From 5304edb7a9f7574d375654aaf4fa4c5a7f48a600 Mon Sep 17 00:00:00 2001 From: wexlergroup Date: Wed, 9 Oct 2024 00:32:23 -0500 Subject: [PATCH] Update documentation --- _sources/lecture-14-metropolis.md | 2 +- genindex.html | 2 +- intro.html | 4 ++-- lecture-14-metropolis.html | 10 +++++----- objects.inv | Bin 750 -> 745 bytes search.html | 2 +- searchindex.js | 2 +- 7 files changed, 11 insertions(+), 11 deletions(-) diff --git a/_sources/lecture-14-metropolis.md b/_sources/lecture-14-metropolis.md index 3e3bf52..9dc1ccf 100644 --- a/_sources/lecture-14-metropolis.md +++ b/_sources/lecture-14-metropolis.md @@ -11,7 +11,7 @@ kernelspec: name: python3 --- -# Lecture 14: The Metropolis Algorithm and Monte Carlo Simulations +# Lecture 14: A Basic Monte Carlo Algorithm ## Learning Objectives diff --git a/genindex.html b/genindex.html index df4c4ee..81325c5 100644 --- a/genindex.html +++ b/genindex.html @@ -193,7 +193,7 @@
  • Lecture 11: Ensembles and Ergodicity
  • Lecture 12: The Monte Carlo Method
  • Lecture 13: Monte Carlo Integration
  • -
  • Lecture 14: The Metropolis Algorithm and Monte Carlo Simulations
  • +
  • Lecture 14: A Basic Monte Carlo Algorithm
  • diff --git a/intro.html b/intro.html index 84b764e..b957525 100644 --- a/intro.html +++ b/intro.html @@ -197,7 +197,7 @@
  • Lecture 11: Ensembles and Ergodicity
  • Lecture 12: The Monte Carlo Method
  • Lecture 13: Monte Carlo Integration
  • -
  • Lecture 14: The Metropolis Algorithm and Monte Carlo Simulations
  • +
  • Lecture 14: A Basic Monte Carlo Algorithm
  • @@ -412,7 +412,7 @@

    Welcome to Computational Problem Solving in the Chemical SciencesLecture 11: Ensembles and Ergodicity
  • Lecture 12: The Monte Carlo Method
  • Lecture 13: Monte Carlo Integration
  • -
  • Lecture 14: The Metropolis Algorithm and Monte Carlo Simulations
  • +
  • Lecture 14: A Basic Monte Carlo Algorithm
  • diff --git a/lecture-14-metropolis.html b/lecture-14-metropolis.html index 5c93596..74f75af 100644 --- a/lecture-14-metropolis.html +++ b/lecture-14-metropolis.html @@ -8,7 +8,7 @@ - Lecture 14: The Metropolis Algorithm and Monte Carlo Simulations — Computational Problem Solving in the Chemical Sciences + Lecture 14: A Basic Monte Carlo Algorithm — Computational Problem Solving in the Chemical Sciences @@ -195,7 +195,7 @@
  • Lecture 11: Ensembles and Ergodicity
  • Lecture 12: The Monte Carlo Method
  • Lecture 13: Monte Carlo Integration
  • -
  • Lecture 14: The Metropolis Algorithm and Monte Carlo Simulations
  • +
  • Lecture 14: A Basic Monte Carlo Algorithm
  • @@ -381,7 +381,7 @@
    -

    Lecture 14: The Metropolis Algorithm and Monte Carlo Simulations

    +

    Lecture 14: A Basic Monte Carlo Algorithm

    @@ -434,8 +434,8 @@

    Contents

    -
    -

    Lecture 14: The Metropolis Algorithm and Monte Carlo Simulations#

    +
    +

    Lecture 14: A Basic Monte Carlo Algorithm#

    Learning Objectives#

    By the end of this lecture, you should be able to

    diff --git a/objects.inv b/objects.inv index b697a2b99bdee430843df9216d3a2149a8d6e44f..0a56554e70f0e69c48584e290e01c6d258cdedb6 100644 GIT binary patch delta 624 zcmV-$0+0Rf1?dHlgn!$P+At7??|BM8z`7#9o^r=hE>>Dv1eJPioFTF51GSx1)2Hv) z0TQ!e>0RVGeE*C+lM=Mh1^gk-7rA6Rkc4KWJf423yprTKe2#?n)@D_$9vJ_{N^pbR&YUtQIaxXf+KW(eOIx23 z{RehRxe1!(AoXlbq0<~&-9~M_t>d8!{cQzw*=N)oyinpVyV}syCFRWWPWlE|+tuao zT1c_8f)S<*vVSqgJ7V_XJf`RscONbbN_(B2c%<Xge~tye`TKCg_pJ$MR>Nc z;r5+LcNg_6jI|(J-;YY3DL#Fx%%F&qG37raUotE$^#4b6C>qW1KDxZwm^xfBpCnH` zE>^@i$B{wF&VLHYC};-?_t)S$=-V#GDJ~&-qaLe=&L(`Vcr~=$W2P4IBqxudP`Ek3< zaq#fA6AsRmvBFnsgcmdLe>ybuWM~tvaN$ch{;7J_8)3&~okTmFFJ7gA?O7YMZS8B^ K?xTO_#E`7kd^ywr delta 629 zcmV-*0*d|V1?~lqgn!9y+b|G@?|BM7Kv;Oord#6r5Fl<1t3b~*HI|5SaY-tu`t%)A zvL!ll+?&8zzJG?CQ3+b;0{#%^i%hZ|NJ6Ki>`uQ_UPN>LgyK_x{b=ct>d8!{cQ#G*%#CtyinpVyV%gwCFLx#UiubT+ttXh%FyPe`TKChL^S%MR>Nc z;r5+LcN_IAjkO?K-;YY3C_a6w%&3T?G37rYUotE$^#4b6C>qW1KKi`V33a$)K1rT> zoUMpSh9iTLo&OXvrJx-s++U;XU}!%B;1XJ$LPM8Uwlsy{!Z&^T8C5vHfHz^~cnyii z83K0>>TV|M;D8qvQmg?7zvuyTs`$0x``~nj!7VdHj7{5gK^5R0Iv6R&8#Qz|%fIN# z=o8>b87q9HV&jJJT&P-hLx%S?^4mHz^k`@~Yy1yL=zd@W>y@x>hbPev$BtKNV0+fa PLecture 11: Ensembles and Ergodicity
  • Lecture 12: The Monte Carlo Method
  • Lecture 13: Monte Carlo Integration
  • -
  • Lecture 14: The Metropolis Algorithm and Monte Carlo Simulations
  • +
  • Lecture 14: A Basic Monte Carlo Algorithm
  • diff --git a/searchindex.js b/searchindex.js index 6d007b9..b4e79fc 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"": [[1, null], [1, null], [2, null], [2, null], [2, null], [3, null], [3, null], [5, null], [8, null], [9, null], [9, null], [9, null], [9, null], [9, null], [9, null], [10, null], [11, null], [12, null], [13, null], [14, null]], "1.1 Download and Install Python": [[1, "download-and-install-python"]], "1.1 Key Features of NumPy": [[2, "key-features-of-numpy"]], "1.1 The if Statement": [[3, "the-if-statement"]], "1.2 Check if Python is Already Installed": [[1, "check-if-python-is-already-installed"]], "1.2 The if-else Statement": [[3, "the-if-else-statement"]], "1.2 Working with NumPy Arrays": [[2, "working-with-numpy-arrays"]], "1.3 Practice Exercises": [[2, "practice-exercises"]], "1.3 The if-elif-else Statement": [[3, "the-if-elif-else-statement"]], "1.3 Windows-Specific Note": [[1, "windows-specific-note"]], "2.1 Install Jupyter Notebook": [[1, "install-jupyter-notebook"]], "2.1 Key Features of SciPy": [[2, "key-features-of-scipy"]], "2.1 The for Loop": [[3, "the-for-loop"]], "2.2 Launching Jupyter Notebook": [[1, "launching-jupyter-notebook"]], "2.2 The while Loop": [[3, "the-while-loop"]], "3.1 Defining Functions": [[3, "defining-functions"]], "3.1 Key Features of Matplotlib": [[2, "key-features-of-matplotlib"]], "3.1 Python and Mathematics": [[1, "python-and-mathematics"]], "3.2 Creating Basic Plots with Matplotlib": [[2, "creating-basic-plots-with-matplotlib"]], "3.2 Functions with Default Parameter Values": [[3, "functions-with-default-parameter-values"]], "3.2 Practice Exercises": [[1, "practice-exercises"]], "3.3 Customizing Your Plots": [[2, "customizing-your-plots"]], "3.3 Lambda Functions": [[3, "lambda-functions"]], "3.3 Python Can Do Chemistry": [[1, "python-can-do-chemistry"]], "3.4 Practice Exercises": [[1, "id1"], [2, "id1"]], "3.4 Using Lambda Functions with Higher-Order Functions": [[3, "using-lambda-functions-with-higher-order-functions"]], "3.5 Python Can Do Graphing": [[1, "python-can-do-graphing"]], "3.5 Using Lambda Functions with Pandas": [[3, "using-lambda-functions-with-pandas"]], "3.6 Best Practices for Using Functions": [[3, "best-practices-for-using-functions"]], "3.6 Practice Exercises": [[1, "id2"]], "3.7 Python Can Do More": [[1, "python-can-do-more"]], "4.1 Key Features of Pandas": [[2, "key-features-of-pandas"]], "4.2 Series: The 1D Data Structure": [[2, "series-the-1d-data-structure"]], "4.3 DataFrame: The 2D Data Structure": [[2, "dataframe-the-2d-data-structure"]], "4.4 Reading and Writing Data": [[2, "reading-and-writing-data"]], "4.5 Filtering Data": [[2, "filtering-data"]], "4.6 Practice Exercises": [[2, "id2"]], "A Familiar Form of the Correlation Coefficient": [[8, null]], "A Practical Example": [[7, "a-practical-example"]], "A Refresher or Primer on Rate Laws": [[7, "a-refresher-or-primer-on-rate-laws"]], "A Theoretical Interlude": [[8, "a-theoretical-interlude"]], "Acceptance Probability": [[14, "acceptance-probability"]], "Additional Exercise": [[4, null]], "Additional Exercises": [[3, "additional-exercises"]], "Additional Notes": [[14, null]], "Advanced Matrix Operations": [[2, "advanced-matrix-operations"]], "Analytical Integration": [[5, "analytical-integration"]], "Analytical Solution": [[5, "analytical-solution"]], "Analytical vs. Numerical Integration": [[5, "analytical-vs-numerical-integration"]], "Analyzing the Results": [[14, "analyzing-the-results"]], "Average Bond Length": [[14, "average-bond-length"]], "Average Energy and Internal Energy": [[10, "average-energy-and-internal-energy"]], "Back to the N_2O_5(g) Decomposition Experiment": [[7, "back-to-the-n-2o-5-g-decomposition-experiment"]], "Back to the Real World": [[8, "back-to-the-real-world"]], "Balancing Chemical Equations": [[6, "balancing-chemical-equations"]], "Balancing the Equation by Hand": [[6, "balancing-the-equation-by-hand"]], "Best Practice": [[2, null]], "Boltzmann Distribution": [[10, "boltzmann-distribution"]], "Calculating the Overlap Integral of Two H 1s Orbitals": [[5, "calculating-the-overlap-integral-of-two-h-1s-orbitals"]], "Calibration Curve": [[8, "calibration-curve"]], "Calibration Data": [[8, "calibration-data"]], "Canonical Ensemble": [[11, "canonical-ensemble"]], "Choosing a Suitable g(x)": [[12, "choosing-a-suitable-g-x"]], "Choosing the Importance Sampling Distribution": [[13, "choosing-the-importance-sampling-distribution"]], "Computing the Overlap Integral": [[5, "computing-the-overlap-integral"]], "Confidence Intervals": [[8, "confidence-intervals"]], "Correlation Analysis": [[8, "correlation-analysis"]], "Creating and Using Arrays": [[2, "creating-and-using-arrays"]], "Critical Thinking": [[10, null], [10, null], [10, null], [10, null]], "Derivation of the Metropolis Algorithm": [[14, "derivation-of-the-metropolis-algorithm"]], "Detailed Balance Condition": [[14, "detailed-balance-condition"]], "Determining the Rate Constant of a Reaction": [[7, "determining-the-rate-constant-of-a-reaction"]], "Equilibrium": [[9, "equilibrium"]], "Ergodicity": [[11, "ergodicity"]], "Example: Chemical Reaction Equilibrium via Numerical Method": [[4, "example-chemical-reaction-equilibrium-via-numerical-method"]], "Example: Reduction of Tin(IV) Oxide by Hydrogen": [[6, "example-reduction-of-tin-iv-oxide-by-hydrogen"]], "Example: Sampling a Classical Morse Oscillator": [[14, "example-sampling-a-classical-morse-oscillator"]], "Example: Two-State System": [[10, "example-two-state-system"]], "Exercise": [[3, null], [4, null]], "Exercise 1": [[3, null]], "Exercise 1: Check if a Number is Even or Odd": [[3, "exercise-1-check-if-a-number-is-even-or-odd"]], "Exercise 2": [[3, null]], "Exercise 2: Sum of All Numbers in a List": [[3, "exercise-2-sum-of-all-numbers-in-a-list"]], "Exercise 3": [[3, null]], "Exercise 3: Factorial of a Number": [[3, "exercise-3-factorial-of-a-number"]], "Exercise 4": [[3, null]], "Exercise 4: Check if a String is a Palindrome": [[3, "exercise-4-check-if-a-string-is-a-palindrome"]], "Exercise 5": [[3, null]], "Exercise 5: Find the Maximum and Minimum Elements in a List": [[3, "exercise-5-find-the-maximum-and-minimum-elements-in-a-list"]], "Explanation of the Code": [[14, "explanation-of-the-code"]], "Free Energy and Entropy": [[10, "free-energy-and-entropy"]], "Fundamental Thermodynamic Relation": [[9, "fundamental-thermodynamic-relation"]], "General Case for Hydrocarbon Combustion": [[6, null]], "Generating Arrays with Specific Properties": [[2, "generating-arrays-with-specific-properties"]], "Grand Canonical Ensemble": [[11, "grand-canonical-ensemble"]], "Grand Canonical Ensemble: Example": [[11, "grand-canonical-ensemble-example"]], "Hands-On Activity": [[4, "hands-on-activity"], [7, "hands-on-activity"], [8, "hands-on-activity"]], "Hands-On Activity: Overlap of Two He 1s Orbitals": [[5, "hands-on-activity-overlap-of-two-he-1s-orbitals"]], "Heat Capacity at Constant Volume": [[10, "heat-capacity-at-constant-volume"]], "Hint": [[7, null]], "Histograms": [[2, "histograms"]], "Implementation in Python": [[12, "implementation-in-python"]], "Implementing Root-Finding Methods in Python": [[4, "implementing-root-finding-methods-in-python"]], "Implementing the Metropolis Algorithm in Python": [[14, "implementing-the-metropolis-algorithm-in-python"]], "Implications of Ergodicity": [[11, "implications-of-ergodicity"]], "Importance Sampling": [[12, "importance-sampling"], [13, "importance-sampling"]], "Important": [[2, null]], "Infinite Loops": [[3, null]], "Installing NumPy": [[2, "installing-numpy"]], "Internal Energy, Work, and Heat": [[9, "internal-energy-work-and-heat"]], "Interpretation": [[14, null], [14, null]], "Introduction": [[3, "introduction"], [7, "introduction"], [8, "introduction"], [14, "introduction"]], "Introduction to Chemical Reaction Equilibria": [[4, "introduction-to-chemical-reaction-equilibria"]], "Introduction to Monte Carlo Method": [[12, "introduction-to-monte-carlo-method"]], "Introduction to Statistical Thermodynamics": [[10, "introduction-to-statistical-thermodynamics"]], "Isothermal-Isobaric Ensemble": [[11, "isothermal-isobaric-ensemble"]], "Isothermal-Isobaric Ensemble: Example": [[11, "isothermal-isobaric-ensemble-example"]], "Key Control Structures in Python": [[3, "key-control-structures-in-python"]], "Learning Objectives": [[1, "learning-objectives"], [2, "learning-objectives"], [3, "learning-objectives"], [4, "learning-objectives"], [6, "learning-objectives"], [7, "learning-objectives"], [8, "learning-objectives"], [9, "learning-objectives"], [10, "learning-objectives"], [11, "learning-objectives"], [12, "learning-objectives"], [13, "learning-objectives"], [14, "learning-objectives"]], "Lecture 10: Statistical Thermodynamics": [[10, null]], "Lecture 11: Ensembles and Ergodicity": [[11, null]], "Lecture 12: The Monte Carlo Method": [[12, null]], "Lecture 13: Monte Carlo Integration": [[13, null]], "Lecture 14: The Metropolis Algorithm and Monte Carlo Simulations": [[14, null]], "Lecture 1: Introduction to Python for the Chemical Sciences": [[1, null]], "Lecture 2: Essential Python Packages for the Chemical Sciences": [[2, null]], "Lecture 3: Control Structures in Python": [[3, null]], "Lecture 4: Chemical Reaction Equilibria and Roots of Equations": [[4, null]], "Lecture 5: Chemical Bonding and Numerical Integration": [[5, null]], "Lecture 6: Balancing Chemical Equations and Systems of Linear Algebraic Equations": [[6, null]], "Lecture 7: Orders of Reaction and Linear Regression Analysis": [[7, null]], "Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis": [[8, null]], "Lecture 9: Classical Thermodynamics": [[9, null]], "Line Plots": [[2, "line-plots"]], "Linear Regression Analysis": [[7, "linear-regression-analysis"]], "List Comprehensions": [[3, "list-comprehensions"]], "Lists vs. Dictionaries": [[3, null]], "Looping Through a Dictionary": [[3, "looping-through-a-dictionary"]], "Looping Through a List": [[3, "looping-through-a-list"]], "Looping Through a NumPy Array": [[3, "looping-through-a-numpy-array"]], "Looping Through a Pandas DataFrame": [[3, "looping-through-a-pandas-dataframe"]], "Looping Through a String": [[3, "looping-through-a-string"]], "Mathematical Formulation of Equilibrium Problems": [[4, "mathematical-formulation-of-equilibrium-problems"]], "Matrix and Vector Operations": [[2, "matrix-and-vector-operations"]], "Microcanonical Ensemble": [[11, "microcanonical-ensemble"]], "Microcanonical Ensemble: Example": [[11, "microcanonical-ensemble-example"]], "Microstates and Macrostates": [[10, "microstates-and-macrostates"]], "Monte Carlo Estimation": [[12, "monte-carlo-estimation"]], "Monte Carlo Estimator with Importance Sampling": [[12, "monte-carlo-estimator-with-importance-sampling"]], "Motivation for Importance Sampling": [[12, "motivation-for-importance-sampling"]], "Non-Ergodic Systems": [[11, "non-ergodic-systems"]], "Note": [[3, null], [4, null], [5, null]], "Numerical Integration": [[5, "numerical-integration"]], "Numerical Integration Using a Riemann Sum": [[5, "numerical-integration-using-a-riemann-sum"]], "Numerical Integration Using the Trapezoidal Rule": [[5, "numerical-integration-using-the-trapezoidal-rule"]], "Numerical Methods for Finding Roots of Equations": [[4, "numerical-methods-for-finding-roots-of-equations"]], "Orders of Reaction": [[7, "orders-of-reaction"]], "Ordinary Least Squares": [[7, "ordinary-least-squares"]], "Phase Equilibria": [[9, "phase-equilibria"]], "Plotting Thermal Expansion": [[14, "plotting-thermal-expansion"]], "Plotting the Results": [[14, "plotting-the-results"]], "Python Implementation": [[12, "python-implementation"]], "Python Lists": [[2, null]], "Random Sampling": [[13, "random-sampling"]], "Recap": [[6, "recap"]], "References": [[14, "references"]], "Relating Integrals to Averages": [[12, "relating-integrals-to-averages"]], "Reminder": [[2, null]], "Return to the Overlap Integral": [[13, "return-to-the-overlap-integral"]], "Rewriting the Integral": [[12, "rewriting-the-integral"]], "Running the Simulation": [[14, "running-the-simulation"]], "Scatter Plots": [[2, "scatter-plots"]], "Section 1: Conditional Statements": [[3, "section-1-conditional-statements"]], "Section 1: NumPy - The Foundation of Scientific Computing in Python": [[2, "section-1-numpy-the-foundation-of-scientific-computing-in-python"]], "Section 2: Loops": [[3, "section-2-loops"]], "Section 2: SciPy - A Powerful Tool for Scientific Computing": [[2, "section-2-scipy-a-powerful-tool-for-scientific-computing"]], "Section 3: Functions": [[3, "section-3-functions"]], "Section 3: Matplotlib - Creating Publication-Quality Visualizations": [[2, "section-3-matplotlib-creating-publication-quality-visualizations"]], "Section 4: Hands-on Practice": [[3, "section-4-hands-on-practice"]], "Section 4: Pandas - Powerful Data Manipulation in Python": [[2, "section-4-pandas-powerful-data-manipulation-in-python"]], "Simulation Over a Range of Temperatures": [[14, "simulation-over-a-range-of-temperatures"]], "Solving for Equilibrium": [[4, "solving-for-equilibrium"]], "Solving the Equation Using Python": [[6, "solving-the-equation-using-python"]], "Solving the System of Equations": [[6, "solving-the-system-of-equations"]], "Statement of the First Law": [[9, "statement-of-the-first-law"]], "Step 1: Formulating the Equilibrium Equation": [[4, "step-1-formulating-the-equilibrium-equation"]], "Step 1: Getting Python Installed": [[1, "step-1-getting-python-installed"]], "Step 1: Import the Necessary Libraries": [[6, "step-1-import-the-necessary-libraries"]], "Step 2: Define the Coefficient Matrix, \\mathbf{A}": [[6, "step-2-define-the-coefficient-matrix-mathbf-a"]], "Step 2: Installing Jupyter Notebook": [[1, "step-2-installing-jupyter-notebook"]], "Step 2: Minimizing the Equilibrium Equation": [[4, "step-2-minimizing-the-equilibrium-equation"]], "Step 3: Compute the Null Space": [[6, "step-3-compute-the-null-space"]], "Step 3: Let\u2019s Get Started with Python": [[1, "step-3-let-s-get-started-with-python"]], "Step 4: Normalize and Convert to Integer Coefficients": [[6, "step-4-normalize-and-convert-to-integer-coefficients"]], "Step 5: The Balanced Chemical Equation": [[6, "step-5-the-balanced-chemical-equation"]], "Summary": [[6, "summary"], [9, "summary"], [10, "summary"], [11, "summary"], [13, "summary"], [14, "summary"]], "Symmetry and Integration": [[5, "symmetry-and-integration"]], "Systems of Linear Algebraic Equations": [[6, "systems-of-linear-algebraic-equations"]], "Take a Moment": [[6, null]], "The First Law": [[9, "the-first-law"]], "The Hydrogen 1s Orbital": [[5, "the-hydrogen-1s-orbital"]], "The Importance of Initial Guess": [[4, null]], "The Laws of Thermodynamics": [[9, "the-laws-of-thermodynamics"]], "The Metropolis Algorithm Steps": [[14, "the-metropolis-algorithm-steps"]], "The Metropolis Algorithm: \u201cMeasuring the Depth of the Mississippi\u201d": [[14, "the-metropolis-algorithm-measuring-the-depth-of-the-mississippi"]], "The Second Law": [[9, "the-second-law"]], "The Third Law": [[9, "the-third-law"]], "The Zeroth Law": [[9, "the-zeroth-law"]], "Thermal Expansion of the Morse Oscillator": [[14, "thermal-expansion-of-the-morse-oscillator"]], "Thermodynamic Potentials": [[9, "thermodynamic-potentials"]], "Thermodynamic Properties from the Partition Function": [[10, "thermodynamic-properties-from-the-partition-function"]], "Thermodynamic Systems": [[9, "thermodynamic-systems"]], "Types of