-
Notifications
You must be signed in to change notification settings - Fork 4
/
iba_simulated_averaging.py
431 lines (385 loc) · 21.4 KB
/
iba_simulated_averaging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from collections import namedtuple
import torchvision.transforms as transforms
from torchvision import datasets, transforms
import os
import argparse
import pdb
import copy
import numpy as np
from torch.optim import lr_scheduler
from utils import *
from fl_trainer import *
from models.vgg import get_vgg_model
from models.resnet import ResNet18TinyImagenet
import wandb
from lira_helper import *
READ_CKPT=True
# helper function because otherwise non-empty strings
# evaluate as True
def bool_string(s):
if s not in {'False', 'True'}:
raise ValueError('Not a valid boolean string')
return s == 'True'
if __name__ == "__main__":
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=64, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=14, metavar='N',
help='number of epochs to train (default: 14)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--fraction', type=float or int, default=10,
help='how many fraction of poisoned data inserted')
parser.add_argument('--local_train_period', type=int, default=1,
help='number of local training epochs')
parser.add_argument('--num_nets', type=int, default=3383,
help='number of totally available users')
parser.add_argument('--part_nets_per_round', type=int, default=30,
help='number of participating clients per FL round')
parser.add_argument('--fl_round', type=int, default=100,
help='total number of FL round to conduct')
parser.add_argument('--fl_mode', type=str, default="fixed-freq",
help='fl mode: fixed-freq mode or fixed-pool mode')
parser.add_argument('--attacker_pool_size', type=int, default=100,
help='size of attackers in the population, used when args.fl_mode == fixed-pool only')
parser.add_argument('--defense_method', type=str, default="no-defense",
help='defense method used: no-defense|norm-clipping|norm-clipping-adaptive|weak-dp|krum|multi-krum|rfa|')
parser.add_argument('--device', type=str, default='cuda',
help='device to set, can take the value of: cuda or cuda:x')
parser.add_argument('--attack_method', type=str, default="blackbox",
help='describe the attack type: blackbox|pgd|graybox|')
parser.add_argument('--dataset', type=str, default='mnist',
help='dataset to use during the training process')
parser.add_argument('--model', type=str, default='lenet',
help='model to use during the training process')
parser.add_argument('--aggregator', type=str, default='fedavg',
help='aggregator used for federated learning procedure')
parser.add_argument('--eps', type=float, default=5e-5,
help='specify the l_inf epsilon budget')
parser.add_argument('--atk_lr', type=float, default=5e-5,
help='specify the l_inf epsilon budget')
parser.add_argument('--norm_bound', type=float, default=3,
help='describe if there is defense method: no-defense|norm-clipping|weak-dp|')
parser.add_argument('--adversarial_local_training_period', type=int, default=5,
help='specify how many epochs the adversary should train for')
parser.add_argument('--poison_type', type=str, default='ardis',
help='specify source of data poisoning: |ardis|fashion|(for EMNIST) || |southwest|southwest+wow|southwest-da|greencar-neo|howto|(for CIFAR-10)')
parser.add_argument('--rand_seed', type=int, default=7,
help='random seed utilize in the experiment for reproducibility.')
parser.add_argument('--model_replacement', type=bool_string, default=False,
help='to scale or not to scale')
parser.add_argument('--retrain', type=bool_string, default=True,
help='retrain the attack model or not')
parser.add_argument('--atk_baseline', type=bool_string, default=False,
help='attack scheme as a baslien to compare with ours')
parser.add_argument('--project_frequency', type=int, default=10,
help='project once every how many epochs')
parser.add_argument('--adv_lr', type=float, default=0.02,
help='learning rate for adv in PGD setting')
parser.add_argument('--prox_attack', type=bool_string, default=False,
help='use prox attack')
parser.add_argument('--attack_case', type=str, default="edge-case",
help='attack case indicates wheather the honest nodes see the attackers poisoned data points: edge-case|normal-case|almost-edge-case')
parser.add_argument('--stddev', type=float, default=0.158,
help='choose std_dev for weak-dp defense')
parser.add_argument('--attack_freq', type=int, default=1,
help='attack frequency for fix-freq attack scheme')
