-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
386 lines (334 loc) · 17.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import argparse
import datetime
import json
import os
import random
import time
from pathlib import Path
import numpy as np
import torch
import util.misc as utils
from datasets import build_dataset
from engine import train_one_epoch, evaluate_hoi
from models import build_model
from torch.utils.data import DataLoader, DistributedSampler
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=90, type=int)
parser.add_argument('--lr_drop', default=60, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# zero-shot with CLIP
parser.add_argument('--model', default='detr_clip', type=str,
choices=['detr_base', 'detr_gat', 'detr_clip', 'detr_elmo'])
parser.add_argument('--topk', default=3, type=int)
parser.add_argument('--thres', default=0.5, type=float)
parser.add_argument('--inter_score', action='store_true')
parser.add_argument('--vdetach', action='store_true')
parser.add_argument('--verb_loss_type', default='focal_bce', type=str, choices=['bce_bce', 'focal_bce', ])
parser.add_argument('--clip_backbone', default='RN50', choices=['RN50', 'RN50x16', 'RN101', 'ViT-B-32', 'ViT-B-16'])
parser.add_argument('--uc_type', default='uc0', type=str,
choices=['rare_first', 'non_rare_first', 'uc0', 'uc1', 'uc2', 'uc3', 'uc4'],
help='Select uc_type, uc0~4 denote default five uc types')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers_hopd', default=3, type=int,
help="Number of hopd decoding layers in the transformer")
parser.add_argument('--dec_layers_interaction', default=3, type=int,
help="Number of interaction decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=100, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# HOI
parser.add_argument('--num_obj_classes', type=int, default=80,
help="Number of object classes")
parser.add_argument('--num_verb_classes', type=int, default=117,
help="Number of verb classes")
parser.add_argument('--pretrained', type=str, default='',
help='Pretrained model path')
parser.add_argument('--subject_category_id', default=0, type=int)
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
parser.add_argument('--use_matching', action='store_true',
help="Use obj/sub matching 2class loss in first decoder, default not use")
# * Matcher
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=2.5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=1, type=float,
help="giou box coefficient in the matching cost")
parser.add_argument('--set_cost_obj_class', default=1, type=float,
help="Object class coefficient in the matching cost")
parser.add_argument('--set_cost_verb_class', default=1, type=float,
help="Verb class coefficient in the matching cost")
parser.add_argument('--set_cost_matching', default=1, type=float,
help="Sub and obj box matching coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=2.5, type=float)
parser.add_argument('--giou_loss_coef', default=1, type=float)
parser.add_argument('--obj_loss_coef', default=1, type=float)
parser.add_argument('--verb_loss_coef', default=1.6, type=float)
parser.add_argument('--clip_loss_coef', default=700, type=float)
parser.add_argument('--distill_loss_coef', default=2, type=float)
parser.add_argument('--is_loss_coef', default=1, type=float)
parser.add_argument('--alpha', default=0.5, type=float, help='focal loss alpha')
parser.add_argument('--matching_loss_coef', default=1, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
# dataset parameters
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str)
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--hoi_path', type=str)
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
# decoupling training parameters
parser.add_argument('--obj_reweight', action='store_true')
parser.add_argument('--verb_reweight', action='store_true')
parser.add_argument('--use_static_weights', action='store_true',
help='use static weights or dynamic weights, default use dynamic')
parser.add_argument('--queue_size', default=4704 * 1.0, type=float,
help='Maxsize of queue for obj and verb reweighting, default 1 epoch')
parser.add_argument('--p_obj', default=0.7, type=float,
help='Reweighting parameter for obj')
parser.add_argument('--p_verb', default=0.7, type=float,
help='Reweighting parameter for verb')
# hoi eval parameters
parser.add_argument('--use_nms_filter', action='store_true', help='Use pair nms filter, default not use')
parser.add_argument('--thres_nms', default=0.7, type=float)
parser.add_argument('--nms_alpha', default=1.0, type=float)
parser.add_argument('--nms_beta', default=0.5, type=float)
parser.add_argument('--json_file', default='results.json', type=str)
return parser
def main(args):
# utils.init_distributed_mode(args)
args.distributed = False
# print(args.distributed)
print("git:\n {}\n".format(utils.get_sha()))
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only"
print(args)
device = torch.device(args.device)
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, postprocessors = build_model(args) # peek here
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop, gamma=0.2)
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val', args=args) # val is basically the test
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
# EDIT:
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
output_dir = Path(args.output_dir)
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write("\n" + json.dumps(vars(args)) + "\n")
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if 'criterion' in checkpoint:
criterion.load_state_dict(checkpoint['criterion'])
elif args.pretrained:
checkpoint = torch.load(args.pretrained, map_location='cpu')
if args.eval:
model_without_ddp.load_state_dict(checkpoint['model'])
else:
model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
# evaluate on the test set
if args.eval:
test_stats = evaluate_hoi(args.dataset_file, model, postprocessors, data_loader_val, args.subject_category_id,
device, args)
return
print("Start training")
start_time = time.time()
best_performance_unseen = 0
best_performance = 0
best_performance_seen = 0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch,
args.clip_max_norm) # peek here
lr_scheduler.step()
if epoch == args.epochs - 1:
checkpoint_path = os.path.join(output_dir, 'checkpoint_last.pth')
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'criterion': criterion.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
checkpoint_path = os.path.join(output_dir, 'checkpoint_latest.pth')
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'criterion': criterion.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
# evaluate on the test set
test_stats = evaluate_hoi(args.dataset_file, model, postprocessors, data_loader_val, args.subject_category_id,
device, args)
coco_evaluator = None
if args.dataset_file.startswith('h'): # hico
performance = test_stats['mAP']
performance_unseen = test_stats['mAP unseen']
performance_seen = test_stats['mAP seen']
elif args.dataset_file.startswith('v'): # vcoco
performance = test_stats['mAP_all']
if performance > best_performance:
checkpoint_path = os.path.join(output_dir, 'checkpoint_best.pth')
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'criterion': criterion.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
best_performance = performance
if performance_unseen > best_performance_unseen:
checkpoint_path = os.path.join(output_dir, 'checkpoint_best_unseen.pth')
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'criterion': criterion.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
best_performance_unseen = performance_unseen
if performance_seen > best_performance_seen:
checkpoint_path = os.path.join(output_dir, 'checkpoint_best_seen.pth')
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'criterion': criterion.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
best_performance_seen = performance_seen
if (epoch+1) % 10 == 0:
checkpoint_path = os.path.join(output_dir, f'checkpoint_{epoch}.pth')
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'criterion': criterion.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
# print(f"Test stats after epoch {epoch} ------- ")
# print(log_stats)
# print()
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
# for evaluation logs
if coco_evaluator is not None:
(output_dir / 'eval').mkdir(exist_ok=True)
if "bbox" in coco_evaluator.coco_eval:
filenames = ['latest.pth']
if epoch % 50 == 0:
filenames.append(f'{epoch:03}.pth')
for name in filenames:
torch.save(coco_evaluator.coco_eval["bbox"].eval,
output_dir / "eval" / name)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)