-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwcluster.cc
1115 lines (936 loc) · 34.2 KB
/
wcluster.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Hierarchically clusters phrases. Extension using dependency parses.
Comments indicating any changes are introduced by "dlm"
Running time: O(N*C^2).
We want to cluster the phrases so that the pairwise mututal information between
clusters is maximized. This mututal information is a sum over terms between
each pair of clusters: q2[a, b] for clusters a and b. The trick is to compute
quickly the loss of mututal information when two clusters a and b are merged.
The four structures p1, p2, q2, L2 allow this quick computation.
p1[a] = probability of of cluster a.
p2[a, b] = probability of cluster a followed by cluster b.
q2[a, b] = contribution to the mutual information from clusters a and b (computed from p2[a, b]).
L2[a, b] = the loss of mutual information if clusters a and b were merged.
Changes:
* Removed hash tables for efficiency.
* Notation: a is an phrase (sequence of words), c is a cluster, s is a slot.
To cut down memory usage:
* Change double to float.
Ideas:
* Hashing vectors is really slow.
* Find intuition behind algorithm based on simple cases
* Test clustering algorithm on artificial generated data. Generate a text
with a class-based ngram model.
*/
#include "basic/std.h"
#include "basic/stl-basic.h"
#include "basic/stl-utils.h"
#include "basic/str.h"
#include "basic/strdb.h"
#include "basic/union-set.h"
#include "basic/mem-tracker.h"
#include "basic/opt.h"
#include <unistd.h>
vector< OptInfo<bool> > bool_opts;
vector< OptInfo<int> > int_opts;
vector< OptInfo<double> > double_opts;
vector< OptInfo<string> > string_opts;
opt_define_string(output_dir, "output_dir", "", "Output everything to this directory.");
opt_define_string(text_file, "text", "", "Text file with corpora (input).");
opt_define_string(restrict_file, "restrict", "", "Only consider words that appear in this text (input).");
opt_define_string(paths_file, "paths", "", "File containing root-to-node paths in the clustering tree (input/output).");
opt_define_string(map_file, "map", "", "File containing lots of good information about each phrase, more general than paths (output)");
opt_define_string(collocs_file, "collocs", "", "Collocations with most mutual information (output).");
opt_define_string(featvec_file, "featvec", "", "Feature vectors (output).");
opt_define_string(comment, "comment", "", "Description of this run.");
opt_define_int(ncollocs, "ncollocs", 500, "Collocations with most mutual information (output).");
opt_define_int(initC, "c", 1000, "Number of clusters.");
opt_define_int(plen, "plen", 1, "Maximum length of a phrase to consider.");
opt_define_int(min_occur, "min-occur", 1, "Keep phrases that occur at least this many times.");
opt_define_int(rand_seed, "rand", time(NULL)*getpid(), "Number to call srand with.");
opt_define_bool(chk, "chk", false, "Check data structures are valid (expensive).");
opt_define_bool(print_stats, "stats", false, "Just print out stats.");
opt_define_bool(paths2map, "paths2map", false, "Take the paths file and generate a map file.");
#define use_restrict (!restrict_file.empty())
const char *delim_str = "$#$";
typedef IntPair _;
StrDB db; // word database
IntVec phrase_freqs; //dlm: phrase a < N -> number of times heads and dependents appear in the text
IntVecVec head_phrases; //dlm: phrase a < N -> list of phrases that appear as heads of a in the text
IntVecVec dep_phrases; //dlm: phrase a < N -> list of phrases that appear as dependents a in the text
IntIntPairMap cluster_tree; // cluster c -> the 2 sub-clusters that merged to create c
int delim_word;
IntVec freq_order_phrases; // List of phrases in decreasing order of frequency.
// Allows for very quick (inverse Ackermann) lookup of clusters and merging
// of clusters. Each phrase points to an arbitrary representative phrase of
// the cluster.
UnionSet phrase2rep; // phrase a -> the rep phrase in the same cluster as a
IntIntMap rep2cluster; // rep phrase a -> the cluster that contains a
IntIntMap cluster2rep; // cluster a -> the rep phrase in cluster a
// Store all the phrases efficiently. Just for printing out.
// For each phrase length, we store a flattened list of words.
IntVecVec phrases; // length of phrase -> flattened list of words
// Each cluster will occupy a slot. There will always be two extra slots
// as intermediate scratch space.
IntVec slot2cluster; // slot index -> cluster (-1 if none exists)
IntIntMap cluster2slot; // cluster -> slot index
int free_slot1, free_slot2; // two free slots
int nslots;
// Partial results that allow quick computation and update of mutual information.
