.GCSm.LOL.train.matrix <- curr.full.GCSm.LOL$Xr
saveRDS(curr.full.GCSm.LOL.train.matrix,file.path(curr.combo.directory,'LOL_full_GCSm_train_matrix.rds'))
curr.full.GCSm.LOL.test.matrix <- curr.test.matrix %*% curr.full.GCSm.LOL$A
saveRDS(curr.full.GCSm.LOL.test.matrix,file.path(curr.combo.directory,'LOL_full_GCSm_test_matrix.rds'))
## Thresholded GCSm (dichotomous response)
# Extract GCSm thresholded response variable names
threshold.GCSm.names <- names(curr.train.filt.matrix.key)[startsWith(names(curr.train.filt.matrix.key),'GCSm.gt.')]
# Iterate through threshold outcomes and perform LOL on each outcome
for (curr.threshold.name in threshold.GCSm.names){
# Skip current threshold if only one outcome case available
if (length(unique(curr.train.filt.matrix.key[[curr.threshold.name]])) == 1){
print(paste0('Only one outcome for ',curr.threshold.name,' in repeat/fold combination no. ',curr.combo.idx))
next
}
# Train and save LOL projection
curr.thresh.GCSm.LOL <- lol.project.lol(curr.train.matrix,curr.train.filt.matrix.key[[curr.threshold.name]],r = 20)
saveRDS(curr.thresh.GCSm.LOL,file.path(curr.combo.directory,paste0('LOL_thresh_',curr.threshold.name,'.rds')))
# Separate LOL-embedded training and testing matrices and save into the directory
curr.thresh.GCSm.LOL.train.matrix <- curr.thresh.GCSm.LOL$Xr
saveRDS(curr.thresh.GCSm.LOL.train.matrix,file.path(curr.combo.directory,paste0('LOL_thresh_',curr.threshold.name,'_train_matrix.rds')))
curr.thresh.GCSm.LOL.test.matrix <- curr.test.matrix %*% curr.thresh.GCSm.LOL$A
saveRDS(curr.thresh.GCSm.LOL.test.matrix,file.path(curr.combo.directory,paste0('LOL_thresh_',curr.threshold.name,'_test_matrix.rds')))
}
# Status update on current repeat/fold combination
print(paste("Repeat/Fold combination no.",curr.combo.idx,"out of",nrow(unique.repeat.fold.combos), "completed."))
}
# Status update on current observation window
print(paste("Observation window",sprintf('%05.2f',curr.obs.window.hours),"completed."))
}
### IV. Create predictor matrices for GOSE prediction at discharge and perform LOL projection to reduce dimensionality
# Create directory to store GOSE predictor matrices
dir.create('../features/03_formatted_predictor_matrices/predictor_matrices',showWarnings = F)
# Load patient outcome information
patient.outcomes <- read.csv('../clinical_data/patient_outcomes.csv')
# Acquire list of repeated cross-validation splits for each observation window for GOSE
GOSE.validation.split.files <- list.files('../validation_sampling','*_h_GOSE_folds.csv',full.names = T)
# Acquire list of full bed-corrected imputation files to calculate number of imputations
imp.files <- list.files("../features/02_bed_corrected_imputed_features",glob2rx("bed_corrected_imputation_*.csv"),full.names = T)
m.imputations <- length(imp.files)
# Create dataframe combination of sensors and features
sensor.feature.combos <- as.data.frame(expand.grid(sensor = c('LA','LE','LW','RA','RE','RW'),
feature = c('BPW','FDE','HLF_h','HLF_l','MFR','SMA','WVL','PhysActivity'))) %>%
mutate(formatted.feature.name = paste0(sensor,'/',feature,'/'))
# Iterate through through different observation window lengths
for (curr.validation.split.file in GOSE.validation.split.files){
curr.obs.window.hours <- as.numeric(str_match(curr.validation.split.file, "validation_sampling/\\s*(.*?)\\s*_h_GOSE_folds.csv")[,2])
# Status update on current observation window
print(paste("Observation window",sprintf('%05.2f',curr.obs.window.hours),"started."))
