diff --git a/_images/380b7cc5a343aec27fa3a4d29af2042a3300f7a290f8abe868f1271f42e07070.png b/_images/380b7cc5a343aec27fa3a4d29af2042a3300f7a290f8abe868f1271f42e07070.png new file mode 100644 index 0000000..eaf76b2 Binary files /dev/null and b/_images/380b7cc5a343aec27fa3a4d29af2042a3300f7a290f8abe868f1271f42e07070.png differ diff --git a/_images/3d9a65b2b663fb74cf7a278b6daf492fa0a83f679780ba2fc2de8d76526091f2.png b/_images/3d9a65b2b663fb74cf7a278b6daf492fa0a83f679780ba2fc2de8d76526091f2.png new file mode 100644 index 0000000..ea73915 Binary files /dev/null and b/_images/3d9a65b2b663fb74cf7a278b6daf492fa0a83f679780ba2fc2de8d76526091f2.png differ diff --git a/_images/3f945668b680bd2b370723b0191982d4ebfb18b42b9ed4ee2d4acea1d87140b6.png b/_images/3f945668b680bd2b370723b0191982d4ebfb18b42b9ed4ee2d4acea1d87140b6.png new file mode 100644 index 0000000..867d118 Binary files /dev/null and b/_images/3f945668b680bd2b370723b0191982d4ebfb18b42b9ed4ee2d4acea1d87140b6.png differ diff --git a/_images/44079d3a8c690658bdfa5e1776ee56300bd8ccbc7f058aa37a62cdca60c0806c.png b/_images/44079d3a8c690658bdfa5e1776ee56300bd8ccbc7f058aa37a62cdca60c0806c.png new file mode 100644 index 0000000..ad38629 Binary files /dev/null and b/_images/44079d3a8c690658bdfa5e1776ee56300bd8ccbc7f058aa37a62cdca60c0806c.png differ diff --git a/_images/73b9f41310a94c90157f634328a257e99852f8f9e726475feec30849628aa296.png b/_images/73b9f41310a94c90157f634328a257e99852f8f9e726475feec30849628aa296.png new file mode 100644 index 0000000..bf17150 Binary files /dev/null and b/_images/73b9f41310a94c90157f634328a257e99852f8f9e726475feec30849628aa296.png differ diff --git a/_images/7765418a8cb074d3060d946de13c45192a2c7b2d558f97f9eabf0b7424c7c10f.png b/_images/7765418a8cb074d3060d946de13c45192a2c7b2d558f97f9eabf0b7424c7c10f.png new file mode 100644 index 0000000..ea79446 Binary files /dev/null and b/_images/7765418a8cb074d3060d946de13c45192a2c7b2d558f97f9eabf0b7424c7c10f.png differ diff --git a/_images/797cdc4f3692ce3473b59e7589639b043ab94a2a560fe6629c343da28c6ec849.png b/_images/797cdc4f3692ce3473b59e7589639b043ab94a2a560fe6629c343da28c6ec849.png new file mode 100644 index 0000000..f1616be Binary files /dev/null and b/_images/797cdc4f3692ce3473b59e7589639b043ab94a2a560fe6629c343da28c6ec849.png differ diff --git a/_images/8142b341d0b63defc8c3b8ef3bfcb33ef1975719710211ac95822e5a5583ef3b.png b/_images/8142b341d0b63defc8c3b8ef3bfcb33ef1975719710211ac95822e5a5583ef3b.png new file mode 100644 index 0000000..ce55ada Binary files /dev/null and b/_images/8142b341d0b63defc8c3b8ef3bfcb33ef1975719710211ac95822e5a5583ef3b.png differ diff --git a/_images/87187a59caf6dfa76c7902508871be980b6913ff43a7b47ccb40e289e92eb1a5.png b/_images/87187a59caf6dfa76c7902508871be980b6913ff43a7b47ccb40e289e92eb1a5.png new file mode 100644 index 0000000..7ea52e1 Binary files /dev/null and b/_images/87187a59caf6dfa76c7902508871be980b6913ff43a7b47ccb40e289e92eb1a5.png differ diff --git a/_images/88f915b307407f1507b49c2684695f5ac18742539f6382bc3a9ed9225c1dcab5.png b/_images/88f915b307407f1507b49c2684695f5ac18742539f6382bc3a9ed9225c1dcab5.png new file mode 100644 index 0000000..b032253 Binary files /dev/null and b/_images/88f915b307407f1507b49c2684695f5ac18742539f6382bc3a9ed9225c1dcab5.png differ diff --git a/_images/8ee4bdf469cf1003bf4dd6e6519e8cad30207ce0afd5881b1b399aa4efc39113.png b/_images/8ee4bdf469cf1003bf4dd6e6519e8cad30207ce0afd5881b1b399aa4efc39113.png new file mode 100644 index 0000000..416d66e Binary files /dev/null and b/_images/8ee4bdf469cf1003bf4dd6e6519e8cad30207ce0afd5881b1b399aa4efc39113.png differ diff --git a/_images/Ar5.png b/_images/Ar5.png new file mode 100644 index 0000000..6f4dc05 Binary files /dev/null and b/_images/Ar5.png differ diff --git a/_images/local_minimum.png b/_images/local_minimum.png new file mode 100644 index 0000000..593d10f Binary files /dev/null and b/_images/local_minimum.png differ diff --git a/_sources/lecture-14-nanoparticles.md b/_sources/lecture-14-nanoparticles.md new file mode 100644 index 0000000..241f72d --- /dev/null +++ b/_sources/lecture-14-nanoparticles.md @@ -0,0 +1,37 @@ +--- +jupytext: + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.16.4 +kernelspec: + display_name: comp-prob-solv + language: python + name: python3 +--- + +# Lecture 15: Nanoparticle Shape and Simulated Annealing + +## Learning Objectives + +By the end of this lecture, you should be able to + +1. Describe the role of shape in nanoparticle properties. +2. Explain how simulated annealing can be used to find the optimal shape of a nanoparticle. + +## Nanoparticle Shape + +The shape of a nanoparticle can have a significant impact on its properties. For example, the shape of a nanoparticle can affect its: + +- Optical properties, by subjecting the nanoparticle to nanoscale boundary conditions. +- Mechanical properties, by truncating long-range interactions. +- Chemical properties, by changing the number and configuration of surface atoms. + +## Local *vs.* Global Geometry Optimization + +The shape of a nanoparticle can be optimized using a variety of methods. One common approach is to use a local optimization algorithm, such as those implemented in `scipy.optimize`. However, local optimization algorithms can get stuck in local minima, especially when the objective function is non-convex. + +![Local optimization](local_minimum.png) + + diff --git a/_sources/lecture-15-nanoparticles.md b/_sources/lecture-15-nanoparticles.md new file mode 100644 index 0000000..d20de57 --- /dev/null +++ b/_sources/lecture-15-nanoparticles.md @@ -0,0 +1,288 @@ +--- +jupytext: + text_representation: + extension: .md + format_name: myst + format_version: '0.13' + jupytext_version: '1.16.4' +kernelspec: + display_name: comp-prob-solv + language: python + name: python3 +--- + +# Lecture 15: Nanoparticle Shape and Simulated Annealing + +## Learning Objectives + +By the end of this lecture, you should be able to + +1. Describe how the shape of nanoparticles influences their physical, chemical, and mechanical properties. +2. Explain the principles of simulated annealing and how it can be used to find the optimal shape of a nanoparticle. +3. Implement simulated annealing to optimize a system of interacting particles. + +## Nanoparticle Shape + +The shape of a nanoparticle plays a crucial role in determining its properties. Due to their small size and high surface-to-volume ratio, nanoparticles exhibit unique behaviors compared to bulk materials. The shape can affect + +- **Optical Properties**: Nanoscale boundary conditions can lead to quantum confinement effects, altering the optical absorption and emission spectra. +- **Mechanical Properties**: The truncation of long-range interactions and the presence of surface atoms can change the stiffness and strength of nanoparticles. +- **Chemical Properties**: The number and arrangement of surface atoms influence reactivity and catalytic activity. + +Understanding and controlling nanoparticle shape is essential for applications in drug delivery, catalysis, photonics, and materials science. + +## Local vs. Global Geometry Optimization + +When optimizing the geometry of a nanoparticle or any complex system, we aim to find the configuration that minimizes the system's potential energy. However, potential energy surfaces often contain multiple local minima due to the complex interactions between particles. **Local optimization algorithms**, such as gradient descent or methods implemented in [`scipy.optimize`](https://docs.scipy.org/doc/scipy/reference/optimize.html#local-multivariate-optimization), can efficiently find a nearby minimum but may get trapped in a local minimum rather than finding the global minimum. + +![Illustration of Local vs. Global Minima](local_minimum.png) + +In the figure above, a local optimization algorithm starting at $\mathbf{3.5}$ may converge to the local minimum at $\color{red} \mathbf{2}$, missing the global minimum at $\color{blue} \mathbf{-2}$. + +## Simulated Annealing + +To overcome the limitations of local optimization, we use **global optimization algorithms** that can escape local minima. **Simulated annealing** is a probabilistic technique inspired by the annealing process in metallurgy, where controlled cooling allows atoms to reach lower energy states. + +### Principles of Simulated Annealing + +Simulated annealing adapts the Metropolis-Hastings algorithm from statistical mechanics. The key steps are: + +1. **Initialization**: Start with an initial configuration and a high "temperature" parameter. +2. **Temperature Schedule**: Define a cooling schedule to gradually reduce the temperature. +3. **Generation of New Configurations**: At each step, generate a new configuration by making a random change to the current configuration. +4. **Energy Calculation**: Compute the change in energy, $\Delta E$, between the new and current configurations. +5. **Acceptance Criterion**: Accept the new configuration with probability + + $$ + P(\text{accept}) = + \begin{cases} + 1, & \text{if } \Delta E \leq 0 \\ + \exp\left(-\dfrac{\Delta E}{k_B T}\right), & \text{if } \Delta E > 0 + \end{cases} + $$ + + where $k_\text{B}$ is the Boltzmann constant, and $T$ is the current temperature. + +By allowing occasional uphill moves (accepting higher energy states), the algorithm can escape local minima and explore the configuration space more thoroughly. + +## Example: Optimizing the Shape of a Nanoparticle + +### Problem Statement + +We will optimize the configuration of a cluster of five argon atoms interacting via the Lennard-Jones potential. One atom is fixed at the origin, and the other four are free to move. Our goal is to find the arrangement that minimizes the total potential energy. + +### The Lennard-Jones Potential + +The Lennard-Jones (LJ) potential models the interaction between a pair of neutral atoms or molecules + +$$ +V_{\text{LJ}}(r) = 4\varepsilon \left[ \left( \dfrac{\sigma}{r} \right)^{12} - \left( \dfrac{\sigma}{r} \right)^{6} \right] +$$ + +where $r$ is the distance between two particles, $\varepsilon$ is the depth of the potential well (interaction strength), and $\sigma$ is the finite distance at which the inter-particle potential is zero. + +### Implementing the Potential Energy Function + +```{code-cell} ipython3 +import numpy as np + +def lennard_jones(r, epsilon=0.0103, sigma=3.4): + """ + Calculate the Lennard-Jones potential energy between two particles. + Parameters: + r (float): Distance between two particles. + epsilon (float): Depth of the potential well (eV). + sigma (float): Finite distance at which the inter-particle potential is zero (Angstrom). + Returns: + float: Potential energy (eV). + """ + return 4 * epsilon * ((sigma / r) ** 12 - (sigma / r) ** 6) +``` + +We also need a function to compute the total potential energy of the system: + +```{code-cell} ipython3 +def total_potential_energy(positions, epsilon=0.0103, sigma=3.4): + """ + Calculate the total potential energy of the system of particles. + Parameters: + positions (ndarray): Array of particle positions with shape (N, 3). + epsilon (float): Depth of the potential well (eV). + sigma (float): Finite distance at which the inter-particle potential is zero (Angstrom). + Returns: + float: Total potential energy (eV). + """ + energy = 0.0 + num_particles = len(positions) + for i in range(num_particles): + for j in range(i + 1, num_particles): + r = np.linalg.norm(positions[i] - positions[j]) + if r > 0: + energy += lennard_jones(r, epsilon, sigma) + return energy +``` + +### Simulated Annealing Algorithm + +Now, we implement the simulated annealing algorithm to optimize the particle positions. + +```{code-cell} ipython3 +def simulated_annealing(positions, initial_temp, cooling_rate, num_steps, freeze_particle=0, epsilon=0.0103, sigma=3.4): + """ + Perform simulated annealing to optimize the nanoparticle configuration. + Parameters: + positions (ndarray): Initial positions of the particles. + initial_temp (float): Initial temperature (arbitrary units). + cooling_rate (float): Multiplicative factor for cooling (0 < cooling_rate < 1). + num_steps (int): Number of simulation steps. + freeze_particle (int): Index of the particle to keep fixed. + epsilon (float): Depth of the potential well (eV). + sigma (float): Finite distance at which the inter-particle potential is zero (Angstrom). + Returns: + best_positions (ndarray): Optimized positions of the particles. + best_energy (float): Total potential energy of the optimized configuration. + energy_history (list): List of energy values over time. + temp_history (list): List of temperature values over time. + """ + positions = positions.copy() + num_particles = len(positions) + temperature = initial_temp + best_positions = positions.copy() + best_energy = total_potential_energy(positions, epsilon, sigma) + energy_history = [] + temp_history = [] + kB = 8.617333262145e-5 # Boltzmann constant in eV/K + + for step in range(num_steps): + # Select a random particle to move, excluding the frozen one + move_particle = np.random.choice([i for i in range(num_particles) if i != freeze_particle]) + + # Propose a new position by making a small random displacement + displacement = np.random.normal(0, 0.1, size=3) + new_positions = positions.copy() + new_positions[move_particle] += displacement + + # Compute energies + current_energy = total_potential_energy(positions, epsilon, sigma) + new_energy = total_potential_energy(new_positions, epsilon, sigma) + delta_energy = new_energy - current_energy + + # Acceptance probability + if delta_energy < 0 or np.random.rand() < np.exp(-delta_energy / (kB * temperature)): + positions = new_positions + current_energy = new_energy + if new_energy < best_energy: + best_energy = new_energy + best_positions = new_positions.copy() + + # Record energy and temperature + energy_history.append(current_energy) + temp_history.append(temperature) + + # Update temperature + temperature *= cooling_rate + + return best_positions, best_energy, energy_history, temp_history +``` + +### Running the Simulation + +Set up the initial positions and parameters, and run the simulated annealing algorithm. + +```{code-cell} ipython3 +np.random.seed(42) + +# Lennard-Jones parameters for Argon +epsilon = 0.0103 # eV +sigma = 3.4 # Angstrom +r_min = 2 ** (1 / 6) * sigma # Distance at minimum potential + +# Initial positions (one fixed at the origin) +positions = np.array([ + [0.0, 0.0, 0.0], # Fixed particle + [r_min, 0.0, 0.0], + [0.0, r_min, 0.0], + [0.0, 0.0, r_min], + [r_min, r_min, r_min] +]) + +# Simulated annealing parameters +initial_temp = 1000.0 # Initial temperature in K +cooling_rate = 0.999 # Closer to 1 means slower cooling +num_steps = 10000 + +# Run simulated annealing +best_positions, best_energy, energy_history, temp_history = simulated_annealing( + positions, + initial_temp, + cooling_rate, + num_steps, + freeze_particle=0, + epsilon=epsilon, + sigma=sigma +) +``` + +### Visualizing the Results + +Plot the total potential energy and temperature over the simulation steps. + +```{code-cell} ipython3 +import matplotlib.pyplot as plt + +fig, ax1 = plt.subplots(figsize=(10, 6)) + +color_energy = 'tab:blue' +ax1.set_xlabel('Simulation Step') +ax1.set_ylabel('Total Potential Energy (eV)', color=color_energy) +ax1.plot(energy_history, color=color_energy) +ax1.tick_params(axis='y', labelcolor=color_energy) + +ax2 = ax1.twinx() # Instantiate a second axes that shares the same x-axis + +color_temp = 'tab:red' +ax2.set_ylabel('Temperature (K)', color=color_temp) +ax2.plot(temp_history, color=color_temp) +ax2.tick_params(axis='y', labelcolor=color_temp) + +fig.tight_layout() +plt.title('Simulated Annealing Optimization') +plt.show() +``` + +```{admonition} Interpretation +:class: tip +The plot shows how the total potential energy of the system decreases over time as the simulated annealing algorithm progresses. Initially, at high temperatures, the system explores a wide range of configurations, allowing for higher energy states. As the temperature decreases, the acceptance of higher energy states becomes less probable, and the system gradually settles into lower energy configurations. The energy curve shows fluctuations corresponding to accepted uphill moves, but overall trends downward, indicating convergence towards the global minimum. +``` + +### Analyzing the Optimized Configuration + +Let's output the optimized positions and visualize the final configuration. + +```{code-cell} ipython3 +# Print the optimized configuration in XYZ format +print(f"{len(best_positions)}") +print("Optimized configuration of the nanoparticle") +for position in best_positions: + print(f"Ar {position[0]:.6f} {position[1]:.6f} {position[2]:.6f}") +``` + +You can save this output to an `.xyz` file and visualize it using molecular visualization software like VESTA or Avogadro. + +![Optimized configuration of the nanoparticle](Ar5.png) + +```{admonition} Interpretation +:class: tip +The optimized configuration shows the five argon atoms arranged in a trigonal bipyramidal structure. This geometry minimizes the total potential energy by optimizing the distances between particles to balance attractive and repulsive forces as defined by the Lennard-Jones potential. Each atom (except the fixed one) adjusts its position to achieve the most energetically favorable arrangement. +``` + +## Exercise + +1. **Parameter Exploration**: Modify the simulated annealing parameters (`initial_temp`, `cooling_rate`, `num_steps`) to observe their effects on the optimization process. How does changing the cooling rate affect the convergence? +2. **Alternative Optimization Methods**: Implement a different global optimization algorithm, such as Differential Evolution or Basin Hopping from [`scipy.optimize`](https://docs.scipy.org/doc/scipy/reference/optimize.html#global-optimization). Compare the results and efficiency with simulated annealing. +3. **Scaling Up**: Increase the number of particles (e.g., to 10 or 20) and observe how the optimization process scales with system size. What challenges arise with larger systems? +4. **Potential Function Variation**: Try using a different interatomic potential, such as the Morse potential. How does the choice of potential affect the optimized configuration? + +## Summary + +In this lecture, we explored the significance of nanoparticle shape in determining their properties and learned how global optimization algorithms like simulated annealing can be employed to find optimal configurations. Simulated annealing mimics the physical process of annealing, allowing the system to escape local minima and converge towards the global minimum by controlled cooling. By implementing this algorithm, we optimized a small cluster of Lennard-Jones particles, demonstrating its effectiveness in solving complex optimization problems in the chemical sciences. diff --git a/genindex.html b/genindex.html index 81325c5..cf44c1d 100644 --- a/genindex.html +++ b/genindex.html @@ -194,6 +194,7 @@
  • Lecture 12: The Monte Carlo Method
  • Lecture 13: Monte Carlo Integration
  • Lecture 14: A Basic Monte Carlo Algorithm
  • +
  • Lecture 15: Nanoparticle Shape and Simulated Annealing
  • diff --git a/intro.html b/intro.html index b957525..f8f8e13 100644 --- a/intro.html +++ b/intro.html @@ -198,6 +198,7 @@
  • Lecture 12: The Monte Carlo Method
  • Lecture 13: Monte Carlo Integration
  • Lecture 14: A Basic Monte Carlo Algorithm
  • +
  • Lecture 15: Nanoparticle Shape and Simulated Annealing
  • @@ -413,6 +414,7 @@

    Welcome to Computational Problem Solving in the Chemical SciencesLecture 12: The Monte Carlo Method
  • Lecture 13: Monte Carlo Integration
  • Lecture 14: A Basic Monte Carlo Algorithm
  • +
  • Lecture 15: Nanoparticle Shape and Simulated Annealing
  • diff --git a/lecture-14-nanoparticles.html b/lecture-14-nanoparticles.html new file mode 100644 index 0000000..b3127f1 --- /dev/null +++ b/lecture-14-nanoparticles.html @@ -0,0 +1,536 @@ + + + + + + + + + + + Lecture 15: Nanoparticle Shape and Simulated Annealing — Computational Problem Solving in the Chemical Sciences + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + +
    +
    +
    +
    +
    + +
    + +
    + + + + + +
    +
    + + + + + +
    + + + + + + + + + + + + + +
    + +
    + + + +
    + +
    +
    + +
    +
    + +
    + +
    + +
    + + +
    + +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + +
    + +
    +
    + + + +
    +

    Lecture 15: Nanoparticle Shape and Simulated Annealing

    + +
    + +
    +
    + + + + +
    + +
    +

    Lecture 15: Nanoparticle Shape and Simulated Annealing#

    +
    +

    Learning Objectives#

    +

    By the end of this lecture, you should be able to

    +
      +
    1. Describe the role of shape in nanoparticle properties.

    2. +
    3. Explain how simulated annealing can be used to find the optimal shape of a nanoparticle.

    4. +
    +
    +
    +

    Nanoparticle Shape#

    +

    The shape of a nanoparticle can have a significant impact on its properties. For example, the shape of a nanoparticle can affect its:

    +
      +
    • Optical properties, by subjecting the nanoparticle to nanoscale boundary conditions.

    • +
    • Mechanical properties, by truncating long-range interactions.

    • +
    • Chemical properties, by changing the number and configuration of surface atoms.

    • +
    +
    +
    +

    Local vs. Global Geometry Optimization#

    +

    The shape of a nanoparticle can be optimized using a variety of methods. One common approach is to use a local optimization algorithm, such as those implemented in scipy.optimize. However, local optimization algorithms can get stuck in local minima, especially when the objective function is non-convex.

    +

    Local optimization

    +
    +
    + + + + +
    + + + + + + +
    + +
    +
    +
    + +
    + + + + + + +
    +
    + + +
    + + +
    +
    +
    + + + + + + + + \ No newline at end of file diff --git a/lecture-15-nanoparticles.html b/lecture-15-nanoparticles.html new file mode 100644 index 0000000..fc89c47 --- /dev/null +++ b/lecture-15-nanoparticles.html @@ -0,0 +1,860 @@ + + + + + + + + + + + Lecture 15: Nanoparticle Shape and Simulated Annealing — Computational Problem Solving in the Chemical Sciences + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + +
    +
    +
    +
    +
    + +
    + +
    + + + + + +
    +
    + + + +
    + + + + + + + + + + + + + +
    + +
    + + + +
    + +
    +
    + +
    +
    + +
    + +
    + +
    + + +
    + +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + +
    + +
    +
    + + + + + + + + +
    + +
    +

    Lecture 15: Nanoparticle Shape and Simulated Annealing#

    +
    +

    Learning Objectives#

    +

    By the end of this lecture, you should be able to

    +
      +
    1. Describe how the shape of nanoparticles influences their physical, chemical, and mechanical properties.

    2. +
    3. Explain the principles of simulated annealing and how it can be used to find the optimal shape of a nanoparticle.

    4. +
    5. Implement simulated annealing to optimize a system of interacting particles.

    6. +
    +
    +
    +

    Nanoparticle Shape#

    +

    The shape of a nanoparticle plays a crucial role in determining its properties. Due to their small size and high surface-to-volume ratio, nanoparticles exhibit unique behaviors compared to bulk materials. The shape can affect

    +
      +
    • Optical Properties: Nanoscale boundary conditions can lead to quantum confinement effects, altering the optical absorption and emission spectra.

    • +
    • Mechanical Properties: The truncation of long-range interactions and the presence of surface atoms can change the stiffness and strength of nanoparticles.

    • +
    • Chemical Properties: The number and arrangement of surface atoms influence reactivity and catalytic activity.

    • +
    +

    Understanding and controlling nanoparticle shape is essential for applications in drug delivery, catalysis, photonics, and materials science.

    +
    +
    +

    Local vs. Global Geometry Optimization#

    +

    When optimizing the geometry of a nanoparticle or any complex system, we aim to find the configuration that minimizes the system’s potential energy. However, potential energy surfaces often contain multiple local minima due to the complex interactions between particles. Local optimization algorithms, such as gradient descent or methods implemented in scipy.optimize, can efficiently find a nearby minimum but may get trapped in a local minimum rather than finding the global minimum.

    +

    Illustration of Local vs. Global Minima

    +

    In the figure above, a local optimization algorithm starting at \(\mathbf{3.5}\) may converge to the local minimum at \(\color{red} \mathbf{2}\), missing the global minimum at \(\color{blue} \mathbf{-2}\).

    +
    +
    +

    Simulated Annealing#

    +

    To overcome the limitations of local optimization, we use global optimization algorithms that can escape local minima. Simulated annealing is a probabilistic technique inspired by the annealing process in metallurgy, where controlled cooling allows atoms to reach lower energy states.

    +
    +

    Principles of Simulated Annealing#

    +

    Simulated annealing adapts the Metropolis-Hastings algorithm from statistical mechanics. The key steps are:

    +
      +
    1. Initialization: Start with an initial configuration and a high “temperature” parameter.

    2. +
    3. Temperature Schedule: Define a cooling schedule to gradually reduce the temperature.

    4. +
    5. Generation of New Configurations: At each step, generate a new configuration by making a random change to the current configuration.

    6. +
    7. Energy Calculation: Compute the change in energy, \(\Delta E\), between the new and current configurations.

    8. +
    9. Acceptance Criterion: Accept the new configuration with probability

      +
      +\[\begin{split} + P(\text{accept}) = + \begin{cases} + 1, & \text{if } \Delta E \leq 0 \\ + \exp\left(-\dfrac{\Delta E}{k_B T}\right), & \text{if } \Delta E > 0 + \end{cases} + \end{split}\]
      +

      where \(k_\text{B}\) is the Boltzmann constant, and \(T\) is the current temperature.

      +
    10. +
    +

    By allowing occasional uphill moves (accepting higher energy states), the algorithm can escape local minima and explore the configuration space more thoroughly.

    +
    +
    +
    +

    Example: Optimizing the Shape of a Nanoparticle#

    +
    +

    Problem Statement#

    +

    We will optimize the configuration of a cluster of five argon atoms interacting via the Lennard-Jones potential. One atom is fixed at the origin, and the other four are free to move. Our goal is to find the arrangement that minimizes the total potential energy.

    +
    +
    +

    The Lennard-Jones Potential#

    +

    The Lennard-Jones (LJ) potential models the interaction between a pair of neutral atoms or molecules

    +
    +\[ +V_{\text{LJ}}(r) = 4\varepsilon \left[ \left( \dfrac{\sigma}{r} \right)^{12} - \left( \dfrac{\sigma}{r} \right)^{6} \right] +\]
    +

    where \(r\) is the distance between two particles, \(\varepsilon\) is the depth of the potential well (interaction strength), and \(\sigma\) is the finite distance at which the inter-particle potential is zero.

    +
    +
    +

    Implementing the Potential Energy Function#

    +
    +
    +
    import numpy as np
    +
    +def lennard_jones(r, epsilon=0.0103, sigma=3.4):
    +    """
    +    Calculate the Lennard-Jones potential energy between two particles.
    +    Parameters:
    +        r (float): Distance between two particles.
    +        epsilon (float): Depth of the potential well (eV).
    +        sigma (float): Finite distance at which the inter-particle potential is zero (Angstrom).
    +    Returns:
    +        float: Potential energy (eV).
    +    """
    +    return 4 * epsilon * ((sigma / r) ** 12 - (sigma / r) ** 6)
    +
    +
    +
    +
    +

    We also need a function to compute the total potential energy of the system:

    +
    +
    +
    def total_potential_energy(positions, epsilon=0.0103, sigma=3.4):
    +    """
    +    Calculate the total potential energy of the system of particles.
    +    Parameters:
    +        positions (ndarray): Array of particle positions with shape (N, 3).
    +        epsilon (float): Depth of the potential well (eV).
    +        sigma (float): Finite distance at which the inter-particle potential is zero (Angstrom).
    +    Returns:
    +        float: Total potential energy (eV).
    +    """
    +    energy = 0.0
    +    num_particles = len(positions)
    +    for i in range(num_particles):
    +        for j in range(i + 1, num_particles):
    +            r = np.linalg.norm(positions[i] - positions[j])
    +            if r > 0:
    +                energy += lennard_jones(r, epsilon, sigma)
    +    return energy
    +
    +
    +
    +
    +
    +
    +

    Simulated Annealing Algorithm#

    +

    Now, we implement the simulated annealing algorithm to optimize the particle positions.

    +
    +
    +
    def simulated_annealing(positions, initial_temp, cooling_rate, num_steps, freeze_particle=0, epsilon=0.0103, sigma=3.4):
    +    """
    +    Perform simulated annealing to optimize the nanoparticle configuration.
    +    Parameters:
    +        positions (ndarray): Initial positions of the particles.
    +        initial_temp (float): Initial temperature (arbitrary units).
    +        cooling_rate (float): Multiplicative factor for cooling (0 < cooling_rate < 1).
    +        num_steps (int): Number of simulation steps.
    +        freeze_particle (int): Index of the particle to keep fixed.
    +        epsilon (float): Depth of the potential well (eV).
    +        sigma (float): Finite distance at which the inter-particle potential is zero (Angstrom).
    +    Returns:
    +        best_positions (ndarray): Optimized positions of the particles.
    +        best_energy (float): Total potential energy of the optimized configuration.
    +        energy_history (list): List of energy values over time.
    +        temp_history (list): List of temperature values over time.
    +    """
    +    positions = positions.copy()
    +    num_particles = len(positions)
    +    temperature = initial_temp
    +    best_positions = positions.copy()
    +    best_energy = total_potential_energy(positions, epsilon, sigma)
    +    energy_history = []
    +    temp_history = []
    +    kB = 8.617333262145e-5  # Boltzmann constant in eV/K
    +
    +    for step in range(num_steps):
    +        # Select a random particle to move, excluding the frozen one
    +        move_particle = np.random.choice([i for i in range(num_particles) if i != freeze_particle])
    +
    +        # Propose a new position by making a small random displacement
    +        displacement = np.random.normal(0, 0.1, size=3)
    +        new_positions = positions.copy()
    +        new_positions[move_particle] += displacement
    +
    +        # Compute energies
    +        current_energy = total_potential_energy(positions, epsilon, sigma)
    +        new_energy = total_potential_energy(new_positions, epsilon, sigma)
    +        delta_energy = new_energy - current_energy
    +
    +        # Acceptance probability
    +        if delta_energy < 0 or np.random.rand() < np.exp(-delta_energy / (kB * temperature)):
    +            positions = new_positions
    +            current_energy = new_energy
    +            if new_energy < best_energy:
    +                best_energy = new_energy
    +                best_positions = new_positions.copy()
    +
    +        # Record energy and temperature
    +        energy_history.append(current_energy)
    +        temp_history.append(temperature)
    +
    +        # Update temperature
    +        temperature *= cooling_rate
    +
    +    return best_positions, best_energy, energy_history, temp_history
    +
    +
    +
    +
    +
    +
    +

    Running the Simulation#

    +

    Set up the initial positions and parameters, and run the simulated annealing algorithm.