// Mutual information is the sum of all the q2 terms.
// Update p1, p2, q2 for 0..N-1, but L2 only for 0..initC-1.
DoubleVec p1; // slot s (containing cluster a) -> probability Pr(a)
DoubleVecVec p2; // slots s, t (containing clusters a, b) -> probability Pr(a, b)
DoubleVecVec q2; // slots s, t (contianing clusters a, b) -> contribution to mutual information
DoubleVecVec L2; // slots s, t (containing clusters a, b) -> loss of mutual information if merge a and b
int curr_cluster_id; // ID to assign to a new cluster
int stage2_cluster_offset; // start of the IDs of clusters created in stage 2
double curr_minfo; // Mutual info, should be sum of all q2's
// Map phrase to the KL divergence to its cluster
DoubleVec kl_map[2];
#define FOR_SLOT(s) \
for(int s = 0; s < len(slot2cluster); s++) \
for(bool _tmp = true; slot2cluster[s] != -1 && _tmp; _tmp = false)
// We store only L2[s, t] for which the cluster ID in slot s is smaller
// than the one in slot t.
#define ORDER_VALID(s, t) (slot2cluster[s] < slot2cluster[t])
#define num_phrases(l) (len(phrases[l])/(l))
int N; // number of phrases
int T; // length of text
// Output a phrase.
struct Phrase { Phrase(int a) : a(a) { } int a; };
ostream &operator<<(ostream &out, const Phrase &phrase) {
// Decode the phrase ID into the length and the offset in phrases.
int a = phrase.a;
int l; for(l = 1; a >= num_phrases(l); a -= num_phrases(l), l++);
foridx(i, l) {
if(i > 0) out << ' ';
out << db[phrases[l][a*l+i]];
}
return out;
}
// For pretty-printing of clusters.
struct Cluster { Cluster(int c) : c(c) { } int c; };
ostream &operator<<(ostream &out, const Cluster &cluster) {
int c = cluster.c;
out << c;
int a;
bool more;
if(c < N)
a = c, more = false;
else {
assert(contains(cluster2rep, c));
a = cluster2rep[c], more = true;
}
out << '(' << Phrase(a);
if(more) out << "|...";
out << ')';
return out;
}
#define Slot(s) Cluster(slot2cluster[s])
////////////////////////////////////////////////////////////
// p2[s, t] + p2[t, s].
inline double bi_p2(int s, int t) {
if(s == t) return p2[s][s];
return p2[s][t] + p2[t][s];
}
// q2[s, t] + q2[t, s].
inline double bi_q2(int s, int t) {
if(s == t) return q2[s][s];
return q2[s][t] + q2[t][s];
}
// Hypothetical p1[st] = p1[s] + p1[t].
inline double hyp_p1(int s, int t) {
return p1[s] + p1[t];
}
//// hyp_p2
// Hypothetical p2[st, u] = p2[s, u] + p2[t, u].
inline double hyp_p2(const IntPair &st, int u) {
return p2[st.first][u] + p2[st.second][u];
}
// Hypothetical p2[u, st] = p2[u, s] + p2[u, t].
inline double hyp_p2(int u, const IntPair &st) {
return p2[u][st.first] + p2[u][st.second];
}
inline double bi_hyp_p2(const IntPair &st, int u) {
return hyp_p2(st, u) + hyp_p2(u, st);
}
// Hypothetical p2[st, st] = p2[s, s] + p2[s, t] + p2[t, s] + p2[t, t].
inline double hyp_p2(const IntPair &st) {
return p2[st.first][st.first] + p2[st.first][st.second] +
p2[st.second][st.first] + p2[st.second][st.second];
}
//// hyp_q2
inline double p2q(double pst, double ps, double pt) {
if(feq(pst, 0.0)) return 0.0;
return pst * log2(pst / (ps*pt));
}
// Hypothetical q2[st, u].
inline double hyp_q2(const IntPair &st, int u) {
return p2q(hyp_p2(st, u), hyp_p1(st.first, st.second), p1[u]);
}
// Hypothetical q2[u, st].
inline double hyp_q2(int u, const IntPair &st) {
return p2q(hyp_p2(u, st), hyp_p1(st.first, st.second), p1[u]);
}
inline double bi_hyp_q2(const IntPair &st, int u) {
return hyp_q2(st, u) + hyp_q2(u, st);
}
// Hypothetical q2[st, st].
