-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathapp.py
executable file
·124 lines (118 loc) · 3.83 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import pandas as pd
import numpy as np
import plotly.express as px
from utils.routing.distances import (
distance_picking,
next_location
)
from utils.routing.routes import (
create_picking_route
)
from utils.batch.mapping_batch import (
orderlines_mapping,
locations_listing
)
from utils.cluster.mapping_cluster import (
df_mapping
)
from utils.batch.simulation_batch import (
simulation_wave,
simulate_batch
)
from utils.cluster.simulation_cluster import(
loop_wave,
simulation_cluster,
create_dataframe,
process_methods
)
from utils.results.plot import (
plot_simulation1,
plot_simulation2
)
import streamlit as st
from streamlit import caching
# Set page configuration
st.set_page_config(page_title ="Improve Warehouse Productivity using Order Batching",
initial_sidebar_state="expanded",
layout='wide',
page_icon="🛒")
# Set up the page
@st.cache(persist=False,
allow_output_mutation=True,
suppress_st_warning=True,
show_spinner= True)
# Preparation of data
def load(filename, n):
df_orderlines = pd.read_csv(IN + filename).head(n)
return df_orderlines
# Alley Coordinates on y-axis
y_low, y_high = 5.5, 50
# Origin Location
origin_loc = [0, y_low]
# Distance Threshold (m)
distance_threshold = 35
distance_list = [1] + [i for i in range(5, 100, 5)]
IN = 'static/in/'
# Store Results by WaveID
list_wid, list_dst, list_route, list_ord, list_lines, list_pcs, list_monomult = [], [], [], [], [], [], []
list_results = [list_wid, list_dst, list_route, list_ord, list_lines, list_pcs, list_monomult] # Group in list
# Store Results by Simulation (Order_number)
list_ordnum , list_dstw = [], []
# Simulation 1: Order Batch
# SCOPE SIZE
st.header("**🥇 Impact of the wave size in orders (Orders/Wave) **")
st.subheader('''
🛠️ HOW MANY ORDER LINES DO YOU WANT TO INCLUDE IN YOUR ANALYSIS?
''')
col1, col2 = st.beta_columns(2)
with col1:
n = st.slider(
'SIMULATION 1 SCOPE (THOUSDAND ORDERS)', 1, 200 , value = 5)
with col2:
lines_number = 1000 * n
st.write('''🛠️{:,} \
order lines'''.format(lines_number))
# SIMULATION PARAMETERS
st.subheader('''
🛠️ SIMULATE ORDER PICKING BY WAVE OF N ORDERS PER WAVE WITH N IN [N_MIN, N_MAX] ''')
col_11 , col_22 = st.beta_columns(2)
with col_11:
n1 = st.slider(
'SIMULATION 1: N_MIN (ORDERS/WAVE)', 0, 20 , value = 1)
n2 = st.slider(
'SIMULATION 1: N_MAX (ORDERS/WAVE)', n1 + 1, 20 , value = int(np.max([n1+1 , 10])))
with col_22:
st.write('''[N_MIN, N_MAX] = [{:,}, {:,}]'''.format(n1, n2))
# START CALCULATION
start_1= False
if st.checkbox('SIMULATION 1: START CALCULATION',key='show', value=False):
start_1 = True
# Calculation
if start_1:
df_orderlines = load('df_lines.csv', lines_number)
df_waves, df_results = simulate_batch(n1, n2, y_low, y_high, origin_loc, lines_number, df_orderlines)
plot_simulation1(df_results, lines_number)
# Simulation 2: Order Batch using Spatial Clustering
# SCOPE SIZE
st.header("**🥈 Impact of the order batching method **")
st.subheader('''
🛠️ HOW MANY ORDER LINES DO YOU WANT TO INCLUDE IN YOUR ANALYSIS?
''')
col1, col2 = st.beta_columns(2)
with col1:
n_ = st.slider(
'SIMULATION 2 SCOPE (THOUSDAND ORDERS)', 1, 200 , value = 5)
with col2:
lines_2 = 1000 * n_
st.write('''🛠️{:,} \
order lines'''.format(lines_2))
# START CALCULATION
start_2 = False
if st.checkbox('SIMULATION 2: START CALCULATION',key='show_2', value=False):
start_2 = True
# Calculation
if start_2:
df_orderlines = load('df_lines.csv', lines_2)
df_reswave, df_results = simulation_cluster(y_low, y_high, df_orderlines, list_results, n1, n2,
distance_threshold)
plot_simulation2(df_reswave, lines_2, distance_threshold)