diff --git a/_images/adsorption_sites.png b/_images/adsorption_sites.png
new file mode 100644
index 0000000..1e49604
Binary files /dev/null and b/_images/adsorption_sites.png differ
diff --git a/_images/coverage_vs_pressure.png b/_images/coverage_vs_pressure.png
new file mode 100644
index 0000000..d9bba5c
Binary files /dev/null and b/_images/coverage_vs_pressure.png differ
diff --git a/_images/ergodicity_vs_nonergodicity.png b/_images/ergodicity_vs_nonergodicity.png
new file mode 100644
index 0000000..ab90e62
Binary files /dev/null and b/_images/ergodicity_vs_nonergodicity.png differ
diff --git a/_images/microcanonical_ensemble.png b/_images/microcanonical_ensemble.png
new file mode 100644
index 0000000..2703993
Binary files /dev/null and b/_images/microcanonical_ensemble.png differ
diff --git a/_images/microstate_macrostate.png b/_images/microstate_macrostate.png
index 7ef046f..ab652fb 100644
Binary files a/_images/microstate_macrostate.png and b/_images/microstate_macrostate.png differ
diff --git a/_sources/lecture-11-ensembles.md b/_sources/lecture-11-ensembles.md
new file mode 100644
index 0000000..8297591
--- /dev/null
+++ b/_sources/lecture-11-ensembles.md
@@ -0,0 +1,120 @@
+---
+jupytext:
+ text_representation:
+ extension: .md
+ format_name: myst
+ format_version: 0.13
+ jupytext_version: 1.16.4
+kernelspec:
+ display_name: comp-prob-solv
+ language: python
+ name: python3
+---
+
+# Lecture 11: Ensembles and Ergodicity
+
+## Learning Objectives
+
+By the end of this lecture, you should be able to
+
+1. Define the microcanonical, canonical, isothermal-isobaric, and grand canonical ensembles.
+2. Understand the concept of ergodicity and its implications for the relationship between ensemble averages and time averages.
+
+## Why Should You Care About Ensembles?
+
+In the previous lecture, we discussed the concept of a microstate and how it can be used to describe the state of a system. However, in many cases, we are not interested in the properties of individual microstates but rather in the average behavior of a system over many microstates. This is where the concept of an ensemble comes in.
+
+An ensemble is a collection of systems that are identical in all respects except for the particular microstate they occupy. By studying the properties of an ensemble, we can make predictions about the behavior of a system without having to consider every possible microstate individually.
+
+## Types of Ensembles
+
+There are several different types of ensembles that are commonly used in statistical mechanics. The choice of ensemble depends on the conditions under which the system is being studied. Each of these ensembles has its own set of constraints and corresponding thermodynamic potentials that can be used to describe the behavior of the system.
+
+### Microcanonical Ensemble
+
+In this ensemble, the system is isolated and has fixed values of energy, volume, and number of particles. The microcanonical ensemble is used to study systems that are closed and do not exchange energy or particles with their surroundings.
+
+#### Microcanonical Ensemble: Example
+
+![One electron in an f orbital](microcanonical_ensemble.png)
+
+Consider a system of one electron in an f orbital. The energy of the electron is quantized, and the electron can occupy one of the 14 f orbitals. The microcanonical ensemble for this system would consist of all possible configurations of the electron in the f orbitals that have the same total energy. The **equal a priori probability postulate** states that all microstates with the same energy are equally likely to occur. Therefore, the probability of finding the electron in any particular f orbital is the same, *i.e.*, 1/14.
+
+### Canonical Ensemble
+
+In this ensemble, the system is in thermal contact with a heat bath at a fixed temperature. The canonical ensemble is used to study systems that are in thermal equilibrium with their surroundings.
+
+### Isothermal-Isobaric Ensemble
+
+In this ensemble, the system is in thermal and mechanical equilibrium with a heat bath at a fixed temperature and pressure. The isothermal-isobaric ensemble is used to study systems that are in thermal and mechanical equilibrium with their surroundings.
+
+#### Isothermal-Isobaric Ensemble: Example
+
+Consider a gas confined to a container with a movable piston. The gas is in thermal equilibrium with a heat bath at a fixed temperature and pressure. The isothermal-isobaric ensemble for this system would consist of all possible configurations of the gas molecules that have the same number of particles, pressure, and temperature.
+
+### Grand Canonical Ensemble
+
+In this ensemble, the system is in thermal and chemical equilibrium with a heat bath at a fixed temperature and chemical potential. The grand canonical ensemble is used to study systems that are in thermal and chemical equilibrium with their surroundings.
+
+#### Grand Canonical Ensemble: Example
+
+````{margin}
+```{note}
+The chemical potential is a measure of the energy required to add a particle to a system.
+```
+````
+
+Consider a model system with sorbent particles that interact with adsorption sites on a solid surface but do not interact with each other.
+
+![Adsorption of gas molecules on a surface](adsorption_sites.png)
+
+For one adsorption site, there are two possible states: empty or occupied. Therefore, the partition function for the system is given by
+
+$$
+Z = \sum_{N=0}^{1} e^{\beta \mu N}
+$$
+
+where $\mu$ is the chemical potential. Since the sorbent particles do not interact with each other, the ensemble average of the coverage of the surface by the sorbent particles $\theta$ is given by the ensemble average of the number of particles at each adsorption site, which is
+
+$$
+\theta = \langle N \rangle = \frac{\partial \ln Z}{\partial \left( \beta \mu \right)} = \frac{e^{\beta \mu}}{1 + e^{\beta \mu}}
+$$
+
+If the sorbent particles are in equilibrium with their ideal gas phase, the chemical potential is given by
+
+$$
+\mu = \mu^{\circ} + k_B T \ln \left( \frac{P}{P^{\circ}} \right)
+$$
+
+where $\mu^{\circ}$ is the standard chemical potential, $P$ is the pressure of the ideal gas phase, and $P^{\circ}$ is the standard pressure. The coverage of the surface by the sorbent particles can then be calculated as a function of the pressure of the ideal gas phase.
+
+$$
+\theta = \frac{e^{\beta \mu^{\circ}} \left( \frac{P}{P^{\circ}} \right)}{1 + e^{\beta \mu^{\circ}} \left( \frac{P}{P^{\circ}} \right)} = \frac{K P}{1 + K P}
+$$
+
+where $K = e^{\beta \mu^{\circ}} / P^{\circ}$. This equation describes the Langmuir adsorption isotherm, which is commonly used to describe the adsorption of gases on solid surfaces.
+
+![Langmuir adsorption isotherm](coverage_vs_pressure.png)
+
+The plot above shows the coverage of the surface by the sorbent particles as a function of the pressure of the ideal gas phase. As the pressure increases, the coverage of the surface also increases, but it reaches a maximum value at high pressures.
+
+## Ergodicity
+
+The concept of ergodicity is central to the relationship between ensemble averages and time averages in statistical mechanics. A system is said to be ergodic if it explores all of its microstates over time. In an ergodic system, the time average of a property is equal to the ensemble average of that property.
+
+### Implications of Ergodicity
+
+If a system is ergodic, then the ensemble average of a property can be calculated by averaging the property over time. This means that we can use time averages to make predictions about the behavior of a system without having to consider every possible microstate individually.
+
+### Non-Ergodic Systems
+
+Not all systems are ergodic. In non-ergodic systems, the time average of a property may not be equal to the ensemble average of that property. In such cases, it may be necessary to consider the properties of individual microstates to make accurate predictions about the behavior of the system. Non-ergodic systems are often more difficult to study than ergodic systems because they require a more detailed understanding of the properties of individual microstates. However, many real-world systems are non-ergodic, and understanding their behavior is an important area of research in statistical mechanics.
+
+## Summary
+
+In this lecture, we discussed the concept of ensembles and how they can be used to study the average behavior of a system over many microstates. We also introduced the concept of ergodicity and its implications for the relationship between ensemble averages and time averages. By understanding these concepts, we can make predictions about the behavior of complex systems without having to consider every possible microstate individually.
+
+```{admonition} What's Next?
+:class: tip
+Now, we're ready to take the next step: developing our own simulation codes to explore the behavior of systems using Monte Carlo and molecular dynamics techniques.
+```
diff --git a/genindex.html b/genindex.html
index d19cd3f..5ea6844 100644
--- a/genindex.html
+++ b/genindex.html
@@ -190,6 +190,7 @@
Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis
Lecture 9: Classical Thermodynamics
Lecture 10: Statistical Thermodynamics
+Lecture 11: Ensembles and Ergodicity
diff --git a/intro.html b/intro.html
index 32b5f96..04aae0d 100644
--- a/intro.html
+++ b/intro.html
@@ -194,6 +194,7 @@
Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis
Lecture 9: Classical Thermodynamics
Lecture 10: Statistical Thermodynamics
+Lecture 11: Ensembles and Ergodicity
@@ -405,6 +406,7 @@ Lecture 9: Classical Thermodynamics
Lecture 10: Statistical Thermodynamics
+Lecture 11: Ensembles and Ergodicity
diff --git a/lecture-11-ensembles.html b/lecture-11-ensembles.html
new file mode 100644
index 0000000..3890f70
--- /dev/null
+++ b/lecture-11-ensembles.html
@@ -0,0 +1,660 @@
+
+
+
+
+
+
+
+
+
+
+ Lecture 11: Ensembles and Ergodicity — Computational Problem Solving in the Chemical Sciences
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Back to top
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Lecture 11: Ensembles and Ergodicity
+
+
+
+
+
+
+
+
+
+
+Lecture 11: Ensembles and Ergodicity
+
+Learning Objectives
+By the end of this lecture, you should be able to
+
+Define the microcanonical, canonical, isothermal-isobaric, and grand canonical ensembles.
+Understand the concept of ergodicity and its implications for the relationship between ensemble averages and time averages.
+
+
+
+Why Should You Care About Ensembles?
+In the previous lecture, we discussed the concept of a microstate and how it can be used to describe the state of a system. However, in many cases, we are not interested in the properties of individual microstates but rather in the average behavior of a system over many microstates. This is where the concept of an ensemble comes in.
+An ensemble is a collection of systems that are identical in all respects except for the particular microstate they occupy. By studying the properties of an ensemble, we can make predictions about the behavior of a system without having to consider every possible microstate individually.
+
+
+Types of Ensembles
+There are several different types of ensembles that are commonly used in statistical mechanics. The choice of ensemble depends on the conditions under which the system is being studied. Each of these ensembles has its own set of constraints and corresponding thermodynamic potentials that can be used to describe the behavior of the system.
+
+Microcanonical Ensemble
+In this ensemble, the system is isolated and has fixed values of energy, volume, and number of particles. The microcanonical ensemble is used to study systems that are closed and do not exchange energy or particles with their surroundings.
+
+Microcanonical Ensemble: Example
+
+Consider a system of one electron in an f orbital. The energy of the electron is quantized, and the electron can occupy one of the 14 f orbitals. The microcanonical ensemble for this system would consist of all possible configurations of the electron in the f orbitals that have the same total energy. The equal a priori probability postulate states that all microstates with the same energy are equally likely to occur. Therefore, the probability of finding the electron in any particular f orbital is the same, i.e. , 1/14.
+
+
+
+Canonical Ensemble
+In this ensemble, the system is in thermal contact with a heat bath at a fixed temperature. The canonical ensemble is used to study systems that are in thermal equilibrium with their surroundings.
+
+
+Isothermal-Isobaric Ensemble
+In this ensemble, the system is in thermal and mechanical equilibrium with a heat bath at a fixed temperature and pressure. The isothermal-isobaric ensemble is used to study systems that are in thermal and mechanical equilibrium with their surroundings.
+
+Isothermal-Isobaric Ensemble: Example
+Consider a gas confined to a container with a movable piston. The gas is in thermal equilibrium with a heat bath at a fixed temperature and pressure. The isothermal-isobaric ensemble for this system would consist of all possible configurations of the gas molecules that have the same number of particles, pressure, and temperature.
+
+
+
+Grand Canonical Ensemble
+In this ensemble, the system is in thermal and chemical equilibrium with a heat bath at a fixed temperature and chemical potential. The grand canonical ensemble is used to study systems that are in thermal and chemical equilibrium with their surroundings.
+
+Grand Canonical Ensemble: Example
+
+Consider a model system with sorbent particles that interact with adsorption sites on a solid surface but do not interact with each other.
+
+For one adsorption site, there are two possible states: empty or occupied. Therefore, the partition function for the system is given by
+
+\[
+Z = \sum_{N=0}^{1} e^{\beta \mu N}
+\]
+where \(\mu\) is the chemical potential. Since the sorbent particles do not interact with each other, the ensemble average of the coverage of the surface by the sorbent particles \(\theta\) is given by the ensemble average of the number of particles at each adsorption site, which is
+
+\[
+\theta = \langle N \rangle = \frac{\partial \ln Z}{\partial \left( \beta \mu \right)} = \frac{e^{\beta \mu}}{1 + e^{\beta \mu}}
+\]
+If the sorbent particles are in equilibrium with their ideal gas phase, the chemical potential is given by
+
+\[
+\mu = \mu^{\circ} + k_B T \ln \left( \frac{P}{P^{\circ}} \right)
+\]
+where \(\mu^{\circ}\) is the standard chemical potential, \(P\) is the pressure of the ideal gas phase, and \(P^{\circ}\) is the standard pressure. The coverage of the surface by the sorbent particles can then be calculated as a function of the pressure of the ideal gas phase.
+
+\[
+\theta = \frac{e^{\beta \mu^{\circ}} \left( \frac{P}{P^{\circ}} \right)}{1 + e^{\beta \mu^{\circ}} \left( \frac{P}{P^{\circ}} \right)} = \frac{K P}{1 + K P}
+\]
+where \(K = e^{\beta \mu^{\circ}} / P^{\circ}\) . This equation describes the Langmuir adsorption isotherm, which is commonly used to describe the adsorption of gases on solid surfaces.
+
+The plot above shows the coverage of the surface by the sorbent particles as a function of the pressure of the ideal gas phase. As the pressure increases, the coverage of the surface also increases, but it reaches a maximum value at high pressures.
+
+
+
+
+Ergodicity
+The concept of ergodicity is central to the relationship between ensemble averages and time averages in statistical mechanics. A system is said to be ergodic if it explores all of its microstates over time. In an ergodic system, the time average of a property is equal to the ensemble average of that property.
+
+Implications of Ergodicity
+If a system is ergodic, then the ensemble average of a property can be calculated by averaging the property over time. This means that we can use time averages to make predictions about the behavior of a system without having to consider every possible microstate individually.
+
+
+Non-Ergodic Systems
+Not all systems are ergodic. In non-ergodic systems, the time average of a property may not be equal to the ensemble average of that property. In such cases, it may be necessary to consider the properties of individual microstates to make accurate predictions about the behavior of the system. Non-ergodic systems are often more difficult to study than ergodic systems because they require a more detailed understanding of the properties of individual microstates. However, many real-world systems are non-ergodic, and understanding their behavior is an important area of research in statistical mechanics.
+
+
+
+Summary
+In this lecture, we discussed the concept of ensembles and how they can be used to study the average behavior of a system over many microstates. We also introduced the concept of ergodicity and its implications for the relationship between ensemble averages and time averages. By understanding these concepts, we can make predictions about the behavior of complex systems without having to consider every possible microstate individually.
+
+
What’s Next?
+
Now, we’re ready to take the next step: developing our own simulation codes to explore the behavior of systems using Monte Carlo and molecular dynamics techniques.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/objects.inv b/objects.inv
index 592579f..3715ebf 100644
Binary files a/objects.inv and b/objects.inv differ
diff --git a/search.html b/search.html
index 42dc4a3..5653bd3 100644
--- a/search.html
+++ b/search.html
@@ -192,6 +192,7 @@
Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis
Lecture 9: Classical Thermodynamics
Lecture 10: Statistical Thermodynamics
+Lecture 11: Ensembles and Ergodicity
diff --git a/searchindex.js b/searchindex.js
index 1bede48..ce371b5 100644
--- a/searchindex.js