inline double hyp_q2(const IntPair &st) {
double p = hyp_p2(_(st.first, st.second)); // p2[st,st]
double P = hyp_p1(st.first, st.second);
return p2q(p, P, P);
}
////////////////////////////////////////////////////////////
// Return slot.
void put_cluster_in_slot(int a, int s) {
cluster2slot[a] = s;
slot2cluster[s] = a;
}
inline int put_cluster_in_free_slot(int a) {
int s = -1;
// Find available slot.
if(free_slot1 != -1) s = free_slot1, free_slot1 = -1;
else if(free_slot2 != -1) s = free_slot2, free_slot2 = -1;
assert(s != -1);
put_cluster_in_slot(a, s);
return s;
}
inline void free_up_slots(int s, int t) {
free_slot1 = s;
free_slot2 = t;
cluster2slot.erase(slot2cluster[s]);
cluster2slot.erase(slot2cluster[t]);
slot2cluster[s] = slot2cluster[t] = -1;
}
void init_slot(int s) {
// Clear any entries that relates to s.
// The p1 and L2 will be filled in densely, so they
// will be overwritten anyway.
FOR_SLOT(t)
p2[s][t] = q2[s][t] = p2[t][s] = q2[t][s] = 0;
}
void add_to_set(const IntVec &phrases, IntIntMap &phrase_counts, int offset) {
forvec(_, int, a, phrases)
phrase_counts[a+offset]++;
}
bool is_good_phrase(const IntVec &phrase) {
if(len(phrase) == 1) return phrase[0] != delim_word && phrase[0] != -1; // Can't be delimiter or an invalid word
// HACK HACK HACK - pick out some phrases
// Can't be too many delim words.
int di = index_of(phrase, delim_word, 1);
if(di > 0 && di < len(phrase)-1) return false; // Delimiter must occur at the ends
if(phrase[0] == delim_word && phrase[len(phrase)-1] == delim_word) return false; // Only one delimiter allowed
// If every word is capitalized with the exception of some function
// words which must go in the middle
forvec(i, int, a, phrase) {
bool at_end = i == 0 || i == len(phrase)-1;
const string &word = db[a];
bool is_upper = isupper(word[0]);
if(at_end && !is_upper) return false; // Ends must be uppercase
if(is_upper) continue; // Ok
if(word[0] == '\'' || word == "of" || word == "and") continue; // Ok
return false;
}
return true;
}
void read_restrict_text() {
// Read the words from the text file that restricts what words we will cluster
if(restrict_file.empty()) return;
track("read_restrict_text()", restrict_file, false);
read_text(restrict_file.c_str(), NULL, db, false, false, true);
}
IntVecIntMap vec2phrase;
IntVecVec tuples; //dep: instead of intvec text
void read_text_process_word(IntVec tuple) { //dlm: pushing back tuples instead of words
tuples.push_back(tuple); //dlm
}
void read_text() {
track("read_text()", "", false);
read_text(text_file.c_str(), read_text_process_word, db, !use_restrict, !use_restrict, !use_restrict);
//forvec(, IntVec, l, tuples) {
int tuples_len = len(tuples); //dlm: not the same as T
//dlm: count tokens using counts from input file
foridx(i, tuples_len){ //dlm
T += tuples[i].back(); //dlm
}
delim_word = db.lookup(delim_str, false, -1);
if(!paths2map) db.destroy_s2i(); // Conserve memory.
// Count the phrases that we care about so we can map them all to integers.
track_block("Counting phrases", "", false) {
phrases.resize(plen+1);
for(int l = 1; l <= plen; l++) {
// Count.
