-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
78 lines (70 loc) · 3.15 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python
# -*- coding=utf-8 -*-
from keras import Input
from keras.layers import LSTM, Dense, Dropout, Embedding
from keras.layers.merge import add
from keras.models import Model
from keras.preprocessing.sequence import pad_sequences
from gen_train_captions import EOS_TOKEN, SOS_TOKEN
import numpy as np
import tensorflow as tf
class ImgCapModel:
def __init__(self, img_embed_dim=2048, word_embed_dim=200, vocab_size=1652, max_length=34):
self.vocab_size = vocab_size
self.max_length = max_length
img_embed = Input(shape=(img_embed_dim,))
hidden_img = Dropout(0.5)(img_embed)
hidden_img = Dense(256, activation='relu')(hidden_img)
word_seq = Input(shape=(max_length,))
word_embed = Embedding(self.vocab_size, word_embed_dim, mask_zero=True)(word_seq)
word_embed = Dropout(0.5)(word_embed)
hidden_word = LSTM(256)(word_embed)
decoder = add([hidden_img, hidden_word])
decoder = Dense(256, activation='relu')(decoder)
outputs = Dense(self.vocab_size, activation='softmax')(decoder)
self.model = Model(inputs=[img_embed, word_seq], outputs=outputs)
def summary(self):
self.model.summary()
def greedy_search(self, img_feat, word2idx, idx2word):
in_text = [SOS_TOKEN]
for i in range(self.max_length):
seq = [word2idx[w] for w in in_text if w in word2idx]
seq = pad_sequences([seq], maxlen=self.max_length)
yhat = self.model.predict([img_feat, seq], verbose=False)
yhat = np.argmax(yhat)
word = idx2word[yhat]
in_text.append(word)
if word == EOS_TOKEN:
break
result_text = in_text[1:-1] if in_text[-1] == EOS_TOKEN else in_text[1:]
return ' '.join(result_text)
def beam_search(self, img_feat, word2idx, idx2word, beam_width):
in_texts = [[[SOS_TOKEN], 0.0]]
# Remove the words after EOS_TOKEN when this while loop is finished
while len(in_texts[0][0]) < self.max_length:
candidates = []
for in_text in in_texts:
seq = [word2idx[w] for w in in_text[0] if w in word2idx]
seq = pad_sequences([seq], maxlen=self.max_length)
yhat = self.model.predict([img_feat, seq], verbose=False)
# No need for beam_width or more
yhat_sorted = np.argsort(yhat[0])[-beam_width:]
for y in yhat_sorted:
caps, prob = in_text[0][:], in_text[1]
caps.append(idx2word[y])
prob += yhat[0][y]
candidates.append([caps, prob])
in_texts = candidates
in_texts = sorted(in_texts, reverse=False, key=lambda l: l[1])
in_texts = in_texts[-beam_width:]
# Remove the words after EOS_TOKEN
cap_words = in_texts[-1][0]
result_texts = []
for cap_word in cap_words:
if cap_word == EOS_TOKEN:
break
result_texts.append(cap_word)
return ' '.join(result_texts[1:])
if __name__ == "__main__":
img_cap_model = ImgCapModel()
img_cap_model.summary()