-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhead_detection.py
110 lines (88 loc) · 3.46 KB
/
head_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import cv2
import joblib
import numpy as np
from skimage import color
from skimage.feature import hog
from skimage.transform import pyramid_gaussian
from imutils.object_detection import non_max_suppression
# Function for sliding window method
def sliding_window(image, window_size, step_list):
for y_cut in range(0, image.shape[0], step_list[1]):
for x_cut in range(0, image.shape[1], step_list[0]):
yield x_cut, y_cut, image[y_cut: y_cut + window_size[1], x_cut: x_cut + window_size[0]]
# Image load
image_path = r"test/helmet_2.jpg"
orig = cv2.imread(image_path)
fixscale = 500 / orig.shape[0]
orig = cv2.resize(orig, (0, 0), fx=fixscale, fy=fixscale, interpolation=cv2.INTER_AREA)
clone = orig.copy()
gray = color.rgb2gray(clone)
# Image Parameters
visualise = False
# win_size = (64, 128)
winSize = (50, 50)
winStride = (2, 2)
downscale = 1.10
step_size = (5, 5)
nms_threshold = 0.1
# Model configuration
orientations = 8 # Ped = 9; Heads = 11
pixels_per_cell = (16, 16) # Ped = 8; Heads = 6
cells_per_block = (1, 1) # Ped = 3; Heads = 2
block_norm = "L2" # Ped = L2-Hys; Heads = L2-Hys
feature_vector = True # Ped = True; Heads = False
# List to store the detections
detections = []
# The current scale of the image
model_path = r"models"
scale = 0
model = joblib.load(os.path.join(model_path, 'head_final.model'))
for im_scaled in pyramid_gaussian(orig, downscale=downscale):
if im_scaled.shape[0] < winSize[1] or im_scaled.shape[1] < winSize[0]:
break
for (x, y, window) in sliding_window(im_scaled, winSize, step_size):
if window.shape[0] != winSize[1] or window.shape[1] != winSize[0]:
continue
window = color.rgb2gray(window)
fd = hog(window,
orientations=orientations,
pixels_per_cell=pixels_per_cell,
cells_per_block=cells_per_block,
block_norm=block_norm,
feature_vector=feature_vector)
fd = fd.reshape(1, -1)
pred = model.predict(fd)
if pred == 1:
p_index = model.predict_proba(fd)[:, 1]
if p_index > 0.95:
print([scale], x, y, p_index)
detections.append((int(x * (downscale ** scale)), int(y * (downscale ** scale)), p_index,
int(winSize[0] * (downscale ** scale)), int(winSize[1] * (downscale ** scale))))
if visualise:
visual = gray.copy()
cv2.rectangle(visual, (x, y), (x + winSize[0], y + winSize[1]), (255, 0, 0), 2)
cv2.imshow("Sliding window method", visual)
cv2.waitKey(1)
h, w = gray.shape
gray = cv2.resize(gray, (int(w / downscale), int(h / downscale)), interpolation=cv2.INTER_AREA)
scale += 1
print(scale)
rects = np.array([[x, y, x + w, y + h] for (x, y, _, w, h) in detections])
sc = [score[0] for (x, y, score, w, h) in detections]
print("sc: ", sc)
sc = np.array(sc)
pick = non_max_suppression(rects, probs=sc, overlapThresh=nms_threshold)
count = 0
for (x1, y1, x2, y2) in rects:
cv2.rectangle(orig, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(orig, 'P:'+str(sc[count]), (x1 - 2, y1 - 2), 1, 0.75, (0, 0, 255), 1)
count += 1
cv2.imshow("Before NMS", orig)
cv2.waitKey(0)
for (x1, y1, x2, y2) in pick:
cv2.rectangle(clone, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(clone, 'Head', (x1 - 2, y1 - 2), 1, 0.75, (0, 0, 255), 1)
cv2.imshow('After NMS', clone)
cv2.waitKey(0)
cv2.destroyAllWindows()