IntVecIntMap freqs; // phrase vector -> number of occurrences
for(int i = 0; i < tuples_len-l+1; i++) { //dlm: read lines
IntVec a_vec; //dlm: head
IntVec b_vec; //dlm: dep
a_vec.push_back(tuples[i][0]); //dlm
b_vec.push_back(tuples[i][1]); //dlm
int count = tuples[i][2]; //dlm
if(is_good_phrase(a_vec)) freqs[a_vec] += count;//dlm
if(is_good_phrase(b_vec)) freqs[b_vec] += count;//dlm
}
forcmap(const IntVec &, a_vec, int, count, IntVecIntMap, freqs) {
if(count < min_occur) continue;
int a = len(phrase_freqs);
phrase_freqs.push_back(count);
vec2phrase[a_vec] = a;
forvec(_, int, w, a_vec) phrases[l].push_back(w);
}
logs(len(freqs) << " distinct phrases of length " << l << ", keeping " << num_phrases(l) << " which occur at least " << min_occur << " times");
}
}
N = len(phrase_freqs); // number of phrases
track_block("Finding head/dep phrases", "", false) { //dlm: "left" is "head", "right" is "dep"
head_phrases.resize(N);//dlm: not really the same in dlm
dep_phrases.resize(N); //dlm
for(int l = 1; l <= plen; l++) {
for(int i = 0; i < tuples_len-l+1; i++) { //dlm: i over tuples
IntVec a_vec; //dlm
IntVec b_vec; //dlm
a_vec.push_back(tuples[i][0]); //dlm
b_vec.push_back(tuples[i][1]); //dlm
int count = tuples[i][2]; //dlm
if(!contains(vec2phrase, a_vec) || !contains(vec2phrase, b_vec)) continue; //dlm
int a = vec2phrase[a_vec];//dlm: head
int b = vec2phrase[b_vec];//dlm: dep
//dlm: deps of a
for(int c = 0; c < count; c++) //dlm: lazy solution
dep_phrases[a].push_back(b);//dlm
//dlm: heads of b
for(int c = 0; c < count; c++)//dlm
head_phrases[b].push_back(a);//dlm
}
}
}
#if 1
if(!featvec_file.empty()) {
ofstream out(featvec_file.c_str());
out << N << ' ' << 2*N << endl;
foridx(a, N) {
IntIntMap phrase_counts;
add_to_set(head_phrases[a], phrase_counts, 0); //dlm
add_to_set(dep_phrases[a], phrase_counts, N); //dlm
out << Phrase(a) << ' ' << len(phrase_counts);
forcmap(int, b, int, count, IntIntMap, phrase_counts)
out << '\t' << b << ' ' << count;
out << endl;
}
}
#endif
#if 0
foridx(a, N) {
track("", Cluster(a), true);
forvec(_, int, b, head_phrases[a]) //dlm
logs("LEFT " << Cluster(b));
forvec(_, int, b, dep_phrases[a]) //dlm
logs("RIGHT " << Cluster(b));
}
#endif
destroy(tuples);//dlm
initC = min(initC, N);
logs("Text length: " << T << ", " << N << " phrases, " << len(db) << " words");
}
// O(C) time.
double compute_s1(int s) { // compute s1[s]
double q = 0.0;
FOR_SLOT(t) q += bi_q2(s, t);
return q;
}
// O(C) time.
double compute_L2(int s, int t) { // compute L2[s, t]
assert(ORDER_VALID(s, t));
// st is the hypothetical new cluster that combines s and t
// Lose old associations with s and t
double l = compute_s1(s) + compute_s1(t) - bi_q2(s, t);
// Form new associations with st
FOR_SLOT(u) {
if(u == s || u == t) continue;
l -= bi_hyp_q2(_(s, t), u);
}
l -= hyp_q2(_(s, t)); // q2[st, st]
return l;
}
void repcheck() {
if(!chk) return;
double sum;
assert_eq(len(rep2cluster), len(cluster2rep));
assert_eq(len(rep2cluster), len(cluster2slot));
assert(free_slot1 == -1 || slot2cluster[free_slot1] == -1);
assert(free_slot2 == -1 || slot2cluster[free_slot2] == -1);
FOR_SLOT(s) {
assert(contains(cluster2slot, slot2cluster[s]));
assert(cluster2slot[slot2cluster[s]] == s);
}
sum = 0.0;
FOR_SLOT(s) FOR_SLOT(t) {
double q = q2[s][t];
//logs(s << ' ' << t << ' ' << p2[s][t] << ' ' << p1[s] << ' ' << p1[t]);
assert_feq(q, p2q(p2[s][t], p1[s], p1[t]));
sum += q;
}
assert_feq(sum, curr_minfo);
FOR_SLOT(s) FOR_SLOT(t) {
if(!ORDER_VALID(s, t)) continue;
double l = L2[s][t];
assert(l + TOL >= 0);
assert_feq(l, compute_L2(s, t));
}
}
void dump() {
track("dump()", "", true);
FOR_SLOT(s) logs("p1[" << Slot(s) << "] = " << p1[s]);
FOR_SLOT(s) FOR_SLOT(t) logs("p2[" << Slot(s) << ", " << Slot(t) << "] = " << p2[s][t]);
FOR_SLOT(s) FOR_SLOT(t) logs("q2[" << Slot(s) << ", " << Slot(t) << "] = " << q2[s][t]);
FOR_SLOT(s) FOR_SLOT(t) logs("L2[" << Slot(s) << ", " << Slot(t) << "] = " << L2[s][t]);
logs("curr_minfo = " << curr_minfo);
}
// c is new cluster that has been just formed from a and b
// Want to compute L2[d, e]
// O(1) time.