+++ b/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"alltitles": {"": [[1, null], [1, null], [2, null], [2, null], [2, null], [3, null], [3, null], [5, null], [8, null], [9, null], [9, null], [9, null], [9, null], [9, null], [9, null], [10, null]], "1.1 Download and Install Python": [[1, "download-and-install-python"]], "1.1 Key Features of NumPy": [[2, "key-features-of-numpy"]], "1.1 The if Statement": [[3, "the-if-statement"]], "1.2 Check if Python is Already Installed": [[1, "check-if-python-is-already-installed"]], "1.2 The if-else Statement": [[3, "the-if-else-statement"]], "1.2 Working with NumPy Arrays": [[2, "working-with-numpy-arrays"]], "1.3 Practice Exercises": [[2, "practice-exercises"]], "1.3 The if-elif-else Statement": [[3, "the-if-elif-else-statement"]], "1.3 Windows-Specific Note": [[1, "windows-specific-note"]], "2.1 Install Jupyter Notebook": [[1, "install-jupyter-notebook"]], "2.1 Key Features of SciPy": [[2, "key-features-of-scipy"]], "2.1 The for Loop": [[3, "the-for-loop"]], "2.2 Launching Jupyter Notebook": [[1, "launching-jupyter-notebook"]], "2.2 The while Loop": [[3, "the-while-loop"]], "3.1 Defining Functions": [[3, "defining-functions"]], "3.1 Key Features of Matplotlib": [[2, "key-features-of-matplotlib"]], "3.1 Python and Mathematics": [[1, "python-and-mathematics"]], "3.2 Creating Basic Plots with Matplotlib": [[2, "creating-basic-plots-with-matplotlib"]], "3.2 Functions with Default Parameter Values": [[3, "functions-with-default-parameter-values"]], "3.2 Practice Exercises": [[1, "practice-exercises"]], "3.3 Customizing Your Plots": [[2, "customizing-your-plots"]], "3.3 Lambda Functions": [[3, "lambda-functions"]], "3.3 Python Can Do Chemistry": [[1, "python-can-do-chemistry"]], "3.4 Practice Exercises": [[1, "id1"], [2, "id1"]], "3.4 Using Lambda Functions with Higher-Order Functions": [[3, "using-lambda-functions-with-higher-order-functions"]], "3.5 Python Can Do Graphing": [[1, "python-can-do-graphing"]], "3.5 Using Lambda Functions with Pandas": [[3, "using-lambda-functions-with-pandas"]], "3.6 Best Practices for Using Functions": [[3, "best-practices-for-using-functions"]], "3.6 Practice Exercises": [[1, "id2"]], "3.7 Python Can Do More": [[1, "python-can-do-more"]], "4.1 Key Features of Pandas": [[2, "key-features-of-pandas"]], "4.2 Series: The 1D Data Structure": [[2, "series-the-1d-data-structure"]], "4.3 DataFrame: The 2D Data Structure": [[2, "dataframe-the-2d-data-structure"]], "4.4 Reading and Writing Data": [[2, "reading-and-writing-data"]], "4.5 Filtering Data": [[2, "filtering-data"]], "4.6 Practice Exercises": [[2, "id2"]], "A Familiar Form of the Correlation Coefficient": [[8, null]], "A Practical Example": [[7, "a-practical-example"]], "A Refresher or Primer on Rate Laws": [[7, "a-refresher-or-primer-on-rate-laws"]], "A Theoretical Interlude": [[8, "a-theoretical-interlude"]], "Additional Exercise": [[4, null]], "Additional Exercises": [[3, "additional-exercises"]], "Advanced Matrix Operations": [[2, "advanced-matrix-operations"]], "Analytical Integration": [[5, "analytical-integration"]], "Analytical Solution": [[5, "analytical-solution"]], "Analytical vs. Numerical Integration": [[5, "analytical-vs-numerical-integration"]], "Average Energy and Internal Energy": [[10, "average-energy-and-internal-energy"]], "Back to the N_2O_5(g) Decomposition Experiment": [[7, "back-to-the-n-2o-5-g-decomposition-experiment"]], "Back to the Real World": [[8, "back-to-the-real-world"]], "Balancing Chemical Equations": [[6, "balancing-chemical-equations"]], "Balancing the Equation by Hand": [[6, "balancing-the-equation-by-hand"]], "Best Practice": [[2, null]], "Boltzmann Distribution": [[10, "boltzmann-distribution"]], "Calculating the Overlap Integral of Two H 1s Orbitals": [[5, "calculating-the-overlap-integral-of-two-h-1s-orbitals"]], "Calibration Curve": [[8, "calibration-curve"]], "Calibration Data": [[8, "calibration-data"]], "Computing the Overlap Integral": [[5, "computing-the-overlap-integral"]], "Confidence Intervals": [[8, "confidence-intervals"]], "Correlation Analysis": [[8, "correlation-analysis"]], "Creating and Using Arrays": [[2, "creating-and-using-arrays"]], "Critical Thinking": [[10, null], [10, null], [10, null], [10, null]], "Determining the Rate Constant of a Reaction": [[7, "determining-the-rate-constant-of-a-reaction"]], "Equilibrium": [[9, "equilibrium"]], "Example: Chemical Reaction Equilibrium via Numerical Method": [[4, "example-chemical-reaction-equilibrium-via-numerical-method"]], "Example: Reduction of Tin(IV) Oxide by Hydrogen": [[6, "example-reduction-of-tin-iv-oxide-by-hydrogen"]], "Example: Two-State System": [[10, "example-two-state-system"]], "Exercise": [[3, null], [4, null]], "Exercise 1": [[3, null]], "Exercise 1: Check if a Number is Even or Odd": [[3, "exercise-1-check-if-a-number-is-even-or-odd"]], "Exercise 2": [[3, null]], "Exercise 2: Sum of All Numbers in a List": [[3, "exercise-2-sum-of-all-numbers-in-a-list"]], "Exercise 3": [[3, null]], "Exercise 3: Factorial of a Number": [[3, "exercise-3-factorial-of-a-number"]], "Exercise 4": [[3, null]], "Exercise 4: Check if a String is a Palindrome": [[3, "exercise-4-check-if-a-string-is-a-palindrome"]], "Exercise 5": [[3, null]], "Exercise 5: Find the Maximum and Minimum Elements in a List": [[3, "exercise-5-find-the-maximum-and-minimum-elements-in-a-list"]], "Free Energy and Entropy": [[10, "free-energy-and-entropy"]], "Fundamental Thermodynamic Relation": [[9, "fundamental-thermodynamic-relation"]], "General Case for Hydrocarbon Combustion": [[6, null]], "Generating Arrays with Specific Properties": [[2, "generating-arrays-with-specific-properties"]], "Hands-On Activity": [[4, "hands-on-activity"], [7, "hands-on-activity"], [8, "hands-on-activity"]], "Hands-On Activity: Overlap of Two He 1s Orbitals": [[5, "hands-on-activity-overlap-of-two-he-1s-orbitals"]], "Heat Capacity at Constant Volume": [[10, "heat-capacity-at-constant-volume"]], "Hint": [[7, null]], "Histograms": [[2, "histograms"]], "Implementing Root-Finding Methods in Python": [[4, "implementing-root-finding-methods-in-python"]], "Important": [[2, null]], "Infinite Loops": [[3, null]], "Installing NumPy": [[2, "installing-numpy"]], "Internal Energy, Work, and Heat": [[9, "internal-energy-work-and-heat"]], "Introduction": [[3, "introduction"], [7, "introduction"], [8, "introduction"]], "Introduction to Chemical Reaction Equilibria": [[4, "introduction-to-chemical-reaction-equilibria"]], "Introduction to Statistical Thermodynamics": [[10, "introduction-to-statistical-thermodynamics"]], "Key Control Structures in Python": [[3, "key-control-structures-in-python"]], "Learning Objectives": [[1, "learning-objectives"], [2, "learning-objectives"], [3, "learning-objectives"], [4, "learning-objectives"], [6, "learning-objectives"], [7, "learning-objectives"], [8, "learning-objectives"], [9, "learning-objectives"], [10, "learning-objectives"]], "Lecture 10: Statistical Thermodynamics": [[10, null]], "Lecture 1: Introduction to Python for the Chemical Sciences": [[1, null]], "Lecture 2: Essential Python Packages for the Chemical Sciences": [[2, null]], "Lecture 3: Control Structures in Python": [[3, null]], "Lecture 4: Chemical Reaction Equilibria and Roots of Equations": [[4, null]], "Lecture 5: Chemical Bonding and Numerical Integration": [[5, null]], "Lecture 6: Balancing Chemical Equations and Systems of Linear Algebraic Equations": [[6, null]], "Lecture 7: Orders of Reaction and Linear Regression Analysis": [[7, null]], "Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis": [[8, null]], "Lecture 9: Classical Thermodynamics": [[9, null]], "Line Plots": [[2, "line-plots"]], "Linear Regression Analysis": [[7, "linear-regression-analysis"]], "List Comprehensions": [[3, "list-comprehensions"]], "Lists vs. Dictionaries": [[3, null]], "Looping Through a Dictionary": [[3, "looping-through-a-dictionary"]], "Looping Through a List": [[3, "looping-through-a-list"]], "Looping Through a NumPy Array": [[3, "looping-through-a-numpy-array"]], "Looping Through a Pandas DataFrame": [[3, "looping-through-a-pandas-dataframe"]], "Looping Through a String": [[3, "looping-through-a-string"]], "Mathematical Formulation of Equilibrium Problems": [[4, "mathematical-formulation-of-equilibrium-problems"]], "Matrix and Vector Operations": [[2, "matrix-and-vector-operations"]], "Microstates and Macrostates": [[10, "microstates-and-macrostates"]], "Note": [[3, null], [4, null], [5, null]], "Numerical Integration": [[5, "numerical-integration"]], "Numerical Integration Using a Riemann Sum": [[5, "numerical-integration-using-a-riemann-sum"]], "Numerical Integration Using the Trapezoidal Rule": [[5, "numerical-integration-using-the-trapezoidal-rule"]], "Numerical Methods for Finding Roots of Equations": [[4, "numerical-methods-for-finding-roots-of-equations"]], "Orders of Reaction": [[7, "orders-of-reaction"]], "Ordinary Least Squares": [[7, "ordinary-least-squares"]], "Phase Equilibria": [[9, "phase-equilibria"]], "Python Lists": [[2, null]], "Recap": [[6, "recap"]], "Reminder": [[2, null]], "Scatter Plots": [[2, "scatter-plots"]], "Section 1: Conditional Statements": [[3, "section-1-conditional-statements"]], "Section 1: NumPy - The Foundation of Scientific Computing in Python": [[2, "section-1-numpy-the-foundation-of-scientific-computing-in-python"]], "Section 2: Loops": [[3, "section-2-loops"]], "Section 2: SciPy - A Powerful Tool for Scientific Computing": [[2, "section-2-scipy-a-powerful-tool-for-scientific-computing"]], "Section 3: Functions": [[3, "section-3-functions"]], "Section 3: Matplotlib - Creating Publication-Quality Visualizations": [[2, "section-3-matplotlib-creating-publication-quality-visualizations"]], "Section 4: Hands-on Practice": [[3, "section-4-hands-on-practice"]], "Section 4: Pandas - Powerful Data Manipulation in Python": [[2, "section-4-pandas-powerful-data-manipulation-in-python"]], "Solving for Equilibrium": [[4, "solving-for-equilibrium"]], "Solving the Equation Using Python": [[6, "solving-the-equation-using-python"]], "Solving the System of Equations": [[6, "solving-the-system-of-equations"]], "Statement of the First Law": [[9, "statement-of-the-first-law"]], "Step 1: Formulating the Equilibrium Equation": [[4, "step-1-formulating-the-equilibrium-equation"]], "Step 1: Getting Python Installed": [[1, "step-1-getting-python-installed"]], "Step 1: Import the Necessary Libraries": [[6, "step-1-import-the-necessary-libraries"]], "Step 2: Define the Coefficient Matrix, \\mathbf{A}": [[6, "step-2-define-the-coefficient-matrix-mathbf-a"]], "Step 2: Installing Jupyter Notebook": [[1, "step-2-installing-jupyter-notebook"]], "Step 2: Minimizing the Equilibrium Equation": [[4, "step-2-minimizing-the-equilibrium-equation"]], "Step 3: Compute the Null Space": [[6, "step-3-compute-the-null-space"]], "Step 3: Let\u2019s Get Started with Python": [[1, "step-3-let-s-get-started-with-python"]], "Step 4: Normalize and Convert to Integer Coefficients": [[6, "step-4-normalize-and-convert-to-integer-coefficients"]], "Step 5: The Balanced Chemical Equation": [[6, "step-5-the-balanced-chemical-equation"]], "Summary": [[6, "summary"], [9, "summary"], [10, "summary"]], "Symmetry and Integration": [[5, "symmetry-and-integration"]], "Systems of Linear Algebraic Equations": [[6, "systems-of-linear-algebraic-equations"]], "Take a Moment": [[6, null]], "The First Law": [[9, "the-first-law"]], "The Hydrogen 1s Orbital": [[5, "the-hydrogen-1s-orbital"]], "The Importance of Initial Guess": [[4, null]], "The Laws of Thermodynamics": [[9, "the-laws-of-thermodynamics"]], "The Second Law": [[9, "the-second-law"]], "The Third Law": [[9, "the-third-law"]], "The Zeroth Law": [[9, "the-zeroth-law"]], "Thermodynamic Potentials": [[9, "thermodynamic-potentials"]], "Thermodynamic Properties from the Partition Function": [[10, "thermodynamic-properties-from-the-partition-function"]], "Thermodynamic Systems": [[9, "thermodynamic-systems"]], "Wait!": [[5, null], [5, null]], "Wait, What\u2019s the Expected Solution?": [[4, null]], "Warning": [[4, null]], "Welcome to Computational Problem Solving in the Chemical Sciences": [[0, null]], "What Are Control Structures?": [[3, "what-are-control-structures"]], "What Is an Integral?": [[5, "what-is-an-integral"]], "Why Should You Care About Thermodynamics?": [[9, "why-should-you-care-about-thermodynamics"]], "scipy.optimize.minimize: A Versatile Approach": [[4, "scipy-optimize-minimize-a-versatile-approach"]]}, "docnames": ["intro", "lecture-01-introduction", "lecture-02-packages", "lecture-03-control", "lecture-04-optimization", "lecture-05-integration", "lecture-06-linalg", "lecture-07-regression", "lecture-08-calibration", "lecture-09-thermo", "lecture-10-stat-thermo"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["intro.md", "lecture-01-introduction.md", "lecture-02-packages.md", "lecture-03-control.md", "lecture-04-optimization.md", "lecture-05-integration.md", "lecture-06-linalg.md", "lecture-07-regression.md", "lecture-08-calibration.md", "lecture-09-thermo.md", "lecture-10-stat-thermo.md"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [2, 3, 5, 6, 7, 8, 9, 10], "0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "00": [1, 2, 4], "000": 8, "000000": [], "0000000000000004": 2, "0000000000000009": [], "000000019073487": 4, "0000003051757815": 4, "0000003433227533": 4, "000000381469727": 4, "0001": 10, "0001871291025951396": 8, "0004184333939712645": 8, "000e": 4, "001": 8, "003967": [], "004": 8, "004748": [], "007": 8, "008": [1, 8], "01": [1, 10], "010339": [], "010999999999996": 1, "011": 1, "0112": 7, "011213": [], "0125": 7, "013": 8, "0144": 7, "014682": [], "0162": 7, "019033": [], "0191": 7, "02": 4, "0250": 7, "026": 8, "026862": [], "030363606516579125": 7, "031785": 5, "032": 8, "032076": [], "038889": 2, "04": 7, "04036523": [], "040756": [], "040832": [], "042757": [], "044403": [], "044783": [], "049373": [], "049586": 2, "05": [], "051520": [], "054431": [], "057691": [], "058135": [], "06": [7, 8], "060": [], "060908": [], "066214": 2, "067183": [], "07": 4, "07069651": [], "071614": [], "073500": [], "074532": [], "075927": [], "076810": [], "07812993": [], "0783716": [], "08": [2, 7], "08468586": [], "086293": [], "089069": 2, "09": [], "090967": [], "09188008": [], "092201": [], "096565": 5, "096577": 5, "099762": 5, "0f": 4, "0x1114aa5f0": [], "1": [0, 7, 8, 9, 10], "10": [0, 1, 2, 3, 4, 5, 7, 8], "100": [1, 2, 4, 5, 7, 10], "1000": [2, 5, 8], "100000": [], "101": [], "102": [], "102174": [], "105363": [], "11": [2, 4, 7], "111754": [], "113959": [], "11574968": [], "11x": 4, "12": [1, 8, 10], "1200x500": [], "12138546": [], "1225": 3, "12357159": [], "123840": [], "124996": [], "1250875": [], "12600315": [], "127246": [], "127797": [], "128745": [], "129": [], "13": [], "130": 2, "131": [], "1314235014": [], "132": [], "132008": [], "133": [], "134": [], "135": [], "136072": 5, "136085": 5, "137451": [], "1385": [], "1386": [], "1387": [], "1388": [], "1389": [], "1390": [], "1391": [], "14": 7, "140199": [], "1402": [], "140213": [], "1403": [], "1404": [], "1405": [], "1406": [], "1407": [], "14073843": [], "1408": [], "1409": [], "140951": 5, "1410": [], "14159": 3, "145263": [], "15": [2, 7], "150": 2, "151212": [], "153355": [], "15383974": [], "153987": [], "154": 2, "155298": [], "15763222": [], "16": [1, 2, 3, 4], "161040": [], "16121387": [], "165889": [], "166290": [], "167": [], "168": [], "169374": [], "170": [], "171": [], "172": [], "1733916972": 4, "173860": [], "17855413": [], "18": [5, 8], "181": [], "182": [], "183": [], "183777": [], "184": [], "185": [], "186": [], "187": [], "188": [], "188889": [], "189247": 5, "189262": 5, "19": [], "1903": [], "1904": [], "1905": [], "192456": 2, "19464139": 2, "19530158": [], "196617": 5, "196816": [], "19971276": [], "1e": 4, "2": [0, 5, 7, 8, 9, 10], "20": 7, "200369": [], "200383": [], "200402": [], "205104": [], "208289": [], "21": 8, "212": [], "214": [], "21459876": [], "215": [], "21514317": [], "216": [], "217": [], "2170": [], "2171": [], "2172": [], "2173": [], "2174": [], "2175": [], "2176": [], "2177": [], "219": [], "22": 4, "220619": [], "22115577933543018": 7, "2213406": [], "2224677478": [], "22466308": [], "22722108611679165": 1, "227632": [], "22e": 4, "23": [], "23067359": 2, "230942": [], "234381": [], "23535115": [], "236837": [], "24": [2, 7], "241398": [], "245944": [], "246372": [], "24999999999998668": [], "25": [1, 2, 3, 4, 8], "25097623": [], "253167": [], "25430905": [], "254594": [], "25685736": [], "2569768875": [], "259179": 5, "259194": 5, "26": [], "261": [], "262": [], "263": [], "263956": [], "264": 2, "264261": [], "265": 2, "266": [], "267": [], "268": [], "269": [], "26953356": 2, "27": 8, "270": [], "270172": 5, "270435": [], "271": [], "273": [], "273713": [], "274": [], "274815": [], "275": [], "27514562": [], "276": [], "277778": [], "27819382": [], "2793": [], "2794": [], "2795": [], "2799": [], "28": 7, "280": [], "2800": [], "2801": [], "281": [], "281017": [], "281032": [], "282552": [], "288280": [], "288791": [], "29": [], "291939": [], "29260813": [], "293218": [], "295068": [], "296185": [], "298": 7, "29978765": [], "2a": 6, "2b": 6, "2c": 6, "2d": 6, "2f": 8, "2n": 6, "2r": 5, "2x": 4, "2x2": 2, "3": [0, 4, 5, 7, 8], "30": [2, 3, 7, 8, 10], "302182": 2, "30255225": [], "3049": [], "3050": [], "3051": [], "3052": [], "3053": [], "31": [4, 8], "31016631": [], "3104": [], "3105": [], "3107": [], "3109": [], "3110": [], "314505": [], "3159": [], "3161": [], "3162": [], "3163": [], "3165": [], "3166": [], "318": 7, "318526": [], "32": [2, 8], "320524": 2, "32099643": [], "324007": [], "325560": [], "327": 2, "328712": 2, "329867": [], "33": 8, "33026915": [], "3331481689": [], "333259": [], "33500365": [], "33552352": [], "338002": 2, "34": [], "341": [], "342": [], "343": [], "344": [], "3442733": [], "345": [], "34714337": [], "348493": 5, "348509": 5, "35": [2, 3], "350110": [], "3543": [], "3544": [], "3545": [], "3546": [], "3547": [], "3548": [], "3549": [], "36": [], "36330421": [], "364650": 5, "366667": [], "368379": [], "369988": [], "37": [2, 7], "37228132": 2, "373919": [], "379": [], "38": [], "380": [], "381": [], "382": [], "383": [], "384": [], "38480972": [], "385": [], "385206": [], "385223": [], "38523872": [], "386": [], "387": [], "388": [], "38848765": 2, "388541": [], "389": [], "38986037": 2, "39": 2, "390": [], "391991": [], "392485": [], "397667": [], "3d": [1, 2, 5], "3dmol": [], "3f": 