-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmer_ground_truth.py
executable file
·397 lines (322 loc) · 11.9 KB
/
kmer_ground_truth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
#!/usr/bin/env python
"""
Compute the ground truth of kmer counts for fake reads sampled from a given
sequence.
"""
from sys import argv,stdin,stdout,stderr,exit
from string import maketrans
try: from hashlib import md5 as md5_new
except ImportError: from md5 import new as md5_new
def usage(s=None):
message = """
usage: cat reads | kmer_ground_truth <kmer_size> <source_fasta> [options]
<kmer_size> (required) number of nucleotides in a kmer
<source_fasta> (required) the sequence the reads were sampled from
<source_fasta2> (optional) if the reads were sampled from a diploid
sequence, this is that sequence; there are certain
expectations of sequence name format in this case (see
below)
M=[<residue>/]<modulus> screen kmers with a residue; first number is the
residue (plus 1), second is the modulus; this is a
memory-reduction technique; if the residue is absent,
1 is used by default
--kmerlimit=none don't limit the number of "distinct" kmers we'll handle
--kmerlimit=<number> limit the number of "distinct" kmers we'll handle; if
this limit is exceded, we quit (and don't write the
histograms); this is a guard against using excessive
memory and some kmers may be counted more than once
(default is 1G).
--head=<number> limit the number of input reads we'll process
--progress=<number> periodically report how many reads we've processed
Compute the ground truth of kmer counts for fake reads sampled from a given
sequence or sequences.
We expect reads to have a name that indicates where they were sampled from, in
the form [{anyprefix}_]{chrom}_{zstart}_{strand}.
{anyprefix} is option and can be anything
{chrom} is typically the name of the chromosome; beware that this can't
contain an underscore; for diploid processing, we assume
{chrom} is of the form {name}.fragment{1|2}
{zstart} is the zero-based start of the interval the read was sampled
from, always counted along the forward strand
{strand} is either F (farward) or R (reverse-complement)"""
if (s == None): exit (message)
else: exit ("%s%s" % (s,message))
def main():
global debug
# parse the command line
kmerSize = None
sourceFilename = None
source2Filename = None
modulus = residue = None
kmerLimit = int_with_unit("1G")
headLimit = None
reportProgress = None
debug = []
for arg in argv[1:]:
if ("=" in arg):
argVal = arg.split("=",1)[1]
if (arg.startswith("M=")) or (arg.startswith("--subspace=")):
if (not "/" in argVal):
modulus = int_with_unit(argVal)
residue = 1
assert (0 < modulus)
else:
(residue,modulus) = argVal.split("/",1)
modulus = int_with_unit(modulus)
residue = int_with_unit(residue)
assert (0 < residue <= modulus)
if (modulus == 1) and (residue == 1):
modulus = residue = None
elif (arg.startswith("--kmerlimit=")):
if (argVal.lower() == "none"): kmerLimit = None
else: kmerLimit = int_with_unit(argVal)
elif (arg.startswith("--head=")):
headLimit = int_with_unit(argVal)
elif (arg.startswith("--progress=")):
reportProgress = int_with_unit(argVal)
elif (arg == "--debug"):
debug += ["debug"]
elif (arg.startswith("--debug=")):
debug += argVal.split(",")
elif (arg.startswith("--")):
usage("unrecognized option: %s" % arg)
elif (kmerSize == None):
try:
kmerSize = int(arg)
if (kmerSize < 1): raise ValueError
except ValueError:
usage("invalid kmer size: \"%s\"" % arg)
elif (sourceFilename == None):
sourceFilename = arg
elif (source2Filename == None):
source2Filename = arg
else:
usage("unrecognized option: %s" % arg)
# read the source(s)
f = file(sourceFilename,"rt")
