-
Get monthly cases for Bengaluru
-
-
-
## Rows: 661869 Columns: 8
-## ── Column specification ────────────────────────────────────────────────────────
-## Delimiter: ","
-## chr (2): State, District
-## dbl (5): Confirmed, Recovered, Deceased, Other, Tested
-## date (1): Date
-##
-## ℹ Use `spec()` to retrieve the full column specification for this data.
-## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
-
-head(Bengaluru_monthly_cases)
-
## # A tibble: 6 × 4
-## # Groups: MonthYear, State [3]
-## MonthYear State District value
-## <yearmon> <chr> <chr> <dbl>
-## 1 Apr 2020 Karnataka Bengaluru Rural 6
-## 2 Apr 2020 Karnataka Bengaluru Urban 141
-## 3 May 2020 Karnataka Bengaluru Rural 9
-## 4 May 2020 Karnataka Bengaluru Urban 218
-## 5 Jun 2020 Karnataka Bengaluru Rural 114
-## 6 Jun 2020 Karnataka Bengaluru Urban 4196
-
-
Plot monthly cases for Bengaluru
-
-
-p1 <- BarPlot(Bengaluru_monthly_cases, ylabel = "Cases per month", label_si = TRUE, title = "Total cases per month - Bengaluru (India)", caption = "**Source: covid19bharat.org**<br>")
-p1
-
-
-
-
-
Project weekly cases to variant prevalence data from GISAID
-
-
-
## # weights: 44 (30 variable)
-## initial value 27280.854519
-## iter 10 value 12654.212777
-## iter 20 value 6673.400386
-## iter 30 value 5900.795573
-## iter 40 value 5579.611334
-## iter 50 value 5437.754669
-## iter 60 value 5289.623501
-## iter 70 value 5089.205002
-## iter 80 value 4828.414224
-## iter 90 value 4722.853944
-## iter 100 value 4716.025496
-## iter 110 value 4708.762722
-## iter 120 value 4703.187810
-## iter 130 value 4702.317236
-## iter 140 value 4700.036796
-## iter 150 value 4698.415786
-## iter 160 value 4691.593834
-## iter 170 value 4666.532005
-## iter 180 value 4647.199789
-## iter 190 value 4645.953016
-## iter 200 value 4644.413888
-## iter 210 value 4640.909007
-## iter 220 value 4639.913660
-## iter 230 value 4639.756334
-## iter 240 value 4639.163422
-## iter 250 value 4637.084115
-## iter 260 value 4636.784964
-## iter 270 value 4635.808570
-## iter 280 value 4634.779618
-## iter 290 value 4634.438043
-## iter 300 value 4634.244641
-## final value 4632.480217
-## converged
-
-the_anim <- PlotVariantPrevalenceAnimated(india_cases_pred_prob_sel_long, title = "Estimated cases (weekly average) in Bengaluru (India) by variant", caption = "**Source: gisaid.org and covid19bharat.org**", date_breaks = "28 days")
-gganimate::anim_save(filename = here::here("docs/articles/Bengaluru_animated.gif"), animation = the_anim)
-
-
Look at cases after January, 2022 only:
-
-
## Rows: 661869 Columns: 8
-## ── Column specification ────────────────────────────────────────────────────────
-## Delimiter: ","
-## chr (2): State, District
-## dbl (5): Confirmed, Recovered, Deceased, Other, Tested
-## date (1): Date
-##
-## ℹ Use `spec()` to retrieve the full column specification for this data.
-## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
-
-
## # weights: 40 (27 variable)
-## initial value 13260.587551
-## iter 10 value 4244.312127
-## iter 20 value 3571.482803
-## iter 30 value 3494.250103
-## iter 40 value 3457.604725
-## iter 50 value 3444.861697
-## iter 60 value 3440.569061
-## iter 70 value 3439.411840
-## iter 80 value 3438.525153
-## iter 90 value 3438.196092
-## iter 100 value 3437.826340
-## iter 110 value 3437.265419
-## iter 120 value 3437.234425
-## iter 130 value 3437.191321
-## iter 140 value 3437.012394
-## iter 150 value 3436.953845
-## iter 160 value 3436.881184
-## iter 170 value 3436.695579
-## iter 180 value 3436.659370
-## iter 190 value 3436.612976
-## iter 200 value 3436.592489
-## iter 210 value 3436.564673
-## iter 220 value 3436.539005
-## final value 3436.537103
-## converged
-
-the_anim <- PlotVariantPrevalenceAnimated(cases_pred_prob_sel_long, title = "Estimated cases (weekly average) in Bengaluru (India) by variant", caption = "**Source: gisaid.org and covid19bharat.org**<br>")
-
## `geom_line()`: Each group consists of only one observation.
-## ℹ Do you need to adjust the group aesthetic?
-## `geom_line()`: Each group consists of only one observation.
-## ℹ Do you need to adjust the group aesthetic?
-
-gganimate::anim_save(filename = here::here("docs/articles/Bengaluru_animated_2021.gif"), animation = the_anim)
-
-
Look at cases in the last few weeks:
-
-
## Rows: 661869 Columns: 8
-## ── Column specification ────────────────────────────────────────────────────────
-## Delimiter: ","
-## chr (2): State, District
-## dbl (5): Confirmed, Recovered, Deceased, Other, Tested
-## date (1): Date
-##
-## ℹ Use `spec()` to retrieve the full column specification for this data.
-## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
-
-
## # weights: 40 (27 variable)
-## initial value 13260.587551
-## iter 10 value 4244.312127
-## iter 20 value 3571.482803
-## iter 30 value 3494.250103
-## iter 40 value 3457.604725
-## iter 50 value 3444.861697
-## iter 60 value 3440.569061
-## iter 70 value 3439.411840
-## iter 80 value 3438.525153
-## iter 90 value 3438.196092
-## iter 100 value 3437.826340
-## iter 110 value 3437.265419
-## iter 120 value 3437.234425
-## iter 130 value 3437.191321
-## iter 140 value 3437.012394
-## iter 150 value 3436.953845
-## iter 160 value 3436.881184
-## iter 170 value 3436.695579
-## iter 180 value 3436.659370
-## iter 190 value 3436.612976
-## iter 200 value 3436.592489
-## iter 210 value 3436.564673
-## iter 220 value 3436.539005
-## final value 3436.537103
-## converged
-
-the_anim <- PlotVariantPrevalenceAnimated(cases_pred_prob_sel_long, title = "Estimated cases (weekly average) in Bengaluru (India) by variant", caption = "**Source: gisaid.org and covid19bharat.org**<br>")
-
## `geom_line()`: Each group consists of only one observation.
-## ℹ Do you need to adjust the group aesthetic?
-## `geom_line()`: Each group consists of only one observation.
-## ℹ Do you need to adjust the group aesthetic?
-
-gganimate::anim_save(filename = here::here("docs/articles/Bengaluru_animated_2022.gif"), animation = the_anim)
-
-
-