forked from cemoody/wizlang
-
Notifications
You must be signed in to change notification settings - Fork 0
/
backend.py
165 lines (152 loc) · 5.55 KB
/
backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from flask import *
from werkzeug.contrib.profiler import ProfilerMiddleware
from collections import defaultdict
import json
import sys
import cPickle
import os.path
import numpy as np
import veclib
from utils import *
USE_ANNOY=True
app = Flask(__name__, static_folder='static',
static_url_path='', template_folder='templates')
trained = "/home/ubuntu/data"
fnv = '%s/vectors.fullwiki.1000.s50.num.npy' % trained
ffb = '%s/freebase_types_and_fullwiki.1000.s50.words' % trained
fnw = '/home/ubuntu/code/wizlang/data/freebase.words'
if os.path.exists(fnw + '.pickle'):
aw2i, ai2w = cPickle.load(open(fnw + '.pickle'))
else:
aw2i, ai2w = veclib.get_words(fnw)
cPickle.dump([aw2i, ai2w], open(fnw + '.pickle','w'))
print 'loaded word index'
if USE_ANNOY:
import annoy
annoy_index = annoy.AnnoyIndex(1000)
annoy_index.load("/home/ubuntu/code/wizlang/data/freebase.tree")
print 'loaded Annoy Index'
avl = annoy_index
else:
avl = veclib.get_vector_lib(fnv)
#avl = veclib.normalize(avl)
avl = veclib.split(veclib.normalize, avl)
frac = None
if frac:
end = int(avl.shape[0] * frac)
avl = avl[:end]
for i in range(end, avl.shape):
del aw2i[ai2w[i].pop()]
@app.route('/farthest/<raw_query>')
#@json_exception
def farthest(raw_query='{"args":["iphone", "ipad", "ipod", "walkman"]}'):
"""Given a list of arguments, calculate all the N^2 distance matrix
and return the item farthest away. The total distance is just the
distance from a node to all other nodes seperately."""
print 'QUERY'
print raw_query
query = json.loads(raw_query.strip("'"))
nargs = len(query['args'])
words = query['args']
N2, N1, vectors = veclib.build_n2(words, avl, aw2i)
inner, left, right = veclib.common_words(words, vectors, avl, aw2i, ai2w,
N2, N1, blacklist=words)
fb_words = [word.strip() for word in open(ffb).readlines()]
fw2i = {w:i for i, w in enumerate(fb_words)}
fi2w = {i:w for i, w in enumerate(fb_words)}
idx = [aw2i[word] for word in fb_words]
inner_fb, left_fb, right_fb = veclib.common_words(words, vectors, avl[idx], fw2i, fi2w,
N2, N1, blacklist=words, n=1000)
resp = {}
resp['N1'] = [float(x) for x in N1]
resp['args'] = words
resp['inner'] = inner
resp['inner_freebase'] = inner_fb[:50]
resp['left'] = left
resp['left_freebase'] = left_fb[:50]
resp['right'] = right
resp['right_freebase'] = right_fb[:50]
resp['right_word'] = words[N1.argmin()]
text = json.dumps(resp)
return text
@app.route('/nearest/<raw_query>')
@timer
def nearest(raw_query='{"args": [[1.0, "jurassic_park"]]}',
use_annoy=USE_ANNOY):
"""Given the expression, find the appropriate vectors, and evaluate it"""
print 'QUERY'
print raw_query
import pdb; pdb.set_trace()
try:
query = json.loads(raw_query.strip("'"))
total = None
resp = defaultdict(lambda : list)
resp['args'] = query['args']
args_neighbors = []
root_vectors = []
for sign, word in query['args']:
if use_annoy:
vector = annoy_index.get_item_vector(aw2i[word])
vector = np.array(vector)
else:
vector = avl[aw2i[word]]
root_vectors.append(vector)
if False:
canon, vectors, sim = veclib.nearest_word(vector, avl, ai2w, n=20)
args_neighbors.append(canon)
else:
args_neighbors.append([None])
if total is None:
total = vector * sign
else:
total += vector * sign
total /= np.sum(total**2.0)
canon, vectors, sim = veclib.nearest_word(total, avl, ai2w, n=5,
use_annoy=use_annoy)
root_sims = []
for canonical, vector in zip(canon, vectors):
sims = []
for (sign, word), root_vector in zip(query['args'], root_vectors):
total = (root_vector * vector).astype(np.float128)
#total /= np.sqrt(np.sum(total ** 2.0))
root_sim = np.sum(total,dtype=np.float128)
sims.append(root_sim)
print canonical, word, root_sim
root_sims.append(np.max(sims))
print canonical, max(sims)
resp['result'] = canon
resp['similarity'] = [float(s) for s in sim]
resp['args_neighbors'] = args_neighbors
resp['root_similarity'] = [float(s) for s in root_sims]
send = {}
send.update(resp)
print resp
text = json.dumps(send)
print "RESPONSE"
#print json.dumps(send, sort_keys=True,indent=4, separators=(',', ': '))
except:
print "ERROR"
text = dict(error=str(sys.exc_info()))
text = json.dumps(text)
print text
return text
if __name__ == '__main__':
port = 5005
try:
port = int(sys.argv[-1])
print "Serving port %i" % port
except:
pass
use_flask = True
if use_flask:
app.run(host='0.0.0.0', port=port, debug=True, use_reloader=False)
else:
from twisted.internet import reactor
from twisted.web.server import Site
from twisted.web.wsgi import WSGIResource
resource = WSGIResource(reactor, reactor.getThreadPool(), app)
site = Site(resource)
reactor.listenTCP(port, site, interface="0.0.0.0")
print "Running"
reactor.run()
#app.run(host='0.0.0.0', port=port)