forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrevised_simplex.h
905 lines (759 loc) · 38.7 KB
/
revised_simplex.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
// Copyright 2010-2025 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Solves a Linear Programming problem using the Revised Simplex algorithm
// as described by G.B. Dantzig.
// The general form is:
// min c.x where c and x are n-vectors,
// subject to Ax = b where A is an mxn-matrix, b an m-vector,
// with l <= x <= u, i.e.
// l_i <= x_i <= u_i for all i in {1 .. m}.
//
// c.x is called the objective function.
// Each row a_i of A is an n-vector, and a_i.x = b_i is a linear constraint.
// A is called the constraint matrix.
// b is called the right hand side (rhs) of the problem.
// The constraints l_i <= x_i <= u_i are called the generalized bounds
// of the problem (most introductory textbooks only deal with x_i >= 0, as
// did the first version of the Simplex algorithm). Note that l_i and u_i
// can be -infinity and +infinity, respectively.
//
// To simplify the entry of data, this code actually handles problems in the
// form:
// min c.x where c and x are n-vectors,
// subject to:
// A1 x <= b1
// A2 x >= b2
// A3 x = b3
// l <= x <= u
//
// It transforms the above problem into
// min c.x where c and x are n-vectors,
// subject to:
// A1 x + s1 = b1
// A2 x - s2 = b2
// A3 x = b3
// l <= x <= u
// s1 >= 0, s2 >= 0
// where xT = (x1, x2, x3),
// s1 is an m1-vector (m1 being the height of A1),
// s2 is an m2-vector (m2 being the height of A2).
//
// The following are very good references for terminology, data structures,
// and algorithms. They all contain a wealth of references.
//
// Vasek Chvátal, "Linear Programming," W.H. Freeman, 1983. ISBN 978-0716715870.
// http://www.amazon.com/dp/0716715872
//
// Robert J. Vanderbei, "Linear Programming: Foundations and Extensions,"
// Springer, 2010, ISBN-13: 978-1441944979
// http://www.amazon.com/dp/1441944974
//
// Istvan Maros, "Computational Techniques of the Simplex Method.", Springer,
// 2002, ISBN 978-1402073328
// http://www.amazon.com/dp/1402073321
//
// ===============================================
// Short description of the dual simplex algorithm.
//
// The dual simplex algorithm uses the same data structure as the primal, but
// progresses towards the optimal solution in a different way:
// * It tries to keep the dual values dual-feasible at all time which means that
// the reduced costs are of the correct sign depending on the bounds of the
// non-basic variables. As a consequence the values of the basic variable are
// out of bound until the optimal is reached.
// * A basic leaving variable is selected first (dual pricing) and then a
// corresponding entering variable is selected. This is done in such a way
// that the dual objective value increases (lower bound on the optimal
// solution).
// * Once the basis pivot is chosen, the variable values and the reduced costs
// are updated the same way as in the primal algorithm.
//
// Good references on the Dual simplex algorithm are:
//
// Robert Fourer, "Notes on the Dual simplex Method", March 14, 1994.
// http://users.iems.northwestern.edu/~4er/WRITINGS/dual.pdf
//
// Achim Koberstein, "The dual simplex method, techniques for a fast and stable
// implementation", PhD, Paderborn, Univ., 2005.
// http://digital.ub.uni-paderborn.de/hs/download/pdf/3885?originalFilename=true
#ifndef OR_TOOLS_GLOP_REVISED_SIMPLEX_H_
#define OR_TOOLS_GLOP_REVISED_SIMPLEX_H_
#include <cstdint>
#include <string>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/log/die_if_null.h"
#include "absl/random/bit_gen_ref.h"
#include "absl/random/random.h"
#include "ortools/base/types.h"
#include "ortools/glop/basis_representation.h"
#include "ortools/glop/dual_edge_norms.h"
#include "ortools/glop/entering_variable.h"
#include "ortools/glop/lu_factorization.h"
#include "ortools/glop/parameters.pb.h"
#include "ortools/glop/pricing.h"
#include "ortools/glop/primal_edge_norms.h"
#include "ortools/glop/reduced_costs.h"
#include "ortools/glop/status.h"
#include "ortools/glop/update_row.h"
#include "ortools/glop/variable_values.h"
#include "ortools/glop/variables_info.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_print_utils.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/scattered_vector.h"
#include "ortools/lp_data/sparse.h"
#include "ortools/lp_data/sparse_column.h"
#include "ortools/lp_data/sparse_row.h"
#include "ortools/util/logging.h"
#include "ortools/util/random_engine.h"
#include "ortools/util/stats.h"
#include "ortools/util/time_limit.h"
namespace operations_research {
namespace glop {
// Entry point of the revised simplex algorithm implementation.
class RevisedSimplex {
public:
RevisedSimplex();
// This type is neither copyable nor movable.
