forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpiecewise_linear_function.cc
868 lines (777 loc) · 30.5 KB
/
piecewise_linear_function.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/util/piecewise_linear_function.h"
#include <algorithm>
#include <cstdint>
#include <functional>
#include <string>
#include <utility>
#include <vector>
#include "absl/algorithm/container.h"
#include "absl/container/btree_set.h"
#include "absl/container/inlined_vector.h"
#include "absl/log/check.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "ortools/base/dump_vars.h"
#include "ortools/base/logging.h"
#include "ortools/base/mathutil.h"
#include "ortools/base/types.h"
#include "ortools/util/saturated_arithmetic.h"
namespace operations_research {
namespace {
// If the x value is in the function's domain, it returns the index of the
// segment it belongs to. The segments are closed to the left and open to
// the right, hence if x is a common endpoint of two segments, it returns
// the index of the right segment. If the x value is not in the function's
// domain, it returns the index of the previous segment or kNotFound if x
// is before the first segment's start.
int FindSegmentIndex(const std::vector<PiecewiseSegment>& segments, int64_t x) {
if (segments.empty() || segments.front().start_x() > x) {
return PiecewiseLinearFunction::kNotFound;
}
// Returns an iterator pointing to the first segment whose the x coordinate
// of its start point which compares greater than the x value.
std::vector<PiecewiseSegment>::const_iterator position = std::upper_bound(
segments.begin(), segments.end(), x, PiecewiseSegment::FindComparator);
if (position == segments.end()) {
return segments.size() - 1;
}
position -= position->start_x() > x ? 1 : 0;
return position - segments.begin();
}
inline bool IsAtBounds(int64_t value) {
return value == kint64min || value == kint64max;
}
inline bool PointInsideRange(int64_t point, int64_t range_start,
int64_t range_end) {
return range_start <= point && range_end >= point;
}
// Checks whether two segments form a convex pair, i.e. they are continuous and
// the slope of the right is bigger than the slope of the left.
inline bool FormConvexPair(const PiecewiseSegment& left,
const PiecewiseSegment& right) {
return right.slope() >= left.slope() && right.start_x() == left.end_x() &&
right.start_y() == left.end_y();
}
uint64_t UnsignedCapAdd(uint64_t left, uint64_t right) {
return left > kuint64max - right ? kuint64max : left + right;
}
uint64_t UnsignedCapProd(uint64_t left, uint64_t right) {
if (right == 0) return 0;
if (left > kuint64max / right) return kuint64max;
return left * right;
}
} // namespace
// PiecewiseSegment
PiecewiseSegment::PiecewiseSegment(int64_t point_x, int64_t point_y,
int64_t slope, int64_t other_point_x)
: slope_(slope), reference_x_(point_x), reference_y_(point_y) {
start_x_ = std::min(point_x, other_point_x);
end_x_ = std::max(point_x, other_point_x);
intersection_y_ =
reference_x_ < 0 ? SafeValuePostReference(0) : SafeValuePreReference(0);
}
int64_t PiecewiseSegment::Value(int64_t x) const {
CHECK_GE(x, start_x_);
CHECK_LE(x, end_x_);
const int64_t span_x = CapSub(x, reference_x_);
if (span_x == kint64max) {
return SafeValuePostReference(x);
}
if (span_x == kint64min) {
return SafeValuePreReference(x);
}
const int64_t span_y = CapProd(slope_, span_x);
if (IsAtBounds(span_y)) {
if (span_x >= 0) {
return SafeValuePostReference(x);
} else {
return SafeValuePreReference(x);
}
}
const int64_t value = CapAdd(reference_y_, span_y);
if (IsAtBounds(value)) {
if (span_x >= 0) {
return SafeValuePostReference(x);
} else {
return SafeValuePreReference(x);
}
} else {
return value;
}
}
int64_t PiecewiseSegment::SafeValuePostReference(int64_t x) const {
DCHECK_GE(x, reference_x_);
const uint64_t span_x = static_cast<uint64_t>(x) - reference_x_;
if (span_x == 0) {
return reference_y_;
}
if (slope_ == 0) {
// Zero slope segment.