8, "3n": 6, "3x": 4, "3x3": 2, "4": [0, 5, 7, 8, 10], "40": 7, "400": 4, "4000": 4, "403655": [], "405787": 2, "409241": [], "4096": [], "41": 8, "410": 2, "41152632": [], "41228293": [], "41263254": [], "412686": [], "413040": [], "413601": [], "415782": [], "41702911": [], "41884383": [], "419523": [], "42": 2, "422": 2, "4256142": [], "42638864": [], "426663": [], "428120": [], "429026": [], "429932": [], "43": [], "430490": [], "43260088": 2, "435078": [], "435593": [], "43765552": [], "44": 1, "440513": [], "44493476": [], "4480": [], "4481": [], "4482": [], "4483": [], "4484": [], "44905775": [], "451": [], "452": [], "453": [], "453202": [], "45398804": [], "454": [], "455": [], "455556": [], "456": [], "45600233": [], "457": [], "458290": 5, "458308": 5, "46": [], "4602659": [], "460471": [], "4647058823529414e": 8, "465299": [], "468024": [], "46938113": [], "47036559": [], "47575154": [], "476065": [], "477106": [], "480066": [], "48070937": [], "481598": 5, "482436": [], "482577": [], "488235294117647e": 8, "489157": [], "490528": [], "492423": [], "49731891": [], "498755": [], "4999996185302713": [], "4999998855590835": [], "4a": 6, "4x": 4, "5": [0, 4, 7, 8, 10], "50": [2, 7], "500": 10, "500e": [], "502418": [], "513279": [], "513297": [], "526100": [], "526245": [], "52695194": [], "529": 5, "53": [], "530": 8, "530054": [], "534060": 2, "53551883": [], "53651539": [], "538946": [], "53939566": [], "539570": [], "54": 8, "540513": [], "545158": [], "54785244": [], "555261": [], "555330": [], "558357": [], "562114": [], "563880": [], "569610": [], "57": 2, "570085": [], "57219658": [], "575324": [], "576889": [], "58": [], "582797": [], "58445442": 2, "58453143": [], "586435": 5, "586453": 5, "58e": [], "59045283": [], "5963908": 2, "5998763": [], "5t_cnxn96vs1f6z07zkwy_k80000gn": 4, "6": [0, 4, 5, 7, 8, 10], "60": [2, 7], "600": 8, "603": 2, "60464228": [], "617424": [], "618404": [], "619193": [], "619271": 5, "62": 4, "625": 3, "6295": [], "6296": [], "6297": [], "6298": [], "6299": [], "63": 2, "63027018": [], "63391829": 2, "63407862": [], "63e": [], "64": [], "640340": [], "64181731": [], "644444": [], "64448507": [], "645333": [], "645725": [], "646416": [], "649707": [], "65": 2, "650": 8, "653721": [], "65437021": [], "656155": 2, "658352": [], "659596": [], "659902": [], "659921": [], "66": [], "66129037": [], "662783": [], "66805603": [], "67": [], "670": 2, "673317": 2, "67897942": [], "68": 7, "68262291": [], "684116": [], "68e": [], "69": [], "69418496": [], "697682": [], "69803815": [], "698842": [], "6f": 5, "6x": 4, "7": [0, 2, 3, 5], "70": 7, "700": 8, "70292167": [], "703219": [], "70360658": [], "712417": [], "71856743": [], "72": [], "722833": [], "723356": [], "72436375": [], "725154": 5, "725173": 5, "729945": [], "73": 2, "730391": [], "730971": [], "733333": [], "733507": [], "733862": [], "734481": [], "736878": [], "74": 2, "74313198": [], "74366638": [], "746566": [], "74807732": [], "75": 2, "750": 8, "76": [], "76176135": [], "763835": [], "766e": 4, "76910543": [], "769971": 5, "77": 2, "776040": [], "78": 4, "78083219": [], "780922": [], "78252123": [], "79": [], "790745": [], "794821": [], "7r": 8, "8": [0, 1, 3, 4, 5, 7], "80": 7, "800": 8, "800392": 5, "803676": [], "804": 2, "80580666": [], "81": 2, "810121": [], "810141": [], "811932": [], "813318": [], "82": 2, "821785": [], "822222": [], "823132": [], "826182": 2, "831357": [], "83257677": [], "83544789": [], "8395906": [], "84": [], "840": 2, "840733": 2, "841431": [], "843290": [], "844728": [], "85": 2, "850": 8, "851055": [], "852": 2, "857228165610269": 8, "858194": [], "858367": 5, "858385": 5, "86": 2, "863366": [], "86599082": [], "87": 2, "871128": [], "871706410": [], "872680": [], "879550": [], "88": 2, "881784197001252e": 4, "882e": 4, "884707": [], "88586208": [], "885936": [], "888187": [], "88821188": [], "89": 2, "89118366": [], "89354794": [], "9": [0, 1, 2, 3, 4, 5], "90": [2, 7], "900": [3, 8], "903735": [], "91": [], "9102529": [], "911111": [], "913378": [], "916888": 5, "919537": [], "92": 7, "921853": [], "922371": [], "923471": [], "923769": [], "925286": 5, "92578833": [], "928158": [], "929717": [], "93": 8, "93047322": [], "931484": [], "934": 2, "935911": [], "935931": [], "94": [], "94128165": [], "94459246": [], "94870807": [], "95": 8, "950": 8, "95143119": [], "954": [], "954706": [], "955": [], "956": [], "956443": [], "957231": [], "958": [], "95809135": [], "959": [], "96": [], "960": [], "960320": 5, "960340": 5, "961": [], "961514": [], "96310226": [], "96641313": [], "966945": [], "97": 8, "975527": [], "975794": [], "98": [], "980126": [], "985601": [], "98610781": [], "98636626": [], "9897367": [], "991938": [], "99278371": [], "9962040088352188": 8, "998318": [], "998337": [], "999134": [], "A": [1, 3, 9, 10], "AND": 2, "And": [1, 2], "As": [1, 2, 5, 9, 10], "At": [4, 10], "But": [], "By": [1, 2, 3, 4, 6, 7, 8, 9, 10], "For": [1, 2, 4, 5, 6, 9, 10], "If": [1, 2, 3, 6, 9], "In": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "It": [2, 3, 5, 7, 8, 9], "Its": 4, "NOT": 2, "No": [], "OR": 2, "One": [2, 10], "Or": [], "That": 7, "The": [1, 7, 8, 10], "Then": [5, 8], "There": [5, 9], "These": [1, 2, 3, 5, 9], "To": [1, 3, 4, 5, 6, 7, 8], "Will": 9, "With": [1, 2], "_": 6, "_0": [5, 7, 8], "_0e": 7, "_1": [7, 8], "_2": [1, 4, 6, 7], "_4": 6, "_5": 7, "__call__": [], "__class__": [], "__getattribute__": [], "__name__": [], "_accessor": [], "_api": [], "_auto_adjust_subplotpar": [], "_axesbas": [], "_axi": [], "_axis_map": [], "_base": [], "_can_hold_identifiers_and_holds_nam": [], "_copy_docstring_and_deprec": [], "_draw_all_if_interact": [], "_draw_dis": [], "_draw_list_compositing_imag": [], "_express": [], "_finalize_raster": [], "_fontproperti": [], "_get_layout": [], "_get_render": [], "_get_text_metrics_with_cach": [], "_get_text_metrics_with_cache_impl": [], "_get_tightbbox_for_layout_onli": [], "_i": 8, "_idle_draw_cntx": [], "_in_subscript_or_superscript": [], "_info_axi": [], "_is_idle_draw": [], "_make_html": [], "_mathtext": [], "_n": 6, "_output_typ": [], "_parse_cach": [], "_parser": [], "_prepare_font": [], "_preprocess_math": [], "_pylab_help": [], "_raster": [], "_render": [], "_setattr_cm": [], "_state_stack": [], "_tight_layout": [], "_update_title_posit": [], "_v": 10, "_val_or_rc": [], "_wait_cursor_for_draw_cm": [], "_x": 6, "_y": 6, "a0": [], "a_0": 5, "ab": 4, "abil": 2, "abl": [1, 2, 3, 4, 6, 7, 8, 9, 10], "about": [3, 4, 5, 7, 10], "abov": [1, 2, 4, 5, 7, 8, 9, 10], "absolut": [4, 9], "absorb": 8, "academ": 1, "access": [1, 2, 3, 4], "accordingli": 3, "account": 8, "accumul": 3, "accur": [5, 8], "accuraci": [5, 6, 8], "achiev": [1, 5], "acquir": [], "across": [1, 2, 3], "act": 9, "actinium": 2, "action": [3, 4], "actual": 4, "ad": [2, 3, 9], "adapt": 4, "add": [1, 2, 3, 6], "addh": [], "addit": 1, "addition": 1, "addmodel": [], "address": [], "adjac": [], "adjust": 8, "admonit": [], "advanc": 1, "advantag": [4, 5], "affect": [4, 8], "after": [1, 8], "ag": 3, "against": 9, "age_squar": 3, "aggreg": 2, "agre": 7, "aim": 4, "algebra": [0, 2], "algegra": [], "algorithm": 4, "alia": 1, "alic": 3, "align": [5, 6], "alkan": 6, "all": [1, 5, 8, 9, 10], "allchem": [], "allow": [1, 2, 3, 4, 5], "allow_raster": [], "along": [2, 5], "alpha": [5, 8], "alreadi": 8, "also": [1, 2, 3, 4, 5, 8, 9, 10], "altern": [3, 7], "aluminum": 2, "alwai": [2, 3, 4, 5], "americium": 2, "amount": 5, "an": [1, 2, 3, 4, 7, 8, 9, 10], "analog": 4, "analys": 1, "analysi": [0, 1, 2], "analyt": [4, 8], "analytical_overlap_integr": 5, "analytical_result": 5, "analyz": [1, 2, 8], "anatomi": 2, "ani": [1, 2, 3, 6], "anim": 2, "annot": [2, 8, 10], "anonym": 3, "anoth": 9, "answer": 9, "antialias": [], "antimoni": 2, "appear": 1, "append": 5, "appl": 3, "appli": [1, 2, 3, 4, 5, 6, 7, 8, 10], "applic": [1, 2, 4], "appreci": 9, "approach": [3, 6, 10], "appropri": [], "approx": [], "approxim": [1, 4, 5, 7], "ar": [1, 2, 4, 5, 6, 7, 8, 9, 10], "area": [1, 2, 3, 5], "arg": 4, "argon": 2, "argument": [3, 5], "arithmet": 1, "around": [1, 5], "arr": 3, "arrai": [1, 4, 5, 6, 7, 8], "arrang": 9, "arriv": 9, "arrow": 10, "arrowprop": 10, "arrowstyl": 10, "artist": [], "ase": 1, "ask": 7, "aspect": [2, 3], "assess": 8, "assign": 3, "associ": 9, "assum": [4, 7], "astyp": 6, "atom": [1, 2, 5, 6, 9], "atomist": 1, "attract": 1, "attribut": [], "attributeerror": [], "auto_adjust_subplotpar": [], "autom": [1, 6], "automat": 1, "avail": [1, 2, 9, 10], "averag": [], "avoid": [3, 4, 5], "awai": [], "awesom": 1, "ax": [2, 5], "ax1": 10, "ax2": 10, "ax_bbox_list": [], "axes_list": [], "axhlin": [4, 8], "axi": [1, 4, 5], "axison": [], "axvlin": 8, "b": [1, 2, 5, 6, 7, 10], "ba": [], "back": [3, 5], "backend": [], "backend_agg": [], "backend_bas": [], "backward": 3, "bad": [], "balanc": 0, "banana": 3, "bar": [1, 2, 4, 5, 7, 8], "base": [2, 3, 6, 7, 8], "base64": [], "baseformatt": [], "basic": [1, 3], "bath": 10, "bb": [], "bbox": [], "bbox_extra_artist": [], "bbox_inch": [], "becaus": [3, 4, 5, 6, 8], "becom": [2, 3, 5, 9], "been": [7, 8], "beer": 8, "befor": [1, 2, 3, 4, 5, 6, 9], "begin": 6, "behav": 3, "behavior": [4, 8, 9, 10], "being": [2, 5, 10], "below": [3, 8], "bench": 7, "benchmark": [], "best": 1, "beta": [7, 8, 10], "beta_0": 7, "beta_1": 7, "better": 2, "between": [1, 2, 4, 5, 6, 7, 8, 9, 10], "beyond": [1, 2], "big": 5, "bin": 2, "biologi": 1, "bisect": 4, "black": [2, 4, 5, 10], "block": 3, "blue": [2, 8, 10], "bmatrix": 6, "bob": 3, "bohr": 5, "bond": [0, 2], "both": [1, 2, 3, 4, 6, 9], "bound": 4, "boundari": 9, "box": 1, "bracket": 2, "bread": 2, "break": 3, "brew": 8, "bring": [1, 8, 9], "broad": 4, "broadcast": 2, "broader": [], "broadli": 9, "browser": 1, "build": [2, 3], "built": [1, 2, 3], "butter": 2, "butteri": 8, "bytes_io": [], "c": [1, 2, 6], "c_v": [8, 10], "cach": [], "calcul": [1, 2, 3, 6, 7, 8, 10], "calculate_area": 3, "calculu": 1, "calibr": 0, "call": [3, 7, 8], "call_axes_loc": [], "callback": [], "caller": 3, "can": [2, 3, 4, 5, 6, 7, 8, 9, 10], "cannot": 7, "cantera": 1, "canva": [], "capabl": [1, 2], "capac": 8, "carbon": [1, 6, 9], "carbon_mass": 1, "care": 4, "carlo": 1, "cartesian": 5, "case": [1, 3, 4, 7, 8, 9], "cater": 2, "caus": [3, 5], "caveman": [], "cbook": [], "cco": [], "cdot": [4, 9], "cell": [], "center": [5, 10], "central": [5, 9], "certain": [3, 4, 8], "cesium": 2, "ch": 6, "challeng": [1, 3, 6], "chang": [2, 4, 5, 7, 9, 10], "channel": 3, "char": 3, "charact": 3, "character": 4, "charg": 5, "charli": 3, "chart": 2, "check": [2, 4, 5, 6], "chem": [], "chemic": [7, 9], "chemist": 8, "chemistri": [2, 5], "cherri": 3, "choic": 4, "choos": 4, "chop": [], "ci": 8, "circ": 4, "circl": [3, 4], "circular": 2, "citi": 3, "cl": [], "clarif": 3, "class": 2, "classic": [0, 4, 5], "clean": 2, "clean_lin": [], "cleaner": 5, "clear": 7, "clearer": [], "clearli": 3, "close": [4, 5, 8, 9, 10], "close_group": [], "cluster": 9, "co": [1, 6], "code": [1, 2, 3, 4, 5], "coeffici": 4, "cohes": 2, "col": [], "collaps": [], "collect": [2, 3, 5, 7, 8, 10], "color": [1, 2, 4, 8, 10], "colspan": [], "column": [2, 3], "combin": [3, 9], "combust": [], "come": [1, 5, 8], "command": [1, 2], "comment": 2, "common": [2, 3], "commonli": [1, 2, 3], "commun": [], "comp": [], "compact": 3, "compani": 8, "compar": [3, 5, 10], "complex": [1, 2, 3, 4, 6, 10], "compon": [2, 3], "composit": [], "compound": [1, 8], "comprehens": 2, "comput": [1, 3, 7, 8], "concentr": [4, 7, 8], "concept": [3, 4, 9, 10], "concis": [3, 6], "conclud": [1, 2], "condit": [2, 4, 9, 10], "condition1": 3, "condition2": 3, "confid": [0, 2, 3, 7], "confidence_interval_intercept": 8, "confidence_interval_slop": 8, "confidence_level": 8, "configur": 10, "confirm": [2, 6], "conserv": 6, "consid": [3, 4, 5, 6, 7, 10], "consider": [4, 10], "consist": [5, 9, 10], "constant": [1, 4, 8, 9], "constitu": 2, "constrain": [], "constraint": 4, "consum": 7, "contain": [1, 2, 3, 6, 7, 8, 10], "context": 4, "continu": [1, 3], "contourpi": [], "contribut": [], "control": 0, "conveni": 2, "converg": [4, 5], "convert": [3, 4, 5, 7], "cool": 7, "coordin": 5, "copi": [], "core": [2, 3], "cornerston": 2, "correct": 4, "correctli": 6, "correl": 0, "correlation_coeffici": 8, "correspond": [3, 6, 7, 8, 9, 10], "could": 7, "count": 3, "coupl": 1, "cours": [1, 2], "coval": 5, "cover": [1, 2, 3], "creat": [1, 3, 5, 6, 8], "criteria": 2, "critic": [2, 8], "critical_t_valu": 8, "crucial": [1, 3, 4], "crystal": 9, "csv": 2, "cubic": 4, "cubic_eq": 4, "current": [], "curv": [4, 5, 7], "cycler": [], "d": [5, 6, 9], "da": 9, "dash": 2, "data": [0, 1, 3, 5, 7], "databas": 2, "datafram": 5, "dataset": [2, 3], "dateutil": [], "decai": [5, 7], "decim": 4, "decis": 3, "decompos": [2, 7], "decreas": [5, 9, 10], "deepen": 1, "deepli": 2, "def": [3, 4, 5, 7, 8], "default": [1, 2], "defin": [4, 5, 7, 8, 9, 10], "definit": [2, 5, 9], "degre": 8, "delta": [5, 9], "delv": 2, "demonstr": [1, 2, 4, 6], "denomin": [7, 8], "depend": [3, 7, 8, 9], "deprec": [], "deriv": [4, 7, 9, 10], "descent": [], "describ": [3, 7, 10], "descript": 3, "design": [1, 2, 3, 4], "desir": 8, "det": 2, "detail": [1, 2], "determin": [1, 2, 4, 5, 6, 8, 10], "develop": [2, 8], "deviat": 8, "deviations_i": 8, "deviations_x": 8, "df": [2, 3, 8], "dg": 9, "diacetyl": 8, "diagram": 9, "diatom": 8, "dict": 10, "dictat": [3, 5, 6], "dictionari": [2, 4], "did": [6, 7, 8], "differ": [1, 2, 3, 4, 5, 7, 9, 10], "differenti": [1, 2, 9], "difficult": [], "dimens": 5, "dimension": 2, "dioxid": [1, 6, 9], "direct": [8, 9, 10], "directli": [1, 2], "discuss": [3, 5, 7, 8, 9, 10], "disord": 10, "displac": 9, "displai": [1, 2, 4, 5, 8], "dispos": 1, "dissoci": 4, "distanc": [2, 5, 8, 9], "distinct": 10, "distinguish": 10, "distribut": [2, 8], "div_col": [], "div_row": [], "dive": 1, "divers": 1, "divid": [5, 6, 8], "divis": [1, 3], "do": [3, 4, 5, 6, 7, 8, 9, 10], "docstr": 3, "document": [1, 2, 3], "doe": [3, 4, 10], "doesn": 1, "don": [1, 2, 3], "done": [4, 9], "dot": [2, 3], "dot_product": 2, "down": 4, "download": 2, "dp": [], "dpi": [], "dr": 5, "draw": [], "draw_al": [], "draw_idl": [], "draw_without_rend": [], "draw_wrapp": [], "dt": [], "dtype": 2, "du": 9, "due": [], "duplic": 3, "dure": [1, 8], "dv": 9, "dw": [], "dx": 5, "dy": 5, "dynam": [1, 3], "dz": 5, "e": [2, 3, 4, 5, 7, 8, 9, 10], "e_1": 10, "e_2": 10, "e_avg": 10, "e_i": 10, "each": [1, 2, 3, 4, 5, 6, 7, 9, 10], "earlier": [], "eas": [1, 2], "easi": 2, "easier": [2, 3], "easili": [1, 2, 3], "ecosystem": 2, "edg": 5, "edgecolor": [2, 4, 5], "effect": 4, "effici": [2, 3, 5, 6], "eigenvalu": 2, "eigval": 2, "either": [3, 10], "electron": [1, 5], "eleg": [2, 3], "element": [2, 5, 6], "ellipt": [], "els": [], "elsewher": 3, "embedmolecul": [], "emphas": [], "emploi": [1, 6], "empti": [], "en": 9, "enabl": [2, 3], "encapsul": 3, "encount": [1, 2], "end": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "endpoint": 5, "energet": 5, "energi": [2, 4], "enforc": 4, "engin": [1, 2], "enhanc": 1, "ensur": [1, 2, 3, 4, 6, 8, 10], "enthalpi": 9, "entir": 5, "entropi": 9, "enumer": 5, "env": [], "environ": [1, 2], "epsilon": 10, "epsilon_i": 7, "equal": [2, 3, 4, 6, 7, 9, 10], "equat": [0, 1, 2, 7, 9], "equilibria": [0, 2], "equilibrium": [7, 10], "equilibrium_equ": 4, "equip": 1, "erf": [], "err": [], "error": [1, 7, 8], "escap": [], "especi": [2, 3, 4, 6], "essenti": [0, 3, 4], "establish": [8, 9], "estim": [7, 8], "etc": 9, "etymologi": 9, "ev": [2, 10], "evalu": [3, 4, 8], "even": [], "eventu": 3, "everi": 2, "exact": [5, 9], "exampl": [1, 2, 3, 5, 9], "excel": [1, 2], "except": 7, "excess": [], "exchang": 10, "excit": 10, "execut": 3, "exist": 3, "exp": [5, 10], "expand": [3, 9], "expect": [3, 5], "experi": [1, 3, 4, 9], "experiment": [7, 8], "explain": [2, 3, 10], "explan": [], "explicit": 4, "explor": [1, 2, 3, 4, 6], "exponenti": [1, 7], "express": [1, 3, 4, 6, 7], "extend": [1, 2, 6], "extens": [2, 9], "extent": 4, "ey": 2, "f": [2, 4, 5, 7, 8, 9, 10], "facecolor": 10, "facilit": 3, "factor": 5, "fail": [], "fall": 2, "fals": [2, 3, 5], "far": [1, 2, 9], "feel": 3, "ferment": 8, "few": [2, 3], "fewest": 5, "fibonacci": 3, "field": 2, "fig": [5, 10], "figsiz": [5, 8, 10], "figur": [2, 5, 8, 9, 10], "figurecanvasagg": [], "figurecanvasbas": [], "file": 2, "filenam": [], "fill": 2, "filter": 3, "filtered_df": 2, "final": [1, 4, 5, 6, 7, 9], "final_simplex": 4, "find": [1, 2, 6, 7, 10], "finit": 4, "first": [1, 2, 3, 4, 5, 6, 7, 8], "fit": [1, 7, 8], "fix": 10, "flavor": 8, "flexibl": [2, 3, 4], "float": [1, 2, 3, 4, 5], "float64": 2, "flow": 3, "fluorin": 2, "fmt": [], "focu": [1, 2, 5, 7], "focus": 3, "folder": 4, "follow": [1, 2, 3, 4, 5, 6, 7, 8], "font": [], "font_imag": [], "fontprop": [], "fonts_object": [], "fontset": [], "fontsiz": 8, "fonttool": [], "for_layout_onli": [], "forc": 9, "forget": [2, 3], "forgot": 7, "form": [3, 5, 6, 7], "formal": 5, "format": [1, 2, 4, 5], "formatt": [], "formula": [4, 6, 7, 8], "forward": [1, 3, 4], "found": [4, 6, 7, 8, 9], "foundat": [1, 6], "fourier": 2, "frac": [4, 5, 6, 7, 8, 9, 10], "free": [3, 4, 9], "freedom": 8, "freezer": 7, "frequenc": 2, "frequent": [1, 2, 3], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9], "fruit": 3, "full": 2, "fun": 4, "func": [], "function": [1, 2, 4, 5, 6, 7, 8, 9], "function_nam": 3, "functool": [], "fundament": [1, 2, 3], "further": 3, "futur": 7, "g": [2, 3, 4, 5, 6, 9], "ga": [8, 9, 10], "gain": [1, 2, 9, 10], "game": [], "gase": 4, "gaussian": 5, "gcf": [], "gener": [3, 4, 7, 8], "genom": 1, "geq": 9, "get": [3, 4, 6, 8], "get_3d_molecule_html": [], "get_agg_filt": [], "get_all_fig_manag": [], "get_layout_engin": [], "get_real_method": [], "get_subplotspec_list": [], "get_text": [], "get_text_width_height_desc": [], "get_tight_layout_figur": [], "get_tightbbox": [], "get_transform": [], "get_unitless_posit": [], "get_vis": [], "get_window_ext": [], "getattr": [], "getvalu": [], "gg": [], "gibb": [4, 9], "give": [1, 3, 5, 6, 8, 9], "given": [3, 4, 5, 9, 10], "glimps": 1, "global": [], "go": 1, "goal": [6, 7], "good": [3, 4, 8], "googl": 1, "got": [], "govern": [5, 9], "gradient": 10, "grai": [4, 8], "gram": 1, "graph": 7, "graphic": [1, 