Ensembles": [[11, "types-of-ensembles"]], "Visualization of the Morse Potential": [[14, "visualization-of-the-morse-potential"]], "Wait!": [[5, null], [5, null]], "Wait, What\u2019s the Expected Solution?": [[4, null]], "Warning": [[4, null]], "Welcome to Computational Problem Solving in the Chemical Sciences": [[0, null]], "What Are Control Structures?": [[3, "what-are-control-structures"]], "What Is an Integral?": [[5, "what-is-an-integral"]], "What\u2019s Next?": [[11, null]], "Why Should You Care About Ensembles?": [[11, "why-should-you-care-about-ensembles"]], "Why Should You Care About Thermodynamics?": [[9, "why-should-you-care-about-thermodynamics"]], "scipy.optimize.minimize: A Versatile Approach": [[4, "scipy-optimize-minimize-a-versatile-approach"]]}, "docnames": ["intro", "lecture-01-introduction", "lecture-02-packages", "lecture-03-control", "lecture-04-optimization", "lecture-05-integration", "lecture-06-linalg", "lecture-07-regression", "lecture-08-calibration", "lecture-09-thermo", "lecture-10-stat-thermo", "lecture-11-ensembles", "lecture-12-monte-carlo", "lecture-13-mc-integration", "lecture-14-metropolis"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["intro.md", "lecture-01-introduction.md", "lecture-02-packages.md", "lecture-03-control.md", "lecture-04-optimization.md", "lecture-05-integration.md", "lecture-06-linalg.md", "lecture-07-regression.md", "lecture-08-calibration.md", "lecture-09-thermo.md", "lecture-10-stat-thermo.md", "lecture-11-ensembles.md", "lecture-12-monte-carlo.md", "lecture-13-mc-integration.md", "lecture-14-metropolis.md"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14], "0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "00": [1, 2, 4], "000": 8, "000000": [], "0000000000000004": 2, "0000000000000009": [], "000000019073487": 4, "0000003051757815": 4, "0000003433227533": 4, "000000381469727": 4, "0001": 10, "0001871291025951396": 8, "0004184333939712645": 8, "000e": 4, "001": 8, "0024893696884570006": [], "003967": [], "004": 8, "004748": [], "007": 8, "007820585525325625": [], "008": [1, 8], "009564": 2, "01": [1, 10], "010339": [], "010999999999996": 1, "011": 1, "0112": 7, "011213": [], "0125": 7, "013": 8, "0132": [], "0133": 14, "0144": 7, "014682": [], "0162": 7, "019033": [], "0191": 7, "02": 4, "020020": [], "0250": 7, "026": 8, "026862": [], "030363606516579125": 7, "031785": 5, "032": 8, "032076": [], "038889": [], "04": 7, "04036523": [], "040756": [], "040832": [], "042757": [], "04361008": [], "044403": [], "044783": [], "045537": 2, "048021": [], "048416": 2, "049373": [], "049586": [], "05": [], "051520": [], "054431": [], "057691": [], "058135": [], "059068": 2, "06": [7, 8], "060": [], "060908": [], "06533351": [], "066214": [], "067183": [], "07": 4, "07069651": [], "071614": [], "073500": [], "074532": [], "075927": [], "076810": [], "07750": [], "07812993": [], "0783716": [], "08": [2, 7], "08468586": [], "086293": [], "089069": [], "089466": 12, "09": [], "090967": [], "09188008": [], "092201": [], "093195": 2, "094149": 2, "096565": 5, "096577": 5, "099762": 5, "0f": 4, "0x1114aa5f0": [], "1": [0, 7, 8, 9, 10, 11, 12, 13, 14], "10": [0, 1, 2, 3, 4, 5, 7, 8, 14], "100": [1, 2, 4, 5, 7, 10, 12, 13, 14], "1000": [2, 5, 8, 12, 13, 14], "10000": [13, 14], "100000": 13, "1000000": 13, "10000000": [], "100_000": [], "101": [], "1016": 14, "102": [], "102174": [], "105363": [], "1063": 14, "1087": 14, "1092": 14, "11": [0, 2, 4, 7], "1100": [], "111754": [], "113959": [], "11574968": [], "116": [], "11x": 4, "12": [0, 1, 8, 10, 14], "1200x500": [], "12138546": [], "1225": 3, "12357159": [], "123840": [], "124996": [], "1250875": [], "12600315": [], "127246": [], "127797": [], "128745": [], "129": [], "129811": [], "13": 0, "130": 2, "13073": [], "131": [], "1314235014": [], "132": [], "132008": [], "13256909": [], "133": [], "134": [], "135": [], "136072": 5, "136085": 5, "136902": [], "137451": [], "1385": [], "1386": [], "1387": [], "1388": [], "1389": [], "1390": [], "1391": [], "14": [0, 7, 11], "140199": [], "1402": [], "140213": [], "1403": [], "1404": [], "1405": [], "1406": [], "1407": [], "14073843": [], "1408": [], "1409": [], "140951": 5, "1410": [], "14159": 3, "145263": [], "15": [2, 7], "150": 2, "151212": [], "153355": [], "15383974": [], "15396606": [], "153987": [], "154": 2, "155298": [], "15763222": [], "16": [1, 2, 3, 4], "161040": [], "16121387": [], "16168": [], "161758": [], "165889": [], "166290": [], "167": [], "168": [], "169252": [], "169374": [], "1699114": 14, "17": [], "170": [], "171": [], "172": [], "1733916972": 4, "173860": [], "17855413": [], "1796469911": [], "18": [5, 8], "181": [], "182": [], "182050": [], "183": [], "183777": [], "184": [], "185": [], "186": [], "187": [], "188": [], "188889": [], "189247": 5, "189262": 5, "19": [], "1903": [], "1904": [], "1905": [], "192456": [], "19464139": [], "1953": 14, "19530158": [], "196617": 5, "196816": [], "197475": [], "197620": [], "19971276": [], "1d": [], "1e": 4, "2": [0, 5, 7, 8, 9, 10, 12, 13, 14], "20": 7, "2001": [], "200369": [], "200383": [], "200402": [], "200483": [], "2023": 14, "205104": [], "208289": [], "21": [8, 14], "21113": [], "212": [], "214": [], "21459876": [], "215": [], "21514317": [], "21567557": 2, "216": [], "217": [], "2170": [], "2171": [], "2172": [], "2173": [], "2174": [], "2175": [], "2176": [], "2177": [], "219": [], "21948282": [], "22": 4, "220619": [], "22115577933543018": 7, "2213406": [], "2224677478": [], "22466308": [], "22722108611679165": 1, "227632": [], "22e": 4, "23": [], "2304533417": [], "23067359": [], "230942": [], "234381": [], "23535115": [], "236837": [], "24": [2, 7], "241398": [], "243110": [], "245944": [], "246372": [], "2468699402": [], "24999999999998668": [], "25": [1, 2, 3, 4, 8], "25097623": [], "25180": [], "25298782": 2, "253167": [], "25430905": [], "254594": [], "25685736": [], "2569768875": [], "258769": 2, "259179": 5, "259194": 5, "26": [], "261": [], "262": [], "263": [], "263956": [], "264": 2, "264261": [], "265": 2, "266": [], "267": [], "268": [], "269": [], "26953356": [], "269757": [], "27": 8, "270": [], "270172": 5, "270435": [], "271": [], "273": [], "273713": [], "274": [], "274815": [], "275": [], "27514562": [], "276": [], "277778": [], "27819382": [], "2793": [], "2794": [], "2795": [], "2799": [], "28": 7, "280": [], "2800": [], "2801": [], "281": [], "281017": [], "281032": [], "281626": 2, "282552": [], "288280": [], "288791": [], "29": [], "291939": [], "29260813": [], "293218": [], "293416": [], "294650": [], "295068": [], "296185": [], "298": 7, "29978765": [], "2_1": [], "2_2": [], "2a": 6, "2b": 6, "2c": 6, "2d": 6, "2f": 8, "2n": 6, "2r": 5, "2x": 4, "2x2": 2, "3": [0, 4, 5, 7, 8, 12, 13], "30": [2, 3, 7, 8, 10, 14], "300": 14, "302182": [], "30255225": [], "3049": [], "3050": [], "3051": [], "3052": [], "3053": [], "31": [4, 8], "31016631": [], "3104": [], "3105": [], "3107": [], "3109": [], "3110": [], "314505": [], "3159": [], "3161": [], "3162": [], "3163": [], "3165": [], "3166": [], "318": 7, "318526": [], "32": [2, 8, 12], "320524": [], "32099643": [], "324007": [], "325560": [], "325610": 12, "32561038208072784": [], "327": 2, "32816799690108206": [], "328712": [], "329385": [], "329867": [], "33": 8, "33026915": [], "3331481689": [], "333259": [], "333333": 12, "33500365": [], "33552352": [], "337550306": [], "338002": [], "3386046038985078": [], "34": [], "341": [], "342": [], "343": [], "344": [], "3442733": [], "345": [], "34714337": [], "348493": 5, "348509": 5, "35": [2, 3], "350110": [], "3543": [], "3544": [], "3545": [], "3546": [], "3547": [], "3548": [], "3549": [], "36": [], "36330421": [], "364650": 5, "366086": [], "366667": [], "368379": [], "369988": [], "37": [2, 7], "37228132": 2, "373919": [], "379": [], "38": [], "380": [], "38020829": 2, "381": [], "382": [], "383": [], "384": [], "38480972": [], "385": [], "385206": [], "385223": [], "38523872": [], "386": [], "387": [], "388": [], "38825605": [], "38848765": [], "388541": [], "389": [], "38986037": [], "39": 2, "390": [], "391991": [], "392485": [], "397667": [], "3d": [1, 2, 5], "3dmol": [], "3f": 8, "3n": 6, "3x": 4, "3x3": 2, "4": [0, 5, 7, 8, 10, 14], "40": 7, "400": 4, "4000": 4, "4014613473": [], "403655": [], "40446243": 2, "405787": [], "409241": [], "4096": [], "41": 8, "410": 2, "41152632": [], "41228293": [], "41263254": [], "412686": [], "413040": [], "413601": [], "415782": [], "41702911": [], "41884383": [], "419523": [], "42": [2, 12, 13, 14], "422": 2, "4256142": [], "42638864": [], "426663": [], "428120": [], "42812882": 2, "428552": [], "429026": [], "429932": [], "43": [], "430490": [], "43260088": [], "43377967": [], "435078": [], "435593": [], "43765552": [], "44": 1, "440513": [], "444864": 2, "44493476": [], "4480": [], "4481": [], "4482": [], "4483": [], "4484": [], "44905775": [], "45": [], "451": [], "452": [], "453": [], "453202": [], "45398804": [], "454": [], "455": [], "455556": [], "456": [], "45600233": [], "457": [], "458290": 5, "458308": 5, "46": [], "4602659": [], "460471": [], "46455389": [], "4647058823529414e": 8, "465110": [], "465299": [], "4665494": [], "468024": [], "46938113": [], "47": [], "47036559": [], "47575154": [], "476065": [], "477106": [], "48": [], "480066": [], "48070937": [], "481598": 5, "482436": [], "482577": [], "488235294117647e": 8, "489157": [], "49": [], "490528": [], "492423": [], "49342": [], "49731891": [], "498755": [], "4999996185302713": [], "4999998855590835": [], "4a": 6, "4f": 14, "4x": 4, "5": [0, 4, 7, 8, 10, 13, 14], "50": [2, 7, 14], "500": [10, 14], "50000": 14, "500e": [], "502418": [], "507017": [], "51": [], "513279": [], "513297": [], "52": [], "526100": [], "526245": [], "52695194": [], "529": 5, "53": [], "530": 8, "530054": [], "534060": [], "53551883": [], "53651539": [], "538946": [], "53939566": [], "539570": [], "539796795": [], "54": 8, "540513": [], "545158": [], "54518": [], "54785244": [], "555261": [], "555330": [], "558357": [], "562114": [], "563880": [], "56833": [], "569610": [], "57": 2, "570085": [], "57219658": [], "575324": [], "576889": [], "58": [], "582797": [], "58445442": [], "58453143": [], "586435": 5, "586453": 5, "588008": [], "58e": [], "59045283": [], "5963908": [], "5998763": [], "5f": [], "5t_cnxn96vs1f6z07zkwy_k80000gn": [], "6": [0, 4, 5, 7, 8, 10, 13, 14], "60": [2, 7], "600": 8, "60000": [], "603": 2, "60464228": [], "607337": [], "607767": 2, "6085366895522193e": 12, "6134203": [], "617424": [], "618404": [], "619193": [], "619271": 5, "62": 4, "625": 3, "6295": [], "6296": [], "629652": [], "6297": [], "6298": [], "6299": [], "63": 2, "63027018": [], "63061": [], "63391829": [], "63407862": [], "63651919": [], "63921": 14, "63e": [], "64": [], "640340": [], "64181731": [], "644444": [], "64448507": [], "64521477": 2, "645333": [], "645725": [], "646079": 2, "646416": [], "647628": [], "649707": [], "65": 2, "650": 8, "653721": [], "65437021": [], "656155": [], "658352": [], "659596": [], "659829": [], "659902": [], "659921": [], "66": [], "66129037": [], "661308": 2, "662783": [], "666408": [], "66805603": [], "669": [], "67": [], "670": 2, "672533": [], "673317": [], "67897942": [], "679175": [], "68": 7, "68262291": [], "684116": [], "688488": [], "68e": [], "69": [], "690617": [], "69418496": [], "694901": [], "697682": [], "69803815": [], "698842": [], "6f": [5, 12], "6x": 4, "7": [0, 2, 3, 5, 13, 14], "70": 7, "700": 8, "70292167": [], "703219": [], "70360658": [], "704656": [], "70749": [], "712417": [], "71856743": [], "7194702543489242e": [], "72": [], "722833": [], "723356": [], "72436375": [], "725154": 5, "725173": 5, "72740627": [], "729945": [], "73": 2, "730391": [], "730971": [], "733333": [], "733507": [], "73372628": [], "733862": [], "734481": [], "7357675673109183": [], "736878": [], "737176": [], "74": 2, "74305327": [], "74313198": [], "74366638": [], "746566": [], "74807732": [], "75": 2, "750": 8, "758691": [], "76": [], "76176135": [], "763835": [], "766e": 4, "76910543": [], "769971": 5, "77": 2, "773974": [], "775256": [], "776040": [], "78": 4, "78083219": [], "780922": [], "78252123": [], "785398": [], "79": [], "790745": [], "79382746": 2, "794821": [], "797464": 2, "7r": 8, "8": [0, 1, 3, 4, 5, 7, 13, 14], "80": 7, "800": 8, "800392": 5, "803676": [], "804": 2, "804001": 2, "80573": [], "80580666": [], "80697": [], "80942245": 2, "81": 2, "810121": [], "810141": [], "811932": [], "813318": [], "81847246": [], "82": 2, "821785": [], "822222": [], "823132": [], "826182": [], "82911917": [], "831357": [], "83257677": [], "83476": [], "83544789": [], "8395906": [], "84": [], "840": 2, "840733": [], "841431": [], "843290": [], "844728": [], "848808": [], "85": 2, "850": 8, "851055": [], "852": 2, "8538538031407512": [], "853854": [], "857228165610269": 8, "858194": [], "858367": 5, "858385": [5, 13], "86": 2, "863366": [], "86599082": [], "867874160544318": [], "86960": [], "87": 2, "871128": [], "871706410": [], "872680": [], "87877103": [], "879550": [], "88": 2, "881784197001252e": 4, "882e": 4, "884170": [], "884707": [], "88586208": [], "885936": [], "888187": [], "88821188": [], "89": 2, "89118366": [], "89354794": [], "9": [0, 1, 2, 3, 4, 5], "90": [2, 7], "900": [3, 8], "903735": [], "91": [], "9102529": [], "911111": [], "913378": [], "916888": 5, "919537": [], "919632": [], "92": 7, "921853": [], "922371": [], "923471": [], "923769": [], "925286": 5, "92578833": [], "928158": [], "929717": [], "93": 8, "93047322": [], "931484": [], "934": 2, "935911": [], "935931": [], "94": [], "94128165": [], "94459246": [], "94870807": [], "95": 8, "950": 8, "95143119": [], "954": [], "954706": [], "955": [], "956": [], "956443": [], "95713798": 2, "957231": [], "958": [], "95809135": [], "959": [], "96": [], "960": [], "960320": 5, "960340": 5, "961": [], "961514": [], "96310226": [], "96641313": [], "966945": [], "97": 8, "97078784": [], "975527": [], "975794": [], "98": [], "980126": [], "985343": 2, "985601": [], "98610781": [], "98636626": [], "9897367": [], "991938": [], "99278371": [], "9962040088352188": 8, "99654": [], "99654\u03c0": [], "998318": [], "998337": [], "999134": [], "A": [1, 3, 9, 10, 11, 12, 14], "AND": 2, "And": [1, 2], "As": [1, 2, 5, 9, 10, 11, 13], "At": [4, 10], "But": [], "By": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "For": [1, 2, 4, 5, 6, 9, 10, 11, 14], "If": [1, 2, 3, 6, 9, 11, 14], "In": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "It": [2, 3, 5, 7, 8, 9], "Its": 4, "NOT": 2, "No": [], "Not": 11, "OR": 2, "One": [2, 10, 13], "Or": [], "That": 7, "The": [0, 1, 7, 8, 10, 11, 13], "Then": [5, 8], "There": [5, 9, 11], "These": [1, 2, 3, 5, 9], "To": [1, 3, 4, 5, 6, 7, 8, 12, 13, 14], "Will": 9, "With": [1, 2], "_": [6, 14], "_0": [5, 7, 8], "_0e": 7, "_1": [7, 8], "_2": [1, 4, 6, 7], "_4": 6, "_5": 7, "__call__": [], "__class__": [], "__getattribute__": [], "__name__": [], "_accessor": [], "_api": [], "_auto_adjust_subplotpar": [], "_axesbas": [], "_axi": [], "_axis_map": [], "_base": [], "_can_hold_identifiers_and_holds_nam": [], "_copy_docstring_and_deprec": [], "_draw_all_if_interact": [], "_draw_dis": [], "_draw_list_compositing_imag": [], "_express": [], "_finalize_raster": [], "_fontproperti": [], "_get_layout": [], "_get_render": [], "_get_text_metrics_with_cach": [], "_get_text_metrics_with_cache_impl": [], "_get_tightbbox_for_layout_onli": [], "_i": 8, "_idle_draw_cntx": [], "_in_subscript_or_superscript": [], "_info_axi": [], "_is_idle_draw": [], "_make_html": [], "_mathtext": [], "_n": 6, "_output_typ": [], "_parse_cach": [], "_parser": [], "_prepare_font": [], "_preprocess_math": [], "_pylab_help": [], "_raster": [], "_render": [], "_setattr_cm": [], "_state_stack": [], "_tight_layout": [], "_update_title_posit": [], "_v": 10, "_val_or_rc": [], "_wait_cursor_for_draw_cm": [], "_x": 6, "_y": 6, "a0": [], "a_0": [5, 13], "ab": 4, "abil": 2, "abl": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "about": [3, 4, 5, 7, 10, 14], "abov": [1, 2, 4, 5, 7, 8, 9, 10, 11, 13], "absolut": [4, 9], "absorb": 8, "academ": [1, 14], "acc": 14, "accept": [], "acceptance_prob": 14, "access": [1, 2, 3, 4, 14], "accord": [], "accordingli": 3, "account": 8, "accumul": 3, "accur": [5, 8, 11], "accuraci": [5, 6, 8, 12], "achiev": [1, 5, 14], "acquir": [], "across": [1, 2, 3], "act": 9, "actinium": 2, "action": [3, 4], "actual": 4, "ad": [2, 3, 9], "adapt": 4, "add": [1, 2, 3, 6, 11], "addh": [], "addit": 1, "addition": 1, "addmodel": [], "address": [], "adjac": [], "adjust": 8, "admonit": [], "adsorb": [], "adsorpt": 11, "advanc": 1, "advantag": [4, 5], "affect": [4, 8], "after": [1, 8], "ag": 3, "against": 9, "age_squar": 3, "aggreg": 2, "agre": 7, "aim": 4, "al": 14, "algebra": [0, 2], "algegra": [], "algorithm": [0, 4], "alia": 1, "alic": 3, "align": [5, 6, 12], "alkan": 6, "all": [1, 5, 8, 9, 10, 11], "allchem": [], "allow": [1, 2, 3, 4, 5, 14], "allow_raster": [], "along": [2, 5], "alpha": [5, 8, 12, 14], "alpha_": [], "alpha_th": [], "alreadi": 8, "also": [1, 2, 3, 4, 5, 8, 9, 10, 11], "altern": [3, 7], "aluminum": 2, "alwai": [2, 3, 4, 5], "americium": 2, "amount": 5, "an": [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 14], "analog": [4, 14], "analys": 1, "analysi": [0, 1, 2, 14], "analyt": [4, 8, 12], "analytical_overlap_integr": 5, "analytical_result": 5, "analyz": [1, 2, 8], "anatomi": 2, "anharmon": 14, "ani": [1, 2, 3, 6, 11, 12], "anim": 2, "annot": [2, 8, 10], "anonym": 3, "anoth": [9, 14], "answer": 9, "antialias": [], "antimoni": 2, "aperiod": [], "appear": 1, "append": [5, 13, 14], "appendix": [], "appl": 3, "appli": [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14], "applic": [1, 2, 4, 14], "appreci": 9, "approach": [3, 6, 10, 12], "appropri": [], "approx": [12, 14], "approxim": [1, 4, 5, 7, 12, 14], "ar": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "arang": [], "arbitrari": [], "arctan": [], "area": [1, 2, 3, 5, 11], "arg": 4, "argon": 2, "argument": [3, 5], "arithmet": 1, "around": [1, 5], "arr": 3, "arrai": [1, 4, 5, 6, 7, 8, 14], "arrang": 9, "arriv": 9, "arrow": 10, "arrowprop": 10, "arrowstyl": 10, "artist": [], "ase": 1, "ask": 7, "aspect": [2, 3], "assess": 8, "assign": 3, "associ": 9, "assum": [4, 7], "astyp": 6, "asymmetr": 14, "asymmetri": 14, "atom": [1, 2, 5, 6, 9, 13], "atomist": 1, "attract": 1, "attribut": [], "attributeerror": [], "auto_adjust_subplotpar": [], "autocorrel": 14, "autom": [1, 6], "automat": 1, "avail": [1, 2, 9, 10], "averag": [11, 13], "average_f": [], "average_f_x": [], "average_x_squar": 12, "average_x_squared_plus_y_squar": [], "avg": [], "avoid": [3, 4, 5], "awai": [], "awesom": 1, "ax": [2, 5], "ax1": 10, "ax2": 10, "ax_bbox_list": [], "axes_list": [], "axhlin": [4, 8, 13], "axi": [1, 4, 5], "axison": [], "axvlin": 8, "b": [1, 2, 5, 6, 7, 10, 12, 13, 14], "ba": [], "back": [3, 5], "backend": [], "backend_agg": [], "backend_bas": [], "background": [], "backward": 3, "bad": [], "balanc": 0, "banana": 3, "bar": [1, 2, 4, 5, 7, 8], "barrier": [], "base": [2, 3, 6, 7, 8, 13], "base64": [], "baseformatt": [], "basic": [1, 3, 12, 14], "bath": [10, 11], "bb": [], "bbox": [], "bbox_extra_artist": [], "bbox_inch": [], "becaus": [3, 4, 5, 6, 8, 11, 13], "becom": [2, 3, 5, 9, 12, 14], "been": [7, 8], "beer": 8, "befor": [1, 2, 3, 4, 5, 6, 9, 14], "begin": 6, "behav": 3, "behavior": [4, 8, 9, 10, 11, 12], "behind": [], "being": [2, 5, 10, 11], "below": [3, 8, 13], "bench": 7, "benchmark": [], "benefit": 12, "best": 1, "beta": [7, 8, 10, 11, 12, 14], "beta_0": 7, "beta_1": 7, "beta_param": 12, "better": 2, "between": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "beyond": [1, 2], "bias": 12, "big": 5, "bin": [2, 14], "biologi": 1, "bisect": 4, "black": [2, 4, 5, 10, 13], "block": 3, "blue": [2, 8, 10, 14], "bmatrix": 6, "bob": 3, "bohr": 