return reference_y_;
} else if (slope_ > 0) {
// Positive slope segment.
const uint64_t span_y = UnsignedCapProd(span_x, slope_);
if (reference_y_ == 0) {
return span_y > kint64max ? kint64max : span_y;
} else if (reference_y_ > 0) {
const uint64_t unsigned_sum = UnsignedCapAdd(reference_y_, span_y);
return unsigned_sum > kint64max ? kint64max
: static_cast<int64_t>(unsigned_sum);
} else {
const uint64_t opp_reference_y = -static_cast<uint64_t>(reference_y_);
if (span_y >= opp_reference_y) {
return span_y - opp_reference_y > kint64max
? kint64max
: static_cast<int64_t>(span_y - opp_reference_y);
} else {
return opp_reference_y - span_y > static_cast<uint64_t>(kint64max) + 1
? kint64min
: -static_cast<int64_t>(opp_reference_y - span_y);
}
}
} else {
// Negative slope segment.
const uint64_t span_y = UnsignedCapProd(span_x, -slope_);
if (reference_y_ == 0) {
return span_y > kint64max ? kint64min : -static_cast<int64_t>(span_y);
} else if (reference_y_ < 0) {
const uint64_t opp_reference_y = -static_cast<uint64_t>(reference_y_);
const uint64_t opp_unsigned_sum = UnsignedCapAdd(opp_reference_y, span_y);
return opp_unsigned_sum > kint64max
? kint64min
: -static_cast<int64_t>(opp_unsigned_sum);
} else {
if (reference_y_ >= span_y) {
return reference_y_ - span_y > kint64max
? kint64max
: static_cast<int64_t>(reference_y_ - span_y);
} else {
return span_y - reference_y_ > static_cast<uint64_t>(kint64max) + 1
? kint64min
: -static_cast<int64_t>(span_y - reference_y_);
}
}
}
}
int64_t PiecewiseSegment::SafeValuePreReference(int64_t x) const {
DCHECK_LE(x, reference_x_);
const uint64_t span_x = static_cast<uint64_t>(reference_x_) - x;
if (slope_ == 0) {
// Zero slope segment.
return reference_y_;
} else if (slope_ > 0) {
// Positive slope segment.
const uint64_t span_y = UnsignedCapProd(span_x, slope_);
if (reference_y_ == 0) {
return span_y > kint64max ? kint64min : -static_cast<int64_t>(span_y);
} else if (reference_y_ > 0) {
if (reference_y_ >= span_y) {
return reference_y_ - span_y > kint64max
? kint64max
: static_cast<int64_t>(reference_y_ - span_y);
} else {
return span_y - reference_y_ > static_cast<uint64_t>(kint64max) + 1
? kint64min
: -static_cast<uint64_t>(span_y - reference_y_);
}
} else {
const uint64_t opp_reference_y = -static_cast<uint64_t>(reference_y_);
const uint64_t opp_unsigned_sum = UnsignedCapAdd(opp_reference_y, span_y);
return opp_unsigned_sum > kint64max
? kint64min
: -static_cast<uint64_t>(opp_unsigned_sum);
}
} else {
// Negative slope segment.
