forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathconstraints.cc
611 lines (532 loc) · 20.6 KB
/
constraints.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <algorithm>
#include <cstdint>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/log/check.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include "ortools/base/logging.h"
#include "ortools/base/types.h"
#include "ortools/constraint_solver/constraint_solver.h"
#include "ortools/constraint_solver/constraint_solveri.h"
#include "ortools/util/saturated_arithmetic.h"
#include "ortools/util/string_array.h"
namespace operations_research {
Demon* Solver::MakeConstraintInitialPropagateCallback(Constraint* const ct) {
return MakeConstraintDemon0(this, ct, &Constraint::InitialPropagate,
"InitialPropagate");
}
Demon* Solver::MakeDelayedConstraintInitialPropagateCallback(
Constraint* const ct) {
return MakeDelayedConstraintDemon0(this, ct, &Constraint::InitialPropagate,
"InitialPropagate");
}
namespace {
class ActionDemon : public Demon {
public:
explicit ActionDemon(const Solver::Action& action) : action_(action) {
CHECK(action != nullptr);
}
~ActionDemon() override {}
void Run(Solver* const solver) override { action_(solver); }
private:
Solver::Action action_;
};
class ClosureDemon : public Demon {
public:
explicit ClosureDemon(const Solver::Closure& closure) : closure_(closure) {
CHECK(closure != nullptr);
}
~ClosureDemon() override {}
void Run(Solver* const solver) override { closure_(); }
private:
Solver::Closure closure_;
};
// ----- True and False Constraint -----
class TrueConstraint : public Constraint {
public:
explicit TrueConstraint(Solver* const s) : Constraint(s) {}
~TrueConstraint() override {}
void Post() override {}
void InitialPropagate() override {}
std::string DebugString() const override { return "TrueConstraint()"; }
void Accept(ModelVisitor* const visitor) const override {
visitor->BeginVisitConstraint(ModelVisitor::kTrueConstraint, this);
visitor->EndVisitConstraint(ModelVisitor::kTrueConstraint, this);
}
IntVar* Var() override { return solver()->MakeIntConst(1); }
};
class FalseConstraint : public Constraint {
public:
explicit FalseConstraint(Solver* const s) : Constraint(s) {}
FalseConstraint(Solver* const s, const std::string& explanation)
: Constraint(s), explanation_(explanation) {}
~FalseConstraint() override {}
void Post() override {}
void InitialPropagate() override { solver()->Fail(); }
std::string DebugString() const override {
return absl::StrCat("FalseConstraint(", explanation_, ")");
}
void Accept(ModelVisitor* const visitor) const override {
visitor->BeginVisitConstraint(ModelVisitor::kFalseConstraint, this);
visitor->EndVisitConstraint(ModelVisitor::kFalseConstraint, this);
}
IntVar* Var() override { return solver()->MakeIntConst(0); }
private:
const std::string explanation_;
};
// ----- Map Variable Domain to Boolean Var Array -----
// TODO(user) : optimize constraint to avoid ping pong.
// After a boolvar is set to 0, we remove the value from the var.
// There is no need to rescan the var to find the hole if the size at the end of
// UpdateActive() is the same as the size at the beginning of VarDomain().
