-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathonnx_summarize.py
105 lines (95 loc) · 3.57 KB
/
onnx_summarize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import onnx
from onnx import helper, checker
from onnx import TensorProto
import re
import argparse
#import json
#from google.protobuf.json_format import MessageToJson
#from google.protobuf.json_format import Parse
import collections
def printDict(d, key_string, val_string):
print('{}\n{} {}\n{}'.format('*'*10,key_string,val_string, '-'*10))
for key, val in d.items():
print('{} {}'.format(key, val))
print('{}'.format('*'*10))
# Matches a pair of brackets which are not part of comments or not part of strings delimited by ""
# Returns
def match_brackets(str):
pairs = {'(': ')',
'{': '}',
'[': ']'}
ignore_delims={'"':'"',
'#':'\n'}
q = []
# { end_pos: (stat_char, start_pos)}
pos_pair = collections.OrderedDict()
pos=0
ignore_char=None
for c in str:
if c in ignore_delims.keys() and ignore_char==None:
ignore_char=c
elif ignore_char:
if c == ignore_delims[ignore_char]:
ignore_char=None
elif c in pairs.keys():
entry = (c,pos)
q.append(entry)
elif c in pairs.values():
if not q:
return (False, None)
entry = q.pop()
if c != pairs[entry[0]]:
print(str[:pos])
return (False, None)
pos_pair[pos]=entry
pos=pos+1
return (not q, pos_pair)
def analyze_onnx(model_file):
model = onnx.load(model_file)
graph = model.graph
# Generate a name for all node if they have none.
nodeIdx = 0
opDict = collections.OrderedDict()
for n in graph.node:
if n.op_type not in opDict.keys():
opDict[n.op_type] = 1
else:
opDict[n.op_type] = opDict[n.op_type] + 1
if n.op_type == 'Loop':
loop_body = "#" + str(n.attribute[0])
loop_name = n.name.replace("\\", "_")
loop_name = loop_name.replace("/", '_')
match, bracket_dict = match_brackets(loop_body)
if match and bracket_dict:
last_brace_pos = list(bracket_dict.keys())[-1]
first_bracket, start_pos = bracket_dict[last_brace_pos]
loop_body = loop_body[start_pos:last_brace_pos + 1]
loop_body = "graph " + loop_body
onnxtxt_file = loop_name + '.onnxtxt'
onnx_file = loop_name + '.onnx'
print("Writing body for loop onnx operator " + n.name + " to file " + onnx_file + " .\n")
text_file = open(onnxtxt_file, "w")
n = text_file.write(loop_body)
text_file.close()
import os
os.system('protoc onnx.proto --encode=onnx.ModelProto < ' + onnxtxt_file + ' > ' + onnx_file)
analyze_onnx(onnx_file)
print(model_file)
printDict(opDict, 'op', 'count')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Create a summary of operators in the input onnx file and also dumps'
' each loop body as an onnx file and also creates summary for each '
' such loop body.')
parser.add_argument("input", help="input onnx model")
args = parser.parse_args()
analyze_onnx(args.input)
'''
text_file = open("log.txt", "r")
#read whole file to a string
data = text_file.read()
#close file
text_file.close()
convert_model = Parse(data, onnx.ModelProto())
print(convert_model)
s = MessageToJson(onnx_model)
'''