2], "great": [1, 8], "greater": [2, 3, 7, 9], "green": [8, 10], "greet": 3, "grid": [2, 4, 5, 8, 10], "grid_rang": 5, "ground": 10, "group": 2, "guess": 5, "gui": [], "guid": 3, "guidanc": [], "h": [1, 3, 4, 6, 9], "h_pad": [], "ha": [1, 2, 3, 4, 7, 8, 9, 10], "had": 7, "hamiltonian": 2, "hand": 10, "handl": [1, 2, 3], "happen": [3, 4, 10], "has_imag": [], "hat": [7, 8], "have": [1, 2, 3, 4, 5, 6, 7, 8, 9], "he": [], "header": [], "heat": 8, "heavili": 2, "height": 5, "hello": 3, "helmholtz": 9, "help": [1, 2, 3, 4, 6], "helper": [], "here": [1, 2, 3, 4, 5, 6, 8, 9], "hesit": [1, 3], "high": [8, 10], "high_root_guess": 4, "higher": [2, 10], "highli": [1, 2], "highlight": 4, "hint": [1, 2, 3], "hist": 2, "hold": [1, 2, 9], "how": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "howev": [2, 4, 6], "html": [], "http": 9, "hybrid": 5, "hydrocarbon": [], "hydrogen": [1, 4], "h\u2082": 6, "h\u2082o": 6, "i": [2, 4, 6, 7, 8, 9, 10], "ic": 4, "idea": 3, "ideal": [1, 2, 8, 9], "ident": 2, "identifi": 7, "ignor": [], "ignore_index": [], "ij": 5, "illustr": 4, "imag": 2, "image_group": [], "imagin": [7, 8], "imperm": 9, "implement": 5, "implic": 9, "import": [1, 3, 5, 7, 8, 10], "improv": [], "includ": [1, 2, 3, 4, 8, 9, 10], "inclus": 4, "increas": [5, 10], "incredibli": [2, 3], "increment": [3, 5], "indefinit": 3, "independ": [7, 8], "index": [2, 3, 4, 5, 7], "indic": [4, 8, 10], "indispens": 2, "individu": [3, 10], "industri": 1, "inequ": 9, "inexact": 9, "infinit": 2, "infinitesim": 9, "influenc": 4, "info": [], "inform": [1, 2, 4, 10], "infti": 5, "initi": [3, 7], "inject": [], "inorgan": 5, "input": [2, 3], "insert": 4, "insid": 3, "insight": [2, 9, 10], "instanc": [1, 4], "instead": [4, 5], "instruct": [1, 3], "int": [5, 6, 9], "int_": 5, "int_0": 5, "int_a": 5, "integ": 2, "integr": [0, 2, 7], "integral_i": 5, "integral_x": 5, "integrand": 5, "integrand_valu": 5, "integratrion": [], "intens": 9, "interact": [1, 2, 9], "intercept": [7, 8], "interest": 8, "interfac": 1, "intermedi": 10, "intern": [], "interpol": 2, "interpret": [6, 7, 8], "intersect": 4, "interv": [0, 2, 4, 5], "introduc": [9, 10], "introduct": 0, "intuit": 5, "inv": 2, "invalid": [], "invalu": [1, 2], "invers": 2, "invert": [], "involv": [4, 5, 6], "ion": 9, "ipykernel_10087": [], "ipykernel_10290": [], "ipykernel_10894": [], "ipykernel_11504": [], "ipykernel_12070": [], "ipykernel_12261": [], "ipykernel_12756": [], "ipykernel_13537": [], "ipykernel_13999": [], "ipykernel_14380": [], "ipykernel_14625": [], "ipykernel_16501": [], "ipykernel_16598": [], "ipykernel_16635": [], "ipykernel_16685": [], "ipykernel_16737": [], "ipykernel_16804": [], "ipykernel_16842": [], "ipykernel_16884": [], "ipykernel_16975": [], "ipykernel_17053": [], "ipykernel_17105": [], "ipykernel_17136": [], "ipykernel_20224": [], "ipykernel_20664": [], "ipykernel_20834": [], "ipykernel_21107": [], "ipykernel_21954": [], "ipykernel_22428": [], "ipykernel_22617": [], "ipykernel_22886": [], "ipykernel_26292": [], "ipykernel_26479": 4, "ipykernel_26525": [], "ipykernel_26897": [], "ipykernel_27150": [], "ipykernel_27540": [], "ipykernel_27695": [], "ipykernel_28014": [], "ipykernel_28159": [], "ipykernel_28455": [], "ipykernel_28589": [], "ipykernel_28609": [], "ipykernel_28909": [], "ipykernel_29131": [], "ipykernel_29352": [], "ipykernel_30005": [], "ipykernel_30224": [], "ipykernel_30465": [], "ipykernel_31674": [], "ipykernel_31908": [], "ipykernel_32080": [], "ipykernel_32531": [], "ipykernel_34814": [], "ipykernel_35168": [], "ipykernel_35574": [], "ipykernel_3669": [], "ipykernel_4171": [], "ipykernel_4437": [], "ipykernel_44743": [], "ipykernel_45602": [], "ipykernel_4962": [], "ipykernel_5297": [], "ipykernel_55148": [], "ipykernel_5780": [], "ipykernel_6053": [], "ipykernel_6165": [], "ipykernel_6610": [], "ipykernel_6946": [], "ipykernel_7270": [], "ipykernel_8585": [], "ipykernel_86731": [], "ipykernel_8703": [], "ipykernel_9023": [], "ipykernel_9640": [], "ipykernel_96621": [], "ipykernel_97096": [], "ipykernel_97762": [], "ipykernel_98107": [], "ipykernel_98323": [], "ipykernel_98609": [], "ipykernel_98736": [], "ipykernel_99350": [], "ipykernel_99922": [], "ipython": [], "irrevers": 9, "is_interact": [], "isinst": [], "ismath": [], "isn": 8, "isol": 9, "item": [2, 3], "iter": [3, 4], "iterrow": 3, "its": [1, 2, 3, 4, 6, 8, 9], "itself": 3, "j": [5, 8], "journei": 1, "julia": 1, "jump": 6, "jupyt": 2, "just": [1, 2, 3], "k": [4, 7, 8, 9, 10], "k_": 10, "k_b": 10, "k_p": 4, "keep": 3, "kei": [1, 8], "kelvin": 10, "keyword": 3, "kind": 1, "kinet": [1, 7, 9], "kiwisolv": [], "kj": 2, "know": [6, 8], "knowledg": 3, "known": 10, "kt": 7, "kw": [], "kwarg": [], "l": [3, 7, 8], "lab": 7, "label": [1, 2, 4, 5, 8, 10], "lambert": 8, "langl": 10, "languag": 1, "larg": [2, 3, 10], "last": [3, 8], "later": 1, "latest": 1, "latex": 1, "latter": 5, "law": [4, 6, 8, 10], "layout": [], "layout_engin": [], "learn": [], "least": 8, "lectur": 0, "left": [4, 5, 6, 7, 8, 9, 10], "legend": [1, 2, 4, 5, 8, 10], "len": 8, "less": [3, 5], "let": [2, 4, 5, 6, 7, 8], "level": [5, 8, 10], "leverag": [2, 6], "li": 4, "lib": [], "librari": [1, 2, 8], "lie": 4, "like": [1, 2, 3, 5, 8, 9], "lim_": 5, "limit": [4, 5], "linalg": [2, 6], "line": [1, 3, 5, 8, 9], "linear": [0, 2, 8], "linearli": 8, "linestyl": [2, 4, 8, 10], "linspac": [2, 4, 5, 10], "linux": 1, "list": [5, 9], "list_of_thermodynamic_properti": 9, "littl": 3, "live": [1, 9], "ll": [1, 2, 3, 4, 6], "ln": [7, 10], "ln_concentr": 7, "load": 2, "local": 5, "lock": [], "log": [7, 10], "logic": 2, "long": 3, "look": [3, 8], "loop": 5, "lose": 9, "lost": 6, "low": [5, 10], "low_root_guess": 4, "lru_cach": [], "luck": [3, 8], "m": [1, 2, 7], "m3": 4, "m_1": 9, "m_2": 9, "m_i": 9, "m_inv": 2, "mac": 1, "machin": 1, "macroscop": 10, "made": 8, "magnet": 2, "mai": [], "main": [3, 9], "maintain": [2, 3, 8], "major": [1, 8], "make": [1, 2, 3, 10], "make_keyword_onli": [], "manag": [], "mani": [1, 2, 9, 10], "manipul": 1, "manner": 2, "manual": 6, "map": 3, "marker": 2, "martist": [], "mass": [1, 4, 6, 9], "master": 1, "match": 4, "materi": [1, 5, 9], "math": 1, "mathbf": 9, "mathemat": 2, "mathematica": 1, "mathtext": [], "mathtext_pars": [], "mathtextpars": [], "matlab": 1, "matplotlib": [1, 4, 5, 7, 8, 10], "matric": 2, "matrix": [], "matter": [1, 5, 9], "max": 3, "max_ncol": [], "max_nrow": [], "maximum": 2, "mayb": [], "mead": 4, "mean": [1, 2, 6, 7, 8, 9], "mean_i": 8, "mean_x": 8, "meaning": 4, "measur": [8, 9, 10], "mechan": [2, 5, 9, 10], "medium_root_guess": 4, "meet": [2, 7], "mercuri": 2, "merg": [2, 3], "meshgrid": 5, "mess": [], "messag": [3, 4], "met": 3, "methan": 6, "method": [2, 3, 5, 6, 7, 8], "method_nam": 3, "mg": 8, "microscop": 10, "midpoint": 4, "might": [1, 6], "mimag": [], "min": [3, 6, 7], "miniconda3": [], "minim": [7, 9], "minimum": [2, 9], "minu": [], "mixtur": 4, "model": [1, 7, 8], "modern": 1, "modifi": [1, 2, 4], "modul": [1, 2], "modular": 3, "modulenotfounderror": [], "modulo": 3, "mol": [2, 4, 7, 8], "mol_block": [], "molar": 1, "molar_mass": 1, "mole": [1, 2, 4, 9], "molecul": [6, 9, 10], "molecular": [1, 2, 5], "molecule_html": [], "molfromsmil": [], "moltomolblock": [], "momenta": [], "mont": 1, "more": [2, 3, 4, 5, 6, 9, 10], "most": [2, 3, 5], "move": [1, 3, 5, 9], "mpl": [], "much": [1, 2, 7, 9], "multi": [2, 4], "multidimension": 5, "multipl": [1, 2, 3, 4, 6], "multipli": [2, 3], "must": [1, 3, 4, 5], "mutat": [], "mx": 7, "my_dict": 3, "my_list": [2, 3], "n": [2, 3, 5, 6, 7, 8, 9], "n2o5": 7, "n9": [], "n_data_point": 8, "n_valu": 5, "name": [1, 2, 3], "name_idx": [], "nameerror": [], "narr": 1, "narrow": 4, "natur": [7, 9], "ndarrai": 2, "necessari": [], "need": [1, 2, 3, 4, 5, 6, 7, 8, 10], "neg": [8, 9], "nelder": 4, "net": [4, 9], "never": [3, 9], "new": [1, 3, 4, 8], "new_list": 3, "newton": 4, "next": [1, 3, 6], "nfev": 4, "nit": 4, "nm": 8, "nobr": 7, "non": [], "none": 3, "nonlinear": 4, "normal": [5, 10], "normalization_factor": 5, "not_composit": [], "notat": 3, "note": [], "notebook": 2, "notic": [], "now": [1, 3, 4, 5, 6, 7, 8], "np": [2, 3, 4, 5, 6, 7, 8, 10], "nriemann": 5, "nrt": 9, "nucleu": 5, "null": [], "null_spac": 6, "null_vec": 6, "nullcontext": [], "number": [1, 2, 4, 5, 6, 8, 9, 10], "numer": [0, 1, 2, 3, 7, 8], "numerical_result": [], "numpi": [1, 4, 5, 6, 7, 8, 10], "o": [1, 2, 3, 4, 6, 7], "obei": 4, "obj": [], "obj_typ": [], "object": [], "objective_funct": 4, "observ": [4, 7, 8, 10], "obtain": [4, 5, 6, 8], "occur": [3, 4], "off": 9, "offer": [1, 2], "offici": [1, 2], "offsettext": [], "often": [1, 3, 4], "oi": [], "ok": [5, 8], "ol": [7, 8], "old_list": 3, "ols_intercept": [7, 8], "ols_slop": [7, 8], "omega": 10, "omit": [], "onc": [1, 2, 6, 7], "one": [1, 2, 3, 4, 6, 7, 8, 9], "ones": 2, "onli": [1, 2, 3, 6, 9], "open": [1, 9], "oper": [1, 3, 5, 6], "operand": [], "opportun": 2, "opposit": 9, "optim": [2, 5], "optimizewarn": 4, "option": 3, "orang": 10, "order": [0, 2, 9, 10], "ordinari": 8, "org": 9, "organ": [1, 2, 3, 5], "orient": [2, 5], "origin": [1, 3], "orthonorm": 2, "other": [1, 2, 3, 4, 5, 6, 8, 9, 10], "otherwis": 3, "our": [1, 2, 5, 6, 7, 8, 9], "out": [1, 2], "outcom": 4, "output": [2, 4, 6], "outsid": 4, "over": [2, 3, 5, 10], "overal": [7, 10], "overlap": 2, "overlap_integr": 5, "overlap_integral_trapezoid": 5, "overleaf": 1, "overview": 2, "own": [1, 3, 8], "ox": [], "oxygen": [1, 4, 6], "oxygen_mass": 1, "p": [2, 4, 9], "p1": 10, "p1_valu": [], "p2": 10, "p2_valu": [], "p_": 4, "p_1": 10, "p_2": 10, "p_i": 10, "packag": [0, 1], "pad": [], "pad_inch": [], "pair": 3, "panda": [1, 5], "paramet": [2, 4, 5, 7, 8], "parent": [], "parenthes": [2, 3], "pars": [], "parsebaseexcept": [], "parseexcept": [], "parser": [], "parsestr": [], "part": [1, 4, 9], "parti": [], "partial": [4, 10], "particip": [], "particl": [5, 9, 10], "particular": [9, 10], "particularli": [1, 2, 3, 4], "partit": [], "partition_funct": [], "pass": [], "patch": [], "path": [1, 9], "pd": [2, 3, 5], "pdf": 2, "peak": [8, 10], "per": [2, 6], "percentag": 4, "perfect": [8, 9], "perform": [1, 2, 3, 4, 5, 7, 8], "period": 2, "permeabl": 9, "person": 3, "phenomenon": 5, "phi": 5, "physic": [1, 2, 4, 5, 8], "pi": [5, 7], "pillow": [], "pip": [1, 2], "pip3": 1, "piston": 9, "place": 4, "placehold": 4, "placeholderlayoutengin": [], "plai": [2, 4, 5], "plain": [], "plan": 7, "plot": [1, 4, 5, 7, 8, 10], "plotli": 1, "plt": [1, 2, 4, 5, 7, 8, 10], "plu": 9, "pm": [4, 8], "png": 2, "point": [2, 4, 5, 7, 8, 9], "popular": 1, "posit": [2, 3, 6, 8, 9, 10], "position": [], "possibl": [1, 3, 5, 6], "post_execut": [], "potassium": 2, "potenti": [], "power": [1, 3, 4, 7], "ppf": 8, "practic": 4, "pre": 1, "precipit": 9, "precis": 8, "predefin": 2, "predetermin": 3, "predict": [1, 4, 7, 8], "prefix": 1, "prepar": [1, 5], "presenc": 8, "present": [1, 2, 7], "pressur": [4, 8, 9, 10], "pretti": [], "prevent": 2, "previou": [1, 10], "previous_engin": [], "primari": 2, "primarili": [1, 5], "principl": 2, "print": [2, 3, 4, 5, 7, 8], "print_figur": [], "print_method": [], "printer": [], "prob": [], "probabl": 10, "problem": [1, 2, 6], "proce": [4, 5, 9], "proceed": 4, "process": [1, 2, 3, 4, 6, 9], "produc": [3, 6, 8], "product": [2, 4, 6, 7], "profil": 8, "program": [1, 3], "progress": [1, 2, 4, 7], "project": 1, "prompt": [1, 2], "prop": [], "properti": [1, 5, 9], "proport": 8, "prove": 5, "provid": [2, 3, 4, 5, 6, 8, 10], "proxim": 5, "pseudo": 7, "psi_": 5, "psi_i": 5, "psi_j": 5, "purchas": 7, "purpl": 10, "purpos": 2, "put": [1, 3, 7], "pv": 9, "py": 4, "py3dmol": [], "pylabtool": [], "pymatgen": 1, "pypars": [], "pyplot": [1, 2, 4, 5, 7, 8, 10], "pyscf": 1, "python": [0, 7], "python3": 1, "q": 9, "q030dl3x6qgfqffys4wc7d4c0000gn": [], "quacc": 1, "quad": [], "quadrat": 4, "quadratic_eq": [], "quadratic_equ": 4, "quadratur": 5, "qualit": 9, "quantifi": 5, "quantiti": [2, 4], "quantum": [1, 2, 5], "quasistat": 9, "question": [3, 9], "quickli": 4, "r": [1, 4, 5, 8, 9, 10], "r1": 5, "r2": 5, "r_0": 9, "r_i": 9, "r_valu": 5, "radii": 5, "radiu": [3, 5], "rain": 9, "rais": [4, 7], "rand": [2, 8], "randint": 2, "randn": [2, 8], "random": [2, 8, 10], "rang": [1, 2, 3, 4, 5, 8, 10], "rangl": 10, "raphson": 4, "rapidli": 5, "rate": 4, "rather": 5, "ratio": [4, 6], "rdkit": [], "re": [1, 2, 3], "reach": [3, 4, 7, 9], "react": [6, 9], "reactant": [4, 6, 7], "reaction": [0, 1, 2, 6, 9], "read": 3, "read_csv": 2, "readabl": 2, "readi": [1, 2], "real": [1, 4], "realiz": 7, "realli": 5, "reason": 3, "recal": [5, 7], "recast": [], "recent": [], "reciproc": [], "recogn": 1, "recommend": [1, 2, 8], "rect": [], "rectangl": 5, "red": [2, 4, 8, 10], "reduc": 3, "redund": 3, "ref": [], "refer": [1, 2, 3, 5, 9, 10], "reflect": [1, 4], "region": 9, "regress": [0, 8], "regular": 3, "reinforc": [3, 8], "rel": 6, "relat": [4, 5, 7, 8], "relationship": [2, 6, 7, 8], "relev": 9, "reli": 2, "remain": 4, "rememb": 1, "remov": 3, "render": 1, "renderer_ref": [], "rendereragg": [], "repeat": 3, "repeatedli": 3, "repetit": 3, "replac": 4, "report": [2, 7], "repositori": 1, "repres": [1, 2, 4, 6, 8], "represent": 6, "requir": [2, 3, 4], "research": [1, 8], "reservoir": 10, "residu": 8, "resiz": [], "resourc": 1, "respect": [1, 4, 5, 6, 7], "respond": 3, "respons": [3, 8], "result": [1, 2, 3, 4, 5, 6], "results_df": 5, "retriev": 7, "return": [2, 3, 4, 5, 7, 8], "reus": 3, "reusabl": 3, "revers": [3, 4, 9], "revisit": 6, "rewrit": [5, 7], "riemann": [], "riemann_result": 5, "riemann_sum": 5, "riemann_sum_valu": 5, "right": [4, 5, 6, 8, 9, 10], "rightarrow": 6, "rightleftharpoon": 4, "rm": 10, "ro": [5, 7], "robust": 2, "role": [2, 4, 5, 9, 10], "root": [0, 1, 2], "round": 6, "routin": 2, "row": [2, 3], "row_data": [], "rowspan": [], "rubidium": 2, "rule": [], "run": [1, 2, 3, 4], "runtimeerror": [], "s_analyt": 5, "s_numer": [], "s_riemann": 5, "s_sum": 5, "s_trapezoid": 5, "s_trapz": [], "sai": [1, 5], "same": [1, 3, 6, 8, 9], "sampl": 8, "satisfi": [4, 6], "satur": 6, "save": [2, 6], "scale": 1, "scatter": [1, 4, 8], "scatterplot": 2, "scenario": [], "scienc": [4, 5, 6, 9], "scientif": 1, "scikit": 1, "scipi": [1, 5, 6, 8, 10], "scratch": 2, "script": 2, "se": 8, "se_intercept": 8, "se_slop": 8, "seaborn": 1, "secant": 4, "second": 2, "section": 6, "see": [1, 3, 4, 5, 6], "seed": 8, "seen": 1, "self": [], "send": 3, "separ": [2, 5, 9], "sequenc": [2, 3], "sequenti": 3, "seri": [3, 5, 8, 9], "serv": 2, "set": [1, 2, 3, 4, 6, 7, 8, 9], "set_layout_engin": [], "set_titl": [5, 10], "set_xlabel": [5, 10], "set_ylabel": [5, 10], "setstyl": [], "sever": [1, 5], "shape": [2, 7], "share": [1, 5], "sheet": 1, "ship": [], "short": 3, "should": [1, 2, 3, 4, 6, 7, 8, 10], "show": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "shown": [2, 9, 10], "side": [5, 6], "sigma": 8, "signal": 2, "signific": [7, 8], "similar": [2, 5], "similarli": [], "simpl": [1, 2, 3, 4, 7, 10], "simplest": 3, "simpli": 1, "simplic": 6, "simplifi": [2, 4, 6], "simpson": 5, "simul": 1, "simultan": 5, "sin": [2, 5], "sinc": [6, 7], "sine": [2, 5], "singl": 2, "site": [], "six": [], "size": [5, 9], "skill": [1, 2, 3, 6, 8], "skip": 3, "slack": 3, "slice": 3, "slope": [7, 8], "slowli": 5, "small": [3, 5], "smaller": 3, "smallest": 6, "smile": [], "sn": 6, "sno": 6, "snow": 9, "sno\u2082": 6, "so": [2, 3, 5, 6, 9], "softwar": [1, 2], "solid": [1, 2, 5], "solut": [2, 6], "solv": [1, 2, 5], "some": [1, 2, 3, 8], "sourc": 2, "space": [5, 9], "span_pair": [], "spatial": 5, "speci": [4, 7], "special": 1, "specif": [3, 10], "specifi": [3, 4, 5, 10], "spectromet": 8, "spectrophotomet": [], "spectroscopi": 2, "spheric": 5, "spine": [], "split": 4, "spread": 2, "spreadsheet": [1, 2], "spring": 9, "sql": 2, "sqrt": [1, 4, 5, 8], "squar": [1, 2, 3, 8], "ss": [], "sse": [7, 8], "ssr": 8, "stai": 4, "stale": [], "standard": [4, 8], "start": [2, 3, 4, 5, 6, 7], "start_filt": [], "stat": 8, "state": [2, 4, 5, 7, 9], "statement": [1, 4], "static": 2, "statist": [0, 1, 2, 7], "statsmodel": [1, 8], "statu": 4, "step": [5, 8], "steroid": 2, "stick": [], "still": 4, "stoichiometr": [1, 4, 6], "stoichiometri": 7, "stop": [], "stop_raster": [], "storag": 2, "store": [1, 2, 3, 5], "stori": 8, "straight": 5, "straightforward": [1, 2, 3], "streamlin": 6, "strength": [1, 2, 8], "string": 2, "strong": [2, 8], "structur": [0, 1], "struggl": [], "student": [], "style": [1, 2], "subclass": [], "subdivis": 5, "subplot": [5, 10], "subplot_list": [], "subplots_adjust": [], "subplotspec_list": [], "subset": 2, "substitut": [4, 6], "subtract": 1, "success": 4, "successfulli": [4, 7], "suggest": 7, "suit": [1, 2], "suitabl": 4, "sum": [7, 8, 9, 10], "sum_": [5, 7, 8], "sum_i": [9, 10], "super": [], "superclass": [], "support": [1, 2], "suppos": 7, "suppress_composit": [], "suppresscomposit": [], "suptitl": 5, "sure": 1, "surround": 9, "svg": 2, "symbol": 1, "symmetr": 5, "symmetri": [], "syntax": [1, 2, 3], "syntaxwarn": [], "system": [0, 1, 2, 4], "systemat": 6, "t": [1, 2, 3, 4, 7, 8, 9, 10], "t_": 8, "t_valu": [], "tab": 1, "tabl": [4, 6, 7], "tabular": [1, 2, 3], "tackl": [1, 2], "tailor": 1, "take": [3, 5, 10], "taken": 9, "task": [1, 2, 3, 8], "taught": [], "technic": 2, "techniqu": [1, 2, 6, 7], "temperatur": [4, 8, 9, 10], "term": [4, 7, 10], "termin": [1, 2, 3, 4], "test": [1, 8], "text": [1, 4, 6, 7, 8], "than": [2, 3, 5, 7], "thei": [1, 2, 3, 4, 9], "them": [1, 2, 3, 9], "therefor": [5, 6], "thermal": [9, 10], "thermodynam": [0, 1], "theta": 5, "thi": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "thing": [3, 8], "think": [2, 3, 5, 6], "third": [], "those": [2, 5], "thought": 6, "three": [3, 4, 5, 9], "threshold": 8, "through": [1, 2, 9], "throughout": 2, "thu": 6, "ti": 3, "tight": [], "tight_bbox": [], "tight_bbox_raw": [], "tight_layout": [5, 10], "tightlayoutengin": [], "time": [3, 4, 6, 7, 8], "tip": [], "titl": [1, 2, 4, 5, 7, 8, 10], "to_csv": 2, "todai": 1, "togeth": [3, 7, 8], "tol": 4, "toler": 4, "too": 3, "tool": [1, 4], "toolbar": [], "toolkit": 2, "top": [1, 2], "topic": 2, "total": [4, 5, 10], "touch": 1, "tough": 5, "toward": 4, "traceback": [], "track": 6, "tradit": [2, 4], "train": [], "transfer": 9, "transfigur": [], "transform": [2, 