From 5ee535711fcb0cb5c633a659b68d755017a2f74b Mon Sep 17 00:00:00 2001 From: Nikolai Kudasov Date: Wed, 13 Dec 2023 23:29:57 +0300 Subject: [PATCH] Complete equivalence-trans --- .../04-homotopies-and-equivalences.rzk.md | 42 +++++++------------ 1 file changed, 16 insertions(+), 26 deletions(-) diff --git a/src/1-foundations/2-homotopy-type-theory/04-homotopies-and-equivalences.rzk.md b/src/1-foundations/2-homotopy-type-theory/04-homotopies-and-equivalences.rzk.md index a554754..59c5f0a 100644 --- a/src/1-foundations/2-homotopy-type-theory/04-homotopies-and-equivalences.rzk.md +++ b/src/1-foundations/2-homotopy-type-theory/04-homotopies-and-equivalences.rzk.md @@ -403,7 +403,7 @@ which are discussed in Sections [2.6](06-cartesian-product-types.rzk.md) and [2. ### Transitivity -``` +```rzk #define qinv-trans ( A B C : U) ( f : A → B) @@ -426,36 +426,26 @@ which are discussed in Sections [2.6](06-cartesian-product-types.rzk.md) and [2. path-concat A ( f⁻¹ (g⁻¹ (g (f a)))) ( f⁻¹ (f a)) - (a) + ( a) ( ap B A f⁻¹ - (g⁻¹ (g (f a))) - (f a) - ( α-f (g⁻¹ c))) - ( α-g c))) + ( g⁻¹ (g (f a))) + ( f a) + ( β-g (f a))) + ( β-f a))) -#def equivalence-trans +#define equivalence-trans ( A B C : U) - : equivalence A B → equivalence B C → equivalence A C + : equivalence A B + → equivalence B C + → equivalence A C := \ (f , isequiv-f) (g , isequiv-g) → - ( \ ((f⁻¹ , (α-f , β-f)) : (qinv A B f)) ((g⁻¹ , (α-g , β-g)) : (qinv B C g)) → - ( compose A B C g f - , qinv-to-isequiv A C (compose A B C g f) - ( compose C B A f⁻¹ g⁻¹ - , ( \ c → path-concat C -- g f f⁻¹ g⁻¹ c = g g⁻¹ c = c - ( g (f (f⁻¹ (g⁻¹ (c))))) - ( g (g⁻¹ (c))) - ( c) - ( ap B C g (f (f⁻¹ (g⁻¹ (c)))) (g⁻¹ (c)) (α-f (g⁻¹ (c)))) - ( α-g c) - , \ a → path-concat A -- f⁻¹ g⁻¹ g f a = f⁻¹ f a = a - ( f⁻¹ (g⁻¹ (g (f (a))))) - ( f⁻¹ (f (a))) - ( a) - ( ap B A f⁻¹ (g⁻¹ (g (f (a)))) (f (a)) (β-g (f (a)))) - ( β-f a))))) - ( isequiv-to-qinv A B f isequiv-f) - ( isequiv-to-qinv B C g isequiv-g) + ( compose A B C g f + , qinv-to-isequiv A C + ( compose A B C g f) + ( qinv-trans A B C f g + ( isequiv-to-qinv A B f isequiv-f) + ( isequiv-to-qinv B C g isequiv-g))) ``` ## Proof of Corollary 2.4.4