-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01_Object_Creation.R
169 lines (118 loc) · 6.3 KB
/
01_Object_Creation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Load Packages -----------------------------------------------------------
library(tidyverse)
library(Seurat)
library(Matrix)
library(scCustomize)
library(beepr)
library(qs)
# Load GEO Data & Sample Prefixes Data -----------------------------------------------
# *********BEFORE LOADING DATA BE SURE TO REMOVE NON-OBJECT SAMPLES*********
# ***Remove 6 samples from GEO record directory before running downstream code ***
# Remove 3 no percoll samples
# Remove 3 percoll samples
# Path to directory containing remaining 41 GEO records
hammond_data_dir <- "PATH/GSE121654_RAW/Paper_Samples/"
# Read in all dge files from GEO record
hammond_full <- Read_GEO_Delim(data_dir = hammond_data_dir, file_suffix = ".dge.txt.gz", barcode_suffix_period = TRUE)
beep(sound = 2)
# Pull Barcode Prefixes and Merge Matrices --------------------------------
# Pull barcode prefix file names from meta data file
hammond_barcode_prefixes <- read.csv("PATH/Hammond-et-al-2019_Meta-Data_FINAL2.csv", row.names = 1, stringsAsFactors = F)
hammond_barcode_prefixes <- unique(hammond_barcode_prefixes$Sample_Barcode_Prefix)
# Merge into single matrix and rename cell barcodes
hammond_comb <- Merge_Sparse_Data_All(matrix_list = hammond_full, add_cell_ids = hammond_barcode_prefixes)
beep(sound = 2)
# Create & Subset Seurat --------------------------------------------------
# Create Seurat Object
hammond_seurat <- CreateSeuratObject(counts = hammond_comb, project = "Hammond et al., 2019", names.delim = NULL, names.field = NULL)
# View([email protected])
beep(sound = 2)
# Read in meta data and move barcodes to column
hammond_meta <- read.csv("PATH/Hammond-et-al-2019_Meta-Data_FINAL2.csv", row.names = 1)
# Pull cell names of final object from meta data
hammond_final_cells <- hammond_meta %>%
rownames_to_column(var = "barcodes") %>%
pull(barcodes)
# Subset object to only contain cells in meta data
hammond_final_object <- subset(hammond_seurat, cells = hammond_final_cells)
# Check number of cells correct. Should be 76,149
# If number of cells not equal please let me know.
ncol(hammond_final_object)
beep(sound = 2)
# Add Meta Data to Seurat Object ------------------------------------------
# move barcodes to column
hammond_meta_barcodes_column <- hammond_meta %>%
rownames_to_column("barcodes")
# Pull [email protected] slot and move barcodes to column
seurat_meta <- [email protected]
seurat_meta <- seurat_meta %>%
rownames_to_column("barcodes")
# Join dataframes (should join by "barcodes" by default)
joined_meta <- inner_join(seurat_meta, hammond_meta_barcodes_column)
# move barcodes back to rownames and remove redundant meta data columns
joined_meta <- joined_meta %>%
column_to_rownames("barcodes") %>%
select(-c("orig.ident", "nCount_RNA", "nFeature_RNA"))
# Add back to Seurat
hammond_final_object <- AddMetaData(object = hammond_final_object, metadata = joined_meta)
# View([email protected])
# Add tSNE Dim Reduc to Object --------------------------------------------
# pull tsne coordinates
tSNE_coordinates <- [email protected] %>%
rownames_to_column("barcodes") %>%
select(barcodes, tsne_1, tsne_2) %>%
column_to_rownames("barcodes")
# format as matrix
tSNE_coordinates_mat <- as(tSNE_coordinates, "matrix")
# Create DimReduc
hammond_final_object[['tsne']] <- CreateDimReducObject(embeddings = tSNE_coordinates_mat, key = "tSNE_", global = T, assay = "RNA")
# Add Idents to Object & Normalize Data -----------------------------------
Idents(hammond_final_object) <- "Paper_Cluster"
# Normalize Dats to allow for plotting of gene expression
hammond_final_object <- NormalizeData(object = hammond_final_object)
beep(sound = 5)
# Save Object -------------------------------------------------------------
qsave(x = hammond_final_object, file = "Hammond_et-al-2019_Seurat_Converted_v4.qs")
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#################### Young vs. Old Object ####################
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Create Aged Object --------------------------------------------------------------------------
# Read Aged Meta Data
hammond_aged_meta <- qread("PATH/hammond_aged_meta.qs")
# subset all cells by aged meta data
hammond_aged_object <- subset(hammond_seurat, cells = rownames(hammond_aged_meta))
# Add Aged Meta Data to Object ----------------------------------------------------------------
hammond_aged_meta_barcodes_column <- hammond_aged_meta %>%
rownames_to_column("barcodes")
# Pull [email protected] slot and move barcodes to column
seurat_aged_meta <- [email protected]
seurat_aged_meta <- seurat_aged_meta %>%
rownames_to_column("barcodes")
# Join dataframes (should join by "barcodes" by default)
joined_meta_aged <- inner_join(seurat_aged_meta, hammond_aged_meta_barcodes_column)
# move barcodes back to rownames and remove redundant meta data columns
joined_meta_aged <- joined_meta_aged %>%
column_to_rownames("barcodes") %>%
select(-c("orig.ident", "nCount_RNA", "nFeature_RNA"))
# Add back to Seurat
hammond_final_aged_object <- AddMetaData(object = hammond_aged_object, metadata = joined_meta_aged)
[email protected]$orig.ident <- [email protected]$All_names
select(-All_names)
# Add Aged tSNE Dim Reduc to Object --------------------------------------------
# pull tsne coordinates
tSNE_coordinates_aged <- [email protected] %>%
rownames_to_column("barcodes") %>%
select(barcodes, tsne_1, tsne_2) %>%
column_to_rownames("barcodes")
# format as matrix
tSNE_coordinates_mat_aged <- as(tSNE_coordinates, "matrix")
# Create DimReduc
hammond_final_aged_object[['tsne']] <- CreateDimReducObject(embeddings = tSNE_coordinates_mat_aged, key = "tSNE_", global = T, assay = "RNA")
# Add Idents to Object & Normalize Data -----------------------------------
Idents(hammond_final_aged_object) <- "cluster_name"
# Normalize Data to allow for plotting of gene expression
hammond_final_aged_object <- NormalizeData(object = hammond_final_aged_object)
beep(sound = 5)
# Save Object -------------------------------------------------------------
qsave(x = hammond_final_aged_object, file = "Hammond_et-al-2019_Aged_Seurat_Converted_v4.qs")