forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathminimum_spanning_tree_test.cc
324 lines (302 loc) · 11.4 KB
/
minimum_spanning_tree_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/graph/minimum_spanning_tree.h"
#include <algorithm>
#include <cstdint>
#include <limits>
#include <random>
#include <vector>
#include "absl/base/macros.h"
#include "absl/random/distributions.h"
#include "absl/types/span.h"
#include "benchmark/benchmark.h"
#include "gtest/gtest.h"
#include "ortools/base/gmock.h"
#include "ortools/base/types.h"
#include "ortools/graph/graph.h"
namespace operations_research {
namespace {
using ::testing::UnorderedElementsAreArray;
using ::util::CompleteGraph;
using ::util::ListGraph;
TEST(MSTTest, EmptyGraph) {
ListGraph<int, int> graph(0, 0);
std::vector<int64_t> costs;
const std::vector<int> mst =
BuildKruskalMinimumSpanningTree<ListGraph<int, int>>(
graph, [&costs](int a, int b) { return costs[a] < costs[b]; });
EXPECT_EQ(0, mst.size());
}
TEST(MSTTest, NoArcGraph) {
ListGraph<int, int> graph(5, 0);
std::vector<int64_t> costs;
const std::vector<int> mst =
BuildKruskalMinimumSpanningTree<ListGraph<int, int>>(
graph, [&costs](int a, int b) { return costs[a] < costs[b]; });
EXPECT_EQ(0, mst.size());
}
// Helper function to check the expected MST is obtained with Kruskal.
void CheckMSTWithKruskal(const ListGraph<int, int>& graph,
absl::Span<const int64_t> costs,
const std::vector<int>& expected_arcs) {
const auto ByCost = [costs](int a, int b) {
if (costs[a] != costs[b]) {
return costs[a] < costs[b];
}
// for the sake of stability, preserve the order of arcs with the same cost
return a < b;
};
const std::vector<int> mst = BuildKruskalMinimumSpanningTree(graph, ByCost);
EXPECT_THAT(expected_arcs, UnorderedElementsAreArray(mst));
std::vector<int> sorted_arcs(graph.num_arcs());
for (const int arc : graph.AllForwardArcs()) {
sorted_arcs[arc] = arc;
}
std::sort(sorted_arcs.begin(), sorted_arcs.end(), ByCost);
EXPECT_THAT(mst, UnorderedElementsAreArray(
BuildKruskalMinimumSpanningTreeFromSortedArcs(
graph, sorted_arcs)));
}
// Helper function to check the expected MST is obtained with Prim.
void CheckMSTWithPrim(const ListGraph<int, int>& graph,
absl::Span<const int64_t> costs,
const std::vector<int>& expected_arcs) {
const std::vector<int> prim_mst = BuildPrimMinimumSpanningTree(
graph, [costs](int arc) { return costs[arc]; });
EXPECT_THAT(expected_arcs, UnorderedElementsAreArray(prim_mst));
}
// Testing Kruskal MST on a small undirectedgraph:
// - original graph:
// 0 -(1)- 1 -(2)- 2
// | |
// (1) (1)
// | |
// 4 -(4)- 3
//
// - minimum spanning tree:
// 0 ----> 1 ----> 2
// | |
// | |
// v v
// 4 3
//
TEST(MSTTest, SmallGraph) {
const int kArcs[][2] = {{0, 1}, {1, 2}, {1, 4}, {2, 3}, {3, 4}};
const int64_t kCosts[] = {1, 2, 1, 1, 4};
const int kNodes = 5;
ListGraph<int, int> graph(kNodes, ABSL_ARRAYSIZE(kArcs) * 2);
std::vector<int64_t> costs(ABSL_ARRAYSIZE(kArcs) * 2, 0);
for (int i = 0; i < ABSL_ARRAYSIZE(kArcs); ++i) {
costs[graph.AddArc(kArcs[i][0], kArcs[i][1])] = kCosts[i];
costs[graph.AddArc(kArcs[i][1], kArcs[i][0])] = kCosts[i];
}
CheckMSTWithKruskal(graph, costs, {0, 4, 6, 2});
CheckMSTWithPrim(graph, costs, {0, 4, 6, 2});
}
// Testing on a small graph with kint64max as value for arcs.
