-
Notifications
You must be signed in to change notification settings - Fork 0
/
8_ANN.py
72 lines (45 loc) · 1.83 KB
/
8_ANN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
os.chdir('/Users/narsingrao/Documents/Satish_ML/Machine Learning A-Z (Codes and Datasets)/Part 8 - Deep Learning/Section 39 - Artificial Neural Networks (ANN)/Python')
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
labelencoder_X_2 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features = [1])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X = sc.fit_transform(X)
#Part-2
import keras
from keras.models import Sequential
from keras.layers import Dense
classifier = Sequential()
classifier.add(Dense(output_dim = 6,
init = 'uniform',
activation = 'relu',
input_dim = 11))
classifier.add(Dense(output_dim = 6,
init = 'uniform',
activation = 'relu'))
classifier.add(Dense(output_dim = 1,
init = 'uniform',
activation = 'sigmoid'))
classifier.compile(optimizer = 'adam',
loss = 'binary_crossentropy',
metrics = ['accuracy'])
classifier.fit(X_train, y_train, batch_size = 10, nb_epoch = 100)
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
accuracy = (cm[0][0]+cm[0][1])/(cm[1][0]+cm[1][1])