-
Notifications
You must be signed in to change notification settings - Fork 0
/
metricL_eval_torch.py
300 lines (257 loc) · 14.2 KB
/
metricL_eval_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import torch
from multiprocessing import Pool, cpu_count
import multiprocessing as mp
from tqdm import tqdm
from numpy.random import multivariate_normal as mv_normal
import time
from configuration import *
@torch.no_grad()
def xi(z, H_perp, x, model, args, use_ode_solver = False):
theta = z @ H_perp.T if z.shape[1] != 4 else z
try:
batch_param = theta.clone()
except:
theta = torch.from_numpy(theta)
batch_param = theta.clone().float()
batch_param[:, 2] = torch.exp(batch_param[:, 2])
with torch.no_grad():
model.eval()
f_mean_hat = model(batch_param)
mask = f_mean_hat.sum(dim = -1).isnan()
f_mean_hat = f_mean_hat[~mask]
theta = theta[~mask]
out = torch.cat([theta, f_mean_hat], dim = -1)
return out
def run_eki(metric_model, model, img_name, x, args, gt_idx, gt_param = np.array([10, 1, 10, 10]), \
E = 100, N = 40, use_regression_head = True, save_result = False):
metric_model.eval()
Z_pri, f = metric_model(torch.from_numpy(x)[None, :, :].float().to(args.gpu), mask = mask, return_head_only = False)
f_mean = f.mean(dim = 0)
f_mean = torch.nn.functional.normalize(f_mean, dim = -1)[:, None]
n_params = gt_param.shape[0]
n_moments = len(f_mean)
n_vars = n_params + n_moments
H = torch.from_numpy(np.eye(n_moments, n_vars, n_params)).to(args.gpu).float()
H_perp = torch.from_numpy(np.eye(n_params, n_vars)).to(args.gpu).float()
I = torch.eye(n_vars).to(args.gpu).float()
r = 0.3
R = r**2 * torch.eye(f_mean.shape[0]).to(args.gpu).float()
Z = np.random.normal(0, 1, (n_params, E))
ratio = 1
Z *= np.sqrt([ratio*36, ratio*2.25, ratio*0.15, ratio*36]).reshape(-1, 1)
c_mean = np.log(11.5)
Z += np.array([7.5, 2.5, c_mean, 12.5])[:, None]
Z = torch.from_numpy(Z).to(args.gpu).float()
Z_exp = Z.cpu().data.numpy()
Z_exp[2, :] = np.exp(Z_exp[2, :])
Z_std = Z_exp.std(axis = 1)
results_theta = []
results_mape = []
# change prior distribution
# Z_pri = metric_model(torch.from_numpy(x)[None, :, :].float().to(args.gpu), return_params_only = True)
Z_pri = Z_pri.squeeze().cpu().data.numpy()
mape = abs(Z_pri.mean(axis = 0) - gt_param.cpu().data.numpy()) / (abs(gt_param.cpu().data.numpy()) + np.array([0.1, 0.1, 0.1, 0.1]))
Z_mean = Z_pri.mean(axis = 0)
Z_mean_ = Z_mean.copy()
if use_regression_head:
Z_mean[2] = np.log(Z_mean[2])
Z = torch.from_numpy(np.random.normal(0, 1, (n_params, E))).to(args.gpu).float()
# Z *= torch.from_numpy(np.sqrt([20, 4, 0.15, 20]).reshape(-1, 1)).to(args.gpu).float()
ratio = 0.5
Z *= torch.from_numpy(np.sqrt([36*ratio, 2.25*ratio, 0.15*ratio, 36*ratio]).reshape(-1, 1)).to(args.gpu).float()
Z += torch.from_numpy(Z_mean.reshape(-1, 1)).to(args.gpu).float()
Z_exp = Z.cpu().data.numpy()
Z_exp[2, :] = np.exp(Z_exp[2, :])
Z_std = Z_exp.std(axis = 1)
print(Z_std)
if use_enki:
for _ in range(N):
USE_thershold = True
if USE_thershold:
gt_param_min = torch.from_numpy(np.array([-5, 0, 0.1, 0])[:, None].repeat(E, 1)).float().to(args.gpu)
gt_param_min[2, :] = torch.log(gt_param_min[2, :])
gt_param_max = torch.from_numpy(np.array([20, 5, 25, 25])[:, None].repeat(E, 1)).float().to(args.gpu)
gt_param_max[2, :] = torch.log(gt_param_max[2, :])
if _ == 0:
Z[Z < gt_param_min] = gt_param_min[Z < gt_param_min]
Z[Z > gt_param_max] = gt_param_max[Z > gt_param_max]
else:
Theta = H_perp @ Z
Theta[Theta < gt_param_min] = gt_param_min[Theta < gt_param_min]
Theta[Theta > gt_param_max] = gt_param_max[Theta > gt_param_max]
Z[:4, :] = Theta
Z = xi(Z.T, H_perp, x, model).T
z_bar = Z.mean(dim=1)
C = torch.mean(torch.stack([torch.outer(z, z) for z in Z.T]), dim=0)
C -= torch.outer(z_bar, z_bar)
K = C @ H.T @ torch.inverse(H @ C @ H.T + R)
E = Z.shape[1]
O = f_mean + torch.from_numpy(mv_normal(np.zeros(f_mean.shape[0]), R.cpu().data.numpy(), E).T).to(args.gpu).float()