3], "transform_bbox": [], "transit": [9, 10], "transport": 1, "trapezoid": [], "trapezoidal_result": 5, "trapz": [], "trend": 2, "tri": [], "tripl": 9, "true": [2, 3, 4, 5, 8, 10], "try": [1, 2, 3, 6, 8], "tupl": [3, 5], "turn": [], "twice": 1, "two": [1, 2, 3, 7, 8, 9], "type": [1, 2, 3, 5, 6, 7, 9], "typeerror": [], "typic": [1, 4, 7, 8], "u": [3, 5, 6, 8, 9], "u_i": [], "ubiquit": 2, "uffoptimizemolecul": [], "ultim": 5, "ultraviolet": 8, "unbalanc": 6, "unbias": 8, "uncertainti": [], "under": [4, 5, 10], "undergo": 10, "underli": 2, "underscor": [], "understand": [1, 2, 3, 4, 6, 7, 9, 10], "unexpect": [], "uniform": [5, 9], "union": [], "uniqu": 3, "unit": [2, 7], "unknown": 6, "unlik": 3, "unnecessarili": [], "unord": 3, "unphys": [], "unsatur": 6, "until": 3, "unus": [], "up": [1, 3, 4, 8, 9, 10], "updat": 6, "upon": 1, "us": [1, 4, 7, 8, 9, 10], "usag": 5, "user": 1, "userwarn": [], "util": [3, 4, 8], "uv": 8, "v": [2, 7, 9, 10], "v_1": 9, "v_2": 9, "v_i": 9, "va": [], "valid": 8, "valu": [1, 2, 4, 5, 6, 7, 8, 9], "valuabl": [], "valueerror": [], "vapor": 4, "var": 4, "variabl": [1, 2, 3, 4, 6, 7, 8, 9], "varianc": 8, "varieti": [1, 2], "variou": [1, 2, 7], "vast": [1, 2], "ve": [1, 2, 3, 6], "vector": [5, 6, 9], "veloc": [9, 10], "veri": [7, 10], "verifi": [1, 2, 5], "versatil": [1, 2, 3], "version": 1, "vertic": 8, "vi": 8, "via": 9, "view": 10, "viewer": [], "visibl": 8, "visit": 1, "visual": [1, 4, 5, 7], "vital": 2, "volum": [5, 9], "vowel": 3, "w": [2, 9], "w_pad": [], "wa": [], "wai": [2, 3, 9], "want": [2, 8], "warn_deprec": [], "warn_extern": [], "water": [1, 4, 6], "wavefunct": 2, "we": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "weak": 8, "weakref": [], "web": 1, "websit": 1, "weight": [], "welcom": 1, "well": [3, 8, 10], "were": [7, 8], "wexler": [], "what": [1, 2, 6, 10], "when": [1, 2, 3, 4, 5, 7, 9], "where": [2, 4, 5, 6, 7, 8, 9, 10], "whether": [1, 2, 3], "which": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "while": [1, 2, 4, 5, 8, 9, 10], "whole": [], "whose": [], "why": 3, "wide": [1, 2, 4], "width": 5, "wiki": 9, "wikipedia": 9, "window": [], "wise": 2, "within": [1, 2, 3, 4], "without": [3, 4, 9], "won": 2, "word": [5, 8, 9], "work": [1, 3, 4, 7, 8, 10], "workflow": 1, "workforc": 1, "world": [1, 9], "would": [4, 8, 10], "wrap": [], "wrapper": [], "write": [3, 4, 5, 6, 7, 8], "written": [2, 3, 5, 6, 9], "x": [1, 2, 3, 4, 5, 6, 7, 8], "x0": 4, "x_i": [5, 7, 8], "x_max": [], "x_mean": [7, 8], "x_min": [], "x_valu": 4, "xenon": 2, "xi": [], "xlabel": [1, 2, 4, 5, 7, 8, 10], "xp": [], "xy": 10, "xytext": 10, "y": [1, 2, 3, 5, 6, 7, 8], "y_i": [7, 8], "y_max": [], "y_mean": [7, 8], "y_min": [], "yaxi": [], "yield": 4, "ylabel": [1, 2, 4, 5, 7, 8, 10], "ymax": [], "york": 3, "you": [1, 2, 3, 4, 5, 6, 7, 8, 10], "your": [1, 3, 7, 8], "yourself": [1, 3], "ytterbium": 2, "yttrium": 2, "z": [5, 10], "z_max": [], "z_min": [], "zero": [2, 4, 6, 9, 10], "zinc": 2, "zip": [], "zirconium": 2, "zoomto": [], "zorder": 4, "zr": [], "\u00e5": 5}, "titles": ["Welcome to Computational Problem Solving in the Chemical Sciences", "Lecture 1: Introduction to Python for the Chemical Sciences", "Lecture 2: Essential Python Packages for the Chemical Sciences", "Lecture 3: Control Structures in Python", "Lecture 4: Chemical Reaction Equilibria and Roots of Equations", "Lecture 5: Chemical Bonding and Numerical Integration", "Lecture 6: Balancing Chemical Equations and Systems of Linear Algebraic Equations", "Lecture 7: Orders of Reaction and Linear Regression Analysis", "Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis", "Lecture 9: Classical Thermodynamics", "Lecture 10: Statistical Thermodynamics"], "titleterms": {"": [1, 4], "1": [1, 2, 3, 4, 5, 6], "10": 10, "1d": 2, "2": [1, 2, 3, 4, 6], "2d": 2, "3": [1, 2, 3, 6], "4": [1, 2, 3, 4, 6], "5": [1, 2, 3, 5, 6], "6": [1, 2, 3, 6], "7": [1, 7], "8": 8, "9": 9, "A": [2, 4, 6, 7, 8], "On": [4, 5, 7, 8], "The": [2, 3, 4, 5, 6, 9], "To": [], "about": 9, "activ": [4, 5, 7, 8], "addit": [3, 4], "advanc": 2, "algebra": 6, "all": 3, "alreadi": 1, "an": 5, "analysi": [7, 8], "analyt": 5, "anoth": [], "approach": 4, "ar": 3, "arrai": [2, 3], "averag": 10, "back": [7, 8], "balanc": 6, "basic": 2, "best": [2, 3], "boltzmann": 10, "bond": 5, "calcul": 5, "calibr": 8, "can": 1, "capac": 10, "care": 9, "case": 6, "check": [1, 3], "chemic": [0, 1, 2, 4, 5, 6], "chemistri": 1, "classic": 9, "coeffici": [6, 8], "combust": 6, "comprehens": 3, "comput": [0, 2, 5, 6], "condit": 3, "confid": 8, "constant": [7, 10], "control": 3, "convert": 6, "correl": 8, "creat": 2, "critic": 10, "curv": 8, "custom": 2, "data": [2, 8], "datafram": [2, 3], "decomposit": 7, "default": 3, "defin": [3, 6], "definit": [], "determin": 7, "dictionari": 3, "distribut": 10, "do": 1, "download": 1, "element": 3, "elif": 3, "els": 3, "energi": [9, 10], "entropi": 10, "equat": [4, 6], "equilibria": [4, 9], "equilibrium": [4, 9], "essenti": 2, "even": 3, "exampl": [4, 6, 7, 10], "exercis": [1, 2, 3, 4], "expect": 4, "experi": 7, "factori": 3, "familiar": 8, "featur": 2, "filter": 2, "find": [3, 4], "first": 9, "form": 8, "formul": 4, "foundat": 2, "free": 10, "from": 10, "function": [3, 10], "fundament": 9, "g": 7, "gener": [2, 6], "get": 1, "graph": 1, "guess": 4, "h": 5, "hand": [3, 4, 5, 6, 7, 8], "he": 5, "heat": [9, 10], "higher": 3, "hint": 7, "histogram": 2, "hydrocarbon": 6, "hydrogen": [5, 6], "i": [1, 3, 5], "implement": 4, "import": [2, 4, 6], "infinit": 3, "initi": 4, "instal": [1, 2], "integ": 6, "integr": 5, "interlud": 8, "intern": [9, 10], "interv": 8, "introduct": [1, 3, 4, 7, 8, 10], "iv": 6, "jupyt": 1, "kei": [2, 3], "lambda": 3, "launch": 1, "law": [7, 9], "learn": [1, 2, 3, 4, 6, 7, 8, 9, 10], "least": 7, "lectur": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "let": 1, "librari": 6, "line": 2, "linear": [6, 7], "list": [2, 3], "loop": 3, "macrost": 10, "manipul": 2, "mathbf": 6, "mathemat": [1, 4], "matplotlib": 2, "matrix": [2, 6], "maximum": 3, "method": 4, "microst": 10, "minim": 4, "minimum": 3, "minut": [], "moment": 6, "more": 1, "n_2o_5": 7, "necessari": 6, "normal": 6, "note": [1, 3, 4, 5], "notebook": 1, "null": 6, "number": 3, "numer": [4, 5], "numpi": [2, 3], "object": [1, 2, 3, 4, 6, 7, 8, 9, 10], "odd": 3, "oper": 2, "optim": 4, "orbit": 5, "order": [3, 7], "ordinari": 7, "overlap": 5, "oxid": 6, "packag": 2, "palindrom": 3, "panda": [2, 3], "paramet": 3, "partit": 10, "phase": 9, "plot": 2, "potenti": 9, "power": 2, "practic": [1, 2, 3, 7], "primer": 7, "problem": [0, 4], "properti": [2, 10], "public": 2, "put": [], "python": [1, 2, 3, 4, 6], "qualiti": 2, "rate": 7, "reaction": [4, 7], "read": 2, "real": 8, "recap": 6, "reduct": 6, "refresh": 7, "regress": 7, "relat": 9, "remind": 2, "riemann": 5, "root": 4, "rule": 5, "scatter": 2, "scienc": [0, 1, 2], "scientif": 2, "scipi": [2, 4], "second": 9, "section": [2, 3], "seri": 2, "should": 9, "solut": [4, 5], "solv": [0, 4, 6], "space": 6, "specif": [1, 2], "squar": 7, "start": 1, "state": 10, "statement": [3, 9], "statist": 10, "step": [1, 4, 6], "string": 3, "structur": [2, 3], "sum": [3, 5], "summari": [6, 9, 10], "sup": [], "symmetri": 5, "system": [6, 9, 10], "take": 6, "test": [], "theoret": 8, "thermodynam": [9, 10], "thi": [], "think": 10, "third": 9, "through": 3, "tin": 6, "tool": 2, "trapezoid": 5, "two": [5, 10], "u": [], "us": [2, 3, 5, 6], "v": [3, 5], "valu": 3, "vector": 2, "versatil": 4, "via": 4, "visual": 2, "volum": 10, "wait": [4, 5], "warn": 4, "welcom": 0, "what": [3, 4, 5], "while": 3, "why": 9, "window": 1, "work": [2, 9], "world": 8, "write": 2, "you": 9, "your": 2, "zeroth": 9}})
\ No newline at end of file
+Search.setIndex({"alltitles": {"": [[1, null], [1, null], [2, null], [2, null], [2, null], [3, null], [3, null], [5, null], [8, null], [9, null], [9, null], [9, null], [9, null], [9, null], [9, null], [10, null], [11, null]], "1.1 Download and Install Python": [[1, "download-and-install-python"]], "1.1 Key Features of NumPy": [[2, "key-features-of-numpy"]], "1.1 The if Statement": [[3, "the-if-statement"]], "1.2 Check if Python is Already Installed": [[1, "check-if-python-is-already-installed"]], "1.2 The if-else Statement": [[3, "the-if-else-statement"]], "1.2 Working with NumPy Arrays": [[2, "working-with-numpy-arrays"]], "1.3 Practice Exercises": [[2, "practice-exercises"]], "1.3 The if-elif-else Statement": [[3, "the-if-elif-else-statement"]], "1.3 Windows-Specific Note": [[1, "windows-specific-note"]], "2.1 Install Jupyter Notebook": [[1, "install-jupyter-notebook"]], "2.1 Key Features of SciPy": [[2, "key-features-of-scipy"]], "2.1 The for Loop": [[3, "the-for-loop"]], "2.2 Launching Jupyter Notebook": [[1, "launching-jupyter-notebook"]], "2.2 The while Loop": [[3, "the-while-loop"]], "3.1 Defining Functions": [[3, "defining-functions"]], "3.1 Key Features of Matplotlib": [[2, "key-features-of-matplotlib"]], "3.1 Python and Mathematics": [[1, "python-and-mathematics"]], "3.2 Creating Basic Plots with Matplotlib": [[2, "creating-basic-plots-with-matplotlib"]], "3.2 Functions with Default Parameter Values": [[3, "functions-with-default-parameter-values"]], "3.2 Practice Exercises": [[1, "practice-exercises"]], "3.3 Customizing Your Plots": [[2, "customizing-your-plots"]], "3.3 Lambda Functions": [[3, "lambda-functions"]], "3.3 Python Can Do Chemistry": [[1, "python-can-do-chemistry"]], "3.4 Practice Exercises": [[1, "id1"], [2, "id1"]], "3.4 Using Lambda Functions with Higher-Order Functions": [[3, "using-lambda-functions-with-higher-order-functions"]], "3.5 Python Can Do Graphing": [[1, "python-can-do-graphing"]], "3.5 Using Lambda Functions with Pandas": [[3, "using-lambda-functions-with-pandas"]], "3.6 Best Practices for Using Functions": [[3, "best-practices-for-using-functions"]], "3.6 Practice Exercises": [[1, "id2"]], "3.7 Python Can Do More": [[1, "python-can-do-more"]], "4.1 Key Features of Pandas": [[2, "key-features-of-pandas"]], "4.2 Series: The 1D Data Structure": [[2, "series-the-1d-data-structure"]], "4.3 DataFrame: The 2D Data Structure": [[2, "dataframe-the-2d-data-structure"]], "4.4 Reading and Writing Data": [[2, "reading-and-writing-data"]], "4.5 Filtering Data": [[2, "filtering-data"]], "4.6 Practice Exercises": [[2, "id2"]], "A Familiar Form of the Correlation Coefficient": [[8, null]], "A Practical Example": [[7, "a-practical-example"]], "A Refresher or Primer on Rate Laws": [[7, "a-refresher-or-primer-on-rate-laws"]], "A Theoretical Interlude": [[8, "a-theoretical-interlude"]], "Additional Exercise": [[4, null]], "Additional Exercises": [[3, "additional-exercises"]], "Advanced Matrix Operations": [[2, "advanced-matrix-operations"]], "Analytical Integration": [[5, "analytical-integration"]], "Analytical Solution": [[5, "analytical-solution"]], "Analytical vs. Numerical Integration": [[5, "analytical-vs-numerical-integration"]], "Average Energy and Internal Energy": [[10, "average-energy-and-internal-energy"]], "Back to the N_2O_5(g) Decomposition Experiment": [[7, "back-to-the-n-2o-5-g-decomposition-experiment"]], "Back to the Real World": [[8, "back-to-the-real-world"]], "Balancing Chemical Equations": [[6, "balancing-chemical-equations"]], "Balancing the Equation by Hand": [[6, "balancing-the-equation-by-hand"]], "Best Practice": [[2, null]], "Boltzmann Distribution": [[10, "boltzmann-distribution"]], "Calculating the Overlap Integral of Two H 1s Orbitals": [[5, "calculating-the-overlap-integral-of-two-h-1s-orbitals"]], "Calibration Curve": [[8, "calibration-curve"]], "Calibration Data": [[8, "calibration-data"]], "Canonical Ensemble": [[11, "canonical-ensemble"]], "Computing the Overlap Integral": [[5, "computing-the-overlap-integral"]], "Confidence Intervals": [[8, "confidence-intervals"]], "Correlation Analysis": [[8, "correlation-analysis"]], "Creating and Using Arrays": [[2, "creating-and-using-arrays"]], "Critical Thinking": [[10, null], [10, null], [10, null], [10, null]], "Determining the Rate Constant of a Reaction": [[7, "determining-the-rate-constant-of-a-reaction"]], "Equilibrium": [[9, "equilibrium"]], "Ergodicity": [[11, "ergodicity"]], "Example: Chemical Reaction Equilibrium via Numerical Method": [[4, "example-chemical-reaction-equilibrium-via-numerical-method"]], "Example: Reduction of Tin(IV) Oxide by Hydrogen": [[6, "example-reduction-of-tin-iv-oxide-by-hydrogen"]], "Example: Two-State System": [[10, "example-two-state-system"]], "Exercise": [[3, null], [4, null]], "Exercise 1": [[3, null]], "Exercise 1: Check if a Number is Even or Odd": [[3, "exercise-1-check-if-a-number-is-even-or-odd"]], "Exercise 2": [[3, null]], "Exercise 2: Sum of All Numbers in a List": [[3, "exercise-2-sum-of-all-numbers-in-a-list"]], "Exercise 3": [[3, null]], "Exercise 3: Factorial of a Number": [[3, "exercise-3-factorial-of-a-number"]], "Exercise 4": [[3, null]], "Exercise 4: Check if a String is a Palindrome": [[3, "exercise-4-check-if-a-string-is-a-palindrome"]], "Exercise 5": [[3, null]], "Exercise 5: Find the Maximum and Minimum Elements in a List": [[3, "exercise-5-find-the-maximum-and-minimum-elements-in-a-list"]], "Free Energy and Entropy": [[10, "free-energy-and-entropy"]], "Fundamental Thermodynamic Relation": [[9, "fundamental-thermodynamic-relation"]], "General Case for Hydrocarbon Combustion": [[6, null]], "Generating Arrays with Specific Properties": [[2, "generating-arrays-with-specific-properties"]], "Grand Canonical Ensemble": [[11, "grand-canonical-ensemble"]], "Grand Canonical Ensemble: Example": [[11, "grand-canonical-ensemble-example"]], "Hands-On Activity": [[4, "hands-on-activity"], [7, "hands-on-activity"], [8, "hands-on-activity"]], "Hands-On Activity: Overlap of Two He 1s Orbitals": [[5, "hands-on-activity-overlap-of-two-he-1s-orbitals"]], "Heat Capacity at Constant Volume": [[10, "heat-capacity-at-constant-volume"]], "Hint": [[7, null]], "Histograms": [[2, "histograms"]], "Implementing Root-Finding Methods in Python": [[4, "implementing-root-finding-methods-in-python"]], "Implications of Ergodicity": [[11, "implications-of-ergodicity"]], "Important": [[2, null]], "Infinite Loops": [[3, null]], "Installing NumPy": [[2, "installing-numpy"]], "Internal Energy, Work, and Heat": [[9, "internal-energy-work-and-heat"]], "Introduction": [[3, "introduction"], [7, "introduction"], [8, "introduction"]], "Introduction to Chemical Reaction Equilibria": [[4, "introduction-to-chemical-reaction-equilibria"]], "Introduction to Statistical Thermodynamics": [[10, "introduction-to-statistical-thermodynamics"]], "Isothermal-Isobaric Ensemble": [[11, "isothermal-isobaric-ensemble"]], "Isothermal-Isobaric Ensemble: Example": [[11, "isothermal-isobaric-ensemble-example"]], "Key Control Structures in Python": [[3, "key-control-structures-in-python"]], "Learning Objectives": [[1, "learning-objectives"], [2, "learning-objectives"], [3, "learning-objectives"], [4, "learning-objectives"], [6, "learning-objectives"], [7, "learning-objectives"], [8, "learning-objectives"], [9, "learning-objectives"], [10, "learning-objectives"], [11, "learning-objectives"]], "Lecture 10: Statistical Thermodynamics": [[10, null]], "Lecture 11: Ensembles and Ergodicity": [[11, null]], "Lecture 1: Introduction to Python for the Chemical Sciences": [[1, null]], "Lecture 2: Essential Python Packages for the Chemical Sciences": [[2, null]], "Lecture 3: Control Structures in Python": [[3, null]], "Lecture 4: Chemical Reaction Equilibria and Roots of Equations": [[4, null]], "Lecture 5: Chemical Bonding and Numerical Integration": [[5, null]], "Lecture 6: Balancing Chemical Equations and Systems of Linear Algebraic Equations": [[6, null]], "Lecture 7: Orders of Reaction and Linear Regression Analysis": [[7, null]], "Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis": [[8, null]], "Lecture 9: Classical Thermodynamics": [[9, null]], "Line Plots": [[2, "line-plots"]], "Linear Regression Analysis": [[7, "linear-regression-analysis"]], "List Comprehensions": [[3, "list-comprehensions"]], "Lists vs. Dictionaries": [[3, null]], "Looping Through a Dictionary": [[3, "looping-through-a-dictionary"]], "Looping Through a List": [[3, "looping-through-a-list"]], "Looping Through a NumPy Array": [[3, "looping-through-a-numpy-array"]], "Looping Through a Pandas DataFrame": [[3, "looping-through-a-pandas-dataframe"]], "Looping Through a String": [[3, "looping-through-a-string"]], "Mathematical Formulation of Equilibrium Problems": [[4, "mathematical-formulation-of-equilibrium-problems"]], "Matrix and Vector Operations": [[2, "matrix-and-vector-operations"]], "Microcanonical Ensemble": [[11, "microcanonical-ensemble"]], "Microcanonical Ensemble: Example": [[11, "microcanonical-ensemble-example"]], "Microstates and Macrostates": [[10, "microstates-and-macrostates"]], "Non-Ergodic Systems": [[11, "non-ergodic-systems"]], "Note": [[3, null], [4, null], [5, null]], "Numerical Integration": [[5, "numerical-integration"]], "Numerical Integration Using a Riemann Sum": [[5, "numerical-integration-using-a-riemann-sum"]], "Numerical Integration Using the Trapezoidal Rule": [[5, "numerical-integration-using-the-trapezoidal-rule"]], "Numerical Methods for Finding Roots of Equations": [[4, "numerical-methods-for-finding-roots-of-equations"]], "Orders of Reaction": [[7, "orders-of-reaction"]], "Ordinary Least Squares": [[7, "ordinary-least-squares"]], "Phase Equilibria": [[9, "phase-equilibria"]], "Python Lists": [[2, null]], "Recap": [[6, "recap"]], "Reminder": [[2, null]], "Scatter Plots": [[2, "scatter-plots"]], "Section 1: Conditional Statements": [[3, "section-1-conditional-statements"]], "Section 1: NumPy - The Foundation of Scientific Computing in Python": [[2, "section-1-numpy-the-foundation-of-scientific-computing-in-python"]], "Section 2: Loops": [[3, "section-2-loops"]], "Section 2: SciPy - A Powerful Tool for Scientific Computing": [[2, "section-2-scipy-a-powerful-tool-for-scientific-computing"]], "Section 3: Functions": [[3, "section-3-functions"]], "Section 3: Matplotlib - Creating Publication-Quality Visualizations": [[2, "section-3-matplotlib-creating-publication-quality-visualizations"]], "Section 4: Hands-on Practice": [[3, "section-4-hands-on-practice"]], "Section 