    +
    +
    +
    np.random.seed(42)
    +
    +# Lennard-Jones parameters for Argon
    +epsilon = 0.0103  # eV
    +sigma = 3.4  # Angstrom
    +r_min = 2 ** (1 / 6) * sigma  # Distance at minimum potential
    +
    +# Initial positions (one fixed at the origin)
    +positions = np.array([
    +    [0.0, 0.0, 0.0],  # Fixed particle
    +    [r_min, 0.0, 0.0],
    +    [0.0, r_min, 0.0],
    +    [0.0, 0.0, r_min],
    +    [r_min, r_min, r_min]
    +])
    +
    +# Simulated annealing parameters
    +initial_temp = 1000.0  # Initial temperature in K
    +cooling_rate = 0.999  # Closer to 1 means slower cooling
    +num_steps = 10000
    +
    +# Run simulated annealing
    +best_positions, best_energy, energy_history, temp_history = simulated_annealing(
    +    positions,
    +    initial_temp,
    +    cooling_rate,
    +    num_steps,
    +    freeze_particle=0,
    +    epsilon=epsilon,
    +    sigma=sigma
    +)
    +
    +
    +
    +
    +
    +
    +

    Visualizing the Results#

    +

    Plot the total potential energy and temperature over the simulation steps.

    +
    +
    +
    import matplotlib.pyplot as plt
    +
    +fig, ax1 = plt.subplots(figsize=(10, 6))
    +
    +color_energy = 'tab:blue'
    +ax1.set_xlabel('Simulation Step')
    +ax1.set_ylabel('Total Potential Energy (eV)', color=color_energy)
    +ax1.plot(energy_history, color=color_energy)
    +ax1.tick_params(axis='y', labelcolor=color_energy)
    +
    +ax2 = ax1.twinx()  # Instantiate a second axes that shares the same x-axis
    +
    +color_temp = 'tab:red'
    +ax2.set_ylabel('Temperature (K)', color=color_temp)
    +ax2.plot(temp_history, color=color_temp)
    +ax2.tick_params(axis='y', labelcolor=color_temp)
    +
    +fig.tight_layout()
    +plt.title('Simulated Annealing Optimization')
    +plt.show()
    +
    +
    +
    +
    +_images/44079d3a8c690658bdfa5e1776ee56300bd8ccbc7f058aa37a62cdca60c0806c.png +
    +
    +
    +

    Interpretation

    +

    The plot shows how the total potential energy of the system decreases over time as the simulated annealing algorithm progresses. Initially, at high temperatures, the system explores a wide range of configurations, allowing for higher energy states. As the temperature decreases, the acceptance of higher energy states becomes less probable, and the system gradually settles into lower energy configurations. The energy curve shows fluctuations corresponding to accepted uphill moves, but overall trends downward, indicating convergence towards the global minimum.

    +
    +
    +
    +

    Analyzing the Optimized Configuration#

    +

    Let’s output the optimized positions and visualize the final configuration.

    +
    +
    +
    # Print the optimized configuration in XYZ format
    +print(f"{len(best_positions)}")
    +print("Optimized configuration of the nanoparticle")
    +for position in best_positions:
    +    print(f"Ar {position[0]:.6f} {position[1]:.6f} {position[2]:.6f}")
    +
    +
    +
    +
    +
    5
    +Optimized configuration of the nanoparticle
    +Ar 0.000000 0.000000 0.000000
    +Ar 3.716731 -0.614456 0.409582
    +Ar 2.098210 2.422874 2.062186
    +Ar 1.364967 -1.077208 3.395846
    +Ar 4.810169 0.456312 3.873756
    +
    +
    +
    +
    +

    You can save this output to an .xyz file and visualize it using molecular visualization software like VESTA or Avogadro.

    +

    Optimized configuration of the nanoparticle

    +
    +

    Interpretation

    +

    The optimized configuration shows the five argon atoms arranged in a trigonal bipyramidal structure. This geometry minimizes the total potential energy by optimizing the distances between particles to balance attractive and repulsive forces as defined by the Lennard-Jones potential. Each atom (except the fixed one) adjusts its position to achieve the most energetically favorable arrangement.

    +
    +
    +
    +
    +

    Exercise#

    +
      +
    1. Parameter Exploration: Modify the simulated annealing parameters (initial_temp, cooling_rate, num_steps) to observe their effects on the optimization process. How does changing the cooling rate affect the convergence?

    2. +
    3. Alternative Optimization Methods: Implement a different global optimization algorithm, such as Differential Evolution or Basin Hopping from scipy.optimize. Compare the results and efficiency with simulated annealing.

    4. +
    5. Scaling Up: Increase the number of particles (e.g., to 10 or 20) and observe how the optimization process scales with system size. What challenges arise with larger systems?

    6. +
    7. Potential Function Variation: Try using a different interatomic potential, such as the Morse potential. How does the choice of potential affect the optimized configuration?

    8. +
    +
    +
    +

    Summary#

    +

    In this lecture, we explored the significance of nanoparticle shape in determining their properties and learned how global optimization algorithms like simulated annealing can be employed to find optimal configurations. Simulated annealing mimics the physical process of annealing, allowing the system to escape local minima and converge towards the global minimum by controlled cooling. By implementing this algorithm, we optimized a small cluster of Lennard-Jones particles, demonstrating its effectiveness in solving complex optimization problems in the chemical sciences.

