-
Notifications
You must be signed in to change notification settings - Fork 11
/
experiment_process_jingju_no_rnn.py
659 lines (555 loc) · 28.7 KB
/
experiment_process_jingju_no_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
# -*- coding: utf-8 -*-
import cPickle
import gzip
import pickle
import os
import sys
import shutil
from os import makedirs
from os.path import exists
from os.path import isfile
import numpy as np
import pyximport
from keras.models import load_model
from madmom.features.onsets import OnsetPeakPickingProcessor
from eval_jingju import eval_write_2_txt
from experiment_process_helper import boundary_decoding
from experiment_process_helper import data_parser
from experiment_process_helper import get_boundary_list
from experiment_process_helper import get_line_properties
from experiment_process_helper import get_results_decoding_path
from experiment_process_helper import odf_calculation_no_crnn
from experiment_process_helper import write_results_2_txt_jingju
from plot_code import plot_jingju
pyximport.install(reload_support=True,
setup_args={'include_dirs': np.get_include()})
import viterbiDecoding
sys.path.append(os.path.join(os.path.dirname(__file__), "../src/"))
from audio_preprocessing import getMFCCBands2DMadmom
from labWriter import boundaryLabWriter
from parameters_jingju import *
from file_path_jingju_shared import *
from trainTestSeparation import getTestRecordingsScoreDurCorrectionArtistAlbumFilter
from utilFunctions import featureReshape
from utilFunctions import smooth_obs
def batch_process_onset_detection(wav_path,
textgrid_path,
score_path,
scaler,
test_recordings,
model_keras_cnn_0,
cnnModel_name,
detection_results_path,
architecture='baseline',
lab=False,
threshold=0.54,
obs_cal=True,
decoding_method='viterbi'):
"""
:param wav_path: string, path where we have the audio files
:param textgrid_path: string, path where we have the text grid ground truth
:param score_path: string, path where we have the scores
:param scaler: scaler object sklearn
:param test_recordings: list of strings, test recording filenames
:param model_keras_cnn_0: keras .h5, CNN onset detection model
:param cnnModel_name: string, CNN model name
:param detection_results_path: string, path where we save the evaluation results
:param architecture: string, the model architecture
:param lab: bool, used for Riyaz dataset
:param threshold: float, used for peak picking
:param obs_cal: bool, if to calculate the ODF or not
:param decoding_method: string, viterbi or peakPicking
:return:
"""
eval_results_decoding_path = \
get_results_decoding_path(decoding_method=decoding_method,
bool_corrected_score_duration=varin['corrected_score_duration'],
eval_results_path=detection_results_path)
# loop through all recordings
for artist_path, rn in test_recordings:
score_file = join(score_path, artist_path, rn+'.csv')
if not isfile(score_file):
print('Score not found: ' + score_file)
continue
nested_syllable_lists, wav_file, line_list, syllables, syllable_durations, bpm, pinyins = \
data_parser(artist_path=artist_path,
wav_path=wav_path,
textgrid_path=textgrid_path,
rn=rn,
score_file=score_file,
lab=lab)
if obs_cal == 'tocal':
# load audio
mfcc = getMFCCBands2DMadmom(wav_file, fs, hopsize_t, channel=1)
mfcc_scaled = scaler.transform(mfcc)
mfcc_reshaped = featureReshape(mfcc_scaled, nlen=7)
i_line = -1
for i_obs, line in enumerate(line_list):
# line without lyrics will be ignored
if not lab and len(line[2]) == 0:
continue
i_line += 1
# line without duration will be ignored
try:
print(syllable_durations[i_line])
except IndexError:
continue
# line non-fixed tempo will be ignored
if float(bpm[i_line]) == 0:
continue
time_line, lyrics_line, frame_start, frame_end = get_line_properties(lab=lab,
line=line,
hopsize_t=hopsize_t)
# initialize ODF path and filename
obs_path = join('./obs', cnnModel_name, artist_path)
obs_filename = rn + '_' + str(i_line + 1) + '.pkl'
if obs_cal == 'tocal':
obs_i, mfcc_line = odf_calculation_no_crnn(mfcc=mfcc,
mfcc_reshaped=mfcc_reshaped,
model_name=cnnModel_name,
model_keras_cnn_0=model_keras_cnn_0,
architecture=architecture,
frame_start=frame_start,
frame_end=frame_end)
# save onset curve
print('save onset curve ... ...')
