diff --git a/tests/test_feature_extraction.py b/tests/test_feature_extraction.py index 13bbd156..9e7f241f 100644 --- a/tests/test_feature_extraction.py +++ b/tests/test_feature_extraction.py @@ -1,5 +1,5 @@ import copy -import numpy +import numpy as np import torch from librosa.feature import melspectrogram @@ -9,7 +9,7 @@ def test_logmel_librosa_compatibility(): - audio = numpy.asarray(numpy.random.random((50000)), dtype=numpy.float32) + audio = np.asarray(np.random.random((50000)), dtype=np.float32) librosa_mel = melspectrogram( y=audio, sr=16000, @@ -20,7 +20,7 @@ def test_logmel_librosa_compatibility(): fmax=7600, n_mels=80, ) - librosa_log_mel = numpy.log10(numpy.maximum(librosa_mel, 1e-10)) + librosa_log_mel = np.log10(np.maximum(librosa_mel, 1e-10)) fe_cfg = LogMelFeatureExtractionV1Config( sample_rate=16000, @@ -56,8 +56,8 @@ def test_logmel_length(): fe_no_center_cfg.center = False fe_no_center = LogMelFeatureExtractionV1(cfg=fe_no_center_cfg) for i in range(10): - audio_length = int(numpy.random.randint(10000, 50000)) - audio = numpy.asarray(numpy.random.random(audio_length), dtype=numpy.float32) + audio_length = int(np.random.randint(10000, 50000)) + audio = np.asarray(np.random.random(audio_length), dtype=np.float32) audio_length = torch.tensor(int(audio_length)) audio_length = torch.unsqueeze(audio_length, 0) audio = torch.unsqueeze(torch.tensor(audio), 0)