    +
    +
    + + + + +
    + + + + + + + + +
    + + + + + + +
    +
    + + +
    + + +
    +
    +
    + + + + + + + + \ No newline at end of file diff --git a/objects.inv b/objects.inv index 0a56554..13cda33 100644 Binary files a/objects.inv and b/objects.inv differ diff --git a/reports/lecture-15-nanoparticles.err.log b/reports/lecture-15-nanoparticles.err.log new file mode 100644 index 0000000..b1ba558 --- /dev/null +++ b/reports/lecture-15-nanoparticles.err.log @@ -0,0 +1,44 @@ +Traceback (most recent call last): + File "/Users/robertwexler/miniconda3/envs/comp-prob-solv/lib/python3.12/site-packages/nbclient/client.py", line 782, in _async_poll_for_reply + msg = await ensure_async(self.kc.shell_channel.get_msg(timeout=new_timeout)) + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "/Users/robertwexler/miniconda3/envs/comp-prob-solv/lib/python3.12/site-packages/jupyter_core/utils/__init__.py", line 198, in ensure_async + result = await obj + ^^^^^^^^^ + File "/Users/robertwexler/miniconda3/envs/comp-prob-solv/lib/python3.12/site-packages/jupyter_client/channels.py", line 313, in get_msg + raise Empty +_queue.Empty + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File "/Users/robertwexler/miniconda3/envs/comp-prob-solv/lib/python3.12/site-packages/jupyter_cache/executors/utils.py", line 58, in single_nb_execution + executenb( + File "/Users/robertwexler/miniconda3/envs/comp-prob-solv/lib/python3.12/site-packages/nbclient/client.py", line 1314, in execute + return NotebookClient(nb=nb, resources=resources, km=km, **kwargs).execute() + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "/Users/robertwexler/miniconda3/envs/comp-prob-solv/lib/python3.12/site-packages/jupyter_core/utils/__init__.py", line 165, in wrapped + return loop.run_until_complete(inner) + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "/Users/robertwexler/miniconda3/envs/comp-prob-solv/lib/python3.12/asyncio/base_events.py", line 687, in run_until_complete + return future.result() + ^^^^^^^^^^^^^^^ + File "/Users/robertwexler/miniconda3/envs/comp-prob-solv/lib/python3.12/site-packages/nbclient/client.py", line 709, in async_execute + await self.async_execute_cell( + File "/Users/robertwexler/miniconda3/envs/comp-prob-solv/lib/python3.12/site-packages/nbclient/client.py", line 1005, in async_execute_cell + exec_reply = await self.task_poll_for_reply + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "/Users/robertwexler/miniconda3/envs/comp-prob-solv/lib/python3.12/site-packages/nbclient/client.py", line 806, in _async_poll_for_reply + error_on_timeout_execute_reply = await self._async_handle_timeout(timeout, cell) + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "/Users/robertwexler/miniconda3/envs/comp-prob-solv/lib/python3.12/site-packages/nbclient/client.py", line 856, in _async_handle_timeout + raise CellTimeoutError.error_from_timeout_and_cell( +nbclient.exceptions.CellTimeoutError: A cell timed out while it was being executed, after 30 seconds. +The message was: Cell execution timed out. +Here is a preview of the cell contents: +------------------- +['# Initial configuration of the five free particles', 'r_init = np.random.uniform(-10, 10, size=(5, 3))', '', '# Parameters for simulated annealing', 'n_steps = 1000'] +... +[' title="Optimal Configuration of Lennard-Jones Particles")', ' fig.show()', '', '# Visualize the configuration', 'plot_3d_optimal_configuration(optimal_positions)'] +------------------- + diff --git a/search.html b/search.html index 145188c..73f75a8 100644 --- a/search.html +++ b/search.html @@ -196,6 +196,7 @@
  • Lecture 12: The Monte Carlo Method
  • Lecture 13: Monte Carlo Integration
  • Lecture 14: A Basic Monte Carlo Algorithm
  • +
  • Lecture 15: Nanoparticle Shape and Simulated Annealing
  • diff --git a/searchindex.js b/searchindex.js index b4e79fc..e9b8c09 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"": [[1, null], [1, null], [2, null], [2, null], [2, null], [3, null], [3, null], [5, null], [8, null], [9, null], [9, null], [9, null], [9, null], [9, null], [9, null], [10, null], [11, null], [12, null], [13, null], [14, null]], "1.1 Download and Install Python": [[1, "download-and-install-python"]], "1.1 Key Features of NumPy": [[2, "key-features-of-numpy"]], "1.1 The if Statement": [[3, "the-if-statement"]], "1.2 Check if Python is Already Installed": [[1, "check-if-python-is-already-installed"]], "1.2 The if-else Statement": [[3, "the-if-else-statement"]], "1.2 Working with NumPy Arrays": [[2, "working-with-numpy-arrays"]], "1.3 Practice Exercises": [[2, "practice-exercises"]], "1.3 The if-elif-else Statement": [[3, "the-if-elif-else-statement"]], "1.3 Windows-Specific Note": [[1, "windows-specific-note"]], "2.1 Install Jupyter Notebook": [[1, "install-jupyter-notebook"]], "2.1 Key Features of SciPy": [[2, "key-features-of-scipy"]], "2.1 The for Loop": [[3, "the-for-loop"]], "2.2 Launching Jupyter Notebook": [[1, "launching-jupyter-notebook"]], "2.2 The while Loop": [[3, "the-while-loop"]], "3.1 Defining Functions": [[3, "defining-functions"]], "3.1 Key Features of Matplotlib": [[2, "key-features-of-matplotlib"]], "3.1 Python and Mathematics": [[1, "python-and-mathematics"]], "3.2 Creating Basic Plots with Matplotlib": [[2, "creating-basic-plots-with-matplotlib"]], "3.2 Functions with Default Parameter Values": [[3, "functions-with-default-parameter-values"]], "3.2 Practice Exercises": [[1, "practice-exercises"]], "3.3 Customizing Your Plots": [[2, "customizing-your-plots"]], "3.3 Lambda Functions": [[3, "lambda-functions"]], "3.3 Python Can Do Chemistry": [[1, "python-can-do-chemistry"]], "3.4 Practice Exercises": [[1, "id1"], [2, "id1"]], "3.4 Using Lambda Functions with Higher-Order Functions": [[3, "using-lambda-functions-with-higher-order-functions"]], "3.5 Python Can Do Graphing": [[1, "python-can-do-graphing"]], "3.5 Using Lambda Functions with Pandas": [[3, "using-lambda-functions-with-pandas"]], "3.6 Best Practices for Using Functions": [[3, "best-practices-for-using-functions"]], "3.6 Practice Exercises": [[1, "id2"]], "3.7 Python Can Do More": [[1, "python-can-do-more"]], "4.1 Key Features of Pandas": [[2, "key-features-of-pandas"]], "4.2 Series: The 1D Data Structure": [[2, "series-the-1d-data-structure"]], "4.3 DataFrame: The 2D Data Structure": [[2, "dataframe-the-2d-data-structure"]], "4.4 Reading and Writing Data": [[2, "reading-and-writing-data"]], "4.5 Filtering Data": [[2, "filtering-data"]], "4.6 Practice Exercises": [[2, "id2"]], "A Familiar Form of the Correlation Coefficient": [[8, null]], "A Practical Example": [[7, "a-practical-example"]], "A Refresher or Primer on Rate Laws": [[7, "a-refresher-or-primer-on-rate-laws"]], "A Theoretical Interlude": [[8, "a-theoretical-interlude"]], "Acceptance Probability": [[14, "acceptance-probability"]], "Additional Exercise": [[4, null]], "Additional Exercises": [[3, "additional-exercises"]], "Additional Notes": [[14, null]], "Advanced Matrix Operations": [[2, "advanced-matrix-operations"]], "Analytical Integration": [[5, "analytical-integration"]], "Analytical Solution": [[5, "analytical-solution"]], "Analytical vs. Numerical Integration": [[5, "analytical-vs-numerical-integration"]], "Analyzing the Results": [[14, "analyzing-the-results"]], "Average Bond Length": [[14, "average-bond-length"]], "Average Energy and Internal Energy": [[10, "average-energy-and-internal-energy"]], "Back to the N_2O_5(g) Decomposition Experiment": [[7, "back-to-the-n-2o-5-g-decomposition-experiment"]], "Back to the Real World": [[8, "back-to-the-real-world"]], "Balancing Chemical Equations": [[6, "balancing-chemical-equations"]], "Balancing the Equation by Hand": [[6, "balancing-the-equation-by-hand"]], "Best Practice": [[2, null]], "Boltzmann Distribution": [[10, "boltzmann-distribution"]], "Calculating the Overlap Integral of Two H 1s Orbitals": [[5, "calculating-the-overlap-integral-of-two-h-1s-orbitals"]], "Calibration Curve": [[8, "calibration-curve"]], "Calibration Data": [[8, "calibration-data"]], "Canonical Ensemble": [[11, "canonical-ensemble"]], "Choosing a Suitable g(x)": [[12, "choosing-a-suitable-g-x"]], "Choosing the Importance Sampling Distribution": [[13, "choosing-the-importance-sampling-distribution"]], "Computing the Overlap Integral": [[5, "computing-the-overlap-integral"]], "Confidence Intervals": [[8, "confidence-intervals"]], "Correlation Analysis": [[8, "correlation-analysis"]], "Creating and Using Arrays": [[2, "creating-and-using-arrays"]], "Critical Thinking": [[10, null], [10, null], [10, null], [10, null]], "Derivation of the Metropolis Algorithm": [[14, "derivation-of-the-metropolis-algorithm"]], "Detailed Balance Condition": [[14, "detailed-balance-condition"]], "Determining the Rate Constant of a Reaction": [[7, "determining-the-rate-constant-of-a-reaction"]], "Equilibrium": [[9, "equilibrium"]], "Ergodicity": [[11, "ergodicity"]], "Example: Chemical Reaction Equilibrium via Numerical Method": [[4, "example-chemical-reaction-equilibrium-via-numerical-method"]], "Example: Reduction of Tin(IV) Oxide by Hydrogen": [[6, "example-reduction-of-tin-iv-oxide-by-hydrogen"]], "Example: Sampling a Classical Morse Oscillator": [[14, "example-sampling-a-classical-morse-oscillator"]], "Example: Two-State System": [[10, "example-two-state-system"]], "Exercise": [[3, null], [4, null]], "Exercise 1": [[3, null]], "Exercise 1: Check if a Number is Even or Odd": [[3, "exercise-1-check-if-a-number-is-even-or-odd"]], "Exercise 2": [[3, null]], "Exercise 2: Sum of All Numbers in a List": [[3, "exercise-2-sum-of-all-numbers-in-a-list"]], "Exercise 3": [[3, null]], "Exercise 3: Factorial of a Number": [[3, "exercise-3-factorial-of-a-number"]], "Exercise 4": [[3, null]], "Exercise 4: Check if a String is a Palindrome": [[3, "exercise-4-check-if-a-string-is-a-palindrome"]], "Exercise 5": [[3, null]], "Exercise 5: Find the Maximum and Minimum Elements in a List": [[3, "exercise-5-find-the-maximum-and-minimum-elements-in-a-list"]], "Explanation of the Code": [[14, "explanation-of-the-code"]], "Free Energy and Entropy": [[10, "free-energy-and-entropy"]], "Fundamental Thermodynamic Relation": [[9, "fundamental-thermodynamic-relation"]], "General Case for Hydrocarbon Combustion": [[6, null]], "Generating Arrays with Specific Properties": [[2, "generating-arrays-with-specific-properties"]], "Grand Canonical Ensemble": [[11, "grand-canonical-ensemble"]], "Grand Canonical Ensemble: Example": [[11, "grand-canonical-ensemble-example"]], "Hands-On Activity": [[4, "hands-on-activity"], [7, "hands-on-activity"], [8, "hands-on-activity"]], "Hands-On Activity: Overlap of Two He 1s Orbitals": [[5, "hands-on-activity-overlap-of-two-he-1s-orbitals"]], "Heat Capacity at Constant Volume": [[10, "heat-capacity-at-constant-volume"]], "Hint": [[7, null]], "Histograms": [[2, "histograms"]], "Implementation in Python": [[12, "implementation-in-python"]], "Implementing Root-Finding Methods in Python": [[4, "implementing-root-finding-methods-in-python"]], "Implementing the Metropolis Algorithm in Python": [[14, "implementing-the-metropolis-algorithm-in-python"]], "Implications of Ergodicity": [[11, "implications-of-ergodicity"]], "Importance Sampling": [[12, "importance-sampling"], [13, "importance-sampling"]], "Important": [[2, null]], "Infinite Loops": [[3, null]], "Installing NumPy": [[2, "installing-numpy"]], "Internal Energy, Work, and Heat": [[9, "internal-energy-work-and-heat"]], "Interpretation": [[14, null], [14, null]], "Introduction": [[3, "introduction"], [7, "introduction"], [8, "introduction"], [14, "introduction"]], "Introduction to Chemical Reaction Equilibria": [[4, "introduction-to-chemical-reaction-equilibria"]], "Introduction to Monte Carlo Method": [[12, "introduction-to-monte-carlo-method"]], "Introduction to Statistical Thermodynamics": [[10, "introduction-to-statistical-thermodynamics"]], "Isothermal-Isobaric Ensemble": [[11, "isothermal-isobaric-ensemble"]], "Isothermal-Isobaric Ensemble: Example": [[11, "isothermal-isobaric-ensemble-example"]], "Key Control Structures in Python": [[3, "key-control-structures-in-python"]], "Learning Objectives": [[1, "learning-objectives"], [2, "learning-objectives"], [3, "learning-objectives"], [4, "learning-objectives"], [6, "learning-objectives"], [7, "learning-objectives"], [8, "learning-objectives"], [9, "learning-objectives"], [10, "learning-objectives"], [11, "learning-objectives"], [12, "learning-objectives"], [13, "learning-objectives"], [14, "learning-objectives"]], "Lecture 10: Statistical Thermodynamics": [[10, null]], "Lecture 11: Ensembles and Ergodicity": [[11, null]], "Lecture 12: The Monte Carlo Method": [[12, null]], "Lecture 13: Monte Carlo Integration": [[13, null]], "Lecture 14: A Basic Monte Carlo Algorithm": [[14, null]], "Lecture 1: Introduction to Python for the Chemical Sciences": [[1, null]], "Lecture 2: Essential Python Packages for the Chemical Sciences": [[2, null]], "Lecture 3: Control Structures in Python": [[3, null]], "Lecture 4: Chemical Reaction Equilibria and Roots of Equations": [[4, null]], "Lecture 5: Chemical Bonding and Numerical Integration": [[5, null]], "Lecture 6: Balancing Chemical Equations and Systems of Linear Algebraic Equations": [[6, null]], "Lecture 7: Orders of Reaction and Linear Regression Analysis": [[7, null]], "Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis": [[8, null]], "Lecture 9: Classical Thermodynamics": [[9, null]], "Line Plots": [[2, "line-plots"]], "Linear Regression Analysis": [[7, "linear-regression-analysis"]], "List Comprehensions": [[3, "list-comprehensions"]], "Lists vs. Dictionaries": [[3, null]], "Looping Through a Dictionary": [[3, "looping-through-a-dictionary"]], "Looping Through a List": [[3, "looping-through-a-list"]], "Looping Through a NumPy Array": [[3, "looping-through-a-numpy-array"]], "Looping Through a Pandas DataFrame": [[3, "looping-through-a-pandas-dataframe"]], "Looping Through a String": [[3, "looping-through-a-string"]], "Mathematical Formulation of Equilibrium Problems": [[4, "mathematical-formulation-of-equilibrium-problems"]], "Matrix and Vector Operations": [[2, "matrix-and-vector-operations"]], "Microcanonical Ensemble": [[11, "microcanonical-ensemble"]], "Microcanonical Ensemble: Example": [[11, "microcanonical-ensemble-example"]], "Microstates and Macrostates": [[10, "microstates-and-macrostates"]], "Monte Carlo Estimation": [[12, "monte-carlo-estimation"]], "Monte Carlo Estimator with Importance Sampling": [[12, "monte-carlo-estimator-with-importance-sampling"]], "Motivation for Importance Sampling": [[12, "motivation-for-importance-sampling"]], "Non-Ergodic Systems": [[11, "non-ergodic-systems"]], "Note": [[3, null], [4, null], [5, null]], "Numerical Integration": [[5, "numerical-integration"]], "Numerical Integration Using a Riemann Sum": [[5, "numerical-integration-using-a-riemann-sum"]], "Numerical Integration Using the Trapezoidal Rule": [[5, "numerical-integration-using-the-trapezoidal-rule"]], "Numerical Methods for Finding Roots of Equations": [[4, "numerical-methods-for-finding-roots-of-equations"]], "Orders of Reaction": [[7, "orders-of-reaction"]], "Ordinary Least Squares": [[7, "ordinary-least-squares"]], "Phase Equilibria": [[9, "phase-equilibria"]], "Plotting Thermal Expansion": [[14, "plotting-thermal-expansion"]], "Plotting the Results": [[14, "plotting-the-results"]], "Python Implementation": [[12, "python-implementation"]], "Python Lists": [[2, null]], "Random Sampling": [[13, "random-sampling"]], "Recap": [[6, "recap"]], "References": [[14, "references"]], "Relating Integrals to Averages": [[12, "relating-integrals-to-averages"]], "Reminder": [[2, null]], "Return to the Overlap Integral": [[13, "return-to-the-overlap-integral"]], "Rewriting the Integral": [[12, "rewriting-the-integral"]], "Running the Simulation": [[14, "running-the-simulation"]], "Scatter Plots": [[2, "scatter-plots"]], "Section 1: Conditional Statements": [[3, "section-1-conditional-statements"]], "Section 1: NumPy - The Foundation of Scientific Computing in Python": [[2, "section-1-numpy-the-foundation-of-scientific-computing-in-python"]], "Section 2: Loops": [[3, "section-2-loops"]], "Section 2: SciPy - A Powerful Tool for Scientific Computing": [[2, "section-2-scipy-a-powerful-tool-for-scientific-computing"]], "Section 3: Functions": [[3, "section-3-functions"]], "Section 3: Matplotlib - Creating Publication-Quality Visualizations": [[2, "section-3-matplotlib-creating-publication-quality-visualizations"]], "Section 4: Hands-on Practice": [[3, "section-4-hands-on-practice"]], "Section 4: Pandas - Powerful Data Manipulation in Python": [[2, "section-4-pandas-powerful-data-manipulation-in-python"]], "Simulation Over a Range of Temperatures": [[14, "simulation-over-a-range-of-temperatures"]], "Solving for Equilibrium": [[4, "solving-for-equilibrium"]], "Solving the Equation Using Python": [[6, "solving-the-equation-using-python"]], "Solving the System of Equations": [[6, "solving-the-system-of-equations"]], "Statement of the First Law": [[9, "statement-of-the-first-law"]], "Step 1: Formulating the Equilibrium Equation": [[4, "step-1-formulating-the-equilibrium-equation"]], "Step 1: Getting Python Installed": [[1, "step-1-getting-python-installed"]], "Step 1: Import the Necessary Libraries": [[6, "step-1-import-the-necessary-libraries"]], "Step 2: Define the Coefficient Matrix, \\mathbf{A}": [[6, "step-2-define-the-coefficient-matrix-mathbf-a"]], "Step 2: Installing Jupyter Notebook": [[1, "step-2-installing-jupyter-notebook"]], "Step 2: Minimizing the Equilibrium Equation": [[4, "step-2-minimizing-the-equilibrium-equation"]], "Step 3: Compute the Null Space": [[6, "step-3-compute-the-null-space"]], "Step 3: Let\u2019s Get Started with Python": [[1, "step-3-let-s-get-started-with-python"]], "Step 4: Normalize and Convert to Integer Coefficients": [[6, "step-4-normalize-and-convert-to-integer-coefficients"]], "Step 5: The Balanced Chemical Equation": [[6, "step-5-the-balanced-chemical-equation"]], "Summary": [[6, "summary"], [9, "summary"], [10, "summary"], [11, "summary"], [13, "summary"], [14, "summary"]], "Symmetry and Integration": [[5, "symmetry-and-integration"]], "Systems of Linear Algebraic Equations": [[6, "systems-of-linear-algebraic-equations"]], "Take a Moment": [[6, null]], "The First Law": [[9, "the-first-law"]], "The Hydrogen 1s Orbital": [[5, "the-hydrogen-1s-orbital"]], "The Importance of Initial Guess": [[4, null]], "The Laws of Thermodynamics": [[9, "the-laws-of-thermodynamics"]], "The Metropolis Algorithm Steps": [[14, "the-metropolis-algorithm-steps"]], "The Metropolis Algorithm: \u201cMeasuring the Depth of the Mississippi\u201d": [[14, "the-metropolis-algorithm-measuring-the-depth-of-the-mississippi"]], "The Second Law": [[9, "the-second-law"]], "The Third Law": [[9, "the-third-law"]], "The Zeroth Law": [[9, "the-zeroth-law"]], "Thermal Expansion of the Morse Oscillator": [[14, "thermal-expansion-of-the-morse-oscillator"]], "Thermodynamic Potentials": [[9, "thermodynamic-potentials"]], "Thermodynamic Properties from the Partition Function": [[10, "thermodynamic-properties-from-the-partition-function"]], "Thermodynamic Systems": [[9, "thermodynamic-systems"]], "Types of Ensembles": [[11, "types-of-ensembles"]], "Visualization of the Morse Potential": [[14, "visualization-of-the-morse-potential"]], "Wait!": [[5, null], [5, null]], "Wait, What\u2019s the Expected Solution?": [[4, null]], "Warning": [[4, null]], "Welcome to Computational Problem Solving in the Chemical Sciences": [[0, null]], "What Are Control Structures?": [[3, "what-are-control-structures"]], "What Is an Integral?": [[5, "what-is-an-integral"]], "What\u2019s Next?": [[11, null]], "Why Should You Care About Ensembles?": [[11, "why-should-you-care-about-ensembles"]], "Why Should You Care About Thermodynamics?": [[9, "why-should-you-care-about-thermodynamics"]], "scipy.optimize.minimize: A Versatile Approach": [[4, "scipy-optimize-minimize-a-versatile-approach"]]}, "docnames": ["intro", "lecture-01-introduction", "lecture-02-packages", "lecture-03-control", "lecture-04-optimization", "lecture-05-integration", "lecture-06-linalg", "lecture-07-regression", "lecture-08-calibration", "lecture-09-thermo", "lecture-10-stat-thermo", "lecture-11-ensembles", "lecture-12-monte-carlo", "lecture-13-mc-integration", "lecture-14-metropolis"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["intro.md", "lecture-01-introduction.md", "lecture-02-packages.md", "lecture-03-control.md", "lecture-04-optimization.md", "lecture-05-integration.md", "lecture-06-linalg.md", "lecture-07-regression.md", "lecture-08-calibration.md", "lecture-09-thermo.md", "lecture-10-stat-thermo.md", "lecture-11-ensembles.md", "lecture-12-monte-carlo.md", "lecture-13-mc-integration.md", "lecture-14-metropolis.md"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14], "0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "00": [1, 2, 4], "000": 8, "000000": [], "0000000000000004": 2, "0000000000000009": [], "000000019073487": 4, "0000003051757815": 4, "0000003433227533": 4, "000000381469727": 4, "0001": 10, "0001871291025951396": 8, "0004184333939712645": 8, "000e": 4, "001": 8, "0024893696884570006": [], "003967": [], "004": 8, "004748": [], "007": 8, "007820585525325625": [], "008": [1, 8], "009564": 2, "01": [1, 10], "010339": [], "010999999999996": 1, "011": 1, "0112": 7, "011213": [], "0125": 7, "013": 8, "0132": [], "0133": 14, "0144": 7, "014682": [], "0162": 7, "019033": [], "0191": 7, "02": 4, "020020": [], "0250": 7, "026": 8, "026862": [], "030363606516579125": 7, "031785": 5, "032": 8, "032076": [], "038889": [], "04": 7, "04036523": [], "040756": [], "040832": [], "042757": [], "04361008": [], "044403": [], "044783": [], "045537": 2, "048021": [], "048416": 2, "049373": [], "049586": [], "05": [], "051520": [], "054431": [], "057691": [], "058135": [], "059068": 2, "06": [7, 8], "060": [], "060908": [], "06533351": [], "066214": [], "067183": [], "07": 4, "07069651": [], "071614": [], "073500": [], "074532": [], "075927": [], "076810": [], "07750": [], "07812993": [], "0783716": [], "08": [2, 7], "08468586": [], "086293": [], "089069": [], "089466": 12, "09": [], "090967": [], "09188008": [], "092201": [], "093195": 2, "094149": 2, "096565": 5, "096577": 5, "099762": 5, "0f": 4, "0x1114aa5f0": [], "1": [0, 7, 8, 9, 10, 11, 12, 13, 14], "10": [0, 1, 2, 3, 4, 5, 7, 8, 14], "100": [1, 2, 4, 5, 7, 10, 12, 13, 14], "1000": [2, 5, 8, 12, 13, 14], "10000": [13, 14], "100000": 13, "1000000": 13, "10000000": [], "100_000": [], "101": [], "1016": 14, "102": [], "102174": [], "105363": [], "1063": 14, "1087": 14, "1092": 14, "11": [0, 2, 4, 7], "1100": [], "111754": [], "113959": [], "11574968": [], "116": [], "11x": 4, "12": [0, 1, 8, 10, 14], "1200x500": [], "12138546": [], "1225": 3, "12357159": [], "123840": [], "124996": [], "1250875": [], "12600315": [], "127246": [], "127797": [], "128745": [], "129": [], "129811": [], "13": 0, "130": 2, "13073": [], "131": [], "1314235014": [], "132": [], "132008": [], "13256909": [], "133": [], "134": [], "135": [], "136072": 5, "136085": 5, "136902": [], "137451": [], "1385": [], "1386": [], "1387": [], "1388": [], "1389": [], "1390": [], "1391": [], "14": [0, 7, 11], "140199": [], "1402": [], "140213": [], "1403": [], "1404": [], "1405": [], "1406": [], "1407": [], "14073843": [], "1408": [], "1409": [], "140951": 5, "1410": [], "14159": 3, "145263": [], "15": [2, 7], "150": 2, "151212": [], "153355": [], "15383974": [], "15396606": [], "153987": [], "154": 2, "155298": [], "15763222": [], "16": [1, 2, 3, 4], "161040": [], "16121387": [], "16168": [], "161758": [], "165889": [], "166290": [], "167": [], "168": [], "169252": [], "169374": [], "1699114": 14, "17": [], "170": [], "171": [], "172": [], "1733916972": 4, "173860": [], "17855413": [], "1796469911": [], "18": [5, 8], "181": [], "182": [], "182050": [], "183": [], "183777": [], "184": [], "185": [], "186": [], "187": [], "188": [], "188889": [], "189247": 5, "189262": 5, "19": [], "1903": [], "1904": [], "1905": [], "192456": [], "19464139": [], "1953": 14, "19530158": [], "196617": 5, "196816": [], "197475": [], "197620": [], "19971276": [], "1d": [], "1e": 4, "2": [0, 5, 7, 8, 9, 10, 12, 13, 14], "20": 7, "2001": [], "200369": [], "200383": [], "200402": [], "200483": [], "2023": 14, "205104": [], "208289": [], "21": [8, 14], "21113": [], "212": [], "214": [], "21459876": [], "215": [], "21514317": [], "21567557": 2, "216": [], "217": [], "2170": [], "2171": [], "2172": [], "2173": [], "2174": [], "2175": [], "2176": [], "2177": [], "219": [], "21948282": [], "22": 4, "220619": [], "22115577933543018": 7, "2213406": [], "2224677478": [], "22466308": [], "22722108611679165": 1, "227632": [], "22e": 4, "23": [], "2304533417": [], "23067359": [], "230942": [], "234381": [], "23535115": [], "236837": [], "24": [2, 7], "241398": [], "243110": [], "245944": [], "246372": [], "2468699402": [], "24999999999998668": [], "25": [1, 2, 3, 4, 8], "25097623": [], "25180": [], "25298782": 2, "253167": [], "25430905": [], "254594": [], "25685736": [], "2569768875": [], "258769": 2, "259179": 5, "259194": 5, "26": [], "261": [], "262": [], "263": [], "263956": [], "264": 2, "264261": [], "265": 2, "266": [], "267": [], "268": [], "269": [], "26953356": [], "269757": [], "27": 8, "270": [], "270172": 5, "270435": [], "271": [], "273": [], "273713": [], "274": [], "274815": [], "275": [], "27514562": [], "276": [], "277778": [], "27819382": [], "2793": [], "2794": [], "2795": [], "2799": [], "28": 7, "280": [], "2800": [], "2801": [], "281": [], "281017": [], "281032": [], "281626": 2, "282552": [], "288280": [], "288791": [], "29": [], "291939": [], "29260813": [], "293218": [], "293416": [], "294650": [], "295068": [], "296185": [], "298": 7, "29978765": [], "2_1": [], "2_2": [], "2a": 6, "2b": 6, "2c": 6, "2d": 6, "2f": 8, "2n": 6, "2r": 5, "2x": 4, "2x2": 2, "3": [0, 4, 5, 7, 8, 12, 13], "30": [2, 3, 7, 8, 10, 14], "300": 14, "302182": [], "30255225": [], "3049": [], "3050": [], "3051": [], "3052": [], "3053": [], "31": [4, 8], "31016631": [], "3104": [], "3105": [], "3107": [], "3109": [], "3110": [], "314505": [], "3159": [], "3161": [], "3162": [], "3163": [], "3165": [], "3166": [], "318": 7, "318526": [], "32": [2, 8, 12], "320524": [], "32099643": [], "324007": [], "325560": [], "325610": 12, "32561038208072784": [], "327": 2, "32816799690108206": [], "328712": [], "329385": [], "329867": [], "33": 8, "33026915": [], "3331481689": [], "333259": [], "333333": 12, "33500365": [], "33552352": [], "337550306": [], "338002": [], "3386046038985078": [], "34": [], "341": [], "342": [], "343": [], "344": [], "3442733": [], "345": [], "34714337": [], "348493": 5, "348509": 5, "35": [2, 3], "350110": [], "3543": [], "3544": [], "3545": [], "3546": [], "3547": [], "3548": [], "3549": [], "36": [], "36330421": [], "364650": 5, "366086": [], "366667": [], "368379": [], "369988": [], "37": [2, 7], "37228132": 2, "373919": [], "379": [], "38": [], "380": [], "38020829": 2, "381": [], "382": [], "383": [], "384": [], "38480972": [], "385": [], "385206": [], "385223": [], "38523872": [], "386": [], "387": [], "388": [], "38825605": [], "38848765": [], "388541": [], "389": [], "38986037": [], "39": 2, "390": [], "391991": [], "392485": [], "397667": [], "3d": [1, 2, 5], "3dmol": [], "3f": 8, "3n": 6, "3x": 4, "3x3": 2, "4": [0, 5, 7, 8, 