class MapDomain : public Constraint {
public:
MapDomain(Solver* const s, IntVar* const var,
const std::vector<IntVar*>& actives)
: Constraint(s), var_(var), actives_(actives) {
holes_ = var->MakeHoleIterator(true);
}
~MapDomain() override {}
void Post() override {
Demon* vd = MakeConstraintDemon0(solver(), this, &MapDomain::VarDomain,
"VarDomain");
var_->WhenDomain(vd);
Demon* vb =
MakeConstraintDemon0(solver(), this, &MapDomain::VarBound, "VarBound");
var_->WhenBound(vb);
std::unique_ptr<IntVarIterator> domain_it(
var_->MakeDomainIterator(/*reversible=*/false));
for (const int64_t index : InitAndGetValues(domain_it.get())) {
if (index >= 0 && index < actives_.size() && !actives_[index]->Bound()) {
Demon* d = MakeConstraintDemon1(
solver(), this, &MapDomain::UpdateActive, "UpdateActive", index);
actives_[index]->WhenDomain(d);
}
}
}
void InitialPropagate() override {
for (int i = 0; i < actives_.size(); ++i) {
actives_[i]->SetRange(int64_t{0}, int64_t{1});
if (!var_->Contains(i)) {
actives_[i]->SetValue(0);
} else if (actives_[i]->Max() == 0LL) {
var_->RemoveValue(i);
}
if (actives_[i]->Min() == 1LL) {
var_->SetValue(i);
}
}
if (var_->Bound()) {
VarBound();
}
}
void UpdateActive(int64_t index) {
IntVar* const act = actives_[index];
if (act->Max() == 0) {
var_->RemoveValue(index);
} else if (act->Min() == 1) {
var_->SetValue(index);
}
}
void VarDomain() {
const int64_t oldmin = var_->OldMin();
const int64_t oldmax = var_->OldMax();
const int64_t vmin = var_->Min();
const int64_t vmax = var_->Max();
const int64_t size = actives_.size();
for (int64_t j = std::max(oldmin, int64_t{0}); j < std::min(vmin, size);
++j) {
actives_[j]->SetValue(0);
}
for (const int64_t j : InitAndGetValues(holes_)) {
if (j >= 0 && j < size) {
actives_[j]->SetValue(0);
}
}
for (int64_t j = std::max(vmax + int64_t{1}, int64_t{0});
j <= std::min(oldmax, size - int64_t{1}); ++j) {
actives_[j]->SetValue(int64_t{0});
}
}
void VarBound() {
const int64_t val = var_->Min();
if (val >= 0 && val < actives_.size()) {
actives_[val]->SetValue(1);
}
}
std::string DebugString() const override {
return absl::StrFormat("MapDomain(%s, [%s])", var_->DebugString(),
JoinDebugStringPtr(actives_, ", "));
}
void Accept(ModelVisitor* const visitor) const override {
visitor->BeginVisitConstraint(ModelVisitor::kMapDomain, this);
visitor->VisitIntegerExpressionArgument(ModelVisitor::kTargetArgument,
var_);
visitor->VisitIntegerVariableArrayArgument(ModelVisitor::kVarsArgument,
actives_);
visitor->EndVisitConstraint(ModelVisitor::kMapDomain, this);
}
private:
IntVar* const var_;
std::vector<IntVar*> actives_;
IntVarIterator* holes_;
};
// ----- Lex constraint -----
class LexicalLessOrEqual : public Constraint {
public:
LexicalLessOrEqual(Solver* const s, std::vector<IntVar*> left,
std::vector<IntVar*> right, std::vector<int64_t> offsets)
: Constraint(s),
left_(std::move(left)),
right_(std::move(right)),
active_var_(0),
offsets_(std::move(offsets)),
demon_added_(offsets_.size(), false),
demon_(nullptr) {
CHECK_EQ(left_.size(), right_.size());
CHECK_EQ(offsets_.size(), right_.size());
CHECK(std::all_of(offsets_.begin(), offsets_.end(),
[](int step) { return step > 0; }));
}
~LexicalLessOrEqual() override {}
void Post() override {
const int position = JumpEqualVariables(0);
active_var_.SetValue(solver(), position);
if (position < left_.size()) {
demon_ = solver()->MakeConstraintInitialPropagateCallback(this);
AddDemon(position);
}
}
void InitialPropagate() override {
const int position = JumpEqualVariables(active_var_.Value());
if (position >= left_.size()) return;
if (position != active_var_.Value()) {
AddDemon(position);
active_var_.SetValue(solver(), position);
}
const int next_non_equal = JumpEqualVariables(position + 1);
if (next_non_equal < left_.size() &&
left_[next_non_equal]->Min() > right_[next_non_equal]->Max()) {
// We need to be strict if at next_non_equal, left is above right.
left_[position]->SetMax(
CapSub(right_[position]->Max(), offsets_[position]));
right_[position]->SetMin(
CapAdd(left_[position]->Min(), offsets_[position]));
} else {
left_[position]->SetMax(right_[position]->Max());
right_[position]->SetMin(left_[position]->Min());
}
// Adding demons for the next position as it may trigger changes at the
// active position (if the next position becomes invalid for instance).