const uint64_t span_y = UnsignedCapProd(span_x, -slope_);
if (reference_y_ == 0) {
return span_y > kint64max ? kint64max : span_y;
} else if (reference_y_ < 0) {
const uint64_t opp_reference_y = -static_cast<uint64_t>(reference_y_);
if (span_y >= opp_reference_y) {
return span_y - opp_reference_y > kint64max
? kint64max
: static_cast<int64_t>(span_y - opp_reference_y);
} else {
return opp_reference_y - span_y > static_cast<uint64_t>(kint64max) + 1
? kint64min
: -static_cast<uint64_t>(opp_reference_y - span_y);
}
} else {
const uint64_t unsigned_sum = UnsignedCapAdd(reference_y_, span_y);
return unsigned_sum > kint64max ? kint64max
: static_cast<int64_t>(unsigned_sum);
}
}
}
bool PiecewiseSegment::SortComparator(const PiecewiseSegment& segment1,
const PiecewiseSegment& segment2) {
return segment1.start_x_ < segment2.start_x_;
}
bool PiecewiseSegment::FindComparator(int64_t point,
const PiecewiseSegment& segment) {
return point == kint64min || point < segment.start_x();
}
void PiecewiseSegment::ExpandEnd(int64_t end_x) {
end_x_ = std::max(end_x_, end_x);
}
void PiecewiseSegment::AddConstantToX(int64_t constant) {
if (IsAtBounds(CapAdd(reference_x_, constant))) {
LOG(ERROR) << "Segment Overflow: " << DebugString();
return;
}
start_x_ = CapAdd(start_x_, constant);
end_x_ = CapAdd(end_x_, constant);
reference_x_ = CapAdd(reference_x_, constant);
}
void PiecewiseSegment::AddConstantToY(int64_t constant) {
if (IsAtBounds(CapAdd(reference_y_, constant))) {
LOG(ERROR) << "Segment Overflow: " << DebugString();
return;
}
reference_y_ = CapAdd(reference_y_, constant);
}
std::string PiecewiseSegment::DebugString() const {
std::string result = absl::StrFormat(
"PiecewiseSegment(<start: (%d, %d), end: (%d, %d), "
"reference: (%d, %d), slope = %d>)",
start_x_, Value(start_x_), end_x_, Value(end_x_), reference_x_,
reference_y_, slope_);
return result;
}
// PiecewiseLinearFunction
const int PiecewiseLinearFunction::kNotFound = -1;
PiecewiseLinearFunction::PiecewiseLinearFunction(
std::vector<PiecewiseSegment> segments)
: is_modified_(true),
is_convex_(false),
is_non_decreasing_(false),
is_non_increasing_(false) {
// Sort the segments in ascending order of start.
std::sort(segments.begin(), segments.end(), PiecewiseSegment::SortComparator);
// Check for overlapping segments.
for (int i = 0; i < segments.size() - 1; ++i) {
if (segments[i].end_x() > segments[i + 1].start_x()) {
LOG(FATAL) << "Overlapping segments: " << segments[i].DebugString()
<< " & " << segments[i + 1].DebugString();
}
}
// Construct the piecewise linear function.
for (const auto& segment : segments) {
InsertSegment(segment);
}
}
PiecewiseLinearFunction* PiecewiseLinearFunction::CreatePiecewiseLinearFunction(
std::vector<int64_t> points_x, std::vector<int64_t> points_y,
std::vector<int64_t> slopes, std::vector<int64_t> other_points_x) {
CHECK_EQ(points_x.size(), points_y.size());
CHECK_EQ(points_x.size(), other_points_x.size());
CHECK_EQ(points_x.size(), slopes.size());
CHECK_GT(points_x.size(), 0);
std::vector<PiecewiseSegment> segments;
for (int i = 0; i < points_x.size(); ++i) {
segments.push_back(PiecewiseSegment(points_x[i], points_y[i], slopes[i],
other_points_x[i]));
}
return new PiecewiseLinearFunction(std::move(segments));
}
PiecewiseLinearFunction* PiecewiseLinearFunction::CreateStepFunction(
std::vector<int64_t> points_x, std::vector<int64_t> points_y,
std::vector<int64_t> other_points_x) {
CHECK_EQ(points_x.size(), points_y.size());
CHECK_EQ(points_x.size(), other_points_x.size());
CHECK_GT(points_x.size(), 0);
std::vector<PiecewiseSegment> segments;
for (int i = 0; i < points_x.size(); ++i) {
segments.push_back(
PiecewiseSegment(points_x[i], points_y[i], 0, other_points_x[i]));
}
return new PiecewiseLinearFunction(std::move(segments));
}
PiecewiseLinearFunction* PiecewiseLinearFunction::CreateFullDomainFunction(