4: Pandas - Powerful Data Manipulation in Python": [[2, "section-4-pandas-powerful-data-manipulation-in-python"]], "Solving for Equilibrium": [[4, "solving-for-equilibrium"]], "Solving the Equation Using Python": [[6, "solving-the-equation-using-python"]], "Solving the System of Equations": [[6, "solving-the-system-of-equations"]], "Statement of the First Law": [[9, "statement-of-the-first-law"]], "Step 1: Formulating the Equilibrium Equation": [[4, "step-1-formulating-the-equilibrium-equation"]], "Step 1: Getting Python Installed": [[1, "step-1-getting-python-installed"]], "Step 1: Import the Necessary Libraries": [[6, "step-1-import-the-necessary-libraries"]], "Step 2: Define the Coefficient Matrix, \\mathbf{A}": [[6, "step-2-define-the-coefficient-matrix-mathbf-a"]], "Step 2: Installing Jupyter Notebook": [[1, "step-2-installing-jupyter-notebook"]], "Step 2: Minimizing the Equilibrium Equation": [[4, "step-2-minimizing-the-equilibrium-equation"]], "Step 3: Compute the Null Space": [[6, "step-3-compute-the-null-space"]], "Step 3: Let\u2019s Get Started with Python": [[1, "step-3-let-s-get-started-with-python"]], "Step 4: Normalize and Convert to Integer Coefficients": [[6, "step-4-normalize-and-convert-to-integer-coefficients"]], "Step 5: The Balanced Chemical Equation": [[6, "step-5-the-balanced-chemical-equation"]], "Summary": [[6, "summary"], [9, "summary"], [10, "summary"], [11, "summary"]], "Symmetry and Integration": [[5, "symmetry-and-integration"]], "Systems of Linear Algebraic Equations": [[6, "systems-of-linear-algebraic-equations"]], "Take a Moment": [[6, null]], "The First Law": [[9, "the-first-law"]], "The Hydrogen 1s Orbital": [[5, "the-hydrogen-1s-orbital"]], "The Importance of Initial Guess": [[4, null]], "The Laws of Thermodynamics": [[9, "the-laws-of-thermodynamics"]], "The Second Law": [[9, "the-second-law"]], "The Third Law": [[9, "the-third-law"]], "The Zeroth Law": [[9, "the-zeroth-law"]], "Thermodynamic Potentials": [[9, "thermodynamic-potentials"]], "Thermodynamic Properties from the Partition Function": [[10, "thermodynamic-properties-from-the-partition-function"]], "Thermodynamic Systems": [[9, "thermodynamic-systems"]], "Types of Ensembles": [[11, "types-of-ensembles"]], "Wait!": [[5, null], [5, null]], "Wait, What\u2019s the Expected Solution?": [[4, null]], "Warning": [[4, null]], "Welcome to Computational Problem Solving in the Chemical Sciences": [[0, null]], "What Are Control Structures?": [[3, "what-are-control-structures"]], "What Is an Integral?": [[5, "what-is-an-integral"]], "What\u2019s Next?": [[11, null]], "Why Should You Care About Ensembles?": [[11, "why-should-you-care-about-ensembles"]], "Why Should You Care About Thermodynamics?": [[9, "why-should-you-care-about-thermodynamics"]], "scipy.optimize.minimize: A Versatile Approach": [[4, "scipy-optimize-minimize-a-versatile-approach"]]}, "docnames": ["intro", "lecture-01-introduction", "lecture-02-packages", "lecture-03-control", "lecture-04-optimization", "lecture-05-integration", "lecture-06-linalg", "lecture-07-regression", "lecture-08-calibration", "lecture-09-thermo", "lecture-10-stat-thermo", "lecture-11-ensembles"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["intro.md", "lecture-01-introduction.md", "lecture-02-packages.md", "lecture-03-control.md", "lecture-04-optimization.md", "lecture-05-integration.md", "lecture-06-linalg.md", "lecture-07-regression.md", "lecture-08-calibration.md", "lecture-09-thermo.md", "lecture-10-stat-thermo.md", "lecture-11-ensembles.md"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [2, 3, 5, 6, 7, 8, 9, 10], "0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "00": [1, 2, 4], "000": 8, "000000": [], "0000000000000004": 2, "0000000000000009": [], "000000019073487": 4, "0000003051757815": 4, "0000003433227533": 4, "000000381469727": 4, "0001": 10, "0001871291025951396": 8, "0004184333939712645": 8, "000e": 4, "001": 8, "003967": [], "004": 8, "004748": [], "007": 8, "008": [1, 8], "01": [1, 10], "010339": [], "010999999999996": 1, "011": 1, "0112": 7, "011213": [], "0125": 7, "013": 8, "0144": 7, "014682": [], "0162": 7, "019033": [], "0191": 7, "02": 4, "0250": 7, "026": 8, "026862": [], "030363606516579125": 7, "031785": 5, "032": 8, "032076": [], "038889": 2, "04": 7, "04036523": [], "040756": [], "040832": [], "042757": [], "044403": [], "044783": [], "049373": [], "049586": 2, "05": [], "051520": [], "054431": [], "057691": [], "058135": [], "06": [7, 8], "060": [], "060908": [], "066214": 2, "067183": [], "07": 4, "07069651": [], "071614": [], "073500": [], "074532": [], "075927": [], "076810": [], "07812993": [], "0783716": [], "08": [2, 7], "08468586": [], "086293": [], "089069": 2, "09": [], "090967": [], "09188008": [], "092201": [], "096565": 5, "096577": 5, "099762": 5, "0f": 4, "0x1114aa5f0": [], "1": [0, 7, 8, 9, 10, 11], "10": [0, 1, 2, 3, 4, 5, 7, 8], "100": [1, 2, 4, 5, 7, 10], "1000": [2, 5, 8], "100000": [], "101": [], "102": [], "102174": [], "105363": [], "11": [0, 2, 4, 7], "111754": [], "113959": [], "11574968": [], "11x": 4, "12": [1, 8, 10], "1200x500": [], "12138546": [], "1225": 3, "12357159": [], "123840": [], "124996": [], "1250875": [], "12600315": [], "127246": [], "127797": [], "128745": [], "129": [], "13": [], "130": 2, "131": [], "1314235014": [], "132": [], "132008": [], "133": [], "134": [], "135": [], "136072": 5, "136085": 5, "137451": [], "1385": [], "1386": [], "1387": [], "1388": [], "1389": [], "1390": [], "1391": [], "14": [7, 11], "140199": [], "1402": [], "140213": [], "1403": [], "1404": [], "1405": [], "1406": [], "1407": [], "14073843": [], "1408": [], "1409": [], "140951": 5, "1410": [], "14159": 3, "145263": [], "15": [2, 7], "150": 2, "151212": [], "153355": [], "15383974": [], "153987": [], "154": 2, "155298": [], "15763222": [], "16": [1, 2, 3, 4], "161040": [], "16121387": [], "165889": [], "166290": [], "167": [], "168": [], "169374": [], "170": [], "171": [], "172": [], "1733916972": 4, "173860": [], "17855413": [], "18": [5, 8], "181": [], "182": [], "183": [], "183777": [], "184": [], "185": [], "186": [], "187": [], "188": [], "188889": [], "189247": 5, "189262": 5, "19": [], "1903": [], "1904": [], "1905": [], "192456": 2, "19464139": 2, "19530158": [], "196617": 5, "196816": [], "19971276": [], "1e": 4, "2": [0, 5, 7, 8, 9, 10], "20": 7, "200369": [], "200383": [], "200402": [], "205104": [], "208289": [], "21": 8, "212": [], "214": [], "21459876": [], "215": [], "21514317": [], "216": [], "217": [], "2170": [], "2171": [], "2172": [], "2173": [], "2174": [], "2175": [], "2176": [], "2177": [], "219": [], "22": 4, "220619": [], "22115577933543018": 7, "2213406": [], "2224677478": [], "22466308": [], "22722108611679165": 1, "227632": [], "22e": 4, "23": [], "23067359": 2, "230942": [], "234381": [], "23535115": [], "236837": [], "24": [2, 7], "241398": [], "245944": [], "246372": [], "24999999999998668": [], "25": [1, 2, 3, 4, 8], "25097623": [], "253167": [], "25430905": [], "254594": [], "25685736": [], "2569768875": [], "259179": 5, "259194": 5, "26": [], "261": [], "262": [], "263": [], "263956": [], "264": 2, "264261": [], "265": 2, "266": [], "267": [], "268": [], "269": [], "26953356": 2, "27": 8, "270": [], "270172": 5, "270435": [], "271": [], "273": [], "273713": [], "274": [], "274815": [], "275": [], "27514562": [], "276": [], "277778": [], "27819382": [], "2793": [], "2794": [], "2795": [], "2799": [], "28": 7, "280": [], "2800": [], "2801": [], "281": [], "281017": [], "281032": [], "282552": [], "288280": [], "288791": [], "29": [], "291939": [], "29260813": [], "293218": [], "295068": [], "296185": [], "298": 7, "29978765": [], "2a": 6, "2b": 6, "2c": 6, "2d": 6, "2f": 8, "2n": 6, "2r": 5, "2x": 4, "2x2": 2, "3": [0, 4, 5, 7, 8], "30": [2, 3, 7, 8, 10], "302182": 2, "30255225": [], "3049": [], "3050": [], "3051": [], "3052": [], "3053": [], "31": [4, 8], "31016631": [], "3104": [], "3105": [], "3107": [], "3109": [], "3110": [], "314505": [], "3159": [], "3161": [], "3162": [], "3163": [], "3165": [], "3166": [], "318": 7, "318526": [], "32": [2, 8], "320524": 2, "32099643": [], "324007": [], "325560": [], "327": 2, "328712": 2, "329867": [], "33": 8, "33026915": [], "3331481689": [], "333259": [], "33500365": [], "33552352": [], "338002": 2, "34": [], "341": [], "342": [], "343": [], "344": [], "3442733": [], "345": [], "34714337": [], "348493": 5, "348509": 5, "35": [2, 3], "350110": [], "3543": [], "3544": [], "3545": [], "3546": [], "3547": [], "3548": [], "3549": [], "36": [], "36330421": [], "364650": 5, "366667": [], "368379": [], "369988": [], "37": [2, 7], "37228132": 2, "373919": [], "379": [], "38": [], "380": [], "381": [], "382": [], "383": [], "384": [], "38480972": [], "385": [], "385206": [], "385223": [], "38523872": [], "386": [], "387": [], "388": [], "38848765": 2, "388541": [], "389": [], "38986037": 2, "39": 2, "390": [], "391991": [], "392485": [], "397667": [], "3d": [1, 2, 5], "3dmol": [], "3f": 8, "3n": 6, "3x": 4, "3x3": 2, "4": [0, 5, 7, 8, 10], "40": 7, "400": 4, "4000": 4, "403655": [], "405787": 2, "409241": [], "4096": [], "41": 8, "410": 2, "41152632": [], "41228293": [], "41263254": [], "412686": [], "413040": [], "413601": [], "415782": [], "41702911": [], "41884383": [], "419523": [], "42": 2, "422": 2, "4256142": [], "42638864": [], "426663": [], "428120": [], "429026": [], "429932": [], "43": [], "430490": [], "43260088": 2, "435078": [], "435593": [], "43765552": [], "44": 1, "440513": [], "44493476": [], "4480": [], "4481": [], "4482": [], "4483": [], "4484": [], "44905775": [], "451": [], "452": [], "453": [], "453202": [], "45398804": [], "454": [], "455": [], "455556": [], "456": [], "45600233": [], "457": [], "458290": 5, "458308": 5, "46": [], "4602659": [], "460471": [], "4647058823529414e": 8, "465299": [], "468024": [], "46938113": [], "47036559": [], "47575154": [], "476065": [], "477106": [], "480066": [], "48070937": [], "481598": 5, "482436": [], "482577": [], "488235294117647e": 8, "489157": [], "490528": [], "492423": [], "49731891": [], "498755": [], "4999996185302713": [], "4999998855590835": [], "4a": 6, "4x": 4, "5": [0, 4, 7, 8, 10], "50": [2, 7], "500": 10, "500e": [], "502418": [], "513279": [], "513297": [], "526100": [], "526245": [], "52695194": [], "529": 5, "53": [], "530": 8, "530054": [], "534060": 2, "53551883": [], "53651539": [], "538946": [], "53939566": [], "539570": [], "54": 8, "540513": [], "545158": [], "54785244": [], "555261": [], "555330": [], "558357": [], "562114": [], "563880": [], "569610": [], "57": 2, "570085": [], "57219658": [], "575324": [], "576889": [], "58": [], "582797": [], "58445442": 2, "58453143": [], "586435": 5, "586453": 5, "58e": [], "59045283": [], "5963908": 2, "5998763": [], "5t_cnxn96vs1f6z07zkwy_k80000gn": 4, "6": [0, 4, 5, 7, 8, 10], "60": [2, 7], "600": 8, "603": 2, "60464228": [], "617424": [], "618404": [], "619193": [], "619271": 5, "62": 4, "625": 3, "6295": [], "6296": [], "6297": [], "6298": [], "6299": [], "63": 2, "63027018": [], "63391829": 2, "63407862": [], "63e": [], "64": [], "640340": [], "64181731": [], "644444": [], "64448507": [], "645333": [], "645725": [], "646416": [], "649707": [], "65": 2, "650": 8, "653721": [], "65437021": [], "656155": 2, "658352": [], "659596": [], "659902": [], "659921": [], "66": [], "66129037": [], "662783": [], "66805603": [], "67": [], "670": 2, "673317": 2, "67897942": [], "68": 7, "68262291": [], "684116": [], "68e": [], "69": [], "69418496": [], "697682": [], "69803815": [], "698842": [], "6f": 5, "6x": 4, "7": [0, 2, 3, 5], "70": 7, "700": 8, "70292167": [], "703219": [], "70360658": [], "712417": [], "71856743": [], "72": [], "722833": [], "723356": [], "72436375": [], "725154": 5, "725173": 5, "729945": [], "73": 2, "730391": [], "730971": [], "733333": [], "733507": [], "733862": [], "734481": [], "736878": [], "74": 2, "74313198": [], "74366638": [], "746566": [], "74807732": [], "75": 2, "750": 8, "76": [], "76176135": [], "763835": [], "766e": 4, "76910543": [], "769971": 5, "77": 2, "776040": [], "78": 4, "78083219": [], "780922": [], "78252123": [], "79": [], "790745": [], "794821": [], "7r": 8, "8": [0, 1, 3, 4, 5, 7], "80": 7, "800": 8, "800392": 5, "803676": [], "804": 2, "80580666": [], "81": 2, "810121": [], "810141": [], "811932": [], "813318": [], "82": 2, "821785": [], "822222": [], "823132": [], "826182": 2, "831357": [], "83257677": [], "83544789": [], "8395906": [], "84": [], "840": 2, "840733": 2, "841431": [], "843290": [], "844728": [], "85": 2, "850": 8, "851055": [], "852": 2, "857228165610269": 8, "858194": [], "858367": 5, "858385": 5, "86": 2, "863366": [], "86599082": [], "87": 2, "871128": [], "871706410": [], "872680": [], "879550": [], "88": 2, "881784197001252e": 4, "882e": 4, "884707": [], "88586208": [], "885936": [], "888187": [], "88821188": [], "89": 2, "89118366": [], "89354794": [], "9": [0, 1, 2, 3, 4, 5], "90": [2, 7], "900": [3, 8], "903735": [], "91": [], "9102529": [], "911111": [], "913378": [], "916888": 5, "919537": [], "92": 7, "921853": [], "922371": [], "923471": [], "923769": [], "925286": 5, "92578833": [], "928158": [], "929717": [], "93": 8, "93047322": [], "931484": [], "934": 2, "935911": [], "935931": [], "94": [], "94128165": [], "94459246": [], "94870807": [], "95": 8, "950": 8, "95143119": [], "954": [], "954706": [], "955": [], "956": [], "956443": [], "957231": [], "958": [], "95809135": [], "959": [], "96": [], "960": [], "960320": 5, "960340": 5, "961": [], "961514": [], "96310226": [], "96641313": [], "966945": [], "97": 8, "975527": [], "975794": [], "98": [], "980126": [], "985601": [], "98610781": [], "98636626": [], "9897367": [], "991938": [], "99278371": [], "9962040088352188": 8, "998318": [], "998337": [], "999134": [], "A": [1, 3, 9, 10, 11], "AND": 2, "And": [1, 2], "As": [1, 2, 5, 9, 10, 11], "At": [4, 10], "But": [], "By": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11], "For": [1, 2, 4, 5, 6, 9, 10, 11], "If": [1, 2, 3, 6, 9, 11], "In": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "It": [2, 3, 5, 7, 8, 9], "Its": 4, "NOT": 2, "No": [], "Not": 11, "OR": 2, "One": [2, 10], "Or": [], "That": 7, "The": [1, 7, 8, 10, 11], "Then": [5, 8], "There": [5, 9, 11], "These": [1, 2, 3, 5, 9], "To": [1, 3, 4, 5, 6, 7, 8], "Will": 9, "With": [1, 2], "_": 6, "_0": [5, 7, 8], "_0e": 7, "_1": [7, 8], "_2": [1, 4, 6, 7], "_4": 6, "_5": 7, "__call__": [], "__class__": [], "__getattribute__": [], "__name__": [], "_accessor": [], "_api": [], "_auto_adjust_subplotpar": [], "_axesbas": [], "_axi": [], "_axis_map": [], "_base": [], "_can_hold_identifiers_and_holds_nam": [], "_copy_docstring_and_deprec": [], "_draw_all_if_interact": [], "_draw_dis": [], "_draw_list_compositing_imag": [], "_express": [], "_finalize_raster": [], "_fontproperti": [], "_get_layout": [], "_get_render": [], "_get_text_metrics_with_cach": [], "_get_text_metrics_with_cache_impl": [], "_get_tightbbox_for_layout_onli": [], "_i": 8, "_idle_draw_cntx": [], "_in_subscript_or_superscript": [], "_info_axi": [], "_is_idle_draw": [], "_make_html": [], "_mathtext": [], "_n": 6, "_output_typ": [], "_parse_cach": [], "_parser": [], "_prepare_font": [], "_preprocess_math": [], "_pylab_help": [], "_raster": [], "_render": [], "_setattr_cm": [], "_state_stack": [], "_tight_layout": [], "_update_title_posit": [], "_v": 10, "_val_or_rc": [], "_wait_cursor_for_draw_cm": [], "_x": 6, "_y": 6, "a0": [], "a_0": 5, "ab": 4, "abil": 2, "abl": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11], "about": [3, 4, 5, 7, 10], "abov": [1, 2, 4, 5, 7, 8, 9, 10, 11], "absolut": [4, 9], "absorb": 8, "academ": 1, "access": [1, 2, 3, 4], "accordingli": 3, "account": 8, "accumul": 3, "accur": [5, 8, 11], "accuraci": [5, 6, 8], "achiev": [1, 5], "acquir": [], "across": [1, 2, 3], "act": 9, "actinium": 2, "action": [3, 4], "actual": 4, "ad": [2, 3, 9], "adapt": 4, "add": [1, 2, 3, 6, 11], "addh": [], "addit": 1, "addition": 1, "addmodel": [], "address": [], "adjac": [], "adjust": 8, "admonit": [], "adsorb": [], "adsorpt": 11, "advanc": 1, "advantag": [4, 5], "affect": [4, 8], "after": [1, 8], "ag": 3, "against": 9, "age_squar": 3, "aggreg": 2, "agre": 7, "aim": 4, "algebra": [0, 2], "algegra": [], "algorithm": 4, "alia": 1, "alic": 3, "align": [5, 6], "alkan": 6, "all": [1, 5, 8, 9, 10, 11], "allchem": [], "allow": [1, 2, 3, 4, 5], "allow_raster": [], "along": [2, 5], "alpha": [5, 8], "alreadi": 8, "also": [1, 2, 3, 4, 5, 8, 9, 10, 11], "altern": [3, 7], "aluminum": 2, "alwai": [2, 3, 4, 5], "americium": 2, "amount": 5, "an": [1, 2, 3, 4, 7, 8, 9, 10, 11], "analog": 4, "analys": 1, "analysi": [0, 1, 2], "analyt": [4, 8], "analytical_overlap_integr": 5, "analytical_result": 5, "analyz": [1, 2, 8], "anatomi": 2, "ani": [1, 2, 3, 6, 11], "anim": 2, "annot": [2, 8, 10], "anonym": 3, "anoth": 9, "answer": 9, "antialias": [], "antimoni": 2, "appear": 1, "append": 5, "appl": 3, "appli": [1, 2, 3, 4, 5, 6, 7, 8, 10], "applic": [1, 2, 4], "appreci": 9, "approach": [3, 6, 10], "appropri": [], "approx": [], "approxim": [1, 4, 5, 7], "ar": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11], "area": [1, 2, 3, 5, 11], "arg": 4, "argon": 2, "argument": [3, 5], "arithmet": 1, "around": [1, 5], "arr": 3, "arrai": [1, 4, 5, 6, 7, 8], "arrang": 9, "arriv": 9, "arrow": 10, "arrowprop": 10, "arrowstyl": 10, "artist": [], "ase": 1, "ask": 7, "aspect": [2, 3], "assess": 8, "assign": 3, "associ": 9, "assum": [4, 7], "astyp": 6, "atom": [1, 2, 5, 6, 9], "atomist": 1, "attract": 1, "attribut": [], "attributeerror": [], "auto_adjust_subplotpar": [], "autom": [1, 6], "automat": 1, "avail": [1, 2, 9, 10], "averag": 11, "avoid": [3, 4, 5], "awai": [], "awesom": 1, "ax": [2, 5], "ax1": 10, "ax2": 10, "ax_bbox_list": [], "axes_list": [], "axhlin": [4, 8], "axi": [1, 4, 5], "axison": [], "axvlin": 8, "b": [1, 2, 5, 6, 7, 10], "ba": [], "back": [3, 5], "backend": [], "backend_agg": [], "backend_bas": [], "backward": 3, "bad": [], "balanc": 0, "banana": 3, "bar": [1, 2, 4, 5, 7, 8], "base": [2, 3, 6, 7, 8], "base64": [], "baseformatt": [], "basic": [1, 3], "bath": [10, 11], "bb": [], "bbox": [], "bbox_extra_artist": [], "bbox_inch": [], "becaus": [3, 