forked from chrisconlan/algorithmic-trading-with-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
portfolio.py
443 lines (348 loc) · 13.7 KB
/
portfolio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import pandas as pd
import matplotlib.pyplot as plt
from typing import Tuple, List, Dict, Callable, NewType, Any
from collections import OrderedDict, defaultdict
from pypm import metrics, signals, data_io
Symbol = NewType('Symbol', str)
Dollars = NewType('Dollars', float)
DATE_FORMAT_STR = '%a %b %d, %Y'
def _pdate(date: pd.Timestamp):
"""Pretty-print a datetime with just the date"""
return date.strftime(DATE_FORMAT_STR)
class Position(object):
"""
A simple object to hold and manipulate data related to long stock trades.
Allows a single buy and sell operation on an asset for a constant number of
shares.
The __init__ method is equivelant to a buy operation. The exit
method is a sell operation.
"""
def __init__(self, symbol: Symbol, entry_date: pd.Timestamp,
entry_price: Dollars, shares: int):
"""
Equivalent to buying a certain number of shares of the asset
"""
# Recorded on initialization
self.entry_date = entry_date
assert entry_price > 0, 'Cannot buy asset with zero or negative price.'
self.entry_price = entry_price
assert shares > 0, 'Cannot buy zero or negative shares.'
self.shares = shares
self.symbol = symbol
# Recorded on position exit
self.exit_date: pd.Timestamp = None
self.exit_price: Dollars = None
# For easily getting current portolio value
self.last_date: pd.Timestamp = None
self.last_price: Dollars = None
# Updated intermediately
self._dict_series: Dict[pd.Timestamp, Dollars] = OrderedDict()
self.record_price_update(entry_date, entry_price)
# Cache control for pd.Series representation
self._price_series: pd.Series = None
self._needs_update_pd_series: bool = True
def exit(self, exit_date, exit_price):
"""
Equivalent to selling a stock holding
"""
assert self.entry_date != exit_date, 'Churned a position same-day.'
assert not self.exit_date, 'Position already closed.'
self.record_price_update(exit_date, exit_price)
self.exit_date = exit_date
self.exit_price = exit_price
def record_price_update(self, date, price):
"""
Stateless function to record intermediate prices of existing positions
"""
self.last_date = date
self.last_price = price
self._dict_series[date] = price
# Invalidate cache on self.price_series
self._needs_update_pd_series = True
@property
def price_series(self) -> pd.Series:
"""
Returns cached readonly pd.Series
"""
if self._needs_update_pd_series or self._price_series is None:
self._price_series = pd.Series(self._dict_series)
self._needs_update_pd_series = False
return self._price_series
@property
def last_value(self) -> Dollars:
return self.last_price * self.shares
@property
def is_active(self) -> bool:
return self.exit_date is None
@property
def is_closed(self) -> bool:
return not self.is_active
@property
def value_series(self) -> pd.Series:
"""
Returns the value of the position over time. Ignores self.exit_date.
Used in calculating the equity curve.
"""
assert self.is_closed, 'Position must be closed to access this property'
return self.shares * self.price_series[:-1]
@property
def percent_return(self) -> float:
return (self.exit_price / self.entry_price) - 1
@property
def entry_value(self) -> Dollars:
return self.shares * self.entry_price
@property
def exit_value(self) -> Dollars:
return self.shares * self.exit_price
@property
def change_in_value(self) -> Dollars:
return self.exit_value - self.entry_value
@property
def trade_length(self):
return len(self._dict_series) - 1
def print_position_summary(self):
_entry_date = _pdate(self.entry_date)
_exit_date = _pdate(self.exit_date)
_days = self.trade_length
_entry_price = round(self.entry_price, 2)
_exit_price = round(self.exit_price, 2)
_entry_value = round(self.entry_value, 2)
_exit_value = round(self.exit_value, 2)
_return = round(100 * self.percent_return, 1)
_diff = round(self.change_in_value, 2)
print(f'{self.symbol:<5} Trade summary')
print(f'Date: {_entry_date} -> {_exit_date} [{_days} days]')
print(f'Price: ${_entry_price} -> ${_exit_price} [{_return}%]')
print(f'Value: ${_entry_value} -> ${_exit_value} [${_diff}]')
print()
def __hash__(self):
"""
A unique position will be defined by a unique combination of an
entry_date and symbol, in accordance with our constraints regarding
duplicate, variable, and compound positions
"""
return hash((self.entry_date, self.symbol))
class PortfolioHistory(object):
"""
Holds Position objects and keeps track of portfolio variables.