parser.add_argument('--group', type=str, default="LIRA-FL-Experiments",
help='group name for wandb logging')
parser.add_argument('--attack_portion', type=float, default=1.0,
help='Portion to attack the data')
parser.add_argument('--attack_alpha', type=float, default=0.5,
help='Paramter alpha for the optimization of LIRA')
parser.add_argument('--scale', type=float, default=1.0,
help='Scaling factor for the poisoned model')
parser.add_argument('--atk_eps', type=float, default=0.01,
help='Epsilon for noise constraint in LIRA')
parser.add_argument('--atk_test_eps', type=float, default=0.01,
help='Epsilon for noise constraint in LIRA when testing')
parser.add_argument('--eps_decay', type=float, default=0.001,
help='Decay rate for training eps of the atk model')
parser.add_argument('--scale_weights_poison', type=float, default=1.0,
help='scale weight poison factor for the attacker(s)')
parser.add_argument('--instance', type=str, default="",
help='instance for running wandb instance for easier tracking')
parser.add_argument('--attack_model', type=str, default="unet",
help='model used for conducting the attack (i.e, unet/autoencoder)')
parser.add_argument('--num_dps_attacker', type=int, default=1000,
help='Number of data points for attacker')
parser.add_argument('--atk_model_train_epoch', type=int, default=1,
help='Local training epoch for the attack model')
parser.add_argument('--num_workers', type=int, default=128)
parser.add_argument('--target_label', type=int, default=1,
help='Target label of backdoor attack settings')
parser.add_argument('--baseline', type=bool_string, default=False,
help='run as baseline')
parser.add_argument('--save_model', type=bool_string, default=False,
help='save the model for the further analysis')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
kwargs = {'num_workers': args.num_workers, 'pin_memory': True} if use_cuda else {}
device = torch.device(args.device if use_cuda else "cpu")
"""
# hack to make stuff work on GD's machines
if torch.cuda.device_count() > 2:
device = 'cuda:4' if use_cuda else 'cpu'
#device = 'cuda:2' if use_cuda else 'cpu'
#device = 'cuda' if use_cuda else 'cpu'
else:
device = 'cuda' if use_cuda else 'cpu'
"""
# PARSER arguments for LIRA backdoor attack only
lira_args = {
'eps': args.atk_eps,
'epochs': 50,
'lr': 0.02,
'test_eps': None,
'test_alpha': None,
'attack_alpha': args.attack_alpha,
'avoid_cls_reinit': False,
'mode': 'all2one',
'lr_atk': args.atk_lr,
'save_model': False,
'clsmodel': args.model,
'train_epoch': args.atk_model_train_epoch,
'attack_model': args.attack_model,
'attack_portion': args.attack_portion,
'path': 'saved_path/',
'target_label': args.target_label,
'dataset': args.dataset,
'scale_weights_poison': args.scale_weights_poison,
'best_threshold': 0.1
}
wandb_ins_name = args.instance if args.instance else f"{args.defense_method}_baseline_{args.baseline}_{args.dataset}_alpha_{args.attack_alpha}_eps_{args.atk_eps}_numiter_{args.adversarial_local_training_period}_epc_{args.atk_model_train_epoch}_{args.model}"
instance_name = "LIRA-first-trial"
# group_name = "LIRA-FL-v2.3.1"
group_name = args.group
# wandb_ins = wandb.init(project="LIRA in FL",
# # entity="vinuni-ai-secure-lab",
# entity="aiotlab",
# name=wandb_ins_name,
# group=group_name)
wandb_ins = None
# lira_args = namedtuple('Struct', lira_args.keys())(*lira_args.values())
logger.info("Running LIRA backdoor attack in FL with args: {}".format(args))
logger.info(device)
logger.info('==> Building model..')
# START loading the transformation model/ attack model
atkmodel, tgtmodel = create_trigger_model(args.dataset, device)
torch.manual_seed(args.seed)
criterion = nn.CrossEntropyLoss()
# add random seed for the experiment for reproducibility
seed_experiment(seed=args.rand_seed)
import copy
# the hyper-params are inspired by the paper "Can you really backdoor FL?" (https://arxiv.org/pdf/1911.07963.pdf)
# partition_strategy = "homo"
partition_strategy = "hetero-dir"
# print("Process partition_data function")
# dir_alpha = 0.01 if args.dataset == "tiny-imagenet" else 0.5
dir_alpha = 0.5
net_dataidx_map = partition_data(
args.dataset, './data', partition_strategy,
args.num_nets, dir_alpha, args) # 0.5 for cifar10, mnist; 0.01 for tinyimagenet
# exit(0)
# rounds of fl to conduct
## some hyper-params here:
local_training_period = args.local_train_period #5 #1
adversarial_local_training_period = 5
# load poisoned dataset:
poisoned_train_loader, vanilla_test_loader, targetted_task_test_loader, num_dps_poisoned_dataset, clean_train_loader = load_poisoned_dataset(args=args)