4, 5, 6, 8, 11], "becom": [2, 3, 5, 9], "been": [7, 8], "beer": 8, "befor": [1, 2, 3, 4, 5, 6, 9], "begin": 6, "behav": 3, "behavior": [4, 8, 9, 10, 11], "being": [2, 5, 10, 11], "below": [3, 8], "bench": 7, "benchmark": [], "best": 1, "beta": [7, 8, 10, 11], "beta_0": 7, "beta_1": 7, "better": 2, "between": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11], "beyond": [1, 2], "big": 5, "bin": 2, "biologi": 1, "bisect": 4, "black": [2, 4, 5, 10], "block": 3, "blue": [2, 8, 10], "bmatrix": 6, "bob": 3, "bohr": 5, "bond": [0, 2], "both": [1, 2, 3, 4, 6, 9], "bound": 4, "boundari": 9, "box": 1, "bracket": 2, "bread": 2, "break": 3, "brew": 8, "bring": [1, 8, 9], "broad": 4, "broadcast": 2, "broader": [], "broadli": 9, "browser": 1, "build": [2, 3], "built": [1, 2, 3], "butter": 2, "butteri": 8, "bytes_io": [], "c": [1, 2, 6], "c_v": [8, 10], "cach": [], "calcul": [1, 2, 3, 6, 7, 8, 10, 11], "calculate_area": 3, "calculu": 1, "calibr": 0, "call": [3, 7, 8], "call_axes_loc": [], "callback": [], "caller": 3, "can": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "cannot": 7, "cantera": 1, "canva": [], "capabl": [1, 2], "capac": 8, "carbon": [1, 6, 9], "carbon_mass": 1, "care": 4, "carlo": [1, 11], "cartesian": 5, "case": [1, 3, 4, 7, 8, 9, 11], "cater": 2, "caus": [3, 5], "caveman": [], "cbook": [], "cco": [], "cdot": [4, 9], "cell": [], "center": [5, 10], "central": [5, 9, 11], "certain": [3, 4, 8], "cesium": 2, "ch": 6, "challeng": [1, 3, 6], "chang": [2, 4, 5, 7, 9, 10], "channel": 3, "char": 3, "charact": 3, "character": 4, "charg": 5, "charli": 3, "chart": 2, "check": [2, 4, 5, 6], "chem": [], "chemic": [7, 9, 11], "chemist": 8, "chemistri": [2, 5], "cherri": 3, "choic": [4, 11], "choos": 4, "chop": [], "ci": 8, "circ": [4, 11], "circl": [3, 4], "circular": 2, "citi": 3, "cl": [], "clarif": 3, "class": 2, "classic": [0, 4, 5], "clean": 2, "clean_lin": [], "cleaner": 5, "clear": 7, "clearer": [], "clearli": 3, "close": [4, 5, 8, 9, 10, 11], "close_group": [], "cluster": 9, "co": [1, 6], "code": [1, 2, 3, 4, 5, 11], "coeffici": 4, "cohes": 2, "col": [], "collaps": [], "collect": [2, 3, 5, 7, 8, 10, 11], "color": [1, 2, 4, 8, 10], "colspan": [], "column": [2, 3], "combin": [3, 9], "combust": [], "come": [1, 5, 8, 11], "command": [1, 2], "comment": 2, "common": [2, 3], "commonli": [1, 2, 3, 11], "commun": [], "comp": [], "compact": 3, "compani": 8, "compar": [3, 5, 10], "complex": [1, 2, 3, 4, 6, 10, 11], "compon": [2, 3], "composit": [], "compound": [1, 8], "comprehens": 2, "comput": [1, 3, 7, 8], "concentr": [4, 7, 8], "concept": [3, 4, 9, 10, 11], "concis": [3, 6], "conclud": [1, 2], "condit": [2, 4, 9, 10, 11], "condition1": 3, "condition2": 3, "confid": [0, 2, 3, 7], "confidence_interval_intercept": 8, "confidence_interval_slop": 8, "confidence_level": 8, "configur": [10, 11], "confin": 11, "confirm": [2, 6], "conserv": 6, "consid": [3, 4, 5, 6, 7, 10, 11], "consider": [4, 10], "consist": [5, 9, 10, 11], "constant": [1, 4, 8, 9], "constitu": 2, "constrain": [], "constraint": [4, 11], "consum": 7, "contact": 11, "contain": [1, 2, 3, 6, 7, 8, 10, 11], "context": 4, "continu": [1, 3], "contourpi": [], "contribut": [], "control": 0, "conveni": 2, "converg": [4, 5], "convert": [3, 4, 5, 7], "cool": 7, "coordin": 5, "copi": [], "core": [2, 3], "cornerston": 2, "correct": 4, "correctli": 6, "correl": 0, "correlation_coeffici": 8, "correspond": [3, 6, 7, 8, 9, 10, 11], "could": 7, "count": 3, "coupl": 1, "cours": [1, 2], "coval": 5, "cover": [1, 2, 3], "coverag": 11, "creat": [1, 3, 5, 6, 8], "criteria": 2, "critic": [2, 8], "critical_t_valu": 8, "crucial": [1, 3, 4], "crystal": 9, "csv": 2, "cubic": 4, "cubic_eq": 4, "current": [], "curv": [4, 5, 7], "cycler": [], "d": [5, 6, 9], "da": 9, "dash": 2, "data": [0, 1, 3, 5, 7], "databas": 2, "datafram": 5, "dataset": [2, 3], "dateutil": [], "decai": [5, 7], "decim": 4, "decis": 3, "decompos": [2, 7], "decreas": [5, 9, 10], "deepen": 1, "deepli": 2, "def": [3, 4, 5, 7, 8], "default": [1, 2], "defin": [4, 5, 7, 8, 9, 10, 11], "definit": [2, 5, 9], "degre": 8, "delta": [5, 9], "delv": 2, "demonstr": [1, 2, 4, 6], "denomin": [7, 8], "depend": [3, 7, 8, 9, 11], "deprec": [], "deriv": [4, 7, 9, 10], "descent": [], "describ": [3, 7, 10, 11], "descript": 3, "design": [1, 2, 3, 4], "desir": 8, "desorb": [], "det": 2, "detail": [1, 2, 11], "determin": [1, 2, 4, 5, 6, 8, 10], "develop": [2, 8, 11], "deviat": 8, "deviations_i": 8, "deviations_x": 8, "df": [2, 3, 8], "dg": 9, "diacetyl": 8, "diagram": 9, "diatom": 8, "dict": 10, "dictat": [3, 5, 6], "dictionari": [2, 4], "did": [6, 7, 8], "differ": [1, 2, 3, 4, 5, 7, 9, 10, 11], "differenti": [1, 2, 9], "difficult": 11, "dimens": 5, "dimension": 2, "dioxid": [1, 6, 9], "direct": [8, 9, 10], "directli": [1, 2], "discuss": [3, 5, 7, 8, 9, 10, 11], "disord": 10, "displac": 9, "displai": [1, 2, 4, 5, 8], "dispos": 1, "dissoci": 4, "distanc": [2, 5, 8, 9], "distinct": 10, "distinguish": 10, "distribut": [2, 8], "div_col": [], "div_row": [], "dive": 1, "divers": 1, "divid": [5, 6, 8], "divis": [1, 3], "do": [3, 4, 5, 6, 7, 8, 9, 10, 11], "docstr": 3, "document": [1, 2, 3], "doe": [3, 4, 10], "doesn": 1, "don": [1, 2, 3], "done": [4, 9], "dot": [2, 3], "dot_product": 2, "down": 4, "download": 2, "dp": [], "dpi": [], "dr": 5, "draw": [], "draw_al": [], "draw_idl": [], "draw_without_rend": [], "draw_wrapp": [], "dt": [], "dtype": 2, "du": 9, "due": [], "duplic": 3, "dure": [1, 8], "dv": 9, "dw": [], "dx": 5, "dy": 5, "dynam": [1, 3, 11], "dz": 5, "e": [2, 3, 4, 5, 7, 8, 9, 10, 11], "e_1": 10, "e_2": 10, "e_avg": 10, "e_i": 10, "each": [1, 2, 3, 4, 5, 6, 7, 9, 10, 11], "earlier": [], "eas": [1, 2], "easi": 2, "easier": [2, 3], "easili": [1, 2, 3], "ecosystem": 2, "edg": 5, "edgecolor": [2, 4, 5], "effect": 4, "effici": [2, 3, 5, 6], "eigenvalu": 2, "eigval": 2, "either": [3, 10], "electron": [1, 5, 11], "eleg": [2, 3], "element": [2, 5, 6], "ellipt": [], "els": [], "elsewher": 3, "embedmolecul": [], "emphas": [], "emploi": [1, 6], "empti": 11, "en": 9, "enabl": [2, 3], "encapsul": 3, "encount": [1, 2], "end": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "endpoint": 5, "energet": 5, "energi": [2, 4, 11], "enforc": 4, "engin": [1, 2], "enhanc": 1, "ensembl": 0, "ensur": [1, 2, 3, 4, 6, 8, 10], "enthalpi": 9, "entir": 5, "entropi": 9, "enumer": 5, "env": [], "environ": [1, 2], "epsilon": 10, "epsilon_i": 7, "equal": [2, 3, 4, 6, 7, 9, 10, 11], "equat": [0, 1, 2, 7, 9, 11], "equilibria": [0, 2], "equilibrium": [7, 10, 11], "equilibrium_equ": 4, "equip": 1, "erf": [], "ergod": 0, "err": [], "error": [1, 7, 8], "escap": [], "especi": [2, 3, 4, 6], "essenti": [0, 3, 4], "establish": [8, 9], "estim": [7, 8], "etc": 9, "etymologi": 9, "ev": [2, 10], "evalu": [3, 4, 8], "even": [], "eventu": 3, "everi": [2, 11], "exact": [5, 9], "exampl": [1, 2, 3, 5, 9], "excel": [1, 2], "except": [7, 11], "excess": [], "exchang": [10, 11], "excit": 10, "execut": 3, "exist": 3, "exp": [5, 10], "expand": [3, 9], "expect": [3, 5], "experi": [1, 3, 4, 9], "experiment": [7, 8], "explain": [2, 3, 10], "explan": [], "explicit": 4, "explor": [1, 2, 3, 4, 6, 11], "exponenti": [1, 7], "express": [1, 3, 4, 6, 7], "extend": [1, 2, 6], "extens": [2, 9], "extent": 4, "ey": 2, "f": [2, 4, 5, 7, 8, 9, 10, 11], "facecolor": 10, "facilit": 3, "factor": 5, "fail": [], "fall": 2, "fals": [2, 3, 5], "far": [1, 2, 9], "feel": 3, "ferment": 8, "few": [2, 3], "fewest": 5, "fibonacci": 3, "field": 2, "fig": [5, 10], "figsiz": [5, 8, 10], "figur": [2, 5, 8, 9, 10], "figurecanvasagg": [], "figurecanvasbas": [], "file": 2, "filenam": [], "fill": 2, "filter": 3, "filtered_df": 2, "final": [1, 4, 5, 6, 7, 9], "final_simplex": 4, "find": [1, 2, 6, 7, 10, 11], "finit": 4, "first": [1, 2, 3, 4, 5, 6, 7, 8], "fit": [1, 7, 8], "fix": [10, 11], "flavor": 8, "flexibl": [2, 3, 4], "float": [1, 2, 3, 4, 5], "float64": 2, "flow": 3, "fluorin": 2, "fmt": [], "focu": [1, 2, 5, 7], "focus": 3, "folder": 4, "follow": [1, 2, 3, 4, 5, 6, 7, 8], "font": [], "font_imag": [], "fontprop": [], "fonts_object": [], "fontset": [], "fontsiz": 8, "fonttool": [], "for_layout_onli": [], "forc": 9, "forget": [2, 3], "forgot": 7, "form": [3, 5, 6, 7], "formal": 5, "format": [1, 2, 4, 5], "formatt": [], "formula": [4, 6, 7, 8], "forward": [1, 3, 4], "found": [4, 6, 7, 8, 9], "foundat": [1, 6], "fourier": 2, "frac": [4, 5, 6, 7, 8, 9, 10, 11], "free": [3, 4, 9], "freedom": 8, "freezer": 7, "frequenc": 2, "frequent": [1, 2, 3], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9], "fruit": 3, "full": 2, "fun": 4, "func": [], "function": [1, 2, 4, 5, 6, 7, 8, 9, 11], "function_nam": 3, "functool": [], "fundament": [1, 2, 3], "further": 3, "futur": 7, "g": [2, 3, 4, 5, 6, 9], "ga": [8, 9, 10, 11], "gain": [1, 2, 9, 10], "game": [], "gase": [4, 11], "gaussian": 5, "gcf": [], "gener": [3, 4, 7, 8], "genom": 1, "geq": 9, "get": [3, 4, 6, 8], "get_3d_molecule_html": [], "get_agg_filt": [], "get_all_fig_manag": [], "get_layout_engin": [], "get_real_method": [], "get_subplotspec_list": [], "get_text": [], "get_text_width_height_desc": [], "get_tight_layout_figur": [], "get_tightbbox": [], "get_transform": [], "get_unitless_posit": [], "get_vis": [], "get_window_ext": [], "getattr": [], "getvalu": [], "gg": [], "gibb": [4, 9], "give": [1, 3, 5, 6, 8, 9], "given": [3, 4, 5, 9, 10, 11], "glimps": 1, "global": [], "go": 1, "goal": [6, 7], "good": [3, 4, 8], "googl": 1, "got": [], "govern": [5, 9], "gradient": 10, "grai": [4, 8], "gram": 1, "graph": 7, "graphic": [1, 2], "great": [1, 8], "greater": [2, 3, 7, 9], "green": [8, 10], "greet": 3, "grid": [2, 4, 5, 8, 10], "grid_rang": 5, "ground": 10, "group": 2, "guess": 5, "gui": [], "guid": 3, "guidanc": [], "h": [1, 3, 4, 6, 9], "h_pad": [], "ha": [1, 2, 3, 4, 7, 8, 9, 10, 11], "had": 7, "hamiltonian": 2, "hand": 10, "handl": [1, 2, 3], "happen": [3, 4, 10], "has_imag": [], "hat": [7, 8], "have": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11], "he": [], "header": [], "heat": [8, 11], "heavili": 2, "height": 5, "hello": 3, "helmholtz": 9, "help": [1, 2, 3, 4, 6], "helper": [], "here": [1, 2, 3, 4, 5, 6, 8, 9], "hesit": [1, 3], "high": [8, 10, 11], "high_root_guess": 4, "higher": [2, 10], "highli": [1, 2], "highlight": 4, "hint": [1, 2, 3], "hist": 2, "hold": [1, 2, 9], "how": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "howev": [2, 4, 6, 11], "html": [], "http": 9, "hybrid": 5, "hydrocarbon": [], "hydrogen": [1, 4], "h\u2082": 6, "h\u2082o": 6, "i": [2, 4, 6, 7, 8, 9, 10, 11], "ic": 4, "idea": 3, "ideal": [1, 2, 8, 9, 11], "ident": [2, 11], "identifi": 7, "ignor": [], "ignore_index": [], "ij": 5, "illustr": 4, "imag": 2, "image_group": [], "imagin": [7, 8], "imperm": 9, "implement": 5, "implic": 9, "import": [1, 3, 5, 7, 8, 10, 11], "improv": [], "includ": [1, 2, 3, 4, 8, 9, 10], "inclus": 4, "increas": [5, 10, 11], "incredibli": [2, 3], "increment": [3, 5], "indefinit": 3, "independ": [7, 8], "index": [2, 3, 4, 5, 7], "indic": [4, 8, 10], "indispens": 2, "individu": [3, 10, 11], "industri": 1, "inequ": 9, "inexact": 9, "infinit": 2, "infinitesim": 9, "influenc": 4, "info": [], "inform": [1, 2, 4, 10], "infti": 5, "initi": [3, 7], "inject": [], "inorgan": 5, "input": [2, 3], "insert": 4, "insid": 3, "insight": [2, 9, 10], "instanc": [1, 4], "instead": [4, 5], "instruct": [1, 3], "int": [5, 6, 9], "int_": 5, "int_0": 5, "int_a": 5, "integ": 2, "integr": [0, 2, 7], "integral_i": 5, "integral_x": 5, "integrand": 5, "integrand_valu": 5, "integratrion": [], "intens": 9, "interact": [1, 2, 9, 11], "intercept": [7, 8], "interest": [8, 11], "interfac": 1, "intermedi": 10, "intern": [], "interpol": 2, "interpret": [6, 7, 8], "intersect": 4, "interv": [0, 2, 4, 5], "introduc": [9, 10, 11], "introduct": 0, "intuit": 5, "inv": 2, "invalid": [], "invalu": [1, 2], "invers": 2, "invert": [], "involv": [4, 5, 6], "ion": 9, "ipykernel_10087": [], "ipykernel_10290": [], "ipykernel_10894": [], "ipykernel_11504": [], "ipykernel_12070": [], "ipykernel_12261": [], "ipykernel_12756": [], "ipykernel_13537": [], "ipykernel_13999": [], "ipykernel_14380": [], "ipykernel_14625": [], "ipykernel_16501": [], "ipykernel_16598": [], "ipykernel_16635": [], "ipykernel_16685": [], "ipykernel_16737": [], "ipykernel_16804": [], "ipykernel_16842": [], "ipykernel_16884": [], "ipykernel_16975": [], "ipykernel_17053": [], "ipykernel_17105": [], "ipykernel_17136": [], "ipykernel_20224": [], "ipykernel_20664": [], "ipykernel_20834": [], "ipykernel_21107": [], "ipykernel_21954": [], "ipykernel_22428": [], "ipykernel_22617": [], "ipykernel_22886": [], "ipykernel_26292": [], "ipykernel_26479": 4, "ipykernel_26525": [], "ipykernel_26897": [], "ipykernel_27150": [], "ipykernel_27540": [], "ipykernel_27695": [], "ipykernel_28014": [], "ipykernel_28159": [], "ipykernel_28455": [], "ipykernel_28589": [], "ipykernel_28609": [], "ipykernel_28909": [], "ipykernel_29131": [], "ipykernel_29352": [], "ipykernel_30005": [], "ipykernel_30224": [], "ipykernel_30465": [], "ipykernel_31674": [], "ipykernel_31908": [], "ipykernel_32080": [], "ipykernel_32531": [], "ipykernel_34814": [], "ipykernel_35168": [], "ipykernel_35574": [], "ipykernel_3669": [], "ipykernel_4171": [], "ipykernel_4437": [], "ipykernel_44743": [], "ipykernel_45602": [], "ipykernel_4962": [], "ipykernel_5297": [], "ipykernel_55148": [], "ipykernel_5780": [], "ipykernel_6053": [], "ipykernel_6165": [], "ipykernel_6610": [], "ipykernel_6946": [], "ipykernel_7270": [], "ipykernel_8585": [], "ipykernel_86731": [], "ipykernel_8703": [], "ipykernel_9023": [], "ipykernel_9640": [], "ipykernel_96621": [], "ipykernel_97096": [], "ipykernel_97762": [], "ipykernel_98107": [], "ipykernel_98323": [], "ipykernel_98609": [], "ipykernel_98736": [], "ipykernel_99350": [], "ipykernel_99922": [], "ipython": [], "irrevers": 9, "is_interact": [], "isinst": [], "ismath": [], "isn": 8, "isol": [9, 11], "item": [2, 3], "iter": [3, 4], "iterrow": 3, "its": [1, 2, 3, 4, 6, 8, 9, 11], "itself": 3, "j": [5, 8], "journei": 1, "julia": 1, "jump": 6, "jupyt": 2, "just": [1, 2, 3], "k": [4, 7, 8, 9, 10, 11], "k_": 10, "k_b": [10, 11], "k_p": 4, "keep": 3, "kei": [1, 8], "kelvin": 10, "keyword": 3, "kind": 1, "kinet": [1, 7, 9], "kiwisolv": [], "kj": 2, "know": [6, 8], "knowledg": 3, "known": 10, "kt": 7, "kw": [], "kwarg": [], "l": [3, 7, 8], "lab": 7, "label": [1, 2, 4, 5, 8, 10], "lambert": 8, "langl": [10, 11], "langmuir": 11, "languag": 1, "larg": [2, 3, 10], "last": [3, 8], "later": 1, "latest": 1, "latex": 1, "latter": 5, "law": [4, 6, 8, 10], "layout": [], "layout_engin": [], "learn": [], "least": 8, "lectur": 0, "left": [4, 5, 6, 7, 8, 9, 10, 11], "legend": [1, 2, 4, 5, 8, 10], "len": 8, "less": [3, 5], "let": [2, 4, 5, 6, 7, 8], "level": [5, 8, 10], "leverag": [2, 6], "li": 4, "lib": [], "librari": [1, 2, 8], "lie": 4, "like": [1, 2, 3, 5, 8, 9, 11], "lim_": 5, "limit": [4, 5], "linalg": [2, 6], "line": [1, 3, 5, 8, 9], "linear": [0, 2, 8], "linearli": 8, "linestyl": [2, 4, 8, 10], "linspac": [2, 4, 5, 10], "linux": 1, "list": [5, 9], "list_of_thermodynamic_properti": 9, "littl": 3, "live": [1, 9], "ll": [1, 2, 3, 4, 6], "ln": [7, 10, 11], "ln_concentr": 7, "load": 2, "local": 5, "lock": [], "log": [7, 10], "logic": 2, "long": 3, "look": [3, 8], "loop": 5, "lose": 9, "lost": 6, "low": [5, 10], "low_root_guess": 4, "lru_cach": [], "luck": [3, 8], "m": [1, 2, 7], "m3": 4, "m_1": 9, "m_2": 9, "m_i": 9, "m_inv": 2, "mac": 1, "machin": 1, "macroscop": 10, "made": 8, "magnet": 2, "mai": 11, "main": [3, 9], "maintain": [2, 3, 8], "major": [1, 8], "make": [1, 2, 3, 10, 11], "make_keyword_onli": [], "manag": [], "mani": [1, 2, 9, 10, 11], "manipul": 1, "manner": 2, "manual": 6, "map": 3, "marker": 2, "martist": [], "mass": [1, 4, 6, 9], "master": 1, "match": 4, "materi": [1, 5, 9], "math": 1, "mathbf": 9, "mathemat": 2, "mathematica": 1, "mathtext": [], "mathtext_pars": [], "mathtextpars": [], "matlab": 1, "matplotlib": [1, 4, 5, 7, 8, 10], "matric": 2, "matrix": [], "matter": [1, 5, 9], "max": 3, "max_ncol": [], "max_nrow": [], "maximum": [2, 11], "mayb": [], "mead": 4, "mean": [1, 2, 6, 7, 8, 9, 11], "mean_i": 8, "mean_x": 8, "meaning": 4, "measur": [8, 9, 10, 11], "mechan": [2, 5, 9, 10, 11], "medium_root_guess": 4, "meet": [2, 7], "mercuri": 2, "merg": [2, 3], "meshgrid": 5, "mess": [], "messag": [3, 4], "met": 3, "methan": 6, "method": [2, 3, 5, 6, 7, 8], "method_nam": 3, "mg": 8, "microscop": 10, "microst": 11, "midpoint": 4, "might": [1, 6], "mimag": [], "min": [3, 6, 7], "miniconda3": [], "minim": [7, 9], "minimum": [2, 9], "minu": [], "mixtur": 4, "model": [1, 7, 8, 11], "modern": 1, "modifi": [1, 2, 4], "modul": [1, 2], "modular": 3, "modulenotfounderror": [], "modulo": 3, "mol": [2, 4, 7, 8], "mol_block": [], "molar": 1, "molar_mass": 1, "mole": [1, 2, 4, 9], "molecul": [6, 9, 10, 11], "molecular": [1, 2, 5, 11], "molecule_html": [], "molfromsmil": [], "moltomolblock": [], "momenta": [], "mont": [1, 11], "more": [2, 3, 4, 5, 6, 9, 10, 11], "most": [2, 3, 5], "movabl": 11, "move": [1, 3, 5, 9], "mpl": [], "mu": 11, "much": [1, 2, 7, 9], "multi": [2, 4], "multidimension": 5, "multipl": [1, 2, 3, 4, 6], "multipli": [2, 3], "must": [1, 3, 4, 5], "mutat": [], "mx": 7, "my_dict": 3, "my_list": [2, 3], "n": [2, 3, 5, 6, 7, 8, 9, 11], "n2o5": 7, "n9": [], "n_data_point": 8, "n_valu": 5, "name": [1, 2, 3], "name_idx": [], "nameerror": [], "narr": 1, "narrow": 4, "natur": [7, 9], "ndarrai": 2, "necessari": 11, "need": [1, 2, 3, 4, 5, 6, 7, 8, 10], "neg": [8, 9], "nelder": 4, "net": [4, 9], "never": [3, 9], "new": [1, 3, 4, 8], "new_list": 3, "newton": 4, "next": [1, 3, 6], "nfev": 4, "nit": 4, "nm": 8, "nobr": 7, "non": [], "none": 3, "nonlinear": 4, "normal": [5, 10], "normalization_factor": 5, "not_composit": [], "notat": 3, "note": [], "notebook": 2, "notic": [], "now": [1, 3, 4, 5, 6, 7, 8, 11], "np": [2, 3, 4, 5, 6, 7, 8, 10], "nriemann": 5, "nrt": 9, "nucleu": 5, "null": [], "null_spac": 6, "null_vec": 6, "nullcontext": [], "number": [1, 2, 4, 5, 6, 8, 9, 10, 11], "numer": [0, 1, 2, 3, 7, 8], "numerical_result": [], "numpi": [1, 4, 5, 6, 7, 8, 10], "o": [1, 2, 3, 4, 6, 7], "obei": 4, "obj": [], "obj_typ": [], "object": [], "objective_funct": 