10, 14], "40": 7, "400": 4, "4000": 4, "4014613473": [], "403655": [], "40446243": 2, "405787": [], "409241": [], "4096": [], "41": 8, "410": 2, "41152632": [], "41228293": [], "41263254": [], "412686": [], "413040": [], "413601": [], "415782": [], "41702911": [], "41884383": [], "419523": [], "42": [2, 12, 13, 14], "422": 2, "4256142": [], "42638864": [], "426663": [], "428120": [], "42812882": 2, "428552": [], "429026": [], "429932": [], "43": [], "430490": [], "43260088": [], "43377967": [], "435078": [], "435593": [], "43765552": [], "44": 1, "440513": [], "444864": 2, "44493476": [], "4480": [], "4481": [], "4482": [], "4483": [], "4484": [], "44905775": [], "45": [], "451": [], "452": [], "453": [], "453202": [], "45398804": [], "454": [], "455": [], "455556": [], "456": [], "45600233": [], "457": [], "458290": 5, "458308": 5, "46": [], "4602659": [], "460471": [], "46455389": [], "4647058823529414e": 8, "465110": [], "465299": [], "4665494": [], "468024": [], "46938113": [], "47": [], "47036559": [], "47575154": [], "476065": [], "477106": [], "48": [], "480066": [], "48070937": [], "481598": 5, "482436": [], "482577": [], "488235294117647e": 8, "489157": [], "49": [], "490528": [], "492423": [], "49342": [], "49731891": [], "498755": [], "4999996185302713": [], "4999998855590835": [], "4a": 6, "4f": 14, "4x": 4, "5": [0, 4, 7, 8, 10, 13, 14], "50": [2, 7, 14], "500": [10, 14], "50000": 14, "500e": [], "502418": [], "507017": [], "51": [], "513279": [], "513297": [], "52": [], "526100": [], "526245": [], "52695194": [], "529": 5, "53": [], "530": 8, "530054": [], "534060": [], "53551883": [], "53651539": [], "538946": [], "53939566": [], "539570": [], "539796795": [], "54": 8, "540513": [], "545158": [], "54518": [], "54785244": [], "555261": [], "555330": [], "558357": [], "562114": [], "563880": [], "56833": [], "569610": [], "57": 2, "570085": [], "57219658": [], "575324": [], "576889": [], "58": [], "582797": [], "58445442": [], "58453143": [], "586435": 5, "586453": 5, "588008": [], "58e": [], "59045283": [], "5963908": [], "5998763": [], "5f": [], "5t_cnxn96vs1f6z07zkwy_k80000gn": [], "6": [0, 4, 5, 7, 8, 10, 13, 14], "60": [2, 7], "600": 8, "60000": [], "603": 2, "60464228": [], "607337": [], "607767": 2, "6085366895522193e": 12, "6134203": [], "617424": [], "618404": [], "619193": [], "619271": 5, "62": 4, "625": 3, "6295": [], "6296": [], "629652": [], "6297": [], "6298": [], "6299": [], "63": 2, "63027018": [], "63061": [], "63391829": [], "63407862": [], "63651919": [], "63921": 14, "63e": [], "64": [], "640340": [], "64181731": [], "644444": [], "64448507": [], "64521477": 2, "645333": [], "645725": [], "646079": 2, "646416": [], "647628": [], "649707": [], "65": 2, "650": 8, "653721": [], "65437021": [], "656155": [], "658352": [], "659596": [], "659829": [], "659902": [], "659921": [], "66": [], "66129037": [], "661308": 2, "662783": [], "666408": [], "66805603": [], "669": [], "67": [], "670": 2, "672533": [], "673317": [], "67897942": [], "679175": [], "68": 7, "68262291": [], "684116": [], "688488": [], "68e": [], "69": [], "690617": [], "69418496": [], "694901": [], "697682": [], "69803815": [], "698842": [], "6f": [5, 12], "6x": 4, "7": [0, 2, 3, 5, 13, 14], "70": 7, "700": 8, "70292167": [], "703219": [], "70360658": [], "704656": [], "70749": [], "712417": [], "71856743": [], "7194702543489242e": [], "72": [], "722833": [], "723356": [], "72436375": [], "725154": 5, "725173": 5, "72740627": [], "729945": [], "73": 2, "730391": [], "730971": [], "733333": [], "733507": [], "73372628": [], "733862": [], "734481": [], "7357675673109183": [], "736878": [], "737176": [], "74": 2, "74305327": [], "74313198": [], "74366638": [], "746566": [], "74807732": [], "75": 2, "750": 8, "758691": [], "76": [], "76176135": [], "763835": [], "766e": 4, "76910543": [], "769971": 5, "77": 2, "773974": [], "775256": [], "776040": [], "78": 4, "78083219": [], "780922": [], "78252123": [], "785398": [], "79": [], "790745": [], "79382746": 2, "794821": [], "797464": 2, "7r": 8, "8": [0, 1, 3, 4, 5, 7, 13, 14], "80": 7, "800": 8, "800392": 5, "803676": [], "804": 2, "804001": 2, "80573": [], "80580666": [], "80697": [], "80942245": 2, "81": 2, "810121": [], "810141": [], "811932": [], "813318": [], "81847246": [], "82": 2, "821785": [], "822222": [], "823132": [], "826182": [], "82911917": [], "831357": [], "83257677": [], "83476": [], "83544789": [], "8395906": [], "84": [], "840": 2, "840733": [], "841431": [], "843290": [], "844728": [], "848808": [], "85": 2, "850": 8, "851055": [], "852": 2, "8538538031407512": [], "853854": [], "857228165610269": 8, "858194": [], "858367": 5, "858385": [5, 13], "86": 2, "863366": [], "86599082": [], "867874160544318": [], "86960": [], "87": 2, "871128": [], "871706410": [], "872680": [], "87877103": [], "879550": [], "88": 2, "881784197001252e": 4, "882e": 4, "884170": [], "884707": [], "88586208": [], "885936": [], "888187": [], "88821188": [], "89": 2, "89118366": [], "89354794": [], "9": [0, 1, 2, 3, 4, 5], "90": [2, 7], "900": [3, 8], "903735": [], "91": [], "9102529": [], "911111": [], "913378": [], "916888": 5, "919537": [], "919632": [], "92": 7, "921853": [], "922371": [], "923471": [], "923769": [], "925286": 5, "92578833": [], "928158": [], "929717": [], "93": 8, "93047322": [], "931484": [], "934": 2, "935911": [], "935931": [], "94": [], "94128165": [], "94459246": [], "94870807": [], "95": 8, "950": 8, "95143119": [], "954": [], "954706": [], "955": [], "956": [], "956443": [], "95713798": 2, "957231": [], "958": [], "95809135": [], "959": [], "96": [], "960": [], "960320": 5, "960340": 5, "961": [], "961514": [], "96310226": [], "96641313": [], "966945": [], "97": 8, "97078784": [], "975527": [], "975794": [], "98": [], "980126": [], "985343": 2, "985601": [], "98610781": [], "98636626": [], "9897367": [], "991938": [], "99278371": [], "9962040088352188": 8, "99654": [], "99654\u03c0": [], "998318": [], "998337": [], "999134": [], "A": [0, 1, 3, 9, 10, 11, 12], "AND": 2, "And": [1, 2], "As": [1, 2, 5, 9, 10, 11, 13], "At": [4, 10], "But": [], "By": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "For": [1, 2, 4, 5, 6, 9, 10, 11, 14], "If": [1, 2, 3, 6, 9, 11, 14], "In": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "It": [2, 3, 5, 7, 8, 9], "Its": 4, "NOT": 2, "No": [], "Not": 11, "OR": 2, "One": [2, 10, 13], "Or": [], "That": 7, "The": [0, 1, 7, 8, 10, 11, 13], "Then": [5, 8], "There": [5, 9, 11], "These": [1, 2, 3, 5, 9], "To": [1, 3, 4, 5, 6, 7, 8, 12, 13, 14], "Will": 9, "With": [1, 2], "_": [6, 14], "_0": [5, 7, 8], "_0e": 7, "_1": [7, 8], "_2": [1, 4, 6, 7], "_4": 6, "_5": 7, "__call__": [], "__class__": [], "__getattribute__": [], "__name__": [], "_accessor": [], "_api": [], "_auto_adjust_subplotpar": [], "_axesbas": [], "_axi": [], "_axis_map": [], "_base": [], "_can_hold_identifiers_and_holds_nam": [], "_copy_docstring_and_deprec": [], "_draw_all_if_interact": [], "_draw_dis": [], "_draw_list_compositing_imag": [], "_express": [], "_finalize_raster": [], "_fontproperti": [], "_get_layout": [], "_get_render": [], "_get_text_metrics_with_cach": [], "_get_text_metrics_with_cache_impl": [], "_get_tightbbox_for_layout_onli": [], "_i": 8, "_idle_draw_cntx": [], "_in_subscript_or_superscript": [], "_info_axi": [], "_is_idle_draw": [], "_make_html": [], "_mathtext": [], "_n": 6, "_output_typ": [], "_parse_cach": [], "_parser": [], "_prepare_font": [], "_preprocess_math": [], "_pylab_help": [], "_raster": [], "_render": [], "_setattr_cm": [], "_state_stack": [], "_tight_layout": [], "_update_title_posit": [], "_v": 10, "_val_or_rc": [], "_wait_cursor_for_draw_cm": [], "_x": 6, "_y": 6, "a0": [], "a_0": [5, 13], "ab": 4, "abil": 2, "abl": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "about": [3, 4, 5, 7, 10, 14], "abov": [1, 2, 4, 5, 7, 8, 9, 10, 11, 13], "absolut": [4, 9], "absorb": 8, "academ": [1, 14], "acc": 14, "accept": [], "acceptance_prob": 14, "access": [1, 2, 3, 4, 14], "accord": [], "accordingli": 3, "account": 8, "accumul": 3, "accur": [5, 8, 11], "accuraci": [5, 6, 8, 12], "achiev": [1, 5, 14], "acquir": [], "across": [1, 2, 3], "act": 9, "actinium": 2, "action": [3, 4], "actual": 4, "ad": [2, 3, 9], "adapt": 4, "add": [1, 2, 3, 6, 11], "addh": [], "addit": 1, "addition": 1, "addmodel": [], "address": [], "adjac": [], "adjust": 8, "admonit": [], "adsorb": [], "adsorpt": 11, "advanc": 1, "advantag": [4, 5], "affect": [4, 8], "after": [1, 8], "ag": 3, "against": 9, "age_squar": 3, "aggreg": 2, "agre": 7, "aim": 4, "al": 14, "algebra": [0, 2], "algegra": [], "algorithm": [0, 4], "alia": 1, "alic": 3, "align": [5, 6, 12], "alkan": 6, "all": [1, 5, 8, 9, 10, 11], "allchem": [], "allow": [1, 2, 3, 4, 5, 14], "allow_raster": [], "along": [2, 5], "alpha": [5, 8, 12, 14], "alpha_": [], "alpha_th": [], "alreadi": 8, "also": [1, 2, 3, 4, 5, 8, 9, 10, 11], "altern": [3, 7], "aluminum": 2, "alwai": [2, 3, 4, 5], "americium": 2, "amount": 5, "an": [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 14], "analog": [4, 14], "analys": 1, "analysi": [0, 1, 2, 14], "analyt": [4, 8, 12], "analytical_overlap_integr": 5, "analytical_result": 5, "analyz": [1, 2, 8], "anatomi": 2, "anharmon": 14, "ani": [1, 2, 3, 6, 11, 12], "anim": 2, "annot": [2, 8, 10], "anonym": 3, "anoth": [9, 14], "answer": 9, "antialias": [], "antimoni": 2, "aperiod": [], "appear": 1, "append": [5, 13, 14], "appendix": [], "appl": 3, "appli": [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14], "applic": [1, 2, 4, 14], "appreci": 9, "approach": [3, 6, 10, 12], "appropri": [], "approx": [12, 14], "approxim": [1, 4, 5, 7, 12, 14], "ar": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "arang": [], "arbitrari": [], "arctan": [], "area": [1, 2, 3, 5, 11], "arg": 4, "argon": 2, "argument": [3, 5], "arithmet": 1, "around": [1, 5], "arr": 3, "arrai": [1, 4, 5, 6, 7, 8, 14], "arrang": 9, "arriv": 9, "arrow": 10, "arrowprop": 10, "arrowstyl": 10, "artist": [], "ase": 1, "ask": 7, "aspect": [2, 3], "assess": 8, "assign": 3, "associ": 9, "assum": [4, 7], "astyp": 6, "asymmetr": 14, "asymmetri": 14, "atom": [1, 2, 5, 6, 9, 13], "atomist": 1, "attract": 1, "attribut": [], "attributeerror": [], "auto_adjust_subplotpar": [], "autocorrel": 14, "autom": [1, 6], "automat": 1, "avail": [1, 2, 9, 10], "averag": [11, 13], "average_f": [], "average_f_x": [], "average_x_squar": 12, "average_x_squared_plus_y_squar": [], "avg": [], "avoid": [3, 4, 5], "awai": [], "awesom": 1, "ax": [2, 5], "ax1": 10, "ax2": 10, "ax_bbox_list": [], "axes_list": [], "axhlin": [4, 8, 13], "axi": [1, 4, 5], "axison": [], "axvlin": 8, "b": [1, 2, 5, 6, 7, 10, 12, 13, 14], "ba": [], "back": [3, 5], "backend": [], "backend_agg": [], "backend_bas": [], "background": [], "backward": 3, "bad": [], "balanc": 0, "banana": 3, "bar": [1, 2, 4, 5, 7, 8], "barrier": [], "base": [2, 3, 6, 7, 8, 13], "base64": [], "baseformatt": [], "basic": [0, 1, 3, 12], "bath": [10, 11], "bb": [], "bbox": [], "bbox_extra_artist": [], "bbox_inch": [], "becaus": [3, 4, 5, 6, 8, 11, 13], "becom": [2, 3, 5, 9, 12, 14], "been": [7, 8], "beer": 8, "befor": [1, 2, 3, 4, 5, 6, 9, 14], "begin": 6, "behav": 3, "behavior": [4, 8, 9, 10, 11, 12], "behind": [], "being": [2, 5, 10, 11], "below": [3, 8, 13], "bench": 7, "benchmark": [], "benefit": 12, "best": 1, "beta": [7, 8, 10, 11, 12, 14], "beta_0": 7, "beta_1": 7, "beta_param": 12, "better": 2, "between": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "beyond": [1, 2], "bias": 12, "big": 5, "bin": [2, 14], "biologi": 1, "bisect": 4, "black": [2, 4, 5, 10, 13], "block": 3, "blue": [2, 8, 10, 14], "bmatrix": 6, "bob": 3, "bohr": 5, "boltzmann": 14, "bond": [0, 2], "both": [1, 2, 3, 4, 6, 9], "bound": 4, "boundari": 9, "box": 1, "bracket": 2, "bread": 2, "break": 3, "brew": 8, "bring": [1, 8, 9], "broad": 4, "broadcast": 2, "broader": [], "broadli": 9, "browser": 1, "build": [2, 3], "built": [1, 2, 3], "butter": 2, "butteri": 8, "bytes_io": [], "c": [1, 2, 6], "c2009": 14, "c_v": [8, 10], "cach": [], "calcul": [1, 2, 3, 6, 7, 8, 10, 11, 13, 14], "calculate_area": 3, "calculu": 1, "calibr": 0, "call": [3, 7, 8], "call_axes_loc": [], "callback": [], "caller": 3, "campu": [], "can": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "candid": 12, "cannot": 7, "cantera": 1, "canva": [], "capabl": [1, 2], "capac": 8, "carbon": [1, 6, 9], "carbon_mass": 1, "care": 4, "carlo": [0, 1, 11], "cartesian": 5, "case": [1, 3, 4, 7, 8, 9, 11, 12], "cater": 2, "caus": [3, 5, 14], "caveman": [], "cbook": [], "cco": [], "cdot": [4, 9], "cell": [], "center": [5, 10], "central": [5, 9, 11], "certain": [3, 4, 8], "cesium": 2, "ch": 6, "chain": 14, "challeng": [1, 3, 6, 14], "chang": [2, 4, 5, 7, 9, 10, 14], "channel": 3, "char": 3, "charact": 3, "character": [4, 12], "charg": 5, "charli": 3, "chart": 2, "check": [2, 4, 5, 6], "chem": [], "chemic": [7, 9, 11, 14], "chemist": 8, "chemistri": [2, 5], "cherri": 3, "choic": [4, 11, 13, 14], "choos": [4, 14], "chop": [], "ci": 8, "circ": [4, 11], "circl": [3, 4], "circular": 2, "citi": 3, "cl": [], "clarif": 3, "class": 2, "classic": [0, 4, 5], "clean": 2, "clean_lin": [], "cleaner": 5, "clear": 7, "clearer": [], "clearli": 3, "clip": [], "close": [4, 5, 8, 9, 10, 11], "close_group": [], "closer": 12, "cluster": 9, "co": [1, 6], "code": [1, 2, 3, 4, 5, 11, 12, 13], "coeff": [], "coeffici": 4, "cohes": 2, "col": [], "collaps": [], "collect": [2, 3, 5, 7, 8, 10, 11, 14], "color": [1, 2, 4, 8, 10, 13, 14], "colspan": [], "column": [2, 3], "combin": [3, 9], "combust": [], "come": [1, 5, 8, 11], "command": [1, 2], "comment": 2, "common": [2, 3], "commonli": [1, 2, 3, 11], "commun": [], "comp": [], "compact": 3, "compani": 8, "compar": [3, 5, 10, 13], "complet": [], "complex": [1, 2, 3, 4, 6, 10, 11, 14], "compon": [2, 3], "composit": [], "compound": [1, 8], "comprehens": 2, "comput": [1, 3, 7, 8, 12, 14], "computation": [], "concentr": [4, 7, 8, 12, 14], "concept": [3, 4, 9, 10, 11, 12], "concis": [3, 6], "conclud": [1, 2], "condit": [2, 4, 9, 10, 11], "condition1": 3, "condition2": 3, "confid": [0, 2, 3, 7], "confidence_interval_intercept": 8, "confidence_interval_slop": 8, "confidence_level": 8, "configur": [10, 11, 14], "confin": 11, "confirm": [2, 6], "conserv": 6, "consid": [3, 4, 5, 6, 7, 10, 11], "consider": [4, 10], "consist": [5, 9, 10, 11], "constant": [1, 4, 8, 9, 12, 14], "constitu": 2, "constrain": [], "constraint": [4, 11], "construct": 14, "consum": 7, "contact": 11, "contain": [1, 2, 3, 6, 7, 8, 10, 11], "context": 4, "continu": [1, 3], "contourpi": [], "contrast": [], "contribut": [12, 14], "control": [0, 14], "conveni": 2, "convent": [], "converg": [4, 5, 13, 14], "convert": [3, 4, 5, 7, 14], "cool": 7, "coordin": [5, 13, 14], "copi": [], "core": [2, 3], "cornerston": 2, "correct": 4, "correctli": 6, "correl": [0, 14], "correlation_coeffici": 8, "correspond": [3, 6, 7, 8, 9, 10, 11], "could": 7, "count": 3, "coupl": 1, "cours": [1, 2], "coval": 5, "cover": [1, 2, 3], "coverag": 11, "creat": [1, 3, 5, 6, 8, 13], "criteria": 2, "critic": [2, 8], "critical_t_valu": 8, "crucial": [1, 3, 4], "crystal": 9, "csv": 2, "cubic": 4, "cubic_eq": 4, "cumul": [], "current": 14, "curs": [], "curv": [4, 5, 7], "cycler": [], "d": [5, 6, 9, 14], "d_e": 14, "da": 9, "darkblu": 14, "dash": [2, 13, 14], "data": [0, 1, 3, 5, 7], "databas": 2, "datafram": 5, "dataset": [2, 3], "dateutil": [], "de": [], "decai": [5, 7], "decim": 4, "decis": 3, "decompos": [2, 7, 14], "decreas": [5, 9, 10], "deepen": 1, "deepli": 2, "def": [3, 4, 5, 7, 8, 13, 14], "default": [1, 2], "defin": [4, 5, 7, 8, 9, 10, 11, 14], "definit": [2, 5, 9], "degre": 8, "delta": [5, 9, 14], "delta_u": 14, "delv": 2, "demonstr": [1, 2, 4, 6, 12, 14], "denom": 13, "denomin": [7, 8], "densiti": [12, 14], "depend": [3, 7, 8, 9, 11, 14], "deprec": [], "deprecationwarn": [], "deriv": [4, 7, 9, 10], "descent": [], "describ": [3, 7, 10, 11], "descript": [3, 12], "design": [1, 2, 3, 4], "desir": [8, 14], "desorb": [], "det": 2, "detail": [1, 2, 11], "determin": [1, 2, 4, 5, 6, 8, 10, 14], "develop": [2, 8, 11], "deviat": 8, "deviations_i": 8, "deviations_x": 8, "df": [2, 3, 8], "dg": 9, "diacetyl": 8, "diagram": 9, "diatom": [8, 14], "dict": 10, "dictat": [3, 5, 6], "dictionari": [2, 4], "did": [6, 7, 8], "differ": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12], "differenti": [1, 2, 9], "difficult": 11, "dim": [], "dimens": [5, 14], "dimension": [2, 14], "dioxid": [1, 6, 9], "direct": [8, 9, 10], "directli": [1, 2, 12], "discard": 14, "discuss": [3, 5, 7, 8, 9, 10, 11], "disord": 10, "displac": 9, "displai": [1, 2, 4, 5, 8, 13], "dispos": 1, "dissoci": [4, 14], "distanc": [2, 5, 8, 9, 13], "distinct": 10, "distinguish": 10, "distribut": [2, 8, 12, 14], "div_col": [], "div_row": [], "dive": 1, "divers": 1, "divid": [5, 6, 8], "divis": [1, 3], "do": [3, 4, 5, 6, 7, 8, 9, 10, 11, 13], "docstr": 3, "document": [1, 2, 3], "doe": [3, 4, 10], "doesn": 1, "doi": 14, "domain": 14, "don": [1, 2, 3], "done": [4, 9], "dot": [2, 3], "dot_product": 2, "down": 4, "download": 2, "dp": [], "dpi": [], "dr": 5, "draw": [], "draw_al": [], "draw_idl": [], "draw_without_rend": [], "draw_wrapp": [], "drawn": 12, "dt": [], "dtype": 2, "du": 9, "due": 14, "duplic": 3, "dure": [1, 8, 14], "dv": 9, "dw": [], "dx": [5, 12, 13], "dy": [5, 13], "dynam": [1, 3, 11], "dz": [5, 13], "e": [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14], "e_1": 10, "e_2": 10, "e_avg": 10, "e_i": 10, "each": [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13], "earlier": [], "eas": [1, 2], "easi": 2, "easier": [2, 3], "easili": [1, 2, 3], "ecosystem": 2, "edg": 5, "edgecolor": [2, 4, 5], "effect": 4, "effici": [2, 3, 5, 6, 12, 13, 14], "effort": 14, "eigenvalu": 2, "eight": 13, "eigval": 2, "either": [3, 10], "electron": [1, 5, 11], "eleg": [2, 3], "element": [2, 5, 6], "ellipt": [], "els": 14, "elsewher": 3, "embedmolecul": [], "emphas": 12, "emploi": [1, 6, 12], "empti": 11, "en": 9, "enabl": [2, 3], "encapsul": 3, "encount": [1, 2], "end": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "endpoint": 5, "energet": 5, "energi": [2, 4, 11, 14], "enforc": 4, "engin": [1, 2], "enhanc": 1, "ensembl": 0, "ensur": [1, 2, 3, 4, 6, 8, 10, 14], "enthalpi": 9, "entir": 5, "entropi": 9, "enumer": 5, "env": [], "environ": [1, 2], "epsilon": 10, "epsilon_i": 7, "equal": [2, 3, 4, 6, 7, 9, 10, 11], "equat": [0, 1, 2, 7, 9, 11, 14], "equilibr": 14, "equilibria": [0, 2], "equilibrium": [7, 10, 11, 14], "equilibrium_equ": 4, "equip": 1, "equival": [], "erf": [], "ergod": 0, "err": [], "error": [1, 7, 8], "errorbar": 13, "escap": [], "especi": [2, 3, 4, 6, 14], "essenc": 12, "essenti": [0, 3, 4], "establish": [8, 9], "estim": [7, 8], "estimated_integr": 12, "et": 14, "etc": 9, "etymologi": 9, "ev": [2, 10, 14], "evalu": [3, 4, 8, 12, 14], "even": [], "eventu": 3, "everi": [2, 11, 14], "exact": [5, 9, 12, 13], "exampl": [1, 2, 3, 5, 9, 12], "excel": [1, 2], "except": [7, 11], "excess": [], "exchang": [10, 11], "excit": 10, "execut": 3, "exist": 3, "exp": [5, 10, 13, 14], "expand": [3, 9], "expect": [3, 5], "expens": [], "experi": [1, 3, 4, 9], "experiment": [7, 8], "explain": [2, 3, 10, 12], "explan": [], "explicit": 4, "explor": [1, 2, 3, 4, 6, 11], "expon": 13, "exponenti": [1, 7, 13], "express": [1, 3, 4, 6, 7], "extend": [1, 2, 6, 14], "extens": [2, 9], "extent": 4, "ey": 2, "f": [2, 4, 5, 7, 8, 9, 10, 11, 12, 14], "f_x": 12, "facecolor": 10, "facilit": 3, "factor": 5, "fail": [], "fall": 2, "fals": [2, 3, 5], "far": [1, 2, 9], "fast": 14, "faster": 13, "feel": 3, "ferment": 8, "few": [2, 3, 14], "fewest": 5, "fibonacci": 3, "field": 2, "fig": [5, 10], "figsiz": [5, 8, 10, 13, 14], "figur": [2, 5, 8, 9, 10, 13, 14], "figurecanvasagg": [], "figurecanvasbas": [], "file": 2, "filenam": [], "fill": 2, "filter": 3, "filtered_df": 2, "final": [1, 4, 5, 6, 7, 9], "final_simplex": 4, "find": [1, 2, 6, 7, 10, 11, 13], "finit": 4, "first": [1, 2, 3, 4, 5, 6, 7, 8, 13], "fit": [1, 7, 8], "fix": [10, 11], "flavor": 8, "flexibl": [2, 3, 4], "float": [1, 2, 3, 4, 5, 13], "float64": 2, "flow": 3, "fluctuat": 14, "fluorin": 2, "fmt": 13, "focu": [1, 2, 5, 7], "focus": [3, 14], "folder": 4, "follow": [1, 2, 3, 4, 5, 6, 7, 8, 12], "font": [], "font_imag": [], "fontprop": [], "fonts_object": [], "fontset": [], "fontsiz": 8, "fonttool": [], "for_layout_onli": [], "forc": 9, "forget": [2, 3], "forgot": 7, "form": [3, 5, 6, 7, 14], "formal": 5, "format": [1, 2, 4, 5], "formatt": [], "formula": [4, 6, 7, 8], "forward": [1, 3, 4], "found": [4, 6, 7, 8, 9, 13], "foundat": [1, 6], "fourier": 2, "frac": [4, 5, 6, 7, 8, 9, 10, 11, 12, 14], "free": [3, 4, 9], "freedom": 8, "freezer": 7, "frenkel": 14, "frequenc": 2, "frequent": [1, 2, 3], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14], "fruit": 3, "full": 2, "fun": 4, "func": [], "function": [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14], "function_nam": 3, "functool": [], "fundament": [1, 2, 3], "further": 3, "futur": 7, "g": [2, 3, 4, 5, 6, 9, 13], "g_x": 12, "ga": [8, 9, 10, 11], "gain": [1, 2, 9, 10], "game": [], "gase": [4, 11], "gaussian": 5, "gcf": [], "gener": [3, 4, 7, 8, 12, 13, 14], "genom": 1, "geq": 9, "get": [3, 4, 6, 8, 12, 13], "get_3d_molecule_html": [], "get_agg_filt": [], "get_all_fig_manag": [], "get_layout_engin": [], "get_real_method": [], "get_subplotspec_list": [], "get_text": [], "get_text_width_height_desc": [], "get_tight_layout_figur": [], "get_tightbbox": [], "get_transform": [], "get_unitless_posit": [], "get_vis": [], "get_window_ext": [], "getattr": [], "getvalu": [], "gg": [], "gibb": [4, 9], "give": [1, 3, 5, 6, 8, 9, 12], "given": [3, 4, 5, 9, 10, 11, 12, 13], "glimps": 1, "global": [], "go": 1, "goal": [6, 7, 12], "good": [3, 4, 8, 12, 13], "googl": 1, "got": [], "govern": [5, 9], "gradient": 10, "grai": [4, 8], "gram": 1, "graph": 7, "graphic": [1, 2], "great": [1, 8], "greater": [2, 3, 7, 9], "green": [8, 10, 14], "greet": 3, "grew": [], "grid": [2, 4, 5, 8, 10, 13, 14], "grid_rang": 5, "ground": 10, "group": 2, "grow": [], "guess": 5, "gui": [], "guid": 3, "guidanc": [], "h": [1, 3, 4, 6, 9, 13], "h_pad": [], "ha": [1, 2, 3, 4, 7, 8, 9, 10, 11], "had": 7, "hamiltonian": 2, "hand": 10, "handl": [1, 2, 3], "happen": [3, 4, 10], "harmon": [], "has_imag": [], "hast": [], "hat": [7, 8], "have": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11], "hbar": [], "he": [], "header": [], "heat": [8, 11], "heavili": 2, "height": 5, "hello": 3, "helmholtz": 9, "help": [1, 2, 3, 4, 6], "helper": [], "here": [1, 2, 3, 4, 5, 6, 8, 9, 14], "hesit": [1, 3], "hide_index": [], "high": [8, 10, 11, 14], "high_root_guess": 4, "higher": [2, 10, 14], "highli": [1, 2], "highlight": 4, "hint": [1, 2, 3], "hist": [2, 14], "histogram": 14, "histori": [], "hline": 14, "hold": [1, 2, 9], "how": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14], "howev": [2, 4, 6, 11, 12], "html": 13, "http": [9, 14], "hybrid": 5, "hydrocarbon": [], "hydrogen": [1, 4, 13], "h\u2082": 6, "h\u2082o": 6, "i": [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "ic": 4, "idea": [3, 12], "ideal": [1, 2, 8, 9, 11], "ident": [2, 11], "identifi": 7, "ignor": [], "ignore_index": [], "ij": 5, "illustr": [4, 12, 14], "imag": 2, "image_group": [], "imagin": [7, 8], "imperm": 9, "implement": 5, "implic": 9, "import": [1, 3, 5, 7, 8, 10, 11, 14], "importance_sampl": 13, "impos": [], "impract": [], "improv": [12, 13, 14], "includ": [1, 2, 3, 4, 8, 9, 10], "inclus": 4, "increas": [5, 10, 11, 12, 13, 14], "incredibli": [2, 3], "increment": [3, 5], "indefinit": 3, "independ": [7, 8, 14], "index": [2, 3, 4, 5, 7], "indic": [4, 8, 10], "indispens": 2, "individu": [3, 10, 11], "industri": 1, "ineffici": 14, "inequ": 9, "inexact": 9, "infeas": [], "infinit": 2, "infinitesim": 9, "influenc": 4, "info": [], "inform": [1, 2, 4, 10], "infti": [5, 13], "initi": [3, 7, 14], "inject": [], "inorgan": 5, "input": [2, 3], "insert": 4, "insid": 3, "insight": [2, 9, 10], "instanc": [1, 4], "instead": [4, 5, 12], "instruct": [1, 3], "int": [5, 6, 9, 14], "int_": [5, 13], "int_0": [5, 12], "int_a": [5, 12], "integ": 2, "integr": [0, 2, 7, 14], "integral_df": [], "integral_estim": [], "integral_i": 5, "integral_x": 5, "integrand": [5, 12, 13, 14], "integrand_valu": 5, "integratrion": [], "intens": 9, "interact": [1, 2, 9, 11], "intercept": [7, 8], "interest": [8, 11, 14], "interfac": 1, "intermedi": 10, "intern": [], "interpol": 2, "interpret": [6, 7, 8], "intersect": 4, "interv": [0, 2, 4, 5, 12, 14], "introduc": [9, 10, 11], "introduct": 0, "intuit": 5, "inv": 2, "invalid": [], "invalu": [1, 2], "invers": [2, 14], "invert": [], "investig": 14, "involv": [4, 5, 6], "ion": 9, "ipykernel_10087": [], "ipykernel_10267": [], "ipykernel_10290": [], "ipykernel_10392": [], "ipykernel_10894": [], "ipykernel_11504": [], "ipykernel_12070": [], "ipykernel_12261": [], "ipykernel_12756": [], "ipykernel_13537": [], "ipykernel_13999": [], "ipykernel_14380": [], "ipykernel_14625": [], "ipykernel_16501": [], "ipykernel_16598": [], "ipykernel_16635": [], "ipykernel_16685": [], "ipykernel_16737": [], "ipykernel_16804": [], "ipykernel_16842": [], "ipykernel_16884": [], "ipykernel_16975": [], "ipykernel_17053": [], "ipykernel_17105": [], "ipykernel_17136": [], "ipykernel_20224": [], "ipykernel_20664": [], "ipykernel_20834": [], "ipykernel_21107": [], "ipykernel_21954": [], "ipykernel_22428": [], "ipykernel_22617": [], "ipykernel_22886": [], "ipykernel_26292": [], "ipykernel_26479": [], "ipykernel_26525": [], "ipykernel_26897": [], "ipykernel_27150": [], "ipykernel_27540": [], "ipykernel_27695": [], "ipykernel_28014": [], "ipykernel_28159": [], "ipykernel_28455": [], "ipykernel_28589": [], "ipykernel_28609": [], "ipykernel_28909": [], "ipykernel_29131": [], "ipykernel_29352": [], "ipykernel_30005": [], "ipykernel_30224": [], "ipykernel_30465": [], "ipykernel_31674": [], "ipykernel_31908": [], "ipykernel_32080": [], "ipykernel_32531": [], "ipykernel_34814": [], "ipykernel_35168": [], "ipykernel_35574": [], "ipykernel_3669": [], "ipykernel_37857": [], "ipykernel_4171": [], "ipykernel_4437": [], "ipykernel_44743": [], "ipykernel_45602": [], "ipykernel_4962": [], "ipykernel_5297": [], "ipykernel_55148": [], "ipykernel_55996": [], "ipykernel_5780": [], "ipykernel_6053": [], "ipykernel_6165": [], "ipykernel_6610": [], "ipykernel_6946": [], "ipykernel_7270": [], "ipykernel_75226": 4, "ipykernel_8585": [], "ipykernel_86731": [], "ipykernel_8703": [], "ipykernel_9023": [], "ipykernel_9444": [], "ipykernel_9640": [], "ipykernel_9642": [], "ipykernel_96621": [], "ipykernel_97096": [], "ipykernel_97762": [], "ipykernel_98107": [], "ipykernel_98323": [], "ipykernel_9850": [], "ipykernel_98609": [], "ipykernel_98736": [], "ipykernel_99004": [], "ipykernel_99350": [], "ipykernel_99922": [], "ipython": 13, "irregular": [], "irrevers": 9, "is_interact": [], "isinst": [], "ismath": [], "isn": 8, "isol": [9, 11], "issu": [], "item": [2, 3], "iter": [3, 4, 14], "iterrow": 3, "its": [1, 2, 3, 4, 6, 8, 9, 11, 12], "itself": [3, 14], "j": [5, 8], "journal": 14, "journei": 1, "julia": 1, "jump": 6, "jupyt": 2, "just": [1, 2, 3], "k": [4, 7, 8, 9, 10, 11, 14], "k_": 10, "k_b": [10, 11, 14], "k_p": 4, "keep": 3, "kei": [1, 8], "kelvin": 10, "keyword": 3, "kind": 1, "kinet": [1, 7, 9], "kiwisolv": [], "kj": 2, "know": [6, 8], "knowledg": 3, "known": [10, 12], "ko": [], "kt": 7, "kw": [], "kwarg": [], "l": [3, 7, 8], "lab": 7, "label": [1, 2, 4, 5, 8, 10, 13, 