Z = (I - K @ H) @ Z + K @ O
Theta = H_perp @ Z
Theta[2, :] = torch.exp(Theta[2, :])
theta_mean = Theta.mean(dim=1)
theta_std = Theta.std(dim = 1)
theta_iqr = Theta.std(dim = 1)
results_theta.append(Theta)
enki_mape = 100 * abs(theta_mean.cpu() - gt_param)/ (abs(gt_param) + torch.tensor([0.1, 0.1, 0.1, 0.1]))
regression_mean = Z_mean_
enki_last_round = results_theta[-1].T
if save_result:
print(enki_mape)
torch.save(Z_pri, 'regression_head_results_noise_{}'.format(args.add_noise_alpha))
torch.save(torch.stack(results_theta).cpu().data.numpy(), 'enki_results_noise_{}'.format(args.add_noise_alpha))
return enki_mape, theta_mean, regression_mean, enki_last_round, N, r, Z_std
@torch.no_grad()
def create_eval_eki_with_metric_model(args, save_list = True):
def run_eki_func(metric_model, model, img_name, args, idx = False):
total_gt_params_list = []
averaged_mape = []
mape_run_list = []
wrong_list = []
use_regression_head = True
E, N = 100, 50
# E, N = 10000, 100
if not use_regression_head:
E, N = 10000, 100
# E, N = 1000, 100
E, N = 100, 100
use_enki = True
nan_list = []
mape_list_regression = []
estimate_param_all_list = []
gt_param_all_list = []
regression_list = []
os.system('rm test_ig_l96/eval*.png')
import glob
data_path = '/net/scratch/roxie62/emulator/testing_data_new_v5'
data_list = glob.glob('{}/long_000*.pth'.format(data_path))
data_list.sort()
if 'test' in args.extra_prefix.split('_'):
# data_list = data_list[:249]
data_list = data_list[12:261]
idx_list = data_list
gt_path = True
index_permutation = np.load('index_permute.npy')
load_file = save_list
extra_prefix = args.extra_prefix
if args.gpu == 0 and load_file:
stats_folder = '/net/scratch/roxie62/emulator/stats_folder/'
train_size = args.train_size
with open('{}/{}_{}_{}_E{}_N{}{}.txt'.format(stats_folder, train_size, 'E&E', use_regression_head, E, N, extra_prefix), 'w') as f:
f.writelines('begin evaluation \n')
test_the_oracle = False
len_test = 1 if test_the_oracle else len(idx_list)
count = 0
sum_diff = 0
for idx in range(len_test):
gt_idx = idx
args.gt_idx = int(idx_list[idx].split('.')[-2].split('_')[-1])
ipath = idx_list[idx]
print('gt idx', gt_idx)
mape_list = []
if args.add_noise_alpha < 0.1:
seed_number = 1
else:
seed_number = 1
for seed in range(1):
if test_the_oracle:
oracle = torch.load('the_oracle.pth')
gt_param = torch.tensor([10, 1, 10, 10])
else:
oracle_d = torch.load(ipath)
assert oracle_d['1'].success == True
gt_param, oracle = oracle_d['0'], oracle_d['1'].y.T
mask = None
filter_x = oracle[-500:, :36].reshape(-1).std() < 5e-5
filter_y = oracle[-500:, 36:].reshape(-1).std() < 5e-5
filter_nan = filter_x and filter_y
if filter_nan:
nan_list.append(gt_idx)
else:
oracle = torch.from_numpy(oracle).cuda(args.gpu).float()
K = 36
add_noise = test_the_oracle
seed = 0
torch.random.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
total_gt_params_list.append(gt_param.cpu().data.numpy())
if add_noise:
noise_alpha = args.add_noise_alpha
print('noise alpha is', noise_alpha, args.add_noise_alpha)
alpha_y = 1
traj = oracle.clone()[None, :, :]
mean = traj.mean(dim = 0)
std = traj.std(dim = 1)[:, None, :].repeat(1, traj.shape[1], 1)
noise_alpha_mask = noise_alpha
noise_traj = torch.cat([(noise_alpha_mask * std * (torch.randn(traj.shape, device = traj.device)))[:, :, :K], \
alpha_y * (noise_alpha_mask * std * (torch.randn(traj.shape, device = traj.device)))[:, :, K:]], dim = -1)
oracle = oracle + noise_traj.squeeze()
oracle = oracle.cpu().data.numpy()
enki_mape, theta_mean, regression_mean, enki_last_round, N, r, Z_std = run_eki(metric_model, model, img_name, oracle, args, \
gt_idx, mask = mask, gt_param = gt_param,
seed = seed, use_regression_head = use_regression_head, use_enki = use_enki, save_result = test_the_oracle, \
E = E, N = N)
print(enki_mape)
estimate_param_all_list.append(enki_last_round.cpu().data.numpy())