RevisedSimplex(const RevisedSimplex&) = delete;
RevisedSimplex& operator=(const RevisedSimplex&) = delete;
// Sets or gets the algorithm parameters to be used on the next Solve().
void SetParameters(const GlopParameters& parameters);
const GlopParameters& GetParameters() const { return parameters_; }
// Solves the given linear program.
//
// We accept two forms of LinearProgram:
// - The lp can be in the equations form Ax = 0 created by
// LinearProgram::AddSlackVariablesForAllRows(), i.e. the rightmost square
// submatrix of A is an identity matrix, all its columns have been marked as
// slack variables, and the bounds of all constraints have been set to 0.
// - If not, we will convert it internally while copying it to the internal
// structure used.
//
// By default, the algorithm tries to exploit the computation done during the
// last Solve() call. It will analyze the difference of the new linear program
// and try to use the previously computed solution as a warm-start. To disable
// this behavior or give explicit warm-start data, use one of the State*()
// functions below.
ABSL_MUST_USE_RESULT Status Solve(const LinearProgram& lp,
TimeLimit* time_limit);
// Do not use the current solution as a warm-start for the next Solve(). The
// next Solve() will behave as if the class just got created.
void ClearStateForNextSolve();
// Uses the given state as a warm-start for the next Solve() call.
void LoadStateForNextSolve(const BasisState& state);
// Advanced usage. While constructing the initial basis, if this is called
// then we will use these values as the initial starting value for the FREE
// variables.
void SetStartingVariableValuesForNextSolve(const DenseRow& values);
// Getters to retrieve all the information computed by the last Solve().
RowIndex GetProblemNumRows() const;
ColIndex GetProblemNumCols() const;
ProblemStatus GetProblemStatus() const;
Fractional GetObjectiveValue() const;
int64_t GetNumberOfIterations() const;
Fractional GetVariableValue(ColIndex col) const;
Fractional GetReducedCost(ColIndex col) const;
const DenseRow& GetReducedCosts() const;
Fractional GetDualValue(RowIndex row) const;
Fractional GetConstraintActivity(RowIndex row) const;
VariableStatus GetVariableStatus(ColIndex col) const;
ConstraintStatus GetConstraintStatus(RowIndex row) const;
const BasisState& GetState() const;
double DeterministicTime() const;
bool objective_limit_reached() const { return objective_limit_reached_; }
DenseColumn::ConstView GetDualSquaredNorms() {
return dual_edge_norms_.GetEdgeSquaredNorms();
}
const DenseBitRow& GetNotBasicBitRow() const {
return variables_info_.GetNotBasicBitRow();
}
// If the problem status is PRIMAL_UNBOUNDED (respectively DUAL_UNBOUNDED),
// then the solver has a corresponding primal (respectively dual) ray to show
// the unboundness. From a primal (respectively dual) feasible solution any
// positive multiple of this ray can be added to the solution and keep it
// feasible. Moreover, by doing so, the objective of the problem will improve
// and its magnitude will go to infinity.
//
// Note that when the problem is DUAL_UNBOUNDED, the dual ray is also known as
// the Farkas proof of infeasibility of the problem.
const DenseRow& GetPrimalRay() const;
const DenseColumn& GetDualRay() const;
// This is the "dual ray" linear combination of the matrix rows.
const DenseRow& GetDualRayRowCombination() const;
// Returns the index of the column in the basis and the basis factorization.
// Note that the order of the column in the basis is important since it is the
// one used by the various solve functions provided by the BasisFactorization
// class.
ColIndex GetBasis(RowIndex row) const;
const ScatteredRow& GetUnitRowLeftInverse(RowIndex row) {
return update_row_.ComputeAndGetUnitRowLeftInverse(row);
}
// Returns a copy of basis_ vector for outside applications (like cuts) to
// have the correspondence between rows and columns of the dictionary.