int64_t initial_level, std::vector<int64_t> points_x,
std::vector<int64_t> slopes) {
CHECK_EQ(points_x.size(), slopes.size() - 1);
CHECK_GT(points_x.size(), 0);
int64_t level = initial_level;
std::vector<PiecewiseSegment> segments;
PiecewiseSegment segment =
PiecewiseSegment(points_x[0], level, slopes[0], kint64min);
segments.push_back(segment);
level = segment.Value(points_x[0]);
for (int i = 1; i < points_x.size(); ++i) {
PiecewiseSegment segment =
PiecewiseSegment(points_x[i - 1], level, slopes[i], points_x[i]);
segments.push_back(segment);
level = segment.Value(points_x[i]);
}
segments.push_back(
PiecewiseSegment(points_x.back(), level, slopes.back(), kint64max));
return new PiecewiseLinearFunction(std::move(segments));
}
PiecewiseLinearFunction* PiecewiseLinearFunction::CreateOneSegmentFunction(
int64_t point_x, int64_t point_y, int64_t slope, int64_t other_point_x) {
// Visual studio 2013: We cannot inline the vector in the
// PiecewiseLinearFunction ctor.
std::vector<PiecewiseSegment> segments = {
PiecewiseSegment(point_x, point_y, slope, other_point_x)};
return new PiecewiseLinearFunction(std::move(segments));
}
PiecewiseLinearFunction* PiecewiseLinearFunction::CreateRightRayFunction(
int64_t point_x, int64_t point_y, int64_t slope) {
std::vector<PiecewiseSegment> segments = {
PiecewiseSegment(point_x, point_y, slope, kint64max)};
return new PiecewiseLinearFunction(std::move(segments));
}
PiecewiseLinearFunction* PiecewiseLinearFunction::CreateLeftRayFunction(
int64_t point_x, int64_t point_y, int64_t slope) {
std::vector<PiecewiseSegment> segments = {
PiecewiseSegment(point_x, point_y, slope, kint64min)};
return new PiecewiseLinearFunction(std::move(segments));
}
PiecewiseLinearFunction* PiecewiseLinearFunction::CreateFixedChargeFunction(
int64_t slope, int64_t value) {
std::vector<PiecewiseSegment> segments = {
PiecewiseSegment(0, 0, 0, kint64min),
PiecewiseSegment(0, value, slope, kint64max)};
CHECK_GE(slope, 0);
CHECK_GE(value, 0);
return new PiecewiseLinearFunction(std::move(segments));
}
PiecewiseLinearFunction* PiecewiseLinearFunction::CreateEarlyTardyFunction(
int64_t reference, int64_t earliness_slope, int64_t tardiness_slope) {
std::vector<PiecewiseSegment> segments = {
PiecewiseSegment(reference, 0, -earliness_slope, kint64min),
PiecewiseSegment(reference, 0, tardiness_slope, kint64max)};
CHECK_GE(earliness_slope, 0);
CHECK_GE(tardiness_slope, 0);
return new PiecewiseLinearFunction(std::move(segments));
}
PiecewiseLinearFunction*
PiecewiseLinearFunction::CreateEarlyTardyFunctionWithSlack(
int64_t early_slack, int64_t late_slack, int64_t earliness_slope,
int64_t tardiness_slope) {
std::vector<PiecewiseSegment> segments = {
PiecewiseSegment(early_slack, 0, -earliness_slope, kint64min),
PiecewiseSegment(early_slack, 0, 0, late_slack),
PiecewiseSegment(late_slack, 0, tardiness_slope, kint64max)};
CHECK_GE(earliness_slope, 0);
CHECK_GE(tardiness_slope, 0);
return new PiecewiseLinearFunction(std::move(segments));
}
bool PiecewiseLinearFunction::InDomain(int64_t x) const {
int index = FindSegmentIndex(segments_, x);
if (index == kNotFound) {
return false;
}
if (segments_[index].end_x() < x) {
return false;
}
return true;
}
bool PiecewiseLinearFunction::IsConvex() const {
const_cast<PiecewiseLinearFunction*>(this)->UpdateStatus();
return is_convex_;
}
bool PiecewiseLinearFunction::IsNonDecreasing() const {
const_cast<PiecewiseLinearFunction*>(this)->UpdateStatus();
return is_non_decreasing_;
}
bool PiecewiseLinearFunction::IsNonIncreasing() const {
const_cast<PiecewiseLinearFunction*>(this)->UpdateStatus();
return is_non_increasing_;
}
int64_t PiecewiseLinearFunction::Value(int64_t x) const {
if (!InDomain(x)) {
// TODO(user): Allow the user to specify the
// undefined value and use kint64max as the default.