source = {}
for (chrom,seq) in read_fasta(f):
source[chrom] = seq
f.close()
#print [(chrom,len(source[chrom])) for chrom in source]
source2 = None
if (source2Filename != None):
f = file(source2Filename,"rt")
source2 = {}
for (chrom,seq) in read_fasta(f):
source2[chrom] = seq
f.close()
#print [(chrom,len(source2[chrom])) for chrom in source2]
# process the reads, to collect abundance counts of good and bad kmers
goodKmerToAbundance = {}
errKmerToAbundance = {}
hetKmerToAbundance = {}
numDistinctKmers = 0
goodKmerSyndrome = "-" * kmerSize
readNumber = 0
for (name,read) in read_fasta(stdin):
readNumber += 1
if (reportProgress != None) and (readNumber % reportProgress == 1) and (readNumber != 1):
progressCount = commatize(readNumber-1)
if (kmerLimit == None):
print >>stderr, "progress: %s reads processed" % progressCount
else:
print >>stderr, "progress: %s reads processed (%s \"distinct\" %d-mers)" \
% (progressCount,commatize(numDistinctKmers),kmerSize)
if (headLimit != None) and (readNumber > headLimit):
print >>stderr, "limit of %s reads reached" % commatize(headLimit)
readNumber -= 1
break
assert (kmerLimit == None) or (numDistinctKmers <= kmerLimit), \
"limit of %s \"distinct\" %d-mers exceeded (%s reads)" \
% (commatize(kmerLimit),kmerSize,commatize(readNumber-1))
(chrom,start,strand) = parse_read_name(name)
if (chrom in source):
seq = source[chrom]
srcIs2 = False
elif (source2 != None) and (chrom in source2):
seq = source2[chrom]
srcIs2 = True
else:
assert (False), "no source was provided for \"%s\" (read \"%s\")" \
% (chrom,name)
end = start + len(read)
if (end > len(seq)):
assert (False), "%d..%d is beyond end of \"%s\" (read \"%s\")" \
% (start,end,chrom,name)
src = seq[start:end]
if (strand == "R"): src = reverse_complement(src)
syndrome = reduce_to_mismatches(read,src)
if (source2 != None):
if (srcIs2):
chromOther = chrom.replace("fragment2","fragment1")
assert (chromOther in source), \
"no source was provided for \"%s\" (parallel to read \"%s\")" \
% (chromOther,name)
seqOther = source[chromOther]
else:
chromOther = chrom.replace("fragment1","fragment2")
assert (chromOther in source2), \
"no source was provided for \"%s\" (parallel to read \"%s\")" \
% (chromOther,name)
seqOther = source2[chromOther]
srcOther = seqOther[start:end]
if (strand == "R"): srcOther = reverse_complement(srcOther)
for ix in xrange(len(syndrome)+1-kmerSize):
kmer = read[ix:ix+kmerSize]
canon = canonical_kmer(kmer)
if (modulus != None):
if (hash_of_kmer(canon,modulus) != residue): continue
isHeterozygous = False
if (source2 != None):
kmerOther = srcOther[ix:ix+kmerSize]
isHeterozygous = (kmerOther != kmer)
if (syndrome[ix:ix+kmerSize] != goodKmerSyndrome):
if (canon not in errKmerToAbundance):
errKmerToAbundance[canon] = 1
numDistinctKmers += 1
else:
errKmerToAbundance[canon] += 1
else:
if (canon not in goodKmerToAbundance):
goodKmerToAbundance[canon] = 1
numDistinctKmers += 1
else:
goodKmerToAbundance[canon] += 1
if (isHeterozygous):
if (canon not in hetKmerToAbundance):
hetKmerToAbundance[canon] = 1
numDistinctKmers += 1
else:
hetKmerToAbundance[canon] += 1
# report results
goodAbundanceToCount = {}
for kmer in goodKmerToAbundance:
a = goodKmerToAbundance[kmer]
if (a not in goodAbundanceToCount): goodAbundanceToCount[a] = 1
else: goodAbundanceToCount[a] += 1
errAbundanceToCount = {}
for kmer in errKmerToAbundance:
a = errKmerToAbundance[kmer]
if (a not in errAbundanceToCount): errAbundanceToCount[a] = 1
else: errAbundanceToCount[a] += 1
abundances = [a for a in goodAbundanceToCount]
abundances += [a for a in errAbundanceToCount if (a not in abundances)]
abundances.sort()
if (source2 != None):
hetAbundanceToCount = {}