RowToColMapping GetBasisVector() const { return basis_; }
const BasisFactorization& GetBasisFactorization() const;
// Returns statistics about this class as a string.
std::string StatString();
// Computes the dictionary B^-1*N on-the-fly row by row. Returns the resulting
// matrix as a vector of sparse rows so that it is easy to use it on the left
// side in the matrix multiplication. Runs in O(num_non_zeros_in_matrix).
// TODO(user): Use row scales as well.
RowMajorSparseMatrix ComputeDictionary(const DenseRow* column_scales);
// Initializes the matrix for the given 'linear_program' and 'state' and
// computes the variable values for basic variables using non-basic variables.
void ComputeBasicVariablesForState(const LinearProgram& linear_program,
const BasisState& state);
// This is used in a MIP context to polish the final basis. We assume that the
// columns for which SetIntegralityScale() has been called correspond to
// integral variable once multiplied by the given factor.
void ClearIntegralityScales() { integrality_scale_.clear(); }
void SetIntegralityScale(ColIndex col, Fractional scale);
void SetLogger(SolverLogger* logger) { logger_ = logger; }
// Advanced usage. For fast incremental call to the solver, it is better not
// to use LinearProgram at all. This api allows to directly modify the
// internal data of glop and then call solve.
const CompactSparseMatrix& MatrixWithSlack() const { return compact_matrix_; }
CompactSparseMatrix* MutableTransposedMatrixWithSlack() {
transpose_was_changed_ = true;
return &transposed_matrix_;
}
DenseRow* MutableLowerBounds() {
return variables_info_.MutableLowerBounds();
}
DenseRow* MutableUpperBounds() {
return variables_info_.MutableUpperBounds();
}
ABSL_MUST_USE_RESULT Status MinimizeFromTransposedMatrixWithSlack(
const DenseRow& objective, Fractional objective_scaling_factor,
Fractional objective_offset, TimeLimit* time_limit);
private:
struct IterationStats : public StatsGroup {
IterationStats()
: StatsGroup("IterationStats"),
total("total", this),
normal("normal", this),
bound_flip("bound_flip", this),
refactorize("refactorize", this),
degenerate("degenerate", this),
num_dual_flips("num_dual_flips", this),
degenerate_run_size("degenerate_run_size", this) {}
TimeDistribution total;
TimeDistribution normal;
TimeDistribution bound_flip;
TimeDistribution refactorize;
TimeDistribution degenerate;
IntegerDistribution num_dual_flips;
IntegerDistribution degenerate_run_size;
};
struct RatioTestStats : public StatsGroup {
RatioTestStats()
: StatsGroup("RatioTestStats"),
bound_shift("bound_shift", this),
abs_used_pivot("abs_used_pivot", this),
abs_tested_pivot("abs_tested_pivot", this),
abs_skipped_pivot("abs_skipped_pivot", this),
direction_density("direction_density", this),
leaving_choices("leaving_choices", this),
num_perfect_ties("num_perfect_ties", this) {}
DoubleDistribution bound_shift;
DoubleDistribution abs_used_pivot;
DoubleDistribution abs_tested_pivot;
DoubleDistribution abs_skipped_pivot;
RatioDistribution direction_density;
IntegerDistribution leaving_choices;
IntegerDistribution num_perfect_ties;
};
enum class Phase { FEASIBILITY, OPTIMIZATION, PUSH };
enum class RefactorizationReason {
DEFAULT,
SMALL_PIVOT,
IMPRECISE_PIVOT,
NORM,
RC,
VAR_VALUES,
FINAL_CHECK
};
ABSL_MUST_USE_RESULT Status SolveInternal(double start_time, bool maximize,
const DenseRow& objective,
TimeLimit* time_limit);
// Propagates parameters_ to all the other classes that need it.
//
// TODO(user): Maybe a better design is for them to have a reference to a
// unique parameters object? It will clutter a bit more these classes'
// constructor though.
void PropagateParameters();
// Returns a string containing the same information as with GetSolverStats,
// but in a much more human-readable format. For example:
// Problem status : Optimal
// Solving time : 1.843
// Number of iterations : 12345
// Time for solvability (first phase) : 1.343
// Number of iterations for solvability : 10000
// Time for optimization : 0.5
// Number of iterations for optimization : 2345
// Maximum time allowed in seconds : 6000
// Maximum number of iterations : 1000000
// Stop after first basis : 0
std::string GetPrettySolverStats() const;
// Returns a string containing formatted information about the variable
// corresponding to column col.
std::string SimpleVariableInfo(ColIndex col) const;
// Displays a short string with the current iteration and objective value.
void DisplayIterationInfo(bool primal, RefactorizationReason reason =
RefactorizationReason::DEFAULT);
// Displays the error bounds of the current solution.
void DisplayErrors();
// Displays the status of the variables.
void DisplayInfoOnVariables() const;
// Displays the bounds of the variables.
void DisplayVariableBounds();
// Displays the following information:
// * Linear Programming problem as a dictionary, taking into
// account the iterations that have been made;
// * Variable info;
// * Reduced costs;
// * Variable bounds.
