forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
permutation.h
242 lines (209 loc) · 8.06 KB
/
permutation.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_LP_DATA_PERMUTATION_H_
#define OR_TOOLS_LP_DATA_PERMUTATION_H_
#include "absl/random/random.h"
#include "ortools/base/strong_vector.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/util/return_macros.h"
namespace operations_research {
namespace glop {
// Permutation<IndexType> is a template class for storing and using
// row- and column- permutations, when instantiated with RowIndex and ColIndex
// respectively.
//
// By a row permutation we mean a permutation that maps the row 'i' of a matrix
// (or column vector) to the row 'permutation[i]' and in a similar fashion by a
// column permutation we mean a permutation that maps the column 'j' of a matrix
// (or row vector) to the column 'permutation[j]'.
//
// A permutation can be represented as a matrix P, but it gets a bit tricky
// here: P.x permutes the rows of x according to the permutation P but x^T.P
// permutes the columns of x^T (a row vector) using the INVERSE permutation.
// That is, to permute the columns of x^T using P, one has to compute
// x^T.P^{-1} but P^{-1} = P^T so the notation is consistent: If P.x permutes x,
// then (P.x)^T = x^T.P^T permutes x^T with the same permutation.
//
// So to be clear, if P and Q are permutation matrices, the matrix P.A.Q^{-1}
// is the image of A through the row permutation P and column permutation Q.
template <typename IndexType>
class Permutation {
public:
Permutation() : perm_() {}
explicit Permutation(IndexType size) : perm_(size.value(), IndexType(0)) {}
// This type is neither copyable nor movable.
Permutation(const Permutation&) = delete;
Permutation& operator=(const Permutation&) = delete;
IndexType size() const { return IndexType(perm_.size()); }
bool empty() const { return perm_.empty(); }
void clear() { perm_.clear(); }
void resize(IndexType size, IndexType value) {
perm_.resize(size.value(), value);
}
void assign(IndexType size, IndexType value) {
perm_.assign(size.value(), value);
}
IndexType& operator[](IndexType i) { return perm_[i]; }
IndexType operator[](IndexType i) const { return perm_[i]; }
// Populates the calling object with the inverse permutation of the parameter
// inverse.
void PopulateFromInverse(const Permutation& inverse);
// Populates the calling object with the identity permutation.
void PopulateFromIdentity();
// Populates the calling object with a random permutation.
void PopulateRandomly();
// Returns true if the calling object contains a permutation, false otherwise.
bool Check() const;
// Returns the signature of a permutation in O(n), where n is the permutation
// size.
// The signature of a permutation is the product of the signature of
// the cycles defining the permutation.
// The signature of an odd cycle is 1, while the signature of an even cycle
// is -1. (Remembering hint: the signature of a swap (a 2-cycle) is -1.)
int ComputeSignature() const;
private:
util_intops::StrongVector<IndexType, IndexType> perm_;
};
typedef Permutation<RowIndex> RowPermutation;
typedef Permutation<ColIndex> ColumnPermutation;
// Applies the permutation perm to the vector b. Overwrites result to store
// the result.
// TODO(user): Try to restrict this method to using the same integer type in
// the permutation and for the vector indices, i.e.
// IndexType == ITIVectorType::IndexType. Some client code will need to be
// refactored.
template <typename IndexType, typename ITIVectorType>
void ApplyPermutation(const Permutation<IndexType>& perm,
const ITIVectorType& b, ITIVectorType* result);
// Applies the inverse of perm to the vector b. Overwrites result to store
// the result.
template <typename IndexType, typename ITIVectorType>
void ApplyInversePermutation(const Permutation<IndexType>& perm,
const ITIVectorType& b, ITIVectorType* result);
// Specialization of ApplyPermutation(): apply a column permutation to a
// row-indexed vector v.
template <typename RowIndexedVector>
void ApplyColumnPermutationToRowIndexedVector(
const Permutation<ColIndex>& col_perm, RowIndexedVector* v) {
RowIndexedVector temp_v = *v;
ApplyPermutation(col_perm, temp_v, v);
}
template <typename RowIndexedVector>
void ApplyColumnPermutationToRowIndexedVector(
const Permutation<ColIndex>& col_perm, RowIndexedVector* v,
RowIndexedVector* tmp) {
ApplyPermutation(col_perm, *v, tmp);
std::swap(*tmp, *v);
}
// --------------------------------------------------------
// Implementation
// --------------------------------------------------------
template <typename IndexType>
void Permutation<IndexType>::PopulateFromInverse(const Permutation& inverse) {
const size_t size = inverse.perm_.size();
perm_.resize(size);
for (IndexType i(0); i < size; ++i) {
perm_[inverse[i]] = i;
}
}
template <typename IndexType>
void Permutation<IndexType>::PopulateFromIdentity() {
const size_t size = perm_.size();
perm_.resize(size, IndexType(0));
for (IndexType i(0); i < size; ++i) {
perm_[i] = i;
}
}
template <typename IndexType>
void Permutation<IndexType>::PopulateRandomly() {
PopulateFromIdentity();
std::shuffle(perm_.begin(), perm_.end(), absl::BitGen());
}
template <typename IndexType>
bool Permutation<IndexType>::Check() const {
const size_t size = perm_.size();
util_intops::StrongVector<IndexType, bool> visited(size, false);
for (IndexType i(0); i < size; ++i) {
if (perm_[i] < 0 || perm_[i] >= size) {
return false;
}
visited[perm_[i]] = true;
}
for (IndexType i(0); i < size; ++i) {
if (!visited[i]) {
return false;
}
}
return true;
}
template <typename IndexType>
int Permutation<IndexType>::ComputeSignature() const {
const size_t size = perm_.size();
util_intops::StrongVector<IndexType, bool> visited(size);
DCHECK(Check());
int signature = 1;
for (IndexType i(0); i < size; ++i) {
if (!visited[i]) {
int cycle_size = 0;
IndexType j = i;
do {
j = perm_[j];
visited[j] = true;
++cycle_size;
} while (j != i);
if ((cycle_size & 1) == 0) {
signature = -signature;
}
}
}
return signature;
}
template <typename IndexType, typename ITIVectorType>
void ApplyPermutation(const Permutation<IndexType>& perm,
const ITIVectorType& b, ITIVectorType* result) {
RETURN_IF_NULL(result);
const IndexType size(perm.size());
if (size == 0) {
// Empty size means identity.
*result = b;
return;
}
DCHECK_EQ(size.value(), b.size().value());
result->resize(b.size(), /*whatever junk value*/ b.back());
for (IndexType i(0); i < size; ++i) {
const typename ITIVectorType::IndexType ith_index(i.value());
const typename ITIVectorType::IndexType permuted(perm[i].value());
(*result)[permuted] = b[ith_index];
}
}
template <typename IndexType, typename ITIVectorType>
void ApplyInversePermutation(const Permutation<IndexType>& perm,
const ITIVectorType& b, ITIVectorType* result) {
RETURN_IF_NULL(result);
const IndexType size(perm.size());
if (size == 0) {
// Empty size means identity.
*result = b;
return;
}
DCHECK_EQ(size.value(), b.size().value());
result->resize(b.size(), /*whatever junk value*/ b.back());
for (IndexType i(0); i < size; ++i) {
const typename ITIVectorType::IndexType ith_index(i.value());
const typename ITIVectorType::IndexType permuted(perm[i].value());
(*result)[ith_index] = b[permuted];
}
}
} // namespace glop
} // namespace operations_research
#endif // OR_TOOLS_LP_DATA_PERMUTATION_H_