if (next_non_equal < left_.size()) {
AddDemon(next_non_equal);
}
}
std::string DebugString() const override {
return absl::StrFormat(
"LexicalLessOrEqual([%s], [%s], [%s])", JoinDebugStringPtr(left_, ", "),
JoinDebugStringPtr(right_, ", "), absl::StrJoin(offsets_, ", "));
}
void Accept(ModelVisitor* const visitor) const override {
visitor->BeginVisitConstraint(ModelVisitor::kLexLess, this);
visitor->VisitIntegerVariableArrayArgument(ModelVisitor::kLeftArgument,
left_);
visitor->VisitIntegerVariableArrayArgument(ModelVisitor::kRightArgument,
right_);
visitor->VisitIntegerArrayArgument(ModelVisitor::kValuesArgument, offsets_);
visitor->EndVisitConstraint(ModelVisitor::kLexLess, this);
}
private:
int JumpEqualVariables(int start_position) const {
int position = start_position;
while (position < left_.size() &&
left_[position]->Max() <= right_[position]->Min() &&
CapSub(right_[position]->Max(), CapSub(offsets_[position], 1)) <=
left_[position]->Min()) {
position++;
}
return position;
}
void AddDemon(int position) {
if (demon_added_.Value(position)) return;
left_[position]->WhenRange(demon_);
right_[position]->WhenRange(demon_);
demon_added_.SetValue(solver(), position, true);
}
std::vector<IntVar*> left_;
std::vector<IntVar*> right_;
NumericalRev<int> active_var_;
std::vector<int64_t> offsets_;
RevArray<bool> demon_added_;
Demon* demon_;
};
// ----- Inverse permutation constraint -----
class InversePermutationConstraint : public Constraint {
public:
InversePermutationConstraint(Solver* const s,
const std::vector<IntVar*>& left,
const std::vector<IntVar*>& right)
: Constraint(s),
left_(left),
right_(right),
left_hole_iterators_(left.size()),
left_domain_iterators_(left_.size()),
right_hole_iterators_(right_.size()),
right_domain_iterators_(right_.size()) {
CHECK_EQ(left_.size(), right_.size());
for (int i = 0; i < left_.size(); ++i) {
left_hole_iterators_[i] = left_[i]->MakeHoleIterator(true);
left_domain_iterators_[i] = left_[i]->MakeDomainIterator(true);
right_hole_iterators_[i] = right_[i]->MakeHoleIterator(true);
right_domain_iterators_[i] = right_[i]->MakeDomainIterator(true);
}
}
~InversePermutationConstraint() override {}
void Post() override {
for (int i = 0; i < left_.size(); ++i) {
Demon* const left_demon = MakeConstraintDemon1(
solver(), this,
&InversePermutationConstraint::PropagateHolesOfLeftVarToRight,
"PropagateHolesOfLeftVarToRight", i);
left_[i]->WhenDomain(left_demon);
Demon* const right_demon = MakeConstraintDemon1(
solver(), this,
&InversePermutationConstraint::PropagateHolesOfRightVarToLeft,
"PropagateHolesOfRightVarToLeft", i);
right_[i]->WhenDomain(right_demon);
}
solver()->AddConstraint(
solver()->MakeAllDifferent(left_, /*stronger_propagation=*/false));
solver()->AddConstraint(
solver()->MakeAllDifferent(right_, /*stronger_propagation=*/false));
}
void InitialPropagate() override {
const int size = left_.size();
for (int i = 0; i < size; ++i) {
left_[i]->SetRange(0, size - 1);
right_[i]->SetRange(0, size - 1);
}
for (int i = 0; i < size; ++i) {
PropagateDomain(i, left_[i], left_domain_iterators_[i], right_);
PropagateDomain(i, right_[i], right_domain_iterators_[i], left_);
}
}
void PropagateHolesOfLeftVarToRight(int index) {
PropagateHoles(index, left_[index], left_hole_iterators_[index], right_);
}
void PropagateHolesOfRightVarToLeft(int index) {
PropagateHoles(index, right_[index], right_hole_iterators_[index], left_);
}
std::string DebugString() const override {
return absl::StrFormat("InversePermutationConstraint([%s], [%s])",
JoinDebugStringPtr(left_, ", "),
JoinDebugStringPtr(right_, ", "));
}
void Accept(ModelVisitor* const visitor) const override {
visitor->BeginVisitConstraint(ModelVisitor::kInversePermutation, this);
visitor->VisitIntegerVariableArrayArgument(ModelVisitor::kLeftArgument,
left_);
visitor->VisitIntegerVariableArrayArgument(ModelVisitor::kRightArgument,
right_);
visitor->EndVisitConstraint(ModelVisitor::kInversePermutation, this);
}
private:
// See PropagateHolesOfLeftVarToRight() and PropagateHolesOfRightVarToLeft().