5, "boltzmann": 14, "bond": [0, 2], "both": [1, 2, 3, 4, 6, 9], "bound": 4, "boundari": 9, "box": 1, "bracket": 2, "bread": 2, "break": 3, "brew": 8, "bring": [1, 8, 9], "broad": 4, "broadcast": 2, "broader": [], "broadli": 9, "browser": 1, "build": [2, 3], "built": [1, 2, 3], "butter": 2, "butteri": 8, "bytes_io": [], "c": [1, 2, 6], "c2009": 14, "c_v": [8, 10], "cach": [], "calcul": [1, 2, 3, 6, 7, 8, 10, 11, 13, 14], "calculate_area": 3, "calculu": 1, "calibr": 0, "call": [3, 7, 8], "call_axes_loc": [], "callback": [], "caller": 3, "campu": [], "can": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "candid": 12, "cannot": 7, "cantera": 1, "canva": [], "capabl": [1, 2], "capac": 8, "carbon": [1, 6, 9], "carbon_mass": 1, "care": 4, "carlo": [0, 1, 11], "cartesian": 5, "case": [1, 3, 4, 7, 8, 9, 11, 12], "cater": 2, "caus": [3, 5, 14], "caveman": [], "cbook": [], "cco": [], "cdot": [4, 9], "cell": [], "center": [5, 10], "central": [5, 9, 11], "certain": [3, 4, 8], "cesium": 2, "ch": 6, "chain": 14, "challeng": [1, 3, 6, 14], "chang": [2, 4, 5, 7, 9, 10, 14], "channel": 3, "char": 3, "charact": 3, "character": [4, 12], "charg": 5, "charli": 3, "chart": 2, "check": [2, 4, 5, 6], "chem": [], "chemic": [7, 9, 11, 14], "chemist": 8, "chemistri": [2, 5], "cherri": 3, "choic": [4, 11, 13, 14], "choos": [4, 14], "chop": [], "ci": 8, "circ": [4, 11], "circl": [3, 4], "circular": 2, "citi": 3, "cl": [], "clarif": 3, "class": 2, "classic": [0, 4, 5], "clean": 2, "clean_lin": [], "cleaner": 5, "clear": 7, "clearer": [], "clearli": 3, "clip": [], "close": [4, 5, 8, 9, 10, 11], "close_group": [], "closer": 12, "cluster": 9, "co": [1, 6], "code": [1, 2, 3, 4, 5, 11, 12, 13], "coeff": [], "coeffici": 4, "cohes": 2, "col": [], "collaps": [], "collect": [2, 3, 5, 7, 8, 10, 11, 14], "color": [1, 2, 4, 8, 10, 13, 14], "colspan": [], "column": [2, 3], "combin": [3, 9], "combust": [], "come": [1, 5, 8, 11], "command": [1, 2], "comment": 2, "common": [2, 3], "commonli": [1, 2, 3, 11], "commun": [], "comp": [], "compact": 3, "compani": 8, "compar": [3, 5, 10, 13], "complet": [], "complex": [1, 2, 3, 4, 6, 10, 11, 14], "compon": [2, 3], "composit": [], "compound": [1, 8], "comprehens": 2, "comput": [1, 3, 7, 8, 12, 14], "computation": [], "concentr": [4, 7, 8, 12, 14], "concept": [3, 4, 9, 10, 11, 12], "concis": [3, 6], "conclud": [1, 2], "condit": [2, 4, 9, 10, 11], "condition1": 3, "condition2": 3, "confid": [0, 2, 3, 7], "confidence_interval_intercept": 8, "confidence_interval_slop": 8, "confidence_level": 8, "configur": [10, 11, 14], "confin": 11, "confirm": [2, 6], "conserv": 6, "consid": [3, 4, 5, 6, 7, 10, 11], "consider": [4, 10], "consist": [5, 9, 10, 11], "constant": [1, 4, 8, 9, 12, 14], "constitu": 2, "constrain": [], "constraint": [4, 11], "construct": 14, "consum": 7, "contact": 11, "contain": [1, 2, 3, 6, 7, 8, 10, 11], "context": 4, "continu": [1, 3], "contourpi": [], "contrast": [], "contribut": [12, 14], "control": [0, 14], "conveni": 2, "convent": [], "converg": [4, 5, 13, 14], "convert": [3, 4, 5, 7, 14], "cool": 7, "coordin": [5, 13, 14], "copi": [], "core": [2, 3], "cornerston": 2, "correct": 4, "correctli": 6, "correl": [0, 14], "correlation_coeffici": 8, "correspond": [3, 6, 7, 8, 9, 10, 11], "could": 7, "count": 3, "coupl": 1, "cours": [1, 2], "coval": 5, "cover": [1, 2, 3], "coverag": 11, "creat": [1, 3, 5, 6, 8, 13], "criteria": 2, "critic": [2, 8], "critical_t_valu": 8, "crucial": [1, 3, 4], "crystal": 9, "csv": 2, "cubic": 4, "cubic_eq": 4, "cumul": [], "current": 14, "curs": [], "curv": [4, 5, 7], "cycler": [], "d": [5, 6, 9, 14], "d_e": 14, "da": 9, "darkblu": 14, "dash": [2, 13, 14], "data": [0, 1, 3, 5, 7], "databas": 2, "datafram": 5, "dataset": [2, 3], "dateutil": [], "de": [], "decai": [5, 7], "decim": 4, "decis": 3, "decompos": [2, 7, 14], "decreas": [5, 9, 10], "deepen": 1, "deepli": 2, "def": [3, 4, 5, 7, 8, 13, 14], "default": [1, 2], "defin": [4, 5, 7, 8, 9, 10, 11, 14], "definit": [2, 5, 9], "degre": 8, "delta": [5, 9, 14], "delta_u": 14, "delv": 2, "demonstr": [1, 2, 4, 6, 12, 14], "denom": 13, "denomin": [7, 8], "densiti": [12, 14], "depend": [3, 7, 8, 9, 11, 14], "deprec": [], "deprecationwarn": [], "deriv": [4, 7, 9, 10], "descent": [], "describ": [3, 7, 10, 11], "descript": [3, 12], "design": [1, 2, 3, 4], "desir": [8, 14], "desorb": [], "det": 2, "detail": [1, 2, 11], "determin": [1, 2, 4, 5, 6, 8, 10, 14], "develop": [2, 8, 11], "deviat": 8, "deviations_i": 8, "deviations_x": 8, "df": [2, 3, 8], "dg": 9, "diacetyl": 8, "diagram": 9, "diatom": [8, 14], "dict": 10, "dictat": [3, 5, 6], "dictionari": [2, 4], "did": [6, 7, 8], "differ": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12], "differenti": [1, 2, 9], "difficult": 11, "dim": [], "dimens": [5, 14], "dimension": [2, 14], "dioxid": [1, 6, 9], "direct": [8, 9, 10], "directli": [1, 2, 12], "discard": 14, "discuss": [3, 5, 7, 8, 9, 10, 11], "disord": 10, "displac": 9, "displai": [1, 2, 4, 5, 8, 13], "dispos": 1, "dissoci": [4, 14], "distanc": [2, 5, 8, 9, 13], "distinct": 10, "distinguish": 10, "distribut": [2, 8, 12, 14], "div_col": [], "div_row": [], "dive": 1, "divers": 1, "divid": [5, 6, 8], "divis": [1, 3], "do": [3, 4, 5, 6, 7, 8, 9, 10, 11, 13], "docstr": 3, "document": [1, 2, 3], "doe": [3, 4, 10], "doesn": 1, "doi": 14, "domain": 14, "don": [1, 2, 3], "done": [4, 9], "dot": [2, 3], "dot_product": 2, "down": 4, "download": 2, "dp": [], "dpi": [], "dr": 5, "draw": [], "draw_al": [], "draw_idl": [], "draw_without_rend": [], "draw_wrapp": [], "drawn": 12, "dt": [], "dtype": 2, "du": 9, "due": 14, "duplic": 3, "dure": [1, 8, 14], "dv": 9, "dw": [], "dx": [5, 12, 13], "dy": [5, 13], "dynam": [1, 3, 11], "dz": [5, 13], "e": [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14], "e_1": 10, "e_2": 10, "e_avg": 10, "e_i": 10, "each": [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13], "earlier": [], "eas": [1, 2], "easi": 2, "easier": [2, 3], "easili": [1, 2, 3], "ecosystem": 2, "edg": 5, "edgecolor": [2, 4, 5], "effect": 4, "effici": [2, 3, 5, 6, 12, 13, 14], "effort": 14, "eigenvalu": 2, "eight": 13, "eigval": 2, "either": [3, 10], "electron": [1, 5, 11], "eleg": [2, 3], "element": [2, 5, 6], "ellipt": [], "els": 14, "elsewher": 3, "embedmolecul": [], "emphas": 12, "emploi": [1, 6, 12], "empti": 11, "en": 9, "enabl": [2, 3], "encapsul": 3, "encount": [1, 2], "end": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "endpoint": 5, "energet": 5, "energi": [2, 4, 11, 14], "enforc": 4, "engin": [1, 2], "enhanc": 1, "ensembl": 0, "ensur": [1, 2, 3, 4, 6, 8, 10, 14], "enthalpi": 9, "entir": 5, "entropi": 9, "enumer": 5, "env": [], "environ": [1, 2], "epsilon": 10, "epsilon_i": 7, "equal": [2, 3, 4, 6, 7, 9, 10, 11], "equat": [0, 1, 2, 7, 9, 11, 14], "equilibr": 14, "equilibria": [0, 2], "equilibrium": [7, 10, 11, 14], "equilibrium_equ": 4, "equip": 1, "equival": [], "erf": [], "ergod": 0, "err": [], "error": [1, 7, 8], "errorbar": 13, "escap": [], "especi": [2, 3, 4, 6, 14], "essenc": 12, "essenti": [0, 3, 4], "establish": [8, 9], "estim": [7, 8], "estimated_integr": 12, "et": 14, "etc": 9, "etymologi": 9, "ev": [2, 10, 14], "evalu": [3, 4, 8, 12, 14], "even": [], "eventu": 3, "everi": [2, 11, 14], "exact": [5, 9, 12, 13], "exampl": [1, 2, 3, 5, 9, 12], "excel": [1, 2], "except": [7, 11], "excess": [], "exchang": [10, 11], "excit": 10, "execut": 3, "exist": 3, "exp": [5, 10, 13, 14], "expand": [3, 9], "expect": [3, 5], "expens": [], "experi": [1, 3, 4, 9], "experiment": [7, 8], "explain": [2, 3, 10, 12], "explan": [], "explicit": 4, "explor": [1, 2, 3, 4, 6, 11], "expon": 13, "exponenti": [1, 7, 13], "express": [1, 3, 4, 6, 7], "extend": [1, 2, 6, 14], "extens": [2, 9], "extent": 4, "ey": 2, "f": [2, 4, 5, 7, 8, 9, 10, 11, 12, 14], "f_x": 12, "facecolor": 10, "facilit": 3, "factor": 5, "fail": [], "fall": 2, "fals": [2, 3, 5], "far": [1, 2, 9], "fast": 14, "faster": 13, "feel": 3, "ferment": 8, "few": [2, 3, 14], "fewest": 5, "fibonacci": 3, "field": 2, "fig": [5, 10], "figsiz": [5, 8, 10, 13, 14], "figur": [2, 5, 8, 9, 10, 13, 14], "figurecanvasagg": [], "figurecanvasbas": [], "file": 2, "filenam": [], "fill": 2, "filter": 3, "filtered_df": 2, "final": [1, 4, 5, 6, 7, 9], "final_simplex": 4, "find": [1, 2, 6, 7, 10, 11, 13], "finit": 4, "first": [1, 2, 3, 4, 5, 6, 7, 8, 13], "fit": [1, 7, 8], "fix": [10, 11], "flavor": 8, "flexibl": [2, 3, 4], "float": [1, 2, 3, 4, 5, 13], "float64": 2, "flow": 3, "fluctuat": 14, "fluorin": 2, "fmt": 13, "focu": [1, 2, 5, 7], "focus": [3, 14], "folder": 4, "follow": [1, 2, 3, 4, 5, 6, 7, 8, 12], "font": [], "font_imag": [], "fontprop": [], "fonts_object": [], "fontset": [], "fontsiz": 8, "fonttool": [], "for_layout_onli": [], "forc": 9, "forget": [2, 3], "forgot": 7, "form": [3, 5, 6, 7, 14], "formal": 5, "format": [1, 2, 4, 5], "formatt": [], "formula": [4, 6, 7, 8], "forward": [1, 3, 4], "found": [4, 6, 7, 8, 9, 13], "foundat": [1, 6], "fourier": 2, "frac": [4, 5, 6, 7, 8, 9, 10, 11, 12, 14], "free": [3, 4, 9], "freedom": 8, "freezer": 7, "frenkel": 14, "frequenc": 2, "frequent": [1, 2, 3], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14], "fruit": 3, "full": 2, "fun": 4, "func": [], "function": [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14], "function_nam": 3, "functool": [], "fundament": [1, 2, 3], "further": 3, "futur": 7, "g": [2, 3, 4, 5, 6, 9, 13], "g_x": 12, "ga": [8, 9, 10, 11], "gain": [1, 2, 9, 10], "game": [], "gase": [4, 11], "gaussian": 5, "gcf": [], "gener": [3, 4, 7, 8, 12, 13, 14], "genom": 1, "geq": 9, "get": [3, 4, 6, 8, 12, 13], "get_3d_molecule_html": [], "get_agg_filt": [], "get_all_fig_manag": [], "get_layout_engin": [], "get_real_method": [], "get_subplotspec_list": [], "get_text": [], "get_text_width_height_desc": [], "get_tight_layout_figur": [], "get_tightbbox": [], "get_transform": [], "get_unitless_posit": [], "get_vis": [], "get_window_ext": [], "getattr": [], "getvalu": [], "gg": [], "gibb": [4, 9], "give": [1, 3, 5, 6, 8, 9, 12], "given": [3, 4, 5, 9, 10, 11, 12, 13], "glimps": 1, "global": [], "go": 1, "goal": [6, 7, 12], "good": [3, 4, 8, 12, 13], "googl": 1, "got": [], "govern": [5, 9], "gradient": 10, "grai": [4, 8], "gram": 1, "graph": 7, "graphic": [1, 2], "great": [1, 8], "greater": [2, 3, 7, 9], "green": [8, 10, 14], "greet": 3, "grew": [], "grid": [2, 4, 5, 8, 10, 13, 14], "grid_rang": 5, "ground": 10, "group": 2, "grow": [], "guess": 5, "gui": [], "guid": 3, "guidanc": [], "h": [1, 3, 4, 6, 9, 13], "h_pad": [], "ha": [1, 2, 3, 4, 7, 8, 9, 10, 11], "had": 7, "hamiltonian": 2, "hand": 10, "handl": [1, 2, 3], "happen": [3, 4, 10], "harmon": [], "has_imag": [], "hast": [], "hat": [7, 8], "have": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11], "hbar": [], "he": [], "header": [], "heat": [8, 11], "heavili": 2, "height": 5, "hello": 3, "helmholtz": 9, "help": [1, 2, 3, 4, 6], "helper": [], "here": [1, 2, 3, 4, 5, 6, 8, 9, 14], "hesit": [1, 3], "hide_index": [], "high": [8, 10, 11, 14], "high_root_guess": 4, "higher": [2, 10, 14], "highli": [1, 2], "highlight": 4, "hint": [1, 2, 3], "hist": [2, 14], "histogram": 14, "histori": [], "hline": 14, "hold": [1, 2, 9], "how": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14], "howev": [2, 4, 6, 11, 12], "html": 13, "http": [9, 14], "hybrid": 5, "hydrocarbon": [], "hydrogen": [1, 4, 13], "h\u2082": 6, "h\u2082o": 6, "i": [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "ic": 4, "idea": [3, 12], "ideal": [1, 2, 8, 9, 11], "ident": [2, 11], "identifi": 7, "ignor": [], "ignore_index": [], "ij": 5, "illustr": [4, 12, 14], "imag": 2, "image_group": [], "imagin": [7, 8], "imperm": 9, "implement": 5, "implic": 9, "import": [1, 3, 5, 7, 8, 10, 11, 14], "importance_sampl": 13, "impos": [], "impract": [], "improv": [12, 13, 14], "includ": [1, 2, 3, 4, 8, 9, 10], "inclus": 4, "increas": [5, 10, 11, 12, 13, 14], "incredibli": [2, 3], "increment": [3, 5], "indefinit": 3, "independ": [7, 8, 14], "index": [2, 3, 4, 5, 7], "indic": [4, 8, 10], "indispens": 2, "individu": [3, 10, 11], "industri": 1, "ineffici": 14, "inequ": 9, "inexact": 9, "infeas": [], "infinit": 2, "infinitesim": 9, "influenc": 4, "info": [], "inform": [1, 2, 4, 10], "infti": [5, 13], "initi": [3, 7, 14], "inject": [], "inorgan": 5, "input": [2, 3], "insert": 4, "insid": 3, "insight": [2, 9, 10], "instanc": [1, 4], "instead": [4, 5, 12], "instruct": [1, 3], "int": [5, 6, 9, 14], "int_": [5, 13], "int_0": [5, 12], "int_a": [5, 12], "integ": 2, "integr": [0, 2, 7, 14], "integral_df": [], "integral_estim": [], "integral_i": 5, "integral_x": 5, "integrand": [5, 12, 13, 14], "integrand_valu": 5, "integratrion": [], "intens": 9, "interact": [1, 2, 9, 11], "intercept": [7, 8], "interest": [8, 11, 14], "interfac": 1, "intermedi": 10, "intern": [], "interpol": 2, "interpret": [6, 7, 8], "intersect": 4, "interv": [0, 2, 4, 5, 12, 14], "introduc": [9, 10, 11], "introduct": 0, "intuit": 5, "inv": 2, "invalid": [], "invalu": [1, 2], "invers": [2, 14], "invert": [], "investig": 14, "involv": [4, 5, 6], "ion": 9, "ipykernel_10087": [], "ipykernel_10267": [], "ipykernel_10290": [], "ipykernel_10392": [], "ipykernel_10894": [], "ipykernel_11504": [], "ipykernel_12070": [], "ipykernel_12261": [], "ipykernel_12756": [], "ipykernel_13537": [], "ipykernel_13999": [], "ipykernel_14380": [], "ipykernel_14625": [], "ipykernel_16501": [], "ipykernel_16598": [], "ipykernel_16635": [], "ipykernel_16685": [], "ipykernel_16737": [], "ipykernel_16804": [], "ipykernel_16842": [], "ipykernel_16884": [], "ipykernel_16975": [], "ipykernel_17053": [], "ipykernel_17105": [], "ipykernel_17136": [], "ipykernel_20224": [], "ipykernel_20664": [], "ipykernel_20834": [], "ipykernel_21107": [], "ipykernel_21954": [], "ipykernel_22428": [], "ipykernel_22617": [], "ipykernel_22886": [], "ipykernel_26292": [], "ipykernel_26479": [], "ipykernel_26525": [], "ipykernel_26897": [], "ipykernel_27150": [], "ipykernel_27540": [], "ipykernel_27695": [], "ipykernel_28014": [], "ipykernel_28159": [], "ipykernel_28455": [], "ipykernel_28589": [], "ipykernel_28609": [], "ipykernel_28909": [], "ipykernel_29131": [], "ipykernel_29352": [], "ipykernel_30005": [], "ipykernel_30224": [], "ipykernel_30465": [], "ipykernel_31674": [], "ipykernel_31908": [], "ipykernel_32080": [], "ipykernel_32531": [], "ipykernel_34814": [], "ipykernel_35168": [], "ipykernel_35574": [], "ipykernel_3669": [], "ipykernel_37857": [], "ipykernel_4171": [], "ipykernel_4437": [], "ipykernel_44743": [], "ipykernel_45602": [], "ipykernel_4962": [], "ipykernel_5297": [], "ipykernel_55148": [], "ipykernel_55996": [], "ipykernel_5780": [], "ipykernel_6053": [], "ipykernel_6165": [], "ipykernel_6610": [], "ipykernel_6946": [], "ipykernel_7270": [], "ipykernel_75226": 4, "ipykernel_8585": [], "ipykernel_86731": [], "ipykernel_8703": [], "ipykernel_9023": [], "ipykernel_9444": [], "ipykernel_9640": [], "ipykernel_9642": [], "ipykernel_96621": [], "ipykernel_97096": [], "ipykernel_97762": [], "ipykernel_98107": [], "ipykernel_98323": [], "ipykernel_9850": [], "ipykernel_98609": [], "ipykernel_98736": [], "ipykernel_99004": [], "ipykernel_99350": [], "ipykernel_99922": [], "ipython": 13, "irregular": [], "irrevers": 9, "is_interact": [], "isinst": [], "ismath": [], "isn": 8, "isol": [9, 11], "issu": [], "item": [2, 3], "iter": [3, 4, 14], "iterrow": 3, "its": [1, 2, 3, 4, 6, 8, 9, 11, 12], "itself": [3, 14], "j": [5, 8], "journal": 14, "journei": 1, "julia": 1, "jump": 6, "jupyt": 2, "just": [1, 2, 3], "k": [4, 7, 8, 9, 10, 11, 14], "k_": 10, "k_b": [10, 11, 14], "k_p": 4, "keep": 3, "kei": [1, 8], "kelvin": 10, "keyword": 3, "kind": 1, "kinet": [1, 7, 9], "kiwisolv": [], "kj": 2, "know": [6, 8], "knowledg": 3, "known": [10, 12], "ko": [], "kt": 7, "kw": [], "kwarg": [], "l": [3, 7, 8], "lab": 7, "label": [1, 2, 4, 5, 8, 10, 13, 14], "lambda": [], "lambert": 8, "land": 14, "langl": [10, 11, 12, 14], "langmuir": 11, "languag": 1, "larg": [2, 3, 10, 14], "larger": 12, "last": [3, 8], "later": 1, "latest": 1, "latex": 1, "latter": 5, "law": [4, 6, 8, 10], "layout": [], "layout_engin": [], "lead": 14, "learn": [], "least": 8, "lectur": 0, "left": [4, 5, 6, 7, 8, 9, 10, 11, 14], "legend": [1, 2, 4, 5, 8, 10, 13, 14], "len": 8, "length": [], "leq": 13, "less": [3, 5], "let": [2, 4, 5, 6, 7, 8, 12, 13], "level": [5, 8, 10], "leverag": [2, 6], "li": 4, "lib": [], "librari": [1, 2, 8, 14], "lie": 4, "lightblu": 14, "like": [1, 2, 3, 5, 8, 9, 11, 14], "lim_": 5, "limit": [4, 5, 13], "linalg": [2, 6], "line": [1, 3, 5, 8, 9, 13], "linear": [0, 2, 8], "linearli": 8, "linestyl": [2, 4, 8, 10, 13, 14], "linspac": [2, 4, 5, 10, 13, 14], "linux": 1, "list": [5, 9, 13], "list_of_thermodynamic_properti": 9, "littl": 3, "live": [1, 9], "ll": [1, 2, 3, 4, 6, 14], "ln": [7, 10, 11], "ln_concentr": 7, "load": 2, "loc": [], "local": 5, "locat": [], "lock": [], "log": [7, 10, 13], "logic": 2, "long": 3, "longer": 14, "look": [3, 8], "loop": [5, 13], "lose": 9, "lost": 6, "low": [5, 10], "low_root_guess": 4, "lower": [], "lru_cach": [], "luck": [3, 8], "m": [1, 2, 7, 14], "m3": [], "m_1": 9, "m_2": 9, "m_i": 9, "m_inv": 2, "mac": 1, "machin": [1, 14], "macroscop": [10, 14], "made": 8, "magnet": 2, "mai": [11, 14], "main": [3, 9], "maintain": [2, 3, 8], "major": [1, 8], "make": [1, 2, 3, 10, 11, 14], "make_keyword_onli": [], "manag": [], "mani": [1, 2, 9, 10, 11, 14], "manipul": 1, "manner": 2, "manual": 6, "map": 3, "margin": [], "marker": 2, "markov": 14, "martist": [], "mass": [1, 4, 6, 9], "master": 1, "match": [4, 12], "materi": [1, 5, 9], "math": 1, "mathbf": [9, 14], "mathcal": [], "mathemat": 2, "mathematica": 1, "mathtext": [], "mathtext_pars": [], "mathtextpars": [], "matlab": 1, "matplotlib": [1, 4, 5, 7, 8, 10, 13, 14], "matric": 2, "matrix": [], "matter": [1, 5, 9], "max": 3, "max_ncol": [], "max_nrow": [], "maximum": [2, 11, 14], "mayb": [], "mcmc": [], "mead": 4, "mean": [1, 2, 6, 7, 8, 9, 11, 12, 13, 14], "mean_i": 8, "mean_x": 8, "meaning": 4, "measur": [8, 9, 10, 11], "mechan": [2, 5, 9, 10, 11], "medium_root_guess": 4, "meet": [2, 7], "mercuri": 2, "merg": [2, 3], "meshgrid": 5, "mess": [], "messag": [3, 4, 12], "met": 3, "methan": 6, "method": [0, 2, 3, 5, 6, 7, 8, 13, 14], "method_nam": 3, "metropoli": 0, "metropolis_sampl": 14, "mg": 8, "microscop": 10, "microst": 11, "middl": [], "midpoint": 4, "might": [1, 6], "mimag": [], "min": [3, 6, 7, 14], "miniconda3": [], "minim": [7, 9], "minimum": [2, 9, 14], "minu": [], "mixtur": 4, "model": [1, 7, 8, 11, 14], "modern": 1, "modifi": [1, 2, 4, 13], "modul": [1, 2], "modular": 3, "modulenotfounderror": [], "modulo": 3, "mol": [2, 4, 7, 8], "mol_block": [], "molar": 1, "molar_mass": 1, "mole": [1, 2, 4, 9], "molecul": [6, 9, 10, 11, 14], "molecular": [1, 2, 5, 11, 14], "molecule_html": [], "molfromsmil": [], "moltomolblock": [], "momenta": [], "mont": [0, 1, 11], "monte_carlo_integr": [], "more": [2, 3, 4, 5, 6, 9, 10, 11, 12], "morse_potenti": 14, "most": [2, 3, 5], "motion": [], "movabl": 11, "move": [1, 3, 5, 9, 14], "mpl": [], "mu": 11, "mu1": [], "mu2": [], "mu_1": [], "mu_2": [], "much": [1, 2, 7, 9, 13, 14], "multi": [2, 4], "multidimension": [5, 14], "multipl": [1, 2, 3, 4, 6], "multipli": [2, 3, 13], "must": [1, 3, 4, 5, 14], "mutat": [], "mx": 7, "my_dict": 3, "my_list": [2, 3], "n": [2, 3, 5, 6, 7, 8, 9, 11, 12, 14], "n1": [], "n2": [], "n2o5": 7, "n9": 4, "n_data_point": 8, "n_equilibr": 14, "n_i": 14, "n_point": 13, "n_points_list": 13, "n_sampl": 14, "n_step": 14, "n_valu": 5, "name": [1, 2, 3], "name_idx": [], "nameerror": [], "narr": 1, "narrow": 4, "natur": [7, 9], "ndarrai": 2, "necessari": [11, 14], "need": [1, 2, 3, 4, 5, 6, 7, 8, 10, 13], "neg": [8, 9], "nelder": 4, "net": [4, 9], "never": [3, 9], "new": [1, 3, 4, 8, 14], "new_list": 3, "newton": 4, "next": [1, 3, 6, 13], "nfev": 4, "nit": 4, "nm": 8, "nobr": 7, "non": [], "nondecreas": [], "none": 