Produces summary statistics.
"""
def __init__(self):
# Keep track of positions, recorded in this list after close
self.position_history: List[Position] = []
self._logged_positions: Set[Position] = set()
# Keep track of the last seen date
self.last_date: pd.Timestamp = pd.Timestamp.min
# Readonly fields
self._cash_history: Dict[pd.Timestamp, Dollars] = dict()
self._simulation_finished = False
self._spy: pd.DataFrame = pd.DataFrame()
self._spy_log_returns: pd.Series = pd.Series()
def add_to_history(self, position: Position):
_log = self._logged_positions
assert not position in _log, 'Recorded the same position twice.'
assert position.is_closed, 'Position is not closed.'
self._logged_positions.add(position)
self.position_history.append(position)
self.last_date = max(self.last_date, position.last_date)
def record_cash(self, date, cash):
self._cash_history[date] = cash
self.last_date = max(self.last_date, date)
@staticmethod
def _as_oseries(d: Dict[pd.Timestamp, Any]) -> pd.Series:
return pd.Series(d).sort_index()
def _compute_cash_series(self):
self._cash_series = self._as_oseries(self._cash_history)
@property
def cash_series(self) -> pd.Series:
return self._cash_series
def _compute_portfolio_value_series(self):
value_by_date = defaultdict(float)
last_date = self.last_date
# Add up value of assets
for position in self.position_history:
for date, value in position.value_series.items():
value_by_date[date] += value
# Make sure all dates in cash_series are present
for date in self.cash_series.index:
value_by_date[date] += 0
self._portfolio_value_series = self._as_oseries(value_by_date)
@property
def portfolio_value_series(self):
return self._portfolio_value_series
def _compute_equity_series(self):
c_series = self.cash_series
p_series = self.portfolio_value_series
assert all(c_series.index == p_series.index), \
'portfolio_series has dates not in cash_series'
self._equity_series = c_series + p_series
@property
def equity_series(self):
return self._equity_series
def _compute_log_return_series(self):
self._log_return_series = \
metrics.calculate_log_return_series(self.equity_series)
@property
def log_return_series(self):
return self._log_return_series
def _assert_finished(self):
assert self._simulation_finished, \
'Simuation must be finished by running self.finish() in order ' + \
'to access this method or property.'
def finish(self):
"""
Notate that the simulation is finished and compute readonly values
"""
self._simulation_finished = True
self._compute_cash_series()
self._compute_portfolio_value_series()
self._compute_equity_series()
self._compute_log_return_series()
self._assert_finished()
def compute_portfolio_size_series(self) -> pd.Series:
size_by_date = defaultdict(int)
for position in self.position_history:
for date in position.value_series.index:
size_by_date[date] += 1
return self._as_oseries(size_by_date)
@property
def spy(self):
if self._spy.empty:
first_date = self.cash_series.index[0]
_spy = data_io.load_spy_data()
self._spy = _spy[_spy.index > first_date]
return self._spy
@property
def spy_log_returns(self):
if self._spy_log_returns.empty:
close = self.spy['close']
self._spy_log_returns = metrics.calculate_log_return_series(close)
return self._spy_log_returns
@property
def percent_return(self):
return metrics.calculate_percent_return(self.equity_series)
@property
def spy_percent_return(self):
return metrics.calculate_percent_return(self.spy['close'])
@property
def cagr(self):
return metrics.calculate_cagr(self.equity_series)
@property
def volatility(self):
