diff --git a/src/sage/groups/cubic_braid.py b/src/sage/groups/cubic_braid.py index e407b9d1326..db826937103 100644 --- a/src/sage/groups/cubic_braid.py +++ b/src/sage/groups/cubic_braid.py @@ -640,7 +640,6 @@ class CubicBraidGroup(UniqueRepresentation, FinitelyPresentedGroup): sage: C3.gens() (t0, t1) sage: U3.is_isomorphic(C3) - #I Forcing finiteness test True sage: U3.as_classical_group() Subgroup generated by [(1,7,6)(3,19,14)(4,15,10)(5,11,18)(12,16,20), @@ -1604,7 +1603,6 @@ def as_permutation_group(self, use_classical=True): sage: C3 = CubicBraidGroup(3) sage: PC3 = C3.as_permutation_group() sage: assert C3.is_isomorphic(PC3) # random (with respect to the occurrence of the info message) - #I Forcing finiteness test sage: PC3.degree() 8 sage: c = C3([2,1-2]) diff --git a/src/sage/groups/finitely_presented.py b/src/sage/groups/finitely_presented.py index 9b5f7e422d6..b65566ebeb4 100644 --- a/src/sage/groups/finitely_presented.py +++ b/src/sage/groups/finitely_presented.py @@ -1080,7 +1080,6 @@ def direct_product(self, H, reduced=False, new_names=True): sage: C7 = G / [G.0**7]; C6 = G / [G.0**6] sage: C14 = G / [G.0**14]; C3 = G / [G.0**3] sage: C7.direct_product(C6).is_isomorphic(C14.direct_product(C3)) - #I Forcing finiteness test True sage: F = FreeGroup(2); D = F / [F([1,1,1,1,1]),F([2,2]),F([1,2])**2] sage: D.direct_product(D).as_permutation_group().is_isomorphic( @@ -1174,7 +1173,6 @@ def semidirect_product(self, H, hom, check=True, reduced=False): sage: alpha = (Q.gens(), [a,b]) sage: S2 = C2.semidirect_product(Q, ([C2.0],[alpha])) sage: S1.is_isomorphic(S2) - #I Forcing finiteness test True Dihedral groups can be constructed as semidirect products @@ -1233,8 +1231,6 @@ def semidirect_product(self, H, hom, check=True, reduced=False): sage: Se2 = D.semidirect_product(C ,id2) sage: Dp1 = C.direct_product(D) sage: Dp1.is_isomorphic(Se1), Dp1.is_isomorphic(Se2) - #I Forcing finiteness test - #I Forcing finiteness test (True, True) Most checks for validity of input are left to GAP to handle:: diff --git a/src/sage/groups/finitely_presented_named.py b/src/sage/groups/finitely_presented_named.py index 940d761ef49..20d847be0dd 100644 --- a/src/sage/groups/finitely_presented_named.py +++ b/src/sage/groups/finitely_presented_named.py @@ -451,7 +451,6 @@ def QuaternionPresentation(): sage: Q.order(), Q.is_abelian() (8, False) sage: Q.is_isomorphic(groups.presentation.DiCyclic(2)) - #I Forcing finiteness test True """ F = FreeGroup(['a','b']) @@ -554,12 +553,6 @@ def BinaryDihedralPresentation(n): ....: P = groups.presentation.BinaryDihedral(n) ....: M = groups.matrix.BinaryDihedral(n) ....: assert P.is_isomorphic(M) - #I Forcing finiteness test - #I Forcing finiteness test - #I Forcing finiteness test - #I Forcing finiteness test - #I Forcing finiteness test - #I Forcing finiteness test """ F = FreeGroup('x,y,z') x,y,z = F.gens() diff --git a/src/sage/groups/libgap_mixin.py b/src/sage/groups/libgap_mixin.py index 3491c9f9db0..b14b050bd3b 100644 --- a/src/sage/groups/libgap_mixin.py +++ b/src/sage/groups/libgap_mixin.py @@ -946,4 +946,16 @@ def is_isomorphic(self, H): sage: F == G, G == H, F == H (False, False, False) """ - return self.gap().IsomorphismGroups(H.gap()) != libgap.fail + # If GAP doesn't know that the groups are finite, it will + # check. This emits an informational warning, and then + # annotates the groups as being finite (assuming they were) so + # that future isomorphism checks are silent. This can lead to + # apparent non-determinism in the output as statements are + # rearranged. There's nothing the user can do about this + # anyway, and it happens in trivial cases like the alternating + # group on one element, so we prefer to hide the warning. + old_warnlevel = libgap.InfoLevel(libgap.InfoWarning) + libgap.SetInfoLevel(libgap.InfoWarning, 0) + result = self.gap().IsomorphismGroups(H.gap()) != libgap.fail + libgap.SetInfoLevel(libgap.InfoWarning, old_warnlevel) + return result diff --git a/src/sage/schemes/curves/projective_curve.py b/src/sage/schemes/curves/projective_curve.py index 0729c5a98ad..d9a7321ade4 100755 --- a/src/sage/schemes/curves/projective_curve.py +++ b/src/sage/schemes/curves/projective_curve.py @@ -1805,7 +1805,6 @@ def fundamental_group(self): ....: + (x-18*z)*(z^2+11*x*z-x^2)^2) sage: G0 = C.fundamental_group() # needs sirocco sage: G.is_isomorphic(G0) # needs sirocco - #I Forcing finiteness test True sage: C = P.curve(z) sage: C.fundamental_group() # needs sirocco