diff --git a/test_book/src/SUMMARY.md b/test_book/src/SUMMARY.md index 6292fd22d7..f954546d70 100644 --- a/test_book/src/SUMMARY.md +++ b/test_book/src/SUMMARY.md @@ -22,6 +22,7 @@ - [Tables](individual/table.md) - [Tasks](individual/task.md) - [Strikethrough](individual/strikethrough.md) + - [MathJax](individual/mathjax.md) - [Mixed](individual/mixed.md) - [Languages](languages/README.md) - [Syntax Highlight](languages/highlight.md) diff --git a/test_book/src/individual/mathjax.md b/test_book/src/individual/mathjax.md new file mode 100644 index 0000000000..222e25a274 --- /dev/null +++ b/test_book/src/individual/mathjax.md @@ -0,0 +1,42 @@ +# MathJax + +Fourier Transform + +\\[ +\begin{aligned} +f(x) &= \int_{-\infty}^{\infty}F(s)(-1)^{ 2xs}ds \\\\ +F(s) &= \int_{-\infty}^{\infty}f(x)(-1)^{-2xs}dx +\end{aligned} +\\] + +The kernel can also be written as \\(e^{2i\pi xs}\\) which is more frequently used in literature. + +> Proof that \\(e^{ix} = \cos x + i\sin x\\) a.k.a Euler's Formula: +> +> \\( +\begin{aligned} + e^x &= \sum_{n=0}^\infty \frac{x^n}{n!} \implies e^{ix} = \sum_{n=0}^\infty \frac{(ix)^n}{n!} \\\\ + \cos x &= \sum_{m=0}^\infty \frac{(-1)^m x^{2m}}{(2m)!} = \sum_{m=0}^\infty \frac{(ix)^{2m}}{(2m)!} \\\\ + \sin x &= \sum_{s=0}^\infty \frac{(-1)^s x^{2s+1}}{(2s+1)!} = \sum_{s=0}^\infty \frac{(ix)^{2s+1}}{i(2s+1)!} \\\\ + \cos x + i\sin x &= \sum_{l=0}^\infty \frac{(ix)^{2l}}{(2l)!} + \sum_{s=0}^\infty \frac{(ix)^{2s+1}}{(2s+1)!} = \sum_{n=0}^\infty \frac{(ix)^{n}}{n!} \\\\ + &= e^{ix} +\end{aligned} +\\) +> + + +Pauli Matrices + +\\[ +\begin{aligned} + \sigma_x &= \begin{pmatrix} + 1 & 0 \\\\ 0 & 1 + \end{pmatrix} \\\\ + \sigma_y &= \begin{pmatrix} + 0 & -i \\\\ i & 0 + \end{pmatrix} \\\\ + \sigma_z &= \begin{pmatrix} + 1 & 0 \\\\ 0 & -1 + \end{pmatrix} +\end{aligned} +\\] \ No newline at end of file