# Load current repeated cross-validation splits based on observation window length
curr.validation.splits <- read.csv(curr.validation.split.file)
# Extract unique repeat/fold combinations and randomly assign (with replacement) an imputation to each one
unique.repeat.fold.combos <- curr.validation.splits %>%
select(Repeat,Fold) %>%
unique() %>%
arrange(Repeat,Fold) %>%
mutate(Imputation = sample(1:m.imputations, nrow(.), replace = T))
# Save imputation key for repeat/fold combinations in current observation window
write.csv(unique.repeat.fold.combos,paste0('../validation_sampling/',sprintf('%05.2f',curr.obs.window.hours),'_h_GOSE_imputation_key.csv'),row.names = F)
# Based on random imputation assignments, find imputations that must be loaded
imps.to.load <- unique(unique.repeat.fold.combos$Imputation)
# Load and save appropriate imputations (and their keys) into a list
curr.obs.window.matrices <- vector(mode = "list")
curr.obs.window.keys <- vector(mode = "list")
for (curr.imp in imps.to.load){
curr.obs.window.matrices[[curr.imp]] <- readRDS(paste0('../features/03_formatted_predictor_matrices/full_matrices/',
sprintf('%05.2f',curr.obs.window.hours),
'_h_imputation_',
curr.imp,
'_full_matrix.rds'))
curr.obs.window.keys[[curr.imp]] <- read.csv(paste0('../features/03_formatted_predictor_matrices/full_matrices/',
sprintf('%05.2f',curr.obs.window.hours),
'_h_imputation_',
curr.imp,
'_keys.csv'))
}
# Iterate through unique combinations of repeats and folds
for (curr.combo.idx in 1:nrow(unique.repeat.fold.combos)){
# Status update on current repeat/fold combination
print(paste("Repeat/Fold combination no.",curr.combo.idx,"out of",nrow(unique.repeat.fold.combos), "started."))
# Extract repeat, fold, and imputation information based on current combination
curr.repeat <- unique.repeat.fold.combos$Repeat[curr.combo.idx]
curr.fold <- unique.repeat.fold.combos$Fold[curr.combo.idx]
curr.imputation <- unique.repeat.fold.combos$Imputation[curr.combo.idx]
# Create directory base for saving all outputs in current repeat/fold combination
curr.combo.directory <- paste0('../features/03_formatted_predictor_matrices/predictor_matrices/',
sprintf('%05.2f',curr.obs.window.hours),
'_h_obs_window/repeat',
sprintf('%02.f',curr.repeat),
'/fold',
sprintf('%02.f',curr.fold))
# Create directory to store current repeat/fold combo information
dir.create(curr.combo.directory,showWarnings = F,recursive = T)
# Separate current cross-validation observation information for training and testing
curr.train.splits <- curr.validation.splits %>%
filter(Fold == curr.fold,
Repeat == curr.repeat,
Split == 'Train')
curr.test.splits <- curr.validation.splits %>%
filter(Fold == curr.fold,
Repeat == curr.repeat,
Split == 'Test')
# Extract full matrix based on the drawn imputation of the current repeat/fold combination
curr.full.matrix <- curr.obs.window.matrices[[curr.imputation]]
curr.full.matrix.key <- curr.obs.window.keys[[curr.imputation]] %>%
mutate(MatrixRowIdx = 1:nrow(.))
