-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpythonic_be.py
99 lines (89 loc) · 2.91 KB
/
pythonic_be.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""
This code requests just 4 columns from DB (to reduce bandwidth and memory).
It then arranges data per customer by Customer class and finally condenses
it using mean and sum functions over the list of customers.
This is slower because fetching takes almost same time but Python must do all
calculations locally.
Code is self-explainatory.
"""
from datetime import date
from typing import NamedTuple, List, Mapping, Optional
class Customer(NamedTuple):
customer_id: str
age: int
transactions: List[float]
query = """
SELECT customer_id, date_of_birth, txn_type, txn_amount
FROM Customers
INNER JOIN Transactions
USING (customer_id)
WHERE transaction_date >= '{tgt_date} 00:00:00'
AND transaction_date < '{tgt_date} 00:00:00'::timestamp + interval '86401 seconds'
"""
mean = lambda v: round(sum(v)/len(v), 2)
def get_data(database, username, password, host, port, tgt_date):
try:
import psycopg2
conn = psycopg2.connect(
database=database,
user=username,
password=password,
host=host,
port=port
)
cursor = conn.cursor()
except:
raise RuntimeError("Unable to connect to database")
try:
cursor.execute(query.format(tgt_date=tgt_date))
dataset = cursor.fetchall()
except:
raise RuntimeError("Perhaps bad date string input")
finally:
conn.close()
return dataset
def calc_age(dob):
# thanks to so/a/9754466
today = date.today()
return today.year - dob.year - ((today.month, today.day) < (dob.month, dob.day))
def calc_stats(dataset):
init_dict = dict()
for row in dataset:
customer_id = row[0]
dob = row[1]
txn = float(row[3]) if row[2] == 'CREDIT' else -1*float(row[3])
try:
init_dict[customer_id].transactions.append(txn)
except KeyError:
init_dict[customer_id] = Customer(customer_id, calc_age(dob), [txn])
answer = dict()
for v in init_dict.values():
try:
answer[v.age].append(sum(v.transactions))
except KeyError:
answer[v.age] = [sum(v.transactions)]
return {k: mean(v) for k, v in answer.items()}
def calculate_savings(payload, context):
try:
host = payload["host"]
port = payload["port"]
database = payload["database"]
username = payload["username"]
password = payload["password"]
tgt_date = '-'.join(list(payload["date"].split("/"))[::-1])
dataset = get_data(database, username, password, host, port, tgt_date)
answer = calc_stats(dataset)
except Exception as e:
return {
"statusCode": 400,
"message": str(e)
}
else:
return {
"statusCode": 200,
"data": answer
}
if __name__ == '__main__':
from secrets import events
from pprint import pprint
pprint(calculate_savings(events, None))