-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils_plot_results.py
367 lines (307 loc) · 15.1 KB
/
utils_plot_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import matplotlib.pyplot as plt
import seaborn as sns
import os
import numpy as np
import pandas as pd
from utils import remove_extension
from utils_file import get_parent_path, gfile, gdir
from segmentation.config import Config as cc
from termcolor import colored
import commentjson as json
def get_ep_iter_from_res_name(resname, nbit, batch_size=4):
resname_no_ext = remove_extension(resname)
ffn = [ff[ff.find('_ep') + 3:] for ff in resname_no_ext]
key_list = []
for fff, fffn in zip(ffn, resname):
if '_it' in fff:
ind = fff.find('_it')
ep = int(fff[0:ind])
it = int(fff[ind + 3:])*batch_size
it = 4 if it==0 else it #hack to avoit 2 identical point (as val is done for it 0 and las of previous ep
else:
ep = int(fff)
it = nbit
key_list.append([fffn, ep, it])
aa = np.array(sorted(key_list, key=lambda x: (x[1], x[2])))
name_sorted, ep_sorted, it_sorted = aa[:, 0], aa[:, 1], aa[:, 2]
ep_sorted = np.array([int(ee) for ee in ep_sorted])
it_sorted = np.array([int(ee) for ee in it_sorted])
ep_sorted = ep_sorted - ep_sorted[0] #so that the first is 0
return name_sorted, ep_sorted, it_sorted
def my_read_csv_split_columns(fres):
df = pd.read_csv(fres)
def convert_string_array_to_array(x):
x = x.replace('[','')
x = x.replace(']', '')
x = ','.join(x.split())
if x.startswith(','):
x = x[1:]
return np.array(eval(x))
def plot_train_val_results(dres, train_csv_regex='Train.*csv', val_csv_regex='Val.*csv',
prediction_column_name='prediction', target_column_name='targets',
target_scale=1, fign='Res', sresname=None):
legend_str=[]
col = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w']
for ii, oneres in enumerate(dres):
fresT = gfile(oneres, train_csv_regex)
fresV=gfile(oneres, val_csv_regex)
if len(fresV)==0:
print('{} empty dir {} '.format(colored('Skiping','red'), get_parent_path(oneres)[1]))
continue
is_train = False if len(fresT)==0 else True
if is_train: resT = [pd.read_csv(ff) for ff in fresT]
resdir, resname = get_parent_path(fresV)
nbite = len(resT[0]) if is_train else 80000
fresV_sorted, b, c = get_ep_iter_from_res_name(resname, nbite)
ite_tot = c+b*nbite
ite_tottt = np.hstack([0, ite_tot])
print(ite_tot)
resV = [pd.read_csv(resdir[0] + '/' + ff) for ff in fresV_sorted]
df_val = pd.concat(resV, ignore_index=True, sort=False)
for rr in resV:
if 'sample_time' not in rr:
rr['sample_time'] = rr['batch_time'] / 4 #for old result always runed with batchsize 4
if isinstance(rr[prediction_column_name][0], str):
rr[prediction_column_name] = rr[prediction_column_name].apply(
lambda s: convert_string_array_to_array(s))
rr[target_column_name] = rr[target_column_name].apply(
lambda s: convert_string_array_to_array(s))
if is_train:
for rr in resT:
if 'sample_time' not in rr:
rr['sample_time'] = rr['batch_time'] / 4
if isinstance(rr[prediction_column_name][0], str):
rr[prediction_column_name] = rr[prediction_column_name].apply(
lambda s: convert_string_array_to_array(s))
rr[target_column_name] = rr[target_column_name].apply(
lambda s: convert_string_array_to_array(s))
if is_train:
df_train = pd.concat(resT, ignore_index=True, sort=False)
errorT = np.abs(df_train.loc[:,prediction_column_name].values -df_train.loc[:, target_column_name].values*target_scale)
train_time = df_train.loc[:,'sample_time']
#average between validation point itte_tot
LmTrain = [np.mean(errorT[ite_tottt[ii]:ite_tottt[ii+1]]) for ii in range(0, len(ite_tot)) ]
TimeTrain = [np.mean(train_time[ite_tottt[ii]:ite_tottt[ii + 1]]) for ii in range(0, len(ite_tot))]