// A dictionary is in the form:
// xB = value + sum_{j in N} pa_ij x_j
// z = objective_value + sum_{i in N} rc_i x_i
// where the pa's are the coefficients of the matrix after the pivotings
// and the rc's are the reduced costs, i.e. the coefficients of the objective
// after the pivotings.
// Dictionaries are the modern way of presenting the result of an iteration
// of the Simplex algorithm in the literature.
void DisplayRevisedSimplexDebugInfo();
// Displays the Linear Programming problem as it was input.
void DisplayProblem() const;
// Returns the current objective value. This is just the sum of the current
// variable values times their current cost.
Fractional ComputeObjectiveValue() const;
// Returns the current objective of the linear program given to Solve() using
// the initial costs, maximization direction, objective offset and objective
// scaling factor.
Fractional ComputeInitialProblemObjectiveValue() const;
// Assigns names to variables. Variables in the input will be named
// x1..., slack variables will be s1... .
void SetVariableNames();
// Sets the variable status and derives the variable value according to the
// exact status definition. This can only be called for non-basic variables
// because the value of a basic variable is computed from the values of the
// non-basic variables.
void SetNonBasicVariableStatusAndDeriveValue(ColIndex col,
VariableStatus status);
// Checks if the basis_ and is_basic_ arrays are well formed. Also checks that
// the variable statuses are consistent with this basis. Returns true if this
// is the case. This is meant to be used in debug mode only.
bool BasisIsConsistent() const;
// Moves the column entering_col into the basis at position basis_row. Removes
// the current basis column at position basis_row from the basis and sets its
// status to leaving_variable_status.
void UpdateBasis(ColIndex entering_col, RowIndex basis_row,
VariableStatus leaving_variable_status);
// Initializes matrix-related internal data. Returns true if this data was
// unchanged. If not, also sets only_change_is_new_rows to true if compared
// to the current matrix, the only difference is that new rows have been
// added (with their corresponding extra slack variables). Similarly, sets
// only_change_is_new_cols to true if the only difference is that new columns
// have been added, in which case also sets num_new_cols to the number of
// new columns.
bool InitializeMatrixAndTestIfUnchanged(const LinearProgram& lp,
bool lp_is_in_equation_form,
bool* only_change_is_new_rows,
bool* only_change_is_new_cols,
ColIndex* num_new_cols);
// Checks if the only change to the bounds is the addition of new columns,
// and that the new columns have at least one bound equal to zero.
bool OldBoundsAreUnchangedAndNewVariablesHaveOneBoundAtZero(
const LinearProgram& lp, bool lp_is_in_equation_form,
ColIndex num_new_cols);
// Initializes objective-related internal data. Returns true if unchanged.
bool InitializeObjectiveAndTestIfUnchanged(const LinearProgram& lp);
// Computes the stopping criterion on the problem objective value.
void InitializeObjectiveLimit();
// Initializes the starting basis. In most cases it starts by the all slack
// basis and tries to apply some heuristics to replace fixed variables.
ABSL_MUST_USE_RESULT Status CreateInitialBasis();
// Sets the initial basis to the given columns, try to factorize it and
// recompute the basic variable values.
ABSL_MUST_USE_RESULT Status
InitializeFirstBasis(const RowToColMapping& initial_basis);
// Entry point for the solver initialization.
ABSL_MUST_USE_RESULT Status Initialize(const LinearProgram& lp);
ABSL_MUST_USE_RESULT Status FinishInitialization(bool solve_from_scratch);
// Saves the current variable statuses in solution_state_.
void SaveState();
// Displays statistics on what kinds of variables are in the current basis.
void DisplayBasicVariableStatistics();
// Tries to reduce the initial infeasibility (stored in error_) by using the
// singleton columns present in the problem. A singleton column is a column
// with only one non-zero. This is used by CreateInitialBasis().
void UseSingletonColumnInInitialBasis(RowToColMapping* basis);
// Returns the number of empty rows in the matrix, i.e. rows where all
// the coefficients are zero.
