forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsimple_ls_program.cc
207 lines (185 loc) · 7.38 KB
/
simple_ls_program.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file illustrate the API for Large Neighborhood Search and
// Local Search. It solves the same trivial problem with a Large
// Neighborhood Search approach, a Local Search approach, and a Local
// Search with Filter approach.
#include <vector>
#include "absl/log/flags.h"
#include "ortools/base/init_google.h"
#include "ortools/base/logging.h"
#include "ortools/constraint_solver/constraint_solver.h"
#include "ortools/constraint_solver/constraint_solveri.h"
namespace operations_research {
class OneVarLns : public BaseLns {
public:
explicit OneVarLns(const std::vector<IntVar*>& vars)
: BaseLns(vars), index_(0) {}
~OneVarLns() override {}
void InitFragments() override { index_ = 0; }
bool NextFragment() override {
if (index_ < Size()) {
AppendToFragment(index_);
++index_;
return true;
} else {
return false;
}
}
private:
int index_;
};
class MoveOneVar : public IntVarLocalSearchOperator {
public:
explicit MoveOneVar(const std::vector<IntVar*>& variables)
: IntVarLocalSearchOperator(variables),
variable_index_(0),
move_up_(false) {}
~MoveOneVar() override {}
protected:
// Make a neighbor assigning one variable to its target value.
bool MakeOneNeighbor() override {
const int64_t current_value = OldValue(variable_index_);
if (move_up_) {
SetValue(variable_index_, current_value + 1);
variable_index_ = (variable_index_ + 1) % Size();
} else {
SetValue(variable_index_, current_value - 1);
}
move_up_ = !move_up_;
return true;
}
private:
void OnStart() override {
CHECK_GE(variable_index_, 0);
CHECK_LT(variable_index_, Size());
}
// Index of the next variable to try to restore
int64_t variable_index_;
// Direction of the modification.
bool move_up_;
};
class SumFilter : public IntVarLocalSearchFilter {
public:
explicit SumFilter(const std::vector<IntVar*>& vars)
: IntVarLocalSearchFilter(vars), sum_(0) {}
~SumFilter() override {}
void OnSynchronize(const Assignment* delta) override {
sum_ = 0;
for (int index = 0; index < Size(); ++index) {
sum_ += Value(index);
}
}
bool Accept(const Assignment* delta, const Assignment* unused_deltadelta,
int64_t objective_min, int64_t objective_max) override {
const Assignment::IntContainer& solution_delta = delta->IntVarContainer();
const int solution_delta_size = solution_delta.Size();
// The input const Assignment* delta given to Accept() may
// actually contain "Deactivated" elements, which represent
// variables that have been freed -- they are not bound to a
// single value anymore. This happens with LNS-type (Large
// Neighborhood Search) LocalSearchOperator, which are not used in
// this example as of 2012-01; and we refer the reader to
// ./routing.cc for an example of such LNS-type operators.
//
// For didactical purposes, we will assume for a moment that a
// LNS-type operator might be applied. The Filter will still be
// called, but our filter here won't be able to work, since
// it needs every variable to be bound (i.e. have a fixed value),
// in the assignment that it considers. Therefore, we include here
// a snippet of code that will detect if the input assignment is
// not fully bound. For further details, read ./routing.cc -- but
// we strongly advise the reader to first try and understand all
// of this file.
for (int i = 0; i < solution_delta_size; ++i) {
if (!solution_delta.Element(i).Activated()) {
VLOG(1) << "Element #" << i << " of the delta assignment given to"
<< " SumFilter::Accept() is not activated (i.e. its variable"
<< " is not bound to a single value anymore). This means that"
<< " we are in a LNS phase, and the DobbleFilter won't be able"
<< " to filter anything. Returning true.";
return true;
}
}
int64_t new_sum = sum_;
VLOG(1) << "No LNS, size = " << solution_delta_size;
for (int index = 0; index < solution_delta_size; ++index) {
int64_t touched_var = -1;
FindIndex(solution_delta.Element(index).Var(), &touched_var);
const int64_t old_value = Value(touched_var);
const int64_t new_value = solution_delta.Element(index).Value();
new_sum += new_value - old_value;
}
VLOG(1) << "new sum = " << new_sum << ", old sum = " << sum_;
return new_sum < sum_;
}
private:
int64_t sum_;
};
enum SolveType { LNS, LS, LS_WITH_FILTER };
void SolveProblem(SolveType solve_type) {
Solver s("Sample");
std::vector<IntVar*> vars;
s.MakeIntVarArray(4, 0, 4, &vars);
IntVar* const sum_var = s.MakeSum(vars)->Var();
OptimizeVar* const obj = s.MakeMinimize(sum_var, 1);
DecisionBuilder* const db =
s.MakePhase(vars, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MAX_VALUE);
DecisionBuilder* ls = nullptr;
switch (solve_type) {
case LNS: {
LOG(INFO) << "Large Neighborhood Search";
OneVarLns* const one_var_lns = s.RevAlloc(new OneVarLns(vars));
LocalSearchPhaseParameters* const ls_params =
s.MakeLocalSearchPhaseParameters(sum_var, one_var_lns, db);
ls = s.MakeLocalSearchPhase(vars, db, ls_params);
break;
}
case LS: {
LOG(INFO) << "Local Search";
MoveOneVar* const one_var_ls = s.RevAlloc(new MoveOneVar(vars));
LocalSearchPhaseParameters* const ls_params =
s.MakeLocalSearchPhaseParameters(sum_var, one_var_ls, db);
ls = s.MakeLocalSearchPhase(vars, db, ls_params);
break;
}
case LS_WITH_FILTER: {
LOG(INFO) << "Local Search with Filter";
MoveOneVar* const one_var_ls = s.RevAlloc(new MoveOneVar(vars));
std::vector<LocalSearchFilter*> filters;
filters.push_back(s.RevAlloc(new SumFilter(vars)));
LocalSearchFilterManager* filter_manager =
s.RevAlloc(new LocalSearchFilterManager(filters));
LocalSearchPhaseParameters* const ls_params =
s.MakeLocalSearchPhaseParameters(sum_var, one_var_ls, db, nullptr,
filter_manager);
ls = s.MakeLocalSearchPhase(vars, db, ls_params);
break;
}
}
SolutionCollector* const collector = s.MakeLastSolutionCollector();
collector->Add(vars);
collector->AddObjective(sum_var);
SearchMonitor* const log = s.MakeSearchLog(1000, obj);
s.Solve(ls, collector, obj, log);
LOG(INFO) << "Objective value = " << collector->objective_value(0);
}
} // namespace operations_research
int main(int argc, char** argv) {
InitGoogle(argv[0], &argc, &argv, true);
absl::SetFlag(&FLAGS_stderrthreshold, 0);
operations_research::SolveProblem(operations_research::LNS);
operations_research::SolveProblem(operations_research::LS);
operations_research::SolveProblem(operations_research::LS_WITH_FILTER);
return EXIT_SUCCESS;
}