if not exists(obs_path):
makedirs(obs_path)
pickle.dump(obs_i, open(join(obs_path, obs_filename), 'w'))
else:
obs_i = pickle.load(open(join(obs_path, obs_filename), 'r'))
obs_i = np.squeeze(obs_i)
obs_i = smooth_obs(obs_i)
# organize score
print('Calculating: ', rn, ' phrase ', str(i_obs))
print('ODF Methods: ', architecture)
# process the score duration
duration_score = syllable_durations[i_line]
# only save the duration if it exists
duration_score = np.array([float(ds) for ds in duration_score if len(ds)])
# normalize the duration
duration_score *= (time_line/np.sum(duration_score))
i_boundary, label = boundary_decoding(decoding_method=decoding_method,
obs_i=obs_i,
duration_score=duration_score,
varin=varin,
threshold=threshold,
hopsize_t=hopsize_t,
viterbiDecoding=viterbiDecoding,
OnsetPeakPickingProcessor=OnsetPeakPickingProcessor)
# create detected syllable result filename
filename_syll_lab = join(eval_results_decoding_path, artist_path,
rn + '_' + str(i_line + 1) + '.syll.lab')
time_boundary_start = np.array(i_boundary[:-1]) * hopsize_t
time_boundary_end = np.array(i_boundary[1:]) * hopsize_t
boundary_list = get_boundary_list(lab=lab,
decoding_method=decoding_method,
time_boundary_start=time_boundary_start,
time_boundary_end=time_boundary_end,
pinyins=pinyins,
syllables=syllables,
i_line=i_line)
boundaryLabWriter(boundaryList=boundary_list,
outputFilename=filename_syll_lab,
label=label)
if varin['plot'] and obs_cal == 'tocal':
plot_jingju(nested_syllable_lists=nested_syllable_lists,
i_line=i_line,
mfcc_line=mfcc_line,
hopsize_t=hopsize_t,
obs_i=obs_i,
i_boundary=i_boundary,
duration_score=duration_score)
return eval_results_decoding_path
def viterbi_subroutine(test_nacta_2017,
test_nacta,
eval_label,
obs_cal,
architecture,
model_name,
full_path_model,
full_path_scaler,
detection_results_path):
"""5 run times routine for the viterbi decoding onset detection"""
list_recall_onset_25, list_precision_onset_25, list_F1_onset_25 = [], [], []
list_recall_onset_5, list_precision_onset_5, list_F1_onset_5 = [], [], []
list_recall_25, list_precision_25, list_F1_25 = [], [], []
list_recall_5, list_precision_5, list_F1_5 = [], [], []
for ii in range(5):
if obs_cal == 'tocal':
if 'pretrained' in architecture:
scaler = cPickle.load(gzip.open(full_path_scaler+str(ii)+'.pickle.gz'))
else:
scaler = pickle.load(open(full_path_scaler))
model_keras_cnn_0 = load_model(full_path_model+str(ii)+'.h5')
# print(model_keras_cnn_0.summary())
print('Model name:', full_path_model)
# delete detection results path if it exists
detection_results_path_model = join(detection_results_path + str(ii))
if os.path.exists(detection_results_path_model) and os.path.isdir(detection_results_path + str(ii)):
shutil.rmtree(detection_results_path + str(ii))
if varin['dataset'] != 'ismir':
# nacta2017
batch_process_onset_detection(wav_path=nacta2017_wav_path,
textgrid_path=nacta2017_textgrid_path,
score_path=nacta2017_score_unified_path,
test_recordings=test_nacta_2017,
model_keras_cnn_0=model_keras_cnn_0,
cnnModel_name=model_name + str(ii),
detection_results_path=detection_results_path + str(ii),
scaler=scaler,
architecture=architecture,
obs_cal=obs_cal,
decoding_method='viterbi')
# nacta
eval_results_decoding_path = \
batch_process_onset_detection(wav_path=nacta_wav_path,
textgrid_path=nacta_textgrid_path,
score_path=nacta_score_unified_path,
test_recordings=test_nacta,
model_keras_cnn_0=model_keras_cnn_0,
cnnModel_name=model_name + str(ii),
detection_results_path=detection_results_path + str(ii),
scaler=scaler,
architecture=architecture,
obs_cal=obs_cal,
decoding_method='viterbi')
else:
eval_results_decoding_path = detection_results_path + str(ii)
precision_onset, recall_onset, F1_onset, \
precision, recall, F1, \
= eval_write_2_txt(eval_result_file_name=join(eval_results_decoding_path, 'results.csv'),