RowIndex ComputeNumberOfEmptyRows();
// Returns the number of empty columns in the matrix, i.e. columns where all
// the coefficients are zero.
ColIndex ComputeNumberOfEmptyColumns();
// Returns the number of super-basic variables. These are non-basic variables
// that are not at their bounds (if they have bounds), or non-basic free
// variables that are not at zero.
int ComputeNumberOfSuperBasicVariables() const;
// This method transforms a basis for the first phase, with the optimal
// value at zero, into a feasible basis for the initial problem, thus
// preparing the execution of phase-II of the algorithm.
void CleanUpBasis();
// If the primal maximum residual is too large, recomputes the basic variable
// value from the non-basic ones. This function also perturbs the bounds
// during the primal simplex if too many iterations are degenerate.
//
// Only call this on a refactorized basis to have the best precision.
void CorrectErrorsOnVariableValues();
// Computes b - A.x in error_
void ComputeVariableValuesError();
// Solves the system B.d = a where a is the entering column (given by col).
// Known as FTRAN (Forward transformation) in FORTRAN codes.
// See Chvatal's book for more detail (Chapter 7).
void ComputeDirection(ColIndex col);
// Computes a - B.d in error_ and return the maximum std::abs() of its coeffs.
Fractional ComputeDirectionError(ColIndex col);
// Computes the ratio of the basic variable corresponding to 'row'. A target
// bound (upper or lower) is chosen depending on the sign of the entering
// reduced cost and the sign of the direction 'd_[row]'. The ratio is such
// that adding 'ratio * d_[row]' to the variable value changes it to its
// target bound.
template <bool is_entering_reduced_cost_positive>
Fractional GetRatio(const DenseRow& lower_bounds,
const DenseRow& upper_bounds, RowIndex row) const;
// First pass of the Harris ratio test. Returns the harris ratio value which
// is an upper bound on the ratio value that the leaving variable can take.
// Fills leaving_candidates with the ratio and row index of a super-set of the
// columns with a ratio <= harris_ratio.
template <bool is_entering_reduced_cost_positive>
Fractional ComputeHarrisRatioAndLeavingCandidates(
Fractional bound_flip_ratio, SparseColumn* leaving_candidates) const;
// Chooses the leaving variable, considering the entering column and its
// associated reduced cost. If there was a precision issue and the basis is
// not refactorized, set refactorize to true. Otherwise, the row number of the
// leaving variable is written in *leaving_row, and the step length
// is written in *step_length.
Status ChooseLeavingVariableRow(ColIndex entering_col,
Fractional reduced_cost, bool* refactorize,
RowIndex* leaving_row,
Fractional* step_length,
Fractional* target_bound);
// Chooses the leaving variable for the primal phase-I algorithm. The
// algorithm follows more or less what is described in Istvan Maros's book in
// chapter 9.6 and what is done for the dual phase-I algorithm which was
// derived from Koberstein's PhD. Both references can be found at the top of
// this file.
void PrimalPhaseIChooseLeavingVariableRow(ColIndex entering_col,
Fractional reduced_cost,
bool* refactorize,
RowIndex* leaving_row,
Fractional* step_length,
Fractional* target_bound) const;
// Chooses an infeasible basic variable. The returned values are:
// - leaving_row: the basic index of the infeasible leaving variable
// or kNoLeavingVariable if no such row exists: the dual simplex algorithm
// has terminated and the optimal has been reached.
// - cost_variation: how much do we improve the objective by moving one unit
// along this dual edge.
// - target_bound: the bound at which the leaving variable should go when
// leaving the basis.
ABSL_MUST_USE_RESULT Status DualChooseLeavingVariableRow(
RowIndex* leaving_row, Fractional* cost_variation,
Fractional* target_bound);
// Updates the prices used by DualChooseLeavingVariableRow() after a simplex
// iteration by using direction_. The prices are stored in
// dual_pricing_vector_. Note that this function only takes care of the
// entering and leaving column dual feasibility status change and that other
// changes will be dealt with by DualPhaseIUpdatePriceOnReducedCostsChange().
void DualPhaseIUpdatePrice(RowIndex leaving_row, ColIndex entering_col);
// This must be called each time the dual_pricing_vector_ is changed at
// position row.