double compute_L2_using_old(int s, int t, int u, int v, int w) {
assert(ORDER_VALID(v, w));
assert(v != u && w != u);
double l = L2[v][w];
// Remove old associations between v and w with s and t
l -= bi_q2(v, s) + bi_q2(w, s) + bi_q2(v, t) + bi_q2(w, t);
l += bi_hyp_q2(_(v, w), s) + bi_hyp_q2(_(v, w), t);
// Add new associations between v and w with u (ab)
l += bi_q2(v, u) + bi_q2(w, u);
l -= bi_hyp_q2(_(v, w), u);
return l;
}
// return q2
double set_p2_q2_from_count(int s, int t, int count) {
double pst = (double)count / (T-1); // p2[s,t]
double ps = p1[s];
double pt = p1[t];
double qst = p2q(pst, ps, pt); // q2[s,t]
p2[s][t] = pst;
q2[s][t] = qst;
return qst;
}
// O(N lg N) time.
// Sort the phrases by decreasing frequency and then set the initC most frequent
// phrases to be in the initial cluster.
bool phrase_freq_greater(int a, int b) {
return phrase_freqs[a] > phrase_freqs[b];
}
void create_initial_clusters() {
track("create_initial_clusters()", "", true);
freq_order_phrases.resize(N);
foridx(a, N) freq_order_phrases[a] = a;
logs("Sorting " << N << " phrases by frequency");
sort(freq_order_phrases.begin(), freq_order_phrases.end(), phrase_freq_greater);
// Initialize slots
logs("Selecting top " << initC << " phrases to be initial clusters");
nslots = initC+2;
slot2cluster.resize(nslots);
free_up_slots(initC, initC+1);
// Create the inital clusters.
phrase2rep.Init(N); // Init union-set: each phrase starts out in its own cluster
curr_minfo = 0.0;
foridx(s, initC) {
int a = freq_order_phrases[s];
put_cluster_in_slot(a, s);
rep2cluster[a] = a;
cluster2rep[a] = a;
}
// Allocate memory
p1.resize(nslots);
matrix_resize(p2, nslots, nslots);
matrix_resize(q2, nslots, nslots);
matrix_resize(L2, nslots, nslots);
FOR_SLOT(s) init_slot(s);
// Compute p1
FOR_SLOT(s) {
int a = slot2cluster[s];
p1[s] = (double)phrase_freqs[a] / T;
}
// Compute p2, q2, curr_minfo
FOR_SLOT(s) {
int a = slot2cluster[s];
IntIntMap dep_phrase_freqs; //dlm
// Find collocations of (a, b), where both are clusters.
forvec(_, int, b, dep_phrases[a])
if(contains(cluster2slot, b))
dep_phrase_freqs[b]++; //dlm
forcmap(int, b, int, count, IntIntMap, dep_phrase_freqs) { //dlm
int t = cluster2slot[b];
curr_minfo += set_p2_q2_from_count(s, t, count);
}
}
}
// Output the ncollocs bigrams that have the highest mutual information.
void output_best_collocations() {
if(collocs_file.empty()) return;
logs("Writing to " << collocs_file);
vector< pair<double, IntPair> > collocs;
FOR_SLOT(s) FOR_SLOT(t) {
collocs.push_back(pair<double, IntPair>(q2[s][t], _(slot2cluster[s], slot2cluster[t])));
}
ncollocs = min(ncollocs, len(collocs));
partial_sort(collocs.begin(), collocs.begin()+ncollocs, collocs.end(), greater< pair<double, IntPair> >());
ofstream out(collocs_file.c_str());
assert(out);
for(int i = 0; i < ncollocs; i++) {
const IntPair &ab = collocs[i].second;
out << collocs[i].first << '\t' << Phrase(ab.first) << '\t' << Phrase(ab.second) << endl;
}
}
// O(C^3) time.
void compute_L2() {
track("compute_L2()", "", true);
track_block("Computing L2", "", false)
FOR_SLOT(s) {
track_block("L2", "L2[" << Slot(s) << ", *]", false)
FOR_SLOT(t) {
if(!ORDER_VALID(s, t)) continue;
double l = L2[s][t] = compute_L2(s, t);
logs("L2[" << Slot(s) << "," << Slot(t) << "] = " << l << ", resulting minfo = " << curr_minfo-l);
}
}
}
// Add new phrase as a cluster.
