forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathjobshop_with_maintenance_sat.py
162 lines (133 loc) · 5.69 KB
/
jobshop_with_maintenance_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python3
# Copyright 2010-2025 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Jobshop with maintenance tasks using the CP-SAT solver."""
import collections
from typing import Sequence
from absl import app
from ortools.sat.python import cp_model
class SolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self) -> None:
cp_model.CpSolverSolutionCallback.__init__(self)
self.__solution_count = 0
def on_solution_callback(self) -> None:
"""Called at each new solution."""
print(
f"Solution {self.__solution_count}, time = {self.wall_time} s,"
f" objective = {self.objective_value}"
)
self.__solution_count += 1
def jobshop_with_maintenance() -> None:
"""Solves a jobshop with maintenance on one machine."""
# Create the model.
model = cp_model.CpModel()
jobs_data = [ # task = (machine_id, processing_time).
[(0, 3), (1, 2), (2, 2)], # Job0
[(0, 2), (2, 1), (1, 4)], # Job1
[(1, 4), (2, 3)], # Job2
]
machines_count = 1 + max(task[0] for job in jobs_data for task in job)
all_machines = range(machines_count)
# Computes horizon dynamically as the sum of all durations.
horizon = sum(task[1] for job in jobs_data for task in job)
# Named tuple to store information about created variables.
task_type = collections.namedtuple("task_type", "start end interval")
# Named tuple to manipulate solution information.
assigned_task_type = collections.namedtuple(
"assigned_task_type", "start job index duration"
)
# Creates job intervals and add to the corresponding machine lists.
all_tasks = {}
machine_to_intervals = collections.defaultdict(list)
for job_id, job in enumerate(jobs_data):
for entry in enumerate(job):
task_id, task = entry
machine, duration = task
suffix = f"_{job_id}_{task_id}"
start_var = model.new_int_var(0, horizon, "start" + suffix)
end_var = model.new_int_var(0, horizon, "end" + suffix)
interval_var = model.new_interval_var(
start_var, duration, end_var, "interval" + suffix
)
all_tasks[job_id, task_id] = task_type(
start=start_var, end=end_var, interval=interval_var
)
machine_to_intervals[machine].append(interval_var)
# Add maintenance interval (machine 0 is not available on time {4, 5, 6, 7}).
machine_to_intervals[0].append(model.new_interval_var(4, 4, 8, "weekend_0"))
# Create and add disjunctive constraints.
for machine in all_machines:
model.add_no_overlap(machine_to_intervals[machine])
# Precedences inside a job.
for job_id, job in enumerate(jobs_data):
for task_id in range(len(job) - 1):
model.add(
all_tasks[job_id, task_id + 1].start >= all_tasks[job_id, task_id].end
)
# Makespan objective.
obj_var = model.new_int_var(0, horizon, "makespan")
model.add_max_equality(
obj_var,
[all_tasks[job_id, len(job) - 1].end for job_id, job in enumerate(jobs_data)],
)
model.minimize(obj_var)
# Solve model.
solver = cp_model.CpSolver()
solution_printer = SolutionPrinter()
status = solver.solve(model, solution_printer)
# Output solution.
if status == cp_model.OPTIMAL:
# Create one list of assigned tasks per machine.
assigned_jobs = collections.defaultdict(list)
for job_id, job in enumerate(jobs_data):
for task_id, task in enumerate(job):
machine = task[0]
assigned_jobs[machine].append(
assigned_task_type(
start=solver.value(all_tasks[job_id, task_id].start),
job=job_id,
index=task_id,
duration=task[1],
)
)
# Create per machine output lines.
output = ""
for machine in all_machines:
# Sort by starting time.
assigned_jobs[machine].sort()
sol_line_tasks = "Machine " + str(machine) + ": "
sol_line = " "
for assigned_task in assigned_jobs[machine]:
name = f"job_{assigned_task.job}_{assigned_task.index}"
# add spaces to output to align columns.
sol_line_tasks += f"{name:>10}"
start = assigned_task.start
duration = assigned_task.duration
sol_tmp = f"[{start}, {start + duration}]"
# add spaces to output to align columns.
sol_line += f"{sol_tmp:>10}"
sol_line += "\n"
sol_line_tasks += "\n"
output += sol_line_tasks
output += sol_line
# Finally print the solution found.
print(f"Optimal Schedule Length: {solver.objective_value}")
print(output)
print(solver.response_stats())
def main(argv: Sequence[str]) -> None:
if len(argv) > 1:
raise app.UsageError("Too many command-line arguments.")
jobshop_with_maintenance()
if __name__ == "__main__":
app.run(main)