return kint64max;
}
const int index = FindSegmentIndex(segments_, x);
return segments_[index].Value(x);
}
int64_t PiecewiseLinearFunction::GetMaximum(int64_t range_start,
int64_t range_end) const {
if (IsNonDecreasing() && InDomain(range_end)) {
return Value(range_end);
} else if (IsNonIncreasing() && InDomain(range_start)) {
return Value(range_start);
}
int start_segment = -1;
int end_segment = -1;
if (!FindSegmentIndicesFromRange(range_start, range_end, &start_segment,
&end_segment)) {
return kint64max;
}
CHECK_GE(end_segment, start_segment);
int64_t range_maximum = kint64min;
if (InDomain(range_start)) {
range_maximum = std::max(Value(range_start), range_maximum);
}
if (InDomain(range_end)) {
range_maximum = std::max(Value(range_end), range_maximum);
}
for (int i = std::max(0, start_segment); i <= end_segment; ++i) {
if (PointInsideRange(segments_[i].start_x(), range_start, range_end)) {
range_maximum = std::max(range_maximum, segments_[i].start_y());
}
if (PointInsideRange(segments_[i].end_x(), range_start, range_end)) {
range_maximum = std::max(range_maximum, segments_[i].end_y());
}
}
return range_maximum;
}
int64_t PiecewiseLinearFunction::GetMinimum(int64_t range_start,
int64_t range_end) const {
if (IsNonDecreasing() && InDomain(range_start)) {
return Value(range_start);
} else if (IsNonIncreasing() && InDomain(range_end)) {
return Value(range_end);
}
int start_segment = -1;
int end_segment = -1;
if (!FindSegmentIndicesFromRange(range_start, range_end, &start_segment,
&end_segment)) {
return kint64max;
}
CHECK_GE(end_segment, start_segment);
int64_t range_minimum = kint64max;
if (InDomain(range_start)) {
range_minimum = std::min(Value(range_start), range_minimum);
}
if (InDomain(range_end)) {
range_minimum = std::min(Value(range_end), range_minimum);
}
for (int i = std::max(0, start_segment); i <= end_segment; ++i) {
if (PointInsideRange(segments_[i].start_x(), range_start, range_end)) {
range_minimum = std::min(range_minimum, segments_[i].start_y());
}
if (PointInsideRange(segments_[i].end_x(), range_start, range_end)) {
range_minimum = std::min(range_minimum, segments_[i].end_y());
}
}
return range_minimum;
}
int64_t PiecewiseLinearFunction::GetMaximum() const {
return GetMaximum(segments_.front().start_x(), segments_.back().end_x());
}
int64_t PiecewiseLinearFunction::GetMinimum() const {
return GetMinimum(segments_.front().start_x(), segments_.back().end_x());
}
std::pair<int64_t, int64_t>
PiecewiseLinearFunction::GetSmallestRangeGreaterThanValue(int64_t range_start,
int64_t range_end,
int64_t value) const {
return GetSmallestRangeInValueRange(range_start, range_end, value, kint64max);
}
std::pair<int64_t, int64_t>
PiecewiseLinearFunction::GetSmallestRangeLessThanValue(int64_t range_start,
int64_t range_end,
int64_t value) const {
return GetSmallestRangeInValueRange(range_start, range_end, kint64min, value);
}
namespace {
std::pair<int64_t, int64_t> ComputeXFromY(int64_t start_x, int64_t start_y,
int64_t slope, int64_t y) {
DCHECK_NE(slope, 0);
const int64_t delta_y = CapSub(y, start_y);
const int64_t delta_x = delta_y / slope;
if ((delta_y >= 0 && slope >= 0) || (delta_y <= 0 && slope <= 0)) {
const int64_t delta_x_down = delta_x;
const int64_t delta_x_up = delta_y % slope == 0 ? delta_x : delta_x + 1;
return {delta_x_down + start_x, delta_x_up + start_x};
} else {
const int64_t delta_x_down = delta_y % slope == 0 ? delta_x : delta_x - 1;