gt_param_all_list.append(gt_param)
regression_list.append(regression_mean)
if use_enki:
mape_regression = 100 * (abs(regression_mean - gt_param.cpu().data.numpy())) / (abs(gt_param) + np.array([0.1, 0.1, 0.1, 0.1]))
mape_list_regression.append(mape_regression.cpu().data.numpy())
mape_list.append(enki_mape.cpu().data.numpy())
if test_the_oracle:
print('regression estimates', np.round(regression_mean, 2))
print('enki estimates', np.round(theta_mean.cpu().data.numpy(), 2))
if load_file:
wrong_list.append(gt_idx)
sum1 = np.round(mape_regression.sum(),2)
sum2 = np.round(enki_mape.sum().cpu().data.numpy(), 2)
sum_diff += sum2 - sum1
if sum2 > sum1:
count += 1
with open('{}/{}_{}_{}_E{}_N{}{}.txt'.format(stats_folder, train_size, 'E&E', use_regression_head, E, N, extra_prefix), 'a+') as f:
f.writelines('---------------------gt_idx {} \n'.format(gt_idx))
f.writelines('gt_param {} \n'.format(gt_param.cpu().data.numpy()))
f.writelines('regression estimates {} \n'.format(np.round(regression_mean, 2)))
f.writelines('regression mape {} sum {} \n'.format(np.round(mape_regression, 2), np.round(mape_regression.sum(),2)))
f.writelines('Z_std {} \n'.format(Z_std))
f.writelines('EnKI std {} \n'.format(enki_last_round.std(axis = 0)))
f.writelines('enki estimates {} \n'.format(np.round(theta_mean.cpu().data.numpy(), 2)) )
f.writelines('enki mape {} sum {} \n'.format(np.round(np.mean(np.array(mape_list).reshape(-1, 4), axis = 0), 2), np.round(enki_mape.sum().cpu().data.numpy(), 2)))
f.writelines('enki larger number {}, sum diff {} \n'.format(count, sum_diff))
f.writelines('\n')
averaged_mape.append(mape_list)
# print('nan list', nan_list)
averaged_regression = np.array(mape_list_regression).reshape(-1, 4).mean(axis = 0)
median_regression = np.median(np.array(mape_list_regression).reshape(-1, 4), axis = 0)
print('averaged regression:', averaged_regression)
print('median regression:', median_regression)
averaged_enki = np.array(averaged_mape).reshape(-1, 4).mean(axis = 0)
median_enki = np.median(np.array(averaged_mape).reshape(-1, 4), axis = 0)
print('averaged:', averaged_enki)
print('median:', median_enki)
print('mape 25 quantile', np.quantile(np.array(averaged_mape).reshape(-1, 4), 0.25, axis = 0))
print('mape 75 quantile', np.quantile(np.array(averaged_mape).reshape(-1, 4), 0.75, axis = 0))
# print('the list of index with large mape sum', wrong_list)
print(len(averaged_mape))
if load_file:
with open('{}/{}_{}_{}_E{}_N{}{}.txt'.format(stats_folder, train_size, 'E&E', use_regression_head, E, N, extra_prefix), 'a+') as f:
f.writelines('averaged regression {} \n'.format(np.round(averaged_regression, 2)))
f.writelines('median regression {} \n'.format(np.round(median_regression, 2)))
f.writelines('averaged enki {} \n'.format(np.round(averaged_enki, 2)))
f.writelines('median enki {} \n'.format(np.round(median_enki, 2)))
f.writelines('25 percentile {} \n'.format(np.round(np.quantile(np.array(averaged_mape).reshape(-1, 4), 0.25, axis = 0), 2)))
f.writelines('75 percentile {} \n'.format(np.round(np.quantile(np.array(averaged_mape).reshape(-1, 4), 0.75, axis = 0),2)))
f.writelines('the list of index with large mape sum {} \n'.format(wrong_list))
f.writelines('length of testing params {} '.format(np.array(averaged_mape).reshape(-1, 4).shape[0]))
print(args.add_noise_alpha)
if save_list and use_regression_head:
torch.save({'regression_list':np.array(regression_list).reshape(-1, 4), \
'estimate_param_all_list': estimate_param_all_list, 'total_gt_params_list':total_gt_params_list, \
'averaged regression': averaged_regression, 'median regression':median_regression, \
'averaged enki':averaged_enki, 'median enki':median_enki}, \
'enki_eval_with_contrastive_model/results_trainsize{}_noise{}'.format(args.train_size, args.add_noise_alpha))
return averaged_enki, median_enki, averaged_regression, median_regression
return run_eki_func