template <bool use_dense_update = false>
void OnDualPriceChange(DenseColumn::ConstView squared_norms, RowIndex row,
VariableType type, Fractional threshold);
// Updates the prices used by DualChooseLeavingVariableRow() when the reduced
// costs of the given columns have changed.
template <typename Cols>
void DualPhaseIUpdatePriceOnReducedCostChange(const Cols& cols);
// Same as DualChooseLeavingVariableRow() but for the phase I of the dual
// simplex. Here the objective is not to minimize the primal infeasibility,
// but the dual one, so the variable is not chosen in the same way. See
// "Notes on the Dual simplex Method" or Istvan Maros, "A Piecewise Linear
// Dual Phase-1 Algorithm for the Simplex Method", Computational Optimization
// and Applications, October 2003, Volume 26, Issue 1, pp 63-81.
// http://rd.springer.com/article/10.1023%2FA%3A1025102305440
ABSL_MUST_USE_RESULT Status DualPhaseIChooseLeavingVariableRow(
RowIndex* leaving_row, Fractional* cost_variation,
Fractional* target_bound);
// Makes sure the boxed variable are dual-feasible by setting them to the
// correct bound according to their reduced costs. This is called
// Dual feasibility correction in the literature.
//
// Note that this function is also used as a part of the bound flipping ratio
// test by flipping the boxed dual-infeasible variables at each iteration.
//
// If update_basic_values is true, the basic variable values are updated.
template <typename BoxedVariableCols>
void MakeBoxedVariableDualFeasible(const BoxedVariableCols& cols,
bool update_basic_values);
// Computes the step needed to move the leaving_row basic variable to the
// given target bound.
Fractional ComputeStepToMoveBasicVariableToBound(RowIndex leaving_row,
Fractional target_bound);
// Returns true if the basis obtained after the given pivot can be factorized.
bool TestPivot(ColIndex entering_col, RowIndex leaving_row);
// Gets the current LU column permutation from basis_representation,
// applies it to basis_ and then sets it to the identity permutation since
// it will no longer be needed during solves. This function also updates all
// the data that depends on the column order in basis_.
void PermuteBasis();
// Updates the system state according to the given basis pivot.
// Returns an error if the update could not be done because of some precision
// issue.
ABSL_MUST_USE_RESULT Status UpdateAndPivot(ColIndex entering_col,
RowIndex leaving_row,
Fractional target_bound);
// Displays all the timing stats related to the calling object.
void DisplayAllStats();
// Calls basis_factorization_.Refactorize() if refactorize is true, and
// returns its status. This also sets refactorize to false and invalidates any
// data structure that depends on the current factorization.
//
// The general idea is that if a refactorization is going to be needed during
// a simplex iteration, it is better to do it as soon as possible so that
// every component can take advantage of it.
Status RefactorizeBasisIfNeeded(bool* refactorize);
// Main iteration loop of the primal simplex.
ABSL_MUST_USE_RESULT Status PrimalMinimize(TimeLimit* time_limit);
// Main iteration loop of the dual simplex.
ABSL_MUST_USE_RESULT Status DualMinimize(bool feasibility_phase,
TimeLimit* time_limit);
// Pushes all super-basic variables to bounds (if applicable) or to zero (if
// unconstrained). This is part of a "crossover" procedure to find a vertex
// solution given a (near) optimal solution. Assumes that Minimize() or
// DualMinimize() has already run, i.e., that we are at an optimal solution
// within numerical tolerances.
ABSL_MUST_USE_RESULT Status PrimalPush(TimeLimit* time_limit);
// Experimental. This is useful in a MIP context. It performs a few degenerate
// pivot to try to mimize the fractionality of the optimal basis.
//
// We assume that the columns for which SetIntegralityScale() has been called
// correspond to integral variable once scaled by the given factor.
//
// I could only find slides for the reference of this "LP Solution Polishing
// to improve MIP Performance", Matthias Miltenberger, Zuse Institute Berlin.
ABSL_MUST_USE_RESULT Status Polish(TimeLimit* time_limit);
// Utility functions to return the current ColIndex of the slack column with
// given number. Note that currently, such columns are always present in the
// internal representation of a linear program.
ColIndex SlackColIndex(RowIndex row) const;
// Advances the deterministic time in time_limit with the difference between
// the current internal deterministic time and the internal deterministic time
// during the last call to this method.
// TODO(user): Update the internals of revised simplex so that the time
// limit is updated at the source and remove this method.
void AdvanceDeterministicTime(TimeLimit* time_limit);
// Problem status
ProblemStatus problem_status_;
// Current number of rows in the problem.