# Separate training and testing keys of current repeat/fold combination and encode outcome (GCS and GOSE) information
curr.train.filt.matrix.key <- inner_join(curr.full.matrix.key,curr.train.splits,
by = c("UPI",
"HoursFromICUAdmission",
"TimeOfDay",
"GCST",
"GCSm",
"GCSe",
"GCSv",
"CoincidesWithAccelRecording")) %>%
mutate(GCSm.gt.1 = as.integer(GCSm > 1),
GCSm.gt.2 = as.integer(GCSm > 2),
GCSm.gt.3 = as.integer(GCSm > 3),
GCSm.gt.4 = as.integer(GCSm > 4),
GCSm.gt.5 = as.integer(GCSm > 5)) %>%
left_join(patient.outcomes %>% select(UPI,GOSEDischarge),by='UPI') %>%
mutate(GOSE.gt.1 = as.integer(GOSEDischarge > 1),
GOSE.gt.2 = as.integer(GOSEDischarge > 2),
GOSE.gt.3 = as.integer(GOSEDischarge > 3),
GOSE.gt.4 = as.integer(GOSEDischarge > 4),
GOSE.gt.5 = as.integer(GOSEDischarge > 5))
curr.test.filt.matrix.key <- inner_join(curr.full.matrix.key,curr.test.splits,
by = c("UPI",
"HoursFromICUAdmission",
"TimeOfDay",
"GCST",
"GCSm",
"GCSe",
"GCSv",
"CoincidesWithAccelRecording")) %>%
mutate(GCSm.gt.1 = as.integer(GCSm > 1),
GCSm.gt.2 = as.integer(GCSm > 2),
GCSm.gt.3 = as.integer(GCSm > 3),
GCSm.gt.4 = as.integer(GCSm > 4),
GCSm.gt.5 = as.integer(GCSm > 5)) %>%
left_join(patient.outcomes %>% select(UPI,GOSEDischarge),by='UPI') %>%
mutate(GOSE.gt.1 = as.integer(GOSEDischarge > 1),
GOSE.gt.2 = as.integer(GOSEDischarge > 2),
GOSE.gt.3 = as.integer(GOSEDischarge > 3),
GOSE.gt.4 = as.integer(GOSEDischarge > 4),
GOSE.gt.5 = as.integer(GOSEDischarge > 5))
# Save current training and testing keys
write.csv(curr.train.filt.matrix.key,file.path(curr.combo.directory,'GOSE_train_key.csv'),row.names = F)
write.csv(curr.test.filt.matrix.key,file.path(curr.combo.directory,'GOSE_test_key.csv'),row.names = F)
# Separate full training and testing matrices and scale columns (each unique combination of feature and sensor type) based on training set
curr.train.matrix <- abs(curr.full.matrix[curr.train.filt.matrix.key$MatrixRowIdx,])
curr.test.matrix <- abs(curr.full.matrix[curr.test.filt.matrix.key$MatrixRowIdx,])
for (curr.sf.combo.idx in 1:nrow(sensor.feature.combos)){
# Get current sensor/feature combo
curr.sf.combo <- sensor.feature.combos$formatted.feature.name[curr.sf.combo.idx]
# Find indices of column names with current combination
curr.sf.col.idx <- which(grepl(curr.sf.combo, colnames(curr.train.matrix), fixed = TRUE))
# Get mean and standard deviation information from training matrix
curr.sf.mean <- mean(curr.train.matrix[,curr.sf.col.idx],na.rm = T)
curr.sf.std <- sd(curr.train.matrix[,curr.sf.col.idx],na.rm = T)
# Transform training and testing sets accordingly
curr.train.matrix[,curr.sf.col.idx] <- (curr.train.matrix[,curr.sf.col.idx] - curr.sf.mean)/curr.sf.std
curr.test.matrix[,curr.sf.col.idx] <- (curr.test.matrix[,curr.sf.col.idx] - curr.sf.mean)/curr.sf.std
}
# Save full testing and training matrices to appropriate directory
saveRDS(curr.train.matrix,file.path(curr.combo.directory,'GOSE_full_train_matrix.rds'))
saveRDS(curr.test.matrix,file.path(curr.combo.directory,'GOSE_full_test_matrix.rds'))
## Full GOSE (ordinal response)
# Train and save LOL projection
curr.full.GOSE.LOL <- lol.project.lol(curr.train.matrix,curr.train.filt.matrix.key$GOSEDischarge,r = 20)
saveRDS(curr.full.GOSE.LOL,file.path(curr.combo.directory,'LOL_full_GOSE.rds'))
# Separate LOL-embedded training and testing matrices and save into the directory
curr.full.GOSE.LOL.train.matrix <- curr.full.GOSE.LOL$Xr
saveRDS(curr.full.GOSE.LOL.train.matrix,file.path(curr.combo.directory,'LOL_full_GOSE_train_matrix.rds'))
curr.full.GOSE.LOL.test.matrix <- curr.test.matrix %*% curr.full.GOSE.LOL$A
saveRDS(curr.full.GOSE.LOL.test.matrix,file.path(curr.combo.directory,'LOL_full_GOSE_test_matrix.rds'))
## Thresholded GOSE (dichotomous response)
# Extract GOSE thresholded response variable names
threshold.GOSE.names <- names(curr.train.filt.matrix.key)[startsWith(names(curr.train.filt.matrix.key),'GOSE.gt.')]