segSyllable_path=eval_results_decoding_path,
label=eval_label,
decoding_method='viterbi')
list_precision_onset_25.append(precision_onset[0])
list_precision_onset_5.append(precision_onset[1])
list_recall_onset_25.append(recall_onset[0])
list_recall_onset_5.append(recall_onset[1])
list_F1_onset_25.append(F1_onset[0])
list_F1_onset_5.append(F1_onset[1])
list_precision_25.append(precision[0])
list_precision_5.append(precision[1])
list_recall_25.append(recall[0])
list_recall_5.append(recall[1])
list_F1_25.append(F1[0])
list_F1_5.append(F1[1])
return list_precision_onset_25, \
list_recall_onset_25, \
list_F1_onset_25, \
list_precision_25, \
list_recall_25, \
list_F1_25, \
list_precision_onset_5, \
list_recall_onset_5, \
list_F1_onset_5, \
list_precision_5, \
list_recall_5, \
list_F1_5
def peak_picking_subroutine(test_nacta_2017,
test_nacta,
th,
obs_cal,
architecture,
model_name,
full_path_model,
full_path_scaler,
detection_results_path,
jingju_eval_results_path):
"""Peak picking routine,
five folds evaluation"""
from src.utilFunctions import append_or_write
import csv
eval_result_file_name = join(jingju_eval_results_path,
varin['sample_weighting'],
model_name+'_peakPicking_threshold_results.txt')
list_recall_onset_25, list_precision_onset_25, list_F1_onset_25 = [], [], []
list_recall_onset_5, list_precision_onset_5, list_F1_onset_5 = [], [], []
list_recall_25, list_precision_25, list_F1_25 = [], [], []
list_recall_5, list_precision_5, list_F1_5 = [], [], []
for ii in range(5):
if obs_cal == 'tocal':
if 'pretrained' in architecture:
scaler = cPickle.load(gzip.open(full_path_scaler + str(ii) + '.pickle.gz'))
else:
scaler = pickle.load(open(full_path_scaler))
model_keras_cnn_0 = load_model(full_path_model + str(ii) + '.h5')
# delete detection results path if it exists
detection_results_path_model = join(detection_results_path + str(ii))
if os.path.exists(detection_results_path_model) and os.path.isdir(detection_results_path + str(ii)):
shutil.rmtree(detection_results_path + str(ii))
else:
model_keras_cnn_0 = None
scaler = None
if varin['dataset'] != 'ismir':
# nacta2017
batch_process_onset_detection(wav_path=nacta2017_wav_path,
textgrid_path=nacta2017_textgrid_path,
score_path=nacta2017_score_pinyin_path,
test_recordings=test_nacta_2017,
model_keras_cnn_0=model_keras_cnn_0,
cnnModel_name=model_name + str(ii),
detection_results_path=detection_results_path + str(ii),
scaler=scaler,
architecture=architecture,
threshold=th,
obs_cal=obs_cal,
decoding_method='peakPicking')
eval_results_decoding_path = \
batch_process_onset_detection(wav_path=nacta_wav_path,
textgrid_path=nacta_textgrid_path,
score_path=nacta_score_pinyin_path,
test_recordings=test_nacta,
model_keras_cnn_0=model_keras_cnn_0,
cnnModel_name=model_name + str(ii),
detection_results_path=detection_results_path + str(ii),
scaler=scaler,
architecture=architecture,
threshold=th,
obs_cal=obs_cal,
decoding_method='peakPicking')
append_write = append_or_write(eval_result_file_name)
with open(eval_result_file_name, append_write) as testfile:
csv_writer = csv.writer(testfile)
csv_writer.writerow([th])
precision_onset, recall_onset, F1_onset, \
precision, recall, F1, \
= eval_write_2_txt(eval_result_file_name,
eval_results_decoding_path,
label=False,
decoding_method='peakPicking')
list_precision_onset_25.append(precision_onset[0])
list_precision_onset_5.append(precision_onset[1])
list_recall_onset_25.append(recall_onset[0])
list_recall_onset_5.append(recall_onset[1])
list_F1_onset_25.append(F1_onset[0])
list_F1_onset_5.append(F1_onset[1])
list_precision_25.append(precision[0])
list_precision_5.append(precision[1])
list_recall_25.append(recall[0])
list_recall_5.append(recall[1])
list_F1_25.append(F1[0])
list_F1_5.append(F1[1])