// Compute its L2 between a and all existing clusters.
// O(C^2) time, O(T) time over all calls.
void incorporate_new_phrase(int a) {
track("incorporate_new_phrase()", Cluster(a), false);
int s = put_cluster_in_free_slot(a);
init_slot(s);
cluster2rep[a] = a;
rep2cluster[a] = a;
// Compute p1
p1[s] = (double)phrase_freqs[a] / T;
// Overall all calls: O(T)
// Compute p2, q2 between a and everything in clusters
IntIntMap freqs;
freqs.clear(); //dlm: deps
forvec(_, int, b, dep_phrases[a]) { //dlm
b = phrase2rep.GetRoot(b);
if(!contains(rep2cluster, b)) continue;
b = rep2cluster[b];
if(!contains(cluster2slot, b)) continue;
freqs[b]++;
}
forcmap(int, b, int, count, IntIntMap, freqs) {
curr_minfo += set_p2_q2_from_count(cluster2slot[a], cluster2slot[b], count);
logs(Cluster(a) << ' ' << Cluster(b) << ' ' << count << ' ' << set_p2_q2_from_count(cluster2slot[a], cluster2slot[b], count));
}
freqs.clear(); //dlm: heads
forvec(_, int, b, head_phrases[a]) { //dlm
b = phrase2rep.GetRoot(b);
if(!contains(rep2cluster, b)) continue;
b = rep2cluster[b];
if(!contains(cluster2slot, b)) continue;
freqs[b]++;
}
forcmap(int, b, int, count, IntIntMap, freqs) {
curr_minfo += set_p2_q2_from_count(cluster2slot[b], cluster2slot[a], count);
logs(Cluster(b) << ' ' << Cluster(a) << ' ' << count << ' ' << set_p2_q2_from_count(cluster2slot[b], cluster2slot[a], count));
}
curr_minfo -= q2[s][s]; // q2[s, s] was double-counted
// Update L2: O(C^2)
track_block("Update L2", "", false) {
FOR_SLOT(t) { // L2[s, *], L2[*, s]
if(s == t) continue;
int S, T;
if(ORDER_VALID(s, t)) S = s, T = t;
else S = t, T = s;
L2[S][T] = compute_L2(S, T);
logs("L2[" << Slot(S) << ", " << Slot(T) << "] = " << L2[S][T]);
}
FOR_SLOT(t) { // L2[not s, not s]
if(t == s) continue;
FOR_SLOT(u) {
if(u == s) continue;
if(!ORDER_VALID(t, u)) continue;
L2[t][u] += bi_q2(t, s) + bi_q2(u, s) - bi_hyp_q2(_(t, u), s);
}
}
}
//dump();
}
// O(C^2) time.
// Merge clusters a (in slot s) and b (in slot t) into c (in slot u).
void merge_clusters(int s, int t) {
assert(ORDER_VALID(s, t));
int a = slot2cluster[s];
int b = slot2cluster[t];
int c = curr_cluster_id++;
int u = put_cluster_in_free_slot(c);
free_up_slots(s, t);
// Record merge in the cluster tree
cluster_tree[c] = _(a, b);
curr_minfo -= L2[s][t];
// Update relationship between clusters and rep phrases
int A = cluster2rep[a];
int B = cluster2rep[b];
phrase2rep.Join(A, B);
int C = phrase2rep.GetRoot(A); // New rep phrase of cluster c (merged a and b)
track("Merging clusters", Cluster(a) << " and " << Cluster(b) << " into " << c << ", lost " << L2[s][t], false);
cluster2rep.erase(a);
cluster2rep.erase(b);
rep2cluster.erase(A);
rep2cluster.erase(B);
cluster2rep[c] = C;
rep2cluster[C] = c;
// Compute p1: O(1)
p1[u] = p1[s] + p1[t];
// Compute p2: O(C)
p2[u][u] = hyp_p2(_(s, t));
FOR_SLOT(v) {
if(v == u) continue;
p2[u][v] = hyp_p2(_(s, t), v);
p2[v][u] = hyp_p2(v, _(s, t));
}
// Compute q2: O(C)
q2[u][u] = hyp_q2(_(s, t));
FOR_SLOT(v) {
if(v == u) continue;
q2[u][v] = hyp_q2(_(s, t), v);
q2[v][u] = hyp_q2(v, _(s, t));
}
// Compute L2: O(C^2)
track_block("Compute L2", "", false) {
FOR_SLOT(v) {
FOR_SLOT(w) {
if(!ORDER_VALID(v, w)) continue;
double l;
if(v == u || w == u)
l = compute_L2(v, w);
else
l = compute_L2_using_old(s, t, u, v, w);
L2[v][w] = l;
logs("L2[" << Slot(v) << "," << Slot(w) << "] = " << l << ", resulting minfo = " << curr_minfo-l);
}
}
}
}
void merge_clusters(const IntPair &st) { merge_clusters(st.first, st.second); }
// MAKE SURE THIS IS NOT DEFINED FOR EFFICIENCY!