# Iterate through threshold outcomes and perform LOL on each outcome
for (curr.threshold.name in threshold.GOSE.names){
# Skip current threshold if only one outcome case available
if (length(unique(curr.train.filt.matrix.key[[curr.threshold.name]])) == 1){
print(paste0('Only one outcome for ',curr.threshold.name,' in repeat/fold combination no. ',curr.combo.idx))
next
}
# Train and save LOL projection
curr.thresh.GOSE.LOL <- lol.project.lol(curr.train.matrix,curr.train.filt.matrix.key[[curr.threshold.name]],r = 20)
saveRDS(curr.thresh.GOSE.LOL,file.path(curr.combo.directory,paste0('LOL_thresh_',curr.threshold.name,'.rds')))
# Separate LOL-embedded training and testing matrices and save into the directory
curr.thresh.GOSE.LOL.train.matrix <- curr.thresh.GOSE.LOL$Xr
saveRDS(curr.thresh.GOSE.LOL.train.matrix,file.path(curr.combo.directory,paste0('LOL_thresh_',curr.threshold.name,'_train_matrix.rds')))
curr.thresh.GOSE.LOL.test.matrix <- curr.test.matrix %*% curr.thresh.GOSE.LOL$A
saveRDS(curr.thresh.GOSE.LOL.test.matrix,file.path(curr.combo.directory,paste0('LOL_thresh_',curr.threshold.name,'_test_matrix.rds')))
}
# Status update on current repeat/fold combination
print(paste("Repeat/Fold combination no.",curr.combo.idx,"out of",nrow(unique.repeat.fold.combos), "completed."))
}
# Status update on current observation window
print(paste("Observation window",sprintf('%05.2f',curr.obs.window.hours),"completed."))
}
### V. Create predictor matrices for GOSE prediction at 12 months and perform LOL projection to reduce dimensionality
# Create directory to store GOSE12m predictor matrices
dir.create('../features/03_formatted_predictor_matrices/predictor_matrices',showWarnings = F)
# Load patient outcome information
patient.outcomes <- read.csv('../clinical_data/patient_outcomes.csv')
# Acquire list of repeated cross-validation splits for each observation window for GOSE12m
GOSE12m.validation.split.files <- list.files('../validation_sampling','*_h_GOSE12m_folds.csv',full.names = T)
# Acquire list of full bed-corrected imputation files to calculate number of imputations
imp.files <- list.files("../features/02_bed_corrected_imputed_features",glob2rx("bed_corrected_imputation_*.csv"),full.names = T)
m.imputations <- length(imp.files)
# Create dataframe combination of sensors and features
sensor.feature.combos <- as.data.frame(expand.grid(sensor = c('LA','LE','LW','RA','RE','RW'),
feature = c('BPW','FDE','HLF_h','HLF_l','MFR','SMA','WVL','PhysActivity'))) %>%
mutate(formatted.feature.name = paste0(sensor,'/',feature,'/'))
# Iterate through through different observation window lengths
for (curr.validation.split.file in GOSE12m.validation.split.files){
curr.obs.window.hours <- as.numeric(str_match(curr.validation.split.file, "validation_sampling/\\s*(.*?)\\s*_h_GOSE12m_folds.csv")[,2])
# Status update on current observation window
print(paste("Observation window",sprintf('%05.2f',curr.obs.window.hours),"started."))
