forked from MIC-DKFZ/nnUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
executable file
·52 lines (51 loc) · 2.99 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from setuptools import setup, find_namespace_packages
setup(name='nnunet',
packages=find_namespace_packages(include=["nnunet", "nnunet.*"]),
version='1.7.0',
description='nnU-Net. Framework for out-of-the box biomedical image segmentation.',
url='https://github.com/MIC-DKFZ/nnUNet',
author='Division of Medical Image Computing, German Cancer Research Center',
author_email='[email protected]',
license='Apache License Version 2.0, January 2004',
install_requires=[
"torch>1.10.0",
"tqdm",
"dicom2nifti",
"scikit-image>=0.14",
"medpy",
"scipy",
"batchgenerators>=0.23",
"numpy",
"sklearn",
"SimpleITK",
"pandas",
"requests",
"nibabel",
"tifffile",
"matplotlib",
],
entry_points={
'console_scripts': [
'nnUNet_convert_decathlon_task = nnunet.experiment_planning.nnUNet_convert_decathlon_task:main',
'nnUNet_plan_and_preprocess = nnunet.experiment_planning.nnUNet_plan_and_preprocess:main',
'nnUNet_train = nnunet.run.run_training:main',
'nnUNet_train_DP = nnunet.run.run_training_DP:main',
'nnUNet_train_DDP = nnunet.run.run_training_DDP:main',
'nnUNet_predict = nnunet.inference.predict_simple:main',
'nnUNet_ensemble = nnunet.inference.ensemble_predictions:main',
'nnUNet_find_best_configuration = nnunet.evaluation.model_selection.figure_out_what_to_submit:main',
'nnUNet_print_available_pretrained_models = nnunet.inference.pretrained_models.download_pretrained_model:print_available_pretrained_models',
'nnUNet_print_pretrained_model_info = nnunet.inference.pretrained_models.download_pretrained_model:print_pretrained_model_requirements',
'nnUNet_download_pretrained_model = nnunet.inference.pretrained_models.download_pretrained_model:download_by_name',
'nnUNet_download_pretrained_model_by_url = nnunet.inference.pretrained_models.download_pretrained_model:download_by_url',
'nnUNet_determine_postprocessing = nnunet.postprocessing.consolidate_postprocessing_simple:main',
'nnUNet_export_model_to_zip = nnunet.inference.pretrained_models.collect_pretrained_models:export_entry_point',
'nnUNet_install_pretrained_model_from_zip = nnunet.inference.pretrained_models.download_pretrained_model:install_from_zip_entry_point',
'nnUNet_change_trainer_class = nnunet.inference.change_trainer:main',
'nnUNet_evaluate_folder = nnunet.evaluation.evaluator:nnunet_evaluate_folder',
'nnUNet_plot_task_pngs = nnunet.utilities.overlay_plots:entry_point_generate_overlay',
],
},
keywords=['deep learning', 'image segmentation', 'medical image analysis',
'medical image segmentation', 'nnU-Net', 'nnunet']
)