14], "lambda": [], "lambert": 8, "land": 14, "langl": [10, 11, 12, 14], "langmuir": 11, "languag": 1, "larg": [2, 3, 10, 14], "larger": 12, "last": [3, 8], "later": 1, "latest": 1, "latex": 1, "latter": 5, "law": [4, 6, 8, 10], "layout": [], "layout_engin": [], "lead": 14, "learn": [], "least": 8, "lectur": 0, "left": [4, 5, 6, 7, 8, 9, 10, 11, 14], "legend": [1, 2, 4, 5, 8, 10, 13, 14], "len": 8, "length": [], "leq": 13, "less": [3, 5], "let": [2, 4, 5, 6, 7, 8, 12, 13], "level": [5, 8, 10], "leverag": [2, 6], "li": 4, "lib": [], "librari": [1, 2, 8, 14], "lie": 4, "lightblu": 14, "like": [1, 2, 3, 5, 8, 9, 11, 14], "lim_": 5, "limit": [4, 5, 13], "linalg": [2, 6], "line": [1, 3, 5, 8, 9, 13], "linear": [0, 2, 8], "linearli": 8, "linestyl": [2, 4, 8, 10, 13, 14], "linspac": [2, 4, 5, 10, 13, 14], "linux": 1, "list": [5, 9, 13], "list_of_thermodynamic_properti": 9, "littl": 3, "live": [1, 9], "ll": [1, 2, 3, 4, 6, 14], "ln": [7, 10, 11], "ln_concentr": 7, "load": 2, "loc": [], "local": 5, "locat": [], "lock": [], "log": [7, 10, 13], "logic": 2, "long": 3, "longer": 14, "look": [3, 8], "loop": [5, 13], "lose": 9, "lost": 6, "low": [5, 10], "low_root_guess": 4, "lower": [], "lru_cach": [], "luck": [3, 8], "m": [1, 2, 7, 14], "m3": [], "m_1": 9, "m_2": 9, "m_i": 9, "m_inv": 2, "mac": 1, "machin": [1, 14], "macroscop": [10, 14], "made": 8, "magnet": 2, "mai": [11, 14], "main": [3, 9], "maintain": [2, 3, 8], "major": [1, 8], "make": [1, 2, 3, 10, 11, 14], "make_keyword_onli": [], "manag": [], "mani": [1, 2, 9, 10, 11, 14], "manipul": 1, "manner": 2, "manual": 6, "map": 3, "margin": [], "marker": 2, "markov": 14, "martist": [], "mass": [1, 4, 6, 9], "master": 1, "match": [4, 12], "materi": [1, 5, 9], "math": 1, "mathbf": [9, 14], "mathcal": [], "mathemat": 2, "mathematica": 1, "mathtext": [], "mathtext_pars": [], "mathtextpars": [], "matlab": 1, "matplotlib": [1, 4, 5, 7, 8, 10, 13, 14], "matric": 2, "matrix": [], "matter": [1, 5, 9], "max": 3, "max_ncol": [], "max_nrow": [], "maximum": [2, 11, 14], "mayb": [], "mcmc": [], "mead": 4, "mean": [1, 2, 6, 7, 8, 9, 11, 12, 13, 14], "mean_i": 8, "mean_x": 8, "meaning": 4, "measur": [8, 9, 10, 11], "mechan": [2, 5, 9, 10, 11], "medium_root_guess": 4, "meet": [2, 7], "mercuri": 2, "merg": [2, 3], "meshgrid": 5, "mess": [], "messag": [3, 4, 12], "met": 3, "methan": 6, "method": [0, 2, 3, 5, 6, 7, 8, 13, 14], "method_nam": 3, "metropoli": [], "metropolis_sampl": 14, "mg": 8, "microscop": 10, "microst": 11, "middl": [], "midpoint": 4, "might": [1, 6], "mimag": [], "min": [3, 6, 7, 14], "miniconda3": [], "minim": [7, 9], "minimum": [2, 9, 14], "minu": [], "mixtur": 4, "model": [1, 7, 8, 11, 14], "modern": 1, "modifi": [1, 2, 4, 13], "modul": [1, 2], "modular": 3, "modulenotfounderror": [], "modulo": 3, "mol": [2, 4, 7, 8], "mol_block": [], "molar": 1, "molar_mass": 1, "mole": [1, 2, 4, 9], "molecul": [6, 9, 10, 11, 14], "molecular": [1, 2, 5, 11, 14], "molecule_html": [], "molfromsmil": [], "moltomolblock": [], "momenta": [], "mont": [0, 1, 11], "monte_carlo_integr": [], "more": [2, 3, 4, 5, 6, 9, 10, 11, 12], "morse_potenti": 14, "most": [2, 3, 5], "motion": [], "movabl": 11, "move": [1, 3, 5, 9, 14], "mpl": [], "mu": 11, "mu1": [], "mu2": [], "mu_1": [], "mu_2": [], "much": [1, 2, 7, 9, 13, 14], "multi": [2, 4], "multidimension": [5, 14], "multipl": [1, 2, 3, 4, 6], "multipli": [2, 3, 13], "must": [1, 3, 4, 5, 14], "mutat": [], "mx": 7, "my_dict": 3, "my_list": [2, 3], "n": [2, 3, 5, 6, 7, 8, 9, 11, 12, 14], "n1": [], "n2": [], "n2o5": 7, "n9": 4, "n_data_point": 8, "n_equilibr": 14, "n_i": 14, "n_point": 13, "n_points_list": 13, "n_sampl": 14, "n_step": 14, "n_valu": 5, "name": [1, 2, 3], "name_idx": [], "nameerror": [], "narr": 1, "narrow": 4, "natur": [7, 9], "ndarrai": 2, "necessari": [11, 14], "need": [1, 2, 3, 4, 5, 6, 7, 8, 10, 13], "neg": [8, 9], "nelder": 4, "net": [4, 9], "never": [3, 9], "new": [1, 3, 4, 8, 14], "new_list": 3, "newton": 4, "next": [1, 3, 6, 13], "nfev": 4, "nit": 4, "nm": 8, "nobr": 7, "non": [], "nondecreas": [], "none": 3, "nonlinear": 4, "norm": [], "normal": [5, 10], "normalization_factor": 5, "not_composit": [], "notat": 3, "note": 13, "notebook": 2, "notic": [], "now": [1, 3, 4, 5, 6, 7, 8, 11, 14], "np": [2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14], "nriemann": 5, "nrt": 9, "nstep": [], "nucleu": 5, "null": [], "null_spac": 6, "null_vec": 6, "nullcontext": [], "number": [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "numer": [0, 1, 2, 3, 7, 8, 13, 14], "numerical_result": [], "numpi": [1, 4, 5, 6, 7, 8, 10, 12, 13, 14], "o": [1, 2, 3, 4, 6, 7, 13, 14], "obei": 4, "obj": [], "obj_typ": [], "object": [], "objective_funct": 4, "observ": [4, 7, 8, 10], "obtain": [4, 5, 6, 8, 14], "occupi": 11, "occur": [3, 4, 11], "octant": 13, "off": 9, "offer": [1, 2], "offici": [1, 2], "offsettext": [], "often": [1, 3, 4, 11, 12], "oi": [], "ok": [5, 8], "ol": [7, 8], "old": 14, "old_list": 3, "ols_intercept": [7, 8], "ols_slop": [7, 8], "omega": 10, "omit": [], "onc": [1, 2, 6, 7], "one": [1, 2, 3, 4, 6, 7, 8, 9, 11, 14], "ones": 2, "onli": [1, 2, 3, 6, 9, 13, 14], "open": [1, 9], "oper": [1, 3, 5, 6], "operand": [], "opportun": 2, "opposit": 9, "optim": [2, 5], "optimizewarn": 4, "option": 3, "orang": 10, "orbit": [11, 13], "order": [0, 2, 9, 10], "ordinari": 8, "org": [9, 14], "organ": [1, 2, 3, 5], "orient": [2, 5], "origin": [1, 3], "orthonorm": 2, "other": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11], "otherwis": 3, "our": [1, 2, 5, 6, 7, 8, 9, 11, 12], "out": [1, 2], "outcom": 4, "output": [2, 4, 6], "outsid": 4, "over": [2, 3, 5, 10, 11, 12, 13], "overal": [7, 10], "overlai": 14, "overlap": 2, "overlap_integr": 5, "overlap_integral_trapezoid": 5, "overleaf": 1, "overview": 2, "own": [1, 3, 8, 11], "ox": [], "oxygen": [1, 4, 6], "oxygen_mass": 1, "p": [2, 4, 9, 11, 14], "p1": 10, "p1_valu": [], "p2": 10, "p2_valu": [], "p_": 4, "p_1": 10, "p_2": 10, "p_i": 10, "p_x": [], "packag": [0, 1], "pad": [], "pad_inch": [], "pair": 3, "panda": [1, 5, 13], "panel": [], "paramet": [2, 4, 5, 7, 8, 12, 13, 14], "parent": [], "parenthes": [2, 3], "pars": [], "parsebaseexcept": [], "parseexcept": [], "parser": [], "parsestr": [], "part": [1, 4, 9, 14], "parti": [], "partial": [4, 10, 11], "particip": [], "particl": [5, 9, 10, 11, 14], "particular": [9, 10, 11], "particularli": [1, 2, 3, 4], "partit": [11, 14], "partition_funct": [], "pass": [], "patch": [], "path": [1, 9], "pattern": [], "pd": [2, 3, 5, 13], "pdf": [2, 12, 13], "peak": [8, 10], "per": [2, 6], "percentag": 4, "perfect": [8, 9], "perform": [1, 2, 3, 4, 5, 7, 8], "period": 2, "permeabl": 9, "person": 3, "phase": [11, 14], "phenomenon": 5, "phi": 5, "physic": [1, 2, 4, 5, 8, 14], "pi": [5, 7, 13, 14], "pillow": [], "pip": [1, 2], "pip3": 1, "piston": [9, 11], "place": 4, "placehold": 4, "placeholderlayoutengin": [], "plai": [2, 4, 5], "plain": [], "plan": 7, "planck": [], "plot": [1, 4, 5, 7, 8, 10, 11, 13], "plotli": 1, "plt": [1, 2, 4, 5, 7, 8, 10, 13, 14], "plu": 9, "pm": [4, 8], "png": 2, "point": [2, 4, 5, 7, 8, 9, 12, 13, 14], "polyfit": [], "polyv": [], "popular": 1, "posit": [2, 3, 6, 8, 9, 10, 14], "position": [], "possibl": [1, 3, 5, 6, 11, 13], "post_execut": [], "postul": 11, "potassium": 2, "potenti": 11, "power": [1, 3, 4, 7, 12, 14], "ppf": 8, "practic": 4, "pre": 1, "preced": [], "precipit": 9, "precis": 8, "predefin": [2, 14], "predetermin": 3, "predict": [1, 4, 7, 8, 11], "prefix": 1, "prepar": [1, 5], "presenc": 8, "present": [1, 2, 7], "press": 14, "pressur": [4, 8, 9, 10, 11], "pretti": [], "prevent": 2, "previou": [1, 10, 11, 12], "previous": [], "previous_engin": [], "primari": 2, "primarili": [1, 5], "principl": [2, 12], "print": [2, 3, 4, 5, 7, 8, 12, 14], "print_figur": [], "print_method": [], "printer": [], "priori": 11, "prob": [], "probabl": [10, 11, 12], "problem": [1, 2, 6, 12], "proce": [4, 5, 9], "proceed": 4, "process": [1, 2, 3, 4, 6, 9], "produc": [3, 6, 8], "product": [2, 4, 6, 7, 13], "profil": 8, "program": [1, 3], "progress": [1, 2, 4, 7], "project": 1, "prompt": [1, 2], "prop": [], "properti": [1, 5, 9, 11, 14], "proport": [8, 13], "propos": 14, "propto": [], "prove": 5, "provid": [2, 3, 4, 5, 6, 8, 10, 14], "proxim": 5, "pseudo": 7, "psi_": [5, 13], "psi_1": 13, "psi_1s_sum": [], "psi_i": 5, "psi_j": 5, "purchas": 7, "purpl": 10, "purpos": 2, "put": [1, 3, 7], "pv": 9, "py": 4, "py3dmol": [], "pylabtool": [], "pymatgen": 1, "pypars": [], "pyplot": [1, 2, 4, 5, 7, 8, 10, 13, 14], "pyscf": 1, "python": [0, 7], "python3": 1, "q": 9, "q030dl3x6qgfqffys4wc7d4c0000gn": 4, "quacc": 1, "quad": [], "quadrat": 4, "quadratic_eq": [], "quadratic_equ": 4, "quadratur": [5, 14], "qualit": 9, "quantifi": 5, "quantiti": [2, 4], "quantiz": 11, "quantum": [1, 2, 5], "quasistat": 9, "question": [3, 9], "quickli": 4, "r": [1, 4, 5, 8, 9, 10, 13, 14], "r1": 5, "r2": 5, "r_0": 9, "r_1": [], "r_2": [], "r_i": 9, "r_valu": 5, "radii": 5, "radiu": [3, 5], "rain": 9, "rais": [4, 7], "rand": [2, 8, 12, 14], "randint": 2, "randn": [2, 8], "random": [2, 8, 10, 12, 14], "randomli": 12, "rang": [1, 2, 3, 4, 5, 8, 10], "rangl": [10, 11, 12, 14], "raphson": 4, "rapidli": 5, "rate": 4, "rather": [5, 11, 13, 14], "ratio": [4, 6, 14], "rdkit": [], "re": [1, 2, 3, 11, 14], "reach": [3, 4, 7, 9, 11, 14], "react": [6, 9], "reactant": [4, 6, 7], "reaction": [0, 1, 2, 6, 9], "read": 3, "read_csv": 2, "readabl": 2, "readi": [1, 2, 11], "real": [1, 4, 11], "realiz": 7, "realli": 5, "reason": 3, "recal": [5, 7, 12], "recast": [], "recent": [], "reciproc": [], "recogn": 1, "recommend": [1, 2, 8], "reconsid": 12, "rect": [], "rectangl": 5, "red": [2, 4, 8, 10, 14], "reduc": [3, 12], "redund": 3, "ref": [], "refer": [1, 2, 3, 5, 9, 10], "reflect": [1, 4], "regardless": 14, "region": [9, 12, 13, 14], "regress": [0, 8], "regular": [3, 14], "reinforc": [3, 8], "reject": 14, "rel": 6, "relat": [4, 5, 7, 8], "relationship": [2, 6, 7, 8, 11], "relev": 9, "reli": [2, 12], "remain": 4, "rememb": 1, "remov": 3, "render": 1, "renderer_ref": [], "rendereragg": [], "repeat": [3, 14], "repeatedli": 3, "repetit": 3, "replac": 4, "report": [2, 7], "repositori": 1, "repres": [1, 2, 4, 6, 8, 14], "represent": 6, "reproduc": [12, 13, 14], "requir": [2, 3, 4, 11], "research": [1, 8, 11], "reservoir": 10, "residu": 8, "resiz": [], "resourc": 1, "respect": [1, 4, 5, 6, 7, 11], "respond": 3, "respons": [3, 8], "restrict": [], "result": [1, 2, 3, 4, 5, 6, 12, 13], "results_df": 5, "retain": 14, "retriev": 7, "return": [2, 3, 4, 5, 7, 8, 14], "reus": 3, "reusabl": 3, "revers": [3, 4, 9], "revisit": 6, "rewrit": [5, 7], "riemann": [], "riemann_result": 5, "riemann_sum": 5, "riemann_sum_valu": 5, "right": [4, 5, 6, 8, 9, 10, 11, 14], "rightarrow": [6, 14], "rightleftharpoon": 4, "river": 14, "rm": 10, "ro": [5, 7], "robust": 2, "role": [2, 4, 5, 9, 10], "root": [0, 1, 2], "rosenbluth": [], "round": 6, "routin": 2, "row": [2, 3], "row_data": [], "rowspan": [], "rubidium": 2, "rule": [], "run": [1, 2, 3, 4], "runtimeerror": [], "rv": 13, "s_analyt": 5, "s_numer": [], "s_riemann": 5, "s_sum": 5, "s_trapezoid": 5, "s_trapz": [], "sai": [1, 5], "said": 11, "same": [1, 3, 6, 8, 9, 11, 13], "sampl": 8, "satisfi": [4, 6, 14], "satur": 6, "save": [2, 6], "scale": [1, 13], "scatter": [1, 4, 8], "scatterplot": 2, "scenario": [], "scienc": [4, 5, 6, 9], "scientif": 1, "scikit": 1, "scipi": [1, 5, 6, 8, 10, 12, 13, 14], "scratch": 2, "script": 2, "se": 8, "se_intercept": 8, "se_slop": 8, "seaborn": 1, "secant": 4, "second": 2, "section": 6, "see": [1, 3, 4, 5, 6, 13], "seed": [8, 12, 13, 14], "seen": 1, "segment": [], "select": 12, "self": [], "send": 3, "separ": [2, 5, 9], "sequenc": [2, 3], "sequenti": 3, "seri": [3, 5, 8, 9, 14], "serv": 2, "set": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14], "set_axhlin": [], "set_layout_engin": [], "set_titl": [5, 10], "set_xlabel": [5, 10], "set_ylabel": [5, 10], "setstyl": [], "sever": [1, 5, 11], "shape": [2, 7, 12], "share": [1, 5], "sheet": 1, "shift": [], "ship": [], "short": 3, "should": [1, 2, 3, 4, 6, 7, 8, 10, 12, 13, 14], "show": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14], "shown": [2, 9, 10, 13], "side": [5, 6], "sigma": 8, "sigma1": [], "sigma2": [], "sigma_1": [], "sigma_2": [], "signal": 2, "signific": [7, 8, 14], "similar": [2, 5, 12, 13], "similarli": [], "simpl": [1, 2, 3, 4, 7, 10, 12, 14], "simplest": [3, 12], "simpli": 1, "simplic": 6, "simplifi": [2, 4, 6, 14], "simpson": 5, "simul": [1, 11, 12], "simultan": 5, "sin": [2, 5], "sinc": [6, 7, 11, 12], "sine": [2, 5], "singl": [2, 14], "singular": [], "site": 11, "six": [], "size": [5, 9, 12, 13, 14], "skew": 14, "skill": [1, 2, 3, 6, 8], "skip": 3, "slack": 3, "slice": 3, "slightli": [], "slope": [7, 8], "slowli": 5, "small": [3, 5, 14], "smaller": [3, 12], "smallest": 6, "smile": [], "smit": 14, "sn": 6, "sno": 6, "snow": 9, "sno\u2082": 6, "so": [2, 3, 5, 6, 9, 12], "softwar": [1, 2], "solid": [1, 2, 5, 11], "solut": [2, 6], "solv": [1, 2, 5, 12], "some": [1, 2, 3, 8], "somehow": [], "sorbent": 11, "sourc": 2, "space": [5, 9, 14], "span_pair": [], "spatial": 5, "speci": [4, 7], "special": 1, "specif": [3, 10], "specifi": [3, 4, 5, 10], "spectromet": 8, "spectrophotomet": [], "spectroscopi": 2, "spend": [], "spheric": [5, 13], "spine": [], "split": 4, "spread": 2, "spreadsheet": [1, 2], "spring": 9, "sql": 2, "sqrt": [1, 4, 5, 8, 13], "squar": [1, 2, 3, 8], "ss": [], "sse": [7, 8], "ssr": 8, "stabl": 14, "stai": 4, "stale": [], "standard": [4, 8, 11], "start": [2, 3, 4, 5, 6, 7, 12, 14], "start_filt": [], "stat": [8, 12, 13], "state": [2, 4, 5, 7, 9, 11, 14], "statement": [1, 4], "static": 2, "stationari": [], "statist": [0, 1, 2, 7, 11, 14], "statsmodel": [1, 8], "statu": 4, "std": [], "std_dev": 13, "step": [5, 8, 11], "steroid": 2, "stick": [], "still": 4, "stochast": [], "stoichiometr": [1, 4, 6], "stoichiometri": 7, "stop": [], "stop_raster": [], "storag": 2, "store": [1, 2, 3, 5, 13], "stori": 8, "straight": 5, "straightforward": [1, 2, 3], "streamlin": 6, "strength": [1, 2, 8], "string": 2, "strong": [2, 8], "structur": [0, 1], "struggl": [], "student": [], "studi": 11, "style": [1, 2], "styler": [], "subclass": [], "subdivid": [], "subdivis": 5, "subplot": [5, 10, 14], "subplot_list": [], "subplots_adjust": [], "subplotspec_list": [], "subset": 2, "substitut": [4, 6], "subtract": 1, "success": [4, 14], "successfulli": [4, 7], "suggest": 7, "suit": [1, 2], "suitabl": 4, "sum": [7, 8, 9, 10], "sum_": [5, 7, 8, 11, 12, 14], "sum_i": [9, 10], "summar": [], "super": [], "superclass": [], "support": [1, 2, 12], "suppos": [7, 12], "suppress_composit": [], "suppresscomposit": [], "suptitl": 5, "sure": 1, "surfac": 11, "surround": [9, 11, 14], "svg": 2, "symbol": 1, "symmetr": [5, 13, 14], "symmetri": [], "syntax": [1, 2, 3], "syntaxwarn": [], "system": [0, 1, 2, 4, 14], "systemat": 6, "t": [1, 2, 3, 4, 7, 8, 9, 10, 11, 14], "t_": 8, "t_rang": [], "t_valu": 14, "tab": 1, "tabl": [4, 6, 7], "tabular": [1, 2, 3], "tackl": [1, 2], "tailor": 1, "take": [3, 5, 10, 11], "taken": 9, "target": 12, "task": [1, 2, 3, 8], "taught": [], "technic": 2, "techniqu": [1, 2, 6, 7, 11, 12], "temperatur": [4, 8, 9, 10, 11], "term": [4, 7, 10], "termin": [1, 2, 3, 4], "test": [1, 8], "text": [1, 4, 6, 7, 8, 14], "th": [], "than": [2, 3, 5, 7, 11, 13, 14], "thei": [1, 2, 3, 4, 9, 11, 13], "them": [1, 2, 3, 9], "theori": [], "therefor": [5, 6, 11, 13], "thermal": [9, 10, 11], "thermodynam": [0, 1, 11], "theta": [5, 11], "thi": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "thin": 14, "thing": [3, 8], "think": [2, 3, 5, 6], "third": [], "those": [2, 5, 12, 14], "thought": 6, "three": [3, 4, 5, 9], "threshold": 8, "through": [1, 2, 9], "throughout": 2, "thu": [6, 14], "ti": 3, "tight": [], "tight_bbox": [], "tight_bbox_raw": [], "tight_layout": [5, 10, 14], "tightlayoutengin": [], "time": [3, 4, 6, 7, 8, 11, 14], "tip": [], "titl": [1, 2, 4, 5, 7, 8, 10, 13, 14], "to_csv": 2, "to_html": [], "todai": 1, "togeth": [3, 7, 8], "tol": 4, "toler": 4, "too": 3, "tool": [1, 4, 14], "toolbar": [], "toolkit": 2, "top": [1, 2], "topic": 2, "total": [4, 5, 10, 11, 14], "total_sum": [], "touch": 1, "tough": 5, "toward": [4, 12, 14], "traceback": [], "track": 6, "tradit": [2, 4, 14], "train": [], "transax": [], "transfer": 9, "transfigur": [], "transform": [2, 3], "transform_bbox": [], "transit": [9, 10, 14], "transport": 1, "trapezoid": [], "trapezoidal_result": 5, "trapz": [], "trend": 2, "tri": [], "tripl": 9, "true": [2, 3, 4, 5, 8, 10, 12, 14], "truncat": [], "try": [1, 2, 3, 6, 8], "tune": 14, "tupl": [3, 5], "turn": [], "twice": 1, "two": [1, 2, 3, 7, 8, 9, 11, 13, 14], "type": [1, 2, 3, 5, 6, 7, 9], "typeerror": [], "typic": [1, 4, 7, 8], "u": [3, 5, 6, 8, 9, 12, 14], "u_i": [], "ubiquit": 2, "uffoptimizemolecul": [], "ultim": 5, "ultraviolet": 8, "unbalanc": 6, "unbias": 8, "uncertainti": [], "under": [4, 5, 10, 11], "undergo": 10, "underli": 2, "underscor": [], "understand": [1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 14], "unexpect": [], "uniform": [5, 9, 12, 13, 14], "uniformli": 12, "union": [], "uniqu": 3, "unit": [2, 7], "unknown": 6, "unlik": 3, "unnecessarili": [], "unord": 3, "unphys": [], "unsatur": 6, "until": 3, "unus": [], "up": [1, 3, 4, 8, 9, 10], "updat": 6, "upon": [1, 14], "us": [1, 4, 7, 8, 9, 10, 11, 12, 13], "usag": 5, "user": 1, "userwarn": [], "util": [3, 4, 8], "uv": 8, "v": [2, 7, 9, 10, 14], "v_1": 9, "v_2": 9, "v_i": 9, "va": [], "valid": 8, "valu": [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13], "valuabl": [], "valueerror": [], "vapor": 4, "var": [4, 12, 13], "variabl": [1, 2, 3, 4, 6, 7, 8, 9], "varianc": [8, 12, 13], "varieti": [1, 2], "variou": [1, 2, 7], "vast": [1, 2], "ve": [1, 2, 3, 6], "vector": [5, 6, 9], "veloc": [9, 10], "veri": [7, 10], "verifi": [1, 2, 5], "versatil": [1, 2, 3], "version": 1, "vertic": 8, "vi": 8, "via": 9, "vibrat": 14, "view": 10, "viewer": [], "visibl": 8, "visit": 1, "visual": [1, 4, 5, 7], "vital": 2, "volum": [5, 9, 11], "vowel": 3, "w": [2, 9], "w_pad": [], "wa": [], "wai": [2, 3, 9, 12, 14], "walk": [], "want": [2, 8, 13], "warn_deprec": [], "warn_extern": [], "washu": [], "wast": [], "water": [1, 4, 6, 14], "wavefunct": 2, "we": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "weak": 8, "weakref": [], "web": 1, "websit": 1, "weight": 12, "welcom": 1, "well": [3, 8, 10, 12, 14], "were": [7, 8], "wexler": [], "what": [1, 2, 6, 10], "when": [1, 2, 3, 4, 5, 7, 9, 14], "where": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "whether": [1, 2, 3, 14], "which": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14], "while": [1, 2, 4, 5, 8, 9, 10], "whole": [], "whose": [], "why": 3, "wide": [1, 2, 4], "width": [5, 14], "wiki": 9, "wikipedia": 9, "window": [], "wise": 2, "within": [1, 2, 3, 4], "without": [3, 4, 9, 11], "won": 2, "word": [5, 8, 9], "work": [1, 3, 4, 7, 8, 10], "workflow": 1, "workforc": 1, "world": [1, 9, 11], "would": [4, 8, 10, 11, 12], "wrap": [], "wrapper": [], "write": [3, 4, 5, 6, 7, 8, 12], "written": [2, 3, 5, 6, 9], "x": [1, 2, 3, 4, 5, 6, 7, 8, 13, 14], "x0": 4, "x_": 14, "x_0": [], "x_averag": 14, "x_avg": 14, "x_e": 14, "x_equilibr": 14, "x_i": [5, 7, 8, 12], "x_init": 14, "x_initi": 14, "x_max": [], "x_mean": [7, 8], "x_min": [], "x_new": 14, "x_old": [], "x_prime": [], "x_rang": 14, "x_sampl": 14, "x_se": [], "x_std": [], "x_valu": 4, "xe": [], "xenon": 2, "xi": [], "xlabel": [1, 2, 4, 5, 7, 8, 10, 13, 14], "xmax": 14, "xmin": 14, "xp": [], "xscale": 13, "xy": 10, "xytext": 10, "y": [1, 2, 3, 5, 6, 7, 8, 13], "y_i": [7, 8], "y_max": [], "y_mean": [7, 8], "y_min": [], "yaxi": [], "yerr": 13, "yield": 4, "ylabel": [1, 2, 4, 5, 7, 8, 10, 13, 14], "ymax": [], "york": 3, "you": [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14], "your": [1, 3, 7, 8], "yourself": [1, 3], "yscale": [], "ytterbium": 2, "yttrium": 2, "z": [5, 10, 11, 13, 14], "z_i": [], "z_max": [], "z_min": [], "zero": [2, 4, 6, 9, 10], "zeros_lik": [], "zinc": 2, "zip": [], "zirconium": 2, "zoomto": [], "zorder": 4, "zr": [], "\u00e5": [5, 14], "\u03c0": []}, "titles": ["Welcome to Computational Problem Solving in the Chemical Sciences", "Lecture 1: Introduction to Python for the Chemical Sciences", "Lecture 2: Essential Python Packages for the Chemical Sciences", "Lecture 3: Control Structures in Python", "Lecture 4: Chemical Reaction Equilibria and Roots of Equations", "Lecture 5: Chemical Bonding and Numerical Integration", "Lecture 6: Balancing Chemical Equations and Systems of Linear Algebraic Equations", "Lecture 7: Orders of Reaction and Linear Regression Analysis", "Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis", "Lecture 9: Classical Thermodynamics", "Lecture 10: Statistical Thermodynamics", "Lecture 11: Ensembles and Ergodicity", "Lecture 12: The Monte Carlo Method", "Lecture 13: Monte Carlo Integration", "Lecture 14: A Basic Monte Carlo Algorithm"], "titleterms": {"": [1, 4, 11], "1": [1, 2, 3, 4, 5, 6], "10": 10, "11": 11, "12": 12, "13": 13, "14": 14, "1d": 2, "2": [1, 2, 3, 4, 6], "2d": 2, "3": [1, 2, 3, 6], "4": [1, 2, 3, 4, 6], "5": [1, 2, 3, 5, 6], "6": [1, 2, 3, 6], "7": [1, 7], "8": 8, "9": 9, "A": [2, 4, 6, 7, 8, 14], "On": [4, 5, 7, 8], "The": [2, 3, 4, 5, 6, 9, 12, 14], "To": [], "about": [9, 11], "accept": 14, "access": [], "activ": [4, 5, 7, 8], "addit": [3, 4, 14], "advanc": 2, "advantag": [], "algebra": 6, "algorithm": 14, "all": 3, "alreadi": 1, "an": 5, "analysi": [7, 8], "analyt": 5, "analyz": 14, "anoth": [], "appendix": [], "approach": 4, "ar": 3, "arrai": [2, 3], "averag": [10, 12, 14], "back": [7, 8], "balanc": [6, 14], "basic": [2, 14], "best": [2, 3], "boltzmann": 10, "bond": [5, 14], "calcul": 5, "calibr": 8, "can": 1, "canon": 11, "capac": 10, "care": [9, 11], "carlo": [12, 13, 14], "case": 6, "check": [1, 3], "chemic": [0, 1, 2, 4, 5, 6], "chemistri": 1, "choos": [12, 13], "classic": [9, 14], "code": 14, "coeffici": [6, 8], "combust": 6, "comprehens": 3, "comput": [0, 2, 5, 6], "concept": [], "conclus": [], "condit": [3, 14], "confid": 8, "configur": [], "constant": [7, 10], "control": 3, "convert": 6, "correl": 8, "creat": 2, "critic": 10, "curv": 8, "custom": 2, "data": [2, 8], "datafram": [2, 3], "decomposit": 7, "default": 3, "defin": [3, 6], "definit": [], "depth": 14, "deriv": 14, "detail": 14, "determin": 7, "determinist": [], "dictionari": 3, "dimension": [], "distribut": [10, 13], "do": 1, "download": 1, "element": 3, "elif": 3, "els": 3, "energi": [9, 10], "ensembl": 11, "entropi": 10, "equat": [4, 6], "equilibria": [4, 9], "equilibrium": [4, 9], "ergod": 11, "essenti": 2, "estim": 12, "even": 3, "exampl": [4, 6, 7, 10, 11, 14], "exercis": [1, 2, 3, 4], "expans": 14, "expect": 4, "experi": 7, "explan": 14, "factori": 3, "familiar": 8, "featur": 2, "filter": 2, "find": [3, 4], "first": 9, "form": 8, "formul": 4, "foundat": 2, "free": 10, "from": 10, "function": [3, 10], "fundament": 9, "g": [7, 12], "gaussian": [], "gener": [2, 6], "get": 1, "grand": 11, "graph": 1, "guess": 4, "h": 5, "hand": [3, 4, 5, 6, 7, 8], "he": 5, "heat": [9, 10], "high": [], "higher": 3, "hint": 7, "histogram": 2, "hydrocarbon": 6, "hydrogen": [5, 6], "i": [1, 3, 5], "implement": [4, 12, 14], "implic": 11, "import": [2, 4, 6, 12, 13], "infinit": 3, "initi": 4, "instal": [1, 2], "integ": 6, "integr": [5, 12, 13], "interlud": 8, "intern": [9, 10], "interpret": 14, "interv": 8, "introduct": [1, 3, 4, 7, 8, 10, 12, 14], "isobar": 11, "isotherm": 11, "iv": 6, "jupyt": 1, "kei": [2, 3], "lambda": 3, "launch": 1, "law": [7, 9], "learn": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "least": 7, "lectur": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "length": 14, "let": 1, "librari": 6, "line": 2, "linear": [6, 7], "list": [2, 3], "loop": 3, "macrost": 10, "manipul": 2, "mathbf": 6, "mathemat": [1, 4], "matplotlib": 2, "matrix": [2, 6], "maximum": 3, "measur": 14, "method": [4, 12], "metropoli": 14, "microcanon": 11, "microst": 10, "minim": 4, "minimum": 3, "minut": [], "mississippi": 14, "moment": 6, "mont": [12, 13, 14], "more": 1, "mors": 14, "motiv": 12, "n_2o_5": 7, "necessari": 6, "next": 11, "non": 11, "normal": 6, "note": [1, 3, 4, 5, 14], "notebook": 1, "null": 6, "number": 3, "numer": [4, 5], "numpi": [2, 3], "object": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "observ": [], "odd": 3, "oper": 2, "optim": 4, "orbit": 5, "order": [3, 7], "ordinari": 7, "oscil": 14, "over": 14, "overlap": [5, 13], "oxid": 6, "packag": 2, "palindrom": 3, "panda": [2, 3], "paramet": 3, "partit": 10, "phase": 9, "plot": [2, 14], "potenti": [9, 14], "power": 2, "practic": [1, 2, 3, 7], "primer": 7, "probabl": 14, "problem": [0, 4], "properti": [2, 10], "public": 2, "put": [], "python": [1, 2, 3, 4, 6, 12, 14], "qualiti": 2, "random": 13, "rang": 14, "rate": 7, "reaction": [4, 7], "read": 2, "real": 8, "recap": 6, "reduct": 6, "refer": 14, "refresh": 7, "regress": 7, "relat": [9, 12], "remind": 2, "result": 14, "return": 13, "review": [], "revisit": [], "rewrit": 12, "riemann": 5, "root": 4, "rule": 5, "run": 14, "sampl": [12, 13, 14], "scatter": 2, "scienc": [0, 1, 2], "scientif": 2, "scipi": [2, 4], "second": 9, "section": [2, 3], "seri": 2, "should": [9, 11], "simul": 14, "solut": [4, 5], "solv": [0, 4, 6], "space": 6, "specif": [1, 2], "squar": 7, "start": 1, "state": 10, "statement": [3, 9], "statist": 10, "step": [1, 4, 6, 14], "string": 3, "structur": [2, 3], "suitabl": 12, "sum": [3, 5], "summari": [6, 9, 10, 11, 13, 14], "sup": [], "symmetri": 5, "system": [6, 9, 10, 11], "take": 6, "temperatur": 14, "test": [], "theoret": 8, "thermal": 14, "thermodynam": [9, 10], "thi": [], "think": 10, "third": 9, "through": 3, "tin": 6, "tool": 2, "trapezoid": 5, "two": [5, 10], "type": 11, "u": [], "us": [2, 3, 5, 6], "v": [3, 5], "valu": 3, "varianc": [], "vector": 2, "versatil": 4, "via": 4, "visual": [2, 14], "volum": 10, "wait": [4, 5], "warn": 4, "welcom": 0, "what": [3, 4, 5, 11], "while": 3, "why": [9, 11], "window": 1, "work": [2, 9], "world": 8, "write": 2, "x": 12, "you": [9, 11], "your": 2, "zeroth": 9}}) \ No newline at end of file +Search.setIndex({"alltitles": {"": [[1, null], [1, null], [2, null], [2, null], [2, null], [3, null], [3, null], [5, null], [8, null], [9, null], [9, null], [9, null], [9, null], [9, null], [9, null], [10, null], [11, null], [12, null], [13, null], [14, null]], "1.1 Download and Install Python": [[1, "download-and-install-python"]], "1.1 Key Features of NumPy": [[2, "key-features-of-numpy"]], "1.1 The if Statement": [[3, "the-if-statement"]], "1.2 Check if Python is Already Installed": [[1, "check-if-python-is-already-installed"]], "1.2 The if-else Statement": [[3, "the-if-else-statement"]], "1.2 Working with NumPy Arrays": [[2, "working-with-numpy-arrays"]], "1.3 Practice Exercises": [[2, "practice-exercises"]], "1.3 The if-elif-else Statement": [[3, "the-if-elif-else-statement"]], "1.3 Windows-Specific Note": [[1, "windows-specific-note"]], "2.1 Install Jupyter Notebook": [[1, "install-jupyter-notebook"]], "2.1 Key Features of SciPy": [[2, "key-features-of-scipy"]], "2.1 The for Loop": [[3, "the-for-loop"]], "2.2 Launching Jupyter Notebook": [[1, "launching-jupyter-notebook"]], "2.2 The while Loop": [[3, "the-while-loop"]], "3.1 Defining Functions": [[3, "defining-functions"]], "3.1 Key Features of Matplotlib": [[2, "key-features-of-matplotlib"]], "3.1 Python and Mathematics": [[1, "python-and-mathematics"]], "3.2 Creating Basic Plots