const int64_t delta_x_up = -(-delta_y / slope);
return {delta_x_down + start_x, delta_x_up + start_x};
}
}
std::pair<int64_t, int64_t> GetRangeInValueRange(int64_t start_x, int64_t end_x,
int64_t start_y, int64_t end_y,
int64_t slope,
int64_t value_min,
int64_t value_max) {
if ((start_y > value_max && end_y > value_max) ||
(start_y < value_min && end_y < value_min)) {
return {kint64max, kint64min};
}
std::pair<int64_t, int64_t> x_range_max = {kint64max, kint64min};
if (start_y <= value_max && end_y <= value_max) {
x_range_max = {start_x, end_x};
} else if (start_y <= value_max || end_y <= value_max) {
const auto x = start_x == kint64min
? ComputeXFromY(end_x, end_y, slope, value_max)
: ComputeXFromY(start_x, start_y, slope, value_max);
if (end_y <= value_max) {
x_range_max = {x.second, end_x};
} else {
x_range_max = {start_x, x.first};
}
}
std::pair<int64_t, int64_t> x_range_min = {kint64max, kint64min};
if (start_y >= value_min && end_y >= value_min) {
x_range_min = {start_x, end_x};
} else if (start_y >= value_min || end_y >= value_min) {
const auto x = start_x == kint64min
? ComputeXFromY(end_x, end_y, slope, value_min)
: ComputeXFromY(start_x, start_y, slope, value_min);
if (end_y >= value_min) {
x_range_min = {x.second, end_x};
} else {
x_range_min = {start_x, x.first};
}
}
if (x_range_min.first > x_range_max.second ||
x_range_max.first > x_range_min.second) {
return {kint64max, kint64min};
}
return {std::max(x_range_min.first, x_range_max.first),
std::min(x_range_min.second, x_range_max.second)};
}
} // namespace
std::pair<int64_t, int64_t>
PiecewiseLinearFunction::GetSmallestRangeInValueRange(int64_t range_start,
int64_t range_end,
int64_t value_min,
int64_t value_max) const {
int64_t reduced_range_start = kint64max;
int64_t reduced_range_end = kint64min;
int start_segment = -1;
int end_segment = -1;
if (!FindSegmentIndicesFromRange(range_start, range_end, &start_segment,
&end_segment)) {
return {reduced_range_start, reduced_range_end};
}
for (int i = std::max(0, start_segment); i <= end_segment; ++i) {
const auto& segment = segments_[i];
const int64_t start_x = std::max(range_start, segment.start_x());
const int64_t end_x = std::min(range_end, segment.end_x());
const int64_t start_y = segment.Value(start_x);
const int64_t end_y = segment.Value(end_x);
const std::pair<int64_t, int64_t> range = GetRangeInValueRange(
start_x, end_x, start_y, end_y, segment.slope(), value_min, value_max);
reduced_range_start = std::min(reduced_range_start, range.first);
reduced_range_end = std::max(reduced_range_end, range.second);
}
return {reduced_range_start, reduced_range_end};
}
void PiecewiseLinearFunction::AddConstantToX(int64_t constant) {
is_modified_ = true;
for (int i = 0; i < segments_.size(); ++i) {
segments_[i].AddConstantToX(constant);
}
}
void PiecewiseLinearFunction::AddConstantToY(int64_t constant) {
is_modified_ = true;
for (int i = 0; i < segments_.size(); ++i) {
segments_[i].AddConstantToY(constant);
}
}
void PiecewiseLinearFunction::Add(const PiecewiseLinearFunction& other) {
Operation(other, [](int64_t a, int64_t b) { return CapAdd(a, b); });
}
void PiecewiseLinearFunction::Subtract(const PiecewiseLinearFunction& other) {
Operation(other, [](int64_t a, int64_t b) { return CapSub(a, b); });
}
std::vector<PiecewiseLinearFunction*>
PiecewiseLinearFunction::DecomposeToConvexFunctions() const {
CHECK_GE(segments_.size(), 1);