void PropagateHoles(int index, IntVar* const var, IntVarIterator* const holes,
const std::vector<IntVar*>& inverse) {
const int64_t oldmin = std::max(var->OldMin(), int64_t{0});
const int64_t oldmax =
std::min(var->OldMax(), static_cast<int64_t>(left_.size() - 1));
const int64_t vmin = var->Min();
const int64_t vmax = var->Max();
for (int64_t value = oldmin; value < vmin; ++value) {
inverse[value]->RemoveValue(index);
}
for (const int64_t hole : InitAndGetValues(holes)) {
if (hole >= 0 && hole < left_.size()) {
inverse[hole]->RemoveValue(index);
}
}
for (int64_t value = vmax + 1; value <= oldmax; ++value) {
inverse[value]->RemoveValue(index);
}
}
void PropagateDomain(int index, IntVar* const var,
IntVarIterator* const domain,
const std::vector<IntVar*>& inverse) {
// Iterators are not safe w.r.t. removal. Postponing deletions.
tmp_removed_values_.clear();
for (const int64_t value : InitAndGetValues(domain)) {
if (!inverse[value]->Contains(index)) {
tmp_removed_values_.push_back(value);
}
}
// Once we've finished iterating over the domain, we may call
// RemoveValues().
if (!tmp_removed_values_.empty()) {
var->RemoveValues(tmp_removed_values_);
}
}
std::vector<IntVar*> left_;
std::vector<IntVar*> right_;
std::vector<IntVarIterator*> left_hole_iterators_;
std::vector<IntVarIterator*> left_domain_iterators_;
std::vector<IntVarIterator*> right_hole_iterators_;
std::vector<IntVarIterator*> right_domain_iterators_;
// used only in PropagateDomain().
std::vector<int64_t> tmp_removed_values_;
};
// Index of first Max Value
class IndexOfFirstMaxValue : public Constraint {
public:
IndexOfFirstMaxValue(Solver* solver, IntVar* index,
const std::vector<IntVar*>& vars)
: Constraint(solver), index_(index), vars_(vars) {}
~IndexOfFirstMaxValue() override {}
void Post() override {
Demon* const demon =
solver()->MakeDelayedConstraintInitialPropagateCallback(this);
index_->WhenRange(demon);
for (IntVar* const var : vars_) {
var->WhenRange(demon);
}
}
void InitialPropagate() override {
const int64_t vsize = vars_.size();
const int64_t imin = std::max(int64_t{0}, index_->Min());
const int64_t imax = std::min(vsize - 1, index_->Max());
int64_t max_max = std::numeric_limits<int64_t>::min();
int64_t max_min = std::numeric_limits<int64_t>::min();
// Compute min and max value in the current interval covered by index_.
for (int i = imin; i <= imax; ++i) {
max_max = std::max(max_max, vars_[i]->Max());
max_min = std::max(max_min, vars_[i]->Min());
}
// Propagate the fact that the first maximum value belongs to the
// [imin..imax].
for (int i = 0; i < imin; ++i) {
vars_[i]->SetMax(max_max - 1);
}
for (int i = imax + 1; i < vsize; ++i) {
vars_[i]->SetMax(max_max);
}
// Shave bounds for index_.
int64_t min_index = imin;
while (vars_[min_index]->Max() < max_min) {
min_index++;
}
int64_t max_index = imax;
while (vars_[max_index]->Max() < max_min) {
max_index--;
}
index_->SetRange(min_index, max_index);
}
std::string DebugString() const override {
return absl::StrFormat("IndexMax(%s, [%s])", index_->DebugString(),
JoinDebugStringPtr(vars_, ", "));
}
void Accept(ModelVisitor* const visitor) const override {
// TODO(user): Implement me.
