diff --git a/src/doc/fr/tutorial/sagetex.rst b/src/doc/fr/tutorial/sagetex.rst index 49f35ff3a26..4e9ca8ab78b 100644 --- a/src/doc/fr/tutorial/sagetex.rst +++ b/src/doc/fr/tutorial/sagetex.rst @@ -1,3 +1,5 @@ +.. _sec-sagetex: + **************** Utiliser SageTeX **************** diff --git a/src/doc/fr/tutorial/tour_rings.rst b/src/doc/fr/tutorial/tour_rings.rst index 7a165bf38bf..535f1da6f75 100644 --- a/src/doc/fr/tutorial/tour_rings.rst +++ b/src/doc/fr/tutorial/tour_rings.rst @@ -1,3 +1,5 @@ +.. _section-rings: + *************** Anneaux de base *************** diff --git a/src/sage/combinat/designs/block_design.py b/src/sage/combinat/designs/block_design.py index 6916bdb4d86..14d487d0380 100644 --- a/src/sage/combinat/designs/block_design.py +++ b/src/sage/combinat/designs/block_design.py @@ -89,7 +89,7 @@ def ProjectiveGeometryDesign(n, d, F, algorithm=None): A projective geometry design of parameters `n,d,F` has for points the lines of `F^{n+1}`, and for blocks the `d+1`-dimensional subspaces of `F^{n+1}`, - each of which contains `\frac {|F|^{d+1}-1} {|F|-1}` lines. + each of which contains `\\frac {|F|^{d+1}-1} {|F|-1}` lines. INPUT: @@ -107,8 +107,8 @@ def ProjectiveGeometryDesign(n, d, F, algorithm=None): EXAMPLES: - The points of the following design are the `\frac {2^{2+1}-1} {2-1}=7` lines - of `\mathbb{Z}_2^{2+1}`. It has `7` blocks, corresponding to each + The points of the following design are the `\\frac {2^{2+1}-1} {2-1}=7` + lines of `\mathbb{Z}_2^{2+1}`. It has `7` blocks, corresponding to each 2-dimensional subspace of `\mathbb{Z}_2^{2+1}`:: sage: designs.ProjectiveGeometryDesign(2, 1, GF(2)) diff --git a/src/sage/graphs/generators/smallgraphs.py b/src/sage/graphs/generators/smallgraphs.py index 0acf5b26187..9b14fa35159 100644 --- a/src/sage/graphs/generators/smallgraphs.py +++ b/src/sage/graphs/generators/smallgraphs.py @@ -1419,8 +1419,8 @@ def KittellGraph(): r""" Returns the Kittell Graph. - For more information on the Kittell Graph, see the `corresponding Wolfram - page `_. + For more information, see the `Wolfram page about the Kittel Graph + `_. EXAMPLES:: @@ -3153,8 +3153,8 @@ def MarkstroemGraph(): Returns the Markström Graph. The Markström Graph is a cubic planar graph with no cycles of length 4 nor - 8, but containing cycles of length 16. For more information on the Markström - Graph, see the `corresponding Wolfram page + 8, but containing cycles of length 16. For more information, see the + `Wolfram page about the Markström Graph `_. EXAMPLES:: @@ -4137,10 +4137,10 @@ def WienerArayaGraph(): Returns the Wiener-Araya Graph. The Wiener-Araya Graph is a planar hypohamiltonian graph on 42 vertices and - 67 edges. For more information on the Wiener-Araya Graph, see its - corresponding `Wolfram Page - `_ or its `(french) - Wikipedia page `_. + 67 edges. For more information, see the `Wolfram Page on the Wiener-Araya + Graph `_ or its + `(french) Wikipedia page + `_. EXAMPLES:: diff --git a/src/sage/graphs/generic_graph.py b/src/sage/graphs/generic_graph.py index 406b2c9063d..84e6e2b6fe5 100644 --- a/src/sage/graphs/generic_graph.py +++ b/src/sage/graphs/generic_graph.py @@ -315,8 +315,6 @@ class GenericGraph(GenericGraph_pyx): """ Base class for graphs and digraphs. - - .. autofunction:: _scream_if_not_simple """ # Nice defaults for plotting arrays of graphs (see sage.misc.functional.show) diff --git a/src/sage/graphs/graph.py b/src/sage/graphs/graph.py index 538d8dfd6f8..d917986ea74 100644 --- a/src/sage/graphs/graph.py +++ b/src/sage/graphs/graph.py @@ -1790,7 +1790,7 @@ def is_tree(self, certificate=False, output='vertex'): When the certificate cycle is given as a list of edges, the edges are given as `(v_i, v_{i+1}, l)` where `v_1, v_2, \dots, - v\n` are the vertices of the cycles (in their cyclic order). + v_n` are the vertices of the cycles (in their cyclic order). EXAMPLES:: diff --git a/src/sage/modular/arithgroup/arithgroup_element.pyx b/src/sage/modular/arithgroup/arithgroup_element.pyx index 8c3cf92d9b3..6073c9f5dd8 100644 --- a/src/sage/modular/arithgroup/arithgroup_element.pyx +++ b/src/sage/modular/arithgroup/arithgroup_element.pyx @@ -36,14 +36,14 @@ cdef class ArithmeticSubgroupElement(MultiplicativeGroupElement): INPUT: - - parent - an arithmetic subgroup + - ``parent`` -- an arithmetic subgroup - - x - data defining a 2x2 matrix over ZZ - which lives in parent + - `x` -- data defining a 2x2 matrix over ZZ + which lives in parent - - check - if True, check that parent - is an arithmetic subgroup, and that - x defines a matrix of determinant 1. + - ``check`` -- if True, check that parent is an arithmetic + subgroup, and that `x` defines a matrix of + determinant `1`. We tend not to create elements of arithmetic subgroups that aren't SL2Z, in order to avoid coercion issues (that is, the other arithmetic @@ -363,7 +363,7 @@ cdef class ArithmeticSubgroupElement(MultiplicativeGroupElement): sage: g.acton(Cusp(-31/15)) +Infinity - TESTS:: + TESTS: We cover the remaining case, i.e., infinity mapped to infinity::