# READ_CKPT = False
# vanilla_test_loader, clean_train_loader --> for 1 client --> for tiny img
# clean_train_loader --> poisoned data loader, belong to attackers.
# net_avg: global model
if READ_CKPT:
if args.model == "lenet":
net_avg = Net(num_classes=10).to(device)
with open("./checkpoint/emnist_lenet_10epoch.pt", "rb") as ckpt_file:
ckpt_state_dict = torch.load(ckpt_file, map_location=device)
elif args.model in ("vgg9", "vgg11", "vgg13", "vgg16"):
net_avg = get_vgg_model(args.model).to(device)
# net_avg = VGG(args.model.upper()).to(device)
# load model here
#with open("./checkpoint/trained_checkpoint_vanilla.pt", "rb") as ckpt_file:
with open("./checkpoint/Cifar10_{}_10epoch.pt".format(args.model.upper()), "rb") as ckpt_file:
ckpt_state_dict = torch.load(ckpt_file, map_location=device)
elif args.model in ("resnet18tiny"):
from models.resnet_tinyimagenet import resnet18
net_avg = resnet18(num_classes=200).to(device)
# net_avg = ResNet18TinyImagenet()
ckpt_state_dict = torch.load(f"checkpoint/tiny-imagenet-resnet18.pt", map_location=device)
# with open("./checkpoint/tiny-resnet.epoch_20".format(args.model.upper()), "rb") as ckpt_file:
# ckpt_state_dict = torch.load(ckpt_file['state_dict'], map_location=device)
net_avg.load_state_dict(ckpt_state_dict)
logger.info("Loading checkpoint file successfully ...")
else:
if args.model == "lenet":
net_avg = Net(num_classes=10).to(device)
elif args.model in ("vgg9", "vgg11", "vgg13", "vgg16"):
net_avg = get_vgg_model(args.model).to(device)
elif args.model in ("resnet18tiny"):
from models.resnet_tinyimagenet import resnet18
net_avg = resnet18(num_classes=200).to(device)
scratch_model = copy.deepcopy(net_avg)
logger.info("Test the model performance on the entire task before FL process ... ")
# test(net_avg, device, vanilla_test_loader, test_batch_size=args.test_batch_size, criterion=criterion, mode="raw-task", dataset=args.dataset)
# test(net_avg, device, targetted_task_test_loader, test_batch_size=args.test_batch_size, criterion=criterion, mode="targetted-task", dataset=args.dataset, poison_type=args.poison_type)
# let's remain a copy of the global model for measuring the norm distance:
vanilla_model = copy.deepcopy(net_avg)
folder_path = f"{args.group}/{args.instance}"
if args.fl_mode == "fixed-freq":
arguments = {
#"poisoned_emnist_dataset":poisoned_emnist_dataset,
"vanilla_model":vanilla_model,
"net_avg":net_avg,
"net_dataidx_map":net_dataidx_map,
"num_nets":args.num_nets,
"dataset":args.dataset,
"model":args.model,
"folder_path":folder_path,
"part_nets_per_round":args.part_nets_per_round,
"fl_round":args.fl_round,
"local_training_period":args.local_train_period, #5 #1
"adversarial_local_training_period":args.adversarial_local_training_period,
"args_lr":args.lr,
"retrain":args.retrain,
"args_gamma":args.gamma,
"atk_baseline":args.atk_baseline,
"baseline":args.baseline,
"atk_eps":args.atk_eps,
"atk_test_eps":args.atk_test_eps,
"scale":args.scale,
"scale_weights_poison":args.scale_weights_poison,
"eps_decay":args.eps_decay,
"aggregator":args.aggregator,
# "attacking_fl_rounds":[i for i in range(1, args.fl_round + 1) if (i-1)%10 == 0], #"attacking_fl_rounds":[i for i in range(1, fl_round + 1)], #"attacking_fl_rounds":[1],
#"attacking_fl_rounds":[i for i in range(1, args.fl_round + 1) if (i-1)%100 == 0], #"attacking_fl_rounds":[i for i in range(1, fl_round + 1)], #"attacking_fl_rounds":[1],
"attacking_fl_rounds":[i for i in range(1, args.fl_round + 1) if (i-1)%args.attack_freq == 0], # one attacker participating each training round
"num_dps_poisoned_dataset":num_dps_poisoned_dataset,
"poisoned_emnist_train_loader":poisoned_train_loader,
"clean_train_loader":clean_train_loader,
"vanilla_emnist_test_loader":vanilla_test_loader,
"targetted_task_test_loader":targetted_task_test_loader,
"batch_size":args.batch_size,
"test_batch_size":args.test_batch_size,
"log_interval":args.log_interval,