TEST(MSTTest, SmallGraphWithMaxValueArcs) {
const int kArcs[][2] = {{0, 1}, {1, 2}};
const int kNodes = 3;
const int64_t kCosts[] = {std::numeric_limits<int64_t>::max(),
std::numeric_limits<int64_t>::max()};
ListGraph<int, int> graph(kNodes, ABSL_ARRAYSIZE(kArcs) * 2);
std::vector<int64_t> costs(ABSL_ARRAYSIZE(kArcs) * 2, 0);
for (int i = 0; i < ABSL_ARRAYSIZE(kArcs); ++i) {
costs[graph.AddArc(kArcs[i][0], kArcs[i][1])] = kCosts[i];
costs[graph.AddArc(kArcs[i][1], kArcs[i][0])] = kCosts[i];
}
CheckMSTWithKruskal(graph, costs, {0, 2});
CheckMSTWithPrim(graph, costs, {0, 2});
}
// Testing Kruskal MST on a small directed graph:
// - original graph:
// 0 <-(1)- 1 <-(2)- 2
// ^ \ |
// (1) (0) (1)
// | \ |
// | > v
// 4 -(4)-> 3
//
// - minimum spanning tree:
// 0 <---- 1 2
// ^ \ |
// | \ |
// | \ |
// | >v
// 4 3
//
TEST(MSTTest, SmallDirectedGraph) {
const int kArcs[][2] = {{1, 0}, {2, 1}, {4, 1}, {2, 3}, {4, 3}, {1, 3}};
const int64_t kCosts[] = {1, 2, 1, 1, 4, 0};
const int kNodes = 5;
ListGraph<int, int> graph(kNodes, ABSL_ARRAYSIZE(kArcs));
std::vector<int64_t> costs(ABSL_ARRAYSIZE(kArcs), 0);
for (int i = 0; i < ABSL_ARRAYSIZE(kArcs); ++i) {
costs[graph.AddArc(kArcs[i][0], kArcs[i][1])] = kCosts[i];
}
CheckMSTWithKruskal(graph, costs, {5, 0, 2, 3});
}
// Testing Kruskal MST on a small disconnected graph:
// - original graph:
// 0 -(1)- 1 2
// | |
// (1) (1)
// | |
// 4 3
//
// - minimum spanning tree:
// 0 ----> 1 2
// | |
// | |
// v v
// 4 3
//
TEST(MSTTest, SmallDisconnectedGraph) {
const int kArcs[][2] = {{0, 1}, {1, 4}, {2, 3}};
const int64_t kCosts[] = {1, 1, 1};
const int kNodes = 5;
ListGraph<int, int> graph(kNodes, ABSL_ARRAYSIZE(kArcs) * 2);
std::vector<int64_t> costs(ABSL_ARRAYSIZE(kArcs) * 2, 0);
for (int i = 0; i < ABSL_ARRAYSIZE(kArcs); ++i) {
costs[graph.AddArc(kArcs[i][0], kArcs[i][1])] = kCosts[i];
costs[graph.AddArc(kArcs[i][1], kArcs[i][0])] = kCosts[i];
}
CheckMSTWithKruskal(graph, costs, {0, 2, 4});
}
// Benchmark on a grid graph with random arc costs; 'size' corresponds to the
// number of nodes on a row/column of the grid.
template <typename GraphType>
void BM_KruskalMinimimumSpanningTreeOnGrid(benchmark::State& state) {
int size = state.range(0);
const int64_t kCostLimit = 1000000;
std::mt19937 randomizer(0);
const int num_nodes = size * size;
const int num_edges = 2 * (2 * size * (size - 1) + 2 * size - 4);
std::vector<int64_t> edge_costs(num_edges, 0);
ListGraph<int, int> graph(num_nodes, num_edges);
for (int i = 0; i < size; ++i) {
for (int j = 0; j < size; ++j) {
if (j < size - 1) {
const int64_t cost = absl::Uniform(randomizer, 0, kCostLimit);
edge_costs[graph.AddArc(i * size + j, i * size + j + 1)] = cost;
edge_costs[graph.AddArc(i * size + j + 1, i * size + j)] = cost;
}
if (i < size - 1) {
const int64_t cost = absl::Uniform(randomizer, 0, kCostLimit);
edge_costs[graph.AddArc(i * size + j, (i + 1) * size + j)] = cost;
edge_costs[graph.AddArc((i + 1) * size + j, i * size + j)] = cost;
}
}
}
for (int i = 1; i < size - 1; ++i) {
const int64_t cost = absl::Uniform(randomizer, 0, kCostLimit);
edge_costs[graph.AddArc(i * size, i * size + size - 1)] = cost;
edge_costs[graph.AddArc(i * size + size - 1, i * size)] = cost;
}
for (int i = 1; i < size - 1; ++i) {
const int64_t cost = absl::Uniform(randomizer, 0, kCostLimit);
edge_costs[graph.AddArc(i, (size - 1) * size + i)] = cost;
edge_costs[graph.AddArc((size - 1) * size + i, i)] = cost;
}
for (auto _ : state) {