homAbundanceToCount = {}
for kmer in goodKmerToAbundance:
if (kmer in hetKmerToAbundance): a = hetKmerToAbundance[kmer]
else: a = 0
if (a not in hetAbundanceToCount): hetAbundanceToCount[a] = 1
else: hetAbundanceToCount[a] += 1
a = goodKmerToAbundance[kmer] - a
if (a not in homAbundanceToCount): homAbundanceToCount[a] = 1
else: homAbundanceToCount[a] += 1
if (source2 == None):
print "%s\t%s\t%s" % ("abundance","good","error")
else:
print "%s\t%s\t%s\t%s\t%s" % ("abundance","good","error","homozygous","heterozygous")
for a in abundances:
g = b = "NA"
if (a in goodAbundanceToCount): g = goodAbundanceToCount[a]
if (a in errAbundanceToCount): b = errAbundanceToCount[a]
if (source2 == None):
print "%d\t%s\t%s" % (a,g,b)
continue
hom = het = "NA"
if (a in hetAbundanceToCount): het = hetAbundanceToCount[a]
if (a in homAbundanceToCount): hom = homAbundanceToCount[a]
print "%d\t%s\t%s\t%s\t%s" % (a,g,b,hom,het)
if (kmerLimit != None):
print >>stderr, "%s reads had %s \"distinct\" %d-mers" \
% (commatize(readNumber),commatize(numDistinctKmers),kmerSize)
# reduce_to_mismatches--
# compute the mismatch string of a read and the source it was drawn from
def reduce_to_mismatches(read,src):
readLength = len(read)
syndrome = ["-"] * readLength
for (ix,readNuc) in enumerate(read):
if (readNuc != src[ix]): syndrome[ix] = "x"
return "".join(syndrome)
# read_fasta--
def read_fasta(f):
name = "(nameless)"
seq = []
for line in f:
line = line.rstrip()
if (line.startswith(">")):
if (seq != []): yield (name,"".join(seq))
name = line[1:].split()[0]
seq = []
else:
seq += [line]
if (seq != []): yield (name,"".join(seq))
# parse_read_name--
def parse_read_name(name):
tokens = name.split("_")
try:
if (len(tokens) < 3): raise ValueError
(chrom,start,strand) = tokens[-3:]
start = int(start)
if (start < 0): raise ValueError
if (strand not in ["F","R"]): raise ValueError
except ValueError:
assert (False), "can't parse read name \"%s\"" % name
return (chrom,start,strand)
# canonical_kmer--
# Choose a consistent representative for any kmer and its reverse compliment.
def canonical_kmer(kmer):
rev = reverse_complement(kmer)
if (kmer < rev): return kmer
else: return rev
# reverse_complement--
complementMap = maketrans("ACGTSWRYMKBDHVNacgtswrymkbdhvn",
"TGCASWYRKMVHDBNtgcaswyrkmvhdbn")
def reverse_complement(nukes):
return nukes[::-1].translate(complementMap)
# hash_of_kmer--
# $$$ md5 is overkill for this, and we'd like to use something faster, but
# $$$ .. str.__hash__() isn't very good for this purpose
# Reduce a kmer to a hash value modulo some modulus. The value h returned
# is in the range 0 < h <= modulus
def hash_of_kmer(kmer,modulus):
h = md5_new()
h.update(kmer)
return 1 + (int(h.hexdigest()[:25],16) % modulus)
# int_with_unit--
# Parse a string as an integer, allowing unit suffixes
def int_with_unit(s):
if (s.endswith("K")):
multiplier = 1000
s = s[:-1]
elif (s.endswith("M")):
multiplier = 1000 * 1000
s = s[:-1]
elif (s.endswith("G")):
multiplier = 1000 * 1000 * 1000
s = s[:-1]
else:
multiplier = 1
try: return int(s) * multiplier
except ValueError: return int(ceil(float(s) * multiplier))
# commatize--
# Convert a numeric string into one with commas.
def commatize(s):
if (type(s) != str): s = str(s)
(prefix,val,suffix) = ("",s,"")
if (val.startswith("-")): (prefix,val) = ("-",val[1:])
if ("." in val): (val,suffix) = val.split(".",1)
try: int(val)
except: return s
digits = len(val)
if (digits > 3):
leader = digits % 3
chunks = []
if (leader != 0):
chunks += [val[:leader]]
chunks += [val[ix:ix+3] for ix in xrange(leader,digits,3)]
val = ",".join(chunks)
return prefix + val + suffix
if __name__ == "__main__": main()