3, "nonlinear": 4, "norm": [], "normal": [5, 10], "normalization_factor": 5, "not_composit": [], "notat": 3, "note": 13, "notebook": 2, "notic": [], "now": [1, 3, 4, 5, 6, 7, 8, 11, 14], "np": [2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14], "nriemann": 5, "nrt": 9, "nstep": [], "nucleu": 5, "null": [], "null_spac": 6, "null_vec": 6, "nullcontext": [], "number": [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "numer": [0, 1, 2, 3, 7, 8, 13, 14], "numerical_result": [], "numpi": [1, 4, 5, 6, 7, 8, 10, 12, 13, 14], "o": [1, 2, 3, 4, 6, 7, 13, 14], "obei": 4, "obj": [], "obj_typ": [], "object": [], "objective_funct": 4, "observ": [4, 7, 8, 10], "obtain": [4, 5, 6, 8, 14], "occupi": 11, "occur": [3, 4, 11], "octant": 13, "off": 9, "offer": [1, 2], "offici": [1, 2], "offsettext": [], "often": [1, 3, 4, 11, 12], "oi": [], "ok": [5, 8], "ol": [7, 8], "old": 14, "old_list": 3, "ols_intercept": [7, 8], "ols_slop": [7, 8], "omega": 10, "omit": [], "onc": [1, 2, 6, 7], "one": [1, 2, 3, 4, 6, 7, 8, 9, 11, 14], "ones": 2, "onli": [1, 2, 3, 6, 9, 13, 14], "open": [1, 9], "oper": [1, 3, 5, 6], "operand": [], "opportun": 2, "opposit": 9, "optim": [2, 5], "optimizewarn": 4, "option": 3, "orang": 10, "orbit": [11, 13], "order": [0, 2, 9, 10], "ordinari": 8, "org": [9, 14], "organ": [1, 2, 3, 5], "orient": [2, 5], "origin": [1, 3], "orthonorm": 2, "other": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11], "otherwis": 3, "our": [1, 2, 5, 6, 7, 8, 9, 11, 12], "out": [1, 2], "outcom": 4, "output": [2, 4, 6], "outsid": 4, "over": [2, 3, 5, 10, 11, 12, 13], "overal": [7, 10], "overlai": 14, "overlap": 2, "overlap_integr": 5, "overlap_integral_trapezoid": 5, "overleaf": 1, "overview": 2, "own": [1, 3, 8, 11], "ox": [], "oxygen": [1, 4, 6], "oxygen_mass": 1, "p": [2, 4, 9, 11, 14], "p1": 10, "p1_valu": [], "p2": 10, "p2_valu": [], "p_": 4, "p_1": 10, "p_2": 10, "p_i": 10, "p_x": [], "packag": [0, 1], "pad": [], "pad_inch": [], "pair": 3, "panda": [1, 5, 13], "panel": [], "paramet": [2, 4, 5, 7, 8, 12, 13, 14], "parent": [], "parenthes": [2, 3], "pars": [], "parsebaseexcept": [], "parseexcept": [], "parser": [], "parsestr": [], "part": [1, 4, 9, 14], "parti": [], "partial": [4, 10, 11], "particip": [], "particl": [5, 9, 10, 11, 14], "particular": [9, 10, 11], "particularli": [1, 2, 3, 4], "partit": [11, 14], "partition_funct": [], "pass": [], "patch": [], "path": [1, 9], "pattern": [], "pd": [2, 3, 5, 13], "pdf": [2, 12, 13], "peak": [8, 10], "per": [2, 6], "percentag": 4, "perfect": [8, 9], "perform": [1, 2, 3, 4, 5, 7, 8], "period": 2, "permeabl": 9, "person": 3, "phase": [11, 14], "phenomenon": 5, "phi": 5, "physic": [1, 2, 4, 5, 8, 14], "pi": [5, 7, 13, 14], "pillow": [], "pip": [1, 2], "pip3": 1, "piston": [9, 11], "place": 4, "placehold": 4, "placeholderlayoutengin": [], "plai": [2, 4, 5], "plain": [], "plan": 7, "planck": [], "plot": [1, 4, 5, 7, 8, 10, 11, 13], "plotli": 1, "plt": [1, 2, 4, 5, 7, 8, 10, 13, 14], "plu": 9, "pm": [4, 8], "png": 2, "point": [2, 4, 5, 7, 8, 9, 12, 13, 14], "polyfit": [], "polyv": [], "popular": 1, "posit": [2, 3, 6, 8, 9, 10, 14], "position": [], "possibl": [1, 3, 5, 6, 11, 13], "post_execut": [], "postul": 11, "potassium": 2, "potenti": 11, "power": [1, 3, 4, 7, 12, 14], "ppf": 8, "practic": 4, "pre": 1, "preced": [], "precipit": 9, "precis": 8, "predefin": [2, 14], "predetermin": 3, "predict": [1, 4, 7, 8, 11], "prefix": 1, "prepar": [1, 5], "presenc": 8, "present": [1, 2, 7], "press": 14, "pressur": [4, 8, 9, 10, 11], "pretti": [], "prevent": 2, "previou": [1, 10, 11, 12], "previous": [], "previous_engin": [], "primari": 2, "primarili": [1, 5], "principl": [2, 12], "print": [2, 3, 4, 5, 7, 8, 12, 14], "print_figur": [], "print_method": [], "printer": [], "priori": 11, "prob": [], "probabl": [10, 11, 12], "problem": [1, 2, 6, 12], "proce": [4, 5, 9], "proceed": 4, "process": [1, 2, 3, 4, 6, 9], "produc": [3, 6, 8], "product": [2, 4, 6, 7, 13], "profil": 8, "program": [1, 3], "progress": [1, 2, 4, 7], "project": 1, "prompt": [1, 2], "prop": [], "properti": [1, 5, 9, 11, 14], "proport": [8, 13], "propos": 14, "propto": [], "prove": 5, "provid": [2, 3, 4, 5, 6, 8, 10, 14], "proxim": 5, "pseudo": 7, "psi_": [5, 13], "psi_1": 13, "psi_1s_sum": [], "psi_i": 5, "psi_j": 5, "purchas": 7, "purpl": 10, "purpos": 2, "put": [1, 3, 7], "pv": 9, "py": 4, "py3dmol": [], "pylabtool": [], "pymatgen": 1, "pypars": [], "pyplot": [1, 2, 4, 5, 7, 8, 10, 13, 14], "pyscf": 1, "python": [0, 7], "python3": 1, "q": 9, "q030dl3x6qgfqffys4wc7d4c0000gn": 4, "quacc": 1, "quad": [], "quadrat": 4, "quadratic_eq": [], "quadratic_equ": 4, "quadratur": [5, 14], "qualit": 9, "quantifi": 5, "quantiti": [2, 4], "quantiz": 11, "quantum": [1, 2, 5], "quasistat": 9, "question": [3, 9], "quickli": 4, "r": [1, 4, 5, 8, 9, 10, 13, 14], "r1": 5, "r2": 5, "r_0": 9, "r_1": [], "r_2": [], "r_i": 9, "r_valu": 5, "radii": 5, "radiu": [3, 5], "rain": 9, "rais": [4, 7], "rand": [2, 8, 12, 14], "randint": 2, "randn": [2, 8], "random": [2, 8, 10, 12, 14], "randomli": 12, "rang": [1, 2, 3, 4, 5, 8, 10], "rangl": [10, 11, 12, 14], "raphson": 4, "rapidli": 5, "rate": 4, "rather": [5, 11, 13, 14], "ratio": [4, 6, 14], "rdkit": [], "re": [1, 2, 3, 11, 14], "reach": [3, 4, 7, 9, 11, 14], "react": [6, 9], "reactant": [4, 6, 7], "reaction": [0, 1, 2, 6, 9], "read": 3, "read_csv": 2, "readabl": 2, "readi": [1, 2, 11], "real": [1, 4, 11], "realiz": 7, "realli": 5, "reason": 3, "recal": [5, 7, 12], "recast": [], "recent": [], "reciproc": [], "recogn": 1, "recommend": [1, 2, 8], "reconsid": 12, "rect": [], "rectangl": 5, "red": [2, 4, 8, 10, 14], "reduc": [3, 12], "redund": 3, "ref": [], "refer": [1, 2, 3, 5, 9, 10], "reflect": [1, 4], "regardless": 14, "region": [9, 12, 13, 14], "regress": [0, 8], "regular": [3, 14], "reinforc": [3, 8], "reject": 14, "rel": 6, "relat": [4, 5, 7, 8], "relationship": [2, 6, 7, 8, 11], "relev": 9, "reli": [2, 12], "remain": 4, "rememb": 1, "remov": 3, "render": 1, "renderer_ref": [], "rendereragg": [], "repeat": [3, 14], "repeatedli": 3, "repetit": 3, "replac": 4, "report": [2, 7], "repositori": 1, "repres": [1, 2, 4, 6, 8, 14], "represent": 6, "reproduc": [12, 13, 14], "requir": [2, 3, 4, 11], "research": [1, 8, 11], "reservoir": 10, "residu": 8, "resiz": [], "resourc": 1, "respect": [1, 4, 5, 6, 7, 11], "respond": 3, "respons": [3, 8], "restrict": [], "result": [1, 2, 3, 4, 5, 6, 12, 13], "results_df": 5, "retain": 14, "retriev": 7, "return": [2, 3, 4, 5, 7, 8, 14], "reus": 3, "reusabl": 3, "revers": [3, 4, 9], "revisit": 6, "rewrit": [5, 7], "riemann": [], "riemann_result": 5, "riemann_sum": 5, "riemann_sum_valu": 5, "right": [4, 5, 6, 8, 9, 10, 11, 14], "rightarrow": [6, 14], "rightleftharpoon": 4, "river": 14, "rm": 10, "ro": [5, 7], "robust": 2, "role": [2, 4, 5, 9, 10], "root": [0, 1, 2], "rosenbluth": [], "round": 6, "routin": 2, "row": [2, 3], "row_data": [], "rowspan": [], "rubidium": 2, "rule": [], "run": [1, 2, 3, 4], "runtimeerror": [], "rv": 13, "s_analyt": 5, "s_numer": [], "s_riemann": 5, "s_sum": 5, "s_trapezoid": 5, "s_trapz": [], "sai": [1, 5], "said": 11, "same": [1, 3, 6, 8, 9, 11, 13], "sampl": 8, "satisfi": [4, 6, 14], "satur": 6, "save": [2, 6], "scale": [1, 13], "scatter": [1, 4, 8], "scatterplot": 2, "scenario": [], "scienc": [4, 5, 6, 9], "scientif": 1, "scikit": 1, "scipi": [1, 5, 6, 8, 10, 12, 13, 14], "scratch": 2, "script": 2, "se": 8, "se_intercept": 8, "se_slop": 8, "seaborn": 1, "secant": 4, "second": 2, "section": 6, "see": [1, 3, 4, 5, 6, 13], "seed": [8, 12, 13, 14], "seen": 1, "segment": [], "select": 12, "self": [], "send": 3, "separ": [2, 5, 9], "sequenc": [2, 3], "sequenti": 3, "seri": [3, 5, 8, 9, 14], "serv": 2, "set": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14], "set_axhlin": [], "set_layout_engin": [], "set_titl": [5, 10], "set_xlabel": [5, 10], "set_ylabel": [5, 10], "setstyl": [], "sever": [1, 5, 11], "shape": [2, 7, 12], "share": [1, 5], "sheet": 1, "shift": [], "ship": [], "short": 3, "should": [1, 2, 3, 4, 6, 7, 8, 10, 12, 13, 14], "show": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14], "shown": [2, 9, 10, 13], "side": [5, 6], "sigma": 8, "sigma1": [], "sigma2": [], "sigma_1": [], "sigma_2": [], "signal": 2, "signific": [7, 8, 14], "similar": [2, 5, 12, 13], "similarli": [], "simpl": [1, 2, 3, 4, 7, 10, 12, 14], "simplest": [3, 12], "simpli": 1, "simplic": 6, "simplifi": [2, 4, 6, 14], "simpson": 5, "simul": [0, 1, 11, 12], "simultan": 5, "sin": [2, 5], "sinc": [6, 7, 11, 12], "sine": [2, 5], "singl": [2, 14], "singular": [], "site": 11, "six": [], "size": [5, 9, 12, 13, 14], "skew": 14, "skill": [1, 2, 3, 6, 8], "skip": 3, "slack": 3, "slice": 3, "slightli": [], "slope": [7, 8], "slowli": 5, "small": [3, 5, 14], "smaller": [3, 12], "smallest": 6, "smile": [], "smit": 14, "sn": 6, "sno": 6, "snow": 9, "sno\u2082": 6, "so": [2, 3, 5, 6, 9, 12], "softwar": [1, 2], "solid": [1, 2, 5, 11], "solut": [2, 6], "solv": [1, 2, 5, 12], "some": [1, 2, 3, 8], "somehow": [], "sorbent": 11, "sourc": 2, "space": [5, 9, 14], "span_pair": [], "spatial": 5, "speci": [4, 7], "special": 1, "specif": [3, 10], "specifi": [3, 4, 5, 10], "spectromet": 8, "spectrophotomet": [], "spectroscopi": 2, "spend": [], "spheric": [5, 13], "spine": [], "split": 4, "spread": 2, "spreadsheet": [1, 2], "spring": 9, "sql": 2, "sqrt": [1, 4, 5, 8, 13], "squar": [1, 2, 3, 8], "ss": [], "sse": [7, 8], "ssr": 8, "stabl": 14, "stai": 4, "stale": [], "standard": [4, 8, 11], "start": [2, 3, 4, 5, 6, 7, 12, 14], "start_filt": [], "stat": [8, 12, 13], "state": [2, 4, 5, 7, 9, 11, 14], "statement": [1, 4], "static": 2, "stationari": [], "statist": [0, 1, 2, 7, 11, 14], "statsmodel": [1, 8], "statu": 4, "std": [], "std_dev": 13, "step": [5, 8, 11], "steroid": 2, "stick": [], "still": 4, "stochast": [], "stoichiometr": [1, 4, 6], "stoichiometri": 7, "stop": [], "stop_raster": [], "storag": 2, "store": [1, 2, 3, 5, 13], "stori": 8, "straight": 5, "straightforward": [1, 2, 3], "streamlin": 6, "strength": [1, 2, 8], "string": 2, "strong": [2, 8], "structur": [0, 1], "struggl": [], "student": [], "studi": 11, "style": [1, 2], "styler": [], "subclass": [], "subdivid": [], "subdivis": 5, "subplot": [5, 10, 14], "subplot_list": [], "subplots_adjust": [], "subplotspec_list": [], "subset": 2, "substitut": [4, 6], "subtract": 1, "success": [4, 14], "successfulli": [4, 7], "suggest": 7, "suit": [1, 2], "suitabl": 4, "sum": [7, 8, 9, 10], "sum_": [5, 7, 8, 11, 12, 14], "sum_i": [9, 10], "summar": [], "super": [], "superclass": [], "support": [1, 2, 12], "suppos": [7, 12], "suppress_composit": [], "suppresscomposit": [], "suptitl": 5, "sure": 1, "surfac": 11, "surround": [9, 11, 14], "svg": 2, "symbol": 1, "symmetr": [5, 13, 14], "symmetri": [], "syntax": [1, 2, 3], "syntaxwarn": [], "system": [0, 1, 2, 4, 14], "systemat": 6, "t": [1, 2, 3, 4, 7, 8, 9, 10, 11, 14], "t_": 8, "t_rang": [], "t_valu": 14, "tab": 1, "tabl": [4, 6, 7], "tabular": [1, 2, 3], "tackl": [1, 2], "tailor": 1, "take": [3, 5, 10, 11], "taken": 9, "target": 12, "task": [1, 2, 3, 8], "taught": [], "technic": 2, "techniqu": [1, 2, 6, 7, 11, 12], "temperatur": [4, 8, 9, 10, 11], "term": [4, 7, 10], "termin": [1, 2, 3, 4], "test": [1, 8], "text": [1, 4, 6, 7, 8, 14], "th": [], "than": [2, 3, 5, 7, 11, 13, 14], "thei": [1, 2, 3, 4, 9, 11, 13], "them": [1, 2, 3, 9], "theori": [], "therefor": [5, 6, 11, 13], "thermal": [9, 10, 11], "thermodynam": [0, 1, 11], "theta": [5, 11], "thi": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "thin": 14, "thing": [3, 8], "think": [2, 3, 5, 6], "third": [], "those": [2, 5, 12, 14], "thought": 6, "three": [3, 4, 5, 9], "threshold": 8, "through": [1, 2, 9], "throughout": 2, "thu": [6, 14], "ti": 3, "tight": [], "tight_bbox": [], "tight_bbox_raw": [], "tight_layout": [5, 10, 14], "tightlayoutengin": [], "time": [3, 4, 6, 7, 8, 11, 14], "tip": [], "titl": [1, 2, 4, 5, 7, 8, 10, 13, 14], "to_csv": 2, "to_html": [], "todai": 1, "togeth": [3, 7, 8], "tol": 4, "toler": 4, "too": 3, "tool": [1, 4, 14], "toolbar": [], "toolkit": 2, "top": [1, 2], "topic": 2, "total": [4, 5, 10, 11, 14], "total_sum": [], "touch": 1, "tough": 5, "toward": [4, 12, 14], "traceback": [], "track": 6, "tradit": [2, 4, 14], "train": [], "transax": [], "transfer": 9, "transfigur": [], "transform": [2, 3], "transform_bbox": [], "transit": [9, 10, 14], "transport": 1, "trapezoid": [], "trapezoidal_result": 5, "trapz": [], "trend": 2, "tri": [], "tripl": 9, "true": [2, 3, 4, 5, 8, 10, 12, 14], "truncat": [], "try": [1, 2, 3, 6, 8], "tune": 14, "tupl": [3, 5], "turn": [], "twice": 1, "two": [1, 2, 3, 7, 8, 9, 11, 13, 14], "type": [1, 2, 3, 5, 6, 7, 9], "typeerror": [], "typic": [1, 4, 7, 8], "u": [3, 5, 6, 8, 9, 12, 14], "u_i": [], "ubiquit": 2, "uffoptimizemolecul": [], "ultim": 5, "ultraviolet": 8, "unbalanc": 6, "unbias": 8, "uncertainti": [], "under": [4, 5, 10, 11], "undergo": 10, "underli": 2, "underscor": [], "understand": [1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 14], "unexpect": [], "uniform": [5, 9, 12, 13, 14], "uniformli": 12, "union": [], "uniqu": 3, "unit": [2, 7], "unknown": 6, "unlik": 3, "unnecessarili": [], "unord": 3, "unphys": [], "unsatur": 6, "until": 3, "unus": [], "up": [1, 3, 4, 8, 9, 10], "updat": 6, "upon": [1, 14], "us": [1, 4, 7, 8, 9, 10, 11, 12, 13], "usag": 5, "user": 1, "userwarn": [], "util": [3, 4, 8], "uv": 8, "v": [2, 7, 9, 10, 14], "v_1": 9, "v_2": 9, "v_i": 9, "va": [], "valid": 8, "valu": [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13], "valuabl": [], "valueerror": [], "vapor": 4, "var": [4, 12, 13], "variabl": [1, 2, 3, 4, 6, 7, 8, 9], "varianc": [8, 12, 13], "varieti": [1, 2], "variou": [1, 2, 7], "vast": [1, 2], "ve": [1, 2, 3, 6], "vector": [5, 6, 9], "veloc": [9, 10], "veri": [7, 10], "verifi": [1, 2, 5], "versatil": [1, 2, 3], "version": 1, "vertic": 8, "vi": 8, "via": 9, "vibrat": 14, "view": 10, "viewer": [], "visibl": 8, "visit": 1, "visual": [1, 4, 5, 7], "vital": 2, "volum": [5, 9, 11], "vowel": 3, "w": [2, 9], "w_pad": [], "wa": [], "wai": [2, 3, 9, 12, 14], "walk": [], "want": [2, 8, 13], "warn_deprec": [], "warn_extern": [], "washu": [], "wast": [], "water": [1, 4, 6, 14], "wavefunct": 2, "we": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "weak": 8, "weakref": [], "web": 1, "websit": 1, "weight": 12, "welcom": 1, "well": [3, 8, 10, 12, 14], "were": [7, 8], "wexler": [], "what": [1, 2, 6, 10], "when": [1, 2, 3, 4, 5, 7, 9, 14], "where": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "whether": [1, 2, 3, 14], "which": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14], "while": [1, 2, 4, 5, 8, 9, 10], "whole": [], "whose": [], "why": 3, "wide": [1, 2, 4], "width": [5, 14], "wiki": 9, "wikipedia": 9, "window": [], "wise": 2, "within": [1, 2, 3, 4], "without": [3, 4, 9, 11], "won": 2, "word": [5, 8, 9], "work": [1, 3, 4, 7, 8, 10], "workflow": 1, "workforc": 1, "world": [1, 9, 11], "would": [4, 8, 10, 11, 12], "wrap": [], "wrapper": [], "write": [3, 4, 5, 6, 7, 8, 12], "written": [2, 3, 5, 6, 9], "x": [1, 2, 3, 4, 5, 6, 7, 8, 13, 14], "x0": 4, "x_": 14, "x_0": [], "x_averag": 14, "x_avg": 14, "x_e": 14, "x_equilibr": 14, "x_i": [5, 7, 8, 12], "x_init": 14, "x_initi": 14, "x_max": [], "x_mean": [7, 8], "x_min": [], "x_new": 14, "x_old": [], "x_prime": [], "x_rang": 14, "x_sampl": 14, "x_se": [], "x_std": [], "x_valu": 4, "xe": [], "xenon": 2, "xi": [], "xlabel": [1, 2, 4, 5, 7, 8, 10, 13, 14], "xmax": 14, "xmin": 14, "xp": [], "xscale": 13, "xy": 10, "xytext": 10, "y": [1, 2, 3, 5, 6, 7, 8, 13], "y_i": [7, 8], "y_max": [], "y_mean": [7, 8], "y_min": [], "yaxi": [], "yerr": 13, "yield": 4, "ylabel": [1, 2, 4, 5, 7, 8, 10, 13, 14], "ymax": [], "york": 3, "you": [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14], "your": [1, 3, 7, 8], "yourself": [1, 3], "yscale": [], "ytterbium": 2, "yttrium": 2, "z": [5, 10, 11, 13, 14], "z_i": [], "z_max": [], "z_min": [], "zero": [2, 4, 6, 9, 10], "zeros_lik": [], "zinc": 2, "zip": [], "zirconium": 2, "zoomto": [], "zorder": 4, "zr": [], "\u00e5": [5, 14], "\u03c0": []}, "titles": ["Welcome to Computational Problem Solving in the Chemical Sciences", "Lecture 1: Introduction to Python for the Chemical Sciences", "Lecture 2: Essential Python Packages for the Chemical Sciences", "Lecture 3: Control Structures in Python", "Lecture 4: Chemical Reaction Equilibria and Roots of Equations", "Lecture 5: Chemical Bonding and Numerical Integration", "Lecture 6: Balancing Chemical Equations and Systems of Linear Algebraic Equations", "Lecture 7: Orders of Reaction and Linear Regression Analysis", "Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis", "Lecture 9: Classical Thermodynamics", "Lecture 10: Statistical Thermodynamics", "Lecture 11: Ensembles and Ergodicity", "Lecture 12: The Monte Carlo Method", "Lecture 13: Monte Carlo Integration", "Lecture 14: The Metropolis Algorithm and Monte Carlo Simulations"], "titleterms": {"": [1, 4, 11], "1": [1, 2, 3, 4, 5, 6], "10": 10, "11": 11, "12": 12, "13": 13, "14": 14, "1d": 2, "2": [1, 2, 3, 4, 6], "2d": 2, "3": [1, 2, 3, 6], "4": [1, 2, 3, 4, 6], "5": [1, 2, 3, 5, 6], "6": [1, 2, 3, 6], "7": [1, 7], "8": 8, "9": 9, "A": [2, 4, 6, 7, 8], "On": [4, 5, 7, 8], "The": [2, 3, 4, 5, 6, 9, 12, 14], "To": [], "about": [9, 11], "accept": 14, "access": [], "activ": [4, 5, 7, 8], "addit": [3, 4, 14], "advanc": 2, "advantag": [], "algebra": 6, "algorithm": 14, "all": 3, "alreadi": 1, "an": 5, "analysi": [7, 8], "analyt": 5, "analyz": 14, "anoth": [], "appendix": [], "approach": 4, "ar": 3, "arrai": [2, 3], "averag": [10, 12, 14], "back": [7, 8], "balanc": [6, 14], "basic": 2, "best": [2, 3], "boltzmann": 10, "bond": [5, 14], "calcul": 5, "calibr": 8, "can": 1, "canon": 11, "capac": 10, "care": [9, 11], "carlo": [12, 13, 14], "case": 6, "check": [1, 3], "chemic": [0, 1, 2, 4, 5, 6], "chemistri": 1, "choos": [12, 13], "classic": [9, 14], "code": 14, "coeffici": [6, 8], "combust": 6, "comprehens": 3, "comput": [0, 2, 5, 6], "concept": [], "conclus": [], "condit": [3, 14], "confid": 8, "configur": [], "constant": [7, 10], "control": 3, "convert": 6, "correl": 8, "creat": 2, "critic": 10, "curv": 8, "custom": 2, "data": [2, 8], "datafram": [2, 3], "decomposit": 7, "default": 3, "defin": [3, 6], "definit": [], "depth": 14, "deriv": 14, "detail": 14, "determin": 7, "determinist": [], "dictionari": 3, "dimension": [], "distribut": [10, 13], "do": 1, "download": 1, "element": 3, "elif": 3, "els": 3, "energi": [9, 10], "ensembl": 11, "entropi": 10, "equat": [4, 6], "equilibria": [4, 9], "equilibrium": [4, 9], "ergod": 11, "essenti": 2, "estim": 12, "even": 3, "exampl": [4, 6, 7, 10, 11, 14], "exercis": [1, 2, 3, 4], "expans": 14, "expect": 4, "experi": 7, "explan": 14, "factori": 3, "familiar": 8, "featur": 2, "filter": 2, "find": [3, 4], "first": 9, "form": 8, "formul": 4, "foundat": 2, "free": 10, "from": 10, "function": [3, 10], "fundament": 9, "g": [7, 12], "gaussian": [], "gener": [2, 6], "get": 1, "grand": 11, "graph": 1, "guess": 4, "h": 5, "hand": [3, 4, 5, 6, 7, 8], "he": 5, "heat": [9, 10], "high": [], "higher": 3, "hint": 7, "histogram": 2, "hydrocarbon": 6, "hydrogen": [5, 6], "i": [1, 3, 5], "implement": [4, 12, 14], "implic": 11, "import": [2, 4, 6, 12, 13], "infinit": 3, "initi": 4, "instal": [1, 2], "integ": 6, "integr": [5, 12, 13], "interlud": 8, "intern": [9, 10], "interpret": 14, "interv": 8, "introduct": [1, 3, 4, 7, 8, 10, 12, 14], "isobar": 11, "isotherm": 11, "iv": 6, "jupyt": 1, "kei": [2, 3], "lambda": 3, "launch": 1, "law": [7, 9], "learn": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "least": 7, "lectur": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "length": 14, "let": 1, "librari": 6, "line": 2, "linear": [6, 7], "list": [2, 3], "loop": 3, "macrost": 10, "manipul": 2, "mathbf": 6, "mathemat": [1, 4], "matplotlib": 2, "matrix": [2, 