diff --git a/KNN.py b/KNN.py new file mode 100644 index 0000000..0ae125a --- /dev/null +++ b/KNN.py @@ -0,0 +1,32 @@ +# Importing the libraries +import numpy as np +import matplotlib.pyplot as plt +import pandas as pd +import os +os.chdir('C:\\Users\\saket\\Desktop\\cricket machine learning') +# Importing the dataset +dataset = pd.read_csv('worldCup.csv') +X = dataset.iloc[:, [1,2,3,4,5,6,7,8]].values +y = dataset.iloc[:, 9].values + +# Splitting the dataset into the Training set and Test set +from sklearn.cross_validation import train_test_split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) + +# Feature Scaling +from sklearn.preprocessing import StandardScaler +sc = StandardScaler() +X_train = sc.fit_transform(X_train) +X_test = sc.transform(X_test) + +# Fitting K-NN to the Training set +from sklearn.neighbors import KNeighborsClassifier +classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2) +classifier.fit(X_train, y_train) + +# Predicting the Test set results +y_pred = classifier.predict(X_test) + +# Making the Confusion Matrix +from sklearn.metrics import confusion_matrix +cm = confusion_matrix(y_test, y_pred) \ No newline at end of file