-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
414 lines (372 loc) · 13.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import json
import os
import torch
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm, trange
import argparse
from env import Box, get_last_states
from model import CirclePF, CirclePB, NeuralNet
from sampling import (
sample_trajectories,
evaluate_backward_logprobs,
evaluate_state_flows,
)
from utils import (
fit_kde,
plot_reward,
sample_from_reward,
plot_samples,
estimate_jsd,
plot_trajectories,
plot_termination_probabilities,
)
try:
import wandb
except ModuleNotFoundError:
pass
USE_WANDB = True
NO_PLOT = False
parser = argparse.ArgumentParser()
parser.add_argument("--dim", type=int, default=2)
parser.add_argument("--delta", type=float, default=0.25)
parser.add_argument("--env_epsilon", type=float, default=1e-10)
parser.add_argument(
"--n_components",
type=int,
default=2,
help="Number of components in Mixture Of Betas",
)
parser.add_argument("--reward_debug", action="store_true", default=False)
parser.add_argument(
"--n_components_s0",
type=int,
default=4,
help="Number of components in Mixture Of Betas",
)
parser.add_argument(
"--beta_min",
type=float,
default=0.1,
help="Minimum value for the concentration parameters of the Beta distribution",
)
parser.add_argument(
"--beta_max",
type=float,
default=5.0,
help="Maximum value for the concentration parameters of the Beta distribution",
)
parser.add_argument(
"--loss", type=str, choices=["tb", "db", "modifieddb", "reinforce_tb"], default="tb"
)
parser.add_argument(
"--alpha",
type=float,
default=1.0,
help="Weight of the reward term in DB",
)
parser.add_argument(
"--alpha_schedule",
type=float,
default=1.0,
help="every 1000 iterations, divide alpha by this value - the maximum value of alpha is 1.0",
)
parser.add_argument(
"--PB",
type=str,
choices=["learnable", "tied", "uniform"],
default="learnable",
)
parser.add_argument("--gamma_scheduler", type=float, default=0.5)
parser.add_argument("--scheduler_milestone", type=int, default=2500)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--lr_Z", type=float, default=1e-3)
parser.add_argument("--lr_F", type=float, default=1e-2)
parser.add_argument("--tie_F", action="store_true", default=False)
parser.add_argument("--BS", type=int, default=128)
parser.add_argument("--n_iterations", type=int, default=20000)
parser.add_argument("--hidden_dim", type=int, default=128)
parser.add_argument("--n_hidden", type=int, default=3)
parser.add_argument("--n_evaluation_trajectories", type=int, default=10000)
parser.add_argument("--no_plot", action="store_true", default=False)
parser.add_argument("--no_wandb", action="store_true", default=False)
parser.add_argument("--wandb_project", type=str, default="continuous_gflownets")
args = parser.parse_args()
if args.no_plot:
NO_PLOT = True
if args.no_wandb:
USE_WANDB = False
if USE_WANDB:
wandb.init(project=args.wandb_project, save_code=True)
wandb.config.update(args)
dim = args.dim
delta = args.delta
seed = args.seed
lr = args.lr
lr_Z = args.lr_Z
lr_F = args.lr_F
n_iterations = args.n_iterations
BS = args.BS
n_components = args.n_components
n_components_s0 = args.n_components_s0
loss_type = args.loss
if seed == 0:
seed = np.random.randint(int(1e6))
run_name = f"d{delta}_{loss_type}_PB{args.PB}_lr{lr}_lrZ{lr_Z}_sd{seed}"
run_name += f"_n{n_components}_n0{n_components_s0}"
run_name += f"_gamma{args.gamma_scheduler}_mile{args.scheduler_milestone}"
print(run_name)
if USE_WANDB:
wandb.run.name = run_name # type: ignore
torch.manual_seed(seed)
np.random.seed(seed)
env = Box(
dim=dim,
delta=delta,
epsilon=args.env_epsilon,
device_str="cpu",
reward_debug=args.reward_debug,
)
# Get the true KDE
samples = sample_from_reward(env, n_samples=10000)