6], "maximum": 3, "measur": 14, "method": [4, 12], "metropoli": 14, "microcanon": 11, "microst": 10, "minim": 4, "minimum": 3, "minut": [], "mississippi": 14, "moment": 6, "mont": [12, 13, 14], "more": 1, "mors": 14, "motiv": 12, "n_2o_5": 7, "necessari": 6, "next": 11, "non": 11, "normal": 6, "note": [1, 3, 4, 5, 14], "notebook": 1, "null": 6, "number": 3, "numer": [4, 5], "numpi": [2, 3], "object": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "observ": [], "odd": 3, "oper": 2, "optim": 4, "orbit": 5, "order": [3, 7], "ordinari": 7, "oscil": 14, "over": 14, "overlap": [5, 13], "oxid": 6, "packag": 2, "palindrom": 3, "panda": [2, 3], "paramet": 3, "partit": 10, "phase": 9, "plot": [2, 14], "potenti": [9, 14], "power": 2, "practic": [1, 2, 3, 7], "primer": 7, "probabl": 14, "problem": [0, 4], "properti": [2, 10], "public": 2, "put": [], "python": [1, 2, 3, 4, 6, 12, 14], "qualiti": 2, "random": 13, "rang": 14, "rate": 7, "reaction": [4, 7], "read": 2, "real": 8, "recap": 6, "reduct": 6, "refer": 14, "refresh": 7, "regress": 7, "relat": [9, 12], "remind": 2, "result": 14, "return": 13, "review": [], "revisit": [], "rewrit": 12, "riemann": 5, "root": 4, "rule": 5, "run": 14, "sampl": [12, 13, 14], "scatter": 2, "scienc": [0, 1, 2], "scientif": 2, "scipi": [2, 4], "second": 9, "section": [2, 3], "seri": 2, "should": [9, 11], "simul": 14, "solut": [4, 5], "solv": [0, 4, 6], "space": 6, "specif": [1, 2], "squar": 7, "start": 1, "state": 10, "statement": [3, 9], "statist": 10, "step": [1, 4, 6, 14], "string": 3, "structur": [2, 3], "suitabl": 12, "sum": [3, 5], "summari": [6, 9, 10, 11, 13, 14], "sup": [], "symmetri": 5, "system": [6, 9, 10, 11], "take": 6, "temperatur": 14, "test": [], "theoret": 8, "thermal": 14, "thermodynam": [9, 10], "thi": [], "think": 10, "third": 9, "through": 3, "tin": 6, "tool": 2, "trapezoid": 5, "two": [5, 10], "type": 11, "u": [], "us": [2, 3, 5, 6], "v": [3, 5], "valu": 3, "varianc": [], "vector": 2, "versatil": 4, "via": 4, "visual": [2, 14], "volum": 10, "wait": [4, 5], "warn": 4, "welcom": 0, "what": [3, 4, 5, 11], "while": 3, "why": [9, 11], "window": 1, "work": [2, 9], "world": 8, "write": 2, "x": 12, "you": [9, 11], "your": 2, "zeroth": 9}}) \ No newline at end of file +Search.setIndex({"alltitles": {"": [[1, null], [1, null], [2, null], [2, null], [2, null], [3, null], [3, null], [5, null], [8, null], [9, null], [9, null], [9, null], [9, null], [9, null], [9, null], [10, null], [11, null], [12, null], [13, null], [14, null]], "1.1 Download and Install Python": [[1, "download-and-install-python"]], "1.1 Key Features of NumPy": [[2, "key-features-of-numpy"]], "1.1 The if Statement": [[3, "the-if-statement"]], "1.2 Check if Python is Already Installed": [[1, "check-if-python-is-already-installed"]], "1.2 The if-else Statement": [[3, "the-if-else-statement"]], "1.2 Working with NumPy Arrays": [[2, "working-with-numpy-arrays"]], "1.3 Practice Exercises": [[2, "practice-exercises"]], "1.3 The if-elif-else Statement": [[3, "the-if-elif-else-statement"]], "1.3 Windows-Specific Note": [[1, "windows-specific-note"]], "2.1 Install Jupyter Notebook": [[1, "install-jupyter-notebook"]], "2.1 Key Features of SciPy": [[2, "key-features-of-scipy"]], "2.1 The for Loop": [[3, "the-for-loop"]], "2.2 Launching Jupyter Notebook": [[1, "launching-jupyter-notebook"]], "2.2 The while Loop": [[3, "the-while-loop"]], "3.1 Defining Functions": [[3, "defining-functions"]], "3.1 Key Features of Matplotlib": [[2, "key-features-of-matplotlib"]], "3.1 Python and Mathematics": [[1, "python-and-mathematics"]], "3.2 Creating Basic Plots with Matplotlib": [[2, "creating-basic-plots-with-matplotlib"]], "3.2 Functions with Default Parameter Values": [[3, "functions-with-default-parameter-values"]], "3.2 Practice Exercises": [[1, "practice-exercises"]], "3.3 Customizing Your Plots": [[2, "customizing-your-plots"]], "3.3 Lambda Functions": [[3, "lambda-functions"]], "3.3 Python Can Do Chemistry": [[1, "python-can-do-chemistry"]], "3.4 Practice Exercises": [[1, "id1"], [2, "id1"]], "3.4 Using Lambda Functions with Higher-Order Functions": [[3, "using-lambda-functions-with-higher-order-functions"]], "3.5 Python Can Do Graphing": [[1, "python-can-do-graphing"]], "3.5 Using Lambda Functions with Pandas": [[3, "using-lambda-functions-with-pandas"]], "3.6 Best Practices for Using Functions": [[3, "best-practices-for-using-functions"]], "3.6 Practice Exercises": [[1, "id2"]], "3.7 Python Can Do More": [[1, "python-can-do-more"]], "4.1 Key Features of Pandas": [[2, "key-features-of-pandas"]], "4.2 Series: The 1D Data Structure": [[2, "series-the-1d-data-structure"]], "4.3 DataFrame: The 2D Data Structure": [[2, "dataframe-the-2d-data-structure"]], "4.4 Reading and Writing Data": [[2, "reading-and-writing-data"]], "4.5 Filtering Data": [[2, "filtering-data"]], "4.6 Practice Exercises": [[2, "id2"]], "A Familiar Form of the Correlation Coefficient": [[8, null]], "A Practical Example": [[7, "a-practical-example"]], "A Refresher or Primer on Rate Laws": [[7, "a-refresher-or-primer-on-rate-laws"]], "A Theoretical Interlude": [[8, "a-theoretical-interlude"]], "Acceptance Probability": [[14, "acceptance-probability"]], "Additional Exercise": [[4, null]], "Additional Exercises": [[3, "additional-exercises"]], "Additional Notes": [[14, null]], "Advanced Matrix Operations": [[2, "advanced-matrix-operations"]], "Analytical Integration": [[5, "analytical-integration"]], "Analytical Solution": [[5, "analytical-solution"]], "Analytical vs. Numerical Integration": [[5, "analytical-vs-numerical-integration"]], "Analyzing the Results": [[14, "analyzing-the-results"]], "Average Bond Length": [[14, "average-bond-length"]], "Average Energy and Internal Energy": [[10, "average-energy-and-internal-energy"]], "Back to the N_2O_5(g) Decomposition Experiment": [[7, "back-to-the-n-2o-5-g-decomposition-experiment"]], "Back to the Real World": [[8, "back-to-the-real-world"]], "Balancing Chemical Equations": [[6, "balancing-chemical-equations"]], "Balancing the Equation by Hand": [[6, "balancing-the-equation-by-hand"]], "Best Practice": [[2, null]], "Boltzmann Distribution": [[10, "boltzmann-distribution"]], "Calculating the Overlap Integral of Two H 1s Orbitals": [[5, "calculating-the-overlap-integral-of-two-h-1s-orbitals"]], "Calibration Curve": [[8, "calibration-curve"]], "Calibration Data": [[8, "calibration-data"]], "Canonical Ensemble": [[11, "canonical-ensemble"]], "Choosing a Suitable g(x)": [[12, "choosing-a-suitable-g-x"]], "Choosing the Importance Sampling Distribution": [[13, "choosing-the-importance-sampling-distribution"]], "Computing the Overlap Integral": [[5, "computing-the-overlap-integral"]], "Confidence Intervals": [[8, "confidence-intervals"]], "Correlation Analysis": [[8, "correlation-analysis"]], "Creating and Using Arrays": [[2, "creating-and-using-arrays"]], "Critical Thinking": [[10, null], [10, null], [10, null], [10, null]], "Derivation of the Metropolis Algorithm": [[14, "derivation-of-the-metropolis-algorithm"]], "Detailed Balance Condition": [[14, "detailed-balance-condition"]], "Determining the Rate Constant of a Reaction": [[7, "determining-the-rate-constant-of-a-reaction"]], "Equilibrium": [[9, "equilibrium"]], "Ergodicity": [[11, "ergodicity"]], "Example: Chemical Reaction Equilibrium via Numerical Method": [[4, "example-chemical-reaction-equilibrium-via-numerical-method"]], "Example: Reduction of Tin(IV) Oxide by Hydrogen": [[6, "example-reduction-of-tin-iv-oxide-by-hydrogen"]], "Example: Sampling a Classical Morse Oscillator": [[14, "example-sampling-a-classical-morse-oscillator"]], "Example: Two-State System": [[10, "example-two-state-system"]], "Exercise": [[3, null], [4, null]], "Exercise 1": [[3, null]], "Exercise 1: Check if a Number is Even or Odd": [[3, "exercise-1-check-if-a-number-is-even-or-odd"]], "Exercise 2": [[3, null]], "Exercise 2: Sum of All Numbers in a List": [[3, "exercise-2-sum-of-all-numbers-in-a-list"]], "Exercise 3": [[3, null]], "Exercise 3: Factorial of a Number": [[3, "exercise-3-factorial-of-a-number"]], "Exercise 4": [[3, null]], "Exercise 4: Check if a String is a Palindrome": [[3, "exercise-4-check-if-a-string-is-a-palindrome"]], "Exercise 5": [[3, null]], "Exercise 5: Find the Maximum and Minimum Elements in a List": [[3, "exercise-5-find-the-maximum-and-minimum-elements-in-a-list"]], "Explanation of the Code": [[14, "explanation-of-the-code"]], "Free Energy and Entropy": [[10, "free-energy-and-entropy"]], "Fundamental Thermodynamic Relation": [[9, "fundamental-thermodynamic-relation"]], "General Case for Hydrocarbon Combustion": [[6, null]], "Generating Arrays with Specific Properties": [[2, "generating-arrays-with-specific-properties"]], "Grand Canonical Ensemble": [[11, "grand-canonical-ensemble"]], "Grand Canonical Ensemble: Example": [[11, "grand-canonical-ensemble-example"]], "Hands-On Activity": [[4, "hands-on-activity"], [7, "hands-on-activity"], [8, "hands-on-activity"]], "Hands-On Activity: Overlap of Two He 1s Orbitals": [[5, "hands-on-activity-overlap-of-two-he-1s-orbitals"]], "Heat Capacity at Constant Volume": [[10, "heat-capacity-at-constant-volume"]], "Hint": [[7, null]], "Histograms": [[2, "histograms"]], "Implementation in Python": [[12, "implementation-in-python"]], "Implementing Root-Finding Methods in Python": [[4, "implementing-root-finding-methods-in-python"]], "Implementing the Metropolis Algorithm in Python": [[14, "implementing-the-metropolis-algorithm-in-python"]], "Implications of Ergodicity": [[11, "implications-of-ergodicity"]], "Importance Sampling": [[12, "importance-sampling"], [13, "importance-sampling"]], "Important": [[2, null]], "Infinite Loops": [[3, null]], "Installing NumPy": [[2, "installing-numpy"]], "Internal Energy, Work, and Heat": [[9, "internal-energy-work-and-heat"]], "Interpretation": [[14, null], [14, null]], "Introduction": [[3, "introduction"], [7, "introduction"], [8, "introduction"], [14, "introduction"]], "Introduction to Chemical Reaction Equilibria": [[4, "introduction-to-chemical-reaction-equilibria"]], "Introduction to Monte Carlo Method": [[12, "introduction-to-monte-carlo-method"]], "Introduction to Statistical Thermodynamics": [[10, "introduction-to-statistical-thermodynamics"]], "Isothermal-Isobaric Ensemble": [[11, "isothermal-isobaric-ensemble"]], "Isothermal-Isobaric Ensemble: Example": [[11, "isothermal-isobaric-ensemble-example"]], "Key Control Structures in Python": [[3, "key-control-structures-in-python"]], "Learning Objectives": [[1, "learning-objectives"], [2, "learning-objectives"], [3, "learning-objectives"], [4, "learning-objectives"], [6, "learning-objectives"], [7, "learning-objectives"], [8, "learning-objectives"], [9, "learning-objectives"], [10, "learning-objectives"], [11, "learning-objectives"], [12, "learning-objectives"], [13, "learning-objectives"], [14, "learning-objectives"]], "Lecture 10: Statistical Thermodynamics": [[10, null]], "Lecture 11: Ensembles and Ergodicity": [[11, null]], "Lecture 12: The Monte Carlo Method": [[12, null]], "Lecture 13: Monte Carlo Integration": [[13, null]], "Lecture 14: A Basic Monte Carlo Algorithm": [[14, null]], "Lecture 1: Introduction to Python for the Chemical Sciences": [[1, null]], "Lecture 2: Essential Python Packages for the Chemical Sciences": [[2, null]], "Lecture 3: Control Structures in Python": [[3, null]], "Lecture 4: Chemical Reaction Equilibria and Roots of Equations": [[4, null]], "Lecture 5: Chemical Bonding and Numerical Integration": [[5, null]], "Lecture 6: Balancing Chemical Equations and Systems of Linear Algebraic Equations": [[6, null]], "Lecture 7: Orders of Reaction and Linear Regression Analysis": [[7, null]], "Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis": [[8, null]], "Lecture 9: Classical Thermodynamics": [[9, null]], "Line Plots": [[2, "line-plots"]], "Linear Regression Analysis": [[7, "linear-regression-analysis"]], "List Comprehensions": [[3, "list-comprehensions"]], "Lists vs. Dictionaries": [[3, null]], "Looping Through a Dictionary": [[3, "looping-through-a-dictionary"]], "Looping Through a List": [[3, "looping-through-a-list"]], "Looping Through a NumPy Array": [[3, "looping-through-a-numpy-array"]], "Looping Through a Pandas DataFrame": [[3, "looping-through-a-pandas-dataframe"]], "Looping Through a String": [[3, "looping-through-a-string"]], "Mathematical Formulation of Equilibrium Problems": [[4, "mathematical-formulation-of-equilibrium-problems"]], "Matrix and Vector Operations": [[2, "matrix-and-vector-operations"]], "Microcanonical Ensemble": [[11, "microcanonical-ensemble"]], "Microcanonical Ensemble: Example": [[11, "microcanonical-ensemble-example"]], "Microstates and Macrostates": [[10, "microstates-and-macrostates"]], "Monte Carlo Estimation": [[12, "monte-carlo-estimation"]], "Monte Carlo Estimator with Importance Sampling": [[12, "monte-carlo-estimator-with-importance-sampling"]], "Motivation for Importance Sampling": [[12, "motivation-for-importance-sampling"]], "Non-Ergodic Systems": [[11, "non-ergodic-systems"]], "Note": [[3, null], [4, null], [5, null]], "Numerical Integration": [[5, "numerical-integration"]], "Numerical Integration Using a Riemann Sum": [[5, "numerical-integration-using-a-riemann-sum"]], "Numerical Integration Using the Trapezoidal Rule": [[5, "numerical-integration-using-the-trapezoidal-rule"]], "Numerical Methods for Finding Roots of Equations": [[4, "numerical-methods-for-finding-roots-of-equations"]], "Orders of Reaction": [[7, "orders-of-reaction"]], "Ordinary Least Squares": [[7, "ordinary-least-squares"]], "Phase Equilibria": [[9, "phase-equilibria"]], "Plotting Thermal Expansion": [[14, "plotting-thermal-expansion"]], "Plotting the Results": [[14, "plotting-the-results"]], "Python Implementation": [[12, "python-implementation"]], "Python Lists": [[2, null]], "Random Sampling": [[13, "random-sampling"]], "Recap": [[6, "recap"]], "References": [[14, "references"]], "Relating Integrals to Averages": [[12, "relating-integrals-to-averages"]], "Reminder": [[2, null]], "Return to the Overlap Integral": [[13, "return-to-the-overlap-integral"]], "Rewriting the Integral": [[12, "rewriting-the-integral"]], "Running the Simulation": [[14, "running-the-simulation"]], "Scatter Plots": [[2, "scatter-plots"]], "Section 1: Conditional Statements": [[3, "section-1-conditional-statements"]], "Section 1: NumPy - The Foundation of Scientific Computing in Python": [[2, "section-1-numpy-the-foundation-of-scientific-computing-in-python"]], "Section 2: Loops": [[3, "section-2-loops"]], "Section 2: SciPy - A Powerful Tool for Scientific Computing": [[2, "section-2-scipy-a-powerful-tool-for-scientific-computing"]], "Section 3: Functions": [[3, "section-3-functions"]], "Section 3: Matplotlib - Creating Publication-Quality Visualizations": [[2, "section-3-matplotlib-creating-publication-quality-visualizations"]], "Section 4: Hands-on Practice": [[3, "section-4-hands-on-practice"]], "Section 4: Pandas - Powerful Data Manipulation in Python": [[2, "section-4-pandas-powerful-data-manipulation-in-python"]], "Simulation Over a Range of Temperatures": [[14, "simulation-over-a-range-of-temperatures"]], "Solving for Equilibrium": [[4, "solving-for-equilibrium"]], "Solving the Equation Using Python": [[6, "solving-the-equation-using-python"]], "Solving the System of Equations": [[6, "solving-the-system-of-equations"]], "Statement of the First Law": [[9, "statement-of-the-first-law"]], "Step 1: Formulating the Equilibrium Equation": [[4, "step-1-formulating-the-equilibrium-equation"]], "Step 1: Getting Python Installed": [[1, "step-1-getting-python-installed"]], "Step 1: Import the Necessary Libraries": [[6, "step-1-import-the-necessary-libraries"]], "Step 2: Define the Coefficient Matrix, \\mathbf{A}": [[6, "step-2-define-the-coefficient-matrix-mathbf-a"]], "Step 2: Installing Jupyter Notebook": [[1, "step-2-installing-jupyter-notebook"]], "Step 2: Minimizing the Equilibrium Equation": [[4, "step-2-minimizing-the-equilibrium-equation"]], "Step 3: Compute the Null Space": [[6, "step-3-compute-the-null-space"]], "Step 3: Let\u2019s Get Started with Python": [[1, "step-3-let-s-get-started-with-python"]], "Step 4: Normalize and Convert to Integer Coefficients": [[6, "step-4-normalize-and-convert-to-integer-coefficients"]], "Step 5: The Balanced Chemical Equation": [[6, "step-5-the-balanced-chemical-equation"]], "Summary": [[6, "summary"], [9, "summary"], [10, "summary"], [11, "summary"], [13, "summary"], [14, "summary"]], "Symmetry and Integration": [[5, "symmetry-and-integration"]], "Systems of Linear Algebraic Equations": [[6, "systems-of-linear-algebraic-equations"]], "Take a Moment": [[6, null]], "The First Law": [[9, "the-first-law"]], "The Hydrogen 1s Orbital": [[5, "the-hydrogen-1s-orbital"]], "The Importance of Initial Guess": [[4, null]], "The Laws of Thermodynamics": [[9, "the-laws-of-thermodynamics"]], "The Metropolis Algorithm Steps": [[14, "the-metropolis-algorithm-steps"]], "The Metropolis Algorithm: \u201cMeasuring the Depth of the Mississippi\u201d": [[14, "the-metropolis-algorithm-measuring-the-depth-of-the-mississippi"]], "The Second Law": [[9, "the-second-law"]], "The Third Law": [[9, "the-third-law"]], "The Zeroth Law": [[9, "the-zeroth-law"]], "Thermal Expansion of the Morse Oscillator": [[14, "thermal-expansion-of-the-morse-oscillator"]], "Thermodynamic Potentials": [[9, "thermodynamic-potentials"]], "Thermodynamic Properties from the Partition Function": [[10, "thermodynamic-properties-from-the-partition-function"]], "Thermodynamic Systems": [[9, "thermodynamic-systems"]], "Types of Ensembles": [[11, "types-of-ensembles"]], "Visualization of the Morse Potential": [[14, "visualization-of-the-morse-potential"]], "Wait!": [[5, null], [5, null]], "Wait, What\u2019s the Expected Solution?": [[4, null]], "Warning": [[4, null]], "Welcome to Computational Problem Solving in the Chemical Sciences": [[0, null]], "What Are Control Structures?": [[3, "what-are-control-structures"]], "What Is an Integral?": [[5, "what-is-an-integral"]], "What\u2019s Next?": [[11, null]], "Why Should You Care About Ensembles?": [[11, "why-should-you-care-about-ensembles"]], "Why Should You Care About Thermodynamics?": [[9, "why-should-you-care-about-thermodynamics"]], "scipy.optimize.minimize: A Versatile Approach": [[4, "scipy-optimize-minimize-a-versatile-approach"]]}, "docnames": ["intro", "lecture-01-introduction", "lecture-02-packages", "lecture-03-control", "lecture-04-optimization", "lecture-05-integration", "lecture-06-linalg", "lecture-07-regression", "lecture-08-calibration", "lecture-09-thermo", "lecture-10-stat-thermo", "lecture-11-ensembles", "lecture-12-monte-carlo", "lecture-13-mc-integration", "lecture-14-metropolis"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["intro.md", "lecture-01-introduction.md", "lecture-02-packages.md", "lecture-03-control.md", "lecture-04-optimization.md", "lecture-05-integration.md", "lecture-06-linalg.md", "lecture-07-regression.md", "lecture-08-calibration.md", "lecture-09-thermo.md", "lecture-10-stat-thermo.md", "lecture-11-ensembles.md", "lecture-12-monte-carlo.md", "lecture-13-mc-integration.md", "lecture-14-metropolis.md"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14], "0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "00": [1, 2, 4], "000": 8, "000000": [], "0000000000000004": 2, "0000000000000009": [], "000000019073487": 4, "0000003051757815": 4, "0000003433227533": 4, "000000381469727": 4, "0001": 10, "0001871291025951396": 8, "0004184333939712645": 8, "000e": 4, "001": 8, "0024893696884570006": [], "003967": [], "004": 8, "004748": [], "007": 8, "007820585525325625": [], "008": [1, 8], "009564": 2, "01": [1, 10], "010339": [], "010999999999996": 1, "011": 1, "0112": 7, "011213": [], "0125": 7, "013": 8, "0132": [], "0133": 14, "0144": 