with Matplotlib": [[2, "creating-basic-plots-with-matplotlib"]], "3.2 Functions with Default Parameter Values": [[3, "functions-with-default-parameter-values"]], "3.2 Practice Exercises": [[1, "practice-exercises"]], "3.3 Customizing Your Plots": [[2, "customizing-your-plots"]], "3.3 Lambda Functions": [[3, "lambda-functions"]], "3.3 Python Can Do Chemistry": [[1, "python-can-do-chemistry"]], "3.4 Practice Exercises": [[1, "id1"], [2, "id1"]], "3.4 Using Lambda Functions with Higher-Order Functions": [[3, "using-lambda-functions-with-higher-order-functions"]], "3.5 Python Can Do Graphing": [[1, "python-can-do-graphing"]], "3.5 Using Lambda Functions with Pandas": [[3, "using-lambda-functions-with-pandas"]], "3.6 Best Practices for Using Functions": [[3, "best-practices-for-using-functions"]], "3.6 Practice Exercises": [[1, "id2"]], "3.7 Python Can Do More": [[1, "python-can-do-more"]], "4.1 Key Features of Pandas": [[2, "key-features-of-pandas"]], "4.2 Series: The 1D Data Structure": [[2, "series-the-1d-data-structure"]], "4.3 DataFrame: The 2D Data Structure": [[2, "dataframe-the-2d-data-structure"]], "4.4 Reading and Writing Data": [[2, "reading-and-writing-data"]], "4.5 Filtering Data": [[2, "filtering-data"]], "4.6 Practice Exercises": [[2, "id2"]], "A Familiar Form of the Correlation Coefficient": [[8, null]], "A Practical Example": [[7, "a-practical-example"]], "A Refresher or Primer on Rate Laws": [[7, "a-refresher-or-primer-on-rate-laws"]], "A Theoretical Interlude": [[8, "a-theoretical-interlude"]], "Acceptance Probability": [[14, "acceptance-probability"]], "Additional Exercise": [[4, null]], "Additional Exercises": [[3, "additional-exercises"]], "Additional Notes": [[14, null]], "Advanced Matrix Operations": [[2, "advanced-matrix-operations"]], "Analytical Integration": [[5, "analytical-integration"]], "Analytical Solution": [[5, "analytical-solution"]], "Analytical vs. Numerical Integration": [[5, "analytical-vs-numerical-integration"]], "Analyzing the Optimized Configuration": [[15, "analyzing-the-optimized-configuration"]], "Analyzing the Results": [[14, "analyzing-the-results"]], "Average Bond Length": [[14, "average-bond-length"]], "Average Energy and Internal Energy": [[10, "average-energy-and-internal-energy"]], "Back to the N_2O_5(g) Decomposition Experiment": [[7, "back-to-the-n-2o-5-g-decomposition-experiment"]], "Back to the Real World": [[8, "back-to-the-real-world"]], "Balancing Chemical Equations": [[6, "balancing-chemical-equations"]], "Balancing the Equation by Hand": [[6, "balancing-the-equation-by-hand"]], "Best Practice": [[2, null]], "Boltzmann Distribution": [[10, "boltzmann-distribution"]], "Calculating the Overlap Integral of Two H 1s Orbitals": [[5, "calculating-the-overlap-integral-of-two-h-1s-orbitals"]], "Calibration Curve": [[8, "calibration-curve"]], "Calibration Data": [[8, "calibration-data"]], "Canonical Ensemble": [[11, "canonical-ensemble"]], "Choosing a Suitable g(x)": [[12, "choosing-a-suitable-g-x"]], "Choosing the Importance Sampling Distribution": [[13, "choosing-the-importance-sampling-distribution"]], "Computing the Overlap Integral": [[5, "computing-the-overlap-integral"]], "Confidence Intervals": [[8, "confidence-intervals"]], "Correlation Analysis": [[8, "correlation-analysis"]], "Creating and Using Arrays": [[2, "creating-and-using-arrays"]], "Critical Thinking": [[10, null], [10, null], [10, null], [10, null]], "Derivation of the Metropolis Algorithm": [[14, "derivation-of-the-metropolis-algorithm"]], "Detailed Balance Condition": [[14, "detailed-balance-condition"]], "Determining the Rate Constant of a Reaction": [[7, "determining-the-rate-constant-of-a-reaction"]], "Equilibrium": [[9, "equilibrium"]], "Ergodicity": [[11, "ergodicity"]], "Example: Chemical Reaction Equilibrium via Numerical Method": [[4, "example-chemical-reaction-equilibrium-via-numerical-method"]], "Example: Optimizing the Shape of a Nanoparticle": [[15, "example-optimizing-the-shape-of-a-nanoparticle"]], "Example: Reduction of Tin(IV) Oxide by Hydrogen": [[6, "example-reduction-of-tin-iv-oxide-by-hydrogen"]], "Example: Sampling a Classical Morse Oscillator": [[14, "example-sampling-a-classical-morse-oscillator"]], "Example: Two-State System": [[10, "example-two-state-system"]], "Exercise": [[3, null], [4, null], [15, "exercise"]], "Exercise 1": [[3, null]], "Exercise 1: Check if a Number is Even or Odd": [[3, "exercise-1-check-if-a-number-is-even-or-odd"]], "Exercise 2": [[3, null]], "Exercise 2: Sum of All Numbers in a List": [[3, "exercise-2-sum-of-all-numbers-in-a-list"]], "Exercise 3": [[3, null]], "Exercise 3: Factorial of a Number": [[3, "exercise-3-factorial-of-a-number"]], "Exercise 4": [[3, null]], "Exercise 4: Check if a String is a Palindrome": [[3, "exercise-4-check-if-a-string-is-a-palindrome"]], "Exercise 5": [[3, null]], "Exercise 5: Find the Maximum and Minimum Elements in a List": [[3, "exercise-5-find-the-maximum-and-minimum-elements-in-a-list"]], "Explanation of the Code": [[14, "explanation-of-the-code"]], "Free Energy and Entropy": [[10, "free-energy-and-entropy"]], "Fundamental Thermodynamic Relation": [[9, "fundamental-thermodynamic-relation"]], "General Case for Hydrocarbon Combustion": [[6, null]], "Generating Arrays with Specific Properties": [[2, "generating-arrays-with-specific-properties"]], "Grand Canonical Ensemble": [[11, "grand-canonical-ensemble"]], "Grand Canonical Ensemble: Example": [[11, "grand-canonical-ensemble-example"]], "Hands-On Activity": [[4, "hands-on-activity"], [7, "hands-on-activity"], [8, "hands-on-activity"]], "Hands-On Activity: Overlap of Two He 1s Orbitals": [[5, "hands-on-activity-overlap-of-two-he-1s-orbitals"]], "Heat Capacity at Constant Volume": [[10, "heat-capacity-at-constant-volume"]], "Hint": [[7, null]], "Histograms": [[2, "histograms"]], "Implementation in Python": [[12, "implementation-in-python"]], "Implementing Root-Finding Methods in Python": [[4, "implementing-root-finding-methods-in-python"]], "Implementing the Metropolis Algorithm in Python": [[14, "implementing-the-metropolis-algorithm-in-python"]], "Implementing the Potential Energy Function": [[15, "implementing-the-potential-energy-function"]], "Implications of Ergodicity": [[11, "implications-of-ergodicity"]], "Importance Sampling": [[12, "importance-sampling"], [13, "importance-sampling"]], "Important": [[2, null]], "Infinite Loops": [[3, null]], "Installing NumPy": [[2, "installing-numpy"]], "Internal Energy, Work, and Heat": [[9, "internal-energy-work-and-heat"]], "Interpretation": [[14, null], [14, null], [15, null], [15, null]], "Introduction": [[3, "introduction"], [7, "introduction"], [8, "introduction"], [14, "introduction"]], "Introduction to Chemical Reaction Equilibria": [[4, "introduction-to-chemical-reaction-equilibria"]], "Introduction to Monte Carlo Method": [[12, "introduction-to-monte-carlo-method"]], "Introduction to Statistical Thermodynamics": [[10, "introduction-to-statistical-thermodynamics"]], "Isothermal-Isobaric Ensemble": [[11, "isothermal-isobaric-ensemble"]], "Isothermal-Isobaric Ensemble: Example": [[11, "isothermal-isobaric-ensemble-example"]], "Key Control Structures in Python": [[3, "key-control-structures-in-python"]], "Learning Objectives": [[1, "learning-objectives"], [2, "learning-objectives"], [3, "learning-objectives"], [4, "learning-objectives"], [6, "learning-objectives"], [7, "learning-objectives"], [8, "learning-objectives"], [9, "learning-objectives"], [10, "learning-objectives"], [11, "learning-objectives"], [12, "learning-objectives"], [13, "learning-objectives"], [14, "learning-objectives"], [15, "learning-objectives"]], "Lecture 10: Statistical Thermodynamics": [[10, null]], "Lecture 11: Ensembles and Ergodicity": [[11, null]], "Lecture 12: The Monte Carlo Method": [[12, null]], "Lecture 13: Monte Carlo Integration": [[13, null]], "Lecture 14: A Basic Monte Carlo Algorithm": [[14, null]], "Lecture 15: Nanoparticle Shape and Simulated Annealing": [[15, null]], "Lecture 1: Introduction to Python for the Chemical Sciences": [[1, null]], "Lecture 2: Essential Python Packages for the Chemical Sciences": [[2, null]], "Lecture 3: Control Structures in Python": [[3, null]], "Lecture 4: Chemical Reaction Equilibria and Roots of Equations": [[4, null]], "Lecture 5: Chemical Bonding and Numerical Integration": [[5, null]], "Lecture 6: Balancing Chemical Equations and Systems of Linear Algebraic Equations": [[6, null]], "Lecture 7: Orders of Reaction and Linear Regression Analysis": [[7, null]], "Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis": [[8, null]], "Lecture 9: Classical Thermodynamics": [[9, null]], "Line Plots": [[2, "line-plots"]], "Linear Regression Analysis": [[7, "linear-regression-analysis"]], "List Comprehensions": [[3, "list-comprehensions"]], "Lists vs. Dictionaries": [[3, null]], "Local vs. Global Geometry Optimization": [[15, "local-vs-global-geometry-optimization"]], "Looping Through a Dictionary": [[3, "looping-through-a-dictionary"]], "Looping Through a List": [[3, "looping-through-a-list"]], "Looping Through a NumPy Array": [[3, "looping-through-a-numpy-array"]], "Looping Through a Pandas DataFrame": [[3, "looping-through-a-pandas-dataframe"]], "Looping Through a String": [[3, "looping-through-a-string"]], "Mathematical Formulation of Equilibrium Problems": [[4, "mathematical-formulation-of-equilibrium-problems"]], "Matrix and Vector Operations": [[2, "matrix-and-vector-operations"]], "Microcanonical Ensemble": [[11, "microcanonical-ensemble"]], "Microcanonical Ensemble: Example": [[11, "microcanonical-ensemble-example"]], "Microstates and Macrostates": [[10, "microstates-and-macrostates"]], "Monte Carlo Estimation": [[12, "monte-carlo-estimation"]], "Monte Carlo Estimator with Importance Sampling": [[12, "monte-carlo-estimator-with-importance-sampling"]], "Motivation for Importance Sampling": [[12, "motivation-for-importance-sampling"]], "Nanoparticle Shape": [[15, "nanoparticle-shape"]], "Non-Ergodic Systems": [[11, "non-ergodic-systems"]], "Note": [[3, null], [4, null], [5, null]], "Numerical Integration": [[5, "numerical-integration"]], "Numerical Integration Using a Riemann Sum": [[5, "numerical-integration-using-a-riemann-sum"]], "Numerical Integration Using the Trapezoidal Rule": [[5, "numerical-integration-using-the-trapezoidal-rule"]], "Numerical Methods for Finding Roots of Equations": [[4, "numerical-methods-for-finding-roots-of-equations"]], "Orders of Reaction": [[7, "orders-of-reaction"]], "Ordinary Least Squares": [[7, "ordinary-least-squares"]], "Phase Equilibria": [[9, "phase-equilibria"]], "Plotting Thermal Expansion": [[14, "plotting-thermal-expansion"]], "Plotting the Results": [[14, "plotting-the-results"]], "Principles of Simulated Annealing": [[15, "principles-of-simulated-annealing"]], "Problem Statement": [[15, "problem-statement"]], "Python Implementation": [[12, "python-implementation"]], "Python Lists": [[2, null]], "Random Sampling": [[13, "random-sampling"]], "Recap": [[6, "recap"]], "References": [[14, "references"]], "Relating Integrals to Averages": [[12, "relating-integrals-to-averages"]], "Reminder": [[2, null]], "Return to the Overlap Integral": [[13, "return-to-the-overlap-integral"]], "Rewriting the Integral": [[12, "rewriting-the-integral"]], "Running the Simulation": [[14, "running-the-simulation"], [15, "running-the-simulation"]], "Scatter Plots": [[2, "scatter-plots"]], "Section 1: Conditional Statements": [[3, "section-1-conditional-statements"]], "Section 1: NumPy - The Foundation of Scientific Computing in Python": [[2, "section-1-numpy-the-foundation-of-scientific-computing-in-python"]], "Section 2: Loops": [[3, "section-2-loops"]], "Section 2: SciPy - A Powerful Tool for Scientific Computing": [[2, "section-2-scipy-a-powerful-tool-for-scientific-computing"]], "Section 3: Functions": [[3, "section-3-functions"]], "Section 3: Matplotlib - Creating Publication-Quality Visualizations": [[2, "section-3-matplotlib-creating-publication-quality-visualizations"]], "Section 4: Hands-on Practice": [[3, "section-4-hands-on-practice"]], "Section 4: Pandas - Powerful Data Manipulation in Python": [[2, "section-4-pandas-powerful-data-manipulation-in-python"]], "Simulated Annealing": [[15, "simulated-annealing"]], "Simulated Annealing Algorithm": [[15, "simulated-annealing-algorithm"]], "Simulation Over a Range of Temperatures": [[14, "simulation-over-a-range-of-temperatures"]], "Solving for Equilibrium": [[4, "solving-for-equilibrium"]], "Solving the Equation Using Python": [[6, "solving-the-equation-using-python"]], "Solving the System of Equations": [[6, "solving-the-system-of-equations"]], "Statement of the First Law": [[9, "statement-of-the-first-law"]], "Step 1: Formulating the Equilibrium Equation": [[4, "step-1-formulating-the-equilibrium-equation"]], "Step 1: Getting Python Installed": [[1, "step-1-getting-python-installed"]], "Step 1: Import the Necessary Libraries": [[6, "step-1-import-the-necessary-libraries"]], "Step 2: Define the Coefficient Matrix, \\mathbf{A}": [[6, "step-2-define-the-coefficient-matrix-mathbf-a"]], "Step 2: Installing Jupyter Notebook": [[1, "step-2-installing-jupyter-notebook"]], "Step 2: Minimizing the Equilibrium Equation": [[4, "step-2-minimizing-the-equilibrium-equation"]], "Step 3: Compute the Null Space": [[6, "step-3-compute-the-null-space"]], "Step 3: Let\u2019s Get Started with Python": [[1, "step-3-let-s-get-started-with-python"]], "Step 4: Normalize and Convert to Integer Coefficients": [[6, "step-4-normalize-and-convert-to-integer-coefficients"]], "Step 5: The Balanced Chemical Equation": [[6, "step-5-the-balanced-chemical-equation"]], "Summary": [[6, "summary"], [9, "summary"], [10, "summary"], [11, "summary"], [13, "summary"], [14, "summary"], [15, "summary"]], "Symmetry and Integration": [[5, "symmetry-and-integration"]], "Systems of Linear Algebraic Equations": [[6, "systems-of-linear-algebraic-equations"]], "Take a Moment": [[6, null]], "The First Law": [[9, "the-first-law"]], "The Hydrogen 1s Orbital": [[5, "the-hydrogen-1s-orbital"]], "The Importance of Initial Guess": [[4, null]], "The Laws of Thermodynamics": [[9, "the-laws-of-thermodynamics"]], "The Lennard-Jones Potential": [[15, "the-lennard-jones-potential"]], "The Metropolis Algorithm Steps": [[14, "the-metropolis-algorithm-steps"]], "The Metropolis Algorithm: \u201cMeasuring the Depth of the Mississippi\u201d": [[14, "the-metropolis-algorithm-measuring-the-depth-of-the-mississippi"]], "The Second Law": [[9, "the-second-law"]], "The Third Law": [[9, "the-third-law"]], "The Zeroth Law": [[9, "the-zeroth-law"]], "Thermal Expansion of the Morse Oscillator": [[14, "thermal-expansion-of-the-morse-oscillator"]], "Thermodynamic Potentials": [[9, "thermodynamic-potentials"]], "Thermodynamic Properties from the Partition Function": [[10, "thermodynamic-properties-from-the-partition-function"]], "Thermodynamic Systems": [[9, "thermodynamic-systems"]], "Types of Ensembles": [[11, "types-of-ensembles"]], "Visualization of the Morse Potential": [[14, "visualization-of-the-morse-potential"]], "Visualizing the Results": [[15, "visualizing-the-results"]], "Wait!": [[5, null], [5, null]], "Wait, What\u2019s the Expected Solution?": [[4, null]], "Warning": [[4, null]], "Welcome to Computational Problem Solving in the Chemical Sciences": [[0, null]], "What Are Control Structures?": [[3, "what-are-control-structures"]], "What Is an Integral?": [[5, "what-is-an-integral"]], "What\u2019s Next?": [[11, null]], "Why Should You Care About Ensembles?": [[11, "why-should-you-care-about-ensembles"]], "Why Should You Care About Thermodynamics?": [[9, "why-should-you-care-about-thermodynamics"]], "scipy.optimize.minimize: A Versatile Approach": [[4, "scipy-optimize-minimize-a-versatile-approach"]]}, "docnames": ["intro", "lecture-01-introduction", "lecture-02-packages", "lecture-03-control", "lecture-04-optimization", "lecture-05-integration", "lecture-06-linalg", "lecture-07-regression", "lecture-08-calibration", "lecture-09-thermo", "lecture-10-stat-thermo", "lecture-11-ensembles", "lecture-12-monte-carlo", "lecture-13-mc-integration", "lecture-14-metropolis", "lecture-15-nanoparticles"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["intro.md", "lecture-01-introduction.md", "lecture-02-packages.md", "lecture-03-control.md", "lecture-04-optimization.md", "lecture-05-integration.md", "lecture-06-linalg.md", "lecture-07-regression.md", "lecture-08-calibration.md", "lecture-09-thermo.md", "lecture-10-stat-thermo.md", "lecture-11-ensembles.md", "lecture-12-monte-carlo.md", "lecture-13-mc-integration.md", "lecture-14-metropolis.md", "lecture-15-nanoparticles.md"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "00": [1, 2, 4], "000": 8, "000000": 15, "0000000000000004": 2, "0000000000000009": [], "000000019073487": 4, "0000003051757815": 4, "0000003433227533": 4, "000000381469727": 4, "0001": 10, "0001871291025951396": 8, "0004184333939712645": 8, "000e": 4, "001": 8, "001367319247162": [], "001987204": [], "0024893696884570006": [], "003967": [], "004": 8, "004748": [], "007": 8, "007820585525325625": [], "008": [1, 8], "009564": 2, "01": [1, 10], "0103": 15, "010339": [], "010999999999996": 1, "011": 1, "0112": 7, "011213": [], "0125": 7, "013": 8, "0132": [], "0133": 14, "0144": 7, "014682": [], "0162": 7, "019033": [], "0191": 7, "02": 4, "020020": [], "023977": [], "02397704": [], "024": [], "0250": 7, "026": 8, "026862": [], "029550": [], "030363606516579125": 7, "031785": 5, "032": 8, "032076": [], "038889": [], "04": 7, "04036523": [], "040756": [], "040832": [], "042757": [], "04361008": [], "044403": [], "044783": [], "045537": 2, "048021": [], "048416": 2, "049373": [], "049586": [], "05": [], "051520": [], "054431": [], "057691": [], "058135": [], "059068": 2, "06": [7, 8], "060": [], "060908": [], "062186": 15, "06533351": [], "066214": [], "067183": [], "067595": [], "06759502": [], "07": 4, "07069651": [], "071614": [], "073500": [], "074532": [], "075927": [], "076810": [], "077208": 15, "07750": [], "07812993": [], "0783716": [], "08": [2, 7], "08468586": [], "086293": [], "086311": [], "087": [], "087380": [], "08738004": [], "089069": [], "089466": 12, "09": [], "090967": [], "091": [], "0910": [], "09103292226689087": [], "09188008": [], "092201": [], "093195": 2, "094149": 2, "096565": 5, "096577": 5, "098210": 15, "099762": 5, "0f": 4, "0x1114aa5f0": [], "1": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "10": [0, 1, 2, 3, 4, 5, 7, 8, 14, 15], "100": [1, 2, 4, 5, 7, 10, 12, 13, 14], "1000": [2, 5, 8, 12, 13, 14, 15], "10000": [13, 14, 15], "100000": 13, "1000000": 13, "10000000": [], "100_000": [], "101": [], "1016": 14, "102": [], "102174": [], "105363": [], "1063": 14, "1087": 14, "1092": 14, "11": [0, 2, 4, 7], "1100": [], "111": [], "111754": [], "113959": [], "11574968": [], "116": [], "11x": 4, "12": [0, 1, 8, 10, 14, 15], "1200x500": [], "12138546": [], "1225": 3, "12357159": [], "123840": [], "124996": [], "1250875": [], "12600315": [], "127246": [], "127797": [], "128745": [], "129": [], "129811": [], "13": 0, "130": 2, "13073": [], "131": [], "1314235014": [], "132": [], "132008": [], "13256909": [], "133": [], "134": [], "135": [], "136072": 5, "136085": 5, "136902": [], "137451": [], "1385": [], "1386": [], "1387": [], "1388": [], "1389": [], "1390": [], "1391": [], "14": [0, 7, 11], "140199": [], "1402": [], "140213": [], "1403": [], "1404": [], "1405": [], "1406": [], "1407": [], "14073843": [], "1408": [], "1409": [], "140951": 5, "1410": [], "14159": 3, "145263": [], "15": [0, 2, 7], "150": 2, "151212": [], "153355": [], "15383974": [], "15396606": [], "153987": [], "154": 2, "155298": [], "15763222": [], "16": [1, 2, 3, 4], "161040": [], "16121387": [], "16168": [], "161758": [], "165889": [], "166290": [], "167": [], "168": [], "169252": [], "169374": [], "1699114": 14, "17": [], "170": [], "171": [], "171635": [], "17163544": [], "172": [], "1733916972": 4, "173860": [], "17841984": [], "178420": [], "17855413": [], "1796469911": [], "18": [5, 8], "181": [], "182": [], "182050": [], "182145": [], "183": [], "183777": [], "184": [], "185": [], "18598785": [], "185988": [], "186": [], "187": [], "188": [], "188889": [], "189247": 5, "189262": 5, "19": [], "1903": [], "1904": [], "1905": [], "192456": [], "19464139": [], "1953": 14, "19530158": [], "196617": 5, "196816": [], "197475": [], "197620": [], "19952598": [], "199526": [], "19971276": [], "1d": [], "1e": 4, "2": [0, 5, 7, 8, 9, 10, 12, 13, 14, 15], "20": [7, 15], "200": [], "2001": [], "200369": [], "200383": [], "200402": [], "200483": [], "2023": 14, "205104": [], "208289": [], "21": [8, 14], "21113": [], "211346": [], "212": [], "214": [], "21459876": [], "215": [], "21514317": [], "21567557": 2, "216": [], "217": [], "2170": [], "2171": [], "2172": [], "2173": [], "2174": [], "2175": [], "2176": [], "2177": [], "219": [], "21948282": [], "22": 4, "220619": [], "22115577933543018": 7, "2213406": [], "2224677478": [], "22466308": [], "22722108611679165": 1, "227632": [], "22e": 4, "23": [], "2304533417": [], "23067359": [], "230942": [], "234381": [], "23535115": [], "236837": [], "24": [2, 7], "241398": [], "243110": [], "245944": [], "246372": [], "2468699402": [], "24931777": [], "249318": [], "24999999999998668": [], "25": [1, 2, 3, 4, 8], "25097623": [], "25180": [], "25298782": 2, "253167": [], "25430905": [], "254594": [], "2568": [], "25685736": [], "2569": [], "2569768875": [], "2570": [], "258769": 2, "259179": 5, "259194": 5, "26": [], "261": [], "262": [], "263": [], "263956": [], "264": 2, "264261": [], "265": 2, "266": [], "267": [], "268": [], "269": [], "26953356": [], "269757": [], "27": 8, "270": [], "270172": 5, "270435": [], "271": [], "2715": [], "2716": [], "2717": [], "2719": [], "2720": [], "2722": [], "273": [], "273713": [], "274": [], "274815": [], "275": [], "27514562": [], "276": [], "277778": [], "27819382": [], "2793": [], "2794": [], "2795": [], "2799": [], "28": 7, "280": [], "2800": [], "2801": [], "281": [], "281017": [], "281032": [], "281626": 2, "282552": [], "288280": [], "288791": [], "29": [], "291939": [], "29260813": [], "293218": [], "293416": [], "294650": [], "295068": [], "296185": [], "298": 7, "29978765": [], "2_1": [], "2_2": [], "2a": 6, "2b": 6, "2c": 6, "2d": 6, "2f": 8, "2n": 6, "2r": 5, "2x": 4, "2x2": 2, "3": [0, 4, 5, 7, 8, 12, 13, 15], "30": [2, 3, 7, 8, 10, 14], "300": 14, "3000": [], "301299": [], "30129909": [], "302182": [], "30255225": [], "3049": [], "3050": [], "3051": [], "3052": [], "3053": [], "31": [4, 8], "31016631": [], "3104": [], "3105": [], "3107": [], "3109": [], "3110": [], "314505": [], "3159": [], "3161": [], "3162": [], "3163": [], "3165": [], "3166": [], "318": 7, "318526": [], "32": [2, 8, 12], "320524": [], "32099643": [], "324007": [], "325560": [], "325610": 12, "32561038208072784": [], "327": 2, "32816799690108206": [], "328712": [], "32885292": [], "328853": [], "329385": [], "329867": [], "33": 8, "33026915": [], "3331481689": [], "333259": [], "333333": 12, "33500365": [], "33552352": [], "337550306": [], "338002": [], "3386046038985078": [], "34": [], "341": [], "342": [], "343": [], "344": [], "3442733": [], "345": [], "34714337": [], "348493": 5, "348509": 5, "35": [2, 3], "350110": [], "3543": [], "3544": [], "3545": [], "3546": [], "3547": [], "3548": [], "3549": [], "36": [], "36330421": [], "364650": 5, "364967": 15, "366086": [], "366667": [], "368379": [], "369988": [], "37": [2, 7], "37228132": 2, "373919": [], "379": [], "38": [], "380": [], "38020829": 2, "381": [], "382": [], "383": [], "384": [], "38480972": [], "385": [], "385206": [], "385223": [], "38523872": [], "386": [], "387": [], "388": [], "38825605": [], "38848765": [], "388541": [], "389": [], "38986037": [], "39": 2, "390": [], "391991": [], "392485": [], "395846": 15, "397667": [], "3d": [1, 2, 5], "3dmol": [], "3f": 8, "3n": 6, "3x": 4, "3x3": 2, "4": [0, 5, 7, 8, 10, 14, 15], "40": 7, "400": 4, "4000": 4, "4014613473": [], "403655": [], "40446243": 2, "405787": [], "409241": [], "409582": 15, "4096": [], "41": 8, "410": 2, "41152632": [], "41228293": [], "41263254": [], "412686": [], "413040": [], "413601": [], "415782": [], "41702911": [], "41884383": [], "419523": [], "42": [2, 12, 13, 14, 15], "422": 2, "422874": 15, "4256142": [], "42638864": [], "426663": [], "42789353": [], "427894": [], "428120": [], "42812882": 2, "428552": [], "429026": [], "429932": [], "43": [], "430490": [], "43260088": [], "433": [], "433379": [], "43337911": [], "43377967": [], "435078": [], "435593": [], "43765552": [], "439334": [], "44": 1, "440513": [], "444864": 2, "444902": [], "44490243": [], "44493476": [], "445": [], "446467": [], "44646711": [], "4480": [], "4481": [], "4482": [], "4483": [], "4484": [], "448551": [], "44905775": [], "45": [], "451": [], "452": [], "4526796": [], "452680": [], "453": [], "453202": [], "45398804": [], "454": [], "455": [], "455556": [], "456": [], "45600233": [], "456312": 15, "457": [], "458290": 5, "458308": 5, "46": [], "4602659": [], "460471": [], "464468": [], "46455389": [], "4647058823529414e": 8, "465110": [], "465299": [], "4665494": [], "468024": [], "46938113": [], "47": [], "47036559": [], "47575154": [], "476065": [], "477106": [], "48": [], "480066": [], "48070937": [], "481598": 5, "482436": [], "482577": [], "488235294117647e": 8, "489157": [], "49": [], "490528": [], "492423": [], "49342": [], "49731891": [], "498755": [], "4999996185302713": [], "4999998855590835": [], "4a": 6, "4f": 14, "4x": 4, "5": [0, 4, 7, 8, 10, 13, 14, 15], "50": [2, 7, 14], "500": [10, 14], "50000": 14, "500e": [], "502418": [], "507017": [], "51": [], "513279": [], "513297": [], "52": [], "52416794": [], "524168": [], "526100": [], "526245": [], "52695194": [], "529": 5, "529025": [], "529691": [], "53": [], "530": 8, "530054": [], "534060": [], "53551883": [], "53651539": [], "538946": [], "53939566": [], "539570": [], "539796795": [], "54": 8, "540513": [], "544": [], "544132": [], "54413216": [], "545158": [], "54518": [], "54785244": [], "555261": [], "555330": [], "558357": [], "562114": [], "563880": [], "56833": [], "569610": [], "57": 2, "570085": [], "57219658": [], "575324": [], "576": [], "576476": [], "57647611": [], "576889": [], "58": [], "582464": [], "58246411": [], "582797": [], "58445442": [], "58453143": [], "586435": 5, "586453": 5, "588008": [], "58e": [], "59045283": [], "5963908": [], "5998763": [], "5f": [], "5t_cnxn96vs1f6z07zkwy_k80000gn": [], "6": [0, 4, 5, 7, 8, 10, 13, 14, 15], "60": [2, 7], "600": 8, "60000": [], "603": 2, "60464228": [], "607337": [], "607767": 2, "6085366895522193e": 12, "6134203": [], "614456": 15, "617333262145e": 15, "617424": [], "618404": [], "619193": [], "619271": 5, "62": 4, "625": 3, "6295": [], "6296": [], "629652": [], "6297": [], "6298": [], "6299": [], "63": 2, "63027018": [], "63061": [], "63391829": [], "63407862": [], "63651919": [], "63921": 14, "63e": [], "64": [], "640340": [], "64181731": [], "644444": [], "64448507": [], "64521477": 2, "645333": [], "645725": [], "646079": 2, "646416": [], "647628": [], "649707": [], "65": 2, "650": 8, "653721": [], "65437021": [], "656155": [], "658352": [], "659596": [], "659829": [], "659902": [], "659921": [], "66": [], "66129037": [], "661308": 2, "662783": [], "666408": [], "66805603": [], "669": [], "67": [], "670": 