LmVal = [np.mean(np.abs(rr.loc[:,prediction_column_name]-rr.loc[:, target_column_name].values*target_scale)) for rr in resV]
#LmVal = np.mean(np.abs(df_val.loc[:,prediction_column_name].values - df_val.loc[:,target_column_name].values*target_scale))
TimeVal = [np.mean(rr.loc[:,'sample_time']) for rr in resV]
plt.figure('MeanL1_'+fign); legend_str.append('V{}'.format(sresname[ii]));
if is_train: legend_str.append('T{}'.format(sresname[ii]))
plt.plot(ite_tot, LmVal,'--',color=col[ii])
if is_train: plt.plot(ite_tot, LmTrain,color=col[ii], linewidth=6)
plt.figure('Time_'+fign);
plt.plot(ite_tot, TimeVal,'--',color=col[ii])
if is_train: plt.plot(ite_tot, TimeTrain,color=col[ii], linewidth=6)
#print some summary information on the results
if not is_train:
TimeTrain=0
nb_res = len(resT) if is_train else 0
np_iter = len(resT[0]) if is_train else 0
totiter, mbtt, mbtv = ite_tot[-1] / 1000, np.nanmean(TimeTrain), np.mean(TimeVal)
tot_time = nb_res * np_iter * mbtt + len(resV) * len(resV[0]) * mbtv
percent_train = nb_res * np_iter * mbtt / tot_time
tot_time_day = np.floor( tot_time/60/60/24 )
tot_time_hour = (tot_time - tot_time_day*24*60*60) / 60/60
print('Result : {} \t {} '.format(
colored(get_parent_path(resdir[0])[1], 'green'), sresname[ii] ))
print('\t{} epoch of {} vol {} val on {} vol Tot ({:.1f}%train) {} d {:.1f} h'.format(
nb_res, np_iter, len(resV),len(resV[0]), percent_train, tot_time_day, tot_time_hour ))
fj = gfile(oneres,'data.json')
if len(fj)==1:
data_struc = cc.read_json(fj[0])
bs, nw = data_struc['batch_size'], data_struc['num_workers']
else:
bs, nw = 0, -1
print('\tBatch size {} \tNum worker {} \t{:.1f} mille iter \t train/val meanTime {:.2f} / {:.2f} '.format\
(bs, nw, totiter, mbtt, mbtv))
plt.figure('MeanL1_'+fign);
plt.legend(legend_str); plt.grid()
ff=plt.gcf();ff.set_size_inches([15, 7]); #ff.tight_layout()
plt.subplots_adjust(left=0.05, right=1, bottom=0.05, top=1, wspace=0, hspace=0)
plt.ylabel('L1 loss')
plt.figure('Time_'+fign);
plt.legend(legend_str); plt.grid()
plt.ylabel('time in second')
#df = pd.read_csv('/home/fabien.girka/Documents/segmentation/results/Train_ep1_it2.csv', index_col=0)
#rbf_hist = df['history_RandomBiasField']
#first_rbf_hist = json.loads(rbf_hist[0])
def get_pandadf_from_res_valOn_csv(dres, resname, csv_regex='res_valOn', data_name_list=None,
select_last=None, target='ssim', target_scale=1):
if len(dres) != len(resname) : raise('length problem between dres and resname')
resdf_list = []
for oneres, resn in zip(dres, resname):
fres_valOn = gfile(oneres, csv_regex)
print('Found {} <{}> for {} '.format(len(fres_valOn), csv_regex, resn))
if len(fres_valOn) == 0:
continue
ftrain = gfile(oneres, 'res_train_ep01.csv')
rrt = pd.read_csv(ftrain[0])
nb_it = rrt.shape[0];
resdir, resname_val = get_parent_path(fres_valOn)
resname_sorted, b, c = get_ep_iter_from_res_name(resname_val, 0)
if select_last is not None:
if select_last<0:
resname_sorted = resname_sorted[select_last:]
else:
nb_iter = b*nb_it+c
resname_sorted = resname_sorted[np.argwhere(nb_iter > select_last)[1:8]]
resV = [pd.read_csv(resdir[0] + '/' + ff) for ff in resname_sorted]
resdf = pd.DataFrame()
for ii, fres in enumerate(resname_sorted):
iind = [i for i, s in enumerate(data_name_list) if s in fres]
if len(iind) ==1: #!= 1: raise ("bad size do not find which sample")
data_name = data_name_list[iind[0]]
else:
data_name = 'res_valds'
iind = fres.find(data_name)
ddn = remove_extension(fres[iind + len(data_name) + 1:])
new_col_name = 'Mout_' + ddn
iind = ddn.find('model_ep')
if iind==0:
transfo='raw'
else:
transfo = ddn[:iind - 1]
if transfo[0] == '_': #if start with _ no legend ... !