7, "014682": [], "0162": 7, "019033": [], "0191": 7, "02": 4, "020020": [], "0250": 7, "026": 8, "026862": [], "030363606516579125": 7, "031785": 5, "032": 8, "032076": [], "038889": [], "04": 7, "04036523": [], "040756": [], "040832": [], "042757": [], "04361008": [], "044403": [], "044783": [], "045537": 2, "048021": [], "048416": 2, "049373": [], "049586": [], "05": [], "051520": [], "054431": [], "057691": [], "058135": [], "059068": 2, "06": [7, 8], "060": [], "060908": [], "06533351": [], "066214": [], "067183": [], "07": 4, "07069651": [], "071614": [], "073500": [], "074532": [], "075927": [], "076810": [], "07750": [], "07812993": [], "0783716": [], "08": [2, 7], "08468586": [], "086293": [], "089069": [], "089466": 12, "09": [], "090967": [], "09188008": [], "092201": [], "093195": 2, "094149": 2, "096565": 5, "096577": 5, "099762": 5, "0f": 4, "0x1114aa5f0": [], "1": [0, 7, 8, 9, 10, 11, 12, 13, 14], "10": [0, 1, 2, 3, 4, 5, 7, 8, 14], "100": [1, 2, 4, 5, 7, 10, 12, 13, 14], "1000": [2, 5, 8, 12, 13, 14], "10000": [13, 14], "100000": 13, "1000000": 13, "10000000": [], "100_000": [], "101": [], "1016": 14, "102": [], "102174": [], "105363": [], "1063": 14, "1087": 14, "1092": 14, "11": [0, 2, 4, 7], "1100": [], "111754": [], "113959": [], "11574968": [], "116": [], "11x": 4, "12": [0, 1, 8, 10, 14], "1200x500": [], "12138546": [], "1225": 3, "12357159": [], "123840": [], "124996": [], "1250875": [], "12600315": [], "127246": [], "127797": [], "128745": [], "129": [], "129811": [], "13": 0, "130": 2, "13073": [], "131": [], "1314235014": [], "132": [], "132008": [], "13256909": [], "133": [], "134": [], "135": [], "136072": 5, "136085": 5, "136902": [], "137451": [], "1385": [], "1386": [], "1387": [], "1388": [], "1389": [], "1390": [], "1391": [], "14": [0, 7, 11], "140199": [], "1402": [], "140213": [], "1403": [], "1404": [], "1405": [], "1406": [], "1407": [], "14073843": [], "1408": [], "1409": [], "140951": 5, "1410": [], "14159": 3, "145263": [], "15": [2, 7], "150": 2, "151212": [], "153355": [], "15383974": [], "15396606": [], "153987": [], "154": 2, "155298": [], "15763222": [], "16": [1, 2, 3, 4], "161040": [], "16121387": [], "16168": [], "161758": [], "165889": [], "166290": [], "167": [], "168": [], "169252": [], "169374": [], "1699114": 14, "17": [], "170": [], "171": [], "172": [], "1733916972": 4, "173860": [], "17855413": [], "1796469911": [], "18": [5, 8], "181": [], "182": [], "182050": [], "183": [], "183777": [], "184": [], "185": [], "186": [], "187": [], "188": [], "188889": [], "189247": 5, "189262": 5, "19": [], "1903": [], "1904": [], "1905": [], "192456": [], "19464139": [], "1953": 14, "19530158": [], "196617": 5, "196816": [], "197475": [], "197620": [], "19971276": [], "1d": [], "1e": 4, "2": [0, 5, 7, 8, 9, 10, 12, 13, 14], "20": 7, "2001": [], "200369": [], "200383": [], "200402": [], "200483": [], "2023": 14, "205104": [], "208289": [], "21": [8, 14], "21113": [], "212": [], "214": [], "21459876": [], "215": [], "21514317": [], "21567557": 2, "216": [], "217": [], "2170": [], "2171": [], "2172": [], "2173": [], "2174": [], "2175": [], "2176": [], "2177": [], "219": [], "21948282": [], "22": 4, "220619": [], "22115577933543018": 7, "2213406": [], "2224677478": [], "22466308": [], "22722108611679165": 1, "227632": [], "22e": 4, "23": [], "2304533417": [], "23067359": [], "230942": [], "234381": [], "23535115": [], "236837": [], "24": [2, 7], "241398": [], "243110": [], "245944": [], "246372": [], "2468699402": [], "24999999999998668": [], "25": [1, 2, 3, 4, 8], "25097623": [], "25180": [], "25298782": 2, "253167": [], "25430905": [], "254594": [], "25685736": [], "2569768875": [], "258769": 2, "259179": 5, "259194": 5, "26": [], "261": [], "262": [], "263": [], "263956": [], "264": 2, "264261": [], "265": 2, "266": [], "267": [], "268": [], "269": [], "26953356": [], "269757": [], "27": 8, "270": [], "270172": 5, "270435": [], "271": [], "273": [], "273713": [], "274": [], "274815": [], "275": [], "27514562": [], "276": [], "277778": [], "27819382": [], "2793": [], "2794": [], "2795": [], "2799": [], "28": 7, "280": [], "2800": [], "2801": [], "281": [], "281017": [], "281032": [], "281626": 2, "282552": [], "288280": [], "288791": [], "29": [], "291939": [], "29260813": [], "293218": [], "293416": [], "294650": [], "295068": [], "296185": [], "298": 7, "29978765": [], "2_1": [], "2_2": [], "2a": 6, "2b": 6, "2c": 6, "2d": 6, "2f": 8, "2n": 6, "2r": 5, "2x": 4, "2x2": 2, "3": [0, 4, 5, 7, 8, 12, 13], "30": [2, 3, 7, 8, 10, 14], "300": 14, "302182": [], "30255225": [], "3049": [], "3050": [], "3051": [], "3052": [], "3053": [], "31": [4, 8], "31016631": [], "3104": [], "3105": [], "3107": [], "3109": [], "3110": [], "314505": [], "3159": [], "3161": [], "3162": [], "3163": [], "3165": [], "3166": [], "318": 7, "318526": [], "32": [2, 8, 12], "320524": [], "32099643": [], "324007": [], "325560": [], "325610": 12, "32561038208072784": [], "327": 2, "32816799690108206": [], "328712": [], "329385": [], "329867": [], "33": 8, "33026915": [], "3331481689": [], "333259": [], "333333": 12, "33500365": [], "33552352": [], "337550306": [], "338002": [], "3386046038985078": [], "34": [], "341": [], "342": [], "343": [], "344": [], "3442733": [], "345": [], "34714337": [], "348493": 5, "348509": 5, "35": [2, 3], "350110": [], "3543": [], "3544": [], "3545": [], "3546": [], "3547": [], "3548": [], "3549": [], "36": [], "36330421": [], "364650": 5, "366086": [], "366667": [], "368379": [], "369988": [], "37": [2, 7], "37228132": 2, "373919": [], "379": [], "38": [], "380": [], "38020829": 2, "381": [], "382": [], "383": [], "384": [], "38480972": [], "385": [], "385206": [], "385223": [], "38523872": [], "386": [], "387": [], "388": [], "38825605": [], "38848765": [], "388541": [], "389": [], "38986037": [], "39": 2, "390": [], "391991": [], "392485": [], "397667": [], "3d": [1, 2, 5], "3dmol": [], "3f": 8, "3n": 6, "3x": 4, "3x3": 2, "4": [0, 5, 7, 8, 10, 14], "40": 7, "400": 4, "4000": 4, "4014613473": [], "403655": [], "40446243": 2, "405787": [], "409241": [], "4096": [], "41": 8, "410": 2, "41152632": [], "41228293": [], "41263254": [], "412686": [], "413040": [], "413601": [], "415782": [], "41702911": [], "41884383": [], "419523": [], "42": [2, 12, 13, 14], "422": 2, "4256142": [], "42638864": [], "426663": [], "428120": [], "42812882": 2, "428552": [], "429026": [], "429932": [], "43": [], "430490": [], "43260088": [], "43377967": [], "435078": [], "435593": [], "43765552": [], "44": 1, "440513": [], "444864": 2, "44493476": [], "4480": [], "4481": [], "4482": [], "4483": [], "4484": [], "44905775": [], "45": [], "451": [], "452": [], "453": [], "453202": [], "45398804": [], "454": [], "455": [], "455556": [], "456": [], "45600233": [], "457": [], "458290": 5, "458308": 5, "46": [], "4602659": [], "460471": [], "46455389": [], "4647058823529414e": 8, "465110": [], "465299": [], "4665494": [], "468024": [], "46938113": [], "47": [], "47036559": [], "47575154": [], "476065": [], "477106": [], "48": [], "480066": [], "48070937": [], "481598": 5, "482436": [], "482577": [], "488235294117647e": 8, "489157": [], "49": [], "490528": [], "492423": [], "49342": [], "49731891": [], "498755": [], "4999996185302713": [], "4999998855590835": [], "4a": 6, "4f": 14, "4x": 4, "5": [0, 4, 7, 8, 10, 13, 14], "50": [2, 7, 14], "500": [10, 14], "50000": 14, "500e": [], "502418": [], "507017": [], "51": [], "513279": [], "513297": [], "52": [], "526100": [], "526245": [], "52695194": [], "529": 5, "53": [], "530": 8, "530054": [], "534060": [], "53551883": [], "53651539": [], "538946": [], "53939566": [], "539570": [], "539796795": [], "54": 8, "540513": [], "545158": [], "54518": [], "54785244": [], "555261": [], "555330": [], "558357": [], "562114": [], "563880": [], "56833": [], "569610": [], "57": 2, "570085": [], "57219658": [], "575324": [], "576889": [], "58": [], "582797": [], "58445442": [], "58453143": [], "586435": 5, "586453": 5, "588008": [], "58e": [], "59045283": [], "5963908": [], "5998763": [], "5f": [], "5t_cnxn96vs1f6z07zkwy_k80000gn": [], "6": [0, 4, 5, 7, 8, 10, 13, 14], "60": [2, 7], "600": 8, "60000": [], "603": 2, "60464228": [], "607337": [], "607767": 2, "6085366895522193e": 12, "6134203": [], "617424": [], "618404": [], "619193": [], "619271": 5, "62": 4, "625": 3, "6295": [], "6296": [], "629652": [], "6297": [], "6298": [], "6299": [], "63": 2, "63027018": [], "63061": [], "63391829": [], "63407862": [], "63651919": [], "63921": 14, "63e": [], "64": [], "640340": [], "64181731": [], "644444": [], "64448507": [], "64521477": 2, "645333": [], "645725": [], "646079": 2, "646416": [], "647628": [], "649707": [], "65": 2, "650": 8, "653721": [], "65437021": [], "656155": [], "658352": [], "659596": [], "659829": [], "659902": [], "659921": [], "66": [], "66129037": [], "661308": 2, "662783": [], "666408": [], "66805603": [], "669": [], "67": [], "670": 2, "672533": [], "673317": [], "67897942": [], "679175": [], "68": 7, "68262291": [], "684116": [], "688488": [], "68e": [], "69": [], "690617": [], "69418496": [], "694901": [], "697682": [], "69803815": [], "698842": [], "6f": [5, 12], "6x": 4, "7": [0, 2, 3, 5, 13, 14], "70": 7, "700": 8, "70292167": [], "703219": [], "70360658": [], "704656": [], "70749": [], "712417": [], "71856743": [], "7194702543489242e": [], "72": [], "722833": [], "723356": [], "72436375": [], "725154": 5, "725173": 5, "72740627": [], "729945": [], "73": 2, "730391": [], "730971": [], "733333": [], "733507": [], "73372628": [], "733862": [], "734481": [], "7357675673109183": [], "736878": [], "737176": [], "74": 2, "74305327": [], "74313198": [], "74366638": [], "746566": [], "74807732": [], "75": 2, "750": 8, "758691": [], "76": [], "76176135": [], "763835": [], "766e": 4, "76910543": [], "769971": 5, "77": 2, "773974": [], "775256": [], "776040": [], "78": 4, "78083219": [], "780922": [], "78252123": [], "785398": [], "79": [], "790745": [], "79382746": 2, "794821": [], "797464": 2, "7r": 8, "8": [0, 1, 3, 4, 5, 7, 13, 14], "80": 7, "800": 8, "800392": 5, "803676": [], "804": 2, "804001": 2, "80573": [], "80580666": [], "80697": [], "80942245": 2, "81": 2, "810121": [], "810141": [], "811932": [], "813318": [], "81847246": [], "82": 2, "821785": [], "822222": [], "823132": [], "826182": [], "82911917": [], "831357": [], "83257677": [], "83476": [], "83544789": [], "8395906": [], "84": [], "840": 2, "840733": [], "841431": [], "843290": [], "844728": [], "848808": [], "85": 2, "850": 8, "851055": [], "852": 2, "8538538031407512": [], "853854": [], "857228165610269": 8, "858194": [], "858367": 5, "858385": [5, 13], "86": 2, "863366": [], "86599082": [], "867874160544318": [], "86960": [], "87": 2, "871128": [], "871706410": [], "872680": [], "87877103": [], "879550": [], "88": 2, "881784197001252e": 4, "882e": 4, "884170": [], "884707": [], "88586208": [], "885936": [], "888187": [], "88821188": [], "89": 2, "89118366": [], "89354794": [], "9": [0, 1, 2, 3, 4, 5], "90": [2, 7], "900": [3, 8], "903735": [], "91": [], "9102529": [], "911111": [], "913378": [], "916888": 5, "919537": [], "919632": [], "92": 7, "921853": [], "922371": [], "923471": [], "923769": [], "925286": 5, "92578833": [], "928158": [], "929717": [], "93": 8, "93047322": [], "931484": [], "934": 2, "935911": [], "935931": [], "94": [], "94128165": [], "94459246": [], "94870807": [], "95": 8, "950": 8, "95143119": [], "954": [], "954706": [], "955": [], "956": [], "956443": [], "95713798": 2, "957231": [], "958": [], "95809135": [], "959": [], "96": [], "960": [], "960320": 5, "960340": 5, "961": [], "961514": [], "96310226": [], "96641313": [], "966945": [], "97": 8, "97078784": [], "975527": [], "975794": [], "98": [], "980126": [], "985343": 2, "985601": [], "98610781": [], "98636626": [], "9897367": [], "991938": [], "99278371": [], "9962040088352188": 8, "99654": [], "99654\u03c0": [], "998318": [], "998337": [], "999134": [], "A": [0, 1, 3, 9, 10, 11, 12], "AND": 2, "And": [1, 2], "As": [1, 2, 5, 9, 10, 11, 13], "At": [4, 10], "But": [], "By": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "For": [1, 2, 4, 5, 6, 9, 10, 11, 14], "If": [1, 2, 3, 6, 9, 11, 14], "In": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "It": [2, 3, 5, 7, 8, 9], "Its": 4, "NOT": 2, "No": [], "Not": 11, "OR": 2, "One": [2, 10, 13], "Or": [], "That": 7, "The": [0, 1, 7, 8, 10, 11, 13], "Then": [5, 8], "There": [5, 9, 11], "These": [1, 2, 3, 5, 9], "To": [1, 3, 4, 5, 6, 7, 8, 12, 13, 14], "Will": 9, "With": [1, 2], "_": [6, 14], "_0": [5, 7, 8], "_0e": 7, "_1": [7, 8], "_2": [1, 4, 6, 7], "_4": 6, "_5": 7, "__call__": [], "__class__": [], "__getattribute__": [], "__name__": [], "_accessor": [], "_api": [], "_auto_adjust_subplotpar": [], "_axesbas": [], "_axi": [], "_axis_map": [], "_base": [], "_can_hold_identifiers_and_holds_nam": [], "_copy_docstring_and_deprec": [], "_draw_all_if_interact": [], "_draw_dis": [], "_draw_list_compositing_imag": [], "_express": [], "_finalize_raster": [], "_fontproperti": [], "_get_layout": [], "_get_render": [], "_get_text_metrics_with_cach": [], "_get_text_metrics_with_cache_impl": [], "_get_tightbbox_for_layout_onli": [], "_i": 8, "_idle_draw_cntx": [], "_in_subscript_or_superscript": [], "_info_axi": [], "_is_idle_draw": [], "_make_html": [], "_mathtext": [], "_n": 6, "_output_typ": [], "_parse_cach": [], "_parser": [], "_prepare_font": [], "_preprocess_math": [], "_pylab_help": [], "_raster": [], "_render": [], "_setattr_cm": [], "_state_stack": [], "_tight_layout": [], "_update_title_posit": [], "_v": 10, "_val_or_rc": [], "_wait_cursor_for_draw_cm": [], "_x": 6, "_y": 6, "a0": [], "a_0": [5, 13], "ab": 4, "abil": 2, "abl": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "about": [3, 4, 5, 7, 10, 14], "abov": [1, 2, 4, 5, 7, 8, 9, 10, 11, 13], "absolut": [4, 9], "absorb": 8, "academ": [1, 14], "acc": 14, "accept": [], "acceptance_prob": 14, "access": [1, 2, 3, 4, 14], "accord": [], "accordingli": 3, "account": 8, "accumul": 3, "accur": [5, 8, 11], "accuraci": [5, 6, 8, 12], "achiev": [1, 5, 14], "acquir": [], "across": [1, 2, 3], "act": 9, "actinium": 2, "action": [3, 4], "actual": 4, "ad": [2, 3, 9], "adapt": 4, "add": [1, 2, 3, 6, 11], "addh": [], "addit": 1, "addition": 1, "addmodel": [], "address": [], "adjac": [], "adjust": 8, "admonit": [], "adsorb": [], "adsorpt": 11, "advanc": 1, "advantag": [4, 5], "affect": [4, 8], "after": [1, 8], "ag": 3, "against": 9, "age_squar": 3, "aggreg": 2, "agre": 7, "aim": 4, "al": 14, "algebra": [0, 2], "algegra": [], "algorithm": [0, 4], "alia": 1, "alic": 3, "align": [5, 6, 12], "alkan": 6, "all": [1, 5, 8, 9, 10, 11], "allchem": [], "allow": [1, 2, 3, 4, 5, 14], "allow_raster": [], "along": [2, 5], "alpha": [5, 8, 12, 14], "alpha_": [], "alpha_th": [], "alreadi": 8, "also": [1, 2, 3, 4, 5, 8, 9, 10, 11], "altern": [3, 7], "aluminum": 2, "alwai": [2, 3, 4, 5], "americium": 2, "amount": 5, "an": [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 14], "analog": [4, 14], "analys": 1, "analysi": [0, 1, 2, 14], "analyt": [4, 8, 12], "analytical_overlap_integr": 5, "analytical_result": 5, "analyz": [1, 2, 8], "anatomi": 2, "anharmon": 14, "ani": [1, 2, 3, 6, 11, 12], "anim": 2, "annot": [2, 8, 10], "anonym": 3, "anoth": [9, 14], "answer": 9, "antialias": [], "antimoni": 2, "aperiod": [], "appear": 1, "append": [5, 13, 14], "appendix": [], "appl": 3, "appli": [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14], "applic": [1, 2, 4, 14], "appreci": 9, "approach": [3, 6, 10, 12], "appropri": [], "approx": [12, 14], "approxim": [1, 4, 5, 7, 12, 14], "ar": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "arang": [], "arbitrari": [], "arctan": [], "area": [1, 2, 3, 5, 11], "arg": 4, "argon": 2, "argument": [3, 5], "arithmet": 1, "around": [1, 5], "arr": 3, "arrai": [1, 4, 5, 6, 7, 8, 14], "arrang": 9, "arriv": 9, "arrow": 10, "arrowprop": 10, "arrowstyl": 10, "artist": [], "ase": 1, "ask": 7, "aspect": [2, 3], "assess": 8, "assign": 3, "associ": 9, "assum": [4, 7], "astyp": 6, "asymmetr": 14, "asymmetri": 14, "atom": [1, 2, 5, 6, 9, 13], "atomist": 1, "attract": 1, "attribut": [], "attributeerror": [], "auto_adjust_subplotpar": [], "autocorrel": 14, "autom": [1, 6], "automat": 1, "avail": [1, 2, 9, 10], "averag": [11, 13], "average_f": [], "average_f_x": [], "average_x_squar": 12, "average_x_squared_plus_y_squar": [], "avg": [], "avoid": [3, 4, 5], "awai": [], "awesom": 1, "ax": [2, 5], "ax1": 10, "ax2": 10, "ax_bbox_list": [], "axes_list": [], "axhlin": [4, 8, 13], "axi": [1, 4, 5], "axison": [], "axvlin": 8, "b": [1, 2, 5, 6, 7, 10, 12, 13, 14], "ba": [], "back": [3, 5], "backend": [], "backend_agg": [], "backend_bas": [], "background": [], "backward": 3, "bad": [], "balanc": 0, "banana": 3, "bar": [1, 2, 4, 5, 7, 8], "barrier": [], "base": [2, 3, 6, 7, 8, 13], "base64": [], "baseformatt": [], "basic": [0, 1, 3, 12], "bath": [10, 11], "bb": [], "bbox": [], "bbox_extra_artist": [], "bbox_inch": [], "becaus": [3, 4, 5, 6, 8, 11, 13], "becom": [2, 3, 5, 9, 12, 14], "been": [7, 8], "beer": 8, "befor": [1, 2, 3, 4, 5, 6, 9, 14], "begin": 6, "behav": 3, "behavior": [4, 8, 9, 10, 11, 12], "behind": [], "being": [2, 5, 10, 11], "below": [3, 8, 13], "bench": 7, "benchmark": [], "benefit": 12, "best": 1, "beta": [7, 8, 10, 11, 12, 14], "beta_0": 7, "beta_1": 7, "beta_param": 12, "better": 2, "between": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "beyond": [1, 2], "bias": 12, "big": 5, "bin": [2, 14], "biologi": 1, "bisect": 4, "black": [2, 4, 5, 10, 13], "block": 3, "blue": [2, 8, 10, 14], "bmatrix": 6, "bob": 3, "bohr": 5, "boltzmann": 14, "bond": [0, 2], "both": [1, 2, 3, 4, 6, 9], "bound": 4, "boundari": 9, "box": 1, "bracket": 2, "bread": 2, "break": 3, "brew": 8, "bring": [1, 8, 9], "broad": 4, "broadcast": 2, "broader": [], "broadli": 9, "browser": 1, "build": [2, 3], "built": [1, 2, 3], "butter": 2, "butteri": 8, "bytes_io": [], "c": [1, 2, 6], "c2009": 14, "c_v": [8, 10], "cach": [], "calcul": [1, 2, 3, 6, 7, 8, 10, 11, 13, 14], "calculate_area": 3, "calculu": 1, "calibr": 0, "call": [3, 7, 8], "call_axes_loc": [], "callback": [], "caller": 3, "campu": [], "can": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "candid": 12, "cannot": 7, "cantera": 1, "canva": [], "capabl": [1, 2], "capac": 8, "carbon": [1, 6, 9], "carbon_mass": 1, "care": 4, "carlo": [0, 1, 11], "cartesian": 5, "case": [1, 3, 4, 7, 8, 9, 11, 12], "cater": 2, "caus": [3, 5, 14], "caveman": [], "cbook": [], "cco": [], "cdot": [4, 9], "cell": [], "center": [5, 10], "central": [5, 9, 11], "certain": [3, 4, 8], "cesium": 2, "ch": 6, "chain": 14, "challeng": [1, 3, 6, 14], "chang": [2, 4, 5, 7, 9, 10, 14], "channel": 3, "char": 3, "charact": 3, "character": [4, 12], "charg": 5, "charli": 3, "chart": 2, "check": [2, 4, 5, 6], "chem": [], "chemic": [7, 9, 11, 14], "chemist": 8, "chemistri": [2, 5], "cherri": 3, "choic": [4, 11, 13, 14], "choos": [4, 14], "chop": [], "ci": 8, "circ": [4, 11], "circl": [3, 4], "circular": 2, "citi": 3, "cl": [], "clarif": 3, "class": 2, "classic": [0, 4, 5], "clean": 2, "clean_lin": [], "cleaner": 5, "clear": 7, "clearer": [], "clearli": 3, "clip": [], "close": [4, 5, 8, 9, 10, 11], "close_group": [], "closer": 12, "cluster": 9, "co": [1, 6], "code": [1, 2, 3, 4, 5, 11, 12, 13], "coeff": [], "coeffici": 4, "cohes": 2, "col": [], "collaps": [], "collect": [2, 3, 5, 7, 8, 10, 11, 14], "color": [1, 2, 4, 8, 10, 13, 14], "colspan": [], "column": [2, 3], "combin": [3, 9], "combust": [], "come": [1, 5, 8, 11], "command": [1, 2], "comment": 2, "common": [2, 3], "commonli": [1, 2, 3, 11], "commun": [], "comp": [], "compact": 3, "compani": 8, "compar": [3, 5, 10, 13], "complet": [], "complex": [1, 2, 3, 4, 6, 10, 11, 14], "compon": [2, 3], "composit": [], "compound": [1, 8], "comprehens": 2, "comput": [1, 3, 7, 