2, "672533": [], "673317": [], "67897942": [], "679175": [], "68": 7, "68262291": [], "684116": [], "688488": [], "68e": [], "69": [], "690617": [], "69418496": [], "694901": [], "697682": [], "69803815": [], "698842": [], "6f": [5, 12, 15], "6x": 4, "7": [0, 2, 3, 5, 13, 14], "70": 7, "700": 8, "70292167": [], "703219": [], "70360658": [], "704656": [], "70749": [], "712417": [], "716731": 15, "71856743": [], "7194702543489242e": [], "71987391": [], "719874": [], "72": [], "722833": [], "723356": [], "72436375": [], "725154": 5, "725173": 5, "72740627": [], "729945": [], "73": 2, "730391": [], "730971": [], "733333": [], "733507": [], "73372628": [], "733862": [], "734481": [], "7357675673109183": [], "736878": [], "737176": [], "74": 2, "74305327": [], "74313198": [], "74366638": [], "746566": [], "74807732": [], "75": 2, "750": 8, "75097679": [], "750977": [], "753449": [], "75553252": [], "755533": [], "756": [], "758691": [], "76": [], "76176135": [], "763835": [], "766e": 4, "76910543": [], "769971": 5, "77": 2, "772": [], "7720709": [], "772071": [], "773974": [], "775256": [], "776040": [], "78": 4, "780439": [], "78083219": [], "780922": [], "78252123": [], "785398": [], "79": [], "790745": [], "79382746": 2, "794821": [], "797464": 2, "7r": 8, "8": [0, 1, 3, 4, 5, 7, 13, 14, 15], "80": 7, "800": 8, "800392": 5, "803676": [], "804": 2, "804001": 2, "80573": [], "80580666": [], "80697": [], "80942245": 2, "81": 2, "810121": [], "810141": [], "810169": 15, "811932": [], "813318": [], "816371": [], "81847246": [], "82": 2, "821785": [], "822222": [], "823132": [], "826182": [], "82911917": [], "831357": [], "83257677": [], "83476": [], "83544789": [], "8395906": [], "84": [], "840": 2, "840733": [], "841431": [], "843290": [], "844670": [], "844728": [], "848808": [], "85": 2, "850": 8, "851055": [], "852": 2, "852913": [], "85291349": [], "853": [], "8538538031407512": [], "853854": [], "857228165610269": 8, "858194": [], "858367": 5, "858385": [5, 13], "86": 2, "863366": [], "86599082": [], "867874160544318": [], "86960": [], "87": 2, "871128": [], "871706410": [], "872680": [], "873756": 15, "87877103": [], "879550": [], "88": 2, "881784197001252e": 4, "882e": 4, "884170": [], "884707": [], "88586208": [], "885936": [], "888187": [], "88821188": [], "89": 2, "89118366": [], "89354794": [], "9": [0, 1, 2, 3, 4, 5], "90": [2, 7], "900": [3, 8], "903735": [], "91": [], "9102529": [], "911111": [], "913378": [], "916888": 5, "919537": [], "919632": [], "92": 7, "921853": [], "922371": [], "923471": [], "923769": [], "925286": 5, "92578833": [], "928158": [], "929717": [], "93": 8, "93047322": [], "931484": [], "934": 2, "935911": [], "935931": [], "94": [], "94128165": [], "94459246": [], "94870807": [], "95": 8, "950": 8, "95143119": [], "954": [], "954706": [], "955": [], "956": [], "956443": [], "95713798": 2, "957231": [], "958": [], "95809135": [], "959": [], "96": [], "960": [], "960320": 5, "960340": 5, "961": [], "961514": [], "96310226": [], "96641313": [], "966945": [], "97": 8, "97078784": [], "975527": [], "975794": [], "98": [], "980126": [], "985343": 2, "985601": [], "98610781": [], "98636626": [], "9897367": [], "99": [], "991938": [], "99278371": [], "9962040088352188": 8, "99654": [], "99654\u03c0": [], "998318": [], "998337": [], "999": 15, "999134": [], "A": [0, 1, 3, 9, 10, 11, 12], "AND": 2, "And": [1, 2], "As": [1, 2, 5, 9, 10, 11, 13, 15], "At": [4, 10, 15], "But": [], "By": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "For": [1, 2, 4, 5, 6, 9, 10, 11, 14], "If": [1, 2, 3, 6, 9, 11, 14], "In": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15], "It": [2, 3, 5, 7, 8, 9], "Its": 4, "NOT": 2, "No": [], "Not": 11, "OR": 2, "One": [2, 10, 13, 15], "Or": [], "That": 7, "The": [0, 1, 7, 8, 10, 11, 13], "Then": [5, 8], "There": [5, 9, 11], "These": [1, 2, 3, 5, 9], "To": [1, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15], "Will": 9, "With": [1, 2], "_": [6, 14], "_0": [5, 7, 8], "_0e": 7, "_1": [7, 8], "_2": [1, 4, 6, 7], "_4": 6, "_5": 7, "__call__": [], "__class__": [], "__getattribute__": [], "__name__": [], "_accessor": [], "_api": [], "_auto_adjust_subplotpar": [], "_axesbas": [], "_axi": [], "_axis_map": [], "_base": [], "_can_hold_identifiers_and_holds_nam": [], "_copy_docstring_and_deprec": [], "_draw_all_if_interact": [], "_draw_dis": [], "_draw_list_compositing_imag": [], "_express": [], "_finalize_raster": [], "_fontproperti": [], "_get_layout": [], "_get_render": [], "_get_text_metrics_with_cach": [], "_get_text_metrics_with_cache_impl": [], "_get_tightbbox_for_layout_onli": [], "_i": 8, "_idle_draw_cntx": [], "_in_subscript_or_superscript": [], "_info_axi": [], "_is_idle_draw": [], "_linalg": [], "_make_html": [], "_mathtext": [], "_n": 6, "_output_typ": [], "_parse_cach": [], "_parser": [], "_prepare_font": [], "_preprocess_math": [], "_pylab_help": [], "_raster": [], "_render": [], "_setattr_cm": [], "_state_stack": [], "_tight_layout": [], "_update_title_posit": [], "_v": 10, "_val_or_rc": [], "_wait_cursor_for_draw_cm": [], "_x": 6, "_y": 6, "a0": [], "a_0": [5, 13], "ab": 4, "abil": 2, "abl": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "about": [3, 4, 5, 7, 10, 14], "abov": [1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 15], "absolut": [4, 9], "absorb": 8, "absorpt": 15, "academ": [1, 14], "acc": 14, "accept": 15, "acceptance_prob": 14, "access": [1, 2, 3, 4, 14], "accord": [], "accordingli": 3, "account": 8, "accumul": 3, "accur": [5, 8, 11], "accuraci": [5, 6, 8, 12], "achiev": [1, 5, 14, 15], "acquir": [], "across": [1, 2, 3], "act": 9, "actinium": 2, "action": [3, 4], "activ": 15, "actual": 4, "ad": [2, 3, 9], "adapt": [4, 15], "add": [1, 2, 3, 6, 11], "add_subplot": [], "add_trac": [], "addh": [], "addit": 1, "addition": 1, "addmodel": [], "address": [], "adjac": [], "adjust": [8, 15], "admonit": [], "adsorb": [], "adsorpt": 11, "advanc": 1, "advantag": [4, 5], "affect": [4, 8, 15], "after": [1, 8], "ag": 3, "against": 9, "age_squar": 3, "aggreg": 2, "agre": 7, "aim": [4, 15], "al": 14, "algebra": [0, 2], "algegra": [], "algorithm": [0, 4], "alia": 1, "alic": 3, "align": [5, 6, 12], "alkan": 6, "all": [1, 5, 8, 9, 10, 11], "allchem": [], "allow": [1, 2, 3, 4, 5, 14, 15], "allow_raster": [], "along": [2, 5], "alpha": [5, 8, 12, 14], "alpha_": [], "alpha_th": [], "alreadi": 8, "also": [1, 2, 3, 4, 5, 8, 9, 10, 11, 15], "alter": 15, "altern": [3, 7, 15], "aluminum": 2, "alwai": [2, 3, 4, 5], "americium": 2, "amount": 5, "an": [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 14, 15], "analog": [4, 14], "analys": 1, "analysi": [0, 1, 2, 14], "analyt": [4, 8, 12], "analytical_overlap_integr": 5, "analytical_result": 5, "analyz": [1, 2, 8], "anatomi": 2, "angstrom": 15, "anharmon": 14, "ani": [1, 2, 3, 6, 11, 12, 15], "anim": 2, "anneal": 0, "annot": [2, 8, 10], "anonym": 3, "anoth": [9, 14], "answer": 9, "antialias": [], "antimoni": 2, "aperiod": [], "appear": 1, "append": [5, 13, 14, 15], "appendix": [], "appl": 3, "appli": [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14], "applic": [1, 2, 4, 14, 15], "appreci": 9, "approach": [3, 6, 10, 12], "appropri": [], "approx": [12, 14], "approxim": [1, 4, 5, 7, 12, 14], "ar": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "arang": [], "arbitrari": 15, "arctan": [], "area": [1, 2, 3, 5, 11], "arg": 4, "argon": [2, 15], "argument": [3, 5], "aris": 15, "arithmet": 1, "around": [1, 5], "arr": 3, "arrai": [1, 4, 5, 6, 7, 8, 14, 15], "arrang": [9, 15], "arriv": 9, "arrow": 10, "arrowprop": 10, "arrowstyl": 10, "artist": [], "asarrai": [], "ase": 1, "ask": 7, "aspect": [2, 3], "assess": 8, "assign": 3, "associ": 9, "assum": [4, 7], "astyp": 6, "asymmetr": 14, "asymmetri": 14, "atom": [1, 2, 5, 6, 9, 13, 15], "atomist": 1, "attract": [1, 15], "attribut": [], "attributeerror": [], "auto_adjust_subplotpar": [], "autocorrel": 14, "autom": [1, 6], "automat": 1, "avail": [1, 2, 9, 10], "averag": [11, 13], "average_f": [], "average_f_x": [], "average_x_squar": 12, "average_x_squared_plus_y_squar": [], "avg": [], "avogadro": 15, "avoid": [3, 4, 5], "awai": [], "awesom": 1, "ax": [2, 5, 15], "ax1": [10, 15], "ax2": [10, 15], "ax_bbox_list": [], "axes3d": [], "axes_list": [], "axhlin": [4, 8, 13], "axi": [1, 4, 5, 15], "axison": [], "axvlin": 8, "b": [1, 2, 5, 6, 7, 10, 12, 13, 14, 15], "ba": [], "back": [3, 5], "backend": [], "backend_agg": [], "backend_bas": [], "background": [], "backward": 3, "bad": [], "balanc": [0, 15], "banana": 3, "bar": [1, 2, 4, 5, 7, 8], "barrier": [], "base": [2, 3, 6, 7, 8, 13], "base64": [], "baseformatt": [], "basic": [0, 1, 3, 12], "basin": 15, "bath": [10, 11], "bb": [], "bbox": [], "bbox_extra_artist": [], "bbox_inch": [], "becaus": [3, 4, 5, 6, 8, 11, 13], "becom": [2, 3, 5, 9, 12, 14, 15], "been": [7, 8], "beer": 8, "befor": [1, 2, 3, 4, 5, 6, 9, 14], "begin": [6, 15], "behav": 3, "behavior": [4, 8, 9, 10, 11, 12, 15], "behind": [], "being": [2, 5, 10, 11], "below": [3, 8, 13], "bench": 7, "benchmark": [], "benefit": 12, "best": 1, "best_energi": 15, "best_posit": 15, "best_solut": [], "beta": [7, 8, 10, 11, 12, 14], "beta_0": 7, "beta_1": 7, "beta_param": 12, "beta_schedul": [], "better": 2, "between": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15], "beyond": [1, 2], "bias": 12, "big": 5, "bin": [2, 14], "biologi": 1, "bipyramid": 15, "bisect": 4, "black": [2, 4, 5, 10, 13], "block": 3, "blue": [2, 8, 10, 14, 15], "bmatrix": 6, "bob": 3, "bohr": 5, "boltzmann": [14, 15], "bond": [0, 2], "both": [1, 2, 3, 4, 6, 9], "bound": 4, "boundari": [9, 15], "box": 1, "bracket": 2, "bread": 2, "break": 3, "brew": 8, "bring": [1, 8, 9], "broad": 4, "broadcast": 2, "broader": [], "broadli": 9, "browser": 1, "build": [2, 3], "built": [1, 2, 3], "bulk": 15, "butter": 2, "butteri": 8, "bytes_io": [], "c": [1, 2, 6], "c2009": 14, "c_v": [8, 10], "cach": [], "calcul": [1, 2, 3, 6, 7, 8, 10, 11, 13, 14, 15], "calculate_area": 3, "calculu": 1, "calibr": 0, "call": [3, 7, 8], "call_axes_loc": [], "callback": [], "caller": 3, "campu": [], "can": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "candid": 12, "cannot": 7, "cantera": 1, "canva": [], "capabl": [1, 2], "capac": 8, "carbon": [1, 6, 9], "carbon_mass": 1, "care": 4, "carlo": [0, 1, 11], "cartesian": 5, "case": [1, 3, 4, 7, 8, 9, 11, 12, 15], "catalysi": 15, "catalyt": 15, "cater": 2, "caus": [3, 5, 14], "caveman": [], "cbook": [], "cco": [], "cdot": [4, 9], "cell": [], "center": [5, 10], "central": [5, 9, 11], "certain": [3, 4, 8], "cesium": 2, "ch": 6, "chain": 14, "challeng": [1, 3, 6, 14, 15], "chang": [2, 4, 5, 7, 9, 10, 14, 15], "channel": 3, "char": 3, "charact": 3, "character": [4, 12], "charg": 5, "charli": 3, "chart": 2, "check": [2, 4, 5, 6], "chem": [], "chemic": [7, 9, 11, 14, 15], "chemist": 8, "chemistri": [2, 5], "cherri": 3, "choic": [4, 11, 13, 14, 15], "choos": [4, 14], "chop": [], "ci": 8, "circ": [4, 11], "circl": [3, 4], "circular": 2, "citi": 3, "cl": [], "clarif": 3, "class": 2, "classic": [0, 4, 5], "clean": 2, "clean_lin": [], "cleaner": 5, "clear": 7, "clearer": [], "clearli": 3, "clip": [], "close": [4, 5, 8, 9, 10, 11], "close_group": [], "closer": [12, 15], "cluster": [9, 15], "co": [1, 6], "code": [1, 2, 3, 4, 5, 11, 12, 13], "coeff": [], "coeffici": 4, "cohes": 2, "col": [], "collaps": [], "collect": [2, 3, 5, 7, 8, 10, 11, 14], "color": [1, 2, 4, 8, 10, 13, 14, 15], "color_energi": 15, "color_temp": 15, "colspan": [], "column": [2, 3], "combin": [3, 9], "combust": [], "come": [1, 5, 8, 11], "command": [1, 2], "comment": 2, "common": [2, 3], "commonli": [1, 2, 3, 11], "commun": [], "comp": [], "compact": 3, "compani": 8, "compar": [3, 5, 10, 13, 15], "complet": [], "complex": [1, 2, 3, 4, 6, 10, 11, 14, 15], "compon": [2, 3], "composit": [], "compound": [1, 8], "comprehens": 2, "comput": [1, 3, 7, 8, 12, 14, 15], "computation": [], "concentr": [4, 7, 8, 12, 14], "concept": [3, 4, 9, 10, 11, 12], "concis": [3, 6], "conclud": [1, 2], "condit": [2, 4, 9, 10, 11, 15], "condition1": 3, "condition2": 3, "confid": [0, 2, 3, 7], "confidence_interval_intercept": 8, "confidence_interval_slop": 8, "confidence_level": 8, "configur": [10, 11, 14], "confin": [11, 15], "confirm": [2, 6], "connect": [], "conserv": 6, "consid": [3, 4, 5, 6, 7, 10, 11], "consider": [4, 10], "consist": [5, 9, 10, 11], "constant": [1, 4, 8, 9, 12, 14, 15], "constitu": 2, "constrain": [], "constraint": [4, 11], "construct": 14, "consum": 7, "contact": 11, "contain": [1, 2, 3, 6, 7, 8, 10, 11, 15], "context": 4, "continu": [1, 3], "contourpi": [], "contrast": [], "contribut": [12, 14], "control": [0, 14, 15], "conveni": 2, "convent": [], "converg": [4, 5, 13, 14, 15], "convert": [3, 4, 5, 7, 14], "convex": [], "cool": [7, 15], "cooling_r": 15, "coordin": [5, 13, 14], "copi": 15, "core": [2, 3], "cornerston": 2, "correct": 4, "correctli": 6, "correl": [0, 14], "correlation_coeffici": 8, "correspond": [3, 6, 7, 8, 9, 10, 11, 15], "could": 7, "count": 3, "coupl": 1, "cours": [1, 2], "coval": 5, "cover": [1, 2, 3], "coverag": 11, "creat": [1, 3, 5, 6, 8, 13], "criteria": 2, "criterion": 15, "critic": [2, 8], "critical_t_valu": 8, "crucial": [1, 3, 4, 15], "crystal": 9, "csv": 2, "cubic": 4, "cubic_eq": 4, "cumul": [], "current": [14, 15], "current_energi": 15, "current_solut": [], "curs": [], "curv": [4, 5, 7, 15], "cycler": [], "d": [5, 6, 9, 14], "d_e": 14, "da": 9, "darkblu": 14, "dash": [2, 13, 14], "data": [0, 1, 3, 5, 7], "databas": 2, "datafram": 5, "dataset": [2, 3], "dateutil": [], "de": [], "decai": [5, 7], "decim": 4, "decis": 3, "decompos": [2, 7, 14], "decreas": [5, 9, 10, 15], "deepen": 1, "deepli": 2, "def": [3, 4, 5, 7, 8, 13, 14, 15], "default": [1, 2], "defin": [4, 5, 7, 8, 9, 10, 11, 14, 15], "definit": [2, 5, 9], "degre": 8, "deliveri": 15, "delta": [5, 9, 14, 15], "delta_energi": 15, "delta_u": 14, "delv": 2, "demonstr": [1, 2, 4, 6, 12, 14, 15], "denom": 13, "denomin": [7, 8], "densiti": [12, 14], "depend": [3, 7, 8, 9, 11, 14], "deprec": [], "deprecationwarn": [], "depth": 15, "deriv": [4, 7, 9, 10], "descent": 15, "describ": [3, 7, 10, 11, 15], "descript": [3, 12], "design": [1, 2, 3, 4], "desir": [8, 14], "desorb": [], "det": 2, "detail": [1, 2, 11], "determin": [1, 2, 4, 5, 6, 8, 10, 14, 15], "develop": [2, 8, 11], "deviat": 8, "deviations_i": 8, "deviations_x": 8, "df": [2, 3, 8], "dfrac": 15, "dg": 9, "diacetyl": 8, "diagram": 9, "diatom": [8, 14], "dict": 10, "dictat": [3, 5, 6], "dictionari": [2, 4], "did": [6, 7, 8], "differ": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 15], "differenti": [1, 2, 9, 15], "difficult": 11, "dim": [], "dimens": [5, 14], "dimension": [2, 14], "dioxid": [1, 6, 9], "direct": [8, 9, 10], "directli": [1, 2, 12], "discard": 14, "discuss": [3, 5, 7, 8, 9, 10, 11], "disord": 10, "displac": [9, 15], "displai": [1, 2, 4, 5, 8, 13], "dispos": 1, "dissoci": [4, 14], "distanc": [2, 5, 8, 9, 13, 15], "distinct": 10, "distinguish": 10, "distribut": [2, 8, 12, 14], "div_col": [], "div_row": [], "dive": 1, "divers": 1, "divid": [5, 6, 8], "divis": [1, 3], "do": [3, 4, 5, 6, 7, 8, 9, 10, 11, 13], "docstr": 3, "document": [1, 2, 3], "doe": [3, 4, 10, 15], "doesn": 1, "doi": 14, "domain": 14, "don": [1, 2, 3], "done": [4, 9], "dot": [2, 3], "dot_product": 2, "down": 4, "download": 2, "downward": 15, "dp": [], "dpi": [], "dr": 5, "draw": [], "draw_al": [], "draw_idl": [], "draw_without_rend": [], "draw_wrapp": [], "drawn": 12, "drug": 15, "dt": [], "dtype": 2, "du": 9, "due": [14, 15], "duplic": 3, "dure": [1, 8, 14], "dv": 9, "dw": [], "dx": [5, 12, 13], "dy": [5, 13], "dynam": [1, 3, 11], "dz": [5, 13], "e": [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15], "e_1": 10, "e_2": 10, "e_avg": 10, "e_i": 10, "each": [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 15], "earlier": [], "eas": [1, 2], "easi": 2, "easier": [2, 3], "easili": [1, 2, 3], "ecosystem": 2, "edg": 5, "edgecolor": [2, 4, 5], "effect": [4, 15], "effici": [2, 3, 5, 6, 12, 13, 14, 15], "effort": 14, "eigenvalu": 2, "eight": 13, "eigval": 2, "either": [3, 10], "electron": [1, 5, 11], "eleg": [2, 3], "element": [2, 5, 6], "ellipt": [], "els": 14, "elsewher": 3, "embedmolecul": [], "emiss": 15, "emphas": 12, "emploi": [1, 6, 12, 15], "empti": 11, "en": 9, "enabl": [2, 3], "encapsul": 3, "encount": [1, 2], "end": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "endpoint": 5, "energet": [5, 15], "energi": [2, 4, 11, 14], "energy_diff": [], "energy_histori": 15, "enforc": 4, "engin": [1, 2], "enhanc": 1, "ensembl": 0, "ensur": [1, 2, 3, 4, 6, 8, 10, 14], "enthalpi": 9, "entir": 5, "entropi": 9, "enumer": 5, "env": [], "environ": [1, 2], "epsilon": [10, 15], "epsilon_i": 7, "equal": [2, 3, 4, 6, 7, 9, 10, 11], "equat": [0, 1, 2, 7, 9, 11, 14], "equilibr": 14, "equilibria": [0, 2], "equilibrium": [7, 10, 11, 14], "equilibrium_equ": 4, "equip": 1, "equival": [], "erf": [], "ergod": 0, "err": [], "error": [1, 7, 8], "errorbar": 13, "escap": 15, "especi": [2, 3, 4, 6, 14], "essenc": 12, "essenti": [0, 3, 4, 15], "establish": [8, 9], "estim": [7, 8], "estimated_integr": 12, "et": 14, "etc": 9, "etymologi": 9, "ev": [2, 10, 14, 15], "evalu": [3, 4, 8, 12, 14], "even": [], "eventu": 3, "everi": [2, 11, 14], "evolut": 15, "exact": [5, 9, 12, 13], "exampl": [1, 2, 3, 5, 9, 12], "excel": [1, 2], "except": [7, 11, 15], "excess": [], "exchang": [10, 11], "excit": 10, "exclud": 15, "execut": 3, "exhibit": 15, "exist": 3, "exp": [5, 10, 13, 14, 15], "expand": [3, 9], "expect": [3, 5], "expens": [], "experi": [1, 3, 4, 9], "experiment": [7, 8], "explain": [2, 3, 10, 12, 15], "explan": [], "explicit": 4, "explor": [1, 2, 3, 4, 6, 11, 15], "expon": 13, "exponenti": [1, 7, 13], "express": [1, 3, 4, 6, 7], "extend": [1, 2, 6, 14], "extens": [2, 9], "extent": 4, "ey": 2, "f": [2, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15], "f_x": 12, "facecolor": 10, "facilit": 3, "factor": [5, 15], "fail": [], "fall": 2, "fals": [2, 3, 5], "far": [1, 2, 9], "fast": 14, "faster": 13, "favor": 15, "feel": 3, "ferment": 8, "few": [2, 3, 14], "fewest": 5, "fibonacci": 3, "field": 2, "fig": [5, 10, 15], "figsiz": [5, 8, 10, 13, 14, 15], "figur": [2, 5, 8, 9, 10, 13, 14, 15], "figurecanvasagg": [], "figurecanvasbas": [], "file": [2, 15], "filenam": [], "fill": 2, "filter": 3, "filtered_df": 2, "final": [1, 4, 5, 6, 7, 9, 15], "final_simplex": 4, "find": [1, 2, 6, 7, 10, 11, 13, 15], "finit": [4, 15], "first": [1, 2, 3, 4, 5, 6, 7, 8, 13], "fit": [1, 7, 8], "five": 15, "fix": [10, 11, 15], "flavor": 8, "flexibl": [2, 3, 4], "float": [1, 2, 3, 4, 5, 13, 15], "float64": 2, "flow": 3, "fluctuat": [14, 15], "fluorin": 2, "fmt": 13, "focu": [1, 2, 5, 7], "focus": [3, 14], "folder": 4, "follow": [1, 2, 3, 4, 5, 6, 7, 8, 12], "font": [], "font_imag": [], "fontprop": [], "fonts_object": [], "fontset": [], "fontsiz": 8, "fonttool": [], "for_layout_onli": [], "forc": [9, 15], "forget": [2, 3], "forgot": 7, "form": [3, 5, 6, 7, 14], "formal": 5, "format": [1, 2, 4, 5, 15], "formatt": [], "formula": [4, 6, 7, 8], "forward": [1, 3, 4], "found": [4, 6, 7, 8, 9, 13], "foundat": [1, 6], "four": 15, "fourier": 2, "frac": [4, 5, 6, 7, 8, 9, 10, 11, 12, 14], "free": [3, 4, 9, 15], "freedom": 8, "freeze_particl": 15, "freezer": 7, "frenkel": 14, "frequenc": 2, "frequent": [1, 2, 3], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15], "frozen": 15, "fruit": 3, "full": 2, "fun": 4, "func": [], "function": [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14], "function_nam": 3, "functool": [], "fundament": [1, 2, 3], "further": 3, "futur": 7, "g": [2, 3, 4, 5, 6, 9, 13, 15], "g_x": 12, "ga": [8, 9, 10, 11], "gain": [1, 2, 9, 10], "game": [], "gase": [4, 11], "gaussian": 5, "gcf": [], "gener": [3, 4, 7, 8, 12, 13, 14, 15], "genom": 1, "geq": 9, "get": [3, 4, 6, 8, 12, 13, 15], "get_3d_molecule_html": [], "get_agg_filt": [], "get_all_fig_manag": [], "get_layout_engin": [], "get_real_method": [], "get_subplotspec_list": [], "get_text": [], "get_text_width_height_desc": [], "get_tight_layout_figur": [], "get_tightbbox": [], "get_transform": [], "get_unitless_posit": [], "get_vis": [], "get_window_ext": [], "getattr": [], "getvalu": [], "gg": [], "gibb": [4, 9], "give": [1, 3, 5, 6, 8, 9, 12], "given": [3, 4, 5, 9, 10, 11, 12, 13], "glimps": 1, "global": [], "go": 1, "goal": [6, 7, 12, 15], "good": [3, 4, 8, 12, 13], "googl": 1, "got": [], "govern": [5, 9], "gradient": [10, 15], "gradual": 15, "grai": [4, 8], "gram": 1, "graph": 7, "graph_object": [], "graphic": [1, 2], "great": [1, 8], "greater": [2, 3, 7, 9], "green": [8, 10, 14], "greet": 3, "grew": [], "grid": [2, 4, 5, 8, 10, 13, 14], "grid_rang": 5, "ground": 10, "group": 2, "grow": [], "guess": 5, "gui": [], "guid": 3, "guidanc": [], "h": [1, 3, 4, 6, 9, 13], "h_pad": [], "ha": [1, 2, 3, 4, 7, 8, 9, 10, 11], "had": 7, "hamiltonian": 2, "hand": 10, "handl": [1, 2, 3], "happen": [3, 4, 10], "harmon": [], "has_imag": [], "hast": 15, "hat": [7, 8], "have": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11], "hbar": [], "he": [], "header": [], "heat": [8, 11], "heavili": 2, "height": 5, "hello": 3, "helmholtz": 9, "help": [1, 2, 3, 4, 6], "helper": [], "here": [1, 2, 3, 4, 5, 6, 8, 9, 14], "hesit": [1, 3], "hide_index": [], "high": [8, 10, 11, 14, 15], "high_root_guess": 4, "higher": [2, 10, 14, 15], "highli": [1, 2], "highlight": 4, "hint": [1, 2, 3], "hist": [2, 14], "histogram": 14, "histori": [], "hline": 14, "hold": [1, 2, 9], "homework": [], "hop": 15, "how": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15], "howev": [2, 4, 6, 11, 12, 15], "html": 13, "http": [9, 14], "human": [], "hybrid": 5, "hydrocarbon": [], "hydrogen": [1, 4, 13], "h\u2082": 6, "h\u2082o": 6, "i": [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "ic": 4, "idea": [3, 12], "ideal": [1, 2, 8, 9, 11], "ident": [2, 11], "identifi": 7, "ignor": [], "ignore_index": [], "ij": 5, "illustr": [4, 12, 14], "imag": 2, "image_group": [], "imagin": [7, 8], "immedi": [], "impact": [], "imperm": 9, "implement": 5, "implic": 9, "import": [1, 3, 5, 7, 8, 10, 11, 14, 15], "importance_sampl": 13, "impos": [], "impract": [], "improv": [12, 13, 14], "includ": [1, 2, 3, 4, 8, 9, 10], "inclus": 4, "increas": [5, 10, 11, 12, 13, 14, 15], "incredibli": [2, 3], "increment": [3, 5], "indefinit": 3, "independ": [7, 8, 14], "index": [2, 3, 4, 5, 7, 15], "indexerror": [], "indic": [4, 8, 10, 15], "indispens": 2, "individu": [3, 10, 11], "industri": 1, "ineffici": 14, "inequ": 9, "inexact": 9, "infeas": [], "infinit": 2, "infinitesim": 9, "influenc": [4, 15], "info": [], "inform": [1, 2, 4, 10], "infti": [5, 13], "initi": [3, 7, 14, 15], "initial_solut": [], "initial_temp": 15, "inject": [], "inorgan": 5, "input": [2, 3], "insert": 4, "insid": 3, "insight": [2, 9, 10], "inspir": 15, "instanc": [1, 4], "instanti": 15, "instead": [4, 5, 12], "instruct": [1, 3], "int": [5, 6, 9, 14, 15], "int_": [5, 13], "int_0": [5, 12], "int_a": [5, 12], "integ": 2, "integr": [0, 2, 7, 14], "integral_df": [], "integral_estim": [], "integral_i": 5, "integral_x": 5, "integrand": [5, 12, 13, 14], "integrand_valu": 5, "integratrion": [], "intend": [], "intens": 9, "inter": 15, "interact": [1, 2, 9, 11, 15], "interatom": 15, "intercept": [7, 8], "interest": [8, 11, 14], "interfac": 1, "intermedi": 10, "intern": [], "interpol": 2, "interpret": [6, 7, 8], "intersect": 4, "interv": [0, 2, 4, 5, 12, 14], "introduc": [9, 10, 11], "introduct": 0, "intuit": 5, "inv": 2, "invalid": [], "invalu": [1, 2], "invers": [2, 14], "invert": [], "investig": 14, "involv": [4, 5, 6], "ion": 9, "ipykernel_10087": [], "ipykernel_10267": [], "ipykernel_10290": [], "ipykernel_10392": [], "ipykernel_10894": [], "ipykernel_11504": [], "ipykernel_12070": [], "ipykernel_12261": [], "ipykernel_12756": [], "ipykernel_13537": [], "ipykernel_13999": [], "ipykernel_14380": [], "ipykernel_14625": [], "ipykernel_16501": [], "ipykernel_16598": [], "ipykernel_16635": [], "ipykernel_16685": [], "ipykernel_16737": [], "ipykernel_16804": [], "ipykernel_16842": [], "ipykernel_16884": [], "ipykernel_16975": [], "ipykernel_17053": [], "ipykernel_17105": [], "ipykernel_17136": [], "ipykernel_20224": [], "ipykernel_20664": [], "ipykernel_20834": [], "ipykernel_21107": [], "ipykernel_21954": [], "ipykernel_22428": [], "ipykernel_22617": [], "ipykernel_22886": [], "ipykernel_26292": [], "ipykernel_26479": [], "ipykernel_26525": [], "ipykernel_26897": [], "ipykernel_27150": [], "ipykernel_27540": [], "ipykernel_27695": [], "ipykernel_28014": [], "ipykernel_28159": [], "ipykernel_28455": [], "ipykernel_28589": [], "ipykernel_28609": [], "ipykernel_28909": [], "ipykernel_29131": [], "ipykernel_29352": [], "ipykernel_30005": [], "ipykernel_30224": [], "ipykernel_30465": [], "ipykernel_31674": [], "ipykernel_31908": [], "ipykernel_32080": [], "ipykernel_32531": [], "ipykernel_34814": [], "ipykernel_35168": [], "ipykernel_35574": [], "ipykernel_3669": [], "ipykernel_37857": [], "ipykernel_4171": [], "ipykernel_4437": [], "ipykernel_44743": [], "ipykernel_45602": [], "ipykernel_4962": [], "ipykernel_5297": [], "ipykernel_55148": [], "ipykernel_55996": [], "ipykernel_5780": [], "ipykernel_6053": [], "ipykernel_6165": [], "ipykernel_6610": [], "ipykernel_6946": [], "ipykernel_7270": [], "ipykernel_75226": 4, "ipykernel_8585": [], "ipykernel_86731": [], "ipykernel_8703": [], "ipykernel_9023": [], "ipykernel_9444": [], "ipykernel_9640": [], "ipykernel_9642": [], "ipykernel_96621": [], "ipykernel_97096": [], "ipykernel_97762": [], "ipykernel_98107": [], "ipykernel_98323": [], "ipykernel_9850": [], "ipykernel_98609": [], "ipykernel_98736": [], "ipykernel_99004": [], "ipykernel_99350": [], "ipykernel_99922": [], "ipython": 13, "irregular": [], "irrevers": 9, "is_interact": [], "isinst": [], "ismath": [], "isn": 8, "isol": [9, 11], "issu": [], "issubclass": [], "item": [2, 3], "iter": [3, 4, 14], "iterrow": 3, "its": [1, 2, 3, 4, 6, 8, 9, 11, 12, 15], "itself": [3, 14], "j": [5, 8, 15], "jone": [], "journal": 14, "journei": 1, "julia": 1, "jump": 6, "jupyt": 2, "just": [1, 2, 3], "k": [4, 7, 8, 9, 10, 11, 14, 15], "k_": [10, 15], "k_b": [10, 11, 14, 15], "k_p": 4, "kb": 15, "kcal": [], "keep": [3, 15], "keepdim": [], "kei": [1, 8, 15], "kelvin": 10, "keyboardinterrupt": [], "keyword": 3, "kind": 1, "kinet": [1, 7, 9], "kiss": [], "kiwisolv": [], "kj": 2, "know": [6, 8], "knowledg": 3, "known": [10, 12], "ko": [], "kt": 7, "kw": [], "kwarg": [], "l": [3, 7, 8], "lab": 7, "label": [1, 2, 4, 5, 8, 10, 13, 14], "labelcolor": 15, "lambda": [], "lambert": 8, "land": 14, "langl": [10, 11, 12, 14], "langmuir": 11, "languag": 1, "larg": [2, 3, 10, 14], "larger": [12, 15], "last": [3, 8], "later": 1, "latest": 1, "latex": 1, "latter": 5, "law": [4, 6, 8, 10], "layout": [], "layout_engin": [], "lead": [14, 15], "learn": [], "least": 8, "lectur": 0, "left": [4, 5, 6, 7, 8, 9, 10, 11, 14, 15], "legend": [1, 2, 4, 5, 8, 10, 13, 14], "len": [8, 15], "length": [], "lennard": [], "lennard_jon": 15, "leq": [13, 15], "less": [3, 5, 15], "let": [2, 4, 5, 6, 7, 8, 12, 13, 15], "level": [5, 8, 10], "leverag": [2, 6], "li": 4, "lib": [], "librari": [1, 2, 8, 14], "lie": 4, "lightblu": 14, "like": [1, 2, 3, 5, 8, 9, 11, 14, 15], "lim_": 5, "limit": [4, 5, 13, 15], "linalg": [2, 6, 15], "line": [1, 3, 5, 8, 9, 13], "linear": [0, 2, 8], "linearli": 8, "linestyl": [2, 4, 8, 10, 13, 14], "linspac": [2, 4, 5, 10, 13, 14], "linux": 1, "list": [5, 9, 13, 15], "list_of_thermodynamic_properti": 9, "littl": 3, "live": [1, 9], "lj": 15, "ll": [1, 