generated from ruhyadi/lightning-hydra-template
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathconvert.py
60 lines (48 loc) · 2.16 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
""" Conver checkpoint to model (.pt/.pth/.onnx) """
import torch
from torch.utils.data import Dataset, DataLoader
from pytorch_lightning import LightningModule
from src import utils
import dotenv
import hydra
from omegaconf import DictConfig
import os
# load environment variables from `.env` file if it exists
# recursively searches for `.env` in all folders starting from work dir
dotenv.load_dotenv(override=True)
log = utils.get_pylogger(__name__)
@hydra.main(config_path="configs/", config_name="convert.yaml")
def convert(config: DictConfig):
# assert model convertion
assert config.get('convert_to') in ['pytorch', 'torchscript', 'onnx', 'tensorrt'], \
"Please Choose one of [pytorch, torchscript, onnx, tensorrt]"
# Init lightning model
log.info(f"Instantiating model <{config.model._target_}>")
model: LightningModule = hydra.utils.instantiate(config.model)
# Convert relative ckpt path to absolute path if necessary
log.info(f"Load checkpoint <{config.get('checkpoint_dir')}>")
ckpt_path = config.get("checkpoint_dir")
if ckpt_path and not os.path.isabs(ckpt_path):
ckpt_path = config.get(os.path.join(hydra.utils.get_original_cwd(), ckpt_path))
# load model checkpoint
model = model.load_from_checkpoint(ckpt_path)
model.cuda()
# input sample
input_sample = config.get('input_sample')
# Convert
if config.get('convert_to') == 'pytorch':
log.info("Convert to Pytorch (.pt)")
torch.save(model.state_dict(), f'{config.get("name")}.pt')
log.info(f"Saved model {config.get('name')}.pt")
if config.get('convert_to') == 'torchscript':
log.info("Convert to Torchscript (.pt)")
torch.jit.save(model.to_torchscript(), f'{config.get("name")}.pt')
log.info(f"Saved model {config.get('name')}.pt")
if config.get('convert_to') == 'onnx':
log.info("Convert to ONNX (.onnx)")
model.cuda()
input_sample = torch.rand((1, 3, 224, 224), device=torch.device('cuda'))
model.to_onnx(f'{config.get("name")}.onnx', input_sample, export_params=True)
log.info(f"Saved model {config.get('name')}.onnx")
if __name__ == '__main__':
convert()