"defense_technique":args.defense_method,
"attack_method":args.attack_method,
"eps":args.eps,
"atk_lr":args.atk_lr,
"save_model":args.save_model,
"norm_bound":args.norm_bound,
"poison_type":args.poison_type,
"device":device,
"model_replacement":args.model_replacement,
"project_frequency":args.project_frequency,
"adv_lr":args.adv_lr,
"prox_attack":args.prox_attack,
"attack_case":args.attack_case,
"stddev":args.stddev,
"atkmodel": atkmodel,
"tgtmodel": tgtmodel,
# "create_net": create_net,
"scratch_model": scratch_model,
}
print("Start FrequencyFederatedLearningTrainer training")
frequency_fl_trainer = FrequencyFederatedLearningTrainer(arguments=arguments, lira_args=lira_args)
frequency_fl_trainer.run(wandb_ins = wandb_ins)
elif args.fl_mode == "fixed-pool":
arguments = {
#"poisoned_emnist_dataset":poisoned_emnist_dataset,
"vanilla_model":vanilla_model,
"net_avg":net_avg,
"net_dataidx_map":net_dataidx_map,
"num_nets":args.num_nets,
"dataset":args.dataset,
"model":args.model,
"folder_path":folder_path,
"part_nets_per_round":args.part_nets_per_round,
"attacker_pool_size":args.attacker_pool_size,
"fl_round":args.fl_round,
"save_model":args.save_model,
"local_training_period":args.local_train_period,
"adversarial_local_training_period":args.adversarial_local_training_period,
"args_lr":args.lr,
"retrain":args.retrain,
"args_gamma":args.gamma,
"baseline":args.baseline,
"atk_eps":args.atk_eps,
"atk_test_eps":args.atk_test_eps,
"scale":args.scale,
"aggregator":args.aggregator,
"eps_decay":args.eps_decay,
"scale_weights_poison":args.scale_weights_poison,
"num_dps_poisoned_dataset":num_dps_poisoned_dataset,
"poisoned_emnist_train_loader":poisoned_train_loader,
"clean_train_loader":clean_train_loader,
"vanilla_emnist_test_loader":vanilla_test_loader,
"targetted_task_test_loader":targetted_task_test_loader,
"batch_size":args.batch_size,
"test_batch_size":args.test_batch_size,
"log_interval":args.log_interval,
"defense_technique":args.defense_method,
"attack_method":args.attack_method,
"eps":args.eps,
"atk_lr":args.atk_lr,
"norm_bound":args.norm_bound,
"poison_type":args.poison_type,
"device":device,
"model_replacement":args.model_replacement,
"project_frequency":args.project_frequency,
"adv_lr":args.adv_lr,
"prox_attack":args.prox_attack,
"attack_case":args.attack_case,
"stddev":args.stddev,
"atkmodel": atkmodel,
"tgtmodel": tgtmodel,
# "create_net": create_net,
"scratch_model": scratch_model,
}
fixed_pool_fl_trainer = FixedPoolFederatedLearningTrainer(arguments=arguments, lira_args=lira_args)
fixed_pool_fl_trainer.run(wandb_ins = wandb_ins)
# (old version) Depracated
# # prepare fashionMNIST dataset
# fashion_mnist_train_dataset = datasets.FashionMNIST('./data', train=True, download=True,
# transform=transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
# ]))
# fashion_mnist_test_dataset = datasets.FashionMNIST('./data', train=False, transform=transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
# ]))
# # prepare EMNIST dataset
# emnist_train_dataset = datasets.EMNIST('./data', split="digits", train=True, download=True,
# transform=transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
# ]))
# emnist_test_dataset = datasets.EMNIST('./data', split="digits", train=False, transform=transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
# ]))
# # okay, so what we really need here is just three loaders: i.e. poisoned training loader, poisoned test loader, normal test loader
# poisoned_emnist_train_loader = torch.utils.data.DataLoader(poisoned_emnist_dataset,
# batch_size=args.batch_size, shuffle=True, **kwargs)
# vanilla_emnist_test_loader = torch.utils.data.DataLoader(emnist_test_dataset,
# batch_size=args.test_batch_size, shuffle=False, **kwargs)
# targetted_task_test_loader = torch.utils.data.DataLoader(fashion_mnist_test_dataset,
# batch_size=args.test_batch_size, shuffle=False, **kwargs)