2, 3, 4, 6, 14], "ln": [7, 10, 11], "ln_concentr": 7, "load": 2, "loc": [], "local": 5, "locat": [], "lock": [], "log": [7, 10, 13], "logic": 2, "long": [3, 15], "longer": 14, "look": [3, 8], "loop": [5, 13], "lose": 9, "lost": 6, "low": [5, 10], "low_root_guess": 4, "lower": 15, "lru_cach": [], "luck": [3, 8], "m": [1, 2, 7, 14], "m3": [], "m_1": 9, "m_2": 9, "m_i": 9, "m_inv": 2, "mac": 1, "machin": [1, 14], "macroscop": [10, 14], "made": 8, "magnet": 2, "mai": [11, 14, 15], "main": [3, 9], "maintain": [2, 3, 8], "major": [1, 8], "make": [1, 2, 3, 10, 11, 14, 15], "make_keyword_onli": [], "manag": [], "mani": [1, 2, 9, 10, 11, 14], "manipul": 1, "manner": 2, "manual": 6, "map": 3, "margin": [], "marker": 2, "markov": 14, "martist": [], "mass": [1, 4, 6, 9], "master": 1, "match": [4, 12], "materi": [1, 5, 9, 15], "math": 1, "mathbf": [9, 14, 15], "mathcal": [], "mathemat": 2, "mathematica": 1, "mathtext": [], "mathtext_pars": [], "mathtextpars": [], "matlab": 1, "matplotlib": [1, 4, 5, 7, 8, 10, 13, 14, 15], "matric": 2, "matrix": [], "matter": [1, 5, 9], "max": 3, "max_ncol": [], "max_nrow": [], "maxim": [], "maximum": [2, 11, 14], "mayb": [], "mcmc": [], "mead": 4, "mean": [1, 2, 6, 7, 8, 9, 11, 12, 13, 14, 15], "mean_i": 8, "mean_x": 8, "meaning": 4, "measur": [8, 9, 10, 11], "mechan": [2, 5, 9, 10, 11, 15], "medium_root_guess": 4, "meet": [2, 7], "mercuri": 2, "merg": [2, 3], "meshgrid": 5, "mess": [], "messag": [3, 4, 12], "met": 3, "metallurgi": 15, "methan": 6, "method": [0, 2, 3, 5, 6, 7, 8, 13, 14, 15], "method_nam": 3, "metropoli": 15, "metropolis_sampl": 14, "mg": 8, "microscop": 10, "microst": 11, "middl": [], "midpoint": 4, "might": [1, 6], "mimag": [], "mimic": 15, "min": [3, 6, 7, 14], "miniconda3": [], "minim": [7, 9, 15], "minima": 15, "minimum": [2, 9, 14, 15], "minu": [], "miss": 15, "mixtur": 4, "mode": [], "model": [1, 7, 8, 11, 14, 15], "modern": 1, "modifi": [1, 2, 4, 13, 15], "modul": [1, 2], "modular": 3, "modulenotfounderror": [], "modulo": 3, "mol": [2, 4, 7, 8], "mol_block": [], "molar": 1, "molar_mass": 1, "mole": [1, 2, 4, 9], "molecul": [6, 9, 10, 11, 14, 15], "molecular": [1, 2, 5, 11, 14, 15], "molecule_html": [], "molfromsmil": [], "moltomolblock": [], "momenta": [], "mont": [0, 1, 11], "monte_carlo_integr": [], "more": [2, 3, 4, 5, 6, 9, 10, 11, 12, 15], "mors": 15, "morse_potenti": 14, "most": [2, 3, 5, 15], "motion": [], "movabl": 11, "move": [1, 3, 5, 9, 14, 15], "move_particl": 15, "mpl": [], "mpl_toolkit": [], "mplot3d": [], "mu": 11, "mu1": [], "mu2": [], "mu_1": [], "mu_2": [], "much": [1, 2, 7, 9, 13, 14], "multi": [2, 4], "multidimension": [5, 14], "multipl": [1, 2, 3, 4, 6, 15], "multipli": [2, 3, 13], "must": [1, 3, 4, 5, 14], "mutat": [], "mx": 7, "my_dict": 3, "my_list": [2, 3], "n": [2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 15], "n1": [], "n2": [], "n2o5": 7, "n9": 4, "n_data_point": 8, "n_equilibr": 14, "n_i": 14, "n_point": 13, "n_points_list": 13, "n_sampl": 14, "n_step": 14, "n_valu": 5, "name": [1, 2, 3], "name_idx": [], "nameerror": [], "nanoparticl": 0, "nanoscal": 15, "narr": 1, "narrow": 4, "natur": [7, 9], "ndarrai": [2, 15], "nearbi": 15, "necessari": [11, 14], "need": [1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 15], "neg": [8, 9], "neighbor": [], "nelder": 4, "net": [4, 9], "neutral": 15, "never": [3, 9], "new": [1, 3, 4, 8, 14, 15], "new_energi": 15, "new_list": 3, "new_posit": 15, "newton": 4, "next": [1, 3, 6, 13], "nfev": 4, "nit": 4, "nm": 8, "nobr": 7, "non": [], "nondecreas": [], "none": 3, "nonlinear": 4, "norm": 15, "normal": [5, 10, 15], "normalization_factor": 5, "not_composit": [], "notat": 3, "note": 13, "notebook": 2, "notic": [], "now": [1, 3, 4, 5, 6, 7, 8, 11, 14, 15], "np": [2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15], "nriemann": 5, "nrt": 9, "nstep": [], "nucleu": 5, "null": [], "null_spac": 6, "null_vec": 6, "nullcontext": [], "num_particl": 15, "num_step": 15, "number": [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "numer": [0, 1, 2, 3, 7, 8, 13, 14], "numerical_result": [], "numpi": [1, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15], "o": [1, 2, 3, 4, 6, 7, 13, 14], "obei": 4, "obj": [], "obj_typ": [], "object": [], "object_": [], "objective_funct": 4, "observ": [4, 7, 8, 10, 15], "obtain": [4, 5, 6, 8, 14], "occasion": 15, "occupi": 11, "occur": [3, 4, 11], "octant": 13, "off": 9, "offer": [1, 2], "offici": [1, 2], "offsettext": [], "often": [1, 3, 4, 11, 12, 15], "oi": [], "ok": [5, 8], "ol": [7, 8], "old": 14, "old_list": 3, "ols_intercept": [7, 8], "ols_slop": [7, 8], "omega": 10, "omit": [], "onc": [1, 2, 6, 7], "one": [1, 2, 3, 4, 6, 7, 8, 9, 11, 14, 15], "ones": 2, "onli": [1, 2, 3, 6, 9, 13, 14], "opac": [], "open": [1, 9], "oper": [1, 3, 5, 6], "operand": [], "opportun": 2, "opposit": 9, "optic": 15, "optim": [2, 5], "optimal_posit": [], "optimizewarn": 4, "option": 3, "orang": 10, "orbit": [11, 13], "ord": [], "order": [0, 2, 9, 10], "ordinari": 8, "org": [9, 14], "organ": [1, 2, 3, 5], "orient": [2, 5], "origin": [1, 3, 15], "orthonorm": 2, "other": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 15], "otherwis": 3, "our": [1, 2, 5, 6, 7, 8, 9, 11, 12, 15], "out": [1, 2], "outcom": 4, "output": [2, 4, 6, 15], "outsid": 4, "over": [2, 3, 5, 10, 11, 12, 13, 15], "overal": [7, 10, 15], "overcom": 15, "overlai": 14, "overlap": 2, "overlap_integr": 5, "overlap_integral_trapezoid": 5, "overleaf": 1, "overview": 2, "own": [1, 3, 8, 11], "ox": [], "oxygen": [1, 4, 6], "oxygen_mass": 1, "p": [2, 4, 9, 11, 14, 15], "p1": 10, "p1_valu": [], "p2": 10, "p2_valu": [], "p_": 4, "p_1": 10, "p_2": 10, "p_i": 10, "p_x": [], "packag": [0, 1], "pad": [], "pad_inch": [], "pair": [3, 15], "panda": [1, 5, 13], "panel": [], "paramet": [2, 4, 5, 7, 8, 12, 13, 14, 15], "parent": [], "parenthes": [2, 3], "pars": [], "parsebaseexcept": [], "parseexcept": [], "parser": [], "parsestr": [], "part": [1, 4, 9, 14], "parti": [], "partial": [4, 10, 11], "particip": [], "particl": [5, 9, 10, 11, 14, 15], "particular": [9, 10, 11], "particularli": [1, 2, 3, 4], "partit": [11, 14], "partition_funct": [], "pass": [], "patch": [], "path": [1, 9], "pattern": [], "pd": [2, 3, 5, 13], "pdf": [2, 12, 13], "peak": [8, 10], "per": [2, 6], "percentag": 4, "perfect": [8, 9], "perform": [1, 2, 3, 4, 5, 7, 8, 15], "period": 2, "permeabl": 9, "person": 3, "perturb": [], "phase": [11, 14], "phenomenon": 5, "phi": 5, "photon": 15, "physic": [1, 2, 4, 5, 8, 14, 15], "pi": [5, 7, 13, 14], "pillow": [], "pip": [1, 2], "pip3": 1, "piston": [9, 11], "place": 4, "placehold": 4, "placeholderlayoutengin": [], "plai": [2, 4, 5, 15], "plain": [], "plan": 7, "planck": [], "plot": [1, 4, 5, 7, 8, 10, 11, 13, 15], "plot_3d_optimal_configur": [], "plotli": 1, "plt": [1, 2, 4, 5, 7, 8, 10, 13, 14, 15], "plu": 9, "pm": [4, 8], "png": 2, "po": [], "point": [2, 4, 5, 7, 8, 9, 12, 13, 14], "polyfit": [], "polyv": [], "popular": 1, "posit": [2, 3, 6, 8, 9, 10, 14, 15], "position": [], "possibl": [1, 3, 5, 6, 11, 13], "post_execut": [], "postul": 11, "potassium": 2, "potenti": 11, "power": [1, 3, 4, 7, 12, 14], "ppf": 8, "practic": 4, "pre": 1, "preced": [], "precipit": 9, "precis": 8, "predefin": [2, 14], "predetermin": 3, "predict": [1, 4, 7, 8, 11], "prefix": 1, "prepar": [1, 5], "presenc": [8, 15], "present": [1, 2, 7], "press": 14, "pressur": [4, 8, 9, 10, 11], "pretti": [], "prevent": 2, "previou": [1, 10, 11, 12], "previous": [], "previous_engin": [], "primari": 2, "primarili": [1, 5], "principl": [2, 12], "print": [2, 3, 4, 5, 7, 8, 12, 14, 15], "print_figur": [], "print_method": [], "printer": [], "priori": 11, "prob": [], "probabilist": 15, "probabl": [10, 11, 12, 15], "problem": [1, 2, 6, 12], "proce": [4, 5, 9], "proceed": 4, "process": [1, 2, 3, 4, 6, 9, 15], "produc": [3, 6, 8], "product": [2, 4, 6, 7, 13], "profil": 8, "program": [1, 3], "progress": [1, 2, 4, 7, 15], "project": 1, "prompt": [1, 2], "prop": [], "properti": [1, 5, 9, 11, 14, 15], "proport": [8, 13], "propos": [14, 15], "proposed_energi": [], "proposed_solut": [], "propto": [], "prove": 5, "provid": [2, 3, 4, 5, 6, 8, 10, 14], "proxim": 5, "pseudo": 7, "pseudocod": [], "psi_": [5, 13], "psi_1": 13, "psi_1s_sum": [], "psi_i": 5, "psi_j": 5, "purchas": 7, "purpl": 10, "purpos": 2, "put": [1, 3, 7], "pv": 9, "py": 4, "py3dmol": [], "pylabtool": [], "pymatgen": 1, "pypars": [], "pyplot": [1, 2, 4, 5, 7, 8, 10, 13, 14, 15], "pyscf": 1, "python": [0, 7], "python3": 1, "q": 9, "q030dl3x6qgfqffys4wc7d4c0000gn": 4, "quacc": 1, "quad": [], "quadrat": 4, "quadratic_eq": [], "quadratic_equ": 4, "quadratur": [5, 14], "qualit": 9, "quantifi": 5, "quantiti": [2, 4], "quantiz": 11, "quantum": [1, 2, 5, 15], "quasistat": 9, "question": [3, 9], "quickli": 4, "r": [1, 4, 5, 8, 9, 10, 13, 14, 15], "r1": 5, "r2": 5, "r_0": 9, "r_1": [], "r_2": [], "r_fix": [], "r_i": 9, "r_init": [], "r_min": 15, "r_new": [], "r_sampl": [], "r_valu": 5, "radii": 5, "radiu": [3, 5], "rain": 9, "rais": [4, 7], "rand": [2, 8, 12, 14, 15], "randint": 2, "randn": [2, 8], "random": [2, 8, 10, 12, 14, 15], "randomli": 12, "rang": [1, 2, 3, 4, 5, 8, 10, 15], "rangl": [10, 11, 12, 14], "raphson": 4, "rapidli": 5, "rate": [4, 15], "rather": [5, 11, 13, 14, 15], "ratio": [4, 6, 14, 15], "rdkit": [], "re": [1, 2, 3, 11, 14], "reach": [3, 4, 7, 9, 11, 14, 15], "react": [6, 9], "reactant": [4, 6, 7], "reaction": [0, 1, 2, 6, 9], "reactiv": 15, "read": 3, "read_csv": 2, "readabl": 2, "readi": [1, 2, 11], "real": [1, 4, 11], "realiz": 7, "realli": 5, "reason": 3, "recal": [5, 7, 12], "recast": [], "recent": [], "reciproc": [], "recogn": 1, "recommend": [1, 2, 8], "reconsid": 12, "record": 15, "rect": [], "rectangl": 5, "red": [2, 4, 8, 10, 14, 15], "reduc": [3, 12, 15], "redund": 3, "ref": [], "refer": [1, 2, 3, 5, 9, 10], "reflect": [1, 4], "regardless": 14, "region": [9, 12, 13, 14], "regress": [0, 8], "regular": [3, 14], "reinforc": [3, 8], "reject": 14, "rel": 6, "relat": [4, 5, 7, 8], "relationship": [2, 6, 7, 8, 11], "relev": 9, "reli": [2, 12], "remain": 4, "rememb": 1, "remov": 3, "render": 1, "renderer_ref": [], "rendereragg": [], "repeat": [3, 14], "repeatedli": 3, "repetit": 3, "replac": 4, "report": [2, 7], "repositori": 1, "repres": [1, 2, 4, 6, 8, 14], "represent": 6, "reproduc": [12, 13, 14], "repuls": 15, "requir": [2, 3, 4, 11], "research": [1, 8, 11], "reservoir": 10, "residu": 8, "resiz": [], "resourc": 1, "respect": [1, 4, 5, 6, 7, 11], "respond": 3, "respons": [3, 8], "restrict": [], "result": [1, 2, 3, 4, 5, 6, 12, 13], "results_df": 5, "retain": 14, "retriev": 7, "return": [2, 3, 4, 5, 7, 8, 14, 15], "reus": 3, "reusabl": 3, "revers": [3, 4, 9], "revisit": 6, "rewrit": [5, 7], "riemann": [], "riemann_result": 5, "riemann_sum": 5, "riemann_sum_valu": 5, "right": [4, 5, 6, 8, 9, 10, 11, 14, 15], "rightarrow": [6, 14], "rightleftharpoon": 4, "river": 14, "rm": 10, "ro": [5, 7], "robust": 2, "role": [2, 4, 5, 9, 10, 15], "root": [0, 1, 2], "rosenbluth": [], "round": 6, "routin": 2, "row": [2, 3], "row_data": [], "rowspan": [], "rubidium": 2, "rule": [], "run": [1, 2, 3, 4], "runtimeerror": [], "rv": 13, "s_analyt": 5, "s_numer": [], "s_riemann": 5, "s_sum": 5, "s_trapezoid": 5, "s_trapz": [], "sai": [1, 5], "said": 11, "same": [1, 3, 6, 8, 9, 11, 13, 15], "sampl": 8, "satisfi": [4, 6, 14], "satur": 6, "save": [2, 6, 15], "scale": [1, 13, 15], "scatter": [1, 4, 8], "scatter3d": [], "scatterplot": 2, "scenario": [], "scene": [], "schedul": 15, "scienc": [4, 5, 6, 9, 15], "scientif": 1, "scikit": 1, "scipi": [1, 5, 6, 8, 10, 12, 13, 14, 15], "scratch": 2, "script": 2, "se": 8, "se_intercept": 8, "se_slop": 8, "seaborn": 1, "secant": 4, "second": [2, 15], "secondari": [], "section": 6, "see": [1, 3, 4, 5, 6, 13], "seed": [8, 12, 13, 14, 15], "seen": 1, "segment": [], "select": [12, 15], "self": [], "send": 3, "separ": [2, 5, 9], "sequenc": [2, 3], "sequenti": 3, "seri": [3, 5, 8, 9, 14], "serv": 2, "set": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15], "set_axhlin": [], "set_layout_engin": [], "set_titl": [5, 10], "set_xlabel": [5, 10, 15], "set_ylabel": [5, 10, 15], "set_ylim": [], "set_zlabel": [], "setstyl": [], "settl": 15, "sever": [1, 5, 11], "shape": [0, 2, 7, 12], "share": [1, 5, 15], "sheet": 1, "shift": [], "ship": [], "short": 3, "should": [1, 2, 3, 4, 6, 7, 8, 10, 12, 13, 14, 15], "show": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15], "shown": [2, 9, 10, 13], "side": [5, 6], "sigma": [8, 15], "sigma1": [], "sigma2": [], "sigma_1": [], "sigma_2": [], "signal": 2, "signific": [7, 8, 14, 15], "similar": [2, 5, 12, 13], "similarli": [], "simpl": [1, 2, 3, 4, 7, 10, 12, 14], "simplest": [3, 12], "simpli": 1, "simplic": 6, "simplifi": [2, 4, 6, 14], "simpson": 5, "simul": [0, 1, 11, 12], "simulated_ann": 15, "simulated_energi": [], "simulated_posit": [], "simultan": 5, "sin": [2, 5], "sinc": [6, 7, 11, 12], "sine": [2, 5], "singl": [2, 14], "singular": [], "site": 11, "six": [], "size": [5, 9, 12, 13, 14, 15], "skew": 14, "skill": [1, 2, 3, 6, 8], "skip": 3, "slack": 3, "slice": 3, "slightli": [], "slope": [7, 8], "slower": 15, "slowli": 5, "small": [3, 5, 14, 15], "smaller": [3, 12], "smallest": 6, "smile": [], "smit": 14, "smoothli": [], "sn": 6, "sno": 6, "snow": 9, "sno\u2082": 6, "so": [2, 3, 5, 6, 9, 12], "softwar": [1, 2, 15], "solid": [1, 2, 5, 11], "solut": [2, 6], "solv": [1, 2, 5, 12, 15], "some": [1, 2, 3, 8], "somehow": [], "sorbent": 11, "sourc": 2, "space": [5, 9, 14, 15], "span_pair": [], "spatial": 5, "speci": [4, 7], "special": 1, "specif": [3, 10], "specifi": [3, 4, 5, 10], "spectra": 15, "spectromet": 8, "spectrophotomet": [], "spectroscopi": 2, "spend": [], "spheric": [5, 13], "spine": [], "split": 4, "spread": 2, "spreadsheet": [1, 2], "spring": 9, "sql": 2, "sqrt": [1, 4, 5, 8, 13], "squar": [1, 2, 3, 8], "ss": [], "sse": [7, 8], "ssr": 8, "stabl": 14, "stai": 4, "stale": [], "standard": [4, 8, 11], "start": [2, 3, 4, 5, 6, 7, 12, 14, 15], "start_filt": [], "stat": [8, 12, 13], "state": [2, 4, 5, 7, 9, 11, 14, 15], "statement": [1, 4], "static": 2, "stationari": [], "statist": [0, 1, 2, 7, 11, 14, 15], "statsmodel": [1, 8], "statu": 4, "std": [], "std_dev": 13, "step": [5, 8, 11, 15], "steroid": 2, "stick": [], "stiff": 15, "still": 4, "stochast": [], "stoichiometr": [1, 4, 6], "stoichiometri": 7, "stop": [], "stop_raster": [], "storag": 2, "store": [1, 2, 3, 5, 13], "stori": 8, "straight": 5, "straightforward": [1, 2, 3], "streamlin": 6, "strength": [1, 2, 8, 15], "string": 2, "strong": [2, 8], "structur": [0, 1, 15], "struggl": [], "stuck": [], "student": [], "studi": 11, "style": [1, 2], "styler": [], "subclass": [], "subdivid": [], "subdivis": 5, "subject": [], "subplot": [5, 10, 14, 15], "subplot_list": [], "subplots_adjust": [], "subplotspec_list": [], "subset": 2, "substitut": [4, 6], "subtract": 1, "success": [4, 14], "successfulli": [4, 7], "suggest": 7, "suit": [1, 2], "suitabl": 4, "sum": [7, 8, 9, 10], "sum_": [5, 7, 8, 11, 12, 14], "sum_i": [9, 10], "summar": [], "super": [], "superclass": [], "support": [1, 2, 12], "suppos": [7, 12], "suppress_composit": [], "suppresscomposit": [], "suptitl": 5, "sure": 1, "surfac": [11, 15], "surround": [9, 11, 14], "svg": 2, "symbol": 1, "symmetr": [5, 13, 14], "symmetri": [], "syntax": [1, 2, 3], "syntaxwarn": [], "system": [0, 1, 2, 4, 14, 15], "systemat": 6, "t": [1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 15], "t_": 8, "t_final": [], "t_init": [], "t_rang": [], "t_schedul": [], "t_valu": 14, "tab": [1, 15], "tabl": [4, 6, 7], "tabular": [1, 2, 3], "tackl": [1, 2], "tailor": 1, "take": [3, 5, 10, 11], "taken": 9, "target": 12, "task": [1, 2, 3, 8], "taught": [], "technic": 2, "techniqu": [1, 2, 6, 7, 11, 12, 15], "temp_histori": 15, "temperatur": [4, 8, 9, 10, 11, 15], "temperature_schedul": [], "term": [4, 7, 10], "termin": [1, 2, 3, 4], "test": [1, 8], "text": [1, 4, 6, 7, 8, 14, 15], "th": [], "than": [2, 3, 5, 7, 11, 13, 14, 15], "thei": [1, 2, 3, 4, 9, 11, 13], "them": [1, 2, 3, 9], "theori": [], "therefor": [5, 6, 11, 13], "thermal": [9, 10, 11], "thermodynam": [0, 1, 11], "theta": [5, 11], "thi": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "thin": 14, "thing": [3, 8], "think": [2, 3, 5, 6], "third": [], "thoroughli": 15, "those": [2, 5, 12, 14], "thought": 6, "three": [3, 4, 5, 9], "threshold": 8, "through": [1, 2, 9], "throughout": 2, "thu": [6, 14], "ti": 3, "tick_param": 15, "tight": [], "tight_bbox": [], "tight_bbox_raw": [], "tight_layout": [5, 10, 14, 15], "tightlayoutengin": [], "time": [3, 4, 6, 7, 8, 11, 14, 15], "tip": [], "titl": [1, 2, 4, 5, 7, 8, 10, 13, 14, 15], "to_csv": 2, "to_html": [], "todai": 1, "togeth": [3, 7, 8], "tol": 4, "toler": 4, "too": 3, "tool": [1, 4, 14], "toolbar": [], "toolkit": 2, "top": [1, 2], "topic": 2, "total": [4, 5, 10, 11, 14, 15], "total_potential_energi": 15, "total_sum": [], "touch": 1, "tough": 5, "toward": [4, 12, 14, 15], "traceback": [], "track": 6, "tradit": [2, 4, 14], "train": [], "transax": [], "transfer": 9, "transfigur": [], "transform": [2, 3], "transform_bbox": [], "transit": [9, 10, 14], "transport": 1, "trap": 15, "trapezoid": [], "trapezoidal_result": 5, "trapz": [], "treat": [], "trend": [2, 15], "tri": [], "trigon": 15, "tripl": 9, "true": [2, 3, 4, 5, 8, 10, 12, 14], "truncat": 15, "try": [1, 2, 3, 6, 8, 15], "tune": 14, "tupl": [3, 5], "turn": [], "twice": 1, "twinx": 15, "two": [1, 2, 3, 7, 8, 9, 11, 13, 14, 15], "type": [1, 2, 3, 5, 6, 7, 9], "typeerror": [], "typic": [1, 4, 7, 8], "u": [3, 5, 6, 8, 9, 12, 14], "u_i": [], "ubiquit": 2, "uffoptimizemolecul": [], "ultim": 5, "ultraviolet": 8, "unbalanc": 6, "unbias": 8, "uncertainti": [], "under": [4, 5, 10, 11], "undergo": 10, "underli": 2, "underscor": [], "understand": [1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 14, 15], "unexpect": [], "uniform": [5, 9, 12, 13, 14], "uniformli": 12, "union": [], "uniqu": [3, 15], "unit": [2, 7, 15], "unknown": 6, "unlik": 3, "unnecessarili": [], "unord": 3, "unphys": [], "unsatur": 6, "until": 3, "unus": [], "up": [1, 3, 4, 8, 9, 10, 15], "updat": [6, 15], "update_layout": [], "uphil": 15, "upon": [1, 14], "us": [1, 4, 7, 8, 9, 10, 11, 12, 13, 15], "usag": 5, "user": 1, "userwarn": [], "util": [3, 4, 8], "uv": 8, "v": [2, 7, 9, 10, 14], "v_": 15, "v_1": 9, "v_2": 9, "v_i": 9, "va": [], "valid": 8, "valu": [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15], "valuabl": [], "valueerror": [], "vapor": 4, "var": [4, 12, 13], "varepsilon": 15, "variabl": [1, 2, 3, 4, 6, 7, 8, 9], "varianc": [8, 12, 13], "variat": 15, "varieti": [1, 2], "variou": [1, 2, 7], "vast": [1, 2], "ve": [1, 2, 3, 6], "vector": [5, 6, 9], "veloc": [9, 10], "veri": [7, 10], "verifi": [1, 2, 5], "versatil": [1, 2, 3], "version": 1, "vertic": 8, "vesta": 15, "vi": 8, "via": [9, 15], "vibrat": 14, "view": 10, "viewer": [], "visibl": 8, "visit": 1, "visual": [1, 4, 5, 7], "vital": 2, "vmd": [], "volum": [5, 9, 11, 15], "vowel": 3, "w": [2, 9], "w_pad": [], "wa": [], "wai": [2, 3, 9, 12, 14], "walk": [], "want": [2, 8, 13], "warn_deprec": [], "warn_extern": [], "washu": [], "wast": [], "water": [1, 4, 6, 14], "wavefunct": 2, "we": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "weak": 8, "weakref": [], "web": 1, "websit": 1, "weight": 12, "welcom": 1, "well": [3, 8, 10, 12, 14, 15], "were": [7, 8], "wexler": [], "what": [1, 2, 6, 10, 15], "when": [1, 2, 3, 4, 5, 7, 9, 14, 15], "where": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "whether": [1, 2, 3, 14], "which": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15], "while": [1, 2, 4, 5, 8, 9, 10], "whole": [], "whose": [], "why": 3, "wide": [1, 2, 4, 15], "width": [5, 14], "wiki": 9, "wikipedia": 9, "window": [], "wise": 2, "within": [1, 2, 3, 4], "without": [3, 4, 9, 11], "won": 2, "word": [5, 8, 9], "work": [1, 3, 4, 7, 8, 10], "workflow": 1, "workforc": 1, "world": [1, 9, 11], "would": [4, 8, 10, 11, 12], "wrap": [], "wrapper": [], "write": [3, 4, 5, 6, 7, 8, 12], "written": [2, 3, 5, 6, 9], "x": [1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15], "x0": 4, "x_": 14, "x_0": [], "x_averag": 14, "x_avg": 14, "x_e": 14, "x_equilibr": 14, "x_i": [5, 7, 8, 12], "x_init": 14, "x_initi": 14, "x_max": [], "x_mean": [7, 8], "x_min": [], "x_new": 14, "x_old": [], "x_prime": [], "x_rang": 14, "x_sampl": 14, "x_se": [], "x_std": [], "x_valu": 4, "xaxis_titl": [], "xe": [], "xenon": 2, "xi": [], "xlabel": [1, 2, 4, 5, 7, 8, 10, 13, 14], "xmax": 14, "xmin": 14, "xp": [], "xscale": 13, "xy": 10, "xytext": 10, "xyz": 15, "y": [1, 2, 3, 5, 6, 7, 8, 13, 15], "y_i": [7, 8], "y_max": [], "y_mean": [7, 8], "y_min": [], "yaxi": [], "yaxis_titl": [], "yerr": 13, "yield": 4, "ylabel": [1, 2, 4, 5, 7, 8, 10, 13, 14], "ylim": [], "ymax": [], "york": 3, "you": [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15], "your": [1, 3, 7, 8], "yourself": [1, 3], "yscale": [], "ytterbium": 2, "yttrium": 2, "z": [5, 10, 11, 13, 14], "z_i": [], "z_max": [], "z_min": [], "zaxis_titl": [], "zero": [2, 4, 6, 9, 10, 15], "zeros_lik": [], "zinc": 2, "zip": [], "zirconium": 2, "zoomto": [], "zorder": 4, "zr": [], "\u00e5": [5, 14], "\u03b4e": [], "\u03c0": []}, "titles": ["Welcome to Computational Problem Solving in the Chemical Sciences", "Lecture 1: Introduction to Python for the Chemical Sciences", "Lecture 2: Essential Python Packages for the Chemical Sciences", "Lecture 3: Control Structures in Python", "Lecture 4: Chemical Reaction Equilibria and Roots of Equations", "Lecture 5: Chemical Bonding and Numerical Integration", "Lecture 6: Balancing Chemical Equations and Systems of Linear Algebraic Equations", "Lecture 7: Orders of Reaction and Linear Regression Analysis", "Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis", "Lecture 9: Classical Thermodynamics", "Lecture 10: Statistical Thermodynamics", "Lecture 11: Ensembles and Ergodicity", "Lecture 12: The Monte Carlo Method", "Lecture 13: Monte Carlo Integration", "Lecture 14: A Basic Monte Carlo Algorithm", "Lecture 15: Nanoparticle Shape and Simulated Annealing"], "titleterms": {"": [1, 4, 11], "1": [1, 2, 3, 4, 5, 6], "10": 10, "11": 11, "12": 12, "13": 13, "14": 14, "15": 15, "1d": 2, "2": [1, 2, 3, 4, 6], "2d": 2, "3": [1, 2, 3, 6], "4": [1, 2, 3, 4, 6], "5": [1, 2, 3, 5, 6], "6": [1, 2, 3, 6], "7": [1, 7], "8": 8, "9": 9, "A": [2, 4, 6, 7, 8, 14], "On": [4, 5, 7, 8], "The": [2, 3, 4, 5, 6, 9, 12, 14, 15], "To": [], "about": [9, 11], "accept": 14, "access": [], "activ": [4, 5, 7, 8], "addit": [3, 4, 14], "advanc": 2, "advantag": [], "algebra": 6, "algorithm": [14, 15], "all": 3, "alreadi": 1, "an": 5, "analysi": [7, 8], "analyt": 5, "analyz": [14, 15], "anneal": 15, "anoth": [], "appendix": [], "approach": 4, "ar": 3, "arrai": [2, 3], "averag": [10, 12, 14], "back": [7, 8], "balanc": [6, 14], "basic": [2, 14], "best": [2, 3], "boltzmann": 10, "bond": [5, 14], "calcul": 5, "calibr": 8, "can": 1, "canon": 11, "capac": 10, "care": [9, 11], "carlo": [12, 13, 14], "case": 6, "check": [1, 3], "chemic": [0, 1, 2, 4, 5, 6], "chemistri": 1, "choos": [12, 13], "classic": [9, 14], "code": 14, "coeffici": [6, 8], "combust": 6, "comprehens": 3, "comput": [0, 2, 5, 6], "concept": [], "conclus": [], "condit": [3, 14], "confid": 8, "configur": 15, "constant": [7, 10], "control": 3, "convert": 6, "correl": 8, "creat": 2, "critic": 10, "curv": 8, "custom": 2, "data": [2, 8], "datafram": [2, 3], "decomposit": 7, "default": 3, "defin": [3, 6], "definit": [], "depth": 14, "deriv": 14, "detail": 14, "determin": 7, "determinist": [], "dictionari": 3, "dimension": [], "distribut": [10, 13], "do": 1, "download": 1, "element": 3, "elif": 3, "els": 3, "energi": [9, 10, 15], "ensembl": 11, "entropi": 10, "equat": [4, 6], "equilibria": [4, 9], "equilibrium": [4, 9], "ergod": 11, "essenti": 2, "estim": 12, "even": 3, "exampl": [4, 6, 7, 10, 11, 14, 15], "exercis": [1, 2, 3, 4, 15], "expans": 14, "expect": 4, "experi": 7, "explan": 14, "factori": 3, "familiar": 8, "featur": 2, "filter": 2, "find": [3, 4], "first": 9, "form": 8, "formul": 4, "foundat": 2, "free": 10, "from": 10, "function": [3, 10, 15], "fundament": 9, "g": [7, 12], "gaussian": [], "gener": [2, 6], "geometri": 15, "get": 1, "global": 15, "grand": 11, "graph": 1, "guess": 4, "h": 5, "hand": [3, 4, 5, 6, 7, 8], "he": 5, "heat": [9, 10], "high": [], "higher": 3, "hint": 7, "histogram": 2, "hydrocarbon": 6, "hydrogen": [5, 6], "i": [1, 3, 5], "implement": [4, 12, 14, 15], "implic": 11, "import": [2, 4, 6, 12, 13], "infinit": 3, "initi": 4, "instal": [1, 2], "integ": 6, "integr": [5, 12, 13], "interlud": 8, "intern": [9, 10], "interpret": [14, 15], "interv": 8, "introduct": [1, 3, 4, 7, 8, 10, 12, 14], "isobar": 11, "isotherm": 11, "iv": 6, "jone": 15, "jupyt": 1, "kei": [2, 3], "lambda": 3, "launch": 1, "law": [7, 9], "learn": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "least": 7, "lectur": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "length": 14, "lennard": 15, "let": 1, "librari": 6, "line": 2, "linear": [6, 7], "list": [2, 3], "local": 15, "loop": 3, "macrost": 10, "manipul": 2, "mathbf": 6, "mathemat": [1, 4], "matplotlib": 2, "matrix": [2, 6], "maximum": 3, "measur": 14, "method": [4, 12], "metropoli": 14, "microcanon": 11, "microst": 10, "minim": 4, "minimum": 3, "minut": [], "mississippi": 14, "moment": 6, "mont": [12, 13, 14], "more": 1, "mors": 14, "motiv": 12, "n_2o_5": 7, "nanoparticl": 15, "necessari": 6, "next": 11, "non": 11, "normal": 6, "note": [1, 3, 4, 5, 14], "notebook": 1, "null": 6, "number": 3, "numer": [4, 5], "numpi": [2, 3], "object": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "observ": [], "odd": 3, "oper": 2, "optim": [4, 15], "orbit": 5, "order": [3, 7], "ordinari": 7, "oscil": 14, "over": 14, "overlap": [5, 13], "oxid": 6, "packag": 2, "palindrom": 3, "panda": [2, 3], "paramet": 3, "partit": 10, "phase": 9, "plot": [2, 14], "potenti": [9, 14, 15], "power": 2, "practic": [1, 2, 3, 7], "primer": 7, "principl": 15, "probabl": 14, "problem": [0, 4, 15], "properti": [2, 10], "public": 2, "put": [], "python": [1, 2, 3, 4, 6, 12, 14], "qualiti": 2, "random": 13, "rang": 14, "rate": 7, "reaction": [4, 7], "read": 2, "real": 8, "recap": 6, "reduct": 6, "refer": 14, "refresh": 7, "regress": 7, "relat": [9, 12], "remind": 2, "result": [14, 15], "return": 13, "review": [], "revisit": [], "rewrit": 12, "riemann": 5, "root": 4, "rule": 5, "run": [14, 15], "sampl": [12, 13, 14], "scatter": 2, "scienc": [0, 1, 2], "scientif": 2, "scipi": [2, 4], "second": 9, "section": [2, 3], "seri": 2, "shape": 15, "should": [9, 11], "simul": [14, 15], "solut": [4, 5], "solv": [0, 4, 6], "space": 6, "specif": [1, 2], "squar": 7, "start": 1, "state": 10, "statement": [3, 9, 15], "statist": 10, "step": [1, 4, 6, 14], "string": 3, "structur": [2, 3], "suitabl": 12, "sum": [3, 5], "summari": [6, 9, 10, 11, 13, 14, 15], "sup": [], "symmetri": 5, "system": [6, 9, 10, 11], "take": 6, "temperatur": 14, "test": [], "theoret": 8, "thermal": 14, "thermodynam": [9, 10], "thi": [], "think": 10, "third": 9, "through": 3, "tin": 6, "tool": 2, "trapezoid": 5, "two": [5, 10], "type": 11, "u": [], "us": [2, 3, 5, 6], "v": [3, 5, 15], "valu": 3, "varianc": [], "vector": 2, "versatil": 4, "via": 4, "visual": [2, 14, 15], "volum": 10, "wait": [4, 5], "warn": 4, "welcom": 0, "what": [3, 4, 5, 11], "while": 3, "why": [9, 11], "window": 1, "work": [2, 9], "world": 8, "write": 2, "x": 12, "you": [9, 11], "your": 2, "zeroth": 9}}) \ No newline at end of file