8, 12, 14], "computation": [], "concentr": [4, 7, 8, 12, 14], "concept": [3, 4, 9, 10, 11, 12], "concis": [3, 6], "conclud": [1, 2], "condit": [2, 4, 9, 10, 11], "condition1": 3, "condition2": 3, "confid": [0, 2, 3, 7], "confidence_interval_intercept": 8, "confidence_interval_slop": 8, "confidence_level": 8, "configur": [10, 11, 14], "confin": 11, "confirm": [2, 6], "conserv": 6, "consid": [3, 4, 5, 6, 7, 10, 11], "consider": [4, 10], "consist": [5, 9, 10, 11], "constant": [1, 4, 8, 9, 12, 14], "constitu": 2, "constrain": [], "constraint": [4, 11], "construct": 14, "consum": 7, "contact": 11, "contain": [1, 2, 3, 6, 7, 8, 10, 11], "context": 4, "continu": [1, 3], "contourpi": [], "contrast": [], "contribut": [12, 14], "control": [0, 14], "conveni": 2, "convent": [], "converg": [4, 5, 13, 14], "convert": [3, 4, 5, 7, 14], "cool": 7, "coordin": [5, 13, 14], "copi": [], "core": [2, 3], "cornerston": 2, "correct": 4, "correctli": 6, "correl": [0, 14], "correlation_coeffici": 8, "correspond": [3, 6, 7, 8, 9, 10, 11], "could": 7, "count": 3, "coupl": 1, "cours": [1, 2], "coval": 5, "cover": [1, 2, 3], "coverag": 11, "creat": [1, 3, 5, 6, 8, 13], "criteria": 2, "critic": [2, 8], "critical_t_valu": 8, "crucial": [1, 3, 4], "crystal": 9, "csv": 2, "cubic": 4, "cubic_eq": 4, "cumul": [], "current": 14, "curs": [], "curv": [4, 5, 7], "cycler": [], "d": [5, 6, 9, 14], "d_e": 14, "da": 9, "darkblu": 14, "dash": [2, 13, 14], "data": [0, 1, 3, 5, 7], "databas": 2, "datafram": 5, "dataset": [2, 3], "dateutil": [], "de": [], "decai": [5, 7], "decim": 4, "decis": 3, "decompos": [2, 7, 14], "decreas": [5, 9, 10], "deepen": 1, "deepli": 2, "def": [3, 4, 5, 7, 8, 13, 14], "default": [1, 2], "defin": [4, 5, 7, 8, 9, 10, 11, 14], "definit": [2, 5, 9], "degre": 8, "delta": [5, 9, 14], "delta_u": 14, "delv": 2, "demonstr": [1, 2, 4, 6, 12, 14], "denom": 13, "denomin": [7, 8], "densiti": [12, 14], "depend": [3, 7, 8, 9, 11, 14], "deprec": [], "deprecationwarn": [], "deriv": [4, 7, 9, 10], "descent": [], "describ": [3, 7, 10, 11], "descript": [3, 12], "design": [1, 2, 3, 4], "desir": [8, 14], "desorb": [], "det": 2, "detail": [1, 2, 11], "determin": [1, 2, 4, 5, 6, 8, 10, 14], "develop": [2, 8, 11], "deviat": 8, "deviations_i": 8, "deviations_x": 8, "df": [2, 3, 8], "dg": 9, "diacetyl": 8, "diagram": 9, "diatom": [8, 14], "dict": 10, "dictat": [3, 5, 6], "dictionari": [2, 4], "did": [6, 7, 8], "differ": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12], "differenti": [1, 2, 9], "difficult": 11, "dim": [], "dimens": [5, 14], "dimension": [2, 14], "dioxid": [1, 6, 9], "direct": [8, 9, 10], "directli": [1, 2, 12], "discard": 14, "discuss": [3, 5, 7, 8, 9, 10, 11], "disord": 10, "displac": 9, "displai": [1, 2, 4, 5, 8, 13], "dispos": 1, "dissoci": [4, 14], "distanc": [2, 5, 8, 9, 13], "distinct": 10, "distinguish": 10, "distribut": [2, 8, 12, 14], "div_col": [], "div_row": [], "dive": 1, "divers": 1, "divid": [5, 6, 8], "divis": [1, 3], "do": [3, 4, 5, 6, 7, 8, 9, 10, 11, 13], "docstr": 3, "document": [1, 2, 3], "doe": [3, 4, 10], "doesn": 1, "doi": 14, "domain": 14, "don": [1, 2, 3], "done": [4, 9], "dot": [2, 3], "dot_product": 2, "down": 4, "download": 2, "dp": [], "dpi": [], "dr": 5, "draw": [], "draw_al": [], "draw_idl": [], "draw_without_rend": [], "draw_wrapp": [], "drawn": 12, "dt": [], "dtype": 2, "du": 9, "due": 14, "duplic": 3, "dure": [1, 8, 14], "dv": 9, "dw": [], "dx": [5, 12, 13], "dy": [5, 13], "dynam": [1, 3, 11], "dz": [5, 13], "e": [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14], "e_1": 10, "e_2": 10, "e_avg": 10, "e_i": 10, "each": [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13], "earlier": [], "eas": [1, 2], "easi": 2, "easier": [2, 3], "easili": [1, 2, 3], "ecosystem": 2, "edg": 5, "edgecolor": [2, 4, 5], "effect": 4, "effici": [2, 3, 5, 6, 12, 13, 14], "effort": 14, "eigenvalu": 2, "eight": 13, "eigval": 2, "either": [3, 10], "electron": [1, 5, 11], "eleg": [2, 3], "element": [2, 5, 6], "ellipt": [], "els": 14, "elsewher": 3, "embedmolecul": [], "emphas": 12, "emploi": [1, 6, 12], "empti": 11, "en": 9, "enabl": [2, 3], "encapsul": 3, "encount": [1, 2], "end": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "endpoint": 5, "energet": 5, "energi": [2, 4, 11, 14], "enforc": 4, "engin": [1, 2], "enhanc": 1, "ensembl": 0, "ensur": [1, 2, 3, 4, 6, 8, 10, 14], "enthalpi": 9, "entir": 5, "entropi": 9, "enumer": 5, "env": [], "environ": [1, 2], "epsilon": 10, "epsilon_i": 7, "equal": [2, 3, 4, 6, 7, 9, 10, 11], "equat": [0, 1, 2, 7, 9, 11, 14], "equilibr": 14, "equilibria": [0, 2], "equilibrium": [7, 10, 11, 14], "equilibrium_equ": 4, "equip": 1, "equival": [], "erf": [], "ergod": 0, "err": [], "error": [1, 7, 8], "errorbar": 13, "escap": [], "especi": [2, 3, 4, 6, 14], "essenc": 12, "essenti": [0, 3, 4], "establish": [8, 9], "estim": [7, 8], "estimated_integr": 12, "et": 14, "etc": 9, "etymologi": 9, "ev": [2, 10, 14], "evalu": [3, 4, 8, 12, 14], "even": [], "eventu": 3, "everi": [2, 11, 14], "exact": [5, 9, 12, 13], "exampl": [1, 2, 3, 5, 9, 12], "excel": [1, 2], "except": [7, 11], "excess": [], "exchang": [10, 11], "excit": 10, "execut": 3, "exist": 3, "exp": [5, 10, 13, 14], "expand": [3, 9], "expect": [3, 5], "expens": [], "experi": [1, 3, 4, 9], "experiment": [7, 8], "explain": [2, 3, 10, 12], "explan": [], "explicit": 4, "explor": [1, 2, 3, 4, 6, 11], "expon": 13, "exponenti": [1, 7, 13], "express": [1, 3, 4, 6, 7], "extend": [1, 2, 6, 14], "extens": [2, 9], "extent": 4, "ey": 2, "f": [2, 4, 5, 7, 8, 9, 10, 11, 12, 14], "f_x": 12, "facecolor": 10, "facilit": 3, "factor": 5, "fail": [], "fall": 2, "fals": [2, 3, 5], "far": [1, 2, 9], "fast": 14, "faster": 13, "feel": 3, "ferment": 8, "few": [2, 3, 14], "fewest": 5, "fibonacci": 3, "field": 2, "fig": [5, 10], "figsiz": [5, 8, 10, 13, 14], "figur": [2, 5, 8, 9, 10, 13, 14], "figurecanvasagg": [], "figurecanvasbas": [], "file": 2, "filenam": [], "fill": 2, "filter": 3, "filtered_df": 2, "final": [1, 4, 5, 6, 7, 9], "final_simplex": 4, "find": [1, 2, 6, 7, 10, 11, 13], "finit": 4, "first": [1, 2, 3, 4, 5, 6, 7, 8, 13], "fit": [1, 7, 8], "fix": [10, 11], "flavor": 8, "flexibl": [2, 3, 4], "float": [1, 2, 3, 4, 5, 13], "float64": 2, "flow": 3, "fluctuat": 14, "fluorin": 2, "fmt": 13, "focu": [1, 2, 5, 7], "focus": [3, 14], "folder": 4, "follow": [1, 2, 3, 4, 5, 6, 7, 8, 12], "font": [], "font_imag": [], "fontprop": [], "fonts_object": [], "fontset": [], "fontsiz": 8, "fonttool": [], "for_layout_onli": [], "forc": 9, "forget": [2, 3], "forgot": 7, "form": [3, 5, 6, 7, 14], "formal": 5, "format": [1, 2, 4, 5], "formatt": [], "formula": [4, 6, 7, 8], "forward": [1, 3, 4], "found": [4, 6, 7, 8, 9, 13], "foundat": [1, 6], "fourier": 2, "frac": [4, 5, 6, 7, 8, 9, 10, 11, 12, 14], "free": [3, 4, 9], "freedom": 8, "freezer": 7, "frenkel": 14, "frequenc": 2, "frequent": [1, 2, 3], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14], "fruit": 3, "full": 2, "fun": 4, "func": [], "function": [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14], "function_nam": 3, "functool": [], "fundament": [1, 2, 3], "further": 3, "futur": 7, "g": [2, 3, 4, 5, 6, 9, 13], "g_x": 12, "ga": [8, 9, 10, 11], "gain": [1, 2, 9, 10], "game": [], "gase": [4, 11], "gaussian": 5, "gcf": [], "gener": [3, 4, 7, 8, 12, 13, 14], "genom": 1, "geq": 9, "get": [3, 4, 6, 8, 12, 13], "get_3d_molecule_html": [], "get_agg_filt": [], "get_all_fig_manag": [], "get_layout_engin": [], "get_real_method": [], "get_subplotspec_list": [], "get_text": [], "get_text_width_height_desc": [], "get_tight_layout_figur": [], "get_tightbbox": [], "get_transform": [], "get_unitless_posit": [], "get_vis": [], "get_window_ext": [], "getattr": [], "getvalu": [], "gg": [], "gibb": [4, 9], "give": [1, 3, 5, 6, 8, 9, 12], "given": [3, 4, 5, 9, 10, 11, 12, 13], "glimps": 1, "global": [], "go": 1, "goal": [6, 7, 12], "good": [3, 4, 8, 12, 13], "googl": 1, "got": [], "govern": [5, 9], "gradient": 10, "grai": [4, 8], "gram": 1, "graph": 7, "graphic": [1, 2], "great": [1, 8], "greater": [2, 3, 7, 9], "green": [8, 10, 14], "greet": 3, "grew": [], "grid": [2, 4, 5, 8, 10, 13, 14], "grid_rang": 5, "ground": 10, "group": 2, "grow": [], "guess": 5, "gui": [], "guid": 3, "guidanc": [], "h": [1, 3, 4, 6, 9, 13], "h_pad": [], "ha": [1, 2, 3, 4, 7, 8, 9, 10, 11], "had": 7, "hamiltonian": 2, "hand": 10, "handl": [1, 2, 3], "happen": [3, 4, 10], "harmon": [], "has_imag": [], "hast": [], "hat": [7, 8], "have": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11], "hbar": [], "he": [], "header": [], "heat": [8, 11], "heavili": 2, "height": 5, "hello": 3, "helmholtz": 9, "help": [1, 2, 3, 4, 6], "helper": [], "here": [1, 2, 3, 4, 5, 6, 8, 9, 14], "hesit": [1, 3], "hide_index": [], "high": [8, 10, 11, 14], "high_root_guess": 4, "higher": [2, 10, 14], "highli": [1, 2], "highlight": 4, "hint": [1, 2, 3], "hist": [2, 14], "histogram": 14, "histori": [], "hline": 14, "hold": [1, 2, 9], "how": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14], "howev": [2, 4, 6, 11, 12], "html": 13, "http": [9, 14], "hybrid": 5, "hydrocarbon": [], "hydrogen": [1, 4, 13], "h\u2082": 6, "h\u2082o": 6, "i": [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "ic": 4, "idea": [3, 12], "ideal": [1, 2, 8, 9, 11], "ident": [2, 11], "identifi": 7, "ignor": [], "ignore_index": [], "ij": 5, "illustr": [4, 12, 14], "imag": 2, "image_group": [], "imagin": [7, 8], "imperm": 9, "implement": 5, "implic": 9, "import": [1, 3, 5, 7, 8, 10, 11, 14], "importance_sampl": 13, "impos": [], "impract": [], "improv": [12, 13, 14], "includ": [1, 2, 3, 4, 8, 9, 10], "inclus": 4, "increas": [5, 10, 11, 12, 13, 14], "incredibli": [2, 3], "increment": [3, 5], "indefinit": 3, "independ": [7, 8, 14], "index": [2, 3, 4, 5, 7], "indic": [4, 8, 10], "indispens": 2, "individu": [3, 10, 11], "industri": 1, "ineffici": 14, "inequ": 9, "inexact": 9, "infeas": [], "infinit": 2, "infinitesim": 9, "influenc": 4, "info": [], "inform": [1, 2, 4, 10], "infti": [5, 13], "initi": [3, 7, 14], "inject": [], "inorgan": 5, "input": [2, 3], "insert": 4, "insid": 3, "insight": [2, 9, 10], "instanc": [1, 4], "instead": [4, 5, 12], "instruct": [1, 3], "int": [5, 6, 9, 14], "int_": [5, 13], "int_0": [5, 12], "int_a": [5, 12], "integ": 2, "integr": [0, 2, 7, 14], "integral_df": [], "integral_estim": [], "integral_i": 5, "integral_x": 5, "integrand": [5, 12, 13, 14], "integrand_valu": 5, "integratrion": [], "intens": 9, "interact": [1, 2, 9, 11], "intercept": [7, 8], "interest": [8, 11, 14], "interfac": 1, "intermedi": 10, "intern": [], "interpol": 2, "interpret": [6, 7, 8], "intersect": 4, "interv": [0, 2, 4, 5, 12, 14], "introduc": [9, 10, 11], "introduct": 0, "intuit": 5, "inv": 2, "invalid": [], "invalu": [1, 2], "invers": [2, 14], "invert": [], "investig": 14, "involv": [4, 5, 6], "ion": 9, "ipykernel_10087": [], "ipykernel_10267": [], "ipykernel_10290": [], "ipykernel_10392": [], "ipykernel_10894": [], "ipykernel_11504": [], "ipykernel_12070": [], "ipykernel_12261": [], "ipykernel_12756": [], "ipykernel_13537": [], "ipykernel_13999": [], "ipykernel_14380": [], "ipykernel_14625": [], "ipykernel_16501": [], "ipykernel_16598": [], "ipykernel_16635": [], "ipykernel_16685": [], "ipykernel_16737": [], "ipykernel_16804": [], "ipykernel_16842": [], "ipykernel_16884": [], "ipykernel_16975": [], "ipykernel_17053": [], "ipykernel_17105": [], "ipykernel_17136": [], "ipykernel_20224": [], "ipykernel_20664": [], "ipykernel_20834": [], "ipykernel_21107": [], "ipykernel_21954": [], "ipykernel_22428": [], "ipykernel_22617": [], "ipykernel_22886": [], "ipykernel_26292": [], "ipykernel_26479": [], "ipykernel_26525": [], "ipykernel_26897": [], "ipykernel_27150": [], "ipykernel_27540": [], "ipykernel_27695": [], "ipykernel_28014": [], "ipykernel_28159": [], "ipykernel_28455": [], "ipykernel_28589": [], "ipykernel_28609": [], "ipykernel_28909": [], "ipykernel_29131": [], "ipykernel_29352": [], "ipykernel_30005": [], "ipykernel_30224": [], "ipykernel_30465": [], "ipykernel_31674": [], "ipykernel_31908": [], "ipykernel_32080": [], "ipykernel_32531": [], "ipykernel_34814": [], "ipykernel_35168": [], "ipykernel_35574": [], "ipykernel_3669": [], "ipykernel_37857": [], "ipykernel_4171": [], "ipykernel_4437": [], "ipykernel_44743": [], "ipykernel_45602": [], "ipykernel_4962": [], "ipykernel_5297": [], "ipykernel_55148": [], "ipykernel_55996": [], "ipykernel_5780": [], "ipykernel_6053": [], "ipykernel_6165": [], "ipykernel_6610": [], "ipykernel_6946": [], "ipykernel_7270": [], "ipykernel_75226": 4, "ipykernel_8585": [], "ipykernel_86731": [], "ipykernel_8703": [], "ipykernel_9023": [], "ipykernel_9444": [], "ipykernel_9640": [], "ipykernel_9642": [], "ipykernel_96621": [], "ipykernel_97096": [], "ipykernel_97762": [], "ipykernel_98107": [], "ipykernel_98323": [], "ipykernel_9850": [], "ipykernel_98609": [], "ipykernel_98736": [], "ipykernel_99004": [], "ipykernel_99350": [], "ipykernel_99922": [], "ipython": 13, "irregular": [], "irrevers": 9, "is_interact": [], "isinst": [], "ismath": [], "isn": 8, "isol": [9, 11], "issu": [], "item": [2, 3], "iter": [3, 4, 14], "iterrow": 3, "its": [1, 2, 3, 4, 6, 8, 9, 11, 12], "itself": [3, 14], "j": [5, 8], "journal": 14, "journei": 1, "julia": 1, "jump": 6, "jupyt": 2, "just": [1, 2, 3], "k": [4, 7, 8, 9, 10, 11, 14], "k_": 10, "k_b": [10, 11, 14], "k_p": 4, "keep": 3, "kei": [1, 8], "kelvin": 10, "keyword": 3, "kind": 1, "kinet": [1, 7, 9], "kiwisolv": [], "kj": 2, "know": [6, 8], "knowledg": 3, "known": [10, 12], "ko": [], "kt": 7, "kw": [], "kwarg": [], "l": [3, 7, 8], "lab": 7, "label": [1, 2, 4, 5, 8, 10, 13, 14], "lambda": [], "lambert": 8, "land": 14, "langl": [10, 11, 12, 14], "langmuir": 11, "languag": 1, "larg": [2, 3, 10, 14], "larger": 12, "last": [3, 8], "later": 1, "latest": 1, "latex": 1, "latter": 5, "law": [4, 6, 8, 10], "layout": [], "layout_engin": [], "lead": 14, "learn": [], "least": 8, "lectur": 0, "left": [4, 5, 6, 7, 8, 9, 10, 11, 14], "legend": [1, 2, 4, 5, 8, 10, 13, 14], "len": 8, "length": [], "leq": 13, "less": [3, 5], "let": [2, 4, 5, 6, 7, 8, 12, 13], "level": [5, 8, 10], "leverag": [2, 6], "li": 4, "lib": [], "librari": [1, 2, 8, 14], "lie": 4, "lightblu": 14, "like": [1, 2, 3, 5, 8, 9, 11, 14], "lim_": 5, "limit": [4, 5, 13], "linalg": [2, 6], "line": [1, 3, 5, 8, 9, 13], "linear": [0, 2, 8], "linearli": 8, "linestyl": [2, 4, 8, 10, 13, 14], "linspac": [2, 4, 5, 10, 13, 14], "linux": 1, "list": [5, 9, 13], "list_of_thermodynamic_properti": 9, "littl": 3, "live": [1, 9], "ll": [1, 2, 3, 4, 6, 14], "ln": [7, 10, 11], "ln_concentr": 7, "load": 2, "loc": [], "local": 5, "locat": [], "lock": [], "log": [7, 10, 13], "logic": 2, "long": 3, "longer": 14, "look": [3, 8], "loop": [5, 13], "lose": 9, "lost": 6, "low": [5, 10], "low_root_guess": 4, "lower": [], "lru_cach": [], "luck": [3, 8], "m": [1, 2, 7, 14], "m3": [], "m_1": 9, "m_2": 9, "m_i": 9, "m_inv": 2, "mac": 1, "machin": [1, 14], "macroscop": [10, 14], "made": 8, "magnet": 2, "mai": [11, 14], "main": [3, 9], "maintain": [2, 3, 8], "major": [1, 8], "make": [1, 2, 3, 10, 11, 14], "make_keyword_onli": [], "manag": [], "mani": [1, 2, 9, 10, 11, 14], "manipul": 1, "manner": 2, "manual": 6, "map": 3, "margin": [], "marker": 2, "markov": 14, "martist": [], "mass": [1, 4, 6, 9], "master": 1, "match": [4, 12], "materi": [1, 5, 9], "math": 1, "mathbf": [9, 14], "mathcal": [], "mathemat": 2, "mathematica": 1, "mathtext": [], "mathtext_pars": [], "mathtextpars": [], "matlab": 1, "matplotlib": [1, 4, 5, 7, 8, 10, 13, 14], "matric": 2, "matrix": [], "matter": [1, 5, 9], "max": 3, "max_ncol": [], "max_nrow": [], "maximum": [2, 11, 14], "mayb": [], "mcmc": [], "mead": 4, "mean": [1, 2, 6, 7, 8, 9, 11, 12, 13, 14], "mean_i": 8, "mean_x": 8, "meaning": 4, "measur": [8, 9, 10, 11], "mechan": [2, 5, 9, 10, 11], "medium_root_guess": 4, "meet": [2, 7], "mercuri": 2, "merg": [2, 3], "meshgrid": 5, "mess": [], "messag": [3, 4, 12], "met": 3, "methan": 6, "method": [0, 2, 3, 5, 6, 7, 8, 13, 14], "method_nam": 3, "metropoli": [], "metropolis_sampl": 14, "mg": 8, "microscop": 10, "microst": 11, "middl": [], "midpoint": 4, "might": [1, 6], "mimag": [], "min": [3, 6, 7, 14], "miniconda3": [], "minim": [7, 9], "minimum": [2, 9, 14], "minu": [], "mixtur": 4, "model": [1, 7, 8, 11, 14], "modern": 1, "modifi": [1, 2, 4, 13], "modul": [1, 2], "modular": 3, "modulenotfounderror": [], "modulo": 3, "mol": [2, 4, 7, 8], "mol_block": [], "molar": 1, "molar_mass": 1, "mole": [1, 2, 4, 9], "molecul": [6, 9, 10, 11, 14], "molecular": [1, 2, 5, 11, 14], "molecule_html": [], "molfromsmil": [], "moltomolblock": [], "momenta": [], "mont": [0, 1, 11], "monte_carlo_integr": [], "more": [2, 3, 4, 5, 6, 9, 10, 11, 12], "morse_potenti": 14, "most": [2, 3, 5], "motion": [], "movabl": 11, "move": [1, 3, 5, 9, 14], "mpl": [], "mu": 11, "mu1": [], "mu2": [], "mu_1": [], "mu_2": [], "much": [1, 2, 7, 9, 13, 14], "multi": [2, 4], "multidimension": [5, 14], "multipl": [1, 2, 3, 4, 6], "multipli": [2, 3, 13], "must": [1, 3, 4, 5, 14], "mutat": [], "mx": 7, "my_dict": 3, "my_list": [2, 3], "n": [2, 3, 5, 6, 7, 8, 9, 11, 12, 14], "n1": [], "n2": [], "n2o5": 7, "n9": 4, "n_data_point": 8, "n_equilibr": 14, "n_i": 14, "n_point": 13, "n_points_list": 13, "n_sampl": 14, "n_step": 14, "n_valu": 5, "name": [1, 2, 3], "name_idx": [], "nameerror": [], "narr": 1, "narrow": 4, "natur": [7, 9], "ndarrai": 2, "necessari": [11, 14], "need": [1, 2, 3, 4, 5, 6, 7, 8, 10, 13], "neg": [8, 9], "nelder": 4, "net": [4, 9], "never": [3, 9], "new": [1, 3, 4, 8, 14], "new_list": 3, "newton": 4, "next": [1, 3, 6, 13], "nfev": 4, "nit": 4, "nm": 8, "nobr": 7, "non": [], "nondecreas": [], "none": 3, "nonlinear": 4, "norm": [], "normal": [5, 10], "normalization_factor": 5, "not_composit": [], "notat": 3, "note": 13, "notebook": 2, "notic": [], "now": [1, 3, 4, 5, 6, 7, 8, 11, 14], "np": [2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14], "nriemann": 5, "nrt": 9, "nstep": [], "nucleu": 5, "null": [], "null_spac": 6, "null_vec": 6, "nullcontext": [], "number": [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "numer": [0, 1, 2, 3, 7, 8, 13, 14], "numerical_result": [], "numpi": [1, 4, 5, 6, 7, 8, 10, 12, 13, 14], "o": [1, 2, 3, 4, 6, 7, 13, 14], "obei": 4, "obj": [], "obj_typ": [], "object": [], "objective_funct": 4, "observ": [4, 7, 8, 10], "obtain": [4, 5, 6, 8, 14], "occupi": 11, "occur": [3, 4, 11], "octant": 13, "off": 9, "offer": [1, 2], "offici": [1, 2], "offsettext": [], "often": [1, 3, 4, 11, 12], "oi": [], "ok": [5, 8], "ol": [7, 8], "old": 14, "old_list": 3, "ols_intercept": [7, 8], "ols_slop": [7, 8], "omega": 10, "omit": [], "onc": [1, 2, 6, 7], "one": [1, 2, 3, 4, 6, 7, 8, 9, 11, 14], "ones": 2, "onli": [1, 2, 3, 6, 9, 13, 14], "open": [1, 9], "oper": [1, 3, 5, 6], "operand": [], "opportun": 2, "opposit": 9, "optim": [2, 5], "optimizewarn": 4, "option": 3, "orang": 10, "orbit": [11, 13], "order": [0, 2, 9, 10], "ordinari": 8, "org": [9, 14], "organ": [1, 2, 3, 5], "orient": [2, 5], "origin": [1, 3], "orthonorm": 2, "other": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11], "otherwis": 3, "our": [1, 2, 5, 6, 7, 8, 9, 11, 12], "out": [1, 2], "outcom": 4, "output": [2, 4, 6], "outsid": 4, "over": [2, 3, 5, 10, 11, 12, 13], "overal": [7, 10], "overlai": 14, "overlap": 2, "overlap_integr": 5, "overlap_integral_trapezoid": 5, "overleaf": 1, "overview": 2, "own": [1, 3, 8, 11], "ox": [], "oxygen": [1, 4, 6], "oxygen_mass": 1, "p": [2, 4, 9, 11, 14], "p1": 10, "p1_valu": [], "p2": 10, "p2_valu": [], "p_": 4, "p_1": 10, "p_2": 10, "p_i": 10, "p_x": [], "packag": [0, 1], "pad": [], "pad_inch": [], "pair": 3, "panda": [1, 5, 13], "panel": [], "paramet": [2, 4, 5, 7, 8, 12, 13, 14], "parent": [], "parenthes": [2, 3], "pars": [], "parsebaseexcept": [], "parseexcept": [], "parser": [], "parsestr": [], "part": [1, 4, 9, 14], "parti": [], "partial": [4, 10, 