4, "observ": [4, 7, 8, 10], "obtain": [4, 5, 6, 8], "occupi": 11, "occur": [3, 4, 11], "off": 9, "offer": [1, 2], "offici": [1, 2], "offsettext": [], "often": [1, 3, 4, 11], "oi": [], "ok": [5, 8], "ol": [7, 8], "old_list": 3, "ols_intercept": [7, 8], "ols_slop": [7, 8], "omega": 10, "omit": [], "onc": [1, 2, 6, 7], "one": [1, 2, 3, 4, 6, 7, 8, 9, 11], "ones": 2, "onli": [1, 2, 3, 6, 9], "open": [1, 9], "oper": [1, 3, 5, 6], "operand": [], "opportun": 2, "opposit": 9, "optim": [2, 5], "optimizewarn": 4, "option": 3, "orang": 10, "orbit": 11, "order": [0, 2, 9, 10], "ordinari": 8, "org": 9, "organ": [1, 2, 3, 5], "orient": [2, 5], "origin": [1, 3], "orthonorm": 2, "other": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11], "otherwis": 3, "our": [1, 2, 5, 6, 7, 8, 9, 11], "out": [1, 2], "outcom": 4, "output": [2, 4, 6], "outsid": 4, "over": [2, 3, 5, 10, 11], "overal": [7, 10], "overlap": 2, "overlap_integr": 5, "overlap_integral_trapezoid": 5, "overleaf": 1, "overview": 2, "own": [1, 3, 8, 11], "ox": [], "oxygen": [1, 4, 6], "oxygen_mass": 1, "p": [2, 4, 9, 11], "p1": 10, "p1_valu": [], "p2": 10, "p2_valu": [], "p_": 4, "p_1": 10, "p_2": 10, "p_i": 10, "packag": [0, 1], "pad": [], "pad_inch": [], "pair": 3, "panda": [1, 5], "paramet": [2, 4, 5, 7, 8], "parent": [], "parenthes": [2, 3], "pars": [], "parsebaseexcept": [], "parseexcept": [], "parser": [], "parsestr": [], "part": [1, 4, 9], "parti": [], "partial": [4, 10, 11], "particip": [], "particl": [5, 9, 10, 11], "particular": [9, 10, 11], "particularli": [1, 2, 3, 4], "partit": 11, "partition_funct": [], "pass": [], "patch": [], "path": [1, 9], "pd": [2, 3, 5], "pdf": 2, "peak": [8, 10], "per": [2, 6], "percentag": 4, "perfect": [8, 9], "perform": [1, 2, 3, 4, 5, 7, 8], "period": 2, "permeabl": 9, "person": 3, "phase": 11, "phenomenon": 5, "phi": 5, "physic": [1, 2, 4, 5, 8], "pi": [5, 7], "pillow": [], "pip": [1, 2], "pip3": 1, "piston": [9, 11], "place": 4, "placehold": 4, "placeholderlayoutengin": [], "plai": [2, 4, 5], "plain": [], "plan": 7, "plot": [1, 4, 5, 7, 8, 10, 11], "plotli": 1, "plt": [1, 2, 4, 5, 7, 8, 10], "plu": 9, "pm": [4, 8], "png": 2, "point": [2, 4, 5, 7, 8, 9], "popular": 1, "posit": [2, 3, 6, 8, 9, 10], "position": [], "possibl": [1, 3, 5, 6, 11], "post_execut": [], "postul": 11, "potassium": 2, "potenti": 11, "power": [1, 3, 4, 7], "ppf": 8, "practic": 4, "pre": 1, "precipit": 9, "precis": 8, "predefin": 2, "predetermin": 3, "predict": [1, 4, 7, 8, 11], "prefix": 1, "prepar": [1, 5], "presenc": 8, "present": [1, 2, 7], "pressur": [4, 8, 9, 10, 11], "pretti": [], "prevent": 2, "previou": [1, 10, 11], "previous_engin": [], "primari": 2, "primarili": [1, 5], "principl": 2, "print": [2, 3, 4, 5, 7, 8], "print_figur": [], "print_method": [], "printer": [], "priori": 11, "prob": [], "probabl": [10, 11], "problem": [1, 2, 6], "proce": [4, 5, 9], "proceed": 4, "process": [1, 2, 3, 4, 6, 9], "produc": [3, 6, 8], "product": [2, 4, 6, 7], "profil": 8, "program": [1, 3], "progress": [1, 2, 4, 7], "project": 1, "prompt": [1, 2], "prop": [], "properti": [1, 5, 9, 11], "proport": 8, "prove": 5, "provid": [2, 3, 4, 5, 6, 8, 10], "proxim": 5, "pseudo": 7, "psi_": 5, "psi_i": 5, "psi_j": 5, "purchas": 7, "purpl": 10, "purpos": 2, "put": [1, 3, 7], "pv": 9, "py": 4, "py3dmol": [], "pylabtool": [], "pymatgen": 1, "pypars": [], "pyplot": [1, 2, 4, 5, 7, 8, 10], "pyscf": 1, "python": [0, 7], "python3": 1, "q": 9, "q030dl3x6qgfqffys4wc7d4c0000gn": [], "quacc": 1, "quad": [], "quadrat": 4, "quadratic_eq": [], "quadratic_equ": 4, "quadratur": 5, "qualit": 9, "quantifi": 5, "quantiti": [2, 4], "quantiz": 11, "quantum": [1, 2, 5], "quasistat": 9, "question": [3, 9], "quickli": 4, "r": [1, 4, 5, 8, 9, 10], "r1": 5, "r2": 5, "r_0": 9, "r_i": 9, "r_valu": 5, "radii": 5, "radiu": [3, 5], "rain": 9, "rais": [4, 7], "rand": [2, 8], "randint": 2, "randn": [2, 8], "random": [2, 8, 10], "rang": [1, 2, 3, 4, 5, 8, 10], "rangl": [10, 11], "raphson": 4, "rapidli": 5, "rate": 4, "rather": [5, 11], "ratio": [4, 6], "rdkit": [], "re": [1, 2, 3, 11], "reach": [3, 4, 7, 9, 11], "react": [6, 9], "reactant": [4, 6, 7], "reaction": [0, 1, 2, 6, 9], "read": 3, "read_csv": 2, "readabl": 2, "readi": [1, 2, 11], "real": [1, 4, 11], "realiz": 7, "realli": 5, "reason": 3, "recal": [5, 7], "recast": [], "recent": [], "reciproc": [], "recogn": 1, "recommend": [1, 2, 8], "rect": [], "rectangl": 5, "red": [2, 4, 8, 10], "reduc": 3, "redund": 3, "ref": [], "refer": [1, 2, 3, 5, 9, 10], "reflect": [1, 4], "region": 9, "regress": [0, 8], "regular": 3, "reinforc": [3, 8], "rel": 6, "relat": [4, 5, 7, 8], "relationship": [2, 6, 7, 8, 11], "relev": 9, "reli": 2, "remain": 4, "rememb": 1, "remov": 3, "render": 1, "renderer_ref": [], "rendereragg": [], "repeat": 3, "repeatedli": 3, "repetit": 3, "replac": 4, "report": [2, 7], "repositori": 1, "repres": [1, 2, 4, 6, 8], "represent": 6, "requir": [2, 3, 4, 11], "research": [1, 8, 11], "reservoir": 10, "residu": 8, "resiz": [], "resourc": 1, "respect": [1, 4, 5, 6, 7, 11], "respond": 3, "respons": [3, 8], "result": [1, 2, 3, 4, 5, 6], "results_df": 5, "retriev": 7, "return": [2, 3, 4, 5, 7, 8], "reus": 3, "reusabl": 3, "revers": [3, 4, 9], "revisit": 6, "rewrit": [5, 7], "riemann": [], "riemann_result": 5, "riemann_sum": 5, "riemann_sum_valu": 5, "right": [4, 5, 6, 8, 9, 10, 11], "rightarrow": 6, "rightleftharpoon": 4, "rm": 10, "ro": [5, 7], "robust": 2, "role": [2, 4, 5, 9, 10], "root": [0, 1, 2], "round": 6, "routin": 2, "row": [2, 3], "row_data": [], "rowspan": [], "rubidium": 2, "rule": [], "run": [1, 2, 3, 4], "runtimeerror": [], "s_analyt": 5, "s_numer": [], "s_riemann": 5, "s_sum": 5, "s_trapezoid": 5, "s_trapz": [], "sai": [1, 5], "said": 11, "same": [1, 3, 6, 8, 9, 11], "sampl": 8, "satisfi": [4, 6], "satur": 6, "save": [2, 6], "scale": 1, "scatter": [1, 4, 8], "scatterplot": 2, "scenario": [], "scienc": [4, 5, 6, 9], "scientif": 1, "scikit": 1, "scipi": [1, 5, 6, 8, 10], "scratch": 2, "script": 2, "se": 8, "se_intercept": 8, "se_slop": 8, "seaborn": 1, "secant": 4, "second": 2, "section": 6, "see": [1, 3, 4, 5, 6], "seed": 8, "seen": 1, "self": [], "send": 3, "separ": [2, 5, 9], "sequenc": [2, 3], "sequenti": 3, "seri": [3, 5, 8, 9], "serv": 2, "set": [1, 2, 3, 4, 6, 7, 8, 9, 11], "set_layout_engin": [], "set_titl": [5, 10], "set_xlabel": [5, 10], "set_ylabel": [5, 10], "setstyl": [], "sever": [1, 5, 11], "shape": [2, 7], "share": [1, 5], "sheet": 1, "ship": [], "short": 3, "should": [1, 2, 3, 4, 6, 7, 8, 10], "show": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "shown": [2, 9, 10], "side": [5, 6], "sigma": 8, "signal": 2, "signific": [7, 8], "similar": [2, 5], "similarli": [], "simpl": [1, 2, 3, 4, 7, 10], "simplest": 3, "simpli": 1, "simplic": 6, "simplifi": [2, 4, 6], "simpson": 5, "simul": [1, 11], "simultan": 5, "sin": [2, 5], "sinc": [6, 7, 11], "sine": [2, 5], "singl": 2, "site": 11, "six": [], "size": [5, 9], "skill": [1, 2, 3, 6, 8], "skip": 3, "slack": 3, "slice": 3, "slope": [7, 8], "slowli": 5, "small": [3, 5], "smaller": 3, "smallest": 6, "smile": [], "sn": 6, "sno": 6, "snow": 9, "sno\u2082": 6, "so": [2, 3, 5, 6, 9], "softwar": [1, 2], "solid": [1, 2, 5, 11], "solut": [2, 6], "solv": [1, 2, 5], "some": [1, 2, 3, 8], "sorbent": 11, "sourc": 2, "space": [5, 9], "span_pair": [], "spatial": 5, "speci": [4, 7], "special": 1, "specif": [3, 10], "specifi": [3, 4, 5, 10], "spectromet": 8, "spectrophotomet": [], "spectroscopi": 2, "spheric": 5, "spine": [], "split": 4, "spread": 2, "spreadsheet": [1, 2], "spring": 9, "sql": 2, "sqrt": [1, 4, 5, 8], "squar": [1, 2, 3, 8], "ss": [], "sse": [7, 8], "ssr": 8, "stai": 4, "stale": [], "standard": [4, 8, 11], "start": [2, 3, 4, 5, 6, 7], "start_filt": [], "stat": 8, "state": [2, 4, 5, 7, 9, 11], "statement": [1, 4], "static": 2, "statist": [0, 1, 2, 7, 11], "statsmodel": [1, 8], "statu": 4, "step": [5, 8, 11], "steroid": 2, "stick": [], "still": 4, "stoichiometr": [1, 4, 6], "stoichiometri": 7, "stop": [], "stop_raster": [], "storag": 2, "store": [1, 2, 3, 5], "stori": 8, "straight": 5, "straightforward": [1, 2, 3], "streamlin": 6, "strength": [1, 2, 8], "string": 2, "strong": [2, 8], "structur": [0, 1], "struggl": [], "student": [], "studi": 11, "style": [1, 2], "subclass": [], "subdivis": 5, "subplot": [5, 10], "subplot_list": [], "subplots_adjust": [], "subplotspec_list": [], "subset": 2, "substitut": [4, 6], "subtract": 1, "success": 4, "successfulli": [4, 7], "suggest": 7, "suit": [1, 2], "suitabl": 4, "sum": [7, 8, 9, 10], "sum_": [5, 7, 8, 11], "sum_i": [9, 10], "super": [], "superclass": [], "support": [1, 2], "suppos": 7, "suppress_composit": [], "suppresscomposit": [], "suptitl": 5, "sure": 1, "surfac": 11, "surround": [9, 11], "svg": 2, "symbol": 1, "symmetr": 5, "symmetri": [], "syntax": [1, 2, 3], "syntaxwarn": [], "system": [0, 1, 2, 4], "systemat": 6, "t": [1, 2, 3, 4, 7, 8, 9, 10, 11], "t_": 8, "t_valu": [], "tab": 1, "tabl": [4, 6, 7], "tabular": [1, 2, 3], "tackl": [1, 2], "tailor": 1, "take": [3, 5, 10, 11], "taken": 9, "task": [1, 2, 3, 8], "taught": [], "technic": 2, "techniqu": [1, 2, 6, 7, 11], "temperatur": [4, 8, 9, 10, 11], "term": [4, 7, 10], "termin": [1, 2, 3, 4], "test": [1, 8], "text": [1, 4, 6, 7, 8], "than": [2, 3, 5, 7, 11], "thei": [1, 2, 3, 4, 9, 11], "them": [1, 2, 3, 9], "therefor": [5, 6, 11], "thermal": [9, 10, 11], "thermodynam": [0, 1, 11], "theta": [5, 11], "thi": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "thing": [3, 8], "think": [2, 3, 5, 6], "third": [], "those": [2, 5], "thought": 6, "three": [3, 4, 5, 9], "threshold": 8, "through": [1, 2, 9], "throughout": 2, "thu": 6, "ti": 3, "tight": [], "tight_bbox": [], "tight_bbox_raw": [], "tight_layout": [5, 10], "tightlayoutengin": [], "time": [3, 4, 6, 7, 8, 11], "tip": [], "titl": [1, 2, 4, 5, 7, 8, 10], "to_csv": 2, "todai": 1, "togeth": [3, 7, 8], "tol": 4, "toler": 4, "too": 3, "tool": [1, 4], "toolbar": [], "toolkit": 2, "top": [1, 2], "topic": 2, "total": [4, 5, 10, 11], "touch": 1, "tough": 5, "toward": 4, "traceback": [], "track": 6, "tradit": [2, 4], "train": [], "transfer": 9, "transfigur": [], "transform": [2, 3], "transform_bbox": [], "transit": [9, 10], "transport": 1, "trapezoid": [], "trapezoidal_result": 5, "trapz": [], "trend": 2, "tri": [], "tripl": 9, "true": [2, 3, 4, 5, 8, 10], "try": [1, 2, 3, 6, 8], "tupl": [3, 5], "turn": [], "twice": 1, "two": [1, 2, 3, 7, 8, 9, 11], "type": [1, 2, 3, 5, 6, 7, 9], "typeerror": [], "typic": [1, 4, 7, 8], "u": [3, 5, 6, 8, 9], "u_i": [], "ubiquit": 2, "uffoptimizemolecul": [], "ultim": 5, "ultraviolet": 8, "unbalanc": 6, "unbias": 8, "uncertainti": [], "under": [4, 5, 10, 11], "undergo": 10, "underli": 2, "underscor": [], "understand": [1, 2, 3, 4, 6, 7, 9, 10, 11], "unexpect": [], "uniform": [5, 9], "union": [], "uniqu": 3, "unit": [2, 7], "unknown": 6, "unlik": 3, "unnecessarili": [], "unord": 3, "unphys": [], "unsatur": 6, "until": 3, "unus": [], "up": [1, 3, 4, 8, 9, 10], "updat": 6, "upon": 1, "us": [1, 4, 7, 8, 9, 10, 11], "usag": 5, "user": 1, "userwarn": [], "util": [3, 4, 8], "uv": 8, "v": [2, 7, 9, 10], "v_1": 9, "v_2": 9, "v_i": 9, "va": [], "valid": 8, "valu": [1, 2, 4, 5, 6, 7, 8, 9, 11], "valuabl": [], "valueerror": [], "vapor": 4, "var": 4, "variabl": [1, 2, 3, 4, 6, 7, 8, 9], "varianc": 8, "varieti": [1, 2], "variou": [1, 2, 7], "vast": [1, 2], "ve": [1, 2, 3, 6], "vector": [5, 6, 9], "veloc": [9, 10], "veri": [7, 10], "verifi": [1, 2, 5], "versatil": [1, 2, 3], "version": 1, "vertic": 8, "vi": 8, "via": 9, "view": 10, "viewer": [], "visibl": 8, "visit": 1, "visual": [1, 4, 5, 7], "vital": 2, "volum": [5, 9, 11], "vowel": 3, "w": [2, 9], "w_pad": [], "wa": [], "wai": [2, 3, 9], "want": [2, 8], "warn_deprec": [], "warn_extern": [], "water": [1, 4, 6], "wavefunct": 2, "we": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "weak": 8, "weakref": [], "web": 1, "websit": 1, "weight": [], "welcom": 1, "well": [3, 8, 10], "were": [7, 8], "wexler": [], "what": [1, 2, 6, 10], "when": [1, 2, 3, 4, 5, 7, 9], "where": [2, 4, 5, 6, 7, 8, 9, 10, 11], "whether": [1, 2, 3], "which": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "while": [1, 2, 4, 5, 8, 9, 10], "whole": [], "whose": [], "why": 3, "wide": [1, 2, 4], "width": 5, "wiki": 9, "wikipedia": 9, "window": [], "wise": 2, "within": [1, 2, 3, 4], "without": [3, 4, 9, 11], "won": 2, "word": [5, 8, 9], "work": [1, 3, 4, 7, 8, 10], "workflow": 1, "workforc": 1, "world": [1, 9, 11], "would": [4, 8, 10, 11], "wrap": [], "wrapper": [], "write": [3, 4, 5, 6, 7, 8], "written": [2, 3, 5, 6, 9], "x": [1, 2, 3, 4, 5, 6, 7, 8], "x0": 4, "x_i": [5, 7, 8], "x_max": [], "x_mean": [7, 8], "x_min": [], "x_valu": 4, "xenon": 2, "xi": [], "xlabel": [1, 2, 4, 5, 7, 8, 10], "xp": [], "xy": 10, "xytext": 10, "y": [1, 2, 3, 5, 6, 7, 8], "y_i": [7, 8], "y_max": [], "y_mean": [7, 8], "y_min": [], "yaxi": [], "yield": 4, "ylabel": [1, 2, 4, 5, 7, 8, 10], "ymax": [], "york": 3, "you": [1, 2, 3, 4, 5, 6, 7, 8, 10], "your": [1, 3, 7, 8], "yourself": [1, 3], "ytterbium": 2, "yttrium": 2, "z": [5, 10, 11], "z_max": [], "z_min": [], "zero": [2, 4, 6, 9, 10], "zinc": 2, "zip": [], "zirconium": 2, "zoomto": [], "zorder": 4, "zr": [], "\u00e5": 5}, "titles": ["Welcome to Computational Problem Solving in the Chemical Sciences", "Lecture 1: Introduction to Python for the Chemical Sciences", "Lecture 2: Essential Python Packages for the Chemical Sciences", "Lecture 3: Control Structures in Python", "Lecture 4: Chemical Reaction Equilibria and Roots of Equations", "Lecture 5: Chemical Bonding and Numerical Integration", "Lecture 6: Balancing Chemical Equations and Systems of Linear Algebraic Equations", "Lecture 7: Orders of Reaction and Linear Regression Analysis", "Lecture 8: Calibration Data, Confidence Intervals, and Correlation Analysis", "Lecture 9: Classical Thermodynamics", "Lecture 10: Statistical Thermodynamics", "Lecture 11: Ensembles and Ergodicity"], "titleterms": {"": [1, 4, 11], "1": [1, 2, 3, 4, 5, 6], "10": 10, "11": 11, "1d": 2, "2": [1, 2, 3, 4, 6], "2d": 2, "3": [1, 2, 3, 6], "4": [1, 2, 3, 4, 6], "5": [1, 2, 3, 5, 6], "6": [1, 2, 3, 6], "7": [1, 7], "8": 8, "9": 9, "A": [2, 4, 6, 7, 8], "On": [4, 5, 7, 8], "The": [2, 3, 4, 5, 6, 9], "To": [], "about": [9, 11], "activ": [4, 5, 7, 8], "addit": [3, 4], "advanc": 2, "algebra": 6, "all": 3, "alreadi": 1, "an": 5, "analysi": [7, 8], "analyt": 5, "anoth": [], "approach": 4, "ar": 3, "arrai": [2, 3], "averag": 10, "back": [7, 8], "balanc": 6, "basic": 2, "best": [2, 3], "boltzmann": 10, "bond": 5, "calcul": 5, "calibr": 8, "can": 1, "canon": 11, "capac": 10, "care": [9, 11], "case": 6, "check": [1, 3], "chemic": [0, 1, 2, 4, 5, 6], "chemistri": 1, "classic": 9, "coeffici": [6, 8], "combust": 6, "comprehens": 3, "comput": [0, 2, 5, 6], "condit": 3, "confid": 8, "constant": [7, 10], "control": 3, "convert": 6, "correl": 8, "creat": 2, "critic": 10, "curv": 8, "custom": 2, "data": [2, 8], "datafram": [2, 3], "decomposit": 7, "default": 3, "defin": [3, 6], "definit": [], "determin": 7, "dictionari": 3, "distribut": 10, "do": 1, "download": 1, "element": 3, "elif": 3, "els": 3, "energi": [9, 10], "ensembl": 11, "entropi": 10, "equat": [4, 6], "equilibria": [4, 9], "equilibrium": [4, 9], "ergod": 11, "essenti": 2, "even": 3, "exampl": [4, 6, 7, 10, 11], "exercis": [1, 2, 3, 4], "expect": 4, "experi": 7, "factori": 3, "familiar": 8, "featur": 2, "filter": 2, "find": [3, 4], "first": 9, "form": 8, "formul": 4, "foundat": 2, "free": 10, "from": 10, "function": [3, 10], "fundament": 9, "g": 7, "gener": [2, 6], "get": 1, "grand": 11, "graph": 1, "guess": 4, "h": 5, "hand": [3, 4, 5, 6, 7, 8], "he": 5, "heat": [9, 10], "higher": 3, "hint": 7, "histogram": 2, "hydrocarbon": 6, "hydrogen": [5, 6], "i": [1, 3, 5], "implement": 4, "implic": 11, "import": [2, 4, 6], "infinit": 3, "initi": 4, "instal": [1, 2], "integ": 6, "integr": 5, "interlud": 8, "intern": [9, 10], "interv": 8, "introduct": [1, 3, 4, 7, 8, 10], "isobar": 11, "isotherm": 11, "iv": 6, "jupyt": 1, "kei": [2, 3], "lambda": 3, "launch": 1, "law": [7, 9], "learn": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11], "least": 7, "lectur": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "let": 1, "librari": 6, "line": 2, "linear": [6, 7], "list": [2, 3], "loop": 3, "macrost": 10, "manipul": 2, "mathbf": 6, "mathemat": [1, 4], "matplotlib": 2, "matrix": [2, 6], "maximum": 3, "method": 4, "microcanon": 11, "microst": 10, "minim": 4, "minimum": 3, "minut": [], "moment": 6, "more": 1, "n_2o_5": 7, "necessari": 6, "next": 11, "non": 11, "normal": 6, "note": [1, 3, 4, 5], "notebook": 1, "null": 6, "number": 3, "numer": [4, 5], "numpi": [2, 3], "object": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11], "odd": 3, "oper": 2, "optim": 4, "orbit": 5, "order": [3, 7], "ordinari": 7, "overlap": 5, "oxid": 6, "packag": 2, "palindrom": 3, "panda": [2, 3], "paramet": 3, "partit": 10, "phase": 9, "plot": 2, "potenti": 9, "power": 2, "practic": [1, 2, 3, 7], "primer": 7, "problem": [0, 4], "properti": [2, 10], "public": 2, "put": [], "python": [1, 2, 3, 4, 6], "qualiti": 2, "rate": 7, "reaction": [4, 7], "read": 2, "real": 8, "recap": 6, "reduct": 6, "refresh": 7, "regress": 7, "relat": 9, "remind": 2, "riemann": 5, "root": 4, "rule": 5, "scatter": 2, "scienc": [0, 1, 2], "scientif": 2, "scipi": [2, 4], "second": 9, "section": [2, 3], "seri": 2, "should": [9, 11], "solut": [4, 5], "solv": [0, 4, 6], "space": 6, "specif": [1, 2], "squar": 7, "start": 1, "state": 10, "statement": [3, 9], "statist": 10, "step": [1, 4, 6], "string": 3, "structur": [2, 3], "sum": [3, 5], "summari": [6, 9, 10, 11], "sup": [], "symmetri": 5, "system": [6, 9, 10, 11], "take": 6, "test": [], "theoret": 8, "thermodynam": [9, 10], "thi": [], "think": 10, "third": 9, "through": 3, "tin": 6, "tool": 2, "trapezoid": 5, "two": [5, 10], "type": 11, "u": [], "us": [2, 3, 5, 6], "v": [3, 5], "valu": 3, "vector": 2, "versatil": 4, "via": 4, "visual": 2, "volum": 10, "wait": [4, 5], "warn": 4, "welcom": 0, "what": [3, 4, 5, 11], "while": 3, "why": [9, 11], "window": 1, "work": [2, 9], "world": 8, "write": 2, "you": [9, 11], "your": 2, "zeroth": 9}})
\ No newline at end of file