RowIndex num_rows_ = RowIndex(0);
// Current number of columns in the problem.
ColIndex num_cols_ = ColIndex(0);
// Index of the first slack variable in the input problem. We assume that all
// variables with index greater or equal to first_slack_col_ are slack
// variables.
ColIndex first_slack_col_ = ColIndex(0);
// We're using vectors after profiling and looking at the generated assembly
// it's as fast as std::unique_ptr as long as the size is properly reserved
// beforehand.
// Compact version of the matrix given to Solve().
CompactSparseMatrix compact_matrix_;
// The transpose of compact_matrix_, it may be empty if it is not needed.
CompactSparseMatrix transposed_matrix_;
// Stop the algorithm and report feasibility if:
// - The primal simplex is used, the problem is primal-feasible and the
// current objective value is strictly lower than primal_objective_limit_.
// - The dual simplex is used, the problem is dual-feasible and the current
// objective value is strictly greater than dual_objective_limit_.
Fractional primal_objective_limit_;
Fractional dual_objective_limit_;
// Current objective (feasibility for Phase-I, user-provided for Phase-II).
DenseRow current_objective_;
// Array of coefficients for the user-defined objective.
// Indexed by column number. Used in Phase-II.
DenseRow objective_;
// Objective offset and scaling factor of the linear program given to Solve().
// This is used to display the correct objective values in the logs with
// ComputeInitialProblemObjectiveValue().
Fractional objective_offset_;
Fractional objective_scaling_factor_;
// Used in dual phase I to keep track of the non-basic dual infeasible
// columns and their sign of infeasibility (+1 or -1).
DenseRow dual_infeasibility_improvement_direction_;
int num_dual_infeasible_positions_;
// A temporary scattered column that is always reset to all zero after use.
ScatteredColumn initially_all_zero_scratchpad_;
// Array of column index, giving the column number corresponding
// to a given basis row.
RowToColMapping basis_;
RowToColMapping tmp_basis_;
// Vector of strings containing the names of variables.
// Indexed by column number.
StrictITIVector<ColIndex, std::string> variable_name_;
// Only used for logging. What triggered a refactorization.
RefactorizationReason last_refactorization_reason_;
// Information about the solution computed by the last Solve().
Fractional solution_objective_value_;
DenseColumn solution_dual_values_;
DenseRow solution_reduced_costs_;
DenseRow solution_primal_ray_;
DenseColumn solution_dual_ray_;
DenseRow solution_dual_ray_row_combination_;
BasisState solution_state_;
bool solution_state_has_been_set_externally_;
// If this is cleared, we assume they are none.
DenseRow variable_starting_values_;
// See MutableTransposedMatrixWithSlack().
bool transpose_was_changed_ = false;
// This is known as 'd' in the literature and is set during each pivot to the
// right inverse of the basic entering column of A by ComputeDirection().
// ComputeDirection() also fills direction_.non_zeros with the position of the
// non-zero.
ScatteredColumn direction_;
Fractional direction_infinity_norm_;
// Used to compute the error 'b - A.x' or 'a - B.d'.
DenseColumn error_;
// A random number generator. In test we use absl_random_ to have a
// non-deterministic behavior and avoid client depending on a golden optimal
// solution which prevent us from easily changing the solver.
random_engine_t deterministic_random_;
absl::BitGen absl_random_;
// A reference to one of the above random generators. Fixed at construction.
absl::BitGenRef random_;
// Helpers for logging the solve progress.
SolverLogger default_logger_;
SolverLogger* logger_ = &default_logger_;
// Representation of matrix B using eta matrices and LU decomposition.
BasisFactorization basis_factorization_;
// Classes responsible for maintaining the data of the corresponding names.
VariablesInfo variables_info_;
PrimalEdgeNorms primal_edge_norms_;
DualEdgeNorms dual_edge_norms_;
DynamicMaximum<RowIndex> dual_prices_;
VariableValues variable_values_;
UpdateRow update_row_;
ReducedCosts reduced_costs_;
EnteringVariable entering_variable_;
PrimalPrices primal_prices_;
// Used in dual phase I to hold the price of each possible leaving choices.