return list_precision_onset_25, \
list_recall_onset_25, \
list_F1_onset_25, \
list_precision_25, \
list_recall_25, \
list_F1_25, \
list_precision_onset_5, \
list_recall_onset_5, \
list_F1_onset_5, \
list_precision_5, \
list_recall_5, \
list_F1_5
def viterbi_label_eval(test_nacta_2017,
test_nacta,
eval_label,
obs_cal,
architecture,
cnnModel_name,
full_path_model,
full_path_scaler,
detection_results_path,
jingju_eval_results_path):
"""evaluate viterbi onset detection"""
list_precision_onset_25, list_recall_onset_25, list_F1_onset_25, list_precision_25, list_recall_25, list_F1_25, \
list_precision_onset_5, list_recall_onset_5, list_F1_onset_5, list_precision_5, list_recall_5, list_F1_5 = \
viterbi_subroutine(test_nacta_2017=test_nacta_2017,
test_nacta=test_nacta,
eval_label=eval_label,
obs_cal=obs_cal,
architecture=architecture,
model_name=cnnModel_name,
full_path_model=full_path_model,
full_path_scaler=full_path_scaler,
detection_results_path=detection_results_path)
postfix_statistic_sig = 'label' if eval_label else 'nolabel'
pickle.dump(list_F1_onset_25,
open(join('./statisticalSignificance/data/jingju',
varin['sample_weighting'],
cnnModel_name + '_' + 'viterbi' + '_' + postfix_statistic_sig + '.pkl'), 'w'))
write_results_2_txt_jingju(join(jingju_eval_results_path, varin['sample_weighting'],
cnnModel_name + '_viterbi' + '_' + postfix_statistic_sig + '.txt'),
postfix_statistic_sig,
'viterbi',
list_precision_onset_25,
list_recall_onset_25,
list_F1_onset_25,
list_precision_25,
list_recall_25,
list_F1_25,
list_precision_onset_5,
list_recall_onset_5,
list_F1_onset_5,
list_precision_5,
list_recall_5,
list_F1_5)
def peak_picking_eval(test_nacta_2017,
test_nacta,
obs_cal,
architecture,
cnnModel_name,
full_path_model,
full_path_scaler,
detection_results_path,
jingju_eval_results_path):
"""evaluate the peak picking results,
search for the best threshold"""
# Step1: coarse scan the best threshold, step 0.1
best_F1_onset_25, best_th = 0, 0
for th in range(1, 9):
th *= 0.1
_, _, list_F1_onset_25, _, _, _, _, _, _, _, _, _ = \
peak_picking_subroutine(test_nacta_2017=test_nacta_2017,
test_nacta=test_nacta,
th=th,
obs_cal=obs_cal,
architecture=architecture,
model_name=cnnModel_name,
full_path_model=full_path_model,
full_path_scaler=full_path_scaler,
detection_results_path=detection_results_path,
jingju_eval_results_path=jingju_eval_results_path)
if np.mean(list_F1_onset_25) > best_F1_onset_25:
best_th = th
best_F1_onset_25 = np.mean(list_F1_onset_25)
# Step 2: finer scan the best threshold
for th in range(int((best_th - 0.1) * 100), int((best_th + 0.1) * 100)):
th *= 0.01
_, _, list_F1_onset_25, _, _, _, _, _, _, _, _, _ = \
peak_picking_subroutine(test_nacta_2017=test_nacta_2017,
test_nacta=test_nacta,
th=th,
obs_cal=obs_cal,
architecture=architecture,
model_name=cnnModel_name,
full_path_model=full_path_model,
full_path_scaler=full_path_scaler,
detection_results_path=detection_results_path,
jingju_eval_results_path=jingju_eval_results_path)
if np.mean(list_F1_onset_25) > best_F1_onset_25:
best_th = th
best_F1_onset_25 = np.mean(list_F1_onset_25)
# Step 3: get the statistics of the best th
list_precision_onset_25, list_recall_onset_25, list_F1_onset_25, list_precision_25, list_recall_25, list_F1_25, \
list_precision_onset_5, list_recall_onset_5, list_F1_onset_5, list_precision_5, list_recall_5, list_F1_5 = \
peak_picking_subroutine(test_nacta_2017=test_nacta_2017,
test_nacta=test_nacta,
th=best_th,
obs_cal=obs_cal,
architecture=architecture,
model_name=cnnModel_name,
full_path_model=full_path_model,
full_path_scaler=full_path_scaler,
detection_results_path=detection_results_path,
jingju_eval_results_path=jingju_eval_results_path)
print('best_th', best_th)
# statistical significance data
pickle.dump(list_F1_onset_25,
open(join('./statisticalSignificance/data/jingju',
