diff --git a/src/sage/rings/polynomial/q_integer_valued_polynomials.py b/src/sage/rings/polynomial/q_integer_valued_polynomials.py index 950210be3f3..bce88dcbc49 100644 --- a/src/sage/rings/polynomial/q_integer_valued_polynomials.py +++ b/src/sage/rings/polynomial/q_integer_valued_polynomials.py @@ -93,9 +93,8 @@ class QuantumValuedPolynomialRing(UniqueRepresentation, Parent): Quantum-valued polynomial rings are commutative and associative algebras, with a basis indexed by integers. - The basis used here is given by `B[i] = \binom{i+n}{i}` for `i \in \NN`. - - There is a nice formula for the product, see [HaHo2017]_. + This is endowed with two bases, named ``B`` or ``Binomial`` + and ``S`` or ``Shifted``⋅ INPUT: @@ -813,8 +812,6 @@ def h_vector(self): .. SEEALSO:: :meth:`h_polynomial`, :meth:`fraction` - changement de base vers les (binomial(x+i,d))_{i=0..d} - EXAMPLES:: sage: A = QuantumValuedPolynomialRing(ZZ).S() @@ -847,8 +844,6 @@ def h_polynomial(self): .. SEEALSO:: :meth:`h_vector`, :meth:`fraction` - peut-etre pas dans le bon sens ? - EXAMPLES:: sage: A = QuantumValuedPolynomialRing(ZZ).S() @@ -943,7 +938,7 @@ def product_on_basis(self, n1, n2): - ``n1``, ``n2`` -- integers - The formula is taken from Theorem 3.4 in Harman-Hopkins. + The formula is taken from Theorem 3.4 in [HaHo2017]_. EXAMPLES::