transfo = transfo[1:]
model_name = ddn[iind:]
aa, bb, cc = get_ep_iter_from_res_name([fres], nb_it)
nb_iter = bb[0] * nb_it + cc[0]
rr = resV[ii].copy()
rr['evalOn'], rr['transfo'] = data_name, transfo
rr['model_name'], rr['submodel_name'], rr['nb_iter'] = resn, model_name, str(nb_iter)
rr[target] = rr[target] * target_scale
resdf = pd.concat([resdf, rr], axis=0, sort=True)
resdf['error'] = resdf[target] - resdf['model_out']
resdf['error_abs'] = np.abs(resdf[target] - resdf['model_out'])
resdf_list.append(resdf)
return resdf_list
def plot_resdf(resdf_list, dir_fig=None, target='ssim', split_distrib=True):
for resdf in resdf_list :
ee = np.unique(resdf.evalOn)
resn = resdf['model_name'].values[0]
zz = np.unique(resdf['model_name'])
if len(zz)>1: raise('multiple model_name')
if dir_fig is not None:
dir_out_sub = dir_fig + '/' + resn +'/'
if not os.path.isdir(dir_out_sub): os.mkdir(dir_out_sub)
for eee in ee:
dfsub = resdf.loc[resdf.evalOn == eee, :]
#dfsub.transfo = dfsub.transfo.astype(str)
fign = 'MOD_' + resn + '_ON_' + eee
fig = plt.figure('Dist' + fign)
#ax = sns.violinplot(x="transfo", y="error", hue="model_name", data=dfsub, palette="muted")
ax = sns.violinplot(x="transfo", y="error", hue="transfo", data=dfsub, palette="muted")
if split_distrib :
nbline = int(dfsub.shape[0] / 2)
plt.subplot(211);
ax = sns.violinplot(x="nb_iter", y="error", hue="transfo", data=dfsub.iloc[:nbline, :], palette="muted")
plt.grid()
plt.subplot(212)
ax = sns.violinplot(x="nb_iter", y="error", hue="transfo", data=dfsub.iloc[nbline:, :], palette="muted")
plt.grid()
ax.legend().set_visible(False);
fig.set_size_inches([18, 6]); fig.tight_layout(); fig.suptitle(fign);
else:
ax = sns.violinplot(x="nb_iter", y="error", hue="transfo", data=dfsub, palette="muted")
if dir_fig is not None:
plt.savefig(dir_out_sub + 'Dist_' + fign + '.png');
plt.close()
g = sns.catplot(x="nb_iter", y="error_abs", hue="transfo", data=dfsub, palette="muted", kind="point",
dodge=True, legend_out=False)
g.fig.suptitle('Error Abs' + fign)
g.fig.set_size_inches([12, 5]);
g.fig.tight_layout();
if dir_fig is not None:
plt.savefig(dir_out_sub + 'L1_' + fign + '.png');
plt.close()
sns.despine(offset=10, trim=True);
g = sns.relplot(x=target, y="model_out", hue="nb_iter", data=dfsub,
palette=sns.color_palette("hls", dfsub.nb_iter.nunique()),
kind='scatter', col='transfo', col_wrap=3, alpha=0.5)
axes = g.axes.flatten()
for aa in axes:
#aa.plot([0.5, 1], [0.5, 1], 'k')
aa.plot([0.2, 2.2], [0.2, 2.2], 'k')
plt.grid()
g.fig.suptitle(fign, x=0.8, y=0.1)
if dir_fig is not None:
plt.savefig(dir_out_sub + 'Scat_' + fign + '.png');