varin['sample_weighting'],
cnnModel_name + '_peakPickingMadmom.pkl'), 'w'))
# save the results
write_results_2_txt_jingju(join(jingju_eval_results_path, varin['sample_weighting'],
cnnModel_name + '_peakPickingMadmom' + '.txt'),
str(best_th),
'peakPicking',
list_precision_onset_25,
list_recall_onset_25,
list_F1_onset_25,
list_precision_25,
list_recall_25,
list_F1_25,
list_precision_onset_5,
list_recall_onset_5,
list_F1_onset_5,
list_precision_5,
list_recall_5,
list_F1_5)
def run_process_jingju_no_rnn(architecture):
if architecture == 'baseline':
filename_keras_cnn_0 = 'baseline'
cnnModel_name = 'baseline'
elif architecture == 'no_dense':
filename_keras_cnn_0 = 'no_dense'
cnnModel_name = 'no_dense'
elif architecture == 'relu_dense':
filename_keras_cnn_0 = 'relu_dense'
cnnModel_name = 'relu_dense'
elif architecture == '9_layers_cnn':
filename_keras_cnn_0 = '9_layers_cnn'
cnnModel_name = '9_layers_cnn'
elif architecture == '5_layers_cnn':
filename_keras_cnn_0 = '5_layers_cnn'
cnnModel_name = '5_layers_cnn'
elif architecture == 'temporal':
filename_keras_cnn_0 = 'temporal'
cnnModel_name = 'temporal'
elif architecture == 'feature_extractor_b':
filename_keras_cnn_0 = 'feature_extractor_b'
cnnModel_name = 'feature_extractor_b'
elif architecture == 'feature_extractor_a':
filename_keras_cnn_0 = 'feature_extractor_a'
cnnModel_name = 'feature_extractor_a'
elif architecture == 'retrained':
filename_keras_cnn_0 = 'retrained'
cnnModel_name = 'retrained'
elif architecture == 'pretrained':
filename_keras_cnn_0 = 'schulter_jan_madmom_simpleSampleWeighting_early_stopping_adam_cv_less_deep_'
cnnModel_name = 'pretrained'
else:
raise ValueError('The architecture %s that you select is not a valid one.' % architecture)
# where we have the dumped features
if 'pretrained' in architecture:
cnnModels_path = join(root_path, 'pretrained_models', 'bock')
else:
cnnModels_path = join(root_path, 'pretrained_models', 'jingju')
if 'joint' in filename_keras_cnn_0:
filename_scaler_onset = 'scaler_joint_subset.pkl'
elif 'pretrained' in architecture:
filename_scaler_onset = 'scaler_bock_'
else:
filename_scaler_onset = 'scaler_jan_no_rnn.pkl'
full_path_model = join(cnnModels_path, varin['sample_weighting'], filename_keras_cnn_0)
full_path_scaler_no_rnn = join(cnnModels_path, varin['sample_weighting'], filename_scaler_onset)
detection_results_path = join(root_path, 'eval', 'results', cnnModel_name)
jingju_eval_results_path = join(root_path, 'eval', 'jingju', 'results')
# load the test recordings
test_nacta_2017, test_nacta = getTestRecordingsScoreDurCorrectionArtistAlbumFilter()
# calculate the ODF only in the first round
# then we can load them for saving time
obs_cal = 'tocal'
# evaluate label
viterbi_label_eval(test_nacta_2017=test_nacta_2017,
test_nacta=test_nacta,
eval_label=True,
obs_cal=obs_cal,
architecture=architecture,
cnnModel_name=cnnModel_name,
full_path_model=full_path_model,
full_path_scaler=full_path_scaler_no_rnn,
detection_results_path=detection_results_path,
jingju_eval_results_path=jingju_eval_results_path)
obs_cal = 'toload'
# do not evaluate label
viterbi_label_eval(test_nacta_2017=test_nacta_2017,
test_nacta=test_nacta,
eval_label=False,
obs_cal=obs_cal,
architecture=architecture,
cnnModel_name=cnnModel_name,
full_path_model=full_path_model,
full_path_scaler=full_path_scaler_no_rnn,
detection_results_path=detection_results_path,
jingju_eval_results_path=jingju_eval_results_path)
# peak picking evaluation
peak_picking_eval(test_nacta_2017=test_nacta_2017,
test_nacta=test_nacta,
obs_cal=obs_cal,
architecture=architecture,
cnnModel_name=cnnModel_name,
full_path_model=full_path_model,
full_path_scaler=full_path_scaler_no_rnn,
detection_results_path=detection_results_path,
jingju_eval_results_path=jingju_eval_results_path)