# Load current repeated cross-validation splits based on observation window length
curr.validation.splits <- read.csv(curr.validation.split.file)
# Extract unique repeat/fold combinations and randomly assign (with replacement) an imputation to each one
unique.repeat.fold.combos <- curr.validation.splits %>%
select(Repeat,Fold) %>%
unique() %>%
arrange(Repeat,Fold) %>%
mutate(Imputation = sample(1:m.imputations, nrow(.), replace = T))
# Save imputation key for repeat/fold combinations in current observation window
write.csv(unique.repeat.fold.combos,paste0('../validation_sampling/',sprintf('%05.2f',curr.obs.window.hours),'_h_GOSE12m_imputation_key.csv'),row.names = F)
# Based on random imputation assignments, find imputations that must be loaded
imps.to.load <- unique(unique.repeat.fold.combos$Imputation)
# Load and save appropriate imputations (and their keys) into a list
curr.obs.window.matrices <- vector(mode = "list")
curr.obs.window.keys <- vector(mode = "list")
for (curr.imp in imps.to.load){
curr.obs.window.matrices[[curr.imp]] <- readRDS(paste0('../features/03_formatted_predictor_matrices/full_matrices/',
sprintf('%05.2f',curr.obs.window.hours),
'_h_imputation_',
curr.imp,
'_full_matrix.rds'))
curr.obs.window.keys[[curr.imp]] <- read.csv(paste0('../features/03_formatted_predictor_matrices/full_matrices/',
sprintf('%05.2f',curr.obs.window.hours),
'_h_imputation_',
curr.imp,
'_keys.csv'))
}
# Iterate through unique combinations of repeats and folds
for (curr.combo.idx in 1:nrow(unique.repeat.fold.combos)){
# Status update on current repeat/fold combination
print(paste("Repeat/Fold combination no.",curr.combo.idx,"out of",nrow(unique.repeat.fold.combos), "started."))
# Extract repeat, fold, and imputation information based on current combination
curr.repeat <- unique.repeat.fold.combos$Repeat[curr.combo.idx]
curr.fold <- unique.repeat.fold.combos$Fold[curr.combo.idx]
curr.imputation <- unique.repeat.fold.combos$Imputation[curr.combo.idx]
# Create directory base for saving all outputs in current repeat/fold combination
curr.combo.directory <- paste0('../features/03_formatted_predictor_matrices/predictor_matrices/',
sprintf('%05.2f',curr.obs.window.hours),
'_h_obs_window/repeat',
sprintf('%02.f',curr.repeat),
'/fold',
sprintf('%02.f',curr.fold))
# Create directory to store current repeat/fold combo information
dir.create(curr.combo.directory,showWarnings = F,recursive = T)
# Separate current cross-validation observation information for training and testing
curr.train.splits <- curr.validation.splits %>%
filter(Fold == curr.fold,
Repeat == curr.repeat,
Split == 'Train')
curr.test.splits <- curr.validation.splits %>%
filter(Fold == curr.fold,
Repeat == curr.repeat,
Split == 'Test')
# Extract full matrix based on the drawn imputation of the current repeat/fold combination
curr.full.matrix <- curr.obs.window.matrices[[curr.imputation]]
curr.full.matrix.key <- curr.obs.window.keys[[curr.imputation]] %>%
mutate(MatrixRowIdx = 1:nrow(.))