true_kde, fig1 = fit_kde(samples, plot=True)
if USE_WANDB:
# log the reward figure
fig2 = plot_reward(env)
wandb.log(
{
"reward": wandb.Image(fig2),
"reward_kde": wandb.Image(fig1),
}
)
model = CirclePF(
hidden_dim=args.hidden_dim,
n_hidden=args.n_hidden,
n_components=n_components,
n_components_s0=n_components_s0,
beta_min=args.beta_min,
beta_max=args.beta_max,
)
bw_model = CirclePB(
hidden_dim=args.hidden_dim,
n_hidden=args.n_hidden,
torso=model.torso if args.PB == "tied" else None,
uniform=args.PB == "uniform",
n_components=n_components,
beta_min=args.beta_min,
beta_max=args.beta_max,
)
if args.loss == "db":
flow_model = NeuralNet(
hidden_dim=args.hidden_dim,
n_hidden=args.n_hidden,
torso=None if not args.tie_F else model.torso,
output_dim=1,
)
logZ = torch.zeros(1, requires_grad=True)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
if args.PB != "uniform":
optimizer.add_param_group(
{
"params": bw_model.output_layer.parameters()
if args.PB == "tied"
else bw_model.parameters(),
"lr": lr,
}
)
optimizer.add_param_group({"params": [logZ], "lr": lr_Z})
if args.loss == "db":
optimizer.add_param_group(
{
"params": flow_model.output_layer.parameters()
if args.tie_F
else flow_model.parameters(),
"lr": lr_F,
}
)
print("using flow model")
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[i * args.scheduler_milestone for i in range(1, 10)],
gamma=args.gamma_scheduler,
)
jsd = float("inf")
current_alpha = args.alpha * args.alpha_schedule
for i in trange(n_iterations):
if i % 1000 == 0:
current_alpha = max(current_alpha / args.alpha_schedule, 1.0)
print(f"current optimizer LR: {optimizer.param_groups[0]['lr']}")
optimizer.zero_grad()
trajectories, actionss, logprobs, all_logprobs = sample_trajectories(
env,
model,
BS,
)
last_states = get_last_states(env, trajectories)
logrewards = env.reward(last_states).log()
bw_logprobs, all_bw_logprobs = evaluate_backward_logprobs(
env, bw_model, trajectories
)
if loss_type == "tb":
loss = torch.mean((logZ + logprobs - bw_logprobs - logrewards) ** 2)
elif loss_type == "reinforce_tb":
losses = (logZ + logprobs - bw_logprobs - logrewards) ** 2
baseline = losses.mean()
term_1 = (losses - baseline).detach() * logprobs
term_2 = losses
loss = torch.mean(term_1 + term_2)
elif loss_type == "modifieddb":
exits = torch.full(
(trajectories.shape[0], trajectories.shape[1] - 1), -float("inf")
)
msk = torch.all(trajectories[:, 1:] != -float("inf"), dim=-1)
middle_states = trajectories[:, 1:][msk]
exit_proba, _ = model.to_dist(middle_states)
true_exit_log_probs = torch.zeros_like(exit_proba) # type: ignore
edgy_middle_states_mask = torch.norm(1 - middle_states, dim=-1) <= env.delta
other_edgy_middle_states_mask = torch.any(
middle_states >= 1 - env.epsilon, dim=-1
)
true_exit_log_probs[edgy_middle_states_mask] = 0
true_exit_log_probs[other_edgy_middle_states_mask] = 0
true_exit_log_probs[
~edgy_middle_states_mask & ~other_edgy_middle_states_mask
] = torch.log(
exit_proba[~edgy_middle_states_mask & ~other_edgy_middle_states_mask] # type: ignore
)
exits[msk] = true_exit_log_probs
exits = torch.cat([torch.zeros((trajectories.shape[0], 1)), exits], dim=1)
non_infinity_mask = all_logprobs != -float("inf")
_, indices = torch.max(non_infinity_mask.flip(1), dim=1)
indices = all_logprobs.shape[1] - indices - 1
new_all_logprobs = all_logprobs.scatter(1, indices.unsqueeze(1), -float("inf"))
all_log_rewards = torch.full(
(trajectories.shape[0], trajectories.shape[1] - 1), -float("inf")
)
log_rewards = env.reward(trajectories[:, 1:][msk]).log()
all_log_rewards[msk] = log_rewards
all_log_rewards = torch.cat(
[logZ * torch.ones((trajectories.shape[0], 1)), all_log_rewards], dim=1
)
preds = new_all_logprobs[:, :-1] + exits[:, 1:-1] + all_log_rewards[:, :-2]