if (IsConvex()) {
return {new PiecewiseLinearFunction(segments_)};
}
std::vector<PiecewiseLinearFunction*> convex_functions;
std::vector<PiecewiseSegment> convex_segments;
for (const PiecewiseSegment& segment : segments_) {
if (convex_segments.empty()) {
convex_segments.push_back(segment);
continue;
}
const PiecewiseSegment& last = convex_segments.back();
if (FormConvexPair(last, segment)) {
// The segment belongs to the convex sub-function formulated up to now.
convex_segments.push_back(segment);
} else {
convex_functions.push_back(new PiecewiseLinearFunction(convex_segments));
convex_segments.clear();
convex_segments.push_back(segment);
}
}
if (!convex_segments.empty()) {
convex_functions.push_back(
new PiecewiseLinearFunction(std::move(convex_segments)));
}
return convex_functions;
}
std::string PiecewiseLinearFunction::DebugString() const {
std::string result = "PiecewiseLinearFunction(";
for (int i = 0; i < segments_.size(); ++i) {
result.append(segments_[i].DebugString());
result.append(" ");
}
return result;
}
void PiecewiseLinearFunction::InsertSegment(const PiecewiseSegment& segment) {
is_modified_ = true;
// No intersection.
if (segments_.empty() || segments_.back().end_x() < segment.start_x()) {
segments_.push_back(segment);
return;
}
// Common endpoint.
if (segments_.back().end_x() == segment.start_x()) {
if (segments_.back().end_y() == segment.start_y() &&
segments_.back().slope() == segment.slope()) {
segments_.back().ExpandEnd(segment.end_x());
return;
}
segments_.push_back(segment);
}
}
void PiecewiseLinearFunction::Operation(
const PiecewiseLinearFunction& other,
const std::function<int64_t(int64_t, int64_t)>& operation) {
is_modified_ = true;
std::vector<PiecewiseSegment> own_segments;
const std::vector<PiecewiseSegment>& other_segments = other.segments();
own_segments.swap(segments_);
absl::btree_set<int64_t> start_x_points;
for (int i = 0; i < own_segments.size(); ++i) {
start_x_points.insert(own_segments[i].start_x());
}
for (int i = 0; i < other_segments.size(); ++i) {
start_x_points.insert(other_segments[i].start_x());
}
for (int64_t start_x : start_x_points) {
const int own_index = FindSegmentIndex(own_segments, start_x);
const int other_index = FindSegmentIndex(other_segments, start_x);
if (own_index >= 0 && other_index >= 0) {
const PiecewiseSegment& own_segment = own_segments[own_index];
const PiecewiseSegment& other_segment = other_segments[other_index];
const int64_t end_x =
std::min(own_segment.end_x(), other_segment.end_x());
const int64_t start_y =
operation(own_segment.Value(start_x), other_segment.Value(start_x));
const int64_t end_y =
operation(own_segment.Value(end_x), other_segment.Value(end_x));
const int64_t slope =
operation(own_segment.slope(), other_segment.slope());
int64_t point_x, point_y, other_point_x;
if (IsAtBounds(start_y)) {
point_x = end_x;
point_y = end_y;
other_point_x = start_x;
} else {
point_x = start_x;
point_y = start_y;
other_point_x = end_x;
}
InsertSegment(PiecewiseSegment(point_x, point_y, slope, other_point_x));
}
}
}
bool PiecewiseLinearFunction::FindSegmentIndicesFromRange(
int64_t range_start, int64_t range_end, int* start_segment,
int* end_segment) const {
*start_segment = FindSegmentIndex(segments_, range_start);
*end_segment = FindSegmentIndex(segments_, range_end);
if (*start_segment == *end_segment) {
if (*start_segment < 0) {
// Given range before function's domain start.