11], "particip": [], "particl": [5, 9, 10, 11, 14], "particular": [9, 10, 11], "particularli": [1, 2, 3, 4], "partit": [11, 14], "partition_funct": [], "pass": [], "patch": [], "path": [1, 9], "pattern": [], "pd": [2, 3, 5, 13], "pdf": [2, 12, 13], "peak": [8, 10], "per": [2, 6], "percentag": 4, "perfect": [8, 9], "perform": [1, 2, 3, 4, 5, 7, 8], "period": 2, "permeabl": 9, "person": 3, "phase": [11, 14], "phenomenon": 5, "phi": 5, "physic": [1, 2, 4, 5, 8, 14], "pi": [5, 7, 13, 14], "pillow": [], "pip": [1, 2], "pip3": 1, "piston": [9, 11], "place": 4, "placehold": 4, "placeholderlayoutengin": [], "plai": [2, 4, 5], "plain": [], "plan": 7, "planck": [], "plot": [1, 4, 5, 7, 8, 10, 11, 13], "plotli": 1, "plt": [1, 2, 4, 5, 7, 8, 10, 13, 14], "plu": 9, "pm": [4, 8], "png": 2, "point": [2, 4, 5, 7, 8, 9, 12, 13, 14], "polyfit": [], "polyv": [], "popular": 1, "posit": [2, 3, 6, 8, 9, 10, 14], "position": [], "possibl": [1, 3, 5, 6, 11, 13], "post_execut": [], "postul": 11, "potassium": 2, "potenti": 11, "power": [1, 3, 4, 7, 12, 14], "ppf": 8, "practic": 4, "pre": 1, "preced": [], "precipit": 9, "precis": 8, "predefin": [2, 14], "predetermin": 3, "predict": [1, 4, 7, 8, 11], "prefix": 1, "prepar": [1, 5], "presenc": 8, "present": [1, 2, 7], "press": 14, "pressur": [4, 8, 9, 10, 11], "pretti": [], "prevent": 2, "previou": [1, 10, 11, 12], "previous": [], "previous_engin": [], "primari": 2, "primarili": [1, 5], "principl": [2, 12], "print": [2, 3, 4, 5, 7, 8, 12, 14], "print_figur": [], "print_method": [], "printer": [], "priori": 11, "prob": [], "probabl": [10, 11, 12], "problem": [1, 2, 6, 12], "proce": [4, 5, 9], "proceed": 4, "process": [1, 2, 3, 4, 6, 9], "produc": [3, 6, 8], "product": [2, 4, 6, 7, 13], "profil": 8, "program": [1, 3], "progress": [1, 2, 4, 7], "project": 1, "prompt": [1, 2], "prop": [], "properti": [1, 5, 9, 11, 14], "proport": [8, 13], "propos": 14, "propto": [], "prove": 5, "provid": [2, 3, 4, 5, 6, 8, 10, 14], "proxim": 5, "pseudo": 7, "psi_": [5, 13], "psi_1": 13, "psi_1s_sum": [], "psi_i": 5, "psi_j": 5, "purchas": 7, "purpl": 10, "purpos": 2, "put": [1, 3, 7], "pv": 9, "py": 4, "py3dmol": [], "pylabtool": [], "pymatgen": 1, "pypars": [], "pyplot": [1, 2, 4, 5, 7, 8, 10, 13, 14], "pyscf": 1, "python": [0, 7], "python3": 1, "q": 9, "q030dl3x6qgfqffys4wc7d4c0000gn": 4, "quacc": 1, "quad": [], "quadrat": 4, "quadratic_eq": [], "quadratic_equ": 4, "quadratur": [5, 14], "qualit": 9, "quantifi": 5, "quantiti": [2, 4], "quantiz": 11, "quantum": [1, 2, 5], "quasistat": 9, "question": [3, 9], "quickli": 4, "r": [1, 4, 5, 8, 9, 10, 13, 14], "r1": 5, "r2": 5, "r_0": 9, "r_1": [], "r_2": [], "r_i": 9, "r_valu": 5, "radii": 5, "radiu": [3, 5], "rain": 9, "rais": [4, 7], "rand": [2, 8, 12, 14], "randint": 2, "randn": [2, 8], "random": [2, 8, 10, 12, 14], "randomli": 12, "rang": [1, 2, 3, 4, 5, 8, 10], "rangl": [10, 11, 12, 14], "raphson": 4, "rapidli": 5, "rate": 4, "rather": [5, 11, 13, 14], "ratio": [4, 6, 14], "rdkit": [], "re": [1, 2, 3, 11, 14], "reach": [3, 4, 7, 9, 11, 14], "react": [6, 9], "reactant": [4, 6, 7], "reaction": [0, 1, 2, 6, 9], "read": 3, "read_csv": 2, "readabl": 2, "readi": [1, 2, 11], "real": [1, 4, 11], "realiz": 7, "realli": 5, "reason": 3, "recal": [5, 7, 12], "recast": [], "recent": [], "reciproc": [], "recogn": 1, "recommend": [1, 2, 8], "reconsid": 12, "rect": [], "rectangl": 5, "red": [2, 4, 8, 10, 14], "reduc": [3, 12], "redund": 3, "ref": [], "refer": [1, 2, 3, 5, 9, 10], "reflect": [1, 4], "regardless": 14, "region": [9, 12, 13, 14], "regress": [0, 8], "regular": [3, 14], "reinforc": [3, 8], "reject": 14, "rel": 6, "relat": [4, 5, 7, 8], "relationship": [2, 6, 7, 8, 11], "relev": 9, "reli": [2, 12], "remain": 4, "rememb": 1, "remov": 3, "render": 1, "renderer_ref": [], "rendereragg": [], "repeat": [3, 14], "repeatedli": 3, "repetit": 3, "replac": 4, "report": [2, 7], "repositori": 1, "repres": [1, 2, 4, 6, 8, 14], "represent": 6, "reproduc": [12, 13, 14], "requir": [2, 3, 4, 11], "research": [1, 8, 11], "reservoir": 10, "residu": 8, "resiz": [], "resourc": 1, "respect": [1, 4, 5, 6, 7, 11], "respond": 3, "respons": [3, 8], "restrict": [], "result": [1, 2, 3, 4, 5, 6, 12, 13], "results_df": 5, "retain": 14, "retriev": 7, "return": [2, 3, 4, 5, 7, 8, 14], "reus": 3, "reusabl": 3, "revers": [3, 4, 9], "revisit": 6, "rewrit": [5, 7], "riemann": [], "riemann_result": 5, "riemann_sum": 5, "riemann_sum_valu": 5, "right": [4, 5, 6, 8, 9, 10, 11, 14], "rightarrow": [6, 14], "rightleftharpoon": 4, "river": 14, "rm": 10, "ro": [5, 7], "robust": 2, "role": [2, 4, 5, 9, 10], "root": [0, 1, 2], "rosenbluth": [], "round": 6, "routin": 2, "row": [2, 3], "row_data": [], "rowspan": [], "rubidium": 2, "rule": [], "run": [1, 2, 3, 4], "runtimeerror": [], "rv": 13, "s_analyt": 5, "s_numer": [], "s_riemann": 5, "s_sum": 5, "s_trapezoid": 5, "s_trapz": [], "sai": [1, 5], "said": 11, "same": [1, 3, 6, 8, 9, 11, 13], "sampl": 8, "satisfi": [4, 6, 14], "satur": 6, "save": [2, 6], "scale": [1, 13], "scatter": [1, 4, 8], "scatterplot": 2, "scenario": [], "scienc": [4, 5, 6, 9], "scientif": 1, "scikit": 1, "scipi": [1, 5, 6, 8, 10, 12, 13, 14], "scratch": 2, "script": 2, "se": 8, "se_intercept": 8, "se_slop": 8, "seaborn": 1, "secant": 4, "second": 2, "section": 6, "see": [1, 3, 4, 5, 6, 13], "seed": [8, 12, 13, 14], "seen": 1, "segment": [], "select": 12, "self": [], "send": 3, "separ": [2, 5, 9], "sequenc": [2, 3], "sequenti": 3, "seri": [3, 5, 8, 9, 14], "serv": 2, "set": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14], "set_axhlin": [], "set_layout_engin": [], "set_titl": [5, 10], "set_xlabel": [5, 10], "set_ylabel": [5, 10], "setstyl": [], "sever": [1, 5, 11], "shape": [2, 7, 12], "share": [1, 5], "sheet": 1, "shift": [], "ship": [], "short": 3, "should": [1, 2, 3, 4, 6, 7, 8, 10, 12, 13, 14], "show": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14], "shown": [2, 9, 10, 13], "side": [5, 6], "sigma": 8, "sigma1": [], "sigma2": [], "sigma_1": [], "sigma_2": [], "signal": 2, "signific": [7, 8, 14], "similar": [2, 5, 12, 13], "similarli": [], "simpl": [1, 2, 3, 4, 7, 10, 12, 14], "simplest": [3, 12], "simpli": 1, "simplic": 6, "simplifi": [2, 4, 6, 14], "simpson": 5, "simul": [1, 11, 12], "simultan": 5, "sin": [2, 5], "sinc": [6, 7, 11, 12], "sine": [2, 5], "singl": [2, 14], "singular": [], "site": 11, "six": [], "size": [5, 9, 12, 13, 14], "skew": 14, "skill": [1, 2, 3, 6, 8], "skip": 3, "slack": 3, "slice": 3, "slightli": [], "slope": [7, 8], "slowli": 5, "small": [3, 5, 14], "smaller": [3, 12], "smallest": 6, "smile": [], "smit": 14, "sn": 6, "sno": 6, "snow": 9, "sno\u2082": 6, "so": [2, 3, 5, 6, 9, 12], "softwar": [1, 2], "solid": [1, 2, 5, 11], "solut": [2, 6], "solv": [1, 2, 5, 12], "some": [1, 2, 3, 8], "somehow": [], "sorbent": 11, "sourc": 2, "space": [5, 9, 14], "span_pair": [], "spatial": 5, "speci": [4, 7], "special": 1, "specif": [3, 10], "specifi": [3, 4, 5, 10], "spectromet": 8, "spectrophotomet": [], "spectroscopi": 2, "spend": [], "spheric": [5, 13], "spine": [], "split": 4, "spread": 2, "spreadsheet": [1, 2], "spring": 9, "sql": 2, "sqrt": [1, 4, 5, 8, 13], "squar": [1, 2, 3, 8], "ss": [], "sse": [7, 8], "ssr": 8, "stabl": 14, "stai": 4, "stale": [], "standard": [4, 8, 11], "start": [2, 3, 4, 5, 6, 7, 12, 14], "start_filt": [], "stat": [8, 12, 13], "state": [2, 4, 5, 7, 9, 11, 14], "statement": [1, 4], "static": 2, "stationari": [], "statist": [0, 1, 2, 7, 11, 14], "statsmodel": [1, 8], "statu": 4, "std": [], "std_dev": 13, "step": [5, 8, 11], "steroid": 2, "stick": [], "still": 4, "stochast": [], "stoichiometr": [1, 4, 6], "stoichiometri": 7, "stop": [], "stop_raster": [], "storag": 2, "store": [1, 2, 3, 5, 13], "stori": 8, "straight": 5, "straightforward": [1, 2, 3], "streamlin": 6, "strength": [1, 2, 8], "string": 2, "strong": [2, 8], "structur": [0, 1], "struggl": [], "student": [], "studi": 11, "style": [1, 2], "styler": [], "subclass": [], "subdivid": [], "subdivis": 5, "subplot": [5, 10, 14], "subplot_list": [], "subplots_adjust": [], "subplotspec_list": [], "subset": 2, "substitut": [4, 6], "subtract": 1, "success": [4, 14], "successfulli": [4, 7], "suggest": 7, "suit": [1, 2], "suitabl": 4, "sum": [7, 8, 9, 10], "sum_": [5, 7, 8, 11, 12, 14], "sum_i": [9, 10], "summar": [], "super": [], "superclass": [], "support": [1, 2, 12], "suppos": [7, 12], "suppress_composit": [], "suppresscomposit": [], "suptitl": 5, "sure": 1, "surfac": 11, "surround": [9, 11, 14], "svg": 2, "symbol": 1, "symmetr": [5, 13, 14], "symmetri": [], "syntax": [1, 2, 3], "syntaxwarn": [], "system": [0, 1, 2, 4, 14], "systemat": 6, "t": [1, 2, 3, 4, 7, 8, 9, 10, 11, 14], "t_": 8, "t_rang": [], "t_valu": 14, "tab": 1, "tabl": [4, 6, 7], "tabular": [1, 2, 3], "tackl": [1, 2], "tailor": 1, "take": [3, 5, 10, 11], "taken": 9, "target": 12, "task": [1, 2, 3, 8], "taught": [], "technic": 2, "techniqu": [1, 2, 6, 7, 11, 12], "temperatur": [4, 8, 9, 10, 11], "term": [4, 7, 10], "termin": [1, 2, 3, 4], "test": [1, 8], "text": [1, 4, 6, 7, 8, 14], "th": [], "than": [2, 3, 5, 7, 11, 13, 14], "thei": [1, 2, 3, 4, 9, 11, 13], "them": [1, 2, 3, 9], "theori": [], "therefor": [5, 6, 11, 13], "thermal": [9, 10, 11], "thermodynam": [0, 1, 11], "theta": [5, 11], "thi": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "thin": 14, "thing": [3, 8], "think": [2, 3, 5, 6], "third": [], "those": [2, 5, 12, 14], "thought": 6, "three": [3, 4, 5, 9], "threshold": 8, "through": [1, 2, 9], "throughout": 2, "thu": [6, 14], "ti": 3, "tight": [], "tight_bbox": [], "tight_bbox_raw": [], "tight_layout": [5, 10, 14], "tightlayoutengin": [], "time": [3, 4, 6, 7, 8, 11, 14], "tip": [], "titl": [1, 2, 4, 5, 7, 8, 10, 13, 14], "to_csv": 2, "to_html": [], "todai": 1, "togeth": [3, 7, 8], "tol": 4, "toler": 4, "too": 3, "tool": [1, 4, 14], "toolbar": [], "toolkit": 2, "top": [1, 2], "topic": 2, "total": [4, 5, 10, 11, 14], "total_sum": [], "touch": 1, "tough": 5, "toward": [4, 12, 14], "traceback": [], "track": 6, "tradit": [2, 4, 14], "train": [], "transax": [], "transfer": 9, "transfigur": [], "transform": [2, 3], "transform_bbox": [], "transit": [9, 10, 14], "transport": 1, "trapezoid": [], "trapezoidal_result": 5, "trapz": [], "trend": 2, "tri": [], "tripl": 9, "true": [2, 3, 4, 5, 8, 10, 12, 14], "truncat": [], "try": [1, 2, 3, 6, 8], "tune": 14, "tupl": [3, 5], "turn": [], "twice": 1, "two": [1, 2, 3, 7, 8, 9, 11, 13, 14], "type": [1, 2, 3, 5, 6, 7, 9], "typeerror": [], "typic": [1, 4, 7, 8], "u": [3, 5, 6, 8, 9, 12, 14], "u_i": [], "ubiquit": 2, "uffoptimizemolecul": [], "ultim": 5, "ultraviolet": 8, "unbalanc": 6, "unbias": 8, "uncertainti": [], "under": [4, 5, 10, 11], "undergo": 10, "underli": 2, "underscor": [], "understand": [1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 14], "unexpect": [], "uniform": [5, 9, 12, 13, 14], "uniformli": 12, "union": [], "uniqu": 3, "unit": [2, 7], "unknown": 6, "unlik": 3, "unnecessarili": [], "unord": 3, "unphys": [], "unsatur": 6, "until": 3, "unus": [], "up": [1, 3, 4, 8, 9, 10], "updat": 6, "upon": [1, 14], "us": [1, 4, 7, 8, 9, 10, 11, 12, 13], "usag": 5, "user": 1, "userwarn": [], "util": [3, 4, 8], "uv": 8, "v": [2, 7, 9, 10, 14], "v_1": 9, "v_2": 9, "v_i": 9, "va": [], "valid": 8, "valu": [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13], "valuabl": [], "valueerror": [], "vapor": 4, "var": [4, 12, 13], "variabl": [1, 2, 3, 4, 6, 7, 8, 9], "varianc": [8, 12, 13], "varieti": [1, 2], "variou": [1, 2, 7], "vast": [1, 2], "ve": [1, 2, 3, 6], "vector": [5, 6, 9], "veloc": [9, 10], "veri": [7, 10], "verifi": [1, 2, 5], "versatil": [1, 2, 3], "version": 1, "vertic": 8, "vi": 8, "via": 9, "vibrat": 14, "view": 10, "viewer": [], "visibl": 8, "visit": 1, "visual": [1, 4, 5, 7], "vital": 2, "volum": [5, 9, 11], "vowel": 3, "w": [2, 9], "w_pad": [], "wa": [], "wai": [2, 3, 9, 12, 14], "walk": [], "want": [2, 8, 13], "warn_deprec": [], "warn_extern": [], "washu": [], "wast": [], "water": [1, 4, 6, 14], "wavefunct": 2, "we": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "weak": 8, "weakref": [], "web": 1, "websit": 1, "weight": 12, "welcom": 1, "well": [3, 8, 10, 12, 14], "were": [7, 8], "wexler": [], "what": [1, 2, 6, 10], "when": [1, 2, 3, 4, 5, 7, 9, 14], "where": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "whether": [1, 2, 3, 14], "which": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14], "while": [1, 2, 4, 5, 8, 9, 10], "whole": [], "whose": [], "why": 3, "wide": [1, 2, 4], "width": [5, 14], "wiki": 9, "wikipedia": 9, "window": [], "wise": 2, "within": [1, 2, 3, 4], "without": [3, 4, 9, 11], "won": 2, "word": [5, 8, 9], "work": [1, 3, 4, 7, 8, 10], "workflow": 1, "workforc": 1, "world": [1, 9, 11], "would": [4, 8, 10, 11, 12], "wrap": [], "wrapper": [], "write": [3, 4, 5, 6, 7, 8, 12], "written": [2, 3, 5, 6, 9], "x": [1, 2, 3, 4, 5, 6, 7, 8, 13, 14], "x0": 4, "x_": 14, "x_0": [], "x_averag": 14, "x_avg": 14, "x_e": 14, "x_equilibr": 14, "x_i": [5, 7, 8, 12], "x_init": 14, "x_initi": 14, "x_max": [], "x_mean": [7, 8], "x_min": [], "x_new": 14, "x_old": [], "x_prime": [], "x_rang": 14, "x_sampl": 14, "x_se": [], "x_std": [], "x_valu": 4, "xe": [], "xenon": 2, "xi": [], "xlabel": [1, 2, 4, 5, 7, 8, 10, 13, 14], "xmax": 14, "xmin": 14, "xp": [], "xscale": 13, "xy": 10, "xytext": 10, "y": [1, 2, 3, 5, 6, 7, 8, 13], "y_i": [7, 8], "y_max": [], "y_mean": [7, 8], "y_min": [], "yaxi": [], "yerr": 13, "yield": 4, "ylabel": [1, 2, 4, 5, 7, 8, 10, 13, 14], "ymax": [], "york": 3, "you": [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14], "your": [1, 3, 7, 8], "yourself": [1, 3], "yscale": [], "ytterbium": 2, "yttrium": 2, "z": [5, 10, 11, 13, 14], "z_i": [], "z_max": [], "z_min": [], "zero": [2, 4, 6, 9, 10], "zeros_lik": [], "zinc": 2, "zip": [], "zirconium": 2, "zoomto": [], "zorder": 4, "zr": [], "\u00e5": [5, 14], "\u03c0": []}, "titles": ["Welcome to Computational Problem Solving in the Chemical Sciences", "Lecture 1: Introduction to Python for the Chemical Sciences", "Lecture 2: Essential Python Packages for the Chemical Sciences", "Lecture 3: Control Structures in Python", "Lecture 4: Chemical Reaction Equilibria and Roots of Equations", "Lecture 5: Chemical Bonding and Numerical Integration", "Lecture 6: Balancing Chemical Equations and Systems of Linear Algebraic Equations", "Lecture 7: Orders of Reaction and Linear Regression Analysis", "Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis", "Lecture 9: Classical Thermodynamics", "Lecture 10: Statistical Thermodynamics", "Lecture 11: Ensembles and Ergodicity", "Lecture 12: The Monte Carlo Method", "Lecture 13: Monte Carlo Integration", "Lecture 14: A Basic Monte Carlo Algorithm"], "titleterms": {"": [1, 4, 11], "1": [1, 2, 3, 4, 5, 6], "10": 10, "11": 11, "12": 12, "13": 13, "14": 14, "1d": 2, "2": [1, 2, 3, 4, 6], "2d": 2, "3": [1, 2, 3, 6], "4": [1, 2, 3, 4, 6], "5": [1, 2, 3, 5, 6], "6": [1, 2, 3, 6], "7": [1, 7], "8": 8, "9": 9, "A": [2, 4, 6, 7, 8, 14], "On": [4, 5, 7, 8], "The": [2, 3, 4, 5, 6, 9, 12, 14], "To": [], "about": [9, 11], "accept": 14, "access": [], "activ": [4, 5, 7, 8], "addit": [3, 4, 14], "advanc": 2, "advantag": [], "algebra": 6, "algorithm": 14, "all": 3, "alreadi": 1, "an": 5, "analysi": [7, 8], "analyt": 5, "analyz": 14, "anoth": [], "appendix": [], "approach": 4, "ar": 3, "arrai": [2, 3], "averag": [10, 12, 14], "back": [7, 8], "balanc": [6, 14], "basic": [2, 14], "best": [2, 3], "boltzmann": 10, "bond": [5, 14], "calcul": 5, "calibr": 8, "can": 1, "canon": 11, "capac": 10, "care": [9, 11], "carlo": [12, 13, 14], "case": 6, "check": [1, 3], "chemic": [0, 1, 2, 4, 5, 6], "chemistri": 1, "choos": [12, 13], "classic": [9, 14], "code": 14, "coeffici": [6, 8], "combust": 6, "comprehens": 3, "comput": [0, 2, 5, 6], "concept": [], "conclus": [], "condit": [3, 14], "confid": 8, "configur": [], "constant": [7, 10], "control": 3, "convert": 6, "correl": 8, "creat": 2, "critic": 10, "curv": 8, "custom": 2, "data": [2, 8], "datafram": [2, 3], "decomposit": 7, "default": 3, "defin": [3, 6], "definit": [], "depth": 14, "deriv": 14, "detail": 14, "determin": 7, "determinist": [], "dictionari": 3, "dimension": [], "distribut": [10, 13], "do": 1, "download": 1, "element": 3, "elif": 3, "els": 3, "energi": [9, 10], "ensembl": 11, "entropi": 10, "equat": [4, 6], "equilibria": [4, 9], "equilibrium": [4, 9], "ergod": 11, "essenti": 2, "estim": 12, "even": 3, "exampl": [4, 6, 7, 10, 11, 14], "exercis": [1, 2, 3, 4], "expans": 14, "expect": 4, "experi": 7, "explan": 14, "factori": 3, "familiar": 8, "featur": 2, "filter": 2, "find": [3, 4], "first": 9, "form": 8, "formul": 4, "foundat": 2, "free": 10, "from": 10, "function": [3, 10], "fundament": 9, "g": [7, 12], "gaussian": [], "gener": [2, 6], "get": 1, "grand": 11, "graph": 1, "guess": 4, "h": 5, "hand": [3, 4, 5, 6, 7, 8], "he": 5, "heat": [9, 10], "high": [], "higher": 3, "hint": 7, "histogram": 2, "hydrocarbon": 6, "hydrogen": [5, 6], "i": [1, 3, 5], "implement": [4, 12, 14], "implic": 11, "import": [2, 4, 6, 12, 13], "infinit": 3, "initi": 4, "instal": [1, 2], "integ": 6, "integr": [5, 12, 13], "interlud": 8, "intern": [9, 10], "interpret": 14, "interv": 8, "introduct": [1, 3, 4, 7, 8, 10, 12, 14], "isobar": 11, "isotherm": 11, "iv": 6, "jupyt": 1, "kei": [2, 3], "lambda": 3, "launch": 1, "law": [7, 9], "learn": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "least": 7, "lectur": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "length": 14, "let": 1, "librari": 6, "line": 2, "linear": [6, 7], "list": [2, 3], "loop": 3, "macrost": 10, "manipul": 2, "mathbf": 6, "mathemat": [1, 4], "matplotlib": 2, "matrix": [2, 6], "maximum": 3, "measur": 14, "method": [4, 12], "metropoli": 14, "microcanon": 11, "microst": 10, "minim": 4, "minimum": 3, "minut": [], "mississippi": 14, "moment": 6, "mont": [12, 13, 14], "more": 1, "mors": 14, "motiv": 12, "n_2o_5": 7, "necessari": 6, "next": 11, "non": 11, "normal": 6, "note": [1, 3, 4, 5, 14], "notebook": 1, "null": 6, "number": 3, "numer": [4, 5], "numpi": [2, 3], "object": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "observ": [], "odd": 3, "oper": 2, "optim": 4, "orbit": 5, "order": [3, 7], "ordinari": 7, "oscil": 14, "over": 14, "overlap": [5, 13], "oxid": 6, "packag": 2, "palindrom": 3, "panda": [2, 3], "paramet": 3, "partit": 10, "phase": 9, "plot": [2, 14], "potenti": [9, 14], "power": 2, "practic": [1, 2, 3, 7], "primer": 7, "probabl": 14, "problem": [0, 4], "properti": [2, 10], "public": 2, "put": [], "python": [1, 2, 3, 4, 6, 12, 14], "qualiti": 2, "random": 13, "rang": 14, "rate": 7, "reaction": [4, 7], "read": 2, "real": 8, "recap": 6, "reduct": 6, "refer": 14, "refresh": 7, "regress": 7, "relat": [9, 12], "remind": 2, "result": 14, "return": 13, "review": [], "revisit": [], "rewrit": 12, "riemann": 5, "root": 4, "rule": 5, "run": 14, "sampl": [12, 13, 14], "scatter": 2, "scienc": [0, 1, 2], "scientif": 2, "scipi": [2, 4], "second": 9, "section": [2, 3], "seri": 2, "should": [9, 11], "simul": 14, "solut": [4, 5], "solv": [0, 4, 6], "space": 6, "specif": [1, 2], "squar": 7, "start": 1, "state": 10, "statement": [3, 9], "statist": 10, "step": [1, 4, 6, 14], "string": 3, "structur": [2, 3], "suitabl": 12, "sum": [3, 5], "summari": [6, 9, 10, 11, 13, 14], "sup": [], "symmetri": 5, "system": [6, 9, 10, 11], "take": 6, "temperatur": 14, "test": [], "theoret": 8, "thermal": 14, "thermodynam": [9, 10], "thi": [], "think": 10, "third": 9, "through": 3, "tin": 6, "tool": 2, "trapezoid": 5, "two": [5, 10], "type": 11, "u": [], "us": [2, 3, 5, 6], "v": [3, 5], "valu": 3, "varianc": [], "vector": 2, "versatil": 4, "via": 4, "visual": [2, 14], "volum": 10, "wait": [4, 5], "warn": 4, "welcom": 0, "what": [3, 4, 5, 11], "while": 3, "why": [9, 11], "window": 1, "work": [2, 9], "world": 8, "write": 2, "x": 12, "you": [9, 11], "your": 2, "zeroth": 9}}) \ No newline at end of file