plt.close()
def transform_history_to_factor(r):
name = 'TODO'
if 'T_RandomAffine' in r :
raff = r.T_RandomAffine
if not isinstance(raff, float):
par = json.loads(raff)
name = 'Aff_S{:.1f}R{}'.format(par['scaling'][0], int(par['rotation'][0]))
if 'T_RandomAffineFFT' in r :
raff = r.T_RandomAffineFFT
if not isinstance(raff, float):
par = json.loads(raff)
name = 'AffFFT_S{:.1f}R{}'.format(par['scaling'][0], int(par['rotation'][0]))
if 'T_RandomElasticDeformation' in r :
raff = r.T_RandomElasticDeformation
if not isinstance(raff, float):
name = 'Ela'
if 'T_RandomBiasField' in r :
raff = r.T_RandomBiasField
if not isinstance(raff, float):
name = 'Ela'
return name
def parse_history(r ):
def append_name_to_keys_in_dict(onedict, name_append):
newdict = dict()
for k, v in onedict.items():
newdict[name_append + k] = v
return newdict
all_dict={}
if 'T_RandomAffineFFT' in r :
raff = r.T_RandomAffineFFT
if isinstance(raff,float):
row_dict = {'scaling': [np.nan, np.nan, np.nan],
'rotation': [np.nan, np.nan, np.nan],
'oversampling': np.nan,
'noise_mean_T1w_1mm': np.nan,
'noise_std_T1w_1mm': np.nan,
'S_rot': np.nan,
'M_scale': np.nan}
else:
row_dict = json.loads(raff)
row_dict['S_rot'] = np.sum(row_dict['rotation'])
row_dict['M_scale'] = np.mean(row_dict['scaling'])
row_dict = append_name_to_keys_in_dict(row_dict, 'A_FFT_')
all_dict.update(row_dict)
if 'T_RandomAffine' in r :
raff = r.T_RandomAffine
if isinstance(raff, float):
row_dict = {'scaling': [np.nan, np.nan, np.nan],
'rotation': [np.nan, np.nan, np.nan],
'translation': np.nan,
'S_rot': np.nan,
'S_trans': np.nan,
'M_scale': np.nan}
else:
row_dict = json.loads(raff)
row_dict['S_rot'] = np.sum(row_dict['rotation'])
row_dict['S_trans'] = np.sum(row_dict['translation'])
row_dict['M_scale'] = np.mean(row_dict['scaling'])
row_dict = append_name_to_keys_in_dict(row_dict, 'Aff_')
all_dict.update(row_dict)
if 'T_RandomElasticDeformationSKIP' in r : #Skip becaus coarse_grid is too big and takes time to concatenate
raff = r.T_RandomElasticDeformation
if isinstance(raff, float):
row_dict = {'coarse_grid': np.nan}
else:
row_dict = json.loads(raff)
row_dict['coarse_grid'] = np.sum(row_dict['coarse_grid'])
row_dict = append_name_to_keys_in_dict(row_dict, 'Ela_')
all_dict.update(row_dict)
if 'T_RandomMotionFromTimeCourse' in r :
raff = r.T_RandomMotionFromTimeCourse
if isinstance(raff, float):
raise('Argg TODO but the dict can change ... how to initial empty dict ?')
else:
row_dict = json.loads(raff)
row_dict = append_name_to_keys_in_dict(row_dict, 'Mot_')
all_dict.update(row_dict)
return pd.Series(all_dict)