const std::vector<int> mst = BuildKruskalMinimumSpanningTree(
graph,
[&edge_costs](int a, int b) { return edge_costs[a] < edge_costs[b]; });
EXPECT_EQ(num_nodes - 1, mst.size());
}
}
BENCHMARK_TEMPLATE(BM_KruskalMinimimumSpanningTreeOnGrid, ListGraph<>)
->Range(2, 1 << 8);
template <typename GraphType>
void BM_PrimMinimimumSpanningTreeOnGrid(benchmark::State& state) {
int size = state.range(0);
const int64_t kCostLimit = 1000000;
std::mt19937 randomizer(0);
const int num_nodes = size * size;
const int num_edges = 2 * (2 * size * (size - 1) + 2 * size - 4);
std::vector<int64_t> edge_costs(num_edges, 0);
ListGraph<int, int> graph(num_nodes, num_edges);
for (int i = 0; i < size; ++i) {
for (int j = 0; j < size; ++j) {
if (j < size - 1) {
const int64_t cost = absl::Uniform(randomizer, 0, kCostLimit);
edge_costs[graph.AddArc(i * size + j, i * size + j + 1)] = cost;
edge_costs[graph.AddArc(i * size + j + 1, i * size + j)] = cost;
}
if (i < size - 1) {
const int64_t cost = absl::Uniform(randomizer, 0, kCostLimit);
edge_costs[graph.AddArc(i * size + j, (i + 1) * size + j)] = cost;
edge_costs[graph.AddArc((i + 1) * size + j, i * size + j)] = cost;
}
}
}
for (int i = 1; i < size - 1; ++i) {
const int64_t cost = absl::Uniform(randomizer, 0, kCostLimit);
edge_costs[graph.AddArc(i * size, i * size + size - 1)] = cost;
edge_costs[graph.AddArc(i * size + size - 1, i * size)] = cost;
}
for (int i = 1; i < size - 1; ++i) {
const int64_t cost = absl::Uniform(randomizer, 0, kCostLimit);
edge_costs[graph.AddArc(i, (size - 1) * size + i)] = cost;
edge_costs[graph.AddArc((size - 1) * size + i, i)] = cost;
}
for (auto _ : state) {
const std::vector<int> mst = BuildPrimMinimumSpanningTree(
graph, [&edge_costs](int arc) { return edge_costs[arc]; });
EXPECT_EQ(num_nodes - 1, mst.size());
}
}
BENCHMARK_TEMPLATE(BM_PrimMinimimumSpanningTreeOnGrid, ListGraph<>)
->Range(2, 1 << 8);
// Benchmark on complete graph with random arc costs.
void BM_KruskalMinimimumSpanningTreeOnCompleteGraph(benchmark::State& state) {
int num_nodes = state.range(0);
const int64_t kCostLimit = 1000000;
std::mt19937 randomizer(0);
CompleteGraph<int, int> graph(num_nodes);
std::vector<int64_t> edge_costs(graph.num_arcs(), 0);
for (const int node : graph.AllNodes()) {
for (const auto arc : graph.OutgoingArcs(node)) {
const int64_t cost = absl::Uniform(randomizer, 0, kCostLimit);
edge_costs[arc] = cost;
}
}
for (auto _ : state) {
const std::vector<int> mst = BuildKruskalMinimumSpanningTree(
graph,
[&edge_costs](int a, int b) { return edge_costs[a] < edge_costs[b]; });
EXPECT_EQ(num_nodes - 1, mst.size());
}
}
BENCHMARK(BM_KruskalMinimimumSpanningTreeOnCompleteGraph)->Range(2, 1 << 10);
void BM_PrimMinimimumSpanningTreeOnCompleteGraph(benchmark::State& state) {
int num_nodes = state.range(0);
const int64_t kCostLimit = 1000000;
std::mt19937 randomizer(0);
CompleteGraph<int, int> graph(num_nodes);
std::vector<int64_t> edge_costs(graph.num_arcs(), 0);
for (const int node : graph.AllNodes()) {
for (const auto arc : graph.OutgoingArcs(node)) {
const int64_t cost = absl::Uniform(randomizer, 0, kCostLimit);
edge_costs[arc] = cost;
}
}
for (auto _ : state) {
const std::vector<int> mst = BuildPrimMinimumSpanningTree(
graph, [&edge_costs](int arc) { return edge_costs[arc]; });
EXPECT_EQ(num_nodes - 1, mst.size());
}
}
BENCHMARK(BM_PrimMinimimumSpanningTreeOnCompleteGraph)->Range(2, 1 << 10);
} // namespace
} // namespace operations_research