//#define PRINT_RANKED
// Merge the optimal pair of clusters that result in the least amount of lost
// mutual information.
// Return the slots.
// O(C^2) time.
IntPair find_opt_clusters_to_merge() {
track("find_opt_clusters_to_merge()", "", false);
int best_s = -1, best_t = -1;
double min_l = 1e30;
// Pick two clusters to merge
FOR_SLOT(s) {
FOR_SLOT(t) {
if(!ORDER_VALID(s, t)) continue;
// Consider merging clusters in slots s and t.
double l = L2[s][t];
#ifndef PRINT_RANKED
logs("If merge clusters " << Slot(s) << " and " << Slot(t) << ", lose " << l << ", resulting minfo = " << curr_minfo-l);
#endif
if(l < min_l) {
min_l = l;
best_s = s;
best_t = t;
}
}
}
#ifdef PRINT_RANKED
vector< pair<double, IntPair> > merges;
FOR_SLOT(s) {
FOR_SLOT(t) {
if(!ORDER_VALID(s, t)) continue;
merges.push_back(pair<double, IntPair>(L2[s][t], _(s, t)));
}
}
sort(merges.begin(), merges.end());
for(int i = 0; i < len(merges); i++) {
const IntPair &st = merges[i].second;
int s = st.first;
int t = st.second;
double l = merges[i].first;
logs("If merge clusters " << Slot(s) << " and " << Slot(t) << ", lose " << l << ", resulting minfo = " << curr_minfo-l);
}
#endif
return IntPair(best_s, best_t);
}
int phrase2cluster(int a) {
a = phrase2rep.GetRoot(a);
assert2(contains(rep2cluster, a), a);
return rep2cluster[a];
}
real kl_divergence(const IntIntMap &a_count2, int a_count1, const IntPairIntMap &count2,
const IntIntMap &count1, int ca, bool right) {
real kl = 0;
forcmap(int, cb, int, count, IntIntMap, a_count2) {
real p = (real)count/a_count1; // P(cb | a)
IntPair cab = right ? IntPair(ca, cb) : IntPair(cb, ca);
real q = (real)(count2.find(cab)->second)/count1.find(ca)->second; // P(cb | ca)
kl += p * log(p/q);
}
return kl;
}
// Motivation: each word has it's own identity (characterized by a
// distribution of its context). The cluster has a distribution over
// contexts. We can define an assignment of a word to a cluster by comparing
// this similarity.
// For each cluster, compute the cluster distributions.
void compute_cluster_distribs() {
track("compute_cluster_distribs()", "", true);
IntPairIntMap count2; // (cluster a, cluster b) -> number of times a-b appears
IntIntMap count1; // cluster a -> number of times a appears
// Compute cluster distributions
foridx(a, N) {
int ca = phrase2cluster(a);
forvec(_, int, b, dep_phrases[a]) {
int cb = phrase2cluster(b);
count2[IntPair(ca, cb)]++;
count1[ca]++;
count1[cb]++;
}
}
// For each word (phrase), compute its distribution
kl_map[0].resize(N);
kl_map[1].resize(N);
foridx(a, N) {
int ca = phrase2cluster(a);
IntIntMap a_count2;
int a_count1 = 0;
real kl;
//dlm: Head distribution
a_count2.clear(), a_count1 = 0;
forvec(_, int, b, head_phrases[a]) { //dlm
int cb = phrase2cluster(b);
a_count2[cb]++;
a_count1++;
}
kl = kl_map[0][a] = kl_divergence(a_count2, a_count1, count2, count1, ca, false);
//logs("Left-KL(" << Phrase(a) << " | " << Cluster(ca) << ") = " << kl);
//dlm: Dep distribution
a_count2.clear(), a_count1 = 0;
forvec(_, int, b, dep_phrases[a]) { //dlm
int cb = phrase2cluster(b);
a_count2[cb]++;
a_count1++;
}
kl = kl_map[1][a] = kl_divergence(a_count2, a_count1, count2, count1, ca, true);
//logs("Right-KL(" << Phrase(a) << " | " << Cluster(ca) << ") = " << kl);
}
}
int word2phrase(int a) {
IntVecIntMap::const_iterator it = vec2phrase.find(to_vector(1, a));
return it == vec2phrase.end() ? -1 : it->second;
}
// Read in from paths_file and fill in phrase2rep, rep2cluster
void convert_paths_to_map() {
track("convert_paths_to_map()", "", false);
assert(!paths_file.empty() && !map_file.empty());
// Read clusters
ifstream in(paths_file.c_str());
char buf[1024];
typedef unordered_map<string, StringVec, string_hf, string_eq> SSVMap;
SSVMap map;
while(in.getline(buf, sizeof(buf))) {
char *path = strtok(buf, "\t");
char *word = strtok(NULL, "\t");
assert(word && path);
map[path].push_back(word);
}
// Create the inital clusters.