return false;
}
if (segments_[*start_segment].end_x() < range_start) {
// Given range in a hole of the function's domain.
return false;
}
}
return true;
}
bool PiecewiseLinearFunction::IsConvexInternal() const {
for (int i = 1; i < segments_.size(); ++i) {
if (!FormConvexPair(segments_[i - 1], segments_[i])) {
return false;
}
}
return true;
}
bool PiecewiseLinearFunction::IsNonDecreasingInternal() const {
int64_t value = kint64min;
for (const auto& segment : segments_) {
const int64_t start_y = segment.start_y();
const int64_t end_y = segment.end_y();
if (end_y < start_y || start_y < value) return false;
value = end_y;
}
return true;
}
bool PiecewiseLinearFunction::IsNonIncreasingInternal() const {
int64_t value = kint64max;
for (const auto& segment : segments_) {
const int64_t start_y = segment.start_y();
const int64_t end_y = segment.end_y();
if (end_y > start_y || start_y > value) return false;
value = end_y;
}
return true;
}
// FloatSlopePiecewiseLinearFunction
const int FloatSlopePiecewiseLinearFunction::kNoValue = -1;
FloatSlopePiecewiseLinearFunction::FloatSlopePiecewiseLinearFunction(
absl::InlinedVector<int64_t, 8> x_anchors,
absl::InlinedVector<int64_t, 8> y_anchors)
: x_anchors_(std::move(x_anchors)), y_anchors_(std::move(y_anchors)) {
DCHECK(absl::c_is_sorted(x_anchors_));
DCHECK_EQ(x_anchors_.size(), y_anchors_.size());
DCHECK_NE(x_anchors_.size(), 1);
}
std::string FloatSlopePiecewiseLinearFunction::DebugString(
absl::string_view line_prefix) const {
if (x_anchors_.size() <= 10) {
return "{ " + DUMP_VARS(x_anchors_, y_anchors_).str() + "}";
}
return absl::StrFormat("{\n%s%s\n%s%s\n}", line_prefix,
DUMP_VARS(x_anchors_).str(), line_prefix,
DUMP_VARS(y_anchors_).str());
}
int64_t FloatSlopePiecewiseLinearFunction::ComputeInBoundsValue(
int64_t x) const {
const int segment_index = GetSegmentIndex(x);
if (segment_index == kNoValue) return kNoValue;
return GetValueOnSegment(x, segment_index);
}
int64_t FloatSlopePiecewiseLinearFunction::ComputeConvexValue(int64_t x) const {
if (x_anchors_.empty()) return kNoValue;
int segment_index = kNoValue;
if (x <= x_anchors_[0]) {
segment_index = 0;
} else if (x >= x_anchors_.back()) {
segment_index = x_anchors_.size() - 2;
} else {
segment_index = GetSegmentIndex(x);
}
return GetValueOnSegment(x, segment_index);
}
int64_t FloatSlopePiecewiseLinearFunction::GetValueOnSegment(
int64_t x, int segment_index) const {
DCHECK_GE(segment_index, 0);
DCHECK_LE(segment_index, x_anchors_.size() - 2);
const double slope =
static_cast<double>(y_anchors_[segment_index + 1] -
y_anchors_[segment_index]) /
(x_anchors_[segment_index + 1] - x_anchors_[segment_index]);
return MathUtil::Round<int64_t>(slope * (x - x_anchors_[segment_index]) +
y_anchors_[segment_index]);
}
} // namespace operations_research