-
Notifications
You must be signed in to change notification settings - Fork 128
/
stage3_5.py
178 lines (128 loc) · 5.88 KB
/
stage3_5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import cv2
import os
import glob
import shutil
import numpy as np
from PIL import Image
from color_matcher import ColorMatcher
from color_matcher.normalizer import Normalizer
def resize_img(img, w, h):
if img.shape[0] + img.shape[1] < h + w:
interpolation = interpolation=cv2.INTER_CUBIC
else:
interpolation = interpolation=cv2.INTER_AREA
return cv2.resize(img, (w, h), interpolation=interpolation)
def get_pair_of_img(img_path, target_dir):
img_basename = os.path.basename(img_path)
target_path = os.path.join( target_dir , img_basename )
return target_path if os.path.isfile( target_path ) else None
def remove_pngs_in_dir(path):
if not os.path.isdir(path):
return
pngs = glob.glob( os.path.join(path, "*.png") )
for png in pngs:
os.remove(png)
def get_pair_of_img(img, target_dir):
img_basename = os.path.basename(img)
pair_path = os.path.join( target_dir , img_basename )
if os.path.isfile( pair_path ):
return pair_path
print("!!! pair of "+ img + " not in " + target_dir)
return ""
def get_mask_array(mask_path):
if not mask_path:
return None
mask_array = np.asarray(Image.open( mask_path ))
if mask_array.ndim == 2:
mask_array = mask_array[:, :, np.newaxis]
mask_array = mask_array[:,:,:1]
mask_array = mask_array/255
return mask_array
def color_match(imgs, ref_image, color_matcher_method, dst_path):
cm = ColorMatcher(method=color_matcher_method)
i = 0
total = len(imgs)
for fname in imgs:
img_src = Image.open(fname)
img_src = Normalizer(np.asarray(img_src)).type_norm()
img_src = cm.transfer(src=img_src, ref=ref_image, method=color_matcher_method)
img_src = Normalizer(img_src).uint8_norm()
Image.fromarray(img_src).save(os.path.join(dst_path, os.path.basename(fname)))
i += 1
print("{0}/{1}".format(i, total))
imgs = sorted( glob.glob( os.path.join(dst_path, "*.png") ) )
def ebsynth_utility_stage3_5(dbg, project_args, color_matcher_method, st3_5_use_mask, st3_5_use_mask_ref, st3_5_use_mask_org, color_matcher_ref_type, color_matcher_ref_image):
dbg.print("stage3.5")
dbg.print("")
_, _, frame_path, frame_mask_path, org_key_path, img2img_key_path, _ = project_args
backup_path = os.path.join( os.path.join( img2img_key_path, "..") , "st3_5_backup_img2img_key")
backup_path = os.path.normpath(backup_path)
if not os.path.isdir( backup_path ):
dbg.print("{0} not found -> create backup.".format(backup_path))
os.makedirs(backup_path, exist_ok=True)
imgs = glob.glob( os.path.join(img2img_key_path, "*.png") )
for img in imgs:
img_basename = os.path.basename(img)
pair_path = os.path.join( backup_path , img_basename )
shutil.copy( img , pair_path)
else:
dbg.print("{0} found -> Treat the images here as originals.".format(backup_path))
org_imgs = sorted( glob.glob( os.path.join(backup_path, "*.png") ) )
head_of_keyframe = org_imgs[0]
# open ref img
ref_image = color_matcher_ref_image
if not ref_image:
dbg.print("color_matcher_ref_image not set")
if color_matcher_ref_type == 0:
#'original video frame'
dbg.print("select -> original video frame")
ref_image = Image.open( get_pair_of_img(head_of_keyframe, frame_path) )
else:
#'first frame of img2img result'
dbg.print("select -> first frame of img2img result")
ref_image = Image.open( get_pair_of_img(head_of_keyframe, backup_path) )
ref_image = np.asarray(ref_image)
if st3_5_use_mask_ref:
mask = get_pair_of_img(head_of_keyframe, frame_mask_path)
if mask:
mask_array = get_mask_array( mask )
ref_image = ref_image * mask_array
ref_image = ref_image.astype(np.uint8)
else:
dbg.print("select -> color_matcher_ref_image")
ref_image = np.asarray(ref_image)
if color_matcher_method in ('mvgd', 'hm-mvgd-hm'):
sample_img = Image.open(head_of_keyframe)
ref_image = resize_img( ref_image, sample_img.width, sample_img.height )
ref_image = Normalizer(ref_image).type_norm()
if st3_5_use_mask_org:
tmp_path = os.path.join( os.path.join( img2img_key_path, "..") , "st3_5_tmp")
tmp_path = os.path.normpath(tmp_path)
dbg.print("create {0} for masked original image".format(tmp_path))
remove_pngs_in_dir(tmp_path)
os.makedirs(tmp_path, exist_ok=True)
for org_img in org_imgs:
image_basename = os.path.basename(org_img)
org_image = np.asarray(Image.open(org_img))
mask = get_pair_of_img(org_img, frame_mask_path)
if mask:
mask_array = get_mask_array( mask )
org_image = org_image * mask_array
org_image = org_image.astype(np.uint8)
Image.fromarray(org_image).save( os.path.join( tmp_path, image_basename ) )
org_imgs = sorted( glob.glob( os.path.join(tmp_path, "*.png") ) )
color_match(org_imgs, ref_image, color_matcher_method, img2img_key_path)
if st3_5_use_mask or st3_5_use_mask_org:
imgs = sorted( glob.glob( os.path.join(img2img_key_path, "*.png") ) )
for img in imgs:
mask = get_pair_of_img(img, frame_mask_path)
if mask:
mask_array = get_mask_array( mask )
bg = get_pair_of_img(img, frame_path)
bg_image = np.asarray(Image.open( bg ))
fg_image = np.asarray(Image.open( img ))
final_img = fg_image * mask_array + bg_image * (1-mask_array)
final_img = final_img.astype(np.uint8)
Image.fromarray(final_img).save(img)
dbg.print("")
dbg.print("completed.")