phrase2rep.Init(N); // Init union-set: each phrase starts out in its own cluster
foridx(a, N) {
rep2cluster[a] = a;
cluster2rep[a] = a;
}
// Merge clusters
curr_cluster_id = N; // New cluster ids will start at N, after all the phrases.
forcmap(const string &, path, const StringVec &, words, SSVMap, map) {
int a = -1;
forvec(i, const string &, word, words) {
int b = word2phrase(db.lookup(word.c_str(), false, -1));
if(b == -1) continue;
if(a != -1) {
// Record merge in the cluster tree
int c = curr_cluster_id++;
cluster_tree[c] = _(a, b);
// Update relationship between clusters and rep phrases
int A = cluster2rep[a];
int B = cluster2rep[b];
phrase2rep.Join(A, B);
int C = phrase2rep.GetRoot(A); // New rep phrase of cluster c (merged a and b)
cluster2rep.erase(a);
cluster2rep.erase(b);
rep2cluster.erase(A);
rep2cluster.erase(B);
cluster2rep[c] = C;
rep2cluster[C] = c;
a = c;
}
else
a = b;
}
}
compute_cluster_distribs();
// Merge clusters
ofstream out(map_file.c_str());
forcmap(const string &, path, const StringVec &, words, SSVMap, map) {
forvec(_, const string &, word, words) {
int a = word2phrase(db.lookup(word.c_str(), false, -1));
if(a == -1) continue;
/*cout << a << ' ' << N << endl;
cout << Phrase(a) << endl;
cout << kl_map[0][a] << endl;
cout << kl_map[1][a] << endl;
cout << phrase_freqs[a] << endl;*/
out << Phrase(a) << '\t'
<< path << "-L " << kl_map[0][a] << '\t'
<< path << "-R " << kl_map[1][a] << '\t'
<< path << "-freq " << phrase_freqs[a] << endl;
}
}
}
void do_clustering() {
track("do_clustering()", "", true);
compute_L2();
repcheck();
curr_cluster_id = N; // New cluster ids will start at N, after all the phrases.
// Stage 1: Maintain initC clusters. For each of the phrases initC..N-1, make
// it into a new cluster. Then merge the optimal pair among the initC+1
// clusters.
// O(N*C^2) time.
track_block("Stage 1", "", false) {
mem_tracker.report_mem_usage();
for(int i = initC; i < len(freq_order_phrases); i++) { // Merge phrase new_a
int new_a = freq_order_phrases[i];
track("Merging phrase", i << '/' << N << ": " << Cluster(new_a), true);
logs("Mutual info: " << curr_minfo);
incorporate_new_phrase(new_a);
repcheck();
merge_clusters(find_opt_clusters_to_merge());
repcheck();
}
}
compute_cluster_distribs();
stage2_cluster_offset = curr_cluster_id;
// Stage 2: Merge the initC clusters in an hierarchical manner.
// O(C^3) time.
track_block("Stage 2", "", false) {
mem_tracker.report_mem_usage();
track_foridx(i, initC-1, "Clustering", true) {
logs("Mutual info of " << len(cluster2slot) << " clusters: " << curr_minfo);
merge_clusters(find_opt_clusters_to_merge());
repcheck();
}
}
logs("Done: 1 cluster left: mutual info = " << curr_minfo);
mem_tracker.report_mem_usage();
//assert(feq(curr_minfo, 0.0));
}
struct StackItem {
StackItem(int a, int path_i, char ch) : a(a), path_i(path_i), ch(ch) { }
int a;
int path_i;
char ch;
};