}
private:
IntVar* const index_;
const std::vector<IntVar*> vars_;
};
} // namespace
// ----- API -----
Demon* Solver::MakeActionDemon(Solver::Action action) {
return RevAlloc(new ActionDemon(action));
}
Demon* Solver::MakeClosureDemon(Solver::Closure closure) {
return RevAlloc(new ClosureDemon(closure));
}
Constraint* Solver::MakeTrueConstraint() {
DCHECK(true_constraint_ != nullptr);
return true_constraint_;
}
Constraint* Solver::MakeFalseConstraint() {
DCHECK(false_constraint_ != nullptr);
return false_constraint_;
}
Constraint* Solver::MakeFalseConstraint(const std::string& explanation) {
return RevAlloc(new FalseConstraint(this, explanation));
}
void Solver::InitCachedConstraint() {
DCHECK(true_constraint_ == nullptr);
true_constraint_ = RevAlloc(new TrueConstraint(this));
DCHECK(false_constraint_ == nullptr);
false_constraint_ = RevAlloc(new FalseConstraint(this));
}
Constraint* Solver::MakeMapDomain(IntVar* const var,
const std::vector<IntVar*>& actives) {
return RevAlloc(new MapDomain(this, var, actives));
}
Constraint* Solver::MakeLexicalLess(const std::vector<IntVar*>& left,
const std::vector<IntVar*>& right) {
std::vector<IntVar*> adjusted_left = left;
adjusted_left.push_back(MakeIntConst(1));
std::vector<IntVar*> adjusted_right = right;
adjusted_right.push_back(MakeIntConst(0));
return MakeLexicalLessOrEqualWithOffsets(
std::move(adjusted_left), std::move(adjusted_right),
std::vector<int64_t>(left.size() + 1, 1));
}
Constraint* Solver::MakeLexicalLessOrEqual(const std::vector<IntVar*>& left,
const std::vector<IntVar*>& right) {
return MakeLexicalLessOrEqualWithOffsets(
left, right, std::vector<int64_t>(left.size(), 1));
}
Constraint* Solver::MakeLexicalLessOrEqualWithOffsets(
std::vector<IntVar*> left, std::vector<IntVar*> right,
std::vector<int64_t> offsets) {
return RevAlloc(new LexicalLessOrEqual(this, std::move(left),
std::move(right), std::move(offsets)));
}
Constraint* Solver::MakeIsLexicalLessOrEqualWithOffsetsCt(
std::vector<IntVar*> left, std::vector<IntVar*> right,
std::vector<int64_t> offsets, IntVar* boolvar) {
std::vector<IntVar*> adjusted_left = std::move(left);
adjusted_left.insert(adjusted_left.begin(), boolvar);
std::vector<IntVar*> adjusted_right = std::move(right);
adjusted_right.insert(adjusted_right.begin(), MakeIntConst(1));
std::vector<int64_t> adjusted_offsets = std::move(offsets);
adjusted_offsets.insert(adjusted_offsets.begin(), 1);
return MakeLexicalLessOrEqualWithOffsets(std::move(adjusted_left),
std::move(adjusted_right),
std::move(adjusted_offsets));
}
Constraint* Solver::MakeInversePermutationConstraint(
const std::vector<IntVar*>& left, const std::vector<IntVar*>& right) {
return RevAlloc(new InversePermutationConstraint(this, left, right));
}
Constraint* Solver::MakeIndexOfFirstMaxValueConstraint(
IntVar* index, const std::vector<IntVar*>& vars) {
return RevAlloc(new IndexOfFirstMaxValue(this, index, vars));
}
Constraint* Solver::MakeIndexOfFirstMinValueConstraint(
IntVar* index, const std::vector<IntVar*>& vars) {
std::vector<IntVar*> opp_vars(vars.size());
for (int i = 0; i < vars.size(); ++i) {
opp_vars[i] = MakeOpposite(vars[i])->Var();
}
return RevAlloc(new IndexOfFirstMaxValue(this, index, opp_vars));
}
} // namespace operations_research