# Separate training and testing keys of current repeat/fold combination and encode outcome (GCS and GOSE12m) information
curr.train.filt.matrix.key <- inner_join(curr.full.matrix.key,curr.train.splits,
by = c("UPI",
"HoursFromICUAdmission",
"TimeOfDay",
"GCST",
"GCSm",
"GCSe",
"GCSv",
"CoincidesWithAccelRecording")) %>%
mutate(GCSm.gt.1 = as.integer(GCSm > 1),
GCSm.gt.2 = as.integer(GCSm > 2),
GCSm.gt.3 = as.integer(GCSm > 3),
GCSm.gt.4 = as.integer(GCSm > 4),
GCSm.gt.5 = as.integer(GCSm > 5)) %>%
left_join(patient.outcomes %>% select(UPI,GOSEDischarge,GOSE12Months),by='UPI') %>%
mutate(GOSE.gt.1 = as.integer(GOSEDischarge > 1),
GOSE.gt.2 = as.integer(GOSEDischarge > 2),
GOSE.gt.3 = as.integer(GOSEDischarge > 3),
GOSE.gt.4 = as.integer(GOSEDischarge > 4),
GOSE.gt.5 = as.integer(GOSEDischarge > 5)) %>%
mutate(GOSE12m.gt.1 = as.integer(GOSE12Months > 1),
GOSE12m.gt.2 = as.integer(GOSE12Months > 2),
GOSE12m.gt.3 = as.integer(GOSE12Months > 3),
GOSE12m.gt.4 = as.integer(GOSE12Months > 4),
GOSE12m.gt.5 = as.integer(GOSE12Months > 5),
GOSE12m.gt.6 = as.integer(GOSE12Months > 6),
GOSE12m.gt.7 = as.integer(GOSE12Months > 7))
curr.test.filt.matrix.key <- inner_join(curr.full.matrix.key,curr.test.splits,
by = c("UPI",
"HoursFromICUAdmission",
"TimeOfDay",
"GCST",
"GCSm",
"GCSe",
"GCSv",
"CoincidesWithAccelRecording")) %>%
mutate(GCSm.gt.1 = as.integer(GCSm > 1),
GCSm.gt.2 = as.integer(GCSm > 2),
GCSm.gt.3 = as.integer(GCSm > 3),
GCSm.gt.4 = as.integer(GCSm > 4),
GCSm.gt.5 = as.integer(GCSm > 5)) %>%
left_join(patient.outcomes %>% select(UPI,GOSEDischarge,GOSE12Months),by='UPI') %>%
mutate(GOSE.gt.1 = as.integer(GOSEDischarge > 1),
GOSE.gt.2 = as.integer(GOSEDischarge > 2),
GOSE.gt.3 = as.integer(GOSEDischarge > 3),
GOSE.gt.4 = as.integer(GOSEDischarge > 4),
GOSE.gt.5 = as.integer(GOSEDischarge > 5)) %>%
mutate(GOSE12m.gt.1 = as.integer(GOSE12Months > 1),
GOSE12m.gt.2 = as.integer(GOSE12Months > 2),
GOSE12m.gt.3 = as.integer(GOSE12Months > 3),
GOSE12m.gt.4 = as.integer(GOSE12Months > 4),
GOSE12m.gt.5 = as.integer(GOSE12Months > 5),
GOSE12m.gt.6 = as.integer(GOSE12Months > 6),
GOSE12m.gt.7 = as.integer(GOSE12Months > 7))
# Save current training and testing keys
write.csv(curr.train.filt.matrix.key,file.path(curr.combo.directory,'GOSE12m_train_key.csv'),row.names = F)
write.csv(curr.test.filt.matrix.key,file.path(curr.combo.directory,'GOSE12m_test_key.csv'),row.names = F)
# Separate full training and testing matrices and scale columns (each unique combination of feature and sensor type) based on training set
curr.train.matrix <- abs(curr.full.matrix[curr.train.filt.matrix.key$MatrixRowIdx,])
curr.test.matrix <- abs(curr.full.matrix[curr.test.filt.matrix.key$MatrixRowIdx,])
for (curr.sf.combo.idx in 1:nrow(sensor.feature.combos)){
# Get current sensor/feature combo
curr.sf.combo <- sensor.feature.combos$formatted.feature.name[curr.sf.combo.idx]
# Find indices of column names with current combination
curr.sf.col.idx <- which(grepl(curr.sf.combo, colnames(curr.train.matrix), fixed = TRUE))