targets = all_bw_logprobs + exits[:, :-2] + all_log_rewards[:, 1:-1]
flat_preds = preds[preds != -float("inf")]
flat_targets = targets[targets != -float("inf")]
loss = torch.mean((flat_preds - flat_targets) ** 2)
elif loss_type == "db":
log_state_flows = evaluate_state_flows(env, flow_model, trajectories, logZ) # type: ignore
db_preds = all_logprobs + log_state_flows
db_targets = all_bw_logprobs + log_state_flows[:, 1:]
if args.alpha == 1.0:
db_targets = torch.cat(
[
db_targets,
torch.full(
(db_targets.shape[0], 1),
-float("inf"),
device=db_targets.device,
),
],
dim=1,
)
infinity_mask = db_targets == -float("inf")
_, indices_of_first_inf = torch.max(infinity_mask, dim=1)
db_targets = db_targets.scatter(
1, indices_of_first_inf.unsqueeze(1), logrewards.unsqueeze(1)
)
flat_db_preds = db_preds[db_preds != -float("inf")]
flat_db_targets = db_targets[db_targets != -float("inf")]
loss = torch.mean((flat_db_preds - flat_db_targets) ** 2)
else:
non_infinity_mask = db_preds.flip(1) != -float("inf")
_, reverse_indices_of_last_non_inf = torch.max(non_infinity_mask, dim=1)
indices_of_last_non_inf = (
db_preds.shape[1] - 1 - reverse_indices_of_last_non_inf
)
db_preds_rewards = db_preds.gather(1, indices_of_last_non_inf.unsqueeze(1))
db_preds2 = db_preds.scatter(
1, indices_of_last_non_inf.unsqueeze(1), -float("inf")
)
flat_db_preds = db_preds2[db_preds2 != -float("inf")]
flat_db_targets = db_targets[db_targets != -float("inf")]
loss = torch.mean(
(flat_db_preds - flat_db_targets) ** 2
) + current_alpha * torch.mean((db_preds_rewards - logrewards) ** 2)
else:
raise ValueError("Unknown loss type")
if torch.isinf(loss):
raise ValueError("Infinite loss")
loss.backward()
# clip the gradients for bw_model
for p in bw_model.parameters():
if p.grad is not None:
p.grad.data.clamp_(-10, 10).nan_to_num_(0.0)
for p in model.parameters():
if p.grad is not None:
p.grad.data.clamp_(-10, 10).nan_to_num_(0.0)
optimizer.step()
scheduler.step()
if any(
[
torch.isnan(list(model.parameters())[i]).any()
for i in range(len(list(model.parameters())))
]
):
raise ValueError("NaN in model parameters")
if i % 100 == 0:
if USE_WANDB:
wandb.log(
{
"loss": loss.item(),
"logZdiff": np.log(env.Z) - logZ.item(),
"states_visited": (i + 1) * BS,
},
step=i,
)
tqdm.write(
# Loss with 3 digits of precision, logZ with 2 digits of precision, true logZ with 2 digits of precision
# Last computed JSD with 4 digits of precision
f"States: {(i + 1) * BS}, Loss: {loss.item():.3f}, logZ: {logZ.item():.2f}, true logZ: {np.log(env.Z):.2f}, JSD: {jsd:.4f}"
)
if i % 500 == 0:
trajectories, _, _, _ = sample_trajectories(
env, model, args.n_evaluation_trajectories
)
last_states = get_last_states(env, trajectories)
kde, fig4 = fit_kde(last_states, plot=True)
jsd = estimate_jsd(kde, true_kde)
if USE_WANDB:
if NO_PLOT:
wandb.log(
{
"JSD": jsd,
},
step=i,
)
else:
colors = plt.cm.rainbow(np.linspace(0, 1, 10))
fig1 = plot_samples(last_states[:2000].detach().cpu().numpy())
fig2 = plot_trajectories(trajectories.detach().cpu().numpy()[:20])
fig3 = plot_termination_probabilities(model)
wandb.log(
{
"last_states": wandb.Image(fig1),
"trajectories": wandb.Image(fig2),
"termination_probs": wandb.Image(fig3),
"kde": wandb.Image(fig4),
"JSD": jsd,
},
step=i,
)
if USE_WANDB:
wandb.finish()
# Save model and arguments as JSON
save_path = os.path.join("saved_models", run_name)
if not os.path.exists(save_path):
os.makedirs(save_path)
torch.save(model.state_dict(), os.path.join(save_path, "model.pt"))
torch.save(bw_model.state_dict(), os.path.join(save_path, "bw_model.pt"))
torch.save(logZ, os.path.join(save_path, "logZ.pt"))
with open(os.path.join(save_path, "args.json"), "w") as f:
json.dump(vars(args), f)