return metrics.calculate_annualized_volatility(self.log_return_series)
@property
def sharpe_ratio(self):
return metrics.calculate_sharpe_ratio(self.equity_series)
@property
def spy_cagr(self):
return metrics.calculate_cagr(self.spy['close'])
@property
def excess_cagr(self):
return self.cagr - self.spy_cagr
@property
def jensens_alpha(self):
return metrics.calculate_jensens_alpha(
self.log_return_series,
self.spy_log_returns,
)
@property
def dollar_max_drawdown(self):
return metrics.calculate_max_drawdown(self.equity_series, 'dollar')
@property
def percent_max_drawdown(self):
return metrics.calculate_max_drawdown(self.equity_series, 'percent')
@property
def log_max_drawdown_ratio(self):
return metrics.calculate_log_max_drawdown_ratio(self.equity_series)
@property
def number_of_trades(self):
return len(self.position_history)
@property
def average_active_trades(self):
return self.compute_portfolio_size_series().mean()
@property
def final_cash(self):
self._assert_finished()
return self.cash_series[-1]
@property
def final_equity(self):
self._assert_finished()
return self.equity_series[-1]
_PERFORMANCE_METRICS_PROPS = [
'percent_return',
'spy_percent_return',
'cagr',
'volatility',
'sharpe_ratio',
'spy_cagr',
'excess_cagr',
'jensens_alpha',
'dollar_max_drawdown',
'percent_max_drawdown',
'log_max_drawdown_ratio',
'number_of_trades',
'average_active_trades',
'final_cash',
'final_equity',
]
PerformancePayload = NewType('PerformancePayload', Dict[str, float])
def get_performance_metric_data(self) -> PerformancePayload:
props = self._PERFORMANCE_METRICS_PROPS
return {prop: getattr(self, prop) for prop in props}
def print_position_summaries(self):
for position in self.position_history:
position.print_position_summary()
def print_summary(self):
self._assert_finished()
s = f'Equity: ${self.final_equity:.2f}\n' \
f'Percent Return: {100*self.percent_return:.2f}%\n' \
f'S&P 500 Return: {100*self.spy_percent_return:.2f}%\n\n' \
f'Number of trades: {self.number_of_trades}\n' \
f'Average active trades: {self.average_active_trades:.2f}\n\n' \
f'CAGR: {100*self.cagr:.2f}%\n' \
f'S&P 500 CAGR: {100*self.spy_cagr:.2f}%\n' \
f'Excess CAGR: {100*self.excess_cagr:.2f}%\n\n' \
f'Annualized Volatility: {100*self.volatility:.2f}%\n' \
f'Sharpe Ratio: {self.sharpe_ratio:.2f}\n' \
f'Jensen\'s Alpha: {self.jensens_alpha:.6f}\n\n' \
f'Dollar Max Drawdown: ${self.dollar_max_drawdown:.2f}\n' \
f'Percent Max Drawdown: {100*self.percent_max_drawdown:.2f}%\n' \
f'Log Max Drawdown Ratio: {self.log_max_drawdown_ratio:.2f}\n'
print(s)
def plot(self, show=True) -> plt.Figure:
"""
Plots equity, cash and portfolio value curves.
"""
self._assert_finished()
figure, axes = plt.subplots(nrows=3, ncols=1)
figure.tight_layout(pad=3.0)
axes[0].plot(self.equity_series)
axes[0].set_title('Equity')
axes[0].grid()
axes[1].plot(self.cash_series)
axes[1].set_title('Cash')
axes[1].grid()
axes[2].plot(self.portfolio_value_series)
axes[2].set_title('Portfolio Value')
axes[2].grid()
if show:
plt.show()
return figure
def plot_benchmark_comparison(self, show=True) -> plt.Figure:
"""
Plot comparable investment in the S&P 500.
"""
self._assert_finished()
equity_curve = self.equity_series
ax = equity_curve.plot()
spy_closes = self.spy['close']
initial_cash = self.cash_series[0]
initial_spy = spy_closes[0]
scaled_spy = spy_closes * (initial_cash / initial_spy)
scaled_spy.plot()
baseline = pd.Series(initial_cash, index=equity_curve.index)
ax = baseline.plot(color='black')
ax.grid()
ax.legend(['Equity curve', 'S&P 500 portflio'])
if show:
plt.show()