# Get mean and standard deviation information from training matrix
curr.sf.mean <- mean(curr.train.matrix[,curr.sf.col.idx],na.rm = T)
curr.sf.std <- sd(curr.train.matrix[,curr.sf.col.idx],na.rm = T)
# Transform training and testing sets accordingly
curr.train.matrix[,curr.sf.col.idx] <- (curr.train.matrix[,curr.sf.col.idx] - curr.sf.mean)/curr.sf.std
curr.test.matrix[,curr.sf.col.idx] <- (curr.test.matrix[,curr.sf.col.idx] - curr.sf.mean)/curr.sf.std
}
# Save full testing and training matrices to appropriate directory
saveRDS(curr.train.matrix,file.path(curr.combo.directory,'GOSE12m_full_train_matrix.rds'))
saveRDS(curr.test.matrix,file.path(curr.combo.directory,'GOSE12m_full_test_matrix.rds'))
## Full GOSE12m (ordinal response)
# Train and save LOL projection
curr.full.GOSE12m.LOL <- lol.project.lol(curr.train.matrix,curr.train.filt.matrix.key$GOSE12Months,r = 20)
saveRDS(curr.full.GOSE12m.LOL,file.path(curr.combo.directory,'LOL_full_GOSE12m.rds'))
# Separate LOL-embedded training and testing matrices and save into the directory
curr.full.GOSE12m.LOL.train.matrix <- curr.full.GOSE12m.LOL$Xr
saveRDS(curr.full.GOSE12m.LOL.train.matrix,file.path(curr.combo.directory,'LOL_full_GOSE12m_train_matrix.rds'))
curr.full.GOSE12m.LOL.test.matrix <- curr.test.matrix %*% curr.full.GOSE12m.LOL$A
saveRDS(curr.full.GOSE12m.LOL.test.matrix,file.path(curr.combo.directory,'LOL_full_GOSE12m_test_matrix.rds'))
## Thresholded GOSE12m (dichotomous response)
# Extract GOSE12m thresholded response variable names
threshold.GOSE12m.names <- names(curr.train.filt.matrix.key)[startsWith(names(curr.train.filt.matrix.key),'GOSE12m.gt.')]
# Iterate through threshold outcomes and perform LOL on each outcome
for (curr.threshold.name in threshold.GOSE12m.names){
# Skip current threshold if only one outcome case available
if (length(unique(curr.train.filt.matrix.key[[curr.threshold.name]])) == 1){
print(paste0('Only one outcome for ',curr.threshold.name,' in repeat/fold combination no. ',curr.combo.idx))
next
}
# Train and save LOL projection
curr.thresh.GOSE12m.LOL <- lol.project.lol(curr.train.matrix,curr.train.filt.matrix.key[[curr.threshold.name]],r = 20)
saveRDS(curr.thresh.GOSE12m.LOL,file.path(curr.combo.directory,paste0('LOL_thresh_',curr.threshold.name,'.rds')))
# Separate LOL-embedded training and testing matrices and save into the directory
curr.thresh.GOSE12m.LOL.train.matrix <- curr.thresh.GOSE12m.LOL$Xr
saveRDS(curr.thresh.GOSE12m.LOL.train.matrix,file.path(curr.combo.directory,paste0('LOL_thresh_',curr.threshold.name,'_train_matrix.rds')))
curr.thresh.GOSE12m.LOL.test.matrix <- curr.test.matrix %*% curr.thresh.GOSE12m.LOL$A
saveRDS(curr.thresh.GOSE12m.LOL.test.matrix,file.path(curr.combo.directory,paste0('LOL_thresh_',curr.threshold.name,'_test_matrix.rds')))
}
# Status update on current repeat/fold combination
print(paste("Repeat/Fold combination no.",curr.combo.idx,"out of",nrow(unique.repeat.fold.combos), "completed."))
}
# Status update on current observation window
print(paste("Observation window",sprintf('%05.2f',curr.obs.window.hours),"completed."))
}