DenseColumn dual_pricing_vector_;
DenseColumn tmp_dual_pricing_vector_;
// Temporary memory used by DualMinimize().
std::vector<ColIndex> bound_flip_candidates_;
// Total number of iterations performed.
uint64_t num_iterations_ = 0;
// Number of iterations performed during the first (feasibility) phase.
uint64_t num_feasibility_iterations_ = 0;
// Number of iterations performed during the second (optimization) phase.
uint64_t num_optimization_iterations_ = 0;
// Number of iterations performed during the push/crossover phase.
uint64_t num_push_iterations_ = 0;
// Deterministic time for DualPhaseIUpdatePriceOnReducedCostChange().
int64_t num_update_price_operations_ = 0;
// Total time spent in Solve().
double total_time_ = 0.0;
// Time spent in the first (feasibility) phase.
double feasibility_time_ = 0.0;
// Time spent in the second (optimization) phase.
double optimization_time_ = 0.0;
// Time spent in the push/crossover phase.
double push_time_ = 0.0;
// The internal deterministic time during the most recent call to
// RevisedSimplex::AdvanceDeterministicTime.
double last_deterministic_time_update_ = 0.0;
// Statistics about the iterations done by PrimalMinimize().
IterationStats iteration_stats_;
mutable RatioTestStats ratio_test_stats_;
// Placeholder for all the function timing stats.
// Mutable because we time const functions like ChooseLeavingVariableRow().
mutable StatsGroup function_stats_;
// Proto holding all the parameters of this algorithm.
//
// Note that parameters_ may actually change during a solve as the solver may
// dynamically adapt some values. It is why we store the argument of the last
// SetParameters() call in initial_parameters_ so the next Solve() can reset
// it correctly.
GlopParameters parameters_;
GlopParameters initial_parameters_;
// LuFactorization used to test if a pivot will cause the new basis to
// not be factorizable.
LuFactorization test_lu_;
// Number of degenerate iterations made just before the current iteration.
int num_consecutive_degenerate_iterations_;
// Indicate the current phase of the solve.
Phase phase_ = Phase::FEASIBILITY;
// Indicates whether simplex ended due to the objective limit being reached.
// Note that it's not enough to compare the final objective value with the
// limit due to numerical issues (i.e., the limit which is reached within
// given tolerance on the internal objective may no longer be reached when the
// objective scaling and offset are taken into account).
bool objective_limit_reached_;
// Temporary SparseColumn used by ChooseLeavingVariableRow().
SparseColumn leaving_candidates_;
// Temporary vector used to hold the best leaving column candidates that are
// tied using the current choosing criteria. We actually only store the tied
// candidate #2, #3, ...; because the first tied candidate is remembered
// anyway.
std::vector<RowIndex> equivalent_leaving_choices_;
// This is used by Polish().
DenseRow integrality_scale_;
};
// Hides the details of the dictionary matrix implementation. In the future,
// GLOP will support generating the dictionary one row at a time without having
// to store the whole matrix in memory.
class RevisedSimplexDictionary {
public:
typedef RowMajorSparseMatrix::const_iterator ConstIterator;
// RevisedSimplex cannot be passed const because we have to call a non-const
// method ComputeDictionary.
// TODO(user): Overload this to take RevisedSimplex* alone when the
// caller would normally pass a nullptr for col_scales so this and
// ComputeDictionary can take a const& argument.
RevisedSimplexDictionary(const DenseRow* col_scales,
RevisedSimplex* revised_simplex)
: dictionary_(
ABSL_DIE_IF_NULL(revised_simplex)->ComputeDictionary(col_scales)),
basis_vars_(ABSL_DIE_IF_NULL(revised_simplex)->GetBasisVector()) {}
// This type is neither copyable nor movable.
RevisedSimplexDictionary(const RevisedSimplexDictionary&) = delete;
RevisedSimplexDictionary& operator=(const RevisedSimplexDictionary&) = delete;
ConstIterator begin() const { return dictionary_.begin(); }
ConstIterator end() const { return dictionary_.end(); }
size_t NumRows() const { return dictionary_.size(); }
// TODO(user): This function is a better fit for the future custom iterator.
ColIndex GetBasicColumnForRow(RowIndex r) const { return basis_vars_[r]; }
SparseRow GetRow(RowIndex r) const { return dictionary_[r]; }
private:
const RowMajorSparseMatrix dictionary_;
const RowToColMapping basis_vars_;
};
// TODO(user): When a row-by-row generation of the dictionary is supported,
// implement DictionaryIterator class that would call it inside operator*().
} // namespace glop
} // namespace operations_research
#endif // OR_TOOLS_GLOP_REVISED_SIMPLEX_H_